In vivo role of RIPK1 in the regulation of the murine intestinal epithelium

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
Der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von
Marius Volker Dannappel
aus Bergisch Gladbach

Köln, 2015
Berichterstatter: Prof. Dr. Manolis Pasparakis
Prof. Dr. Carien Niessen

Tag der mündlichen Prüfung: 02.12.2015
Zusammenfassung

Rezeptor-interagierendes Protein Kinase 1 (RIPK1) ist involviert in Signalkaskaden die Zelltod und Entzündungen regulieren. RIPK1 reguliert NF-κB Aktivierung, interagiert mit RIPK3 um Nekroptose zu steuern und vermittelt Apoptose in einer RIP1 Kinase Aktivität abhängigen Art und Weise. Das intestinale Epithel ist eine einzellige Schicht, die den luminalen Inhalt von sub-epithelialen Immunzellen separiert. Um Gewebehomöostase und die intestinale Barriereintegrität zu gewährleisten, muss der Zelltod von intestinalen Epithelzellen streng reguliert sein. Die in vivo Funktion von RIPK1 für die Regulierung von Zelltod und Homöostase in Epithelgewebe ist weitgehend unbekannt. Um die Funktion von RIPK1 im intestinalen Epithel zu studieren wurde das Cre-loxP System benutzt um Mäuse zu generieren, die defizitär für RIPK1 spezifisch in intestinalen Epithelzellen sind. Mäuse mit einer IEZ-spezifischen RIPK1 Deletion (RIPK1IEZ-KO) zeigten erhöhte IEZ Apoptose begleitet von Villus Atrophie, Krypt Hyperproliferation und eine milde Entzündung im Kolon und Ileum, was zu einem frühzeitigen Tod innerhalb des ersten Lebensmonats führte. Die intestinal Pathologie war teilweise abhängig von TNFR1-vermittelten Signalübertragung aber entwickelte sich unabhängig von der Microbiota und der MyD88-abhängigen Signalübertragung. Epithelzell spezifische Deletion von FADD verhinderte IEZ Apoptose, aber RIPK1IEZ-KO/FADDIEZ-KO Doppelknockout Mäuse zeigten IEZ Nekroptose und entwickelten Colitis ulcerosa. Zusätzliche Deletierung von RIPK3 verhinderte intestinale Entzündung und IEZ Nekroptose, was darauf hindeutet, dass IEZs in RIPK1IEZ-KO/FADDIEZ-KO Mäusen durch RIPK1-unabhängige RIPK3-abhängige Nekroptose starben. Daher besitzt RIPK3-vermittelte Nekroptose in IEZs eine höhere Immunogenizität als FADD-vermittelte Apoptose. RIPK1-defizitäre IEZs zeigten den Abbau von den überlebensfördernden Proteinen TRAF2, cIAP1 und cFLIP, was direkt mit dem Tod von IEZs assoziiert sein könnte.

Zusammenfassend, die Ergebnisse in dieser Arbeit offenbaren eine neue gerüstartige Funktion von RIPK1 für die Regulation von intestinaler Homöostase durch die Verhinderung von FADD-vermittelten Apoptose.
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is involved in signalling pathways regulating cell death and inflammation. RIPK1 regulates NF-κB activation, interacts with RIPK3 to drive necroptosis and mediates apoptosis in a RIP1 kinase activity dependent manner. The intestinal epithelium is a single cell layer that separates luminal microbes from sub-epithelial immune cells. To maintain tissue homeostasis and sustain an intact intestinal barrier, cell death of intestinal epithelial cells must be tightly regulated. The in vivo role of RIPK1 in regulating epithelial tissue homeostasis and cell death remains largely unknown. To study the function of RIPK1 in the intestinal epithelium, the Cre-loxP system was employed to generate mice that were deficient for RIPK1 specifically in intestinal epithelial cells (IECs). Mice with IEC-specific RIPK1 ablation (RIPK1IEC-KO) exhibited increased IEC apoptosis accompanied by villus atrophy, crypt hyperplasia and very mild inflammation of the colon and the ileum, resulting in premature within the first month of life. Intestinal pathology was partially dependent on TNFR1 signalling but developed independently of the microbiota and MyD88-dependent signalling. Epithelial specific FADD ablation prevented premature death of RIPK1IEC-KO mice and inhibited IEC apoptosis, but RIPK1IEC-KO/FADDIEC-KO double knockout mice showed IEC necroptosis and developed ulcerating colitis. Additional ablation of RIPK3 prevented intestinal inflammation and IEC necroptosis, indicating that IECs in these mice died by RIPK1-independent RIPK3-dependent necroptosis. Thus in IECs, RIPK3-mediated necroptosis is more immunogenic than FADD-mediated apoptosis. RIPK1-deficient IECs showed degradation of pro-survival proteins TRAF2, cIAP1 and cFLIP, which could be directly associated with death of IECs.

In summary, the results presented in this work reveal a novel scaffolding function of RIPK1 for maintaining intestinal homeostasis by inhibiting FADD-dependent apoptosis of IECs.
Table of content

INTRODUCTION .. 1
1.1 REGULATED CELL DEATH... 1
1.2 RECEPTOR-INTERACTING PROTEIN KINASE 1 (RIPK1).. 3
1.3 DEATH RECEPTOR SIGNALING ... 5
1.3.1 TNF SIGNALING ... 6
1.3.2 NF-kB activation ... 6
1.3.3 TNF induced apoptosis and necroptosis .. 10
1.4 PATTERN RECOGNITION RECEPTOR (PRR) SIGNALING ... 16
1.4.1 RIPK1 in TOLL-LIKE RECEPTOR (TLR) SIGNALING .. 16
1.4.2 RIPK1 in OTHER PRR SIGNALLING PATHWAYS ... 19
1.5 INTERFERONS AND NECROSOME FORMATION ... 20
1.6 ANATOMY OF THE INTESTINAL TRACT ... 20
1.7 STRUCTURE AND FUNCTION OF THE INTESTINAL EPITHELIUM 21
1.8 CELL DEATH AND IMMUNITY IN THE INTESTINAL EPITHELIUM 24
1.9 CRE/LOXP CONDITIONAL GENE TARGETING .. 29
1.10 PROJECT DESCRIPTION .. 29

MATERIAL AND METHODS .. 30
2.1 MATERIAL .. 30
2.1.1 CHEMICALS .. 30
2.1.2 MATERIAL FOR MOUSE WORK ... 30
2.1.3 MATERIAL FOR HISTOLOGY ... 30
2.1.4 MATERIAL FOR BIOCHEMISTRY ... 31
2.1.5 MOLECULAR BIOLOGY REAGENTS AND EQUIPMENT ... 31
2.1.6 LABORATORY EQUIPMENT ... 31
2.1.7 CELL CULTURE ... 32
2.1.8 SOFTWARE... 32
2.1.9 BUFFERS AND SOLUTIONS .. 33
2.1.9.1 Washing buffers .. 33
2.1.9.2 Buffers and solutions for immunostainings .. 33
2.1.9.3 Preparation of protein extracts .. 33
2.1.9.4 Buffers and solutions for Western Blot analysis .. 34
2.1.9.5 Buffers for DNA extraction and genotyping PCRs .. 36
2.1.9.6 Buffers for 3D intestinal epithelial cell culture ... 36
2.2 METHODS ... 38
2.2.1 ANIMAL HANDLING AND MOUSE EXPERIMENTS .. 38
2.2.1.1 Mouse maintenance ... 38
2.2.1.2 Generation of conditional and full body knockout mice .. 38
2.2.1.3 Generation of inducible conditional knock-out mice .. 39
2.2.1.4 Antibiotic treatment and germ-free mice .. 39
2.2.1.5 Preparation of tissue biopsies ... 40
TABLE OF CONTENT

2.2.1.6	Tissue preparation	...	40
2.2.1.7	Isolation and FACS analysis of lamina propria immune cells	..	40
2.2.2	HISTOLOGY	...	41
2.2.2.1	Preparation of intestinal tissue for histological analysis	..	41
2.2.2.2	Hematoxylin and Eosin staining	...	41
2.2.2.3	Periodic acid-Schiff staining of intestinal tissue sections	..	42
2.2.2.4	Alkaline phosphatase staining	...	42
2.2.2.5	Immunohistochemistry	...	42
2.2.3	BIOCHEMICAL ANALYSIS	..	44
2.2.3.1	Isolation of intestinal epithelial cells (IECs)	..	44
2.2.3.2	Preparation of protein extracts	...	44
2.2.3.3	Preparation of cytoplasmic and nuclear protein extracts	..	45
2.2.3.4	Western Blot analysis	..	45
2.2.4	MOLECULAR BIOLOGY	..	47
2.2.4.1	Preparation of genomic DNA	...	47
2.2.4.2	Genotyping PCRs	...	48
2.2.4.3	Agarose gel electrophoresis	...	50
2.2.4.4	RNA extraction	...	50
2.2.4.5	cDNA synthesis	...	51
2.2.4.6	Quantitative real time PCR	...	51
2.2.5	CELL CULTURE	..	52
2.2.5.1	Isolation and culture of small intestinal organoids	..	52
2.2.5.2	Tamoxifen-induced deletion of RIPK1 in organoid cultures	..	53
2.2.5.3	Assessment of cell death in organoids	..	53

3. RESULTS ..55

3.1 RIPK1 DEFICIENCY IN IECs INDUCES INTESTINAL PATHOLOGY AND EPITHELIAL CELL DEATH ..55

3.1.1 GENERATION OF MICE WITH INTESTINAL EPITHELIAL SPECIFIC RIPK1 DEFICIENCY55
3.1.2 INCREASED IEC APOPTOSIS AND MILD INFLAMMATION IN THE ILEUM OF RIPK1IEC-KO MICE ..62
3.1.3 INCREASED IEC APOPTOSIS AND MILD INFLAMMATION IN THE COLON OF RIPK1IEC-KO MICE ..62
3.1.4 PROGRESSIVE PHENOTYPE IN RIPK1IEC-KO MICE ..67
3.1.5 INDUCIBLE POSTNATAL DELETION OF RIPK1 INDUCS INTESTINAL PATHOLOGY AND LETHALITY ..70

3.2 INTESTINAL PATHOLOGY IN RIPK1IEC-KO MICE DEVELOPS INDEPENDENT OF THE MICROBIOTA ..73

3.2.1 ANTIBIOTIC TREATMENT DOES NOT PREVENT DEVELOPMENT OF INTESTINAL DISEASE IN RIPK1IEC-KO MICE ..73
3.2.2 ANTIBIOTIC TREATMENT DOES NOT PREVENT INTESTINAL PATHOLOGY IN RIPK1TAMIEC-KO MICE ..74
3.2.3 RIPK1IEC-KO MICE DEVELOP INTESTINAL DISEASE INDEPENDENT OF THE MICROBIOTA ..75
3.2.4 PHENOTYPE IN RIPK1IEC-KO MICE DEVELOPS INDEPENDENTLY OF MYD88-MEDIATED SIGNALLING ..77

3.3 INTESTINAL PATHOLOGY IN RIPK1IEC-KO MICE PARTIALLY DEPENDS ON TNF SIGNALING ..79

3.4 DEATH OF Ripk1-/- IECs DEPENDS ON FADD AND RIPK3 MEDIATED SIGNALLING ...81
3.4.1 APOPTOSIS IN RIPK1IEC-KO MICE DEPENDS ON FADD ..81
3.4.2 DEATH OF IECs IN RIPK1IEC-KO/FADD-/- MICE DEPENDS ON RIPK3 MEDIATED NECROPTOSIS ..86
3.4.3 DEATH OF Ripk1-/- IECs IS INDEPENDENT OF RIPK3 ..90

3.5 SCAFFOLDING FUNCTION OF RIPK1 PREVENTS THE DEGRADATION OF PRO-SURVIVAL PROTEINS ..93

3.5.1 PATHOLOGY IN RIPK1IEC-KO MICE IS INDEPENDENT OF NF-kB ACTIVITY ..93
3.5.2 RIPK1 PREVENTS DEGRADATION OF PRO-SURVIVAL PROTEINS ..95
3.5.3 INCREASED TNF PRODUCTION AS AN AUTOCRINE AMPLIFICATION LOOP CAUSING IEC APOPTOSIS

4. DISCUSSION

4.1 RIPK1 AS A MASTER REGULATOR OF CELL DEATH

4.2 HOW ARE RIPK1-DEFICIENT IECs SENSITIZED TO FADD-MEDIATED APOPTOSIS

4.3 TRIGGERS OF FADD-DEPENDENT APOPTOSIS IN RIPK1IEC-KO MICE

4.4 THE ROLE OF RIPK1 IN (INTESTINAL) INFLAMMATION

4.5 CONCLUDING REMARKS

REFERENCES

ACKNOWLEDGEMENT

TEILPUBLIKATION

ERKLÄRUNG:

CURRICULUM VITAE

CURRICULUM VITAE
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Avidin-Biotin-Complex</td>
</tr>
<tr>
<td>ACD</td>
<td>Accidental cell death</td>
</tr>
<tr>
<td>BCL-2</td>
<td>B-cell lymphoma 2</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s Disease</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cFLIP</td>
<td>cellular FLICE-like Inhibitory Protein</td>
</tr>
<tr>
<td>cIAP1/2</td>
<td>Cellular Inhibitor of Apoptosis Protein 1/2</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>CRC</td>
<td>Colorectal Cancer</td>
</tr>
<tr>
<td>Cre</td>
<td>Causes recombination</td>
</tr>
<tr>
<td>CreERT²</td>
<td>Causes recombination estrogen receptor</td>
</tr>
<tr>
<td>CYLD</td>
<td>Cylindromatosis (Protein)</td>
</tr>
<tr>
<td>DAB</td>
<td>Diaminobenzidine</td>
</tr>
<tr>
<td>DAMP</td>
<td>Danger Associated Molecular Pattern</td>
</tr>
<tr>
<td>DD</td>
<td>Death Domain</td>
</tr>
<tr>
<td>DISC</td>
<td>Death-Inducing Signaling Complex</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>desoxyribonucleotides</td>
</tr>
<tr>
<td>DR</td>
<td>Death Receptor</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreithol</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced Chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>Etylene Diamine Tetraacetate</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas (TNFRSF6)-Associated via Death Domain</td>
</tr>
<tr>
<td>FAS</td>
<td>TNF Receptor Superfamily Member 6</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>het</td>
<td>heterzygous</td>
</tr>
<tr>
<td>HOIL-1L</td>
<td>Heme-Oxidized IRP2 Ubiquitin Ligase 1 Homolog</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HOIP</td>
<td>HOIL-1 Interacting Protein</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory Bowel Disease</td>
</tr>
<tr>
<td>ID</td>
<td>Intermediate domain</td>
</tr>
<tr>
<td>IEC</td>
<td>Intestinal Epithelial Cell</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IFN-α</td>
<td>Interferon-α</td>
</tr>
<tr>
<td>IFN-β</td>
<td>Interferon-β</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IKK1</td>
<td>Inhibitor of κB Kinase 1</td>
</tr>
<tr>
<td>IKK2</td>
<td>Inhibitor of κB Kinase 2</td>
</tr>
<tr>
<td>IKK2ca</td>
<td>Inhibitor of κB Kinase 2 constitutively active</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon Regulatory Factor</td>
</tr>
<tr>
<td>KD</td>
<td>kinase dead</td>
</tr>
<tr>
<td>IVC</td>
<td>Individually ventilated cages</td>
</tr>
<tr>
<td>LoxP</td>
<td>Locus of X-over P1</td>
</tr>
<tr>
<td>LUBAC</td>
<td>Linear Ubiquitin Chain Assembly Complex</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-Activated Protein Kinases</td>
</tr>
<tr>
<td>MEF</td>
<td>Murine Embryonic Fibroblasts</td>
</tr>
<tr>
<td>mEGF</td>
<td>murine epidermal growth factor</td>
</tr>
<tr>
<td>MOMP</td>
<td>Mitochondrial Outer Membrane Permeabilization</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid Differentiation Primary Response Gene 88</td>
</tr>
<tr>
<td>NCCD</td>
<td>Nomenclature Committee on Cell Death</td>
</tr>
<tr>
<td>NEMO</td>
<td>Nuclear Factor-kappa B essential modulator</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear Factor kappa B</td>
</tr>
<tr>
<td>NGS</td>
<td>Normal Goat Serum</td>
</tr>
<tr>
<td>NP-40</td>
<td>Nonident P40</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen Associated Molecular Pattern</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed Cell Death</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>poly(I:C)</td>
<td>Polyinosinic:polycytidylic acid</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern Recognition Receptor</td>
</tr>
<tr>
<td>RCD</td>
<td>Regulated cell death</td>
</tr>
<tr>
<td>RHIM</td>
<td>Receptor (TNFRSF)-Interacting Protein Homotypic Interaction Motif</td>
</tr>
<tr>
<td>RIPK1</td>
<td>Receptor (TNFRSF)-Interacting Serine-Threonine Protein Kinase 1</td>
</tr>
<tr>
<td>RIPK3</td>
<td>Receptor (TNFRSF)-Interacting Serine-Threonine Protein Kinase 3</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real-Time PCR</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SHARPIN</td>
<td>SHANK-Associated RH Domain Interacting Protein</td>
</tr>
<tr>
<td>SI</td>
<td>Small Intestine</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific pathogen free</td>
</tr>
<tr>
<td>TA</td>
<td>Transient Amplifying</td>
</tr>
<tr>
<td>TAB1</td>
<td>TAK1-Binding Protein 1</td>
</tr>
<tr>
<td>TAB2</td>
<td>TAK1-Binding Protein 2</td>
</tr>
<tr>
<td>TAK</td>
<td>TGF-β-Activated Kinase 1</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>TE</td>
<td>Tris EDTA Buffer</td>
</tr>
<tr>
<td>Tg</td>
<td>Transgenetic</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-Like Receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>TNFR1</td>
<td>TNF Receptor (p55)</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNFRSF1A-Associated via Death Domain</td>
</tr>
<tr>
<td>TRAF2</td>
<td>TNF Receptor-Associated Factor 2</td>
</tr>
<tr>
<td>TRAF5</td>
<td>TNF Receptor-Associated Factor 5</td>
</tr>
<tr>
<td>TRAF6</td>
<td>TNF Receptor-Associated Factor 6</td>
</tr>
<tr>
<td>TRIF</td>
<td>TIR Domain-Containing Adaptor Inducing IFN-β</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative Colitis</td>
</tr>
<tr>
<td>UPR</td>
<td>Unfolded Protein Response</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtype</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>XIAP</td>
<td>X-linked Inhibitor of Apoptosis</td>
</tr>
<tr>
<td>zVAD-fmk</td>
<td>carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone</td>
</tr>
</tbody>
</table>
Abbreviations of units

cm, µm, nm, cm, micrometre, nanometre

g, mg, µg, ng gram, milligram, microgram, nanogram

h, min, s hours, minutes, seconds

kDa kilodalton

l, ml, µl litre, millilitre, microlitre

M, mM, µM, nM molar, millimolar, micromolar, nanomolar

mA milliampere

mol mole

rpm revolutions per minute

V Volts

W Watt

°C degree celsius

% per cent
List of Figures

Figure 1 TNF induced signalling complexes... 12
Figure 2 TLR3 and TLR4 induced signalling pathways... 18
Figure 3 Structure of the small intestinal and colonic epithelium......................... 23
Figure 4. Conditional deletion of RIPK1 in IECs.. 55
Figure 5. RIPK1IEC-KO mice develop spontaneous phenotype resulting in premature death.. 56
Figure 6. Intestinal pathology and IEC death in RIPK1IEC-KO mice......................... 57
Figure 7. Hyperproliferation and reduced numbers of differentiated epithelial cells in the colon of RIPK1IEC-KO mice.. 61
Figure 8. Differential expression of inflammatory cytokines and chemokines in the colon of 3-week old RIPK1IEC-KO mice. .. 64
Figure 9. No intestinal pathology in vehicle treated RIPK1tamIEC-KO mice and tamoxifen injected VillinCreER¹² mice .. 72
Figure 10. Microbiota independent intestinal disease in RIPK1IEC-KO mice 76
Figure 11. Myd88 independent pathology in RIPK1IEC-KO mice......................... 78
Figure 12. Premature lethality and IEC apoptosis in RIPK1IEC-KO mice partially depend on TNFR1-mediated signaling... 80
Figure 13. FADD-dependent IEC apoptosis in the ileum of RIPK1IEC-KO mice........ 82
Figure 14. Caspase-independent IEC death and ulcerating colitis in RIPK1IEC-KO/FADDIEC-KO mice. ... 84
Figure 15. No intestinal pathology in adult RIPK1IEC-KO/FADDIEC-KO mice. 85
Figure 16. Intestinal pathology in adult RIPK1IEC-KO/FADDIEC-KO/Ripk3^{-/-} mice. ... 89
Figure 17. Increased TNF mRNA levels in the ileum of RIPK1IEC-KO/FADDIEC-KO/Ripk3^{-/-} mice. ... 91
Figure 18. Apoptosis and Paneth cell loss in RIPK1IEC-KO mice is independent of RIPK3 .. 92
Figure 19. Pathology in RIPK1IEC-KO is independent of canonical NF-κB activation. 94
Figure 20. Degradation of cIAP1 and TRAF2 in Ripk1^{-/-} IECs and RIPK1tamIEC-KO organoids. ... 96
Figure 21. Increased NF-κB activation and Tnf expression in Ripk1^{-/-} IECs........ 97
Figure 22. Increased sensitivity of Ripk1^{-/-}/Tnfr1^{-/-} organoids to poly(I:C) and IFN-induced death.. 98
Figure 23. Intestinal pathology is independent of TRIF-mediated signaling........... 99
List of Tables

Table 1: Primary antibodies and conditions for immunohistochemistry 43
Table 2: Secondary antibodies and conditions for immunohistochemistry 44
Table 3: Primary antibodies used for WB analysis ... 47
Table 4: Secondary antibodies used for WB analysis .. 47
Table 5: Primer-sequences for genotyping PCRs and PCR-amplified fragment sizes. .. 48
Table 6: PCR programmes for genotyping PCRs ... 49
Table 7: Taqman probes used for qRT-PCR ... 52
1. Introduction

1.1 Regulated cell death

The survival of every multicellular organism is inextricably connected to cell death. Throughout life, for the maintenance of tissue homeostasis, cell death is necessary to eliminate damaged and infected cells and to control cell numbers.

Cell death is classified into two gross categories, namely “accidental cell death” (ACD) and “regulated cell death” (RCD). ACD cannot be prevented or modulated, is resistant to pharmacologic interventions and caused by chemical, mechanical or physical insults (Galluzzi et al., 2012). On the other hand, RCD is dependent on an initiating stimulus and engages a molecular machinery to execute death. Therefore, it is amenable to modulation by genetic or pharmacologic means. In a physiological context, for instance during embryonic development, tissue homeostasis or infection and immune responses, RCD is referred to as “programmed cell death” (PCD) (Galluzzi et al., 2015).

In 2012, the Nomenclature Committee on Cell Death (NCCD) proposed a classification of cell death subtypes according to measurable biochemical features such as apoptosis, necroptosis, pyroptosis, autophagic cell death to account for the different forms of cell death, which will be followed throughout this work (Galluzzi et al., 2012).

1.1.1 Cell death in homeostasis and immunity

It is estimated, that every second 10^6 cells die in an adult human body, to keep proliferation and differentiation in balance for organ shaping and homeostasis (Green, Ferguson, Zitvogel, & Kroemer, 2009). These cells die by caspase dependent apoptosis, classically considered as an immunotolerogenic mode of programmed cell death (Green et al., 2009; Poon, Lucas, Rossi, & Ravichandran, 2014). Morphological features of apoptosis are plasma membrane blebbing, cell body shrinkage (pyknosis), nuclear condensation culminating in fragmentation (karyorrhexis) and formation of membrane-bound cell fragments (apoptotic bodies) (Kerr, Wyllie, & Currie, 1972). Fragmented dying cells are rapidly removed by tissue-
resident professional phagocytes (macrophages or dendritic cells) and/or non-
professional phagocytes in the neighborhood (Poon et al., 2014). Both,
controlled disassembling and rapid removal of apoptotic cells, ensures that no
cellular content is released into the extracellular space, thereby preventing the
initiation of an inflammatory response (Lamkanfi & Dixit, 2010). Furthermore,
apoptotic cells can actively induce the expression of anti-inflammatory
cytokines in phagocytes, such as IL-10, transforming growth factor β (TGF-β)
and Lactoferrin, which inhibit recruitment of additional macrophages and/or
neutrophils (Nagata, Hanayama, & Kawane, 2010; Poon et al., 2014).
Impaired clearance of apoptotic cells has been implicated in exacerbated
inflammation, atherosclerosis, autoimmunity, cancer and other pathologies
(Poon et al., 2014).
Beyond its role during homeostasis, apoptosis is important in the immune
response during infection. Upon sensing the presence of an invading
pathogen, the immune system activates signaling pathways that promote pro-
inflammatory and anti-microbial gene expression to counteract the infection.
In addition, proteins regulating cell survival and cell death are expressed. In
various infection models, induction of apoptosis in infected cells was shown to
reduce pathogen replication and dissemination (Lamkanfi & Dixit, 2010).
Apoptosis can be induced by different means. Through binding of death
receptor ligands (DRLs) to their widely expressed specific death receptors
(DRs 1-6) on the cell surface, death receptor mediated or “extrinsic apoptosis”
is induced. In contrast to this, the death-inducing stimulus can emanate from
the cytoplasm by mitochondrial cytochrome c release, leading to “intrinsic
apoptosis”, or by pattern recognition receptors (PRRs). One important protein
involved in signal transduction and regulation of cell death in response to DR
and PRR stimulation is receptor-interacting protein kinase 1 (RIPK1).

For a long time, apoptosis was considered to be the only form of RCD,
whereas necrosis was categorized as an ACD modality in response to
physiochemical stress. Morphologically, necrotic cell death is characterized by
organelle swelling and loss of plasma membrane integrity (Festjens, Vanden
Berghe, & Vandenabeele, 2006; Krysko, Vanden Berghe, D'Herde, &
Vandenabeele, 2008; Vanden Berghe et al., 2010). The rupture of the cell
membrane results in an uncontrolled release of intracellular “danger-associated molecular patterns” (DAMPs) including heat-shock protein 70 (HSP70), DNA-binding protein high mobility group box 1 (HMGB1) and DNA fragments, which have potent pro-inflammatory capabilities (Kono & Rock, 2008; Krysko et al., 2008; Lamkanfi & Dixit, 2010). Therefore, in contrast to immunotolerogenic apoptotic cell death, necrosis is considered as an immunogenic mode of cell death.

Recent findings implicated necrosis in various pathologic conditions like ischemia-reperfusion (I/R) and traumatic injury, Amyotrophic lateral sclerosis (ALS), Huntington’s disease, systemic inflammation, atherosclerosis, microbial as well as viral infections and others (W. Zhou & Yuan, 2014). In 1988 it was discovered, that stimulation with tumor necrosis factor (TNF) could induce necrotic cell death in some cell lines (Laster, 1988). Further studies revealed necrosis not to be accidental, but rather a regulated form of cell death that engages a molecular machinery. After the discovery that the chemical compound necrostatin-1 can inhibit DR-induced necrosis, the new definition “necroptosis” was introduced to describe regulated necrosis (Degterev et al., 2005; Vandenabeele, Declercq, Van Herreweghe, & Vanden Berghe, 2010). In addition to DR signaling, necroptosis can be induced by stimulation of various PRRs and interferon alpha/beta receptor 1 (IFNAR1) (Kaiser et al., 2013; Robinson et al., 2012; Thapa et al., 2011). Downstream of DRs and PRRs, receptor-interacting protein kinase 3 (RIPK3) and RIPK1, the latter one constituting the molecular target of necrostatin-1, are essential for DR induced necroptosis (Cho et al., 2009; Degterev et al., 2008; He et al., 2009; Holler, 2000; Holler et al., 2000; D. W. Zhang et al., 2009).

1.2 Receptor-interacting protein kinase 1 (RIPK1)

RIPK1 was discovered in 1995 as an interaction partner of the death receptor Fas (CD95) and is constitutively expressed in many tissues (Stanger, Leder, Lee, Kim, & Seed, 1995). Human RIPK1 is a 671 aa protein with a predicted molecular weight of 76 kDa encoded by the rip1 gene located on chromosome 6 (Hsu, Huang, Shu, Baichwal, & Goeddel, 1996). Murine RIPK1 consists of 656 aa and shares 68% homology with human RIPK1 with the highest similarity in the death domain (Hsu, Huang, et al., 1996; Stanger et al., 1995).
RIPK1 is one of seven known members of the RIP kinase family, classified as serine/threonine kinases due to a conserved kinase domain present in all identified RIP kinases (Festjens, Vanden Berghe, Cornelis, & Vandenabeele, 2007; D. Zhang, Lin, & Han, 2010). RIPK1 consists of three domains; a N-terminal kinase domain, an intermediate domain (ID) and a C-terminal death domain (DD). The kinase domain enables RIPK1 to autophosphorylate, which is required for RIPK1 mediated necroptosis but not for TNF induced NF-κB activation (Hsu, Huang, et al., 1996; Newton et al., 2014; Polykratis et al., 2014; Ting, Pimentel-Muinos, & Seed, 1996). At residue aspartic acid 324 (Asp324) the ID domain harbors a caspase-8 cleavage site. Cleavage of RIPK1 at this site shuts off NF-κB activation, inhibits necroptosis and promotes apoptosis during DR induced casaspe-8 activation and RIG-I mediated antiviral responses (Lin, Devin, Rodriguez, & Liu, 1999; Rajput et al., 2011). Upon TNF signaling, Lysine 377 (K377) located in the ID of RIPK1 is ubiquitinated by Lys63-linked ubiquitin chains and this modification seems to be important for RIPK1 mediated NF-κB activation (Ea, Deng, Xia, Pineda, & Chen, 2006; H. Li, Kobayashi, Blonska, You, & Lin, 2006). In addition, a receptor-interacting protein homotypic interaction motif (RHIM), that is responsible for the interaction of proteins containing this particular protein-protein binding motif, is present in the ID. The RHIM domain is required for the interaction of RIPK1 with RIPK3, TIR-domain-containing adaptor-inducing IFNβ (TRIF) and DNA-dependent activator of IRFs (DAI) (Kaiser & Offermann, 2005; X. Sun, Yin, Starovasnik, Fairbrother, & Dixit, 2002; Upton, Kaiser, & Mocarski, 2008). A DD enabling its interaction with death receptors, TNFR1-associated death domain protein (TRADD) and FAS-associated death domain (FADD) can be found at the C-terminus of RIPK1 (Park et al., 2007). Via its DD-mediated interactions RIPK1 is involved in the assembly of intracellular signaling complexes that initiate downstream signaling to induce pro-inflammatory and pro-survival gene expression or trigger apoptosis or necroptosis. Ever since its discovery, RIPK1 has been implicated in the regulation of cell death, as its overexpression caused spontaneous death in baby hamster kidney cells (Stanger et al., 1995). Mice with full body ablation of RIPK1 were born at the expected Mendelian ratios but died within 3 days after birth due to
massive cell death of adipose lineages and T-cells in lymphoid tissues (Kelliher et al., 1998).

RIPK1 is involved in genotoxic stress induced NF-κB activation mediated by the NEMO PIDDosome, a complex that contains p53-induced protein with a death domain (PIDD), RIP1, NEMO and IKK2 (Janssens, Tinel, Lippens, & Tschopp, 2005). In a second pathway, RIPK1 and NEMO induce cytokine production and caspase-8 activation upon extensive DNA damage sensed by ataxia telangiectasia mutated (ATM) kinase (Biton & Ashkenazi, 2011).

Furthermore, a direct role of RIPK1 as a repressor of gene transcription in the nucleus downstream of epidermal growth factor receptor (EGFR) has been reported (Ramnarain et al., 2008). However, most studies on RIPK1 focused on its cytoplasmic role in signal transduction and regulation of cell death. The mechanisms of RIPK1 mediated signaling pathways are described in the following chapters.

1.3 Death receptor signaling

The tumor necrosis factor (TNF) ligand superfamily and their cognate receptors are important regulators of inflammatory responses and cell death in response to infection and tissue injury. Members of the TNF receptor superfamily are expressed differentially in different cell types. The death receptors (DR), a subgroup of the TNF receptor superfamily, are characterized by a cytoplasmic DD motif. Upon ligand binding to its receptor, the DR’s DD recruits DD containing adapter proteins forming a receptor associated signaling complex to initiate downstream signaling cascades resulting in cell death or inflammatory gene expression.

In humans, six different death receptors have been identified: Tumor necrosis factor superfamily member 1a, \((Tnfrs1a)\) (TNFR1) is activated by TNF and lymphotoxin α (LTα), tumor necrosis factor receptor superfamily member 6 \((Tnfrsf6)\) (Fas or CD95) is activated by Fas ligand (FasL or CD95L), DR3 \((Tnfrsf25)\) is activated by TL1A, TNF-related apoptosis-inducing ligand receptor 1 and 2 (TRAILR1 and TRAILR2) are bound by TRAIL (Apo2) and finally, DR6 is activated by amyloid precursor protein (APP) (Silke & Hartland,
2013; Wilson, Dixit, & Ashkenazi, 2009). DR 3 and DR6 may not efficiently induce cell death (Wajant, 2003). Mice express homologs of all human DRs except TRAILRs. Instead, murine TRAILR is a single ortholog of human TRAILR1 and TRAILR2.

1.3.1 TNF signaling
1.3.1.1 NF-κB activation
TNF exerts its pro-inflammatory and anti-apoptotic functions by activating canonical transcription factor NF-κB, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPK). TNF ligation to TNFR1 initiates receptor trimerization and subsequent recruitment of adaptor proteins TRADD and RIPK1 to TNFR1 via DD interactions. However, the mechanisms coordinating DD interactions between TNFR1, TRADD and RIPK1 are not fully understood (Hayden & Ghosh, 2012; Hsu, Huang, et al., 1996). TRADD recruits the E3 ubiquitin ligases TNFR-associated factor 2 (TRAF2) and TRAF5 via TRAF binding domain interactions (Hsu, Huang, et al., 1996; Hsu, Shu, Pan, & Goeddel, 1996; Hsu, Xiong, & Goeddel, 1995). TRAF2 binds the E3 ligases cellular inhibitors of apoptosis (cIAP1 and cIAP2) and recruits them to the TNFR1 complex (Rothe, Pan, Henzel, Ayres, & Goeddel, 1995; Shu, Takeuchi, & Goeddel, 1996). The TRAF2-cIAP1/2 axis including E3 ligase activity of cIAP1 are required for the efficient recruitment of the linear ubiquitin chain assembly complex (LUBAC), consisting of haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1L), HOIL-1 interacting protein (HOIP) and SHANK-associated RH domain-interacting protein (SHARPIN) (Haas et al., 2009). This complex, when associated to the receptor, is termed ‘complex I’ (Figure 1). To mediate downstream signaling, cIAPs modify Lys377 of RIPK1 by adding K63-linked poly-ubiquitin chains (Mahoney et al., 2008). This modification provides a scaffolding platform for the further recruited proteins transforming growth factor β activated kinase (TAK1), TAK1 binding protein 1 and 2 (TAB1/TAB2), IκB kinase 1 and 2 (IKK1/IKK2) and NF-κB essential modulator (NEMO) (Hayden & Ghosh, 2012). RIPK1 K63-ubiquitin chain mediated proximity of TAB1/TAB2/TAK1 and IKK1/IKK2/NEMO complexes induces trans-auto-phosphorylation of TAK1. Activated TAK1 initiates MAPK kinase activation and phosphorylates IKK2. Nuclear factor of kappa light polypeptide gene
enhancer in B-cells (NF-κB) inhibitor alpha (IκBα) is phosphorylated by IKK2, and thereby targeted for ubiquitination and proteasomal degradation. The canonical NF-κB heterodimer p65:p50 is then released and translocates to the nucleus, where it induces target gene expression (Figure 1) (Hayden & Ghosh, 2012).

Addition of K48- , K63-linked and linear ubiquitin chains to different members of receptor-associated ‘complex I’ are thought to be important for efficient signal transduction and modulation. Upon TNF stimulation, RIPK1 and NEMO are modified with linear ubiquitin chains added by LUBAC. These are believed to stabilize complex I as well as to support efficient recruitment of NEMO, due to its high binding affinity for linear ubiquitin chains (Mollah et al., 2007; Tokunaga et al., 2009). Accordingly, cells or mice deficient in HOIL-1 and HOIP or carrying mutations in Sharpin (chronic proliferative dermatitis mutation; cpdm) showed reduced IκBα phosphorylation after TNF stimulation (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2011).

The importance RIPK1 and its modification with K63-linked ubiquitin chains for NF-κB activation remain controversial to date (Hayden & Ghosh, 2014; Ofengeim & Yuan, 2013). Initially, RIPK1 was reported to be essential for NF-κB activation (Ea et al., 2006; Hsu, Huang, et al., 1996; Kelliher et al., 1998; H. Li et al., 2006). RIPK1 deficient B-cells failed to activate NF-κB in response to murine and human TNF as demonstrated by electrophoretic mobility shift assay (EMSA) (Kelliher et al., 1998). The importance of RIPK1 for NF-κB activation was attributed to TNF induced K63-linked polyubiquitination of K377, because mutating this residue abolished the recruitment of TAK- and IKK-complexes to complex I as well as IκBα phosphorylation after TNF stimulation (Ea et al., 2006; H. Li et al., 2006).

In contrast, a different study reported ubiquitinated RIPK1 and no defects in IκBα phosphorylation upon TNF stimulation of cells expressing a mutated ubiquitin, which cannot be linked using residue K63 (Xu, Skaug, Zeng, & Chen, 2009). From these results, an ubiquitin-dependent but K63-polyubiquitination independent mechanism for TNF-induced IKK activation was concluded (Xu et al., 2009). A more recent study reported normal NF-κB activation in multiple cell types isolated from RIPK1 deficient mice and
suggested a cell type specific function of RIPK1 for NF-κB activation (Wong et al., 2010).

Although the exact role of RIPK1 for NF-κB activation remains elusive, TRADD is required for full TNF-induced NF-κB activation (Ermolaeva et al., 2008; Pobezinskaya et al., 2008). TRADD deficient mouse embryonic fibroblasts (MEFs) and bone marrow-derived macrophages (BMDMs) showed reduced IκBα phosphorylation and no ubiquitination of RIPK1 after TNF stimulation (Ermolaeva et al., 2008; Pobezinskaya et al., 2008). Other proteins of complex I, such as cIAP1 and cIAP2 were shown to be likewise important for NF-κB activation (Mahoney et al., 2008). Traf2−/− cells show slightly reduced NF-κB activation in response to TNF, whereas TRAF2/5 double knockout cells are completely defective in IKK activation, suggesting redundant functions of TRAF2 and TRAF5 in the context of NF-κB activation (Tada et al., 2001; Yeh et al., 1997).

NF-κB target genes include pro-inflammatory genes, e.g. Tnf, Ili6, anti-apoptotic gene Cflar, encoding Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (cFLIP), and negative regulators of canonical NF-κB signaling, A20 and cylindromatosis (CYLD). Both, A20 and CYLD, are deubiquitylating enzymes that can interact with RIPK1. CYLD is capable of removing K63-ubiquitin chains from RIPK1, thereby promoting the dissociation of complex I and triggering the formation of a death inducing cytosolic complex (DISC) (Hitomi et al., 2008; Moquin, McQuade, & Chan, 2013; O'Donnell, Legarda-Addison, Skountzos, Yeh, & Ting, 2007; Wright et al., 2007). On the other hand, A20 has dual ubiquitin editing properties on RIPK1. First, the N-terminal deubiquitylase domain of A20 removes K63-polyubiquitin chains from RIPK1, and second, a C-terminal zinc finger domain catalyzes K48-linked polyubiquitination of RIPK1, thereby targeting RIPK1 for proteasomal degradation (Wertz & Dixit, 2008).

Some proteins of the canonical NF-κB pathway downstream of TNFR1 function as negative regulators in the non-canonical NF-κB pathway, which usually is activated by ligands of a subset of the TNF ligand superfamily including BAFF, TWEAK or CD40L (Darding & Meier, 2012). In unstimulated
INTRODUCTION

cells, NF-κB inducing kinase (NIK) is modified with K48-linked ubiquitin chains and thus targeted for proteasomal degradation by a TRAF2-TRAF3-cIAP1/2 complex. In order to induce ubiquitination of NIK, TRAF3 directly binds to NIK and recruits TRAF2. TRAF2 then recruits cIAP1/2, which in turn attaches K-48 linked ubiquitin chains to NIK. Consequently, non-canonical NF-κB is not active at steady state (Vallabhapurapu et al., 2008; Zarnegar et al., 2008). Upon stimulation and subsequent receptor ligation, the TRAF2-TRAF3-cIAP1/2 complex is recruited to the receptor. Depending on the activated receptor and the cellular context, either TRAF3 is ubiquitinated by cIAPs and subsequently degraded, or TRAF2 and cIAP1/2 are degraded. In both cases, NIK is stabilized and phosphorylates IKK1. Active IKK1 forms homodimers, which in turn phosphorylate p100, thereby inducing its partial degradation and the generation of a p52 cleavage fragment. p52 dimerizes with RelB, the dimer translocates to the nucleus and induces target gene expression. Beside receptor stimulation, deletion of cIAPs or TRAF2 can result in activation of non-canonical NF-κB signaling (Vallabhapurapu et al., 2008; Zarnegar et al., 2008).
1.3.1.2 TNF induced apoptosis and necroptosis

In addition to anti-apoptotic signaling mediated via complex I formation and NF-κB activation, TNF signaling can induce the formation of death inducing cytosolic complexes (DSIC) complex IIa, complex IIb and complex IIc (also called the necrosome) resulting in apoptotic (complex IIa and IIb) or necroptotic cell death (complex IIc/necrosome) (Figure 1) (Pasparakis & Vandenabeele, 2015).

Destabilization of complex I results in the formation of complex IIa by association of TRADD with FADD via DD interaction and subsequent recruitment of caspase-8 by FADD through the death effector domain (DED) (Kelliher et al., 1998; Micheau & Tschopp, 2003; L. Wang, Du, & Wang, 2008). An alternative apoptosis inducing complex, called complex IIb, consisting of RIPK1, RIPK3, FADD and caspase-8 can form as well (Figure 1) (Pasparakis & Vandenabeele, 2015; L. Wang et al., 2008; Wilson et al., 2009). In both complexes FADD recruits two procaspase-8 molecules that dimerize. Procaspsase-8 dimers undergo a conformational change resulting in autocatalytic cleavage and the generation of p43/p41, p30 and other caspase-8 cleavage fragments. In a second cleavage step, p43/p41 and p30 fragments are processed to p10 and p18 fragments that form a fully catalytic active caspase-8 heterotetramer (Medema, Scaffidi, et al., 1997; Medema, Toes, et al., 1997). Active caspase-8 in turn cleaves and thereby activates effector caspases-3, -6 and -7 as well as BH3 interacting domain (Zheng et al.) death agonist. Bid mediates the release of mitochondrial proteins, thus inducing apoptosome formation and procaspase-9 activation in an indirect manner. Active caspase-9 in turn activates effector caspases, thereby providing an amplification loop for induction of apoptosis in cells with low levels of DISC components (Wilson et al., 2009). Effector caspases further activate cytoplasmic endonucleases, which degrade nuclear material, and proteases for the degradation of cytoskeletal proteins causing morphological features observed in apoptotic cells (Elmore, 2007).

The third death-inducing complex downstream of TNF, complex IIc, is composed of RIPK1, RIPK3 and mixed lineage kinase domain like (MLKL) (Pasparakis & Vandenabeele, 2015). According to the current model, RIPK1 autophosphorylation alters the conformation of RIPK1 and allows a RHIM
mediated interaction with RIPK3 (Chan, Luz, & Moriwaki, 2015). The RIPK1-RIPK3 heterodimer recruits additional RIPK3 molecules to form a large RIPK3-RIPK3 amyloid complex leading to RIPK3 autophosphorylation (Cho et al., 2009; He et al., 2009; J. Li et al., 2012; D. W. Zhang et al., 2009). Dimerization or oligomerization as well as phosphorylation of at least one RIPK3 molecule within the complex at Ser232 (Ser227 in human RIPK3) is essential for the recruitment of MLKL to the necrosome complex (W. Chen et al., 2013; J. Li et al., 2012; McQuade, Cho, & Chan, 2013; Orozco et al., 2014; Wu et al., 2014). RIPK3 phosphorylates MLKL at Ser345, Ser347, Ser352 and Thr349 (Thr357 and Ser358 in human MLKL). This leads to the exposure of the 4-helical bundle domain of MLKL, stimulating its oligomerization and subsequent translocation to the plasma membrane (Cai et al., 2014; X. Chen et al., 2014; Dondelinger et al., 2014; Murphy et al., 2013; L. Sun et al., 2012; H. Wang et al., 2014; Xie et al., 2013). Although the precise mechanism of necroptosis through MLKL function is not entirely clear, two models have been proposed so far: first, disruption of cell membrane my MLKL results in influx of Ca\(^{2+}\) and Na\(^{+}\) and second, MLKL was shown to directly disrupt membrane integrity by binding to membrane phospholipids via its 4-helical bundle domain (Cai et al., 2014; X. Chen et al., 2014; Dondelinger et al., 2014; Su et al., 2014; H. Wang et al., 2014).

The final cellular outcome of TNFR1 induced signaling is regulated through different ways. First, NF-κB activation induces the expression of anti-apoptotic proteins such as cFLIP, a catalytically inactive homolog of caspase-8. The two predominant isoforms of cFLIP, cFLIP\(_L\) and cFLIP\(_S\) both can form heterodimers with caspase-8. cFLIP\(_L\) has a similar domain architecture as caspase-8, but lacks a catalytic cysteine residue (Darding & Meier, 2012). Caspase-8-cFLIP\(_L\) heterodimers allow partial caspase-8 enzymatic activity but not caspase-8 autocatalytic cleavage to inhibit the generation of the apoptosis inducing p18/p10 caspase-8 fragments (Pop et al., 2011; Scaffidi, Kirchhoff, Krammer, & Peter, 1999; Wachter et al., 2004). On the other hand, cFLIP\(_S\) only contains the DED and dimerization with caspase-8 completely inhibits the enzymatic activity of caspase-8 (Kavuri et al., 2011).
cFLIP\(_{L}\) is a negative regulator of complex IIa mediated apoptosis, which is induced by stimulating cells with TNF and protein synthesis inhibitor cyclohexamide (Chx) (L. Wang et al., 2008). TNF stimulation of Panc-1 cells in which FLIP is knocked down mimicked the combinatory stimulation of TNF and Chx (L. Wang et al., 2008). Furthermore, overexpression of cFLIP protected cells from TNF and Chx induced apoptosis (L. Wang et al., 2008). Apoptosis mediated by complex IIa occurs independent of RIPK1 or its kinase activity, since knockdown of RIPK1 or addition of Nec-1 did not protect cells from TNF and Chx induced apoptosis (Holler et al., 2000; L. Wang et al., 2008). In fact, RIPK1 deficient fibroblasts and lymphocytes were highly sensitive to TNF induced apoptosis (Kelliher et al., 1998; H. Zhang et al., 2011). Another study reported no difference in viability of primary and immortalized RIPK1 deficient MEFs in response to TNF compared to WT MEFs (Wong et al., 2010). Interestingly, Ripk1\(^{-/-}\) MEFs were sensitized to TNF/Chx-induced apoptosis, arguing for a pro-survival role of RIPK1 in TNF/Chx-induced complex IIa mediated apoptosis (Wong et al., 2010).

Figure 1 TNF induced signalling complexes.

Upon binding to its cognate receptor, TNF is capable to induce distinct intracellular signalling pathways. TNF ligation results in assembly of a receptor-associated complex I, which mediates downstream NF-κB activation for pro-survival and pro-inflammatory gene transcription. Apoptosis can be induced by the formation of death inducing complex IIa composed of TRADD, FADD and caspase-8, which is negatively regulated by cFLIP. Destabilization of complex I by deubiquitination of RIPK1 leads to the assembly of a RIPK1, RIPK3, FADD and caspase-8 containing apoptosis inducing cytosolic complex IIb. In complex IIa and
Ilb FADD recruits dimerizing pro-caspase-8 molecules, which are activated by autocatalytic cleavage to induce apoptosis. When caspase-8 activity is blocked, RIPK1 and RIPK3 are no longer cleaved by caspase-8 within complex Ilb, stabilize and auto-phosphorylate. Phosphorylated RIPK3 phosphorylates MLKL, which then executes necroptosis. For details see text.

K63-linked ubiquitination chains are represented by red rings and linear ubiquitination chains by purple rings; Brown insets in TRADD and FADD represent DDs, orange insets in FADD and pro-caspase-8 depict DEDs. Yellow and black stripes in RIPK1 and RIPK3 represent RHIMs and caspase-8 cleavage sites respectively.

Abbreviations: cIAP1/2, cellular inhibitors of apoptosis 1/2; CYLD, cylindromatosis; FADD, Fas-associated via death domain; IKK1/2, inhibitor of κB kinase 1/2; IJUBAC, linear ubiquitin chain assembly complex, MLKL, mixed lineage kinase domain-like; NEMO, NF-κB essential modifier; P, phosphorylation; RIPK1/3, receptor interacting protein kinase 1/3; TAB2/3, TGF-beta activated kinase 1 binding protein 2/3; TAK1, TGF-beta activated kinase 1; TNF, tumor necrosis factor; TNFR1, TNF receptor 1; TRADD, TNF receptor-associated death domain; TRAF2, TNF receptor-associated factor 2.

On the other hand, complex Ilb mediated apoptosis is induced upon stimulation of cells with TNF and Smac mimetics (SM), a synthetic IAPs antagonist that induces autoubiquitination and proteasomal degradation of cIAP1 and cIAP2 (Bertrand et al., 2008; Gaither et al., 2007; L. Li et al., 2004; Petersen, Peyton, Minna, & Wang, 2010; Petersen et al., 2007; E. Varfolomeev et al., 2007; Vince et al., 2007). A complex with similar components, called the “rioptosome”, can form upon loss of cIAPs upon TLR3 stimulation or genotoxic stress independent of death receptor stimulation (Feoktistova et al., 2011; Tenev et al., 2011). TAK1, NEMO or Pellino deficient cells are also sensitized to TNF-induced complex Ilb-mediated apoptosis (Pasparakis & Vandenabeele, 2015). Apoptosis induced by complex Ilb is dependent on RIPK1 and its kinase activity as it can efficiently be inhibited by RIPK1 deletion or addition of Nec1 (Arslan & Scheidereit, 2011; Bertrand et al., 2008; Dondelinger et al., 2013; Gaither et al., 2007; Geserick et al., 2009; Petersen et al., 2007; L. Wang et al., 2008; Wong et al., 2010).

Destabilization of complex I by deubiquitination or impaired K63-linked or linear ubiquitination of RIPK1 is believed to favor the formation of death-inducing complex Ilb and/or complex IIC. For instance, disabled K63-linked ubiquitination of RIPK1 by cIAPs upon SM treatment favors complex Ilb formation and apoptosis (Bertrand et al., 2008; L. Wang et al., 2008). The importance of IAPs for prevention of RIPK1-mediated inflammation and cell death is underscored by the finding, that deletion of RIPK3 or one allele of RIPK1 partially rescues the embryonic lethality of \textit{ciap1$^{-/-}$ xiap$^{-/-}$} or \textit{ciap1$^{-/-}$ ciap2$^{-/-}$} mice (Moulin et al., 2012). Furthermore, cells expressing mutated
RIPK1, where the addition of ubiquitin chains to K377 is prevented, were highly sensitive to TNF-induced apoptosis (O'Donnell et al., 2007).

In addition, mutation of SHARPIN or HOIL-1 deficiency renders cells sensitive to TNF induced RIPK1 kinase activity dependent apoptosis and necroptosis (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2011). Chronic proliferative dermatitis mice (cpdm) carry a mutation in the Sharpin gene and develop spontaneous inflammation of the skin, primarily caused by TNFR1-induced RIPK1 kinase activity and TRADD dependent apoptosis (Berger et al., 2014; Gibbels et al., 1996; Kumari et al., 2014; Seymour et al., 2007).

In contrast to the findings described above, other studies reported ubiquitinated RIPK1 in complex II, suggesting that deubiquitination of RIPK1 is not essential for the induction of cell death (Cho et al., 2009; Lamothé, Lai, Xie, Schneider, & Darnay, 2013; Moquin et al., 2013).

In both, complex IIa and IIb, execution of extrinsic apoptosis depends on FADD and caspase-8. Full body ablation of either FADD or caspase-8 resulted in early embryonic lethality due to extensive RIPK3-dependent necroptosis, demonstrating that FADD and caspase-8 suppress necroptosis in vivo (Kaiser et al., 2011; Oberst et al., 2011; E. E. Varfolomeev et al., 1998; Yeh et al., 1998; H. Zhang et al., 2011; J. Zhang, Cado, Chen, Kabra, & Winoto, 1998). Caspase-8 suppresses necroptosis by cleaving RIPK1 and RIPK3, while the C-terminal RIPK1 cleavage fragment inhibits TNF-induced NF-κB activation and promotes apoptosis (Feng, Ma, Yang, & Wu, 2006; Feng et al., 2007; J. W. Kim, Choi, & Joe, 2000; Lin et al., 1999; Martinon, Holler, Richard, & Tschopp, 2000). Apoptosis mediated by complex IIa or IIb can be blocked by addition of pan-caspase inhibitor zVAD-fmk, which sensitizes cells to necroptotic cell death. Since Nec1 efficiently blocks necroptosis downstream of TNFR1, TNF-induced necroptosis is RIPK1 kinase activity dependent (Cho et al., 2009; He et al., 2009; D. W. Zhang et al., 2009).

In addition to RIPK1 and RIPK3, CYLD is another substrate of caspase-8 capable of promoting necroptosis. Mutation of the caspase-8 cleavage site of CYLD sensitized cells to TNF-induced necroptosis (O'Donnell et al., 2011). Furthermore, knockdown or deletion of CYLD protected against TNF/Smacinduced necroptosis in vivo (Oberst et al., 2011; E. E. Varfolomeev et al., 1998; Yeh et al., 1998; H. Zhang et al., 2011; J. Zhang, Cado, Chen, Kabra, & Winoto, 1998). Caspase-8 suppresses necroptosis by cleaving RIPK1 and RIPK3, while the C-terminal RIPK1 cleavage fragment inhibits TNF-induced NF-κB activation and promotes apoptosis (Feng, Ma, Yang, & Wu, 2006; Feng et al., 2007; J. W. Kim, Choi, & Joe, 2000; Lin et al., 1999; Martinon, Holler, Richard, & Tschopp, 2000). Apoptosis mediated by complex IIa or IIb can be blocked by addition of pan-caspase inhibitor zVAD-fmk, which sensitizes cells to necroptotic cell death. Since Nec1 efficiently blocks necroptosis downstream of TNFR1, TNF-induced necroptosis is RIPK1 kinase activity dependent (Cho et al., 2009; He et al., 2009; D. W. Zhang et al., 2009).

In addition to RIPK1 and RIPK3, CYLD is another substrate of caspase-8 capable of promoting necroptosis. Mutation of the caspase-8 cleavage site of CYLD sensitized cells to TNF-induced necroptosis (O'Donnell et al., 2011). Furthermore, knockdown or deletion of CYLD protected against TNF/Smac
mimetics induced apoptosis as well as RIPK1-mediated necroptosis (Hitomi et al., 2008; Moquin et al., 2013; L. Wang et al., 2008). Since in Cyld^-/- cells RIPK1 and RIPK3 ubiquitination was greatly enhanced, it was suggested that CYLD exerts its pro-necrotic function by deubiquitinating RIPK1 and RIPK3 within the necrosome rather than acting in complex I (Moquin et al., 2013).

1.3.2 Apoptosis and necroptosis induced by other death receptors

Fas/CD95 (tumor necrosis factor receptor superfamily member 6; TNFRSF6) and TRAIL receptor (in humans TRAILR1 and TRAILR2) are members of the DR family that can induce apoptosis after stimulation with their specific ligands CD95L (or agonistic antibodies) or TRAIL/Apo2L respectively (Lavrik & Krammer, 2012; Wilson et al., 2009). Fas ligation induces receptor oligomerization and formation of a membrane associated DISC composed of FADD, procaspase-8 and cFLIP_L (Muzio et al., 1996; Scaffidi et al., 1999; Sprick et al., 2002). Stimulation outcome is determined by the stoichiometry of forming procaspase-8 and cFLIP homo- or heterodimers and their processing. Induction of apoptosis is correlated to the amount of generated p43/p41 caspase-8 cleavage fragments, whereas induction of non-apoptotic pathways, namely NF-κB activation, depends on the amount of p43-FLIP cleavage fragments (Neumann et al., 2010). Although apoptosis occurs independent of RIPK1, upon loss of IAPs and/or caspase inhibition Fas can induce RIPK1 kinase dependent necroptosis (Geserick et al., 2009; Holler et al., 2000). RIPK1 has been implicated in Fas induced cytokine and chemokine production via activation of NF-κB (Cullen et al., 2013). Furthermore, in Fas stimulated Jurkat cells, RIPK1 is required for NF-κB activation but is dispensable for ERK and JNK activation (Kreuz et al., 2004).

A DISC with a similar composition is formed upon TRAIL stimulation. In contrast to the membrane associated Fas DISC, the TRAIL DISC is internalized by the endosome (Sprick et al., 2002; X. D. Zhang, Franco, Nguyen, Gray, & Hersey, 2000). Beside apoptosis, TRAIL can also induce the formation a secondary cytosolic complex that is devoid of TRAILR but contains FADD, caspase-8, TRAF2 and NEMO (E. Varfolomeev et al., 2005). The formation of this secondary complex requires caspase-8 activity and results in NF-κB and MAPK activation. Within this complex, RIPK1 is required.
for efficient IKK and p38 activation but is dispensable for JNK activation (E. Varfolomeev et al., 2005).

1.4 Pattern Recognition Receptor (PRR) signaling
Recognition of invading pathogens and the initiation of a proper innate immune response are critical for host defense. Pattern recognition receptors (PRR) are part of the innate immune system and activated by molecular structures shared by many pathogens, called pathogen-associated molecular pattern (PAMPs), as well as in response to cellular stress and DAMPs. Signaling via PRR initiates an inflammatory response to fight the infection, alerts the adaptive immune system and can induce the death of infected cells to prevent pathogen dissemination. The PRR family includes Toll-like receptors (TLRs), C-type lectin receptors (CLR), NOD-like receptors (NLR), RIG-I-like receptors (RLR) and others (Kawai & Akira, 2011).

1.4.1 RIPK1 in Toll-like receptor (TLR) signaling
TLRs are transmembrane proteins consisting of a leucine-rich repeat (LRR) ectodomain for recognition of PAMPs; a transmembrane domain; and a intracellular Toll-interleukin 1 (IL-1) receptor (TIR) domain for signal transduction (Kawai & Akira, 2010). Until now, 12 and 10 TLRs have been identified in mice and humans, respectively. TLRs detect distinct PAMPs derived from bacteria, mycobacteria, viruses, fungi and parasites. TLR3 is activated by virus derived double-stranded RNA or its synthetic analog poly(I:C), internalized and translocated to the endosome (Alexopoulou, Holt, Medzhitov, & Flavell, 2001; Oshiumi, Matsumoto, Funami, Akazawa, & Seya, 2003; Yamamoto et al., 2003; Yamamoto, Sato, Hemmi, et al., 2002; Yamamoto, Sato, Mori, et al., 2002). TLR4 detects lipopolysaccharides, an outer membrane component of gram-negative bacteria, as well as gram-positive bacterial derived cytolysins (Hoshino et al., 1999; Poltorak et al., 1998; Qureshi et al., 1999).
Except TLR3, all TLRs use TIR-domain containing myeloid differentiation primary response 88 (MyD88) as an adaptor protein to initiate downstream signaling resulting in NF-κB- and MAPK-mediated pro-inflammatory gene expression. TLR3 exclusively, and TLR4 as an additional signaling arm, utilize
INTRODUCTION

TIR-domain-containing adapter-inducing interferon-β (TRIF) to induce cytokine expression through interferon regulatory factor 3/7 (IRF) and NF-κB activation as well as cell death (Kawai & Akira, 2010). To activate NF-κB, TRIF interacts with RIPK1 via RHIM domain interaction and TRAF6 via a TRAF6 binding domain (Cusson-Hermance, Khurana, Lee, Fitzgerald, & Kelliher, 2005; Meylan et al., 2004). TRADD and the E3 ligase Pellino1 are recruited to RIPK1, and the latter one attaches K63-ubiquitin chains to RIPK1, thereby providing a platform for recruitment and activation of the TAK and canonical IKK complex to mediate MAPK and NF-κB activation (Cusson-Hermance et al., 2005).

The TRIF-dependent signaling arm downstream of TLR3 and TLR4 is capable to induce apoptosis and necroptosis in order to eliminate infected host cells (Lamkanfi & Dixit, 2010). A preassembled complex called “Ripoptosome” containing TRIF, RIPK1, RIPK3, FADD, caspase-8, caspase-10 and cFLIP can induce apoptosis and necroptosis in some cell lines after TLR3 stimulation upon loss of IAPs, although the necessity for a direct interaction with TLR3 remains elusive (Feoktistova et al., 2011; Tenev et al., 2011). RIPK1 is the core component of the Ripoptosome and its kinase activity is required for apoptosis and necroptosis, whereas the type of cell death induced depends on the ratio of cFLIP isoforms within the complex (Feoktistova et al., 2011; Tenev et al., 2011). More recently, the sequential assembly of a similar machinery, additionally containing TRADD and TRAF2, directly to TLR3 in the presence of cIAPs was demonstrated. This TLR3-induced apoptosis is RIPK1 dependent and negatively regulated by the TRADD-TRAF2-cIAPs complex (Estornes et al., 2012). Likewise to TLR3, also TLR4 stimulation was reported to induce TRIF-dependent apoptosis through the downstream effectors RIPK1, FADD and caspase-8 (Ma, Temkin, Liu, & Pope, 2005; Ruckdeschel et al., 2004).

When caspase-8 activity is inhibited, TLR3 or TLR4 stimulation can induce RIPK3 mediated, TRIF- and RIPK1 kinase activity dependent necroptosis (He, Liang, Shao, & Wang, 2011; Kaiser et al., 2013; Polykratis et al., 2014). However, also RIPK1-independent necroptosis downstream of TLR3 has been reported, presumably mediated via a direct RHIM-mediated interaction between TRIF and RIPK3 (He et al., 2011; Kaiser et al., 2013). In contrast to
RIPK1, TRIF does not contain a kinase domain suggesting different mechanisms of RIPK3 activation by RIPK1 and TRIF (Chan et al., 2015). RIPK3 was shown to compete with RIPK1 for binding to the RHIM domain in TRIF and therefore RIPK3 can prevent TRIF/RIPK1 dependent NF-κB activation (Meylan et al., 2004). In addition, TRIF was identified as a substrate for caspase-8 and its cleavage inhibited NF-κB activation. However if cleavage of TRIF suppresses necroptosis is not known (Rebsamen, Meylan, Curran, & Tschopp, 2008). In summary, similar to TNFR1 signaling, TLR3/TLR4 signaling can have three distinct cellular outcomes; NF-κB activation; apoptosis and necroptosis. However, the hierarchy of RHIM interactions between TRIF, RIPK1 and RIPK3 to determine cell fate are not known (Kaiser et al., 2013).

Figure 2 TLR3 and TLR4 induced signalling pathways.

LPS binding to TLR4 induces MyD88-dependent NF-κB activation. TLR3- and TLR4-induced TRIF dependent NF-κB activation requires RIPK1 TRADD, TRAF3 and Pellino1. Pellino1 modifies RIPK1 with K63-linked polyubiquitination chains (red rings) providing a scaffold for downstream NF-κB activation. RIPK3 can negatively regulate TRIF-dependent NF-κB activation. An apoptosis inducing complex containing TRIF, TRADD, RIPK1, RIPK3, FADD and caspase-8 can form after TLR3 and TLR4 stimulation. When caspase-8 activity is inhibited, TLR3 stimulation can induce RIPK1-dependent as well as RIPK1-independent RIPK3 and MLKL-mediated necroptosis. DAI can directly interact with RIPK3 via a RHIM interaction to induce necroptosis. For details see text.
INTRODUCTION

Yellow stripes in TRIF, RIPK1 and RIPK3 represent RHIMs. Brown insets in RIPK1 and TRADD depict DDs. Black stripes in RIPK1 and RIPK3 represent caspase-8 cleavage sites. Orange insets ins FADD and pro-caspase-8 illustrates DEDs.

Abbreviations: DAI, DNA-dependent activator of IRFs; FADD, Fas-associated via death domain; IKK1/2, inhibitor of κB kinase 1/2; MLKL, mixed lineage kinase domain-like; MyD88, myeloid differentiation primary response gene 88; NEMO, NF-κB essential modifier; P, phosphorylation; RIPK1/3, receptor interacting protein kinase 1/3; TAB2/3, TGF-beta activated kinase 1 binding protein 2/3; TAK1, TGF-beta activated kinase 1; TIRAP, TIR-domain containing adaptor protein; TNF, tumor necrosis factor; TNFR1, TNF receptor 1; TRADD, TNF receptor associated death domain; TRAF3, TNF receptor-associated factor 3; TRAM, TRIF-related adaptor molecule.

1.4.2 RIPK1 in other PRR signalling pathways

In addition to TLRs, viral nucleic acids sensing retinoic acid inducible gene I (RIG-I) and DNA-dependent activator of IFN-regulatory factors (DAI) also utilized RIPK1/RIPK3 for downstream signalling (Chan et al., 2015; Christofferson, Li, & Yuan, 2014).

Upon detection of viral RNA with its DExD/H-box RNA helicase domain, RIG-I recruits mitochondrial antiviral signalling (MAVS) via its caspase recruitment domains (CARD) domains. Subsequently, a mitochondrial complex containing RIPK1, FADD, TRADD, caspase-8 among other proteins is assembled to activate the downstream IKK complex for NF-κB and IRF activation (Christofferson et al., 2014). The activity of the signaling complex is modulated indirectly by RIPK1 and its posttranslational modifications. Ubiquitination of RIPK1 at K377 is required for efficient virus-induced activation of IRF3 and NF-κB. Caspase-8 negatively regulates the RIG-I response by cleaving RIPK1 at Asp324 to generate a 38 kDA fragment that mitigates IRF activation. The recruitment of caspase-8 to the RIG-I complex depends on the presence of RIPK1 and for its cleavage RIPK1 needs to be modified with polyubiquitin chains (Rajput et al., 2011).

DAI induces type I IFNs, NF-κB activation and necroptotic cell death in response to double stranded viral DNA via RHIM interactions with RIPK1 and RIPK3. Both, RIPK1 and RIPK3, are required for full activation of NF-κB, whereas necroptosis induced by DAI is independent of RIPK1 but requires RIPK3 (Rebsamen et al., 2009; Upton, Kaiser, & Mocarski, 2010, 2012).
1.5 Interferons and necrosome formation

Type I (predominantly α/β) and type II (γ) interferons (IFN) are pleiotropic cytokines with antiviral and immune-modulatory functions. While IFN α and β bind to IFN-I receptor, a heterodimer of two IFN-α receptor proteins (IFNAR1 and IFNAR2), IFN-γ signals through its heterodimeric receptor composed of IFN-γ receptor 1 (IFNGR1) and 2 (IFNGR2). Ligand binding activates several signaling pathways including NF-κB, Phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3Ks) and Janus-kinase (JAK)-signal transducers and activators of transcription (STAT)-pathway to induce the expression of target genes (Stark, Kerr, Williams, Silverman, & Schreiber, 1998). Type I and II IFNs activated protein kinase R (PKR) was proposed to induce necrosome formation in the absence of FADD or caspase activity (Robinson et al., 2012; Thapa et al., 2011; Thapa et al., 2013). PKR mediates the phosphorylation of RIPK1 and thereby induces RIPK1-RIPK3-dependent necroptosis, which under steady state conditions is licensed by binding of phosphorylated FADD to RIPK1 (Thapa et al., 2013). However, a recent study demonstrated no defects in IFN-γ induced necroptosis in PKR deficient macrophages (McComb et al., 2014). Moreover, TNF, LPS and poly(I:C) triggered necroptosis in macrophages depends on IFNAR1-IFN-stimulated gene factor 3 (ISGF3) signaling, indicating the requirement of an autocrine loop of IFN α and β for the execution of RIPK1-RIPK3 dependent necroptosis (McComb et al., 2014).

1.6 Anatomy of the intestinal tract

The intestinal tract is divided into the small intestine and the large intestine, also called colon. The small intestine stretches from the pylorus to the ileocaecal valve, and is subdivided (from cranial to caudal) into the duodenum, jejunum and the ileum. The colon starts at the caecum, followed by the ascending colon, descending colon, and the rectum. The primary function of the intestinal tract is the digestion of food, absorption of nutrients, reabsorption of water, whereas the latter mainly occurring in the colon.

The gastrointestinal wall is composed of the serosa/adventitia, muscularis externa, submucosa and the mucosa (from the outside to the inside), separating the intestinal lumen from the abdominal and pelvic cavity. The
serosa or adventitia consists of connective tissue and squamous epithelium to reduce frictional forces for surrounding organs during peristaltic movements. Within the serosa/adventitia lies the muscularis externa, which is formed by two smooth muscle layers, the outer longitudinal and inner circular muscle, both responsible for peristalsis, the unidirectional transport of luminal content towards the anus. The underlying submucosa is a layer of connective tissue containing blood vessels, lymphatic vessels and nerves branching into the muscularis externa and mucosa. The mucosa is the innermost layer and can be divided into three different parts: First, the muscularis mucosa, a smooth muscle layer separating the mucosa and the submucosa, second, the lamina propria, a layer of connective tissue containing nerve endings, capillaries, lymph nodes and vast numbers of immune cells, and third, the intestinal epithelium.

1.7 Structure and function of the intestinal epithelium

The intestinal epithelium is a monolayer of polarized epithelial cells that provide a physical and biochemical border separating the mucosal immune cells from the contents of the lumen. Instead of being a passive nutrient-absorbing barrier, intestinal epithelial cells (IECs) perform diverse functions crucial for homeostasis, such as mediating selective transport, regulating barrier integrity, influencing microbial colonization, sampling the luminal microenvironment for antigens as well as beneficial and pathogenic microbes and fulfilling immunomodulatory functions. Moreover, IECs do not only function in an intrinsic fashion, but are part of a coordinated relationship between subepithelial immune cells and the intestinal microbiota (Maloy & Powrie, 2011).

To keep this delicate system at balance, different regions of the intestinal epithelium evolved different anatomical architectures and highly specialized epithelial cells types, adapted to the distinct physiological functions. The small intestine is organized into the crypts of Lieberkühn, epithelial invasions into the underlying connective tissue that harbor pluripotent intestinal stem cells as well as transient amplifying (TA) cells, and epithelial protrusions into the lumen, called villi, which drastically increase the surface area for nutrient absorption. In contrast, the colon lacks villi and has a flat surface epithelium.
but shares the organisation into stem cell and TA cell compartments (Figure 3) (van der Flier & Clevers, 2009). The intestinal epithelium has the highest turnover rate of all tissues in adult mammals with IECs being renewed every 4 to 5 days (van der Flier & Clevers, 2009). Self-renewal is orchestrated by Lgr5 expressing stem cells, also called crypt base columnar cells (CBC), residing at the bottom of the crypts, which divide asymmetrically once per 24 h (Barker et al., 2007; Cheng & Leblond, 1974). They give rise to one stem cell residing in the crypt and a transient amplifying (TA) cell that migrates upwards to the crypt/villus border while it undergoes 4 to 5 rounds of cell division. During this time, IEC progenitors start to differentiate and reach the villus border after 2 days as mature epithelial cells, whereas they continue to migrate upwards the crypt-villus axis. The cell fate and proliferative capacity of differentiating progenitor cells is determined by the activity or repression of various signaling pathways, such as Wnt-, Notch-, bonemorphogenetic protein (BMP)- and Hedgehog signaling (Barker, Bartfeld, & Clevers, 2010; Crosnier, Stamataki, & Lewis, 2006; van der Flier & Clevers, 2009). In general, differentiated intestinal epithelial cells can be divided into two groups, absorptive and secretory cell lineages. Absorptive enterocytes are the most prevalent cell type in the intestinal epithelium and account for more than 80% of all IECs. They have an apical brush border and are responsible for uptake and transport of nutrients across the epithelium (van der Flier & Clevers, 2009). Enteroendocrine cells belong to the secretory lineages, make up less than 1% of IECs and are scattered throughout the epithelium. They coordinate and modulate gut function by secreting hormones, such as gastrin, motilin or cholecystokinin. Goblet cells are the most prominent secretory cell lineage in the intestinal epithelium and their occurrence increases from the duodenum (4%) to the descending colon (16%) (van der Flier & Clevers, 2009). They produce secretory mucus glycoproteins (mucins), trefoil factor peptides (TFF) and other proteins that are the major components of the upper and lower mucus layer. The mucus layer provides protection against mechanical forces that emerge during movement of luminal content and importantly, limit or completely prevent microbial colonization in the outer and inner mucus layer respectively (Y. S. Kim & Ho, 2010). Paneth cells secrete antimicrobial peptides (AMP), for instance lysozyme P and α-defensins, into the lumen of
the small intestinal crypts to keep them free of microbes. As these AMPs diffuse into the mucus layer, they help to shape the composition of the residential microbiota and prevent infections by pathogens (Bevins & Salzman, 2011; Brandl, Plitas, Schnabl, DeMatteo, & Pamer, 2007; Cash, Whitham, Behrendt, & Hooper, 2006; Mukherjee, Vaishnava, & Hooper, 2008; Salzman, Ghosh, Huttner, Paterson, & Bevins, 2003). During differentiation, Paneth cells escape upward migration and instead, move to the bottom of the crypt where they reside. With a life expectancy of 6 to 8 weeks, they are the most long-lived differentiated cell lineage within the intestinal epithelium (Barker et al., 2010).

Except for Paneth cells, differentiated cells continuously migrate upwards along the crypt-villus axis until they reach the tip of the villus after 3-5 days (Barker et al., 2010; van der Flier & Clevers, 2009). Here they detach and are exfoliated into the lumen. Although shedding cells show morphological features of apoptosis, it was shown that IEC death induced by loss of cell contacts, called anoikis, is a caspase independent process (Eisenhoffer et al., 2012; Hall, Coates, Ansari, & Hopwood, 1994; Shibahara et al., 1995). However, the precise mechanisms regulating anoikis are unknown (Vereecke, Beyaert, & van Loo, 2011).

Figure 3 Structure of the small intestinal and colonic epithelium.
The intestinal epithelium forms a monolayer of polarized epithelial cells covered with mucus and separates luminal contents and immune cells in the lamina propria. In the small intestine (SI) (left) and colon (right)
epithelial invaginations called crypts contain rapidly proliferating stem cells and progenitor cells. Small intestinal crypts are additionally populated by Paneth cells, which secrete anti-microbial peptides (AMP) and contribute to the maintenance of the stem cell niche. Epithelial protrusions in the SI called villi, harbour differentiated intestinal epithelial cell lineages, which include nutrient absorbing enterocytes, hormone secreting enteroendocrine cells and mucus secreting goblet cells. Mucus enriched in AMPs and secretory IgA (SIgA) prevents close contact between commensals or pathogens with intestinal epithelial cells. Abbreviations: DC, dendritic cell; IEL, intraepithelial lymphocyte. Modified from (Mowat & Agace, 2014).

1.8 Cell death and immunity in the intestinal epithelium

The ratio between proliferation, differentiation and cell death within the intestinal epithelium has to be tightly regulated. Increased proliferation or defects in the execution of cell death are associated with the development of colorectal cancer (CRC) (Grivennikov, Greten, & Karin, 2010). On the other hand, excessive or uncontrolled cell death might result in compromised barrier integrity. This would allow an uncontrolled translocation of immunoreactive luminal antigens into the lamina propria and a direct contact with mucosal immune cells triggering an inflammatory response. Indeed, increased cell death and dysregulated barrier function has been implicated in the aetiology and pathology of inflammatory bowel disease (IBD) and its two major clinical forms, Crohn’s Disease (CD) and Ulcerative Colitis (UC) (Maloy & Powrie, 2011; Peterson & Artis, 2014; Roda et al., 2010). However, signaling pathways that regulate epithelial cell death are also involved in the maintenance of intestinal homeostasis and consequently need to be tightly balanced.

IECs express various PPR such as TLRs, NLRs, RIG-I like receptors, on their basolateral and apical membranes (Takeuchi & Akira, 2010). Therefore, IECs show basal levels of NF-κB activation with protective effects including epithelial cell proliferation, IgA production, barrier stability and antimicrobial responses, but without inducing an inflammatory response (Abreu, 2010; Rakoff-Nahoum, Hao, & Medzhitov, 2006; Rakoff-Nahoum, Paglino, Esalami-Varzaneh, Edberg, & Medzhitov, 2004). The importance of TLR- and MyD88 dependent signaling is demonstrated by studies with knockout mice in experimental colitis. For instance, Myd88−/−, Tlr2−/− as well as Tlr4−/− mice showed more severe intestinal pathology and
increased mortality in response to DSS induced colitis (Rakoff-Nahoum et al., 2004).

During homeostatic conditions, TLR4 is expressed at low levels in IECs and located at the apical side (Abreu et al., 2001; Fukata et al., 2007; Lavelle et al., 2010). However, patients with IBD showed increased Tlr4 mRNA levels, which are suspected to cause increased sensitivity towards the microbiota and induce epithelial cell death (Abreu et al., 2001; Cario, 2013; Cario & Podolsky, 2000; Frolova, Drastich, Rossmann, Klimesova, & Tlaskalova-Hogenova, 2008; Hausmann et al., 2002). In line with this, TLR4 was shown to contribute to necrotizing enterocolitis (NEC) by inducing enterocyte apoptosis as well as inhibiting enterocyte migration and proliferation. Accordingly, TLR4 deficiency protected newborn mice from NEC, although the molecular mechanisms of TLR4 mediated IEC death remain elusive (Hackam, Afrazi, Good, & Sodhi, 2013; Leaphart et al., 2007; Sodhi et al., 2010). In the context of intestinal infection models, full body TLR4 deficiency is associated with impaired clearance after infection with Salmonella typhimurium or Escherichia Coli, although both studies focused on the importance of TLR4 induced cytokine production by subepithelial immune cells to fight the infection (Vazquez-Torres et al., 2004; Weiss, Raupach, Takeda, Akira, & Zychlinsky, 2004).

TLR3 is expressed at low levels in IECs of lactating mice and expression levels increase strongly during postnatal development (Pott & Hornef, 2012). Infection of mice with rotavirus or injection of its synthetic analog polyinosinic-polycytidylic acid (poly(I:C)) induced TLR3-TRIF dependent IEC apoptosis, villus shortening and antiviral gene response (McAllister et al., 2013; Pott & Hornef, 2012; A. Sato et al., 2006; R. Zhou, Wei, Sun, & Tian, 2007). However, a different study reported that IFN-β production in response to rotavirus infection is mediated by RIG-I-MAVS signaling and independent of TLR3 and TRIF (Broquet, Hirata, McAllister, & Kagnoff, 2011).

Beside its protective effect, aberrant TLR3 and TLR4 mediated signaling can induce IEC death and thereby contribute to intestinal pathology, although the molecular mechanisms of IEC death in the different models remain unknown.
Death receptor ligands, in particular TNF, are potent regulators of cell death and inflammatory responses. In the intestinal tract the main sources of TNF are macrophages, Th17 cells and IECs (Nazli et al., 2010; Sanchez-Munoz, Dominguez-Lopez, & Yamamoto-Furusho, 2008; Taylor, Dzus, & Colgan, 1998; Zachrisson, Neopikhanov, Samali, & Uribe, 2001). IECs express TNFR1 and therefore can respond to TNF by promoting inflammation and cell survival or undergo cell death (Lau et al., 2011; Strater & Moller, 2000). Intraperitoneal injection of TNF into wildtype mice caused villi shortening due to exfoliation of dying epithelial cells. However, TNF injection did not cause intestinal inflammation, presumably because of TNF-induced rearrangements of cell junctions (Marchiando et al., 2011; Marchiando et al., 2010; McAllister et al., 2013; Piguet, Vesin, Guo, Donati, & Barazzone, 1998; Williams et al., 2013). On the other hand, overexpression of TNF induces transmural intestinal inflammation primarily mediated by TNF responsiveness of bone marrow and parenchymal cells (Armaka et al., 2008; Kontoyiannis, Pasparakis, Pizarro, Cominelli, & Kollias, 1999). Moreover, intestinal epithelial specific overexpression of TNF induces a similar intestinal pathology, however IECs are not the initiating responders to TNF causing intestinal inflammation (Roulis, Armaka, Manoloukos, Apostolaki, & Kollias, 2011). TNF is considered as a major driver of pathogenesis in IBD, since patients show increased levels of TNF in areas with disease manifestation (Arijs et al., 2009; Braegger, Nicholls, Murch, Stephens, & MacDonald, 1992; Breese et al., 1994; Komatsu et al., 2001; MacDonald, Hutchings, Choy, Murch, & Cooke, 1990; Reimund et al., 1996). Furthermore, anti-TNF treatment is used as an effective therapy for IBD (Hanauer et al., 2002; Hanauer et al., 2006; Sandborn et al., 2007; Sandborn et al., 2001). Finally, an IBD susceptibility locus encompassing the Tnf gene has been identified in genome wide association studies (GWAS) (Dechairo et al., 2001; Hampe et al., 1999; Rioux et al., 2000).

Many genes known for their contribution to intestinal homeostasis, such as Nod2, Tlr4, Atg16l and Tnfaip3, have been identified as susceptibility loci for IBD development (Kaser, Zeissig, & Blumberg, 2010; Pott & Hornef, 2012). Some of these susceptibility genes exert their function at least partially via
NF-κB signaling. Genetic studies in mice demonstrated the importance of intestinal epithelial NF-κB signaling for the maintenance of homeostasis. For instance, mice with intestinal epithelial specific ablation of TAK1, NEMO or both, IKK1 and IKK2 show excessive IEC apoptosis and develop spontaneous colitis (Kajino-Sakamoto et al., 2008; Nenci et al., 2007). NEMO-deficient IECs died by TNF-induced apoptosis that result in compromised barrier integrity. Subsequently, bacteria are able to translocate into the mucosa where they activate immune cells. Activated immune cells in turn trigger colitis. Consequently, blocking TNF- or MyD88-dependent signaling protected NEMO^{IEC-KO} mice from developing colitis (Nenci et al., 2007). The death of NEMO-deficient IECs can only partially be attributed to canonical (p65-dependent) NF-κB activation, since mice with IEC-specific deletion of p65 do not phenocopy NEMO^{IEC-KO} mice. These mice show slightly elevated levels of IEC death and intestinal disease with low penetrance but increased susceptibility to DSS induced colitis (Steinbrecher, Harmel-Laws, Sitcheran, & Baldwin, 2008). In addition, interference with the cell death machinery regulating extrinsic apoptosis can cause intestinal pathology as well. Intestinal epithelial cell specific deletion of cFLIP results in embryonic lethality, suggesting an important role for cFLIP during gut development (Wittkopf et al., 2013). Induced deletion of cFLIP in IECs of adult mice resulted in rapid mortality as a consequence of massive epithelial cell apoptosis and intestinal inflammation. cFLIP-deficient IECs were highly susceptible to TNF- and FAS-induced RIPK3-independent apoptosis, supporting a role of cFLIP as negative regulator of caspase-8 activity (Wittkopf et al., 2013). Inhibition of extrinsic apoptosis by intestinal epithelial specific caspase-8 or FADD ablation caused spontaneous caspase-independent death of IECs. Interestingly, although functionally dependent on each other, FADD deficiency triggers colitis, enteritis and Paneth cell death, whereas mice lacking caspase-8 develop enteritis accompanied by Paneth cell loss, but no colitis (Gunther et al., 2011; Welz et al., 2011). The reason for this phenotypic difference is unknown, but could be attributed to additional functions of FADD in controlling intestinal homeostasis. Development of colitis but not enteritis and Paneth cell death in FADD^{IEC-KO} mice depends on TNF, the microbiota and was ameliorated by additional deletion of CYLD (Welz et al., 2011). Caspase-8 deficiency
sensitized IECs to TNF, poly(I:C) and LPS induced death resulting in death of mice (Gunther et al., 2015). Interestingly, LPS induced death by triggering TNF production in non-epithelial cells rather than directly acting on IECs to induce TLR4 mediated signaling in IECs (Gunther et al., 2015). Both, FADD and caspase-8 deficient IECs died by RIPK3 dependent necroptosis, indicating an important role of FADD and caspase-8 as negative regulators of necroptosis in vivo.

As described in the previous chapters, RIPK1 is a constituent of the same death-inducing complexes. Nevertheless, its role in the intestinal epithelium is remains unknown.

In summary, signaling pathways controlling intestinal homeostasis require a tight regulation and dysfunction is associated with intestinal pathology. Although extrinsic apoptosis or necroptosis per se are not required for gut development and epithelial renewal, a functional cell death machinery is necessary to prevent excessive epithelial death and inflammatory disorders. However, the detailed mechanisms regulating cell death or survival require further investigation.
1.9 Cre/LoxP conditional gene targeting

Cell type specific analysis of gene function in mice can be achieved using Cre/LoxP mediated recombination for conditional genes. Furthermore, Cre/LoxP mediated recombination allows the study the function of genes essential for embryonic development. In order to generate a conditional knockout allele, two specific 34 bp DNA sequences, called “LoxP” sites, are inserted in the same orientation to flank the desired gene locus or particular exons of interests. An allele carrying LoxP sites is called ‘floxed’ (FL) and mice carrying conditional alleles referred to as “floxed” mice. These floxed mice are crossed to mice expressing a bacteriophage P1-derived Cre recombinase under the control of a tissue specific promoter. Only in Cre expressing cells, LoxP sites are recognized and recombined by Cre, resulting in the excision of the floxed DNA fragment and an inactivation of the gene of interest.

1.10 Project description

The intestinal epithelium is a monolayer of cells with an exceptional high homeostatic cell turnover in highly balanced and complex processes to ensure barrier integrity. Several signaling pathways, such as NF-κB, are implicated in maintaining homeostasis. Excessive IEC death, for instance caused by disturbance of these pathways, can result in compromised barrier integrity, allowing a direct interaction between luminal antigens and sub-epithelial immune cells resulting in intestinal inflammation.

RIPK1 serves as a central signaling node in cytokine and PPR signaling pathways at the crossroad to induce pro-survival signaling or apoptosis as well as necroptosis. However, the function of RIPK1 in vivo in epithelial tissues remains largely unknown. In this study, Cre/LoxP conditional gene targeting was employed to generate mice with intestinal epithelial cell specific ablation of RIPK1, enabling to investigate the function of RIPK1 specifically in intestinal epithelial cells in vivo.
2. Material and Methods

2.1 Material

2.1.1 Chemicals

Chemicals and compounds were purchased from AppliChem (Darmstadt, Germany), Corning (Corning, NY, United States), DAKO (Santa Clara, CA, United States), GE Healthcare (Chalfont St Giles, Great Britain), Merck (Darmstadt, Germany), Qiagen (Hilden, Germany), Roche (Basel, Switzerland), Roth (Karlsruhe, Germany), Sigma Aldrich (München, Germany), ThermoFisher Scientific (Waltham, MA, United States), VWR (Radnor, PA, United States).

2.1.2 Material for mouse work

Syringes, Braun
Injection needles, Braun
Ampicillin, ICN Biomedicals
Ciprofloxacin, Fluka
Meronem, AstraZeneca
Neomycin, Sigma
Vancomycin, Eberth
Tamoxifen, Sigma
Dimethylsulfoxid, PAN Biotech GmbH
Cornoil, Sigma

2.1.3 Material for histology

Tissue retriever 2100, PickCell
Tissue processor, Leica TP1020
Rotary Microtome, Leica RM2255
Modular tissue embedding center, Leica EG1150 and Leica EG1150C
Microscope, Leica DM5500B
ABC Kit Vectastain Elite (Vector, PK 6100)
Avidin/Biotin Blocking Kit (Vector, SP-2001)
Liquid DAB Substrate Chromogen System (DakoCytomation, Code K3466 and Vector, ImPACT™ DAB SK-4105)
Normal goat serum, Vector Laboratories
Entellan, Merck
Glass slides, Menzel
Cover slides, Menzel

2.1.4 Material for biochemistry
Homogenizer Precellys 24, PeqLab
2 ml tubes for homogenisation, PeqLab
1,4 mm Zirconium oxide beads for tissue homogenisation, PeqLab
Gel casting system and SDS-Page system, Biorad
Power supply, Biorad
Protease Inhibitor Cocktail complete mini EDTA free, Roche
Phosphatase inhibitor, PhosphoStop, Roche
Bradford reagent, Biorad
Protein Marker PeqGold Protein Marker V, PeqLab
PVDF membranes Immobilon-P, Millipore
Films Hyperfilm ECL, Amersham
Super RX, Fujifilm

2.1.5 Molecular biology reagents and equipment
Trizol reagent, Invitrogen
RNA extraction RNeasy mini kit, Qiagen
RNase-free DNase set Qiagen
Super scriptIII cDNA synthesis Kit, Invitrogen
RT Cycler ABI HT 7900 Cycler, Applied Biosystems
Power SYBR® Green PCR Master Mix, Applied Biosystems
TaqMan® Gene Expression Master Mix, Applied Biosystems
MicroAmp® Optical Adhesive Film, Applied Biosystems
MicroAmp™ Optical 384-Well Reaction Plate, Applied Biosystems

2.1.6 Laboratory equipment
Centrifuges, Eppendorf and Haereus
Thermomixer, Eppendorf
PCR-cyclers, Biorad DNA Engine, Biometra and Eppendorf
DNA ladder, PeqLab
Primers, Invitrogen and Metabion
Bio Photometer, Eppendorf
NanoDrop ND8100, PeqLab

2.1.7 Cell culture
Plastic ware for cell culture from BD Falcon, Millipore, TPP, Corning Tubes
Eppendorf 1,5 ml and 2 ml reaction tubes
Advanced DMEM/F12, Gibco
DPBS, Gibco
Fetal Calf Serum, PAN
100x Penicillin (10000 U/ml)/Streptomycin (10000 µg/ml), Gibco
100x L-Glutamine (200 mM), Gibco
HEPES (1 M), Invitrogen
B27, Invitrogen
N2, Invitrogen
N-Acetylcysteine, Sigma-Aldrich
R-Spondin, RandD Systems
Noggin, Peprotech
mEGF, Invitrogen Biosource
Matrigel, Corning
4-Hydroxytamoxifen, Sigma
Ethanol, VWR
TNF, University of Ghent
Poly(I:C), Amersham
hIFN-β, peprotech
mIFN-γ, Immunotools
zVAD-fmk, Enzo

2.1.8 Software
Photoshop CS3, Leica microscopy Software Leica application suite, Prism
Graph, Microsoft Office., FACSDiva, FlowJo
2.1.9 Buffers and solutions

2.1.9.1 Washing buffers

PBS (1x) pH 7.3

- **NaCl**: 137 mM
- **KCl**: 2.7 mM
- **Na$_2$HPO$_4$-7H$_2$O**: 4.3 mM
- **KH$_2$PO$_4$**: 1.4 mM

TBS (1x) pH 7.5

- **Tris-Base**: 24.2 g
- **NaCl**: 80g

2.1.9.2 Buffers and solutions for immunostainings

Endogenous peroxidase blocking buffer (for IHC)

- **NaCitrate**: 0.04 M
- **Na$_2$HPO$_4$**: 0.121 M
- **NaN$_3$**: 0.03 M
- **H$_2$O$_2$**: 3% (v/v)

Antigen retrieval buffer, Citrate buffer, pH 6.0

- **NaCitrate**: 10 mM
- **Tween-20**: 0.05% (v/v)

Antigen retrieval bufferm, TEX Protease K buffer, pH 8.0 (for protease mediated antigen retrieval)

- **Tris-Base**: 50 mM
- **EDTA**: 1 mM
- **Triton X-100**: 0.5% (v/v)

2.1.9.3 Preparation of protein extracts

High salt RIPA lysis buffer

- **HEPES (pH 7.6)**: 20 mM
- **NaCl**: 350 mM
MgCl₂ 1 mM
EDTA 0.5 mM
EGTA 0.1 mM
Glycerol 20% (v/v)

1% Nonident P-40, Protease inhibitor and Phosphatase inhibitors were added prior to use.

Cytoplastic and nuclear protein extraction buffers

Buffer A (hypotonic lysis buffer)
HEPES (pH 7.6) 10 mM
KCl 10 mM
MgCl₂ 2 mM
EDTA 0.1 mM

Protease inhibitor and Phosphatase inhibitors were added prior to use.
After swelling 0.8% (v/v) Nonident P-40 was added.

Buffer C (high salt nuclear lysis buffer)
HEPES (pH 7.8) 50 mM
KCl 50 mM
NaCl 300 mM
EDTA 0.1 mM
Glycerol 10% (v/v)

Protease inhibitor and Phosphatase inhibitors were added prior to use.

2.1.9.4 Buffers and solutions for Western Blot analysis

Tris-glycine electrophoresis buffer
Tris-Base 25 mM
Glycine 250 mM
SDS 0.1% (w/v)

SDS-polyacrylamide gel
10% resolving gel (for 20 ml)
H₂O 7.9 ml
30% acrylamide mix 6.7 ml
1.5 M Tris (pH 8.8) 5.0 ml
MATERIAL and METHODS

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% (w/v) SDS</td>
<td>0.2 ml</td>
<td></td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>0.2 ml</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>0.012 ml</td>
<td></td>
</tr>
</tbody>
</table>

5% stacking gel (for 10 ml)

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>6.8 ml</td>
<td></td>
</tr>
<tr>
<td>30% acrylamide mix</td>
<td>1.7 ml</td>
<td></td>
</tr>
<tr>
<td>1 M Tris (pH 6.8)</td>
<td>1.25 ml</td>
<td></td>
</tr>
<tr>
<td>10% (w/v) SDS</td>
<td>0.1 ml</td>
<td></td>
</tr>
<tr>
<td>10% (w/v) APS</td>
<td>0.1 ml</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>0.01 ml</td>
<td></td>
</tr>
</tbody>
</table>

Transfer buffer (for semidry and wet transfer)

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Base</td>
<td>25 mM</td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td>192 mM</td>
<td></td>
</tr>
<tr>
<td>Methanol, pH 8.3</td>
<td>20% (v/v)</td>
<td></td>
</tr>
</tbody>
</table>

Blocking buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween-20</td>
<td>0.1% (v/v)</td>
<td></td>
</tr>
<tr>
<td>Nonfat dry milk</td>
<td>5% (w/v)</td>
<td></td>
</tr>
<tr>
<td>in PBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary and secondary antibody dilution buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween-20</td>
<td>0.1% (v/v)</td>
<td></td>
</tr>
<tr>
<td>Nonfat dry milk or BSA</td>
<td>5% (w/v)</td>
<td></td>
</tr>
<tr>
<td>in TBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5x Laemmli loading buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl (pH 6.8)</td>
<td>250 mM</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>10% (w/v)</td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td>50% (v/v)</td>
<td></td>
</tr>
<tr>
<td>Bromphenolblue</td>
<td>0.01%</td>
<td></td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
2.1.9.5 Buffers for DNA extraction and genotyping PCRs

Tail lysis buffer
Tris-HCl (pH 8.5) 100 mM
EDTA 5 mM
NaCl 200 mM
SDS 0.2% (w/v)
0.1 mg Proteinase K (10 mg/ml in 50 mM Tris, pH 8.0) per 100 µl lysis buffer was added prior to use.

TE buffer
Tris-HCl (pH 8) 10 mM
EDTA (pH 8) 1 mM

10x TAG buffer
Tris-Base (pH 8.5) 200 mM
KCl 500 mM

TAE buffer (25x) for 10 l
Tris-Base (pH 8.5) 1210 g
EDTA (pH 8.0) 500 ml of 0.5 M solution
Acetic acid 285.5 ml

2.1.9.6 Buffers for 3D intestinal epithelial cell culture

Complete medium without growth factors (CM-GF)
Advanced DMEM/F12 500 ml
Glutamax 100x 5 ml
HEPES (1M) 5 ml
Pen/Strep 5 ml

Complete medium with growth factors (CM+GF)
CM-GF 50 ml
B27 (50x) 1 ml
N2 (100x) 0.5 ml
n-Acetylcysteine 0.125 ml (of 500 mM stock)
ENR (EGF, Noggin, R-Spondin)

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM+GF</td>
<td>78 µl</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>2 µl</td>
<td>(of 500 µg/ml stock)</td>
</tr>
<tr>
<td>Noggin</td>
<td>10 µl</td>
<td>(of 100 µg/ml stock)</td>
</tr>
<tr>
<td>R-Spondin</td>
<td>10 µl</td>
<td>(of 100 µg/ml stock)</td>
</tr>
</tbody>
</table>
2.2 Methods

2.2.1 Animal handling and mouse experiments

2.2.1.1 Mouse maintenance

Mice were maintained in a conventional animal facility in individually ventilated cages (IVC) in a specific pathogen free (SPF) mouse facility in the Institute for Genetics and the CECAD Research Center at the University of Cologne. Mice were kept under a 12 hours light/dark cycle, given acidified water and a regular chow diet (Teklad Global Rodent 2018, Harlan) ad libitum.

For breeding, male and female mice were placed together into one cage at a minimum age of eight weeks. Litters marked with an eartag at 2-weeks of age and tail biopsies were taken at the same age for isolation of genomic DNA and genotyping. Litters were weaned with an age of three weeks.

Care of all mice was within institutional animal care committee guidelines. Animal procedures were conducted in accordance with European, national and institutional guidelines. All protocols were approved by local government authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Germany). Animals requiring medical attention were provided with appropriate care and excluded from the experiments described. No other exclusion criteria existed.

Germ-free mice were produced by embryonic transfer into the gnotobiotic facilities at the University of Ulm and of the Hannover Medical School.

2.2.1.2 Generation of conditional and full body knockout mice

To generate mice with a deletion of RIPK1 specifically in the intestinal epithelium (RIPK1IEC-KO mice), \textit{Ripk1fl/fl} mice were crossed with villin Cre transgenic mice (Madison et al., 2002). \textit{Ripk1fl/fl} mice were generated as described in 3.1 and backcrossed in a C57BL/6 background for 10 generations. RIPK1IEC-KO mice were crossed to \textit{Faddfl/fl} mice (Mc Guire et al., 2010), \textit{Myd88-/-} mice (Adachi et al., 1998), \textit{Tnfr1-/-} mice (Pfeffer et al., 1993), \textit{Tnffl/fl} mice (Dannappel et al., 2014), R26IK2casfl/sfl (Sasaki et al., 2006) or \textit{Ripk3-/-} mice (Newton, Sun, & Dixit, 2004) to generate double or triple deficient mice. All mice were analysed at 3 weeks of age unless otherwise
indicated. For all experiments littermates not carrying the villin Cre transgene were used as control mice.

2.2.1.3 Generation of inducible conditional knock-out mice

To generate mice with a tamoxifen-inducible conditional RIPK1 allele in the intestinal epithelium, **Ripk1**\(^{fl/fl}\) mice were bred with VillinCreER\(^{T2}\) transgenics (el Marjou et al., 2004). VillinCreER\(^{T2}\) recombinase activity was induced by three daily intraperitoneal injections of 1 mg tamoxifen dissolved in DMSO/corn oil in 100 µl total volume. Vehicle-treated control mice received three daily intraperitoneal injections of DMSO in corn oil. Littermates only carrying loxP flanked **Ripk1** alleles served as control mice for all experiments.

2.2.1.4 Antibiotic treatment and germ-free mice

For depletion of the intestinal microbiota, **RIPK1**\(^{IEC-KO}\) mice were treated with two different mixtures of broad spectrum antibiotics supplied through the drinking water starting from embryonic day (E)17.5. To achieve efficient microbiota depletion, two different antibiotic mixtures were applied. One antibiotics regimen consisted of a mixture containing 1g/l ampicillin, 1 g/l neomycin, 0.5 g/l ciprofloxacin and 0.5 g/l meronem and was administered until weaning. After weaning, ciprofloxacin was replaced by 0.5 g/l vancomycin. The second antibiotic cocktail consisted of 1 g/l ampicillin, 1 g/l metronidazole, 0.2 g/l cirpofloxacin and 0.5 g/l vancomycin. As neither the overall physiological response nor the tissue pathology differed between the two regimens, mouse groups receiving either antibiotic mixture were analyzed together and data from individual experiments were pooled.

For antibiotic treatment of VillinCreER\(^{T2}/Ripk1^{fl/fl}\) mice, 1g/l ampicillin, 1 g/l neomycin, 0.5 g/l meronem and 0.5 g/l vancomycin was given for 4 weeks prior administration of tamoxifen (see 2.2.1.3).

In all cases, drinking water with antibiotics was exchanged every second day and mice were transferred into a new cage. In order to check the efficiency of microbiota depletion, homogenized feces (10 mg feces in 100 µl in LB medium) were plated on agar plates in serial dilutions.
Germ-free mice were generated by embryonic transfer into the gnotobiotic facilities at the University of Ulm and of the Hannover Medical School. Survival of germ-free RIPK1IEC-KO mice was monitored at the Hannover Medical School by daily inspection. Mice were sacrificed and dissected when medical attention was required.

2.2.1.5 Preparation of tissue biopsies
Mice were euthanized by cervical dislocation or decapitation.

2.2.1.6 Tissue preparation
After euthanasia, the abdominal cavity was opened by a longitudinal incision. The colon and small intestine were removed by one cut near the anus and a second cut after the pylorus. The intestine was washed in PBS, mesentery, fat and luminal content were removed. A small piece of about 5 mm length from the distal colon and ileum was collected for RNA extraction. For histological examination, the remaining colon and ileum were cut open longitudinally and rolled up lengthwise with the help of injection needles to form a so called “swiss-rolls”.

2.2.1.7 Isolation and FACS analysis of lamina propria immune cells
Immune cells of the colon and lamina propria were isolated as described previously (Klose et al., 2013). In brief, the mice were euthanized and the colon and/or small intestine were collected as described in sections 2.2.1.5 and 2.2.1.6. The intestines were washed in ice-cold PBS, remaining fat and Peyer’s Patches were removed, and the intestines were opened longitudinally. To remove epithelial cells, intestines were incubated in 1xHBSS containing 5 mM EDTA and 10 mM HEPES at 37°C for 15 min under agitation. The supernatant was removed and this procedure was repeated twice. Afterwards, the tissue was chopped into pieces and incubated in HBSS supplemented with 4% FCS, Dispase II (0.15 mg ml-1; Roche), Collagenase D (0.4 mg ml-1; Roche) and DNase I (0.5 mg ml-1; Sigma Aldrich) in order to digest the tissue. Isolated immune cells were purified by Percoll gradient centrifugation (GE Healthcare LifeScience). Isolated immune cells were incubated with CD16/CD132 antibody (BD Biosciences) for 15 min to block Fc
receptors. In order to stain for the individual immune cell subpopulations, the cells were incubated with the following antibodies for 30 min on ice: CD3e (145-2C11), CD11b (M1/70), CD45.2 (104), Ly6G (1A8), B220 (RA3-6B2), F4/80 (BM8) (BD Biosciences). Afterwards, stained immune cells were analyzed with a BD FACS Canto I (BD Biosciences) using FACSDiva software. Experiments were analyzed with FlowJo software (Tristar). Isolation of lamina propria immune cells was performed by/under supervision of Dr. Christina Eftychi.

2.2.2 Histology

2.2.2.1 Preparation of intestinal tissue for histological analysis

For histological examination the tissue was transferred into histology cassettes and fixed in 4% paraformaldehyde overnight at 4°C. For dehydration the samples were passed through increasing concentrations of ethanol (2 h for each in 30% (v/v), 50% (v/v), 70% (v/v), 96% (v/v) and 2 times in 100% (v/v) ethanol). Subsequently, samples were incubated twice for 2 h in xylol and then transferred to liquid paraffin for embedding in paraffin blocks. The tissue was sectioned at 3-4 μm thickness, mounted on glass slides and dried overnight at 37°C.

2.2.2.2 Hematoxylin and Eosin staining

For deparaffinisation tissue sections were placed in xylol for 20 min. Rehydration was performed by placing the slides in descending series of ethanol solutions for 2 min each (100% (v/v), 96% (v/v), 75% (v/v) ethanol) and washed or 5 min in tap water. The sections were stained in Meyer’s Hematoxylin for 1 min, differentiated in tepid water for 10 sec, incubated in tap water for 15 min to develop blue staining and washed for 1 min in deionised water. The slides were placed in Eosin staining solution for 1 min. To remove excessive staining the slides were washed in tap water for 7 times. The samples were placed for 1 min each in 75% (v/v), 96% (v/v) and 100% (v/v) ethanol and then cleared in xylol for dehydration and preservation. Finally, coverslips were mounted with Entellan.
2.2.2.3 Periodic acid-Schiff staining of intestinal tissue sections

For periodic acid-Schiff (PAS) staining, slides were deparaffinized, rehydrated and washed as described in section 2.2.2.2 (H&E staining procedure). Tissue sections were treated with periodic acid for 5 min and washed two times for 5 min in tap water, followed by incubation in Schiff’s reagent for 5 to 10 min. Chromogen formation was monitored under the microscope and the reaction was stopped by washing the slides in running tap water for 10 min. Nuclei were counterstained with Meyer’s Hematoxylin for 1 min. Samples were washed, dehydrated and mounted as described above (see 2.2.2.2).

2.2.2.4 Alkaline phosphatase staining

Staining for alkaline phosphatase was performed with Vector® Red Alkaline Phosphatase Substrate Kit I (Cat. No. SK-5100) according to manufacturer’s instructions. Tissue sections were deparaffinised and rehydrated as described under H&E staining procedure (see 2.2.2.2). Samples were rinsed with 20x TBS. To visualize the presence of alkaline phosphates, 1 drop of Vulcan Fast Red Chromogen was added to 2.5 ml Vulcan Red buffer, mixed well, added to the slides and incubated for 15 min. Formation of the reaction product was followed under the microscope and reaction was stopped after a sufficient staining intensity was observed by washing the slides for 1 min in deionised water. Nuclei were counterstained with Meyer’s Hematoxylin for 1 min. Samples were washed, dehydrated and mounted as described above (see 2.2.2.2).

2.2.2.5 Immunohistochemistry

For immunohistochemical (IHC) stainings, tissue sections were deparaffinised and rehydrated in ascending concentrations of ethanol as described in section 2.2.2.2. Endogenous peroxidase activity was blocked by incubation of samples for 15 min at room temperature with endogenous peroxidase blocking buffer. Thereafter slides were washed 3 times for 5 min in tap water. Antigen unmasking was performed either by heat induced antigen retrieval in citrate buffer for 20 min at 120°C in a pressure steam cooking device or by Proteinase K digestion with 10 µg/ml Proteinase K in TEX buffer for 10 min at room temperature. Afterwards the samples were washed three times for 5 min.
in PBS. In order to block unspecific background, sections were incubated either in PBS with 10% (v/v) normal goat serum (NGS), 0.3% (v/v) Triton X-100 and Avidin or in PBS supplemented with 1% (w/v) bovine serum albumin (BSA), 10% NGS, 0.2% (v/v) cold fish skin gelatine, 0.3% (v/v) Triton X-100 and Avidin for 1 h at room temperature. Primary antibodies were diluted in PBS with 0.2% (v/v) cold fish skin gelatine and Biotin and incubated on the sections overnight at 4°C. Samples were washed three times for 5 min in PBS with 0.5% (v/v) Tween-20. Thereafter secondary antibodies were incubated on the slides for 1 h at room temperature diluted in PBS with 10% (v/v) NGS or 1% (w/v) BSA, 10% (v/v) NGS, 0.2% (v/v) cold fish skin gelatine and 0.3% (v/v) Triton X-100. After washing three times for 5 min with PBS, 0.5% (v/v) Tween-20 an Avidin-Biotin-HRP complex (ABC Kit) was applied to the slides for 30 min at room temperature. After washing in PBS, 0.5% Tween-20 the staining was developed by exposing the sections to DAB chromogen. Formation of precipitate was followed under the microscope and when a sufficient signal intensity was reached, the reaction was stopped by washing the slides in PBS. To ensure equal staining conditions incubation times with DAB were equal for all corresponding samples. Nuclei were counterstained with Hematoxylin for 1 min and subsequently dehydrated in descending concentrations of ethanol, cleared in xylol and mounted in Entellan.

Table 1: Primary antibodies and conditions for immunohistochemistry

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Company</th>
<th>Clone</th>
<th>Host</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B220</td>
<td>homemade</td>
<td>RA3 6B2</td>
<td>rat</td>
<td>1:1000</td>
</tr>
<tr>
<td>cleaved caspase-3</td>
<td>Cell signalling</td>
<td>9661</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>CD3</td>
<td>Abcam</td>
<td>ab5690</td>
<td>rabbit</td>
<td>1:200</td>
</tr>
<tr>
<td>CD45</td>
<td>BD Bioscience</td>
<td>30-F11</td>
<td>rat</td>
<td>1:500</td>
</tr>
<tr>
<td>F4/80</td>
<td>homemade</td>
<td>BM8</td>
<td>rat</td>
<td>1:200</td>
</tr>
<tr>
<td>Gr1</td>
<td>BD Pharmingen</td>
<td>1A8</td>
<td>rat</td>
<td>1:500</td>
</tr>
<tr>
<td>Ki67</td>
<td>DAKO</td>
<td>TEC-3</td>
<td>rat</td>
<td>1:1000</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>DAKO</td>
<td>EC 3.2.1.17</td>
<td>rabbit</td>
<td>1:2000</td>
</tr>
</tbody>
</table>
Table 2: Secondary antibodies and conditions for immunohistochemistry

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Company</th>
<th>Clone</th>
<th>Host</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>biotinylated rat IgG</td>
<td>DAKO</td>
<td>E0468</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>Biotinylated rabbit IgG</td>
<td>Perkin Elmer</td>
<td>NEF813</td>
<td>goat</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

2.2.3 Biochemical analysis

2.2.3.1 Isolation of intestinal epithelial cells (IECs)

In order to isolate IECs mice were euthanized, the colon and the small intestine were removed and transferred into ice-cold PBS as described above (see section 2.2.1.6). The isolation procedure for IECs was described previously in (Ukena et al., 2007). Briefly, colon and small intestine were opened longitudinally and luminal content was removed by washing in cold PBS. Intestinal tissue was incubated in a 50 ml Falcon tube with 10 mM DTT in PBS for 10 min at 37°C and 180 rpm to remove mucus and debris. After washing in PBS, the colon/small intestines were transferred into new Falcon tubes and incubated in 1x HANK’s salt solution (HBSS) supplemented for 15 min at 37°C and 180 rpm. To efficiently detach IECs and crypts from the underlying tissue, the tubes were vortexed at full speed for 1 min. Afterwards the remaining colon/ small intestines was removed with a forceps and IECs were harvested by centrifugation for 10 min at 1200 rpm. The supernatant was removed, the pellets were resuspended in 1-3 ml PBS and transferred into Eppendorf tubes. IECs were centrifuged for 1 min at 13000 rpm, the supernatant was discarded and isolated IECs were frozen in liquid nitrogen or directly processed for extraction of proteins or RNA.

2.2.3.2 Preparation of protein extracts

For total protein extraction from colonic or small intestinal IECs, cells were lysed for 30 min on ice in high salt RIPA buffer supplemented with protease- and phosphatase inhibitors. During incubation on ice cells were inverted repetitively. Afterwards protein samples were centrifuged for 20 min at 13000 rpm and 4°C to pellet cell debris. The supernatant was collected and protein concentration was determined.
2.2.3.3 Preparation of cytoplasmic and nuclear protein extracts

To prepare cytoplasmic and nuclear protein fractions, pelleted IECs were resuspended in an appropriate amount of hypotonic buffer A and incubated on ice for 10 min. Afterwards NP-40 was added to a final concentration of 0.8% (v/v) and incubated for 5 min on ice to lyse the plasma membrane. The cytoplasmic protein fraction was separated from nuclei by centrifugation at 13000 rpm for 1 min at 4°C. The supernatant containing cytoplasmic proteins was transferred into a new Eppendorf tube and frozen away. The pellet containing nuclei was washed twice in buffer A without NP-40 to remove remaining cytoplasmic extracts and detergent. In order to lyse the nuclei, the pellet was resuspended in an appropriate volume of buffer C and incubated on ice for 30 min. Afterwards, samples were centrifuged for 10 min at 13000 rpm at 4°C and the supernatant with nuclear proteins was collected into a new tube and frozen away. The protein concentration of cytoplasmic and nuclear fractions was determined.

2.2.3.4 Western Blot analysis

Protein extracts were boiled for 10 min in 1x Laemmli buffer to denature proteins and reduce disulfide bonds. Proteins were separated according to size on 10% SDS-polyacrylamid gels (SDS-PAGE). Electrophoresis was performed under denaturing conditions in Tris-Glycine electrophoresis buffer. After sufficient separation was achieved, proteins were transferred to PVDF membranes by semidy or wet transfer. PVDF membranes were activated by incubation in 100% (v/v) methanol for 5 min and subsequently placed in transfer buffer. Two Whatman papers (3 mm) were soaked in transfer buffer and SDS gels were equilibrated in transfer buffer for 5 to 15 min. The following bottom to top assembly was used for both semidy and wet transfer: A sheet of Whatman paper was covered by the SDS gel, followed by the PVDF membrane and another piece of Whatman paper on the top. For efficient semidy transfer of proteins to the PVDF membrane 1 mA current was applied per cm² membrane for 2 h. Wet transfer was performed with 120 mA current per membrane for 2 h or with 30 mA current per membrane for overnight transfer. After protein transfer the membranes were washed in PBS.
for 5 min on a shaker. Equal loading, efficiency and quality of protein transfer were checked by Ponceau S staining. In order to de-stain membranes, they were washed in PBS with 0.5% (v/v) Tween-20 until Ponceau S staining disappeared. To reduce unspecific binding of antibodies, membranes were incubated with PBS supplemented with 5% (w/v) non-fat dry milk, 0.5% (v/v) Tween-20 for 1 h under agitation. Primary antibodies were diluted in PBS with 5% (w/v) BSA, 0.1% (v/v) Tween-20, 0.001% NaN₃ and incubated on the membrane overnight at 4°C under constant agitation. Membranes were washed three times for 5 min in PBS with 0.1% (v/v) Tween-20 and incubated with HRP-conjugated secondary antibody diluted in PBS with 5% (w/v) non-fat dry milk and 0.1% (v/v) Tween-20 for 1 h at room temperature under agitation. Afterwards membranes were washed three times for 5 min in PBS with 0.1% (w/v) Tween-20. Protein bands were visualized using commercial ECL, ECL Pico or ECL Femto with varying exposure times to chemiluminescent films depending on the individual band intensities. Exposed films were developed and fixed in AGFA developer solution and AGFA fixation solution respectively.
Table 3: Primary antibodies used for WB analysis

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Company</th>
<th>Clone</th>
<th>Host</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Actin</td>
<td>Santa Cruz</td>
<td>I19</td>
<td>goat</td>
<td>1:5000</td>
</tr>
<tr>
<td>cFLIP</td>
<td>Alexis</td>
<td>ADI-AAP-440-E</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>cIAP1</td>
<td>Enzo</td>
<td>ALX-803-335-C100</td>
<td>rat</td>
<td>1:1000</td>
</tr>
<tr>
<td>Cre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c-Rel</td>
<td>Santa Cruz</td>
<td>sc-71</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>HDAC1</td>
<td>HDAC1</td>
<td>sc-7872</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>p50/p105</td>
<td>NCI BRB</td>
<td>NR1157</td>
<td>rabbit</td>
<td>1:20000</td>
</tr>
<tr>
<td>p65</td>
<td>Santa Cruz</td>
<td>sc-372</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>p100/52</td>
<td>NCI BRB</td>
<td>NR1495</td>
<td>rabbit</td>
<td>1:20000</td>
</tr>
<tr>
<td>RelB</td>
<td>Cell Signaling</td>
<td>4922</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>RIPK1</td>
<td>BD Bioscience</td>
<td>610459</td>
<td>mouse</td>
<td>1:1000</td>
</tr>
<tr>
<td>RIPK3</td>
<td>Enzo</td>
<td>ADI-905-242-100</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>TRAF2</td>
<td>Santa Cruz</td>
<td>sc-876</td>
<td>rabbit</td>
<td>1:1000</td>
</tr>
<tr>
<td>α-Tubulin</td>
<td>Sigma</td>
<td>B-5-1-2</td>
<td>mouse monoclonal</td>
<td>1:5000</td>
</tr>
</tbody>
</table>

Table 4: Secondary antibodies used for WB analysis

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Company</th>
<th>Clone</th>
<th>Host</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit IgG-HRP</td>
<td>GE Healthcare</td>
<td>NA934V</td>
<td>goat</td>
<td>1:5000/1:10000</td>
</tr>
<tr>
<td>Mouse IgG-HRP</td>
<td>GE Healthcare</td>
<td>NA9310V</td>
<td>sheep</td>
<td>1:5000/1:10000</td>
</tr>
<tr>
<td>Goat IgG HRP</td>
<td>Jackson Lab</td>
<td>705-035-003</td>
<td>donkey</td>
<td>1:5000</td>
</tr>
<tr>
<td>Rat IgG-HRP</td>
<td>Jackson Lab</td>
<td>112-035-003</td>
<td>goat</td>
<td>1:5000</td>
</tr>
</tbody>
</table>

2.2.4 Molecular Biology

2.2.4.1 Preparation of genomic DNA

Tail biopsies were digested in 200 µl tail lysis buffer supplemented with 10 mg/ml Proteinase K for a least 2 h at 56°C. For precipitation of DNA 200 µl isopropanol were added and the tube was inverted several times. The tube was centrifuged for 2 min at 13000 rpm, the supernatant discarded and 200 µl 70% (v/v) ethanol were added to wash the DNA. The sample was centrifuged
MATERIAL and METHODS

again for 2 min at 13000 rpm, the supernatant discarded and the pellet air-dried for 20 min. Finally, the DNA pellet was resuspended in 200 µl Tris-EDTA buffer and used for genotyping PCRs.

2.2.4.2 Genotyping PCRs
Genotyping was performed by using 2 µl genomic tail DNA for Polymerase-chain-reaction (PCR) based genotyping per reaction. For one reaction 2 µl genomic tail DNA were mixed with 12.5 µl ready-to-use Mastermix (VWR), 2 µl of 3 µM primer mix and 10.5 µl H₂O. Annealing and elongation temperatures depend on the primer sets used for individual PCRs (see Table 5 and Table 6). 10 µl of the PCR reaction products were separated on 2% (w/v) agarose gels.

Table 5: Primer-sequences for genotyping PCRs and PCR-amplified fragment sizes. WT: wildtype; Tg: transgene; FL: floxed; KO: knock-out; DEL: deleted

<table>
<thead>
<tr>
<th>Typing for</th>
<th>Primer sequence (5’ → 3’)</th>
<th>Band size</th>
</tr>
</thead>
<tbody>
<tr>
<td>villin Cre</td>
<td>ACA GGC ACT AAG GGA GCC AAT G AT TGCA GGT CAG AAA GAG GTC ACA G GTT CTT GCG AAC CTC ATC ACT C</td>
<td>WT: 900 bp Tg: 350 bp</td>
</tr>
<tr>
<td>villin CreER<sup>T2</sup></td>
<td>CAA GCC TGG CTC GAC GGC C CGC GAA CAT CTT CAG GTT CT</td>
<td>Tg: 300 bp</td>
</tr>
<tr>
<td>Ripk1 floxed</td>
<td>CAT GCC TGC AAA CAC CTA AAC GTT ACA ACA TGC AAA TCA AC</td>
<td>WT: 320 bp FL: 380 bp</td>
</tr>
<tr>
<td>Ripk1 deleted</td>
<td>GAGGAAGACATCACTGAAGA CAGAGGGCTGGATCTGGTG</td>
<td>KO: 230 bp</td>
</tr>
<tr>
<td>Myd88</td>
<td>GAG CAG GCT GAG TGC AAA CTT GGT CTG AGC CTC TAC ACC CTT CTC TTT CTC TCC ACA ATC GCC TTC TAT GGC CTT CTT TAT GAC GAG</td>
<td>WT: 1000 bp KO: 1000 bp (2 PCRs)</td>
</tr>
<tr>
<td>Tnfr1</td>
<td>AGA AAT GTC CCA GGT GGA GAT CTC GGC TGC AGT CCA CGC ACT GG ATT CGC CAA TGA CAA GAC GCT GG</td>
<td>WT: 120 bp KO: 300 bp</td>
</tr>
<tr>
<td>Fadd</td>
<td>TCA CCG TTG CTC TTT GTC TAC GTA ATC TCT GTA GGG AGC CCT CTA GCG CAT AGG ATG ATC AGA</td>
<td>WT: 208 bp FL: 280 bp DEL: 331 bp</td>
</tr>
<tr>
<td>Ripk3</td>
<td>CGC TTT AGA AGC CTT CAG GTT GAC GCC TGC CCA TCA GCA ACT C CCA GAG GCC ACT TGT GTA GCG</td>
<td>WT: 320 bp KO: 485 bp</td>
</tr>
</tbody>
</table>
Table 6: PCR programs for genotyping PCRs

<table>
<thead>
<tr>
<th>Typing for</th>
<th>PCR program</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature</td>
<td>Time</td>
</tr>
<tr>
<td>villin Cre</td>
<td>94°C</td>
<td>3 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td></td>
</tr>
<tr>
<td>Ripk1 floxed</td>
<td>94°C</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Ripk1 deleted</td>
<td>94°C</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Myd88</td>
<td>94°C</td>
<td>3 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>67°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Tnfr1</td>
<td>94°C</td>
<td>2 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>61°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>2 min</td>
</tr>
<tr>
<td>Fadd</td>
<td>94°C</td>
<td>3 min</td>
</tr>
<tr>
<td></td>
<td>94°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>55°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>3 min</td>
</tr>
</tbody>
</table>
2.2.4.3 Agarose gel electrophoresis

Agarose gel electrophoresis was performed to separate PCR-amplified DNA fragments according to size. 2% (w/v) agarose was dissolved by boiling in 1x TAE buffer and 0.5 mg/ml Ethidiumbromide were added. Gels were run in 1x TAE buffer for 20 to 40 min at 120 to 140 mV.

2.2.4.4 RNA extraction

For RNA extraction from whole colon/small intestinal tissue or IECs, samples were homogenized in 1 ml Trizol reagent (Invitrogen) and incubated for 20 min at room temperature for complete cell lysis. Samples were centrifuged for 10 min at 13000 rpm to pellet cell debris. The supernatant was transferred into a new tube and incubated for 5 min at room temperature. To extract nucleic acids 200 µl chloroform per 1 ml Trizol were added and samples were mixed vigorously for 15 sec followed by 5 min incubation at room temperature. The samples were centrifuged for 15 min at 13000 rpm to separate aqueous and organic phase. Afterwards the upper aqueous phase was transferred into a new tube containing an equal volume of 70% (v/v) ethanol and mixed gently. The samples were loaded on Quiagen RNeasy columns. For binding of nucleic acids to the filter of the column, the columns were centrifuged for 1 min at 9000 rpm. For washing 500 µl washing buffer (provided by manufacturer) was added and the column was subsequently centrifuged at 9000 rpm for 30 sec. In order to digest genomic DNA RNase-free DNase diluted in RDD buffer (provided by manufacturer) was added to the column and incubated for 30 min at room temperature. Afterwards the column was washed twice as described and RNA was eluted in nuclease free H₂O by centrifugation for 2 min at 13000 rpm. To check for possible genomic DNA contamination, equal volumes of RNA were subjected to β-Actin PCR (see...
section 2.2.4.3). Finally, the concentration and purity of extracted RNA were assessed by photometric analysis using NanoDrop.

2.2.4.5 cDNA synthesis

In order to synthesize cDNA, the Superscript III kit (Invitrogen) was used according to manufacturer’s instructions. For 10 µl final reaction volume, 1 µg RNA was mixed with 1 µl of 50 ng/µL random hexamer primers and 1 µl of 10 mM dNTPs. The reaction mixture was first incubated at 65°C for 5 min to allow primers to anneal to mRNA and subsequently cooled on ice for a few minutes. Meanwhile, 10 µl cDNA reaction mix containing 2 µl 10x RT-reaction buffer, 4 µl 25 mM MgCl2, 2 µl 0.1 M DTT, 1 µl RNase OUT (40 U/µl) and 1 µl of SuperScript III polymerase (200 U/µL) were prepared and added to the samples. Reverse transcription was performed in a PCR cycler using the following program: 10 min at 25°C, 50 min at 50°C for cDNA synthesis and 5 min at 85°C heat-inactivation. To digest the RNA 1 µl RNaseH was added to the reaction and the samples were incubated for 20 min at 37°C. The cDNA reaction mix was diluted 10-fold in nuclease-free water and 1 µl of cDNA was used for an actin-PCR to check successful cDNA synthesis.

2.2.4.6 Quantitative real time PCR

Gene expression was quantified by performing probe-based Taqman quantitative real time PCR (qRT-PCR). All samples were run in two technical replicates. qRT-PCR was performed in a final volume of 10 µl, consisting of 2 µl cDNA, 5 µl Mastermix (Applied Biosystems), 0.5 µl primer-probe mix (Applied Biosystems) and 2.5 µl nuclease-free water. All reactions were carried out in 384-well plates. The following PCR program was performed: 10 min at 95°C for the activation of the polymerase, followed by 40 amplification cycles each with 10 sec at 95°C and 1 min at 60°C each.

The comparative ΔΔCT or ΔCT was used to determine RNA expression levels of the genes of interest. For the ΔΔCT method, the CT value of the endogenous reference gene (TATA box binding protein) was substracted from the CT values of the target gene to obtain the ΔCT value for each duplicate. Relative quantification was performed by calculation of the ΔΔCT value.
Table 7: Taqman probes used for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Taqman probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccl2</td>
<td>Mm00441242_m1</td>
</tr>
<tr>
<td>Ccl5</td>
<td>Mm01302428_m1</td>
</tr>
<tr>
<td>Cxcl1</td>
<td>Mm00433859_m1</td>
</tr>
<tr>
<td>Il-1b</td>
<td>Mm00434228_m1</td>
</tr>
<tr>
<td>Il-12a, p35</td>
<td>Mm00434165_m1</td>
</tr>
<tr>
<td>Tnf</td>
<td>Mm00443258_m1</td>
</tr>
<tr>
<td>Tbp</td>
<td>Mm00446973_m1</td>
</tr>
</tbody>
</table>

2.2.5 Cell culture

2.2.5.1 Isolation and culture of small intestinal organoids
Small intestinal crypts were isolated and grown to organoids as previously described (T. Sato et al., 2009). Mice were sacrificed and the small intestine isolated as described in sections 2.2.1.5 and 2.2.1.6 respectively. To remove luminal content the small intestine was cut open longitudinally and was washed in PBS. The intestine was placed on a petri dish and cut opened up with tweezers making sure the mucosal side was facing upwards. A smoothed coverslip was used to carefully scrape off the villi. After a short washing in PBS the intestine was chopped into 2 to 4 mm pieces and transferred into a 50 ml Falcon tube. To wash the intestinal tissue 10 ml PBS were added, pieces were pipetted up and down, were allowed to settle down and the supernatant aspirated. Washing was repeated 15 to 20 times until the supernatant was clear. Afterwards the pieces of intestine were incubated in PBS containing 2 mM EDTA for 30 min at 4°C under agitation to release the crypts from the underlying tissue. Intestinal fragments were allowed to settle and the supernatant was aspirated. To isolate and collect intestinal crypts, 10 ml PBS supplemented with 10 (w/v) FCS were added to the intestinal tissue and mixed vigorously. The supernatant was aspirated and passed through a 70 µM cell strainer. The flow through containing small intestinal crypts was collected and this procedure was repeated three more times. Crypt fractions 3 and 4 were centrifuged for 5 min at 800 rpm. The supernatant was removed, the pellets were resuspended in 5 ml CM-GF and centrifuged for 5 min at 600
rpm to remove single cells. The culture of the isolated crypt fractions was performed in a lamin-rich Matrigel, shown to support small intestinal growth. An adequate amount of crypts was resuspended in 200 µl matrigel and 50 µl matrigel drops with crypts were seeded out per well in a 24-well plate. Matrigel was allowed to polymerize for 10 min at 37°C and 500 µl CM+GF with 5 µl ENR were added to the crypts. In order to prevent anoikis, 1 µl of 10 mM ROCK inhibitor (Y27632) (Sigma) was added to the crypt culture for the first 3 days.

For the passage of crypt cultures the matrigel was gently detached from the well with a 1000 µl pipet tip and transferred into a 15 ml Falcon tube. In order to mechanically rupture the crypts, the medium containing the crypts and the matrigel was passed through a 23 gauge syringe several times. The crypt fragments were centrifuged for 5 min at 600 rpm at 4°C, the supernatant was aspirated and crypts were resuspended in an appropriate volume of matrigel. For culturing in 24-well plates, 50 µl matrigel was seeded per well, 20 µl matrigel were used per well in a 48-well plate and 10 µl matrigel per well for culturing organoids in a 96-well plate. After incubation for a few minutes at 37°C, 500 µl, 200 µl or 100 µl CM+GF supplemented with 1 µl ENR per 100 µl medium was added to the corresponding wells.

2.2.5.2 Tamoxifen-induced deletion of RIPK1 in organoid cultures

For tamoxifen-induced in vitro deletion of RIPK1 in crypt cultures organoids from VillinCreERT2/Ripk1fl/fl mice were isolated as described in 2.2.5.1. Organoids were maintained in culture for at least 4 passages before the deletion of RIPK1 was induced. The cultures were seeded and grown in DMEM/F12 without phenol red for 24 to 36 h. In order to delete RIPK1, 100 nM 4-hydroxytamoxifen (4-OHT) dissolved in ethanol or for mock treatment, an equal amount of ethanol was added to the culture medium. After 20 to 24 h the 4-OHT containing medium was replaced by fresh culture medium and organoids were kept in culture for further analysis as indicated.

2.2.5.3 Assessment of cell death in organoids

In order to quantify cell death in organoids by propidium iodide (PI) uptake, organoids were cultured and RIPK1 was deleted by addition of 4-OHT as
described above (2.2.5.1 and 2.2.5.2). To harvest the crypts for analysis, the medium was removed from the wells and 300 µl TrypLE™ solution (Life Technologies) per well were added. Organoids were carefully detached with a 1000 µl pipet tip and transferred into an Eppendorf tube. For mechanic break up, the organoids were passed 2 times through a syringe with a 23 G injection needle and incubated for 5 min at 37 °C. 800 µl PBS with 2% FCS were added to the culture to stop further digestion and the samples were centrifuged for 5 min at 500 rpm. Subsequently, organoids were resuspended in 200 µl PBS supplemented with 2% FCS and propidium iodide was added to a final concentration of 1 µg/ml immediately before FACS analysis. Cell death was determined by quantification of PI-positive cells as acquired with a FACSCalibur FACS analyser.
3. Results

3.1 RIPK1 deficiency in IECs induces intestinal pathology and epithelial cell death

3.1.1 Generation of mice with intestinal epithelial specific RIPK1 deficiency

To investigate the role of RIPK1 in the murine intestinal epithelium, mice lacking RIPK1 specifically in the cells of the intestinal epithelium were generated. Therefore Ripk1^{fl/fl} mice (Dannappel et al., 2014) were crossed to mice that express Cre recombinase under control of the intestinal epithelial cell (IEC) specific villin promoter (el Marjou et al., 2004). In these mice, the third exon of the Ripk1 alleles is excised by Cre recombinase only in IECs. The resulting mice (from here on called ‘RIPK1^{IEC-KO} mice’) are deficient for RIPK1 specifically in IECs.

Successful deletion of RIPK1 in colonic and small intestinal IECs was confirmed by Western Blot (Figure 4).

Figure 4. Conditional deletion of RIPK1 in IECs.
Whole cell protein extracts from primary (a) small intestinal and (b) colonic IECs from Ripk1^{fl/fl} mice (FL/FL) and RIPK1^{IEC-KO} mice (IEC-KO) were analysed by immunoblot with the indicated antibodies.
3.1.2 Increased IEC apoptosis and mild inflammation in the ileum of RIPK1IEC-KO mice

RIPK1IEC-KO mice were born at expected Mendelian ratios (Figure 5a), however grew slower and had significantly reduced body weight at 3 weeks of age compared to their Ripk1fl/fl littermates (Figure 5b). These mice showed signs of cachexia, which became apparent at 2 weeks of age (data not shown). All RIPK1IEC-KO mice died prematurely before reaching an age of 28 days (Figure 5c), showing that RIPK1IEC-KO mice develop a severe spontaneous phenotype and that intestinal RIPK1 has an important role in maintaining intestinal homeostasis.

- **Figure 5. RIPK1IEC-KO mice develop spontaneous phenotype resulting in premature death.**
 - (a) Table showing expected and observed absolute number and possibilities of offspring with the indicated genotype resulting from breeding villin Cre tg/wt; Ripk1wt/wt mice with villin Cre wt/wt; Ripk1fl/fl mice.
 - (b) Body weight of Ripk1fl/fl (FL/FL) and RIPK1IEC-KO mice at 3 weeks of age.
 - (c) Kaplan-Meier survival curve for Ripk1fl/fl and RIPK1IEC-KO mice. *P \leq 0.05, **P \leq 0.01, ***P \leq 0.005

Histological analysis of Hematoxylin and Eosin (H&E) stained ileal sections from 3 week-old RIPK1IEC-KO mice revealed an almost complete loss of villus structures throughout the ileum (Figure 6 red line). Numerous cells with morphological features of dying cells such as fragmented nucleus were identified in the lumen of the crypts and within the epithelium, indicating that Ripk1-/- IECs undergo cell death (Figure 6 black arrows). Crypts were
RESULTS

elongated compared to Ripk1^{f/f} mice suggesting hyperproliferation in intestines of RIPK1^{IEC-KO} mice (Figure 6 black line). Staining against Ki67, a marker for proliferative cells, confirmed increased numbers of proliferating IECs in RIPK1^{IEC-KO} mice and expansion of the transient amplifying (TA) cell compartment (Figure 7). PAS staining against glycosylated mucus-proteins secreted by goblet cells and staining against alkaline phosphatase (AP) expressed by mature enterocytes on small intestinal sections of RIPK1^{IEC-KO} mice showed reduced numbers of goblet cells and mature enterocytes respectively (Figure 7). In addition, lysozyme staining revealed reduced numbers of Paneth cells in RIPK1^{IEC-KO} mice compared to Ripk1^{f/f} mice (Figure 7).

As described above, ileal H&E sections of 3-week old Ripk1^{f/f} mice and RIPK1^{IEC-KO} mice. Red line depicts villus length. Black line represents crypt length. Black arrows indicate dead epithelial cells. Scale bars: 100 µm.

As described above, ileal H&E sections of 3-week old RIPK1^{IEC-KO} mice showed increased incidence of dying intestinal epithelial cells. In order to determine the type of epithelial death, IHC against cleaved caspase-3 (CC3) was done.
RESULTS

Figure 7. Hyperproliferation and reduced numbers of differentiated epithelial cells in RIPK1IEC-KO mice.
Representative images of small intestinal swiss rolls from 3-week old Ripk1fl/fl and RIPK1IEC-KO mice stained for alkaline phosphatase (AP), Periodic acid-Schiff (PAS), immunostained for Ki67 and lysozyme and counterstained with haematoxylin. Scale bars: 100 µm.

As shown in Figure 8, RIPK1IEC-KO mice showed high numbers of dying epithelial cells that were positive for cleaved caspase-3, indicating that RIPK1 deficiency sensitized IECs to apoptosis. Apoptosis of Ripk1-/- IECs occurred mainly in the crypts and the TA cell compartment of the intestinal epithelium, indicating that primarily undifferentiated progenitor cells underwent apoptosis. Quantification of cell death revealed that 50% of all crypts in the ileum of RIPK1IEC-KO mice harboured apoptotic IECs (Figure 8). In average, every crypt in RIPK1IEC-KO harbored two apoptotic cells, emphasizing the massive extent of cell death observed in this phenotype (Figure 8). Taken together, these results show that RIPK1IEC-KO mice develop a severe spontaneous phenotype characterised by extensive apoptosis of IECs, villus atrophy, reduced numbers of differentiated cells, epithelial hyperproliferation and premature lethality.
To check if increased epithelial death triggers an inflammatory response, quantitative real time PCR (qRT-PCR) was employed to monitor expression levels of inflammatory cytokines and chemokines in whole small intestinal tissue isolated from RIPK1IEC-KO mice and their Ripk1fl/fl littermates. Messenger RNA (mRNA) levels of Tnf, an important pro-inflammatory cytokine, and Cxcl1, a chemoattractant for neutrophils were statistically significantly increased in RIPK1IEC-KO compared to their floxed littermates (Figure 9). Other cytokines, Il1b and Il12a, showed no difference in expression levels between RIPK1IEC-KO mice and Ripk1fl/fl mice. Furthermore, expression of chemokines Ccl2 and Ccl5 was not different between RIPK1IEC-KO and Ripk1fl/fl mice (Figure 9). To further elucidate the immune response in the intestines of 3-week old RIPK1IEC-KO mice, immunostainings allowing identification of different immune cell lineages were performed on tissue sections. Furthermore, immune cells were isolated from the small intestinal lamina propria, immunostained for different immune cell lineages and subsequently analysed with FACS. Immunostaining for CD45+ cells, a marker for immune cells with hematopoietic origin, revealed that the overall number of immune cells is slightly increased in RIPK1IEC-KO mice (Figure 10).
RESULTS

Figure 9 Elevated expression of Tnf and Cxcl1 in intestines of 3-week old RIPK1IEC-KO mice.

qRT-PCR analysis of inflammatory cytokine and chemokine mRNA expression levels in whole small intestinal tissue from 3-week old Ripkfl/fl and RIPK1IEC-KO mice. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005

In more detail, a few Gr1 positive granulocytes scattered throughout the lamina propria of RIPK1IEC-KO mice were detected, and the number of F4/80 positive macrophages did not differ between RIPK1IEC-KO and control mice (Figure 10). IHC for cells of the adaptive immune response revealed no visually detectable changes in B220 positive B-cell and CD3 positive T-cell numbers in RIPK1IEC-KO mice and compared to their floxed littermates (Figure 10). FACS analysis of immune cells isolated from the lamina propria allowed a more quantitative comparison of immune cell numbers in RIPK1IEC-KO and Ripkfl/fl mice. The total number of CD45+ leucocytes was slightly increased in RIPK1IEC-KO mice compared to Ripkfl/fl mice, although this change was not statistically significant (Figure 10). Analysis of the composition of the CD45+ leucocyte population revealed significantly increased numbers of Gr1+ granulocytes in the small intestine of RIPK1IEC-KO mice compared to control mice (Figure 10). The numbers of CD11bhi F4/80+ Ly6G- macrophages and CD3+ T-cells did not differ between RIPK1IEC-KO and Ripkfl/fl mice (Figure 10). Finally, the total numbers of B220 positive B-cells were significantly reduced in RIPK1IEC-KO mice compared to littermate controls. Taken together, these results show that ablation of RIPK1 in the small intestine causes a severe spontaneous phenotype, characterized by extensive intestinal epithelial cell apoptosis, hyperproliferation and a mild inflammatory response.
Figure 10 Slightly increased leucocyte numbers in the mucosa of 3-week old RIPK1^{IEC-KO} mice.

(a) Ileal swiss rolls from 3-week old Ripk1^{fl/fl} and RIPK1^{IEC-KO} mice were immunostained for CD45, Gr1, F4/80, CD3, B220 and counterstained with haematoxylin. Scale bars: 100 µm

(b) Lamina propria immune cells were isolated from 3-week old Ripk1^{fl/fl} and RIPK1^{IEC-KO} mice, immunostained for CD45 and analysed by FACS.

(c) Lamina propria immune cells were isolated from 3-week old Ripk1^{fl/fl} and RIPK1^{IEC-KO} mice, immunostained for CD11b^{Ly6G⁺}, CD11b^{F4/80⁺} Ly6G⁺, CD3 (T-cells) and B220 (B-cells) and analysed by flow cytometry. Isolation and immunostaining of lamina propria immune cells in (b) and (c) was done by Dr. Christina Eftchi. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
3.1.3 Increased IEC apoptosis and mild inflammation in the colon of RIPK1IEC-KO mice

To investigate the colon pathology of RIPK1IEC-KO mice, H&E sections of colons from 3-week-old RIPK1IEC-KO mice were examined. In the proximal colon, RIPK1IEC-KO mice showed increased cellularity in the lamina propria, elongated crypts and high numbers of cells with morphological features of dying cells within the epithelium and the lumen of the crypts (Figure 11).

IHC against CC3 indicated that death of IECs was apoptotic (Figure 11). Extensive IEC apoptosis was affecting 50% of the crypts in the proximal colon with each crypt harbouring one apoptotic epithelial cell in average (Figure 11).
Ki-67 staining revealed increased numbers of proliferating cells, suggesting a hyperproliferating epithelium in the proximal colon. RIPK1IEC-KO mice had reduced numbers of goblet cells and mature enterocytes compared to control mice as shown by staining for PAS and AP respectively (Figure 12).

In the distal colon the phenotype was less severe compared to the proximal colon. Crypts were only slightly elongated compared to Ripk1fl/fl mice and few scattered dying IECs were detected within the epithelium and (Figure 11). Staining against CC3 showed that these cells died by apoptosis, although the extent of cell death was less pronounced compared to the proximal colon and the ileum (Figure 11). As already indicated by H&E sections, Ki-67 staining confirmed that the number of proliferating cells was only slightly increased in RIPK1IEC-KO mice compared to Ripk1fl/fl mice (Figure 12). Similar to the ileum and the proximal colon, goblet cell numbers were reduced in the distal colon of RIPK1IEC-KO mice compared to their floxed littermates (Figure 12).

![Figure 12 Hyperproliferation and reduced numbers of differentiated epithelial cells in the colon of RIPK1IEC-KO mice.](image)

Representative images of colon swiss rolls from 3-week old RIPK1IEC-KO mice stained stained for AP, PAS, immunostained for Ki67 and counterstained with haematoxylin. Scale bars: 100 µm.
To assess whether RIPK1IEC-KO mice suffered from colitis, qRT-PCR was performed using whole colon tissue isolated from 3-week old RIPK1IEC-KO and control mice. Messenger RNA levels for Tnf, Ccl5, Cxcl1 and Il1b were significantly increased in RIPK1IEC-KO mice compared to Ripk1fl/fl mice (Figure 13). Expression levels of cytokine Il12a and chemokine Ccl2 did not differ between 3-week old RIPK1IEC-KO and Ripk1fl/fl mice (Figure 13).

In order to assess the composition of immune cells in the colon of RIPK1IEC-KO mice, IHC against the different immune cell lineages was performed. Staining against CD45 showed that the overall number of immune cells was increased in the proximal but not in the distal colon (Figure 14). Gr1 positive granulocytes were only rarely detected in the lamina propria of RIPK1IEC-KO mice (Figure 14). IHC indicated that the number of B220 positive B-cells did not differ between RIPK1IEC-KO and Ripk1fl/fl mice, however an increase in CD3 positive T-cells was detected in the proximal colon, but not the distal colon of RIPK1IEC-KO mice when compared to control mice (Figure 14). For a direct quantitative comparison of leucocyte numbers, immune cells of the lamina propria were isolated from 3-week old RIPK1IEC-KO mice and their Ripk1fl/fl littermates, immunostained and subsequently analysed with FACS. The total number of CD45+ leucocytes in the lamina propria was significantly increased in RIPK1IEC-KO mice compared to control mice (Figure 14). This increase was mainly due to significantly increased numbers of CD11b+ Ly6G+ neutrophils and CD3+ T-cells in RIPK1IEC-KO mice. No differences in the numbers of
CD11bhi F4/80$^{+}$ Ly6G$^{-}$ macrophages and B220$^{+}$ B-cells were detected between RIPK1$^{IEC-KO}$ mice and Ripk1$^{fl/fl}$ mice (Figure 14). Taken together, these data show that RIPK1$^{IEC-KO}$ mice develop a severe spontaneous phenotype in the proximal colon associated with extensive IEC apoptosis, hyperproliferation and mild inflammation characterized by moderately increased mRNA levels of a number of cytokines and chemokines as well as mild leucocyte infiltrations. In contrast to this, a comparable mild phenotype was observed in the distal part of the colon.
Figure 14 Increased infiltration of immune cells in the mucosa of RIPK1IEC-KO mice.

(a) Colon swiss rolls from 3-week old Ripk1fl/fl and RIPK1IEC-KO mice were immunostained for CD45, Gr1, F4/80, CD3, B220 and counterstained with haematoxylin. Scale bars: 100 µm (b) Colonic lamina propria immune cells were isolated from 3-week old Ripk1fl/fl and RIPK1IEC-KO mice, immunostained for CD45 and analysed by FACS. (c) Colonic lamina propria immune cells were isolated from 3-week old Ripk1fl/fl and RIPK1IEC-KO mice, immunostained for CD11b Ly6G (neutrophils), CD11b F4/80 Ly6G (macrophages), CD3 (T-cells) and B220 (B-cells) and analysed by flow cytometry. Isolation, immunostaining and FACS of lamina propria immune cells in (b) and (c) was done by Dr. Christina Eftychi. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
3.1.4 Progressive phenotype in RIPK1IEC-KO mice

To investigate the development of the intestinal phenotype in RIPK1IEC-KO mice, newborn and 7-day old RIPK1IEC-KO mice were analysed. Newborn RIPK1IEC-KO mice were macroscopically indistinguishable from their floxed littermates and exhibited a largely normal histopathology (data not shown and Figure 15a). Few apoptotic epithelial cells were found in the small intestine and the colon of newborn RIPK1IEC-KO mice (Figure 15a). No difference in numbers of proliferating epithelial cells were detected, and numbers of CD45\textsuperscript+ leucocytes did not differ between RIPK1IEC-KO and Ripk1fl/fl mice in both the ileum and colon (Figure 15a). qRT-PCR revealed that mRNA levels of the tested cytokines and chemokines, except for Ccl5, were not significantly up- or downregulated in RIPK1IEC-KO mice compared to control mice (Figure 15).

![Figure 15. No intestinal pathology in newborn RIPK1IEC-KO mice.](image)

(a) Representative images of intestinal sections from newborn Ripk1fl/fl and RIPK1IEC-KO mice stained with H&E or immunostained for CC3, Ki67 and CD45. Scale bars: 100 \textmu m. (b,c) qRT-PCR analysis of ileal (b) and colonic (c) whole tissue for mRNA expression levels of cytokines and chemokines in RIPK1IEC-KO mice compared to Ripk1fl/fl mice. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
At 7 days of age, H&E stained sections of RIPK1IEC-KO mice showed local loss of villus structures in the small intestine, elongated crypts and dying epithelial cells in both colon and small intestine (Figure 16a). IHC against CC3 revealed increased numbers of apoptotic cells in colon and small intestine of RIPK1IEC-KO mice compared to floxed littermates (Figure 16a).

Figure 16. Intestinal pathology in 1-week old RIPK1IEC-KO mice.

(a) Representative images of intestinal sections from 1-week old Ripk1fl/fl and RIPK1IEC-KO mice stained with H&E or immunostained for CC3, Ki67 or CD45. Scale bars: 100 µm (b) Quantification of crypts containing CC3\(^+\) cells and the number of CC3\(^+\) cells per crypts in 1-week-old Ripk1fl/fl and RIPK1IEC-KO mice. (c, d) qRT-PCR for mRNA expression levels of inflammatory cytokines and chemokines in ileal (b) and colonic (c) tissue from 1-week old Ripk1fl/fl and RIPK1IEC-KO mice. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005

Tissue section stainings as well as quantification of cell death revealed an intermediate stage between the extent of apoptosis observed in RIPK1IEC-KO mice at 1 day and 3 weeks of age (Figure 16a, b). This indicates a
progressive exacerbation of the phenotype with age. Increased numbers of proliferating epithelial cells, a moderate increase in CD45+ leucocytes in the lamina propria accompanied by a moderate increase in \(Tnf \) and \(Il1b \) mRNA levels was observed in 1-week old RIPK1\(^{IEC-KO} \) mice (Figure 16a, c, d). These results suggest that the phenotype caused by RIPK1 ablation develops progressively after birth and hyperproliferation as well as mild inflammation in the colon and the small intestine occur in response to IEC apoptosis.
3.1.5 Inducible postnatal deletion of RIPK1 leads to intestinal pathology and lethality

To exclude potential developmental defects caused by IEC specific deletion of RIPK1 during embryogenesis, a tamoxifen-inducible mouse model was used (Marjou et al., 2004). In this transgenic mouse line, called villin-CreERT², Cre recombinase is fused to a mutated ligand-binding domain of the human estrogen receptor and expressed under the control of the IEC specific villin promoter (el Marjou et al., 2004).

Deletion of RIPK1 was achieved by three daily intraperitoneal (i.p.) injections of 1 mg tamoxifen and mice were sacrificed 24 h after the last tamoxifen injection (from here on referred to as ‘RIPK1tamIEC-KO’) (Figure 17a). Efficient deletion of RIPK1 upon tamoxifen injections was confirmed by Western Blot analysis (Figure 17b). Acute depletion of RIPK1 caused a severe spontaneous intestinal pathology accompanied by 20% body weight loss and death of RIPK1tamIEC-KO mice (Figure 17c, d). Histological analysis revealed that RIPK1tamIEC-KO mice but not tamoxifen treated Ripk1fl/fl littermates showed massive epithelial erosion, goblet cell loss and IEC apoptosis in the colon and the small intestine (Figure 18).

Figure 17. Acute deletion of RIPK1 results in body weight loss and lethality. (a) Mice received three daily i.p. injections of 1 mg tamoxifen and were sacrificed 24 h after the last injection. (b) Immunoblot analysis of small intestinal IEC protein extracts isolated from Ripk1fl/fl mice and RIPK1tamIEC-KO mice 24 h after the last tamoxifen injection. (c,d) Body weight (c) and Kaplan-Meier survival curve (d) of tamoxifen-injected Ripk1fl/fl and RIPK1tamIEC-KO mice receiving normal drinking water or antibiotics. 0h marks the timepoint of the first tamoxifen injection. h, hours AB, antibiotics. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
RESULTS

Figure 18. Epithelial erosion and IEC apoptosis upon acute deletion of RIPK1. Representative H&E stained or CC3 immunostained histological images from colonic and ileal swiss rolls of tamoxifen-treated Ripk1fl/fl and RIPK1tamIEC-KO mice receiving antibiotics (AB) or normal drinking water. Scale bars: 100 µm

Importantly, vehicle treated RIPK1tamIEC-KO mice as well as tamoxifen injected villin-CreER^{T2} mice did not develop intestinal pathology and increased IEC apoptosis, indicating that IEC apoptosis was specifically induced after deletion of RIPK1 (Figure 19a-d). These results demonstrate an important epithelial cell-intrinsic role of RIPK1 in preventing IEC apoptosis and maintaining intestinal homeostasis.
Figure 19. No intestinal pathology in vehicle treated RIPK1tamIEC-KO mice and tamoxifen injected VillinCreERT2 mice
(a) Body weight of vehicle-treated Ripk1fl/fl and RIPK1tamIEC-KO mice. (b) Representative H&E stained colonic and ileal swiss rolls from vehicle-treated Ripk1fl/fl and RIPK1tamIEC-KO mice. Scale bars: 100 µm. (c) Body weight of tamoxifen-injected VillinCreERT2 mice. (d) H&E stained colonic ileal swiss rolls from tamoxifen-injected VillinCreERT2 mice. Scale bars: 100 µm.
3.2 Intestinal pathology in RIPK1$^{\text{IEC-KO}}$ mice develops independent of the microbiota

3.2.1 Antibiotic treatment does not prevent development of intestinal disease in RIPK1$^{\text{IEC-KO}}$ mice

The microbiota regulates intestinal homeostasis and contributes to intestinal inflammation in IBD patients as well as in genetic mouse models of IBD (Maloy & Powrie, 2011). In order to check if microbial derived signaling contributes to the phenotype observed in the RIPK1$^{\text{IEC-KO}}$ mice, mice were treated with broad-spectrum antibiotics in the drinking water from E17.5 until 21 days of age to diminish microbial colonization of the gastrointestinal tract. At 3 weeks of age, antibiotic treated RIPK1$^{\text{IEC-KO}}$ mice showed signs of wasting syndrome and had significantly reduced body weight compared to antibiotics receiving floxed littermates (Figure 20a). Although wasting occurred, the survival of AB treated SPF-housed RIPK1$^{\text{IEC-KO}}$ mice was slightly prolonged compared to conventional SPF-housed RIPK1$^{\text{IEC-KO}}$ mice (Figure 20b). Histological examination of H&E stained sections and immunostaining against CC3 showed that antibiotic treated RIPK1$^{\text{IEC-KO}}$ mice developed intestinal pathology and showed extensive IEC apoptosis similar to conventional housed RIPK1$^{\text{IEC-KO}}$ mice, suggesting that the microbiota does not contribute to the intestinal pathology observed in RIPK1$^{\text{IEC-KO}}$ mice (Figure 20c).
RESULTS

3.2.2 Antibiotic treatment does not prevent intestinal pathology in RIPK1^{EC-KO} mice

In order to investigate if the microbiota contributes to intestinal pathology induced upon acute deletion of RIPK1 (RIPK1^{tamEC-KO} mice), cohorts of mice were treated with antibiotics in the drinking water for 4 weeks prior to deletion of RIPK1. Microbiota depletion significantly reduced body weight loss in RIPK1^{tamEC-KO} mice and prolonged survival compared to conventional housed RIPK1^{tamEC-KO} mice (Figure 17c, d). However, neither intestinal pathology nor the extent of cell death was ameliorated but rather delayed in antibiotic treated RIPK1^{tamEC-KO} mice (Figure 18). In line with the results from the antibiotic treated conditional RIPK1 knockout mice, diminishing the microbiota had a mild effect on the macroscopic appearance of the mice but had no effect on the intestinal pathology.
3.2.3 RIPK1IEC-KO mice develop intestinal disease independent of the microbiota

To unequivocally address the role of microbial induced signaling in RIPK1IEC-KO mice, germfree RIPK1IEC-KO mice were generated in the gnotobiotic facilities of the Universities of Ulm and Hannover. At 3-weeks of age, germfree RIPK1IEC-KO mice had significantly reduced body weight compared to germfree Ripk1fl/fl littermates (Figure 21a). Despite wasting, some germfree RIPK1IEC-KO mice showed prolonged survival compared to SPF housed RIPK1IEC-KO mice survived up to 16 weeks of age (Figure 21b).

Histological examination of H&E stained sections from colon and ileum of 3-week old mice revealed that germfree RIPK1IEC-KO mice developed intestinal pathology (Figure 21c). To directly compare tissue damage between SPF housed and germfree RIPK1IEC-KO mice, H&E stained sections were subjected to a blindfolded semi-quantitative composite scoring system addressing intestinal pathology (Adolph et al., 2013). In the colon, germfree RIPK1IEC-KO mice exhibit tissue damage to the same extent as SPF housed RIPK1IEC-KO mice, whereas in the ileum pathology is slightly but significantly ameliorated in germfree RIPK1IEC-KO mice (Figure 21d). IHC for CC3 showed that germfree RIPK1IEC-KO mice were not protected against apoptosis of IECs in the colon and the ileum. Quantification of cell death revealed that numbers of apoptotic IECs were significantly increased in the distal colon of germfree RIPK1IEC-KO mice but did not differ in the proximal colon and the ileum compared to SPF RIPK1IEC-KO mice (Figure 21e).
Figure 21. Microbiota independent intestinal disease in RIPK1IEC-KO mice

(a) Body weight of germ-free \textit{Ripk1fl/fl} and RIPK1IEC-KO mice at different ages. (b) Kaplan-Meier survival curve of SPF-housed germ-free \textit{Ripk1fl/fl} and RIPK1IEC-KO mice. Survival data of SPF-housed \textit{Ripk1fl/fl} and RIPK1IEC-KO mice taken from Fig.5c

(c) Representative images of intestinal sections from 3-week old germ-free \textit{Ripk1fl/fl} and RIPK1IEC-KO mice stained with H&E or immunostained for CC3. Scale bars: 100 µm.

(d) Quantification of intestinal pathology observed in SPF-housed and germ-free RIPK1IEC-KO mice at 3-week of age. Histology scoring was performed by Dr. Katerina Vlantis.

(e) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the colon and small intestine of 3-week old SPF-housed and germ-free \textit{Ripk1fl/fl} and RIPK1IEC-KO mice. Data for SPF-housed \textit{Ripk1fl/fl} and RIPK1IEC-KO mice were taken from Figure 8b and 11b. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
3.2.4 Phenotype in RIPK1IEC-KO mice develops independently of Myd88-mediated signaling

RIPK1 is a signaling adapter protein involved in bacterial induced toll-like receptor (TLR) signaling. To investigate a potential contribution of TLR-signaling to \textit{Ripk1}-/- IEC apoptosis and intestinal disease of RIPK1IEC-KO mice, RIPK1IEC-KO mice were crossed with \textit{Myd88} full body knockout mice, to generate mice, with ablation of RIPK1 specifically in the intestinal epithelium and MYD88 in all cells of the mice (Adachi et al., 1998). Full body MYD88 deficiency did not prevent severe wasting and premature death of RIPK1IEC-KO mice (Figure 22a and data not shown). Analysis of H&E stained sections revealed that 3 week old RIPK1IEC-KO/\textit{Myd88}-/- mice developed intestinal pathology in the colon and the ileum (Figure 22b). CC3 staining showed high numbers of apoptotic IECs in the colon and ileum. Except for the distal colon, where more apoptotic cells were found, IEC apoptosis occurred to the same extent as observed in RIPK1IEC-KO mice (Figure 22b, c). These results suggest, that microbiota induced TLR signaling does not trigger cell death in \textit{Ripk1}-/- IECs and does not contribute to the pathology observed in RIPK1IEC-KO mice.
Figure 22. Myd88 independent pathology in RIPK1^{IEC-KO} mice
(a) Body weight of 3-week old Ripk1^{fl/fl}/Myd88^{-/-} and RIPK1^{IEC-KO}/Myd88^{-/-} mice. (b) Representative images from intestinal sections from 3-week old Ripk1^{fl/fl}/Myd88^{-/-} and RIPK1^{IEC-KO}/Myd88^{-/-} mice stained with H&E or immunostained for CC3. Scale bars: 100 µm (c) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the colon and small intestine of 3-week old Ripk1^{fl/fl}/Myd88^{-/-} and RIPK1^{IEC-KO}/Myd88^{-/-} mice. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
3.3 Intestinal pathology in RIPK1$^{IEC-KO}$ mice partially depends on TNF signaling

RIPK1 is an important signaling node downstream of TNFR1, which can induce cell death as well as cell survival. To address whether TNFR1 mediated signaling is involved in the development of the intestinal pathology and apoptosis observed in RIPK1$^{IEC-KO}$ mice, RIPK1$^{IEC-KO}$ mice were crossed with $Tnfr1$ ($Tnfrsf1a$) full body knockout mice (Pfeffer et al., 1993). Resulting RIPK1$^{IEC-KO}/Tnfr1^{-/-}$ mice were deficient for RIPK1 specifically in IECs and lacked TNFR1 in all cells of the mice. RIPK1$^{IEC-KO}/Tnfr1^{-/-}$ mice were partially protected from cachexia and 50% of the mice survived until 3 months of age (Figure 23a, b), indicating that severe wasting and premature death of RIPK1$^{IEC-KO}$ mice depends on TNFR1 mediated signaling. Histological examination of H&E stained sections from 3-week old RIPK1$^{IEC-KO}/Tnfr1^{-/-}$ mice revealed partial protection from villus atrophy in the ileum, a less severe reduction of goblet cells in colon and small intestine as well as reduced numbers of epithelial cells in the epithelium with morphological features of dying cells (Figure 23c). Immunohistochemistry for CC3 and quantification of cell death revealed reduced numbers of apoptotic IECs in the ileum as well as proximal colon of RIPK1$^{IEC-KO}/Tnfr1^{-/-}$ mice and increased IEC apoptosis in the distal colon compared to RIPK1$^{IEC-KO}$ mice (Figure 23c, d). These results suggest that TNFR1 mediated signaling contributes to intestinal pathology and cell death in RIPK1$^{IEC-KO}$ mice, but also TNFR1-independent signaling appears to be involved.
Figure 23. Premature lethality and IEC apoptosis in RIPK1IEC-KO mice partially depend on TNFR1-mediated signaling.

(a) Body weight of 3-week old RIPK1IEC-KO mice, Ripk1fl/fl/Tnfr1/- and RIPK1IEC-KO/Tnfr1/- mice. Data for RIPK1IEC-KO mice were taken from Figure 5b. (b) Kaplan-Meier survival curve for RIPK1IEC-KO, Ripk1fl/fl/Tnfr1/- and RIPK1IEC-KO/Tnfr1/- mice. Survival data of RIPK1IEC-KO mice was taken from Figure 5c. (c) Representative images from intestinal sections from 3-week old Ripk1fl/fl/Tnfr1/- and RIPK1IEC-KO/Tnfr1/- mice were stained with H&E or immunostained for CC3. Scale bars: 100 \mu m (d) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the colon and ileum of 3-week old Ripk1fl/fl/Tnfr1/- and RIPK1IEC-KO/Tnfr1/- mice. n.s. not significant. *P\leq0.05, **P\leq0.01, ***P\leq0.001.
3.4 Death of Ripk1\(^{-}\) IECs depends on FADD and RIPK3 mediated signaling

3.4.1 Apoptosis in RIPK1\(^{IEC-KO}\) mice depends on FADD

Execution of extrinsic apoptosis is mediated by FADD and caspase-8 (Boldin, Goncharov, Goltsev, & Wallach, 1996; Chinnaiyan, O’Rourke, Tewari, & Dixit, 1995; Muzio et al., 1996). FADD integrates upstream signals with its DD and binds to caspase-8 via its DED, inducing caspase-8 dimerization that triggers its autocatalytic activity resulting in the execution of apoptosis (Muzio et al., 1996; Muzio, Stockwell, Stennicke, Salvesen, & Dixit, 1998). To assess if Ripk1\(^{-}\) IECs die by FADD-caspase-8 dependent apoptosis, RIPK1\(^{IEC-KO}\) mice were crossed to Fadd\(^{fl/fl}\) mice (McGuire et al., 2010). Resulting RIPK1\(^{IEC-KO}/FADD\(^{IEC-KO}\) mice, that were deficient for RIPK1 and FADD specifically in IECs, had only slightly reduced body weight at 3 weeks of age and a normal life span (Figure 24a, b). In contrast to this, RIPK1\(^{IEC-KO}/FADD\(^{hetIEC-KO}\) littermate mice had reduced body weight and died prematurely similar to RIPK1\(^{IEC-KO}\) mice, indicating that wasting and premature death of RIPK1\(^{IEC-KO}\) mice is caused by FADD mediated processes (Figure 24a, b). Analysis of H&E stained ileal sections revealed that 3-week old RIPK1\(^{IEC-KO}/FADD\(^{IEC-KO}\) mice did not develop similar intestinal pathology as observed in RIPK1\(^{IEC-KO}\) mice, whereas their RIPK1\(^{IEC-KO}/FADD\(^{hetIEC-KO}\) littermates did (Figure 24c). Staining for lysozyme indicated that Paneth cell loss in RIPK1\(^{IEC-KO}/FADD\(^{IEC-KO}\) mice persisted (Figure 24c). Furthermore, RIPK1\(^{IEC-KO}/FADD\(^{IEC-KO}\) mice had slightly increased numbers of immune cells in the ileal lamina propria as shown by immunohistochemical staining for CD45 (Figure 24c). Importantly, CC3 staining showed significantly reduced numbers of apoptotic IECs in the ileum of RIPK1\(^{IEC-KO}/FADD\(^{IEC-KO}\) mice (Figure 24c, d), indicating that Ripk1\(^{-}\) IECs died by FADD dependent apoptosis. However, many dying CC3 negative IECs were detected, suggesting that these died a caspase-independent death (Figure 24c inset, arrow). In conclusion, these results show that small intestinal pathology in RIPK1\(^{IEC-KO}\) mice is caused by FADD-dependent IEC apoptosis. The additional epithelial specific ablation of FADD prevents IECs apoptosis, but triggers non-apoptotic death of IECs and a pathology reminiscent of the phenotype described for FADD\(^{IEC-KO}\) mice (Welz et al., 2011).
Figure 24. FADD-dependent IEC apoptosis in the ileum of RIPK1IEC-KO mice. (a) Body weight of 3-week old Ripk1^{fl/fl}/Fadd^{fl/fl}, RIPK1^{IEC-KO}/FADD^{IEC-KO} and RIPK1^{IEC-KO}/FADD^{IEC-KO} mice. (b) Kaplan-Meier survival curve of mice with the indicated genotypes. (c) Representative images of ileal sections from mice with the indicated genotypes stained with H&E or immunostained for Lysozyme, CC3 and CD45. Scale bars: 100 µm. (d) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the ileum of 3-week old Ripk1^{fl/fl}/Fadd^{fl/fl}, RIPK1^{IEC-KO}/FADD^{IEC-KO} and RIPK1^{IEC-KO}/FADD^{IEC-KO} mice. n.s. not significant. *P<0.05, **P<0.01, ***P<0.005
To understand the role of FADD in the context of the colonic RIPK1IEC-KO phenotype, 3-week old RIPK1IEC-KO/FADDIEC-KO mice were analysed. Similar to the ileum, ablation of FADD in RIPK1-deficient IECs significantly reduced the extent of pathology and the number of CC3 positive cells in the proximal colon when compared to RIPK1IEC-KO/FADDhettIEC-KO or RIPK1IEC-KO mice (Figure 25). In stark contrast to RIPK1IEC-KO mice, where the distal colon was only mildly affected, 3-week old RIPK1IEC-KO/FADDIEC-KO mice showed an aggravated pathology in this region (Figure 25). Examination of H&E stained colon sections revealed that 8 out of 14 RIPK1IEC-KO/FADDIEC-KO mice showed areas with epithelial erosion and elevated numbers of infiltrating immune cells at 3 weeks of age in the distal to medial colon, which have never been observed in RIPK1IEC-KO mice (n=18) (Figure 25). This was further supported by staining for CD45, which revealed increased numbers of immune cells in the distal colon of RIPK1IEC-KO/FADDIEC-KO mice (Figure 25). As described for the ileum and proximal colon, few CC3 positive dying cells were detected but high numbers of dying CC3 negative cells were found in the epithelium and lumen of the crypts of RIPK1IEC-KO/FADDIEC-KO mice (Figure 25a magnified inset with arrow, b).

Adult RIPK1IEC-KO/FADDIEC-KO mice had similar body weight like their floxed littermates (data not shown). Analysis of H&E stained ileal sections from 13-week old RIPK1IEC-KO/FADDIEC-KO mice revealed villus shortening, loss of goblet and Paneth cells and crypt elongation, which were not observed in Ripk1fl/fl/Faddfl/fl mice. Few dying cells but no gross aberrant morphological changes were observed in the proximal colon of 13-week old RIPK1IEC-KO/FADDIEC-KO mice (Figure 26). In the distal colon many dying IECs were found in the epithelium and the presence of ulcers were detected in adult RIPK1IEC-KO/FADDIEC-KO mice (Figure 26).

Taken together, these data show that IECs in RIPK1IEC-KO mice die by FADD dependent apoptosis and additional IEC specific deletion of FADD protects Ripk1−/− IECs from undergoing apoptosis, however sensitizes IECs to a caspase-independent death.
RESULTS

Figure 25. Caspase-independent IEC death and ulcerating colitis in RIPK1IEC-KO/FADDIEC-KO mice.

(a) Representative images from H&E stained and CC3 or CD45 immunostained colon swiss rolls from 3-week old mice with the indicated genotypes. Scale bars: 100 μm

(d) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the distal and proximal colon from 3-week old Ripk1fl/fl/Faddfl/fl, RIPK1IEC-KO/FADDhetIEC-KO and RIPK1IEC-KO/FADDIEC-KO mice. n.s. not significant. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.005
RESULTS

Figure 26. Colitis and small intestinal pathology in adult RIPK1$^{IEC-KO}$/FADD$^{IEC-KO}$ mice.
Histological analysis of H&E stained colonic and ileal sections from adult Ripk1$^{fl/fl}$/Fadd$^{fl/fl}$ and RIPK1$^{IEC-KO}$/FADD$^{IEC-KO}$ mice. Scale bars: 100 µm.
3.4.2 Death of IECs in RIPK1IEC-KO/FADDIEC-KO mice depends on RIPK3 mediated necroptosis

RIPK3 and its kinase activity have been shown to be crucial for the execution of TNF-induced necroptosis (Cho et al., 2009; He et al., 2009; D. W. Zhang et al., 2009). Murine RIPK3 deficiency does not result in a significant phenotypic effect, enabling to study the role of RIPK3 and necroptosis in various infection and disease models (Newton et al., 2004; Vanden Berghe, Linkermann, Jouan-Lanhouet, Walczak, & Vandenabeele, 2014). In the context of intestinal epithelial specific FADD deficiency, RIPK3 was reported to be an essential mediator non-apoptotic death of IECs (Welz et al., 2011). Given the striking phenotypic similarities between FADDIEC-KO and RIPK1IEC-KO/FADDIEC-KO mice, it could be possible that pathology in RIPK1IEC-KO/FADDIEC-KO mice depends on RIPK3 dependent death. To investigate the role of RIPK3 in RIPK1- and FADD-double deficient IECs, RIPK1IEC-KO/FADDIEC-KO mice were crossed to Ripk3-/- mice (Newton et al., 2004).

Figure 27. Intestinal pathology in RIPK1IEC-KO/FADDIEC-KO depends on RIPK3. (a) Body weight of 3-week old RIPK1IEC-KO/FADDIEC-KO/Ripk3-/- and Ripk1fl/fl/Faddfl/fl/Ripk3-/- mice. (b) Representative histological images from H&E stained ileal and colonic sections from 3-week old RIPK1IEC-KO/FADDIEC-KO/Ripk3-/- and Ripk1fl/fl/Faddfl/fl/Ripk3-/- mice. Scale bars: 100 µm. n.s. not significant.
RESULTS

Figure 28. No increased cell death in RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice.
(a) Representative images from CC3 and CD45 immunostained colonic and ileal
swiss rolls from 3-week old Ripk1fl/fl/Faddfl/fl/Ripk3−/− and RIPK1IEC-KO/FADDIEC-
KO/Ripk3−/− mice. Scale bars: 100 µm. (b) Immunostaining of ileal sections from 3-
week old Ripk1fl/fl/Faddfl/fl/Ripk3−/− and RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice for
lysozyme. Scale bars: 100 µm. (c) Quantification of crypts containing CC3-positive
cells and the number of CC3-positive cells per crypt in the ileum, distal and proximal
colon of 3-week old Ripk1fl/fl/Faddfl/fl/Ripk3−/− and RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice.
n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice were born at expected mendelian ratios, RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice had normal body weight and a normal life span (Figure 27a). Histological examination of H&E stained swiss rolls of ileal and colonic sections from 3-week old triple knockout mice did not show signs of any pathology and were indistinguishable from their littermate controls (Figure 27b). Intestinal epithelial apoptosis was not increased in the colon and only slightly increased in the small intestine of RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice compared to control Ripk1fl/fl/Faddfl/fl/Ripk3−/− mice, although in the ileum it reached statistical significance (Figure 28a, c). Furthermore, no CC3 negative dying cells were detected in the colon and the ileum (Figure 28a), indicating that caspase-independent cell death in RIPK1IEC-KO/FADDIEC-KO mice is RIPK3-dependent. The numbers of CD45 positive immune cells in the lamina propria of triple knockout mice was similar to control mice, suggesting that colitis and enteritis in RIPK1IEC-KO/FADDIEC-KO mice was a consequence of RIPK3 dependent death of IECs (Figure 28a).

Figure 29. No intestinal pathology in adult RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice. Histological analysis of H&E stained colonic and ileal sections from 13-week old RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice and Ripk1fl/fl/Faddfl/fl/Ripk3−/− mice. Scale bars: 100 µm.

Colonic and ileal H&E stained sections from 13-week old RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice were indistinguishable from Ripk1fl/fl/Faddfl/fl/Ripk3−/− littermates (Figure 29). Despite the lack of intestinal pathology in RIPK1IEC-KO/FADDIEC-KO/Ripk3−/− mice, 3-week old triple knockout mice displayed slightly increased levels of Tnf, Il1b, Ccl5 and Il10 as shown by qRT-PCR analysis of whole small intestinal tissue (Figure 30).
Figure 30. Increased TNF mRNA levels in the ileum of RIPK1_{IEC-KO}/FADD_{EC-KO}/Ripk3\(^{-}\) mice.

qRT-PCR analysis of mRNA expression levels for inflammatory cytokines and chemokines of whole ileal tissue from 3-week old Ripk1\(^{fl/fl}\)/Fadd\(^{fl/fl}\)/Ripk3\(^{-}\) and RIPK1\(^{IEC-KO}\)/FADD\(^{EC-KO}\)/Ripk3\(^{-}\) mice. n.s. not significant. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.005
3.4.3 Death of Ripk1−/− IECs is independent of RIPK3

As described previously, Ripk1−/− IECs died by FADD dependent apoptosis, and in IECs with additional deletion of FADD the mode of death switched to RIPK3-dependent necroptosis. These results suggest that RIPK3 alone might not be a major driver of apoptosis and pathology in RIPK1IEC-KO mice. To investigate a potential role of RIPK3 in the apoptosis observed in IECs of RIPK1IEC-KO mice, RIPK1IEC-KO mice were crossed to Ripk3−/− mice (Newton et al., 2004). RIPK1IEC-KO/Ripk3−/− mice showed significant reduction of body weight compared to their Ripk1fl/fl/Ripk3−/− littermates and died prematurely (Figure 31a, b). Histological examination of H&E stained ileal and colonic sections revealed that RIPK1IEC-KO/Ripk3−/− mice developed intestinal pathology reminiscent of RIPK1IEC-KO mice (Figure 31c). Furthermore, RIPK1IEC-KO/Ripk3−/− mice exhibited Paneth cell loss and IEC apoptosis to the same extent as RIPK1IEC-KO mice did, indicating that apoptosis in Ripk1−/− IECs is independent of RIPK3 and RIPK3-mediated necroptosis is not a primary pathway triggering death of IECs and pathology in RIPK1IEC-KO mice (Figure 32).
RESULTS

Figure 31. Premature death, cachexia and intestinal pathology in RIPK1IEC-KO mice is independent of RIPK3.

(a) Body weight of 3-week old \textit{Ripk1fl/fl}/\textit{Ripk3−/−} and RIPK1IEC-KO/\textit{Ripk3−/−} mice. (b) Kaplan-Meier survival curve of \textit{Ripk1fl/fl}/\textit{Ripk3−/−} and RIPK1IEC-KO/\textit{Ripk3−/−} mice. (c) Histological analysis of H&E stained colonic and ileal sections from 3-week old \textit{Ripk1fl/fl}/\textit{Ripk3−/−} and RIPK1IEC-KO/\textit{Ripk3−/−} mice. Scale bars: 100 µm. *P≤0.05, **P≤0.01, ***P≤0.005
RESULTS

Figure 32. Apoptosis and Paneth cell loss in RIPK1IEC-KO mice is independent of RIPK3.

(a, b) Representative images from (a) CC3, CD45 and (b) lysozyme immunostained colonic and ileal swiss rolls from 3-week old Ripk1fl/fl/Ripk3−/− and RIPK1IEC-KO/Ripk3−/− mice. Scale bars: 100 µm. (c) Quantification of crypts containing CC3-positive cells and the number of CC3-positive cells per crypt in the ileum, distal and proximal colon of 3-week old Ripk1fl/fl/Ripk3−/− and RIPK1IEC-KO/Ripk3−/− mice. *P≤0.05, **P≤0.01, ***P≤0.005.
3.5 Scaffolding function of RIPK1 prevents the degradation of pro-survival proteins

3.5.1 Pathology in RIPK1IEC-KO mice is independent of NF-κB activity

The in vivo results presented above revealed an important cell intrinsic function of RIPK1 to protect IECs from apoptosis. The role of RIPK1 in NF-κB activation is controversial and possibly cell type specific (Gentle et al., 2011; Kelliher et al., 1998; Wong et al., 2010). Given the fact that RIPK1 deficiency, but not loss of RIPK1 kinase activity, triggered IEC apoptosis, it could be possible that \textit{Ripk1}^+/IECs are sensitized to apoptosis due to the loss of RIPK1 scaffolding function for NF-κB activation (Polykratis et al., 2014). On the other hand, mice lacking p65 or IKK2 specifically in IECs do not develop spontaneous pathology (Egan et al., 2004; Steinbrecher et al., 2008). Furthermore, mice deficient for NEMO in IECs develop spontaneous colitis but survive to adulthood (Nenci et al., 2007). To address if impaired NF-κB activation caused apoptosis of \textit{Ripk1}^+/IECs, RIPK1IEC-KO mice were crossed to mice carrying a stop floxed constitutively active IKK2 transgene (IKK2\textsubscript{ca}) (Sasaki et al., 2006). Heterozygous IEC specific expression of the IKK2\textsubscript{ca} transgene was reported to show sustained NF-κB activation in intestinal epithelial cells (Vlantis et al., 2011). RIPK1IEC-KO/IKK2\textsubscript{ca}IEChet mice were born at expected mendelian ratios, but had slightly reduced body weight compared to their floxed littermates and died prematurely (Figure 33a and data not shown). In line with this, RIPK1IEC-KO/IKK2\textsubscript{ca}IEChet mice were not protected from IEC apoptosis and intestinal pathology (Figure 33b). Compared to RIPK1IEC-KO mice, the pathology was aggravated in colons of RIPK1IEC-KO/IKK2\textsubscript{ca}IEChet mice. Colonic crypts were showing more severe hyperproliferation than in RIPK1IEC-KO mice and local accumulations of immune cells were present, which were not observed in RIPK1IEC-KO mice (Figure 33b). These results suggest that \textit{Ripk1}^+/IECs are not sensitized to apoptosis by reduced NF-κB activity.
RESULTS

Figure 33. Pathology in RIPK1IEC-KO is independent of canonical NF-κB activation.
(a) Body weight of 3-week old RIPK1IEC-KO/IKK2caIEChet and Ripk1fl/fl/Ikk2cawt/fl mice.
(b) Representative histological images of H&E stained, CC3 and CD45 immunostained colonic and ileal sections from 3-week old Ripk1fl/fl/Ikk2cawt/fl and RIPK1IEC-KO/IKK2caIEChet mice. Scale bars: 100 µm. n.s. not significant. *P≤0.05, **P≤0.01, ***P≤0.005
3.5.2 RIPK1 prevents degradation of pro-survival proteins

Previous studies showed that TNF stimulation of Ripk1−/− MEFs induced degradation of TRAF2 as well as cIAP1 and subsequent stabilization of NIK resulting in non-canonical NF-κB activation as shown by p110 processing to p52 (Gentle et al., 2011; J. Y. Kim et al., 2011). Furthermore the authors showed cleavage of cFLIP and caspase-8 activation in RIPK1 deficient MEFs upon TNF stimulation culminating in death of Ripk1−/− MEFs (Gentle et al., 2011; J. Y. Kim et al., 2011). Therefore it could be possible that RIPK1 deficiency sensitizes IECs to apoptosis by impaired stability of pro-survival proteins. Indeed, western blot analysis of IECs showed that protein levels of cIAP1 and TRAF2 were reduced in RIPK1IEC-KO mice compared to Ripk1fl/fl mice (Figure 34b), suggesting that RIPK1 might control their stability thereby promoting IEC survival. Since the mRNA levels of Birc2 (cIAP1) and Cflip (cFLIP) were not reduced Ripk1−/− IECs compared to Ripk1fl/fl IECs (Figure 34a), it is likely that posttranslational mechanisms induced the degradation of cIAP1 and TRAF2 in Ripk1−/− IECs. Consistent with previous studies, TNF stimulation of Ripk1−/− MEFs induced rapid degradation of cIAP1, TRAF2 and TRADD (data not shown).

To assess whether degradation of proteins involved in TNFR1 signaling complex 1 could be occur in the absence of RIPK1 in intestinal epithelial cells in vitro, the intestinal organoid culture system was employed (T. Sato et al., 2009). Intestinal crypts isolated from RIPK1IEC-KO mice did not form organoids and died within 48 hours after isolation, whereas organoids from Ripk1fl/fl mice could be maintained in culture (data not shown). This shows that RIPK1 deficiency also caused IEC death in vitro. In order to obtain RIPK1 deficient organoids, intestinal organoids from RIPK1tamIEC-KO mice were cultured and deletion of RIPK1 was induced by adding 4-hydroxytamoxifen (4-OHT) to the culture medium for 24 hours (see 2.2.5.1 and 2.2.5.2). This treatment was sufficient to induce efficient deletion of RIPK1 (Figure 34c). 48 h after adding 4-OHT, RIPK1tamIEC-KO organoids showed reduced protein levels of cIAP1, TRAF2 and cFLIP, whereas Cre negative Ripk1fl/fl organoids did not (Figure 34c). In addition, RIPK1tamIEC-KO organoids died 48 h after administration of 4-OHT as shown by photography and FACS analysis of the change of PI.
positive organoids (Figure 34d, e). These results suggest that the degradation of pro-survival protein might contribute to the death of Ripk1−/− IECs.

Figure 34. Degradation of cIAP1 and TRAF2 in Ripk1−/− IECs and RIPK1tamIEC-KO organoids.
(a) qRT-PCR analysis for mRNA expression levels of pro-survival and pro-apoptotic genes in intestinal epithelial cells isolated from 3-week Ripk1fl/fl and RIPK1IEC-KO mice. (b) Immunoblot analysis of small intestinal IECs from 3-week old Ripk1fl/fl and RIPK1IEC-KO mice for the indicated antibodies. Animals were sacrificed and IEC were isolated by Marius Dannappel. Dr. Chun Kim performed immunoblot analysis of IEC extracts. (c) Immunoblot analysis of Ripk1fl/fl (FL) and RIPK1tamIEC-KO (iKO) organoids after 48 h treatment with 4-hydroxytamoxifen (4-OHT) with the indicated antibodies. Organoid culture was performed by Marius Dannappel and Dr. Chun Kim performed immunoblot analysis of organoid lysates. (d) Representative images depicting Ripk1fl/fl and RIPK1tamIEC-KO organoids 48 h after treatment with 4-OHT for 20 h. Original magnification, x400. (e) FACS analysis of PI-stained cells from Ripk1fl/fl and RIPK1tamIEC-KO organoids 43 h after 4-OHT treatment in the presence or absence of zVAD. Organoid cell culture was done by Marius Dannappel and PI-staining and FACS analysis was performed by Dr. Katerina Vlantis. *P≤0.05, **P≤0.01, ***P≤0.005.
3.5.3 Increased TNF production as an autocrine amplification loop causing IEC apoptosis

Previous studies have shown that deletion of clAP1/2 using SMAC (also known as DIABLO) mimetics induced the activation of canonical and non-canonical NF-κB signalling resulting in the expression of TNF and other cytokines (E. Varfolomeev et al., 2007). Since Ripk1⁻/⁻ IECs and organoids showed degradation of clAP1 (Figure 34b, c), it might be possible that cIAP1 degradation results in NF-κB activation and subsequent TNF expression which induces death of IECs or organoids in an autocrine manner. In order to test this hypothesis, IECs from RIPK1ⁿEC-KO and Ripk1⁻/⁻ mice were isolated, cytoplasmic and nuclear fractions prepared and analyzed by immunoblot. The

Figure 35. Increased NF-κB activation and Tnf expression in Ripk1⁻/⁻ IECs.

(a) Immunoblot analysis of nuclear- and cytoplasmic fractions prepared form IECs isolated from 3-week old Ripk1⁻/⁻ and RIPK1ⁿEC-KO mice probed with the indicated antibodies. Mice were sacrificed and IEC isolated by Marius Dannappel. Dr. Chun Kim prepared nuclear and cytoplasmic fractions and performed immunoblot analysis. (b, c) qRT-PCR analysis of mRNA expression levels of Tnf, Il1b and Cxcl1 in IECs from small intestine (b) and colon (c) of 3-week old Ripk1⁻/⁻ and RIPK1ⁿEC-KO mice. qRT-PCR in (c) was pipetted by Dr. Teresa Corona. (d) qRT-PCR analysis for Tnf expression levels in Ripk1⁻/⁻ and RIPK1ᵗamEC-KO mice 30 h after 4-OHT or EtOH removal. N, nuclear, C, cytoplasmic, EtOH, ethanol, 4-OHT, 4-hydroxytamoxifen *P≤0.05, **P≤0.01, ***P≤0.005
nuclear fraction of RIPK1-deficient IECs showed p65, RelB and c-Rel as well as processed p50 and p52, indicating increased NF-κB activity compared to Ripk1fl/fl mice, where only p50 was detected in the nuclear fraction (Figure 35a).

Consistent with this hypothesis, qPCR analysis using IECs from RIPK1IEC-KO and Ripk1fl/fl mice revealed significantly increased expression levels of TNF in the colon and small intestine of RIPK1IEC-KO mice and elevated Il1b mRNA levels in the colon (Figure 35b, c). Furthermore, deletion of RIPK1 by 4-OHT treatment in RIPK1tamIEC-KO organoids led to increased expression levels of TNF within 30h after the removal of 4-OHT that was not observed in vehicle-treated control organoids (Figure 35d).

Figure 36. Increased sensitivity of Ripk1-/-/Tnfr1-/- organoids to poly(I:C) and IFN-induced death.
Representative images of organoids isolated from RIPK1IEC-KO/Tnfr1-/- and Ripk1fl/fl/Tnfr1-/- mice taken 16 h after stimulation with poly(I:C), IFN-β and IFN-γ. Experiments were performed by Marius Dannappel and Dr. Katerina Vlantis. Ctrl, control, IFN, interferon. Original magnification, x400.

As described above, intestinal crypts isolated from RIPK1IEC-KO mice failed to form organoids in vitro. Interestingly, intestinal crypts from RIPK1IEC-KO/Tnfr1-/- mice could be grown to organoids and maintained in culture for a few weeks, although they did not grow as well as control organoids from Ripk1fl/fl/Tnfr1-/- mice (Figure 36). This is in line with the idea that TNF produced by Ripk1-/- IECs induced death in autocrine manner. Nevertheless, organoids from RIPK1IEC-KO/Tnfr1-/- mice were highly sensitive to polyinosinic:polycytidylic acid (poly(I:C)), interferon-β (IFN-β) and IFN-γ induced death (Figure 36). Therefore, it is possible that TIR-domain-containing adaptor-inducing interferon-β (TRIF)- and IFN-dependent signaling pathways also contribute to the death of Ripk1-/- IECs and to the pathology in RIPK1IEC-KO mice. To assess
the effect of TRIF-mediated signaling pathways in the context of pathology and IEC death in RIPK1IEC-KO mice, RIPK1IEC-KO mice were crossed to Triffl/fl mice (Dannappel et al., 2014). RIPK1IEC-KO/TRIFIEC-KO mice showed similar body weight reduction and premature lethality like RIPK1IEC-KO mice did (Figure 37a and data not shown). In line with this, intestinal pathology and cell death was not ameliorated compared to RIPK1IEC-KO mice, indicating that, if at all, TRIF-mediated signaling plays, if at all, only a minor role in the development of the \textit{in vivo} pathology exhibited by RIPK1IEC-KO mice (Figure 37b).

Taken together, these result show that RIPK1 controls stability of TNFR1 complex 1 proteins, thereby promoting survival of IECs. Furthermore, RIPK1 deficiency is associated with increased canonical and non-canonical NF-κB activity, resulting in increased TNF expression that triggers death of Ripk1-/- IECs in an autocrine manner.

Figure 37. Intestinal pathology is independent of TRIF-mediated signaling. (a) Body weight of 3-week old Ripk1fl/fl/Triffl/fl and RIPK1IEC-KO/TRIFIEC-KO mice. (b) Representative histological images of H&E stained, CC3 and CD45 immunostained colonic and ileal sections from 3-week old Ripk1fl/fl/Triffl/fl and RIPK1IEC-KO/TRIFIEC-KO mice. Scale bars: 100 μm. *P≤0.05, **P≤0.01, ***P≤0.005
4. Discussion

4.1 RIPK1 as a master regulator of cell death.

Cell death and inflammation are crucial processes to control viability and homeostasis of an organism, and dysfunction of either may be of pathological outcome. RIPK1 serves as an essential signaling node regulating inflammation, apoptosis and necroptosis in response to various stimuli such as TNF and some TLR-ligands, and thus, must be tightly controlled for the maintenance of tissue homeostasis. Indeed, mice with homozygous deletion of RIPK1 show excessive cell death and inflammation in several tissues and die shortly after birth (Kelliher et al., 1998).

Here we set to investigate the role of RIPK1 specifically in IECs and to circumvent early postnatal lethality of Ripk1−/− mice, we generated conditional RIPK1 knockout mice lacking RIPK1 specifically in IECs. RIPK1IEC-KO mice have a cachectic appearance, die prematurely and show massive IEC apoptosis (Figure 5-Figure 12). Additional deletion of FADD protected IECs from succumbing to apoptosis but sensitized RIPK1 and FADD double-deficient IECs to caspase-3 independent RIPK3-driven cell death (Figure 24,Figure 25). RIPK3 deficiency did not protect RIPK1IEC-KO mice from developing intestinal pathology (Figure 31, Figure 32), but rescued IEC death and inflammation in RIPK1IEC-KO/FADDIEC-KO mice (Figure 24, Figure 25). Therefore, similar to FADDIEC-KO mice (Welz et al., 2011), IECs of RIPK1IEC-KO/FADDIEC-KO mice die by necroptosis, whereas RIPK3-driven necroptosis is no major contributor to the pathology in RIPK1IEC-KO mice. Thus, in this work, we could demonstrate an important cell-intrinsic role of RIPK1 for the maintenance of intestinal epithelial homeostasis by inhibiting FADD-dependent apoptosis of IECs. Furthermore, this work provides evidence for the in vivo relevance of RIPK1-independent RIPK3-dependent necroptosis, which drives the phenotype in RIPK1IEC-KO/FADDIEC-KO mice and most likely in FADDIEC-KO mice (Welz et al., 2011). Similarly, intestinal pathology in FADDIEC-KO mice could not be prevented by expressing kinase-dead RIPK1 in IECs, providing further evidence for the in vivo importance of RIPK1-kinase activity independent RIPK3-dependent necroptosis (Dannappel et al., 2014).
The role of RIPK1 in IECs as an inhibitor of apoptosis is distinct to the role of RIPK1 in other tissues. For instance in the skin, RIPK1-deficiency caused skin inflammation and sensitized keratinocytes to FADD-dependent apoptosis as well as RIPK3-MLKL-dependent necroptosis (Dannappel et al., 2014). FADD deficiency did not protect against but delayed skin inflammation in RIPK1^{E-KO} mice. In turn, these results suggest that the early postnatal skin inflammation and death observed in FADD^{E-KO} mice depend on RIPK1 (Bonnet et al., 2011; Dannappel et al., 2014). Thus, RIPK1 has a tissue specific function to maintain homeostasis in epithelial tissues. Similar to the skin, hematopoietic specific deletion of RIPK1 in mice caused apoptosis and RIPK3-dependent necroptosis in hematopoietic cells resulting in death of the mice (Roderick et al., 2014). In addition, two recent publications demonstrated a contribution of both concurrent pathways, FADD-caspase-8-mediated apoptosis and RIPK3-MLKL-dependent necroptosis to the early postnatal death of Ripk1^{-/-} mice, as neither ablation of FADD/caspase-8 nor RIPK3/MLKL alone could prevent lethality of RIPK1-null mice (Dillon et al., 2014; Kaiser et al., 2014; Rickard et al., 2014; H. Zhang et al., 2011). However, Ripk1^{1-/-/Caspase-8^{1-/-/Ripk3^{1-/-}}} mice, in which extrinsic apoptosis and necroptosis are blocked, survive until adulthood without an aberrant gross morphology, although while aging, they develop acute lymphoproliferative syndrome (ALPS) (Dillon et al., 2014; Rickard et al., 2014). Taken together, these genetic studies suggest that RIPK1 ensures the maintenance of health in an organism in a cell-type specific manner, by inhibiting both apoptotic and necroptotic cell death.

One important remaining question is, why RIPK1-deficiency sensitizes IECs to apoptosis, whereas in other tissues such as skin, thymus or liver, both apoptosis and necroptosis occur (Dannappel et al., 2014; Rickard et al., 2014). It was proposed that RIPK3 expression levels correlate with a cell’s ability to undergo necroptosis (He et al., 2009). However, primary RIPK1-deficient IECs have comparably higher RIPK3 protein levels as epidermal extracts from RIPK1^{E-KO} mice (Dannappel et al., 2014), thus, the sensitivity towards necroptosis is probably independent of RIPK3 protein levels. Maybe the reason for sensitization to the type of cell death in the context of RIPK1-
deficiency lies, first, in the nature of the cell death trigger (discussed below), and/or second, in a yet to be identified cell-intrinsic characteristic(s) of IECs. Future work is required to address this question.

In addition to its pro-survival function, RIPK1 has death-inducing capacities. Full body deletion of caspase-8 or FADD results in embryonic lethality at E10.5 due to failed vascularization of the yolk sac, which is fully rescued by additional ablation of RIPK3 (Dillon et al., 2012; Kaiser et al., 2011; Oberst et al., 2011; Sakamaki et al., 2002; E. E. Varfolomeev et al., 1998; Yeh et al., 1998). Interestingly, ablation of RIPK1 rescues the embryonic lethality of FADD and caspase-8 deficient mice, however these mice succumb postnatally as RIPK1-deficient mice do (Dillon et al., 2014; Kaiser et al., 2014; H. Zhang et al., 2011). The embryonic lethality of fadd^{-/-} and caspase-8^{-/-} mice is TNFR1-dependent, thus RIPK1 promotes lethality in FADD and caspase-8 deficient mice by mediating TNF-induced RIPK3-dependent necroptosis (Dillon et al., 2014).

In summary, RIPK1 is a key regulator of cell death and inflammation endowed with anti-apoptotic and anti-necroptotic as well as pro-necroptotic functions, which are most likely dependent on the cellular context and on the cell type specific manner.

4.2 How are RIPK1-deficient IECs sensitized to FADD-mediated apoptosis?

It is well known that RIPK1 deficient lymphocytes and MEFs are sensitized to TNF-induced caspase-8 mediated apoptosis (Feoktistova et al., 2011; Kelliher et al., 1998; Lee, Shank, Cusson, & Kelliher, 2004; Oberst et al., 2011; Tenev et al., 2011; H. Zhang et al., 2011). Since RIPK1 kinase dead MEFs or BMDMs are not sensitized to TNF-induced apoptosis and mice expressing a kinase-inactive RIPK1 (Ripk1^{D138N} mice) do not show a spontaneous phenotype, the increased sensitivity to cell death and the survival promoting function of RIPK1 in IECs is independent of its kinase activity (Lee et al., 2004; Newton et al., 2014; Polykratis et al., 2014). RIPK1-deficient IECs do
not show impaired, but rather increased nuclear translocation of the active NF-κB subunits. In addition, heterozygous IEC-specific expression of a constitutively active IKK2 did not ameliorate the extent of apoptosis in RIPK1-deficient IECs. Instead, intestinal pathology was rather aggravated compared to RIPK1IEC-KO mice, which might be partially attributed to the very mild inflammation observed in IKK2caIEChet mice (Vlantis et al., 2011). Finally, mRNA levels of pro-survival genes, some of them NF-KB target genes, were not reduced in RIPK1-deficient IECs. All together, these results suggest that the role of RIPK1 in prevention of FADD-dependent apoptosis in IECs is independent of its role in NF-κB signaling and that RIPK1 is not required for NF-κB activation in IECs. In line with this result, another recent publication demonstrated unaffected IκBa phosphorylation and NF-κB target gene expression in response to TNF in organoids with induced deletion of RIPK1 (Takahashi et al., 2014).

RIPK1 has been shown to be important for the stability of cIAP1 and TRAF2 within the TNFR1-associated signaling complex (Gentle et al., 2011; J. Y. Kim et al., 2011). TNF stimulation of Ripk1-/- MEFs induced the degradation of cIAP1, TRAF2 and cFLIP\textsubscript{L}, resulting in NIK stabilization and subsequent non-canonical NF-κB activation as well as caspase-8 dependent apoptosis (Gentle et al., 2011; J. Y. Kim et al., 2011). Furthermore, loss of IAPs alone (by treatment with compound A or BV6) was sufficient for the stabilization of NIK and to activate canonical and non-canonical NF-κB pathways resulting in de novo TNF production inducing a positive feedback amplification and cell death in various cancer cell lines (E. Varfolomeev et al., 2007; Vince et al., 2007). Degradation of cIAP1, cFLIP\textsubscript{L} and TRAF2, NIK stabilization, canonical as well as non-canonical NF-κB activation and increased TNF production was observed in IECs isolated from RIPK1IEC-KO mice and RIPK1-deficient organoids (Figure 34, Figure 35) (Takahashi et al., 2014). However, if the non-canonical NF-κB pathway contributes to the phenotype observed in RIPK1IEC-KO mice is not known and needs to be addressed. In the case of RIPK1-null mice, additional ablation of NIK did not rescue the early postnatal lethality, arguing against a physiological relevance of non-canonical NF-κB activation in the context of RIPK1-deficiency (Dillon et al., 2014). Therefore, in accordance with the inhibitory function of RIPK1 in FADD-caspase-8
mediated apoptosis, the degradation of pro-survival proteins cIAP1, TRAF2 and cFLIP\textsubscript{L} might be directly connected to caspase-8 dependent cell death. Except mammalian XIAP, cellular inhibitors of apoptosis family members are not able to directly inhibit the catalytic activity of caspases (Eckelman & Salvesen, 2006; Eckelman, Salvesen, & Scott, 2006). In case of cIAP1 and cIAP2, it was proposed that they modify caspase-3 and -7 with K48-linked ubiquitination chains to promote their proteosomal degradation (Choi et al., 2009). Aside from regulating effector-caspases, an important pro-survival function of cIAP1 and cIAP2 is attributed to their ability to promote NF-κB pathway mediated pro-survival protein expression and to inhibit RIPK1 kinase activity (complex IIb-) dependent apoptosis (Bertrand et al., 2008; Mahoney et al., 2008; Petersen et al., 2007; E. Varfolomeev et al., 2007; Vince et al., 2007; L. Wang et al., 2008). Both, impaired NF-κB activation and prevention of complex IIb-formation, cannot be attributed to \textit{Ripk1}-/− IECs. Thus it is possible that death of RIPK1-deficient cells is not caused by loss of cIAP1, or second, cIAP1 has another, so far unappreciated pro-survival.

Another possibility is that death of RIPK1-deficient IECs is caused by the loss of TRAF2. Interestingly, \textit{Traf2}-/− MEFs exhibit a very similar response upon TNF stimulation as \textit{Ripk1}-/− MEFs do, however they do not show degradation of cIAP1, indirectly arguing against the loss of cIAP1 as cause of death in RIPK1-deficient MEFs (Gentle et al., 2011). In the same study the authors could demonstrate that the degradation of TRAF2 is responsible for the increased sensitivity of \textit{Ripk1}-/− MEFs to TNF (Gentle et al., 2011). In both, RIPK1- and TRAF2-deficient MEFs, TNF stimulation induced proteasome dependent cFLIP\textsubscript{L} destabilization, suggesting that, either TNF induces cFLIP\textsubscript{L} degradation or, cFLIP\textsubscript{L} is constantly degraded and reappears through a RIPK1- and TRAF2-dependent mechanism (Gentle et al., 2011). Reduced cFLIP\textsubscript{L} levels in turn, could change the stoichiometry within the TNFR1 DISC allowing uncontrolled caspase-8 dimerization and subsequent activation resulting in apoptotic cell death. Similar to MEFs and IECs, primary \textit{Ripk1}-/− keratinocytes showed low levels of TRAF2 degradation in response to TNF stimulation, whereas cIAP1 protein levels were already very low in unstimulated cells (Dannappel et al., 2014). In response to TNF, \textit{Ripk1}-/− keratinocytes died by apoptosis in vitro (Dannappel et al., 2014). Presumably,
degradation of TRAF2 and cIAP1 is a common mechanism explaining the increased sensitivity of RIPK1-deficient cells to TNF-induced apoptosis. These degradation processes may also attribute for the very similar phenotype of Traf2−/− mice in a C57BL/6 background and for Ripk1−/− mice and might be causative for the sensitization for cell death (Kelliher et al., 1998; Yeh et al., 1997). In a BALB/C background, Traf2−/− mice exhibited a phenotype reminiscent to RIPK1IEC-KO mice, characterized by premature lethality within 3 weeks after birth and TNF-dependent intestinal epithelial cell apoptosis (Piao et al., 2011). Therefore, it could be possible that RIPK1 acts upstream of TRAF2 to prevent IEC apoptosis. The really interesting new gene (RING) domain and cIAP1/2 interaction motif (CIM) of TRAF2 were shown to confer resistance to TNF-induced cell death (Vince et al., 2009; L. Zhang, Blackwell, Shi, & Habelhah, 2010). TRAF2 RING domain mutant cells exhibited normal NF-KB activation in response to TNF, therefore its pro-survival function must be independent of NF-KB activation (Vince et al., 2009). A potential mechanism, by which the RING domain of TRAF2 could promote survival, is by modifying the large catalytic domain of caspase-8 with K-48 linked ubiquitin chains upon caspase-8 autoprocessing and thereby triggering its proteasomal degradation (Gonzalvez et al., 2012). Like this, TRAF2 could increase the cell’s threshold to undergo extrinsic apoptosis (Gonzalvez et al., 2012). It is unknown how the CIM domain of TRAF2 promotes survival, however, one possibility could be a role for cIAPs in the regulation of caspase-8 activity.

The molecular mechanism, by which RIPK1 stabilizes TRAF2 remains elusive for the moment (Gentle et al., 2011). One possibility is that RIPK1 prevents the modification of TRAF2 and cIAP1 with ubiquitin chains in a direct or indirect kinase activity independent manner, which would target them for degradation. However supporting experimental evidence is pending at the moment. Overexpression systems in a RIPK1-deficient and RIPK1-mutant background would help to address these questions and to unravel the molecular mechanism TNF-induced apoptosis in the absence of RIPK1 and TRAF2.
4.3 Triggers of FADD-dependent apoptosis in RIPK1IEC-KO mice

Ablation of RIPK1 in IECs disables RIPK1-dependent processes that are required to protect IECs from undergoing FADD-dependent apoptosis. IEC apoptosis still occurs in the intestines of germ-free RIPK1IEC-KO mice (Figure 21), thus the signals triggering apoptosis in Ripk1-/- IECs are independent of the microbiota and are most likely host organism derived. In order to understand the function of RIPK1 in regulating cell death in different signalling pathways, it is necessary to identify triggers that cause death in RIPK1-deficient IECs, but not in healthy IECs under physiological conditions.

Signalling via RIPK1 can be stimulated by death receptor ligands TNF, Fas, TRAIL to induce apoptosis and, under particular conditions, also necroptosis (Weinlich & Green, 2014). Full body ablation of TNFR1 partly protected RIPK1IEC-KO mice from severe wasting, prevented premature lethality and significantly reduced the extent of IEC apoptosis in the colon and small intestine of RIPK1IEC-KO mice (Figure 23) (Takahashi et al., 2014). Interestingly, primary Ripk1-/- IECs expressed increased levels of TNF (Figure 35). Similarly, tamoxifen-inducible deletion of RIPK1 in organoids resulted in increased TNF expression and subsequent death of organoids (Figure 35). Therefore, TNF is largely responsible for triggering IEC apoptosis and intestinal pathology and in RIPK1IEC-KO mice and, furthermore, RIPK1-deficient IECs are one important source of TNF, which triggers apoptosis in an autocrine manner.

In other models, RIPK1-deficiency caused pathologies that differentially depend on TNF-signalling. For instance, in RIPK1E-KO mice, TNFR1 deficiency reduced keratinocyte necroptosis and delayed the onset of skin inflammation, but could not completely prevent it (Dannappel et al., 2014). In Ripk1-null mice in a C57BL/6 background, TNFR1 deficiency did not protect against early postnatal lethality and systemic inflammation, however rescued the colonic and small intestinal phenotype of Ripk1-/- mice (Rickard et al., 2014). On a mixed C57BL/6 129/Sv caspase-11-deficient background, TNFR1 deletion prolonged survival of Ripk1-/- mice up to 12 days (Cusson, Oikemus,
Kilpatrick, Cunningham, & Kelliher, 2002; Dillon et al., 2014). The reason for the phenotypic differences observed in RIPK1-null mice in the different genetic backgrounds is unknown.

Beside the importance of TNF-induced signalling in the context of the RIPK1IEC-KO mice phenotype, apoptotic IECs were still observed in RIPK1IEC-KO/Tnfr1−/− mice, suggesting that also TNFR1-independent signalling pathways contribute to cell death in RIPK1IEC-KO mice. Possibly, other death receptor ligands, such as Fas or TRAIL induce Ripk1−/− IEC apoptosis. However, combined deletion of TNF and FasL was not able to prevent postnatal death of RIPK1-deficient mice (Rickard et al., 2014). Binding of FasL or TRAIL to their cognate receptors, leads to direct recruitment of FADD via DD interactions, thereby triggering the assembly of a membrane-associated DISC for the induction of apoptosis. RIPK1 was shown to be dispensable for FasL-induced apoptosis and only had a minor cytoprotective role in TRAIL-induced apoptosis (Geserick et al., 2009; Holler et al., 2000; E. Varfolomeev et al., 2005). Therefore, it is unlikely that FasL or TRAIL contribute to the intestinal pathology in RIPK1IEC-KO mice.

During bacterial or viral infections, PAMPs are detected by PPRs such as TLR3 and TLR4 and activate host-defence pathways to mount an adequate immune response. Dependent on the cellular context, TLR3/TLR4 stimulation can induce TRIF RHIM interaction-dependent apoptosis and necroptosis (Kaiser & Offermann, 2005). Therefore, it is conceivable, that TLR3/TLR4-induced signalling triggers apoptosis of RIPK1-deficient IECs. However, IEC-specific TRIF ablation did not ameliorate severe wasting, premature lethality and intestinal cell death of RIPK1IEC-KO mice, indicating that TRIF-mediated signalling is not involved in apoptosis of RIPK1-deficient IECs. Interestingly, in contrast to Ripk1−/− organoids, Ripk1−/−/Tnfr1−/− organoids grew in culture for a limited period of time, but were highly sensitive to Poly(I:C), IFN-β and IFN-γ induced cell death (Figure 36). Therefore, TRIF- and/or IFN-mediated pathways might contribute to IEC death together with TNFR1 in a redundant fashion. This possibility is supported by the fact that the survival of Ripk1−/−/Tnfr1−/−/Trif−/− mice is significantly extended beyond those of Ripk1−/−
In the skin, TRIF-deficiency slightly ameliorated the extent of skin inflammation in RIPK1E-KO mice (Dannappel et al., 2014). Although the effect of TRIF-ablation on the extent of keratinocyte apoptosis and necroptosis was not evaluated in this work, TRIF and TNFR1 double deficiency might provide further protection from skin pathology in RIPK1E-KO mice. On the other hand, in both models RIPK3-mediated necroptosis is an important driver of the phenotype, and TRIF deletion maybe disables a TRIF-RIPK3 RHIM-mediated interaction that causes necroptosis in the absence of RIPK1. In this case, given the RIPK3-independency of the intestinal phenotype, TNFR1-TRIF double deficiency would not give any further protection compared to TNFR1 deficiency. However, this needs to be addressed with a genetic approach requiring the generation of triple mutant animals.

Similar to TNFR1 and TRIF-double deficiency, Ripk1-/-/Tnfr1-/-/Ifnar-/- mice had a survival advantage compared to Ripk1-/-/Tnfr1-/- and Ripk1-/-/Ifnar-/- mice (Dillon et al., 2014). In vitro studies revealed that Ripk1-/- MEFs are sensitized to type I IFN-induced death, that depends on RIPK3 and MLKL (Dillon et al., 2014; Kaiser et al., 2014). As RIPK3-dependent necroptotic death plays no major role in RIPK1-deficient IECs, it is unlikely that deletion of IFNAR would ameliorate cell death in RIPK1IEC-KO mice, although experimental evidence is required to assess this possibility.

Given the importance of RIPK1 in the described signalling pathways regulating cell death and cytokine production, it is not surprising that RIPK1 is linked to bacterial and viral infections. Several studies emphasized the importance of RIPK1 and/or RIPK3 mediated cell death pathways during infection scenarios. In order to successfully disseminate and infect another host, many viruses counteract host’s cell death machinery. For instance, vaccinia virus expresses B13R/Spi2, a potent inhibitor of caspase-1 and caspase-8. Infected cells are sensitized to RIPK1/RIPK3 dependent necroptosis induced by increased TNF expression after pathogen encounter in different tissues. In line with this, VV infected Ripk3-/- mice showed reduced cell death and inflammation and finally succumbed to the infection due to uncontrolled spreading of the pathogen (Chan et al., 2003; Cho et al., 2009).
Likewise $\text{Ripk}^{1D_{138N}}$ mice showed impaired control of vaccinia virus replication, underlining the importance of RIPK1/RIPK3-mediated necroptosis for the host’s antiviral response (Polykratis et al., 2014). However, if infections with VV cause or prevent RIPK1/RIPK3-dependent necroptosis in healthy IECs is unknown.

Murine cytomegalovirus (MCMV) encodes viral inhibitor of caspase-8 activation (vICA) and viral inhibitor of RIP activation (vIRA) to block both, apoptotic and necroptotic cell death (Brune, Menard, Heesemann, & Koszinowski, 2001; Mack, Sickmann, Lembo, & Brune, 2008; Rebsamen et al., 2009; Upton et al., 2008). vIRA harbors two RHIM-domains and can prevent death of infected host cells by binding to RIPK1 and RIPK3 to prevent DAI induced necroptosis and NF-κB activation. Mutating the RHIM of vIRA abolished the virulence of MCMV due to increased host cell necroptosis, which was restored in $\text{Dai}^{-/-}$ and $\text{Ripk3}^{-/-}$ mice (Upton et al., 2012). In rare cases, cytomegalovirus infection can cause ileitis and colitis in immunocompetent patients, although it remains elusive if CMV interferes or hijacks the RIPK1/RIPK3-dependent cell death machinery in infected IECs (Tejedor Cerdena et al., 2011). In the described examples, the diverse roles of RIPK1 during infections were examined mainly in immune cells and the possibility of bacterial and viral induced apoptosis/necroptosis in IECs remain elusive. A recent publication demonstrated that poly(I:C) directly triggers a TLR3-TRIF-caspase-8 pathway to induce IEC apoptosis and IEC shedding (McAllister et al., 2013). Although not evaluated in this specific experimental setting, it is likely that RIPK1 is a mediator of TLR3-TRIF induced apoptosis in IECs, as reported for other cell types (Estornes et al., 2012). Upon blocking extrinsic apoptosis, as in Caspase-8$^{\text{IEC-KO}}$ mice, intraperitoneal injection of Poly(I:C), induced RIPK1 kinase-dependent RIPK3-dependent IEC necroptosis, providing further evidence for a physiological role of RIPK1 in the regulation of TLR3-induced cell death in IECs. However, the contribution of RIPK1 in IEC-specific viral infection models still needs to be addressed.

Several recent studies revealed, that bacterial infections can induce RIPK1 and/or RIPK3 dependent cell death. For instance, *Salmonella enterica* serovar Typhimurium can induce macrophage death by triggering type I IFN...
production that culminates in autocrine RIPK1- and RIPK3-dependent macrophage necroptosis to evade host's innate immune system (Robinson et al., 2012). In a similar way and in contrast to VV and MCMV infections, Mycobacterium tuberculosis uses TNF-induced host cell RIPK1/RIPK3-dependent necroptosis for its own dissemination into the extracellular space (Chan et al., 2015). The primary etiological agent of periodontitis, Porphyromonas gingivalis, which is also associated with atherosclerosis, was shown to specifically cleave RIPK1 in infected human aortic endothelial cells with a lysine-specific Kgp protease to prevent activation of the host cell death machinery (Madrigal, Barth, Papadopoulos, & Genco, 2012). Finally, in specific infection scenarios, RIPK1 can have dual functions. First, macrophages infected with Yersinia pestis, the causative agent of “black death”, are removed by RIPK1 kinase-dependent caspase-8 mediated apoptosis and second, both, RIPK1 and caspase-8 are required for TNF, IL-6, IL-18 production and caspase-1 activation in Y. pestis infected macrophages (Grobner et al., 2007; Philip et al., 2014; Weng et al., 2014). Although these studies suggest differential roles for RIPK1 during bacterial infections, most of the studies focused on the role of immune cells during infections. Many pathogens, for instance Heliobacter pylori, Clostridium difficile, Cryptosporidium parvum, Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC) were shown to induce IEC apoptosis in vitro and/or in vivo, however the molecular mechanism of cell death was investigated in these studies (Keenan, Sharpnack, Collins, Formal, & O'Brien, 1986; Wada, Mori, & Iwanaga, 1997; Wagner et al., 1997). Nevertheless, it has been reported that gastrointestinal attaching and effacing (A/E) pathogens, such as enteropathogenic Escherichia coli (EPEC), Shigella and Salmonella express a type III secretion system effector NleB1, which directly interacts with death domain proteins FADD, RIPK1 and TRADD to antagonize DR-induced apoptosis of in 293T cells (S. Li et al., 2013; Pearson et al., 2013). Therefore, although experimental evidence is missing so far, it is possible that RIPK1-regulated cell death in IECs is involved in bacterial infections.

Beside its role in RIPK1 in the described pathways, RIPK1 is suggested to be involved in other cell survival/proliferation pathways, such as insulin-like
growth factor 1 receptor (IGF-1R) or epidermal growth factor receptor (EGFR)-mediated signalling (Lin, Yang, Wang, & Liu, 2006; Ramnarain et al., 2008). However, if RIPK1 has a role in regulating cell survival or cell death within these pathways and if this is relevant for RIPK1-deficient IECs is unknown and needs to be addressed.

Upon DNA damage, a signalling platform called the PIDDosome forms, that among others, contains NEMO and RIPK1 and signals through either cell survival or caspase-2 mediated apoptosis. Within the PIDDosome, RIPK1 negatively regulates DNA-damage induced apoptosis by promoting NF-κB activation (Tinel et al., 2007). During excessive DNA damage induced by etoposide, an inhibitor of topoisomerase, ATM stimulates two sequential NF-κB activation pathways via NEMO and RIPK1 in cancer cells to induce feedforward autocrine TNF-signaling in order to eliminate affected cells and alert neighbouring cells (Biton & Ashkenazi, 2011). RIPK1 regulates genotoxic stress induced apoptosis in a kinase activity dependent and DR-independent manner within a cytosolic platform called “Ripoptosome” (Tenev et al., 2011). Within the Ripoptosome, the levels of cFLIP_L and cFLIP_S determine cell fate between apoptosis and RIPK3-dependent necroptosis by regulating caspase-8 activity (Feoktistova et al., 2011). Although the mode of death may have different consequences relevant for some pathophysiological conditions, it is rather unlikely that genotoxic stress is a trigger of apoptosis in Ripk1-/- IECs.

In summary, autocrine TNF is the major inducer of IEC apoptosis in the colon and ileum of RIPK1IEC-KO mice. However, beside TNF, other triggers of FADD-dependent apoptosis in RIPK1-deficient IECs apoptosis exist, that still need to be identified to understand how RIPK1 regulates intestinal homeostasis. In addition, many studies revealed that RIPK1-regulated cell death pathways not only regulate homeostasis, but also are important during pathophysiological conditions such as infections and for executing appropriate host immune responses to protect the organism.
4.4 The role of RIPK1 in (intestinal) inflammation

Except for Tnf and Cxcl1, expression of cytokines and chemokines was only slightly upregulated in the colon and ileum of RIPK1IEC-KO mice on mRNA levels (Figure 9, Figure 13). Although, the overall number of leucocytes and in particular CD11bhi Ly6Ghi neutrophils, which are usually the first cells recruited to a site of inflammation, were differentially increased in the lamina propria of RIPK1IEC-KO intestines, on histological sections they showed a dispersed staining pattern and were not found in focal spots (Figure 10, Figure 14). Ulcers were not detectable in none of the examined H&E stained sections from colon and ileum derived from RIPK1IEC-KO mice (Figure 6). Thus, despite extensive epithelial cell apoptosis, RIPK1IEC-KO mice develop only very mild inflammation in the colon and the ileum. IEC apoptosis, intestinal pathology and premature death of RIPK1IEC-KO mice were independent of commensal bacteria and MyD88-mediated signalling (Figure 17, Figure 18, Figure 20- Figure 22). Noteworthy, another publication reported a partial dependency of severe wasting, premature lethality and inflammation in RIPK1IEC-KO mice on the microbiota and MyD88-dependent signalling (Takahashi et al., 2014). However, in this study, a detailed characterization of colitis/ilietis in both has so far not been provided, and similar to our results, double-knockout mice still showed IEC apoptosis. The reason for the discrepancies in the macroscopic state and survival of RIPK1IEC-KO mice between both studies are unknown. Nevertheless, since antibiotic treatment ameliorated wasting and prolonged the survival of RIPK1IEC-KO (Figure 20) (Takahashi et al., 2014) as well as of RIPK1tamIEC-KO (Figure 17, Figure 18) and low numbers of germ-free RIPK1IEC-KO mice survived up to 22 weeks (Figure 21a, b), it is possible that the depletion or absence of the microbiota has a beneficial effect for the overall constitution and survival of the mice without affecting IEC death and intestinal pathology.

The phenotype of RIPK1IEC-KO mice is in stark contrast to other murine intestinal models of (extrinsically-induced) intestinal cell death such as NEMOIEC-KO mice or FADDIEC-KO mice, which have less dying IECs compared to RIPK1IEC-KO mice, but develop ulcerating colitis already at 3 weeks of age.
In both cases, colitis depends on commensals inducing MyD88-dependent signalling, however death of IECs is only reduced but not abrogated (Nenci et al., 2007; Welz et al., 2011)(unpublished data). In both cases, colitis depends on commensals inducing MyD88-dependent signalling, however death of IECs is only reduced but not abrogated (Nenci et al., 2007; Welz et al., 2011)(unpublished data). In line with this, previous reports showed, that IECs express low levels of TLR4 and LPS-induced death of IECs in mice depends on TNF produced by non-epithelial cells in response to LPS sensing (Gunther et al., 2015; Williams et al., 2013). Thus, most likely commensal-induced TLR4-MyD88-mediated signalling does not directly induce IEC death in RIPK1IEC-KO, FADDIEC-KO and NEMOIEC-KO mice. In the case of the latter two, according to the current model, a compromised barrier integrity, caused by IEC death, allows the translocation of bacterial antigens in to the bowel wall, where they activate mucosal immune cells and thereby induce cytokine production, which drives the inflammatory phenotype. Increased abundance of inflammatory cytokines such as TNF in turn, induces death of more IECs triggering a feedforward loop sustaining and promoting disease development.

Within the intestinal epithelium, dead cells are removed mainly by cell shedding, whereas the contribution of phagocytosis is under debate, thus controlled proliferation and regulation of cell adhesion- and tight junction proteins is necessary for proper barrier integrity. As RIPK1IEC-KO mice do not show ulcerating colitis (and ilieits), one may speculate that despite extensive cell death, the intestinal epithelial barrier integrity remains intact. This would provide an explanation why MyD88 ablation, and thus sensing of bacteria in the lamina propria, does not have an impact on the pathology in these mice. However, if a compromised barrier is the cause or the consequence of intestinal inflammation remains a question at the moment. Recently, it was demonstrated that mice with IEC specific ablation of claudin-7, a constituent of epithelial tight junctions, primarily had a leaky intestinal barrier, which was followed by inflammation of the colon, suggesting that a compromised barrier might be sufficient to cause colitis (Tanaka et al., 2015). Similarly, Caspase-8IEC-KO mice, an intestinal cell death model for RIPK3-dependent IEC necroptosis, showed breakdown of epithelial barrier upon poly(I:C) injection that most likely contributes to lethal systemic spreading of intestinal microbes (Gunther et al., 2015). It remains to be shown, if the expression of
constituents regulating proliferation, cell adhesion and epithelial tight- and gap junctions differs between RIPK1IEC-KO mice and other mouse models, or is regulated differentially by other means.

Another possibility, which could account for the different pathology in the RIPK1IEC-KO, NEMOIEC-KO, FADDIEC-KO and Caspase-8IEC-KO mice, is the mode of cell death of IECs. Historically, apoptosis is considered as an immunotolerogenic or “silent” mode of cell death during which the dying cells are orderly disassembled by phagocytes to limit the amount of released DAMPs. In contrast, unregulated necrosis/necroptosis are considered as immunogenic, due to the uncontrolled release of DAMPs into the neighbourhood. Accordingly, in RIPK1IEC-KO mice, with predominantly apoptotic IECs, no or only a mild inflammation would be expected. In contrast, in RIPK1IEC-KO/FADDIEC-KO the dominant mode of death switched to RIPK3-dependent necroptosis, that is immunogenic, resulting in colitis with presence of ulcers in 50% of the analysed mice (Figure 25).

In other intestinal cell death models, such as NEMOIEC-KO mice, IKK1/2IEC-KO mice and TAK1IEC-KO mice, apoptosis is the main driver of the phenotype, however, mice develop severe colitis (Kajino-Sakamoto et al., 2008; Nenci et al., 2007). However, it should be considered that in these models impaired NF-\kappaB and MAPK activation may also contribute to the observed phenotypes. Although a possible a role of necroptosis needs to be addressed in these models, they demonstrate that apoptotic IEC death is able is to trigger intestinal inflammation. Since the molecular mechanisms initiating apoptosis differ in RIPK1IEC-KO mice on the one, and NEMOIEC-KO on the other hand, it could be possible that the mode of apoptosis has an influence on the immunogenicity itself or indirectly via the products that are exposed on the cell surface or secreted by dying cells. For instance it was shown that a small difference in the combination of molecules exposed during death of cells, can determine if the dying cell is recognised as immunogenic or not (Obeid et al., 2007). As mentioned, the immunogenic potential of necrotic/necroptotic death is attributed to the release of DAMPs, subdivided further into molecules with non-inflammatory functions in living cells with immunomodulatory properties such as HMGB1, uric acid, ATP and second, alarmins and molecules with
cytokine-like functions, for instance IL-1α, IL-1β or IL-33 (Kaczmarek, Vandenabeele, & Krysko, 2013). In the plasma of Ripk1−/− mice increased levels of IL-33 but not HMGB1 were detected, and this increase was independent of caspase-8 but dependent on RIPK3 and MLKL, thus seems to be specific for necroptosis (Rickard et al., 2014). IL-33 is of special interest, since it is a chromatin-associated protein constitutively expressed by epithelial cells and usually inactivated by effector caspases during apoptosis (Luthi et al., 2009; Palmer & Gabay, 2011). However, if levels of IL-33 or another yet to be identified DAMP differ before the onset of inflammation and may account for the phenotypic difference in RIPK1IEC-KO mice and RIPK1IEC-KO/FADDIEC-KO as well as other intestinal cell death models remains to be shown.

In summary, it is not clear if a different mode of cell death and/or differences in the barrier regulation account for the phenotypic differences in regard to inflammation that are observed in RIPK1IEC-KO mice and other models.

4.5 Concluding Remarks
The data presented in this work unravels RIPK1 as an important regulator of intestinal homeostasis that prevents FADD-dependent apoptosis during homeostatic conditions. Further studies are required to decipher the molecular mechanisms of RIPK1-regulated cell death downstream of TNF and other signalling pathways. This might provide important insights to understand the pathogenesis of human diseases such as IBD. Although the pathogenic role of TNF in IBD is not fully understood, anti-TNF therapy is successfully used in IBD patients. There is increasing evidence that apoptosis and necroptosis contributes to the pathology in IBD and thus, specific targeting of components of cell death effectors may provide novel therapeutic opportunities.
References

inhibiting apoptosis and necroptosis. *Nature*, 513(7516), 90-94. doi: 10.1038/nature13608

extrusion to maintain homeostatic cell numbers in epithelia. *Nature*, 484(7395), 546-549. doi: 10.1038/nature10999

mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. *J Immunol*, 162(7), 3749-3752.

mice from autoimmune-mediated demyelination. J Immunol, 185(12), 7646-7653. doi: 10.4049/jimmunol.1000930

expressing a human intestinal defensin. Nature, 422(6931), 522-526. doi: 10.1038/nature01520

Acknowledgement

First of all I would like to thank Prof. Manolis Pasparakis for giving me the opportunity to do my PhD work in his Lab and giving such an interesting project trustworthy in my hands. I am very thankful for his scientific guidance and his sustained interest in the progress of my work.

I want to express my deep gratitude to Katerina Vlantis for her supervision and support whenever needed, numerous helpful scientific discussions and her constructive comments for this manuscript. I highly appreciate her contribution and exceptional commitment during the preparation and revision of our publication. A special thank goes to Chun Kim for many inspiring discussions, his outstanding contribution to our publication and his personal support. Furthermore I want to thank Katerina Vlantis, Vanesa Fernández-Majada, Christina Eftychi, Robin Schwarzer and Patrick Welz for the supportive and unique environment within the “Gut-Lab” that helped me through up and downs. Moreover, I want to express my thankfulness to all collaborators that contributed to this work, with special thanks to the Michelle Kelliher Lab and Apostolos Polykratis for generating the mouse and the fruitful discussions.

I deeply appreciate the invaluable help provided by the team of our excellent technical assistants. I am thankful to Daniela Beier, Elza Mahlberg and Edeltraud Stade for patiently cutting countless sections. Many thanks to Jennifer Buchholz, Brigitte Hülser and Bianca Wolf for countless genotyping PCRs during the last for 4 years. Thanks to Claudia Uthoff-Hachenberg for her aplomb and help in all kind of problems and situations that came along. I also want to thank Dr. Hafner, Silke Röpke and Johannes Winkler for their help with administrative, bureaucratic and other issues that arose. My grateful thanks to all former and current Lab-members for the nice hours and the valuable experiences in- and outside the Lab.

Ein großer Dank geht an meine Familie und Freunde für die immerwährende Unterstützung in guten und schweren Zeiten. Ohne euch wäre diese Arbeit nicht möglich gewesen. Danke, dass Ihr niemals den Glauben an mich verloren habt!
Teilpublikation

Teile dieser Doktorarbeit wurden in folgender Publikation veröffentlicht:

RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis

Marius Danuţa-Patrici*#, Katerina Vlantis#, Stehahla Kumar#, Agostos Polycrate#, Chenz Kirol, Laurens Wachtmann#, Christina Eichfeld#, Juan Lin#, Teresa Cortina#, Nikole Herrmann#, Marija Zelić#, Petra Kirsch#, Marijana Išmačić, Amfite Betch#, Michèle Keilhauer# & Mamila Pasparakis*

Necroptosis has emerged as an important pathway of programmed cell death in embryonic development, tissue homeostasis, immunity and inflammation*. RIPK1 is implicated in inflammatory and cell death signalling** and its kinase activity is believed to drive RIPK3-mediated necroptosis***. Here we show that kinase-independent scaffolding RIPK1 functions regulate homeostasis and prevent inflammation in barrier tissues by inhibiting epithelial cell apoptosis and necroptosis. Intestinal epithelial cell (IEC)-specific RIPK1 knockout caused IEC apoptosis, villus atrophy, loss of goblet and Paneth cells and premature death in mice. This pathology developed independently of the microbiota and of MYD88 signalling but was partly rescued by TNFR1 (also known as TNFRSF1A) deficiency. Epithelial FADD ablation inhibited IEC apoptosis and prevented the premature death of mice with IEC-specific RIPK1 knockout. However, mice lacking both RIPK1 and FADD in IECs displayed RIPK3-dependent IEC necroptosis, Paneth cell loss and focal erosive inflammatory lesions in the colon. Moreover, a RIPK1 kinase inactive knock-in in delited but did not prevent inflammation caused by FADD deficiency in IECs or keratinocytes, showing that RIPK3-dependent necroptosis of FADD-deficient epithelial cells only partly requires RIPK1 kinase activity. Epidermis-specific RIPK1 knockout triggered keratinocyte apoptosis and necroptosis and caused severe skin inflammation that was prevented by RIPK3 but not FADD deficiency. These findings reveal that RIPK1 inhibits RIPK3-mediated necroptosis in keratinocytes in vivo and identified necroptosis as a more potent trigger of inflammation compared with apoptosis. Therefore, RIPK1 is a master regulator of epithelial cell survival, homeostasis and inflammation in the intestine and the skin.

Mice lacking RIPK1 die perinatally, exhibiting apoptosis in multiple tissues including the intestine† (Extended Data Fig. 1a). We generated mice with IEC-specific knockdown of RIPK1 (RIPK1ΔIEC)‡ (Fig. 1a) and Extended Data Fig. 1b–d) and found that they showed reduced body weight and died within the first weeks of life (Fig. 1b, c). Intestinal sections from 3-week-old RIPK1ΔIEC mice revealed pronounced villus atrophy and Paneth cell loss in the ileum, as well as reduced numbers of goblet cells and differentiated enterocytes, crypt elongation and IEC hyperplasia in both the ileum and colon (Fig. 1d and Extended Data Fig. 1e–i). RIPK1ΔIEC intestine contained highly increased numbers of dermal capillaries (CD31+ vascular structures) that have not been shown to contribute to epithelial erosion, suggesting that the epithelial barrier remained largely intact (Fig. 1d and Extended Data Fig. 1e, f). Messenger RNA levels of IGF1, IGF2 and Ccnd1 and caspase numbers were moderately increased in the ileum and colon of RIPK1ΔIEC mice (Fig. 1c, f and Extended Data Fig. 2a, b), indicating the presence of a mild inflammatory response. Newborn RIPK1ΔIEC mice showed only a few apoptotic IECs, whereas 7-day-old mice showed increased numbers of apoptotic IECs, loss of goblet cells, elongated hyperplasitic crypts and increased immune cell infiltration concomitant with moderately increased expression of tumour necrosis factor (TNF) and Interleukin (IL)-1β (Extended Data Fig. 3). Tumour-inducible ablation of RIPK1 in IECs of adult mice (RIPK1ΔIEC) caused rapid weight loss and death of the animals (Extended Data Fig. 4e–d) due to extensive IEC apoptosis resulting in severe intestinal pathology (Extended Data Fig. 4e–f). Collectively, these results revealed that epithelial-cell-intrinsic RIPK1 is essential for IEC survival and the maintenance of intestinal tissue structure and homeostasis.

The luminal microbiota regulates intestinal homeostasis and contributes to inflammation both in human inflammatory bowel disease and in mouse models*. Antibiotic treatment briefly delayed but did not prevent severe intestinal pathology, weight loss and death of mice with inducible or constitutive IEC-specific RIPK1 knockout (Extended Data Fig. 4a–c, d). Moreover, RIPK1ΔIEC mice raised under germ-free conditions developed similar intestinal pathology, although some of the mice survived up to the age of 5 weeks, indicating that the microbiota contributes to disease severity (Fig. 1g–i). In addition, MYD88 deficiency did not prevent intestinal pathology in RIPK1ΔIEC mice (Fig. 1a, b and Extended Data Fig. 5a–c). Therefore, epithelial cell death and intestinal pathology in RIPK1ΔIEC mice develop independently of the microbiota and of MYD88-dependent TLR signalling. RIPK1ΔIEC/ΔIEC mice were partially protected from severe wasting, with approximately 50% of the mice surviving to at least 3 months of age, and showed reduced IEC apoptosis and ameliorated intestinal pathology (Fig. 2a–c and Extended Data Fig. 5a–c). Thus, IEC-death and intestinal pathology in RIPK1ΔIEC mice is induced mainly by TNFR1 signalling but TNFR1-independent pathways also contribute.

Epithelial FADD deficiency abolished IEC apoptosis and villus atrophy and prevented the severe wasting and premature death of RIPK1ΔIEC mice (Fig. 2j–l), suggesting an important pathogenic role of FADD-dependent apoptosis. However, RIPK1ΔIEC/FADDΔIEC mice maintained increased numbers of IECs dying IECs and showed Paneth cell loss in the ileum and signs of colitis affecting primarily the distal colon (Fig. 2k, l and Extended Data Fig. 6a). In summary, RIPK1ΔIEC mice, in which the distal colon was only mildly affected and that did not show epithelial erosion (0 of 18 mice analysed), histological examination of Swiss roll sections revealed focal epithelial erosions in the distal colon of RIPK1ΔIEC/FADDΔIEC mice (8 of 11 mice) and RIPK1ΔIEC mice with heterozygous epithelial FADD deficiency (FADDΔIEC/FADDΔIEC mice) (5 of 6 mice) at the age of 3 weeks (Extended Data Fig. 6a). Adult RIPK1ΔIEC mice (Extended Data Fig. 6a). Adult RIPK1ΔIEC mice displayed villus shortening, loss of goblet and Paneth cells and crypt elongation in the small intestines, as well as focal inflammatory erosive lesions and crypt abscess formation in the distal colon in 5 of 7 mice examined (Extended Data Fig. 7a). Therefore, although epithelial FADD-deficiency strongly reduced the number of apoptotic

*Institut für Genetik, Centre for Molecular Microbiology (CMM), Goethe University, Schleinitzstrasse 3, 60590 Frankfurt, Germany. †Rosewood Children’s Medical Centre, University of California, San Francisco, USA. ‡Institut für Genetik, Centre for Molecular Microbiology (CMM), Goethe University, Schleinitzstrasse 3, 60590 Frankfurt, Germany. †These authors contributed equally to this work.

©2016 Macmillan Publishers Limited. All rights reserved
Figure 1 | Epithelial RIPK1 ablation causes microbisto-independent intestinal pathology. a, H&E-stained small intestine sections from Ripk1−/− (0.15) and RIPK1[−/−]XIC−/− mice. b, Body weight (g) and Kaplan–Meier survival curve (i) of Ripk1−/− and RIPK1[−/−]XIC−/− mice. d, Representative images of ileal sections from Ripk1−/− and RIPK1[−/−]XIC−/− mice stained as indicated. H&E, hematoxylin and eosin. e, Quantitative polymerase chain reaction with reverse transcription (qRT–PCR) of cytokine and chemokine expression (a) and fluorescence-activated cell sorting (FACS) of lamina propria lymphocytes (i) in the small intestine of Ripk1−/− and RIPK1[−/−]XIC−/− mice. g, Representative images of H&E- or C57 stained ileal sections from germ-free Ripk1−/− and RIPK1[−/−]XIC−/− mice. h, i, Quantification of histological pathology score (a), crypts containing C57 cells (i) and C57 cells per crypt (j) in intestinal sections of the indicated mice. GF, germ-free; SPF, specific pathogen-free. Scale bars, 100 μm. *P < 0.05, **P < 0.01, ***P < 0.001, NS, not significant.

epithelial cells and prevented wasting and premature death of RIPK1[−/−]XIC−/− mice, it did not normalize but rather altered their intestinal pathology, with RIPK1[−/−]/FAID−/− animals resembling the phenotype of FAID−/− mice. Indeed, triple-deficient RIPK1[−/−]/FAID−/−/Rec−/− mice did not display macroscopic or histological signs of intestinal pathology, although they displayed slightly increased mRNA levels of Itgα1, Il6, C5s and Iil19 in the colon (Fig. 4f–k and Extended Data Figs 5d, e, 6, 7a, b). In contrast, RIPK3 deficiency alone did not prevent wasting, early lethality, IEC apoptosis or intestinal pathology in RIPK3[−/−]XIC−/− mice (Fig. 4f–j and Extended Data Figs 5d, e, 6, 7a, b). Therefore, RIPK3-dependent necroptosis does not constitute a primary pathway inducing IEC death and intestinal pathology in RIPK1[−/−]XIC−/− mice, but becomes functionally important when FAID ablation inhibits apoptosis and sensitizes RIPK1-deficient IECs to necroptosis. These results suggested that RIPK3 induces RIPK1-dependent necroptosis in FAID-deficient IECs, which is surprising as RIPK1 kinase activity is considered essential for RIPK1-mediated necroptosis, at least downstream of TNFR1 (refs 14, 15), which is the major driver of epithelial cell necroptosis in the colon of FADD−/− mice. To address specifically the role of RIPK1 kinase activity, we crossed FADD−/−XIC−/− mice with knock-in mice expressing kinase-inactive RIPK1 (RIPK1 (RIPK1(D138N)) and found that lack of RIPK1 kinase activity did not prevent IEC necroptosis and intestinal inflammation in FADD−/−XIC−/− mice (Fig. 5f–g and Extended Data Fig. 7d). Therefore, RIPK1 deficiency or loss of its kinase activity only partly inhibited RIPK3-dependent necroptosis of FAID-deficient IECs, providing genetic evidence that both RIPK1-dependent and RIPK1-independent pathways drive RIPK1-mediated necroptosis and intestinal inflammation in FADD−/−XIC−/− mice. As shown previously, RIPK1 deficiency but not loss of its kinase activity partially inhibited TNF-mediated NF-κB activation in mouse embryonic fibroblasts (MEFs) (Extended Data Fig. 8a), suggesting that loss of RIPK1 scaffolding function might trigger epithelial cell apoptosis by inhibiting NF-κB. However, NF-κB inhibition in the intestinal epithelium did not phenocopy the intestinal pathology of RIPK1[−/−]XIC−/− mice. Moreover, sustained NF-κB activation in RIPK1-deficient epithelial cells by expression of a constitutively active IKK2 transgene did not prevent IEC death and rather aggravated the intestinal pathology of RIPK1[−/−]XIC−/− mice, suggesting that RIPK1 deficiency does not sensitize IECs to apoptosis by inhibiting NF-κB (Extended Data Fig. 8b–d). RIPK1-deficient IECs did not show reduced mRNA expression of pro-survival genes, but expressed reduced amounts of cIAP1 (also known as BIRC2) and TRAF2 proteins (Fig. 3a, b), suggesting that RIPK1 might control their stability. Indeed, consistent with previous reports, we found that TNF stimulation induced rapid degradation of TRADD, cIAP1, TRAF2 and c-FLIP (also known as CFLAK) but not of TRAF2 (in RIPK1-deficient but not in RIPK1(D138N) primary MEFs (Fig. 3c, d), suggesting that lack of the RIPK1 scaffolding function triggers degradation of proteins recruited to the TNFR1 signaling complex. We then sought to address whether RIPK1-deficient intestinal epithelial cells show similar responses. However, small intestinal crypts from RIPK1[−/−]XIC−/− mice died shortly after isolation and failed to form organoids (data not shown). Nevertheless, tanserin-inducible RIPK1 deletion resulted in reduced expression of cIAP1, TRAF2 and c-FLIP proteins and caused rapid organoid death (Fig. 3d–g), suggesting that loss of pro-survival protein expression contributes to death of RIPK1-deficient IECs. Interestingly, TRAF2-deficient mice develop a similar intestinal phenotype and early lethality that was not prevented by antibiotic treatment and was only partially rescued by TNFR1 deficiency, suggesting that loss of TRAF2 could contribute to the intestinal pathology of RIPK1[−/−]XIC−/− mice. SMAC (also known as DIABLO) misomic-compound-mediated cIAP2 degradation induced activation of both non-canonical and canonical NF-κB and the expression of TNF-α and other cytokines, suggesting that loss of cIAP proteins could trigger the expression of TNF-α and other cytokines by RIPK1-deficient IECs that could act in an autocrine fashion to induce their death. Indeed, RIPK1-deficient primary IECs showed increased NF-κB activation and expressed elevated levels of TNF, while tanserin-inducible deletion of RIPK1 upregulated TNF expression in organoids (Fig. 3g–j). Moreover, intestinal crypts from Ripk1[−/−]XIC−/− mice did not die rapidly, as did crypts from RIPK1[−/−]XIC−/− mice, and although they did not grow as well as control organoids they could be cultured with a role of autocrine TNF production in triggering the death of RIPK1-deficient IECs. RIPK1/TNFR1 double-deficient organoids were more sensitive to...
Figure 2: Death of RIPK1-deficient IECs depends on FADD and RIPK3.

a. Representative images of IEC-6 or C57Bl/6 stained (b) sections from the indicated mice.

b. Body weight (b) and Kaplan-Meier survival curve (c) of the indicated mice.

c. Quantification of crypts containing CC3+ cells (d) and CC3+ cell numbers per crypt (e) in intestinal sections of the indicated mice.

k. Representative images of intestinal sections from 4-month-old mice with the indicated genotypes.

P < 0.05, *P < 0.01, ****P < 0.001; NS, not significant.
Figure 3 | RIPK1 prevents the degradation of pro-survival proteins. a, b, qRT-PCR of pro-survival genes (a) and immunohistochemistry of caspase 8 (b) in small intestine IECs from Ripk1^{−/−} (b) and Ripk1^{+/+} (c) mice. c, Immunoblot of cell surface (WT), Ripk1^{−/−} (KO) and Ripk1^{+/+} (WT) IECs treated with 10 ng/mL recombinant mouse TNF. d, Immunoblot of small intestine organoids from Ripk1^{−/−} (b) and Ripk1^{+/+} (c) mice treated with 4-hydroxytamoxifen (4-OHT) for 24 or 48 h. e, qRT-PCR of RIPK1^{−/−} and RIPK1^{+/+} organoids were treated with vehicle (ethanol, DMSO) or 4-OHT for 24 h and photographed 48 h later. Original magnification, ×400. f, FACS quantification of propidium iodide (PI)-positive cells in organoids 48 h after treatment with 4-OHT. In the presence or absence of z-VAD-FMK. g, Immunoblot of cytoplasmic (C) and nuclear (N) proteins from small intestine IECs of four Ripk1^{−/−} and four Ripk1^{+/+} mice with the indicated antibodies. h, qRT-PCR of Tnf and Ilb expression in IECs from small intestine (b) or colon (g) of Ripk1^{−/−} and Ripk1^{+/+} mice. i, qRT-PCR of Tnf expression in small intestine organoids from Ripk1^{−/−} and Ripk1^{+/+} mice 30 h after treatment with 10 μg/mL poly(I:C). 1,000 U/mL IFN-γ and 1,000 U/mL IFN-β. j, Original magnification, ×400. k, Control. Representative data are shown of three (c, d, k), three (j) or two (d, i) independent experiments. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001; NS, not significant.

and inflammation in Ripk1^{−/−} mice. Keratinocyte-specific TRIF-ablation also rapidly ameliorated skin lesion development in Ripk1^{−/−} mice (Fig. 4a, b and Extended Data Fig. 9e). Collectively, these results showed that TNE1 and TRIF-mediated signalling contribute to RIPK1-dependent keratinocyte necrosis and skin inflammation in Ripk1^{−/−} mice.

d-AP was expressed at very low levels at steady state and was undetectable after TNF stimulation in RIPK1-deficient primary keratinocytes (Fig. 4e), similar to our findings in IECs. Moreover, RIPK1-deficient primary keratinocytes were highly sensitive to TNF-induced death that was inhibited by the caspase inhibitor z-VAD-FMK, demonstrating that in vitro these cells died primarily by apoptosis and were resistant to necroptosis even though they expressed RIPK3 (Fig. 4f, g). This result

Figure 4 | RIPK1 ablation causes keratinocyte necrosis and skin inflammation. a, Representative images of skin sections from the indicated mice stained with H&E or the indicated antibodies. Nuclei stained with DAPI. Scale bars, 100 μm (H&E), 50 μm (Immunostaining). b, Microscopic quantification of epidermal thickness and staining of skin sections from the indicated mice. c, Quantification of TUNEL staining in skin sections from the indicated mice. d, Quantification of Caspase 3 and 8 staining in skin sections from the indicated mice. e, Immunoblot of primary keratinocytes stimulated with 20 ng/mL recombinant mouse TNF for the indicated time points. f, Quantification of cell viability in primary keratinocytes treated with 20 ng/mL recombinant mouse TNF in the presence or absence of z-VAD-FMK (10 μM) and necrostatin 1 (50 nM). Mean values ± s.e.m. from biological triplicates (n = 3) are shown. g, Immunoblot of protein extracts from P10 epidermis. IECs or keratinocytes from mice of the indicated genotypes. h, Schematic model of the kinase-dependent (KD) and independent (KI) functions of RIPK1 in apoptosis and necroptosis. Representative data of three independent experiments are shown in e, f. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001; NS, not significant.

SEP 2024 | VOL 533 | NATURE | 93
is surprising considering that RIPv1 deficiency in vivo triggers skin inflammation by sensitizing keratinocytes to RIPK3-dependent necroptosis, and suggests that mechanisms related to keratinocyte differentiation and the in vivo tissue context could determine the sensitivity of keratinocytes to apoptosis and necroptosis.

Collectively, our results reveal a novel kinase-independent scaffolding function of RIP1 in activating epithelial cell apoptosis and necroptosis in vivo that is essential for the maintenance of physiological homeostasis in the intestine and the skin. The mechanisms determining whether RIP1 deficiency sensitize epithelial cells to apoptosis or necroptosis remain unclear and do not seem to depend on different expression of RIPK3 (fig. 1g). Our experiments also showed that necroptosis of LADT-deficient EECs and keratinocytes only partly depends on RIPK3 kinase activity, demonstrating that both RIPK1-dependent and-independent pathways drive RIPK3-mediated necroptosis. Therefore, RIPK3 is a central regulator of cell death that has the capacity to either inhibit or induce apoptosis and necroptosis (fig. 4b). Considering its key role as a molecular hub integrating and directing multiple stimuli in forms of apoptosis and necroptosis (K57, K46, K14) signals to determine cellular responses to stimuli that are often undetected (for example, lipopolysaccharide, double-stranded RNA or TNF, IFN-β) by microbe and are capable of triggering both inflammation and cell death. RIPK3 emerges as a key regulator of immunity and homeostasis in barrier tissues.

Note added in proof: An accompanying paper (Takahashi, N. et al., Nature, http://dx.doi.org/10.1038/nature13798) reports similar results on the role of RIPK1 in preventing IEC apoptosis, with some differences in the effect of anti-inflammatory treatment and MTD8 deficiency on the intestinal pathology of RIPK3-deficient mice.

Online Content Methods, along with any additional Extended Data display items and movies, are available in the online version of the paper. Any methods not mentioned in this section appear only in the online paper.

Received 20 December 2013; accepted 26 June 2014. Published online 17 August 2014.

Acknowledgements The authors gratefully acknowledge the support of National Health and Medical Research Council (NHMRC) grants APP1014179, APP1012829 and APP1014667.

Author Contributions M.Q. and T.J. performed and analyzed the experiments reported here and discussed the results with P.S., M.J. and T.J. M.Q. and T.J. wrote the paper with the input of P.S., M.J. and T.J. P.S. and E.B. designed and performed the experiments described in the paper. P.S. and E.B. designed and supervised the experiments. All authors discussed the results and commented on the manuscript.

Competing Financial Interests The authors declare no competing financial interests.

References are welcome to comment on the revision of the paper. Correspondence and requests for materials should be addressed to P.S. (paul@anu.edu.au).
METHODS

Mice, R6/2 Pdcd1−/−mice [ref. 25, PD GE] and 30-day-old 8-week-old wild-type (WT) mice were used for the studies. Mice were housed in a pathogen-free environment and fed a standard rodent diet. All experiments were conducted in accordance with the institutional guidelines and were approved by the local ethics committee. The Institutional Animal Care and Use Committee (IACUC) approved all experimental protocols. Animals were sacrificed by cervical dislocation under anesthesia with ketamine and xylazine. The tissues were dissected and fixed in formalin for 24 hours before embedding in paraffin. The sections were stained with hematoxylin and eosin for histological analysis.

In vivo experiments

For in vivo experiments, mice were anesthetized with ketamine and xylazine. The surgical site was sterilized with 70% ethanol, and a small incision was made to expose the dorsal root ganglia. The sciatic nerve was exposed, and a small segment was dissected. The segment was then transferred to a culture dish containing DMEM/F12 medium supplemented with 10% fetal bovine serum. The segment was incubated for 1 hour at 37°C in an atmosphere of 5% CO2. Thereafter, the nerve segment was transferred to a prewarmed PBS solution and incubated for 10 minutes at 37°C to remove excess serum. The nerve segment was then transferred to a new dish containing fresh DMEM/F12 medium supplemented with 10% fetal bovine serum and 100 units/ml penicillin/streptomycin. The nerve segment was incubated for 24 hours at 37°C in an atmosphere of 5% CO2.

In vitro experiments

For in vitro experiments, mouse dorsal root ganglia were dissected from 8-week-old C57BL/6 mice and cultured in DMEM/F12 medium supplemented with 10% fetal bovine serum and 100 units/ml penicillin/streptomycin. The cultures were incubated at 37°C in an atmosphere of 5% CO2. After 24 hours, the medium was replaced with fresh medium, and the cultures were incubated for another 24 hours.

RESULTS

In vivo experiments

The results of the in vivo experiments showed that the treatment with the experimental compound significantly reduced the extent of nerve damage and improved the functional outcome. The histological analysis of the treated nerves revealed a significant increase in the number of myelinated axons and a decrease in the number of demyelinated axons. The functional outcome was assessed using a novel behavioral task that measured the ability of the treated mice to perform a specific task. The results showed a significant improvement in the performance of the treated mice compared to the control group.

In vitro experiments

The results of the in vitro experiments showed that the experimental compound significantly reduced the extent of nerve damage and improved the functional outcome. The histological analysis of the treated cultures revealed a significant increase in the number of myelinated axons and a decrease in the number of demyelinated axons. The functional outcome was assessed using a novel behavioral task that measured the ability of the treated cultures to perform a specific task. The results showed a significant improvement in the performance of the treated cultures compared to the control group.

DISCUSSION

The results of the current study suggest that the experimental compound has potential therapeutic effects for the treatment of nerve damage. The compound was shown to be effective in vivo and in vitro, and the mechanisms of action are likely to be related to its ability to promote axonal regeneration and myelination. Further studies are needed to better understand the mechanisms of action and to validate these findings in clinical trials.

CONCLUSION

In conclusion, the experimental compound has the potential to be developed as a novel treatment for nerve damage. Further studies are needed to validate these findings in clinical trials and to evaluate the long-term effects of the compound.

ACKNOWLEDGMENTS

The authors thank the technical support staff for their assistance in the experiments. The work was supported by grants from the National Institutes of Health (NIH) and the Department of Defense (DOD).

REFERENCES

Extended Data Figure 1 | Intestinal pathology in Ripk4fl/fl and Ripk1TIEC/− mice. a, Representative images of colonic and ileal sections from newborn Ripk4fl/fl and Ripk1TIEC/− mice stained with HE or immunostained for CC3. b, Targeting strategy for the generation of mice with loxp-flanked (flxed) Ripk4 alleles. Exon 3 of the Ripk4 gene was flanked with loxpP elements and an FRT-flanked neomycin (Neo) selectable cassette was introduced at the 3' end site. The Neo-cassette was excised by crossing the Ripk4flox/fl ox mice with Flp-drizter mice. c, Representative Southern blots depicting the identification of correctly targeted embryonic stem (ES) cell clones by using 5' and 3' external probes. Arrows indicate a correctly targeted ES cell clone. Screening for the loxp site in intron 2 was performed by PCR (data not shown). Doublet combs allowing loading samples at two levels were used to maximize loading capacity of the gels for screening ES clones in 96-well plates. d, Immunoblot of colonic IEC protein extracts from Ripk4+/− and Ripk1TIEC/− mice. e, f, Representative images of ileal (e) or colon (f) sections from Ripk4+/− and Ripk1TIEC/− mice stained with HE, PAS or alkaline phosphatase (AP), or immunostained against lysosome, CC3 or Ki67. Scale bars, 100 μm.
Extended Data Figure 2 | Mild intestinal inflammation in RIPK1KO mice. a, qRT-PCR analysis of cytokine and chemokine expression in colon tissue from Ripk1LOX and RIPK1KO mice. b–d, FACS analysis of lamina propria leukocytes in the small intestine (b) and colon (c, d) of Ripk1LOX and RIPK1KO mice. e, Representative images from intestinal sections from Ripk1LOX and RIPK1KO mice immunostained with the indicated antibodies. Scale bars, 100 μm. *P < 0.05; **P < 0.01; ***P < 0.0001; NS, not significant.
Extended Data Figure 3] Assessment of intestinal pathology in newborn and 1-week-old RPK1^{1_{kdc}-₁-KO} mice. a, Representative images of intestinal sections from Ripk1^{1_{kdc}-₁-KO} and Ripk1^{1_{kdc}-₁-KO} mice stained with H&E or immunostained with the indicated antibodies. Arrows indicate sparse Cg3⁺ IECs in sections from 1-day-old animals. Scale bars, 100 μm. b, Quantification of crypts containing Cg3⁺ cells and the number of Cg3⁺ cells per crypt in intestinal sections of 1-week-old Ripk1^{1_{kdc}-₁-KO} and Ripk1^{1_{kdc}-₁-KO} mice. *P ≈ 0.05, **P ≈ 0.01, ***P ≈ 0.005; NS, not significant.
Extended Data Figure 4. Antibiotic treatment does not prevent intestinal pathology in Ripk1+/−/Cre and Ripk1−/−/Cre mice. a, Experimental outline of tamisium injections (TAM, 1 mg, intraperitoneally). b, Immunoblot of small intestine IEC protein extracts from tamisium-treated Ripk1+/− and Ripk1−/− mice, c–e, body weight change (c), Kaplan–Meier survival curve (d) and representative images of H&E- and CCS-stained intestinal sections (e) in vehicle-injected Ripk1+/− and Ripk1−/− mice. f, g, body weight change (f) and representative images of H&E- and CCS-stained intestinal sections (g) in vehicle-injected Ripk1+/− and Ripk1−/− mice treated with antibiotics (+ A) or normal drinking water starting 4 weeks before tamisium administration. h, i, Body weight change (h) and representative images of H&E- and CCS-stained intestinal sections (i) in tamisium-injected Villin-CreRipk1+/− mice (n = 3). j, k, body weight (j), Kaplan–Meier survival curve (k) and representative images of H&E- and CCS-stained intestinal sections (l) of Ripk1+/− and Ripk1−/− mice treated with antibiotics from E17.5 to 3 weeks of age. Scale bars, 100 μm. Error bars represent mean values ± s.d. *p < 0.05, **p < 0.01, ***p < 0.005, NS, not significant.

©2014 Macmillan Publishers Limited. All rights reserved.
Extended Data Figure 5 | Role of MyD88, TNFR1, FADD and RIPK3 in the intestinal pathology of RIPK1−/− mice. a, Representative images of ileal sections from the indicated mice as controls for the mice shown in Fig. 5a. b, Quantification of histological pathology score of the indicated mice. c, Representative images of H&E- or CC3-stained ileal sections from the indicated mice. d, Representative images of H&E- or CC3-stained ileal sections from the indicated mice. e, Representative images of H&E- or CC3-stained ileal sections from the indicated mice. Scale bars, 100 μm. e, Quantification of histological pathology score of the indicated mice. *P < 0.05, **P < 0.01, ***P < 0.005, NS, not significant.
Extended Data Figure 6 | Epithelial-specific FADD deficiency reduces IEC apoptosis, ameliorates crypt atrophy but triggers erosive lesions in the colon of RIPK1^{−/−} mice. Representative images of ileal and colonic sections from the indicated mice stained with H&E or immunostained against lysozyme or CC3. Scale bars, 100 μm.
Extended Data Figure 7 | FADD and RIPK3 deficiency restores intestinal homostasis in RIPK1Δκα/Δκα mice and HEC necroptosis in FADDΔκα/Δκα mice occurs in the absence of RIPK3 kinase activity. a-c, Representative images of H&E-stained colonic and ileal sections of adult mice with the indicated genotypes. d, Representative images of colonic and ileal sections of mice with the indicated genotypes immunostained for CD45. e, f, Representative images of colonic (a) and ileal (d) sections of adult FaddΔκα/Δκα Rippk3+/+ and FADDΔκα/Δκα Rippk3−/− mice stained with H&E or immunostained against CCS. Scale bars, 100 μm.

©2014 Macmillan Publishers Limited. All rights reserved.
Extended Data Figure 8 | Assessment of the role of NT-αβ and TRIF signalling in RIPA3−/− mice. a, Immunoblot analysis of protein extracts from wild-type (WT), Ripα−/− and Ripα−/−Ripβ−/− mice after stimulation with 10 ng/ml IL-1β recombinant murine TRIF for the indicated time points. Data are representative of five independent experiments. b–d, Body weight (b), quantification of histological pathology score (c) and representative H&E, COX-2 or CD86-stained intestinal sections (d) of mice with the indicated genotypes. e, Targeting strategy used for the generation of TRIF−/− mice. Exon 2 of the TRIF gene was flanked with loxP sites. FRT-flanked neo and a stop cassette were placed upstream of the 5’-Inp site. A splice acceptor (SA) orCherry cassette was introduced downstream of the 5’-Inp site. Cre-mediated recombination removes the TRIF coding sequence and the stop cassette inducing the expression of mCherry by the TRIF locus. The FRT-flanked neo was excised by crossing TRIF−/− mice with Flp-Deleter mice. f, Cervical microscopy images of near native small intestinal sections of TRIF−/− and TRIF−/− mice stained with anti-lysosome and DAPI. g, h, Body weight (g) and representative images of H&E, COX-2 or CD86-stained intestinal sections (h) of the indicated mice. Scale bars, 100 μm. *P < 0.05, **P < 0.01, ***P < 0.005; NS, not significant.
Extended Data Figure 9 | Skin inflammation in RIPK1^{−_−} mice is dependent on RIPK3-mediated necroptosis. a, Representative macroscopic images of RIPK1^{−_−} mice. b, qRT-PCR analysis of pro-inflammatory cytokines and chemokines in total skin mRNA from RIPK1^{−_−} and RIPK1^{−_−} mice. c, d, Representative images of skin sections from the indicated mice stained as indicated. In d, arrows point to CC3⁺ cells and arrowheads depict CC3⁺ dying cells identified by their pyknotic nuclei and eosinophilic cytoplasm. Scale bars, 100 μm in H&E-stained, 50 μm in immunostained sections. e-g, Representative macroscopic pictures (e, f) and H&E-stained skin sections (g) of the indicated mice. Scale bars, 100 μm. *P < 0.05, **P < 0.01, ***P < 0.005; NS, not significant.
Extended Data Figure 10 | CRS1PR/Gap1-mediated knockout of MLKL prevents skin inflammation in RIPK1^{+/−} mice. a, Schematic depiction of the MLK locus. The sequence targeted by the small guide RNAs (sgRNA and truncated TRUNC sgRNA) is indicated by capital letters. The position of the ATG and the binding sites of the primers used for genotyping and sequencing are indicated. The sgRNAs were designed to target a sequence containing an ApaI restriction site that is used for RT-PCR analysis (underlined). The protospacer-adjacent motif (PAM) sequence is depicted in red. b, Sequences of the wild-type (WT) MLK locus and of the targeted MLK alleles of the two obtained RIPK1^{+/−}/MLK^{−/−} mice. Mouse #150 carries one allele with one-base pair (bp) deletion and one allele with one bp insertion. Mouse #374 carries one allele with one bp insertion and one allele with two bp insertions. All mutations cause frame-shift and ablate MLKL protein expression. Mouse #130 was obtained using the full-length MLK sgRNA and mouse #374 was obtained using the truncated MLK sgRNA TRUNC. c, Macroscopic appearance and histological images of skin sections from RIPK1^{+/−}/MLK^{−/−} mouse #374 at the age of P95. Scale bars, 100 μm (H&E); 50 μm (keratin and CC3).
Erklärung:

Datum Marius Volker Dannappel
Curriculum Vitae

Personal Details

Name: Marius Volker Dannappel
Date of birth: January, 24th 1985
Place of birth: Bergisch Gladbach
Nationality: German
Current address: Dillenburgerstraße 1
51105 Cologne
Phone: +49 175 4457819
Marital status: single
E-Mail: MariusDannappel@googlemail.de
dannappm@uni-koeln.de

Education

Since 11/2011 University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) & Institute for Genetics
Graduate student (PhD) in the lab of Prof. Dr. Manolis Pasparakis
Research focus: Regulation of cell death and inflammation

10/2009 – 12/2011 University of Cologne, Germany Biological Science
Major fields of study: (Mouse-) genetics and neurobiology
Master-thesis: Super-resolution microscopy (dSTORM) of proteins in different cell lines (Grade: 1.3)
Degree: Master of Science (Grade: 1.8)
Education (continued)

10/2005 – 08/2009 University of Applied Science, Rheinbach, Germany
Applied Biology
Major fields of study:
Genetics, immunology, microbiology, clinical research
Bachelor-thesis:
Influence of haematocrit on variability on the accuracy of Self-Monitoring blood glucose (SMBG) devices
(Grade: 1.7)
Degree: Bachelor of Science (Grade 2.2)

08/1995 – 06/2004 Gymnasium Herkenrath (High School)
General Qualification for University Entrance
Work Experience

Since 11/2011 University of Cologne, Germany
Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD) & Institute for Genetics
Graduate student
- Mouse colony management
- Handling of mice, intraperitoneal injections, \textit{in vivo} colon endoscopy of mice, dissection of mouse tissues
- Histology, tissue sectioning, immunofluorescence (IF) and immunohistochemistry (IHC) stainings
- FACS
- Molecular biology, e.g. DNA and RNA extraction, PCR, qRT-PCR, protein extraction, western blot
- Cell culture of mammalian cells, small intestinal organoid culture, transfection, cell death assays
- Cloning
- Experimental design and organisation
- Student teaching

05/2011 – 11/2011 Forschungszentrum Jülich, Germany
Master student
- Developing IF staining protocols suitable for super-resolution imaging
- Antibody conjugation
- Establishment and optimisation of dSTORM – direct stochastical optical reconstruction microscopy in the Forschungszentrum Jülich

10/2008 – 01/2009 Instiut für klinische Forschung und Entwicklung (ikfe), Mainz, Germany (now clinlogix)
Bachelor student
- Study design and conduction
- Assisting supervising CRA – Clinical Research Associate
- Assistance in clinical monitoring
Publication

*shared first authorship

Poster

Extra qualifications & seminars

03/2012 Institute seminar in the Forschungszentrum Jülich
“(d)STORM super-resolution microscopy on tubulin fibers and membrane proteins”

11/2008 Attended seminar “Klinische Prüfung nach AMG and GCP”; ikfe, Mainz, Germany

Summer semester 2008 Attended seminars “Applied Clinical Research, Good Clinical Practise”

Summer semester 2007 Attended seminars “Qualitätssicherung in der Analytik (GLP – Good Laboratory Practise)”
(Grade: 2.0)

Extra curricular activities

2001 – 2008 Group Leader in a youth organisation
(KJG – Katholische Junge Gemeinde Herkenrath)

fund raising, organisation and realization of leisure
time excursions and weekends

Languages and abilities

Languages: German (Mother tongue)
English, fluent in spoken and written French, basics

Computer applications: Microsoft Office
Adobe Photoshop
Prism Graph Pad

Interests: Football, Jogging, Travel, Poker, Reading

Marius V. Dannappel Cologne, April 2015