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Zusammenfassung 

 

RNA ist eine der Schlüsselkomponenten im zentralen Dogma der Biologie. Die protein-

kodierenden mRNA Transkripte werden im Zellkern synthetisiert, zum fertigen Transkript 

prozessiert, ins Zellplasma exportiert, hier als Vorlage für die Proteinsynthese genutzt, und 

schließlich wieder abgebaut. Genexpression kann durch die Anpassung von beispielsweise 

mRNA Synthese- oder Degradationsraten gesteuert werden. Mit Hilfe eines sogenannten 

‚Metabolic Labeling‘ Experiments (metabolisches Markierungsexperiment) können mRNA 

Stoffwechselraten gemessen werden: Neu synthetisierte RNA wird mit modifizierten 

Nukleosiden markiert und kann dadurch von RNA unterschieden werden, die bereits vor 

Beginn des Experiments vorhanden war. Die Auswertung der Daten solcher 

Markierungsexperimente ist jedoch komplex. Nicht alle neu synthetisierten RNA Transkripte 

werden markiert, da nur ein gewisser Prozentsatz der nativen Nukleoside durch die 

modifizierten Nukleoside ersetzt wird. Des Weiteren ermöglicht unseres Wissens nach keine 

der aktuell verfügbaren Analysemethoden die Erforschung von mRNA Export. Um diese 

Problemstellungen zu bewältigen habe ich dynamisches Modell des mRNA Stoffwechsels 

entwickelt. Das Modell unterscheidet zwischen dem Zellkern und Zellplasma (Zwei-

Kompartiment Modell) und ermöglicht dadurch die Analyse von RNA Export zusätzlich zu 

RNA Degradation. Die Datenpräprozessierung ist speziell an metabolische 

Markierungsexperimente angepasst und Markierungseffizienzen werden in Abhängigkeit der 

Markierungsdauer berechnet. Wir führten ein RNA-Markierungsexperiment an HeLa-S3 Zellen 

durch und kombinierten es mit zellulärer Fraktionierung, um nukleäre und zytosolische RNA 

getrennt zu messen. Dann berechneten wir nukleäre und zytosolische RNA Halbwertszeiten 

unter Anwendung des Modells. Unsere Ergebnisse zeigen, dass die nukleären Halbwertszeiten 

länger als die zytosolische Halbwertszeiten sind, woraus zu schließen ist, dass nukleärer Export 

langsamer ist als zytosolische RNA Degradation. Folglich verbringen mRNA Transkripte die 

meiste ihrer Lebenszeit im Zellkern, und sind im Vergleich zum Zellplasma im Zellkern 

angereichert. Wir entdecken eine Gruppe herausragender Gene, die wir ‚Supernova‘ Gene 

nennen, welche sich durch einen außergewöhnlich schnellen RNA Export auszeichnen und 

dadurch auf einen neuartigen, distinkten Exportmechanismus hinweisen. 

 

 

 



Abstract 

 

RNA is one of the key components in the central dogma of biology. The protein-coding mRNAs 

are synthesised in the nucleus, processed to form the mature mRNA molecule, exported to the 

cytosol where they are translated into the functional protein, and eventually degraded. Gene 

expression can be regulated by adjusting, for example, mRNA synthesis or degradation rates. 

These mRNA metabolic rates are measured with RNA metabolic labelling experiments: Newly 

synthesised RNAs are tagged with modified nucleosides and can thereby be distinguished from 

pre-existing RNA transcripts. Yet, the analysis of metabolic labelling data is statistically 

challenging. The tagging of newly synthesised RNA transcripts is incomplete as only a fraction 

of the native nucleosides is replaced by the modified nucleoside. Also, to our knowledge, no 

currently available analysis tool provides a framework to investigate mRNA export. To address 

these challenges, I developed a dynamic model of mRNA metabolism. The model distinguishes 

between the nuclear and cytosolic compartment (two-compartment model) and thereby allows 

to analyse nuclear export in addition to cytosolic degradation. The data pre-processing steps are 

specifically tailored to metabolic labelling data and include the estimation of RNA labelling 

efficiencies in a time-dependent manner. We performed a metabolic labelling experiment on 

HeLa-S3 cells combined with cellular fractionation to measure nuclear and cytosolic RNA 

separately. We then applied my model to estimate nuclear and cytosolic RNA half lives. We 

find that nuclear half lives are much higher than cytosolic half lives, which leads to the 

conclusion that mRNA export is slower than mRNA degradation. Consequently, mRNA 

transcripts spend most of their lifetime in the nucleus and are more abundant in the nucleus than 

in the cytosol. We discover a group of outstanding genes, called ‘Supernova’ genes, which 

show an exceptionally fast mRNA export, arguing for a novel and distinct export mechanism. 
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1 Introduction 
 

 

RNA is one of the key components in the central dogma of biology, which describes the flow 

of information between DNA, RNA and proteins (Crick, 1970). RNA is transcribed from a 

DNA template, and protein is translated from the RNA molecule. RNA transcripts that encode 

for protein sequences are commonly called messenger RNAs (mRNAs). Yet, not all DNA 

templates and respectively RNA transcripts are protein-coding. A large number of non-coding 

RNA species like transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), long non-coding RNAs 

(lncRNAs) or microRNAs have been described which carry out metabolic or regulatory 

functions (Cabili et al., 2015; Eulalio et al., 2009; Persson et al., 2009; Eddy, 1999).  

The metabolism of mRNA within eukaryotic cells can be summarised in five steps: (1) mRNA 

is synthesised in the nucleus, yielding a preliminary pre-mRNA molecule. (2) The pre-mRNA 

molecule is processed to form the mature mRNA transcript. (3) Incorrectly processed 

transcripts are degraded in the nucleus, (4) successfully processed transcripts are exported to 

the cytosol, serving as templates for protein synthesis. (5) Finally, cytosolic mRNA is degraded. 

Eukaryotes share four RNA polymerases (Pol) which are responsible for the synthesis of the 

different RNA species (Bunch et al., 2016; Werner, Thuriaux, & Soutourina, 2009; Dieci et al., 

2007; Arnold et al., 2012). mRNAs and lncRNAs are transcribed by Pol II, pre-rRNAs are 

synthesised by Pol I, tRNAs and the 5S rRNA by Pol III, and transcripts encoded on the 

mitochondrial DNA by the mitochondrial RNA polymerase. microRNAs and other non-coding 

RNAs are transcribed by both Pol II and III. 

The pre-mRNA transcript undergoes several maturation steps, including 5’ end-capping, intron 

splicing, 3’ end cleavage and polyadenylation (Bentley, 2014). Multiple quality control 

mechanisms in the nucleus ensure the integrity of the processed mRNA and eventually degrade 

transcripts that are incompletely or incorrectly processed (Jiao et al., 2013; Hackmann et al., 

2014; Galy et al., 2004; Coyle et al., 2011; Soheilypour & Mofrad, 2018). The mature mRNA 

transcript is then ready to be exported to the cytosol. Export is assisted by multiple RNA binding 

proteins (RBPs) which align to the mRNA transcript either during or after transcription and 

form a messenger ribonucleoprotein complex (mRNP) (Sträßer et al., 2002; Masuda et al., 

2005; Viphakone et al., 2012; Brennan, Gallouzi, & Steitz, 2000; Topisirovic et al., 2009; 

Okamura, Inose, & Masuda, 2015; Delaleau & Borden, 2015). Several adaptor proteins within 
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the mRNP particle are required to either enhance or induce the binding affinity to the export 

receptors that enable mRNP transfer through the nuclear pore complex (NPC) (Viphakone et 

al., 2012; Brennan et al, 2000; Topisirovic et al., 2009; Okamura et al., 2015; Delaleau & 

Borden, 2015). 

In mammalian cells, mRNP export is mainly mediated via the two export receptors Nfx1/Tap 

and Crm1/Xpo1 (Herold, Klymenko, & Izaurralde, 2001; Katahira et al., 2015; Brennan et al., 

2000; Watanabe et al., 1999; Okamura et al., 2015; Delaleau & Borden, 2015). Nfx1/Tap and 

its main adaptor protein complex TREX are conserved from humans to yeast and required for 

bulk mRNA export (Sträßer et al., 2002; Viphakone et al., 2012; Katahira et al., 1999; Herold 

et al., 2001; Katahira et al., 2015). In contrast, Crm1/Xpo1 exports a subset of specific mRNAs 

(Okamura et al., 2015; Delaleau & Borden, 2015). 

Within the cytosol, mRNA degradation is usually initialised by deadenylation of the polyA tail. 

Transcripts are subsequently either degraded from the 3’ end or, more commonly, decapped 

and degraded in 5’ to 3’ direction (Chen et al., 2009; Wu & Belasco, 2006; Yamashita et al., 

2005; Decker & Parker, 1993; Wu & Brewer, 2012). As an alternative, the endoribonucleolytic 

decay pathway functions by mRNA molecule cleavage and is independent of deadenylation 

(Wu & Belasco, 2006; Meister et al., 2004; Wu & Brewer, 2012). Degradation does not only 

serve to regulate gene expression, but also to remove transcripts with premature stop codons 

(nonsense-mediated decay and ribosome extension–mediated decay), missing stop codons 

(nonstop decay) or stalled ribosomes (no-go decay) (Kedde et al., 2010; Kong & Liebhaber, 

2007; Yamashita et al., 2005; Wu & Brewer, 2012). 

Decay can be promoted by the non-coding microRNAs (miRNAs) and small-interfering RNAs 

(siRNAs) (Chen et al., 2009; Jing et al., 2005; Kedde et al., 2010; Meister et al., 2004; Wu & 

Brewer, 2012). One single-stranded, non-coding RNA molecule and several proteins are 

assembled to the so-called RNA-induced silencing complex (RISC). RISC then binds to mRNA 

transcripts complementary to the incorporated non-coding RNA (Chendrimada et al., 2005; 

Meister et al., 2004; Wu & Brewer, 2012). Imperfect complementary base-pairing triggers 

deadenylation-dependent degradation, whereas perfect complementary binding leads to 

endoribonucleolytic cleavage of the target mRNA (Chen et al., 2009; Wu & Belasco, 2006; Wu 

& Brewer, 2012). 

The single mRNA metabolic steps do not act independently but are highly interconnected. RNA 

polymerase II does not only execute transcription, but is also required for 5’ end-capping, 
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splicing and the initiation of 3’ end polyadenylation (Ho & Shuman, 1999; Hirose & Manley, 

1998; Rosonina et al., 2003; McCracken et al., 1997). mRNA splicing occurs co-

transcriptionally to a large extend (Oesterreich, Preibisch, & Neugebauer, 2010; Khodor et al., 

2011; Girard et al., 2012) and can be influenced by promotor architecture and the usage of 

transcriptional activators (Cramer et al., 1997; Rosonina et al., 2003). Polyadenylation is linked 

to many proteins that play a role in different steps of mRNA metabolism, like transcriptional 

activators, splicing factors, and the export-relevant THO complex (Rosonina et al., 2003; 

Nagaike et al., 2011; Danckwardt et al., 2007; Saguez et al., 2008). Rpb4p, an RNA polymerase 

II subunit, was found to be involved in both mRNA transcription and export under cellular 

stress conditions, but also in cytosolic degradation (Maillet et al., 1999; Shalem et al., 2011; 

Farago et al., 2003; Lotan et al., 2005). Several proteins that function in cytosolic decay were 

shown to travel back and forth between the cytosol and the nucleus and stimulate transcription 

(Haimovich et al., 2013). The interplay between transcription and cytosolic decay buffers 

mRNA levels: Impairing transcription leads to a reduction in degradation, which stabilizes 

transcripts, and vice versa (Haimovich et al., 2013; Sun et al., 2012).  

Furthermore, mRNA metabolic processes are not executed identically for most mRNAs, but 

carried out differently for specific groups of mRNA transcripts. This enables the regulation of 

gene expression and gene function at the level of mRNA metabolism, which thereby crucially 

contributes to a cell’s ability to carry out specific biological processes. Different mRNA 

transcript isoforms produced as a result of differential pre-mRNA processing (Cramer et al., 

1997; Danckwardt et al., 2007) can alter the stability of the mRNA transcript itself and thereby 

influence gene expression (Boutet et al., 2012), impact the mRNA’s subcellular localisation 

(An et al., 2008), or lead to changes in the translated protein product (Muriel et al., 2005; Lu, 

Gladden, & Diehl, 2003; Solomon et al., 2003; Takagaki et al., 1996). Alternative transcript 

isoform usage was shown to depict tissue-specificity (Lianoglou et al., 2013) and to be involved 

in cell differentiation and morphology (Boutz et al., 2007; Takagaki & Manley, 1998; Ji & Tian, 

2009; An et al., 2008; Boutet et al., 2012). Distinct mRNA export pathways can transfer specific 

subgroups of mRNA transcripts (Wickramasinghe et al., 2013; Culjkovic et al., 2006; Okamura 

et al., 2015), and various biological processes like cell cycle progression, cell differentiation, 

stress response and immune response are regulated via mRNA export or export-related proteins 

(Bretes et al., 2014; Wang et al., 2013; Carney et al., 2009; Chakraborty et al., 2008; Faria et 

al., 2006; Okamura et al., 2015). Notably, it was observed in yeast that mRNA transcripts of 
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heat-stress associated proteins, when transcribed upon heat shock, skip nuclear quality control 

(Zander et al., 2016). 

Dysregulation of mRNA metabolism can cause a wide variety of diseases. Malfunction in 

mRNA processing and mRNA export was shown to be associated with neurodegenerative 

diseases and cancer in several studies (Mayr & Bartel, 2009; Sun et al., 2015; Shiga et al., 2012; 

Domínguez-Sánchez et al., 2011; Saito et al., 2013; Guo et al., 2005; Chen et al., 2005; Wang 

et al., 2005; Adamia et al., 2005) and causative for genetically inherited diseases like the lethal 

congenital contracture syndrome, myotonic dystrophy, and Osteogenesis Imperfecta Type I 

(Folkmann et al., 2013; Nousiainen et al., 2008; Lin et al., 2006; Holt et al., 2007; Smith et al., 

2007; Johnson, 2000). 

Multiple methodologies have been developed to investigate the dynamics of mRNA 

metabolism. Single-molecule imaging techniques were applied to count mRNA or mRNP 

particles in the nuclear and cytosolic compartment and track their movement within the nucleus. 

Fluorescence in situ hybridisation (FISH) has been one strategy to label single mRNA 

transcripts, determine their abundance, and study the effects of transcriptional bursting (Raj et 

al., 2006; Mor et al., 2010). Tagging single mRNA particles with fluorescent proteins via the 

MS2 system served to investigate mRNP movement patterns within the nucleus and to measure 

the time until an mRNP is translocated to the cytosol (Mor et al., 2010; Shav-Tal et al., 2004). 

The rates of mRNA synthesis, splicing and decay and their dynamic changes in response to 

external stimuli have often been studied by mRNA transcription inhibition and subsequent 

mRNA quantification (Zeisel, 2011; Raghavan et al., 2002; Shalem et al., 2008; Slobodin et al., 

2020). 

Yet, the above-described have a couple of drawbacks and limitations. Single-molecule imaging 

techniques are restricted in the number of mRNA or mRNP particles per cell to resolve the 

visual signals successfully. This makes it impossible to study mRNA on a transcriptome-wide 

scale. Furthermore, these experiments often use artificial gene constructs to implement 

transcriptional control via the chosen promoter, to enable probing of the mRNA transcript, and 

to verify translation in the cytosol (for example, by fusing the sequence information a 

fluorescent protein). This renders the observations incomparable to the behaviour of native 

molecules. Experimental approaches that use transcriptional arrest to investigate mRNA 

metabolic rates may be biased due to the interplay between transcription and decay in order to 

buffer mRNA levels (Pelechano & Pérez‐Ortín, 2008). 
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An alternative perspective on measuring mRNA metabolism with substantially less 

perturbation of the metabolism itself was delivered by the principle of RNA metabolic labelling. 

This approach uses nucleoside analogues which deviate from native nucleosides but are still 

incorporated into newly synthesised RNA strands during transcription (Cleary et al., 2005). 

Thereby, newly synthesised RNA is tagged and distinguished from pre-existing RNA. The 

nucleoside analogue 4-thiouridine (4sU) found broad application in the investigation of mRNA 

metabolism (Miller et al., 2011; Sun et al., 2012; Eser et al., 2014; Amorim et al., 2010; Rabani 

et al., 2014; Schwanhäusser et al., 2011; Schueler et al., 2014). 4sU residues integrated into 

RNA strands can be biotinylated and then pulled down with streptavidin beads, thereby 

separating the labelled from the unlabelled RNA fraction. RNA was then quantified with the 

help of, for example, microarrays.  

Recently, the 4sU labelling strategy was further improved by Herzog et al. (2017). They exploit 

the fact that 4sU residues are not interpreted as uridines but cytidines when RNA is converted 

to cDNA by the reverse transcriptase for followed-up sequencing. Consequently, 4sU labelled 

RNA transcripts contain T>C conversions in their sequence alignments, distinguishing them 

from unlabelled RNA transcripts. Herzog et al. alkylate 4sU residues with iodoacetamide to 

increase the T>C conversion efficiency from around 10-11% to more than 94%, making this 

approach feasible for labelled RNA detection. Accordingly, they named their method SLAM 

seq (“thiol-linked alkylation for the metabolic sequencing of RNA”). SLAM seq is less 

laborious than the above described 4sU labelling procedure, and the data acquired is less noisy. 

The invention of new experimental procedures entailed the development of new mathematical 

tools to analyse the data and enable the determination of mRNA metabolic parameters. Many 

studies calculated global mRNA decay rates based on whole-cell RNA data, assuming that 

metabolism is in steady state (metabolic rates are constant) and that decay follows a simple 

exponential degradation 
𝑑𝑀(𝑡)

𝑑𝑡
= 𝑀0 ⋅ 𝑒−𝜆⋅𝑡 (Dölken et al., 2008; Amorim et al., 2010; 

Raghavan et al., 2002; Shalem et al., 2008; Miller et al., 2011; Sun et al., 2012; Schwanhäusser 

et al., 2011; Schueler et al., 2014). Either using short RNA labelling pulses or given that RNA 

production and decay complement each other when metabolism is in equilibrium, some studies 

additionally calculated synthesis rates (Miller et al., 2011; Sun et al., 2012; Schwanhäusser et 

al., 2011; Slobodin et al., 2020). Other approaches moved away from the steady-state 

assumption and described non-constant metabolic rates as a function of time (Zeisel, 2011; De 

Pretis et al., 2015; Rabani et al., 2011; Rabani et al., 2014). They discriminated between pre-
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mRNA and mature mRNA using intronic sequence information and estimated synthesis, 

splicing and decay rates. These time-sensitive models are very helpful to investigate the 

dynamic changes during cellular response to external stimuli. At the same time, they are likely 

to overfit the data or not be perfectly accurate. They either require a lot of parameters for fitting 

the time-dependent functions or compute one estimate per time point, assuming a linear 

behaviour of the metabolic parameters between two consecutive time points. 

One mathematical approach specifically designed to determine mRNA degradation rates from 

SLAM seq data is GRAND-SLAM by Jürges et al. (2018). Given the observed T>C 

conversions, they first calculate estimates for the proportion of newly synthesised RNA and 

then fit a simple exponential decay model to the obtained new-by-total RNA ratios over time. 

In detail, T>C labelling efficiency is estimated from the subpopulation of reads that harbour 

enough T>C conversions to discriminate these conversions from sequencing errors, assuming 

that labelling efficiency is constant over time. As a second step, new-by-total RNA ratios are 

estimated per time point and mRNA transcript based on the full data. To do so, they apply 

Bayesian inference to a binomial mixture model that defines the probability of the observed 

T>C conversions for a newly synthesised and a pre-existing transcript, respectively. Finally, 

the resulting posterior probabilities for the RNA ratios are described by beta distributions, and 

the exponential decay model is fit to the new-by-total RNA ratios over time.  

Notably, all methods mentioned above to quantitatively access mRNA metabolic rates on a 

transcriptome-wide scale focus on mRNA decay, splicing, or synthesis rates. To the best of our 

knowledge, there is currently no method available to calculate mRNA export rates. 

Additionally, SLAM seq as the probably best-performing RNA labelling procedure to date is 

only poorly covered by computational approaches to analyse the resulting data. GRAND-

SLAM itself harbours a few, potentially not negligible biases: Estimating labelling efficiency 

on the subpopulation of highly converted reads enriches the reads in fragments exposed to RNA 

editing, which can lead to efficiency over-estimation. Ratio values classically exhibit small 

absolute variances for values near 0 and 1 and large absolute variances for values near 0.5, 

which, if not corrected for, results in the data points being unequally weighted in the model 

fitting procedure, although equally informative. 

To overcome the present limitations, I developed a dynamic model for the estimation of mRNA 

metabolic rates. The model distinguishes between the nuclear and cytosolic compartment (two-

compartment model) and includes nuclear export as one of the mRNA metabolic processes. It 
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uses RNA labelling data produced by SLAM seq and therefore enables the estimation of 

metabolic parameters on a transcriptome-wide scale. Further, the data pre-processing steps 

include the correction for potential RNA editing sites, estimation of a time-dependent labelling 

efficiency, and variance-stabilizing transformation of the data. Overall, the model facilitates the 

transcriptome-wide estimation of RNA metabolic parameters while correcting for multiple 

drawbacks and, for the first time, enables the investigation of nuclear export.  

We conducted a SLAM seq experiment on HeLa-S3 cells and combined it with cellular 

fractionation to measure nuclear and cytosolic RNA separately. Then, we applied my model to 

the metabolic labelling data to estimate nuclear and cytosolic RNA half lives. We observe that 

nuclear half lives are much higher than cytosolic half lives and conclude that mRNA export is 

slower than mRNA degradation. Consequently, mRNA transcripts spend most of their lifetime 

in the nucleus and are more abundant in the nucleus than in the cytosol. We find a group of 

outstanding genes, that we call ‘Supernova’ genes, with an exceptionally fast mRNA export, 

arguing for a novel and distinct export mechanism. 
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2 Methods 

 

 

2.1 Data sets 

 

We measured three independent SLAM seq time series in HeLa-S3 cells (Herzog et al., 2017) 

(Figure 1). The experiments were carried out by Kristina Zumer, who also did the sequencing 

library preparation. Sequencing was done on a HiSeq2000 sequencer (Illumina) at MPI-BPC. 

In each experiment, two biological samples were measured across a series of time points after 

labelling onset. Importantly, the nuclear and cytosolic fraction were separated after harvesting 

the cells, yielding one nuclear and one cytosolic RNA measurement for each time point. A fixed 

amount of synthetic RNA spike-ins was added to the samples directly after fractionation. Half 

of the spike-ins were 4sU labelled, the other half was unlabelled. 3’-sequencing (stranded, 

single-end) was performed to capture transcripts which had already undergone polyadenylation. 

The T>C nucleotide conversions introduced by the metabolic labelling on mRNA level translate 

into A>G conversions in reads aligned to the (-) strand and T>C conversions in reads aligned 

to the (+) strand. 

The first, preliminary experiment was conducted to find suitable time points for the subsequent 

experiment. This experiment included two unlabelled samples which served as negative 

controls and are hereafter referred to as control samples. The second, pilot experiment was 

performed to inspect the adapted choice of time points. It was, besides that, used only to 

examine the recovery of ambiguously or unmapped reads and is in the following referred to as 

pilot data set. The final, main experiment consists of a time series of measurements at 15, 30, 

45, 60, 90, 120 and 180 minutes after labelling onset (Figure 1). 
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2.2 Read alignment 

 

Reads were mapped to the reference genome hg19 and raw alignments were quality filtered 

with slamdunk (Neumann et al., 2019) (version 0.3.0, calling slamdunk map and slamdunk filter 

with default settings except for resolving reads mapped to multiple genomic loci (multi-

mappers) and setting the number of reported alignments per read to 100) (Figure 2, Figure 3, 

Figure 4A). To compare alignment performance, the control samples were additionally mapped 

with bowtie2 (Langmead & Salzberg, 2012) (version 2.2.6, default settings) and hisat2 (Kim, 

Langmead, & Salzberg, 2015) (version 2.0.0-beta, using default settings but setting the 

mismatch penalty to 1 and disabling spliced alignments) (Figure 2). 

 

2.3 Recovery of multi-mapped and unmapped reads 

 

To assess whether reads mapping to multiple genomic loci (multimappers) and unmapped reads 

could be recovered, these reads were collected and subjected to a second, modified alignment 

step described below (Figure 4). To avoid confusion, the original alignment (from which the 

Figure 1 Experimental setup. We performed SLAM seq 

experiments for the metabolic labelling of RNA in HeLa-S3 

cells (Herzog et al., 2017). Cells were treated with the 

nucleoside analogue 4sU, which is incorporated into newly 

synthesised RNA transcripts. Cells were harvested after 15, 

30, 45, 60, 90, 120, and 180min of treatment (labelling). The 

nuclear and cytosolic fraction were separated subsequently. 

Each fraction was treated with iodoacetamide to alkylate the 

4sU residues in the newly synthesised RNA transcripts. 

Alkylated 4sU residues are misinterpreted by the reverse 

transcriptase, which introduces T>C conversions during 

cDNA synthesis. Finally, 3’-seq library preparation and 

sequencing were performed. The sequencing reads measure 

the nuclear and cytosolic total and newly synthesised RNA. 

The experiments and the library preparation were 

conducted by Kristina Zumer.  

Figure by Kristina Zumer, personal communication. 
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multi-mapped and unmapped reads were taken) will be called ‘primary alignment’, and the 

second, modified step will be called ‘recovery alignment’ in this section.  

Multimappers and unmapped reads were filtered from the primary alignment. As the 

sequencing data is 3’-enriched, recovery mappings were run against a reference consisting of 

annotated hg19 3’UTR sequences. 3’UTR annotations were retrieved from the UCSC table 

browser (Karolchik et al., 2004), and overlapping regions were merged irrespective of strand 

orientation to generate the reference. Multimappers were re-mapped against the 3’UTR 

reference and considered rescued if there was exactly one reliable alignment (Figure 4B). 

Unmapped reads were re-mapped against the 3’UTR reference using a degenerated nucleotide 

alphabet for both the reads and the reference to mask potential labelling conversions. As the 

sequencing data is stranded, the reference was modified based on 3’UTR strand orientation, 

converting all G to A (- strand), all C to T (+ strand), or both (unknown strand orientation as a 

consequence of overlapping 3’UTRs from opposite strands). Reads were degenerated 

accordingly, yielding one version with all G converted to A and one version with all C converted 

to T per read. An unmapped read was considered rescued by the recovery mapping if exactly 

one of its degenerated versions had exactly one reliable alignment (Figure 4B). All recovery 

mappings were executed and quality filtered with slamdunk (Neumann et al., 2019), using the 

same version and settings as for the primary mappings (2.2 Read alignment). 

The recovery mappings were applied to the pilot experiment. A large fraction of multi-mapped 

reads could be rescued (Figure 4B). Yet, the recovered reads could not make up for the uniquely 

mapped reads lost in the nuclear fraction over time (Figure 3A, Figure 4B). At the same time, 

there is no guarantee that the rescued multi-mapped reads originate from the 3’UTRs they were 

assigned to in the recovery mapping. Therefore, the recovery mappings were not performed on 

the final SLAM seq experiment data. 
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Figure 2 Mapping statistics of the control samples. (A) Absolute numbers. (B) Relative numbers. Data is shown 

for both sample 1 and 2 and the nuclear and cytosolic fraction, respectively. Data processing with slamdunk 

includes mapping and alignment quality filtering. The fraction of reads with a specific alignment quality is colour-

coded. Uniquely mapped reads: reads with exactly one alignment (bowtie2 and hisat2), reads with exactly one 

best-scoring, reliable alignment according to quality control (slamdunk). Ambiguous reads: reads with more than 

one alignment (bowtie2 and hisat2), reads with more than one best-scoring, reliable alignment or only unreliable 

alignments (slamdunk). Unmapped reads: reads with no alignment (slamdunk, bowtie2, hisat2). 

A 
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Figure 3 Mapping statistics of the final SLAM seq experiment. (A) Absolute numbers. (B) Relative numbers. 

Data is shown for both sample 1 and 2 and the nuclear and cytosolic fraction, respectively, resolved by the 

measured time points. Mapping was performed and quality filtered with slamdunk. The fraction of reads with a 

specific alignment quality is colour-coded. Uniquely mapped reads: reads with exactly one best-scoring, reliable 

alignment. Ambiguous reads: reads with more than one best-scoring, reliable alignment or only unreliable 

alignments. Unmapped reads: reads with no alignment. 

A 
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Figure 4 Mapping statistics for the pilot data set's primary and recovery mappings. Data is shown for both 

sample 1 and 2 and the nuclear and cytosolic fraction, respectively, resolved by the measured time points. All 

mappings were performed and quality filtered with slamdunk. The fraction of reads with a specific alignment 

quality is colour-coded. (A) Primary mapping. Uniquely mapped reads: reads with exactly one best-scoring, 

reliable alignment. Ambiguous reads: reads with more than one best-scoring, reliable alignment or with only 

unreliable alignments. Unmapped reads: reads with no alignment. (B) Primary mapping and recovery mappings in 

comparison. Ambiguous reads: reads with more than one best-scoring, reliable alignment or only unreliable 

alignments in the primary mapping. Multimappers: reads with more than one best-scoring, reliable alignment in 

the primary mapping. Multimappers recovered: reads with more than one best-scoring, reliable alignment in the 

primary mapping, but exactly one best-scoring, reliable alignment using a reference made from annotated 3'UTRs 

in a recovery mapping step. Unmapped reads: reads with no alignment in the primary mapping. Unmapped 

recovered reads: reads with no alignment in the primary mapping, but with exactly one best-scoring, reliable 

alignment using a degenerated 3-nucleotide alphabet for the reference made from annotated 3'UTRs and the reads 

in a recovery mapping step. 

 

 

2.4 Assigning reads to annotated 3’UTRs 

 

3'UTR annotations for hg19 were downloaded from the UCSC Table Browser (Karolchik et al., 

2004). Overlapping 3'UTRs were merged considering strand orientation. Uniquely mapped 

reads were assigned to a specific 3'UTR if their alignment overlapped with the UTR with at 

least one nucleotide position (Figure 5). As a consequence of the stranded sequencing protocol, 

reads of transcripts encoded on the (-) strand map forwards, and reads of transcripts encoded 

on the (+) strand map reversely, which was accounted for during assignment. For the sake of 

simplicity, reads assigned to known, annotated 3’UTRs will be named 3’UTR reads, and reads 

left unassigned will be named non-3’UTR reads in the following (yet, they might originate from 

unannotated 3’UTRs). 
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Figure 5 Read assignment to annotated 3’UTRs. Data is shown for both sample 1 and 2 and the nuclear and 

cytosolic fraction, respectively, resolved by the measured time points. Uniquely mapped reads of the final SLAM 

seq experiment were assigned to hg19 annotated 3'UTRs. Overlapping 3'UTRs were previously merged 

considering strand orientation. Read mapping orientation was considered during the assignment process. The 

number of reads assigned to (-) strand or (+) strand encoded 3’UTRs or without assignment is colour-coded. (A) 

Absolute read counts. (B) Relative read counts. 
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2.5 Peak calling 

 

We sought to identify distinct regions of the genome that are covered by dense read clusters. 

These regions, which we name coverage peaks or simply peaks, are later subjected to metabolic 

parameter estimation. A peak may overlap with an annotated 3’UTRs and is then assigned to 

this 3’UTRs. Multiple peaks can be assigned to the same 3’UTR. In that case, they can either 

derive from A-rich sequences that serve as internal (i.e. non-polyA) priming sites during the 

sequence amplification process in library preparation, or from different 3’UTR isoforms. Peaks 

located outside of annotated 3’UTRs are most likely created by internal priming sites. Some of 

these peaks map to intronic or exonic regions of transcripts. All other peaks could be derived 

from unknown transcripts, non-coding transcripts, or (if the number of reads of the peak is low) 

mapping artefacts. 

To properly define a peak region, we count the number of reads mapped at each position of the 

reference genome (per-nucleotide coverage). Then, we examine the coverage as a function of 

distance to a given central position. Based on the resulting coverage profile, we fix a distance 

radius that specifies the peak. 

 

2.5.1 Per-nucleotide coverage calculation 

Peaks mapped within annotated 3’UTRs are primarily derived from priming against the polyA-

tail, whereas peaks located outside of annotated 3’UTRs are mainly derived from internal 

priming sites or mapping artefacts. Consequently, these two groups of peaks may exhibit 

different shapes. Peak calling was therefore executed separately for 3’UTR and non-3’UTR 

reads. 

Uniquely mapped reads were pooled across the time points of a time series measurement (but 

kept separately for sample 1 and 2 as well as the nuclear and cytosolic fraction). The number 

of reads mapped at each position of the reference genome was calculated, considering strand 

orientation (per-nucleotide coverage). Only the nucleotide at the 3’end of each read was used 

for the calculation, as it is closest to the corresponding polyA or internal priming site. 

Consequently, each read was counted exactly once.  
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Subsequently, a coverage profile was created to define peak width. Finally, coverage 

convolution was applied to smooth out noise and call peak centres based on local coverage 

maxima. The single steps are described in more detail in the following. 

 

2.5.2 Coverage profiles 

Coverage profiles describe to which extent, around a nucleotide position that is covered, other 

nucleotide positions are covered too. In detail, for each nucleotide position with a coverage of 

at least 1, it is evaluated whether or not the positions within a [-1000, 1000] window around 

this nucleotide are also covered or not. Each position within the [-1000, 1000] window is scored 

with a 1 in case it is covered and 0 if it is not. The central window position 0 represents the 

evaluated nucleotide and is therefore always scored 1. This procedure yields one [-1000, 1000] 

score vector for each covered nucleotide position. The coverage profile is retrieved by summing 

all score vectors. The relative profile is created by dividing the coverage profile vector by the 

central position’s score (which is equal to the total number of covered nucleotide positions). 

Based on the shape of the relative profiles, a coverage peak was defined as the -/+50 nucleotide 

region around a local coverage maximum (Figure 6). Note that this peak width of, in total, 101 

nucleotide positions is not an artefact of read length, as each read is only counted once, namely 

with the nucleotide at its 3’ end. 

 

2.5.3 Coverage convolution and peak calling 

To smooth out noise, coverage was convolved with a triangular function. The width of the 

triangle was set to the peak width (determined based on the coverage profiles in the previous 

step). Accordingly, the triangle was defined by a 50 nucleotide radius around the central 

position, resulting in a width of 101 nucleotide positions. All local maxima found within the 

convolved coverage served as peak centres and were extended by -/+50 nucleotides around the 

centres to form the called peak regions. This initially identified a total of 98,102 peaks for the 

3’UTR reads (3’UTR peaks) and 1,262,263 peaks for the non-3’UTR reads (non-3’UTR peaks). 

Of course, not all of these peaks are informative, as many originate from mapping artefacts or 

are generally poorly covered. Therefore, we define a peak detectable if it fulfils the following 

two conditions: (1) the peak has at least 1 read assigned in each measurement (i.e., each time 

point measured in each compartment and sample), (2) the peak has at least 30 reads assigned 

on average across a time series (i.e., per compartment and sample). This yielded 10,170 
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detectable 3’UTR peaks and 1651 detectable non-3’UTR peaks. The peaks were annotated as 

described in the following chapter. 

 

 

 

 

Figure 6 Relative coverage profiles. Profiles were created over a window of 1000 nucleotides both upstream and 

downstream of a central, covered position. Profiles were evaluated separately for the reads assigned to annotated 

3'UTR regions and reads not assigned to such as well as the nuclear and cytosolic fraction. The shown profiles are 

trimmed on the x- and y-axis to enhance information content; the full profiles can be found in Supplemental Figure 

1. 

 

2.6 Annotation of 3’UTR regions and coverage peaks 

 

To assign 3’UTR regions and single coverage peaks to their respective coding genes, the hg19 

genome annotation was downloaded from NCBI RefSeq (O'Leary et al., 2016). A 3’UTR region 

or a coverage peak was assigned to each gene it overlapped with at least one nucleotide position.  

3’UTR reads non-3’UTR reads 
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3’UTR peaks were additionally assigned to the 3’UTR regions they were overlapping (with at 

least one nucleotide). In rare cases, a 3’UTR peak was assigned to two 3’UTR regions (20 out 

of all 10,170 detectable peaks). 

Non-3’UTR peaks were further classified. Annotated 5’UTR, exonic and intronic regions were 

downloaded from the UCSC Table Browser (Karolchik et al., 2004) (additionally to the 

previously downloaded 3’UTR annotations). 5’UTRs and 3’UTRs are usually also listed as 

exonic regions. We will distinguish between 5’UTRs, 3’UTRs, and all other exonic regions to 

avoid confusion. Henceforth, the term ‘exonic region’ excludes 5’UTRs and 3’UTRs. A non-

3’UTR coverage peak was assigned to any of these annotated regions if it overlapped with at 

least one nucleotide position. A peak was classified as exonic (respectively intronic) if it was 

only assigned to exonic (respectively intronic) regions.  

 

2.7 Mismatch statistics and correction for SNP and editing sites 

 

To estimate sequencing errors, single-nucleotide mismatch rates were calculated for the control 

samples. Some of the observed mismatches will not be due to technical errors but biological 

RNA editing (Nishikura, 2016). Edited RNA nucleotides could be misinterpreted and converted 

by the reverse transcriptase during the library preparation. These editing events may not be 

equally abundant within the nuclear and cytosolic fraction or within 3’UTR regions and outside 

of such. Single-nucleotide mismatch rates were therefore calculated separately for the nuclear 

and cytosolic compartment as well as the 3’UTR and non-3’UTR reads.  

Mismatch rates were biased strand-specific for the reads assigned to 3’UTRs (Figure 7). 

Especially A>G and T>C were enriched on the (+) and respectively (-) strand (note that the 

SLAM seq experiment combined with the strand-preserving library preparation introduces 

A>G on the (-) and T>C on the (+) strand). RNA editing events can explain such events. The 

A>G and T>C bias could be a consequence of A-to-I editing, which occurs in both coding and 

non-coding RNAs (Nishikura, 2016). Since editing conversions can flaw the count statistics of 

labelled uridines, it is crucial to correct for potential editing sites. Additionally to the strand-

specific bias, mismatch rates were generally higher for the non- 3’UTR reads, especially in the 

cytosolic fraction (Figure 7). To ensure that spurious mapping artefacts do not mainly introduce 

the observed mismatch rates of the non-3'UTR reads, only non-3’UTR coverage peaks with a 

minimum of 5 reads assigned in a compartment and sample were analysed. 
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To correct the observed mismatch biases, known hg19 SNP positions and potential RNA editing 

sites were removed from further analysis. Known hg19 SNP positions were obtained from 

NCBI dbSNP (Sherry et al., 2001). To identify editing sites, the reads of both control samples 

were pooled. Then, position-wise mismatch rates were calculated separately for the nuclear and 

cytosolic fraction. Sites with a mismatch rate of more than 5% on either strand were called as 

potential editing sites. A cut-off of 5% was chosen as it is substantially larger than technical 

sequencing errors (Pfeiffer et al., 2018) but low enough to capture nucleotide positions that are 

not frequently modified. As the library sizes of the control samples were smaller than of the 

final SLAM seq experiment and the correction for biased nucleotide positions is of high 

importance, no coverage restrictions were applied to this identification of potential editing sites. 

Finally, the editing sites called for the nuclear and cytosolic fraction were pooled.  

Known SNP and potential editing sites were first excluded from the analysis of the control 

samples. All of the observed biases were substantially reduced particularly after the removal of 

RNA editing sites, yielding comparable mismatch rates both between strand-specific A>G 

respectively T>C and other conversions, between the nuclear and cytosolic fraction, and 

between 3'UTR and non-3'UTR peaks (Figure 7).  

SNP and RNA editing site correction was then applied to the final SLAM seq experiment 

measurements. The mismatch statistics are shown for 3'UTR reads in Figure 8 and non-3'UTR 

coverage peaks comprising at least 5 reads in Figure 9. Conversions introduced by the metabolic 

labelling are expected to display as A>G on the (-) and T>C on the (+) strand. The labelling 

conversions show an increasing trend over time, while the other mismatch rates constantly stay 

low. Labelling conversions increase less in the cytosol than in the nucleus, as the newly 

synthesised, labelled RNA transcripts are produced in the nucleus, and their export to the 

cytosol requires time. 
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Figure 7 Mismatch statistics of the control samples. Single-nucleotide mismatch rates in the nuclear and 

cytosolic fraction of control samples 1 and 2. Mismatch rates are shown for different nucleotide conversion 

correction strategies. The mismatch type is colour-coded. No conversion correction: mismatch rates observed in 

the alignment. SNP-sites correction: mismatch rates observed in the alignment when excluding all nucleotide 

positions annotated as known SNP site. SNP and edit-site correction: mismatch rates observed in the alignment 

when excluding all nucleotide positions annotated as known SNP site or called as potential editing sites. A>G 

(T>C) conversions: A>G (T>C) conversions observed in the read alignment. Other conversions: average over all 

non-A>G and non-T>C conversions observed in the read alignment. Conversions of (-) strand ((+) strand) 3'UTRs: 

conversions of all reads assigned to an annotated (-) strand ((+) strand) 3'UTRs. Conversions of other regions on 

the (-) strand ((+) strand): conversions of all reads of a non-3'UTR peak comprising at least 5 reads on the (-) strand 

((+) strand). 
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Figure 8 Mismatch statistics of the 3’UTR reads of the final SLAM-seq experiment. Single-nucleotide 

mismatch rates in 3’UTR reads of the final SLAM seq experiment. Mismatch statistics are calculated separately 

for the nuclear and cytosolic fraction in sample 1 and 2, and resolved by the measured time points. The mismatch 

type is colour-coded. Mismatches are corrected for both annotated SNP sites and potential editing sites. A>G 

(T>C) conversions: A>G (T>C) conversions observed. Other conversions: average over all non-A>G and non-

T>C conversions observed. Conversions of the (-) strand ((+) strand): conversions observed for the reads assigned 

to an annotated (-) strand ((+) strand) 3’UTR.  
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Figure 9 Mismatch statistics of the non-3’UTR reads of the final SLAM-seq experiment. Single-nucleotide 

mismatch rates in non-3’UTR reads of the final SLAM seq experiment. Mismatch statistics are calculated 

separately for the nuclear and cytosolic fraction in sample 1 and 2, and resolved by the measured time points. The 

mismatch type is colour-coded. Statistics are based on non-3’UTR coverage peaks comprising at least 5 reads, and 

mismatches are corrected for both annotated SNP sites and potential editing sites. A>G (T>C) conversions: A>G 

(T>C) conversions observed. Other conversions: average over all non-A>G and non-T>C conversions observed. 

Conversions of the (-) strand ((+) strand): conversions observed for the reads assigned to a (-) strand ((+) strand) 

non-3'UTR peak.  
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2.8 Estimation of sequencing errors and labelling time shift 

 

2.8.1 Estimation of sequencing errors 

G>non-G and C>non-C sequencing errors can mask the A>G and T>C labelling conversions, 

which introduces false-negative errors. On the other hand, A>G and T>C sequencing errors 

mimic the labelling conversions and cause false-positive observations. We calculate false-

negative and false-positive sequencing error rates to consider these errors while estimating the 

labelling efficiency and the newly synthesised RNA ratios. The false-negative error rates can 

directly be calculated from the final SLAM seq experiments, as the metabolic labelling does 

not influence the G>non-G and C>non-C mismatch rates. The false-positive error rates have to 

be inferred with the information from the control samples. The details are described in the 

following. Note that, due to the strand-preserving library preparation, only A>G and G>non-G 

conversions on the (-) strand and T>C and C>non-C conversions on the (+) strand are relevant 

for the error rate estimation.  

The error rates were estimated based on the mismatch rates in the control and final SLAM seq 

experiment after SNP and editing site correction. For the non-3’UTR reads, only reads from 

coverage peaks comprising at least 5 reads were included in the calculations to exclude mapping 

artefacts. Mismatch rates were almost identical between both control or SLAM seq experiment 

samples, respectively (Figure 7, Figure 8, Figure 9). Therefore, mismatch rates were averaged 

over the two samples of an experiment prior to error rate estimation.  

G>non-G and C>non-C sequencing errors (false-negative errors) were obtained from the final 

SLAM seq experiment. G>non-G mismatch rates on the (-) strand and C>non-C mismatch rates 

on the (+) strand were averaged over all time point measurements. This yielded one false-

negative error rate per cellular compartment and read identity (3’UTR or non-3’UTR) 

(Supplemental Table 1). 

A>G and T>C sequencing errors (false-positive errors) in the final SLAM seq experiment had 

to be inferred with the information of the control samples. First, we calculated the fold changes 

between A>G or T>C mismatch rates and all other X>Y mismatch rates in the control 

experiment. Subsequently, for each sequencing error rate X>Y observed in the final SLAM seq 

experiment, one A>G and T>C sequencing error rate estimate was computed using the 

corresponding fold-change from the control data. Finally, the A>G estimates on the (-) strand 

and the T>C estimates on the (+) strand were averaged over all sequencing errors X>Y and 
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time point measurements. We thereby obtained one false-positive error rate per cellular 

compartment and read identity (3’UTR or non-3’UTR) (Supplemental Table 2). 

 

2.8.2 Estimation of the labelling time shift 

We observed that the labelling conversions barely increased within the first 15 minutes of the 

labelling experiment compared to the time window between 15 and 30 minutes (Supplemental 

Table 3, Supplemental Table 4). This delay in labelling, which we call labelling time shift, can 

occur because the 4sU needs time to distribute within the cells (i.e., 4sU diffusion). Further, a 

labelled transcript cannot directly be detected but has to be polyadenylated first; this can also 

cause a time gap between labelling onset and detection. We estimated this labelling time shift 

and subtracted it from the experimental time points to retrieve the effective labelling time points 

for subsequent parameter estimation. The detailed procedure is described in the following. 

The labelling time shift was computed separately for the experimental samples to account for 

technical variation; for 3’UTR and non-3’UTR reads since non-3’UTR reads are mainly derived 

from internal priming sites and skip the polyadenylation-dependent time shift; and the forward 

and reverse strand to verify that there is no strand-specific bias. For the non-3’UTR reads, only 

reads from coverage peaks comprising at least 5 reads were used to exclude mapping artefacts.  

In the nucleus, the ratio of newly synthesised transcripts and thereby the number of observed 

labelling conversions can be assumed to increase linearly in the early time points of the 

experiment. We estimate the labelling time shift based on this assumption. First, the labelling 

conversion rate of 0min was set to the sequencing error estimate. Second, the increase in the 

labelling conversion rate was calculated between the 0min and 15min as well as the 15min and 

30min measurements. Then, we calculated the effective labelling time between 0min and 15min 

as the fraction of labelling conversion rate increase during this time window with respect to the 

15min to 30min time window, and multiplied this fraction by the time window size (15min). 

The labelling time shift is defined by the non-effective labelling time. The forward and reverse 

strand’s time shift estimates were comparable and therefore averaged. This resulted in one 

estimate per read identity (3’UTR or non-3’UTR reads) and sample (Supplemental Table 3, 

Supplemental Table 4). 
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2.9 Estimation of labelling efficiency and newly synthesised RNA ratio 

 

The labelling efficiencies and newly synthesised RNA ratios were estimated jointly using an 

EM algorithm. The estimation is based on the observed A>G conversions on the (-) strand and 

T>C conversions on the (+) strand, as well as the previously estimated false-positive and false-

negative error rates. Labelling efficiencies were estimated separately for 3’UTR regions and 

non-3’UTR coverage peaks to examine potential biases between these two groups. The details 

are described in the following. For better readability, it will hereafter be referred to 3’UTRs and 

T>C conversions only. 

Fix a 3’UTR onto which 𝐽 reads were mapped. Given a read 𝑗 = 1, … , 𝐽, let 𝑇𝑗 be its number of 

T-positions in the genomic sequence of the read alignment, and let 𝑜𝑗 ∈ 0,1, . . . , 𝑇𝑗 be the 

number of positions at which we observe T>C conversions. Let ℎ𝑗 ∈ {0,1} be a hidden variable 

indicating whether read 𝑗 originates from a pre-existing RNA (ℎ𝑗 = 0), or a newly synthesised 

RNA (ℎ𝑗 = 1). Let 𝜌 ∈ [0, 1] be the proportion of newly synthesised RNAs in the RNA 

population from which read 𝑗 was drawn. Let 𝑒 ∈ [0, 1] be the labelling efficiency, i.e., the 

probability by which a T>C conversion happens in a newly synthesised RNA. Let 𝑏 ∈ [0, 1] be 

the probability of a T>C sequencing error (false-positive error). Let 𝜖 ∈ [0, 1] be the probability 

of a C>non-C sequencing error (false-negative error). Probabilities 𝑏 and 𝜖 are estimated 

independently using the control samples and the final SLAM seq experiment (as described in 

2.8 Estimation of sequencing errors and labelling time shift). Denote the unknown parameters 

by Θ = (𝜌, 𝑒). Then, 

𝑃(𝑜𝑗 , ℎ𝑗  ; 𝛩) =  𝑃(ℎ𝑗  ;  𝜌) ⋅ 𝑃(𝑜𝑗  | ℎ𝑗  ; 𝑒, 𝑏, 𝜖)   (1) 

In the above expression, P(hj ;  ρ) = Bernoulli(hj ;  𝑝 = 𝜌) and  

P(𝑜𝑗  | hj ; e, b, 𝜖) = {
 Bin(oj ; n =  𝑇𝑗  , p = 𝑏) if  hj = 0 

Bin(oj ; n =  𝑇𝑗  , p = 𝑎) if  hj = 1
   (2) 

where 𝑎 is the probability of seing a T>C converted nucleotide in a newly synthesised transcript, 

𝑎 = 𝑒(1 −  𝜖)  + (1 − 𝑒)𝑏 = 𝑒(1 − 𝜖 − 𝑏) + 𝑏. 
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In other words,  

log P(oj, hj ; Θ) {
log(1 − 𝜌) + log (𝑇𝑗

oj
) + oj log 𝑏 + (𝑇𝑗 − oj) log(1 − 𝑏)     if  hj = 0 

log 𝜌 +  log (𝑇𝑗
oj

) + oj log 𝑎 + (𝑇𝑗 − oj) log(1 − 𝑎)            if  hj = 1
 (3) 

 

2.9.1 Estimation of the labelling efficiency per transcript and measurement 

An EM algorithm is performed to estimate the ratio of newly synthesised RNAs ρ and the 

labelling efficiency e for a 3'UTR.  

E-step. 

Let 𝐻 = (hj ;  𝑗 = 1, … , 𝐽), 𝐻−1 = (hj ;  𝑗 = 2, … , 𝐽 ). Given some parameter set Θ′ = (𝜌′, 𝑒′), 

the function 𝑄(Θ ; Θ′) has to be optimized with respect to Θ = (𝜌, 𝑒). Here, 

𝑄(Θ ; Θ′) ≔ 𝔼𝑃(𝐻 | 𝑂; Θ′) log 𝑃(𝑂, 𝐻; Θ)

= ∑ 𝑃(𝐻 | 𝑂; Θ′) ⋅ log 𝑃(𝑂, 𝐻; Θ)    𝐻 ∈ {0,1} 𝐽 

= ∑ ∑  (𝑃(𝐻−1 | 𝑂−1; Θ′) ⋅ 𝑃(𝑜1, ℎ1; Θ′))ℎ1∈ {0,1}𝐻−1∈ {0,1} 𝐽−1  ⋅ 

     (log 𝑃(𝐻−1 | 𝑂−1; Θ) + log 𝑃(𝑜1, ℎ1; Θ))

= ∑  𝑃(ℎ1 | 𝑜1; Θ′) ⋅  log 𝑃(𝑜1ℎ1∈ {0,1} , ℎ1; Θ) +

      ∑ 𝑃(𝐻−1 | 𝑂−1; Θ′)𝐻−1∈ {0,1} 𝐽−1 ⋅ log 𝑃(𝐻−1 | 𝑂−1; Θ)

induction
=

∑ ∑ 𝑃(ℎ𝑗  | 𝑜𝑗; Θ′)ℎ𝑗∈ {0,1}
𝐽
𝑗=1 ⋅ log 𝑃(𝑜𝑗 , ℎ𝑗; Θ)

 (4) 

Let  

𝑐𝑗,ℎ𝑗
≔ 𝑃(ℎ𝑗  | 𝑜𝑗; Θ′) =

𝑃(𝑜𝑗 | ℎ𝑗;𝑒′)⋅𝑃(ℎ𝑗;𝜌′)

∑ 𝑃(𝑜𝑗 | ℎ𝑗;e′)ℎ𝑗∈ {0,1} ⋅𝑃(ℎ𝑗;𝜌′)
  ,  𝑗 = 1, … , 𝐽   (5) 

Let 𝐶0 = ∑ 𝑐𝑗,0𝑗  and 𝐶1 = ∑ 𝑐𝑗,1𝑗  , 𝐴 = ∑ 𝑐𝑗,1𝑜𝑗𝑗  , 𝐵 = ∑ 𝑐𝑗,1(𝑇𝑗 − 𝑜𝑗)𝑗 . Then, equation (4) 

simplifies to 

𝑄(Θ ; Θ′) = ∑ 𝑐𝑗,0𝑗  [log(1 − 𝜌) + log (𝑇𝑗
oj

) + oj log 𝑏 + (𝑇𝑗 − oj) log(1 − 𝑏)] +

     ∑ 𝑐𝑗,1 [log 𝜌 +  log (𝑇𝑗
oj

) + oj log 𝑎 + (𝑇𝑗 − oj) log(1 − 𝑎)]𝑗

= 𝐶0 log(1 − 𝜌) + 𝐶1 log 𝜌 + 𝐴 log 𝑎 + 𝐵 log(1 − 𝑎) + const

 (6) 
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M-step. 

Taking the partial derivative of 𝑄 with respect to 𝜌 and equating this expression to zero yields 

0 =
𝛿𝑄(Θ ;Θ′)

𝛿𝜌
= −

𝐶0

1−𝜌
+

𝐶1

𝜌

𝜌 =
𝐶1

𝐶0+𝐶1
=

𝐶1

𝐽

 (7) 

Recall that 𝑎 = 𝑒(1 − 𝜖 − 𝑏) + 𝑏, and take the partial derivative of 𝑄 with respect to 𝑒. 

Equating the resulting expression to zero yields 

0 =
𝛿𝑄(Θ ;Θ′)

𝛿𝑒
=

𝐴

𝑎
⋅

𝛿𝑎

𝛿𝑒
+

𝐵

1−𝑎
⋅

𝛿(1−𝑎)

𝛿𝑒

=
𝐴

𝑎
⋅ (1 − 𝜖 − 𝑏) −

𝐵

1−𝑎
⋅ (1 − 𝜖 − 𝑏)

  (8) 

Solving this for 𝑎 (assuming 1 − 𝜖 − 𝑏 ≠ 0) and then solving for 𝑒 yields 

𝑎 =
𝐵

𝐴+𝐵

𝑒 =
𝑎−𝑏

1−𝜖−𝑏
=

(
𝐵

𝐴+𝐵
−𝑏)

1−𝜖−𝑏

  (9) 

 

2.9.2 Estimation of one labelling efficiency 𝑒(𝑡) and transcript-specific ratios 𝜌𝑔(𝑡) 

Given the measurement 𝑡 of one time point in one compartment and sample. The above 

procedure yields one estimate 𝑒𝑔(𝑡) of the labelling efficiency for each 3’UTR 𝑔. Some of these 

estimates will be highly unreliable due to a small number of reads assigned to the 3'UTRs or a 

slow turnover of the underlying RNA transcripts. Particularly at early time points, the number 

of newly synthesised transcripts and, correspondingly, the number of labelled reads is very low. 

Conversions in reads derived from these transcripts will mainly be introduced by sequencing 

errors, resulting in very small efficiency estimates. Due to statistical noise, the number of 

observed conversions can even be smaller than the number of conversions expected by 

sequencing errors, thereby returning negative efficiency estimates. 

To stabilize the estimation results, those 3’UTRs with less than 100 assigned reads in a 

measurement 𝑡 are henceforth excluded. 3’UTRs with slow turnover transcripts and 

underestimated efficiencies show up as a peak at values close to 0 in the distribution of the 

𝑒𝑔(𝑡) values, which is especially visible for early time points (Figure 10). Therefore, all 3’UTRs 

with 𝑒𝑔(𝑡) values smaller than 0.01 are discarded from the next steps. The global estimate 𝑒(𝑡) 
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of the labelling efficiency for measurement t is defined as the median of the remaining values 

𝑒𝑔(𝑡) (Figure 10). 

The EM algorithm is subsequently repeated for each 3’UTR 𝑔 and measurement 𝑡, however, 

with the labelling efficiency fixed to 𝑒(𝑡) to obtain the transcript-specific estimates of the newly 

synthesised RNA ratio, 𝜌𝑔(𝑡). 𝜌𝑔(𝑡) is initialized by the value that has been obtained from the 

previous application of the EM algorithm. 

The labelling efficiency estimates of the 3’UTR regions and non-3’UTR coverage peaks are 

similar. Yet, the efficiencies of the non-3’UTR peaks are lower in the beginning and higher at 

the end of the time series compared to the 3’UTR regions. It is hard to find the source of this 

deviation, as many factors can play a role. These include: the loss of uniquely mapped, labelled 

reads in the nuclear fraction; unidentified and thereby uncorrected editing sites; gene expression 

changes during the labelling experiment; potentially different 4sU incorporation efficiencies 

during RNA synthesis between RNA Polymerases I, II and III. Recapitulate that mRNA and 

thereby the 3’UTRs are transcribed by RNA Polymerase II, whereas the non-3’UTR peaks can 

originate from both unannotated mRNAs and other RNA species. Therefore, some of the non-

3’UTR peaks may be transcribed by RNA polymerases I or III.  
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2.10 Variance stabilizing transformation 

 

The variance of the newly synthesised RNA ratios is computed as the variance between 

experimental sample 1 and 2, calculated for each annotated 3’UTR and measurement time 

point. It can be observed that the variance of the newly synthesised RNA ratios is dependent on 

the ratio itself. This scenario leads to an unequal weighting of the ratios measured across the 

time series during parameter fitting. Yet, all time point measurements are equally informative 

and should therefore be equally weighted. 

Under the assumption that the new/total ratios 𝜌 with total read counts 𝐽 follow a Binomial 

distribution Bin(𝐽, 𝜌), an arcsin (√𝜌) transformation is applied to stabilize variance. It can be 

shown that the distribution of the arcsin (√𝜌) transformed ratios approximates to a normal 

distribution with variance 𝜎2 =
1

4⋅𝐽
 (Bromiley & Thacker, 2002). Thereby, the variance is 

dependent only on the total read counts, which can be accounted for in the parameter fitting 

procedure (Figure 11). 

 

Figure 10 Distribution of labelling efficiency estimates 𝒆𝒈(𝒕). Estimates are shown for annotated 3’UTRs in 

(A) and non-3’UTR coverage peaks in (B). Labelling efficiencies were estimated per measurement 𝑡 of one time 

point in one compartment and sample, and for each 3’UTR or non-3’UTR peak 𝑔. Only annotated 3’UTRs or non-

3’UTR peaks with at least 100 assigned reads in measurement 𝑡 were included in the estimation. The distributions 

of estimates 𝑒𝑔(𝑡) are displayed in the plots. The darkest, background-most distribution refers to the earliest time 

point (15min) and the brightest, foreground-most distribution to the latest time point (180min), respectively. The 

median of each distribution was chosen as the final labelling efficiency estimate 𝑒(𝑡) for the respective read 

identity and measurement 𝑡. Medians are indicated by the black dots on the x-axis and written at the right of the 

plot panel, ordered by time points. Estimates 𝑒𝑔(𝑡) smaller than 0.01 were discarded from the median calculations 

to exclude 3’UTRs or non-3’UTR peaks with highly unreliable estimates due to slow RNA metabolism and thereby 

small number of newly synthesised, labelled transcripts. 
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Figure 11 Variance stabilizing transformation. The panel shows the variance of the newly synthesised RNA 

ratios 𝜌 (new/total ratio) for the untransformed ratios 𝜌 (raw data) and the variance stabilized ratios 𝑎𝑟𝑐𝑠𝑖𝑛 (√𝜌) 

(transformed data). Data is shown for the nuclear and cytosolic fraction. Variances were calculated for each 

annotated 3’UTR and time point measurement as the variance between experimental sample 1 and 2. The 

distribution of the variance dependent on the average ratio between sample 1 and 2 is displayed. Average ratios 

are binned into intervals of size 0.1. The variance stabilizing transformation of 𝜌 is expected to transform the 

variance to 𝜎2 =
1

4⋅𝐽
 (J: total read counts). To validate if the variance stabilizing transformation was successful, 

the transformed data’s variances were additionally multiplied with 4 ⋅ the average total read counts between sample 

1 and 2. 

 

 

2.11 Parameter estimation 

 

Parameter fitting was performed on the newly synthesised RNA ratios after variance stabilizing 

transformation of the ratios (2.10 Variance stabilizing transformation). It can be assumed that 

the transformed ratios are normally distributed with variance 𝜎2 =
1

4⋅𝐽
 (𝐽: total read counts) 

(Bromiley & Thacker, 2002).  

Fix a 3’UTR (or a coverage peak). Given a measurement 𝑡 of one time point in one 

compartment, let 𝑞(𝑡) be the observed transformed ratio of the 3’UTR in measurement 𝑡. Let 
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�̂�(𝑡, Θ) be the true ratio which is defined by the RNA metabolic parameters Θ = (𝜏 + 𝜈, 𝜆). 

Then, the probability of observing the transformed ratio 𝑞(𝑡) can be expressed as 

𝑃(𝑞(𝑡) | Θ) =
1

𝜎√2𝜋
⋅ 𝑒

−
1
2

 ⋅ (
𝑞(𝑡) −�̂�(𝑡,Θ)

𝜎
)

2

 

=
√4𝐽

√2𝜋
⋅ 𝑒−

1
2

 ⋅ 4𝐽(𝑞(𝑡) −�̂�(𝑡,Θ))
2

 

 

or expressed as log probability 

log(𝑃(𝑞(𝑡) | Θ)) = log
√4𝐽

√2𝜋
− 2𝐽(𝑞(𝑡)  − �̂�(𝑡, Θ))

2
    

The summed log probability over all measurements 𝑡, ∑ log(𝑃(𝑞(𝑡) | Θ))𝑡 , has to be 

maximized with respect to parameters Θ. The first term, log √4𝐽

√2𝜋
, can be omitted since it is 

independent of Θ. 

Instead of fitting the parameters Θ = (𝜏 + 𝜈, 𝜆) jointly with the nuclear and cytosolic fraction 

measurements, parameter estimation was performed sequentially as the nuclear data appeared 

to be less noisy than the cytosolic data. Possible reasons for this observation are the lower 

coverage and the slower increase in the ratio of newly synthesised RNA in the cytosolic data. 

In detail, the nuclear removal rate 𝜏 + 𝜈 was estimated first with the data obtained from the 

nuclear fraction. The cytosolic degradation rate 𝜆 was fit subsequently with the data from the 

cytosolic fraction, plugging in the nuclear removal rate estimate which is also needed to define 

the ratio of newly synthesised RNA in the cytosol. Thereby, more nuclear removal rates could 

be estimated reliably.  

Parameter estimation was executed in 3 steps. First, a seed for the subsequent MCMC run was 

determined. Second, MCMC sampling of the parameter space was performed to derive a 

credibility interval for the parameter estimate. Third, the final estimates were calculated. The 

single steps are described in more detail in the following. 

We noticed that, without an appropriate seed, the MCMC sampling sometimes got stuck in low-

probability regions of the parameter space. Therefore, a global optimization approach 

(differential evolution algorithm) was applied with a maximum of 500 iterations to determine 

a seed for the MCMC chain. Global optimization was not used to calculate the final parameter 

estimates as it is computationally expensive and thus unfeasibly slow. The nuclear removal rate 
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seed was determined first and plugged into the global optimization run for the cytosolic decay 

rate seed. Subsequently, the MCMC chain was run to sample the parameter space of the nuclear 

removal or cytosolic degradation rate, respectively. The credibility intervals of the parameter 

estimates were defined as the 95% percentile of the MCMC samples. Lastly, Nelder-Mead 

optimization was applied to obtain the final estimate of the nuclear removal or cytosolic 

degradation rate. The Nelder-Mead optimization was seeded with the median of the MCMC-

sampled parameter space. Parameter estimation was executed separately for sample 1 and 2, 

and estimates were averaged over both samples afterwards. 

 

2.12 Estimation reliability criteria 

 

Multiple filtering criteria were applied to categorize the parameter estimates as reliable and 

unreliable. Estimates are considered reliable if they meet the following conditions: (1) The 

genomic region for which the parameters were estimated is detectable (it has a minimum of 1 

read assigned in each measurement, as well as a minimum of 30 reads assigned on average per 

compartment and sample). (2) The difference between the estimates of sample 1 and 2, divided 

by the average estimate between sample 1 and 2, is not larger than 0.33. (3) The difference 

between the estimate and its credibility interval border, divided by the estimate, is not larger 

than 0.3 (see 2.11 Parameter estimation). This holds for both the upper and lower border of the 

credibility interval in both samples. (4) The relative expression level does not increase or 

decrease by more than 0.0025[min-1] or -0.0025[min-1], respectively (for details, see below in 

this section). This holds for both samples, but specifically for the nuclear expression for the 

nuclear removal rate estimates, respectively for the cytosolic expression for the cytosolic 

degradation rate estimates. (5) The R-squared value of the fit is equal to or higher than 0.4. This 

holds for both samples. 

Additionally, the cytosolic degradation rate estimates are considered reliable only if the 

respective nuclear removal rate estimates are, as the latter are plugged in to fit the cytosolic 

degradation rates. To check that the model assumption of steady-state metabolism is not 

violated, the 3’UTRs relative expression levels were computed for each time point 

measurement. First, a robust read count average was calculated by omitting the bottom and top 

25% of 3’UTRs w.r.t total read counts and taking the average read count of the remaining 50% 

3’UTRs in the time point measurement. We choose this robust average over the simple read 
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count average, as the latter is biased if the gene expression of a few highly abundant transcripts 

changes. These calculations were based on all 3’UTRs with at least 1 read count in each time 

point measurement of a sample. Second, each 3’UTR’s read counts were divided by the robust 

average read count to obtain the relative expression levels. A simple linear regression was 

performed on the relative expression levels of each 3’UTR along the time series, separately for 

sample 1 and 2 as well as the nuclear and cytosolic compartment. The regression level slopes 

served as indicators of whether expression levels were constant. 

 

2.13 Cyt/nuc ratio estimation 

 

2.13.1 Cyt/nuc ratio estimation based on the nuclear degradation rate 𝜈 

The problem when estimating the ratio between the total amount of RNA in the cytosol and the 

total amount of RNA in the nucleus (the cyt/nuc ratio) is that the measurements in each 

compartment measure RNA levels only up to a global, multiplicative constant. However, we 

exploit our knowledge of the RNA dynamics to derive an estimate of the cyt/nuc ratio. Given a 

set 𝐺 of annotated 3'UTRs 𝑔 for which total read counts 𝑢𝑛𝑢𝑐
𝑔

, 𝑢𝑐𝑦𝑡
𝑔

 in the nuclear and cytosolic 

compartment were measured. Let �̂�𝑛𝑢𝑐, �̂�𝑐𝑦𝑡 be the robust averages of the nuclear and cytosolic 

total counts of set 𝐺. Then, normalised expression levels 𝑛𝑔 and 𝑐𝑔 in the nucleus and the 

cytosol can be calculated from the total counts as: 

𝑛𝑔 =
𝑢𝑛𝑢𝑐

𝑔

𝑢𝑛𝑢𝑐
 , 𝑐𝑔 =

𝑢𝑐𝑦𝑡
𝑔

𝑢𝑐𝑦𝑡
 

Let 𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 , 𝐶𝑔

𝑡𝑜𝑡𝑎𝑙 be the number of transcripts associated to 3'UTR 𝑔 in the nucleus and cytosol 

of a single cell. Furthermore, let 𝜇 𝑔, 𝜏𝑔, 𝜈𝑔, 𝜆𝑔 be the parameters for mRNA synthesis, nuclear 

export, nuclear degradation and cytosolic degradation of the corresponding mRNA transcripts. 

Under steady-state conditions, 𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 , 𝐶𝑔

𝑡𝑜𝑡𝑎𝑙 can be expressed as combinations of the mRNA 

metabolic parameters: 

𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 =

𝜇𝑔

𝜏𝑔+𝜈𝑔 , 𝐶𝑔
𝑡𝑜𝑡𝑎𝑙 =

𝜇𝑔

𝜏𝑔+𝜈𝑔 ⋅
𝜏𝑔

𝜆𝑔 

The numbers of cellular transcripts are proportional to the respective normalised expression 

levels up to global constants 𝑟𝑛𝑢𝑐, 𝑟𝑐𝑦𝑡: 

𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑛𝑢𝑐 ⋅ 𝑛𝑔,  𝐶𝑔

𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑐𝑦𝑡 ⋅ 𝑐𝑔 



 
36 

 

Similarly, the ratio of the numbers of cellular transcripts is proportional to the ratio of the 

normalised expression levels up to a global constant 𝑟: 

𝐶𝑔
𝑡𝑜𝑡𝑎𝑙

𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 =

𝑟𝑐𝑦𝑡

𝑟𝑛𝑢𝑐
⋅

𝑐𝑔

𝑛𝑔
= 𝑟 ⋅

𝑐𝑔

𝑛𝑔
 

Again, these ratios can be expressed as a combination of mRNA metabolic parameters:  

𝐶𝑔
𝑡𝑜𝑡𝑎𝑙

𝑁𝑔
𝑡𝑜𝑡𝑎𝑙 = 𝑟 ⋅

𝑐𝑔

𝑛𝑔
=

𝜇 𝑔

𝜏𝑔 + 𝜈𝑔
⋅

𝜏𝑔

𝜆𝑔
⋅

𝜏𝑔 + 𝜈𝑔

𝜇 𝑔

=
𝜏𝑔

𝜆𝑔

 

Let 𝐻 ∈  𝐺 be a subset of annotated 3'UTRs ℎ for which 𝜏ℎ + 𝜈ℎ and 𝜆ℎ can reliably be 

estimated. The link between cellular transcript count ratios, normalised expression level ratios 

and metabolic parameters leaves us with a combination of the measured and/or estimated values 

𝑛ℎ, 𝑐ℎ, 𝜏ℎ + 𝜈ℎ, 𝜆ℎ and unknown parameters 𝜈ℎ, 𝑟: 

𝑟 ⋅
𝑐ℎ

𝑛ℎ
=

𝜏ℎ

𝜆ℎ

𝑟 ⋅
𝑐ℎ

𝑛ℎ
⋅ 𝜆ℎ + 𝜈ℎ = 𝜏ℎ + 𝜈ℎ

𝜈ℎ = 𝜏ℎ + 𝜈ℎ − 𝑟 ⋅
𝑐ℎ

𝑛ℎ
⋅ 𝜆ℎ

 

Since the nuclear degradation rate cannot be negative, it holds that 𝜈ℎ ≥ 0. Then, it can be 

expected that the distribution of 𝜈ℎ calculated for all ℎ ∈  𝐻 for a specific guess of 𝑟 is mostly 

non-negative, unless the guess for 𝑟 is unreasonably large. Thereby, an upper limit of 𝑟 can be 

estimated. 

 

2.13.2 Cyt/nuc ratio estimation based on the spike-in RNAs 

For each RNA sample (one time point measurement in one compartment of one sample), a 

robust read count average was calculated by omitting the bottom and top 25% of 3’UTRs w.r.t 

total read counts, and taking the average read count of the remaining 50% 3’UTR. These 

calculations were based on all 3’UTRs which had at least 1 read count in each time point 

measurement of a sample. Each RNA sample’s robust average was then normalised with the 

spike-in read counts in the same sample (separately for the unlabelled RNA spike-ins and 

labelled RNA spike-ins). The cyt/nuc ratio estimate of a time point measurement was then 
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calculated as the normalised read count average of the cytosolic fraction divided by the 

normalised read count average of the corresponding nuclear fraction. 

 

2.14 Selection of ER-translated transcripts 

 

The mRNA transcripts which encode for endoplasmatic reticulum components are likely 

translated at the ER itself. Therefore, 3’UTRs of ER-translated transcripts were selected based 

on the following 6 Gene Ontology terms (Ashburner et al., 2000; The Gene Ontology 

Consortium, 2021):  

 

GOCC_INTEGRAL_COMPONENT_OF_CYTOPLASMIC_SIDE_OF_ENDOPLASMIC_R

ETICULUM_MEMBRANE 

GOCC_INTRINSIC_COMPONENT_OF_ENDOPLASMIC_RETICULUM_MEMBRANE 

GOCC_LUMENAL_SIDE_OF_ENDOPLASMIC_RETICULUM_MEMBRANE 

GOCC_PERINUCLEAR_ENDOPLASMIC_RETICULUM 

GOCC_ROUGH_ENDOPLASMIC_RETICULUM 

GOCC_ROUGH_ENDOPLASMIC_RETICULUM_MEMBRANE 

 

2.15 Software 

 

As described in 2.2 Read alignment, read alignment and alignment quality filtering were 

performed with slamdunk (version 0.3.0). 

The model was implemented in Python (version 3.4.3) (van Rossum & de Boer, 1991) and R 

(version 3.4.4) (R Core Team, 2018). Additional non-base Python modules used were pysam 

(version 0.13) (Li et al., 2009) (also see https://github.com/pysam-developers/pysam) for 

processing SAM/BAM formatted files, numpy (version 1.9.2) (Harris et al., 2020) and scipy 

(version 0.15.1) (Virtanen et al., 2020) for mathematical operations. Additional non-base R 

packages used were mcmc (version 0.9-7) (Geyer & Johnson, 2020) for MCMC sampling, 

DEoptim (version 2.2-5) (Ardia et al., 2020) for global optimization, foreach (version 1.5.1) 

(Microsoft and Steve Weston, 2020) and doParallel (version 1.0.16) (Microsoft Corporation 

and Steve Weston, 2020) for parallelization of the parameter estimation process, and stringr 

(version 1.4.0) (Wickham, 2019) for string manipulation. 
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Figures were created with the help of R (version 3.4.4) (R Core Team, 2018) and the following 

non-base R packages: ggplot2 (version 3.3.2) (Wickham, 2016), reshape2 (version 1.4.4) 

(Wickham, 2007), gridExtra (version 2.3) (Auguie, 2017), lemon (version 0.4.5) (Edwards, 

2020), LSD (version 4.1-0) (Schwalb et al., 2020), scales (version 1.1.1) (Wickham & Seidel, 

2020), RColorBrewer (version 1.1-2) (Neuwirth, 2014). 
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3 Results 

 

 

3.1 Data processing 

 

Reads were mapped to the human genome hg19 and quality filtered using slamdunk (Neumann 

et al., 2019), yielding between 8.5M and 24.4M uniquely mapped reads per sample (2.2 Read 

alignment). A decrease in the percentage of uniquely mapped reads could be observed for the 

nuclear fraction over time, probably due to the introduced labelling conversions. This read loss 

could not be recovered (2.3 Recovery of multi-mapped and unmapped reads). Next, nucleotide 

positions listed as known SNP positions (Sherry et al., 2001) or suspicious of post-

transcriptional editing were masked (2.7 Mismatch statistics and correction for SNP and editing 

sites), since these are conversions not introduced by 4sU labelling. 

A fraction of 61% to 78% of all uniquely mapped reads per sample could be assigned to 3’UTRs 

of known genes as annotated in the UCSC Table Browser (Karolchik et al., 2004) (2.4 

Assigning reads to annotated 3’UTRs). Overlapping 3’UTRs were merged considering strand 

orientation, resulting in 61834 3'UTRs. We define a 3’UTR as detectable if it (1) has a minimum 

of 1 read assigned in each measurement (i.e., each time point measured in each compartment 

and sample), as well as (2) a minimum of 30 reads assigned on average across a time series 

(i.e., per compartment and sample). 8119 of the 61834 annotated 3’UTRs were detectable. 

The read distribution within a 3’UTR often showed multiple, distinct peaks potentially derived 

from alternative polyA sites. Further peaks could be observed outside of annotated 3’UTRs, 

probably originating from alternative priming sites to A-rich sequences. To identify these dense 

read clusters both within and beyond annotated 3’UTRs, peak calling was performed (2.5 Peak 

calling). We apply the same criteria used for the 3’UTR regions to define a peak as detectable. 

This yielded 10,170 detectable peaks within 3’UTR regions (3’UTR peaks), and 1651 

detectable peaks outside of annotated 3’UTR regions (non-3’UTR peaks). The high number of 

undetectable peaks can be attributed to intronic peaks only being found in the nucleus, low 

expression levels, poor priming strength to internal priming sites, or mapping artefacts.  

The subsequent modelling relies on the assumption that all transcripts corresponding to either 

an aggregated 3’UTR region or an individual peak share the same metabolism. 
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3.2 A dynamic model of mRNA metabolism 

 

The life cycle of a transcript starts with its synthesis by RNA polymerases. It is followed by 

either nuclear export into the cytosolic compartment after transcriptional processing or, 

eventually, nucleoplasmic degradation. Exported transcripts are finally degraded, irrespective 

of the function they fulfil in the cytosol. Fix a population of RNA transcripts which share the 

same metabolism, say, all transcripts derived from the same gene. The dynamics of the nuclear 

and cytosolic subpopulations are modelled quantitatively by introducing 4 metabolic 

parameters: synthesis rate 𝜇 (defined as the production rate of polyadenylated RNA transcripts), 

nuclear export rate 𝜏, nuclear degradation rate 𝜈 and cytosolic degradation rate 𝜆 (Figure 12). 

These 4 rates are assumed to be constant over time, as the experiments were conducted under 

constant, optimal growth conditions. 

Let 𝑁 = 𝑁(𝑡) and 𝐶 = 𝐶(𝑡) denote the time courses of nuclear respectively cytosolic RNA 

abundances (which are averaged over all cells in the bulk measurement). 𝑁 and 𝐶 can be viewed 

as continuous numbers and modeled by a simple two-compartment ODE system: 

�̇� = 𝜇 − (𝜏 + 𝜈)𝑁 

�̇� = 𝜏𝑁 − 𝜆𝐶 

Under the assumption of steady-state (all metabolic rates are constant over time), the system 

has a closed form solution with steady-state abundances 𝑁𝑡𝑜𝑡𝑎𝑙 =
𝜇

𝜏+𝜈
 and 𝐶𝑡𝑜𝑡𝑎𝑙 =

𝜇

𝜏+𝜈
⋅

𝜏

𝜆
.  

In contrast to RNA labelling methods that involve separation of newly synthesised and pre-

existing RNA fractions, SLAM seq delivers an unbiased measurement of the relative abundance 

of newly synthesised RNA 
𝑁𝑛𝑒𝑤(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙⁄  and 
𝐶𝑛𝑒𝑤(𝑡)

𝐶𝑡𝑜𝑡𝑎𝑙⁄ . Under steady state conditions, 

the relative abundances can be expressed as: 

𝑁𝑛𝑒𝑤(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙
= 1 − 𝑒−(𝜏+𝜈)𝑡 

𝐶𝑛𝑒𝑤(𝑡)

𝐶𝑡𝑜𝑡𝑎𝑙
= 1 −

𝜆𝑒−(𝜏+𝜈)𝑡 − (𝜏 + 𝜈)𝑒−𝜆𝑡

𝜆 − (𝜏 + 𝜈)
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The sum of nuclear export and degradation rate, 𝜏 + 𝜈, will henceforth be called nuclear 

removal rate. 
𝑁𝑛𝑒𝑤(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙   is defined in terms of the nuclear removal rate, and  
𝐶𝑛𝑒𝑤(𝑡)

𝐶𝑡𝑜𝑡𝑎𝑙  is defined by 

both the nuclear removal rate and the cytosolic degradation rate λ. Thereby, the relative 

abundances of newly synthesised RNA observed in the experimental data serves to fit these two 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Estimation of metabolic parameters 
 

The efficiency by which a uridine within a newly synthesised RNA transcript is labelled is in 

the range of 5% (Herzog et al., 2017). Consequently, not all of the reads that originate from 

newly synthesised transcripts will display a labelling conversion and will therefore be 

misclassified as pre-existing. Sequencing errors mimicking or masking labelling conversions 

can introduce further misclassifications. There have been attempts to account for these errors 

by Jürges et al. (2018), yet their algorithm relies on a minor fraction of sequencing reads 

containing a high number of conversions. This read selection may be heavily biased towards 

high labelling efficiencies by posttranscriptional modifications. Further, they assume that 

labelling efficiency is constant over time. In order to account for these possible problems, read 

counts were corrected for nucleotide positions suspected of being editing sites (2.7 Mismatch 

statistics and correction for SNP and editing sites). Afterwards, labelling efficiencies were 

estimated alongside the newly synthesised RNA ratios in each time point measurement (2.8 

Estimation of labelling efficiency and newly synthesised RNA ratio). 

export rate  

 

synthesis rate  
µ 

nuclear 
degradation rate  

𝝂 

cytosolic 

degradation rate  
𝝀 

nucleus 
cytosol 

Figure 12 Two-compartment model of 

mRNA metabolism. mRNA metabolism 

is described by four processes which are 

characterized by their respective 

metabolic parameters: mRNA synthesis 

in the nucleus with synthesis rate 𝜇, 

nuclear degradation with rate 𝜈, export 

from the nucleus to the cytosol with rate 

𝜏, and cytosolic degradation with rate 𝜆. 
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With increasing duration of 4sU labelling, the labelling efficiency increases from around 4.3% 

to 7.2% (3’UTRs) respectively 3.4% to 8.5% (non-3’UTR peaks) in the nuclear fraction, and 

3.5% to 6.7% (3’UTRs) respectively 2.7% to 6.3% (non-3’UTR peaks) in the cytosolic fraction 

(Figure 10). 

Parameters were fit based on the variance stabilized data using a least-squares approach (Figure 

13, Figure 14) (2.10 Variance stabilizing transformation, 2.11 Parameter estimation). Fitting 

was performed using standard numerical optimization. Credibility bounds were obtained from 

MCMC sampling (Figure 13B) (2.11 Parameter estimation, 2.12 Estimation reliability criteria). 

Stringent quality criteria were applied to filter for transcripts whose metabolic rates could be 

fitted reliably (2.12 Estimation reliability criteria). Out of the 8119 detectable 3'UTRs, 1297 

had a reliable estimate for the nuclear removal rate (Figure 15). 251 3'UTRs furthermore had 

reliable estimates for the cytosolic degradation rate (Figure 15). 
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Figure 13 Estimation of RNA metabolic parameters. Results are shown for one exemplary 3’UTR with the ID 

uc002kcm.3_utr3_0_0_chr17_79876145_r in sample 2. This 3’UTR has reliable parameter estimates. (A) 

Comparison of newly synthesised RNA ratios as inferred from the data (new/total) and as predicted by the 

parameter estimates for the nuclear removal rate 𝜏 + 𝜈 and cytosolic degradation rate 𝜆 (parameter fit). (B) MCMC 

sample of the two-dimensional parameter space of the nuclear half life (defined by the nuclear removal rate 𝜏 + 𝜈) 

and cytosolic half life (defined by cytosolic degradation rate 𝜆). Note that parameter estimation is not performed 

in a 2D manner but sequentially for the nuclear removal rate and cytosolic degradation rate; 2D MCMC sampling 

was performed for visualization purposes only. 
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3.4 Nuclear half life is substantially higher than cytosolic half life 

 

From the estimates of RNA metabolic parameters, nuclear half life is calculated as ln 2
(𝜏 + 𝜈)⁄  

and cytosolic half life as ln 2
𝜆⁄  . Based on the 3’UTRs for which parameters were estimated 

reliably (nucleus: 1297, cytosol: 251), nuclear half life has a median of 291min (IQR 311) and 

cytosolic half life of 45min (IQR 32) (Figure 15). The ratios between nuclear and cytosolic half 

life have a median of 5.76 (IQR 6.88) (Figure 16). Half life estimates correlated well between 

both samples (Supplemental Figure 2, Supplemental Figure 3). These findings unexpectedly 

imply that nuclear export is much slower than cytosolic degradation. Notably, these 

Figure 14 Comparison of the newly synthesised RNA ratios inferred from the data, predicted according to 

parameter estimates, and respective residuals. Ratios inferred from the data: new/total ratio. Ratios predicted 

according to parameter estimates: predicted new/total ratio. Data is shown for 3’UTRs with reliable parameter 

estimates for both the nuclear removal rate 𝜏 + 𝜈 and the cytosolic degradation rate 𝜆, and for the data of sample 

2. The panels’ rows represent the 3’UTRs and are ordered by decreasing nuclear half life estimate for all panels. 

Panel columns represent time point measurements. The residuals shown compare to the residuals as calculated 

during the parameter estimation process. A value above 0 indicates that the predicted ratio exceeds, and a value 

below 0 that the predicted ratio falls below the inferred ratio. In detail, shown residuals are calculated as √2𝐽 ⋅

(�̂�(𝑡, 𝛩) − 𝑞(𝑡)) (see also 2.11 Parameter estimation). 
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observations don't change if the parameter estimates of all detectable 3'UTRs are considered 

(Figure 15, Figure 16).  

 

 

 

Figure 15 Nuclear and cytosolic half life estimates. Nuclear and cytosolic RNA half life estimates were 

calculated for detectable 3’UTR regions. Half lifes are derived from the nuclear removal and cytosolic degradation 

rate estimates as ln 2
(𝜏 + 𝜈)⁄  and ln 2

𝜆⁄ , respectively. Stringent quality criteria were applied to score the reliability 

of the estimates (2.12 Estimation reliability criteria). The cytosolic estimates are always unreliable if the nuclear 

estimates are, as the nuclear removal rates were fit first and then plugged in to fit the cytosolic degradation rate 

subsequently (2.11 Parameter estimation). The vertical and horizontal lines with (rounded) number labels indicate 

the respective half life medians (black: of all detectable 3’UTRs, yellow: of 3’UTRs with reliable nuclear half life 

estimate, green: of 3’UTRs with reliable cytosolic half life estimate). The plot was trimmed, excluding 168 3’UTRs 

with unreliable estimates and 1 3’UTR with reliable nuclear half life estimate. The full plot can be found in 

Supplemental Figure 6. 
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Naively, the metabolism of a transcript’s exon should equal the metabolism of its 3’UTR, 

ignoring transcript isoforms in which the exon is spliced out or different polyA sites are used. 

Accordingly, a decent correlation can be expected between the half life estimates of non-3’UTR 

peaks within exonic regions and their corresponding 3’UTRs. For the 62 detectable exonic 

peaks which also had a detectable 3’UTR for their gene (considering only genes with exactly 

one 3’UTR annotation), a good correlation can be confirmed (Figure 17A). 

In contrast, introns are usually spliced out in the nucleus and not exported to the cytosol. 

Looking at cellular compartments separately, the relative abundance of intronic peaks which 

are detectable in the nucleus is higher than it is in the cytosol. Yet there are still 581 (sample 1) 

and 494 (sample 2) detectable intronic peaks in the cytosol (detectable intronic peaks in the 

nucleus: 12,453 and 9787, respectively) (Supplemental Table 5). These peaks may arise from 

intron retention events or unknown alternative exons and non-coding RNA species. For the 103 

intronic peaks detectable in both cellular compartments and samples and have a detectable 

3’UTR for their gene (considering only genes with exactly one 3’UTR annotation), the half life 

estimates do not correlate between introns and 3’UTRs (Figure 17B). Most of these intronic 

peaks probably originate from unknown alternative exons of transcript isoforms that are 

metabolised differently than most other isoforms or non-coding RNA species which are 

encoded within the intronic regions. 

Figure 16 Distribution of nuclear by cytosolic 

half life ratios. Ratios were calculated by 

dividing the cytosolic by the nuclear half life 

estimate for each detectable 3’UTR (see also 

Figure 15).  The vertical lines and (rounded) 

number labels indicate the median ratio based on 

all detectable 3’UTRs (black) or 3’UTRs with 

reliable nuclear and cytosolic half life estimates 

(green). The x-axis was trimmed for the sake of 

displayability, removing 189 data points without 

reliable estimates for the nuclear or cytosolic half 

life. The full figure can be found in Supplemental 

Figure 7. 
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3.5 mRNA is more abundant in the nucleus than in the cytosol 

 

As the nuclear half life estimates are much higher than the cytosolic half life estimates, it can 

be expected that most RNA transcripts are more abundant in the nucleus than in the cytosol. To 

verify this hypothesis, the ratio of total RNA molecules in the cytosol versus the nucleus 

(cyt/nuc ratio) was estimated using two different approaches: (1) calculation of the nuclear 

degradation rate ν in dependence of the cyt/nuc ratio, (2) comparing the spike-in read counts in 

the nuclear and cytosolic fraction (2.13 Cyt/nuc ratio estimation). 

For all 3’UTRs with reliable half life estimates, the nuclear degradation rate estimates were 

computed as a function of the cyt/nuc ratio. As nuclear degradation rates are by definition equal 

to or larger than 0, so should be the majority of their estimates. Cyt/nuc ratios for which more 

than 75% of the nuclear degradation rate estimates were negative were therefore considered 

unreasonable, which yields an upper bound for the cyt/nuc ratio of < 0.225 (Figure 18). When 

the cyt/nuc ratio was calculated based on the spike-in reads in the nuclear and cytosolic fraction, 

the estimates were consistently smaller than 1 (0.276 - 0.697) for each time point measurement 

in both samples (Figure 19).  

The estimates obtained with approach (2) are higher than obtained with approach (1). One 

potential source of bias can be the loss of uniquely mapped, labelled reads in the nuclear fraction 

(3.1 Data processing, Figure 3). This may lead to an under-estimation of the nuclear removal 

rate and thereby an under-estimation of the cyt/nuc ratio calculated with approach (1). 

Simulations on the impact of a labelled read loss in the nuclear fraction showed that this effect 

Figure 17 Correlation of half lifes estimates between 3’UTRs and exonic or intronic regions of the same 

gene. Correlations between 3’UTRs and exons are shown in (A), correlations between 3’UTRs and introns are 

shown in (B), separately for nuclear half lives at the left and cytosolic half lifes at the right. Spearman’s rho 

correlation coefficients are labelled in each plot. The dashed lines indicate the diagonal. Only genes with exactly 

one 3’UTR annotation, and only detectable 3’UTRs and non-3’UTR peaks were considered. 62 pairs of 3’UTRs 

and non-3’UTR peaks of the same gene were found for exonic peaks (58 genes with 1 exonic peak, 2 genes with 

2 exonic peaks) and 102 for intronic peaks (86 genes with 1 peak, 5 genes with 2 peaks, 2 genes with 3 peaks). 

Data points are coloured by whether the 3’UTR harbours one or multiple 3’UTR peaks (3’UTR peaks with a 

minimum of 1 read count in each time point measurement of each compartment and sample, but irrespective of the 

peaks' mean coverage), suspicious of alterative polyA site usage. The plots were trimmed, excluding the following 

data points: cytosolic half lifes of 3’UTRs vs exons: 2 data points with one 3’UTR peak and 1 data point with 

multiple 3’UTR peaks; cytosolic half lifes of 3’UTRs vs introns: 3 data points with one 3’UTR peak and 3 data 

points with multiple 3’UTR peaks. 
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cannot completely explain the observed deviations in the cyt/nuc ratio estimates (data not 

shown). Another source of bias could be a difference in the efficiency of RNA extraction for 

the nuclear and cytosolic compartments. As the cyt/nuc ratio estimates are still smaller than 1 

throughout the two different approaches, it can be concluded that the transcripts of the analysed 

3’UTRs are more abundant in the nucleus than in the cytosol and spend most of their lifetime 

in the nucleus. 

 

 

3.6 3’UTR isoforms differ in their metabolism 

 

Peak calling identified 10170 peaks within annotated 3’UTRs which were detectable in both 

samples. These peaks may either correspond to 3'UTR isoforms or internal priming sites. To 

distinguish between potential isoforms safely, these peaks were additionally filtered. Only 

peaks assigned to exactly one annotated 3’UTR and with a minimum distance of 100 

Figure 18 Nuclear degradation rate 𝝂 in dependence of the cyt/nuc ratio. The calculation of nuclear 

degradation rates 𝜈 in dependence of the cyt/nuc ratio 𝑟 is described in 2.13 Cyt/nuc ratio estimation. Only 3’UTRs 

with reliable estimates for both the nuclear removal rate and the cytosolic degradation rate were evaluated. Ratios 

are considered unreasonable if more than 75% of the corresponding nuclear degradation rates are negative (3rd 

quartile < 0).  
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nucleotides to their direct neighbours were kept, resulting in a collection of 2987 peaks. Half 

life estimates correlated well between sample 1 and 2 (Supplemental Figure 4, Supplemental 

Figure 5). 

118 annotated 3’UTRs harboured more than 1 of these filtered peaks. To investigate whether 

these peaks generally derived from internal priming sites or distinct 3’UTR isoforms, the log2 

fold changes of half life estimates were calculated between (1) all pairs of peaks within the 

same 3’UTR, and (2) sample 1 and 2. Since internal priming sites can be considered technical 

replicates, the log2 fold changes in (1) can be expected to resemble the log2 fold changes in (2) 

if most of the peaks are derived from internal priming sites, but higher than in (2) if the peaks 

measure distinct 3’UTR isoforms which adds biological variation. In this calculation, it was not 

distinguished between peaks with reliable or unreliable estimates as only 2 out of the 118 

3’UTRs had a peak pair with two reliable nuclear estimates. 

sample 1 

sample 1 

sample 2 

sample 2 

Figure 19 Cyt/nuc ratios calculated from the spike-in RNAs. Each RNA sample was added a fixed amount of 

spike-in RNA directly after cellular fractionation. Equal amounts of both unlabelled and labelled spike-ins were 

added to each sample. Cyt/nuc ratios were calculated separately with the unlabelled and labelled spike-in RNAs, 

in each time point measurement and sample. The cyt/nuc ratio calculation based on the spike-in RNAs is described 

in 2.13 Cyt/nuc ratio estimation. 
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The median log2 fold change of nuclear half lives was much larger for the comparison of 

potential isoforms than for the comparison of technical replicates (Figure 20). It can be 

concluded from the results that a large fraction of these peaks measure 3’UTR isoforms that 

differ in their RNA metabolism. In contrast, the median log2 fold changes of cytosolic half lives 

only differed slightly (Figure 20). Since the noise is much higher for the cytosolic than for the 

nuclear fraction (compare Supplemental Figure 2 and Supplemental Figure 3), biological effects 

may be masked here. 

 

 

 

 

 

Figure 20 Differences in half life estimates of potential 3'UTR isoforms. Some 3’UTRs harboured at least two 

detectable 3’UTR peaks with a minimum distance of 100 nucleotides, representing potential 3’UTR isoforms (242 

peaks from 118 3’UTRs). The absolute log2 fold change of nuclear and respectively cytosolic half lives was 

computed for all pairwise comparisons of potential isoform irrespective of the half life estimate reliability (red 

distributions, at the left for nuclear and at the right for cytosolic half lives). For comparison, absolute log2 fold 

changes were calculated for an isoform’s estimates between sample 1 and 2 (grey distributions). The red and black 

lines with corresponding text labels indicate the medians. For the comparison of cytosolic half lives between 

sample 1 and 2, 5 data points dropped out since their value was 0 and could not be displayed with the log-scaled 

x-axis. 

 

nuclear half lifes cytosolic half lifes 

absolute log2FC (cytosolic half life) absolute log2FC (nuclear half life) 
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3.7 Export of labelling-induced genes is substantially faster than that of most other 

genes 

 

The model of RNA metabolism assumes steady-state conditions, i.e. metabolic parameters and 

expression levels are constant over time. Linear regression was applied on expression levels to 

identify transcripts that strongly deviate from this assumption (2.12 Estimation reliability 

criteria). Among the transcripts violating this assumption, one outstanding group was a 

collection of transcripts that showed low expression at the beginning and end of the measured 

time series but very high expression shortly after labelling onset (Figure 21). This group of 

transcripts is therefore referred to as 'Supernova' genes. The nuclear expression decreases from 

and the cytosolic expression level increases to its maximum within 120min after start of the 

labelling. This hints to a very fast export of these transcripts, potentially via an export 

mechanism distinct from those of the majority of all other transcripts. According to UniProt 

(The UniProt Consortium, 2021), many of the Supernova genes are annotated as involved in 

stress response, growth or cell cycle.  

 

 

 

Figure 21 Gene expression and newly synthesised RNA ratio of a ‘Supernova’ gene. Gene expression and 

newly synthesised RNA ratio measured over time are shown for the exemplary ‘Supernova’ gene SGK1 (3’UTR 

id uc011ect.2_utr3_0_0_chr6_134490384_r) in sample 1. Gene expression was calculated relative to a robust 

average across all 3’UTRs’ total read counts (see 2.12 Estimation reliability criteria).  

n
e

w
/t

o
ta

l 
ra

ti
o
 

[%
] 

expression level newly synthesised RNA ratio 

time[min

] 

100 150 50 0 

time[min

] 

100 150 50 0 

1.00 

0.75 

0.50 

0.25 

0.00 

6 

4 

2 

e
x
p
re

s
s
io

n
 l
e
v
e
l 

10 

8 



 
53 

 

4 Conclusion 

 

 

4.1 Wrap-up 

 

RNA metabolic labelling is a powerful technique to measure newly synthesised (labelled) and 

pre-existing (unlabelled) RNA. Nucleoside analogues which deviate from the cells’ native 

nucleosides, but are similar enough to be incorporated into nascent RNA, are added to the cells. 

This way, newly synthesised RNA can be tagged. The most commonly used nucleoside 

analogue is 4-thiouridine (4sU). Previously, 4sU-labelled RNA was separated from unlabelled 

RNA by the biotinylation of the 4sU residues and subsequent pulldown with streptavidin beads. 

The recently developed method SLAM seq instead alkylates the 4sU residues, which then 

causes T>C conversions at the alkylated 4sU positions during reverse transcription. Newly 

synthesised and pre-existing RNA can then be distinguished by the observed T>C conversions 

in the read alignment. SLAM seq outperforms former methods as the data acquired is less noisy 

and the experimental approach is less laborious. 

The analysis of RNA metabolic labelling data produced with SLAM seq remains challenging. 

First, an appropriate model of RNA metabolism is needed to estimate RNA metabolic rates. 

Second, uncertainties and biases introduced by experimental or biological effects need to be 

considered. Especially the efficiency by which a 4sU residue is incorporated into a nascent 

RNA transcript is usually smaller than 10%. Therefore, only a fraction of the newly synthesised 

transcripts will actually be labelled. 

Here, I presented a novel, dynamic model of mRNA metabolism which discriminates between 

nuclear and cytosolic mRNA. The two-compartment modelling allows to investigate mRNA 

export in addition to cytosolic degradation. This represents a major step forward in the research 

on mRNA metabolism. RNA editing events can distort the labelling conversion counts; 

therefore, potential RNA editing sites are defined as nucleotide positions with high conversion 

rates in the control samples and masked in the subsequent analysis steps. The 4sU incorporation 

efficiency (labelling efficiency) is estimated together with the ratio of newly synthesised RNA 

using an EM algorithm. The algorithm models the observed T>C conversions with a binomial 

distribution and is parametrised with the ratio of newly synthesised RNA, the labelling 

efficiency, and the sequencing errors. Importantly, labelling efficiencies were calculated for 
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each time point separately, which revealed that the efficiency increases over time as opposed 

to the assumption of constant efficiency in Jürges et al. (2018). The parameter fitting procedure 

of RNA metabolic rates is applied to a variance-stabilizing transform of the newly synthesised 

RNA ratios and it assumes an approximate normal distribution of the transformed ratios. For 

each genomic region analysed, the fitting procedure returns one estimate of the nuclear removal 

rate (the sum of nuclear degradation and nuclear export rate) and one of the cytosolic 

degradation rate. Nuclear and cytosolic half lives can directly be calculated from the metabolic 

rates.  

We conducted a SLAM seq metabolic labelling experiment combined with cellular 

fractionation and 3’-sequencing, and applied the model to estimate the nuclear and cytosolic 

half lives of the measured 3’UTRs. Half lives had a high correlation between both samples 

measured, which shows that the estimation procedure is robust. The median nuclear half life 

was considerably higher than the median cytosolic half life. As nuclear degradation is expected 

to be negligibly small, we conclude from these results that nuclear export is substantially slower 

than cytosolic degradation. Consequently, the amount of mRNA transcripts in the nucleus has 

to be much higher than in the cytosol. This hypothesis was confirmed by two approaches to 

estimate the ratio of cytosolic by nuclear total mRNA (cyt/nuc ratio). All cyt/nuc ratios 

calculated (1) based on the metabolic rate estimates and (2) based on the observed spike-in 

abundances were smaller than 1, i.e. predicting a lower RNA abundance in the cytosol. 

 

4.2 Potential biases and comparison with literature 

 

Intuitively, mRNA export is expected to be much faster than cytosolic degradation, as the 

cytosolic RNA is needed to produce the proteins. Yet, our results imply that export is much 

slower than cytosolic decay. There are multiple sources of bias that could contribute to an 

underestimation of nuclear export rates: Loss of reads with many labelling conversions during 

the alignment; pulldown of the endoplasmatic reticulum together with the nucleus during cell 

fractionation and, thereby, also mRNA translated at the rough ER; disassembly of the nucleus 

during mitosis, which leads to leakage of nuclear RNA to the cytoplasmic fraction, and 

reassembly of the nucleus after mitosis, which leads to the inclusion of cytosolic RNA into the 

nucleus.  
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The loss of reads during the alignment process was observed only in the nucleus, where the 

fraction of uniquely mapped reads decreased from around 80% to 70% with increasing labelling 

time. This read loss is likely caused by the labelling conversions in the newly synthesised RNA 

transcripts that complicate the mapping. The mapping quality in the cytosol was stable, which 

is explained by the lower newly synthesised RNA ratio in this fraction.  

Attempts to recover the reads lost during the alignment step failed. The proportion of reads 

mapping to multiple genomic loci (multimappers) and the proportion of unmapped reads did 

not show any systematic trend over labelling time. In contrast to that, the fraction of 

ambiguously mapped reads steadily increased. Ambiguously aligned reads include both the 

multimappers and reads with poor alignment quality. It can be concluded that reads are lost 

because they harbour too many conversions to pass the aligner’s quality filtering criteria. We 

decided to keep the alignment results as they were, as a relaxation of the quality filtering 

thresholds can lead to a higher number of misaligned reads.  

If labelled reads are lost, the newly synthesised RNA ratio will be underestimated. Accordingly, 

the nuclear vanishing rate will be underestimated as well. Still, the read loss is expected to only 

have a minor impact on the estimates for the following two reasons: (1) All time points of the 

time series are equally weighted during parameter fitting; the less-biased measurements of the 

early time points stabilize the more-biased measurements of the later time points. (2) The 

labelling efficiency is also underestimated since especially the highly labelled reads are lost; 

this leads to an overestimation of the newly synthesised RNA ratio, which buffers the effect of 

the read loss.  

The mapping process may be improved by masking SNP and potential editing positions within 

the reference genome. Paired-end sequencing can help in many ways: As the two read mates 

cover more nucleotide positions than a single read, it is easier to find their correct position in 

the genome. Conversions observed at a position covered by both mates can much better be 

classified: As the probability of a sequencing error at the exact same position in both mates is 

very low, a conversion is very likely an RNA editing event (for the control samples) or a 

labelling event (for the metabolic labelling samples) if it occurs in both mates. 

 

The endoplasmatic reticulum could, at least partially, be pulled down together with the nucleus 

during the cell fractionation. mRNAs translated at the rough ER will therefore be measured in 
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the nuclear and not in the cytosolic fraction. As these mRNAs will mostly be pre-existing, 

unlabelled transcripts, the nuclear fraction will be biased towards a higher amount of unlabelled 

transcripts and the cytosolic fraction towards a higher amount of labelled transcripts. 

Consequently, the nuclear vanishing rate will be underestimated and the cytosolic decay rate 

will be overestimated for the affected mRNAs. To check whether ER pulldown affects our data, 

the half lives of 3’UTRs whose transcripts are probably translated at the ER were compared 

with the half lives of all detectable 3’UTRs (Figure 22) (2.14 Selection of ER-translated 

transcripts). Indeed, the ER-translated transcripts’ nuclear half life median was larger (i.e., 

nuclear vanishing rate lower), and the cytosolic half life median was shorter (i.e. cytosolic 

degradation rate higher) compared to all detectable 3’UTRs. Whether this observation is due to 

ER pulldown or has a biological reason may be worth studying in future experiments. 

 

 

Figure 22 Half lifes of transcripts likely translated at the ER. A subset of detectable 3’UTRs was selected 

whose transcripts are likely translated at the ER (data points in blue) (2.14 Selection of ER-translated transcripts). 

All other 3’UTRs are coloured in grey. The blue and black lines with corresponding text labels indicate the median 

half lives of the subset and all detectable 3’UTRs, respectively. The plot was trimmed, excluding 169 non-subset 

data points. A plot of all detectable 3’UTRs half lives can be found in Supplemental Figure 6. 
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The dis- and reassembly of the nucleus during mitosis can affect the measurements in two ways. 

Keep in mind that the newly synthesised RNA ratio is higher in the nucleus than in the cytosol 

as the RNA is transcribed in the nucleus. Disassembly of the nucleus causes leakage of nuclear 

RNA to the cytosol, which increases the newly synthesised RNA ratio in the cytosol. 

Theoretically, this can lead to an overestimation of both the nuclear vanishing and cytosolic 

degradation rate. Practically, as the parameter fitting of the nuclear vanishing rate is based on 

the nuclear measurements only, it only affects the cytosolic decay estimates. Reassembly causes 

inclusion of cytosolic RNA into the nucleus and lowers the newly synthesised RNA ratio of the 

nucleus. Thereby, the nuclear vanishing rate is underestimated. Disentangling the effects of 

mitosis on the metabolic rate estimates is very challenging with our data. The RNA of different 

cell cycle phases is mixed up in the measurements, as we measure bulk RNA and the cell 

cultures are not synchronized in their cell cycle. At the same time, it is unclear which RNA 

transcripts are expressed around mitosis and how abundant they are compared to the other cell 

cycle phases. We don’t expect strong expression of most mRNAs immediately during cell 

division and consider the introduced biases rather low. The differences between dividing and 

non-dividing cells can be analysed in future experiments with synchronised cells. 

 

Overall, we can expect that the potential biases introduced by read loss and mitosis are small. 

We cannot exclude pulldown of ER, and thereby ER-translated mRNA, together with the 

nuclear fraction. Still, ER pulldown only affects a subset of all transcripts and cannot fully 

explain the high median nuclear half life. To further validate our results, Jason Müller compared 

our half life estimates with the literature (Schueler et al., 2014) (Figure 23). This study 

performed 4sU labelling with subsequent biotinylation and streptavidin-pulldown of the 

labelled RNA. They calculated RNA half lives based on whole-cell extracts (WCE) and a 

simple exponential decay model. Note that we have to sum our nuclear and cytosolic half life 

estimates to compare with their whole-cell extract RNA half lives. Although Schueler et al. 

used a different experimental protocol and different human cell lines (MCF7 and HEK293), our 

and their half life estimates correlate well (Spearman correlation coefficient = 0.69 for MCF7 

and 0.78 for HEK293). The HeLa half lives are substantially higher than the HEK293 half lives, 

but very comparable to the MCF7 cells, showing cell-type specific variation. HeLa and MCF7 

cells might be more similar to each other as they are both derived from cancer tissue. 



 
58 

 

Based on the stable reproducibility of our estimates between both experimental samples and the 

good agreement with literature, we conclude that the method is robust and that my dynamic, 

two-compartment model of mRNA metabolism delivers reliable metabolic rate estimates. 

 

 

  

 

4.3 Biological interpretation and outlook 

 

It remains to be discussed why nuclear export is much slower than cytosolic degradation or 

why, consequently, more mRNA resides in the nucleus than in the cytosol. 

One very trivial reason for low nuclear export rates could be that pre-mRNA processing, 

especially transcript quality control, requires a lot of time. This hypothesis is strengthened by 

Figure 23 Comparison of our half life estimates with the literature (Schueler et al., 2014). Schueler et al. 

performed 4sU labelling with biotinylation and streptavidin-pulldown of labelled RNA. They calculated RNA half 

lives based on whole-cell extracts (WCE) and a simple decay model, for MCF7 cells (left) and HEK293 cells 

(right). Our nuclear and cytosolic half life estimates were summed to generate pseudo whole-cell estimates. 

Schueler et al.’s half lives are shown on the x-axis, ours on the y-axis. Green dots represent reliable and grey dots 

unreliable estimates w.r.t. our estimates and reliability criteria. 

The comparisons were performed by Jason Müller. Figure adapted from Jason Müller (personal 

communication).  
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an observation made in yeast of Zander et al. (2016). They found that transcripts of heat-stress 

associated proteins skip the nuclear quality control mechanisms when synthesised during heat 

shock. As it is crucial for the cells to react to extreme environmental stress such as heat shock, 

fast export of the required mRNA transcripts to the cytosol is essential. 

A high amount of mRNA transcripts stored in the nucleus and a low amount of mRNA 

transcripts available in the cytosol can also be beneficial for gene expression regulation. A small 

amount of cytosolic mRNA can quickly be degraded to repress protein synthesis. A stock of 

export-ready mRNA in the nucleus can directly be delivered to the cytosol in demand of 

increased protein production. Together, this enables fast and dynamic changes in gene 

expression. A large nuclear mRNA pool could also buffer stochastic noise in mRNA synthesis 

introduced by transcriptional bursting. 

Despite most measured 3’UTRs showing a relatively low nuclear vanishing rate, there was one 

outstanding group of 3’UTRs which were upregulated upon metabolic labelling and exported 

to the cytosol very fast. Both the nuclear and cytosolic expression levels reached their maximum 

within the first 60 minutes and drastically dropped again within the first 120 minutes of the 

labelling experiment. Recapitulate that the median nuclear half life of 3’UTRs with reliable 

estimates is 291min. As nuclear degradation is expected to be very low, the expression level 

drop in the nucleus in combination with the expression level increase in the cytosol can be 

attributed to a fast export mechanism of the transcripts. Potentially, these transcripts follow a 

similar export mechanism as described by Zander et al. (2016) in yeast, skipping nuclear quality 

control steps. The Supernova genes are mainly involved in cell cycle regulation, cellular 

growth, but also stress response, matching the role of the transcripts analysed by Zander et al. 

(2016). Our findings show that nuclear export happens on different time scales and emphasise 

the importance of mRNA export in gene expression regulation. In future studies, my model can 

be applied to analyse mRNA export and cytosolic degradation under various experimental 

conditions. The role of specific proteins in mRNA export can be investigated by combining 

targeted protein knock-down and whole-transcriptome export rate estimation. This can 

especially deliver new insights into the distinct nuclear export pathways and which subsets of 

mRNA transcripts they regulate. 

 

The model is also useful to analyse how mRNA transcript isoforms differ in their metabolism. 

We found that distinct 3’UTR coverage peaks of the same gene show variation in their nuclear 
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half lives exceeding technical noise. This variation can be explained by differentially 

metabolised 3’UTR isoforms. Whole-transcript sequencing can be performed to measure 

further mRNA isoforms. In this case, the nuclear vanishing rate estimates have to be normalised 

for the transcript length: RNA fragments close to the promoter are synthesised first and detected 

earlier than fragments close to the 3’UTR; this yields seemingly longer nuclear vanishing rates 

for promoter-proximal fragments if not corrected for. 

Our work has established a method to quantify the step of RNA export on a genome-wide scale. 

This will allow us to answer questions like: Which RNA-binding proteins are involved in RNA 

export? Which of those are general export factors that are involved in every export pathway, 

which proteins bind to specific subclasses of RNA? Is RNA export regulated upon response to 

specific stimuli and stresses? Does RNA export act as a quality control mechanism? We are 

looking forward to apply our technique to these questions. 
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6 Supplemental Material 
 

 

6.1 Supplemental Figures 

 

 

 

 

Supplemental Figure 1 Relative coverage profiles. Coverage profiles as shown in Figure 6, but displaying the 

untrimmed profiles. 
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Supplemental Figure 2 Nuclear half life estimates of 3’UTRs compared between sample 1 and 2. Estimates 

are shown for all detectable 3’UTRs. The dashed line indicates the diagonal. Spearman’s rho is indicated for all 

detectable 3’UTRs (8119 UTRs) (black) and 3’UTRs with reliable estimates (1297 UTRs) (yellow). 
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Supplemental Figure 3 Cytosolic half life estimates of 3’UTRs compared between sample 1 and 2. Estimates 

are shown for all detectable 3’UTRs. The dashed line indicates the diagonal. Spearman’s rho is indicated for all 

detectable 3’UTRs (8119 UTRs) (black) and 3’UTRs with reliable estimates (251 UTRs) (green). 
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Supplemental Figure 4 Nuclear half life estimates of 3’UTR peaks compared between sample 1 and 2. 

Estimates are shown for all detectable 3’UTR peaks. The dashed line indicates the diagonal. Spearman’s rho is 

indicated for all detectable peaks (2987 peaks) (black) and peaks with reliable estimates (261) (yellow). 
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Supplemental Figure 5 Cytosolic half life estimates of 3’UTR peaks compared between sample 1 and 2. 

Estimates are shown for all detectable 3’UTR peaks. The dashed line indicates the diagonal. Spearman’s rho is 

indicated for all detectable peaks (2987 peaks) (black) and peaks with reliable estimates (51 peaks) (green). 
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Supplemental Figure 6 Nuclear and cytosolic half life estimates. Nuclear and cytosolic RNA half life 

estimates as shown in Figure 15, but displaying the untrimmed plot. 
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Supplemental Figure 7 Distribution of nuclear by cytosolic half life ratios. Ratios as shown in Figure 16, but 

displaying the untrimmed plot. 
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6.2 Supplemental Tables 

 

 

 

time 

inferred A>G  inferred T>C 

nucleus, 
(-) strand 

cytosol, 
(-) strand 

nucleus, 
(+) strand 

cytosol, 
(+) strand 

15min 0.0527 0.0605 0.0517 0.0681 

30min 0.0511 0.0627 0.0497 0.0587 

45min 0.0504 0.0625 0.0493 0.0589 

60min 0.0547 0.0626 0.0540 0.0587 

90min 0.0510 0.0597 0.0499 0.0560 

120min 0.0529 0.0606 0.0517 0.0568 

180min 0.0541 0.0570 0.0524 0.0538 

Average 0.0524 0.0608 0.0512 0.0587 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 1 Estimation of false-positive sequencing error rates. A>G sequencing errors on the (-) 

strand or T>C sequencing errors on the (+) strand, respectively, are misinterpreted as labeling conversions (false-

positive conversions). False-positive sequencing error rates were inferred using the control samples as described 

in 2.8 Estimation of sequencing errors and labelling time shift. The tables summarize the estimation results for 

3’UTR reads (top table) and non-3’UTR reads, considering only non-3’UTR coverage peaks with at least 5 reads 

(bottom table). Results are shown for the single measurement time points of the nuclear and cytosolic 

compartment, both for the (-) and the (+) strand. The final false positive rates for the nuclear and cytosolic 

compartment are obtained by averaging over measurement time points and the (-) and (+) strand. 

False positive error nucleus: 0.0518%  

False positive error cytosol: 0.0598%  

time 

inferred A>G inferred T>C 

nucleus, 
(-) strand 

cytosol, 
(-) strand 

nucleus, 
(+) strand 

cytosol, 
(+) strand 

15min 0.0585 0.0536 0.0593 0.0707 

30min 0.0541 0.0552 0.0547 0.0527 

45min 0.0524 0.0549 0.0527 0.0524 

60min 0.0562 0.0552 0.0575 0.0526 

90min 0.0535 0.0510 0.0543 0.0501 

120min 0.0527 0.0507 0.0540 0.0503 

180min 0.0544 0.0466 0.0551 0.0470 

Average 0.0545 0.0524 0.0554 0.0537 

     

False positive error nucleus: 0.0550%  

False positive error cytosol: 0.0531%  

3’UTR reads 

non-3’UTR reads 
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time 

G>non-G  C>non-C 

nucleus, 
(-) strand 

cytosol, 
(-) strand 

nucleus, 
(+) strand 

cytosol, 
(+) strand 

15min 0.2897 0.3467 0.2754 0.3231 

30min 0.2817 0.3672 0.2676 0.3413 

45min 0.2775 0.3613 0.2640 0.3362 

60min 0.3141 0.3664 0.2968 0.3417 

90min 0.2812 0.3457 0.2675 0.3236 

120min 0.3007 0.3574 0.2825 0.3326 

180min 0.3076 0.3306 0.2860 0.3109 

Average 0.2932 0.3536 0.2771 0.3299 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Table 2 Estimation of false-negative sequencing error rates. G>non-G sequencing errors on the 

(-) strand or C>non-C sequencing errors on the (+) strand, respectively, are masking labeling conversions (false-

negative conversions). False-negative sequencing error rates were calculated from the final SLAM seq experiment 

data as described in 2.8 Estimation of sequencing errors and labelling time shift. The tables summarize the 

estimation results for 3’UTR reads (top table) and non-3’UTR reads, considering only non-3’UTR coverage peaks 

with at least 5 reads (bottom table). Results are shown for the single measurement time points of the nuclear and 

cytosolic compartment, both for the (-) and the (+) strand. The final false negative rates for the nuclear and 

cytosolic compartment are obtained by averaging over measurement time points and the (-) and (+) strand. 

 

 

False negative error nucleus: 0.2852%  

False negative error cytosol: 0.3418%  

time 

G>non-G C>non-C 

nucleus, 
(-) strand 

cytosol, 
(-) strand 

nucleus, 
(+) strand 

cytosol, 
(+) strand 

15min 0.2541 0.2649 0.2561 0.2522 

30min 0.2385 0.2821 0.2357 0.2668 

45min 0.2311 0.2780 0.2235 0.2575 

60min 0.2565 0.2791 0.2505 0.2634 

90min 0.2374 0.2568 0.2339 0.2535 

120min 0.2369 0.2634 0.2317 0.2549 

180min 0.2438 0.2371 0.2372 0.2372 

Average 0.2426 0.2659 0.2384 0.2551 

     

False negative error nucleus: 0.2405%  

False negative error cytosol: 0.2605%  

3’UTR reads 

non-3’UTR reads 
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3’UTR reads 
 
 
labeling conversion rates    

       

time 

nucleus, (-) strand nucleus, (+) strand   

inferred A>G inferred T>C 

sample 1 sample 2 sample 1 sample 2 

0min 0.0518 0.0518 0.0518 0.0518 

15min 0.1122 0.1104 0.1283 0.1243 

30min 0.3148 0.3347 0.3593 0.3797 

      

differences in labeling conversion rates    

       

difference 
nucleus, (-) strand nucleus, (+) strand   

sample 1 sample 2 sample 1 sample 2   

15min-0min 0.0604 0.0586 0.0764 0.0725 

30min-15min 0.2026 0.2243 0.2310 0.2553 

       

fraction of first difference from second difference   

       

sample 
nucleus, (-) strand nucleus, (+) strand 

fraction 
effective 

labeling [min] 
labeling 

shift [min] 
fraction 

effective 
labeling [min] 

labeling 
shift [min] 

sample 1 0.2980 4.4700 10.5300 0.3308 4.9616 10.0384 

sample 2 0.2613 3.9190 11.0810 0.2840 4.2596 10.7404 

       

       

average time shift: sample 1: 10.28min    

  sample 2: 10.91min    
  

 

Supplemental Table 3 Estimation of the labeling time shift for the 3’UTR reads. The labeling time shift was 

calculated by comparing the increase in the labeling conversion rate between 0min to 15min and 15min to 30min 

of the nuclear fraction, as described in 2.8 Estimation of sequencing errors and labelling time shift. The results of 

the single computational steps are shown in the distinct tables. The final labeling time shifts for the experimental 

samples 1 and 2 are obtained by averaging the time shift estimates of the (-) and (+) strand.  
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non-3’UTR reads 
 
 
labeling conversions     

       

time 

nucleus, (-) strand nucleus, (+) strand   

inferred A>G inferred T>C 

sample 1 sample 2 sample 1 sample 2 

0min 0.0550 0.0550 0.0550 0.0550 

15min 0.6105 0.5979 0.6583 0.6539 

30min 1.6913 1.7588 1.8647 1.9244 

      

labeling conversion differences     

       

difference 
nucleus, (-) strand nucleus, (+) strand   

sample 1 sample 2 sample 1 sample 2   

15min-0min 0.5555 0.5429 0.6033 0.5989 

30min-15min 1.0808 1.1609 1.2064 1.2705 

       

fraction of first difference from second difference   

       

sample 
nucleus, (-) strand nucleus, (+) strand 

fraction 
effective 

labeling [min] 
labeling 

shift [min] 
fraction 

effective 
labeling [min] 

labeling 
shift [min] 

sample 1 0.5140 7.7101 7.2899 0.5001 7.5015 7.4985 

sample 2 0.4677 7.0151 7.9849 0.4714 7.0709 7.9291 

       

       

average time shift: sample 1: 7.39min    

  sample 2: 7.96min    
 

 

Supplemental Table 4 Estimation of the labeling time shift for the non-3’UTR reads. Only non-3’UTR 

coverage peaks with at least 5 reads were considered. The labeling time shift was calculated by comparing the 

increase in the labeling conversion rate between 0min to 15min and 15min to 30min of the nuclear fraction, as 

described in 2.8 Estimation of sequencing errors and labelling time shift. The results of the single computational 

steps are shown in the distinct tables. The final labeling time shifts for the experimental samples 1 and 2 are 

obtained by averaging the time shift estimates of the (-) and (+) strand. 
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Supplemental Table 5 Number of detectable exonic, intronic, and other non-3’UTR coverage peaks. A peak 

is detectable in a specific compartment and sample, if it has a minimum of 1 read assigned in each time point 

measurement, and an average of minimum 30 reads assigned across the time series. Other peaks comprise peaks 

which are assigned to untranslated regions, to a mixture of exonic, intronic, or untranslated regions, or without 

annotation. 

type of 
peak 

nucleus cytosol 

sample 1 sample 2 sample 1 sample 2 

abs rel [%] abs rel [%] abs rel [%] abs rel [%] 

exonic 872 4.61 733 4.90 233 10.61 211 10.90 

intronic 12453 65.82 9787 65.46 581 26.45 494 25.53 

other 5594 29.57 4432 29.64 1383 62.95 1230 63.57 

total 18919 100.00 14952 100.00 2197 100.00 1935 100.00 




