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Abstract 
 

The eukaryotic protein kinase CK2, previously known as casein kinase 2, is a ubiquitously 

expressed, acidophilic serine/threonine kinase belonging to a branch of the group of CMGC 

kinases. The enzyme features several peculiarities, one of which is its extraordinary pleiotropic 

character. A plethora of biological substrates have been described for CK2 to date and these are, 

among others, involved in cell proliferation, angiogenesis, apoptotic processes, viral infections, 

and DNA-damage repair. Several of these substrates play key roles in the development and 

progression of a diverse spectrum of diseases. The ubiquitous presence of CK2, combined with 

its unusual constitutive activity, presents a highly interesting pharmacological profile as a 

promising drug target. In particular, neoplastic diseases are significantly driven by high levels of 

CK2 and the importance of the search for suitable molecules to alter the enzymatic properties of 

CK2 is therefore evident and a subject of current research. This thesis also contributes to this 

field, focusing primarily on the investigation of the structural aspects of various protein-ligand 

interactions at different binding sites of the enzyme. 

An important role in these structural studies is accounted by CK2α’, a paralog of the catalytic 

subunit CK2α. Although the two paralogs are highly similar in many respects, CK2α’ has been 

neglected in CK2 research over the past decades due to its poor biochemical handleability and its 

insufficient crystallization properties. Therefore, in this work, for the first time, a crystallization 

protocol was developed that reliably yields CK2α structures with an atomic resolution of 1.0 Å and 

thereby outperforming all previously existing CK2α structures to date. This protocol has proven to 

be an extremely valuable crystallographic tool to study the precise binding mode of a wide variety 

of CK2 inhibitors from different substance classes, including high and low-affinity compounds. As 

an example, the exact binding site and binding mode of different 2-aminothiazole derivatives could 

be elucidated. These compounds belong to a class of CK2 inhibitors that were erroneously 

assumed to bind outside the cosubstrate pocket. 

In addition to crystallographic studies, organic syntheses were also conducted as part of the 

research for this thesis. This includes the synthesis of halogenated cyclic peptides which address 

the α/β interface area of the catalytic subunits, interfering with CK2β binding and thus with the 

tetrameric holoenzyme assembly. Furthermore, by conjugating with the cell-penetrating peptide 

sC18, it was possible to investigate the impact of some of these compounds on different cell lines.   
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Moreover, different 4,5,6,7-tetrabromobenzimidazole derivatives were synthesized and studied. 

In particular, the bivalent inhibitor KN2, which simultaneously occupies the cosubstrate binding 

pocket as well as the recently discovered αD binding pocket, proved to be exceptionally high in 

affinity and outstandingly selective. The aspect of selectivity has always been a particular 

challenge for kinase inhibitors due to the high degree of conservation of the cosubstrate binding 

region among eukaryotic protein kinases. The inclusion of the αD binding pocket is currently one 

of the most promising approaches to overcome this challenge since the high plasticity in this region 

has exclusively been described for CK2. In this thesis, it was shown for the first time that this is 

not only true for CK2α, but rather for both paralogs. 

Finally, the crystallization successes with CK2α’ and an eight-month desalting procedure led to 

the discovery of a novel binding site, located close to the N-terminus. However, the suitability of 

this cryptic site for the design of future generations of CK2 inhibitors requires further studies.  
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Chapter 1 – Introduction  
 

1.1 Eukaryotic Protein Kinases 
 

1.1.1 Physiological Relevance of Protein Kinases to Eukaryotic Cells 

 

The countless biochemical processes that take place in all kinds of cells form a highly complex 

and dynamic network that is subject to constantly changing environmental conditions. The vast 

number of reactions constantly needs to be regulated depending on the type and abundance of 

available resources, the prevailing abiotic parameters, the influence of cellular signaling, and 

numerous other external and internal stimuli. As a result, transcription and expression levels, as 

well as protein activities, must be adequately regulated and fine-tuned with respect to the current 

conditions, both inside and outside of the cell. For this purpose, cells can draw on an extensive 

repertoire of more than 400 post-translational modifications that alter the chemical properties of 

the respective proteins and can thus modulate their activities, lifespan, folding, localization, or 

binding properties [1] [2]. These modifications contribute significantly to the structural and 

functional diversity of the human proteome, which is much more complex than the number of 

underlying genes that make up the human genome. Hence, more than 19 000 protein-coding 

genes have been approved and cataloged by the Human Genome Organization (HUGO) to date 

[3], whereas the human proteome is often estimated to comprise millions of protein species [4] [5], 

which are also known as proteoforms [6]. The numerous post-translational modifications are – to 

a large extent – enzymatically catalyzed and include, among others, the transfer of organic as well 

as inorganic groups, covalent binding of macromolecules, cyclization reactions, the cleavage of 

functional groups or peptide chains, and even the conjugation of entire proteins such as the small 

ubiquitin-related modifier protein (SUMO) or ubiquitin [7]. By far the most frequent modification in 

the human proteome is the phosphorylation of the hydroxyl group bearing amino acids serine, 

threonine, and tyrosine, which is catalyzed by protein kinases. However, the rarer, and to some 

extent, chemically and thermally more labile phosphorylations of histidine, lysine, arginine, 

cysteine, aspartate, and glutamate have also been detected in human cells [8]. Based on more 

than 2.2 million experimentally determined posttranslational protein modifications deposited in the 

database for post-translational modifications of proteins (dbPTM), phosphorylation accounts for 
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approximately 72.2% of all entriesa [9]. A commonly recurring statement in the literature in the field 

of phosphoproteomics indicates that approximately one third of all human proteins are 

phosphorylated at any time and although this view is often supported by references, these do not 

support this claim with any primary data [10] [11] [12] [13]. In recent mass spectrometry studies 

by Sharma et al. [14], it has become apparent that the number of phosphorylated human proteins 

could be significantly underestimated since at least 75% of all proteins expressed in HeLa cells 

were found to be phosphorylated. Moreover, some proteins can even be subject to heavy multisite 

phosphorylation, such as the transcription factor and tumor suppressor P53, for which more than 

30 potential phosphorylation sites have been described [15] [16]. Vlastaridis et al. [17] recently 

published a survey paper in which a thorough evaluation of more than 1 000 publications, including 

187 high-throughput phosphoproteomic studies, is described. The authors conclude that there are 

approximately 13 000 phosphoproteins and 230 000 non-redundant phosphorylation sites in 

human cells, resulting in a statistical average of approximately 17.7 possible phosphorylation sites 

per phosphoprotein.  

The vast dimensions of the phosphoproteome are also reflected by the large number of more than 

500 protein kinase encoding genes, which represent approximately 2% of human genome [18]. In 

addition, according to Chen et al. [19], there are 264 protein phosphatases, including several 

pseudophosphatases, which also account for more than 1% of the human genome. Protein 

phosphatases are enzymatic opponents of kinases and are responsible for the removal of 

phosphate groups from proteins via hydrolysis, thereby ensuring that the effects of kinases on 

cellular processes can be reversed under certain conditions. Protein kinases were classified 

according to Manning et al. [18], based on their sequence similarities, structural aspects of kinase 

domains, and functional properties. All studied kinases were systematically divided into groups: 

the AGC, CAMK, CMGC, TK, TKL, STE, and CK1, which form the superfamily of eukaryotic 

protein kinases (EPKs), and the atypical kinases (Figure 1) [18]. The phylogenetic tree developed 

by Manning et al. [18] was, however, based on the seminal work of Hanks and Hunter [20], who 

had already classified EPKs into four major groups in 1995. Another approach is to categorize 

kinases according to their substrate specificity. Thus, a distinction can be made between 

serine/threonine kinases, tyrosine kinases, and the more rarely occurring kinases of dual substrate 

specificity, for instance, mitogen-activated protein kinase kinases (MEK), which are capable of 

phosphorylating serine, threonine, and tyrosine [21] [22]. Although the designation “EPK” implies 

that these proteins can exclusively be found in eukaryotes, many exceptions have been 

                                                           
a https://awi.cuhk.edu.cn/dbPTM/statistics.php; accessed: 06.12.22 
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discovered in other kingdoms [23]. Vice versa, members of the superfamily of histidine kinases 

are more common in prokaryotes but are also not limited to them [24]. In fact, although the term 

“EPK” has become established, it is strictly speaking not scientifically accurate and should 

therefore not be understood too literally. 

 

 

Figure 1. The phylogenetic tree of the human kinome according to Manning et al. [18] (Illustration 

reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com)). The superfamily contains 

over 500 members, which can be classified into the following groups: the AGC (PKA, PKG, and PKC 

families), CAMK (calcium/calmodulin-dependent kinases), CMGC (CDK, MAPK, GSK3, and CLK families), 

TK (tyrosine kinases), TKL (tyrosine kinase-like), STE (homologs of Sterile 7/11/20 kinases from yeast), 

CK1 (casein kinase 1 family), and the atypical kinases (represented in a separate box). The two CK2α 

paralogs (CK2α1 and CK2α2 in this thesis referred to as CK2α and CK2α’), which are the focus of this 

thesis, are magnified and highlighted by a red frame. 

 

The sheer number of human kinases and phosphosites that have been discovered highlights the 

inestimable importance of this post-translational modification, which has been evolutionarily 
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proven as a successful biochemical strategy for regulating and maintaining cellular homeostasis. 

However, a considerable degree of biochemical context is still unknown, e.g., only 3% of the 

human phosphosites found so far have been linked to a specific kinase [25]. Therefore, a great 

deal of research effort is still required to fully understand this complex network of phosphorylation 

and dephosphorylation.  

 

1.1.1 Structure and Function of EPKs 
 

In this subsection, the amino acid numbering of CK2α will be used to describe and illustrate the 

structural elements that are relevant for the catalytic activity or the scaffolding of EPKs. CK2α was 

chosen as a representative since it features the typical structural elements of EPKs and it is the 

focus of interest of this thesis along with CK2α’. 

The core of EPKs is highly conserved and composed of two clearly distinguishable folding 

domains (Figure 2) [26]. The C-terminal domain, usually referred to as the C-lobe, is rich in 

α-helices and represents the larger of the two domains. The N-lobe, on the other hand, is 

characterized by a central, five-stranded beta sheet with an antiparallel orientation and a 

structurally and functionally crucial helix, which is known as helix αC. Both lobes form a deep cleft 

in between, which serves as the binding site for substrates and thus acts as the enzyme’s catalytic 

center. The two parts are connected by a hinged linker, which is a loop that connects to beta 

strand β5 on one side and to helix αD on the other. This region serves as an architectural pivot 

point for EPKs, allowing the two subdomains to perform considerable rotational motions relative 

to each other, known as kinase breathing, as a function of substrate and cosubstrate loading [27] 

[28].  
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Figure 2. The highly conserved core of EPKs is exemplified by a complex structure of protein kinase CK2α 

with the hydrolysis-stable ATP analog AMP-PNP (PDB 1LP4). The core can be divided into two structurally 

distinct parts, the C-lobe (left) which mainly consists of alpha helices (red), and the N-lobe (right) which 

harbors a central beta-sheet (yellow-green).     

 

The EPK’s catalytic cycle includes the γ-phosphoryl group transfer from a nucleoside triphosphate, 

usually adenosine triphosphate (ATP), to a hydroxyl group of a suitable substrate. This requires a 

well-defined orientation of the cosubstrate and an appropriate coordination of the triphosphate 

moiety to allow an appropriate charge balancing of the phosphate chain (Figure 3a). For this 

reason, the ATP binding pocket of EPKs is subject to particularly strong chemical constraints and 

is structurally highly conserved [29], a circumstance that will be illuminated in more detail in 

Subsection 1.3.2. The adenine ring is held in position by backbone interactions with the adjacent 

hinge region and hydrophobic interactions, whereas the triphosphate moiety is bound in an active 

orientation by polar interactions and hydrogen bonds with conserved residues such as Lys68 or 

Lys158. In addition, the high density of negative charges on the triphosphate moiety is stabilized 

by the presence of two divalent cations, usually Mg2+, which bind with different affinities [30] [31]. 

Extensive studies on protein kinase A (PKA) by Knape et al. [32] have shown that other divalent 

cations e.g., Ca2+, Cd2+, Fe2+, Ni2+, Mn2+, or Zn2+ are also capable of supporting phosphoryl transfer 

to bound substrates. However, the resulting enzyme-product complex appears to dissociate very 

poorly in the presence of ions other than Mg2+ [32].  
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On the N-lobe side, the phosphate chain of the nucleotide is in contact with the glycine-rich loop 

extending from residue Gly46 to Ser51 and connecting beta strands β1 and β2 (Figure 3b). The 

outstanding flexibility of this loop, due to the low steric hindrance of the glycine residues, provides 

high adaptability in the binding process of the nucleotide [33]. Moreover, the glycine-rich loop 

facilitates the γ-phosphoryl group transfer though interactions with the substrate chain, which 

brings the chain closer to the cosubstrate and the catalytic aspartate. It is a recurring and unique 

structural element for kinases that facilitates nucleotide binding via the sequence GxGxxG [34] 

[35]. A study by Huang et al. [29] encompassing 469 kinases showed that the first two glycines in 

the sequence are found with 93% and 96% probability, respectively while the third glycine was 

still present in 74% of the analyzed kinases. In many CMGC kinases, a related sequence 

(GxGxYG) can be found with the defined tyrosine serving as a potential regulatory phosphorylation 

site. Cyclin-dependent kinases, for example, CDK1b, first need to be dephosphorylated at this 

particular residue to reach their peak activity [36].   

 

                                                           
b CDK1 is referred to as CDC2 in the older literature, as in Mueller et al. 1995. 
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Figure 3. (a) The nucleotide-binding site of CK2α (PDB 1LP4) from Zea mays as a representative of EPKs. 

Both direct and magnesium ion-mediated interactions of the ATP analog AMP-PNP with the protein are 

indicated by dashed lines. In addition, a salt bridge is shown between helix αC and the beta-strand ß3, 

which is a key switching element for establishing an active conformation in EPKs. (b) The activation segment 

extends from the DFG motif, in the case of CK2α from the DWG motif (yellow), through the activation loop 

(blue) to the end of the P+1 loop (green). The segment plays a central role in the activation status of many 

kinases as well as in the recognition of suitable substrates. The exceptionally flexible glycine-rich loop (pink) 

participates in the cosubstrate binding as well as γ-phosphoryl group transfer. 

 

A key function in the coordination of both the α and β-phosphate groups of the cosubstrate is 

occupied by Lys68, which is localized on strand ß3. Moreover, Lys68 forms a crucial salt bridge 

with the nearby Glu81, thereby enabling EPKs to adopt an active conformation. This glutamate is 

part of the helix αC, which is located between the strands β3 and β4. It is a structural switching 

element in nearly all EPKs that can flip to an outward position (αC-out) upon the transition to an 

inactive state which disrupts the salt bridge described above [37]. Together with Asp175, which 

coordinates the β and γ-phosphate groups, and Asp156, which serves as a catalytic base to 

deprotonate the substrate’s acceptor hydroxyl group, the aforementioned amino acids are so 

indispensable for the activity of the enzyme that their absence can be used as a reliable indicator 

for predicting catalytically inactive pseudokinases [38]. 

In accordance with its function, the region in which the catalytic aspartate is located is also referred 

to as the “catalytic loop”, which is in close proximity to the so-called activation segment that 

extends from the DFG motif, or in the case of CK2 from the DWG motif, to the activation loop and 
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ends after the P+1 loop (Figure 3b) [39]. The most important positions of the substrate’s 

consensus sequence can be located on the C-terminal or N-terminal of the phosphorylation site. 

For most CMGC kinases, these key substrate positions are usually in the N-terminal direction, 

referred to as the P+(1, 2,...) positions, and are recognized and bound in particular by the P+1 

loop via amino acids with the same hydrophobicity or opposite electrostatic properties [35]. The 

activation loop plays a crucial role in the regulation of most EPKs [40]. Apart from the orientation 

of the helix αC, the activation loop is a second central switching element for the activity of many 

kinases. Typically, one or more residues in the activation loop must be phosphorylated before a 

catalytic event can occur. This results in conformational changes, and the substrate binding site 

becomes accessible. The phosphorylated residue forms electrostatic interactions with positive 

amino acids such as the arginine of the HRD motif, which is located one position upstream of the 

catalytic aspartate [41]. As a result of dephosphorylation, the activation segment can collapse into 

the active site of the kinases, leading to a blocked or partially blocked substrate binding cleft [42]. 

In addition to the previously mentioned structural elements of EPKs, this subsection will lastly deal 

with two well-conserved cross-domain features of EPKs. According to the spine theory, the C-lobe 

is connected to the N-lobe by two stacks of hydrophobic amino acids (Figure 4) [43]. The so-called 

catalytic spine or short C-spine is anchored to the hydrophobic helix αF, which is located in the 

center of the C-lobe. While the C-spine is complemented by the adenine ring of ATP, the second 

spine is only complete if helix αC is locked in an active position with an established salt bridge 

between Glu81 and Lys68 as described earlier. Since this salt bridge directly correlates with the 

activity state of the enzyme, it is called the regulatory spine or R-spine.  

The two paralogs CK2α and CK2α’ are characterized by structural peculiarities with respect to 

spine theory. The proteins’ C-spines can either be completed by Phe121 or by the less 

hydrophobic Tyr125 in CK2α respectively Phe122 and Tyr126 in CK2α’. This represents a 

plasticity that has not yet been found in any other kinase. A third possible state is the complete 

opening of this region. In this case, neither of the two amino acids complement the C-spine, which 

in turn opens a narrow binding pocket, as resented in more detail in Subsection 1.2.1 and Chapter 

7. 
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Figure 4. The catalytic spine (red) and regulatory spine (blue) of the eukaryotic protein kinase CK2α (Zea 

mays) are depicted as a surface representation (PDB 1LP4). The co-crystallized ATP analog, AMP-PNP, 

was trimmed in the illustration to the adenine ring, which completes the C-spine. The helices αC, αD, and 

αF serve as anchors for the structural integrity of the two spines. In the case of CK2α and CK2α’, however, 

there is an unusually large plasticity in the region of the C-spine, insofar as it can be completed by either 

Phe121 or Tyr125 in CK2α and Phe122 or Tyr126 in CK2α’ respectively. 

 

1.1.2 Regulatory Mechanisms 
 

As described in Subsection 1.1.1, EPKs play key roles in the regulation of almost all cellular 

processes and must therefore themselves be subject to strict control and regulation. Dysregulated 

EPKs can lead to various diseases with a wide range of symptoms including, among others, 

cardiovascular [44] or neurodegenerative diseases [45] as well as immunodeficiencies [46]. 

Particularly prevalent, however, are neoplastic diseases, which are the result of – or favored by – 

an acquired constitutive or otherwise abnormal activity of one or more EPKs [47] [48] [49]. In 

healthy cells, kinases are therefore regulated and kept in check by different mechanisms. In the 

following, this will primarily be exemplified by PKA, an extensively studied serine/threonine kinase 

of the AGC kinase group.   

Cofactors and second messengers – Cofactors or second messengers including Ca2+, cyclic 

adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerols 
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(DAG), or phospholipid derivatives such as IP3 and PIP3 are among the most important effectors 

for many EPKs [50]. Ca2+ is a particularly prominent example among EPKs, which even lent its 

name to the group of Ca2+/calmodulin-dependent kinases (CAMK). However, not all kinases of 

this group are sensitive to the presence of high Ca2+ concentrations [51]. The death-associated 

protein kinase 3 (DAPK3), for example, is one of several kinase members for which the group 

name is misleading since DAPK3 does not even feature a calmodulin-binding site in contrast to 

its closest relatives DAPK1 and DAPK2 [52].  

One of the earliest discovered modulations of protein kinases with second messenger molecules 

was the activating effect of cAMP on PKA, published in 1968 by Krebs et al. [53]. In its inactive 

state, PKA forms heterotetramers consisting of two catalytic subunits (C-subunits) and two 

regulatory subunits (R-subunits). The latter contains the substrate (consensus sequence: RRxS) 

or pseudosubstrate (RRxA/G) sequences to block the active site of PKA [54]. Furthermore, each 

of the two R-subunits features two high-affinity cAMP-binding domains. Even at nanomolar 

concentrations, up to four molecules of cAMP can bind to the R-subunits, reducing the affinity for 

the catalytic subunits significantly, eventually causing the complex to disassemble and allowing 

the PKA monomers to become active. To prevent an uncontrolled progression of phosphorylation, 

one of the substrates recognized by the enzyme is cAMP-phosphodiesterase which, upon 

activation by PKA, begins to convert cAMP to non-cyclic AMP, thus starting a negative regulatory 

feedback mechanism.  

Protein-protein interactions – The influence of regulatory proteins represents a second 

commonly encountered mechanism. In contrast to PKA and its R-subunits, interaction partners do 

not necessarily have to be influenced by small molecules such as cAMP, nor does the interaction 

have to be inhibitory. For example, protein kinase CK2 only reaches its full activity via association 

with the regulatory CK2β dimer [55]. A similar picture emerges for most of the 20 human cyclin-

dependent serine/threonine kinases, which can interact with a specific subset of cyclins, often 

depending on the prevailing state of the cell cycle [56]. However, the main difference between the 

previous two examples is that CK2 undergoes an increase in activity through the heterotetrameric 

structure, whereas the catalytic subunits are even active as monomers. For most CDKs, however, 

the cyclin-mediated change in activity is of a binary nature, i.e., the enzymatic activity can be 

entirely suppressed in the absence of the respective cyclins.  

Oligomerization – Oligomeric kinases represent a special form of protein-protein interactions, 

which can be found among several kinase families. In particular, dimerization often occurs in 

receptor tyrosine kinases, followed by trans-autophosphorylation leading to a transition into an 

active state. Dimerization is usually initiated by the binding of a signal molecule to an extracellular 
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dimerization domain. A well-studied example of this mechanism is the binding of the growth 

hormone EGF, to the epidermal growth factor receptor (EGFR) [57] [58]. Subsequently, 

dimerization takes place, whereby the phosphoracceptor, typically a residue in the activation 

segment of the corresponding kinase, is inevitably located in close proximity to the active site of 

the adjacent kinase. An extremely high substrate concentration apparently arises due to the local 

proximity between the active site of the first kinase and the directly adjacent substrate. As a result, 

the trans-autophosphorylation reaction is usually very rapid. Surprisingly, this effect is so 

substantial that the surrounding amino acids of the phosphorylated position do not even 

necessarily have to match the inherent consensus sequence of the executing kinase, but can 

deviate significantly from it [59]. An example of this phenomenon is given, e.g., by CHK2 [60]. In 

addition to the effect of the locally increased substrate concentration, the kinase counterpart can 

also have a structurally stabilizing effect and can, for example, lead to a reorganization of the helix 

αC, whereby the R-spine becomes complemented as described in Subsection 1.1.1. Thus, certain 

kinases can enter an active state after binding, even if the binding partner is a pseudokinase with 

no enzymatic activity of its own. An example of this is represented by members of the rapidly 

accelerated fibrosarcoma (RAF) kinases, such as B-RAF or C-RAF, which convert into an 

enzymatically productive state after homo- or heterodimerization or side-to-side binding with 

pseudokinases such as KSR1 and KSR2 [61]. The different mechanisms behind oligomerization 

are also reflected in the diversity of the interaction domains of the kinases, and various interface 

regions between the monomers have been described in the literature, including side to side, back-

-to-back, and head-to-tail binding modes [62]. Moreover, the number of kinase molecules involved 

in the oligomer is also not limited to two. For example, the kinase CaMK2 forms dodecamers, 

which trans-phosphorylate very rapidly at appropriate Ca2+ concentrations [63].   

Post-translational modifications – Another regulatory mechanism, which can again be 

demonstrated using the example of PKA, was already mentioned in the previous passage about 

kinase oligomerization. It concerns the phosphorylation in important catalytic and regulatory 

regions of the kinases. Like most other proteins, kinases are also subject to post-translational 

modifications, and as previously described, some CMGC kinases may have a phosphotyrosine in 

the glycine-rich loop that effectively inactivates the kinase (see Subsection 1.1.1). Similarly, 

phosphorylation sites in the activation loop often determine whether the entire activation segment 

is in an active or inactive conformation. Many kinases require one or more phosphorylations in 

this region to be catalytically active, including PKA, for which an important phosphothreonine (p-



14 
 

Thr198)c has been described [64] [65]. Based on crystal structures, it was shown that p-Thr198 is 

essential for a stable active conformation, as it establishes important polar contacts to His88 of 

helix αC as well as further interactions with Lys190 of beta-strand β9, and Arg166 of the catalytic 

loop (Figure 5). Helix αC and the DFG motive are hereby stabilized in an αC-in/DFG-in position 

that ensures the complementation of the R-spine. In addition, the corresponding Asp185 is pulled 

into a position that is favorable for the binding of ATP and both magnesium ions. In accordance 

with the structural data, site-directed phosphomimetic mutagenesis of Thr198 to Asp198 in PKA 

by Adams et al. [66] resulted in an activity increase of two magnitudes and there are, in fact, 

numerous examples in which even multiple phosphorylations are required to increase kinase 

activity [67] [68]. In contrast, other kinases such as CK2 lack serines or threonines as potential 

phosphoacceptor sites in the described region whereby these are not mandatory for an active 

conformation. 

 

 

Figure 5. The human prototype kinase PKA exhibits a crucial phosphorylation of Thr198 in the activation 

loop, which is required for the activation segment to adopt an active conformation (PDB 3OOG). Polar 

contacts are indicated as dashed lines. Equivalents to p-Thr198 have been identified in a large number of 

different EPKs. 

                                                           
c The amino acid Thr198 is often referred to as Thr197 in the older literature, which depends on whether 

or not the initial starting methionine is included in the numbering. 
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Localization within the cell – Finally, the possibility to regulate kinase activity via subcellular 

localization should be mentioned. There are at least 50 different A-kinase anchoring proteins 

(AKAPs) that direct PKA, together with its regulatory subunits, to discrete cellular compartments 

and thereby limit the availability of potential substrates within the kinase’s sphere of influence. 

AKAPs are a diverse group of structurally highly diverse proteins that primarily function as binding 

platforms for the formation of multi-protein complexes [69].  

 

 

1.2 Protein Kinase CK2 

 

1.2.1 CK2 Represents an Unusual Member of the EPKs 
 

The serine/threonine kinase CK2, formerly known as casein kinase 2, is a member of the CMGC 

group of EPKs. The enzyme is closely related to the mitogen-activated kinases (MAPK), the 

glycogen synthase kinase 3 (GSK3), and the CDKs that are of utmost physiological relevance, 

especially in terms of cell cycle control and transcriptional regulation [70]. Comparable biochemical 

importance is also attributed to CK2. A clear indication of its key role is already provided by the 

high degree of conservation and the ubiquitous expression of the enzyme among eukaryotes [71]. 

This is supported by knockout experiments with CK2α in yeast [72], slime molds [73], and mice 

[74] [75], which demonstrated that the enzyme’s activity appears to be vital for eukaryotes. 

Compared to other EPKs, CK2 is characterized by some peculiarities of a structural and functional 

nature that are highlighted in this subsection.  

Tetrameric holoenzyme structure – The heterotetrameric holoenzyme structure of CK2 (Figure 

6a), is one of the most striking and, from an evolutionary point of view, very interesting feature, 

which makes this protein kinase unique. It is composed of two catalytic subunits, CK2α or its 

paralog CK2α’, and two regulatory CK2β subunits. CK2β does not exhibit any significant sequence 

homologies with other known proteins except for the stellate protein of Drosophila melanogaster, 

which when expressed in male specimens results in an in vivo crystal formation influencing 

spermatogenesis [76]. CK2β forms a central dissociation-stable dimer, which is complexed at 

opposite sides through a relatively small contact area of 832 Å2 by the N-lobes of the two catalytic 
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subunits [77]. Binding of CK2β results in both an increase in catalytic activity and a certain level 

of protection against thermal and chemical denaturation [78] [79] [80].  

While most EPKs are monomers in their active state, there are some exceptions such as the 

receptor tyrosine kinases described in Subsection 1.1.2, which dimerize upon binding of a suitable 

ligand and become active after autophosphorylation. The insulin receptor IGF-1R can be 

mentioned as an example of a kinase with a heterotetrameric structure [81]. It consists of two 

extracellular α-subunits, which act as binding sites for insulin, and two transmembrane β-subunits, 

which exert intracellular tyrosine kinase activities. However, unlike CK2, both subunits are 

covalently linked via disulfide bridges. Moreover, as indicated in Subsection 1.1.2, PKA also 

features a heterotetrameric structure but, in contrast to the CK2 holoenzyme, these complexes 

are entirely inactive, whereas CK2 is enzymatically active as a monomer and as a heterotetramer. 

Early experiments in which isolated CK2α was detected in large amounts in nuclei of animal cells, 

already indicated that both forms could coexist in cells [82]. This assumption is consistent with the 

empirical Kd value of 5.4 nM for the α/β-interaction, first measured by Martel et al. [83] via plasmon 

resonance spectroscopy and later confirmed by Raaf et al. [80] via isothermal titration calorimetry 

(ITC), which revealed the transient nature of the complex. A dynamic equilibrium between the 

monomeric and heterotetrameric forms was therefore suspected early on and was later supported 

by live-cell imaging [84] studies as well as an observed imbalance in subunit expression [85], 

whereby the tetrameric form appears to be predominant in vivo [86].  
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Figure 6. The CK2 holoenzyme structure (a) consists of two catalytically active CK2α or CK2α’ subunits 

(red and yellow) and two regulatory CK2β subunits (blue and green), which form a dissociation-stable 

dimeric core of the heterotetramer (PDB 1JWH). (b) CK2β interacts to a significant extent with the CK2α 

subunits via its C-terminus and with helix αF. It also possesses a zinc-binding motif, which is important for 

the dimerization of CK2β, and a highly acidic loop in the N-terminal region.    

 

Substrate recognition and pleiotropy – Interestingly, the holoenzyme assembly of CK2 leads 

to a modulation of the substrate preferences compared to isolated CK2α or CK2α’. Accordingly, 

the known substrates of CK2 were grouped into three substrate classes defined by Pinna [87]. 

Class I substrates can be recognized and phosphorylated by the monomer or the holoenzyme. 

On the other hand, class II substrates can only be phosphorylated in the absence of CK2β. A well-

studied example from this class is calmodulin, for which a strong inhibitory effect of CK2β has 

been verified several times [88] [89]. In contrast, only the heterotetramer is capable of 

phosphorylating class III substrates, such as the guanine nucleotide-exchange factor eIF2β that 

regenerates the eukaryotic initiation factor eIF2 by an exchange of GDP against GTP [90]. Due to 

a lack of ternary complex structures with suitable substrates, the exact mechanisms behind these 

shifts in substrate specificity depending on the presence of CK2β are yet to be elucidated. 

However, there is some evidence that the acidic loop of CK2β (Figure 6b) interacts with basic 

regions of potential substrates, thus bringing the phosphorylation site into spatial proximity to the 

active center of CK2α [91]. Moreover, steric reasons could serve to explain the rejection of class II 

substrates by the holoenzyme, since the CK2β dimer evidently has a certain space requirement 

that might not be compatible with some substrates.  
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In general, CK2 can be described as an extraordinarily pleiotropic EPK with a constantly growing 

list of several hundred substrates that have been identified, at least in vitro [92] [93] [94]. All these 

substrates have an acidic sequence in common, which is required for the recognition by CK2. The 

corresponding consensus sequence can be defined as (S/T-D/E-X-D/E) with “S/T” being the 

phosphorylated serine or threonine [95]. The positions P+1 and P+3, which demand acidic amino 

acids, are particularly important and characteristic of CK2 activity [96]. The outstanding pleiotropic 

character results from the rather short consensus sequence containing certain degrees of freedom 

whereby “X” can represent any amino acid in this context. However, as shown by Meggio 

et al. [94], acidic amino acids are also significantly favored in the P+2, P+4, P+5, P+6, and even 

P+7 positions. Due to its distinct pleiotropic character, CK2 is involved in a remarkable number of 

cellular processes including, in particular, aspects of cell proliferation [97], apoptosis [98] [99], 

angiogenesis [100] [101], DNA damage response [102] [103], viral infections [104], and many 

more. In addition to the phosphorylation of alcoholic side chains, some reports of phenolic 

substrates have been published [105] [106]. While most observations were made in vitro, there is 

also evidence of tyrosine phosphorylation in mammalian cells, although the physiological 

significance of this finding remains unclear [107].  

Constitutive activity – Another hallmark of CK2 is its constitutive activity, a phenomenon that 

contradicts the principles of strict EPK regulation highlighted in Subsection 1.1.2. The question 

arises concerning which structural characteristics of CK2 lead to such constitutive activity. A 

distinctive difference from other EPKs is the DWG motif, which is located in the activation loop of 

CK2 instead of an EPK-typical DFG-sequence. The frequently observed conformational plasticity 

of the DFG-sequence region in EPKs, which correlates with the activity state of kinases, has never 

been observed in CK2 in the numerous structures derived to date [108]. Based on crystal 

structures, it was demonstrated that the nitrogen in the indole ring of Trp176 forms an additional 

hydrogen bond with the backbone oxygen of Leu173, which locks the activation loop in an active 

“DWG-in” conformation [109]. A second critical reason for the constitutive activity is the 

conformation-stabilizing contact between the activation segment and the N-terminus [110]. The 

corresponding interactions include hydrophobic attractions as well as strong hydrogen bonds, e.g. 

between Tyr182 of the activation loop and the backbone nitrogen of Ala9 or the side chain of 

Asn16. These interactions contribute significantly to the observed rigidity in the canonical key 

structural elements of CK2, which exhibit regulatory plasticity in other EPKs.    

 

Regulation – Unlike other EPKs, in the case of CK2 no classical secondary messengers, such as 

cAMP or Ca2+, that cause an enzymatic deactivation have yet been found. Phosphorylation in the 
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activation loop is also not required, and the catalytic subunits are constitutively active both with 

and without the contribution of CK2β. This raises the question of how the concept of a permanently 

active kinase is compatible with the extensive regulation of so many target proteins and 

biochemical pathways. As an interim conclusion, all observations and structural findings to date 

point to the central assumption that CK2 is indeed always active in eukaryotic cells. However, the 

constitutive activity must not lead to the misconception that CK2 is not subject to any fine 

regulation. In addition to the activating effect of CK2β, the holoenzyme is also capable of 

undergoing supramolecular oligomerization to form (CK2α2β2)n ring-like structures and filaments 

(Figure 7) [111]. A distinction can thus be made between a primary interaction between the CK2 

subunits and a secondary interaction between the holoenzyme units based on electrostatic forces. 

While the intrinsic activity of CK2 decreases with increasing salt concentration, higher ionic 

strengths disrupt the secondary interactions between the holoenzyme units. The enzyme’s active 

centers are thus more accessible as isolated heterotetramers. These two opposing trends result 

in a concentration optimum of approximately 300 mM of NaCl. Depending on the salt 

concentration, the superstructures can be entirely converted into each other. Especially 

compounds with primary amines such as spermine or polylysines were found to stimulate CK2 

activity [112] [113]. However, the physiological relevance as well as the question of a general 

regulatory mechanism behind these high-ordered structures is not fully clarified. 

 

Figure 7. CK2 occurs in different higher-order aggregates depending on the ionic strength of the solvent. 

Low salt concentrations up to 0.1 M stabilize the formation of filamentous structures. Between 0.1 M and 

0.2 M, ring-shaped aggregates are observed, which reversibly dissolve again to isolated heterotetramers at 

higher salt concentrations. Adapted from Niefind et al. [111] based on data from Valero et al. [113]. 
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Moreover, it is known that CK2 can to some extent be regulated by a variety of intrinsic and 

extrinsic posttranslational modifications at different residues [114] including, for instance, 

phosphorylations at Ser2, Ser3, or Ser4 on CK2β [115]. In addition to activating covalent 

modifications such as phosphorylation and acetylation, inactivating SUMOylation as well as an O-

GlcNAc glycosylation at position Ser347 that suppress a potentially activating phosphorylation by 

CDK1 have been described [116]. Numerous extrinsic modifications as well as protein-protein 

interactions further expand the regulatory “fine-tuning-spectrum” of CK2. Among the best-known 

interaction partners, to name but a few, are the positive regulatory proteins MEK [117], 

cyclin-dependent kinase inhibitor 1 (p21) [118], histone chaperone facilitates chromatin 

transcription protein (FACT) [119], cluster of differentiation 5 (CD5) [120] or the casein kinase 

interacting protein 1 (CKIP-1) [121], which, interestingly, only binds to CK2α but not to CK2α’. As 

counterexamples, the beta-catenin controlling protein adenomatous polyposis coli (APC) or the 

isomerase peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) can be highlighted as 

restraining interaction partners [122]. Overall, a very complex and multifactorial picture emerges, 

showing that CK2 can be fine-tuned on many levels, including that of supramolecular organization, 

post-translational modifications, and diverse protein-protein interactions. In addition, there is also 

evidence of regulation at the transcriptional and translational levels [123].   

Dual cosubstrate specificity – For the actual process of phosphorylation, CK2 can recruit not 

only ATP but also GTP as an energy-rich phosphate source. In 2013, a study encompassing more 

than 200 kinases was conducted by Becher et al. [124] with the purpose of determining kinase 

affinities for the cofactors ATP, ADP, and GTP. The investigated kinases were derived from cell 

culture extracts of two human cell lines and were mixed with the cosubstrates of interest. 

Subsequently, an immobilized, promiscuous kinase inhibitor mixture (kinobeadsTM) was used to 

compete with the free nucleotides to enrich those kinases with unsaturated cosubstrate binding 

sites [125]. Apart from CK2, for which a dual cosubstrate specificity had been described much 

earlier [126], the kinases MEK1 and B-RAF attracted attention in the screening. However, in 

follow-up experiments, B-RAF was found to be significantly less able to utilize GTP as a phosphate 

source compared with CK2, and MEK1 emerged as entirely incapable of doing so [124]. Although 

there are indeed very few counterexamples in the literature, the ability to effectively utilize both 

ATP and GTP thus appears to be an exception among kinases [127] [128]. The structural aspect 

that allows CK2 to utilize GTP lies in the hinge region of the protein and was elucidated by co-

crystallization with GMP-PNP (Figure 8a) by Niefind et al. [129] in 1999. Sequential differences 

compared to other kinases in this region up to the end of the helix αD ensure that the purine ring 

of the GTP can rotate outward by a few degrees and form a hydrogen bond with the main chain 
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of Val116. This provides the necessary space for a water molecule in the binding pocket to move 

into the position normally occupied by the exocyclic nitrogen of the purine base. Consequently, 

the water molecule creates an additional hydrogen bond between the GTP and the binding pocket, 

thus mimicking the binding situation that occurs in the case of ATP binding.    

Unique plasticity of helix αD – The hinge region is not only of interest because it allows dual 

cosubstrate specificity, but also because of its uniquely high adaptability that includes the adjacent 

helix αD [130]. In previous studies, it has repeatedly been observed that the C-spine of CK2α can 

be complemented either by Phe121 (closed conformation) or partially by Tyr125 (open 

conformation) of helix αD (Figure 8b) [131], depending on the concentration of kosmotropic salts 

in the respective crystallization approach (see Chapter 3) [132]. Upon conformational opening, the 

N-terminus of the helix αD is tilted away from the cosubstrate binding site, thus increasing the 

access to a binding pocket, which, however, is still substantially occupied by Tyr125. In the search 

for selective CK2 inhibitors, the open conformation has recently attracted increasing attention (see 

Subchapter 1.3.2) [133]. Indeed, it was shown that suitable organic molecules can induce further 

conformations that, in extreme cases, can even lead to a melting of the entire helix αD (see 

Chapter 7). This plasticity has been observed for CK2α and more recently for CK2α’, and is a 

feature that distinguishes the two proteins from all other EPKs according to the current state of 

knowledge.   
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Figure 8. Hinge region with the adjacent helix αD. (a) Co-crystallization of the GTP analog GMP-PNP with 

CK2α from Zea mays (PDB 1DAY). For comparison, the orientation of the ATP analog AMP-PNP from a 

reference structure was inserted as black sticks (PDB 1LP4). Associated with a well-coordinated water 

molecule, GTP is able to mimic the binding mode of ATP (b) Helix αD and parts of the hinge loop of CK2 

can adopt an open (yellow) (PDB 1PJK) or closed (green) conformation (PDB 3BQC) depending on the salt 

concentration. Binding of αD pocket-affine compounds (molecule not shown) can even melt the helix entirely 

(red) (PDB 7ATV).  

 

1.2.2 CK2α and CK2α’: Two Paralogous Catalytic Subunits With Distinct 
Differences  

 

CK2α and CK2α’ are paralogous catalytic subunits of CK2 which are encoded by the genes 

CSNK2A1d and CSNK2A2, located on chromosomes 20 (p-arm) and 16 (q-arm), respectively 

[134]. Both proteins are characterized by a remarkably high similarity on the primary structure 

level in the conserved catalytic EPK core. However, a major difference can be found in the 

C-terminal region of CK2α’, which is, compared to CK2α, truncated by 41 amino acids. An overall 

sequence identity of 75% can thus be calculated if the C-terminus is taken into account and 86% 

if only the canonical core from sequence positions 1–330 is compared (see Figure 2 in Chapter 

4). Interestingly, the C-terminal extension of CK2α contains four alcoholic residues (Thr344, 

                                                           
d The designations used in 1994 by Yang-Feng et al. for the CK2α and CK2α'-coding genes differ from 
those used today, as CK2α was referred to as CSNK2A and CK2α' as CSNK2A1. 
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Thr360, Ser362, and Ser370), which are temporarily phosphorylated by CDK1 in a cell cycle-

dependent manner, especially during the prophase and metaphase [135] [136]. St-Denis et al. 

[137] further demonstrated the physiological relevance of this by showing that phosphomimetic 

point mutants of the corresponding amino acids resulted in mitotic catastrophes, thereby leading 

to cell death. Consistent with the high sequence identity, except for the C-terminus, the two 

kinases are structurally also almost identical to an EPK-typical architecture. The most striking 

differences can be found in the loop region between beta strands β4 and β5, where CK2α’ prefers 

an open conformation, which is usually observed in holoenzyme structures, whereas CK2α tends 

to adopt a closed conformation [138]. Accordingly, CK2α must first undergo a conformational 

change within this region prior to CK2β dimer binding.  

The cosubstrate binding pocket region differs only in two amino acids, His115 and Val116 in CK2α 

versus Tyr116 and Ile117 in CK2α’,e both located in the hinge region. Although this observation is 

interesting at first, especially with regard to the coordination of nucleotides and possible 

pharmacologically applicable ATP-competitive compounds, the difference is difficult to exploit, 

since the corresponding interactions with the hinge region are usually mediated by the main chain 

backbone and not by the side chains [139]. In fact, there are only a few reports of small molecules 

in which a slight discriminatory interaction with the paralogs has been observed [140] [141] [142] 

(see Chapter 4). 

Moreover, the characteristics mentioned in Subsection 1.2.1 fully apply to both proteins, i.e., both 

kinases form heterotetrameric structures with CK2β, both are extremely pleiotropic and 

acidophilic, both are constitutively active and can use GTP as a cosubstrate, and both show the 

described hypermobility of the helix αD. From a medical point of view, both kinases are known to 

be unfavorable prognostic markers for certain cancers (see Subchapter 1.2.3). Considering all 

these similarities, it seems very surprising that, since the discovery of protein kinase CK2, the 

literature has been flooded with findings concerning CK2α, whereas its paralog, CK2α’, is largely 

overlooked. Hence, CK2α’ was not included in a large number of experiments performed with 

CK2α, which raises the question of how such an uneven distribution of attention can be explained. 

To address this question, further differences between the paralogs need to be discussed:  

(I) A fundamental difference between the two subunits, which has significantly slowed down 

research efforts for a long time, was the poor solubility of CK2α’ compared to CK2α and the 

resulting challenges in recombinant expression and purification. A preliminary approach was 

                                                           
e The numbering of the amino acids of CK2α and CK2α' is shifted by one position due to an insertion of a 
single amino acid at the N-terminus of CK2α'. 
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provided by Nakaniwa et al. [143], who generated a soluble version of CK2α’ by truncating the C-

terminus upstream of Gln334. To retain the C-terminal part, Bischoff et al. [138] later introduced 

the point mutant Cys336 to Ser336, which prevented the full length protein from dimerizing by a 

disulfide bridge but still allowed its full catalytic functionality.  

(II) A publication in 1999 by Xu et al. [74] shifted the focus significantly toward CK2α. The authors 

showed that knockout of CK2α has lethal consequences for mice embryos during midgestation 

because of heart and neural tube defects, whereas knockout of CK2α’ only leads to infertility in 

males due to severe globozoospermia. This created the impression that the physiological 

importance of CK2α’ is minor and could at least partially be replaced by CK2α activity. However, 

the sheer conservation of both proteins in many species, especially in vertebrates, and the fact 

that paralog-specific interaction partners have been found provides strong evidence that both 

proteins have their own essential roles in the organism and are therefore worth studying [144].  

(III) Also in 1999, another article by Guerra et al. [145] was published in which transcriptional and 

translational levels of CK2α and CK2α’ in different tissues were qualitatively investigated using 

Northern and Western blots. The respective publication has repeatedly been cited up to the 

present date, giving the impression that CK2α’ is only present in testis and brain tissue, whereas 

CK2α is omnipresent. However, according to more recent findings, this impression is no longer 

tenable as countless data sets are available underlining the fact that both paralogs are present in 

all tissues, both as mRNA (Figure 9) [146] and protein (Figure 10) [147], although the levels of 

CK2α’ are usually slightly lower in most tissues.  

(IV) Finally, the aspects of structural elucidation and crystallization behavior should be addressed. 

For a long time, structural insights concerning CK2α’ were either not available or very limited 

because CK2α’ was a crystallographically very problematic candidate, which always crystallized 

in the form of unusable fine and fragile needles. A large number of different crystallization 

conditions for CK2α’ were found but the morphological results as well as the diffractive power 

were consistently poor - a fundamental problem which is an essential subject of the research 

efforts summarized in this thesis. Further information on this challenging issue and the solutions 

that have been developed for a reliable method of CK2α’ crystallization with atomic resolution can 

be found in Chapter 4.      
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Figure 9. Overview of the average normalized transcription levels of human CK2α’ (colored bars) compared 

with human CK2α (black dashed bars) in different tissues. The tissues shown are color-coded according to 

their function and respective organs in the human body. Data were taken from the Human Protein Atlas 

without modification and are based on entries from the Human Protein Atlas database (HPA) and the 

Genotype Tissue Expression Project (GTEx) [293]. Prior to publication in the protein atlas, noncoding RNAs 

were subtracted. Subsequently, the data were scaled to one million to ensure the comparability of datasets 

from different sources. The values shown are average normalized transcripts per million (nTPM) and 

standard deviations were not available in the database. 
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Figure 10. Overview of normalized median CK2α’ expression levels (colored bars) in different tissues 

compared to CK2α (black dashed bars). The tissues shown are color-coded according to their function and 

respective organs in the human body. MS1-based values, processed by the iBAQ method, were obtained 

without further modification from the Proteomics DB databasef. Standard deviations are only incompletely 

annotated in the database and can be looked up there [294].  

 

1.2.3 Role of CK2 in Cancer  
 

Due to its distinct pleiotropy, CK2 is involved in a variety of biochemical processes, which in turn 

leads to its role in a plethora of diseases, among others neurodegenerative diseases such as 

Alzheimer’s disease [148], Parkinson’s disease [149], amyotrophic lateral sclerosis [150], and 

Huntington’s disease [151]. In line with this, two neurodevelopmental disorders, termed 

Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental 

syndrome (POBINDS), which are predominantly caused by de novo point mutations in CK2α and 

CK2β, should also be mentioned [152]. In addition, a link has been found between CK2 activity 

and inflammatory processes [153] [154], diabetes mellitus [155], obesity [156], cardiovascular 

diseases [157], and infections with a wide spectrum of bacterial [158] and viral pathogens [159] 

[160] [161], including the proliferation of the severe acute respiratory syndrome coronavirus 2 

                                                           
f https://www.proteomicsdb.org; version 3.0; accessed 04/13/22 - 11:15 
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(SARS CoV 2) virus, which has unleashed the most severe global pandemic of the 21st century to 

date (Subsection 1.2.4). However, apart from the listed diseases several others [162], the impact 

of CK2 on the progression of various types of cancer has been studied by far most extensively 

since malignant neoplastic diseases are considered the most promising pharmacological 

indication for CK2-inhibitor-based-therapies.  

Cancer is one of the leading diseases with the highest mortality in the developed world, with 

approximately 19.3 million new cases and 10 million deaths in 2020, and the number of diagnosed 

cancer cases is expected to increase to 28.4 million in 2040 [163]. The main difficulty in developing 

new chemotherapeutics for effective therapy is that cancer is not a single disease, but rather a 

complex and diverse group of hundreds of diseases with different manifestations and causes. 

What all these neoplasms have in common is their uncontrolled proliferation and invasiveness, 

the ability to thrive under low oxygen levels, to procure nutrients via blood vessel formation, and 

their escape from the immune system [164]. To ensure the optimal utilization of a new drug for 

chemotherapy, a common molecular target is needed that applies to as many different cancer 

types as possible and allows a certain selectivity over benign cells. 

The search for a “magic bullet” against cancer was fueled by CK2 research since highly elevated 

CK2 levels were detected in several tumors originating from different tissues [165] [166] [167] 

[168] [169]. This raised the hope that CK2 might be the desired common denominator for many 

types of cancer, which could subsequently be pharmacologically exploited. CK2 has long been 

known for its ability to suppress apoptosis [170] and its massive stimulation of proliferation and 

angiogenesis [101], whereby the levels of CK2 activity correlate significantly with the degree of 

malignancy [171], the resistance to chemotherapeutic agents [172] [173] [174], the rate of 

progression, and the metastatic spread in advanced stages of cancer [175]. In this context, it has 

been demonstrated multiple times that CK2 overexpression has not only diagnostic but also 

prognostic qualities [176] [177] [178] [179] [180]. It was further suggested that during tumor 

evolution, a spiral-like process sets in, in which higher CK2 levels dictate a more aggressive 

phenotype, while at the same time these cells fall into a certain dependency on such excessive 

CK2 activity [181]. This dependency is sometimes referred to as CK2 “addiction,”, a term originally 

coined by Bernard Weinstein in the context of oncogenes in general [182]. At this point, however, 

it must be clearly emphasized that CK2 is not a proto-oncogene by a classical definition, since 

CK2 is characterized by its constitutive activity even without any sequence alterations. So far, no 

CK2 gain-of-function mutant has been reported that is responsible for a neoplastic transformation 

of healthy cells. Nevertheless, the available data suggest that CK2 activity generally creates a 
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tumor-driving environment, as several key players of tumor-promoting signal transduction 

pathways are recognized as substrates by CK2. Major signaling pathways affected by CK2 include 

the nuclear factor “κ-light-chain-enhancer” of activated B-cells (NF-κB) [183], the JAK2/STAT3 

[184], the PI3K/Akt [185], the Wnt/β-catenine [183], the Hedgehog pathway [186], and various 

DNA damage response mechanisms [187]. Moreover, caspase substrates are phosphorylated 

near the recognition site by CK2 and thus lose their suitability and can no longer be cleaved to 

initiate apoptotic events [188]. CK2 activity can therefore be considered as a direct antagonist of 

caspases. Moreover CK2 was found to activate the chaperone CDC7 which in turn stabilizes many 

true oncokinases in their active states [189]. In other words, even if one or more true oncogenes 

were originally the underlying trigger for the cell’s malformation, it may nevertheless become 

dependent on CK2, a phenomenon also known as “non-oncogene addiction” [190].    

In summary, although CK2 is neither the cause nor the consequence of cellular malignancy, an 

overexpression of CK2 promotes tumorigenesis by the stimulation of multiple pro-survival and 

anti-apoptotic signals. However, to be more precise, overexpression typically refers to CK2α and 

CK2β, whereas CK2α’ can either be upregulated or downregulated depending on the type of 

cancer, which again is indicative of different physiological roles of the two paralogs, even in cancer 

cells [180]. These different functions were also pointed out by Vilk et al. [191], who overexpressed 

death mutants of CK2α and CK2α’ in malignant osteosarcoma cells, with a reported loss of viability 

by overexpressed CK2α’, whereas this was not observed for CK2α. In addition, Brown et al. [192] 

also demonstrated that the downregulation of CK2α in squamous cell carcinoma of the head and 

neck resulted in marked sensitization to suboptimal doses of cisplatin. A lower proliferation rate, 

apoptosis susceptibility, and impaired cell migration were also observed by the authors in a 

wounding assay, whereby none of these observations applied for CK2α’. In contrast, there are 

some reports of certain cancer types that rely heavily on CK2α’ activity. For example, in 2016, Liu 

et al. [175] reported that CK2α’ drives metastasis in non-small cell lung cancer, thereby adopting 

a role of which CK2α is incapable. This is due to a paralog-specific interaction between CK2α’ and 

breast cancer metastasis suppressor 1 (BRMS1), whereupon the latter is phosphorylated at 

Ser30, subsequently exported from the nucleus, and degraded in a ubiquitin-mediated manner.
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Currently, different CK2 inhibitors are undergoing clinical trials with encouraging preliminary 

results such as the orphan drug silmitasertib, formerly CX-4945 (Figure 11a/c), which has 

completed phase II clinical trials g  for hard-to-treat bile duct cancer, also known as 

cholangiocarcinomas [193]. However, the fundamentals of these promising CK2 inhibitors – along 

with the whole concept of CK2 as a therapeutic target – have recently been challenged by an 

ATP-competitive inhibitor of extraordinary selectivity. The inhibitor SGC-CK2-1 (Figure 11b/c) 

recently introduced by Wells et al. [194] is based on a pyrazolopyrimidine scaffold and showed an 

IC50 value of 16 nM and 36 nM for CK2α and CK2α’, respectively, determined via NanoBRETTM 

assay [195]. The compound is thus comparably potent to silmitasertib, but the number of detected 

off-targets is unsurpassed with only five hits out of a tested panel of 403 kinases. The compound 

is thereby even more selective than the current gold standard of CK2 inhibition, silmitasertib, which 

already stands out from many other inhibitors due to its excellent selectivity with 28 significant off-

targets. Unexpectedly, in an extensive assay with 140 cell lines from 18 different tissues, SGC-

CK2-1 showed very poor cytotoxicity for almost all cancer cell lines, thereby calling the general 

suitability of CK2 inhibitors and the indispensability of the physiological role of CK2 for cellular 

processes in cancer cells into question [194] [196]. This led to the idea that previous therapeutic 

successes with CK2 inhibitors may be due to the unintended off-target-inhibition of other 

oncologically relevant kinases. However, on the basis of all currently available data regarding the 

involvement of CK2 in tumor biology, Salvi et al. [197] strongly warned against hasty conclusions 

based on the findings of Wells and coworkers [194].   

 

 

                                                           
g https://www.ClinicalTrials.gov Identifier: NCT02128282 
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Figure 11. The structures of the two CK2 inhibitors (a) silmitasertib and (b) SGC-CK2-1 are shown. 

Silmitasertib has held an orphan drug status for the treatment of cholangiocarcinoma since 2017 and is 

currently being tested in further clinical trials for its efficacy against SARS-CoV-2, among other indications. 

SGC-CK2-1 has even greater selectivity compared to silmitasertib but has not been shown to be very 

effective in inhibiting the proliferation of various cancer lines in cell studies to date. (c) Both inhibitors bind 

to the cosubstrate binding site of CK2 (superimposition of the structures PDB 6z83 with SGC CK2 1 [pink] 

and PDB 3PE1 with silmitasertib [yellow] is shown). 

 

In summary, three major points were criticized regarding the publication from Wells et al. [194]. (I) 

Non-pharmacological downregulation of CK2, e.g., by using siRNA or overexpression of dead 

mutants, has repeatedly been found to decrease survival and proliferation rates and to increase 

susceptibility to chemotherapeutic agents [198]. Moreover, attempts to generate tumor cells 

entirely without CK2 subunits have consistently failed.  

(II) Furthermore, the fact that CK2 is massively overexpressed in all cancers was not sufficiently 

considered by Wells et al., and a random occurrence of this hallmark without physiological 

significance seems very implausible.  

(III) Finally, insufficient data and misinterpretation of previous data were criticized. Thus, a 

discrepancy between the in vitro inhibition of recombinant CK2 and the required concentration for 

cellular inhibition of proliferation is also present for silmitasertib (Ki of 223 pM [199] but 

antiproliferative effect only at several magnitudes higher concentration). Therefore, the expected 

cytotoxicity may have been inconsistent with respect to the tested concentrations. Furthermore, 
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as a counterexample, it was pointed out that a silmitasertib derivative has recently been described, 

which exhibits increased selectivity along with an improved inhibition of tumor cell proliferation 

[200].  

While the search for novel potent and selective CK2 inhibitors was also a central component of 

this thesis, whether or not the inhibition of CK2 via small molecules will ultimately prove to be a 

successful strategy for therapeutic purposes cannot be fully clarified at this point. Nevertheless, 

increasingly selective inhibitors, possibly including paralog-specific inhibitors, provide valuable 

probes for fundamental research regarding the biological functions of CK2.       

 

1.2.4 A Possible Role of CK2 in SARS-CoV-2 Infections and Covid-19 
 

Since the end of 2019, the world has been gripped by the COVID-19 pandemic. It is the most 

devastating pandemic of the 21th century to date, with severe economic consequences and over 

six million confirmed deaths so far (as of December 2022). The rapid spread of infections 

prompted the World Health Organization (WHO) to declare a “Public Health Emergency of 

International Concern” as early as January 30, 2020, one month after the discovery of the novel 

virus that causes COVID-19 [201]. This respiratory syndrome is caused by the SARS-CoV-2 virus, 

an enveloped (+) single-stranded ribonucleic acid (ssRNA) virus (Baltimore class IV) from the 

genus of Betacoronavirus. With more than half a billion people infected by April 2022, there is a 

constant risk of overburdening the healthcare systems around the world, and frequently occurring 

mutations undermine the safety gains of vaccines, which usually require time-consuming 

development and testing phases. Thus, in addition to a prophylactic immunological approach, a 

spectrum of potent drugs suitable for the treatment of critically ill patients is needed. Various 

antibodies and small molecules that target different steps in the viral replication cycle have already 

been tested for this purpose and have yielded some promising results [202]. As of April 2022, 

more than a dozen such drugs have already received an emergency use authorization for the 

treatment of COVID-19 infections from the U.S. Food and Drug Administration (FDA) h . 

Interestingly, one of these candidates is baricitinib, a kinase inhibitor affecting the Janus kinases 

JAK1 and JAK2 [203]. 

                                                           
h https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-
framework/emergency-use-authorization#coviddrug 
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The efficacy of baricitinib indicates that kinase inhibitors can also make an important contribution 

to the arsenal of drugs in the fight against COVID-19, whereby the therapeutic potential of kinases 

in the context of viral diseases has been recognized long before the outbreak of the current 

pandemic. For example, in a review article, Keating et al. [204] describe a variety of viral diseases 

in which the respective viruses rely on phosphorylation by host cell kinases or viral kinases. 

Interestingly, CK2 is mentioned several times by the authors in the context of the dengue virus, 

hepatitis C, the vesicular stomatitis virus (VSV), the human respiratory syncytial virus (RSV), 

measles, influenza A, rotavirus A, the human immunodeficiency virus (HIV), the human 

papillomavirus (HPV), the human adenovirus, the varicella zoster virus (VZV), herpes simplex 

(HSV1), the human cytomegalovirus, the Epstein-Barr virus (EBV), and the Kaposi’s sarcoma-

associated herpes virus (KSHV).  

Consistent with the role of hijacked host cell CK2 in many infections, a large-scale study of the 

phosphorylation patterns in SARS-CoV-2 infected Vero E6 cells by Bouhaddou et al. [205] 

revealed a substantial increase in CK2 activity, while many mitotic kinases, such as CDKs, were 

strongly downregulated or completely silenced to ensure cell cycle arrest. The authors also noticed 

that infected Caco-2 cells, a lineage of immortalized colorectal adenocarcinoma cells, showed 

overly pronounced and highly branched protrusions, called filopodia, which are associated with 

viral budding [206]. Interestingly, CK2 was colocalized with the viral N protein in these protrusions, 

leading the authors to speculate about an allosteric interaction to enhance CK2 activity. It is 

hypothesized that CK2 activity drives actin polymerization in the cell, as both ɑ-catenin and the 

motor protein myosin IIA are substrates for CK2 as shown in the literature [207] [208]. Such 

reorganization of the actin skeleton is typical of the viral replication cycle in general and is required 

for viral particle egress [209] [210]. In addition, multiple phosphoproteomic studies indicated that 

the viral nucleocapsid protein (N), the membrane protein (M), the nonstructural protein 3 (NSP3), 

and the spike protein (S) are phosphorylated by CK2, although the underlying functions are not 

yet fully understood [211] [212] [205].  

As the evidence for the essential role of CK2 in SARS-CoV-2 infections grew stronger with each 

phosphoproteomics dataset obtained, it was a logical next step to investigate the effect of selective 

CK2 inhibitors that are already in clinical trials. The approach of repurposing drugs that are already 

approved (or in clinical phases) greatly accelerates the potential for use as many studies, for 

example on the toxicological profile of the compounds, do not have to be repeated [202]. Two 

intensively studied inhibitors are silmitasertib and CIGB-325. Surprisingly, silmitasertib showed 

antiviral activity (IC50 = 2.34 µM) [205], which qualified the compound for further investigation in 
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different clinical trials on patients with severe and moderate COVID-19 symptomsi. CIGB-325 is 

actually not a CK2 inhibitor in the classical sense, as this partially-cyclic peptide binds to CK2 

substrate sequences [213]. This peptide was tested by intravenous administration with a group of 

10 COVID-19 patients. Comparison with a control group also showed that even a low dose of 2.5 

mg/kg body weight had a significant antiviral effect [161]. Most strikingly, on average, lesions in 

the lung tissue decreased by 42% after seven days of treatment with CIGB-325, whereas patients 

from the control group who received a standard therapy showed only a 33% decrease. However, 

much more data are needed, including clinical trials with a larger group of patients, to provide a 

final estimation of the efficacy of CIGB-325.  

                                                           
i https://ClinicalTrials.gov; Identifier: NCT04668209 
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1.3 CK2 Inhibitors and General Druggability 

 

1.3.1 Inhibitor Types and Current Trends   
 

Kinase inhibitors were originally classified into three groups according to their binding abilities 

(inhibitor types I, II, and III) [214]. This definition was extended by the work of Zuccotto et al. [215] 

by including type I½ inhibitors. Type I to II inhibitors are characterized by their affinity for the 

cosubstrate binding pocket, where they usually complement the C-spine and compete with ATP 

or GTP. Type I and I½ inhibitors are both specific for kinases with a DFG-in conformation but, 

depending on the overall activity state of the kinase, either one or the other type is able to bind 

(see Table 2). Typically, such inhibitors form hydrogen bonds or halogen bonds with the hinge 

region and additionally interact with hydrophobic amino acids in the binding pocket. In addition, 

many compounds, including those developed for CK2, possess one or more proton acceptors, 

such as carboxylic acid functions or keto groups, which form hydrogen bonds with a conserved 

lysine in the cosubstrate site, i.e., Lys68 for CK2α or Lys69 for CK2α’.  

 

Table 2. Different types of inhibitors and their characteristics according to Roskoski [216]. The constitutively 

active character of CK2 leads to a permanent DFG-in/αC-in state, precluding types I½, II, and III from being 

considered. Type IV inhibitors are also incompatible with the currently available warheads of covalently 

binding inhibitors, as they require a nearby accessible cysteine. 

 Type I Type I½ Type II Type III Type IV Type V Type VI 

Type of 
Inhibitor 

ATP 
competitive 

ATP 
competitive 

ATP 
competitive 

Near the 
ATP/GTP site 

(allosteric) 

Apart from the 
ATP/GTP site 

(“truly” allosteric) 

Bivalent 
inhibitor 

connecting 
two sites 

Covalent 
inhibitor 

Kinase 
Activity 

Active Inactive Inactive N.D. N.D. N.D. N.D. 

DFG 
Motive In In Out N.D. N.D. N.D. N.D. 

Helix αC In N.D. N.D. Out N.D. N.D. N.D. 

Spines Completed Distorted 
Usually 

distorted 
Distorted N.D. N.D. N.D. 

Reversible Yes Yes Yes Yes Yes Yes 
Usually 

not 

Applicable 
for CK2 

Yes No No No Yes Yes 
Probably 

not 
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In contrast, type II inhibitors take advantage of the structural features of a DFG-out conformation, 

which opens an additional hydrophobic pocket that was previously occupied by the phenylalanine 

of the DFG motif [216]. A particularly well-known type II inhibitor is Imatinib, formerly also known 

as Gleevecj (Figure 12a), which became famous in the 1990s for its novel binding mode and high 

efficacy for the treatment of Bcr-Abl1-positive chronic myeloid leukemia and acute lymphoblastic 

leukemia [217]. Imatinib was developed by rational drug design and was derived from an initial hit 

in a fragment-based high-throughput screening. Unfortunately, most inhibitors that address the 

cosubstrate binding site suffer from an inherent low selectivity, which will be discussed in more 

detail in the next subsection. For a long time, it was assumed that type II inhibitors might have 

particularly favorable prerequisites for high selectivity, since the conformations of active kinases 

are naturally very similar, whereas the inactive states can be very heterogeneous. However, a 

study in 2014 by Zhao et al. [218] conducted with more than 200 different kinases could not confirm 

this theory. Instead, the authors showed that type I and type II kinase inhibitors strongly overlap 

regarding their selectivity profiles. Moreover, a large fraction of the human kinome has the ability 

to adopt a DFG-out conformation [219]. However, in the case of the constitutively active CK2, no 

naturally occurring inactive conformation has been described, thus excluding the development of 

type I½ and II inhibitors per se in this case. 

Allosteric inhibitors were initially classified as a single group (type III inhibitors). However, this 

definition was subsequently further refined by Simard et al. [220] and, henceforth, type III inhibitors 

were defined as compounds that bind in close proximity to the cosubstrate binding pocket but still 

within the cleft between the two lobes.  

Type IV inhibitors, on the other hand, address regions further away from the cosubstrate binding 

pocket. Such “true” allosteric inhibitors have been investigated several times for CK2, for example 

in the form of cyclic peptides that bind to the α/β-binding site of the N-lobe and thus prevent the 

heterotetrameric assembly of CK2. These peptides, originally developed by the Cochet group 

[221] [222], were optimized in the course of this thesis (see Chapter 2). Inhibitors of these types 

have the potential to achieve high selectivity since regions of the protein can be targeted that show 

a significantly lower degree of conservation [223]. 

                                                           
j Referred to as “Glivec” in the older literature, but the spelling was changed at the request of the FDA to 
avoid confusion with the diabetes agent Glyset. 
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Figure 12. Different types of kinase inhibitors. (a) Imatinib has gained great popularity as the first type II 

kinase inhibitor approved by the FDA. (b) KN2 is a recently developed bisubstrate inhibitor that binds to 

both CK2α and CK2α’ with low nanomolar affinity. Its ATP-competitive anchor is derived from TBI (c). The 

compounds ARC-1502 (d) and ARC-1859 (e) are shown exemplarily as bisubstrate inhibitors, a subcategory 

of bivalent type V inhibitors, with the latter having improved stability as well as cell permeability due to a 

modification of the peptide structure. (f) The FDA-approved agent Ibrutinib is a covalently binding type VI 

kinase inhibitor that binds to Bruton’s tyrosine kinase (BTK) and occupies the cosubstrate binding pocket. 

The α,β-unsaturated carbonyl allows the formation of a covalent bond with a nearby cysteine in the course 

of a Michael addition. 
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A reliable strategy to combine the selectivity advantages of allosteric inhibitors with additional 

affinity is provided by type V inhibitors. Two binding fragments, connected by a linker, allow a 

variety of possible combinations for a kinase with multiple known binding sites, such as CK2 [224]. 

The potency of bivalent inhibitors is usually several magnitudes greater compared to the single 

non-conjugated fragments [225], which is largely due to the fact that the binding energies of the 

two conjugated fragments add up for a bivalent ligand [226]. In addition, a bivalent inhibitor is able 

to displace multiple molecules from the binding pockets, which provides a favorable entropic 

contribution [227] and allows for the design of inhibitors with both high affinity and excellent 

selectivity. KN2 is a novel type V inhibitor, presented in this thesis (Figure 12b), that combines an 

ATP/GTP-competitive 4,5,6,7-tetrabromobenzimidazole or TBI moiety (Figure 12c) with an anchor 

of a nearby exosite, namely the αD pocket which was already described in Subsection 1.2.1 (also 

see Chapter 7). However, the design of a suitable linker can be a significant challenge for this 

inhibitor type as a variety of parameters, such as chemical and enzymatic stability, the flexibility 

and the solubility, among other properties, have to be taken into account, especially when bridging 

larger distances between the two binding sites [228].  

In general, type V inhibitors are further subdivided into generic bivalent inhibitors, including KN2, 

which link two binding sites in any combination, and bisubstrate inhibitors, which occupy the 

cosubstrate and the substrate binding site per definition and often show structural similarity with 

the enzyme’s substrates [223]. The first bisubstrate inhibitor developed for CK2 is called 

ARC-1502 (Figure 12d) and was introduced in 2012 by Enkvist et al. [229]. It is composed of an 

ATP/GTP-competitive TBI moiety and an extremely acidic heptapeptide. Despite the outstanding 

affinity (Ki = 0.5 nM compared to 462 nM of isolated TBI [141] ) and an acceptable selectivity with 

nine kinases being inhibited by more than 50% from a panel of 140 kinases tested at 1 µM, the 

compound has been criticized for two major reasons that prevent its pharmacological use. First, 

the peptide is easily proteolytically degraded, and second, membrane permeability is not given. 

As a result, three years later, the improved compound ARC-1859 (Figure 12e) was described in 

the literature [230], which is based on a protease-stable peptoid scaffold and also hides the 

negative charges of the carboxylic acid functions by acetoxymethyl esters, to improve cellular 

uptake. This approach involves an intracellular conversion into the active form by means of 

esterase activity. Nowadays, the spectrum of bivalent and bisubstrate CK2 inhibitors has become 

very broad and is one of the most promising inhibitor groups.    
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The sixth group of kinase inhibitors comprises covalently binding componds, which usually have 

a leaving group that allows them to react with cysteines in the course of an SN2 reaction, or via a 

Michael system to form a sulfur ether. The advantage of this inhibition strategy is the irreversible 

nature of the kinase inactivation. Especially for tyrosine kinases such as EGFR, several type VI 

agents, such as Ibrutinib (Figure 12f), have been approved [231]. However, these inhibitors require 

an accessible sulfhydryl group of a cysteine in the area of binding, which is unfortunately not 

present in the case of CK2. Nevertheless, research is progressing rapidly to expand the repertoire 

of available warheads for covalent drugs in the future so that residues other than cysteines could 

be targeted by this type of inhibitor and kinases such as CK2 could be addressed. [232]. 

Very recently, a seventh group was defined by Lu et al. [233]. Type VII inhibitors also have an 

allosteric character and differ from type IV inhibitors insofar as they bind to extracellular domains 

of tyrosine kinases and thus represent a special case of allostery. However, it remains to be seen 

whether this definition will prevail in light of future research. 

 

1.3.2 The Disadvantages of ATP-competitive Compounds 
 

Most of the CK2 inhibitors developed so far address the cosubstrate binding pocket (see Figure 

13). This is not surprising considering that it is the most distinct binding pocket of the enzyme, 

which, due to its sheer depth and the hydrophobic regions [234], is particularly suited for the 

development of high-affinity compounds. In addition, the cosubstrate pocket is permanently 

accessible and pre-formed, i.e., no conformational changes are necessary that would present an 

energy barrier during the binding process. Moreover, since it is an essential region for kinase 

activity, replacing the nucleotide with adequate inhibitors leads to an enzymatic inactivation. The 

first lead compounds that were discovered in many respects resembled the structure of ATP and 

were easily optimized in terms of affinity by rational drug design and the use of structural data.   
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Figure 13. Color-coded visualization of the binding sites of 180 different ligands of CK2α deposited in the 

PDB, excluding any nucleotides. Contact between an amino acid and the respective ligand was defined in 

such a way that atoms of the ligand must be 4 Å or less away from the interacting amino acid. The results 

of the study were presented as a surface representation (a) or as a stick model focusing on the cosubstrate 

binding pocket (b). The PDB entry 5CU6 was selected here as a structure for the heat-map projection. Gray 

areas indicate the absence of ligand interactions whereas, in contrast, red areas are particular hotspots of 

ligand binding. For better orientation, a stick model of ADP is included (cyan). The figure is adapted in a 

modified form from Atkinson et al. [235] (MDPI open access article).   

 

The nucleoside analog 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) was the first known 

synthetic CK2 inhibitor derived in the mid-1980s (see Figure 14) [236], although its binding 

properties needed to be improved (Ki = 4.5 µM determined in vitro). A few years later, TBI and the 

analogous triazole, i.e., 4,5,6,7-tetrabromobenzotriazole (TBB), were introduced, which already 

deviated significantly from the original nucleoside structure [237] [238]. Similar to DRB, a 

benzimidazole or a very similar benzotriazole backbone was used. The halogens of DRB also 

proved to be remarkably useful since they form strong halogen bonds with main chain oxygens of 

the hinge region and were therefore extended by two additional halogens. In contrast to DRB, 

however, ribose was omitted as it only pointed into the solvent and had little electron density in 

crystal structures [239]. These simple changes already minimized the Ki value by about one 

magnitude compared to DRB. Over the years, this optimization has been successfully advanced 

so that today’s inhibitors, such as silmitasertib, bind in the picomolar range (Ki = 360 pM). 
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Figure 14. Structure of the first synthetic CK2 inhibitor, DRB, which is derived from ATP.  

 

However, a selectivity optimization of ATP-competitive compounds is much more challenging, and 

it is not only a problem in the case of CK2 but for any other ATP-binding protein, including EPKs 

in general. This is also the reason for some well-documented side effects of FDA-approved kinase 

inhibitors, whereby particularly cardiotoxicity, hepatotoxicity, and hematotoxicity are repeatedly 

reported in patients undergoing treatment with kinase inhibitors [240], which, in many cases, leads 

to otherwise promising drug candidates failing to obtain FDA approval. In the most severe cases, 

cardiotoxicity can even result in heart failure [241]. Because of the common side effects, ATP-

competitive kinase inhibitors are sometimes used as combination therapy or as second-line agents 

in the absence of a response to initial treatment or in the case of an acquired resistance.  

The main issue in terms of selectivity is the highly conserved structure of the cosubstrate binding 

pocket (see Figure 15), which in turn is caused by evolutionary and chemical constraints. A certain 

selectivity can be achieved, for example, by using a deeply buried cavity of the binding pocket 

(known as hydrophobic region I) [234], if this part is accessible by means of small preceding amino 

acids. A key determinant in EPKs is the gatekeeper residue, which unfortunately is very bulky in 

the case of CK2 (Phe113 for CK2α and Phe114 for CK2α’). Together with Val66, which is usually 

an alanine in other kinases, these amino acids block the hydrophobic region I so that this area 

cannot be exploited for selectivity gains. 
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Figure 15. Schematic representation of the cosubstrate binding pocket of CK2α (a). Nonconserved amino 

acids are shown in gray, and conserved amino acids are colored. For the blue amino acids, the conserved 

residues match those of CK2; in the case of red positions, there is a deviation from other EPKs. In the 

adjacent table (b), the amino acids of CK2 are compared with the corresponding amino acids of other EPKs 

and their degree of conservation. The data have been adopted and the figure was prepared according to 

Huang et al. [29].   

 

In summary, CK2 does not have the best prerequisites for the development of highly selective 

ATP-competitive inhibitors. It has a highly conserved cosubstrate binding pocket, no cysteines in 

this region that would allow covalent binding, several bulky amino acids that prevent deeper 

penetration of the binding pocket. Nevertheless, recently developed inhibitors such as SGC-CK2-

1 show that high selectivity is possible in principle. In this context, it should also be mentioned that 

the dual cosubstrate specificity of CK2, which is barely found in any other kinase, may already 

indicate that the few sequence peculiarities of CK2 may be sufficient for the synthesis of selective 

inhibitors. However, the synthesis of new selective compounds remains a general challenge, and 

the current trend is increasingly to target other binding sites, so-called exosites, and make them 

pharmacologically accessible. 
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1.3.3 Exosites in the Focus of Research 
 

By definition, exosites are binding sites located apart from the cosubstrate binding region [242]. 

In an effort to achieve selectivity, various exosites have been studied over the years and evaluated 

for their suitability for inhibitor development. The following subsection provides a systematic 

overview of these sites and their inherent advantages and disadvantages. 

The α/β-interface area of CK2α – The CK2β binding site is an architecturally striking exosite of 

CK2α which, due to its rareness, is a promising target for selective inhibitors. Significantly, in 

crystallographic studies, the first synthetic CK2 inhibitor, DRB, was found to target both the 

cosubstrate binding site and the α/β-interface region of CK2α (see Figure 16). Although this was 

only an incidental finding, Raaf et al. [239] showed that the dual binding mode can be utilized to 

disrupt the tetrameric holoenzyme structure and thus, the idea arose to search for further 

compounds to investigate the effects of CK2β-competitive molecules on CK2 activity in vitro and 

in vivo. In this context, the bisubstrate inhibitor ARC-3140 with a DRB-related 

tetraiodobenzimidazole moiety, also unexpectedly bound with low micromolar affinity to the 

α/β-interface region of CK2α as recently described by Pietsch et al. [243]. Considering that CK2β 

boosts the activity of CK2α and also increases the overall stability of the protein, it can be assumed 

that the disruption of the holoenzyme assembly leads to a general decrease in cellular CK2 

activity, to which “addicted” malignant cells should respond with particular sensitivity [181]. 

However, it must be assumed that not all substrates would be equally affected, and instead 

phosphorylation of type III substrates would be most impaired, whereas type II substrates would 

mostly be unaffected. A particular difficulty for the development of CK2β-competitive inhibitors 

arises from the fact that only a very shallow hydrophobic cavity is present, which, in the case of 

the canonic ligand CK2β, is occupied by only one phenylalanine residue and one peripheral 

tyrosine (Phe190 and Tyr 188). As a result, small molecule design has been extremely challenging 

due to the minimal contact area and the large solvent exposition. Only a few compounds have 

been identified to date, including W16 and various podophyllotoxin derivatives [244] which have 

never structurally been confirmed as CK2β-competitive and show binding in the low micromolar 

range, as well as compound 6 from Kufareva et al. (Kd = 30 μM) [245]. 

Apart from these small molecule compounds, several peptides have been developed that bind 

significantly tighter to CK2α. These peptides are derived from Pc, a 13-meric cyclic peptide that 

mimics the c-terminal binding region of the CK2β [221]. Over time, extensive optimizations have 

been introduced to Pc, which are in parts also presented in this thesis (see Chapter 2). Different 

groups tried to improve cellular uptake by adding cell-penetrating sequences such as Tat or sC18, 
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as in the case of TAT-Pc [246]. Moreover, the chemical stability was enhanced by replacing the 

disulfide cyclization, as demonstrated by CAM7117 or TAT-Pc, and the affinity was increased by 

making the peptide more rigid or though the introduction of halogen bonds to enable additional 

interactions with the protein backbone [247]. Although the peptide derivatives never reached very 

low nanomolar to picomolar affinity, they nevertheless bound in a superior way compared to small 

molecule inhibitors. This is not surprising since peptides are well known to be more suitable for 

interacting with targets with flat or extended epitopes due to their large surface area [248]. 

However, since peptides are only suitable as therapeutic agents to a limited extent and the affinity 

would still have to be significantly increased, there is a considerable need for further optimization 

of these compounds towards peptidomimetics. However, these efforts seem worthwhile as 

cytotoxicity in different cancer cell lines has been reported for different cell penetrating Pc 

derivatives [246] [247]. 

Substrate binding site – As previously presented in the context of antiviral drugs against SARS 

CoV 2, peptides and peptidomimetic compounds such as CIGB-325 can also serve as 

substrate-competitives although, strictly speaking, CIGB-325 does not bind directly to the 

substrate binding cleft of CK2 but rather binds directly to the corresponding recognition sequences 

of the target proteins and thereby prevents phosphorylation by blocking the phosphoacceptor 

serine or threonine. Nevertheless, CIGB-325 is one of the best-studied substrate-competitive 

compounds and the only candidate of this type showing significant antitumor activity that has made 

it into clinical trials to date [249] [250]. In general, selectivity for substrate-competitive compounds 

that actually interact with the binding cleft of CK2 can be generated via the distinct acidophilic 

character of CK2. The highly clustered occurrence of basic amino acids around the substrate cleft, 

as exemplified by the basic strand of CK2 that extends from amino acid Lys74 to Arg80 and 

contains a remarkable cluster of lysins, is the reason why compounds with a particularly negative 

net charge, such as polyglutamyl peptides or heparin [251] [95], are repeatedly described as CK2-

binding molecules in the literature.  

However, these negative charges are also problematic in terms of cellular uptake. Another 

obstacle to the design of substrate-competitive compounds is the lack of depth of the binding 

pocket. The affinities described, for example, for modern ATP-competitive compounds have so far 

not been achieved for the compounds addressing the substrate binding cleft. A way out of this 

dilemma might be given by bisubstrate inhibitors such as ARC compounds, as described 

previously using the examples of ARC-1502 and ARC-1859. Further improved ARC compounds 

also contain ATP-competitive 4,5,6,7-tetraiodo moieties, e.g. ARC-3140 or feature a silmitasertib 

conjugation [252]. However, urgently needed structural data are still lacking, since the 
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substrate-competitive parts of these bisubstrate compounds have never been covered with 

electron density in crystallographic studies (for more information, see Subsection 8.5).  

 

Figure 16. The various binding sites of CK2 are highlighted in different colors and exemplary inhibitors are 

shown for each of the binding sites. The peptides sC18-I-Pc and CIGB-325 are shown in the one-letter 

code, and black lines symbolize covalent bonds. The black arrow next to the ATP binding pocket of CK2 

indicates the area that was assumed to be the binding site for the 2-aminothiazole compounds.   



45 
 

αD pocket – Another promising exosite is the recently discovered αD binding pocket, which has 

already been presented in Subsection 1.2.1. According to current knowledge, helix αD melting is 

only found in CK2α and CK2α’ and therefore provides an ideal opportunity to generate selectivity. 

Furthermore, it is a very deep and rather narrow binding pocket, which provides ideal conditions 

for optimizing the currently known lead compounds towards excellent affinity. Initial work in this 

area has already been published by Iegre et al. [253]. However, addressing the αD binding pocket 

comes with two (not insignificant) drawbacks. First, it is a cryptic binding pocket that is not 

preformed and thus presents a certain energy barrier for the inhibitor’s entry process. Additionally, 

fragments binding to the αD pocket do not exert any inhibitory effect per se. However, Iegre et al. 

[253] demonstrated that an extended αD-compound, designated CAM4712 that reaches into the 

ATP-binding pocket, has an inhibitory effect on the enzyme (Kd = 4 µM, IC50 = 7 µM at 25 µM of 

ATP; experiments were performed with isolated CK2α), although the protruding head moiety does 

not directly interact with the ATP-binding pocket. Due to its close proximity to the cosubstrate 

binding site, this binding pocket is particularly interesting and promising for the development of 

bivalent inhibitors that also bind to the cosubstrate binding site, as already demonstrated with KN2 

(Ki = 6.1 nM, IC50 = 19.3 nM at 100 µM of ATP; experiments were performed with isolated 

CK2α2β2) or CAM4066 (Kd = 320 nM, IC50 = 370 nM at 25 µM of ATP; experiments were performed 

with isolated CK2α).  

Further exosite – In 2019, Bestgen et al. attracted a lot of attention with two associated 

publications [254] [255] in which the authors claimed to have found a group of 

2-aminothiazole-based compounds, which are hypothesized to act as allosteric modulators of 

CK2. The authors performed various experiments to localize the putative binding site and came 

up with a concrete suggestion of where it might be located (see Figure 16), but all attempts to 

obtain a corresponding co-crystal structure with any of the several dozens derivatives failed. It 

was, however, possible to obtain these lacking data in the course of this thesis (see Chapter 6) 

and thereby disprove the hypothesis concerning a novel allosteric binding site.    

In summary, the repertoire of available CK2 inhibitors now comprises a very large number of 

substance classes and a wide variety of inhibitor types and binding sites. Both selectivity and 

affinity have been further optimized over the past 40 years since the commencement of inhibitor 

development and it remains to be seen whether this will be reflected in further clinical studies 

beyond silmitasertib and CIGB-325.    
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1.4 Objectives 

 

The serine/threonine kinase CK2, which is ubiquitous in eukaryotes, is a special kinase in many 

respects; for example, it is probably one of the most pleiotropic EPKs of the human kinome. Among 

its substrates are several key proteins of signaling pathways that stimulate cell proliferation or 

control the initiation of apoptosis. For this reason, CK2 activity has been linked to a variety of 

different diseases, especially the rapid progression and malignancy of different types of cancer. 

Current research is therefore primarily driven by the pharmacological interest in the development 

of potent and selective inhibitors, to which this thesis also contributes, as described in the next six 

chapters. Various inhibitors from different substance classes, targeting different binding sites of 

CK2, were synthesized and characterized.  

Methodologically, the main focus is on gaining structural insights that are the foundation for the 

optimization of future inhibitor generations. In this context, special attention was paid to the 

structural exploitation of CK2α’, a paralog of CK2α, which so far has been considered extremely 

problematic from a crystallographic point of view and for which only a very limited number of PDB 

entries with moderate resolutions are available. 

 

Design of CK2β-Mimicking Peptides as Tools To Study the CK2α/CK2β Interaction 

in Cancer Cells 

Chapter 2 describes the optimization of a cyclic peptide that targets the α/β interface region of 

CK2α and thereby interferes with the holoenzyme assembly. The aim was to investigate the effects 

on binding affinity by the introduction of different halogens at a key position with respect to CK2α 

binding and to achieve membrane permeability by conjugation of the cell-penetrating peptide 

sC18. Besides radiometric and fluorescence anisotropy-based in vitro measurements with isolated 

CK2, a study of the cellular effects, especially uptake and cytotoxic properties in a direct 

comparison of two cell lines, was undertaken. 
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Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein 

Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and 

Its Paralog CK2α′ 

The work in Chapter 3 aims to characterize the CK2 inhibitor 4p, a member of the indeno[1,2-

b]indole class, in terms of its cellular permeability and binding mode. Structural data were collected 

under high salt conditions with CK2α and under low salt conditions with both paralogs. Although 

a certain binding mode had been predicted based on in silico docking, no co-crystallization 

experiments with indeno[1,2-b]indoles and CK2 had been published until point.   

 

Diacritic Binding of an Indeno[1,2-b]indole Inhibitor by CK2α Paralogs Explored by 

a Reliable Path to Atomic Resolution CK2α’ Structures 

This chapter aims to structurally characterize an isoform-specific difference in the inhibitory 

potency of THN27, an ATP-competitive indeno[1,2-b]indole-type inhibitor, based on crystal 

structures with CK2α and CK2α’, respectively. As CK2α’ has always been an extremely 

challenging protein in terms of crystallization, a novel crystallization protocol was presented, which 

yields easily reproducible CK2α’ crystals to generate structures with atomic resolution. These 

crystals were subsequently soaked with inhibitors of different affinities to test the potential of this 

novel crystallographic tool.   

 

Synthesis, biological properties and structural study of new halogenated azolo[4,5-
b]pyridines as inhibitors of CK2 kinase 

The fifth chapter deals with the synthesis and testing of novel halogenated CK2 inhibitors based 

on a pyridine scaffold. Compared to the structurally closely related compounds TBI and TBB, 

improved solubility in the aqueous medium was expected due to the pyridine nitrogen at the N4 

position. Therefore, it was aimed to investigate how this change in the backbone and the 

associated loss of one of the halogens would affect the aspects of affinity as well as the cytotoxicity 

in different cancer cell lines. The crystallization protocol presented in Chapter 4 was used for a 

detailed structural investigation of the binding modes of the most promising compounds.
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Structural and Mechanistic Basis of the Inhibitory Potency of Selected 
2-Aminothiazole Compounds on Protein Kinase CK2 

In 2019, Bestgen et al. claimed to have identified 2-aminothiazoles as non-ATP-competitive 

inhibitors of CK2 through extensive studies. However, the authors did not achieve structural 

elucidation. The research presented in this chapter aimed to provide follow-up crystallographic 

data for CK2α and CK2α’ and to localize the precise binding site of these compounds. In addition, 

the presented inhibition kinetics should be validated once again.   

 

Molecular Plasticity of Crystalline CK2α’ Leads to KN2, a Bivalent Inhibitor of 
Protein Kinase CK2 with Extraordinary Selectivity 

The novel crystallization protocol for CK2α’ was used to address the question of whether 

ligand-induced melting of the αD-helix is exclusive to CK2α or whether this structural phenomenon 

occurs in both paralogs. The resulting CK2α’ complex structure containing the crystallization 

chaperone MB002 and the αD ligand 2-(3,4-dichlorophenyl)ethan-1-amine (DPA) was used for 

the development of KN2, a bivalent inhibitor connecting the cosubstrate binding pocket with the 

αD pocket. Subsequently, KN2 was tested in vitro and in cellulo for its suitability as a CK2 inhibitor 

with regard to its affinity, cytotoxicity, and cellular uptake. Furthermore, the selectivity was 

determined by a kinome-wide profiling against a panel of 83 different kinases, including known 

off-targets for the inhibitors Silmitasertib and TBI.  
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Chapter 2 – Design of CK2β-Mimicking Peptides as Tools To 
Study the CK2α/CK2β Interaction in Cancer Cells 
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Chapter 3 – Unexpected Binding Mode of a Potent  
Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase 
CK2 Revealed by Complex Structures with the 
Catalytic Subunit CK2α and Its Paralog CK2α′ 
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Chapter 4 – Diacritic Binding of an Indenoindole Inhibitor by 
CK2α Paralogs Explored by a Reliable Path to Atomic 
Resolution CK2α’ Structures  
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Chapter 5 - Synthesis, Biological Properties and Structural Study 
of New Halogenated Azolo[4,5-b]pyridines As 
Inhibitors of CK2 Kinase 
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Chapter 6 – Structural and Mechanistic Basis of the Inhibitory 
Potency of Selected 2-Aminothiazole Compounds on 
Protein Kinase CK2  
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Chapter 7 – Molecular Plasticity of Crystalline CK2α’ Leads to 
KN2, a Bivalent Inhibitor of Protein Kinase CK2 with 
Extraordinary Selectivity 
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Chapter 8 – Discussion and Conclusion  
 

8.1 Advances and Limitations in Addressing the α/β Interaction Area 
With Peptides and Small Molecules 

 

As described in Chapter 2, several derivatives of the Pc peptide were synthesized and tested for 

their binding affinity for CK2α using a fluorescence anisotropy-based assay [256]. The most 

suitable compound was then conjugated to sC18, a cell-penetrating peptide (CPP), and 

characterized in vitro and in cellulo. It could be demonstrated that the presence of the resulting 

chimeric peptide sC18-I-Pc limited the CK2 holoenzyme’s ability to catalyze the phosphorylation 

of class III substrates, which are defined by the fact that their phosphorylation requires catalysis 

by the intact heterotetrameric form of CK2. These results indicate that CK2β can indeed be 

outcompeted by compounds such as this chimeric peptide. In addition, using a 

5(6)-Carboxyfluorescein-labeled version of sC18-I-Pc, endosomal internalization was detected 

within 30 min in HeLa and HEK-293 cells. Interestingly, HeLa cells, which were selected as a 

model for malignant cells, showed significantly higher sensitivity towards sC18-I-Pc compared to 

HEK-293 cells. An IC50 value of 37 µM was extrapolated for HeLa cells, whereas HEK cells did 

not show any decrease in viability at the highest tested concentration of 50 µM. This is consistent 

with the fact that HeLa cells are known in the literature to be “addicted” to high CK2 levels in 

contrast to non-cancerous cells such as HEK-293 [257]. 

 

A comparison of the measured binding affinities of Pc derivatives with those of previously 

developed small molecules, such as compound 6 from Kufareva et al. [245] confirms the 

conclusion that peptides are much better suited to address large and predominantly flat 

protein-protein interfaces because their size allows for the utilization and coverage of a broad 

surface area and, in addition, their high flexibility facilitates their adaptation to the site [258]. This 

may suggest that peptides are ideal drug candidates, offering tremendous pharmacological 

opportunities in terms of targeting proteins, including CK2. However, the FDA statistics of the past 

decades convey a completely different picture. Between 1960 and 2020, only 90 peptide drugs 

were approved by the FDA, although the rate of approvals has risen steadily over time [259] [260] 

[261]. Between 2000 and 2020, 56 peptides were approved and in 2021 a historic record of 10 

approved peptide drugs was reported, representing a remarkable share of 20% with a total of 50 

FDA-approved compounds for that year. This historic trend raises the question of why the 
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emergence of peptide drugs has been so slow and what this implies for CK2β-competitive peptide 

compounds such as sC18-I-Pc. 

Peptides are associated with several inherent drawbacks, which is why they have long been 

considered very poorly suited for pharmacological applications. Whereas the search for promising 

CK2 inhibitors described above mainly focuses on the two aspects of affinity and selectivity, 

pharmaceutical compounds need to have several additional properties. A detailed characterization 

requires data regarding the compound’s administration, distribution in the various tissues, 

metabolization, excretion, and toxicological profile, which is also known as the compound’s ADME-

Tox properties [262].  

The first point already addresses a critical challenge that the development of peptide drugs faces. 

The oral bioavailability of peptides is usually very poor and the digestive system can easily 

degrade peptides because of their enzymatic instability towards proteases. However, even when 

peptides enter the body via intravenous administration and have been chemically modified to 

protect them from protease-mediated degradation, these compounds usually suffer from rapid 

plasma clearance. The short biological half-life is due to the fact that the glomeruli of the kidneys 

have a molecular cutoff of <2-25 kDa, reslting from their pore size of 8 nm, and peptide drugs thus 

face a rapid renal excretion [263]. Furthermore, the great flexibility of peptides may impair the 

binding process to certain targets compared to more rigid small molecules. Finally, it should be 

mentioned that peptides cannot cross certain boundaries in the body or can only do so very poorly. 

For example, their mostly hydrophilic character prevents them from crossing the blood-brain 

barrier and, with the exception of CPPs such as sC18, they normally cannot cross cell membranes. 

Especially with regard to the latter point, it must be emphasized that no membrane-permeable 

peptide compound has received FDA approval to date.  

While the list of drawbacks is relatively long, organic chemical synthesis has found solutions to 

each of these challenges. These include, to mention only a few, the incorporation of non-natural 

amino acids or termini modifications to hide the peptide from protease recognition, or the 

conjugation of long polymers or hydrophobic serum-albumin-binding anchors to avoid renal 

excretion [264]. Similarly, small tags, e.g. polyfluorinated alkanes [265], are now known facilitate 

cellular permeability without large, and thereby cost-intensive, CPP moieties, although some CPP-

conjugated peptides are also currently being investigated in clinical trials. Interestingly, such 

chimeric peptides mostly are constructs with the oldest known CPPs such as TAT [266], for 

example in CIGB-325, penetratin, or artificial polyarginine repeats. Matijass and Neundorf [267] 

speculated that the reason for using the older CPPs might be due to the fact that these peptides 
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are well studied and thus have been subjected to extensive pharmacological fine-tuning, 

especially in light of the fact that FDA-approved peptide compounds require, on average, a 12 

year preliminary lead time [268]. However, Matijass and Neundorf also noted that a larger 

repertoire of CPPs is used for clinically tested antitumor compounds than for other applications 

because some CPPs have inherent antitumor properties. In line with this point, some CPPs are 

repeatedly described in the literature as having a certain selectivity towards malignant cells [269]. 

In conclusion, the study presented in Chapter 2 showed that CK2β-competitive peptide inhibitors 

do have the potential to affect CK2 activity in cells and thus to affect addicted malignant cells. 

However, the findings indicate that there is still a long way to go to develop a CK2β mimicking 

peptidomimetic compound with a “true” drug character, which is why sC18-I-Pc was only 

presented as a tool for cellular studies. Numerous modifications would still need to be made to 

improve the ADME-Tox properties and the redox stability, as well as to increase the affinity of 

sC18-I-Pc and similar CK2β-competitive peptide compounds towards CK2. However, the growing 

number of peptide drugs and the ongoing clinical trials on CPP conjugates are grounds for 

optimism that increasing numbers of intracellular targets will soon be addressed with peptides.     

 
 

8.2 A Reliable Approach to Atomically Resolve CK2α’ Complex 
Structures With Diverse Inhibitors Offering Further Untapped 
Opportunities 
 

Despite the high sequence similarity of ~86% in the canonical EPK core, the two paralogs CK2α 

and CK2α’ show completely different crystallization behaviors. CK2α has a very pronounced 

crystallization tendency over a wide range of conditions, yielding a variety of useful crystal forms 

with a rather high diffraction power. Crystallization of CK2α’, on the other hand, has always been 

a challenging task [138]. Although crystals form under a variety of conditions, they usually occur 

as crystalline showers or extremely fragile needles, which do not withstand any external influences 

such as the slightest mechanical forces and are therefore essentially impossible to handle. Rarely 

occurring, thicker needles are hardly reproducible, as in the case of the ATP-competitive 

compound 4p in complex with CK2α’ (PDB 5OOI). When the data on 4p were published in 2017, 

only four structures of CK2α’ in the resolution range of 3.2 Å to 2.0 Å had been deposited in the 

PDB (see Figure 17). In comparison, information concerning more than 90 CK2α and CK2α based 

holoenzyme structures had been published at the same time. The development of a novel 
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crystallization protocol for CK2α’ was thus highly desirable to remedy this imbalance in the 

available structural information. More detailed insights provide the opportunity for a better 

understanding of the molecular behavior and functions of CK2α’ and may help to explain long-

known differences between paralogs in the future. 

 

 

Figure 17. Chronological overview of all CK2α’ structures deposited in the PDB by December 2022. The 

red bars represent all structures that were obtained using the novel crystallization protocol presented in 

Chapter 4. These structures are characterized by excellent resolutions of approximately 1.0 Å and thus 

provide significantly more details compared to previous structures. All entries marked in red as well as the 

structure “5OOI” were produced in the course of this thesis. All bars marked with (+) represent structures 

that have been uploaded to the PDB but have not yet been published elsewhere. From left to right, the entry 

codes are: (2009) – 3E3B; (2010) – 3OFM ; (2017) – 5M4U, 5M56, 5OOI; (2018) – 5Y9M, 5YF9, 5YWM; 

(2019) – 6HMB, 6HMC, 6HMD, 6HMQ, 6QY9; (2020) – 6L20, 6QY8, 6TE2, 6TEW, 6TGU; (2021) – 7A1B, 

7A1Z, 7A22; and (2022) – 7AT9, 7ATV. 

 

Recently, the inhibitor THN27, a derivative of 4p, was surprisingly found to have a certain paralog 

selectivity, with an approximately twofold inhibition of CK2α’ compared to CK2α (IC50 = 273 nM 

vs. 607 nM). This was unexpected insofar as the previously conducted crystallization studies with 

the cell-permeable inhibitor 4p in complex with CK2α under both high and low salt conditions and 
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in complex with CK2α’ showed a fully conserved binding mode (see Chapter 3). In addition, THN27 

and 4p both possess an indeno[1,2-b]indole scaffold as well as the two keto functions, which were 

found to be crucial for the orientation in the cosubstrate pocket by interacting with Lys68 of CK2α 

and Lys69 of CK2α’, respectively. Another aspect that contradicted the observed selectivity was 

the fact that the paralogs showed only two amino acid exchanges in the vicinity of the cosubstrate 

binding site, both located in the hinge region. This loop, however, is not involved in the binding 

process of 4p and there is no evidence from the molecular structure that this should be different 

for THN27. For a more detailed structural study of this phenomenon, the crystallization protocol 

described in Chapter 4 was developed in a time-consuming effort. The novel protocol has not only 

been immensely helpful for studying the slightly different binding mode of THN27 in both paralogs, 

but it has also triggered a wave of new CK2α’ PDB entries with an atomic resolution of 

approximately 1.0 Å since 2019. In addition, the novel crystal form offers some major advantages, 

which have not yet been fully exploited experimentally:  

(I) First, the CK2α’ crystals can be prepared in crystal libraries before the inhibitors of interest are 

added to the wells. This saves time and resources in contrast to classical co-crystallization 

approaches including the screening for suitable conditions.  

(II) Moreover, the crystals reliably provide atomically resolved structures, which are suitable for ab 

initio phasing.  

(III) The crystal size can easily be scaled up to edge lengths of approximately 1 mm, which 

facilitates the measurement of neutron diffraction data sets [270]. This may be important for 

resolving some specific questions involving the position of hydrogens. Just recently, the data 

concerning such a structure were published for CK2α by Shibazaki et al. and could thus serve as 

a comparator for CK2α’ neutron diffraction structures [271]. Shibazaki et al. postulate a proton 

network traversing the C-terminus of CK2α, which is believed to serve the removal of protons 

released during the phosphorylation reaction. This putative proton channel includes two water 

molecules that have not previously been seen in X-ray structures. However, the fact that these 

water molecules are also absent in all atomically resolved CK2α’ structures so far casts some 

doubt on the authors’ hypothesis.  

(IV) Another advantage of the new CK2α’ structures is that all binding sites are accessible to small 

molecules by inhibitor soaking. MB002, which is required for initial crystallization according to the 

novel protocol, can even be replaced by the presence of low-affinity inhibitors. This has already 

been demonstrated by the example of AR18, a weakly binding indeno[1,2-b]indole [272]. 
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Unfortunately, the CK2β binding site is blocked by a crystal contact. However, it was later found 

that a slightly different crystallization condition with lower LiCl concentrations, around 700 mM, 

allowed CK2β-competitive binding of small molecules as well, caused by a different crystal 

packing (unpublished data) (see Figure 18).  

 

Figure 18. (a) CK2α’ crystallizes at slightly lower LiCl concentrations of 700 mM in the space group P1 21 

1 instead of P1 at higher LiCl concentrations. In these crystals, CK2α’ is surrounded in the N-terminal region 

by four symmetry equivalents (shown as surface representations and in different colors for better 

differentiation). A solvent exposed channel between the proteins allows accessibility of the of the N-terminal 

α/β interface region of CK2α’ for small molecules. (b) Cross section though the structure shown under (a) 

for a better visualization of the channel leading to the α/β interface region.  

 

(V) In addition, ligand exchange or other adjustments in the mother droplet, such as desalting or 

an increase in the organic content of the solvent, can be carried out without a loss of the diffraction 

performance, since the crystals often tolerate even harsh changes in conditions without suffering 

any damage, even an opening of the αD-pocket in the crystalline state, as recently shown by the 

example of the bivalent inhibitor KN2 [273], could not damage the structural integrity of the crystals 

(see Chapter 7). 

 

As a further possible application, it should also be considered to introduce point mutations into the 

CK2α’ sequence to mimic the structural setting in the corresponding binding pockets of CK2α. The 

advantages of this valuable crystallographic tool could thus be applied to CK2α in future 
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experiments. Fortunately, there are only very few sequence differences in the ATP binding pocket, 

namely His115 and Val116 in CK2α versus Tyr116 and Ile117 in CK2α’. In addition, there is an 

important sequence difference in the αD pocket, namely Ile140 in CK2α and Leu141 in CK2α’, 

which is discussed in more detail in Subchapter 8.4. However, none of these differences are 

localized in the crystal contact regions. Therefore, it seems unlikely that the crystal packing will 

change as a consequence of the mutation. The expression of high-resolution CK2α-mimicking 

crystal structures should thus be tested in the near future as a promising approach to extend the 

advantages of the novel CK2α’ crystallization protocol to both paralogs. 

Another opportunity presented by the reliable crystallization combined with the potentially record-

breaking resolution is the performance of fragment-based lead discovery screenings (FBLD), an 

X-ray-based search for currently unknown ligands or binding sites. In recent years, this strategy 

has evolved into a powerful method for detecting small-molecule ligands due to rapid technological 

developments, such as faster detectors, more reliable processing pipelines, and more brilliant 

synchrotron beams [274] [275]. It should be emphasized that small lead compounds which are 

able to bind to certain exosites are rarely detected by classical binding assays. Moreover, such 

small, non-optimized compounds usually do not have a very high affinity. These fragments are 

therefore easily overlooked with their potential not being recognized. For this reason, FBLD 

screenings usually have a much higher hit rate, around 1-4%, which is superior by a factor of 10 

to 1 000 compared to conventional binding assays [276]. Such an approach is therefore 

auspicious for the discovery of completely new classes of compounds, exosites, or even unknown 

conformations of CK2α’ as already successfully demonstrated in the case of CK2α by Brear et al. 

with the discovery of the αD binding pocket [277]. Similarly, it would be possible to detect new 

hidden binding sites, so-called cryptic sites (see Subsection 8.5).  

Recently, the enormous potential of FBLD was repeatedly demonstrated in the search for new 

antiviral compounds targeting the SARS CoV 2 virus. For example, in their search for ligands for 

the viral NSP13 helicase, Newman et al. [278] found 65 novel fragments in 52 datasets from a 

total of 648 screened crystals. Douangamath et al. [279] even surpassed this number by setting 

up 1 742 soakings and 1 139 co-crystallizations in their search for ligands for the 3C main 

protease. As a result, the authors were able to publish 96 complex structures in the PDB, some 

of which provide promising starting points for the development of new antiviral drugs. A similar 

plentiful output might also be possible for CK2α’ by using the novel crystallization protocol 

discussed within the scope of this thesis.   
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8.3 The Potential of Bivalent Inhibitors to Overcome Selectivity 
Problems 

 

In principle, all combinations of CK2 binding pockets are possible for the development of bivalent 

inhibitors, whereby the respective pair should block at least one functionally important binding site. 

However, to date, only bisubstrate inhibitors and inhibitors such as KN2 that cover the ATP-site 

and αD-binding pocket have been realized [280] [252]. While a combination including the 

α/β-binding area is also conceivable, in this case, the development of an adequate linker could be 

a particular challenge. The linker would have to be very long, for example >30 Å to reach the 

cosubstrate binding site, which could negatively influence the binding energy of the compound. In 

the case of linking the α/β-binding area and the substrate binding site, the linker would have to be 

even longer. The advantage in this case would be that the degree of conservation of the ATP 

binding pocket would not negatively affect the selectivity of the bivalent inhibitor. Nevertheless, 

the bivalent inhibitor KN2 presented in Chapter 7 showed that very high levels of selectivity can 

be achieved even by simultaneously addressing the ATP-binding pocket as proved by the high 

Gini coefficient of KN2.   

The Gini coefficient has become widely accepted as a measure for quantifying and comparing the 

selectivity of different kinase inhibitors [281]. It is a statistical expression to describe the selectivity 

in a single number, by plotting the cumulative fraction of total inhibition against the cumulative 

fraction of tested EPKs (Figure 19a). This number can range from 0 to 1, whereby 0 corresponds 

to a perfect equidistributional line, i.e., a maximum of non-selectivity, and 1 corresponds to ideal 

selectivity, i.e., no kinase other than the target kinase is inhibited. This numeric range, which is 

especially easy to grasp, facilitates a certain comparability between the selectivity profiles of 

different compounds. However, it should also be noted that the Gini coefficient depends on 

multiple arbitrary parameters which again limits the level of comparability between different 

studies. The freely selectable parameters include the spectrum of kinases examined, and the ATP 

or inhibitor concentration. KN2 was tested against a panel of 83 kinases at an inhibitor 

concentration of 3 µM, resulting in a notably high Gini coefficient of 0.76 (Figure 19b). Remarkably, 

in previous studies, the corresponding isolated ATP-competitive binding moiety TBI only yielded 

a Gini coefficient of 0.31 with 70 EPKs being tested at an inhibitor concentration of 10 µM. Thus, 
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a significant increase in selectivity could be achieved by incorporating the αD-binding moiety. In a 

direct comparison, CAM4066 only demonstrates a marginally higher Gini coefficient of 0.82, 

although CAM4066 was tested against a considerably smaller panel of only 52 EPKs and a lower 

inhibitor concentration of 2 µM. According to Brear et al. [277], the affinity of the bivalent inhibitor 

should not be dominated by the ATP-competitive part, because otherwise, the selectivity problems 

of the ATP-binding pocket would again move into the foreground. However, the high selectivity of 

KN2 despite the rather affine ATP-competitive moiety reveals that the assumption formulated by 

Brear et al. is not universally valid. Finally, it should be noted that both bivalent inhibitors have a 

significantly better Gini coefficient compared to silmitasertib, which was long considered the gold 

standard in terms of selectivity. However, to achieve better comparability, ideally the entire kinome 

would need to be included in the study of each kinase inhibitor. 

 

Figure 19. (a) The Gini coefficient describes the selectivity of a kinase inhibitor based on experimentally 

determined inhibition data, based on a panel of several different kinases. The cumulative fraction of total 

inhibition is plotted against the cumulate fraction of the tested kinases. The resulting curve defines two areas 

under the perfect equidistributional line, from which the Gini coefficient can be calculated according to the 

given formula. (b) The Gini coefficients of different CK2 inhibitors are plotted against the size of the tested 

kinase panels. The figure indicates the different levels of selectivity of the inhibitors but also the differences 

in the experimental design of the studies. Inhibitors compared with each other are: KN2 [273], silmitasertib 

[199], CAM 4066 [277], TBB [199] [282] and TBI [199] [282]. 

 

In conclusion, KN2 can be considered as a provider of further evidence that bivalent inhibitors 

have the potential to finally overcome the selectivity problems of CK2 inhibitors. As a result, testing 

additional combinations of binding sites may be rewarding and should be pursued further. In this 
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regard, the compound class of 2-aminothiazoles that was described in 2019 by Bestgen et al. 

[254] [255] as being non ATP-competitive inhibitors initially looked promising since they seemed 

to broaden the spectrum of allosteric ligands available for the development of new bivalent 

inhibitors. However, crystallization efforts with both paralogs and the help of the new CK2α’ 

crystallization protocol disproved the binding site originally suspected by the authors. It appears 

as if their obtained data were misinterpreted by the authors, which was indicated by the crystal 

structures presented along with the supporting kinetic measurements in the course of this thesis 

(Chapter 6). Without exception, the co-crystal structures of all tested 2-aminothiazoles, including 

the best binding inhibitor, presented by Bestgen et al. [255], revealed by excellently defined 

electron density maps that these compounds are located in the cosubstrate binding pocket rather 

than an allosteric site. This result is unfortunate because the originally suspected binding site for 

2-aminothiazole would have been very close to the substrate and cosubstrate binding site. 

Otherwise, the design of bivalent or even trivalent inhibitors would have been apparent due to the 

proximity of the sites. Nevertheless, in this thesis, a promising novel finding concerning an 

additional binding site is presented. This putative new exosite is located in the N-terminal segment 

and could be combined with the substrate binding site to derive a novel bivalent inhibitor. Further 

details concerning these findings are presented in Subsection 8.5. 

 

 

8.4 Structural Basis for the Development of Paralog-Specific CK2 
Inhibitors 

 

Inhibitors able to discriminate between CK2α and CK2α’ would provide valuable tools to study the 

complex biological functions of the two paralogs independently and are thus highly desirable. On 

the one hand, such compounds could help to answer the question of the evolutionary conservation 

of the two paralogs in vertebrates as, for example, other species such as insects can thrive with 

CK2α only. Furthermore, it would be very interesting to study the pharmacological impact on 

different human cell lines, especially on malignant cells, which show a severe, acquired “addiction” 

to one or both paralogs. A potent and selective inhibition of the respective paralog might have a 

strong impact on the viability of these cells, whereas the unaffected paralog could nevertheless 

fulfill its functions in the cells and thus possibly exert a certain protective effect for benign cells. 

However, such an assumption is highly speculative at present and would need to be verified 
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experimentally with suitable compounds. Unfortunately, the cosubstrate pocket is not very 

favorable for the design of discriminatory inhibitors. First, there are only two sequence mismatches 

in this region, more specifically in the hinge loop; second, the corresponding amino acids normally 

only interact with ATP-competitive inhibitors via their main chain atoms. Moreover, the observed 

differences in inhibitory activity, as in the case of THN27, are usually rather small and arise from 

subtle changes in the binding mode, which, however, might be difficult to optimize (see Chapter 

4). Moreover, the example of THN27 shows how the presence of CK2β is able to nullify such 

discriminating properties.    

The α/β-interaction region does not appear to be more suitable as a starting point for the 

development of discriminatory inhibitors. So far, only minor differences of approximately one 

magnitude in the affinity of β-competitive compounds have been reported, such as derivatives of 

the CK2β mimicking peptide Pc [283]. This is consistent with the observed difference in binding 

affinity of the natural ligand, CK2β, which binds also 10-fold stronger to CK2α compared to CK2α’ 

[138]. Most importantly, the general problems associated with the development of 

CK2β-competitive inhibitors must be considered, such as the fact that mainly class III substrates 

would be affected by such compounds (see Subsection 1.3.3). Furthermore, in contrast to the ATP 

binding pocket, the Kd value of the α/β-interaction is in the low nanomolar range, which means 

that only extremely high-affinity compounds would qualify as CK2β-competitive moieties.    

Hopes for the synthesis of paralog-specific inhibitors may be pinned on the αD pocket, which 

exhibits a subtle yet consequential sequence difference, namely Ile140 in CK2α to Leu141 in 

CK2α’ located at helix αE. The side chain of Ile140 protrudes deeper into the αD pocket by the 

length of about one methyl group compared to CK2α’ (see Figure 20). The local constriction of the 

binding pocket forces the meta-chlorine of the αD binding ring of KN2 to perform a rotation of 

about 160° and thus to point away from Ile140. The same can be observed for similar compounds 

such as the lead molecule DPA, discovered by Brear et al. [277]. Interestingly, this alternative 

binding mode is only possible because Leu128 on the opposite side of the binding pocket moves 

aside and thereby exposes a small bulge, which roughly equals the volume loss caused by Leu140 

and is enough for the meta-chlorine to fit in.  
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Figure 20. The αD pocket is shown in a side view (a) and a cross-section (b). The structures shown are 

complexes of KN2 with CK2α (PDB 7AT5, shown in yellow) and with CK2α’ (PDB 7ATV, shown in blue). 

The inner outline of the αD-pocket, i.e., the freely accessible space for ligands is depicted as a fine mesh, 

with the encoded colors corresponding to the color scheme of the models, i.e., yellow regions are only 

accessible in the CK2α structure and blue regions only to CK2α’ k. The enlarged binding region in CK2α’ 

caused by the sequence difference, Ile140 to Leu141, is marked with a blue arrow. The bulge opening on 

the opposite side in CK2α, which serves as an alternative binding region for the meta-chlorine atom of KN2, 

is marked with a yellow arrow. To illustrate the positions of the chlorine atoms in the pockets, the Van der 

Waals radii of the meta-halogens are illustrated as gray spheres in (b). 

 

Thus, a unilateral expansion of the αD pocket binding moiety by replacing the meta-chlorine 

substituents with bigger groups in order to increase the paralog specificity would probably not be 

effective in terms of paralog selectivity. It would rather support the different orientations of the 

aromatic ring in the two paralogs but it might not lead to an increased paralog selectivity. In fact, 

both the meta and meta’-positions would have to carry larger substituents to preclude CK2α 

binding for steric reasons. However, as a factor of uncertainty, it must be considered that even 

more conformational states of the flexible helix αD might exist and an even more extensive 

“volume compensation” in the region around Leu128 could be induced. The current pocket volume 

of approximately 300 Å3 might thereby not be the end of the line. Another problem could result 

from the fact that a significantly enlarged αD moiety could generally lead to a hampered binding 

                                                           
k The representation of the inner contours of the binding pockets was calculated using the program 
MoloVol [284]. 
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process to the narrow pocket, which would need a considerably wider initial opening for the 

inhibitor to move in. 

In conclusion, the αD pocket currently offers the most promising possibility to generate paralog 

specific inhibitors by systematic derivatization in the meta and meta’ positions. Strictly speaking, 

however, high selectivity can only be expected for CK2α’ due to the larger αD pocket volume, 

which in turn would be of particular pharmacological interest for CK2α’-addicted cancer subtypes 

such as some lung, colorectal, and prostate cancers [175] [180]. 

 

 

8.5 A Novel Exosite Revealed by a CK2α’/ARC780 Co-crystal 

Structure 

 

To date, several bisubstrate inhibitors including many ARC compounds have been crystallized 

with CK2α and CK2α’ [252]. In the course of these experiments, various attempts have been made 

to modify the crystallization conditions to obtain a complex structure with the inhibitor fully covered 

with electron density. Unfortunately, the substrate-competitive parts of such types of inhibitors 

have so far not been sufficiently visualized [229] [243]. Similarly, other attempts to obtain 

protein/substrate or even ternary complexes with different substrates have also never been 

successful. Nevertheless, there is a growing list of examples of such complexes for other kinases 

in the PDB [285] [286] [287]. Due to the similar architecture of EPKs, these structures provide 

indications concerning the substrate binding mode of CK2, thereby allowing the putative location 

of substrate peptides at least to be modeled in silico. In addition, anions such as sulfates have 

repeatedly been observed in well-defined positions, indicating which amino acid residues interact 

with the acid functions of the substrate’s P+1 and P+3 positions [288]. This prediction is also 

consistent with the recently published structure of a CK2α1-335/heparin complex, in which the 

putative P+1 position was occupied by a very well-defined acid function of heparin [95].   

A recurring observation in crystallization experiments with bisubstrate inhibitors was that between 

the ATP-competitive part and the substrate-competitive moiety, small parts of the linkers were 

often visible and, in most cases, pointed toward the solvent channels, i.e., away from the enzyme. 

Thus, the interaction with the corresponding regions of CK2α or CK2α’ is probably not sufficiently 

strong under the prevailing conditions in the crystallization droplet. The failure to observe electron 
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density for the peptidic parts of bisubstrate inhibitors is not too surprising, assuming that the 

interactions between the basic amino acids of CK2α in the substrate binding region and the acidic 

residues of the substrate sequence are mostly of an ionic nature. The mother droplet is a highly 

saline mixture, and in the case of CK2α, it usually has a salt concentration of several hundred 

millimolar. The storage buffer of CK2α alone already contains 500 mM sodium chloride as well as 

25 mM Tris (pH 8.5) and to this, the salts of the precipitation solution must be added. It is likely 

that these high salt concentrations significantly disrupt the anticipated intermolecular interactions 

between the substrate and the enzyme, thereby resulting in the observed absence of electron 

density to date. It is also consistent that the published complex structure with heparin has required 

a reduction in the concentration of salts and their replacement with malonate [95]. 

However, a unique opportunity to obtain the desired complex structures in which the substrate 

binding site might be occupied emerged from the novel crystallization protocol for the CK2α’. Not 

only do these crystals scatter extremely well but they can also withstand external influences such 

as large amounts of organic solvents or osmotic pressures to a high degree, as mentioned in 

Chapter 4 and Subsection 8.2. For this reason, various ARC substances, including ARC780 

(Figure 21a), were soaked in CK2α’ crystals and then subjected to a desalting procedure over a 

period of eight months (Figure 21b). Here, the lithium chloride content of the reservoir solution 

was reduced in a stepwise manner from 900 mM to 50 mM and the original sodium chloride 

content of 500 mM, which was added via the storage buffer of the protein, was completely 

removed. 
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Figure 21. (a) ARC780 is a bisubstrate inhibitor that is composed of three parts. On one side, the inhibitor 

has an ATP-competitive head group (red) consisting of two aromatic rings and an acid function. On the 

other side, the inhibitor ends in a tripeptide (blue), which is composed of three aspartic acid units according 

to the substrate preference of CK2. Both parts are connected by a hydrophobic and rather flexible linker 

(yellow). Although two ARC780 ligands were found in the derived co-crystal structure, both of them were 

only partially coated with electron density. The visible regions are indicated in the figure. (b) The obtained 

structure is the result of an eight month desalting procedure. In the course of this process, the salt 

concentration was stepwise reduced whereas the concentration of PEG 6000 and DMSO was significantly 

increased. 

 

This extensive desalting procedure finally allowed the localization of the peptide part of ARC780 

(statistical data are presented in Table 3, Subsection 10.1). However, the structure obtained is 

surprising in two respects. First, not one, but two inhibitor molecules are bound to the enzyme 

(Figure 22a). As in previous crystallization experiments, one ligand binds to the cosubstrate 

binding pocket, where it is well-defined by electron density (Figure 22b). As expected from 

previous crystallization experiments, the planar rings of ARC780 fit very well into the narrow 
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cosubstrate binding pocket of CK2α’, in which they interact with the amino acids of the binding 

pocket via hydrophobic interactions. The orientation of the inhibitor is determined by a typical ionic 

interaction between the acid function of the benzoate and the sidechain of Lys69, comparable to 

silmitasertib or the 2-aminothiazoles described in Chapter 6 and many other examples. However, 

as is usual in the case of CK2α structures in complex with bisubstrate inhibitors, only the first few 

atoms of the linker close to the ATP-competitive moiety are covered with electron density, and this 

part is oriented toward the solvent rather than toward the substrate binding site.  

For the second bound ligand, exactly the opposite applies: the complete linker including the 

peptide part is visible, whereas the ATP-competitive part is not covered with electron density. An 

even more surprising finding was that the peptide moiety and the linker of the second inhibitor 

molecule are not located in the substrate binding area as expected, but rather they are in fact 

located in the region of the N-terminal segment in a groove that has not previously been described 

for CK2 in the literature (Figure 22c). To permit access to this newly discovered cryptic binding 

site, residues Gln187 and His184 had to tilt to the side, thereby extending the substrate binding 

cleft up to the N-terminal segment. The peptide part of ARC780 is excellently defined, even though 

it only forms a single hydrogen bond with Ser18. This can be explained by the presence of a 

crystal contact in the N-terminal region that allows the peptide part of the ARC780 molecule to 

interact with a symmetry equivalent of CK2α’. On one side, the acid function occupying the P+3 

site of the enzyme provides a strongly coordinated anchor; on the other side, a peptide nitrogen 

forms a hydrogen bond with Ser18. The connecting hydrocarbon chain is stabilized by 

hydrophobic interactions, e.g., by being sandwiched in between the aromatic residues Trp25 and 

His184. 

 

 

 



200 
 

 

Figure 22. CK2α’/ARC780 complex structure obtained after an eight-month desalting procedure. (a) Cross-

section through the enzyme with the N-terminus cleaved off. Two ARC780 ligands are bound to the enzyme, 

although both inhibitors are reduced to the defined parts that were covered with electron density. One 

molecule is bound in the cosubstrate binding pocket (circled in blue), and one molecule occupies a 

previously unknown exosite (circled in green). (b) Detailed view of the cosubstrate binding pocket. The 

ligand (molecule 1) binds as observed in previous experiments and forms a hydrogen network with Lys69, 

a coordinated water, and Glu82 (cutoff level 1.5 σ). Another hydrogen bond is found between the side chain 

of Asn119 and a peptide oxygen of the ligand. (c) Detailed view of the novel exosite with the second ARC780 

ligand bound (cutoff level 1.5 σ). Amino acids Gln187 and His184 are involved in the opening and closing 

of the binding pocket. The corresponding conformations are superimposed and labeled as “in” for the closed 

conformation (pink) and “out” for the opened conformation. The closed conformation was retrieved from the 

PDB code 6HMQ.   
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The novel exosite shown here was not previously described in the literature for CK2, and rarely 

for other kinases. However, in the case of Aurora A kinase, two ligands were recently found at a 

comparable location. In 2016, Rennie et al. [289] noticed a MES buffer molecule (2-(N-

morpholino)ethanesulfonic acid) from the crystallization solution at a similar site. Just one year 

later, McIntyre et al. [290] found a single hit out of a total of 59 hits from an X-ray-based fragment 

screening, although this ligand was approximately 8 Å apart from the ARC780 binding region. A 

direct comparison of the Aurora A and the CK2α’/ARC780 complex structure does not lead to any 

further conclusions, since the Aurora A kinase is structurally significantly different compared to 

CK2α’ in the region of the novel binding site and the N-terminal segment. 

The question arises why ARC780 fails to bind as expected, covering the substrate and cosubstrate 

binding sites. The reason might be the linear design of the ATP-competitive moiety of ARC780, 

which already forces the linker to point outward into the solvent. Therefore, it would make sense 

to rather bind the thiazole ring in the ortho or meta-position to the benzoic acid ring, so that the 

ATP-competitive part already features a fixed angle that guides the linker in the desired direction, 

towards the substrate binding site. It should be noted, however, that the inhibitor design was based 

on many assumptions and simplifications in the absence of a ternary structure, leading to 

uncertainties regarding the linker length or the structure and sequence of the substrate-

-competitive part.   

The low-salt complex structure of CK2α’ with ARC780 that was obtained can nevertheless be 

considered a serendipitous finding and the novel binding site may serve as a starting point for a 

new generation of monovalent or bivalent inhibitors covering the adjacent substrate binding site. 

In this context, ARC780 can serve as a lead structure, and it is advisable to extend the linker in 

the direction of the substrate binding site with further peptide units or similar artificial acidic 

monomer units, so that the P+1 position can also be exploited as an anchor site. The peptide part 

of ARC780 and the cosubstrate binding part can, however, be removed, as these will probably not 

contribute to binding in solution. The aligned residues Trp25 and His184, on the other hand, offer 

a unique opportunity to create an additional interaction by forming a so-called face-to-face or 

parallel-displaced multiple ring π-π stacking, which can be energetically favorable [291]. The 

incorporation of an aromatic ring into the hydrocarbon chain could significantly increase the affinity 

of a second-generation inhibitor. As an alternative, the attachment of a positively charged group 

would also be a conceivable interaction with the aromatic rings [292].   

Despite the fact that the original experimental objectives concerning ARC780 as a bisubstrate 

inhibitor were not achieved, valuable information was derived from the time-consuming 
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crystallographic experiment. It was demonstrated that a drastic lowering of the salt concentration 

led to a change in the binding behavior of the ligands. The novel binding site that was found could 

represent the starting point for the development of a completely new group of potent and 

potentially selective inhibitors. Furthermore, it is yet another example of the high value of the novel 

CK2α’ crystallization protocol for the structural study of CK2 in general. For decades, CK2α’ has 

largely remained overlooked, and had been crystallographically neglected. However, the efforts 

to crystallize CK2α’ in the context of this work have ultimately proven to be highly rewarding.
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10.1  Crystallographic Supplementary Tables 

 

Table 3. Statistics of the CK2α'/ARC780 complex structure after performing an eight-month desalting 

procedure. The corresponding values for the highest-resolution shells are written in parentheses. Since the 

structure is still unpublished, no PDB code is available yet. 

Crystallization 

Sitting drop composition before 
equilibration 

10 µl reservoir + 20 µl CK2αC336S/MB002 mixture (180 µl 6 mg/ml 
CK2αC336S, 500 mM NaCl, 25 mM Tris/HCl, pH 8.5, mixed and pre-
equilibrated with 20 µl 10 mM inhibitor in dimethyl sulfoxide) 

Vapor diffusion reservoir composition 28 % (w/v) PEG 6000, 900 mM LiCl, 100 mM Tris/HCl, pH 8.5 

Complex formation Extensive soaking with ARC780 

Desalting target Stepwise exchange of the reservoir solution to a final composition of 
saturated PEG 6000, 90 mM LiCl, 10 mM Tris/HCl, pH 8.5; subsequent 
washing of the crystals with reservoir solution mixed with ARC780 

X-ray Diffraction Data Collection 

Wavelength [Å] 0.9677 
Synchrotron (beamline) ESRF (ID30A-3) 
Space group P1 
Unit cell      a, b, c [Å]   |   α, β, γ [°] 46.232 47.511 50.6   |   66.598 89.596 88.127 
Resolution [Å] 32.65 -1.231 (1.275 - 1.231) 
R-merge 0.04334 (1.358) 
R-meas 0.05043 (1.587) 
R-pim 0.02568 (0.815) 
CC1/2 0.999 (0.435) 
Signal-to-noise ratio (I/σI) 13.94 (0.66) 
No. of unique reflections 86431 (625) 
Completeness [%] 71.60 (5.47) 
Multiplicity 3.8 (3.6) 
Wilson B-factor [Å2] 11.61 

Structure Refinement 

Reflections used in refinement 82006 (626) 
Reflections used for R-free 1542 (17) 
R-work 0.1256 (0.3942) 
R-free 0.1504 (0.3580) 
Number of non-hydrogen atoms 3192 

macromolecules 2806 
ligands 109 
solvent 277 

Protein residues 328 
RMS (bonds) 0.011 
RMS (angles) 1.09 
Ramachandran favored [%] 97.85 
Ramachandran allowed [%] 2.15 
Ramachandran outliers [%] 0.00 
Rotamer outliers [%] 0.00 
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Clashscore 3.13 
Average B-factor 17.34 

macromolecules 15.69 
ligands 22.44 
solvent 32.06 
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