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Abstract

This thesis consists of two parts:
Part I deals with properties of stabilizer states and their convex

hull, the stabilizer polytope. Stabilizer states, Pauli measurements
and Clifford unitaries are the three building blocks of the stabilizer
formalism whose computational power is limited by the Gottesman-
Knill theorem. This model is usually enriched by a magic state to get
a universal model for quantum computation, referred to as quantum
computation with magic states (QCM). The first part of this thesis
will investigate the role of stabilizer states within QCM from three
different angles.

The first considered quantity is the stabilizer extent, which provides
a tool to measure the non-stabilizerness or magic of a quantum state.
It assigns a quantity to each state roughly measuring how many stabi-
lizer states are required to approximate the state. It has been shown
that the extent is multiplicative under taking tensor products when
the considered state is a product state whose components are com-
posed of maximally three qubits. In Chapter 2, we will prove that
this property does not hold in general, more precisely, that the sta-
bilizer extent is strictly submultiplicative. We obtain this result as
a consequence of rather general properties of stabilizer states. Infor-
mally our result implies that one should not expect a dictionary to be
multiplicative under taking tensor products whenever the dictionary
size grows subexponentially in the dimension.

In Chapter 3, we consider QCM from a resource theoretic perspec-
tive. The resource theory of magic is based on two types of quantum
channels, completely stabilizer preserving maps and stabilizer opera-
tions. Both classes have the property that they cannot generate addi-
tional magic resources. We will show that these two classes of quantum
channels do not coincide, specifically, that stabilizer operations are a
strict subset of the set of completely stabilizer preserving channels.
This might have the consequence that certain tasks which are usually



realized by stabilizer operations could in principle be performed better
by completely stabilizer preserving maps.

In Chapter 4, the last one of Part I, we consider QCM via the polar
dual stabilizer polytope (also called the Λ-polytope). This polytope
is a superset of the quantum state space and every quantum state
can be written as a convex combination of its vertices. A way to
classically simulate quantum computing with magic states is based on
simulating Pauli measurements and Clifford unitaries on the vertices
of the Λ-polytope. The complexity of classical simulation with respect
to the polytope Λ is determined by classically simulating the updates
of vertices under Clifford unitaries and Pauli measurements. However,
a complete description of this polytope as a convex hull of its vertices is
only known in low dimensions (for up to two qubits or one qudit when
odd dimensional systems are considered). We make progress on this
question by characterizing a certain class of operators that live on the
boundary of the Λ-polytope when the underlying dimension is an odd
prime. This class encompasses for instance Wigner operators, which
have been shown to be vertices of Λ. We conjecture that this class
contains even more vertices of Λ. Eventually, we will shortly sketch
why applying Clifford unitaries and Pauli measurements to this class
of operators can be efficiently classically simulated.

Part II of this thesis deals with lattices. Lattices are discrete sub-
groups of the Euclidean space. They occur in various different areas of
mathematics, physics and computer science. We will investigate two
types of optimization problems related to lattices.

In Chapter 6 we are concerned with optimization within the space of
lattices. That is, we want to compare the Gaussian potential energy
of different lattices. To make the energy of lattices comparable we
focus on lattices with point density one. In particular, we focus on
even unimodular lattices and show that, up to dimension 24, they are
all critical for the Gaussian potential energy. Furthermore, we find
that all n-dimensional even unimodular lattices with n ≤ 24 are local
minima or saddle points. In contrast in dimension 32, there are even
unimodular lattices which are local maxima and others which are not



even critical.
In Chapter 7 we consider flat tori Rn/L, where L is an n-dimensional

lattice. A flat torus comes with a metric and our goal is to approx-
imate this metric with a Hilbert space metric. To achieve this, we
derive an infinite-dimensional semidefinite optimization program that
computes the least distortion embedding of the metric space Rn/L into
a Hilbert space. This program allows us to make several interesting
statements about the nature of least distortion embeddings of flat tori.
In particular, we give a simple proof for a lower bound which gives
a constant factor improvement over the previously best lower bound
on the minimal distortion of an embedding of an n-dimensional flat
torus. Furthermore, we show that there is always an optimal em-
bedding into a finite-dimensional Hilbert space. Finally, we construct
optimal least distortion embeddings for the standard torus Rn/Zn and
all 2-dimensional flat tori.
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Part I

The Stabilizer World
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Chapter 1

Introduction - Stabilizer states
and measures of magic

The stabilizer formalism is a widely-used theoretical framework in
quantum computation. It constitutes one of the cornerstones to build
fault-tolerant quantum computers. The three main objects of the sta-
bilizer formalism are stabilizer states, Clifford unitaries and Pauli mea-
surements. However, quantum systems that are only built upon these
three primitives, also called stabilizer circuits, can be simulated on a
classical computer in polynomial time in the number of qubits – this
is the content of the famous Gottesman-Knill theorem [Got99, SA04].

To promote this model to a universal model for a quantum com-
puter, one requires an extra non-classical resource, commonly called
magic. Usually, magic stems from a so called “magic state” which is
“injected” into the stabilizer circuit [BK05]. A necessary condition
for a state to possess magic is that it is not contained in the con-
vex hull of stabilizer states, the stabilizer polytope. When a stabilizer
circuit is enriched by a magic state, we call this quantum computing
with magic states (QCM), which is a universal model for quantum
computation [BK05].

In recent years, a lot of research has been devoted to understand
the nature of magic in quantum states. A particularly prominent way
to measure magic is by means of classical simulation cost. Here, some
quantity, often called the magic monotone, is assigned to the magic
input state |ψ 〉. The magic monotone governs the cost of classically
simulating QCM with input state |ψ 〉.

2
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Classical simulation methods can be roughly divided into two classes:
quasiprobability methods [ME12, VFGE12, VMGE14, PWB15, BVDB+17,
HC17a, FRB18, RBVT+20, HG19, PRSKB22] and stabilizer rank meth-
ods [BSS16, SC19, SRP+21, BG16, QPG21, PSV22, BGL22, Koc20].
In this thesis, we will not study classical simulation methods for QCM
but we will rather take a closer look at some of the quantities and
objects that these ideas are based on.

Chapter 2: Stabilizer rank and the stabilizer extent

A particular fruitful way to design classical simulation algorithms for
QCM is based on the stabilizer rank [BSS16, BG16]. Let STABn be
the set of n-qubit stabilizer states. Given an n-qubit state |ψ 〉, the
stabilizer rank is given by

χ(ψ) = min
R : |ψ 〉 =

R∑
i=1

ci |si 〉 , ci ∈ C, |si 〉 ∈ STABn

 .
If a classical simulation algorithm for QCM with input state |ψ 〉 relies
on a decomposition of the above from, then its runtime is typically
governed by χ(ψ).

As an `0-minimization problem, explicitly computing the stabilizer
rank is NP-hard, see [FR13, Section 2.3], even for particular classes
of states. Non-trivial1 exponential upper bounds [BSS16, QPG21,
Koc20] and linear lower bounds [PSV22, Lab22, LS22] have been con-
structed for the stabilizer rank of the most promising candidates for
magic states. Currently, it is an open problem to close this huge gap.
In general, it is widely believed that magic states have an exponential
stabilizer rank. The reason behind this is that QCM with n qubits
can be classically simulated in χ(H⊗n)2n4 [SA04],[BSS16, p. 3], where
|H 〉 = cos(π/8) |0〉+ sin(π/8) |1〉 is a particular magic state. Now, if
χ(H⊗n)2 was polynomial in n, there would be a (randomized) polyno-
mial time classical algorithm for QCM. In complexity theoretic terms
this would imply BPP = BQP, which is not believed to be true.

1This means that the bounds are better than the trivial upper bound of 2n.
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A numerically more approachable quantity is the stabilizer extent [BBC+19],
which is the `1-relaxation of the stabilizer extent: For some n-qubit
state |ψ 〉, it is given by

ξ(ψ) = min

( ∑
s∈STABn

|cs|
)2

: |ψ 〉 =
∑

s∈STABn
cs |s〉 , cs ∈ C

 .
In contrast to the stabilizer rank, computing the extent can be ex-
pressed as a second order cone problem and is solvable in polynomial
time in the input size [AG03]. However, as the input size is still ex-
ponential in the number of qubits, numerically computing the extent
is only possible for a few qubits.

Instead of computing χ or ξ explicitly, oftentimes it suffices to com-
pute a “good” stabilizer decomposition of the input state |ψ 〉, which
gives an upper bound for χ or ξ. In fact, any decomposition of |ψ 〉
as a linear combination of stabilizer states can be fed into a classical
simulation algorithm for QCM which is based on the stabilizer rank
or extent. To compute upper bounds one typically exploits that both
quantities are sub-multiplicative under taking tensor products, that is

χ(ψ ⊗ φ) ≤ χ(ψ)χ(φ) and ξ(ψ ⊗ φ) ≤ ξ(ψ)ξ(φ)

for any two states ψ and φ. Surprisingly, if ψ and φ are just com-
posed of up to three qubits, then the above inequality is tight for the
extent [BBC+19], i.e. ξ(ψ ⊗ φ) = ξ(ψ)ξ(φ). Consequently, computing
the extent for product states |ψ1 〉 ⊗ · · · ⊗ |ψm 〉, where each compo-
nent is composed of maximally three qubits, boils down to solving m
second order cone problems with small input size.

It was an open question whether this property holds in full gener-
ality, i.e. for product states where each component has an arbitrary
number of qubits. In Chapter 2 we will provide a negative answer to
this question. More precisely, we show that if n is sufficiently large
and |ψ 〉 is an n-qubit Haar-randomly chosen state, then with high
probability

ξ(ψ ⊗ ψ∗) < ξ(ψ)ξ(ψ∗).
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To prove the result, we make use of the dual formulation of `1-
minimization problems with complex coefficients. Therefore, let D ⊂
Cd be some dictionary and define the extent with respect to D by

ξD(x) = min

∑
s∈D
|cs|

2

: c ∈ C|D|, x =
∑
s∈D

css

 .
Writing this as a second order cone problem and then dualizing gives
the following dual formulation:

ξD(x) = max |〈x, y〉|2

s.t. y ∈ Cd,

maxs∈D |〈y, s〉|2 ≤ 1.
(1.1)

Using the primal and the dual formulation, one can show that ξD⊗D(x⊗
x′) = ξD(x)ξD(x′) for all x, x′ ∈ Cd, where D⊗D refers to the product
dictionary D ⊗ D = {s ⊗ s′ : s, s′ ∈ D}. The optimal dual solution
of (1.1) for ξD⊗D(x⊗ x′) is generically unique and of the form y ⊗ y′.
Now, to prove that

ξD̃(x⊗ x′) < ξD⊗D(x⊗ x′)

for some dictionary D̃ which strictly contains D⊗D, it suffices to show
that there is s̃ ∈ D̃\ (D⊗D) such that |〈s̃, y⊗y′〉|2 > 1, implying that
y ⊗ y′ is infeasible for the dual formulation of ξD̃. In the case case of
stabilizer states, one can show that generically

ξSTAB2n(ψ ⊗ ψ∗) ≤ ξ(STABn⊗STABn)∪{Φ}(ψ ⊗ ψ∗) < ξSTABn⊗STABn(ψ ⊗ ψ∗)

for a Haar-random state ψ and Φ ∈ STAB2n being the maximally
entangled state.

In summary, computing the stabilizer extent of general product
states remains a hard problem. For the same reason, if |ψ1 〉⊗· · ·⊗|ψm 〉
is a general product state, then a stabilizer decomposition that is ob-
tained by optimally decomposing the components |ψi 〉 into stabilizer
states with respect to the `1-norm, is in general not the best input for
stabilizer extent based classical simulation methods of QCM.

Our proof shows that the strict sub-multiplicativity of the extent
follows from rather general properties of stabilizer states. Among
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those, the most important property is that the number of stabilizer
states grows subexponentially in the underlying dimension (in fact
quadratically, as there are O(N 2) stabilizer states in dimension N =
2n) [Gro06, Corollary 21]. Hence, the result can be seen as an indica-
tor that minimizing the `1-norm with respect to general dictionaries
is not multiplicative under taking tensor products – provided that the
size of the dictionary grows subexponentially in the dimension.

Chapter 3: The resource theory of magic

Another way to understand the phenomena that make QCM non-
classical comes from a more abstract point of view – the perspective
of quantum resource theories (for a survey about this topic see [CG19]).

In quantum resource theories, the set of quantum states is usually
partitioned into free states and resource states. Vaguely speaking,
the latter is supposed to represent the quantumness of the considered
model.

For our setting in QCM, we choose the set of free states to be the
stabilizer polytope. The exact form of this partition is a matter of
discussion – we could also choose the set of free states to be those
that live in the convex hull of cnc-operators as defined in [RBVT+20]
(cnc refers to closed under inference and non-contextual), or, in the
case of odd prime dimensional systems, those that have a non-negative
Wigner function [Gro06]. Intuitively, the requirement is that the set
of free states is somewhat considered as classical within the resource
theory of interest.

A resource theory comes with a set of free operations. These are
operations on the set of quantum states which preserve the set of
free states and which are resource non-generating. This means that
any quantity that assigns some value to the amount of resource of a
quantum state (for example the stabilizer rank or extent) is supposed
to be non-increasing under applying free operations.

Usually, there are two ways to define free operations. The first one
is operational. This means that there is an explicit set of fundamental
free operations that can be composed in some way to obtain more
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free operations – these can be seen as the generators of the set of free
operations.

The second one is axiomatically. In this case, we simply define the
set of free operations to be the ones that preserve the set of free states.

In QCM and the operational setup, free operations are stabilizer
operations (SO). Here the fundamental free operations are preparing
stabilizer states, applying Clifford unitaries and doing Pauli measure-
ments. To build a general stabilizer operation, we are allowed to apply
the three operations in any order and as often as we want, and we are
allowed to apply them according to a probability distribution of our
choice.

In contrast, from an axiomatic point of view, free operations are
precisely those that preserve the stabilizer polytope, referred to as
completely stabilizer preserving maps [SC19] (CSP).

One can easily verify that every stabilizer operation is also com-
pletely stabilizer preserving, i.e. SO ⊆ CSP. However, it was an open
question whether this inclusion is strict or whether both definitions
lead to the same class of operations.

This question has a famous counterpart in entanglement theory.
In this setup, the set of free states is the set of separable states and
resource states are entangled states. Operationally free refers to local
operations and classical communication (LOCC), whereas, from an
axiomatic point of view, quantum channels that preserve the set of
separable states constitute the set of free operations. It was proven
that LOCC is a strict subset of the set of separable maps [BDF+99,
CLM+14].

In Chapter 3, we will show that this inclusion is also strict for the
resource theory of magic, that is SO ( CSP. We achieve this by ex-
plicitly constructing a quantum channel which is completely stabilizer
preserving but not a stabilizer operation. This quantum channel maps
n qudits to n qudits where n ≥ 2 and the underlying qudit dimen-
sion can be 2 or an odd prime. Furthermore, we show that stabilizer
operations and completely stabilizer preserving maps coincide in the
regime of channels that map one qudit to one qudit.

Our arguments are roughly built upon the following ideas. Via the
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Choi-Jamiołkowski-isomorphism it is not hard to see that the set of
CSP-maps sending n qudits to n qudits, CSPn, is a polytope [SC19].
Using this characterization, one can show that every CSP-map can be
written as [Hei21]

E(ρ) =
r∑
i=1

λi
dn

rankPi
UiPiρPiU

†
i . (1.2)

Here, d is the underlying qudit dimension, the Pi’s are stabilizer code
projectors onto stabilizer codes, the Ui’s are Clifford unitaries and
the λi form a probability distribution. Since CSP-maps are quantum
channels and thus trace preserving we have the extra condition:

1 = E†(1) =
r∑
i=1

λi
dn

rankPi
Pi. (1.3)

The set SO has a more intricate structure and we do not know
whether it is a polytope (however, this seems very plausible, as will be
explained in the sequel). Analogously to (1.2), there is also a normal
form for the set of SO-maps, sending n to n qudits, SOn:

E(ρ) = Trn+1,...,n+r
∑
i

Ui (PiρPi ⊗ |0r〉〈0r|)U †i , (1.4)

where {Pi} is a projective measurement given by mutually orthogonal
stabilizer code projectors which sum up to the identity, and the Ui’s are
Clifford unitaries acting on n + r qudits. Every stabilizer operation
can be written as a convex combination of operations of the above
form.

Comparing these two normal forms, the crucial difference is that
the Pi’s in (1.4) need to be orthogonal projectors whereas in (1.2),
they only need to satisfy (1.3) (this is also satisfied for SO because
the Pi’s sum up to the identity). This gives rise to our strategy to build
a channel that is CSP but not SO: simply construct an (extremal2)
CSP-channel of the form (1.2) where the corresponding projectors are
not mutually orthogonal.

In principle, the number of ancilla qubits r in (1.4) need not to be
bounded. However, if it was possible to bound the number of required

2This means that the channel is a vertex of the polytope of CSP-channels.
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ancialla qubits, this would show that SOn is a polytope. To see this,
it suffices to note that there is only a finite number of channels of the
form (1.4) for fixed n and r.

Comparing this to the resource theory of entanglement, we observe
differences in the geometry of the underlying sets. The set of quantum
channels that preserve the set of separable states is not a polytope and
set of LOCC operations is not even closed [CLM+14]. Arguably, the
resource theory of magic can be seen a discrete counterpart of the
resource theory of entanglement.

Chapter 4: Quasiprobability methods and the Λ-polytope

For classical simulation of QCM based on quasiprobability methods,
the magic input (and possibly mixed) state ρ is typically expressed
as an R-linear combination of some generating set K ⊂ Herm1(dn),
where Herm1(dn) is the set of dn×dn Hermitian matrices of trace one:

ρ =
∑
M∈K

cMM, cM ∈ R.

For example the set K could be the set of stabilizer states or, in odd
dimensional systems, the set of Wigner operators. Using Monte-Carlo
sampling techniques, one can design classical simulation algorithms
for QCM whose complexity is determined by one of the two relevant
quantities:

1. The `1-norm of the expansion coefficients [VFGE12, PWB15, HC17b],
which intuitively measures how much {cM}M∈K deviates from a
probability measure. Due to, Tr(M) = 1 for all M ∈ K, it is
determined by∑

M∈K
|cM | =

∑
cM>0

cM −
∑
cM<0

cM = 1 + 2
∑
cM<0
|cM |.

2. The complexity of classically simulating the updates of elements
M ∈ K under Pauli measurements and Clifford unitaries [Zur20].

If K is the set of stabilizer state projectors [HC17a, HG19] or the set
of cnc-operators classified in [RBVT+20], or the set of phase point
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operators that define the Wigner function [VFGE12, VMGE14] (for
odd-dimensional systems), then simulation tasks that fall under 2.
(classically simulating Pauli measurements and Clifford unitaries) can
be efficiently realized 3. In these cases, the runtime of a classical
simulation algorithm for QCM is governed by the amount of negativity
in the coefficients ∑cm<0 |cM |. The corresponding classical simulation
methods belong to the class of quasiprobability methods.

In contrast, one may also choose the set K to be the set of ver-
tices of the polar dual stabilizer polytope 4 (also referred to as the
Λ-polytope) [Hei19, ZOR20]. Let STABn be the set of n-qudit sta-
bilizer states, viewed as rank-1 density matrices. Then Λ-polytope is
given by

Λn = {X ∈ Herm1(dn) : Tr(SX) ≥ 0 for all S ∈ STABn}.

This set is indeed a polytope and every quantum state can be written
as a convex combination of the vertices of Λn:

ρ =
∑

M∈Vert(Λn)
cMM with cM ≥ 0,

∑
M∈Vert(Λn)

cM = 1.

Moreover, Pauli measurements and Clifford unitaries preserve the Λ-
polytope, in the sense that if an operator is contained in the Λ-
polytope, then also its image after applying Pauli measurements or
Clifford unitaries (in particular, this holds for the vertices of Λ).

This allows us to classically simulate QCM in the following way:
Sample an operatorM according to the probability distribution {cM},
then compute the evolution of M under Clifford unitaries and Pauli
measurements. The runtime of this algorithm is determined by clas-
sically performing the two tasks: Sampling from {cM} and comput-
ing the updates of elements in K under Clifford unitaries and Pauli
measurements. Unfortunately, this approach bears a major draw-
back – a complete list of vertices of Λ is only known for a very few
cases [Hei19, CGG+06, Rei05, OZR21] and it seems to be an extremely
hard task to classify all of them.

3This means in polynomial time in the number qubits/qudits.
4In fact, we extend the standard notion of polar dual polytope to “polar dual polytope contained in an

affine subspace”; see [ZORH21, Appendix C] for an explanation.
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In Chapter 4, we nevertheless try to make some progress on this
question. We consider odd-prime dimensional systems and focus on a
class of operators in Λn among which some have already been shown
to be vertices. These operators have the property that when they are
expanded in the generalized Pauli basis, then their expansion coeffi-
cients are roots of unity. This means we want to characterize Aη

Ω ∈ Λn

with

Aη
Ω = 1

dn
∑
u∈Ω

ωη(u)T (u), Ω ⊂ F2n
d , η : Ω→ R, (1.5)

where ω = e2πi/d and T (u) are the elements of the generalized Pauli
basis, labeled by points u ∈ F2n

d . This class of operators encompasses
stabilizer states (Ω is a Lagrangian subspace and η : Ω → Fd linear)
and Wigner operators (Ω = Fnd and η : Ω → Fd is linear). The latter
have been shown to be vertices of Λn for any odd dimension [VFGE12,
ZORH21].

Our main result will be that operators Aη
Ω ∈ Λn of the above form

exhibit a very special structure. That is,

(i) Ω is a subspace and η is a linear function η : Ω→ F2n
d , or

(ii) Ω is of the form

Ω = 〈I, h1〉 ∪ 〈I, h2〉 ∪ · · · ∪ 〈I, h`〉, (1.6)

where [hi, hj] 6= 0 for all i 6= j and I is an isotropic subspace with
hi ∈ I⊥ for i = 1, . . . , `. where [hi, hj] 6= 0 for all i 6= j and I is an
isotropic subspace with hi ∈ I⊥ for i = 1, . . . , `. In addition, the
restriction η|〈hi,I〉 of η to the isotropic subspace 〈hi, I〉 is linear for
all i = 1, . . . , `.

We conjecture that Aη
Ω ∈ Λn with Ω as in (1.6) gives a vertex of Λn

whenever

(a) Ω is inclusion maximal among all sets of the form (1.6), i.e. there
is no Ω′ of the form (1.6) that strictly contains Ω,

(b) η : Ω→ Fd cannot be extended to a linear function on F2n
d .
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This conjecture is supported for two qudits with d = 3 by numerical
computations [Zur21], and the fact that such a statement has been
established for the qubit analogue of these operators [Hei19, OZR21]
(see Section 4.3.1 for details).

All operators Aη
Ω of the form (1.5) contained in Λn should be con-

sidered as classical objects within Λn. This is due to the fact that each
such Aη

Ω has an efficient classical description using generators of Ω. If
Ω is a subspace, then Aη

Ω is fully described by a basis a1, . . . , ak of Ω
and the images η(a1), . . . , η(an). For Ω being of the form (1.6) we can
fully characterize Aη

Ω by h1, . . . , h`, a basis a1, . . . , ak of the isotropic
subspace I and the images η(hi), η(aj). As we show (Lemma 4.3.5) the
maximal number of non-orthogonal elements is dn+ 1, so again there
is a classical linear description of Aη

Ω. Based on this observation, we
will sketch how to update the operators Aη

Ω under Clifford unitaries
and Pauli measurements efficiently classically.

The intriguing question remains open: Can we identify vertices
of Λn or other boundary points in Λ that do not admit an efficient
classical description?



Chapter 2

Stabilizer extent is not
multiplicative

Stabilizer extent is not multiplicative

About this section

The following text has been previously published as:
Arne Heimendahl, Felipe Montealegre-Mora, Frank Vallentin and
David Gross. “Stabilizer extent is not multiplicative”. In: Quan-
tum 5, 400, 2021, https://doi.org/10.22331/q-2021-02-24-400

Changes from the journal version are limited to typesetting and
notation. These changes were performed to match the rest of this
dissertation.

Arne Heimendahl is the main contributor to this work. In par-
ticular, he developed the proofs and contributed to the presentation.
David Gross sketched the overall proof idea.

Abstract

The Gottesman-Knill theorem states that a Clifford circuit acting on
stabilizer states can be simulated efficiently on a classical computer.
Recently, this result has been generalized to cover inputs that are close
to a coherent superposition of polynomially many stabilizer states.
The runtime of the classical simulation is governed by the stabilizer
extent, which roughly measures how many stabilizer states are needed
to approximate the state. An important open problem is to decide

13
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whether the extent is multiplicative under tensor products. An affir-
mative answer would yield an efficient algorithm for computing the
extent of product inputs, while a negative result implies the existence
of more efficient classical algorithms for simulating large-scale quan-
tum circuits. Here, we answer this question in the negative. Our result
follows from very general properties of the set of stabilizer states, such
as having a size that scales subexponentially in the dimension, and can
thus be readily adapted to similar constructions for other resource the-
ories.

2.1 Introduction and Summary of results

In the model of quantum computation with magic states [BK05], stabi-
lizer circuits, whose computational power is limited by the Gottesmann-
Knill theorem [Got99, SA04], are promoted to universality by imple-
menting non-Clifford gates via the injection of magic states. There
has been a long line of research with the goal of designing classical
algorithms to simulate such circuits.

Quasiprobability-based methods [PWB15, BVDB+17, HC17a, FRB18,
RBVT+20, HG19] work on the level of density operators. The starting
point is the observation that the (qudit) Wigner function [Gro06] of
stabilizer states is given by a probability distribution on phase space
and thus gives rise to a classical model. Similar to the quantum Monte-
Carlo method of many-body physics, one can then devise randomized
simulation algorithms whose runtime scales with an appropriate “mea-
sure of negativity” of more general input states.

Stabilizer rank methods [BSS16, SC19, BG16], on the other hand,
work with vectors in Hilbert space. The idea is to expand general input
vectors as a coherent superposition of stabilizer states. The smallest
number of stabilizer states required to express a given vector in this
way is its stabilizer rank. Bravyi, Smith, and Smolin [BSS16] proposed
a fast simulation algorithm. Its time complexity scales with the sta-
bilizer rank rather than the – often much higher – dimension of the
Hilbert space. Bravyi and Gosset [BG16] generalized this procedure
to cover approximate stabilizer decompositions.



15 2.1. Introduction and Summary of results

No efficient methods are known for computing the stabilizer rank
analytically or numerically. To address this issue, Bravyi et al. [BBC+19]
introduced a computationally better-behaved convex relaxation: the
stabilizer extent (see Definition 2.1.1). The central sparsification lemma
of [BBC+19] states that a stabilizer decomposition with small extent
can be transformed into a sparse decomposition that is close to the
original state. In this way, the stabilizer extent defines an operational
measure for the degree of “non-stabilizerness”. We work in a slightly
more general setting than [BBC+19], where the role of the stabilizer
states is replaced by a finite set D ⊂ Cd which spans Cd, referred to
as a dictionary.
Definition 2.1.1 ([BBC+19]). Let D ⊂ Cd be a finite set of vectors
spanning Cd. For an element x ∈ Cd, the extent of x with respect to
D is defined as

ξD(x) = min
||c||21 : c ∈ C|D|, x =

∑
s∈D

css

 ,
where ||c||1 = ∑

s∈D |cs|. If d = 2n and D = STABn is the set of stabi-
lizer states, then ξD(x) is the stabilizer extent of x, and the notation
is shortened to ξ(x).

As is widely known, `1-minimizations such as ξD can be formu-
lated as convex optimization problems (see for example [BV04]). In
the complex case this is a second order cone problem [AG03], whose
complexity scales polynomially in max(d, |D|). In particular, the com-
plexity of determining the stabilizer extent of an arbitrary vector, ξ(x),
scales exponentially in the number of qubits. Thus, the question arises
whether it is possible to simplify the computation of ξD for certain in-
puts, e.g. product states of the form ψ = ⊗jψj.

Since the set of stabilizer states is closed under taking tensor prod-
ucts, one can easily see that the stabilizer extent is submultiplicative,
that is ξ(⊗jψj) ≤

∏
j ξ(ψj) for any input state ⊗jψj. Bravyi et al.

proved that it is actually multiplicative if the factors are composed of
1-, 2- or 3-qubit states.

Our main result is that stabilizer extent is not multiplicative in
general. In fact, our result does not depend on the detailed structure
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of stabilizer states, but holds for fairly general families of dictionar-
ies. The properties used — prime among them that the size of the
dictionaries scales subexponentially with the Hilbert space dimension
— are listed as Properties (i) to (v) in the following theorem.

Theorem 2.1.2. Let (Dn) be a sequence of dictionaries with Dn ⊂
(Cd0)⊗n and D1 ⊂ Cd0 for some fixed integer d0. Assume that (Dn)
satisfies the following properties:

(i) Normalization: 〈s, s〉 = 1 for all s ∈ Dn.

(ii) Subexponential size:

logd0 |Dn| ≤ o
(√
dn0

)
.

(iii) Closed under complex conjugation: if s ∈ Dn, then s∗ ∈ Dn.

(iv) Closed under taking tensor products:

Dn1 ⊗Dn2 := {s1 ⊗ s2 : s1 ∈ Dn1, s2 ∈ Dn2} ⊂ Dn1+n2.

(v) Contains the maximally entangled state: For every n, the maxi-
mally entangled state

Φ = 1√
dn0

∑
k∈Znd0

ek ⊗ ek ∈ D2n

is contained in the dictionary D2n. Here, {ek} is the standard
(“computational”) basis of (Cd0)⊗n.

Let ψ ∈ (Cd0)⊗n be a unit vector. Then

Pr[ξD2n(ψ ⊗ ψ∗) < ξDn(ψ)ξDn(ψ∗)] ≥ 1− o(1).

In particular, for sufficiently large n, the extent with respect to the
dictionary sequence (Dn) is strictly submultiplicative.

Parts of the proof of Theorem 2.1.2 follow the proof of non-multiplicativity
of the stabilizer fidelity [BBC+19, Lemma 10]. As a crucial extra in-
gredient, we carefully analyze the dual second order cone formulation
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of the extent and exploit complementary slackness to prove the fact
that the optimal dual witness is generically unique.

Note that the main theorem also implies that other magic mono-
tones recently defined in [SRP+21] (mixed state extent, dyadic nega-
tivity, and generalized robustness) fail to be multiplicative, since they
all coincide with the stabilizer extent on pure states [Reg18].

The remaining part of paper is organized as follows: In Section 2.2,
we outline the geometric intuition behind the argument. The rigorous
proof is given in Section 2.3. As an auxiliary result, we present an
optimality condition on stabilizer extent decompositions in Section 2.4.

2.2 Proof strategy

In this section, we explain the geometric intuition behind the main
result. To simplify the exposition, we present a version of the argument
for real vector spaces.

We recall the convex geometry underlying the problem. In the real
case, the extent can be formalized as a basis pursuit problem:√

ξD(x) = min
∑
s∈D
|cs|

s.t. cs ∈ R (s ∈ D),∑
s∈D

css = x.

This type of optimization can be formulated as linear program (see
e.g. [BV04, Chapter 6]). Using standard techniques we can derive its
dual form (see e.g. [BV04, Chapter 5]):√

ξD(x) = max x>y

s.t. y ∈ Rd,

|s>y| ≤ 1 for all s ∈ D,

where x>y :=
d∑
j=1

xjyj denotes the inner product on Rd. Let

MD = {y ∈ Rd : |s>y| ≤ 1 for all s ∈ D}
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be the region of feasible points for the dual program. Since D is finite
and contains a spanning set of Rd, the setMD is a polytope. The dual
formulation implies that for each x, there exists a witness y among the
vertices of MD such that

√
ξD(x) = x>y. Conversely, with each vertex

y ∈MD, one can associate the set of primal vectors x for which y is a
witness:

Cy =
{
x ∈ Rd :

√
ξD(x) = x>y

}
= cone

{
(−1)ks : s ∈ D, k ∈ {0, 1}, (−1)ks>y = 1

}
.

The cone over a set M , denoted by cone{M}, is simply the set of
all linear combinations with non-negative coefficients of a finite set
of elements in M . It is easy to see that the Cy are full-dimensional
convex cones that partition Rd as y ranges over the vertices of MD
(see Figure 2.1 for an illustration). The cones Cy are called normal
cones and the induced partition of Rd is referred to as the normal fan
of MD, see for example [Zie95]. For x ∈ Rd, define the fidelity of x
with respect to D √

FD(x) := max
s∈D
|s>x|

as the maximal overlap of x with an element in D (the value
√
FD(x)

can also be viewed as the `∞-norm of x with respect to D).
These notions allow us to analyze how the extent of a vector x

changes when a word w is added to the dictionary D (in the proof
below, we will track the extent when the maximally entangled state
is added to a product dictionary). Indeed, if x is contained in the
interior of some Cy, and if |w>y| > 1, then the vertex y is infeasible
for the dual program with respect to the dictionary D ∪ {w} (i.e.,
y /∈MD∪{w}), and therefore ξD∪{w}(x) < ξD(x).

Now, the argument of the proof of the main theorem proceeds in
two steps:

(1) Assume x is chosen Haar-randomly from the unit-sphere in Rd.
Almost surely, there will be a unique witness y, i.e., x will lie in
the interior of some normal cone Cy for some vertex y of MD.
Moreover, the norm of y is large with high probability, ‖y‖2

2 ≈
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O(d). To see why the latter holds, note that

‖y‖2
2 ≥ (x>y)2 = ξ(x) ≥ 1

FD(x) ,

where the second inequality follows because x/
√
FD(x) ∈ MD

is feasible for the dual (as realized in [BBC+19]). A standard
concentration-of-measure argument (as in [BBC+19], proof of Claim
2) shows that if |D| is not too large, the maximal inner product-
squared of x with any element of D will be close to the ex-
pected inner product-squared with any fixed unit vector v, which
is |x>v|2 ≈ 1/d.

(2) Now consider x⊗x. With respect to the product dictionary D⊗D,
one easily finds that ξD⊗D(x ⊗ x) = ξD(x)ξD(x), and that y ⊗ y
is a unique witness and a vertex of MD⊗D. If Φ is the maximally
entangled state,

Φ>(y ⊗ y) = d−1/2‖y‖2
2 = O(d1/2) > 1.

Thus adding Φ to the dictionary means that y⊗y becomes dually
infeasible (i.e., y ⊗ y /∈ MD⊗D∪{Φ}). It follows that the extent of
x ⊗ x (in fact, the extent of any element in the interior of Cy⊗y)
decreases if Φ is added.

Cy2

MD

−s1

y1 s2 y2

s1

−y1−s2−y2

Figure 2.1: The polytope MD for the dictionary D = {s1, s2} ⊂ S1 and the normal cone
Cy2 of the vertex y2. The active inequalities at y2 yield the extreme rays of Cy2 .
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2.3 Proof of the main theorem

In preparation of proving the main theorem, we translate the con-
vex geometry of `1-minimization from the real case (sketched in the
previous section) to the case of complex vector spaces. This problem
has been treated before in various places in the literature, including
in [BSS16], in the context of the theory of compressed sensing (e.g.
[FR13]), and in greater generality in the convex optimization literature
(e.g. [Pat00]). As we are not aware of a reference that gives a con-
cise account of all the statements required, we present self-contained
proofs in Appendix 2.A.

We will use the superscripts R and I to denote, respectively, the
real and complex part of a vector. The extent then has the following
dual formulation (c.f. Appendix 2.A):√

ξD(ψ) = max (ψR)>yR + (ψI)>yI

s.t. y ∈ Cd,√
FD(y) ≤ 1,

where
FD(y) = max

s∈D
|〈s, y〉|2

and 〈s, y〉 :=
d∑
j=1

sjyj denotes the inner product on Cd.
Let

MD = {y ∈ Cd : |〈s, y〉| ≤ 1 for all s ∈ D}
be the set of feasible points for the dual. In contrast to the real case,
MD is not a polytope, butMD is still a bounded convex set (viewed as
a subset in R2d – for a more detailed explanation, see Appendix 2.A).
Thus, by Krein-Millman, MD is the convex hull of its extreme points,
which can be characterized as follows (Appendix 2.A contains a proof):

Proposition 2.3.1. A point y ∈ MD is an extreme point of MD if
and only if {

s ∈ D : |〈s, y〉| = 1
}
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is a spanning set for Cd.
We will continue with an example of one extreme point of MD for

D = STABn being the dictionary of n-qubit stabilizer states.
Example 2.3.2. One extreme point for the setMSTABn is the rescaled
tensor-power ψ⊗nT /F (ψ⊗nT ) of the magic T -state,

ψT :=
 cos(β)
ei

π
4 sin(β)

 ,
where β = 1

2 arccos( 1√
3). In this remark, we sketch why this is so.

The vector ψ⊗nT satisfies ξ(ψ⊗nT ) = 1/F (ψ⊗nT ) [BBC+19, Proposition
2]. Now, ψTψ†T = 1

3(I +C +C2) where C is the Clifford matrix which
cyclically permutes the Pauli matrices {X, Y, Z}. This way, if U =
C i1 ⊗ · · · ⊗ C in, then

〈U †s, ψ⊗nT 〉 = 〈s, Uψ⊗nT 〉 = 〈s, ψ⊗nT 〉 for all s ∈ STABn.

It follows that the group generated by tensor products of {I, C} acts
on the optimizers of F (ψ⊗nT ). But the standard basis vector e⊗n0 is one
such optimizer [BBC+19, Lemma 2] and

Span{e0, Ce0} = Span{e0, (e0 + e1)/
√

2} = C2.

This shows that the optimizers of F (ψ⊗nT ) contain all tensor products
of e0 and (e0 + e1)/

√
2, which form a basis for (C2)⊗n.

Finally, ψ⊗nT /F (ψ⊗nT ) is an optimal dual witness for ψ⊗nT . By Prop. 2.3.1,
then, this witness is extremal.

Returning back to the general theory, we associate a normal cone
with every extreme point y:

Cy =
{
ψ ∈ Cd : 〈ψ, y〉R = max

p∈MD
〈ψ, p〉R

}
= cone

{
eiφs : s ∈ D, φ ∈ R, eiφ〈s, y〉 = 1

}
. (2.1)

Notice that

〈ψ, y〉R = (ψR)>yR + (ψI)>yI .

A final preparation step invokes complementary slackness (Appendix
2.A contains a proof):
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Lemma 2.3.3 (Complementary slackness conditions). Let y ∈MD be
any optimal dual witness, i.e., ψ ∈ Cy and

√
ξD(ψ) = 〈ψ, y〉R. Then

for any optimal extent decomposition ψ = ∑
s∈D css with

√
ξD(ψ) =∑

s∈D |cs| we have the following two conditions:

(I) If cs 6= 0, then 〈s, y〉 = cs/|cs|.

(II) If |〈s, y〉| < 1, then cs = 0.

The complementary slackness conditions have the following two
consequences:

First, assume that ψ = ∑
s∈D css is an optimal decomposition and

that y ∈ Cd optimal for the dual. From condition (I), we obtain

|〈ψ, y〉| =
∣∣∣∣∣∣
∑
s∈D

cs〈s, y〉
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈D,cs 6=0
cs
cs
|cs|

∣∣∣∣∣∣ =
∑
s∈D
|cs| =

√
ξD(ψ),

so we can rewrite the dual program for the extent as

ξD(ψ) = max |〈ψ, y〉|2

s.t. y ∈ Cd,

FD(y) ≤ 1,
(2.2)

which coincides with the dual formulation given in [BBC+19]. Since
ψ/

√
FD(ψ) is feasible for the dual, we get the natural lower bound

[BBC+19]

ξD(ψ) ≥ 1
FD(ψ) . (2.3)

Secondly, if a state ψ is chosen Haar-randomly, the optimal dual
witness y for ξD(ψ) is an extreme point and unique of MD with prob-
ability one, because of the following observation: A generic ψ will not
be contained in a proper subspace spanned by elements of D, since the
finite collection of all these lower-dimensional subspaces has measure
zero. Thus, generically, if we expand ψ = ∑

s∈D css in the dictionary
D, the set {s ∈ D : cs 6= 0} has to span Cd.

Now suppose we are given two optimal dual witnesses y1, y2 for
ξD(ψ). Condition (I) of 2.3.3 tells us that for all optimal primal extent
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decompositions, both y1 and y2 are solutions of the system of linear
equations:

〈s, y〉 = cs
|cs|

for all cs 6= 0.

However, this system has a unique solution because the words s ∈ D
with cs 6= 0 span Cd and therefore, y1 = y2. Such ψ’s are also called
non-degenerate in convex optimization [AG03].

Analogously to the case of a normal cone in a real-valued vector
space, note that the interior int(Cy) of a normal cone Cy consists of
all points ψ whose dual witness is unique and the extreme point y.
This means that there exists an optimal extent decomposition

ψ =
∑
s∈D

css =
∑
s∈D

αs e
iφss,

such that
αs ≥ 0, cs = αse

iφs, eiφss ∈ Cy, and {s ∈ D : cs 6= 0} spans Cd.

With the above notion, we are able to describe how the extent is
effected by adding a word w to the dictionary D. As in the case of
a real valued vector space, an extreme point y ∈ MD becomes dually
infeasible if |〈w, y〉| > 1 (i.e., y /∈ MD∪{w}). Hence, the extent of
an element x decreases if y is the unique dual witness of x, that is
x ∈ int(Cy). In summary, we get the following theorem:
Theorem 2.3.4. Let D ⊂ Cd be a dictionary and let w ∈ Cd with
〈w,w〉 = 1. Let D′ = D ∪ {w}. Then, ξD′(x) < ξD(x), if and only if
x ∈ int(Cy) for an extreme point y ∈MD with |〈w, y〉| > 1.

In order to analyze the multiplicativity properties of the extent for
product inputs, we now turn our attention to product dictionaries.
The argument starts with the observation that extreme points of MD
are closed under taking tensor products. That is, if y1, y2 are extreme
points of dually feasible setsMDj ⊂ Cdj for two dictionaries D1 and D2,
then y1⊗y2 is an extreme point ofMD1⊗D2, where D1⊗D2 ⊂ Cd1⊗Cd2

is the product dictionary. Indeed, since y1 ⊗ y2 ∈MD1⊗D2 and the set
{s1 ⊗ s2 ∈ D1 ⊗D2 : |〈s1 ⊗ s2, y1 ⊗ y2〉| = 1}

= {s1 ⊗ s2 ∈ D1 ⊗D2 : |〈sj, yj〉| = 1, j = 1, 2}
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is a spanning set of Cd1 ⊗ Cd2. Moreover, by the characterization of
the normal cone (2.1), it follows immediately that the normal cone of
y1 ⊗ y2 has the form

Cy1⊗y2 = cone{eiφs1s1 ⊗ eiφs2s2 : eiφsjsj ∈ Cyj , j = 1, 2}. (2.4)

This allows us to derive the following multiplicativity property of
product dictionaries:

Lemma 2.3.5. Consider two dictionaries Dj ⊂ Cdj and extreme
points yj ∈ MDj , j = 1, 2. Then, Cy1 ⊗ Cy2 ⊂ Cy1⊗y2 and int(Cy1) ⊗
int(Cy2) ⊂ int(Cy1⊗y2). Therefore,

ξD1⊗D2(ψ1 ⊗ ψ2) = ξD1(ψ1)ξD2(ψ2)

for all ψj ∈ Cdi.

Proof. We will prove Cy1 ⊗ Cy2 ⊂ Cy1⊗y2, the statement int(Cy1) ⊗
int(Cy2) ⊂ int(Cy1⊗y2) can be proven analogously. Let ψj ∈ Cj, so

ψj =
∑
s∈D

αjs e
iφjss,

where αjs ≥ 0 and if αjs is positive, then eiφ
j
ss ∈ Cyj . Thus,

ψ1 ⊗ ψ2 =
∑

s⊗s′D1⊗D2

α1
sα

2
s′ (eiφ

1
ss⊗ eiφ2

s′s′) ∈ Cy1⊗y2,

by Equation (2.4).
In order to prove multiplicativity it suffices to observe that, by the

definition of the normal cone and the extent formulation (2.2),

ξD1⊗D2(ψ1⊗ψ2) = |〈ψ1⊗ψ2, y1⊗y2〉|2 = |〈ψ1, y1〉|2 |〈ψ2, y2〉|2 = ξD1(ψ1)ξD2(ψ2).

Using the above lemma and the generic uniqueness of the dual
witness y, we are now able to prove our main theorem. We subdivide
the proof in two parts, where the first part is an adaption of Claim 2
in [BBC+19] to the class of dictionaries defined in Theorem 2.1.2:
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Proposition 2.3.6. Assume that the dictionary sequence (Dn) with
Dn ⊂ (Cd0)⊗n satisfies the assumptions of Theorem 2.1.2. Then, for a
Haar-randomly chosen unit vector ψ ∈ (Cd0)⊗n and some fixed ε > 0
it holds that

Pr
[
FDn(ψ) ≤ 1√

dn0 + ε

]
≥ 1− o(1).

In particular, FDn(ψ) ≤ 1√
dn0 +ε

for sufficiently large n and a typical

unit vector ψ ∈ (Cd0)⊗n.

Proof. We fix a unit vector ω ∈ (Cd0)⊗n and choose a Haar-random
unit vector ψ ∈ (Cd0)⊗n. Following the proof of Claim 2 in [BBC+19]
we can bound the probability of the event {|〈ω, ψ〉|2 ≥ x} by

Pr[|〈ω, ψ〉|2 ≥ x] = (1− x)dn0−1 ≤ e−x(dn0−1).

If we set x = (
√
dn0 + ε)−1 for ε > 0 and use Properties (i) and (ii),

we can use a union bound to estimate the fidelity of ψ with respect to
Dn by

Pr
[
max
s∈D
|〈ψ, s〉|2 ≥ 1√

dn0 + ε

]
≤ |Dn| · exp

(
− dn0 − 1√

dn0 + ε

)

≤ exp
(
o
(√
dn0

)
ln(d0)−

dn0 − 1√
dn0 + ε

)
,

which converges to zero as n tends to infinity.

The proposition assures that randomly chosen unit vectors gener-
ically have small overlap with elements in the dictionary sequence.
Starting from there, we proceed with the proof of the main theorem.

Proof of Theorem 2.1.2. Let ψ ∈ (Cd0)⊗n be a unit vector satisfying
FDn(ψ) ≤ 1√

dn0 +ε
for some ε > 0. Due to Proposition 2.3.6, this holds

for a typical ψ and sufficiently large n. As a consequence of (2.3), we
can lower bound the extent of ψ by

ξDn(ψ) ≥ 1
FDn(ψ) ≥

√
dn0 + ε.
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Let y ∈ MDn be an optimal dual witness, so ψ ∈ Cy. As pointed
out earlier, we can further assume that y is an extreme point of MDn
and that y ∈ int(Cy) generically. Applying Cauchy-Schwarz, we get a
lower bound on the norm of y by

|〈y, y〉| = |〈y, y〉| · |〈ψ, ψ〉| ≥ |〈ψ, y〉|2 = ξDn(ψ) ≥
√
dn0 + ε. (2.5)

Now consider ψ⊗ψ∗. Assumption (iii) ensures that ξD(ψ) = ξD(ψ∗)
and ψ∗ ∈ int(Cy∗). The proof of Lemma 2.3.5 tells us that the extreme
point y ⊗ y∗ of MDn⊗Dn is optimal for

ξDn⊗Dn(ψ ⊗ ψ∗) = ξDn(ψ)ξDn(ψ∗).

Moreover, it is the unique optimizer, as ψ⊗ψ∗ ∈ int(Cy)⊗ int(Cy∗) ⊂
int(Cy⊗y∗).

Next, we add the maximally entangled state Φ to the dictionary
and observe

ξDn⊗Dn(ψ ⊗ ψ∗) ≥ ξDn⊗Dn∪{Φ}(ψ ⊗ ψ∗),

since Dn⊗Dn ⊂ Dn⊗Dn∪{Φ}. The norm estimation (2.5) of y yields

max
s∈Dn⊗Dn∪{Φ}

|〈s, y ⊗ y∗〉|2 ≥ |〈Φ, y ⊗ y∗〉|2 =
∣∣∣∣ 1√
d

∑
k∈Znd0

〈y, ek〉〈y∗, ek〉
∣∣∣∣2

= 1
d
|〈y, y〉|2 > 1,

therefore y ⊗ y∗ is not contained in the set of dually feasible points
MDn⊗Dn∪{φ} of the dictionary Dn⊗Dn∪{φ}. Since y⊗y∗ ∈ int(Cy⊗y∗)
we can apply Theorem 2.3.4 to obtain ξDn⊗Dn∪{Φ}(ψ⊗ψ∗) < ξDn⊗Dn(ψ⊗
ψ∗).

To conclude, because of (iv) and (v),

ξD2n(ψ⊗ψ∗) ≤ ξDn⊗Dn∪{Φ}(ψ⊗ψ∗) < ξDn⊗Dn(ψ⊗ψ∗) = ξDn(ψ)ξDn(ψ∗),

which proves the desired result.

2.4 An optimality condition for the stabilizer extent

In this section we fix the dictionary sequence to be the set of n-qubit
stabilizer states STABn and we will derive a condition on optimal
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stabilizer extent decompositions. (While preparing this document, we
learned that this fact had already been observed earlier [Cam20], but
it does not seem to be published).

Let Pn =
{⊗n

i=1Wi : Wi ∈ {I,X, Y, Z}
}
be the set of n-qubit Pauli

matrices. The set of stabilizer states can be decomposed in a disjoint
union of orthonormal bases, where each basis is labeled by a maximally
commuting set S ⊂ Pn of Pauli matrices (see [NC11], Chapter 10, or
[Gro06, KG15] for details). The projectors on the basis elements can
be written as ss† = 1

2n
∑
σ∈S(−1)kσσ, where kσ ∈ {0, 1} has to be

chosen in a way such that {(−1)kσσ : σ ∈ S} is a closed matrix group
with 2n elements.

Theorem 2.4.1. Let ψ be an n-qubit state. Suppose that ψ = ∑
css is

an optimal stabilizer extent decomposition, that is ξ(ψ) =
(∑

s∈D |cs|
)2
.

Then there is at most one non-zero cs for the words s that are labeled
by the same orthonormal basis.

For the proof of the theorem, we will make use of the Clifford group
Cn. For our purpose this is the unitary group that preserves the set
STABn, i.e., if U ∈ Cn, then Us ∈ STABn for all s ∈ STABn (more
details can be found in [Gro06]).

Proof. First, we prove the statement for the 1-qubit case. The 1-qubit
stabilizer dictionary is given by the disjoint union of three orthonormal
bases

STAB1 = B1 ∪̇ B2 ∪̇ B3,

where the three orthonormal stabilizer bases are given by

B1 =

1

0

 ,
0

1

 , B2 =
 1√

2

1
i

 , 1√
2

 1
−i

 , B3 =
 1√

2

1
1

 , 1√
2

 1
−1

 .
Because the Clifford group acts transitively on {B1, B2, B3} and maps
optimal decompositions to optimal decompositions – i.e. if ψ = ∑

s∈STABn css
is optimal, then so is Uψ = ∑

s∈STABn cs(Us) – it suffices to prove the
statement for a single basis, e.g. B1.
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So suppose that we have decomposition of some state ψ = ∑
s∈STAB1 css

with non-negative coefficients in the basis B1. Since optimal `1-decompositions
are invariant under scaling with a complex number, we may assume
that the part of the decomposition realized by B1 is of the form

ω = 1
1

0

 + z

0
1

 , or ω = z

1
0

 + 1
0

1


with z = x + iy ∈ C and |x| + |y| ≤ 1. Hence, the coefficients have
`1-norm 1 + |z| = 1 +

√
x2 + y2. If ω is of the first form, then we can

also decompose it as

ω = (
√

2|x|) · 1√
2

 1
sign(x)

 + (
√

2|y|) · 1√
2

 1
sign(y)i

 + (1− |x| − |y|) ·
1

0


(2.6)

and the `1-norm of the coefficients in this decomposition is
√

2|x|+
√

2|y|+ (1− |x| − |y|) = 1 + (
√

2− 1)(|x|+ |y|) < 1 + 1
2(|x|+ |y|).

But √
(ξ(ω)) ≤ 1 + 1

2(|x|+ |y|) < 1 +
√
x2 + y2 = 1 + |z|,

so the decomposition of ω using only elements of B1 is not optimal. By

changing the two coordinates, we can argue analogously if ω =
z

1

.
Updating the decomposition of ψ to ψ = ∑

s∈STAB1 ĉss via the new
decomposition of ω (2.6), we also get a new decomposition of ψ with
lower `1-norm and only one non-zero coefficient for the basis B1. This
follows by comparing ∑

s∈STAB1 |cs| with
∑
s∈STAB1 |ĉs| via the triangle

inequality.
For the n-qubit case assume that ψ = ∑

css is a stabilizer de-
composition with cscs′ 6= 0 for two stabilizer states s, s′ ∈ STABn

belonging to the same orthonormal basis. Due to invariance of ξ un-
der the Clifford group and its transitive action on orthonormal sta-
bilizer bases, we may choose any orthonormal stabilizer basis. By
possibly applying another Clifford unitary, we may even assume that
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s = e0 ⊗ e0 · · · e0, s
′ = e1 ⊗ e0 · · · e0. But if we consider the decompo-

sition of the unnormalized state

ω = cse0 ⊗ e0 ⊗ · · · ⊗ e0 + cs′e1 ⊗ e0 ⊗ · · · ⊗ e0 = (cse0 + cs′e1)⊗ e0 ⊗ · · · ⊗ e0,

the 1-qubit case result together with the fact that stabilizer states
are closed under taking tensor products can be applied to see that
the decomposition of ω is not optimal. Now, the crucial observation
is that if ψ = ∑

css is an optimal stabilizer extent decomposition,
then ω = css + cs′s

′ is an optimal decomposition for ω. But as the
decomposition of ω is not optimal, neither is the one of ψ.

There is an interesting connection between the derived optimality
condition and the geometric properties of the stabilizer polytope SPn,
which is the convex hull of the projectors onto stabilizer states, i.e.,
SPn = conv{ss† : s ∈ STABn}. As shown in [Hei19, EG15], two
stabilizer projectors are connected by an edge if and only if they do
not belong to the same orthonormal stabilizer basis. Thus, we can
reformulate the above result:
If ψ = ∑

css is an optimal stabilizer extent decomposition and cscs′ 6=
0, then the set conv{ss†, s′(s′)†} is an edge of SPn.

Summary and outlook

We have settled an open problem in stabilizer resource theory, by
showing that the stabilizer extent is generically sub-multiplicative in
high dimensions. What is striking is that the previous multiplica-
tivity results for one to three qubit states [BSS16] made use of the
detailed structure of the set of stabilizer states. In contrast, our coun-
terexample involves only a small number of high-level properties of
the stabilizer dictionary. Therefore, we see this work as evidence that
`1-based complexity measures on tensor product spaces should be ex-
pected to be strictly sub-multiplicative in the absence of compelling
reasons to believe otherwise. In particular, it seems highly plausible
that the assumptions that go into Theorem 2.1.2 can be considerably
weakened. We leave this problem open for future analysis.
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2.A Formulating the extent as a second order cone program

Here, we write the extent of Definition 2.1.1 with respect to a complex
dictionary D ⊂ Cd as a real second order cone program in standard
form [AG03]. We impose the condition that the elements in D are nor-
malized, i.e., 〈w,w〉 = 1. For an optimal decomposition ψ = ∑

s∈D css
we set cRs = Re cs and cIs = Im cs. The standard primal version of the
extent is given by

√
ξD(ψ) = min

∑
s∈D

ts

s.t.
∑
s∈D

sR −sI 0
sI sR 0

 ·

cRs
cIs
ts

 =
ψR
ψI


(cRs , cIs, ts) ∈ L2+1 (s ∈ D),

where
L2+1 =

{
(x1, x2, t) ∈ R3 :

√
x2

1 + x2
2 ≤ t

}
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is the 3-dimensional Lorentz cone. As the program is in primal stan-
dard form, we can derive its dual formulation:

max (ψR)>yR + (ψI)>yI

s.t.


(sR)> (sI)>

(−sI)> (sR)>
0 0

 ·
yR
yI

 + zs =


0
0
1

 for all s ∈ D,

zs ∈ L2+1 (s ∈ D), (yR, yI) ∈ R2d.

(2.7)

Since D contains a basis of Cd, both programs are strictly feasible and
strong duality holds, so the optimal values for min and max coincide.
The dual constraints are equivalent to maxs∈D |〈s, y〉| ≤ 1, where y =
yR + iyI ∈ Cd. Thus, we can rewrite the dual as

max (ψR)>yR + (ψI)>yI

s.t. |〈s, y〉| ≤ 1 for all s ∈ D,
y ∈ Cd.

Next, we prove Proposition 2.3.1, which gives a characterization of the
extreme points of the set of dually feasible points MD = {y ∈ Cd :
|〈s, y〉| ≤ 1 for all s ∈ D}.

Proof of Proposition 2.3.1. Let y ∈MD. First, we assume that the set

Ay = {s ∈ D : |〈s, y〉| = 1}

does not span Cd. Then, there exists u ∈ Cd being orthogonal to
all elements in Ay and, since d is finite, we can find ε > 0 such that
y ± εu ∈ MD and y = 1

2((y + εu) + (y − εu)) is a proper convex
combination of y ± ε. Hence, y is not an extreme point of MD.

Conversely, assume that Ay spans Cd and that y = αu + (1 − α)v
for some u, v ∈MD. For every s ∈ Ay there is φs ∈ R such that

1 = eiφs〈s, y〉 = αeiφs〈s, u〉+ (1− α)eiφs〈s, v〉,

hence, (
eiφs〈s, u〉

)R =
(
eiφs〈s, v〉

)R = 1.
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But as |〈s, u〉| ≤ 1 and |〈s, v〉| ≤ 1, it must hold that(
eiφs〈s, u〉

)I =
(
eiφs〈s, v〉

)I = 0.
Since the elements of Ay span Cd, the system

eiφs〈s, w〉 = 1 for all s ∈ Ay and w ∈ Cd

has the unique solution y, so y = u = v and y is an extreme point of
My.

We will continue with the proof of Lemma 2.3.3, which is a conse-
quence of complementary slackness.

Proof of Lemma 2.3.3. If (cs, ts)s∈D is optimal for the primal and (y, (zs)s∈D)
optimal for the dual, then complementary slackness [AG03] enforces∑

s∈D
(cs, ts) · zs = 0,

but as we have
zs = (−〈s, y〉R,−〈s, y〉I , 1),

due to the duality constraint (2.7), we can rewrite this as∑
s∈D

ts =
∑
s∈D

cRs 〈s, y〉R + cIs〈s, y〉I .

Applying Cauchy-Schwarz to each term of the right hand side we ob-
tain∑

s∈D
cRs 〈s, y〉R + cIs〈s, y〉I ≤

∑
s∈D
||(cRs , cIs)||2 · ||

(
〈s, y〉R, 〈s, y〉I

)
||2

=
∑
s∈D
||cs||2 · |〈s, y〉|

≤
∑
s∈D

ts,

where the last inequality follows from (cs, ts) ∈ L2+1 and |〈s, y〉| ≤ 1
for all s ∈ D. Consequently, we have equality in each step. This leads
to the conditions given in the lemma because:
(I) If cs 6= 0, then |〈s, y〉| = 1, but by the first inequality the vector

(cRs , cIs) must be proportional to (〈s, y〉R, 〈s, y〉I), hence 〈s, y〉 =
cs
|cs| .

(II) If |〈s, y〉| < 1, then cs = 0.
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The axiomatic and the operational
approaches to resource theories of
magic do not coincide
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Abstract

Stabilizer operations occupy a prominent role in fault-tolerant quan-
tum computing. They are defined operationally: by the use of Clifford
gates, Pauli measurements and classical control. These operations
can be efficiently simulated on a classical computer, a result which
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is known as the Gottesman-Knill theorem. However, an additional
supply of magic states is enough to promote them to a universal,
fault-tolerant model for quantum computing. To quantify the needed
resources in terms of magic states, a resource theory of magic has been
developed. stabilizer operations (SO) are considered free within this
theory, however they are not the most general class of free operations.
From an axiomatic point of view, these are the completely stabilizer-
preserving (CSP) channels, defined as those that preserve the con-
vex hull of stabilizer states. It has been an open problem to decide
whether these two definitions lead to the same class of operations. In
this work, we answer this question in the negative, by constructing
an explicit counter-example. This indicates that recently proposed
stabilizer-based simulation techniques of CSP maps are strictly more
powerful than Gottesman-Knill-like methods. The result is analogous
to a well-known fact in entanglement theory, namely that there is a
gap between the operationally defined class of local operations and
classical communication (LOCC) and the axiomatically defined class
of separable channels.

3.1 Introduction

Despite the advances in the development of quantum platforms, un-
derstanding the precise set of quantum phenomena that is required
for a quantum advantage over classical computers remains an elusive
task. However, for the design of fault-tolerant quantum computers, it
seems imperative to understand these necessary resources. Here, the
magic state model of quantum computing offers a particularly fruitful
perspective. In this model, all operations performed by the quantum
computer are divided into two classes. The first class consists of the
preparation of stabilizer states, the implementation of Cifford gates,
and Pauli measurements. These stabilizer operations by themselves
can be efficiently simulated classically by the Gottesman-Knill The-
orem [Got99, SA04]. Secondly, the quantum computer needs to be
able to prepare magic states, defined as states that allow for the im-
plementation of any quantum algorithm when acted on by stabilizer
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operations [BK05]. In this sense, the magic states provide the “non-
classicality” required for a quantum advantage.

During recent years, there has been an increasing interest in devel-
oping a resource theory of quantum computing that allows for a precise
quantification of magic. First resource theories were developed for the
somewhat simpler case of odd-dimensional systems, based on a phase-
space representation via Wigner functions. There, the total negativity
in the Wigner function of a state is a resource monotone called mana,
and non-zero mana is a necessary condition for a quantum speed-
up [Gal05, Gro07, VFGE12, VMGE14, ME12, HWVE14, DOBV+17].
In the practically more relevant case of qubits, this theory breaks
down, which has led to a number of parallel developments [HC17b,
HG19, SC19, RBVT+20, SRP+21, BCHK20, HMMVG21, LW22]. A
common element is that the finite set of stabilizer states, or more gen-
erally their convex hull, the stabilizer polytope, is taken as the set of
free states. Since stabilizer operations preserve the stabilizer polytope,
they are considered free operations in this theory and any monotones
should be non-increasing under those. A number of such magic mono-
tones have been studied and their values linked to the runtime of
classical simulation algorithms [PWB15, BG16, BBC+19, SC19]. In
this sense, the degree of magic present in a quantum circuit does seem
to correlate with the quantum advantages it confers – thus validating
the premise of the approach.

The set of stabilizer operations (SO) are defined in terms of concrete
actions (“prepare a stabilizer state, perform a Clifford unitary, make
a measurement, ...”) and thus represent an operational approach to
defining free transformations in a resource theory of magic. It is often
fruitful to start from an axiomatic point of view, by defining the set of
free transformations as those physical maps that preserve the set of free
states. This approach has been introduced recently by [SC19]. They
suggest to refer to a linear map as completely stabilizer-preserving
(CSP) if it preserves the stabilizer polytope, even when acting on parts
of an entangled system. It has been shown that the magic monotones
mentioned above are also non-increasing under CSP maps [SRP+21].

A natural question is therefore whether the two approaches coincide
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– i.e. whether SO = CSP, or whether there are CSP maps that cannot
be realised as stabilizer operations [SC19].

To build an intuition for the question, consider the analogous prob-
lem in entanglement theory, where the free resources are the separable
states. The axiomatically defined free transformations are the sepa-
rable maps – completely positive maps that preserve the set of sepa-
rable states. The operationally defined free transformations are those
that can be realised by local operations and classical communication
(LOCC). It is known that the set of separable maps is strictly larger
than the set of LOCC [BDF+99, CLM+14] – a fact that leads e.g. to
a notable gap in the success probability of quantum state discrimi-
nation [KTYI07, DFXY09] and entanglement conversion [CCL12] be-
tween the two classes.

In this work, we show that – also in resource theories of magic –
the axiomatic and the operational approaches lead to different classes,
that is SO 6= CSP.

As an auxiliary result, we derive a normal form for stabilizer op-
erations which is used to prove our main result. From this form,
it is evident that any stabilizer operation can be realised in a finite
number of rounds – a statement which is known to not hold for LOCC
operations in entanglement theory [Chi]. Furthermore, we give a char-
acterization of CSP channels in terms of certain generalised stabilizer
measurements and adaptive Clifford operations. This characteriza-
tion has been used in a classical simulation algorithm of CSP channels
by [SRP+21].

Outline

In Section 3.2, we give an introduction to the relevant concepts used
throughout the main part of this work. Next, we prove a minimal
version of our main result and illustrate our proof technique for the 2-
qubit case in Section 3.3. There, we show that there is a 2-qubit CSP
channel that is not a stabilizer operation. In Section 3.4, we generalise
this minimal result to an arbitrary number of qudits. Furthermore, we
prove equality of CSP and SO for a single qudit. In Section 3.5, we de-
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scribe additional properties of CSP channels and give some examples.
We conclude the main part by commenting on potential implications
and future work in Sec. 3.6.

3.2 Preliminaries

3.2.1 Stabilizer formalism

Consider the Hilbert space H = (Cd)⊗n of n qudits of dimension d,
where we assume that d is prime. We label the computational basis
|x〉 by vectors x in the discrete vector space Fnd . Here, Fd is the finite
field of d elements which can be taken to be the residue field Z/dZ
of integers modulo d. Let ω = e2πi/d be a d-th root of unity, then we
define the n-qudit Z and X operator as usual by their action on the
computational basis:

Z(z) |y 〉 := ωz·y |y 〉 , X(x) |y 〉 := |y + x〉 , z, x, y ∈ Fnd . (3.1)

Here, all operations take place in the finite field Fd (i.e. modulo d),
if not stated otherwise. To treat the slightly different theory for even
and odd d on the same footing, we introduce the convention

τ := (−1)deiπ/d, D :=
2d if d = 2
d else.

(3.2)

Note that τ is always a D-th root of unity such that τ 2 = ω. We group
the Z and X operators and their coordinates to define an arbitrary
(generalised) Pauli operator indexed by a = (az, ax) ∈ F2n

d :

w(a) := τ−γ(a)Z(az)X(ax), γ(a) := az · ax mod D. (3.3)

Finally, the Heisenberg-Weyl or generalised Pauli group is the group
generated by Pauli operators and can be written as:

Pn(d) := 〈{w(a) | a ∈ F2n
d }〉 = {τ kw(a) | k ∈ ZD, a ∈ F2n

d }. (3.4)

The Clifford group is defined as the group of unitary symmetries of
the Pauli group:

Cln(d) :=
{
U ∈ U(dn) | UPn(d)U † = Pn(d)

}
/U(1). (3.5)
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We take the quotient with respect to irrelevant global phases in order
to render the Clifford group a finite group. If the dimension d is clear
from the context, we often omit it to simplify notation.

|+Z〉

|−Z〉

|+X〉

|+Y 〉

Figure 3.1: Bloch representation of the single-qubit stabilizer polytope, which is the octa-
hedron spanned by the six ±1 eigenstates of the Pauli X,Y , and Z operators. The simple
geometry is not representative for the general situation in high dimensions.

An Abelian subgroup S ⊂ Pn(d) that does not contain ω1 is called
a stabilizer group. The subspace C(S) ⊂ (Cd)⊗n of common fixed
points of S is the stabilizer code associated with S. One verifies easily
that the orthogonal projection onto C(S) is given by

PS = |S|−1 ∑
s∈S

s. (3.6)

By taking traces, it follows that the dimension dimC(S) equals dn/|S| =
dn−k, where k = rank(S) is the rank of S. Hence, S defines a [[n, n−k]]
quantum code and we denote by STAB(d, n, k) the set of these stabi-
lizer codes. Of particular interest is the case k = n, for which PS is
rank 1 and thus defines a pure quantum state, called stabilizer state.
The set of pure stabilizer states STAB(d, n) ≡ STAB(d, n, n) spans a
convex polytope that is full-dimensional in state space, the stabilizer
polytope SPn(d) := conv STAB(d, n). For a single qubit, i.e. d = 2
and n = 1, this is the well-known octahedron spanned by the Pauli
X, Y, Z eigenstates, see Fig. 3.1. Elements of SPn(d) will be referred
to as mixed stabilizer states.
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3.2.2 Stabilizer operations

The Gottesman-Knill theorem states that stabilizer operations can be
simulated in a time which is polynomial in the system size [Got97,
SA04]. These operations are defined as follows.

Definition 3.2.1 (stabilizer operation). A quantum channel taking
n input qudits to m output qudits, each of prime dimension d, is a
stabilizer operation, if it is composed of the following fundamental
operations:

• preparation of qudits in stabilizer states,

• application of Clifford unitaries,

• Pauli measurements, and

• discarding of qudits.

An arbitrary random function of previous measurement outcomes can
be used to decide which fundamental operation to perform in each step.
More precisely, we assume that measurement outcomes are kept until
the operation is completed, and are subsequently erased. Hence, the
final state is a suitably weighted average over the possible outcome
states associated to each set of measurement outcomes. The set of all
stabilizer operations is denoted by SOn,m(d), with SOn(d) := SOn,n(d).
If the dimension d is clear from the context, we often omit it to simplify
notation.

Typically, one requires that the classical control logic can be im-
plemented in a computationally efficient way (and the Gottesman-
Knill Theorem applies only under this additional assumption). In
the present paper we will drop the efficiency requirement and show
that even the resulting larger class of stabilizer operations is smaller
than the set of CSP channels. As we lay out in Remark 3.2.6, this
strengthening of the problem formulation is actually necessary in or-
der to avoid a trivial separation of SO and CSP due to their different
computational capabilities.
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Because of the possibility to make use of randomness, the set of
stabilizer operations SOn,m is convex. Its extreme points will turn out
to play an important role in our construction.

By definition, stabilizer operations can be seen as an iterative pro-
tocol where a quantum computer capable of performing fundamental
stabilizer operations interacts with a classical control logic. Generaliz-
ing results on the structure of Kraus operators of stabilizer operations
obtained in Ref. [CB09], we will establish in Thm. 3.4.2 that any op-
eration in SOn,m requires at most n interactive rounds. This stands in
contrast to the class LOCC studied in entanglement theory, where no
analogous finite bound exists [Chi].

In our analysis, we will come across the class of stabilizer operations
that involve no measurements or classical randomness. This class
coincides with the set of channels whose dilation can be realized with
a Clifford unitary:
Definition 3.2.2. A superoperator E : L((Cd)⊗n) → L((Cd)⊗m) has
a Clifford dilation if there exists a number k, a k-qudit stabilizer state
|s〉, and a Clifford unitary U on n+ k qudits such that

E(ρ) = Trm+1,...,n+k
[
U(ρ⊗ |s〉〈s|)U †

]
.

3.2.3 Completely stabilizer-preserving channels

From a resource-theoretic perspective, the maximal set of free opera-
tions is the set of quantum channels which do not generate resources,
i. e. which preserve the set of free states, see e. g. Ref. [CG19]. If we
take the set of free states to be the stabilizer polytope SPn(d), the
resource non-generating (RNG) channels are the stabilizer-preserving
(SP) channels. For this maximal set of free operations, relatively
strong statements can be made from general resource-theoretic argu-
ments. For instance, it has been recently shown that the resource
theory with stabilizer-preserving channels is asymptotically reversible
which implies that resource-optimal distillation rates can be achieved
with stabilizer-preserving channels [LW22].

In general, a resource theory with RNG channels has the disadvan-
tage that it is not closed under tensor products since RNG channels
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may fail to be free when applied to subsystems. The class of RNG
channels for which this is still the case are the completely resource
non-generating channels [CG19]. For some resource theories, these
two classes coincide, but not for the resource theory of magic [SC19].

Following this idea, [SC19, SRP+21] have studied completely stabilizer-
preserving (CSP) channels as the free operations in a resource theory
of magic state quantum computing.
Definition 3.2.3. A superoperator E : L((Cd)⊗n) → L((Cd)⊗m) is
called completely stabilizer-preserving (CSP) if and only if E⊗idk(SPn+k(d)) ⊂
SPm+k(d) for all k ∈ N. The set of CSP maps is denoted by CSPn,m(d)
and CSPn(d) := CSPn,n(d). If the dimension d is clear from the con-
text, we often omit it to simplify notation.

As it is the case for completely positive maps, one can show that it
is indeed enough to check the condition for k = n [SC19, Lem. 4.1].

It will be helpful to characterise CSP maps via their Choi-Jamiołkowski
representation. Recall that in this representation, a linear map E :
L((Cd)⊗n)→ L((Cd)⊗m) is associated with an operator

J (E) := E ⊗ idn(
∣∣∣φ+〉〈φ+∣∣∣) ∈ L((Cd)⊗m)⊗ L((Cd)⊗n), (3.7)

where
∣∣∣φ+

〉
= d−n

∑
x∈Fnd |xx〉 is the standard maximally entangled

state with respect to the computational basis. Choi’s theorem states
that E is completely positive if and only if its Choi-Jamiołkowski rep-
resentation lies in the positive semidefinite cone

PSDn+m(d) ⊂ L((Cd)⊗m)⊗ L((Cd)⊗n). (3.8)

What is more, the map E is trace-preserving if and only if its Choi-
Jamiołkowski representation lies in the affine space

TPn,m(d) =
{
ρ ∈ L((Cd)⊗m)⊗ L((Cd)⊗n) | Tr1 ρ = 1/dm

}
. (3.9)

In particular, for the set CPTPn,m(d) of completely positive and trace-
preserving maps, we have the characterization

J (CPTPn,m(d)) = PSDn+m(d) ∩ TPn,m(d). (3.10)

We now turn to the CSP version of this theory. It turns out that
the CSP property has strong implications:



42 3.2. Preliminaries

Lemma 3.2.4. Any CSP map is completely positive and trace-preserving.

Proof. The first claim follows from the Choi-Jamiołkowski Theorem,
because |φ+ 〉 is a stabilizer state. As for the second claim: Because
the set of stabilizer states (as projections) spans L((Cd)⊗n), every Her-
mitian trace-one operator can be written as an affine combination of
stabilizer states. By definition, any CSP map maps this to an affine
combination of stabilizer states in the output space L((Cd)⊗m). In
particular, it is trace-preserving.

The CSP-analogue of Eq. (3.10) was proven in Ref. [SC19].

Lemma 3.2.5 (Lem. 4.2 in [SC19]). A linear map E : L((Cd)⊗n) →
L((Cd)⊗m) is CSP if and only if its Choi representation lies in the
intersection of the stabilizer polytope with the affine space TPn,m(d):

J (CSPn,m(d)) = SPn+m(d) ∩ TPn,m(d). (3.11)

In particular, CSPn,m(d) is a convex polytope.

Additional properties of CSP channels, as well as a collection of
examples, are provided in Sec. 3.5.

For this work, the focus lies on channels which map the input space
to itself, i.e. n = m. In the main part of this paper, we study the re-
lation between completely stabilizer-preserving channels CSPn(d) and
stabilizer operations SOn(d). In particular, we show that they agree
if and only if n = 1. The definitions in this section, as well as the
general version of our main result, apply both to qubits d = 2 and to
qudits, where d is an odd prime number.

However, we point out that in odd prime dimensions, the set of
free states can be enlarged to include all states with a non-negative
Wigner function. This is a convex setW+

n (d) given as the intersection
of a probability simplex with the cone of positive-semidefinite matri-
ces, and strictly larger than the stabilizer polytope [Gro06, Gro07].
The resulting resource theory differs quite significantly from the qubit
case [VFGE12, VMGE14, ME12] and naturally leads to a different
class of resource-non generating channels, namely those which do not
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induce Wigner negativity, see e. g. Ref. [WWS19]. Thus, the questions
we ask are arguably better motivated in the qubit case.

Another difference between the resource theories in even and odd
dimensions is given by [ADGS18]. They show that for a single qutrit,
there is a stabilizer-preserving channel which can induce negativity
in a state’s Wigner function, in particular it cannot be a stabilizer
operation. This shows that SP channels are not the correct free op-
erations for a resource theory of magic in odd dimensions. In con-
trast, we show in this work that the set of completely stabilizer-
preserving channels agrees with the set of stabilizer operations for
a single qudit, independent of the dimension. Moreover, arbitrary
multi-qudit CSP channels for odd d cannot induce negativity in the
Wigner function by the following argument. Analogous to Lemma
3.2.5, one can show that the set CWPPn,m(d) of completely W+

n (d)-
preserving channels corresponds to W+

n+m(d) ∩ TPn,m(d). This fol-
lows from the Choi-Jamiołkowski inversion formula and the fact that
|φ+ 〉〈φ+ | ∈ SPn+m(d) ⊂ W+

n+m(d). Therefore, CSPn,m(d) is con-
tained in CWPPn,m(d) and, in particular, cannot induce negativ-
ity in the Wigner function. This establishes the chain of inclusions
SOn,m(d) ⊂ CSPn,m(d) ⊂ CWPPn,m(d) for odd prime d, where our
main result 6.3.1 implies that the first inclusion is proper for n,m > 1.
While one cannot readily dismiss the possibility that the last inclusion
is an equality, we conjecture that it is indeed proper, too.

Remark 3.2.6. The definition 3.2.3 of CSP allows for quantum chan-
nels which are of the form [Cam21]

E(|x〉〈y |) := δx,y |O(x)〉〈O(x)| (3.12)

where O can be an arbitrary Boolean function. The definition does
not preclude one to consider families En of channels that are associ-
ated with Boolean functions On that are not Turing computable (e.g.
functions that decide the halting problem). The discussion shows that
it is meaningless to compare stabilizer operations with computational
efficiency requirements to CSP channels defined without such con-
straints. To avoid a trivial separation of the classes, we show here that



44 3.3. The CSP class is strictly larger than the class of stabilizer operations

even stabilizer operations where the classical control logic can consist
of arbitrary random functions of previous measurement results cannot
implement all CSP channels.

3.3 The CSP class is strictly larger than the class of stabi-
lizer operations

In this section, we prove a minimal version of the main result. The
general version, treating the multi-qudit case, is stated and proven in
Sec. 3.4.

Theorem 3.3.1. For two qubits, the set CSP2(2) is strictly larger than
SO2(2).

Concretely, we will establish that the following two-qubit channel
is completely stabilizer-preserving, but not a stabilizer operation:

Λ(ρ) := ρ00,00 |++〉〈++|+
∑

x∈{01,10,11}
ρx,x |x〉〈x |+

1
2

∑
x,y∈{01,10,11}

x 6=y

ρx,y |x〉〈y | ,

(3.13)

where |+〉 = 1√
2( |0〉+ |1〉) and ρx,y = 〈x|ρ|y〉.

The intuition behind the counter-example is as follows: First, con-
sider a projective measurement that distinguishes between |00〉 and
its orthocomplement. It is plausible that one cannot implement such
a measurement using stabilizer operations – if for no other reason
than that Pauli measurements lead to Kraus operators whose rank is
a power of two. The channel Λ may be realized by such a measure-
ment, followed by the application of Hadamard gates on all qubits
when the outcome |00〉 is obtained, or a partial dephasing operation
in the alternate case. It turns out that the second step makes Λ CSP,
while the no-go argument concerning the measurement remains valid.

Appendix 3.B describes some properties of Λ that are not directly
required for the proof below.

In the proof, we will use the fact that the channel (3.13) is an
extreme point in the convex set CSP2 ≡ CSP2(2). To show this, it
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turns out to be sufficient to restrict attention to the intersection of
CSP2 with a fairly low-dimensional affine space – a step that greatly
simplifies the description of the convex geometry.

Concretely, we define the convex set of almost-diagonal channels
AD2 as the set of two-qubit quantum channels E that act on the pure
states of the computational basis in the following way:

E(|00〉〈00|) = |++〉 〈++| , E(|x〉〈x|) = |x〉〈x| x ∈ {01, 10, 11}.
(3.14)

By comparison with Eq. (3.13) it is immediate that Λ lies in CSP2 ∩AD2.
This intersection is isomorphic, as a convex set, to a subpolytope of
the two qubit stabilizer polytope.

Definition 3.3.2. Let P2 be the polytope of complex 4× 4 matrices σ
that (1) are a convex combination of two-qubit stabilizer states, and
(2), when expressed in the basis {|00〉 , |01〉 , |10〉 , |11〉}, are of the
form

σ = 1
3


0 0 0 0
0 1 ∗ ∗
0 ∗ 1 ∗
0 ∗ ∗ 1


with ∗’s denoting arbitrary complex values.

Lemma 3.3.3. A map E lies in CSP2 ∩AD2 if and only if there exists
a σ ∈ P2 such that

E(ρ) = 3σ ◦ ρ+ 〈00|ρ|00〉 |++〉 〈++| , (3.15)

where ◦ is the Hadamard (or element-wise) product. In particular, the
polytopes CSP2 ∩AD2 and P2 are isomorphic.

Proof. “Only if”: Assume that E is CSP, i.e. its Choi state is ex-
pressible as

J (E) =
∑

s∈STAB(4)
ps|s〉〈s|. (3.16)
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The Choi state has the property that

E(|x〉〈y|) = 4(1⊗ 〈x |)J (E) (1⊗ |y 〉) = 4
∑
s
ps (1⊗ 〈x |)|s〉 〈s|(1⊗ |y 〉) ∀x, y ∈ F2

2.

(3.17)

Evaluating Eq. (3.17) on the diagonal and using Eq. (3.14) implies
that, for all s with ps 6= 0,

(1⊗ 〈00|)|s〉 ∝ |++〉 , (3.18)
(1⊗ 〈x |)|s〉 ∝ |x〉 ∀x 6= 00, (3.19)

where ∝ denotes equality up to a proportionality constant including
0.

There must be at least one |s〉 with (1 ⊗ 〈00|)|s〉 6= 0. We claim
that this implies |s〉 = |++〉|00〉 and ps = 1

4 . Indeed, assume for the
sake of reaching a contradiction that |s〉 has Schmidt rank larger than
one. Then for at least one x ∈ F2

2, the contraction (1⊗ 〈x |)|s〉 is not
proportional to |++〉. By a well-known property of stabilizer states
(c.f. Prop. 3.A.2), (1 ⊗ 〈x |)|s〉 is then orthogonal to | + +〉, which
contradicts (3.19). Thus |s〉 is a product state. The claimed form
follows from (3.18), and the value of ps from (3.17).

We now treat the terms |s〉 different from |++〉 |00〉. Equations (3.18,
3.19) and Proposition 3.A.2 imply that these stabilizer states are “di-
agonal in the computational basis” in the sense that

|s〉 =
∑
x∈F2

2

s̃(x)|x〉|x〉 for some s̃ : F2
2 → C with s̃(00) = 0.

Define the n-qudit state |s̃〉 = ∑
x s̃(x) |x〉. Then |s̃〉 is orthogonal to

|00〉. It is also a normalised stabilizer state, because it arises from the
action of a Clifford unitary on |s〉:

|s̃〉 ⊗ |00〉 = CX1,3CX2,4 |s〉 ,

where CXi,j is the controlled-NOT gate with the i-th qubit controlling
the j-th one. Setting

σ = 4
3

∑
s6=|++〉|00〉

ps |s̃〉〈s̃| ∈ P2,
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we get that for all (x, y) 6= (00, 00),

E( |x〉〈y |) = 4
∑
s
ps (1⊗ 〈x |) |s〉〈s| (1⊗ |y 〉)

= 4
∑

s6= |++ 〉 |00 〉
ps s̃(x)s̃(y) |x〉〈y |

= 3σ ◦ |x〉〈y | .

“If”: The construction above can be reversed straight-forwardly.

Under the correspondence given in Lemma 3.3.3, the channel Λ
defined in Eq. (3.13) corresponds to the matrix

λ = 1
6


0 0 0 0
0 2 1 1
0 1 2 1
0 1 1 2

 . (3.20)

Using the relative simplicity of the polytope P2, we can now show that
Λ is an extremal CSP channel.

Lemma 3.3.4. The matrix λ in Eq. (3.20) is a vertex of P2. What is
more, Λ is a vertex of CSP2.

Proof. We will establish the first claim by showing that λ is the unique
maximizer in P2 of the linear functional

L : P2 → R, σ 7→ 〈+|σ|+〉 =
∑
s
ps|〈+|s〉|2.

There are 15 stabilizer states |s〉 orthogonal to |00〉, given by

|01〉 , 2−1/2( |01〉+ ω |10〉
)
, ω ∈ {1,−1, i,−i},

and their images under permutations of {|01〉 , |10〉 , |11〉}. Among
those, the inner product |〈+|s〉|2 attains its maximum (of 1/2) exactly
for the three cases 2−1/2

(
|01〉+ |10〉

)
, 2−1/2

(
|01〉+ |11〉

)
, 2−1/2

(
|10〉+

|11〉
)
. Among the linear combinations of their projection operators, a

uniform mixture is the unique solution to the three constraints σx,x =
1/3. This solution is equal to λ.
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To prove the second claim, assume that AD2 ∩CSP2 3 E = pE1 +
(1−p)E2 for some CSP maps E1 and E2, and p ∈ [0, 1]. The extremality
of the pure states on the right hand sides of Eq. (3.14) forces E1 and
E2 to fulfil the same constraints, i.e. E1, E2 ∈ AD2 ∩CSP2. Hence,
a channel E ∈ AD2 ∩CSP2 is extremal in CSP2 if and only if it is
extremal in the subpolytope AD2 ∩CSP2.

If Λ was a stabilizer operation, Lem. 3.3.4 would imply that it is
extremal in the convex set SO2. This is because extremality of a point
in a convex set implies extremality in every convex subset containing
the point. Our strategy now is to identify a property shared by all
extremal stabilizer operations, and then to show that Λ fails to posses
it.

Theorem 3.3.5 (Pauli invariance of extremal stabilizer operations).
Let O ∈ SO2 be an extremal stabilizer operation that does not have a
Clifford dilation. Then the kernel of O contains a Pauli operator.

The proof will make use of the following lemma. It says that the
operation “preparing an ancilla stabilizer state and performing a Pauli
measurement jointly on an input and the ancilla” can be replaced by a
random Clifford channel, if the stabilizer state is not an eigenstate of
the Pauli operator. (One could also approach the statement through
the theory of quantum error correction. In this language, the measured
Pauli is a correctable error for the stabilizer code (C2)⊗n⊗|s〉, and the
Clifford unitaries that appear are the ones correcting the projections
onto the eigenspaces of the Pauli operator.)

Lemma 3.3.6. Let w(a) ⊗ w(b) be an (n + k)-qubit Pauli operator.
Denote the projectors onto the two eigenspaces of w(a)⊗w(b) by P±.
Let |s〉 be a k-qubit stabilizer state that is not an eigenstate of w(b).
Then there are two (n + k)-qubit Clifford unitaries U± such that, for
all n-qubit states |ψ〉, we have P± |ψ 〉 ⊗ |s〉 = 1√

2U± |ψ 〉 ⊗ |s〉.

Proof. There is a k-qubit Clifford unitary V which maps |s〉 7→ |0k〉
and (w(b)|s〉) 7→ |1〉|0k−1〉. There is also an n-qubit Clifford U such
that Uw(a)U † = Z1. It thus suffices to show the claim for the special
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case w(a) = Z1 and w(b)|0k〉 = |1〉|0k−1〉. In terms of a controlled
Z-gate CZ(n+1),1 (first ancilla qubit controlling the first input qubit):

P±(|ψ 〉⊗|0k〉) = 1
2
[
|ψ 〉⊗|0〉±(Z1 |ψ 〉)⊗|1〉

]
⊗|0k−1〉 = 1√

2

[
CZ(n+1),1 |ψ 〉 |±〉

]
⊗|0k−1〉.

(3.21)
Hence, we can choose U+ = CZ(n+1),1Hn+1 and U− = CZ(n+1),1Hn+1Xn+1
where Hn+1 and Xn+1 are the Hadamard and X gate acting on the
first ancilla qubit, respectively.

Proof of Theorem 3.3.5. Consider an implementation of O using ele-
mentary Clifford operations. By extremality, we may assume that no
classical randomness is used. Thus the implementation must contain
at least one Pauli measurement, for else O would have a Clifford dila-
tion. Propagating the first Pauli measurement past preceding Clifford
unitaries if necessary, there is no loss of generality in assuming that
the implementation starts by preparing k ancilla qubits in a stabi-
lizer state |s〉 and then immediately measures an (n + k)-qubit Pauli
operator w(a)⊗ w(b) with a ∈ F2n

2 and b ∈ F2k
2 .

We will show now that one may in fact assume that a 6= 0 and
b = 0, i.e. that the implementation starts by measuring a non-trivial
Pauli without involving the ancillas.

Indeed, if a = 0, the measurement only acts on the ancilla systems.
We can thus write O = p1O1 + p−1O−1, where O± are the operations
conditioned on the outcome, and the probabilities p± do not depend
on the input state. Extremality implies that either O1 = O−1 or only
one of the p± differs from 0. Hence one can eliminate the measure-
ment from the implementation and restart the proof. Iterating this
argument if necessary, we will eventually obtain a Pauli measurement
with a 6= 0, as O does not have a Clifford dilation.

Next assume that b 6= 0. First consider the case where |s〉 is not
an eigenstate of w(b). By Lemma 3.3.6, the measurement can be re-
placed by a process that applies one of two Clifford unitaries, each
with probability 1/2. Arguing as above, this process either contra-
dicts extremality or can be eliminated. Thus we may assume that
|s〉 is an eigenstate of w(b). In this case, the ancilla system affects
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the measurement process only by changing the labels of the measure-
ment results (specifically by multiplying them with the eigenvalue).
Absorbing this deterministic relabelling into any classical control, we
may set b = 0.

Let P± = 1
2(1 ± w(a)) be the projections onto the eigenspaces of

w(a). Choose any two-qubit Pauli operator w(u) that anti-commutes
with w(a). Using the above expression for P±, one finds P±w(u)P± = 0
and thus w(u) is in the kernel of both initial branches of O, hence
w(u) ∈ kerO.

The following lemma is thus sufficient to establish Theorem 3.3.1.

Lemma 3.3.7. Let Λ be as in Eq. (3.13). Then Λ has no Clifford
dilation, and ker Λ does not contain a Pauli operator.

Proof. Assume, for the sake of reaching a contradiction, that Λ does
have a Clifford dilation. Then Λ† maps Pauli operators to Pauli oper-
ators, up to a phase. From Eq. (3.13):

0 = 〈++|Z1 |++〉 = Tr
(
|00〉〈00|Λ†(Z1)

)
, (3.22)

(−1)x = 〈xy|Z1 |xy〉 = Tr
(
|xy 〉〈xy |Λ†(Z1)

)
, |xy〉 ∈ {|01〉, |10〉, |11〉}.

(3.23)

Eq. (3.22) implies that Λ†(Z1) is proportional to X or Y on at least
one of the factors. This, however, is incompatible with Eq. (3.23),
which is the sought-for contradiction.

One reads off Eq. (3.13) that Λ(|x〉〈y |) = 0 if and only if x = 0 and
y 6= 0 or x 6= 0 and y = 0. That means that the kernel of Λ consists
of the operators of the form

0 ∗ ∗ ∗
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 , (3.24)

each of which has rank at most 2. In particular, this rules out Pauli
operators.
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3.4 General formulation

In this section, we generalise Theorem 3.3.1 to our main result: CSPn(d)
strictly contains SOn(d) for any (prime) dimension d and system size
n ≥ 2.

Theorem 3.4.1 (SOn ( CSPn). For any prime dimension d, we have
CSPn(d) = SOn(d) if and only if n = 1. In particular, the set of CSP
maps is strictly larger than the set of stabilizer operations for n ≥ 2.

The proof of Theorem 6.3.1 is accomplished in two parts. The
equality in the case n = 1 is proven independently in Sec. 3.4.3. For
the case n ≥ 2, we start with an identical approach as in Sec. 3.3 and
concentrate on the intersection of CSPn(d) with almost-diagonal (AD)
channels. Although the proof strategy of Sec. 3.3 based on Pauli in-
variances, i.e. Theorem 3.3.5, also works for arbitrary d and n ≥ 2, we
follow a more direct route in this section. As we show, the restriction
to AD channels directly simplifies the description of both general CSP
channels and stabilizer operations considerably. Using this result, it
is then straightforward to define a linear functional L which separates
the almost-diagonal CSP channels from stabilizer operations. As we
show, this linear functional is again maximal on a generalisation of
the Λ channel to be defined later, cp. Eq. (3.13).

To arrive at the mentioned simplification for stabilizer operations,
we first derive a suitable “normal form” in Sec. 3.4.1.

3.4.1 Normal form for stabilizer operations

In this section, we show that any stabilizer operation is a convex com-
bination of circuits performing a projective stabilizer measurement on
the input followed by a global, ancilla-assisted Clifford unitary condi-
tioned on the measurement outcome.

Theorem 3.4.2 (Kraus decomposition of SO). Consider the family
of stabilizer operations in SOn,m(d) of the following type:

E(ρ) = Trm+1,...,n+r
∑
i

Ui (PiρPi ⊗ |0r〉〈0r|)U †i , (3.25)
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where {Pi} is a projective measurement given by mutually orthogonal
stabilizer code projectors and the Ui’s are Clifford unitaries acting on
n+ r qudits. Then, the following holds:

(i) Any O ∈ SOn,m(d) is a convex combination of SO of the above
type (3.25).

(ii) In particular, any stabilizer operation can be realised in at most
n rounds.

Remark 3.4.3. A projective measurement composed of mutually or-
thogonal stabilizer code projectors is not necessarily associated to a
single set of mutually commuting Pauli operators (i.e. a syndrome
measurement). An example for this is the measurement of the basis
{|00〉 , |01〉 , |1+〉 , |1−〉}.

The proof of Theorem 3.4.2 is similar to related results in Ref. [CB09]
and Ref. [BCHK20, Thm. 5.3]. However, the latter works focus on the
form of post-selected stabilizer operations, i.e. on the form of a single
Kraus operator in Eq. (3.25). Moreover, Ref. [BCHK20] only consid-
ers the form of post-selected stabilizer operations which map a fixed
input to a fixed output state. Here, we show that a careful argumen-
tation allows us to manipulate all Kraus operators simultaneously to
arrive at a similar result for the entire quantum channel. The

To prove Theorem 3.4.2, we use Lemmata 3.4.4 and 3.4.5 to elimi-
nate non-commuting Pauli measurements and Pauli measurements on
ancilla qudits. In this way, an arbitrary stabilizer operation can be
iteratively decomposed into a convex combination of stabilizer opera-
tions of the form (3.25).

Lemma 3.4.4 generalises [CB09, Sec. 6] and [BCHK20, Prop. A8]
to arbitrary prime dimension d.

Lemma 3.4.4. Suppose P1 and P2 are non-commuting [[n, n−1]] sta-
bilizer code projectors. Then, P1P2 = d−1/2V P2 for a suitable Clifford
unitary V .

Proof. Pairs of non-commuting [[n, n−1]] stabilizer codes form a single
orbit under the Clifford group. To see this, let w1 and w2 be Pauli
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operators that generate such a pair P1 and P2 and let w̃1, w̃2 generate
another pair P̃1 and P̃2. By redefining the generators with a suitable
power of ω, we can assume that w1w2 = ωw2w1 and w̃1w̃2 = ωw̃2w̃1.
Then there is a Clifford unitary U mapping w1 to w̃1 and w2 to w̃2
and thus P1 to P̃1 and P2 to P̃2 as claimed. Thus, we may assume
that P1 = |+〉〈+| ⊗ 1n−1 and P2 = |0〉〈0| ⊗ 1n−1 and clearly P1P2 =
|+〉〈+| |0〉〈0| ⊗ 1n−1 = 1√

d
HP2 where H is the Hadamard gate.

The following lemma is a generalisation of Lemma 3.3.6 to any
prime dimension d.
Lemma 3.4.5. Let w(a)⊗w(b) be a (n+ k)-qudit Pauli operator and
let |s〉 be a k-qudit stabilizer state which is not an eigenstate of w(b).
For any x ∈ Fd, denote the projector onto the eigenspace of w(a)⊗w(b)
with eigenvalue ωx by Px. Then, there are Clifford unitaries Ux such
that Px |ψ 〉 ⊗ |s〉 = d−1/2Ux |ψ 〉 ⊗ |s〉 for all ψ ∈ (Cd)⊗n and x ∈ Fd.

Proof. Since |s〉 is not an eigenstate of w(b), the stabilizer states
w(xb) |s〉 for x ∈ Fd are part of the same stabilizer basis. In particular,
there is a Clifford unitary V such that V w(xb) |s〉 = |x〉 |0k−1〉 More-
over, there is a Clifford unitary U such that Uw(a)U † = Z1. Thus,
up to acting with U on the input register, and with V on the ancilla
register, we may assume that w(a) = Z1 and w(xb)|0k〉 = |x〉|0k−1〉. In
terms of a controlled Z-gate CZn+1,1 (first ancilla qudit controlling the
first input qudit), the action of the projections onto the eigenspaces
of w(a)⊗ w(b) is then given by

Px |ψ 〉⊗|0k〉 = 1
d

[ ∑
y∈Fd

ωxy
(
Zx

1 |ψ 〉
)
⊗|x〉

]
⊗|0k−1〉 = 1√

d

[
CZn+1,1

(
|ψ 〉⊗H |x〉

)]
⊗|0k−1〉.

(3.26)
Thus, the claim holds for the Clifford unitary Ux := CZn+1,1Hn+1Xn+1(x).

Proof of Theorem 3.4.2. Suppose O is a stabilizer operation which
does not explicitly use classical randomness and involves l Pauli mea-
surements with outcomes labelled by the ditstring x = (x1, . . . , xl) ∈
Fld. Let us introduce the shorthand notation x[k] := (x1, . . . , xk). Since
the partial trace is linear and the size of the ancilla system stays fixed
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throughout the proof, we can ignore the possibility of tracing out qu-
dits. Hence, O can be taken as follows:

O(ρ) =
∑
x∈Fld

K(x)ρ⊗ |0r〉〈0r|K(x)†, K(x) = U(x)P (xl |x[l−1])P (xl−1 |x[l−2]) · · ·P (x1).

(3.27)

Without loss of generality, the Kraus operators K(x) are given by con-
secutive projectors P associated to outcomes of Pauli measurements,
and a global Clifford unitary U at the end. All operations may be
conditioned on previous measurement outcomes. The projectors ful-
fil the POVM condition ∑

xk P (xk |x[k−1]) = 1 for all k and previous
outcomes x[k−1] ∈ Fk−1

d . We can visualise the SO as a regular tree
with root given by the initial measurement and branches correspond-
ing to sequences of measurement outcomes. The vertices of the tree
are labelled by Pauli measurements (see Fig. 3.2).

Initial Measurement

P (0)

P (0|0)

P (0|00)P (1|00)

P (1|0)

P (1)

P (0|1) P (1|1)

= 1
2

Initial Measurement

P (0)

U(00)

P (0|00)P (1|00)

P (1)

P (0|1) P (1|1)
+ 1

2

Initial Measurement

P (0)

U(10)

P (1)

P (0|1) P (1|1)

Figure 3.2: Illustration of a tree model of a qubit stabilizer operation. The nodes cor-
respond to outcomes of measurements which in turn depend on the previous outcomes
x[k] ∈ Fk

2. We omit all nodes given by trivial measurements. If a Pauli measurement acts
non-trivially on the ancilla state (in the given case P (0|0) and P (1|0) in red), the SO
coincides with a uniform convex combination of two SOs, where the measurements P (0|0)
and P (1|0) are replaced by Clifford unitaries U(00) and U(10).

We first argue that we can write O as a convex combination of sta-
bilizer operations which do not measure ancilla qudits. To this end, we
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use Lemma 3.4.5 to replace any Pauli measurement involving the an-
cilla system by a convex combination of suitable Clifford unitaries act-
ing on input and ancilla system. We prove this via induction over the
depth k of the tree, starting from the root k = 1 and progressing to the
leaves k = l. Assume that up to depth k−1, all measurements are act-
ing trivially on the ancilla system. This implies that in every branch,
the ancilla system is still in the initial state |0r〉. Let Xk−1 be the set of
previous outcomes x[k−1], such that the k-th measurement conditioned
on x[k−1] ∈ Xk−1 acts non-trivially on ancilla qudits. By Lemma 3.3.6,
we can then write P (xk|x[k−1]) |ψ 〉 ⊗ |0r〉 = d−1/2U(x[k]) |ψ 〉 ⊗ |0r〉
for all input states |ψ 〉 and suitable Clifford unitaries U(x[k]). For
branches starting with x[k−1], we can thus treat xk as the outcome of
a classical, uniformly distributed random variable Y . By conditioning
on the outcome y ∈ Fd of this random variable, we get new stabilizer
operations O(y) given by the Kraus operators

K ′(xl, . . . , xk+1, y, x[k−1]) := d1/2K(xl, . . . , xk+1, y, x[k−1]), x[k−1] ∈ Xk−1,

(3.28)
K ′(xl, . . . , xk, x[k−1]) := K(xl, . . . , xk, x[k−1]), x[k−1] /∈ Xk−1.

(3.29)

O(y) performs the same operation as O if the first k− 1 outcomes are
not in Xk−1 and otherwise applies the Clifford unitary U(y, x[k−1]) and
follows the branch determined by (y, x[k−1]), see Fig. 3.2. In particular,
it is indeed a stabilizer operation and O = d−1 ∑

yO(y). Moreover, all
measurements in O(y) act trivially on the ancilla system up to depth
k. We proceed with the induction for O(y). This shows that O is a
convex combination of stabilizer operations of the form (3.27), where
the measurements do not act on the k ancilla qudits.

Next, let us assume that the measurements in O act on the input
system only. Then, using Lemma 3.4.4, we show that it is a convex
combination of stabilizer operations where the measurements are given
by mutually orthogonal stabilizer code projectors. To this end, we
consider consecutive measurements along a branch and argue again via
induction over the depth k of the tree. Assume that up to depth k−1,
all consecutive measurements are mutually commuting. Let Xk−1 ⊂
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Fd be the set of outcomes x[k−1] such that the Pauli measurement given
by P (xk|x[k−1]) is not commuting with a previous measurement, say
P (xt|x[t−1]) for t < k. Since by assumption the previous measurements
mutually commute, we can write using Lemma 3.4.4

P (xk |x[k−1])P (xk−1 |x[k−2]) · · ·P (xt|x[t−1]) · · ·P (x1)
= P (xk |x[k−1])P (xt|x[t−1])P (xk−1 |x[k−2]) · · ·P (x1)
= d−1/2V (x[k])P (xt|x[t−1])P (xk−1 |x[k−2]) · · ·P (x1)
= d−1/2V (x[k])P (xk−1 |x[k−2]) · · ·P (xt|x[t−1]) · · ·P (x1),

(3.30)

for suitable Clifford unitaries V (x[k]). Note that the remaining projec-
tors are mutually commuting by assumption. As before, this implies
that for all branches starting with x[k−1] ∈ Xk−1, we can treat xk ≡ y

as the outcome of a classical, uniformly distributed random variable
Y and obtain new stabilizer operations O(y) by conditioning on its
outcomes y ∈ Fd:

K ′(xl, . . . , xk+1, y, x[k−1]) := d1/2K(xl, . . . , xk+1, y, x[k−1]), x[k−1] ∈ Xk−1,

(3.31)
K ′(xl, . . . , xk, x[k−1]) := K(xl, . . . , xk, x[k−1]), x[k−1] /∈ Xk−1.

(3.32)

As in the previous argument, we haveO = d−1 ∑
yO(y) and proceeding

with the induction for all O(y) shows that O can be written as a
convex combination of stabilizer operations involving only mutually
commuting, consecutive measurements.

Combining the above arguments shows that the initial stabilizer
operation O defined in Eq. (3.27) is a convex combination of stabi-
lizer operations O′ where all consecutive measurements are mutually
commuting and not acting on ancilla qudits. This implies that the
mutually commuting projectors in every branch i of the SO O′ de-
fine a stabilizer code projector Pi and trace-preservation requires that∑
i Pi = 1. Taking the trace inner product with some Pj shows that
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this can only be fulfilled if the projectors are mutually orthogonal.
Hence, the terms in the convex combination are of the required type
(3.25). The additional use of classical randomness simply allows for ar-
bitrary convex combinations of stabilizer operations of type (3.25).

3.4.2 Separation of CSP and SO in higher dimensions

To prove our main Theorem 6.3.1, we proceed by generalizing the re-
sults of Sec. 3.3 on almost-diagonal channels and derive constraints
on almost-diagonal stabilizer operations using the normal form in
Thm. 3.4.2.

As in Sec. 3.3, we define the convex set of almost-diagonal channels
ADn(d) as the set of quantum channels E : L((Cd)⊗n) → L((Cd)⊗n)
that act on the computational basis in the following way:

E(|0〉〈0|) = |+〉〈+ | , E(|x〉〈x |) = |x〉〈x | x ∈ Fnd \ 0, (3.33)

where we denote |+〉 := d−n/2
∑
x∈Fnd |x〉. A high-level reason why

ADn(d) might be relevant for the separation of CSPn(d) and SOn(d)
is given by the observation that ADn(d) defines a face of the convex
set of quantum channels. In particular, ADn(d)∩CSPn(d) is a face of
the CSP polytope and thus lies in its boundary. To see this, consider
the linear functional on quantum channels,

L(E) := 1
dn

 〈+| E( |0〉〈0|) |+〉+
∑
x 6=0
〈x| E(|x〉〈x |) |x〉

 ≤ 1
dn

(1 + (dn − 1) · 1) = 1,

(3.34)

with equality if and only if E satisfies Eq. (3.33). This shows that
ADn(d) is the intersection of a supporting hyperplane with the set of
quantum channels, in particular it is a face.

As in the case d = n = 2, the subpolytope ADn(d) ∩ CSPn(d) of
CSPn(d) is isomorphic to a subpolytope Pn(d) of the n-qudit stabilizer
polytope which we define in the following.

Definition 3.4.6. Let Pn(d) be the polytope of matrices σ such that
(1) σ is a convex combination of n-qudit stabilizer states orthogonal
to |0〉, and (2) the diagonal entries are σx,x = (dn − 1)−1δx 6=0.
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Lemma 3.4.7. Let E ∈ ADn(d) be an almost-diagonal quantum chan-
nel on n qudits. Then E is CSP if and only if it is of the form

E(ρ) = (dn − 1)σ ◦ ρ+ 〈0|ρ|0〉 |+〉〈+|, (3.35)

where ◦ denotes the Hadamard (or element-wise) product of two ma-
trices and σ ∈ Pn(d). In particular, the polytopes ADn(d) and Pn(d)
are isomorphic.

The proof of Lemma 3.4.7 is analogous to the case d = n = 2,
i.e. Lemma 3.3.3, and is thus omitted. Lemma 3.4.7 implies that any
CSP map fulfilling the constraints (3.33) is indeed “almost-diagonal”
in the computational basis in the sense that E(|x〉〈y |) ∝ |x〉〈y | except
for x = y = 0. Hence, the matrix representation of E is a diagonal
matrix with the first column (corresponding to x = y = 0) replaced
by (d−n, . . . , d−n)>.

Lemma 3.4.8. Any stabilizer operation in the subpolytope ADn(d) ∩
CSPn(d) is in the convex hull of stabilizer operations O defined through
Lemma 3.4.7 by mixed stabilizer states

σ = 1
dn − 1

∑
K∈K
|K| |sK 〉〈sK | ∈ Pn, (3.36)

where K is a disjoint partition of Fnd \ 0 by affine spaces K ⊂ Fnd and
|sK 〉 are stabilizer states supported on K.

Remark 3.4.9. Note that not every σ of the form (3.36) gives rise to
a stabilizer operation E ∈ ADn(d)∩ SOn(d). For stabilizer operations,
only particular partitions K are allowed. These partitions exhibit a
certain tree structure, as explained in Proposition 3.5.1 and [CB09].

Moreover, not all such σ are extremal within the polytope Pn(d).
For example, if a stabilizer operation contains the measurement of a
Pauli operator and the measurement is not followed by an operation
that is conditioned on at least one of the measurement outcomes, then
such an operation cannot be extremal. In this case, the measurement
can be replaced by a convex combination of Clifford unitaries. This is
a consequence of Lemma 3.C.1 in App. 3.C.
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To prove Lemma 3.4.8, we make use of the following Lemma which
allows us to discard ancillary qubits for stabilizer operations in ADn(d).

Lemma 3.4.10. Assume U ∈ Cln+k(d) acts as U(|0k〉⊗|x〉) = cx |sx 〉⊗
|x〉 for cx ∈ C, some k-qudit stabilizer state |sx 〉 and x is taking val-
ues in a subset K ⊂ Fnd . Then, there exists a diagonal Clifford unitary
D ∈ Cln(d) and a subspace M ⊂ Fnd such that the following identity
holds for all x, y ∈ K:

Tr1,...,k
(
U |0k〉〈0k| ⊗ |x〉〈y |U †

)
= D

|M |∑
j=1

Qj |x〉〈y |Qj

D†. (3.37)

Here, Qj are the mutually orthogonal projectors onto the joint eigenspaces
of Z(z) for z ∈M .

As we do not use this formulation in the following, we leave it to
the reader to verify that the right hand side of Eq. (3.37) can also be
written as
|M |∑
j=1

Qj |x〉〈y |Qj = 1
|M |

∑
z∈M

Z(z) |x〉〈y |Z(z)†, ∀x, y ∈ Fnd . (3.38)

Proof. The stabilizers of the states |sx 〉 can only differ by a character
and hence we can find a Clifford V ∈ Clk(d) on the first system such
that V |sx 〉 = |f(x)〉 with f(x) ∈ Fnd for all x ∈ K. Moreover, we find
using the cyclicity of the partial trace:

Tr1,...,k
(
U |0k〉〈0k| ⊗ |x〉〈y |U †

)
= Tr1,...,k

(
(V ⊗ 1)U |0k〉〈0k| ⊗ |x〉〈y |U †(V † ⊗ 1)

)
.

(3.39)

Hence, we may without loss of generality assume that U(|0k〉⊗ |x〉) =
cx |f(x)〉 ⊗ |x〉 for a suitable function f on K ⊂ Fkd. It is well-known
that the Clifford subgroup which normalises the group of Pauli Z
operators is given as the semi-direct product of diagonal Clifford uni-
taries and CX circuits (this follows for instance from the properties
of the associated "Siegel parabolic subgroup" of the symplectic group
Sp2n(F2), see e.g. Ref. [Hei21]). Thus, the only Clifford unitaries which
map computational basis states to computational basis states up to
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phases are given by this normalizer and X gates. Since the second
system is fixed for all x ∈ K, we can assume that the X gates act on
the first system only and can thus be discarded using the cyclicity of
the partial trace, cp. Eq. (3.39). Then, the form of diagonal Cliffords
(see e. g. Ref. [DDM03]) implies that cx = 〈x|D |x〉 for some diago-
nal Clifford unitary D ∈ Cln(d). Moreover, we can find a linear map
F ∈ GLn+k(Fd) such that F (0, x) = (f(x), x) and hence, f is linear.

Next, we argue that we can infer whether 〈f(y)|f(x)〉 is zero or one
by a suitable measurement on the second system. To this end, note
that this overlap is one exactly if f(x) = f(y), i.e. x− y ∈ ker f . This
in turn the case if and only if z · (x− y) = 0 for all z ∈M := (ker f)⊥,
hence if and only if |x〉 and |y 〉 lie in the same joint eigenspace of the
stabilizer group {Z(z) | z ∈ M}. Note that any computational basis
state always lies in one of the eigenspaces. Let Qj for j = 1, . . . , |M |
be the projectors on these stabilizer codes. We thus find

D

|M |∑
j=1

Qj |x〉〈y |Qj

D† = c̄ycx 〈f(y)|f(x)〉 |x〉〈y | = Tr1,...,k
(
U |0k〉〈0k| ⊗ |x〉〈y |U †

)
.

(3.40)

Proof of Lemma 3.4.8. Assume that O ∈ ADn(d) is a stabilizer oper-
ation. Without loss of generality, we can assume that O is extremal
in SOn(d), since any O ∈ ADn(d)∩SOn(d) can be written as a convex
combination of extremal SO in ADn(d) by the same argument as in
Lemma 3.3.4. By Proposition 3.4.2, we can thus assume that O has
the following form

O(ρ) = Tr1,...,k
N∑
i=1

Ui
(
|0k〉〈0k| ⊗ PiρPi

)
U †i , (3.41)

where the Pi are mutually orthogonal stabilizer code projectors of rank
dn−ri on the input system, and the Ui are Clifford unitaries conditioned
on the measurement outcomes. Let Õ ∈ SOn,n+k be the SO given
by Eq. (3.41) without the partial trace. Since the defining condition
(3.14) for ADn requires that the reduced state Tr1,...,k Õ(|x〉〈x |) is pure
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for all x ∈ Fnd , it is necessary that Õ(|x〉〈x |) = ρx ⊗ |x〉〈x | for x 6= 0
and Õ( |0〉〈0|) = ρ0 ⊗ |+〉〈+| else. Similar to Eq. (3.19) before, this
requires that

Ui
(
|0k〉 ⊗ Pi|0n〉

)
∝ |si,0 〉 ⊗ |+〉 , (3.42)

Ui
(
|0k〉 ⊗ Pi |x〉

)
∝ |si,x 〉 ⊗ |x〉 , x 6= 0, (3.43)

where proportionality can also mean that the RHS vanishes.
Let i be such that Eq. (3.42) holds with non-vanishing constant,

without loss of generality i = 1. If any of the Pi were non-diagonal,
a standard argument (cp. Lem. 3.A.3 in App. 3.A) would show that
there exist distinct computational basis states |x〉 6= |y 〉 such that
Pi |x〉 = Pi |y 〉 6= 0, which would contradict Eqs. (3.42) and (3.43).
Thus, all Pi are diagonal. Moreover, if P1 had rank larger than 1, there
would be a x 6= 0 such that P1 |x〉 = |x〉 is orthogonal to P1 |0〉 =
|0〉. But then, the second factor of U1( |0〉 ⊗ P1 |x〉) has to be an X
eigenstate, in contradiction to Eq. (3.43). Hence, the projectors have
the form

P1 = |0〉〈0| , Pi =
∑
x∈Ki

|x〉〈x | , (3.44)

where 0 /∈ Ki ⊂ Fnd is an affine subspace not containing zero. Then,
orthogonality of the Pi implies that the Ki form a disjoint partition
of Fnd \ 0.

Note that we can assume that U1 = V ⊗H⊗n (up to Z operators).
Therefore, we can simply trace out the ancilla for the first term. For
i > 1, consider the conditional Clifford unitary Ui which acts on the
code spaceKi as Ui |0〉⊗|x〉 = ci(x) |si,x 〉⊗|x〉 where ci(x) ∈ C. Then,
we can use Lemma 3.4.10 to replace this action by a diagonal Clifford
Di and mi mutually orthogonal diagonal stabilizer code projectors on
the input system. We can write these projectors as

Qi
j =

∑
x∈Aij
|x〉〈x | , j = 1, . . . ,mi, (3.45)

where Ai
j ⊂ Fnd are suitable affine subspaces (which might contain

zero), forming a disjoint partition of Fnd . Now consider
Pi,j := Qi

jPi =
∑

x∈Aij∩Ki

|x〉〈x | . (3.46)
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Here, K i
j := Ai

j ∩Ki is an affine subspace not containing zero. Note
that {K i

j}j=1,...,mi
is a disjoint partition of Ki and thus, the affine

subspaces K := {K i
j | i = 2, . . . , N, j = 1, . . . ,mi} obtained in this

way form a disjoint partition of Fnd \ 0. Finally, we can write

O(ρ) = |+〉〈0| ρ |0〉〈+|+
N∑
i=2

mi∑
j=1

DiQ
i
jPiρPiQ

i
jD
†
i = |+〉〈0| ρ |0〉〈+|+(dn−1)σ◦ρ,

(3.47)
where

σ = 1
dn − 1

∑
(i,j)
|K i

j| |si,j 〉〈si,j | , |si,j 〉 := |K i
j|−

1
2
∑
x∈Ki

j

Di |x〉 .

(3.48)
To see that this is indeed an ADn channel, note that any of the |si,j 〉
is a stabilizer state and as the K i

j form a disjoint partition of Fnd \ 0, σ
is a proper convex combination and hence in SPn(d). Finally, we have
〈0|σ |x〉 = 0 for all x ∈ Fnd and for x 6= 0:

(dn − 1) 〈x|σ |x〉 =
∑
(i,j)
|K i

j| | 〈x|si,j〉 |2 =
∑
(i,j)

1Ki
j
(x). (3.49)

Since any x 6= 0 is in exactly one affine subspace K i
j, we thus find

σ ∈ Pn(d).

In Section 3.3, Lemma 3.4.11 has been proven for the case n = d =
2. Here, we treat the general case.

Lemma 3.4.11. The matrix λ with elements

λx,tx = λtx,x = (dn − 1)−1δt,1, ∀x ∈ Fnd , t ∈ Fd, λx,y = d−1(dn − 1)−1, ∀ 0 6= x 6= y 6= 0

is the unique maximizer in Pn of the linear function L : σ 7→ 〈+|σ |+〉
with L(λ) = 1/d. In particular, λ is a vertex of Pn.

Proof of Lemma 3.4.11. For any σ ∈ Pn, we have

L(σ) = 〈+|σ|+〉 =
∑
s
ps|〈+|s〉|2, (3.50)

where |s〉 ranges over stabilizer states orthogonal to |0〉. Among those,
the inner product | 〈+|s〉 |2 is maximal and equal to 1/d exactly for
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states such that 〈x|s〉 is proportional to an indicator function on an
affine space K of codimension 1 with 0 6= K. We call K a proper
affine hyperplane.

We can write any affine hyperplane as K = V + w where V is a
linear subspace of codimension 1 and w is an affine shift. Those are
only determined modulo V , hence there are |Fnd/V | = d many. The
condition 0 6= K implies that the shift cannot be trivial, eliminating
one possibility. The number of linear subspaces of codimension 1 is
given by the Gaussian binomial coefficient

(
n
n−1

)
d

= 1−dn
1−d , hence the

number of proper affine hyperplanes is (d− 1)1−dn
1−d = dn − 1.

Define λ to be the uniform convex combination of all maximizing
stabilizer states |K 〉 given by indicator functions on the proper affine
hyperplanes K. For any x ∈ Fnd \ 0, the diagonal entry λx,x is the
overlap 〈x|K〉 ∝ 1K(x) averaged over K. As GL(Fnd) acts transitively
on both the non-zero points in Fnd and the affine spaces not containing
zero, λx,x cannot depend on x 6= 0. Since Trλ = 1 and λ0,0 = 0,
we thus find λx,x = (dn − 1)−1. For the off-diagonal entries λx,y with
x 6= y, we can argue similarly. First, as no K contains zero, we have
λx,0 = λ0,x = 0. Moreover, if x ∈ K, no non-trivial multiple of x is in
K, thus λx,tx = λtx,x = 0 for t 6= 1. In any other case, {x, y} is linearly
independent and transitivity again implies that λx,y cannot depend on
(x, y). There are in total (dn − 1)(dn − d) many of these pairs. By
construction, L(λ) = 1/d, and writing out this condition then yields
λx,y = d−1(dn − 1)−1.

It remains to be shown that this solution is unique. To this end,
we claim that the dn − 1 indicator functions 1K on the proper affine
hyperplanes K are linearly independent. As the main diagonal of the
density matrix of any stabilizer state |K 〉 is proportional to 1K , the
dn − 1 constraints σx,x = (dn − 1)−1 for x 6= 0 defining Pn then single
out the above constructed λ.

To prove the claim, we apply the standard (cyclic) Fourier trans-
form on Fnd . Clearly, the set of indicator functions on proper affine
hyperplanes {1K} is linearly independent if and only if their Fourier
transforms are. The image of the indicator function on K = V +w is
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a function with support on V ⊥ and values proportional to the additive
character

χ : V ⊥ → C, x 7→ ωw·x.

As we assume w to be non-trivial, varying w results in the set of non-
trivial characters on the one-dimensional subspace V ⊥. Thus, the set
{1K} maps to the set of non-trivial characters on the one-dimensional
subspaces of Fnd . On a fixed subspace V ⊥, the non-trivial characters
are linearly independent and this is still true for their restriction to the
non-zero points V ⊥ \ 0. Since the non-zero points of one-dimensional
subspaces form a disjoint partition of Fnd \ 0, the set of all non-trivial
characters of one-dimensional subspaces is also linearly independent.

From the proof and Lemma 3.4.7 it is clear that the matrix λ defines
a CSP channel which should be understood as a generalisation of the
Λ channel given for n = d = 2 in Sec. 3.3. For qubits, d = 2, this
channel reads as follows:

Λ(ρ) := ρ00 |+〉〈+|+
∑

x∈Fn2\0
ρxx |x〉〈x |+

1
2

∑
x,y∈Fn2\0
x 6=y

ρxy |x〉〈y | , ρxy := 〈x| ρ |y〉 .

(3.51)
The n ≥ 2 case in our main Theorem 6.3.1 now follows from

the straightforward observation that the linear functional L is always
strictly less than its maximum 1/d on elements of the form given in
Lemma 3.4.8, in particular on stabilizer operations.

Corollary 3.4.12 (SOn ∩ADn 6= CSPn ∩ADn). For n ≥ 2, the value
of the linear functional L on SOn ∩ADn is strictly smaller than 1/d =
L(λ). In particular, SOn ∩ADn 6= CSPn ∩ADn.

Proof. Consider a stabilizer operation with σ ∈ Pn as constructed in
Lemma 3.4.8, i.e.

σ = 1
dn − 1

∑
K∈K
|K| |sK 〉〈sK | . (3.52)
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Since n ≥ 2, the disjoint partition K of Fnd \ {0} cannot only con-
tain affine subspaces K of codimension 1, so |〈+|sK〉|2 ≤ 1/d and
|〈+|sK〉|2 < 1/d for at least one K ∈ K. Hence,

〈+|σ|+〉 = 1
dn − 1

∑
K∈K
|K| |〈+|sK〉|2 <

1
dn − 1

∑
K∈K
|K|1

d
= 1
d
. (3.53)

Remark 3.4.13. To get a quantitative statement about the separation
of SOn and CSPn within the polytope ADn, we give a upper bound for

max
σ∈SOn ∩ADn

〈+|σ|+〉. (3.54)

As in Eq. 3.53, we have

〈+|σ|+〉 = 1
dn − 1

∑
K∈K
|K| |〈+|sK〉|2 ≤

1
dn − 1

∑
K∈K
|K||K|

dn
= 1
dn(dn − 1)

∑
K∈K
|K|2.

(3.55)

The RHS gets large when affine subspaces in the disjoint partition K
of Fn2 \ {0} have large cardinality. However, the partition K must be
chosen according to Thm. 3.4.2. Thus, all projectors |sK 〉〈sK | belong
to a projective measurement, which also contains the measurement of
|0n 〉〈0n |, due to the proof of Lemma 3.4.8. We conjecture that such
a projective measurement which maximizes (3.55) has the following
form:

(i) Measure the first qudit in the computational basis.

(ii) If x 6= 0 is measured, do nothing. If 0 is measured, measure the
second qudit in the computational basis. Continue in this fashion
until all qubits are measured.

(iii) If 0 has been measured on every qudit, apply a Hadamard gate to
every qudit.

Then, |sK 〉 = ∑
x∈K |x〉 and every K is of the form

K = xei + (0i ⊕ Fn−id ) with x ∈ {1, . . . , d− 1}, |K| = dn−i,
(3.56)
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where ei is the i-th standard basis vector for i = 0, . . . . , n− 1. Thus,
we have

∑
K∈K
|K|2 =

n−1∑
k=0

(d− 1)d2k = (d− 1) d
2n−2

d2 − 1 , (3.57)

where we used that the expression is a geometric sum. Hence,

〈+|σ|+〉 =
∑
K∈K
|K||K|

dn
= 1
dn(dn − 1)

∑
K∈K
|K|2

= (d− 1)d2n−2

dn(dn − 1)(d2 − 1) = (d− 1)dn−2

(dn − 1)(d2 − 1) ≈
1
d3 . (3.58)

As the above stabilizer operation gives a upper bound on maxσ∈SOn ∩ADn
〈+|σ|+〉,

this shows a separation between SOn ∩ADn and CSPn ∩ADn which
depends, however, only on d and not on n.

3.4.3 Equality of SO and CSP in the single-qudit case

In this section, we will prove that CSP-channels coincide with stabi-
lizer operations in the single-qudit case. More precisely, we will show
that every extremal CSP-map is a Pauli measurement followed Clif-
ford unitaries conditioned on the possible measurement outcomes. In
the proof we will make use of the polar form of CSP-maps, Eq. (3.69),
App. 3.5 (for more details, see [Hei21]).

To prove the statement, we will use the following auxiliary lemma:

Lemma 3.4.14. Suppose E ∈ CSPn is a CSP map given in the polar
form (3.69)

E =
∑
i

ciUiPi · PiU †i , where ci > 0 for all i. (3.59)

Assume that there exists an index pair (k, `) with Pk = P` but UkPk 6=
U`P`. Then, E is not extremal.
Proof. Since E ∈ CSPn, the projectors Pi satisfy the TP-condition
(3.70)

1 = ckPk + c`P` +
∑

k 6=i6=`
ciPi (3.60)



67 3.4. General formulation

and therefore

1 = (ck + c`)Pk +
∑

k 6=i 6=`
ciPi and 1 = (ck + c`)P` +

∑
k 6=i6=`

ciPi.

(3.61)

Hence, E is a convex combination E = ck
ck+c`Ek + c`

ck+c`E` of the two
distinct CSP-channels

Ek = (ck + c`)UkPk · PkUk +
∑

k 6=i 6=`
ciUiPi · PiU †i ,

E` = (ck + c`)U`P` · P`U` +
∑

k 6=i6=`
ciUiPi · PiU †i ,

(3.62)

so E cannot be extremal.

Theorem 3.4.15. Let E ∈ CSP1 be an extremal CSP map on a single
qudit of prime dimension d. Then, either E = U ·U † for some Clifford
unitary U or E is of the form

E =
d∑
i=1

UiPi · PiU †i , (3.63)

where {Pi} are the d mutually orthogonal stabilizer code projectors
associated to the eigenspaces of a Pauli operator and {Ui} are Clif-
ford unitaries. Since such a channel E can be realised via stabilizer
operations, it follows SO1 = CSP1.

Proof. Using the characterization of completely stabilizer preserving
maps, cf. Eq. (3.69), we may assume that a 1-qudit CSP channel is of
the form

E = d
∑
i

λiUiPi · PiU †i +
∑
j

λ̂jVj · V †j (3.64)

for coefficients λi, λ̂j ≥ 0 with ∑
i λi + ∑

j λ̂j = 1, Clifford unitaries
Ui, Vj and stabilizer code projectors Pi which satisfy the TP-condition
(3.70) :

1 = E†(1) = d
∑
i

λiPi. (3.65)
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Since any channel that simply conjugates the input with a Clifford
unitary U is already an extremal CSP channel, E can only be extremal
if (1) there is exactly one non-zero λ̂j and λi = 0 for all i (which means
that E = U · U † for some Clifford unitary U), or (2) λ̂j = 0 for all j.

In the second case, note that for n = 1, all stabilizer projectors
have rank 1 and project onto a stabilizer state. There are in total
d(d+ 1) stabilizer states |φi,a 〉 which form a complete set of mutually
unbiased bases, in particular for any a = 1, . . . , d+ 1 the set {|φi,a 〉}i
is an orthonormal basis. By Lemma 3.4.14, we can assume that every
projector |φi,a 〉〈φi,a | only occurs at most once in E . Thus, grouping
the projectors by their basis, we can write the CSP channel E as

E = d
d+1∑
a=1

d∑
i=1

λi,aUi,a |φi,a 〉〈φi,a | · |φi,a 〉〈φi,a |U †i,a. (3.66)

Since every basis {|φi,a 〉}i is the eigenbasis of a (non-trivial) Pauli
operator w and further Tr(w |φi,a′ 〉〈φi,a′ |) = 0 for a 6= a′, taking the
trace inner product of Eq. (3.65) multiplied with w implies

0 =
d∑
i=1

λi,aω
i, (3.67)

which forces the λi,a to be either identically zero or independent of i.
Setting λ̃a = d−1λi,a, we thus arrive at a convex combination of E into
CSP channels Ea:

E =
d+1∑
a=1

λ̃aEa, Ea :=
d∑
i=1

Ui,a |φi,a 〉〈φi,a | · |φi,a 〉〈φi,a |U †i,a. (3.68)

Hence, extremality of E implies that it is of the desired form.

3.5 Additional properties of CSP channels and examples

In this section, we derive additional properties of completely stabilizer-
preserving channels which are not directly used to show the main
result of this paper. We characterise CSP channels in terms of certain
generalised stabilizer measurements and adaptive Clifford unitaries.
This is what we call the polar form and has been used in Sec. 3.4.3
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as well as in the simulation protocol of [SRP+21]. We then use this
characterization to compile a list of examples of CSP channels.

By Lemma 3.2.5, completely stabilizer-preserving maps are in bi-
jection with the subset of the bipartite 2n-qudit stabilizer polytope
fulfilling the TP condition. Notably, bipartite stabilizer states have a
special structure that can be exploited to bring them into a standard
form which we call the polar form. It is given by |s〉 = dk/2UP⊗1

∣∣∣φ+
〉

for a Clifford unitary U ∈ Cln(d) and a stabilizer code projector P of
rank dn−k. Note that from this form, one can immediately derive the
Schmidt rank of |s〉 as logd rank(P ) = n− k. While this fact seems to
be folk knowledge in the relevant community and related results can
be found in Refs. [How73, How88, FCY+04], we have been unable to
find an explicit formulation in the literature. A proof of this fact can
be found in the PhD thesis of one of the authors [Hei21, Sec. 12.3.2].

Proposition 3.5.1. The 2n-qudit state |s〉 ∈ (Cd)⊗2n is a stabilizer
state if and only if there is a Clifford unitary U ∈ Cln(d) and a stabi-
lizer code P ∈ STAB(k, n) such that |s〉 = dk/2UP ⊗ 1

∣∣∣φ+
〉
.

While the projective part in the polar form of a stabilizer state is
unique, the unitary part is not. This is because replacing the Clifford
unitary by U 7→ UV where V acts trivially on the code space gives an
equivalent presentation of the state. Technically, this means that the
unitary part is unique up to the left Clifford stabilizer of the stabilizer
code.

Using the polar form, the polytope of CSP maps can be charac-
terised as follows: The SP2n(d) polytope corresponds under the inverse
Choi-Jamiołkowski isomorphism to the polytope which is spanned by
channels with a single stabilizer Kraus operator dk/2UP . Hence, any
CSP map is of the form

E =
r∑
i=1

λi
dn

rankPi
UiPi · PiU †i , (3.69)

where the λi form a probability distribution. However, Eq. (3.69) only
defines a valid CSP map E if it is trace-preserving. We can cast the
TP condition into an appealing form: E is a CSP map if and only if
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in addition to Eq. (3.69), it fulfils

1 = E†(1) =
r∑
i=1

dnλi
rankPi

Pi. (3.70)

Thus, a sufficient and necessary condition for a convex combination
of stabilizer Kraus operators to define a CSP map is that the rescaled
projective parts P̃i := (dnλi/ rankPi)Pi form a POVM. In this con-
text, the CSP channel E in Eq. (3.69) can be seen as the quantum
instrument associated with the stabilizer POVM {P̃i} combined with
the application of Clifford unitaries Ui conditioned on outcome i.

A possible solution to Eq. (3.70) is a syndrome measurement, i.e. the
POVM that is defined by the measurement of a set of mutually com-
muting Pauli operators (cp. example 3 below). Then, the correspond-
ing CSP channel E is a stabilizer operation. However, as stabilizer
operations are also allowed to use auxiliary qubits, they can effectively
induce more complicated POVMs that fulfil Eq. (3.70). A priori, it
is thus not clear whether CSP channels are different from stabilizer
operations (this is, of course, answered by our main theorem 6.3.1).
Interestingly, it even seems to be difficult to find solutions to Eq. (3.70)
in terms of admissible stabilizer codes Pi and coefficients λi. In par-
ticular, one could think of arranging overlapping codes with the right
weights in non-trivial ways such that they yield the identity on Hilbert
space. Indeed, an example of a CSP channel defined via overlapping
stabilizer codes is the Λ channel used for our main argument, see also
App. 3.B. Note that given a set of stabilizer codes, it is in principle
possible to decide whether there exist coefficients such that Eq. (3.70)
holds by solving a linear system of equations which depends on the
structure of code overlaps.

Finally, let us give some examples of CSP maps:

1. Mixed Clifford channels. Take Pi ≡ 1, then dn/ rankPi = 1 and
Eq. (3.70) is trivially fulfilled for any convex combination.

2. Dephasing in a stabilizer basis. Take a basis of stabilizer states,
and let Pi be the rank-one projectors onto the basis. A uniform
convex combination λi = d−n of these fulfils the TP condition
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Eq. (3.70). Such a channel corresponds to a dephasing in the
chosen basis, followed by the potential application of conditional
Clifford unitaries Ui depending on the basis measurement outcome
i.

3. Dephasing in stabilizer codes. More generally, take an arbitrary
stabilizer group S = 〈g1, . . . , gk〉 and let Pi be all dk orthogonal
stabilizer codes corresponding to different phases of the generators
and λi = d−k. This defines a POVM (“syndrome measurement”).

4. Reset channels. Let s ∈ STAB(n) be an arbitrary stabilizer state
and consider the channel which replaces every input by s, i.e. Rs :
X 7→ Tr(X)s. It is clearly CSP and is a special cases of the
second example where |s〉 is completed to a stabilizer basis and
the Clifford unitaries are chosen such that all basis elements are
mapped to |s〉.

3.6 Summary and open questions

In this work, we have studied and compared two classes of free op-
erations in the resource theory of magic state quantum computing,
namely completely stabilizer-preserving (CSP) channels and stabilizer
operations (SO). Our main result shows that the set of multi-qudit
CSP channels is always strictly larger than its subset of stabilizer op-
erations. In the single-qudit case, however, the two classes coincide.
Thus, our result is in analogy with the well-known fact from entan-
glement theory that LOCC operations are contained but not equal to
the set of separable quantum channels.

Our proof strategy is simplified by the observation that it is suffi-
cient to show the separation of CSP and SO in a suitable subspace.
Having derived restrictions on the form of CSP and SO channels in
this subspace, we then give a linear functional which is able to sepa-
rate the two sets. In particular, we explicitly construct a CSP channel
which is the unique maximizer of said functional and thus extremal in
CSP.
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As an auxiliary result, we restrict the form of Kraus operators of ex-
tremal stabilizer operations. In particular, this implies that stabilizer
operations can be realised in a finite number of rounds. This is in con-
trast to entanglement theory, where the analogous LOCC operations
become strictly more powerful with the number of rounds.

In our operational definition of SO, we intentionally allow for arbi-
trary classical control logic. As laid out in Sec. 3.2.2, this is implicit
in the axiomatic definition of CSP and a separation would otherwise
be trivial. However, as our proof does not depend on the details of
the classical control, the separation still holds if we restrict the latter
to efficient classical algorithms. For CSP, this has to be understood
in the sense of Sec. 3.5, i.e. as efficient classical processing of the out-
comes of generalised stabilizer POVMs and control of adaptive Clifford
operations.

Some magic monotones, such as the dyadic negativity can be con-
nected to classical simulation algorithms [SRP+21]. These allow to
efficiently simulate a restricted class of CSP channels which is, how-
ever, strictly smaller than CSP with efficient classical control. The
main reason for this is that it is not clear how to efficiently simulate
the generalised stabilizer POVMs introduced in Sec. 3.5. Therefore,
additional assumptions on these POVMs are necessary. However, it
is plausible that CSP with these restricted POVMs is still strictly
larger than SO. Hence, we expect that the algorithm by [SRP+21] al-
lows for simulation beyond the Gottesman-Knill theorem. A thorough
analysis of the simulability of CSP channels and comparison with the
Gottesman-Knill theorem is left for future work.

Finally, we think that our result will stimulate further research in
the resource theory of magic state quantum computing. The axiomatic
approach to free operations has the advantage that it is possible to
directly apply results from general resource theory and obtain ex-
plicit bounds on e.g. state conversion and distillation rates [VMGE14,
Liu19, FL20, SRP+21, WWS20]. For the case of stabilizer-preserving
channels, it is also known that the theory is asymptotically reversible
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[LW22]. Here, it would be interesting to investigate which results still
hold when the set of free operations is restricted to CSP. Moreover, if
“free” shall have an operational meaning, then the question of simu-
lability and the power of classical control will have to be discussed.

Our separation result opens the possibility that tasks like magic
state distillation show a gap in the achievable rates between CSP chan-
nels and stabilizer operations. Again, this question is motivated from
entanglement theory, where a significant separation between separa-
ble channels and LOCC operations for e.g. entanglement conversion is
known [CCL12].
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3.A Miscellaneous facts on stabilizer states

Here, we state a fact (Proposition 3.A.2) on stabilizer bases that seems
to be widely known, but for which we could not find a direct reference.
It is used in the proof of Lemma 3.3.3.

Let S be a stabilizer group on n qudits of size |S| = dn. There is
a unique (up to phases) joint eigenbasis {|αi〉}i of all elements s of S.
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Concretely: The eigenvalue equations

χi(s)s|αi〉 = |αi〉, s ∈ S (3.71)

establish a one-one correspondence between the set of characters of S
and elements of the common eigenvectors. Bases arizing this way are
called stabilizer bases.

The argument uses basic notions from the description of Pauli op-
erators and stabilizer states in terms of discrete symplectic vector
spaces [Gro06]. In particular, two Pauli operators w(a), w(b) for com-
mute if and only if the symplectic inner product

[a, b] =
n∑
i=1

(az)i(bx)i −
n∑
i=1

(ax)i(bz)i

is zero (as an element of Fd). A subset M ⊂ F2n
d is isotropic if the

symplectic inner product vanishes between any two elements of M .
An isotropic subspace M is maximal if dimM = n. Witt’s Lemma
implies that every isotropic set is contained in a maximal isotropic
subspace.

Lemma 3.A.1. Let M ⊂ F2n
d be an isotropic set. There is a stabilizer

basis such that all pure states in the linear span of {w(a) | a ∈ M}
belong to that basis.

Proof. Choose a basis b1, . . . , bn for some maximal isotropic subspace
containing M . Then the operators w(b1), . . . , w(bn) generate a stabi-
lizer group S of size dn. Their unique common eigenbasis is a stabilizer
basis. By construction, any pure state |ψ〉〈ψ| contained in the span of
{w(a) | a ∈ M} commutes with the elements in S and is thus a joint
eigenvector of all elements in S, which implies that |ψ 〉 belongs to the
stabilizer basis of S.

Proposition 3.A.2. Let |ψ 〉 ∈ (Cd)⊗n1 ⊗ (Cd)⊗n2 be a bi-partite sta-
bilizer state. Let {|α1〉, . . . , |αdn1〉} be a stabilizer basis on the first
subsystem. Then there is a stabilizer basis on the second subsystem
such that each of the partial contractions

|βi 〉 = (〈αi | ⊗ 1)|ψ〉 ∈ (Cd)⊗n2
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is proportional to some element of this basis (with a proportionality
constant of 0 being allowed).

Proof. Let S be the stabilizer group of |α1〉. There exists an isotropic
subspace Ŝ ⊂ F2n1

d and a function fS : Ŝ → C such that

S = {fS(ŝ)w(ŝ) | ŝ ∈ Ŝ}.

Let χi be the character associated with |αi〉 as in (3.71). Analogously,
write the stabilizer group of |ψ 〉 as

T = {fT (t̂)w(t̂) | t̂ ∈ T̂}

for a suitable isotropic subspace T̂ ⊂ F2(n1+n2)
d and phase function

fT : T̂ → C. Let

Û = {t̂2 ∈ F2n2
d | ∃ŝ ∈ Ŝ, ŝ⊕ t̂2 ∈ T̂}.

The fact that Ŝ and T̂ are isotropic implies that the same is true for
Û .

Using Eq. (3.6), we obtain

|βi 〉 〈βi | = (〈αi | ⊗ Id)|ψ〉〈ψ|(|αi 〉 ⊗ Id)
∝

∑
s∈S,t∈T

χi(s) Tr1((s⊗ Id)t)

=
∑

ŝ∈Ŝ,t̂1⊕t̂2∈T̂
χi(ŝ)fS(ŝ)fT (t̂) Tr(w(ŝ)w(t̂1))w(t̂2)

∝
∑
t̂2∈Û

w(t̂2)
( ∑
ŝ∈Ŝ:ŝ⊕û∈T

χi(ŝ)fS(ŝ)fT (ŝ⊕ t̂2)
)
.

The statement follows by invoking Lemma 3.A.1.

Next, we show a property of stabilizer code projectors used in the
proof of Lemma 3.4.8.

Lemma 3.A.3. Suppose that P is a projector onto a stabilizer code. If
P is non-diagonal, then there are |x〉 6= |y 〉 such that P |x〉 = P |y 〉 6=
0.
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Proof. We can assume that the stabilizer group of P has l ≥ 1 non-
diagonal generators, given as ωsjw(zj, xj) for sj ∈ Fd, zj, xj ∈ Fnd , and
xj 6= 0. The remaining, diagonal generators are of the form ω−z·bZ(z)
for some b ∈ Fnd and z is an element of a suitable subspace M , such
that
M ⊂ L := {z ∈ Fnd | Z(z)w(zj, xj) = w(zj, xj)Z(z)⇔ z · xj = 0 ∀j = 1, . . . , l}.
For any |x〉, its stabilizers are ω−z·xZ(z) for z ∈ Fnd = L⊕ L⊥. Under
the projection P , the stabilizers with z ∈ L⊥ are replaced by the
group generated by ωsjw(zj, xj). For P |x〉 to be non-zero it is then
necessary and sufficient that z · x = z · b for all z ∈ M . We then
have P |x〉 = P |y 〉 6= 0 if moreover z · x = z · y for all z ∈ L. Since
this enforces dimL = n− l constraints on x, there are dl > 1 possible
solutions. Thus, we can always find at least two distinct states x 6= y
such that P |x〉 = P |y 〉 6= 0, as claimed.

3.B Properties of the counter-example Λ

In this section, we analyse the properties of the Λ-channel in the case
of qubits.2 Its action on the computational basis is given by

Λ(ρ) := ρ00 |+〉〈+|+
∑
x 6=0

ρxx |x〉〈x |+
1
2

∑
x 6=y
x 6=06=y

ρxy |x〉〈y | , ρxy := 〈x| ρ |y〉 .

(3.72)
From the definition, it is evident that Λ is trace-preserving. However,
it is not obvious that Λ is completely stabilizer-preserving, a fact which
is proven by Lem. 3.4.11. Here, we give an independent, self-contained
proof for the CSP property which also sheds a bit of light on the
interpretation of the channel Λ.

To this end, we claim that Λ has a Kraus decomposition given by

Λ(ρ) = H⊗n |0〉〈0| ρ |0〉〈0|H⊗n + 1
2n−1

∑
z∈Fn2\0

PzρPz, (3.73)

where Pz = (1 − Z(z))/2 projects onto the stabilizer code given by
the span of computational basis states |x〉 with x · z 6= 0. Then,

2A similar analysis can also be done for qudits which is however more evolved.
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by the polar decomposition, Eq. (3.69), of CSP channels discussed in
App. 3.5, the Kraus decomposition (3.73) defines a CSP channel since

|0〉〈0|+ 1
2n

∑
z∈Fn2\0

(1− Z(z)) = 1+ |0〉〈0| − 1
2n

∑
z∈Fn2

Z(z) = 1. (3.74)

Alternatively, it is also straightforward to compute the Choi state
from Eq. (3.73). Let us define for any z ∈ Fn2 \ 0 the affine subspace
Kz := {x ∈ Fn2 : z · x = 1} and the 2n-qubit stabilizer state

|ψz 〉 := 2−n−1
2

∑
x∈Kz

|xx〉 . (3.75)

Then, the Choi state is

J (Λ) = 1
2n

 |+〉〈+| ⊗ |0〉〈0|+ ∑
z 6=0
|ψz 〉〈ψz |

 , (3.76)

which lies in the stabilizer polytope SP2n.
Finally, to prove the Kraus decomposition (3.73), we check that it

agrees with Eq. (3.72) on the computational basis. To this end, let
us denote the channel Eq. (3.73) as Λ̃. Note that Pz |x〉〈y |Pz is zero
if and only if x or y is orthogonal to z and |x〉〈y | otherwise. Thus,
Λ̃(|0〉〈0|) = |+〉〈+|. For any x 6= 0, the linear equation x · z = 1 has
exactly 2n−1 solutions z ∈ Fn2 . Since the first term in Eq. (3.73) yields
0, we get Λ̃(|x〉〈x |) = |x〉〈x | for any x 6= 0. Furthermore, adding the
condition y · z = 1 for any y /∈ {0, x} will further half the solution
space, yielding 2n−2 vectors which are not orthogonal to both x and y.
Thus, given two non-zero vectors x 6= y, we get Λ̃(|x〉〈y |) = 1

2 |x〉〈y |
which then shows that Λ̃ = Λ.

A natural question to ask is whether Λ can be expressed in terms
of more elementary quantum channels. We can write the channel as a
composition of the following three operations:

1. Perform a projective measurement with projectors {|0n 〉〈0n | ,1−
|0n 〉〈0n |}. This channel sets all off-diagonal terms in the first row
and column of ρ to zero, i.e. it block-diagonalises ρ with respect
to the entry at position (0, 0).
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2. Partial dephasing in the computational basis with probability 1/2.
This channel reduces the amplitude of the off-diagonal terms by
1/2.

3. Apply a global Hadamard gate on all qubits conditioned on the
“0” outcome of the measurement.

Interestingly, all three components are necessary for Λ to have the
desired properties. If we leave out the second channel, it is possible
to show that the composition of 1 and 3 is not stabilizer-preserving
for n ≥ 23, while for n = 1 it is simply a stabilizer operation. More-
over, if we leave out channel 2 and 3, then we can rewrite the block-
diagonalisation as a uniform convex combination of the identity and
the diagonal n-qubit gate Vn := diag(−1, 1, . . . , 1). Note that Vn =
X⊗n(Cn−1Z)X⊗n, thus it is in the n-th level of the Clifford hierarchy.
Hence, for n ≤ 2, this is a mixed Clifford channel and in particular a
stabilizer operation. For n > 2, the same technique as before can be
used to show that this channel is not CSP. The effect of the dephasing
channel is to sufficiently reduce the “magic” of the overall channel.
With increasing dephasing strength, it approaches the CSP polytope
from the outside and eventually becomes CSP. Figuratively speaking,
the Hadamard gate in the last step fine-tunes the direction from which
the CSP polytope is being approached, resulting in a channel which
is a vertex.

3.C Measurements that are not followed by adaptive oper-
ations are never extremal

Lemma 3.C.1. Suppose E = ∑
iKi ·Ki ∈ CSPn is an extremal CSP

map with Kraus operators Ki. Then E does not contain a set of d Kraus
operators that are Pauli measurements of the form PP0, ..., PPd−1 for
some fixed Pauli projector P and where P0, ..., Pd−1 are projectors onto
the d eigenspaces of some Pauli operator w(z, x).

3This can in principle be done by computing the Choi states of the corresponding channels and then
finding a hyperplane that separates them from the stabilizer polytope SP2n
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Proof. Let O be the map that is composed of the d Kraus operators
PP0, ..., PPd−1, i.e.

O(ρ) =
d−1∑
x=0

PPxρPxP.

There is a Clifford C such that PPx = CP̃ ⊗ |x〉〈x |C† for a projector
P̃ acting on the first n− 1 qudits. Define the operation

M(ρ) =
d−1∑
x=0

P̃ ⊗ |x〉〈x | ρP̃ ⊗ |x〉〈x | , (3.77)

so O(ρ) = CM(C†ρC)C†.
Let s0, ..., sd−1 be the eigenstates of some Pauli operator w(z, x) for

z, x ∈ F1 and let Ci = diag(dsi) ∈ Cl1 be the diagonal Clifford unitary
with diagonal proportional to si. We claim that

M(ρ) = 1
d

d−1∑
i=0

(P̃ ⊗ Ci)ρ(P̃ ⊗ C†i ). (3.78)

It suffices to check the equation for inputs of the form A⊗ |x〉〈y | for
x, y ∈ Fd and a Hermitian matrix A acting on n− 1 qubits. We have
M(A⊗ |x〉〈y |) = 〈x|y〉 P̃AP̃ ⊗ |x〉〈y | and for the RHS of (3.78)
1
d

d−1∑
i=0

P̃AP̃ ⊗ Ci |x〉〈y |C†i = 1
d
P̃AP̃ ⊗

d−1∑
i=0

Ci |x〉〈y |C†i = P̃AP̃ ⊗
d−1∑
i=0

si(x)si(y) |x〉〈y |

(3.79)

= P̃AP̃ ⊗ |x〉〈y |
d−1∑
i=0

si(x)si(y) = 〈x|y〉 P̃AP̃ ⊗ |x〉〈y | ,

(3.80)
where the last equality stems from the fact that
d−1∑
i=0

si(x)si(y) =
( d−1∑
i=0
|si 〉〈si |

)
(x, y) = 1d(x, y) = 〈x|y〉 |x〉〈y | . (3.81)

Hence,

O(ρ) = CM(CρC†)C† = CM(C†ρC)C† (3.82)

= 1
d

d−1∑
i=0

C(P̃ ⊗ Ci)C† ρC(P̃ ⊗ Ci)C†. (3.83)
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If the original channel E decomposes as E = O+Oc, then we can write
it now as a convex combination of distinct operations

E = 1
d

(E1 + · · ·+ Ed−1) with Ei(ρ) = C(P̃ ⊗ Ci)C† ρC(P̃ ⊗ Ci)C† +Oc(ρ).

The maps Ei are completely positive and trace-preserving because

E†i (1n) = C(P̃ ⊗ C†i )C†1nC(P̃ ⊗ Ci)C† + (Oc)†(1n)
= C(P̃ ⊗ 11)C† + (Oc)†(1n)
= O†(1n) + (Oc)†(1n)
= E†(1n)
= 1n,

where the third equation follows from

O†(1n) =
d−1∑
x=0

C(P̃ ⊗ |x〉〈x |)C†1nC(P̃ ⊗ |x〉〈x |)C†

= C
( d−1∑
x=0

P̃ ⊗ |x〉〈x |
)
C†

= C(P̃ ⊗ 11)C†.

This proves that E cannot be extremal.



Chapter 4

About the Λ-polytope

About this section

This section has not been published. The author of this thesis is the
only contributor to the results presented in this section. Section 4.4
arose from discussions with Michael Zurel, Cihan Okay and Robert
Raussendorf.

4.1 Introduction and Summary of results

The Λ-polytope has gained increasing attention in recent years [RBVT+20,
Zur20, ZOR20, ZORH21, Hei19, OZR21, OHG]. Using the concept of
polar duality from polyhedral geometry, the Λ-polytope is precisely
the polar dual stabilizer polytope and its vertices define the facets of
the stabilizer polytope. Hence, studying Λ might help to gain new
insights about geometric properties of stabilizer states.

On the other hand, again by polar duality, the polytope Λ contains
the set of density matrices, i.e. all quantum states. Moreover, Λ is also
deeply connected to the stabilizer formalism, which is considered as a
classical subtheory of quantum computation. Thus, one might ask:

What should be considered classical within Λ and what quantum?

This question is also strongly motivated by recent work of Zurel,
Raussendorf and Okay [ZOR20]. They developed a classical simu-
lation algorithm for quantum computation with magic states (QCM),
which is based on the Λ-polytope in the following sense: The idea

81
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of the algorithm is to express a quantum state as a convex combina-
tion of vertices in Λ, then to sample a vertex from the distribution
induced by the expansion coefficients of the convex combination, and
then to update the sampled vertex under Pauli measurements and
Clifford unitaries. This algorithm produces the same outcomes as the
corresponding quantum algorithm 1. The crucial observation is that
the polytope Λ is stable under Clifford unitaries and Pauli measure-
ments [ZOR20]. This means that acting on an element in Λ by a
Clifford unitary or Pauli measurements returns another element in Λ.

Unfortunately, obtaining all vertices of the Λ-polytope for an ar-
bitrary number of qubits or qudits seems to be an extremely hard
task. Complete descriptions of Λ via its vertices are only known
for low dimensions (one or two qubits, one qudit, when d is an odd
prime) [Hei19, CGG+06, Rei05, OZR21].

In this chapter, we will deal with this question for the case of odd
prime dimensional systems. We will classify a particular class of op-
erators that live on the boundary of Λ. Their common feature is
that, when expanded in the generalized Pauli basis, their coefficients
are either zero or complex roots of unity. This family of operators
encompasses stabilizer states and Wigner operators, where the latter
have been shown to be vertices of Λ [VFGE12, ZORH21]. Further-
more, the qubit analogue of this family (here the expansion coeffi-
cients in the Pauli basis are 0,±1) also contains vertices of the qubit
Λ-polytope [Hei19, OZR21].

Our findings will show that for odd prime dimensional systems, this
family of operators splits up into two parts:
Either they are of Wigner type (the underlying support in the general-
ized Pauli basis is a subspace) or they are cnc (as defined in [RBVT+20],
cnc refers to “closed under inference and non-contextual”). Conjec-
turally, there is a subfamily of qudit cnc-type operators that are ver-
tices of Λ, precisely those with inclusion maximal support in the gen-
eralized Pauli basis. This conjecture is supported by numerical experi-
ments for two qudits (where the underlying dimension is three) [Zur21].

Furthermore, we will argue why these operators should be con-
1Observe that we do not make any statements about efficiency here.
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sidered as classical in QCM: We will briefly sketch why they can be
efficiently classically updated under Clifford unitaries and Pauli mea-
surements.

The remaining part of this chapter is organized as follows: In Sec-
tion 4.2, we give an introduction to the relevant concepts used through-
out the main part of this chapter. We state our main result prove it in
Section 4.3. In Section 4.4 we sketch how to classically compute up-
dates of this new class of operators under Clifford unitaries and Pauli
measurements.

4.2 Preliminaries

We use the notation for the stabilizer formalism, as introduced in
Section 3.2.1 and only consider the case where the dimension d is an
odd prime. Let STABn be the set of n-qudit stabilizer states, viewed
as rank-1 density matrices. The Λ-polytope, is given by

Λn := {X ∈ Herm1(dn) | Tr(SX) ≥ 0 for all S ∈ STABn}, (4.1)

where Herm1(dn) is the set of dn×dn Hermitian matrices of trace one.
The set Λn is a polytope for any number of qudits n and any dimension
d; even in the case where d is not prime, see [ZORH21, Lemma 1]. Us-
ing the concept of polarity from polyhedral geometry [Zie95, Section
2.3], it corresponds to the polar dual stabilizer polytope (see Appendix
C of [ZORH21] for further details). Polar duality gives a one-to-one
correspondence between vertices of Λn and facets of the stabilizer poly-
tope. Its qubit version was studied in [Hei19, ZOR20, OZR21].

We want to characterize Hermitian operators in Λn whose expansion
coefficients in the generalized Pauli basis are roots of unity. Recall that
the generalized Pauli basis is given by

w(u) := ω(uT
ZuX)/2Z(uz)X(ux), ω = e2πi/d, (4.2)

where u = (uZ , uX) ∈ Fnd × Fnd ∼= F2n
d . As usual, we will consider F2n

d

as a symplectic vector space with symplectic inner product

[u, v] := uT
ZvX − uT

XvZ .
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Our goal is to study Hermitian operators of the form

Aη
Ω = 1

dn
∑
u∈Ω

ωη(u)w(u), Ω ⊂ F2n
d , η : Ω→ R (4.3)

that are contained in Λn. Here, we allow η take values in R. In
the sequel we will often have the situation that η : Ω → Fd. When
computing ωη(u), we interpret η(u) as the corresponding integer in Z.
Note that this class of operators encompasses stabilizer states (Ω is
a Lagrangian subspace, i.e. an isotropic subspace of dimension n and
η : Ω → Fd linear) and Wigner operators (Ω = Fnd and η : Ω → Fd
is linear). The latter have been shown to be vertices of Λn for any
odd dimension [VFGE12, ZORH21]. In Corollary 4.3.5, we will show
that if Ω 6= 0 and Aη

Ω ∈ Λn, then Aη
Ω will be at least contained in a

non-trivial face of Λn.

4.3 Main result

We will show that containment of Aη
Ω in Λn for Aη

Ω as in (4.3) imposes
restrictions on the set Ω and the function η. For a linear subspace
L ⊂ F2n

d let

L∗ := {γ : L→ Fd, γ(a+ b) = γ(a) + γ(b)}

be its dual space, i.e. the space of linear functions on L. Further, let

L⊥ = {a ∈ F2n
d : [a, b] = 0 for all b ∈ L}

be the orthogonal complement of L. If L ⊂ L⊥, then L is called
isotropic and if L = L⊥, then L is Lagrangian. For η : Ω → R, we
denote the restriction of η to some subset K ⊂ Ω by η|K and by 〈K〉
we denote the group generated by the elements of K. The restrictions
on Ω and η for Aη

Ω ∈ Λn are summarized in the following theorem:

Theorem 4.3.1. If Aη
Ω ∈ Λn, then

(i) if I ⊂ Ω is an isotropic subspace, then η|I ≡ γ (mod d) for some
γ ∈ I∗,
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(ii) the set Ω is closed under addition of orthogonal elements, i.e., if
a, b ∈ Ω and [a, b] = 0, then a+ b ∈ Ω.

Operators with η as in (i) and Ω is as in (ii) are usually referred to
as cnc-operators [RBVT+20, KL19], meaning closed under inference
and non-contextual. Closed under inference expresses that Ω satisfies
property (ii) of the theorem and non-contextual means that η defines
a non-contextual value assignment on Ω; see [DOBV+17, Definition 1].

As a consequence, if Aη
Ω ∈ Λn, then we can view η as a function η :

Ω→ Fd. Classifying all operators Aη
Ω ∈ Λn requires a characterization

of all sets Ω ⊂ F2n
d that are closed under inference. Together with

Theorem 4.3.1, we obtain:

Theorem 4.3.2. If Aη
Ω is of the form (4.3), then Aη

Ω ∈ Λn if and only
if

(i) Ω is a subspace of F2n
d and η ∈ Ω∗ or

(ii) Ω is of the form

Ω = 〈I, h1〉 ∪ 〈I, h2〉 ∪ · · · ∪ 〈I, h`〉, (4.4)

where [hi, hj] 6= 0 for all i 6= j and I is an isotropic subspace with
hi ∈ I⊥ for i = 1, . . . , `. In addition, η|〈hi,I〉 ∈ 〈hi, I〉∗. The func-
tion η is uniquely determined by η|I ∈ I∗ and η(h1), . . . , η(h`) ∈
Fd.

4.3.1 Comparison to qubits

An analogous classification has been done for qubits, i.e. d = 2. In
this case, the operators of interest are given by

Aγ
Ω = 1

2n
∑
u∈Ω

(−1)γ(u)w(u), Ω ⊂ F2n
2 , γ : Ω→ F2,

where w(u) are the typical Pauli matrices. Let β : F2n
2 × F2n

2 → F2 be
such that the composition law of the (qubit) Pauli matrices is given
by (−1)β(a,b)w(a)w(b) = w(a + b). For qubits, we have the following
classification:
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Theorem 4.3.3 ([Hei19, OZR21]). An Hermitian operator Aγ
Ω is con-

tained in Λn if and only if Ω is of the form

Ω = 〈I, h1〉 ∪ 〈I, h2〉 ∪ · · · ∪ 〈I, h`〉, (4.5)

where [hi, hj] 6= 0 for all i 6= j and I is an isotropic subspace with
hi ∈ I⊥ for i = 1, . . . , ` and for any a, b ∈ Ω with [a, b] = 0 we have

γ(a) + γ(b) + β(a, b) = γ(a+ b). (4.6)

Furthermore, if Ω is inclusion maximal, i.e. there is no Ω′ of the
form (4.5) that strictly contains Ω, then Aγ

Ω is a vertex of Λn.

Compared to the case of odd-prime dimensional systems we have
two important differences. First, on every isotropic subspace 〈hi, I〉 ⊂
Ω the function γ|〈hi,I〉 is only linear up the shift induced by β. Sec-
ond, if Ω is a non-isotropic subspace, one can construct a Mermin-
square within in Ω, which does not allow a value assignment that
satisfies (4.6) [Hei19, RBVT+20]. This implies that Aγ

Ω /∈ Λn for all
γ : Ω→ F2 whenever Ω contains a non-isotropic subspace.

4.3.2 Proof of Theorem 4.3.1

We will proceed with the proof of Theorem 4.3.1. For M ⊂ F2n
d let

prM : Herm(dn) → span{w(b) : b ∈ M} be the projection that acts
via ∑

b∈F2n
d

cbw(b) prM7−→
∑
b∈M

cbw(b).

To prove Theorem 4.3.1, we will use the fact that if X ∈ Λn, then
prM(X) ∈ prM(Λn). If I ⊂ F2n

d is an isotropic subspace and γ ∈ I∗ we
will fix the notation

Πγ
I = Aγ

I = 1
dn

∑
u∈I

ωγ(u)w(u). (4.7)

Note that Πγ
I is proportional to the projector onto an [n, n− dim(I)]

stabilizer code [NC11, Proposition 10.5]. Lemma 9 in [ZORH21] allows
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us to add redundant inequalities to the description of Λn, so that we
can write

Λn = {X ∈ Herm1(dn) | Tr(Πγ
IX) ≥ 0 for all isotropic subspaces I, γ ∈ I∗}.

(4.8)
We will be mainly interested in prI(Λn) for I being an isotropic sub-
space.

Lemma 4.3.4. If I is an isotropic subspace, then prI(Λn) is a self
dual simplex with vertices Πγ

I , γ ∈ I∗. Hence,

prI(Λn) = conv{Πγ
I | γ ∈ I∗}. (4.9)

Proof. Consider the affine subspace UI = {∑b∈I cbw(b) : cb ∈ C} ∩
Herm1(dn). Due to prI(Π

γ
I ) = Πγ

I and the description of Λn in (4.8),
it follows that

prI(Λn) ⊆ {X ∈ UI | Tr(XΠγ
I ) ≥ 0 for all γ ∈ I∗}. (4.10)

On the other hand, character orthogonality gives

Tr(prI(Π
γ
I )prI(Π

γ̃
I )) = Tr(Πγ

IΠ
γ̃
I ) = δγ=γ̃

|I|
dn

(4.11)

for all γ, γ̃ ∈ I∗, so the operators Πγ
I , γ ∈ I∗ are |I| affinely independent

points in UI and conv{Πγ
I | γ ∈ I∗} is a simplex with |I| facets. Again,

by (4.11), the facet normals are given by Πγ
I , implying that this simplex

is self dual. In summary,

prI(Λn) ⊆ {X ∈ UI | Tr(XΠγ
I ) ≥ 0 for all γ ∈ I∗} = conv{Πγ

I | γ ∈ I∗} ⊆ prI(Λn),

which gives the desired result.

We will use the characterization of prI(Λn) for I being an isotropic
subspace to prove Theorem 4.3.1. The overall strategy will be to ar-
gue that if Ω and η violate one of the conditions of the theorem, then
there is an isotropic subspace I ⊂ F2n

d such that prI(A
γ
Ω) /∈ prI(Λn),

implying Aγ
Ω /∈ Λn. To show prI(A

γ
Ω) /∈ prI(Λn), we will construct a

hyperplane that separates the point prI(A
γ
Ω) from the projected poly-

tope prI(Λn). That is, we construct some explicit Hermitian operator
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Y ∈ span{w(b) : b ∈ I} such that

Tr(prI(A
γ
Ω)Y ) > max

X∈prI(Λn)
Tr(XY ) = max

γ∈I∗
Tr(Πγ

IY ), (4.12)

where the last equation is a consequence of Lemma 4.3.4.

Proof of Theorem 4.3.1. Let Aη
Ω ∈ Herm1(dn) as in (4.3) with η : Ω→

R. As Aη
Ω is Hermitian, we have

1
dn

∑
u∈Ω

ωη(u)w(u) = 1
dn
Aη

Ω = (Aη
Ω)† =

∑
u∈Ω

ω−η(u)T−u,

implying −η(u) = η(−u) for all u ∈ Ω.
(i) Let I be an isotropic subspace contained in Ω. We will show that

if Aη
Ω ∈ Λn, then η|I ≡ γ for some linear function γ ∈ I∗. Therefore,

assume that η|I 6≡ γ for all γ ∈ I∗. In the sense of Equation (4.12),
we can separate prI(Λ) and prI(A

η
Ω) by the hyperplane with normal

vector Aη|I
I ∈ span{w(b) : b ∈ I}:

Tr(Aη|I
I prI(A

η
Ω)) = Tr(Aη|I

I A
η|I
I ) = 1

d2n
∑
u∈I

ωη(u)−η(u) Tr(w(u)w(−u)) = |I|
dn

> Tr(Aη|I
I Πγ

I ),

where the strict inequality holds for all γ : I → Fd with −γ(u) =
γ(−u) and γ 6= η|I , so in particular for all γ ∈ I∗.

(ii) Now suppose that η|I ∈ I∗ for any isotropic subspace I contained
in Ω. For (ii) assume that there are a, b ∈ Ω with [a, b] = 0 such that
a+b /∈ Ω. We may assume that b 6= −a since 0 ∈ Ω, due to Tr(Aη

Ω) = 1.
Set I = 〈a, b〉, so consequently I * Ω. Define the Hermitian matrix

Y = AνM with

M = {±a,±b,±(a+ b)},
ν :M→ R, ν(a) = η(a), ν(b) = η(b), ν(a+ b) = η(a) + η(b) + d/2,

ν(−x) = −ν(x) for all x ∈M.

Then

Tr(Aγ
ΩY ) = |M ∩ Ω|

dn
= 4
dn
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and for all γ ∈ I∗

dn Tr(Πγ
IY ) =

(
ωη(a)−γ(a) + ω−η(a)+γ(a)) +

(
ωη(b)−γ(b) + ω−η(b)+γ(b))

+
(
ωη(a)+η(b)−γ(a)−γ(b)+d/2 + ω−(η(a)+η(b)−γ(a)−γ(b)+d/2))

= 2 cos
2π(η(a)− γ(a))

d

 + 2 cos
2π(η(b)− γ(b))

d


+ 2 cos

2π
(
η(a)− γ(a) + η(b)− γ(b) + d/2

)
d


= 2 (cos(x) + cos(y) + cos(x+ y + π))
= 2 (cos(x) + cos(y)− cos(x+ y)) ,

where

x = 2π(η(a)− γ(a))
d

and y = 2π(η(b)− γ(b))
d

and where we used the linearity of γ in the first equality. Further,
observe that

cos(a) + cos(b)− cos(a+ b) ≤ 3/2 for all a, b ∈ R.

For example, this can be seen by computing the local maxima of the
given function. As the function is periodic, the local maxima give up-
per bounds for the values that the function can attain. Consequently,

Tr(Πγ
IY ) ≤ 3

dn
<

4
dn

= Tr(Aγ
ΩY ),

for all γ ∈ I∗, implying prI(A
γ
Ω) /∈ prI(Λn) and Aγ

Ω /∈ Λn.

Additionally, Theorem 4.3.1 has the following consequence:
Corollary 4.3.5. Assume that Ω 6= 0 and Aη

Ω ∈ Λn. Then Aη
Ω ∈ Λn

lies on the boundary of Λn.
Proof. Since Ω 6= 0, Theorem 4.3.1 implies that there is a ∈ Ω such
that the 1-dimensional isotropic subspace I = 〈a〉 is contained in Ω
and η|I ∈ I∗. Now, using Lemma 4.3.4, we obtain

max
X∈Λn

Tr(XΠη|I
I ) = max

X∈prI(Λn)
Tr(XΠη|I

I )) = max
γ∈I∗

Tr(Πγ
IΠ

η|I
I )

= Tr((Πη|I
I )2) = Tr(Aη

ΩΠη
I).
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Hence, Aη
Ω lies on the hyperplane
{X ∈ Herm1(dn) : Tr(XΠη|I

I ) = Tr((Πη|I
I )2)},

which is a supporting hyperplane of Λn.

4.3.3 Classifying all sets that are closed under addition of orthogonal
elements

As shown in Theorem 4.3.1, a necessary condition for Aη
Ω ∈ Λn is that

Ω is closed under addition of orthogonal elements. In this section, we
will characterize all sets with this property.
Proposition 4.3.6. Any set Ω ⊆ F2n

d that is closed under addition of
orthogonal elements is a subspace or it is of the form

Ω = 〈I, h1〉 ∪ 〈I, h2〉 ∪ · · · ∪ 〈I, h`〉, (4.13)
where [hi, hj] 6= 0 for all i 6= j and I is an isotropic subspace with
hi ∈ I⊥ for i = 1, . . . , `.

One can easily verify that sets of the form (4.13) are indeed closed
under inference, see [RBVT+20, Lemma 3] for a proof2.

To prove the proposition, we define some necessary concepts. For
an arbitrary set Ω ⊂ F2n

d let O(Ω) ⊆ F2n
d be the orthogonal closure of

Ω, i.e. the smallest set which contains Ω and for all u, v ∈ O(Ω) with
[u, v] = 0 we have u+ v ∈ O(Ω). For v ∈ F2n

d we define its orthogonal
complement by v⊥ = {u ∈ F2n

d : [u, v] = 0}, which is a (2n − 1)-
dimensional subspace. Furthermore, for M ⊂ F2n

d set M× = M \ {0}.
If Ω ⊂ F2n

d , then its undirected orthogonality graph is the graph
G(Ω) = (Ω, E) with vertex set Ω and edge set

E = {{a, b} ∈ Ω× Ω : a 6= b, [a, b] = 0}.
The overall proof strategy is induction: Start with one element u ∈

F2n
d . Obviously O({u}) = 〈u〉, which is a subspace and simultaneously

of the form (4.13). In the induction step, suppose that a set Ω ⊂ F2n
d

is a subspace or of the form (4.13). Then we show that for all v ∈ F2n
d

the orthogonal closure O(Ω ∪ {v}) is again a subspace or of the form
(4.13). This will be shown in Lemma 4.3.7, respectively Lemma 4.3.8.

2The proof can be straightforwardly adapted from the case d = 2 to d being an odd prime.
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Lemma 4.3.7. Let Ω ⊂ F2n
d be a subspace and v ∈ F2n

d . Then O(Ω ∪
{v}) is of the form (4.13) if and only if Ω∩ v⊥ is isotropic. Otherwise
O(Ω ∪ {v}) is the subspace 〈v,Ω〉.

Lemma 4.3.8. Let Ω ⊂ F2n
d be of the form (4.13) and v ∈ F2n

d . Then
O(Ω ∪ {v}) is of the form (4.13) or a subspace.

To prove the lemmata, we will require some auxiliary statements.
One crucial observation is the following:
Suppose you are given Ω = {a, b, c, d} ∈ F2n

d such that the orthogonal-
ity graph G(Ω) is a 4-cycle and dim(〈a, b, c, d〉) = 4. If the underlying
field is F2, then the orthogonal closure O(Ω) is the Mermin square,
together with 0. In contrast, if the underlying field is Fd and d is
an odd prime, then O(Ω) is the 4-dimensional subspace spanned by
a, b, c, d; see Lemma 4.3.10.

Lemma 4.3.9. Assume that Ω = {a, b, c, d} such that dim(〈a, b〉) =
dim(〈c, d〉) = 2 and G(Ω) is given by Figure 4.1. Then O(Ω) is of the
form (4.13) or it contains a subset M with |M | = 4 such that G(M)
is a 4-cycle.

a b

c d

Figure 4.1: Initial orthogonality graph of Lemma 4.3.9.

Proof. Since dim(〈c, d〉) = 2, there is x ∈ 〈c, d〉× ∩ a⊥ ⊂ O(Ω). Now
we distinguish two cases:

(1) [b, x] = 0:
We are in the setting of Figure 4.2 (left). Then there is y ∈ 〈a, x〉× ∩
d⊥ ⊂ O(Ω) and for I = 〈x, y〉 we have b, d ∈ I⊥ (see Figure 4.2, right),
Now the closure of Ω is given by

O(Ω) = 〈I, b〉 ∪ 〈I, d〉.
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(2) [b, x] 6= 0:
We are in the setting of Figure 4.3 (left). Since dim(〈x, d〉) = 2 there
is y ∈ 〈x, d〉 ∩ b⊥ = 〈c, d〉 ∩ b⊥. Furthermore, as a⊥ ∩ 〈c, d〉 = 〈x〉, it
holds that [a, y] 6= 0. Then for Ω′ = {a, b, x, y} we have O(Ω) = O(Ω′)
and the graph G(Ω′) is a 4-cycle (see Figure 4.3 (right)).

a b

x d

y b

x d

Figure 4.2: Orthogonality graphs occurring in case (1) of Lemma 4.3.9.

a b

x y

a b

x d

Figure 4.3: Orthogonality graphs occurring in case (2) of Lemma 4.3.9.

Lemma 4.3.10 (Non-existence of a Mermin-square in the qudit world).
If Ω = {a, b, x, y} with dim({a, b, x, y}) = 4 and G(Ω) is a 4-cycle, then
O(Ω) = 〈a, b, x, y〉.

Proof, based on Lemma 1 in [DOBV+17]. The orthogonality relations
are depicted in Figure 4.3 (right). Since 〈a〉, 〈b〉, 〈x〉, 〈y〉 ⊂ O(Ω), we
may assume that [a, y] = [b, x] = 1. It suffices to prove that the planes
spanned by non-orthogonal elements are contained in O(Ω), i.e.

〈a, y〉, 〈b, x〉 ⊂ O(Ω). (4.14)

Then each point x ∈ 〈a, b, x, y〉 can be written as

x = (αa+ δy)︸ ︷︷ ︸
∈O(Ω)

+ (βb+ γx)︸ ︷︷ ︸
∈O(Ω)

and, due to [a, b] = [a, x] = [d, y] = [x, y] = 0, it holds that

[αa+ δy, βb+ γx] = 0.
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Now (4.14) follows immediately from the arguments in the proof of
Lemma 1 in [DOBV+17].

We will continue with the proof of Lemma 4.3.7.

Proof of Lemma 4.3.7. Let Ω ⊂ F2n
d be a subspace. If v ∈ Ω, there is

nothing to show, so assume v /∈ Ω. Clearly,

〈v,Ω ∩ v⊥〉 ⊆ O(Ω ∪ {v}) (4.15)

and if Ω ⊂ v⊥ we have equality in (4.15) and O(Ω∪{v}) is a subspace.
So assume that there is x ∈ Ω such that [v, x] 6= 0. Then dim(Ω ∩

v⊥) = dim(Ω)−1 and it follows that Ω = 〈x,Ω∩v⊥〉. Now we consider
two cases:

(1) If Ω ∩ v⊥ is isotropic, then also 〈v,Ω ∩ v⊥〉. Further, H =
〈v,Ω∩ v⊥〉 ∩ x⊥ is isotropic with v, x /∈ H and dim(H) = dim(Ω)− 1.
We obtain

O(Ω) = 〈x,H〉 ∪ 〈v,H〉,

so O(Ω) is of the form (4.13).
(2) If Ω∩v⊥ is not an isotropic subspace, then there are a, b ∈ Ω∩v⊥

with [a, b] 6= 0.
(2.1) If a, b ∈ x⊥, then G({a, b, v, x}) is a 4-cycle; see Figure 4.4

(left) and therefore O({a, b, v, x}) = 〈a, b, v, x〉, by Lemma 4.3.10.
(2.2) If {a, b} * x⊥, we may assume without loss of generality that

[a, x] = 0 and [b, x] 6= 0, due to dim(〈a, b〉) = 2. Now we are in the
setting of Figure 4.4 (right) and precisely in case (2) of the proof of
Lemma 4.3.9. Again using Lemma 4.3.10, we obtain O({a, b, v, x}) =
〈a, b, v, x〉.

Consequently, 〈v, x〉 ⊂ O(Ω∪{v}) for both cases (2.1) and (2.2). As
x was chosen arbitrarily in Ω \ v⊥, it follows O(Ω∪ {v}) = 〈Ω, v〉.

To finally prove Lemma 4.3.8, we need one more observation, dis-
tilled from the proof of Lemma 4.3.7.

Corollary 4.3.11. If Ω ⊂ F2n
d is a subspace and contains a, b, c, d ∈ Ω

such that the graph G({a, b, c, d}) is a 4-cycle and dim(〈a, b, c, d〉) = 4,
then O(Ω ∪ {v}) = 〈Ω, v〉 for all v ∈ F2n

d .
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v b

a x

v b

a x

Figure 4.4: Orthogonality graphs occurring in case (2) of Lemma 4.3.7.

Proof. It suffices to prove that Ω∩v⊥ is not isotropic because then case
(2) of the proof of Lemma 4.3.7 can be applied. Therefore, let I ⊂ Ω
be an isotropic subspace. As the largest isotropic subspace contained
in 〈a, b, c, d〉 has dimension 2, it follows that dim(〈a, b, c, d〉 ∩ I) ≤ 2.
Since 〈a, b, c, d〉 is a 4-dimensional subspace contained in Ω and I ⊂ Ω,
it follows dim(I) ≤ dim(Ω) − 2. However, Ω ∩ v⊥ is a (dim(Ω) − 1)-
dimensional subspace, hence, Ω ∩ v⊥ is not isotropic.

Finally, we will complete the proof of Proposition 4.3.6 by proving
Lemma 4.3.8.

Proof of Lemma 4.3.8. Let

Ω = 〈I, h1〉 ∪ · · · ∪ 〈I, h`〉,

where I is an isotropic subspace, hi ∈ I⊥ and [hi, hj] 6= 0 for i 6= j.
We assume that ` > 1, otherwise Ω is a subspace and we are in the
situation of Lemma 4.3.7. As before, there is nothing to show if v ∈ Ω,
so let v /∈ Ω.

We will do a case distinction:
(1) I ⊂ v⊥:
(1.1) If [v, hi] 6= 0 for all i = 1, . . . , `, then

O(Ω ∪ {v}) = 〈I, h1〉 ∪ · · · ∪ 〈I, h`〉 ∪ 〈I, v〉.

(1.2) Otherwise, we may assume that [h1, v] = 0. Further, we may
assume that [h2, v] = 0; if this was not the case, we could replace v by
ṽ ∈ 〈h1, v〉× ⊂ O(Ω) such that [ṽ, h2] = 0.

(1.2.1) If [h2, v] = · · · = [h`, v] = 0, then Ĩ := 〈v, I〉 is an isotropic
subspace and

O(Ω ∪ {v}) = 〈Ĩ , h1〉 ∪ · · · ∪ 〈Ĩ , h`〉.
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(1.2.2) If [v, hj] 6= 0 for some j ∈ {3, . . . , `}, then there is v′ ∈
〈h1, v〉× such that [v′, hj] = 0, without loss of generality j = 3 and
[v, h3] 6= 0. Since [v, h2] = 0 and v′ = αh1 + βv ∈ 〈h1, v〉 with
α, β ∈ F×d , it follows that

[v′, h2] = α[h1, h2] 6= 0.

Since v′ is contained in the isotropic subspace 〈h1, v〉 the orthogonality
graph G({v, v′, h2, h3}) is given in Fig. 4.5.

v h2

v′ h3

Figure 4.5: Orthogonality graph occurring in case (1.2.2) of Lemma 4.3.8.

Applying case (2) of Lemma 4.3.9 and Lemma 4.3.10 shows that

〈v, v′, h2, h3〉 = O({v, v′, h2, h3}) ⊂ O(Ω ∪ {v})

and therefore, due to v, v′, h2, h3 ∈ I⊥, the subspace U ′ = 〈I, ṽ, v′, h2, h3〉
is contained in O(Ω). To conclude, observe that

O(Ω) = O(U ′ ∪ {h1} ∪ {h4} ∪ · · · ∪ {h`}).

Now consider O(U ′ ∪ {h1}) and use the fact that we can construct a
4-cycle in 〈v, v′, h2, h3〉 ⊂ U ′. Thus, we are able to apply Corollary
4.3.11 to get O(U ′ ∪ {h1}) = 〈U ′, h1〉 and iteratively

O(Ω) = O(U ′ ∪ {h1} ∪ {h4} · · · ∪ {h`}) = 〈I, h1, . . . , h`, v〉.

(2) I * v⊥:
Let u ∈ I with [u, v] 6= 0. Since h1, h2 ∈ I⊥ ⊂ u⊥ we may choose
h̃1 ∈ 〈u, h1〉× and h̃2 ∈ 〈u, h2〉× such that [h̃1, v] = [h̃2, v] = 0.
Since [h̃1, h̃2] = [h1, h2] 6= 0, the orthogonality graph G(u, v, h̃1, h̃2)
is given in Fig. 4.6 and therefore a 4-cycle. Hence, by Lemma 4.3.10,
it follows that O(Ω ∪ {v}) contains the subspace 〈h̃1, h̃2, u, v〉. Now
we can iteratively add the remaining elements of I and the cosets
〈h3.I〉, . . . 〈h`, I〉 to 〈h̃1, h̃2, u, v〉 and apply Corollary 4.3.11 to obtain
O(Ω) = 〈I, h1, . . . , h`, v〉.



96 4.3. Main result

v h̃2

h̃1 u

Figure 4.6: Orthogonality graph occurring in case (2) of Lemma 4.3.8.

4.3.4 Proof of Theorem 4.3.2

Finally, we will put all pieces together to prove the main result of this
chapter. First, we will show that if Aη

Ω is as in Theorem 4.3.2, then it
is contained in Λn. To see this, consider an isotropic subspace I and
γ ∈ I∗. Then, by character orthogonality,

Tr(Aη
ΩΠγ

I ) = 1
dn

∑
u∈Ω∩I

ωη(u)ω−γ(u) = δη|Ω∩I=γ|Ω∩I ≥ 0

because Ω ∩ I is an isotropic subspace and η|Ω∩I ∈ (Ω ∩ I)∗, as a
consequence of Theorem 4.3.1. This holds in particular for the case
where Πγ

I is a stabilizer state, hence, Aη
Ω ∈ Λn.

Now assume that Ω is a subspace or of the form (4.13) and Aη
Ω ∈ Λn,

so η : Ω → Fd and η|I ∈ I∗ for all isotropic subspaces I contained
in Ω. To characterize all possible η, we will again use Lemma 1
of [DOBV+17]. It says that if Ω is a subspace with dim(Ω) ≥ 2 and
η : Ω→ Fd such that η(a+ b) = η(a) + η(b) whenever [a, b] = 0, then
η is linear on Ω, i.e. η ∈ Ω∗. This directly shows (i) of Theorem 4.3.2.

Similarly, for (ii), if Ω is of the form (4.13) and a1, . . . , ak is a basis of
I, then η is uniquely determined by η(a1), . . . , η(ak), η(h1), . . . , η(h`) ∈
Fd.

4.3.5 Classification of maximal sets of mutually non-orthogonal elements

Sets Ω ⊂ F2n
d of the form (4.13) come with a set of mutually non-

orthogonal elements h1, . . . , h` ∈ F2n
d . This raises the question about

the maximal number of mutually non-orthogonal elements in F2n
d . This

number will turn out to be dn+ 1. The proof is as a generalization of
the corresponding qubit construction in [RBVT+20, Theorem 1].
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Let e1, . . . , f1, . . . , fn ∈ F2n
d be a basis of the symplectic vector space

F2n
d with [ei, ej] = [fi, fj] = 0 and [ei, fj] = δi,j. For example we

may choose ei(k) = δik and fj(k) = δj+n,k for i, j = 1, . . . , n and
k = 1, . . . , 2n.

First, observe that the 2-dimensional space F2
d can be decomposed

into d+ 1 mutually non-orthogonal lines:

F2
d = 〈a1〉 ∪ · · · ∪ 〈ad+1〉, [ai, aj] 6= 0 for i 6= j. (4.16)

For example, such a decomposition if given by

F2
d = 〈e1〉 ∪ f1〉 ∪ 〈e1 + f1〉 ∪ e1 + 2f1 ∪ · · · ∪ 〈e1 + (d− 1)f1〉.

This gives rise to the following construction for general n (which
is a generalization of the construction given in [RBVT+20, Equa-
tions. (16), (17)]): Label the elements of F2n

d by (u1, . . . , un) with
ui ∈ F2

d for i = 1, . . . , n.

Lemma 4.3.12. Every maximal set of mutually non-orthogonal ele-
ments in F2n

d can be mapped to the following dn + 1 elements by a
symplectic transformation:

(a1, 0, . . . , 0), (a2, 0, . . . , 0), . . . , (ad, 0, . . . , 0),
(ad+1, a1, 0 . . . , 0), (ad+1, a2, 0, . . . , 0), . . . , (ad+1, ad, 0, . . . , 0),
(ad+1, ad+1, a1, 0 . . . , 0), (ad+1, ad+1, a2, 0, . . . , 0), . . . , (ad+1, ad+1, ad, 0, . . . , 0),
...
(ad+1, ad+1 . . . , ad+1, a1), (ad+1, ad+1 . . . , ad+1, a2), . . . , (ad+1, ad+1 . . . , ad+1, ad),
(ad+1, ad+1 . . . , ad+1, ad+1),

where ai is as in (4.16).

Proof. It is straightforward to check that all given generators are mu-
tually non-orthogonal: The symplectic inner product of two elements
in the same line is always of the form [ai, aj] 6= 0 for 1 ≤ i 6= j ≤ d; if
two elements lie in distinct lines, then it is of the form [ai, ad+1] 6= 0
for i = 1, . . . , d.

Now let g1, . . . , gk be any set of k mutually non-orthogonal elements
with k ≤ dn+ 1. By Witts theorem [Asc00, Section 20], the elements



98 4.4. Classical simulation

g1, . . . , gk can be mapped to a subset of the elements given in the
lemma. Thus, it suffices to show that there is no element that is
mutually non-orthogonal to all dn+ 1 elements of the lemma.

Let u = (u1, . . . , un). Due to (4.16), for every ui, there is ji ∈
{1, . . . , d + 1} such that [ui, aji] = 0. Hence, to have non-zero sym-
plectic inner product with the first k lines of the set of elements in
the lemma, it must hold that u1 = · · · = uk = ad+1. However, for
k = n this implies that u = (ad+1, . . . , ad+1), which is precisely the
last element.

4.4 Classical simulation

Finally, we will argue why one should consider all operators Aη
Ω ∈ Λn,

which satisfy the conditions of Theorem 4.3.2, as classical objects.
This is due to the fact that each such Aη

Ω has an efficient classi-
cal description using a set of generators of Ω. If Ω is a subspace,
then Aη

Ω is fully described by a basis a1, . . . , ak of Ω and the images
η(a1), . . . , η(ak) ∈ Fd. For Ω being of the form (4.13), i.e.

Ω = 〈I, h1〉 ∪ · · · ∪ 〈I, h`〉

we can fully characterize Aη
Ω by h1, . . . , h`, a basis a1, . . . , ak of the

isotropic subspace I and the images η(hi), η(aj) ∈ Fd. As a conse-
quence of Lemma 4.3.5, the maximal number of non-orthogonal el-
ements is dn + 1, so again there is a classical linear description of
Aη

Ω.
Next, we will shortly sketch how to classically update the operators

Aη
Ω under Clifford unitaries and Pauli measurements. The ideas are

based on References [SA04, VFGE12, RBVT+20].
Clifford unitaries. If d is an odd prime, then every Clifford uni-

tary can be uniquely described by some a ∈ F2n
d and a symplectic

linear map S : F2n
d → F2n

d , i.e. a linear map that preserves the sym-
plectic inner product [·, ·]. The action of a Clifford unitary US,a on a
generalized Pauli matrix is given by [Gro06, Theorem 3]

US,aw(u)U †S,a = ω[a,u]w(Su). (4.17)
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Hence, to get a classical description of UF,aAη
ΩUF,a we only need to

update the generators of Ω and their images correctly. For instance,
if Ω is of the form (4.13), with I = 〈b1, . . . , bk〉 then

UF,aA
η
ΩU
†
F,a = Aη′

Ω′

where

Ω′ = 〈S(I), S(h1)〉 ∪ · · · ∪ 〈S(I), S(h`)〉

and

η′(S(bi)) = η(bi) + [a, bi], η′(S(hi)) = η(hi) + [a, hi].

In the same fashion, we can update Aη
Ω when Ω is a subspace.

Pauli measurements. To classically compute the update of Aη
Ω

under a Pauli measurement, consider some Pauli observable w(a).
The corresponding measurement projectors are given by (see Equa-
tion (4.7))

{dn−1Πγ
〈a〉 : γ ∈ 〈a〉∗}.

We use the ideas from [RBVT+20, Lemma 5] and [ZORH21, Lemma 7]
to describe the effect of measuring the observable w(a) on Aη

Ω. we
distinguish two cases:

(1) If a ∈ Ω, then Tr(dn−1Πγ
〈a〉A

η
Ω) = δη(a)=γ(a), so the post-measurement

operator will be deterministically(
dn−1Πη|〈a〉

〈a〉

)
Aη

Ω

(
dn−1Πη|〈a〉

〈a〉

)
= 1
dn

∑
u∈Ω∩a⊥

ωη(u)w(u) = A
η|Ω∩a⊥

Ω∩a⊥ . (4.18)

The set Ω ∩ a⊥ is again either a subspace or of the form (4.13) and
can be computed efficiently.

(2) If a /∈ Ω, then Tr(dn−1Πγ
〈a〉A

η
Ω) = 1/d for all γ ∈ 〈a〉∗. Then for

Ω of the form (4.13), the post-measurement operator becomes with
probability 1/d for all d linear functions γ ∈ 〈a〉∗:(

dn−1Πγ
〈a〉

)
Aη

Ω

(
dn−1Πγ

〈a〉

)
Tr(dn−1Πγ

〈a〉A
η
Ω) = 1

dn
∑̀
i=1

∑
u∈〈a,hi,I〉∩a⊥

ωγ∗η(u)w(u) = Aγ∗η
Ω′ ,

(4.19)
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where

Ω′ = (〈a, h1, I〉 ∩ a⊥) ∪ · · · ∪ (〈a, h`, I〉 ∩ a⊥)

is again of the form (4.13). The map γ ∗ η is given by

γ ∗ η : Ω′ → Fd, γ ∗ η(ka+ u) = γ(ka) + η(u), k ∈ Fd, u ∈ Ω ∩ a⊥.
(4.20)

Both Ω′ and γ ∗ η can be efficiently classically computed. In the same
fashion, if Ω is a subspace, then(

dn−1Πγ
〈a〉

)
Aη

Ω

(
dn−1Πγ

〈a〉

)
Tr(dn−1Πγ

〈a〉A
η
Ω) =

∑
u〈a,Ω∩a⊥〉

ωγ∗η(u)w(u) = Aγ∗η
Ω′ (4.21)

with subspace Ω′ = 〈a,Ω ∩ a⊥〉 and γ ∗ η as in (4.20).
In summary, to simulate a measurement of w(a) on Aη

Ω with a ∈ Ω,
we update Aη

Ω according to Equation (4.18). If a /∈ Ω, we pick γ ∈ 〈a〉∗
uniformly at random and update Aη

Ω according to Equations (4.19)
and (4.21).

Classical simulation of QCM. Finally, we describe how to use
the update rules to classically simulate QCM 3 for an input spate ρ
which is contained in

P := conv{Aη
Ω ∈ Λn : Aη

Ω =
∑
u∈Ω

ωη(u)w(u), η : Ω→ F2n
d }. (4.22)

The set P is a polytope, as there are only finitely many tuples (Ω, η).
So,

ρ =
∑
Ω,η
λΩ,ηA

η
Ω, λΩ,η ≥ 0,

∑
Ω,η
λΩ,η = 1,

and we can classically simulate the evolution of ρ under Clifford uni-
taries and Pauli measurements in the following way: We sample Aη

Ω
from the probability distribution {λΩ,η} and then compute the evolu-
tion of the sampled Aη

Ω under Clifford unitaries and Pauli measure-
ments. The sketched algorithm correctly reproduces the outcomes

3 This amounts to updating ρ under Clifford unitaries and Pauli measurements.
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of the corresponding quantum procedure; for a proof, see for exam-
ple [RBVT+20, Theorem 3] or [ZORH21, Theorem 2] 4. This algo-
rithm is runs in polynomial time in the number of qubits, provided
that we can sample from the distribution {λΩ,η} in polynomial time
in the number of qubits.

By far, the polytope P does not contain all quantum states, but it
strictly contains the Wigner simplex

conv{Aη
F2n
d

: η ∈ (F 2n
d )∗}.

This description of P in (4.22) is over-complete, i.e. not all Aη
Ω are

vertices of P . In fact, it suffices to consider inclusion maximal sets.
That is, if Aη

Ω ∈ Λn and Ω is of the form (4.13), then

Aη
Ω ∈ conv{Aη′

Ω′ ∈ Λn : Ω′ of the form (4.13), Ω ⊂ Ω′, η′|Ω = η}.

In the same fashion, if Aη
Ω ∈ Λn and Ω is a subspace, then

Aη
Ω ∈ conv{Aη′

Ω′ ∈ Λn : Ω subspace, Ω ⊂ Ω′, η′|Ω = η}.

For proofs we refer the reader to Lemma 1 in [RBVT+20] and Lemma 5
in [ZORH21] 5.

4.5 Conclusion

In this chapter, we have characterized a particular class of operators
that live in the Λ-polytope. Furthermore, we have argued why these
operators should be considered as classical objects. This is due to the
fact that they allow an efficient description in terms of their generators.
Additionally, updating these operators under Clifford unitaries and
Pauli measurements can be efficiently classically simulated.

If the goal is to identify or classify non-classical, respectively quan-
tum structures in the Λ-polytope, our findings can be seen as a rather
negative result – the considered family of operators do not capture
this. This aligns with the results for qubit systems, despite the slightly

4The references deal with the qubit case; however this can be straightforwardly adapted to qudits.
5Lemma 1 in [RBVT+20] is only for qubits and Lemma 5 in [ZORH21] only for isotropic subspaces,

but both cases can be adapted straightforwardly.
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different structure of the corresponding Λ-polytopes for qubits and qu-
dits.

Hence, the question remains open: Is it possible to characterize
vertices of Λ or other interesting elements in Λ, which should be con-
sidered non-classical?



Part II

The Lattice World
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Chapter 5

Introduction - Lattices

An n-dimensional lattice L ⊂ Rn is a discrete subgroup of Rn which
spans Rn, or equivalently, the set of all integer linear combinations of
a set of n linearly independent vectors v1, . . . , vn ∈ Rn.

Lattices and more generally point configurations in Euclidean space
have been a central object of mathematical research over the last cen-
turies. Arising from early work of Lagrange, Gauss, Hermite, Korkin
and Zolotarev on the reduction theory of quadratic forms, their study
has proven fruitful in various areas of mathematics. Recently, Maryna
Viazovska was awarded the fields medal for, among other major con-
tributions, showing that the densest sphere packings in dimensions 8
and 24 are induced by the lattices E8 and Λ24 [Via17, CKM+16].

In this thesis, we will encounter two types of optimization problems
related to lattices. The first one deals with optimization in the space
of lattices. That is, the space of lattices is our search space and our
goal is to find a lattice which is optimal for our optimization problem.
In contrast, in the second case, we are given a lattice and we aim to
determine a certain invariant of this lattice. This invariant can be
expressed as an optimization problem.
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Chapter 6: Optimization in the space of lattices

Our setup is as follows. Let f : (0,∞)→ R be some function and let
L be a lattice, then the f -potential energy of L is defined as

E(f, L) =
∑

x∈L\{0}
f(‖x‖2). (5.1)

One can think of L describing a system of particles and the en-
ergy between each tuple x, y ∈ L is determined by f(||u||2), where
u = x − y ∈ L. For the optimization problem we want to consider,
we fix some function f and we are interested in a lattice L that mini-
mizes/maximizes E(f, L). Phrasing the task in this way is a priori not
well-defined for two reasons.

First, it might occur that the right hand side does not converge for
the choice of f . We will focus on Gaussian potential functions

fα(r) = e−αr, α > 0.

In this case, the right hand side of (5.1) converges for every lattice L
and every α > 0. Gaussian potential functions appear naturally in the
study of lattices. For example, they can be used to design algorithms
for solving the shortest respectively closest vector problem [ADSD15,
ADRSD15] or to give bounds on lattice parameters [RSD17]. When
particles interact according to a Gaussian potential function, this is
referred to as the Gaussian core model [Sti].

The second obstruction is that we can make the f -potential energy
E(fα, L) arbitrarily large/small by simply scaling the lattice. To deal
with this, we restrict ourselves to lattices that are “comparable”. This
means the following: Let B(L) = {v1, . . . , vn} be a basis of L. Then
the (symmetric positive semidefinite) n× n matrix

ML(B)i,j = vT
i vj

is called a Gram matrix of L. The Gram matrix is dependent on the
choice of the basis, however, the determinant of the lattice, det(L) :=
det(ML(B)) is a lattice invariant independent of the choice of basis.
Furthermore, it is invariant under orthogonal transformations of the
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lattice, that is det(AL) = det(L) for all orthogonal matrices A. To
make lattices comparable, we only consider lattices L with det(L) = 1.
In dimension 8 and 24, Cohn et al [CKM+22] show that the root
lattice E8 and the Leech lattice Λ24 are global minimizers for Gaussian
potential functions among all lattices of determinant one. In fact, their
result is even stronger. They show that E8 and Λ24 minimize the f -
potential energy among all point configurations of point density 1 and
for all completely monotonic functions; see [CKM+22, Section 1] for
definitions of point density and complete monotonicity. Such global
minimizers are referred to as ground states for the given function f .

Moreover, restricting the search space to Gram matrices of lattices
is no loss of generality when considering E(f, L). The f -potential is
obviously invariant under the action of the orthogonal group on L,
i.e. E(f, AL) = E(f, L) for every orthogonal matrix A. This allows
us to see the potential energy as a function L 7→ E(f, L) where we
parametrize lattices by the manifold of positive definite matrices with
determinant one.

In Chapter 6 we will use this to conduct a local analysis of E(f, L).
Parameterizing the space of lattices with point density one as a man-
ifold makes it possible to compute the gradient and the Hessian of
E(f, L) [Cou06, CS12].

A lattice is critical for E(f, L) whenever the gradient vanishes. A
simple sufficient condition for a vanishing gradient is that all non-
empty subsets

L(r) = {x ∈ L : xTx = r}
of the lattice form spherical 2-designs. If L(r) 6= ∅, then L(r) is called
a shell of L. A finite point set X ⊂ {x ∈ Rn : xTx = r} is a spherical
t-design if it satisfies the cubature rule

1
|X|

∑
x∈X

f(x) =
∫
xTx=r

f(x)dσ(x)

for all polynomials f : Rn → R of degree at most t. The corresponding
measure σ(x) is the Haar-measure on the sphere of radius r.

and have been extensively studied in the last few decades (for a
survey see [BB09]).
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There is a particularly well-behaved class of lattices where the above
property oftentimes holds, namely even unimodular lattices. These
lattices satisfy xTx ∈ 2Z for all x ∈ L (even) and L = L∗ (unimodular)
where

L∗ = {y ∈ Rn : xTy ∈ Z for all x ∈ L}
is the dual lattice of L. Even unimodular lattices only exist in dimen-
sion divisible by 8. If their dimension is 8, 16 or 24, then the shells
automatically form spherical 2-designs [Ebe94, Chapter 3].

In the case of even unimodular lattices we can use the theory of
modular forms to analyze the behavior of the gradient and Hessian of
E(f, L). Modular forms are functions that satisfy particular transfor-
mation properties and appear naturally in number theory and complex
analysis.

To illustrate how to make use of modular forms, rewrite the Gaus-
sian potential energy E(fα, L) as a sum over the shells, that is

E(fα, L) =
∞∑
m=0

ame
−αm with am = |L(2m)|.

Then E(fα, L) = ΘL(αi/π)− 1, where the function

ΘL : {τ ∈ C : Im(z) > 0} → C, ΘL(τ) =
∞∑
m=0

amq
m, q = e2πiτ

(5.2)
As a consequence of the Poisson summation formula [Ebe94, Chapter
2], one can relate the theta function of an even unimodular lattice to
its dual lattice:

ΘL(iy) = y−n/2ΘL∗(i/y) fory > 0. (5.3)

Additionally, it is easy to check that

ΘL(iy + b) = ΘL(iy) for all b ∈ Z. (5.4)

Holomorphic functions f : {z ∈ C : Im(z) > 0} → C that have a
power series expansion of the form (5.2) and satisfy (5.3) and (5.4)
are called modular forms of weight n/2. For comparably small n 1,

1There is an explicit dimension formula for the vector space of modular forms of weight k, see for
example [KK07, Page 151].
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the vector space of modular forms of weight n/2 is low dimensional
and the occurring coefficients am = |L(2m)| are well studied [JR11].
Using the structural properties of the vector spaces of modular forms,
we derive a formula for the eigenvalues of the Hessian of E(fα, L) when
L is an even unimodular lattice of dimension n ≥ 32. When L is an
even unimodular lattice and all shells are 4-designs, the Hessian is a
scalar multiple of the identity and its eigenvalues can be expressed as
a formula that only depends on α, n and am, i.e. the size of the shells
|L(2m)| for all r > 0.

If the shells are only 2-designs, we can still compute the eigenval-
ues of the Hessian but this requires substantially more work. Up to
isomorphism, all even unimodular lattices in dimension n ≤ 24 are
uniquely determined by their root sublattices. The root sublattice is
the sublattice of L that is spanned by the roots L(2) where 2 = λ(L)
is the length of the shortest vector in L. The reflections I − 2xxT

define a group action on L(2). This group is called the Weyl group
of the root system L(2). Now the eigenvalues of the Hessian can be
computed with the help of elementary representation theory for the
corresponding Weyl group.

In the case of even unimodular lattices in dimension 32, where all
shells are 4-designs, and the Hessian of E(fα, L) is a scalar multiple of
the identity, we show that the only eigenvalue of the Hessian becomes
negative for the parameter α = π. This implies that there are even
unimodular lattices that are local maximizers for E(fα, L).

Our result has the following consequence. In lattice theory, it is an
open question whether

E(fα, L) ≤ E(fα,Zn) (5.5)

holds for all α and all stable lattices L, that is det(L) = 1 and
det(L′) ≥ 1 for all sublattices L′ ⊆ L of L [RSD17, ERS22]. State-
ments of this flavor have been shown for other functions [ERS22] and
fixed parameters α [RSD17]. The underlying proof technique is to
show that maximizers for the Gaussian potential energy in the (com-
pact) set of stable lattices lie on the boundary of this set. Then an
inductive argument is applied to show that these lattices are isomor-
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phic to Zn. However, the existence of local maxima for the fα-potential
energy shows that such a proof technique cannot be directly applied
to prove (5.5).

Chapter 7: Least distortion embeddings of flat tori

For an n-dimensional lattice L, the quotient space Rn/L is a called a
flat torus. The quotient Rn/L is equipped with the following metric:

dRn/L(x, y) = min
v∈L
|x− y − v|,

where | · | is the standard norm on Rn. An embedding of Rn/L is
an injective continuous map ϕ : Rn/L → H to a Hilbert space H.
We are interested in an embedding ϕ : Rn/L → H such that the
metric on H approximates the metric dRn/L as good as possible. More
formally, we want to find a Hilbert space H and an injective function
ϕ : Rn/L→ H such that the distortion

dist(ϕ) = sup
x,y∈Rn/L

x 6=y

‖ϕ(x)− ϕ(y)‖
dRn/L(x, y) · sup

x,y∈Rn/L
x 6=y

dRn/L(x, y)
‖ϕ(x)− ϕ(y)‖ ,

where ||·|| denotes the metric on the Hilbert space, becomes as small as
possible. The first factor of the above product is called the expansion
of ϕ and the second factor the contraction of ϕ. In the language of
optimization our goal is to compute

c2(Rn/L) := inf{dist(ϕ) : ϕ : Rn/L→ H for some Hilbert space H, ϕ injective}.

The simplest example of a flat torus is R/Z. To construct an em-
bedding of R/Z, we choose the interval [−1

2 ,
1
2 ] with −1

2 = 1
2 (mod Z)

as a fundamental domain for R/Z. Mapping the interval to a circle
(see Figure 5.1), we obtain an embedding of R/Z:

ϕ : R/Z→ R, ϕ(x) = (cos(2πx), sin(2πx)). (5.6)

It is easily verified that the contraction of ϕ is given by
1
2 − 0

ϕ(±1
2)− ϕ(0) = 1

4
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ϕ(0)

ϕ(ε)

ϕ(± 1
2 )− 1

2

0 1
2

Figure 5.1: The embedding (5.6) of the torus R/Z.

and the expansion by

lim
ε→0

ϕ(ε)− ϕ(0)
ε− 0 =

√
2− 2 cos(2πε) = 2π,

hence dist(ϕ) = π/2. In the same way, one can show that the embed-
ding of the standard torus Rn/Zn given by

ϕ : Rn/Zn → R2n, ϕ(x1, . . . , xn) = (cos 2πx1, sin 2πx1, . . . , cos 2πxn, sin 2πxn)
(5.7)

has distortion π/2.
However, in contrast to the standard torus, the metric dRn/L(x, y)

can be highly non-Euclidean. This means that there is a family of
lattices Ln ⊂ Rn such that c2(Rn/Ln) ∈ Ω(

√
n) [KN05]. Conversely,

Agarwal, Regev, Tang [ART20] showed that c2(Rn/L) ∈ O(
√
n log n)

for all n-dimensional lattices L. It remains an interesting open ques-
tion whether c2(Rn/L) ∈ O(

√
n).

In general, studying embeddings of metric spaces has been demon-
strated to be an extremely useful tool with several applications in
computer science, most prominently for approximation algorithms. In
the case of flat tori, a potential application might be computational
lattices problems with preprocessing (see [FM04] for more informa-
tion). For a given lattice, the preprocessing step would be to compute
a Hilbert space embedding. For example, if the task is then to solve
the closest vector problem for some input x ∈ Rn and a lattice L ⊂ Rn,
the embedding of Rn/L could provide helpful information, due to the
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observation that
min
u∈L
|x− u| = dRn/L(x, 0).

Euclidean embeddings of finite metric spaces (X, d) (X is a fi-
nite set, d a metric on X) have been studied from the perspective of
semidefinite optimization [LLR95]. One can formulate the optimiza-
tion problem of finding the least Euclidean distortion embedding of a
finite metric space as semidefinite program (SDP), a linear optimiza-
tion problem over the cone of positive semidefinite matrices. To see
this, observe that computing the least Euclidean distortion of (X, d)
amounts to solving the following optimization problem2

min{C : C ∈ R+, ϕ : X → RX injective
d(x, y)2 ≤ ||ϕ(x)− ϕ(y)||2 ≤ Cd(x, y)2 for all x, y ∈ X}.

Each embedding ϕ : X → RX defines a Gram matrix Q ∈ RX×X via
Qx,y = ϕ(x)Tϕ(y).

Since each positive semidefinite matrix admits a Gram matrix repre-
sentation and conversely every Gram matrix is positive semidefinite,
the above optimization problem can be written as an :
min{C : C ∈ R+, Q ∈ SX+ ,

d(x, y)2 ≤ Qxx − 2Qxy +Qyy ≤ Cd(x, y)2 for all x, y ∈ X}.
The SDP and its dual formulation (see Equation (7.6)) can be used to
make several statements about the structure of optimal embeddings.
For example, if X is a graph and d the shortest path metric, then one
can show that the most expanded pairs are adjacent vertices [LM00].

In Chapter 7 we use the same strategy to compute c2(Rn/L). That
is, we derive an (infinite-dimensional) semidefinite program to com-
pute the least distortion of Rn/L. The semidefinite program is a gen-
eralization of the case where the underlying metric space is finite. In-
tuitively, this can be seen by identifying the embedding ϕ : Rn/L→ H
with the positive semidefinite kernel
Q : Rn/L×Rn/L→ C such that Q(x, y) = (ϕ(x), ϕ(y)) for all x, y ∈ Rn/L,

2The corresponding distortion is
√
C.
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where (·, ·) denotes the inner product of H. This leads to the following
formulation of c2(Rn/L):

c2(Rn/L)2 = inf{C : C ∈ R+, Q positive definite,
dRn/L(x, y)2 ≤ Q(x, x)− 2 Re(Q(x, y)) +Q(y, y)

≤ CdRn/L(x, y)2 for all x, y ∈ Rn/L}.

We simplify this program by using symmetry reduction techniques
and derive the corresponding dual optimization problem. This sym-
metry reduced semidefinite program is the starting point for several
interesting insights about least distortion embeddings of flat tori.

An optimal solution for the optimization problem (see (7.7)) always
induces a least Euclidean distortion embedding ϕ of Rn/L into a di-
rect product of circles ∏u∈L∗ wuS1, where each circle is labeled by an
element of u in the dual lattice L∗ and wu ≥ 0 is the diameter of the
circle. More precisely, the embedding is given by

ϕ : Rn/L→
∏
u∈L∗

wuS
1, x 7→

∏
u∈L∗

wu(cos(2πuTx), sin(2πuTx)).

This shows that the intuitively best way to embed the standard torus
Rn/Zn fits nicely into this picture. In fact, the primal and the dual for-
mulation for c2(Rn/L) allow us to show that the embedding of Rn/Zn
given in (5.7) is even optimal.

Another observation is that most expanded pairs only exist in the
limit, i.e. these are pairs of points whose distance tends to zero. This
observation also aligns with the features of embeddings of graphs with
the shortest path metric: in this case, adjacent vertices, i.e. with the
smallest distance are most expanded.

Furthermore, we prove that there is always a least distortion em-
bedding of Rn/L that is finite-dimensional and its dimension is upper
bounded by 2n+1 − 1. More precisely, there is always a least distor-
tion embedding that maps Rn/L to a direct product of 2n − 1 circles,∏2n−1
i=1 wuiS

1.
By constructing a dually feasible solution, we give a simple proof

for a constant factor improvement of the previously best known lower
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bound [KN05, HR13] that

c2(Rn/L) ≥ πλ(L∗)µ(L)√
n

,

where L∗ is the dual lattice of L, the parameter λ(L∗) is the length
of the shortest vector in L∗ and µ(L) is the circumradius of L (see
Chapter 7 for precise definitions).

Finally, we construct optimal embeddings for all tori Rn/L where L
is a 2-dimensional lattice. We achieve this by simply finding a feasible
primal and feasible dual solution that yield the same value.

In summary, we provide a new approach to compute (optimal) dis-
tortion embeddings of flat tori. However, it remains an interesting
open question whether this approach can be exploited from an algo-
rithmic point of view to find new algorithms for computational lattice
problems.
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Abstract

We consider even unimodular lattices which are critical for potential
energy with respect to Gaussian potential functions in the manifold
of lattices having point density 1. All even unimodular lattices up
to dimension 24 are critical. We show how to determine the Morse
index in these cases. While all these lattices are either local minima or
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saddle points, we find lattices in dimension 32 which are local maxima.
Also starting from dimension 32 there are non-critical even unimodular
lattices.

6.1 Introduction

Let L ⊆ Rn be an n-dimensional lattice (a discrete subgroup of Rn of
full rank). Let f : (0,∞) → R be a nonnegative function, then the
f -potential energy of L is defined as

E(f, L) =
∑

x∈L\{0}
f(‖x‖2).

In this paper we are mainly interested in Gaussian potential func-
tions fα(r) = e−αr with α > 0. Point configurations which interact
via such a Gaussian potential function are referred to as the Gaus-
sian core model. They are natural physical systems (see [Sti]) and
they are mathematically quite general. By Bernstein’s theorem (see
[Wid41, Theorem 12b, page 161]), Gaussian potential functions span
the convex cone of completely monotonic functions (C∞-functions f
with (−1)kf (k) ≥ 0 for all k ∈ N) of squared Euclidean distance.

We are interested in a local analysis of the function L 7→ E(fα, L)
when L varies in the manifold of rank n lattices having point density
1, which means that the number of lattice points per unit volume
equals 1. In particular, we want to understand which even unimodular
lattices are critical points in the Gaussian core model and which type
they have.

Recall that a lattice L is called unimodular if it coincides with its
dual lattice, which is defined as

L∗ = {y ∈ Rn : x · y ∈ Z for all x ∈ L},

where x·y denotes the standard inner product of x, y ∈ Rn. The lattice
L is called even if for every lattice vector x ∈ L the inner product x ·x
is an even integer. It is well-known that in a given dimension the
number of even unimodular lattices is finite and that they exist only
in dimensions which are divisible by 8. Furthermore, dimensions 8
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and 24 seem to be very special. Cohn, Kumar, Miller, Radchenko and
Viazovska [CKM+22] proved that the E8 root lattice in dimension 8
and the Leech lattice Λ24 in dimension 24 are universally optimal point
configurations in their dimensions. This means that they minimize f -
potential energy for all point configurations having density 1 in their
dimensions (not only for lattices) and for all completely monotonic
functions of squared Euclidean distance.

6.1.1 Structure of the paper and main results

In Section 6.5 we present our concrete results. Here we summarize the
phenomena which occur.

Dimension 8

Section 6.5.1: In dimension 8 the E8 root lattice is the only even
unimodular lattice in dimension 8 as observed by Mordell [Mor38]. It
is universally optimal. In particular, it is a local minimum for fα-
potential energy. This was first proved by Sarnak and Strömbergsson
[SS06], see also Coulangeon [Cou06].

Dimension 16

Section 6.5.2: In dimension 16 there are two even unimodular lattices
D+

16 and E8 ⊥ E8, first classified by Witt [Wit41]. Both of them are
critical and we show that D+

16 is a local minimum for fα-potential
energy whenever α is large enough and that E8 ⊥ E8 is a saddle point
whenever α is large enough. Our numerical computations strongly
suggest that E8 ⊥ E8 is a saddle point for all values of α.

Dimension 24

Section 6.5.3: Apart from the universally optimal Leech lattice there
are 23 further even unimodular lattices in dimension 24. They were
first classified by Niemeier [Nie73]. Again they are all critical. We
show how to determine their Morse index. We always find either local
minima or saddle points.
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Dimension 32

Section 6.5.4: It is known that there are more than 80 millions even
unimodular lattices in dimension 32; cf. Serre [Ser73]. A complete
classification has not been achieved yet. We show that not all of
them are critical. We also show that there exist local maxima for fα-
potential energy. This existence of local maxima answers a question
of Regev and Stephens-Davidowitz [RSD17] which arose in their proof
strategy of the reverse Minkowski theorem; see also the exposition
[Bos18] by Bost for a broad perspective. A similar phenomenon, a
local maximum for the covering density of a lattice, was earlier found
by Dutour Sikirić, Schürmann, and Vallentin [SSV12].

Proof techniques

To prove these results we make use of the theory of lattices and codes,
especially spherical designs, theta series with spherical coefficients,
and root systems. We recall these tools in Section 6.2. In Section 6.3
we describe our strategy which is based on the explicit computation
of the signature of the Hessian of the function L 7→ E(fα, L). To work
out this strategy it is necessary to explicitly compute the eigenvalues
of a symmetric matrix which is parametrized by root systems. This is
done in Section 6.4.

6.2 Toolbox

In this section we introduce the tools we shall apply later in this paper.
For more information we refer to the standard literature on lattices and
codes, in particular to Conway and Sloane [CS88], Ebeling [Ebe94],
Serre [Ser73], Venkov [Ven01], Nebe [Neb13]. Readers familiar with
lattices and codes might like to skip immediately to the next section.
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6.2.1 Spherical designs

A finite set X on the sphere of radius r in Rn denoted by Sn−1(r) is
called a spherical t-design if∫

Sn−1(r)
p(x) dx = 1

|X|
∑
x∈X

p(x)

holds for every polynomial p of degree up to t. Here we integrate with
respect to the rotationally invariant probability measure on Sn−1(r).

If X forms a spherical 2-design, then
∑
x∈X

xxT = r2|X|
n

In, (6.1)

holds, where In denotes the identity matrix with n rows/columns.
A polynomial p ∈ R[x1, . . . , xn] is called harmonic if it vanishes

under the Laplace operator

∆p =
n∑
i=1

∂2p

∂x2
i

= 0.

We denote the space of homogeneous harmonic polynomials of de-
gree k by Harmk. One can uniquely decompose every homogeneous
polynomial p of even degree k

p(x) = pk(x) + ‖x‖2pk−2(x) + ‖x‖4pk−4(x) + · · ·+ ‖x‖kp0(x) (6.2)

with pd ∈ Harmd and d = 0, 2, . . . , k.
We can characterize thatX is a spherical t-design by saying that the

sum ∑
x∈X p(x) vanishes for all homogeneous harmonic polynomials p

of degree 1, . . . , t.
In the following we shall need the following technical lemma.

Lemma 6.2.1. Let H be a symmetric matrix with trace zero. The
homogeneous polynomial

pH(x) = (xTHx)2 = H[x]2

of degree four decomposes as in (6.2)

pH(x) = pH,4(x) + ‖x‖2pH,2(x) + ‖x‖4pH,0(x)
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with pH,d ∈ Harmd and

pH,4(x) = pH(x)− ‖x‖2 4
4 + n

H2[x] + ‖x‖4 2
(4 + n)(2 + n) TrH2

and
pH,0(x) = 2

(2 + n)n TrH2.

Proof. As a consequence of Euler’s formula we have for a general har-
monic polynomial q ∈ Harmd

∆‖x‖2q = (4d+ 2n)q + ‖x‖2∆q = (4d+ 2n)q,

and inductively

∆‖x‖2(k+1)q = (k + 1)(4k + 4d+ 2n)‖x‖2kq, (6.3)

see for example [Sim15, Lemma 3.5.3]1.
Using (6.2) we get

∆pH = ∆pH,4 + (8 + 2n)pH,2 + ‖x‖2∆pH,2 + ∆‖x‖4pH,0

= (8 + 2n)pH,2 + 2(4 + 2n)‖x‖2pH,0.

Applying the Laplace operator another time yields

∆2pH = 8n(n+ 2)pH,0.

On the other hand, one can compute ∆2pH directly. We have

H[x] =
n∑
i=1

n∑
j=1

Hijxixj

and therefore
∆H[x] = 2

n∑
i=1

Hii = 2 TrH.

Using the product formula for the Laplace operator and the symmetry
of H we get

∆pH = ∆H[x]2 = 2(H[x]∆H[x]+∇H[x]·∇H[x]) = 4(TrH)H[x]+8H2[x].
1The factor 2 in (3.5.11) is wrong in [Sim15]; it should be 1.
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Therefore
∆2pH = 8(TrH)2 + 16 TrH2

and so
pH,0 = 2

n(n+ 2) TrH2,

where the last equation follows from TrH = 0.
We already computed

∆‖x‖4pH,0 = 2(4 + 2n)‖x‖2pH,0 = 8
n

TrH2‖x‖2.

Now we determine pH,2 when TrH = 0:

(8 + 2n)pH,2 = ∆pH − ‖x‖2 8
n

TrH2 = 8H2[x]− ‖x‖2 8
n

TrH2.

Finally we get pH,4:

pH,4 = pH − ‖x‖2 4
4 + n

H[x]2 + ‖x‖4 2
(4 + n)(2 + n) TrH2.

6.2.2 Theta series with spherical coefficients

We will make use of theta series with spherical coefficients. Let L ⊆ Rn

be an even unimodular lattice and let p be a harmonic polynomial
(sometimes also called spherical polynomial).

We define the theta series of L with spherical coefficients given by
p by

ΘL,p(τ) =
∑
x∈L

p(x)eπiτ‖x‖2 =
∑
x∈L

p(x)q 1
2‖x‖

2
,

where τ lies in the upper half plane {z ∈ C : Im(z) > 0} and where
q = e2πiτ .

If p = 1 we also write ΘL instead of ΘL,p. For r ≥ 0 we define

L(r2) = {x ∈ L : x · x = r2}.

The set L(r2) is called a shell of L if it is not empty. Then

ΘL(τ) =
∞∑
m=0

amq
m with am = |L(2m)|.
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The theta series of L is related to its fα-potential energy through

E(fα, L) = ΘL(αi/π)− 1.

Using the Poisson summation formula one sees that

ΘL(iy) = y−n/2ΘL∗(i/y) for y > 0.

In particular, when L = L∗ it is sufficient to consider Gaussian poten-
tials with α ≥ π.

If p is a homogeneous harmonic polynomial of degree k, then ΘL,p is
a modular form (for the full modular group SL2(Z)) of weight n/2+k.
When k > 1 then ΘL,p is a cusp form. We only need that modular
forms form a graded ring which is isomorphic to the polynomial ring
C[E4, E6] in the (normalized) Eisenstein series

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · · ,

and
E6(τ) = 1− 504q − 16632q2 − 122976q3 − · · · ,

where the weight of the monomial Eα
4E

β
6 is 4α + 6β. Generally, the

normalized Eisenstein series are given by

Ek(τ) = 1− 2k
Bk

∞∑
m=1

σk−1(m)qm for k ≥ 4,

where Bk is the k-th Bernoulli number and where σk−1(m) = ∑
d|m d

k−1

is the sum of the (k−1)-th powers of positive divisors of m. The space
of cusp forms is a principal ideal of the polynomial ring C[E4, E6]
generated by the modular discriminant

∆ = 1
1728(E3

4 − E2
6) = 0 + q − 24q2 + 252q3 ± · · · ,

which has weight 12.
It is a standard fact that the cardinality am = |L(2m)| of the shells

is asymptotically bounded, when m tends to infinity, by

am = − n

Bn/2
σn/2−1(m) +O(mn/4),
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but in this paper we shall need a bound with explicit constants.
For this we we will use the following explicit bound by Jenkins

and Rouse [JR11] which relies on Deligne’s proof of the Weil conjec-
tures: Let f(τ) = ∑∞

m=1 amq
m be a cusp form of weight k, let ` be the

dimension of the space of cusp forms of weight k, then

|am| ≤
√

log(k)
11 ·

√√√√√∑̀
r=1

|ar|2
rk−1 + e18.72(41.41)k/2

k(k−1)/2 ·
∣∣∣∣∣∣
∑̀
r=1

are
−7.288r

∣∣∣∣∣∣


· d(m)mk−1
2 ,

(6.4)

where d(m) is the number of divisors of m.
The following simple estimate will be helpful several times.

Lemma 6.2.2. For j ≥ k/(2α) we have
∞∑
m=j

mke−2αm ≤ jke−2αj + (2α)−(k+1)Γ(k + 1, 2αj), (6.5)

where
Γ(s, x) =

∫ ∞
x
ts−1e−tdt

is the incomplete gamma function.

As for fixed s and large x

Γ(s, x) ∼ xs−1e−x
1 + s− 1

x
+ (s− 1)(s− 2)

x2 + · · ·


we see that (6.5) tends to zero for large α and fixed j and k.

Proof. The function m 7→ mke−2αm is monotonically decreasing for
m ≥ k/(2α). So we can apply the integral test

∞∑
m=j

mke−2αm ≤ jke−2αj +
∫ ∞
j
mke−2αm dm.

Now using the definition of the incomplete gamma function after a
change of variables yields the lemma.
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6.2.3 Root systems

The shell L(2) is called the root system of the even unimodular lattice
L, its elements are called roots. Witt classified in 1941 the possible
root systems: These are orthogonal direct sums of the irreducible root
systems An (n ≥ 1), Dn (n ≥ 4), E6, E7 and E8. The rank of a root
system is the dimension of the vector space it spans. Let e1, . . . , en+1
be the standard basis for Rn+1. The root system An is defined as

{±(ei − ej) : 1 ≤ i < j ≤ n+ 1}.

The root system An has rank n, but lies in Rn+1. It spans the vector
space Rn+1 ∩ R(1, . . . , 1)⊥ ∼= Rn. In the following we will consider An

as a subset in Rn. The root system Dn is defined as

Dn = {±(ei ± ej) : 1 ≤ i < j ≤ n}.

Furthermore
E8 = D8 ∪

{
e1 ± · · · ± e8

2

}
,

where we restrict the last set to all sums having an even number of
minus signs, and

E7 = E8 ∩ R(e7 − e8)⊥ and E6 = E7 ∩ R(e6 − e7)⊥.

All irreducible root systems form spherical 2-designs, and we have
even spherical 4-designs for A1, A2, D4, E6, E7, and E8.

Let R be a root system. Let σ(x) = In−xxT be the reflection at the
hyperplane perpendicular to x. For all x, y ∈ R we have σ(x)y ∈ R,
so that R is invariant under the reflection σ(x). The group W (R)
generated by all reflections σ(x), with x ∈ R, is called Weyl group of
the root system.

The Coxeter number h of a root system R with rank n is defined
as |R|/n, the number of roots per dimension. For a root r ∈ R we
denote by n0 the number of roots r′ ∈ R with r · r′ = 0 and by n1 the
number of roots r′ ∈ R with r · r′ = 1. These numbers n0, n1 do not
depend on r when R is irreducible.

We summarize some properties of the irreducible root systems in
Table 6.1.
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name rank |R| n0 n1 h |W |

An n ≥ 1 n(n+ 1) (n− 1)(n− 2) 2(n− 1) n+ 1 (n+ 1)!

Dn n ≥ 4 2n(n− 1) 2(n2 − 5n+ 7) 4(n− 2) 2(n− 1) 2n−1n!

E6 6 72 30 20 12 27345

E7 7 126 60 32 18 2103457

E8 8 240 126 56 30 21435527

Table 6.1: Some properties of the irreducible root systems.

6.3 Strategy

We compute the gradient and Hessian of L 7→ E(fα, L) at even uni-
modular lattices. For this it is convenient to parametrize the manifold
of rank n lattices having point density 1 by positive definite quadratic
forms of determinant 1.

The gradient and the Hessian of E(fα, L) at L were computed by
Coulangeon and Schürmann [CS12, Lemma 3.2]. Let H be a symmet-
ric matrix having trace zero (lying in the tangent space of the identity
matrix). We use the notation H[x] = xTHx and we equip the space
of symmetric matrices Sn with the inner product 〈A,B〉 = Tr(AB),
where A,B ∈ Sn. The gradient is given by

〈∇E(fα, L), H〉 = −α
∑

x∈L\{0}
H[x]e−α‖x‖2. (6.6)

Now a sufficient condition for L being a critical point is that all
shells of L form spherical 2-designs. Indeed, we group the sum in (6.6)
according to shells, giving

〈∇E(fα, L), H〉 = −α
∑
r>0

e−αr
2 ∑
x∈L(r2)

H[x].

Then for r > 0 every summand
∑

x∈L(r2)
H[x] =

〈
H,

∑
x∈L(r2)

xxT
〉

= r2|X|
n

Tr(H) = 0

vanishes because of (6.1) and because H is traceless. Hence, L is
critical.



125 6.3. Strategy

This sufficient condition is fulfilled for all even unimodular lattices
in dimensions 8, 16, and 24. This fact can be deduced from the theory
of theta functions with spherical coefficients and modular forms as
first observed by Venkov [Ven80]. In dimension 32 this is no longer
fulfilled in general but we can identify cases where it is.

The Hessian is the quadratic form

∇2E(fα, L)[H] = α
∑

x∈L\{0}
e−α‖x‖

2
(
α

2H[x]2 − 1
2H

2[x]
)
. (6.7)

Again grouping the sum according to shells we get

∇2E(fα, L)[H] = α
∑
r>0

e−αr
2 ∑
x∈L(r2)

(
α

2H[x]2 − 1
2H

2[x]
)
. (6.8)

So it remains to determine the two sums∑
x∈L(r2)

H[x]2 and
∑

x∈L(r2)
H2[x]. (6.9)

The second sum is easy to compute when L(r2) forms a spherical 2-
design. In this case we have by (6.1)
∑

x∈L(r2)
H2[x] =

〈
H2,

∑
x∈L(r2)

xxT
〉

= 〈H2,
r2|L(r2)|

n
In〉 = r2|L(r2)|

n
TrH2.

(6.10)
The first sum is only easy to compute when L(r2) forms even a spheri-
cal 4-design. Then (see [Cou06, Proposition 2.2] for the computation)

∑
x∈L(r2)

H[x]2 = r4|L(r2)|
n(n+ 2)2 TrH2. (6.11)

Together, when all shells form spherical 4-designs, the Hessian (6.7)
simplifies to

∇2E(fα, L)[H] = TrH2

n(n+ 2)
∑
r>0
|L(r2)|αr2 (αr2 − (n/2 + 1)

)
e−αr

2
.

(6.12)
Therefore, every H with Frobenius norm 〈H,H〉 = TrH2 = 1 is
mapped to the same value, which implies that all the eigenvalues of
the Hessian coincide.
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Sarnak and Strömbergsson [SS06], see also Coulangeon [Cou06],
showed that for L = E8,Λ24 the Hessian ∇2E(fα, L)[H] is positive for
all α > 0 which implies that E8,Λ24 are local minima among lattices,
for all completely monotonic potential functions of squared Euclidean
distance2.

The case when all shells form spherical 2-designs but not spherical
4-designs requires substantially more work. This is our main technical
contribution. Then the Hessian has more than only one eigenvalue.
We determine these eigenvalues up to dimension 32 by considering the
root system of L, that is the shell L(2). Here the quadratic form

Q[H] =
∑

x∈L(2)
H[x]2 (6.13)

will play a crucial role.
Indeed, consider again the first sum ∑

x∈L(r2)H[x]2 in (6.9). We de-
compose the polynomial pH(x) = H[x]2 into its harmonic components
as in Lemma 6.2.1 and get∑
x∈L(r2)

pH(x) =
∑

x∈L(r2)
pH,4(x) + r2 ∑

x∈L(r2)
pH,2(x) + r4 ∑

x∈L(r2)
pH,0(x).

Here the first sum equals
∑

x∈L(r2)
pH,4(x) =

∑
x∈L(r2)

H[x]2 − r4 2
(2 + n)n|L(r2)|TrH2,

where we used Lemma 6.2.1 and (6.10). The second sum vanishes
because L(r2) is a spherical 2-design and the third summand equals

r4 ∑
x∈L(r2)

pH,0(x) = r4 2
(2 + n)n|L(r2)|TrH2.

We make use of theta series with spherical coefficients to determine
the first sum ∑

x∈L(r2) pH,4(x) explicitly: ΘL,pH,4 is a cusp form of weight
n/2 + 4. In dimension 16, 24, and 32 there is (up to scalar multiplica-
tion) only one cusp form of weight n/2 + 4. This is, respectively, ∆,

2This was one motivation for Cohn, Kumar, Miller, Radchenko, and Viazovska [CKM+22] to prove
their far stronger, global result.
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E4∆ and E2
4∆. Their q-expansions ∑∞m=0 bmq

m all start by 0 + 1 · q.
Therefore, by equating coefficients,

ΘL,pH,4(τ) =
∑
r>0

∑
x∈L(r2)

pH,4(x)q 1
2r

2 = c
∞∑
m=0

bmq
m

with
c =

∑
x∈L(2)

H[x]2 − 8
(2 + n)n|L(2)|TrH2.

For r2 = 2m it follows∑
x∈L(r2)

H[x]2 = cbm + 4m2 2
(2 + n)n|L(2m)|TrH2.

Hence, we only need to compute the eigenvalues of (6.13) to determine
the signature of the Hessian. When talking about eigenvalues of Q, we
refer to the eigenvalues of the Gram matrix with entries bQ(Gi, Gj),
where bQ : Sn × Sn → R is the induced bilinear form

bQ(G,H) =
∑

x∈L(2)
G[x]H[x] (6.14)

and (Gi) is an orthonormal basis of the space Sn with respect to the
inner product 〈·, ·〉. If H is an eigenvector with eigenvalue λ, we have∑

x∈L(2)
H[x]2 = λTrH2.

Now let us put everything together.
Theorem 6.3.1. Let L be an even unimodular lattice in dimension
n ≤ 32. Let

ΘL(τ) =
∞∑
m=0

amq
m with am = |L(2m)|

be the theta series of L and let ∑∞m=1 bmq
m be the cusp form of weight

n/2+4 with b1 = 1. Then all the eigenvalues of the Hessian ∇2E(fα, L)
are given by

1
n(n+ 2)

∞∑
m=1

bmα2

2 (λn(n+ 2)− 8a1)
 e−2αm

+ 1
n(n+ 2)

∞∑
m=1

(am2αm (2αm− (n/2 + 1))) e−2αm,

(6.15)
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where λ is an eigenvalue of (6.13).

Note that this theorem also includes the case when all shells of L
form spherical 4-designs like in (6.12) because of (6.11). In this case
and when the parameter α is large enough, then (6.12) is strictly pos-
itive, which shows that L is a local minimum for fα-potential energy.

Similarly, because the growth of am and bm is polynomial in m and
because of the estimate provided in Lemma 6.2.2, we see that the first
summand, m = 1,

1
n(n+ 2)

α2

2 (λn(n+ 2))− 2a1α(n/2 + 1)
 e−2α

dominates (6.15) for large α. In particular, for large α, the first sum-
mand is strictly positive if λ is strictly positive and the first summand
is strictly negative if λ vanishes and if a1 6= 0. As the quadratic
form (6.13) is a non-trivial sum of squares, the eigenvalues cannot be
strictly negative and some eigenvalue is always strictly positive. From
this consideration we get:

Corollary 6.3.2. Let L be an even unimodular lattice in dimension
n ≤ 32 which is critical for fα-potential energy. For all large enough α
the lattice L is a local minimum if and only if all eigenvalues of (6.13)
are strictly positive. If one eigenvalue of (6.13) vanishes and if |L(2)| >
0, then L is a saddle point for all large enough α.

6.4 Eigenvalues of (6.13)

In this section we shall compute the eigenvalues of the quadratic form
(6.13) Q[H] = ∑

x∈RH[x]2, where we write R = L(2) for the root
system of the lattice.

6.4.1 Irreducible root systems

First we consider the case when R is an irreducible root system of type
A, D, or E.
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Theorem 6.4.1. Let R be an irreducible root system of type A, D, or
E. The quadratic form Q[H] = ∑

x∈RH[x]2 has the following eigen-
values:

root system eigenvalue multiplicity

An, n ≥ 1
4h = 4(n+ 1) 1

2(n+ 1) n, for n ≥ 2

4 n(n− 1)/2− 1, for n ≥ 2

Dn, n ≥ 4
4h = 8(n− 1) 1

4(n− 2) n− 1

8 n(n− 1)/2

E6
4h = 48 1

12 20

E7
4h = 72 1

16 27

E8
4h = 120 1

24 35

We will embed the proof of Theorem 6.4.1 in the framework of
representation theory.3 The Weyl group W of the root system R acts
on the space of symmetric matrices Sn by conjugation

W × Sn → Sn

(S,H) 7→ SHST.

This turns (Sn, 〈·, ·〉) into a unitary representation ofW , meaning that
the action of W preserves the inner product 〈·, ·〉.

Then the bilinear form bQ, defined in (6.14), is invariant under the
action of the Weyl group W , that is bQ(SGST, SHST) = bQ(G,H) for
all S ∈ W . Due to the Riesz representation theorem, there is a linear
map T : Sn → Sn such that

bQ(G,H) = 〈G, T (H)〉

and the eigenvalues of the Gram matrix of bQ coincide with the eigen-
values of T . Since bQ is invariant under the action of W , the map T

3In the following we apply concepts of unitary representations over the complex numbers, but note that
all representations involved can in fact be defined over the reals.
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commutes with the action of W , i.e.

T (SHST) = ST (H)ST for all S ∈ W, (6.16)

hence, T is intertwining the representation (Sn, 〈·, ·〉) of the Weyl
group W with itself.

Instead of only considering the specific map T above, we determine
the common eigenspaces of all intertwiners that intertwine the repre-
sentation on Sn with itself. As these eigenspaces will turn out to be
inequivalent, Schur’s lemma implies that these eigenspaces are exactly
the pairwise orthogonal, irreducible, W -invariant subspaces of Sn.

6.4.2 Peter-Weyl theorem for irreducible root systems

This gives rise to Theorem 6.4.2, which is a Peter-Weyl theorem for
the representation (Sn, 〈·, ·〉) of the Weyl group W of an irreducible
root system.

To state the theorem, we need to fix some notation, based on the
definition of root systems in Section 6.2.3. We consider An as a root
system in Rn and, by slight abuse of notation, we write ei− ej for the
corresponding root in Rn. Moreover, define the symmetric bilinear
operator M : Rn × Rn → Sn by

M(x, y) = xyT + yxT.

The action of the Weyl group on M is given by

SM(x, y)ST = M(Sx, Sy), S ∈ W.

Furthermore, set
M(x) = 1

2M(x, x) = xxT

and
Pi =

∑
j∈{1,...,n+1}\{i}

M(ei − ej)− 2In.

Theorem 6.4.2 (Peter-Weyl for irreducible root systems). The space
of symmetric matrices can be decomposed into the followingW -invariant,
irreducible, inequivalent subspaces:
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(i) For R = An, n ≥ 2

Sn = span{In} ⊥ U1(An) ⊥ U2(An),

where

U1(An) = span{M(x, y) : x, y ∈ An, x · y = 0},
U2(An) = span{Pi : i = 1, . . . , n+ 1}.

(ii) For R = Dn, n ≥ 5

Sn = span{In} ⊥ U1(Dn) ⊥ U2(Dn),

where

U1(Dn) = {M ∈ Sn : Mii = 0, 1 ≤ i ≤ n}. (6.17)

and

U2(Dn) = {diag(d1, . . . , dn) : d1, . . . , dn ∈ R, d1 + · · ·+ dn = 0}.
(6.18)

For n = 4 the space U1(D4) further splits into two irreducible
subspaces

U1(D4) =




0 a b c

a 0 c b

b c 0 a
c b a 0

 : a, b, c ∈ R



⊥




0 a b −c
a 0 c −b
b c 0 −a
−c −b −a 0

 : a, b, c ∈ R


.

(6.19)

(iii) For R ∈ {E6, E7, E8}

Sn = span{In} ⊥ T n0 ,

where T n0 is the space of traceless symmetric n× n matrices.
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Remark 6.4.3. The proofs of (i) and (ii) will be based on the rep-
resentation theory of the symmetric group4(see [FH91, Chapter 4] for
details). In fact, the decompositions are immediate consequences of
the representation theory of the symmetric group, most of the work
lies in the explicit description of the irreducible subrepresentations, as
we need these, for the explicit calculation of the eigenvalues in Theo-
rem 6.4.1.

We will give an elementary proof of (iii) in Section 6.4.5. However,
as one of the anonymous referees pointed out, this could also be done
by computing the explicit characters of the representation, as it was
already done in the literature. See [Fra51] for the case E6 and E7, and
[Fra70], for the case E8.

The main ingredient is a decomposition formula for a representation
of Sn+1, the symmetric group on n+ 1 symbols. We write

U = span{e},

where e is the all ones vector, for the trivial representation and

Vn+1 =
v ∈ Rn+1 :

n+1∑
i=1

vi = 0
 = U⊥ (6.20)

for the standard representation of Sn+1. Clearly U and Vn+1 are or-
thogonal as representations. Furthermore, both are irreducible: they
are the cases of a standard principle to construct the irreducible rep-
resentations of Sn+1 via Young symmetrizers, which give a one-to-one
correspondence between partitions of n + 1 and irreducible represen-
tations of Sn+1 [FH91, Theorem 4.3].

One then obtains the decomposition5

Sym2(Vn+1) ∼= U ⊕ Vn+1 ⊕ V((n+1)−2,2), (6.21)

where V((n+1)−2,2) is another irreducible representation6 of Sn+1.
4The authors would like to thank one of the anonymous referees for the suggestion and a detailed sketch

of this approach.
5C.f. Exercise [FH91, 4.19], which can be solved by showing that the representation Sym2(Vn+1)

is equivalent to the representation U(n−2,2), defined on [FH91, P. 54]. This can be done by explicitly
computing the character of Sym2(Vn+1) (see [FH91, Chapter 2]) and U(n−2,2) (see [FH91, Eq. 4.33]). A
decomposition of U(n−2,2) into irreps is given in the last displayed equation of [FH91, P. 57].

6This is the irreducible representation corresponding to the partition ((n+ 1)− 2, 2) of n+ 1 of Sn+1,
a Specht module.
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6.4.3 An

We will begin with (i). It is well known that W (An+1) ∼= Sn+1 and we
can explicitly describe the action of W (An) in terms of the action of
Sn+1 by permutation matrices via the identification Sn ∼= Sym2(Vn+1).
For this, we explicitly write

Sym2(Vn+1) = {A ∈ Sn+1 : Ae = 0},

where, again, e is the all-ones vector. This can be done by identifying
the root projectors xx> with x ∈ An with the projectors M(ei − ej)
with ei − ej ∈ Rn+1. Let Sn+1 be the symmetric group on n + 1
symbols. Define a group action of Sn+1 on Rn+1 via

Sn × Rn+1 → Rn+1, σ(v) := (vσ(1), . . . , vσ(n+1)). (6.22)

For a Weyl group generator S = In+1 − aaT with a = ei − ej one can
straightforwardly verify that S is a permutation matrix that swaps
the entries vi and vj:

Sv = σ(v), σ = (i j).

As Sn is generated by 2-cycles, it follows that W (An) is a matrix rep-
resentation (by permutation matrices) of Sn+1 acting on Sym2(Vn+1).

This identification enables us to use decomposition (6.21) and at
this point we, in principle, have already found the decomposition pro-
posed in the theorem. Clearly U ∼= span{In}. Furthermore, below
we will show that U1(An), U2(An), as given in the theorem, are indeed
subrepresentations of W (An) ∼= Sn+1 orthogonal to each other and
span{In} ∼= U . We now proceed by comparing dimensions of the re-
maining summands. By the hook length formula [FH91, 4.12] we find
dim(Vn+1) = n and dim(V((n+1)−2,2)) = (n + 1)(n − 2)/2. In Lemma
6.4.4 we will show that dim(U2(An)) = n = dim(Vn+1), it then follows
that U2(An) ∼= Vn+1. This also implies that U1(An) ∼= V(n−2,2), as the
orthogonality of U1(An) and U2(An) implies that U1(An) is a subrepre-
sentation of V(n−2,2), which, by the irreducibility of the latter, implies
equivalence.
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Therefore the following list of equivalences of representations is
valid

U ∼= span{In}, Vn+1 ∼= U2(An), V(n−2,2)
∼= U1(An),

which then, since U , Vn+1, and V((n+1)−2,2) are irreducible, finishes the
proof of part (i) of the theorem.

We will conclude this part of the proof by showing that U1(An), U2(An)
are indeed subrepresentations of W (An), are orthogonal to each other
and computing dim(U2(An)) = n as used above.

We first show orthogonality. It is straightforward to check that all
operators in Ui(R) for R ∈ {Dn, An} and i = 1, 2 are traceless, so
span{In} ⊥ Ui(R).

For U1(An) ⊥ U2(An), we need to check that for orthogonal roots
x, y ∈ An

0 = 〈Pi,M(x, y)〉 = 2
∑

j∈{1,...,n+1}\{i}
(x · (ei − ej))(y · (ei − ej)). (6.23)

Every summand of the right hand side of (6.23) is zero, if x = ek − el
and y = es − et for k, l, s, t 6= i. Otherwise, if x = ±(ei − ek) and
y = es − et, then (x · (ei − ej))(y · (ei − ej)) is only non-zero, if j = s

or j = t.
Then we get

(±(ei − ek) · (ei − es))((es − et) · (ei − es)) = ∓1

and
(±(ei − ek) · (ei − et))((es − et) · (ei − et)) = ±1.

Thus, the sum of the right hand side of (6.23) is zero, which implies
that the inner product is zero. Hence, all spaces in (i) are orthogonal.

Next, we show that the spaces are invariant under the action of
the Weyl group. If x, y are orthogonal roots, then for S ∈ W the
roots Sx, Sy are orthogonal as well, because the Weyl group preserves
orthogonality. This directly implies the invariance of U1(An). For the
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invariance of U2(An) it suffices to observe that

Sei−ejPk(Sei−ej)> =


Pj, if i = k

Pi, if j = k

Pk, otherwise.

As a last step we compute the dimension of the space U2(An).

Lemma 6.4.4. For n ≥ 2 it holds that dimU2(An) = n.

Proof. By summing the generators Pi of U2(An) we obtain
n+1∑
i=1

Pi =
∑
x∈An

xxT − 2(n+ 1)In,

because each root projector xxT, with x ∈ An, occurs in exactly two
operators Pi and the roots x and −x correspond to the same projector
xxT = (−x)(−x)T. Since irreducible root systems are spherical 2-
designs, (6.1) implies that∑

x∈R
xxT = 2hIn = 2(n+ 1)In.

Hence, ∑n+1
i=1 Pi = 0, and so the matrices Pi are linearly dependent.

We now show that the matrices P1, . . . , Pn are linearly independent,
implying dimU2(An) = n. Suppose we have λ1, . . . , λn ∈ R with

n∑
i=1

λiPi = 0.

Let λ = λ1 + · · ·+ λn. We can write this equation as
n∑
i=1

∑
j∈{1,...,n+1}\{i}

λiM(ei − ej) + 2λIn = 0.

For i 6= j, the projector M(ei − ej) appears as a summand in Pi and
M(ej − ei) in Pj. Because M(ei − ej) = M(ej − ei), rearranging the
terms yields

∑
1≤i<j≤n

(λi + λj)M(ei − ej) +
n∑
j=1

λjM(ej − en+1) + 2λIn = 0.
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As by (6.1),

In = 1
2(n+ 1)

∑
x∈R

xxT = 1
2(n+ 1)

∑
i,j=1,...,n+1

i6=j

M(ei − ej)

= 1
n+ 1

∑
1≤i<j≤n+1

M(ei − ej),

this becomes

∑
i,j=1,...,n

i 6=j

λi + λj + 2λ
n+ 1

)
M(ei − ej) +

n∑
j=1

(
λj + 2λ

n+ 1

M(ej − en+1) = 0.

(6.24)

Because the root projectors {M(ei − ej) : 1 ≤ i < j ≤ n + 1} are
linearly independent7, (6.24) implies that

λi + λj + 2λ
n+ 1 = 0, 1 ≤ i 6= j ≤ n,

and λj + 2λ
n+ 1 = 0, j = 1, . . . , n.

By subtracting the equations, it follows that λ1 = . . . = λn = 0.

6.4.4 Dn

We will proceed with (ii). The overall strategy is the same as in the
An case. On the abstract level we consider the representation

Sn ∼= Sym2(Rn) = Sym2(U + Vn).

We first obtain a decomposition of Sym2(U + Vn) with respect to the
action of the subgroup Sn < W (Dn).

To this end, we first note that

Sym2(U + Vn) ∼=
⊕

a,b: a+b=2
Syma(U)⊗ Symb(Vn) ∼= U ⊕ Vn ⊕ Sym2(Vn)

7This also follows from the fact that the root lattice is perfect and the number of root projectors
coincides with the dimension of Sn.
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and the latter decomposes by (6.21), thus
Sym2(U + Vn) ∼= U ⊕ U ⊕ Vn ⊕ Vn ⊕ V(n−2,2)

as Sn-representations.
Now we examine how these (irreducible) Sn-subrepresentations be-

have under the action of W (Dn), by directly comparing them to the
modules given in the theorem.

First we show that the spaces in (ii) are indeed representations of
W (Dn). It is obvious that the spaces in (ii) are orthogonal. To verify
that the spaces are indeed subrepresentations, note that for Sα for
α− = ei − ej, α+ = ei + ej and σ = (i j) ∈ Σn we have

Sα−M(ek, e`)S>α− = M(eσ(k), eσ(`)),
Sα+M(ek, e`)S>α+ = M((−1)δk∈{i,j}eσ(k), (−1)δ`∈{i,j}eσ(`)),

implying that W (Dn) preserves In and maps the off-diagonal, respec-
tively diagonal entries of a matrix to its off-diagonal, respectively diag-
onal entries. Hence, the spaces U1(Dn), U2(Dn) and span{In} are in-
variant under W (Dn). The special case D4 where U1(D4) decomposes
further into two 3-dimensional invariant subspaces will be treated at
the end of this section. Now as Sn-representations we get (i.e. by
comparing dimensions)

span{In} ∼= U, U2(Dn) ∼= Vn,

and, since they are already irreducible with respect to Sn, that these
are irreducible W (Dn)-subrepresentations. Furthermore, by orthogo-
nality, this implies

U1(Dn) ∼= U ⊕ Vn ⊕ V(n−2,2).

We are left to show that U1(Dn) is irreducible for n ≥ 5 and to obtain
a decomposition into irreducible subrepresentations for n = 4.

It is easy to see that, with respect to the action of Sn,

U ⊕ Vn ∼= L := span
M

(
ei,

∑
j∈{1,...,n}\{i}

ej
)

: i = 1, . . . , n


=
 ∑

1≤i<j≤n
(ai + aj)M(ei, ej) : a1, . . . , an ∈ R

 ⊂ U2(Dn)
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and

U ∼= L1 := span
 ∑

1≤i<j≤n
M(ei, ej)

 .
Hence, by orthogonality of U and Vn,

Vn ∼= L⊥1 :=
 ∑

1≤i<j≤n
(ai + aj)M(ei, ej) : a1, . . . , an ∈ R,

n∑
i=1

ai = 0
 .

If U2(Dn) is not an irreducibleW (Dn)-representation, then, by Maschke’s
theorem, either L1, L

⊥
1 or L = L1 ⊥ L⊥1 is an irreducible W (Dn)-

representation.
We can directly see that L1 and L are not even W (Dn)-invariant:

considering the action of the element α = e1 + e2 ∈ W (Dn) gives

Sα
( ∑

1≤i<j≤n
M(ei, ej)

︸ ︷︷ ︸
∈L1⊂L

)
S>α = M(e1, e2)−

∑
i∈{1,2}

n∑
k=3

M(ei, ek)+
∑

3≤i,j≤n
M(ei, ej) /∈ L,

by showing that a certain system of linear equations has no solutions.
We are left with the case of L⊥1 to consider. Here we fix the element

X := M(e1,
∑

j∈{2,...,n}
ej)−M(e2,

∑
j∈{1,...,n}\{2}

ej) ∈ L⊥1 .

Now, choosing α = e3 + e4, we can show that SαXSα /∈ L1 ⊕ L⊥1 for
n ≥ 5, again by considering a system of linear equations.

However, if n = 4, the system allows for a solution and the space
L⊥1 can be written as

L⊥1 =




0 a b −c
a 0 c −b
b c 0 −a
−c −b −a 0

 : a, b, c ∈ R


,

which can be shown to be invariant under W (D4). Thus, L⊥1 is irre-
ducible and U2(D4) splits into two W (D4)-irreducible subspaces as

U2(D4) = L⊥1 ⊕ L2, L2 =




0 a b c
a 0 c b
b c 0 a

c b a 0

 : a, b, c ∈ R


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with L2 ∼= U ⊕ V(n−2,2).
It remains to prove that the irreducible subspaces for the special

case D4 are inequivalent, despite having the same dimension.
We will do this by showing a more general statement, that is, if T

is an intertwiner with respect to the action of W (Dn), then M(x, y)
is an eigenvector of T for orthogonal roots x, y ∈ Dn.

In the case of D4, all three subspaces U2(Dn), L⊥1 and L2 contain
an operator M(x, y) for orthogonal roots x, y ∈ D4. This shows in
particular that the intertwiner T is either identically zero on one of
the three subspaces or U2(Dn), L⊥1 and L2 or T must preserve the three
subspaces. By Schur’s lemma, this implies that they are inequivalent.

To see this, note that for σ(x) ∈ W it holds that

σ(x)M(x, y)σ(x)T = σ(y)M(x, y)σ(y)T = −M(x, y),

so M(x, y) is contained in the subspace

Uxy := {X ∈ Sn : σ(x)Xσ(x)T = σ(y)TXσ(y)T = −X}.

Let X ∈ Uxy. Since T commutes with the action of W , it follows

σ(x)T (X)σ(x)T = T (σ(x)Xσ(x)T) = −T (X) = σ(y)Xσ(y)T,

hence T (Uxy) ⊆ Uxy. Now, consider the M(x, y) with x = e1 + e3 and
y = e3 + e4 and assume that X = ∑

1≤i≤j≤n cijM(ei, ej) ∈ Uxy. Due to

σ(x)ei =
−ei, if i = 1, 2
ei, otherwise

σ(y)ei =
−ei, if i = 3, 4
ei, otherwise

it follows that

−X = σ(x)Xσ(x)> =M(e1, e2) +M(e1, e1) +M(e2, e2)
−
∑
i>2

c2iM(e1, ei) + c1iM(e2, ei) +
∑
i,j>2

cijM(ei, ej),

hence c1i = c2i and cij = 0 for all other cases. Acting with σ(y) on X
yields

−X = σ(y)
( ∑
i>2

c1i(M(e1, ei) +M(e2, ei))
)
σ(y)>

= −c14M(e1, e3)− c13M(e1, e4)− c14M(e2, e3)− c13M(e2, e4) +
∑
i>5

c1iM(e1, ei),
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so c14 = c13 and c1i = 0 for i 6= 3, 4. Hence, X = cM(x, y) for
some constant c ∈ R and Uxy is one-dimensional. As T (Uxy) ⊆ Uxy,
this shows that M(x, y) is an eigenvector of the intertwiner T . The
argument for general orthogonal roots x, y ∈ Dn follows in the same
manner.

6.4.5 En

To give an elementary proof that T n0 is irreducible with respect to the
action of W (En), we will use (ii) of Theorem 6.4.2.

In all three cases we consider the embedding of the root system
En into R8, as defined in Section 6.2.3. For n ∈ {6, 7} the space T n0
embeds into span{xxT : x ∈ En} ⊂ S8 via

T n0 ∼=
{X ∈ T

8
0 : X(e7 − e8) = 0, X(e6 − e7) = 0}, if n = 6

{X ∈ T 8
0 : X(e7 − e8) = 0}, if n = 7.

Further, we embed the root systems Dn for n ≤ 8 into R8 by adding
zero coordinates to the roots. Let Dsn be the largest root system of
type D that is contained in En, that is Ds6 = D5, Ds7 = D6 and Ds8 =
D8. Since W (Dsn) is a subgroup of the Weyl group W (En), Schur’s
lemma implies that every intertwiner T with respect to W (En) is a
scalar multiple of the identity on Ui(Dsn).The intertwiner commutes
with the group action, thus, it is also a scalar multiple on

W (En) · Ui(Dsn) := {SXS> : X ∈ Ui(Dsn)},
so W (En) ·Ui(Dsn) is an irreducible subspace for the action of W (En).
Hence, to prove the irreducibility of T n0 , it suffices to prove that

T n0 = W (En) · U2(Dss). (6.25)
First, we show that the two orbits W (En) · Ui(Dss) collapse to one
subspaces under the action of W (En):
Lemma 6.4.5. It holds that U1(Dsn) ⊂ W (En) · U2(Dsn) and in par-
ticular,

T sn0
∼= span{U1(Dsn), U2(Dsn)} ⊂ W (En) · U2(Dsn),

where the first equivalence is a consequence of Theorem 6.4.2 (ii).
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The lemma already shows the identity (6.25) for n = 8 and therefore
the irreducibility of T 8

0 with respect to the action of W (E8).

Proof. It suffices to show that for M(e1 + e2, e3 − e4) ∈ U1(Dsn) and
M(e1 + e2, e1 − e2) ∈ U2(Dsn) it holds that

M(e1 + e2, e3 − e4) ∈ W (En) ·M(e1 − e2, e1 + e2).

We have

e1 − e2 = (1,−1, 0, 0, 0, 0, 0, 0) σ(x1)7−→ 1
2(1,−1,−1, 1, 1, 1, 1, 1) =: y

for x1 =1
2(1,−1, 1,−1,−1,−1,−1,−1) ∈ En.

Moreover,

y = 1
2(1,−1,−1, 1, 1, 1, 1, 1) σ(x2)7−→ (0, 0,−1, 1, 0, 0, 0, 0) = −(e3 − e4)

for x2 =1
2(1,−1, 1,−1, 1, 1, 1, 1) ∈ En.

Since both σ(x1) and σ(x2) stabilize e1 + e2, it follows that

σ(x2)σ(x1)M(e1 +e2, e1−e2)σ(x1)Tσ(x2)T = −M(e1 +e2, e3−e4).

It remains to prove (6.25) for n ∈ {6, 7}.
Proposition 6.4.6. We have

dimW (En) · U2(Dsn) ≥ dim T sn0 + n = dim T n0 ,

so W (En) · U2(Dsn) ∼= T n0 .

Proof. We identify T sn0 with the space of all traceless symmetric ma-
trices whose last n − sn rows respectively columns are zeros. As a
consequence of Lemma 6.4.5, T sn0 ⊂ W (En) · U2(Dsn), so it suffices to
find n matrices X1, . . . , Xn ∈ (W (En) ·M(x, y)) \ T sn0 such that

dim span{T sn0 , X1, . . . , Xn} = dim T sn0 + n. (6.26)

Therefore, observe that for each root z ∈ En \Dsn we can find a tuple
of roots x, y ∈ Dsn and an element S ∈ W (En) such that

Sx = z and Sy = y. (6.27)
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The action of S maps xxT − yyT ∈ T sn0 to zzT − yyT /∈ T sn0 . To see
(6.27), if z = 1

2(a1, . . . , a8) ∈ En \Dsn with ai ∈ {±1}, choose

x = (a1, a2, 0, . . . , 0), y = (a1,−a2, 0, . . . , 0) and

S = σ(z′) with z′ = 1
2(a1, a2,−a3, . . . ,−a8).

Then, one can directly verify that Sx = z and Sy = y.
Now, choose a set of linearly independent roots z1, . . . , zn ∈ En\Dsn.

Such a set exists, for example, take the roots z1, . . . , zn ∈ En\Dsn such
that the i-th and (i+1)-th entry of root zi for 1 ≤ i ≤ n−1 are negative
and the remaining entries positive, and for zn we set the first and the
n-th entry to be negative and the remaining ones positive.

Additionally, choose y1, . . . , yn ∈ Dsn. Then the matrices Xi =
ziz

T
i − yiyT

i lie in W (En) · U2(Dsn) \ T
sn

0 . These matrices are linearly
independent since the last row of zizT

i − yiy
T
i is given by the vector

±1/2zi and vectors zi were chosen to be linearly independent. Since
the last row of every matrix in T sn0 consists of only zeros, it follows
that adding these vectors to T sn0 increases the dimension of their joint
span by n, which proves (6.26).

Proof of Theorem 6.4.1

To prove Theorem 6.4.1 it remains to compute

Q[A] = λTrA2

for A contained in one of the spaces given in Theorem 6.4.2.
We first evaluate Q at the identity matrix. We have

Q[In] =
∑
r∈R

(rTr)2 = 4|R|,

and using Tr In = n we see that λ = 4h, where h is the Coxeter number
of the root system R.

Note that for R = An or R = Dn we can find x, y ∈ R with x ·y = 0
and {x, y} 6= {ei − ej, ei + ej} such that M(x, y) ∈ U1(R). In the
case of D4 we can find such an element M(x, y) in both of the two
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irreducible subspaces decomposing U1(D4). Then

Q[M(x, y)] =
∑
r∈R

M(x, y)[r]2

= 4
∑
r∈R

(x · r)2(y · r)2.

We only have to consider roots r, with r · x 6= 0 and r · y 6= 0, which
implies (r ·x)2 = (r · y)2 = 1. For R = An we can find 8 roots fulfilling
this condition, for R = Dn there are 16. Hence,

Q[M(x, y)] =
32 for R = An,

64 for R = Dn.

For the matrices M(ei − ej, ei + ej) ∈ U2(Dn), the result is similarly

Q[M(ei − ej, ei + ej)] = 4
∑
r∈Dn

((ei + ej) · r)2((ei − ej) · r)2.

If r = ±ei± ej, the summand is zero. Otherwise, if (r · (ei + ej))2 = 1,
it follows (r · (ei− ej))2 = 1, and there are exactly 8(n− 2) such roots
r ∈ Dn. Hence, Q[M(ei − ej, ei + ej)] = 32(n− 2).

In all three cases, the normalizing factor is

TrM(x, y)2 = 2(x · x)(y · y) + 2(x · y)2 = 8.

So we obtain eigenvalues 4 on U1(An), respectively 8 and 4(n− 2) on
U1(Dn) and U2(Dn).

For R = An we have to compute the eigenvalue for U2(An), so we
may evaluate Q(P1). Observe that

P1[r]2 =
 ∑
j∈{2,...,n+1}

((e1 − ej) · r)2 − 4


2

.

If r = ±(e1 − ej) for some j ∈ {2, . . . , n + 1}, then we get (r, r)2 = 4
and ((e1 − ej) · r)2 = 1 for all other j. This amounts to

P1[r]2 = (4 + (n− 1)− 4)2 = (n− 1)2.

If r = (ek−el) with k, l 6= 1, it follows (r·(e1−ek))2 = (r·(e1−el))2 = 1
and all other summands are zero. So we get

P1[r]2 = (2− 4)2 = 4.
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There are 2n roots of type ±(e1−ej) and accordingly n(n−1) of type
(ek − el) with k, l 6= 1. This results in

Q[P1] = 2n(n− 1)2 + 4n(n− 1) = 2n(n− 1)(n+ 1).

Now we compute TrP 2
1 = 〈P1, P1〉 and get

〈P1, P1〉 =
〈 ∑
j∈{2,...,n+1}

M(e1 − ej)− 2In,
∑

j∈{2,...,n+1}
M(e1 − ej)− 2In

〉

=
∑

j,k∈{2,...,n+1}
〈M(e1 − ej),M(e1 − ek)〉 − 4

∑
j∈{2,...,n+1}

〈M(e1 − ej), In〉+ 4n

=
∑

j,k∈{2,...,n+1}
((e1 − ek) · (e1 − el))2 − 4n.

The first sum equals∑
j∈{2,...,n+1}

((e1 − ej) · (e1 − ej))2 +
∑

2≤j 6=k≤n+1
((e1 − ej) · (e1 − ek))2 = 4n+ n(n− 1).

Hence, together we have 〈P1, P1〉 = n(n− 1) and the eigenvalue asso-
ciated with the eigenspace U2(An) is 2(n+ 1) = 2h.

The remaining eigenvalues for E6, E7, E8 are given by the fact that
these root systems form spherical 4-designs. Then, by (6.11), Q[H] =
8h
n+2 TrH2.

6.4.6 Orthogonal sum of irreducible root systems

In this section, we want to compute the eigenvalues of the quadratic
form Q on the orthogonal sum of irreducible root systems R = R1 ⊥
. . . ⊥ Rm. For this we write

QRi[H] =
∑
x∈Ri

H[x]2

to distinguish between the quadratic form on different root systems
Ri. Let ni be the rank of Ri. Furthermore, let n = n1 + · · · + nm.
Write each x ∈ Rn as (x1, . . . , xm) with xi ∈ Rni and every root r ∈ R
as (0, . . . , 0, ri, 0, . . . , 0) with ri ∈ Ri and 0 ∈ Rnj accordingly. To
compute the eigenvalues of QR on Sn, we identify Sn in a similar
fashion: Each H ∈ Sn can be seen as a vector of block matrices
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H ∼= (H1,1, . . . , Hm,m, H1,2, . . . , Hm−1,m) ⇐⇒ H =


H1,1 H1,2 · · · H1,m
HT

1,2 H2,2 · · · H2,m
... ... . . . ...

HT
1,m HT

2,m · · · Hm,m

 ,
(6.28)

where Hi,i ∈ Sni and Hi,j ∈ Rni×nj for i 6= j. This way, we identify

Sn ∼= Sn1 ⊥ . . . ⊥ Snm ⊥⊥1≤i<j≤m Rni×nj . (6.29)

Furthermore, let D be the m-dimensional space that is spanned by the
diagonal matrices

(In1, 0, . . . , 0), (0, In2, 0, . . . , 0), . . . , (0, . . . , 0, Inm, 0, . . . , 0).

We are particularly interested in the case where each component of
the root system R has the same Coxeter number. In this case R is of
the form

R = (Ana)ma ⊥ (Dnd)md ⊥ (Ene)me, (6.30)

where (Ana)ma, (Dnd)md respectively (Ene)me are orthogonal sums of
ma,md respectively me irreducible roots systems Ana, Dnd respectively
Ene, and m = ma +md +me, n = mana +mdnd +mene.

Theorem 6.4.7. Let R =⊥mi=1 Ri be the orthogonal sum of irreducible
root systems Ri ∈ {Ani, Dni, Eni}, where ni is the rank of Ri. We
identify Sn as in (6.29).

(i) We have

QR[H] = QR1[H1,1] + · · ·+QRm[Hm,m], (6.31)

so the quadratic form only depends on the diagonal entries Hi,i ∈
Sni and the eigenvalues of QR are the eigenvalues of all QRi and
additionally the eigenvalue 0 with multiplicity ∑

1≤i<j≤m ninj.

(ii) If each component root system has the same Coxeter number h,
we can write R as in (6.30). The space of traceless matrices T n0
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then decomposes into eigenspaces of QR:

T n0 = U1(Ana)ma ⊥ U2(Ana)ma

⊥ U1(Dnd)md ⊥ U2(Dnd)md

⊥ (T ne0 )me

⊥ D ∩ T n0 ,

(6.32)

where the exponents refer to the direct sum of the eigenspaces
of QAna , QDnd

and QEne . The eigenspace D ∩ T n0 belongs to the
eigenvalue 4h and has dimension m− 1.

Remark 6.4.8. The decomposition (6.32) does not change when D4
is considered because the quadratic form has the same eigenvalues on
both irreducible subspaces that decompose U1(D4).

Proof. (i) Let H ∈ Sn. We write H as in (6.28). For a root r =
(0, . . . , 0, ri, 0, . . . , 0) ∈ R it follows

H[r] = Hi,i[ri],

soH[r] does not depend of the off-diagonal entries (0, . . . , 0, Hi,j, 0, . . . , 0)
for i 6= j of H.

Since every root in R is of this form, this directly implies (6.31).
This also shows that the eigenvalues of QR coincide with the eigen-
values of QRi with the same multiplicity. The only additional eigen-
value we get is 0, which is obtained by evaluating QR[H] for matrices
H ∈ Sn, where all diagonal entries Hii = 0 ∈ Sni. Due to the identifi-
cation (6.29), the space of these matrices has dimension ∑1≤i<j≤m ninj,
which gives the multiplicity of the eigenvalue 0.

(ii) If each component root system of R has the same Coxeter num-
ber, the space D is an eigenspace of QR because

QR

[
(0, . . . , 0, Ina, 0 . . . , 0)

]
= QAna [Ina] = 4h,

QR

[
(0, . . . , 0, Ind, 0 . . . , 0)

]
= QDnd

[Ind] = 4h,

QR

[
(0, . . . , 0, Ine, 0 . . . , 0)

]
= QEne [Ine] = 4h.
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Hence, Sn decomposes into eigenspaces of QR as

Sn = U1(Ana)ma ⊥ U2(Ana)ma ⊥ U1(Dnd)md ⊥ U2(Dnd)md ⊥ (T ne0 )me ⊥ D.

All eigenspaces but D lie in the space T n0 , hence equation (6.32) holds.
To see that D ∩ T n0 has dimension m − 1, note that it contains all
diagonal matrices of the form

(c1In1, . . . , cmInm, 0, . . . , 0) with c1n1 + · · ·+ cmnm = 0.

Since D has dimension m, it follows that D ∩ T n0 has dimension m−
1.

6.5 Concrete results

6.5.1 Dimension 8

Mordell [Mor38] showed that the root lattice E8 is the only even uni-
modular lattice in dimension 8. By [CKM+22] E8 is universally opti-
mal and unique among periodic point configurations. The fact that it
is a local minimum for all Gaussian potential functions was established
in [SS06]. Coulangeon [Cou06] used (6.12) to provide an alternative
proof.

6.5.2 Dimension 16

Witt [Wit41] proved that there exist exactly two even unimodular
lattices in dimension 16: D+

16 and E8 ⊥ E8. Both lattices have the
same theta series E2

4 , but their root systems differ as we have D+
16(2) =

D16 and, respectively, E8 ⊥ E8(2) = E8 ⊥ E8. The eigenvalues of the
quadratic form (6.13) are by Theorem 6.4.1 and Theorem 6.4.7

8 (120×), 56 (15×) respectively 0 (64×), 24 (70×), 120 (1×).

Therefore, by Corollary 6.3.2, D+
16 is a local minimum for fα-potential

energy whenever α is large enough. By Corollary 6.3.2 the other lattice
E8 ⊥ E8 is a saddle point whenever α is large enough. The following
numerical computations strongly suggest that E8 ⊥ E8 is in fact a
saddle point for all values of α.
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Using SageMath [Tea] we arrive at the following plot for the eigen-
values of the Hessian of the function L 7→ E(fα, L) at D+

16 and at
E8 ⊥ E8.
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Figure 6.1: The eigenvalues of the Hessian for D+
16 (two different eigenvalues, left) and

E8 ⊥ E8 (three different eigenvalues, right) depending on the parameter α.

We introduce the following notation: The value in (6.15) we denote
by µ(L, λ, α). We consider α = π, then

µ(D+
16, 8, π) = −0.06196 . . . µ(E8 ⊥ E8, 0, π) = −0.13245 . . .

µ(D+
16, 56, π) = 0.36093 . . . µ(E8 ⊥ E8, 24, π) = 0.07899 . . .

µ(E8 ⊥ E8, 120, π) = 0.92480 . . .

We show in Section 6.5.4 how to translate numerical computations
into rigorous bounds.

6.5.3 Dimension 24

The Niemeier lattices are the even unimodular lattices in dimension 24
which have vectors of squared norm 2. A classification of Niemeier gave
that there are 23 Niemeier lattices and Venkov realized that they can
be characterized by their root system. The theta series of a Niemeier
lattice L with root system L(2) is the modular form of weight 12

ΘL(τ) = E3
4(τ) + (|L(2)| − 720)∆(τ) = 1 + |L(2)|q + · · · .

The cusp form of weight 16 is E4∆. We apply Theorem 6.3.1 together
with Theorem 6.4.1 and Theorem 6.4.7 to determine the signature of
the Hessian at α = π. We collect our results in Table 6.2. For large
values of α Corollary 6.3.2 shows that only the Niemeier lattices with
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irreducible root systems, namely A24 and D24, are local minima for
fα-potential energy. All other Niemeier lattices are saddle points for
fα-potential energy for α large enough.
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L(2) |L(2)| h λ multiplicity µ(L,λ,π)

A24
1 48 2 0 276 0.0018 . . .

8 23 0.1044 . . .

A12
2 72 3

0 264 −0.0050 . . .
6 24 0.0718 . . .
12 11 0.1488 . . .

A8
3 96 4

0 252 −0.0120 . . .
4 16 0.0392 . . .
8 24 0.0905 . . .
16 7 0.1931 . . .

A6
4 120 5

0 240 −0.0189 . . .
4 30 0.0323 . . .
10 24 0.1092 . . .
20 5 0.2375 . . .

A4
5D4 144 6

0 230 −0.0259 . . .
4 36 0.0253 . . .
8 9 0.0766 . . .
12 20 0.1279 . . .
24 4 0.2818 . . .

D6
4 144 6

0 240 −0.0259 . . .
8 54 0.0766 . . .
24 5 0.2818 . . .

A4
6 168 7

0 216 −0.0328 . . .
4 56 0.0184 . . .
14 24 0.1466 . . .
28 3 0.3262 . . .

A2
7D

2
5 192 8

0 214 −0.0398 . . .
4 40 0.0114 . . .
8 20 0.0627 . . .
12 8 0.1140 . . .
16 14 0.1653 . . .
32 3 0.3705 . . .

A3
8 216 9

0 192 −0.0467 . . .
4 81 0.0045 . . .
18 24 0.1840 . . .
36 2 0.4149 . . .

Table 6.2: The eigenvalues of the Hessian of the Niemeier lattices for α = π.
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L(2) |L(2)| h λ multiplicity µ(L,λ,π)

A2
9D6 240 10

0 189 −0.0537 . . .
4 70 −0.0024 . . .
8 15 0.0488 . . .
16 5 0.1514 . . .
20 18 0.2027 . . .
40 2 0.4592 . . .

D4
6 240 10

0 216 −0.0537 . . .
8 60 0.0488 . . .
16 20 0.1514 . . .
40 3 0.4592 . . .

E4
6 288 12

0 216 −0.0676 . . .
12 80 0.0862 . . .
48 3 0.5479 . . .

E4
6 288 12

0 216 −0.0676 . . .
12 80 0.0862 . . .
48 3 0.5479 . . .

A11D7E6 288 12

0 185 −0.0676 . . .
4 54 −0.0163 . . .
8 21 0.0349 . . .
12 20 0.0862 . . .
20 6 0.1888 . . .
24 11 0.2401 . . .
48 2 0.5479 . . .

A2
12 312 13

0 144 −0.0746 . . .
4 130 −0.0233 . . .
26 24 0.2588 . . .
52 1 0.5923 . . .

D3
8 336 14

0 192 −0.0815 . . .
8 84 0.0210 . . .
24 21 0.2262 . . .
56 2 0.6366 . . .

A15D9 384 16

0 135 −0.0954 . . .
4 104 −0.0441 . . .
8 36 0.0071 . . .
28 8 0.2636 . . .
32 15 0.3149 . . .
64 1 0.7253 . . .

Table 6.2. (continued).
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L(2) |L(2)| h λ multiplicity µ(L,λ,π)

A17E7 432 18

0 119 −0.1093 . . .
4 135 −0.0580 . . .
16 27 0.0958 . . .
36 17 0.3523 . . .
72 1 0.8140 . . .

D10E
2
7 432 18

0 189 −0.1093 . . .
8 45 −0.0067 . . .
16 54 0.0958 . . .
32 9 0.3010 . . .
72 2 0.8140 . . .

D2
12 528 22

0 144 −0.1371 . . .
8 132 −0.0345 . . .
40 22 0.3758 . . .
88 1 0.9914 . . .

A24 600 25 4 275 −0.1067 . . .
50 24 0.4832 . . .

D16E8 720 30

0 128 −0.1928 . . .
8 120 −0.0902 . . .
24 35 0.1150 . . .
56 15 0.5254 . . .
120 1 1.3462 . . .

E3
8 720 30

0 192 −0.1928 . . .
24 105 0.1150 . . .
120 2 1.3462 . . .

D24 1104 46 8 276 −0.2014 . . .
88 23 0.8246 . . .

Table 6.2. (continued).

6.5.4 Dimension 32

In dimension 32 the even unimodular lattice have not been classified
yet. Some partial results are known: There are at least 80 million
of them, see Serre [Ser73]. King [Kin03] showed that there are at
least ten million even unimodular lattices without roots in dimension
32. Kervaire [Ker94] classified all indecomposable even unimodular
lattices in dimension 32 that possess a full root system.

In general an even unimodular lattice need not even be a critical
point for the Gaussian potential function. The first such examples can
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be found in dimension 32, we briefly discuss one of them.
For example there exists a lattice L ⊆ R32 with complete root

system A8
1A

8
3, see Kervaire [Ker94]. We split the summation in the

gradient into the contribution of the root system and the contribution
of all larger shells

〈∇E(fα, L), H〉 = −α
∑

x∈L\{0}
H[x]e−α‖x‖2

= −αe−2α

 ∑
x∈L(2)

H[x]
− α

 ∑
x∈L\({0}∪L(2))

H[x]e−α‖x‖2
 .

We firstly evaluate ∑
x∈L(2)

H[x] = 〈H,
∑

x∈L(2)
xxT〉

and use the fact that A1 and A3 form spherical 2-designs and so∑
x∈L(2)

xxT = 2h(A1)I8 ⊕ 2h(A3)I24 = 4I8 ⊕ 8I24.

The matrix H = 24I8 ⊕ (−8)I24 has trace zero and gives∑
x∈L(2)

H[x] = 24 · 4 · 8− 8 · 8 · 24 = −4 · 8 · 24 = −768 6= 0.

Now, by the eigenvalue bounds for H[x] coming from the Rayleigh-
Ritz principle, we find that

−8 = λmin(H) ≤ H[x]
‖x‖2 ≤ λmax(H) = 24.

This allows to organize summation over all lattice vectors of squared
length at least 4 by shells

−8
∑
m≥2

am·2m·e−α(2m) ≤
∑

x∈L\({0}∪L(2))
H[x]e−α‖x‖2 ≤ 24

∑
m≥2

am·2m·e−α(2m),

where am = |L(2m)| ist the m-th coefficient of the theta series ΘL of
L.

Combining the above, we see that it suffices to show

24
∑
m≥2

am · 2m · e−α(2m) ≤ 768 · e−2α. (6.33)
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For this we write ΘL in the form ΘL = E16 +f , where f is a cusp form
of weight 16. Let

E16(τ) =
∞∑
m=0

bmq
m and f(τ) =

∞∑
m=1

cmq
m,

in particular bm = − 32
B16
σ15(m) = 16320/3617σ15(m) and so c1 =

−16320/3617. We use the estimate σk−1(m) ≤ ζ(k− 1)mk−1, where ζ
is the Riemann zeta function, and get bm ≤ 4.6m15. To bound cm we
use (6.4), the facts ` = 1, d(m) ≤ 2

√
m, and get |cm| ≤ 1.2 · 1010m8.

Together,
|am| ≤ 4.6m15 + 1.2 · 1010m8. (6.34)

We evaluate for α = 14, this gives
∑
m≥2

am · 2m · e−28m ≤ 9.2
∞∑
m=2

m16 · e−28m + 2.4 · 1010
∞∑
m=2

m9 · e−28m.

By Lemma 6.2.2 we have
∞∑
m=2

m16e−28m ≤ 3.2 · 10−20 + (28)−17Γ(17, 56) ≤ 3.3 · 10−20,

and
∞∑
m=2

m9e−28m ≤ 2.5 · 10−22 + (2α)−10Γ(10, 56) ≤ 2.6 · 10−22.

Putting everything together for α = 14 in (6.33) we find

24
∑
m≥2

am · 2m · e−α(2m) ≤ 24
(
9.2 · 3.3 · 10−20 + 2.4 · 1010 · 2.6 · 10−22)

≤ 24
(
3.1 · 10−19 + 6.3 · 10−12)

≤ 1.6 · 10−10

≤ 768 · e−28.

This shows that this lattice is not a critical point for the Gaussian
potential function e−14r.

Last, but not least, we show that all even unimodular lattices with-
out roots in dimension 32 are local maxima for the Gaussian potential
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function e−πr. All the even unimodular lattices in dimension 32 with-
out roots have the same theta series, for such a lattice L ⊆ R32 we
have
ΘL(τ) = E4

4(τ)− 960E4(τ)∆(τ)
= 1 + 146880q2 + 64757760q3 + 4844836800q4 + 137695887360q5

+ 2121555283200q6 + 21421110804480q7

+ 158757684004800q8 + · · ·

All shells of L form spherical 4-designs, so L is critical for all Gaussian
potential functions and we can compute the eigenvalue of the Hessian
(6.7) using (6.12). For α = π we compute the first summands of the
series and get

1
n(n+ 2)

8∑
m=0

amπ(2m)(π(2m)− (n/2 + 1))e−π(2m) < −0.00027.
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Figure 6.2: The eigenvalue of the Hessian for even unimodular lattices in dimension 32
without roots depending on the parameter α.

Now we argue that the tail of the series is so small that the entire
series is strictly negative.

For this, again, we use the bound (6.34) for the coefficients am of
ΘL, and we estimate∣∣∣∣∣∣

∞∑
m=9

amπ(2m)(π(2m)− (n/2 + 1))e−π(2m)
∣∣∣∣∣∣ ≤

∞∑
m=9
|am|(2πm)2e−2πm,
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and
∞∑
m=9
|am|(2πm)2e−2πm ≤ 181.7

∞∑
m=9

m17e−2πm + 4.8 · 1011
∞∑
m=9

m10e−2πm.

Again, by Lemma 6.2.2
∞∑
m=9

m17e−2πm ≤ 4.7 · 10−9 + (2π)−18Γ(18, 18π) ≤ 5.8 · 10−9.

Similarly,
∞∑
m=9

m10e−2πm ≤ 9.7 · 10−16 + (2π)−11Γ(11, 18π) ≤ 1.2 · 10−15.

Altogether:∣∣∣∣∣∣ 1
n(n+ 2)

∞∑
m=9

amπ(2m)(π(2m)− (n/2 + 1))e−π(2m)
∣∣∣∣∣∣

≤ 1088−1 (181.7 · 5.8 · 10−9 + 4.8 · 1011 · 1.2 · 10−15)
≤ 5.4 · 10−7.

Hence, we showed that for α = π the even unimodular lattices in di-
mension 32 without roots are local maxima for the Gaussian potential
function. This answers a question of Regev and Stephens-Davidowitz
[RSD17].
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Chapter 7

A semidefinite program for least
distortion embeddings of flat tori
into Hilbert spaces

About this section

The following text has been previously published as:

Arne Heimendahl, Moritz Lücke, Frank Vallentin, Marc Chris-
tian Zimmermann. “A semidefinite program for least distortion
embeddings of flat tori into Hilbert spaces”. arXiv: 2210.11952

Changes from the journal version are limited to typesetting and
notation. These changes were performed to match the rest of this
dissertation.

All authors contributed equally to this work. In particular, AH
developed the proof of Theorem 7.4.2 and worked out the proofs of
Section 7.7.

Abstract

We derive and analyze an infinite-dimensional semidefinite program
which computes least distortion embeddings of flat tori Rn/L, where
L is an n-dimensional lattice, into Hilbert spaces.

This enables us to provide a constant factor improvement over the
previously best lower bound on the minimal distortion of an embed-
ding of an n-dimensional flat torus.
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As further applications we prove that every n-dimensional flat torus
has a finite dimensional least distortion embedding, that the standard
embedding of the standard tours is optimal, and we determine least
distortion embeddings of all 2-dimensional flat tori.

7.1 Introduction

Least distortion embeddings of flat tori into Hilbert spaces were first
studied by Khot and Naor [KN05] in 2006. One motivation is that
studying the Euclidean distortion of flat tori might have applications
to the complexity of lattice problems, like the closest vector problem,
and might also lead to more efficient algorithms for lattice problems
through the use of least distortion embeddings. Another motivation
comes from comparing the Riemannian setting to the bi-Lipschitz set-
ting we are discussing here. On the one hand, by the Nash embedding
theorem, flat tori can be embedded isometrically as Riemannian sub-
manifolds into Euclidean space; we refer to [BJLT12] for spectacular
visualizations of such an isometric embedding in the case of the two-
dimensional square flat torus. On the other hand, Khot and Naor
showed that flat tori can be highly non-Euclidean in the bi-Lipschitz
setting.

7.1.1 Notation and review of the relevant literature

We review the relevant results of the literature which appeared since
the pioneering work of Khot and Naor. At the same time we set the
notation for this paper.

A flat torus is the metric space given by the quotient Rn/L with
some n-dimensional lattice L ⊆ Rn and with metric

dRn/L(x, y) = min
v∈L
|x− y − v|.

An n-dimensional lattice is a discrete subgroup of (Rn,+) consisting
of all integral linear combinations of a basis of Rn. Furthermore, | · |
denotes the standard norm of Rn given by |x| =

√
xTx.

A Euclidean embedding of Rn/L is an injective function ϕ : Rn/L→
H mapping the flat torus Rn/L into some (complex) Hilbert space H.
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The distortion of ϕ is

dist(ϕ) = sup
x,y∈Rn/L

x6=y

‖ϕ(x)− ϕ(y)‖
dRn/L(x, y) · sup

x,y∈Rn/L
x 6=y

dRn/L(x, y)
‖ϕ(x)− ϕ(y)‖ ,

where ‖ · ‖ is the norm of the Hilbert space H. Here the first supre-
mum is called the expansion of ϕ and the second supremum is the
contraction of ϕ. When we minimize the distortion of ϕ over all pos-
sible embeddings of Rn/L into Hilbert spaces we speak of the least
(Euclidean) distortion of the flat torus; it is denoted by

c2(Rn/L) = inf{dist(ϕ) : ϕ : Rn/L→ H for some Hilbert space H, ϕ injective}.

Similarly one can define c1(Rn/L) by replacing the Hilbert space by
some L1 space.

Khot and Naor showed (see [KN05, Corollary 4]) that flat tori can
be highly non-Euclidean in the sense that there is a family of flat tori
Rn/Ln with

c2(Rn/Ln) = Ω(
√
n). (7.1)

On the other hand, they noticed (see [KN05, Remark 5]) that the
standard embedding of the standard flat torus Rn/Zn embeds into
R2n with distortion O(1)1. The standard embedding is given by

ϕ(x1, . . . , xn) = (cos 2πx1, sin 2πx1, . . . , cos 2πxn, sin 2πxn). (7.2)

In fact, Khot and Naor are mainly concerned with bounding c1(Rn/L),
which immediately provides bounds for c2(Rn/L) because c1(Rn/L) ≤
c2(Rn/L). To state their main result, leading to (7.1), we make use of
the Voronoi cell of L, which is an n-dimensional polytope defined as

V (L) = {x ∈ Rn : |x| ≤ |x− v| for all v ∈ L}.

The Voronoi cell is a fundamental domain of Rn/L under the action of
L. We denote the volume of V (L) by volL. Clearly, |x| = dRn/L(x, 0)
for all x ∈ V (L). The covering radius of L is µ(L) = max{|x| : x ∈
V (L)}, which is the circumradius of V (L). The length of a shortest

1In fact, we have dist(ϕ) = π/2 and ϕ is an optimal embedding, see Theorem 7.6.1.
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vector of L is λ(L) = min{|v| : v ∈ L \ {0}} that is two times the
inradius of V (L). Now the main result (see [KN05, Theorem 5]) is

c1(Rn/L) = Ω
λ(L∗)

√
n

µ(L∗)

 . (7.3)

Here, as usual, L∗ = {u ∈ Rn : uTv ∈ Z for all v ∈ L} denotes the dual
lattice of L. They also give an alternative proof of their main result for
c2(Rn/L) (see [KN05, Lemma 11]). The main result leads to the lower
bound (7.1) when plugging in duals of lattices which simultaneously
provide dense packings and economical coverings. Such a family of
lattices exist by a theorem of Butler [But72].

Using Korkine-Zolotarev reduction Khot and Naor determine an
embedding of Rn/L into R2n with distortion O(n3n/2) (see [KN05,
Theorem 6]).

Haviv and Regev [HR13, Theorem 1.3] found an improved embed-
ding that yields c2(Rn/L) = O(n

√
log n). They also improved on (7.3)

and showed in [HR13, Theorem 1.5] that for any n-dimensional lattice
L we have

c2(Rn/L) ≥ λ(L∗)µ(L)
4
√
n

, (7.4)

which improves on (7.3) because µ(L)µ(L∗) ≥ Ω(n) holds for every
n-dimensional lattice. This follows from a simple volume argument
giving µ(L) = Ω(

√
n(volL)1/n) and volL∗ = (volL)−1.

Recently, Agarwal, Regev, Tang [ART20] constructed excellent em-
beddings of flat tori having low distortion and showed that the lower
bound (7.1) is nearly tight: For every lattice L ⊆ Rn there exists an
embedding of Rn/L into Hilbert space with distortion O(

√
n log n).

7.1.2 Aim and method

In this paper we want to add a semidefinite optimization perspective
to this story.

For finite metric spaces it is known that one can compute least
distortion Euclidean embeddings via a semidefinite program (SDP),
which is linear optimization over the cone of positive semidefinite ma-
trices. We want to extend this result from finite metric spaces to
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flat tori. This will yield, via semidefinite programming duality, an
algorithmic method for proving nonembeddability results. In partic-
ular, this leads to a new, simple proof of (7.4). In fact we even get a
constant factor improvement that is tight in the case of the standard
torus.

First we recall the semidefinite program for finding least Euclidean
distortion embeddings of finite metric spaces. Suppose we consider a
finite metric space X with distance function d. Then, as first observed
by Linial, London, Rabinovich [LLR95], we can find a least distortion
embedding of (X, d) into a Hilbert space algorithmically by solving
the following semidefinite program

min{C : C ∈ R+, Q ∈ SX+ ,
d(x, y)2 ≤ Qxx − 2Qxy +Qyy ≤ Cd(x, y)2 for all x, y ∈ X},

(7.5)

where SX+ denotes the convex cone of positive semidefinite matrices
whose rows and columns are indexed by the elements of X. The op-
timal solution C of this semidefinite program equals c2(X, d)2 and if
Q attains the optimal solution, then we can determine a least distor-
tion embedding ϕ : X → RX with the property ϕ(x) · ϕ(y) = Qxy by
considering a Cholesky decomposition of Q.

This shows how to compute (in fact in polynomial time) an opti-
mal Euclidean embedding of a finite metric space. Another benefit of
this formulation is that we can apply duality theory of semidefinite
programs. Then the dual maximization problem will play a key role
to determine lower bounds for c2(X, d). By using strong duality we
arrive at the following result: The least distortion of a finite metric
space (X, d), with X = {x1, . . . , xn}, into Euclidean space is given by

c2(X, d)2 = max


∑n
i,j=1:Yij>0 Yijd(xi, xj)2

−∑n
i,j=1:Yij<0 Yijd(xi, xj)2 : Y ∈ Sn+, Y e = 0

 .
(7.6)

The condition Y e = 0 says that the all-ones vector e lies in the kernel
of Y . A proof of this result is detailed in Matoušek [Mat02] or in
Laurent, Vallentin [LV].
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This lower bound has been extensively used to determine the least
distortion Euclidean embeddings of the shortest path metric of several
graph classes. Linial, Magen [LM00] computed least distortion embed-
dings of products of cycles and of expander graphs. Least distortion
Euclidean embeddings of strongly regular graphs and of more general
distance regular graphs were first considered by Vallentin [Val08]. This
was further extended by Kobayashi, Kondo [KK15], Cioabă, Gupta,
Ihringer, Kurihara [CGIK21]. Linial, Magen, Naor [LMN02] consid-
ered graphs of high girth using this approach.

To apply the bound (7.6) one has to construct a matrix Y , which
sometimes appears to come out of the blue. By complementary slack-
ness, which is the same as analyzing the case of equality in the proof of
weak duality, we get hints where to search for an appropriate matrix
Y : If Y is an optimal solution of the maximization problem (7.6), then
Yij > 0 only for the most contracted pairs. These are pairs (xi, xj) for
which d(xi,xj)

‖f(xi)−f(xj)‖ is maximized. Similarly, then Yij < 0 only for the
most expanded pairs, maximizing ‖f(xi)−f(xj)‖

d(xi,xj) .
Linial, Magen [LM00] realized that for graphs most expanded pairs

are simply adjacent vertices. However, most contracted pairs are more
mysterious and there is no characterization known. The first intuition
that the largest contraction occurs at pairs at maximum distance is
wrong in general.

7.1.3 Contribution and structure of the paper

In Section 7.2 of this paper we derive a new infinite-dimensional semidef-
inite program for determining a least distortion embedding of flat tori
into Hilbert spaces which is analogous to (7.5). It is given in Theo-
rem 7.2.1 where we additionally apply symmetry reduction techniques
in the spirit of [BGSV12] to reduce the original infinite-dimensional
SDP into an infinite-dimensional linear program that involves Fourier
analysis. Then we realize that in a Euclidean embedding of a flat
torus there are no most expanded pairs: The expansion is only at-
tained in the limit by pairs whose distance tends to zero. This is in
perfect analogy to the graph case where the most expanded pairs are



164 7.2. An infinite-dimensional SDP

also attained at minimal distance. This insight has the advantage that
in the infinite dimensional linear program some of the infinitely many
constraints can be replaced by only one finite-dimensional semidefinite
constraint. This is the content of Theorem 7.2.4. Its dual program is
derived in Theorem 7.2.5 which is analogous to (7.6).

In Section 7.3 we further investigate the properties of the opti-
mization problems given in Theorem 7.2.4 and Theorem 7.2.5. These
properties will be used in the next sections.

In the last sections we apply our new methodology. In Section 7.4
we prove that an n-dimensional flat torus always admits a finite di-
mensional least distortion embedding, a space of (complex) dimension
2n − 1 suffices. Section 7.5 contains a new and simple proof of our
constant factor improvement of the lower bound given in (7.4). In
Section 7.6 we show that the standard embedding (7.2) of the stan-
dard torus is indeed optimal and has distortion π/2. In Section 7.7
we determine least distortion embeddings of all two-dimensional flat
tori. A few open questions are discussed in Section 7.8.

7.2 An infinite-dimensional SDP

Starting from (7.5) we want to derive a similar, but now infinite-
dimensional, semidefinite program which can be used to determine
c2(Rn/L).

7.2.1 Primal program

The first step is to apply a classical theorem of Moore [Moo16] which
enables us to optimize over all embeddings ϕ : Rn/L → H into some
Hilbert space H. In our situation Moore’s theorem says that there
exists a (complex) Hilbert space H and a map ϕ : Rn/L → H if and
only if there is a positive definite kernel2

Q : Rn/L×Rn/L→ C such that Q(x, y) = (ϕ(x), ϕ(y)) for all x, y ∈ Rn/L,
2A kernel Q is called positive definite if and only if for all N ∈ N and for all x1, . . . , xN ∈ Rn/L

the matrix (Q(xi, xj))1≤i,j≤N ∈ CN×N is Hermitian and positive semidefinite. This naming convention is
unfortunate but for historical reasons unavoidable.
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where (·, ·) denotes the inner product of H. Therefore we get
c2(Rn/L)2 = inf{C : C ∈ R+, Q positive definite,

dRn/L(x, y)2 ≤ Q(x, x)− 2 Re(Q(x, y)) +Q(y, y)
≤ CdRn/L(x, y)2 for all x, y ∈ Rn/L}.

Here we scaled the embedding ϕ which is defined through Q so that
the contraction of ϕ equals 1. The real part Re(Q) of a positive
definite kernel is positive definite again and we can restrict to real-
valued positive definite kernels for determining c2(Rn/L).

For the second step we apply a standard group averaging argument.
If Q is a feasible solution for the minimization problem above, so is
its group average

Q(x, y) = 1
vol(Rn/L)

∫
Rn/L

Q(x− z, y − z) dz.

By this averaging the kernel Q becomes continuous and only depends
on the difference x − y. Thus, instead of minimizing over positive
definite kernelsQ it suffices to minimize over continuous, real functions
f : Rn/L → R which are of positive type, i.e. the kernel (x, y) 7→
f(x− y) is positive definite; see also the proof of Theorem 3.1 in the
paper [AMM85] by Aharoni, Maurey, Mityagin.

For the convenience of the reader we provide the argument why the
positive type function f(x) = Q(x, 0) is continuous: For every x, y
the matrix 

f(0) f(x) f(x+ y)
f(x) f(0) f(y)

f(x+ y) f(y) f(0)


is positive semidefinite and it is congruent (simultaneously subtract
the second row/column of the third row/column) to the positive semidef-
inite matrix

f(0) f(x) f(x+ y)− f(x)
f(x) f(0) f(y)− f(0)

f(x+ y)− f(x) f(y)− f(0) 2f(0)− 2f(y)

 .
Taking the minor of the first and third row/column gives

2f(0)(f(0)− f(y)) ≥ (f(x+ y)− f(x))2.
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This inequality implies that f is continuous at every x if and only if f
is continuous at 0. Then f is continuous at 0 because it satisfies the
constraint

dRn/L(0, y)2 ≤ Q(0, 0)−2Q(0, y)+Q(y, y) = 2(f(0)−f(y)) ≤ CdRn/L(0, y)2

for every y.
Note that also (x, y) 7→ dRn/L(x, y)2 only depends on the difference

x − y. So we can replace (x, y) by (x − y, 0) and we can move x − y
by a lattice vector translation into the Voronoi cell V (L). Hence,

c2(Rn/L)2 = inf{C : C ∈ R+, f : Rn/L→ R continuous and of positive type,
|x|2 ≤ 2(f(0)− f(x)) ≤ C|x|2 for all x ∈ V (L)}.

In the third step we parametrize continuous positive type functions
by the Fourier coefficients using Bochner’s theorem, cf. Folland [Fol95,
(4.18)], which says that a continuous function f : Rn/L → C is of
positive type if and only if all its Fourier coefficients

f̂(u) =
∫
Rn/L

f(x)e−2πiuTx dx,

with u ∈ L∗ are nonnegative and f̂ lies in

`1(L∗) =
z : L∗ → C :

∑
u∈L∗
|z(u)| <∞

 .
Then if f is real, continuous and of positive type we have the repre-
sentation

f(x) =
∑
u∈L∗

f̂(u)e2πiuTx,

where the convergence is absolute and uniform, with f̂ ∈ `1(L∗),
f̂(u) ≥ 0 and f̂(u) = f̂(−u) for all u ∈ L∗. Thus,

f(x) =
∑
u∈L∗

f̂(u) cos(2πuTx).

Writing f in this form, one can express c2(Rn/L)2 as an infinite-
dimensional linear program:
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Theorem 7.2.1. The least distortion Euclidean embedding of a flat
torus Rn/L is given by

c2(Rn/L)2 = inf
{
C : C ∈ R+, z ∈ `1(L∗), z(u) = z(−u) ≥ 0 for all u ∈ L∗,
|x|2 ≤ 2

∑
u∈L∗

z(u)(1− cos(2πuTx)) ≤ C|x|2

for all x ∈ V (L)
}
.

(7.7)

A feasible solution of the above minimization problem (C, z) deter-
mines a Euclidean embedding ϕ of Rn/L with distortion dist(ϕ) ≤

√
C

by
ϕ : Rn/L→ `2(L∗), x 7→

(√
z(u)e2πiuTx

)
u∈L∗

, (7.8)

with complex Hilbert space

`2(L∗) =
z : L∗ → C :

 ∑
u∈L∗
|z(u)|2

1/2

<∞

 .
Remark 7.2.2. The inf in (7.7) is in fact a min because the set of
bounded continuous functions of positive type is weak* compact due to
the Banach-Alaoglu theorem; see for example Folland [Fol95, Chapter
3.3].

It is worth to mention that the embedding ϕ of Theorem 7.2.1
embeds the flat torus Rn/L into a direct product of circles∏

u∈L∗

√
z(u)S1 with ‖ϕ(x)‖2 =

∑
u∈L∗

z(u) for all x ∈ L.

The support of z contains a basis of L∗ since the embedding is injective.
Using the fact z(u) = z(−u) we could also use the real embedding ϕ′
with

[ϕ′(x)]u =
√
z(u)(cos 2πuTx, sin 2πuTx),

where u runs through L∗/{±1} and which has the same distortion as
ϕ.

On the other hand, the constraint z(u) = z(−u) is clearly redun-
dant in the minimization problem of Theorem 7.2.1.
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Now we want to simplify the infinitely many inequalities

2
∑
u∈L∗

z(u)(1− cos(2πuTx)) ≤ C|x|2 for all x ∈ V (L), (7.9)

which occur in (7.7), by only one finite-dimensional semidefinite condi-
tion. For this we observe that in any embedding there are no most ex-
panded pairs: the corresponding supremum sup

{
‖ϕ(x)−ϕ(y)‖
dRn/L(x,y) : x, y ∈ Rn/L, x 6= y

}
is only attained by a limit of pairs whose distance tends to 0.

Lemma 7.2.3. Let L ⊆ Rn be an n-dimensional lattice. Let (C, z) be
as in (7.7). Inequality (7.9) is satisfied if and only if

4π2 ∑
u∈L∗

z(u)(uTx)2 ≤ C|x|2 for all x ∈ Rn. (7.10)

Note that (9) holds for all x ∈ Rn.

Proof. By the cosine double angle formula 1 − cos(α) = 2 sin(α/2)2

and by the inequality | sin(α)| ≤ |α| we have

2
∑
u∈L∗

z(u)(1− cos(2πuTx)) ≤ 4π2 ∑
u∈L∗

z(u)(uTx)2.

Thus, (7.10) implies (7.9).
Conversely, assume that (7.10) is not satisfied. There exists x∗ ∈ Rn

with
4π2 ∑

u∈L∗
z(u)(uTx∗)2 > C|x∗|2.

For r ≥ 0 define the function

f(r) = 2
∑
u∈L∗

z(u)(1− cos(2πuT(rx∗)))− C|rx∗|2

and consider its Taylor expansion

f(r) =
4π2 ∑

u∈L∗
z(u)(uTx∗)2 − C|x∗|2

 r2 + h.o.t. (in r)

Writing f this way and using the assumption, f(r) is positive for
sufficiently small r. Thus, (7.9) is not satisfied.
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Inequality (7.10) can also be rewritten as an inequality of the largest
eigenvalue λmax of a corresponding matrix

λmax

4π2 ∑
u∈L∗

z(u)uuT
 ≤ C

or equivalently as a semidefinite condition
CI − 4π2 ∑

u∈L∗
z(u)uuT ∈ Sn+,

where I denotes the identity matrix. With this lemma we arrive at
the following simplification of (7.7).
Theorem 7.2.4. The least distortion Euclidean embedding of a flat
torus Rn/L is given by
c2(Rn/L)2 = inf

{
C : C ∈ R+, z ∈ `1(L∗), z(u) = z(−u) ≥ 0 for all u ∈ L∗,
|x|2 ≤ 2

∑
u∈L∗

z(u)(1− cos(2πuTx)) for all x ∈ V (L),

CI − 4π2 ∑
u∈L∗

z(u)uuT ∈ Sn+
}
.

(7.11)

7.2.2 Dual program

We derive the dual of (7.11) to systematically find lower bounds for
c2(Rn/L).
Theorem 7.2.5. Suppose that (C, z) is feasible for (7.11), then

C ≥ c2(Rn/L)2 ≥ sup
{
2π2

∫
V (L)
|x|2 dν(x) :

ν ∈M+(V (L)), Y ∈ Sn+,Tr(Y ) = 1,∫
V (L)

(1− cos(2πuTx)) dν(x) ≤ uTY u

for all u ∈ L∗
}
,

(7.12)
where M+(V (L)) is the cone of Borel measures supported on V (L).
In (7.12) equality holds for a feasible (ν, Y ) if and only ifCI − 4π2 ∑

u∈L∗
z(u)uuT

Y = 0,
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and the measure ν is only supported on vectors x ∈ V (L) for which
equality

|x|2 = 2
∑
u∈L∗

z(u)(1− cos(2πuTx))

holds, and for all vectors u ∈ L∗ with z(u) 6= 0 we have∫
V (L)

(1− cos(2πuTx)) dν(x) = uTY u.

Proof. For two symmetric matrices A,B we define 〈A,B〉 = Tr(AB).
Using the feasibility of (C, z) and (ν, Y ) we get

C − 2π2
∫
V (L)
|x|2 dν(x)

≥
〈

4π2 ∑
u∈L∗

z(u)uuT, Y

〉
− 4π2

∫
V (L)

∑
u∈L∗

z(u)(1− cos(2πuTx)) dν(x)

= 4π2 ∑
u∈L∗

z(u)
(
〈uuT, Y 〉 −

∫
V (L)

(1− cos(2πuTx)) dν(x)
)

≥ 0.

When analyzing the case of equality we find the three conditions of
the theorem.

Remark 7.2.6. As a side note we would like to mention that in (7.12)
we even have equality c2(Rn/L)2 = sup. This follows again by the
weak* compactness of the set of bounded, continuous functions of pos-
itive type together with the Hahn-Banach (strict) separation theorem.

7.3 Properties and observations

We collect some results that are consequences of the primal and dual
formulation of the preceding section, including some auxiliary results
used in later sections.

7.3.1 Subquadratic inequality

First, we show that the functions of the form

f(x) = 2
∑
u∈L∗

z(u)(1− cos(2πuTx)) with z(u) ≥ 0 (7.13)
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are subquadratic, this auxiliary result is going to be used a number of
times. Note that we have

f(x− y) = ‖ϕ(x)− ϕ(y)‖2

for the embedding ϕ in (7.8). Suppose for a moment that ϕ was an
isometry, then f would satisfy the parallelogram law

f(x− y) + f(x+ y) = 2f(x) + 2f(y)

and it would be a homogeneous quadratic form

f(λx) = λ2f(x).

However, ϕ cannot be a Hilbert space isometry, but the next lemma
shows that we have at least two inequalities.

Lemma 7.3.1. The function f defined in (7.13) is subquadratic, i.e.
it satisfies

f(x+ y) + f(x− y) ≤ 2f(x) + 2f(y) for all x, y ∈ Rn. (7.14)

Furthermore,

f(λx) ≤ λ2f(x) for all λ ∈ N, x ∈ R. (7.15)

If f defines an embedding, we have equality in (7.14) and (7.15) if and
only if x or y lie in L.

A proof for (7.15) can also be found in [KTP06]; we provide it here
for the convenience of the reader.

Proof. To show that f is subquadratic it suffices to prove the inequality

1− cos(α + β) + 1− cos(α− β) ≤ 2(1− cosα) + 2(1− cos β)

for all α, β ∈ R. This is elementary by the cosine addition formula:

1− cos(α + β) + 1− cos(α− β) = 2− 2 cosα cos β
= 2 cos β(1− cosα) + 2(1− cos β)
≤ 2(1− cosα) + 2(1− cos β),
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where equality holds if and only if α or β is an integral multiple of 2π.
Now consider f as in (7.13) and assume f defines an embedding.

Then the claim about equality comes from the fact that α = 2πuTx
or β = 2πuTy is an integral multiple of 2π for all u ∈ supp(z) if and
only if x ∈ L or y ∈ L, since supp(z) contains a basis of L∗.

For even λ we directly use (7.14)

f(λx) = f

(
λ

2x+ λ

2x
)

+ f

(
λ

2x−
λ

2x
)

≤ 4
(
λ

2

)2
f(x) = λ2f(x)

since f(0) = 0. For odd λ ≥ 3 we use (7.14) and proceed by induction

f(λx) + f(x) = f

((
λ− 1

2 + 1
)
x+ λ− 1

2 x

)
+ f

((
λ− 1

2 + 1
)
x− λ− 1

2 x

)

≤ 2f
((
λ− 1

2 + 1
)
x

)
+ 2f

(
λ− 1

2 x

)

≤ 2
(λ− 1

2 + 1
)2

+
(
λ− 1

2

)2 f(x)

= λ2f(x) + f(x).

7.3.2 Dual feasibility

In general the dual program (7.12) has infinitely many conditions of
the form∫

V (L)
(1− cos(2πvTx)) dν(x) ≤ Tr(vvTY ), v ∈ L∗. (7.16)

We will now show that sometimes already finitely many constraints
are sufficient to imply all conditions (7.16). The first observation is
the following:
Lemma 7.3.2. Let qa(x) = 1− cos(2πaTx). The (in-)equalities∫

V (L)
qa(x) dν(x) ≤ Tr(aaTY ),

∫
V (L)

qb(x) dν(x) ≤ Tr(bbTY ),
(7.17)∫

V (L)
qa−b(x) dν(x) = Tr((a− b)(a− b)TY ) (7.18)



173 7.3. Properties and observations

imply ∫
V (L)

qa+b(x) dν(x) ≤ Tr((a+ b)(a+ b)TY ).

The corresponding result also holds when qa−b and qa+b are inter-
changed.

Proof. As shown in the proof of Lemma 7.3.1, the function qa is sub-
quadratic and therefore∫
V (L)

qa+b(x) dν(x) +
∫
V (L)

qa−b(x) dν(x) ≤ 2
∫
V (L)

qa(x) + qb(x) dν(x)

≤ 2 Tr(aaTY ) + 2 Tr(bbTY ),

which by (7.18) is equivalent to∫
V (L)

qa+b(x) dν(x) ≤ 2 Tr(aaTY ) + 2 Tr(bbTY )− Tr((a− b)(a− b)TY )

= Tr((a+ b)(a+ b)TY ).

The above lemma can be used to replace the infinitely many con-
straints (7.16) by finitely many using the shortest vectors in cosets of
the form v + 2L∗ for v ∈ L∗.

The proof of the lemma relies on a characterization of Voronoi
vectors. These are lattice vectors v ∈ L \ {0} such that the set Fv :=
V (L)∩{x : vTx ≤ 1

2v
Tv} defines a non-empty face of V (L). Moreover,

v ∈ L is called Voronoi relevant if Fv is a facet of V (L), i.e. an (n−1)-
dimensional face of V (L).

An element v ∈ L\{0} is a Voronoi vector of V (L) if and only if ±v
are shortest vectors in the coset v + 2L and ±v are Voronoi relevant
if and only if they are the only shortest vectors in v+ 2L. For a proof
see [CS88, Chapter 21, Theorem 10] and [CS92, Theorem 2].

Lemma 7.3.3. If (7.16) is tight for at least one shortest vector in each
coset of the form v + 2L∗, v ∈ L∗, then (7.16) holds for all v ∈ L∗.

Proof. Assume that (7.16) is tight for at least one shortest vector in
each coset v + 2L∗. We will first prove by induction that (7.16) also
holds for all Voronoi vectors.
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The statement holds by assumption for all Voronoi relevant vectors
v because in this case the normal vectors v and−v are the only shortest
vectors in v + 2L∗ due to the above characterization.

So assume that the statement holds for all vectors u ∈ L∗ such that
Fu is a face of dimension smaller than n − k. Now consider v ∈ L∗

such that v is the normal vector of some (n−(k+1))-dimensional face
of V (L∗) with k ≥ 2. Further, assume that u ∈ v + 2L∗ with u 6= v is
such that (7.16) is tight for u (otherwise there is nothing to show for
v).

Now 1
2(u±v) ∈ L∗ and the inequality vTx ≤ 1

2v
Tv for all x ∈ V (L∗)

is implied by
1
2(u+ v)Tx+ 1

2(u− v)Tx ≤ 1
4(u+ v)T(u+ v) + 1

4(u− v)T(u− v)

≤ 1
4u

Tu+ 1
4v

Tv ≤ 1
2v

Tv.

Due to u 6= v and the above inequality, the sets F 1
2 (u+v), F 1

2 (u−v) define
non-empty faces of V (L∗) of dimension strictly larger than n− (k+1).
Hence, (7.16) holds for 1

2(u+ v), 1
2(u− v) by the induction hypothesis.

Applying Lemma 7.3.2 (with a = 1
2(u + v), b = 1

2(u − v), a + b = u)
shows that (7.16) also holds for v.

Now assume that v is a not a Voronoi vector. Then there exists a
a shortest vector u ∈ v + 2L∗ for which (7.16) is tight and |u| < |v|.

Then, again 1
2(u± v) ∈ L∗ and as

|12(u± v)| ≤ 1
2(|u|+ |v|) < |v|,

we can argue by an analogous inductive argument (based on the
norm) as before that (7.16) holds for 1

2(u ± v). Finally, we can use
Lemma 7.3.2 to infer that (7.16) is valid for v as well.

7.4 Least Euclidean distortion embeddings always have fi-
nite dimension

The goal of this section is to prove that for every n-dimensional lattice,
there always exists a least distortion embedding of Rn/L that is finite-
dimensional. In the sense of Theorem 7.2.1, this means that there is
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always an optimal solution (C, z) for (7.11) such that the support of
z is finite.

Additionally, our arguments will reveal that the constructed op-
timal solution with finite support has only support on at most one
vector per coset v + 2L∗ of L∗/2L∗ and that supp(z) only contains
primitive lattice vectors. An element v ∈ L is called primitive for L if
αv ∈ L with α ∈ Z implies α = ±1.

The first step towards proving that there is always a finite-dimensional
least Euclidean distortion embedding is the following observation.

Lemma 7.4.1. Assume that (C, z) is a solution for (7.11).

1. If there are u, v ∈ supp(z), u 6= v with u ± v ∈ 2L∗ and z(v) ≤
z(u), then (C, z̃) with

z̃(t) =



z(u)− z(v), if t = ±u
0, if t = ±v,
2z(v) + z(t), if t ∈ {±u±v2 },
z(t), otherwise,

is a solution for (7.11).

2. If there is u ∈ supp(z) and u = kv for some integer k ≥ 2, then
(C, z̃) with

z̃(t) =


0, if t = ±u,
z(v) + k2z(u), if t = ±v,
z(t), otherwise,

is a solution for (7.11).

In both cases, z̃ satisfies∑
t∈L∗

z(t)tt> =
∑
t∈L∗

z̃(t)tt> and
∑
t∈L∗

z(t) <
∑
t∈L∗

z̃(t).

Proof. (1) By construction, we have∑
t∈L∗

z(t) <
∑
t∈L∗

z(t) + 4z(v) =
∑
t∈L∗

z̃(t).
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Computing

z(u)uu> + z(v)vv> = (z(u)− z(v))uu> + z(v)(uu> + vv>)

= (z(u)− z(v))uu> + 2z(v)
(u+ v

2

) (
u+ v

2

)>
+
(
u− v

2

) (
u− v

2

)> ,
(and analogously for the pair−u,−v) we obtain∑t∈L∗ z(t)tt> = ∑

t∈L∗ z̃(t)tt>
and CI − 4π2 ∑

t∈L∗ z̃(t)tt> ∈ S+
n .

Moreover, by the subquadratic inequality,

1− cos(2πu>x) + 1− cos(2πv>x)

= 1− cos
2π

(
u+ v

2 + u− v
2

)>
x

 + 1− cos
2π

(
u+ v

2 − u− v
2

)>
x


≤ 2

1− cos
2π

(
u+ v

2

)>
x

 + 2
1− cos

2π
(
u− v

2

)>
x

 .
Thus, for every x ∈ V (L)

|x|2 ≤ 2
∑
t∈L∗

z(t)(1− cos(2πtTx)) ≤ 2
∑
t∈L∗

z̃(t)(1− cos(2πtTx)),

implying that (C, z̃) is feasible for (7.11) with the desired properties.
(2) The proof is analogous to (1).

The lemma gives rise to an algorithmic way to transform a feasible
solution (C, z) towards a solution (C, z̃) such that z̃ has only support
on at most one primitive lattice element per coset u + 2L∗. Roughly
speaking, start with any solution and apply the above lemma “as long
as possible”, i.e. as long as there are pairs of vectors that satisfy (1)
or (2) of the above lemma.

Theorem 7.4.2. For any n-dimensional lattice L, the torus Rn/L has
a finite-dimensional least Euclidean distortion embedding. In particu-
lar, the program (7.11) has an optimal solution (C, z) such that

1. | supp(z̃) ∩ (v + 2L∗)| ≤ 1 for every coset v + 2L∗ of L∗/2L∗.

2. Every u ∈ supp(z) is primitive in L∗.
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Note that claim (1) shows that there are at most 2n − 1 non-zero
elements in the support of z, therefore we obtain an embedding into
a space of dimension at most 2n − 1.

Proof. As a consequence of Remark 7.2.2, there is an optimal solution
(C, z0) with z0 ∈ `1(L∗) for (7.11). Our goal is to construct a sequence
of solutions (C, zm) for (7.11) that converges to a solution that satisfies
(1) and (2). Let

Az = {{u, v} : u 6= −v, u± v ∈ 2L∗, u, v ∈ supp(z)} (7.19)

and let (zm)m be a sequence where zm is obtained from zm−1 by apply-
ing transformation (1) of Lemma 7.4.1 to an arbitrary pair {u, v} ∈ Az

(the actual choice of the pair does not matter). Due to Lemma 7.4.1,
the pair (C, zm) is feasible for (7.11) and we have∑
u∈L∗

zm(u)uu> =
∑
u∈L∗

zm+1(u)uu> and Zm < Zm+1 for all m ∈ N,

where Zm := ∑
u∈L∗ zm(u). The sequence Zm is monotonously increas-

ing but bounded since CI − 4π2 ∑
u∈L∗ zm(u)uu> ∈ S+

n enforces that

0 ≤ Tr
(
CI − 4π2 ∑

u∈L∗
zm(u)uu>

)
= Cn− 4π2 ∑

u∈L∗
zm(u)|u|2

≤ Cn− 4π2λ(L∗)
∑
u∈L∗

zm(u).

Hence, by monotone convergence, the sequence Zm converges.
Now we claim that limm→∞ zm(u) exists for all u ∈ L∗. Therefore,

assume that {um, vm} ∈ Azm−1 is chosen in the iteration from zm−1 to
zm. Assume that zm−1(um) ≥ zm−1(vm). Then, using Lemma 7.4.1,
we obtain∑

u∈L∗
|zm(u)− zm−1(u)| = 3 · 4zm−1(vm) = 3(Zm − Zm−1).

The right hand side converges to zero, therefore the sequence zm con-
verges pointwise, i.e. there is z ∈ `1(L∗) such that

lim
m→∞ zm(u) = z(u) for all u ∈ L∗.
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Next, we will show that z satisfies (1), which is equivalent to Az = ∅.
But this simply follows by construction: For every pair {u, v} ∈ Azm

we have
lim
m→∞min{zm(u), zm(v)} = 0.

This holds because if there was {u, v} ∈ Az and ε > 0 such that for
all M there was m ≥ M with min{zm(u), zm(v)} ≥ ε, then according
to the construction of zm there would also be m′ ≥ m with

Zm′ − Zm ≥ 4 min{zm(u), zm(v)} ≥ 4ε.
This would be a contradiction to the convergence of the sequence Zm.

Now, if there is u ∈ supp(z) with u = kv for some k ≥ 2, we
may apply (2) of Lemma 7.4.1 to obtain a new feasible solution z̃

with v ∈ supp(z̃) and z(u) = 0. This solution may contain a pair
(u, v) ∈ Az̃. But in this case, we may again apply (1) of Lemma 7.4.1.

By continuing like this, we will finally end up with a solution that
has only support on primitive vectors and on one vector per coset,
thus satisfying properties (1) and (2).

Unfortunately, the proof does not give a bound on max{|u| : u ∈
supp(z̃)} for z̃ constructed in Theorem 7.4.2.

7.5 Improved lower bound

In this section we apply Theorem 7.2.5 to get a constant factor im-
provement over (7.4), basically without any effort.
Theorem 7.5.1. Let L be an n-dimensional lattice, then

c2(Rn/L) ≥ πλ(L∗)µ(L)√
n

.

Proof. Let y be a vertex of the Voronoi cell V (L) which realizes the
covering radius, that is |y| = µ(L) and so y is a “deep hole” of L.
Choose ν = λ(L∗)2

2n δy to be a point measure supported at y and set
Y = 1

nI. Then (ν, Y ) is feasible for (7.12) because
∫
V (L)

(1−cos(2πuTx)) dν(x) = (1−cos(2πuTy))λ(L∗)2

2n ≤ λ(L∗)2

n
≤ |u|

2

n
= uTY u
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for every u ∈ L∗ \ {0}. Hence, by Theorem 7.2.5,

c2(Rn/L)2 ≥ 2π2
∫
V (L)
|x|2 dν(x) = π2λ(L∗)2µ(L)2

n
.

7.6 Least distortion embeddings of Rn/Zn and of orthogonal
decompositions

As our second application of Theorem 7.2.5, through Theorem 7.5.1,
we prove that the standard embedding (7.2) of the standard torus is
indeed a least distortion embedding. It is somewhat surprising that
this result is new. We also note that one can easily use the same argu-
ment to capture the case of flat tori whose lattices have an orthogonal
basis.

Theorem 7.6.1. The standard embedding ϕ : Rn/Zn → R2n of the
standard torus Rn/Zn given by

ϕ(x1, . . . , xn) = (cos 2πx1, sin 2πx1, . . . , cos 2πxn, sin 2πxn)

is a least distortion embedding with distortion c2(Rn/Zn) = π/2.

Proof. We have λ(Zn) = 1 and µ(Zn) =
√
n/4, so c2(Rn/Zn) ≥ π/2 by

Theorem 7.5.1.
To show the corresponding upper bound we show that the embed-

ding
φ(x1, . . . , xn) = 1√

32
(e−2πix1, . . . , e−2πixn)

has contraction 1 and expansion π/2. Then turning φ into a real
embedding and rescaling does not change the distortion and gives the
standard embedding ϕ.

To show that φ has contraction 1 and expansion π/2 it suffices to
prove that (π2

4 , z) with

z(u) =


1
32 if u = ±ei,
0 otherwise,

is a feasible solution for (7.11).
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The expansion equals π/2 because

CI − 4π2 ∑
u∈Zn

z(u)uuT = π2

4 I − 4π2 2
32I = 0.

Moreover, to show that the contraction equals 1 we need to verify the
inequality

n∑
i=1

x2
i ≤

4
32

n∑
i=1

(1− cos(2πxi)) for all x ∈ V (Zn) = [−1/2, 1/2]n,

(7.20)
which we check summand by summand, that is x2

i ≤ 1
8(1− cos(2πxi)),

where we have equality if xi = ±1/2. To do so we show that the
logarithm of the quotient

xi 7→ log
 x2

i

1− cos(2πxi)


is convex on (−1/2, 1/2) which follows by taking the second derivative:
For xi ∈ (0, 1/2) we have

∂2

∂x2
i

log
 x2

i

1− cos(2πxi)

 = − 2
x2
i

+ 4π2

1− cos(2πxi)
≥ 0,

where we used the inequality 1− cos(2πxi) ≤ 2π2x2
i .

Here it is interesting to note that even for the rather trivial standard
embedding of the standard torus the structure of the most contracted
pairs is rich. Every center of every face of the Voronoi cell V (Zn) gives
a most contracted pair, see Figure 7.1a.

Recapulating the above proof, one recognizes that at its heart is the
verification of inequality (7.20). Here one reduces the situation from
Zn to Z. This works because Zn can be orthogonally decomposed as
the direct sum of n copies of Z and this can be done in generality as
the following theorem demonstrates.

Theorem 7.6.2. Let L ⊆ Rn be a lattice such that L decomposes as
the orthogonal direct sum of lattices L1, . . . , Lm, i.e.

L = L1 ⊥ L2 ⊥ . . . ⊥ Lm.
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Then
c2(Rn/L) = max{c2(Rnj/Lj) : j = 1, . . . ,m},

where Rnj is (isometric) to the Euclidean space spanned by Lj.

Proof. Any Euclidean embedding of Rn/L gives a Euclidean embed-
ding of Rnj/Lj which immediately gives the inequality c2(Rn/L) ≥
max{c2(Rnj/Lj) : j = 1, . . . ,m}.

Also the reverse inequality is easy to see. Let ϕj : Rnj/Lj → Hj

be a Euclidean embedding of Rnj/Lj with distortion Cj scaled so that
the contraction is 1 and the expansion is Cj. We identify Rn/L ∼=
Rn1/L1 ⊥ . . . ⊥ Rnm/Lm, write x ∈ Rn/L as x = (x1, . . . , xm) with
xj ∈ Rnj/Lj so that dRn/L(x, y)2 = ∑m

j=1 dRnj/Lj(xj, yj)2. Then

ϕ : Rn/L→ H := H1 ⊥ . . . ⊥ Hm, (x1, . . . , xm)+L 7→ (ϕ1(x1), . . . , ϕm(xm))

is a Euclidean embedding of Rn/L into the Hilbert space H. Its dis-
tortion is at most max{Cj : j = 1, . . . ,m} because for every pair
x, y ∈ Rn/L

|ϕ(x)− ϕ(y)|2 =
m∑
j=1
|ϕj(xj)− ϕj(yj)|2 ≤

m∑
j=1

C2
j dRnj/Lj(xj, yj)

2

≤ max
j=1,...,m

C2
j

m∑
j=1

dRnj/Lj(xj, yj)
2 = max

j=1,...,m
C2
j dRn/L(x, y)2,

showing that the expansion of ϕ at most max{Cj : j = 1, . . . ,m} and,
in exactly the same way, one shows that the contraction of ϕ is at
most 1.

7.7 Least distortion embeddings of two-dimensional flat tori

In this section we will construct least Euclidean distortion embeddings
of flat tori in dimension 2.

First, as a simple corollary of Theorem 7.2.4, we will give a recipe to
construct (possibly non-optimal) embeddings of flat tori of arbitrary
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dimension provided that they satisfy the following assumption:

There exist u1, . . . , uk ∈ L∗, z1, . . . , zk ≥ 0 such that 4π2
k∑
i=1

ziuiu
T
i = I.

(7.21)

As we will prove in Lemma 7.7.2, condition (7.21) can be realized for
every 2-dimensional lattice, Another example for lattices that satisfy
condition (7.21) are duals of root lattices. If L∗ is a root lattice, then
assumption (7.21) is satisfied. In this case the root system R ⊆ L∗ of
L∗ forms a spherical 2-design, implying that

4π2α
∑
u∈R

uuT = I

for some positive constant α. We refer to the monograph by Venkov [Ven01]
for more information on root lattices and spherical designs.

Corollary 7.7.1. Let L ⊆ Rn be a lattice that satisfies (7.21). Then

ϕ : Rn/L→ Ck, ϕ(x) = (
√
Dz1e

2iπuT
1x, . . . ,

√
Dzke

2iπuT
kx)

with

D = max
 |x|2

2∑k
i=1 zi(1− cos(2πuT

i x)) : x ∈ V (L) \ {0}
 (7.22)

is a Euclidean embedding of Rn/L with distortion
√
D. In particular,

c2(Rn/L)2 ≤ D. (7.23)

Proof. The pair ((Dzi)1≤i≤k, D) is a feasible solution for the primal
optimization problem (7.11).

Except for the easiest case of the standard torus we do not know
how to determine D explicitly. Unfortunately, it seems to be difficult
to compute most contracted pairs (0, x), i.e. vectors x ∈ V (L) that
are maximizers of the right hand side of (7.22).

Next, we show that Corollary 7.7.1 can be applied to every 2-
dimensional lattice. For this we will use the concept of an obtuse
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superbasis. An obtuse superbasis of an n-dimensional lattice L is a
basis u1, . . . , un of L enlarged by the vector u0 = −u1 − · · · − un so
that these n+ 1 vectors pairwise form non-acute angles, i.e.

uT
i uj ≤ 0 for all 0 ≤ i < j ≤ n. (7.24)

It is known that up to dimension 3 all lattices have an obtuse su-
perbasis, but from dimension 4 on this is no longer the case, see for
instance [CS92].

Lemma 7.7.2. If L is a two-dimensional lattice, then its dual lattice
L∗ satisfies (7.21).

Proof. Let u0, u1, u2 be an obtuse superbasis of L∗. We will show that
there are non-negative coefficients z0, z1, z2 such that

I = z0u0u
T
0 + z1u1u

T
1 + z2u2u

T
2 ,

and therefore condition (7.21) holds.
We may assume that |u1| ≥ |u0| = 1, by scaling and renumbering.

Then, by Gram-Schmidt orthogonalization, u0 and w1 := u1−(uT
0u1)u0

are orthogonal and so

I = u0u
T
0 + 1
|w1|2

w1w
T
1

=
1 + (uT

0u1)2

|w1|2

u0u
T
0 + 1
|w1|2

u1u
T
1 −

uT
0u1

|w1|2
(u0u

T
1 + u1u

T
0 ).

Using

u2u
T
2 = (−u0 − u1)(−u0 − u1)T = u0u0 + u1u

T
0 + u0u

T
1 + u1u

T
1 ,

yields

I =
1 + (uT

0u1)2 + uT
0u1

|w1|2

u0u
T
0 + 1 + uT

0u1

|w1|2
u1u

T
1 −

uT
0u1

|w1|2
u2u

T
2 .

To prove that the three coefficients in the above sum are non-negative,
observe for the third coefficient that uT

0u1 ≤ 0. For the second coeffi-
cient

0 ≤ −uT
0u2 = uT

0u0 + uT
0u1 = 1 + uT

0u1.
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For the first coefficient we compute the squared norm |w1|2 = |u1|2 −
(uT

0u1)2 and see that the first coefficient is nonnegative if and only if
|u1|2 ≥ −uT

0u1, which is true because |u1| ≥ |u0| = 1 by assumption.

Now, to verify that the embedding of Corollary 7.7.1 is indeed a
least Euclidean distortion embedding for two-dimensional flat tori,
we construct a dual solution for (7.12) that shows that the upper
bound (7.23) is sharp.
Theorem 7.7.3. Let L ⊆ R2 be a 2-dimensional lattice, then c2(R2/L)2 =
D, where D is defined in (7.22).
Proof. Let u0, u1, u2 be an obtuse superbasis of L∗. We may assume,
see for example [CS92], that this superbasis is chosen in a way such
that ui is a shortest vector in its coset ui + 2L∗, with i = 0, 1, 2. By
Lemma 7.7.2 we can determine coefficients z0, z1, z2 ≥ 0 such that
4π2 ∑2

i=0 ziuiu
T
i = I.

Furthermore, let x̄ ∈ V (L) be a vector such that (0, x̄) is a most
contracted pair for the embedding ϕ of Corollary 7.7.1, that is, x̄ is a
maximizer for (7.22).

We define the pair (Y, ν) as follows: Set β = D
2π2|x̄|2 , define Y via

Tr(uiuT
i Y ) = β(1− cos(2πuT

i x̄)), i ∈ {0, 1, 2}, (7.25)

and let ν = βδx̄ be a point measure supported only on x̄. We now
verify that this pair is a feasible dual solution with objective value D.

We have

Tr(Y ) = Tr(Y I) = 4π2 ∑
i

zi Tr(uiuT
i Y ) = 4π2β

∑
i

zi(1− cos(2πuT
i x̄)) = 1.

Equation (7.25) together with Lemma 7.3.3 implies

Tr(uuTY ) ≥ β(1− cos(2πuTx̄)) for all u ∈ L∗.

Finally, it remains to show that Y is positive semidefinite. For this
we compute its Gram matrix B with respect to u0, u1, that is

Bij = uT
i Y uj = 1

2 Tr((uiuT
j + uju

T
i )Y ), 0 ≤ i, j ≤ 1.
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Then Bii = Tr(uiuT
i Y ) = 2β sin2(πuT

i x̄). Since

u0u
T
1 + u1u

T
0 = u2u

T
2 − u0u

T
0 − u1u

T
1 ,

we get

B01 = β

2
(
2 sin2(πuT

2 x̄)− 2 sin2(πuT
1 x̄)− 2 sin2(πuT

0 x̄)
)

= 2β sin(πuT
0 x̄) sin(πuT

1 x̄) cos(π(u0 + u1)Tx̄).

From this we see that matrix B is the Schur-Hadamard (entry-wise)
product of the positive semidefinite rank-one matrix xxT with xi =√

2β sin(πuT
i x̄) and the symmetric matrix M ∈ R2×2 defined by

Mij =
1 if i = j

cos(π(u0 + u1)Tx̄) if (i, j) ∈ {(0, 1), (1, 0)}.

The matrix M is positive semidefinite because Mii ≥ 0 and

det(M) = 1− cos2(π(u0 + u1)Tx̄) ≥ 0.

Thus B, and therefore also Y , is positive semidefinite, which finishes
the proof.

To conclude the discussion of 2-dimensional lattices Figure 7.1 col-
lects an illustration of the behavior of the distortion function defined
in (7.22) and the most contracted pairs, applying the above results,
for a selection of 2-dimensional lattices.

7.8 Discussion and open questions

In this paper we derived an infinite-dimensional semidefinite program
to determine the least distortion Euclidean embedding of a flat torus.
It would be very interesting to show that this infinite-dimensional
semidefinite program can in fact be turned into a finite-dimensional
semidefinite program. Then one could, similarly to the case of finite
metric spaces, algorithmically determine least distortion Euclidean
embeddings of flat tori; at least up to any desired precision.
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(a) L90◦ (Z2) (b) L93◦

(c) L105◦ (d) L120◦ (A∗2)

Figure 7.1: Let Lϕ be the lattice spanned by v1 = e1, v2 = Rϕe1, where Rϕ is the rotation
by ϕ degrees (counter-clockwise).
The Voronoi cell of any lattice in R2 is either a rectangle or a hexagon. We plot contour
lines of the distortion function for a selection of lattices that illustrate how the distortion
function and the most contracted pairs vary with the shape of the Voronoi cell. L93◦ shows
what happens for almost degenerated hexagons, i.e. lattices close to the standard lattice.
A zoom into the behavior around the short edge of the hexagon is included to illustrate
that the most contracted points are all vertices of the Voronoi-cell.



187 7.8. Discussion and open questions

For this a characterization of the most contracted pairs is needed.
We believe that the most contracted pairs are always of the form (0, y)
and y is a center of a face of the Voronoi cell. However, we do not know
whether such a y can only lie on the Voronoi cell’s boundary. We do
not even know whether there are only finitely many most contracted
pairs.

We also do not know how to restrict the variable z ∈ `1(L∗) to finite
dimension, even though Theorem 7.4.2 shows that we can always find
a finite-dimensional least distortion embedding. Obtaining a bound on
the maximally needed length of a support vector in the cosets L∗/2L∗
would solve this problem.

Another interesting problem is to determine n-dimensional lattices
which maximize the distortion among all n-dimensional lattices.
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