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Abstract
The use of models to analyse the complex atmospheric processes deals with
a lot of uncertainties of key parameters, most prominently the emission rates
along with the initial values. Especially for campaigns, the ability to analyse
the processes is dependent on the most precise state of the variables needed for
the parametrisation of the system, notably the emissions. Using its 4D-var and
inverse modelling scheme, EURAD-IM is able to provide optimised initial state
variables, highlighting here the optimisation of the emission factors for the gas
phase. In order to address how emission plumes can be identified, real case
studies were applied with EURAD-IM to study the dispersion of the anthropo-
genic emissions over regional to urban surface within the planetary boundary
layer. To achieve a high analysis skill, some features needed to be updated and
also some new to be developed and added to the model setup. The online cal-
culation of emissions in the CTM has been coupled to the joint optimisation
of initial values and emission rates, providing detailed spatial and temporal
emission distribution per source and per grid cell. Moreover, improvement of
the background emission factor error covariances is achieved by including ad-
ditional correlations between the emitted species and rectifying the standard
deviations of the emission factors, optimising, thus, the precondition of the
minimisation problem. In addition, assimilation of the comprehensive obser-
vational set of PEGASOS project during campaign in the polluted region of
Po valley, performed to study the vertical structure of the atmosphere, ana-
lysing the mixing within the PBL and to validate the airborne data influence
on the model performance. Quality control of the assimilation procedure, ob-
tained by χ2-validation and comparison with independent observations, shows
successful minimisation performance of the 4D-var algorithm. The case study
analysis concluded to optimised emission factors, addressing also the lack of
representativity of observations (such as NO2) by the high resolution of the
nesting technique - up to 1 km. The more in depth assessment of the vertical
mixing in the PBL, by the assimilation of the airborne campaign measure-
ments, captures fairly clear the temporal variations of the emission patterns,
the influence of the inverse temperature on the concentrations of pollutants
and the layered structure of the PBL. In general, considerable improvement
of the forecast quality of the model is achieved and the system’s ability to
provide improved chemical consistent simulation results throughout the PBL,
mainly in urban polluted regions, is demonstrated. Besides, the assimilation
of airborne measurements could be applied to shed light to the development of
the PBL and the processes there in, information that is shown to miss when
no campaign data are available.
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Kurzzusammenfassung
Modelle zur Analyse komplexer atmosphärischer Prozesse beinhalten verschie-
dene Fehlerquellen, wie zum Beispiel Emissionsraten oder Anfangswerte. Ins-
besondere die modellgestützte Prozessanalyse bei Messkampagnen hängt von
der bestmöglichen Abschätzung von Modellparametern ab, zu denen im Fall
chemischer Transportmodelle die Emissionsraten zählen. Das EURAD-IM Sys-
tem bietet die Möglichkeit einer kombinierten Optimierung von Anfangswerten
und Emissionsfaktoren gasförmiger Spurenstoffe mit Hilfe vierdimensionaler
variationeller Datenassimilation. Der Fragestellung, inwiefern Emissionsfahnen
identifiziert werden können, wird mit Hilfe des EURAD-IM Systems anhand
von Fallbeispielen nachgegangen, indem die Ausbreitung von anthropogenen
Emissionen über ländlichen und städtischen Gebieten innerhalb der planetaren
Grenzschicht untersucht wird. Um die Modellanalyse zu verbessern, war es not-
wendig einige Modellteile zu aktualisieren, andere neu zu entwickeln und einzu-
gliedern. Hier ist zum Beispiel die Kopplung der Berechnung räumlich und zeit-
lich hochaufgelöster Emissionsraten im CTM an die gemeinsame Optimierung
von Anfangswerten und Emissionsfaktoren zu nennen. Des Weiteren wurde die
Hintergrundfehlerkovarianzmatrix für Emissionen neu aufgestellt, indem Kor-
relationen zwischen emittierten Stoffen ergänzt, sowie Standardabweichungen
der Emissionsfaktoren angepasst wurden. Die umfassenden Bobachtungsdaten
der Zeppelin Messkampagne des PEGASOS Projekts in der Po-Ebene wurden
genutzt, um die vertikale Struktur in der planetaren Grenzschicht zu analy-
sieren. Eine Qualitätskontrolle des Datenassimilationsverfahrens wurde über
einen χ2-Test und den Vergleich von Analysergebnissen mit unabhängigen Be-
obachtungen erfolgreich durchgeführt. Die Analyse der PEGASOS-Fallstudie
mit hoher horizontaler Auflösung bis zu 1 km ergibt optimierte Emissionsfak-
toren und erhöht deutlich die Representativität der Beobachtungsdaten (ins-
besondere für NO2). Die Assimilationsgestützte Untersuchung der vertikalen
Mischung in der planetaren Grenzschicht durch die Assimilation von Zeppelin-
messungen erfasst sehr exakt die zeitliche Emissionsstruktur, den Einfluss von
Inversionen auf die Konzentration von Schadstoffen und die mehrschichtige
Struktur der Grenzschicht. Durch den Einsatz der kombinierten Optimierung
von Anfangswerten und Emissionsfaktoren wird eine beachtliche Verbesserung
der Vorhersagequalität des Modells erreicht und die Fähigkeit des Systems
zu chemisch konsistenten Simulationen über die gesamte vertikale Ausdeh-
nung der planetaren Grenzschicht bewiesen. Weiterhin kann die Assimilati-
on von luftchemischen Messdaten der PEGASOS Kampagne für ein besseres
Verständnis der Entwicklung der planetaren Grenzschicht und der darin statt-
findenden Prozesse genutzt werden.
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Wissenschaft:

Es ist nicht ihr Ziel,

der unendlichen Weisheit eine Tür zu öffnen,

sondern eine Grenze zu setzen dem unendlichen Irrtum.

Bertolt Brecht





Chapter 1

Introduction

In atmospheric chemistry the use of numerical models aims to represent
accurately and consistently the state of the atmosphere, a challenging task
for assessing the air quality. As an ubiquitous air quality monitoring is im-
possible, air quality modelling is the necessary substitute to study and predict
the atmospheric processes [Jacobson, 2000]. Strong motivation consists the
determination of the interactions between regional climate change and atmo-
spheric composition regarding emissions [Brasseur et al., 2001; Meleux et al.,
2007]. The dispersion of the emissions over the surface up to the planetary
boundary layer (PBL) is of great research interest, not only because of their
impact on air quality [Stull, 1988; Ribeiro et al., 2013], but also in human’s
health [Pierce et al., 2010; Zhang et al., 2012]

For the purposes of air quality modelling, advection-diffusion-reaction mod-
els are used to predict concentrations of pollutants, taking into account alloc-
ation of their sources [Beychok, 2005]. The models include the human know-
ledge of physical laws and chemical reactions that take place in the atmosphere
[Sandu et al., 2005]. However, only this information is not enough to depict the
state of the atmosphere [Turner, 1994]. As an independent source of inform-
ation, observations play a very important role and can therefore be used to
ameliorate the simulation results, improving the model’s forecast [Sandu and
Chai, 2011; Lahoz and Schneider, 2014]. Today there is an increase of available
information and air quality observations [USEPA; MACC; EEA]. The different
types of observational instruments (i.e., ground or airborne based instruments,
satellite retrievals) provide a huge amount of measurements, that can give a
detailed insight into the state of the atmosphere [Fishman et al., 2008; Martin,
2008; Inness et al., 2015; Elbern et al., 2014]. Additional advantages offer the
data collected by campaigns ( i.e., flight campaigns with aeroplanes, Zeppelins
and balloons), as they give a more complete picture of the air quality in elev-
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ated heights, in special areas of interest [Chai et al., 2006; Hamburger et al.,
2011].

Although benefiting from high accuracy and abundance, atmospheric ob-
servations are spatially inhomogeneously distributed [Carmichael et al., 2008].
Additionally, many instrument sites are not representative for an area of the
size of a regional model’s grid cell [Buizza et al., 2007]. These facts result in
giving the model misleading information about the air conditions of the area
under consideration. Typical examples are predominantly NO2 measurements;
the observation sites are usually located in populated areas, or close to large
streets and point sources of NOx emissions. Therefore, they cannot always
represent the state of NO2 of a whole grid cell [Elbern et al., 2007b]. Another
challenge is that there are cases where species are not measured directly, fact
that leads to lack of detailed information. For instance, in case of aerosol
observations, not only it is their optical thickness that is measured instead
of their individual composition, but also their size integrated lumped mass is
given in µg [Lyamani et al., 2012; Sandrini et al., 2014; Pilinis et al., 2014].

The maximum gain of information can be retrieved by the balanced combin-
ation of the various types of information on the state of the atmosphere (i.e.,
observations) and the knowledge of the physical and chemical processes (i.e.,
models) [Lahoz et al., 2010]. This is achieved by data assimilation methods
[Courtier, 1997]. Data assimilation is the discipline that fills in the gaps of
the discrete observations, in both space and time, by the use of models [Bras-
seur and Jacob, 2013]. Thus, data assimilation uses the laws of the system’s
evolution in space and time, coded in a numerical prognostic model, as well
as a previous most probable estimate of the state, in order to resume how
information varies between the discrete set of observations [Daley, 1991].

Since the late ’90s, spatio-temporal variational data assimilation algorithms
are used in meteorology for operational weather forecasting [Navon, 2009]. The
progress in developing comprehensive Chemistry Transport Models (CTM) for
both the stratosphere and the troposphere has motivated the enhancement of
air quality forecast services and long term model simulations. Later, the four
dimensional variational (4D-var) data assimilation methods are used in atmo-
spheric chemistry. The ill-conditioned problem of representing the atmospheric
state in a chemical consistent way can be handled only by advanced data as-
similation methods, that apply the technique of inverse modelling. Fisher and
Lary [1995] show the usefulness of the temporal data assimilation in atmo-
spheric chemistry with a strongly simplified box model simulation for strato-
sphere. Elbern et al. [1997] uses the 4D-var technique for troposphere and the
gas phase mechanism of the second generation Regional Acid Deposition Model
(RADM2, [Stockwell et al., 1990]), in the EURopean Air pollution Dispersion
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model system (EURAD). Later, Elbern and Schmidt [1999] extend the regional
EURAD to the first available complete adjoint CTM for the troposphere and
the first real world application of a high ozone concentration case is presented
in Elbern and Schmidt [2001].

Data assimilation typically aims to improve the prognostic state variables at
initial time. These variables represent critical factors for an improved analysis,
which have large uncertainties and so they have to be optimised [Kalnay, 2003].
The initial values of the chemical species are primarily one of these parameters.
Yet, especially in troposphere there are several other processes which have
significant impact on the temporal evolution of the system; Hanna et al. [1998;
2001]; Schmidt and Martin [2003] are some of the studies which give a thorough
assessment of the uncertainties of various input model parameters.

Incontrovertibly, emissions have a large forcing impact on tropospheric
chemistry. The emission rates have great influence on the trace gas concentra-
tions. In addition, the possible strong exchange between the PBL and the free
troposphere can robustly influence large model areas by long range transport.
Moreover, emission rates are subject to huge uncertainties, especially in areas
exposed to air quality problems, since the CTM’s hourly emission rates are
calculated on the basis of past annual emission estimates. Hence, temporal
evaluation patterns are not available.

The need for further studies on the emission issue has urged a lot of research-
ers to work on the estimation of source and sinks. Starting with Newsam and
Enting [1988] and Enting and Newsam [1990], that address the distribution
of sources and sinks of CO2 by the inverse of the diffusion equation, the re-
search goes on to variational approaches [Kaminski et al., 1999a;b]. Kaminski
et al. [2002] assimilates CO2 observations and achieves more realistic flux sim-
ulations. The same aim follows Engelen et al. [2004], combining the 4D-var
algorithm with satellite CO2 data. Starting with the use of variational data
assimilation for source estimation [Issartel, 2003; Hourdin et al., 2006], Boc-
quet [2005a;b] proceeds with the estimation of position, time and strength of
emission sources.

Up to this point, the regularisation of the ill-conditioned problem of the
atmospheric transport inversion is achieved by a priori information on the
spatial and temporal distribution of sources and sinks derived from emission
inventories. Hence the interest of inverse modelling turns on using observations
to optimise the inventories themselves, in order to reduce their uncertainties.
Muller and Stavrakou [2005] assess emission rates of continental scales, by as-
similation of CO tropospheric column retrievals, while Chai et al. [2009] scales
NOx emission factors using SCIAMACHY tropospehric NO2, as well as Quélo
et al. [2005] performs one year of observations and simulates them to retrieve
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NOx emission and their time distribution. Further work on optimisation of CO
emission estimates by 4D-var is presented in Yumimoto and Uno [2006] for a
regional model and in Hooghiemstra et al. [2011] for a global one. Moreover,
data assimilation techniques have been applied in estimating biogenic and
aerosol emissions [Dubovik et al., 2008; Koohkan et al., 2013; Li et al., 2013;
Sofiev et al., 2015], where also rise 4D-var applications [Yumimoto et al., 2007;
Meirink et al., 2008; Nieradzik, 2011]. The capabilities of the emission optim-
isation have additionally been studied in case of special emission episodes, as
Chernobyl explosion, in 1986 [Bocquet, 2012] and the accident in Fukushima,
in 2011 [Winiarek et al., 2014].

In chemical data assimilation there are applications that optimise the ini-
tial values jointly with emission factors for selected species. For instance,
representative of these studies is the inverse modelling application of Pison
et al. [2007] for NOx emission and concentrations using campaign data, or of
Miyazaki et al. [2012] for assimilation of NO2, O3, CO and HNO3 satellite data
in a global model, as well as the ensemble Kalman filter of Tang et al. [2011] for
NOx and VOCs initial conditions and emissions. Though, the first time that
the 4D-var method is implemented for a complete set of emitted species is in
Elbern et al. [2000]. Here an identical twin experiment is adopted to show that
the inversion technique can be applied not only for the initial concentration
values, but simultaneously for the emission rates and, thus, quantitatively de-
terminate emission patterns. Based on these results, a real world experiment
is presented in Elbern et al. [2007a] for the estimation of pollutant precursor
sources by the joint optimisation of initial values and emission factors, using
a variety of observations, including campaign data.

The results of scientific studies in the field come to the point that the
optimisation of the initial concentration values together with the emission rates
lead to an improved forecast of the chemical model evolution. Nonetheless, a
good surface forecast is often critically dependent on accurate estimates of
surface fluxes, so the concise overview of the atmosphere’s chemistry is still an
important issue to be addressed. The emissions of the human activity on the
surface influence the chemical reactions and more over the interaction of the
atmospheric components impacts the air quality. Therefore, it is necessary that
models provide updated emission maps, by optimising the emission factors, in
order also to identify emission plumes.

Tackling these issues, 4D-var gains information on the sources of pollutants
and on the general chemical state of the atmosphere within the model, by
the assimilation of all available measurements. Certainly, ground based in-situ
measurements have the advantage of being abundant and covering large areas,
a fact that is important for the assimilation result. However, the essential
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information of the atmospheric state in higher vertical levels within the PBL,
is only reached by airborne campaign data. Since flight campaigns are difficult
and expensive to be frequently organised, a more in depth assessment of the
role of the PBL and its importance for skilful simulations is hardly evaluated
by appropriate observations. Therefore, it is of high value to estimate to what
extend the high resolved campaign data improve the model’s performance and
result in better air quality forecast.

Consequently, the main intention of the present thesis is first to demon-
strate the feasibility of estimating the athropogenic emissions over urban areas,
by 4D-var techniques in a regional dispersion model, the EURAD-IM [Elbern
et al., 1997; Elbern and Schmidt, 1999]. To this end, extensions and improve-
ments to the EURAD-IM system are developed in the scope of this work,
namely the coupling of the online calculation of emissions to the joint optim-
isation of initial values and emission rates, as well as the improvement of the
emission factor background error covariances, by expansion of the correlation
of the emitted species, the standard deviations for the emission factors, and
technical updates to the model performance. To evince the model’s ability
to optimise emissions and determine emission patterns, three case studies are
simulated. The chosen configuration aims to deal with the lack of represent-
ativity of observations. The evaluation of the analysis results is twofold; a χ2

validation and a comparison with independent observations take place.

Second, the high quality airborne data of the Pan-European Gas-AerSOLs-
climate interaction Study (PEGASOS) in July 2012 are assimilated to assess
their impact on the model’s performance. Furthermore, the atmosphere’s ver-
tical structure is studied, analysing the vertical mixing in the PBL. The most
of the trace gas conversion takes place in higher levels up to the PBL, where
CO, NO, NO2 contribute to OH-sink [Stull, 1988]. The rich campaign measure-
ments of OH reactivity and vertical profiles [Jäger, 2014] motivate the study
by 4D-var of the vertical distribution of emissions and thus the evolution of
the PBL.

This thesis is structured as follows: chapter 2 gives an overview of the
4D-var data assimilation method for the joint optimisation of initial species
concentrations and emission rates. The features of the EURAD-IM system are
discussed in chapter 3, highlighting the improvements developed in this work,
while in chapter 4 the available observational data are presented, together with
the description of the observation error covariance matrix. Finally, chapter 5
describes the characteristics of the case studies and the results of their analysis.
The main findings are summarised in chapter 6.





Chapter 2

Chemistry Data Assimilation by
4D-var

The 4D-var data assimilation method is able to use the information of all
kind of measurements; direct or remote sensing observation as well as satellite
retrievals, can be inserted into the model, even if they are scattered in space
and time. The 4D-var assimilation algorithm propagates all the available in-
formation forward and backward in time. By this way the model’s simulation
is fitted to the set of observations, distributed in a predefined time interval.
So the model is able to calculate the analysis state; the state that lays in the
minimum distance between model and observations, where the consistency of
the system is guaranteed. Fig. 2.1 illustrates the aforementioned assimilation
procedure that takes place in the 4D-var problem. Regarding the multiple
advantages of the method, the maintenance of the physical and chemical con-
sistency of the problem has to be highlighted. That is why the information
is propagated to regions with poor data and the analysis includes observed
and non-observed constituents. Within 4D-var data assimilation the analysis
problem is formulated as a minimisation problem by the variational calculus.
It is necessary to define an objective function, or with other words a cost
function, that calculates the distances between the model simulation and the
observation, during a predefined time interval.

2.1 Optimisation of initial values and emission

factors

The joint optimisation of both the initial chemical values and the emission
rates enables the model trajectory to fit to the ’truth’ state. By this way, the
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Figure 2.1: The 4D-var assimilation procedure. During the first day of interest
the forward model calculates the atmospheric state (background run - black dashed
line), based on the a priori information for the initial states, and the initial emission
rates, the background xb. Taking into account the observations with their error bars,
the adjoint integration follows. It calculates the atmospheric state backward in time,
resulting in an updated deviation from the background state and an emission correc-
tion factor, the analysis xa. Now with these optimal data taken as model input, the
model trajectory is recalculated, providing the best estimation of the truth state and
an a priori initial state for the next day(analysis run - blue solid line).

biases of the separate optimisation of the two parameters vanish and the model
is benefited from their different individual advantages. The initial values play
an important role in the beginning of the optimization, mainly when no air is
advected from other observed area. The emission rates optimization influence
in long term and shows the correct direction to fit the observations until the
end of the simulation. Consequently, an optimal analysis result cannot be
given from the separate optimisation of only the initial values or the emission
rates, but from the joint optimization of both of them.

In the CTM the emission data strength from the inventories are accordingly
treated in order to shape a more useful form of information for the optimisa-
tion problem, giving the emission rates. Within the model, the emission rates
differ for each species l, at each location (i, j, k) and each time t, fact that
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leads the stepwise emission variation to result in an extremely ill posed in-
version problem. In order to deal with this problem, the degree of freedom
of the emission rate space state should be reduced drastically. Thus it is the
diurnal profile shape of the emissions, which is generally better known, that
it is considered as strong constraint. By this way, the model calculates and
follows the evolution of the emission rates based on these profiles, such that
the calculated data and the initial ones differ only by the amplitude of the
diurnal profiles. So now only these amplitudes are taken as control parameters
to the optimisation problem, by the emission factors. The emission factor is
a representative value that attempts to relate the quantity of a pollutant re-
leased to the atmosphere with an activity associated with the emission process.
This means that the emission factors vary for the different species emitted in
various locations, dependent on the emission source.

The theoretical background of the 4D-var data assimilation technique is
presented below, based on the notations recommended in Ide et al. [1997].

2.2 Inversion of the variational model

In order to define the cost function J , an a priori or first guess of the state
variables is given. The chemical state vector x b(t) ∈ RN denote the background
field of the model, with dimensionN of the phase space portion for the chemical
constituents. The vector x b(t) represents the best estimate of the current state
x (t), prior the use of observations at time t. The background field is obtained
either by some climatological files, a short range forecast based on the analysis
of the previous day, or a result of a previous 4D-var assimilation, as it is done
in the current study. There is also given the emission rates eb(t) ∈ RE, with
E the dimension of partial phase space of the emission rates. The vector
eb(t) denotes the initial information about the emissions before the model’s
calculation of the emission rates e(t), at time t. The background emission rates
are usually taken from inventories - for the present study they are based on
TNO-MACC II [Kuenen et al., 2014]. Further, the observations y o(t) ∈ RM(t)

are given, where M(t) is the dimension of the observation space during the
time interval [t0, tN ]. In general, the observation space is much smaller than
the model space, M(t) << N , making the interpolation of the observations a
main challenge in the 4D-var assimilation algorithm. The assimilation window,
i.e., the time interval of the performed simulations, for the configuration in the
present study, is 24 hours, a full day assimilation.

Let x t(t) be the true state of the chemical conditions of air at time t, our
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goal is to end up to an analysis vector x a(t), such that it is as close to the true
state as possible, x a(t)→ x t(t),∀t ∈ [t0, tN ], that is the most probable state.

So, under the assumption that the model is deterministic, i.e. it is not
influenced by stochastic processes, it can be generally written that the true
model state x t follows

x i =M[t0,ti](e [t0,ti])x i−1 (2.1)

whereMi is a nonlinear model operator that integrates from time ti−1 to time
ti.

Based on this principle, our CTM, including the emissions, is given by

dx(t)

dt
=Mi(x(ti), e(ti)). (2.2)

Here the model operatorM depends on both the chemical conditions and the
emission rates at time ti ∈ [t0, tN ].

The Eq. (2.2) shows that the state variable x(t) at time t is uniquely defined
by M and the emission estimate e(τ), τ ∈ [t0, t], given an ever fixed initial
state x(t0). Which means that the model evolves in time as

xi =Mi(ei)xi−1 (2.3)

For simplicity, it is noted xi ≡ x(ti), ei ≡ e(ti), ∀i = 1, ..., N − 1 such that ti ∈
[t0, tN ]. It is concluded, then, that a perturbation δe, δe(t) = e(t)− eb(t), on
e(t) produces a perturbation δx, δx(t) = x(t) − xb(t), on x(t), which evolves
via the tangent linear form of Eq. (2.2),

dδx

dt
= M′

[t0,dt]
(δx, δe), (2.4)

where it is considered that δx(t0) = 0 and M′ is the linearised model operator,
the tangent linear model , which will be discussed below.

2.3 Treatment of emission rates

As it is mentioned above, the strong constraint for the diurnal profile shape
of the emissions leads to the optimisation of the emission factors. Simultan-
eously, the ill-posed inverse problem of emissions needs that the positive def-
initeness of emission is maintained throughout all the optimisation procedure.
Therefore, to satisfy these requirements for the emission factors, a positive
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function that describes them should be defined. For each species l and each
location (i, j, k) in the model domain, a function u = u(e) = ln(e) is intro-
duced, such that

δu(i, j, k, l) = u(e, eb)

= ln (e (i, j, k, l))− ln (eb (i, j, k, l))

= ln

(
e (i, j, k, l)

eb (i, j, k, l)

)
. (2.5)

It is noticed that the given definition allows δu(i, j, k, l) to be constant and
possitive definite during the whole assimilation window.

So, if it is also set diag (U (i, j, k, l)) := exp (δu (i, j, k))− 1, then δe = Ueb
and now Eq. (2.4) is written as

dδx

dt
= M′(δx, Ueb), (2.6)

which lets the emission information be time independent in the time inter-
val. It is underlined that the tangent linear model M′ includes two com-
ponents, the tangent linear model with respect to the initial values, M′

i,iv,
and the equivalent with respect to the emission factors, M′

i,ef , such that

M′
i =

{
M′

i,iv

M′
i,ef

}
=


∂Mi,iv

∂xi
∂Mi,ef

∂u

 .

Consequently, Eq. (2.5) and Eq. (2.6) let the optimisation of δe, through
δu, result in a correction factor

f (i, j, k, l) =
e (i, j, k, l)

eb (i, j, k, l)
, (2.7)

which depends on the location (i, j, k, l) of the model’s grid, but it is independ-
ent of time ti, within the assimilation window. So, the Eq. (2.6) and Eq. (2.7)
imply that the emission rates, e, are described as the background knowledge
of the emission rates, eb, scaled by the emission factor f , e(ti) = f · eb(ti),
for every time ti ∈ [t0, tN ]. Thus now the problem of the optimisation of the
emission rates is equivalent with the optimisation of the emission correction
factors, for a defined set (i, j, k, l).
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2.4 The cost function of the minimisation prob-

lem

The distance between the model states can be defined, considering also the
emissions, and the observations, at time t, with the help of the cost function.
The cost function J , reflects here the imposition of a strong constraint [Sasaki,
1970], and consists of three parts: the background cost of the initial state of
the chemical constituents Jiv, the observational cost Job, and the cost of the
emission rates Jef ,

J (x(t), e(t)) = Jiv + Job + Jef

=
1

2

t∫
t0

[x(t)− xb(t)]T B−1 [x(t)− xb(t)] dt

+
1

2

N∑
i=0

(
[HiMi (x(t))− yi]T R−1 [HiMi (x(t))− yi]

)

+
1

2

t∫
t0

[e(t)− eb(t)]T K−1 [e(t)− eb(t)] dt, (2.8)

where, the superscripts T and −1 denote the transpose and the inverse of a
matrix, respectively, H(t) ∈ RM(t)×N is a forward observation operator that
maps from model space to observation space and produces the model equival-
ents of observations, given the time t, B ∈ RN×N is the error covariance matrix
of the background values of the chemical constituents, R ∈ RM(t)×M(t) is the
error covariance matrix of the observations, K ∈ RE×E is the error covariance
matrix of the emissions. A more detailed discussion about the formation and
the properties of the matrices B and K is given in Chapter 3, whereas for R
in Chapter 4.

The 4D-var data assimilation algorithm implies that the better the initial
conditions introduced to the model are, the better the forecast and analysis
result are. So the optimum of the atmospheric state at time t0, the initial time,
is needed to be identified. Then, since the goal is the joint optimisation of the
initial chemical values xb(t0) and the emission rates eb, both parameters should
be combined in a common vector, by an appropriate scaling, based on the
equivalent perturbations δx(t0) and δe. To do so, it is set δz := (δx(t0), δu)T ,
with u = u(e) as described above. Now δz is the full control parameter of the
model evolution.
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Then Eq. (2.8) can be written as

J (δz) = Jiv + Job + Jef

=
1

2
[δx(t0)]T B−1δx(t0)

+
1

2

N∑
i=0

[d(ti)−H(ti)δx(ti)]
T R−1 [d(ti)−H(ti)δx(ti)]

+
1

2
[δu]T K−1δu, (2.9)

where H(t) is the linearised approximation of the forward observation operator
H, that H(t) = H ′(t) and dt is the innovation vector d(t) = yo(t)−H(t)xb(t),
i.e. the differences between the observations and the corresponding model
equivalent state xb(t), at time t.

The desired optimum state for δz is nothing more than a Best Linear Un-
biased Estimate (BLUE) of the initial conditions and the emission rates for the
ill conditioned problem, with respect to all observations during the assimilation
window, the analysis state

δzα = (δxα, δuα)T . (2.10)

The δzα is given by the minimisation of the J(δz). For doing so the gradient
of J with respect to the joint chemical state and emission rate variable δz has
to be determined. This is derived by

∇zJ = B−1δx(t0)−
tN∑
ti=t0

HT (ti)M
∗
iR
−1(d(ti)−H(ti)δx(ti)) + K−1δu (2.11)

where HT is the adjoint of the tangent linear observation operator H, and M∗
i

is the adjoint of the tangent linear of the model, such that

M∗
[t0,ti]

=

{
M∗

[t0,ti],iv

M∗
[t0,ti],ef

}
=



0∏
j=i

MT
j,iv

0∏
j=i

MT
j,ef

 .

It is underlined that when using partial derivatives with respect to elements
of a discretised representation, as it is done here, the adjoint of a matrix is
equivalent to its transpose. Moreover, B−1, R−1, K−1 are the inverse matrices
of B, R, K respectively.
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2.5 The precondition of the cost function

Formally, a joint covariance matrix
(

B corr
corr K

)
can be defined. This joint

covariance matrix is able to describe the correlations between the concentration
levels of the emitted species and their emission rates around the areas of sources
and also after the chemical and transport procedures that take place in the
low troposphere. Furthermore the

(
B corr
corr K

)
can include the cross-correlations

between the initial values and the emission rates. However, the current study
omits the aforementioned correlations. The reason behind this approach is
on the one hand the poor background statistical information that are so far
available, and on the other hand the high computational demands for the
minimisation of the highly non-linear Eq. (2.9). Considering that only matrix
B has O(106) order of magnitude, the numerical treatment of B and K is
prohibitive.

In order to alleviate the computational expenses an incremental form of the
4D-var problem is needed. By preconditioning the cost function, the full non-
linear problem is transformed to a sequence of linearised functions, avoiding
ill-conditioning. Elbern and Schmidt [2001] present a singular value decom-
position for B and moreover, Elbern et al. [2007a], an efficient precondition
by the diffusion approach [Weaver and Courtier, 2001] of the minimisation
problem for the joint estimation of emission rates and chemical states. The
latter is adopted here to the 4D-var assimilation algorithm, as it improves its
computational behaviour.

The precondition is based on the transformation of the optimisation para-
meters by square roots of B and K, such that B = B1/2BT/2 and K =
K1/2KT/2 [Courtier, 1997]. The new variables now can be defined

v := B−1/2δx

w := K−1/2δu. (2.12)

Then the cost function Eq. (2.1) can be written as

J(v,w) =
1

2
vTv +

1

2
wTw +

1

2

tN∑
ti=t0

(d(ti)−H(ti)δx(ti))
TR−1(d(ti)−H(ti)δx(ti))

(2.13)
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and the gradient (2.11) as

∇(v,w)T J =

[
v
w

]
−
[
BT/2 0

0 KT/2

] N∑
i=0

M̃
T

i H(ti)R
−1(d(ti)−H(ti)δx(ti)).

(2.14)

The precondition of the cost function results in an easier calculation of its
gradient, which is the main benefit for the 4D-var algorithm. Now only the
BT/2 and KT/2 are needed, avoiding the more demanding B−1 and K−1 and
the ill-conditioning introduced by any formulation of B and K. Moreover the
transformation back to the increments δx and δu from Eq. (2.12) uses just
the B1/2 and K1/2, giving the optimised state variables

δx = B1/2v⇐⇒ x(t0) = B1/2v + xb(t0)

δu = K1/2w⇐⇒ e(t0) = K1/2w + eb(t0). (2.15)





Chapter 3

The EURAD-IM Data
Assimilation System

For the purposes of atmospheric modelling an as reliable and comprehensive
as possible picture of the chemical processes is necessary. The chances that
this is achieved gets always better due to the more and more advanced obser-
vational data and the model development. In case of the analysis of the tro-
pospheric state, it is shown that the variational methods provide strong tools
for this purpose [Lahoz et al., 2010]. Based on this principle, the EURopean
Air pollution Dispersion - Inverse Model (EURAD-IM) is developed, at the
Rhenish Institute of Environmental Research at the University of Cologne
(Rheinischen Institut für Umweltforschung an der Universität zu Köln - RIU,
http://www.eurad.uni-koeln.de/). The roots of the EURAD-IM go back
to the Regional Acid Deposition Model RADM2 [Chang et al., 1987], which is
succeeded by the EURAD chemistry transport model, developed in RIU [Hass
et al., 1995]. EURAD is further expanded, with the development of its adjoint
version, into EURAD-IM [Elbern et al., 1997; Elbern and Schmidt, 1999].

EURAD-IM is a Eulerian meso-scale CTM, that involves advection, diffu-
sion, chemical transformation, wet and dry deposition and sedimentation of
tropospheric trace gases and aerosols [Memmesheimer et al., 2004]. It includes
both three and four dimensional variational chemical data assimilation and
it is able to run in nesting mode. The meteorological driver that is applied
in the EURAD-IM is the Weather Research and Forecasting Model (WRF)
[Skamarock et al., 2008].

A wide range of applications is covered by EURAD-IM for air quality stud-
ies, aiming to understand atmospheric chemistry and air pollution. So far it
has taken part in several recent pollution studies [Marécal et al., 2015; Mon-
teiro et al., 2013; Zyryanov et al., 2012; Monteiro et al., 2012; Elbern et al.,

http://www.eurad.uni-koeln.de/
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Figure 3.1: The flow of the procedures within the EURAD-IM system.

2011; Kanakidou et al., 2011]. On the one hand the model is used for long term
simulations focusing on the emission directives, including aerosols [Li et al.,
2013], while on the other hand it provides operational forecasts for scientific
field campaigns (e.g., PEGASOS campaing), also in the framework of analysis
and monitoring.

The EURAD-IM 4D-var data assimilation system consists of four parts:

• the EURAD-IM CTM and its adjoint,

• the formulation of background error covariance matrices for both the
initial states and the emissions, as well as their treatment to the minim-
isation problem,

• the observational basis and its related error covariance matrix,

• the minimisation, including the transformation for the preconditioning.
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A flowchart of all model contributors and procedures is shown in Fig. 3.1.
Firstly, the meteorological, boundary, observational and emission input para-
meters are necessary. All the needed meteorological data are provided by WRF
model. The meteorological driver works independently from the CTM, so there
is no feedback from the latter to the WRF. Another offline pre-process for the
observational data takes place, the observation preprocessor (PREP), in order
to provide the observations information in a suitable format for the CTM. The
raw emission data from the inventories, categorised by emission source, are
inserted directly to the CTM, for further processing. For every first simulation
of the model, the chemical initial values are given by climatological informa-
tion, whereas, in any further simulation, they are provided by the previously
accomplished model output.

After the initialisation, it is the evolution of the model state to be calcu-
lated and compared with the available observations. To this end, the CTM
uses two modules, the online Emission Module and the Modal Aerosol Dy-
namics module for Europe (MADE) [Ackermann et al., 1998]. The former,
updated and further developed for the purposes of the current thesis, cal-
culates the emission rates for each species across the domain, based on the
raw emission data from the inventories [Kuenen et al., 2014], while the latter
provides information on the aerosol size distribution and chemical composi-
tion. The forward model of the EURAD-IM calculates the chemical states
and provides the cost function. Here the model states of each time step are
saved in temporal files for later use. Now the adjoint CTM is to be calcu-
lated. It performs a subsequent adjoint model integration backward in time,
where it recalls the previously saved files, in order to reproduce the state of
the model during the forward run, after comparing with the observations.
This procedure leads to the calculation of the gradient of the cost function
with respect to the control parameters. Finally, the cost function, as well
as its gradient and the initial values of the control parameters are sent into
the Limited-memory Broyden−Fletcher−Goldfarb−ShannoL minimisation al-
gorithm (L-BFGS) [Nocedal, 1980; Liu and Nocedal, 1989], which delivers the
desired new optimised control values. The global minimum of the cost function
is not feasible to be found after only one minimisation step, due to the tangent
linear approximation of the gradient. Instead, the system is applied iteratively,
until the minimisation of the cost function from one step to the next one is
lower than a certain threshold or until a maximum number of iterations is
reached.

There is a large variety of EURAD-IM’s outputs, available for further ana-
lysis and development, which are governed by the optimised emissions. The
control parameters that are optimised by the aforementioned procedure are
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the initial concentrations of the assimilated species and the emission factors.
After a 4D-var run the improvement of the control parameters leads to an im-
proved, accurate knowledge of the emission patterns and the evolution of the
emission fluxes. A closer look is given in Chapter 6, where analysis of special
features of the model’s output is performed, based on real case studies.

In the present Chapter, a more detailed description of the features of EURAD’s
inverse model is presented. Firstly, an insight into the forward and the adjoint
model is given. Then the crucial part of the background error covariance
matrices is discussed, highlighting the innovated features of this study, and
last, a description of the minimisation procedure is given.

3.1 The EURAD-IM Chemistry Transport Model

and its Adjoint

3.1.1 The EURAD-IM CTM

The EURAD-IM CTM calculates the transport, diffusion and gas trans-
formation for the tropospheric trace gases. The amount of treated species and
their chemical reactions depend on the selection of chemistry mechanism. For
the purposes of the current work, the selected chemistry mechanism includes
60 chemical species with 147 reactions [Stockwell et al., 1997; Schell et al.,
2001]. Thus, a set of partial differential equations is solved by the EURAD-IM
CTM, in an Eulerian framework, for the tendency of all the different species
included into the mechanism. The set of partial differential equations follows

∂ci
∂t

= −∇ (vci) +∇
(
ρG∇ci

ρ

)
+ Ai + Ei −Di, (3.1)

where ci is the concentration of species i, such that i=1,...,U the number of
species in the mechanism, v is the wind velocity and ρ the air density. What is
more, G a symmetric eddy diffusivity tensor, Ai the chemical transformation
term for gas phase species i, while Ei the emission rate of species i and lastly,
Di is the deposition rate of species i, where Di = ud

i ci and ud
i denotes the

deposition velocity for species ci.

The chemical transformation term Ai, considering a production rate Pi and
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a loss rate Li of species i, is written as

Ai = Pi + Li

=
R∑
r=1

(
k (r) (si (r+)− si (r−))

U∏
j=1

c
sj(r−)
j

)
, (3.2)

where R signifies the number of chemical reactions, s ∈ N0 is a stoichiomet-
ric coefficient and k(r) denotes the reaction rate of reaction r ; either being
productive (r+) or destructive (r−) for species i.

In order to proceed with the solution of the partial differential Eq. (3.1),
a symmetric operator splitting of the dynamic procedures takes place, which
includes the chemistry solver module A. This technique has been proved be-
neficial as it minimises systematic biases [Sandu and Zhang, 2007]. So the
operator splitting scheme, when stepping from time t to time t+∆t (Yanenko
[1971]; McRae et al. [1982]), can be described by

xt+∆t = ThTvDvADvTvThx
t, (3.3)

where T, D denote transport and diffusion operators in horizontal (h) or ver-
tical (v) direction, respectively. T and D are applied for one half of the model’s
advective time step before the chemistry mechanism and one half after it. The
gas phase chemistry module A includes the parametrisation of the emission
sources, whereas the vertical diffusion term Dv includes the deposition pro-
cesses. The gas phase dry deposition modelling follows the method proposed
by Zhang et al. [2003], while the dry deposition of aerosol species is treated size
dependent, using the resistance model of Petroff and Zhang [2010]. Moreover,
the wet deposition of gases and aerosols is derived from the cloud model in the
Environmental Protection Agency (United States EPA) Models-3 Community
Multi-scale Air Quality (CMAQ) modelling system [Roselle and Binkowski,
1999].

The wind driven transport is calculated by the positive definite advection
scheme of Bott [1989]. For the parametrisation of the vertical sub-grid-scale
turbulent transport an eddy diffusion approach is used. Here the calculation
of the vertical eddy diffusion coefficients is based on the specific turbulent
structure in the individual regimes of the planetary boundary layer (PBL),
according to the PBL height and the Monin-Obukhov length [Holtslag and
Nieuwstadt, 1986]. Further, the diffusion equation is solved by a semi-implicit
scheme, following Crank-Nicholson [Crank and Nicolson, 1947].

Chemistry mechanism and solver
The decision of the appropriate chemistry mechanism in chemistry trans-

port models is a challenging issue, as on the one hand it should satisfy the
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demand to restrict the computational costs and on the other hand to deliver
a good representation of the tropospheric chemical processes. In EURAD-IM
these demands are fulfilled by the Regional Atmospheric Chemistry Mechanism
(RACM) [Stockwell et al., 1997], and its extension, for the formation of second-
ary organic aerosols (SOA), including the production of low-volatility products
and their subsequent gas/particle partitioning [Schell et al., 2001]. Based on
physical and chemical principles [Strader et al., 1999; Bowman et al., 1997;
Lurmann et al., 1997; Pandis et al., 1992], the coupled RACM-SOA mechan-
ism not only represents the gas phase and photolysis reactions, but also links
the gas phase precursor species with the SOA formation, determining also the
contributions of biogenic and anthropogenic components of the total SOA. The
present work presents the first application of RACM-SOA in real case studies.

The gas phase system is described by a set of stiff ordinary differential
equations, as in Eq. (3.1). Sandu et al. [1996] show that for the solution of
this kind of systems it is better to use an implicit method. The system of Eq.
(3.3) is solved numerically by a stage-2 Rosenbrock solver [Sandu et al., 2003;
Sandu and Sander, 2006] and its adjoint [Elbern et al., 1997; Strunk, 2006].
The Rosenbrock method has implicit stable regions and, what is more, the
evaluation of the solver’s step size, ∆t, only needs to fulfil the user’s accuracy
requirements.

The photolysis frequencies are derived using the Fast Tropospheric Ultraviolet-
Visible (FTUV) model, according to Tie et al. [2003]. Therein, the radiative
transfer model is based on the TUV developed by Madronich and Weller [1990].

Aerosols
EURAD-IM simulates the bidirectional transfer between gas phase and aero-

sols. The information on the aerosol size distribution and chemical composition
is gained by the MADE. To this end, the Fully Equivalent Operational Model
(FEOM) version is applied, which is refined by the High Dimensional Model
Representation (HDMR) technique [Rabitz et al., 1999; Nieradzik, 2005], of an
accurate mole fraction based thermodynamic model [Friese and Ebel, 2010].
The simulation of the SOA formation is accomplished by the updated Second-
ary Organic Aerosol Model (SOGRAM) coupled with MADE [Li et al., 2013].
It should be underlined that the assimilation of aerosols is out of the scopes of
the present work and so it is not performed.

Initial model state
At the beginning of a simulation, EURAD-IM uses climatological data to

set up the initial values. The initial configuration, thus, includes a seasonal
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mean concentration of long-lived species dependent on latitude and height for
the first forward model run. Since this initial time lacks of better knowledge,
inflow boundary values are defined in the same way as the initial model state,
or in some other applications of EURAD-IM they can come from a global
CTM. All later simulation runs let the model output of a previously operated
run to be considered as the initial model state. After each run, the gained
information optimises the model parameters. By using these data as initial
values for following simulations, the improvement and the consistency of the
system are ensured.

Emissions
The EURAD-IM treats both anthropogenic and biogenic emissions [Sofiev

et al., 2015; Li et al., 2013; Strunk, 2006; Nieradzik and Elbern, 2006]. The
Emission Module within the EURAD-IM system produces improved emission
data, with high temporal resolution and European coverage. It calculates on-
line emissions by converting the annual emission rates, received by the invent-
ories, to hourly emission rates, with the use of temporal and spatial allocation
factors. Moreover, a vertical distribution of the emission rates of each emitted
species takes places, based on the source of the emissions and the type of the
point sources.

A new development of the present work is the coupling of the adjoint code
for the emission estimation of EURAD-IM CTM with the new online Emission
Module. This update increase the accuracy of the assimilation result, due to
the detailed emission distribution in time and height, per source and per grid
box that takes place. A short description of the emission processes also before
the simulation runs of the EURAD-IM CTM follows.

For anthropogenic emissions, the TNO-MACC-II emission inventory of the
year 2009 is used, with 7 km × 7 km horizontal resolution [Kuenen et al.,
2014]. The Model of Emissions of Gases and Aerosols from Nature (MEGAN)
[Guenther et al., 2012] calculates the biogenic emission input for EURAD-IM.
Additionally, emissions from fires are taken into account using the Global Fire
Assimilation System, GFASv1.1, product [Kaiser et al., 2012], daily available
with 0.1o × 0.1o resolution.

The raw emission data from the inventories are available as annual emis-
sion rates, measuring the average amount of specific pollutants discharged into
the atmosphere by a specific process (fuel/equipment/source and counted in
Mg/year for every country). In case of the anthropogenic emissions, the 7
emission rates of NOx, SOx, CO, NH3, particular matter ( PM2.5 and PM10 ),
as well as non-methane volatile organic compound (NMVOC) are provided for
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the European emission domain at 0.125o × 0.0625o longitude-latitude resolu-
tion, subdivided into the 10 anthropogenic source-sectors (SNAP codes, Table
3.1). The spatial disaggregation of these data is done based on the origin of
the emissions. For instance, the data coming form industrial areas are covered
by Corine Land Cover dataset [Stjernholm, 2009], whereas those that come
from the road network by OpenStreetMap [Haklay and Weber, 2008]. The
disaggregation outputs are emission files in 0.0625o × 0.0625o resolution, in-
cluding data which are no longer equally distributed in a grid cell, but over
the emission source area. Only a small percentage of emission remains as a
background emission. Eventually, this aggregated information is converted to
a suitable for the EURAD-IM CTM format, using a GIS system. Here the
ARC-GIS [ArcGIS] is used to adjust the projection and the resolution in the
CTM’s set up. After all, the input to the Emission Module of the CTM is a
set of 70 files; a file with aggregation information for each one of the 7 afore-
mentioned species and for each SNAP category of emission sources. Moreover,
in order to have the most accurate emission estimation, three more files are
provided to the Emission Module, giving information of the country code and
the time-zone of each cell of the grid, as well as the point sources that are
included.

Table 3.1: Definition of the SNAP source categories. SNAP 3 and 4 are merged
to SNAP 34 [Kuenen et al., 2014].

Grid specifications
EURAD-IM is a mesoscale-α model, that operates on the integration do-

mains with a boundary length of about 5000 km. In this study, the horizontal
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grid is based on Lambert conformal conic projection, centred at 54oN latitude
and 12.5oE longitude.

The horizontal grid structure of the model is defined by the Arakawa C grid
stencil [Arakawa and Lamb, 1977]. The horizontal wind components (u,v) are
staggered to all other variables of the model. This staggering allows horizontal
flux terms to be evaluated relatively accurate.

A staggering of variables is also used in the vertical grid. Vertically the
model includes 23 layers. The terrain follows the σ-coordinates defined as

σk =
pk − ptop
pbot − ptop

, (3.4)

where ptop and pbot is the model pressure at model top and bottom, respectively,
and pk is the pressure of the kth model layer. The lowest model layer represents
38 m height, whereas the top model is defined by the isobaric level of 100 hPa
and roughly corresponds to 16 km height.

The nesting technique in EURAD-IM
In large grids with low horizontal resolution, there is poor representativity

of many observations of important air quality related species, as it is already
mentioned in Chapter 2.

This issue is addressed into EURAD-IM system by the application of the
adjoint nesting technique. The idea is the following: The simulation starts
with a large but not very high resolved domain, the coarse or mother domain.
The initial and boundary values of this grid are based on climatological data,
or, in other cases, on a global CTM. For a more detailed study, the coarse
domain of the model can be restructured in a horizontal sub-domain, with less
horizontal expansion but higher resolution, the nest or daughter domain. The
boundary values are interpolated from the mother domain’s respective grid
cells after the analysis, resulting in more reasonable data with the temporal
resolution of the coarse grid. This happens because the analysis of the coarse
grid for the current day already includes all the available information about
the system, as it has been gained comparing with the observations of the same
day, and so these boundary values are superior to any forecast resting on an
analysis from the previous day.

As far as the initial data for the nest is concerned, they should include
information of high resolution. That is why they are taken from precedent
simulation of the same nest domain. Here, physical and chemical features,
which are necessary for the nest, may not be identified by the coarse grid
simulation, because of its lower resolution.
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Figure 3.2: The nesting sequence in EURAD-IM for different case studies. The
coarse grid is Europe with 15 km resolution and includes two nest domains with
5 km and 1 km resolution. On the left, these are central Europe and the Rhine-
Ruhr area in Germany, respectively. On the right, accordingly, the two nests are the
central-eastern Europe and the area of Po valley in Italy.

After the end of the simulation, this nest can become the mother domain
for a new nesting domain, with even higher horizontal resolution, and so on.

The use of optimised initial model states for the model integration lead to
improved forecast skills. In case of initial value optimisation, attention should
also be paid in the size definition of the domains. In 4D-var the information of
an observation is integrated backward in time and this results in correction of
the model state at initial time. However, if the grid size is not large enough, or
the meteorological conditions are not taken into account (i.e., strong winds),
this resulting corrected position may be outside of the domain and in that case
the gained information is lost. So, a balance between the domain’s size and
the assimilation windows should always be kept.

The nesting technique in EURAD-IM is described in Jakobs et al. [1995]
and further extensions are discussed in Strunk [2006].

In the present work the horizontal resolution ranges from 15km to 1km,
using three domains for the analysis of different episodes within the case studies
of interest. In all of these cases the mother domain covers the whole European
area, as well as parts from north Africa and west Asia, with a 15 km resolved
grid. The first sequence of nests includes central Europe, covering Germany,
France, Austria and parts from Poland and Italy in a 5 km resolution domain.
A nest for the Rhine-Ruhr area in North Rhine Westphalia, in Germany, with
1 km resolution is applied. A second pair of nests includes a 5 km resolved
domain over Italy, Germany, Austria, as well as an 1 km resolved domain,
focused on the area of the Po valley in northern Italy. The aforementioned
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nesting sequence of domains is shown in Fig. 3.2.

3.1.2 The adjoint EURAD-IM CTM

In order to develop the adjoint of the EURAD-IM model, the evolution of
the concentrations over time is necessary, taking into account the transport,
diffusion, deposition and gas transformation processes of the chemical species.

Thus, the adjoint calculation either is provided by the numerical solvers of
the forward model Eq. (3.1), or by their adjoint differential equations, after
the application of the variational calculus, such ass

∂δc∗i
∂t

=− v∇δc∗i −
1

ρ
∇ (ρG∇δc∗i ) +D∗i + A∗i

=− v∇δc∗i −
1

ρ
∇ (ρG∇δc∗i ) + ud

i c
∗
i

+
R∑
r=1

(
k (r)

si (r−)

ci

U∏
j=1

c
sj(r−)
j

U∑
n=1

[sn (r+)− sn (r−)] δc∗n

)
. (3.5)

Here δc∗i is the adjoint variable of ci. It should be noticed that the emission
strength is independent of the species concentration ci and so the term Ei of
3.1 does not take part into the adjoint formulation.

However, it is already discussed that the changes of the species concentra-
tions over time at the forward code are efficiently described by the operator
splitting scheme Eq. (3.3). The adjoint EURAD-IM CTM is developed by this
approach, where the operators Th, Tv,Dv and A are replaced by their adjoint
counterparts.

For the construction of the adjoint chemistry the Kinetic Pre-Processor
KPP [Damian-Iordache, 1996] is adopted. Within EURAD-IM the coding of
the chemistry solver is based on KKP Version 2.1 by Sandu and Sander [2006]
and its correctness is verified by the proposed method of Chao and Chang
[1992].

3.2 Background error covariance matrices

In Chapter 2, where the formulation of the minimisation problem is given,
the background field of the model, x b(t), is defined as the representation of the
best estimate of the current atmospheric state, before any use of observations
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at time t. Similarly, the background emission rates, eb(t), denote the initial
information about the emissions, based on the emission inventory, before the
model’s calculation of the emission rates at the same time. As with all inform-
ation, the background state is prone to errors, which must be accounted by
the variational data assimilation. The most convenient way to deal with this
issue is through the background error covariance statistics, which in case of
initial species concentrations is represented by matrix B, in the cost function
Eq. (2.9), whereas in case of emission rates and observations by matrices K
and R, respectively.

The estimation and the construction of a realistic representation of the back-
ground error covariance matrices is one of the challenges of 4D-var data assim-
ilation. An accurate estimation of the background error covariance matrices
takes advantage of single observations to spread information in the model state,
even if the observations have sparse spatial coverage.

The background error covariance matrices are symmetric and positive def-
inite matrices. Generally, their diagonal elements represent the variances,
which are the auto-covariances between grid points corresponding to a par-
ticular model variable. The off-diagonal elements represent the covariances,
namely the remaining elements, that represent the cross-covariances between
grid points, corresponding to different model variables. The first consists the
univariate part of the matrices and the second the multivariate one; both ne-
cessary in finding the minimum of the cost function.

However, this construction implies that, for the exact definition of the back-
ground error covariance matrices, the knowledge of the true state of the at-
mosphere at all times and everywhere in the model’s domain is required. Cer-
tainly, this is not possible. The background error covariance matrices cannot
be calculated completely, thus, they have to be estimated and modelled as
approximations to the true covariances of background error.

Within the 4D-var algorithm of EURAD-IM, two assumptions are necessary
to make attainable the calculation of the covariances. Firstly, it is supposed
that there are no correlations between the concentration of the initial values
and the emission rates. Secondly, the correlations between the initial con-
centrations and the observations are also omitted. That is why the 4D-var
problem includes the three independent covariance matrices, B, R, K. In the
following, the description and estimation of matrices B and K takes place,
whereas, for matrix R this is done in Chapter 4.
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3.2.1 The Background Error Covariance Matrix for the
initial values

The error covariance matrix of the background values of the chemical con-
stituents is B ∈ RN×N , defined for the dimension N2 of the model space, which
in EURAD-IM is of O(1012). Matrix B is symmetric with all of its eigenvalues
being positive, and contains the correlations between the different components
of the state vector x (t), as well as the weights of the accuracy of the pre-
liminary knowledge. Yet, the high storage requirements forbids the complete
estimation of B. Elbern and Schmidt [2001] deal first with this issue, limiting B
to a few principal components only, such as leading singular vectors. Still, the
preconditioning of the minimisation procedure Eq. (2.12) requires the square
root of the covariance matrix and so a proper covariance model operator is
more preferred than a full matrix. Hence the simplified implementation of a
sequence of operators for B is used, as it is proposed in Weaver and Courtier
[2001].

For this, B is decomposed in a diagonal matrix Σ, where it contains the es-
timates of the background standard error deviations, and a correlation matrix
C, such that

B = Σ C Σ. (3.6)

Following the transformation of B in Chapter 2.5 and a suitable factorisation
of the correlation matrix C, the former equation gives

B = B1/2BT/2

= Σ C1/2 CT/2 Σ. (3.7)

The background error deviations of matrix Σ are assumed to be dependent
on species and height. Namely, the deviations are based on the degree of vari-
ability of the individual constituents and on the increasing height of the species
concentrations calculated by the model; the higher the species concentration,
the smaller the confidence in knowledge on the chemical state of the specific
species [Elbern et al., 2007a].

The correlation matrix C is equivalent with a sequence of operators that
include the diffusion information, as it is implemented in Strunk [2006] and
further defined in Elbern et al. [2007a]. In the latter, the operator splitting
scheme of C, for the calculation of Eq. (3.7), is given

C1/2 = ΛL1/2
v L

1/2
h W1/2, (3.8)
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where, Λ is a normalisation operator, Lh,v are the horizontal and vertical diffu-
sion operators, respectively, and W is a diagonal matrix of correction factors
needed for the grid (it is account for the changing heights of the grid cells
due to the application of σ-coordinates). Λ is a diagonal matrix needed to
counteract the flattening due to the action of the diffusion operators L. The
formulation of C matrix in Eq. (3.8) allows the diffusion characteristics, i.e.,
the correlation length (L), to be designed by the diffusion coefficients (κ) and
the integration time (T ), and play the essential role in calculation the covari-
ances B. Elbern et al. [2007a] defines the radii of influence and the appropriate
time stepping for the horizontal and vertical diffusion. Here it is assumed that
the horizontal radii of influence are defined as

L =
√

2κT . (3.9)

3.2.2 The Background Error Covariance Matrix for the
emission factors

The background emission rate covariance matrix K ∈ RE×E is defined for
the dimension E of partial phase space of the emission rates and describes
the emission rate covariances between emitted species at each location. As
with matrix B, a suitable and accurate K optimises the precondition of the
minimisation problem. However, in contrast with B, for the construction of
the background emission rate covariance matrix two important assumptions
are made; the spatial correlations between the emission rates are not taken
into account and, further, all the multivariate correlation between the emitted
species in one grid cell maintain the same over the whole domain. However,
given relative information both assumptions can be relaxed.

Following the decomposition of matrix B, the emission factor error covari-
ance matrix K is factorised as

K = Γ D1/2 DT/2 Γ, (3.10)

where Γ is a diagonal matrix containing the standard error deviations of
the emission factors and D is the background error correlation matrix. In the
followings, a closer look to both of them is taken.

In Chapter 2.3 a detailed view of what are the emission factors and how
are they estimated is given, leading to Eq. (2.7). The model, in the beginning
of the assimilation, initialises all the emission factors by a factor equal to one.
Based on this information, the standard deviations of Γ matrix actually depict
the default errors bars of the emission factors of the emitted species.
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Presently, emitted species such as SO2, NO and NH3 are better evaluated
than others, for instance CO, and thus their standard deviations can be better
assigned. This fact is highlighted in Strunk [2006] and the entries of matrix Γ
are given. However, in the present thesis is concluded that larger error bars are
needed for the background emission factors, giving the opportunity to the 4D-
var algorithm to take into account the observation information. The content
of the updated matrix Γ, for the current configuration of the model, is shown
in the Table 3.2.

Species Standard deviations
(δu = lnf)

SO2 10.6
NH3 10.6
NO 5.3

others 13.9

Table 3.2: The standard deviations of the emission factors for different kind of
species; the content of the diagonal matrix Γ.

The positive definite background error correlation matrix D contains the
correlations between emitted species. How they are correlated is a matter of
the annual amount of emissions, documented by the TNO inventory and, fur-
thermore, of their chemical evolution. The emission inventory provides the
annual amount of NOx, SOx, and VOC’s, where they are divided into different
polluter groups, i.e., emission of anthropogenic or biogenic origin. The matrix
D contains the percentage of the correlations between the emitted species, that
the model takes into account for the contraction of the emission factor back-
ground error covariance matrix, as it is shown in Fig. 3.3. Here, the definition
of D in Elbern et al. [2007a] is further expanded by the current thesis. Five
species of biogenic origin are added in EURAD-IM, making matrix D, and
consequently the background error covariance matrix K, more representative
of the tropospheric chemical procedures. Figure 3.3 illustrates the upper tri-
angle sub-matrix of D, containing 24 emitted species (NOx, SOx and VOC’s).
High correlations (larger than 10% ) are achieved either between species that
have the similar origin (i.e., SOx - NOx by anthropogenic sources), or between
species that are chemically related to each other (i.e., NO2 - NO ) and between
families of VOC’s ( i.e., ethylene (ETE) and olefine (OLT or OLI)). On the
other hand, low correlation rates (lower than 1% ) have species that come from
different sources, as for example isoprene (ISO) and SOx; the first is emitted
by plants and the second is a result of the human activity. Finally, reasonably
correlated species are those of biogenic origin that come from different types
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Figure 3.3: The background error correlation matrix D includes the correlations
between 24 emitted species. High correlated species, more than 10%, are given in red,
species with correlations between 1% and 10% in green, and in blue are represented
correlations less than 1%.

of vegetation.

It is important that the background error covariance matrices are accurately
defined. In case of the emission factors and matrix K, continuous efforts are
made to improve the estimation of the background error correlation matrix,
in collaboration with the emission experts of TNO. Since in reality the cor-
relations between the emitted species can variate within the domain, a future
update could also include the spatial variations of the emissions and further,
the construction of matrix D dependent on the SNAP source categories.

3.3 The minimisation

The cost function of the 4D-var algorithm depicts the distance between the
model’s output and the observation state of the atmosphere. The optimal
result comes from the minimisation of this distance. For so, the calculation of
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the gradient of the the cost function with respect to the control parameters, the
initial values of the chemical constituents and the emission factors, is needed.

The precondition of the cost function as it is discussed in Chapter 2.5,
provides a computationally less expensive way to proceed with the problem.
The transformation of the optimisation parameters of Eq. (2.12) includes,
for both the initial concentrations and the emission rates, the deviation from
the background state, x b(t) and eb(t), respectively. In the beginning of the
assimilation, the aforementioned deviations, δx and δu, are set to zero, as the
first guess is identical to the background state. Then the initial state is updated
by the analysed state values. Next, it is the turn of the cost function Eq. (2.13)
to be calculated, as well as its gradient Eq. (2.14), resulting after the backward
(i.e., adjoint) integration. The state that minimises the cost function is found
by solving the equations ∇(v,w)T J = 0. Yet, the size of the problem requires
a numerical method to approximate the solution. Thus, the EURAD-IM 4D-
var system uses a parallelised version of the L-BFGS optimisation algorithm
[Nocedal, 1980; Liu and Nocedal, 1989].

The Limited memory BFGS optimisation algorithm belongs to the family
of quasi-Newton methods that is based on the Broyden - Fletcher - Goldfarb
- Shanno (BFGS) algorithm using a limited amount of computer memory. In
L-BFGS the Hessian matrix H of the classical Newton method,

xk+1 = xk −H −1(xk)∇(v,w)J,

is approximated iteratively, where L-BFGS stores only a few vectors that rep-
resent the approximation implicitly.

The minimisation procedure into EURAD-IM algorithm contains a sequence
of steps, which are iteratively repeated until the optimum state is reached.
The forward model run calculates the cost function, based on an a priori or
updated state of the optimisation variables, as described above. Then the
adjoint integration follows, calculating the transformed gradient Eq. (2.14).
For this calculation the horizontal and vertical diffusion is applied, for the half
of the time steps defined in Eq. (3.9). Further, it is the turn of the L-BFGS to
get as input values the a priori or updated state of the optimisation variables,
the cost function and its gradient, and then to calculate the optimal (v,w),
which are saved for the following iteration run. Now the transformation back
to (δx, δu) by the Eq. (2.15) takes place, giving the improved variables (x, e).

The procedure stops when the iteration limit is reached (defined by the
user) or when the cost function cannot be minimised more and, thus, the total
minimum is achieved.





Chapter 4

Observations

The present chapter deals with the treatment of the observed information
within the EURAD-IM. The characteristics of the available observations assim-
ilated in this work and the way they are ingested in the model by observation
operators is discussed, as well as the role of the observation error covariance
matrix.

4.1 The available observational data

Despite the great improvement of the observation methods, the measured
snapshots of the atmospheric air are sparse, especially when the spatial resolu-
tion of a model is considered. A way to deal with this issue, is the combination
of abundant sets of different kinds of observation, which can give a more com-
plete picture of the puzzle of the atmospheric processes, if available.

Within the scope of this thesis, in-situ, satellite and airborne observations
are combined by 4D-var assimilations. In-situ and satellite observations are
assimilated in case of an aestival high ozone and a hibernal high stagnant air
episodes, as it is presented in Chapter 5. Moreover, the benefits of campaign
data are studied in case of the PEGASOS flight campaign, in combination
with ground based data and satellite retrieved information. Table 4.1 shows
the observational data that are used for each case study. In the current section,
a description of the observational data assimilated and the characteristics of
the measurements are given.
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Summertime
ozone episode

2010

Wintertime
aerosol

episode 2012

PEGASOS
flight

campaign
2012

EEA in-situ
sations (NO, NO2,

SO2, O3, CO)

X X X

GOME-2 (NO2) X X X

SCIAMACHY
(NO2)

X

IASI (O3) X X

OMI (NO2) X X X

MOPITT (CO) X X

PEGASOS
airborne data
(NO, NO2, O3, CO)

X

Table 4.1: The type and the origin of the assimilated observational data for each
case study.

4.1.1 In-situ observations

The provider of the surface in-situ observations assimilated in this study is
the European Environmental Agency (EEA - http://www.eea.europa.eu).
The EEA data base contains air quality monitoring data and information
submitted by all countries of the European Union and some EEA potential
candidate countries. The air quality database consists of multi-annual time
series of air quality measurement data and their statistics for a representative
selection of stations and for a number of pollutants. Further, it includes meta-
information on the involved monitoring networks, their station characteristics
and their measurements.

The density of the network of ground stations depends on each country and
the geographical location, being partly dense, partly coarse. The center of
Europe is well covered by in-situ stations from EEA, so for the domains under
considerations in this thesis there is a large data base of ground observations.
All types of stations (i.e., background, industrial, traffic stations) are included,
summing up to roughly 13.000 observations for an average day, among which

http://www.eea.europa.eu
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the 37% is NO2 observations, the 30% is O3, the 20% is NO and the 13% is SO2

observations. In general, the NOx data are available in half-hourly frequency,
whereas the rest of the data in hourly frequency. The in-situ network also
provides particular matter observations, PM2.5 and PM10. However, these
data are not assimilated in the current work.

  

Figure 4.1: The coverage of ground stations in Europe (left) and Germany (right)
by the Airbase data; a dense network of different kind of observation stations; back-
ground, industrial, traffic (source:http://acm.eionet.europa.eu/databases/airbase).

4.1.2 Satellite observations

Tropospheric satellite retrievals for gas phase species are considered to en-
hance the assimilation result, supplementing the ground network of stations
during the three case studies of interest.

For the satellite data in use, a short description for each satellite instrument
and its observed values follows.

Measurement Of Pollution In The Troposphere - MOPITT
MOPITT [Deeter et al., 2010; 2013] is an instrument flying on NASA’s Earth
Observing System Terra spacecraft, sensitive to free tropospheric CO (Fig.
4.2). MOPITT is the first satellite sensor to use gas correlation spectroscopy
calculating total column observations and profiles of CO in the lower atmo-
sphere. The high spatial resolution, of 22 km at nadir, allows MOPITT to
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focus on the distribution, transport, sources, and sinks of CO in troposphere.
Hence, MOPITT CO data have been used in numerous research works for the
estimation of CO emissions and analysis of the tropospheric chemical compos-
ition (e.g., Miyazaki et al. [2015]; Hooghiemstra et al. [2012; 2011]).

Figure 4.2: On the left, the Terra spacecraft with its different remote sensing
instruments. On the right, the path track of MOPITT instrument on board of the
Terra. Source: http: // terra. nasa. gov

Ozone Monitoring Instrument - OMI
OMI [Levelt et al., 2006] is a key instrument on Earth Observing System (EOS)
Aura (Fig. 4.3), contributed by the Netherlands’s Agency for Aerospace Pro-
grams in collaboration with the Finnish Meteorological Institute, for monitor-
ing the recovery of the ozone layer in response to the phase out chlorofluorocar-
bons (CFCs). OMI measures both direct and atmospehre-backscatter sunlight
in the ultraviolet and visible radiances, fact that improves the accuracy and
precision of the measured total ozone amounts. It also measures BrO, formal-
dehyde, and OClO which all play a role in chemistry of the stratosphere and
troposphere, as well as SO2, and aerosols in Near Real Time (NRT). However,
its most common used measurements is NO2 [Miyazaki et al., 2015; Inness
et al., 2015; Pierce et al., 2010], as OMI can detect regional variability [Bechle
et al., 2013].

Global Ozone Monitoring Experiment2 - GOME-2
The GOME-2 [Callies et al., 2000] is one of the new-generation European
instruments (Fig. 4.4) carried on MetOp satellite. It provides information

http://terra.nasa.gov
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Figure 4.3: On the left, the Aura spacecraft and the instruments attached on it. On
the right, the principle of OMI. Source: http: // www. nasa. gov/ mission_ pages/

aura/ spacecraft

for traces gases and aerosols, though, of high importance are the GOME-2
profiles of O3 and NO2, as they are representative of the lowermost 50 km of
the Earth’s atmosphere. GOME-2 NO2 tropospheric column concentrations
have been used in many recent studies, as Inness et al. [2015], Cuesta et al.
[2013], Miyazaki et al. [2012], Richter et al. [2011].

Figure 4.4: On the left, the MetOp satellite, while on the right, the scanning prin-
ciple of GOME-2 instrument. Source: http: // www. esa. int/ Our_ Activities/

Observing_ the_ Earth/ The_ Living_ Planet_ Programme/ Meteorological_

missions/ MetOp/ About_ GOME-2

Infrared Atmospheric Sounding Interferometer - IASI
IASI [Clerbaux et al., 2009] is a hyperspectral infrared sounder residing on the
European Space Agency’s MetOp series of polar orbiting satellites (Fig. 4.5),
for the purpose of supporting Numerical Weather prediction. IASI measures in
the infrared part of the electromagnetic spectrum at a horizontal resolution of

http://www.nasa.gov/mission_pages/aura/spacecraft
http://www.nasa.gov/mission_pages/aura/spacecraft
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Meteorological_missions/MetOp/About_GOME-2
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Meteorological_missions/MetOp/About_GOME-2
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Meteorological_missions/MetOp/About_GOME-2
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12 km over a swath width of about 2.200 km, as well as volcanic ash detection.
Water Vapor, O3, CO, CO2 and CH4 are the high resolved observed constitu-
ents. IASI is a pioneer sensor sensitive to tropospheric O3 [Emili et al., 2014],
important for air quality studies and inverse modelling applications [Bocquet
et al., 2015; Safieddine et al., 2014; Cuesta et al., 2013; Cooper et al., 2014;
Barret et al., 2011].

Figure 4.5: On the left, the anatomy of IASI remote sensing instrument, on the
right, its field of view. http: // www. eumetsat. int/ website/ home/ Satellites/

CurrentSatellites/ Metop/ MetopDesign/ IASI/ index. html

SCanning Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY - SCIAMACHY
SCIAMACHY [Bovensmann et al., 1999] was an imaging spectrometer (Fig.
4.6), aboard the Environmental Satellite (ENVISAT), during the years 2007-
2012, launched by ESA. SCIAMACHY’s high resolution and wide wavelength
range, was the key to detect many different trace gases despite low concentra-
tions, as well as clouds and aerosols. Applications of data assimilation focus
on the use of the NO2 tropospheric columns from SCIAMACHY [Inness et al.,
2015; Zyryanov et al., 2012; Chai et al., 2009; Lahoz et al., 2010; Elbern et al.,
2007b].

4.1.3 Air-borne campaign observations

While routine data provide continue information about the air quality in
the location of the station, campaign data can be the extended insight to this

http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/MetopDesign/IASI/index.html 
http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/MetopDesign/IASI/index.html 
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Figure 4.6: On the left, the SCIAMACHY aboard ENVISAT, on the right, its field
of view. Source: http: // www. sciamachy. org/ products/ index. php? species=

NO2

information [Zhang et al., 2012]. Airborne observations are provided by dif-
ferent kind of sources, such as aircrafts, helicopters, Zeppelins and balloons.
Among them, the Zeppelin NT has a pioneering role in the collection of high
quality airborne data, acting as a measuring platform to investigate the tro-
posphere. The main advantage of the Zeppelin NT is its ability to fly with low
velocity in low altitudes collecting measurements over land. Thus it is ideal
for characterising the PBL in terms of height profiles, local chemical processes
but also dynamic processes in the PBL evolution.

The PEGASOS campaign
In 2012 a Zeppelin NT embarked on the Pan-European gas-aerosols-climate in-
teraction study (PEGASOS), a large scale integrating project with 26 European
partner organizations [Pandis, 2010; FORTH/ICE-HT]. The objective of the
PEGASOS campaign is the better understanding on the interactions of an-
thropogenic and biogenic components of the atmosphere and their impact on
air quality and climate change. The campaign was divided in two parts where
the first took place in Netherlands from 19 May to 27 May 2012, followed by a
southbound trip to Italy’s Po-valley from 18 June to 13 July. The second part
was a two-month trip from Friedrichshafen to Finland in spring 2013.

For the scientific experiments of the PEGASOS campaign a special plat-
form was trapped to the top of the Zeppelin NT and more instruments were
installed inside the gondola ( Fig. 4.7). This configuration could hold a per-
manent equipment and also different cabin lay outs depending the research
question for each flight. So a unique data set with comprehensive air-quality
measurements could be created, including photochemistry trace gases, HOx

http://www.sciamachy.org/products/index.php?species=NO2
http://www.sciamachy.org/products/index.php?species=NO2
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Figure 4.7: The Zeppelin NT during the PEGASOS campaign. There are high-
lighted the sensors (black) for meteorological parameters and the installed measuring
instruments in the gondola (green) and the top platform (red). Source: Gomm
[2014].

radical concentration, secondary organic aerosols, particulate matter, actinic
flux density, as well as meteorological parameters and inflight aviation data
(Table 4.2) [Jäger, 2014].

The present study focuses on the data retrieved in the area of Po valley
during 10-12 July 2012, assimilating airborne measurements of NO, NO2, O3

and CO.

Po valley is located in northern Italy close to Bologna and is considered
as a sensible hot spot, being a major populated area and subject to strong
anthropogenic pollution [Finardi et al., 2014]. The regional background ozone
concentrations often exceed the limit values, because of high anthropogenic
emissions, abundant solar radiation and stagnant air layering that characterise
the area [Liu et al., 2007].

During the PEGASOS campaign the airship Zeppelin flew for 25 days over
the Po valley, from 18.06.2012 - 13.07.2012. Though, a special focus is placed
on the 12th of July. At this date the airship performed a series of near-surface
vertical flights in a spiral mode, starting at 50 m and reaching roughly the
750 m above sea level, in the morning between 04:30 UTC and 08:45 UTC.
The flights were performed near the field site of San Pietro Capofiume (SPC,
44o41

′
N, 11o38

′
E), with urban background characteristics. Thus, the airborne

measurements can be compared with the in-situ observations and provide in-
formation for the vertical mixing. The meteorological conditions assess the
collection of an extensive set of measurements, which includes concentrations
of HCHO (formaldehyde), VOC’s, OH, HO2, NO, NO2, O3, CO, HONO and
also OH reactivity, particle concentration/size distribution, solar actinic flux
densities, temperature, pressure, relative humidity, 3-D wind [Li et al., 2014].
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Platform Measurements
Top platform
equipment

OH, HO2, OH lifetime, actinic flux

Cabin: per-
manent
equipment

NOx, O3, CO, particle size distributions, ac-
tinix flux, meteorological data

Cabin: pho-
tochemistry
layout

HONO, formaldehyde, VOCs

Cabin: SOA
layout

chemical aerosol composition, hydroscopi-
city, soot, VOCs

Cabin: nucle-
ation layout

natural ions, distribution of natural ions

Table 4.2: The total amount of measured species from all kind of equipment during
PEGASOS campaign.

These high quality data and mainly the OH measurements and reactivity make
the 12th of July special day of the campaign. The analysis of these data sheds
light on crucial issues for the air quality, as the investigation of HONO [Li
et al., 2014] and HCHO [Kaiser et al., 2015] sources, and the distribution of
trace gases in the PBL.

The vertical flights of the Zeppelin NT cross the PBL (Fig. 4.8) providing
a clear picture of its chemical composition. For better understanding of the
chemical processes that take place in PBL and the information percieved by
the PEGASOS airborne measurements, it is essential to discuss in more depths
the development and the layering of the PBL.

The planetary boundary layer (PBL)
The PBL extends upward from the surface to a height that ranges from 100 to
3000 m. In a high pressure system, the PBL is thinner and has a well defined
structure that evolves with the diurnal cycle [Stull, 1988]. In Fig. 4.8 the main
parts of this structure are shown; the mixing layer (ML), the residual layer
(RL), the nocturnal boundary layer (NBL). The bottom of the boundary layer,
called surface layer (SL), has a well mixed maximum height of 50 m during
a whole diurnal cycle and contains high concentrations of primary emissions.
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Figure 4.8: The evolution of the planetary boundary layer (PBL) in 24h, including
the Zeppelin flight profiles. Source: Jäger [2014].

On the other hand, the free troposphere, i.e., the air above the PBL, is not
influenced by the procedures on the surface.

Half an hour after sunrise the turbulent ML starts to grow, because of
the surface heating of the solar radiation. The warm air rises from ground,
resulting in intense mixing, until the late afternoon, where ML reaches its
maximum depth. In the high pressure system of the current episode, the
pollutants are trapped below ML. Subsequently, half hour before the sunset
the RL is formed, without having direct contact with the ground, at 400 m
- 2000 m height. The air in RL has almost the same composition as in ML,
as only same oxidation or deposition takes place, mainly by O3 and NO3.
Simultaneously, after the sunset the surface radiative cooling begins and the
NBL is formed, up to 400 m height. NBL is characterised by stable air, due
to low winds, which are enhanced as the layer develops, resulting in potential
mixing through the NBL.
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4.2 The observation operator

The observation operator H(t) maps the model output, for specific space
and time coordinates, to the observation space, in order to compare it with the
available measurements. In the typical case of differing locations of grid points
for an observation, this means that the observation operator interpolates the
gridded information to the measurement location. In case of remote sens-
ing data, H calculates the model equivalent of the observations, by radiative
transfer calculations.

In Chapter 2.4, where the minimisation problem is presented, the cost func-
tion with respect to the control parameters includes the linearised approxim-
ation of the forward observation operator, H(t). Also, the gradient of the
cost function holds the adjoint of the tangent linear observation operator HT .
This approach guarantees that the cost function (Eq. (2.13)) is quadratic and
therefore it holds a unique minimum [Lahoz and Schneider, 2014].

Another key point is that for every different kind of observational data,
a different observation operator should be available. Hence, the design of
the appropriate operator is demanding and the ability to introduce the coded
knowledge of the observation into the model depends on its success. The
key idea for the construction of an observation operator is the simulation of
instrument’s observation, by mapping the inputs in model space, and taking
into account the physics of the measurement and the characteristics of the
instrument. For instance, the observation operator of satellite measurements
uses the averaging kernel information in observation space, which is the matrix
that contains the sensitivity of the retrieval result with respect to small changes
in the modelled trace gas distribution [Rodgers, 2000; Strunk, 2006].

Observations can contain information at smaller scales than the model can
resolve. Thus, the errors of representativity are the result of small scale in-
formation in observations being incorrectly represented in the model.

4.3 The observation error covariance matrix

The observation error covariance matrix has a key role in the calculation
of the observational cost of (2.13) and its adjoint (2.14). It is defined as
R ∈ RM(t)×M(t), where M(t) is the dimension of the observation space at time
t. R is given by the sum of two other covariance matrices; the measurement
error covariance matrix and the representativeness error covariance matrix.
Within the EURAD-IM, the observation error covariance matrix is assumed
to be diagonal, which means that the observation errors are not correlated.
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Thus, the diagonal elements of R are given as sum of the measurements and
representativeness variances,

Rii = ri,meas + ri,repr, i = 1, ..., nobs. (4.1)

The measurement error covariance matrix contains the estimates of the
statistical performance of the measuring instruments. It is implied that the
institutions which collect and process the observed data are responsible for
the validity of the measurement error covariance matrix. Nevertheless, it is
often that this is not the case as, for example, ground based observations miss
specification of the standard deviations. Due to these gaps of observation in-
formation, a minimum absolute (εabsmin) and relative error (εrel) for each species
observation (yo) should be introduced, giving the measurement error in any
case,

rmeas = max
(
εabsmin, ε

rel × yo
)
. (4.2)

Consequently, the measurement error covariance matrix is constructed follow-
ing the scheme exposed in Mohnen [1999].

The representativeness error covariance matrix holds the information of
how representative is an observation for the volume-average value. The rep-
resentativeness of an observation depends on the grid resolution and on the
characteristics of the location, which means whether a location is remote, rural,
suburban, urban or traffic. For example, CO observations, from a ground sta-
tion close to a point source, do not represent the level of the CO concentrations
for a whole low resolved grid. This issue is addressed by the increase of the
grid resolution and the application of the nesting technique in 4D-var assimil-
ation algorithm. Hence, the coding of the representativeness error includes a
characteristic absolute error for each measured species (εabs), which is scaled
by a factor that depends on the grid resolution (∆x) and a characteristic rep-
resentativeness length of influence for each station type (Lrepr), as

rrepr =

√
∆x

Lrepr
× εabs. (4.3)

Obviously, the error of representativity is reduced by increasing the model’s
resolution or by increasing the observation length scale.

In the present work, high resolution grids are applied, starting with a 15
km resolution for the mother domain and ending with a 1km resolution for
the finest nest, reducing the representativity error. Moreover, both the char-
acteristic absolute error for each measured species, εabs, and the characteristic
representativeness radius of influence for each station type, are calculated fol-
lowing Elbern et al. [2007a].



Chapter 5

Analysis of special case studies

The 4D-var optimisation algorithm is applied for three different case studies
and the main results are presented in the current chapter. An insight into the
goals, the special meteorological conditions of each episode and the character-
istics of the system’s set up are discussed and evaluated.

In the beginning, two special real cases are studied, an aestival high ozone
and a high hibernal stagnant air episode. Both are used to introduce the main
features of the EURAD-IM system, evaluating firstly, the newly developed
online adjoint emission factors optimisation, using a rich observational basis
of ground and satellite measurement and secondly, the ability of resulting in
updated emissions. For more comprehensive statistics, the assimilation pro-
cedure is applied for several days in a row, giving the opportunity for a better
understanding of the system’s performance over longer periods. In addition,
the model’s ability to identify special episode situations and the dispersion of
elevated pollutants concentrations is estimated.

Further, assimilations for selected days of the PEGASOS flight campaign
in North Italy are performed, motivated by twofold objectives. Firstly, the
4D-var data assimilation analysis in a high resolved grid over polluted areas,
such as Po valley is evaluated. Secondly, the new perspective that the airborne
data provide to the model’s performance is studied, in terms of distinguishing
emission patterns, investigating the vertical distribution of trace gases and the
PBL’s dynamics, given the scientific campaign measurements.

The identification of the aforementioned case studies is motivated by the
objectives of the Regional Climate Change project REKLIM - Topic 5 (’Atmo-
spheric composition and climate: Interactions from global to regional scales’,
http://www.reklim.de/en/topics/topic-5.html) and the research activit-
ies in the frame of Monitoring Atmospheric Composition and Climate (MACC,

http://www.reklim.de/en/topics/topic-5.html
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https://www.gmes-atmosphere.eu/), regarding the determination of inter-
actions between regional climate change and air composition influenced by
emissions.

Validating the assimilation results, two different methods are applied; the
minimisation performance of the 4D-var algorithm is assessed by χ2-test and
by comparison with independent observations withheld from the assimilation
procedure. The high computational needs for the episodes simulations are
handled by technical develops and updates of the 4D-var algorithm. Moreover,
all the simulation runs are performed in the Jülich Supercomputing Centre
(JSC) of the Research Center Jülich (http://www.fz-juelich.de/ias/jsc/
EN/Home/home_node.html).

5.1 Aestival high ozone episode

The tropospheric ozone is a ’secondary’ pollutant formed by complex pho-
tochemical reactions. The ozone production is mainly driven by emissions of
primary pollutants, such as NOx, CO and VOCs. It is the third most im-
portant gas in its contribution to the global greenhouse effect, after CO2 and
CH4 [Solomon et al., 2007], and a powerful oxidising agent. Ozone has a life-
time average of about two weeks, that makes its transport possible for several
thousands of kilometres in the free troposphere, contributing to the PBL pol-
lution and enhancing its adverse effects on humans’ health and vegetation.
Elevated ozone concentrations most frequently occur near large urban areas,
as the main sectors that emit ozone precursors are road transport, industry,
power and heat generation plants.

An ozone episode is defined as a period, usually a few days up to three
weeks, with high ozone concentrations, characterised by daily exceedances of
the threshold set to protect human health [European Parliament and Council
of the European Union, 2008]. This is the case for the summer of 2010, that
was characterised by a long period with frequent exceedances of the threshold
of 120 µg/m3 maximum daily eight-hour mean ozone concentrations, during
the warm meteorological conditions between the 24th of June and the 22nd of
July [EEA Technical report, 2011].

The long lasting episode triggers the interest of the atmospheric modelling
for simulations with the 4D-var method. The joint optimisation of initial values
and emission rates provides a well estimated representation of the quality state
of the atmosphere, when assimilating both the emitted species and ozone. By
this way, more information about the surface ozone formation around urban
areas is gained.

https://www.gmes-atmosphere.eu/
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
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The main focus of the current case study is the period from 07.07.2010
until 12.07.2010, where the highest temperatures are recorded together with
the highest percentage of threshold exceedances, as it is highlighted in Fig.
5.1.

Figure 5.1: The distribution of daily ozone exceedances for the entire continent
of Europe and the maximum temperatures observed in four European capital cities
(Copenhagen, Paris, Prague and Rome). Source: EEA Technical report [2011].

5.1.1 The meteorological conditions

The ozone concentrations do not depend only on precursor emissions, but
also on the meteorological conditions. Sunlight and high pressure systems are
necessary conditions for enhancing the tropospheric ozone levels. Moreover,
the airmass stagnation over areas with high emissions leads to ozone accumu-
lation.

During summer 2010, and more precisely the dates under consideration,
high insolation and temperatures occurred for long period. The Mediterranean
countries were affected, recording the most widespread concentrations of ozone.
However, the same meteorological conditions were also experienced in western
and central Europe, fact that is not a typical behaviour for these regions.
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The very low horizontal wind trapped the polluted airmass, increasing the
concentrations of the emitted pollutants, mainly around urban areas.

Fig. 5.2 highlights the meteorological conditions during the 11.07.2010, a
representative day of the case study. The high pressure system over Europe
caused high temperatures, more than 27◦C, and low wind speed. Additionally,
the low humidity conditions enhanced the stability of the low troposphere air,
trapping the concentration of pollutants, highlighting ozone.

Figure 5.2: The meteorological condition, for the surface level, during the 5th day
of the episode, representative for the average of the episode’s days. Left panel: 2m
temperature (◦C, indicated in the color bar), sea-level pressure (hPa) and horizontal
wind (m/s). Right panel: percentage of relative humidity (%, indicated in the color
bar) and tendency of rain (precipitation >6mm, green triangles). Source: http:

// www. eurad. uni-koeln. de/ .

5.1.2 The observational data and the model set up

The observational basis consists of ground based and satellite measurements
(Table 4.1). EEA in-situ data of NO, NO2, O3, SO2 and CO are combined with
the NO2 tropospheric columns of GOME-2, SCIAMACHY and OMI, as well as
with O3 and CO observations from IASI and MOPITT, respectively. In other
words, a full observational set of emitted species and products is assimilated.
The episode simulation is performed for the 15 km resolved European grid, in
which the locations of the in-situ stations network is shown in Fig. 5.3.

For the period 07.-12.07.2010 the data assimilation procedure is applied with

http://www.eurad.uni-koeln.de/
http://www.eurad.uni-koeln.de/
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Figure 5.3: The net-
work of in-situ stations
for the domain of in-
terest, the 15 km resolved
European grid.

an assimilation window of 24 hours. The motivation for selecting a long length
window lays on the diurnal profile of the emission, that is taken as a strong
constrain. Joint optimisation simulations are performed, improving both the
initial species concentration values and the emission factors. Moreover, for
validation reasons, control runs are performed without any data assimilation,
including the background information of the EURAD-IM.

5.1.3 The analysis results

Assimilation of routinely data
Performing 4D-var runs for 5 days continuously leads to optimised initial data
for the following day every time and so to an improved analysis state for
it. The fifth day of the assimilation achieves higher minimisation of the cost
function than the first day. Fig. 5.4 illustrates the last statement, showing the
iterative reduction of the cost function for each of the 5 days of the assimilation.
The analysis every day benefits from the optimised result of the previous day
and starts with already reduced values for the cost function, that are further
minimised.

The validity of the aforementioned assimilation result has to be checked,
thus a χ2-test is adopted. As it is discussed in Talagrand [2010], given the
unbiased innovation vector

d = y −Hx
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Figure 5.4: The absolute reduction of the cost function for the 5 assimilated days.

the value of the cost function at its minimum reads

Jmin =
1

2

N∑
i=1

d2
i , (5.1)

where N is the total number of observations. Likewise, the expectation of Jmin
in a consistent system is

E [Jmin] =
N

2
. (5.2)

Eq. (5.2) provides the check for the consistency of the assimilation system, so
the assimilation result is evaluated whether it satisfies this condition.

The average over the 5 assimilated days gives a mean cost of 46× 104 and
a halved number of observations of 33× 104. Namely, the expectation of Jmin
is larger than N/2, which implies a slight underestimation of the observation
errors. However, as it is shown in a series of χ2-test applications [Elbern et al.,
2007a; Chapnik et al., 2006; Muccino et al., 2004], systems that have gone
through extended operational validations and tuning usually show differences
of at most few units, of the E [Jmin] and its theoretical value N/2. With this in
mind, it can be concluded that the resulting difference from the χ2-validation
is not significant of an inconsistent system. Although modifications of the cost
function’s error statistics are a matter of further improvement, the consistency
of the assimilation system is guaranteed.

The optimised analysis by 4D-var results in improved calculation of the
species concentration, either the emitted ones or their products. The over-
or underestimation of the model’s background calculations is corrected by the
joint optimisation run. Fig. 5.5, presents the differences between the analysis
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result and the model run without any assimilation - i.e., the background - for
the simulation of the first and the fifth day of the ozone episode, on surface
level, for O3 (first row) and NO2 concentrations (second row). These figures
underline that the analysis provides improved data compared with the model
for the whole assimilated period. On the first day of the assimilation the ana-
lysis is improved by the observations around areas with high emission sources,
while on the fifth day of assimilation for the whole domain. In case of O3 this
correction is more extended than in case of NO2, which is an expected result,
as the 15 km resolved grid is not representative for NO2 observations.

Figure 5.5: Differences between the analysis and the model (analysis-minus-
background) for O3 during noon at 12:00 UTC (first row) and NO2 during morning
rush hour at 06:00 UTC (second row) in the 15km resolution European domain, at
the first (left panels - 07.07.2010) and the fifth (right panels - 11.07.2010) day of
assimilation of the ozone episode.

A main matter under consideration is whether the model is able to optimise
the emission factors and calculate emission patterns. The 4D-var algorithm
of EURAD-IM is shown to provide optimised emission data. The emission
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factors, set equal to one in the beginning of the assimilation, are improved at
the end of the first day of the episode. After 5 assimilation days there is a
significant correction of the emission factors for all four assimilated emitted
species. Fig. 5.6 presents the correction of the emission factors of NO2, NO,
SO2 and CO.

Figure 5.6: Correction of emission factors after five days of assimilation for the
high aestival ozone episode on 11.07.2010. First row: correction of NO2 (left panel)
and NO (right panel) emission factors, second row: correction of SO2 (left panel)
and CO (right panel) emission factors.

For instance, in case of NO, the model calculates higher concentrations
in areas with rich emissions, such as large urban centres, industrial areas and
seaports, thus, the optimised emission factors are in general reduced. This res-
ult is also well captured for the other emitted species, implying the influence
of the inverse temperature and the stagnant conditions in the atmosphere to
the elevated pollutants concentrations in the surface layer. The analysis gives
more accurate concentration fields for precursor and product species (Fig. 5.7).
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The elevated O3 concentrations dominate around Europe, with averaged values
higher than 90 µg/m3 during the afternoon hours. The assimilation also cap-
tures the night-time depletion of O3, resulting from the strong anthropogenic
emissions.

Figure 5.7: The calculated concentrations of O3 (at 12:00 UTC) and NO2 (at
06:00 UTC) during the 11.07.2010.
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The model’s behaviour can be also recognized in the time series of the
analysis and the background run. Fig. 5.8 depicts average time series of
O3, of the total 2004 assimilated stations in the whole European domain,
which have recorded O3 observations, during the fifth day of the episode. Here
the assimilation of O3 gives a satisfying analysis result that fits better to the
observations than the background run does.

Figure 5.8: Time series of the average observed and assimilated O3 concentra-
tions, from all assimilated stations in the coarse domain for 11.07.2010; black:
background, red: observations, blue: both initial value and emission factor optimiz-
ation.

An example of times series over individual stations is given in Fig. 5.9,
for a station in Augsburg in Germany and in El Prat in Span, in case of O3

observations. The analysis of O3, as product of the nitrogen circle, benefits
from the assimilation of O3 and NO2 observations together, as well as of the
joint optimisation of initial values and emission factors. It is the optimised
emission factors of the ozone precursors that enhance the successful result.
That gets clearer mainly after the 6 first hours of the assimilation window,
were the influence of the O3 initial concentrations optimisation is not so strong
any more.

Conclusions
Overall, the minimisation performance of the model after several days of as-
similation is proved to be satisfied and the χ2-validation of the optimised res-
ult successful. These facts can conclude to improved forecast abilities of the
model. Moreover, the first application of the newly developed emission factor
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Figure 5.9: Time series of O3 observation in case of individual urban stations
in Augsburg - Germany (upper panel) and in El Prat - Spain (down panel) on
11.07.2010; black: background, red: observations, blue: joint initial value and emis-
sion factor optimization.

error covariance matrix results in optimised emission factors and so improved
concentration fields for precursor and product assimilated species.

5.2 Hibernal high stagnant air episode

Urban areas usually suffer from elevated concentrations of atmospheric aer-
osols and some gaseous pollutants, during specific meteorological conditions,
like low temperature inversions, high pressure systems and low wind [Choi
et al., 2008]. During the winter of 2012, such an episode of long lasting high
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stagnant air concentrations took place in Europe, influencing the quality of the
air in the surface layer for numerous urban centres. Here data from the main
days of the episode are assimilated (15.01.2012 - 21.01.2012), using ground
based in-situ and satellite measurement. It is underlined that aerosols obser-
vations are not assimilated in the current work, as the main focus is on gaseous
pollutants that under such extreme episodes can undergo pronounced increase
and thus threat human heath [Lyamani et al., 2012]. Further, the optimisation
of emission factors is able to provide more information on the open question
whether this kind of events are forced by increased anthropogenic emissions or
by extreme meteorological conditions, notably low inversion layers.

5.2.1 The meteorological conditions

The extreme cold winter 2012 in Europe [Sillmann et al., 2013] enhanced the
concentration level of particulates, because of the prevailing low level stagnant
atmospheric conditions. Fig. 5.10 highlights the meteorological conditions
over Europe for 15.01.2012, representative day for the whole episode.

The high pressure system over western Europe caused clear sky and very
low temperatures. The anticyclone induced low wind-speeds and intuition of
vertical exchange. The warm air over the cooler air acted as a lid, preventing
upward movements and thus the pollutants were trapped near the ground.

5.2.2 The observational data and the model set up

Both ground based and satellite measurements for species in gas phase are
assimilated in this case study (Table 4.1). The network of the EEA in-situ
data (Fig. 5.3) is combined with retrievals from GOME-2, OMI, IASI and
MOPITT, for NO, NO2, O3, SO2 and CO.

The 4D-var inverse modelling technique is applied for 7 days of the episode,
leading to optimised initial conditions for each following day. The initial con-
centrations of the species are optimised together with the emission factors for
a 24-hours assimilation window. In order to control the analysis results, runs
without data assimilation are performed for the same time period.

5.2.3 The analysis results

Assimilation of routinely data
The assimilation of the present case study helps to assess the model behaviour
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Figure 5.10: The meteorological conditions of 15.01.2012, representative for the
average of the episode’s days. Left panel: 2m temperature (◦C, indicated in the color
bar), sea-level pressure (hPa) and horizontal wind (m/s). Right panel: percentage of
relative humidity (%, indicated in the color bar) and tendency of rain (precipitation
>6mm, green triangles). Source: http: // www. eurad. uni-koeln. de/ .

for the joint optimisation of the initial values and the emission rates. In gen-
eral, NO2 concentrations are underestimated by the model, especially during
wintertime. There is a dual cause to this issue. First of all, the low spatial
representativeness of NO2 observations for the model’s grid is strong. This is
because the majority of stations that observe NO2 is located in urban areas, or
close to large streets and highways, which do not represent the state of a grid
or a domain. Further, there are uncertainties on what it is measured from the
observational instruments, remote sensing and in-situ. In reality, in addition
to NOx, the measured information for nitrogen oxides may also include NOy,
including HNO3 concentrations. This information is used afterwards to calcu-
late NO and NO2 measurements. Hence, this procedure is biased and prompt
to end up with higher observed NO2 concentrations.

So far these two matters are difficult to be controlled by the CTMs. How-
ever, 4D-var within the EURAD-IM proved to be able to reduce these un-
wanted results. For instance, after 7 days of assimilation, the underestimation
of NO2 background concentration is significantly corrected towards the ob-
servations in the analysis result. This can be seen in Fig. 5.11, where the
differences between the analysis and the background run are shown, for the
morning rush hour of the 7th day of the assimilation. This correction is larger

http://www.eurad.uni-koeln.de/
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around urban areas with high emissions and point sources, where also correc-
tion of the NO2 emission factors are analysed.

Figure 5.11: Differences between the analysis and the model (analysis-minus-
background) for NO2 concentrations in the 15 km resolution European domain, dur-
ing morning rush hour (06:00 UTC), after 7 days of assimilation on 21.01.2012
(left panel) and the correction of the NO2 emission factors for the same day (right
panel).

The optimised information gained by the analysis run is also visible in time
series. In Fig. 5.12 the time series of the averaged assimilated NO2 observa-
tions from 493 ground stations in Italy verify the improvement of the model
in the direction of the observations, addressing the initial underestimation of
NO2 concentrations. The success of this correction during the whole assimila-
tion window is a result of the joint optimisation of initial values and emission
factors, which also provide improved initial conditions from the previous day
assimilation.

The issue of representativeness of NO2 measurements, prevents the analysis
for higher minimisation of the discrepancies. However, in the time series of
individual stations close to emission point sources the optimisation is well
achieved. For instance, Fig. 5.13 shows time series plots of NO2 observations
of two individual ground stations in Cottbus in Germany and in Sankt Georgen
im Lavanttal in Austria. Both observation stations are located in areas where
there are large lignite-fire power stations. Here the analysis result diminish
the differences between the model and the observations, fitting well to the
observational sets. This result indicates the influence of the error covariances
to the analysis; both the background and the emission factor error covariances
benefit from the optimised initial data from the previous days’ simulation and
allow the analysis to get closer to the observed data, being in agreement with
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Figure 5.12: Time series of the average assimilated NO2 observation of 493 sta-
tions in Italy on 21.01.2012. black: background, red: observations, blue: both initial
value and emission factor optimization

the elevated emissions in these areas.

A comparison of the data assimilation skill on the coarse grid with in-
dependent observations is presented for validation. Fig. 5.14 includes time
series of independent observations of NO2 and O3, comparing the analysis res-
ult and the model background. Measurements from EBAS stations (http:
//ebas.nilu.no/) are withdrawn from the assimilation procedure to evalu-
ate the analysis result. Here the output of representative stations from Spain
(Niembro and Donana) and Macedonia (Lazaropole) are presented. In case of
NO2, the model calculates lower concentrations than the observations, whereas
the analysis tries to minimise these discrepancies. The optimised result gives
elevated initial concentrations compared with the observations, fact that comes
from higher measurements of NO2 of the previous day. Looking at the O3 time
series, the analysis optimises the background calculations. Although the first
hours of the assimilation the analysis gets lower values than the model, this is
soon corrected. A main reason for this behaviour is the joint optimisation of
initial values and emission rates that is performed in EURAD-IM, assimilating
together precursor and product, NO2 and O3 observations.

Generally, the assimilation period is characterised by higher emissions than
provided by TNO-MACC-II inventory. In Fig. 5.15 emission factors of NO2,
NO, CO and SO2 are presented for the coarse grid the 7th assimilation day. The
optimised initial values and emission factors from the long term simulations are
shown to be elevated, verifying the influence of the meteorological conditions

http://ebas.nilu.no/
http://ebas.nilu.no/
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Figure 5.13: Time series of NO2 observation, on 21.01.2012, in case of individual
stations close to emission point sources in Cottbus - Germany (upper panel) and
in Sankt Georgen im Lavanttal - Austria (lower panel). black: background, red:
observations, blue: both initial value and emission factor optimization - best analysis.

that enhance them.

Conclusions
In brief, the analysis of the stagnant winter episode let the evaluation of the
model performance, regarding the optimisation of the error covariances, by the
joint optimisation of the initial values and the emission factors. The compar-
ison of the assimilation result with independent observations is proved to be
successful. Therefore, improved emission fields can be provided by the ana-
lysis. The elevated emission rates, influenced by the meteorological conditions,
can presumably maintained for longer periods, as it is concluded by the 7 days
assimilation.
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Figure 5.14: Time series on 21.01.2012; evaluation of the analysis against inde-
pendent observations, for NO2 over the ground stations of Lazaropole in Macedonia
and Niembro in Spain and for O3 over the ground stations of Donana and Niembro
in Spain; black: background, red: observations, blue: both initial value and emission
factor optimization.

5.3 PEGASOS flight campaign

The main stimulus of the PEGASOS flight campaign was to shed light on
local production and transport processes in lower troposphere, especially fo-
cused on aerosols and the hydroxyl radical OH, the so called ”detergent of the
atmosphere”. The campaign offered large data sets of high quality measure-
ments for the polluted area Po valley, that help to study and understand the
emission patterns and the chemical consistency in this region [Li et al., 2014].
However the airborne measurements are spatially and temporally limited and
that raise questions on how they can support the assimilation analysis result
in a CTM. To this end, the current study applies the 4D-var data assimilation
method within the EURAD-IM for three days of the campaign, 10.-12.07.2012,
to determine whether and how the campaign data are able to indicate cor-
rections to the model analysis and thus to improve the air quality forecast.
Further, the optimisation of emission factors in nested grids of 1km resolution
is studied, addressing the issue of the representativity of observations, such as
NO2. Taking advantage of the high quality airborne campaign measurements,
special focus is given on the analysis of the vertical mixing in the PBL with
EURAD-IM, studying the the atmosphere’s vertical structure.
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Figure 5.15: Emission factors after seven days of assimilation, on 21.01.2012.
First row: correction of NO2 (left panel) and NO (right panel) emission factors,
second row: correction of SO2 (left panel) and CO (right panel) emission factors.

5.3.1 The meteorological conditions

During the PEGASOS campaign in summer 2012, the airship Zeppelin
NT flew for 25 days over the Po valley in North Italy, from 18.06.2012 to
13.07.2012. During this period, a high pressure system raised from central
Europe to Eastern-Southern Europe, characterised by weak winds and stabil-
ity.

On 12.07.2012, the main day of interest here, similar conditions maintained.
Especially in the area of the Po valley, the temperature remained in high levels,
with mean value the 28◦C and, simultaneously, the mean relative humidity was
46% (Fig. 5.16). The temperature inversion prevent the upward movement of
air, trapping the emissions in low levels. The area which is most influenced by
such conditions is the lower layer of the atmosphere, namely the PBL.
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Figure 5.16: The meteorological conditions on 12.07.2012, 12 UTC. Left panel: 2m
temperature (◦C, indicated in the color bar), sea-level pressure (hPa) and horizontal
wind (m/s). Right panel: percentage of relative humidity (%, indicated in the color
bar) and tendency of rain (precipitation >6mm, green triangles). Source: http:

// www. eurad. uni-koeln. de/ . Low panel: temperature inversion on 12.07.2012.
Source: http: // weather. uwyo. edu .

5.3.2 The observational data and the model set up

The observational basis consists of routinely ground based and satellite
measurements, enhanced by the airborne measurements from PEGASOS cam-

http://www.eurad.uni-koeln.de/
http://www.eurad.uni-koeln.de/
http://weather.uwyo.edu
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paign (Table 4.1). The campaign data sets include vertical profiles of NO,
NO2, O3 and CO, as the flight pattern was focused on the dynamics of the
PBL and cross sections through the Po valley (Fig. 4.8 - yellow solid line).
The vertical profiles cross all three layers within the PBL, providing valuable
information about the evolution of constituents into the PBL.

Figure 5.17: The network of the EEA in-situ stations for the domains of interest:
the 15 km resolved coarse grid (upper left), the 5km resolved first nest (upper right)
and the 1km resolved second nest (lower), highlighted in the red circle the station of
SPC.

The Zeppelin’s flight was coordinated with existing EEA ground measuring
stations in the region (Fig. 5.17), so that to compare the different measured
data [Kaiser et al., 2015]. In Po valley the profile flights were performed above
the rural supersite of San Pietro Capofiume (SPC).
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Figure 5.18: NO2 tropospheric column measurements from OMI over the first and
the second nest, on 12.07.2012.

In contrast with GOME-2, the measurements of NO2 tropospheric columns
from OMI during the campaign cannot contribute to the analysis result for the
Po valley, as the satellite tracks are not over this region (Fig. 5.18). Though,
the assimilation of the OMI data for the the coarse grid and the first nest
contributes in optimised initial state variables for the finest second nest over
the main area of interest.

A sequence of different case studies analysis were performed, with respect to
the different kind of measured data. The first case study includes the assimil-
ation of in-situ ground based and satellite observations. Here the assimilation
period endures three days, 10-12.07.2012. For the second case, the scientific
observations from the PEGASOS campaign are assimilated and the 12.07.2012
is studied. In all simulations, joint optimisation runs are performed, improv-
ing both the initial species concentrations and the emission factors, over all
three domains of interest, for a 24-hour assimilation window. Moreover, for
validation reasons, control runs are performed without any data assimilation,
consisting the background field, namely the first guess of the model.

5.3.3 The analysis results

Assimilation of routinely data
A three-day assimilation of the ground based and satellite observations is
presented as a reference run. Moreover, the accuracy of the model is assessed
by high resolving grids, together with the joint optimisation of initial values
and emission factors.
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Fig. 5.19 underlines the benefit from the joint optimisation, illustrating the
differences between the analysis result and the model’s first guess in case of
NO2 and O3 concentrations, for all three resolutions in the surface layer, dur-
ing the first day of assimilation, the 10.07.2012. In case of NO2 the morning
rush hour at 06:00 UTC is shown, whereas for O3 the noon-peak, at 12:00
UTC. Regarding the coarse grid, the fact that the 15 km resolution is not
representative for the NO2 observations is depicted with small differences of
the analysis from the background, mainly in areas with large emission. For
instance, the port of Marseille in south France is a well know large point source
of emissions, that is why the first guess of the model tends to overestimate the
NO2 concentrations in this area and the analysis tries to correct this behaviour.
Going down to the first nest, the 5 km resolution helps to identify emission
plumes close to urban areas. Here, the analysis around the area of Marseille’s
port clarifies better patterns regarding the correction of NO2 and O3 concen-
trations, as the observational sets provide more accurate information. This
information is even more detailed for the second nest, as the domain is 1 km
resolved and so emission patterns can be clarified, diminishing also the problem
of the representativity of NO2 observations. For instance, the influence in the
pollutants concentrations of the elevated car emissions is shown to be missed
in less resolved grids. The analysis improves the background and calculated
higher NO2 concentrations, identifying the Italian highway that crosses the
south-west domain, as well as a part of the rest smaller road network in the
area.

Generally, an underestimation of NO2 concentrations is dominant for all
three resolutions, whereas the meteorological conditions are reflected in the
high assimilated NO2 concentrations. The temperature inversion let the warm
air overlying colder air as a lid, preventing the upward movement and raising
the pollutants concentrations. On the other hand, regarding O3, the back-
ground of the model highly overestimates the O3 concentrations in polluted
areas, as Po valley. This fact is addressed by the strong decrease of the ana-
lysed concentrations. Being chemically consistent, the model analysis influence
also the concentrations of the emitted species, and this is better shown by the
correction of their emission factors.

As a result of the assimilation procedure, the analysed emission factors of
NO2 and CO are given in Fig. 5.20. The emission factors are initialised to one
for the European coarse grid and optimised further on. The nesting technique
guarantees that each nest gets as initial information the resulted improved
emission factors from its mother domain, refining the previous determined
scaling factors. Thus, looking in the finest domain covering Po valley, the
different optimisation stages can be recognised, accounting for grid cells of
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Figure 5.19: Differences between the analysis and the background (analysis-minus-
background) for NO2 during morning rush hour (06:00 UTC) and O3 during noon
(12:00) for the coarse grid of 15 km resolution (first row), its first nest of 5 km res-
olution (second row) and the final nest of 1 km resolution (third row), in 10.07.2012,
first day from a 3-days simulation.

the mother domain and the nests. The correction of the emission factors
achieved here is able to shed light on the dispersion of urban emissions in
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Figure 5.20: The emission factors of NO2 and CO for the coarse grid of 15 km
resolution (first row), its first nest of 5 km resolution (second row) and the final nest
of 1 km resolution (third row), in 10.07.2012.
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neighbouring areas. The increased optimised NO2 emission factors, up to a
factor of four, correct the general underestimation of the model for the NO2

concentrations.The correction is larger in areas with high pollution levels. For
instance, for the second nest, the CO emission factors around the region of
Modena (central) or of Rimini (low left) can result in identifying the spread
of CO emission plumes in these areas, whereas the NO2 emission factors in
identifying the highway network.

Figure 5.21: Differences between the analysis and the background (analysis-minus-
background) for NO2 in the first nest (5 km res.), in 12.07.2012, third day from
a 3-days simulation - the morning rush hour, 06:00 UTC (upper left), the noon
low, 12:00 UTC (upper right) and the afternoon peak, 19:00 (lower left). The NO2

optimised emission factors for the same day (lower right).
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The simulation run lasts for three days of the episode, ending in 12.07.2012.
Evaluating the model’s performance after two days of assimilation, Fig. 5.21
depicts the differences between the analysis and the background of the NO2

concentrations, during three different times within the day, for the first nest.
The optimised fields are smoother than the first day of the episode ( Fig. 5.19
middle right panel), spread along the whole grid, not only around the sources
of high NO2 emissions, influenced by the optimised initial variable state of the
previous day’s assimilation. When this procedure is combined with high resolu-
tion nesting, the transferred information is more accurate and clear, enhancing
the assimilation result. The resulted optimised emission factors induce more
detailed and sharp emission patterns over urban centres and polluted areas, as
the Po valley region, concluding in updated concentration fields.

Validating the analysis output for each resolution, a comparison with in-
dependent observations takes place. Fig. 5.22 depicts the time series of NO2

and O3 concentrations for the analysis result of the three different domains
against measurements of two stations in Italy that are not included into the
assimilation procedure. For both the emitted NO2 and its product O3 better
optimisation is achieved for the finest nest grid (blue curve). In case of NO2

the good representativeness of NO2 observations for the 1 km resolved grid is
obvious, fact that also influence the analysis of O3, since the system maintains
its chemical consistency. The afternoon peak of NO2 analysed concentrations
in case of the second nest (blue curve) presumably comes from the assimil-
ation observations from other stations over areas with higher traffic activity,
fact that is not possible to be recognised in case of the less resolved grid (green
and black curves).

Assimilation of campaign data
The second sequence of the case study runs includes the assimilations only of
the PEGASOS airborne observations, in 12.07.2012 during 04:30 - 08:45 UTC,
over the SPC supersite. The assimilation of the high resolved campaign data
provides a distinct representation of the chemical state of the air up to the
PBL. The campaign comprises timely high resolving measurements, recording
the changes of the pollutant concentrations. Thus, for the model’s simulation
the temporal resolution is maintained high, so that to take advantage of the
campaign data and be able to identify the details of the evolution of the tro-
pospheric constituents. Besides, species like NO have short life time after they
are emitted and they fast react with others. The coarse grid runs with 300 sec
of temporal resolution, whereas the first and second nests with 100 sec and 25
sec, respectively.

The assimilation regionally shows optimised results of the species concentra-
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Figure 5.22: Time series of NO2 (upper panel) and O3 (lower panel) observations
of the three different domains, for two stations of in-situ non-assimilated obser-
vations, Allumiere and Torviscosa in Italy. The analysis result for each domain
represents the joint assimilation of initial values and emission factors for all given
in situ and satellite observations for each domain. With red are given the non-
assimilated observations, with black is given the analysis after the assimilation of
the mother European domain (15 km resolution), with green is given the analysis
after the assimilation of the first nest of north Italy (5 km resolution) and with blue
is given the analysis after the assimilation of the second nest over the area of Po
valley in Italy (1 km resolution).

tions and the emissions. Of coarse, it is not possible that the measured profiles
over a specific area can optimise the initial variables for the whole coarse grid,
sized 15 km × 15 km. However, even in the coarse grid, for the area of SPC
the airborne measurements give a more detailed insight than the routine data,
being able to optimise the initial values and the emission rates. For instance,
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Figure 5.23: The emission factors of NO2 for the coarse grid of 15km resolution
(left panel), its first nest of 5km resolution (middle panel) and the final nest of 1km
resolution (right panel), resulted by the assimilation of the PEGASOS airborne data,
on 12.02.2012.

Fig. 5.23 illustrates the NO2 emission factors at the surface level for all three
domains. Here the scientific observation data from the PEGASOS campaign
are efficient to clarify detailed emission patterns, which are not received by
the analysis of the routine data. The optimised emission factors for the finest
nest in Po valley identify improved characteristics for the model’s estimation
of NO2 emissions in the area of the Zeppelins flight track for the surface layer.

Having vertical profiles, let analyse the gas phase concentrations of the
model simulations. The model’s behaviour is depicted in Hovmøller plots, for
NO2 (Fig. 5.24), CO and O3 (Fig. 5.25) over the ground observation station
of SPC. Here it should be mentioned that for plotting simplicity the PBL
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is represented as a solid black line, where the ML exist from sunrise until
sunset, ’falling’ then directly to NBL, leaving outside of the black curve, up
to its highest peak, the RL. However, the model calculates the PBL height
according to the meteorological data input from WRF.

Figure 5.24: Hovmøller plot: time series of the vertical NO2 concentrations over
the ground station of San Pietro Capofiume in Po valley; the European domain - 15
km resolved grid and 300 sec temporal resolution (left panel), the second nest over
Po valley - 1 km resolved grid and 25 sec temporal resolution (right panel).

In Fig. 5.24 the time series of NO2 vertical concentrations are depicted in
two cases; the assimilation in the 15 km resolution mother domain with 300 sec
temporal resolution (first row) and the 1 km resolution second nest with 25 sec
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temporal resolution (second row). The analysis of the model captures fairly
clear the temporal variations of the emission patterns, here in case of NO2. The
morning and afternoon rush hour elevated NO2 concentrations are depicted,
more pronounced for the 300 sec temporal resolution of the coarse grid. The
stable meteorological conditions trap the emissions in the NBL, increasing the
NO2 concentrations in the lower troposphere, fact that is represented in the
analysis of the model.

Furthermore, the model output at the finer domain, with also higher tem-
poral resolution, shows elevated NO2 concentrations in the afternoon, expan-
ded vertically through the PBL. The positive temperature gradient of the NBL
causes convection and so vertical exchange, which is well captured by the as-
similation result. In the less resolved case, this information is concentrated
at the surface layer rather than represented in vertical details, as mixing pro-
cesses, mainly the NO reactions that form NO2, are fast with high reaction
velocity.

Since the model analysis result is evaluated, a comparison with the assimil-
ated air-borne observations from the PEGASOS campaign should take place.
In Fig. 5.25 the time series for the vertical concentrations of NO2 and O3, as
they are assimilated in the second nest (1 km spatial - 25 sec temporal res-
olution) are presented. The Zeppelin flight profiles during the campaign are
included together with the measured concentrations of NO2 and O3, respect-
ively.

In case of NO2, during the beginning of the flight, close to the surface,
high concentrations are measured, fact that captures the higher NO2 emissions
due to the morning rush hour. Compared with the analysed concentrations
(background colour), there is a match with them and the air-borne data in
upper altitudes, 500-700 m, from the beginning of the flight until around 8:00,
as well as at lower altitudes, close to 300 m until 6:00. On the other hand, in
the model’s ML, the observed NO2 concentrations are higher than the analysed
ones, up to 300-400 m. The Zeppelin’s observations capture clearly the layered
structure of the PBL [Li et al., 2014], though, differently than the model. In
other words, the campaign data underline that the model calculates higher
the PBL than it is measured. Although there is a correction of the analysed
concentrations towards the observations, this does not influence the calculation
of the PBL by the model. Thus, during the model analysis the mixing takes
place in higher altitudes, fact that it is not verified by the observed information.

Looking at O3 vertical time series of the analysed values, from sunset until
sunrise, above 600 m height, the concentrations are stable and higher than in
lower heights. This implies the existence of RL, which is not influenced by
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emission or deposition processes at the surface. The lower O3 concentrations
in heights up to 600 m indicate the NBL, that later evolves in ML and arises
the O3 concentrations. During sunrise the O3 in the NBL decreases, due to
the reaction with the emitted NO and the NO2 that start to insert into the
troposphere, and further after 08:00 UTC the ML is characterised by stable
high O3 concentrations. During afternoon, the convection in NBL and the
photochemical processing let NO react with O3 producing NO2, fact that it
is illustrated in the lower afternoon concentrations of O3 and the same time
the elevated concentrations of NO2. This layering of the PBL is also captured
by the measured O3 values during the PEGASOS campaign, but in different
heights than in the model, identifying the ML much lower. There is a great
matching between observed and analysed concentration around 5:00 - 8:00 up
to roughly 400 m. Here, in the model’s ML, the model analysis is benefited by
the assimilation of the air-borne data, correcting the background. However, the
higher measured data during the beginning of the flight and in heights higher
than 400 m, implies a lower RL. Furthermore, the air-borne measurements
show that the noon O3 peak starts later than is analysed by the model.
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Figure 5.25: Hovmøller plot: time series of the vertical NO and O3 concentrations
over the ground station of San Pietro Capofiume in Po valley for the second nest
over Po valley - 1 km grid resolution and 25 sec temporal resolution.
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Conclusions
Summarising, the high resolution nesting technique is shown to face the repres-
entativity of NO2 observations in the finest grid, being able to identify traffic
emissions and more accurate emission patterns. Furthermore, since the tem-
perature inversion increased the pollutants concentration in low levels, it is
concluded that an improved parametrisation of the model is needed for the
PBL area. To this end, the assimilation of the scientific campaign data is
proved to enhance the model analysis for the vertical perspective of gas phase
concentrations. The simulation results could capture the temporal variations
of the emission patterns and could detect the layered structure of the PBL,
benefiting by the assimilation of the airborne measurements.





Chapter 6

Summary and Conclusions

The present thesis intents to demonstrate the feasibility of the 4D-var in-
verse modelling to estimate the fate of anthropogenic emissions over urban
areas in real case scenarios and to study the vertical distribution of concentra-
tions in the PBL with the use of campaign data. The current version of the
EURAD-IM system has been developed by a complete revision of the precursor
version and many features have been improved to the assimilation procedure,
in order to enhance the model performance.

The configuration of EURAD-IM system relating to emission rate optim-
isation was further developed, including the necessary technical updates to
boost the model performance. In the CTM, the online calculation of emissions
has been coupled to the joint optimisation of initial values and emission rates,
increasing the accuracy of the assimilation result, due to the detailed emission
distribution in time and height per source and per grid box. Furthermore,
the emission factor background error covariances have been improved, leading
to optimisation of the precondition to the minimisation problem. Additional
correlations between emitted species were introduced, using polluter group
based statistics. Moreover, rectified estimations of the standard deviations for
the emission factors were provided, taking into account error statistics. As a
result, the scaling emission factors estimation becomes more accurate and is
maintained in realistic ranges, giving updated emission maps.

The first application of the EURAD-IM with the updated configuration
takes place studying real case episodes. The joint optimisation of initial con-
centrations of the chemical constituents and emission rates has been success-
fully employed for a 24 hours assimilation window, letting the better known
diurnal emission profiles be considered as strong constraint. In addition, the
use of the nesting technique enables the CTM and its adjoint to telescope from
regional scale down to urban scale in high resolution. Nests starting from 15
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km and reaching the 1 km resolution in specific areas of interest, are applied for
each case study. This configuration is proved to address efficiently the lack of
representativity of observations. The latter result has been especially valuable
for nitrogen oxide observations, for which perceptible optimisation is achieved,
highlighted in the finest grids. Assessing the cost function evolution, a twofold
evaluation is performed, by χ2-validation and comparison with independent
observations withheld from the assimilation procedure. The results are suc-
cessful for the minimisation performance of the 4D-var algorithm. The study
of an aestival high ozone and a high hibernal stagnant air episodes conclude
that the EURAD-IM is able to optimise emission factors and estimate concen-
tration distributions of emitted species and their products. Hence, improved
analyses could be demonstrated by optimising the forecast skills of the model.

In the course of this work, a more in depth assessment of the vertical mixing
in the PBL took place, by the assimilation of the high quality airborne data of
the PEGASOS campaign in July 2012. The analysis of the vertical perspective
of the gas phase concentrations captures fairly clear the temporal variation of
the emission patterns. The influence by the meteorological conditions and the
inverse layer on the concentrations of pollutants was proved by the assimilation
of the campaign data. The layered structure of the PBL is detected in the
vertical distribution of the analysed trace gases, benefiting from the clear view
of the layering captured by the Zeppelin’s observations. It is concluded that the
rich campaign measurements have been essential to the model analysis as they
give a more detailed insight than the routine data to the horizontal and vertical
dispersion of the emissions in polluted areas. Moreover, the assimilation of
airborne measurements could be applied to shed light to the development of the
PBL and the processes there in, information that is missed when no campaign
data are available. All in all, the campaign data can be a key for corrections and
further improvements of the model’s behaviour in forecasting and analysing the
air quality in areas of interest.

In summary, the system demonstrated the ability to provide improved chem-
ical consistent simulation results throughout the PBL, from polluted urban en-
vironments up to free troposphere, contributing greatly to air quality forecast
and analysis. However, since the computational cost for such simulations is
large, further technical updates in the model performance are needed. Future
applications should include the transfer between the PBL and the free tro-
posphere for a fully detailed tropospheric study of emission distribution and
their potential global impact. More improvements to the EURAD-IM simu-
lations could be achieved including the spatial variations of the correlations
between the emitted species, SNAP-wise optimisation and improved chemical
covariances. Besides, a complete study on the estimation of the anthropogenic
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emissions and further campaign data should definitely include the assimilation
of anthropogenic aerosols.
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Quélo, D., V. Mallet and B. Sportisse, Inverse Modeling of NOx Emis-
sions at Regional Scale over Northern France. Preliminary Investigation
of the Second-Order Sensitivity, Journal of Geophysical Research, 110,
(D24310), 2005.
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Stull, R. B., An Introduction to Boundary Layer Meteorology, Kluwer Aca-
demic Publishers, Ordrecht I Boston I London, 1988.

Talagrand, O., Evaluation of assimilation algorithms, in Data Assimilation:
Making Sense of Observations, 217–240, Springer Berlin Heidelberg, 2010.

Tang, X., J. Zhu, Z. F. Wang and A. Gbaguidi, Improvement of ozone
forecast over Beijing based on ensemble Kalman filter with simultaneous
adjustment of initial conditions and emissions, Atmospheric Chemistry and
Physics, 11, (24), 12901–12916, 2011.

Tie, X., S. Madronich, Stacy Walters, R. Zhang, P. Rasch and
W. Collins, Effect of clouds on photolysis and oxidants in the troposphere,
Journal of Geophysical Research, 108, (D20), 2003.

Turner, D. B., Workbook of Atmospheric Dispersion Estimates: An Intro-
duction to Dispersion Modeling, Second Edition, CRC Press, 1994.



Bibliography 101

USEPA, United States Environmental Protection Agency
http://www.epa.gov.

Weaver, A. and P. Courtier, Correlation Modelling on the Sphere Using a
Generalized Diffusion Equation, Q. J. R. Meteorol. Soc., 127, (575), 1815–
1846, 2001.

Winiarek, V., M. Bocquet, N. Duhanyan, Y. Roustan, O. Saunier
and A. Mathieu, Estimation of the caesium-137 source term from the
Fukushima Daiichi nuclear power plant using a consistent joint assimilation
of air concentration and deposition observations, Atmospheric Environment,
82, 268–279, 2014.

Yanenko, N., The Method of Fractional Steps, Springer, 1971.

Yumimoto, K. and I. Uno, Adjoint inverse modeling of CO emissions over
Eastern Asia using four-dimensional variational data assimilation, Atmo-
spheric Environment, 40, (35), 6836–6845, 2006.

Yumimoto, K., I. Uno, N. Sugimoto, A. Shimizu and S. Satake,
Adjoint inverse modeling of dust emission and transport over East Asia,
Geophysical Research Letters, 34, (8), 1–6, 2007.

Zhang, L., J. R. Brook and R. Vet, A revised parameterization for gaseous
dry deposition in air-quality models, Atmospheric Chemistry and Physics,
3, (2), 2067–2082, 2003.

Zhang, Y., M. Bocquet, V. Mallet, C. Seigneur and A. Baklanov,
Real-time air quality forecasting, Part II: State of the science, current re-
search needs, and future prospects, Atmospheric Environment, 60, 656–676,
2012.

Zyryanov, D., G. Foret, M. Eremenko, M. Beekmann, J. P. Cammas,
M. D’Isidoro, H. Elbern, J. Flemming, E. Friese, I. Kioutsioutkis,
A. Maurizi, D. Melas, F. Meleux, L. Menut, P. Moinat, V. H.
Peuch, A. Poupkou, M. Razinger, M. Schultz, O. Stein, a. M. Sut-
tie, A. Valdebenito, C. Zerefos, G. Dufour, G. Bergametti and
J. M. Flaud, 3-D evaluation of tropospheric ozone simulations by an en-
semble of regional Chemistry Transport Model, Atmospheric Chemistry and
Physics, 12, (7), 3219–3240, 2012.





Acknowledgements

A very demanding but beautiful route into the scientific research is accom-
plished by this dissertation and I can’t but acknowledge the generous support
that I have received by my entourage.

I acknowledge the assistance and advice I received from my supervisor PD
Dr. Hendrik Elbern during all the last years that we work together, his ’open
door’ policy and his comments while proof-reading this work. But most of all
I acknowledge his support and his confidence in my work and abilities.

Dealing with the challenging field of modelling is straight connected with
the unwavering support of Dr. Elmar Friese. I appreciate his help and advice
during all the difficulties that I faced until the very end of this work.

Furthermore I would like to thank my colleagues Erna Bern, Philipp Franke,
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