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Abstract

A continuous increase of sub-surface flow models in size and physical complexity

makes efficient and reliable linear solution approaches crucial for successfully ap-

plying reservoir simulations. Due to the essential objective of simulating diffusive

fluid flux, algebraic multigrid methods are a natural option to consider. However,

the application may not be straight-forward, as the solver has to cope with linear

systems that are influenced by various physical effects.

In this thesis we will discuss AMG-based solution approaches for Black-Oil and

compositional models for fluid flow, as well as for models that additionally take

thermal and mechanical effects into account. We will discuss the properties of the

matrices that describe the linear systems and we will see the impact of different

simulated effects.

As Black-Oil models form the basis also for more sophisticated models, we will

discuss a robust System-AMG approach for these simulations first. This will in-

clude preparatory matrix transformations that aim at ensuring the applicability

of AMG. With this approach, we will be able to solve highly challenging problems

from industrial simulations robustly and efficiently. We will then extent this ap-

proach to compositional, thermal and geomechanical problems.

Finally, we will discuss some aspects of further improving the performance of

System-AMG. This will involve algorithmic modifications that give AMG ap-

proaches with better computational efficiency, but we will also discuss some im-

plementational aspects, e.g. regarding concurrency of incomplete factorizations.



Zusammenfassung

Die kontinuierliche Zunahme von Problemgröße und physikalischer Komplexität

in Modellen für Fluss durch poröse Medien lässt linearen Löseransätzen, die zu-

gleich effizient und verlässlich sind, eine entscheidende Bedeutung für erfolgrei-

che Reservoir-Simulationen zukommen. Da es im Kern um die Simulation diffu-

siven Flusses geht, bieten sich algebraiche Mehrgittermethoden natürlicherweise

an. Allerdings ist ihre direkte Anwendung unter Umständen schwierig, da die zu

lösenden Systeme von zahlreichen physikalischen Effekten beeinflusst werden.

In dieser Dissertation werden sowohl reine Flussmodelle für Mehrphasen- und

Mehrkomponentenfluss behandelt, als auch Modelle die zusätzlich thermische und

mechanische Einflüsse berücksichtigen.

Es werden zunächst die Eigenschaften der Matrizen betrachtet, die die zu lösenden

Systeme beschreiben. Hierbei werden die Einflüsse der verschiedenen physikalis-

chen Effekte herausgestellt.

Dann wird ein System-AMG Ansatz für Schwarzöl-Simulationen beschrieben, da

diese Modelle die Basis für komplexere Simulationen bilden. Dieser Ansatz bein-

haltet einen Vorbereitungsschritt für die Matrix, der für eine robuste Anwend-

barkeit von AMG sorgt. Auf diese Weise lassen sich auch sehr komplizierte lineare

Systeme aus industriellen Simulationen erfolgreich und effizient lösen. Im An-

schluss wird beschrieben wie sich dieser Ansatz auf Mehrkomponentenprobleme

sowie auf Simulationen, die thermale und mechanische Effekte berücksichtigen,

erweitern lässt.

Zum Abschluss werden einige Aspekte zur Laufzeitverbesserung behandelt. Dies

betrifft auf der einen Seite algorithmische Änderungen am Löseransatz. Zum an-

dern wird auch die effiziente Realisierung, unter anderem Parallelisierungsaspekte

unvollständiger Matrixzerlegungen, vorgestellt.
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Nomenclature

In this nomenclature we only list symbols and notations that are used throughout

this thesis. In some sections we may locally define some further symbols. Such

symbols are not listed here.

In order to follow the general notations from different disciplines (e.g., modeling

of sub-surface flow and multigrid), some symbols may be used with a different

meaning in different chapters. However, which meaning is intended will always be

clear from the context.

Latin Letters

A,B,C,D Square matrices

AXY Sub-matrix describing relations between physical unknowns X and Y

CL, CR Left- and right-scaling, respectively

E Young’s modulus

[E] Discrete energy balance equation

[EAccu] Part of [E] that results from accumulation

(analogously with FluidF lux, HeatF lux and Source)

GA Adjacency graph of matrix A

GLA Graph Laplacian of matrix A

Gstr Graph of strong couplings

H Depending on the context:

Thermal enthalpy or grid size

J Jacobian

vii



Nomenclature viii

~~K,K Permeability

Kh,H Coarse grid correction operator

~~KT , KT Thermal permeability

M Iteration operator

[Mα] Discrete mass balance equation of phase α

[MAccu
α ] Part of [Mα] that results from accumulation

(analogously with Flux and Source)

MBiot Biot’s modulus

Mmol
c Molar mass of component c

Nα,Nc Number of moles in phase α or component c, respectively

P Primary matrix

Rog Oil-gas ratio (amount of gas that is dissolved in the oil phase)

Sα Saturation of phase α

S Depending on the context:

Saturations or smoothing operator

T Temperature

Tα Transmissibility

U Internal energy

V Volume

WI Well index

Xc,α Concentration of component c in phase α

d Depth

e Error vector

f Right-hand-side

g Gravitational constant



Nomenclature ix

h Grid size with h < H

krel Relative permeability

m Mass

pα Pressure of phase α

pbp Bubble point pressure

pcapαβ Capillary pressure between phases α and β

qα Source term for phase α

r Residual

t Time

u Displacement

~v Velocity

x, y Solution vector

Greek Letters

α, β, γ Phases

αBiot Biot’s effective stress coefficient

δji DRS weight for unknown j in cell i

ε Depending on the context:

Strain or anisotropy

εv Volumetric strain

λ Depending on the context:

Mobility or reduction factor

ρ Depending on the context:

Density or spectral radius

µ Viscosity



Nomenclature x

ν Poisson’s ratio

ϕ Porosity

σ Depending on the context:

Stress or smoothing factor

σ′ Effective stress

Subscripts

c Component

tot Total value (i.e., weighted average over all considered fluids; see Equa-

tion (2.4))

α, β, γ Fluid phases

General Notation

[X ]ni Property (or equation) X in grid cell i at time step n

Ã Matrix A is scaled in some way

1 Identity matrix



Chapter 1

Introduction

The numerical simulation of sub-surface flow processes plays a key role in the

design of resource recovery in the oil and gas industry. Such simulations always

require solving linear systems of equations in the numerical kernel. However, the

complex physics of multiphase sub-surface flow results in linear systems that are

challenging for linear solvers. This especially holds for iterative ones that, due

to the problem sizes, are the methods of choice. The simulation of enhanced oil

recovery (EOR) techniques that involve thermal influences and/or geomechanical

forces, adds additional complexities and degrees of freedom to the models and the

resulting linear problems. Moreover, the continuous increase in model resolutions

leads to corresponding growth in problem sizes. Both the increasing complexity

and size of the systems makes their solution by far the most time consuming part

of today’s reservoir simulators.

The application of the underlying simulation techniques is not limited to the ex-

ploitation of oil and gas reservoirs. They can also be applied to further sub-surface

flow problems, including gas storage facilities, the sequestration of carbon dioxide

and nuclear waste deposits. Especially the latter are of increasing importance.

There are also applications beyond sub-surface flow. For instance, the simulation

of bone marrow in medical engineering can be achieved using the same concepts

of porous media flow.

For all these simulation applications, there is a need for efficient linear solution

approaches that are robust and reliable.

In this thesis we will discuss the application of efficient linear solver methods for

1



Chapter 1 Introduction 2

various types of porous media flow simulations that involve multiple kinds of flu-

ids and various chemical components. This will also include the application for

coupled linear systems that involve thermal and mechanical effects. We will see

that so-called System-AMG provides a framework for constructing efficient and

robust linear solver approaches in the outlined types of simulations.

Our discussion will focus on reservoir simulations, as research on simulation of

porous-media flow is mainly driven by this application. Reservoir simulations play

an important role in the oil industry to optimize the exploitation strategy for hy-

drocarbon reservoirs. As the costs of complex well-bores can easily reach tens of

millions of dollars, each of them should result in as much oil or gas being produced

as possible. In conventional discovery processes, a combination of production and

injection wells is used. A fluid is injected into the reservoir, in order to increase

the in-situ pressure and push the oil to a production well. This injected fluid is

classically water, but also the use of gas becomes increasingly popular. In partic-

ular carbon dioxide should be mentioned, as it is at the same time sequestrated

this way.

The complex structure of the sub-surface rock causes a high sensitivity of a well’s

efficiency on its exact location. The reservoir is not a large cavity, but rather a

sponge-like structure with various interconnected pores, which yields highly het-

erogeneous permeability fields. The oil is located within these pores and even

with the utilization of injections, typically only up to a quarter of the oil within

a reservoir can be recovered efficiently. Highly viscous hydrocarbons then still

remain within the pore structure. Moreover, there might be substantial parts of

the reservoir with only a small, or even no transmissibility to its main parts. This

especially applies to shale reservoirs. In order to also produce this remaining oil,

EOR techniques are used. These techniques essentially employ heat, force and

chemistry:

• The oil’s viscosity can be reduced by increasing the temperature within the

reservoir - either by injecting steam, or by in-situ heating facilities and even

combustion.

• High pressures can be used to induce mechanical forces and widen the pores

of the reservoir field. This technique can be extended in order to grow

existing, or create new fractures (so-called fracking).

• Certain chemicals and foams can be injected into the reservoir in order to

detach oil from pores.
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We are concerned with different types of fluid in the flow process and may also con-

sider further physical effects. Hence, the resulting linear systems involve several

different types of corresponding physical unknowns. In order to overcome strict

limitations for the time step sizes, at least most of them are treated implicitly in

the discretization, which leads to the fully and adaptive implicit (FIM and AIM)

simulation models that we will be concerned with in this thesis. The differential

equations in the model formulations are highly non-linear and the linear systems

that we intend to solve in fact are described by Jacobian matrices that are em-

ployed in the linearization process, for instance by Newton’s method.

All the physical processes outlined above are handled by today’s reservoir simu-

lators, which makes these linear systems rather challenging for solvers. Even in

the simulation of reservoirs in their initial state without well-bores, the systems

involve different types of unknowns with different physical backgrounds and are

characterized by strong heterogeneities. The consideration of well-bores results in

additional impacts on the linear system side.

As the objective of reservoir simulations essentially is the simulation of diffusive

fluid flow, multigrid methods are a natural option to consider. For discretized par-

tial differential equations (PDEs) describing ”diffusion-driven” processes, multi-

grid methods have proven to provide efficient solvers, as discussed by Brandt and

Livne or Trottenberg et.al. [14, 97]. These methods exploit a hierarchy of grids at

different resolutions in order to uniformly reduce all error components1 of a solu-

tion iterate. This property makes multigrid methods superior to non-hierarchical,

i.e. one-level, solution methods like relaxations or incomplete factorizations.

One way of utilizing a grid hierarchy is to discretize the initial PDE on grids

of different resolutions and then construct geometry-based transfer operators be-

tween them. This is the approach of geometric multigrid (GMG), which is highly

efficient where applicable. However, analog grids of different mesh sizes, together

with reasonable transfer operators, may be extremely difficult to find, if not even

practically impossible, in the case of complex unstructured grids featuring strong

heterogeneities.

A way to overcome this limitation is provided by the idea of algebraic multigrid

(AMG) methods, as described by Ruge and Stüben [85, 95]. This approach also

exploits a hierarchy of grids, or rather levels, to uniformly reduce the different

components of an error function. However, this hierarchy is constructed automat-

ically by the method. Given that the linear system to be solved results from the

1The components of an error function are defined in terms of its Fourier decomposition.
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discretization of an elliptic PDE, the matrix exhibits certain properties that AMG

can exploit in order to construct hierarchy and transfer operators. In this way, the

levels are directly adapted to a given initial matrix and, hence, the corresponding

grid and varying material parameters.

A state-of-the-art solution approach for the linearized systems from reservoir sim-

ulations is the Constrained Pressure Residual (CPR) method, proposed by Wallis,

et.al. [101, 102]. This method can be regarded as a kind of two-stage precondi-

tioning. As the fluid flow is driven by pressure differences, the sub-system that

is affiliated with the pressure unknown is expected to describe the diffusive part

of the entire system. This sub-system is approximately decoupled from the other

physical unknowns by certain matrix transformations. In each iteration of the

CPR method then a rough pressure approximation is computed as a first step,

which serves as an initial guess for an incomplete factorization iteration in the

second step.

Due to its known efficiency in solving linear problems resulting from diffusive pro-

cesses, algebraic multigrid is already a popular choice for computing the pressure

approximation in CPR’s first step, yielding a CPR-AMG method. Unfortunately,

while working efficiently in many simulations, a failure of the CPR-AMG method

is observed in a significant number of simulations in practice. This failure nearly

always is caused by AMG-related issues in the computation of the pressure ap-

proximation. Moreover, whether or not CPR-AMG fails depends on the way the

pressure sub-problem is extracted from the full system. This is because the trans-

formation that is used for the approximate decoupling always has an impact on the

pressure sub-problem and the properties of the respective matrices. This influence

may be counter-productive for an efficient application of AMG.

There have been attempts to improve the robustness of AMG. Krylov-Deflation

methods and Schwarz approaches, together with stronger AMG-smoothers, have

been considered by Klie, et.al. and Clees and Ganzer, respectively [27, 60].

The pressure is approximately decoupled from the further unknowns, as the cor-

rect solution of these unknowns is not yet known in any iteration of CPR-AMG.

Hence, the influence of the respective errors on the pressure approximation shall

be reduced. As a full decoupling, for instance, via a Schur complement, is im-

possible for practical reasons, this decoupling is only approximated: the discrete

pressure per grid cell is only decoupled from the further unknowns in this cell,

as these couplings are expected to dominate. This could be achieved by cell- (or
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block-)wise Schur complements, which leads to the quasi-IMPES method, as de-

scribed, for instance, by Lacroix et.al. or Jiang [52, 63]. Both authors also suggest

a comparable incorporation of physical information in order to make the local ap-

proximation of the full Schur complement meaningful in a physical sense. This

approach is known as true-IMPES.

Different further decoupling approaches are described in the literature. Klie et.al.

[59] considered the Alternate Block Factorization by Bank et.al. [9] and Lacroix,

et.al. [63] introduced local QR decompositions for the decoupling. All the de-

coupling methods described so far have in common that the pressure problem is

affected in a way that may drastically change the matrix properties that AMG

requires.

Other decoupling methods have been proposed that do not potentially introduce

new difficulties for AMG. Scheichl et.al. [90] suggested to compute an average

pressure problem in order to decouple the pressure. Al-Shaalan, et.al. [5] de-

scribed a method based on least-squares, where the pressure sub-problem is only

scaled by constants.

However, with all these approaches there are situations observed where AMG fails.

A recent example has been reported by Li et.al. [64] for thermal simulations.

Even if no new difficulties for AMG have been introduced by a matrix transfor-

mation, problems for multigrid methods may still occur. This results from the

highly complex physics that are reflected by the linear systems and which cause

the systems to not always fulfill the properties that multigrid seeks to exploit.

In particular, the modeling of wells should be mentioned that can result in the

pressure problems even being indefinite.

We should mention that also different methods for the pressure approximation in

CPR are reported in the literature. For instance, Fung and Dogru [43] presented

a way to drastically accelerate the convergence speed of incomplete factorizations

for the pressure problem. By exploiting physical information, they used a matrix

re-ordering that aims at appropriately capturing flow directions. This way, cer-

tain global information on the flow in the entire domain are incorporated in the

factorization.

A recent further direction of research are multiscale solvers for the pressure prob-

lem, as, for instance, described by Wang, Hajibeygi and Tchelepi [104]. Here, a

two level method is constructed in a way that is comparable to AMG. However,

the transfer operators do not rely on matrix information only, but incorporate



Chapter 1 Introduction 6

information from a structured grid. In a sense, this can be seen as enriching an

AMG approach with grid information.

Ultimately, the exploitation of a hierarchy is crucial to efficiently solve the lin-

ear systems that result from diffusion-dominated processes. As AMG methods

construct their hierarchy independently of geometrical information, AMG-based

solution methods are preferred by industrial simulation codes ([17, 19, 45, 50]). In

the scope of this thesis, we will discuss how we can realize an efficient AMG-based

solution approach that is robust and reliable. Furthermore, we will discuss how

we can cover the outlined range of simulation models with such an approach.

We will exploit the fact that AMG can not only be used to solve linear problems for

a single physical unknown, but that the AMG idea can also be extended to coupled

systems with different physical unknowns. Such System-AMG approaches have

been outlined by Ruge and Stüben [85] and are described in detail by Clees [26].

There have already been some attempts to employ such approaches for reservoir

simulations: Clees and Ganzer [27] applied an AMG hierarchy for all unknowns

from Black-Oil simulations and used alternating Schwarz techniques and strong

AMG-smoothers to improve AMG’s robustness.

Clearly, the matrices that describe coupled systems, or rather the sub-blocks within

them that correspond to the different unknowns and the couplings in-between,

need to satisfy certain properties for System-AMG to be efficient. Hence, due to

the complex physics, the difficulties from CPR-AMG also apply here.

In this work, a particular focal point will be the robustness of the System-AMG

approaches. On the one hand, this means that we need to select the components

of System-AMG properly, according to the particular requirements of the respec-

tive simulation models. We will especially see that a simultaneous hierarchical

treatment for different physical unknowns can be necessary.

On the other hand, we need to introduce some preparatory matrix transformations.

These, in contrast to approximate decouplings from CPR-AMG approaches, will

not introduce any artificial difficulties for AMG. On the contrary: we use these

transformations to avoid the complex physics causing problems for System-AMG.

After presenting the robust applicability, we are going to investigate efficient solu-

tion approaches with the System-AMG framework to solve the full linear systems

from reservoir simulations with multiple different physical unknowns. This frame-

work is not only a convenient way to integrate the linear solution process into a
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reservoir simulator, but can exploit all advantages of System-AMG.

We can first of all extend our solution approach to more sophisticated models

with various physical unknowns. This way, we cover the full range of industrially

relevant simulation models, starting from basic Black-Oil simulations, including

compositional models and ending with sophisticated thermal and geomechanical

applications.

Secondly, the full bandwidth of AMG-components is exploitable and we can op-

timize the System-AMG approach according to the typical matrix properties in

reservoir simulations. Such optimizations can directly reflect the entire linear so-

lution process and are not limited to only a sub-system. We will demonstrate this

by optimizing the coarsening strategy of System-AMG.

Finally, System-AMG handles the linear systems that are directly derived from

the simulation models and avoids any influences that are artificial and possibly

problematic from AMG’s perspective.

We will demonstrate the efficiency and robustness of the solution approaches with

representative linear systems, mostly provided directly by industrial users. In fact,

all problems that we have been concerned with can be solved in the described way,

also various problems that could not be solved by AMG-based methods before.

That is, the resulting System-AMG approaches can be applied in a black-box

fashion in a simulator, given that certain basic information regarding the type of

model and the involved physical unknowns are made available, for all the types of

models that we consider in this thesis.

The outline of this thesis is as follows:

As a first step, in Chapter 2, we will discuss the origin of the linear systems with

a focus on the properties of the corresponding matrices. We will see how different

aspects of the models are responsible for particular matrix properties, and under

which conditions we can expect sub-matrices to be in matrix classes for which

AMG works well. Our description starts with basic Black-Oil models, pointing

out the influences of compressibility and wells. In these models, which still are

heavily used in industrial reservoir simulations, we are only concerned with three

types of fluid, namely oil, gas and water.

We continue with compositional simulations, where different chemical components

are distinguished within the fluids. The properties of the linear systems under the

natural variable and the volume balance formulation will be investigated and we
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are going to discuss how they relate to the Black-Oil case.

Finally, we are going to discuss thermal and geomechanical models and analyze

the matrix properties that are added, compared to the pure fluid flow simulations.

Regarding geomechanics, we will outline the influence of mechanical forces on

fractures and permeabilities. However, we limit our detailed discussion to the

poroelasticity models, as we are only going to be concerned with such problems in

subsequent sections.

In Chapter 3, we are going to describe a System-AMG approach for Black-Oil

models under idealized assumptions on the properties of the linear systems. This

starts with a brief introduction into AMG and System-AMG. We discuss which

matrix properties are required in order to apply System-AMG in a robust way.

From the previous chapter we know under which conditions certain properties

can be expected for different sub-blocks of the full matrix. For the Black-Oil

case we will see that the CPR method can be interpreted as a particular System-

AMG approach. We will discuss the convergence properties of the solver approach

under some model assumptions. We will see that the coupling between pressure

and further unknowns is rather not crucial, in contrast to the reverse couplings

and the properties of the pressure sub-problem itself.

Chapter 4 considers more realistic situations, where the ideal conditions from

the previous chapter are not necessarily fulfilled. This is typically the case in

practice. Instead of attempting to adjust the System-AMG approach to cope

with all potential difficulties, which may not even be possible, we will describe

a matrix transformation that can be used to ensure AMG’s applicability. This

transformation will exploit the entire information provided within the full system

matrix and applies knowledge on the matrix properties that we have described

in Chapter 2. We will see that System-AMG, in combination with this matrix

transformation, can also handle Black-Oil systems that were originally challenging,

or even impossible, to solve.

Based on the robust and efficient System-AMG approach for Black-Oil simulations,

the 5th chapter will extend this approach to compositional, thermal and geome-

chanical simulations. Here we exploit the strength of the System-AMG framework

to be extendable to systems with additional physical unknowns. Especially in

thermal and geomechanical simulations we will see that the ability of exploiting a

hierarchical treatment, simultaneously for different unknowns, is beneficial.
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After the System-AMG approach has been established also for sophisticated prob-

lems, in Chapters 6, we are going to discuss selected options to improve the

computational performance of our solver. We can further accelerate the AMG

approach, which we will demonstrate with an optimized coarsening process. We

will find that we can exploit aggressive coarsening variants without loosing con-

vergence speed.

We will also discuss performance improvements of the AMG smoother by exploit-

ing special matrix properties in adaptive implicit simulations.

Practical aspects also include parallelization and implementational aspects of the

linear solver. Our System-AMG approach utilizes incomplete factorizations, which

are a significant performance bottleneck. These factorizations are inherently se-

quential processes and algorithmic compromises within their parallelization can

cause severe convergence issues, especially for the challenging problems from reser-

voir simulations. For shared memory architectures, in Chapter 7, we will provide

a parallelization approach that ensures equivalence to the sequential factorization.
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Chapter 2

Linear Systems from Reservoir

Simulation

The complex physics of reservoir simulation processes result in a need to consider

various physical unknowns at the linear system level. Which unknowns, and how

they are interconnected, depends on the concrete modeling approach. Knowledge

of the concrete properties of the linear systems is necessary to design solver ap-

proaches in later chapters. Our description of reservoir simulation will therefore

focus on these properties and how they depend on the physics. In our discussion we

directly anticipate the objective of applying algebraic multigrid methods later on.

Therefore, we particularly focus on relevant properties, like diagonal dominance,

M-matrix properties, etc., in the different parts of the linear systems. Especially

sub-problems that are described by M-matrices or essentially positive type matri-

ces [15] are of particular interest for the design of an AMG-based solution method.

We will discuss conditions under which these properties are fulfilled.

We are going to discuss details of modeling only to the extent they effect the linear

systems. For further information we refer to the reservoir simulation book by Aziz

and Settari [7] and further overview literature in [1, 6, 21].

We note that there is no unique modeling approach in reservoir simulation. While

all approaches are based on the same fundamentals, they still differ in the con-

crete formulation to some extent. We consider all relevant model formulations.

However, where different formulations result in comparable matrix properties, we

will continue our discussion with the most convenient description.

11
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2.1 Matrix Properties and Orderings

Before discussing reservoir simulation models and the resulting linear problems to

be solved, we introduce some matrix properties that are of interest for the later

discussion on linear solvers. Let arbitrary A = (aij) ∈ Rm×m and let 1 the identity

matrix, then we can state the following definitions:

Definition 2.1. Let arbitrary v, w ∈ Rm, then < v,w >std= vTw is the standard,

or Euclidean scalar product. 4

Definition 2.2. We call A symmetric, if A = AT . 4

Definition 2.3. Asym := 1
2
(A+ AT ) is the symmetric part of A. 4

Definition 2.4. We call A positive definite, if it is symmetric and has only positive

eigenvalues. We also refer to it as an spd matrix (symmetric positive definite) and

write A > 0. If A has only non-negative eigenvalues, we call it positive semi-

definite and write A ≥ 0. 4

Definition 2.5. With an arbitrary matrix B of the same dimension as A, we have

the Löwner order A > B iff A−B > 0. We denote the positive semi-definite case

with ≥. 4

Definition 2.6. We call A diagonally dominant, if ∀i ∈ 1, ...,m : |aii| >
∑
j 6=i
|aij|.

If the condition holds only with ≥, A is called is weakly diagonally dominant. 4

Definition 2.7. We call A non-negative, if ∀i, j ∈ 1, ...,m : aij ≥ 0. 4

Definition 2.8. A is a Z-matrix, if ∀i, j ∈ 1, ...,m, i 6= j : aii > 0 ∧ aij ≤ 0. 4

Definition 2.9. We call A an M-matrix, if it is a Z-matrix, its inverse A−1 exists

and is non-negative. 4

Definition 2.10. The directed adjacency graph GA = (V G
A , E

G
A ) is defined as

follows: For each matrix row we have a vertex in V G
A . We have an edge eGij ∈ EG

A

iff aij 6= 0.

We can construct a weighted graph by attaching the value aij as a weight to

eGij. 4

Definition 2.11. We call A irreducible, if its directed adjacency graph is con-

nected. 4
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Definition 2.12. We call a splitting A = B − C with arbitrary matrices B,C

regular, if B−1 exists and both B−1 as well as C are non-negative. 4

Definition 2.13. diag(A) is the diagonal of A. 4

Definition 2.14. ρ(A) = {max|λ| : λ eigenvalue of A} is the spectral radius of

A. 4

Let us assume a discretization grid with npoints points that refer to the cell centers.

nunknowns different physical unknowns are considered per point. Throughout this

thesis we have to distinguish two types of matrix orderings for the linear systems

Ax = b. We describe them by the order of the solution vector x. The unknown-wise

ordering corresponds to:

xunknown−wise =



unknown 1 at point 1

unknown 1 at point 2
...

unknown 1 at point npoints

unknown 2 at point 1
...


. (2.1)

The alternative point-wise ordering corresponds to:

xpoint−wise =



unknown 1 at point 1

unknown 2 at point 1
...

unknown nunknowns at point 1

unknown 1 at point 2
...


. (2.2)

We will use the unknown-wise ordering mainly for theoretical discussions regarding

the properties of the linear systems. However, when we discuss concrete linear

solvers approaches in the later scope of this thesis, we will usually consider the

point-wise ordering, as this is used in practice. Where the type of ordering is clear

from the context, we will not explicitly mention this anymore. Both orderings

describe the same linear problem and we can always assume an implicit reordering

to be given.
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2.2 Properties of Fluid and Stone

The fluid flow in porous media depends on both fluid properties and properties

of the surrounding rock. At a later stage, we will deal with more sophisticated

simulation models that additionally consider thermal or mechanical effects, which

will require the consideration of further properties. Our discussion follows the

considerations by Aziz and Settari [7], where also further details can be found.

We have to distinguish different types, or phases, of fluids. This distinction first of

all is between hydrocarbons and water, because they cannot mix up. We moreover

make a difference between liquid hydrocarbons (oil) and gaseous ones, because

these can behave quite differently. That is, our model has to take three different

phases α, β and γ into account. The fluid mixture is described by the saturations

Sα, Sβ and Sγ, which describe the relative amount of the respective phases in the

entire fluid in a pore with 0 ≤ Sα, Sβ, Sγ ≤ 1. In our following discussion, we

assume all phases to be present in each pore of the reservoir to at least some

extent, i.e., each saturation is non-zero. We will review the case of phases being

absent at a later stage.

We assume the fluid to occupy the entire pore space in the rock. This volume

consistency condition leads to the constraint:

Sα + Sβ + Sγ = 1. (2.3)

In the following, with S we refer to the entire triple {Sα, Sβ, Sγ}.
When referring to properties of the entire fluid mixture, it is common to use the

term total (e.g., total pressure, total density, etc.). The total analogue Ytot of some

property Y is defined as the average, weighted by the saturations:

Ytot := SαYα + SβYβ + SγYγ. (2.4)

Usually, however, we consider the different properties per phase. We are going to

describe the properties and balance equations exemplarily by means of phase α

and note that the situation is analog with the other phases.

Because the fluid flow is driven by pressure differences, the pressure is an important

physical unknown for our description. The different phases may have different

pressures pα, pβ and pγ. This appears counter-intuitive at first glance, since all

phases are located in the same pores. However, due to capillary forces and surface
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tensions, the pressures differ for multiphase flows in porous media. But still the

pressures of different phases within the same location are closely related. This is

modeled by the saturation-dependent capillary pressure pαβcap that defines a linear

equilibrium relation for the pressures of the phases α and β:

pαβcap = pα − pβ. (2.5)

Analog relations are used for α and γ, as well as β and γ. The capillary pres-

sures depend on the distribution of the three phases within a pore. In the above

equation, according to Aziz and Settari [7], pαβcap increases with increasing Sα and

decreases with increasing Sβ.

The fluid properties are described by the viscosity µα and the density ρα. The

viscosity describes the inverse of the flowability under a given pressure and tem-

perature, where the pressure’s influence typically is small [7]. We will get back to

the temperature’s influence when considering thermal effects later. In contrast to

the viscosity, the density is highly pressure dependent. It describes the mass per

volume of the fluid, i.e. ρα := mα
Vα

.

The concrete mixture of the fluid has an impact on the phases’ flowability. For

instance, the amount of water that is present in a pore of the rock influences how

well oil can flow through this pore. It also makes a difference whether the surface

of a pore is covered by water (water-wet) or not (oil-wet), as illustrated in Fig-

ure 2.1. These effects are modeled [1, 7] by the scalar relative permeability krelα ,

a non-negative quantity that describes how well each phase can flow through a

particular pore.

As it describes flowability, the relative permeability is comparable to what the

inverted viscosity describes. Both properties often are combined to the term mo-

bility :

λα :=
krelα

µα
. (2.6)

In addition to the properties of the fluid, there is the porous medium the fluid is

flowing through. A subsurface reservoir is not like a huge cavity where free flow

is possible in all directions. It is more a sponge-like structure with interconnected

pores, as sketched in Figure 2.1. To account for this structure, we have to intro-

duce two additional quantities, the porosity and the permeability.

The porosity ϕ determines the amount of volume that is available for the fluid

mixture, i.e., not consisting of stone. This implies 0 ≤ ϕ ≤ 1.
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Figure 2.1: Two phases of fluid (green and blue) in a porous medium. The
rock particles are colored like sand. The rock is ”blue-wet”, i.e.,
the green phase has no direct contact to the rock.

Not only the mere pore-volume is determining the fluid flow in reservoirs, but also

the interconnection of the individual pores. It would be the most accurate way of

modeling to fully resolve each pore and its connections. However, apart from the

fact that the concrete pore structure of the sub-surface is typically not known in

detail, this would result in giant models. The pore-volume is on a millimeter-scale,

while petroleum reservoirs can extend kilometers in all space directions. Therefore,

modeling the entire reservoir at the pore-scale is not feasible, even with modern

computer architectures.

To nevertheless take the rock structure and the fact that flow is not possible in

all directions equally well, into account, we introduce the permeability tensor
~~K

[1, 7], also referred to as K. It determines the connectivity of the pore structure

in the respective directions. The permeability is location dependent and may vary

drastically over the reservoir domain, as exemplarily shown for the SPE10 problem

in Figure 2.2. This makes the linear problems to be solved highly heterogeneous.

Moreover, the permeability at each point typically is anisotropic. If all entries

per point were equal, the permeability field would be called isotropic. Because the

permeability may still differ between different points, this still results in heteroge-

neous linear problems.

The permeability tensor is a simplification of the infinite number of possible flow

directions in reality. However, since the pore structure of the sub-surface rock is

only known approximately anyway, it is even not uncommon to allow for non-zero

entries in K only along the diagonal. As soon as the discretization then is not

perfectly aligned with the coordinate axes, i.e., the cells’ normals point in different

directions than the permeabilities, this leads to an incorrect discrete formulation

of the fluid flux. Later, we will discuss multi-point flux approximations that can
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Figure 2.2: Highly heterogeneous permeability field of the SPE10 benchmark
case. Shown is the permeability in millidarcy. The model uses
one injector in the center (light blue) and four production wells
(red) in its corners.
Picture from Computer Modeling Group Ltd., CMG.

overcome this problem, and their impact on the diffusion related parts of the linear

systems.

What we have described so far are major properties that we will use through-

out this thesis. The following remarks summarize alternative formulations that,

however, lead to the same matrix structures:

Remark 2.15. Instead of three, there might be only two phases being considered.

This is, only hydrocarbons and non-hydrocarbons are distinguished and the amount

of gas is taken into account by the hydrocarbon’s density. Such a model is called

Dead-Oil model. The linear systems are obtained as in the three-phase case, just

the number of physical unknowns decreases.

Also additional phases, like solids or coke from combustion, can be taken into

account. We do not consider such additional phases in the scope of this thesis. 4

Remark 2.16. An alternative approach of taking the compressibility into account

is to use a formation volume factor Bα instead of the density [21, 42].

Bα := Vα/Vref relates the volume Vα of the respective fluid with mass mα in the

reservoir with its volume Vref at a reference state, e.g., surface conditions. There

is a direct link between the formation volume factor and the density:

ρα =
mα

Vα
=

mα

VrefBα

=
ρref
Bα

.

From a linear solver’s point of view, we have to deal with the same matrix proper-

ties, regardless whether a formation volume factor or the density is used. Hence,

we do not consider modeling with a formation volume factor in this work. 4
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Remark 2.17. Instead of using the saturations to describe the fluid mixture of

the different phases, which gives a relative reference, we could also use a molar

formulation. For each point Nα then describes the number of moles of phase α.

We will get back to such approaches when discussing compositional models. 4

Remark 2.18. Especially high pressures have an influence on the porosity. This

can either be modeled by including geomechanical models in the simulation, or by

a simplified pressure dependent porosity [1, 21]:

ϕ = ϕrefe
Crock(ptot−pref ). (2.7)

Crock ≥ 0 denotes the rock’s compressibility. We will consider the porosity to be

constant for the moment and get back to poroelasticity models later on. 4

2.3 Black-Oil Model

We start our discussion with reservoir models that only consider fluid flow and

assume temperature and mechanical forces to be constant. We moreover assume

oil to be one ’black’ fluid, rather than decomposing it into its chemical compo-

nents. A model that considers only the three phases oil, gas and water, is called

Black-Oil (BO) model. It still is widely used in the oil industry. Moreover, more

sophisticated modeling approaches, for instance, compositional and thermal ones,

can be seen as an extension of the Black-Oil model.

Fluid flow is simulated based on the conservation of mass for the three phases.

Following Aziz and Settari and Aziz, et.al. [6, 7], for phase α the mass balance is

given by

0 =
∂

∂t
ϕSαρα︸ ︷︷ ︸

Accumulation Part

+ ∇ρα~vα︸ ︷︷ ︸
Flux Part

+ ραqα︸︷︷︸
Source Part

. (2.8)

It expresses that the mass of phase α that is accumulated in a point over time, is

the result of in- and outflow of mass. In- and outflow can result from flux within

the reservoir, which is described by the fluid velocity ~vα, but it can also result from

external sources (qα < 0, e.g., injection wells) and sinks (qα > 0, e.g., production

wells).

The fluid velocity can be expressed in terms of the pressure gradient, as described
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by Darcy’s Law [7, 106] for fluids in porous media:

~vα = −λα
~~K(∇pα − g∇d), (2.9)

where d is the depth and g the gravitational constant.

Combining the previous two equations leads to the mass conservation equation for

phase α that is the basis for our further discussion:

0 =
∂

∂t
ϕSαρα︸ ︷︷ ︸

Accumulation Part

−∇ραλα
~~K(∇pα − g∇d)︸ ︷︷ ︸
Flux Part

+ ραqα︸︷︷︸
Source Part

. (2.10)

The objective of a simulator is to compute saturations and pressures for each grid

cell, such that this mass balance equation is fulfilled for each phase at any time.

We should emphasize that this equation is highly nonlinear, since various of the

involved quantities depend on pressure and saturation.

The model would not be complete without appropriate boundary conditions. If

the entire reservoir is considered for the model, then the permeability, via Darcy’s

Law, introduces a rather natural boundary condition. The permeability across the

reservoir’s boundary simply is zero and can be interpreted as a boundary condition

for the pressure.

In addition, influences from sources and sinks, i.e. qα, needs to be considered. We

refer to our discussion in Section 2.4.

The saturations do not require boundary conditions. They only describe the

amount of fluid of a particular phase per point of the reservoir domain. This

by itself is independent of the distribution of the fluid at some neighboring point.

However, we need some initial setting.

Remark 2.19. Modeling the solution of compressed gas in the oil phase may re-

sult in a slightly different mass balance for the gas, as, for instance, described by

Forsyth and Sammon [42]. This approach can reflect that, with increasing pres-

sure, more and more gas becomes liquid and is dissolved in the oil phase. The

amount of oily gas is described by the oil-gas ratio Rog.
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The gas that is dissolved in the oil phase behaves like the original oil phase. There-

fore, the mass balance of gas has to involve dissolved and free gas, weighted by Rog:

0 =
∂

∂t
ϕ[RogSoilρoil + Sgasρgas]

−∇(Rogρoilλoil
~~K(∇poil − g∇d) + ρgasλgas

~~K(∇pgas − g∇d))

+(Rogρoilqoil + ρgasqgas).

(2.11)

The basic structure of the gas phase’s mass balance does not change. The same

holds for the resulting linear problems to be solved, as we will see in Remark 2.24.

For reasons of simplicity, we neglect the effect of dissolved gas in our further

considerations. 4

2.3.1 Partly Explicit Simulation Approaches

Before considering approaches that treat all unknowns implicitly, we review partly

explicit simulation approaches. We do so, although we will not be concerned

with such simulations in this thesis. These approaches have been developed first

and some ideas carry over to fully implicit approaches. Therefore, it is worth

reviewing them, namely the IMPES and volume-balance method. Both treat only

the pressure unknown implicitly and differ regarding the further unknowns. By

only treating the pressure implicitly, clearly, the time step size is limited for both

methods.

In the IMPES (=IMplicit Pressure, Explicit Saturation) [13, 29] approach, a scalar

differential equation for the pressure is considered. This is resulting from the

mass balances, however, it treats the fluid as one single phase. This is, the total

fluid properties are used and the total pressure is the unknown (cf. (2.4)). The

distinction between the different phases is realized in a second step. The IMPES

pressure equation reads as:

−∇ρtotλtot
~~K(∇ptot − g∇d) = ρtotqtot. (2.12)

By using the previous time step’s density, mobility and source term, the pressure

PDE becomes a linear, elliptic differential equation. The source term induces a

Dirichlet boundary condition at the well heads. Due to the elliptic nature of the

PDE, algebraic multigrid methods are well-suited for solving the systems that
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result from the discretization. The saturations are then updated explicitly via the

mass balances (2.10), which result in strong limitations of the possible time step

sizes. A way to improve this is provided by streamline approaches [10]. AMG

already is successfully used in such simulators for solving the pressure problem.

In contrast to the IMPES-method, the volume-balanced, or molar approach aims at

expressing the mass balances (2.10) in terms of moles Nα, rather than saturations

Sα. This is particularly suited for simulation approaches where the individual oil

components are considered, i.e., compositional simulations. We will get back to

this aspect later.

As we do not have saturation unknowns in molar formulations, we cannot use (2.3)

to ensure a volume-balance, but need to model it separately. This will give the

pressure equation in such formulations. For details, we refer to Acs et.al. [4].

2.3.2 Fully Implicit Simulation Approaches

In contrast to the previous partly explicit simulation approaches, fully implicit

methods (FIM) treat all physical unknowns implicitly. This allows for much larger

time steps. Nevertheless, the concrete size of the time steps still has some limita-

tion due to required accuracy and the required convergence speed of the lineariza-

tion process.

Before linearizing, reservoir simulators discretize the nonlinear set of equations.

Classical techniques for discretizing second and first order PDE operators can be

used for this purpose. In the scope of this thesis, we consider finite difference

approaches with all unknowns being defined at the cell centers. Other techniques,

like finite volumes, result in linear systems with essentially the same properties.

Details regarding such discretization techniques in reservoir simulations are, for

instance, discussed by Moog [74].

Linearizing the discretized problem makes exploiting automatic differentiation

schemes practicable. The application of such schemes is, for instance, described

by Zhou [110]. Such schemes are used for the spacial derivatives. The time dis-

cretization of the accumulation term is realized with backwards differences at a

time step size ∆t.

The linearization typically is realized by Newton’s method. This requires each

of the unknowns to be associated with one of the equations. Based on only the

discretized mass balances, we have an under-determined problem. For each of
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the phases α, β and γ, we have one balance equation with two unknowns, the

respective pressure and saturation. However, there are further equations involved.

The capillary pressures (2.5) allow to express two pressures in terms of the third

one. Only this single pressure needs to be solved for. In our discussion we choose

the pressure of the first phase, pα, and associate it with the first phase’s mass

balance equation. In this thesis, we assume α to be the oil phase, which we

call the primary phase. We note that we could equally well choose any of the

other pressures and associate it with any of the mass balance equations. As the

mass balance equations involve the same terms, the matrix properties would, in

principle, be the same.

We can use the saturation constraint (2.3) to express one saturation in terms of

the other two. Since we have selected pα to be the primary pressure, we choose

Sα = 1 − Sβ − Sγ and associate Sβ and Sγ with the respective discretized mass

balance equations.

Let us denote [Mα], [Mβ] and [Mγ] the discretized mass balance equations of the

respective phase. With the discrete pressure and saturations, we have the vector

of unknowns as x =
(

[pα] [Sβ] [Sγ]
)T

. Starting from an initial guess x0, the

k-th iteration of Newton’s method reads as:

xk = xk−1 − δ with J(xk−1)δ =


[Mα](xk−1)

[Mβ](xk−1)

[Mγ](xk−1)

 , (2.13)

where J(xk−1) is the Jacobian matrix evaluated with the current solution vector1.

We also refer to it simply as J . This matrix describes the linear system of equations

that we have to solve. With our above choice of which unknown is associated with

which equation, we have

J :=


∂[Mα]
∂[pα]

∂[Mα]
∂[Sβ ]

∂[Mα]
∂[Sγ ]

∂[Mβ ]

∂[pα]

∂[Mβ ]

∂[Sβ ]

∂[Mβ ]

∂[Sγ ]
∂[Mγ ]

∂[pα]

∂[Mγ ]

∂[Sβ ]

∂[Mγ ]

∂[Sγ ]

 . (2.14)

1The Newton method sometimes is simplified and uses J(x0) in each iteration.
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As we are dealing with two different types of unknowns, we distinguish the respec-

tive parts of the Jacobian:

App :=
(
∂[Mα]
∂[pα]

)
Aps :=

(
∂[Mα]
∂[Sβ ]

∂[Mα]
∂[Sγ ]

)
Asp :=

(
∂[Mβ ]

∂[pα]
∂[Mγ ]

∂[pα]

)
Ass :=

(
∂[Mβ ]

∂[Sβ ]

∂[Mβ ]

∂[Sγ ]
∂[Mγ ]

∂[Sβ ]

∂[Mγ ]

∂[Sγ ]

)
. (2.15)

App refers to the derivative of the primary phase w.r.t. the pressure unknown.

In the further discussion we also refer to it as pressure sub-block of the Jacobian.

Analogously, Ass results from the saturation derivatives of the secondary phases;

the saturation sub-block. The structure and properties of App and Asp, as well

as of Ass and Aps are closely related. The first set of matrices is resulting from

pressure derivatives of the discrete mass balances, while the second one results

from saturation derivatives. These derivatives essentially determine the properties

of the matrices, which we will examine in more detail in the following. We will do

so for an exemplary one dimensional case and see that the results carry over also

to higher dimensional cases.

Remark 2.20. Kwok [61] (Theorem 5.2) was able to show that there is a maximal

time step size ∆tmax > 0 such that the Jacobian (2.14) is non-singular under mild

assumptions. Hence, there is a unique solution for the respective linear problems.

In one dimension this even holds for any time step size. 4

2.3.2.1 Matrix Properties - 1D Case

For reasons of simplicity, we discuss the discretization of the mass balances and

the computation of pressure and saturation derivatives in detail only for a one

dimensional case. We use the discretization via finite differences, as described by

Cardoso and Durlofsky [20]. Each cell i has two neighbors, i + 1 and i − 1. We

will refer to the neighbors as i ± 1. In each following equation, the notation ±
indicates that either the plus + is used at all occasions, or the minus −.

We assume our grid to be a chain of three dimensional cells of width h, as de-

picted in Figure 2.3. That is, the reservoir extents in only one dimension, but two

cells i and i ± 1 still share a face of size Ai,i±1 = Ai±1,i. For our discussion, the

faces shall have the same size A and the same shape for all pairs of cells. Different

shapes and sizes can be treated accordingly.

All physical quantities are given at the cells’ centers. However, to express the
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Figure 2.3: Exemplary single dimensional discretization grid.

flowability between two neighboring cells, transmissibilities need to be approxi-

mated at the cells’ interfaces. We can describe the transmissibility for phase α

between two cells as:

[Tα]n
i± 1

2
:=

Ki,i± 1
2
A

h

[ρα]n
i± 1

2

[µα]n
i± 1

2

[krelα ]n
iupstreamα

. (2.16)

The block brackets [ ]ni shall indicate that we are referring to discretized quantities

for point i and time step n.

For the saturation dependent relative permeability, according to Kwok [61], typi-

cally upstream weighting is used. That is, we decide which cell’s quantity is used

based on the pressure in the previous time step. As the pressures for different

phases may differ, we do so phase-wise:

iupstreamα :=

i± 1 [pα]n−1
i±1 > [pα]n−1

i

i [pα]n−1
i ≥ [pα]n−1

i±1 .
(2.17)

For the pressure dependent density, either upstream weighting or averaging are

common. That is, either [ρα]n
i± 1

2

= [ρα]n
iupstreamα

or [ρα]n
i± 1

2

= 1
2
([ρα]ni + [ρα]ni±1).

This analogously holds for the viscosity. The permeability is always averaged, i.e.

Ki,i± 1
2

:= 1
2
(Ki,i±1 +Ki±1,i), which results in a symmetrization of the permeability

field.

With backwards differences for the time derivative in the accumulation term of

the mass balance (2.10), the discretized equation for phase α in cell i at time n
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reads as (other phases, cells and time steps follow analogously):

[Mα]ni := 1
∆t

([ϕSαρα]ni − [ϕSαρα]n−1
i )

}
=: [MAccu

α ]ni

− 1
hA

([Tα]n
i− 1

2

([pα]ni−1 − [pα]ni − gdi−1 + gdi)

+ [Tα]n
i+ 1

2

([pα]ni+1 − [pα]ni − gdi+1 + gdi))

}
=: [MFlux

α ]ni

+[ραqα]ni

}
=: [MSource

α ]ni .

(2.18)

The first row of the above expression, we denote it as [MAccu
α ]ni , results from the

accumulation part of the mass balance (2.10), while the last one, [MSource
α ]ni , results

from the source part. The two center rows, [MFlux
α ]ni , result from the discretization

of the fluid flux term, involving the transmissibilities at the cell’s interfaces.

For reasons of simplicity, we assume a horizontal grid, i.e. di−1 = di = di+1.

Otherwise, the following argumentation would work analogously.

2.3.2.1.1 Pressure Related Blocks

We begin with the pressure sub-part App, which is composed of the pressure deriva-

tives of the accumulation, the flux and the source related summands of the dis-

crete mass balance (2.18). So, there is App = AAccu,p + AFlux,p + ASource,p with

AAccu,p := ∂
∂[pα]

[MAccu
α ], AFlux,p := ∂

∂[pα]
[MFlux

α ] and ASource,p := ∂
∂[pα]

[MSource
α ].

For the moment we just state that ASource,p is a diagonal matrix. We will see why

this is the case when discussing external sources and sinks in Section 2.4.

To continue with AAccu,p, we observe that, regarding cell i, only derivatives w.r.t.

the pressure in cell i are relevant and AAccu,p is diagonal. The respective pressure

derivative reads as:

∂

∂[pα]ni
[MAccu

α ]ni =
1

∆t
[ϕSα]ni

∂

∂[pα]ni
[ρα]ni . (2.19)

Because the pressure derivative of the density is non-negative, AAccu,p is non-

negative2.

2If we took the rock’s compressibility into account (cf. Remark 2.18), we would have the
same result regarding AAccu,p. The porosity (2.7) per cell only depends on the pressure in that
cell and the pressure derivative is positive.
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The situation is more involved for AFlux,p, which results from the flux part of the

discrete mass balance (2.18). Its derivative w.r.t. the pressure [pα]ni reads as:

∂

∂[pα]ni
[MFlux

α ]ni =
1

hA
([Tα]n

i− 1
2

+ ([pα]ni − [pα]ni−1)
∂

∂[pα]ni
[Tα]n

i− 1
2

+ [Tα]n
i+ 1

2
+ ([pα]ni − [pα]ni+1)

∂

∂[pα]ni
[Tα]n

i+ 1
2
).

(2.20)

Analogously, for the derivatives w.r.t. the pressures [pα]ni±1 from the neighboring

cells there is:

∂

∂[pα]ni±1

[MFlux
α ]ni =

1

hA
(−[Tα]n

i± 1
2
− ([pα]ni±1 − [pα]ni )

∂

∂[pα]ni±1

[Tα]n
i± 1

2
). (2.21)

In both cases, the transmissibility’s derivative remains to be computed. It is

obtained as:

∂

∂[pα]nj
[Tα]n

i± 1
2

=
Ki,i± 1

2
A[krelα ]n

iupstreamα

h

∂

∂[pα]nj

[ρα]n
i± 1

2

[µα]n
i± 1

2

, with j = i− 1, i, i+ 1.

(2.22)

Because the pressure’s influence on the transmissibility only results from density

and viscosity, it makes a difference whether or not our model takes compressibility

into account.

Incompressible case

For an incompressible fluid, the derivative of the transmissibility simply vanishes

and we can state the following theorem:

Theorem 2.21. In an incompressible model, assume the permeability between all

neighboring cells to be positive. If there is at least one cell perforated by a well,

i.e., a fluid sink or source, App is an spd M-matrix. Without a well it was a zero

row sum Z-matrix.

Proof. In the incompressible case, AFlux,p is based only on the transmissibilities in

(2.20) and (2.21), and not on their derivatives. This results in a weakly diagonally

dominant zero row sum Z-matrix, i.e., AFlux,p is singular. We have [Tα]n
i± 1

2

=

[Tα]n
i±1∓ 1

2

, which implies that AFlux,p is symmetric. The permeabilities’ positivity

ensures the irreducibility of AFlux,p.

Because the derivative of the density vanishes, there is AAccu,p = 0. ASource,p is a

non-negative diagonal matrix in the incompressible case. The one well ensures at

least one positive entry. For the moment, we accept this as given and refer to the
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discussion in Section 2.4.1.2.

In summary, App = AFlux,p +AAccu,p +ASource,p is a symmetric, weakly diagonally

dominant, irreducible Z-matrix with at least one strongly diagonally dominant

row. Hence, App is an spd M-matrix ([83]).

Corollary 2.22. The same result analogously holds for the blocks of Asp. With the

capillary pressure (2.5) there, for instance, is pβ = pα − pαβcap. Since the capillary

pressure itself is not pressure dependent, the argumentation regarding App directly

carries over to the blocks of Asp. 4

Remark 2.23. If there was no pore-connection between cells i and i + 1, i.e., a

zero permeability, the entry ai,i+1 in AFlux,p was zero. Hence, AFlux,p would not be

irreducible anymore. However, it would simply consist of two blocks for which all

above results hold. Hence, the matrix still would be a symmetric Z-matrix. Just

the full matrix would not be irreducible, while the two blocks themselves would.

If one of the independent sets of cells was not perforated by a well, the respective

matrix block, and, hence, the entire matrix, was singular. Otherwise, however, all

of the above carries over. 4

Remark 2.24. In the case of taking dissolved gas into account (cf. Remark 2.19)

we also have to consider the pressure dependence of the oil-gas ratio Rog. Because

more gas will be dissolved with an increasing fluid pressure, the pressure derivative

of the oil-gas ratio is positive. So will be the pressure derivative of Rogρoil. Thus,

we have exactly the same matrix properties for those pressure related blocks of the

Jacobian that are associated with the gas’ mass conservation (2.11), as we had

before.

Therefore, in terms of matrix properties, it does not make a difference whether or

not we take dissolved gas into account. 4

Compressible Case

The pressure derivative of the transmissibility (2.22) does no longer vanish and

we have to compute ∂
∂[pα]nj

[ ρα
µα

]n
i± 1

2

. We do not do so explicitly here, but leave it

with a discussion on its sign. This is sufficient to understand the influence on the

properties of AFlux,p.

The pressure derivative of the density is positive. For the viscosity, according to

Elsharkawy and Alikahn [39], we have to distinguish two cases. In the first case

free gas is still present in cell i. An increasing pressure then results in gas being

dissolved in the oil phase, which decreases the viscosity. Therefore, the pressure
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derivative of the transmissibility is positive. In the second case there is no free

gas present anymore that could be dissolved in the oil phase. The viscosity then

increases with higher pressures. However, we mentioned earlier that the viscosity

is temperature-dominated and the pressure only has a small impact. Thus, we can

expect the density’s pressure dependence to be strong enough so that the entire

pressure derivative of the transmissibility still is positive.

Regarding the transmissibility’s influence on AFlux,p it makes a difference how

density and viscosity at the cell interfaces are discretized. We have to distinguish

two cases:

1. Upstream weighting is used.

That is, [ρα]n
i± 1

2

= [ρα]n
iupstreamα

with iupstreamα from (2.17). In this case, AFlux,p

is non-symmetric. For cell i the pressure derivative of the transmissibility at

the interface to i ± 1 either contributes to the diagonal of row i and to the

off-diagonal for row i± 1, or vice versa.

AFlux,p still is a Z-matrix: If [pα]ni±1 > [pα]ni , then ∂
∂[pα]ni

[Tα]n
i± 1

2

= 0. That

is, if the pressure difference [pα]ni − [pα]ni±1 is negative, the transmissibility’s

derivative vanishes. Hence, the diagonals of AFlux,p may only become ’more

positive’ and the off-diagonals ’more negative’ than in the incompressible

case. This moreover implies that AFlux,p still is irreducible. However, some

rows may not be diagonally dominant now, while others are diagonally dom-

inant and, in contrast to the incompressible case, AFlux,p is not necessarily

singular.

2. Averaging is used.

That is, [ρα]n
i± 1

2

= 1
2
([ρα]ni + [ρα]ni±1). The derivative of the transmissibility

is multiplied with the pressure difference of cell i and its neighbor i ± 1.

Compared to the incompressible case, the coupling between i and i ± 1

becomes smaller, while the one from i ± 1 to i becomes bigger, or vice

versa. This implies that off-diagonals could become positive and the Z-

matrix property is not guaranteed anymore. Finally, AFlux,p is singular,

since all entries per row sum up to zero, and it may not be weakly diagonally

dominant in all rows.

We do not further discuss the case of averaging, since upstream weighting is com-

monly used in practice [61]. The fact that AFlux,p still is a Z-matrix then, enables

us to state the following theorem on App:
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Theorem 2.25. In a compressible model, assume no fluid sources (e.g., injection

wells) to be present and the permeability between all neighboring cells to be positive.

Assume upstream weighting to be used for all quantities defining the transmissibil-

ity (2.16). Then ∃∆tmax > 0 : ∀∆t ≤ ∆tmax App is an M-matrix. We discuss the

impact of injection wells in Section 2.4.

Proof. As discussed above, under the given assumptions, AFlux,p is an irreducible

Z-matrix. AAccu,p is a diagonal matrix with positive entries from (2.19). ∆t can

be chosen such that AFlux,p +AAccu,p is weakly diagonally dominant with at least

one diagonally dominant row. With only production wells, ASource,p is diagonal

with non-negative entries, as we will see in Section 2.4.1.2.

The further argumentation is as in Theorem 2.21.

Corollary 2.26. As with Corollary 2.22 in the incompressible case, the above

argumentation carries over to the blocks of Asp also in the compressible case. 4

Remark 2.27. The situation again is the same if we took dissolved gas into ac-

count (cf. Remark 2.24). 4

2.3.2.1.2 Saturation Related Blocks

For the saturation part Ass we only consider the upper-left block As1s1, resulting

from ∂
∂[Sβ ]

[Mβ]. The other three blocks are computed analogously. We decompose

this block into As1s1 = AAccu,s1s1 + AFlux,s1s1 with the individual summands re-

sulting from the saturation derivatives of the respective parts of the discrete mass

balance (2.18): AAccu,s1s1 := ∂
∂[Sβ ]

[MAccu
β ]ni and AFlux,s1s1 := ∂

∂[Sβ ]
[MFlux

β ]ni . In our

later discussion we will see that the source terms from wells are independent of

the saturations. Therefore, no ASource,s1s1 needs to be considered here. We also

do not need to distinguish the compressible and incompressible case. Neither den-

sity, nor viscosity are saturation dependent. This also holds for the gas-oil ratio.

Hence, it does not make a difference whether the simulation takes dissolved gas

into account.

For the flux part, AFlux,s1s1, there are two influences. The saturation derivative of

the transmissibility and the derivative of the capillary pressures from expressing

phase β’s pressure in terms of the primary pressure: [pβ]ni = [pα]ni − [pαβcap]
n
i . For
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the derivative of the flux part w.r.t. the saturation [Sβ]ni we obtain:

∂

∂[Sβ]ni
[MFlux

β ]ni =
1

hA
(([pα]ni − [pα]ni−1 − [pαβcap]

n
i + [pαβcap]

n
i−1)

∂

∂[Sβ]ni
[Tβ]n

i− 1
2

+ ([pα]ni − [pα]ni+1 − [pαβcap]
n
i + [pαβcap]

n
i+1)

∂

∂[Sβ]ni
[Tβ]n

i+ 1
2
)

+
1

hA
([Tβ]n

i− 1
2

+ [Tβ]n
i+ 1

2
)(− ∂

∂[Sβ]ni
[pαβcap]

n
i ).

(2.23)

For the saturations [Sβ]ni±1 of the neighboring cells there is:

∂

∂[Sβ]ni±1

[MFlux
β ]ni =

1

hA
(−([pα]ni±1 − [pα]ni − [pαβcap]

n
i±1 + [pαβcap]

n
i )

∂

∂[Sβ]ni±1

[Tβ]n
i± 1

2
)

+
1

hA
[Tβ]n

i± 1
2

∂

∂[Sβ]ni±1

[pαβcap]
n
i±1.

(2.24)

According to Aziz and Settari [7], we have ∂
∂Sβ

pαβcap ≤ 0. Consequently, the contri-

butions of the respective terms from (2.23) and (2.24) on AFlux,s1s1 are positive on

the diagonal and negative on the off-diagonals.

For the transmissibilities (2.16) we have to compute the saturation derivative of

the relative permeability:

∂

∂[Sβ]nj
[Tβ]n

i± 1
2

=
Ki,i± 1

2
A[ρβ]n

iupstreamα

h[µβ]n
iupstreamβ

∂

∂[Sβ]nj
[krelβ ]n

iupstreamα
with j = i− 1, i, i+ 1.

(2.25)

A phase has a higher relative permeability, the higher its saturation is [7]. Hence,

for the derivative of phase β’s transmissibility w.r.t. Sβ there is ∂
∂[Sβ ]nj

[krelβ ]n
iupstreamβ

≥
0. The phase-wise upstream discretization of the relative permeability ensures

the contribution to AFlux,s1s1 to be positive in the diagonals and negative in off-

diagonals. This is, if ([pβ]ni−1 − [pβ]ni ) = ([pα]ni−1 − [pα]ni − [pαβcap]
n
i−1 + [pαβcap]

n
i ) < 0,

then ∂
∂[Sβ ]ni−1

[Tβ]n
i− 1

2

= 0.

Together with the above influence from capillary pressures this yields AFlux,s1s1

to be a Z matrix. However, it does neither have to be diagonally dominant nor

irreducible.
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Secondly, there is the accumulation part. Per cell, this only depends on quantities

in that cell and AAccu,s is a diagonal matrix. We obtain:

∂

∂[Sβ]ni
[MAccu

β ]ni =
1

∆t
[ϕρβ]ni . (2.26)

Theorem 2.28. ∃∆tmax > 0 : ∀∆t ≤ ∆tmax : As1s1 is an M-matrix.

Proof. ∆tmax can be chosen so that AAccu,s ensures As1s1 to be diagonally dominant

in each row. Then ([83]), it is not only a Z-matrix, but an M-matrix.

Remark 2.29. In all cases we know of, due to the influence of 1
∆t

, As1s1 is strongly

diagonally dominant. 4

Remark 2.30. The properties of the off-diagonal blocks of Ass depend on how

the saturation of phase γ influences the relative permeability of phase β, and vice

versa. If we assume any relative permeability only to depend on those saturations

where the respective derivative is positive, then also the off-diagonal blocks of Ass

are Z-matrices. Following Aziz and Settari ([7], Section 2.7.2.2) it is even rea-

sonable to expect the relative permeability of gas and water to depend only on the

respective saturations. kreloil can be expressed as a combination of both.

The diagonal dominance of the off-diagonal blocks of Ass depends on how the accu-

mulation parts of one phase depend on the saturations of another one. In any case,

regarding cell i, the diagonal block [Ass]ii in the point-wise numbering, (drastically)

dominates the off-diagonal blocks [Ass]ij. 4

Remark 2.31. The blocks of Aps are computed analogously to the diagonal blocks

of Ass. Because we are directly considering the mass balance of phase α here, we

do not have to deal with capillary pressures. However, this in principal does not

have an impact on the matrix properties.

There are just two differences. Because Sα is expressed as 1−Sβ −Sγ, a multipli-

cation with −1 is involved. Hence, the blocks of −Aps are M-matrices, not those of

Aps. Secondly, as both blocks involve terms resulting from the accumulation, both

typically are strongly diagonally dominant. 4

2.3.2.2 Matrix Properties - 2D and 3D Case

In the two and three dimensional case we have to be aware of the fact that the

permeability tensor might not be aligned with the grid directions. This especially
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holds in the case of unstructured grids, where the flux approximation by using a

diagonal permeability tensor cannot be accurate anymore. However, in the interest

of simplicity of the model, this often still is the method of choice, especially if the

miss-alignment was not too strong. Many of today’s reservoir simulators proceed

this way and we will only be concerned with such problems in the scope of this

thesis.

However, more sophisticated flux approximations can be applied in order to gain

a more precise prediction of the fluid flow. We give a brief overview on possible

influences on the matrix properties.

2.3.2.2.1 Two Point Flux Approximation TPFA

In the TPFA approach a possible miss-alignment of the permeability tensor with

the grid is ignored. The flux between two adjacent grid cells i and j is assumed to

be influenced only by these two cells and the Jacobian matrix is obtained just as

in the one dimensional case. The number of matrix entries per row increases with

the number of entries of K. However, the entries themselves are obtained just as

in the one-dimensional case and we have exactly the same matrix properties.

2.3.2.2.2 Multi Point Flux Approximations MPFA

Multi point flux approximations (MPFA) [2, 3] have been developed that are able

Figure 2.4: Simplified visualization of MPFA. The discretization grid is given
in black lines, with cells i and j being dark and light gray, re-
spectively. The dual grid is plotted in red lines. All cells of the
discretization grid within a dual cell might be considered for the
flux between cells i and j across the sub-interface within that dual
cell.

to capture the flux more accurately. Later on, we will not be concerned with

linear problems resulting from such discretizations. However, we briefly review

these approaches and possible impacts on the pressure related matrix blocks.
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The idea is to describe the flux between cells i and j not only by properties of

these two cells, but to also involve surrounding cells. This way, the accuracy of the

discretization becomes independent of whether or not the permeability is aligned

with the discretization grid. An accurate discretization with this regard is called

K-orthogonal.

The decision on which cells are considered to predict the fluid flow between cells i

and j is made in a dual grid. It determines which further cells might be involved

in the description of the fluid flow across an interface. Figure 2.4 visualizes such

a situation. There are various approaches reported in the literature on how to

particularly adjust the discretization, and this is still a field of active research.

We refer to Aavatsmark’s description [2] and the references therein for a detailed

discussion.

In order to gain an idea on possible impacts on the linear systems, we will use an

abstract expression of MPFA. This is described, for instance, by Zhou [110] and

was already introduced by Aavatsmark [2]. We only consider the case of upstream

weighting being used for the discretization of density and mobility. Then the flux

of phase α from cell i to j in time step n is described by

f ijαMPFA :=

nijMPFA∑
m=1

[ραλα]n
i
upstreamij
α

[TMPFA
ij ]n

i,j,kijm
([pα]n

kijm
− gdkijm). (2.27)

With the respective formulations for all cells that are adjacent to cell i, we replace

the flux part of the discrete mass balance, i.e. [MFlux
α ]ni . We limit our discussion

here to the flux from i to j, for exemplary i and j. nijMPFA ≥ 2 denotes the

number of cells that are involved in obtaining the transmissibility for this flux.

The indices of these cells are given by the vector kij. From the construction of the

flux discretization we have:

• In order to ensure mass balance, there is
nijMPFA∑
m=1

[TMPFA
ij ]n

i,j,kijm
= 0

• Since both cells at the respective interface need to be incorporated, without

loss of generality we assume k1 = i and k2 = j

• As we are considering the flux from i to j, with k1 = i and k2 = j, we have

[TMPFA
α ]ni,j,k1 ≥ 0 and [TMPFA

α ]ni,j,k2 ≤ 0

• TMPFA
ij is not pressure dependent. It is based on

~~K.

In the special case of nijMPFA = 2, the first and third of the above statements

imply that the TPFA method is expressed in terms of this MPFA formulation and
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the matrix properties would not change compared to what we have discussed so

far. However, for the case nijMPFA > 2 there generally will be an impact on the

matrices, as the flux part of the discrete mass balance changes. That is, we have

to expect changes in the properties of AFlux,p and AFlux,S.

From a solver’s perspective, due to its diagonal dominance, the modified flux

approximation is less critical regarding Ass. Therefore, we will only discuss the

situation for App, or AFlux,p. We need to consider the derivatives of (2.27) w.r.t.

the discretized pressures in cells i, j and any l, where cell l contributes to the

transmissibility between i and j. We anticipate that the derivatives w.r.t. the

pressures in cells i and j will result in the same matrix properties as in the TPFA

case. There will be a positive influence on the diagonal and a negative one on the

off-diagonal. This at least holds if we adjust the upstream weighting from (2.17)

to the new situation of more than two cells contributing (see, for instance, [2]).

The situation is different for the derivative w.r.t. the pressure in cell l:

∂f ijαMPFA

∂[pα]nl
= [ραλα]n

i
upstreamij
α

[TMPFA
ij ]ni,j,l. (2.28)

This gives an additional non-zero entry in the i-th matrix row, i.e., ail in AFlux,p.

This additional entry, depending on [TMPFA
ij ]ni,j,l, can either have a positive or a

negative sign. In the latter case, this additional entry does not change the Z-

matrix property of AFlux,p and all previous results carry over. However, in general

there will be positive entries. We then loose the Z-matrix, and M-matrix, property

of App.

This does not necessarily need to be a problem for the application of AMG meth-

ods. There are also other classes of matrices that are suited for the application of

AMG. One of them are essentially positive type matrices.

Definition 2.32. (From Brandt [15])

An arbitrary spd m × m matrix A = (aij) is called to be of essentially positive

type, if there exists some c > 0 such that for all e ∈ Rm there is:

∑
i,j

(−aij)(ei − ej)2 ≥ c
∑
i,j

(−a−ij)(ei − ej)2, (2.29)

where a−ij =

aij if aij < 0

0 if aij ≥ 0
. 4
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i j
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Figure 2.5: Excerpt of the weighted adjacency graph of an essentially positive
type matrix. For the positively weighted vertex from i to l, there is
an ’alternative’ path i, j, l with much stronger, negatively weighted
vertices.

Each positive off-diagonal in an essentially positive type matrix is dominated by

negative ones. That is, if ail was positive, in the weighted adjacency graph we

could find a path from i to l via edges with strong negative weights. These negative

entries are much stronger than the positive ail. Figure 2.5 illustrates this situation.

AMG can be shown to work properly for such matrices. See, for instance, Stüben

[95].

For typical MPFA discretization schemes, we can expect the pressure sub-matrix

App (and analogously the blocks in Asp) to be of essentially positive type. The

positive off-diagonal entries only result from corrections of the transmissibility to

ensure K-orthogonality of the discretization. We can still expect the influences of

cells i and j to dominate the flux between these two cells. This implies that we

can expect a negative off-diagonal entry per matrix row that should be (much)

stronger than any positive one: As AFlux,p in the TPFA case was irreducible, in

the MPFA case, for any positive ail, we can find a path from i to l in the adjacency

graph along vertices that correspond to strong negative values.

This coincides with practical experience: Let us exemplarily consider Case07 from

ADGPRS’ testsuite, a compositional Black-Oil model with MPFA discretization

on a grid of 17550 cells. About a third of the off-diagonal entries in App is positive

(in total, as well as per row). However, the negative entries per row dominate the

positive ones by a factor of 20.

In the scope of this thesis we are only concerned with linear problems resulting from

a TPFA discretization. We are therefore not further investigating the situation in

the MPFA context. We just note that AMG could be applied equally well where

some matrix does not fulfill the M-matrix properties, but is of essentially positive

type.
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2.4 External Sources and Sinks

We have not yet considered the modeling of external sources and sinks and simply

accepted some results as given. The external sources have a twofold impact on the

properties of the pressure related matrix parts App and Asp (cf. Figure 2.6):

Figure 2.6: Schematic visualization of a well-bore’s influence in a 2D struc-
tured grid: Interaction between well and reservoir (red arrows),
as well as interactions within the well (blue arrows) have to be
taken into account.

On the one hand, there is the influence from a well on the reservoir. This results

in source terms influencing the respective matrices. When discussing AMG ap-

proaches, we will see that these influences can be quite severe.

On the other hand, the fluid flow within the well-bore needs to be modeled. This

results in additional equations that describe the pressure within the well.

Finally, we note that external sources and sinks do not only need to be wells. Also

fractures and chemical reactions can be modeled in such a way. The impacts on

the linear systems, however, in principle are comparable to the ones from wells.

2.4.1 Source Term Resulting from Wells

In the discretized model, a well perforates several cells of the grid. All these cells

have to reflect the presence of the well by the source term qα that results from a
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well model. As the source term is pressure-dependent, the respective rows of App

and Asp are affected.

2.4.1.1 Well Model

The source term describes the flux of phase α between well and cell, resulting from

the pressure difference. There are various approaches described in the literature to

also model horizontal wells, complex well layouts, in-well facilities, etc. However,

all these models are based on Peaceman’s well model [81] for vertical wells. From

a linear solver’s point of view, all these models result in comparable impacts on

the linear systems to be solved. A detailed description of the well model and some

extensions is given by Chen and Zhang [23].

To gain an idea of the model, we consider a well in a two-dimensional reservoir, as

r0rw

i

h

Figure 2.7: Visualization of Peaceman’s well model in a horizontal grid. Cell
i is the cell in the center, which is perforated by the vertical well
of radius rw (light gray). The well pressure is assumed to effect
any point within the red circle of radius r0. From this setting, the
source term for cell i can be obtained.

in Figure 2.7. We use a structured grid with a uniform cell size h. We assume a well

perforates a cell centrally and the well-bore of radius rw is completely surrounded

by the cell. The well is expected to have an influence on its surrounding in a

radial way, decreasing with the distance from the well-bore. The description of

this influence was found experimentally. There is a distance r0, beyond which

there is no further influence from the well. That is, the fluid flux beyond r0 is

resulting from the phase velocity only, which is described by Darcy’s Law (2.9).

These assumptions are the basis for turning the radial influence from the well into

a description of the source term with a so-called well-index. We refer to Peaceman

or Chen and Zhang [23, 81] for details.
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The discrete source term from Peaceman’s and related (e.g., horizontal wells, etc.)

models reads as:

[qα]ni = WIi[λw]ni ([pα]ni − [pw]ni ). (2.30)

It relates the cell pressure [pα]ni to the well pressure [pw]ni . As the well-bore is not

a porous medium, but free flow is possible in all directions, the phases’ pressures

are not distinguished in the well. The transmissibility between well and cell is

given by the well-index WIi, which has a role comparable to K. It is obtained

based on the well’s geometry and the geological settings, independently of pressure

and saturation. The well-mobility [λw]ni is the analogue of the mobility [λα]ni . It

depends on the pressure in the well.

Both well-index and well-mobility are positive. The sign of the source term is

determined by the pressure difference between the reservoir and the well. If this

is positive, i.e., the well-pressure is lower than in the reservoir, the well produces.

With a negative pressure difference, the well injects.

We note that indirect influence on cells next to a perforated one is reflected by the

Darcy flux. That is, we need to consider a source term only for those cells that

are perforated by a well.

2.4.1.2 Impact on the Matrix Properties

With the source term (2.30) we can compute Asource,p. From our above consid-

erations it is clear that for cell i we only have to consider the derivative w.r.t.

the pressure [pα]ni and Asource,p is a diagonal matrix. Hence, it does not make a

difference whether we consider a one, two or three dimensional model. For the

pressure derivative in cell i, here for phase α, we have

∂

∂[pα]ni
[MSource

α ]ni = [ρα]niWIi[λwell]
n
i + [qα]ni

∂

∂[pα]ni
[ρα]ni . (2.31)

The first summand of the above expression is non-negative, because density, mo-

bility and the well-index are non-negative. Hence, this summand results in some

non-negative values on the diagonal of ASource,p. Regarding the properties of App

and Asp, and the conditions for them to be M-matrices (cf. Theorems 2.21 and

2.25), nothing changes. In an incompressible model, the second summand of (2.31)

simply vanishes.

The situation is different with a compressible model. Then the derivative of the

density does not vanish, and the second summand becomes relevant. Since the
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derivative of density w.r.t. pressure is positive, the sign of the source term decides

on whether the second summand is positive or negative. Consequently, a produc-

tion well, i.e. qα > 0, also in a compressible model results in positive diagonal

entries in ASource,p.

In contrast to this, injection wells contribute with negative values to the diagonal

of ASource,p. Consequently, in App = AAccu,p + AFlux,p + ASource,p there may be

several rows that violate diagonal dominance - even drastically. In the worst case,

there might even be negative diagonal entries. We will see that this can have a

drastic impact on the applicability of AMG methods.

2.4.2 Well Equations

So far, we have investigated the well’s impact on the linear systems that result

from the description of multi-phase flow within the reservoir. We have not yet

considered the flow in the well-bore itself. Describing this flow is necessary to

express the well’s pressure [pw]ni in a particular cell, which is needed to compute the

source term (2.30). There are two models that are commonly used, the standard

and the multi-segment well model. Moreover, it makes a difference how a well

is controlled at the surface3. This could either be bottom-hole-pressure (BHP),

where the pressure at the well’s head is kept at a given value, or it could be rate

controlled, where the flux rate at the well’s head is under control.

The type and the number of the well equations are determined by which model

and which type of control is used. We give a brief review in the following and refer

to Jiang [52] for a detailed discussion.

2.4.2.1 Standard Well Model

In the standard well model, the well is discretized according to the reservoir grid.

That is, the part of the well that perforates a reservoir cell, forms a well cell. Hence,

the model directly describes [pw]ni . It assumes the free flow within the well-bore to

make the fluid decomposition into different phases negligible. Pressure differences

in well cells then only result from gravitational effects. If we additionally neglect

the compressibility within the well-bore, the well pressure in cell i can directly be

3Which flow rates and / or pressures are physically reasonable is determined by production
engineering models. We refer to Econimides et.al. [37] for details.
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obtained from a reference pressure:

[pw]ni =
∑

k=cells from i to ref.

(dk − dk−1) + [pw]nref . (2.32)

The reference pressure [pw]nref depends on the type of control. With a BHP con-

trolled well it can be prescribed and the well equations can be seen as a Dirichlet

boundary condition that can be eliminated from the system rather easily. Other-

wise, the reference pressure has to be computed from the reference flow rate and

the linear system contains an additional well equation.

2.4.2.2 Multi Segment Well Model

Complex wells may be characterized by a varying diameter within the well-bore,

and may also involve in-well facilities, e.g. velvets. Pressure differences in the well-

bore now do not only result from gravitation. In the multi segment well model,

the well therefore is modeled by different segments, a subdivision of the well-bore

that is independent of the reservoir grid. This is described in detail by Jiang [52]

and mentioned by Coats [28]. It leads to a generalized equation for the pressure

difference between two well segments i and j:

[pw]ni − [pw]nj = ∆p
ij. (2.33)

We can use ∆p
ij to model gravitational, capillary and further effects on the pressure.

In addition to the well’s pressure, we also consider further fluid properties in

the well-bore to express ∆p
ij. This results in some additional unknowns that are

relevant for the modeling of wells. For details, we refer to Jiang [52].

2.4.2.3 Effect on the Linear Systems

The well equations have to be taken into account in addition to the mass balances

within the reservoir. That is, the Jacobian is extended by a well part and reads

as:

JwithWells =

(
JRR JRW

JWR JWW

)
. (2.34)

The block JRR is based on the mass balances within the reservoir and corresponds

to (2.14). The part JWW is resulting from the interaction of well cells with each
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other. The further two blocks describe the coupling between reservoir and well.

JRW results from the source terms’ dependence on the well pressures. JWR de-

scribes how the reservoir influences the well. Just like JWW , it depends on the

model and the type of control. This makes general statements regarding matrix

properties rather difficult.

We do not further discuss the concrete impacts on the matrix properties for two

(related) reasons:

• The number of well equations, i.e., the dimension of the block JWW , is

typically very small compared to JRR and the applicability of a solver method

is mainly determined by the properties of the reservoir part.

• According to practical experience, the well equations are typically not critical

for AMG. In the later chapters we will consider linear systems from industrial

simulations. There, from AMG’s perspective, the source terms may have a

severe influence on the matrices. The well equations in all considered cases

did not cause any difficulties.

For our further discussion on matrix properties, we assume all wells are BHP con-

trolled and modeled by the standard well model with neglecting the compressibility

within the well. Then JWW vanishes.

Remark 2.33. If there should be situations where the well equations themselves,

i.e., JWW and the respective couplings, cause problems for the linear solver, it is a

reasonable remedy to switch to some decoupling approach, e.g., alternating Schwarz

approaches. That is, the simulator iterates between reservoir part and well part.

We will discuss solver approaches for the reservoir part in detail in the following

chapters. We will also discuss how to deal with the influences from the source

term.

The second Schwarz block only contains the mere well part JWW . Due to the small

size of JWW , a direct solver is an option that can typically be realized efficiently.

It reacts less sensitively to different matrix properties than multigrid. 4

Remark 2.34. In the context of multigrid, it also is a considerable option to not

involve the well equations in the hierarchy, but use the hierarchy for the reservoir

part, only. 4
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2.4.3 Fracture Modeling

Fractures and faults within a geological structure result from seismic forces on

the rock and are characterized by drastically higher porosities and permeabilities

compared to the surrounding rock. Due to these drastic jumps of the material

properties, it would be difficult to use the same discretization techniques that we

have used for the non-fracture parts.

One option is to use special discretization techniques, as described by Matthäi

et.al. [70]. Regarding the matrix properties, this may result in drastic jumps of

the coefficients, however, the general properties that we have found so far are not

influenced.

Another option is to separate the domain into fractures and non-fractures, as

Figure 2.8: Discretization of two reservoir parts, divided by a fracture (red).
Different methods are common to capture the flux between these
different parts and the fracture.
Picture based on the CSMP software by Matthäi et.al.

sketched in Figure 2.8. For the rock, i.e., the non-fracture part, our standard

discretization techniques can be used, while the fractures are treated differently.

There are essentially two such approaches, the dual porosity dual permeability

formulation and the fracture network model. Descriptions are, for instance, given

by Chen et.al. or Sarma and Juliusson [21, 54, 89], respectively, and the references

therein. Both formulations model the interaction between reservoir and fracture

via source terms. The derivation is comparable to what we have discussed in

the context of wells. Hence, we expect the same sort of influences on the linear

systems.

The fluid flow within the fracture is modeled differently in both models. However,

in neither case we have an influence on the linear systems that we are going to solve

with an AMG approach. For details on the modeling of the flow in the fractures,

we refer to the literature mentioned above.
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2.5 Adaptive Implicit Simulations

While the fully implicit modeling approach from Section 2.3.2 has the advantage

of being unconditionally stable for any time step size, it has the disadvantage

of each time step being computationally more expensive than in the partly ex-

plicit approaches from Section 2.3.1. The larger time steps typically outweigh this

disadvantage. However, with the adaptive implicit modeling (AIM) approach a

compromise between fully implicit and partly explicit is possible. For a detailed

description of the approach, which is frequently used in practice, we refer to the

description by Forsyth and Sammon [42].

The idea is to treat the non-pressure unknowns explicitly wherever this is possible

without negative impacts on the accuracy of the discretization. The decision on

whether to do so for a cell i in time step n is based on this cell’s Courant number

from the previous time step. A description is, for instance, given by Coats [29].

We treat the saturations explicitly in those cells where the Courant number does

not exceed a certain limit. In these cells, the previous time step’s saturations are

used to compute properties like relative permeabilities. This drastically simplifies

the sub-matrices Ass and Aps to be block diagonal in the point-wise numbering.

This can be exploited to accelerate the linear solution process, as we will see in

Section 6.2. For the pressure related blocks App and Asp, this proceeding does not

make a difference.

2.6 Compositional Simulations

The hydrocarbon phases (oil and gas) consist of various chemical components such

as methane, octane, propane, etc. The concrete decomposition of these compo-

nents has an impact on the fluid flow as well. This is described by compositional

formulations.

Each of the hydrocarbon components c can be present in the oily and the gaseous

phase at the same time. The concentration Xc,α describes the amount of phase α

that consists of component c. The decomposition of c in oil and gas depends on

pressure and temperature. This dependency is expressed by a so-called flash rela-

tion. Whether or not this flash relation is involved in the linear solution process,

depends on the model formulation.
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2.6.1 Natural Variable Formulation

Fluid properties are expressed in terms of naturally measurable quantities (e.g.,

phase densities, etc.). In particular, the decomposition of the fluid is described by

the saturations and concentrations, which both are unknowns that we compute

with Newton’s method. That is, we can model the volume-balance, i.e., the entire

pore volume is filled by the fluid, with simple constraints:

ncomp∑
k=1

Xk,α = 1, (2.35)

which needs to hold in addition to the analog constraint for the saturation (2.3).

Because we use the same natural variables and properties as in the previous Black-

Oil section, we can essentially use the same formulation for the mass balance

equations. However, as we are considering the mass of the entire component c,

we need to take the gaseous and the oily mass into account at the same time.

Hence, the respective mass balances (2.10) from the Black-Oil model need to be

combined, weighted by the concentrations. The mass balance for component c

reads as:

0 =
∑

α=oil,gas

Xc,α{
∂

∂t
ϕραSα}︸ ︷︷ ︸

Accumulation Part

−∇
∑

α=oil,gas

Xc,α{ραKλα(∇pα − g∇d)}︸ ︷︷ ︸
Flux Part

+
∑

α=oil,gas

Xc,α{ραqα}︸ ︷︷ ︸
Source Part

.

(2.36)

For the water phase there is no difference compared to the Black-Oil model and

we use the mass balance (2.10). A further description is, for instance, given by

Cao [18].

We have to consider one mass balance equation but two concentration unknowns

per component and, also with with the constraints on the saturations and con-

centrations, the system is under-determined so-far. We have already mentioned

that the concrete amount of component c being gaseous and oily, respectively, is

obtained from an equilibrium relation, the flash relation. Various approaches of

modeling these flashes are reported in the literature and new methods still are be-

ing developed. We refer to Naji [75] and the references therein for further details.

We exemplarily continue with the approach using Wilson’s relation:

Xc,gas

Xc,oil

= Fc :=
pref
ptot

ecflash(1−
Tref
T

). (2.37)
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We assume the temperature to be constant for the moment and get back to this

aspect later on. cflash > 0 is a constant.

With the mass balances, flashes and constraints, we can associate each unknown

with an equation and compute a Jacobian. In order to describe the properties

of this Jacobian, we distinguish between primary and secondary equations. Pri-

mary equations describe interactions of the fluid in one cell with neighboring cells.

In the current context of isothermal models, only the mass balances are primary

equations. We call the unknowns associated with them primary unknowns. In

contrast to this, secondary equations describe local relations, like flashes or con-

straints. The unknowns associated with these equations are secondary unknowns.

As the flash relations depend on, for instance, pressure and temperature, we can-

not simply eliminate the respective constraints from the system, as we did with

the saturation-summation constraint (2.3) in the Black-Oil case4.

The Jacobian schematically reads as:

JNV F =

(
Apr,pr Apr,sc

Asc,pr Asc,sc

)
. (2.38)

When discussing AMG approaches for such problems, we will see that we, in order

to reduce the computational time, can decouple the secondary equations from the

systems without negative impacts on the applicability of AMG. This will require

some knowledge on the properties of the four blocks that we are going to discuss

in the following. We assume the pressure pα, the saturations Sβ, Sγ and the gas

concentrations Xc,gas to be primary variables. We still choose α to be the oil

phase and it does not matter whether gas is β or γ. The oil concentrations are

the secondary unknowns.

Corollary 2.35. The sub-block Apr,pr has the same properties as the Jacobian

(2.14) in Black-Oil simulations.

Proof. The derivatives of the mass balances w.r.t. concentrations are analog to

those w.r.t. saturations. Hence, if we define Ass to be the block that is related

to saturations and primary concentrations, the dimension of this block increases

compared to the Black-Oil case. Its properties, however, remain the same.

4We could incorporate the flash calculations in the mass balance equations, just as we did
with the capillary pressure relations. However, depending on the concrete formulation for the
flashes, this would make the mass balance equations being quite complex. Therefore, this is
typically not done in practice, but the secondary equations are used.
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For the pressure derivatives it does not make a difference whether the mass balance

holds per phase or per component.

Corollary 2.36. As the secondary unknowns are concentrations, the sub-block

Apr,sc has the same properties as Ass, i.e., it consists of sub-blocks that are Z-

matrices and is (block) diagonally dominant. 4

Lemma 2.37. The sub-blocks of Asc,pr are diagonal matrices. If the flash calcu-

lation is performed by Wilson’s relation (2.37), then all entries are non-positive.

Proof. The diagonality of the sub-matrices follows from the fact that the secondary

equations describe local relations. Constraints can directly be formulated such

that they result in the correct sign. The pressure derivative of the discretized

flash calculation for cell i in time step n is:

∂

∂[pα]ni
([Fc]

n
i [Xc,oil]

n
i − [Xc,gas]

n
i ) = [Xc,oil]

n
i

∂

∂[pα]ni

pref
[pα]ni

e
cflash(1−

Tref
[T ]n
i

)

= − [Xc,oil]
n
i

[pα]ni
[Fc]

n
i ≤ 0.

The saturation derivatives are zero and for the gas concentrations, which are pri-

mary variables, we have

∂

∂[Xc,gas]ni
([Fc]

n
i [Xc,oil]

n
i − [Xc,gas]

n
i ) = −1.

Lemma 2.38. The sub-blocks of Asc,sc are diagonal matrices. If the flash calcu-

lation is performed by Wilson’s relation (2.37), then these diagonal matrices are

non-negative. The diagonal of Asc,sc is positive.

Proof. The diagonality follows as above. Regarding the derivatives of the dis-

cretized flash calculations w.r.t. the secondary oil concentrations we have:

∂

∂[Xc,oil]ni
([Fc]

n
i [Xc,oil]

n
i − [Xc,gas]

n
i ) = [Fc]

n
i > 0.

Remark 2.39. There are various other flash calculation approaches that aim at

capturing the phase transitions more accurately. All of them are strictly local
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relations. Because they aim at approximating the same effect, we can expect com-

parable influences on the properties of the linear systems of equations. We do not

discuss the details of other flash calculations approaches in detail here.

Moreover, for more sophisticated flash calculations, the respective derivatives be-

come increasingly complicated. We will see that the linear systems do not involve

the flash relations with the volume balance formulation that we describe in the

following section. 4

Remark 2.40. The formulation (2.36) for the mass balances assumes the velocity

of each component in a phase to be equal, i.e. ~vc,α = ~vα. According to Wan [103],

this is common in reservoir simulations and we will proceed this way. However,

by taking so-called macroscopic diffusive-dispersive effects into account, the model

could be made more precise with this regard. The flux part of the above mass

balance then turns into

−∇
∑

α=oil,gas

Xc,α{ρα(Kλα(∇pα − g∇d)−Dc,α∇Xc,α)}. (2.39)

Here Dc,α is obtained from Fick’s Law. We refer to Wan [103] for details. For

our discussion it is sufficient to note that this modification does not have any

impacts on the pressure sub-blocks, as Dc,α is independent of the pressure. The

impacts on the saturation and concentration related matrix parts can be expected

to be small. Due to both entities being involved in the accumulation term, which

involves the time step, we can still expect the respective matrices to be strongly

diagonally dominant. 4

2.6.2 Volume Balance Formulation

While the previously described natural variable formulation has the advantage of

using the natural fluid properties, it has the disadvantage of requiring flash calcu-

lations being involved in the linear systems. This is the other way round for the

volume balance formulation. It computes flashes independently of the lineariza-

tion, which allows for more freedom in modeling them. From our perspective, this

has the advantage of the linear solver not being concerned with flashes. However,

the formulation expresses the mass balance for component c in terms of the re-

spective number of moles, Nc, instead of the relative quantities saturation and

concentration. For a hydrocarbon component c, the molar mass balance reads as



Volume Balance Formulation 48

[31]:

0 = MBc :=
∂

∂t
Mmol

c Nc−Xc,oil∇Tmolc,oil(∇poil−g∇d)−Xc,gas∇Tmolc,gas(∇pgas−g∇D)+qmolc .

(2.40)

Here Mmol
c is the molar mass of component c. Hence, NcM

mol
c gives the mass of

all particles of component c. Tmolc,oil and Tmolc,gas are the molar transmissibilities of

the oily and gaseous c, respectively. The computation is analog to what we had

before (cf. (2.16)). The concentrations Xc,oil and Xc,gas are known from flash

calculations. Finally, qmolc is the molar source term.

For the water phase we have an analog mass balance, where we treat the entire

water as one component.

Because no saturations are considered anymore, the saturation constraint (2.3)

cannot be used as volume balance5. In the fully implicit formulation Wong et.al.

[109] showed that this can alternatively be modeled by the following relation, as

also described by Collins et.al. [31]:

0 = V B :=

ncomp∑
k=1

NkM
mol
k

ρk
− ϕ. (2.41)

We associate the pressure unknown, p, with the volume balance V B and each num-

ber of moles, Nc, is associated with the respective mass balance MBc. Schemati-

cally, we have the following Jacobian, computed from the discretized equations:

JV BF =

(
AV B,p AV B,N

AMB,p AMB,N

)
, (2.42)

with the different sub-blocks as:

AV B,p =
(
∂[V B]
∂[p]

)
AV B,N =

(
∂[V B]
∂[N1]

. . . ∂[V B]
∂[Ncomp]

)
AMB,p =


∂[MB1]
∂[p]
...

∂[MBncomp ]

∂[p]

 AMB,N =


∂[MB1]
∂[N1]

. . . ∂[MB1]
∂[Nncomp ]

...
. . .

...
∂[MBncomp ]

∂[N1]
. . .

∂[MBncomp ]

∂[Nncomp ]

 .
(2.43)

Just as with the Jacobian for the natural variable formulation, we can lead back

the properties of the matrix blocks that result from derivatives of the mass balance

5This is the same situation as with the respective partly explicit method from Section 2.3.1.
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equations to the Black-Oil case. We will exploit these properties when discussing

a linear solver approach in Section 5.1.2.

Corollary 2.41. Regarding the pressure dependence there is no difference between

the above mass balance and the one from Black-Oil simulations. Hence, the sub-

block AMB,p has the same properties as Asp from Black-Oil simulations (cf. Corol-

lary 2.22 and Theorem 2.25). That is, the sub-matrices are M-matrices under

certain conditions for the time steps and external sources. 4

Corollary 2.42. Analogously, the sub-block AMB,N has the same properties as

Ass from Black-Oil simulations (cf. Theorem 2.28). That is, the sub-blocks are

Z-matrices and it is (block) diagonally dominant. 4

Lemma 2.43. The sub-block AV B,p is a diagonal matrix and AV B,p ≤ 0.

Proof. The diagonality follows from the fact that (2.41) per cell i only involves

quantities of cell i. For cell i in time step n we have:

∂

∂[p]ni
[V B]ni =

ncomp∑
k=1

[NkM
mol
k ]ni

∂

∂[p]ni

1

[ρk]ni
− ∂

∂[p]ni
[ϕ]ni .

For the porosity there is ∂
∂[p]ni

[ϕ]ni ≥ 0 and for the molar densities we also have
∂

∂[p]ni
[ρk]

n
i ≥ 0.

Lemma 2.44. AV B,N has sub-blocks that are diagonal matrices with positive en-

tries.

Proof. The diagonality follows as above. Regarding the matrix entry that corre-

sponds to one of the components c in cell i for time step n, we have:

∂

∂[Nc]ni
[V B]ni =

Mmol
k

[ρc]ni
> 0.

2.7 Disappearance of Phases and Components

Up to now we have assumed all phases and components to be present in each cell

at any time. We are now going to look at possible impacts from the disappearance

of certain components or phases on the linear systems of equations.
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2.7.1 Disappearance of Phases

If a simulator should allow for a phase, e.g., oil or water, to disappear6, then, in

the respective cells, there is just one unknown (the respective saturation) and one

equation (the respective mass balance) removed from the system.

This is different for the gas phase. Depending on the pressure, it can disappear

and reappear. Disappearing means it is compressed such that it dissolves with

the oil phase. As long as there is gas present, we call the oil to be saturated. We

have seen that taking some gas being dissolved into account does not influence

the properties of the linear systems to be solved (cf. Remark 2.24). However, at a

certain pressure all gas will be dissolved and the gas phase disappears. The oil is

called under-saturated then. This critical pressure is called bubble point pressure

pbp, as gas bubbles fall out the oil phase at lower pressures. The gas’ mass did not

disappear, only the phase did. Hence, we still have to take the gas’ mass balance

(2.11) into account, with the gas-oil ratio Rog (cf. Remark 2.19) describing the

dissolved gas. As there is no free gas under the current pressure, this mass balance

turns into:

0 =
∂

∂t
ϕRogSoilρoil −∇(Rogρoilλoil

~~K(∇poil − g∇d)) +Rogρoilqoil. (2.44)

The gas saturation Sgas is not unknown anymore, but zero. Following the discus-

sion by Forsyth and Sammon [42], the bubble point pressure is associated with the

gas mass balance, instead of Sgas. That is, the matrix block that resulted from

the derivative of (2.11) w.r.t. Sgas in the saturated case, is replaced by a block

that results from the derivative of (2.44) w.r.t. pbp in the under-saturated case.

In the under-saturated case, the gas-oil ratio depends on pbp (while it depends on

pgas in the saturated case). As Rog is involved in the flux part, we have negative

contributions on the off-diagonals of the respective sub-matrix, and positive ones

on the diagonal. Because Rog also is involved in the accumulation part, depending

on the time step, we can expect the respective sub-matrix to be strongly diago-

nally dominant.

Therefore, although we replace a block of Ass by a different one, the basic prop-

erties of Ass do not change compared to the saturated case.

6We note that in reality there are always hydrocarbons and water present in any point at
any time. The oil saturation will never fall below a positive oil residual saturation [36, 94].
Analogously, for the water an irreducible water saturation exists, where Swater will never fall
below.
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2.7.2 Disappearance of Components

In the compositional case not necessarily all components need to be present at any

point of the reservoir, even if all phases are.

In the NVF-case, the respective concentrations in the oil and gas phase are zero

and at the same time the respective mass balance and flash relation are obsolete.

Hence, the Jacobian (2.38) involves less unknowns, but its properties remain.

In the VBF-case, there is one number of moles and one mass balance being obso-

lete. Hence, the Jacobian involves less unknowns, but with the same properties as

with all components being present.

2.8 Thermal Simulations

So far we have neglected thermal influences on the production process by assuming

a constant temperature. However, to extract as much oil and gas from a reservoir

as possible, enhanced oil recovery (EOR) techniques involve the use of heat to make

oil more flowable. This can be realized by the injection of hot steam instead of

water, as illustrated in Figure 2.9, a method referred to as steamflooding. But also

in-situ heating and even combustion processes are possible. In any case, thermal

energy is exploited and we cannot assume the temperature7 T to be constant. The

temperature is directly related to the thermal energy, which needs to be conserved.

Just as with the mass balances, the energy that is accumulated at a point over

time can only result from energy flow to and from other points in the reservoir

and from external sources. Both types of flow hereby have to consider energy flow

itself and the fact that fluid flow also transports energy. The ability of a fluid to

transport energy by its flow is described as the enthalpy8 Htot. The accumulated

energy at a point is related to the internal energy Utot of the fluid, or the rock

(Urock). Following Livescu et.al. [65], these entities are given as

Htot = Utot +
ptot
ρtot

, Utot = Ctot(T − Tref ) and Urock = Crock(T − Tref ), (2.45)

where Ctot and Crock are the constant heat capacities of fluid and rock. The ability

of heat to flow through the rock in different directions is described by a thermal

7We only consider one temperature T for the entire system, which we should not mix up with
the phase-wise transmissibility Tα.

8In our discussion, as in most descriptions, we only consider one temperature that holds for
all phases. Hence, we use the total fluid properties in order to describe the energy balance.
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Steam Injector Oil Producer

Shale
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Figure 2.9: Steam instead of water is injected into the reservoir in order to
reduce the oil’s viscosity.
Picture from the US Department of Energy, via the Wikipedia

(Steam eor1.jpg)

permeability
~~KT , or KT for brevity. It is the analogue of the fluid permeability

K. However, as heat may flow through rock, not only through pores, it typically

drastically differs from K regarding the concrete values. We refer to the literature

[73, 78, 86] for further details on the derivation of the energy balance. The energy

conservation equation reads as:

0 =
∂

∂t
(ϕρtotUtot + (1− ϕ)ρrockUrock)︸ ︷︷ ︸

Accumulation

+∇ρtotHtot~vtot︸ ︷︷ ︸
Heat transport
with fluid flux

−∇KT∇T︸ ︷︷ ︸
Heat flux

+ qT + ρtotHtotqtot︸ ︷︷ ︸
External sources,
direct and via fluid

.

(2.46)

We can use Darcy’s law (2.9) to compute the fluid velocity ~vtot. If we associate the

energy balance with the temperature unknown, the further proceeding is just as in

the isothermal models. We discretize the equation and then linearize the full set of

equations by Newton’s method. That is, compared to the Jacobians that we have

from Black-Oil or compositional simulations, there is just one additional unknown

and the respective block of equations. The sub-matrices that we already had in

isothermal simulations remain unchanged. We will discuss the compositional case

in Section 2.8.4 and consider Black-Oil problems for the moment. The extended
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Jacobian reads as:

Jthermal =


App Aps ApT

Asp Ass AsT

ATp ATs ATT

 . (2.47)

Let us consider the one dimensional discretization grid from Section 2.3.2.1. Then,

regarding cell i and time step n, the discrete energy balance, we denote it as [E]ni ,

reads as:

[E]ni = 1
∆t

([ϕρtotUtot + (1− ϕ)ρrockUrock]
n
i

− [ϕρtotUtot + (1− ϕ)ρrockUrock]
n−1
i )

}
=: [EAccu]ni

− 1
hA

([TtotHtot]
n
i− 1

2

([ptot]
n
i−1 − [ptot]

n
i )

+ [TtotHtot]
n
i+ 1

2

([ptot]
n
i+1 − [ptot]

n
i ))

}
=: [EFluidF lux]ni

− 1
hA

([KT ]i− 1
2
([T ]ni−1 − [T ]ni ) + [KT ]i+ 1

2
([T ]ni+1 − [T ]ni ))

}
=: [EHeatF lux]ni

+[qT ]ni + [ρtotHtotqtot]
n
i

}
=: [ESource]ni .

(2.48)

We denote the different parts of the equation as [EAccu], etc. (or [EAccu]ni , if we

refer to a particular cell and time step). In higher dimensions, the discretization

would work analogously to what we have discussed in Section 2.3.2.2. That is, if

MPFA schemes were used, the discretization of the fluid flux term might change.

However, our later result that ATp has the same properties as App, still holds.

By computing the temperature, pressure and saturation derivatives of the discrete

energy balance, as well as the temperature derivatives of the discrete mass bal-

ances, we obtain the new sub-blocks of the thermal Jacobian. We are going to

discuss the matrix properties in the following.

2.8.1 Matrix Properties of the Temperature Part

Regarding the temperature related matrix ATT := ∂
∂[T ]

[E], we have to consider the

derivatives of the different summands of (2.48) w.r.t. the temperature in a cell i

and the neighboring cells. We define ATT := AEaccu,T +AEfluidflux,T +AEheatflux,T +

AEsource,T with the four different matrices describing the influence of the respective

summands of the discrete energy balance.

As with the fluid flux, AEaccu,T := ∂
∂[T ]

[EAccu] is a diagonal matrix. With the
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internal energy (2.45), we have:

∂

∂[T ]ni
[EAccu]ni =

ϕ

∆t
([Utot]

n
i

∂

∂[T ]ni
[ρtot]

n
i + [ρtot]

n
i [Ctot]

n
i )

+
1− ϕ

∆t
([Urock]

n
i

∂

∂[T ]ni
[ρrock]

n
i + [ρrock]

n
i [Crock]

n
i ).

(2.49)

The temperature derivative of the density is negative. However, because the tem-

perature dependence of the density typically is small compared to the one of the

internal energy, and Ctot, Crock > 0, we can expect AEaccu,T ≥ 0 in practical simu-

lations.

Let us continue with AEfluidflux,T := ∂
∂[T ]

[EFluidF lux]. Regarding cell i, for the

derivative w.r.t. the temperature in this cell, we have:

∂

∂[T ]ni
[EFluidF lux]ni =

1

hA
(([ptot]

n
i − [ptot]

n
i−1)([Htot]

n
i− 1

2

∂

∂[T ]ni
[Ttot]

n
i− 1

2
+ [Ttot]

n
i− 1

2

∂

∂[T ]ni
[Htot]

n
i− 1

2
)

+ ([ptot]
n
i − [ptot]

n
i+1)([Htot]

n
i+ 1

2

∂

∂[T ]ni
[Ttot]

n
i+ 1

2
+ [Ttot]

n
i+ 1

2

∂

∂[T ]ni
[Htot]

n
i+ 1

2
)).

(2.50)

The derivatives w.r.t. the temperatures in the neighboring cells i±1 are computed

analogously.

We remember the transmissibilities (2.16) have been discretized with upstream

weighting (2.17). Analogously to the argumentation regarding the saturation

derivatives (2.23) and (2.24) of the flux part of the discrete mass balances, we

conclude that the temperature derivative will vanish where the pressure differ-

ences ([ptot]
n
i − [ptot]

n
i±1) in (2.50) are negative. However, we still cannot rigorously

determine the signs of the off-diagonals and diagonals of AEfluidflux,T :

• For the enthalpy (2.45) we have to consider the internal energy’s tempera-

ture derivative, which is positive. As the density’s temperature derivative is

negative, the temperature derivative of the enthalpy is positive.

• For the transmissibility we have to consider the temperature derivative of

the term ρ
µ
. Because the temperature derivative of the viscosity is negative,

we have a positive derivative of 1
µ
. However, the temperature derivative of

the density, although typically small, is negative.
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Hence, enthalpy and viscosity give a positive contribution to the matrix’ diagonal

and negative contributions to the off-diagonals, whereas this is the other way round

for the density in the transmissibility. However, the latter influence typically does

not dominate.

For AEenergyflux,T := ∂
∂[T ]

[EHeatF lux] we have:

∂

∂[T ]ni
[EHeatF lux]ni =

[KT ]i− 1
2

+ [KT ]i+ 1
2

hA
and

∂

∂[T ]ni±1

[EHeatF lux]ni =
−[KT ]i± 1

2

hA
.

(2.51)

We assume the thermal permeability is non-zero between any two adjacent cells

and remember that we had Dirichlet boundary conditions for the temperature.

Then AEenergyflux,T is an spd M-matrix.

Finally, we note that the source terms are local effects andAEsource,T := ∂
∂[T ]

[ESource]

is diagonal. Just as with the fluid source term (cf. Section 2.4.1.2), we find the

temperature derivative of the thermal source term qT to be positive. However, the

influence from the energy transport by fluid flux is unpredictable. For an injection

well qtot is negative and we have the negative density derivative w.r.t. temperature.

Both are combined with the positive derivative of the enthalpy.

In a typical thermal simulation, the matrix part that results from energy flux dom-

inates the one from the fluid’s energy transport. We conclude that AEfluidflux,T +

AEenergyfluxT has a positive diagonal and non-positive off-diagonals.

In addition, the internal energy’s dependence on the temperature typically is much

stronger than the one of the density. Therefore, AEaccu,T +AEsource,T is a positive

diagonal matrix, where the time step size has a direct impact on the size of the

diagonal entries. From both we conclude:

Corollary 2.45. In a typical thermal simulation, ATT is an M-matrix. 4

Remark 2.46. The diagonal dominance of ATT may be higher or lower, depending

on whether the convective and, especially, accumulative influences dominate the

diffusive ones. This may also vary between different cells. 4

2.8.2 Matrix Properties of the Temperature-Flux Coupling

Regarding ATs := ∂
∂[S]

[E] we note that neither the thermal quantities internal

energy and enthalpy (2.45) themselves, nor the energy flux and source term are

saturation dependent. However, we still have to consider the saturation in the
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total internal energy Utot, which is the sum over the phases, weighted by the

saturations. This gives positive contributions to the diagonal. Besides this, we

have the saturation derivatives of the energy transport from fluid flux, which are

of the same structure as the ones from fluid flux itself. Therefore, we can state:

Corollary 2.47. Each block in ATs has the same properties as a diagonal block

in Ass. It is a diagonally dominant M-matrix. 4

The situation is more involved for the pressure related part ATp := ∂
∂[pα]

[E]. Let

us discuss the pressure derivatives of the different parts of the discrete energy

balance (2.48) in order. Regarding the accumulation part, only9 the fluid density

is pressure dependent, but it effects the diagonal only. We have

∂

∂[pα]ni
[EAccu]ni =

1

∆t
[ϕUtot]

n
i

∂

∂[pα]ni
ρtot > 0. (2.52)

For the pressure derivative of the energy transport from fluid flux, exemplarily for

the local influence (i.e., the contribution to the diagonal), we have

∂

∂[pα]ni
{− 1

hA
([TtotHtot]

n
i− 1

2
([ptot]

n
i−1 − [ptot]

n
i ) + [TtotHtot]

n
i+ 1

2
([ptot]

n
i+1 − [ptot]

n
i ))}.

(2.53)

In Section 2.3.2.1 we have already discussed that the pressure derivative of the

transmissibility is positive. Also the pressure derivative of the enthalpy (2.45)

is positive and so is the one of [TtotHtot]
n
i± 1

2

. Our argumentation regarding the

properties of Aflux,p from Section 2.3.2.1 can be applied analogously here. We

conclude that the influence of the energy transport from fluid flux results in a, not

necessarily diagonally dominant, Z-matrix.

The energy flux term is not pressure dependent. This also holds for the energy

source qT .

We finally have to consider the pressure dependence of the term resulting from

energy transport with fluid sources:

∂

∂[pα]ni
[ρtotHtotqtot]

n
i . (2.54)

As the pressure derivative of [ρtotHtot]
n
i is positive, we have the same properties as

in Asource,p (cf. Section 2.4).

Altogether this yields:

9We will get back to mechanical effects on the porosity later. With the simplified pressure
dependence of the porosity from Remark 2.18, the result regarding ATp is the same.
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Corollary 2.48. ATp has the same properties as App. That is, under certain

conditions regarding the fluid sources and the time step size, it is an M-matrix (cf.

Theorem 2.25). 4.

2.8.3 Matrix Properties of the Flux-Temperature Coupling

Regarding ApT := ∂
∂[T ]

[Mα] and AsT := ∂
∂[T ]

[Mβ,γ] we note that both have compa-

rable structures, because both result from the derivative of discrete mass balances

(2.18) w.r.t. temperature. These equations are temperature dependent in the

densities and mobilities. Both have negative derivatives w.r.t. the temperature,

as we have discussed in Section 2.8.1.

Lemma 2.49. Assuming no injection wells to be present, then ∃∆tmax : ∀∆t ≤
∆tmax : −ApT is an M-matrix. With injection wells we have the same implications

as with App.

Proof. The negative derivatives of density and mobility w.r.t. the temperature

give a negative derivative of the transmissibility (2.16). Analogously to the dis-

cussion on the temperature derivative of the energy transport by fluid flux (2.50),

we can expect the upstream weighting for the transmissibility to ensure that the

resulting off-diagonal entries are non-negative, while the diagonal ones are nega-

tive.

The influence of the accumulation part results from 1
∆t

[ϕSα]ni
∂

∂[T ]ni
[ρα]ni , which is

negative. As long as there are no injection wells, the same holds for the tempera-

ture derivative of the source part [qα]ni
∂

∂[T ]ni
[ρα]ni .

The above considerations allow to apply the argumentation from Theorem 2.25,

which proves the lemma.

Because the accumulation part influences the diagonal only, depending on the

concrete time step size, we can even expect ApT and AsT to be quite diagonally

dominant.
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2.8.4 Matrix Properties in Compositional and Thermal

Simulations

So far, we have seen that the Jacobian in a thermal Black-Oil model is an extension

of the isothermal version. We will now see that the same holds for compositional

simulations as well.

2.8.4.1 Natural Variable Formulation

In a NVF approach from Section 2.6.1, we consider the temperature to be a pri-

mary unknown. The above considerations then carry over to the matrix sub-block

Apr,pr (cf. Equation (2.38)). We need to discuss the blocks Apr,sc and Asc,pr:

• Apr,sc results from derivatives of the discrete energy balance (2.48) w.r.t. the

secondary unknowns. Only concentrations and saturations are secondary

unknowns. Hence, we can expect the same matrix properties as for ATs, i.e.

Z-matrices. These are the same properties, as for the blocks of Apr,sc in the

isothermal case (cf. Corollary 2.36).

• Asc,pr results from the temperature derivative of the discretized secondary

equations. As the secondary equations only describe local relations, Asc,pr

still consists of diagonal sub-blocks. As before, we limit our discussion to

Wilson’s relation (2.37) and have

∂

∂[T ]ni
([Fc]

n
i [Xc,oil]

n
i − [Xc,gas]

n
i ) = [Xc,oil]

n
i

∂

∂[T ]ni

pref
[p]ni

e
cflash(1−

Tref
[T ]n
i

) ≤ 0.

In Lemma 2.37 we have seen that the blocks of Asc,pr in the isothermal case

to be diagonal and non-positive. Hence, we have the same properties in the

isothermal and thermal case.

Due to the temperature unknown being a primary unknown and the energy balance

equation being a primary equation, there are no impacts on Asc,sc.

2.8.4.2 Volume Balance Formulation

In the VBF approach we have to express the energy balance (2.46) with the molar

density of the total fluid, rather than the total density ρtot. This, however, does
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not have impacts on the matrix properties. The Jacobian, compared to (2.42), is

extended by the temperature unknown. If we denote the discrete energy balance

as EB, we schematically have

JV BFthermal =


AV B,p AV B,N AV B,T

AMB,p AMB,N AMB,T

AEB,p AEB,N AEB,T

 . (2.55)

• AEB,T is computed just as ATT in the Black-Oil case.

• The same holds for AEB,p and AEB,N , which are computed analogously to

ATp and ATs, respectively.

• The dependency of the molar density on the temperature is comparable to

the one of the phase density. Hence, AMB,T is computed just as AsT .

• To obtain AV B,T , we compute

∂

∂T

ncomp∑
k=1

NkM
mol
k

ρk
− ϕ =

ncomp∑
k=1

NkM
mol
k

∂

∂T

1

ρk
≥ 0.

Hence, AEB,T is diagonal with non-negative entries, just as the blocks from

AV B,N (cf. Lemma 2.44).

2.9 Geomechanics

The sophisticated production processes in today’s reservoirs require to also con-

sider geomechanical impacts. Injection of a fluid at further increasing pressures

results in mechanical forces that effect the sub-surface rock structures. On the one

hand, this can mean that existing pores are compacted and shifted, which results

in changes of porosity and permeability. On the other hand, it can also result in

fractures being created or widened, so-called fracking.

We are dealing with a fluid flow problem and a mechanical one at the same time.

The fluid flow is modeled as we have described so far. Some material properties,

especially the porosity, just may be subject to mechanical influences now.

In our applications, for the mechanical part we can use linear elasticity formula-

tions, which are known from various other applications of structural mechanics.

We refer to Marsden and Hughes [69] for a detailed introduction. What we need

to discuss in the following is how the mechanical and the fluid flow problem are
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linked. Our discussion on these topics will essentially follow Wan, Kim and Kim

et.al. [55, 56, 103]. For a detailed introduction into poroelasticity models, we also

refer to Coussy [32].

2.9.1 Mechanical Sub-Problem

Before discussing the way how both models are linked, let us briefly review the

mechanical sub-problem and the mechanical properties. We follow Dung and Kim

[36, 55], who also provide more details.

2.9.1.1 Mechanical Properties

Essentially, we have to distinguish two different, yet related quantities: stresses

and strains. Stress is a working force per area, which we describe by a tensor ~~σ,

or σ for brevity. Due to the conservation of angular momentum, σ is symmetric.

Strain describes the change in volume of a rigid body that results from stress.

We describe it by the tensor ~~ε, or simply ε. When neglecting the deformation

in different directions, but only considering the overall volume deformation, it is

common to consider the volumetric strain εv := trace(ε).

The strain results in a mechanical displacement ~u =
(
ux uy uz

)T
=
(
u1 u2 u3

)T
for the rock in the different coordinate directions. Under the assumptions of the in-

finitesimal strain theory, i.e., assuming the deformation of rock is small compared

to the volume of the rock, we can express the strain in terms of displacement as

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (2.56)

with the coordinate directions xk. For the volumetric strain this implies εv = ∇u.

Besides the mechanical quantities of stress and strain, we need four material prop-

erties.

• Poisson’s ratio ν relates strain resulting from the working direction of the

acting force to strains from other directions. The bigger this value, the more

a material will ’escape’ in other directions, as it is compressed from one

direction, i.e., the more incompressible it is in a mechanical sense.

• Young’s modulus (also known as elastic modulus) E := σ
ε

describes a relation

for stress and strain. This describes a material’s stiffness.
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• Biot’s effective stress coefficient αBiot and Biot’s modulus MBiot, which char-

acterize the interaction between particular solids in fluids. Both are positive

quantities.

2.9.1.2 Computation of Strain by Linear Elasticity

Linear elasticity formulations relate the effective stress σ′ to the strain and, hence,

the displacements. In the next section we will describe how the effective stress

depends on the fluid pressure and the overall stress σ. If we assume σ′ to be

given for the moment, the Lamé Equations give the relation to be fulfilled for the

displacements. We refer to Marsden and Hughes [69] for further information on

these equations that essentially generalize Hooke’s Law. They read as:

−∇σ′ = −∇λ̂∇u− 2∇µ̂εv, (2.57)

with λ̂ := 2µ̂ν
1−2ν

and µ̂ := E
2(1+ν)

the first and second Lamé constant, respectively.

Both constants are positive.

We have to define boundary conditions for the mechanical problem to complete

the model. Because the reservoir is completely located underneath the earth’s

surface, there is no free mechanical expansion. This induces Dirichlet boundary

conditions for the linear elasticity problem (2.57). Only if effects up to the surface

are considered, Neumann boundary conditions may be present there. We refer to

Wan [103] for further discussions on boundary conditions.

2.9.2 Influence of the Fluid Flow on the Mechanical Forces

The effective stress from the above Lamé Equations is induced by the fluid pressure

in the reservoir. Our discussion follows Wan, Kim and Kim et.al. [55, 56, 103], who

also provide further details. The effective stress is described by Terzaghi’s effective

stress relation, which is also known as first fundamental equation of poroelasticity.



Influence of Mechanical Forces on the Fluid Flow 62

It relates the stress σ with the fluid pressure10:

σ′ = σ + αBiotptotId. (2.58)

For the overall stress σ, the momentum needs to be conserved. We can expect

the gravity to act as main body force in a reservoir. Then the conservation of

momentum reads as:

0 = ∇σ + ρbg. (2.59)

ρb is the bulk density, the combination of fluid and rock density that is weighted

by the porosity. g is the gravitational constant.

By combining the previous two relations, we can express the effective stress gra-

dient that we used in the Lamé Equations as:

∇σ′ = αBiot∇ptotId− ρbg. (2.60)

Remark 2.50. If thermal expansion shall be incorporated in the model, following

Settari and Walters [92], the effective stress gradient reads as:

∇σ′ = αBiot∇ptotId+
E

1− 2ν
αT∇TId− ρbg. (2.61)

Here αT ≥ 0 is a constant coefficient. 4

2.9.3 Influence of Mechanical Forces on the Fluid Flow

The way how the mechanical problem influences the fluid flow problem depends

on which mechanical effects shall be modeled. Our discussion on linear solver ap-

proaches in this thesis is limited to geomechanical influences on the rock’s porosity

ϕ that is described by poroelasticity models. We will discuss this aspect first and

only outline further mechanical influences on the fluid flow.

10In the general case, i.e., under so-called undrained conditions, we cannot use the total fluid
pressure directly, but need to compute a bulk pressure pb. Following Kim [55], the bulk pressure
is related to the total fluid pressure as pb = ptot − αBiotMBiotεv. The Biot coefficient and the
Biot modulus are constant. The volumetric strain is typically computed based on the previous
time step. Hence, this does in principal not change the properties of the Jacobian and we do not
further consider undrained conditions.
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2.9.3.1 Impact on the Porosity

A change of the pore volume is a first mechanical effect that might already be

induced by moderate pressures.

2.9.3.1.1 Compressible Rock

If we assume fluid pressures to compress the rock particles, then the fluid pressure

has a direct impact on the porosity ϕ. These effects are considered in poroelastic-

ity models. For a detailed description we refer to Coussy, Detournay and Cheng

and Kim et.al. [32, 34, 56].

We have to take the non-constant porosity into account in the expression of the

mass of a fluid phase (or component) that is accumulated in an arbitrary control

volume over time (cf. the accumulation part of the mass balance (2.10)). For a

single phase flow this is achieved with the second fundamental equation of poroe-

lasticity. It gives the volume of a fluid that can be contained in a control volume

of the reservoir, i.e., it expresses the same as the porosity does:

Vtot =
mtot

ρtot
=

1

MBiot

ptot + αBiotεv. (2.62)

In the multi-phase case only a fraction of the pore volume is occupied by each

phase. This fraction is described by the respective saturation. In the compositional

case we would also need to involve the concentrations, but we leave it with the

Black-Oil case here.

The mass balance from (2.10) then turns into

0 =
∂

∂t
ραSα(

1

MBiot

ptot + αBiotεv)−∇ραλα
~~K(∇pα − g∇D) + ραqα. (2.63)

2.9.3.1.2 Incompressible Rock

We can assume changes in the porosity not to result from a compression of rock

particles, but only from a shift of them. This allows to directly express the porosity

ϕ in terms of the volumetric strain, and therefore the displacements. We do not

give the derivation of the model here and refer to Wan [103] for further discussion.

Essentially, the model assumes the rock particles to be moving as a consequence of

the mechanical forces. The mass conservation for the rock particles in combination
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with the rock’s velocity is then used to express the porosity as:

ϕ = 1− (1− ϕref )e−εv+εref . (2.64)

Remark 2.51. By only taking vertical strains into account, i.e., mechanical in-

fluences induced by gravitational forces, the Lamé equations (2.57) simplify such

that (2.64) turns into the direct pressure dependence (2.7) from Remark 2.18:

ϕ = ϕrefe
Crock(ptotal−pref ). Further details are given by Dung [36]. 4

2.9.3.2 Impact on the Permeability and Fracture Propagation

Not only the available pore space can be subject to mechanical influences, but

also the connectivity of pores. On the one hand, the permeability tensor K may

change under mechanical influences. There are various approaches described in

the literature on how to incorporate this fact in the model. We will not discuss

this in detail here, but refer to Dung [36] (Table 4-1), where different approaches

of computing K from the stress σ are listed.

On the other hand, strong mechanical forces can open new, or extent existing

fractures. This is also known as hydraulic fracturing, or fracking. A detailed

description of modeling this effect is given by Philip et.al. [82]. Essentially, the

speed vfracture that a fracture is growing, or propagated with, can be computed

from the stress as

vfracture = vmax(σcfracture)
s. (2.65)

This also is denoted as sub-critical crack-growth relation, where cfracture, s ≥ 0 are

constants. The stress can be computed from the strain, i.e., from the displace-

ments, as we have discussed earlier.

2.9.4 Properties of the Linear System

We only discuss effects of poroelasticity (cf. Section 2.9.3.1.1), as we will be

concerned with linear systems from such simulations later on. As we have outlined

initially, we are interlinking a mechanical and a fluid flow problem. That is, our

overall linear systems can schematically be expressed as:(
JF,F JF,M

JM,F JM,M

)(
xF

xM

)
=

(
fF

fM

)
. (2.66)
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The fluid unknowns xF are the pressure, saturations and, depending of the type of

model, concentrations or temperature. The fluid flow problem JF,F in principle is

obtained as in the previous sections. The only difference is the pressure derivative

of the mass balance (2.63) that takes a varying porosity into account. In contrast

to the initial mass balance (2.10), the accumulation part of this equation involves

the total pressure. Hence, if AnoMech
pp was the pressure sub-block from a simulation

that did not consider mechanical effects, with some diagonal matrix PM we have:

App = AnoMech
pp +

1

∆t
PM . (2.67)

PM is diagonal because the accumulation part of the discretized mass balance

per cell i still only involves properties from this cell. As MBiot > 0, we have

PM > 0. Therefore, all previous results on the matrix properties regarding App

persist. Adding positive values to the diagonal can be expected to be beneficial

for any of the linear solver approaches that we are going to discuss in the following

chapters. The same holds for the blocks of Asp. The properties of the saturation

(or concentration) related blocks do not change compared to the models that did

not consider geomechanical effects.

The mechanical unknowns are the displacements u and the mechanical sub-problem

JM,M results from the discretization of the Lamé Equations (2.57). For such prob-

lems by themselves, algebraic multigrid approaches are known to be an option to

consider and we do not further discuss the matrix properties.

2.9.4.1 Black-Oil Flow Model

We first consider the fluid flow to be described by a Black-Oil model. For the two

blocks that couple flow and mechanics, we first consider JM,F . It results from the

gradient of the total pressure that was involved in the description of the effective

stress (2.60). In our formulation of the Lamé Equations (2.57), a multiplication

with −1 is involved. The total pressure (cf. (2.4)) depends on pressure and

saturations. Hence, each block of JM,F results from the discretization of a gradient,

multiplied with −αBiot.
The coupling between fluid flow and mechanics, JF,M , in our situation is resulting

from the volumetric strain. This is the divergence of the displacements in the

accumulation parts of the mass balances (2.63). It involves a multiplication with

αBiot and, in the discretized form of the mass balances, with 1
∆t

. Hence, we have
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−1
∆t
JF,M = JTM,F .

Consequently, following Bergamaschi et.al. [12], with a coupling matrix JM,F , and

by scaling the flow part with ∆t, we have(
∆tJF,F −JTM,F

JM,F JM,M

)(
xF

xM

)
=

(
∆tfF

fM

)
. (2.68)

2.9.4.2 Compositional and Thermal Flow Models

In the scope of this thesis we will only be concerned with Black-Oil problems that

are coupled with geomechanical models. However, for completeness we outline the

following:

• Compositional, Natural Variable Formulation:

The displacements are primary unknowns and for their coupling to and from

pressure and saturations there is no change.

Regarding the coupling between flux and mechanics we note that the pressure

for each component in a particular phase is equal to the respective phase’s

pressure. Hence, we can equally well compute the total pressure as ptot =∑
α,c

Xc,αSαpα. In this sense, regarding the coupling between mechanics and

flow, we can treat concentrations analogously to saturations. We can limit

this proceeding to the primary concentrations and the displacements are

not coupled to any secondary unknown. The secondary equations (flash

relations, etc.) are independent of mechanical influences.

• Compositional, Volume Balance Formulation:

The volume consistency has to take the varying porosity into account. That

is, (2.41) is replaced by

ncomp∑
k=1

NkM
mol
k

ρk
− (

1

MBiot

ptot + αBiotεv) = 0. (2.69)

If we associated this equation with the total pressure, this was the only fluid

related unknown that is coupled to the mechanics, and vice versa. The one

coupling still is the transpose of the counter one, multiplied with −1. It does

not even require a scaling by ∆t. 4
• Thermal:

Following Remark 2.50, the mechanical equations now involve an additional
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term that takes thermal expansion into account. This involves a temperature

gradient that in our formulation of the Lamé Equations (2.57) is multiplied

with −1. At the same time, the energy balance equation (2.46) is adjusted

in the same way as the mass balance equations (2.63) have been. Hence,

there still was −1
∆t
JF,M = JTM,F .

2.10 Summary

In the previous discussions we have investigated the properties of the linear systems

that result from different types of reservoir simulation models. We have seen that

more complex models are an extension of those models that involve less physical

effects. This analogously holds for the linear systems resulting from the respective

simulations. Figure 2.10 visualizes this ’evolution’, and summarizes the properties

of the different matrix blocks. It is also possible to omit some steps (e.g., thermal

Black-Oil simulations, which means that the geomechanical and compositional

parts are omitted). The figure does not show all these possible combinations, they

follow in a straight forward way.

The depicted matrix properties have to be seen as ’base case’ under moderate

assumptions. Depending on time step size and further physical effects, there might

be impacts on the linear systems. We should especially mention external sources

and sinks (cf. Section 2.4). Although these only affect the matrix rows that

correspond to those cells that are perforated, the effect on the matrix properties

can be significant. We will discuss impacts on the linear solver, as well as ways to

nevertheless handle the linear systems, in Chapter 4.
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Figure 2.10: Schematic visualization of the matrix properties of linear systems re-
sulting from reservoir simulations. The flow chart illustrates how the
linear systems from simulations that take more effects into account
evolve from the systems from simulations that involve less effects (the
resp. yellow blocks give the links). Matrix blocks of the same back-
ground (and therefore with comparable properties) share the same
color.
All claimed properties hold under certain conditions on time step size
and source terms.



Chapter 3

System-AMG for Model FIM

Black-Oil Simulations

In the previous chapter we have seen that reservoir simulation models of different

complexity lead to linear systems with different properties. However, the Black-

Oil model can be seen as a base case. The linear systems resulting from more

complex simulations always contain a sub-part that has the same properties as

the Black-Oil systems. Therefore, we will first consider an AMG-approach for this

base case, before we extent it to more complex models.

As we have discussed in Section 2.3, Black-Oil models describe three-phase flow

within porous media. They still are heavily used in the oil industry and there is

a large number of individual linear systems to be solved during a simulation, one

for each Newton iteration of each time step. Hence, the solution of linear systems

typically is by far the most time consuming part of a simulation. It can cover more

than 80% of the run time of today’s industrial reservoir simulators [46].

An efficient solver does not only need to be fast, it also needs to be scalable with

the problem size. As of today, the giant reservoirs in the middle east are discretized

in grids with a billion cells and more. As this still results in resolutions of dozens

of meters, a further increase can be expected as soon as the computer hardware

can handle the amount of data.

Because the simulation of flow in a porous medium corresponds to a diffusion dom-

inated problem (cf. the flux part of the mass balance (2.10)), multigrid methods

are natural candidates to consider when designing efficient methods. However, a

solver method has to take the different physical unknowns into account, and the

69
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corresponding matrix properties that they induce in the Jacobian matrices (2.14).

Also for a given modeling approach, the high number of physical effects may have

significant influences on the matrix properties, as described in the previous chap-

ter. In practice, especially source terms may cause difficulties for the linear solver,

if they are not treated properly. We will discuss this aspect, as well as the general

question of how to ensure robustness of the solver approach in complex industrial

applications, in Chapter 4.

In this chapter we assume somewhat mild conditions for the Black-Oil model that

the linear systems we consider result from. More precisely, we assume the condi-

tions of Theorems 2.21, 2.25 and 2.28 to hold. That is, the pressure sub-problem

App, as well as the blocks of Asp, are M-matrices. Ass and Aps are (block) diago-

nally dominant.

This way, the solver approach becomes transparent and also allows for some con-

vergence considerations. However, prior to discussing the System-AMG approach

for Black-Oil problems, we briefly review the System-AMG methodology.

3.1 Review of Algebraic Multigrid Methods

Multigrid methods exploit a hierarchy of grids to achieve numerical efficiency for

the solution of linear problems that have certain properties. They are especially

suited for problems that result from the discretization of diffusion processes. In

geometric multigrid (GMG) approaches, the hierarchy is induced by the geometry,

e.g., discretizations at smaller grid resolutions. In contrast to this, algebraic multi-

grid (AMG) approaches construct the hierarchy as part of the algorithm, based

on certain matrix properties. This makes them being independent of geometric

information and allows to deal with systems that result from unstructured grids

and contain strong heterogeneities. These aspects are of particular importance in

reservoir simulation.

We therefore do not consider geometric multigrid approaches, as for the problems

that we are concerned with the generation of a geometrical grid hierarchy is highly

difficult, if not practically impossible.
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3.1.1 Scalar-AMG

Before discussing AMG approaches for linear problems that involve different phys-

ical unknowns, i.e. coupled systems of linear problems, we review the idea of AMG

for scalar problems. The application to systems then is an extension of the under-

lying ideas. In this thesis we will only give a brief survey to an extent needed to

motivate the application of AMG in reservoir simulations and to discuss possible

limitations and difficulties. For a detailed description of AMG and the theory

behind it, we refer to the literature [15, 85, 95].

We start our description with the general idea of multigrid with geometric inter-

pretations for exemplification. We will then describe how AMG methods construct

the different operations independently of the geometry.

Let us consider the linear problem

Ax = f, (3.1)

where we assume A to be a sparse, symmetric and positive definite M-matrix.

This is the prototype linear system to be solved by Scalar-AMG and there exists

a rigorous convergence theory for the respective two-level method. We note that

this theory can be extended to matrices of essentially positive type (cf. Definition

2.32 in Section 2.3.2.2). While mere positive definiteness already is sufficient to

achieve convergence, this does not guarantee a convergence speed independent

of the dimension of A. We refer to the above mentioned literature for details.

Linear systems with the described properties result, for instance, from classical

discretizations of elliptic PDEs. Let us assume that our problem results from such

a discretization on a grid of grid size h. We therefore also write Ah instead of A.

The outcome of an AMG iteration is an error approximation from the defect

equation

Ahe
i
h = rih =: fh − Ahxih, (3.2)

where xih is the i-th solution iterate and rih, e
i
h are the corresponding residual and

error vector. In the first iteration we start with an initial guess x0
h.

In geometric multigrid, we interpret the error to be expanded in a Fourier series.

In this sense, it is composed of different frequencies. The efficiency of multigrid

methods for our considered class of problems results from tackling these compo-

nents differently, depending on whether they are considered high- or low-frequency.
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More precisely, with a smoothing step we aim at reducing high-frequency compo-

nents, which is combined with a coarse grid correction process to also reduce

low-frequency components efficiently. In principal, this proceeding is the same in

algebraic multigrid.

3.1.1.1 Smoothing Process

The purpose of an iterative smoothing process in multigrid cycles is to reduce

high-frequency error components. We denote the smoothing operator as

Sh = 1−Q−1
h Ah, (3.3)

where the subscript identifies it with one of the levels of the hierarchy. Qh is

specified depending on the utilized method. Classically, this is a relaxation method

like ω-Jacobi or Gauss-Seidel, where Qh is the (weighted) diagonal of Ah and the

lower triangular part of Ah, including the diagonal, respectively. Also other one-

level methods may be used as a smoother. For incomplete factorization (ILU)

methods this is, for instance, described by Wittum and Oertel [79, 108]. We

will get back to this in Section 6.1.1 and see that for our type of problems ILU

smoothers allow for faster AMG approaches.

All smoothing methods have in common that, while computationally they are

relatively cheap per iteration, they converge (very) slowly for problems like (3.1) -

if Ah was not diagonally dominant. This slow convergence speed is caused by low-

frequency error components being reduced slowly. High-frequency components are

reduced very efficiently within only a few iterations, independently of the problem

size. In the geometric multigrid context, an error with drastically reduced high-

frequency components is a rather smooth function. In the AMG methodology this

interpretation does not need to hold. Here an error is considered smooth if it

cannot be efficiently reduced further by the smoothing method.

3.1.1.2 Coarse Grid Correction

While the smoother reduces high-frequency error components efficiently, this is

typically not the case for low-frequency error modes. Low-frequency modes, how-

ever, can be appropriately captured on a grid of a lower resolution H > h as

well. At this lower resolution they might become high-frequency modes and can
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be reduced efficiently by the smoother. In the context of AMG we do not have a

coarser grid and a corresponding operator, but we automatically construct coarse

level operators, denoted by AH (cf. (3.4) below).

The idea of a two-level iteration step is to transfer the residual vector from the

initial h-level to the coarser H-level by a restriction operator IHh . We then solve

for the error in the coarse level problem and transfer it back to the initial level.

This transfer is achieved by an interpolation operator IhH . The concrete interpola-

tion weights depend on the matrix entries in Ah, which allows AMG to adapt the

interpolation to a particular matrix.

We typically choose the restriction to be the transpose of the interpolation oper-

ator, i.e. IHh = (IhH)T , and use the Galerkin operator as coarse level operator:

AH = IHh AhI
h
H . (3.4)

Obviously, AH is spd if Ah is. We can now express the resulting coarse grid

two-level correction operator as:

Kh,H = 1− IhHA−1
H IHh Ah. (3.5)

The use of the Galerkin operator induces a variational principle [95]: The coarse

grid correction minimizes the energy norm1 of the error w.r.t. the interpolation of

all variations of the error eH . Clearly, the minimum depends on the interpolation

operator IhH and the quality of the interpolation is crucial for AMG’s convergence

speed.

As a further consequence of the variational principle, in the energy norm AMG is

guaranteed to converge if only the smoother converges.

3.1.1.3 From Two-Level to Multilevel

The smoothing and coarse grid correction operators, Sh and Kh,H , target at reduc-

ing different error components efficiently. While the smoothing operator reduces

high-frequency components, the low-frequency ones are reduced by the coarse grid

correction operator. By using νpre and νpost smoothing steps before and after the

coarse grid correction, respectively, the operator that defines a two-level iteration

reads as:

Mh,H = (Sh)
νpostKh,H(Sh)

νpre . (3.6)

1The energy norm is induced by the scalar product < Ah., . >std.
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The coarse grid problem AH , although of lower dimension than Ah, may still be

too big to be inverted efficiently. Further two-level processes can recursively be

used to approximate the solution of the coarse grid problem. This proceeds till

the dimension of the coarsest problem, AC , is small enough to use a direct solver

efficiently. This process is sketched in Figure 3.1 for a so-called V-cycle. In this

thesis, we will not consider different types of cycles that employ more than one

coarse grid correction per level (e.g., W- or F-cycles).

xh0,1 = Sh0x
i
h +Q−1

h0
fh

rh1,0 = Ih1h0 rh0,1

xh1,1 = Q−1
h1
rh1,0

...

xC = A−1
C rC

...

xh1,2 = xh1,1 + Ih1h2xh2,3

xh1,3 = Sh1xh1,2 +Q−1
h1
rh1,0

xh0,2 = xh0,1 + Ih0h1xh1,3
xi+1
h = Sh0xh0,2 +Q−1

h0
fh

Figure 3.1: Schematic illustration of a V-cycle for solving Ahxh = fh, with
one pre- and post-smoothing sweep per level. We assume pre- and
post-smoothing method to be used.

3.1.1.4 Construction of the Hierarchy

Algebraic multigrid approaches shall not rely on geometric information. Hence,

it is not possible to use coarse grid analogues of the finest grid to define coarser

levels. Instead, the hierarchy is constructed based on the matrix Ah itself in a setup

phase. Hereby, the algebraic multigrid principle is independent of whether the

linear system (3.1) results from the discretization of a PDE. As long as Ah has the

properties AMG seeks to exploit, it may also result from a different background.

The concrete coarsening depends on the coupling structure of the matrix Ah. This

is reflected by the adjacency graph, GA (cf. Definition 2.10).

The strength of the couplings will play an important role. For a particular off-

diagonal matrix entry aij, it is defined as [85, 95]:

str(i, j) :=
−aij

max
k 6=i

(−aik)
with i 6= j. (3.7)

We define an off-diagonal matrix entry aij to correspond to a strong connection,

if the respective measure of strength is above a certain threshold, εstr. This allows



Scalar-AMG 75

to define the strong adjacency graph Gstr from GA as

Gstr = (V G
A , E

G
str) with EG

str = {eGij ∈ EG
A |i 6= j, str(i, j) ≥ εstr}. (3.8)

We have 0 ≤ εstr ≤ 1 and typically 0.25 is chosen.

In classical AMG, hierarchies are constructed based on a C/F-splitting. That

is, we label each vertex in the strong adjacency graph with C or F, where C

denotes those vertices that correspond to values that are represented on the coarser

level. In the coarse grid correction process of AMG, the correction at C-values

is directly obtained from the coarse level. The correction at F-values is obtained

by interpolating from strongly connected C-values. It is crucial that, after the

smoothing by Sh, the error varies smoothly between all F-values and the respective

C-values. It can be shown that this just holds for strong connections. Hence, the

C-values are selected as a subset of the vertices in the strong adjacency graph Gstr.

With appropriate interpolation formulas, i can be interpolated from j, if i was an

F and j a C-value.

We have not yet mentioned how the C-values are selected in Gstr. We will only

consider the classical Ruge-Stüben (RS) coarsening in this thesis. In Section 6.1.1

we will also discuss aggressive variants of this approach that will allow for faster

multigrid cycles and less memory requirements.

The classical coarsening algorithm selects C-values such that they form a maximal

independent set of maximal size in Gstr. Hence, each F-value is strongly coupled

to several C-values. This is of particular importance in reservoir simulations, as

we are concerned with highly heterogeneous matrices. The more C-values are in-

corporated in the interpolation of an F-value, the better the complex coupling

structure of the matrix can be taken into account.

Remark 3.1. We note that the coarsening process also allows for so-called forced-

F-values. They are not required to be strongly coupled to any C-value, as they are

not included in the coarse grid correction process. Forced-F-values may either

be user supplied (e.g., well equations; cf. Remark 2.34), or selected by the al-

gorithm itself. For instance, for rows where the diagonal strongly dominates the

off-diagonals, the smoother does not only smooth, but sufficiently solve for the re-

spective variable. No coarse grid correction is needed then and these variables are

natural candidates for forced-F-values. 4



Scalar-AMG 76

Remark 3.2. There is an alternative coarsening approach, the aggregation AMG.

Here, the coarse level is defined by grouping the vertices in the strong adjacency

graph into aggregates. This does not allow for any unknown at the finest level to

be interpolated from several ones at the coarse level. Moreover, additional efforts,

e.g., smoothing the interpolation, K- and/or V*-cycles, are necessary in order to

give h-independent convergence. We refer to the literature [77, 99] for further

discussion.

Except for a special comparison, we do not further consider these approaches in

this thesis. This is because for the highly heterogeneous problems from reservoir

simulations, the interpolation is less robust than the one from the RS-coarsening.

4

3.1.1.5 AMG in Practical Applications

In practice, AMG is typically not applied as a stand-alone solver, but as a pre-

conditioner for a Krylov-method (see Saad [88] for a discussion on such methods).

Due to its robustness and its applicability to non-symmetric problems, like the full

problems from reservoir simulations, in this thesis we will use flexible GMRes.

For our model problem (3.1) Ah is a symmetric, positive definite, sparse M-matrix.

In Theorem 2.21 we have seen that this exactly holds for App in incompressible

simulations with TPFA discretizations and appropriately located wells.

In Section 2.3.2.2 we have seen that with MPFA discretization schemes App, due to

small positive off-diagonal entries, might not be an M-matrix anymore. We have

discussed that we can expect it to be of essentially positive type (cf. Definition

2.32) then. We note that the AMG theory can be extended to this class of matrices.

In the compressible case, under certain assumptions on the time step size and

the wells’ source terms, Theorem 2.25 showed that App still is an M-matrix, but

not necessarily symmetric anymore. However, the symmetric part of App under

these assumptions still is positive definite. Moreover, we can expect the matrices

to be only ”slightly” non-symmetric. The lack of symmetry only results from

the upstream-weighting of the transmissibilities, which implies a non-symmetric

dependence on the pressure field. The transmissibilities themselves, which can be

expected to dominate the description of the fluid flux, are symmetric. We refer to

the discussion in Section 2.3.2.1. According to practical experience, this minor lack
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of symmetry does not cause problems for AMG’s applicability, though a rigorous

theory is not available for this case.

3.1.2 System-AMG

The situation is more involved if different physical unknowns are considered within

one coupled linear system

Asystemx =


A11 · · · A1k

...
. . .

...

Ak1 · · · Akk



x1

...

xk

 =


f1

...

fk

 . (3.9)

Here k denotes the number of physical unknowns. The Aij are matrices by them-

selves and xi, fi are vectors.

Consider the Jacobian from Black-Oil simulations (2.14): The full system is far

from being a symmetric, positive definite matrix, let alone a symmetric M-matrix.

Nevertheless, the fluid flow is governed by a diffusive process, which gives rise to

the expectation that it should be possible to extent the basic idea of AMG.

Our approach of extending AMG to coupled systems follows the ideas from Ruge,

Stüben and Clees [26, 85]. We will only give a brief review here. There are essen-

tially two such approaches, the unknown-wise and the point-wise. Which of them

is suitable depends on the matrix properties of a particular application.

3.1.2.1 Unknown-Wise Approach

A natural extension of the Scalar-AMG idea is the individual application to each

of the different unknowns. This means, the C/F-splitting and the construction of

the interpolation operators are done as if Scalar-AMG was applied to the system

matrix without cross-couplings between the k different unknowns:

ADsystem :=


A11 0

. . .

0 Akk

 . (3.10)

Figure 3.2c illustrates the individual adjacency graphs that correspond to the dif-

ferent unknowns. This is the adjacency graph corresponding to ADsystem.
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Given that each Aii satisfies the requirements of Scalar-AMG, the construction

of C/F-splitting and interpolation works analogously to what we have described

before. However, for the coarse grid problem, we do not compute the Galerkin

operator based on ADsystem, but on Asystem. This way, the couplings between the

different unknowns are taken into account on the coarser levels.

For this approach to work properly, it is not only necessary that the diagonal

blocks Aii meet Scalar-AMG’s requirements, but also that the couplings between

unknowns are not ”too strong”. Only then, individual smoothing per unknown

implies overall smoothness of the error and the constructed hierarchy can be rea-

sonably combined with the smoother. More precisely, we require couplings be-

tween different unknowns to be relatively small. According to Clees [26], with

A := A−1
systemADsystem, we can measure the strength of these couplings as:

ρu := ρ(A)ρ(A−1), (3.11)

which is greater than, or equal to one.

(a) Point-Wise (b) Full Adjacency
Graph

(c) Unknown-Wise

Figure 3.2: Exemplary illustration of the general System-AMG approaches
for a problem with three physical unknowns. (B) shows the full
adjacency graph of the problem. The figures (A) and (C) on the
left and right show the structures that are relevant for the point-
wise and the unknown-wise approach, respectively. The induced
point structure, i.e., the adjacency graph of the primary matrix,
is shown in (A). (C) shows the adjacency graphs of the three sub-
problems.
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3.1.2.2 Point-Wise Approach

An alternative approach attempts to formally stay closer to geometric multigrid,

for which the same hierarchy would be used for all physical unknowns. For alge-

braic multigrid this means the same C/F-splitting is used for each of the unknowns.

This splitting is constructed based on a so-called primary matrix P that describes

the matrix connectivity ”in terms of points”. Given that P meets its requirements,

the ideas from Scalar-AMG can be used. With np points, P is a sparse matrix

of dimension np × np. The adjacency graph is illustrated in Figure 3.2a for an

exemplary problem.

While all physical unknowns of the system are subject to the same C/F-splitting,

the interpolation operator can still be constructed individually for each unknown.

Whether or not this flexibility needs to be exploited, depends on the particular

application.

The primary matrix P has to be chosen such that it represents the strength of

the couplings between points sufficiently well. Only then, a C/F-splitting based

on P yields a reasonable hierarchy for the entire problem. This requirement can

lead to different definitions of P , depending on the concrete application. If, for

instance, one of the k unknowns, l, is dominating the overall process, it may be

a reasonable choice to use the respective diagonal matrix block, All, as primary

matrix. However, especially if there is no ”outstanding” unknown, constructing

P based on norms of the k × k coupling blocks is another option. For details we

refer to the discussion by Clees [26].

3.2 System-AMG Approach for Black-Oil Simu-

lations

In the following we are going to discuss a System-AMG approach to solve linear

systems from Black-Oil simulations (cf. ((2.14)) and (2.15)):

Jx :=

(
App Aps

Asp Ass

)
x = f. (3.12)

We have investigated the properties of these systems in Section 2.3, where we have

seen that we have to deal with three different physical unknowns. Namely, one
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pressure and two saturations. As outlined at the beginning of this chapter, we

assume conditions for the model such that App is an M-matrix and Ass consists

of Z-matrices and is strongly block diagonally dominant. That is, if we denote

the sub-blocks of Ass as Aijss, then all blocks Aiiss are M-matrices that are strongly

diagonally dominant in each row. Off-diagonal blocks Aijss are Z-matrices and

whether they are also diagonally dominant depends on the model formulation. If

not, we can still expect the diagonal of Aiiss to be strong enough to also dominate

the Aijss blocks.

The properties of Asp and Aps correspond to the ones of App and Ass, respectively.

3.2.1 Definition of the Approach

The flux is the fluid’s reaction on pressure differences in order to achieve an equi-

librium. In this sense, the pressure is ”driving” the fluid flux. It is therefore

natural to construct an AMG hierarchy based on the pressure sub-problem, which

is described by an M-matrix under the assumed conditions. Hence, if we use it as

a primary matrix in the context of a point-wise System-AMG approach, we can

directly compute a C/F-splitting.

Using the pressure-based C/F-splitting and interpolation also for the saturations

mixes different physical unknowns. According to practical experience, this results

in a change of the properties of the coarse level problems compared to the initial

one: As each pressure variable that remains at the finest level is interpolated from

several coarse level variables, each column of the interpolation operator involves

multiple non-zero entries. If we constructed the Galerkin coarse level operator

for the saturation related sub-blocks with this pressure related interpolation, the

diagonal dominance of Ass and Aps typically gets (more and more) lost within the

hierarchy. That is, the properties of the full coarse level problems may drastically

differ from the ones of the initial problem.

However, due to the outlined diagonal dominance of Ass, there is no need to apply

a hierarchical treatment to the saturations. Hence, given that the correct pressure

was known, any iterative solver was able to efficiently solve for the saturations.

This especially holds for the fine level smoother.

Thus, we construct the AMG hierarchy based on the pressure sub-problem from

the Jacobian (3.12) and leave the saturation unknowns at the finest level. As only

the pressure unknown is considered for the hierarchy, from level two and beyond

there is no difference to Scalar-AMG. Let Ip be the interpolation operator that is
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constructed based on the pressure sub-problem, i.e., the primary matrix. As de-

scribed before, we choose the restriction to be the transpose of the interpolation.

The interpolation operator from the second to the first level, IhH , and the Galerkin

coarse level operator for the second level, AH , read as:

IhH =

(
Ip

0

)
and AH = (IhH)TJIhH = (Ip)

TAppIp. (3.13)

If App is positive definite, this holds for AH as well2. In the incompressible case,

from Theorem 2.21 we know that App is symmetric positive definite. In the com-

pressible case, according to Theorem 2.25 it may be a non-symmetric M-matrix.

However, as we assume the theorem’s requirements to be fulfilled, the symmetric

part Asympp is a symmetric M-matrix, which is positive definite. Therefore, also App

fulfills the definiteness condition3.

Hence, it is reasonable to use a standard AMG approach for the second level prob-

lem. Here, however, we limit our discussion to the two-level case. The coarse grid

correction operator reads as:

Kh,H = 1− IhHA−1
H (IhH)TJ. (3.14)

We postpone a discussion on the smoother at the finest level to the end of this

section.

Remark 3.3. Clees and Ganzer [27] also suggested to construct a point-based

AMG approach with the pressure sub-problem as primary matrix. They applied

the hierarchy to pressure and saturations and needed to use ILUT as a smoother.

The necessity for a strong smoother like ILUT may have resulted from the loss of

diagonal dominance for the saturation related parts that we have outlined above.

4

We find the same System-AMG approach, if we follow the unknown-wise approach.

An individual coarsening for the diagonal sub-blocks4 App and Ass and respective

interpolation operators would need to be constructed. For the pressure this leads

2∀v 6= 0 :< AHv, v >=< AppIpv, Ipv >> 0.
3Due to the symmetry of the Euclidean scalar product, we have ∀v 6= 0 :< Appv, v >= 1

2 (<
Appv, v > + < Appv, v >) = 1

2 (< Appv, v > + < ATppv, v >) =< Asympp v, v >> 0.
4Strictly speaking, we would need to consider the diagonal sub-blocks of Ass. Because the

Black-Oil model involves three physical unknowns, Ass still is a system for two of them. However,
while the argumentation would involve more subscripts but leads to the same result, we consider
’the saturations’ as one unknown here.
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to the same process as above. For the saturation our C/F-splitting directly decides

not to construct any hierarchy. Due to the strong diagonal dominance, it considers

the smoother to be sufficient to solve for the saturations. Hence, all saturations

are labeled as forced-F-values by the C/F-splitting (cf. Remark 3.1).

As outlined earlier, the unknown-wise approach for a symmetric positive definite

system matrix should work well as long as the cross-couplings between unknowns

are not too strong. According to Clees [26], (3.11) gives an indication of this

strength. This measure itself does not require symmetry and for our system (3.12)

it reads as:

ρu = ρ(

(
App Aps

Asp Ass

)(
App

Ass

)−1

)ρ(

(
App Aps

Asp Ass

)−1(
App

Ass

)
). (3.15)

Let us consider a simplified model problem with only two phases, where we assume

the material properties (density, viscosity, etc.) to be just scaled by constants,

and to have the same dependency of them on pressure and saturation. For such a

problem, the pressure and saturation derivatives for both mass balance equations

are not just somehow related, but only scaled by constants. With ξ, η > 0 the

Jacobian simplifies to

Jsimple =

(
App −ηAss
ξApp Ass

)
JsimpleD =

(
App

Ass

)
. (3.16)

Here JsimpleD is the block diagonal matrix the unknown-wise AMG coarsening is

based on (cf. Equation (3.10) in Section 3.1.2.1). The negative sign in the upper

right block of Jsimple results from the fact that the first saturation was expressed

by the second one as S1 = 1− S2 and then the derivative with respect to S2 was

computed (cf. Remark 2.31). We can now show that the coupling between both

unknowns is minimal in the sense of (3.11). The respective proof will make use of

the following lemma.

Lemma 3.4. (Theorem 3 from Silvester [93])

Let a block-matrix M =

(
A B

C D

)
with A,B,C,D ∈ Rm×m. If CD = DC, then

for the determinant there is det(M) = det(AD −BC). 4

Lemma 3.5. With the simplified model problem Jsimple, the strength of the cou-

plings between the unknowns (3.11) is ρu = 1.
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Proof. Let J := Jsimple(JsimpleD )−1 and λmin, λmax J ’s eigenvalues of minimal and

maximal absolute value. Then the measure of strength for J is:

ρu = ρ(J )ρ(J −1) =
|λmax|
|λmin|

. (3.17)

With λ ∈ R and the above lemma we find:

det(J −

(
λ1

λ1

)
) = det(

(
1− λ1 −η1
ξ1 1− λ1

)
) = det((1− λ1)2 + ξη1).

Hence, we have |λmax| = |λmin|, which, according to (3.17), implies ρu = 1.

With a general Deal-Oil model we have to expect ρu > 1. However, the only

difference to the simplified problem is that the material properties of the different

phases differ. The basic matrix properties still are the same for the pressure

and the saturation related blocks of the Jacobian, as we have seen in Section

2.3.2.1. Hence, we expect the coupling between the different unknowns still to be

acceptable in terms of our measure ρu. As the Black-Oil model just involves an

additional saturation unknown, we expect this to hold there as well.

We have not yet discussed the smoother for our System-AMG approach. At coarser

levels of the hierarchy, where we only have to deal with pressure unknowns, there is

no difference to smoothing in the Scalar-AMG case. This is different at the finest

level, where also the saturation unknowns need to be considered. In simple cases,

relaxation methods may provide a sufficient smoothing also here. This especially

holds if App and the blocks in Asp are ”very” comparable, i.e., the pressure related

properties of all considered phases are nearly the same. However, in practical

applications the conditions may be less ideal and the matrix properties may be

influenced from various sources, as we have seen in the previous chapter. The

pressure may then have to be adjusted to (slightly) different App and Asp. Relax-

ation methods like Gauss-Seidel may fail in providing a good smoothing and even

divergence of the full cycle is observed. Therefore, we switch to ILU-smoothing,

where such problems are not observed. In reservoir simulations this seems par-

ticularly natural, as methods like ILU(0) or block-ILU(0) are generally used as a

default solver method when no AMG is involved. Under mild assumptions, Kwok

[61] could prove that block-ILU(0) does converge for Dead-Oil problems, i.e. two-

phase problems that essentially have the same properties as Black-Oil problems
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have. In Remark 7.7, we will see that we can express block-ILU(0) as an ILU

variant with a particular pattern under certain conditions. This typically holds in

reservoir simulations. Therefore, we denote SILU the ILU operator for the problem

described by J , with a given non-zero pattern.

In the scope of this thesis we consider standard ILU(0), which turns out to be

sufficient. However, we note that the numerical properties of incomplete factor-

izations can be improved by specific reorderings. This is not subject of study here

and we refer, for instance, to Kwok [61] for details.

As ILU(0) is a rather strong smoother, we could use SILU also as a pre-smoother in

order to further improve the pressure correction. However, because our multigrid

cycle does not involve the saturation unknowns in the hierarchy, there is no need for

a pre-smoothing for them. According to practical experience, the improvement of

the convergence rate by using SILU as a pre-smoother is usually much too small to

outweigh the additional computational efforts. Hence, we apply a pre-smoothing to

the pressure only. As this does not involve any cross-couplings between unknowns

and the pressure sub-problem is an M-matrix, we can expect classical relaxation

methods to provide a sufficient smoothing. Let us denote Spp a relaxation operator

for the problem that is described by App. Then, with the coarse grid correction

(3.14), the full System-AMG operator reads as:

MSystem−AMG = Mh,H = SILUKh,H

(
Spp 0

0 1

)
. (3.18)

The described System-AMG approach is realized in Fraunhofer’s SAMG library

[96]. In Section 7.2 we will discuss some aspects of the practical realization that

are of a general concern for an efficient realization of the described approach in a

general multigrid framework. The approach is summarized in Figure 3.3. We will

use this System-AMG approach as a basis throughout this thesis. Apart from the

described settings, the defaults of the SAMG library, as of version 27z1, are used.

3.2.2 Relation of System-AMG and CPR-AMG

A widely used approach to solve linear systems (3.12) from Black-Oil simulations

is the Constrained Pressure Residual (CPR) method, proposed by Wallis [101,

102]. This method, as each iteration consists of two successive preconditioning
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Setup
• Saturation unknowns remain

at the finest level
• RS coarsening, εstr = 0.25
• Forced-F for rows w/ diag.

dom. by a factor 100
• Direct solver at the coarsest

level

Cycle
• V1,1 cycle
• C/F Gauss-Seidel smoother for

the pressure
• Post-smoother at the finest

level: ILU(0)
• Preconditioned FGMRes,

restarted after 30 iterations

Figure 3.3: Overview of the System-AMG approach that we are going to use
for Black-Oil problems - if nothing else is mentioned. It is real-
ized with Fraunhofer’s SAMG library, version 27z1. All further
parameters remain at their defaults.

operations, is also referred to as two-stage method. Let us denote the respective

iteration operators as M1 and M2. Then the CPR iteration operator reads as

MCPR = M2M1.

The two stages are chosen due to the different properties of the linear sub-systems:

1. In the first stage, based on the scalar pressure sub-problem that is described

by App, an approximate pressure solution is computed. That is, the cur-

rent solution iterate is restricted to the pressure related entries, the pressure

problem is approximately solved and the obtained approximation is prolon-

gated back to the full problem. Investing this particular effort regarding the

pressure problem is motivated from the fluid flow being driven by pressure

differences. Hence, updating the pressure is considered to be the most im-

portant task for the solver. In principle, any solver method could be used.

Due to its known efficiency for diffusion-driven problems, AMG is a common

choice. A single cycle typically is used and we denote the method as CPR-

AMG. Let us denote the AMG approximation of A−1
pp as M(App). Then the

first CPR operator reads as:

M1 = 1−

(
1

0

)
M(App)

(
1 0

)
J. (3.19)

2. After the pressure approximation is computed, the saturation unknowns need

to be updated. This is typically achieved by an incomplete factorization

method like ILU(0). That is, M2 = SILU from (3.18).

Remark 3.6. Typically ([18, 62]), the CPR method is not applied directly to the

Jacobian J (3.12), but to a transformed linear system Jdcpl = CLJ . The scaling
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with CL aims at decoupling, or at least weakening, the coupling between pressure

and saturation, i.e. the sub-matrix Aps. We will discuss such transformations in

detail in Section 4.2 and do not further consider them for the moment. 4
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Figure 3.4: Comparison of the convergence history of System-AMG and CPR-
AMG for two representative linear systems from Black-Oil simu-
lations (cf. Appendix A).

It is easy to see that our System-AMG approach results in essentially the same

solver approach as the CPR-AMG method does:

• The second stage of CPR exactly corresponds to the fine level smoother of

System-AMG: ILU(0) for the full system.

• Regarding the first stage of CPR, let us consider two-level Scalar-AMG for

the pressure problem with one pre- and post-smoothing step defined by Spp

from (3.18), respectively. By using Ah = App, the operator is given by (3.6).

The interpolation for the pressure clearly is the same as in System-AMG,

i.e. Ip. We can now insert the two-grid operator for the pressure in CPR’s

first stage (3.19), i.e. replace M(App), and have:

M1 = 1−

(
1

0

)
SppIpA

−1
H ITp Spp

(
1 0

)
J =

(
Spp 0

1

)
Kh,H

(
Spp 0

1

)
,

(3.20)

where, according to the Galerkin principle, AH = (Ip)
TAppIp and Kh,H is the

coarse grid correction operator (3.14) from System-AMG.

From these considerations it is clear that, compared to System-AMG, CPR-AMG

just involves an additional post-smoothing sweep. Regarding a practical realiza-

tion, also the explicit extraction of the pressure sub-problem is not necessary in
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System-AMG. This, however, does not have an influence on the algorithm.

Consequently, we can interpret CPR-AMG as a System-AMG approach. Figure

3.4 compares both approaches for Black-Oil problems where AMG is directly ap-

plicable to App. We will discuss more general problems in Chapter 4.

However, although the methods coincide, the point-of-view is different. In this

thesis, we choose the System-AMG point-of-view. This allows for the exploitation

of all aspects of System-AMG, and AMG in general, in the further discussion on

linear solvers in reservoir simulation. This has two advantages:

• In principal, System-AMG is extendable to additional physical unknowns

in a rather natural way. In reservoir simulations this is of interest, as the

linear systems from more sophisticated simulation models can be seen as

extensions of the systems from Black-Oil simulations. This gives rise to the

expectation that we will not have to discuss entirely new approaches later

on, but just have to incorporate the new unknowns. We will discuss the

extension of our Black-Oil System-AMG approach to compositional, thermal

and geomechanical simulations in Chapter 5. We will see that the ability of

System-AMG to exploit hierarchies for different unknowns at the same time

is beneficial.

• Rather than considering only a scalar pressure problem, System-AMG can

access all physical information from the full matrix. This is mandatory to

ensure a robust applicability, as we will discuss in Chapter 4. However, it

also allows to exploit the algorithmic versatility of AMG. Any optimization

of System-AMG can directly reflect impacts on the full linear solution pro-

cess. In Section 6.1.1, we will see that choosing faster coarsening methods is

possible for typical reservoir simulation problems without negative impacts

on the convergence behavior of System-AMG.

3.3 Convergence Considerations for a Model

After having described the System-AMG approach for Black-Oil problems, we

are now going to discuss the convergence of this approach. We will do so for

a fully implicit Dead-Oil simulation. The Dead-Oil model is an analogue of the

Black-Oil model from Section 2.3, where we distinguish between only two phases,

hydrocarbons and water. We can express the Jacobian, which describes the full
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linear system to be solved, as a 2× 2 block matrix:

Jmodel =

(
A −B
Â B̂

)
. (3.21)

Following the notation (2.15), there is App = A, Aps = −B, Asp = Â and Ass = B̂.

We have seen that, due to a comparable background, the general properties of App

and Asp are the same, which we express by denoting them as A and Â in (3.21).

The same holds with the saturation related blocks, i.e., B and B̂.

Our discussion is independent of whether the model is applied in one, two or three

dimensions. However, we only consider an incompressible model and a TPFA

discretization. Moreover, following Theorem 2.21, we assume wells to be given so

that A is non-singular. From our discussion in Section 2.3, we then know that

• A > 0 is a sparse M-matrix (cf. Theorem 2.21).

• B > 0 is a sparse, strongly diag. dominant M-matrix (cf. Remark 2.31).

• Â > 0 is a sparse M-Matrix (cf. Corollary 2.22).

• B̂ > 0 is a sparse, strongly diag. dominant M-matrix (cf. Theorem 2.28).

We are going to investigate the convergence of System-AMG (cf. Section 3.2.1)

for the problem (3.21). More precisely, we are going to discuss the convergence

properties of the method consisting of the following two steps5 6:

1. The first step, we denote the respective iteration operator by P , solves for

the pressure by AMG and does not apply any change to the saturations:

P := 1−

(
Q−1
AMG 0

0 0

)
Jmodel =

(
MAMG Q−1

AMGB

0 1

)
, (3.22)

where MAMG denotes the AMG iteration operator for the pressure sub-

system Ap = fp and QAMG is the respective approximation of A. We do

not discuss two- or multilevel convergence results regarding MAMG here. In-

corporating a grid-transfer for the pressure in our discussion would result

in additional complexity in the notation without giving additional results:

Since A is an spd M-matrix, the well-known AMG convergence theory [85, 95]

can directly be applied regarding MAMG.

5This way we, formally, investigate the influence of the ILU(0) post-smoothing separately from
the rest of System-AMG. This rest is a complete AMG process for the pressure sub-problem and
we can exploit the existing convergence theory.

6Note that all convergence considerations directly apply also to CPR-AMG.
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2. The second step, we denote the respective iteration operator by S, applies

ILU(0) to the full system.

The System-AMG iteration operator is then described by M = SP . We are going

to discuss the spectral radius, i.e., the convergence properties, of this operator. We

will see that these essentially are determined by how efficiently AMG can solve

for the pressure and how efficiently ILU(0) can update the saturations. As we can

employ well-known results regarding AMG, our discussion is mainly concerned

with the operator S.

3.3.1 Introductory Discussion Regarding ILU

With S resulting from an ILU(0) factorization of the full matrix Jmodel, a discussion

on the convergence properties becomes difficult. Already in the simplified case of

using block-Jacobi with ILU(0) applied separately to the blocks, we have

SBJ = 1−

(
Q−1
A 0

0 Q−1

B̂

)
Jmodel =

(
SA Q−1

A B

−Q−1

B̂
Â SB̂

)
, (3.23)

with QA and QB̂ denoting the ILU(0) approximations of A and B̂, respectively,

and SA and SB̂ denoting the respective ILU(0) operators. Even with this simplified

method, useful conclusions regarding the spectral radius of SBJ are hardly possible

for our still rather general incompressible Dead-Oil model.

In order to nevertheless gain an insight into ILU’s convergence properties, we

consider a modified method for the moment, where the factorization consists of

two stages:

1. We compute the full LU -decomposition Jmodel = LfU f regarding the 2 × 2

block-system:

Lf =

(
1 0

ÂA−1 1

)
and U f =

(
A −B
0 B̂ + ÂA−1B

)
. (3.24)

For the moment we assume ÂA−1 to be given and do not discuss how to

compute this term.
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2. To solve the full system based on (3.24), we need to apply a backwards and

forwards solution sweep for the systems that are described by Lf and U f ,

respectively. Regarding Lf , as it is triangular, this is trivial. In contrast to

this, U f is only block-triangular. We use ILU(0) to approximately solve the

backwards solution sweep.

The above two-stage factorization can be regarded a compromise between a full

decomposition and ILU(0). As ILU(0) approximates the full decomposition, we

can expect it to also approximate this two-stage factorization.

We note that the full LU -decomposition in the first stage corresponds to decoupling

the saturation from the pressure via a Schur complement. That is, we could

equally well apply this Schur complement and then solve the resulting system

with ILU(0). Hence, we can expect ILU(0) for the full system to approximate this

Schur complement.

Due to the block-triangularity of the Schur complement system, i.e. U f , the

convergence properties of the block-Jacobi-like method from (3.23) are determined

by those of ILU(0) being applied to the systems that are described by A and

B̂ + ÂA−1B, respectively. The analysis of these two operations is much simpler

than for the full system. We will see that the same also holds for a full ILU, rather

than block-Jacobi.

However, in the general case of Jmodel, the ILU operation, S, only approximates

the two-stage factorization from above. Hence, the convergence properties would

only approximate the ones of S and it is not clear to which extent. Moreover, the

computation of ÂA−1 in an efficient way is a problem for a practical realization.

Although A and Â are somehow related, we generally cannot quantify this relation.

We can see a linear relation as the limit case for the relation between A and Â, as

well as B and B̂. In the next section we are going to see that ILU(0) applied to

the original system then is equivalent to ILU(0) for the Schur complement system.

3.3.2 Convergence Properties of ILU in the Limit Case

From our discussion in Section 2.3 we know that A and Â, as well as B and B̂ are

closely related. In this section we are going to discuss the limit case of a linear

relation. More precisely, we assume Â = V A and B̂ = WB with diagonal matrices

V,W > 0 (non-positive entries would be a contradiction to A,B, Â and B̂ being
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M-matrices).

Regarding our model, this assumption only neglects non-linear dependencies be-

tween the two phases. However, we expect the linear dependencies to dominate.

That is, for instance, the density of oil and water differ by a certain factor per cell,

which is mainly determined by the general difference of the oil and water density.

In the limit case model, we only neglect small deviations from this general factor,

for instance, due to pressure differences.

The linear system matrix then reads as:

Jlimit =

(
A −B
V A WB

)
. (3.25)

The linear dependence implies ÂA−1 = V and we obtain the Schur complement

J̃limit =

(
1 0

−V 1

)
︸ ︷︷ ︸

:=C

Jlimit =

(
A −B
0 (V +W )B

)
, (3.26)

which corresponds to U f from (3.24).

We note that ILU corresponds to a row-wise elimination of the respective matrix

that, as it is incomplete, generally leads to a rest. As each row of Â = V A,

however, is a multiple of the respective row in A, the elimination of the lower left

block in (3.25) does not lead to a rest, also for the incomplete factorization.

Therefore, the ILU(0) iteration operator for Jlimit is equal to that of J̃limit. As the

latter one turns out to be block-triangular, the computation of the spectral radius

simplifies.

We are now going to formally show the equality of the two ILU iteration operators.

This exploits the fact that the ILU factorization of a matrix w.r.t. a non-zero

pattern is unique under certain conditions, if it exists. Our argumentation here is

the same as the one from Meijerink and van der Vorst [71] for M-matrices: they

exploited the M-matrix property to prove the existence of the ILU factorization,

but not for showing its uniqueness.

Lemma 3.7. Let A be an n× n matrix and assume the incomplete factorization

A = LU − R w.r.t. the non-zero pattern P 6=0 exists (i.e., (ij) /∈ P 6=0 ⇒ (L)ij =

(U)ij = 0) with a lower triangular L and an upper triangular U . We assume

diag(L) = 1 and U is regular (i.e., (U)ii 6= 0 ∀1 ≤ i ≤ n).

Moreover, we require that, with (ij) ∈ P 6=0, (LU)ij = (A)ij, i.e., there is no rest



Convergence Properties of ILU in the Limit Case 92

(from Saad ([88], Proposition 10.2) this is known to hold for a classical ILU(k)

factorization).

Then the ILU factorization is unique for this non-zero pattern.

Proof. The 2n2 entries of L and U are uniquely defined:

• n2−n entries result from the factors being triangular (i.e., the upper triangle

of L and the lower one of U are zero).

• n entries result from L being normalized.

• If we assume |P 6=0| = m, then n2 −m entries follow from the factors being

zero outside the non-zero pattern.

• The remaining m entries follow from the zero rest matrix in the non-zero

pattern:

– As (L)11 = 1, for i = 1 we have (U)1j = (A)1j for any (1j) ∈ P 6=0.

– For i = 2 we have (A)21 = (L21)(U)11. As (U)11 is already deter-

mined, this determines (L)21. We analogously continue with (A)22 =

(L21)(U)12 + (L22)(U)22, which, due to (L)22 = 1, determines (U)22.

This proceeds until (A)2n = (L21)(U)1n + (L22)(U)2n determines (U)2n.

A successive proceeding determines each entry of the factors in the non-zero

pattern by the respective entry in A.

We can use the above result to describe the ILU(0) factorization of Jlimit. Let

us denote the ILU(0) factorization of A by LAUA and the ILU(0) factorization

of (V + W )B by LVWBUVWB. We assume that both factorizations exist. For A,

as it is a symmetric M-matrix, the existence was showed by Meijerink and van

der Vorst [71]. (V + W )B does not need to be symmetric but, due to V,W > 0

being diagonal and B strongly diagonally dominant M-matrix, (V + W )B is a

strongly diagonally dominant M-matrix. According to practical experience, the

ILU factorization of this non-symmetric M-matrix exists7 as well.

We can now state the following lemma regarding the ILU(0) factorization Jlimit =

7We could modify the ILU factorization such that its existence is guaranteed: Let G =
(gij) = (V + W )B and H = (hij) with hii = gii and hij = max(gij , gji). Then H = G − P ,
where P is a non-negative matrix. Due to G being a diagonally dominant M-matrix, so is H
(the off-diagonals just became weaker) and, hence ([71]), the ILU factorization H = QH − RH
exists and is a regular splitting (i.e., Q−1

H and RH are non-negative matrices). Consequently,
G = QH −RH − P =: QH −RG is a regular splitting as well. For our further discussion it does
not matter whether we used this modified factorization regarding the lower right matrix block,
or the ILU(0) factorization.
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LU − R and determine the different blocks of the ILU factorization that we will

use later on.

Lemma 3.8. For the ILU(0) factorization of Jlimit, with some appropriate U2,

there is

L =

(
LA 0

V LA LVWB

)
and U =

(
UA U2

0 UVWB

)
. (3.27)

Proof. Let us denote the factors in a general way as:

L =

(
L1 0

L2 L3

)
and U =

(
U1 U2

0 U3

)
.

By construction it is clear that L1U1 is the ILU(0) factorization of A, i.e., L1 = LA

and U1 = UA. As the rest matrix is zero in the non-zero pattern, V > 0 is diagonal

and the factorization is unique, it follows that L2 = V LA.

In the non-zero pattern, L1U2 equals −B. As the same holds for L2U2 + L3U3 =

V L1U2 + L3U3 regarding WB, this induces L3U3 in the non-zero pattern equals

WB + V B. Hence, as L3 and U3 are triangular and L3 is normalized, L3U3 is the

ILU(0) factorization of WB + V B, i.e., L3 = LVWB and U3 = UVWB.

Let us now compute the ILU(0) factorization L̃Ũ of J̃limit. Regarding the first

blocks, i.e., A and −B, there is no difference compared to Jlimit. Regarding the

saturation rows, due to the Schur complement, the derivation of the factors also

is straight forward and we have

L̃ =

(
LA 0

0 LVWB

)
and Ũ =

(
UA U2

0 UVWB

)
. (3.28)

That is, with C from (3.26) we have L̃ = CL and Ũ = U . Both allows to state

the following corollary regarding the ILU(0) iteration operators:

Corollary 3.9. The ILU(0) iteration operators S and S̃ for the linear systems

described by Jlimit and J̃limit, respectively, are equal.

Proof. S̃ = 1− Ũ−1L̃−1J̃ = 1− U−1L−1C−1CJ = S.

Remark 3.10. In the point-wise numbering, our argumentation would apply per

block-row (i.e., the set of rows that correspond to the same point) and we ended

with the same result. 4
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3.3.3 System-AMG in the Limit Case

We note that regarding the hierarchical treatment of the pressure it does not mat-

ter whether we consider the linear system that is described by Jlimit or J̃limit, i.e.

P̃ = P . Consequently, also regarding the full solver operation, it does not matter

whether we consider the original linear system, or apply the Schur complement

before solving the system, i.e. S̃P̃ = M̃ = M = SP .

The above results give

M = M̃ = S̃P̃ =

(
SA X

0 SVWB

)(
MAMG Q−1

AMGB

0 1

)

=

(
SAMAMG SAQ

−1
AMGB +X

0 SVWB

)
,

(3.29)

where SA and SVWB denote the ILU(0) iteration operator for the systems that are

described by A and (V + W )B, respectively. X denotes some term that results

from U2 6= 0. This term does not matter for the spectral radius of M .

In our limit case we have now shown that the convergence properties of the full

solver approach are determined by how efficiently AMG can solve for the pressure

and ILU(0) for the iterations:

Corollary 3.11. ρ(M) = max(ρ(SAMAMG), ρ(SVWB)).

Proof. This is a direct consequence of Lemma 3.4 for determinants of block ma-

trices.

In the following, we are going to discuss both spectral radii and see that we can

expect them to be uniformly bounded away from one within the class of problems

at hand. We will find that the overall convergence, i.e. ρ(M), is determined by

• The convergence properties of AMG for the pressure sub-problem in the

energy norm.

• The convergence properties of ILU for the saturation sub-problem in the

Schur complement system, i.e. ρ(SVWB). We will see that these are deter-

mined by the diagonal dominance of (V +W )B.
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We will especially see that AMG is essential for the overall convergence rate being

significantly lower than one: Without the operator P , the spectral radius of M

was determined by the spectral radii of SA and SS. Since A is a weakly diagonally

dominant M-matrix, although ρ(SA) < 1, it is close to one. These considerations

imply that the applicability of AMG to the pressure sub-problem is crucial. In

our model case we have chosen properties that ensure this. However, in a general

simulation, the conditions can be less ideal, as we will see in Chapter 4.

After discussing the limit case, we are going to outline the relation of this limit

case with the more general case, i.e., the system given by Jmodel and not Jlimit.

Remark 3.12. We cannot simply choose SA = 1. Then we generally had L̃ 6= CL

and could not exploit S̃ = S. For the same reason, we cannot use Gauss-Seidel or

Jacobi for Jmodel, but need an incomplete factorization. 4

3.3.3.1 Convergence for the Saturation Part

In this section we are going to discuss the spectral radius of SVWB, which is the

iteration matrix that describes the ILU(0) method for the linear system that is

described by (V + W )B. We have already seen that, due to B being a strongly

diagonally dominant M-matrix and V,W > 0 are diagonal, (V +W )B is a strongly

diagonally dominant M-matrix as well and we can expect any iterative method to

efficiently solve the respective linear system. For the Jacobi method, for instance,

we have:

Lemma 3.13. Let A be an arbitrary matrix that is diagonally dominant in each

row. Then for the iteration matrix SJac that results from the Jacobi method, we

have ρ(SJac) < 1 − σ, where σ ∈ (0, 1] depends on the strength of the diagonal

dominance.

Proof. As A is diagonally dominant in each row, we can split it into

A = AM +AD, (3.30)

where AM is diagonally dominant in each row and AD is diagonal and positive.

Let Z = diag(A) and ZM = diag(AM), then the positivity of AD implies the

existence of a λ > 1 such that Z ≥ λZM .

As AM is diagonally dominant, the Jacobi method does converge for the linear
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system that is described by AM . The Jacobi method results from the splitting

AM = ZM − R, with a rest matrix R. Hence, we have some consistent matrix

norm ||.||x, such that ||Z−1
M R||x < 1.

Due to AD being diagonal, the Jacobi method applied to A corresponds to the

splitting A = Z−R, with R as before. The iteration matrix is SJac = Z−1R. For

any vector e we have:

||SJace||x ≤ ||
1

λ
Z−1
M Re||x ≤

1

λ
||Z−1

M R||x||e||x <
1

λ
||e||x. (3.31)

Hence, σ ≥ 1− 1
λ
. From λ > 1 we have 0 < σ ≤ 1.

The Jacobi method corresponds to an incomplete factorization with a smaller

level of fill than ILU(0): the diagonal. Since (V + W )B is an M-matrix, from

Manteuffel [68] (Theorem 3.6) we therefore have that the spectral radius of the

ILU(0) operator has to be at least as small as the one of the Jacobi operator. This

theorem does not require the factorized matrix to be symmetric. Consequently,

ρ(SVWB) is not only smaller than one but also smaller than 1−σVWB, where σVWB

depends on the ’weakest’ diagonal dominance of B (and, hence, (V + W )B). As

we have seen in Section 2.3, this is determined by the time step size but not by

the problem size.

3.3.3.2 Convergence for the Pressure Part

We are now going to discuss the spectral radius of SAMAMG, where SA results

from the ILU(0) method for the linear system that is described by A and MAMG

describes AMG for this system. We note that, due to SA and MAMG not commut-

ing, we cannot simply multiply the two spectral radii to compute ρ(SAMAMG).

Instead, we will exploit that both solver operations do converge in the same norm.

We will use the energy norm ||.||A, as it is the natural norm to be considered in

the AMG context. It is defined via the scalar product < A., . >std.

Since A is an spd M-matrix, AMG is applicable without any problems and we can

expect it to be an efficient solver. We refer to the discussion by Ruge and Stüben

[85, 95] for further details and proofs. We here just state that AMG is scalable

for a class of problems at hand, e.g. A. That is, we have some 0 < τA < 1 such

that ||MAMGe||A < (1 − τA)||e||A for an arbitrary error vector e, where τA does

not depend on the problem size.
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We now need to consider SA and show that it does not have a negative effect.

SA results from the ILU(0) factorization of A, which implies A = QA − RA and

SA = Q−1
A RA, where QA = LAUA. Due to A being a symmetric M-matrix, from

Meijerink and van der Vorst [71] we know that all entries of Q−1
A and RA are non-

negative. That is, we have a regular splitting, which for our positive definite A

implies [100] ρ(SA) < 1. This implies that there is some consistent matrix norm

such that ||SA||x < 1. Also in the energy norm, due to the equivalence of norms

in a finite dimensional vector space, the asymptotic convergence is guaranteed.

However, we require ||SAe||A < ||e||A. Showing this requires the following prepa-

rations.

Lemma 3.14. With ILU(0) on a symmetric non-zero pattern we have QA = QT
A

(in fact, the argumentation holds with ILU(k) as well).

Proof. Since A is spd, we can compute the incomplete cholesky (IC) decomposition

A = GAG
T
A − RAG on a symmetric non-zero pattern, with GA a lower triangular

matrix. With LA = GAdiag(GA)−1 and UA = diag(GA)GT
A, we can turn this

decomposition into an incomplete LU factorization with the same non-zero pattern.

According to Lemma 3.7, this must be unique. Hence, the ILU(0) decomposition

and the IC(0) one are the same. This gives QA = LAUA = GAG
T
A is symmetric.

Lemma 3.15. Let SsymA = 1
2
(SA + STA) be the symmetric part of SA. We have

ρ(SsymA ) < 1.

Proof. See Appendix B.

Remark 3.16. We note that, although A and QA are symmetric, SA = Q−1
A RA

generally is not symmetric. However, ASA = A(1 − Q−1
A A) is symmetric, which

implies that SA is symmetric regarding the energy scalar product < A., . >std. This

is sufficient to, for instance, use ILU(0) as a preconditioner with the conjugate

gradient method. 4

Corollary 3.17. Since ρ(SA) < 1, so is ρ(S2
A). With the same argumentation as

in Lemma 3.15 we have ρ(1
2
(S2

A + (STA)2)) < 1. 4

We are now ready to show our desired result.

Theorem 3.18. For all e, we have ||SAe||A < ||e||A.
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Proof. The statement to be proven is equivalent to

0 < A− STAASA.

Due to QA being symmetric we have STA = 1−AQ−1
A . Hence, by a multiplication

of A−1 from the left, we can turn the above relation into

0 < 1− S2
A.

That is, to show the theorem, we need to show that 1 − S2
A is positive definite

in a non-symmetric sense (we remember that SA does not need to be symmetric).

More precisely, it is sufficient to show that the symmetric part of 1−S2
A is positive

definite8. We define T := 1
2
(S2

A + (S2
A)T ) and our requirement is:

0 < 1− T.

Let w be an eigenvector of T with eigenvalue λ. Then we have

wT (1− T )w = (1− λ)wTw,

which is positive: Due to ρ(T ) < 1 (cf. Corollary 3.17), λ < 1. As T is symmetric,

its eigenvectors form a basis of the Rm and, hence, 1− T is spd.

Corollary 3.19. ρ(SAMAMG) < 1− τA with 0 < τA ≤ 1.

Proof. With an arbitrary e we have ||SAMAMGe||A < ||MAMGe||A < (1− τA)||e||A.

3.3.4 Meaningfulness for the Initial Problem

In the previous sections we have discussed the convergence properties for the limit

case where the pressure- and saturation-related sub-blocks of the linear system

are related by a scaling with a positive, diagonal matrix. In the general Dead-Oil

case, we can still expect these sub-blocks, i.e., A and Â as well as B and B̂, to

be related. We have also outlined that we can even expect this linear dependency

8Let A be an arbitrary square matrix. Then, due to the Euclidean scalar product being
symmetric, for any vector v there is: 1

2v
T (A + AT )v = 1

2 (< v,Av >std + < Av, v >std) =<
v,Av >std= vTAv.
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to dominate this relation. However, we can generally not expect it to be the only

dependency. That is, we generally have

Â = V A+ E, (3.32)

with a positive, diagonal V and some rest matrix E. An analog relation holds

with B and B̂. However, the pressure sub-blocks are the crucial ones regarding

the Schur complement (3.26) that ILU incorporates (E = 0) or approximates

(E 6= 0). In Section 3.3.2, we have used the relation B̂ = WB only to describe

the ILU factorization of Jlimit in Lemma 3.8.

That ILU approximates this Schur complement also in the E 6= 0 case is clear

from the fact that the LU -decomposition (3.24) for the 2×2 unknown-wise system

exactly corresponds to this Schur complement: ILU is an approximation of the full

LU -decomposition.

Clearly, the quality of this approximation is the better, the ”smaller” E is. This

also determines how close the spectral radius of our general operator M is to

the one of M̃ in the Schur complement case. That is, we can expect our System-

AMG approach to work the better, the closer the pressure relations of the different

involved phases are.

This is also reasonable in a physical interpretation: the pressure approximation

from the coarse grid correction process only reflects the flow-properties regarding

the first phase, which are described by App, or A. Once the entire problem is

solved, we clearly have a unique pressure that fits to the pressure relations from

the second phase as well, which are described by Asp, or Â. However, during the

iterative solution process, we compute a pressure correction under a still erroneous

saturation. Therefore, a pressure correction that, under this saturation, properly

reflects the pressure relations from A, under this saturation, does not need to be

well-suited regarding the pressure relations from Â. Both pressure relations may

well differ, for instance, due to different pressure dependencies of densities. Hence,

if E 6= 0, the ILU sweep will have to adopt the pressure accordingly and does not

only need to update the saturations. The ”bigger” E, the more impacts of these

additional efforts can be expected on the overall convergence rate. We will get back

to this aspect when constructing a preparatory matrix transformation in Chapter

4.

In summary, we have the following conditions for our System-AMG approach to

be an efficient solver method:
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• A is well-suited for the application of AMG.

• A and Â are sufficiently similar, which means E from (3.32) is small.

• B and B̂ are diagonally dominant in each row.

3.3.5 Empirical Confirmation

In order to confirm our results in practice, we are now going to discuss the relation

of the pressure-related sub-parts with exemplary test cases. In Figure 3.5 we

illustrate the small impact of the rest matrix E by comparing the Frobenius norms

of A, Â and E of a linear system from an incompressible SPE10 simulation.

A Â E
0

1

2

3

4
·105

3.49 · 105 3.49 · 105

620

||.
|| F

r
o
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Figure 3.5: Frobenius norms of the matrices A, Â (corresponding to App and
Asp, respectively) and the rest matrix E from a linear system from
an incompressible Dead-Oil simulation (SPE10 model).

A small E implies that V is a good approximation of ÂA−1, which implies that

ILU for the full system is a good approximation of the Schur-complement (3.26).

The good approximation of this Schur complement coincides with practical expe-

riences. Let us construct the ILU(0) factorization J = LU −R of a representative

Jacobian from a Dead-Oil simulation and compute the Frobenius-norms of the four

sub-matrices of J and L−1U−1J , respectively. As this requires explicitly invert-

ing matrices and dense matrix computations, we do not consider the well-known

SPE10 case here (1.1 million cells), but the much smaller Case10 from ADG-

PRS’ test suite (9026 cells). For this representative problem, the norms of the

sub-matrices are:

Blocks in J :

(
1.38 · 105 1.11 · 109

7.85 · 104 1.11 · 109

)
Blocks in L−1U−1J :

(
95.36 6.57 · 105

0.7 · 10−4 94.91

)
.
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The small lower left block of L−1U−1J , especially in contrast to the upper right

block, shows the good approximation of the Schur complement by ILU(0).

The fact that the Schur complement is only approximated, however, implies that

the convergence of System-AMG may depend on the size of E. In fact, the con-

vergence speed for two SPE10 problems at different mesh sizes (original size and

refined) is not exactly equal, as depicted in Figure 3.6.

However, we still see the clear advantage of AMG: For both sizes, the convergence
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Figure 3.6: Convergence history of System-AMG and ILU(0) for two linear
systems from Dead-Oil simulations with different mesh sizes. One
simulation is the original SPE10 with 1.1 million cells, the other
one is a refined SPE10 model with nearly 9 million cells (cf. Ap-
pendix A). Both linear systems are the first system from a simu-
lation run with ADGRPS.

of ILU starts slowing down once a certain accuracy is achieved. This is different for

the solution with System-AMG. Here we have roughly the same residual reduction

per iteration, which is bounded away from one. This implies that System-AMG

reduces all high- and low-frequency error components sufficiently well per itera-

tion, while the convergence of ILU suffers from some error components that are

not reduced properly.

3.3.6 Meaningfulness for a Full Black-Oil Problem

We have made some assumptions regarding our model problem (3.21) and we are

now going to discuss the impact of these assumptions not to hold in practical

applications. Essentially, all assumptions have been made in order to ensure the
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applicability of the AMG and ILU theory regarding A.

If, where MPFA discretizations are used, A is of essentially positive type, the AMG

theory still is applicable. This, however, does not hold for the ILU theory.

If we allowed for compressible models, according to Theorem 2.25, A still was an M-

matrix, but not symmetric anymore. The M-matrix property at least holds under

certain constraints on the wells and the time step. From practical experience, we

therefore still expect AMG to be applicable. However, no statements regarding an

energy norm, which does not exist for a non-symmetric matrix, are possible. The

same holds for ILU.

Finally, also the consideration of only two phases is a limitation of generality.

However, we expect our discussion to also hold with more phases being involved.

Then Ass is not related to a single physical unknown anymore, but to two or more.

However, it remains strongly (block) diagonally dominant with positive diagonals.

Just, due to Ass being a 2 × 2 block-matrix with the blocks being Z-matrices,

Ass is not an M-matrix anymore and we cannot apply the ILU theory. From

experience we expect ILU to work properly, though. Also, all sub-blocks of Asp

still are comparable to App, as they result from the same background.



Chapter 4

System-AMG for Industrial FIM

Black-Oil Simulations

In the previous chapter we have defined a basic System-AMG approach for Black-

Oil simulations under somewhat ideal conditions. However, for industrial models

these ideal conditions are hardly ever met. In Chapter 2 we have seen various

examples for model and material properties that may have strong influences on

the linear systems and the solver performance. Especially well settings under real

conditions are becoming increasingly complex with today’s well-bore capabilities.

In Section 2.4.1.2 we have seen that the source terms from wells can have a drastic

impact on the properties of the pressure related matrix parts. This may even

result in these matrix parts being indefinite. As the well-settings might change

over time, also the amount of such impacts can change in the scope of a simulation

run.

In this chapter we will discuss a matrix transformation that we can apply to the

original linear systems in order to maintain the applicability of our basic System-

AMG approach for a wide range of Black-Oil problems. In fact, the method allows

to robustly and efficiently solve all problems that we have been concerned with.

More precisely, we transform the input problem into an equivalent linear system

by a matrix scaling with non-singular matrices CL and CR:

Ju = f ⇐⇒ J̃y = g with J̃ = CLJCR, y = C−1
R u and g = CLf. (4.1)

In the following a tilde ˜ indicates a scaled matrix, or a sub-part of a scaled

matrix.

103
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In this chapter we will discuss a left scaling CL that allows to solve Black-Oil

problems robustly with System-AMG. Our discussion on how to extent these ideas

to more complex simulations in the next chapter will also involve right scalings.

4.1 General Aspects of Matrix Transformations

We apply the matrix transformation to linear systems that are set up by a reservoir

simulator. Typically, these are ordered point-wise (cf. (2.2)). We call [J ]ij the

block that couples the unknowns of grid cell i with those of cell j. The size of

these blocks is determined by the number of physical unknowns that exist in the

respective cells. Due to a disappearance of phases, this may vary between different

cells.

We will only consider Black-Oil problems in this chapter and per point have to

deal with three unknowns or less (one pressure and up to two saturations). We

will extent our System-AMG approach to more complex simulations in Chapter 5.

We may then have to deal with significantly more unknowns per point. Therefore,

we directly discuss the matrix transformations with an arbitrary size of the blocks

[J ]ii, rather than only size three.

Each block is a matrix by itself, reflecting the structure of the unknown-wise

ordering (2.1). In the Black-Oil case an arbitrary block reads as:

[J ]ij =

(
[App]ij [Aps]ij

[Asp]ij [Ass]ij

)
. (4.2)

With the above notation we refer to the parts of the respective sub-matrices from

the unknown-wise notation that correspond to the interaction between cells i and

j. In the Black-Oil case [App]ij is a scalar, [Ass]ij is a 2×2 matrix and [Asp]ij, [Aps]ij

are 2× 1 and 1× 2 vectors, respectively.

Throughout this thesis, in the sense of this point-wise block structure, we only

consider block-diagonal scalings. That is, with small1, possibly dense blocks [CL]i

and [CR]i, we have

CL =


[CL]1

. . .

[CL]npoints

 and CR =


[CR]1

. . .

[CR]npoints

 . (4.3)

1The dimension of [CL]i and [CR]i corresponds to the dimension of [J ]ii.
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By limiting the scalings to block-diagonal ones, we minimize their impact on the

sparsity structure of the Jacobian (2.14). The application of an arbitrary left- or

right scaling would require significantly more memory and computational efforts.

For an efficient solver approach in reservoir simulations this was impractical, and

it turns out to be not needed.

Clearly, solving the scaled problem in exact arithmetic gives the solution of the

original problem Ju = f . However, we have to quickly review the impacts of

solving a transformed linear system by an iterative method.

• With a left scaling we solve CLJũ = CLf . In the i-th iteration, for the

solution iterate, residual and error, the relation between the scaled and the

original problem is:

ui = ũi, ei = ẽi and ri = CLr̃i. (4.4)

• With a right scaling we solve JCRũ = f . In the i-th iteration we have:

ui = CRũi, ei = CRẽi and ri = r̃i. (4.5)

In a practical implementation, the accuracy of a solution iterate typically is mea-

sured in terms of the residual. In our discussion, for reasons of consistency, we will

always consider the residual reduction that corresponds to the original problem,

i.e., the residual is scaled back in the case of left scalings being involved.

4.2 Status Quo of CPR-AMG: Approximate Pressure-

Saturation Decoupling

Left scalings of the Jacobian are a common practice in today’s reservoir simulators

when using CPR-AMG (cf. Section 3.2.2). The idea is to weaken the coupling

between the pressure and saturation unknowns, i.e. Aps. This way, the outer

convergence of CPR-AMG shall be ensured, and accelerated as much as possible.

However, from the viewpoint of AMG, there are serious drawbacks, as we will see

in the following. In Section 4.4 we will discuss a new scaling that turns out to be

more suited in this regard.
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4.2.1 Purpose from CPR’s Point of View

In CPR-AMG, Scalar-AMG is used to solve a problem that in fact is not an

independent, scalar problem. The pressure unknown depends on further unknowns

in a coupled system. It is common practice to, at least approximately, decouple

the pressure from the saturations. This shall reduce the pressure correction step’s

dependency on the, in the iterative solution process still erroneous, saturation

unknowns.

Let us consider the limit case of a full decoupling with a full Schur complement:

CLJ =

(
Ãpp 0

Asp Ass

)
with CL =

(
1 −ApsA−1

ss

0 1

)
. (4.6)

Given that Scalar-AMG worked properly for Ãpp, the solution approach would be

straight forward: After having sufficiently solved for the pressure unknown, only

updating the saturation unknowns remains to be done. Due to the diagonal dom-

inance of Ass, this is rather inexpensive.

Such a complete decoupling is only possible by computing the full Schur comple-

ment, i.e., including the exact inversion of Ass. Since the blocks of Ass are diago-

nally dominant but not diagonal, such a full decoupling is practically impossible.

Therefore, pressure-saturation decouplings are performed only approximately in

CPR approaches.

4.2.2 Approximate Decoupling Methods

There are various approximate decoupling methods reported in the reservoir sim-

ulation literature, as we have already outlined in Chapter 1. All of these methods

aim at removing the pressure-saturation coupling in the diagonal blocks [J ]ii. In

Section 2.3.2.1 we have seen that the saturation related matrix blocks Aps and

Ass are strongly (block) diagonally dominant. Hence, the dominating coupling

between pressure and saturation is removed this way. The effect of the scaling on

the off-diagonal blocks is simply accepted ’as is’.

We do not give a full overview on all available methods here, but only review the

most relevant ones.
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4.2.2.1 Alternate Block Factorization

The Alternate Block Factorization (ABF) was initially introduced by Bank et.al.

[9] to reduce intra-equation couplings in a general system of linear systems that,

for instance, resulted from a system of PDEs. This is achieved by scaling J such

that the diagonal blocks become the identity, i.e.

CL =


[J ]−1

1,1

. . .

[J ]−1
npoints,npoints

 . (4.7)

Although the method does not particularly focus on the pressure saturation cou-

pling in the diagonal, it removes this coupling for all diagonal blocks [J ]ii.

4.2.2.2 Quasi-IMPES

The idea of quasi-IMPES (qIMPES) is to approximate the Schur complement from

(4.6) by a Schur complement for the diagonals only. This corresponds to defining

CL as:

[CL]i =

(
1 −[Aps]ii[Ass]

−1
ii

0 1

)
. (4.8)

The possibly remaining couplings between pressure and saturations in the off-

diagonal blocks [J ]ij are usually accepted. Alternatively, some simulators even

simply drop these terms and, hence, do no longer solve a linear problem that is

equivalent to the initial one.

A more detailed description of the approach is, for instance, given by Jiang or

Lacroix et.al. [52, 63].

4.2.2.3 True-IMPES

The true-IMPES (tIMPES) approach incorporates physical information in the

approximate decoupling. For the saturation related matrix blocks, it distinguishes

between those parts that result from the flux part of the mass balances (2.10), and

those from the accumulation part. The Schur complement approximation is only

applied to the flux related coupling between pressure and saturation. That is, if

we split [Aps]ii := [ApsF lux]ii+[ApsAccu]ii, then the approach aims at only removing
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[ApsF lux]ii in the diagonal block [J ]ii by a Schur complement. If we analogously

subdivide [Ass]ii, CL is defined as:

[CL]i =

(
1 −[ApsF lux]ii[AssF lux]

−1
ii

0 1

)
. (4.9)

This way, the Schur complement only involves terms that are induced by the flux.

This is generally assumed to be closer to a physical intuition (see, for instance,

[52], section 7.4.1).

Just as with the qIMPES, remaining couplings between pressure and saturation

are usually accepted and sometimes simply dropped. In contrast to qIMPES, such

couplings may also remain in the diagonal blocks here. For further discussion on

the approach, we refer to Jiang and Lacroix et.al. [52, 63].

Remark 4.1. The application in a purely algebraic manner does not appear to

be straight forward. The splitting between flux and accumulation induced terms of

the matrix requires physical information. However, from our discussion in Section

2.3.2.1 it is clear that in off-diagonal blocks [Aps]ji and [Ass]ji entries are induced

by the flux terms of the mass balance, only (cf. Equations (2.23) and (2.24)). The

entries in the ji-blocks result from the derivatives of the transmissibilities w.r.t.

the saturations in cell i (in contrast to ji, in the ij-block, it would be the saturation

in cell j). Hence, the column-wise sum of the absolute values of these off-diagonal

terms must equal the flux induced part of [Aps]ii and [Ass]ii, respectively. 4

4.2.3 Results and Drawbacks for CPR-AMG

In practice, we always observe some simulations where CPR-AMG with the ap-

proximate decouplings fails. Such failures are observed with different matrices

for the different approximate decouplings. Figure 4.1 shows two exemplary cases

where we can see the different impact of the approximate decoupling methods.

True-IMPES was constructed algebraically, as described in Remark 4.1. We com-

pare the different solution approaches with FGMRes/ILU(0) as a reference bench-

mark that was able to sufficiently solve all given problems.

We will provide results with further test cases in Figure 4.4 in Section 4.4.3.

Such rather unpredictable failures of the CPR-AMG method are problematic for

the application in reservoir simulators. These issues nearly always are related to
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(b) Case cputest

ILU only CPR-AMG w/out pre-proc. CPR-AMG w/ qIMPES
CPR-AMG w/ ABF CPR-AMG w/ tIMPES

Figure 4.1: Convergence history of the CPR-AMG approach with different
approximate decoupling methods, compared to a single level in-
complete factorization. Two representative systems from three
dimensional, compressible Black-Oil simulations with 195193 cells
in (A) and 29540 cells in (B) (cf. Appendix A).

problems that AMG has with the pressure sub-problem in the approximately de-

coupled system. These problems are a consequence of the fact that the objective

of the methods from Section 4.2.2 is the approximate decoupling of pressure and

saturation, but not the applicability of AMG. As all presented approximate de-

coupling methods result in some change in the pressure sub-problem, they clearly

can have an impact on AMG.

More precisely, the left scaling mixes the different pressure related blocks that

correspond to cell i according to:

[Ãpp]ij = ξ1,i[App]ij +


ξ2,i

...

ξnunknowns,i


T

[Asp]ij. (4.10)

The weights ξk,i might vary drastically between two blocks i1 and i2. Hence, before

summing them up, each of the blocks (App and the blocks in Asp) are scaled by

some diagonal matrices. This scaling may differ for each cell and each unknown.

It is computed only with the objective to approximately decouple pressure and

saturations and does not at all reflect the properties of the resulting Ãpp. Ãpp is
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not only significantly non-symmetric in general, but may also be indefinite.

Both effects can have drastic impacts on AMG’s applicability. A strong non-

symmetry of the problem is rather not natural for a diffusion-based problem2.

It is questionable whether the construction of the AMG coarsening allows for a

reasonable interpolation. This is because in a non-symmetric problem, a matrix

coupling aij may be considered strong according to (3.7), while aji is not. In any

case, AMG cannot construct a hierarchy that properly reflects the diffusion effect,

as the matrix properties that result from the diffusion are mixed with completely

different parts. Finally, a possibly resulting indefiniteness, as it is observed in

practice, may cause even more severe convergence issues for an AMG method.

We note that any (approximate) pressure-saturation decoupling for a general

model will have some impacts on the pressure sub-system, if we used a left-scaling

for the decoupling.

A right-scaling cannot be used as an alternative: While this could be constructed

without changing the pressure sub-problem, it would result in saturation columns

being influenced by the pressure column. As the pressure-related sub-matrices in

general are only weakly diagonally dominant, we have to expect quite some in-

fluence on the off-diagonal pressure-saturation coupling, if we only decoupled the

diagonal. A full decoupling, also from the right, is not realizable in an efficient

manner.

We have seen that CPR-AMG and System-AMG for Black-Oil problems are nearly

identical methods. Hence, if we used the approximate decoupling methods prior

to the application of System-AMG, we would have to expect the same impacts as

in CPR-AMG. Therefore, we do not consider (approximate) pressure-saturation

decouplings.

Remark 4.2. In addition to unpredictable problems for the applicability of AMG,

there is another problem with approximate decouplings: They only aim at removing

the initially dominating term of the coupling between pressure and saturation. The

effect on the respective couplings in off-diagonal blocks is unpredictable. Hence,

it is not clear whether decoupling pressure and saturation in the diagonals really

always ’weakens’ the respective overall coupling, i.e., whether ||Ãps|| < ||Aps|| in

some matrix norm. 4
2In contrast to this, the non-symmetry of the pressure problem in compressible simulations

(cf. Theorem 2.25) is typically rather small, and the symmetric influences from the fluid flux
dominate.
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4.3 Challenging Initial Linear Systems

In Figure 4.1 from the previous section we have not only seen that approximate

decoupling methods may have some problematic effects from AMG’s point of view,

we have also seen that CPR-AMG without any matrix pre-processing might not

work as well. Consider the second example in the figure, the test case cputest:

Without any pre-processing CPR-AMG does not converge at all, which holds for

our System-AMG approach from Figure 3.2 as well. There are also several other

test cases observed where System-AMG does not work for the linear problem ”as

is”.

The reason are problems with the pressure-based AMG hierarchy. When we dis-

cussed our System-AMG approach in Chapter 3, we assumed somewhat mild con-

ditions that especially ensured the pressure related matrix blocks to be M-matrices,

i.e., in particular to be definite. However, these conditions do not need to (and

typically do not) hold in practice. Whether or not we need to expect negative

impacts on the applicability of AMG, depends on the model and especially the

used wells:

• In incompressible models, according to Theorem 2.21, we always have App >

0 being an M-matrix, if we used TPFA discretizations. Following our dis-

cussion in Section 2.3.2.2, by using MPFA schemes we can still expect App

to be of essentially positive type. In both cases App meets the requirements

of AMG.

• In compressible models, however, more physical details are involved, making

them more realistic. Following Theorem 2.25 and the discussion beforehand,

for larger time steps some rows of App may no longer be even only weakly

diagonally dominant. This does not necessarily cause problems for AMG,

however, it may. Most importantly, however, in compressible models, wells

can cause serious problems for AMG’s applicability (cf. Section 2.4.1.2):

– Injection wells, depending on how strongly the density of a phase de-

pends on the pressure, can result in negative contributions to the di-

agonals of App. In practice, these can have a serious impact on AMG.

They can even be so strong that the entire diagonal becomes negative.

– Production wells yield positive contributions to the matrix diagonal.

This is not a problem for AMG.
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To formalize these findings, for a compressible model let us denote the pressure

matrix that we would have obtained in the incompressible case as Aincmppp . Accord-

ing to our discussion in Section 2.3.2.1 we have

App = Aincmppp + Arestpp . (4.11)

While Aincmppp results from the diffusion process, the rest matrix results from the

compressibility. This rest matrix is non-symmetric and may have strong nega-

tive diagonal entries, possibly causing difficulties for AMG. Aincmppp meets AMG’s

requirements: Following Theorem 2.21, as long as each part of the reservoir is per-

forated by at least one well, Aincmppp is an spd M-matrix (or of essentially positive

type in the case of MPFA discretization schemes). In the incompressible case we

simply have Arestpp = 0.
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Figure 4.2: (A) Permeability field (in millidarcy) of the cputest case, with
sketched wells (cf. Appendix A). Picture from Computer Modeling

Group Ltd., CMG.

(B) Excerpt of the eigenvalues of a representative, original pres-
sure sub-problem App from cputest, plotted in the complex plane.
Excerpt shows all eigenvalues with negative real part, but not all
with positive one.

Especially if the pressure sub-problem is (highly) indefinite, the ideas behind the

construction of an AMG hierarchy do not robustly apply anymore. As an example,

consider the cputest case from an industrial reservoir simulation from CMG with

their IMEX simulator (cf. Appendix A). We have already seen that AMG has

convergence problems in Figure 4.1. This model is characterized by a high number

of injection wells, where gas and water is injected. In the considered exemplary

linear system, the impact of Arestpp on the pressure sub-problem is serious: there are

11% of the diagonals being negative. Roughly 2% of the eigenvalues of App have a
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negative real part3. Figure 4.2b shows an excerpt of the eigenvalues to illustrate

this fact. Figure 4.2a shows the respective permeability field and the relatively

high density of wells.

To illustrate the difficulties that System-AMG has when using App as a primary

matrix to construct the hierarchy with, let us consider Scalar-AMG being applied

to the scalar pressure system. If we used standard4 Scalar-AMG as a precon-

ditioner for FGMRes, the solver does not converge at all. In fact, a massive

divergence is only prevented by FGMRes.

Remark 4.3. For this particular scalar problem it is still possible to construct a

convergent AMG method:

• We use an alternating Schwarz approach that separates those rows with neg-

ative pressure diagonals and uses a direct solver for them (see, for instance,

Gander [44]. Clees and Ganzer [27] also suggest Schwarz methods, for in-

stance, for well equations).

• The coarsening is based on aggregation (cf. Remark 3.2). This allows to

easily introduce an additional constraint in the coarsening: An aggregate is

constructed only if the resulting row of the coarse level operator had a positive

diagonal. Hence, the next level did not have negative diagonals.

With these remedies, AMG converges robustly for the pressure sub-problem. This

also holds for the full problem. However, the convergence rate is relatively poor

and it is questionable whether this approach still maintains convergence with the

next problematic case. Our goal is a System-AMG approach without such ”manual

adjustments”. 4

4.4 Dynamic RowSum Transformation for System-

AMG

In this section we are going to discuss a matrix transformation that we will combine

with the System-AMG approach to obtain a robust solver for Black-Oil problems,

3Due to the non-symmetry of this pressure sub-problem from a compressible simulation (cf.
Theorem 2.25), there are not only real eigenvalues.

4The rows with negative diagonals are formally multiplied with −1 in order to have all
diagonals positive for AMG.
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also in complex industrial simulations. We call this transformation dynamic row-

sum, or DRS. This transformation has three objectives:

• We will ensure that the matrix transformation does not introduce artificial

difficulties from AMG’s point of view. This was different with the approxi-

mate decouplings from Section 4.2.2.

• We will attempt to ensure matrix properties that we expect AMG to be well-

suited for. That is, we will shield AMG from some of the negative impacts

that may result from the complex physics in industrial simulations.

• We will attempt to improve the overall convergence, where this can be

achieved without impacts on the first two objectives. More precisely, we

compute a correction for the total pressure, rather than the primary phase’s

one, where this does not have negative effects on the applicability of AMG.

Remark 4.4. In adaptive implicit simulations, for reasons of computational effi-

ciency, there still is a need to decouple pressure and saturations. In Section 6.2 we

will discuss this aspect and describe transformation approaches that can exploit the

matrix properties in AIM simulations without the risk of loosing the applicability

of AMG. 4

4.4.1 Full RowSum Transformation: Total Pressure Cor-

rection

The choice of associating the oil phase’s mass balance equation with the pressure

unknown for constructing the Jacobian matrix in Section 2.3.2 was completely

arbitrary. As we observed in Corollaries 2.22 and 2.26, the background of App and

the blocks within Asp is the same. All result from taking a mass balance equation’s

derivative w.r.t. pressure. Consequently, we could equally well have any other of

the mass balances associated with the pressure. However, while the structure is

roughly the same, the concrete material properties might vary per phase. Hence,

the different pressure related blocks are not exactly equal.

If we recall the relation (3.32) from Section 3.3.4, with some diagonal matrices

V1, V2 > 0 and some matrices E1, E2 we have:

Asp =

(
V1App + E1

V2App + E2

)
. (4.12)
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Given that AMG works properly for App, we have seen that we can expect the

convergence of System-AMG to be the better, the smaller E1 and E2 are - if we

assume the Dead-Oil result to carry over to the Black-Oil case.

Due to the AMG hierarchy being constructed based on App, it only reflects the

coupling structure of the pressure that results from the first phase. Hence, under

the still erroneous saturation in the iterative process, the resulting pressure cor-

rection does not necessarily reflect the respective structures that result from the

other phases.

In contrast to this, in an IMPES approach from Section 2.3.1, a total pressure cor-

rection was considered. That is, an averaged pressure description (2.12), weighted

with the current saturations was used. At the algebraic linear solver level, we

do not have the saturations available. However, we could still use an averaged

pressure description, with the same weight for each phase.

This corresponds to the transformation:

[CL]i =


1 1 . . . 1

1
. . .

1

 . (4.13)

We call this full row sum, or FRS method. From the discussion above, we can

expect it to be beneficial for the overall convergence of our System-AMG approach.

Such a scaling was also proposed by Scheichl et.al. [90]. It was designed to

approximately decouple pressure and saturations. Motivated from the fact that

Ass results from the second and third mass balance equations’ dependency on the

saturations, and Aps from the dependency of the first mass balance on ”(1− S)”,

a certain reduction of the pressure-saturation coupling can be expected (cf. the

relation between B and B̂ in the Dead-Oil problem Jmodel from Section 3.3). The

strength of this reduction depends on how equally distributed the phases are, i.e.,

the difference of the three saturations, and on how non-linear the dependency of

the mass-balances on the saturations is.

In contrast to the approximate pressure-saturation decouplings from Section 4.2.2,

the FRS method does not introduce additional difficulties from AMG’s perspective.

If App and the blocks in Asp are positive definite, then this also holds for Ãpp, which

is the sum of all blocks.



Dynamic Weights 116

4.4.2 Dynamic Weights

While the FRS method does not introduce new difficulties from AMG’s perspec-

tive, the original problem may already have had some properties that are prob-

lematic for the robust application of AMG, as we have discussed in Section 4.3.

In order to shield AMG from such properties, we will use dynamic summation

weights that we can adjust according to (expected) problematic matrix proper-

ties. We will also further adjust the dynamic weights, depending on whether or

not we expect a phase to give a meaningful contribution in the sense of a total

pressure equation.

Such dynamic weights δij ∈ R, for block i lead to the transformation

[CL]i =


δi1 δi2 . . . δinunknowns

1
. . .

1

 . (4.14)

The previous FRS scaling is the special case where δij = 1 for all j and i.

4.4.2.1 Shielding AMG from Problematic Pressure Problems

Let us start our discussion with the primary objective: the applicability of AMG.

In Theorem 2.25 we have seen that we cannot necessarily expect App to be perfectly

suited for AMG. It may especially become indefinite, which may result in serious

convergence issues for AMG. As a matter of practical experience, an AMG method

applied to such a problem can diverge drastically.

Let us recall App = Aincmppp + Arestpp from (4.11), with Aincmppp being symmetric and

positive definite. In compressible simulations with injection wells, some diagonals

of Arestpp may be strongly negative. That is, while Aincmppp always is at least weakly

diagonally dominant, due to Arestpp , this does not need to hold for App.

There is a clear relation between the induced lack of diagonal dominance and

indefiniteness of App. We can illustrate this with two artificial cases:

• Let λ be an eigenvalue of Aincmppp and ε > 0. Then, with Arestpp = −(λ + ε)1,

App is indefinite.
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• An injection well does not cause all diagonals of Arestpp to be negative. Let us

consider the case Arestpp = −η DIAG(ek), where ek denotes the k-th Euclidean

basis vector and DIAG(ek) the diagonal matrix where the i-th diagonal is

the i-th entry of ek. With an eigenvalue λ of Aincmppp and the corresponding

eigenvector v, App is indefinite as soon as ηv2
k > λvTv. That is, η may be

greater than the smallest eigenvalue of Aincmppp without causing indefiniteness

in App. However, with η big enough, App is indefinite.

It is not predictable how strongly the diagonal dominance of App in a particular

row needs to be violated to have an indefinite App, at least not in an efficient

way. Moreover, there typically also are diagonally dominant rows in App. Produc-

tion wells can only improve the diagonal dominance of the corresponding matrix

rows. Also injection wells do not necessarily result in a violation of the diagonal

dominance. Following our discussion in Section 2.4.1.2, an injection well in a com-

pressible model has a positive and a negative contribution to the diagonal. The

effect on the diagonal dominance depends on which of both dominates. However,

a single injection well may already be sufficient to cause indefiniteness.

We have seen that the pressure parts of the Jacobian, i.e., App and the blocks

in Asp, do not need to be equal. This especially holds for the rest matrices they

include. That is, all these blocks may suffer from properties that AMG might have

problems with. However, these problematic matrix properties result from pressure

derivatives of the phases’ densities. These differ for the different phases and we

can expect the extent and the location of these problems to be different for the

different pressure related blocks.

We are going to define our summation weights to take this fact into account. We

first of all exclude rows from the summation process that have a negative pressure

diagonal. Moreover, we exclude those rows where the pressure sub-part suffers

from a ”too drastic” lack of diagonal dominance. With some control parameter

0 ≤ εDD ≤ 1, we define the summation weights as:

δij :=


0 for [aj,1]i,i < 0

0 for
|[aj,1]i,i|∑
k 6=i |[aj,1]i,k|

< εDD

1 else

. (4.15)
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With the parameter εDD, we can control the strictness in requiring diagonal dom-

inance. We see this by discussing the two limit cases regarding the control param-

eter. For this purpose, let us assume that for each block-row i we find at least one

k such that δik 6= 0. We will discuss what to do if this assumption should not hold

further below.

• With εDD = 1 we exclude all rows where the diagonal dominance is even

only slightly violated. Then the resulting pressure sub-block Ãpp is at least

weakly diagonally dominant in each row. Hence, we can expect it to be

absolutely well-suited for AMG.

However, we ignore all rows with only a minor lack of pressure related di-

agonal dominance. As we have seen, a small lack of diagonal dominance

does not necessarily cause indefiniteness. Hence, we possibly ignore more

rows than necessary to avoid problems for AMG. The beneficial effect from

computing a total pressure is weakened more than necessary. That is, the

convergence of System-AMG might be better with a smaller εDD.

• With εDD = 0 only rows with a negative pressure-diagonal are excluded.

Thus, we typically are much closer to generating a total pressure problem in

Ãpp. However, as there might still be a drastic lack of diagonal dominance,

the resulting pressure sub-problem may be indefinite, with all possible im-

plications on AMG’s applicability.

With the choice of εDD we need to find a trade-off between the robust applicability

of the System-AMG approach, with a maybe slow overall convergence, and the

acceleration of the System-AMG convergence.

We can see the beneficial effect of the DRS transformation with the cputest case

that we have discussed before (cf. Figure 4.2): Figure 4.3 shows an excerpt of

the eigenvalues of the pressure sub-problem before and after the application of the

DRS transformation (i.e., App and Ãpp, respectively). For this particular problem,

no eigenvalues with negative real part remain. We can robustly solve the problem

with System-AMG, as we are going to see in Figure 4.4 later on.

4.4.2.2 Ignoring Phases of Minor Influence

The DRS method does not primarily consider the coupling between pressure and

saturation in Aps. To a certain extent, however, we can monitor this in addition.

More precisely, we check whether in Aps the coupling between the pressure and
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(b) Ãpp after DRS.

Figure 4.3: (A) Excerpt of the eigenvalues of the original pressure sub-
problem App from cputest, plotted in the complex plane. Excerpt
shows all eigenvalues with negative real part, but not all with pos-
itive one. (cf. Figure 4.2)
(B) Excerpt of the eigenvalues of the pressure sub-problem Ãpp
after the application of DRS.

any of the saturations already is small. If, with some control parameter εps > 0,

we have a k > 1 such that ∑
j 6=i |[a1,k]i,j|
|[a1,1]i,i|

< εps, (4.16)

then we exclude the respective row from the summation by setting δik = 0. How-

ever, we only apply this criterion if, after the first step, δi1 still is one, i.e., the first

phase’s pressure part still is part of Ãpp.

We do so, because the small coupling in Aps implies that the pressure problem

that is based on the first phase, i.e., the problem described by App, sufficiently

well describes the pressure problem that is associated with the k-th phase.

Consider the extreme case of Aps = 0. Then the pressure that solves the problem

described by App is the pressure solution, independent of whether the saturations

already are correct. In this sense, the linear system that is described by App prop-

erly captures the pressure problems that result from the other phases.

In general we do not have Aps = 0. However, regarding our phase k we assume the

pressure description that results from the first phase to be sufficient. Involving

it in the averaging process does not give any contribution in terms of the total

pressure description, but just adds some ’noise’.
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4.4.2.3 Regularity of the Transformation

In order to obtain a reasonable transformation, we need to ensure that CL is non-

singular, which is equivalent with each block [CL]i being non-singular. After the

dynamic summation, a singularity may occur if δi1 = 0 for any i. Then the first

column of [CL]i was completely filled with zeros and the block was singular.

In the easiest case there is some k > 1 with δik 6= 0. Then we simply adjust the

k-th row of [CL]i and obtain:

[CL]i =



0 δi2 . . . δik . . . δinunknowns
0 1
...

. . .

1 0
...

. . .

0 1


. (4.17)

Because δik 6= 0, the above block is non-singular without further implications for

the resulting pressure sub-problem. This adjustment in fact corresponds to an

exchange of rows. That is, instead of associating the pressure with the primary

phase α, for cell i we are associating it with the k-th phase. This is reasonable, as

the initial choice α was completely arbitrary. Hence, we are just choosing another

association that causes less problems for AMG.

It may happen that the DRS method decides all summation weights to be zero,

especially if εDD is chosen too strictly. In this case we need to accept some prob-

lematic influence on the pressure sub-problem: we reset that δik back to 1, for which

we expect the least negative impacts, i.e., the respective pressure sub-block shows

the smallest lack of diagonal dominance for this block i. Then we can continue as

above and obtain a non-singular scaling operator.

4.4.3 Summary and Results

The DRS transformation excludes potentially problematic rows from a total pres-

sure description. This aims at avoiding difficulties for AMG in constructing a

hierarchy of levels. At the same time, we can expect the total pressure description

to be beneficial for the System-AMG convergence. Even with excluding some rows,
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we are still approximating such a description5. With this combination of using a

total pressure description and at the same time shielding AMG from probably

problematic influences, we are able to solve all problems under consideration.

Algorithm 4.1 DRS to determine block [CL]i of size b× b
1: [CL]i ← 1

2: for j = 1, ..., b do
3: if [aj,1]i,i < 0 then
4: δij ← 0
5: else
6: if

|[aj,1]i,i|∑
k 6=i |[aj,1]i,k|

< εDD then

7: δij ← 0
8: else
9: δij ← 1

10: if δi1 6= 0 then
11: for j = 2, ..., b do

12: if
∑
k 6=i |[a1,j ]i,k|
|[a1,1]i,i| < εps then

13: δij ← 0

14: else
15: if ∀j = 1, ..., b : δij = 0 then
16: For ’least problematic’ l : δil = 1

17: Find l such that δil 6= 0
18: ([CL]i)l1 ← 1
19: ([CL]i)ll ← 0

20: for j = 1, ..., b do
21: ([CL]i)1j ← δij

Our final System-AMG approach for Black-Oil problems is described as

follows:

• We transform the original linear problem with the DRS method. Algorithm

4.1 summarizes how to obtain the i-th block of CL for a Black-Oil system.

• We apply our basic System-AMG approach from Figure 3.3 to the trans-

formed problem.

In practice, the choices εDD = 0.2 and εps = 0.02 turned out to give good results.

We could robustly and efficiently solve all considered test problems with these

settings. We use these choices as default in our System-AMG approach.

5It could be an aspect of further research to involve the saturations in the summation weights,
i.e., the weights are not only 0 and 1 then. This way, the resulting pressure system would be
even closer to a total pressure problem. We do not consider this here, as we do not have the
saturations available at the algebraic level. They would need to be supplied by the simulators.
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In principal it may happen that all pressure related blocks in the same block-row

i suffer from problematic properties. Then, to ensure non-singularity of Ãpp, we

have to accept these properties and cannot guarantee that AMG is applicable ro-

bustly. While such a situation did not occur in any of our tests, we still could

handle it: Either by adjustments at the AMG, or at the simulation side. AMG-

adjustments include different choices of the DRS control parameters, or remedy

strategies, such as the ones from Remark 4.3.

More promising in such extreme situations, however, are adjustments in the simu-

lator. In Theorem 2.25 we have seen that we can control the diagonal dominance

of the pressure related sub-blocks with the time step size. The smaller the time

steps, the less critical the pressure sub-blocks. That is, we are guaranteed that our

System-AMG approach works properly again, if we decrease the time step size.

In summary, we can regard the DRS method as shielding AMG from problematic

influences on an algebraic level as good as possible with a given linear problem.

At the same time we attempt to compute a total pressure correction rather than

a pressure correction that only reflects a single phase. Because both exploits all

pressure related information from the full matrix, we cannot expect more to be

possible on a reliable basis. In fact, with the DRS transformation it was possible

to efficiently solve a wide range of industrial test cases with System-AMG. This

even worked for cases where no AMG-based method was working before.

Figure 4.4 exemplarily demonstrates this for linear systems from selected simula-

tions. The System-AMG approach with the DRS scaling provides a robust and

efficient solver method for all four cases. It is the only method that always con-

verges much faster than the one-level reference benchmark (FGMRes/ILU(0)). It

is not necessarily the only approach that works efficiently with a given problem.

However, for all other approaches we find counter examples where the residual re-

duction is inefficient compared to the reference method, or there is no convergence

at all.

To show the robustness of the DRS method w.r.t. impacts from source terms, in

Figure 4.4d we have algebraically strengthened the effect of the existing source

terms. The negative impacts from source terms have been scaled6 by 1.5.

The case bo8p6 is an example for the fact that our choices for εDD and εps do not

6With the sum of the off-diagonal entries, the diagonals in the case of no wells could be
approximated.
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necessarily need to be optimal for each test case. Clearly, by adjusting these pa-

rameters, we can at least achieve the convergence speed of System-AMG after the

application of the FRS method. However, these parameter choices have impacts

on the convergence with other cases. Our top priority is the robust applicability

of the System-AMG solver, which always is much more efficient than a classical

one-level method. Hence, we leave it with the above default choices of the control

parameters.
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Figure 4.4: Convergence history of System-AMG with different pre-processing
methods compared to dynamic rowsumming (DRS). DRS is used
with the fixed control parameters that worked for all problems un-
der consideration. FGMRes/ILU(0) is given as reference bench-
mark.
Four representative systems from three dimensional, compressible
Black-Oil simulations (cf. Appendix A). (A) and (B) are from
Figure 4.1 width 195193 and 29540 cells, respectively. (C) shows
bo8p6 with 2.6 million cells and (D) shows cputest (29540 cells)
with the effect of injection wells being slightly strengthened alge-
braically.



Chapter 5

System-AMG for More Complex

Reservoir Simulations

The Black-Oil model forms the basis for compositional, thermal and geomechanical

models (cf. Figure 2.10). Analogously, our linear solution approach for Black-Oil

models serves as a basis for these more complex applications. In this chapter

we will extent the System-AMG approach from Section 4.4.3 to problems with

additional physical unknowns. This will also exploit the ability of System-AMG

to apply a hierarchy to different physical unknowns at the same time. Our final

approach will depend on the concrete simulation model, as they lead to linear

systems with different properties. However, as long as the model and the involved

physical unknowns are made known to the solver, our System-AMG approach

serves as a black-box solver for the types of models that we are considering in the

scope of this thesis.

5.1 Compositional Simulations

In compositional simulations we have to distinguish the two different modeling

approaches, Natural Variables and Volume Balance. In Section 2.6 we have seen

that both approaches lead to different, yet related, linear systems. In our System-

AMG approach, we have to take these differences into account.

125
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5.1.1 Natural Variable Formulation

In Natural Variable Formulations we have seen that the unknowns can be divided

in primary and secondary ones. The Jacobian (2.38) consists of four blocks:

JNV F =

(
Apr,pr Apr,sc

Asc,pr Asc,sc

)
. (5.1)

In Section 2.6.1 we have stated the following properties for the four different sub-

matrices:

• Apr,pr has the same properties as a system from a Black-Oil simulation has,

just its dimension has increased.

• Apr,sc has the same properties as Ass.

• The sub-blocks of Asc,pr are diagonal with non-positive entries.

• The sub-blocks of Asc,sc are diagonal and non-negative with diag(Asc,sc) > 0.

In the following we are going to discuss how to deal with the different types of

unknowns with System-AMG.

5.1.1.1 Handling Primary Unknowns

In Corollary 2.35 we have seen that Apr,pr has the same properties as linear systems

from Black-Oil systems. This implies that we have a pressure sub-block App with

the same properties as we had so far: under mild conditions it is an M-matrix,

however, wells may result in indefiniteness. The same analogously holds for the

Asp part of Apr,pr. The only difference compared to the Black-Oil case is that it

now does not only contain two sub-blocks (i.e., is a 2 × 1 block-matrix), but the

number of involved sub-blocks depends on the number of considered components.

The blocks still result from pressure derivatives of mass balance equations. That

is, they have the same background and comparable properties.

The saturation sub-block Ass now corresponds to saturations and concentrations.

This involves more unknowns than in the Black-Oil case. However, each sub-block

still is a Z-matrix and Ass is (block) diagonally dominant. Finally, for Aps we have

the same properties as we had in the Black-Oil case.

Due to this nearly identical properties of the linear systems, our System-AMG

approach, including the DRS transformation, is directly applicable for the linear

system that is described by Apr,pr.
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We just introduce one modification for the DRS method. Due to the possibly

high number of components, the dimension of [CL]i may be much higher than

three. Hence, the DRS method combines a large number of rows in the summation

process. Due to the dynamic weights, the concrete number of rows may vary

drastically for different blocks. This may result in an unnatural scaling of the

different rows of the resulting pressure sub-problem. Therefore, we prefer to scale

all summation weights for a block [CL]i by a κi > 0, such that

κi
∑

j
δij = 1. (5.2)

In the Black-Oil case with only three unknowns, this scaling turned out to only

have minor effects.

5.1.1.2 Solving for Secondary Unknowns

In the point-wise numbering Asc,sc is block-diagonal. Hence, we expect any itera-

tive method to solve for these unknowns sufficiently well. Moreover, the coupling

between primary unknowns and the secondary ones, Apr,sc, is of the same structure

as the coupling between pressure and the other primary unknowns, Aps. Hence,

to design a first System-AMG approach, we can adjust our approach from the

Black-Oil case as follows:

• We treat all saturations and concentrations, primary and secondary ones, as

we treated saturations in the Black-Oil case: they are forced to remain at

the finest level.

• The DRS weights for the secondary unknowns are set to zero. The respec-

tive matrix parts do not result from mass balance equations, but have a

completely different background than Asp and App.

Figure 5.1 shows that this approach is an efficient solver. However, in the following

we are going to see that it generally is advisable to treat the secondary unknowns

differently.



Natural Variable Formulation 128

0 5 10 15 20 25 30

10−7

10−5

10−3

10−1

Iterations

R
el

at
iv

e
R

es
id

u
al

ILU
System-AMG

(a) Case01 from GPRS with 9 Compo-
nents

0 5 10 15 20 25 30

10−7

10−5

10−3

10−1

Iterations

R
el

at
iv

e
R

es
id

u
al

ILU
System-AMG

(b) SPE10 with 4 Components

Figure 5.1: Convergence history of the System-AMG approach for represen-
tative systems from NVF compositional simulations. The dis-
cretization grids consist of 7500 and 1.1 million cells, respectively
(cf. Appendix A).

5.1.1.3 Decoupling Secondary Unknowns

The relations that describe the secondary unknowns are of a completely different

background than the ones from primary unknowns. They result from equations

that describe flash calculations, and not mass balances. This implies that the

scale between both types of matrix parts in general might differ to a certain ex-

tent. This did not seem to be an issue for our first System-AMG approach of the

previous section and the test cases we have considered. However, a different scale

of the respective matrix parts may well give rise to difficulties. We will observe

such issues in the context of geomechanical simulations in Section 5.3.

We can avoid such issues to begin with. This is achieved by decoupling the sec-

ondary unknowns from the system:(
1 −Apr,scA−1

sc,sc

1

)(
Apr,pr Apr,sc

Asc,pr Asc,sc

)
=

(
Apr,pr − Apr,scA−1

sc,scAsc,pr 0

Asc,pr Asc,sc

)
.

(5.3)

Obtaining this Schur complement is computationally inexpensive, as Asc,pr and

Asc,sc consist of diagonal blocks.

This decoupling is also favorable for another reason: it reduces computational

work. In fact, Cao [18] suggested it for this purpose. After the Schur complement is

computed, it is sufficient to solve for the primary unknowns. This cuts the degrees

of freedom in the reduced system by a factor of two. The secondary unknowns
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can be updated afterwards, which, due to the block-diagonality of Asc,sc, is rather

inexpensive.

However, we still need to address two issues:

• There might be impacts on the non-zero pattern of the matrix by the ap-

plication of the above Schur complement. Block-wise, we are guaranteed

to maintain the pattern of Apr,pr. That is, any block [Apr,pr]ij that is zero,

remains zero after the decoupling. This holds for two reasons:

– The non-zero block-pattern of Apr,sc is a subset of the one of Apr,pr. This

is because the pressure is a primary variable and the pressure blocks’

non-zero pattern is not subject to any effects of upstream-weighting.

– The sub-blocks of A−1
sc,scAsc,pr are diagonal.

Hence, the non-zero block-pattern of Apr,scA
−1
sc,scAsc,pr is a subset of the one

of Apr,pr. However, within blocks [Apr,pr]kl that are not zero in Apr,pr, the

Schur complement might cause changes in the non-zero pattern.

• We need to discuss the applicability of AMG. The above decoupling gives

a new sub-block Ãpr,pr for the primary unknowns. Hence, we need to check

whether Ãpp and Ãsp still are suited for our System-AMG approach. In

fact, in Section 4.2.3 we have seen that a Schur complement decoupling, or

an approximation of it, can have serious impacts on AMG’s applicability.

However, this is different for the particular matrices regarding primary and

secondary unknowns. The sub-blocks of A−1
sc,sc and Asc,pr are diagonal, and

Apr,sc is strongly (block) diagonally dominant. Hence, the Schur complement

here mainly influences the diagonals of the sub-blocks in Apr,pr. It does so

with the ’correct’ sign, as we will see in the lemma below. In contrast to this,

the approximate Schur complement that we used to weaken the pressure-

saturation coupling involved Asp, which typically is only weakly diagonally

dominant.

Lemma 5.1. Assume a time step ∆t that fulfills the requirements from The-

orems 2.25 and 2.28 and assume TPFA is used1 (i.e., in the primary block

Apr,pr we have App being an M matrix, and the blocks in Apr,sc are strongly

diagonally dominant M-matrices). Then the pressure sub-block Ãpp of the

primary block Ãpr,pr, after decoupling the secondary unknowns, is an M-

matrix.

1With MPFA schemes we could formulate an analog lemma with essentially positive type
instead of M-matrices.
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Proof. We know that A−1
sc,scAsc,pr consists of diagonal sub-blocks with non-

positive entries (cf. Lemmas 2.37 and 2.38, or our repetition at the begin-

ning of Section 5.1.1.2). Following Corollary 2.36, we have the sub-blocks

of Apr,sc being Z-matrices and the full matrix is strongly block diagonally

dominant. Therefore, the combination of both, −Apr,scA−1
sc,scAsc,pr, consists

of blocks that are irreducibly diagonally dominant Z-matrices. By adding

this to Apr,pr, the new Ãpp remains an M-matrix.

Corollary 5.2. The same holds with Ãsp. 4

Remark 5.3. In our discussion on matrix properties we have used Wil-

son’s relation for flash calculations (cf. Section 2.6.1). Then, according to

Lemmas 2.37 and 2.38, A−1
sc,scAsc,pr essentially is a block-wise scaling by the

inverse of the pressure. That is, it is relatively small and we do not expect

drastic changes in Apr,pr. This coincides with practical experience, also with

different approaches regarding the flash calculations. 4

5.1.1.4 System-AMG Approach and Results

We can extent our System-AMG approach from Black-Oil simulations to NVF

compositional simulations as follows:

• Apply the decoupling of secondary unknowns, as in (5.3).

• DRS transformation for the system that describes the primary unknowns.

The DRS is adjusted according to (5.2).

• Use the System-AMG approach from Black-Oil simulations to solve for the

primary unknowns. Concentrations are treated like saturations, i.e., they

remain on the finest level.

• Explicitly update the secondary unknowns.

Compared to the first System-AMG approach that we used in Figure 5.1, each

iteration becomes cheaper. This is at the expense of the Schur complement but

typically pays off. Figure 5.2 shows that especially with problems of greater size

we can gain significant run time benefits.
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Figure 5.2: Convergence history of the System-AMG approach, with and
without decoupling of secondary unknowns. The problems re-
sult from grids with 7500 and 1.1 million cells, respectively (cf.
Appendix A). The run time per iteration is given to show the
effect of reducing the degrees of freedom.

5.1.2 Volume Balance Formulation

The situation is more involved in the context of a volume balance formulation

approach from Section 2.6.2. Here we have a Jacobian (2.42)

JV BF =

(
AV B,p AV B,N

AMB,p AMB,N

)
, (5.4)

where the pressure unknown is associated with a volume consistency equation. We

have the following properties for the four matrix blocks:

• AV B,p ≤ 0 is a diagonal matrix

• The sub-blocks of AV B,N are diagonal and positive.

• The sub-blocks of AMB,p result from pressure derivatives of mass balances,

i.e., AMB,p has the same properties as Asp.

• The sub-blocks of AMB,N result from molar derivatives of mass balances, i.e.,

AMB,N has the same properties as Ass.

5.1.2.1 Association with Diffusion

The pressure sub-problem AV B,p is a diagonal matrix and we obviously cannot

construct an AMG hierarchy based on it that reasonably reflects the fluid flux.
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In order to construct a reasonable AMG hierarchy that reflects the pressure dif-

ferences that induce fluid flux, we need to change the association of unknowns

and matrix rows. We could simply exchange rows to associate the pressure with

diffusion-based matrix blocks, which results in the system:(
AMB,p AMB,N

AV B,p AV B,N

)(
p

N

)
=

(
fN

fp

)
. (5.5)

As AMB,p has the same properties that we had for Asp in the Black-Oil case,

we could directly apply the DRS transformation to the problem and set the last

summation weight to zero, as AV B,p is of a different background (due to AV B,p ≤ 0,

it would not be considered by the DRS method anyway). We can expect the result

of the DRS to be well-suited to construct an AMG hierarchy.

In fact, this is true. However, setting the last summation weight to zero results in

the volume balance being excluded from the system. Hence, the AMG hierarchy

would not represent the correct conditions for the fluid flux: It does not reflect

volume balance. As a consequence, the pressure correction could allow for more

than or less than hundred percent of the pore volume to be filled with the fluid. The

post smoothing would have to adjust the pressure correction from the hierarchical

process accordingly, which in practice results in significant changes being necessary

for the pressure. As a consequence, using our standard System-AMG approach,

after only exchanging rows, generally is not faster than using a one-level method

only.

Remark 5.4. For the natural variable formulation this was not a problem, because

we directly express the mass balance equations in terms of relative saturations and

concentrations, rather than explicit moles. These relative terms, by requiring them

to sum to one, imply a volume consistency condition, which is not at all affiliated

with the pressure unknown. 4

5.1.2.2 Incorporating the Volume Balance

While, after the exchange of rows, we have the pressure unknown associated with

a diffusion based matrix block, this does not take the volume balance condition

into account, which now is associated with one of the molar unknowns.

However, our linear system (5.5) has the same properties as the systems (5.1)

from NVF simulations. There (cf. Section 5.1.1.3) we could decouple primary and
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secondary unknowns in order to solve for the primary unknowns independently of

the secondary ones. Transferred to our current situation, we could decouple the

molar unknown that now is associated with the volume balance, in order to solve

for all other unknowns independently of this unknown. This way, the description

of all other unknowns does not only become independent of the respective molar

unknown, but also of the volume balance condition that it is associated with.

We split the numbers of moles into two different sets: the last number of moles

and all other ones2. That is, in AV B,N we have two different blocks: AV B,N :=(
AAV B,N ABV B,N

)
. ABV B,N refers to the last number of moles and is a square,

diagonal matrix. AAV B,N refers to all other moles and consists of diagonal matrices.

We analogously distinguish AMB,N :=
(
AAMB,N ABMB,N

)
. Then, for the original

system (5.4), we can define the scaling(
−AMB,N(ABV B,N)−1 1

1

)(
AV B,p AAV B,N ABV B,N

AMB,p AAMB,N ABMB,N

)

=

(
AMB,p − ABMB,N(ABV B,N)−1AV B,p AAMB,N − ABMB,N(ABV B,N)−1AAV B,N 0

AV B,p AAV B,N ABV B,N

)
.

(5.6)

This scaling combines two steps:

• It exchanges the rows such that the pressure is associated with a diffusion

based matrix block, just as in the previous section.

• It then decouples the one molar unknown, which we can see as a secondary

unknown in the NVF-sense, and this way decouples the volume balance.

Regarding the applicability of AMG, we can use the same argumentation as in the

NVF-case:

Lemma 5.5. Assume a time step ∆t that fulfills the requirements from Theorems

2.25 and 2.28 and we used TPFA schemes3 (i.e., the sub-blocks of AMB,p are M-

matrices and the mole related blocks in AMB,N are diagonal dominant ones). Then

the sub-blocks of AMB,p − ABMB,N(ABV B,N)−1AV B,p are M-matrices.

Proof. Under the assumed restriction on ∆t, according to Corollary 2.42, the sub-

blocks of AMB,N are diagonally dominant M-matrices. AV B,p ≤ 0 is diagonal and

2Distinguishing the last number of moles is completely arbitrary. Distinguishing any other
number of moles was sufficient, but made the notation more complex.

3With MPFA schemes we could formulate an analog lemma with essentially positive type
instead of M-matrices.
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the sub-blocks of AV B,N are diagonal with non-negative entries. Hence, we can

directly apply our argumentation from Lemma 5.1.

Corollary 5.6. With the same time step restriction as in the above lemma,

AAMB,N − ABMB,N(ABV B,N)−1AAV B,N is strongly (block) diagonally dominant and its

sub-matrices are M-matrices. 4

According to the above lemma and corollary, in the remaining linear system we

have the same properties as in the primary sub-system with the Natural Variable

approach. Hence, the System-AMG approach from Section 5.1.1.1 is applicable.

That is, we apply the DRS matrix transformation and construct the AMG hierar-

chy based on the resulting pressure sub-problem. The hierarchy is applied to the

pressure unknown, only, and the numbers of moles remain on the finest level.

We need to discuss the possibility of additional fill-in for the non-zero structure.

Completely analogous to our discussion in the case of Natural Variable Formu-

lations, we can conclude this can only affect blocks [J ]ij that already involved

non-zero terms. However, within such blocks, there generally is a change in the

non-zero pattern.

5.1.2.3 Minimize Memory Requirements

We can use a different decoupling to ensure that there is no additional fill-in for the

system. We have stressed that we need to decouple the volume consistency because

we need to take the volume constraints into account in the AMG hierarchy. That

is, we exploit the influences of the decoupling on the pressure sub-problem, rather

than the decoupling itself. Therefore, it is sufficient to only influence the pressure

related equations by the decoupling. There is no need to also apply changes to

the molar related matrix parts. This can be achieved by combining a left and a

right scaling:

(
1

1

)(
AV B,p AAV B,N ABV B,N

AMB,p AAMB,N ABMB,N

)
1

1

−(ABV B,N)−1AV B,p 1


=

(
AMB,p − ABMB,N(ABV B,N)−1AV B,p AAMB,N ABMB,N

0 AAV B,N ABV B,N

)
.

(5.7)
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The left scaling only exchanges rows, as in (5.5), whereas the right scaling incorpo-

rates the volume consistency in the pressure sub-blocks of the matrix. Note that all

the four matrices in (5.7), the two scalings and the original and the scaled Jacobian,

are square matrices of the same dimension: According to our previous discussion,

with a grid of m cells and with c components, there is AV B,p, A
B
V B,N ∈ Rm×m. We

have AMB,p, A
B
MB,N ∈ Rcm×m, AAV B,N ∈ Rm×(c−1)m and AAMB,N ∈ R(c−1)m×(c−1)m.

Because all transmissibilities are pressure dependent, AMB,p is non-zero wherever

ABMB,N(ABV B,N)−1AV B,p is. Hence, there is no change in the non-zero pattern of

the overall system. Moreover, we compute the same pressure related ÃMB,N as

with the scaling from (5.6). That is, we involve the volume consistency constraint

in the construction of the AMG hierarchy. Our result from Lemma 5.5 persists

and after the transformation we can apply the same System-AMG approach as

before.

We note that ABV B,N and AV B,p are diagonal. Hence, both scalings, the left and the

right one, can be expressed as block-diagonal scalings for the point-wise ordered

Jacobian. Their application is rather inexpensive.

Remark 5.7. In the NVF context, we could of course also use such a right,

instead of a left scaling, in order to decouple primary and secondary unknowns.

However, because pressure and saturations/concentrations are primary unknowns,

it would not have the advantage of avoiding additional fill-in. Due to the upstream-

weighting, the non-zero pattern of the saturation/concentration related matrix parts

might differ between the phases. 4

5.1.2.4 System-AMG Approach and Results

We extent our System-AMG approach from Black-Oil simulations to VBF com-

positional simulations:

• Apply the decoupling as in (5.7). Compared to the one from (5.6) it has the

advantage of not requiring changes in the non-zero pattern of the Jacobian.

• Apply a DRS transformation that excludes the last molar unknown, which

now is affiliated with the volume balance equation and no longer with a mass

balance. However, after the decoupling, the respective pressure sub-block is

zero anyway.

As the simulation might consider a high number of components, just as in

the NVF case, the DRS is adjusted according to (5.2).
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• Use the System-AMG approach from Black-Oil simulations to solve for the

pressure and the numbers of moles.

Figure 5.3 compares this System-AMG approach with the previous one (i.e., with

the decoupling according to (5.6)) and FGMRes/ILU(0) as a reference benchmark.

It shows that indeed both methods have comparable convergence rates. We espe-

cially have a much more efficient solution method than the one-level approach.
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Figure 5.3: Convergence history of the System-AMG approach for represen-
tative systems from VBF compositional simulations.
(A) 8 components, discretized in 94,093 grid cells and (B) 9 com-
ponents, discretized in 963,536 grid cells (cf. Appendix A).

5.2 Thermal Simulations

For thermal simulation models (cf. Section 2.8) the matrix properties are identi-

cal to the ones in the respective isothermal Black-Oil or compositional simulation,

except that one additional temperature unknown is involved. Hence, regarding

the treatment of the temperature, our System-AMG approach does not differ be-

tween the Black-Oil and the compositional situation. We will therefore discuss

this treatment for the Black-Oil case only.

However, in the compositional case we still apply the previously discussed de-

coupling transformations and need to consider their impact on the temperature

related matrix parts. We will see that the decoupling still results in a system with

basically the same properties as in the Black-Oil case.
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5.2.1 Black-Oil Thermal Simulations

In Section 2.8 we have seen that, compared to the isothermal Black-Oil case, the

linear system is just extended by a temperature unknown. More precisely, it is

described by the following matrix:

Jthermal =


App Aps ApT

Asp Ass AsT

ATp ATs ATT

 . (5.8)

App, ATp and the sub-blocks of Asp, except for the influence of source terms, are

M-matrices. ATT results from energy diffusion, convection and accumulation. It

is an M-matrix with a diagonal dominance that in each row depends on which of

the three origins dominates. The remaining matrix parts are strongly diagonally

dominant.

As, compared to the isothermal case, the properties of the saturation (or con-

centration) related matrix blocks did not change, we still force these unknowns

to remain at the finest level. Due to the diagonal dominance of the respective

sub-matrices, the fine-level smoother will properly solve for them. That is, only

pressure and temperature will be subject of a hierarchical treatment by AMG.

Not only the structure of the saturation (or concentration) matrices did not change,

also the structure of the coupling between pressure and saturations (or concen-

trations) is as in the isothermal case. The coupling between temperature and

saturation is of the same structure. The same holds for the counter-couplings

(i.e., saturation to pressure and temperature, respectively). That is, we can ex-

pect the interplay between a coarse grid correction for the pressure-temperature

sub-problem, and the fine-level smoother for all unknowns, to work as well as it

did in the isothermal case.

Due to the energy balance involving diffusive effects, the application of System-

AMG to the coupled pressure-temperature system should be efficient. This can

only be realized by the unknown-wise approach: The fluid’s permeability K and

the energy’s one, KT , in general are not related at all. The reason is that the rock

is able to transport energy, i.e. heat, while fluid is not able to flow through rock,

only through pores. These differences in the permeabilities do not allow for an

efficient point-wise AMG approach.
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By considering the pressure-temperature sub-problem, our unknown-wise System-

AMG approach constructs a pressure hierarchy based on App and a temperature

hierarchy based on ATT . In order to properly construct these hierarchies, both

sub-matrices need to meet AMG’s requirements:

• In Section 2.8.1 we have seen that the sub-problem ATT results from convec-

tive and diffusive processes and the accumulation of energy, where diffusion

and accumulation dominate. In Corollary 2.45 we have found ATT to be

an M-matrix under rather natural conditions. Hence, ATT generally is well-

suited to construct an AMG-hierarchy based on it. Depending on how strong

the diffusive influences are in a particular time step, AMG will provide more

or less benefits regarding the convergence rate. As ATT also involves terms

that result from the accumulation of energy, there might be diagonally dom-

inant rows in ATT . Our AMG coarsening (cf. Figure 3.3) will automatically

omit constructing a hierarchy for such matrix parts, as the smoother at the

finest level can sufficiently solve for the respective variables of the unknown

vector. That is, the adaptivity of AMG’s setup phase ensures a hierarchy to

be locally constructed only where it is beneficial.

• In the pressure related blocks we are faced with the same difficulties that

we have observed for the Black-Oil problems. Hence, we include the DRS

transformation in our solution approach for thermal problems and need to

decide whether or not this shall incorporate the temperature related row.

We will not do so for two reasons:

– The pressure dependence of the energy balance equation (2.46), in con-

trast to the mass balances, also involves the total enthalpy. Thus, ATp

may be scaled quite differently compared to the total pressure system

that the DRS method computes in isothermal simulations.

– Including the temperature rows in the summation process would mix

ATT and ApT . The properties of both are quite different and there would

be unnatural couplings between pressure and temperature, especially

also in the off-diagonals.

However, we can still expect the DRS scaling to be beneficial regarding the

overall convergence: The energy balance equation involves the total pressure,

which is what our coarse grid process computes a correction for, if the system

was transformed by DRS.
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5.2.2 Compositional Thermal Simulations

We need to consider the impact of the decoupling transformations that we have

introduced for the compositional simulations. We will see that we can still apply

the Black-Oil System-AMG approach for thermal simulations for the system after

applying the transformations from Section 5.1 (cf. (5.7) and (5.3)).

5.2.2.1 Natural Variable Formulation

The temperature is a primary unknown, because the energy balance involves in-

teractions between different grid cells. As we decouple all secondary unknowns, we

need to consider the effect of this decoupling on the temperature related sub-blocks

in Ãpr,pr. In our discussion from Section 2.8.4.1, we have seen that the properties of

Apr,sc, Asc,pr and Asc,sc do not differ between the thermal and the isothermal case.

Regarding the properties of ÃTT , after the decoupling of secondary unknowns, we

can state:

Lemma 5.8. Assume the conditions from Corollary 2.45 to hold (i.e., ATT is an

M-matrix). Then ÃTT in Ãpr,pr = Apr,pr − Apr,scA−1
sc,scAsc,pr is an M-matrix.

Proof. Just as in the isothermal case (cf. Lemma 5.1), A−1
sc,scAsc,pr consists of di-

agonal sub-matrices with non-positive entries. Regarding the temperature related

entries of Apr,sc, from Corollary 2.47 the sub-blocks are diagonally dominant M-

matrices. Hence, the argumentation from Lemma 5.1 applies to the thermal case

as well.

Consequently, after the decoupling of secondary unknowns, as we only need to

solve for the primary unknowns, it is sufficient to apply a System-AMG approach

for the linear systems from thermal Black-Oil simulations. We just treat the

concentrations analogously to saturations.

5.2.2.2 Volume Balance Formulation

Our final matrix transformation (5.7) does not apply any changes to temperature

related sub-blocks of the Jacobian matrix. This decoupling only results in changes

in the pressure related matrix column of the Jacobian, i.e. ÃMB,p.
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As we moreover do not involve the temperature related column in the decoupling

(5.7), the Jacobian after the decoupling is nearly the same as in the isothermal

case: It is just extended by the temperature unknown. In the isothermal case of

a VBF compositional problem, the decoupling results in a linear system with the

same properties that we have in an isothermal Black-Oil case. Hence, a System-

AMG approach that is applicable to a thermal Black-Oil system is sufficient for a

linear system from a thermal VBF simulation.

5.2.3 System-AMG Approach and Results

Summarizing, our System-AMG approach for thermal simulations is as follows:

• If it is a compositional problem, apply the respective decoupling (depending

on whether it is NVF or VBF).

• Apply the DRS transformation, but do not include the temperature row,

i.e., set the respective summation weight to zero.

• Use the unknown-wise System-AMG approach. A coarsening is only applied

to pressure and temperature. Saturations and concentrations remain at the

finest level.

• Use the same smoothing as in the Black-Oil case: C/F-wise Gauss-Seidel

within the hierarchy and ILU(0) post-smoothing for all unknowns at the

finest level.

All other settings are just as in the Black-Oil case (cf. Figure 3.3).

We demonstrate the efficiency of the System-AMG approach for two matrices from

an industrial steamflood simulation, i.e., steam is injected instead of water. Both

matrices are from the same simulation, just from different time steps.

The first matrix from Figure 5.4a is an example for a linear system where classical

incomplete factorization techniques failed4 to converge. ILU(0) achieved a residual

reduction of 0.6 within 1000 iterations. Block-ILU(0) improved this a bit and

4A different ordering might allow the ILU to converge. However, as our objective is the
application of AMG-based methods, we do not follow this direction. Even if there was an
ordering that allowed ILU, or block-ILU, to converge, we can expect the AMG-based method to
converge faster.
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reduced the residual by a factor of 0.003 within 1000 iterations, but then the

residual reduction stagnated: after 10,000 iterations nearly no further reduction

was achieved.

This does not necessarily mean that the entire simulation fails. However, the

simulator at least has to step back one time step and (drastically) reduce the time

step size. Both, of course, is not desired in terms of computational performance.

In fact, this particular linear system also is challenging for System-AMG. However,

by choosing block-ILU(0) instead of ILU(0) as a fine-level post-smoother, and by

restarting FGMRes after 40 instead of 30 iterations, we obtain eight orders of

residual reduction. We have already mentioned that block-ILU(0) is a reasonable

option in challenging cases. In fact, both adjustments are only a minor change of

the System-AMG approach. They can be activated ”on-the-fly”, when realizing

that the default approach faces serious difficulties. We do neither need to re-

compute the AMG hierarchy, nor adjust the time step size.

For reasons of consistency, the adjusted restart of FGMRes also applies to the

reference benchmark with block-ILU(0). Note that the ’staircase-like’ behavior of

the residual results from the GMRes-restarts.

In Figure 5.4b, for the second test case, we compare the convergence history of

our default System-AMG approach with FGMRes/ILU(0). This linear system is

less challenging and ILU(0) does converge. However, System-AMG reaches the

desired accuracy much faster.

5.2.4 Necessity of an AMG Hierarchy for the Temperature

In contrast to the Black-Oil and compositional simulations, in thermal problems

we exploit the ability of System-AMG to deal with different physical unknowns

in the hierarchy. While, due to the elliptic components in the description of the

temperature, this proceeding is rather natural, we have not yet discussed whether

this really was necessary. The temperature sub-part ATT does not only result from

energy diffusion, but also energy accumulation and convection have an influence.

Especially due to the accumulation, at least locally in certain parts of the domain,

ATT often is diagonally dominant and here the ILU post-smoother at the finest

level might already be a sufficient solver.

However:
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Figure 5.4: Convergence history of System-AMG for problems from thermal,
two-phase simulations (steam injection). The reservoir is dis-
cretized in 235,224 grid cells. The two matrices are from different
time steps of the same simulation (cf. Appendix A).
The first problem is highly challenging and required Block-ILU as
a fine-level post-smoother.

• The coarsening in our AMG approach does automatically not construct a

hierarchy where, due to diagonal dominance, it is not needed.

• In parts of the domain where the energy diffusion has a significant influence

on the temperature sub-problem, using a hierarchy is beneficial for the overall

process.

In Figure 5.5a, for the problem from Figure 5.4b, we compare our System-AMG

approach that applies a coarsening to pressure and temperature with a System-

AMG approach that applies the coarsening only to the pressure. Both approaches

do converge much faster than ILU. However, we see the beneficial effect of consid-

ering both pressure and temperature for the AMG hierarchy.

In Figure 5.5b we consider the same matrix with a small algebraic modification:

The diagonal dominance in the accumulation-dominated parts of ATT has been

reduced by a factor of two in order to demonstrate the effect of a more significant

influence of the energy diffusion. In a practical simulation this influence could, for

instance, be more significant with larger time steps, as the accumulation’s influence

is reduced then. In this modified problem, considering pressure and temperature

for the AMG hierarchy is even more beneficial.



Geomechanical Simulations 143

0 50 100 150 200 250

10−7

10−5

10−3

10−1

Iterations

R
el

at
iv

e
R

es
id

u
al

ILU
Hierarchy for p & T

Hierarchy for p

(a) Time step B

0 50 100 150 200 250

10−7

10−5

10−3

10−1

Iterations

R
el

at
iv

e
R

es
id

u
al

ILU
Hierarchy for p & T

Hierarchy for p

(b) Time step B, modified ATT

Figure 5.5: Convergence history of System-AMG for problems from thermal,
two-phase simulations (steam injection). The reservoir is dis-
cretized in 235,224 grid cells. The first matrix is an original matrix
from this simulation. The second is generated from the first with
the temperature problem being made less diagonally dominant
(i.e., more diffusion dominated).

5.3 Geomechanical Simulations

The situation becomes even more complex in geomechanical simulations. The

previous simulation models are extended by the Lamé Equations (2.57) for the

mechanical displacement unknowns. It is well-known that unknown-wise System-

AMG is an efficient method to solve such linear elasticity problems, as long as a

sufficiently large amount of the boundary is described by fixed (Dirichlet) condi-

tions5. This is the case in geomechanical simulations, where nearly all boundaries

are fixed. Hence, we expect unknown-wise AMG approaches to be applicable for

the isolated mechanical sub-problem. This sub-problem is described by the JM,M

sub-block of the full Jacobian from a geomechanical simulation:

Jmech =

(
JF,F JF,M

JM,F JM,M

)
. (5.9)

The flow related sub-problem JF,F is identical to what we have been concerned

with in Black-Oil, compositional or thermal simulations, respectively. For this

sub-problem, we can apply the System-AMG approaches that we have developed

5If this is not the case, more sophisticated AMG-variants need to be considered that especially
properly reflect the rigid body motions (e.g., smoothed aggregation AMG).
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so far. We will only consider Black-Oil flow models in the following and outline

the situation for more complex flow models afterwards.

As we do not want to solve the problem in a segregated way, we need to apply a

coarsening to the pressure and the displacements simultaneously. This can most

easily be achieved by the unknown-wise6 System-AMG approach, as the back-

ground of the flow and the mechanical unknowns is quite differently and they do

not even need to be discretized on the same grid. The mechanical effects may act

beyond the boundaries of the reservoir, i.e., the grid for the mechanical unknowns

needs to cover a larger domain.

Clearly, the convergence properties of the unknown-wise System-AMG approach

depend on the couplings between the different unknowns. Especially the couplings

between flux and mechanics, JF,M , depend on the type of mechanical influence that

shall be simulated. In the scope of this thesis, we will only consider poroelasticity

effects, i.e., the pores of the rock are widened by the fluid pressures. In (2.68) we

have seen that the full linear system - with a solution vector x, a right-hand-side

f and the time step size ∆t - is given as:(
∆tJF,F −JTM,F

JM,F JM,M

)(
xF

xM

)
=

(
∆tfF

fM

)
. (5.10)

5.3.1 Uzawa-Smoothing

Depending on the concrete application, the sub-problems of fluid flow and mechan-

ics may be scaled quite differently. If this is the case, the smoothing methods that

we have used so far might not work properly. A reasonable remedy, especially for

systems like (5.10), is known to be provided by Uzawa-type smoothing methods

[84]. In the multigrid context, such methods are typically used for linear systems

resulting from Stokes equation.

The Uzawa method that we will use, is designed for systems like(
A −BT

B C

)(
u

p

)
=

(
f

g

)
, (5.11)

6It would also be an option to treat flow and mechanical unknowns differently, i.e., in an
unknown-wise manner, but to use a point-wise approach for the mechanical unknowns. This,
however, is not yet realized in the SAMG software.
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with A and C being well-suited for AMG.

A description of Uzawa-type iterations is given by Elman and Golub [38] and

the references therein, or, with more attention on the application as an AMG

smoother, by Metsch [72]. The Uzawa method (cf. Algorithm 5.2, with a control

parameter αuzawa) essentially alternates between both types of unknowns with an

inherited Schur complement. This way, different scales and the particular coupling

in B are of less severe influence.

As we use the Uzawa method as a smoother, we only approximately solve the

systems in both stages, for instance by Gauss-Seidel or ILU. In our System-AMG

approach, according to the System-AMG approaches from simulations that did

not consider mechanical effects, we choose Gauss-Seidel for the mechanical system

and on the coarse levels of the flow system, whereas we use ILU at the finest level

of the flow system.

Algorithm 5.2 Uzawa Algorithm for (5.11)

1: for i = 0 until convergence, or until i > maxIter do
2: ui+1 = A−1(f +BTpi)
3: pi+1 = pi + αuzawa(g −Bui+1 − Cpi)

5.3.2 Modification of the DRS Transformation

For the flow-related sub-system we still apply the DRS transformation, as we still

might be concerned with the same difficulties as before7.

However, after the DRS transformation for the fluid part, we generally do not have

JF,M = −JTM,F any more. This is a problem for the proper application of Uzawa-

type smoothers. However, we can modify the DRS method in order to preserve

this property:

JF,M results from the discretized divergence of the displacements. More precisely,

from the discretization of the term ∂
∂t
ραSααBiot∇u in the mass balance (2.63) of

phase α under mechanical influences. This applies to all involved phases. Hence,

all rows of JF,M that correspond to the same cell i are nearly identical. They

only differ by a scaling that depends on the different material properties. We can

adjust the non-zero summation weights of DRS according to these scales. This

7Although, with AnoMech
pp denoting the pressure problem from a pure fluid flow simulation,

we have App = AnoMech
pp + 1

∆tPM , 1
∆t and PM may not be large enough to outweigh the influence

of wells.
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way, we can ensure that the DRS transformation does not result in any change for

JF,M , but it still results in a J̃F,F that is better-suited for System-AMG than the

original flow sub-problem might have been.

5.3.3 System-AMG Approach and Results

The linear system (5.10) has the same structure as (5.11) and we can use Uzawa-

type smoothing for the linear systems that result from fluid flow coupled to poroe-

lasticity effects. We then do not expect difficulties from differently scaled sub-

problems. For a Black-Oil fluid flow model that is coupled to a geomechanical

model, our System-AMG approach reads as:

• DRS transformation with the modified weights, as discussed in the previous

section

• Unknown-wise System-AMG. Saturations and concentrations remain at the

finest level

• Uzawa-type smoothing on each level. We use the Uzawa realization in

SAMG, as of version 27z1. αuzawa remains at its default of 0.125.
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Figure 5.6: Convergence history of the System-AMG approach for representa-
tive systems where single phase flow is coupled with geomechan-
ics. Both systems are from the same simulation (3D, 541190 cells),
however, at different time step sizes (cf. Appendix A).
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Figure 5.6 shows that this approach8 is a robust solution method. We consider

two matrices from the same simulation, but at different time step sizes. This

results in differently scaled flow-systems. For the first time step size, System-

AMG with Uzawa-type smoothing is the only solver method to be considered, as

it can handle the different scalings. For the other time step size, also a straight

forward extension of our standard approach (i.e.: unknown-wise coarsening; ILU-

smoothing at the finest and C/F Gauss-Seidel smoothing on all other levels) gives

an acceptable convergence, although the convergence speed is much faster with

Uzawa-type smoothing.

ILU(0) in both cases does not converge in a reasonable number of iterations. We

include ILUT [87] in our comparison, as it is widely used as a default solver for

geomechanical simulations. We choose a dropping tolerance of 0.005 and a fill-

in of 100 and 200 (especially in the mechanical part we typically have to expect

large stencil sizes. In the full systems we have roughly 60 non-zeros per row on

average). For the problem with the rather harmless scaling differences between

the unknowns, we can achieve convergence with ILUT, if we sufficiently increase

the fill-in. However, the factorization and each iteration becomes increasingly

expensive, our System-AMG approach still converges much faster and for the first

matrix ILUT did not succeed.

5.3.4 Compositional and Thermal Flow Problems

In the scope of this thesis we are not concerned with geomechanical models that are

coupled to compositional and/or thermal fluid flow models. However, we outline

how our System-AMG approach could be extended. In Section 2.9.4.2 we have

seen that the properties from (5.10) for the sub-blocks regarding mechanics and

flow, and the cross-couplings, persist. Hence, our System-AMG approach with

Uzawa smoothing in principle still is applicable. We just need to discuss whether

the consideration of further aspects on the flow side, as described in Section 2.9.4.2,

has impacts on the overall approach.

• Compositional, Natural Variable Formulation:

We have mentioned that JF,M is zero in rows that correspond to secondary

8As we consider a single phase problem, there are no saturation unknowns to be considered
here and, for practical reasons, we can replace ILU at the finest level by Gauss-Seidel.
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unknowns. Hence, the decoupling of secondary unknowns from our System-

AMG approach for the NVF flow problem does not change JF,M . After the

decoupling we still have JF,M = −JTM,F and our Black-Oil System-AMG

approach with Uzawa smoothing is applicable.

• Compositional, Volume Balance Formulation:

Our System-AMG approach involved a left and a right scaling from (5.7).

The right scaling of the flow problem JF,F also is applied to JM,F . However,

as we have seen that all but the pressure related column of JM,F are zero,

the particular right scaling from (5.7) does not result in changes for JM,F .

This is different for the left scaling, which has an impact on JF,M . In this

thesis we are not concerned with simulations where VBF flow models are

coupled with geomechanics and leave this aspect to further research.

• Thermal:

Our System-AMG approach for thermal simulations does not involve any

additional transformation of the linear system. Hence, there is no need for

adjustments regarding the geomechanical System-AMG approach.



Chapter 6

Algorithmical Aspects of

Performance Improvements

In the previous chapters we have presented an efficient solution approach for solv-

ing the linear problems in reservoir simulations by AMG and we have discussed

how its robust applicability can be ensured in a wide range of models. In this

chapter we are going to discuss two possibilities to improve the computational

performance of this solution approach.

First, for a typical linear system from reservoir simulations, we will see that we can

exploit the strong material heterogeneities in order to use aggressive coarsening

strategies without negative impacts on the convergence speed. These coarsening

strategies will turn out to be beneficial in terms of computational performance

and memory requirements.

Secondly, we will discuss options to exploit special matrix properties in the case of

adaptive implicit simulations. We can reduce the degrees of freedom for our ILU

post-smoother, which results in better run times.

6.1 Aggressive Coarsening in Reservoir Simula-

tion

AMG is not a fixed algorithm, but a methodology to create efficient solvers. That

is, we have some freedom in adjusting any AMG approach to a particular appli-

cation. In this section we will investigate the effects of aggressive coarsening in

149
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reservoir simulations. Initially, aggressive coarsening was designed to reduce the

memory requirement of AMG and speed up the AMG cycles, at the expense of

a slower convergence. In the context of reservoir simulations, however, such a

slow down of the convergence rate is typically not observed and the overall com-

putational time is reduced. We are going to heuristically explain this effect by

analyzing a model problem.

6.1.1 Aggressive Coarsening Algorithm

Aggressive coarsening is a variant of the RS coarsening introduced in Section

3.1.1.4. For the classical C/F-splitting, each F-variable is required to be strongly

connected to at least one C-variable. Stüben [95], based on Ruge and Stüben [85],

extends this idea by the concept of strong long-range connectivity. More precisely,

ξτ -aggressive coarsening, w.r.t. the graph of strong connections (3.8), requires

each F-variable to be connected to C-variables via at least ξ paths of length at

most τ . This extended interpretation of connections results in a smaller set of

C-variables than with the original RS coarsening. The set will be the smaller, the

smaller ξ and the larger τ . Practically most relevant are the 12 and 22 variants,

which are referred to as A1 and A2 aggressive coarsening, respectively. In Figure

6.1 these variants are illustrated and compared with classical coarsening.

=F
=C

(a) RS Coarsening

=F
=C

(b) A2 Coarsening

=F
=C

(c) A1 Coarsening

Figure 6.1: Classical Ruge-Stüben coarsening compared with its A2 and A1
aggressive variants for an exemplary strong adjacency graph. The
coarsening ratios are 27:10, 27:6 and 27:4, respectively.

Aggressive coarsening, generally, has three beneficial effects:

• Due to the smaller coarse level operators, AMG’s setup phase becomes faster.

Also the total number of levels needed to reach a coarsest level problem of

reasonably small size may decrease, which again reduces computational work

for the setup.
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• As the coarse level operators are of smaller dimension, and as smoothing

and further transfer operators are applied on smaller (and less) levels, each

AMG cycle becomes computationally cheaper.

• The amount of memory needed to store the multigrid hierarchy is signifi-

cantly reduced.

However, these benefits come at the expense of F-variables not necessarily being

strongly connected to a C-variable directly. Hence, in the coarse grid correction

process it will be necessary to interpolate some F-variables from other F-variables,

once these have been interpolated from strongly connected C-variables themselves.

This consecutive interpolation of F-variables is referred to as multipass interpo-

lation. As the AMG convergence is highly determined by the ”quality” of the

interpolation operator, multigrid cycles based on aggressive coarsening typically

converge significantly slower than their standard coarsening counter-parts.

In practice, it is common to mix aggressive and classical coarsening. Typically, the

first coarse level is constructed using the aggressive approach, while the further lev-

els are created using the classical coarsening. This gives an initially fast reduction

of the degrees of freedom, while it limits the negative influence of the multipass

interpolation to only one transfer. Such an approach is often used for Scalar-

AMG with matrices resulting from non-compact discretizations of diffusion-based

problems. This includes Poisson-type equations, but also holds for the pressure

problem (2.12) from IMPES simulations. Here, as a matter of experience, the

reduced costs per iteration usually outweigh the increased number of iterations.

Combined with the faster setup phase, this results in a faster method.

The situation is different with systems resulting from FIM or AIM simulations, the

types of problems that we are concerned with in this thesis. Here we are dealing

with coupled systems of linear equations, for which the AMG hierarchy is only

applied to a part of them. The reduction of computational costs by aggressive

coarsening only effects this subset of unknowns. The cost of ILU-smoothing at the

finest level, however, is not reduced by the aggressive coarsening. As it involves

all unknowns, this smoothing is relatively expensive and it appears questionable

whether the benefit per iteration still outweighs the higher number of iterations.

Nevertheless, for our System-AMG approach, with an incomplete factorization

serving as fine-level smoother, as a matter of practical experience, we can exploit

aggressive coarsening for typical problems from reservoir simulations and gain
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benefits w.r.t. both memory and performance. This can be motivated by an

analysis of ILU smoothing in a model case.

6.1.2 ILU(0) Smoothing Properties in a Model Case

For linear problems resulting from Poisson’s equation, with ILU smoothing, just

as with relaxation methods, an increase of iterations is observed when switching to

aggressive coarsening. However, compared to such completely homogeneous linear

problems, the ILU smoother behaves differently if applied to highly heterogeneous

reservoir simulation problems. As a motivation, we are going to analyze this for

a model problem in a geometric multigrid context. Although much simpler than

real simulation problems, the results with this model problem reflect the behavior

observed in more complex situations, where a corresponding analysis is practically

impossible.

Let us consider the two dimensional anisotropic differential equation

−ε ∂
2

∂x2
u− ∂2

∂y2
u = f with x, y ∈ [0, 1]2 and u = g for x, y ∈ ∂[0, 1]2, (6.1)

with some 0 < ε ≤ 1, discretized by a 5-point stencil on a structured mesh of

resolution h. We assume a lexicographic ordering of the mesh cells. Clearly, the

resulting linear system Aanisou = faniso is described by an spd M-matrix. Hence,

it is known (cf. [71]) that the ILU(0) operator SILU corresponding to any pattern

exists and ρ(SILU) < 1.

6.1.2.1 Local Fourier Analysis

Local Fourier Analysis (LFA) is widely used to analyze geometric multigrid ap-

proaches. In particular, the smoothing properties of a method like ILU can be

quantified, depending on the aggressiveness of coarsening.

The LFA concept goes back to Brandt [16]. For a detailed introduction, and a

discussion of its application, we refer to Trottenberg et.al., as well as Wienands

and Joppich [97, 107]. We only give a brief excerpt for the 2D case here.

An arbitrary error is assumed to be expanded into Fourier components. The fun-

damental quantities to describe these components are the grid functions

φ(Θ, x) = eiΘ
x
h , (6.2)
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where Θ = (µ, ν) characterizes the frequency. With the concept of LFA, it can be

analyzed how multigrid components act on the individual frequencies. In our dis-

cussion, we only consider the smoother. For simplicity, LFA assumes infinite grids,

which essentially means that boundary conditions are ignored. For smoothing by

relaxation, for instance, this is fairly natural: it is a local process, essentially in-

dependent of the boundaries, except from a direct neighborhood of the boundary.

Assuming a fixed mesh size h, the Fourier components are identified by (µ, ν) ∈
[1, 2, ..., 1

h
)2 =: Φ ⊂ N2. With LFA we can determine how each of these com-

ponents is reduced by the smoothing operator, which yields a reduction factor

λsmoother(µ, ν) for each component within one smoothing sweep.

In order to analyze the smoothing properties of an operator, we need to distin-

guish low- and high-frequency error components, Φlow and Φhigh, respectively, with

Φhigh = Φ \ Φlow. Which components (µ, ν) are low-frequency, i.e., are in Φlow,

depends on the coarsening. Roughly speaking, low-frequencies are those which

can still be ”represented” properly on the coarser grid. If we assume this grid to

be the analogue of the initial grid, just with mesh size H > h, the low-frequencies

correspond to Φlow = [1, 2, ... 1
H

)2.

The smoothing factor of a given smoother is defined as the worst reduction factor

over all high-frequencies. That is:

σsmoother = sup{λsmoother(µ, ν)|(µ, ν) ∈ Φhigh}. (6.3)

The low-frequency components are reduced by the coarse grid correction. Given

that the coarse grid correction and the interplay with the smoother works prop-

erly, the smoothing factor can be regarded as an approximation of the two-level

convergence rate of multigrid. Obviously, the choice of the coarsening, given by

the coarse grid’s mesh size H, i.e., its aggressiveness, has a direct impact on the

smoothing factor. We are going to discuss this in the following.

6.1.2.2 Smoothing Factor of ILU(0)

Wittum [108] discussed the smoothing properties of ILU(0) for the discretization

of (6.1), where he observed (cf. Figure 2 in [108]) a convergence peak depending

on ε and h. He concluded the boundary conditions not to be completely negligible

for ILU smoothing and adjusted the LFA accordingly to compute the reduction
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factors of SILU . For ILU(0) they read as:

λILU(µ, ν, ε, h) =
δ|cos((µ− ν)hπ)|

|1 + ε− εcos(µhπ)− cos(νhπ) + δcos((µ− ν)hπ)|
, (6.4)

with 0 < ε ≤ 1, δ := ε
1+ε+

√
2ε

and (µ, ν) ∈ Φ.

By means of (6.4), we can compute the smoothing factor of ILU(0) with classical

coarsening. We, however, will use it to compute the smoothing factor with aggres-

sive coarsening. We will moreover consider semicoarsening, as this corresponds to

the AMG coarsening for the anisotropic model problem.

According to our considerations from the previous section, we need to find the

maximum of λILU(µ, ν, ε, h) over (µ, ν) ∈ Φhigh. As a first step, we will see that this

maximum can only be found at the boundary ∂Φhigh. We follow the argumentation

by Wesseling [105] (Example 7.8.1) to show this result:

Instead of maximizing λILU , we can equally well minimize 1
λILU

. A straight forward

calculation gives:

1

|λILU(µ, ν, ε, h)|
= |1

δ

1 + ε− εcos(µhπ)− cos(νhπ)

cos((µ− ν)hπ)
+ 1|. (6.5)

If we now choose φ := µ− ν and define

d = d(ε, h, µ, φ) :=
1 + ε− εcos(µhπ)− cos((µ− φ)hπ)

cos(φhπ)
, (6.6)

we obtain the minimization problem

1

σILU(ε, h)
= min(µ,ν)∈Φhigh|

1

δ
d(ε, h, µ, φ) + 1|. (6.7)

Lemma 6.1. Any extremal value of d must be found at (µ, ν) ∈ ∂Φhigh.

Proof. A necessary condition for an extremal value is ∂
∂µ
d = 0, with

∂

∂µ
d =

(εsin(µhπ) + sin((µ− φ)hπ))hπ

cos(φhπ)
.

Hence, an extremal value requires εsin(µhπ) = −sin((µ − φ)hπ) = −sin(νhπ).

But this would be a contradiction to 0 < µ, ν < 1
h
, as for these values we have

sin(µhπ), sin(νhπ) > 0.
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In order to find the smoothing factor, we consequently only need to consider (µ, ν)

at the boundary ∂Φhigh. We will do so for two types of coarsening, and we will

visualize our results with an exemplary fine grid resolution of h = 1
1024

.

6.1.2.2.1 Uniform Coarsening

A classical geometric multigrid approach is to coarsen both grid directions anal-

ogously. We then have to consider the high-frequency modes in Φhigh = Φ \ Φlow

with Φlow = [1, 1
H

)2. The concrete choice of H defines the aggressiveness of the

coarsening. For the moment we only assume H > h. We can identify three

outstanding combinations of µ and ν.

Lemma 6.2. Let any h,H > h and ε > 0 be given and define c1 := c(h,H, 1, ε),

with c(h,H, ω, τ) from Appendix C. Then the smoothing factor σILU(ε, h) is the

maximum of λILU(µ, ν, ε, h) taken over the following three values of (µ, ν):

• (µ, ν)1 := ( 1
h
− 1, 1)

• (µ, ν)2 := ( 1
H
, c1)

• (µ, ν)3 := ( 1
H
, 1)

Proof. See Appendix C.1.

In the context of geometric multigrid, a classical choice for the coarsening rate is

H = 2h, while a more aggressive variant, for instance, could be H = 4h. With

the above result we know that differences in the smoothing factor between both

choices can only result from different reduction factors of the presented three com-

ponents. If we regard them as functions of the anisotropy ε, and compute them for

an exemplary grid with h = 1
1024

, for small ε we find that the smoothing factor is

determined by the reduction factor at ( 1
h
−1, 1), which is independent of H. Table

6.1 shows that this holds for ε ≤ 10−
√

2. For such anisotropies, the smoothing fac-

tor is identical for both considered coarsening rates. That is, in the case H = 4h

we can still expect the same overall convergence rate as in the case H = 2h. The

situation is illustrated in Figure 6.2, where the reduction factors of the Fourier

modes are plotted for different values of ε. The values at (1023, 1) and (256, 1)

(i.e. ( 1
h
− 1, 1) and ( 1

4h
, 1)) are marked.
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H = 2h H = 4h
ε ( 1

h − 1, 1) ( 1
H , c1) ( 1

H , 1) ( 1
h − 1, 1) ( 1

H , c1) ( 1
H , 1)

100 0.168 0.033 0.035 0.168 0.395 0.361
10−1 0.469 0.068 0.082 0.469 0.440 0.556

10−
√

2 0.596 0.033 0.097 0.596 0.282 0.594
10−2 0.748 0.009 0.113 0.748 0.086 0.626
10−3 0.884 0.001 0.125 0.884 0.007 0.644
10−4 0.887 10−4 0.123 0.887 0.001 0.617
10−5 0.590 10−5 0.081 0.590 10−4 0.405
10−6 0.130 10−6 0.018 0.130 10−5 0.089
10−7 0.015 10−7 0.002 0.015 10−7 0.010
10−8 0.001 10−8 10−4 0.001 10−8 0.001
10−9 10−4 10−9 10−6 10−4 10−9 10−4

Table 6.1: Reduction factors at combinations (µ, ν) that are relevant in the
case of standard coarsening.
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Figure 6.2: Reduction factors of the ILU(0) smoother with different values
of ε. With coarsening in both directions, high-frequency modes
correspond to the blue area in the case of H = 2h and to the
union of the blue and green area in the case of H = 4h. The
points ( 1

h − 1, 1) and ( 1
4h , 1) are marked in orange and light blue,

respectively (according to the first and last column in Table 6.1).
These reduction factors determine the smoothing factor.
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For greater values of ε, i.e., rather isotropic problems, this is different. Here the

smoothing factor increases for aggressive coarsening, as the reduction factor at

( 1
H
, 1) (or ( 1

H
, c1)) is greater than the one at ( 1

h
− 1, 1). Consequently, although

we use ILU(0) as a smoother, for an isotropic problem, we have to expect a slower

convergence rate of the two-level method.

6.1.2.2.2 Semicoarsening

Our discussion so far assumed that we were using the same coarsening in each grid

direction. While this is a reasonable choice for a geometric multigrid approach,

it does not properly reflect the situation of algebraic multigrid. In the isotropic

case of ε = 1, classical AMG coarsening for a two-level method would have a

coarsening rate of H =
√

2h. In the anisotropic case with small ε, the AMG

coarsening would adapt itself to the matrix structure. This is, as soon as ε < εstr,

with εstr the criterion for strong connections from (3.8), the AMG coarsening is

performed in only one direction: along the strong couplings. In the context of

geometric multigrid this corresponds to semicoarsening, in our case with small ε,

along the y-direction. The set of low-frequency modes then is Φlow = [1, 1
h
)×[1, 1

H
).

Lemma 6.3. With this semicoarsening, the smoothing factor of ILU(0) is given

by the maximal reduction factor λ(µ, ν, ε, h) taken over the three values of (µ, ν):

• (µ, ν)4 := ( 1
h
− 1, 1

H
)

• (µ, ν)5 := (c2,
1
H

)

• (µ, ν)6 := (1, 1
H

)

Where, with (C.2), c2 := c(h,H, ε, 1).

Proof. See Appendix C.2.

The values of these three different reduction factors, for two different amounts of

aggressiveness in the coarsening, are given in Table 6.2, for different choices of ε and

an exemplary grid of mesh size h = 1
1024

. Also in the case of semicoarsening, the

difference in the smoothing factor between both types of aggressiveness decreases

the stronger the anisotropy becomes. Especially for ε ≤ 10−4, there is nearly no

difference at all, if we keep in mind the values in the table are rounded. Figure

6.3 visualizes the situation for two choices of ε.
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H = 2h H = 4h
ε ( 1

h − 1, 1
H ) (c2,

1
H ) (1, 1

H ) ( 1
h − 1, 1

H ) (c2,
1
H ) (1, 1

H )

100 0.013 0.114 0.031 0.118 0.299 0.36
10−1 0.006 0.045 0.007 0.110 0.132 0.109
10−2 0.001 0.006 0.001 0.020 0.018 0.016
10−3 10−4 0.001 10−4 0.002 0.002 0.002
10−4 10−5 10−4 10−5 10−4 10−4 10−4

10−5 10−6 10−6 10−6 10−5 10−5 10−5

10−6 10−7 10−7 10−7 10−6 10−6 10−6

10−7 10−8 10−8 10−8 10−7 10−7 10−7

10−8 10−9 10−9 10−9 10−8 10−8 10−8

10−9 10−10 10−10 10−10 10−9 10−9 10−9

Table 6.2: Reduction factors at combinations (µ, ν) that are relevant in the
case of semicoarsening.
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Figure 6.3: Reduction factors of the ILU(0) smoother with different values of
ε. With semicoarsening, high-frequency modes correspond to the
blue area in the case of H = 2h and to the union of the blue
and green area in the case of H = 4h. The reduction factor that
determines the smoothing factor is marked with a light blue and
an orange point for H = 2h and H = 4h, respectively.

Conclusion: With both semicoarsening and coarsening both directions the differ-

ence of the smoothing factors that result from classical and aggressive coarsening

becomes smaller as the anisotropy becomes stronger. As we expect the smooth-

ing factor to approximate the two-level convergence rate, we conclude that with

strong anisotropies we can use aggressive coarsening instead of classical coarsen-

ing without negative impacts. This at least holds with ILU(0) smoothing in the

model case. Figure 6.4 visualizes this with plain two-level cycles of AMG for the

model problem at a grid size of h = 1
96

(with h = 1
1024

, the second level problem is

too big for a direct solver). The figure compares ILU and Gauss-Seidel smoothing
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for the different coarsening variants and shows that the convergence rate between

classical and aggressive coarsening with ILU-smoothing becomes the closer, the

stronger the anisotropy is.
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Figure 6.4: Number of two-level AMG iterations needed to achieve eight or-
ders of residual reduction for the model problem with Gauss-Seidel
and ILU(0) smoothing. Different values of ε are compared. To
avoid mixing effects, AMG is used stand-alone, i.e., not as a pre-
conditioner.

6.1.3 Relevance for the General Case

In reservoir simulations, the permeability field induces strong anisotropies. The

permeability varies up to 6 orders of magnitude between neighboring grid cells in a

typical simulation. For anisotropies of such strengths, our previous considerations

imply aggressive coarsening to be ”as good” as the classical one.

However, we have only analyzed a model problem with a constant anisotropy in

one direction, whereas in reservoir simulation the permeability, and, hence, the

anisotropy, varies in direction and strength virtually randomly. While the appli-

cation of LFA is practically impossible for such problems, we observe comparable

convergence rates for aggressive and classical coarsening with ILU(0) smoothing

in practice. We can empirically further validate this observation.

Definition 6.4. Let A = (aij) be an arbitrary, symmetric square matrix. The

graph Laplacian GLA = (lij) is defined as

lij =

−1 if aij 6= 0

0 otherwise
for i 6= j and lii =

∑
j 6=i

−lij.



Relevance for the General Case 160

4

Let us assume a matrix A results from the discretization of an IMPES pressure

equation (2.12) with Dirichlet boundary conditions at a well bore. Assume AL

to be the corresponding graph Laplacian with ”analog boundaries”. Clearly, A

and AL are spd M-matrices and have the same non-zero pattern. However, AL

corresponds to the discretization of a homogeneous IMPES pressure problem, while

A reflects all heterogeneities from the reservoir. We can now use some 0 ≤ ξ ≤ 1

and mix both matrices:

Aξ := ξA+ (1− ξ)AL. (6.8)

The parameter ξ allows to control the heterogeneity of the problem, while the ma-

trix for any choice of ξ remains an spd M-matrix. Hence, we can test stand-alone

Scalar-AMG with classical and aggressive coarsening for different choices of ξ and

for ILU(0) or Gauss-Seidel smoothing.

From the results with representative test problems we see that the AMG con-
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Figure 6.5: Number of iterations needed to achieve eight orders of residual
reduction for Aξ (cf. (6.8)) with Gauss-Seidel and ILU(0) smooth-
ing. Different values of ξ are compared. Only the pressure prob-
lem is solved with the heterogeneous problem resulting from the
pctst case (cf. Appendix A). To avoid mixing effects, AMG is
used stand-alone, i.e., not as a preconditioner.

vergence for all tested values of ξ suffered when choosing aggressive coarsening,

if Gauss-Seidel smoothing was used. With ILU(0) smoothing, however, the AMG

convergence with aggressive and classical coarsening becomes closer with ξ → 1,

i.e., the more heterogeneous the problem is. This is exemplarily shown for the

pctst case in Figure 6.5. This result matches what we have seen with the model

problem in Figure 6.4.
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6.1.4 Results

For our System-AMG approach for the solution of coupled systems from FIM

simulations, for reasons of robustness, we typically use ILU(0) smoothing at the

finest level. According to the previous motivations, we can then use aggressive

coarsening at the finest level without reducing the convergence speed. This inval-

idates our initial fear that aggressive coarsening for the System-AMG approach,

due to additional and expensive iterations, will not pay. On the contrary, ag-

gressive coarsening reduces the overall run times, as demonstrated in Figure 6.6.

As we use ILU smoothing only at the finest level, we only coarsen the first level

aggressively. For the further levels, we proceed with standard coarsening. Apart

from the aggressive coarsening, we use our standard System-AMG approach for

Black-Oil problems.

The figure also shows that with homogeneous pressure problems, the number of

iterations drastically increases (cf. Figure 6.6a) and we do not have performance

benefits anymore. Whereas with the the original, heterogeneous pressure sub-

blocks (Figures 6.6b and 6.6c), the number of iterations does not increase when

using aggressive coarsening and the performance gain per iteration carries over to

the overall run time.

In addition to the performance improvement for heterogeneous problems, the mem-

ory that is required to store the AMG hierarchy is reduced by 40-50%, compared

to classical coarsening.
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Figure 6.6: Number of iterations and runtimes in total and per cycle are com-
pared for classical and aggressive coarsening with three different
Black-Oil problems (cf. Appendix A). Relative numbers are plot-
ted for comparability. Note that in (A) the original pressure sub-
problems have been replaced by the respective graph Laplacians.
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6.2 Handling of Explicitly Treated Unknowns in

AIM Simulations

In contrast to fully implicit (FIM) simulations, in adaptive implicit simulations

(AIM, cf. Section 2.5), a decoupling of the pressure from saturation and concen-

tration unknowns can be beneficial in terms of computational performance. For

those cells i where the saturations1 are treated explicitly in the discretization of

the mass balances (2.10), so-called IMPES-cells, with i 6= j, the non-zero pattern

of the respective matrix blocks is as follows:

[J ]ii


∗ ∗ . . . ∗
∗ ∗ 0
...

. . .

∗ 0 ∗

 and [J ]ij =


∗ 0 . . . 0
...

...
...

...
...

...

∗ 0 . . . 0

 . (6.9)

Given that no unknown from any other cell depends on the saturations of cell i,

decoupling them in the diagonal block [J ]ii would eliminate these saturations from

the system. Unknowns from other cells may only depend on these saturations, if

the IMPES-cell i had a non-IMPES neighbor. If, however, only IMPES-cells are

neighboring the IMPES-cell2 i, by inexpensive block-diagonal transformations, we

can eliminate the saturations. This accelerates the computation and application

of the ILU decomposition in the post-smoothing process at the finest level (as the

saturations and concentrations are not involved in the coarse grid correction, only

the ILU post-smoother becomes computationally faster). The eliminated satura-

tions are computed once the reduced linear system is solved.

However, in order to maintain the robustness of our solver approach, we must not

use decoupling methods that might have an impact on the applicability of AMG,

like those from Section 4.2.3. In this section we will present two methods to exploit

the diagonality of Aps and Ass from IMPES-cells without affecting the robustness

of our System-AMG approach. That is, our System-AMG approach is ensured

to be applicable and, as a matter of practical experience, we gain performance

benefits.

1In compositional simulations, also the concentrations are treated explicitly in IMPES-cells.
For reasons of readability, we just refer to saturations here and note that there might be more
than three ”saturation unknowns”.

2Either the simulator supplies the information for which cells this holds, or this is analyzed
on the algebraic level by checking each saturation related matrix column.
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In the following, we refer to an arbitrary IMPES-cell as k, where there are depen-

dencies on the saturations only in the diagonal block [J ]kk, whereas we refer to

any other cell as l.

6.2.1 Decoupling All but One Saturations

Our approach involves two steps: We first use a right scaling that shifts the cou-

pling to the explicitly treated saturations from the pressure to one of these satu-

rations. We then use a left scaling to remove these couplings and eliminate all but

one of these saturations from the system.

We assume the DRS transformation has already been completed and note that

this cannot have introduced additional couplings to saturations from IMPES-cells,

which would be different if we applied DRS after our decoupling. That is, the

structure of the matrix blocks that correspond to IMPES-cells still is as in (6.9)

and the pressure sub-problem is well-suited to construct an AMG hierarchy.

For our IMPES-cell k, let us assume the diagonal block [J ]kk is of size m×m and

reads as

[J ]kk :=


a11 . . . a1m

...
. . . 0

am1 0 amm

 . (6.10)

Without loss of generality3 let us assume a12 6= 0. We then define a right scaling

by CR (cf. (4.1)), where its k-th block [CR]k is as in the following:

[J̃ ]kk = [J ]kk



1

1 −a13
a12

. . . −a1m
a12

1
. . .

1


︸ ︷︷ ︸

:=[CR]k

=



a11 a12 0 . . . 0

a21 a22 −a22a13
a12

. . . −a22a1m
a12

a31 a33

...
. . .

am1 amm


.

(6.11)

Regarding cell l, we use [CR]l = 1.

Because this method, let us call it saturation column eliminating (SCE), does not

at all affect the first, i.e., pressure related column of any block, we are guaranteed

3If the coupling between pressure and the first saturation was zero, then the methodology
works analogously with the third, fourth, etc. instead. If all these couplings already were zero,
then, regarding cell k, there was no need for a decoupling.
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that the pressure sub-problem is not affected. Because the pressure related column

also is not involved in the scaling, no couplings to saturations from IMPES-cells

are introduced in any block of the Jacobian.

The SCE method does not eliminate the explicitly treated saturations, but shifts

the coupling to them from the pressure to one saturation. In order to eliminate

the saturations, we need to remove these couplings. This can be achieved by a left

scaling CL, where, for our IMPES-cell k, we define:

[CL]k =

(
1

[Ãss]
−1
kk

)
, (6.12)

with [Ãss]kk the saturation sub-block of the diagonal block [J̃ ]kk from (6.11). As

before, regarding cell l we set [CL]l = 1.

Because [Ass]kk from the original problem is diagonal and non-singular, [Ãss]kk

from (6.11) is an upper triangular, non-singular matrix, and [Ãss]
−1
kk is easy to

compute.

CL does not modify the sub-matrix App. As we already have applied the DRS

transformation, we do not care about scalings applied to Asp. These effect rows

that correspond to unknowns that we will eliminate from the system.

After applying both scalings, we have decoupled all but one of cell k’s saturations

from the system. The decoupled unknowns do no longer occur in the linear solution

process, but are updated afterwards. More precisely, for IMPES-cell k, with j 6= k,

after the application of both scalings, we have the following non-zero structure in

the respective matrix blocks:

[J̃ ]kk



∗ ∗ 0 . . . 0

∗̃ 1 0 . . . 0
...

...
. . .

...
...

...
. . .

...

∗̃ 0 . . . 0 1


and [ J̃ ]kj =


∗ 0 . . . . . . 0

∗̃ ...
...

...
...

...

∗̃ 0 . . . . . . 0

 , (6.13)

with ∗̃ indicating some possible change compared to (6.9).

As we did not at all modify the pressure sub-matrix App, or other sub-matrices that

correspond to implicitly treated unknowns, the applicability of our System-AMG

approach for the reduced system is unchanged.
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6.2.2 Saturation-Decoupling in the Post-Smoother

Instead of the previous SCE decoupling prior to the application of System-AMG,

we can include a decoupling, actually a simpler one, in the post-smoothing operator

at the finest level. This requires less matrix scaling operations, however, it modifies

the ILU fine-level smoother.

Let us assume that for our initial matrix J we have an incomplete factorization

J = LU −R with the respective ILU operator as

SILU = 1− U−1L−1J. (6.14)

We now construct a left scaling Cdcpl that decouples pressure and saturations for

IMPES-cell k via a Schur complement in the respective diagonal matrix blocks.

This is, we compute [Cdcpl]k as in the qIMPES decoupling (4.8). For all cells l we

simply set [Cdcpl]l = 1. We define Jdcpl := CdcplJ and assume that we have the

incomplete factorization Jdcpl = LdcplUdcpl −Rdcpl.

For our initial linear system, we now modify the ILU operator as follows:

Smodify = 1− U−1
dcplL

−1
dcplCdcplJ, (6.15)

which is equivalent to the ILU operator Sdcpl for the system that is described by

Jdcpl. Hence, as long as this operation converges, our modified ILU operation for

the original system does converge as well. The advantage of Smodify, compared to

SILU , is that we can eliminate the explicitly treated saturations from the system

that we need to compute the factorization for.

The p-th iteration that leads to Smodify then is as follows:

• For the system Jx = f , with the iterate xp−1, compute rp−1 = f − Axp−1.

• Scale r̃p−1 = C−1
dcplrp−1.

• Solve LdcplUdcplep−1 = ˜rp−1:

– Forwards- and backwards solution for all non-decoupled unknowns.

– Explicit update of decoupled saturations.

• Get the new solution iterate xp = xp−1 + ep−1.
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That is, we modify our ILU post-smoother in order to exploit the diagonality

of Aps and Ass regarding explicitly treated saturations. According to practical

experience, this modified smoother is working properly with our System-AMG

approach.

Remark 6.5. We have to note that the decoupled saturations must be updated after

all other unknowns from the entire system are computed. It is not sufficient to wait

only until the pressure of the respective cell is computed. This is because, although

no other unknown depends on a decoupled saturation, any decoupled saturation

may depend on further implicit unknowns that need to be updated before updating

this saturation. 4

Remark 6.6. We never need to explicitly store Jdcpl. The application of the scaling

by CL can be incorporated in the computation of the factorization on the fly and

in-place. There is no need to consider changes in the non-zero pattern of J : all

pressure related blocks in App and Asp have the same non-zero pattern, as all

transmissibilities depend on each phase’s pressure. 4

6.2.3 Results

We have described two different ways to exploit the diagonality of the saturation

related matrix parts from IMPES-cells in adaptive implicit simulations. Both

methods have in common that the pressure related matrix part is never affected in a

way that AMG might suffer from. The SCE decoupling method has the advantage

of constructing an equivalent linear system that our System-AMG approach can

be applied to without further modifications. However, it has the disadvantage

of requiring two matrix scalings. In contrast to this, modifying only the ILU

smoother involves one rather simple scaling.

According to practical experience, both methods work well with AIM problems and

reduce the computational time per iteration. Figure 6.7 compares the proposed

methods with not using any special handling for the explicit saturations. The

systems have artificially been created from SPE10 problems (the Black-Oil and

the compositional one, cf. Appendix A) by removing all off-diagonal entries in the

sub-blocks of Ass and Aps. Apart from the methods regarding explicit saturations,

our respective default System-AMG approaches are used.

While the residual reduction always is at least as good as without such a handling,

the run time per AMG cycle is decreased by using the decoupling methods. This



Results 167

effect is stronger with the compositional simulation, as there are more explicitly

treated unknowns per IMPES-cell.

We need to discuss the drastic convergence improvement in the compositional

case: In those matrix-blocks where we could decouple saturations, the reduced

system is (nearly) the same for the Black-Oil and the compositional case. With

both approaches for handling explicit saturations, the entries of the residual vector

that correspond to decoupled saturations, as these are updated explicitly, are zero

after every iteration. It does not matter whether this is a small or large number

of saturations (i.e., Black-Oil or compositional). For the considered test cases this

effect is over-emphasized, as using diagonal matrices for Ass and Aps corresponds

to all cells being IMPES-cells.

In both cases we consider the SPE10 reservoir. Therefore, in the compositional

case, with using the special handling of IMPES-saturations, we have nearly the

same reduced system and convergence history as in the Black-Oil case. As there

might be some small differences between the Black-Oil and the compositional case,

for instance in the linearization, both systems still are not exactly equal.
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Figure 6.7: Convergence history of the System-AMG approach with different
options of handling saturations and concentrations from IMPES
cells. For the test the blocks Ass and Aps from the Dead-Oil and
compositional SPE10 problem (1.1 million cells, cf. Appendix A)
have been diagonalized. For comparison, the run times per cycle
are given in the charts’ legends.





Chapter 7

Implementational Aspects of

Performance Improvements

In the previous chapter we have seen that we can apply some algorithmic modifica-

tions to our System-AMG approach in order to accelerate the computational time.

Of course we can also adjust the implementation of the System-AMG components

in order to obtain a better computational performance. We will discuss two such

aspects in this chapter:

The first relates to the parallelization, as reservoir simulations today are hardly

ever performed sequentially. Although parallelization aspects are not in the fo-

cus of this thesis, we will consider the shared-memory parallelization of ILU in

some detail. We do so because the ILU post-smoother is a sensitive part of our

System-AMG approach and, since it involves the full system, it is computation-

ally expensive compared to other parts. For the other parts of our System-AMG

approach, we can exploit the existing parallelization of the SAMG library.

The second aspect is the exploitation of the concrete System-AMG approach and

the underlying matrix properties in the implementation of the solver. We will out-

line how abandoning some of System-AMG’s generality can save computational

time and how to realize the matrix transformations, e.g. DRS, efficiently.

169
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7.1 Parallelization of ILU(k)

As this step involves the full linear problem, a significant portion of time is spent in

the ILU post-smoothing of our System-AMG approach. Hence, the ILU smooth-

ing also is a major bottleneck w.r.t. parallel implementations of the System-AMG

approach. This is even more true as the ILU factorization is a highly sequential

process. Its parallelization is not straight forward and may require compromises, a

dilemma which we are going to discuss. We will provide a robust parallelization of

ILU with an arbitrary, pre-defined pattern1 P 6=0 on a shared memory architecture,

e.g., by the OpenMP programming model [80].

We assume a number of τ independent processes, strictly speaking threads of the

same process, to be running. We are not considering implicit parallelism here,

which enables OpenMP to parallelize simple loops in an automatic way. Instead

we focus on explicit parallelism, where the amount of automatism from OpenMP

is minimized2. Each of the threads is independent in the sense that different op-

erations can be executed by two threads consecutively.

We are considering some arbitrary, regular square matrix A = (aij) within this

section. We assign each matrix row to a partition Ω(T ), which is assigned to

thread T . In our discussion, we use the simple-most partitioning where Ω(1) con-

sists of the matrix rows 1, ..., r1, Ω(2) consists of rows r1 + 1, ..., r2 and so on, until

Ω(τ) consists of rows rτ−1 + 1, ..., n. Different partitionings could be realized by

a renumbering of the matrix. We are primarily interested in the parallelization of

ILU and do not discuss the, possibly beneficial, impact of such different partition-

ings.

There are essentially two approaches of parallelizing incomplete factorizations. An

implicit renumbering of the matrix can be used that reflects the needs of concur-

rency. We will review this in the following and see that such a renumbering can

have drastic algorithmic impacts. The other approach uses wavefronts that de-

termine concurrency that already is inherent in the matrix. The approach we are

going to use follows this direction.

1We can apply the same methodology with a block-ILU, and we will see that, in principle,
block-ILU corresponds to an ILU(b) with a special pattern (cf. Remark 7.7).

2In terms of implementation, we use parallel OpenMP regions rather than only parallel do or
for loops.
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7.1.1 Parallelization by Renumbering

Using a multicoloring of the adjacency graph of the matrix to factorize is a pop-

ular approach to parallelize incomplete factorizations. Such a method has been

introduced by Ma and Saad or Hysom and Pothem [48, 67], and still is popular

today (see, for instance, Heuveline et.al. [47]). It has the advantage of being real-

izable for a general matrix in a rather straight forward way and typically gives a

good parallel efficiency. For rather isotropic problems the convergence properties

usually still are as good as in the sequential case. However, the resulting factor-

ization generally is not equivalent to the sequential one and the ILU method may

suffer from a lack of robustness. We will see that this especially holds in the highly

heterogeneous problems from reservoir simulations.

7.1.1.1 Description of the Method

The idea is to assign a color to each of the matrix rows and then renumber the

problem accordingly. We distinguish between inner rows and border rows, where

inner rows in the ILU pattern P 6=0 do not have any connection to another thread’s

partition and border rows are all non-inner rows. We assign each inner row the

color 0 and then assign the border rows some colors 1,2,..., such that two rows that

are connected by some non-zero coupling do not share the same color. This can

be realized by parallel graph coloring algorithms like the one proposed by Luby

[66].

We can then renumber the linear system to solve, by using the rows of the first

partition with color 0 first, followed by color 0 from the second partition, etc. This

renumbering allows for a straight forward parallelization of the factorization and

the ILU iterations.

Let us exemplarily consider the situation with two partitions and two colors. If we

denote some arbitrary non-zero matrix block as ∗, the renumbered matrix reads

as: 

∗ 0 ∗ ∗ . . .

0 ∗ ∗ ∗ . . .

∗ ∗ ∗ 0 . . .

∗ ∗ 0 ∗ . . .
...



← First partition, color 0

← Second partition, color 0

← First partition, color 1

← Second partition, color 1

. (7.1)
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Those parts of the partitions that have the same color now can be factorized si-

multaneously, with a synchronization before starting the next color. The forwards

and backwards solution sweeps for the systems that are described by L and U

are parallelized accordingly. The proceeding, in principle, is the same with more

partitions and/or colors.

7.1.1.2 Results and Drawbacks

Factorizing the renumbered matrix (7.1) is an inherently parallel task. Hence,

we can expect a rather good parallel efficiency, which in fact is realized in many

practical applications. However, the method suffers from a lack of convergence

for many linear systems. The impacts on the convergence often highly depend

on the number of partitions, i.e., the amount of concurrency, being used. The

results in Figure 7.1 show these effects. For all the presented problems, ILU(0)

in its sequential version can reduce the residual by six orders of magnitude in

a reasonable number of iterations. However, for the cases cputest and bo8p6,

already when involving two threads with the parallelization by renumbering, no

convergence can be achieved anymore. For the case pctst we observe the high

dependency of the solver on the number of threads.

This effect was addressed already in the early papers [48, 67]. While the linear

system still describes the same problem after the renumbering, the incomplete

factorization is likely not to be the same anymore. The renumbering usually

results in different elements being shifted to the rest matrix of A = LU −R. The

parallelized method then is no more equivalent to the sequential one.

A well known example for this effect are linear systems from the anisotropic Pois-

son problem (cf. (6.1)). With this parallelization approach, the rest matrices

between different amounts of concurrency differ by O(ε). Hence, depending on the

anisotropies’ direction (i.e., with large ε), we have drastic impacts.

We can already see the effect with the following 4 × 4 matrix B, where a, b, c ∈
R \ {0} with |a| 6= |b| and |a| 6= |c|. Let us denote RB the rest matrix of the

sequential ILU factorization of B, and RBp the rest matrix of the parallel ILU
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(a) Case SPE10, small time step
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(b) Case pctst
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(c) Case cputest
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(d) Case bo8p6

Figure 7.1: Convergence history of ILU(0) as single level preconditioner for
flexible GMRes. The parallelization by renumbering was applied
with different numbers of OpenMP threads for different full sys-
tems from Black-Oil simulations (cf. Appendix A).

factorization with two partitions. This gives:

B :=


a b c 0

b a 0 c

c 0 a b

0 c b a

 , RB =


0 0 0 0

0 0 bc
a

0

0 bc
a

0 0

0 0 0 0

 and RBp =


0 0 0 0

0 0 0 0

0 0 0 2 bc
a

0 0 2 bc
a

0

 .

Already for this simple example, except for a different numbering, RBp is twice

RB.
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7.1.2 Wavefront Parallelization

The convergence issues that we have observed with the previous parallelization

approach did result from the renumbering. It was not a problem that rows have

been factorized simultaneously, if their factorization only required already existing

information. Hence, if the original matrix already contained groups of such rows,

a parallel factorization would be possible without negative impacts on the conver-

gence properties. While we cannot expect the ”perfect” structure from (7.1), it is

still likely that there are some such groups in a general matrix. This is even more

true in sparse matrices resulting from the discretization of PDEs on a grid. The

main task is to detect which rows are independent and which are not, especially

if the underlying grid is unstructured.

7.1.2.1 Structured Grids

For problems resulting from discretizing a PDE on a structured two dimensional

grid, van der Vorst [98] proposed the usage of several hyperplanes within this

structured grid. We can regard them as wavefronts. If we assume the grid to be

ordered lexicographically, then the method starts with factorizing the matrix rows

that correspond to the k× k block of grid cells in the lower left corner of the grid.

In the sense of a non-zero coupling to a row of a smaller index, these rows can

only depend on rows that result from this block. Once this is finished, there are

two groups of matrix rows that result from the two neighbored k×k blocks, which

could be factorized independently of each other. These blocks form a level of the

wavefront.

This methodology proceeds accordingly and a parallelization front, the wavefront,

moves through the grid, until finally the last set of rows from the upper right

block of grid cells has to be factorized by a single thread. Figure 7.2 visualizes

this proceeding. The backwards and forwards sweep in ILU’s solution phase are

parallelized accordingly.

The principal methodology can be extended to the three dimensional case, as de-

scribed by Joubert et.al. [53]. On a structured grid, this approach can provide

a respectable parallel efficiency, while it is guaranteed to have the same factor-

ization as the serial ILU method has. However, the direct transfer to a general
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(100, 100)(0, 100)

k = 20

Figure 7.2: Wavefronts in a 2D structured grid of 100× 100 cells. Each block
has a size of 20× 20. The blocks of the same color induce sets of
matrix rows that can be factorized independently, once the sets
of matrix rows with lower indices are factorized.

unstructured grid, as it is used by today’s reservoir simulators, is very difficult, if

not practically impossible.

7.1.2.2 Wavefronts Only in the Solution Phase

Saad [88] describes a way to exploit a wavefront, or level scheduling, approach for

the solution phase of ILU that is independent of the underlying grid. The factors

L and U , which are lower and upper triangular matrices, are renumbered based

on a graph-depth search, such that wavefronts can directly be exploited for the

backwards and forwards solution sweeps.

However, this also is the drawback of the method: the factorization itself is not

parallelized at all. If ILU was used as a stand-alone solver, due to the typically

high number of iterations for the considered types of linear systems, paralleliz-

ing the solution part still would be of interest (see, for instance, Naumov [76] for

a recent example). However, in our System-AMG approach, we exploit AMG’s

numerical efficiency to keep the number of iterations small. Hence, a serial in-

complete factorization would remain a serious bottleneck for the overall parallel

efficiency. We therefore do not follow this approach.
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7.1.2.3 Implicit Wavefronts

Inspired by the parallelization of full LU -factorizations for dense matrices, Dong

and Cooperman [35] in 2011 presented a parallelization of the ILU(k) factorization

that produces the same result as the serial version and does not exploit grid infor-

mation. Their idea is to transfer the wavefronts from the grid to the matrix. They

split the matrix rows into bands, which are small groups of consecutive matrix

rows. Typically, these bands are smaller than our partitions. After factorizing the

rows of the first band, the second band can be factorized completely. Moreover,

in all further bands, the factorization can be started until a row of band two or

higher is to be accessed.

With this method, there is some parallelism achieved without affecting the conver-

gence properties in any way. However, in contrast to the initial idea of wavefronts,

synchronizations are needed also while a particular row is factorized. In order to

achieve a reasonable amount of concurrency, Dong and Cooperman use relatively

small bands. Compared to the initial wavefront idea, this results in a drastic

increase in the synchronization overhead. The severeness of this effect depends

on the amount of fill-in, i.e., the pattern P 6=0, and on how the target hardware

architecture copes with synchronizations.

7.1.2.4 Unstructured Grids - Algebraic Wavefronts

The independence of the underlying grid was one reason why algebraic multigrid

is preferred to geometric multigrid in reservoir simulations (cf. Section 3.1.1), as

we typically are concerned with highly unstructured grids. AMG uses a setup

phase where coarse levels are constructed based on matrix information, only. For

a wavefront parallelization of ILU factorizations, we will introduce a setup phase

as well. It is close to an AMG setup, as we use the concept of aggregation with

certain constraints on the aggregates.

Schematically, the method works as in Algorithm 7.3. We will discuss the dif-

ferent steps of the algorithm in detail in the following sections. The outcome

of the algorithm is a set of aggregates, which are sets of row indices, where each

aggregate is assigned a level3. The aggregates of one such level l can be factorized

concurrently, as long as all rows assigned to levels of a lower index already have

3In our current discussion, we refer to the levels from a level-scheduling, i.e., a wavefront.
This must not be mixed up with the levels of AMG’s hierarchy.
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Algorithm 7.3 Algebraic Wavefronts

1: for each partition T do
2: Group the matrix rows of T into appropriate aggregates
3: Upwards sort the row indices of each aggregate.
4: Construct levels of the aggregates.
5: Connect levels with other partitions.

6: Factorize the matrix in parallel.

been factorized. In the situation of a 2D structured grid from Section 7.1.2.1, the

k × k blocks would define aggregates in the sense of the above algorithm. All of

these blocks that we could factorize independently of each other, i.e., that have

the same color in Figure 7.2, form a level.

We now have to discuss how to form the aggregates and levels in a general case,

without using any grid information.

7.1.2.4.1 Definitions

Before we start with the description of the algebraic wavefront approach, we in-

troduce some definitions used below.

Definition 7.1. A matrix row i depends on a row j if j < i and (ij) ∈ P 6=0. We

write j ≺ i. 4

Definition 7.2. An aggregate X depends on another aggregate Y , i.e. Y ≺ X, if

∃j ∈ Y, i ∈ X : j ≺ i. 4

Definition 7.3. Let Z be an arbitrary aggregate. A corner row i w.r.t. Z is a

row where ∃j, k ∈ Z : j ≺ i, i ≺ k. 4

Definition 7.4. For a partition T , a lower partition V is a partition where the

indices of V are smaller than those of T . That is, a row from T may depend on

one from V , but not vice versa. We analogously define an upper partition W . 4

7.1.2.4.2 Forming the Aggregates

In order to distribute the aggregates into levels later on, we need to make sure

that, for any two aggregates X and Y , either Y ≺ X or X ≺ Y . Hence, we do

not obtain any corner aggregate.

Under this constraint, we can grow the aggregates until a given size maxAggSize

is reached. With this maximal size, a trade-off between the amount of concurrent
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work and the need for synchronization can be adjusted. The smaller the aggre-

gates, the easier independent aggregates can be found. But the more necessity for

synchronization is expected.

The grouping of aggregates in one partition is described by Algorithm 7.4. We

consider the lower and upper partitions from Definition 7.4 as one known aggre-

gate, each. stack is a classical stack data structure and low and high are the

lowest and highest row index of the considered partition, respectively.

Algorithm 7.4 Grouping Aggregates in One Partition

1: for i = low, ..., high do
2: if i is not yet assigned an aggregate then
3: if i is no corner row w.r.t any existing aggregate then
4: if i only depends on rows that are assigned an aggregate then
5: Create aggregate X
6: assign i to aggregate X
7: k ← i
8: aggSize← 1
9: stack ← clear()

10: stack ← push (all j : aij 6= 0; low ≤ j ≤ high;

j not assigned an aggregate)
11: while aggSize < maxAggSize and stack 6= empty do
12: for all j : akj 6= 0 do
13: if j only depends on rows assigned an aggregate then
14: if with j, X is no corner aggregate then
15: assign row j to aggregate X
16: aggSize← aggSize+ 1
17: stack ← push (all l : ajl 6= 0; low ≤ l ≤ high;

l not yet checked and

not assigned an aggregate)

18: k ← pop(stack)

19: for all rows i not yet assigned an aggregate do
20: if i depends on rows from only one aggregate, Y then
21: Assign i to aggregate Y
22: else
23: Create aggregate X
24: Assign i to aggregate X

By using the stack structure, the algorithm attempts to construct compact aggre-

gates, rather than ”long lines”. The algorithm first considers all neighbors of an

aggregate’s first point, before also considering the neighbors of the second point,

etc. This proceeding ensures that aggregates, in the underlying adjacency graph,
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grow in the direction of all couplings more or less simultaneously. We could further

improve this by, for instance, monitoring the aggregate’s diameter and attempt-

ing to grow aggregates such that this diameter is kept as small as possible. This

additional effort, however, does not pay in practice.

As the number of rows per partition is finite, the stack is guaranteed to be empty

at some point and the while-loop in the algorithm terminates. From the construc-

tion it is clear that each row index is assigned to an aggregate, in the worst case

this aggregate consists of only one row index.

The smaller the aggregates, e.g., the more aggregates of size one we have, the worse

we will have to expect the parallel efficiency. However, and this is the primary

objective of our parallelization approach, the robustness is still exactly as in the

sequential version.

We note that only data that is assigned to the considered partition is needed.

Hence, a concurrent execution of the algorithm on the different involved threads

is possible. The result is illustrated in Figure 7.3 for an exemplary adjacency graph.

7.1.2.4.3 Construction of Levels

We can now construct levels for the level-scheduling. This is achieved by Algo-

rithm 7.5, where the structures listX are linked list data structures. The algorithm

again is applied partition-wise, after the aggregates have been created by Algo-

rithm 7.4.

Figure 7.3 shows the outcome of the leveling algorithm with an exemplary ad-

jacency graph. The levels that result from Algorithm 7.5, as the method works

locally per partition, do not yet capture interferences with other partitions. This

way, the execution of the leveling method works concurrently. We consider the

interferences between partitions later on.

To achieve a sufficient concurrency, the levels need to contain as many aggregates

as possible. We do not particularly focus on this requirement in our algorithm,

our primary concern is the equivalence to the sequential version. If, however, the

maximal size of the aggregates is small compared to the size of the partitions, for

sparse matrices it is rather likely to end with levels that contain enough aggregates

to provide sufficient concurrency. We are only considering such matrices here. The

algorithm has also been tested with matrices that result from bigger discretization

stencils, e.g., linear elasticity, and still gave sufficient results.

Showing the well-posedness of the algorithm requires considering the two involved
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Figure 7.3: Visualization of the outcome of the algebraic wavefront method
for an exemplary adjacency graph. The red numbers give the
numbering of the respective matrix. We consider two partitions,
with the green line indicating the border between them. Aggre-
gates are illustrated by orange edges between the respective nodes.
We used maxAggSize = 3. The color of the nodes indicates the
level its aggregate belongs to. Aggregates of the same level can
be factorized independently, once aggregates from lower indexed
levels are factorized.

while-loops. Regarding the second one (while listwork 6= empty), we note that, due

to the finiteness of the number of rows per partition, the number of aggregates per

thread is finite. This implies there always is a finite number of entries in listwork.

Regarding the first while-loop, we can state the following lemma, which implies

the loop does terminate:

Lemma 7.5. With aggregates created by Algorithm 7.4, list0 from Algorithm 7.5,

at the beginning of the first while-loop, can be empty only in the case that all

aggregates have been assigned a level, i.e., the first while loop from Algorithm 7.5

terminates.

Proof. The counter position to the above statement would mean that there is a

situation where there still are aggregates without level-assignment, but all of them



Wavefront Parallelization 181

Algorithm 7.5 Grouping Levels in One Partition

1: list0 ← clear(); list1 ← clear(); ....
2: for all aggregates X do
3: get the number d(X) of aggregates it depends on
4: listd(X) ← insert(X)

5: lev ← 0
6: while ∃ aggregates not assigned a level do
7: listwork ← list0
8: list0 ← clear()
9: lev ← lev + 1

10: while listwork 6= empty do
11: X ← pop first element(listwork)
12: assign aggregate X to level lev
13: for each aggregate Y, depending on X do
14: listd(Y ) ← remove(Y )
15: d(Y )← d(Y )− 1
16: listd(Y ) ← insert(Y )

depend on other aggregates with not yet a level-assignment.

Let us consider the directed graphG that we construct from the aggregates without

level-assignment as nodes, and their dependencies on each other giving vertices.

The counter position is equivalent with this graph containing - at least one - circle.

That is, with aggregates a, b and c, we have a ≺ b ≺ a, or a ≺ b ≺ c ≺ a, etc.

However, Algorithm 7.4 is constructed such that this is impossible.

Remark 7.6. In Algorithm 7.5 we need to find all aggregates Y that depend on

an aggregate X. This can be implemented significantly more efficient if the pattern

P 6=0 was structurally symmetric, i.e., (ij) ∈ P 6=0 ⇔ (ji) ∈ P 6=0. 4

7.1.2.4.4 Connecting Levels of Different Partitions

So far, we have only handled the different partitions locally and still need to con-

nect these information. In order to do so, for each level l that contains aggregates

that depend on some lower partition, on this particular partition we find the lowest

level index k where l does not depend on. These two levels can be linked, as all

contained aggregates can be factorized independently of each other, once all levels

with lower index on both partitions are factorized. This way, we obtain a global

level structure.

7.1.2.4.5 Parallel Factorization and Solution

From the construction it is clear that the levels from the previous step can be seen
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as wavefronts in the sense of Section 7.1.2.1. That is, we can step from level to

level and all aggregates within one level can be factorized concurrently. We assign

each of these aggregates to a thread that will compute this factorization. As the

aggregates themselves are upwards ordered regarding the contained row indices,

this factorization is straight forward.

The method only requires synchronizations after the completion of each level and

works independently of the grid structure. We are guaranteed to obtain exactly

the same factorization as we would have with the serial ILU factorization. In fact,

we have only generated an instruction on how to execute exactly this factorization

by multiple threads at the same time.

Finally, the backwards and forwards solution sweeps from ILU’s solution phase are

parallelized accordingly, completely analog to the wavefront approach for struc-

tured grids.

7.1.2.4.6 Computational Overhead of the Setup

Just as with algebraic multigrid, the setup phase comes at some overhead costs.

However, with a typical sparse matrix of sufficient size, there is a huge amount of

concurrency in this setup.

We also note that the approach is working with the unweighted adjacency graph

of the pattern P 6=0. The particular matrix entries aij are irrelevant. Hence, it is

likely that we can re-use an algebraic wavefront setup for several Newton iterations

and time steps. Moreover, a wavefront setup for a matrix with a larger fill-in is

a correct4 result for a smaller fill-in as well. Hence, if positions for future wells

are already foreseeable at the very beginning of a simulation, this can already be

incorporated in the wavefront setup in order to increase its re-usability.

7.1.2.5 Results

The primary objective of our parallelization approach is maintaining ILU’s robust-

ness. We ensure that we obtain the same factorization as in serial, which inherits

that there might be a coupling structure where our approach cannot provide suf-

ficient concurrency. However, for typical reservoir simulation problems, and in

fact also for other problems that show a comparable sparsity structure, we obtain

acceptable parallel speedups, if we bear in mind that ILU is inherently sequential.

4In the sense of giving a factorizing equal to the one from the serial case.
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This holds with a reasonable relation of the number of threads for the degrees of

freedom.

Figure 7.4 shows performance results for representative Black-Oil problems. In

1 2 4 8
0

2

4

6

8

# OpenMP threads

R
u

n
ti

m
e

in
se

c.

(a) Case SPE10, small time step

1 2 4 8
0

5

10

15

# OpenMP threads

R
u

n
ti

m
e

in
se

c.
(b) Case pctst

Wavefront Setup ILU Factorization ILU Iterations

1 2 4 8
0

0.2

0.4

0.6

0.8

1

# OpenMP threads

R
u

n
ti

m
e

in
se

c.

(c) Case cputest

1 2 4 8
0

100

200

300

# OpenMP threads

R
u

n
ti

m
e

in
se

c.

(d) Case bo8p6

Figure 7.4: Performance of the Algebraic Wavefront Parallelization of ILU(0).
The residual for the full systems from Black-Oil simulations (cf.
Appendix A) is reduced by six orders of magnitude by using
ILU(0) as a preconditioner for flexible GMRes. Since ILU(0) with
any number of threads is equivalent to the serial one here, the
convergence history corresponds to the single thread case from
Figure 7.1.

all cases, although the construction of the wavefronts results in some overhead

costs, the overall run time could be reduced by the parallelization. The smallest

speedup with about 1.77 was achieved for the rather small cputest problem. Here
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the construction of the wavefronts is relatively more expensive than for the bigger

problems. Moreover, the small problem size limits the size of the levels that the

wavefront setup is able to generate. This limits the amount of possible concur-

rency.

The concurrency is much better with bigger problems. For the bo8p6 problem, a

speedup of 3.7 was achieved. The relatively high number of iterations was benefi-

cial for this high speedup, as the setup costs are less significant this way. However,

also for the rather well-conditioned SPE10 problem from a simulation with a small

time step size, and, hence, a rather small number of 18 iterations, a speedup of

2.9 was realized, including the setup overhead of our algebraic wavefronts.

7.2 Implementational Aspects

There are two types of implementational aspects that we need to consider in order

to improve the computational time. On the one hand, we do not need the full

generality of System-AMG and on the other hand, we have to keep in mind that

matrix transformations like DRS involve the full matrix and therefore require quite

some computational time.

7.2.1 Limiting the Access to Saturation Related Data

In a general System-AMG framework all physical unknowns may be subject to

some hierarchical treatment. However, in reservoir simulations we have seen that

only certain physical unknowns, such as pressure, temperature and mechanical

displacements, require AMG hierarchies. For the saturation and concentration

unknowns it is a priori clear that they remain on the finest level. Hence, we do

not need to prepare any hierarchy for them and can avoid the respective work.

This holds for the following four parts of System-AMG:

1. Definition of strong couplings in the full system

2. Construction of the C/F splitting in the full system

3. Transfer operations

4. Pre-Smoothing



Matrix Transformations 185

As there are several optimizations possible with this regard, even small benefits

accumulate. Compared to using a general System-AMG realization with its full

flexibility, up to 25% of computational time can be saved.

7.2.2 Matrix Transformations

In the previous chapters we have seen that matrix transformations are necessary

to ensure the robust applicability of System-AMG. The transformations that we

have introduced, for a point-wise ordered system matrix, are described by block-

diagonal scalings. This implies that any block [J ]kl that is zero in the original

system matrix, remains zero in the transformed one. However, within non-zero

blocks [J ]ij there might be a change of the non-zero pattern (some entries of a

non-zero block might be zero and which ones might change).

If we used a block data structure, this was not a problem at all. However, we then

needed to deal with all non-zero blocks as dense, i.e., full, matrices. The non-

zero pattern of saturation related matrix blocks is influenced from the upstream-

weighting and is typically smaller than for the pressure related matrix blocks.

For an exemplary SPE10 Dead-Oil system, i.e., only one saturation unknown,

roughly a third of the matrix entries in a block data structure is zero. That is, we

would deal with much more matrix entries than necessary, with all implications

on memory requirements and performance impacts.

Instead, we could use classical CSR data structures (cf. Saad [88], Section 3.4)

that are enriched with information regarding the full system (cf. [96]). Then we

store only non-zero entries, even within blocks. Changes for an application of the

block-diagonal matrix scalings are twofold:

• For each matrix entry in the CSR structure we need to know which block it

belongs to. These information can directly be obtained from the full system

information in a simple pre-processing sweep. We just need to keep in mind

that, due to the disappearance of phases and components, or the presence

of well equations, the sizes of the blocks might vary.

• All matrix entries that are non-zero after the application of the scaling need

to be stored in the CSR structure, even if they are zero in the initial matrix.

We could not properly store the scaled matrix otherwise. This, however,

does not imply that we need to store all entries of non-zero blocks:
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– For the DRS scaling from Section 4.4 we know that only the pressure

related rows of the matrix can be changed. From the construction of

DRS we also know that the non-zero pattern of the pressure related row

from a block i cannot be bigger than the union of the non-zero patterns

of all rows from block i.

– With our second transformation (5.7) for systems from compositional

simulations under the VBF approach, we have seen that there is no

additional fill-in.

– Decoupling all but one saturation unknowns of IMPES cells in AIM

simulations (cf. Section 6.2.1) does, in the end, not increase the non-

zero pattern of the full system matrix.

We can exploit the fact that these scalings result in a small, or even no

additional fill-in, in order to minimize the number of matrix entries that

System-AMG has to deal with.

Regarding the decoupling of secondary unknowns from NVF simulations

(cf. Section 5.1.1.3) we note that System-AMG in fact is only used for

the decoupled primary system. This requires setting up the smaller system

anyway, where we can perform the decoupling block by block.

Remark 7.7. If we should have chosen block-ILU instead of ILU as a post-

smoother for our System-AMG approach, which might be necessary in some chal-

lenging simulations (cf. Figure 5.4a), we can exploit the fact that for the block-

diagonal matrix scaling we already have determined the block-structure of the sys-

tem.

We can typically even use a non-block version of ILU, which we refer to as ILU(b),

instead of block-ILU(0). The non-zero pattern of ILU(b) consists of all non-zero

blocks. If this factorization of A, LbUb, exists, i.e., if the block-ILU(0) factoriza-

tion LBUB exists and does not require pivoting for the full LU factorizations of

the diagonal blocks of UB, then, according to Lemma 3.7, ILU(b) and block-ILU(0)

are equivalent. Hence, if block-ILU(0) does not require pivoting, we can see it as

an ILU(k) (namely ILU(b)), just with a possibly increased non-zero pattern com-

pared to ILU(0). If A was an M-matrix, according to Manteuffel [68], this induces

block-ILU(0) to converge at least as good as ILU(0) does. 4
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Conclusions and Outlook

In this thesis we have discussed robust AMG-based solution approaches for linear

systems from fully and adaptive implicit reservoir simulations of different complex-

ities. Already in basic Black-Oil simulations, the direct application of AMG-based

approaches may fail. We have presented a preparatory matrix transformation that

we used to ensure the robust applicability of AMG. This transformation shields

AMG from matrix properties that might be problematic for properly construct-

ing a hierarchy. With this transformation, no further difficulties are observed for

AMG in all considered test cases.

Next to the Black-Oil case, we have discussed linear solver approaches for more

sophisticated models like compositional simulations and models that take thermal

and geomechanical effects into account. We have seen that the different sub-parts

of the matrices, corresponding to the different types of unknowns and the cou-

plings in-between, can have very different properties.

We have discussed how to construct robust System-AMG approaches for all of

these simulation models. These approaches exploit a hierarchy wherever benefi-

cial and this way outperform one-level solver methods. As the fluid flow within a

reservoir is driven by pressure differences, we always employ a pressure hierarchy.

However, also a hierarchical treatment to further types of unknowns, like temper-

ature and mechanical displacements, is necessary in an efficient solver approach.

Only a few, typically known, information need to be made available to our System-

AMG solver. It then acts in a black-box fashion and adapts itself to a concrete

problem, i.e., the reservoir properties, the number of considered components, etc.

187
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We have demonstrated the efficiency and the robustness of the System-AMG ap-

proach with challenging industrial test cases and we have been able to solve all

problems that we have been concerned with.

After having described how to apply System-AMG robustly, we have discussed

ways to further improve the performance. We have seen that under certain condi-

tions, which typically are met in reservoir simulations, more aggressive coarsening

variants are beneficial in terms of both memory and performance. In addition,

specifically for adaptive implicit simulations, further matrix transformations can

be applied that reduce the degrees of freedom and accelerate the performance.

Finally, we have introduced algebraic wavefronts as an approach to parallelize in-

complete factorizations on shared memory architectures without algorithmic com-

promises. We have seen that, for exemplary reservoir simulation problems, this

exploits parallelism and still guarantees the robustness of the sequential version.

Options for further research essentially are twofold. On the one hand, an exten-

sion of our System-AMG approaches to further simulation models is of interest.

For instance, we have seen how System-AMG works when coupling fluid flow with

mechanical effects from poroelasticity. However, this did not include mechanical

effects like fracture propagation (i.e. fracking). We also did not cover linear sys-

tems from simulations which take chemical reactions between different components

into account.

On the other hand, although it already provides an efficient and robust solver

method, also the current approach might be improved further. We could, for in-

stance, consider additional physical information from the simulator: The dynamic

weights in our matrix transformation could take the concrete fluid decomposition

into account. We could also employ more physical information in AMG’s setup,

if we used ideas of algebraic multiscale approaches [104] to further improve the

interpolation of AMG. This would require the ability to exploit these ideas inde-

pendently of the geometry.

Another direction of research could target at waiving the ILU smoother. Non-

Galerkin AMG approaches [40] might be a way to consider the saturations in

the hierarchy, but still have comparable couplings between saturations and other

unknowns in the initial problem.



Appendix A

Description of Test Cases and

Benchmark Environment

In this appendix we are going to describe the test cases that have been used to

demonstrate certain effects within this thesis. It is meant to provide an overview

on these problems in order to avoid including the description of the problems in

the thesis’ main part. Moreover, the technical settings for the benchmarks that

are presented in this thesis will be described.

A.1 Test Cases

The test cases that we have used to investigate effects and to show results and

improvements essentially have two sources. Either they are generated by the

ADGPRS reservoir simulator from Stanford University’s Supri-B group (see for

instance [18, 110]), or they have been provided by Computer Modeling Group

Ltd. (CMG) in Calgary, Canada. The geomechanical problems are taken from the

Sparse Matrix Collection of the University of Florida, which is publicly available

on the internet.

The proposed approaches have been used and tested also with various linear sys-

tems from other sources. However, there are either less details on the background

of these problems known and / or there is currently no permission for using them

within a published thesis.

The presented test cases in order are as follows:

189



Appendix A. Test Cases and Benchmark Environment 190

• Dead-Oil problems from ADGPRS.

There are different linear systems from the SPE10 benchmark taken at dif-

ferent time steps with two phases (hydrocarbons and water). The SPE10

benchmark is the second problem from the 10th SPE Comparatitive Solu-

tion Project, proposed by Christie and Blunt [24]. It consists of 1.122 million

cells, which are perforated by one injection and four production wells. The

permeability field is characterized by huge heterogeneities, as shown in Fig-

ure 2.2.

• Black-Oil problems from CMG’s IMEX simulator.

In all cases three phases (oil, water and gas) are considered in compressible

models with discretizations in three dimensional, unstructured grids

– cputest

This model has 29,493 reservoir cells with relatively high aspect ratios.

The reservoir is perforated by 47 wells, where the injectors inject water

and gas. Nearly 1% of the reservoir cells are perforated by wells.

– pctst

Here we have 195,182 reservoir cells. The reservoir is perforated by

eleven production wells in 0.06% of its cells.

– mx1041

The grid in this case is structured into ten vertical layers. It has

1,093,050 reservoir cells with a constant permeability field. Hence,

heterogeneities result from the compressibility only. The reservoir is

perforated by 103 wells, with injectors only injecting water. 0.02% of

the reservoir cells are perforated.

– bo8p6

The reservoir is discretized with 2,638,003 cells and perforated by 1003

wells. In total 18,187 reservoir cells are perforated by a well, which is

0.7% of the cells.

• Compositional problems from ADGPRS under the natural variable for-

mulation.

– Case01

The three dimensional model is from the ADGPRS test suite. The
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discretization into 7,500 cells uses three layers in the vertical direction.

The reservoir is perforated by one production well in the one corner and

one gas injector at the opposite side. The model distinguishes between

two phases and separates the hydrocarbon phase into nine components.

– SPE10 as compositional model

This model uses the settings from the SPE10 Dead-Oil model from

above. Just that the hydrocarbon phase is separated into four different

components.

• Compositional problems from CMG under the volume balance formu-

lation.

The problems are generated with the GEM simulator. Three phases (oil,

water and gas) are used here.

– Case 1

This is a three dimensional model with eight components. The reservoir

is discretized with 94,093 cells. 36 of them are perforated by two wells.

– Case 2

The three dimensional model features nine components and uses a grid

of 963,536 cells. Five wells are perforating 1250 of the cells.

• Thermal problems

The problems result from CMG’s STARS simulator from a steam flood sim-

ulation with a reservoir that is discretized in 235,224 cells. It is perforated

by 35 wells. The model considers two phases in two components.

We use the linear systems from two different time steps as benchmarks.

• Geomechanical problems

The systems are from the Cube-Coup case of the Janna group in the

sparse matrix collection of the University of Florida. The model couples

single phase flow with mechanical displacements in three dimensions. The

underlying grid has 541,190 cells and the only difference between the two

presented problems is the time step size, which is 100 and 106, respectively.

A closer description of the problem is given by Janna et.al. [51], whereas

more information on the matrix collection are provided by Davis and Hu

[33].
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A.2 Benchmark Environment

The results provided in the thesis have all been generated with the ”oil interface”

of the SAMG software [96], version 27z1 and z2. Performance results have all been

measured on Intel R© Sandy Bridge computing nodes with dual octacores (E5-

2660 @ 2.2GHz) and 32 GB RAM. The nodes have been running under Scientific

Linux 6.4. SAMG was compiled with the Intel R© Fortran compiler ifort of version

13.0.1.

SAMG, apart from the modifications that are explicitly mentioned in this thesis,

was used with its default parameters, as of version version 27z1 from January

2015. We always measure residuals in the Euclidean norm, regarding the initial

(i.e. unscaled) problem.
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Proof of Lemma 3.15

In this appendix we are going to show that ρ(SsymA ) < 1. Here, SA is the iteration

operator of ILU(0) for solving the linear system that is described by A from Section

3.3. SsymA := 1
2
(SA + STA) is the symmetric part of SA. We note that generally SA

is not symmetric, because, although QA and RA are symmetric, this does not need

to hold for SA = Q−1
A RA. This also implies that SA and STA do not necessarily

commute and we cannot directly derive ρ(SsymA ) from ρ(SA). However, for SA we

can exploit the following theorem.

Theorem B.1. (Theorem 1 from [111]) Let (X,||.||,≺) denote a Banach space of

elements x, y, z ∈ X with a binary relation ≺. Let furthermore two bounded linear

operators V,W : X → X be given. If there holds:

1. ≺ is reflexive (x ≺ x) and transitive (x ≺ y, y ≺ z ⇒ x ≺ z).

2. ||.|| is monotonic, i.e. 0 ≺ x ≺ y ⇒ ||x|| ≤ ||y||.

3. x ≺ y ⇒ x+ z ≺ y + z.

4. 0 ≺ x⇒ 0 ≺ V x, 0 ≺ Wx.

5. There exists x0 ∈ X, with 0 ≺ x0, such that:

(a) ρ(W ) = lim
n→∞

||W nx0||
1
n and ρ(V +W ) = lim

n→∞
||(V +W )nx0||

1
n .

(b) WV jW kx0 ≺ AjBk+1x0 for j = 1, 2, ...; k = 0, 1, ....

then ρ(V +W ) ≤ ρ(V ) + ρ(W ). 4
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Theorem B.2. For ILU(0) on a symmetric pattern, with SsymA and SA as defined

above, there is ρ(SsymA ) < 1.

Proof. Since each finite dimensional and normed vector space is a Banach space,

(Rn+1, ||.||std1) is a Banach space with ||.||std1 being the classical one-norm.

We define the operator T :=

(
SA 0

0 ρ(SA)

)
, which gives an operation from Rn+1

to Rn+1. We recall that ILU(0) for our A yields a regular splitting and therefore

ρ(SA) < 1 (cf.[71, 100]). This implies ρ(T ) = ρ(T T ) = ρ(SA) < 1.

We therefore, as all norms in a finite dimensional vector space are equivalent,

conclude T is a bounded operator, which means ∃M > 0 : ∀v ∈ Rn+1 : ||T v||std1 ≤
M ||v||std1. That is, T meets the requirements from the previous theorem.

We define the relation ≺ as: x ≺ y ⇔ ∀i ∈ {1, .., n + 1} : xi ≤ yi and continue

with the further conditions:

1. The reflexivity and transitivity of ≺ are obvious.

2. If 0 ≺ x ≺ y, we have 0 ≤ xi ≤ yi for all i.

This directly implies ||x||std1 ≤ ||y||std1.

3. Follows directly from the element-wise construction of ≺.

4. Since A is an M-matrix, from Meijerink [71] we know ILU(0) to result in

a regular splitting. Hence, Q−1
A and RA are non-negative matrices. Conse-

quently, SA = Q−1
A RA is non-negative as well, and so is T . Since 0 ≺ x yields

all entries of x to be non-negative, there is no way for any entry of T x to be

negative. Hence, 0 ≺ T x. The same holds with T T .

5. For any ξ ∈ R there is (T )ξ =

(
(SA)ξ 0

0 ρ(SA)ξ

)
. The same analogously

holds again for T T . Now, let x0 = en+1 = (0...01)T , then there is:

(a) lim
n→∞

||(T )nx0||
1
n = lim

n→∞
||

(
(SA)n 0

0 ρ(SA)n

)
x0||

1
n = lim

n→∞
||ρ(SA)n|| 1n =

ρ(SA) = ρ(T ). The same analogously holds for T T and T + T T .

(b) For any j = 1, 2, ...; k = 0, 1, ... there is:

T (T T )j(T )kx0 = ρ(SA)j+k+1 = (T T )j(T )k+1x0

In the end, all conditions of Theorem B.1 hold and we have ρ(T + T T ) ≤ ρ(T ) +

ρ(T T ) < 2. This directly implies ρ(SA + STA) < 2 and hence ρ(SsymA ) < 1.
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Relevant Reduction Factors for

the ILU(0) Smoothing Factor

In this appendix, we give the proof of Lemmas 6.2 and 6.3. That is, we show that

the error reduction factors at three combinations (µ, ν), respectively, determine

the smoothing factor. In Lemma 6.1, we have already found that we only need

to consider the boundary of Φ \Φlow. Hence, in this appendix, we investigate one

part of this boundary after the other. We do so for uniform- and semicoarsening.

In the following discussion, we use the following well known trigonometrical rela-

tions that hold for all α, β ∈ R:

sin(α) = −sin(α± π) and cos(α) = −cos(α± π)

sin(α) = −sin(−α) and cos(α) = cos(−α)

sin2(α) + cos2(α) = 1

sin(α± β) = sin(α)cos(β)± sin(β)cos(α)

cos(α± β) = cos(α)cos(β)∓ sin(α)sin(β).

We assume all definitions that we have made in Section 6.1.2.2 to hold, in partic-

ular:

λILU(µ, ν, ε, h) =
|cos((µ− ν)hπ)|

|1 + ε− εcos(µhπ)− cos(νhπ) + δcos((µ− ν)hπ)|

d(ε, h, µ, φ) =
1 + ε− εcos(µhπ)− cos((µ− φ)hπ)

cos(φhπ)
.

(C.1)
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We moreover have c1 := c(h,H, 1, ε) and c2 := c(h,H, ε, 1), with

c(h,H, ω, τ) :=
1

H
− 1

hπ
arcsin(ω

sin( h
H
π)

1 + ε− τcos( h
H
π)

). (C.2)

This definition is a result of the following discussion.

C.1 Uniform Coarsening

This corresponds to Lemma 6.2 and we have Φhigh = Φ \Φlow with Φlow = [1, 1
H

)2.

First Part of the Boundary

We keep ν = 1 fixed and define:

dA(µ) := d(µ, µ− 1) =
1 + ε− εcos(µhπ)− cos(hπ)

cos((µ− 1)hπ)
.

The derivative reads as:

∂

∂µ
dA(µ) = hπ

εsin(µhπ)cos((µ− 1)hπ) + sin((µ− 1)hπ)(1 + ε− εcos(µhπ)− cos(hπ))

cos2((µ− 1)hπ)
.

Because 0 < µ < 1
h
, we have:

sin(µhπ) ∈ (0, 1],

cos((µ− 1)hπ) ∈

[0, 1] for µ ≤ 1
2h

+ 1

(−1, 0) else
,

sin((µ− 1)hπ) ∈ [0, 1] and

(1 + ε− εcos(µhπ)− cos(hπ)) > 0.

We conclude that

• For 0 < µ ≤ 1
2h

: ∂
∂µ
dA(µ) > 0

• lim
µ→ 1

2h
+1

∂
∂µ
dA(µ)→∞
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• For 1
2h

+ 1 < µ < 1
h

we have

cos((µ− 1)hπ) > cos(µhπ)

sin((µ− 1)hπ) > sin(µhπ).

Therefore, we we have

εsin(µhπ)cos((µ− 1)hπ) + sin((µ− 1)hπ)(1 + ε− εcos(µhπ)− cos(hπ))

> εsin(µhπ)cos(µhπ) + sin(µhπ)(1− cos(hπ)) + εsin(µhπ)− εsin(µhπ)cos(µhπ)

> εsin(µhπ) > 0,

which yields ∂
∂µ
dA(µ) > 0.

Hence, extremal values for dA(µ) with 1
H
≤ µ < 1

h
must be at µ = 1

h
− 1 or at

µ = 1
H

. For the pair (µ, ν) this means either at ( 1
h
− 1, 1) or at ( 1

H
, 1).

Second Part of the Boundary

We now keep µ = 1
h
− 1 fixed and define ξ := 1 + ε − εcos(( 1

h
− 1)hπ) = 1 + ε +

εcos(−hπ). We can then define

dB(ν) := d(
1

h
− 1,

1

h
− 1− ν) =

ξ − cos(νhπ)

cos(( 1
h
− 1− ν)hπ)

=
ξ − cos(νhπ)

−cos(−(1 + ν)hπ)
.
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Computing the derivative w.r.t. ν yields:

∂

∂ν
dB(ν) =

−hπsin(νhπ)cos(−νhπ − hπ) + hπsin(−νhπ − hπ)(ξ − cos(νhπ))

cos2(−νhπ − hπ)

=
hπsin(−νhπ)cos(νhπ + hπ) + hπsin(−νhπ − hπ)(ξ − cos(νhπ))

cos2(νhπ + hπ)

=
hπsin(−νhπ)(cos(νhπ)cos(hπ)− sin(νhπ)sin(hπ))

cos2(νhπ + hπ)

+
hπξsin(−νhπ − hπ)− hπcos(νhπ)(sin(−νhπ)cos(hπ)− sin(hπ)cos(−νhπ))

cos2(νhπ + hπ)

=
hπsin(−νhπ)sin(−νhπ)sin(hπ) + hπξsin(−νhπ − hπ)

cos2(νhπ + hπ)

− hπcos(−νhπ)(−sin(hπ)cos(−νhπ))

cos2(νhπ + hπ)

=
hπsin(hπ)(sin2(−νhπ) + cos2(−νhπ)) + hπξsin(−νhπ − hπ)

cos2(νhπ + hπ)

=
hπsin(hπ)− hπξsin(νhπ + hπ)

cos2(νhπ + hπ)
.

We have 0 < h < 1, which implies ξ > 1. Therefore, and because 1 ≤ ν < 1
h
,

we have ξsin(νhπ + hπ) > sin(hπ). This yields ∂
∂ν
dB(ν) < 0 and we can find

extremal values only for ν = 1 and ν = 1
h
− 1. As we have µ = 1

h
− 1, the first

option is identical with what we already found above.

Regarding the second option we note that

λ1 := λILU(
1

h
− 1,

1

h
− 1, ε, h) =

δ

|(1 + ε)(1− cos(( 1
h
− 1)hπ)) + δ|

=
δ

|(1 + ε)(1 + cos(hπ)) + δ|
and

λ2 := λILU(
1

h
− 1, 1, ε, h) =

δ|cos(( 1
h
− 2)hπ)|

|1 + ε− εcos(( 1
h
− 1)hπ))− cos(hπ) + δcos(( 1

h
− 2)hπ)|

=
δ|cos(2hπ)|

|1 + ε+ εcos(hπ))− cos(hπ)− δcos(2hπ)|
.

Now, in the limit case of h = 0 we directly have λ1 < λ2. We can therefore

conclude that for sufficiently small h, and here we are interested in small h, we do

not need to consider the µ, ν combination ( 1
h
− 1, 1

h
− 1).
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Third and Fourth Part of the Boundary

So far, we have discussed two parts of the boundary of Φhigh that are part of the

boundary of Φ (ν = 1 and µ = 1
h
−1). The further two such parts of the boundary,

i.e., keeping first µ = 1 and then ν = 1
h
− 1 fixed, follow completely analogously.

As cos((µ− ν)hπ) = cos((ν − µ)hπ), the situation is simply mirrored and we find

the respective combinations of µ and ν as the transpose of what we already had.

However, we can withdraw these transpose combinations from our discussion. For

the case ε = 1 we directly have λILU(µ, ν, 1, h) = λILU(ν, µ, 1, h) and the transpose

combinations would not give any new information.

In the case ε < 1, let us consider (µ, ν) = (1, 1
h
− 1) as the transpose of ( 1

h
− 1, 1).

Analogously to λ2 above, we find

λ3 := λILU(1,
1

h
− 1, ε, h) =

δ|cos(2hπ)|
|1 + ε− εcos(hπ)) + cos(hπ)− δcos(2hπ)|

.

Because ε < 1, we directly find λ3 < λ2 and we therefore do not need to consider

λ3. The same argumentation applies to ( 1
H
, 1) as the transpose of ( 1

H
, 1).

Fifth and Sixth Part of the Boundary

We still need to consider those two parts of the boundary of Φhigh that are part

of ∂Φ2
low, but not of ∂Φ2. That is, we first of all keep µ = 1

H
fixed and vary ν

between 1 and 1
H

. The situation for keeping ν fixed and varying µ accordingly

again is mirrored and is therefore not explicitly discussed here.

With our fixed choice of µ we define

dC(ν) := d(
1

H
,

1

H
− ν) =

1 + ε− εcos( h
H
π)− cos(νhπ)

cos( h
H
π − νhπ)

.
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To find the extremal values, we compute the derivative:

∂

∂ν
dC(ν) =

hπsin(νhπ)cos( h
H
π − νhπ)− hπsin( h

H
π − νhπ)(1 + ε− εcos( h

H
π)− cos(νhπ))

cos2( h
H
π − νhπ)

= hπ(
sin(νhπ)cos( h

H
π)cos(νhπ) + sin2(νhπ)sin( h

H
π) + sin( h

H
π)cos2(νhπ)

cos2( h
H
π − νhπ)

+
−sin(νhπ)cos( h

H
π)cos(νhπ)− sin( h

H
π − νhπ)(1 + ε− εcos( h

H
π))

cos2( h
H
π − νhπ)

)

= hπ
sin( h

H
π)− sin( h

H
π − νhπ)(1 + ε− εcos( h

H
π))

cos2( h
H
π − νhπ)

.

Due to ε > 0, we have 1+ε−εcos( h
H
π) 6= 0. We find ν = 1

H
− 1
hπ
arcsin(

sin( h
H
π)

1+ε−εcos( h
H
π)

) =

c1 and need to consider the µ, ν combination ( 1
H
, c1). A simple computation yields

that we can exclude ( 1
H
, 1
H

).

Summary

The smoothing factor, which is the maximal reduction factor for high-frequency

error modes, is the maximum of λILU(µ, ν, ε, h) taken over the following three

values of (µ, ν):

• (µ, ν)1 := ( 1
h
− 1, 1)

• (µ, ν)2 := ( 1
H
, c1)

• (µ, ν)3 := ( 1
H
, 1)

C.2 Semicoarsening

This corresponds to Lemma 6.3 and we have Φhigh = Φ \Φlow with Φlow = [1, 1
h
)×

[1, 1
H

).

We can make use of what we have found above, which shortcuts our discussion

regarding the four parts of ∂Φhigh.

We start with keeping ν = 1
H

fixed. Completely analogously as in C.1, we find

that the only extremal value of the resulting function of µ within [1, 1
h
) can be

found at µ = c2. The two boundary values µ = 1 and µ = 1
h
− 1 also need to
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be considered. These already are the three combinations from Lemma 6.3 and we

now need to show that these are the only combinations to consider.

We continue with the second part of the boundary and keep µ = 1
h
− 1 fixed. We

then need to consider dB from C.1. We know that there is no extremal value for

ν ∈ [1, 1
h
), which especially includes ν ∈ [ 1

H
, 1
h
).

Our argumentation regarding λILU( 1
h
− 1, 1

h
− 1, ε, h) < λILU( 1

h
− 1, 1, ε, h) analo-

gously yields λILU( 1
h
− 1, 1

h
− 1, ε, h) < λILU( 1

h
− 1, 1

H
, ε, h). Hence, no additional

combination (µ, ν) needs to be considered.

For the third part of the boundary, we keep µ = 1 fixed. For the resulting function

of ν, analogously as in C.1, we find that an extremal value is located only at

ν = 1− 1
hπ
arcsin( sin(hπ)

1+ε−εcos(hπ)
). However, we have h < 1 and, hence, sin(hπ) > 0,

which directly implies ν < 1. As we are only considering ν ≥ 1
H
> 1, there are

only the values ν = 1
H

and ν = 1
h
− 1 to consider from this part of the boundary.

The first value already is covered from the first part of the boundary. Analogously

to λILU(1, 1
h
−1, ε, h) < λILU( 1

h
−1, 1, ε, h) from C.1, we have λILU(1, 1

h
−1, ε, h) <

λILU( 1
h
− 1, 1

H
, ε, h).

Regarding the remaining part of the boundary, i.e., keeping ν = 1
h
− 1 fixed,

according to C.1, the respective reduction factors λILU are smaller than for the

above second part of the boundary, i.e., keeping µ = 1
h
− 1 fixed.

In summary, the smoothing factor of ILU(0) is given by the maximal reduction

factor λ(µ, ν, ε, h) taken over the three values of (µ, ν):

• (µ, ν)4 := ( 1
h
− 1, 1

H
)

• (µ, ν)5 := (c2,
1
H

)

• (µ, ν)6 := (1, 1
H

).
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