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ABSTRACT

In this thesis we study the Poincaré-Birkhoff-Witt (PBW) filtration on
simple finite-dimensional modules of simple complex finite-dimensional Lie
algebras. This filtration is induced by the standard degree filtration on the
universal enveloping algebra.

For modules of certain rectangular highest weights we provide a new de-
scription of the associated PBW-graded module in terms of generators and
relations. We also construct a new basis parametrized by the lattice points
of a normal polytope. If the Lie algebra is of type Bz we construct new
bases of PBW-graded modules associated to simple modules of arbitrary
highest weight. As an application we find that these modules are favourable
modules, implying interesting geometric properties for the degenerate flag
varieties. As a side product we state sufficient conditions on convex lattice
0,1-polytopes to be normal.

We study the Hilbert—Poincaré polynomials for the associated PBW-
graded modules of simple modules. The computation of their degree can
be reduced to modules of fundamental highest weight. We provide these
degrees explicitly.

We extend the framework of the PBW filtration to quantum groups and
provide case independent constructions, such as giving a filtration on the
negative part of the quantum group, such that the associated graded algebra
becomes a g-commutative polynomial algebra. By taking the classical limit
we obtain, in some cases new, monomial bases and monomial ideals of the
associated graded modules.



ZUSAMMENFASSUNG

In dieser Arbeit studieren wir die Poincaré-Birkhoff-Witt (PBW) Filtrierung
auf einfachen endlich-dimensionalen Moduln einfacher endlich-dimensionaler
komplexer Lie-Algebren. Diese Filtrierung ist durch die standard Gradfil-
trierung auf der universell einhiillenden Algebra induziert.

Fiir bestimmte Hochstgewichtsmoduln geben wir eine neue Beschreibung
in Erzeuger und Relationen des assoziierten PBW-graduierten Moduls an.
Wir konstruieren ebenfalls eine, durch Gitterpunkte eines Polytopes parame-
trisierte, Basis an. Fir die Lie-Algebra vom Typ B3 konstruieren wir Basen
von PBW-graduierten Moduln assoziiert zu einfachen Moduln von beliebigem
hochsten Gewicht. Eine Anwendung unser Ergebnisse ist, dass diese Moduln
favorisiert sind, was wiederum interessante geometrische Eigenschaften der
assoziierten degenerierten Fahenvarietaten zur Folge hat. Als Nebenprodukt
geben wir hinreichende Bedingungen fiir konvexe 0,1-Gitterpolytope an, die
die Normalitat solcher Polytope implizieren.

Wir studieren die Hilbert—Poincaré Polynome der assoziierten PBW-gra-
duierten Moduln einfacher Moduln. Die Berechnung deren Grade kann auf
Moduln fundamentaler Gewichte reduziert werden. Wir geben diese Grade
explizit an.

Wir erweitern die Theorie der PBW Filtrierung auf Quantengruppen und
geben vom Typ unabhingige Konstruktionen an, wie zum Beispiel eine
Filtrierung des negativen Teil der Quantengruppe, sodass die assoziierte
graduierte Algebra eine g-kommutative Polynomalgebra wird. In dem wir
den klassischen Limes betrachten, erhalten wir, in manchen Fallen neue,
monomiale Basen und monomiale Ideale des assoziierten graduierten Moduls.



1. INTRODUCTION

In the late 19th century S. Lie introduced Lie algebras as an algebraic
tool to study Lie groups. The tangent space at the identity element of a
Lie group is naturally endowed with the structure of a Lie algebra. The
simple finite-dimensional complex Lie algebras were studied and classified
at the end of the 19th century independently by E. Cartan and W. Killing.
During the first half of the 20th century, H. Weyl developed fundamental
ideas on the representation theory of these simple Lie algebras. Since then
various important applications in mathematics and mathematical physics
were found so that the theory of simple Lie algebras and their representations
evolved to a classical branch of mathematics.

We fix g to be a simple finite-dimensional complex Lie algebra and G
to be the simple, simply connected algebraic group such that Lie G = g.
The works of H. Poincaré in 1900, G. Birkhoff and E. Witt in 1937, also
independently, led to the famous PBW theorem which provides monomial
bases of the universal enveloping algebra U(g).

We denote by V(A) the simple finite-dimensional module of g with dom-
inant integral weight A € PT.

In 1950, I.M. Gelfand and M.L. Tsetlin provided bases of the highest
weight representations for the general linear Lie algebra in [GT50]. This
can be used to provide a monomial basis of V() in the case of g being the
special linear Lie algebra. This basis is parametrized by the lattice points
of the so called Gelfand-Tsetlin (GT) polytope, denoted by GT(\) C RY,,
where N is the cardinality of the set of positive roots R™ of g. In the other
classical types of simple Lie algebras, a basis of V' (\) is parametrized by the
lattice points of the generalized Gelfand—Tsetlin polytope (see [BZ89]).

In 1967, V. G. Kac and R.V. Moody introduced independently Kac—
Moody algebras. All simple finite-dimensional Lie algebras are Kac—Moody
algebras and the theory of infinite-dimensional Lie algebras was established.

The notion of a quantum group appeared first independently in the works
of V.G. Drinfeld and M. Jimbo in 1985, using it to construct solutions to the
Yang—Baxter equation. Quantum groups are deformations of the universal
enveloping algebras of symmetrizable Kac—-Moody algebras as Hopf algebras.
Powerful tools to study the representations of quantum groups are provided
by the theory of crystal bases and canonical bases developed by M. Kashi-
wara and G. Lusztig independently (see [Kas90],[Kas91],[Lus90a],[Lus90b]).
A different approach is given by the path model introduced by P. Littelmann
(see [Lit94],[Lit95]). It turned out that Kashiwara’s crystal graph and Lit-
tlemann’s graph, defined by the path model, coincide (see [Jos95],[Kas96]).

Using this graph Littelmann introduced the string polytope in [Lit98].
Such a polytope parametrizes a basis of the highest weight representation
V()A), for an arbitrary simple Lie algebra g, by its lattice points. It is de-
noted by @, () since it depends on A and on a reduced expression wg of
the longest element wy in the Weyl group W of g. The reduced expression
determines the cone and the weight determines how to cut the cone by hy-
perplanes to obtain a polytope. The (generalized) Gelfand—Tsetlin polytope
can be recovered as a string polytope for a certain reduced expression. In
this case the string polytope is normal which fails to be true in general. Note
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that the cone is also described in [BZ01] and studied for example in [BZ93]
and [ABO04].

1.1. Overview on the PBW filtration. We fix a Cartan subalgebra h C g
and consider a triangular decomposition g = n* @ h @ n~. We fix a highest
weight vector vy € V(A), and obtain the description V(A) = U(n")vy. By
setting the degree of each non-zero element in n~ < U(n™) to 1, we obtain
a N-filtration of U(n™), for k € N we define

U g =span{z1xa...27 | 2, € n™, 1 <k},

in particular U(n™)p = C1 and for s < ¢ we have U(n"); C U(n™);. The
PBW theorem implies that the associated graded algebra is the symmetric

algebra: grU(n~) = S(n~). This increasing filtration induces a N-filtration
on V(A), for k € N we define

V(XNr = U™ )rox,

for example V(\)g = Cuvy. It is called the PBW filtration and has been in-
troduced in [FFJMT]. The associated graded space is N-graded and defined
by
V(A" = @ V(N)s/V(A)s—1,
s>0

where V(A)_1 = {0}. We will refer to V(\)* as the PBW-graded mod-
ule. Since V(A) is finite-dimensional so is V(A)*. We fix root vectors
eg € ng,f,g S niﬁ for 3 € RT and simple roots A = {aq,a9,...,a,} C R,
where n is the rank of g. We denote by n™® the vector space n~ endowed
with the trivial Lie bracket and b = n™ @ h. We consider the vector space
g% := b @ n® and define a Lie bracket [-,:]* on g® as follows: for b and
n~% it is defined by their Lie brackets, for e, € n, fg € n7% we define

{[ea,fﬁ}, if B—a€ R

[ea’fﬁ] - 0, else,

and for h € b we have [h, f3]* = [h, fg]. Note that g* is a degeneration of g
(see [Feil2]) and in fact a Lie algebra. It turns out that V' (A)* is a g*-module,
n % is acting with operators of degree 1 and b is acting with operators of
degree 0. This implies that V(A)* is in general not simple as a g*-module,
since @s>1V(A)s/V(A)s—1 is a proper submodule if dim V/(A)* > 1.

We have U(n™%) = S(n~) = C[fg | B € RT| and obtain a cyclic S(n~)-
module structure on V(A)® with generator v§: V(A)* = S(n™)v$. Let I(X)
be the annihilating ideal, i.e. the kernel of the surjective S(n~)-module map
S(n™) — S(n7)vg, then we have

VN =S )y = S07)/I(N).

In 2011, E. Feigin, G. Fourier and P. Littelmann in [FFL11a], [FFL11b]
(and in [FFL13a] over the integers) were the first to give a monomial ba-
sis of V(A)® and generators of I(\) in the case of the special linear and
the symplectic Lie algebra respectively for arbitrary A € P*. This basis is
parametrized by the lattice points of the so called Feigin—Fourier—Littelmann
(FFL) polytope denoted by FFL(\) C RY,. The basis in type A was con-
jectured by E. Vinberg (see [Vin05]). Note that the FFL polytopes and
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the (generalized) GT polytopes are normal polytopes. Monomial bases were
also found in type G, (see [Gorl5a]) using a different approach.

Since the results in type A, and C, were known, the framework of the PBW
filtration earned a lot of attraction and much progress has been achieved in
different branches of representation theory.

In [ABS11] the authors obtain with purely combinatorial methods an ex-
plicit bijection between the lattice points of marked chain polytopes and
marked order polytopes (see [Sta86]). This implies in particular a bijection
between the lattice points FFLy(A) = FFL(A) N N¥ of the marked chain
polytope FFL(A) and GTy(\), the lattice points of the marked order poly-
tope (generalized) GT(X). In [Foul6] it is shown that marked order poly-
topes and marked chain polytopes are not unimodularly equivalent in general
and especially the FFL and (generalized) GT polytopes are not unimodu-
larly equivalent in general. Other combinatorial representation theoretical
works related to the framework of PBW filtration are [Foul5], where a con-
nection between PBW-graded modules and fusion products is provided, and
[K13a], [K13b], where the PBW-graded modules are used to describe models
of certain Kirillov—Reshetikhin crystals. In [CF15] and [FM15] the study of
the characters of PBW-graded modules has been initiated and motivated
the first paper of this thesis.

In the geometric branch of the framework of the PBW filtration, the
degenerate flag variety has been studied in a series of papers. Let B, N~ C G
be the algebraic groups associated to the Lie algebras b and n™, B is a Borel
and N~ the maximal unipotent subgroup opposite to the Borel. Then there
exists a commutative unipotent group with Lie algebra n™® denoted by
N—* C G* = N7% x B, acting on V(\)? We emphasize that G is the Lie
group of g* The flag variety and the degenerate flag variety respectively
are defined by

F(A) = N-Cux CP(V(N), Fa(\) =N-aCof CP(V(N)Y),

where F(\) = G/ P) for some parabolic subgroup Py C G stabilizing Cvy. In
[Feil2] the degenerate flag variety has been introduced. An explicit realiza-
tion, in terms of linear algebra, inside a product of Grassmannians has been
provided in [Feill] for type A and in [FFiL14] for type C and other important
results have been achieved. For example in loc. cit. for type C and in [FFil3]
for type A it is shown that the degenerate flag varieties are normal and
Cohen—Macaulay by constructing explicit desingularizations. Other impor-
tant works on this subject are provided by [Hagl4] and [CIFR12] [CIFR13].
In the latter two papers the authors study the degenerate flag varieties in
type A by realizing them as quiver Grassmannians.

A beautiful result is obtained in [CIL15], where it is shown that the de-
generate flag varieties in type A and C are isomorphic to certain Schubert
varieties. The authors use the explicit realization in terms of linear algebra
mentioned above. This result also holds in any characteristic (see [CILL]),
where the authors use different arguments. They realize the PBW-graded
modules as Demazure modules for a Lie algebra of the same type and dou-
bled rank.

We want to recall the definition of a favourable module, note that it can
be defined more generally. We choose an ordered basis {fg,, f3,,- -, fan}
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of n~ and an induced homogeneous lexicographical total order < on the
monomials in U(n~). We assign to each multi-exponent t € NV a vector

Foon =S5 L% fie € VY

and define for s € NV: F, = span{fdv, | f4 < f5} and F; = span{fduv, |
f94=< f%}. We have F; C Fy and for p < s we have Fj, C Fs. Note that this
defines an increasing N"-filtration on V' (\) which refines the PBW filtration,
since it respects the degree of the monomials. The associated graded space
is NMgraded:
VN = @ F/Fs
seNN

It turns out that V(A)" is a cyclic S(n~)-module with generator v} and
the annihilating ideal is monomial. Following Vinberg we denote the set
of essential multi-exponents by es(V(\)) = {s € NV | fSof £ 0in V(\)'}.
Denote the Cartan component in the m-fold tensor product of V() by

V)" =Unm ) (vx®@---@wvy) C V(N)®™
A module V() is called favourable if

e there exists a normal polytope P(\) C RY, such that its lattice
points Py(\) parametrize a basis of V()% and es(V (\)) = Py()),

e the dimension of the Cartan component V(A)®™ C V(A\)®™ equals
|mPn(A)|, where mPy(A) is the m-fold Minkowski sum of Py(A).

Since V(A)! is a U(n™%)-module, we define the following projective variety
Fi(A) = N—a.Cuy CP(V(N\)Y).

In [FFL13b] the notion of a favourable module is introduced and many
interesting properties are stated: if V(\) is favourable, we obtain a mono-
mial basis of V(A)®™ (V(X)®™)% and (V (A)©™)! parametrized by the lattice
points of the m-fold Minkowski sum of the associated polytope. Further the
authors show many interesting properties for the associated projective va-
rieties. The varieties F(\), F4(A) and Fy(\) are projectively normal and
arithmetically Cohen—Macaulay. There exists a flat degeneration of F(\)
into F,(A), and for both there exists a flat degeneration into F;(A). The
variety J¢(A) is the toric variety defined by the normal polytope P(\). The
polytope itself is the Newton—-Okounkov body (see [KK12], [HK13]) for the
varieties F(A), Fo(A) and Fi(A) .

Summarizing: the modules investigated in [FFL11a], [FFL11b], [FFL13a],
[Gorlba] and in the second and third paper are favourable. More classes of
examples of favourable modules are certain Demazure modules in the sl,,-
case provided in [Foul4] and [BF]. Recently it was shown that all V/(A\), A €
P are favourable in type Dy (see [Gorl5b]).

This thesis consists of four parts, two published papers, one paper under
revision and one preprint which will be submitted soon:

1. The degree of the Hilbert—Poincaré polynomial of PBW-graded mod-
ules. In collaboration with Lara Bossinger, Christian Desczyk and
Ghislain Fourier. Comptes Rendus Mathematique, 352 (12): 959 -
963 (2014).
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2. PBW filtration: Feigin—Fourier—Littelmann modules via Hasse di-
agrams. In collaboration with Christian Desczyk. Journal of Lie
theory, 25 (3): 815 - 856 (2015).

3. The PBW filtration and convex polytopes in type B. In collaboration
with Deniz Kus. Submitted to Transformation Groups.

4. Degree cones and monomial bases of Lie algebras and quantum groups.
In collaboration with Xin Fang and Ghislain Fourier. Preprint.

1.2. Hilbert—Poincaré polynomials. In the first paper we study the PBW-
graded modules V(A\)® for arbitrary A € P by studying their Hilbert—
Poincaré series. This series is defined by
o0
pa(g) = Y (dim V(X)s/V(N)s-1)g".
s=0
Since V()) is finite-dimensional, this is in fact a polynomial in q. We com-
pute the maximal k£ € N such that V' (A);/V (\)r—1 is non-zero, often referred
to as the PBW-degree.

Recall that wy denotes the longest element in the Weyl group of g. Every
element of V(\) can be described by acting with U(n™) on the lowest weight
vector vy, (x), and U(m*)V(A)g € V(A)g. This implies that v,,(y) is an el-
ement of V(A)g, for the maximal k € N such that V/(A\)g/V(A)r-1 # {0}.
Therefore, it suffices to study the one-dimensional weight space V()\)wo( A =
Cuvyy(n) in order to compute the PBW-degree. We provide the PBW-degree
for PBW-graded modules of simple modules for arbitrary simple Lie alge-
bras. It suffices to compute the degree of py(¢) in the cases where \ is a
fundamental weight w; € PT,1 < 4 < n. This reduction is provided by
[CF15).

Main Theorem 1. (with L. Bossinger, C. Desczyk, G. Fourier) The degree
of pw,;(q) is equal to the label of the i-th node in the following diagrams:

1 2 3 3 2 1 2 2 6 31
An o o o---o0 o o Bn o o ﬁ é o———o#:g
2754
1 2 n-2  n-1 n 2 2 4 4 6 /°|'711
Cn o o---o0 o Dn o o o o o———o\
2[5 e 5]
[ [
2 5
2 2 2 6 7 3
EG o ﬁ o ﬁ o E7 o—o—o—o—ﬁ—o
6 8
o
8
8 11 8 6 2 2 6 2 2 2
E8 ﬁ—o—o—o—o—o—o F4 ° o#ﬁ o G2 o==o0
14

1.3. PBW filtration and monomial bases in other types. In the sec-
ond and third paper we provide a new monomial basis of V' (\)® parametrized
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by the lattice points of a normal polytope and provide generators of the an-
nihilating ideal I(\) in many other types. The polytope is defined by certain
paths in the Hasse diagram associated to the partial order on R*. We refer
to these paths as Dyck paths in analogy with the A, case.

In the second paper our approach is slightly different to the cases of type
A and C. Instead of fixing the Lie algebra we fix the type of the highest
weight to be a multiple of a fundamental weight, i.e. A = mw;,;m € N;1 <
¢ < n. Our main tool is the Hasse diagram and we describe a general
procedure which only depends on this diagram. So we reduce the problem
of finding a basis of V' (A)* and describing generators of the ideal I(\) to the
combinatorics of a (directed) graph.

Let 6 be the highest root of g, 8V the corresponding coroot. We consider
multiples of fundamental weights w; € PT such that (w;, 8¥) = 1. In the case
of g = spy,, we have (w;,0") =1 for all 1 <7 <n, but in these cases, except
for w1 we do not find a suitable polytope. Nevertheless, as stated before the
lattice points of the FFL polytope in type C, parametrize a basis of V/(A)®
for arbitrary A € P*. Note that the list below includes all minuscule and
co-minuscule fundamental weights for arbitrary simple Lie algebras.

Main Theorem 2. (with C. Desczyk) Assume g and w; appear in the ta-
ble below: (i) There exists an explicit normal polytope P(mw;) such that its
lattice points Py(mw;) = P(A\) NNY parametrize a basis of V (mw;)®.

(ii) The ideal I(mw;) is generated by U(n™) o span{]“/gnw“ﬂv>Jr1 | B € R},
where V (mw;)® = S(n™)/I(mw;).

] Type of g \ weight w H Type of g \ weight w ‘

Ap wr, 1<k<n Eg w1, We
B, w1, Wn E7 wy
Cn w1 Fq W4
Dn w17 wn—lv W, GQ W1

In the third paper we investigate the special odd orthogonal Lie algebra
and find similar results as above for multiples of the adjoint representation
and for some other interesting cases. In order to describe the polytopes we
introduce the notion of a double Dyck path, which is the union of two usual
Dyck paths with a certain extra condition. In the case of the Lie algebra
s07 we find a polytope, whose lattice points parametrize a basis of V' (A)® for
arbitrary dominant integral weights A € P*. We also state in the appendix
generators of the annihilating ideal I(\) of the PBW-graded module in the
case of Gs.

Main Theorem 3. (with Kus) (i) If g is of type By and A\ = mwy or
A = 2mws, m € N, then there exists an explicit normal polytope P(\) such
that its lattice points Py(\) parametrize a basis of V(A)®.

(ii) The ideal I(X\) is generated by U(n™)o span{fé)"ﬁ "1 B e RT}, where
V(AN)*=S(n™)/I(N).

(iii) If g is of type Bs and N € PT, then there exists an explicit normal
polytope P(X) such that its lattice points Py(\) parametrize a basis of V/(\)“.
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Further for A, u € PT we have Py(\) + Py(p) = Py(A+ ). Here + denotes
the Minkowski sum on the left-hand side.

The normality in the second paper follows from a general result about
0, 1-polytopes, where we adapt the idea of the proof of the Minkowski sum
property of the FFL polytopes in the A, case. In the third paper we prove
the Minkowski sum property by direct computations. As stated above, the
modules in Theorem 2 and in Theorem 3 are favourable.

A natural question is whether in type A, and A\ = mw; € P' the FFL
basis of V(A\)® described by the lattice points of the polytope FFL()\) and
the basis of V' (A\)®* described by Py()) in the second paper are the same. We
consider the fundamental weight w; and assume 2 < i <n —1 and n > 3.
We have

fai—1+ai+ai+lfaivgi 7é 0 and fai—1+aifai+oéi+1vgi 7é 0 in V(wi)a'

We have dim V' (w;)w,—a;_1—2a;—a;;; = 1. This implies to obtain a basis
of V(w;)* we need to pick exactly one of those elements. The first is an
element of the FFL basis, the second is an element of the basis described in
the second paper. In this sense the FFL basis, and the basis described in
the second paper are in general two different bases of V().

Nevertheless, the describing polytopes FFL(A) and P()) (in type A,) are
unimodularly equivalent and hence the projective toric varieties defined by
the normal polytopes are isomorphic. In contrast, in general they are not
isomorphic to the toric varieties constructed in [AB04] corresponding to
Gelfand-Tsetlin polytopes (see also [GLI7] and [KMO05]), since the FFL and
GT polytopes are not unimodularly equivalent in general as stated above.

Note that the example above also shows that I()) is not a monomial ideal
in general, since for some non-zero constant ¢ € C we have:

cfaifl"rai'f‘awrl fai - fai71+aifai+04i+1 € I(Wi)'

1.4. PBW-type filtration and quantum degree cones. Recently in
[FFR15] the authors extended the framework of the PBW filtration to quan-
tum groups of type A,. They provide a degree on the quantum PBW root
vectors arising from the Hall algebra of quiver representations, and define a
N-filtration F on the negative part of the quantum group U,(n~) such that
associated graded algebra becomes a g-commutative polynomial algebra:

grrUq(n~) = Sg(n”).
This fails already in small examples, if one simply attaches to each quantum
PBW root vector the degree 1, as in the definition (see Subsection 1.1) of the
PBW filtration for simple Lie algebras. Denote by V,()) the simple finite-
dimensional module (of type 1) of U,(g) of highest weight A € PT. The
associated graded S,(n~)-module is denoted by Vq]: (A) with annihilating
ideal I(f (A) C S¢(n7). As an important application the authors obtain a
monomial basis of qu (M) parametrized by the lattice points of the polytope
FFL(A) and the ideal Iq}- (A\) is monomial. By taking the classical limit
g — 1 they obtain a N-filtration on V(\) such that the annihilating Ideal

I7(\) € S(n7) of the associated graded module V7 (\) is a monomial ideal.
As stated before this is not true in the classic setup of the PBW filtration.



In the fourth paper we study the negative part of the quantum group
associated to a arbitrary simple Lie algebra with a different approach. We
define a set Dio C R_]X depending on the Lie algebra g and on a reduced
expression w, where each lattice point in this set induces a N-filtration on
Uq4(n™) such that the associated graded algebra becomes a g-commutative
polynomial algebra. Since it is closed under summation and non-zero scalar
multiplication we call Dq the quantum degree cone. We show that Dq is
not empty for arbitrary sunple Lie algebras and arbitrary reduced expres—
sion.

We fix a simple Lie algebra g, the quantum group U,(g) associated to g
with generic parameter ¢ and a reduced expression w, of the longest Weyl
group element wg € W. The reduced expression induces a convex total order
B1 < B2 < -+ < By on the positive roots of g, i.e for all 5;, 8;, B, € RT:

Bi+Bi=PB = i<k<jorj<k<i.

The PBW basis theorem for quantum groups (see [Lus10]) provides a C(q)-
basis of Uy(n™), namely

{Fe=Fg Fg - Fgh|c=(c1,02,...,cn) c NV},

The commutation relations between these quantum PBW root vectors is
given by the Levendorskii-Soibelmann (L—S) formula ([LS91]) for any i < j,

FﬁjFﬂi _q—(ﬂi’ﬁj)FﬂiFﬁj = Z p(ni"'l”"’nj_l)F/;ijll “'ng—_ll’ (1)
Nit1,,M5—1>0
where p(ni1,...,n;-1) € ClgT!]. We denote
{Fgfl1 g:; .. .F"F | ni1 Biv1+nivoBivet- - +nj_18-1 = Bi+Bj},

then for weight reasons, the sum in the right-hand side of the L—S formula
is supported in M; ;. We define the quantum degree cone D&O by:

7—1
DL, ={deRY i< ji di+d; > npdi if p(nigr,...,nj-1) #0in (1)}
k=i+1

Main Theorem 4. (with X. Fang, G. Fourier) (i) For any reduced expres-
sion wy of wo, the set Dy, is non-empty.
(ii) Let g be a simple Lie algebra of rank n > 3. Then
ﬂ Dio =0,
MQER(’WO)

where R(wo) = {wy | wy reduced expression of wo}.

Note if g is of rank n < 2 there are two reduced expression of wy and both
induce the same cone. We describe the cone explicitly.

Since Dy, is not empty we can choose a d € Dy, and define a filtration
on Uy(n™), for k € N we define

F = span{F* € U,(n™) | tidy + tady + - - + tndn < k}.

The L-S formula ensures that this defines a filtration on Uy(n™) and that the
associated graded algebra grqu(n*) is a g-commutative polynomial algebra



isomorphic to Sq(n™). We obtain a filtration on V,(\) by setting

FEVa(N) = Filva,
where vy is a cyclic generator of V4(A). The associated graded module
is denoted by VA(A) and is a cyclic Sq(n~)-module with cyclic generator
denoted by v$: qu()\) = S,(n7)v{. The annihilating ideal is denoted by
I&(N).

By taking the classical limit ¢ — 1 we obtain several applications. For
example we describe new monomial ideals and monomial bases of V4(\), \ €
P with the known polytopes in the cases Ap, Bs, Ds, Gy and conjecturally in
Cn. We also state whether the lattice points of these polytopes parametrize
a monomial basis for qu()\).
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2. THE DEGREE OF THE HILBERT—POINCARE POLYNOMIAL OF
PBW-GRADED MODULES

TEODOR BACKHAUS AND LARA BOSSINGER AND CHRISTIAN DESCZYK AND
GHISLAIN FOURIER

ABSTRACT. In this note, we study the Hilbert-Poincaré polynomials for the
associated PBW-graded modules of simple modules for a simple complex Lie
algebra. The computation of their degree can be reduced to modules of fun-
damental highest weight. We provide these degrees explicitly.

Nous étudions les polynémes de Hilbert-Poincaré pour les modules PBW-
gradués associés aux modules simples d’'une algebre de Lie simple complexe.
Le calcul de leur degré peut étre restreint aux modules de plus haut poids
fondamental. Nous donnons une formule explicite pour ces degrés.

1. INTRODUCTION

Let g be a simple complex finite-dimensional Lie algebra with triangular de-
composition g = n* @ h @ n~. Then the PBW filtration on U(n™) is given as
Un™)s := span{zy, - - -y | z;; € n,1 < s}. The associated graded algebra is
isomorphic to S(n~). Let V(\) be a simple finite-dimensional module of highest
weight A and v) a highest weight vector. Then we have an induced filtration on
V(X)) = U(n")vy, denoted V(A)g := U(n™)svx. The associated graded module
V(A)® is a S(n™)-module generated by v).

These modules have been studied in a series of papers. Monomial bases of the
graded modules and the annihilating ideals have been provided for the sl,,sp,,
[FFL11la, FFL11b, FFL13b], for cominuscule weights and their multiples in other
types [BD14], for certain Demazure modules in the sl,-case in [Fouldb, BF14].
In type Go there is a monomial basis provided by [Gorll].

The degenerations of the corresponding flag varieties have been studied in [Feil2,
FFL13a, CIL14, CILL14]. Further, it turned out ([Foul4al), that these PBW
degenerations have an interesting connection to fusion product for current alge-
bras. The study of the characters of PBW-graded modules has been initiated in
[CF13, FM14].

In the present paper we will compute the maximal degree of PBW-graded mod-
ules in full generality (for all simple complex Lie algebras), where there have been
partial answers in the above series of paper for certain cases.

We denote the Hilbert-Poincaré series of the PBW-graded module, often referred
to as the g-dimension of the module, by

[ee]

palg) = ) (dimV(A)s/V(N)s-1) ¢°.
s=0

Since V() is finite-dimensional, this is obviously a polynomial in ¢. In this note
we want to study further properties of this polynomial. We see immediately that
the constant term of py(q) is always 1 and the linear term is equal to

dim(n~) — dimKer (n~ — End(V(\))) .
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Our main goal is to compute the degree of py(q) and the first step is the following
reduction [CF13, Theorem 5.3 ii)]:

Theorem. Let \1,...,\s € PT and set A = A\; +...+ \;. Then
degpx(q) = degpx, (q) + ... + degpx,(q).

It remains to compute the degree of py(q) where A is a fundamental weight. We
have done this for all fundamental weights of simple complex finite-dimensional
Lie algebras:

Theorem 1. The degree of p,,(q) is equal to the label of the i-th node in the
following diagrams:

1 2 3 3 2 1 2 2 4 4 6 (51
An o o oO=-=-=-0 o o Bn o o o o OoO=-=-=-0 o
25511
°|'nél
1 2 n-2 n-1 n 2 2 4 4 6
Cn o o---0 o==-o0 Dn o ° o o o———o<
22T o ]
o °
2 5
2 4 4 2 2 6 7 4 3
EG o o o o o E7 0—0——0——0——0——0
6 8
o
8
4 8 11 8 6 2 2 6 4 2 2 2
ES 0—0——0——0——0——0——0 Fa o o==o o G2 o==o

The paper is organized as follows: In Section 2 we introduce definitions and basic
notations, in Section 3 we prove Theorem 1.
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2. PRELIMINARIES

Let g be a simple Lie algebra of rank n. We fix a Cartan subalgebra h and a
triangular decomposition g = n* ®h@n~. The set of roots (resp. positive roots)
of g is denoted R (resp. R™), 6 denotes the highest root. Let a;,w; i = 1,....,n
be the simple roots and the fundamental weights. Let W be the Weyl group
associated to the simple roots and wy € W the longest element. For o € R™
we fix a sly triple {eq, fa, ha = [€a, fa]}. The integral weights and the dominant
integral weights are denoted P and PT.

Let {z1,x2, ...} be an ordered basis of g, then U(g) denotes the universal envelop-
ing algebra of g with PBW basis {z;, - - x4, | m € Z>0,i1 <i2 < ... <ip}.
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2.1. Modules. For A\ € P we consider the irreducible g-Module V(\) with
highest weight A. Then V() admits a decomposition into h-weight spaces,
V(A) =D cp V(A7 with V(A)x and V(A)ygn), the highest and lowest weight
spaces, being one dimensional. Let v\ denote the highest weight vector, vy, (x)
denote the lowest weight vector satisfying

equy =0, Ya € R* ; fa'Uu;O()\) =0, Va € R™.

We have U(n™).vx =2 V(A) 2 U(n).v000)-

The comultiplication (z — 2z ® 1 + 1 ® x) provides a g-module structure on
V(A) ® V(u). This module decomposes into irreducible components, where the
Cartan component generated by the highest weight vector vy ® v, is isomorphic

to V(A 4+ p).

2.2. PBW-filtration. The Hilbert-Poincaré series of the PBW-graded module
V(A :=Bys0V(N)s/V(A)s—1 is the polynomial

pg) = Y dim(V(N)s/V(N)s)g®
1+ dim(V(A)1/V(N)o)g + dim(V(N)a/V(A)1)g? + ...
and we define the PBW-degree of V(\) to be deg(pa(q)).

It is easy to see that n™.(U(n")s.vy) C U(n")s.vy Vs > 0 (see also [FFL11a])
and hence U(n*).V(A)s € V(A)s. Let sy be minimal such that v,,(x) € V(A)s, .-
Then V(A) = U(n").v00) € V(N)s, and
Corollary. sy = deg(pa(g)) and
V(A) =V (A)s,-
2.3. Graded weight spaces. The PBW filtration is compatible with the de-
composition into h-weight spaces:
dimV(A); =Y dim (V(A)s/V(N)e1) NV ().
s>0
So we can define for every weight 7 the Hilbert-Poincaré polynomial:
par(@) =Y dim (V(A)s/V(A)s-1), ¢° and then p(g) = ) pas(9)-
s>0 TEP

A natural question is, if we can extend our results to these polynomials? If the
weight space V/(\); is one-dimensional, then py (¢) is a power of ¢q. For 7 = X
this is constant 1, for 7 = wg()\), the lowest weight, this is ¢1°8P*(9) as we have
seen in Corollary 2.2. A first approach to study these polynomials can be found
in [CF13].

2.4. Graded Kostant partition function. For the readers convienience we
recall here the graded Kostant partition function (see [Kos59]), which counts the
number of decompositions of a fixed weight into a sum of positive roots, and how
it is related to our study. We consider the power series and its expansion:

1
H m, Z P,(q)e".

a>0 veP
We have immediately char S(n™) = > cp Po(q)e™".
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Remark. For a polynomial p(q) = Y /" a;q', we denote mindeg p(g) the minimal
J such that a; # 0. Then we have obviously

(2.1) mindeg py . (¢) > mindeg Py_,(q).

We will use this inequality for the very special case v = wg(\) in the proof of
Theorem 1.

We see from Theorem 1 that this inequality is a proper inequality for certain
cases in exceptional type as well as B, D,, (this has been noticed also in [CF13]).

3. PROOF OF THEOREM 1

In this section we will provide a proof of Theorem 1. For a fixed 1 < ¢ < rankg,
we will give a monomial u € U(n™) of the predicted degree mapping the highest
weight vector v, to the lowest weight vector v, (). We then show that there is
no monomial of smaller degree satisfying this.

To write down these monomials explicitly, let us denote fx, the highest root of
a Lie algebra of type X,,. We set further (using the indexing from [Hum72]):

e In the A,-case, Y,,_o the type of the Lie algebra generated by the simple

roots {ag,...,an_1}.
e In the B,, D,-case, Y,_; the type of the Lie algebra generated by the
simple roots {agi1,...,an}.

e In the exceptional and symplectic cases, 0, = crwy for some k, Y,,_; the
type of the Lie algebra generated by the simple roots {1, ..., a,} \ {ax}.
Let u € U(n™) be one of the monomials in Figure 1. It can be seen easily from
Figure 1 that u = fg){nul, where a;” = w;(hg, ) and u; is the monomial in Figure
1 corresponding to the restriction of w; to the Lie subalgebra of type Y,,_,. If we
denote n; the lower part in the triangular decomposition of the Lie subalgebra
of type Y,,_s, then u; € U(ny).
Let u = fgll fg; ... fgr- Note that all fp, commute and it is easy to see that
0;(he,,,) = 0, ¥p > 0 (since 0; is a sum of fundamental weights, which are all
orthogonal to the simple roots of the Lie algebra with highest root 6;,,) and
bj = wi(hgj).
The Weyl group W acts on V(w;) and if v is an extremal weight vector of weight
i, then w.v is a nonzero extremal weight vector of weight w(u). Further if w = s,

(reflection at a root «) and p(hy) > 0, then w.v = ¢* #(ha) 4 for some c* € C*.
Now consider w = sy, ... sg,, where sp; 1s the reflection at the root 6;. Then we
have w.v,,;, = Vy,(w;) = UV, # 0 in V(w;). So we obtain an upper estimate for
the degree.

In general the degree of u is bigger than the minimal degree coming from Kostant’s
graded partition function (2.1). For A,,C, the degrees coincide and hence we
are done in these cases.

We will prove Theorem 1 for the remaining cases X,, by induction on the rank of
the Lie algebra. So we want to prove that if p € U(n™) with p.v,, = vy (,) then
deg(p) > deg(u), where u is from Figure 1.

Consider the induction start, e.g. w; = 0x,,, then the minimal degree is obviously

v a :
1
; and fGX Wy, 18

the highest weight vector of a simple module of fundamental weight for ‘the Lie
algebra Y,,_; defined as above. By induction we know that if ¢ € U(n] ) with

v
q.(fg;n.vwi) = Uy (w,;) then deg(q) > deg(u).

2. The maximal non-vanishing power of fp, is certainly a
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X, w; =0x, i

A, w; fou, fou, "feAn+2_2mm{iyn_i}
Cp  wi Jfoc, foc, |- foc,., .
B, wo; f@QBn f923n72 T ngn+2—2i
B, W2i41 f@an feanz t f023n72i fa2i+1
B, n even,w, fog, fou, - Jom,

B, nodd,w, fos, fos, - fop, fan
Dn - wai ngn feanfz ; ngnJrz—zi
Dy, w1 f92Dn ngn_2 ce fGanzi fa2¢+1
Dy mnevenwi,i=n—1n fo, for, - fop, foi
Dy nodd,wi,i=n—1,n fo, fo, , fon foa,
Es  wi,we f9E6 Joa.

Ee  ws,ws f9E6f9A5 Joa,

Eg wy f9E6f9A5 f6A3fa4

Er wy f9E7 Jong Jop, fa

Er ws ng feD6f9D4fa3

E7  wy feE feD6f9D4

E7;  ws f9E7f9D6f9D4fa5

E7  we f9E7feD6

E7  wr f0E7 f6D6fa7

Eg 0%} f@E fOE

Es  wo f@E feE f9D6f9D4fa2
Es w3 f@E fOE f9D6f9D4fOé3
Es  wy f@E f9E7f9D6f9D4

Es  ws feE f9E7f9D6f9D4fa5
Es  we f9E8f9E7f9D6

Es  wr f9E8 f9E7 f9D6 Jor

Fy  w f9F4 foc, foa, fas

Fy  ws £3p, Foc, foc,

Fy  wy f9F4 f903

G2 w1 f@GQ fa1

FIGURE 1.

\ \
First we suppose fg; Uy, is a factor of p, so p = fg;( p’ and then by weight

considerations p’ € U(ny). Then p'.( fg)’: Vi) = Vo (w;) (the lowest weight vector
in V(w;) as well as in the simple submodule). Therefore deg(p’) > deg(u;) which
implies deg(p) > deg(u).

Suppose now the maximal power of fy, inpis fe k: > 0 and deg(p) < deg(u).
Let X, be of type By, D,, or exceptional, then 6 Xn = wj and we denote

Rf ={ac R+|wj(ha) = s},
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Then Ry = {f0x,} and if 8 € R{ then 0x, — 3 € Rf. By weight reasons
Vo
p = f;; kfgl -+ fgy,p1 for some Bi,..., B € Rf and some polynomial p; in

root vectors of roots in Rj. We have to show that p.v,, = 0 € V(w;)® and we
will use induction on k for that: The induction start is k = 0. The induction step
is for k > 1:

Y4k Y+k
0= plfgxn V= (eexn—ﬂ1) T (eexn—ﬁzk)plfgxn Vw;

aY —k k a) —k+/
= cfe;(n fﬁl "‘fBQkpl"Uwi +Z£>0 fe;{n qe-Vw;

for some ¢ € C*,qy € U(n™). For 0 < ¢ < k all the summands are equals to
zero by induction (on k). For £ = k, we recall our assumption deg(p) < deg(u)
and so deg(qy) < deg(u;) which implies f% gg.v,, = 0. So we can conclude

a;/—k
foxn J81 - B P10w; = 0.
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3. PBW FILTRATION: FEIGIN-FOURIER-LITTELMANN MODULES
VIA HASSE DIAGRAMS

TEODOR BACKHAUS AND CHRISTIAN DESCZYK

ABSTRACT. We study the PBW filtration on the irreducible highest weight
representations of simple complex finite-dimensional Lie algebras. This filtra-
tion is induced by the standard degree filtration on the universal enveloping
algebra. For certain rectangular weights we provide a new description of the
associated graded module in terms of generators and relations. We also con-
struct a basis parametrized by the integer points of a normal polytope. The
main tool we use is the Hasse diagram defined via the standard partial order
on the positive roots. As an application we conclude that all representations
considered in this paper are Feigin-Fourier-Littelmann modules.

INTRODUCTION

We recall briefly the construction of the PBW filtration. We consider a sim-
ple complex finite-dimensional Lie algebra g and a triangular decomposition
g=n"@®hdn". Wedenote by V()) the irreducible finite-dimensional module of
highest weight A and by vy a highest weight vector, then we have V(\) = U(n™)vy.
The degree filtration U(n™), on the universal enveloping algebra U(n™) over n~
is defined by:
Un™)s=span{zy- -z |z; €n™, | < s}
This filtration induces the PBW filtration on V(\), where the s-th filtration
component is given by V(A)s = U(n™)svx. The associated graded space V(\)%,
with respect to the PBW filtration, is a S(n™)-module generated by vy, where
S(n~) is the symmetric algebra over n~. Then we have for I(\) C S(n~) the
annihilator of the generating element:
V(A =S )vy =2 Sn7)/I(N).

There are some natural questions (see also [FFoL11a)):

e Is it possible to describe V(A)® explicitly as a S(n~)-module, ie. is it

possible to describe the generators of the ideal I(\)?
e Is it possible to find an explicit combinatorial description of a monomial
basis of V/(\)*?

We will call such a basis a Feigin-Fourier-Littelmann or just FFL basis and V' (\)®
a FFL module, if the bases of V/(mA)®, m € Z>¢ are parametrized by the integer
points of a normal polytope P(m).
For both questions there is a positive answer in the cases of sl, and sp,, for
arbitrary dominant integral weights (see [FFoL11a] and [FFoL11b]). Further the
second question is positively answered for Gy (see [Gorl1]). In this paper we focus
on certain rectangular weights and prove the following theorem:
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Main Theorem. Let g be a simple complex finite-dimensional Lie algebra and
A =1mw;, m € Z>q be a rectangular weight, where g and w; appear in the same
row of Table 1. Further let V(A\)* =2 S(n~)/I(X). Then there is a positive answer
for both questions above, in particular:
_ - + (ABY)+1

e I(A\)=S5(n )(U(n ) o span{ f \B€A+}).

e V(M) is a FFL module.
Here we denote with A the set of positive roots of g.

‘ Type of g ‘ weight w H Type of g ‘ weight w ‘

An Wiy 1 S k S n EG w1, We
By Wi, Wn E7 wr
Ca w1 Fq 2
Dy W1, Wn—1, Wn Ga w1

TABLE 1. Solved cases

Remark 1. The Theorem above implies the existence of a normal polytope P(mw;)
such that the integer points S(mw;) parametrize a basis of V(mw;). This poly-
tope is the m-th Minkowski sum of the polytope P(w;) corresponding to V(w;).
In general this is not true for different fundamental weights, because the num-
ber of integer points in the Minkowski sum is too small. For example in the
case of g = sl5, we have |(P(w;) + P(wa) + P(ws) + P(ws)) N ZY,| = 1023 and
dim V(w1 + wo + w3 + (,U4) = 1024. a

Remark 2. The bases obtained in [FFoL11a], which were conjectured by Vinberg
(see [V05]) and obtained in [FFoL11b] are different from our bases. This is due to
a different choice of the total order on the monomials in S(n™). As a consequence
the induced normal polytopes are also different. Nevertheless in the cases (Ay,wy)
the corresponding projective toric varieties are isomorphic. In contrast, these are
in general not isomorphic to the toric varieties corresponding to Gelfand-Tsetlin
polytopes investigated in [GLI7| and [KMO5].

We explain briefly the methods used in our paper. Our main tool is the Hasse
diagram of g given by the standard partial order on the positive roots of g. We
associate to this directed graph a normal polytope P()\) = P(mw;) C RY via the
directed paths. If the Hasse diagram satisfies certain properties, the set of integer
points S(A) = P(\) N Z%, parametrizes a FFL basis of V(\). So we reduce the
questions above to the combinatorics of the Hasse diagram and provide a general
procedure which uses the structure of the Hasse diagram. As an important ap-
plication we show that the modules V (mw;),m € Z>¢ are FFL modules, where
w; appears in Table 1.

Except for the cases listed in Table 1 it is much more involved to obtain a poly-
tope which parametrizes a FFL basis. Even in the cases (By,wi), (Fa,ws) and
(Go,w;1) we have to change the Hasse diagram slightly, to be able to apply our
procedure.

The property of being a FFL module implies some nice consequences. For exam-
ple the corresponding degenerate flag varieties are normal and Cohen-Macaulay.
Further there is an explicit representation theoretical description of the corre-
sponding homogeneous coordinate rings. Another important property is the inter-
pretation of the describing polytopes as Newton-Okounkov bodies (see [FFoL13]
and for more details on Newton-Okounkov bodies see [KK12] and [HK13]).
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In the recent years it turned out that the PBW theory has a lot of connections to
many areas of representation theory. For example to the geometric representa-
tion theory: Schubert varieties ([CIL14], [CLaL14]) and degenerate flag varieties
([FFiL11], [Feill], [Feil2], [CIFR12] and [Hagl3]). Further there are connections
to combinatorial representation theory for example to Schur functions ([Foul4]),
combinatorics of crystal basis ([Kusl3al, [Kus13b]) and Macdonald polynomials
([CF13], [FM14]). A purely combinatorial research on the FFL polytopes can
be found in [ABS11]. A general formular for the maximal degree of V(\)* for
arbitrary dominant integral weights A is provided in [BBDF14].

Our paper is organized as follows:

In Section 1 we introduce the constructions and tools we use. Furthermore we
state our Main Theorems and provide the connection to FFL modules. In Section
2 we prove that all polytopes considered in this paper are normal. Sections
3, 4 and 5 are devoted to the proof of our Main Theorems. In Section 4 we
calculate explicitly FFL bases of V(w) for all cases listed in Table 1. Finally
in the Appendix we give some explicit examples of Hasse diagrams and normal
polytopes.

1. PBW FILTRATION

1.1. Definitions. Let g be a simple complex finite-dimensional Lie algebra and
let g=n" @ hSn~ be a triangular decomposition.

For a dominant integral weight A\ we denote by V() the irreducible g-module
with highest weight A\. We fix a highest weight vector vy € V(A). Then we have
V(A) = U(n")vy. The degree filtration U(n~)s on U(n™) is defined by:

(1.1) Umn™)s=span{zy- -2 |z; €n™, | < s}

In particular, U(n™)o = C1. So we have an increasing chain of subspaces:
Un)o CUMm )1 CU(m )2 C.... The filtration (1.1) induces a filtration on
V(A): V(A)s =U(n7)svy, the PBW filtration.

We consider the associated graded space V(A\)® of V() defined by:

(1.2) VI = @ VN)/V(Ns1, V(N1 = {0}

SGZZO

Let A4 C b* be the set of positive roots of g and & = {a;...,a,} C Ay the

subset of simple roots, where n € N is the rank of the Lie algebra g. Further we

denote by fz € n~ the root vector corresponding to 5 € A. Let (A, 8Y) = 2((5\76/3))7

where 3V = (2—%) is the coroot of § and (-,-) is the Killing form. We define

ny :=span{fz | (\,8Y) > 1} Cn".

Throughout this paper we focus on certain rectangular weights A = mw;, m € Z>q
(see Table 1).

Let 8 = Z;‘:l njoj, nj € Z>o be a positive root with n; > 1. Then we have
for the coroot ¥ = 377 nfa/: n/ > 1. Conversely starting with a coroot

BY, with n > 1 we have for the corresponding positive root 8: n; > 1. Hence,
independent of the choice of m > 1:

n,=n,,Cnu

Wi mw;



PBW FILTRATION: FFL MODULES VIA HASSE DIAGRAMS 21

is the Lie subalgebra spanned by those root vectors fg, where o; is a summand
of 5.

From the PBW-Theorem we get U(n,)* = S(n,) = C[fz | (\,8Y) > 1], where
S(ny ) is the symmetric algebra over n, .

Remark 1.1.1. (i) We have V() = U(n, )ux. The action of U(ny) on V(X)
induces the structure of a S(n, )-module on V(A\)*
(1.3) V(A)* = S )vy = S(n))v.

(it) The action of U(nt) on V(X) induces the structure of a U(n*)-module on
V(N Note for eq € nt — Un'), fg € ny — Sny), [ea, f3] is not in general
an element of S(ny ), but for f, € S(n™)\ S(n)) we have f vy =0. That follows
from the well known description (see [Hum72]) of V(X):

(1.4) V) = U@ e Ay,

and

Equation (1.3) shows that V(A) is a cyclic S(n, )-module and hence there is an
ideal I, € S(n)) such that V/(\)* ~ S(n,)/I\, where Iy is the annihilating ideal
of vy. We have therefore the following projections:

S(m7) = S7)/(fs | (A, 8Y) =0) = S(ny) = S(ny)/Ix.
Hence, although we work with ny’, we actually consider n™-modules. So our aims
in this paper are
e To describe V(\)® as a S(n; )-module, i. e. describe explicitly generators
of the ideal 1.
e To find a basis of V/(\)* parametrized by integer points of a normal poly-
tope P(\) (see (1.10)).
To achieve these goals we have to introduce further terminology. We denote the
set of positive roots associated to ny by
(15) A} ={BeA | (\BY) > 1} = {B1,....08} C Ay, [A}| = N € Zx.

Example 1.1.2. We write (r1,r2,...,7y,) for the sum: > }_, ryo. Let g be of
type Ay and A = ws, the third fundamental weight. Then we have:

Aia = {ﬂl = (1717 1, 1)352 = (07 1, 151)763 = (1,1,1,0),
54 = (0707 1, 1)765 = (07 17170)766 = (0707170)} C A+'

We choose a total order < on Ai:
(1.6) f1 =< P2 < <Bn_1=<PN.

We assume that this order satisfies the following conditions:
(i) Let > be the standard partial order on the positive roots, then
Bi > Bj = Bi < Bj-
(ii) Let 8; = (r1,...,7mn), B85 = (t1,...,tn) and we define the height as the
sum over these entries: ht(8;) = >, 7, ht(3;) = > ; t;. Then
ht(8;) > ht(8;) = Bi < B;.
(iii) If B; and B; are not comparable in the sense of (i) and (i7), then

Bi < Bj < B; is greater than j3; lexicographically, i.e. there exists 1 <
k <mn, such that r, >t and r; = ¢; for 1 <1i < k.
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Remark 1.1.3. The explicit order of the roots depends on the Lie algebra and
the chosen weight, see Section 4. But in all cases considered in this paper we
have B1 = 0, the highest root of g and By is the simple Toot «;.

In order to make our equations more readable we write for 1 <1i < N: f; = fg,
and s; = sg,. We associate to the multi-exponent s = (s;)Y; € Z%, the element

N
(1.7) =11 €Sk,
=1

and define the degree of f3vy # 0 in V(A\)®* by deg(f5vy) = deg(f®) = Zf\il Si,
or deg(fSvy) = 0 if fSvy = 0. We extend < to the homogeneous lexicographical
total order on the monomials of S(n,) (resp. multi-exponents).
Let s,t € Z]ZVO be two multi-exponents. We say f5 = f* or s = t if

o deg(f°) > deg(f*) or

o deg(f%) =deg(f*) and 31 <k < N : (s >tp) AVk <j<N:(sj=tj).
For example: fif2f9 < f2f3fL < fLflf2.
Remark 1.1.4. Because the action of nt on V(X) is induced by the adjoint

action, we know that V(\)s, s € Z>q is stable under the action of n: for e € nt
and x1 -+ xs0\ € V(N)s we have

S
.1 Tyl = Z X1 wim1]e, i) Tivr - xsvn € V(A)s.
i=1
Hence V(\)s is a U(nt)-module. So for ftuy in V(A)* = @y V(N)s/V(N)s1
we have deg(uftvy) € {0,deg(ftvy)} for all w € U(n™T).
The next Lemma is devoted to give a better understanding of the module V/(\)%,
but we will not need it to prove our main statements.
Lemma 1.1.5. Let f™ € S(n™) with f™vy # 0 in V(N)* and weight wt(f™) =
A —wo(N), where wy is the longest element in the Weyl group of g and wo(\) is
the lowest weight of V(). Then

deg(f*) < deg(f™), VfMux #0 € V(A"
Proof. Let v,,(\) be a lowest weight vector such that:
V(A) = U@ vy

Hence we can interpret V(\) as a lowest weight module. The lowest weight wg(\)
is in the Weyl group orbit of A, thus dim V' (A),,,(x) = 1 = dim V(A),. So there is
a minimal s € Zx>q such that: V(X)) € V(A)s. Further there exists a scalar
c € C with f™uy = cvyy(n)-

For an arbitrary element fPvy # 0 € V(A\)® we fix the order of the factors
to obtain f™vy € V()). Then there exists an element x € U(n") such that:
fPvy = x(f™wvy). This implies with Remark 1.1.4: deg(f™) < deg(f™). d

Associated to the set n, we define a directed graph H(n) )g := (A%}, E). The set
of vertices is given by Aj\r and the set of edges F is constructed as follows:
V1<i,j<N: (6i£>,3j)€E<:>E|ak€¢)+: Bi — Bj = au.

We call this directed graph Hasse diagram of g associated to A. For our further
considerations H(n) )g is the most important tool.
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Example 1.1.6. The Hasse diagram H(n_,)s; is given by:

pi
’y Yt 61 - (1)15131)
/62 /83 52 = (0717171)
¥y N Y =(1,1,1,0)
Ba Bs 64—(0 0,1,1)
4 2 =(0,1,1,0)
h 86 4 = (0,0,1,0)
We define an ordered sequence of roots in A%: (B;,,...,3;,) with Bi; < Bij ., to

be a directed path from 3;, to B;,.

Remark 1.1.7. For our purposes we want to allow the trivial path (0) and any

ordered subsequence of a directed path to be a directed path again. So in Example
1.1.6 (p1, B2, Ba, Bs) and (1, B2, Bs) are two possible directed paths.

In general it is possible that two edges in H(n) )4, one ending in a root 3 and
one starting in 3, have the same label:

SN A}
We call this construction a k-chain (of length 2).
Associated to H(n} )y we construct two subsets Dy, Dy C P(A%) of the power
set of AY: For p € P(A?}) we define
(1.8) peDy:=p=A{Gi, .06}
for a directed path (8;,,...,8;,) in H(n) )g. So from now on by (1.8) we interpret
p € D) as a directed path in H(n) ),.

Remark 1.1.8. Let 3;,3; € Aj‘_ be arbitrary. Then there exist a p € Dy with
Bi, B; € p if and only if B; — B; or Bj — B; is a non-negative linear combination
of simple roots.

Remark 1.1.9. A staircase walk from (0,0) to (n,n) beyond the diagonal in
a n x n-lattice is a called Dyck path. In the general Ay-case ([FFoLlla]) the
constructed directed paths are Dyck paths in this sense. To be consistent with
their notation we call our directed paths Dy also Dyck paths.

Further we define the set of co-chains by
(1.9) Dy:={peP(A})|[pNp| <1,V pe Dy}
If necessary we use an additional index Dtype of o , to distinguish which type of
g we consider. We want to consider the 1ntegral pomts of a polytope which is
connected to D) in a very natural way. Fix A = mw;, with m € Z>q. Let
(1.10) P(mw;) ={x €RY| Y z; <m, Vpe Dy},

ﬁ] cp
be the associated polytope to D,,. Denote by S(mw;) the integer points in
P(mw;): S(mw;) = P(mw;) N ZJZVO. We define the map

supp; : S(w;) = P(AY), supp(s) = {B; | s; > 0}.
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For s € S(w;) we have with (1.9) immediately supp (s) € D,,,. Conversely every
p € D,, has a non-empty pre-image. With s € {0, 1} we conclude that supp,
is injective and that we have the immediate proposition:

Proposition 1.1.10. The map supp; : S(w;) — D, is a bijection. O

Hence in Section 4 it is sufficient to determine the co-chains in H(nj, )y to find
the elements in S(w;). Now we are able to formulate our main statements.

1.2. Main statements. Let g be a simple complex finite-dimensional Lie algebra
and A = mw; be a rectangular weight, with (w;,0) = 1 and m € Z>¢, where
0 is the highest root of g. Further we assume that H(n, )y has no k-chains of
length 2. In the following table we list up all cases where these assumptions are
satisfied. Additionally in the cases (By,w1), (Fa,ws) and (G, w1), we can rewrite
H(ng, )y in a diagram without k-chains of length 2:

‘ Type of g ‘ weight w; H Type of g ‘ weight w; ‘

An Wk, 1 S k S n ES w1, We
By w1, Wn E7 wy
Cy w1 Fy w4
Dy Wi, Wnp—1, Wy Go w1

TABLE 2. Solved cases

Let I(mw;) C S(n™) be the ideal such that V(mw;)* = S(n™)/I(mw;).
Theorem A.

Imw;) = S(n™) (U ospan{ "7 | g e ALY
Proof. This statement follows by Theorem 5.1.4. O
Theorem B. B, = {f%0mw, | s € S(mw;)} is a FFL basis of V (mw;)®.

Proof. In Section 2 we show that the polytope P(mw;) is normal. By Theorem
3.1.4 we conclude that B,,,, is a spanning set for V (mw;)®. After fixing the order
of the factors, with Theorem 5.1.2 we have a FFL basis of V (mw;). Because this
basis is monomial and V(mw;) = V(mw;)®* as vector spaces, we conclude that
B, is a FFL basis of V (mw;)®. O

1.3. Applications. To state an important consequence of Theorem A and The-
orem B we give the definitions of essential monomials due to Vinberg (see [V05],
[Gorl1]) and Feigin-Fourier-Littelmann (FFL) modules due to [FFoL13]. Let
A be a dominant integral weight. Recall that we have a homogeneous lexico-
graphical total order < on the set of multi-exponents induced by the order on
Af"_:
pr < P2 < < PN
In the following we fix a ordering on the factors in a vector

(1.11) SPux = fRN I T o
Definition 1.3.1. (i) We call a multi-exponent p € Zgo essential if

fPux & span{f9v) | q < p}.
(ii) Define es(V (X)) C ZJZVO to be the set of essential multi-exponents.
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By [FFoL13, Section 1] {fPvy | p € es(V(X))} is a basis of V/(A\)® and of V/(A).

Let M = U(n™)vpr and M = U(n™ ), be two cyclic modules. Then we denote
with M © M = Un™)(vy ® v) € M @ M the Cartan component and we
write M®" := M ®---® M (n-times).

Definition 1.3.2. We call a cyclic module M a FFL module if:

(i) There exists a normal polytope P(M) such that es(M) = S(M), where
S(M) is the set of lattice points in P(M).

(ii) Vn € N : dim M®" = |nS(M)|, where nS(M) is the n-fold Minkowski
sum of S(M).

Corollary 1.3.3. For the cases of Table 2 V(mw;) is a FFL module.

Proof. Proposition 2.3.1 shows that P(mw;) is a normal polytope. By Theorem
B a basis of V (mw;) is given by By, , hence with Lemma 5.1.1 we have S(mw;) =
es(V(mw;)).

Let n € N be arbitrary, then dim V (mw;)®™ = dim V (nmw;). Again by Theorem
B we have dim V (nmw;)) = |S(nmw;))|. Because P(nmw;)) is a normal polytope
and therefore satisfies the Minkowski sum property, we conclude |S(nmw;))| =
[nS (mw;))|. O

Remark 1.3.4. We note that in [FFoL13| the FFL modules are called favourable
modules.

2. NORMAL POLYTOPES

Our goal in this section is to show, that the polytopes defined in (1.10) are normal.
A convex lattice polytope P C RE| K € Zs, i.e. P is the convex hull of finitely
many integer points, is called normal, if the set of integer points in the m-th
dilation mP is the m-fold Minkowski sum of the integer points in P.

To achieve our goal we will prove the normality condition for a larger class of
polytopes in a more abstract setting than in Section 1.

2.1. General setting. Let A = {z1,29,..., 2K} be a finite, non-empty set with
a total order: z; = 29 = -+ = zx. We extend > to the (non-homogeneous)
lexicographic order on P(A), the power set of A. Let D = {p1,...,p:} C P(AQ)
be an arbitrary subset.

Remark 2.1.1. (i) To illustrate this non-homogeneous lexicographical order we
giwe for K > 3 an example:

{21, 22} = {z1} = {22, 23}
(ii) Let p = {ziy, ..., 2i, } € P(A) be an arbitrary set. We always assume without
loss of generality (wlog): zi, = -+ > z;,.
We can associate a collection of polytopes to D in a natural way:
(2.1) P(m)={x¢€ Rgo | Z zj <m, Vp € D}, m € Zxo.

zZ; €EP

To work with these polytope, in particular with the elements in D, we define the
following.
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Definition 2.1.2.
(1) For p € P(A) define pmin = m}in{z € p} and Pmax analogously.
(2) Let p,a € P(A), p={zi1,---» 2.}, A ={2j,,---, %), } With Pmin = Amax-
Then we define the concatenation of p and q by
PUA={%i,%iy -, 2, =Zj1, Zjas - - - 2, } € P(A).
2.2. Normality condition.

Definition 2.2.1. Assume D C P(A) has the following properties:
(1) Subsets of elements in D are again in D:
VACcpeD:AeD.
(2) Every z € A lies at least in one element of D:

Up=A
peD

(3) The concatenation of two elements in D, if possible, lies again in D:
Vp,q € D with Pmin = Amax: PUQ € D.
Then we call D C P(A) a set of Dyck paths.
We define for m € Zxg, supp,, : S(m) — P(A), by
t= (tz)zeA — Suppm(t) = {Z €A | l: > O}
Note that the map suppy is in general not injective. Furthermore we have
supp; (S(1)) € suppm(S(m)), because of S(1) C S(m) and suppm|g(1) = supp -

Remark 2.2.2. Let D C P(A) be a set of Dyck paths, then P(m) defined in
(2.1) is a bounded convex polytope for all m € Z>q.

By the definition of P(m) and the second property of D, which guarantees that
each z € A lies in at least one Dyck path, we have t, € {0,1},Vz € A, fort €
S(1). Hence supp, is an injective map and we get an induced (non-homogeneous)
total order on S(1).

Now we want to give a characterization of the image of supp; .
Remark 2.2.3. Let D C P(A) be a set of Dyck paths, then
(2.2) supp(S(1)) ={A e P(A) | |[Anp|<1,Vpe D} =T.

"C7: Assume there is an element t € S(1) with supp;(t) = A € P(A) and
|ANp| > 1 for some p € D. Then we have Y c s, t. > 1, sincet, >0, Vz € A.
And so we have: Y . t, > 1. But this is a contradiction to the assumption

t e S(1).

zEp

"2”: Let B € T be arbitrary. Associated to B we define q° € Zgo by ¢ =1

if z € B and ¢® = 0 else. By the definition of T' we have for every Dyck path
peD: Y o, q? < 1. Hence qP € S(1) with supp,(q”) = B.

Let s € S(m),m € Z>p,s # 0 be an arbitrary non-zero element. Consider
suppm(s) € P(A), we have P(suppm(s)) € P(A). Let
(2.3) V = (suppy(S(1)) N P(suppyy(s)) € P(A).

Note that V is a total ordered, non-empty set, because S(1) contains all unit
vectors and s # 0 by assumption. So there is a unique maximal element (with
respect to >), denoted by Mg € V.
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Lemma 2.2.4. Let D be a set of Dyck paths, s € S(m) non-zero and u € Ms.
Then we have s, =0 for all v € A such that (v > u and 3q € D: v, u € q).

Proof. We assume the contrary. That means there exists v € A with v > pu,
sy, # 0 and a Dyck path p € D such that v, u € p. Define

Vi={reMs|3dqeD:v,Tequv =71} C Ms

and M. := ({v}UM;)\ V. By assumption we have u € V and so |[V| > 1. Further
we have M. € P(supp,,(s)) and we want to show that M. € supp,;(S(1)).

We assume that this is not the case. So there exists some b € D such that
M. N'b| > 1. By the definition of V this can only happen, if there exists a
a € Mg with a > v and o,v € b. The following picture is intended to give a
better understanding of the foregoing situation.

1

._)y_)._).i)u, T177_2€V
[b

o —  —> - T2

We can assume wlog that by, = v and pmax = v, because subsets of Dyck
paths are again Dyck paths. So the concatenation b U p € D is defined and we
have a,v € b U p. But then, because of a,v € Ms: |MsNb| > 1, which is a
contradiction to Mg € supp;(S(1)).

So for all g € D we have |[M{ N q| < 1. By that and with M, € P(A) we
conclude M/ € supp,(S(1)). Therefore M. € V and by construction, because >
is a lexicographic order, M. >~ Mg, which is a contradiction to the maximality
of M. So the assumption on the existence of v was wrong, which proves the
Lemma. O

Proposition 2.2.5. Let D C P(A) be a set of Dyck paths, then we have for the
integer points S(m) of the polytopes P(m) associated to D:

(24) S(m—1)+S(1):S(m), Vm € Z>1,
where the left-hand side (lhs) of (2.4) is the Minkowski sum of S(m—1) and S(1).

Proof. Let m > 1. From the definition of P(m) and of the Minkowski sum follows
S(m —1)+5(1) C S(m). So it is sufficient to show that

(2.5) S(m — 1)+ S(1) > S(m)

holds. For that let s = (s;).ea € S(m) \ S(m — 1) be an arbitrary element. We
show that there exists an integer point t* € S(1)\{0} such that: s—t! € S(m—1).
We define for Mg defined as in (2.3):

(2.6) t! .= supp; 1(Ms) € S(1)\ {0}.

This element is unique because of the injectivity of supp;. Now we consider the
integer point s —t'. We know that there are no negative entries, because s, = 0
implies for all A € V: 2 ¢ A and so t. = 0. Hence s —t! € S(m) and so the
second step is to show that s — t! lies already in S(m — 1).



28 TEODOR BACKHAUS AND CHRISTIAN DESCZYK

To achieve that we assume contrary s — t' € S(m) \ S(m — 1), i.e. that there is
a Dyck path p € D such that:
Z(SZ —tH)y=m.

zep

Since s € S(m) we have:

(2.7) m:Z(szfti):Zsszti:Zszzmand Ztizo.

ZEP ZEpP ZEP zep zZ€EPp
N—— N~
<m >0

We want to construct another Dyck path p € D such that Zzeﬁ Sy > m.

Let 8 € A be maximal with the property 5 € p A sg > 0. In particular, since

> rep(8z — t!) = m we have pN Mg = ) and so 3 ¢ Ms. We define
p=p\{yeplv>4}

which is an element of D since subsets of Dyck paths are again Dyck paths. By

construction we have
E S, =m = E Sy.
zep’ zep

There are two possibilities to extend the path p’ with a further Dyck path p” € D:
(Z) pglin = B or (ZZ) pglax = Pmin-

To obtain a path p = p” Up’ (respectively p = p’ Up”) with > ep

extension p” has to satisfy the following condition: p” N Mg # (.

sy > m, the

Assume we are in the case (i7). Then there exists 7 € p” N Mg with s, > 0.
Further we have sg > 0 and 7,3 € p’ Up” = p € D. By construction we have
B < 7 and so Lemma 2.2.4 implies that sg = 0. This is a contradiction to sg > 0.

So we want to show the existence of a path p” € D with condition (i) and
p’ N Mg # (0. We assume contrary there is no such Dyck path p”:

(2.8) Vq € D with qmin = 8:q N Mg = 0.
Under this assumption and by using Lemma 2.2.4 we will show:
(2.9) Vq € D with € q: qN Mg = 0.

Assume (2.9) is not true, so there is some 8 # 7 € qN Mg for q € D with 5 € q.
Then we have two cases.

Let 7 > (3, then 7 and § lie in q. Now the path from 7 to 3 is again a Dyck path.
But this is a contradiction to Assumption (2.8).

Let B = 7, by 7 € N Mg we have t- # 0. Then Lemma 2.2.4 implies sg = 0,
which is a contradiction to the choice of f.

Therefore (2.9) holds. Recall the properties of Ms. We have

My = supp; (t}) € P(A) with [MsNq| <1, Vq e D.

Now consider M, := M;U{S} € P(suppm(s)). We will show that M, € supp;(S(1)).
For q € D with 8 € q we have |[M.Nq| =1 by (2.9).

For q € D with 8 ¢ q we have [M{Nq| <1by |Msnq|<1.

We conclude M/ € supp;(S(1)) and so

Mg € V = supp; (S(1)) N P(suppm(s))-
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But with M. > Mg we get a contradiction to the maximality of Ms.
So Assumption (2.8) was wrong and there exists

p” € D with p”. = B:p" N M # 0.

min
We recall that 5 ¢ Mg and therefore p # {3}. Define the concatenation of p” and
p' in B as p := p” Up’ € D which is indeed defined because p/.. = = Plax-
From Definition 2.2.1(3) we know that p is a Dyck path. Now by construction

we conclude
ZSZ: Z SZ+ZSZ > m.

ZEP zep” zep’
—— ——
>0 =m

But this is a contradiction to the choice of s € S(m) and the assumption
> .cp(8:—tL) = m was wrong. We conclude s—t' € S(m—1) and with tt e S(1)
we have s € S(m — 1) + S(1). Finally we get S(m) C S(m —1) + S(1). O

2.3. Consequences. We recall the construction of the Hasse diagram and the
Dyck paths from Section 1 and show that we can apply Proposition 2.2.5 to this
setup. Let A = mw; as before and we set A = A", D = D,,,. Then we have for
the associated polytopes:

P(m) = P(muw;).

For Aj\r ={p1,..., B~} we chose in Section 1 the order 8; < --- < Bx. To apply
Proposition 2.2.5 we can use the same order on the positive roots and extend
this order to the (non-homogeneous) lexicographical order on P(A%Y") as before.
We want to show that the Dyck paths defined in Section 1 are Dyck paths in the
sense of Definition 2.2.1.

(1) Every p’ C p € D,, is again a Dyck path: We saw that any ordered subset
of a directed path in H(ng, ) is again a Dyck path.

(2) For each 5 € AY" there is at least one p € D,,, such that § € p: The set of
vertices in H (n, )y is exactly A%". By construction we allow paths of cardinality
one, so for example the path (/) contains .

(3) Let p,p’ € Dy, be two Dyck paths, such that pmin = Plyax- Then there are
directed paths W, W' in H (n;i)g realizing p and p’ such that the end point of
W is equal to the starting point of W’. We consider the directed path, which we
obtain by the concatenation of the directed paths W and W’. This directed path
realizes p U p’. Hence p U p' lies in D,,.

With Proposition 2.2.5 we get immediately for S(mw;) = P(mw;)NZY,,m € Z> :

Proposition 2.3.1. S(mw;) = S((m — w;) + S(w;), m € Z>1. O
Finally we conclude that the polytopes constructed in (1.10) are normal convex
lattice polytopes.

3. SPANNING PROPERTY

Let g be a simple complex finite-dimensional Lie algebra, A = mw be a rectangular
dominant integral weight such that (w, ") = 1, where 6 is the highest root in
A4 and m € Z>p. In this section we show that By = {fvy | s € S(\)} is a
spanning set for V' (A)®. Recall that we have

VA= 5(ny)/ Iy,
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where I is the annihilating ideal of vy. We know that féy’\’alev A 1s zero in V()

(see (1.4)). Hence fo<[)"av>+1v)\ = 0in V(M\)®. By the action of U(n™) on V()% we
obtain further relations. We will see that these relations are enough to rewrite
every element as a linear combination of fSvy,s € S(\).

In our proof it is essential to have a Hasse diagram H (n, ) without k-chains. A
Dyck path is defined as before to be the set of roots corresponding to a directed
path in H(n, ),.

Let o be the action of U(n™) on S(g) induced by the adjoint action of n on
g. Via the isomorphism S(n~) = S(g)/S(g)(S+(nT@ b)) we obtain an action on
S(n7), where Sy (nT® h) C S(nt @ h) is the augmentation ideal. By

S(ny) = S(n7)/S(n)(span{fs | f € Ay \ A}
we get an action on S(ny). We denote this action again by o. Since the action

of U(nt) on V(A)® is induced by the action of U(n™) on V(A) (which is again
induced by the adjoint action), we obtain that for all e € U(n™), f € S(n})

(3.1) e(fuy) = (eo fuy,

holds. Therefore we can restrict our further discussion on the U(n™)-module
S(ny). Equation (3.1) and U(n*t)(fvy) = U(n")(0) = {0} for all f € I imply
that I is stable under o. Furthermore, by Remark 1.1.4 the total degree of a
monomial in S(n,)/I) is invariant or it is zero under o. We denote as before
Af‘r = {p1,..., B~} and use the same total order < on the multi-exponents (resp.
monomials) as defined in Section 1, which is induced by 1 < B2 < --+ < BN

We define differential operators; for o, 8 € A let
Oty = {fﬁ_a, if8—aeA)
« =

0, else.

The operators satisfy
aafﬁ = Ca,ﬁ[eaa fﬂ}’
for constants c, 3 € C. So instead of using o we can work with these differential

operators. We point out that we need the differential operators for arbitrary
roots in Aj.

Remark 3.1.1. Here we want to illustrate the problem which occurs if we allow

k-chains in our Hasse diagram. Let v < 3 < & the roots of a k-chain ~ LN I} ks
and consider for £ > 2:

(3.2) Rtl = 0u(f3fsh) = col f5 95 + b€ — 1) 51572,
N————

mazimal monomial

. _ _ 2
with co = Cy,0,C8,0, and C1 = 3 o where ¢y.a,,C8,q, are the structure constants

corresponding to [eq,, fa] and [eq,, fy] respectively. So it is more involved to find
a relation which contains 8 and §.

The next Lemma describes the action of the differential operators and gives an
explicit characterization of the maximal monomial of 9, f% for certain v € Ay
and s € ZJZVO.

Lemma 3.1.2. Assume H(n) )y has no k-chains.
(i) Let p = {Bi,,...,Bi.} € Dx with B;; < --- < B;, and v € A, . Further let
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Bin, k < 1 be mazimal such that ayfgik # 0. Let s € Zgo be a multi-exponent

supported on p, i.e. sg3 =0 for 3 ¢ p. Then the mazimal monomial in OLf% =
az/l(f,il o fiT)s U< sy, s given by

TR A (A o VRS g
(ii) Let Zuezg"o caf*€S(n7) andv € Ay, Leth = m_z}x{u | Oy f* #0,cq # 0}.
Further let By = mjx{ﬁ | fsis a factor of f*,0,f3 # 0,cu # 0} and assume

hg, > 0. Then forl < hg, the mazimal monomial in

0, Y cuf'= ) cudlf*

ueZgO uGZgO
appears in OLfP.

Proof. (i) Assume we have two roots 3;, 3; € Af\F with 3; < 3; and 8; — v and
Bj — v are again roots in Aﬁ‘r. For 3;, —v ¢ Aﬁ‘r we have &,fgil = 0, so we do
not need to consider such roots f;, € Ai. So in order to prove (i), because our
monomial order is lexicographic, it is sufficient to show that

(3.3) ,3i<ﬁjéﬁi—l/<ﬁj—l/.

If B; > ; with respect to the standard partial order we have 8; — v > ; — v and
therefore 3; — v < B; — v, by the choice of the total order (1.6) on Aﬁ‘r.

If the roots are not comparable with respect to the standard partial order, the
second step is to compare the heights of the roots. So if ht(5;) > ht(5;) then
ht(8; — v) > ht(8; — v) and again 3; —v < §; — v.

If ht(B;) = ht(B;), we have to consider 3; = (s1,...,,) and f; = (t1,...,t,) in
terms of the fixed basis of the simple roots (see Remark 1.1.3). Then there is a
1 < k < n, such that s > t; and s; = ¢; for all 1 <i < k. Let v = (uy,...,up),
then B; —v = (s1 — u1,...,8, — uy) is lexicographically greater than §; — v =
(t1 —w1,...,tp —uy). Thus f; —v < B; — v and (3.3) holds.

(71) We only have to consider the multi-exponents s € Zgo such that 9, f% # 0.
Now let t be the maximal multi-exponent with this property and let [ < tg,.
Then we have 9. ft # 0 and by (i) the maximal monomial appearing in 9. f* is

1 tg —1 t

(3.4) TE A | B
BeA?) BBy
BF#Br—v

The observation (3.3) tells us that fg, —, = max{fs_, | 9, f3 # 0,53 > 0}. So by
the choice of t and because our order is lexicographic, the element (3.4) is the
maximal monomial in ) zy, csOLf5. O

Proposition 3.1.3. Assume H(n) )g has no k-chains and let p € Dy be a Dyck
path, s € ZJZVO be a multi-exponent supported on p. Suppose further (X, 0Y) =m

and Y so >m. Then there exist constants ¢y € C, t € ZY, such that:
aEp -

(3.5) P Y aste b

t<s
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We follow an idea of [FFoL11a, FFoL11b] who showed a similar statement in the
cases sl, and sp,, for arbitrary dominant integral weights.

Proof. Let p = {79, 71,...,7r} € Dy be an arbitrary Dyck path. By construction
we have for 1 <4 <7r: 7,1 < 7;. Because >, s, > m we have

Srg + o+ St
fa 0 € I,.

By the construction of the Hasse diagram there is a Dyck path p’ € D, with
p C p’, such that there is no path p” with p’ C p”. Hence we can assume wlog

={r=0,7,...,7—1,7 = Bn}.

Let Vi Uy € Ay, with v; # ;41 be the labels at the edges of p. We consider
fSTU ot € I. Because I is stable under o, we have for arbitrary x1, ..., z; €
Ay and f* e Iy

axl A (%;lft S I>\.

We define

St Srg F o+ Sr ST T S L Srg F o F ST
(3.6) A=0"..0" "o A

vp vo

e I.

Claim: There exist constants cs # 0,¢¢ € C, t € Z]ZVO with t < s, such that:

(37) A=csf®+ Z tht SN

t<s
If the claim holds the Proposition is proven.

Proof of the claim. Now we need the explicit description of the Dyck paths
given by the Hasse diagram. Above we defined v to be the label at the edge
0 —% 71 in H(n} ). Because we assumed that H(n) )y has no vi-chains of length
2, there is no edge labeled by 17 starting in the vertex § — v = ;. That means
8” f97V1 = 0. Therefore we obtain

+ -t Sr. + o+ s, st Sq,
8ST1 Sr fs7-0 Sr Ofs.ro fsfl St

vy 6 0—vq

el

for some constant ap € C\ {0}. Now 15 is the label at the edge between the
vertices 71 and 7o. Again there is no vp-chain in H(n) )g, so 0y, foru, ., =0and
Oy fo_,, =0, so we have for k = min{sy,, s, + -+ s}, by € C\ {0}:

8:2 + -+ s, ofsm fsn c+ 87, _
(3.8) s
To pST1 STt ST sn +t4q Syt 8. —q g
b[) f f9 vy f9 vy —vo + quf 0 vy f07V17u2 fG*VQ'

For our purposes, we do not need to pay attention to the scalars unless they are
zero. We also notice that the terms of the sum are only non-zero, if § — vy € Ai.

The first part of Lemma 3.1.2 implies, that the monomial f, o0 f:ﬁVl fjmyzL vy e
is the largest (with respect to <) in (3.8), because § < 0 —v; < 0 — v — vs.
By construction 0y, ,, fo—1,—vy—...—1; # 0, because 0 —vy —vg —- -+ —v; — ;11 is an

element of Aﬁ‘r, for ¢ < r. So the second statement of Lemma 3.1.2 implies that
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the largest element is obtained by acting in each step on the largest root vector.
To be more precise, we consider the following equations:

687—,‘..'6372+"'+37T6371+"'+37Tf370+"'+srr:
v vy vy 6
St Stg + 81 nSrg pSmyp toc ST
apd," ... 9, A =
St Stg + o+ Sr. Srg ST Sty et Sr, .
bod " ...0 " R ’ + E smaller monomials =
v v3 6 —v1 Y 0—v)—vg

ST,

+ Z smaller monomials € 1.

s S S
6ng()f9T1 f972 "'f

—vq v —vy 0—v)—vg—-—v

for some b € C\ {0}. But the last term is exactly what we wanted to obtain, so
for constants ¢y € C, ¢s € C\ {0} we have by assumption that s, = 0 if « ¢ p:

ST, St + F Sr. ST+ F Sy, Sr()+"‘+57,,.7
a," ... 31/2 3V1 7, =
Stg pST1 pST2 St t
AT AT AL Sy o
t<s
S t I
csf? + ceft € Iy
t<s

Theorem 3.1.4. The set {f5vy | s € S(\)} spans the module V (X)*.

Proof. Let m € Z>¢p and t € Zgo with t ¢ S(\). That means there exists a Dyck

path p € Dy such that ) ¢g > m. Define a new multi-exponent t’ by
Bep

o — t,37 lfﬁ €p,
e 0, else.

Because of > t% = Y tg > m we can apply Proposition 3.1.3 to t’ and get
Bep Bep

F9=" o f¥ € S(my)/1,
s’ <t/

for some ¢y € C. Because the order of the factors of f* € S(n}) is arbitrary and
since we have a monomial order, we get

(3.9) Fr=r T 1 =D esf® € S/,

ﬂ%p s<t

where ¢s = ¢y and f5 = f¥ Hﬁﬁ) f;ﬁ Equation (3.9) shows that we can express
an arbitrary multi-exponent as a sum of strictly smaller multi-exponents. We
repeat this procedure until all multi-exponents in the sum lie in S()\). There are
only finitely many multi-exponents of a fixed degree and the degree is invariant
or zero under the action o. So after a finite number of steps, we can express t in
terms of r € S(\) for some ¢, € C:

=Y affeShy)/h

reS(\)
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Corollary 3.1.5. Fiz for every s € S(\) an arbitrary ordering of the factors fg
in the product H5>0f;5 € S(ny). Let 5 = H5>0f;/3 € U(n™) be the ordered
product. Then the elements fSv,,s € S(X) span the module V (X).

Proof. Let ftvy € V()\) with t € ZZEV arbitrary. We consider ftvy as an element
in V(A)%. By Theorem 3.1.4 we get

ftuy = Z csfPuy in V(A)2.

seS(N)

The ordering of the factors in a product in S(n} ) is irrelevant, so we can adjust the
ordering of the factors to the fixed ordering and get an induced linear combination:

ftoy = Z csf3vy in V(A).

seS(N)

4. FFL Basis oF V(w)

Throughout this section we refer to the definitions in Subsection 1.1. In this
section we calculate explicit FFL bases of the highest weight modules V(w),
where w occurs in Table 2. We will do this by giving characterizations of the
co-chains p € D,, (see (1.9)) and using the one-to-one correspondence between
D,, and S(w) (see Proposition 1.1.10).

The results of this section, i.e. B, = {fSv, | s € S(w)} is a FFL basis of V(w),
provide the start of an inductive procedure in the proof of Theorem 5.1.2. With
Proposition 2.2.5 we will be able to give an explicit basis of V(mw), m € Z>,
parametrized by the m-th Minkowski sum of S(w).

4.1. Type A,. Let g be a simple Lie algebra of type A, with n > 1 and the
associated Dynkin diagram

Ay

o O===0

o
2 3 4 n

1
The highest root is of the form § = 3" | ;. Since a Lie algebra g of type Ay is
simply laced we have 8¥ = >"" | o) and so (w,0") =1 w € {w; | 1 <k <n}.
The positive roots of g are described by: Ay ={a; =Y 7_ oy |1 <i<j<n}
So for the roots corresponding to n;, we have:

Before we define the total order on AY*, we define a total order on A:

B1 = a1,
P2 = aon, B3 =0a1n-1,
B1=a3n, B5 = a2n-1, B = a1n-2,
T
Bnn-1)/241 = Oy Bumn-1)/242 = n—1,""" 5 Bn(nt1)/2 = Q1.
Now we delete every root §; € Ay \ A%* and relabel the remaining roots. For
an example of this procedure see Appendix, Figure 2 and Example 1.1.6. In the

following it is more convenient to use the description «; ; instead of §;. First we
give a characterization of the co-chains p € D, C P(AYF).
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Proposition 4.1.1. Let be p = {a, j,, ..., j,} € P(AL*) arbitrary, then:
(4.2) P € Dy, &V, s Qinjm €Dy 61 i 1 <im < k <1 < jim-
Further we have: p € Dy, = s < min{k,n+ 1 — k}.

Proof. First we prove (4.2): “<”: Let p = {a, j,,. .., 5, } € P(AL*) be an el-
ement with the properties of the right-hand side (rhs) of (4.2). Let o, j,, @i, jm €
P, with i; < 4,,. Consider now:

I Jm im—1 Jm
s = Qi = Y 0= D, 0r= D> ar= ), ar
r=i; T=1lm r=i r=j+1

Since j; < jm holds, Remark 1.1.8 implies that there is no Dyck path q € D,
such that o, ;, and «;, j are contained in q.

“=7: Let be p € Dy, and «;, j,, Qi,, jn, € P With oy, j, # i,, ;... Further we have
0 < Jisim < Jm. Assume wlog iy, = jm, then o, ;. = ai and 7; < j;. Hence

k—1 J
ail,jl — O = E Qp + E Qp,

r=i; r=k+1

which is a contradiction to p € Ewk by Remark 1.1.8. So i; < ji, im < Jm and we
assume wlog i; < iy,.

1. Step: i; = iy, =: y. Set x = min{j;, jm } and T = max{Jji, jm }:
T T z
Oéy,f_ay,xzzar_zar: Z Q.
r=y r=y r=x+1
Again this contradicts to p € D, . Hence we have: i; < ip,.

2. Step: (i; <im) A (Ji = jm =: 2):

T x im—1
Qg — Q0 = E Qo — § Qp = E Q.
r=i; r=im r=i;

We conclude: j; # jm.
3. Step: (i; < im < jm) A (i; < ji1). So there are three possible cases:
(a) i; < J1 <'im < Jm, (b) @1 <t < J1 < Jm and (¢) i < im < Jm < Ji-

The case (a) can not occur because k < j; < iy, < k is a contradiction. So let us
assume a, j,, &, j,, satisfy the case (c), then we have:

Ji Jm im—1 Ji
Qipgp = Wiy, = E Qr — § Qp = E oy E Q.
r=1; r=im r=i; r=jm

Finally we conclude that for two arbitrary roots o, j,, @i, jm € P € De, with
1 < i we have: i; < i, < 51 < Jm-

It remains to show that the cardinality s of p is bounded by min{k,n + 1 — k}:

1. Case: min{k,n +1—k} = k. Let o, ; € P be an arbitrary root in p.
Then we know from (4.1) 1 < 4, < k. But we also know that for any two roots
Gy > X G € P We have i # 4. So there are at most k different roots in p.
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2. Case: min{k,n+1—k} =n+1—k. For two roots a, j,, %, j. € P we have
g1 # jm and k < ji, jm < m. So the number of different roots in p is bounded by
n+1-—k.
Finally we conclude: |p| = s < min{k,n+ 1 — k}. O
Remark 4.1.2. Let p = {a, j,- .., Qi j. } € D, then (4.2) implies

1 <tg < - <ty <k< g1 <jag< < Js.
Assume wlog k = j1 = ja, then there is Dyck path containing oy, j, and oy, j,,
because o, j, — Qiy gy = Qi is—1 € A

Because of Corollary 3.1.5 we know that the elements {f5v,, |s € S(wy)} span
V (wy) and by Proposition 1.1.10 there is a bijection between S(wy) and D,,,. We
want to show that these elements are linear independent. To achieve that we will
show that |D,, | = dim V (w). To be more explicit:

Proposition 4.1.3. For all 1 < k < n we have: | D, | = dim V (wg) = ("Zl)
Proof. Let V(w1) be the vector representation with basis {e1, ez, ..., en41}. Then
AV (w1) is a U(g)-representation with v,, = ej Aey A--- A eg:

(4.3) foél.l’jlvwk =er N Nej—1Nejr1 Nejr1 A Neg,

and we have A"V (w1) = V(wp). W;e define fpvu, = fai, j, fai, ~~faim,j1vwk
for b = {i, jis Qs jos - - s Wiy jim b € Do, and claim that the set { fpvw, | P € Dy }
is linear independent in /\kV(wl). If the claim holds we have |D,,, | < dim V (wy)
and with Corollary 3.1.5 we conclude that |D,,| = dim V (wy) = ("}).

Proof of the claim. Assume we have Py = {, ji, Qg jos - - - » Qi jiy + a0 Py =
{Qsy 41y Qsy gy -+ s syt b in Dy, with linear dependent images under the action
(4.3), i. e. fp,V;, = £[fp,V0,. Then we have m =€, {j1,...,jm} = {t1,..., ¢}
and we can assume wlog: m = k = £. Hence: fp v, =e€j A+ Nej, = T fp,00,,
with Remark 4.1.2 we conclude p; = ps. U

Example 4.1.4. The non-redundant inequalities of the polytope P(mws) in the
case g = sly are:
1+ x2+ T4 +26 <M
P(mws) = x € RS, | 1+ z2 + x5 + 26 <m
B 1+ a3+ w5 +x6 <M
Ezample 1.1.6 shows the corresponding Hasse diagram H (n, )s; -
Proposition 4.1.3 implies immediately for 1 < k < n:
Proposition 4.1.5. The vectors fSv,,,s € S(wi) are a FFL basis of V(wg). O

4.2. Type B,. Let g be a simple Lie algebra of type By,n > 2 with associated
Dynkin diagram

B, o o---o0 0o==o
1 2 n-2 n-1 n

The highest root for a Lie algebra of type By is of the form 6 = oy +2>7 , ;.
So we have ¥ = o) + 237 af + ) and (w,0Y) =1 & w € {w1,wn}.

First we consider the case w = wi;. We want to consider the case By, w; sepa-
rately. Because there are not enough roots, this case does not fit in our general
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description of By, w;. We claim that the following polytope parametrizes a FFL
basis of V (mw1), m € Z>o:

x2+x1 <m
P(mw) = {X € R;O | }

Totrz3 <m
We fix 51 = (2,1), 82 = (1,1), B3 = (1,0) and the order fa < 1 < 3. Then with
Proposition 2.2.5 it is immediate that this polytope is normal. The following

actions of the differential operators imply the spanning property in the sense of
Section 3 Proposition 3.1.3.

L2 = co {1 f52 + smaller terms € I

Q52t2ss fo288 — ¢y f32 £33 + smaller terms € Iy, ¢; € C\ {0}

We conclude that {f5v., | s € S(mwi)} = {vwr, fivw, s foluw,, f3Vw,, fi 30w, } s
a spanning set of V' (wy).

Now we consider the case n > 3. If we construct H(nj, )q as in Section 1 we get
a n-chain of length 2. Therefore we choose a new order on the roots and change
our Hasse diagram slightly to obtain a diagram without k-chains of length 2. We
illustrate this procedure for g of type Bz. Then the roots A¥' are given by

’61 - (17272) ‘ B2 = (17172) ‘ B3 = (17171) ‘ By = (17170) ‘ Bs = (17070) ‘

We choose a new order

B1 < P2 < Pa = Ps < B3,

and change the Hasse diagram

B2
2 3 3 2 011 A Y12
fr—— P2 — B3 — B4 — B5 ~ 1 — B3 Bs.
Nz g
B4

First we check, if the new diagram has no k-chains. The first edge is labeled
by as + a3 = 011 and we have 3 — (ag + a3) = P5. If we have a monomial
f1f§2 € S(n,,), k1, k2 > 1 and we act by Jayias We get:

ki—1 phot1 ki pho—1
cofit T f3FT Feafit f3P  fs, e C

By the change of order B3 is larger than 5 and so fflflf:fg“ - ffl 5271f5.

Therefore we can neglect the edge between 3 and fs.

Now we consider 853]"{“ 52. Because of 0q, f3,0ny fo = 0 we get flkl_]%fé€2 53
for k3 < k1. So instead of drawing an edge directly from 3; to B2, we can draw
an edge, labeled by 2, from (3 to (2. Similar, because of 51 — ag — 2a3 = B4, we
can draw an edge labeled by 012 from B3 to 4. The other edges do not cause
any problems.

The second step is to show that the paths in the new diagram, define the actions
by differential operators and the corresponding maximal elements like in Section

3 Proposition 3.1.3. By the choice of order we get the following equalities:

0% 420y 052058 L o, JTITEOTS2H0 = o 71 f52 f32 f2° + smaller terms € I,
053058 0y O FE 45 — a1 59 5325 + smler terms € 1,
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with ¢; € C\ {0}. In the general case, for arbitrary n > 3, we have N = 2n — 1.
Let 7 := [N/2], then A¥' is given by:

Bi=(122...2] fo =(,1,2,....2,2) | ... [Bi=(1...,L2)
=(LLL.. )| B=00L1...1,00| ... | By =(1,0,...,0,0)

Then the only n-chain has the following form 3, y By SRLIN Br+1 We change
the order from f1 < B2 < --- < By to

(44) ﬁl'<62"<""<ﬁr—1'</87'+25"'55N—1jﬁr+l'<BN'<ﬁr-

The modifications of the diagram are similar to them in the case of Bs, so the
Hasse diagram for a Lie algebra of type By has the following shape

B2
9 012...2
0110...0 4 5 n 001...12 n-1 n-2 4 / \
Br —— B3 — B4 — = — Br — Bry1 — Bry2 — - — BN_2 BN
012.2\, /%
BN-1

Associated to the diagrams we get the following polytope for m € Z>q:
T1+xa+---+zxTy_2t+tzTN <M
(4.5) P(mw) = {X € Rgo } .

r1+x3+--+axy_1+axy <m
By Section 3, Corollary 3.1.5 the elements

Uw17flvw17f2vw17 ERE vaprfN—l'le

span V(w) and with [Car05, p. 276] we have dim V' (wy) = 2n + 1.
Proposition 4.2.1. The vectors fSv,,,s € S(w1) are a FFL basis of V(wy). O

Proof. The previous observations imply that {f%v,,,s € S(w;1)} is a basis of
V(w1). So it remains to show that P(wj) is a normal polytope.

Because we changed the Hasse diagram we have to change the order of the roots
to apply Section 2. One possible new order is given by:

P1<B3 <Py << BNn_2=<PB2=<pPn-1<0BN.

Using this order we see immediately that P(w;) is a normal polytope. O

Now we consider the case w = wy,. In the following it will be again convenient to
describe the roots and fundamental weights of B, in terms of an orthogonal basis:

(4.6) Ai":{Ei’j:Ei—l-Ej|1§i<j§n}U{€k|1§k‘§n}.

The total order on A" is obtained by considering the Hasse diagram. We begin
with 81 = 6 on the top and then labeling from left to right with increasing label
on each level of the Hasse diagram, which correspond to the height of the roots
in A¥". For a concrete example see Figure 3 in the Appendix. The correspond-
ing polytope is defined as usual, see Table 3 for an example. The elements of
AL correspond to g;; = Zi;zl ar +23 0 cap and e = >0 4 . The highest
weight of V(wy,) has the description w, = %Z?:l er. Further the lowest weight
is —w, = —% >on_, &r. With this observation, the fact that w,, is minuscule and
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(4.6) we see that

1 n
(4.7) By, = {favwn | = §er€r,lr e{-1,1}, Vi<r< n} C V(wn)

r=1
is a basis. We note that [By ()| = 2" = dim V(wy).

Remark 4.2.2. For an arbitrary element p € Ei'; we have at most one root
of the form Ek € ﬁ, because if there are ek, e, € P (wlog k1 < ka) we have:
Ek ZT kl ar. So with Remark 1.1.8 we know that there is a Dyck path

p <€ Dwn with €k, , €k, € P. This observation implies that the elements p € bi‘;
have two possible forms:

(4.8) (B1) P = {ex, €ig,joy - - - 7€’ir,jr} or (B2) p= {6i1,j17 s 7€it,jt}'
So we can characterize the elements p € bi“n as follows.

Proposition 4.2.3. For p € P(AY") arbitrary we have:

Ba {p is of the form (B1), with (a) and (b),

(4.9) peD P is of the form (Bz), with (b).

1, D is of the form (By),
|, D is of the form (Ba),
with s = |p|. The properties (a) and (b) are defined by
(a) Vi<i<s: k<il<jl,
(b) vo‘iz,jlvo‘imdm EP, UL <t < Jm < JI-

. __ —B s<[2
In addition: eD’ = — 12
p Wn s S LTL

Proof. First we prove (4.9): “<": Let p = {€k, €iy jo, - - - » €is,j, } D€ an element of
form (B;) with the properties (a) and (b). Assume there are two roots z,y € p
such that there exists a Dyck path q € D,,, containing them.

1. Case: x = ¢ and y = €;,, j,., for 1 < m < s. Then we have

Jm—1 im—1
Eimygm — €k = E o + 2 g o — g oy = g o + g Q.
T=1m r= ]m r= Jm

Hence there is no Dyck path q € D,,, such that z and y are contained in q. This
is a contradiction to the assumption.

2. Case: z = ¢, j,, and y = g;, j,, wlog 7; < i,,. Then we have

Ji—1 Jm—1 n im—1 Ji—1
€irgi = Eimjm = g oy + 2 E Q. — E oy — 2 g oy = g oy — g [e 7%
r=i; r=j T=lm r=Jm r=i; r=Jm

.. _ . —B,
This is a contradiction to our assumption and hence: p € D,

Let p be of form (Bs) with property (b), and assume there are two roots z,y € p
such that there exists a Dyck path q € D,,, containing them. Like in the second

. . . . —B
case of our previous consideration the assumption is false and therefore: p € D ;.
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“=": Let p € Eff;. Then we know from Remark 4.2.2 that p is of the form
(B1) or (B2). Let p = {ek,€i1 j1»---»Eis,j, } be of form (By), with ¢; < j; for all
1<l <s.

1. Step: Assume 31 <m <s: k> i,. Then we have:

Jm—1

k—1 n
Eimriim = sk—ZaT—&—QZaT ZO‘T_ZO"“—FZO"“

r=im r=Jm r=im T=7m

. . —B, .
So by Remark 1.1.8 this contradicts p € D, . Hence: k < iy, for all 1 <m <.
Let €i, j,s €ipn,jm € P be two roots with e;, j, # €, j,.- We assume wlog i; < iyy,.

2. Step: Assume i; = i, =: y. Set x = min{j, j,,} and T = max{jj, jm }:
r—1 n rz—1 n z
S SR SR SIS S oo
r=y r=x r=y r=T r=x

Again by Remark 1.1.8 this contradicts p € bi’; and we have: i < ip,.

3. Step: Let i; < i,, and assume j; = j,,, =: x, we consider:

Tm—1
€0 — Cimz = E o + 2 g oy — g oy — 2 E oy = E Q.
r=i; T=lm r=i;

This contradicts p € 5‘;; by Remark 1.1.8, s0: j; # jm.
4. Step: (i; < im < jm) A (i1 < j7). So there are three possible cases:

(a) i; < J1 <'im < Jm, (b) 01 <t < J1 < Jm and (¢) i < i < Jm < Ji-

Let us assume ¢;, j, and &;,, ;,, have the property of case (a):

ni—1 Jm—1 Gm—1 im—1 jm—1
Civgi ~Cimadm = E 2 E Q= E ap—2 E ap = E p+2 E ar+ g Q.
r=i, r=j T=lm T=Jm r=i; r=ji r=im

This contradicts p € Ez“n by Remark 1.1.8. We assume now that ¢;, ;, and €;,,, j,.
have the property of case (b):

Ji—1 Jm—1 im—1 Jm—1
67:lvjl - 87;'myjm Z Qp + 2 Z Qp — Z Oy — 2 Z Qp = Z Qy "l_ Z (67"
r=i r=Ji r=im r=jm r=i r=ji

Again by Remark 1.1.8 this contradicts p € Ei“n. Finally we conclude that two
r00tS €4, 4> Eimm i € P, With 4 < iy, satisfy (¢): 4 < iy < jm < j;. To prove this
statement for a p € 521 of form (Bg) we only have to restrict our consideration
to the second, third and fourth step.

It remains to show that the cardinality s of p is bounded by [§] respectively
|5]. Again we consider the two possible cases:

1. Case: p = {€k,€is jos - - - » iy, js ; 18 Of the form (Bp) and we assume |[p| = s >
[5]. Then we know from our previous consideration that after reordering the
roots in p we have a strictly increasing chain of integers:

(4.10) Cp: k<ig<izg - <ig<jJs<Js—1<---<J3g<Jjo
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So there are 2s — 1 different integers, where each of these correspond to a ; for
1 <4 < n. By assumption we know 25 —1 > 2([5] +1) — 1 > n + 1, but there
are only n different elements in {e, | 1 < r < n}. So this is a contradiction and
hence: |p| =5 < [§].

2. Case: p = {&i, j,»- - -,Ei,,j, } is of the form (B2) and we assume |p| = s > |5 ].
As in the first case we have a strictly increasing chain of integers:
(4.11) Cp: iy <ig-- <ig < jJs < Js—1 < - <J2a<J1.

So we have 2s different integers corresponding to at most n different elements in
{er | 1 <r < n}, but by assumption we have 2s > 2(| 5| 4+ 1) > n+ 1. Again we
have a contradiction and therefore: |p| = s < [5]. O

Because of Corollary 3.1.5 we know that the elements {f5v,, |s € S(wy)} span

V(wy) and by Proposition 1.1.10 there is a bijection between S(w;,) and 52’;
We want to show that these elements are linear independent. To achieve that we

will show that |D " | = dim V(wy). To be more explicit:
Proposition 4.2.4. ]D | = dim V(wy,) = 2".

Proof. We know from (4.9) that for an arbitrary element p € D the number
of roots s in P is bounded by [§] respective by |5 |. So the number of integers
occurring in Cp (see (4.10) and (4.11)) is also bounded:

_1< ny]_ 1< .
(4.12) |C|:{25 1<2[5]-1<n, pisof the form (By),

25 <2|5] <mn, P is of the form (Bs).

In order to simplify our notation, we define [ := |Cg|, so we have for an arbitrary
pe 5 : 0 <1 < n. Further we define the subsets D" wn (1) C D

(4.13) D (l):={peDr ||Csl =1}, VO<I<n.

So the elements in Ew“n(l) are parametrized by [ totally ordered integers wu; in

{r|1<r<n}, V1<i<I Hence we conclude: ]Ei’;(l)\ <(}),v1i<i<n
and so

(4.14) == U e = Dru<> (7) = om,
=0 =0

We also know from Corollary 3.1.5 that we have |Ei’;| > dim V(wy,) = (}) = 2™
Finally we conclude: |ﬁi‘;| = 2" O

Example 4.2.5. The polytope P(mws) in the case g = s07 has the following
shape.

r1+ T2+ 23+ x5 +26 <M
P(mws) = {X€R620| }

T1+To+Ta+ x5 +36 <
Proposition 4.2.4 implies immediately:

Proposition 4.2.6. The vectors f5v,,,,s € S(wy) are a FFL basis of V(wy). O
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4.3. Type Cy. Let g be a simple Lie algebra of type C, for n > 3 with the
associated Dynkin diagram

Cn ) 0---o0 o=x=o
1 2 n-2 n-1 n

For all fundamental weights wy we have (wy,0Y) = 1, where 6 = (2,2,...,2,1)
is the highest root and #¥ = (1,1,...,1) the corresponding coroot. But only for
wi the associated Hasse diagram H (n;l)g has no i-chains. In fact for 1 < k < n,
H(ng, )g has k — 1 different i-chains, with 1 < < k — 1. The following example
explains, why we are not able to rewrite the diagram in these cases, with our
approach.

For all wy with k # 1 we have the following 1-chain.

B = By = Ba.

Here 51 = 2a1+- - -+2ay,— 1+, is the highest root, B2 = a1 +2as+ - -+20u, 1+,
and 3 = 2a9 + -+ - + 21 + . Note that 81 — 83 = 2aq, which is not a root.
Further, because j3; is the highest root, there are no roots v € A, v € A%* with
Oy f, = f3, except for v = (3. Hence it is more involved to rewrite the diagram
into a diagram without k-chains such that there is a path connecting 8; and 3.
Nevertheless, in [FFoL11b] similar statements to Theorem A and Theorem B
were proven for arbitrary dominant integral weights.

Now we consider w = wi. Then we have 2n — 1= N and AY is given by

/81 :(2727"'7271) 62 :(1727"~7271) ﬁn:(lvlvalvl)
ﬁn-i-l:(l?la"'vl’()) 5n+2:(17"'717070> BN:(17077070)

The diagram H(n; )y has the following form.

1 2 3 2 -1 1 2
Bi = Ba = Bz 5 Bt o B = Bt — - > BN

There are no k-chains and the associated polytope is given by
P(mw) :{XGRJZVO |1+ 22+ + a2y <m}.

By Corollary 3.1.5 the elements v, fiv,, foUu, ..., fNU, span V(w) and with
[Car05, p295] we know dim V' (w) = 2n. From these observations we get immedi-
ately:

Proposition 4.3.1. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w). O

4.4. Type D,. Let g be a simple Lie algebra of type D, with associated Dynkin
diagram

°
Dn o o---o0 o/H-1
1 2 n-3 n—2\°

n

The highest root in type D, is of the form 6 = a; + 22?;22 a; + ap_1 + .
Since g is simply-laced we have ¥ = af + 2372 a) + Y, + Y. Hence

(w,0V) =1 w e {w,wn—1,wn}

First we consider the case w = wi. Then we have 2n — 2 = N and Aﬁl has the
following form:

B =(1,2,2...,2,
Bp1=(1,1,1...,1
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The Hasse diagram has no k-chain. In addition in D,,, there are only co-chains
of cardinality at most 1, except for one with cardinality 2.

ﬂnfl
2 3 4 n-2 n_l/ n\ n-2 n-3 2
Bl HBQHB?)" "‘H/Bn72 BnJrl Hﬁn+24>"'H/BN-
n\ n-l/
Bn

Associated to this diagram we get the following polytope for m € Z>q:
N it F T2t TptTppr o F TN ST
= ' n+t+-trpotxT, +trpaato-try<m

By Corollary 3.1.5 the elements B, = {vw,, f1Vu;, [2Vuwys -« s fNVwys fne1fnVuw, }
span V(wp) and with [Car05, p. 280] we have dimV(w;) = 2n. From these
observations we get immediately.

Proposition 4.4.1. The vectors fSv,,,s € S(wi1) are a FFL basis of V(wy). O

For most of the proofs of the statements in the case w = w,_1,w, we will refer
to the proofs of the corresponding statements for type B,.

Now we consider the case w = w,_1. For further considerations it will be conve-
nient to describe the roots and fundamental weights of g in terms of an orthogonal
basis {&; | 1 <i < n}. Then AT""" is given by

(4.15) {Ei,j:5i+5j |1§Z‘<j§n—1}U{€kﬁ=€k—€n | 1§k§n—1}.
The total order on A$" " is defined like in the By, wy-case (see Figure 3). The
elements of A" correspond to ¢;; = Zf;ll oy + 2 Z:};f oy + o1 + oy and
Ekm = Z:}:—;y a,. The highest weight of V(w,—1) has the description w,_1 =
1 n—1

5 (Zr:l &p — 5n>. Further the lowest weight is —w,_1 = —% (Zf;ll Ep — z—:n).

With this observation, the fact that w,_1 is minuscule and (4.15) we see that

1 n
By (w, 1) = {favwnl |a= 3 erar,lr =41, VI<r<n, 2¢4#{. |1, = —1}}

r=1
is a basis of V(w,—1). We note that [By(,, )| =2""1=dimV(w,_1).
Remark 4.4.2. Similar arguments as in Remark 4.2.2 show that the elements
pc 52:71 have two possible forms:
(4'16) (Dl) P= {Ekﬁ’ ig,jasr - - aeimjr} or (DQ) P= {gilyjl’ s 7€it7jt}'

We denote with 15, : Z>o — {0,1} (respective 1y),) the Indicator function
for the odd (respective even) integers, which is defined by 1yp,(n) = 1if 2 { n
(respective 1y, (n) = 1 if 2 | n) and 0 otherwise. So we can characterize the

elements p € ﬁff;i , as follows

Proposition 4.4.3. Forp € P(A‘_’J,_”_l) arbitrary we have:

(4.17) peD™ & {P® of the form (D), with (a) and (b),
p is of the form (Ds), with (b).

n—1
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— <[2]-1 pi th D
In addition: peDr  ={° = (fﬂ 2n(1); p s of ¢ form (D),
s < | 5] = 1yn(n), P is of the form (D),

with s = |p|. The properties (a) and (b) are defined by

(a) VI<I<s: k<i <j,

(b) vaiz,jlvainujm EP, UL i <t < Jm < JI-
Proof. To prove this statement we adapt the idea of Proposition 4.2.3. We use
exactly the same approach but we consider A:J_"’l of type Dp.

To check that that the cardinality s of an arbitrary element p € Ezl_l is bounded,
like we claim on the rhs of (4.17), we use only fundamental combinatorics, again
analogue to the idea of the proof of Proposition 4.2.3. O

Because of Corollary 3.1.5 we know that the elements {f5v,, , | s € S(wn—1)}
span V(w,—1) and by Proposition 1.1.10 there is a bijection between S(wy,—1) and

bi’;_l. We want to show that these elements are linear independent. To achieve

that we will show that ]EZ’;_J = dim V(wp—1). To be more explicit:

Proposition 4.4.4. |Eff;71| =dim V(w,_1) = 271
Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.4. [

Proposition 4.4.4 implies immediately

Proposition 4.4.5. B, , = {f%v,, , | s € S(wn-1)} is a basis for V(wp—1). O

Finally we consider the case w = w,. For the proofs of the statements in this case
we refer to the proofs of the analogous statements in the previous case w = wy_1
and the By, w,-case.

The set of roots A‘_‘(_", where a,, = €,-1 + €, is a summand, is given by:

(4.18) {61'7]':5@'4-6]‘|1§i<j§n—1}U{€k7n:6k—|—€n|1§k§n—1}.

Again the total order on A%" is defined like in the By, wy-case (see Figure 3),
where the elements of AY" correspond to ¢; ; = Zi;l oy +2 Zf;f ar+ a1+ ap
and €, = Z?:k, rtn—1 O The highest weight of V(w,,) has the description
wyp = & (3°0_, &,). Further the lowest weight is —w, = —4 (3I'_; ;). As before

we see that
(4.19)

By () = {favwn o= %ersr,lr{—l, 1L, Vi<r<n, 2| #{, |l = —1}}

r=1
is a basis of V(wy,). We note that |B,, | =2""! = dim V (w,).

Remark 4.4.6. Similar arguments as in Remark 4.2.2 show that the elements
pc 55:; have two possible forms:

(4'20) (DT) P= {gk,n’ Eig,jos - - - ’8i57js} and (D;) P= {52'17]'1’ s ’6i57js}'

So we can characterize the elements p € ﬁff; as follows:
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Proposition 4.4.7. For p € P(AY") arbitrary we have:
b {p is of the form (D7), with (a) and (b),

n

4.21 peD,
(4.21) P=H D is of the form (D3), with (b).

s < [§] = Iy(n), P is of the form (D7),
s < [§] = 1yn(n), P is of the form (D3),
with s = |p|. The properties (a) and (b) are defined by

(a) V1<I<s: k<i <j,

(b) vaiz,jzvaim,jm EP, U S <t < Jm < J1-

i _ =D
In addition: pe€ D, =

Proof. To prove this statement we refer to the proof of Proposition 4.4.3. O

Because of Corollary 3.1.5 we know that the elements of 55;; span the highest
weight module V(w,,). But we still have to show that these elements are linear
independent. To achieve that we will show:

Proposition 4.4.8. |ﬁ2’;| =dim V(w,) = 2" 1.

Proof. This is a direct consequence of Lemma 4.4.10 and Proposition 4.2.4. [J
Proposition 4.4.8 implies immediately

Proposition 4.4.9. The set B,,, = {f%v, | s € S(wy)} is a basis for V(wy,). O
The following Lemma gives us a very useful connection between the co-chains of

g of type By_1 and Dy:

Bn—1

Lemma 4.4.10. We have: |ﬁ2’;_1| =|D,

Wnp—1

| and | D" | = D2 .

Wn Wn—1

Proof. We only use basic combinatorics to prove this statement. O

4.5. Type Eg. Let g be a simple Lie algebra of type Eg with associated Dynkin
diagram

o

E6 o o o o o
1 3 4 5 6

We have (w,0") =1 & w = w;,we and first we fix w to be wg. The set is A%L°
given as follows:

b1 =(1,2,2,3,2,1) | B =(1,1,1,1,1,1)
B =(1,1,2,3,2,1) | B10=(0,1,1,1,1,1)
s =(1,1,2,2,2,1) | 11 =(1,0,1,1,1,1)
Bs=(1,1,1,2,2,1) | B12 =(0,0,1,1,1,1)
Bs =(1,1,2,2,1,1) | B13 = (0,1,0,1,1,1)
Be =(0,1,1,2,2,1) | B14 = (0,0,0,1,1,1)
pr=(1,1,1,2,1,1) | B15 = (0,0,0,0,1,1)
Bfs =(0,1,1,2,1,1) | B16 = (0,0,0,0,0,1)

The Hasse diagram H(n,, )g, has no k-chains and the maximal cardinality of a
co-chain of H (n;6)E6 is two (see Appendix, Figure 4). The associated polytope is
given for m € Z>¢ by:

P(mwg) ={x € Rlzﬁo | Z zj <m, Vp € D},
Bi€p



46 TEODOR BACKHAUS AND CHRISTIAN DESCZYK

in particular see Appendix, Table 4 for the non-redundant inequalities.
Proposition 4.5.1. The set By, = {f5vu, | s € S(we)} is a FLL basis of V(ws).
Proof. The co-chains of the Hasse diagram give us immediately:

BW(} = {Uw67 flvwsa f27~)w63 ) flﬁvwea f4f57~)w67 f5f67~)w67 fﬁf?vwsa fﬁfQUwsa
J8foVwes [3.[10Vws, f8 f110wg, f10.f110w, f11.13Vwg s f12f13V0s }-

Note that there are 27 elements in B,,. By Corollary 3.1.5, we get that B, is a
spanning set of V(wg). By [Car05, p. 303] we have dim V (wg) = 27 and therefore
the claim holds. O

It is shown in Figure 4 that the Hasse diagrams H(n, )g, and H(nj, )g, have a
very similar shape. So with same arguments as above we conclude:

Proposition 4.5.2. The vectors f5v,,, s € S(w1) are a FLL basis of V(w1).O

4.6. Type E;. Let g be the simple Lie algebra of type E; with associated Dynkin
diagram

ono

LA S
In this case w = wy is the only fundamental weight satisfying (w,0") = 1.
pr = (2a2737473a27 1) B0 = (17172a3727171) P19 = (1a17171717171)
B2 =1(1,2,3,4,3,2,1) | Bu1 =(1,1,1,2,2,2,1) | B0 = (0,1,1,1,1,1,1)
B3 =(1,2,2,4,3,2,1) | 12 =(1,1,2,2,2,1,1) | fo1 = (1,0,1,1,1,1,1)
Bs=(1,2,2,3,3,2,1) | f13=1(0,1,1,2,2,2,1) | fa2 = (0,0,1,1,1,1,1)
G5 =(1,1,2,3,3,2,1) | f1a=(1,1,1,2,2,1,1) | B2 = (0,1,0,1,1,1,1)
Be = (1,2,2,3,2,2,1) | f15=1(1,1,2,2,1,1,1) | fag = (0,0,0,1,1,1,1)
Br=(1,1,2,3,2,2,1) | 516 =(0,1,1,2,2,1,1) | B25 = (0,0,0,0,1,1,1)
Bs =(1,2,2,3,2,1,1) | f17 =(1,1,1,2,1,1,1) | P26 = (0,0,0,0,0,1,1)
By =(1,1,2,2,2,2,1) | 15 =(0,1,1,2,1,1,1) | B27 = (0,0,0,0,0,0,1)

As in the Eg-case the Hasse diagram has no k-chains. In addition there are only
co-chains of cardinality at most 2, except for one with cardinality 3 (see Appendix,
Figure 5). As before the polytope is defined by the paths in the Hasse diagram.
For m € Z>o we have:

P(mw) ={x € R2270 | Z xzj <m, Vp € Dy}.

Biep

Because the polytope is defined by 77 non-redundant inequalities we will not
state it explicitly.
Proposition 4.6.1. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w).
Proof. The co-chains of the Hasse diagram give us immediately:

By = {vw, f1vw, f2Vu, - -+ far0u; f5 f60uw, 5 fs0u, f7fs0u, fs fovw,
Jof10vw, f8 110w, f10/110w, f11 1200, f8 1300, f10/1300,
J12/13Vw, J13f14Vw, J11 /1500, [13 /1500, [14f15V0, f15 f16V0,
J13f17vw, f16 f17v0, f13 190w, f16[190w, f18 f190w, 13 f2100,

f16f210w, f18f210w, f20 f21Vw, f21 f2300, fo2 fo3vw, f13f1afi500 }.
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Note that there are 56 elements in B,,. By Corollary 3.1.5, we get that this is a
spanning set of V(w). By [Car05, p. 303] we have dim V(w) = 56 and therefore
that B, is a basis. O

4.7. Type F4. Let g be the simple Lie algebra of type F4 with associated Dynkin
diagram

The highest root is of the form 6 = 2a; + 3as + 4ay4 + 2a4. And we have
0Y = 2ay 4+ 3ay + 2a§ + ay. So (w,0Y) =1 < w = wy, so we consider the case
w = wy. If we construct H(n})g, as in Section 1 we get a 3-chain of length 2, but
here we are able to solve th1s problem. Therefore we will change the order of the
roots such that we can draw a new diagram without any k-chains. As usual we
start with the set of roots Aﬁ'

b1 = (2, 3,4, 2) = (1, 2,3, 1) B11 (0, 1,2, 1)
Bo = (1,3,4, 2) (1,1,2,2) B1a = (1,1,1,1)
B3 = (1,2,4, 2) (1,2,2, 1) B13 = (0,1,1,1)
B4 = (1,2,3,2) = (O 1,2 2) B4 = (0,0, 1, 1)
Bs = (1,2,2,2) 510 =(1,1,2,1) | f15 = (0,0,0,1)

Here we have 3; > B < i > j. With thlS order we are not able to find relations
derived from differential operators (see Section 3), which include the rootvector
fa (see (3.2)). In order to find relations including f; we adjust the order on the
roots in this case as follows:

Br =< P2 <Ps=<Ps<Ps=Ps=<Pr << Pus.

So we just switched the positions of 54 and B5. Now we consider our Hasse
diagram constructed as in Section 1 and the diagram we obtain by changing the
order of the roots and by using differential operators corresponding to non-simple
roots, see Figure 1.

The idea of this adjustment is that we split up the 3-chain by using the non-
simple differential operators mentioned above. After this we still want to get as
many roots as possible on each path. To do so we use two non-simple differential
operators: 0p110 = Oag+as and Opo11 = Oas+a,- In the adjusted diagram also
occurs a directed edge labeled by a from B3 to 85 and a second labeled by b from
B5 to B4. We cannot label the second edge with a differential operator, because
there is no element v € A, satisfying: 85 — v = 84. We will use the following
observation to explain the existence of these edges and labels. For ag, by € C\ {0}
we have:

na+2n3 gna+ng gni1 pm+1 _ gna+2ng na+n3 pn1—n2—ng pm+l-ng
s QRO T = 0Oy (a0 f3* 7" f 1 )

= bofe f12 32T AT 4 smaller terms.

That means we can replace in the path consisting of 1, B2, f3 and (4 the root (53
by Bs5. Furthermore the differential operators 0y,+q4 and Jas+aq, have no influence
on f5. That is the reason for the directed edge labeled by b from £5 to B4. The
reason for the edge between P and f5 is that we want to visualize the co-chain
which we construct at this point. We label this edge with a to prevent confusions
about the applied differential operators, where a corresponds to (9:?2””3. We note
that the changed Hasse diagram gives us directly the inequalities of P(A), but in
this case it does not describe in general the action of the differential operators.
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If we now follow our standard procedure with the adjusted Hasse diagram the
next step is to define the polytope associated to the set of Dyck paths D, and
m € ZZO:
P(mw) ={x¢€ R?O | Z zj <m, Vp € D,}.
B;€Ep
More explicitly: P(mw) is the set of all elements x € RLj such that the 12
inequalities, which can be found in the Appendix, Figure 5, are satisfied.
The set B, = {f%v, | s € S(w)} C V(w) is given by:
B, ={vw, fivw, f2vw, - - f1500, f3.f500, fafevw, f5 f6vw, fo frow,
f1 180w, fo fovw, fsfovw, fofiovw, fofiavw, fi1 fi2vw}.

Proposition 4.7.1. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w).

Proof. By Corollary 3.1.5 we conclude that B, spans the vector space V(w). In
addition we know by [Car05, p. 303] that dim V' (w) = 26 = |B,|. Hence the set

B, is a basis. O
B — B
1 2 3 \2/ Yl
pr— B2 — B3 — B4 B3 Bs
YN oy Ny
Bs Be B B
YNy Ny g
Br Bs ~ Bs Br
S N Y N N
Bo B1o B1o Bo
NN Y NV
P11 P12 B12 P11
N N
B13 — B4 — Bis B13 — P1a — P15

FIGUure 1. H(n)r

4
4.8. Type Go. Let g be the simple Lie algebra of type G, with associated Dynkin
diagram

G2 o===o0
1 2

For the highest root § = 3a; + 2ap we have 0¥ = o) + 2a3. So we consider
w = wy. In this case the Hasse diagram has one 1-chain. We will rewrite H(n})q,
into a diagram without any k-chains. Consider the following order on A%:

B1 < B2 = Pa < Bs < B3,

where

’61:(&2)‘62:(371)‘63:(2a1)‘54:(171)‘65:(1a0)‘

So we obtain the following diagrams:
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B2
2 1 1 2 11 A‘ Y}
fr—— P2 — B3 — B1 — Bs ~ pr — B3 Bs,
Nt 4
Ba

Very similar arguments as in the case of Bz, w; show that we can apply the results
of section 3 to the rewritten diagram. We consider the polytope associated to the
new diagram for m € Z>q:

r1+xotaxstaos <m
P(mw) = {XGR]ZVO }

r1+x3+xat+a5 <M

By Section 3 the elements vy, f1vw, foUu, f3Uw, f1Vw, [f5Vw, fofav, span V(w) and
with [Car05, p. 316] we know dim V(w) = 7.

Proposition 4.8.1. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w). O

Proof. The previous observations imply that {f5v,, | s € S(w)} is a basis of V(w).
It remains to show that P(w) is a normal polytope.

Like in the case of (By,w;1) we have to change the order of the roots to apply
Section 2. One possible order is 81 < 83 < B4 < B2 < B5. Using this order we
conclude that P(w) is a normal polytope. O

5. LINEAR INDEPENDENCE

We refer to the notation of Section 1, especially Subsection 1.3. Throughout the
Section we assume the vectors fPvy € V(A) to be ordered as in (1.11) and we fix
A = mw where w appears in Table 2.

We want to investigate the connection between our polytope P(\) and the essen-
tial multi-exponents. Via this connection and with the results from Section 3 we
want to prove that {f%vy | s € S(\)} provides a FFL basis of V().

Note that one can define essential monomials like in Subsection 1.3 for an arbi-
trary total order on Ai. Hence for the following statements it is very important
that we kept in Subsection 1.3 the total order introduced in Subsection 1.1.

Lemma 5.1.1. If {fSvy | s € S(\)} is linear independent in V(\), then
S(A\) =es(V(N)).
Proof. Let s € es(V(N)) = {p € Zgo fPuy ¢ span{f9v, | q < p}} and assume
s ¢ S(\). By Proposition 3.1.3 we can rewrite f° such that
foon = cftor,c €C
t<s

and we get immediately a contradiction, so s € S(\).
Now let s € S(A\) and s ¢ es(V(A)). Then fSvy € span{f9vy | q < s} and so

(5.1) fPor =Y cqf%uy,
q=<s

for some cq € C. We rewrite each f9v) in terms of basis elements ftvy,t € S()).
Because of the linear independence all prefactors are zero, meaning that s = 0.
But this is a contradiction to s ¢ esV'(\). O
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Theorem 5.1.2. The elements {f%(va—, @ vy) | s € S(A)} C V(A —w)© V(w)
are linearly independent and By = {f5vx | s € S(A\)} is a FFL basis of V(A).

Proof. We want to prove this statement by induction on m € Z>;. For m =1 we
saw in Section 4 that B, = {fSv, | s € S(w)} is a basis for V(w) in each type.
So let m € Z>2 be arbitrary and we assume that the claim holds for all m’ < m.
By induction the set By_, = {fSvr_w | s € S(A —w)} is a basis of V(A —w). So
we have by Lemma 5.1.1
(5.2) es(V(A —w) =S\ —w) and es(V(w)) = S(w).
But then with [FFoL13, Prop. 1.11]:

es(VIN —w) +es(V(w)) Ces(V(A—w) ®V(w))
and so we get the linearly independence of

{fP(or—w ®vy) | s€eS(VIN—w) +es(V(w)} CV(N—w) ®V(w)

With the equalities in (5.2) and Section 2 where we proved S(A—w)+S(w) = S(A),
we conclude that the set

{Plorw®vy) |s€SN)}CV(N—w)OV(w)
is linearly independent. So we get dimV(A) > |S(A)| and with the spanning
property Corollary 3.1.5 we have |S(\)| > dim V(\). Finally we get
|IS(A)| =dim V()

and that By is a FFL basis of V()) as claimed. O
Remark 5.1.3. The basis By is a monomial basis, so we get an induced FFL
basis of V(A)®.

Theorem 5.1.4. Let V(A)* = S(n™)/I(\). Then the ideal 1(\) is generated by

Umnt)o spaurl{fé)"ﬁvH_1 | Be Ay}
as S(n™) ideal.
In particular we have that I(\) = S(n™)(U(n")ospan{fs, f;"T | B € AL\ AL}).

Proof. Let I be an Ideal generated by U(tﬁ)ospan{fé’\’ﬁvwrl | e Ayr}asS(nT)
ideal. By Ivy = {0} we have I C I()), so there is a canonical projection:

¢p:Sm7)/ T — Sn™)/I(\) =V (N

Let f* =0 in S(n™)/I()\). Because we have a basis of V(\)® we can rewrite f*
as follows:

(5.3) ff=)" afeSm)/IN

seS(N)

for some ¢g € C. In the proof of Theorem 3.1.4 we already saw that the relations

obtained by I are sufficient to achieve (5.3). So 0= ft*= > c¢fSe Sn7)/I.
seS(N)

Therefore ¢ is injective.

In the proof of Proposition 3.1.3 we do not need powers fgz for 8 € AY \{0}. O
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APPENDIX

In this section we want to present the Hasse diagrams H (nj,)g, and H(ng g,
for a better understanding of our work. In addition to illustrate the ordering of
the roots for the classical types A, B, and D, we give in Figure 2 the complete
Hasse diagram of sls and in Figure 3 a concrete example of the Hasse diagram
in the Dy, wy-case, for n = 5,6. We remark that the shape of the Hasse diagram
H(ng, _ )sos, and H(ng )so,, is equal to the shape of H(ng _ )sop,_1y,,- SO

Wn—1

Figure 3 shows also the shape of the Hasse diagrams H(ng, )se,o, H (1 )s0;, and
H (0, )so105 H(N,)s0,,. Furthermore we state the explicit polytopes for E¢ (Table
4), F4 (Table 5) and for the special cases: Ba, ws (Ds, wa) and Ds ws (Table 3).

FicURE 2. Complete Hasse diagram of g = sl5.

b1
N
p1 B2
N SN
B2 B3 B
N NN
B3 B s Bs
NN NN
Bs Bs Br Bs Bo
7 NV N YN
Br Bs B1o P11
N Y Yy N Y
Bo P12 P13
B1o B4
v
P15

FIGURE 3. H(n,)soy » H(N, )sor,
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1+ X2+ T3+ x5+ 27 + 29 + 10 <M
T1+xo+ T3+ x5 + 28 +T9g+T10 <M
r1+ a2+ s+ x5+ 27+ 29+ 210 <M
T1+2To+T4+ 25+ 28+ 29+ T10 <M
T1+ T2+ Ty + 26+ T8 +T9g+T10 <M

TABLE 3. Polytope P(mws4) corresponding to g = so09 and
P(mwy), P(mws) corresponding to g = so01p.

B2 Ba = Bs Bz & B2 & By

LN

1

Bs  Bs Bs  Bs
1] N\g |3 5] 3|6
Bse D1 Br Be
5] 1|4 4| N\ |3
Bs Do Bo  Bs
4] ]2 2] \¢ |4
B P B11 Po

/32N N6 [2N\e
B3 B2 B13 P12
ACRE 5,2
Bi6 < b5 ¢ B4 Pra 7 Bis 3 Bie

FIGURE 4. H(ng, ) and H(n )e,

1+ T2+ T3+ 24 + T + 23 + T10 + T13 + T14 +T15 + X156 <M
x1+ T2+ T3+ x4+ X6+ T8 + T10 + T12 + T1a + T15 + T16 <M
T1+ T2+ 23+ x4+ 27+ 28+ T10 + 13 + T1a + T15 + Tig <M
1+ x2+ T3+ x4+ +a3+ 210+ 12+ 214+ 215+ 216 <M
x1+ T2+ T3+ x4+ 27+ T9 + T10 + T13 + T1a + T15 + Tig <M
x1+wo + 23+ x4+ 27+ 29+ T10 + T12 + 14 + T15 + T16 <M
1+ a2+ r3trgt+ar+x9g+ 2 +2T12+ 214+ 215+ 216 <M
x1+x2+ 23+ x5+ 27+ 28+ T10 + T13 + Tia + T15 + Ti6 <M
x1+we+ 23+ x5+ 27+ 28+ T10 + T12 + g + 215 + X6 <M
r1+ 22+ a3+ a5+ 27+ 29+ 10+ 213+ 214+ T15 + 16 <M
x1+ T2+ 3+ x5 + 27+ X9 + T10 + T12 + T1a + T15 + Tig <M
1+ T2 + T3+ x5 + 27+ X9 + 211 + T12 + T4 + X15 + T16 <M

TABLE 4. Polytope P(m) corresponding to Eg
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Bi = Ba > By = Ba
L N\
Bs  Be
VAN
Br Bs
4] N\ |2
Bo  Bro
3] N\g |4
11 B2
RN E AN
Bz B Pis
6l 5,5
Bie  Pir
sy |a
B B
4l 1/ |2
Bao P21
3/ 2| N
Bo3 P22
2] /5

Par < P26 < P25 < Paa
FIGURE 5. H(ng, )g,

1+ T2+ T3+ T4+ X8 + 210 + 11 + T13 + T14 + T15
1+ 22 + 23+ 24 + 28 + T10 + 12 + 13 + T14 + T15
1 +2T2+ 23+ T4+ 27+ 29+ 211+ 213+ T14 + 215
1+ T2+ T3+ T4+ X7+ 210 + 211 + T13 + T14 + T15
1+ x2 + 23+ x4 + 27+ 210 + 212 + 13 + T14 + T15
1+ 22+ T4+ T + 28 + 210 + 11 + T13 + T14 + T15
1+ T2+ Tg+ Ts + Tg + 210 + 12 + T13 + T14 + T15
1+ 22+ T4+ Ts + 27+ 29 + 211 + T13 + T14 + X15
1+ T2+ T4+ T5 + 27+ 210 + 211 + T13 + T14 + 215
T1+ 22+ T4+ 25 + 27+ 210 + 212 + 213 + T14 + T15
1+ z2 + T3+ e + T8 + T10 + T11 + 13 + T14 + T15
1+ T2+ 23+ Te + X8 + 210 + T12 + T13 + T14 + T15

TABLE 5. Polytope P(mwy) corresponding to Fq
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4. THE PBW FILTRATION AND CONVEX POLYTOPES IN TYPE B

TEODOR BACKHAUS AND DENIZ KUS

ABSTRACT. We study the PBW filtration on irreducible finite—dimensional representations for the
Lie algebra of type B,. We prove in various cases, including all multiples of the adjoint representation
and all irreducible finite-dimensional representations for Bz, that there exists a normal polytope
such that the lattice points of this polytope parametrize a basis of the corresponding associated
graded space. As a consequence we obtain several classes of examples for favourable modules and
graded combinatorial character formulas.

1. INTRODUCTION

Let g be a complex finite-dimensional simple Lie algebra with highest root §. The PBW filtration
on finite—dimensional irreducible representations of g was studied in [13] and a description of the
associated graded space in terms of generators and relations has been given in type A, and C, (see
[13, 14]). As a beautiful consequence the authors obtained a new class of bases parametrized by
the lattice points of normal polytopes, which we call the FFL polytopes. A new class of bases for
type G is established in [16] by using different arguments.

It turned out that the PBW theory has a lot of connections to many areas of representation theory.
For example, in the branch of combinatorial representation theory the FFL polytopes can be used
to provide models for Kirillov—Reshetikhin crystals (see [19, 20]). Further, a purely combinatorial
research shows that there exists an explicit bijection between FFL polytopes and the well-known
(generalized) Gelfand—Tsetlin polytopes (see [1, Theorem 1.3]). Although Berenstein and Zelevin-
sky defined the Bp—analogue of Gelfand—Tsetlin polytopes in [4] it is much more complicated to
define the By—analogue of FFL polytopes (see [1, Section 4]). One of the motivations of the present
paper is to better understand (the difficulties of) the PBW filtration in this type.

In the branch of geometric representation theory the PBW filtration can be used to study flat
degenerations of generalized flag varieties. The degenerate flag variety of type Ay and C, respec-
tively can be realized inside a product of Grassmanians (see [8, Theorem 2.5] and [11, Theorem
1.1]) and furthermore the degenerate flag variety is isomorphic to an appropriate Schubert variety
(see [17, Theorem 1.1]). Another powerful tool of studying these varieties are favourable modules,
where the properties of a favourable module are governed by the combinatorics of an associated
normal polytope (see for details [12] or Section 6). It has been proved in [12] that the degenerate
flag varieties associated to favourable modules have nice properties. For example, they are normal
and Cohen—Macaulay and, moreover, the underlying polytope can be interpreted as the Newton-
Okounkov body for the flag variety. In the same paper several classes of examples for favourable
modules of type Ay, C, and Gy respectively are provided; more classes of examples were constructed
in [2, 5, 15].

Beyond these cases very little is known about the PBW filtration and whether there exists a normal
polytope parametrizing a PBW basis of the associated graded space. This paper is motivated by
proving the existence of such polytopes for several classes of representations of type B,. Moreover,

T.B. was funded by the DFG Priority Program SPP 1388 Representation theory.
D.K. was partially supported by the SFB/TR 12-Symmetries and Universality in Mesoscopic Systems.
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we construct favourable modules (see Section 6) and use the results of [16] to describe the associated
graded space for type Gg in terms of generators and relations (see Section 7).

If n < 3 we obtain similar results as in the aforementioned cases, namely we associate to any
dominant integral weight A a normal polytope and prove that a basis of the associated graded
space can be parametrized by the lattice points of this polytope. In other words we observe that
the difficulties of the PBW theory show up if n > 4. Our results are the following; see Section 5
for the precise definitions.

Theorem. Let g be the Lie algebra of type Bs. There is a normal polytope P(\) with the following
properties:

(1) The lattice points S(\) parametrize a basis of V(A) and gr V' (\) respectively. In particular,
X0y |'s € SOV}

forms a basis of gr V().
(2) We have

SA) 4+ S(p) =S+ p).
(3) The character and graded g-character respectively is given by
chV(N) =Y [S()H[et, chggrV(A) = > er"iEgass,
peh seS(N)
(4) We have an isomorphism of S(n~)-modules
grV(A+p) = Sn7)(va@v,) CerV(A) @grV(u).

(5) The module V() is favourable.
As in the cases Ay, C, and Gy point (2) of the above theorem implies that the building blocks
are S(w;), 1 < i < n. In particular, in order to construct a basis for gr V() it will be enough
to construct the polytopes P(w;) associated to fundamental weights. For type B, and n > 4 we
need a different approach. For example, for n = 4 we construct a polytope P(ws) such that the
lattice points S(ws) parametrize a basis of grV(ws), but the Minkowski-sum S(ws) + S(ws) has

cardinatlity dim V' (2w3) —1. We observe that the building blocks in this case are S(w3) and S(2ws3).
In particular, we construct polytopes P(ws) and P(2ws) such that a basis of gr V(mws) is given by

3(2‘*}3) +e 5(2"‘73) + 6(m mod 2),1‘9(("}3)7

where 0, s denotes Kronecker’s delta symbol. Our results are the following; we refer to Section 4
and Section 6 for the precise definition of the ingredients.

Theorem. Let g be the Lie algebra of type B, and A = mw; be a rectangular highest weight. There
is a convex polytope P(\) such that: if 1 < ¢ < 3 (n arbitrary) or 1 <n <4 (i arbitrary) we have

(1) The lattice points S()) parametrize a basis of V' (\) and gr V' (\) respectively. In particular,
{X®ux[s € S(N)}

forms a basis of gr V/(\).
(2) We have gr V() = S(n7)/I,, where

I, = S(n7)<U(n+) o span {:ci(gv)ﬂ | € R+}>.
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(3) The character and graded g-character respectively is given by

chV(A) = D [S(Het, chggrV(A) = > er"iE)gass,
pneh* seS(N)

(4) We have an isomorphism of S(n~)-modules for all £ € Z:
gr V(A + eilw;) = S(n7)(vx @ veyew,) C grV(A) ® grV(eibw;),

where ¢; =1 if 1 < 2 and ¢; = 2 else.
(5) For all k,¢ € Z we have

S((k + eiﬁ)wi) = S(kzwz) + S(eszl)
(6) The module V(¢;\) is favourable.

We can show in general that S(\) parametrizes a generating set of gr V() and we conjecture that
the above theorem remains true for arbitrary rectangular weights (see Conjecture 4.3). We verified
the cases n < 8 and m < 9 with a computer program.

Our paper is organized as follows: In Section 2 we give the main notations. In Section 3 we
present the PBW filtration and establish the elementary results needed in the rest of the paper.
In Section 4 we introduce the notion of Dyck paths for the special odd orthogonal Lie algebra and
prove in various cases a presentation for the associated graded space. In Section 5 we associate
to any dominant integral weight for Bz a normal polytope parametrizing a basis of the associated
graded space. In Section 6 we give classes of examples for favourable modules.

2. PRELIMINARIES

We denote the set of complex numbers by C and, respectively, the set of integers, non—negative
integers, and positive integers by Z, Z,, and N. Unless otherwise stated, all the vector spaces
considered in this paper are C-vector spaces and ® stands for Qc.

2.1. We refer to [7, 18] for the general theory of Lie algebras. We denote by g a complex finite—
dimensional simple Lie algebra. We fix a Cartan subalgebra h of g and denote by R the set of roots
of g with respect to h. For @ € R we denote by a" its coroot. We fix A = {a1,...,a,} a basis for
R; the corresponding sets of positive and negative roots are denoted as usual by R*. For 1 <i < n,
define w; € b* by w;(e)) = 6, for 1 < j < n, where d; ; is the Kronecker’s delta symbol. The
element w; is the fundamental weight of g corresponding to the coroot «. Let Q = &7 ,Za; be
the root lattice of R and QT = @' ;Z.«; be the respective Z —cone. The weight lattice of R is
denoted by P and the cone of dominant weights is denoted by PT. Let Z[P] be the integral group
ring of P with basis e*, u € P. Let W be the Weyl group of g.

2.2. Given a € R' let g4, be the corresponding root space and fix a generator x4, € g+o. We
define several subalgebras of g that will be needed later. Let b be the Borel subalgebra corresponding
to R', and let n™ be its nilpotent radical,

b=phen", 0= (P gsa
aERT
The Lie algebra g has a triangular decomposition
g=n @hont.
For a subset A — {w,,...,;,} of A we denote by p;, ;. the corresponding parabolic subalgebra
of g, i.e. the Lie algebra generated by b and all root spaces g_o, @ € A —{aj,,...,q;,}. The
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maximal parabolic subalgebras correspond to subsets of the form A — {a;}, 1 < i < n. The Lie
algebra g contains the parabolic subalgebra as a direct summand and therefore

g = pil ----- is @ nil,‘..,is’

We can split off p;, . ;, and consider the nilpotent vector space complement with root space de-
composition

For instance, if g is of type A, we have R* = {a,s | 1 <r <s<n}and B = {a,s € Rt |r<i<

s} where a5 = > 7 j=r @j. In the following we shall be interested in maximal parabolic subalgebras.

3. PBW FILTRATION AND GRADED SPACES

We start by recalling some standard notation and results on the representation theory of g.

3.1. A g—module V is said to be a weight module if it is h—semisimple,

V=@V, VF={veV|hv=pu(hw, heh}
HEh*
Set wtV = {u € b* : V¥ £ 0}. Given A € P, let V()\) be the irreducible finite-dimensional
g—module generated by an element vy with defining relations:

+’U)\ = O, h’U)\ = )\(h)v,\, T Al )+1 U\ = 0, (31)

—Q

for all h € h and @ € RT. We have wt V(\) C A — Q" and wt V()) is a W-invariant subset of h*.
If dim V* < oo for all o € wt V', then we define chV : h* — Z, by sending p — dim V#. If wtV
is a finite set, then

n

chV =) " dim V¥et € Z[P).
neb*

3.2. A Z,filtration of a vector space V is a collection of subspaces F = {V;},cz,, such that
Vs—1 C V; for all s > 1. We build the associated graded space with respect to the filtration F

gt V= P Vi/Vi_1, where V_; = 0.
S€Z+

In this paper we shall be interested in the PBW filtration of the irreducible module V(\) which
we will explain now. Consider the increasing degree filtration on the universal enveloping algebra

U(n™):

U™ ), =span{z;---a; | z; €n,l < s},
for example, U(n~)y = C. The induced increasing filtration V. = {V(A)s}sez, on V(A) where
V(A)s := U(n7)sv, is called the PBW filtration. With respect to the PBW filtration we build the
associated graded space gr¥ V(\) as above. To keep the notation as simple as possible, we will
write gr V() to refer to gr¥ V(\). The graded g-character is defined as

chogr V) =Y (Z(dimV(A)g/V(A)g_l) )e“, where gr V(A = @D V)LV (A
peh*  s>0 SEZy

The following is immediate:
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Lemma. The action of U(n™) on V() induces a structure of a S(n~) module on gr V/(\). Moreover,
grV(A) =S )vy = Sn™)/Iy,

for some homogeneous Ideal I. The action of U(nt) on V()) induces a structure of a U(n™)
module on gr V().

By the previous lemma, the representation grV(\) is cyclic as a S(n~)-module. By the PBW
theorem and the defining relations (3.1) of V() we obtain the following proposition.

Proposition. The set
{ IT 2™50x | ms € Zy,mys < )\(ﬁv)}
BeERT
is a (finite) spanning set of gr V(\).

+ +
For a multi-exponent s = (sg)gecp+ € Z'f | (resp. s = (s8)ger+ € Z'fl ‘) we denote the corre-
sponding monomial [[sc 5+ xiﬁﬁ (resp. HﬁeR* msfﬁ) for simplicity by X® € S(n™).

In recent years it became a popular goal to determine the S(n™)-structure of the representations
grV(A), i.e. to describe the ideals I, and furthermore to find a PBW basis for these graded
representations, favourably parametrized by the integral points of a suitable convex polytope. For
the finite—dimensional Lie algebras of type A,, C, and Gy various results are known which we will
discuss later (see [13, 14, 16]). The focus of this paper is on the Lie algebra of type B, where many
technical difficulties show up.

3.3. Let D C P(R™) be a subset of the power set of Rt. We attach to each element p € D a
non-negative integer Mp (). We consider the following polytope

P(D,)\) = {s — (sp)penr R [vpeD: Y sy < Mp()\)}. (3.2)
Bep
The integral points of the above polytope are denoted by S(D,\). The proof of part (i) of the
following theorem for type A, can be found in [13], for type Cy in [14] and for type G, in [16]. Part
(ii) is only proved for type A, and C,, but a simple calculation shows that part (ii) for type G
remains true (for a proof see Proposition 7.1 in the Appendix).

Theorem. There exists a set D C P(R") and suitable non-negative integers Mp()\) attached to
each element p € D, such that the following holds:

(i) The lattice points S(D, \) parametrize a basis of V() and gr V() respectively. In partic-
ular,
{X%vy |s € S(D, N}
forms a basis of gr V/(\).
(ii) We have
\
L, =Sm")(Un")o span{xi(g )+l | B€RTY}).

We note that the order in the theorem above is important when treating the representation V'(\),
but we can choose for any s € S(D, \) an arbitrary order of factors x_g in the product X*, such
that the set

{X®vy |s€S(D,\N)}
forms a basis of V().

Remark. The set D and non-negative integers My () are explicitly described in these papers.



THE PBW FILTRATION AND CONVEX POLYTOPES IN TYPE B 61

Another interesting point is to understand the geometric aspects of the PBW filtration. In [9]
degenerated flag varieties have been introduced which are certain varieties in the projectivization
P(gr V(X)) of gr VI(A). In type Ay (see [9, 10]) and type C, (see [11]) it has been shown that the
degenerated flag varieties can be embedded into a product of Grassmanians and desingularizations
are constructed. Recently in [12] the notion of favourable modules has been introduced whose
properties are governed by the combinatorics of an associated polytope and it has been shown that
the corresponding degenerated flag varieties have nice properties, e.g. they are projectively normal
and arithmetically Cohen-Macaulay varieties (see also Section 7). Especially it has been proved that
V(A) for types Ay, Cy and Gg are favourable (with respect to the polytope from Theorem 3.3), where
the proof of this fact uses the Minkowski sum property of these polytopes. Our aim is to obtain
similar results to Theorem 3.3 for type B, for certain dominant integral weights and, motivated by
the corresponding nice geometry of favourable modules, to construct various favourable modules.

4. DYCK PATH, POLYTOPES AND PBW BASES

The notion of Dyck paths is used in the papers [13, 14] in order to describe the set D from
Theorem 3.3 (and thus S(D, \)), but appears earlier in the literature in a different context. In
this section we define two types of paths (type 1 and type 2), which we also call Dyck paths to
avoid deviating from the established terminology. The set of Dyck paths of type 1 is similar to the
definition given in [13, 14], while the type 2 Dyck paths are unions of type 1 Dyck paths with some
extra conditions and are called double Dyck paths.

4.1. To each finite partially ordered set (S,<) we can associate a diagram, called the Hasse
diagram. The vertices are given by the elements in S and we draw a line segment from z to y
whenever y covers x, that is, whenever z < y and there is no z such that z < z < y. We consider
the partial order < on RT given by o < 8 :& 3 — a € QF. We shall be interested in the Hasse
diagram of (R*, <) and (R;, <). Note that the Hasse diagram of R} is obtained from the Hasse
diagram of RT by erasing all vertices « € RT\R} .

Example. We find below the Hasse diagram of (R*,<) for type A, and B, respectively. The
vertices of the Hasse diagram for (R;, <) of type B, are marked by unfilled circles. Recall that the
highest root is denoted by 6.

e — o —oo e — o — 0o —0o—o
e — o — 0o — @cico— 06— 0 — 90— 0-ece

e — o — 0o —o0:cce @ —6cic0— 06— 06— 90— 0ccc0—o0

4.2.  For the rest of this section we fix i € {1,...,n} and let X\ = mw; for some m € Z;.
All roots of type B, are of the form a; + -+ + a4 for some 1 < p < ¢ < n or of the form
ap + -+ op—g + 2000p—g+1 + -+ - + 204, for some 1 < p < 2n — g < n. To keep the notation as
simple as possible we define

P ap+"'+042n—q+2a2n—q+1+"'+204n7 fl<p<2n—-qg<n

Furthermore, we write R (¢) for R\ (R N {apq | ¢ > £}). We call a subset of positive roots
p ={B(1),...,8(k)},k > 1 a Dyck path of type 1 if and only if the following two conditions are
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satisfied
¢ 3(1) = a1, B(k) = aign—i—1 or B(1) = it1, (k) = dion—i
o if B(s) = apyq, then B(s+1) = apg1 or B(s+ 1) = apti14-
The set of all type 1 Dyck path is denoted by D®P¢! and D! (resp. DYP°!) denotes the subset

consisting of all type 1 Dyck paths starting at ai; (resp. «i,41). Furthermore, we call a subset
of positive roots p = {#(1),...,8(k)},k > 1 a Dyck path of type 2 if and only if we can write

p=p1Up2 (P1={Bi(1),...,B1(k1)}, k1 > 1,p2 = {B2(1),..., Ba(k2)}, k2 > 1) with the following
properties:

(4.1)

e 31(1) = a1, B2(1) = ag; and Bi(k1) = ajon—j, B2(k2) = ajt1,2n—j—1 for some 1 < j < i
e p; and p9 satisfy the second property of (4.1)
epiNp2=10

The first property means that the last root in ps is the upper right neighbour of the last root
in p; in the Hasse diagram of (R;-", <). The set of all type 2 Dyck paths is denoted by DWPe2,
Summarizing, a type 1 Dyck path is a path in the sense of [13] in a specific area of the Hasse
diagram of (R;", <) and a type 2 Dyck path can be written as a disjoint union of two single type 1
Dyck paths. For this reason, we call the elements in D%P¢? double Dyck paths.

Definition. We call a subset p of positive roots a Dyck path if and only if p € D := DWPelyD®pe2,

Note that DWPel = () if i = n and DWP®2 = ) if i = 1 and DWP®2 = {R]} if i = 2. The
interpretation of Dyck paths in the Hasse diagram is very helpful. The left figure (resp. right
figure) shows the form of a type 1 (resp. type 2) Dyck path.

B(2) B2(1)  B=2(2)
B(1) B1(1) p—e—t
53 B(4) B2(3) B2(4)
2) =
. B(6) B2(6)
B(5) B2(5)
B1(5)
B(T) ™. B2(T) ™. B (kz—3)
B(k—2) B1(6) B2(k2—2) B2(k2—1)
B(k—3) o Buk-2)
(k) B1(k1—3) Ba (k)
B(k—1)

ﬁl(k}-]fl) Bl(kl)

Example. We list all Dyck paths for By, i = 3. We have
type 1
| DRESEES {{041,3, 23,033,034}, {013,023, 024,34}, {13, 01,4, 024,034}, {014, 024,03 4, 35},

{o 4, a04, 005, az 5}, {14, 015, a5, a375}}.
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type 2
| DRESES {{041,3,042,3,041,47042,4,041,57042,5a041,67042,&041,7}, {041,37042,3,041,4,042,47al,Sa042,57041,6,042,6,03,5},

{13,003, 004,004, 01 5,34, 1 6, 26,35}, {13, 423, A1 4, 3.3, V1 5, 3 4, A1 6, X2.6, A3 5

{13,003, 004,033, 01 5,34, 025,026,035}, {13, 423, A1.4, 2.4, V1 5,03 4,025, X2 6, A3 5},

{a173, a2 3,01 4,024,033, Q3 4, A2 5, A2 6, Oé3,5}}-

The corresponding polytope is defined by

+
P(D, mw;) = {s —(s) eR jvpeD: Y 55 < Mp(mwi)}, (4.2)
BEp
where we set
if Dtypel
Mp(mwi) =" 1 pe 2
mw;(0Y) if p € DWPe

We consider the polytope P(D,mw;) as a subset of R‘fﬂ by requiring sg = 0 for 3 € RT\R;".

Remark. Note that the set D is a subset of P(R;") and depends therefore on i (unlike as in the
Aq, Cq and Gy case). We do not expect that there exists a set D" € P(R™) such that the following
holds: for any dominant integral weight p there exists non-negative integers My (u) (p € D') such
that the integral points of the corresponding polytope (3.2) parametrize a basis of grV(u). We
rather expect that there exists a polytope parametrizing a basis of the associated graded space
where the coefficients of the describing inequalities might be greater than 1. We will demonstrate
this in the Bz case (see Section 5).

4.3. Fors € S(D,mw;) let wi(s) := 3 s p+ s and
S(D, mw;)* ={s € S(D,mw;) | mw; — wt(s) = pu}.

We make the following conjecture and prove various cases in this paper. We set ¢;, = 1 if i < 2 and
€; = 2 else.
Conjecture. Let g be the Lie algebra of type B, and 1 <1i < mn.

(1) The lattice points S(D, mw;) parametrize a basis of V' (mw;) and gr V (mw;) respectively. In
particular,
{X® v, | s € S(D,mw;)}
forms a basis of gr V(mwj).
(2) We have

I, =S(n7) (U(n*) o span {x“_)ie(ev)mH ™t z_pg|Be R+\Rz‘+}>.

L0y g i
(3) The character and graded g-character respectively is given by
ch V(mw;) = Z |S(D, mw;)*|e*
pebh*
chy grV(mw;) = Z emwimwt(s) g2
s€S(Dyma;)
(4) We have an isomorphism of S(n~)-modules for all £ € Z:
grV((m+ €l)w;) = S(n7) (Vimay, @ Vejt;) C g1 V(mw;) @ gr V(eilw;).

Lemma. The proof of Conjecture 4.3 can be reduced to the following three statements:
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(i) The set
{X®]s e S(D,mw;)}
generates the module S(n™) /I, .
(ii) We have
S(D, (m+ €;l)w;) = S(D,mw;) + S(D, €;lw;).
(iii) We have
dim V (fw;) = |S(D, bw;)| for £ < ¢;.

Proof. Assume that part (1) of the conjecture holds. Part (3) of the conjecture follows immediately
from part (1). Since L, Vmw; = 0, we have a surjective map

S(7)/Imw, — gr V(mw;)
and hence part (2) of the conjecture follows with part (1) and (i). It has been shown in [14,
Proposition 3.7] (cf. also [12, Proposition 1.11]) that if {X%wvy | s € S(D, )} is a basis of gr V()
and {X®v, | s € S(D,p)} is a basis of grV(u), then { X3(vy ® v,),s € S(D,\) + S(D,p)} is a
linearly independent subset of gr V(A) ® gr V(u) and therefore also a linearly independent subset
of V() ® V(u). Since we have a surjective map
SO7) Mt = grVI(m + €il)wi) — SO07) (Umaw; ® vetw;) € grVimw;) © grV(eidw;),

part (4) follows from part (1) and (ii). So it remains to prove that part (1) follows from (i)—(iii).
If m < ¢; we are done with (iii), so let m > ¢;. By induction we can suppose that S(D, (m —
€;)w;) parametrizes a basis of grV((m — ¢;)w;) and by (i) and (iii) that S(D, ¢;w;) parametrizes
a basis of grV (ew;). Thus, together with (ii), we obtain similar as above that { X®(v(n—;)w; ®
Veiw; )8 € S(D, mw;) } is a linearly independent subset of V ((m — €;)w;) ® V (€;w;). Since V (mw;) =
Un7) (Vim—e;)w; @ Vew;) and dim V (mw;) = dim gr V (mw;) part (1) follows. O

Therefore it will be enough to prove the above lemma. The first part of the lemma is proved in full
generality in Section 4.4 whereas the second part is proved only for several special cases (1 <i < 3
and n arbitrary or ¢ arbitrary and 1 < n < 4) in Section 4.5. The proof of the third part for these
special cases is an easy calculation and will be omitted.

4.4. Proof of Lemma 4.3 (i). We choose a total order < on R™:
apg < sy = qg<torqg=tandp>s.

Interpreted in the Hasse diagram this means that we order the roots from the bottom to the top
and from left to right. We extend this order to the induced homogeneous reverse lexicographic
order on the monomials in S(n~). We order the set of positive roots RT™ = {Bi,...,8x} with
respect to <:
BN < BN-1 <+ < L

The definition of the order < implies the following. Let 8; < 3, and v € R, such that 8y—v € R™
and B, —v € R*, then

Be—v =By —v.
We define differential operators for « € RT on S(n~) by:

T_gta, HB—a€RT
0, else.

The operators satisfy
Oa—p = Ca,plTa, z—p];
where Cap € C are some non-zero constants.
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Lemma. Let ) ;v X" € S(n7) and v € RT. We set
+

t:max{r|8VXr7éO,cr;£O}.

Then the maximal monomial in Zrezf cr0, X is a summand of 9, Xt.

Proof. We express 0, X as a sum of monomials and let Xt be the maximal element appearing in
this expression. From the definition of the differential operators it is clear that

tg,, ifg?éjtwﬁf#ﬁjt_y
g, =tg, —1, ifl=j , where f;, = max {5k | Oyx_p, #0,t5, # O}.
tﬂg_’_l’ ifﬁg:ﬁjt—lj o

With other words, Xt is a scalar multiple of

t tg. —1

|| EcR

CFje
Moreover, let X* be any monomial with ¢, # 0 and 9, X* # 0. Similar as above we denote by X*
the maximal element which appears as a summand of d, X*. In the rest of the proof we shall verify
that t = T. Since t = r this follows immediately if j; < jr. So suppose that j; > jr and t < T.
This is only possible if rg, —1 <tg, and tg, =rg, for 1 <p < jr. Therefore we can deduce from
t = r that rg, =tg, . It follows tg, # 0, dyx_pg, # 0 and Bj, < B;,, which is a contradiction to
the choice of 3, . 0

The proof of Lemma 4.3 (i) proceeds as follows. We use the above monomial order on S(n~) and
prove that any monomial X%, s ¢ S(D, mw;) in S(n~) /I, can be written as a sum of monomials,
where each monomial appearing in this expression is less than X®. We repeat this argument for
any summand X®, t ¢ S(D,mw;) in this expression. After finitely many steps X% can be written
as a sum of monomials X%, t € S(D,mw;) which is exactly the statement of the lemma. So let
X%, s ¢ S(D,mw;) be a monomial in S(n~)/L,,,. Then there exists a Dyck path p such that
Y588 > Mp(mw;). We define another multi-exponent r = (rg) by rg = s if 8 € p and rg =0
otherwise. Since we have a monomial order it will be enough to prove that X* can be written as a
sum of smaller monomials. Hence the following proposition proves Lemma 4.3 (i).

+
Proposition. Let p e D and s € Zlfi | be a multi-exponent supported on p, i.e. s3 =0 for 5 ¢ p.

+
Suppose e, 55 > Mp(mw;). Then there exists constants ¢ € C,t € Zlfi such that

XS+thXt cl,.
t<s

Proof. First we assume that p = {8(1),...,3(k)} € DY’ Note that the ideal I is stable under

the action of the differential operators and 2 (;?;::rsﬂ *) ¢ I,. In the following we write simply

Tpg = T—ay,, .and Sp,q *= Sa,, and rewrite the monomial x_g(1) - - - x_g,) as follows. We can choose
a sequence of integers

l=po<p1<p< - <pr1<p=1<i+l=@<qa<@p<  -<¢g-1<g¢g=2n—1
with 1 <p,<qg<norl<p,<2n-—gy<n forall 0 </¢<rsuch that

L_p) " T-pk) = LLi+1 " Lp1,i+1Lp1,i+2 """ Tpr,q1 Tp1+1,q1 * " Lp2,q1 Lp2,q1+1 """ Tpa,qa """ Lpr,gr-

See the picture below for a better imagination:
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p1.itl
1,i+1 i,i4+1
P2,491
P1,91
o P3,92
p2,92
P3.a3 .
Pr—1-9r—2
Pr—2,9r—2 [
1,2n—i i,2n—1
Pr—1:9r—1
For 0 < £ <7 we define sp, := $pyq_ 141+ + Sppge + Spettiae T+ Speage and [s| := sg(0) +
“+ Sg(k)- Then
5p1 Is| Isl=spy spy

eI,.

o1, —171,2n—i = T1,2n—iTpy 2n—i
Since O, Tt 2n—i = 0 for 1 <t <1 < i we conclude with p; < ps < -+ < p;:

Spr Sp2 Sp1 Is| Is|—> %=1 5p¢ .Sp1 pr
aoq,pr—l"'8a1,p2—18a1,p1—1x1,2n71 — 1,2n—i xpl,Zn i p2 2n i p 2n—i GI)\

Note that the operator Ou, ., ,,

implies that the largest monomial in

acts non—trivially on each z;; 2n—i. The choice of the order

S1it1t o tspyiv1 [8=207_1 spy Spy Sp Spr
aCVi+1,2n7(i+1) 1,2n—i xpl,Qn—zxpg,Qn—z cet xpr,Qn—i (43)

is obtained by acting with 9a,,, ,, (41
monomial in (4.3) with respect to < is

only on the the largest element x2,—;. So the largest

S1i41tHSpy it Spy Sp2 Spr
1,i+1 mpl 2n—zxp2 2n—i " " mp,«,Zn—i' (44)

Each of the operators 0, Oay 5> 0oy, act trivially on each Tp; 2n—i- Since

p1—1,p1—17°" ">

orrLit 683,i+1+"'+3p1,i+1682,i+1+'"+3p1,i+1 811 +8py ikl | S1i41 Spy,it1
Qpi—1,p;—1 Y22 a1 xl,i-q—l - Fla41 0 xpl,i—i—l

we obtain by acting with these operators on (4.4) that

xilzrll . ;I;Z }Zrll gg‘;ll’lzn szz i x;m% i T Z smaller monomials € TIj. (4.5)
In the next step we act with the operators Ou, s, Oait1on-gy+10 - Qi1 9n (gi1) OO Tpi2n—i
and obtain with Lemma 4.4:
&igilﬁ,gfiltgl_1+m+sp1’qo+1)8§£~1#’f,12;17q1+1 te ajf;ifozzlf(qwrl)x;?bn—i (46)
= x;sfffql(spl a1ty aot) LT g L0 Z smaller monomials

Since xp, 2n—; is the maximal element with respect to < among the factors in the leading term of
(4.5) we get by combining Lemma 4.4 and (4.6)

S1,i+1 5}71 i+1 ZZ =p1 S0,q1 Sp1,q1—1 Sp1,q0+1 _Spo Z
Li+1 = Tpilit1 Tri,a pLgi—1 Lpigo+1 Tpo,2n—i pr,% ;T smaller monomials € I.
(4.7)
Now we act with the operators Oa,, 1 ,, 15--- Oy 11,115 O, py !
85172411 asp1+2,q1+"'+5p21q1 85p1+1,q1+5p1+2,q1+"'+sp2,f11 Spy1,q1 tSpy+1,qp T FTSpy.ap
o, — 10« o P1,q =
pa—1,pa—1 p1+1,p1+1 P1,P1 1,41 (4 8)

Sp1,a1,,.5p1+1,q1 Sp2,q1
Tpiar Tprlgr - Tpoar -
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Since Doy, 1y 15+ Oapy 11,415 Oy, CH trivially on each xpjon—1 and xp, ¢, is the largest element
with respect to < among the remaining factors in the leading term of (4.7) we get by combining
(4.7) and (4.8) that the following element is the sum of strictly smaller monomials in S(n™)/I,:

S1,i+1 Sp1,i+1 _Sp1,q1 Sp1,91—1 _Sp1,91—2 Sp1,90+1, Sp1+1,91 Spa,q1 .52 Spr

$1,i+1 . xp1,i+1 $p17q1 mp1,q1—1 p1,gi—2 " $p1,qo+1 p1+l,qr mpZ,Ql l'p272n7i e xpr,Qn*i
. Spo Spp .. type]_
If we repeat the above steps with T on—i - Tpop_i WE CaN deduce the proposition for p € D5 .

Now suppose that p € Dtlypel is of the form

p= {011,1'7 Q25+ Qg Ot ly e ey Oty Op 42, - .- ai,Qn—i—l}-
We shall construct another Dyck path as follows. We set @ = {agit1,- .-, Qrit1, Qrit2, .. Qi 2n—i—1}-
Then it is easy to see that we can find an element q € P(R;") such that the path g := qUq € D5™* L
We define a multi-exponent s(q) by
s(@)p = sp, if BE€ A, s(@ay11 = Sar, T+ 5q,,, and else s(q)g = 0.

By our previous calculations we get

XD Y o X el (4.9)
t<s(q)
Note that each operator Ou, ,,...,00,_,,, acts trivially on zg for all 3 € q and 0Oq,,,,,, acts

trivially on xg for all 8 € q\{owt1,i41,--- Qrig1}. Since x1,41 > 2541 for all £+ 1 < j < r the

maximal element when acting with Oq,,,.,, on (4.9) is obtained by acting with Oa,,,,,, on 111
We have _ 3 _
afxiiiﬂﬂ“ X5@ 4 = $i?{’+."+sz’i Xs@ 4 Z smaller monomials € Iy, (4.10)
where s(q) is the multi—gxponent deﬁngd by s(q)g = 55 if 8 € q and s(q)g = 0 otherwise. In the
last step we act with 2‘;’1172_182‘;:12*;?* X '(‘92’?'”“’5” on (4.10) and get
X54+) aXPel,.
t<s

Now we assume that p € D%P®2 which means that p can be written as a union p = p; U p2
with p1 = {B1(1),...,Bi(k1)} and p2 = {Ba2(1),...,B2(k2)} such that B1(k1) = aj—1,20—j+1 and
52(]{72) = Qj2n—j- We have

Spy (1)t 8y (k) T8 (1) T 88, (k)
Ty op—1 e I,. (4.11)

We will prove the statement of the proposition by upward induction on j € {2,...,i}. If j =2, we
have

P1 = {aLia a17i+1a ey aLanl} and P2 = {a2,i7 Q25415+ a272n72}
and therefore by acting on (4.11) we get
52, 52273 052,2n—2 951, 51,2n—2 981,2n—2 S8 (1) T 88, (k) T8y (1) T 885 (ky)
aa1,2n—i o a041,3 aal,Q 8042,271—1’ U a012,3 a042,2 xl,Zn—l -
_ S12n-1 S1,i41 S1,i 52.2n—i—1 82,41 52, .
= X191 T i1 X1 Tadp—o  Tg i1 Tog + g smaller monomials € I

and the induction begins. As before we rewrite the Dyck path as follows:

T g ()T-By(2) " T—By (k1) = T1iT1i+1 """ Tbyey Thy+1,e; " Thaer Thy,er+1 " Thyyey - - - Toyocr
T By(1)T—B3(2) " " T—Pa(ka) = T2,i%3,i " Tpy,iTp1 i+l " Tp1,q1Tp1+1,q1 *° Tp2,q1 Tpa,q1+1 " Tpa,ge * " Tpege
where
1:b0:b1<b2<"-<br_1§br:j—1, i:CO<Cl<02<'--<Cr_1§CT:2TL—j—|—1,
2=p<pr<pe<--<pa<p=jandi=qo<q <g<- - <q-1<q=2n—j
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For a pictorial illustration see the picture below:

byseq

i,2n—1i

1,2n—1 @

We will construct another path p € DWPe2. We set

p1 = p\{aPthfl’aptaQtfl-Fl? e 7O‘pt,¢1t}'

Then it is easy to see that there exists a unique element ps € P(R;") such that p = p1Ups € DWPe?2
and the roots aj_22n,—j+2, @j—1,2n—j4+1 appear in p. We define a multi-exponent s(p) by

5(§)[3 =sg, iffe 51\{051)7«_17&}7 S(ﬁ)abT_l,cT = Sbr_1.er T Sprgr—1 T Sprgr1+1 T+ Spa
and s(p)g = 0 otherwise. The induction hypothesis yields

X:P 4 N o X el (4.12)

t<s(p)
Now we want to act with suitable operators on (4.12) such that the leading term is the required
monomial X®. Since xp, , ., is the maximal element in X5(P) and a%fw., e ,Gabpb%iqtil act non

trivially on xy we obtain the desired property

r—1,Cr

Spt.ar—1 Spt, P Spt.qt—1 Sp¢, t
0, cee aaitr_‘ltl’j x5(P) + E Ctaab . ao;;t @ Yt _

Qb _1,2n—q_1 r—1,2n—q¢_1 r—15J
t<s(p)

=X+ Z smaller monomials € I.
O
4.5. Proof of Lemma 4.3 (ii) in various cases. In this section we shall prove various cases of
Lemma 4.3 (ii). Consider the partial order
Qjk Sapr e (j=pAk>T)

and suppose we are given a multi-exponent s € S(D,mw;). Let R® = {8 € RS (2n — i) | s # 0}
and T® the set of minimal elements in R® with respect to <. We define a multi-exponent t° by
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tg =1,if § € T® and tg = 0 otherwise and call it the multi-exponent associated to s. The following
lemma can be deduced from [13, Proposition 3.7].

Lemma. Let s € S(D,mw;) such that sz # 0 implies 8 € R (2n —i — 1) (resp. B € (R N
RS 1)(2n —1)). Then we have

s—t° e S(D,(m— 1)w;).

+
For a multi-exponent t € Zlfi | define

supp(t) = {8 € R | t3 # 0},
and let
_ IR +
T(l)f{tGZJr |ts <1,VB e R}

The following proposition proves Lemma 4.3 (ii) for 1 < ¢ < 3, where the proof for i = 3 is very
technical and is given in the appendix (see Section 7.2).

Proposition. Let 1 <7 < 3 and m > ¢;. Then we have
S(D, mwi) = S(D, (m — Ei)wi) + S(D, eiwi).

Proof. The proof for ¢ = 1 is straightforward since S(D,mw;) is determined by two inequalities.
Proof fori = 2: Suppose s € S(D, mws) and recall that D¥P¢2 = { RS}, We will construct a multi-
exponent t € S(D,wsy) such that s —t € S(D, (m — 1)wz). We prove the statement by induction
on sy and start with sy = 0. In this case we note that 3 5 (sg —t5) <m —1forallp € Dtvpel
implies already s—t € S(D, (m — 1)ws). The proof proceeds by several case considerations. For the
readers convenience we illustrate each case by means of the Hasse diagram. We make the following
convention: a bold dot (resp. square) in the Hasse diagram indicates that the corresponding entry
of s is zero (resp. non—zero).

Case 1: In this case we suppose s22,—2 # 0.

If 512 = s22 = 0 the statement follows from Lemma 4.5. So let t € T(1) be the multi-exponent
with supp(t) = {a22n—2,ak2}, where k = min{l < j < 2| s;2 # 0}. It is easy to see that
t e S(D,wz) and s —t € S(D, (m — 1)ws).

Case 2: In this case we suppose that s 9,2 =0 and s12 # 0.

If s12,—2 = 0 the statement follows as above from Lemma 4.5. So let t € T(1) be the multi-
exponent with supp(t) = {a12,a12,—2}. It is straightforward to prove that t € S(D,ws) and
s—t e S(D,(m—1)ws).

Case 3: In this case we suppose s12 = s22,—2 = 0. Again with Lemma 4.5 we can assume that
s22 # 0 and s12,-2 # 0.



70 TEODOR BACKHAUS AND DENIZ KUS

Let t € T(1) be the multi-exponent with supp(t) = {a22, 01}, where k = min{3 < j <2n —2 |
s1,; # 0} (see the unfilled squares below).

It follows t € S(D,ws). Suppose we are given a Dyck path p € Dtlypel with 375 (s5 — tg) = m,
which is only possible if tg = 0 for all 5 € p. It follows that p is of the form

p={ag,...,1p,2p,...,a22,—3}, for some 3 <p < k.
Since s1, = 0 for all 2 <7 < k we get
ZS,B <sp3+ -+ 529m-3<(s22—1)+s23+ -+ 2273 <m—1,
BeEp

which is a contradiction. Similarly, for p € DYP°! we get > sep(ss —tg) < m — 1. Hence
s —t € S(D, (m — 1)wz) and the induction begins.

Assume that sy # 0 and let s! be the multi-exponent obtained from s by replacing sg by sg — 1. By
induction there exists a multi-exponent t! € S(D,ws) such that r! :=s' —t! € S(D, (m — 1)ws).
If ZﬁeR;“ té < 1 we set t to be the multi-exponent obtained from t' by replacing té by té + 1.

Then we get t € S(D,ws) and s —t = r!. Otherwise we set r to be the multi-exponent obtained
from r!' by replacing rj by r§ + 1. Since ZﬂeR; t% =2, we get ZﬁeRj rg < 2m — 2 and therefore

s=r+t!, ands—t' € S(D,(m — 1)ws).
]

In order to cover the remaining special cases, we shall prove Lemma 4.3 (ii) for n = ¢ = 4. Let
s € S(D, mwy). We will prove the Minkowski property by induction on s44+s17. If s44 = s17 =0,
we consider two cases.

Case 1: In this case we suppose that s1, 525 and s34 are non-zero.

Then we define t € S(D, 2w,4) to be the multi-exponent with t1 6 =t25 =t34 =1 and 0 else. It is
immediate that the difference s —t € S(D, (m — 2)wy).

Case 2: In this case we suppose that one of the entries sq 6,525 or s34 is zero. Then there is a
Dyck path p such that s is supported on p and the statement is immediate.

So suppose that either s;4 # 0 or s;.7 # 0. The proof in both cases is similar, so that we can
assume s4.4 7 0.
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We set s! to be the multi-exponent obtained from s by replacing 544 by 544 — 1. By induction we
can find t!' € S(D,2wy) such that s! —t! € S(D, (m — 2)ws). Now we define t to be the multi—
exponent obtained from t! by replacing t44 by t44 + 1 if the resulting element stays in S(D, 2w,)
and otherwise we set t = t!. In either case s —t € S(D, (m — 2)wy).

Remark.

(1) The set S(D, mw;) does not satisfy the usual Minkowski sum property in general, e.g. the
element (mg) € S(D,2ws) (n = 4) with mg = 1 for § € {a16, 025,34} and else 0 is
not contained in S(D,ws) + S(D,ws4). Another example is the element (mg) € S(D,2ws)
(n=4) with mg =1 for f € {a1,3, 014,116,005, 33} and else 0.

(2) The polytope P(D, e;mw;) is defined by inequalities with integer coefficients and hence the
Minkowski property in Lemma 4.3 (ii) ensures that P(D,¢;mw;) is a normal polytope for
1 <4 < 3 and n arbitrary or ¢ arbitrary and 1 < n < 4. The proof is exactly the same as
in [12, Lemma 8.7].

Summarizing, we have proved Conjecture 4.3 for arbitrary n and 1 < ¢ < 3 or arbitrary 7 and
1 < n < 4. Moreover the proof of the general case can be reduced to the proof of Lemma 4.3 (ii)
and Lemma 4.3 (iii).

5. DYCK PATH, POLYTOPES AND PBW BASES FOR s07

If the Lie algebra is of type Bz we shall associate to any dominant integral weight A a normal polytope
and prove that a basis of gr V(A) can be parametrized by the lattice points of this polytope. We
emphasize at this point that the polytopes we will define for Bz are quasi compatible with the
polytopes defined in Section 4.2; see Remark 5.1 for more details.

5.1. We use the following abbreviations:

B1 =15, B2 = 14,03 := oy, B4 1= 13, B5 := a3, 86 1= 12, B7 := g2, fg := a33, By 1= a11.

» Os
Br e 65’ o B3
Bo o e b1
Be Ba B2

Let A = miwi + mows + maws, s; 1= sg, for 1 < i < 9 and set (a,b, c) := amy + bma + cmgz. We
denote by P(X) C RY the polytope determined by the following inequalities:

S9 + 83+ 84+ 88+ s9 <

S4+ S5+ 86 + S8+ s9 <

(1,1,1)
83+84+85+88+89§(1,1,1)
(1,1,1)
(1,1,1)

s3+s5+ss < (0,1,1)
55457453 < (0,1,1)

(1)

(2)

(3)

(4) S5+ 86 + 87+ 88+ 89 <
(5)

(6)

(7) Sg + s7+ s9 < (1, 1,0)

§1+82+ 83+ 5S4+ 85+ 87+ 59
S1+ 83+ 84+ 85+ 86+ s7+ S9
52+ 83+ 5S4+ S5+ 7+ 88+ Sg

VAIVARVANIVAN

(8)
(9)
10)
11) S3+ 84+ S5+ 8¢ + s7+ s+ Sg
12)
13)
14)
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(15) s1+ s2+ 83+ Sa + S5 + S¢ + 57+ 259 < (17) s1+s2+2(s3+54+55)+S6+s7+58+259 <

(2,2,1) (2,3,2)
(16) 52+ S3+ 54+ S5 + 56 + ST+ 55+ 259 < (18) 82+2(83+S4+85)+86+S7+2(88+89) <
(2,2,1) (2,3,2)

(19) S3+84+2s5+86+s7+2s5+59 < (1,2,2)

As before we set S(\) = P(A\) N Z9..

Remark. Assume that A = mw; for some 1 < i < 3. If i # 1, then the polytope P(D,mw;)
defined in Section 4.2 coincides with the polytope given by the inequalities (1) — (19). If i =1
these polytopes slightly differ in the following sense: the polytope P(D,mw;) from Section 4.2 is
determined by the inequalities

(1) si+s2+sa+ss<m (2) sa 454+ 86+ 59 <m

whereas the above polytope can be simplified and is determined by the inequalities

(1) s14 54+ 86+ 59 <m (2) si+s2+s4+s9<m
5.2. For the rest of this section we prove the following theorem.
Theorem. Let g be of type Bs.
(1) The lattice points S(\) parametrize a basis of V/(\) and gr V() respectively. In particular,
{XPux|s € S(A)}

forms a basis of gr V().
(2) The character and graded g-character respectively is given by

chV(X) =) [S(A)]e”

Heh*
chygrV(A) = Z ATV 288,
seS(A)

(3) We have an isomorphism of S(n~)-modules
grV(A+p) = Sm7)(va®@vyu) CgrV(A) @erVip)
As in Section 4 we can deduce the above theorem from the following lemma.

Lemma.
(i) Let A\, u € PT. We have
SA+p) = SA) +5(n)
(i) For all A € P™:
dim V(X)) =[S\

The proof of Lemma 5.2 (i) is given in Section 5.3 and the proof of Lemma 5.2 (ii) can be found in
Section 5.4.
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5.3. Proof of Lemma 5.2 (i). For this part of the lemma it is enough to prove that S(\) =
S(A — wj) + S(w;) where j is the minimal integer such that A(a)) # 0. If j = 3, many of the
inequalities are redundant and the polytope can be simply described by the inequalities
s1+ 82+ 83+ 854+ 55 <(0,0,1), s2+ 83+ 54+ 55+ 58 <(0,0,1).

The proof of the lemma in that case is obvious. If j = 2, there are again redundant inequalities
and the polytope can simply described by the inequalities (1) — (4), (7), (9) — (10) and (15) — (16).
A straightforward calculation proves the proposition in that case. Solet j =1 and s = (s;)1<i<9 €
S(A). We will consider several cases.

Case 1: Assume that sg # 0 and let t = (¢;)1<i<9 be the multi-exponent given by t9 = 1 and
t; = 0 otherwise. It follows immediately t € S(w;) and s —t € S(A —wy).

Case 2: In this case we suppose that sg = 0 and so, s¢ # 0.

Case 2.1: If in addition s3+ s4 + s5 + s3 < (1,1,1) we let t = (;)1<i<9 to be the multi-exponent
given by ¢t = tg = 1 and t; = 0 otherwise. It is easy to show that t € S(wy) and s —t € S(A —wy),
since s —t ¢ S(A — wy) forces s3 + s4 + s5 + ss = (1,1, 1).

Case 2.2: Now we suppose that s3 + s4 + s5 + sg = (1,1,1). Together with (5) we obtain
sg > mq > 0. Welet t = (t;)1<i<9 to be the multi-exponent with ¢4 = 1 and ¢; = 0 otherwise.
Suppose that s —t ¢ S(A — wy), which is only possible if (4), (7), (15) or (16) is violated. Assume
that (4) is violated, which means s5 + sg + s7 + sg = (1,1,1). We obtain

(s3+ 544 55+ 58) + (55 4+ 56 + 574 58) = 53 + 54 + 255 + 56 + 57 + 258 = (2,2,2),

which is a contradiction to (19). Assume that (7) is violated, which means s¢ + sy = (1,1,0). We
get

(s34 84+ 85+ s8) + (s6 + s7) = (2,2,1),
which is a contradiction to (11). In the remaining two cases (inequality (15) and (16) respectively
is violated) we obtain similarly contradictions to (17) and (18) respectively.

Case 3: Assume that s = sg = 0 and sg # 0. In this case many inequalities are redundant. In
particular, for a multi-exponent t with t; < s; for 1 < j <9 we have s —t € S(\ —w;) if and only
if s — t satisfies (2) — (11), (13) and (19). To be more precise,

s — t satisfies (2) = s — t satisfies (1)
s — t satisfies (13) = s — t satisfies (12), (15)
s — t satisfies (11) = s — t satisfies (14), (16)
s — t satisfies (2) and (13) = s — t satisfies (17)
s — t satisfies (2) and (11) = s — t satisfies (18)
Case 3.1: If in addition s3 + s4 + s5 + ss < (1,1,1) we let t = (t;)1<i<9 to be the multi-

exponent given by t¢ = 1 and t; = 0 otherwise. It is straightforward to check that t € S(w;) and
s—te S()\—wl).

Case 3.2: If s34+ 54+ 55 +s3 = (1,1,1) we let t = (¢;)1<i<9 to be the multi-exponent with ¢4 =1
and t; = 0 otherwise. Note that s —t ¢ S(A — w) is only possible if (4) or (7) is violated. If

(4) and (7) respectively is violated we get similarly as in Case 2.2 a contradiction to (19) and (11)
respectively.

Case 4: Assume that sg = s9 = 0 and so # 0. This case works similar to Case 3 and will be
omitted.
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Case 5: In this case we suppose sg = sg = s9 = 0 and simplify further the defining inequalities
of the polytope. As in Case 3, for a multi-exponent t with ¢; < s; for 1 < 5 < 9 we have
s —t € S(A\ —wp) if and only if s — t satisfies (2), (5), (6),(8) — (11), (13) and (19). To be more
precise,

s — t satisfies (2) = s — t satisfies (3)

s — t satisfies (6) = s — t satisfies (4)

s — t satisfies (8) = s — t satisfies (7)
Case 5.1: We suppose that s4 # 0 and let t = (¢;)1<i<9 to be the multi-exponent given by t4 =1
and t; = 0 otherwise. The desired property follows immediately.

Case 5.2: Let s4 = 0. Then again we can simplify the inequalities and obtain that s—t € S(A—w1)
if and only if s — t satisfies (5), (6), (8) — (10), and (13). To be more precise,

s — t satisfies (5) = s — t satisfies (2)
s — t satisfies (5) and (8) = s — t satisfies (11)
s — t satisfies (5) and (8) = s — t satisfies (19)

Case 5.2.1: If 57 = 0 we already have s € S(A\ — mjw1). If s1 # 0, let t = (¢;)1<i<9 be the multi—
exponent with ¢, = 1 and ¢; = 0 otherwise. It follows immediately t € S(w1) and s —t € S(A —wy).

Remark. The polytope P()) is defined by inequalities with integer coefficients and hence the
Minkowski property in Lemma 5.2 (i) ensures that P()) is a normal polytope. The proof is exactly
the same as in [12, Lemma 8.7].

5.4. Proof of Lemma 5.2 (ii). We consider the convex lattice polytopes P; := P(w;) C R for
1 <i < 3. By [3, Problem 3, pg. 164] there exists a 3—variate polynomial E(T},Ts,T3) of total
degree < 9 such that

E(mi,m2,m3) = |(m1Py + maPy + m3P3) N Z3|, for non—negative integers msy, ms, ms.
By Lemma 5.2 (i) we get
E(mq,ma,m3) = |S(N\)], for non—negative integers my, mo, ms

and by Weyl’s dimension formula, we know that there is another 3—variate polynomial W (71, Ts, T3)
of total degree < 9 such that
W(my,mg2, m3) = dim V().
The polynomial is given by
1
W(Tl,TQ,Tg) = m(Tl -+ 1)(T2 + 1)(T2 + 1)(T1 + 215 + T35 + 4)(2T1 + 215 + T35 + 5)
(M +To+ T3+ 3) (T +To+2)(To + T3+ 2)(2T% + T3 + 3).

Hence it will be enough to prove that both polynomials coincide. By using the code given in
Section 7.3, written in Java, we can deduce E(Ag, A1, A2) = W (g, A1, A2) for all (Ao, A1, A2) € Zi
with Ao + A1 + A2 < 9. We claim that this fact already implies E (11, T, T3) = W (T, T2, T3). Let
I={(Mo,A1,\2) € Z‘j’r | Ao + A1 + A2 < 9} and write

E(Ty, T, T3) = > enmp Il TTY, W(TL,To,T5) = Y womsTTT5" TS
(n,m,k)el (n,m,k)el
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We obtain with our assumption that
Yo (enmk = Wam k) AGATAS = 0.
(n,m,k)eT
We can translate this into a system of linear equations where the underlying matrix is given by
(AG° AT AS*) A et

This matrix is invertible by [6, Theorem 1] and therefore the claim is proven.

6. CONSTRUCTION OF FAVOURABLE MODULES

In [12] the notion of favourable modules has been introduced and several classes of examples for
type An, Cp, and G, have been discussed. This section is dedicated to give further examples of
favourable modules in type B,. Let us first recall the definition.

6.1. We fix an ordered basis {z1,...,2x} of n~ and an induced homogeneous lexicographic order
< on the monomials in {z1,...,zx}. Let M be any finite-dimensional cyclic U(n~)-module with
cyclic vector vy; and let

XSy =it .. xYom € M,
where s € Zf is a multi-exponent. The following definition is due to Vinberg.
Definition. A pair (M,s) is called essential if
X% wvpr ¢ span{X9vys | q < s}.

If the pair (M,s) is essential, then s is called an essential multi-exponent and X® is called an
essential monomial in M. The set of all essential monomials are denoted by es(M) C Z%. We
introduce subspaces Fs(M)~ C Fy(M) C M:

Fs(M)™ =span{X9vy | q < s}, Fs(M) =span{X9uvys | q < s}.

These subspaces define an increasing filtration on M and the associated graded space with respect
to this filtration is defined by

M'= P F(M)™/Fy(M).
seZ_ﬂY

Similar as in Section 3 we can define the PBW filtration on M and the associated graded space
gr M with respect to the PBW filtration. The following proposition follows from the construction
of M*' and gr M (see also [12, Proposition.1.5]).

Proposition. The set {X® | s € es(M)} forms a basis of M?, gr M and M.

6.2. We recall the definition of favourable modules.

Definition. We say that a finite-dimensional cyclic U(n~)-module M is favourable if there exists
an ordered basis x1,...,zy of n” and an induced homogeneous monomial order on the PBW basis
such that

e There exists a normal polytope P(M) C R such that es(M) is exactly the set S(M) of
lattice points in P(M).
e VkeN: dmUn )(vpy ®---@uy) =|S(M)+---+S(M)].

k k
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Let N be a complex algebraic unipotent group such that n~ is the corresponding Lie algebra.
Similarly on the group level, we have a commutative unipotent group gr N with Lie algebra grn~
acting on gr M and M!. We associate to the action of the unipotent groups projective varieties,
which are called flag varieties in analogy to the classical highest weight orbits (see [12] for details)

§(M) = N.[on] CP(M), F(gr M) =grN.[un] CP(gr M), F(M')=grN.[onr] C P(M").

The following theorem proved in [12] gives a motivation for constructing favourable modules by
showing that the flag varieties associated to favourable modules have nice properties.

Theorem. Let M be a favourable n~—module.

(1) F(M?) C P(M?) is a toric variety.

(2) There exists a flat degeneration of F(M) into F(gr M), and for both there exists a flat
degeneration into F(M?).

(3) The projective flag varieties F(M) C P(M) and its abelianized versions §(gr M) C P(gr M)
and F(M?') C P(M?) are projectively normal and arithmetically Cohen-Macaulay varieties.

(4) The polytope P(M) is the Newton—-Okounkov body for the flag variety and its abelianized
version, i.e. A(F(M)) =P(M)=A(F(gr M)).

6.3. In [12, Section 8] the authors provided concrete classes of examples of favourable modules for
the types Ay, C, and G,. The following theorem gives us classes of examples of favourable modules
in type B, (including multiples of the adjoint representation).

Theorem. Let g be the Lie algebra of type B, and A be a dominant integral weight satisfying one
of the following

(1) n =3 and A is arbitrary
(2) n is arbitrary and A = mw; or A = mws
(3) n is arbitrary and A\ = 2mws or n =4 and A = 2mwy

Then there exists an ordered basis on n~ and an induced homogeneous monomial order on the
PBW basis such that V() is a favourable n™—module.

Proof. We will show that V(\) satisfies the properties from Definition 6.2. We consider the ap-
propriate polytopes from (4.2) and P(\) from Section 5. These polytopes are normal by Re-
mark 4.5 and Remark 5.3 and therefore the natural candidates for showing the properties from
Definition 6.2. For simplicity we will denote these polytopes by P(\) since it will be clear from the
context which polytope we mean. The second property follows immediately since on the one hand
Un™)(vy ®---®wvy) = V(kA) and on the other hand the k—fold Minkowski sum parametrizes a
basis of V(k\) by Theorem 5.2 (1), Lemma 5.2 (i), Conjecture 4.3 (1) (which is proved in theses
cases) and Lemma 4.3 (ii). Hence it remains to prove that es(V'(\)) (with respect to a fixed order)
is exactly the set S(A). Let A =37, mja;w;. By [12, Proposition 1.11] we know that

es(V(A) Des(V(awr)) + - +es(V(ajwr)) + - +es(V(apwn)) + - - + es(V(apwn)),  (6.1)

mi Mn

and hence it is enough to show that there exists an ordered basis on n~ and an induced homogeneous
monomial order on a PBW basis such that es(V(ajw;)) = S(ajw;) for all j with m; # 0 (recall
from Proposition 6.1 that |es(V(X))| = [S(N)|). Suppose first that we are in case (2) or (3) (then
a; =1 and a; = 0 for all k£ # j in case (2) and in case (3) we have a3 = 2 respectively as = 2 and
ar = 0 else). Then we choose the order given in Section 4.4 (we ordered the roots in the Hasse
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diagram from the bottom to the top and from left to right) and the induced homogeneous reverse
lexicographic order on a PBW basis. By our results we obtain for s ¢ S(a;w;) that
X® g 0, € span{XTwg,y, | q < s}

and hence es(V (a;w;)) C S(ajw;). Since these sets have the same cardinality we are done. Suppose
now that we are in case (1) (a; = 1 for all j). Then we choose the following order on the positive
roots

Br = Be = 1= B2 = B3 = Ba = B5 = Bs = Po.

Similar as in Section 4.4 we can prove for all s ¢ S(w;) that
X% vy, € span{X%v,, | q < s},
which finishes the proof of the theorem. (|

7. APPENDIX

In this section we want to complete the proof of Proposition 4.5 for i = 3. Moreover, we give a
proof of the second part of Theorem 3.3 for type G,.

7.1. We consider the Lie algebra of type G and the following order on the positive roots:
B1:=3a1 +2a9 = By :=3a1 +ag = f3: =201 +ag = By := a1 +as = B5 := ag = B := .

As before, we extend the above order to the induced homogeneous reverse lexicographic order on
the monomials in S(n~). The order is chosen in a way such that Lemma 4.4 can be applied. Let
A = mywy + maws, S; 1= sg, for 1 <i < 6 and set (a,b) := amy + bma. It has been proved in [16]
that the lattice points S(A) of the following polytope P(\) parametrize a basis of gr V(\):

(1) s¢ < (1,0) (5) sa+s5+s6 < (1,1)

(2) sy < (0 1) (6) S1+ 82+ 83+ 84+ 85 < (172)
(3) sa+ s34+ s < (1,1) (7) s2+ 83+ 84+ 85+ s6 < (1,2)
(4) s34+ 854+ 3¢ < (1,1)

Proposition. We have gr V() = S(n~)/I, where
I, = S(n”) (Um*) ospan{a " | g € RTY).

Proof. Since we have a surjective map

Sn™) /Iy — grV(N),
it will be enough to show by the result of [16] that the set {X®v) | s € S(\)} generates S(n™)/I,.
As in Section 4 we will simply show that any multi-exponent s violating on of the inequalities

(1) — (7) can be written as a sum of strictly smaller monomials. It means there exists constants
¢t € C such that
X54+) aXPel,.
t<s
The proof for all inequalities is similar and therefore we provide the proof only when s violates (7).
So let s be a multi-exponent with s; = 0 and s2 + s34+ 54+ 5+ s > (1,2). We apply the operators

85“36822 on Xp, and obtain

82‘;“6 822 X%Tsﬁs”ss*sﬁ = cXZ?lJrs3 XZ‘;FSG Xgi € I, for some non—zero constant ¢ € C.
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Further we apply with 822 8§i on X%ﬁ“?’ Xsﬂf‘sﬁ ng and obtain with Lemma 4.4 that there exists
constants ¢y € C such that

S$2 OS so+s Sa+s S5 __ S S S4+s S t
O 0%, XG0 X570 X5 = Xg XP X0 Xy + ) X el (7.1)
t<s

Finally, we act with the operator 8;‘53 on (7.1) and get once more with Lemma 4.4 the desired
property. O

7.2.  Proof of Proposition 4.5 for i = 3: Recall that a bold dot (resp. square) in the Hasse
diagram indicates that the corresponding entry of s is zero (resp. non—zero). Let i = 3 and
s € S(D,mws). If s3; = 0 for all 3 < j < 2n — 3 the statement of the proposition can be easily
deduced from the i = 2 case. So we can suppose for the rest of the proof that s3; # 0 for some
3 < j < 2n—3. In contrast to the i = 2 case we will construct a multi-exponent t € S(D, pws)
such that s —t € S(D, (m — p)ws) where p =1 or p = 2. A similar induction argument as in the
1 = 2 case shows that it is enough to prove the statement for all multi-exponents s with sy = 0.
Since sy = 0 it is sufficient to check the defining inequalities of the polytope for all p € D\q, where
q is the unique type 2 Dyck path with 8 € q. In other words

> (sp —tg) < Mp((m — p)ws), Vp € D\q =s —t € S(D, (m — p)ws).
BEP

We consider several cases.

Case 1: In this case we suppose s32,-3 # 0.

Let t € T(1) be the multi-exponent with supp(t) = {as32,—3, 3}, where £ = min{l < j < 2|
s;3 # 0}. If k exists, it is easy to see that t € S(D,w3) and s —t € S(D, (m — 1)ws). So suppose
that s13 =523 =0.

Now we consider two additional cases.

Case 1.1: First we assume that Zii?l s3, = m (sum over the unfilled circles and the unfilled

square), which forces s3 3 # 0.

Then we define t € T(1) to be the multi-exponent with supp(t) = {@32n—3,@33}. We shall prove
that s —t € S(D, (m — 1)ws). For any p € D¥P¢! we obviously have > pep(ss —tg) <m—1. So
let p=p1Up1 € Dtype2\q. If oz 3 € po, there is nothing to show. Otherwise we get that ps is of
the form

P2 = {23, 004...00p, 03, A3 pt1,...A32n-3}, 3<Pp<2n—3
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and
2n—4
Z sg<m =383+ Z 53 k-
BEP2 k=3
It follows
2n—3
Y (ss—ta)+ D (s5—ts) < Y (sp—tg) +sas+ D (s3—tap) < 2(m—1).
Bep1 BEP2 BEP1 k=3

Case 1.2: It remains to consider the case Zi’;‘l 53 < m — 1. Since 513 = s23 = 0 it is enough
to construct a multi-exponent t € S(D,ws) such that

D (sp—tg) < Mp((m — 1)ws), ¥p € DY UDYPe2, (7.2)
BEp

We define t € T(1) to be the multi-exponent with supp(t) = {ag2n—3} if S12n—2 = 52202 =0
and otherwise supp(t) = {as32,—3, g 2n—2}, where &k = max{l < j < 2| sj2,—2 # 0}. In either
case t € S(D,ws) and if s12,-2 = s29n—2 = 0 or s22,—2 # 0 it is easy to verify that (7.2) holds.
So suppose that sg.9,—2 =0, $12,—2 # 0 and let p € Dgypel U Dtype2,

If pe Dgypel the statement follows from a32,-3 € p. So let again p = p; Ups € DWPe2?\q. If
a1,2n—2 € P1, we are done. Otherwise set
P1 = p1\{a13, 2202} U{az 203}, Py = P2\{a23} U{a14}.

This yields Py, P, € DY Pel and therefore

Y lss—te)+ Y (sa—tg) < Y (sp—tg)+ Y (s5—tg) < (m—1)+(m—1).

Bep1 Bep2 B8P, BEPy

This finishes Case 1; so from now on we can assume that s32,-3 = 0.

Hence we have simplified the situation to the following

2(557755) < My((m—p)ws), ¥p € DYPLUDYPLUDYPe2\q = s—t € S(D, (m—p)ws), (7.3)
pep
where ]5t2ypel ={pe Dgypel | 2903 € p}. Let s be the multi-exponent obtained from s by
setting all entries sg with 8 € R (2n — 4) to zero and t5 = (t/ﬁ) be the multi-exponent associated

to s’. By Lemma 4.5 we obtain for all p € Dtlypel

D (sp—tg) <m-—1. (7.4)

Bep
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Recall that s3; # 0 for some 3 < j < 2n — 3 and hence t/&k = 0 for some 3 < k < 2n — 4. So we
consider the following cases which can appear.

Case 2: Suppose that Zﬁ t/ﬁ = 3. In this case there exists 3 < j3 < jo < j1 < 2n — 4 such that
t1,j, = to,j, = t3j, = 1 (see the unfilled squares below).

. —D-".—.—.—.—.-n.—?
\

Let p € DYP°! of the following form

pP= {a174, sy A1 gy, 02 gy ooy (N2 293, 0‘372n73}'

We suppose that j; > p > j2, because otherwise there is nothing to show. This yields sy, = --- =
$9.9n—4 = 0 and hence

Y (sp—t5) < (sa—t1a)+ -+ (51203 — L120-3) + (52203 — a2 3) <m— 1L,
Bep
Similar arguments show
2(33 - t,ﬁ) <2(m—1), for all p € DWPe2\q.
pep
Hence (7.3) and (7.4) together imply

s—t° € S(D,(m — 1)ws).
Case 3: In this case we suppose ZB tlﬁ = 1. The proof proceeds similarly to the proof of Case 2

and will be omitted.
Case 4: In this case we suppose that Zﬁ th = 2.

Here we have again two cases, namely either there exists 3 < j3 < j; < 2n — 4 such that tll’jl =
tgyj?) = 1 or there exists 3 < j3 < jo < 2n — 4 such that t/27j2 = té,js = 1. The latter case works
similarly and will be omitted.

Case 4.1: Suppose there exists 3 < j3 < j1 < 2n — 4 such that t,17j1 = té,js =1.

This case can be divided again into two further cases. One case treats 2?;54 51, = m and the
other case 2?;54 s15 < m — 1. In the latter case we can construct a multi-exponent t € S(D, ws)
similarly as in Case 2 such that s —t € S(D, (m — 1)ws). The details will be omitted.

Case 4.1.1: We suppose that Zii?l s1p =m. If s90,_3 =0, we set t € T(1) to be the multi-
exponent with supp(t) = {asj,, 1,5, }. Then the statement can be easily deduced. So suppose
from now on that s 2,—3 # 0. This forces also that s; 3 # 0, because otherwise

2n—4
Z 81,k T S2,2n—3 = M + S2.2n—3 > M.
k=4

— e e @ — 7.7.7.,“.7

L e e e om—
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If in addition sj2,—2 = 0, then we can define t € T(1) to be the multi-exponent with supp(t) =
{a2,2n—3, 1,3} and the statement follows easily. So we can assume that sq2,—2 is also non-zero.

This is the only case where there is no multi-exponent t € S(D,ws) such that s —t € S(D, (m —
1)ws). We shall define a multi-exponent t € S(D,2ws) such that s —t € S(D, (m — 2)ws). Let
t be the multi-exponent with supp(t) = {asj,, @1 j,,®1.3, 01202, ¥22,—3}. Obviously we have
t € S(D,2ws). If p € D! then we can also deduce immediately

Z(Sﬂ *t/g) <m—2.

pep

So let p € DY*°!. There is only something to prove if p is of the following form

Pp={oi4,....,1p,Q2p,...,029,-3,032,—3}, for some p < js.
Since
2n—4
S13F Sy b sap b b sag Sm—syy <m-1< Y sy
k=3

we obtain by subtracting sq 3 on both sides

S14+FS1p+S2pt e+ 825 < S14+ 0+ 81204

Therefore
2n—3 2n—3
D (s —1t8) < D (s —trg) + (52203 —tagn-3) = Y S1k+ 5220 3—2<m—2.
Bep k=4 k=4

Let p = p1 Up2 € DWP¢2 be a type 2 Dyck path. There is only something to show if p; is of the
form

p1={a13,...,Q1p,Q2p,...,022n-2}, for some where p < js.
We get similar as above

2n—3
Z(S,B —tg) < Z (s16 —t1k) + (52,203 — t2,20-3) + (82,202 — t22n—2) + Z (sg—tp) <2(m—2).
Bep k=3 BEP2

7.3.  We used the program Eclipse and the following code:

public class B3{

static int dim = 0;

public static void main(String|] args){
int ml,m2,m3 = 0;

for(ml =0;ml <= 9;ml++){
for(m2 =0;m2 <= 9;m2++){
for(m3 = 0;m3 <= 9;m3++){
if(ml+m2+4+m3 <=9){

int sl,s2,s3,s4,s5,s6,s7,s8,s9 = 0;
for(s9 = 0;59 <=ml;s9++){
for(s8 = 0;58 <=m3;s8++){
for(s7 = 0;87 <=m2;s7++){
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for(s6 = 0;56 <= ml+ m2;s6++){
for(sh = 0;s5 <= 2*m2 + m3; sb++){

for(sd = 0; 54 <= 2*m1 + 2*m2 4+ m3; s4++){
for(s3 =0;53 <=m2+ m3;s3++){

for(s2 =0;s2 <=ml+m2+ m3; s2++){
for(sl =0;s51 <=ml+m2+m2+m3;sl++){

if(s2+ s34 s4+ s8+4 s9 <=ml+m2+ m3){
if(s3 4 s4+ sb+ s8+ 59 <=ml+m2+m3){
if(s4d+ 54 s6 + s8+4 s9 <= ml+ m2+ m3){
if(s5 4+ s6 + s7+ s8 + s9 <= ml+m2+m3){

if(s3+ sb+ s8 <=m2+ m3){
if(sh+ s7+ s8 <=m2+m3){
if(s6 4+ s7+ s9 <=ml+m2){

if(sl4 s24 s34 s4+ s5+ s7+ 59 <=ml+2*m2+m3){
if(s1+4 s34 s4+ sb+ 56 + s7+ 59 <=ml+2*m2 +m3){
if(s24 s34 s4+ sb+ s7+ s8 + s9 <= ml + 2*m2 + m3){
if(s3 4 s4 4 55+ 56 + s7+ s8 + s9 <= ml + 2*m2 + m3){

if(s1+ 824 83+ s4+ 85+ 6+ s7+ 2%s9 <= 2*m1 4 2*m2 + m3){
if(s24 s34 s4+ sb+ 56 + s7 + s8 + 2*s9 <= 2*m1 + 2*m2 + m3){

if(s1 4 s2 4 2%s3 + 2%s4 + 2%s5 + s6 + ST + s8 + 2*s9 <= 2*m]1 + 3*m2 + 2*m3){
if (524 2%s3 4 2%s4 + 2%s5 + 56 + sT7 + 2*s8 + 2*59 <= 2*m1 + 3*m2 + 2*m3){
if(s3 4 s4 4 2%s5 + s6 + ST+ 2*s8 + s9 <= ml + 2*m2 + 2*m3){

dim++; Y )

System.out.printin(” | S(” + ml +"wl +" +m2+ w2 +" + m3+"w3) |=" + dim);

dim = 0;}}}}}}
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5. DEGREE CONES AND MONOMIAL BASES OF LIE ALGEBRAS AND
QUANTUM GROUPS

TEODOR BACKHAUS, XIN FANG, GHISLAIN FOURIER

ABSTRACT. We extend the framework of the PBW filtration to quantum groups and provide
case independent constructions, such as giving a filtration on the negative part of the quantum
group, such that the associated graded algebra becomes a g-commutative polynomial algebra.
By taking the classical limit we obtain, in some cases new, monomial bases and monomial
ideals of the associated graded modules.

1. GENERAL REMARKS

1.1. On the monomiality. The reason why we are interested in the monomiality of the
defining ideal: let I be a monomial ideal of the polynomial algebra Clxi,xo,...,x,] such
that the quotient M := Clx1, z2,...,zy]/I is a finite dimensional vector space. The following
property is important: M admits a unique monomial basis

B(M) = {x*:=a{'x3? - -apm | x* ¢ I}.

2. LIE ALGEBRAS AND THE CLASSICAL DEGREE CONE

2.1. Notations and basic properties. Let g be a simple Lie algebra of rank n over C. We
fix a Cartan decomposition g = n* @ h & n~ and a set of simple roots IT = {aq,...,a,}
of g. The positive roots of g will be denoted by A, whose cardinality will be denoted by
N. For a € Ay, we pick a root vector f, of weight —a. Let w;, i = 1,...,n be the
fundamental weights, P be the weight lattice and Py = Y | New; be the set of dominant
integral weights. For a dominant integral weight A € Py, let V()\) be the finite dimensional
irreducible representation of g with highest weight A and vy a highest weight vector. Let
U(n~) be the universal enveloping algebra of n™.

Let W be the Weyl group of g with generators si,...,s, and wy € W be the longest
element. We denote R(wp) the set of all reduced decompositions of wy.

For any reduced decomposition wy = s;, ... siy € R(wp) we associate a convex total order
on Ay: for 1 <t < N, we denote B; = s;; ..., ,(ay,), then Ay = {f] t=1,...,N} and
B1 < B2 < ...< By is the desired convex total order, i.e. if §; < 8; and 3; + 3; € Ay, then

Bi < Bi+Bj < Bj.

It is proved in [P94] that the above association induces a bijection between R(wp) and the set
of all convex total orders on A.

2.2. The classical degree cone.
Definition 1. We define the following set

D= {(dg)gen, €RY |if a+ B =7 for a, 8,7 € Ay, then d, + dg > dy}.
84
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Since D satisfies for all z,y € D, A1, A2 € R\ {0}: Mz + Aoy € D we will call the set D
the classical degree cone.

We let S(D) := DNNY denote the set of lattice points in D. For any d = (dg)gea, € S(D),
we define a filtration 79 on U(n™) by:

F3 = span{fs, fo, - f3, €UMT) | B1,..., Bk € Ay such that dg, +dg, +--- + dg, < s}.
By the cyclicality, all irreducible representations V' ()\) admit a filtration arising from F9:
FAV(\) == Flu,.
The following lemma is immediate.

Lemma 1. For any d € S(D), we have:

(1) F@ = (FdcFl c..-c Fd C ) defines a filtration on U(n~) whose associated
graded algebra is isomorphic to the symmetric algebra S(n™).

(2) Let V4(N) be the graded module associated to the induced filtration. Then VE(\) is a
cyclic S(n™)-module.

Let v$ be a cyclic vector in V4(X). By (2) of the lemma above, the S(n~)-module map
@:58m7) = Vi), z— zaf
is surjective. We denote I9()\) := ker ¢ and call it the defining ideal of V().

2.3. The local and global monomial set.
Definition 2. The local monomial set Sy, is defined by:
Sim == {d = (dg)gea, € S(D) | for any i = 1,2,...,n, I%w;) is a monomial ideal}.
Definition 3. The global monomial set Sgy, is defined by:
Sem = {d = (dg)pea, € S(D) | for any A € Py, I4(\) is a monomial ideal}.

It is clear that Sgm C Sim.
The main goal of this paper is to study the following questions:

(1) whether the global monomial set Sgp is empty? That is to say, does there exist a
filtration on U(n~) arising from a degree d € D such that for any finite-dimensional
irreducible representation, its defining ideal is monomial?

(2) if the answer to the above question is affirmative, is there a polytope such that its
lattice points parametrize this basis? That is to say, for any A € P, we want to find
a polytope P(\) such that

n
{178 =1 /508 a€ Pu(y) := PO) NNY}
i=1
is a monomial basis of V4(\)?

Let d € Spy and define Py(w;) = {a € NV | f202 £ 0 in V4(w;)}, for 1 <i < n.

Theorem 1. For any A = mywi +maews + - - -+ mpwy, € Py, if #(m1 Px(w1) +mePn(ws) +
o+ my Py(wy)) = dim V(X), then d € Sgm.

Note + denotes the Minkowski sum and m; Py(w;) the m;-th Minkowski sum of Py(c;).
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Proof. The assumption d € Sy, implies 19(w;) is a monomial ideal and Py(cw;) parametrizes
a unique monomial basis of V4(cw;) for all 1 < i < n. This provides the induction start for an
induction on the height of A € Py, [A| = > | m;, where A = " | m;w;. Since the proof is
the same as in [FFR, Section 1.6] we just state the ideas, note that the steps are not trivial.

First we extend the partial order given by the degree deg f3, = d; on Ay to a total order
on Ay, for example by linearly ordering roots if the associated root vectors have the same
degree.

For notational reasons we state the ideas only for fundamental weights w;, ;. Using the
statement in [FFL3, Proposition 2.11] we obtain that for any w;, w; € P, the set

{f2(vg, @ vg)) | a € Pu(wi) + Pu(w;)} € V(wi) ® V(w;)

is linear independent and hence in V(w;) ® V(w;). By dimension arguments, using the
assumption |Py(w;) + Py(w;)| = dim V(w; + @;), we obtain a basis of the Cartan component
V(wi) © V(wj) = U™ ) (Ve ® vg,;) C V(w;) ® V(w;). Using this and induction we obtain
{favg#wj | a € Py(w;) + Py(w;)} is a monomial basis of V4(cw; + w@,). The last step is to
show that the defining ideal of V4 (ww;) ® V4(w;) = S(n™) (v, ® vgj) is monomial and there
is a S(n~)-module isomorphism
V(@) © V() = V(w; + w5).

By applying this to arbitrary weights we conclude d € Sgp. (]

This theorem is useful to prove that there exists d € Sgy, in the case of A, and conjecturally
Cy such that the lattice points of the FFL polytopes (see [FFL1],[FFL2]) parametrize a mono-

mial basis of Vd()\). We get similar results in the cases of Bs, the polytope is described in
[BK], and in type Dq and Go, the polytopes are described in [Gor2] and [Gorl] respectively.

3. QUANTUM GROUPS AND QUANTUM DEGREE CONES

3.1. Quantum groups. In the following we state fundamental facts on quantum groups
following [FFR]. Let g be a simple Lie algebra of rank n with Cartan matrix C' = (¢;;) €
Mat,(Z). Let D = diag(di,...,d,) € Mat,(Z) be a diagonal matrix symmetrizing C, thus
A = DC = (ai;j) € Mat,(Z) is the symmetrized Cartan matrix. Let U,(g) be the corresponding

quantum group over C(q): as an algebra, it is generated by F;, F; and K;—Ll fori=1,...,n,
subject to the following relations: for i,7 =1,...,n,
-1 -1 —1 i 1 —ci;
KK '=K 'K, =1, K,E;K;'=¢"E;, K,F;K;'=q, “F},
K, —K;!
EiF; — FjE; = 6jj———5-,
qi — q;
and for i # 7,
1—cyj 1—c;;
Z (_DTEi(lfcijfr)EjEi(r) -0, Z (_UTFZ‘(I*CU*T)FjFi(T) =0,
r=0 r=0
where
d ¢ —a" Lo _ B (m) _ 1
g =q", [n]! = — B = and F} = ——.
! z];[l q—q! ' [n]q,! ' [n]g;!

Let Uy(n™) be the subalgebra of U,(g) generated by F; for i = 1,...,n. For A € Py, we
denote by V() the irreducible representation of Uy(g) of highest weight A and type 1 with
highest weight vector v.
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When ¢ is specialized to 1, the quantum group U,(g) admits U(g) as its classical limit. In
this limit, the representation V() is specialized to V().

3.2. PBW root vectors and commutation relations. Let 7; = T/}, i = 1,...,n be
Lusztig’s automorphisms:

Ti(E:) = —FiKi, T(F)=-K "B, Ti(K;)= KK ",

fori=1,...,n, and for j # 1,
LE)= Y. (V¢ EVEED, T(F) = Y. (-1)¢F FEY.

r4+s=—Cij r4+s=—CcCij
We refer to Chapter 37 in [Lus| for details. We fix a reduced decomposition wg = $;, i, - .. Siy €
R(wp) and let positive roots 1, B2, , Sy be as defined in Section 2.1. The quantum PBW
root vector Fp, associated to a positive root f3; is defined by:

Fg, =11, ... Et—l(ﬂt) € UQ(ni)'
The PBW theorem of quantum groups affirms that the set
{FC:= F§'Fg...Fi"| ¢ = (c1,...,cn) € NV}

forms a C(g)-basis of Uy(n™) ([Lus, Corollary 40.2.2]).
The commutation relation between these quantum PBW root vectors is given by the fol-
lowing Levendorskii-Soibelman (L-S for short, see [LS91]) formula: for any i < 7,

Fy, Fg, — g PP Fy Fy = Z c(nitn, - mj ) Fptl - .ngj, (3.1)
Nit1,,mj—120
where ¢(nit1,- -+ ,nj—1) € C[g*!]. We denote
Mg = {Fg [ Fgt2 - Fg/~ ! | g1 figy + nigafe + -+ njoafjo1 = B + B},

then for weight reasons, the sum in the right-hand side of the L-S formula (3.1) is supported in
M; ;. Denote by MZ ; the set of monomials which actually appear with a non-zero coefficient
in the right-hand side of (3.1). It should be pointed out that the right-hand side in the L-S
formula largely depends on the chosen reduced decomposition. In general it is hard to know
which monomials appear in the right-hand side.

Let us have a closer look on how these formulas depend on the reduced decomposition. Let
wy, wy € R(wp) be two reduced decompositions such that they are of form

Wy = WrSpSqWR, Wy = WL SgSplp

with 1 <p # ¢ <n and sp5, = s¢5p. We define | = {(w;).

Let the convex total order on A, induced by wq (resp. wy) be:

B <Ba<...<fBn (resp. By < By < ...< By

For s <, the L-S formula (3.1) reads:

Fo Fpy o — q(ﬁs’ﬁlH)FﬂzﬂFﬁs = Z c(Mst1, - 7nl+1)F,5::11 ‘ ~Fg,l++11- (3:2)

Ns+1,,M4+1>0

For t > [ + 3, the L-S formula (3.1) reads:
Fs,Fpy,, — q*(ﬂuﬁHl)FﬁlHFﬁt = Z c(nigpa, - ,nt—l)F;l:; A (3.3)

nyy2,,nt—120

Lemma 2. In the formula (3.2), ni41 = 0; in the formula (3.3), ni12 = 0.
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Proof. We prove for example the first statement, the second one can be shown similarly.

First notice that for any i # [+ 1, 1 +2, 8 = B;, Biy1 = Bipe Bire = B4 The
same argument can be applied to quantum PBW root vectors: let Fp,, Fg,,...,Fpg, (resp.
Fél,Fég, e FéN) be the quantum PBW root vectors obtained from wy (resp. wy). Then for
any i # 1+ 1,1+ 2, Fg, = Féi, Fg., = Féz+2’ Fg., = Félﬂ. For s < I, we apply the L-S
formula to F’ [’3 and Fj it gives:

s +1
Fy Bl —q P P)BL Fho= T dmag, - m) FR L FR

M1, ,my 20

Compare it to (3.3) gives nj41 = 0. O

3.3. Quantum degree cones.

Definition 4. For a reduced decomposition w, € R(wy), we define the quantum degree cone
Dy, associated to it by:
j—1
D, = {(dg) € RY | for any i < j, dg, + dg; > Z ngdg, if ¢(nip1,--- ,nj—1) #0in (3.1)}.
k=i+1
Remark 1. As in the definition of the classical degree cone, the notion of quantum degree

cone is motivated by the fact that D, is closed under summation and non-zero scalar multi-
plication.

We denote the set
D= |J DI,

wy€R(wo)
Theorem 2. For any wy € R(wy), the set Dy, is non-empty.

Proof. Let x = (x1,x2,...,2n) be a N-tuple of variables, we shall describe an inductive
procedure how to construct an element of Dio, i.e. how to set the values of x;,1 < i < N,
such that x € Dy, . Denote dg, by d;, 1 <i < n.

We set deg Fjg;, = 1 for all 1 < ¢ < n and the first two steps are setting x1,x2 = 1, note that
Mf,z =0.

We consider the variable x3, Mﬁ?’ is not empty in general and we set

x3 = max{1, deg(m) | m € M{,}.

Either Mf73 = (), then there is no inequality and we set 23 = 1 or there exists m = ng € M1q73,
with nefBs = B1 + B3, n2 > 1 and we have exactly one inequality:

dy + d3 > deg(m).

In this case we set 3 = deg(m), which is naxe = na. Then the above inequality is satisfied:
x1 + x3 = 1 + deg(m) > deg(m). We set deg Fg, = x3.

Note up this point this choice is minimal regarding the sum x; 4+ x2 +x3 and lexicographical
minimal regarding the convex order under the assumption x; = 1. This is not important for
the proof, but as a side effect we shall be interested in the latter minimality.

In the fourth step we consider all possible inequalities implying restrictions for =1, x2, x4:

di + dy > deg(m), m € M{,

3.4
dy +dy > deg(m), m e Mj,. (3:4)
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Together with those in the step before these are all inequalities defining Dio containing only
dy,ds,ds and dy. We set
x4 = max{1l,deg(m) | m € M],,me Mj,}.
Since we have a finite number of monomials of the fixed weights 51 + 84 and B2 + (4 this
maximum exists and (3.4) is satisfied. We set deg Fj3, = x4. We do not change deg Fj, , deg Fj,
and deg Fg, in this step. This means, the inequalities from the steps before are still satisfied.
This implies that the new x satisfies all inequalities defining D&O containing only dy, ds, d3
and dy.
In the k-th step we have the following inequalities:

dj +dj, > deg(m), m € M, forall 1 <j<k-2. (3.5)

Again we have a finite number of inequalities and it is possible to set xj as the maximum of
the right-hand sides. Since we want to construct the lexicographic minimal solution satisfying
x1 = 1, regarding the order 8 < --- < By, we set

deg(m)" :=deg(m) —x; +1, form e Mﬁ/«
forall 1 < j <k—2 and set
ay, = max{1l,deg(m)" |m e M, 1 <j<k-2}

By construction x satisfies the inequalities in (3.5). We set deg F3, = xj. Since x1, 22, ..., Tp—1
satisfy the inequalities of the k — 1 steps before and we only change deg F3, in this step, the
choice of x1, ...,z satisfies all inequalities defining Dio containing only dq,ds, ..., dg. After
N steps we have constructed an element (z1,...,zyN) € D&O. ([

From now on we fix a reduced decomposition wy € R(wp). Let d € S(Dg,) = D, NNV,

For a monomial F'* = Ffﬁ Féz . Féx € Uy(n™), we define its d-degree degq by:
degq(F*) = tidg, +tadg, + ...+ tndga,.
Then we can define a filtration Fd = (Fd c Fd c...c Fd C...) on U,(n~) by:
F = span{F* € U,(n") | degq(F*) < k}.
Let Sy(n™) be the algebra generated by x1, 22, - ,zxN, subject to the following relations: for
1<i<j<N,
Tirj; = q(Bi’ﬁj)xjx,-.

The following proposition is clear from the L-S formula (3.1).
Proposition 1. (1) The filtration Fd endows U,(n~) with a filtered algebra structure.

(2) The associated graded algebra gril,(n~) is a g-commutative polynomial algebra iso-
morphic to Sy(n™).

For A € P4, the above filtration on U,(n™) induces a filtration on V() by letting
FIv,(\) = Fvy.

We let qu()\) denote the associated graded vector space: it is a cyclic Sy(n~)-module. Let v§

be a cyclic vector and I$()) be the defining ideal defined as before.
When the quantum parameter ¢ is specialized to 1, the L-S formula is specialized to:

_ [ tee 1B+ B = B
fﬁifﬂj_fﬁjfﬁi_{ ]O ’

, otherwise.
This proves the following lemma.
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Lemma 3. We have D9 C D.

Remark 2. Except for small rank cases g = slo, sl3 (see Subsection 4.1.1), the inclusion in
Lemma 3 is strict. For example, the element 1 = (1,1,---,1) is in the classical degree cone
D, but for g # sly, sl3, we can always find a reduced decomposition wg such that 1 ¢ Dio.
See for example [FFR, Section 2.4] and Subsections 4.1.2 for type Co and 4.1.3 for type Go
respectively.

4. EXAMPLES AND PROPERTIES OF QUANTUM DEGREE CONES

4.1. Examples of rank 2.

4.1.1. Ay. For the Lie algebra sly neither in the classical degree nor in the quantum degree
cone exist relations, since we have only one (quantum) PBW root vector fi (resp. Fi).

So let g = sl3 be the Lie algebra of type A;. The classical degree cone D is given by the
following inequalities: d = (dy,d12,d2) € Ri where di2 correspond to the degree of fis.

di + do > dis.

Fix a reduced decomposition w, = s15251 of the longest element wy in the Weyl group of g.
Let

Fi, Fia, F
be the quantum PBW root vectors, their commutation relations are:
By =q 'R —q ' Fo.
The quantum degree cone Dio C D is given by:
dy +dg > di2
and we obtain D?DO = D. The same construction with the reduced decomposition w(l] = 895189

a _ i
shows that Dy, = D%.

Remark 3. Here we would like to emphasize, whenever we compare cones, the a component
of any cone has to match the o component of each other cone.

4.1.2. Cy. Let g = sp, be the Lie algebra of type Co. The classical degree cone D is given by
the following inequalities: d = (d1,d;12,d12,d2) € ]Ri where djo (resp. dii2) correspond to
the degree of fio (resp. fi12):

dy +ds > dia, dyi+ dio > diia.

Fix a reduced decomposition wy = s1525152 of the longest element wg in the Weyl group of
g. Let

Fi, Fug, Fig, Fy
be the corresponding quantum PBW root vectors, their commutation relations are:
Fi P = ¢* PPy, FiFis=FioFy — (¢+q YFi2, FiFs =q *BF — ¢ *Fo,
Fii2Fis = ¢*FiaFiia, FiiaFs = FaFyo + (1 — q_Q)F1(22)7 FioFy = ¢*FaFhs.
The quantum degree cone D&O C D is given by:
dy +dg > dy2, dy +diag > diz, dig +di2 > 2dio. (4.1)

The same construction with the reduced decomposition w} = sas1s251 shows that Df,, = DY,
=0
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4.1.3. Go. Let g be the Lie algebra of type Go. The classical degree cone D is given by the
fOHOWng inequalities: d= (dl, d1112, d112, d11122, dlg, dg) S Rg_:

dy +do > di2, di+di2 > di12, di + dii2 > dine,

da + di112 > di1122, di12 + di2 > di1122.
For example (2,1,3,1,3,2) € D. We will use this special element later (see Subsection 5.4.3)
We fix a reduced decomposition wy = s1s251525152 € R(wyp). Let

Fi, Fing, Fuz, Finge, Fi2, B
be the corresponding quantum PBW root vectors, their commutation relations are:

FiFi112 = ¢*FiieFi, FiFio = qFieFi—(¢3+q ) Fiie, FiFiiie = F11122F1—|—(q—q*3)F1(f%,
FiFyy = q '"FioFy — (14 ¢ *)Fie, FiF, =q °FFy — Fia, FiieFis = ¢ FiigFiae,
FiioFine = P Fie — (@ —g—q¢ '+ q_3)F1(f%, Fii12F12 = FiaFii12+ (¢ — q_3)F1(f%7

Fii1oFy = ¢ FaFiia + (=72 — ¢ ) FioFio + (¢ 2 + ¢ = ¢ ") Fuaige,
Fii2Fi1122 = @ FiiioeFii2, FiioFi2 = qFi2Fiie — (¢2 + ¢+ ¢ V) P19z,
Fri9Fy = FoFi12+ (¢ — q‘?’)FfS), Fiii2aFi2 = ¢ FiaFini2,
FiioeFs = ¢*FoFiniae — (¢ —q—q ' + q’3)F1(§), F1oFy = ¢*Fy Fhs.
The quantum degree cone D&O C D is given by:

di, d1112,d112, d11122, d12,d2 > 0,

di + di12 > dinie, di+diige > 2die, di +dig > dig, di +da > dag,

di112 + di1122 > 3di12, diniz + di2 > 2dn2, dinz +da2 > diz + dis,

din2 +da > dii122, diie +diz > dinige, diz +d2 > 2dia, diniee + da > 3da.

Again, these inequalities do not depend on the choice of the reduced decomposition.

(4.2)

4.1.4. From the examples above we obtain:
Proposition 2. Let g be of type Ay, Ay, Co, Go. For any w, € R(wp), we have DI = Dio.
4.2. Examples of rank 3.

4.2.1. C3. Let g be of type C3 and enote by Fi’; the quantum PBW root vector associated to
the root a; + -+ + a1 + 205 + -+ + 2001 + o, for 1 <7 < j <n = 3 and denote F;; the
quantum PBW root vector associated to the root a; +--- 4+ o for 1 <i < j <n = 3. We fix
the reduced decomposition

wy = (5152535251)(525352)83
of wg € W. The quantum PBW root vectors are
Fip, Fig, Fig, Fiz, Fig, Fap, Fyp, Faz, Fis.

These vectors generate Uy(n™), the commutation relations determine the cone Dg, as before.
The defining inequalities are the following, d; corresponds to the degree of the i-th (from left
to right) quantum PBW root vector above:
di+ds>ds, di+ds>do+dy, di+dg>do, di+dy>ds, di+dy>dy+ dg,
di+dg >dy, do+dy>ds, do+dy >ds+dg, do+dy>dy+2dg, do+ dg > ds,
do+dg > dy+dg, do+dg>dy, ds—+d7>2ds, ds+ dy > dy+ ds+ dg,
ds +d7 > 2dy + 2dg, ds+dg > dy+ds, ds—+ds > 2dy+dg, ds+ dg > 2dy,
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dy +dg > ds, dg+dg > d7, dg+dg >dg, d7+ dg > 2dsg.
There are four elements in Dio, which are minimal regarding the sum over all entries:
d; =(2,1,1,1,1,1,4,4,5), d2 = (3,2,2,1,1,1,3,3,4),
d; = (5,4,4,1,1,1,1,1,2), dy = (4,3,3,1,1,1,2,2,3).
Since dy,ds,ds,ds € D we go back to the classical case. We consider the fundamental module
V(w2) and the weight 7 = 2a; + 3ag + a3 whose weight space V(w2)w,—- is of dimension 1.

We have to choose an element with minimal degree from the following set, where we neglect
the elements which have obviously a higher degree:

{fi2fiz fiifee}-

For each of the above elements in Dj, both monomials have the same degree, so we do not
obtain a monomial ideal Idi7 1<i<4.

By taking larger degrees d € D@O it is possible to obtain a unique monomial basis of
Vd(wQ) where it is possible to obtain a basis with either of both monomials applied to v bl
We conclude D, € Sim, but D, N Sim # 0. We also see, different elements in Df, can
produce dlﬁerent monomial bases. This observation still holds, even if we consider elements
where the sum over the entries is the same.

4.3. Properties of quantum degree cones.

Theorem 3. Let g be a simple Lie algebra of rank n > 3, then

(| D, =0

wy ER(wo)

Proof. Since we calculated the cases n < 2 explicitly in the examples (see Subsection 4.1), we
only consider the case where n > 3. We want to show that there are at least two reduced
decomposition @[1), Q% such that the associated cones have inequalities which contradict each
other.

First we want to show that we can reduce the statement to the case where n = 3. Since g is
a simple Lie algebra we find a Lie subalgebra g3 C g of type As, B3 or C3 respectively, denoted
by X3. Depending on the type of the Lie subalgebra of g we choose a reduced decomposition
wéa € Wy, of the longest Weyl group element in the Weyl group of g3. If we have more than
one choice, it does not matter which type we choose. Now we consider the longest Weyl group
element wy € W. We can always find a reduced decomposition wg of wy such that wéa is a
subword of wy, i.e. let [ := number of positive roots of gs:

Wy = Méssiulsiuz <o Sin
where s;, € W is the reflection associated to the simple root oy, . If we prove the statement
for Lie algebras of rank n = 3 we can extend the cones which have empty intersection. Hence
for a Lie algebra of arbitrary rank n > 3 we find quantum degree cones, associated to certain
reduced decompositions, which do not intersect.

Let g be of type Az and Uy(g) be the quantum group associated to g with generic parameter
q. We consider the reduced decompositions

1 2
Wy = 515251838251, Wy = 515352535152

of wy the longest Weyl group element in W,,. The quantum PBW root vectors associated to
the reduced decompositions are given by

Fip, Fia, Feo, Fi3, Iy3, F33 and
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Fiy, Fy3, Fi3, Fia, Fo3, Fop
respectively. Here F; ; denotes the quantum PBW root vector associated to the positive root

a; + ajqy1 + -+ o for i < j. We have the following commutation relations in Ug(n™) (see
the L—S formula (3.1)):

(1) FioFys = Fa3Fio+ (¢ — ¢ ) FaoFi 3 and

(2) FisFes = FooFi3+(q—q Fi2F3
respectively. Let deg Fy o = a1,deg Fo3 = az,deg F1 3 = a3, deg b2 = ay. Then we get the
following inequalities in Dﬂq}) and qu% respectively:
(1) = a1 + a2 > a3 + a4 and
(2) = as + a4 > a1 + as,
which implies Du‘fl N Dﬂ‘% = (). The proof in the cases of Bz and C3 proceeds similar:
Let g be of type Bz and U,(g) be the associated quantum group. We consider the reduced
decompositions
Wy = 515251535251535253, Wh = 515352535251 525352

of wy the longest Weyl group element in Wg,. The quantum PBW root vectors, denotes as
before, are

F171, FLQ, FQ,Q, F1’3, F17§7 Fl,g’ FQ’?,, F27§, F3’3 and

Fii, Fz3, Fy3, I, Fig, Fig, Fo3, Fa3z, Fap
respectively. Here F5 denotes the quantum PBW root vector associated to the positive root
a; + -+ o1+ 205 + -+ 20, for 1 <7 < j < n =3 and denote F; ; as before. We have
the following relations in Uy (n™):

(1) FiaFss = Fa3Fi2+ (¢* — ¢ %) Fa2F1 3 and

(2) FiaFao = FaoFi3+ (¢ — q %) Fi2Fas
respectively. Let deg F1 2 = bi,deg Fy3 = ba,deg F1 3 = b3,deg Fr o = by. Then we get the
following inequalities:
(1) = by 4+ by > b3 + by and
(2) = b3 + by > b1 + bo,
which implies Du?l N DU')IQ =
Wy wy
Finally let g be of type Cs and U,(g) be the associated quantum group. We consider the
reduced decompositions
M(l) = 51828382515828352383, Mg = 518352835251525352
of wy the longest Weyl group element in W¢,. The quantum PBW root vectors, denoted as in
4.2.1, are given by
Fiy, Fip, Fi1, i3, Fig, 22, Fy3, Fas, Fi3 and
Fia, Fzs, Fis, Fig1, Fig, Fig, Fas, Fyp, Fap

respectively. Further we have the following relations:
(1) FiaFos =q 'FagFia+(¢° — ¢ *)Fi3Fas + ¢F) 5 and

(2) FigFoo =q 'FooFi3+ (¢* — ¢ *)Fi2Fa3 + qF 5
respectively. Let deg I o = c1,deg b3 = c2,degF1 3 = c3,deg Fro = c4. Then we get the
following inequalities:
(1) = c1 +c2 > ¢34 ¢4 and
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(2) = c3+cq>c1+ca,
which implies D%, N DY, = (. O
wy wy

The importance of the foregoing result is the following: if the intersection of all quantum
degree cones would be non-empty, elements in this intersection would be good candidates to
study the corresponding filtration on U(n™) and U,(n™) respectively. Since this intersection
is empty we need to find other conditions.

Two reflections s, and s, in W with p # ¢ are said to be orthogonal if s,sq = s45,. Two
reduced decompositions wg, w(, € R(wp) are said to be related by orthogonal reflections if one
can be obtained from the other by using only orthogonal reflections.

The following proposition shows that most of the cones are the same.

Proposition 3. Let wg, wj € R(wp) such that they are related by orthogonal reflections.
Then Dj, =D, .
— Wy

Proof. By definition, it suffices to consider the case where
/
Wy = WLSpSqWR, Wo = WrS¢SpWR

with 1 < p,q < n such that s,s, = s45,. In this case, Lemma 2 can be applied to prove the
proposition. O

5. LOCAL AND GLOBAL MONOMIAL SETS

5.1. Local and global monomial set. We define the quantum local monomial set and the
quantum global monomial set as follows:

S8 = S NDY, S = Sgm N DY,
Proposition 4. For any w, € R(wp), we have Dy, N Sy # 0. Hence Sy, S # 0.

Proof. We need to find d € D3, such that for any s = 1,...,n, I%(cw,) is a monomial ideal.
Define m; := (p, B) for the fixed weight p = >_"" | @; € P4. In order to prove the statement
we can adapt the proof of Theorem 2. In this proof we construct a x € D&O N NY. Note that
this x does not satisfy 1 < 29 < --- < zp, since x1 = 9 = 1 and if qu,k is empty in the k-th
step for all 1 < j <k —2, then z; = 1.
We change the procedure as follows: we set di = 1,dy = 2 and deg Fjg, = 1,deg Fj3, = 2.
Note that my = 1, since 51 is a simple root. For 3 < k < N, in the k-th step we set

k—1
dp =1 +max{2midegF5i, deg(m) |m e MJ,,1<j<k- 2} . (5.1)
i=1
We set deg Fg, = d, and the step is finished.
With the same arguments as in the proof of Theorem 2, d satisfies all inequalities of Dio
containing only di,ds, ..., d;. Since we keep track of the degrees, by setting deg Fjg, = dy, the

possible choice of dj = Zi:ll m; deg Fjg; does not change this. After IV steps we obtain that
de D@O is a solution satisfying d; < do < ... < dx. We turn to the classical case, then we
have by the choice of d (see (5.1))

deg fg 2 - [t < deg fg,
for all 1 <k < N. Furthermore f3* f7** - -'fg::lflvp =0in V(p) forany 1 <[ <k —1 and

hence zero in V9(p). This implies, the choice of d € D, in particular the degree on the root
vectors deg fg, = d;, 1 < i < N induces a total order, namely the reverse lexicographical order,
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on the monomials in S(n~) which are non-zero applied to vg. Hence I9(w) is monomial for
any 1 < s <n. O

Remark 4. If Sy # 0, then there exists an N-filtration arising from d € Sgm such that for
any A € Po, V4()\) has a unique monomial basis.

If Sgm # 0, then there exists an N-filtration on Uy(n~) with S,(n~) the associated graded
algebra arising from d € Sgn, such that for any A € Py, qu()\) has a unique monomial basis.

5.2. Global monomial sets: A,,C,. For type A, we have the following positive roots: «; ; =
o + o1 + -+ aj,1 < i < j < n. In the case of C, the positive roots are: «;; =
a4 +a;,1<i<j<nand

qz=ai+ o205+ 201 tap,l<i<j<n-—1

For a dominant integral weight A\ € P, we denote the FFL polytopes described in [FFL1] by
P"()) and in [FFL2] by P%()) respectively.

We turn first to the A, case and defined by d; j = (j—i+1)(n—j+1) for 1 <7 < j < nthe
degree attached to the root vector f;; of the positive root e ;. The results in [FFR, Theorem
A, Theorem C] imply the first two statements of the following theorem:

Theorem 4. (1) We have d € Sgp.

(2) The set {f2v{ | a € B{*(\)} forms a monomial basis of V().

(3) Let wy = (spsp—1---51)(Sn---52) -+ (SnSn—1)n, then d € Dy, .
Proof. (3) The reduced decomposition wy, determines the following convex order on the positive
roots:

Onp X Qp_1p <" < Q2p <A1 p <

Ap—1p-1 <" <A1p-1=

Q22 <012 <
Q.
With root combinatorics we obtain that the defining inequalities of Dg, C R_],\_/ are the follow-
ing: x = (zp4) € Rf: for all o 1,05 € Ay :
Thio1+ Tij > Tpj (5:2)
and for all a;; € AL such that there exist r,s € N, 7 or s non-zero with o4, ;, o j—s,
Qigrj—s € Ay
Titrj + Tijos > Tij + Tigrj—s- (5.3)
Let A € P, such that me-Uf, fi7j,sv§, fm-vf, fiH,j,svf\l # 0, for example A = p = wy +
wo + -+ + Wy Since iy + i = QG+ Qiyrj—s and fi,jfi”,j,svf #0in V4()\), by the

description of Pi*(\), we obtain that d satisfies the inequalities (5.3). A similar arguments
works for (5.2). O

Let us consider the C, case. We define d € D by: d;j = (2n —j)(j —i+ 1) and d;5 =
Jj@2n—i—j+1).

Conjecture 1. (1) We have d € Sgr. Moreover, d ¢ D9,
(2) The set {f2v{ | a € P&(\)} forms a monomial basis of V().
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5.3. Global monomial set: C;. Consider the quantum degree cone Dy, defined in (4.1).
We pick a solution such that the sum a; + as + a3 + a4 takes its minimal value:
d = (d1,d112,d12,d2) = (1,1,1,2).

Since d € D, we go back to the classical case. Let fi, fi12, fi2, fo denote the corresponding
PBW root vectors.

Lemma 4. We have d € Sy, i.e., the defining ideals I9(w;) and I4(ww2) are monomial.

Proof. For V(w), the weight space of weight —w; has dimension 1, so we need to choose a
monomial having minimal degree from the set {fi12, f1f12, f12f2} Since dy + di2 > dy12, we
should pick f112. The choice in all other weight spaces is obvious, so the defining ideal I d(wl)
is monomial.

We turn to V(ws): the weight space of weight —2cw; + ws is of dimension 1, for the same
reason we should choose the monomial f112 from the set { fi12, f1f12}; the weight space —w9
has dimension 1, we need to choose a monomial of minimal degree from the set

{m1 = fly,ma = friafo,ms = fifiafo,ma = f1f3}.

By the inequalities in (4.1), we get: deg(mq) < deg(mz), deg(mz) < deg(ms) and deg(mgs) <
deg(my). This implies that the defining ideal I9(cwy) is monomial. O

We turn to the study whether d is in the global monomial set Sgp,.

Consider the polytope SP4(m1,ms) C R* defined by the following inequalities:

Ty, T2, T3, T4 2 07 x1 S my, T4 S ma,
201 + 19 4 223 + 224 < 2(m1 + mg),
T, + o+ x3 + 2204 < M1 + 2mo.

Let S(mq,ms) denote the lattice points in SP4(mq,ms).
Theorem 5. For any A = mjw; + maews € P4, the following statements hold:

(1) The set {fPv{ | p € S(m1,m2)} forms a monomial basis of V4()), hence a monomial
basis of V().
(2) We have d € Sgp, i.e., the defining ideal 79()\) is monomial.

The rest of this paragraph will be devoted to prove this theorem.
Proposition 5 (Minkowski property). For any mi,mg, m}, m} € N,
S(my,ma) + S(my,mb) = S(my + m}, me +mh).
Proof. 1t suffices to prove
S(my —1,m2) + S(1,0) = S(mq,m2) and S(0,m2 — 1) + 5(0,1) = S(0,ms).

Suppose m; # 0 and s = (a1,a2,a3,a4) € S(mi,me). If a; # 0, we set t1 = (a1 —
1,a2,a3,a4),t2 = (1,0,0,0). Then clearly t5 € S(1,0) and since s € S(m1,mz2) we have

2a1 + as + 2a3 4+ 2a4 < 2(m1 —|—m2) = 2(0,1 — 1) + as + 2a3 + 2a4 < 2(m1 — 1—|—m2)

a1 +as+as+2ag <myg+2me=a;—1+as+as+2a4 < (myg—1)+2me
and so t; € S(my — 1,mg). If a; = 0,a3 # the very similar argument, with ¢2 = (0,0,1,0)
implies again t; € S(my — 1, m2).
We are left with a1 = 0,a3 = 0,as # 0. But then the inequalities for s € S(mj, mg) are
reduced to
as + 2a4 < myp + 2mo
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So we see that s = (0,a2 — 1,0,a4) + (0,1,0,0) gives a decomposition in (my,mg) + S(1,0).
The last case a3 = 0,a9 = 0,a3 = 0, a4 # is now obvious.

Suppose now m; = 0 and s = (a1, az2,a3,a4) € S(0,m2), then a; = 0 and the inequality
as + az+ 24,4 < 2my is redundant. Suppose as # 0, then we decompose s = (0, a2 — 1, as, a4) +
(0,1,0,0) and use that

as + 2a3 + 2a4 < 2m9g = ao + 2(&3 — 1) + 2a4 < 2(m2 — 1).

Having a1 = 0,a3 = 0,a4 # 0 can be dealt similarly. So we are left with 0 # as < 2ms, so we
decompose this in (0,ay — 2,0,0) + (0,2,0,0) if ay > 2, else there is nothing to be shown.
This implies that any element in S(mi,m2) can be decomposed as the sum of elements in

S(ml—k,mz—ﬁ),S(k,E). |

From this proposition, {fPv{ | p € S(m1, m2)} forms a linearly independent set in V().
To show that it is a basis, we count the cardinality.
For any integers a,b € N, we define a polytope P(a,b) C R? by the following inequalities:

x>0, y>0, z+2y<a, z+y<b.
Let N(a,b) denote the number of lattice points in P(a,b).

Lemma 5. The number of lattice points N(a,b) has the following expression:
(l+1) ifa=20-1;
(1) N(a,a) = {(z(+ 1)% ita =2l
N(a,a), if b> a;
b+ 1)(b+2), if a > 2b;
—P 42— 302+ 3b+1+1, if2b>a>banda=2[]
—+20b— 50+ 3b+1, if20>a>banda=20+1.

(2) N(CL, b) =

Proof. It amounts to count the integral points in the closed region cutting by the lines z+2y =
a, x +y = b and the two axes in R? which depends on the position of the intersection of these
two lines. O

Proposition 6. The number of lattice points in SP4(m1, ms) is

1
E(ml +1)(ma + 1)(m1 + ma + 2)(mq + 2mg + 3).

Proof. Let H be the intersection of hyperplanes x1 = a and x4 = 3 in R* with coordinates
(z1,x9,x3,14) where a, f > 0. By definition,

HnN SP4(m1,m2) = P(2m1 +2mo — 20 — 23, m1 + 2mo — a — 25)

Therefore by Lemma 5, the number of integral points in SP4(my,ms) equals

mi1 m2

D> ) N@ma + 2mg — 20— 28, my + 2mg — o — 28). (5.4)
a=03=0

Since @ < my and S < meg, it falls into the third case in Lemma 5 (2) and (5.4) reads
(l=m1+my—a—LFand b=m;+2me —a —20):

o = 1 3 1 3

Z Z 5042—1—20(6—&—62—(m1+2m2+§)a—2(m1+m2+1)ﬁ—i—(5m%+2m1m2+m%+§m1+2m2+1).
a=0 =0

An easy summation provides the number in the statement. O
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By Weyl character formula, for A\ = miw; + mows € Py,
1
dimV()\) = é(ml + 1)(m2 + 1)(m1 + mo + 2)(m1 + 2mo + 3).

This terminates the proof of the statement on the basis. The monomiality of I9(\) holds
by Theorem 1.

Remark 5. Up to permuting the second and the third coordinates, the polytope SP4(m1, m2)
coincides with the one in Proposition 4.1 of [Kirl], which is unimodularly equivalent to the
Newton-Okounkov body of some valuation arising from inclusions of (translated) Schubert
varieties.

In the sp, case, there are several other known polytopes parametrizing bases of a finite
dimensional irreducible representation V(). Let us denote:
(1) Pi(X) to be the chain polytope;
(2) P3(\) to be the order polytope;
(3) P3(X) to be the string polytope associated to the reduced decomposition wy = s1525152;
(4) Py()) to be the string polytope associated to the reduced decomposition w, = s2515251.
For A = myw; +maway, the polytopes SP4(m1, ma), P1(\), P2(A), P3(A\) and Py(\) have the
same number of lattice points. By using POLYMAKE, one can verify the following statements:

(1) The polytopes P;(A), Po(A) and Py(\) are unimodularly equivalent. (The isomorphism
between P;(\) and Py(\) is proved in [Foul6]).

(2) The polytopes P3(A) and SP2(my,mg) are not unimodularly equivalent to any other
polytopes.

5.4. Global monomial sets: Bs,Dg4, Go.

5.4.1. Dg. Let g be of type Ds. We consider the following reduced decomposition
Wy = 525152535254525152535254
and the resulting quantum PBW root vectors, where Fj,.q is the root vector associated to the
root aay + bag + cag + day :
Foi100, Fii00, Fiooo, Fiio, Forro, Fizin, Fiior, Fiinn, Fooros Forrrs Foror,  Fooor
The quantum degree cone D&O is defined by: (di,da,...,d12) € Rf
di+ds >dy, di+ds>ds+dy, di+dg>ds, di+dyg>ds, di+diz>dn
do+dg >ds+ds+dy, do+dg>ds+dg, do—+dg>dg+dr, do+dyg > ds+ ds,
do +dg > dy, do+dig>dg, do+dig>ds+di, do—+dio>dy
ds +ds > dy, ds+diyg>d7+dg, ds+dig>dsg, ds+ dy1 > dy
dy +dyg > ds +d7+dg, dy+dig>ds+dg, dy+dig>dg+dy
dy+dyy >ds+dy, dy+dip >dg, dg+diz > dg
ds +d7 > dg, ds+ dig > dg+di1, ds+ dio > dio
ds +d7 > dg, ds+ dio > dg+diy, ds+ di2 > dyg
dg + diz > d7 +dg + d11, dg + di2 > d7 + dio, dg + di2 > dg + di1,
d7 +dg > dg, dg+ di1 > dip.
Let d = (5,5,1,2,4,1,1,2,6,10,12,20) € N2, we obtain d € D&O. Since d € D, we turn to

the classical case and denote by f; the PBW root vector corresponding to the i-th quantum
PBW root vector above (from left to right).
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Proposition 7. We have d € Sy,.

Proof. For V() we choose f3fs over faofs and over fifr, since deg f3fs = 2,deg fofs = 7
and deg fy fr = 3. For all other weight spaces the choice is obvious since d € D.

Similarly we choose f5f8 over f@fg and f10f4 for Vd (W3) and f10f7 over f10f8 and f6f12 for
Vd (’(D4)

For V4(wy) we have to consider more weight spaces. We illustrate the proof for the zero
weight space V9 (w2)w, w, of dimension 4. We need to choose the 4 minimal monomials,
regarding the degree, of the following set where we neglect the obviously larger monomials.

{m1 = fs, ma2= fafio, ms= fifs, ma= fafir, ms= f5fr}
We have degm; = 5,degmgy = 15,degmg = 7,degmy = 14 and degms = 5}. Hence we pick
mi, ms3, My, mMs.
The computation of the other weight spaces is straight forward. We obtain a unique mono-
mial basis for all V9(cw;),1 < i < 4 and hence the monomiality of I9(c;). O

Let PP4()\) be the polytope defined in [Gor2, Section 3]. By comparing vectors we obtain
PR (w;) ={s e N | 5 £0in VY(w;)}, i=1,2,3,4
The polytope satisfies for all A, u € Py we have
PP4(X) 4+ PP(u) = P**(X\ + p) and PR*(\) + Py (p) = PRt(\ + p)
and dim V(\) = | PR*(\)|. Hence with Theorem 1 we obtain the following theorem:

Theorem 6. (1) We have d € Sy, Moreover, d € D, .
(2) The set {f2v{ | a € Sp,(A\)} forms a monomial basis of V4(N).

5.4.2. B3. Let g be of type Bz and denote by P®()\) the polytope defined in [BK, Section 5].
Here fz'j denotes the PBW root vector associated to the positive root a; + - -+ 4+ a;j_1 + 205 +
<+ 2ap for 1 <7 < j <n =3 and denote f; ; as usual. We consider the following degree on
the root vectors:

deg fi,1 =4, deg f12 =3, deg fo2 =3, deg fi3 =3, deg fi3=1

deg fi3=1, degfo3 =4, degfy3=3, degfs3z=2
We set d; to be the i-th degree above and define d = (d, . ..,dg). The classical degree cone is
defined by: (di,1,d1,2,da2,d1,3,d23,d33,d; 5,dy3.d; 3) € RY:

dig+dag>dig, din+dag>dis, dii+dyz>dyz, dip+dsz>dig,
dig+dyz>dyz, dap+dsz>das, dao+diz>d3,
d1,3 + d2’3 > dl,i? d173 + d373 > d137 d273 + d373 > dlg'

We obtain d € D. As before by computing each weight space in V9 (w;),i = 1,2, 3 we obtain
d € Sin. By comparing the induced unique basis with the basis obtain in loc. cit. we see

P¥(w;) ={se N | fvd #£0in Vi(w;)}, i=1,23.
For each A, x € P+ we have
PP3(X) + PP () = PP*(A\ + p) and P(A) + P¥(n) = PE(A + p)
and dim V(\) = |PS(\)|. Hence we get the first two statements of the following theorem:

Theorem 7. (1) We have d € Sg.
(2) The set {f2vd |a € Pg*(\)} forms a monomial basis of V().
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(3) For all d € D, such that (1) and (2) are satisfied, we have d ¢ D9Y.

Proof. Let d € D, such that (2) is satisfied. This implies that fi2f; 3v #0in V9(wsy). The

monomial f173 € U(n™) has the same weight, so we know f173vw2 = 0, since the corresponding
weight space is one-dimensional.

Assume wy is a reduced decomposition of wg such that d € Df, . The induced convex order
contains the roots 8; = a1 2 and 5 = oy 5 and Br = a1,3. We can assume wlog i < j.

Case 1: Assume i < k < j, for the quantum degree cone Dq this would 1mply the following
inequality: di2 + d;3 > 2d; 3. This implies, turning to the classmal case, f 31) # 0, which
is a contradiction.

Case 2: Assume k < i < j, i.e the roots are distributed as follows

B =013, Bi=a12, Bj=ay3 (Bi=asg).

Consider the root 8; = ag3. Since a3+ a33 = a; 3 we have j < [ by the convexity of the

order. On the opposite o192 + az3 = a3, implyiﬁg a1,3 has to lie between a2 and ag33

implying ¢ < k. This is again a contradiction.

Case 3: Assume i < j < k, with similar arguments as in Case 2 we get a contradiction.
None of the cases is possible, implying d ¢ Dio. O

5.4.3. Go. Let g be of type Gy and consider the following degree on the root vectors:
deg f1 =2, degfinnz =1, degfiiz =3, degfiiza =1, degfia=3, degfo=2.

We set d; to be the i-th degree above and define d = (dy,...,ds). We already saw that
d € D, see Subsection 4.1.3. Denote by P%()\) the polytope defined in [Gorl, Section 1]. With
similar arguments and calculations as before we obtain the first two statements of the following
theorem. The third statement follows from Subsection 5.6, where we examine the case of Gy
explicitly. We show for all d € Dy, there exist a unique monomial basis of Ve (w;),i = 1,2
which does not coincide with the basis in the following theorem.

Theorem 8. (1) We have d € Sgpy.
(2) The set {f2v{ | a € B#(\)} forms a monomial basis of VI(\).
(3) For all d € D, such that (1) and (2) are satisfied, we have d ¢ D9,

Remark 6. In general, it may hold that Sgm NDY = (), see Subsection 5.6 for an example.

5.5. Global monomial sets for rectangular weights: A —G. Throughout this subsection
we fix a Lie algebra g of type X, and fundamental weight w; of the following list (see [BD,
Introduction, Table 1]):

’ Type of g ‘ weight o H Type of g ‘ weight co; ‘

A, w, 1<k<n Es w1, We
Bn w1, Wn E7 wy
Cy w1 Fy w4
Dn W1, Wn—-1, Wn Go w

The authors show that there is a normal polytope P (mcw;) such that { fSv, | s € Py (mw;)}
is a monomial basis of V (mw;). In particular Py (mw;) + PP (lw;) = P ((m + 1)w;).

With similar arguments as in 5.4 we see in the cases of (By,ww;) and (Ga,ww1) there exists
d € D such that {f5v3_ | s € P{(mw;)} is a monomial basis of V9 (mew;), and for all those
d € D we have d ¢ Dy, . In (Cp,m1) there is nothing to show. We assume we are not in those
cases, then we get the followmg Theorem.
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Theorem 9. There exists a reduced expression wy of wy € Wy, and d € Dy, such that

{fovd. |se Pl (mw;)} is a monomial basis of V4(mw;) and the ideal 19(mc;) is monomial.

Proof. We denote by Aﬂr = {v1,v3,...,vs} the set of positive roots which satisfy f,vm, # 0
in V(w;) and let vs = 0 the highest root. Further we assume the roots are good ordered, i.e.
v; < v; implies i < j where <y denotes the standard partial order on the positive roots. Note
this determines v; = «;. We want to show that we can extend the order 11 < 1o < +++ < g
to a convex order on A, . Since Ai is good ordered there are no convexity relations between
these roots if the coefficient of «; in € is 1. So we can extend it for (Eg,w1), (Ee,s), (E7,207),
(Ap,wy) and (Dp,wwp—1), (Dn,oon) O

5.6. Local monomial sets: G,. Let g be of type Gy. Recall that we computed the quantum
degree cone Df, in (4.2). Let d € Df,, be arbitrary. We have d € D, so we turn to the
classical case and let f1, fi112, f112, f11122, f12, fo be the corresponding PBW root vectors.

Lemma 6. The defining ideals I9(zw1) and I9(cws) are monomial.

Proof. For V(wy), the weight space of weight —zo; has dimension 1, so as in Lemma 4 we
need to choose a monomial having minimal degree from the set {fi11221, fi112f12, f1212}. In
the quantum group we have the relations

FiFi22 = FinoeF1 + (¢ — qiS)Fl(f%, Fii12F12 = FioFi112 + (¢ — q73)F1(f% (5.5)

implying that we should pick fZ,. As before the choice in all other weight spaces is obvious,
so the defining ideal I9(c1) is monomial.

We turn to V(ws): the weight space of weight 0 is of dimension 2, so we need to exclude the
monomial having the highest degree from the set {fi112f2, f112f12, fi1122}. In the quantum
group we have the relation

FiioFy = ¢ 3 FFie + (—¢ 2 — ¢ °)FiaFia + (¢ 2 + ¢4 — ¢ ") Finiae,

implying the inequalities deg(fii12) + deg(f2) > deg(fiiize) and deg(fiii2) + deg(f2) >
deg(fi12) + deg(fi2), so we should exclude fi112f.
All other weight spaces have dimension 1, we need to choose one monomial for each weight

4

space. For the weight space —3wj 4wy we choose fl(i’% from the set { fi112f11122, fl(:l)’%} since we
have dy112 +di1122 > 3d112. With similar arguments we choose for the weight space 3w — 2ws

the monomial fl(g’) from the set { fi1122f2, fl(g)}, for the weight space 2w — we we choose fg)

above f112fo; for the weight space —2w; 4+ wy we choose fl(?% above f1112f12. The choice in all
other weight spaces is obvious. This implies that the defining ideal I9(cs) is monomial. [

Remark 7. The Equation 5.5 implies that we pick f1212 over fi1192f1 in Vd(wl). The later
is the choice in [Gorl]. Since the choice is independent of d € D, this finishes the proof of
Theorem 8 statement (3).

Let S(ws) = {s € N6 | fsu{ £ 0}. We have by construction |S(ws)| = dimV(ws) =
14. But, if we take the convex hull P = conv(S(cw3)), we obtain a polytope which satisfies
|P N NS| = 16.

Therefore we consider the following polytopes. Define G§*(m;) C RS by the inequalities:

Ty, T2, T3, T4, T5, T6 2 07 z S miy, X2 S 07
2x1 + 229 + 3 + 224 + 225 < 2my.
Define G%?2(m2) C R by the inequalities:

xy1, T2, T3, T4, T5, Te > O) 1 < 05
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209 + T3+ x4 + 5 + 226 < 2M2.

Conjecture 2. For all A = myw; +mowsy € Py the number of lattice points in the Minkowski
sum
m1G5* (1) + ma (G52(1) U {3es,3e5})
coincides with dim V' (mjw; + maows).
Remark 8. Note that the proof of Lemma 6 does not depend on the choice of d € D@U. Fur-

ther we have D? = Dj, (see Proposition 2). This implies the inclusion D? C Sp,. Depending
on whether the conjectures are true or not, we obtain D¢ C Sg or Sgm N D7 = () respectively.
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6. DISCUSSION

We refer to the notation of Section 1. In this section we want to discuss our
results and state the ideas of our proofs. We shall also show the difficulties
in the proofs and discuss possible generalizations.

6.1. Hilbert—Poincaré polynomials. In the first paper we state the de-
gree of the Hilbert—Poincaré polynomial py(q) for arbitrary A € P*. This
is done by investigating the lowest weight space V() () and determin-
ing the degree of the lowest weight vector vy, (y). We already stated in the
introduction why this is sufficient in order to compute the PBW-degree.

The PBW filtration is compatible with the decomposition into h-weight
spaces:

dimV(A); = > dim (V(A)s/V(N)e1) NV ().
s>0

So we can define for every weight 7 € P the Hilbert—Poincaré polynomial:

par(@) =Y dim (V(A)s/V(X)s-1), ¢° and then pr(q) = > par(q).
520 TEP

A natural question is, if we can extend our results to these polynomials. If
the weight space V() is one-dimensional, then py (¢) is a power of ¢. To
compute this power one could use the same methods we used. We have to
find a suitable monomial u € U(n~) such that the weight of (uv)) equals 7
and have to show that there is no monomial with smaller degree satisfying
this. The action of U(nt) on V(X)? is a useful tool to show that certain
elements are zero.

For 7 = A, since V(A)y = Cuvy = V(A)o, we have py x(q) is constant 1.
For 7 = wo()), the lowest weight, this is ¢1°8Px(9), A first approach to study
these polynomials can be found in [CF15].

In this paper the reduction is provided, such that in Theorem 1 it suffices
to consider fundamental weights (see loc. cit. Theorem 5.3 ii):

Theorem. Let \i,...,\s € PT and set \ = X\ + ...+ Xs. Then

degpy(q) = degpx,(q) + ... +degpy,(q)-

Since A € P can be written in terms of fundamental weights A = mjw; +
mows + - - - + mpw, it suffices to compute the PBW-degree of PBW-graded
modules of fundamental modules. In the second paper we provide an explicit
list in 2.3 of the monomials mapping the highest weight vector to the lowest
weight vector for all fundamental weights. Then we show that there is no
monomial of smaller degree satisfying this. Here we use mainly the action of
U(n™) on V(A)® and weight combinatorics. For a fixed fundamental highest
weight w; we write —wg(w;) + w;, which is the weight of a possible monomial
u € U(n™) mapping v,, to Vg (w;)» @S @ sum of positive roots with a minimal
amount of summands. We obtain certainly a lower bound, which is in general
not the PBW-degree. This occurs in some exceptional types and also for
some cases in type B, and Dy, this was also noticed in [CF15]. We did not
find a general rule whether the PBW-degree is given by this lower bound or
not.
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An upper estimate can be obtained as follows: recall that 6 denotes the
highest root of g, then fgw“ev)vwi # 0 and the weight w; — (w;,0V)0 is a
weight for a Lie subalgebra g; C g, see Subsection 2.3 for the explicit list
of Lie subalgebras. Denote by 6; the corresponding highest root. Then we
obtain féfi’61v> fgwi’ev>vwi = 0. If we repeat this procedure we end up in the
lowest weight space V(w;)uyg(w,;)- In some cases this upper bound gives the

PBW-degree. Again we did not find a general rule whether this is the case
or not.

6.2. Favourable modules via Hasse diagrams. First, we want to note
that the authors in [FFL13b] introduced the notion of a favourable module.
In the second paper we call these modules Feigin—Fourier—Littelmann (FFL
for short) modules. Since we denote these modules in the third paper again
as favourable modules, we shall stick to this notion.

We fix a Lie algebra g and consider the partial order < on the positive
roots of g, given by a,3 € R*: a < 8 < B — «a is a non-negative sum of
simple roots. We associate to this partially ordered set (R', <) a directed
labeled graph (R™, F), called the Hasse diagram. The vertices are given by
R* and the set E is given as follows:

Va,5€R+:(agﬁ)EE:@ﬂakeA:a—B:ak,

recall that A denotes the set of simple roots of g. We denote by D the set of
all directed paths, which we call Dyck paths, p = {f;,, Bi, - - ., i, } starting
in 3;, = 0 the highest root of g and ending in a simple root 3;, = a;,1 <
J < n, such that there is a directed edge between ;, and 3;, ,, 1 <1 < s—1.

We fix the type of the highest weight to be a multiple of a fundamental
weight, A = mw;,m € N;1 < ¢ < n = rank g and associate to the Hasse
diagram a polytope:

P(mw;) = {(s8)ger+ € Rgo ] Z sg <mVpeD, sg<0if fgv,, =0}.
Bep

We show that this polytope is normal (see Subsection 3.2). The question
arises how this polytope is related to the module V(mw;). The condition
s3 <0 for all 8 € RT such that fgu,, = 0 shows one relationship. Meaning
that we only want to consider vectors in R]>V0, such that the corresponding
root vectors act non-zero on v,,. Another relationship is slightly more hid-
den. We assume that w; satisfies (w;,6") = 1. Then we know f§ v, # 0
and fg”lvmwi = 0 in V(mw;) and the second observation also holds in
V(mw;)®. This means the right-hand sides of the inequalities of P(mw;) are
related to certain relations in V(mw;), in particular to relations including
the root vector corresponding to the highest root.

If g and w; appear in the table below, then we prove that the cardinality
of the lattice points Py(w;) = P(w;) NN is equal to the dimension of V (w;).
We show this by constructing explicit basis of V(w;) in the corresponding
cases, see Subsection 3.4. Outside these cases this equality does not hold
and hence our approach can not be generalized immediately to other cases.
A generalization can be found in the third paper, we explain this also later
in this section and in Subsection 6.3.
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] Type of g \ weight w H Type of g \ weight w

Ay wr, 1 <k<n Eg w1, We
Bn w1, Wn E; wy
Ca w1 Fy Wyq
Dn W1, Wp—1, Wn Go w1
The observation |Py(w;)| = dim V' (w;) starts an inductive procedure. By

refining the partial order on RT to a total order and choosing an induced
homogeneous lexicographical total order on the monomials in U(n™) we find
that Py(w;) = es(V(w;)). We use the following result (see [FFL13b, Prop.
2.11))

es(V(wp)) +es(V(wp)) Ces(V(w;) ©V(ws)),

where + denotes the Minkowski sum and V(w;) ® V(w;) C V(w;) ® V(w;)
denotes the Cartan component in the tensor product. Hence we obtain
| Py(2w;)| < dimV (2w;). We show in general that the set

{fPvme, |'s € P(mw;)} C V(mw;)"

is a spanning set of V(mw;)®. Hence we have for all m € N the inequal-

ity dimV (mw;) = dimV (mw;)® > |Py(mw;)| and especially |Py(2w;)| =
dimV (2w;). By repeating these arguments we obtain a proof of the Main
Theorem 2. We obtain immediately that the module V (mw;) is a favourable
module. To prove the spanning property we use the action of U(nt) on
V(A)® to obtain certain relations in V(\)?, see Subsection 3.3. This also
implies the statement on the generators of I(\). Here we adapt the ideas of
[FFL11a]. Note that our proof only depends on the Hasse diagram.

In the introduction in Subsection 1.3 we already compared the basis of
V(A)® obtained in the second paper parametrized by Py(A) with the basis
of V(N\)?® parametrized by the lattice points of the FFL polytope in type
Ay, A = mw;. We obtained that these bases are not the same. Another
difference is the Minkowski sum property of the polytope. Assume g is of
type A4, then the number of lattice points in P(w;)+ P(w2) + P(w3) + P(w4)
is 1023, where the dimension of V(w1 4+ ws + w3 4+ w4) is 1024. In comparison
the FFL polytopes satisfy in general for all A\, u € PT :

FFLy()A) + FFLy(1) = FFLy(A + ).

Note that if g is of type C, and we consider w;,2 < ¢ < n we also have
(w;,6Y) =1 but we do not have dimV (w;) = Py(w;). In the cases of Gg,w;,
F4,ws and By,w; this is also not the case. But we were able to slightly
rewrite the Hasse diagram to obtain a polytope with the desired properties.
See the appendix in 3 for some examples of Hasse diagrams. The problem
in these cases is the following: there is a root 8 € RT with fpvd, # 0 such
that B —ay, 3— 2y, € RT for some simple root oy, # o; and for the action of
the root vectors we have fz_q,v5, # 0, fg—2q,v5, # 0. For a suitable £ > 2
we have

€%, F508, = €y (Lf5_ oy T5 00, =

" o (2)
COlLS oo fO—an 5 0%+ Ll = 1) f3_ o 5200, in V(w:)®,
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with cp = ¢g—a;,0,.C8,0;, and 1 = c%_ak’ak where cg_q, a,:C8,q, are the
structure constants corresponding to [eq,, fa—qa,] and [eq,, f3] respectively.
We emphasize that we obtain two elements by acting with e,. If we were
in the case of 3 — 2ay ¢ RT we would get only one. This complicates the
search of an suitable polytope.

In the cases of Gy, w1, F4,ws and By, w; we were able to solve this problem
by rewriting the Hasse diagram into a new diagram where we use also non-
simple positive roots to label the directed edges. For example see Subsection
3.4 for the changes in the case of By, wi. In the cases of Cp, wg, k > 2 we were
not able to find a suitable polytope, since k — 1 of such problems described
in (2) occur.

In the following we want to think about possible generalizations of our ideas.
One immediate idea of a generalization would be to define the same polytope
in other cases. As mentioned before, outside of the cases investigated in the
second paper, the lattice points in P(w;) do not coincide with dimensions of
certain fundamental modules.

Another idea is to adapt the right-hand side of the inequalities in (6.2), for
example if g is of type Eg and we consider the weight ws. Then (ws, ") = 2,
and let

P(wg) = {(sp) € RJZVO ] Z sg<2VpeD, s3<0if fau,, =0}
BeEpP
be the corresponding polytope. Then we have again |Py(wsg)| > dimV (wsg).
For all simple Lie algebras and fundamental weights w; with (w;,8Y) = 2
this approach fails.

The next generalization of the polytope works in some cases, where the
normality is not given anymore by the results in Subsection 3.2. At first,
we consider more paths. Instead of requiring that a Dyck path starts at
the highest root and end in a simple root, we allow paths to start at arbi-
trary roots 8. The right-hand sides of the corresponding inequalities will be
adapted by the value of (w;, 3"). Secondly one should allow the coefficients
cs (of sg) in the describing inequalities to be greater than 1, see Subsection
4.5 in the case of Bz. Also in [Gorl5b] in the case of D4 this approach works.
Nevertheless, in these cases the interpretation of the inequalities as paths
is not stated and rather complicated. An approach would be to identify a
coefficient cg > 1 of sg in some inequality with a weighted loop O, at the
vertex § in the Hasse diagram.

As mentioned the first approach of considering more paths leads us to the
case of By.

6.3. Monomial bases and PBW filtration in type B. In this section
we fix g to be of type By and A = mw;,m € N, 1 < ¢ < n a multiple of a
fundamental weight. Apart from the results stated in Main Theorem 3 we
conjecture a basis of V(A)® in the cases of A = mw;,4 < i < n. We shall
describe the polytope and the reason why we think this conjecture is true.
As before the polytope is described by paths in the Hasse diagram. We build
the Hasse diagram slightly different. The shape is the same but we do not
use directed arrows. The paths are certain subsets of P(R™), the power set
of R*, were we distinguish between type 1 and type 2 paths, we call them
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again Dyck paths. The Dyck paths of type 1 are similar to the Dyck paths
described in [FFL11a] in a certain area of the Hasse diagram of type B, (see
Subsection 4.4, also for more details on the Dyck paths). A Dyck path of
type 2 is the disjoint union of two Dyck paths of type 1 with some extra
conditions. We consider the set of Dyck paths D = D%rel y DWpPe2 and
adjust the right-hand side of the corresponding inequalities, in particular we
define

P(mw;) = {(85) € RJZVO |VpeD: Z sg < Mp(mw;),sg < 0if fau,, = 0},
Bep
where we set

m if p e DWpel
m(w;, 0V) if p e DWPe2,

Mp(mw;) = {

We have proved the following facts on this polytope. The lattice points
Py(mw;) parametrize a spanning set of V(mw;)* for all 1 < i < n. The
polytope is normal in the cases of mw; and mwsy and we show with a similar
proof as sketched in Subsection 6.2 that Py(mw;) parametrizes a basis of
V (mw;)® for i = 1 and i = 2. But, in general the polytope is not normal in
the cases of w;, where 3 < i < n. For example, the polytope P(ws3) has a
rational vertex. Nevertheless we prove that Py(ws) parametrizes a basis of
V(w3)® and also that Py(2w3) parametrizes a basis of V/(2w3)®. Furthermore
we show with much effort that P(2mws) is a normal polytope. We construct
a basis of V(mws)® parametrized by Py(mws), note that m is arbitrary and
not necessary a multiple of 2, by taking Minkowski sums of Py(ws) and
PN(QU.};}).

Based on this result we conjecture that Py(mw;) parametrizes a basis
of V(mw;)® also in the cases where 4 < i < n. If the conjecture would
be true, we also could describe the generators of the ideal I(mw;), where
V(mw;)® = S(n™)/I(mw;).

6.4. Degree cones and monomial bases. We want to discuss a new poly-
tope conjecturally parametrizing a new monomial basis of V() in the case of
sl5. We consider the following reduced expression wy = $1525154535251545352.
The corresponding convex order is

a11 <o <oz <ogq<opga<ogg<ozs <oz <ags<ags,

where «;; denotes the root a; + -+ + «aj;, 1 < i < j < 4. Denote the
corresponding PBW root vectors by f; ;. Any d € Dy, implies I d(w),1 <
1 < 4 is monomial, since

deg f1,4 + deg fo3 > deg f1,3 + deg fa,4,

deg fo,4 + deg f12 > deg f1,4 + deg fa 2,

deg fo,3 + deg f12 > deg f1,3 + deg fa 2,

deg f1,4 +deg f33 > deg f1,3 + deg f3.4,

deg f2,4 + deg f33 > deg fo3 + deg f3.4.
The choice in all other weight spaces is obvious since Dg,, C D. Hence we

obtain a monomial basis of V4(w;). The interesting point is the following:
the monomials in S(n~) describing the basis of V4(w3) are the same as the
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monomials describing the basis of V%(ws3) obtained in the second paper, in
particular these are

f1,3f24, f13f34, f23f34.

The monomials in S(n~) describing the basis of V4(ws) are a mix of mono-
mials described by the FFL basis of V%(ws) and monomials describing the
basis obtained in the second paper of V%(ws), in particular these are

fi3foa, frafo2, fizfee.

Let us consider the following polytope. We enumerate positive roots by
ar,Qq 2,022,013, 023,033,014, 024,03 4,044.

Let P(a1,as,as,as) be the polytope in RV defined by the following inequal-
ities:

)

)

)

)

) z10 < aq

)m1+x2+m3§a1+a2
)m1+x2+:ﬂ4+$5~|—m6§a1+a2+a3

) x1+ 22+ 2+ 25+ 26+ 27+ 210 < a1 +axt+az+ay
) 21422+ 23+ 24+ 25+ 206 + 27+ T3 +29 + 210 < 201 +20a2+2a3+ay
) 21+ 22 + 26 + 27+ 28 + 29 + w10 < a1 +az + a3+ ay
) 2014+ 2x9+x3+ x4+ 225+ 226 + 27+ 28+ 210 < 201 + 202 + 2a3 + a4
) x1+ 22+ 25+ 26 + 27+ 28+ 210 < a1 +ag+az+ay
) x1+x2+ 23+ 25 + 26+ 28+ 210 < a1 +ax+az+ay
)x3+x6+$g+x9+x10§a2+a3+a4
)x3+x5+x6§a2+a3

) 201 +2x9+ 3+ x4+ 2205+ 3x6+ 7+ 28+ T+ 210 < 201+ 2a9+3az3+ay
)x6+$g+x10§a3+a4
)xl+m2+x3+x5+2x6+x8+x9+x10§a1+a2+2a3+a4
)xl+x2+x5+2x6+x7+x8+x9+x10§a1+a2+2a3+a4
)acl+x2+x3+:1:4+2x5+2x6+x7+x8+$10§a1+2a2+2a3+a4
)x1+m2+x3+x6+x8+x9+x10§a1+a2+a3+a4
)xl+x2+m4+x5+2x6+x7+x9+m10§a1+a2+2a3+a4
)x1+x2+m3+x5+x6§a1+a2+a3
)x3+x5+2x6+$8+x9+x10§a2+2a3+a4

)
)

The polytope P(1,1,1,1) has 36 facets, so it is isomorphic neither to the
FFL polytope of type A4, nor to any string polytope for A,.

Conjecture. The polytopes P(a1,as,as,ayq) are normal and satisfy the Minkowski

property. Further let A = ajwi + asws + azws + aswy € PV, we have
Px(a1,a9,a3,a4) parametrizes a monomial basis of VI(N) and I4(\) is a
monomaal ideal.
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If the conjecture is true, a natural question is, if there are similar polytopes
for Ay, n > 5, or do we obtain similar polytopes for n = 4 for a different
choice of monomials.

Other questions we are working on are: for example, what is special about
reduced expressions implying a normal polytope such that its lattice points
parametrize a certain basis? Do we have an interpretation of our results in
terms of the Hall algebra of quiver representations? How many quantum
degree cones exist for a fixed simple Lie algebra and how to classify them?
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