
 

 
 

 
 

Profiling protein kinases and other ATP-
binding proteins in Arabidopsis  

using acyl-ATP probes 
 

 
 
 
 
 
 
 

Inaugural-Dissertation 

zur Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen 

Fakultät der Universität zu Köln 

 

 
 
 
 
 

vorgelegt von 

Joji Grace Villamor-Sernestrand 

aus Philippinen 

 

 

 

 

 

Köln, November 2014





 

 
 

 

 
 

Diese Arbeit wurde am Max-Planck-Institut für Züchtungsforschung in Köln, in der 
Abteilung Molekulare Phytopathologie (Direktor: Prof. Dr. Paul Schulze-Lefert) 
angefertigt. 
 

 

 

 

 

 

 

Berichterstatter:   Prof. Dr. Jane Parker 

    Prof. Dr. Ulf-Ingo-Flügge 

      Dr. Erik Andreasson 

 

 

  Prüfungsvorsitzender: Prof. Dr. Maria Albani 

 

Tag der Disputation:  22 Januar 2015 





 

I 
 

SUMMARY 

 

Many protein activities are driven by ATP binding and hydrolysis. Here, we explore 

the ATP binding proteome of the model plant Arabidopsis thaliana using acyl ATP 

(AcATP) probes. AcATP targets ATP binding sites and covalently labels lysine 

residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP 

showed that labelling is dependent on pH and divalent ions, and can be competed by 

nucleotides. The vast majority of the AcATP-labelled proteins are known ATP 

binding proteins. Our search for labelled peptides upon in-gel digest led to the 

discovery that the biotin moiety of the labelled peptides is oxidized. Also, the in-gel 

analysis displayed kinase domains of two receptor-like kinases (RLKs) at a 

molecular weight lower than expected, indicating that these RLKs lost the 

extracellular domain, possibly as a result of receptor shedding. This putative 

shedding mechanism is further investigated in a case study of receptor-like kinase 

RLK902. We found that heterologous expression of RLK902 in N. benthamiana 

leaves causes RLK902 processing that can be inhibited by protease inhibitors E64d 

and TLCK. Sequence analysis of RLK902 reveals four putative internalization motifs 

suggesting endocytosis of RLK902 into vesicles. A nuclear localization signal in the 

kinase domain hints at a possible nuclear transport upon cleavage of RLK902. 

However, deeper study of the mechanism underlying the RLK902 processing is 

needed. 

 

Gel-free profiling using desthiobiotinylated AcATP identified 242 different AcATP 

labelling sites in the Arabidopsis proteome. Analysis of labelling sites revealed a 

preference of labelling in ATP binding pockets for a broad diversity of ATP binding 

proteins. Of these, 24 labelled peptides were from a diverse range of protein kinases 

(PKs), including RLKs, mitogen-activated protein kinases (MPKs), and calcium-

dependent protein kinases. A significant portion of the labelling sites could not be 

assigned to known nucleotide binding sites. However, the fact that labelling could be 

competed with ATP indicates that these labelling sites might represent previously 

uncharacterized nucleotide binding sites. A plot of spectral counts against 

expression levels illustrates the high specificity of AcATP probes for PKs and known 

ATP binding proteins. AcATP profiling, coupled to targeted MS/MS, of proteomes of 

Arabidopsis cell cultures treated with or without flg22 did not show differential AcATP 
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labelling of differentially activated MPKs. This was further investigated using 

phosphomimic and phosphomutant versions of MPKs that were heterologously 

expressed in bacteria. These assays confirmed that AcATP labelling is not affected 

by the phosphorylation (activation) state of the proteins. Overall, this work reveals 

important opportunities and limitations of profiling ATP binding activities of a large 

diversity of proteins in plant proteomes. 
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ZUSAMMENFASSUNG 

 

Die Aktivität vieler Proteine hängt von deren Bindung und Hydrolyse von ATP ab. In 

dieser Studie wurde das ATP-bindende Proteom in der Modellpflanze Arabidopsis 

thaliana mit Hilfe molekularer Sonden, welche Acyl-ATP (AcATP) enthalten, 

untersucht. Bei entsprechenden Ziel-Proteinen bindet AcATP kovalent an Lysin-

Reste innerhalb der ATP-Bindungsstellen. Untersuchungen mit biotinyliertem AcATP 

zeigen hierbei, dass der Grad der Markierung sowohl vom pH-Wert, als auch vom 

Gehalt an zweiwertigen Ionen abhängt, und durch Nukleotide verhindert werden 

kann. Den größten Teil der AcATP-markierten Proteine bilden bereits bekannte ATP-

bindende Proteine. Proteolytische Untersuchungen der markierten Peptide führten 

hierbei zu der Entdeckung, dass deren Biotin-Gruppe oxidiert vorliegt. Es wurden 

darüber hinaus zwei Rezeptor-like Kinasen (RLKs) mit einem unerwartet geringen 

Molekulargewicht identifiziert – möglicherweise als Resultat der Abspaltung der 

extrazellulären Bereiche der RLKs durch Rezeptor-Shedding. Dieser potentielle 

Abspaltungsmechanismus wurde anhand der Rezeptor-like Kinase RLK902 weiter 

untersucht. Die heterologe Expression von RLK902 in Blättern von Nicotiana 

benthamiana zeigt eine Prozessierung der Kinase, was wiederum durch die 

Protease-Inhibitoren E64d und TLCK verhindert werden kann. Analysen der 

Sequenz von RLK902 ergeben vier Abschnitte für eine mögliche endozytotische 

Internalisierung von RLK902 in Vesikel. Darüber hinaus konnte innerhalb der 

Kinase-Domäne eine Sequenz zur Lokalisierung im Zellkern identifiziert werden, was 

auf einen möglichen Zellkern-Transport von RLK902 nach der Spaltung hindeutet. 

Zum Verständnis der Prozessierung von RLK902 sind jedoch weitere Versuche 

notwendig. 

 

Weitere Untersuchungen des A. thaliana-Proteoms mit desthiobiotinyliertem AcATP 

führten zur Identifizierung von 242 verschiedenen AcATP-Markierungsstellen in der 

Modellpflanze. Für eine Vielzahl verschiedener ATP-bindender Proteine konnte 

hierbei eine Präferenz der Markierung an den ATP-Bindungsstellen gezeigt werden. 

24 dieser Proteine gehören zu einer diversen Gruppe von Proteinkinasen (PKs), 

bestehend aus RLKs, Mitogen-aktivierten Proteinkinasen (MAP-Kinasen) und 

Kalzium-abhängigen Proteinkinasen. Eine signifikante Anzahl der AcATP-

Markierungsstellen kann dagegen keiner bekannten Nukleotid-Bindesequenz 
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zugeordnet werden. Es könnte sich hierbei jedoch um bisher nicht identifizierte 

Nukleotid-Bindestellen handeln, da die Markierung mit AcATP durch ATP verhindert 

wird. Generell zeigen molekulare AcATP-Sonden eine hohe Spezifität für PKs und 

weitere bekannte ATP-bindende Proteine, wie eine graphische Darstellung der 

spektralen Zählerstände gegen das Expressionslevel demonstriert. Weitere 

Versuche deuten darauf hin, dass die Markierung mit AcATP in A. thaliana nicht mit 

dem Phosphorylierungs- bzw. Aktivierungs-Zustand eines Proteins zusammenhängt. 

So zeigen MPKs in verschiedenen Aktivierungszuständen aus Flg22-behandelten 

und unbehandelten Zellkulturen keinen Unterschied bezüglich der AcATP-

Markierung. Dies bestätigten auch Untersuchungen nach heterologer Expression 

von phospho-mimetischen und unphosphorylierten Mutanten von MPKs in 

Bakterienzellen. Insgesamt zeigt diese Arbeit bedeutende Möglichkeiten und auch 

Limitierungen bei der Untersuchung von ATP-Bindungsaktivitäten innerhalb des sehr 

diversen pflanzlichen Proteoms. 
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CHAPTER 1:  INTRODUCTION 

 

ATP and ATP-binding proteins 

Biological systems require continuous supply of energy to function and survive. The 

best known energy molecule in the cell is adenosine triphosphate (ATP).  The 

energy stored in ATP lies in the phosphoanhydride bonds that connect the 

phosphate groups. The hydrolysis of these bonds release energy needed to do work. 

ATP, which contains three phosphates, is a high energy molecule, while adenosine 

diphosphate (ADP) having two phosphates is a low energy molecule. ATP reserves 

in cells are constantly used and regenerated in the process called respiration. ATP is 

also the key intermediate product of photosynthesis in plants, where light energy is 

converted into sugar. 

 

The activities and functions of many proteins are regulated by small molecules or 

ligands such as ATP. In essence, ATP binding and hydrolysis is the engine in all 

living organisms. Hundreds of cellular proteins are able to bind and hydrolyse ATP, 

e.g. to unfold proteins, transport molecules over membranes, or phosphorylate small 

molecules or proteins. Proteins with very different structures are able to bind ATP. In 

fact, there is no common motif found in ATP-binding proteins (Chauhan et al, 2009). 

However, since ATP is a universally important coenzyme and enzyme regulator, 

understanding the mechanisms of protein-ATP interactions is vital. Importantly, 

kinases, particularly protein kinases (PKs), play pivotal roles in signal transduction 

processes and protein function regulation. Kinases are ATP-binding proteins which 

transfer the gamma phosphate of ATP to substrates.  

 

The genome of the model plant Arabidopsis thaliana encodes for over 1099 PKs and 

hundreds of other ATP-binding proteins including ATP-binding cassette (ABC) 

transporters, heat shock proteins, structural proteins actin and tubulin, DNA/RNA 

polymerases and ribosomal proteins (The Arabidopsis Genome Initiative, 2000) 

(Lamesch et al, 2012). ATP-binding proteins are essential in many physiological 

processes that cells need to do work and survive. PKs, for example, are involved in 

nearly all signalling cascades, and regulate processes ranging from cell cycle to 

flowering and from immunity to germination. Most of the PKs in plants are 
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membrane-bound receptor-like kinases (RLKs), often carrying extracellular domains 

with leucine-rich repeats (LRRs), and intracellular kinase domains. The RLK class 

contains at least 610 members (Shiu & Bleecker, 2001), including receptors involved 

in development (e.g. BRI1, ER, CLV1) and immunity (e.g. FLS2, EFR). Other 

important PK classes are mitogen-activated protein (MAP) kinases (MPKs, 20 

different members), MPK kinase kinase kinases (MAP3Ks, 60 different members) 

(Rasmussen et al, 2012) and calcium-dependent protein kinases (CPKs, 34 different 

members) (Cheng et al, 2002). Because of their diverse and important roles, PKs 

and ATP-binding proteins have been intensively studied in plant science, however, 

often individually rather than on a large scale. New approaches are necessary to 

study PKs and other ATP-binding proteins globally rather than individually. In 

addition to the complexity brought about by post translational modifications (PTMs), 

activation regulation, low expression levels, and overlapping binding capabilities to 

small molecules and ligands of PKs and other ATP-binding proteins, assessing 

functions and substrate selectivity of these proteins is difficult. However, with new 

technologies being constantly developed, we expect continued increase in power in 

studying proteins.  

 

 

Proteomics: challenges and advances 

Proteomics is a field of science that is very dependent and firmly established on 

technologies. Technical advances are vital to study the complex proteome. 

Undeniably, it is in proteomics where one can attest the fast improvements and 

continuing evolution of newer and more powerful tools. To monitor protein dynamics 

including synthesis/degradation, transport, processing/maturation, PTMs and 

activation/deactivation in a variety of cellular conditions and perturbations, is crucial 

to understand the mechanisms that govern animal and plant biology, and to increase 

insight into cellular signalling networks. However, this is a very daunting task. 

Indeed, proteomics is a very challenging field, not to mention very dynamic and 

complex.  

 

The thousands of different protein species making up the proteome of an organism 

warrant the complexity of proteomics. Hence, high resolution technologies are 

required to separate the large number of proteins. Common methods used 
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nowadays are 1D and 2D gel electrophoresis. However, these techniques can not 

cater to increased demand and expectation of the scientific community to a better 

resolution, larger proteome coverage and overall more in-depth proteomics, hence 

the birth of better proteomic technologies. Some noteworthy technological advances 

in e.g. kinome and ATP-binding protein proteomics, are as follows. First, Zhu and 

colleagues have first developed protein microarray chips of 119 GST-protein kinase 

fusions to study yeast protein kinases en masse, where high throughput screening 

for tyrosine phosphorylation activities of PKs were investigated (Lawrence, 2001; 

Zhu et al, 2000). Second, different enrichment technologies have been developed to 

increase depth in kinome proteomics. ATP and other kinase inhibitors immobilized to 

purification columns or beads are now commonly used to enrich for PKs from a 

complex sample (Graves et al, 2013; Nita-Lazar et al, 2008). Likewise, immobilized 

metal affinity chromatography (IMAC) is a phosphopeptide enrichment method, 

which captures phosphorylated peptides of activated PKs (Andersson & Porath, 

1986; Nuhse et al, 2003). Third, improved quantification methods in mass 

spectrometry (MS) is invaluable for proteomics. In addition to label-free MS-based 

quantification, stable isotope labelling by amino acids in cell culture (SILAC) or 

isobaric tag for relative and absolute quantitation (iTRAQ) were developed, where 

two or more samples can be pooled and quantified together in a single MS run (Nita-

Lazar et al, 2008). Moreover, considerable upgrades in instrumentations are far-

reaching technologies. The development of prefractionation methods coupled to MS 

led to improved detection and quantification of proteins, e.g. liquid chromatography 

(LC)-tandem MS (MS/MS), or LC coupled to gas phase fractionation and tandem MS 

(Davis et al, 2001). In addition, targeted MS/MS which incorporates inclusion and/or 

exclusion lists, increases sensitivity and reproducibility in detecting target proteins in 

a complex sample (Schmidt et al, 2009; Wang & Li, 2008). Targeted MS/MS 

circumvents undersampling of low abundant protein species, and together with 

having replicate runs of the same conditions, can further increase detection and 

proteome coverage. Also, mass cytometry has been relatively recently introduced to 

study kinases and kinase inhibitors in single cells rather than in tissues. However, 

because of the unique capacities of each of these techniques, more often than not, 

researchers use a combination of different methods to address one 

problem/question. Holmes-Davis and colleagues, for example, used a vigorous 

multiple protein extraction techniques coupled to 2DE and electrospray ionization 
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(ESI)-MS/MS to study the Arabidopsis pollen proteome (Holmes-Davis et al, 2005). 

Likewise, the use of multiplexed inhibitor beads (MIBs) to purify kinases, together 

with iTRAQ or SILAC labelling and MS analysis seem advantageous to study 

kinases in different cancer cell lines (Cooper et al, 2013; Duncan et al, 2012). But 

even through such technological advances in proteomics, only a portion of the 

complex proteome can be monitored at a time.  

 

Another challenge in proteomics, particularly kinome and ATP-binding protein 

proteomics, is to be able to do functional or activity characterizations of proteins. 

Large scale proteomics do not usually provide functional information, but the mere 

presence or absence of proteins and/or their abundance. An added challenge in 

functional characterizations of proteins is their temporal dynamics as affected by 

PTMs which reflects on changing protein activity state and conformations. Moreover, 

kinome and ABP reprogramming upon perturbations/elicitation is difficult to monitor 

especially for the low abundant proteins. Furthermore, understudied PKs for 

example, remain elusive especially with methods that use inhibitor-based enrichment 

techniques, as many understudied PKs have no known inhibitor and/or substrate. 

Therefore, methods for unbiased study and monitoring of understudied PKs and 

other ATP-binding proteins are ideal. In this regard, chemoproteomics seems fit. 

Chemoproteomics relies on the use of small molecule probes to tag proteins 

indiscriminately and independently of abundance. In addition, chemoproteomics is 

directed to monitor only a certain class or group of proteins rather than the whole 

proteome, making analysis less complex and increases depth (Cravatt et al, 2008; 

Patricelli et al, 2011; van der Hoorn et al, 2011). Chemoproteomics also circumvents 

elaborate and often difficult prefractionation methods commonly used in kinome 

(phospho)proteomics. More importantly, chemoproteomics of PKs and other ATP-

binding proteins can be directed to monitor PK networks and signalling cascades as 

it can detect global changes and reprogramming of the kinome i.e. upon stimulus.  

 

Towards mining proteins with ATP-binding activities 

ATP binding activities of PKs and other ATP-binding proteins can be detected 

globally by chemoproteomics using acyl ATP (AcATP) probes (Fig. 1B) (Patricelli et 

al, 2011; Patricelli et al, 2007). AcATP uses ATP as the binding moiety designed to 

bind the ATP-binding pockets of ATP-binding proteins. Upon binding, it places the 
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acyl group in close proximity to conserved lysine residues in the ATP-binding pocket. 

The acyl phosphonate moiety serves as an electrophilic warhead that can be 

nucleophilically attacked by the amino group of the lysine, resulting in a covalent 

attachment of the acyl reporter of AcATP on the lysine and a concomitant release of 

ATP (Fig. 1B). The reporter tag is usually a biotin (in BAcATP) to capture and identify 

the labelled proteins. Labelled proteins can be displayed on protein blots using 

streptavidin-HRP. However, since AcATP label many ATP-binding proteins, and PKs 

are of relatively low abundance, MS is more often used to identify and quantify 

labelling with AcATP probes. The analysis is preferably done using Xsite, a 

procedure that involves trypsination of the entire labeled proteome, followed by 

analysis of the biotinylated peptides rather than the biotinylated proteins (Okerberg 

et al, 2005). This ‘KiNativ’ approach provides enough depth and resolving power to 

monitor ~160 PKs in a crude mammalian proteome (Patricelli et al, 2011). Of the 518 

human PKs (Manning et al, 2002), 394 (=76%) have been detected by AcATP 

labeling (Patricelli et al, 2007).  

 

KiNativ has mostly been used to validate targets of human drugs that target PKs 

using competitive labelling experiments. This approach identified selective inhibitors 

of e.g. Parkinson’s disease protein kinase LRRK2 (Deng et al, 2011); the BMK1 and 

JNK MAP kinases (Yang et al, 2010; Zhang et al, 2012); and the mTOR kinase (Liu 

et al, 2012). Importantly, the correlation of biological activity of PK-inhibiting drugs 

with inhibitor affinity detected using KiNativ is better than when compared with 

affinities determined by assays using heterologously expressed PKs (Patricelli et al, 

2011). This improved correlation illustrates that assays in the native environment 

provide a more realistic measure of PK function. 

 

In addition to characterizing inhibitor selectively, AcATP probes can also display 

differential ATP binding activities of PKs. Since AcATP labels the conserved Lys in 

ATP-binding pockets of PKs and other ATP-binding proteins, it indicates on the ATP 

binding activity of these proteins. Because AcATP reports on the availability of ATP 

binding sites in ATP-binding proteins, any change in the protein activity that affects 

ATP binding affinity would be displayed. For example, labelling with AcATP probes 

during infection with dengue virus detected a 2-8-fold activation of a DNA-dependent 

PK (Vetter et al, 2012). Likewise, AcATP labelling revealed an unexpected Raf 
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kinase activation in extracts upon PK inhibitor treatment (Patricelli et al, 2011). In 

conclusion, profiling with AcATP probes is a powerful approach to monitor PKs and 

other ATP-binding proteins, and offers unprecedented opportunities to identify 

selective PK inhibitors and discover PKs with differential ATP binding activities. 

 

 

Aim and outline of the thesis 

This work aims to introduce AcATP profiling of plant proteomes, identify PKs and 

other ATP-binding proteins labelled by AcATP, sequence AcATP labelling sites, and 

gain deeper insight in the ATP binding mechanisms of ATP-binding proteins.  

 

Chapter 1 introduces the importance of understanding the mechanisms of ATP-

protein interactions, and reviews the different proteomic technologies that can be 

applied to detect this. Here, the advantages of using a chemoproteomic approach 

(e.g. AcATP profiling), are discussed.  

 

Chapter 2 shows the results of AcATP labelling experiments. Part 2.1 shows an in-

depth characterization of AcATP labelling as affected by probe and proteome 

concentrations, labelling time, pH, divalent cations, chelating agents, and nucleotide 

and kinase inhibitors. In addition, application of AcATP labelling in plant science was 

demonstrated. Furthermore, protein targets of AcATP were identified by MS analysis 

in both gel-based and gel-free AcATP profiling platforms. In addition to the analysis 

of labelled peptides, we discovered that biotin is often oxidized in this procedure. We 

also performed a first  in-depth analysis of labelling sites in proteins other than PKs. 

Part 2.2 introduces the targeted MS/MS approach in AcATP profiling to detect 

differential AcATP labelling upon flg22-induced immune signalling. Here, we 

confirmed with an in-depth investigation of AcATP labelling of differentially activated 

MPKs. Part 2.3 launches a study on a putative receptor shedding event in RLK902, 

which was originally inferred from gel-based AcATP labelling of Arabidopsis leaf 

proteome in Part 2.1. We further investigated the putative shedding mechanism by 

heterologous expression of RLK902 to monitor the processing of this protein in N. 

benthamiana leaves. 
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Chapter 3 interprets and discusses the results presented in Chapter 2. I highlight 

different factors that affect AcATP labelling, a comparison of gel-based and gel-free 

platforms, and the advantages of targeted over data-dependent MS/MS in AcATP 

profiling. In part 3.1, I describe 63 labelling sites of known nucleotide binding 

pockets, of which 24 represent a remarkable diversity of PKs, including several LRR-

RLKs. In part 3.2, I show that targeted MS/MS increased detection of PKs. Although 

no differential AcATP labelling was observed for differentially activated MPKs, 

possible reasons were discussed, and a deeper insight on the mechanism of ATP-

protein interaction was made. In Part 3.3, I discuss that processing of RLK902 could 

be a function of either putative receptor shedding or receptor-mediated endocytosis 

or both, and suggest future experiments to elucidate this processing further.  

 

Chapter 4 describes the materials used and methods followed in the different 

experiments presented here. Overall, this work launches a new approach to study 

ATP-binding proteins in plant science. 
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CHAPTER 2:  RESULTS 

 

2.1 Chemoproteomics with AcATP 

2.1.1 Structures and mechanisms of labelling of AcATP probes  

The AcATP probes are composed of an ATP, an acyl phosphate linker, and a 

reporter tag. We used four different AcATP probes that differ in their reporter tags 

(Fig. 1A).  Reporter tags can be a biotin (in BAcATP) or a desthiobiotin (in 

DTBAcATP) for purification, bodipy (in Bodipy-AcATP) for visualization by 

fluorescence scanning, or an alkyne minitag (in ≡AcATP) that can be coupled to an 

N3-biotin (N3-B), N3-rhodamine (N3-Rh), or N3-biotin-rhodamine (N3-BRh) using click 

chemistry. 

 

AcATP was designed to label the conserved lysines (Lys) of kinases and other ATP-

binding proteins (Patricelli et al, 2007). When bound to the ATP binding pocket of 

ATP-binding proteins, the acyl group of BAcATP is positioned in close proximity to 

one or more conserved Lys in the ATP binding pocket (Patricelli et al, 2007). The 

electrophilic acyl group of AcATP provokes a nucleophilic attack of Lys resulting in 

the release of ATP and labelling of Lys of ATP-binding proteins through an 

irreversible amide bond (Fig. 1B). Thus, AcATP probes report on the ATP binding 

activity of ATP-binding proteins. 

 

In this study, AcATP was used to label Arabidopsis leaf or cell culture extracts.  

Incubation of leaf proteomes with AcATP followed by fluorescence scanning or 

detection of protein blots with streptavidin-HRP revealed numerous labelled proteins 

when compared to the no-probe-control (Fig. 1C). As expected, the labelling profile 

of Arabidopsis leaf extracts using BAcATP, ≡AcATP and Bodipy-AcATP are similar, 

with two of the most prominent signals indicated by arrows (Fig 1C, left panel).  

Similar protein profiles, but of different labelling intensities, were observed for 

BAcATP and DTBAcATP labelling when using cell culture extracts (Fig. 1C, right 

panel). However, labelling of leaf extracts gave very similar profiles (data not shown). 
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Figure 1. Structure and mechanism of labelling with AcATP probes. 

(A) The different AcATP probes all carry an ATP moiety, with the third phosphate group attached to 
an acyl phosphate reactive group, linked to biotin, alkyne, bodipy, or desthiobiotin for BAcATP, 
≡AcATP, Bodipy-AcATP and DTBAcATP, respectively. (B) When AcATP binds to the ATP binding 
pocket of a protein, the amino group of the nearby Lys reacts with the carbonyl carbon, which results 
in the covalent binding of the tag to the protein while ATP is released. (C) Comparison of AcATP 
labelling of Arabidopsis leaf proteome (left panel) and Arabidopsis cell culture proteome (right panel). 
Protein extracts were labelled with AcATP and the labelled proteins were detected either by 
fluorescence scanning or on protein blots using streptavidin-HRP. The ≡AcATP-labelled samples 
were clicked to an N3-BRh which can be visualized by both fluorescence scanning and blotting with 
streptavidin-HRP. For ATP competition, ATP was added to the reaction 30 minutes before adding the 
probe for labelling. Coomassie Brilliant Blue (CBB) shows loading control. Asterisk indicates 
endogenously biotinylated proteins. 
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2.1.2 Characterization of AcATP labelling 

Different labelling conditions were tested in order to further characterize AcATP 

labelling. Here, BAcATP was mainly used for 30-minute labelling reactions of fresh 

Arabidopsis leaf extracts, followed by detection of labelled proteins from protein blots 

using streptavidin-HRP.  

 

 

2.1.2a Labelling is not affected by proteome and probe concentration but is 
increased by MgCl2 

Gradually increasing the proteome concentration for labelling reactions increases the 

labelled protein signals detected on the blot (Fig. 2A, left panel). However, diluting 

the labelled high-proteome (4 mg/ml) sample to match the labelled low-proteome 

(0.5 mg/ml) sample reveals that the labelling profile for both samples are very similar 

(Fig. 2A, right).  The same can be observed with increasing the probe concentrations 

and diluting it back to a low probe concentration (Fig. 2B). Hence, the proteome and 

probe concentrations present during labelling do not affect the labelling profiles of 

Arabidopsis leaf extract. 

 

The extraction in water or 50 mM Tris at pH7.5, or the presence or absence of 0.1 

mM EDTA in the BAcATP labelling reaction did not significantly change the labelling 

profile (Fig. 2C). However, the presence of 10 mM MgCl2 did increase the overall 

labelling intensity on the protein blot (Fig. 2C). This might be explained by the fact 

that MgCl2 is a cofactor needed to stabilize the binding of ATP in the ATP-binding 

pockets of ATP-binding proteins. 
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Figure 2. Characterization of BAcATP labelling as affected by proteome concentration, probe 
concentration and labelling buffer composition. 

(A) BAcATP labelling profile of increasing proteome concentrations (left panel). The right panel shows 
a protein blot where the labelled high proteome sample (4 mg/ml) was diluted to match the labelled 
low proteome sample (0.5 mg/ml) for better comparison. (B) BAcATP labelling profile of increasing 
probe concentrations (left panel) and dilutions of the labelled high probe sample as compared to the 
labelled low probe samples (right panel). (C) Labelling was done in different buffers with or without 50 
mM Tris at pH7.5, MgCl2, and EDTA. CBB shows loading control. Asterisks indicate endogenously 
biotinylated proteins.  
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2.1.2b Labelling increases as labelling time increases and is dependent on pH 

Labelling gradually increased over time and occurred faster at 25°C than at 4°C (Fig. 

3A). All subsequent labelling reactions were then done for 15-30 minutes at 25°C. In 

addition, labelling with BAcATP depends on pH. Weak or no labelling occurs at 

acidic pH (pH3–5), and strong labelling occurs at neutral to basic pH (pH7–10; Fig. 

3B). We chose pH7.5 as the standard pH during labelling to mimic the conditions of 

the plant cytoplasm. 

 

The endogenously biotinylated proteins 3-methylcrotonyl-CoA carboxylase (MCCA) 

and biotin carboxyl carrier protein (BCCP) appeared as background signals at 95 

and 34-kDa, respectively, in both labelled samples and no-probe-control. However, 

both these proteins are also ATP-binding proteins so their intensities increase upon 

labelling (Fig. 3). 

 

 

 
Figure 3. BAcATP labelling is affected by time of labelling and pH 

 (A) BAcATP labelling profiles of Arabidopsis leaf proteome with increasing labelling time either in 4°C 
or 25°C. Labelling of each sample was stopped by adding gel loading buffer. (B) Arabidopsis leaf 
extracts were labelled with BAcATP at various pH values, and the biotinylated proteins were detected 
from protein blots using streptavidin-HRP. CBB shows loading control. Asterisks indicate 
endogenously biotinylated proteins. 
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2.1.2c Labelling is affected by the type and amount of divalent metal cations 
and chelating agents  

The observation that MgCl2 increased labelling in Fig. 2C prompted us to test other 

divalent metal cations like Mn2+ and Ca2+ in BAcATP labelling. Similar to MgCl2, the 

addition of CaCl2 or MnCl2 greatly increased labelling as compared to the control 

(Fig. 4A), while adding chelating agents EDTA and EGTA decreased labelling (Fig. 

4B). Interestingly, additional 65 and 45 kDa signals appeared when CaCl2 was 

added; additional 60 and 70 kDa signals appeared in MnCl2 sample, and two 65 kDa 

signals appeared in MgCl2 sample (Fig. 4B, black circles). The MnCl2-induced 

signals were suppressed more effectively by the addition of EGTA than of EDTA 

(Fig. 4B, grey circles), whereas the CaCl2- and MgCl2-induced signals were 

suppressed equally by both EDTA and EGTA. These results are in agreement with 

the fact that EGTA has a higher affinity for Mn2+ than EDTA, and suggests that EDTA 

and EGTA has similar affinity to both Ca2+ and Mg2+. In all cases, addition of 50 mM 

divalent metal cations resulted in stronger labelling compared to 10 mM. The 

increased labelling upon the addition of divalent metal cations and the reduced 

labelling in the presence of chelating agents is consistent with the role of divalent 

ions in ATP binding to proteins and enzymes. 

 

To better assess the effect of divalent metal cations, especially CaCl2, which gave 

the strongest increase in labelling, we performed a pulldown purification of 

biotinylated proteins by streptavidin beads, coupled to 2D gel electrophoresis (Fig. 

4C). A large number of protein spots can be detected on the protein blot for CaCl2-

treated sample which are absent in the no-CaCl2 control. The purification of labelled 

proteins using streptavidin beads worked well as there were no signals on the blot of 

the no-probe-control. 
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Figure 4. Characterization of BAcATP labelling as affected by divalent metal ions and chelating 
agents. 

(A) Labelling in the presence or absence of CaCl2, MnCl2, and MgCl2 at 10 and 50 mM 
concentrations. (B) Labelling in the presence of different divalent metal ions, with or without chelating 
agents EDTA and EGTA. Prior to labelling, protein extracts were gel filtered into a DG10 size 
exclusion columns to remove small molecules before adding the divalent metal ions and/or chelating 
agents. Biotinylated proteins were detected from a protein blot using streptavidin-HRP. CBB shows 
loading control. Asterisks indicate endogenously biotinylated proteins. Black circles indicate signals 
appearing in each treatment, while grey circles indicate signals not inhibited by EDTA. (C) A large 
scale labelling with or without 50 mM CaCl2, followed by purification of biotinylated proteins with 
streptavidin beads. Purified proteins where resolved with 2D gel electrophoresis, and detected in a 
protein blot using streptavidin-HRP. Arrows indicate protein spots common to labelling with and 
without CaCl2. 
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2.1.2d Labelling is suppressed with ATP-like nucleotides 

We next tested whether labelling would be suppressed by different nucleotides 

(summarized in Fig. 5A). Pre-incubation with ATP or ADP prior to labelling strongly 

suppressed BAcATP labelling, whereas AMP did not suppress labelling (Fig. 5B). 

This suggests that phosphates at the β and γ positions are essential for the 

suppression of BAcATP labelling. In addition, CTP and to a lesser extent, also GTP 

and TTP also suppressed BAcATP labelling (Fig. 5B). Notably, NADP, but not NAD, 

also suppressed BAcATP labelling (Fig. 5B), indicating the importance of a 

phosphate moiety at the 2’ position in the nucleotide to suppress labelling (Fig. 5A). 

Interestingly, nucleotide triphosphates (NTPs) were more potent inhibitors than their 

deoxynucleotide counterparts (dNTPs; Fig. 5B), suggesting that the 2’ hydroxyl 

group on the sugar moiety of the nucleotide also plays a role in the ability to compete 

for AcATP labelling (Fig. 5A). In conclusion, these data indicate that labelling is 

specific because it can be competed with ATP analogues. 

 

 

2.1.2e Labelling is not significantly affected by kinase inhibitors 

We also tested whether labelling would be suppressed by some reported kinase 

inhibitors that target the ATP binding pocket. Pre-incubation with toyocamycin, 

suramin, wortmannin, DTNB and K252a (Fig. 6A) prior to labelling did not 

significantly affect labelling as compared to the no-inhibitor control (Fig. 6B). 

Independent labelling inhibition experiments with other inhibitor concentrations (up to 

100 mM) also did not affect labelling significantly (data not shown). We speculate 

that these results may be partly (if not completely) due to the limitations of our 

detection method of protein blotting with streptavidin-HRP in detecting differences in 

labelling of a small number of protein kinases, rather than looking at the overall 

inhibition of all ATP-binding proteins in a labelling profile. Moreover, these kinase 

inhibitors do not target all ATP binding pockets as ATP does, and this is difficult to 

detect as we see mostly non-protein kinases in our assays (reported in Section 

2.1.5c). 
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Figure 5. BAcATP labelling competition with nucleotides and nucleotide analogues. 

(A) Structures of nucleotides and nucleotide analogues used in BAcATP labelling competition 
experiments. The OH- and PO4- groups which are important in competing for BAcATP labelling are 
highlighted in the structures. (B) Protein extracts were gel-filtered with DG10 size exclusion column 
and pre-incubated for 30 minutes with nucleotide inhibitors prior to labelling. CBB shows loading 
control. Asterisks indicate endogenously biotinylated proteins. 
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Figure 6. BAcATP labelling competition with known kinase inhibitors. 

(A) Structures of selected kinase inhibitors used in BAcATP labelling competition experiments. DTNB 
stands for 5,5′-Dithiobis(2-nitrobenzoic acid). (B) Protein extracts were gel-filtered with DG10 size 
exclusion column and pre-incubated for 30 minutes with kinase inhibitors prior to BAcATP labelling. 
CBB shows loading control. Asterisks indicate endogenously biotinylated proteins. 
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2.1.3 Differential AcATP labelling of various proteomes: Applications of AcATP 
labelling in plant science 

2.1.3a AcATP probes do not label in vivo 

In vivo labelling has the advantage that proteins can be monitored in their natural 

state, active or inactive, depending on conditions of their microenvironment. In vivo 

assays allow the probes to go inside living cells rather than making a lysate. Small 

molecule probes are often not cell-permeable when tagged with biotin or 

desthiobiotin, so we tested ≡AcATP and bodipy-AcATP in in vivolabelling 

experiments. However, we did not find labelling after syringe-infiltration of ≡AcATP or 

bodipy-AcATP into fully expanded Arabidopsis leaves and incubation for two hours 

(Fig. 7A). Likewise, incubation of bodipy-AcATP with cell cultures did not result in 

any labelling (Fig. 7B). Finally, incubation of leaves with petioles in ≡AcATP and 

Bodipy-AcATP probe solutions for two hours also did not result in any labelling (data 

not shown). Hence, we conclude that AcATP probes probably do not cross the cell 

membrane of plant cells, and can not be used for in vivo labelling experiments. 

 

 

Figure 7. ≡AcATP and Bodipy-AcATP can not be used for in-vivo labelling experiments 

(A) In vivo labelling by syringe-infiltration of ≡AcATP and Bodipy-AcATP into Arabidopsis leaves. Total 
proteome from probe-infiltrated leaves were extracted in denaturing buffer containing SDS and 
separated on acrylamide gels and detected by fluorescence scanning. Ex vivo labelling with ≡AcATP, 
coupled to rhodamine (N3-Rh) using click chemistry, was used as a control. (B) Bodipy-AcATP was 
incubated with Arabidopsis cell cultures for two hours at different concentrations. Total proteome was 
extracted in denaturing buffer, separated on acrylamide gel and detected by fluorescence scanning. 
MVB003 labelling of the proteasome was used as a positive control for in vivo labelling. CBB shows 
loading control.  
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2.1.3b Searches for differential in vitro labelling 

Although AcATP probes cannot be used for in vivo studies, they have great potential 

for in vitro labelling studies to compare different proteome samples. Small scale 

labelling of lysates, followed by detection of labelled proteins by fluorescence 

scanning or on protein blots using streptavidin-HRP, can be used to detect 

differential ATP-binding activities of proteins. To test differential ATP-binding 

activities of proteins, AcATP labelling was done to different proteome preparations 

from Arabidopsis cell cultures treated with H2O2, heat, flg22, or benzothiadiazole 

(BTH), and A. thaliana and N. benthamiana plants treated with different bacterial 

strains Pseudomonas syringae pathovar (pv.) tomato (Pto) DC3000, PtoDC3000 

lacking the HopQ1-1 effector (PtoDC300∆hQ), and Pseudomonas syringae pv. 

syringae (Psy) B728a (Fig. 8A-D).  

 

H2O2 treatment causes oxidative stress in Arabidopsis cell cultures. Under natural 

conditions, oxidative stress in plants is usually caused by many different 

environmental factors such as pathogen attack, extreme temperatures, wounding, 

drought, salt, light, and heavy metals. Oxidative stress triggers many defense 

responses in plants by activating defense-related proteins such as kinases. 

Moreover, heat treatment also causes oxidative stress and protein degradation, 

prompting up defense responses in Arabidopsis cell cultures. Labelling with 

DTBAcATP reveals differential signals at 80, 100 and 150 kDa upon H2O2 treatment 

(Fig. 8A). A similar 100-kDa differential was detected by Bodipy-AcATP in H2O2-

treated cell cultures as compared to the control (marked with white circles, Fig. 8B). 

Whereas heat-treating cell cultures at 45°C or 53°C for five minutes results in a 

weaker 30-kDa signal (Fig. 8B, dark circles). Note however, that this 30-kDa signal is 

coming from an endogenously fluorescent protein as it is also present in the no-

probe-control (Fig. 8B, asterisk).  

 

In addition, flg22, a peptide epitope of bacterial flagellin, triggers PAMP-innate 

immunity in Arabidopsis activating a downstream mitogen-activated protein kinase 

(MPK) signalling pathway, and induces the expression of numerous defense-related 

genes (Newman et al, 2013). BTH, on the other hand, is a functional analog of 

salicylic acid (SA), triggers SA-dependent defense responses (Lawton et al, 1996). 



RESULTS: Chemoproteomics with AcATP 

21 
 

However, treatments of cell cultures with flg22 or BTH did not result in any 

differential labelling (Fig. 8B).  

 

Moreover, Pseudomonas syringae are bacterial pathogens of diverse plant species. 

These pathogens carry effectors that trigger immune response in infected plants. 

Labelling of membrane and soluble fractions obtained from PtoDC3000∆hQ-treated 

Arabidopsis leaves was also done using BAcATP. The different labelling profiles of 

membrane and soluble fractions confirm that these proteomes have different ATP-

binding activities (Fig. 8C). With membrane fractionation, one can also enrich for 

receptor-like kinases (RLKs) located in plasma membranes. Despite the detection of 

many signals, we did not detect any robust differential labelling upon infection with 

PtoDC3000 (Fig. 8C). We next investigated the ATP-binding activities of apoplastic 

proteins during plant-microbe interactions. Infection of N. benthamiana with 

PtoDC3000, PtoDC3000∆hQ or PsyB728a causes an increase of apoplastic 

proteins, as detected on Coomassie stained gels (CBB) (Fig. 8D). Interestingly, 

several of these proteins are labelled with DTBAcATP, and this labelling is competed 

by pre-incubation with ATP (Fig. 8D). This indicates that some secreted proteins 

have ATP-binding activities. Importantly, these ATP-binding apoplastic proteins are 

absent in non-infected controls (Fig. 8D). 
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Figure 8. Differential labelling of ATP-binding proteins in various proteomes 

Labelling of extracts from treated Arabidopsis cell cultures with DTBAcATP (A) and Bodipy-AcATP 
(B). Total lysate was extracted from cell cultures in kinase buffer with MnCl2 and labelled for 30 
minutes. Asterisks indicate endogenously biotinylated (in A) or endogenously fluorescent (in B) 
proteins. Observed differential protein signals on gels are indicated by white and black circles for 
H2O2-treated and heat-treated samples, respectively. (C) Comparative BAcATP labelling of 
membrane and soluble fractions from Arabidopsis leaves treated with or without PtoDC3000∆hQ 
(OD600 of 0.3) at two days post infection (dpi). Total proteome was extracted in non-denaturing 
membrane buffer and membranes and soluble fraction was separated by ultracentrifugating the 
lysate. Both membrane and soluble fractions were gel-filtered with DG10 size exclusion column prior 
to labelling. (D) N. benthamiana was infiltrated with or without different bacterial strains or water for 
two dpi and apoplastic fluids were extracted and labelled with DTBAcATP. Labelled proteins were 
detected on a protein blot using streptavidin-HRP. CBB shows presence of differential proteins 
accumulating in the apoplast of treated plants as compared to non-infected or water controls. CBB 
shows loading control.  
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2.1.3c Large scale labelling and purification of labelled proteins  

BAcATP, DTBAcATP or ≡AcATP clicked to N3-B or N3-BRh can be used in pulldown 

experiments to identify labelled proteins. For pulldown experiments, a larger amount 

of proteome was labelled with 20 µM probe, followed by desalting through a DG10 

column to remove salts and the unreacted probe. Biotinylated proteins were 

captured under denaturing conditions using streptavidin beads. Beads were 

stringently washed to remove non-biotinylated proteins. Proteins were eluted using 

gel loading buffer (for 1D gel electrophoresis) or 50% acetic acid (for 2D gel 

electrophoresis) and digested with trypsin for mass spectrometry (MS) identification. 

Figure 9A shows an efficient pulldown experiment monitoring the purification of 

BAcATP-labelled proteins through the different steps in the purification procedure. 

BAcATP labelling in the presence of 5 mM ATP reduces the purified labelled proteins 

(Fig. 9B). Protein extracts from Arabidopsis seedlings and cell cultures treated with 

or without flg22 were also subjected to labelling and pulldown experiments with 

BAcATP (Fig. 9C). However, there are no obvious differentials between purified 

proteins from flg22 samples as compared to the controls (Fig. 9C). We followed a 

similar purification procedure upon ≡AcATP labelling. ≡AcATP labelling might target 

a different subproteome because this probe does not carry a bulky reporter tag. 

However, the labelling procedure includes click chemistry to biotinylate the labelled 

proteins. A 2D gel electrophoresis was done to purified proteins for better resolution 

and/or more efficient identification of labelled proteins (Fig. 9D). 
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Figure 9. AcATP probes were used to label and purify labelled proteins from a lysate 

(A) Protein blot showing the labelling and purification of proteins from a BAcATP-labelled Arabidopsis 
leaf extract. (B) Protein blot of a BAcATP labelling and pulldown of two-week old seedlings with or 
without ATP competition, and (C) Pulldown of BAcATP labelled proteins from proteomes of seedlings 
treated for 15 minutes with and without flg22. (D) Large scale labelling and pulldown with ≡AcATP 
coupled to N3-BRh using click chemistry. Lower panel shows separation of purified labelled proteins 
on a 2D protein gel. (E) ≡AcATP labelling and pulldown of labelled proteins from Arabidopsis 
seedlings and cell cultures with or without flg22 elicitation. 
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2.1.4 Identification of AcATP targets in Arabidopsis: Gel-based approach 

This part of the thesis is published in:  Villamor JG, Kaschani F, Colby T, Oeljeklaus J, Zhao D, Kaiser 
M, Patricelli MP, and van der Hoorn RA (2013) Profiling protein kinases and other ATP-binding 
proteins in Arabidopsis using acyl-ATP probes. Mol Cell Proteomics. 12. 2481-2496 
 
2.1.4a BAcATP labels ATP-binding proteins 

To identify the proteins labelled by BAcATP, biotinylated proteins were affinity 

purified from BAcATP-labelled leaf extracts using streptavidin beads, separated on 

protein gel and stained (Fig. 10A). Bands were excised, treated with trypsin, and 

analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

Peptides with high Mascot scores (>41) and proteins with at least two unique 

peptides were retained. A total of 112 proteins were identified in the BAcATP-

labelled sample while only 13 of these proteins were also identified in the no-probe-

control (supplemental Tables S1 and S2). The no-probe-control contains proteins 

such as the endogenously biotinylated protein MCCA and abundant proteins like 

RBCL. 

 

We made a selection of the 112 proteins by selecting proteins with the highest 

spectral counts, supplemented with detected protein kinases (PKs) and proteins for 

which a labelling site was identified. The resulting selection consists of 38 proteins 

that could be assigned to the 13 different bands (supplemental Table S2 and Fig. 

10A-B). These data indicate that the abundant 55 kDa signal (band 5) is caused by 

labelling of a subunit of the chloroplastic ATPase (ATPB) and the large subunit of 

ribulose-1,5-bisphophate carboxylase oxygenase (RBCL). This signal also contains 

peptides from the β subunit of the mitochondrial ATP synthase (ATPS); 

glycinamideribonucleotidesynthetase (GARS) and calcium-dependent kinase-9 

(CPK9). The 45 kDa signal (band 7) is predominantly caused by phosphoglycerate 

kinase (PGK1), though this signal also contains spectra from other proteins. The 40 

kDa signal (band 8) contains a mixture of the chloroplastic sedoheptulose-1,7-

bisphosphatase (SBPASE); chloroplast RNA binding protein (CRB); fructose-

biphosphate aldolase-2 (FBA2); subunit A of glyceraldehyde 3-phosphate 

dehydrogenase (GAPA); and several other proteins including two PKs (LRR1 and 

PK); an inositol-1,3,4-trisphosphate-5,6-kinase (ITPK1) and an uncharacterized 

carbohydrate kinase (CK). Weaker signals in the upper 70-90 kDa region of the gel 
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contain methionine synthase (MS1, band 1); methylcrotonyl-CoA carboxylase 

(MCCA, band 1); formyltetrahydrofolatesynthetase (THFS, band 2); transketolase 

(TK, band 2); heat shock proteins 70 (HSP70, band 2) and 60 (HSP60, band 3); 

thioglucosideglucohydrolase 2 (TGG2, band 3); F-box protein GRH1 (band 3); 

Ser/Thr/Tyr kinase STY8 (band 3); and subunit B of glutamyl-tRNA aminotransferase 

(GATB, band 4). Weak signals at 50 kDa (band 6) contain a subunit of a biotin 

carboxylase (CAC2), a MAP3K protein kinase (VIK1), a monodehydroascorbate 

reductase (MDAR6) and a calcium-dependent protein kinase (CPK11). Weak signals 

in the 35-40 kDa region contains peroxisomal NAD-malate dehydrogenase-2 

(PMDH2, band 9); an leucine-rich repeat (LRR)-RLK (band 9); and 

phosphopantothenate-cysteine ligase (COAB, band 10). The signal at 33 kDa (band 

11) contains predominantly avidin, but also subunit O2 of photosystem II (PSBO2) 

and the non-intrinsic ABC protein-7 (NAP7). Finally the weak signals at the bottom of 

the gel (27-30 kDa)  contain chloroplastic glutamine synthetase (GS2, band 11); 

chloroplast RNA-binding protein (RBFP, band 12); carbonic anhydrase (CA1, band 

12); glutathione transferase (GSTF2, band 12), and a UMP/CMP kinase (PYR6, 

band 12). 

 

In conclusion, the vast majority of the identified proteins in the AcATP-labelled 

samples are ATP-binding proteins (Fig. 10B, column 8). These ATP-binding proteins 

include a variety of PKs (STY8, CPK9, VIK1, CPK11, RLK-LRR and LRR1), ATP-

based transporters (ATPB, ATPS and NAP7), metabolite kinases (CK, PGK1, ITPK1, 

PYR6), and metabolic enzymes and chaperones using ATP (GARS, MCCA, THFS, 

HSP70, HSP60, CAC2, MDAR6, PMDH2, GS2).  
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Figure 10. MS analysis of BAcATP-labelled proteins 

(A) Arabidopsis leaf extracts were incubated with and without 10 μM BAcATP and biotinylated 
proteins were purified, separated on protein gel, and detected using SYPRO Ruby staining. Thirteen 
bands were excised from each lane, treated with trypsin and peptides were eluted and analyzed by 
LC-MS/MS. Identified proteins are indicated in (B). See supplemental Tables S1 and S2 for more 
details. (B) Spectral counts of proteins in each of the 13 bands. Summarized as: band numbers 
(column 1); accession code (column 2), protein names (column 3), spectral counts in no-probe-control 
(column 4) and the AcATP-labelled sample (column 5). The spectral counts are also shown for BAc- 
and OBAc-modified peptides, indicated separately in columns 6 and 7. Expected ATP binding, based 
on literature data is indicated in column 8 (ATP binding activity reported (+) or not reported (NR)). The 
theoretical MW for each protein is given in column 9. Deviations with the found MW are printed in 
bold. PKs are printed in red. This table is a selection of the most abundant spectral counts per band, 
supplemented with detected protein kinases and proteins for which labelled peptides were detected. 
Proteins that were detected in more than one band are only shown in the band with the highest 
spectral counts. For a complete list of identified proteins, see supplemental Tables S1 and S2. (C) 
BAcATP labelling site in HSP60. The orthologous labelling site of AcATP in HSP60 of Arabidopsis is 
indicated in the crystal structure of the highly homologous GroEL of E. coli (1sx3) containing ATP. The 
labelled Lys was located from the aligned protein sequences and highlighted in the structure using 
PyMol. The Lys is at 7.03 Å from the gamma phosphate of ATP. 
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2.1.4b Putative receptor shedding of RLKs 

We next examined the experimental molecular weights (MW) of proteins identified 

from the protein gel. We noticed a good correlation for nearly all the detected 

proteins with the striking exception of two leucine rich repeat-receptor like kinases 

(LRR-RLKs), which have a calculated MW of 68-kDa, but migrate in the region of 40-

kDa (Fig. 10B). These are two highly homologous LRR-RLKs carrying six 

extracellular LRRs, a transmembrane domain and a cytoplasmic kinase domain (Fig. 

11). The extracellular domain also contains multiple putative glycosylation sites, 

which cause LRR-RLK proteins to migrate with an apparent MW that is typically 20-

30 kDa larger than their calculated MW. Peptide coverage (Fig. 11 and supplemental 

Table S1) suggests that these labelled proteins consist of the full protein kinase 

domain, but lack the extracellular domain. The detection of half-tryptic peptides of 

the C-termini of both these LRR-RLK proteins indicates that the C-terminus is intact 

and that a significant truncation must have occurred from the N-terminus. 

Interestingly, the calculated MW of the cytoplasmic domain is 37 and 38 kDa for 

At3g02880 and At5g16590, respectively, which coincides with the observed MW of 

these proteins. Taken together, these data indicate that these LRR-RLKs exist in 

Arabidopsis leaf extracts as kinase domains lacking the extracellular domain. 

 

 

 

Figure 11. Putative receptor shedding of two receptor-like kinases. 

Both RLKs At3g02880 and At5g16590 carry a signal peptide (SP), an N-terminal LRR-flanking 
domain with a conserved Cys pair; six leucine-rich repeats (LRRs, red), an extracellular 
juxtamembrane domain with a conserved Cys pair (yellow); a transmembrane domain (TM), an 
intracellular juxtamembrane domain; a protein  kinase domain (blue) and a C-terminal tail. The 
extracellular domain carries several putative N-glycosylation sites (green). Identified peptides and 
spectral counts are indicated with black bars below the proteins. The theoretical molecular weight is 
calculated from the plain amino acid sequence for the cytoplasmic domain, and the full mature protein 
without signal peptide. 
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2.1.4c Detection of an oxidized biotin moiety 

The searches mentioned above included a variable modification of Lys residues with 

the probe, whilst allowing two trypsin miscleavages. Searches with the theoretical 

biotin acyl (BAc) modification on the Lys (339.16 Da) did not lead to hits with Mascot 

scores above the threshold (Fig. 10B, column 6). However, during more liberal 

searches we noticed that BAc modifications appeared, but only in peptides which 

included an oxidation associated with the presence of a methionine in the peptide 

sequence (data not shown). This observation sparked the idea that the modification 

of the probe is associated with additional oxygen. Indeed, when we searched the 

data by adding an oxygen to the BAc modification (OBAc, 355.16 Da), we could 

identify modified peptides for nine different proteins with relatively high Mascot 

scores (41-71) (Fig. 10B, column 7). 

 

One of those labelled peptides is from HSP60 (At3g23990), a well-described ATP-

BINDING PROTEIN. To determine the location of the labelling site in the protein 

relative to ATP, we searched the protein database for proteins homologous to 

HSP60 and identified GroEL, an HSP60 protein from Escherichia coli, for which an 

ATP-bound crystal structure is available (1sx3, Chaudhry et. al., 2004). HSP60 and 

GroEL proteins share 56% amino acid identity including the region where the 

labelled Lys is located. The amino group of the labelled Lys is located at 7.0 Å from 

the gamma phosphate of the bound ATP in GroEL (Fig. 10C). Thus, labelling in 

HSP60 occurred at the expected labelling site. 

 

We next studied the fragmentation spectrum of the labelled peptide of HSP60 further 

to identify the location of the oxygen within the labelled peptide. The labelled peptide 

in HSP60 has the sequence VTKDGVTVAK and was detected with a Mascot score 

of 41.4 with a parental ion of 686.93 m/z (z=2) (Fig. 12). Nearly all b- and y-ions were 

detected in the fragmentation spectrum, locating the labelled Lys including the 

oxygen at the third position in the peptide: VTK*DGVTVAK. The spectrum also 

contains three unexplained peaks in the low masses: 243.15, 356.31 and 439.35 Da. 

Importantly, the 243.15 Da ion corresponds to an oxidized biotin (expected mass: 

243.3). An additional 113 Da for the aminohexanoic acid linker predicts an ion of 

356.5 Da, which corresponds to the second signal at 356.31 Da. The third ion, 
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observed 83 Da further at 439.35 Da, corresponds to the labelled version of the 

commonly-observed immonium ion variant for Lys. High-energy CID fragmentation of 

Lys residues typically results in an unsaturated cyclic 84 Da fragment, known as a 

piperidine or tetrahydropyridine ion (Shek et al, 2006). Since the Lys has lost a 

proton during the labelling reaction, the observed 83 Da distance is explained, 

indicating that such fragmentation and subsequent cyclization of Lys do not cause a 

loss of the biotin. Taken together, these data demonstrate that the additional oxygen 

is located at the biotin, presumably on the sulfur. The 243.2 and 356.5 and 439.3 Da 

ions are also found in spectra of the other labelled peptides, indicating that oxygen is 

consistently present on the biotin moiety. 

 

 

Figure 12. Fragmentation spectrum of HSP60 peptide labelled with oxidized biotin. 

The b- and y-ion series is annotated as explained in the bottom right. The putative structure of the 
modified Lys is shown on bottom left, explaining the three observed ions. The oxide (red) is 
presumably on the sulfur of the biotin, resulting in biotin sulfoxide. 
 
 
 
 
2.1.5 Identification of AcATP labelling sites: Gel-free approach 

2.1.5a Xsite identifies 242 labelling sites 

The observation that most of the 112 BAcATP-labelled proteins are ATP binding 

reflects the potency of the probe to target ATP-binding proteins in a crude proteome. 

However, only a few of these 112 proteins are PKs. Furthermore, some of the 
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BAcATP-labelled proteins are not annotated as ATP-binding proteins, and therefore 

the labelling sites on these proteins are uncertain. To address both issues, we 

analyzed the labelled proteome deeper by analyzing the labelled peptides. For this 

we used DTBAcATP (Fig. 1A) (Patricelli et al, 2011) which carries a desthiobiotin 

tag. Desthiobiotin cannot be oxidized and has a lower affinity for streptavidin, 

resulting in a more efficient elution of peptides for identification. After labelling with 

DTBAcATP, the proteomes were digested with trypsin and the desthiobiotinylated 

peptides were purified using streptavidin beads, and analyzed by LC-MS/MS (Fig. 

13A). We recorded 10465 peptide spectra, corresponding to 567 different peptides 

carrying a modified Lys residue (Fig. 13B). Peptides with >95% probability score 

(Adam et. al. 2004) and those that were identified in two or more reactions were 

selected, resulting in 6992 spectra corresponding to 242 peptides (Fig. 13B, 

supplemental Table S4). 

 

 

Figure 13. Identification of labelled peptides by Xsite.  

(A) Arabidopsis leaf extracts were labelled with DTBAcATP, trypsin-digested and the labelled 
peptides affinity purified and analyzed by LC-MS/MS. (B) Pipeline for analysis of Xsite reactions. A 
total of four Xsite reactions were analyzed. Peptides were selected for having: 1) labelled Lys with 
probability score >75%; 2) >95% probability; and 3) found in at least two of the four Xsite reactions. 
To select peptides from PKs, PFAM analysis was performed on the list of labelled proteins, resulting 
in a list of 558 spectra corresponding to 24 different peptides from PKs. 
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2.1.5b DTBAcATP labels a diversity of protein kinases 

We first analyzed the data for peptides derived from PKs. Annotation through the 

PFAM (http://pfam.sanger.ac.uk/) database revealed that 24 of the 242 labelled 

peptides originate from at least 21 different PKs (Fig. 14A; supplemental Table S4). 

This list contains seven RLKs of which six carry extracellular LRRs. The detection of 

RLKs is remarkable since we did not enrich for membranes. In addition, we identified 

PK peptides from several mitogen-activated protein kinases (MPKs), calcium-

dependent protein kinases (CPKs), PTI-like kinases and other Ser/Thr protein 

kinases. We also detected AvrPphB susceptible 1 (PBS1) (Swiderski & Innes, 2001), 

VH1-interacting kinase (VIK) (Wingenter et al, 2011), AT6 protein kinase (Gao & 

Xiang, 2008), and proline-rich extension-like receptor kinase-1 (PERK1) (Silva & 

Goring, 2002). Of the 24 PK peptides, 19 are unambiguous and are derived from 

only one PK (black accession numbers in Fig. 14A). Four protein kinase-derived 

peptides are ambiguous since the peptide sequence is identical in two or more PKs 

in the TAIR10 protein database (gray accession numbers in Fig. 14A). Two PK-

derived peptides were identified for two PKs (top in Fig. 14A), indicating that 

DTBAcATP labels these PKs at two positions. In case of PERK1, two overlapping 

peptides containing the same labelled lysine were detected. 

 

We marked the identified PKs in the Arabidopsis thaliana kinase database 

(http://bioinformatics.cau.edu.cn/athKD/index.htm) which classifies all the 1099 PKs 

of Arabidopsis into classes, groups, and families based on sequence similarities. We 

identified representatives of 11 different PK families belonging to 10 different groups 

and the three major PK classes (Fig. 14B). This indicates that AcATP probes are not 

family specific and can be used to profile ATP binding activities of the majority of 

Arabidopsis PKs.  

 

Alignment of the identified PK-derived peptides showed that these peptides fall into 

four groups containing four different labelled Lys residues: Lys1-4 (Fig. 14C). When 

mapped on the protein kinase domains, Lys1 is positioned in the beginning of the 

protein kinase domain, Lys2 in the middle, Lys3 in the second quarter, and Lys4 in 

the third quarter of the protein kinase domain (Fig. 14A). Lys1 and Lys2 are also part 

of the conserved protein kinase motifs II and VIb, respectively (Hanks & Hunter, 



RESULTS: Chemoproteomics with AcATP 

33 
 

1995). These two Lys are also present in the Pto kinase, a tomato PK involved in 

immunity, for which a structure is available (2qkw) (Xing et al, 2007). Both Lys1 and 

Lys2 reside in the ATP binding pocket of the Pto kinase, with a distance of 7.43 and 

4.32 Å from the gamma phosphate of the bound ATP (Fig. 15A). The closer 

proximity of Lys2 seems reflected in the higher spectral count of Lys2-containing 

peptides, when compared to Lys1-containing peptides. Modelling of PTI1-1 indicates 

that Lys3 locates in an extended loop that might fold back on the ATP binding pocket 

(Fig. 15B) whereas modelling of VIK1 indicates that Lys4 locates still in close 

proximity to the gamma phosphate of bound ATP (Fig. 15C). 
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Figure 14. Protein kinases labelled with DTBAcATP. 

 (A) Protein domains are indicated as boxes, with protein kinase domains containing bars 
representing identified labelled peptides: containing Lys1 (blue), Lys2 (red), Lys3 (green), and Lys4 
(black). PKs that match the same peptides are indicated with gray accession numbers and 
summarized as At4g01370 +3 = At4g01370, At3g45640, At2g43790 and/or At1g01560; At3g20410 +1 
= At3g20410 and/or At1g50700; At3g17410 +1 = At3g17410 and/or At1g48210; At1g73660 +2 = 
At1g73660, At5g11850 and/or At1g18160. Common names of PKs are indicated, as well as 
corresponding spectral counts. (B) Classification of the Arabidopsis PKs according to the Arabidopsis 
thaliana Kinase Database (AthKD). The identified labelled PKs are indicated with red arrowheads. 
Accession numbers and common names are shown. Detected PKs represent eleven families that 
belong to ten groups and three classes. (C) Alignment of identified labelled peptides containing four 
different labelled Lys. Lys1 and Lys2 belong to PK motifs II and VIb, respectively. Colour coding is the 
same as in (A). Labelled Lys are in bold. 
 

 

 

To determine how common these labelled Lys residues are within the PK family of 

Arabidopsis, we counted these Lys in the alignments of each PK family. We found 

that Lys1 and Lys2 are conserved in 70% and 47% of the 1099 protein kinases, 

respectively. Lys3 in PTI kinases and Lys4 in VIK1 are less conserved among PKs 

(3.5% and 5.0%, respectively). Thus, the frequencies of the theoretically labelled Lys 

in PKs correspond to the frequencies of the different labelling sites detected in PKs. 

 

 

 

 

Figure 15. Models of labelled protein kinases show labelling sites close to ATP binding pocket. 

 (A) Lys1 and Lys2 are in the ATP binding pocket. The structure of the Pto protein kinase (2qkw) was 
aligned with a protein kinase carrying ATP (1atp). The labelled Lys (red) are close to the ATP (blue) in 
the Pto kinase (grey cartoon). (B) Model of PTI1-1 indicating the position of Lys3 (red). PTI1 1 was 
modelled on 3tl8-D using SWISS-MODEL. The positions of Lys1 (conserved) and Lys2 (Arg in PTI1-
1) are shown in green. Lys3 (red) locates in an extended loop that might fold back on the ATP binding 
pocket. (C) Model of VIK1 indicating the position of Lys4. VIK1 was modelled on 2eva using SWISS-
MODEL. Lys1 and Lys2 (conserved in VIK1) are indicated in green. Lys4 (red) is nearby the ATP 
binding pocket (blue). All models were visualized using PyMol and are shown from the same angle.  
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2.1.5c DTBAcATP also labels other ATP-binding proteins in their ATP-binding 
pocket 

When ranked according to peptide frequency, peptides from PKs are not among the 

top 20 most frequent peptides (Fig. 16). The most frequent peptide from a PK is that 

from LRR1 (At5g16590) on position 22 with 67 spectral counts (Fig. 16 and 

Supplemental Table S4). The most frequently detected labelled peptide is from 

phosphoglycerate kinase 1 (PGK1) with 968 spectral counts. PGK1 is also labelled 

 

 

Figure 16. Spectral count analysis of labelled peptides. 

Labelled peptides ranked on spectral count frequencies. Labelling sites in the ATP binding pocket of 
protein kinases and other nucleotide binding proteins are indicated in red and blue, respectively. The 
top 20 peptides with highest spectral counts are shown in the box, including their accession numbers 
and their common names, the peptide sequences (labelled Lys, bold) and their spectral counts. 
Distances of the nucleotide to the labelled Lys are indicated in Å and are derived from models of 
nucleotide-bound structures. NR, not reported nucleotide binding site. Ambiguous peptides are 
summarized as follows: At3g12780+1 = At3g12780 and/or At1g56190; At5g08670+2 = At5g08670, 
At5g08680 and/or At5g08690; At1g67090+3 = At1g67090, At5g38430, At5g38420, and/or 
At5g38410; At3g09840+2 = At3g09840, At3g53230, and/or At5g03340.  
 
 
 
at two additional Lys residues with 196 and 97 spectral counts, respectively. The 

second most frequent labelled peptide is from chloroplast ATP synthase subunit beta 

(ATPB) with 256 spectral counts. Other proteins in the top 20 are acetyl coenzyme A 

(CAC2), subunit B of Glu-tRNA aminotransferase (GATB), an ATP synthase (ATPS), 
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ribose-phosphate pyrophosphokinase 4 (PRS4), the small subunit of ribulose 

bisphosphate carboxylase (RBCS1A), cell division cycle 48 (CDC48), a GTP binding 

protein (At1g30580), and UMP/CMP kinase (PYR6) (Fig. 16). Most, but not all of 

these proteins were also detected abundantly using the gel-based approach (Fig. 9). 

Although these proteins are unrelated and catalyze very different reactions, ATP is a 

common substrate, consistent with the reactivity of the probe (Table 1). Protein 

structures of homolougs of PGK1, ATPB, CAC2, and PRS4 contain the labelled Lys 

in close proximity to the terminal phosphate of the bound nucleotide (Fig. 17). Note 

that CAC2 is a biotin binding protein, but the labelled Lys is close to the bound ADP 

(Fig. 17). This demonstrates that the labelling of these proteins is in accordance to 

the labelling mechanism of AcATP probes. However, not all proteins in this list are 

known to bind nucleotides. Most evident is the large subunit of Rubisco (RBCL), 

which is labelled at 13 different Lys that are scattered on the surface of the RBCL 

protein (Fig. 18). 

 

 
 

Figure 17. Structural models of four representative proteins PGK1, ATPB, CAC2, and PRS4 
showing their nucleotide binding activity. 

Structure models were extracted from Protein Data Bank (PDB;  
http://www.rcsb.org/pdb/home/home.do) database (PGK1, 2PAA; ATPB, 1H8E; CAC2, 3G8C; PRS4, 
2HCR). When bound to the proteins, the nucleotide phosphates are positioned in close proximity to 
the labelled Lys residues. The distances of the labelled Lys to the terminal phosphate of the bound 
nucleotide are indicated in Å. 
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Table 1. Biochemistry of reactions catalyzed by some of the most frequently labelled proteins. 

These data were extracted from the BRENDA database (http://www.brenda-
enzymes.info/index.php4). ATP (printed in bold), is a common substrate for these proteins. 
 
Accession Gene Name Spectra Biochemistry of Reaction

At1g56190 PGK1 968 ATP + 3-phospho-D-glycerate → ADP + 3-phospho-D-

glyceroyl phosphate 
Atcg00480 ATPB 256 ATP + H2O → ADP + phosphate

At5g35360 CAC2 185 ATP + biotin + apo-[acetyl-CoA:carbon dioxide ligase] → AMP 

+ diphosphate +[acetyl-CoA:carbon dioxide ligase] 
At1g48520 GATB 172 ATP + glutamine + tRNAGln → AMP + diphosphate + L-

glutaminyl-tRNAGln 
At5g08670 ATP synthase 165 ATP + H2O + H+/in → ADP + phosphate + H+/out 

At2g42910 PRS4 144 ATP + D-ribose 5-phosphate → AMP + 5-phospho-alpha-D-

ribose 1-diphosphate 
At3g09840 CDC48 122 ATP + H2O → ADP + phosphate

 

 

 

2.1.5d Potential of DTBAcATP labelling in Arabidopsis proteome  

We extended the analysis of labelling sites in homologous protein structures and 

found that 63 of the 242 labelled peptides result from labelling of a Lys in known 

nucleotide binding pockets at ≤10Å from the phosphate of the bound nucleotide 

(Fig.19, blue in Fig. 16). To estimate the potential of DTBAcATP labelling in the 

Arabidopsis proteome, we retrieved for each of the 63 labelled peptides the 

corresponding PFAM domain. A total of 26 different PFAM domains corresponding to 

13 different protein clans plus six uncategorized PFAM families were identified 

(Table 2). The Arabidopsis genome encodes for a total of 1683 proteins carrying 

these 26 different PFAM domains. The largest PFAM domains are those of PKs 

(PF00069 = 813 members and PF07714 = 388 members), followed by AAA 

ATPases (147 members). Since all these 1683 proteins are probably binding ATP 

and representatives were found to be labelled by DTBAcATP, we predict that the 

Arabidopsis proteome contain at least 1683 putative targets that could be labelled in 

the ATP binding pocket by DTBAcATP (Table 2). 
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Figure 18. Labelling sites of DTBAcATP on Rubisco. 

(A) There are 22 different labelled RBCL peptides identified, which correspond to at least 13 different 
labelled Lys (bold). Likewise, eight different RBCS-1A peptides correspond to at least 5 different 
labelling sites. Spectral counts for each labelled peptide are indicated on the right. (B-D) Crystal 
structure of the tetrameric Rubisco comlex of rice with NADPH (3axk). Labelled Lys identified in 
Arabidopsis are indicated in red and other Lys in blue. Shown are the front (B), back (C) and active 
site (D) of the tetramer containing two large subunits (RBCL, light and dark grey) and two small 
subunits (RBCS1, light green), bound to NADPH (sticks). Labelled K175 and K201 (red) are at 3.97 
and 6.46 Å from the phosphates of NADPH, respectively.  
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Figure 19. Analysis of labelling sites. 

(A) Selection pipeline showing the stepwise analysis and decision channel in determining the 
expected labelling of peptides. (B) Pie distribution diagram of the labelled peptides categorized into 
four groups: no structural information available; no nucleotide binding reported; and labelling detected 
at ≤10Å; or >10Å from the phosphate of the nucleotide.  
 
 
 
 
2.1.5e Preferential labelling of ATP-binding proteins  

To investigate if PKs and other ATP-binding proteins are preferentially labelled when 

compared to highly abundant proteins, we plotted the spectral counts of the labelled 

peptides against the spectral counts detected for these proteins in leaf proteomes of 

the AtProteome database (Baerenfaller et al, 2011) (Fig. 20A). We chose this 

approach to ensure the inclusion of low abundance PKs, which were detected by 

Baerenfaller and colleagues with over 1300 MS runs (Baerenfaller et al, 2008; 

Baerenfaller et al, 2011). The leaf proteomes that they used are virtually the same as 

we used for our studies. Interestingly, this splits the labelled peptides into three 

groups: peptides from PKs cluster in group 1 at low protein levels and medium 

labelling. Peptides from other ATP-binding proteins are in group 2 and show medium 

protein levels and medium to high labelling. Finally, the third major group contains 

proteins with high protein levels and low to medium labelling (Fig. 20A). Importantly, 

the vast majority of these proteins were not labelled in ATP binding pockets. This 

illustrates that DTBAcATP shows a high selectivity for labelling ATP-binding proteins 

because only highly abundant proteins are labelled outside known ATP binding 

pockets. 
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Table 2. Clan and domain classification of peptides labelled at the ATP-binding pockets of 
ATP-binding proteins. PFAM domains were identified for the 63 labelling sites located at ≤10Å to the 
bound nucleotide. The number of identified labelled peptides and the number of sequence 
occurrences in the Arabidopsis thaliana genome are indicated in the table. PDB and BRENDA 
databases were searched to assign whether (+) or not (-) members of the PFAM were reported to 
bind nucleotides. GO codes assign molecular functions for each PFAM and confirm nucleotide 
binding activity. 

Clan PFAM no. PFAM name No. of 
labelled 
peptides

No. of 
sequences 
in 
Arabidopsis

Nucleotide 
binding 

Gene 
Ontology 

CL0016 PF01633.14 Choline_kinase 1 6 + GO:0016773

PF00069.19 Pkinase 11 813 + GO:0005524; 
GO:0004672; 
GO:0006468

PF07714.1 Pkinase_Tyr 10 388 + GO:0004672; 
GO:0006468

CL0021 PF08206.5 OB_RNB 1 ND ND  
CL0023 PF00004.23 AAA 3 147 + GO:0005524

PF00406.16 ADK 1 15 + GO:0005524; 
GO:0019205

PF00006.19 ATP-synt_ab 8 11 + GO:0015991; 
GO:0016820

PF01926.17 MMR_HSR1 1 32 + GO:0005525

CL0039 PF00582.20 Usp 1 53 - GO:0006950

CL0040 PF03099.13 BPL_LplA_LipB 1 10 - GO:0003824

CL0063 PF02826.13 2-Hacid_dh_C 1 11 + GO:0016616; 
GO:0048037

CL0099 PF00171.1 Aldedh 3 23 - GO:0016491

CL0110 PF00483.17 NTP_transferase 1 17 + GO:0016779

CL0137 PF03767.8 Acid_phosphat_B 1 12 + GO:0003993

CL0179 PF08442.4 ATP-grasp_2 2 4 + GO:0005524

PF02786.11 CPSase_L_D2 3 7 + GO:0005524; 
GO:0003824

PF01071.13 GARS_A 1 1 ND  
CL0254 PF00676.14 E1_dh 1 15 - GO:0016624

CL0266 PF00169.23 PH 1 26 - GO:0005515

CL0270 PF00180.14 Iso_dh 1 15 ND  
No_clan PF00571.22 CBS 1 38 - GO:0005515

PF02934.9 GatB_N 2 4 + GO:0016874

PF00334.13 NDK 1 7 + GO:0005524; 
GO:0004550

PF00162.13 PGK 4 5 + GO:0004618

PF00156.21 Pribosyltran 1 22 + GO:0009116

PF01259.12 SAICAR_synt 1 1 + GO:0004639

  Total 63 1683   
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Interestingly, PKs were detected at a moderate labelling/protein ratio compared to 

labelling events in ATP binding pockets of non-PKs [0.5±0.57(n=15) vs. 

2.86±0.68(n=34)] (Fig. 20B). These data suggest that PKs have a lower affinity to 

ATP or that part of the PK pool cannot be labelled. To investigate this in more detail, 

we extracted spectral counts for 494 PKs from leaf proteomes of the AtProteome 

database (Baerenfaller et al, 2008). Interestingly, of the top-20 PKs that are most 

frequently detected in leaf proteomes, only eight were detected upon labelling (Fig. 

21), and these data show no correlation between spectral counts in the AtProteome 

database and spectral count frequency upon DTBAcATP labelling. Furthermore, 

inspection of PK sequences revealed that most of the undetected labelled peptides 

fall in the MW range that should have been detected in our assay. These data re-

enforce the idea that not all kinases can be labelled in a given extract, possibly 

because they do not bind ATP. However, such data should be interpreted with 

extreme caution since different peptides have different ionization potential and the 

absence of a labelled peptide does not mean that the protein is not labelled. 

 

 

Figure 20. Correlation analysis between ATP binding activity and protein abundance. 

 (A) Correlations between ATP binding activity and protein abundance splits the labelled peptides into 
three groups. The frequency of spectral counts of the labelled peptides is plotted against the spectral 
counts of the corresponding proteins detected in leaf proteomes (extracted from the AtProteome 
database). For ambiguous labelled peptides, the protein with the highest spectral count was selected 
from the AtProteome database. Note that for some proteins (e.g. RBCL) multiple labelled peptides 
were detected. Group numbers 1-3 are explained in the main text. (B) Average spectral count ratio 
between labelling (by DTBAcATP) and abundance (extracted from AtProteome database) for the 
three groups of labelled proteins. Error bars represent SEM for n proteins, indicated below the bars. 
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Figure 21. Not all protein kinases detected in leaf proteomes are detected upon AcATP 
labelling. 

Spectral counts for 494 protein kinases were extracted from the AtProteome database. The 20 PKs 
with highest spectral counts in leaf proteomes are shown in blue. The number of spectral counts of 
detected DTBAcATP-labelled peptides is shown in red.   
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2.2 Targeted MS/MS analysis of DTBAcATP-labelled peptides 

AcATP labelling proved to be a powerful tool in detecting ATP-binding activities of 

ATP-binding proteins including kinases, as illustrated above (Chapter 2.1). We 

hypothesize that labelling not only reflects the abundance of proteins with ATP 

activity, but also reflects the active state (active or inactive) of ATP-binding proteins. 

ATP binding is dynamic, and is dependent on the cellular state. The inactive Insulin 

receptor kinase (IRK) for example, has a collapsed activation loop conformation so 

that the ATP nucleotide cannot bind the P-loop and the peptide substrate cannot 

bind the active site. However, upon activation by phosphorylation of the three 

tyrosine residues in the activation loop, the activation loop opens up allowing ATP 

and substrates to bind (Huse & Kuriyan, 2002). We therefore reason that active 

kinases bind ATP more effectively than inactive kinases, and that the turnover of 

ATP to ADP, and thus continuous binding to new ATPs, is more rapid. To test this 

hypothesis, we study the activation of PKs upon external stimuli, together with 

targeted MS/MS analysis to boost the detection of PKs. In targeted MS/MS, the 

sensitivity of detecting a particular ion is increased tremendously by using an 

inclusion list coupled to retention times and searches for marker ions in the MS2 

mode. Patricelli and colleagues (2011) for example, have increased their detection of 

PKs to about 160 PKs per cell line using targeted MS/MS analysis.  

 

Here we apply this strategy to detect plant kinases that show differential labelling 

upon external stimulus. To induce a kinase signaling pathway leading to immunity, 

we used flg22, a 22-amino acid peptide present in bacterial flagellin. Flg22 binds to 

the RLK Flagellin Sensitive 2 (FLS2) on the plant plasma membrane. This induces 

the heterodimerization of FLS2 with the LRR-RLK Brassinosteroid Insensitive 1-

Associated Receptor Kinase (BAK1), which triggers their reciprocal phosphorylation. 

The activated FLS2-BAK1 complex then phosphorylates the bound receptor-like 

cytoplasmic kinase (RLCK) Botrytis-induced Kinase 1 (BIK1), which results in 

transphosphorylation of FLS2-BAK1 and further phosphorylation of BIK1 and its 

concomitant release from the complex (Gao & Xiang, 2008; Newman et al, 2013). 

These signaling events further proceed to the activation of MAP kinase kinase 

kinase MEKK1, which activates MAP kinase kinases MKK1/2/4/5, which then 

activates MAP kinases MPK3/4/6/11 (Fig. 22A-B) (Asai et al, 2002; Bethke et al, 
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2012; Gao & Xiang, 2008). This cascade of tightly regulated events happens almost 

instantly upon elicitation. It has been reported that FLS2 and BAK1 activation 

happens as early as 5 seconds (Schulze et al, 2010), and MPK3/6 activation within 

5-30 minutes (Bethke et al, 2012; Galletti et al, 2011) after elicitation.  

 

In this study, Arabidopsis cell cultures were treated with or without flg22 for 15 

minutes, when MPKs are expected to be activated. After treatment, the medium was 

removed and the cells were immediately frozen in liquid nitrogen. Cell cultures were 

used to detect more kinases as they have less Rubisco proteins than Arabidopsis 

plants or seedlings. Our previous experiment suggests that the abundant Rubisco in 

the samples has reduced the detection of low abundant kinases. To confirm the 

activation of MPK3 and MPK6 upon flg22 elicitation, we detected phosphorylated 

MPK3/6 on a protein blot using phosphopeptide antibodies. As expected, these 

MPKs are differentially phosphorylated in the flg22-treated sample when compared 

to the control (Fig. 22C). DTBAcATP labelling was done in duplicate for each 

sample, followed by trypsin digestion, and purification of desthiobiotinylated peptides 

using streptavidin beads. In the targeted MS/MS approach, the samples were first 

run on the MS to detect as many labelled PK peptides as possible, adding labelled 

peptides from other ATP-binding proteins to fill an inclusion list of 250 peptides. The 

peptides were then quantified in a second run using the inclusion list. Supplementary 

Table 5 shows the results of the targeted MS/MS analysis.   
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Figure 22. Elicitation with flg22 in Arabidopsis activates many kinases. 

(A) In the absence of flg22, BIK1 associates with inactive FLS2 and BAK1. (B) Upon flg22 elicitation, 
flg22 binds and activates FLS2. The activated FLS2 then forms a complex with BAK1, and induces 
phosphorylation of BAK1. The activated BAK1 phosphorylates BIK1, which in turn 
transphosphorylates the FLS2–BAK1 complex, which may further phosphorylate BIK1. The activated 
BIK1 is released from the FLS2-BAK1 complex to activate downstream signalling cascade. The 
downstream MAPK cascade involves MAPK kinase kinases (MEKKs) which activate downstream 
MAPK kinases (MKKs), which then activate downstream MAP kinases (MPKs). The activated MPKs 
then phosphorylate downstream substrates that regulate gene expression. There have been four 
MPKs shown to be activated by flg22. These are MPK3 and MPK6 which are activated by 
MKK4/MKK5 (Asai et al, 2002), MPK4 which are activated by MKK1/MKK2 (Gao et al, 2008), and 
MPK11 (Bethke et al, 2012). Red circle represents flg22 and red star indicates phosphorylation. 
MAPKs in bold are used as a reference in the targeted MS/MS analysis. (C) Western blot analysis of 
Arabidopsis cell culture treated with or without flg22 for 15 minutes, using anti-phospho p44/p42 
MAPK antibody. 
 

 

 

2.2.1 Targeted MS/MS analysis increased the detection of protein kinases 

MS analysis, summarized in Supplementary Table 5, reveals that the targeted 

approach have doubled the identified kinase peptides to 46 as compared to the data-

dependent approach used previously (Supplementary Table 4), which displayed 24 

kinase peptides. Among the 22 PKs that were newly detected in the targeted 

approach are EDR1 (ENHANCED DISEASE RESISTANCE 1), lectin kinases 

AT1G15530, AT5G60320 and AT3G45430, Ser/Thr PK AT1G20650, CPK19 
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(CALMODULIN-DOMAIN PROTEIN KINASE 9), TMK1 (TRANSMEMBRANE 

KINASE 1), LRR proteins AT1G68400 and AT2G24230, CBL-interacting protein 

kinases CIPK10 and CIPK12,  ABC1 protein AT4G24810, and uncharacterized PKs 

AT1G70520, AT2G07180, AT2G17700, AT3G46920, AT3G58640, AT4G10730, 

AT5G14720, AT5G18500, AT5G18610, and AT5G54590 (Supplementary Table 5).  

Moreover, all the 46 PK peptides identified in the targeted MS/MS analysis are 

mapped to 5 different positions in their protein kinase domains.  Among these, 12 

are classified as Lys1, 25 Lys2, three Lys3, one Lys4, three are other than Lys1-4 

within the kinase domain, and two are Lys within the activation loop.  

(Supplementary Table 5). Having been mapped to the kinase domains explains the 

labelling of these peptides.  

 

Similar to the previous experiment, apart from detecting PKs, we also detected other 

ATP-binding proteins. The majority of these other ATP-binding proteins have been 

previously detected, with only some newly labelled proteins. However, there are less 

identified labelled peptides from ATP-binding proteins other than PKs in the targeted 

approach (93 peptides) compared to the data-dependent approach (218 peptides) 

(Supplementary Tables 5 and 4, respectively). In the data-dependent approach, 

there were five and 13 labelling sites in RBCS1A and RBCL, respectively (Fig. 18), 

but only one labelled peptide for each of these proteins were detected in the targeted 

approach (Supplementary Table 5). Alignment of Arabidopsis RBCS1A and RBCL 

proteins with that of the structure of rice Rubisco (PDB entry: 3axk), shows that 

these labelled peptides are on the surface of the protein, at 28 and 38.7 Å 

respectively, from the bound NADPH (data not shown). Obviously, the reduced 

labelling sites observed in the targeted MS/MS experiment is probably due to the use 

of Arabidopsis cell cultures which contains less RBCL protein when compared to 

Arabidopsis seedlings.  
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2.2.2 DTBAcATP labelling is not affected by the phosphorylation state of 
proteins 

In this study, all quantitation was performed by extracting characteristic fragment ion 

signals from targeted MS/MS spectra and comparing signals in control and treated 

samples. Two technical replicates were done, and for each peptide quantitated, the 

change in MS signal for the treated samples relative to the MS signal for the control 

samples is expressed as fold change. The ratio between flg22 and control samples 

and their P values were also calculated (Supplementary Table 5). Supplementary 

Table 5 shows that the vast majority of the ion intensities of the identified peptides in 

the targeted MS/MS analysis are very similar in both control and flg22 samples, 

indicating that these biological samples are very similar. To identify changes 

between the control and flg22 samples, a volcano plot was generated, which plots 

significance against fold-change in the dataset.  Significance thresholds P=0.05 and 

P=0.01 were indicated as dotted lines and the fold-change threshold is indicated as 

grey area. Labelled peptides deemed to be significantly labelled lies outside these 

threshold marks. Volcano plot analysis reveals that there are no significant 

differences between the control and flg22 treatments. Unfortunately, the high 

similarity also extends to proteins like MPK3 and MPK6, where we expected 

differential labelling because these proteins are differentially phosphorylated upon 

flg22 elicitation compared to the control, based on the protein blot using 

phosphopeptide antibodies (Fig. 22C). Among the other kinases known to be 

involved in flg22 signalling (Fig. 22B), only MPK4 and MPK11 were detected, 

however not significantly changed between samples. These data tell that changes in 

the phosphorylation state of the MPK proteins do not significantly affect AcATP 

labelling. 
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Figure 23. Phosphorylation state of proteins do not significantly affect DTBAcATP labelling. 

Volcano plot analysis of peak intensities of labelled peptides identified by targeted MS/MS analysis. 
The graph plots the ratio of flg22 treatment over control against the logarithm of P-values. Gray area 
indicates threshold ratio between flg22 and control, while dotted lines indicate P=0.05 and P=0.01 
significance thresholds. Proteins with peptide intensities above the set threshold values are 
highlighted, as well as detected proteins known to be involved in flg22 signalling. MPK3/4/6/11 
represents the labelled peptide DLKPSNLLLNANCDLK (Supplementary Table 5) which is an 
ambiguous peptide shared by the four MAPKs. A second labelled peptide for MPK4 is detected and 
indicated by an arrow. Abbreviations:  MPK3/4/6/11, Mitogen Activated Protein Kinase 3/4/6/11; AAH, 
Adenine nucleotide alpha hydrolases-like superfamily protein; TMK1, TRANSMEMBRANE KINASE 
1;GR1, Glutathione-disulfide Reductase 1; PUR7 or PURIN7, 
Phosphoribosylaminoimidazolesuccinocarboxamide Synthase 7. 
 
 

 

On the other hand, AcATP labelling of Glutathione-disulfide Reductase 1 (GR1), 

Transmembrane kinase 1 (TMK1), and Adenine nucleotide alpha hydrolases-like 

superfamily protein (AAH) were significantly increased with 2-, 3- and 2.5-fold, 

respectively, upon flg22 treatment, whereas 

Phosphoribosylaminoimidazolesuccinocarboxamide Synthase 7 (PUR7) labelling is 

3-fold reduced upon flg22 treatment. AAH may be involved in stress responses 

(Interpro electronic annotation, http://www.ebi.ac.uk/interpro/). TMK1 is an RLK, with 

an extracellular LRR domain and a serine-threonine autophosphorylation activity 

(Chang et al, 1992; Schaller & Bleecker, 1993). Moreover, GR1 may be involved in 

the photoperiod-influenced responses in Arabidopsis plants subjected to ozone such 

as lesion formation, SA accumulation, and Pathogenesis-related 1 (PR1) gene 

induction (Dghim et al, 2013). And PUR7 is expressed in mitotic tissues in 
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Arabidopsis and encodes for 5’-phosphoribosyl-4-(N-succinocarboxamide)-5-

aminoimidazole synthetase involved in purine biosynthesis (Senecoff et al, 1996). 

Differential labelling suggests that these four proteins may be involved in flg22-

influenced responses in plant immunity, and could be further investigated. 

 

 

2.2.3 DTBAcATP labels both MPK3/6 phosphomimic and phosphomutants 

We next investigated the rather puzzling finding that phosphorylation of proteins 

does not affect AcATP labelling. We reasoned that active kinases have a higher ATP 

turnover rate when compared to inactive kinases because they phosphorylate 

proteins, and intuitively, we expected that active kinases are more likely to react with 

DTBAcATP than kinases that do not hydrolyse the bound ATP. However, during our 

ex vivo labelling, the absence of differential MPK labelling might be because we 

remove the ATP from both active and inactive kinases by gel filtration prior to 

labelling. We therefore designed an experiment where both ATP and a substrate are 

present during labelling with DTBAcATP. We focused this case study on MPK3 and 

MPK6 because they are well studied MPKs, and that expression constructs have 

been previously made and reported (Sorensson et al, 2012; Ulm et al, 2002). 

 

The GST-MPK3 and GST-MPK6 were expressed in BL21 E. coli strain by IPTG 

induction, and bacterial cells were lysed. We first tested DTBAcATP labelling of 

lysates and results show the expected stronger labelling in induced samples, when 

compared to uninduced samples (data not shown). However, to better assess the 

labelling potential of differentially active MPK3 and MPK6, we applied 

phosphomimetics where an amino acid replacement chemically mimics a 

phosphorylated residue or unphosphorylated residue resulting to an active or 

inactive proteins, respectively. We generated different protein variants of GST-MPK3 

and GST-MPK6 by site-directed mutagenesis (Fig. 24A). Phosphomimic and 

phosphomutant versions of MPK3 and MPK6 were generated by exchanging the two 

phosphorylation sites threonine (T) and tyrosine (Y) to aspartate (D) and alanine (A), 

respectively (Beckers et al, 2009; Matsuoka et al, 2002; Yang et al, 2001). In 

addition, kinase inactive GST-MPK fusion proteins were generated by exchanging 

the conserved lysine (K) residue in the ATP binding domains to alanine (A) (Cho et 
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al, 2008; Zhang & Liu, 2001). This conserved lysine is also targeted by AcATP (Fig. 

1B).  

 

The GST-MPK fusion proteins were then expressed in BL21 E. coli strain. 

Coomassie brilliant blue staining of proteins shows induction of expression of the 

GST-MPK3 and GST-MPK6 proteins and their mutated versions with IPTG as 

compared to no IPTG controls (Fig. 24B). DTBAcATP labelling of the GST-MPK 

fusion proteins was detected using streptavidin-HRP (Fig. 24C). To quantify labelling 

differences between samples, signal intensities were measured using ImageJ and 

the ratio between streptavidin-HRP and coomasie signals were calculated, 

subtracting the background signal derived from the no IPTG samples from the 

signals of IPTG-treated samples and these were plotted in a graph (Fig. 24C). Signal 

analysis shows no significant labelling differences between MPK3 WT, MPK3 

phosphomimic T196D T198D, and MPK3 phosphomutant T196A T198A, as well as 

in MPK6 WT compared to MPK6 phosphomimic T221D T223D (Fig. 24C). More 

importantly, there is reduction of labelling of MPK3 and MPK6 Lys mutants 

compared to the WT controls (Fig. 24C). This confirms that AcATP labelling requires 

the conserved Lys in the ATP binding domain of kinases and that AcATP labelling is 

insensitive to the phosphorylation state of proteins. 
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Figure 24. DTBAcATP labelling of MPK3/6 wildtype and mutant proteins 

(A) Site-directed mutagenesis generating different mutant variants of MPK3 (red) and MPK6 (blue) 
proteins in IPTG-inducible pGEX-3X cloning and expression vector.  MPK3 or MPK6 is fused to a 
GST tag (yellow) in their N-terminus behind a Tac promoter.The proteins are expressed in BL21 E. 
coli.  The mutated residues are in bold letters. (B) Expression and induction of GST-MPK3/6 fusion 
proteins with and without 0.4 mM IPTG for three hours at 28 ºC. (C) Labelling of GST-MPK3 and 
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GST-MPK6 proteins with DTBAcATPfor one hour.  Labelled proteins were detected in a protein blot 
using streptavidin-HRP. Coomassie brilliant blue (CBB) shows loading control. Signal intensities on 
the blot and CBB loading control were quantified using ImageJ and the ratios between streptavidin-
HRP signals and CBB signals were indicated below each gel lane. Calculated signal intensities of no 
IPTG control samples were subtracted from IPTG-treated samples, and were plotted in a graph. NPC 
indicates no-probe-control. 
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2.3 Putative receptor shedding of RLK902 

We noticed from our AcGTP labelling experiments (data not shown) that the 

experimental MW of RLK902 (At3g17840) does not correspond to its theoretical MW 

(70.4 kDa). This observation is similar to what has been observed previously in 

AcATP labelling experiments (Fig. 11 of Chapter 2.1). Like At3g02880 and 

At5g16590, RLK902 is a member of the LRR-RLK family of proteins, which carry an 

extracellular LRR domain and an intracellular kinase domain (Fig. 25). Noteworthy, 

these three LRR-RLKs are close homologues all belonging to LRR III subfamily (Fig. 

26, red arrowheads; Arabidopsis thaliana kinase database, 

http://bioinformatics.cau.edu.cn/athKD/index.htm; iTAK - Plant Transcription factor & 

Protein Kinase Identifier and Classifier, http://bioinfo.bti.cornell.edu/cgi-

bin/itak/index.cgi). From our MS analyses, peptide coverage suggests that the 

labelled protein is a full kinase domain lacking the LRR domain. Interestingly, the 

size of the kinase domain together with the transmembrane domain and the 

intracellular juxtamembrane domain coincides with the observed 42 kDa MW of the 

protein (Fig. 25). This suggests that putative receptor shedding may be a common 

phenomenon for this LRR-RLK subfamily. 

 
 
 

 

 

Figure 25. Putative receptor shedding of RLK902. 

RLK902 carries a signal peptide (SP), an N-terminal LRR-flanking domain with a conserved Cys pair; 
five LRRs (red), an extracellular juxtamembrane domain with a conserved Cys pair (yellow); a 
transmembrane domain (TM), an intracellular juxtamembrane domain (JM); a protein kinase domain 
(blue) and a C-terminal tail. The extracellular domain carries five putative N-glycosylation sites 
(green). Identified peptides and spectral counts are indicated with black bars. The theoretical MW is 
calculated from the plain amino acid sequence for the cytoplasmic domain, and the full mature protein 
without SP. 
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Figure 26. Phylogenetic tree of LRR-RLKs in Arabidopsis.  

Protein sequences of kinases belonging to groups 1.12 and 1.13 were retrieved from the Arabidopsis 
thaliana kinase database (http://bioinformatics.cau.edu.cn/athKD/index.htm) and phylogenetic tree 
was constructed with ClustalX2. Red arrowheads mark the three LRR-RLKs observed to undergo 
putative receptor shedding events in our assays. 
 

 

Receptor shedding refers to the release of extracellular domains of transmembrane 

proteins or receptor proteins like cytokines and growth factors. It is an essential post-

translational modification reported in animals and humans, commonly called 

ectodomain shedding. Proteolytic enzymes belonging to the ADAM (A Disintegrin 

and Metalloproteinase) family are responsible for the shedding of a number of 

transmembrane proteins. Ectodomain shedding activates the transmembrane 

proteins and is implicated in development, homeostasis, and pathological conditions 

and inflammation (Horiuchi, 2013; Weber & Saftig, 2012; Xu & Derynck, 2010). 

 

Receptor shedding has not been well studied in plants. We therefore investigated 

possible receptor shedding events of the three LRR-RLKs mentioned above. We 

focused our study of receptor shedding on RLK902, an RLK capable of 

autophosphorylation, expressed strongly in root meristem, lateral root primordia, 

stipules and floral organ abscission zones, and whose expression is positively 

regulated by wounding and negatively regulated by SA and Pseudomonas syringae 

(Tarutani et al, 2004a). RLK902 and its closest homologue RKL1, interacts with the 

uncharacterized proteins At5g05190, At3g27210 and At3g17950 in yeast two-hybrid 

assays (Tarutani et al, 2004b). 

 

 

2.3.1 RLK902 accumulates in plasma membranes of N. benthamiana leaves 

The full length RLK902 gene was cloned into a binary vector behind a 35S promoter 

for overexpression in N. benthamiana leaves by agroinfiltration (Fig. 27A). The 

RLK902 was tagged with a 4x Myc tag at the N-terminus and a YFP tag at the C-

terminus to allow us to monitor both N-terminal and C-terminal processing products. 

The Myc tag used contains an intron to prevent expression of RLK902 in 

Agrobacterium (Fig. 27A). Transient expression of RLK902 in N. benthamiana by 

agroinfiltration was analyzed by fluorescence microscopy and western blot. At four 
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days post infiltration (dpi), YFP fluorescence was observed in the plasma membrane 

of leaf epidermal cells (Fig. 27B). This expression pattern is distinct from the 

cytoplasmic-YFP used as a control, where cytoplasmic strands were observed 

through the vacuole (Fig. 27B), typical to cytoplasmic protein expression. Co-

localization studies using a membrane marker protein remorin (Bozkurt et al, 2014) 

fused to RFP further confirmed the localization of RLK902-YFP in the plasma 

membrane (Fig. 27B).  

 

To further assess the localization of RLK902, we isolated membranes from leaf 

extracts by ultracentrifugation, followed by western blotting against anti-cMyc and 

anti-GFP antibodies (Fig. 28A). The full length RLK902 protein was detected in the 

membrane fraction (pellet fraction 1) and not in the soluble fraction using both anti-

cMyc and anti-GFP antibodies (Fig. 28B, black arrows). This confirms the above 

fluorescence microscopy findings. Addition of 1% NP40 to the membrane fraction, 

coupled with vigorous vortexing failed to solubilize the RLK902 signal from the 

membrane (Fig. 28B, pellet fraction 2). However, adding 1% SDS to the NP40-

resistant pellet fraction 2 solubilized RLK902 (Fig. 28B, soluble fraction 3). We 

therefore conclude that RLK902 is in an NP40-resistant membrane fraction.  
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Figure 27. Cloning and expression of RLK902 in N. benthamiana leaves by agroinfiltration. 

(A) RLK902 was cloned in a binary expression vector behind the 35S promoter, fused to a Myc tag at 
the N-terminal and YFP at the C-terminal of the mature protein. The signal peptide (SP) is from the 
tobacco PR1a gene. Agrobacterium carrying the construct, together with Agrobacterium carrying 
silencing construct P19, was agroinfiltrated into N. benthamiana leaves using a needleless syringe. 
(B) At 3-6 dpi, leaves were subjected to fluorescence microscopy to assess the subcellular 
localizations of RLK902. Cytoplasmic-YFP and the membrane marker protein remorin fused to RFP 
were used as controls. White arrows indicate cytoplasmic strands. 
 
 

 

 

 

 

Figure 28. Subcellular fractionation reveals that RLK902 is in an NP40 resistant membrane 
fraction. 

(A) Steps in membrane fractionation experiment. Membrane fraction (pellet fraction 1) was isolated by 
ultracentrifugation of an extract from agroinfiltrated leaves at 2 dpi. The pellet was treated with NP40 
and SDS to dissolve the membrane. Soluble and pellet (membrane) fractions 1, 2 and 3 used for 
western blot analysis in (B) are also indicated in the different steps. The membrane was enriched 
particularly in the pellet fraction 1. (B) Western blot analysis of protein samples taken from each step 
during membrane fractionation, using anti-cMyc and anti-GFP antibodies. Input 1 is soluble fraction 
after step 3 in (A). Input 2 is pellet fraction 1 after adding 1% NP40. Arrow heads indicate the full 
length RLK902 protein. CBB shows coomasie stained gel.  
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2.3.2 RLK902 is processed in vivo  

We next followed the expression of RLK902 in N. benthamiana leaves at later time 

points by western blot and found that RLK902 is processed in vivo (Fig. 29A). To 

circumvent possible ex vivo processing or degradation of the full length protein, 

extraction of protein from fresh leaf samples expressing RLK902 was done directly 

into denaturing gel loading buffer. In the time course experiment, there is no 

detectable RLK902 at one dpi, and a full length 150 kDa protein detected at two dpi. 

Processing of full length RLK902 into cleavage products was observed beginning at 

three dpi and it is even more pronounced at four and five dpi (Fig. 29A). Cleavage 

products detected with either anti-cMyc or anti-GFP antibodies were mapped into the 

full length protein according to their MWs (Fig. 29C). Signal A represents the 150 

kDa full length protein, without the signal peptide (SP), containing both Myc and YFP 

tags, detected in both anti-cMyc and anti-GFP blots (Fig. 29A-B). Signal B is a 130 

kDa without Myc tag and must therefore have resulted from N-terminal processing. 

Signals C, D, and E at 90, 70, and 50 kDa, respectively, are terminally truncated in 

the LRR domain, but all carry the intact kinase domain and the C-terminal YFP tag 

(Fig. 29A-B). Signal F is 50 kDa and is detected by anti-cMyc antibody indicating that 

this protein carries only the N-terminal LRR domain plus the Myc tag (Fig. 29C).  

 

 

2.3.3 Deglycosylation confirms molecular weight of RLK902 fragments 

Signals A, B, C and F have higher apparent MW than predicted from their calculated 

MW. This could be due to glycosylation at the five putative N-glycosylation sites 

(NxS/T) in the ectodomain of RLK902 (Fig. 25). To confirm MW of the non-

glycosylated proteins, samples were treated with Peptide-N-Glycosidase F 

(PNGaseF), which remove glycans from Asp residues (Maley et al, 1989). Western 

blot analysis shows a 20-30 kDa shift in the migration of signals A, B, C and F which 

carries the extracellular domain or a part of it, and no shift was observed for signals 

D and E, which do not carry N-glycosylation sites (Fig. 29B-C).  
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Figure 29. In vivo processing of RLK902. 

(A) RLK902 were transiently expressed in N. benthamiana leaves by agroinfiltration and proteome 
from agroinfiltrated leaf disks at one to five dpi were extracted in gel loading buffer and separated on 
acrylamide gels for western blot analysis using anti-cMyc and anti-GFP antibodies. The different 
cleavage products observed over time are marked with letters A-F corresponding to the drawings of 
presumed RLK902 fragments in (C). (B) Leaf extracts at two dpi from RLK902-agroinfiltrated leaves, 
treated with or without PNGaseF, were analyzed by western blot using anti-cMyc and anti-GFP 
antibodies. RLK902 degradation products are marked as in (A). Apostrophes after the letter mark a 
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shift in the MW of the protein band upon PNGaseF treatment. (C) Schematic diagram showing 
RLK902 cleavage products and their corresponding experimental MWs with or without PNGaseF 
treatment and theoretical MWs in kDa. 
 
 
 
 
2.3.4 RLK902 in vivo processing is inhibited by E64d and TLCK 

We next tested several protease inhibitors for the inhibition of RLK902 processing. 

Agroinfiltrated leaves were injected at four dpi with cell permeable protease inhibitors 

and samples were collected after six hours. We hypothesized that at four dpi, 

inhibition of processing should cause accumulation of the full length RLK902 protein. 

Interestingly, E64d treatment caused a strong signal of the full length protein and 

also signals B, C and D but signal E did not accumulate (Fig. 30). In addition, 

MG132, a potent, reversible, cell permeable proteasome inhibitor, and the protease 

inhibitor cocktail caused weak signals of the full length protein (Fig. 30). In contrast, 

no full length RLK902 protein was detected upon pre-treatment with soybean kunitz, 

epoxomicin, phenylmethylsulfonyl fluoride (PMSF), marimastat and phenantroline 

(Fig. 30). For most of these, signals C, D, and E were detected except for 

phenantroline, where only signal E is detected. 

 

Figure 30. In vivo processing of RLK902 is inhibited by E64d. 

RLK902 was transiently expressed in N. benthamiana by agroinfiltration. At four dpi when no full 
length protein is detected, protease inhibitors (100 µM) were infiltrated in duplicate. Six hours later, 
total proteomes were extracted and analyzed by western blotting. Letter annotations on the right are 
the same as in Fig. 29. DMSO is used as a negative control for inhibitors, and control means no 
infiltration done. 
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These data suggests that E64d may inhibit the protease that cleaves RLK902. We 

next tested known protease inhibitors Tosyllysine chloromethyl ketone hydrochloride 

(TLCK) and Odanacatib in our assays. TLCK is a serine protease inhibitor and 

blocks degradation of endocytosed proteins like epidermal growth factor (EGF) 

(Schultz et al., 1996). While, odanacatib, a cathepsin K inhibitor, blocks bone 

turnover and transcytosis, and is used as drug to prevent osteoporosis (Leung et al, 

2011). Results show that TLCK and E64d inhibit processing of RLK902 at six hours 

after infiltration (Fig. 31A). However, unlike E64d, TLCK did not block the 

accumulation of product E (Fig. 31A). In contrast, odanacatib did not cause 

accumulation of full length RLK902, even at earlier time points (1, 2 and 3 hrs) after 

infiltration (data not shown). In addition, fluorescence microscopy studies show 

accumulation of endosomal-like structures in both E64d and TLCK infiltrated 

samples, as compared to the DMSO control (Fig. 31B). These results suggest that 

E64d and TLCK inhibit processing of RLK902 by blocking its vacuolar degradation 

pathway.  
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Figure 31. E64d and TLCK prevent degradation of RLK902 possibly by inhibiting the vacuolar 
degradation pathway. 

(A) Testing of protease inhibitors TLCK and Odanacatib in causing accumulation of RLK902 in N. 
benthamiana leaves. After four days of transiently expressing RLK902 into N. benthamiana leaves by 
agroinfiltration, the protease inhibitors were syringe-infiltrated into leaf samples, collected after six 
hours, and analyzed by western blot using anti-cMyc and anti-GFP antibodies. Letter annotations are 
the same in Fig. 29. (B) Fluorescence microscopy of leaf samples infiltrated with E64d and TLCK.  
White arrows indicate endosomal bodies. 
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Plasma membrane receptors are involved in various environmental and 

developmental responses in plants. These protein receptors pass through 

subcellular trafficking pathways from their synthesis in endoplasmic reticulum, to 

their processing and maturation in golgi complexes, and finally to their recruitment 

and employment in plasma membranes. From the plasma membranes, receptors 

like FLS2, undergo endocytosis for either recycling back to plasma membrane or 

targeting to late endosomes and subsequent degradation in vacuoles (Robatzek, 

2007). 

 

Interestingly, E64d can prevent vacuolar degradation of proteins in the vacuole by 

blocking trafficking of endocytic vesicles (Moriyasu & Ohsumi, 1996; Yano et al, 

2004). We therefore speculated that inhibition of processing of RLK902 may be due 

to inhibition of endocytotic internalization. Hence, we tested several inhibitors of 

vacuolar targeting pathways such as Brefeldin A (BFA), Wortmannin, Tyrphostin 

A23, Concanamycin A, Latrunculin B, and Cantharidin (Fig. 32). BFA inhibits protein 

transport from the ER to golgi by releasing cytosolic coat proteins β-COP (Klausner 

et al, 1992). Wortmannin is an inhibitor of phosphatidyl-inositol 3-kinase and disrupts 

presynaptic actin causing inhibition of vesicle recycling (Richards et al, 2004). In 

addition, Tyrphostin A23 is a protein tyrosine kinase inhibitor and blocks the 

interaction of the YXXΦ internalization motif in transmembrane proteins and the µ2 

subunit of AP-2 adaptor complex involved in clathrin-mediated endocytosis (Banbury 

et al, 2003). Concanamycin A, also called Folimycin, inhibits acidification of 

organelles involved intracellular trafficking like lysosomes and golgi complex by 

inhibiting vacuolar type H+-ATPases (Muroi et al, 1993; Palokangas et al, 1994). 

Latrunculin B prevents polymerization of actin required for receptor-mediated 

endocytosis (Lamaze et al, 1997; Moscatelli et al, 2012). Furthermore, cantharidin is 

a protein phosphatase 2A inhibitor and blocks internalization of the plasma 

membrane receptor kinase FLS2 (Serrano et al, 2007). However, results show that 

none of targeting inhibitors affected RLK902 processing (Fig. 32). In addition, we 

tested targeting inhibitors at earlier time points (1, 2, and 3 hrs) but the same results 

as Fig. 32 were observed (data not shown).  
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Figure 32. Trafficking inhibitors do not prevent degradation of RLK902 in N. benthamiana 
leaves. 

Screening of trafficking inhibitors implicated in vacuolar degradation pathway of membrane proteins.  
Among screened were Brefeldin A (BFA), Wortmannin (Wort), Tyrphostin A23 (TyrA23), 
Concanamycin A (ConA), Latrunculin B (LatB) and Cantharidin (Cant). After days of transiently 
expressing RLK902 into N. benthamiana leaves by agroinfiltration, vacuolar degradation inhibitors 
were syringe-infiltrated into leaf samples, collected after six hours, and analyzed by western blot using 
anti-cMyc and anti-GFP antibodies. Letter annotations are the same in Fig. 29.  
 
 
 
 
2.3.5 Mutations in the kinase domain do not affect processing of RLK902 

To test if mutations on the conserved residues of the RLK902 kinase domain will 

stabilize RLK902 and prevent its processing, mutations of the conserved lysines 

(K393 and K492) and the conserved aspartate (D508) were mutated into alanine (A; 

Fig. 33A). K393 and K492 in the catalytic domain of the kinase are in close proximity 

to a bound ATP and is involved in the phosphotransfer reaction important for 

phosphorylation events (Carrera et al, 1993), while D508 is in the activating DFG 

(Asp-Phe-Gly) motif and is involved in the chelating and positioning the Mg ion in the 

active site of the kinase (Zheng et al, 1993). Mutating these conserved residues 

renders the kinase inactive (Carrera et al, 1993; Kornev et al, 2006). The RLK902 
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mutants generated were expressed by agroinfiltration in N. benthamiana leaves and 

samples were collected at two, three, four and five dpi. Western blot analysis shows 

RLK902 processing for all mutants, comparable to wildtype (WT) (Fig. 33B). 

Moreover, only the K393A mutant was detected as full length protein at five dpi. 

Intermediate products C, D, E and F were also detected for the K393A mutant. No 

full length protein was detected from the K492A and D508A mutants, but 

intermediates E were detected in K492A, and intermediates C, D, and E were 

detected in D508A (Fig 33B). Interestingly, the full length proteins, as well as 

intermediates B, C, D, and E, from all three RLK902 mutants accumulated upon 

E64d inhibition at four dpi. These data suggests that the conserved lysine and 

aspartate residues do not affect processing of RLK902, but a protease that is 

sensitive to E64d inhibition.  
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Figure 33. Cloning and expression of RLK902 kinase domain mutants.  

(A) Site-directed mutagenesis of the two conserved lysines (K393 and K492) and the conserved 
aspartate (D508) generated three different mutant versions of RLK902. These residues are 
exchanged to alanine (A), as indicated in bold letters. (B) Expression and western blot analysis of the 
RLK902 mutants expressed in N. benthamiana upon agroinfiltration. Samples were taken at two to 
five dpi. In addition, E64d was also infiltrated at four dpi and leaf samples were collected after six 
hours of infiltration, for western blot experiments. Letter annotations are the same in Fig. 29. 
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CHAPTER 3:  DISCUSSION 

 

3.1 Chemoproteomics with AcATP 

3.1.1 Characterization of AcATP labelling 

Four different AcATP probes that differ in their reporter tags were used in labelling 

Arabidopsis leaf or cell culture extracts. The different reporter tags require different 

detection methodologies, e.g. protein blotting using streptavidin-HRP for BAcATP 

and DTBAcATP, and fluorescence scanning for bodipy-AcATP, while the ≡AcATP 

needs to be conjugated with biotin or rhodamine, or both, using click chemistry. The 

different AcATP probes gave similar labelling profiles, although labelling intensities 

vary, which may be due to the sensitivity of detection methods and/or to the labelling 

capability of each probe type. The four probes not only differ in their reporter tags but 

also in the lengths of their linkers. The bodipy-AcATP has the shortest linker 

containing two carbons, followed by DTBAcATP, alkyne-AcATP and then BAcATP 

with four, eight and ten carbons in the linker, respectively. The differences in their 

linker length were reflected in the labelling capacity of the probes where the shorter 

linker gave less labelling when compared to those with longer linkers. This is 

especially remarkable in the stronger labelling of Arabidopsis cell culture extracts 

using BAcATP when compared to DTBAcATP, particularly the high MW proteins 

(above 55 kDa; Fig. 1C, right panel). Noteworthy, the resulting labelling profile using 

bodipy-AcATP is the weakest among the four probes, while BAcATP and alkyne-

AcATP having the longest linkers gave the strongest labelling intensities (Fig. 1C, left 

panel). These data suggest that longer linkers provides more access of probes to 

allosteric ATP binding pockets of ATP-binding proteins. 

 

We have optimized AcATP labelling of Arabidopsis leaf extracts by testing different 

factors that affect labelling. We found that labelling greatly depends on pH. This is 

because pH strongly affects conformation of proteins, by protonation (or 

deprotonation) of important residues, affecting their stability and (enzymatic) activity 

(Di Russo et al, 2012). In fact, many proteins can act as intracellular pH sensors, 

with activities and ligand-binding capabilities changing upon small shift in their 

environmental pH (Srivastava et al, 2007). Moreover, strong acidic or basic pH 
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denatures proteins and many proteins have a neutral physiological pH (pH 7-7.5), 

where they are mostly active. We observed that no labelling was detected at acidic 

pH and strong labelling at neutral to basic pH. All subsequent labelling experiments 

were done at pH 7.5. In addition, divalent metal cations Mg2+, Ca2+ and Mn2+ 

increased labelling, while chelating agents EDTA and EGTA decreased labelling. 

This is because divalent metal cations stabilizes the binding of ATP in the ATP 

binding loop of protein kinases and ATP-binding proteins which allows 

phosphorylation to occur (Adams & Taylor, 1993; Gonzalez et al, 2006; Saylor et al, 

1998). Chelating agents, on the other hand, sequesters divalent metal ions (Aylward 

& Findlay, 2002) making them unavailable for binding to protein kinases and ATP-

binding proteins. We also observed that labelling is suppressed with ATP-like 

nucleotides such as GTP, CTP, TTP and NADP. These nucleotides share similar 

structural features to ATP, hence, they compete for binding to the ATP binding loop 

of ATP-binding proteins. We also discovered that AcATP probes do not label in vivo, 

and can only be used in in vitro labelling experiments. This is because ATP has high 

negative charge which makes it difficult to pass through the cell membrane (Stryer et 

al, 2007). All these findings are in accordance to what is expected of the AcATP 

probes. 

 

Searches for differential AcATP labelling in different proteomes seem to be 

promising, even in low resolution gel-based assays. Differentials were found for H2O2 

and heat treated Arabidopsis cell cultures, and in bacteria-induced accumulation of 

ATP-binding proteins in N. benthamiana apoplastic fluids (Fig. 9A, B, D). In contrast, 

treatments with flg22, BTH, and PtoDC3000∆hQ did not result to differential AcATP 

labelling in extracts from Arabidopsis cell cultures and leaves (Fig. 9B, C), 

Purification of AcATP-labelled proteins prior to gel-based detection also did not 

display differential AcATP labelling of flg22 treated Arabidopsis leaf or cell culture 

extracts (Fig. 9C, E). This is because virtually all the >1200 protein kinases bind 

ATP, and labelled proteins can not be effectively resolved in a gel-based assay. 

Moreover, differentials may not be detected when the labelled kinase(s) of interest 

have a very low abundance. Patricelli and colleagues (2007) pointed out that only 

methods of extremely high resolution such as quantitative proteomics by MS are 

suitable for analysis of native kinases with AcATP probes. One effective method of 

increasing detection of differential AcATP labelling is coupling the gel-based 
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resolution of proteins with LC-MS/MS analysis of gel bands cut from the gel 

(illustrated in Chapter 2.1.4). And even more powerful method is the bead-based 

enrichment of labelled proteins, followed by Xsite where labelling sites are 

quantitated by MS (illustrated in Chapter 2.1.5). Comparisons of these methods are 

discussed below. 

 

3.1.2 Identification of AcATP targets in Arabidopsis 

This part of the thesis is published in:  Villamor JG, Kaschani F, Colby T, Oeljeklaus J, Zhao D, Kaiser 
M, Patricelli MP, and van der Hoorn RA (2013) Profiling protein kinases and other ATP-binding 
proteins in Arabidopsis using acyl-ATP probes. Mol Cell Proteomics. 12. 2481-2496 
 

We report the first in-depth analysis of targets of an AcATP probe in a plant 

proteome. By comparing a gel-based identification platform of labelled proteins with 

a gel-free platform for labelled peptides, we demonstrate the advantages and 

limitations offered by these complementary approaches. The analysis of labelling 

sites using the protein database shows that AcATP probes target predominantly but 

not exclusively the ATP binding pockets of a broad range of protein kinases and 

other unrelated ATP-binding proteins. The labelled proteins include a few well-

characterized ATP-binding proteins, and many ATP-binding proteins that have not 

been studied so far. 

 

3.1.2a Gel-based vs Gel-free approach  

The data generated by the gel-based and gel-free platforms are complementary and 

each platform has its advantages and disadvantages. Although many proteins were 

detected using both approaches, several were detected by only one approach and 

not the other, and vice versa. HSP60 and HSP70, for example, were only detected 

using the in-gel approach, whereas CDC48 and MPKs were only detected by the 

gel-free approach. Gel-based identification resulted in the detection of 112 proteins 

of which only nine were protein kinases. Although the vast majority of the detected 

proteins were absent in the no-probe control, the labelling site could only be 

determined for nine proteins, based on the detection of labelled peptides. This 

number would even be lower in case we did not realize that the biotin is somehow 

oxidized during this procedure. By contrast, sequencing the labelled peptides using 

Xsite/KiNativ by the gel-free approach identified more protein kinases and also 
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determines labelling sites in each of the labelled proteins. Although this gel-free 

approach seems more powerful, it can not discriminate between proteins if the 

labelled peptide is identical. For example, the labelled peptides do not discriminate 

between CPK9 or CPK11 because it is identical, whereas both proteins were 

distinguished using the gel-based approach. The gel-free approach also does not 

provide the MW of the labelled protein, and this can be very important information. 

For example, we noticed that two labelled LRR-RLKs do not migrate at the expected 

67-68 kDa, but at 40 kDa, indicating that they have lost the extracellular LRR 

domain. At this stage we can not exclude that this processing occurred upon protein 

extraction. It is interesting to point out that XA21, an LRR-RLK from rice, is 

proteolytically cleaved during signalling to release a cytosolic protein kinase domain 

that migrates to the nucleus to phosphorylate transcription factors (Park & Ronald, 

2012). A similar receptor cleavage mechanism might be at work for the two LRR-

RLKs detected on our study. 

 

3.1.2b Detection of an oxidized biotin moiety 

Our analysis of biotinylated proteins by in-gel digest and LC-MS/MS revealed no 

peptides that were labelled with biotin-acyl (BAc), but several peptides that were 

labelled with OBAc, the oxidized version of BAc. To our knowledge, this type of 

modified biotin has not been reported before during proteomics and this discovery 

may have important implications for the detection of other modifications containing 

biotin. We speculate that the oxygen is located on the sulphur of biotin, resulting in a 

biotin sulfoxide (Melville, 1954). This modification was also observed e.g. during the 

synthesis of oligonucleotides (Upadhya et al, 2005), and would not occur on 

desthiobiotin. At this stage we do not know when during the in-gel procedure the 

oxidation occurs. Searches on the occurrence of oxidized biotin on proteins labelled 

with other probes will tell how common this modification is in the future. 

 

3.1.2c How to detect more protein kinases? 

We detected 24 labelled peptides from protein kinases, but there are 1099 protein 

kinases encoded by the Arabidopsis genome (The Arabidopsis Genome Initiative, 

2000). That we do not detect more protein kinases has several reasons. First, most 

of the protein kinases are not expressed in tissues that we used for the labelling 
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experiments. Second, peptides from some protein kinases are too small or too large 

to be detected with the chosen MS settings. However, our in silico analysis indicates 

that the majority (95%) of the theoretically labelled peptides of Arabidopsis protein 

kinases are in the range of 5-30 amino acids. Third, some protein kinases can not be 

discriminated based on the sequence of the labelled peptides. Nonetheless, our in 

silico analysis showed that 64% of the Arabidopsis protein kinases contain a putative 

labelled lysine in a peptide sequence that is unique in the Arabidopsis proteome (Fig. 

34). Fourth, mass spectrometry is not sensitive enough to detect labelled peptides 

from protein kinases in an unbiased mode. Indeed, inclusion lists coupled to 

retention times, and searches for marker ions in the MS2 mode can tremendously 

increase the number of identified protein kinases. The added search modes have 

increased the number of robustly detected protein kinases to 160 protein kinases per 

cell line (Patricelli et al, 2011). Thus, we expect that we will be able to detect 

labelling of more protein kinases from a single proteome with the implementation of 

empirical searches (shown in Chapter 2.2 of this thesis). The wider range of 

detection will increase the power of protein kinase profiling in plants tremendously. 

 

 

Figure 34. In silico analysis of resolving potential of labelled peptides. 

Sequences for each subfamily in the protein kinase database were retrieved and aligned using 
MultiAlign. The labelled peptide that was experimentally identified was highlighted in the alignment 
and the orthologus Lys residues were indicated. In silico tryptic digest (no missed cleavages except 
the orthologous lysine and if the Lys/Arg is followed by Pro), resulted in theoretically labelled peptides. 
The selected peptides were ranked on sequence and redundancy for each peptide sequence was 
counted (n proteins encode the same peptide). Ile/Leu residues were not discriminated in this 
analysis. Protein kinases with a unique labelled lysine (n=1) were counted and plotted (red). The other 
protein kinases contain ambiguous peptides (n>1). The same analysis was done for Lys2, Lys3 and 
Lys4. 820 protein kinases have at least one of the four lysine residues identified in the alignment, and 
705 of these proteases have a unique peptide sequence containing either Lys1, Lys2, Lys3 or Lys4.  
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3.1.2d Profiling Arabidopsis protein kinases 

We have detected 24 labelled peptides that originate from protein kinases. Analysis 

of the labelling sites in these protein kinases showed that AcATP probes react with 

lysines that reside at four distinct positions. Lys1 and Lys2 reside in the ATP binding 

pocket in motifs II and VIb, respectively, and were previously described to be 

labelled by AcATP probes (Patricelli et al, 2007). Labelling at Lys3 and Lys4 was 

detected in PTI1-like kinases and MAP3K VIK, respectively, and was not 

characterized before. Although crystal structures are not available for 

representatives of these protein kinase subfamilies, modelling indicates that regions 

carrying Lys3 and Lys4 might indeed be able to fold back on the ATP binding pocket. 

The reactivity of Lys3 and Lys4 indicates that, even though these lysines are poorly 

conserved, they might be in close proximity to ATP and might play important roles in 

PTI1- and VIK-like protein kinases. The absence of any other labelled peptide from 

the detected protein kinases illustrates the remarkable selectivity of the AcATP probe 

to target the ATP-binding pocket of these proteins. 

 

The labelled protein kinases are remarkably diverse and contain representatives of 

all major classes of Arabidopsis protein kinases. The list includes RLKs, Pelle-like 

kinases, MAP kinases, MAP3K kinases, calcium-dependent kinases, PTI-like 

kinases, and a proline-rich, extension-like receptor kinase PERK1. The diversity of 

the protein kinases illustrates the wide range of protein kinases that can be labelled 

with AcATP, and is consistent with the fact that all protein kinases (by definition) bind 

ATP and most of them carry lysine residues to stabilize the phosphate. The data are 

also consistent with studies of AcATP probes on animal proteomes, where >75% of 

the human protein kinases have been detected (Patricelli et al, 2007). Thus, AcATP 

probes have the remarkable potential to label nearly all protein kinases not only of 

mammals but also other organisms. The detection of several RLKs with relatively 

high spectral counts is noteworthy because these proteins are thought to be low in 

abundance and we did not enrich for membrane proteins. 

  

Functions have been described for several of the detected protein kinases. MPK3, 4, 

6 and 11 are involved in immune signalling, and control gene expression through 

WRKY transcription factors (Bethke et al, 2012; Li et al, 2012; Rasmussen et al, 
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2012). PBS1 is involved in perception of bacterial pathogens secreting the AvrPphB 

effector (DeYoung et al, 2012; Shao et al, 2003). AvrPphB cleaves PBS1 and this 

activates resistance protein RPS5. Calcium-dependent kinase CPK3 is involved in 

stomatal closure, herbivore defence, salt stress acclimation and is a positive 

regulator of sphingolipid-induced cell death (Lachaud et al, 2013; Mehlmer et al, 

2010; Mori et al, 2006). PTI1-2 interacts with oxidative stress-response protein 

kinase OXI1 and integrates phosphatidic acid signalling with reactive oxygen 

signalling (Anthony et al, 2006). VIK is a MAP3K involved in the uptake of glucose 

into the vacuole (Wingenter et al, 2011), whereas AT6 is a MAP3K that acts as a 

negative regulator of salt tolerance (Gao & Xiang, 2008). PERK1 is thought to be 

involved in sensing cell wall stress during wounding and pathogen infection (Haffani 

et al, 2006; Silva & Goring, 2002). The detection of these characterized protein 

kinases by AcATP labelling is consistent with their presence and activities in the 

Arabidopsis rosette used for our studies. The other two-third of the detected protein 

kinases have only been described by transcript levels and phylogeny. Our data 

demonstrate that these uncharacterized protein kinases are present and able to bind 

ATP. 

 

3.1.2e Labelling of other ATP-binding proteins 

Previous studies with AcATP probes have been mostly focused on the labelling of 

protein kinases. In this study we also examined the labelling of proteins other than 

protein kinases. An in-depth analysis of the labelled peptides revealed that AcATP 

probes label an astonishing diversity of protein families. Most of the labelled proteins 

are able to bind nucleotides, and analysis of structural data indicates that AcATP 

probes label these nucleotide-binding proteins predominantly inside ATP binding 

pockets. The structural diversity of the nucleotide binding proteins is remarkably 

diverse, illustrated the fact that they belong to 13 different protein clans in the PFAM 

database (Finn et al, 2010). 

 

Several different ATP-binding proteins have been identified with high spectral count 

frequencies. Phosphoglycerate kinase (PGK1) is the top hit among the labelled 

proteins. PGK degrades ATP during glycolysis (Plaxton, 1996). GATB is an Asn/Gln-

tRNA amidotransferase involved in the transamidation of misacylated Asp-tRNA or 
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Glu-tRNA forming a correctly charged Asn-tRNA or Gln-tRNA, a reaction that 

requires ATP (Ibba et al, 2000; Pujol et al, 2008). CDC48 encodes for cell division 

cycle protein-48 and is important in cell division, expansion and differentiation. 

Arabidopsis plants carrying mutations in CDC48-encoding genes show impaired 

seedling development and defective pollen and embryo development (Park et al, 

2008). CDC48 is an AAA-type ATPase, and belongs to a large superfamily 

containing a highly conserved triple-A domain which binds and hydrolyses ATP 

(Ogura & Wilkinson, 2001). CAC2 is the biotin carboxylase subunit of the 

heterodimeric, biotin-containing enzyme ACCase (chloroplastic acetyl-coenzyme A 

carboxylase). ACCase is involved in the synthesis of fatty acids in Arabidopsis (Sun 

et al, 1997) and uses ATP for the conjugation of a carboxylate containing molecule 

to an amino or thiol group-containing molecule (Galperin & Koonin, 1997). CAC2 

contains a phosphate-binding loop and a Mg2+-binding site and has two alpha-beta 

subdomains that grasp the ATP molecule. This ‘ATP-grasp’ domain is common to a 

superfamily that also contains D-alanine:D-alanine ligase (DD-ligase), glutathione 

synthetase (GSHase) and carbamoyl phosphate synthase. PYR6 is a uridine 5´-

monophosphate (UMP)/cytidine 5´-monophosphate (CMP) kinase, which converts 

UMP/CMPs to uridine and cytidine diphosphates, respectively. PYR6 orthologs in 

bacteria and yeast are required for cellular proliferation and RNA and protein 

synthesis (Liljelund & Lacroute, 1986; Yamanaka et al, 1992). PYR6 has also been 

detected in the mature pollen of Arabidopsis, consistent to its role in cell proliferation 

and division (Holmes-Davis et al, 2005). Taken together, these five structurally and 

functionally diverse examples illustrate the broad range and relevance of ATP-

binding enzymes that we can monitor using AcATP probes. 

 

3.1.2f Labelling outside known ATP binding pockets  

Our analysis of labelling sites also showed that a large number of labelling sites are 

not located in known nucleotide binding pockets. It is possible that several of these 

labelling sites are nucleotide binding sites that have not yet been described. 

However, the correlation between spectral counts with transcript levels indicates that 

labelling outside known nucleotide binding pockets is typically detected for highly 

abundant proteins, such as Rubisco. An obvious explanation for the labelling of 

abundant proteins outside nucleotide binding sites would be that solvent-exposed 
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lysine residues have a low basal reactivity towards AcATP and that this causes 

aspecific labelling of highly abundant proteins. Strangely enough, however, AcATP 

labelling of abundant proteins nevertheless requires divalent ions and can be 

competed with nucleotides that do not carry an acyl reactive group. These data 

support the exciting idea that ATP-competable AcATP labelling sites might identify 

novel nucleotide binding sites in proteins. Interestingly, a recent crystal structure of 

rice Rubisco with NADPH revealed that two of the labelled lysines are in close 

proximity to the phosphate in NADPH (supplemental Fig. S4D) (Matsumura et al, 

2012). Thus, labelling outside known nucleotide binding sites is an interesting topic 

for further studies. 

 

Our above study shows that AcATP labelling is a powerful way to monitor ATP 

binding activities in native proteomes. Besides the majority of the 1099 protein 

kinases of Arabidopsis, AcATP can potentially label another 482 ATP-binding 

proteins, representing another eleven different protein families. Although AcATP 

probes also label outside known nucleotide binding sites, the preferential labelling of 

nucleotide-binding proteins in ATP binding pockets demonstrates the high selectivity 

of the AcATP probe. With these findings, we find it interesting to study the changes 

of ATP binding activities of proteins upon an external stimulus. Our data suggest that 

labelling does not only reflect the abundance of the ATP-binding proteins, but is also 

affected by the ATP binding activity of the protein. This theory is further investigated 

in the next chapter, where we applied targeted MS/MS analysis to monitor changes 

of ATP binding activities upon a stimulus. 
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3.2 Targeted MS/MS analysis of DTBAcATP-labelled peptides 

Our targeted MS/MS analysis had successfully increased the detection of protein 

kinases when compared to the data-dependent approach we used in the previous 

chapter, from 24 protein kinases to 46. The first detected 24 protein kinases were 

also detected in the targeted approach demonstrating the reproducibility of our 

methods. The tremendous increase in our detection method is due to increased 

sensitivity of the MS by incorporating an inclusion list. In data-dependent MS 

analysis, the selection of a particular precursor ion is dependent on its signal 

intensity in the MS scan, generating a bias against low abundant protein because of 

oversampling of the high intensity precursor ions (Picotti et al, 2007; Schmidt et al, 

2009). This is particularly limiting in high complexity protein samples that we use in 

our studies. However, in targeted approach, also called directed MS analysis, 

preselecting ions for MS analysis not only increases sensitivity of MS in detecting 

these ions, but also prevents redundancy and oversampling of high intensity ions, 

and increases reproducibility of quantitation of data sets in two or more sample runs 

(Schiess et al, 2009; Schmidt et al, 2009). Nonetheless, the success of proteomic 

profiling by targeted MS/MS depends on the accuracy and reproducibility of 

detecting precursor ion retention times and mass-to-charge (m/z). This requires 

several number of runs of the same and/or different sample, collecting as much 

features as possible until no new target ion masses are identified. In the same 

manner, one can use an exclusion list, in lieu, or in addition to inclusion list, for 

added power in MS detection (Wang & Li, 2008).  

 

We applied targeted MS/MS to samples where activation of proteins was stimulated 

by flg22 elicitation resulting in the activation of a kinase signalling pathway. 

Curiously, our data suggests that DTBAcATP labelling is not affected by the 

phosphorylation state of proteins. There is no differential MPK3/6 labelling between 

the control and the flg22-treated sample, whereas MPK3/6 is phosphorylated upon 

flg22 treatment, when compared to the control, where MPK3/6 is not phosphorylated 

(Fig. 22C). Phosphorylation of MPK3/6 makes the protein kinase active (Asai et al, 

2002). Although this result may have reflected the true character of the probe, 

meaning that protein kinase labeling is not activity-based, this may also be because 
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we have saturated the sample with AcATP, so that inactive kinases were labelled to 

the same extent as the active kinases. Note that irreversible probes like AcATP are 

greatly affected by proteome concentration, probe concentration and length of 

labelling time during labelling. Here, we labelled 6 mg/ml of Arabidopsis cell culture 

extract with 5 µM DTBAcATP for 10 minutes. Previous labelling experiments 

suggested that these conditions could not have saturated the system with labelling. 

However, this may not be the case when investigating the active state of protein 

kinases especially when labelling with BAcATP occurs as fast as one minute (data 

not shown). Further investigation of AcATP labelling on differentially activated 

MPK3/6 in a time course experiment can be done in the future.  

 

Unexpectedly, MS results also show that the protein kinases FLS2, BAK1, BIK1, 

MEKK1, and MKK1,2,4 and 5, which are activated during flg22 elicitation, were not 

detected in our analysis. That they were not detected in our MS scans could be 

because of a number of reasons. First, the abundance of these proteins may be too 

low for detection, even though our MS analysis is directed to detecting these low 

abundant protein kinases. Second, the activation of these protein kinases is very 

transient, occurring only in seconds up to a few minutes. The flg22-induced signaling 

cascade occurs almost instantly upon elicitation. FLS2 and BAK1 activation occurs 

as early as five seconds (Schulze et al, 2010), and MPK3/6 activation is within five to 

30 minutes (Bethke et al, 2012; Galletti et al, 2011) after elicitation. In addition, FLS2 

and BAK1 receptor kinases are quickly degraded upon activation (Geldner & 

Robatzek, 2008; Robatzek, 2007; Robatzek et al, 2006). Since we sampled the 

flg22-treated Arabidopsis cell cultures at 15 minutes after elicitation, we may have 

missed the narrow time window where FLS2 and BAK1 are active and available for 

ATP binding. Third, these proteins may have been labelled, but the labelled peptides 

are too small or too large to be detected in the MS scans. However, in silico analysis 

of labelling sites suggests otherwise. All eight of these kinases carry both Lys1 and 

Lys2 labelling sites in tryptic peptides that should be easily detected in MS if labelled, 

except for the Lys2 (5.1 kDa) and Lys1 (4.7 kDa) labelling sites for FLS2 and 

MEKK1, respectively, which may be too large for efficient MS detection. To detect 

these protein kinases, subcellular fractionation could have been done to enrich for 

receptor kinases in membrane fractions. 
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A more in-depth investigation of differentially activated MPK3/6 was pursued by 

labelling GST-MPK3/6 fusion proteins produced in bacteria. Our gel-based 

DTBAcATP labelling experiment shows no significant labelling differences between 

WT, phosphomimic (MPK3 T196D T198D; MPK6 T221D T223D) and 

phosphomutant (MPK3 T196A T198A) GST-MPK fusion proteins (Fig. 24C). This is 

rather intriguing because we expected more labelling in the active phosphomimic 

MPK3/6 mutant, and less labelling in the inactive MPK3/6 phosphomutant, when 

compared to the WT MPK3/6. Nonetheless, Lys (K) mutants (MPK3 K166A; MPK6 

K191A) show weak or no labelling compared to WT.  

 

The invariant Lys residues in the ATP binding loop of protein kinases have been 

implicated in anchoring ATP. However, it has been suggested that these highly 

conserved Lysines are also involved in the phosphotransfer reaction of the γ-

phosphate of ATP, rather than in positioning ATP in the ATP binding pocket (Carrera 

et al, 1993). Site-directed mutagenesis of these Lys residues renders the kinase 

inactive (Kamps & Sefton, 1986; Knighton et al, 1991). A conserved Asp (D) residue 

in the Asp-Phe-Gly (DFG) motif is important for the catalytic activity of the kinase and 

in chelating the MgATP, hence positioning the ATP in its place (Knighton et al, 

1991). This indicates that the conserved Lys and Asp are in close proximity to the γ-

phosphate of ATP. Phosphorylation of protein kinase A (PKA) rearranges the 

magnesium-binding loop of the protein, positioning the DFG motif such that Asp can 

interact with the bound ATP (Beckers et al, 2009; Kornev et al, 2006). This suggests 

that the conserved Lys, in both active and inactive protein kinases, and the 

conserved Asp, in active protein kinases, play major roles in securing the ATP. In our 

assay, the Lys mutant MPKs were weakly labelled with DTBAcATP when compared 

to WT. This is in accordance to the labelling mechanism of AcATP, that is, the 

conserved Lysines stabilize the acyl group of AcATP, and are labelled by the probe 

(Fig. 1). However this does not explain our observation that the phosphomimic and 

phosphomutant MPKs were equally (or more strongly) labelled with DTBAcATP 

when compared to WT. In fact, many reports indicate that the dual phosphorylation 

of the conserved Thr and Tyr in MPKs enhance ATP and substrate binding affinities. 

As in the case of extracellular signal-regulated kinase 2 (ERK2), 

monophosphorylation of Tyr185 configures the active site for binding ATP, while the 

subsequent phosphorylation of Thr183 enhances myelin basic protein (MBP) 
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substrate binding (Lew, 2003). In addition, active protein kinases have generally 

higher affinity to ATP and peptide substrates compared to their inactive 

unphosphorylated conformations (Knight & Shokat, 2005; Wodicka et al, 2010) and 

this helped shape the growing numbers of type I protein kinase inhibitors used as 

drugs in cancer therapy, for example. Type I inhibitors of protein kinases target the 

ATP-binding loop of protein kinases, and are ATP competable. However and 

noteworthy, these type I inhibitors do not discriminate between active and inactive 

conformations of kinases, that is, they bind both indiscriminately (Liu & Gray, 2006). 

This may reflect on DTBAcATP labelling of both phosphomimic and phosphomutant 

MPKs in our assays, suggesting AcATP labelling is insensitive to the 

phosphorylation state of proteins. Since both type I inhibitors of protein kinases and 

DTBAcATP target the ATP binding loop of protein kinases, we infer that both have a 

similar binding mechanism. This somehow indicates that DTBAcATP, like type I 

inhibitors, also binds both active and inactive protein kinase conformations 

indiscriminately. We can not completely rule out, however, that other factors, besides 

the conformational changes resulting in the activation or deactivation of protein 

kinases, also influence ATP binding affinities. Eathiraj and colleagues reported non-

conserved residues around the ATP binding loop that contribute to the overall 

polarity of the loop, which affects the accessibility of the pocket to nucleotides and/or 

inhibitors (Eathiraj et al, 2011). Moreover, ATP binding affinities to the ATP binding 

pockets of protein kinases is sensitive to small perturbations on assay conditions, in 

the type and amount of substrate used, and in divalent cations used (Knight & 

Shokat, 2005). All these factors are to be considered in examining protein kinase 

binding affinities to ligands such as AcATP. In this regard, further investigations of 

AcATP labelling of differentially activated MPKs in various labelling conditions should 

be done. One can test different labelling buffers, varying amounts of ATP and probe, 

and different type and amount of substrates and divalent cations. 

 

In summary, our results confirm that AcATP labelling requires the conserved Lys in 

the ATP binding domain of MPKs. In addition, AcATP labelling of MPKs is not 

dependent on phosphorylation state. Taken together, the above results suggest that 

AcATP labelling reports on the availability of ATP-binding sites, rather than the 

activation state of protein kinases. This implicates that also inactive kinases bind 

ATP. Furthermore, DTBAcATP labelling of Asp mutants of GST-MPK3/6 fusion 
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proteins could be investigated to further characterize ATP binding and AcATP 

labelling in differentially activated Arabidopsis MPKs, since the conserved Asp in the 

DFG motif is implicated in binding and stabilizing ATP. 
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3.3 Putative receptor shedding of RLK902 

Plants and animals respond to a variety of environmental stimuli including 

pathogens, through receptor-like kinases (RLK). Arabidopsis encodes for over 600 

RLKs, which reflects the importance of these proteins in the overall development and 

health of the plant (The Arabidopsis kinase database 

http://bioinformatics.cau.edu.cn/athKD/index.htm). RLKs usually contain an N-

terminal signal peptide, an extracellular domain containing a putative ligand-binding 

site, a single transmembrane spanning domain, and a cytoplasmic protein kinase 

catalytic domain (Shiu & Bleecker, 2001). In plants, the largest RLK class is the 

LRR-RLKs, to which RLK902 belongs. LRR-RLKs carry characteristic leucine-rich 

repeats (LRRs) of 20-30 amino acids spanning the extracellular domain (Kajava, 

1998).  

RLKs are grouped according to the presence (RD) or absence (non-RD) of Arg (R) 

residue before the catalytic Asp (D) residue in the subdomain VI of the kinase. RD 

kinases are activated through autophosphorylation of their activation loop while non-

RD kinases do not undergo autophosphorylation, but require another protein for their 

activation and regulation (Dardick & Ronald, 2006). Some of non-RD kinases are 

constitutively active (Johnson et al, 1996). Most RLKs belong to the RD class. RLKs 

that act as pattern-recognition receptors (PRRs) involved in plant immunity, e.g. 

Arabidopsis flagellin sensitive 2 (FLS2) and rice Xanthomonas resistance 21 (XA21), 

are categorized as non-RD and their activation indeed involves other kinases. 

RLK902, which lacks the conserved Arg and Asp residues in subdomain VI, does not 

belong to either RD or non-RD, but rather to the alternative catalytic function (ACF) 

class (Dardick & Ronald, 2006). Although RLK902 carries the other two conserved 

catalytic residues namely Lys in subdomain II and Asp of the DFG motif in 

subdomain VII (Dardick & Ronald, 2006), this indicates that functional regulation of 

RLK902 is distinct. RLK902 is a phosphoprotein that is phosphorylated on at least 

four Ser residues - three in juxtamembrane region and one in the less conserved 

region between subdomains VII and VIII in the kinase domain (Fig. 35) (Nuhse et al, 

2004) (http://phosphat.uni-hohenheim.de/).  
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Figure 35. Phosphorylation sites in RLK902. 

The two phosphorylation hotspots in RLK902 are found in the less conserved regions of the protein: 
(1) the juxtamembrane domain, and (2) the region between kinase subdomains VII and VIII. 
Underlined residues represent ambiguous phosphorylation sites. Residues in bold are 
phosphorylation sites experimentally validated and detected in phosphoproteomics analysis (Nuehse 
et al, 2004; http://phosphat.uni-hohenheim.de/). 
 
 
 

Cell surface-localized RLKs in animals and plants are responsible to relay 

information from the cell´s outside environment by extracellularly binding to ligands 

and transmitting these signals intracellularly, or extracellularly onto neighbouring 

cells. An example is the Arabidopsis FLS2, which binds to bacterial flagellin-derived 

elicitor flg22. The binding of FLS2 to flg22 triggers its interaction with BAK1, resulting 

to a series of phosphorylation events activating an MPK (Asai et al, 2002; Bethke et 

al, 2012; Gao et al, 2008) and CPK (Boudsocq et al, 2010) signalling pathways in the 

cytoplasm. These signalling events lead to the activation and expression regulation 

of downstream target genes in the nucleus.  

In animals, signal perception and transduction involves ectodomain shedding of 

extracellular domain of several protein receptors. Ectodomain shedding is a function 

of proteolytic enzymes called sheddases (Chow & Fernandez-Patron, 2007), which 

results to the release of soluble ligand-binding domains that can bind and activate 

proteins in the cell or in neighbouring cells, thereby controlling expression of 

downstream genes (Arribas & Borroto, 2002). Hence, ectodomain shedding 

regulates the expression and function of transmembrane proteins, and this is 

implicated in many cellular and physiological processes involved in development, 

homeostasis, inflammation and pathology (Horiuchi, 2013; Weber & Saftig, 2012; Xu 

& Derynck, 2010). In some cases, ectodomain shedding leads to further processing 

in the transmembrane domain by other proteases, releasing cytoplasmic domains 

which can associate with other cytoplasmic proteins, and/or travel to the nucleus to 

regulate transcription of target genes (Arribas & Borroto, 2002; Heldin & Ericsson, 

2001; Ni et al, 2001).  
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In addition to ectodomain shedding, receptors are also regulated by internalization 

into vesicles. This mechanistic regulation of receptor proteins is called receptor-

mediated endocytosis (RME). In RME, membrane-bound receptors are internalized 

into vesicles, either to recycle back to the cell membrane, or transport into 

lysosomes for degradation. Endocytosis regulates RLK signalling through 

downregulation of RLKs, or target RLKs into endosomes where their downstream 

signalling effectors are located (Teis et al, 2002). For example, receptor tyrosine 

kinases (RTKs) like epidermal growth factor receptor (EGFR), neurotrophic tyrosine 

kinase receptor type 1 (TrkA), and insulin receptor (IR) are functionally regulated 

through RME. In this chapter, we investigated an LRR-RLK called RLK902, and 

discuss the possible regulation of its function through a putative shedding 

mechanism similar to ectodomain shedding, or a putative endocytotic internalization 

and eventual degradation. 

 

Western blot analysis showed the accumulation of the Myc-RLK902-YFP in the 

membrane fraction of N. benthamiana leaves (Fig. 28). In addition, we showed that 

Myc-RLK902-YFP colocalizes with the remorin-RFP plasma membrane marker (Fig. 

27). These results support the previous finding that RLK902-GFP fusion protein was 

detected on the cell surface after plasmolysis using mannitol (Tarutani et al, 2004a) 

2004a) indicating that it is a plasma membrane protein. These validate, first of all, 

that RLK902 is a receptor-like protein carrying a signal peptide and a 

transmembrane domain. Moreover, the detection of N-glycosylation of transiently 

expressed RLK902 in N. benthamiana leaves is consistent with the presence of the 

predicted five N-glycosylation sites in the extracellular domain of RLK902. N-

glycosylation is typical for the ectodomain of membrane-bound proteins. 

Furthermore, we have observed that RLK902 is processed in vivo through time. With 

full length RLK902 detected at two dpi, and processed products observed beginning 

at three dpi that gone more pronounced at four and five dpi (Fig. 29A). Moreover, 

substitution of the conserved residues K393, K492 and D508 in the intracellular 

kinase domain into Ala (A) did not affect the processing of RLK902 (Fig. 33), 

suggesting that kinase activity is not required for processing. K393 in subdomain II 

and K492 in subdomain VI are the conserved Lys residues predicted to be labelled 

by AcATP/AcGTP, while D508 is the conserved Asp in the DFG motif of subdomain 
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VII. The labelling and detection of a cleaved/processed RLK902 protein is 

interesting. This indicates that it is not immediately degraded, and has a time 

window, during when it can be functional in the cell. In case the processed RLK902 

is still active and functional, it would make sense to assess the activity state of 

uncleaved protein, and whether or not activation of RLK902 requires processing. The 

processing sites can be identified by Ala scanning mutagenesis of putative cleavage 

sites. 

 

A number of inhibitors were screened for inhibition of processing of RLK902. 

Interestingly, protease inhibitors E64d and TLCK inhibited the in vivo processing of 

RLK902. Moreover, E64d and TLCK triggered the accumulation of endosomal-like 

structures in RLK902-agroinfiltrated N. benthamiana leaves (Fig. 31). These results 

suggest that E64d and TLCK may inhibit the protease that cleaves RLK902 and/or 

blocks RLK902 vacuolar degradation pathway. However, inhibitors of the vacuolar 

targeting pathways (BFA, wortmannin, Tyr A23, concanamycin A, latrunculin B, and 

cantharidin) did not inhibit RLK902 processing (Fig. 32). 

 

Internalization of plasma membrane-localized protein receptors by RME is required 

for efficient receptor-mediated signal transduction. This is exemplified by EGFR and 

Toll-like receptor-mediated cell responses in animals (Johnsen et al, 2006; Teis et al, 

2002). In plants for example, signal transduction mediated by FLS2 involves 

internalization into endosomes and degradation in vacuoles upon activation by flg22 

binding (Beck et al, 2012; Robatzek et al, 2006). Evidently, the endocytotic trafficking 

of protein receptors is also a function of certain sequence motifs associated with 

internalization. Some reported internalization signals include the dileucine motifs 

D/ExxxLL/I or DxxLL, the tyrosine-based motifs NPxY, YxxΦ, YxxxΦN, FxNPxY, 

YRAL, and YFIPIN (where X stands for any amino acid and Φ represents any bulky 

hydrophobic amino acid), and the ubiquitination signals for vacuolar degradation of 

proteins (Goh & Sorkin, 2013; Kozik et al, 2010; Wang et al, 2007). Interestingly, 

sequence analysis reveals that RLK902 carry at least four putative internalization 

motifs. These are two dileucine internalization motifs DLEDLL and DEKLL, which 

follows the consensus D/ExxxLL/I and DxxLL, respectively, and two tyrosine-based 

internalization motifs YKAV and YDFM, both follows the consensus YxxΦ (Fig. 35) 

(Goh & Sorkin, 2013; Kozik et al, 2010). Moreover, it carries lysines, serine and 
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threonines which can be ubiquitinated, which signals for endocytosis and eventual 

protein degradation in vacuoles (Goh & Sorkin, 2013; Kozik et al, 2010; Wang et al, 

2007) 

 

 
Figure 36. Sequence analysis of RLK902. 

Protein sequence analysis reveals putative short sequence motifs in RLK902 that signals for its 
internalization into vacuoles or its transport into the nucleus. Four putative internalization signals 
(orange) and one nuclear localization signal (NLS, purple) were found. There are two dileucine 
internalization motifs namely DLEDLL and DEKLL following the consensus D/ExxxLL/I and DxxLL, 
respectively, and two tyrosine based internalization motifs namely YKAV and YDFM, both following 
the consensus YxxΦ. X stands for any amino acid and Φ represents any bulky hydrophobic amino 
acid. KRLK is a putative NLS, following the consensus K(K/R)x(K/R). 
 
 
 
The in vivo processing of RLK902 could function to release its ectodomain to be a 

soluble extracellular signal molecule for the cell or to a distant neighbouring cell. 

However, the possibility of a second proteolysis at the intramembrane or 

juxtamembrane domain can not be excluded. This could release a soluble 

cytoplasmic molecule for intracellular signalling. A first report on a plant LRR-RLK, 

the rice XA21, is proteolytically cleaved during signalling to release a cytosolic 

protein kinase domain that migrates to the nucleus to phosphorylate transcription 

factors (Park & Ronald, 2012). A similar signalling mechanism could be at work for 

RLK902. Noteworthy, a putative nuclear localization signal (NLS) KRLK following the 

classic monopartite three basic amino acid NLS motif K(K/R)x(K/R) (Hicks et al, 

1995; Kosugi et al, 2009; Lange et al, 2007) is found in the kinase domain of 

RLK902 (Fig. 35), which gives a hint to a possible nuclear transport of the protein 

kinase. 

 

At this point, our motivation is led by the following hypotheses: RLK902 processing is 

caused by (a) putative receptor shedding event, (b) by RME, (c) or both. However, 

our speculations are yet to be validated. First of all, what triggers processing and/or 

internalization of RLK902 should be established. The processing of RLK902 was first 

observed in an unelicited condition, indicating that it could be a constitutive 
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processing event. Several experiments can be performed to test this. First, 

mutagenizing the putative internalization motifs could block processing. Second, 

biochemical analysis using the NLS mutant of RLK902 in combination with trafficking 

markers and microscopy studies can be used to investigate possible translocation to 

the nucleus. Third, MS analysis of cleavage sites in Arabidopsis, where the 

processing was originally observed can be done, together with biochemical probing 

of putative sheddase(s), or putative downstream target genes, if any. Moreover, we 

can express RLK902 by agroinfiltration into protease-depleted N. benthamiana 

leaves. Also importantly, some of these experiments should be repeated in 

Arabidopsis seedlings to confirm that this processing upon agroinfiltration is not an 

overexpression artefact.  
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CHAPTER 4:  MATERIALS AND METHODS 

 

4.1 Biological materials 

Plant materials and growth conditions 

Arabidopsis thaliana ecotype Col-0 was grown in a climate cabinet in a 10-hour light 

regime at 22ºC and 60% relative humidity. Plant proteins were extracted from rosette 

leaves of 4-6 week old Arabidopsis plants. 

 

Arabidopsis cell cultures (ecotype Landsberg) were weekly subcultured in modified 

MS-medium (4.41% MS-medium, 3% sucrose, 5.4 μM α-Naphtyleneacetic acid, 0.23 

μM kinetin, pH 5.6) in light at 22°C at 160 rpm continuous shaking. Five to seven day 

old cultures were used for experiments. Prior to treatment, cells were suspended in 

fresh medium. After treatment, medium was discarded and cells were quickly rinsed 

in fresh medium. The cells were then either frozen in liquid nitrogen for storage, or 

immediately lysed for labeling experiments. Labelling was always done in fresh 

lysates. Protein lysate was prepared by grinding cells in labeling buffer, followed by 

centrifugation to clear the lysate.   

 

Nicotiana benthamiana was grown in a climate chamber at a 14-hr light regime at 

22 °C (day) and 18 °C (night). Four to six-week old plants were used for 

experiments. Proteins were usually extracted by bead-based agitation in SDS gel 

loading buffer. 

 

Other biological materials 

Pseudomonas syringae pathovar (pv.) tomato (Pto) DC3000 was from Dr. Jane 

Parker (Max Planck Institute for Plant Breeding Research, Cologne, Germany). 

PtoDC3000 lacking HopQ1-1 effector (PtoDC3000∆hQ) was from Dr. Johana C. 

Misas-Villamil (Max Planck Institute for Plant Breeding Research, Cologne, 

Germany). Pseudomonas syringae pv. syringae (Psy) B728a was provided by R. 

Dudler (Institute of Plant Biology, University of Zurich, Switzerland). 
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4.2 Chemical materials 

Activity-based probes 

AcATP probes (BAcATP, ≡AcATP and Bodipy-AcATP) were synthesized following the 

procedures described by Patricelli et al. (2007) with some modifications. These were 

synthesized by Dr. Julian Oeljeklaus in Universität Duisburg Essen, Essen, Germany. 

Briefly, e.g. BAcATP, was synthesized as follows: N-(+)-biotinyl-6-aminohexanoic 

acid (30 mg, 0.085 mmol) was suspended under an argon atmosphere in anhydrous 

dioxane/DMF/DMSO (1:1:1, 3 mL) and cooled to 0 °C. To this ice-cold solution were 

then added triethylamine (47 µL, 0.34 mmol) and iso-butyl chloroformate (33 µL, 

0.255 mmol), resulting in the appearance of a precipitate. The resulting suspension 

was stirred at 0 °C for 20 min, allowed to warm up to room temperature, and then 

stirred for an additional 1.5 h. ATP triethylammonium salt (69 mg, 0.085 mmol), 

dissolved in anhydrous DMSO (1 mL), was added to the reaction mixture. After 18 h, 

the reaction was stopped by addition of water (4 mL) and the mixture was extracted 

with ethyl acetate (3 x 4 mL). The aqueous layer was frozen and subsequently 

lyophilized. The resulting solid was suspended in water (1 mL), transferred to a RP-

C18 flash-column (LiChroprep® RP-18, 40-63 µm, Merck) pre-equilibrated with 5% 

acetonitrile in water and eluted with 30% acetonitrile in water. Product containing 

fractions were pooled, frozen, lyophilized and subsequently stored at -20 °C (Yield: 

4.3 mg, 5.1 µmol, 6%). Identity of the product was confirmed by LC-ESI-MS analysis 

on a Thermo Scientific LCQ FleetTM ESI-spectrometer, equipped with an Eclipse 

XDB-C18, 5 μm column from Agilent and by using a linear gradient of solvent B (5 

mM NH4OAc in acetonitrile) in solvent A (5 mM NH4OAc in H2O) at 1 mL/min flow 

rate (gradient program: 0 min / 10% B → 1 min / 10% B → 10 min / 100% B → 12 

min / 100% B → 15 min / 10% B.): Rt = 2.16 min, calcd. for C26H40N8O16P3S- [M-H]- 

845.15, found 845.13. 

 

DTBAcATP was purchased from Thermo Scientific. The tags N3-Rh and N3-BRh 

used in click chemistry reactions with ≡AcATP was provided by Dr. Markus Kaiser 

(Universität Duisburg Essen, Essen, Germany). All probes were dissolved in DMSO 

and stored at -20 °C. The AcGTP probe used to label RLK902 is from Thermo 

Scientific. 
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Chemical inhibitors 

Kinase inhibitors Toyocamycin, Suramin, Wortmannin, 5,5’-Dithiobis(2-nitrobenzoic 

acid) (DTNB), and K252a were from Sigma. The other chemical inhibitors used in the 

RLK902 study were obtained from different sources. Soybean kunitz, E-64d, MG132, 

PMSF, Phenantroline, Brefeldin A, and Tosyllysine chloromethyl ketone 

hydrochloride (TLCK) were from Sigma. Epoxomicin was from ApexBio. Odanacatib 

was from ChemScene. Tyrphostin A23 and Concanamycin A were from Santa Cruz.  

 

Other chemicals 

The nucleotides and nucleotide analogues ATP, GTP, CTP, TTP, ADP, AMP, and 

NADP were from Sigma. NAD was from Roche. The deoxynucleotides dATP, dGTP, 

dCTP and dTTP were from Fermentas. General laboratory chemicals and reagents 

were mainly purchased from Sigma (St.Louis, USA) and Merck (Darmstadt, 

Germany). 

 

Antibodies 

The anti-cMyc (sc-789) antibody was from Santa Cruz and anti-GFP monoclonal 

antibody (632375) was from Clonetech. The anti-rabbit HRP (1858415) and anti-

mouse HRP (1858413) antibodies were from Pierce. The anti-phosphopeptide 

antibody for the detection of phosphorylated MPK3/6 is from Cell Signalling 

Technology (Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) Antibody #9101). 
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4.3 Methods 

Quantification of protein concentration 

Protein concentration was quantified using the RCDC protein assay kit (Biorad). Two 

different concentration dilutions of protein samples were prepared and their 

concentrations were calculated using a standard curve measured from serial 

dilutions of a BSA standard (Promega). 

 

Labeling with AcATP 

Arabidopsis proteome was extracted from 4-week old Arabidopsis rosette leaves in 

50 mM Tris pH 7.5. The lysate was cleared by centrifugation, and subjected to gel 

filtration using DG10 columns (Biorad). Labelling was performed in 50 mM Tris pH 

7.5 with 10 mM MgCl2, unless specified otherwise. The lysate was incubated with 5 

or 10 µM AcATP or DMSO for the no-probe-control, at room temperature (RT) for 15 

minutes. For inhibition experiments, the lysate was preincubated with the different 

inhibitors at 10 mM final concentration for 30 minutes before labeling with AcATP for 

15 minutes. The labeling reaction was stopped by adding gel loading buffer 

containing SDS and DTT. For labeling with ≡AcATP, the labelled sample was first 

acetone precipitated (for 50 µl reaction) with cold 100% acetone or gel filtrated (for 

large scale labeling, 1 ml to 2 ml reactions) through a DG10 column (Biorad), 

followed by click chemistry with N3-Rh or N3-BRh to attach a rhodamine, or biotin 

and rhodamine, respectively, alkyne on the labelled proteins. For labeling with 

DTBAcATP, protein extracts were prepared and labeled in a lysis buffer (50 mM 

HEPES, pH 7.5, 150 mM NaCl, 0.1% Triton-X-100, phosphatase inhibitors [Cocktail 

II AG Scientific #P-1518]). Proteins were usually separated on 12% acrylamide gel. 

For biotinylated or desthiobiotinylated protein detection, proteins were transferred 

onto polyvinylidene fluoride (PVDF) membranes and the protein blot was probed with 

streptavidin-HRP (Ultrasensitive, Sigma) and detected with enhanced 

chemiluminescence (SuperSignal West Femto Chemiluminescent Substrate, Thermo 

Scientific). For rhodamine or bodipy-tagged proteins, the protein gels were scanned 

for fluorescence on a Typhoon 9000 scanner. 
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Click Chemistry 

After labeling with ≡AcATP, protein samples were acetone precipitated with cold 

100% acetone to remove unreacted probes and salts. The samples were then 

denatured and dissolved in 1% SDS in PBS (80 g NaCl, 2 g KCl, 26.8 g Na2HPO4, 

2.4 g KH2PO4 in 1000 ml water pH 7.4) solution. To the denatured sample, 20 µM N3-

Rh or N3-BRh were added, followed by 1 mM TCEP, then 34 µM TBTA, and then 1 

mM CuSO4, with quick vortexing upon every reagent added. The reaction mix was 

incubated at RT in the dark for 1 hr., and then acetone precipitated remove copper 

and unreacted tags. For gel electrophoresis, the samples were dissolved in gel 

loading buffer. For pull down experiments, the samples were dissolved in 2% SDS 

before affinity purification with streptavidin beads. 

 

Western blotting 

After SDS-PAGE, proteins were transferred onto PVDF membrane (Immobilon-P, 

Millipore) at 200 mA for 60-70 min using X-Cell II Blot Module system (Invitrogen). 

After the transfer, the membrane was incubated with 5% BSA (Biomol) in TBS (50 

mM Tris, 150 mM NaCl pH 7.5) solution for 20 min with gentle agitation on a shaker. 

To detect biotinylated proteins, the membrane was incubated with streptavidin-HRP 

(Ultrasensitive, Sigma) at 1:3000 in 5% BSA in TBST (TBS with 2% Tween-20) 

solution for 1 hr. Washing of membranes to remove unbound streptavidin-HRP was 

done 5 times with TBST for 10 min each wash step. To detect non-biotinylated 

proteins, the membrane was incubated with protein specific primary antibodies for 1 

hr followed by 5x washing step, before incubation with HRP-conjugated anti-rabbit or 

anti-mouse secondary antibodies (Pierce) at 1:5000 in 5% BSA-TBST for 1 hr. Final 

washing was done 5x with TBST. The membrane was then incubated for 1 minute 

with chemiluminescent substrates of HRP (SuperSignal West Pico/Femto, Pierce) 

underneath a piece of overhead-projection transparency, and exposed to X-ray films 

(BioMax MR, Kodak) in a darkroom. The exposed film was developed by automatic 

X-ray film processor (Optimax, Protec). 

 

In-gel fluorescence scanning 

SDS-PAGE gels containing fluorescent proteins were washed three times with water 
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and labeled proteins were visualized by in-gel fluorescence scanning using a 

Typhoon 9000 scanner (Molecular Dynamics) with excitation and emission at 532 

and 580 nm, respectively. 

 

Different proteome preparations for in vitro labeling studies 

For Arabidopsis cell culture treatments, 1 ml of 5 day old cultures were transferred to 

a sterile 12-well plate and cell suspensions were acclimatized to fresh media with 

continuous shaking for 1 hr before each treatment. For heat treatments, the cell 

suspension was transferred into a 1.5 ml eppendorf tube and incubated in a water 

bath at 45 or 53 °C for 5 minutes. For flg22 treatment, 100 nM flg22, or DMSO for 

the control, was added to the cell cultures for 5 or 15 minutes. For BTH treatment, 25 

μM benzothiadiazole (BTH) (Bion, Syngenta) was added to the cultures for 30, 60 or 

360 minutes. After treatment with flg22 or BTH, cells were quickly rinsed twice with 

fresh medium and the cells collected by centrifugation for protein extraction. 

 

For Pseudomonas infections of Arabidopsis plants, the PtoDC3000∆hQ strain was 

grown overnight 28 °C in 10 ml LB medium in a 50 ml Falcon tube. The culture was 

centrifuged at 3000 g for 10 min, and the bacterial pellet was washed with 10 mM 

MgCl2 and diluted to OD 600 of 0.3 (measured by spectrometer Ultrospec II, LKB 

Biochrom) with 10 mM MgCl2 and 0.01% Silwet. The bacterial suspension was then 

sprayed with a perfume sprayer onto the leaf surface of 4-6 week old Arabidopsis 

plants until the droplets ran off. Inoculated plants were kept in trays with transparent 

covers to maintain high humidity, and grown under standard conditions in a growth 

chamber. Rosette leaves were harvested at 2 dpi for membrane fractionation and 

labeling with BAcATP. 

 

For pathogen infections of N. benthamiana plants, the bacterial strains PtoDC3000, 

PtoDC3000∆hQ and Psy B728a were grown overnight 28 °C in 10 ml LB medium in 

a 50 ml Falcon tube. The culture was centrifuged at 3000 g for 10 min, and the 

bacterial pellet was resuspended in water to a final OD 600 of 0.2. These bacterial 

suspensions were then syringe-infiltrated into fully expanded N. benthamiana leaves 

using needleless 1 ml syringe (Plastipak, BD). Infiltrations with water, and no 

infiltrations, were used as controls. N. benthamiana leaves were collected at 2 dpi for 
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apoplastic fluid extractions and labeling with DTBAcATP. 

 

For proteome extraction from Arabidopsis seedlings, seeds were sterilized with 

bleach and 70% ethanol, and rinsed extensively with sterile water. The sterile seeds 

were sown and initially grown on a sterile MS agar plate for two weeks. The 

seedlings were then transferred into a fresh liquid MS medium one day before 

treatment. For flg22 treatments, the seedlings were incubated with 1 μM flg22, or 

DMSO for control, for 15 minutes. After treatment, the seedlings were rinsed twice 

with fresh media and then blotted dry with absorbent paper. Protein extract was 

prepared in the labeling buffer. 

 

Membrane fractionation 

Arabidopsis or N. benthamiana leaves of 2 g fresh-weight were homogenized with 

mortar and pestle on ice in 4 ml cold membrane buffer (25 mM Tris pH7.5, 250 mM 

sucrose) containing protease inhibitor cocktail (Roche) and 3% 

polyvinylpolypyrrolidone (PVPP), and filtered through a 64 μm nylon mesh. Samples 

were collected in a 50 ml tube and centrifuged at 4000 rpm for 15 min at 4 °C. The 

supernatant was then ultracentrifuged at 41000 rpm for 1 hr at  4 °C. The pellet was 

resuspended in cold membrane buffer and stored at -80°C. The supernatant was the 

soluble fraction and the pellet was the membrane fraction. 

 

N. benthamiana apoplastic fluid isolation 

Leaves were vacuum-infiltrated with ice cold water in a 500 ml beaker, using an 

exicator. The water-infiltrated leaves were then surface dried using absorbent paper, 

and centrifuged at 1600 g for 10 min at 4 °C in an AF isolation tube containing holes 

of 1 mm diameter. The AF was collected in a bottom collection tube. 

 

2-dimensional (2D) protein gel electrophoresis 

After purification of labeled proteins, the protein samples were dried under vacuum 

and dissolved in 160 μl isoelectric focusing (IEF) buffer containing 7 M urea, 2 M 

thiourea, 2% CHAPS, 1% v/v ampholytes (ZOOM Carrier pH 3-10, Invitrogen), 

0.002% bromophenol blue and 1% w/v DTT. This sample was then impregnated into 
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an IPG strip (ReadyStrip pH 3-10, Bio-Rad) overnight at room temperature. Proteins 

were separated on the IPG strip in ZOOM IPGRunner cassettes (Invitrogen) 

attached to a ZOOM IPGRunner Core (Invitrogen) using a  voltage program (175 V 

for 15 min; 175 to 2000 V ramp for 45 min; 2000 V for 30 min) of a voltage ramp-

compatible power supply (EPS 3501XL, GE). After IEF, strips were incubated in 5 ml 

of equilibration buffer (6 M urea, 0.375 M Tris pH8.8, 20% glycerol, 2% SDS) 

containing 2% w/v DTT for 30 min, followed by incubation in 5 ml equilibration buffer 

containing 2.5% w/v IAA for another 30 minutes.  The strips were then mounted on 

top of a 12% SDS PAGE gel and the proteins were separated at 200 V using the 

Novex Minicell system (Invitrogen). 

 

Affinity purification and Identification of BAcATP-labelled proteins 

After labelling of Arabidopsis leaf extract (1mL 5 mg/mL protein) for one hour, the 

extract was desalted using a DG10 column (Biorad). The eluate was incubated with 

100 µL neutravidin beads (Thermo Scientific) in PBS solution with 0.2% SDS for one 

hour. The beads were washed twice with 0.2 % SDS, twice with 6 M urea and twice 

with water, and eluted with 50% formic acid. The eluent was then dried under 

vacuum and dissolved in gel loading buffer. Proteins were separated on acrylamide 

gels and stained with SYPRO Ruby (Invitrogen). Bands of interest were excised from 

both labelled and control samples and subjected to in-gel digestion with trypsin. LC-

MS/MS analysis was performed on an LTQ Velos (Thermo) coupled to an 

EasyNanoLC (Proxeon/Thermo) using a ‘Top 20’ data-directed acquisition. LC was 

performed on a C18 column (10 cm x 75 µm) with a gradient of 5-40% acetronitrile in 

0.1% formic acid for 30 minutes followed by a wash with 95% acetonitrile. The data-

directed acquisition included active exclusion for mass (±40 ppm) and time (60 sec.). 

Spectra were searched using Mascot 2.3 using a fixed modification of cysteine 

(57.02 Da for carbamidomethyl), and variable modifications of methionine (15.99 Da 

for oxidation) and lysine (339.16 and 355.16 Da for BAc and OBAc labeling, 

respectively). A mass tolerance was set to 0.3 Da for the precursor ions and 0.4 Da 

for fragment ions. Up to two mis-cleavages for trypsin were permitted since the 

labeling would prevent cleavage at the labeled lysine. The MS2 spectra were 

searched against the TAIR10_pep_2012 (version November 2012) containing 35386 

proteins of Arabidopsis thaliana, supplemented with a small database with 1095 
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artefact proteins and a reversed decoy database of the same proteins (totals 72962 

entries). Peptides were retained with Mascot scores of >41, which is above the 

Mascot significance level. Hits to the decoy database within this selection there were 

giving a 0.3% false discovery rate (FDR) for all peptides and 0.7% FDR for non-

redundant peptides. Proteins were selected having a minimum of two different 

peptides, shown in supplemental Table S1. This selection for two peptides per 

protein removed all the false positive hits to the decoy database. Proteins were 

ranked on their score and manually selected considering the occurrence of the 

protein in the rest of the gel and its expected molecular weight and overall score and 

spectral count (supplemental Table S2). Only robustly identified proteins that are 

highly enriched in the gel slice compared to other gel slices are reported. 

 

Labelling and MS analysis with DTBAcATP 

Analysis of DTBacATP-labelled Arabidopsis leaf extracts was performed as 

described (Patricelli et. al., 2007, 2011). Briefly, lysates from Arabidopsis leaves were 

generated by bead-based agitation in kinase buffer (20 mM HEPES pH 7.8, 150 mM 

NaCl, 0.1% Triton X-100). The resulting lysates were gel filtered into 20 mM HEPES 

pH7.8, 150 mM NaCl, 1% v/v phosphatase inhibitor cocktail II (Calbiochem) to 

remove endogenous competing nucleotides prior to labeling with 20 µM DTBAcATP 

probe for 15 minutes in the presence of 20 mM MnCl2. The labelled extracts were 

denatured and reduced (6M urea, 10 mM DTT, 65 oC for 15 minutes), then alkylated 

with iodoacetamide (40 mM, 30 minutes at 37 oC). Following another gel filtration 

step (into 10 mM ammonium bicarbonate, 2 M urea) to remove unreacted reagents 

and lower the urea concentration, the samples were digested with trypsin. 

DTBAcATP-labelled peptides were enriched on streptavidin resin (Thermo Scientific) 

and eluted using 0.1% TFA in 50% acetonitrile. 

 

MS analysis: MS analysis was performed on a Thermo-LTQ linear ion trap 

instrument in a data dependent mode as described for initial characterization 

(Patricelli, et. al., 2011) using a mass range from 500-1800 m/z. The MS2 spectra 

were searched using SEQUEST against the TAIR9_pep_20090619 database 

(version June 2009) containing 32,769 proteins of Arabidopsis thaliana. MS2 

searches included fixed iodoacetamide modification of cysteine (57 Da for 
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alkylation), and variable modifications of methionine (16 Da for oxidation) and lysine 

(196 Da for DTBAcATP labeling). Up to three mis-cleavages with trypsin were 

allowed and non-tryptic or half-tryptic peptides were excluded. A mass tolerance was 

set to 3 Da for the precursor ions and 1 Da for fragment ions. The high mass 

tolerance for precursor ions had to be used since most of the precursor ions are 

detected with multiple charges and mass tolerance in SEQUEST is not charge state 

specific. A probability score was calculated for each labelled peptide as described 

previously (Adam, et. al., 2004). This score is based on Xcorr, delta-Cn and peptide 

mass/length and compared to the distribution of false positive scores generated by 

searching with incorrect masses of the modification (+10 and -10 Da from the correct 

value). The resulting MS2 spectra were assembled in one Excell file and all spectra 

with <95% probability were removed. Peptides that were only detected in one of the 

four MS runs were discarded. The resulting list of 242 peptides includes peptides 

that are unique (u) in the Arabidopsis proteome or match multiple genes (ambiguous, 

a). Some peptides match multiple gene models of a single gene (isoforms, i). These 

isoforms are indicated in the supplemental table but were treated as identifiers for 

specific genes. Supplemental Table S3 contains the lists with 10465 spectral counts 

with individual scores with probability of >75%. Supplemental Table S4 summarizes 

the spectral counts of the 242 labeled peptides with >95% probability. 

 

Analysis of labelling sites: To map the labeling site onto protein structures, we 

searched the PDB database for sequences that are homologous to the labeled 

proteins. Sequences for which a co-crystal with a nucleotide was available were 

aligned with the identified proteins and the orthologous position of the labeled lysine 

was indicated in the alignment. This residue was selected in the protein structure 

using PyMol and the distance to the nearest phosphate of the bound nucleotide was 

measured. 

 

Comparison with protein levels in the AtProteome database: For every labeled 

protein of Table S4, we retrieved the number of spectral counts from leaves from the 

AtProteome database (Baerenfaller et al., 2008; tgcz-atproteome.unizh.ch/). For 

ambigious peptides, only the protein with the highest spectral counts was selected 
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In silico analysis of labelling sites: To predict the labeled peptides for all the protein 

kinases in Arabidopsis, we retrieved protein sequences of all protein kinases from 

the Arabidopsis thaliana kinase database 

(http://bioinformatics.cau.edu.cn/athKD/index.htm). Sequences for each subfamily in 

the AthKD database were retrieved and aligned using MultiAlign 

(http://multalin.toulouse.inra.fr/multalin/multalin.html). The labeled peptide that was 

experimentally identified was highlighted in the alignment and the orthologous Lys 

residues were indicated and Lys and Arg residues were highlighted in the alignment. 

Tryptic peptides containing the labeling site were selected from the alignments. The 

orthologous labeled Lys, and the Arg/Lys-Pro sites were not considered as trypsin 

cleavage sites, and miscleavages were ignored. The selected peptides were ranked 

on sequence and redundancy for each peptide sequence was counted (n proteins 

carrying the same labeled peptide). Ile/Leu residues were not discriminated in this 

analysis as they have the same mass. Protein kinases with a unique labeled lysine 

(n=1) were counted. The other protein kinases contain ambiguous peptides (n>1). 

This analysis was done for peptides carrying Lys1, Lys2, Lys3 and Lys4. 

 

Targeted MS/MS analysis 

Arabidopsis cell pellets were lysed by sonication in lysis buffer (50 mM HEPES, pH 

7.5, 150 mM NaCl, 0.1% Triton-X-100, phosphatase inhibitors [Cocktail II AG 

Scientific #P-1518]). After lysis, the samples were cleared by centrifugation, and the 

supernatant desalted by gel filtration over Sephadex G25. MnCl2 was then added to 

a final concentration of 20 mM. Final protein concentration of lysates was 6 mg/mL. 

DTBAcATP probe was added to each sample to a final concentration of 5 µM for 10 

minutes. After labeling, samples were prepared for targeted MS analysis using the 

ActivX standard protocol (Patricelli et al, 2011). Briefly, samples denatured, reduced 

and alkylated, then digested with trypsin, and the desthiobiotinylated peptides were 

enriched on streptavidin resin. Enriched labeled peptides were analyzed by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) on a Thermo-LTQ ion trap 

mass spectrometer. An inclusion list of about 250 Arabidopsis kinases and ATP-

binding proteins was generated and used to quantify signal intensities of detected 

labeled peptides (Patricelli et al, 2011). 
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All quantitation was performed by extracting characteristic fragment ion signals from 

targeted MS/MS spectra and comparing signals in control and treated samples. For 

each peptide quantitated, the change in MS signal for the treated samples relative to 

the MS signal for the control samples is expressed as fold-change. In cases where 

the average MS signal of the treated samples was greater than the average MS 

signal of the control samples, the following equation was used: 

 

	݄݈݁݃݊ܽܿ݀݋ܨ ൌ െ൬
ݏ݈݁݌݉ܽݏ	݀݁ݐܽ݁ݎݐ	݉݋ݎ݂	ݏ݈ܽ݊݃݅ݏ	ܵܯ	݁݃ܽݎ݁ݒܣ
ݏ݈݁݌݉ܽݏ	݈݋ݎݐ݊݋ܿ	݉݋ݎ݂	ݏ݈ܽ݊݃݅ݏ	ܵܯ	݁݃ܽݎ݁ݒܣ

൰ 

 

In cases where the average MS signal of the control samples was greater than the 

average MS signal of the treated samples, the following equation was used: 

 

	݄݈݁݃݊ܽܿ݀݋ܨ ൌ െ൬
ݏ݈݁݌݉ܽݏ	݈݋ݎݐ݊݋ܿ	݉݋ݎ݂	ݏ݈ܽ݊݃݅ݏ	ܵܯ	݁݃ܽݎ݁ݒܣ
ݏ݈݁݌݉ܽݏ	݀݁ݐܽ݁ݎݐ	݉݋ݎ݂	ݏ݈ܽ݊݃݅ݏ	ܵܯ	݁݃ܽݎ݁ݒܣ

൰ 

 

    

Generation of mutant GST-MPK3/6 fusion constructs 

GST-MPK3 and GST-MPK6 encoding pGEX-3X (GE Healthcare) plasmids was 

previously reported in (Sorensson et al, 2012) and (Ulm et al, 2002), and was 

donated by Dr. Erik Andreasson (Lund University, Sweden). These were used as 

template for site-directed mutagenesis to create the different GST-MPK3 and GST-

MPK6 mutant fusion constructs. PCR was done using forward primer (FP) 5'- 

GAATGATTTTATGGATGAGGATGTTGTTACGAGATGG-3' and reverse primer (RP) 

5'- CCATCTCGTAACAACATCCTCATCCATAAAATCATTC-3' for generating MPK3 

T196D Y198D, FP 5'-GAATGATTTTATGGCTGAGGCTGTTGTTACGAGATGG-3' 

and RP 5'- CCATCTCGTAACAACAGCCTCAGCCATAAAATCATTC-3' for MPK3 

T196A Y198A, FP 5'- CATTATTCATAGGGATTTAGCGCCGAGCAATCTTCTGTTG-

3' and RP 5'- CAACAGAAGATTGCTCGGCGCTAAATCCCTATGAATAATG-3' for 

MPK3 K166A, FP 5'- GAGTGATTTCATGGATGAAGATGTTGTCACGAGATGG-3' 

and RP 5'-CCATCTCGTGACAACATCTTCATCCATGAAATCACTC-3' for MPK6 

T221D Y223D, and FP 5'-GCTTCACAGGGATTTGGCACCAAGTAATCTCCTCCTG-

3' and RP 5'- CAGGAGGAGATTACTTGGTGCCAAATCCCTGTGAAGC-3' for MPK6 

K191A. All constructs were electrotransformed into DH5α and selected on LB plates 
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containing 100 μg/ml ampicillin. Colonies were selected by PCR and the constructs 

were confirmed by sequencing using the primers FP 5'-

GGGCTGGCAAGCCACGTTTGGTG-3' and RP 5'-

CCGGGAGCTGCATGTGTCAGAGG-3'. 

 

Recombinant MPK3/6 expression in E. coli and labeling with DTBAcATP 

E. coli strain BL21 was transformed with pGEX-3X carrying the WT or mutant GST-

MPK3 or GST-MPK6 fusion constructs and grown overnight at 37°C in 5 ml LB 

medium containing 100 μg/ml ampicillin. The bacterial cultures were transferred into 

fresh 50 ml LB medium with ampicillin and were allowed to grow to OD 600 of 0.8 for 

about 2 hours at 37°C. Expression of the recombinant protein was induced by adding 

0.4 mM IPTG and incubating at 28°C for 3 hrs. The bacterial cultures were then 

incubated on ice for 30 minutes, and centrifuged at 4000 rpm for 15 min at 4°C to 

collect the cells. The supernatant media were discarded and the bacterial pellets 

resuspended in 2 ml ice-cold non-denaturing lysis buffer. The cells were lysed by tip 

sonication twice for 30 sec, and centrifuged at 4000 rpm for 15 min at 4°C to clear 

the lysates. The cleared lysates were gel filtrated into a labeling buffer prior to 

labeling with DTBAcATP. Labeling was done as previous but the reaction was 

supplemented with 0.5 µM ATP and 0.1% casein substrate during labeling. Signals 

were quantified using ImageJ. 

 

Generation of RLK902 WT and mutant fusion constructs 

The RLK902 gene was amplified by PCR from genomic DNA isolated from 

Arabidopsis thaliana ecotype Col-0 using primers FP 5'-

AGCTTCTAGACTCGAGAGATCTCGCCGCCGACAAATCCGCTC-3' and RP 5'-

AGCTGTCGACCCCACCCGATCTGCACCCGATTG-3'. The 2 kb PCR product was 

then cloned into pRH604 using XbaI and SalI restriction enzymes to fuse the gene 

inframe with a YFP tag at its C-terminus. The authenticity of the cloned PCR product 

was confirmed by sequencing using primers FP 5'- 

CACACAGGAAACAGCTATGACCATG-3' and RP 5'-

GATTAGCATGTCACTATGTGTGCATCC-3'. The confirmed clone was named pJV3. 

After confirmation of the clone, the RLK902-YFP cassette was shuttled into the 
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binary vector pRH509 using XhoI and EcoRI restriction sites to fuse RLK902 N-

terminally to a 35S promoter followed by a region encoding the signal peptide of 

PR1a and four Myc tags interrupted by a small intron used to exclude bacterial 

expression. The resulting construct was then confirmed by restriction digestion with 

XbaI, EcoRI, and BamHI restriction enzymes, and the confirmed clone was named 

pJV7. 

 

The different mutant versions of RLK902 were generated by site-directed 

mutagenesis of clone pJV3 using primers FP 5'-

GACATTGGTGGCTGTGGCGAGACTGAAGGATGTAACG-3' and RP 5'- 

CGTTACATCCTTCAGTCTCGCCACAGCCACCAATGTC-3' for K393A, FP 5'- 

CTCACGGAAACGTCGCGTCCTCCAATATCCTC-3' and RP 5'-

GAGGATATTGGAGGACGCGACGTTTCCGTGAG-3' for K492A, and FP 5'-

GACGCACGAGTGTCTGCTTTCGGCCTGGCTCAGC-3' and RP 5'-

GCTGAGCCAGGCCGAAAGCAGACACTCGTGCGTC-3' for D508A. After 

confirming mutagenesis of these clones by sequencing, the clones were then 

shuttled into binary vector pRH509. The confirmed clones are named pJV19, pJV13, 

pJV14 for the K393A, K492A, and D508A mutants of RLK902, respectively. All 

confirmed binary clones were electrotransformed into Agrobacterium tumefaciens 

strain GV3101 for transient transformation into N. benthamiana leaves by 

agroinfiltration. 

 

Agro-infiltration and expression of RLK902 fusion proteins in N. benthamiana 

Agrobacterium tumefaciens strains GV3101 carrying binary vectors pJV7, pJV13, 

pJV14 and pJV19 containing recombinant (mutant) RLK902 expression cassettes 

were grown overnight at 28 °C in an LB medium with 50 μg/ml kanamycin and 50 

μg/ml rifampicin. The bacterial cells were collected by centrifugation, and 

resuspended in 10 mM MES pH 5, 10 mM MgCl2 and 0.2 μM acetosyringone to a 

final OD 600 of 2. Agrobacterium suspensions containing the binary RLK902 

expression vectors were mixed with Agrobacterium suspensions containing binary 

expression vector for RNA silencing inhibitor p19 (Voinnet et. al., 2003) at a 1:1 ratio. 

The Agrobacterium suspensions were syringe-infiltrated into fully expanded N. 

benthamiana leaves using needleless 1 ml syringes (Plastipak, BD). 
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Fluorescence microscopy imaging of RLK902 

N. benthamiana leaves expressing YFP and/or RFP fusion proteins were subjected 

to fluorescence microscopy using the Zeiss LSM 700. The highest magnification at 

40x oil emersion objective was used. YFP signals were detected at 510/530 

excitation/emmision, while RFP signals at 580/610. 

 

Deglycosylation of RLK902 with PNGaseF 

The PNGaseF deglycosylation kit NEB P0704S (New England Biolabs) was used for 

N-deglycosylation of proteins. Protein samples were first extracted in SDS 

denaturing buffer and then acetone precipitated to clean the samples. Acetone 

precipitated samples were then dissolved in glycoprotein denaturing buffer and 

heated to 100°C for 10 min. To 10 µl denatured protein sample, 2 µl water, 1x G7 

reaction buffer, 1% NP-40 and 2 µl PNGaseF were added. The sample was then 

incubated at 37°C for 1 hr. The reaction was stopped by adding SDS gel loading 

buffer.  
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XI 
 

LEGENDS FOR SUPPLEMENTAL TABLES 

 
All supplemental tables are available as soft copies in CDs attached to this manuscript. 
 
 
Supplemental Table S1: Identified Arabidopsis proteins using the in-gel digest 

procedure. This report summarizes all Arabidopsis proteins identified with at least 

two different peptides with Mascot scores >41. The data is ordered per spot ranking 

the proteins with highest scores first. 

 

Supplemental Table S2: Spectral counts per protein and per band from in-gel 

digests. Sheet 1 summarizes all spectral counts of the 112 proteins detected by in‐

gel digest in each of the 30 spots of Table S1, ranked on accession code. Protein 

kinases are marked red. Proteins with spectral counts indicated with light green 

boxes were selected for the summary of sheet 2. Sheet 2 summarizes a the spectral 

counts per band for the selection of the 38 proteins found by in-gel digest, ranked on 

their occurrence in the gel and the frequencies of the spectral counts. These proteins 

were selected from sheet 1 using the following criteria: For each band, proteins 

having the highest spectral counts were selected. Proteins occurring in more than 

one band in the same lane were only considered for the band where they have the 

highest count. The list is supplemented with protein kinases and with proteins for 

which labeling sites were detected. Protein kinases are marked red. Spectral counts 

indicated with light green boxes are shown in Fig. 10B. 

 

Supplemental Table S3: Detected peptides using gel-free analysis. This table 

summarizes all the detected labelled peptides of each of the four LC‐MS/MS runs, 

ranked on the protein accession code. Peptides with probability scores <95% are 

printed in grey. The spectra have later been counted per peptide with probability 

scores >95% and detected in at least two of the four runs in Table S4. 

 

Supplemental Table S4: Spectral counts of the labelled peptides using gel-free 

approach. This table summarizes the spectral counts per labelled peptide in each of 

the four gel‐free runs, ranked on the spectral count frequency. Only peptides with a 

probability score of >95% and detected in two or more of the four runs are shown. 
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This table also tells if the identified peptide is unique in the Arabidopsis proteome, or 

common to different isoforms of the same gene, or ambiguous. Two more columns 

were added summarizing the PDB structure that was used to identify the labeling site 

in the 3D structure of a homologous protein, and the measured distance between the 

phosphate of the bound nucleotide and the labelled lysine in Angstrom (Å). NR, no 

nucleotide binding site reported; NS, no 3D structure available. 

 

Supplemental Table S5: Targeted MS/MS of AcATP-labelled Arabidopsis cell 

cultures. This table summarizes the signal intensities of AcATP-labelled peptides 

from control and fgl22-treated Arabidopsis cell cultures. Fold change indicates 

change in MS signal for the treated samples relative to the MS signal for the control 

samples.  
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