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Abstract

Improving the understanding of pedestrian crowd dynamics is a growing field with
essential contributions from many areas of science utilizing empirical data and math-
ematical models. Simulations of pedestrian systems are an important method for
empirically investigating many scenarios that would be difficult or unethical to study.
They can improve the understanding of the pedestrians’ interactions with other
pedestrians and their environment by focusing on minimal models that can repro-
duce observed phenomena. Especially the observation of self-organization effects is
of interest in that regard. Many of these phenomena in pedestrian dynamics are
not unique to the system and are observed in related fields like granular materials,
colloids, and active matter. Microscopic phenomena in pedestrian dynamics are
partially analyzed by utilizing measures from these related fields. The presented
work introduces methods from solid-state physics and granular matter to quantify
the spatial order of pedestrian systems. The focus is on bottleneck flow when a
crowd has to pass a spatially restricted area (e.g., a door leading to a hall), a crucial
scenario in pedestrian dynamics and the flow of granular matter. Several collective
effects are observed in this simple scenario. However, the dynamics are not well
understood. This can lead to controversies about the origin of observed phenomena,
especially in an interdisciplinary field. In a situation where the corridor width lead-
ing to the bottleneck is variable, empirical studies found a surprising behavior. The
density in narrower corridors decreases, even though a wider corridor allows for more
space where pedestrians could distribute. Additionally, lane formation emerges in
narrow corridors. It was argued that this is an example of social norms influencing
the dynamics of pedestrians. However, the hypothesis is missing convincing evi-
dence. From a physical standpoint, this thesis investigates the phenomenon using
a microscopic velocity-based model using simple interactions. To obtain a better
understanding of the models’ interactions, the scenario of a bottleneck with a wide
area in front is further analyzed regarding the spatial order, utilizing the measures
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and methods used in the study of granular materials. Experimental data and agent-
based simulations are analyzed using velocity-based and force-based models. The
comparison of the experimental data to the simulations shows that the simulated
systems have a higher degree of spatial order, while the experimental data behaves
closer to a fluid. A further investigation of simulated systems with a large number
of agents and variation in the interactions reveals a rich behavior in the modeled
systems, exhibiting increased spatial order, partial jamming, influencing the clog-
ging probability, and a general transformation of the bulk shape in front of the
bottleneck.



Kurzzusammenfassung

Die Dynamik von Fußgängerströmen ist von zunehmendem Interesse, mit neuen
Beiträgen aus verschiedenen Bereichen der Wissenschaft, wie der Physik, den In-
genieurswissenschaften und der Sozialpsychologie. Die Beiträge basieren auf em-
pirischen Daten sowie mathematischer Modelle und numerische Simulationen. Ins-
besondere Simulationen von Fußgängersystemen sind wichtig zur Untersuchung von
Situationen, deren experimentelle Umsetzung schwierig oder unethisch wären. Zusät-
zlich können Modelle helfen, das Verständnis von Fußgängerinteraktionen mit an-
deren Fußgängern und ihrer Umwelt zu verbessern, indem sie sich auf minimale
Wechselwirkungen fokussieren, die die beobachteten Phänomene reproduzieren kön-
nen. Besonders interessant sind Beobachtung von emergenten Selbstorganisations-
Effekten. Fußgängersysteme zeigen eine Reihe dieser Effekte, welche jedoch nicht
zwingend systemimmanent sind und auch in anderen Bereichen wie granularer Ma-
terie, Kolloiden und aktiver Materie beobachtet werden. Messgrößen, die im Bere-
ich der Fußgängergynamik zum Einsatz kommen, um mikroskopische Phänomene zu
analysieren, stammen teils aus diesen verwandten Bereichen. Die vorliegende Arbeit
führt Methoden aus den Bereichen Festkörperphysik und granularer Materie ein, um
die räumliche Ordnung von Fußgängersystemen zu quantifizieren und analysieren.
Der Fokus liegt hierbei auf der Bewegung von Fußgängerströmen durch einen Eng-
pass (sogenannte Bottlenecks), wenn eine Menschenmenge sich durch einen räumlich
begrenzen Bereich bewegen muss (z.B. der Eingang in eine Eventhalle). Bottle-
necks sind ein wichtiges Szenario im Bereich der Fußgängerdynamik und granu-
larer Materie. In diesem relativ einfachen System können mehrere kollektive Effekte
beobachtet werden, die Dynamik ist jedoch noch nicht gut verstanden. Ein tieferes
Verständnis der Ursachen ist insbesondere bei Anwendungen in interdisziplinären
Fragestellung wichtig. In Experimenten, bei denen die Breite des zum Engpass
führenden Korridors variiert wurde, wurden überraschende Phänomene beobachtet.
In schmalen Korridoren, die zu dem Bottleneck führen, ist die Dichte geringer im
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Vergleich zu einem weiten Korridor, obwohl dort mehr Platz in der Nähe des Bot-
tlenecks ist, auf dem sich Fußgänger verteilen könnten. Zusätzlich kommt es in den
schmalen Korridoren zu einer Spurenbildung (sogenannte lane formation). In vor-
angegangenen Studien wurde argumentiert, dass dies ein Beispiel für den Einfluss
sozialer Normen auf die Dynamik von Fußgängern ist, jedoch fehlen der Hypothese
überzeugende Beweise. Um den Ursprung der beobachteten Phänomene besser zu
verstehen, wird in der vorliegenden Arbeit die Situation aus physikalischer Sicht,
anhand eines mikroskopischen, geschwindigkeitsbasierten Modells mit einfachen In-
teraktionen untersucht. Damit Wechselwirkungen in Modellen besser verstanden
werden können, wird im weiteren Verlauf der Arbeit das Bottleneck-Szenario in der
Hinsicht auf die räumliche Ordnung der Fußgänger in experimentellen Daten und
geschwindigkeits- und kraft basierten Modellen untersucht. Dabei werden vor allem
Methoden zur Untersuchung der räumlichen Struktur granularer Materie verwen-
det. Der Vergleich von Modellen und experimentellen Daten zeigt, dass sich in den
Modellen eine höhere Ordnung der simulierten Fußgänger bildet, während sich die
experimentellen Daten ähnlich zu einer Flüssigkeit verhalten. Zur Untersuchung,
welchen Einfluss die Wechselwirkungen in den Modellen auf die Struktur haben,
werden Bottlenecksysteme mit einer großen Anzahl an Agenten simuliert, um Ran-
deffekte zu minimieren. Die Ergebnisse zeigen, dass verschiedene Wechselwirkungen
die räumliche Struktur und Dynamik des Systems maßgeblich verändern. Zusätzlich
wird die Wahrscheinlichkeit für Blockaden im System (sogenannte Clogs) beeinflusst
und die allgemeine Form der Ansammlung von simulierten Fußgängern.



Contents

1 Introduction 11
1.1 Pedestrian dynamics: empirical observations and observables . . . . . 13
1.2 Self-organization in pedestrian dynamics . . . . . . . . . . . . . . . . 15
1.3 The role of psychology . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Modelling of self-driven agents 23
2.1 Force-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Cellular automata models . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Velocity-based models . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Self-organization in models . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Pedestrian bottleneck: self-organization phenomena 41
3.1 Experimental data and observables . . . . . . . . . . . . . . . . . . . 45

3.1.1 Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Density of the experimental trajectories . . . . . . . . . . . . . . . . . 47
3.3 Simulation of the experiment . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Comparing the SCSM with experimental data . . . . . . . . . . . . . 52
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Structure in atomic and granular materials 61
4.1 Crystal structure, amorphous solids and order . . . . . . . . . . . . . 62
4.2 Structure in granular matter . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Two-point correlation function . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Orientational order parameter . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Defects in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 74



8 Contents

4.7 Shape factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Detection of clusters on a grid . . . . . . . . . . . . . . . . . . . . . . 77

5 Structure in pedestrian bottleneck experiments 81
5.1 Simulation of the experiment . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Influence of polydispersity on the structure in the CSM . . . . . . . . 98
5.3 Influence of errors and noise in the trajectories . . . . . . . . . . . . . 104

6 Microscopic order in simulations of pedestrian bottleneck 109
6.1 Influence of exponential repulsion R(s) . . . . . . . . . . . . . . . . . 126

6.1.1 Influence of the repulsion strength . . . . . . . . . . . . . . . . 129
6.1.2 Influence of the repulsion length . . . . . . . . . . . . . . . . 137
6.1.3 Exploring the a-d plane . . . . . . . . . . . . . . . . . . . . . 147

6.2 Influence of noise in the movement direction . . . . . . . . . . . . . . 154
6.2.1 SCSM with repulsion . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.2 SCSM with no repulsion . . . . . . . . . . . . . . . . . . . . . 161
6.2.3 Packing Fraction and hexagonal order in the SCSM . . . . . . 173

6.3 Influence of the slope factor T . . . . . . . . . . . . . . . . . . . . . . 182
6.4 Distribution of high order clusters . . . . . . . . . . . . . . . . . . . . 188
6.5 Order in the social force model . . . . . . . . . . . . . . . . . . . . . 193

6.5.1 Anisotropic interactions influence on the structure . . . . . . . 197

7 Summary, conclusion and outlook 205

Bibliography 213

A Appendix 235
A.1 Supplement Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2 Supplemantery figures Section 5 . . . . . . . . . . . . . . . . . . . . . 241
A.3 Supplemantery figures Section 5.1 . . . . . . . . . . . . . . . . . . . . 242
A.4 Social force model simulations . . . . . . . . . . . . . . . . . . . . . . 246
A.5 Supplementary figures and tables Section 6 . . . . . . . . . . . . . . . 250
A.6 Supplementary figures section 6.1 . . . . . . . . . . . . . . . . . . . . 250
A.7 Supplementary figures section 6.2 . . . . . . . . . . . . . . . . . . . . 256
A.8 Supplementary figures section 6.4 . . . . . . . . . . . . . . . . . . . . 260

Acknowledgment 261



Contents 9

Eidesstattliche Versicherung 262



10 Contents



Chapter 1

Introduction

Pedestrian dynamics is a vastly interdisciplinary subject with research interest from
many fields, such as social psychology, engineering, and physics. The field is rela-
tively accessible even for a layman because it is straightforward to explain the fun-
damental ideas, and almost everyone can imagine the investigated scenarios since
nearly everyone has experienced similar situations. Most people are also aware of the
occurrence of crowd disasters when in a large group of people, the density increases
due to the crowd’s dynamics to a point where the pressure on individuals can cause
serious bodily harm and death (e.g., the Love Parade disaster in Duisburg, Germany
2010, the Hillsborough disaster in Sheffield, England 1989, Meron crowd crush in
Mount Meron 2021, Seoul Halloween crowd crush in Korea 2022 etc.). Especially
critical are situations where a large crowd has to traverse through a so-called bottle-
neck, describing areas of restricted flow, like an entrance to a building. In emergency
situations, like an evacuation, bottlenecks can exhibit high densities and temporary
flow arrest in extreme cases [1, 2]. A misconception that is still widespread is the
emergence of panic in a crowd as the cause of a disaster. The idea that the individ-
uals in a crowd turn from a rational and social state to an irrational and anti-social
state is unproven [3] (See Section 1.3). The field’s interdisciplinary nature yields
various approaches to the design of experiments and the mathematical modeling of
this system. It is straightforward from an engineering perspective to strive for ac-
curate and high-fidelity models that can accurately describe complex environments.
This is useful in traffic and city planning to ensure efficient transportation.
A question often posed is: what is the relation between pedestrian systems and
physics? From a perspective of statistical mechanics, pedestrians can be described
as particles analogous to a gas or a liquid. Especially descriptions similar to granu-
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lar materials can be applied in which case the macroscopic-sized particle dynamics
(i.e., thermal noise is not relevant) are determined by external forces. In contrast to
granular particles, humans are self-driven and have multiple individual characteris-
tics, e.g., individual walking speeds can vary depending on individual targets [4, 5].
Popular models, therefore, treat pedestrians as individual self-driven agents, usually
with relatively simple interactions and often homogenous parameters for the agent’s
behavior [6–8].

There is research that puts forward the idea that human behaviour improves the
realism of models [9–13], which partly criticize the simplicity of physical models,
where pedestrians are treated as individuals, while social groups [11] and the influ-
ence of social norms are neglected [13]. Nevertheless, the physical approach aiming
to reduce models to simple interactions successfully describes multiple collective
phenomena observed in laboratory and field studies [14, 15]. These phenomena are
characterized by macroscopic effects in crowds which stem from the microscopic in-
teractions of pedestrians without needing external forcing in the system. Simple
models of self-driven agents can reproduce these self-organization using basic and
homogeneous interactions in discrete or continuous time and space [8, 16–20]. In-
cluding clogging at bottlenecks, lane formation in counter flow, stop-and-go waves
and counter flow at bottlenecks. Popular models build on Newtonian dynamics [16]
or use discrete cellular automata with specific transition rules [19] but many other
approaches exist [6, 8]. Velocity-based models gained popularity in recent years,
which neglect the inertia of pedestrians [18, 21, 22].

Other many-particle systems apart from pedestrian dynamics exhibit similar behav-
ior. For example the faster-is-slower effect [23] at bottlenecks sometimes observed in
pedestrian systems [1, 2, 24] (see [15] for the controversies surrounding this matter)
can also be observed in sheep herds [25], granular matter [26] and colloidal systems
[27]. The formation of lanes in counter flow [14, 28] can be observed in driven col-
loidal media [29, 30]. This illustrates how the pedestrian system can be partially
treated analogously to physical granular, colloidal and active matter systems. Sim-
ple self-driven systems can also exhibit self-ordered motion analogous to flocking
behavior divided by a phase transition [31] using simple rules.

One problem in the discussion of the origin of emergent phenomena is the challenge
of distinguishing physical effects from social psychological effects. The first part
of this thesis investigates one claim, wherein a bottleneck scenario with varying
geometries, the density near the entrance is affected, and lane formation in the
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corridors is observed [13, 32]. The analysis in Chapter 3 investigates this claim
using a simple model of self-driven particles similar to [18], which illustrates the
difficulty to distinguish self-organization phenomena caused by physical interactions
from phenomena caused by social norms. The results from this chapter have been
published in [33].

In the analysis of pedestrian systems, useful quantities from a physics and engi-
neering perspective to describe the dynamics are density, velocity, and flow. Often
studies focus on the macroscopic properties, taking the mean of the quantities over
space and time [8, 34]. Microscopic phenomena like lane formation [28, 35], cor-
relations in the velocity of pedestrians [2, 36] and position of the nearest neighbor
[37] in unidirectional flow have been investigated. Also sophisticated measures are
introduced that focus on microscopic interactions [38]. However, there is still po-
tential to utilize simple measures from solid-state physics and granular matter that
characterize the spatial structure of the system. These measures are introduced
to analyze the spatial structure of bottleneck flow scenarios of the two-dimensional
system. Especially important are the bond orientation factor Ψ6 4.17, the shape
factor 4.20 and the coordination number Nn in Section 4. First strives in this di-
rection have been made [39] analysing a force based model, though a more general
analysis of spatial structure in experimental data and an investigation of the way
model parameters affect the structure in the system have not been conducted until
now. The analysis shows that the model class, isotropy of interactions, noise in the
direction, and the strength of the interactions influence the dynamics and structure
in a bottleneck scenario. Even simple interactions of agents lead to rich behavior
in two-dimensional phase space and surprising ordering phenomena. The follow-
ing section introduces the observables commonly used in pedestrian dynamics more
thoroughly and discusses the mentioned emergent phenomena in more detail.

1.1 Pedestrian dynamics: empirical observations and

observables

There are multiple sources that give comprehensive reviews of pedestrian dynamics
[7, 8, 15, 34, 40]. Empirical observations in experiments or field studies in pedes-
trian dynamics have gained popularity during the last 30 years. The development of
efficient image processing and readily available hardware like camera systems make
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it possible to analyze large groups of pedestrians in field studies and controlled ex-
periments efficiently. Though the study of pedestrian dynamics is far older, the first
experiments are over 100 years old [41]. The systems can be examined in field stud-
ies or controlled experiments using volunteers as participants. Experimental studies
have the advantage of being able to control the parameters and to avoid outside
influences. The recent introduction of sophisticated sensors makes it also possible
to track the three-dimensional movement of the body [42] and the pressure acting on
the doors in an evacuation scenario [2]. However, it is not easy to estimate if people
behave differently in experimental setups compared to real-life situations. This is
the advantage of field studies where pedestrians are observed in a natural environ-
ment (e.g., at train stations or large-scale events). With the measured trajectories,
quantitative analysis of the pedestrian dynamics becomes possible. Three crucial
quantities studied are the pedestrian density ρ, velocity v, and the flow J. These
can be measured and calculated in multiple ways. The methods used to determine
the density ρ are discussed in detail in Chapter 3. A straightforward approach to
measure the flow is to set a boundary in the observed system and measure the time
gap ∆t = ti+1 − ti of consecutive pedestrians i and i+1 passing the boundary. The
flow of N pedestrians passing the boundary is then defined by

J =
1

⟨∆t⟩
, (1.1)

with ⟨∆t⟩ = tN+1−t1
N

= ∆t
N

. It is usually defined as a scalar quantity in relation to
the normal vector of the linear boundary. Analogously to fluid dynamics, the flow
can also be defined using the average speed v and density ρ of a pedestrian stream
passing through a corridor with width b

J = ρvb = Jsb, (1.2)

where Js = ρv is the hydrodynamic relation describing the specific flow of pedes-
trians per unit time and unit length. The relations between the quantities J , ρ,
and v are called the fundamental diagram. Its name already points to its impor-
tance and can be equivalently described as Js(ρ), v(Js), and v(ρ) because of the
hydrodynamic relation. The fundamental diagram is used to design facilities in
civil engineering [43–45] and in the context of modelling used to benchmark and fit
parameters [46, 47]. Measured fundamental diagrams vary widely, suggesting that
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cultural norms and population differences [48–50], gender [51], the specific situation
(e.g., uni- and multidirectional flow)[52, 53], short-range fluctuations [53] etc. could
have significant influence on the relation. There is a consensus that the speed of the
pedestrian decreases with increasing density and that there exists a density where
Js is maximal, which, together with the width b, defines the facility’s maximum
capacity. The density ρ where the capacity is reached is called the "critical density,"
though the term critical does not necessarily refer to its understanding in physics.
Below the critical density, the system is free-flowing, where pedestrians can move
with their desired velocity. Above the critical density, the system is in a congested
state, where the flow decreases with increasing density.
In a bottleneck in the free-flowing state, the incoming and outgoing flow are equal.
When the incoming flow exceeds the capacity, the system transitions into the con-
gested state, where the density in front of the bottleneck increases and is higher
compared to inside the bottleneck [54, 55]. The situation is illustrated in Figure
1.1. One important question, especially in building design, is how the bottlenecks’
capacity increases with increasing width w. When discussing this, it is crucial to
distinguish the pedestrians’ behavior in systems. Especially in dense situations, it
is important whether the pedestrians in the bottleneck are competitive or coopera-
tive. In a competitive scenario, pushing could be a strategy that some people use
to move quickly to their target, influencing the overall dynamics. Considering sce-
narios where this is not the case, older building codes assumed that the capacity of
a bottleneck increases step-wise when the width is sufficient for additional lanes to
form [56]. This was also supported by empirical studies [54, 57]. However, studies
investigating a larger number of bottleneck widths found that this is not the case,
and the capacity increases linearly with the width [58–60]. Other factors that can
influence the flow of a bottleneck is the length of the bottleneck, where the flow
decreases with increasing length [61, 62], obstacles in front of the bottleneck influ-
ence the evacuation time of sheep [25] but not pedestrians [1, 2]. The influence of
the bottleneck’s geometry is also minor [63], while an initial increased density can
increase the flow [64].

1.2 Self-organization in pedestrian dynamics

From a physics standpoint, the most interesting observations in pedestrian dynamics
are collective self-organization phenomena. These describe macroscopic phenomena
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Figure 1.1: Illustration of a free-flowing and congested bottleneck. The red arrows
mark the bottleneck width w.

caused by microscopic interactions in the system [40]. It should not be confused with
aggregated behavior [40] since collective motion emerges from spatial or temporal
synchronization of the system. Important phenomena in pedestrian dynamics that
were observed until now are summarized in this section.

Lane formation

Lane formation is an example of a microscopic ordering phenomenon in pedes-
trian dynamics. In counterflow, when pedestrians move in opposite directions of
each other, lanes form, which are elongated clusters moving in the same direction
[28, 35, 65]. Under certain conditions, it can also be observed in unidirectional flow
towards a bottleneck [13, 32]. Figure 1.2 illustrates this phenomenon in a counter-
flow experiment. In this scenario, lanes form dynamically where new ones appear,
and existing lanes disappear over time (see [66]). However, there are also cases where
static lanes can form, e.g., half of a corridor moves in one direction, and the other
half in the opposite direction [35]. In counterflow lanes form because they reduce
interactions with oncoming pedestrians, producing a more comfortable walking en-
vironment and increasing walking speed [35]. The phenomenon does not depend on
cultural preferences to move on one side but is influenced by it. The effect can also



Self-organization in pedestrian dynamics 17

be observed in situations where no preference for a walking side exists. Cultural
influences affect the kind of lanes formed and the order thereof.

Figure 1.2: Lane formation in a counter flow experiment. Screenshot from [35, 66].

The effect can be quantified using different methods. One way is to use the band
index introduced by Yamori [67], which calculates the ratio of pedestrians in lanes
and the total number of pedestrians. Transversal velocity profiles at fixed posi-
tions were introduced by Burstedde et al. in 2001 [68]. In Zhang et al. [35], the
Voronoi method to distinguish lanes is introduced. From colloidal systems driven by
an external field where this effect is also observed, the idea of the order parameter
ϕ = ⟨

∑N
j=1 ϕj⟩ [30, 69, 70] has been transferred to pedestrian dynamics. The vari-

able ϕj = 1 when the lateral distance to all other particles of the other type (i.e.,
moving in the opposite direction) is larger than a certain length scale, depending on
the density. Otherwise ϕj = 0. When the lanes are separated in an ideal AB con-
figuration, where A and B define the opposing movement directions, ϕ = 1 and in a
mixed state with no lanes ϕ = 0. Theoretical models predict a jamming transition
[71], where the counter flow stops in a gridlock. However, this is not observed in any
empirical study. The reason could be that the necessary densities are not reached
in experiments, from [72] it is known that the lower density limit for the occurrence
is larger than 3.5 m−2.
Similarly to counterflow, a multitude of collective patterns are observed at intersec-
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tions. For example, short-lived roundabouts can emerge. These are small detours in
the path that make the overall movement more time-efficient and "smoother" [34].

Stop-and-go waves

Stop-and-go waves are connected to density waves that describe the phenomenon
of quasiperiodic variations in the density in space and time. They can be observed
in dense corridors in experiments [73, 74] and in field studies of subway stations
[73]. The phenomenon describes a periodic phase of stop-and-go motion, hence
the name. It is similar to stop-and-go waves in vehicular traffic, where in single-
file motion, the density fluctuations move opposite to the movement direction. In
vehicular traffic, there is phase separation in standing, and fast-moving vehicles (with
a narrow transition layer), caused by the slow-to-start behavior of automobiles [75].
In contrast, in pedestrian motion, the phases are separated by standing and slow-
moving pedestrians, indicating a fundamental difference that is not yet understood.

Emergent phenomena at bottlenecks

The focus of this thesis lies on emergent phenomena at bottlenecks. As discussed
above, pedestrian movement through a bottleneck can be free-flowing below the
bottleneck’s capacity and in a congested state above the capacity. In the congested
state, multiple emergent phenomena are observed. Crucially, especially in emer-
gency situations, the emergence of jamming and clogging affects the dynamics.
In the congested state, because of the volume exclusion principle and the desire
of pedestrians to move through the exit, stable arches can appear that clog the
system. This phenomenon appears in a multitude of system, like granular matter
[76], sheep herds [25, 77], and colloidal systems [78]. Figure 1.3 illustrates clogging
in an experimental pedestrian study [79] and a granular system, they are studied
in multiple experiments [1, 2, 24, 59, 80, 81]. Arches that cause the clogging are
self-stabilizing structures when the forces come from one direction (e.g. granular
flow through a hopper under gravity). In this case, the flow can arrest indefinitely.
Changing the direction of the force can break an arch apart. In pedestrian systems,
people can break the arch through body movement and fluctuating forces, which
leads to temporal clogs. The same phenomena can be achieved in shaken granular
matter [82, 83]. It is especially relevant in evacuation situations where pedestrians
are competitive and highly motivated to leave a certain area. This can lead to the
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faster-is-slower effect, where the overall evacuation time increases with the ur-
gency of the pedestrians to leave the area (e.g., leaving an area quickly because the
fire alarm rings vs. leaving the area when fire and smoke are perceived). The effect
was first predicted theoretically [17]. It can be observed in experiments [1, 2, 24],
but the exact circumstances are not understood since there are empirical studies
where it is not observed [15, 84]. Its occurrence also depends on the calibration
of the model [85]. Though the effect exists in other systems as mentioned above
[25–27].
Another important phenomenon is the so-called zipper-effect. Hoogendoorn and
Daamen experimentally observed lane formation in a spatially enlarged bottleneck
[86] illustrated in Figure 1.4. The effect occurs in narrow bottlenecks where two
separate lanes are impossible to form because of the shoulder width. In this case,
a pedestrian in one lane overlaps with the neighboring lane, where two consecutive
pedestrians partially occupy the longitudinal gap in adjacent lanes, similar to a
zipper. Increasing the width of the bottleneck increases the lateral distance and
decreases the longitudinal gap. This configuration allows higher densities and results
in a linear increase of the capacity in contrast to a gradual increase if the lanes do not
overlap [87]. The zipper-effect is responsible for the linear increase of the bottleneck’s
capacity with width discussed in the introduction of this chapter.
In counterflow at a bottleneck where from both sides pedestrians try to pass (e.g.,
people exiting and entering a train station), oscillatory behavior can be observed
in high-density situations [7, 16, 34, 88]. The situation is illustrated in Figure
1.4. When one pedestrian is able to pass the bottleneck, other pedestrians that
want to pass in the same direction can follow, causing a stream of pedestrians that
walk through the bottleneck. After some time, the pressure from the other side
increases to the point that holds the stream of pedestrians, and the same phe-
nomenon occurs the other way around. In Figure 1.4 the string of pedestrians
passing the bottleneck belonging to either group A or B would, for example, look
like "BBBBBBAAAAAAAABBBBBAAA....". The effect can be replicated in
models of pedestrian dynamics [16, 18].

1.3 The role of psychology

When discussing psychological effects in pedestrian crowds, the notion of "panic"
is widely known and perceived as the cause of crowd disasters. Though there is no
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Figure 1.3: Top: Clog near the exit in an evacuation experiment [79]. Bottom:
Illustration of a granular clog in a hopper stabilized through the friction with the
hopper walls.
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Figure 1.4: Left: Illustration of the zipper-effect. The errors show the move-
ment direction. Right: Illustration of oscillations at a bottleneck with counterflow.
Group A, shown in blue, wants to move to the right, indicated by the blue arrow.
Group B wants to move to the left.

clear definition of "panic" in the literature, the idea behind the term is usually an
occurrence of irrational and asocial behavior when humans are confronted with a
dangerous, potentially life-threatening situation [3, 40, 89]. The widely held idea is
that the crowd turns from a rational state into a panicking state that causes disaster,
potential injuries and causalities. However, there is little evidence of "panic" in
crowd disasters [3, 89, 90], and the idea has been thoroughly challenged as it is
seldom observed [3]. Therefore, it is recommended to dispense with the term in the
context of crowd disasters as it is not factual and puts the blame on the victims.
The role of psychology in pedestrian dynamics is a point of discussion, especially
at the interface where physics base studies and studies based on social psychology
meet.

From a physics perspective, a crowd of pedestrians describe a collection of people
walking in the same space simultaneously that can be treated as self-driving inter-
acting particles. However, humans are intelligent beings with complex stimulus-
response mechanisms, perceiving their environment and reacting to it accordingly.
In social identity theory, the idea of the ’psychological’ crowd exists [11], which
describes a subgroup of the ’physical’ crowd where people in this group perceived
themselves as part of the group and distinguish between members and outsiders.
Studies show that this categorisation influences the dynamics of pedestrians [9–11].
An important psychological factor in pedestrian dynamics is the motivation and
competitiveness of pedestrians. Especially evacuation experiments with bottlenecks
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show in some instances the faster-is-slower effect when pushing of other participants
is allowed [1, 2] but can not be reproduced in other experiments [32, 84], where
pushing is not allowed. This points to the possibility that cooperative behavior vs.
competitive behavior could influence the dynamics of evacuations. Some studies
argue that social psychological aspects are important to describe natural walking
behavior [10, 12, 13] though there is few concrete empirical evidence distinguishing
situations where physics-based models are sufficient to explain empirical phenomena
and where they are not. In [13], it is claimed that certain observations near bottle-
necks with geometrical restrictions can not be explained without social psychology.
This claim is the subject of Chapter 3 of this thesis. Before discussing this matter,
the modeling of pedestrian system is introduced in detail.



Chapter 2

Modelling of self-driven agents

Modeling pedestrian dynamics is a diverse field using various approaches with in-
dividual advantages and disadvantages. The reason behind modeling pedestrian
systems is manifold. For engineering purposes, it is useful to simulate a wide variety
of scenarios where empirical studies would not be feasible or ethically too dangerous.
Models that capture a wide spectrum of interactions are useful for investigating these
scenarios in pedestrianized spaces’ design. From a physics perspective, apart from
the feasibility, modeling is useful to understand better the interactions in pedestrian
systems that lead to the emergent phenomena described in the previous section. In
this case, simple models are often interesting to investigate, to see what kind of
interactions can replicate empirically observed emergent phenomena. The choice of
a useful model depends on the situation and aim of the scenario studied. Over the
years a large variety of models, model classes and subclasses have been introduced
[6–8, 40]. The characteristics of pedestrian dynamics are usually divided into three
categories.
The strategic level contains the activities a pedestrian would like to perform and
the order thereof. On the tactical level, the short-term decision-making of pedestri-
ans, e.g., the schedule of the activities, route choice, taking obstacles into account
and densities, etc., is accounted for. The third level is the operational level, which
describes the inner workings of the walking behavior of pedestrians. This contains
the real-time decisions pedestrians make to avoid collisions with obstacles or other
pedestrians. While the first two categories are considered extrinsic and need the
description of sociological and psychological principles, the operational category can
be described through physical granular models, usually treating pedestrians as self-
driven interacting particles similar to active matter. In this context the "particles"
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are referred to as agents [40]. An agent is usually a two-dimensional representation
of a pedestrian by vertical projection onto the plane in which they move (e.g., as
a disc, ellipse, or occupying a discretized space). They interact with other agents
nearby and their environment and can inhibit internal states that characterize their
behavior. The agents’ interactions with their environment or other agents are usually
"simple" because few basic mechanisms are utilized to describe them. An extension
to "intelligent" agents are called multi-agent systems [91, 92].

Agent models are a microscopic description of pedestrian dynamics, as they rep-
resent every individual separately and are straightforward in introducing hetero-
geneities in the agent behavior. Models that forego the individual agent ansatz are
macroscopic models, where instead of the individual description of pedestrians by
agents, the system is characterized by space and time averages of the observables of
interest, like the velocity, density, and flow analogous to fluid dynamics in physics.
Examples are [93–99] which are developed using principles from hydrodynamics and
gas-kinetic theory, and led to the introduction of a fluid-dynamics theory of pedes-
trian flow [94]. Even though microscopic models are more popular because of their
precision (at the cost of computational expanse), macroscopic models are still an
active area of research [98, 100, 101], especially in applied mathematics

Between macroscopic and microscopic models, mesoscopic models describe agents
individually but use the macroscopic averages to model the interactions. They try
to combine the computational lower cost of macroscopic models while still inhibiting
the heterogeneity of pedestrian interactions [102].

Another categorization is discrete vs. continuous models. The former comprises
models that discretize the basic variables (space, time, and state variables like ve-
locity). In a discrete model, the space can be divided into cells that can be empty
or inhibited by one or more agents or an obstacle like a wall. The velocity allows
the agent to move a certain amount of the discrete cell in a discrete-time step that
can be realized by moving all agents simultaneously. This approach can be realized
using cellular automata [7]. In the continuous approach, the basic variables are real
numbers where the change in time, space, and state variables can be arbitrarily
small.

Both macroscopic and microscopic models can be discrete [19, 101, 103], continuous
[16, 18, 93, 98]. Continuous and discrete models are not mutually exclusive as a
mixture of both properties can be used in a model [20]

The dynamics of the models can be either deterministic or stochastic. In determin-
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Figure 2.1: Illustration of the different model categories and how they relate to
each other. Categories marked by the blue path are especially relevant to this thesis.

istic models, the system’s future states are uniquely determined by the present. In
stochastic models, on the other hand, the future is characterized by a probability
distribution, i.e., the agent’s behavior can differ in identical configurations. Usually,
the probabilities for a certain action depend on the current state of the system (e.g.,
position of neighbors, density, etc.), which represents the uncertainties in pedestrian
motion. Stochastic models are often more realistic than their deterministic coun-
terparts. This kind of stochasticity is referred to as intrinsic, not to be confused
with external "noise" that can be added onto a deterministic system’s variables,
e.g., onto the trajectories. Adding noise can circumvent the formation of undesir-
able and unrealistic configurations, like completely blocked states. The added noise
does not change the overall behavior significantly, while for models with intrinsic
stochasticity, the dynamics vary largely from the deterministic limit.

The above discussion of the microscopic models has already pointed out many differ-
ent design approaches. These can be mainly categorized into three different model
types. In rule-based or decision-based models, the dynamics of the agents are deter-
mined by a set of rules which determine the agent’s behavior under certain condi-
tions, e.g., the position of neighbors and obstacles, the desired direction of motion,
etc. The rules of the model characterize the intrinsic properties of pedestrians, which
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can be justified by psychology. The other two categories are distinguished from the
rule-based model but are related. Force- or velocity-based models determine the
motion of the agent through the integration of the present state variable (accelera-
tion or velocity, respectively); they are characterized by second-order and first-order
differential equations. Especially force-based models are popular since they utilize
Newtonian physics and are seen as a close analogy to other complex many-particle
systems, like granular or colloidal matter. The interactions in these models are de-
termined by forces exerted by surrounding agents or obstacles. These can be classical
contact forces like friction and compression and virtual forces that deter agents from
moving too close to each other, modeling the desire for personal space. Interactions
in velocity-based models usually adjust the speed of the agents directly without the
need to accelerate in relation to their environment. In a simple model, the speed can
increase linearly with the distance to other agents or obstacles in the way. To find a
way around obstacles in their path, the agent’s direction can be influenced by their
presence, aiming to optimize the trajectory to their target regarding their speed and
the distance of the path. In contrast to the rule-based models, which emphasize the
intrinsic decision-making of the agents, velocity- and force-based models emphasize
the effect of extrinsic properties. An important property of the model types inhibit
is the concept of volume exclusion. This is the concept that two pedestrians cannot
inhibit the same space simultaneously. The models can be build heuristically or
via first principles. The model inhibits several variables in a heuristic approach to
describe the agents’ interactions. The variables are fitted to empirical data, while
the dynamics are derived from fundamental postulates in first-principle models. The
approaches are often not clearly distinguished. An overview of the different concepts
and how they relate to each other is illustrated in Figure 2.1. The blue boxes mark
model categories that are especially important in the research of this work.
In the following, the model classes are discussed in more detail, and specific models
related to the work in the dissertation are highlighted to give an overview of the
subject.

2.1 Force-based models

Force-based models (also called acceleration-based) describe the dynamics of pedes-
trian motion via the superposition of external forces acting on the agent. Math-
ematically they constitute ordinary second-order differential equations. These can
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be solved numerically in computer simulations using e.g., the Euler or Runge-Kutta
method. Force-based models are very popular because of their intuitive description
from a physics perspective, where especially methods from molecular dynamics can
be utilized to describe the complex dynamics of pedestrian crowds. The dynamics
are determined by multiple forces acting on the agent; most importantly, the force
accelerating the agent toward its desired direction and the repulsion force exerted
by other agents and the environment to avoid collisions. The acceleration towards
the target usually takes an exponential form, while the repulsion decreases with
increasing distance to be object or agent exerting it. The repulsion acts as a soft
form of volume exclusion. It is still possible for agents to overlap in contrast to
decision-based models (see Section 2.2). The first force-based model was introduced
in 1975 by Hirai [104]. Other examples of the model are the general centrifugal force
model [105], and most famously, the social force model [16].

Social Force Model

The social force model is one of pedestrian dynamics’ most studied operational
models. Using a second-order differential equation, the model inhibits three forces
to describe the dynamics and interactions on an agent i in the system.

d2ri(t)

dt2
= fdrivi + f soci + fphysi . (2.1)

The force fdrivi is the agent driving force responsible for the desire of the agent to
move to a specific target location. The so-called social force f soci describes the desire
of humans to not be too close to other humans through repulsion but can also be
attractive when describing grouping behavior. The physical forces fphysi are contact
forces from physics like friction and restoring force when an agent is compressed.
According to [106], the velocity increases exponentially towards a desired velocity.
This behavior is described by the following force:

fdrivi = mi
v0
i − vi

τi
, (2.2)

where v0
i = v0i ê

0
i is the desired velocity. It can be decomposed into the desired speed

v0i and the desired direction ê0i = (r0 − ri)/|r0 − ri| with r0 the target location. The
factor τ is the relaxation time of an agent to reach its desired velocity. The social
force f soci can be decomposed into the social interaction of agent i with agent j, fi,j



28 Modelling of self-driven agents

and agent i with the wall or other obstacles w, fi,w. Here, the case of a disc-shaped
agent with radius ri and repulsive interaction

fi,j = −∇ri,jV (∆ri,j), (2.3a)

fi,w = −∇ri,wU(∆ri,w) (2.3b)

is discussed, where ∆ri,j = |ri − ri| and di,j = ri + rj. Analogous ∆ri,w = |ri −
rw|, with V (r) and U(r) monotonic decreasing potential functions. In the work
of Helbing, Farkas, and Vicsek concerning evacuation dynamics [23] exponential
repulsion functions realize the interaction forces

fi,j = −Ai exp ((∆ri,j − di,j)/Bi) êi,j, (2.4a)

fi,w = −Ci exp ((∆ri,w − ri)/Di) êi,w. (2.4b)

The parameters Ai and Ci describe the interaction strength of agent i with agent j
and a wall or obstacle, respectively. Bi and Di quantify the interaction length, and
the vector êi,k = (ri − rk)/|ri − rk|. In the case of a continuous wall, the point rw is
the closest point to the agent. The physical forces fphysi are treated similarly. The
social force can be direction-dependent, considering the field of view of an agent.
Neighboring agents that are outside the field of view angle 2ϕ have a weaker influence
in terms of the social force by multiplying the force with a weight

ω(ê, f) =

{
1 if ê · f ≥ |f | cosϕ
c if otherwise,

(2.5)

with 0 ≤ c ≤ 1 and · the scalar product, which can be factorized onto the respective
forces

f soci = ωf soci,0 . (2.6)

The physical forces that influence the dynamics, namely friction and the restoring
force, are contact forces, i.e., they only occur when agents overlap. These forces
are introduced to avoid overlap of agents in high-density situations and give stricter
restrictions to ensure volume exclusion [17, 23]. The restoring force is also called
"body force" and defined as kΘ(∆ri,j − di,j)êi,j, which is simply Hooke’s Law with
the spring constant k and the step function Θ(x) = 1 for x < 0 and nill otherwise.
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The second physical force is the "sliding friction force" κΘ(∆ri,j − di,j)∆v
t
j,iê

t
i,j

acting on the relative tangential motion if pedestrian i and j are in contact. The
tangential vector is defined as êti,j = (−ê2i,j, ê1i,j), the tangential velocity difference as
∆vtj,i = (vj − vi)ê

t
i,j and the friction coefficient κ. Combining the social force with

the physical forces for the agent-agent and agent-wall interactions yields

fi,j = [Ai exp ((∆ri,j − di,j)/Bi) + kΘ(∆ri,j − di,j)] êi,j + κΘ(∆ri,j − di,j)∆v
t
j,iê

t
i,j,

(2.7a)

fi,w = [Ci exp ((∆ri,w − di,w)/Di) + kΘ(∆ri,w − di,w)] êi,w + κΘ(∆ri,w − di,w)∆v
t
w,iê

t
i,w.

(2.7b)

The differential equation of the social force model (SFM) (2.1) can be rewritten to

mi
d2ri
dt2

= mi
v0
i − vi

τi
+
∑
j ̸=i

ω(êi,j, fi,j)fi,j +
∑
w

ω(êi,w, fi,w)fi,w. (2.8)

The original model [16] (with no physical interaction) is successful in qualitatively
describing lane formation and oscillation in counterflow at bottlenecks. In high
density evacuation simulations the version containing physical forces [23] predicts
the faster-is-slower effect. Over the years, several alternatives and extended versions
of the SFM have been introduced. A recent comprehensive summary by Chen et al.
can be found in [107].

Shortcomings of force-based models

Force-based models and especially the SFM have several shortcomings inherent to
the approach that produce undesirable and unrealistic behavior. One crucial feature
a model should inhibit is that it should fit the fundamental diagram [62]. The SFM,
in its standard form described above, seems unable to reproduce the fundamental
diagram in a corridor with the unidirectional flow and single file motion [108–110].
Only with adjustments and new concepts to the model can it reproduce realistic
results [108, 109, 111]. However, this is not a problem unique to the SFM since it is
generally challenging for models to reproduce fundamental diagrams and many mod-
els need to be modified [112–114]. Other issues unique to the force-based approach
stem from the Newtonian treatment of the system. An agent’s inherent inertia is
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not well suited to model a pedestrian. Pedestrian motion can be non-smooth in
space due to the high friction with the ground while walking. They can stop almost
instantly, which does not fit the description of a particle with inertia. Additionally,
Newton’s third law does not apply to pedestrian dynamics. Especially for the so-
cial force, the assumption that the pedestrians exert an equal force in the opposite
direction is unrealistic, as a pedestrian only has limited capability to sense other
pedestrians outside their field of view. Though this can be adjusted through the
weight, ω (2.5), the general assumption of Newton’s third law is still unrealistic. The
fitted parameters in the SFM [17] are unrealistic. For example the effective range
of the social force in equation (2.4a) is rather short with Bi = 0.08 m. In [115] the
parameters are set to more realistic values which lead to additional modifications
of the model to produce realistic behaviour. One of the major problems, again due
to inertia, is oscillation and backward motion of the agents. In this case oscillating
describes forward and backswords motion in respect to the desired moving direction
when approaching other agents [116]. The issue of oscillation is inherent to the
model in single file motion [117, 118]. It can be mitigated by reducing the repulsive
force, but this leads to overlapping of the agents, violating the volume exclusion
principle. In [105], it is shown that there is a narrow parameter space where both
effects can be minor but non-zero. Other studies try to fix these problems by intro-
ducing new concepts to the model that restrict the agents’ motion either through
collision detection [119] or not allowing oscillation by setting the velocity to zero
[16, 120]. However, these ideas add extra complexity to the model known for its
simplicity. The superposition of the different forces (driving force, social force and
physical) can lead to excessively high velocities or backwards motion away from the
target area, especially in high density situations [121]. But even in low density situ-
ations where a pedestrian desire is comprised of multiple targets, the superposition
of the forces could inhibit the agent to reach any of its goals. A closer analysis
of the numerical properties of the SFM done by Köster et al. [122] revealed that
there are inherent numerical problems in the model that can only be overcome by
further alterations, which led to the introduction of the mollified SFM. It success-
fully improves the dynamics by mitigating oscillation and collision while avoiding
numerical discontinuities. The problems in force-based models like oscillation, over-
lap and superposition of forces are inherent to the approach. Numerical problems
like instabilities and the high computational cost add to it. Overall the numerous
issues of force-based models led to the development of new continuous models using
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a non-force-based Ansatz, like velocity-based models discussed below.

2.2 Cellular automata models

Cellular Automata Models (CA) are a popular and widely studied class of decision-
based models, discrete in time, space, and state variables. They are studied not
only in the context of pedestrian dynamics but in general for transport phenomena,
for example, in biology [123] or vehicular traffic [75, 124]. The origin of CA stems
from statistical mechanics where the one-dimensional ASEP [7] is an important
model system to study non-equilibrium phenomena and phase transitions. In vehic-
ular traffic, the Nagel-Schreckenberg model for Autobahn traffic [124] gained wide
popularity even outside the scientific community because of its ability to produce
stop-and-go waves ("traffic jam out of nowhere"). The advantages of this modeling
approach are that they are computationally inexpensive, and straight forward to
implement rules into the system that are intuitive an clear to define in the discrete
system, which makes them naturally decision-based. CA in pedestrian dynamics
is a two-dimensional extension of the ASEP. The general principle of a CA is to
discretize the space by separating it into cells, usually represented as squares (see
Figure 2.2 A and B), but other patterns like hexagonal cells are also used (see Fig-
ure 2.2 C). The cell size is derived from the maximal density a pedestrian system
exhibits and is usually set to 0.4 × 0.4 m for square cells. An agent can occupy a
cell on the grid and traverse to neighboring cells in discrete time steps. Which cells
are traversable by a pedestrian depends on the definition of the neighborhood. In
the Moore neighborhood, an agent can move to all neighboring cells that share an
edge or a corner (Figure 2.2 A). In the more popular Von-Neumann neighborhood,
only the neighbors that share in edge are accessible (Figure 2.2 B). The definition of
traversable neighboring cells in the hexagonal neighborhood is straightforward since
all neighbors share an edge and are equidistant (Figure 2.2 C). The volume exclu-
sion principle is imposed by making a cell occupied by an agent inaccessible to other
agents. CA are usually intrinsically stochastic. The cell an agent at time t traverses
to in the time step t+1 is chosen from a probability distribution (Figure 2.2 B). The
rules of the model determine the probability for a target cell. Important factors are
the desired direction, interactions with other agents and the environment (walls, ob-
stacles, doors, etc.). In the deterministic limit of a CA, only one neighboring cell is
accessible with probability p = 1 if it is unoccupied. The discrete-time dynamics are
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realized by a parallel or synchronous update, where all agents move simultaneously
or random sequential update, where a randomly chosen subset of agents move. The
movement of an Agent is not necessarily restricted to the nearest neighbors. The
integer velocity of the agent can, in some models, determine the number of cells an
agent can jump. For example, in the first pedestrian CA model by Blue and Adler,
this is the case [125]. The model is a variation of the Nagel-Schreckenberg model
using a multilane structure as its geometry. The rules of the model determine the
preference of the lane an agent takes, the desire to change lanes, and the agent’s
velocity.

Figure 2.2: (A) Moore neighborhood, (B) Von-Neumann neighborhood, (C)
Hexagonal neighborhood.

Floor Field Model

A more sophisticated and popular version of a CA in pedestrian dynamics is the
Floor Field Model [19, 68, 126] especially for evacuation dynamics [127, 128]. The
model is built on a square lattice using a Von-Neumann or Moore neighborhood.
It introduces a dynamical field that determines the transition probabilities of the
cells, which contrasts previous approaches with fixed transition probabilities. The
dynamical field encodes interactions between agents using the bio-concept of chemo-
taxis [129]. The idea is that, similar to some insects (like ants) who use chemotaxis
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as means to communicate paths to resources (e.g., food, water, building material),
pedestrians leave a virtual trace. The virtual trace represents an abstract concept
externalizing the path a pedestrian has in their mind. In praxis, an agent in the
model creates a virtual particle ("pheromone") at the formerly occupied cell (i, j)
when traversing to a new cell. Other agents can detect the "pheromones" and re-
act accordingly (e.g., be attracted to it, modeling an approach where agents follow
each other). The advantage of this approach is that the interactions grow linearly
with the number of agents in the system and can be calculated locally, which makes
it computable with few resources. The number of virtual particles are stored in
the dynamical floor-field Di,j, which decay over time. Additional to the dynamic
floor-field, a static floor-field Si,j determines the interaction of the agents with their
environment (walls, obstacles, etc.) and the desired direction. The sense of direction
is realized by increasing the field with distance r to the target area. Walls and other
obstacles could have a repulsive effect. As the name suggests, the static floor-field
is time-independent and does not depend on the number or spatial distribution of
the agents. Using the concepts of the dynamic floor-field, the static floor-field, and
volume exclusion, the transition probability is defined as

pi,j = N exp (kDDi,j) exp (kSSi,j) (1− ni,j)ξi,j, (2.9)

where N is a normalization constant so that
∑

⟨i,j⟩ pi,j = 1. The factor ni,j = 0, 1

counts the number of agents in a cell. Because of the exclusion principle, the number
is limited to one. This is ensured by the factor (1− ni,j). The factor ξi,j determines
if an obstacle fills a cell. When ξi,j = 0, The cell is occupied by an obstacle like a
wall and excluded from the available cells. If the cell is available for agents than
ξi,j = 1. The coupling constant of the dynamical floor-field kD and the static floor-
field kS determines the relative influence of the respective field. The coupling has
a major influence on the dynamics, and the respective strengths of the coupling
make it possible to simulate different situations. When the coupling kS to the
static field is strong, agents will prefer the shortest path to the exit. This is the
preferred behavior in non-emergency situations. In emergencies, pedestrians follow
other pedestrians to the exit, which corresponds in the model to strong coupling
to the dynamic field kD. The model has multiple further extensions and variations
[46, 126, 128, 130–133]. One extension that is important for evacuation dynamics
is the idea of a friction parameter [128]. Because of the parallel update, situations
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exist where multiple agents try to enter the same cell simultaneously. In the basic
model, this is solved by choosing one agent randomly according to their relative
probability of entering the cell. This problem can be avoided by using sequential
instead of parallel updates, but this introduces the problem of ambiguity in the time
scale of the model. To circumvent this and embrace the conflict as an important
part of the dynamics [134], the friction parameter µ ∈ [0, 1] is introduced. It defines
the probability that no agent is allowed to enter the cell when a conflict arises
(see Figure 2.3). Especially in evacuation dynamics at bottlenecks, the friction
parameter can reproduce clogging. It can be interpreted as the willingness of the
agents to cooperate. Most conflicts can be resolved if µ is small and the dynamics
are not inhibited. When µ is large, conflicts are often unresolved, inhibiting the
dynamics and increasing the probability of clogs near a bottleneck, where conflicts
are common. This local interaction influences macroscopic measures, like the flow
and evacuation time [128].

Figure 2.3: Illustration of the effect of the friction parameter µ.

2.3 Velocity-based models

A recently more popular approach is velocity-based models (VB). These models are
inspired by robotics and techniques from video games, where the change in velocity
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is instant, neglecting the effects of inertia prominent in force-based models and the
influence of an implicit reaction time. This is useful in robotics since light robots
can almost instantly change their velocity and direction with sufficient friction. The
same assumption can be made about pedestrians since a person can stop their motion
in one step when moving at average walking speeds. In the work of Maury et al.
[135], a framework for VB models, they include volume exclusion and collision-free
properties through constraints in the velocity. The concept of the VB approach is to
model pedestrians as agents with a visual input interacting locally with neighboring
agents. This is described mathematically by a first order differential equation

dri
dt

= V((rj − ri,vj), j ∈ Ni), (2.10)

expressing the dynamics of agent i via the velocity function V(.) and its arguments,
the relative position rj − ri and the neighbors velocities vj in the set of interacting
agents Nj. The first VB models are velocity obstacle models [136]. The agents in the
model minimize the deviation from their desired velocity v0 under the condition of
collision avoidance. This is reached by excluding the space represented by velocity
cones V O(i) from the space of allowed velocities, which would lead to a collision,
assuming the velocity of all agents in the system stays constant. This describes an
optimization problem, where the velocity of agent i is determined by

Vi = arg min
v/∈V O(i)

|v − v0|. (2.11)

One problem of velocity obstacle models is oscillations in the velocity direction called
the ping pong effect. This effect occurs when for two neighboring pedestrians i and
j, the velocity of pedestrian i depends on j and the velocity of j on i. The recipro-
cal velocity obstacle model (RVO) suppresses this problem by taking the reciprocal
relationship of velocity optimization into account (i.e., agent i knows that agent j
optimizes the velocity in the same way and vice versa) [137]. The extension to the
model poses a new problem because hardcore volume exclusion can be violated. The
most popular variant of this model is called the optimal reciprocal collision avoid-
ance (ORCA), which extends the model to ensure volume exclusion and collision
avoidance [138].
Another kind of VB decomposes the velocity vector into its speed V and direction
ê component
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dri
dt

= V ((rj − ri,vj), j ∈ Ni) ê((rj − ri,vj), j ∈ Ni). (2.12)

On example is the synthetic-vision-based steering model [139]. The model central in
this thesis is the collision-free speed model [18] explained in detail in the following
section.

Collision-free speed model (CSM)

The collision-free speed model (CSM) introduced by Tordeux et al. [18] is a velocity-
based model without overlapping agents (therefore collision-free). It is introduced as
a model with minimal interactions that can reproduce several emergent phenomena
observed in empirical studies, such as lane formation in counterflow and intermittent
bottleneck flow. The model does not exhibit the problems encountered in its force-
based counterparts, such as oscillation and agent overlap. Its success led to several
studies extending the model to successfully describe a broader range of scenarios,
like the jamming transition at bottleneck flow, the density near a bottleneck, and
better fits to the fundamental diagram in 1D and 2D motion [21, 22, 140].
The model has two main components, the optimal speed function V (si(xi,xj, ...))

and the movement direction of the agent êi(xi,xj, ...), with xi the position of agent
i. The velocity of agent i is then calculated

vi = V (si(xi,xj, ...)) · êi. (2.13)

The function V (si) is defined as

V (si) = min{v0,max{0, (si − l)/T}} . (2.14)

The velocity of the agent i is determined by the diameter of the agent l, the minimum
spacing si, the desired velocity v0 and the gradient factor T . The minimum spacing
is defined as

si = min
j∈Ji

si,j. (2.15)

The set Ji contains all agents in the headway of agent i

Ji = {j, ei · ei,j ≤ 0 ∧ |e⊥i · ei,j| < l/si,j}. (2.16)

The vector e⊥i is perpendicular to ei. Figure 2.4 A illustrates the set Ji.
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Figure 2.4: (A) Illustration of the CSM. Agents that overlap with the grey area
are in the set Ji. (B) Example of a deadlock situation and the interaction angle
Θ. (C) Examples for the speed function (2.14) for different slope factors T in s. D
Illustration of the floor-field F (x) with wall avoidance.

The direction ei is determined by two components, the desired direction e0 of agent
i and an exponential repulsive interaction of agent i with all neighbors

êi(xi,xj, ...) =
ê0 +

∑
j ̸=iR(si,j)êi,j

N
(2.17)

with repulsive function R(s) = ai exp((l − s)/di) and N a normalization constant
setting |êi| = 1. The repulsion function is calibrated by the repulsion strength ai ≥ 0

and the repulsion length di > 0. The desired direction ê0 is determined by a strategy
that the agents apply to reach their target. There are a multitude of strategies. In
this work the desired direction is determined by a floor field [126]. In this case the
continuous floor field consists of two parts which are implemented into JuPedSim.



38 Modelling of self-driven agents

The quickest way to the exit is determined by the "Eikonal equation" [95]

|∇c(x)| = F (x), x ∈ Ω, c|δΩ = 0. (2.18)

It solved on the spatial domain Ω, with δΩ the target domain.
The speed of a particle v = 1/F (x) is determined by the slowness field F (x). The
time-cost to the target domain is determined by the function c(x). Near the walls,
the slowness field decreases linearly with distance, so agents move away from the wall
at proximity. The minimal value of the wall avoidance is 0 and the wall avoidance
distance dw is set to 0.25 m. For more details see [141, 142]. An example of a
floor field is illustrated in Figure 2.4 D. It can happen that the wall avoidance is
not sufficient to hinder the agents from leaving the geometry through a wall. In
this case, if an agent crosses a wall in the next time step, it is blocked from doing
so by not allowing it to take the step. The resolution of the floor field is set to
∆h = 0.01 m.

Stochastic collision-free speed model (SCSM)

A stochastic version of the collision-free speed model (SCSM) is deployed in parts
of this thesis. When considering the parameters of the exponential repulsion (2.17),
because of the collision-free property of the model [18], agents can get into a dead-
lock, setting their speed to 0 (Figure 2.4 B). This problem can be solved by adding
a white noise term to the desired direction, which also captures the imperfect choice
of direction:

êi =
ê0 + ζ

N
. (2.19)

ê0 the direction of the floor field and ζ a random direction vector. Both components
of ζ are determined by a normal distribution with zero mean and standard deviation
σ. The factor N normalizes the vector êi.

Motivation in CSM and SCSM

The motivation is an important factor in pedestrian dynamics especially in the
context of bottlenecks, where depending on the motivation the dynamics can signif-
icantly differ [1, 2, 32, 80]. In both the CSM and SCSM, the slope factor Ti is an
essential parameter to model the effect of motivation. In the simulations conducted
for this work, all agents are implemented with a homogeneous slope factor Ti = T
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for all agents i. This assumption is reasonable for a comparison with empirical data,
since the experiments are conducted with a rather homogenous group of participants
(e.g. students or soldiers). The general notion is that highly motivated pedestrians
jostle into any available gap in their way to try to minimize their distance to the
bottleneck as quickly as possible. This corresponds to a smaller value of T , while
pedestrians with low motivation keep more distant and leave gaps open, realized by
a larger value for T . Figure 2.4 C represents the speed function (2.14) for several
values of T . The slope factor T controls at what distance agent i responds to the
nearest neighbor in its path (i.e. a neighbor agent j that satisfies (2.15)) and changes
the speed as a function of the distance between agent i and j, with a constant slope
that depends on the value of T . In the limit T → 0, the speed function reduces
simply to volume exclusion, with an agent moving at its desired speed even if the
distance to its neighbor is small. In the event of an imminent collision with an agent,
the velocity is instantly set to 0. Additionally in the CSM the the Repulsion R(s) is
considered. It affects the direction of an agent depending on the surrounding agents
(6.1), which should be discussed concerning the effects of motivation on a system. In
this case the idea is that highly motivated agents will react at a shorter distance from
their neighbors to adjust their path. In turn a higher motivation corresponds to a
lower value of the repulsion length di, while a low motivation is modelled by a larger
value of di, which is again homogenous di = d for all agents i. The consequence is
that a highly motivated agent continue its desired path longer in presence of other
agents to minimize the distance to its destination. The exponential repulsion R(s)

also directly affects the system’s density. This fact is discussed in detail in Section
6.1.

2.4 Self-organization in models

To summarize the successful description of the self-organization phenomena dis-
cussed in Section 1.2 in theoretical models: multiple models can reproduce lane
formation in counterflow e.g. the floor-field model [143], SFM [144], CSM [18, 22]
and other models [20, 144], However the phenomenon is not fully understood. The
lanes formed in models are usually rather static compared with dynamical lane for-
mation in empirical studies [16, 126]. The systems also jam at rather low densities.
This can be improved upon when including anticipation of the agents to interacting
with neighbors in the system [22, 131, 145]. In these models, the agents predict
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the movement of other agents and adapt their behavior accordingly. At bottle-
necks, lattice gas models predict a phase transition between the free-flowing and
congested state [146]. The faster-is-slower effect occurs in the SFM [17] and the
Floor-Field model [128] with friction. Counterflow at the bottleneck is reproduced
in the SFM [16] and the CSM [18]. Stop and go waves are not observed in the
SFM [110, 147, 148]. Adjustments to the velocity [110, 149, 150] or the addition
of inhomogeneities [151, 152] need to be considered to reproduce this effect. Other
examples that can reproduce this phenomenon are a stochastic velocity-based model
[153], a semi-continuous and discrete model [20], macroscopic models [154]. A gen-
eral problem in pedestrian simulations is the tendency to jam, as mentioned above,
in bi-directional flow but also at a bottleneck [140]. Especially deterministic models
can reach unrealistic jammed or frozen states where the system stays indefinitely
[126, 131, 140]. Adding noise on the direction an agent chooses can reduce this
problem (see Chapter 6). However, in bi-derectional flow this increased noise can
freeze the system [155].



Chapter 3

Pedestrian bottleneck:
self-organization phenomena

In Section 1.2, multiple self-organization phenomena at bottlenecks are discussed.
This section continues the analysis of a specific self-organization phenomenon ob-
served in recent studies [13, 32]. To reiterate, bottlenecks are one of the most
important scenarios in crowd motion. They occur in a wide range of spaces and
are impossible to avoid altogether. For example, the entrance to venues needs to
be controlled, which can only be achieved by locally restricting the flow into it.
These restrictions cause increased densities near the entrance when the motivation
in the crowd is high to enter as fast as possible (e.g., when there is a restricted
number of spaces close to the stage). The motivation in this scenario is a crucial
factor as the dynamics differ significantly between low motivation in a crowd (e.g.,
students entering a lecture hall on a Monday morning) or high motivation in the
scenario of a popular concert. In bottleneck experiments with an unrestricted space
in front of a corridor, the density in high-motivation runs increases significantly, and
a collective swaying motion perpendicular to the desired direction towards the bot-
tleneck can be observed [1]. The safety in these situations can be improved by using
specific geometrical restrictions that are sometimes employed in the entrance area
[13]. In 2013 experiments were performed where the space leading to the bottleneck
was altered between two different geometries. The study [13] investigates the data
gained in the context of social norms and rules of conduct humans follow in this
scenario, depending on their environment. The two different geometries were a wide
corridor with no restrictions for the participants and a narrow corridor with a 90◦

turn leading into the bottleneck. The situation is illustrated in Figure 3.1. In the
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Figure 3.1: Photo of the experiment modified from [13]. On the top is the corridor
setup, while on the bottom, the unrestricted setup is presented.
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experiment, the participants were told to enter a venue through a bottleneck with
high motivation because they want to have a good view, and the number of places
are restricted. Initially, they were distributed loosely to ensure a low density at the
start of the experiment.
Surprisingly the narrow corridor setup has a significantly lower density near the bot-
tleneck compared to the wide area, even though in the wider setup, the pedestrians
have more space to distribute. This fact is illustrated in Figure 3.2 A and B. Panel A
shows the trajectories of every participant and the measurement area for the density
in the red square. In the wide corridor, the participants form a semicircle in front
of the bottleneck. The density for the unrestricted setup and the corridor in the
measurement area are depicted in panel B. In the unrestricted setup, the density ρ
1 is consistently higher by a factor of about 1.8. In this case, participants fill gaps
quickly, leading to pushing behavior, which is less observed in the corridor.
The hypothesis in the study [13] is that social norms affect the behavior of the
participants in different environments. The idea is that the narrow corridor triggers
a different behavior in the participants that leads to them queuing up to the entrance,
which would also cause the lane formation observed in Panel A of Figure 3.2 in the
narrow corridor. However, the data from the experiment is insufficient to make a
definite statement about this claim.
A new experimental setup with a simplified geometry of a variable straight corridor
(see Figure 3.2 C) was conducted in 2018 [32]. Additional to the simplified geometry,
motivation was introduced as a variable. It was modulated by describing different
scenarios. In the low motivation runs, the participants were told that enough spaces
are in the venue for a good view. In the high-motivation runs, they were told that
only a restricted number of places have a good view, and they want to get one of
those. The influence of the corridor width was investigated by varying it between
b = 1.2m to b = 5.6m in ∆b = 1.1m steps. For the analysis, the density and flow are
measured in the area specified in Figure 3.2 C. The main results from the experiments
are discussed in detail below. For a short summary: the increase in corridor width
increases the density in the measurement area monotonously for both motivations.
High-motivation runs have a consistently higher density than low-motivation runs.
The participants were asked to fill out a questionnaire to investigate the influence of
social norms. The results cast doubt on the relevance of social norms to explain the
increase in density for a given motivation since social behavior, like queuing norms,

1The density ρ is calculated via the Voronoi method defined in Section 3.1.
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Figure 3.2: (A) Cumulative trajectories from the experiments [13] for both corridor
geometries. (B) The pedestrian density measured in the area marked by the red
rectangle in A. (C) The geometry analogous to the experiments [32] used in the
simulations with the area to measure the density ρ marked by the blue square and
the border to measure the flow j marked by the red line. Panel A and B are adapted
from [13].

could not be detected. However, a theoretical study utilizing simulations of a cellular
automata model hints at a physical explanation for the density increase [101]. The
cellular automata model has limited spatial resolution due to its discrete nature. In
the following, the stochastic collision-free speed model (SCSM, see Section 2.3) is
employed to simulate the situation investigated in [32] with varying corridor width
using the geometry in Figure 3.2 C.
The SCSM’s simple interactions and continuous nature make it a suitable candi-
date to investigate the scenario. Recreating the observed effects of density increase
and lane formation in such a basic model is a strong indicator that social norms
are not necessary to explain these effects in the presented situation. However, it
should be stated that this approach is not to diminish the role of social psychology
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but to highlight the challenge of properly distinguishing social psychological effects
in pedestrian dynamics from emergent physical phenomena. In the following, the
experimental data [32] is discussed in more detail, introducing the specific methods
to compute the density and flow of the system 2.

3.1 Experimental data and observables

To be able to discuss the experimental [32] and simulation data [33, 156], the meth-
ods to measure the observables need to be introduced. The focus of this investigation
is mainly on the density and flow. The method to calculate the density from the
experimental and simulated trajectories in a set measurement area relies on the
concept of the Voronoi diagram.

3.1.1 Voronoi diagram

A Voronoi diagram [157] partitions a plane into subdivisions closest to a defined set
of objects. In the context of this thesis the two-dimensional plane X is relevant,
where the objects are either pedestrians in an experiment or agents in a simulations
with defined central points. In this case X is divided into subregions called Voronoi
cells. The positions of the N agents ri, i ∈ {1, N} at a given time act as vertices of
the Voronoi diagram. A point in space belongs to the Voronoi cell Ri of agent i if
the euclidean distance d(ri,x) = |ri−x| to agent i is minimal compared to all other
agents. The set Rk is defined as

Rk = {x ∈ X | d(x, ri) ≤ d(x, rj) ∀ j ̸= i} . (3.1)

The Voronoi diagram of a random set of points is illustrated in Figure 3.3.

3.1.2 Density

The main focus in this section is on the mean density in front of a bottleneck. The
simplest method to measure the density ρ is to divide the number of pedestrians
N by the size of the measurement area |A|, ρ = N/|A|. This method has two
drawbacks. The first problem is that there needs to be an arbitrary decision about

2The results of this chapter are published in two journals [33, 156]. The presented analysis and
text base on [33].
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Figure 3.3: Illustration of a Voronoi diagram.

which agent is inside the measurement area and which is outside since pedestrians
are not point particles. The second problem is that since only an integer numbers
of pedestrians can be inside the measurement area, a pedestrian leaving or entering
the area produces discontinuous density measurements. Three different measures
for the density are used in this thesis to solve the issues. To be consistent with [32],
the mean density in the measurement area is measured using the Voronoi method
introduced in [158] since it produces smooth density curves. The computational
procedure is as follows: given a set of trajectories at time t of N pedestrians with
position X = {x0(t),x1(t),x2(t)...xN(t)} on the two-dimensional plane. Use X

to compute the Voronoi diagram introduced above, which defines the cell Ai for
each pedestrian i. At last calculate the size |Ai| =

∫
Ai
dx with which the density

distribution ρi(x) of pedestrian i can be defined as

ρi(x) =

1/|Ai| x ∈ Ai

0 else
and ρ(x) =

∑
i

ρi(x) (3.2)
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The mean Voronoi density in a measurement area A is then defined as

ρ0 =

∫
A
ρ(x)dx

|A|
. (3.3)

A second approach to calculate the density field over the whole corridor area is used
to get detailed density maps with homogeneous shapes of agents. In this case, the
local density ρ in the system can be defined as

ρ(r;X) =
N∑
i=1

δ(xi − x), ρ(x) = ⟨ρ(x;X)⟩, (3.4)

where the mean is taken over the realisation X of the system. In a computation with
finite resolution the Dirac delta-function δ(x) can be approximated by a Gaussian

δ(x) =
1√
πa

exp[−x2/a2] (3.5)

but other functional representations are possible e.g., a cylinder (see [2]). The local
density of an agent is defined via the area Ai of the Voronoi cell.

ρn = 1/|Ai| (3.6)

Due to the volume exclusion and the densest packing of circles, the maximal local
density a circular particle can have is defined by the area of the hexagon with
diameter l. The area of this hexagon is Ahex =

√
3/2 l2 and the resulting maximal

density is

ρmax = A−1
hex = 2/

√
3 l−2. (3.7)

3.2 Density of the experimental trajectories

The experimental data [32, 159] is reanalyzed in this study to allow a better com-
parison to the simulations. The geometry of the corridor is illustrated in Figure 3.2
C. The exit has a width of 0.5 m. The corridor width is varied between five values,
b ∈ {1.2, 2.3, 3.4, 4.5, 5.6} m. Measurements for the mean density are made in a
rectangular area between x = {−0.4, 0.4} m and y = {0.5, 1.3} m. The outflow and
exit times are measured at the y = 0m line by counting the number of participants
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Figure 3.4: Voronoi density time series from the experiments [32] for low-
motivation (A) and high-motivation (B). The blue and grey areas mark the region
between 5 and 10 s and 10 and 15 s. The measurement of the density is conducted
in the area presented in Figure 2.4 B.
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that cross the line in the time interval ∆t. The mean density time series for the dif-
ferent experimental runs are shown in Figure 3.4 both for the experiments with low
and high motivation. These are all runs considered in this study. Runs with fewer
than 42 participants (i.e., 20 - 25 participants) have been discarded in this study
since it is unclear whether a consistent, steady state is reached. In the experimental
study, the measurement time interval for the mean density is from 5 s to 10 s to have
comparable conditions, considering the varying and limited number of participants.
In this study, the interval between 10 s and 15 s is measured to be closer to a steady
state, as can be observed for most runs in Figure 3.4. Only the runs for b = 4.5 m
in the high motivational case (Figure 3.4 B) do not reach a consistent steady-state
as the mean density quickly peaks between 5 s and 10 s and decreases from there on.
The mean values for the experiments in the 5-10 s and 10-15 s interval are shown in
Figure 3.6 A.

3.3 Simulation of the experiment

To analyze the situation from a theoretical standpoint, the SCSM is implemented
numerically using the geometry shown in Figure 3.2 C. Before discussing the re-
sults, the initial conditions have to be defined. The experiments used motivation
as a variable, which is discussed in the context of the SCSM in Section 2.3. The
theoretical study aims to distinguish the social psychological effects from emergent
physical effects in the specific scenario described above. The following discusses
the connection between social psychology and variables in a mathematical model of
pedestrian dynamics.

Psychology and model parameters

The parameters in the SCSM and CSM are connected with fundamental diagrams
(see Section 1.1). The speed function 2.14 is a special representation of the fun-
damental diagram showing the linear speed and distance relationship in a certain
interval [160]. The relationship depends on the desired speed v0, the slope factor
T , and the diameter of the disc-shaped agents l. These parameters in the model
can be described as a set of individual properties P = {P1, P2, ...} that depend on
factors like gender, culture, body height, or motivation [48, 74, 161–164]. Addition-
ally, environmental factors E = {E1, E2, ...} have to be considered as an influence.
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For example, background music and rhythms can influence the behavior of pedes-
trians [165, 166], as is visible in [167]. Psychological influences in the model would
translate to a dependence of the parameters on these factors, e.g., agent i has the
parameter Ti = fi(P,E), and v0,i = gi(P,E) determined by the unknown functions
gi and fi. A simple example in this thesis is the assumption that the motivation (see
Section 2.3) influences the slope factor T , decreasing it with increasing motivation.
In its current state, pedestrian research is not capable of estimating the functional
form of these influences or identifying the major influences. To distinguish between
the physical and social psychological effects, the SCSM is implemented with mostly
static and homogeneous parameters for all agents, except for the variation of the
slope factor T as a consequence of a change in motivation as an initial condition
(which is estimated to first order). The only environmental variable is the corridor
width, which has no influence on the parameters of the model.

Parameters and initial conditions

The desired speed is set to v0 = 1.34 m/s, which corresponds to the empirically
estimated mean walking speed for unobstructed pedestrians [168]. The other free
model parameters are estimated from experimental data [32]. Non-deformable disks
represent agents with fixed diameter l. The exclusion property of the model then
provides an upper bound on the density. To estimate the agent diameter from the
experimental data, the maximum density ρmax, which is slightly above 9 m2 for
highly motivated runs, is taken as the pivot point (see Figure 3.4). Assuming that
this maximum density corresponds to a (hexagonal) dense packing of disks, one finds
that ra = 0.175 m corresponds to a maximum density of ρ ≈ 9.4 m2. Simulations
with this value give good results; see Appendix A.1 for more details.

Initial density and population size

The influence of the initial density ρi on the mean density ρ in the measurement area
needs to be discussed. Figure 3.5 A shows the mean value of the density between
10 s and 15 s, with the initial density ρi on the x-axis. The initial density has a
non-negligible influence on the density. This is particularly pronounced for narrow
corridors (b < 3.4m) and reduces in wider corridors (b > 3.4m) with ρi > 2m−2. The
initial Voronoi densities ρi in the experiments are approximately identical between
1.5 − 3.0 m−2 (see Figure 3.5 C). To meet this criterion, the corridor length lc is
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Figure 3.5: (A) Mean density after 10 s with respect to the initial density ρi in the
corridor for different corridor width b. (B) Mean density after 10 s in respect to the
corridor width b for a different number of agents N . (C) Mean Voronoi density for
different initial densities ρi in the whole corridor from ymin = 0m to ymax = 7.0 m.
Comparison between experimental (Exp.) and simulation densities for high and low
motivation.

adjusted so that the agents are evenly distributed over the corridor area and can
satisfy the initial conditions. The length is set to lc = N/bρi until the corridor
length is less than 7 m (the corridor length used in [32]). From there, the corridor
length stays constant. The initial density ρi is chosen randomly from a uniform
distribution U(2.0, 3.0). Figure 3.5 C shows the initial experimental densities in
comparison to the simulation. For corridors with b < 3.4 m, the corridor length
lc < 7m and thus have a wider range of values. As mentioned, runs with fewer than
42 participants are excluded from the experiment. Figure 3.5 B shows that in the
model for N > 40, the number of agents has a limited but not negligible influence
on the mean density. To obtain comparable results for the mean Voronoi density
with respect to the corridor width, the number of agents in the simulation is set
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Parameter Variable Value
Slope factor (motivation) T {0.1, 1.3} s
Desired velocity v0 1.34 m/s
Agent size (hardcore exclusion) l 0.35 m
Noise standard deviation σ 0.7
Population N 55
Floor field resolution ∆h 0.01 m
Wall avoidance distance dw 0.25 m
Corridor width b [0.8, 7.0] m
Bottleneck width w 0.5 m

Table 3.1: Summary of model parameters and their values.

constant at N = 55 in the center of the participant range. The simulation runs are
calculated in a range of b = [0.8, 7.0] m in 0.1 m steps. For each value of b, 500
simulation runs are performed with random initial conditions. This results in 31000
for each motivation T = {0.1, 1.3} s and a total of 62000 simulations for the main
analysis. The model parameters are summarised in table 3.1.

3.4 Comparing the SCSM with experimental data

For the experimental data, the measurement interval for the mean density is between
5 s and 10 s. This interval was chosen to obtain comparable results because the
number of participants varies between runs and, as described above, affects the mean
density. Since the simulations control the number of agents, it is also interesting to
consider a second interval and compare it to the experimental data. Here the interval
of 10 s to 15 s is chosen. Figure 3.6 A compares the simulation results with the
experimental data. The error bars show the 95% interval of the 500 runs performed.
The simulations reproduce the increase in density with corridor width b without
adjusting any other parameter for a particular motivation. The increase in density
from a low to a high motivation can be reproduced by adjusting the slope factor T .
The mean density measured between 10 and 15 s shows a monotonically increasing
behavior until it saturates at about b = 3.2 m. At low motivation (T = 1.3 s), the
density is not monotonic. The experimental data are mostly within the 95% interval,
with 19 of the 28 points being inside, while the points outside are closely spaced. In
particular, the runs for b < 4.5m are in good agreement with the experimental data.
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Figure 3.6: (A) Top: Mean density in the measurement area calculated with the
Voronoi method from 5 − 10 s for different values of the slope factor T (Sim.) and
motivations in the experimental data (Exp.). The simulation runs were conducted
500 times for each corridor width b. The error bars show where 95 % range of the
mean. Bottom: The same as above from 10− 15 s. (B) Density fields for different
motivations and corridor width b. left column depicts the experimental data while
the right column shows the simulation results. From top to bottom, the motivation
alternates between high motivation (T = 0.1 s) and low motivation (T = 1.3 s). The
corridor width is b = 1.2 m in the top panels and b = 3.4 m in the bottom panels.

The runs for b = 4.5m show the largest deviation from the simulation results for high
motivation. As explained in the previous section, the experimental runs for b = 4.5m
do not reach a steady state at high motivation. In the low motivation data, there
is an outlier for b = 5.6 m, where the density is comparable to the high motivation
scenario. This is the largest run with N = 75 participants. Figure 3.5 B shows
the density for low motivation and a different number of participants. However, the
increased number of agents cannot explain the high value of the measured density.

To better understand the overall dynamics in the corridor, the density field of a
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Figure 3.7: Mean density fields (m−2) on the x-y plane (m) for all 500 runs from
10 to 30 s for T = 1.3 s. The top row shows the runs with corridor width b =
{1.2, 1.5, 2.0, 2.5} m. The bottom row shows values for b = {3.4, 4.6, 5.8, 7.0} m.

single run is calculated according to the equation (3.4). Figure 3.6 B depicts the
density fields for b = 1.2 m and b = 3.4 m from the experiments and simulations.
At low motivation and b = 1.2 m, two equally lanes form in both the experiments
and the simulations, which merge near the exit. In the high motivation case, three
lanes form in the simulation and the total density increases. In the experiments,
the total density increases, but there are no clearly identifiable lanes. In the case
of low motivation with b = 3.4 m, clear lane formation can also be observed in
both the experiments and the simulation. One noticeable difference is that the
agents in the simulation near the y = 0 line are broadly distributed over the entire
corridor, whereas the distribution of participants near the exit is wedge-shaped. One
possible reason for this is the experiment’s barricades, which have metal grids (see
Figure 3.11 C). These seem to be avoided by the experiment participants, especially
during the low-motivated runs, and could therefore be an obstacle. This becomes
clearer when looking at the videos of the experiments, which are available at [169].
In the simulations, this circumstance was not taken into account in order to keep the
geometry simple, as the wedge shape reduces or disappears altogether in the high
motivation case (Figure 3.11 D). In this case the experimental participants and the
simulation agents are more compressed than in the low motivation case. Distinct
trajectories can be observed for both motivations. The wedge shape in the density
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profile is still recognisable, but less pronounced in the experimental data.

b = 5.6 m

T = 1.3 s

b = 1.2 m

T = 1.3 s

A

B

Figure 3.8: (A) Interaction angle distribution for all 500 Simulations from 10 s for
T = 1.3 s. The top row shows the runs with corridor width b = {0.9, 1.4, 1.7, 1.8}m.
The bottom row shows values for b = {2.0, 2.3, 3.0, 4.5} m. (B) Configuration in
front of the bottleneck from a simulation with b = 1.2 m and b = 5.6 m.

The dynamics of the systems in the region of b with saturated density compared to
the region where the density increases become clearer in Figure 3.7, where the mean
density field of selected corridor widths is shown for all 500 runs. The top row shows
runs with b < 3.2m, while the bottom row shows runs with b > 3.2m. The widening
of the corridor impacts the dynamics of the evacuation process. As b increases,
new lanes form, and the interaction angle at the merge point between the desired
direction of the agents and the bottleneck steepens. Because of this the potential
for conflicts increases and therefore the density. For b > 3.2 m, the influence of
the corridor width is small, as the formation of new lanes has little influence on
the situation near the bottleneck. Figure S3 shows an analogous comparison for
simulations with high motivation, with similar behavior. The distribution of the
interaction angle, as defined in Figure 2.4 B is depicted in Figure 3.8 A for varying
b in a radius of r = 1 m around the point r = 0. The area is chosen because
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there the lanes merge (see Figure 3.7). The interaction angle is defined as the angle
between the noiseless desired direction of an agent and the noiseless direction of the
agent with which it interacts (i.e., the agent that satisfies the conditions given by
equations (2.15) and (2.16)). Noiseless means that the noise defined in equation
(2.19) in the SCFM is ignored, and the interactions are calculated according to the
desired direction determined by the eikonal equation (2.18). This corresponds to the
expected interaction angle for the specific configuration between two agents. The
situation is illustrated in Figure 3.8 B for a wide and a narrow corridor.

The transition of the distribution in panel A shows an interesting behavior where
existing peaks with smaller b disappear as b gets wider, and new peaks appear until
the distribution stabilizes with a bimodal distribution. In general, the probability
of larger interaction angles increases with b. The shape of the distribution can
be divided into three regimes. When b is small (b < 1.4 m), the probability of
interaction angle is highest at small angles Θ < 50◦ and decreases monotonically at
larger angles. For b > 1.4 m and b < 1.8 m, the distribution widens with a higher
probability for large interaction angles up to 180◦. For b = 1.7m, no pronounced peak
is observed. Widening b further causes a new peak to emerge at about 30◦, making
the distribution uni-modal. Further widening the corridor turns the distribution
bimodal with a narrow peak around Θ = 30◦ and a broader peak at Θ = 90◦. This
structure is stable for large b > 3 m. Interactions at larger angles have a higher
potential for conflict because the noise is not as sufficient in resolving these conflicts
compared to smaller angles where pedestrians follow each other. At high motivation
(T = 0.1 s, Appendix A.1 Figure S5) the behaviour is similar, but the transitions
occur at smaller b. The distribution converges to a bimodal shape but with a more
pronounced peak at a smaller angle and a smaller peak at a large angle.

An additional observable that was measured in the studies of Adrian et al. and
Garcimartin et al. [2, 32] is the waiting time Tw of the pedestrians with respect
to the distance to the door r at time t. In the study of Garcimartin et al. [2],
participants are not constrained by a corridor, i.e., the corridor can be assumed to
be infinitely wide. The study argues that the evacuation time should follow a power
law distribution Tw ∝ rα with α = 2 in the case of a wide corridor. The evacuation
time for a single pedestrian leaving the area scales linearly with r. In a crowded
scenario, pedestrians interact. Assuming that the movement of the pedestrians can
be approximated as a fluid with laminar flow, the velocity scales with 1/r due to
the continuity. Therefore, the evacuation time scales with r2. In a narrow corridor
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Figure 3.9: (A) Waiting time to target Tw in respect to the distance r from the
target between 10 and 20 s with all 500 runs pooled together. The left column
depicts runs with T = 1.3 s, while the right column depicts runs with T = 0.1 s.
The alternating order from top to bottom shows the results for b = {1.2, 5.6} m for
different cut-off distances of the data (no cut-off for the top two values and 1.5m for
the bottom). (B) The power law exponent for the waiting times for low motivation
and T = 1.3 s in the top panel and high motivation and T = 0.1 s in the bottom
panel.

the flow is close to single file motion, where the evacuation time should only depend
on the distance to the bottleneck and scales linearly with α = 1

This relationship is tested by taking the evacuation time for all runs, measured
between 10 s and 20 s. The euclidian distance to the exit is measured from the point
r = 0. At every timestep with ∆t = 0.5 s, the evacuation time Tw is calculated for
each agent. The timestep ∆t is chosen so that the position of each agent changes
sufficiently. The log-log plot of Tw with respect to r is depicted in Figure 3.9 A.
The evacuation time for all distances is shown in the top four panels. The power
law relationship is true between r = 0.3 m to about r = 1.6 m. Figure 3.9 B shows
α as a function of b for both motivations. For b = 0.8 m, the exponent is close
to one. As expected for low motivation, α increases and saturates around α = 2.
Though the exponent α calculated from the experimental data [32] is only close to
the simulation data for b = 1.2 m.
For high motivation, the exponent converges to a value of about α = 1.7, which
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is in close agreement with the values for α calculated from the experimental data.
For b = 5.6 m, α is scattered widely. These runs differ significantly in the number
of participants. The smaller value was performed with N = 57 participants, while
the larger value comes from the run with 75 participants. Figure 3.11 A shows α
for simulations with different N , b = 5.6 m and T = 0.1 s. The number of agents
affects α, which increases to α = 2 for N ≈ 100. The smaller exponent could be due
to the lack of a complete semicircle in the analyzed region because of the compact
clustering of pedestrians (see Figure S3). In general, the runs with high motivation
fluctuate more than those with low motivation. The deviation of the simulation
from the empirical data calculated values for low motivation could be a consequence
of the already mentioned wedge-shaped, as this influences the geometry near the
bottleneck. To check this, simulations are run with a different geometry. Instead of
a horizontal lower wall, as shown in Figure 2.4 C, The wall has a 45◦ angle up to the
intersection with the vertical wall (Figure 3.11 C). Figure 3.11 B depicts the results
for varying values of b. The simulations are repeated 50 times. The value for α
saturates around α = 1.8 and is closer to the values calculated from the experiment.
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Figure 3.10: (A) N -t diagram for the experimental data (vibrant colors) with high
motivation (red) and low motivation (blue). Analogous exemplary simulation data
(pale colors) for the same corridor width b as in the experiments using one run per
width. (B) Simulation and experimental results for the exit-time differences ∆T .
The error bars show the 95 % Interval of the simulation data for 500 runs.

The N -t-diagram and the intermediate timegap ∆T are depicted in panels A and
B of Figure 3.10. The timegap ∆T is the time between the successive crossing of
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agents over the y = 0 m line.
The time interval is proportional to the reciprocal flow ∆T ∝ J−1. The results show
that the agents in the model are less efficient in exiting through the bottleneck than
participants in the experiments. The mean timegap increase when widening the
corridor while b is narrow but reach a plateau at about b = 1.8m. The experimental
data do not exhibit this behavior. The faster-is-slower effect [17] can be observed
neither in the model nor in the experiments. This agrees with the experiments
of Haghani et al. [84], where aggressive pushing was forbidden, and with recent
numerical studies using the SFM [85]. The spread between the data points of the
different runs is larger for T = 0.1 s than for the runs with T = 1.2 s. This is
due to the increased occurrence of clogs in the system, which are evident in the
N -t diagram (Figure 3.9 D). Similar behavior is observed in the experimental data,
where the initial slope of the curve is larger. Still, clogging may interrupt the flow
for a long time. More data are needed to make a more conclusive statement, but a
higher probability of larger ∆T is reported in [1]. Agents in the SCFM only react
to the presence of other agents in their path. However, they cannot communicate
their intentions to their environment or anticipate the behavior of other agents. This
could indicate that the absence of a cooperation and negotiation mechanism [86] in
the model as a reason, supported by the increase in ∆T with increasing b as conflicts
become more frequent.

3.5 Summary

To summarize, the SCSM is able to reproduce the empirical observed phenomena of
density increase and lane formation in the narrow corridor using a minimal number
of variables in the low and high motivation scenario. The effect of the motivation
on the density can be modeled by adjusting the slope factor T , while for the density
increase, no other variable is altered except for the corridor width b. The simplicity
of the model implies that the effects studied do not stem from social behaviour.
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Figure 3.11: (A) Simulation results for α in respect to the number of agents N
for b = 5.6 m between 10 and 20 s. Every data point is the mean of 50 simulations.
(B) Exponents α of the power law for the waiting times for low motivation using
the hopper-shaped geometry for T = 1.3 s shown in panel C. (C) Illustration of the
geometry with hopper shape walls and a Snapshot from an experimental run [32]
with low motivation. (D) Heat maps for the experimental runs with high motivation
(left) and low motivation (right) with a corridor width of b = 4.5 m.



Chapter 4

Structure in atomic and granular
materials

The previous section illustrated that a better understanding of microscopic inter-
actions of pedestrian dynamics is necessary to distinguish better the human char-
acteristics of pedestrian and crowd dynamics and their granular physical features.
Generally, the granular approach to pedestrian dynamics is popular, and especially
in bottleneck flow, these approaches are closely studied alongside granular realiza-
tions of analogous systems [1, 22, 76, 170–176]. The studies of bottleneck flow apart
from pedestrian dynamics are not constricted to granular particles falling under the
influence of gravity. Studies of self-driven ’hex bugs’ are gaining popularity as a sim-
plified setting for pedestrian bottleneck experiments [177–179]. A crowd traversing
through a narrow bottleneck and granular materials falling through a vibrated hop-
per or active particles share several features. The survival function of stable clogs
in high motivation experiments displays a power law tail P (tc > t) ∝ t−α

c [82]. This
feature is especially noteworthy because for an exponent α < 2, the mean timegap
tc of two consecutive pedestrians passing the bottleneck diverges, and the flow rate
vanishes for large systems. The burst size of pedestrians exiting the bottleneck is
exponentially distributed [174] and the faster is slower effect can be observed in both
kinds of systems (on the controversies of this, see Section 1.2). In granular systems,
the faster is slower effect can be achieved by increasing the slope of the hopper or
turning up the drive that is responsible for the movement of active particles [27, 82].
Most studies analyze macroscopic features of the system, like the flow J or the den-
sity ρ of the system. There are also studies analyzing microscopic features of the
bottleneck flow, mostly the structure of the clogging arches in pedestrian models
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and granular systems [22, 76, 172, 173, 180]. Recently several studies consider the
spatial structure of pedestrian systems in bottleneck flow [39] and in more general
setting [37, 181–183]. This takes the analogy between granular matter and pedes-
trian systems further considering granular dens packing [184]. These ideas lead back
to the discussion of human psychology and the ability of humans to make decisions.
In situations where, because of the volume exclusion principle, the possibility to
make decisions could become restricted to the point where the difference between
granular matter and active particles vs. humans becomes insignificant. To further
the analogy between granular matter and pedestrians, it is interesting to not only
consider macroscopic features but to utilize measures from solid-state physics and
granular physics that characterize the structure and order of a system. To build
a coherent framework for this analysis, the following section is a brief excurse into
basic concepts of solid state and granular physics in the context of defining order
and structure in media.

4.1 Crystal structure, amorphous solids and order

This short introduction into crystalline structures and order is mainly based on [185].
Crystalline structures are a central topic in condensed matter physics. They exhibit
periodic recurring atomic structures (e.g., silicon crystals). This is not only true for
atomic structures but also colloidal and granular materials can exhibit crystalline
patterns in equilibrium [186, 187] and non-equilibrium [188, 189]. An ideal crystal
can be defined as a group of particles referred to as the basis, which is connected
via a series of points that build a lattice that extends infinitely in all directions of
the space. In the two-dimensional euclidean space, the lattice is defined as

r′ = r+ u1a1 + u2a2, (4.1)

where r and r′ are points on the lattice, ai refers to the translation vectors and
ui ∈ Z. With the definition of the translation vectors ai, the lattice looks identical
at the point r and r′ in the two-dimensional space. An example is depicted in Figure
4.1 A.
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Figure 4.1: Figure adapted from [185]. (A) Example of a rectangular lattice with
the translation vectors ai. (B) A basis with two different particles. (C) The lattice
and basis together build the crystal structure.

A lattice where every point r in space satisfies equation (4.1) for a set of ui is called
primitive. In turn, the translation vectors ai of these lattices with the minimal area
of the parallelogram A = |a1×a2| are the primitive translation vectors. They usually
define the crystal axis. The parallelogram A of the primitive translation vectors is
called the primitive cell (see Figure 4.1 A). It is the minimum area cell, which
can fill up the entire two-dimensional space without overlap or gaps by a suitable
translation. The primitive cell and primitive translation vectors are not unique for
a certain lattice. The Voronoi cell (3.1) of the lattice (in condensed matter physics
called Wigner-Seitz cell) is one solution to choose a primitive cell (see Figure 4.1 A).
The lattice points build the underlying structure of a crystal on which the so-called
basis can be translated to produce the crystal structure (see Figure 4.1 B and C).
The basis can consist of multiple particles that are repeated via translation on the
lattice.
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An important characteristic that distinguishes different types of lattices is the set
of operations that transform the lattice into itself. The translation vectors are one
example. Another symmetry operation is the set of rotation angles that rotate the
lattice into itself. Lattices can have one-, two-, three-, four-, and sixfold rotation
axes, with the corresponding rotation angles being 2π, 2π/2, 2π/3, 2π/4 and 2π/6.
There are no lattices with five- or sevenfold rotation symmetry.

Lattice types in two-dimension

Figure 4.2: Figure adapted from [185]. Illustration of the five two-dimensional
lattice types.

In two dimensions, there are five distinct lattice types. The general lattice drawn
by two arbitrary vectors a1 and a2 is called the oblique lattice that is invariant only
for rotations of π and 2π. There are four lattice types that inhibit invariance under
one or more rotation angles of 2π/3, 2π/4, or 2π/6, or mirror reflection. These four
are the special lattice types illustrated in Figure 4.2 together with an example of an
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oblique lattice. They are referred to as a Bravais lattice; thus, there are five Bravais
lattices in the two-dimensional case. The hexagonal lattice is of special interest
in this work. For systems of circular two-dimensional agents, the hexagonal packing
is the densest configuration. Taking a hexagon with side length D and discs with
diameter D the area of the hexagon is AH = 3

√
3

2
D2 and for the disc AC = π

4
D2.

The area of the hexagon AH can cover three times the area AC (see Appendix A.1,
Figure S1), therefore the covered area is defined as AHC = 3AC = 3π

4
D2 and the

packing fraction is defined as

η = AHC/AH =
π
√
3

2
≈ 0.9069. (4.2)

The packing fraction is defined via the local density ρn (see equation (3.6)) as the
ratio between the local density and the maximal possible density in the system

ϕ =
ρn
ρmax

η, (4.3)

with ρmax = 1/(
√
3
2
l−2), with l the particle diameter, since the closest packed Voronoi

cell has the area of a hexagon (See Section 3).

Amorphous solid

Amorphous solids (also referred to as glasses) are an active topic of research [190–
192]. In contrast to the perfect crystal described above, the amorphous solids are
disordered materials. In the real world, a perfect crystal structure does not exist,
as these are always finite and possess some imperfections. The kind of disorder that
constitutes an amorphous solid is different. These exhibit no long-range order, i.e.,
there exists no set of translation vectors (4.1) that can reproduce the structure of
the material (see Figure 4.3 for an illustration). The amorphous solid therefore is
described by topological disorder. The emphasis on amorphous solids not exhibiting
any long-range order is important because the degree of disorder in them can differ.
Some exhibit short-range order, others do not, but non exhibit long-range order.
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Figure 4.3: (A) Illustration of hexagonal crystal structure. (B) Illustration of an
two-dimensional amorphous structure.

4.2 Structure in granular matter

The introduction of crystalline and amorphous solids stems from studying atomic
solids affected by thermal noise and quantum-mechanical effects. Systems closer
to pedestrian dynamics are also studied regarding their structural properties, espe-
cially granular materials, colloids, and active particles [186, 188, 189, 193–206]. As
an analogous system to pedestrians, quasi-two-dimensional driven systems are espe-
cially interesting [186, 188, 189, 194, 195, 205, 207, 208]. The important difference
between driven granular and colloidal systems versus thermodynamic gases, liquids,
and solids is that they are not affected by thermal noise and are of a mesoscopic
size. Computer-simulated systems of granular materials are usually in equilibrium,
but experimental systems are far from it because they are constantly driven, and
energy dissipates in them. Still, many empirical systems show the same behavior as
the equilibrium simulations [186–189, 195].

The driven two-dimensional granular matter exhibit interesting phase behavior e.g.,
crystallization [188, 200, 201, 205, 207] and two-step melting via the hexatic fluid
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phase [189, 208]. Commonly six-fold symmetries are observed in crystalline granular
matter [186, 188, 189, 199] but also fourfold symmetries (square lattice) can be
observed [199, 205]. In colloidal media, driven monodisperse colloids [194] show
crystallization and sixfold symmetry. Polydispers colloids and granular hard discs
exhibit formation of grain boundaries [195, 197, 203, 206]. In recent years, persistent
homology methods [209] gained popularity in the structure analysis of hard sphere
force networks, enabling new means to characterize the topological structure of the
systems [198, 204]. Granular two-dimensional systems are also studied in glass
formation (amorphous solids). These exhibit interesting structures of crystalline
clusters in an otherwise disordered assembly [191, 210, 211]. An active field of study
in the study of granular and colloidal glasses is the jamming transition of a granular
medium, where a compressed system arrests in a disordered [190, 212, 213]. The
jammed state is also referred to as fragile matter, which constitutes a new type of
solid-state systems. A jammed state is reached by externally driving the system, for
example, in traffic jams, evacuations of pedestrians, or granular silos. The fragility
stems from the fact that these systems are solid under applied stress that drives
them into the state. Changing the direction of the stress can break the jam apart
and brings the system back to a flowing state. With this, a new phase diagram of
the glass and jammed state is proposed [190].

In the following, methods to analyze the microscopic structure in granular and
colloidal materials are discussed in detail. These are used to quantify the structure
of pedestrian experiments and simulations.

4.3 Two-point correlation function

The microscopic state of a classical system can be described as a point in the phases
pace.

(r1, r2, ..., rn,p1,p2, ...,pn) = (rn, pn), (4.4)

where ri is the position of particle i and pi its momentum. Let f(rN , pN)drNdpN

be the probability of the system being at the phase space point (rN , pN). Because
of the factorization of the Hamiltonian H(rN , pN) = T (pN) +U(rN) the probability
f(rN , pN) factorizes

f(rn, pn) = Φ(pN)P (rN). (4.5)
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The probability of observing the system at momentum point pN is given by Φ(pN),
and the probability of finding the system at the configurational space point rN is
provided by P (rN). Focusing on the configurational space, looking at the distribu-
tion function for a small subset of particles can be useful by integrating P (rN) over
all coordinates except the ones of interest

Figure 4.4: Illustration of a simple liquid and the position of the first two coordi-
nation shells. Graphic adapted from [185].

P 2/N(r1, r2) =

∫
dr3

∫
dr4...

∫
drNP (r

N), (4.6)

which is the joint probability distribution of finding particle 1 at r1 and particle 2
at r2. This is the so-called specific probability distribution because of the specificity
that the particle at 1 and 2 have to be at r1 and r2. In atomic and some granular or
colloidal systems, particles are usually indistinguishable. In pedestrian dynamics,
humans are, of course, very much distinguishable. Still, to analyze the structure, it
is not of interest if participant Alice in an experiment is at position r1 and Bob at
r2 but if there is any person at these two positions. It is, therefore, useful to treat
the participants as indistinguishable particles, which leads to the introduction of the
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distribution
ρ2/N = N(N − 1)P (2/N)(r1r2). (4.7)

The factor N(N − 1) comes from the fact that there are N possible ways to pick
the first particle and N − 1 for the second. Analogously this can be generalized
to ρn/N = N !

(N−n)!
P (n/N)(r1, r2, ..., rn). Simple examples are the probability of an

isotropic fluid
ρ1/N = ρ = N/V (4.8)

and in case of an ideal gas.

Figure 4.5: Example of the two-point correlation function g(r) for a liquid and a
gas in units of the particle diameter l.

ρ2/N = N(N − 1)/V = ρ2(1−N−1) ≈ ρ2, (4.9)

in the thermodynamic limit. With this foundation the two-particle-correlation func-
tion

g(r1, r2) = ρ2/N(r1, r2)/ρ
2 (4.10)
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can be introduced. In the case of an isotropic fluid the function only depends on
|r1−r2| = r and the correlation function reduces to g(r) which is the so-called radial
distribution function. For a uniform system (see above) ρ1/N(r1) = ρ and therefore

ρ2/N(0, r)ρ = ρg(r), (4.11)

which is the conditional probability that a particle is found at r, given there is a
particle at the origin. To analyze the structure of agents, it is useful to treat them
similarly to an isotropic fluid. With the density definition (3.4) ρ(r;X) =

∑N
i=1 δ(ri−

r), ρ(r) = ⟨ρ(r;X)⟩, and the mean density of an isotropic fluid ⟨ρ(r;X)⟩ = ρ = N/V .
At a point r of the fluid, the density fluctuates around its mean value. The density
fluctuation is quantified by

δρ(r) = ρ(r)− ρ. (4.12)

The two-point density fluctuations is defined as

G(r, r′) = ⟨δρ(r)δ(r′)⟩ = ρδ(r− r′) + ρ2g(r, r′)− ρ2 (4.13)

and g(r, r′) is calculated via

g(r, r′) =
⟨δρ(r)δ(r′)⟩ − ρδ(r− r′)

ρ2
. (4.14)

In the case of pedestrian flowing through a bottleneck the assumption of the isotropic
fluid that ⟨ρ(r;X)⟩ = ρ = N/V is not valid and equation (4.14) has to be altered to

g(r, r′) =
⟨δρ(r)δ(r′)⟩ − ρδ(r− r′)

ρ(r)ρ(r′)
(4.15)

Using data from simulations or experiments the Dirac function can be approximated
using (3.5), δ(x) = 1√

πa
exp[−x2/a2]. The two-point correlation function g(r) is then

calculated by

g(r) =
⟨
∫
ρ(r− r′)ρ(r′)dr⟩ − ⟨

∫
ρ(r′)ρ(r− r′)dr′⟩∫

ρ(r)dr
∫
ρ(r′)dr′

(4.16)

The two-point correlation function is useful in the analysis of the structure of a
system. The shape and decay of the function reveal if the system is in a liquid,
crystalline, or gas state. It is illustrated in Figure 4.5 for a gas and a liquid. The
function is zero in the exclusion zone of the particles. In the liquid stage, the different
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shells of particles illustrated in Figure 4.4 are visible, while in the gas stage, this
is only true for the first shell of particles near the exclusion zone. In both cases,
the maxima of the correlation function decay exponentially g(r) ∝ exp(−r/ξ). This
distinguishes the liquid and gas from the crystalline phase, where g(r) ∝ r−η is
quasi-long-range and decays with a power law. In a crystalline solid, the position
of the peaks contains information on the structure of the solid. For a hexagonal
structure, the peaks are at r/l = {1,

√
3, 2...}.

4.4 Delaunay triangulation

Delaunay triangulation (also Delaunay graph), introduced by Boris Delaunay [214],
is a method to triangulateDT (X) of a set of discrete points X on the two-dimensional
plane such that no point in X lies inside the circumcircle of any triangle in DR(X).
Delaunay triangulation is the construction of a graph that maximizes the minimal
angle of the triangles. It is closely related to the Voronoi diagram (3.1) and can be
constructed in the following way (illustrated in Figure 4.6):

• From the Voronoi diagram constructed according to (3.1) take each point in
X (blue points in Figure 4.6 A) as a vertex vs.

• Connect each vertex vi and vj that share an edge in the Voronoi diagram by
an arc (Figure 4.6 B), which constructs the graph G(X).

• Straighten all the lines to produce the Delaunay graph DT (X) (Figure 4.6 C)

Delaunay triangulation is utilized to define the nearest neighbor of a particle. With
that, the coordination number (or the number of nearest neighbors) Nn, the mean
neighbor distance ⟨dN⟩, and the angle between neighboring bonds θij can be calcu-
lated.

4.5 Orientational order parameter

The bond orientation order parameter is defined by the local director field of a
particle. The particle i at position ri has Nn nearest neighbors determined by the
Delaunay triangulation. The angle θij (see Figure 4.7 C) of a bond to a neighboring
particle and an arbitrary axis is used to calculate the sixfold space, normalized by
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Figure 4.6: Illustration of the Delaunay graph construction. The points outside
the plot range are ignored for simplicity.

the coordination number:

Ψ6(ri) = 1/Nn

Nn∑
j=1

exp(i6θij). (4.17)

It takes complex values and is bounded by |Ψ6(ri)| ≤ 1, where |Ψ6| = 1 a perfect
hexagon. The real part of the function can take values of ψ6 = Re(Ψ6) ∈ [−1, 1]

and can be written as

ψ6(ri) = 1/Nn

Nn∑
j=1

cos(6θij), (4.18)

which is also 1 for perfect hexagonal order and ⟨ψ6⟩ ≈ 1/N for a random gas with
N particles [198]. Figure 4.7 A illustrates ψ6 for systems with different amount
of hexagonal order. On the left, a perfect hexagonal crystal is illustrated, which
can be seen by the shape of the Voronoi cells. Onto the hexagonal lattice with
position ri defined by the translation vectors (4.1), random noise is added by adding
i.i.d uniform random variable onto the position r′i = ri + µU(0, 1) with µ the noise
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strength. In Figure 4.7 B ⟨ψ6⟩ for a system of N = 300 lattice points is shown with
respect to the noise strength µ. The parameter reacts non-linear on the noise added
to the system and goes to ⟨ψ6⟩ ≈ 0 for µ > 1.0. The orientational order for the
whole space, averaged over multiple realizations of the systems, is defined as

⟨Ψ6⟩ = 1/N
N∑
j=1

|Ψ6(ri)|, (4.19)

and analogously for ψ6, with N the total number of particles. In this thesis, the

Figure 4.7: (A) Illustration of the bond orientation parameter Ψ6 for a perfect
hexagonal crystal with increasing noise from left to right. The noise level is µ =
{0.0, 0.4, 1}. (B) The mean bond orientation measure ⟨Ψ6⟩ with respect to the noise
level µ. (C) Illustration of the bond angle between particle i and j.

bond orientation is calculated individually for each particle. The axis to define the
angle is set arbitrarily to one of the bonds. In two-dimensional systems, it can also be
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useful to fix the axis for the entire system to calculate the orientational-correlation
function analogous to the two-point-correlation for the position (see Section 4.3)
g6(r) = ⟨Ψ6(r)Ψ6(r − r′)⟩/g(r) and Ψ6(r) =

∑
i Ψ6(ri)δ(r − ri). The orientation

correlation is useful to detect a phase unique to two-dimensional systems called
the hexatic phase. It is characterized by a short-range translational order g(r) ∝
exp(−r/ξ) similar to a liquid and long-range orientational order g6(r) ∝ r−ηg . In
contrast a liquid exhibits short-range orientational order. The difference between the
hexatic phase and the liquid phase stems from the kind of defects they inhibit (see
Section 4.6). The hexatic phase emerges in the melting of a two-dimensional system
as described in the KTHNY theory [215–217]. In this work, either the absolute
value of Ψ6 is used or the real value ψ6. As a simplification, the absolute value of
|Ψ6| ≡ Ψ6 from here on.

4.6 Defects in two dimensions

In real systems, the perfect crystal does not exist. First of all, the system is finite,
but it also exhibits several possible different defects. This section discusses two
important kinds of defects, grain boundaries and dislocations/disclinations. Ordered
crystalline structures can grow separately in proximity to each other. These small
crystals are referred to as grains (not to be confused with the grains of granular
matter) and can vary in size from macroscopic structures to microscopic crystals
in e.g., metals. When two-grain crystals meet, they usually have different crystal
orientations. The area between the separate granular crystals is referred to as the
grain boundary. In two dimensions, the grain boundary is a one-dimensional defect.
It is common in granular crystals with polydisperse particle size [197, 203, 218].
An example of a grain boundary in a two-dimensional Lennard-Jones fluid with
low-temperature [219, 220] is illustrated as a Voronoi plot in Figure 4.8. Panel A
depicts the particles with Ψ6 > 0.7 in yellow and Ψ6 ≤ 0.7 in blue. The threshold
is set so that the grain boundary becomes visible. Panel B in Figure 4.8 shows the
coordination number Nn ̸= 6 in red (Nn = 5) and green (Nn = 7). Along the grain
boundary is a chain of alternating 5- and 7-fold dislocations (A bounded 5-fold and
7-fold particle pair is called a dislocation).
A dislocation is a topological defect characterized as an additional half-row of parti-
cles in the crystal structure. A topological defect is a defect that cannot be created
without cutting the crystal up to infinity (i.e., there is no affine transformation that
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Figure 4.8: (A) Grain boundaries (blue) between grain crystals (yellow) in a
two-dimensional Lennard-Jones simulation. The yellow particles have an order pa-
rameter Ψ6 > 0.7, and the blue particles Ψ6 ≤ 0.7. (B) Analogous to panel A, the
plot of the coordination number Nn ̸= 6. Particles with Nn = 5 are in pink, and
particles with Nn = 7 are in green.

isolates the defect). Figure 4.9 B and E show a single dislocation in a hexagonal
crystal structure for the Voronoi and Delaunay plots. In panel E, the extra row of
particles is visible when counting the horizontal edges of the Delaunay triangula-
tion. The defect is usually defined by the Burgers vector [185]. When traversing
on a hexagonal circuit with step length a (the length of the hexagonal translation
vector), the trajectory forms a closed loop. Traversing around a dislocation in the
same manner will produce an open geometric figure. The Burgers vector is then the
vector closing this figure marked as yellow in Panel E. Dislocations in the structure
disrupt translational order in the system (causing g(r) to decay exponentially). In
contrast, the orientational order is retained (quasi long range with g6(r) decaying
as a power law, see Figure 4.9 B). A bound pair of dislocations illustrated in Figure
4.9 A and B retain both translational and orientational order and do not disrupt
the topology of the crystal (See Panel A). Another kind of topological defect is
the 5- or 7-fold disclination illustrated in Figure 4.9 C and F. This defect destroys
translational and orientational order (i.e., g(r) and g6(r) both decay exponentially),
illustrated in Figure 4.9 C. Dislocations and disclinations are important in the melt-
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ing of two-dimensional crystals. Starting from a hexagonal crystal, they are created
in pairs because these are topological defects. When heating a two-dimensional crys-
tal, dislocation pairs appear in it. In the melting process, these dissociate into 5-7
fold dislocations. This is the hexatic phase. Further into the melting process, the
dislocations dissociate into disclinations, constituting the two-dimensional system’s
liquid phase. This two-step melting process unique to two-dimensional crystals is
described in the KTHNY-theory [215–217].

Figure 4.9: Illustration of the different kinds of defects in the Voronoi plot (A-
C) and Delaunay plot (D-E). Panels A&D show a 5-7-fold dislocation pair in a
solid, panels B&E a 5-7-fold dislocation in a hexatic fluid, and panels C&D a 5-fold
disclination in a liquid. Panel E shows the Burgers vector[185] for a dislocation.
Figure adapted from[221].

4.7 Shape factor

With the use of the Voronoi cell (3.1), each particle has a clearly defined polygon
associated with it. The shape of the polygons contains information on the structure
of the whole system. In Figure 4.8 B and 4.9 A-C, the different shapes from 5 to 7-
fold polygons can be clearly distinguished. The Voronoi cell of particles with Nn = 6

are mostly close to regular hexagons, and the cells of particles with Nn = 5 are close
to regular pentagons. Particles with Nn = 7 are quite irregular in contrast. The
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shapes of the polygons have distinct ratios between their area and perimeter, which
makes it possible to distinguish the shapes of the Voronoi diagram quantitatively. In
the study of quasi-two-dimensional granular fluids, the shape factor was introduced
[186, 188]. It is defined as

ζi =
C2

i

4πSi

, (4.20)

with Ci the perimeter of the Voronoi cell and Si the area. The values of ζ are
unique for regular polygons. For a circle, the value of ζi = 1. For all other shapes
ζi > 1. For a square ζ = 4/π ≈ 1.273, for a regular hexagon ζi = 6/

√
3π2 ≈ 1.103,

for a pentagon the value of ζi = π/5 tan(π/5) ≈ 1.156, and for regular heptagons
ζi = 7 tan(π/7)/π ≈ 1.073. The advantage of the shape factor in comparison to
other measures like the bond orientation factor Ψ6 (see Section 4.5) is that it can
clearly detect the structuring of the system into various shapes, without a bias about
the expected ordering of the system.

4.8 Detection of clusters on a grid

In the analysis of the structure in a system, it is interesting to look for ordered clus-
ters (granular crystals as described in Section 4.6). One efficient method to separate
and label a discrete dataset into clusters is the Hoshen-Koppelman Algorithm [222].
The algorithm can be used on a grid of either occupied or unoccupied cells anal-
ogous to cellular automata (Section 2.2). An example is illustrated in Figure 4.10
A, where blue cells are occupied and grey cells are not. The algorithm performs a
raster scan line by line from left to right. Its target is to assign a label to each occu-
pied cell corresponding to the cluster it belongs to. The labels are natural numbers
between 1 and N . It checks for neighbors on the left and above on a Von-Neumann
neighborhood (see Figure 2.2). The algorithm performs the following steps:

• If the cell is unoccupied: continue.

• If the cell is occupied with no label and no occupied and labled neighbors:
assign an unused label to it.

• If the cell is occupied and has one occupied and labeled neighbor, assign its
neighbor’s label to it (they belong two the same cluster).
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• If the cell is occupied with two occupied and labeled neighbors, assign the
smaller label to it and note that the two clusters the neighbors belong to must
be merged.

Neighboring cells share an edge (i.e., Nn = 4 for all cells except the boundary). The
merging of two equivalent clusters, described in the last step, is performed using a
Union-Find algorithm [223]. To merge the clusters, a function union(x, y) specifies
that items x and y belong to the same cluster (i.e., they are assigned the same
label). Since all cells that belong to cluster x also belong to cluster y, the function
find(x) is called to take all cells in cluster x and assign them the correct label of
cluster y. The process is illustrated in Figure 4.11 according to the steps explained
above, and the functions union(x, y) and find(x). Figure 4.10 B illustrates the
resulting clustering of the cells. A good summary of implantations for union(x, y)
and find(x) can be found at [224].

Figure 4.10: (A) Illustration of a grid with occupied (blue) and unoccupied (grey)
cells. (B) Clustering of the grid according to the Hoshen-Koppelmann algorithm
with labels 1 to 5.

The data from the simulations analyzed in this thesis are from continuous models on
which the grid approach of the Hoshen-Koppelman algorithm is not applicable. To
circumvent this problem, the data is processed and set onto a grid. In the simulated
data of the continuous speed and force-based models (see Chapter 2.3 and 2.1) is a
set of discrete points in a continuous space that evolves over time. The position of
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theN agents in the simulation at time t is ri(t) with i ∈ {1, ..., N}. Each agent is also
assigned the local order measures like the shape factor ζ(ri(t)) or the orientational
order Ψ6(ri(t)) (see Section 4.5 and 4.7). To analyze the clustering of an arbitrary
order measure Ω(ri(t)), it is convenient first to transform it into a continuous field

Ω(r(t)) =

∑
i Ω(ri)δ(ri − r)∑

i δ(ri − r)
, (4.21)

with the smoothed delta function (3.5) and then put a fine grid over the field to
utilize the Hoshen-Koppelman algorithm. The discretization of the grid comes auto-
matically while computing the field since the resolution of the computation is finite.
The algorithm works on binary data. Therefore a threshold ϵ is defined on the order
parameter. The condition for cell i being either occupied or unoccupied is

i =

{
occpuied if Ωi > ϵ

unoccpuied if Ωi ≤ ϵ.
(4.22)

With this, a discrete binary grid is produced on which the algorithm can cluster the
data depending on the arbitrary threshold of the measure of interest.

Figure 4.11: Illustration of the Hoshen-Koppelman algorithm with the functions
union(x, y) and find(x). The green dot marks the cell that is currently scanned.
The process in the illustration starts at the first occupied cell.
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Chapter 5

Structure in pedestrian bottleneck
experiments

In this Chapter, part of the methods introduced in Chapter 4 are applied to pedes-
trian bottleneck experiments and compared to simulations. It should be noted that
though there are some analogies to the granular systems, there are also differences.
The granular systems are not self-driven, and the experiments that investigate the
structure of shaken granular matter have no net flow. The particles in these sys-
tems interact by collisions and are in non-equilibrium because of energy dissipation
and injection by shaking [188, 195]. In comparison, the pedestrian system has more
complex interactions via either the stimulus-response system. In high-density sit-
uations, it can come to pushing behavior, which leads to body-body interactions,
though because of the self-driving mechanism of pedestrians, this is different from
collisions in granular media. The experiments analyzed are from the University of
Navarra and are compared to simulated models. The data stems from a set of ex-
periments conducted with 180 soldiers in the America 66 regiment of the Spanish
army [1]. The trajectory files and videos are freely available online [225]. The design
of the experiments aimed to examine the influence of an obstacle near a bottleneck
(realized by a column) on the evacuation dynamics in respect of flow and density.
The experiments are part of a larger set of experiments that examined the "column
effect" [1, 2, 79]. Here the runs with an obstacle are omitted, and the scenario of a
simple evacuation through a bottleneck is in focus with no restrictions on the cor-
ridor width. The particular set is most suitable to analyze the structure because of
the larger number of participants (N = 180 vs. N = 90 in [79]). In the experiments,
the participants were told to evacuate quickly through a bottleneck realized by a
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Figure 5.1: (A)&(C) Snapshot of the camera system of the experiment (A) with
low motivation and (C) with high motivation. Panels (B) and(D) show the scatter
plot of the trajectory data captured from the camera approximately at the same
time with the velocity vectors. (E)&(F) Mean absolute value of the radial velocity
vr and angular velocity vθ of the whole system for a typical run. (E) shows low
motivation and (F) high motivation. Figure adapted from [1].
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75 cm wide door in a large hall. They were conducted with two motivation levels.
In the low-motivation runs, the participants were told not to push but to leave the
perimeter quickly. In the high-motivation runs, pushing was allowed. There are
three runs of the experiment with low motivation and no obstacle and seven runs
with high motivation and no obstacle. The experiments were tracked with an optical
camera system in 4k high resolution. An imaging software is applied to extract the
trajectory data (see [1, 80]). A snapshot is illustrated in Figure 5.1 A and C for low
and high motivation, respectively. Part of the analysis in [1] is the collective motion
of the pedestrians. The dynamics of low and high motivation differ significantly.
A surprising observation is the emergence of a collective transversal motion in runs
with high motivation. While pushing each other to evacuate the room, the par-
ticipants collectively start to sway perpendicular to the direction of the exit. This
phenomenon is illustrated in Figure 5.1 B and D. In the low motivation experiment
(panel B), the movement is "laminar" towards the exit. In contrast, for high mo-
tivation, the collective motion perpendicular to the exit direction becomes visible
(panel D). The velocities of the participants are measured in cylindrical coordinates,
with the exit being the origin of the coordinate system. In [1], the swaying is visu-
alized by decomposing the velocity into the components of polar coordinates. The
origin of the system is the center of the exit. The radial velocity vr is positively de-
fined towards the origin, and the angular velocity vθ is defined clockwise. In Figure
5.1 E-F, the velocity components are visualized. To illustrate the swaying motion,
the angular velocity vθ is a good indicator. For the low motivation run (Panel E
in Figure 5.1), vθ oscillates closely around 0. The oscillation comes mainly from
the swaying motion of the participants while walking. As expected, they walk in
a mostly straight line toward the target. In the run with high motivation (panel
F), strong oscillation of vθ illustrates the collective swaying motion the crowed ex-
hibits. The reason for this phenomenon is still unknown. The effect shows that
the dynamics differ significantly depending on the motivation. The next step is to
analyze the system’s spatial structure using the methods introduced in Section 4.4
- 4.7. The experimental datasets are rather small to calculate correlation functions,
so the focus lies on the measure of hexagonal bond orientation ψ6 (4.18), the shape
factor ζ (4.20) and the coordination number Nn. Figure 5.2 depicts the Voronoi-
scatter plot of a snapshot of the trajectory data at t = 15 s after the start of the
experiments (i.e., when the first participant exits the room) for low motivation in
the left column and high motivation in the right column. The panels show from
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Figure 5.2: Scatter plot at t = 15 s with low motivation (left column) and high
motivation (right column). (A) hexagonal orientation factor ψ6 (purple low ψ6,
yellow high ψ6). (B) Local density ρn. (C) Coordination number (white: Nn = 6,
light green: Nn = 7, light pink: Nn = 5). The measurement area depicted as the
red half circle has the conditions r < 2 m and y > 0.5 m.
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top to bottom the local real value of the bond orientation measure ψ6), the local
density ρn (3.6), and the coordination number Nn. The bond orientation measure is
consistently low and far from the hexagonal order. The disorder is also reflected in
the shape of the Voronoi cells, which exhibit no particular pattern in the snapshot.
This is consistent over the experiments for both motivations, which can also be seen
in the video of this plot "StructureNavarra.mp4" in the supplementary video files
[226]. The structure of low and high-motivation experiments does not seem to differ
much. It is irregular in both cases, comparable to a fluid (see Section 4.5). The
measure ρn shows the local density of the participants. The snapshot illustrates the
difference between the lower density in the low-motivation experiment and the high
density in the high-motivation experiment. The highest density of the experiment
is inside the red half circle. This defines the measurement area for further analysis
of the data. It is chosen to have a distance to the boundaries to lessen the impact
of boundary effects. The last two panels show defects in the system. The system
has an abundance of 5-7 fold dislocations and disclinations in both high and low
motivation, characterizing the measured trajectories as fluid-like. The coordination
number Nn of the participants changes rapidly during the experiments. This dy-
namical change can be seen in the video and can also be illustrated when plotting
the individual participant’s coordination number over time. Figure 5.3 shows in
panels A and B the coordination number with the same color code as in Figure 5.2.
The y-axis encodes the individuals id that identify them during an experimental
run. The trajectories are taken between 10 s and 20 s. The individuals were chosen
from the upper boundary of the red measurement area (between 1.5 m < r < 2 m).
Because of the higher density, more trajectories are shown in the high-motivation
experiment. The plot illustrates how each individual’s coordination number changes
dynamically in short periods. Most participants’ coordination number is between
Nn = 5 and Nn = 7, and most participants have each coordination number at some
point in time. Even though the dynamics of high motivation runs differ significantly,
the coordination number dynamics are qualitatively similar. In the same manner,
the dynamics of the shape factor ζ is plotted (Figure 5.3 C and D). The time series
shows that the shape factor changes dynamically over various values for individual
trajectories. Small changes in ζ describe significant differences in the shape (see Sec-
tion 4.7). Analogous to the dynamics of the coordination number, the shape factor
dynamics are qualitatively similar for both high and low motivation in the change
of the shape factor over time and the variation of shapes an individual inhibits.
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Figure 5.3: (A)&(B) A time series plot of the coordination number Nn with
respect to the time t of a single run in the measurement area from 10 s < t < 20 s.
The y-axis shows the identification number of the agents. (C)&(D) Analogous to A
and B for the shape factor ζ. Panels A&C show low motivation, and panels B&D
high motivation.
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The coordination number Nn can be utilized to analyze the lifespan of the different
neighbor configurations from 5-fold to 7-fold. Because of the discrete nature, it is
straightforward to define a lifespan tc of a coordination number for a certain individ-
ual as the consecutive time an individual has Nn number of neighbors. The lifespan
is the length of each color in Figure 5.3 A and B. The change from one coordination
number to the next at time t is the time of birth tb of the new coordination number
and the time of death td of the other. The time tb is then the null point from which
the lifespan is calculated. With this definition, the survival function is defined as
S(t) = P (td > t), which is the probability that the coordination number is still alive
at time t. The survival of the coordination numbers is measured in the measurement
area and time interval of 10 s < t < 20 s. Because of the starting time and new
individuals entering the measurement area, the data is left censored 1, meaning that
the birth tb of individuals entering the measurement area is unknown. To account
for this, the first birth of a coordination number of an individual is the first time
the coordination number changes in the measurement area. This introduces a new
bias against individuals with very stable coordination numbers. Still, since these
are few, and the aim is to analyze the general dynamics of the system, it only influ-
ences the tail of the survival curve. When individuals leave the measurement area,
the death of the last coordination number is also unknown, and the data is right
censored. This circumstance is accounted for in the Kaplan-Meier estimator [227], a
non-parametric estimator used to calculate the survival function of empirical data.
The estimator is defined as

Ŝ(t) =
∏
i:ti≤t

1− di
ni

. (5.1)

In the estimator, ti is the time where at least one death happened, di is the number of
deaths at time ti, and ni is the number of individuals still at risk (e.g., are not dead or
censored). The survival plots of the 5-7 fold coordination numbers Nn are illustrated
in a log plot in Figure 5.4 A and B. In the log plot and low motivation, the survival
plots of the different coordination numbers are close to a straight line, indicating an
exponentially decreasing survival function, which hints at a constant risk of changing
coordination numbers (similar to nuclear decay). The survival function for Nn = 7

1Censored data is a concept usually relevant in patient studies where a certain outcome is
measured (e.g., death). When a participant enters a study after an unknown time of receiving a
treatment that could influence the measured outcome, it is left censored. When the participant
leaves before the outcome is measured, it is right censored.
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Figure 5.4: Survival function S(t) of the coordination number for Nn ∈ {5, 6, 7}.
(A)&(B) Compare the log-survival function of the coordination number for the
respective motivation specified in the title. Panels (C)-(E) show the log-plot com-
parison between the motivation levels for the respective coordination number Nn

specified in the title of the panels. The legend shows the median survival time t̄.
(F)-(H) show the same panels as C-E for t < 1.5 s.
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decays quicker than for Nn = 5 and Nn = 6, which are very close together. This
is also evident in the median survival time t̄ shown in the legend of Figure 5.4 C -
E. The median survival time for Nn = 5 and Nn = 6 is equal with t̄ = 0.36 s and
t̄ = 0.28 s for Nn = 7. The analogous survival function for high motivation in panel
B of Figure 5.4 exhibits a heavy tail in the log plot, indicating a deceleration in the
risk of death for a coordination number. This phenomenon can occur in systems
where the risk of death is not homogenous, and there are configurations that are
more stable compared to others in the cohort [228]. However, this is conjecture since
there could be many reasons for this behavior. Similar to the case in low motivation,
the 7-fold coordination number has the shortest median lifespan with t̄ = 0.24. For
the 5- and 6-fold t̄ = 0.28 s and t̄ = 0.32 s. The differences between the survival time
of the different coordination numbers are measurable. Still, in all cases, the survival
time is very short at about (1/4− 1/3) s, illustrating how the dynamical structural
change. The results are not tested for statistical significance, but qualitatively a
difference in the dynamics of the coordination number for high and low motivation
is evident. This is further illustrated in panel C - H of Figure 5.4. In panels C -
E, the heavy tail of high vs. low motivation is visible, while panels F-H show the
faster early decay of the high motivation survival curve. For the difference in the tail
between high and low motivation should be noted that for high motivation, there are
twice as many experiments and generally more participants in the measurement area
because of the high density, which could be the reason for the observed difference.

Next, the mean structure over time and space is analyzed, comparing the dynamics
of the mean density ⟨ρn⟩, the mean hexagonal bond orientation measure ⟨ψ6⟩ and
the mean coordination number ⟨Nn⟩ in the time interval of 0 s < t < 40 s. The
exact choice of the interval is arbitrary. However, during chosen one, there is still
a large fraction of the participants in the system, and the most important features
of the increase in density, the maximal density phase, and the subsequent decrease
are visible. The mean value of the density ⟨ρn⟩ and the bond orientation parameter
⟨ψ6⟩ with the 95% interval of the data shown as error bars are illustrated in Figure
5.5 A and B. The mean is taken over all participants in the measurement area and
all experiment runs (3 for low and 6 for high motivation). The density dynamics
in the measurement area are strikingly similar for low and high motivation. For
both motivations, the density increases in the experiment’s first 5 − 7 s. Between
5 and 15 s, the density for low motivation reaches a plateau and decreases from
20 s. For high motivation, the density reaches a maximum at around 10 - 12 s



90 Structure in pedestrian bottleneck experiments

and decreases after about 20 s. Even though the dynamics around the maximal
density differ slightly in regards to the maximal density, the low motivation density
time series fits closely to the high motivation when scaled with a factor of 1.5.
The bond orientation measure is static near ⟨ψ6⟩ ≈ 0 for the whole duration of
the experiment for both motivations, characterizing a fluid-like behavior. Panel
C shows the time series of the mean coordination number ⟨Nn⟩, which is in both
cases close to Nn = 6 during the whole run. The deviation for low motivation is
larger, but the system’s density is lower, and there are fewer runs. Because of the
boundary conditions of the measurement area, the mean number can be influenced
and deviate from Nn = 6. In Figure 5.5 D, the mean density ⟨ρn⟩ in respect to the
distance from the bottleneck r between 10 s < t < 20 s illustrates an increase in
density with distance to the bottleneck in the high motivation experiments, which
saturates around r ≈ 1.25 m. In contrast, for low motivation, the density profile is
relatively flat. The scaling with the factor of 1.5 shows a good agreement between
the low motivation density profile and the high motivation profile in the saturated
part of the curve. Still, the dynamics differ closer to the bottleneck. In comparison,
⟨ψ6⟩ in panel E is constantly close to zero for both motivations. To analyze the
relation between the density and the order measure, the mean shape factor ⟨ζ⟩
is plotted against the density ρn in the measurement area in panel F. For both
motivations, the shape factor generally increases with the density. Interestingly
at high densities, the shapes are far away from a regular hexagon (ζ ≈ 1.103)
and closer to the shape factor of a square (ζ ≈ 1.273). For an illustration of the
different shapes, see the Appendix Figure S7, where the shapes are sorted into three
categories. The shape factor increase with density is steeper for low motivation than
for high motivation. It should be considered that the mean density of the system
for high motivation is higher than for low motivation. Therefore, the shapes are at
different points of the density distribution of the respective system (see Figure 5.6
B). Rescaling the density by the mean density in the measurement area between
10 s < t < 20 s of the respective motivation collapses the curves close together,
which is illustrated in panel G of Figure 5.5. Comparing the distributions of the
measures in the measurement area and discussed time interval shows a remarkably
close agreement between both motivations. The distribution of the shape factor
with its minimum value translated to the origin ζ − 1 is illustrated in Figure 5.6 A.
For both motivations, the distributions are very close to each other with the mean
for high motivation ζ ≈ 1.231 and for low motivation ζ ≈ 1.237 the difference in the



91

Figure 5.5: (A)-(C) Time series of the mean local density ⟨ρn⟩ (A), the mean
hexagonal bond orientation factor ⟨ψ6⟩ (B) and the mean coordination number
⟨Nn⟩ (C). The values for low motivation and high motivation are shown in all three
panels. Additionally, panel A displays a scaled version of the low motivation with
α = 1.5. (D)&(E) show the mean density ⟨ρn⟩ (D) and mean hexagonal bond
orientation factor ⟨ψ6⟩ (E) in respect to the distance r from the bottleneck. The
green line has the same scale factor as in (A). (F)&(G) depict the mean shape factor
⟨ζ⟩ in respect to the density ρn (F) and to the rescaled density ρn/⟨ρn⟩ (G). Error
bars show the 95 % interval.
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mean is statistical relevant (p ≪ 0.01 using the t-test) but small. The distribution
of ζ − 1 is well fitted by the log-normal pdf

L(x, µ, σ) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
, (5.2)

With σ ≈ 0.3114 and µ ≈ −1.509, pooling both high and low motivation together
since the small difference in the distributions is not relevant considering the small
effect on the shape. The relative error ∆P (ζ) = |P (ζ)− P̂ (ζ)|/P (ζ) of the fit, with
the fitted value P̂ (ζ), is ∆P (ζ) ≈ 0.33. The distributions of ζ for both motivations
filtered for the coordination number 5 ≤ Nn ≤ 7 exhibit the same shape regardless
of Nn (Figure 5.6 D). The distributions are shifted with the smallest mean Nn = 7,
⟨ζ(Nn = 7)⟩ ≈ 1.208. For Nn = 6 the mean shape factor is ⟨ζ(Nn = 6)⟩ ≈ 1.23

and ⟨ζ(Nn = 5)⟩ ≈ 1.26 with p ≪ 0.01. As expected, the ζ is smallest for Nn = 7

and largest for Nn = 5 considering the value for the respective regular shapes (see
Section 4.7). The local density distribution P (ρn) in panel B of Figure 5.6 is in both
cases for high and low motivation symmetrically distributed around their mean
value close to a Gauss shape. A Gaussian distribution to the data shows a close
fit (this illustrates the shape of the data, the densities are not Gauss distributed
since negative values are not possible). The values of the fitted distribution for high
and low motivation are µ ≈ {9.48, 6.46} m−2 and σ ≈ {2.13, 1.57} m−2 respectively.
Rescaling the density by the mean value of the distribution ⟨ρn⟩ for the respective
motivation collapses them (see panel E in Figure 5.6). The distribution of Nn

is also similar for both distributions with ⟨Nn⟩ ≈ 5.96 for high motivation and
⟨Nn⟩ ≈ 5.84 for low motivation. The difference is minor but statistically significant
with p ≪ 0.01. The Gaussian distribution fitted to the data of both motivations
pooled together is a guide for the eye, showing the symmetry of the data. The values
of the fit are µ ≈ 5.93 and σ ≈ 0.87. The standard deviation σ is rather large,
with the ratio between Nn = 5 and Nn = 6 being around 0.75 and 0.5 between
Nn = 7 and Nn = 6. In conclusion, while the velocity dynamics of the participants
differ dramatically between the experiments with low and high motivation, the same
cannot be stated for the structure of the measured trajectories. The local structure
of the system shifts dynamically on an individual scale. Measured over time, the
different measures follow well-known distributions (log-normal for the shape factor
and Gauss-like for the density and coordination number). For both motivations, the
dynamic change in structure and the mean structure over multiple systems and time
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Figure 5.6: (A) Distribution of the translated shape factor ζ - 1, (B) the local
density ρn and (C) the coordination number Nn. A log-normal distribution is fitted
to the shape factor. The other fits show a normal distribution. (D) Shape factor
for the coordination number Nn from 5 to 7 for both motivations. The mean for
ζ̄(Nn = 6) ≈ 1.23, ζ̄(Nn = 5) ≈ 1.27, ζ̄(Nn = 7) ≈ 1.21. (E) Distribution of the
local density ρn scaled by the mean density ρn/⟨ρn⟩.
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is very similar, with only subtle differences compared to the dramatic change in the
velocity dynamics.

5.1 Simulation of the experiment

This section compares simulations using the CSM to the experimentally observed
structure. In contrast to simulations of granular matter [188, 195], the CSM is non-
Newtonian and in non-equilibrium with a net flow. The simulations are conducted
with N = 190 agents. In Table 5.1, the parameters of the CSM are summarized.
The exit is set symmetrically around x = 0 m at y = 0 m with bottleneck width
w = 0.75m. The agent size is set to l = 0.32m, which fits well to the mean neighbor
distance ⟨dn⟩ measured in the experiment (see Figure S9). The simulations are
repeated Ns = 50 times with random initial positions and with an initial density
close to the experiments of ρ0 = 4.5m−2 as a boundary condition. The motivations
are distinguished by the slope factor T (2.14) and the interaction distance d in the
exponential repulsion factor (2.17), represented as the tuple m = (T, d). For low
motivation the parameters are set to m = (1.0 s, 0.1m) and for high motivation the
tuple is set to m = (0.25s, 0.05m). The idea behind the quantification of motivation
in the CSM is discussed in Section 2.3. In the simulation at hand, the repulsion
strength ai in the exponential repulsion function R(s) (2.17) is non-zero. A snapshot
of the two conditions in the simulation and the local bond orientation parameter
ψ6 is illustrated in Figure 5.10 (top row). The increase in local density (3.6) of the
system is visible, but a difference in the orientational order is not apparent.
For a quantitative analysis, the time series of ⟨ρn⟩ and ⟨ψ6⟩ and the 95% intervals
of the measures are calculated in the measurement area as defined in Figure 5.2 in
time steps of ∆t = 1s analogous to Figure 5.5 in the time interval 0s < t < 30s. The
mean ⟨◦⟩ is taken over all individual agents of all Ns = 50 ensembles of the system.
The time interval is chosen because the mean local density is the most stable and
contains the maximal density of the system. The time series are presented in Figure
5.7.
The mean local density ⟨ρn⟩ and mean hexagonal order ⟨ψ6⟩ increase substantially
with the motivation. The system starts in a rather disordered state. The order
increases from 0s < t < 5s and is substantially higher than in the experimental data,
where the hexagonal order ⟨ψ6⟩ is close to constant over the whole measurement
period (10s < t < 30s). An illustration of the difference in structure in the trajectory
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Figure 5.7: Time series of the simulation (Sim) and the experiment (Exp) for
low and high motivation (mot) of the mean local density ⟨ρn⟩ (A) and the mean
hexagonal order parameter ⟨ψ6⟩ (B). The values are measured in the area specified
in Figure 5.2. The bars show the 95% interval of the data for all agents i over all
Ns = 50 ensembles.

Figure 5.8: Voronoi-scatter plot of the experiment and the simulation Left: Snap-
shot of an experimental trajectory at t = 12 s and low motivation. Right: Snapshot
of a CSM simulation at the same time as the experiment. The colors represent the
coordination number Nn (white: Nn = 6, light green Nn = 7, light pink Nn = 5).
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data of the experiment and the CSM is shown in the Voronoi-scatter plot in Figure
5.8. The plot shows the coordination number Nn, and the Voronoi cells are taken
from the experimental data and a simulation at t = 15 s. The coordination number
of the agents in the simulation is dominated by Nn = 6, displaying a clear preference
for hexagonal order, with few 5-7 dislocations. It presents nearly regular hexagonal
Voronoi cells in the system. In the experiment, the coordination number in the
snapshot is noticeably more evenly distributed, and no preference in the shape of
the Voronoi cells is visible. The variance in the distance to the neighboring agents
j is lower in the simulations than in the experimental trajectory data. This can
be further illustrated in the distributions of the local density and order parameters
analogous to Figure 5.6. The distributions for the shape factor ζ, the local density ρn,
and the coordination numberNn are calculated in the time interval 10s < t < 20s. In
Figure 5.9 the distributions for high and low motivation in the experiment (crosses)
and the simulations (dots) of low motivation (m = (1 s, 0.1m)) and high motivation
(m = (0.15s, 0.05m)) are depicted. The vertical lines in the shape factor plot are the
values for the shape factor of the regular hexagon (ζ ≈ 1.103) and regular pentagon
(ζ ≈ 1.156). The distribution of the simulations for the shape factor ζ is used to
analyze the microscopic order in the system. The ζ-distribution of the simulations
differs from the experiments, as these exhibit much narrower peaks. The distribution
of the simulation for low and high motivation also differs considerably. The low
motivation simulation is unimodal with a peak near the value of the regular pentagon
(ζ ≈ 1.156) and a saddle point between the value for a regular hexagon (ζ ≈ 1.103)
and the regular pentagon. The distribution for the CSM of high motivation is, in
contrast, bi-modal, with the same peak near the value for the regular pentagon
and a second peak near the value for the regular hexagon. This is to be expected,
considering the higher value of ⟨ψ6⟩ in the time series analysis of Figure 5.7. The
peak near the shape factor of a regular hexagon is also consistent with the higher
density of the system, as this shape maximizes the packing fraction of discs. The
distribution has an exponential tail (see log-plot in Figure S10) for both motivations
and cannot be approximated by a log-normal distribution, as in the case of the
experiments. The coordination number Nn of the experiment and the CSM are
similar and symmetrically distributed around Nn = 6. The coordination number
distribution of the simulations peaked narrower at Nn = 6. The peak of the high
motivation simulations is narrower, indicating that the system has fewer defects
than in the case of low motivation. The CSM for both motivations has fewer defects
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than observed in the experimental data. In conclusion, the CSM simulations can
reproduce the measured densities fairly well in the experiments conducted in Navarra
and Wuppertal [1, 32] but analyzing the microscopic structure of the system reveals

Figure 5.9: Distribution of the shape factor ζ (A), local density ρn (B), and
coordination number Nn (C) for the CSM simulations (dots) and the experiments
(crosses). The vertical lines in A show the shape factor of the regular hexagon and
pentagon.

that the model differs significantly compared to the measured trajectories. The
model has a higher hexagonal order, increasing with the motivation with fewer
defects and clear peaks close to regular hexagons and pentagons in the shape factor
distribution. Most notably, the shape factor distribution and coordination number
distribution in the experiments do not differ significantly. The following sections
investigate possible reasons for the difference in the model distributions and time
series compared to the experiments. Apart from the differences between the model
used in the simulations and the physical properties of the human shape, two effects
are analyzed that could influence the structure of the measured system. One factor is
the polydispersity in the participant’s size. Even though the group in the experiment
is quite homogenous (men in the military of similar age), a natural variation in body
size could affect the microscopic structure. This influence of polydispersity is well
studied in the granular matter, and colloids [195, 197, 203, 206]. Another factor
could be errors in the measurement of the trajectories. While colloids and granular
positions can be measured very well in experimental settings, the same is not true
for the position of pedestrians, even in well-controlled experiments. Both factors are
discussed in detail in the following sections.
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Parameter Variable Value
Slope factor (motivation) T {0.15, 1} s
Desired velocity v0 1.34 m/s
Initial density ρi 4.3 m−2

Agent size (hardcore exclusion) l 0.32 m
Repulsion strength ai 2.5
Repulsion length d {0.05, 0.1} m
Noise standard deviation σ 0
Population N 190
Floor field resolution ∆h 0.01 m
Wall avoidance distance dw 0.25 m
Bottleneck width w 0.75 m
Corridor width b 10 m

Table 5.1: Summary of model parameters and their values.

5.2 Influence of polydispersity on the structure in

the CSM

Polydispersity in the size of granular materials and colloids is extensively studied in
the context of the influence of the microscopic structure [195, 197, 203, 206]. Two
effects of variance in particle size on the microscopic structure are the decrease in
hexagonal order and the increase in defects in the granular medium. To analyze the
effect of polydispersity, the radius ra of agent i is chosen by a Gaussian distribution
with mean µ = 0.16m and standard deviation σr. Snapshots of the simulation with a
different degree of polydispersity from σr = 0m to σr = 0.06m in ∆σr = 0.02m steps
are illustrated in Figure 5.10. This covers a wide range of polydisperse systems with
the highest standard deviation in agent radius far beyond what is realistic in humans,
as is obvious when looking at the simulations. For American human males at age
19, the standard deviation of the shoulder can be assumed to be about σ ≈ 0.02 m
[229]. It should also be noted that the probability of clogs in the simulations that
arrest the flow increases with the standard deviation of the radius (see Figure 5.13).
In a system with high diversity in agent size, it is more likely that large agents (com-
pared to the bottleneck width) clog near the exit. Figure 5.11 shows the time series
of the simulation for different standard deviations in the polydispersity in both low
and high motivation simulations analogous to Figure 5.7. The mean neighborhood
density ρn of the simulated system is not affected by the polydispersity of the agent



Influence of polydispersity on the structure in the CSM 99

Figure 5.10: Snapshot of the CSM simulation with a polysipersity of σr ∈
{0, 0.02, 0.04, 0.06} m specified in the title. The (A) column shows low motivation
(m = (1s, 0.1m)) and the (B) coloumn shows high motivation (m = (0.15s, 0.05m)).
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Figure 5.11: Time series of the mean local density ⟨ρn⟩ (column A) and mean
hexagonal order ⟨ψ6⟩ (column B) of the experiment and simulations with polydis-
persity σr. The motivation is specified in the panel titles.
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radius ra, but the orientation-order parameter ψ6 decreases with increasing polydis-
persity for both high and low motivation, as expected when considering results from
polydisperse granular systems. Surprisingly even a high standard deviation in the
agent’s radius of σ = 0.06 m of the simulated system has a higher orientational or-
der than in the experiments for both motivations. This is illustrated more clearly in
Figure 5.13 in the panel for the mean local density ⟨ρn⟩ and the mean orientational
order ⟨ψ6⟩ in the time interval 10 s < t < 20 s. The dotted lines show the values of
the experiments. The mean value ⟨ψ6⟩ decreases substantially but is even for large
values of σ larger than the experimentally measured values. The distributions in
Figure 5.12 (analogous to Figure 5.9) show the effect of the polydispersity on the
order and density measures. A reasonable polydispersity of σ = 0.02 m has a small
effect on the shape-factor distribution. Both peaks are clearly visible in the simu-
lations with high motivation and only slightly reduced. The same can be observed
in the low motivation simulations, where the peak near the value of the regular
pentagon is only slightly reduced. Even with σ = 0.06 m, the distribution for high
motivation is bimodal, though the peaks are less pronounced and not as close to
the regular hexagon and pentagon values. The distribution of the local density for
high motivation simulation is not improved regarding fitting the experimental data
by the polydispersity. For low motivation, the distribution fits well for σ = 0.06 m
but is not sensitive to a polydispersity of σ = 0.02 m. The coordination number
distribution is improved in both cases for a polydispersity between σ = 0.04 m to
σ = 0.06 m.

A reasonable polydispersity shows only little improvement, however. To analyze
this quantitatively, the mean square error mse = 1/n

∑
i(xi − x̂i)

2 is calculated
for all distributions, where xi is the simulation value for a certain measure and x̂i

is the corresponding empirical value. The results are summarized in Figure 5.13.
The curve of the mse concerning the different measures has no coinciding minimum.
Especially the mse(ζ) is still large even for σ = 0.06 m and displays no minimum
compared to the other measures that have a minimum in mse around σ ≈ 0.04 m.
To conclude, polydispersity in the size of the participants cannot explain why the
microscopic measures of the simulations (ψ6, ζ, Nn) differ from the empirical data.
The simulations’ structure depends on the system’s polydispersity but is not very
sensitive to small variances in agent size.
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Figure 5.12: Analogous to Figure 5.9 a comparison of the distributions P (ζ)
(A)&(D), P (ρn) (B)&(E), and P (Nn) (C)&(F) with polydispersity σr. High (A-C)
and low motivation (D-F) are indicated in he title.
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Figure 5.13: (A) Comparison of the density ρn in the CSM with respect to the
polydispersity σr with the experimental data (dashed lines, see legend). (B) anal-
ogous to A the hexagonal bond orientation factor ψ6 in respect to σr. (C) The
fraction Pc of simulations that clog before evacuating the room in respect to σr.
Panels (D)-(F) show the mse of the distributions in Figure 5.12 of the CSM and the
experimental data for the shape factor ζ (panel D), the density ρn (panel E) and
the coordination number Nn (panel F).
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5.3 Influence of errors and noise in the trajectories

The trajectories in the experiments [1] are measured using the camera system’s
information by tracking the participants’ heads. The participants wore red heads,
which the image analysis software can track. The method to track the heads is quite
precise [230], but the approach has several sources for errors in the exact position of
the participant’s center of gravity. The head of the participants moves about their
body by swaying around or bending the upper body while walking (this is illustrated
in Figure S8). Since there is no information on the exact height of the participants,
an average height has to be assumed, which leads to an error in three-dimensional
data that is mapped onto a two-dimensional plane. In the experiments [1] an error
of |∆x| ≈ 0.1 m is estimated. The head and body sway effect in measuring the
trajectories is illustrated in Figure 5.14 (center panel). The trajectories show peri-
odic swaying perpendicular to the movement direction. The simulated trajectories
illustrated in Figure 5.14 (left panel) are smooth in comparison. A simple way to
introduce an error in the position of the simulated agents is to add an i.i.d. random
variable with zero mean and variance σ2. Specifically, a deviation of gaussian white
noise dx, dy = N(0, σ2) is added onto the x and y component of the position xi(t)

of agent i. It should be stressed that this approach is quite different from the error
in the trajectory analysis of video files. Adding random noise onto the position in-
dependently effectively disconnects the trajectories since the noise is added on the
exact position of every time step saved (which is a subset of the time resolution of
the simulation). The trajectories with added noise of a single run can thus be inter-
penetrated as multiple independent simulations at different points in time with the
same initial conditions but some unspecified deviation in the measured trajectory
from the exact trajectory that can be modeled by Gaussian white noise.

Even though the trajectories are disconnected, the effect of the noise on the sim-
ulation is shown in Figure 5.14 (right panel) to illustrate the trajectory deviation
from the simulated positions. The deviation from the mean trajectory is reasonable
compared to the sway observed in the experimental trajectories. A snapshot of the
simulation showing the defects analogous to Figure 5.8 is shown in Figure 5.15 for
low motivation. The simulation with noise and the experiment is not as clearly
distinguishable as in Figure 5.8. Compared to the exact position, the noisy posi-
tions exhibit no preference for regular hexagonal shapes and have a larger number
of defects. Displaying time series of ⟨ρn⟩ and ⟨ψ6⟩ in Figure 5.16 shows a remark-
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Figure 5.14: Comparison of the simulated trajectories and the experimental tra-
jectories in the x-y plane. The plot shows a random sample of 30 trajectories from
the CSM-simulations ((A)&(C)) and the experiment with low motivation ((B)) for
0 s < t < 30 s. Panel A shows the simulation trajectory without added noise and
panel C with added noise σ = 0.07 m.

able agreement of the simulations with added error and the empirical data of ⟨ψ6⟩
for both low and high motivation. The increase in orientational order in the ex-
act simulations trajectories is not detectable in the trajectories with added noise,
and ⟨ψ6⟩ is static in the time interval illustrated. The distributions of density and
order measures (Figure 5.17) show that the trajectories with added noise fit very
well with the experimental data. Especially for low motivation, all distributions of

Figure 5.15: Analogous to Figure 5.8 the coordination number in the experiment
[1] left and the CSM at 12s right. In this case, the positions of the simulated agents
are deviated x = (x+ dx, y+ dy) by a random vector with entries dx, dy = N(0, σ2)
and σ = 0.07 m.

the experiments and simulations with noise fall close together. Most importantly,
the distributions of the shape factor ζ and the coordination number Nn fall close
together when white noise is added on the x and y components with σ = 0.07 m.
Figure 5.18 shows the effect of the noise on the order and density measures and
the mse of the different simulated distributions with respect to the experiments. In
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contrast to the effect of polydispersity, noise in the trajectories is consistent with
the fit to the experimental data, especially for low motivation. The values of the
mse for low motivation have a minimum for all three measures (ζ, ρn and Nn) near
σ = 0.07m. The mean value of ⟨ψ6⟩ in the time interval 10 s < t < 20 s is also close
to the experimental values in this noise region. For high motivation, the structure
measures behave similarly; only the local density mse(ρn) error does not exhibit a
minimum near σ = 0.07 m. This is most likely connected to the issues the model
is confronted with in high motivation and pushing situations discussed earlier. In
Appendix A.4, the analysis is repeated for the social force model for low motivation.
The values of the parameters are specified in table A.1. The social force model
exhibits a much higher order in the simulations (see Figure S13 for σ = 0 m). The
distribution for ζ has a sharp peak near the value of the regular hexagon.

Figure 5.16: Time series of the simulations with added noise and the experiment
for low and high motivation. (A) shows the mean local density ⟨ρn⟩, and (B) the
mean orientational order-measure ⟨ψ6⟩. The observables are measured in the area
specified in Figure 5.2. The error bars show the 95% interval.

The density is sharply peaked with a small variance, and the coordination number
is closely peaked around Nn = 6. Adding noise to the trajectory in this situation
has a similar effect as the CSM on the structure. In this case, the mse of the shape
factor ζ and the coordination number Nn minimizes around σ ≈ 0.09 m, which is
still inside the error range. Concerning the local density, the effect of the noise is not
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as consistent as in the CSM. There is no minimum of the mse(ρn) near σ = 0.09m,
and the mean density ⟨ρn⟩ of the system dips below the experimental value. In sum-
mary, the analysis of the CSM and SFM shows that rather small deviations of the
measurement of the trajectory in the range of about ⟨|dx⃗|⟩ ≈ 0.07 m (⟨|dx⃗|⟩ ≈ 0.09

for the SFM) from the motion of the center of gravity can transform distributions of
the shape factor with distinct peaks onto the same distribution measured from the
experimental data. This is also true for systems that exhibit very sharp peaks in
the distributions of the order measures (ζ and Nn) as illustrated in the social force
model. There exist noise strengths σm for both models (SFM and CSM), which
merges their shape factor distribution to that of randomly distributed particles with
radius ri and volume exclusion (Appendix A.2 Figure S12), which also fits well to
the experimental data. The results illustrate that the structure of the system is sus-
ceptible to errors in the measurement of the pedestrian position, which is inherently
difficult to improve because of the flexible capabilities and movements of the human
body. It is impossible to infer the precise position distribution from the measure-
ments because the effect of the noise is an injective function. An improvement would
be precisely tracking the center of gravity of the pedestrians in the experiments.

Figure 5.17: Distribution of the shape factor ζ (A) ,local density ρn (B), and
coordination number Nn (C) for the CSM simulations with added noise dx, dy =
N(0, σ2) and σ = 0.07 m. Dots are from the simulations and crosses from the
experiments.
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Figure 5.18: (A)-(C): The mean value of the local density ⟨ρn⟩ (A), hexagonal-
order-parameter ⟨ψ6⟩ (B) and the coordination number ⟨Nn⟩ (C) are represented
in respect to the added noise on the position of the simulated agents. The dotted
lines represent the experimental value for the different motivations, respectively.
(D)-(F): The mean square error (mse) of the distribution of the shape factor ζ
(A), local density ρn (B) and the coordination numberNn (C) in respect to the
experimental distributions (see Figure 5.17). The distributions are illustrated in
Append A.2 Figure S11.



Chapter 6

Microscopic order in simulations of
pedestrian bottleneck

This chapter continues the analysis of the spatial order in pedestrian models in bot-
tleneck situations. The focus is on the collision-free speed model and its stochastic
version (CSM, SCSM, Section 2.3), while also the social force model (SFM, Sec-
tion 2.1) is used for comparison. At first, simulations with the same parameter
set as in the low motivation simulations of the experiments in the previous section,
with similar geometry and initial conditions, are conducted in a larger system. In
the subsequent sections, a selection of parameters deemed especially interesting in
the structure context is varied to explore their influence on the system. To reduce
boundary effects, simulations with a large number of agents are conducted on the
scale of 3000 ≤ N ≤ 8000 using "periodic" boundary conditions and long simulation
times. The boundary conditions are "periodic" in the sense that agents leaving the
geometry through the exit appear again in the geometry far away from the exit in a
specified area where they are placed randomly with zero speed initially. Specifically,
the size of the geometry is determined by the set corridor width b and the corridor
length lc, which is determined by the initial density ρi of the system and the number
of agents N , lc = N/(ρib). The area for the redeployment of the agents that exited
the geometry is between lc and lc × 1.5 bounded by the corridor width to the sides.
The simulation time depends on the specific system between 1500 s ≤ t ≤ 10000 s.
The exit’s placement, geometry, and width are analogous to the previous section. As
an introduction to the large-scale simulations and the order phenomena, a simulation
of the system with a single set of parameters (see Table 6.1) run Ns = 25 times is
presented in the following. The analysis of the measures is done in the area between
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Parameter Variable Value
Slope factor (motivation) T 1.0 s
Desired velocity v0 1.34 m/s
Agent size (hardcore exclusion) l 0.34 m
Repulsion strength a 2.5
Repulsion length d 0.1 m
Noise standard deviation σ 0
Population N 8000
Floor field resolution ∆h 0.01 m
Wall avoidance distance dw 0.25 m
Corridor width b 55.0 m
Initial density ρi 2.5 m−2

Bottleneck width w 0.75 m

Table 6.1: Summary of model parameters and their values.

|x| < 15 m to avoid boundary effects. The measurement distance to the bottleneck
r is varied to analyze the different regions. As discussed in Section 2.3, the CSM is
deterministic and can run into unfavorable or unrealistic configurations. In the case
of the bottleneck, this can lead to clogs near the bottleneck that drive the whole
system into a deadlock. Important factors for the likelihood of clogging in granular
systems are mainly determined by the ratio between the exit width and the particle
size. In granular matter, the flow through a hopper or bottleneck is described by
the Beverloo law [231]. It states that in a granular system, the mass flow through
a circular orifice scales with its diameter of the exit D5/2 in three dimensions and
D3/2 in two dimensions [232]. In the simulations, the agent size is chosen, among
other things, so clogs are unlikely. In the speed-based model, other parameters like
the repulsion strength ai, the slope factor T , or the repulsion length d also influence
the clogging probability, which is discussed later. During the runtime of t = 5000 s,
clogs can appear. In the case of the simulations with the parameters summarized
in Table 6.1, around 44% of the systems clogged before the maximal runtime. The
data of the simulations are only considered until the appearance of a clog. This is
not a problem for the statistical analysis since only 4 out of the 25 simulations ran
for less than 3000 s of simulation time before a clog appeared.

Exploring the structure measures: In Figure 6.1, a single run of the simu-
lations is visualized with a Voronoi-scatter plot at different times and for different
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measures, namely the packing fraction ϕ (Row A), the bond orientation parameter
Ψ6 (Row B), the shape factor ζ (Row C) and the coordination number Nn (Row
D) (See also video a2_5d0_1OrderDensCoordCSM.mp4 in [226] showing Ψ6, ρ and
Nn). The local packing fraction of the system increases over time in the area further
away from the bottleneck r ≳ 2 m. After the simulation starts, a packing fraction
shock goes through the system. The beginning of that can be observed in the panel
at t = 10 s near the bottleneck. The packing fraction ϕ after t = 60 s further away
from the bottleneck (r ≳ 6 m) is higher than at t = 4000 s, which is during the
stationary state of the system. The packing fraction increases with r and is not
dependent on the angle. For a given distance r from the bottleneck, the packing
fraction is rather homogeneous, with minor fluctuations compared to the other mea-
sures. This is especially evident in the bond orientation factor Ψ6, which exhibits all
possible values (Ψ6 ∈ [0, 1]) at almost any distance from the bottleneck. The system
starts in a low state of hexagonal order, but after 10 s small clusters of hexagonally
structured agents appear near the bottleneck. At t = 60 s, a large number of these
clusters (Ψ6 > 0.7) appear in the whole system. At t = 4000 s in the stationary
state, the frequency of these clusters reduces. A similar observation can be obtained
from the shape factor ζ in Figure 6.1 row C. With the shape factor, different kind
of structures appears more clearly in the system. Similar to the hexagonal order,
the clusters with shape factor close to ζ ≈ 1.1 appear at t = 60 s and become rare
at t = 4000 s (visible as the blue discs). There is also an abundance of agents with
a shape factor of 1.15 ≲ ζ ≲ 1.19 (visible as purple/black discs), which are close
in shape to pentagons. Agents with a larger shape factor ζ ≳ 1.19 can also be
observed, especially at t = 10 s but become rare at longer times when the system’s
structure is closer to a hexagonal pattern. The coordination number Nn is depicted
in row D. The systems start with a large number of defects, and similar to the other
measures, they decrease at first (t = 60 s) with a subsequent increase towards the
stationary state. The defects observed in the panels are 5-7 fold dislocations (see
Section 4.6). They are distributed unevenly in the space with large areas where the
agent’s coordination number is Nn = 6 and grain boundaries and smaller clusters of
dislocations.

Hexagonal order classes: To analyze these relations further and simplify the
continuous nature of Ψ6, the agents are classified into two order classes. Agents
with Ψ6 > 0.7 are considered to be in the hexagonally ordered class, while agents
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t = 10 s t = 60 s t = 4000 s 

Figure 6.1: CSM bottleneck simulation at different times t = {10, 60, 4000} s (see
titles of top panels) with N = 8000, showing a variety of local measures. (A) The
local packing fraction ϕ, (B) the bond orientation measure Ψ6, (C) shape factor ζ
and (D) the coordination number Nn.
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with Ψ6 below the threshold are considered disordered. The threshold is arbitrary
but makes it possible to compare the structure with the work of [195], which uses the
same threshold for their work on grain boundaries in polydisperse granular fluids.
In the case of this thesis, the threshold should not be too strict about excluding
a large amount of the structure but still represent the system close to hexagonal
order. In Figure 6.4 A-C, the agents in the ordered class are shown in yellow at
t = 15 s, t = 60 s, and t = 4000 s. The large clusters of highly ordered agents at
t = 60 s are well visible, while the disordered grey area contains the dislocations and
grain boundaries. At t = 4000 s, there are fewer small clusters in the system, while
a small number of larger clusters are only observed near the bottleneck (r < 10 m).
The time series of three different measures are depicted in Figure 6.2 A-C, namely
the fraction of agents in the hexagonal class P (Ψ6 > 0.7), the fraction of agents
with a hexagonal coordination number P (Nn = 6) and the packing fraction ϕ close
(0 m < r < 10 m) and far away (12 m < r < 25 m) from the bottleneck. All three
measures show a sharp increase in the first 70 s with clearly visible peaks and then
a decrease for longer times until they reach a stationary state at around t > 1000 s.
At the peak, about 45% of the agents are in the ordered class far away from the
bottleneck and about 35% close to the bottleneck. Interestingly, the values intersect
for longer times, and in the stationary state, the fraction of highly hexagonally
ordered agents is only 20% far from the bottleneck and 25% close to it. In the
dense shaken granular system [195] the fraction of ordered particles is around 75%

for mostly monodisperse particles and about 65% with increased polydispersity in
particle size. The fraction P (Nn = 6) behaves in a similar manner. It increases
sharply and peaks around 85% far from the bottleneck and 75% close to it. The
same intersection between the respective values is observed but later at around 500s
instead of 200 s. The hexagonal coordination number is high, with around 70% of
agents having six neighbors. In contrast, the ordered fraction of agents is much
lower. The decrease from the peak is much more substantial, being more than 50%
from the peak for agents far away from the bottleneck and about 30% close to it,
while only about 14% for the agent’s hexagonal coordination number. The mean
packing fraction ⟨ϕ⟩ of the system shows an analogous behavior, increasing sharply
in the first 70 s-100 s with a less pronounced peak and then decreasing to a value of
⟨ϕ⟩ ≈ 0.7. In this case, at long times, the packing fraction is higher for agents far
from the bottleneck.

The discussed measures with respect to the distance to the bottleneck r are depicted
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in Figure 6.2 D-F for the different times shown in Figure 6.1. The plots illustrate the
system’s evolution at different distances from the bottleneck. The fraction P (Ψ6 >

0.7) in panel D evolves in the early stages of the simulation from a system with a low
hexagonal order far away from the bottleneck (10 s < t < 20 s , r > 10m) quickly to
an increasingly high hexagonal structure (60 s < t < 70 s). Close to the bottleneck
r < 4, the fraction is static in the depicted time intervals. The fraction P (Ψ6 > 0.7)

increases with distance from the bottleneck for longer times (1000 s < t < 5000 s)
until r ≈ 4 m where its maximum is and decreases from then on. The fraction of
agents with a hexagonal coordination number P (Nn = 6) in panel E increases at all
times presented with distance to the bottleneck for r < 7m. In contrast to the bond
orientation in panel D, the fraction of agents with a hexagonal coordination number
is similar at 10 s < t < 20 s as in the stationary state 1000 s < t < 5000 s. In the
time interval 60 s < t < 70 s, the coordination number behaves similarly to the bond
orientation factor, as it increases with distance to the bottleneck and is especially
high far from the bottleneck, where between 80−90% of agents have a coordination
numberNn = 6 for r > 16m. In the stationary state, the fraction P (Nn = 6) exhibits
a maximum similar to the bond orientation, with a steep increase for r < 5 m and
a shallow descent from there on out. The packing fraction in panel F is interesting
compared to the behavior of the order measures. In the beginning, 10 s < t < 20 s,
the packing fraction and the bond orientation are very similar. As one expects,
the bond orientation is higher where the packing fraction is high. At a later time,
however, this is not true. In the time interval 60 s < t < 70 s, the packing fraction
increases with r until it has a maximum at r ≈ 12.5 m from where it decreases,
while the bond orientation increases monotonously with r. In the stationary state
t > 1000 s, the packing fraction increases with r monotonously for r < 16 m, while
the bond orientation decreases for r > 4 m. The maximum of the bond orientation
is at a point where the packing fraction is comparatively low and sloped downwards
towards the exit. This is counter-intuitive, as a larger packing fraction is usually
associated with a higher hexagonal order [186, 188]. Two differences between the
agent model and the granular system are, firstly: in this study, a net flow through
a bottleneck exists, while in the granular study, the system is in a non-equilibrium
stationary state through constant energy injection and dissipation. Secondly: the
granular system interacts through contact forces, while in the speed-based model
agents interacts with other agents through the repulsive function R(s) (2.17) and
the speed function (2.14) at a distance larger than the agent radius. The panels
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G-I in Figure 6.2 show the heat map of the r-t plot, where the distance r to the
bottleneck is on the y-axis and the time t of the simulation on the x-axis. The color
of the heat map represents the value of the measure shown in the same order as in
the previously discussed panels (P (Ψ6 > 0.7), (Nn = 6), and ϕ). In these panels, the
wave of high order and packing fraction propagates through the system. In panel G,
it can be observed that the fraction P (Ψ6 > 0.7) is rather constant for r < 2.5m for
all times in the simulation. Between 2.5m < r < 10m, the band of higher hexagonal
order is visible, where around 30% of agents have a bond orientation of Ψ6 > 0.7.
This band forms already after t > 100 s. At r > 10 m, the wave of high order
takes longer to decay. At its peak, around 54% of agents have a bond orientation of
Ψ6 > 0.7, but after around t = 300s, this value drops to around 12%. The plot of the
fraction of the coordination number P (Nn = 6) (panel H) reveals that the system
already has a high fraction of agents with Nn = 6 at the beginning of the simulation,
which increases quickly in the first 50 seconds, similar to the bond orientation a wave
where a high fraction of agents with Nn = 6 goes through the system that decreases
at longer times. The packing fraction behaves analogously (see panel I) With a wave
going through the system in the first 80 seconds and a decrease afterwards. The
ruggedness of the order measures is visible in the heat map, especially in the bond
orientation factor, compared to the rather smooth density. Close to the bottleneck
r < 2.5 m, the coordination number and packing fraction are also stationary from
the beginning of the simulation.

Shape factor distribution: The shape factor ζ contains further information
about the different local structures of the Voronoi cells. In Figure 6.3 A, the distri-
butions of the shape factor at different distance intervals r+ dr from the bottleneck
are illustrated, and the packing fraction ϕ. The mean is taken over all runs of the
simulation from 1000 s < t < 5000 s in ∆T = 50 s intervals. The distribution con-
verts from monomodal with its maximum around ζ = 1.17 close to the bottleneck
(0 m < r < 2 m) to bimodal further away from the bottleneck. The bimodal peaks
are close to the values of the regular hexagon (ζ ≈ 1.10) and pentagon (ζ ≈ 1.15).
The distribution shifts closer to a hexagonal order at 4 m < r < 6 m and moves
slightly away, with the peak closer to the value of the hexagon decreasing and mov-
ing to larger values while the value close to the regular pentagon increases. This
shift is illustrated in Figure 6.3 B. The heat map intensity shows the distribution of
the shape factor on the x-axis with respect to the distance to the bottleneck on the
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Figure 6.2: (A)-(C) Time series of the fraction of agents P (Ψ6 > 0.7), P (Nn = 6)
and the mean packing fraction ⟨ϕ⟩ close to the bottleneck (r < 7 m) and far away
(7.5 m < r < 16 m) for all 25 realisations of the system. The inset shows the time
interval of 0 s < t < 500 s.(D)-(F) Analogously the measures shown in A-C with
respect to the distance r from the bottleneck at different times. The error bars show
the 95% interval of the data. (G)-(I) Heat map of the r-t plot for the different
measures in the same order as above for t < 500 s.
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y-axis in ∆r = 1 m intervals. The shift from monomodal to bimodal is continuous
and occurs close to the bottleneck between r = 0 m and r = 2.5 m. The shift of
the peak close to the hexagonal value towards the value of the pentagon starts at
around r ≈ 3 m and saturates near r ≈ 15 m. The shape factor of the system
shifts closer to hexagonal order with increasing distance from the bottleneck and
then shifts away at larger distances. The packing fraction increases with distance
to the bottleneck, as is evident from the values in the legend of Figure 6.3 A. This
shows that the hexagonal order of the system is not a monotonous function of the
mean packing fraction ϕ of the system. The packing fraction is chosen as a measure
analogous to Reis et al. [188]. In their work, a granular fluid exited by vibration is
in a non-equilibrium stationary state. They measure, among other quantities, the
shape factor distribution of the system at different packing fractions. The granular
system undergoes a similar transition from monomodal over bimodal, with the two
peaks at a similar position (distributions of the granular fluid at different packing
fractions are shown in Figure 6.3 C). The difference is that for denser configura-
tions, the system transitions to a monomodal distribution, with the peak shifting
closer to the shape factor of the regular hexagon as the packing fraction increases,
even at a lower packing fraction than observed in the agent system (ϕ ≈ 0.7). To
compare the granular fluid to the agent simulation, the agent system is divided into
two sections close and far from the bottleneck as above. In this case close to the
bottleneck is (2.5 m < r < 7) m. The cut-off is at 2.5 m since this is approximately
the distance where the distribution becomes bimodal. Far from the bottleneck is
the system from (7.5 m < r < 16) m. The distributions are depicted in Figure 6.3
C together with examples from the granular fluid at different packing fractions ϕ.
The granular system with a packing fraction ϕ = 0.65 shows a close resemblance to
the agent system, both close and far away from the bottleneck.

Shape classes: Analogous to Reis et al. and Moucka and Nezbeda [186, 188] the
shapes of the Voronoi cells in the system are categorized into three classes according
to their shape factor ζ. In their work the first class contains all particles with a
shape factor ζmin < 1.159, the second class contains all particles with shape factor
ζmin < ζ < ζu with ζu = 1.25 and the third class contains all remaining particles
with ζu < ζ. The classes are labeled A, B, and C, respectively. The classes are
chosen so that at ϕ = 0.65 in the granular system, where the two peaks of P (ζ) are
closest in height, the classes A and B have equal proportions. This is also true for
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Figure 6.3: (A) Distribution of the shape factor ζ for t > 1000 s in ∆T = 50 s
time steps at different distance intervals from the bottleneck. The vertical dashed
lines mark the values for the shape factor of the regular heptagon (green), hexagon
(yellow), and pentagon (blue). (B) Heat map of the shape factor distribution at
different distances r from the exit in ∆r = 1 m intervals. (C) Comparison of the
shape factor distribution of the agent simulation close (2.5 m < r < 7 m) and far
(7.5 m < r < 16 m) from the bottleneck for t > 1000 s with the shape factor of a
granular fluid at different mean packing fractions ⟨ϕ⟩. The results for the granular
fluid are taken from [188].
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the agent system far from the bottleneck, where class A and B have a proportion
of PA ≈ 0.488 and PB ≈ 0.482, while close to the bottleneck the proportions differ
with PA ≈ 0.532 and PB ≈ 0.403. In the following, a different classification is
introduced that highlights the hexagonal and pentagonal shapes of the system. For
this, class A is set to be all shapes ζmin < 1.125, which is midway between the
shape factor of the hexagon and the pentagon. as the upper boundary for class B
ζu = 1.67, so that class B and C have the roughly same proportion in the stationary
state (t > 1000 s) far from the bottleneck (r > 7.5 m). The shape classes in the
simulation at two different times are shown in Figure 6.4 D-F. The plot shows that
class A colored in purple closely resembles the agents with Ψ6 > 0.7 in panels A-C
of Figure 6.4. Additional to highlight the agents with a high degree of hexagonal
order, the other two classes give further information about the system. At the
beginning of the simulation, most agents are in class C, marked in red in panels
E-F. Quickly after 60 s, class A has large clusters analogous to the high hexagonal
order shown in panel B, and class C portion lowered significantly. In the stationary
state (t = 4000 s) class C appears to be more abundant compared to t = 60 s. Class
B, colored in green, increases from 15 s on. It already makes out a high fraction
after 60 s, which increases slightly in the stationary state. The mixing of the classes
is quite heterogeneous. Especially class A builds distinguishable small clusters in
the stationary state. The other two classes build a network of a large connected
cluster throughout the system that is also distinguished from each other. The video
shape_class_det_2_5_0_1_1fpsCSM.mp4 [226] shows the evolution of the system
depicted in Figure 6.4 D-F in more detail. For example the fraction of each class
fluctuates substantially during the simulation and it illustrates how the hexagonal
clusters near the bottleneck quickly form and break apart again. To illustrate the
shape classes and which features they represent, examples of observed shapes with
their color-coded class and the coordination number are shown in Figure 6.5. Panel
A shows the agents in class A. The agent shapes and structure are close to that of
a regular hexagon. In comparison, in panel B, the shape and form of the cluster is
more comparable to an oblate hexagon, and the agents belong to class B. This class
also contains more irregular-shaped regions, with mostly hexagonal coordination
numbers, shown in panel C. Class C has irregular-shaped regions with a higher
density of defects, shown in panel D. Another feature that can be observed are
grain boundaries, depicted in panel E. In the center of the image, a line of class B
and C agents are adjacent. The boundary shapes are close to that of a pentagon,
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even though their coordination number is mostly still Nn = 6, except for one defect
in the boundary. The boundary separates two regions: a highly hexagonal cluster
in the bottom left of class A and an oblate hexagonal cluster in the top right of
class B. Another ordered feature that can be observed in the system is presented
in panel F. Class C also contains clusters of agents whose spatial order is close to
that of a square lattice. Surprisingly the coordination number in this cluster is still
close to Nn = 6. One can see that the Voronoi cells contain small additional edges
through small perturbations, increasing the coordination number. It is known that
Voronoi cells are sensitive to perturbations in the case of the square lattice [233],
but it is still surprising that there are no defects in this cluster. The reason is that
these clusters evolve from hexagonal-shaped agent clusters. The shape classes and
snapshots of Figure 6.5 illustrate the heterogenic nature of the system in regards
to the spatial structure with a range of distinct features. To analyze the dynamics
of the structure in regards to the shape classes the time series of the class fractions
ps = Ns/(NA + NB + NC) with s ∈ {A,B,C} is depicted in Figure 6.6 A&B. The
described patterns discussed in the single realization in Figure 6.4 D-F become clear
when looking at the time evolution of the classes.

Time evolution of the shape classes: Panel A of Figure 6.6 shows the time
series of the shape classes close to the bottleneck (r < 7 m), while panel B depicts
far from the bottleneck 7 m < r < 13 m. The colored lines show the mean taken
over all system realizations (Ns = 25) for the respective shape class according to the
legend. The grey lines show the time series of each realization of the system. The
insets depict the mean of all realizations from 0 s ≤ t ≤ 500 s. For clarity, the time
series of the individual realizations are omitted in the inlet. The evolution of the
time series shows quantitatively what is qualitatively visible in the panels of Figure
6.4 D-F. The inlet of panel A (close to the bottleneck) shows the early evolution of
the system (t < 100 s), where the systems starts out with most agents in shape class
C (pC > 0.75) and the subsequent decrease to a minimum around t ≈ 30 s where
the fractions of agents with shape C is around pC ≈ 0.35. From there it increases
until it is stationary at pC ≈ 0.4.
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Figure 6.4: Snapshots of the simulation at t = 15 s, t = 60 s and t = 4000 s.
Panels (A)-(C) depict agents with a bond orientation factor Ψ6 > 0.7 in yellow
and Ψ6 ≤ 0.7 in grey for the respective times. Defects are colored analogous to
Figure 6.1. Panels (D)-(F) depict the shape classes A (purple, ζ ≤ ζmin = 1.125),
B (green,ζmin < ζ < ζu = 1.167) and C (red, ζu ≤ ζ).

The evolution of class A is almost a mirror image to shape C. In the beginning the
fraction pA increases sharply until it reaches a maximum at the same time (t ≈ 30 s,
pA ≈ 0.33) where pC reaches the minimum. From there on it decreases until it
reaches the stationary state at t > 150 s. Class B exhibits a more monotonous
behavior. Its fraction pB increases rapidly in the beginning and stabilizes quickly
around pB ≈ 0.4 after t ≈ 35 s. For longer times the fraction slightly decreases until
around pB ≈ 0.38. Far from the bottleneck (7 m < r < 13 m) shown in panel B
of Figure 6.6 the evolution is similar but has some noticeable differences. Because
the region is further away from the bottleneck, the maximum of class A and the
minimum of class C appear later in time.
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Figure 6.5: Examples of different shapes at different times and regions of the
system. The color represents the shape class analogous to Figure 6.4 D-F. The
numbers represent the coordination number Nn of the agents.

Both are more pronounced, with the minimum of class C being below 25 % and the
maximum of shape A reaching over 30%. The decrease of class C to the minimum
is non-monotonous and has a local maximum after around 10 s. At around the same
time class A and B have a local minimum and increase from there on out. In the
long term (t > 1000 s), near the bottleneck, Class C has a slightly higher proportion
than class B, which is the other way around far from the bottleneck. The time series
of the individual runs show that the proportions fluctuate substantially. This can
also be observed in the video mentioned above, where large clusters of each class
dynamically appear and break apart. Panels C-E in Figure 6.6 show the fraction
of the shape classes in respect to the distance r to the bottleneck at different times
analogous to Figure 6.2 D - F. The proportion of class A is similar to the fraction
P (Ψ6 > 0.7) in Figure 6.2 D, with a wave-like increase in the beginning (panel C,
between 10 s < t < 20 s)), then the phase with a monotonous increase in proportion
(panel D, between 60 s < t < 70 s) and an increase to a maximum at around ≈ 3 m
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and pA ≈ 0.24 followed by a decrease to about pA ≈ 0.12 at further distances
(r ≈ 17.5m). Class B fraction, in the beginning, evolves similarly, increasing as a

Figure 6.6: (A)&(B) Time series of the proportion ps of the different shape classes
close to the bottleneck (A, 0 m < r < 7 m) and far from the bottleneck (B, 7 m <
r < 13 m, see Figure 6.4 D-E for details on the shape class definition). The colored
lines show the mean over all 25 realizations of the system. The grey lines show the
time series of the individual realizations of the system. (C)-(E) Proportion ps of the
shape classes with respect to the distance r from the bottleneck for different time
intervals specified in the title of the panels. The error bars show the 95 % interval
of the data.

wave from the exit, with a scale factor of about 1.9 compared to class A (panel F,
10 s < t < 20 s). At 60 s < t < 70 s in panel D, pB increases with distance to the exit
unit r = 10 m where it is maximal and decreases from there on. In the stationary
state (panel E, 1000 s < t < 5000 s) pB increases monotonously with distance from,
with a slight bump far way from the bottleneck r > 15 m. Class C interestingly
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evolves almost as the opposite of class A. It starts with a high fraction of pC ≈ 0.8

and decreases in a wave-like fashion from the exit out away from the bottleneck.
At 60 s < t < 70 s the fraction of class A and C are a mirror image of each other
with the mirror axis approximately at y = 0.28. In panel D. In the stationary state
shape C has the highest fraction close to the bottleneck r < 5 m, with pC ≈ 0.6

directly in front of the bottleneck (r < 2 m). It decreases steeply with distance to
the bottleneck and has a minimum at r ≈ 5m with pC ≈ 0.39, close to the maximum
of pA at r ≈ 3 m. The fraction pC increases from there on, similarly to the fraction
pB, with a bump in the opposite direction at r > 15 m compared to class B.

Comparison of the measures in the non stationary stage of the simulation:
The dynamics and maxima in the hexagonal order at early times of the simulation
(t < 100 s) can be better understood when considering the speed and density profile
of the system. In the video shapeSpeedPackingFractionCSM.mp4 [226] and Figure
6.7 the dynamics are illustrated. In row A of Figure 6.7 the shape classes are
illustrated analogous to Figure 6.4 for four different times shown in the title of the
panels. The red half circles mark the distance from the bottleneck r in 2m intervals
beginning at r = 1 m. The panels help illustrate at what times and distances the
large purple clusters of shape class A appear. Row B shows the velocity profile with
four different colors. Blue agents are faster, while red agents are slower. Row C
shows the mean packing fraction ⟨ϕ⟩, the fraction pA of class A, and the speed vnn

of the agents with respect to the distance from the bottleneck averaged over all 25
simulations. The plots in row C visualize the shock of high density and low speed
traveling from the area close to the bottleneck. The area of high hexagonal order
travels closely with the maximum density and the minimum speed in roughly the
first 70 s. In the time between 70 s < t < 350 s (see video) the fraction of shape
A pA decreases further from the bottleneck r > 5 m, while it stays constant near
the bottleneck. In the same time interval, the density and speed are rather stable
concerning r. For t > 350 s, pA reaches the final state, shown in the last right-
most panel of Figure 6.7. Considering the model, density and speed are expected
to influence the model’s structure. The direction of the agent is determined by
the floor field and the repulsion function R(s) (2.17, see Section 2.3). Since the
exponential repulsion is not dependent on the movement direction (i.e. field of
view of the agent), it tends to order the particles hexagonally (equal distance to
all neighbors). A certain density is needed for the interaction to be substantial in
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Figure 6.7: (Row A) Voronoi scatter plot illustration of the shape classes at
different times analogous to Figure 6.4 D-F. (Row B) Voronoi scatter plot of the
simulation. The colors represent the speed of the agents. Blue represents faster
agents (darker color is faster), while red represents slower agents (darker color is
slower). (Row C) On the double axis, the packing fraction ϕ and the fraction of
agents in shape class A, pA, in respect to the distance to bottleneck r is represented
on the left axis. The speed of the agents vnn, in respect to r is represented on the
right axis.
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the movement direction. The change in speed over the space is also an important
factor for the structuring. For instance, the speed towards the bottleneck decreases
substantially close to the bottleneck with distance. A large difference in the speed
of neighboring agents destroys any order, as hexagonal clusters are pulled apart.
Therefore a positive slope of the speed function v(r) towards the bottleneck should
have a decreasing effect on the order, which is observed as the speed and density
waves traverse through the system. Even as the system’s density increases, the
fraction pa decreases where the slope of v(r) increases. Surprisingly the maximum
of pA at r ≈ 4 m in the stationary state is at a distance where the slope of v(r) is
already steeply increasing. The packing fraction at this stage is slightly decreasing
and around ϕ ≈ 0.65. One reason for this could be that the system at higher
density is quenched into a rather disordered state since the freedom of movement is
too restricted for the agents to order themselves. As the packing fraction decreases,
agents are more likely to order themselves hexagonally through the interactions.
What is also noticeable in the dynamics is that the speed of the agent’s increases
in burst originating from the bottleneck throughout the system (see center panel
shapeSpeedPackingFraction.mp4 ). This causes constant shifting of agent groups
which influences the system’s structure. In the following chapters, the focus lies on
the influence of a subset of the model parameters. Since the parameter space is
extremely large with 11 parameters that are considered in Table 6.1 a selection of
parameters is considered. Especially the parameters that affect the direction vector
ei of the agents are of interest in influencing the structure. These are the repulsion
strength a and repulsion length d in the exponential repulsion function R(s) (2.17)
and the noise added to the direction vector (2.19). The next chapters explore these
parameters’ influence on the system’s structure, starting with the repulsion function
R(s).

6.1 Influence of exponential repulsion R(s)

The exponential repulsion function R(s) directly influences the movement direction
of the agents (2.17). Since the repulsion depends only on the distance s between
the agents s = r − l, it is expected that a stronger repulsion function favors an
equidistant ordering of the agents, leading to an increase in hexagonal order.
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Directional interactions between agents can directly influence the density

Before the influence of the parameters aj and dj in the exponential repulsion R(s)

(2.17) on the structure in the CSM is analyzed, its effect on the density is discussed.
At first glance, it seems counterintuitive that R(s) influences the density directly
since it only acts on the agent’s direction but should not affect the distance the
agent’s arrest when encountering a stationary agent in their movement direction. A
simple example is used to illustrate that the exponential repulsion can null the vector
ei and, therefore directly affect the system’s density. To reiterate, the direction of

Figure 6.8: Illustration of the single file motion to the right in the CSM. The right-
most agent has the desired speed of v0 = 0. All agents have the same parameter a
and d.

the agent is determined by equation (2.17)

êi(xi,xj, ...) =
ê0 +

∑
j ̸=iR(si,j) êi,j

N
,

with the function
R(si,j) = aje

−(si,j−l)/dj . (6.1)

Because of the collision avoidance in the CSM, the agents should stop before the
distance si,j < ri+ rj. In a simple scenario, it can be illustrated that the interaction
R(si,j) ei,j affects the minimal distance under certain circumstances. The scenario
is a system where agents move in single file motion through a corridor to the right,
where the rightmost agent is stationary, with the desired velocity of v0 = 0. All
agents j ∈ 1, ..., N exert the same exponential repulsion (6.1) with the parameter
a and d, where the index j is dropped. Figure 6.8 illustrates this situation. The
distance s0 is the minimal distance of agent i left to the stationary agent k. Assuming
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only the speed function (2.14) acts on the agents’ behavior, the minimal distance
should be lim

t→∞
s0 = 0 for T > 0 s. Considering the exponential interaction (2.17)

and the speed function (2.13) in the one dimensional case, the velocity of the agents
can also be Vi = 0 if êi = 0. In the case of only two agents i and k in the situation
of Figure 6.8, this is true when

ê0 = −ae−s0/d êi,k. (6.2)

In the one dimensional case it is sufficient to only consider the x-component of the
desired direction ê0 = 1 and the axis between i and k, êi,k = −1. This reduces the
equation (6.2) to

max(ln(a)d, 0) = s0. (6.3)

In this case s0 > 0 if a > 1 and d > 0. For multiple agents in line, s0 can be
approximated by only considering the repulsion of nearest neighbors since the dis-
tance of the exponential repulsion is usually limited. In this case equation 6.3 is
approximated by

max(ln(a/n)d, 0) ≈ s0, (6.4)

with n the number of agents behind agent k. The approximation and simulation
results are illustrated in Figure 6.9.

Figure 6.9: Comparison of the minimal spacing illustrated in Figure 6.8 for a
simulation with d = 0.1 m and a = 2.5 (blue dots) and the approximation (6.4)
(orange crosses).
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Figure 6.10: Illustration of the approximation (6.4) on the left with d = 0.1m for
different values of a and on the right with a = 5 for different values of d.

6.1.1 Influence of the repulsion strength

With this effect in mind, the influence of the repulsion strength a and the repulsion
length d on the large system with N = 8000 agents is analyzed. First, the influence
of the repulsion strength a is presented by varying its value in one dimension. It
scales the exponential repulsion as a proportional factor in equation (6.1). Figure
6.11 shows the simulation at t = 1750 s for a ∈ {1.5, 2.5, 5, 7.5, 10, 15}. All other
parameters are the same as in Table 6.1. The first thing to notice is that the
parameter a significantly influences the shape of the agent cluster in front of the
bottleneck. In the case of a = 1.5, the agents order themselves in a kind of urn
shape, close to v-shaped. With a, the shape transforms into the semi-circle in front
of the bottleneck. Both the v-shape and the semi-circle can be observed in empirical
studies [1, 24], but it is questionable what shape would be observed on this kind of
scale. The second thing to notice is the appearance of the crystalline ring near the
boundary of the agent cluster for larger values of a, which extends further into the
cluster as a increases. With this increase of order at the boundary, a decrease in
the density is observed by looking at the size of the Voronoi cells. The boundary
has a distinct interface between the area of high hexagonal order with few defects in
between to the heterogeneous ordered area with smaller clusters of high hexagonal
order and disordered areas in between. Since the slope factor T , which determines
the rate of approach to another agent, is constant, this must be a result of the above-
discussed effect of the agent-agent interaction on the movement direction vector êi.
Due to the stronger exponential interaction of the movement direction and the lower
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Figure 6.11: Voronoi-scatter plot of simulation runs with different repulsion
strength a written on top of the panels at t = 1750 s. Yellow agents have bond
orientation factor Ψ6 > 0.7. Red and green agents have Nn ̸= 6. See Figure 6.1 for
the definition.

density, which allows the agent to move more freely in different directions, they can
order themselves to build the "crystal ring", which nulls the direction vector. In the
bulk of the system closer to the bottleneck (4m < r < 15m), an increase in the size
of clusters with high order is observed, when increasing a.

Clogging: The system’s probability of clogging depends strongly on the repulsion
strength a. In Figure 6.12 A the fraction P (Tc < 5000) of the Ns = 20 runs that
clog at a time Tc < 5000 s is presented in respect to a. For a = 1 all simulations
clog before t = 200 s. As a increases the fraction P (Tc < 5000) decreases with a
minimum of P (Tc < 5000) ≈ 0.5 for a = 2.5. Further increasing a increases the
fraction P (Tc < 5000) linearly until a = 7.5, where P (Tc < 5000) ≈ 0.9. Still, there
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is enough data in the stationary state (t > 1000 s) for all tested a. The fraction
P (Tc > 1000) shown in panel B of Figure 6.12 shows, that this value is less sensitive
for a ≥ 1.5. The maximal time each simulation runs until the system clogs is shown
in Appendix A.6 Figure S16.

Figure 6.12: (A) Fraction of simulation runs P (Tc < 5000 s) that clogged before
t = 5000 s of simulation time in respect to the repulsion strength a. (B) Shows
analogously P (Tc > 1000 s).

Hexagonal order in respect to the distance from the bottleneck: The
fraction of agents P (Ψ6 > 0.7) in respect to the distance to the bottleneck r is
depicted in Figure 6.13 A. How the structure is affected by a differs depending on
the distance to the bottleneck. Close to the bottleneck (r < 4m) the effect is minor,
with only a slight increase in the order for a = 10. The position of the maximum of
P (Ψ6 > 0.7) is independent of a at r ≈ 4m. With increasing a, the downward slope
of P (Ψ6 > 0.7) decreases with further distance r from the maximum. For a ≥ 3.5,
the ring of higher order forms near the boundary. The transition zone to the ring is in
a small area. The maximum of P (Ψ6 > 0.7) and the width inside the ring increases
with a. Panel B of Figure 6.13 shows the packing fraction ϕ in respect to r. The
density increases with a for r < 20m. The increase is steeper close to the bottleneck
at r < 5m. For a ≥ 3.5, there is a point far from the bottleneck, near the boundary
of the agent cluster, where the packing fraction starts to decrease. This decrease is
significant for a ≥ 7.5, where the high order ring also starts to manifest. This is
illustrated in Figure 6.13 C-E, where ϕ and P (Ψ6 > 0.7) are in the same panel for
a ∈ {5, 7.5, 10}. The sharp increase of hexagonal order near the boundary coincides
with the decrease in density caused by the agent-agent interaction acting on the
movement direction êi discussed above. Since any deviation from the equilibrium
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Figure 6.13: (A) Hexagonal order P (Ψ6 > 0.7) in respect to the distance from
the bottleneck r for different values of the repulsion strength a. (B) Analogous to
A for the packing fraction ϕ. (C)-(E) Direct comparison of the packing fraction ϕ
and P (Ψ6 > 0.7) for a ∈ {5.0, 7.5, 10.0}.

position where êi = 0 gives the agent more freedom in its movement, they can order
themselves into the hexagonal structure before being quenched into a disordered
state observed closer to the bottleneck. To analyze the increase in order with a,
the packing fraction ϕ and hexagonal order P (Ψ6 > 0.7) are measured in squares of
4m2 at different distances from the bottleneck, where the distance is the position of
the lower side of the square. The results are shown in Figure 6.15 A. The squares
are at db ∈ {0, 5, 7, 14, 21} m from the bottleneck. Close to the bottleneck for the
area with db = 0 m barely any increase in order with a is observed. Surprisingly
P (Ψ6 > 0.7) decreases from a = 1.5 to a = 2.5 for db = 5 m and db = 7 m. For
db = 5 m, db = 7 m and db = 14 m P (Ψ6 > 0.7) increases with a, with a decreasing
slope towards larger a. The order at db = 5m is consistently higher than at db = 7m
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Figure 6.14: Smoothed heat map showing P (Ψ6 > 0.7) on the r-a plane.
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and the order at db = 5 m and db = 7 m is higher than at db = 14 m. At db = 21 m
the increase in order is steeper compared to the other distances and for a ≥ 7.5 the
transition into the crystalline ring is observed. In Panel B of Figure 6.15 the packing
fraction in the same measurement area in respect to a is depicted. For a ≤ 3.5 and
db ≤ 7 m the packing fraction decreases to a minimum and subsequently increases.
Comparing the packing fraction ϕ to the order P (Ψ6 > 0.7) shows, that the highest
packing fraction does not coincide with the highest order, which one might assume
since the hexagonal packing has the largest packing fraction. Close to the bottleneck
the packing fraction increases significantly for a ≥ 3.5 but the order changes only
slightly. Between db = 5m and db = 14m the packing fraction increases with distance
for all a, while it is the other way around for the order. So while the packing fraction
and order increases with a for db < 21 m and a > 2.5 m, there is no clear relation,
that a higher density coincides with high order in the system. It should be also
noted that while the packing fraction is dependent on the repulsion strength the
change is rather small compared to the change in the order P (Ψ6 > 0.7). When
taking a = 2.5 as a baseline, the packing fraction increase to a = 10 is between
3 - 5 % between db = 5 m to db = 14 m. The increase in hexagonal order in the
same interval is about 33 - 56 %. Only close to the bottleneck the increase in
density form a = 2.5 to a = 10 is larger with 14 % compared to a 10% change in
hexagonally ordered agents. To illustrate the gradual change in hexagonal order of
the system and the transition to the crystalline ring, Figure 6.14 shows a heat map
of P (Ψ6 > 0.7) on the r-a plane. The y-axis shows the distance r of the bottleneck in
respect to the repulsion strength a shown on the x-axis. For this plots simulations
with a ∈ {2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, 8.5, 10} are conducted with 20
runs per simulations and tmax = 4000 s, over all non-clogged states the fraction
P (Ψ6 > 0.7) is measured every 90 s for t > 1000 s. Figure 6.14 illustrates the
change of the hexagonal order over r. The crystalline ring starts to appear around
a ≈ 4.5, with a sharp interface between the hexagonally low ordered region for
a < 4.5 and a > 4.5. With increasing a the region increases in size both closer and
further away from the bottleneck, presenting as a cone-shape in the r-a plane. In
the region of 2.5 m < r < 19 m in the presented part, the hexagonal order increases
with a. As a increases the fraction P (Ψ6 > 0.7) increases at further distances r
from the bottleneck. Very close to the bottleneck r < 2.5 m the hexagonal order is
not influenced by the strength of the repulsion, illustrating that in this region the
dynamics are not determined by the interaction of the desired direction êi of the
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Figure 6.15: (A) Fraction of hexagonally ordered agents P (Ψ6 > 0.7) and (B)
packing fraction ϕ in the measurement area (−2m < x < 2m and db < y < db+4m)
in respect to the repulsion strength a.

agents.

Shape Factor: Continuing to the shape factor ζ, the distribution P (ζ) is depicted
in Figure 6.16 close to the bottleneck 0m < r < 7m (A) and far from the bottleneck
7 m < r < 14 m (B) with |x| < 10 m. The general shape of the distribution is not
dependent on a close and far from the bottleneck. The distribution is bi-modal,
with a higher peak close to the hexagonal shape and a smaller peak close to the
pentagonal shape with an exponential tail. The increase of a increases the height of
the first peak close to the hexagonal value, close and far from the bottleneck. The
increase is lager far from the bottleneck, where it increases from a = 2.5 to a = 10

by about 23 %, compared to 11% close to the bottleneck. The height of the second
peak is rather unaffected by a change in a and is roughly static both close and far
from the bottleneck. The exponential tail of the distribution decreases more steeply
with increasing a, especially far from the bottleneck. In Figure 6.17 the effect of a
on the shape classes further illustrates how the repulsion strength affects the shapes
of the system (see Figure 6.4 for the definition of the classes). The shape classes
close to the bottleneck (panel A) and far away (panel B) show similar behavior.
With increasing a, the proportion pA of shape class A in the system increases. The
proportion pB of class B increases slightly close to the bottleneck and is roughly
constant far away from the bottleneck for a ≥ 2.5. The proportion pC of class C
decreases in both distant regimes. The increase of class A and decrease of class C
is more pronounced far from the bottleneck, where class A increases by 54% from
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Figure 6.16: Shape factor distribution P (ζ) for different repulsion strengths a close
to the bottleneck (A) and far from the bottleneck (B).

a = 2.5 to a = 10 and class C decreases by about 27 %. Compared to r < 7 m,
where pA increases by about 18 % and pC decreases by about 14%. The proportion
of class B increases just by 4 % close to the bottleneck and stays constant far away.
Panels C&D in Figure 6.17 shows the shape classes in a simulation with a = 2.5

in C and a = 10 in D at t = 1950 s. The plot further illustrates the change in
the shape classes. The clusters consisting of agents in shape class A are larger for
a = 10 compared to a = 2.5 and the number of clusters in class C decreases. The
shape factor distribution for a = 10 over the distance r is also discussed briefly in
the Appendix A.6.
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Figure 6.17: (A)&(B) Fraction ps of the shape classes s ∈ {A,B,C} in respect
to the repulsion strength a close to the bottleneck (A) and far from the bottleneck
(B). (C&D) Example of the shape classes in a Voronoi-scatter plot at t = 1950 s
for a = 2.5 (C) and a = 10 (D), with violet (class A), green (class B) and red (class
C).

6.1.2 Influence of the repulsion length

Continuing with the effect of the repulsion length d on the dynamics and spatial
structure of the system, the value of d is varied orthogonally to the analysis of the
previous section. The starting point is again the parameter set summarized in Table
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6.1 and d is varied (d ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5} m). The repulsion length

Figure 6.18: Scatter-Voronoi plot of simulation runs with different repulsion
lengths d written in the panel title at t = 3000 s. Yellow agents have a bond
orientation factor Ψ6 > 0.7. Green and red agents represent coordination numbers
Nn ̸= 6 (see Figure 6.1).

rescales the effective distance of the exponential interaction, where R(s) = 1/e.
Knowing the influence of the repulsion strength on the structure and hexagonal order
of the system presented in the previous section, one might expect that the repulsion
length has a similar influence of increased order in the bulk of the system with
increasing d. Figure 6.18 contains snapshots of the system at t = 3000 s for different
values of d specified in the panels’ title. The change in structure and shape of the
bulk of agents with increasing d is visible. Analogous to the increase in a, the shape
of the bulk transforms from a parabola at d = 0.05 m to a half circle at d > 0.1 m.
At d > 0.15 m, the crystal ring forms analogous to the repulsion strength a > 4.
The hexagonal order in the bulk closer to the bottleneck r < 16m shows surprising
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results. Compared to the increase in a, an increase in the repulsion length d seems
to decrease the fraction of agents with a hexagonal order P (Ψ6 > 0.7) in the system.
Additionally, the order of the system is more dependent on the distance r and angle
Θ from the bottleneck. For d ≥ 0.15 m, the system becomes partially jammed.
There is a hopper-like accumulation of agents at each side from the bottleneck,
where the agents are arrested in a stable configuration. In between the jammed
agents, other agents can move to the exit. This is illustrated and the Appendix
A.6 Figure S18. Inside the jammed region, the packing fraction is increased (see
Appendix A.6 Figure S19). The different structures become clearer when looking at
a slice of the system in an r interval and calculating the measures with respect to the
angle Θ from the exit. Figure 6.19 A-C shows the fraction of agents P (Ψ6 > 0.7) in
panel A, the packing fraction ϕ in B and the speed measured over 50s intervals in C.
The fraction P (Ψ6 > 0.7) and packing fraction ϕ are measured over all realizations
of the system, while the speed is measured for one specific run at six different times
t > 1000 s. In panel A the structure profile over the angle shows that for d = 0.05m
and d = 0.2 m, the fraction P (Ψ6 > 0.7) are larger closer to the center of the
system, with the maximal fraction for d = 0.05s. In the system with d = 0.05m, the
high fraction of hexagonally structured agents coincides with the high-density region
presented in panel B. As shown in Figure 6.18 the bulk of agents is more compact
on the x-axis in the elongated shape. In comparison, the system with d = 0.2 m
has the highest fraction P (Ψ6 > 0.7), where the ϕ is lowest. The packing fraction,
in this case, is constant in the center with respect to the angle Θ until θ ≈ 0.5 on
the right side of the system and θ ≈ −0.9 on the left side. From there, the packing
fraction increases, while the fraction of hexagonally ordered particles decreases to
P (Ψ6 > 0.7) ≈ 0.1. For d = 0.1 m, the packing fraction is rather flat over the
angle Θ. Compared to the other values, the fraction P (Ψ6 > 0.7) is also rather flat
concerning the angle and only decreases close to the boundary, where the agents
are close to the wall. Looking at the mean speed ⟨v⟩50 measured in 50 s interval of
a single simulation run at different times in panel C the jammed region is clearly
visible. While the speed for d = 0.1 m is rather constant over the angle Θ, only
decreasing near the boundary wall, the speed for d = 0.2 m is ⟨v⟩50 = 0 m/s for
|Θ| > 1. The speed for d = 0.05 m is constant in the high-density region of the
system and increases in the boundary region. The fraction of clogged systems also
increases with d.
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Figure 6.19: (A) Fraction of agents P (Ψ6 > 0.7) in respect to the angle Θ from
the exit in the region 6 m < r < 8 m. (B) Mean packing fraction ϕ in respect to
the angel Θ from the exit. (C) Mean velocity ⟨v⟩50 in respect to the angle Θ for a
single run.



Influence of exponential repulsion R(s) 141

Clogging: In Figure 6.20 the fraction P (Tc < 5000 s) of systems where the clog
time Tc < 5000 s is depicted in panel A and P (Tc > 1000 s) in panel B. In the 20
conducted runs, all systems with d ≤ 0.1 m do not clog before t = 1000 s while
only about 30%− 40% of systems with 0.2 ≤ d ≤ 0.3 run longer than 1000 s before
clogging. For d = 0.5m, all of the runs clog before 1000 s. For d > 0.1m, about 70−
100% of the simulations clog before reaching the maximal time of 5000s, while about
60% with d = 0.1m reach the maximal time and almost 90% for d = 0.05m. Similar
to the repulsion strength a, an increase in the repulsion length increases the clogging
probability for the set of parameters at hand on the orthogonal section analyzed. A
reason for this behavior could be that because of the increased interaction length,
the agents can not utilize gaps between neighboring agents efficiently, causing a
higher likelihood of gridlocks in the system.

Figure 6.20: (A) Fraction of simulation runs that clogged before t = 5000 in
respect to the repulsion length d. (B) Shows analogously P (Tc > 1000 s).

Hexagonal order in respect to the distance from the bottleneck: Com-
paring the fraction P (Ψ6 > 0.7) with respect to the distance from the bottleneck r
shown in Figure 6.21 A. Analogous to the repulsion strength a, the crystalline ring
forms with an increase of d already visible for d = 0.15 m. The ring coincides with
the decrease in packing fraction at further distances, showing again that the effect
of agent-agent interaction acting on the direction êi is important for this occurrence.
Apart from the crystalline region surprisingly consistent with an increase in d, the
fraction P (Ψ6 > 0.7) decreases at all distances r from the bottleneck. The shape
of the curves for d ≤ 0.15 m and r ≤ 24 m is similar in that they increase with r
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close to the bottleneck as they reach a maximum and decrease from there on. For
the runs with d > 0.15 m, the curves are very close together, with only a slight
increase in hexagonal order from the bottleneck and a rather flat curve for further
distances, excluding the crystalline ring. The packing fraction profile in panel B
visualizes the decrease in packing fraction with increasing d at all distances and
the above-mentioned sharp decrease in packing fraction with increasing d ≥ 0.15 m
far from the bottleneck. Consistent with the above analysis, the density profile in-
creases with r and saturates at further distances, excluding the decreasing region
(r > 20 m) for large d ≥ 0.15 m. Panel C shows analogous to Figure 6.14 the heat
map of the fraction P (Ψ6 > 0.7) in the r-d plane. The map illustrates the sharp
decrease of hexagonal order with increasing d starting far away from the bottleneck
and moving towards it. In contrast to the variation in the repulsion strength a,
where the hexagonal order close to the bottleneck was only slightly affected by a
variation of the parameter, in the case of d, a clear decrease in order near the bot-
tleneck is observed. The appearance of the crystalline ring is qualitatively similar
to its appearance in the r-a plane, starting around r = 0.15 m and increasing in
width in a cone shape with increasing d. Analogous to Figure 6.15, Figure 6.22
shows the hexagonal order P (Ψ6 > 0.7) (panel A) and packing fraction ϕ (panel
B) in a square measurement area at different distances db from the bottleneck in
respect to d (see Figure caption for details). In this case, the values are shown
in a log-log plot. The measurement areas are symmetrically around the x = 0 m.
The plot illustrates the rather consistent decrease in hexagonal order and packing
fraction with an increase in d at all measurement distances. Interestingly the order
of P (Ψ6 > 0.7) with respect to the distance db is in reverse compared to the ϕ for
db > 0 m. The distance db where the packing fraction is largest (db = 14 m) has
a consistently smaller fraction P (Ψ6 > 0.7) than at distances with a lower packing
fraction (db = 5m and db = 7m). The more drastic change in the order and density
measure close to the bottleneck (db = 0) is also visible in the plot. Compared to the
variation in the repulsion strength a close to the bottleneck, the measure is static,
and the change in order and density is comparable to the further distances. This
likely stems from the low-order jammed funnel in the system, which decreases the
hexagonal order significantly and is visible at all distances. The packing fraction
decrease has a similar origin as discussed in Section 3, where due to the jammed
agents at the sides of the bottleneck, the corridor effectively is narrowed. The hexag-
onal order and density decrease are close to linear in the log-log plot. This is not
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Figure 6.21: (A) Fraction P (Ψ6 > 0.7) in respect to the distance from the bot-
tleneck r for different values of the repulsion length d. (B) Analogous to A for the
packing fraction ϕ. (C) Smoothed heat map showing P (Ψ6 > 0.7) on the r-d plane.
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to say that there is a power law governing the dynamics, as the data is insufficient
to investigate this properly, but it is in contrast to a, where the increase is close to
linear for both the hexagonal order and the packing fraction. In the case of d, the
measures decay faster than linear but not exponentially.

Figure 6.22: Log-log plot of (A) the fraction of agents P (Ψ6 > 0.7) and (B) the
packing fraction ϕ in the measurement area (−2 < x < 2 m and db < y < db + 4 m)
in respect to the repulsion length d.

Shape Factor: The shape factor distribution P (ζ) in Figure 6.23 analogous to
Figure 6.16 and 6.3 shows the effect of d on the occurrence of the various shapes.
Again the system displays a bimodal distribution for d < 0.15m. For d = 0.05m, the
first peak is pronounced compared to the second peak with it being a factor of two
larger. For both close and far away from the bottleneck (panel A and B), increasing
d decreases the first peak and the distribution turns mono-modal between d = 0.15m
to d = 0.2m, with the single peak being between 1.185 < ζ < 1.2. As a comparison
the distribution of the granular fluid from [188] for ϕ = 0.5 is shown in panel A. For
increasing d, the distribution becomes similar to the example of the granular fluid,
though the granular fluid is shifted further to larger values of ζ. Comparing the
distribution close to the bottleneck and far away, the shapes of the distributions are
rather similar, in regards to the position of their peaks and the modality. There are
slight differences in how pronounced the peaks are. For d = 0.05 m the peak near
ζ = 1.1 is more pronounced far from the bottleneck, while the opposite is true for
d = 0.1m. For d > 0.15m, the left flank of the distribution is shifted towards smaller
values of ζ far away from the bottleneck. The more pronounced differences between
the distributions for increasing d show the transition of the system from the state
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where a laminar flow towards the bottleneck is more likely (meaning the likelihood
of regions with jammed agents is low) to the regime where the system is partially
jammed (meaning a high likelihood of jammed regions). This becomes more obvious
when considering the shape classes (see Figure 6.4 for the classification). In Figure

Figure 6.23: Distribution of the shape factor for different repulsion lengths d close
to the bottleneck (A) and far from the bottleneck (B).

6.24, the frequency-log-plot of the shape factor classes is plotted in respect to d

close and far from the bottleneck. At d = 0.05m, the frequency of the three classes
is close to each other. Increasing d reduces the frequency of class A dramatically
and especially increases the frequency of class C. In comparison, while about 30%

of agents close and far from the bottleneck are in shape class A for d = 0.05m, less
than 5% are in that class for d = 0.3 m. The increase of shape class C is roughly
35% close and far from the bottleneck of about 60− 70%. The decrease in class A
is especially steep between d = 0.15 m and d = 0.2 m close to the bottleneck. Class
B increases at first between d = 0.05 m and d = 0.1 m and decreases from there on.
The difference is much smaller to class A and B, from around 36% to 25% close to
the bottleneck and staying almost constant far from the bottleneck. The increase
and decrease of shape C and A is roughly exponential from d = 0.05m to d = 0.2m
and saturates for d > 0.2 m. Panels C and D of Figure 6.24 shows a snapshot of
the system for d = 0.05 m in panel C and d = 0.3 m in panel D at t = 3000 s. The
system with d = 0.05m exhibits large clusters of hexagonally ordered class A agents
in the bulk of the system. In contrast, the abundance of class C agents in the bulk
of the system with d = 0.3m is visible, with only a few agents being in class A close
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Figure 6.24: (A)&(B) Log-plot of the fraction ps of the shape classes in respect
to the repulsion strength d close to the bottleneck (A) and far from the bottleneck
(B). (C)&(D) Example of the simulation at t = 3000 s for d = 0.05 m (C) and
d = 0.3 m (D).
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to the bottleneck in the system’s center. The jammed agent funnel is visible, where
the frequency of class C on the sides is highest, compared to the fluid funnel, where
class B agents are abundant. The interface between the crystalline ring and the bulk
of the system is sharp, where the frequency of class A agents dominates in the ring.
Transitioning into the bulk, the class almost completely disappears. Close to the
bottleneck in the narrow funnel (r < 2.5m) where the agents flow, almost only class
C agents are observed. In summary, the repulsion length d has a significant influence
on the dynamics of the system. A variation in d changes the system’s bulk shape,
changing the spatial structure of the system from a relatively even mix of the shape
classes with the appearance of large hexagonal clusters to a system with almost no
hexagonal order in the bulk and partially jammed flow. A possible reason for this
behavior is that due to the long interaction range on the agent’s direction vector êi,
the agents cannot efficiently use gaps between their surrounding neighbors, leading
to a more significant likelihood for jams and reducing the potential to equalize their
distance to their neighbors.

6.1.3 Exploring the a-d plane

The parameter space investigation is extended to analyze further the effect of a and
d on the system. In the previous two sections, the a-d plane is analyzed in an or-
thogonal direction from the parameter value fitted to the experiments in Section 5.1
in the a and d direction. The extension is now to investigate several combinations
of a and d in the two-dimensional plane. Six values on the plane are chosen in each
direction giving 36 combinations. Each simulation is run 20 times, and the observ-
ables are calculated for t > 1000 s in ∆t = 100 s steps until 5000 s. The remaining
parameters are identical as in the previous sections of this chapter and summarized
in Table 6.1. Figure 6.25 illustrates a snapshot of all conducted simulations sorted
on the a-d plane. The agents with Ψ6 > 0.7 are marked in yellow. The values tested
are a ∈ {1.0, 1.5, 2.5, 5.0, 7.5, 10.0}, and d ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5} m. The
plot shows all combinations of the two parameters with the magnitude indicated on
the axis and specified in the title of the panels. The plot illustrates the structural
heterogeneity and the system’s dynamics on the a-d plane. From the snapshot, one
can observe certain regions on the plane. For example, values of d ≤ 0.05 m and
a ≥ 2.5 have a large fraction P (Ψ6 > 0.7), with agents in the hexagonal order class
dominating the system. Large values of d ≥ 0.2 m combined with values for the
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Figure 6.25: Scatter plot of snapshots of the simulations at t = 4000 s on the a-d
plane. Yellow coloured agents have a hexagonal order of Ψ6 > 0.7.
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repulsion strength not exceeding a = 5 tend to have a lower fraction of hexagonally
ordered agents in the bulk near the bottleneck (r < 14m). An interesting dynamic is
observed in systems with a value of a ≥ 5.0. With increasing d, the hexagonal order
near the bulk declines from d = 0.05 m to d = 0.1 m. From there on out, the crys-
talline ring expands further towards the bottleneck with increasing d, dominating
the majority of the system for d = 0.3 m and a ≥ 7.5. At d = 0.5 m, the dynamics
change with the disappearance of the crystalline ring but still a high fraction of
hexagonally ordered agents, especially for a = 10. An abundance of agents are also
ordered in square clusters in this region. This is further illustrated in the Appendix
A.6 in Figure S22. A possible reason for the behavior could be interactions with the
system’s boundary, which has a rectangular geometry, but this is conjecture. There
also exists a boundary going through the system depending on a and d where the
agents’ bulk shape changes from a parabola to a half circle. The system’s partial
jamming and clogging probability also depends on a and d. This is better illustrated
in the scatter plot of the speed function and local packing fraction in Appendix A.6
Figure S20 and Figure S21. It isn’t easy in the spatially heterogeneous and dynam-
ical system to clearly characterize the systems attributes of structure and order.
Certain areas are highlighted and analyzed to classify the landscape and possible
transitions. The classification focuses on the following attributes: hexagonal order,
packing fraction, clogging fraction, bulk shape, and partial jamming. The hexagonal
order is measured for t > 1000 s in the region |x| < 5 m, 4 m < y < 15 m. This
area is chosen to characterize the inner bulk of the system and reduce the influence
of the boundary, especially in the parabola-shaped system. The measure should
also exclude the crystalline ring unless it is dominating the system (see a = 10 and
d = 0.3m in Figure 6.25). The packing fraction is calculated in the same area. The
clogging fraction is defined as the fraction of runs P (Tc < 1000 s) where the clogging
event happens at a time Tc < 1000 s. The bulk shape can be seen from the scatter
plots, and a partially jammed state is deducted from videos and snapshots of the
agents’ speed (see "aDSpeedCSM.mp4" and "aDOrderCSM.mp4",[226]). A system
is considered partially jammed when the large stable and jammed regions occur in
all runs. The clogging fraction, hexagonal order, and packing fraction measures are
continuous, while the bulk shape and the partially jammed state are categorical.
The continuous measures are depicted in a heat map on the a-d plane in Figure
6.26. Panel A shows the fraction of clogged systems P (Tc < 1000 s), panel B the
hexagonal order P (Ψ6 > 0.7) and panel C the packing fraction ϕ. Comparing the
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Figure 6.26: Heat maps of the a-d plane for the simulated parameter pairs: (A)
the fraction P (Tc < 1000 s) of systems that clog at a time Tc < 1000 s, (B) the
fraction of agents P (Ψ6 > 0.7) in the measurement area and (C) the packing fraction
of the system in the measurement area |x| < 5 m, and 4 m < y < 15 m.

three measures, one sees that the clogging fraction and hexagonal order have a more
rugged structure with multiple minima and maxima in the landscape. The pack-
ing fraction ϕ in contrast has a smoother surface with high packing fraction region
(d ≤ 0.3 m and a ≥ 5.0) and a low packing fraction region (d > 0.3 and a ≥ 5).
The clogging fraction has two distinct regions with a low fraction of clogged systems
for d ≤ 0.5 m and a ≥ 2.5 and for d = 0.5 m and a ≥ 5.0. The regions with a
low clogging fraction coincide with high hexagonal order. The regions with a higher
clogging fraction are in the interval a = 1.0 or d ≥ 0.2 m, coinciding with a low
hexagonal order. The order increases with a reduction in the repulsion length d and
an increase in the repulsion strength a. The exception of this rule manifests in the
second maximum at d = 0.5 m and a = 10.0. This region stems from the effect
of agent-agent interaction on the direction vector êi discussed above. In this case,
the repulsion function R(s) is significant enough so that the crystalline ring extends
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Figure 6.27: The categorized map of the measures and attributes of the system
in the a-d plane. (A) depicts the clogging classes, (B) depicts the hexagonal order
classes, (C) the packing fraction class (D) the bulk shape, and (E) the partial
jamming.
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close to the bottleneck (see Figure 6.25). At this point, the packing fraction of
the whole system is reduced significantly, and this effect dominates the interactions
between the agents. To simplify the different maps and discuss them with the sys-
tem’s categorical attributions, the continuous measures are classified. The clogging
fraction is categorized into four classes according to the above defined metric for the
clogging in the system in the following way.

clog class =



free-flow (ff) P (Tc < 1000 s) < 0.1,

low clogging (lc) 0.1 ≤ P (Tc < 1000 s) < 0.5,

medium clogging (mc) 0.5 ≤ P (Tc < 1000 s) < 0.9,

high clogging (hc) 0.9 ≤ P (Tc < 1000 s).

(6.5)

Analogous the hexagonal order is categorized into three classes:

hex order class =


low hex order (lo) P (Ψ6 > 0.7) < 0.2,

medium hex order (mo) 0.2 ≤ P (Ψ6 > 0.7) s) < 0.4,

high hex order (ho) 0.4 ≤ P (Ψ6 > 0.7),

(6.6)

and for the packing fraction

packing class =


low packing fraction (lp) ϕ < 0.5,

medium packing fraction (mp) 0.5 ≤ ϕ < 0.6,

high packing fraction (hp) 0.7 ≤ ϕ.

(6.7)

Since no clear phase transitions are observed in the system, the choice of the classes
is not obvious. The boundaries are chosen to illustrate and highlight the different
sections of the measures on the a-d plane. The categorical measures are the bulk
shape which can either be closer to a parabola (pa) or a half circle (hc) and the
occurrence of partial jamming, which is categorized as (pj) if it occurs or as laminar
flow (lf) if it does not. All five categorizations maps are depicted in Figure 6.27. The
categorization helps to visualize the heterogeneity of the system and the relationship
between the different measures. The categorization of the clogging fraction in panel
A illustrates the different areas of clogging probabilities. The probability for high
clogging (hc) is at the boundaries of the measured map, for either small values of
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a = 1. or large values of d = 0.5 excluding the zone where to agent-agent interac-
tion acting on the direction êi dominates the dynamics (a ≥ 7.5 and d ≥ 0.3 m).
Interestingly in the area of large a, the clogging frequency is low for either small

Figure 6.28: Illustration of the different hypothetical areas of attributes on the
a-d plane. The attributes and their abbreviations are explained in the legend. The
black dotted line illustrates the boundary where the dynamics are dominated by the
agent-agent interaction acting on the movement direction.

values of d ≤ 0.05 m or large values of d = 0.5 m. In between is an island of high
clogging frequencies. Compared with the hexagonal order, it shows that a lower
clogging probability usually coincides with high hexagonal order. Though this is
not exclusively true, as seen in the example a = 7.5 and d = 0.3m. The area of low
hexagonal order shown in panel B coincides with the partially jammed area in panel
E, which also coincide with higher clogging frequencies (mc-hc). The bulk shape in
panel D divides the space into two sections, where there is a non-linear decreasing
relationship between a and d that determines the shape of the bulk. The attributes
shown in Figure 6.27 can be collected and visualized in a comprehensive map of
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the a-d plane hypothesizing the different areas and their boundaries in Figure 6.28.
Since only a small area of the a-d plane is probed with the simulations, the exact
boundaries are not known and are inferred as a rough estimate. The idea is to
visualize the attributes mentioned above to illustrate their complex relationships.

6.2 Influence of noise in the movement direction

The previous section analyzed the CSM with a focus on the exponential interaction
acting on the movement direction of the agents (see Section 2.3). Depending on
the exponential repulsion function R(s) (equation (2.17)), the system can exhibit
unrealistic dynamics in the context of empirical pedestrian systems. Especially the
problem of stable clogs that arrest the flow indefinitely and partial jams where part
of the system is in a stable arrested state are unrealistic in real-world scenarios.
Depending on the initial conditions and the parameters, the system can get stuck in
these undesired states indefinitely. Because the system is deterministic apart from
the random initial conditions, it cannot escape these states. One way to improve
this is to add an external noise onto the desired direction of the agent êi, which
allows the system to explore a wider state space as discussed in Chapter 2. The
introduction of extrinsic noise usually has a minor influence on quantities like the
system’s density. However, the noise could influence the system’s spatial structure in
the movement direction. In atomic equilibrium systems, an increase in thermal noise
is usually associated with decreased order. In non-equilibrium systems, surprising
behavior can emerge through the noise. For example, the effect of freezing by heating
in a cellular automata model with counter flow [155, 234]. In empirical studies of
granular materials, ordered structures are observed in dense shaken granular fluids
[188, 207].

6.2.1 SCSM with repulsion

In this section, the noise in the system is introduced as described in Section 2.3. The
noise on the direction ê0 of the agent is added as a two-dimensional vector ζ with
normal-distributed entries N(0, σ2) with zero mean and standard deviation σ and
subsequently normalized (see equation (2.19)). The effects of the noise for different
σ ∈ {0.3, 0.7, 1.0} is illustrated in Figure 6.29 for 10000 vectors. An important effect,
especially for higher values of σ, is the possibility of backward movement, which can
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Figure 6.29: Illustration of the effect the noise has on the movement direction of
the agent for different σ ∈ {0.3, 0.7, 1.0}. The red vector shows the original direction,
and the black vectors are 10000 outcomes with added noise.

help dissolve clogs in the system [140]. The noise levels represented in Figure 6.29
are introduced in the system for three different values of d ∈ {0.05, 0.2, 0.3} m and
a ∈ {2.5, 5.0, 10.0}. The other values are equal to Table 6.1. The simulation is run
for t = 5000 s with Ns = 10 realisations per parameter set. The focus is set on the
stationary state of the system at t ≥ 1000s and ∆t = 100s. Snapshots of the system
in the d-σ plane are depicted in Figure 6.30 in the left array of panels and a-σ plane
in the right array. The increasing noise in the system affects the hexagonal order
significantly in all simulated systems. In the system with d = 0.05 m, the noise
also changes the shape of the bulk. While the system without noise has a parabolic
shape (see Figure 6.25), the increasing noise transforms it into a half-circle shape
with increased order. For d = 0.3 m, the hexagonal order near the bulk increases
with large yellow clusters visible in the panel. Interestingly the crystalline ring at the
system’s edge diminishes with increased noise. Analogous to the previous section the
continuous measures of hexagonal order P (Ψ6 > 0.7), the clogging fraction PTc and
the mean packing fraction ϕ are measured and the values are illustrated in Figure
6.31. In this case, the clogging time Tc is defined as the time when the system
is in a clogged state. This is necessary since clogs are not indefinitely stable in a
system with extrinsic stochastic noise compared to the CSM. There is a non-zero
chance that a clog dissolves due to the noise in the movement direction (e.g., through
the backwards movement of agents), which can destabilize the arch. The fraction
PTc = Tc/Ttot is then defined as the fraction of the total time Ttot the system is in
a clogged state. It is measured by comparing the time series of the agents in the
area Ω bounded by 4 m < y < 6 m and |x| < 2 m. When the mean of the absolute
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difference in the y-position ⟨|yi(t0)−yi(t1)|⟩ < ϵ of all agents i ∈ Ω is smaller than the
threshold value ϵ between t0 and t1 = t0+∆t, the system is considered to be clogged.
In this case the value for the threshold ϵ = 0.02 m. The value is chosen arbitrarily,

Figure 6.30: (Left array): Snapshot of the simulation on the d-σ plane for d ∈
{0.05, 0.2, 0.3}m and σ ∈ {0.3, 0.7, 1.0} at t = 3000s. (Right array): Analogous on
the a-σ plane for a ∈ {2.5, 5.0, 10.0}. Yellow agents have a hexagonal order Ψ6 > 0.7.
The red rectangle in the center panel of the right array marks the measurement area
used for Figure 6.31.

but it should be large enough to consider slight fluctuations in the clogged state.
Because of the large time steps ∆T , the method only detects prolonged clogs in
the system. However, it is still sufficient to characterize the different parameters
regarding the clogging fraction. Figure 6.31 A and D show PTc for the d-σ and
a-σ plane respectively. The clogging fraction decreases with the increase of noise
σ. The ten individual runs observe no clogs in some of the systems. The runs with
d = 0.3 m and a = 10 have a high chance of clogging in the deterministic case
(see previous section) and still do with a smaller amount of noise of σ = 0.3. With
increasing noise, the clogging fraction decreases from over 60% to roughly under 20%
in the sample with σ = 1. The hexagonal order measure P (Ψ6 > 0.7) and the mean
packing fraction ϕ are calculated in the area |x| ≤ 5m and 4m ≤ y ≤ 15m illustrated
by the red square in the center panel of the right array in Figure 6.30. Comparing
P (Ψ6 > 0.7) in panels B and E to ϕ in panels C and F illustrates that while ϕ is
only slightly affected by the noise, the hexagonal order increases consistently with an
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increase in noise, independent of the parameters for d and a. The hexagonal order

Figure 6.31: Heat maps of the Clogging time fraction PTc (A)&(D), Hexagonal
order P (Ψ6 > 0.7) (B)&(E) and mean packing fraction ϕ (C)&(F). Panel (A)-
(C) show the simulations on the d-σ plane and(D)-(F) on the a-σ plane. The
measurement area for ϕ and P (Ψ6 > 0.7) is illustrated in Figure 6.30.

P (Ψ6 > 0.7) and packing fraction ϕ with respect to the distance of the bottleneck r
for the simulated values of a, d and σ are plotted in Figure 6.32. Panels A-C show the
values of the d-σ plane and D-F of the a-σ plane. All systems have in common that
the packing fraction and hexagonal order increases with distance to the bottleneck
until r ≈ 5 m. The noise increases the maximum, where the fraction P (Ψ6 > 0.7)

saturates, but close to the bottleneck (r < 3 m), it does not affect the order for
d < 0.3m and σ > 0.3. The packing fraction ϕ near the bottleneck (r < 5m) is only
slightly affected for a = 10 and d > 0.05m, where ϕ decreases with increasing σ. In
the cases where a crystalline ring forms (d ∈ {0.2, 0.3} and a ∈ {5, 10}), increasing
noise decreases the order in the ring, and for d = 0.2m it disappears when σ > 0.3.
The observed decline in packing fraction at r > 20 m is also affected by increasing
noise. The slope of the packing fraction decline decreases in this case but is still
substantial in all systems. This means that an increased noise decreases hexagonal
order in a low-density environment. The shape factor distribution of the systems is
shown in Figure 6.33 for the d-σ plane in panels A and B, and the a-σ plane in C
and D. The distribution are calculated close to the bottleneck (0 m < r < 7) m and
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far away 7 m < r < 14 m. They exhibit the bimodal feature (except for d = 0.3 m
and σ = 0.3 near the bottleneck) with a high peak close to the hexagonal value of ζ
and a smaller peak close to the pentagonal value. The noise generally increases the
peak near the hexagonal value of the system and decreases the second peak close to
the pentagonal value. In the systems with varying d the increase especially close to
the bottleneck is substantial for the values d = 0.2m and d = 0.3m. These systems
partially jam without noise, but a sufficient amount of noise can break the jammed
state. This is especially visible for d = 0.3m, where the system is partially jammed
with σ = 0.3. The shape factor distribution transforms from the mono-modal peak
observed in this state (see also Figure 6.23) to the bi-modal shape observed in the
laminar systems. Compared to the distribution with no noise (see Figure 6.16 and
6.23) the hexagonal peak is much higher already for σ = 0.3. The dark red plot
shows the distribution of the granular fluid at ϕ = 0.7 from [188]. For certain
parameters (d = 0.05 m and a ∈ {5, 10}), the distributions of the agent system
becomes comparable with a granular fluid. To illustrate the effect of the noise on

Figure 6.32: The packing fraction ϕ and hexagonal order P (Ψ6 > 0.7) with respect
to the distance to the bottleneck r. The d-σ plane is depicted in panels (A)-(C)
and the a-σ plane in panels (D)-(F).

the shape factor, the shape factor classes are shown in the scatter plot in Figure
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6.34 for d = 0.3 m (A-C) and a = 10 (E-G). In panels A-C, the different dynamics
are visible in the snapshot of the system. For σ = 0.3 the jammed hopper can be
observed analogous to Figure 6.24, where the density of class C agents is high. The
increased noise de solves this state, and an increase of clusters with shape class A is
visible over the whole system. In panels E-G, the system already has a high number
of clusters of class A for σ = 0.3, but this increases substantially, and the agents in
class A dominate the system for σ = 1.0 where the clusters are connected to large
areas of high hexagonal order.

Figure 6.33: Shape factor distribution P (ζ) of the different values in the d-σ plane
(A)&(B) and the a-σ plane (C)&(D). The values of the granular fluid are depicted
as the red dashed line for ϕ = 0.7.
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Figure 6.34: Snapshot of the simulation showing the shape classes in a system
with d = 0.3 m and σ ∈ {0.3, 0.7, 1.0} in panels (A)-(C) in the stationary state.
Panels (E)-(G) show analogous the system with a = 10. The remaining variables
are the same as in Table 6.1.
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6.2.2 SCSM with no repulsion

To investigate the stochastic CSM (SCSM), simulations are conducted in a system,
where the exponential repulsion of the agents is constant R(s) = 0. in this case the
desired direction of the agent is determined by the floor field e0 (2.18) with the added
noise vector ζ (2.19) (see Section 2.3 for details) analogous to the model used in Sec-
tion 3. The values of σ are varied with σ ∈ {0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 2.0,
3.0, 7.0, 10.0}. The system’s dynamics with noise slow down compared to the CSM
with its exponential interaction (see Appendix A.7 Figure S24). The simulations
are therefore run for T = 10000 s. The stationary state is taken for t > 4000 s.
An example snapshot of the system for different σ is presented in Figure 6.35. The
evolution of the dynamics is illustrated in video noiseVarianceSCSM.mp4 [226]. For
σ = 0, the system is non-stochastic apart from the random initial conditions. Be-
cause there is no exponential repulsion, the agents follow the floor field until they
interact with another agent such that both their speed functions are V (si,j) = 0.
These agents are then condensation cells where other agents get stuck, leading to the
observed pattern. Increasing the noise distributes the agents more homogeneously,
with no large empty zones inside the bulk of the agents. Similar to the CSM with
exponential repulsion, the bulk shape changes. Between σ = 0.2 and σ = 0.4 the
bulk of the agents transforms the shape, from almost rectangular to a parabola. fur-
ther increasing the noise transforms the bulk shape from a parabola to a half circle
for a larger noise (σ = 3.0). The increasing noise also increases the hexagonal order
of the system. The hexagonal clusters grow in size, and for σ = 10.0, it is almost a
single large connected cluster of high hexagonal order. Noticeably especially in the
systems with large values of σ, the fraction of agents with a high hexagonal order
decreases near the bottleneck substantially. In the video noiseVarianceSCSM.mp4
[226], it is visible that the system clogs when the noise is not sufficiently large.

Clogging: Figure 6.36 A shows the clogging time fraction PTc in respect to σ

for t > 4000 s. There is a sharp transition in the system, wherein the measured
systems for small σ < 0.2, PTc = 1 and for σ ≤ 0.2 the clogging time fraction
PTc < 1 and tends to zero as σ increases. This could be a phase transition, but more
simulations are needed to answer this question definitively. The change in shape
from the rectangular bulk to the parabola stems from the transition of the clogged
system to the free-flowing system. The noise in the systems leads to the agents
being able to explore a larger space around their path determined by the floor field.
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Figure 6.35: A snapshot of the simulations at t = 9000 s with different σ specified
in the title of the panels. Yellow agents have a hexagonal order parameter Ψ6 > 0.7.

When the agents stick close to the floor field when σ < 0.7, they order themselves
in the parabolic shape, while if they can explore a larger region, they can minimize
their distance to the exit by ordering themselves in a half circle. To compare the
structure between different σ over the space of the system,

Hexagonal order in respect to the distance from the bottleneck: Figure
6.36 B-C shows the packing fraction ϕ and the hexagonal order P (Ψ6 > 0.7) in
respect to r and for different values of σ. Both in the ϕ plot (panel B) and the
P (Ψ6 > 0.7) plot (panel C) the difference between the clogged states (σ = 0.0 and
σ = 0.05) and the free-flowing states are visible. In the free-flowing state, the packing
fraction and hexagonal order decrease towards the exit, while both values increase in
the clogged state. The reason is that in the clogged state, no dynamics near the exit
exist that could decrease the density and the hexagonal order. In the free-flowing
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state, the speed of the agents increases near the bottleneck with decreasing r, which
lowers the density and pulls apart the hexagonally ordered clusters. In the free-
flowing state (σ ≥ 0.3 in the Figure 6.36) both the packing fraction ϕ and hexagonal
order P (Ψ6 > 0.7) increase with distance to the bottleneck r. Interestingly, while
the packing fraction differs with respect to σ near the bottleneck, the fraction of
hexagonally ordered agents varies very little with σ and r < 4 m. For large σ ≥ 3,
the packing fraction of the system decreases at larger distances further from the
bottleneck, similar to large values of a and d in the previous Section 6.1. In this case,
the decreasing packing fraction also decreases the hexagonal order in the system.
The reason for this effect is, in this case, not a result of the agent-agent interaction
acting on the direction vector. For systems with larger noise, it is increasingly more
likely that the agents will perform backward steps. In the bulk of the system, they
can still pack close together since they are inhibited from moving back by other
agents because it is still more likely for them to move forward. Near the boundary,
this preference is weakened because fewer agents surround each other, and agents can
move at a higher speed backward at the boundary. In this case, the noise decreases
the hexagonal order in the system. The packing fraction in the free-flowing states
increases monotonically for σ < 3.0, while the hexagonal order saturates or even
decreases with increasing distance. For σ = 3.0 the maximum of P (Ψ6 > 0.7) and ϕ
do not coincide, while they do for σ = 10. The relationship between ϕ, P (Ψ6 > 0.7)

and σ is illustrated for different distance slices r and r+∆r of the system in panels
D and E of Figure 6.36. Panel D shows the packing fraction ϕ with respect to
σ at a close, intermediate and far distance from the bottleneck. The transition
from the clogged to the free-flowing state is visible as a sudden decrease in packing
fraction followed by an increase with σ. The packing fraction reaches at all distant
slices a maximum shifting further to higher values of σ with increasing distance to
the bottleneck. The hexagonal order, in contrast, increases monotonically with σ

in all distance slices after the transition. Showing that a higher density does not
necessarily increase the hexagonal order. At close distances (0.5 m < r < 3.5 )m
the hexagonal order saturates at around P (Ψ6 > 0.7) ≈ 0.2 for σ ≥ 0.7. At the
intermediate distance the hexagonal order increases steadily and starts to saturate
between σ = 7 and σ = 10 around P (Ψ6 > 0.7) ≈ 0.42. At the far distance, the
hexagonal order is monotonically increasing in the free-flowing state and does not
saturate in the simulated regime presented, reaching up to P (Ψ6 > 0.7) ≈ 0.69.
The dynamics show that a certain density is necessary for the system to exhibit
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Figure 6.36: (A) Clogging time fraction PTc of the system in respect to σ. (B)
Packing fraction ϕ in respect to the distance to the bottleneck r. (C) Hexagonal
order P (Ψ6 > 0.7) in respect to r. (D) Packing fraction ϕ in different radial intervals
in respect to σ with |x| < 15 m. (E) Analogous to D the hexagonal order P (Ψ6 >
0.7).
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hexagonal order but that a higher density does not universally coincide with high
hexagonal order. The packing fraction and hexagonal order at different distances
r from the bottleneck and for varying values of σ are presented as a heat map in
Figure 6.37. This plot comprehensibly illustrates the effects shown in panel D-E of
Figure 6.36. In the plot, the landscape shows that there are single peaks for the
measures in both landscapes in the observed plane beyond the transition point to
free-flow. The maximum of the packing fraction is far away from the bottleneck
between (20m < r < 25 )m for 2 < σ < 4, while the maximum in hexagonal order is
observed at (15 m < r < 20 )m and σ > 10. The plot also illustrates how the noise
affects the packing fraction and hexagonal order near the bottleneck (r < 4m). The
continuous expansion of the low packing fraction zone near the bottleneck is visible,
while the slope of the hexagonal order is largely unaffected by the noise.

Shape Factor: The shape factor distribution for a subset of σ-values are depicted
in Figure 6.38 A&B. The distributions are similar to the deterministic case in the
sense that in the free-flowing regime for σ > 0.3, they are bi-model with a peak close
to the hexagonal shape factor ζ ≈ 1.103 and one close to the pentagonal shape factor
ζ ≈ 1.156. In the SCSM the peak near the hexagonal shape is sharper already for
σ = 0.7 compared to the wider peaks that are observed in the CSM (e.g. see Figure
6.16, 6.23). The transition of the shape factor distribution with increasing σ is
similar to the two-dimensional granular fluid in [188] depicted in panel B of Figure
6.38. At low packing fractions ϕ = 0.55 the granular system has a similar wide
distribution towards larger values of ζ as the system with σ = 0.1. At higher noise
values, the agent system has the bimodal distribution with sharper peaks compared
to the granular system at ϕ = 0.65. For higher packing fractions, the second peak
disappears in the granular system near ζ = 1.156, while the agent’s system has
a sharper peak near the hexagonal order and a smaller peak near the pentagonal
value. The evolution of the shape factor with σ in the stationary state is shown
in the heat map in panels C and D. The transition from the clogged state to the
free-flowing state is especially visible close to the bottleneck, where the distribution
shifts from a wide peak around ζ = 1.225 to a narrower peak around ζ = 1.175. The
continuous shift towards the hexagonal shape factor can be observed for increasing
σ in the free-flowing state and the continuous decrease of the second peak. The
fraction of the shape classes ps, s ∈ {A,B,C} in panels E and F of Figure 6.38
further illustrate the effect of the noise on the shape factor. Near the bottleneck
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Figure 6.37: (A) Heat map of the packing fraction ϕ at distance r from the
bottleneck for t > 4000 s in respect to the noise σ. (B) Analogous to A, the fraction
of hexagonally ordered agents P (Ψ6 > 0.7).
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(panel C) the noise increases both pA and pB with increasing σ, while pC decreases.
Far from the bottleneck, only the fraction pA of the hexagonal order increases, while
pB and pC decrease. There the hexagonal class dominates the system when σ ≤ 2

Near σ = 0 the system starts with a majority of the system in shape class C with
pC > 0.9, and decreases steeply with increasing σ. A snapshot of the shape classes
in the Voronoi-scatter plot is depicted in Appendix A.7 Figure S23.

The reason noise increases order: The system favors a hexagonal order with
large noise values due to the interactions between the agents in the system. This can
be illustrated in an one-dimensional example in Figure 6.39. When the agent density
is sufficiently large, the speed to the left and right is limited by the speed function
(2.14), which linearly decreases with the neighbor distance. In the one-dimensional
system, the agent can only choose to get to the left or right. If this choice is done at
random with equal probability pright = pleft = 0.5, the agents tends to not deviate far
from the position of equal distance to its neighbors. The reason is that in a system
with sufficient density (meaning that the speed dependence is in the linear regime
of equation (2.14), the speed of the agents is larger in the direction of the neighbor
that is further away. Therefore the agent will tend to move closer to the center of its
two neighbors. The same is true in two dimensions; for disc-shaped agents, which
tend to a hexagonal configuration. In the case of the bottleneck scenario, the agents
are biased towards the bottleneck exit; therefore, the direction probability is not
symmetric in the space. In the one-dimensional case, if a bias two one direction is
present, the equilibrium position would not be the center between the neighbors but
offset into the direction of the bias since the bias would negate the slower speed into
the more preferred direction to a certain extent. A directional bias also increases
the density of the system. In a system with equal probability to the left and right,
a cluster of agents would diffuse apart from each other if there are no boundaries
inhibiting their movement. In the case of a directional bias paired with a bottleneck
that slows down the agent movement in the preferred direction, the system’s density
will increase. Still, the order (equal distance to the neighbors) will decrease. This
explains why the packing fraction maxima in Figure 6.37 do not correspond to the
hexagonal order maxima.

The equilibrium position of the agent in the one-dimensional system is determined
by the product plV (dl)∆t of the probability pl to move left and the distance V (dl)∆t

traversed in the time interval ∆t with the one-dimensional speed-function V (dl) =
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Figure 6.38: (A) Distribution of the shape factor close to the bottleneck (0 m <
r < 7 m) for different values of σ. (B) Analogous to A far from the bottleneck
(12 m < r < 20 m). The black lines show the distribution of the granular fluid in
[188]. The vertical lines show ζ of the regular heptagon (green), hexagon (yellow),
and pentagon (blue). (C)&(D) Heat map of the shape factor distribution P (ζ) on
the σ-ζ plane. (E)&(F) The fraction ps of the three shape classes s ∈ {A,B,C} in
the system. The distance from the bottleneck is equal to A and B, respectively.
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dl/T and dl the distance to the left neighbor. When this is equal to the analogous
product pr V (dr)∆t of the probability pr to go right and the distance dr to the right
neighbor, the equilibrium position is reached.
The variable T is the slope factor introduced in (2.14). Rewriting the probability
pl = p and pr = 1− p = αp, with α = (1− p)/p the equilibrium position is

dl = α dr. (6.8)

Knowing the total distance d = dl + dr between the left neighbor and the right one,
the distance to the right neighbor can be rewritten as

dr =
d

1 + α
. (6.9)

The variance of the position is not straightforward to calculate, because the final
position of the agent after tmax time steps depends on the path taken by the agent.
In the standard case of a random walk with Bernoulli trials, where the variance
var(x(tmax)) = 2 tmax, with X(tmax) the position after tmax time steps increases
linearly and quadratically with the step length s. Because of the self-correcting

Figure 6.39: Illustration of a one dimensional random walk, where agent i interacts
with its static neighbors through the speed function (2.14).

feature in the one-dimensional SCSM, the variance saturates after some time. In
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Figure 6.40 A the variance var(X(tmax)) of the postionX of the agent after tmax time
steps of a simulation are shown for different values of T . The system is simulated
with d = 1, starting position dl = dr = 0.5, pl = pr = 0.5 and ∆t = 0.01 s and
is repeated 2000 times. The plot shows that the variance of the position X(tmax)

saturates at around tmax = 5000 s. In panel B the dependence of the variance on
the slope factor T is presented. For this the simulations are run for tmax = 20000 s.
The variance of the agents position var(X(tmax)) in respect to T follows a power
law and decreases with increasing T . The reason is that for smaller values of T the
agent’s speed increases more steeply with distance to the neighbors, which increases
the step size near the equilibrium position.

Figure 6.40: (A) Variance in the position of the one-dimensional SCSM with static
neighbors (see Figure 6.39) after a runtime of t = tmax, starting in an equidistant
position. (B) Variance after tmax = 20000 s on the y-axis with respect to the slope
factor T on the x-axis.

Discussing two specific noise strengths: The following discusses the time evo-
lution of two systems with σ ∈ {0.7, 3.0}. The snapshot at different times is depicted
in Figure 6.41. Yellow agents have an hexagonal order parameter Ψ6 > 0.7 and the
green and red color show the coordination number Nn > 6 and Nn < 6 respectively
analogous to Figure 6.1. At t = 40 s the density of hexagonal order in the system
with σ = 3 is still low, compared to the case with σ = 0.7 where the packing fraction
is visibly higher (indicated by the smaller Voronoi cells). In both cases, the density
of 5-7 fold defects is still high. At t = 400 s the system with σ = 0.7 has already
a high packing fraction and is close to the final urn shape. In contrast, in the sys-
tem with σ = 3, the packing fraction gradient is still visible, with a considerably
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lower packing fraction far from the bottleneck. Still, the system has a high fraction
of hexagonal order with large clusters of ordered agents. Closer to the bottleneck
(5 m < r < 10 m) grain boundaries separate the smaller hexagonal clusters. The
system evolves into this structure over time, illustrated in the panel at t = 4000 s.
The system with σ = 0.7 exhibits a higher order at t = 40 s compared to the sta-
tionary state at t = 4000 s. The dynamics can be observed in more detail in the
video noiseVariance307SCSM.mp4 [226].

Figure 6.41: Snapshots of the system with σ = 0.7 (Row A) and σ = 3 (Row B).
The yellow agents have a value for the bond orientation factor Ψ6 > 0.7. The red
and green agents have a coordination number Nn ̸= 6, see Figure 5.2. The systems
are presented at different times t specified in the title of the panels.

The time series of the different measures is shown in Figure 6.42, of the system with
σ = 0.7 in panels A-D and σ = 3 in panels E-H. The plots show the measures of the
hexagonal order P (Ψ6 > 0.7) (A and E), the fraction of agents with coordination
number P (Nn = 6) (B and F), the packing fraction ϕ (C and G) and the no-noise
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speed Vnn. The plots show the measure close to the bottleneck (0 m ≤ r < 3.5 m),
at a medium distance (3.5 ≤ r ≤ 10) m and far away 12 m ≤ r ≤ 20 m (D and H).
Comparing panels A-D with σ = 0.7 to E-H with σ = 3.0 illustrates that the time
evolution of the different measures is qualitatively rather similar. For instance, the
measure of the hexagonal order (A and E) shows a peak early on in the system at the
medium distance that decreases into the stationary state. At the far distance both
system show a wider maximum before t = 2000 s that decreases slightly between
(2000 s < t < 5500) s and increases again. At close distances both systems quickly
relax into the stationary state with P (Ψ6 > 0, 7) ≈ 0.2. Analogous is the evolution
of the coordination number fraction P (Nn = 6). A subtle difference between the
systems is a small peak in the σ = 0.7 system (in P (Ψ6 > 0.7) and P (Nn = 6))
around t ≈ 80 s, overlaying with the peak at medium distance.

The packing fraction ϕ and the no-noise speed Vnn are shown in panel C, G and
D, H. Qualitatively Vnn is inversely proportional to the packing fraction Vnn ∝ ϕ−1,
since the speed function (2.14) is linearly dependent on the distance to the closest
agent in the headway (2.5). The aforementioned high-order peaks in both systems
coincide with a high packing fraction and a low speed. The speed and density plot
also show how the dynamics shift from the beginning of the system’s evolution to
later stages. This is especially visible in the σ = 3 case. In the beginning, the
system’s density is lower, further away from the system in the density-increasing
phase. After some time (t ≈ 100 s), the relationship flips, and the system reaches
the maximal packing fraction far away from the bottleneck. The decrease in packing
fraction and increase in speed are caused by the stationary outflow of pedestrians at
the bottleneck. Because of continuity, the speed increases towards the bottleneck.
Figure 6.43 shows this dynamic over the whole system as an r-t heat map. The map
illustrates the different measures P (Ψ6 > 0.7) (A and D), P (Nn = 6) (B and E)
and ϕ (C and F), where the colour represents the value of the measure. The speed
is omitted because of the inverse relationship between the speed and the packing
fraction. The comparison between the noise levels shows that the system’s dynamics
exhibit the same features. For t < 4000 s, a wave of increasing order and packing
fraction travels through both systems, followed by a valley of decreasing hexagonal
order and packing fraction. The difference is (apart from the absolute values of the
measures) that the wave speed is higher in the system with σ = 0.7 compared to
σ = 3.0. After that, the system stabilizes into the stationary state. The plots also
show that while the order measures go through a valley after the initial increase,
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the packing fraction does not exhibit the same behavior. This is especially visible
in the evolution of the packing fraction for σ = 0.7, where the system stabilizes to a
stationary state after the initial wave of high packing fraction. The lines in panels
D and F illustrate the speed of the high hexagonal order wave and the packing
fraction wave. They are fitted heuristically to illustrate that both waves propagate
with different velocities through the system. The slope of the hexagonal order line
is m = 1/120m/s while for the packing fraction the wave moves approximately with
m = 1/100 m/s.

6.2.3 Packing Fraction and hexagonal order in the SCSM

To get a better understanding of the relationship between the packing fraction of the
system and the hexagonal order, P (Ψ6 > 0.7) is plotted against ϕ at certain distances
from the bottleneck r < r < r + ∆r with ∆r = 1 m, at different time intervals
t0 < t < t1. The results are shown in Figure 6.44 for the system with σ = 3, but are
analogous for σ = 0.7 (See Appendix A.7 Figure S25) on a different time scale. At
the beginning of the simulation, one can observe two sequences in the P (Ψ6 > 0.7)-ϕ
space, traversing from a low packing fraction and low hexagonal order region of the
space to high hexagonal order and high packing fraction region. The two sequences
can be separated into areas close to the bottleneck (blue dots) and far away from the
bottleneck (green-red dots). This is especially visible at 250s ≤ t ≤ 270s. Depending
on where in the system one measures the packing fraction and order, one can be in
two different locations on the order-packing fraction space for the same value of ϕ.
Over time the branch far from the bottleneck contracts to a small region. The branch
close to the bottleneck stabilizes into a linear relationship. An important difference
between the two branches is how the packing fraction changes over the space. Close
to the bottleneck, the packing fraction increases with increasing distance to the
bottleneck. At the earlier time stages (t ≤ 530 s), there is a maximum at a certain
distance from the bottleneck, where the packing fraction decreases with distance r
from the bottleneck. Since the speed is connected to the packing fraction, the agents
far from the bottleneck decrease their speed as they move closer to the bottleneck,
which allows them to form hexagonal structures, increasing P (Ψ6 > 0.7) and ϕ over
time. In contrast, any structure is pulled apart with the increasing speed of the
agents near the bottleneck. At 8000 s ≤ t ≤ 9000 s, there is a linear relationship
between the packing fraction and the hexagonal order of the system, as the region
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Figure 6.42: Time series of the hexagonal order P (Ψ6 > 0.7) (A)&(E), fraction
of the coordination number P (Nn = 6) (B)&(F), packing fraction ϕ (C)&(G), and
no-noise speed Vnn (D)&(H), for the system with noise strength σ = 0.7, (A-D)
and σ = 3, (E-H). The measures are taken at three distant intervals r+ dr from the
bottleneck specified in the legend with |x| < 15 m.
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Figure 6.43: Heat map of the measures P (Ψ6 < 0.7) (A)&(D), P (Nn = 6)
(B)&(E) and ϕ (C)&(F) on the r-t plane. (A)-(C) show the system with σ = 0.7
and (D)-(E) for σ = 3.

far from the bottleneck contracted and has a mostly static packing fraction. The
evolution of the plot illustrates that the density is only part of the influence on the
hexagonal order.
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Figure 6.44: Plot of the hexagonal order P (Ψ6 > 0.7) in the system with σ = 3.0
in respect to the packing fraction ϕ at different times of the simulation and different
distance intervals r + ∆r from the bottleneck indicated by the color. The value of
∆r = 1 m and the time intervals are indicated in panel titles.

This can be further analyzed when investigating the trajectory of the points in
Figure 6.44 over time on the hexagonal order-packing fraction plane for σ = 3.
For a subset of distance intervals this is shown in Figure 6.45 A&B. The colors of
the points represent the distance interval to the bottleneck, where the observables
are measured. The system starts in a low packing fraction and hexagonal order
state. The plot shows that in the beginning of the simulation, at all distances, the
hexagonal order increases monotonically with the packing fraction until ϕ ≈ 0.67.
Starting from that point, the trajectory of the hexagonal order at r = 15m decreases
with increasing packing fraction. The same can be observed for further distances
around ϕ ≈ 0.72. The trajectories exhibit interesting behavior at a large packing
fraction, ϕ > 0.7. After the phase of decreasing order for r > 15m, a steep increase
occurs at the highest observed packing fractions of the system, followed by an equally
steep decrease. The systems oscillates in a band of ϕ between 0.43 < P (Ψ6 >

0.7) < 0.56 depending on the distance from the bottleneck. Close to the bottleneck
(r = 10 m and r = 5 m), the system does not exhibit the initial decrease before
oscillating at the high packing fraction zone. For r = 5 m, the increase is linear
with ϕ. This illustrates that the packing fraction and hexagonal order are not



Influence of noise in the movement direction 177

stationary after the same time passed in the system. The ϕ-wave moves quicker
than the hexagonal order wave. A visual representation of the order wave in the
order field Ψ6(r), density field ρ(r) and the speed field Vnn(r) is shown in the video
noiseFieldTimeSeriesSCSM.mp4 [226]. Snapshots of this video and the description
of the panels are presented in Appendix A.7 Figure S27. In the video the hexagonal
order is highlighted between 0.6 < Ψ6 < 0.7, meaning that Ψ6 > 0.7 is represented
as bright yellow spots and Ψ6 < 0.6 as dark purple spots. The video shows the
formation of a ring with high hexagonal order at around t = 500 s. From there
on, for t > 500 s, the wave-like decrease of the Ψ6 can be observed, while the
density and speed reach their stationary state, illustrating the delayed response of
the hexagonal order on the changes in the speed and density fields of the system. The

Figure 6.45: The hexagonal order P (Ψ6 > 0.7) in respect to the packing fraction
ϕ at different distances r from the bottleneck with σ = 3. The dots show the time
evolution of the system, where each dot is one point in time on the space. (A) shows
the entire trajectory and (B) shows the interval ϕ > 0.74.

relationship between the packing fraction ϕ and the hexagonal order in the system
can be further analyzed using the definition of the mean packing fraction ⟨ϕ⟩. The
system is sliced into distance intervals r +∆r from the bottleneck with ∆r = 1 m.
The mean packing fraction ⟨ϕ⟩ in the slices is calculated over the time evolution in
the system and rounded to the second digit to define mean packing fraction classes
ϕc. Figure 6.46 shows the distribution of the ϕ of agents in the same mean packing
fraction class P (ϕ|⟨ϕ⟩ = ϕc) at different distance intervals specified in the title. The
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distribution at all distances has Gaussian shapes when they are not too close to
the maximal packing fraction of ϕmax ≈ 0.9. Near ϕmax, the distribution is skewed
to the right. Close to ϕmax, the distribution depends on the order in the system
since only the hexagonal order clusters can achieve the maximal ϕmax, skewing the
distribution. Figure 6.47 shows analogously the mean hexagonal order ⟨Ψ6⟩ with
respect to ϕ of the agents in the aforementioned mean packing fraction classes at the
same distance intervals. Outliers in the plots are filtered by the density distribution,
only considering agents in the 95% interval of the distribution P (ϕ|⟨ϕ⟩ = ϕc). The
plot shows the relationship between the hexagonal order and the packing fraction
close (0 m < r < 10 m) and far (12 m < r < 17 m) from the bottleneck. Far from
the bottleneck is a clear, mostly monotonic and nonlinear relation between ϕ and
the Ψ6. The maximal hexagonal order of the system correlates with the ϕ. Close to
the bottleneck, the correlation is not as clear, especially for lower packing fractions.
Surprisingly, the mean hexagonal order at higher packing fractions decreases at
the edge of the distribution. For a large enough packing fraction, ⟨ϕ⟩ > 0.6 the
relationship between the ⟨Ψ6⟩ and ϕ are very similar in their respective packing
fraction class, though the shape of the function ⟨Ψ6⟩(ϕ) shifted by the value of the
mean ⟨ϕ⟩ differs. Using the transformation of the central limit theorem (CLT) for
every individual agent

ϕ∗
i =

√
n(ϕi − ⟨ϕ⟩)
std(ϕ)

, (6.10)

a rescaled version of the packing fraction distribution can be analyzed. With n = 1,
the new distribution P (ϕ∗) is shown in Figure 6.48 C for selected packing fraction
classes shown in panel A between 0.55 < ⟨ϕc⟩ < 0.8. The distribution of the trans-
formed packing fractions P (ϕ∗) fall close together and are already approximating a
standard normal distribution even though n = 1. Comparing the mean hexagonal
bond orientation ⟨Ψ6⟩ in panel B for the packing fraction ϕ and panel D for ϕ∗, the
different curves do not fall onto each other, especially for ϕ∗ > 0. What is noticeable
is that the data points follow the shape of a sigmoid function, starting with their
min value at ⟨Ψ6⟩ ≈ 0.5 and saturating at ⟨Ψ6⟩ = 1.0. Fitting a logistic function of
the form

g(x) =
0.5

1 + exp(−k0(x− x0))
+ 0.5 (6.11)

approximates well to the measured data points of ⟨Ψ6⟩(ϕ∗) (see black lines in panel
D of Figure 6.48). The fit parameter k0 and x0 in respect to the ⟨ϕ⟩ are shown in
Figure 6.49 A and B. The fit parameter k0 in respect to ⟨ϕ⟩ can be well described by



Influence of noise in the movement direction 179

a power law k0(⟨ϕ⟩) = axb with a ≈ 4.52± 0.11 and b ≈ 3.72± 0.09. For ⟨ϕ⟩ < 0.7

the value of the fitting parameter x0 is also well described by a power law with
a ≈ 0.25 ± 0.011 and b ≈ −3.46 ± 0.11. For ⟨ϕ⟩ > 0.7, x0 is nearly static around
x0 ≈ 0.52, meaning there is a shift in the sigmoidal character of the function that
approaches a constant value near the maximal packing fraction.

Figure 6.46: Distribution P (ϕ) of the packing fraction of agents that are in the
same mean packing fraction class in the distance interval specified in the title of the
panels.
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Figure 6.47: Analogous to Figure 6.46 the relationship between the mean hexag-
onal order ⟨Ψ6⟩ and the packing fraction ϕ.
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Figure 6.48: (A) Distribution P (ϕ) of selected packing fraction classes ϕc. (B)
Analogous to A the mean hexagonal bond orientation factor ⟨Ψ6⟩ in respect to ϕ.
The diamonds indicate the mean value of ⟨Ψ6⟩. (C) The transformed distribution
P (ϕ∗), using equation (6.10), of the packing fraction classes shown in panel A. (D)
Analogous to B, ⟨Ψ6⟩ in respect to ϕ∗.
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Figure 6.49: Plot of the fitting parameter k0 (A) and x0 (B) of the logistic function
(6.11) in respect to the mean packing fraction class ⟨ϕ⟩.

6.3 Influence of the slope factor T

At last, there is one parameter left in the (S)CSM that determines the interaction
between agents. The slope factor T in equation (2.14) determines the slope of the
linear distance-speed relation between agents. Here the influence is discussed in the
SCSM analogous to Section 3 with a = 0 and σ = 0.7. The reason is that lower
values of T increase the density substantially and cause partial or total clogging of
the system, which is reduced in the stochastic version. Analogous to the previous
simulations the model is run for t = 10000 s with T ∈ {0.1, 0.3, 0.5, 0.8, 1.0, 1.2} s
and all other parameters set equal to Table 6.1. What would be expected following
the discussion in the previous Section 6.2 around Figure 6.39 and 6.40 is that a
smaller value of T might decrease the order in the system since the interaction of
the agents becomes relevant at a higher packing fraction increasing the variance
in position. Figure 6.50 shows the simulation at T = 9200 s for the six different
values of T (see also video "slopeFactorNoiseSCSM.mp4" [226]). Looking at the
snapshots, the effect of T seems minor on the system’s structure. Only for T = 0.1 s
the hexagonal order seems to be increased, but this cannot be definitively stated
from this snapshot. The time series of the mean measures analogous to Figure 6.42
for P (Ψ6 > 0.7), P (Nn = 6), ϕ and vnn are shown in Figure 6.51 for T = 0.1 s (A-D)
and T = 1.2 s (E-H). The time series for T = 1.2 s behaves identical to T = 1.0 s and
σ = 0.7 discussed in the previous section in Figure 6.42. For T = 0.1s, the time series
of the measures exhibit a different behavior. In the case of T = 1.0 s and T = 1.2 s
there is a maximum early in the simulation T ≈ 700 s for P (Ψ6 > 0.7), P (Nn = 6),
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Figure 6.50: Voronoi-scatter plot of the stochastic optimal velocity model with
different values for the slope factor T specified in the title of the panels at t = 9200 s
of simulation time with T ∈ {0.1, 0.3, 0.5, 0.8, 1.0, 1.2} s. The yellow agents have a
hexagonal bond orientation factor of Ψ6 > 0.7.

ϕ and a minimum for vnn. The system with T = 0.1 s behaves monotonously
in comparison, where except for fluctuations in the measurement, the measures of
order and packing fraction increase from t = 0 s steadily until they saturate. Far
from the bottleneck the hexagonal order for T = 0.1 s saturates at a larger value
of P (Ψ6 > 0.7) ≈ 0.34 compared to P (Ψ6 > 0.7) ≈ 0.3 for T = 1.2 s. Next the
system is analyzed in the stationary state (t > 4000 s) with a focus on the packing
fraction and the hexagonal order presented in Figure 6.53 A-E, analogous to Figure
6.36. Panel A shows the clogging time fraction PTc with respect to the slope factor
T . The influence of T on PTc is minor between T = 1.2 s and T = 0.5 s. For smaller
values of T , PTc increases rapidly from close to PTc ≈ 0 to PTc ≈ 0.35 at T = 0.1 s.
For the analysis of the packing fraction, ϕ and the hexagonal order P (Ψ6 > 0.7),
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the clogged states are removed, and only the flowing state is analyzed. Panel B and
C show ϕ and P (Ψ6 > 0.7) in respect to r for the tested values of T . The differences
between the system far from the bottleneck are subtle. Especially for the measured
values of T > 0.1 s the hexagonal order and the packing fraction are close together.
Close to the bottleneck r < 7 m the packing fraction ϕ increases with decreasing
slope factor T , which is already discussed in Section 3. For T = 0.1 s the system’s
hexagonal order significantly increases far from the bottleneck. Panels D-E show
the influence of T at different distances r analogous to Figure 6.36. The two graphs
show that an increase in T monotonically decreases the packing fraction ϕ at all
three distance intervals measured in the system. Interestingly the hexagonal order
has a non monotonous relationship, where at the intermediate and far distance the
hexagonal order P (Ψ6 > 0.7) decreases from T = 0.1 s to T = 0.3 s and increases
from there on out with increasing T . Close to the bottleneck is a slight increase
in hexagonal order with increasing slope factor T > 0.1 s is observed. As discussed
above, the decrease of the hexagonal order with T is not unexpected, but the increase
for very small values of T is surprising. The shape factor distribution of the system
is shown close to the bottleneck (Figure 6.52 A) and far away (Figure 6.52 B).
The distribution has at both distances for all values of T a distinct peak at around
ζ = 1.18. Close to the bottleneck, there is no peak near the hexagonal value of
ζ ≈ 1.103, and the difference in the distribution with varying T is small. Far from
the bottleneck, the peak near the hexagonal region decreases slightly with increasing
T for T > 0.3s. For T = 0.1s, the peak increases significantly compared to the other
values. The tail of the distribution for increasing values ζ > 1.18 is exponential.
The fraction of the shape classes in respect to T shown in panel C and D of Figure
6.52 vary slightly for T > 0.1 s. At T = 0.1 s the fraction of pA increases far from
the bottleneck while pC decreases. The same is true close to the bottleneck to a
lesser extent. In summary, the slope factor T influences the density and hexagonal
order of the system. As expected from the results from Section 6.2 the density
consistently increases with a decreasing value of T . The hexagonal order decreases
with an decreasing value of T and increases again between T = 0.3 s and T = 0.1 s.
The reason for this behavior is not clear.
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Figure 6.51: Time series of the hexagonal order P (Ψ6 > 0.7) (A)&(E), fraction of
the coordination number P (Nn = 6) (B)&(F), mean packing fraction ⟨ϕ⟩ (C)&(G)
and no-noise speed Vnn (D)&(H), for the system with slope factors T = 0.1 s, (A-D)
and T = 1.2 s, (E-H). The measures are taken at three distant intervals r+ dr from
the bottleneck specified in the legend.
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Figure 6.52: (A) Distribution of the shape factor close to the bottleneck for
different T (0 m < r < 7 m). (B) Analogous to A far from the bottleneck
(12 m < r < 20 m). (C&D) The fraction ps with s ∈ {A,B,C} of the three
shape classes in the system. The distance from the bottleneck is equal to A and B,
respectively.
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Figure 6.53: (A) Clogging time fraction PTc of the system in respect to T (B)
Packing fraction ϕ in respect to the distance to the bottleneck r. (C) Hexagonal
order P (Ψ6 > 0.7) in respect to r. (D) Mean packing fraction ⟨ϕ⟩ in different radial
intervals in respect to T . (E) Analogous to D the hexagonal order P (Ψ6 > 0.7).
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6.4 Distribution of high order clusters

In this section, the method described in Section 4.8 is utilized to analyze the clusters
of agents with a high hexagonal order in the system. The clusters are classified as
follows: in the first step, the packing-fraction-field ϕ(r) and the hexagonal order
field Ψ6(r) are calculated using equation (4.21). An example of the field for the
SCSM using the simulation data from Section 6.2 with a = 0, σ = 3, and all other
parameters equal to the summary in Table 6.1 is shown in Figure 6.54 A. The field
is of a snapshot at t = 4200 s in the system. The bright yellow spots show regions
with a high hexagonal order, where Ψ6 is close to one. The field is calculated using
a Gaussian kernel to approximate the delta function δ(x) = 1/(

√
πa) exp(−x2/a2)

analogous to Section 3. The value used for a = 0.12 m, which corresponds to a
full width at half maximum fwhm = 0.2 m. The field in panel A exhibits large
patches of constant hexagonal order at the boundaries, caused by the low density
and lack of neighboring agents. To eliminate the boundary area, the field Ψ6(r)

is filtered using the packing fraction field ϕ(r). When the value of ϕ(r) < 0.4 the
value of Ψ6(r) is set to zero. The filter process results are shown in panel B, where
a clear boundary is visible. The next step is to filter out the areas of high order in
the field, using equation (4.22), with ϵ = 0.7 in panel C. The areas of high order
are shown as the bright yellow spots that take the value of 1 and the blue areas
0. The Hoshen-Koppelmann algorithm can be utilized on this grid to distinguish
the different clusters. The result of the clustering is shown in panel D. The labeled
data is a n ×m array with the clusters-labels going from 1 to nl, where each pixel
in the graphic belongs to one of the labels or not. Pixels not belonging to a cluster
are marked with a 0. To calculate the distribution of cluster sizes, the pixelated
areas have to be converted to the number of agents in this area. This cannot be
done exactly, but to estimate it, the hexagonal structure of the ordered clusters can
be utilized. The area of the cluster consisting of pixels with side length ∆x can be
converted to the agent number by the equation

Nc ≈ ⌈Np
(∆x)2

π(l/2)2
η⌋, (6.12)

where ⌈x⌋ denotes the rounding to the nearest integer number, Nc the approximate
number of agents in the cluster, Np the number of pixels in the cluster with side
length ∆x, l the diameter of the disc shape agents, and η ≈ 0.9069 the packing
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Figure 6.54: Illustration of the clustering process described in Section 4.8. (A)
Example of the hexagonal order field Ψ6(r). Yellow areas mark a high hexagonal
order. (B) The hexagonal order field is filtered for areas with a packing fraction
ϕ(r) > 0.4. (C) The field Ψ6(r) is filtered for areas of high order with ϵ ≥ 0.7.
Yellow areas have the value 1 and blue areas 0. (D) Colouring of the clusters using
the Hoshen-Koppelmann algorithm (Section 4.8).

density of densest circular packing. The resolution of Figure 6.54 is ∆x = 0.2 m,
which is used throughout this section. Figure 6.55 A-D shows the distribution of
cluster sizes for different models (panel A&B the SCSM with a = 0 and C&D the
CSM with σ = 0) and different thresholds ϵ for the clusters (see equation (4.22)).
The other parameters are equal and defined in Table 6.1. The values of σ in the
stochastic model are chosen to be the same as in the simulations of Section 3 with
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Figure 6.55: Log-plot of the cluster size distribution defined by the hexagonal
order of the system Ψ6 > ϵ specified in the legend. The black lines show the fit of
a log-normal distribution to the log of the data with the fit parameter for µ and σl
shown in the legend. The relative deviation ∆P (Nc) is shown in the legend. Panels
(A) and( B) are the SCSM with nor repulsion, and σ = 0.7 in A and σ = 3 in panel
B. Panels (C) and( D) show the CSM with a = 2.5 and d = 0.1 m in panel C and
a = 5 and d = 0.05 m in panel D.

σ = 0.7 and a case with higher hexagonal order (σ = 3). For the deterministic case
similarly the parameters used are the ones to simulate the experiments in Section 5.1
with a = 2.5 and d = 0.1 m. The second case is chosen to have a higher hexagonal
order and a low clogging probability with a = 5 and d = 0.05 m (see Section 6.1).
The threshold ϵ in each case of Figure 6.55 A-D influences the distribution’s tail.
In the log-plot, the distributions exponential tail is visible, with the base depending
on the threshold ϵ for the cluster. This is especially visible for the smallest value
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of ϵ tested respectively. Though the fraction of smaller clusters is less affected by
the threshold (see also Appendix A.8 Figure S28). The black lines show a fit to the
data of a log-normal distribution

p(x) =
1

xσl
√
2π

exp

(
−(ln(x)− µ)2

2σ2
l

)
, (6.13)

with µ the expectation value of the variable ln(x) and σl its standard deviation.
The log-normal distribution describes natural growth processes. These processes are
often driven by, e.g., particles that accumulate and cause small percentage changes
in the growth, which are additive on a log scale. The lines are fitted by minimizing
the mean square error mse = 1/N

∑
i(yi − ŷi), where yi is the measures data point

and ŷi is the fitted value. In this case, the log value y = log(P (Nc)) is used to fit the
data since most of the data points are in the tail of the distribution. The relative
error of the fits is given in the legend of the panels ∆P (Nc) = 1/N

∑
i |Pi(Nc) −

P̂i(Nc)|/Pi(Nc), where P̂i(Nc) is the fitted value. The relative error in both models
is in the range of 21 %-50%. Considering the inhomogeneity of the system, its
finite size, and the number of systems tested, the log-normal distribution fits the
data well. The legends also show the mean value of the measured cluster sizes
E(Nc). The value of E(Nc) is rather small in all system between 6 < E(Nc) < 17

depending on the model parameters and ϵ. Looking at the example in Figure 6.54
D, it seems like in the case of σ = 3 and ϵ = 0.7 larger clusters are much more
abundant. It has to be considered that the system is of finite size, and smaller
clusters have many more opportunities to form in the flowing system than large
clusters that take up large portions of the space. Comparing the shapes of the
distributions between the different parameters of the model, it is noticeable that
they are similar depending on ϵ. It could be that the distributions of the models
with different parameters are equivalent for a certain pair of values for ϵ. To test this
for both models, the data from the simulation with σ = 0.7 and (a, d) = (2.5, 0.1m)

is clustered with an ϵ = 0.7 and the data from the simulations with σ = 3 and
(a, d) = (5, 0.05 m) are fitted by varying the value of ϵ and minimizing the distance
1/N ×

∑
i(log(Pi0(Nc)) − log(Pi1(Nc)))

2, where the numbers 0 and 1 refer to the
parameter sets of the simulation. The result is shown in Figure 6.56 A for the
stochastic model and B for the deterministic model. For the stochastic model, the
difference in the tail is quite large, but for smaller clusters Nc < 100, they fit
close together. It should be considered that there is few data in the tail, and the
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Figure 6.56: Comparison of the cluster size distribution P (Nc) of the two models
with different parameters (see legend), where the threshold ϵ is varied to minimize
the distance between the distribution. Black lines show the individual fit of the log-
normal distribution. Panel (A) shows the SCSM, and panel (B) the deterministic
model.

difference could be because of the small count. The relative difference between the
two simulated distributions is ∆P (Nc) = 0.37. Because of the difference in the tail,
the parameters µ and σj for the fit are not close. In panel B, the two distributions are
very close throughout the whole scale of Nc, with the fitting parameters being closer
to each other. The relative distance ∆P (Nc) = 0.29 is smaller than the stochastic
model. In general, this shows that the hexagonal structure of the systems with
different parameters are similar depending on the threshold ϵ for the order criteria.
Analogously it can be analyzed if between the two models the structure is similar
when varying ϵ. Figure 6.57 shows analogous to Figure 6.56 a comparison between
the stochastic model and the deterministic model with random initial conditions.
Panel A compares the stochastic model with σ = 0.7 to the deterministic model with
a = 2.5 and d = 0.1 m, while panel B compares the stochastic model with σ = 3 to
the deterministic model with a = 5 and d = 0.05 m. The pairs are chosen because
they are closer together in their hexagonal order. The mse of the logarithmic value
of P (Nc) between the models is again minimized, and the log-normal distribution
is fitted to the data. In both cases, the distribution’s shape difference is visible. In
the deterministic model, the slope of the distribution is steeper in the beginning and
exhibits a longer tail to larger clusters than the stochastic model. Side by side, the
shape of the respective models with different variables is again comparable. The
relative difference between the simulation data in panel A is ∆P (Nc) = 0.78 and
in panel B ∆P (Nc) = 0.52. In both instances, the relative difference is larger than
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Figure 6.57: Comparing the deterministic CSM to the stochastic SCSM analogous
to Figure 6.56. Panel (A) shows the comparison of the CSM with a = 2.5 and
d = 0.1 m with the SCSM with σ = 0.7. Panel (B) shows the comparison between
the SCSM with σ = 3 and the CSM with a = 5 and d = 0.05m. The values of ϵ are
shown in the legend.

in comparing the model parameters in Figure 6.56. In conclusion, the presented
method is useful for analyzing the clustering of continuous and discrete variables in
trajectory data. In this case, the clustering of hexagonal order is analyzed in the
system but could also be utilized for other measures in the system, e.g., density or
speed. The threshold ϵ and the distributions of the cluster sizes make it possible
to compare the global order in the system and the finer structure of the ordered
clusters in the system.

6.5 Order in the social force model

In this section, the social force model (SFM) (see Section 2.1) is analyzed analogously
to the CSM in the preceding sections of this chapter. Previous work discusses
the effect ordering in the SFM has on the evacuation dynamics [39]. Due to the
symmetric nature of the body and social forces in the model, it is expected that
there is a high hexagonal order in the system when using mono-dispersed circular
agents. The system is analyzed for a single parameter set with the specific values
for the parameters of the SFM being equal to the parameters used in Helbing et al.
[23], which were also used in Cheng et al., [39]. The values are summarized in Table
6.2. The simulations run for tmax = 3200 s. The system run is shorter than for
the CSM because of the higher computational demand, but the SFM relaxes rather
quickly. This is evident in Figure 6.58, which depicts the Voronoi-scatter plot of
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the system with the hexagonal order parameter analogous to Figure 6.41 but in this
case, the Coordination number Nn and the hexagonal order Ψ6 > 0.7 is depicted in
separate panels.

Parameter Variable Value
Agent mass m 89 kg
Desired velocity v0 1.34 m/s
Agent size (spring like repulsion) l 0.34 m
social force strength Ai 2× 103 N
social force length Bi 0.08 m
Acceleration time τ 0.5 m/s2

Simulation time steps ∆t 0.001 s
Agent stiffness (Hooks law) K 1.2× 105 kg/s2

Agent friction κ 2.4× 105 kg/(m s)
Population N 8000
Floor field resolution ∆h 0.01 m
Wall avoidance distance dw 0.25 m
Corridor width b 55.0 m
Exit width w 0.75 m
Initial density ρi 2.5 m−2

Table 6.2: Summary of model parameters and their values.

The plot shows how the system quickly transforms from the initially disordered
state into an almost entirely crystallized state in the bulk (r < 15 m). The system
initially consists of a polycrystal structure separated by grain boundaries, which
can be seen as a line of defects (t = 20 s). At later times (t = 100 s), there are
only a few 5-7 fold defects in the system, and it is highly ordered into hexagons
even very close to the bottleneck (see also video "SFM.mp4" [226]). For about
r < 0.5 m, the hexagonal order decreases near the bottleneck. The time series of
the packing fraction ϕ and the hexagonal order P (Ψ6 > 0.7) depicted in Figure
6.59 A and B, respectively, show that the system quickly relaxes into the stationary
state in under 200 s. The social force in the case of a large number of agents
is not sufficient to prevent the agents from overlapping. The agents in the bulk
(r < 16 m) are compressed, which in turn increases their packing fraction over the
limit of ϕmax ≈ 0.9. Further from the bottleneck near the boundaries of the system
r > 16 m, the packing fraction and, in turn, the hexagonal order of the system
decreases. Close to the bottleneck 0 m ≤ r < 3.5 m, the agents are as packed, as at
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the intermediate distance 3.5m ≤ r ≤ 10m but the hexagonal order is significantly
higher, close to P (Ψ6 > 0.7) ≈ 1. The relation of the packing fraction and the

Figure 6.58: Snapshots of a simulation run at t ∈ {20, 40, 100} s. (Row A)
shows the hexagonal order, agents with Ψ6 > 0.7 are marked in yellow. (Row B)
Represents the coordination number Nn. Agents with Nn = 6 are grey, while agents
with Nn = 5 are red and Nn = 7 are green.

hexagonal order with respect to the distance from the bottleneck r are depicted in
Figure 6.60. Similar to the CSM, the hexagonal order and packing fraction increase
with distance from the bottleneck to a maximum at around r ≈ 2.5 m for ϕ and
r ≈ 7 m for P (Ψ6 > 0.7). Near the system’s boundary at r > 14 m, the downward
slope of the packing fraction increases together with hexagonal order. This is where
the social force is sufficient to separate the agents from overlapping, and the packing
fraction moves below ϕmax. This decreases the hexagonal order, as agents in a lower
density have more freedom to move. The shape factor distribution in Figure 6.61
close to the bottleneck (0m < r < 7)m) and far away (7m < r < 14)m) also shows



196 Microscopic order in simulations of pedestrian bottleneck

that the system has a very narrow and high peak near the hexagonal shape factor
ζ ≈ 1.101 with a majority of the agents being included, especially further away
from the bottleneck. A small peak near ζ = 1.19 is also observed, which contains
the system’s 7-5 fold defects.

Figure 6.59: Time series of the packing fraction ϕ (A) and the hexagonal order
P (Ψ6 > 0.7) at different distance intervals from the bottleneck r.

Figure 6.60: The packing fraction ϕ (A) and the hexagonal order P (Ψ6 > 0.7)
(B) in respect to the distance r from the bottleneck.

In summary, the SFM exhibits an almost crystalline order in the bottleneck scenario
in the whole system, except very close to the bottleneck (r < 0.5m). The hexagonal
order P (Ψ6 > 0.7) ≈ 1 and the shape factor has a narrow and high peak near the
hexagonal value, including the majority of agents. Only a few defects are observed
in the system after a short time. The ordering stems from the hook body force and
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Figure 6.61: Shape factor distribution of the SFM for t > 500 s close to the
bottleneck (A) and far from the bottleneck (B).

the social force, which are isotropic in space. In the following section, an anisotropic
social force is introduced to the model to analyze its effect on the structure.

6.5.1 Anisotropic interactions influence on the structure

In its most basic form, the social force acting on an agent is isotropic in space,
meaning that the strength of the social force only depends on the distance between
two agents. In some variations, the social force can also depend on the position
in space in relation to the movement direction. In this section, the system at the
bottleneck is analyzed with an anisotropic social force, where the strength of the
force exerted by agent j at position xj acting on agent i at position xi is dependent
on the angle between the vector êi,j = (xi−xj)/|xi−xj| and the movement direction
êi = vi/|vi|. The relation is implemented using the factor ω in equation (2.6) with
f soci = ω f soci,0 as follows:

ω =

{
1 if êi,j · êi > k

0 if otherwise,
(6.14)

Population N 3000
Bottleneck width w 1.27 m

Table 6.3: Model parameters that differ from the larger SFM simulation summa-
rized in Table 6.2.
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The factor k ∈ [−1, 1] limits the angle between the movement direction and the
position of neighboring agents for the social force to be felt. For k = −1, the social
force is symmetric, depending only on the distance between agents. For k = 1, no
social force is felt from any direction, and the agents only interact via the body force.
The previous section shows that the symmetrical case with k = −1 leads to almost
crystalline order in the bulk. Since the body force is also symmetric, it is expected
that for k = 1, the system should be ordered hexagonally and packed densely. To
investigate the effect of k on the system, simulations are run with N = 3000 agents
and N = 5 runs per value of k, which is varied between −1 < k < 1. The simulation
time is set to tmax = 1500s. The bottleneck is widened to w = 1.27m so that clogging
is avoided in the case of k > 0. Figure 6.62 shows a snapshot of the simulations at
t = 1200 s for different values of k specified in the title of the panels. The smaller
system with the widened exit has a high degree of hexagonal order but exhibits
more defects compared to the previous case, with grain boundaries appearing in
the bulk of the system. The effect of k is surprising. For k = −1, the social force
is symmetric. Increasing k cancels the social force from neighboring agents behind
agent i regarding its moving direction. From the panels, it is evident that this effect
is minor. Even at k = −0.2, the system does not change significantly in its structure.

This changes near k = 0, where the systems’ behavior differs drastically. Near the
exit, a tightly packed crystalline core is surrounded by a somewhat disordered and
less dense ring for r > 7.5 m and k = 0.05. At k = 0 (where the space is separated
equally), the situation is similar where the crystalline core is around r < 5m, and the
density in the outer region and the hexagonal order decrease further. For k = −0.05,
the system starts to compress, and a crystalline core forms for r < 7.5m with a high
density and a sharp transition to a disordered region. For k = 0.15, the social force is
already insufficient to keep the agents apart close to the bottleneck, and the system
compresses into a high-density crystalline bulk near the exit. The dynamics around
k = 0 are illustrated in the video "anisotropicSFM.mp4" [226]. The video shows the
formation of the crystalline cores in the first 500 s of the simulation. After that, the
two phases in the systems are relatively stable. Inside the cores, defects move from
the bottleneck outwards. Increasing k > 15 does not alter the dynamics further in
a significant way. The mean of the packing fraction and hexagonal order in respect
to k for all systems for t > 500 s is shown in Figure 6.63 in the region |x| < 3m and
1 m < r < 10 m. The transition around k = 0 is evident in the increase in packing
fraction. Interestingly, the packing fraction decreases slightly after the transition,
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even though the social force acting on an agent is stronger for smaller k.

The hexagonal order increases with increasing asymmetry in the system from k = −1

to k = −0.2. At the transition, the hexagonal order decreases substantially but
increases continuously after passing the critical k = 0 point.

In the snapshots of Figure 6.62, one can see that the order and packing fraction
depend on the distance from the bottleneck. Figure 6.64 shows the packing fraction
ϕ (panel A) and the hexagonal order P (Ψ6 > 0.7) (panel B) with respect to the
distance to the bottleneck r.

Because of the superposition of the forces and the increase in pressure with the
number of agents behind an agent, the hexagonal order and packing fraction de-
crease with further distances r to the bottleneck (apart from the region close to the
bottleneck r < 3 m). The curves differ in shape and slope depending on the value
of k. For k < 0, the slope of the packing fraction dϕ(r)

dr
decreases monotonically for

r > 3 m and becomes roughly constant for r > 6 m. At the transition point k = 0,
the shape of the curve changes, where the slope does not decrease monotonically.
The steepest slope between 5 m < r < 7 m and flattens for larger distances where
the packing fraction decreases with a shallow linear slope. For k = 0.05, the packing
fraction behaves similarly to k = 0 but generally has a higher packing fraction. At
k = 1, the agents become packed, and there is a slight shallow linear decrease until
the system’s edge.

The hexagonal order shows interesting behavior. For k = −1, the symmetrical
case where the social force is independent of the special relationship between the
agents has two maxima. It increases with distance to the bottleneck close to the
exit r < 3 m and has a valley at around r ≈ 5.5 m, which is not observed in the
previous simulation with N = 8000 agents and the bottleneck width of 0.75m. From
this simulation, it cannot be pointed out which of the two changes is responsible
for this behavior. The smaller agent number decreases the pressure in the bulk of
the system, but it would be expected to have a monotonous effect on the hexagonal
order. An increase in the door width should affect the system structure and could
lead to non-monotonous behavior due to speed bursts going through the system. In
the extreme case when the bottleneck is very wide, there is no high-density shock
that travels through the system, and the hexagonal order would be lowered. For
k < 0, the valley in the hexagonal order increases with increasing k, while overall, the
hexagonal order close to the bottleneck increases. At k = 0, the valley disappears,
and there is a peak in the hexagonal order at r ≈ 4 m and decreases from there
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Figure 6.62: Snapshot of the simulation at t = 1000 s with different values for the
cut-off-angle k specified in the title. Yellow agents have a hexagonal order Ψ6 > 0.7.
Red and green colours show the coordination number Nn ̸= 6 analogous to Figure
6.1.
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Figure 6.63: The mean value of the packing fraction ϕ (A) and the hexagonal
order P (Ψ6 > 0.7) (B) in respect to k. The values are measure in the area |x| < 3m
and (0.5 m < r < 10) m.

on to a minimal value of around P (Ψ6 > 0.7) ≈ 0.4. For k > 0, the system has a
plateau with a high hexagonal order close to P (Ψ6 > 0.7) = 1 and a point where
the hexagonal order sharply decreases. At k = 0.05, the point is around r ≈ 8 m,
where the system decreases but still has a rather high packing fraction. At k = 1,
the hexagonal order decreases with the packing fraction at the edge of the bulk.

The shape factor distribution P (ζ) in Figure 6.65 A and B is presented for selected
values of k close to the bottleneck 0 m < r < 6 m and far away from the bottleneck
8.5 m < r < 16 m for |x| < 3 m. Close to the bottleneck, the system has a single
peak near the hexagonal shape value for all k. In contrast, far from the bottleneck,
depending on the value of k, there is either a single peak distribution or a bimodal
distribution similar to the CSM for k ∈ {−0.05, 0., 0.05}. The panels C-E show the
shape factor distribution at different distances r from the bottleneck with |x| < 3m as
a heat map. At k = −0.05, the valley is visible, where the peak near the hexagonal
order disappears between 9 m < r < 12 m. For r > 8 m, the distribution turns
bimodal continuously. At k = 0, The distribution also shifts continuously away
from the crystalline phase with a single peak to the wider bimodal distribution at
r ≈ 6 m. At k = 0.05, The shift from the single narrow peak to the wide bimodal
distribution is sharp at r = 10 m in a continuous transition.

One aspect of the SFM that needs to be considered is the situation where the
distance to the neighbors ⟨d⟩ =

∑
⟨i,j⟩ |xi − xj|/Nn − l < 0, where ⟨i, j⟩ denotes

agents j that are neighbors of agent i meaning that there is an overlap with at
least one of the neighboring agents. In this case, the body force (2.3) becomes
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Figure 6.64: (A) packing fraction ϕ in respect to the radius r from the bottleneck
for different cut off angles k. (B) Analogous to A the hexagonal order P (Ψ6 > 0.7)
in respect to the radius.

relevant. When the body force is the dominant force in the system, it will form
a tightly packed crystalline bulk (Figure 6.62). Hypothetically the interface near
the transition point between the amorphous state and the crystalline state could
be caused by the increased relevance of the body force closer to the bottleneck
due to increased pressure in the system. To analyze this, the fraction of neighbors
P (⟨d⟩ < 0) are measured, which have a negative mean distance to their neighbors,
highlighting the situation where the social force is insufficient to ensure the exclusion
principle. The results are shown in Figure 6.66, where the overlapping fraction
P (⟨d⟩ < 0) is compared to the hexagonal order P (Ψ6 > 0.7). The comparison shows
that the correlation between the hexagonal order and the overlapping fraction is
limited in all cases. This is not surprising when k = −1 since, in this case, the
social force is also symmetrical in space but interestingly also in the cases where
k is close to 0 or k = 1 the fraction P (⟨d⟩ < 0) decreases before the hexagonal
order does in respect to the distance to the bottleneck. Looking at the fraction
P (⟨d⟩ < 0.015 m), there is a correlation with hexagonal order in all cases. When
k < 0, The first peak of the hexagonal order correlates with the fraction of agents
with a mean neighbor distance ⟨d⟩ < 0.015, and for k ≥ 0, the decrease in order
correlates with this measure. So even if the overlap does not dominate the system,
a small enough distance between agents with their neighbors can be associated with
high hexagonal order. In this state, the system could be partially overlapping or
non-overlapping. Due to the close distance, any larger deviations from the hexagonal
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Figure 6.65: Shape factor distribution P (ζ) for selected values of k. Panel (A)
and (B) show the distribution close to the bottleneck (A) and far away (B). Panels
(C)-(E) show the heat map of the shape factor distribution P (ζ) with the distance
of the bottleneck r on the y−axis and the value of ζ on the x−axis close to the
phase transition at k = 0 (k values are specified in the title of the panel).

order would lead to overlap, forcing the agent closer to the equidistant position due
to the body force. This points to the idea that at the interface close to the transition,
the system changes from the amorphous to the crystalline state when body forces
become relevant.
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Figure 6.66: The fraction of agents P (⟨d⟩ < d0) that have a mean neighbor distance
⟨d⟩ that is smaller than d0 ∈ {0, 0.015} m and the hexagonal order P (Ψ6 < 0.7) in
respect to the distance from the bottleneck r. The panels show systems with different
cut-off angles k.



Chapter 7

Summary, conclusion and outlook

The study of pedestrian dynamics is an important field when cities seek to pedes-
trianize car-centric infrastructure and increase the focus on mass transportation.
Moreover, large-scale events like concerts, festivals, and protests are frequent and
need special consideration, especially in emergency evacuations and overcrowding.
A better understanding of the dynamics and interfaces between the interdisciplinary
approaches and the microscopic interactions could become an important factor in
improving safety and efficiency.
Bottlenecks are a critical feature since they are unavoidable in infrastructure plan-
ning. They have a relatively simple geometry but exhibit rich dynamics with self-
organizing phenomena like clogging through arch formation in high-density situa-
tions. Emergent phenomena and the spatial structure of pedestrians in experiments
and simulations are the central topics investigated in this work, introducing solid-
state physics and granular materials methods to explore a novel microscopic view of
crowds moving through a bottleneck.
The recently discovered phenomenon of decreasing density and lane formation [13,
32] in bottleneck scenarios with narrow corridors leading to the exit is the first focal
point in this work that is also published [33, 156]. The simple SCSM model can
reproduce these phenomena, first suspected to be an effect of social interactions,
surprisingly well. The model uses simple collision avoidance and volume exclusion
as the only interaction between agents and a single parameter to model different
motivation states. The individual runs of the simulations are conducted with static
and homogeneous parameters. The only variables are the corridor width b and the
slope factor T , which models motivation’s effects. The model reproduces the den-
sity increase in front of the bottleneck, the occurrence of lane formation in narrow
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corridors, and the time to target Tw with respect to the distance r. The model’s sim-
plicity demonstrates that the observed effect of lane formation and density increase
does not need to consider social effects as an explanation. However, other observa-
tions in the data can not be explained with the simple model, like the occurrence
of high density for low motivation (see Figure 3.6 A, b = 5.6 m and ρ ≈ 7.8 m−2).
In general, this approach highlights the challenge of distinguishing effects stemming
from social psychology in pedestrian experiments from behavior emerging through
self-organization caused by the microscopic interactions of the participants, even in
simple scenarios like the bottleneck. This work is a first attempt at distinguishing
social and physical effects that lead to emergent behavior. For the future, a more
general framework is needed to solve this problem effectively, though there is no
simple solution for this at the moment. The best available approach is to use a
model with simple interactions and simulate scenarios where social psychological
effects are suspected, using homogenous interaction and minimal variables.

The second focal point of this work is tightly related to the general issue of distin-
guishing the origin of emergent effects in pedestrian dynamics and obtaining a better
understanding of microscopic interactions between pedestrians and the influence of
the spatial structure in bottleneck scenarios. The main idea is to introduce methods
from the related topic of granular materials and glasses discussed in Chapter 4 to
analyze the structure in pedestrian crowds and provide a novel perspective into the
dynamics of pedestrian experiments and agent-based simulations. This approach
introduces measures of the microscopic structure to the field of pedestrian dynam-
ics, making it possible to compare results from granular matter experiments with
pedestrian systems.

The measures detect patterns in the system’s spatial structure that lead to a larger
overall order. Most notably, the hexagonal bond orientation factor Ψ6 (4.17), the
coordination number Nn and the shape factor ζ (4.20) show surprising results when
analyzed in the experiments with high and low motivation [1] (Chapter 5).

Even though the density and overall dynamics in the experiments differ significantly
between low and high motivation conditions, with the observation of a collective
swaying motion in the high motivation case versus a "laminar flow" in the low mo-
tivation case, the structure measures indicate almost no difference in the hexagonal
order Ψ6 of the system, the distribution of the shape factor P (ζ) or the distribution
of the coordination number P (Nn). The measures are consistent with a random dis-
tribution of particles with volume exclusion or a Leonard-Jones liquid. Simulations
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of the experiment using the CSM reveal a different structure in the system compared
to the empirical data. The hexagonal order factor has a higher value closer to one
than compared to the experiment, and the shape factor distribution has distinct
peaks near the hexagonal value of the shape factor and the pentagonal value. Be-
tween high and low motivation, modeled by the slope factor T and the interactions
distance d, the hexagonal structure increases with increasing motivation, detected
by an increase in Ψ6 and an increasing peak near the hexagonal value of P (ζ). The
difference between the CSM and the experiment can not be explained by the poly-
dispersity of the system’s agent sizes, even in a system with a wide range of agent
radii; the system is closer to a hexagonal structure. One consideration is that the
trajectories of the empirical system are measured with an error in the exact position
due to the software’s limitation and the three-dimensional body’s movement. Ap-
proximating this error as Gaußian white noise added to the trajectories of the CSM
reveals that realistically small amount (∆|x| ≈ 0.07 m) of deviation added to the
simulated trajectories reproduces the same lack of hexagonal order and distribution
of the shape factor P (ζ) as in the experiments. Similarly, adding noise to trajecto-
ries simulated by the SFM (∆|x| ≈ 0.09m) shows a similar result. This hints at the
possibility that any set of trajectories simulated with an adequate model for pedes-
trian dynamics can be mapped to the experimental distribution with a sufficient
addition of noise. The discovery illustrates the challenge in analyzing the structure
of empirical systems because of the difficulty in gaining precise trajectories of the
center of gravity moving through space. The injective nature of these errors in the
trajectory makes it impossible to estimate a more accurate trajectory from the given
data. Though improvements in the trajectory measurement (using, for example, 3d
tracking of the body) could help estimate a more precise measure of the structure
since when the error is small enough in the measurement, the distribution of the
shape factor and the hexagonal order in the system should be closer to the actual
distribution, which in turn can be compared to existing models.

The results from the simulations of the SCSM [33, 156], CSM [18], and SFM [16] in
small systems with the number of agents being between N = 55 and N = 190 show
interesting behavior in their structure and density. To further investigate this, the
aim of Chapter 6 is to analyze the influence of the microscopic interactions on the
overall structure, density, and dynamics of the models. To accomplish this, simu-
lations of large systems with the number of agents being in-between N = 1500 to
N = 8000 are needed, which run for a long time between t = 1500 s to t = 10000 s.
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To accomplish this, efficient implementations of the models using JuPedSim [141]
are run and analyzed on the JURECA cluster provided by the Jülich Super Comput-
ing Center (JSC) using several custom-developed scripts to efficiently calculate the
structure measures with the help of the data science stack (NumPy, scipy, pandas,
etc.) in python. The important features of the CSM are collision avoidance, which
ensures volume exclusion in the continuous model, and the interactions between
agents with other agents influencing the direction, which reduces the probability of
gridlocking the system. The structure analysis in the bottleneck scenario has multi-
ple challenges compared to the granular fluid. The apparent difference is that shaken
granular materials are governed by Newtonian physics with symmetrical interactions
(especially when the granular consists of symmetric discs or spherical pellets). The
pedestrian models consist of active agents that Newtonian dynamics can govern
(SFM, but depending on the implementation, the third law can be violated) but do
not in velocity-based models, like the CSM and SCSM. Most important is the net
flow in the bottleneck system, which is usually not present in the structure analysis
of granular fluids. The system has to be separated in space into different sections
where the dynamics, density, and structure measures differ.

Close to the bottleneck, the dynamics and structure are less determined by the
interaction in the model and more by the physics of continuity in the flow, where
the speed of the agents increases steeply with decreasing distance to the bottleneck,
producing a more significant difference in speed between neighboring agents. In
comparison, regions far from the bottleneck have an isotropic density in close vicinity
to one agent. One could assume that in this region, the structure is mainly dictated
by the density of the system and the directional interactions.

Surprisingly in the CSM, the hexagonal order measure decreases with further dis-
tance to the bottleneck in the isotropic density regime. Further exploration of the
parameters governing the directional interaction in the CSM (namely the interac-
tion strength a and the interaction distance d in (6.1)) reveal their influence on the
general structure. Taking the experimentally fitted value from Chapter 5 as a pivot
and varying the parameters a and d orthogonally shows interesting effects on the
structure in the system. Most notably, there is a boundary for the value of a and d
at which the system develops a crystalline ring with a high hexagonal order at the
boundary that expands in size with increasing a and d. The reason for this is that
under certain circumstances, the interactions on the direction vector êi can nullify
the velocity vector Vi = 0, which reduces the density of the system and produces a
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strong coupling between neighboring agents. In the bulk, the order increases with
a and decreases with d.

The result illustrates that short-ranged strong interactions structure the system
closer into a hexagonal order, while a long-range interaction causes the system to be
discorded with prevalent partial jamming in the bulk. The discovery of the strong
influence on the dynamics is further studied when looking at the a-d plane, varying
the parameters in a rectangle on the plane for 36 different pairs. Probing the plane
is computationally challenging, needing a high amount of computational resources
since large-scale simulations of the continuous model are needed for each point on the
plane, leading to the output of large data sets. The results illustrate the dynamics
and structural heterogeneity on the plane. For example, the shape of the bulk can
differ from a narrowing cone towards the bottleneck to a half-circle shape with the
bottleneck being its center, depending on both the value of a and d. The measure
of hexagonal order P (Ψ6 > 0.7) and clogging fraction P (Tc < 1000 s) exhibit a com-
plex topography with multiple valleys and peaks in different regions. The measures
are categorized into classes to illustrate the different phases the system can be in
from which a hypothetical phase diagram is built. However, it is unclear from the
probed space and the number of realizations of each system if and where possible
phase transitions can occur. For example, in some regions, the system clogs for all
realizations, which could point to a possible clogged phase, where the flow arrests for
any initial agent distribution. The diagram illustrates the complexity of the space
realized by the directional interactions in the system. Some of the issues discussed
in the CSM that lead to unrealistic behavior, like clogging and partial jamming, can
be solved by introducing noise in the trajectory, which leads to the introduction of
the SCSM. Usually, noise in the trajectory does not majorly influence macroscopic
quantities like the density of the system. It helps to avoid undesirable states the
system cannot escape otherwise because of its deterministic evolution. The SCSM
simulations with a non-zero value for the exponential repulsion (a > 0 and d > 0m)
illustrate how the noise significantly influences the system’s structure. The likeli-
hood of clogs in the system is reduced, and the packing fraction is only slightly
influenced. However, the system’s structure changes significantly far from the bot-
tleneck. In regions with higher density, the system increases its hexagonal order,
while in low-density regions (the crystalline ring), the hexagonal order reduces. The
noise combined with the speed function self-corrects the system to an equidistant
position from its neighbors, favoring hexagonal order. Especially when the density
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slowly increases (i.e., in the bottleneck with a large value of the noise term σ causing
the system to propagate to the exit slowly), the system will reach a high hexagonal
order far from the bottleneck. This is evident in the SCSM with a = 0 and σ > 0,
where only the noise deviates the direction of the agents from their desired path
defined by the floor field. Increasing noise reduces the fraction of clogged systems
from 1 to 0 in a sharp transition, separating the system into a clogged phase and
a free-flowing phase where the hexagonal order far from the bottleneck increases
with increasing noise. Close to the bottleneck, though, the dynamics differ. The
noise does not influence the order of the system, illustrating the change in dynamics
of the bottleneck system with distance to the exit. This relation is visible in the
order density plot, where two sequences appear, with different hexagonal order for
the same packing fraction depending on the distance from the bottleneck (and with
this, the difference in the flow dynamics). In contrast to the CSM, the SCSM does
not show the same behavior for the hexagonal order with distance to the bottleneck.
While the CSM has a maximum in the fraction P (Ψ6 > 0.7) near the bottleneck, in
the SCSM, the hexagonal fraction increases from the bottleneck and saturates, only
decreasing near the edge. This shows the influence of the directional interactions in
a model on the general structure of the system, which should be considered when
developing a model. It becomes apparent when comparing the CSM and SCSM to
the SFM.

The SFM in its original form [16] with mono-disperse agents represented by discs
exhibits very high hexagonal order in the bottleneck scenario, being crystalline in
the bulk of the system with only a few defects. Similar to the CSM, exponential
interactions determine the dynamics of the system. However, in this case, they
represent isotropic forces, which move the particles into equidistant positions to
equalize the forces acting on them. Breaking the isotropy in the SFM by only
letting the social force of agents in a particular "viewing angle" reveal an interesting
effect.

The system undergoes a sharp transition when the viewing angle reaches 180◦. Near
this transition, the hexagonal order in the system decreases far from the bottleneck
while the packing fraction increases with a narrower viewing angle. Further decreas-
ing the viewing angle turns the system into a closely packed crystalline bulk. In this
regime, the social force is insufficient to separate the agents leading to the isotropic
body force ensuring the volume exclusion.

Near the transition point, the system separates into a crystalline core close to the
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bottleneck and a disordered region far from the bottleneck with a high number of
defects and low hexagonal order. The important factor is at which point the social
force is sufficient to separate the agents and at which packing fraction do contact
forces become the leading interaction. Near the bottleneck, where the pressure from
a large number of surrounding agents increases, the body force is the relevant force,
which crystallizes the system. A narrow interface separates the transition to the
disordered region.

The isotropy in the original SFM is crucial for the crystalline order in the system.
Far from the bottleneck near the transition point, the distribution of the shape factor
in the disordered region becomes more comparable with the CSM and SCSM. This
observation could be a starting point for further work to compare different model
types and kinds of interaction and categorize these into different structure classes.

In shaken granular fluids, the packing fraction is the main indicator for the hexag-
onal order in the system. Its order increases monotonically with increasing packing
fraction, and the shape factor distribution shifts closer to the hexagonal value turn-
ing from a bimodal to a monomodal distribution with an exponential tail [186, 188].
In the pedestrian system, it is challenging to probe the system for the influence
of the packing fraction since it can not be influenced as an independent variable
without influencing other variables in the system. Because of the narrow bottle-
neck, it is set up to evolve into a certain packing fraction in the stationary state,
which other parameters can only influence in the system. In a force-based system
like the SFM with isotropic interactions, the packing fraction is tightly related to
the hexagonal order since the forces are related to the neighbor distance, and a
stronger force reduces the ability of an agent to move away from its equidistant
position. In the CSM, a high packing fraction does not structure the agents in that
way. Here, a high packing fraction hinders movement since the speed function V (s)

is anti-proportional dependent on the distance to the interacting neighbor. If the
interaction terms are insufficient to structure the agents, they get quenched into a
disordered state. Especially a short reaching (small d) but strong (large a) interac-
tion causes the system to exhibit high hexagonal order. In this case, a lower packing
fraction can increase order since the agents have more freedom to move and build
a crystalline structure through the interactions. This is observed in the crystalline
ring for sufficiently high values of a and d in the exponential repulsion. Besides that
special case, a low packing fraction in the CSM is connected to an increasing flow
towards the bottleneck, significantly influencing the structure. In the SCSM, the
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problem of quenching disorder is similar. With small noise in the desired direction,
the agents can not sufficiently probe the space before quenched into disorder. With
strong noise in the direction, the system slowly contracts into a dense configuration,
letting the agents probe their space sufficiently. This leads to order because of the
interaction with the speed function combined with a lower packing fraction since the
bias towards the exit becomes small compared to the noise. The different models
illustrate how the kind of interaction influences the structure with density.
For future research, it would be for one interesting to compare shaken granular mat-
ter with the system further. Preferable data from experiments in bottlenecks could
be used to compare its structure with the models. For pedestrian modeling, the
measures could be probed in other scenarios to analyze the difference in structure
under varying conditions. Different bottleneck sizes and geometries would be a next
step to compare the model behavior and search for universal behavior.
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Appendix

A.1 Supplement Section 3

Estimation of agent diameter

Figure S1: Circle packing left: Circles in hexagonal packing. The area inside
the grey hexagon is used to determine the packing density in (A.1). Right The
hexagonal packing density in respect to the radius r of a disc.

In 2d, the maximal packing fraction that can be achieved (by a hexagonal packing)
of identical disks with radius r = l/2 is η = π√

12
≈ 0.9069 (Figure S1 left). This
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provides an estimate for the upper bound of the density

ρmax =
η

r2π
. (A.1)

Figure S1 right illustrates equation (A.1). The maximal experimental density ρ is
slightly above 9 m−2 (see Figure 3.4). For the simulations a value of ra = 0.175 m
is chosen, which corresponds to a maximal density of about 9.4 m−2, as this yields
good results. The agent size chosen corresponds to a rather small shoulder width,
since e.g. [5] gives an approximate adult shoulder width of l = 0.46 m. However,
the circle diameter of 0.35 m could be seen as a contracted pedestrian.
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Figure S2: Mean density fields for all 500 runs from 10 to 30 s for T = 1.3 s for
b = 0.8 m to b = 3.1 m in 0.1 m steps.
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Figure S3: Mean density fields for all 500 runs from 10 to 30 s for T = 0.1 s for
b = 0.8 m to b = 3.1 m in 0.1 m steps.
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Figure S4: Interaction angle distribution for all 500 simulations from 10 s for
T = 1.3 s. The corridor width starts at b = 0.8 m and increases in 0.1 m steps to
b = 2.9 m.
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Figure S5: Interaction angle distribution for all 500 simulations from 10 s for
T = 0.1 s. The corridor width starts at b = 0.8 m and increases in 0.1 m steps to
b = 2.9 m.
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A.2 Supplemantery figures Section 5

Figure S6: (Left): Density time series for the experimental runs i for low motiva-
tion (top) and high motivation bottom. Right: Analogous to left for the orienta-
tional order Ψ6.
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Figure S7: (Left): Density time series for the experimental runs i for low motiva-
tion (top) and high motivation bottom. Right: Analogous to left for the orienta-
tional order Ψ6.

A.3 Supplemantery figures Section 5.1

Figure S8: Illustration of body sway in the experimental trajectories and a sim-
plified illustration of the difference in measuring the head position and the center
of gravity. The red dots show the mapping of the position measures by the head
position (black dots on the snapshot of the experiment). The blue star shows the
position of the center of gravity.
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Figure S9: Top: Comparison of the distribution of the mean-neighbor-distance
⟨dn⟩ between the simulations and the experiments for high motivation (m =
(0.15 s, 0.05 m)) and low motivation (m = (1 s, 0.1 m)). Bottom: Comparison
of the mean mean-neighbor-distance ⟨⟨dn⟩⟩ in respect to the agent radius ra in the
simulation with m = (1 s, 0.1 m), compared to the value of low motivation experi-
ment (dashed line) .
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Figure S10: Log-plot of the shape-factor distribution in Figure 5.9.
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Figure S11: Distribution of the shape factor ζ, neighbor density ρn and coordina-
tion number Nn for the CSM simulations (dots) and the experiments (crosses).
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Figure S12: Left: Example scatter-plot with Voronoi cells of randomly distributed
particles with volume exclusion. Right Distribution of the shape-factor P (ζ) of 500
systems with N = 90 particles distributed in a 10 × 10 m space with l = 0.4 m
(orange dots) and the experiments with low motivation (blue crosses).

A.4 Social force model simulations

Parameter Variable Value
Corridor width b 8 m
Desired velocity v0 1.0 m/s
Acceleration time τ 0.5 s
Agent size l 0.32 m
Interaction strength A 2000 N
Interaction range d 0.08 m
Population N 190
Elasticity K 1.2× 105 kg s−2

Friction κ 2.4× 105 kg (m s)−1

Floor field resolution ∆h 0.01 m
Wall avoidance distance dw 0.25 m
Time step in simulation ∆t 0.0005 s
Agent mass ma 80 kg

Table A.1: Summary of model parameters and their values
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Simulations of the experiment [1] with low motivation using the social force model
(SFM) [23] with monodisperse agents analogous to the simulations described in
section 5.1. The parameters of the model used in the simulation are summarized
in table A.1. The system was simulated 20 times with random initial conditions.
Analogous to section 5.3 noise is added onto the simulated trajectories. Figure S13
depicts the time series of the mean neighbor-density ⟨ρn⟩ and the orientational order
parameter ⟨Ψ6⟩. Similarly to the CSM simulations, the mean neighbor-density ⟨ρn⟩
fits closely to the experimental data but the ⟨Ψ6⟩ is much larger close to about
⟨Ψ6⟩ ≈ 0.8 for t ≥ 3 s which is a significant hexagonal order in the system and
significantly higher than in the CSM with ⟨Ψ6⟩ ≈ 0.5. Figure S15 A shows analogous
to Figure S11 the distributions of the measures for ζ, ρn and Nn. The SFM displays
a closed back hexagonal order. The shape factor is sharply peaked near the value
for the regular hexagon and the coordination number has a sharp peak at Nn = 6

with P (Nn) ≈ 0.7. The neighbor density is also sharply peaked around its mean
value. The system is hexagonally structured which can also be well illustrated in
the snapshot at t = 15 s in Figure S13. Adding noise to the system analogous to the
procedure described in section 5.3 has a similar effect compared to the CSM . The
mean and SFM of the different measures are shown in Figure S15 B, analogous to
Figure 5.18. The minimum of the mse for the different measures is around 0.09 ≤
σ ≤ 0.1 m. The noise has very minor effects on the mean value ⟨ρn⟩ and ⟨Nn⟩
but decrease the hexagonal-order significantly. The mean hexagonal order < Ψ6 >

intersects with the experimental value at σ ≈ 0.06 m but the value around σ =

0.1 m is still close to the experiments. In conclusion this shows that even a highly
ordered system cannot be detected properly with reasonable ammount of error in
the trajectory measurement considering the estimated ∆x ≈ 0.1 m in [1].
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Figure S13: Left: Time series of the SFM analogous to Figure 5.16 showing
the effect of noise on the mean neighbor density ⟨ρn⟩ and the orientational order
parameter ⟨Ψ6⟩. The error bars show where 95% of the data for every individual
are. Right: Snapshot of a simulation with the SFM at t = 15 s. Purple is a low
value of Ψ6, while yellow is a high value of Ψ6.
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Figure S14: Distribution of the shape factor ζ (A), neighbor density ρn (B) and
coordination number Nn (C) analogous to Figure S11.

Figure S15: Plot analogous to Figure 5.18. Top row: mean value of ⟨ρn⟩, ⟨Ψ6⟩ and
Nn in the time interval of 10 s < t < 20 s. Bottom row: the mse of the simulated
distributions and the experimental distributions in respect to the addes noise to the
trajectory for the measures as mentioned above.
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A.5 Supplementary figures and tables Section 6

Run tmax

1 5000
2 5000
3 3200
4 3250
5 1100
6 5000
7 5000
8 5000
9 5000
10 5000
11 5000
12 5000
13 4550
14 5000
15 4250
16 4000
17 3250
18 4450
19 1550
20 5000
21 400
22 5000
23 5000
24 5000
25 1900

Table A.2: Maximal time of the simulation until it either clogs or reaches the
maximal simulation time of t = 5000 s

A.6 Supplementary figures section 6.1

Figure S17 depicts the shape factor distribution P (ζ) at different distances in A
and continuous over the space in B for different distances r to the bottleneck with
a = 10, ∆r = 1 m and the other parameters as in Table 6.1. The plot is analogous
to Figure 6.3 for a = 2.5. The shape of the distribution for r < 21 m is similar to
the case where a = 2.5, as discussed in section 6.1. For r > 21 m, the distribution
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Figure S16: Time Tc until the simulations clog for different values of a.

Figure S17: (A) Distribution of the shape factor at different distances for the
simulation with the repulsion strength a = 10 and other variables as in Table 6.1.
(B) Heat map of the shape factor distribution in respect to the distance from the
bottleneck r.
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changes its shape to a mono-modal distribution with its peak very close to the value
of ζ = 1.101, which is the hexagonal shape. Larger ζ decay exponentially, and there
is a plateau around the pentagonal shape at ζ = 1.15, which shows the defects in the
crystal structure. The heat map of the shape factor distribution in panel B shows
the sharp transition between the bi-modal and mono-modal regime, with a distinct
interface.

Figure S18: Illustration of the value of the speed function V(s) of the agents for
different d in [m] analogous to Figure 6.18 at t = 3000 s. Agents coloured in white
are stationary V (s) = 0 m/s, while bluer agents are faster V (s) > 0.
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Figure S19: Illustration of the value of the packing fraction of the agents for
different d in [m] analogous to Figure 6.18 at t = 3000 s. Darker red marks higher
packing fraction ϕ.
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Figure S20: Illustration of the value of the packing fraction of the agents for
different d analogous to Figure 6.18 at t = 2000 s. Darker red marks higher packing
fraction ϕ.
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Figure S21: Illustration of the value of the packing fraction of the agents for
different d analogous to Figure 6.18 at t = 2000 s. Darker blue marks faster agents,
while white agents sopped.
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Figure S22: Shape factor classes analogous to Figure 6.17 for a ∈ {5.0, 7.5, 10.0}
and d = 0.5m. The purple agents have a high hexagonal order. Red agents in these
systems tend to be in a square order.

A.7 Supplementary figures section 6.2

Figure S24: Time series of the fraction of agents in shape class A pA in respect to
the time t in seconds for different values of σ.
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Figure S23: A snapshot of the simulations at t = 9000 s with different σ specified
in the title of the panels. The colors represent the shape classes analogous to Figure
6.4, with purple representing class A, green class B and red class C.
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Figure S25: Plot of the hexagonal order in the system in respect to the packing
fraction at different times of the simulation and different distance intervals r +∆r
from the bottleneck indicated by the colour. The noise is σ = 0.7. The value of
∆r = 1 and the time intervals are indicated in the title.

Figure S26: The hexagonal order P (Ψ6 > 0.7) in respect to the packing fraction
ϕ at different distances r from the bottleneck with σ = 0.7. The dots show the time
evolution of the system, where each dot is one point in time on the space. (A) shows
the entire trajectory and (B) shows the interval ϕ > 0.74.
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Figure S27: Snapshots of the hexagonal order field Ψ6(r), density field ρ(r) and
speed field Vnn(r) at three different times t ∈ {140, 1120, 7500}s and the correspond-
ing measure averaged over the distance to the bottleneck r in the panel underneath.
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A.8 Supplementary figures section 6.4

Figure S28: Log-log-plot of the cluster size distribution defined by the hexagonal
order of the system Ψ6 > ϵ analogous to Figure 6.55.
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