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Notation

A rotation matrix
E energy
Ekin kinetic energy
Epot potential energy
F Helmholtz free energy
f force
G Gibbs free energy
g(r) radial distribution function
h Planck’s constant
kB Boltzmann’s constant
L length of simulation box
m mass
N number of particles
NA Avogadro’s constant
P probability
p pressure
p momentum
Q partition function
r distance
r location vector
rc cut-off radius of the pair potential
rhc hard-core radius
R universal gas constant
S entropy
Sr residual entropy
T temperature
u (r ) pair potential function
U internal energy
∆U difference of internal energy
V volume
V f molar free volume
V f

id free volume in an ideal gas
W work
x Monte Carlo shift parameter
Z compressibility factor
Z configuration integral



6

ε0 permittivity of vacuum
ε depth of Lennard-Jones potential
ρ number density
σ diameter of a molecule
σhs hard-sphere diameter
ξ random number in range (0,1)
λ thermal wavelength
µ chemical potential
φ Euler angle
θ Euler angle
ψ Euler angle
ω molecular orientation
∗ denotes reduced variables
〈· · · 〉 ensemble average

Subscripts

c cut-off
hs hard sphere
kin kinetic
m molar
pot potential
p derivative at constant pressure
r residual
T derivative at constant temperature
V derivative at constant volume



Acronyms

CPU Central Processing Unit
CSJS-LJ Carnahan–Starling + Jacobsen-Stewart Lennard-Jones equation of state
LJ Lennard-Jones
KN-LJ Kolafa–Nezbeda Lennard-Jones equation of state
mBWR1-LJ modified Benedict–Webb–Rubin Lennard-Jones equation of state
mBWR2-nLJ modified Benedict–Webb–Rubin Lennard-Jones chain equation of state
MC Monte Carlo
MD Molecular Dynamics
vdw van der Waals
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Zusammenfassung

Es ist lange bekannt, dass es Zusammenhänge zwischen der Entropie und dem freien
Volumen eines Fluids gibt. Neuerdings wurde vor allem bei Simulationen �üssiger Me-
talle über Korrelationen zwischen der Entropie und der Di�usionskonstante berichtet.

Bei manchen Fluiden gibt es zudem einen Zusammenhang zwischen der residuellen
Entropie und dem Verschiebungsparameter bei Monte-Carlo-Simulationen. Da dieser
Parameter während einer Simulation ohnehin berechnet wird, erö�net sich damit die
Möglichkeit, entropieabhängige thermodynamische Gröÿen ohne Mehraufwand zu be-
stimmen.

Es ist jedoch noch nicht klar, in welchen Klassen von intermolekularen Potentialen
diese Beziehung angewandt werden könnte und welche Dichte oder Temperatur gewählt
werden muss. Ein formaler statistisch-thermodynamische Beweis ist auch noch nicht
erbracht worden.

In dieser Arbeit wurde eine neue, e�ziente Methode zur Berechnung der residu-
ellen Entropie entwickelt. Zum Vergleich wurde die Einfügungsmethode von Widom
verwendet.

Die potentielle Energie des Systems wurde als Summe aller Zweikörper-Wechselwir-
kungspotentiale berechnet. Es wurden periodische Randbedingungen verwendet, um
Ober�ächene�ekte zu minimieren.

Die Simulation wurde für Ein- und Zweizentren-Moleküle durchgeführt, wobei zwi-
schen den Zentren Mie-6 Potentiale, insbesondere Lennard-Jones-Potentiale, und Harte-
Kugel-Potentiale angenommen wurden.

Im Rahmen dieser Arbeit wurde die Verbindung zwischen der residuellen Entropie
und dem Monte-Carlo-Verschiebungsparameter in Flüssigkeiten mit hoher Dichte als
Polynom zweiten Grades bestätigt. Das Anwendungsgebiet ist zu niedrigen Dichten
durch einen Perkolationsübergang begrenzt.

Zum Vergleich wurden Entropien mit der Theorie von Scheraga, mit der radialen
Verteilungsfunktion nach der Theorie von Baranyai und schlieÿlich mit Hilfe von Zu-
standgleichungen für Harte-Kugel-Fluide bzw. Lennard-Jones-Fluide ermittelt.
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Abstract

It has been long known that there is a connection between the entropy and the free
volume of �uids. More recently, it has been shown that there is a correlation between
the entropy and the di�usion constant in liquid metals by simulation.

In some �uids, a relevancy between the residual entropy and Monte Carlo shift
parameter was discovered. Because this parameter is calculated during simulation
in any case, it is possible to calculate the other thermodynamic properties that are
connected to the entropy without additional cost.

However, it is not yet clear in which classes of intermolecular potentials this rela-
tionship could be applied and which density or temperature must be chosen. A formal
statistical-thermodynamic proof is also still missing.

In this work, a new e�cient method was developed to calculate the residual en-
tropy. For comparison, the Widom test particle insertion method was used to calculate
chemical potentials.

The potential energy of a system was calculated as a sum of the two-body interaction
potentials. Moreover, periodic boundary conditions were used to minimize surface
e�ects.

Simulations were performed for single- and two-center molecules. For the site-
site interactions, Mie potentials, especially Lennard-Jones potentials and hard-sphere
potentials were adopted.

In this work, the connection between the residual entropy and the Monte Carlo
shift parameter in �uids at high densities was obtained as a second-order polynomial
equation. The application range of this equation is limited at low densities by percola-
tion.

For comparison, the entropy was determined by the theory of Scheraga, from the
radial distribution function by the theory of Baranyai and �nally with help of equations
of state for Lennard-Jones and hard-sphere �uids.
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Introduction

One of the main goals of research in the �eld of applied thermodynamics is the
prediction of thermodynamic and transport properties of �uids and their mixtures.
Among the various thermodynamic properties, knowledge of the phase behaviour of
�uids is particularly important for many applications. The required thermodynamic
properties can be calculated in two di�erent ways:

1. Empirical methods, which were generated from a large set of experimental data.
These methods are particularly suitable for application to systems for which there are
many measured data.

2. Theoretical methods, which are based on statistical thermodynamic theories.

For almost half a century, computer simulation methods have been used in the re-
search on liquids, particularly in scienti�c, engineering and industrial research. Over
the previous decades, the speed of computers has rapidly increased. For this reason,
computer simulation has become a very important tool for calculating the thermody-
namic properties of �uids.

The �rst molecular simulations of liquids were performed by Metropolis on the
MANIAC computer at Los Alamos [1, 2].

The main motivation of molecular simulation is the calculation of accurate proper-
ties of statistical mechanical systems. Molecular simulations can be described as compu-
tational statistical mechanics. Molecular simulations determine macroscopic properties
with the use of computer programs. This allows the precise evaluation 1 of theoreti-
cal models of molecular behavior, whereas �classical� statistical thermodynamics are
frequently restricted to the use of simplistic models.

Molecular simulation can be done in two di�erent ways: molecular dynamics simu-
lation (MD) and Monte Carlo simulation (MC).

Molecular dynamics simulation (MD): as the name indicates, molecular dynamics
makes it possible to obtain the dynamic properties of the system. MD uses the follow-
ing steps to calculate macroscopic thermochemical properties:

É Setting up the system in an initial con�guration

É Solving Newton's equations of motion for the system of molecules:

d2−→ri

dt2
=
−→
Fi

mi
i= 1, 2, 3, . . .

1with errors depending on the computer speed and size.
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where Fi, mi, and ri are the force on particle i , mass, and position of particle i , re-
spectively. The momenta and the molecular coordinations change according to the
intermolecular forces experienced by the individual molecules [77].

É Calculating average properties (energy, pressure, pair correlation functions) after
the system has reached equilibrium.

Monte Carlo simulation (MC): the details of the Monte Carlo simulation is presented
in section 2.1.3 on page 28.

The molecular dynamics and Monte Carlo simulation methods are di�erent in a
several of ways:

É Molecular dynamics simulation (MD) provides information about the time depen-
dence of the properties of the system, whereas there is no temporal relationship be-
tween successive Monte Carlo con�gurations.

É In a Monte Carlo simulation (MC) the outcome of each trial move depends only
on its immediate predecessor, whereas in molecular dynamics it is possible to predict
the con�guration of the system at any time in the future or indeed at any time in the
past.

É Molecular dynamics has a kinetic energy contribution to the total energy, whereas in
the Monte Carlo simulation the total energy is determined directly from the potential
energy function.

É Monte Carlo simulation calculates the changes in intermolecular energy, whereas
molecular dynamics uses intermolecular forces to evolve the system.

Until 1970, computer simulation was only feasible for studies of structural and sim-
ple thermodynamic properties, such as pressure, enthalpy, energy and pair correlation
functions. Some properties such as entropy, Helmholtz energy and chemical potential
are di�cult to calculate because they are not representable as ensemble averages of
mechanical properties. Today, di�erent methods are available for the calculation of
chemical potential and free energies, etc.:

É The Widom test particle insertion method:
The most widely used methods for the calculation of chemical potentials, free en-

ergies and etc. are based directly or indirectly on the insertion method of Widom [3].
The Widom test particle method has been used to obtain phase diagrams for pure [6, 7]
and binary mixtures [8, 9].

In this method, a new particle is added at a random location and the change in
average energy is calculated. The details of this method will be discussed in section
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2.9.3 on page 56.

É The two-ensemble method: (know as Gibbs ensemble method)
The two-ensemble method for the calculation of phase equilibria with Monte Carlo

simulation was developed by Panagiotopoulos [10, 11].
A distinguishing feature of the two-ensemble method is that it entails two simulation

boxes (�subsystems�) that are coupled to each other. The coupling between them is
done in such a way as to achieve coexistence between two phases. This methode uses
insertion steps to bring both ensembles to equilibrium with each other [31].

É The grand canonical ensemble simulation:
In simulations using the grand canonical ensemble (µ, V , T ), the calculation of chemi-

cal potentials is not needed. The particle numbers are allowed to �uctuate by insertions
and deletions steps.

Insertion steps which add a new particle to a random location in a �uid are only
possible if enough place for a new particle is available. Simulation methods based
on insertion steps tend to become ine�cient if the systems have very high densities
(compressed �uid, solid, etc). Moreover, they become ine�cient or very complicated if
the particles do not have spherical shapes.

To avoid these problems, deletion methods have been suggested (for example by
Boulougouris et al. [12]). But they cause statistical problems [20�22] and fall down if
they are used for molecules with long-range interactions [23, 24].

ÉEstimation of the entropy from radial distribution function (RDF) [64] and Scheraga
theory: [52, 53]

These are two other methods to calculate residual entropy, which are explained
later in detail.

There are other methods to determine chemical potentials and free energies, for
example umbrella sampling [15], the method of Hoheisel and Deiters (This method is
universally applicable [16], but needs a lot of time for the calculations and cannot be
automatized easily) and the method of Kofke [13, 14] (that can be used along phase
boundary curves), but they are used infrequently. An overview of available methods is
presented in the book of Frenkel and Smit [30].

It has long been known that the entropy and the free volume of a �uid are connected
[17]; this had been published in 1981 by Speedy [18]. More recently, correlations
between the entropy and the di�usion have been reported in the simulation of liquid
metals [19].

In the present work, the Monte Carlo method, combined with the Widom test
particle method, is used to calculate chemical potentials and residual entropies of the
nobel gas argon, hard-sphere argon, a dimer CH3-CH3. Furthermore, a new method
for computing the entropy of �uids is introduced and tested, which avoids some of the
shortcomings of the Widom method.
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The Chapter 2 gives a short introduction the statistical thermodynamic and the
principles of Monte Carlo simulation. Chapter 3 gives a description of the simulation
program and its details, and at last, Chapter 4 and Chapter 5 present the results and
the conclusion of this project, respectively.
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2.1 Principles of Monte Carlo simulation

2.1.1 Concept of ensembles

The relationship between the microscopic description of individual molecules and
the macroscopic properties of a collection of molecules is a central concept in statistical
mechanics [30].

The state of a macroscopic system can be speci�ed by a few properties. For exam-
ple, a pure liquid can be described completely by its mass, pressure and temperature.
However, for each macroscopic state, there exists a large number of microscopics states
corresponding to it. For classical systems, the positions and momenta of all theirs
constituent molecules characterize each microscopics state.

Table 2.1: Some microscopic and macroscopic properties

properties of individual
molecules

properties of bulk fluid

(microscopic properties) (macroscopic properties)
intermolecular force the equation of state
molecular geometry internal energy

velocities heat capacity
position pressure

An ensemble of systems is a collection of various microscopics states of the system,
which correspond to the single macroscopic state of the system whose properties are
investigated.

As there are several ways to specify the macroscopic state of the system, various
ensembles types can be de�ned. The commonly used ensembles are given in Table 2.2.

The ensembles in Table 2.2 can be divided into two categories. The grand canonical
ensemble represents open systems in which the number of particles can be changed; the
isothermal-isobaric, canonical and microcanonical ensembles are for closed systems, in
which the number of particles is constant [77].

Because of the equivalence of the ensembles in the thermodynamic limit, it is pos-
sible to transform between di�erent ensembles [42]. The choice of the ensemble for
a simulation is entirely a matter of convenience. If a system has a �xed number of
molecules and is kept at either constant volume and temperature or constant pressure
and temperature, the best choices are isothermal-isobaric and canonical ensembles,
respectively.

The most important ensembles, which are used besides the classical canonical en-
sembles in computer simulation are the grand canonical ensemble (µ, V , T ) and the
isobaric-isothermal ensemble (N , p , T ).
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Table 2.2: Summary of common statistical ensemble. Table taken from [77].

type of ensemble constant
variables

Z Pi description

microcanonical N , V , E
∑

i
δ(Ei −E ) δ(Ei−E )

QN V E
isolated system

canonical N , V , T
∑

i
e −βEi (N ,V ) e −βEi (N ,V )

QN V T
closed isothermal system

grand canonical µ, V , T
∑

i
e βNiµQN V T

e −β (Ei −µNi )

QµV T
open isothermal system

isothermal-
isobaric

N , p , T
∑

i
e βp Vi QN V T

e −β (Ei +p Vi )

QN p T
closed isothermal-isobaric

system

In Table 2.2, Z and Pi stand for the partition function and the probability of
observing the i -the state, respectively.

2.1.2 Boltzmann factors and ensemble averages

The microscopic states of a canonical ensemble with N particles are not all equally
probable [26]. The probability P (i ) of a microscopic state i with the energy Ei is pro-
portional to the Boltzmann factor exp (−Ei/(kBT )), where kB is the Boltzmann constant:
[27]

P (i )∝ exp
�−Ei

kBT

�

(2.1)

The points in phase space are distributed according to a probability. Moreover,
the total energy of a state is sum of the potential and the kinetic energy. Therefore
Equation (2.1) can be rewritten as

P (i ) =
e −βEi (N ,V )

QN V T

(2.2)

E = 〈Ekin〉+



Epot

�

(2.3)

QN V T =
∑

i

e −βEi (N ,V )
(2.4)

where QN V T is the canonical partition function and acts as a normalizing factor.
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From the probability distribution, the ensemble average of a property A can be
calculated in the following way:

〈A〉ens =
∑

i

Ai Pi (2.5)

where 〈A〉ens is the ensemble average of the system.

2.1.3 Monte Carlo simulation (MC)

The word Monte Carlo was coined by Metropolis because of the use of random
numbers, and used for �rst time in 1943 by three scientists at the Los Alamos National
Laboratory in New Mexico�Nicolas Metropolis, John von Neumann, and Stanislaw
Ulam�to study the di�usion of neutrons in �ssionable materials [25].

The MC method can be used in di�erent �elds from economics or nuclear physics
to the regulation of tra�c �ow. It is a stochastic technique for studying many-body
systems and for obtaining thermodynamic properties that can be expressed as an en-
semble averages. The pressure and internal energy are examples of such properties.
Basic characteristics and some advantages of Monte Carlo method are :

• Di�erent types of probability distributions can be assigned to the inputs of the model.
When the distribution is known, the one that represents the best �t can be chosen.

• The use of random numbers characterizes Monte Carlo simulation as a stochastic
method. The random numbers have to be independent; no correlation should exist
between them.

• Simulations provide detailed information on the model systems.

The steps in Monte Carlo simulation corresponding to the uncertainty propagation
are relatively simple: [77]

1. Generating a trial con�guration randomly.

2. Evaluating an acceptance criterion by calculation of the change in energy, and
other properties in the trial con�guration.

3. Comparing the acceptance criterion to a random number and either accepting or
rejecting the trial con�guration.

2.1.4 Hit-or-miss Monte Carlo: calculation of π

The naive MC technique (this method is called naive Monte Carlo because it works
with random sampling) can be used as a method of integration, for example for the
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evaluation of π. This calculation can be done by �nding the area of a circle of radius
R . Figure 2.1 shows the circle, centred at the origin and inscribed in a square [42].

+
+

O
A

BC

x

y

Figure 2.1: Monte Carlo calculation of π.

Now points are chosen randomly inside the square. Points with x 2+ y 2<1 lie inside
the circle. The area of the circle can then be approximately obtained from:

4×
area of circle

area of enclosing square
' 4×

number of points inside the circle
total number of points

(2.6)

Then π can be computed from:

π=
4πR 2

(2R )2
= 4×

area of circle
area of enclosing square

(2.7)

2.1.5 The Metropolis method

Metropolis (1953) described a new approach where instead of choosing con�guration
randomly from an equidistribution (naive Monte Carlo method), the con�guration is
chosen with the probability exp(−E /kBT ) (Boltzmann factor)[28]. For a system in
which the potential energy depends on position, Metropolis' idea can be expressed by
the following equation:

〈A〉=
1

X

∑

i=1

A(qi) (2.8)

In Equation (2.8), X is the number of Monte Carlo steps, A is a property, and qi

are con�gurations sampled according to the Metropolis prescription (it means that the
points are chosen with a Boltzmann weights).

According to Metropolis Monte Carlo algorithm, the reasonable approach is to start
with con�guration q1. The �rst element that to be computed in Equation (2.8) is in
value of property A. After that, q1 is randomly perturbed to obtain a new con�guration
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q2. At constant temperature, constant volume and constant particle number (ensemble
N V T ), the probability of accepting point q2 is :

Paccept =min

�

1,
exp(−Eq2

/kBT )

exp(−Eq1
/kBT )

�

(2.9)

If the energy of point q1 is higher than the energy of point q2 (Eq2q1
= Eq2

−Eq1
< 0)

the point is accepted (such a prospective change in the conformation is called a move)
and if the energy of point q 1 is less than the energy of point q2 (Eq2q1

= Eq2
−Eq1

> 0),
Paccept is compared with a random number ξ between 0 and 1 and the move is accepted
if Paccept(q1→ q2)≥ ξ.

Always accept Reject

Accept
×ξ1

×ξ2

exp(−β∆E )

1

Eq1q2 ∆E

Figure 2.2: Accepting or refusal of the moves in the MC simulation.
Diagram taken from [42].

The meaning of accepting is that the value of A is calculated for each Monte Carlo
step and this value is added to the sum in Equation (2.8), and after that this process
repeats again. If the second Monte Carlo step is not acceptable, the �rst step is repeated
and the value of �rst step is added to the sum in Equation (2.8) and for the second
time a new random perturbation is tried. Such a sequence of phase points, where each
new point depends only on the immediately preceding point, is called a Markov chain
[29].

In equilibrium, the average number of accepted moves from a state q1 to any other
state q2 is exactly cancelled by the number of reverse moves from q2 to q1.

P (q2)π(q2→ q1) = P (q1)π(q1→ q2) (2.10)
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Figure 2.3: Displacement in Monte Carlo simulation.

where π(q1 → q2) is the transition probability to go from con�guration q1 to q2, and
P (q2) denotes the number of points in any con�guration q2. Furthermore, P (q2) is
proportional to the Boltzmann distribution :

P (i )∝ exp
�−Ei

kBT

�

(2.11)

It is useful to split up the determination of π(q1→ q2) into two steps:

1. Choose a new random con�guration q1 with transition matrix probability
α(q2→ q1)

2. Accept or reject this new con�guration probability with an acceptance probabil-
ity acc(q2→ q1)
In other words, the transition probability is rewritten as [30]:

π(q2→ q1) =α(q2→ q1)×acc(q2→ q1) (2.12)

Many MC methods take α to be symmetric :

α(q2→ q1) =α(q1→ q2) (2.13)

The detailed balance condition (Equation (2.10)) therefore implies that:

π(q2→ q1)
π(q1→ q2)

=
acc(q2→ q1)
acc(q1→ q2)

=
P (q1)
P (q2)

=
exp(−(Eq1

−Eq2
))

kBT
(2.14)

The choice of Metropolis (Equation (2.9)) is:

acc(q2→ q1) =

¨

P (q1)/P (q2) if P (q1)< P (q2)
1 if P (q1)≥ P (q2)

(2.15)
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In summary, in the Metropolis scheme, the translation probability for going from
state q2 to state q1 is given by:

π(q2→ q1) =

¨

α(q2→ q1) if P (q1)≥ P (q2)
α(q2→ q1)[π(q1/q2)] if P (q1)< P (q2)

(2.16)

π(q2→ q2) = 1−
∑

q1 6=0

π(q2→ q1) (2.17)

Suppose that the trial move is from state 0 to state n with u (n )> u (0). According
to Equation (2.14), this trial move should be accepted with a probability:

acc(q2→ q1) = exp
�

−β
�

U (q1)−U (q2)
��

< 1 (2.18)

2.2 Trial moves

2.2.1 Translational moves

A perfectly acceptable method for creating a trial displacement is to add random
number between +∆rmax and −∆rmax to the x , y and z coordinations of the molecular
center of mass:

x ′i = xi + (2ξ−1)∆rmax (2.19)

y ′i = yi + (2ξ−1)∆rmax (2.20)

z ′i = zi + (2ξ−1)∆rmax (2.21)

where ξ is an equidistributed random number between 0 and 1, ∆rmax is the maximal
displacement and xi , yi , zi and x ′i , y ′i , z ′i are the old and new coordinations of atoms
relative to the center of gravity, respectively.

If ∆rmax is very large, there will probably a collision, and the resulting con�guration
will have a high energy and the trial move will probably be rejected. If ∆rmax is very
small, the change in potential energy is probably small, and most moves will be accepted
[30, 42].
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2.2.2 The maximum displacement

The Monte Carlo simulation is e�cient if the mean squared displacement per move
is as large as possible. Because of this, ∆rmax is optimized after each cycle.

The mean squared displacement is calculated according to Equation (2.22):

〈∆r 〉=

√

√

√ 1

N

N
∑

i=1

(∆ri )2 (2.22)

where N is the number of particles in simulation box and ∆ri is the displacement of
particle i .

At the start of Simulation, �rst of all, the maximum displacement is set to the half
of the length simulation box length. During the simulation, the division of the number
of accepted movements per total number of movement tries are calculated (called as
a ). The following steps are done to calculate the maximum displacement of particles
in simulation box:

1- Calculation of correction factor F according to Equation (2.23):

F = exp(max(−0.4, min(0.4, a −a0))) (2.23)

where a0 is the desired average acceptance ratio, which is �xed at the start of program.
In most cases, the best results are achieved by a0=0.5, which is therefore used as a
default value in our simulation program. For hard body system, a value in the range
0.3�0.4 is better.

2- If ∆r eF < 0.5L then:

∆r →∆r eF (2.24)

In the other case

∆r = 0.5L (2.25)

where L is the length of simulation box.

2.2.3 Orientational move of rigid molecules

The rotation of rigid molecule is often described in terms of the Eulerian angles
(φ,θ ,ψ). A change in orientation can be achieved by taking small displacements in
each of Euler angles of molecule i [42].
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φi = (2ξ−1)∆φmax (2.26)

θi = (2ξ−1)∆θmax (2.27)

ψi = (2ξ−1)∆ψmax (2.28)

where ∆φmax, ∆θmax and ∆ψmax are the maximum rotations in the Euler angles.
Alternatively a new con�guration is generated using:

e n
i ,x = A x e m

i (2.29)

e n
i ,y = A y e m

i (2.30)

e n
i ,z = A z e m

i (2.31)

where e n
i and e m

i represent the old and new coordinates (after rotation) of atom i in
a molecule relative to the center of gravity, respectively. A x , A y and A z are rotation
matrices about the x , y and z axes

A x =





1 0 0
0 cosφ sinφ
0 −sinφ cosφ



 (2.32)

A y =





cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ



 (2.33)

A z =





cosψ sinψ 0
−sinψ cosψ 0

0 0 1



 (2.34)
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where φ, θ and ψ are random angles and can be calculated according to Equations
(2.26) to (2.28). According to Equations (2.19) to (2.34), the rotation of atom i about
x , y and z axis can be obtained according to Equations (2.35) to (2.40):

rotate about x axis

y ′ = y cosφ+ z sinφ (2.35)

z ′ =−y sinφ+ z cosφ (2.36)

rotate about y axis

x ′ = x cosθ − z ′ sinθ (2.37)

z ′′ = x sinθ + z ′ cosθ (2.38)

rotate about z axis

x ′′ = x ′ cosψ+ y ′ sinψ (2.39)

y ′′ =−x ′ sinψ+ y ′ cosψ (2.40)

where x , y , z , x ′, y ′, z ′ and x ′′, y ′′, z ′′ are the old and new coordinates of atom
relative to the center of gravity.

2.2.4 Calculation of maximum rotation angle

The maximum rotation angle in simulation program is calculated according to the
following steps:

1- If gyration radius is equal to 0, then φmax=0

2-If φmax 6= 0 then:

φmax =min(π, frot×∆rmax/rgyr) (2.41)

where rgyr is the gyration radius. frot is the ratio traslation to rotation (called as
maximum displacement to maximum rotation conversion) that is �xed at the start of
program. If no value is speci�ed for frot, then the program is started with frot=1 .
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2.2.5 Volume change in N p T ensemble

In addition to particle moves, simulations using the N p T ensemble, require random
volume changes. Acceptance of the new volume rejection is done according to following
steps:

1. If the new energy of system is lower than the old one, then the new volume is
accepted.
2. If the new system energy is larger than the old one, then a random number is
chosen and compared with exp(−a ). a is calculated according to Equation (2.42)
[30, 31, 35, 42],

a = exp
�

−β
�

∆U +p∆V
�

+N ln
�

Vnew

Vold

��

(2.42)

where ∆ here indicates the change of the quantity from the old to the new con�guration
and a is the acceptance probability in isothermal-isobaric simulation.

If the random number is smaller than exp(−a ), then the new volume is accepted,
else the new volume is rejected.

Eppenga and Frenkel [34] showed that it may be more convenient to make the ran-
dom changes in ln V rather than V itself. A random number ∆(ln V ) is chosen uniformly
in some range (−∆(ln Vmax), ∆(ln Vmax) ), the volume multiplied by exp(∆(ln V )), and the
molecular positions scaled accordingly. The only change to the acceptance/rejection
procedure is that the factor N in Equation (2.42) is replaced by N +1 [42].

2.2.6 Calculation of the maximum expansion factor

In N p T simulation, the volume is changed after each Monte Carlo cycle. The fol-
lowing steps are done for the calculation of the maximum expansion factor:

1-Calculation of accepted expansion per total numbers of expansions attempts.

2-Calculation of correction factors F according to Equation (2.23).

3-Calculation of the maximum box length expansion factor (∆ ln Vmax) :

∆ ln Vmax→∆ ln VmaxeF (2.43)

The volume changes are optimized to bring the average acceptance ratio to 0.50 .

2.3 Periodic boundary conditions (PBC)

Computer simulations using atomic potentials are typically performed on small
systems, usually of the order of a few hundred to a few thousand molecules. Assuming
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a simple cubic lattice of 1000 molecules, 488 (about 49%) lie on the surface [30]. These
molecules would experience di�erent forces than the other molecules. In order to avoid
surface e�ects and make the system resemble an in�nite one [41], it is common to use
periodic boundary conditions.

Figure 2.4: Two dimensional periodic system.
Figure taken from

[42].

In Figure 2.4, the central box represents the simulated system, the surrounding
boxes are lattice exact copies, and this is continued in all directions. The choice of
the position of the original box (computational cell) has no e�ect on the forces or the
behavior of the system.

Each particle in the simulation box has a copy in each of the other cells, and it is
interacting not only with other particles in the computational box, but also with their
images in the adjacent boxes.

In the course of the simulation, the molecules in each of the boxes move in the same
way. Hence, if a molecule leaves the simulation box at one side, an identical molecule
enters the box at the other side. Because of this reason, the number of particles in
the simulation box is constant, the system has no limits and disturbing surface e�ect
should disappear.

Molecules can enter and leave each box across each of the four edges. In a three-
dimensional example, molecules would be free to cross any of six cube faces [42].

If the origin of the coordinate system is taken as the centre of the simulation box of
the length L , all the coordinates are within of −L/2 and +L/2. Consequently, when a
molecule leaves the box, its mirror images are obtained by either adding or subtracting
L to its coordinations [77].

The most commonly shaped simulation cell are cubic or cuboid. It is also possible
to use cells of other shapes, such as:
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• hexagonal prism

• rhombic dodecahedro

• truncated octahedron

• parallelpiped

All of these alternative geometries structure can regularly cover total space. They
can serve to create an the in�nite number of periodic images. However, the meaning
of minimum image distance is di�erent for each structure.

The choice of one of these geometries can be motivated by:

• The particular symmetry: for example, a simulation box with a hexagonal form
can better accommodate a �uid or crystal with hexagonal ordering.

• Decrease the number of particles that are used in a simulation. For example the
octahedron resembles a cube with its corners cut-o� and fewer atoms can be located in
it. For systems in which a macromolecule is solved, the octahedron reduces the number
of solvent molecules required.

2.4 Minimum image convention

 

Figure 2.5: The minimum image convention in two-dimensional system.
Figure taken from

[42].

The size of computational cells in periodic system must be at least equal to 2rc,
where rc is the cut-o� distance of the interaction potential. Therefore we consider only
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interactions between the molecules and the closest images of its neighbours (short�
ranged forces); and it does not interact with its own image. This is named minimum
image convention.

2.5 Intermolecular Interactions

Intermolecular interactions are represented by a potential function. This potential
is a function of the positions of the nuclei and describes the potential energy of two-
three- . . . etc. body interactions. It should be noted that the molecules are considered
as n�center objects with spherical centers.

u (rN ) =
∑

i

u1(r
N ) +

∑

i

∑

j>i

u2(r
N ) +

∑

i

∑

j>i

∑

k> j

u3(r
N ) + . . . (2.44)

where rN = (r1, r2, · · · , rN ) stands for the complete set of 3N particle coordinates and
u (rN ) is the interaction potentials of these particles in a system.

The �rst term in Equation (2.44) represents the potential of an external �eld (for
example from the container walls) and the second and third term are the potentials of
pair and triplet interactions, respectively.

In simulation, the comparison between second, third and higher terms shows that
the second term has a much higher value than the third and higher terms. The �rst
term is irrelevant, if no chemical reactions occur and there is no external force �eld.
Moreover, three-or more-body interactions impose a very large increase in computing
time compared with two-body calculations [77]. Therefore the potential energy of
systems is calculated with sum of the second term:

u (rN ) =
∑

i

∑

j>i

u2(r
N ) (2.45)

where rij = |ri− ri| denotes the distance vector from particle i to j .

2.6 Calculation of thermodynamic properties from ensemble aver-
ages

2.6.1 The effect of kinetic energy in Monte Carlo simulation

The calculation of ensemble averages was presented in section 2.1.2 on page 27. This
section explains why the Monte Carlo simulation delivers only "configurational energy"
and not kinetic energy. According to Equations 2.2, 2.3 and 2.4, the ensemble averages
of a property can be calculated by the following equations:
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〈A〉=

∫

exp
�

−β
�

Ekin(p) +Epot(r)
��

Adpdr
∫

exp
�

−β
�

Ekin(p) +Epot(r)
��

dpdr
(2.46)

〈A〉=

constant
︷ ︸︸ ︷

∫

e −βEkin(p)dp
∫

e −βEpot(r)Adr

∫

e −βEkin(p)dp

︸ ︷︷ ︸

constant

∫

e −βEpot(r)dr

(2.47)

The integral over the momentum cancels out in the averaging and it remains:

〈A〉=

∫

e −βEpot(r)Adr
∫

e −βEpot(r)dr
(2.48)

where p is momentum of particle and r is the cartesian coordinate of particle.
Equation 2.48 shows, that the Monte Carlo simulation uses only potential energy to

calculate the averages of thermodyanamic properties and kinetic energy has no e�ect
on those averages.

2.6.2 Residual thermodynamic properties

A residual property is de�ned as the di�erence between real gas property and an
ideal gas property at the same density, composition and temperature. For example, if
M is the actual value of thermodynamic property (like the Gibbs free energy) for a
nonideal gas and Mideal is the value the property will have if the gas was ideal. The
residual property Mr is de�ned as:[77]

Mr =M −Mideal (2.49)

2.6.3 Calculation of residual internal energy

The residual internal energy of monoatomic species is calculated with the following
equation:

Ur =
N
∑

i=1

∑

i< j

u (ri j ) +N utail (2.50)
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where u (r ) is the Lennard-Jones potential, utail is the tail correction of the Lennard-
Jones potential and N is the number of particles in simulation.

The residual internal energy in 2-center moleculs is calculated with Equation (2.51):

Ur =
N
∑

i

∑

i< j

Mi
∑

k

M j
∑

l

u (ri j ) +utail (2.51)

where Mi and M j are the number of sites in molecules i and j , respectively.
The quadraple sum in Equation (2.51) designates the molecular pair interactions

and the atoms interctions in each moleculs. For more detail about the Lennard-Jones
tail correction, please see section 2.7.2 on the page 45.

2.6.4 Calculation of residual pair virial

The residual pair virial is calculated with the following equation: (2.52):

wr =
N
∑

i

w (r ) +wtail(r ) (2.52)

where wr is residual pair virial, w (r ) is the intermolecular pair virial and wtail(r ) is
the pair virial tail correction. For more detail about virial tail correction, please see
section 2.7.7 on the page 47.

2.6.5 Calculation of virial pressure in N V T ensemble

There are several di�erent (but equivalent) ways to measure the pressure of a clas-
sical N�body system. The most common among these are based on the virial equation
for the pressure [36]:

pvirial =ρkBT +
1

3V

®

N
∑

i=1

−→
f (ri j ) ·

−→rij

¸

(2.53)

where ρ is the density of particles and f (ri j ) is the pair force exerted on particle i by
particle j , derived from a pair potential and sum is over all pairs of particles in the
system. 〈. . .〉 denotes the canonical averages.

The virial pressure in molecules is calculated by Equation (2.54): [37]

pvirial =ρkBT +
1

3V

*

N
∑

i=1

∑

i< j

Mi
∑

k=1

M j
∑

l=1

(rss∂ u (rss)∂ r )cos(−→rss ,−→rcc)rcc/rss

+

(2.54)
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where rcc is the distance between the mass centers of molecules and rss is the distance
between molecules sites.

2.6.6 Calculation of the virial pressure in N p T ensemble

As a proof that the N p T simulation was correct, it is always useful to compute the
virial pressure during a constant pressure simulation. On average, the virial pressure
should always be equal to the applied pressure.This is easy to prove as follows:
First of all, note that the viral pressure pvirial of an N -particle system at volume V is
equal to: [30]

pvirial(V ) =
�

∂ F

∂ V

�

N T
(2.55)

where F is Helmholtz free energy of system. In an isothermal-isobaric ensemble, the
probability of �nding the system with volume V is equal to:

P (V ) =
exp[−β (F (V ) +p V )]

Q (N , p , T )
(2.56)

where

Q (N , p , T )≡βp

∫

exp[−β (F (V ) +p V )]dV (2.57)

According to Equation 2.5 in section 2.1.2, the average value of the virial pressure
can be calculated by the following equation:




pvirial

�

=
βp

∫

p exp[−β (F (V ) +p V )]

Q (N , p , T )
dV (2.58)




pvirial

�

= p (2.59)
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2.6.7 Calculation of packing density

The packing density or packing fraction is calculated according to Equation (2.60):

η=
πNσ3

hs

6V
(2.60)

where η is the packing fraction. The Equation (2.60) shows that the packing fraction
of system is connected with the volume of system. It should be noted that in N V T en-
sembles the system volume stays constant after each Monte Carlo cycle. In other words,
packing fraction stays constant during N V T simulation. But in N p T simulations, the
volume of system is changed after each cycle.

The simulation program is able to calculate the packing fraction in the system after
each cycle, and the average of packing fractions is printed at the end of the simulation
program. For more details about the simulation program, the reader is referred to
chapter 3.

2.6.8 Long-range corrections

Periodic boundary conditions decrease the number of interactions and thus the time
of calculation. Moreover, another problem of the calculation of the potential energy is
that the Lennard-Jones potential has an in�nite range. However, it is impossible for
two particles to get far from each other because of periodic boundary conditions.

The attractive force gets in�nitely weak at large distance, which it is not a physical
problem, but it is a problem from computational point of view. This will limit the
speed of the computation in large systems and is time-consuming.

To tackle the problem, it is necessary to pay attention to cut-o� at the �nite distance
and choose it less than L/2 (L is length of the periodic box). In this case, only the
interaction of a given particle with the nearest periodic image of any other particle is
considered.

For more detail about the correction of the viral pressure, please see section 2.6.5
on page 41

2.7 Site–site potentials

2.7.1 The Lennard-Jones potential (LJ potential)

The Lennard-Jones potential has been widely used by both theoretical and com-
puter simulation methods [39, 46]. This potential is an important model to explain the
behavior of simple �uids, and has been used to study vapour�liquid and liquid�liquid
equilibria, melting, behavior of �uids con�ned within small pores, small atomic clusters,
a variety of surface and transport properties [40].
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The LJ potential approximates the interaction between two particles (like and un-
like). Repulsive force (Pauli repulsion force) and attraction force (van der Waals force
and dipole�dipole) dominate at short and large distances, respectively [43].

 

Figure 2.6: Argon pair potential, BBMS pair potential for argon (solid line) and
Lennard-Jones (12/6) (dashed line).

Figure taken from
[42].

The Lennard-Jones potential for a system of spherical particles is as follows:

u (ri j ) = 4ε

�

�

σ

ri j

�12

−
�

σ

ri j

�6�

(2.61)

where ri j is the distance between the mass centres of the particles, ε is the depth of the
potential and σ is the distance at which energy interaction becomes zero.

According to the Equation (2.61), the LJ potential is zero if the two molecules are
at in�nite distance from one another.

At rmin = 2
1
6σ, the potential function has the value −ε. When r>rmin, the attractive

force exceeds the repulsive force, which corresponds to the term (σ/ri j )6. The attraction
is caused by the van der Waals forces (induced dipole�dipole interaction).

When the distance between the mass centers of particles is smaller than rmin, the
repulsive forces exceed the attractive forces, which corresponds to term (σ/ri j )12 of the
formula.

However the power-law representation of the potential is better suited for computer
calculations. Hence, the Lennard-Jones potential is widely used in numerical simula-
tions of the behaviour of matter.
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2.7.2 Correction of the Lennard-Jones potential

It is known that the Lennard-Jones potential is not really zero at the cut-o� distance.
Fortunately, the potential energy can be corrected for this e�ect in mean �eld manner
by adding so called tail-corrections [30],

utail =
Nρ

2

∫ ∞

rc

4πr 2u (r )dr (2.62)

where ρ is the numerical density, N is number of particles, r is distance, u (r ) is the
Lennard-Jones potential and utail and rc are the long-range correction for potential
energy and cut-o� distance, respectively.

If this formula is applied to the Lennard-Jones potential (Equation(2.61)), Equation
(2.63) is obtained:

utail =
8πρN εσ3

9

�

�

σ

rc

�9

−3
�

σ

rc

�3
�

(2.63)

With increasing intermolecular separation, most short-range potentials weaken rapidly.
So, for distances greater than 5σ, the Lennard-Jones potential is practically zero.
Therefore 2.5σ≤ rc ≤ 5σ is an appropriate choice for the Lennard-Jones potential.

2.7.3 The Lorentz-Berthlot mixing rules

The Lorentz-Berthlot (LB) mixing rules estimate the intermolecular pair potential
parameters in mixtures. According to these rules the potential parameters εi j and σi j

of mixtures can be calculated by the following equations: [68, 69]

εi j =
p

εi iε j j (2.64)

σi j =
σi i +σ j j

2
(2.65)

2.7.4 The Mie potential

London showed from the theory of dispersion forces in quantum mechanics that the
exponent of the second term in the Lennard-Jones potential is equal to 6, but 12 as
exponent in �rst term does not have any scienti�c basis and came from experiment
data. It should be noted that the use of 12 as power in �rst term of Lennard-Jones
potential has a great advantage in computer simulations because 12 is two times more
than the exponent of the second term, and this gives higher computational speed.



46 CHAPTER 2. STATISTICAL THERMODYNAMICS

Equation (2.66) is called Mie potential; it was proposed by Mie in 1903. Evidently,
the Lennard-Jones potential is a special form of the Mie potential,

u (r ) =αε
h�σ

r

�n

−
�σ

r

�mi

n 6=m (2.66)

where

α=
� n

n −m

�� n

m

�
m

(n−m )
(2.67)

and ε is the intermolecular energy parameter for which umin(r ) = ε and σ is the inter-
molecular length parameter for which u (r ) = 0 is the intermolecular distance.

2.7.5 Correction of the Mie-potential

Substitution of Equation (2.66) into Equation (2.62) yields the Mie-potential tail
corrections (Equation (2.68)),

utail(r ) = 2Nπρεα

�

1

n −3

�

σn

r n−3
c

�

−
1

m −3

�

σm

r m−3
c

��

(2.68)

where utail(r ) is the long-range correction of the potential and rc is the cut-o� distance.

2.7.6 Calculation of Mie force

The connection between potential and force is explained by Equation (2.69) [76]:

f (r ) =
−∂ u (r )
∂ r

(2.69)

After inserting Equation (2.66) in Equation (2.69), the Mie force can be calculated
for various exponents in the repulsive term,

f (r ) =αε
��

nσn

r n+1

�

−
�

mσm

r m+1

��

(2.70)

where σ and r are diameter of a molecule and distance between particles, respectively.
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2.7.7 Correction of Mie potential pair virial

The tail correction of the intermolecular pair virial is computed with the Equation
(2.71).

wtail(r ) = 2πρN

∫ ∞

rc

−∂ u (r )
∂ r

r 3dr (2.71)

When the Mie-potential (Equation (2.67)) is substituted into Equation (2.71), the
tail correction of the intermolecular pair virial is obtained as Equation (2.72),

wtail(r ) = 2Nπρεα

�

nσn

(n −3) r n−3
c

−
mσm

(m −3)r m−3
c

�

(2.72)

where N is number of particles.

2.7.8 Calculation of virial compression factor

The Virial compression factor (Zvirial) is calculated from the virial pressure. The
Virial pressure was explained before in section 2.6.5 on page 41 [30].

Zvirial = 1+
1

3N kBT

*

N
∑

i=1

∑

i< j

w (r ) +wtail(r )

+

(2.73)

2.7.9 The hard-sphere Potential

If the molecules are rigid spheres, they are not deformed by collision, and no at-
tractive force acts between the molecules. The pair potential is given by the following
equation,

u (r ) =

�

∞ r ≤σhs

0 r >σhs
(2.74)

where σhs is the hard-sphere diameter.
The Equation (2.74) shows that, if the distance between two particles is less than

the sum of their radiuses, then the potential of particles is ∞ and if the distance
between two particles is greater than the sum of their radiuses, then the potential
energy of them is equal to 0.
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2.7.10 Calculation of Carnahan-Starling compressibility factor

The Carnahan-Starling equation of state is an approximate equation for the �uid
phase to calculation of compressibility factor. This equation is given by [68],

ZCS = 1+
η(4−2η)

(1−η)3
(2.75)

where Z is compressibility factor and η is the packing fraction that is already mentioned
in section 2.6.7 on the page 43.

2.8 Radial distribution function

r
dr

Figure 2.7: Space distribution for the evaluation of the radial distribution function.

The radial distribution function g (r ) describes how the particles in a system (such
as liquids and gases) are packed around each other. In the real �uid like liquids, where
continuous movement of the particles must be considered, it is extremely useful to be
able to deal with the average structure. It should be noted, that the radial distribution
function in molecules and mixture most be calculate considering the site-site radial
distribution function. For instance, in mixture Neon and Krypton, we distinguish
only two atomic sites, neon and krypton, thus three site-site RDF, namely gNe−Ne(r ),
gNe−Kr(r ) and gKr−Kr(r ) should be calculated.

2.8.1 Radial distribution function in Lennard-Jones fluids

The following steps explain, how is calculated the radial distribution function in
Lennard-Jones �uids:



2.8. RADIAL DISTRIBUTION FUNCTION 49

• First of all a test particle i with position ri is chosen.

• The space around the test particle i is divided into shells by a series of small concen-
tric spheres with increasing radius ∆r .

• A particle j in a shell has a distance ri j =| ri−r j | from particle i where r−∆r < ri j < r .
ni (r,∆r ) determine the number of particles in the shell.

• The number of particles in the shell is divided by the volume of the shell and af-
ter that the average should be divided by the reference particles.

g (r )'
1

N

N
∑

i

ni (r,∆r )
4πr 2∆r

(2.76)

• In last step, the radial distribution function is normalized by the particle density:

g (r ) =
V

4πr 2∆r N 2

N
∑

i

ni (r,∆r ) (2.77)

In a very short r the radial distribution function must be zero, because two particles
can not occupy the same space and they can not approach more closely. Outside the
van der Waals diameter there is a peak because the remaining N -1 particles try to
di�use into the region occupied by the �rst one at the origin.

The peaks are particulary sharp in crystalline materials, where atoms are con�ned
in their positions. At very long ranges every RDF tends to a value of 1, which hap-
pens because the RDF describes the average density at this range. The algorithm to
caculation of radial distribution function is presented in chapter 6 on the page 119.

2.8.2 Radial distribution function in hard-sphere fluids

In 1957, Percus and Yevick (PY) presented an equation for the calculation of the
radial distribution function g (r ) of hard-sphere �uids [44]. In their theory, the total
correlation function h (r ) is de�ned by

h (r12) = g (r12)−1 (2.78)

For r →∞, the total correlation function goes to zero because there exists no
correlation between the two molecules 1 and 2. The direct correlation function c (r ) is
de�ned by

h (r12) = c (r12) +ρ

∫

h (r23)c (r13)dr3 (2.79)
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where ρ is the particle number density. Equation (2.79) is called the Ornstein-Zernicke
relation [45]. It expresses the fact that the total correlation between two molecules 1
and 2 can be split in two contributions. There is a direct e�ect described by c (r12),
which is of short range, i.e. approximately of the range of the pair potential. In addition
to this direct e�ect there is an indirect e�ect, in which molecule 1 in�uences molecule
3, which in turn acts on molecule 2 [50].

A density expansion can be made, in which higher order terms re�ect the indirect
e�ects of molecules 4, 5,· · · on the correlation between the molecules 1 and 2. The
important advantage of c (r) over g (r) lies in its short range, which essentially agrees
with that of the pair potential [50].

The direct correlation function c (r ) represents the direct correlation between two
particles in system containing N -2 other particles. According to Percus and Yevick
(PY), it can be represented by

c PY(r ) = g PY(r )(1−eU /kBT ) (2.80)

Substitution of Equations (2.78) and (2.80) into Equation (2.79) relation yields

g PY(r12)e
U (r12)/kBT = 1+ρ

∫

�

g PY(r23)−1
�

g PY(r13)(1−eU (r13)/kBT )dr3 (2.81)

For hard-sphere molecules

ghs(r ) = 0 r µσhs (2.82)

and the pair correlation function has a discontinuity at r = σhs. However, the back-
ground correlation function yhs(r ) has the property of being �nite for r < σhs and
r >σhs and is continuous at r =σ±hs.

yd(r ) = eUhs(r )/kBT ghs(r ) (2.83)

According to Equations (2.80) and (2.83), the direct pair correlation function for
hard-sphere is:

c PY
hs (r ) =−y PY

hs (r ) for rµ d− (2.84)

c PY
hs (r ) = 0 for r½ d+ (2.85)
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where d is the sphere diameter. Substituting Equations (2.83) and (2.84) into (2.81)
gives the Percus-Yevick equation for hard-spheres:

y PY
hs (r12) = 1+n

∫

r13<σ

y PY
hs (r13)dr3−ρ

∫

r13<σhs
r23>σhs

y PY
hs (r13)y

PY
hs (r23)dr3 (2.86)

The Equation (2.86) can be solved analytically with the Laplace transform method
giving [51, 54, 55],

c PY
hs (r

∗) =−λ1−6ηλ2r ∗−0.5ηλ1r ∗3 r ∗ = r /σhs µ 1− (2.87)

c PY
hs (r

∗) = 0 r ∗ ½ 1+ (2.88)

where

λ1 =
(1+2η)2

(1−η)4
(2.89)

and

λ2 =
−(1+0.5η)2

(1−η)4
(2.90)

In Equations (2.87),(2.89) and (2.90), η denotes the packing fraction which was
presented before in section 2.6.5.

At suitable spacing δ, which we wish to tabulate h (r ), we have n+1 points 0, δ,
2δ, . . . , nδ=1. In 0<r ≤1,

qk = q (k δ) k = 0, 1, 2, 3, . . . , n (2.91)

Perram's numerical method to calculate the pair correlation function of a hard-
sphere system with PY-approximation is described by the following formulas:[50, 70]

[r ∗hd (r
∗)]n+k =

12η∆r ∗

1−6η∆r ∗q0

n−1
∑

j=1

q j [r
∗hd (r

∗)]n+k− j (2.92)

with
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r ∗ =
r

d
(2.93)

hd (r
∗) = gd (r

∗)−1 (2.94)

q j = q (i∆r ∗) =
1+2η((i∆r ∗)2−1)

2(1−η)2
−

1.5η(i∆r ∗−1)
(1−η)2

(2.95)

and

[r ∗hd (r
∗)]n =

(−1+4.5η−2η2)
2(1−η)2

(2.96)

2.9 Calculation of entropy-related properties

The simulation program (see chapter 3) is able to calculate some important ther-
modynamic properties, such as chemical potential, internal energy, compression factor,
Monte Carlo shift parameter etc. (see section 3.1 in chapter 3).

As stated before, the aim of this project is to explain the connection between
residual entropy and Monte Carlo shift parameter in �uids. But with the simulation
program, it is not possible to calculate residual entropy directly. The following sections
(2.9.1 to 2.9.2) explain how to calculate the residual entropy from N V T and N p T
simulations.

2.9.1 The chemical potential

Chemistry usually involves solutions, reacting systems and mixtures in which the
amounts of substance, ni of each present can be variable. When this happens, the ex-
tensive properties, Z =V ,S ,U , H , A or G become functions of the composition variables.
This can be mathematically expressed as [32]:

Z = f (X , Y , n1, n2, . . .) (2.97)

where X and Y represent the state variables, and each ni gives the amount of substance
for the i th component. The total di�erential dZ is given by
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dZ =
�

∂ Z

∂ X

�

Y ,n
dX +

�

∂ Z

∂ Y

�

X ,n
dY +

∑

i

�

∂ Z

∂ ni

�

X ,Y ,n j 6=i

dni + · · · (2.98)

where the subscripts of the partial derivations (∂ Z /∂ ni)X ,Y ,n j 6=i
mean that variables

X , Y , and all amounts of substance except that for the i th species, stay constant.
Substitution of the Gibbs free energy into Equation (2.98) gives

dG =
�

∂G

∂ T

�

p ,n
dT +

�

∂G

∂ p

�

T ,n

dp +
∑

i

�

∂G

∂ ni

�

T ,p ,nj 6=i

dni (2.99)

where the derivatives inside the summation are taken at constant T and P and the
�rst two partial derivatives are taken at constant composition.

The quantity (∂G /∂ ni)T ,p ,nj 6=i
dT is called the chemical potential of the i th compo-

nent and given the symbol µi so that

µ=
�

∂G

∂ ni

�

T ,p ,nj6=i

(2.100)

We know that

−S =
�

∂G

∂ T

�

p ,n
(2.101)

and

V =
�

∂G

∂ p

�

T ,n
(2.102)

Substitution of Equations (2.100), (2.101) and (2.102) into Equation (2.99) gives

dG =−SdT +V dp +
∑

i

µi dni (2.103)

Under the conditions of constant temperature(T ) and pressure(p ), Equation (2.103)
becomes Equation (2.104)

dG =
∑

i

µi dni (2.104)

It is possible to de�ne µi , starting with
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U = f (S , V , n1, n2) (2.105)

The total di�erential in internal energy can be given as Equation (2.106)

dU =
�

∂U

∂ S

�

V ,n
dS +

�

∂U

∂ V

�

S ,n
dV +

∑

i

�

∂U

∂ ni

�

S ,V ,nj6=i

dni (2.106)

With constant n 's, Equation (2.107) is obtained from Equation (2.106)

dU =
�

∂U

∂ S

�

V ,n
dS +

�

∂U

∂ V

�

S ,n
dV (2.107)

where

T =
�

∂U

∂ S

�

V ,n
(2.108)

−p =
�

∂U

∂ V

�

S ,n
(2.109)

Substituting Equations (2.108) and (2.109) in Equation (2.106) gives

dU = T dS −p dV +
∑

i

�

∂U

∂ ni

�

S ,V ,nj6=i

dni (2.110)

According to the fourth Gibbs Equation, we know that

dG = dU +d(p V −T S ) (2.111)

If d(p V −T S ) is added to both sides of Equation (2.110), we obtain

dG = T dS −p dV +
∑

i

�

∂U

∂ ni

�

S ,V ,nj6=i

dni +p dV +V dp −T dS −SdT (2.112)

Cancellation of terms gives

dG =−SdT +V dp +
∑

i

�

∂U

∂ ni

�

S ,V ,nj6=i

dni (2.113)
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Comparing the terms in Equations (2.103) and (2.113) leads to

µi =
∑

i

�

∂U

∂ ni

�

S ,V ,nj6=i

dni (2.114)

Substitution the Equations (2.108), (2.109) and (2.114) in Equation (2.106) �nally
gives

dU = T dS −p dV +
∑

i

µidni (2.115)

2.9.2 Homogeneous functions and entropy

According to Euler equation, the fact that energy of any system can be expressed
as a homogeneous 1st order function of the extensive variable S , V and ni implies that
the function U scales with the size of the system. In other word, if S , V and ni are all
multiplied by some factor λ, then U will be changed by the same factor: [33, 65]

U (λS ,λV ,λn1, · · · ,λnm)=λU (S , V , n1, · · · , nm) (2.116)

With respect to λ, Equation (2.106) can be rewritten as

dU (S , V , n ) =

�

�

∂U

∂ (λS )

�

V ,n

d (λS )
dλ

+
�

∂U

∂ (λV )

�

S ,n

d (λV )
dλ

+
�

∂U

∂ (λn )

�

S ,V

d (λn )
dλ

�

dλ (2.117)

which simpli�es to

dU (S , V , n ) =

�

�

∂U

∂ (λS )

�

V ,n

S +
�

∂U

∂ (λV )

�

S ,n

V +
�

∂U

∂ (λn )

�

S ,V

n

�

dλ (2.118)

Setting λ= 1 in Equation (2.118), we obtain:

dU =

�

�

∂U

∂ S

�

V ,n
S +

�

∂U

∂ V

�

S ,n
V +

�

∂U

∂ n

�

S ,V
n

�

dλ (2.119)

The partial derivatives in Equation (2.119) are now just the de�nitions of the ex-
tensive variables T , p , and n . Equation (2.119) can be integrated over λ, giving

U = T S −p V +
∑

i

µi ni (2.120)
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2.9.3 Widom insertion method (PI method)

The Monte Carlo method (MC) is an e�cient method for the determination of ther-
modynamic properties. But the calculation of free energy by MC simulation method is
not directly possible because entropy can not be obtained as an ensemble average [39].

Because of this problem, several methods have been proposed to calculate the con-
�gurational free energy for �uids and solids [49, 52].

The Widom insertion method (or Widom sampling) is a general simulation tech-
nique to obtain the residual chemical potential (species in a pure �uid or in a mixture),
which was proposed by Benjamin Widom in 1963 [3�5].

This approach is most widely applied in molecular computer simulation [47, 48],
but has also been applied in the development of analytical statistical models.

As a rule, �rst of all, a Monte Carlo simulation should be done to obtain an equi-
librium; after that, a new particle is inserted in a random coordination in simulation
box.

This new position is chosen randomly, so that all of the positions in simulation
box have the same probability to be selected. The new particle is only added for the
calculation of the internal energy di�erence, and after that removed.

µr =µ−µideal =−kBT ln
­

exp
−∆U

kBT

·

N
(2.121)

where kB is the Boltzmann constant, T is the absolute temperature, ∆U is the di�erence
in internal energy before and after the insertion of the test particle and 〈. . .〉 denotes
canonical ensemble averaging over all con�guration of the N positions in the volume
V .

The internal energy di�erence (∆U ) can be obtained by calculating the internal
energy before and after the insertion of a new particle. The test particle insertion
method has proved very useful for obtaining chemical potential at low density systems.
This method, however, is di�cult to apply at high densities due to the extremely low
acceptance ratios of the particle insertions. Furthermore, this method is ine�cient, if
the newly added particle does not have a spherical shape.

2.9.4 Alternatives routes to the entropy

There are several other methods to calculate the residual entropy in �uids. Two of
them are Scheraga’s theory and the estimation of entropy from the radial distribution
function. To measure the accuracy of results (chapter 4), the results of simulation
program are compared with the results of these methods (see section 4.7 in chapter 4).
These two methods are explained brie�y in sections 2.9.5 and 2.9.6, respectively.
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2.9.5 Scheraga’s theory

Scheraga's theory is a method to calculate entropy and free energy of solids and
�uids from the radial free space distribution function (RFSDF) [53].

The RFSDF is de�ned as the following ratio in the Metropolis Monte Carlo proce-
dure [52],

y (r ) =
total number of acceptances of displacementr

total number of attempts of displacement r
, (2.122)

where the function y (r ) starts with y=1 at r = 0 and decreases to zero at high densi-
ties (large r ). But y (r ) has limiting values other than zero at low and moderately high
density, when r exceeds some distance larger than the cell radius [52].

The cell radius is about twice the average of nearest neighbor distances. y∞ < 1
means that a particle can escape from the cell constructed to new positions outside the
cell with a probability of y∞.

At low density, the value of y∞ departs from zero because there, a particle can
escape easily from its position. In other words, the particles in this system behave like
an ideal gas, and in an ideal gas y∞ = 1.

The molar free volume is de�ned as:

V f = y∞V f
id+ (1− y∞)(4πN )

∫ ∞

0

C [y (r )− y∞]r
2dr (2.123)

Here is V f, the molar free volume, V f
id is the free volume in an ideal gas with same

density, N is the number of particles in the system and C is a normalization factor
that is equal to (1− y∞)−1.

Equation (2.123) can be rewritten as:

V f

V f
id

= y∞+ (4πρσ
3)

∫ ∞

0

[y (r ′)− y∞]r
′2dr ′ (2.124)

Here are ρ =N /V , r ′ = r /σ and σ, the hard-sphere diameter or the parameter σ
in the Lennard-Jones potential. It should be noted, that y (r ′)− y∞ in Equation (2.124)
decreases to zero at the cell radius.

According to free-volume theory [43], the partition function of system QN with N
molecules at temperature T can be approximated in terms of single molecule partition
function Q ,

QN 'Q N '
�

λ−3σV f exp
� −ψ0

2kBT

��N

(2.125)

where λ is the thermal wavelength (λ = h/(
p

2πmkBT )) , kB and ψ0 being the Boltz-
mann's constant and the average potential energy in a cell, respectively.
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The entropy is given by: [26]

Sr

R
= T

�

∂ lnQN

∂ T

�

V
+ lnQN (2.126)

Here is R , the universal gas constant and T is absolute temperature. For interactive
systems other than the hard-sphere system, it was assumed that at �xed volume V ,
the �rst term in Equation (2.126) is small compared to the second term. Therefore,
Equation (2.127) can be obtained from Equations (2.125) and (2.126):

Sr

R
= ln

�

V f

V f
id

�

(2.127)

2.9.6 The estimation of entropy from radial distribution function

The thermodynamic entropy of a system can be written as

S = S1+S2+S3+ . . .= Sid+Sr, (2.128)

where Sn is the entropy contribution due to the n-particles spatial correlation [56].
The entropy of an ideal gas Sid can be calculated as the following equation

Sid =N kB

�

ln

�

V

N

�

4πmU

3N h 2

�3/2
�

+
5

2

�

, (2.129)

where U and h are the internal energy and plank's constant, respectively. The Sr

can be estimated from the two-body contribution to the residual entropy S (2)r in an
expansion of Sr with respect to the radial distribution function g (r ) [63, 64].

S (2)r = (−2NπρkB)

∫

{[g (r ) ln g (r )]− [g (r )−1]}r 2dr , (2.130)

where g (r ) is radial distribution function of pure species (that was discussed before in
sections 2.8.1 and 2.8.2), r is distance and kB and ρ are the Boltzmann constant and
numerical density, respectively.

The quantity S (2)r formally emerges as the leading order term in the N-body distribu-
tion function expansion of the excess entropy of an isotropic liquid [60]. The de�nition
(2.130) was originally introduced by Nettleton and Green [61] and later developed by
Raveché [56], using an alternative approach as an expression for the two-body contri-
bution to the excess entropy appropriate for use only in the grand canonical ensemble
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[62]. This restriction was later lifted by Baranyai and Evans, who showed that the
expression is actually ensemble�invariant [63].

If the value of g (r ) is close to 1, Equation (2.130) can be rewritten:

ln[g (r )]t ln[1+ g (r )−1]t g (r )−1 (2.131)

S (2)r t (−2NπρkB )

∫

[g (r )−1]2r 2dr (2.132)

2.10 Percolation theory

2.10.1 Introduction

The aim of this section and the next one is explain what is percolation and how it
affects the results of entropy determination by means of Monte Carlo simulation. Before
answering these questions, �rst of all it is useful to discuss the relevance of percolation
theory for this work.

During the simulation runs in N V T ensemble (for more details please see chapter
3), the energy is calculated for series of systems with di�erent gradually increasing
volumes.

It is seen in the results that the acceptance ratios do not stay constant with increase
of volume. At particular volume, the ratio even begins to increase.

In this work, only the e�ects of percolation because of free volume is treated.

2.10.2 The percolation problem

Percolation is a standard model for disordered systems [66, 67, 72], with-wide spread
applications in nature, and was introduced by Broadbent and Hammersley in 1957 as
a mathematical model for random particles [71, 73, 74]. Percolation theory is the
test ground for studying more complicated critical phenomena and a great source of
intuition.

Percolation processes are those in which, by the random addition of a number
of objects, a contiguous path which spans the entire system in created. In general,
particles may be distributed continuously in space and the overlap between particles
determines the conected paths [31].

There are two di�erent kinds of percolation:
site and bond percolation.

The di�erence between site percolation and bond percolation is that in site percola-
tion, the sites of a lattice have been occupied randomly with �xed acceptance, whereas
in bond percolation the points in �xed positions connect each other. The Figures 2.8



60 CHAPTER 2. STATISTICAL THERMODYNAMICS

a b

Figure 2.8: a.Bond and b.side percolation.

illustrate the both kind of percolation.

Percolation can be happen in one, two and three dimensions.

1-dimensional percolation:

× × × × × × ×

Figure 2.9: Percolation in one dimension.

Figure 2.9 presents percolation on a 1-dimension lattice. Sites are occupied with
probability P . In the part of the in�nite 1-dimension lattice in Figure 2.9, there is one
cluster with size 5, one cluster with size 2, and three clusters with size 1.

2-dimensional percolation: Figure 2.10 illustrates 2-dimension percolation. A lat-
tice square that is randomly �lled with black and white sites. A cluster is a connected
group of white sites. Percolation occurs if it is possible to move from one site of
this cluster to another side by repeatedly stepping to an adjacent white side without
touching the black site.

The size of clusters plays very important roles in percolation. If there are only few
white sites, the clusters are too small to connect to opposite sides of the square lattice.

If the number of white sites is large, it is possible to connect to the top and the
bottom of the lattice. If almost all sites are white, there are many possible paths.

Ppath is the probability of a path from top to bottom of square. It depends on the
linear size of the lattice L and probability that a site is white (P ).

If the probability of white side is P , the probability that a side is black should be
1-P . As L increases, Ppath shows a very intriguing limiting behaviour. In two dimen-
sions, below a critical value Pc ≈ 0.593 is approximately zero. On the other hand, for
all P larger than Pc , Ppath is almost equal to 1. It means that for large lattices there
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Figure 2.10: Percolation in two dimensions.

 

Figure 2.11: Percolation in 2 dimension square lattices with size L = 150×150.
Occupation probability P=0.45, 0.55, 0.59, 0.65, and 0.75, respectively. Figure taken from

[75].

is a sudden change in the global connecting.

lim
L→∞

Ppath(P, L ) =

¨

0 for P < Pc

1 for P ≥ Pc

(2.133)
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In the limit of in�nite L , Ppath becomes a step function, jumping from 0 to 1 at
Pc .In �nite lattices L <∞, if the occupation probability P is small, there is only a
very tiny probability of having a cluster percolation between two opposite boundaries.
For P close to 1, certainly will have been a cluster percolating through the system. In
Figure 2.11, sites in 2 dimension square lattices are occupied at random with increasing
occupation probability P .

The occupied sites belonging to the largest cluster are shown in black while the
occupied sites are shown in purple and unoccupied sites are white. Notice that for
Pc ≈ 0.59, a percolating cluster appears for the �rst time [75].

2.11 Reduced Units

In simulation, it is common to measure quantities (pressure, temperature, density,
etc.) in reduced units. It means that a convenient unit of energy length and mass are
chosen and the other quantities are measure in term of these basic units. The following
parameters are chosen as the basic units in Lennard-Jones term:

• unit of energy (ε)

• unit of mass (m )

• unit of length (σ)

and all of the following units can be expressed from these basic units:

• the reduced pair potential: u ∗ =
u

ε

• the reduced pressure: P ∗ =
Pσ3

ε

• the reduced density: ρ∗ =ρσ3

• the reduced temperature: T ∗ =
kBT

ε

• the reduced length: r ∗ =
r

σ

• the reduced energy: E ∗ =
E

σ

• the reduced force: f ∗ =
f σ

ε

Another, practical reason for using reduced units is that when we work with real
(SI) units, we �nd that the absolute numerical values of the quantities that we are
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computing are either much less or much larger than 1 (double precession range is
10−308 to 10+308).

If we multiply several such quantities using standard �oating-point multiplication,
we risk that, at some stage, we will obtain a results that creates an over�ow or under�ow.
Conversely, in reduced units, almost all quantities of order 1 (say, between 10−3 to 10+3).
Hence, if we suddenly �nd a very large number in our simulation, then there is a good
chance that we have made an error somewhere [30].
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Chapter 3

Simulation Programs

65
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3.1 Details of the computer simulation program mc++

mc++ is a Monte Carlo simulation program written in C++. It uses an object-oriented
design and strictly separates molecular properties (the so-called models) from ensemble
data and simulation control parameters: It is thus possible to use mc++ with various
pair potentials. mc++ uses classes to handle data relevant for the simulation.

input and output:

The main class in the simulation program is class mc. The purpose of this class is
to get the input data to start the calculation and to print the results after �nishing of
simulation program. The simulation program requires the following parameters:

• number of processors to be used.

• simulation type (N V T or N p T ).

• number of components.

• the name of each components.

• number of sites.

• site data (x , y , z , type, molar mass (g/mol), σhs(Å)).

• number of molecules of this kind.

• parameters for site-site interactions (depends on pair potential, for example for

Lennard-Jones potential ε/kB (K) and σLJ(Å)).

• Vm(cm3/mol), T (K) or p (MPa), T (K).

• number of compression cycles (only in N V T simulation).

• number of equilibration cycles.

• number of production cycles.

During the run the program, after each 100 cycles, the simulation program reports
the number of cycles, the maximum displacement, the size of box, reduced density,
and internal energy. After �nishing of calculation, the simulation program reports the
following results:

• Zvirial (compression factor from virial theorem)
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•Z (compression factor from p and V )

• ZCS (from density and given pressure, only for N p T simulation)

• Ur (J/mol K)(residual internal energy)

• µr (J/mol)(residual chemical potential)

• Vm(cm3/mol)

• pred(reduced pressure)

• dx (Å) (displacement parameter of Monte Carlo simulation)

• dx 2(Å2) (quadratic average displacement of Monte Carlo simulation)

• acct (average acceptance ratio)

For mixtures, some orientation correlation data are printed too.

class Canonical:

This class contains descriptions of a simulation ensemble and vector of molecules.
The following calculations are done in this class:

• bf_insertion: Calculation of Boltzmann factor of change energy (that be needed to

calculation of chemical potential according to Widom test insertion method).

• change_v: Tentative volume change.

• configure: Set up all vectors and matrices with their proper sizes.

• dx2: Calculation of dx 2 (square distance from initial con�guration).

• expand: Do a volume expansion.

• init_gas: Initialize an ensemble by placing molecules at random into a very large

volume

• move: Random shift and rotation of a molecule .

• usum1: Calculation of interaction energies and rotation (one molecule against the

others).

• usum2: Calculation of the total residual energy.
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• utail: Calculation of energy tail correction summation.

• virsum2: Calculation of the total virial of the ensemble including the tail correction.

class MC_statistics:

The statistical averages of Monte Carlo simulation are calculated in this class. More-
over, the following operations are done in this class:

• adjust_dx: A new maximum length shift parameter is calculated so that the accep-

tance ratio is maintained.

• adjust_qv: optimize parameters for isobaric volume changes.

class Model1:

The class contains functions to read the molecular structure, the site data and check
the molecules for overlapping. Moreover the following function is in this class:

• normalize: Shift the center of gravity to zero.

class Model1set:

This class contains merely one function:

• sitecount: determine the number of di�erent site types.

class Model2:

This class contains the pair potentials and their parameters. The following param-
eters are calculated in this class:

• u: calculation of pair potential between two sites.

• utail: calculation of energy tail correction.
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• fr: calculation of force-distance product.

• frtail: calculation of tail correction force-distance product.

class Molecule

This class contains the coordinates for each molecules. The only function in this
class is:

• displace: random displacement of rigid molecules.

Figure 3.1: Schematic representation of the simulation program mc++.

class mc

class Canonical

class Model1set

class Model1 class Molecule

class Model2class MC statistic

3.2 Random number generator

Monte Carlo simulations are heavily depends on the fast, e�cient generation of
streams of random numbers [31]. Some of the the random number's applications in
Monte Carlo simulation are:

• Random distribution of particles in the system.
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• Selection of the particle randomly and try to move it.
• Random choice of the translation and rotation of particles.
• Random change of the volume in N p T simulation.
• Random change of the volume in N V T simulation during the compression phase.

Many applications of randomness have to develop several di�erent methods to gen-
erate random data. But in all of them, linear congruential random number generators
multiply the last random integer by some big factors, add another integer to it and nor-
malize this integer to the interval between zero and unity. In this project, the following
method was used to produce the random number [78]:

Xn+1 =MOD(a Xn + c , m ) (3.1)

where a= 150889, c=1366 and m=714025.

3.3 Equilibration and production phase

The Monte Carlo simulation comprises an equilibration phase followed by produc-
tion phase. There is a period of time required in equilibration phase for the system to
lose the memory of its initial con�guration [79].

During equilibration, appropriate thermodynamic and structural quantities such as
the total energy (and the partitioning of the energy among the various components),
mean square displacement and order parameters (as appropriate) are monitored until
they achieve stable values, whereupon the production phase can commence.

During an isothermal-isobaric simulation (and compression phase in canonical en-
semble) the volume will change once per cycle and therefore should also be monitored
to ensure that a stable system density is achieved [80]. Moreover the number of in-
sertion attempts per cycle in canonical ensemble and isothermal-isobaric ensemble by
simulation program equals one.

3.4 The inner hard core of Lennard-Jones sites

In the Monte Carlo simulation, the locations of particles are chosen totally randomly.
This is why it is possible that the distance between two particles gets smaller than σLJ.
As far as we are concerned, the Lennard-Jones potential tends to in�nity with increasing
the distance between particles. To avoid Lennard-Jones potential over�ow, σhs is used
to accept or reject the coordinates of particles i.e. if the distance between two particles
is smaller than σhs then the distributions of particles is rejected and we try for new
one and if the distance between two particles is bigger than σhs, we have to check the
Metropolis criterion. It should be noted that in the simulation program, σhs is usually
set to 0.8σLJ.
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3.5 The computer systems

The following table shows the computer systems of work group, which were used
for the computer simulations.

Table 3.1: The computer systems used for the simulations

Name: rhenium Name: radon5
processor: Intel(R), core(TM), Duo(2) processor: AMD Opteron(tm) processor

6128 HE
clock frequency: 2400 MHz clock frequency: 2000 MHz
architecture: 64 bit, 2 cores architecture: 64 bit, 2×8 cores
RAM: 2 GB RAM: 8 GB
Cache: 2048 kB Cache: 4096 kB
os: Linux os: Linux
Name: radon4 Name: radon6
processor: AMD Opteron(tm) 2356 processor: Intel(R) Pentium(R) 2.66 GHz
clock frequency: 2.2 GHz clock frequency: 3150 MHz
architecture: 64 bit, 2×4 cores architecture: 64 bit, 1 core
RAM: 4 GB RAM: 2 GB
Cache: 512 kB Cache: 1024 kB
os: Linux os: Linux
Name: radon7
processor : Intel(R) Xenon(R) E5-2650
clock frequency: 2 GHz
architecture: 64 bit, 2×8 cores
RAM: 8 GB
Cache: 20480 kB
os: Linux
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4.1 The test of the computer simulation program

To determine the accuracy of the simulation program, the simulation results for
pure argon were compared with the results of three di�erent equations of state of the
LJ �uid (mBWR1-LJ, mBWR2-nLJ, CSJS-LJ, KN-LJ) that can be used with the Ther-
moC program under the same conditions [68, 84].

ThermoC is a modular program package for the calculation of thermodynamics data
(phase equilibria, caloric data and p V T data) of pure �uids and �uid mixtures from
equations of state and mixing rules. Some advantages of ThermoC are: [84]

• ThermoC can calculate a wide range of thermodynamic properties.

• ThermoC can easily be extended to new equations of state and/or mixing theories.

• ThermoC can handle a wide variety of mixing rule or mixing theories.

• ThermoC can handle most equations of state, cubic, non-cubic, semiempirical, or
multi-parameter reference equations.

Some examples for equation of state that can be chosen in ThermoC are:

• mBWR1-LJ (modified Benedict–Webb–Rubin Lennard-Jones (12/6))

As shown in the name, the mBWR1-LJ equation of state describes the behaviour
of Lennard-Jones (12/6) �uid. The �rst version of mBWR1-LJ was published in
1979 (also known as Nicolas equation of state) [81, 85].

• mBWR2-nLJ (modified Benedict–Webb–Rubin Lennard-Jones (12/6) chain)

mBWR2-nLJ non-cubic equation of state is similar to the older Nicolas equation
of state [81], but based on a more extensive and accurate set of simulation data.
This EOS describes the behaviour of the Lennard-Jones (12/6) �uid as well as
�exible LJ tangent-sphere chains.

The chain term is based on the behaviour of the background correlation
function (cavity correlation function) at contact and uses a superposition approach
to relate this function for chain molecules to that of spherical particles [82, 83].
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• KN-LJ (Kolafa–Nezbeda Lennard-Jones (12/6))

This noncubic EOS describes the behaviour of the Lennard-Jones (12/6) �uid.
It consists of a hard-sphere repulsion term with a temperature-dependent collision
diameter and an empirical attraction term (2-dimensional polynomial) [86].

• CSJS-LJ (Carnahan–Starling + Jacobsen-Stewart Lennard-Jones (12/6))

This noncubic EOS describes the behaviour of the Lennard-Jones (12/6) �uid.
It consists of a hard-sphere repulsion term with a temperature-dependent collision
diameter and an empirical attraction term of the Jacobsen-Stewart type [87, 88].

The results of these equations of state for the thermodynamic properties of argon at
temperatures above the critical temperature are presented in Figures 4.1 to 4.8. There
is a very good agreement between the results of ThermoC and the simulation program.
This con�rms the high accuracy of simulation results.
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Figure 4.1: Residual chemical potential vs. molar volume for argon, T=200 K
500 particles, acceptance ratio=50%.
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Figure 4.2: Molar residual entropy vs. molar volume for argon, T=200 K
500 particles, acceptance ratio=50%.
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Figure 4.3: Molar internal energy vs. molar volume for argon, T=200 K
500 particles, acceptance ratio=50%.
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Figure 4.4: Compression factor vs. molar volume for argon, T=200 K
500 particles, acceptance ratio=50%.
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Figure 4.5: Residual chemical potential vs. molar volume for argon, T=600 K
500 particles, acceptance ratio=50%.



78 CHAPTER 4. RESULTS AND DISCUSSION

0 200 400 600

–15

–10

–5

0

Vm( cm
3

mol )

S
r m
(

J
m
o
lK

)

KN-LJ, mBWR1-LJ, mBWR2-nLJ, CSJS-LJ, Simulation

Figure 4.6: Residual molar entropy vs. molar volume for argon, T=600 K
500 particles, acceptance ratio=50%.
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Figure 4.7: Molar internal energy vs. molar volume for argon, T=600 K
500 particles, acceptance ratio=50%.
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Figure 4.8: Compression factor vs. molar volume for argon, T=600 K
500 particles, acceptance ratio=50%.

4.2 Calculation of the residual entropy for LJ fluids

4.2.1 1-center Lennard-Jones argon

To describe the connection between the residual entropy (Sr) and the Monte Carlo
shift parameter (dx ), the simulation program was applied to 1-center Lennard-Jones
�uid argon at constant temperatures, volume and particles number (N V T ensemble).

Figure 4.10 shows the results of these simulations for the densities 30 to 670
cm3mol−1 with an acceptance ratio of 50%. The details of the simulations are pre-
sented in Table 4.1.

Table 4.1: Simulation details for 1-center Lennard-Jones argon.

site acceptance
ratio

σLJ (Å) σhs(Å) ε/kB(K) number
of atoms

atom coordinates
(Å)

1 50% 3.405 2.724 119.8 500 (0.00, 0.00, 0.00)
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Figure 4.9: Molar volume vs. MC shift parameter for various temperatures for 1-center LJ
fluid argon.
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Figure 4.10: Entropy vs. MC shift parameter for various temperatures for 1-center LJ
fluid argon, acceptance ratio 50%.
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All diagrams consist of two parts. In the �rst part of diagrams (the curve part), the
acceptance average stays stable during simulation run (acceptance ratio = 50%), but
in second part (the linear part), the acceptance average increases with increasing in
the volumes at constant temperature (50% < acceptance ratio) because of percolation.

The begin of percolation varies with temperature. The begin of percolation in
1-center Lennard-Jones argon at di�erent temperatures is presented in the Table 4.2.

Table 4.2: Begin of percolation for 1-center Lennard-Jones argon at 50% acceptance ratio.

T (K) V (cm3mol−1)
200 200
300 160
400 150
500 140
600 130

4.2.2 Lennard-Jones argon dimers

The details and results of simulations in Lennard-Jones argon dimers are given in
Table 4.3 and Figure 4.12, respectively. As can be seen, the diagram for Lennard-Jones
argon dimers shows the same behaviour as that for 1-center Lennard-Jones argon.

It can be seen, the only di�erence between the results of simulation in 1-center
Lennard-Jones argon and Lennard-Jones argon dimers appears at temperature 200K
after the begin of percolation. The onset points of percolation in Lennard-Jones argon
dimers at the temperatures 200K, 300K, 400K, 500K and 600K are presented in Table
4.4.
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Figure 4.11: Atom coordination of Lennard-Jones argon dimers.



82 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3: Simulation details for Lennard-Jones argon dimers.

site acceptance
ratio

σLJ(Å) σhs(Å) ε/kB(K) number
of atoms

atoms
coordinates(Å)

2 50% 3.405 2.724 119.8 500 (0.00, 0.00, 0.00)
(3.405, 0.00, 0.00)
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Figure 4.12: Entropy vs. MC shift parameter for various temperatures for Lennard-Jones
argon dimers, acceptance ratio 50%.

Table 4.4: Begin of percolation for Lennard-Jones argon dimers, temperatures 200 K to
600 K, acceptance ratio 50%.

T (K) V (cm3mol−1)
200 780
300 540
400 460
500 420
600 400
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4.2.3 Linear Lennard-Jones argon trimers

Figure 4.14 presents the results of simulations in linear Lennard-Jones argon trimers.
The details of simulations and the beginning point of percolation at di�erent tempera-
tures are presented in Tables 4.5 and 4.6, respectively.

The comparison between percolation starting point in 1-center Lennard-Jones argon,
Lennard-Jones argon dimers and linear Lennard-Jones argon trimers shows that under
the same conditions (the volume, number of particles, temperatures etc.), percolation
occurs in linear Lennard-Jones argon trimers at lower densities than 1-center Lennard-
Jones argon and Lennard-Jones argon dimers.

It is obvious that the volume at the onset of percolation for linear Lennard-Jones ar-
gon trimers is about six times larger than for 1-center Lennard-Jones argon and about
two times larger than for Lennard-Jones argon dimers at the same reduced density and
temperatures.
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Figure 4.13: Atom coordinates of linear Lennard-Jones argon trimers.

Table 4.5: Simulation details for linear Lennard-Jones argon trimers.

site acceptance
ratio

σLJ(Å) σhs(Å) ε/kB(K) number
of atoms

atoms coordinates
(Å)

(0.00, 0.00, 0.00)

3 50% 3.405 2.724 119.8 500 (3.405, 0.00, 0.00)

(6.81, 0.00, 0.00)
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Figure 4.14: Entropy vs. MC shift parameter for various temperatures for linear
Lennard-Jones argon trimers, acceptance ratio 50%.

Table 4.6: Begin of percolation for linear Lennard-Jones argon trimers at different tem-
peratures.

T (K) V (cm3mol−1)
400 960
500 860
600 800
700 760
800 730

4.2.4 Non-linear Lennard-Jones argon trimers

The details of simulation in non-linear Lennard-Jones argon trimers are presented
in Table 4.7. Obviously, the only di�erence between the simulation of linear Lennard-
Jones argon trimers (Table 4.5 ) and non-linear Lennard-Jones argon trimers (Table
4.7) is the arrangement of atoms.

The results of simulation in non-linear Lennard-Jones argon trimers are presented
in Figure (4.16). The beginning points of percolation for non-linear Lennard-Jones
argon trimers (at di�erent temperatures) are presented in Table 4.8. As can be seen,
the percolation of non-linear Lennard-Jones trimers starts at a lower density than for
monomers and dimers, but at a higher density than for linear Lennard-Jones argon
trimers (under the same conditions).
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Table 4.7: Simulation details for non-linear Lennard-Jones argon trimers.

site acceptance
ratio

σLJ(Å) σhs(Å) ε/kB(K) number
of atoms

atoms coordinates
(Å)

(0.00, 0.00, 0.00)

3 50% 3.405 2.724 119.8 500 (3.405, 0.00, 0.00)

(0.00, 3.405, 0.00)
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Figure 4.15: Atom coordinates of non-linear Lennard-Jones argon trimers.

Table 4.8: Begin of percolation for non-linear Lennard-Jones argon trimers at different
temperatures.

T (K) V (cm3mol−1)
400 900
500 800
600 750
700 710
800 690
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Figure 4.16: Entropy vs. MC shift parameter for various densities for non-linear
Lennard-Jones argon trimers, acceptance ratio 50%.

4.2.5 1-center Mie-potential argon

One option of the simulation program is the calculation of thermodynamic proper-
ties with chosen acceptance ratio for di�erent exponents in the repulsive term of the
Mie-potential.

To obtain the connection between residual entropy and Monte Carlo shift parameter
in �uids at high densities, simulations were performed for 1-center Mie-potential argon
at temperatures above the critical point (200K, 500K and 800K) and an acceptance
ratio of 50%. The details of simulations have already been given in section 4.2.1.

Table 4.9: Begin of percolation for 1-center Mie-potential argon, T=200 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 100
(10/6) 50% 120
(12/6) 50% 200
(16/6) 50% 170
(10/6) 30% 70
(12/6) 30% 110
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Figure 4.17: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 50%, T=200 K.
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Figure 4.18: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 30%, T=200 K.
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Figure 4.19: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 50%, T=500 K.
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Figure 4.20: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 30%, T=500 K.
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The onset points of percolation for the 1-center Mie-potential argon at 200K are
presented in Table 4.9. According to Table 4.9, the percolation occurs in 1-center
Lennard-Jones argon (12/6) at a lower density than for another exponents of the re-
pulsive term under the same conditions. On the other side, for the same temperature
and same exponent in the repulsive term of Mie-Potential, percolation occurs at higher
density with decreasing acceptance average.

The results of the simulation program for 1-center Mie-potential argon at 500K are
given in Figure 4.19. The conditions of simulation are as same as for 200K. It can
be seen that the changes of residual entropy vs. Monte Carlo shift parameter in (8/6)
Mie-potential argon are not in good agreement with other simulation results under the
same conditions.

Figure 4.19 shows that the change of residual entropy against Monte Carlo shift
parameter in (10/6) Mie-potential argon (at the temperature 500 K) agrees with (12/6)
and (16/6) Mie-potential argon for the region after the percolation, but there is a very
small deviation before the percolation begins.

The results of the simulation for 1-center Mie-potential argon (10/6) and (12/6)
at 500K and an acceptance average of 30%1 are illustrated in Figure (4.20). From
this Figure, it can be seen that the results for (10/6) and (12/6) agree fairly after
percolation. There it is a very small di�erence between their results before percolation.

Table 4.10: Begin of percolation for 1-center Mie-potential argon, T=500 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 90
(10/6) 50% 100
(12/6) 50% 140
(16/6) 50% 140
(10/6) 30% 60
(12/6) 30% 80

According to Table 4.10, the begin of percolation shifts to low density with in-
creasing repulsion exponent of the Mie-potential under the same conditions (number
of particles, temperature, volume, etc.). With increasing of acceptance ratio, the per-
colation occurs at lower density.

Figures 4.21 and 4.22 represent the results of simulations for 1-center Mie-potential
argon at 800K with acceptance ratios 50% and 30%, respectively. The �tting parame-
ters are given in Table 4.11.

1The aim to calculate the residual entropy with an acceptance of 30% has the propose to show the effect
of change in acceptance ratio on the starting point of percolation and the change residual entropy, but the
results with acceptance ratio 30% are not used in the finial equation.



90 CHAPTER 4. RESULTS AND DISCUSSION

0 10 20 30 40

–1

0

1

2

3

Δx(Å)
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Figure 4.21: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 50%, T=800 K.
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Figure 4.22: Entropy vs. MC shift parameter for 1-center Mie-potential argon,
acceptance ratio 30%, T=800 K.
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Figure 4.23: Entropy vs. MC shift parameter for 1-center Mie-potential argon (8/6) at
different temperatures, acceptance ratio 50%.
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Figure 4.24: Entropy vs. MC shift parameter for 1-center Mie-potential argon (10/6) at
different temperatures, acceptance ratio 50%.
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Figure 4.25: Entropy vs. MC shift parameter for 1-center Mie-potential argon (16/6) at
different temperatures, acceptance ratio 50%.

Table 4.11: Begin of percolation for 1-center Mie-potential argon, T=800 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 90
(10/6) 50% 90
(12/6) 30% 70
(16/6) 50% 120

4.2.6 Mie-potential argon dimers

Calculations of the residual entropy for Mie-potential argon dimers were performed
for di�erent exponents in the repulsive term of Mie-potential (m/6). The details of
simulation were presented in section 4.2.2. Figures 4.26 to 4.34 give the results of
simulation in Mie-potential argon dimers at di�erent temperatures and acceptance
ratio.
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Figure 4.26: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 50%, T=200 K.
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Figure 4.27: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 30%, T=200 K.
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Table 4.12: Begin of percolation for Mie-potential argon dimers, T=200 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 310
(10/6) 50% 360
(12/6) 50% 780
(16/6) 50% 560
(20/6) 50% 620
(10/6) 30% 210
(12/6) 30% 250
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Figure 4.28: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 50%, T=500 K.
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Figure 4.29: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 30%, T=500 K.

Table 4.13: Begin of percolation for Mie-potential argon dimers, T=500 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 270
(10/6) 50% 300
(12/6) 50% 420
(16/6) 50% 390
(20/6) 50% 420
(10/6) 30% 180
(12/6) 30% 240

Table 4.14: Begin of percolation for Mie-potential argon dimers, T=800 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 260
(10/6) 50% 280
(16/6) 50% 360
(20/6) 50% 380
(10/6) 30% 170
(12/6) 30% 210
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Figure 4.30: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 50%, T=800 K.
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Figure 4.31: Entropy vs. MC shift parameter for Mie-potential argon dimers, acceptance
ratio 30%, T=800 K.
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Figure 4.32: Entropy vs. MC shift parameter for Lennard-Jones argon dimers (8/6) at
different temperatures, acceptance ratio 50%.
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Figure 4.33: Entropy vs. MC shift parameter for Lennard-Jones argon dimers (10/6) at
different temperatures, acceptance ratio 50%.
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Figure 4.34: Entropy vs. MC shift parameter for Lennard-Jones argon dimers (16/6) at
different temperatures, acceptance ratio 50%.
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Figure 4.35: Entropy vs. MC shift parameter for Lennard-Jones argon dimers (20/6) at
different temperatures, acceptance ratio 50%.
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4.2.7 Linear Mie-potential argon trimers

Simulation details for linear Mie-potential argon trimers are given in Table 4.5 in
section 4.2.3. The simulation results and the percolation beginning point are presented
in Figure 4.36 and Table 4.15, respectively.
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Figure 4.36: Entropy vs. MC shift parameter for linear Mie-potential argon trimers,
T=200 K, acceptance ratio 50%.

Table 4.15: Begin of percolation for linear Mie-potential argon trimers, T=200 K.

Mie-potential acceptance
ratio

V (cm3mol−1)

(8/6) 50% 630
(10/6) 50% 730
(16/6) 50% 1210
(20/6) 50% 1340
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4.2.8 Non-linear Mie-potential argon trimers
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Figure 4.37: Entropy vs. MC shift parameter for non-linear Mie-potential argon trimers,
T=200 K, acceptance ratio 50%

The simulation results for non-linear Mie-potential argon trimers are presented in
Figure 4.37. The details of simulation are given in section 4.2.4. It can be seen that the
change of residual entropy vs. Monte Carlo shift parameter in non-linear Mie-potential
argon trimers (8/6) is slightly di�erent from the results for (10/6),(16/6) and (20/6)
at same temperature and number of particles.

The beginning of percolation in non-linear Mie-potential argon trimers argon is pre-
sented in Table 4.16. According to the results, with increasing of exponent in repulsive
term of non-linear Mie-potential argon trimers, percolation sets in lower density (under
the same temperature and acceptance average).

Table 4.16: Begin of percolation for non-linear Mie-potential argon trimers, T=200 K.

Mie-potential acceptance
average

V (cm3mol−1)

(8/6) 50% 590
(10/6) 50% 690
(16/6) 50% 1110
(20/6) 50% 1240

By comparing the results of Table 4.15 (entropy against Monte Carlo shift parame-
ter for linear Mie-potential argon trimers) and Table 4.16 (entropy against Monte Carlo
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shift parameter for non-linear Mie-potential argon trimers) it can be seen that perco-
lation starts for linear Mie-potential argon trimers at lower density than for non-linear
Mie-potential argon trimers under the same conditions.

4.2.9 Dimer CH3-CH3

Simulation were performed for CH3-CH3, which was modeled as a 2-center Lennard-
Jones molecule. The details of simulation are presented in Table 4.17. The simulation
results are presented in Figure 4.38.

In Figure 4.38, small deviations can be seen after percolation in the change of the
residual entropy vs. the Monte Carlo shift parameter at temperature 700K, but before
percolation, the results for all temperatures are in very good agreement with each
other.

Table 4.17: Simulation details for CH3-CH3.

site acceptance
ratio

σLJ (Å) σhs(Å) ε/kB(K) number
of atoms

atom
coordinates

(Å)
1 50% 3.825 3.06 100.6 500 (0.00, 0.00, 0.00)
1 50% 3.825 3.06 100.6 500 (1.54, 0.00, 0.00)
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Figure 4.38: Entropy vs. MC shift parameter for CH3-CH3 at different temperatures,
acceptance ratio 50%.
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Table 4.18: Start of percolation for CH3-CH3 at different temperatures.

T (K) V (cm3mol−1)
500 390
600 350
700 330
800 320

4.3 Calculation of the residual entropy for hard-sphere flu-
ids

The calculation of residual entropy for �hard-sphere argon� was performed at con-
stant number of particles, volume and temperature (N V T ensemble). The details and
results of simulation are presented in Table 4.19 and Figure 4.39, respectively.

Table 4.19: Simulation details for hard-sphere argon, acceptance ratio 50%.

simulation
type

site σhs(Å) ε/kB(K) number
of atoms

atom coordinates (Å)

1 1 2.724 119.8 500 (0.00, 0.00, 0.00)
2 1 2.724 119.8 100 (0.00, 0.00, 0.00)
3 1 2.724 119.8 100 (0.00, 0.00, 0.00)

simulation
type

number of compression
cycles

number of
equilibration cycles

number of production
cycles

1 30000 60000 150000
2 3000 10000 15000
3 30000 60000 100000

Figure 4.39 shows that in the percolation region, the change of Monte Carlo shift
parameter in type(1) hard-sphere argon (with 500 particles) is more than types(2) and
(3) (with 100 particles) under the same conditions (temperature, molar volume, etc).

At constant molar volume, the volume of simulation box increases with increasing
number of particles. With increase the volume of simulation box, the particles have
more place to move and the move is accepted with more probability. Because of this
case, the change of Monte Carlo shift parameter in type(1) hard-sphere argon with
higher number of particles is more than in types(2) and (3) (only true in the percolation
region).
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Figure 4.39: Entropy vs. MC shift parameter for hard-sphere argon, acceptance ratio 50%.
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Figure 4.40: Entropy vs. MC shift parameter for a hard-sphere fluid, acceptance ratio
50%. (For simulation details, please See Table 4.19.)
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Equation (4.1) expresses a master function for the hard-sphere system describing
the connection between the residual entropy, Sr, and the Monte Carlo shift parameter, x
(see Figure 4.40). This equation is valid for the region before beginning of percolation.

y = 0.2263X 2−0.5795X +0.1607 (4.1)

where y = ln( −Sr
NA kB
), X =ln (∆x

σhs
).

4.4 Calculation of the residual entropy for LJ fluids
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Figure 4.41: residual entropy vs. MC shift parameter in Lennard-Jones fluids at various
temperatures.

The simulation results for Lennard-Jones �uids are presented in Figure 4.41. The
details and results of simulations are presented in sections 4.2.1 to 4.2.9.

The results are obtained from more than 2100 simulations at temperatures above
the critical point. According to Figure 4.41, in Lennard-Jones �uids, there is a master
function that relates the residual entropy, Sr, to the Monte Carlo shift parameter, x,
(Equation (4.2)).

This equation is only valid for ∆x range with stable acceptance average (before
beginning of percolation). The closer the volume gets to the percolation volume, the
more accurate the Equation (4.2) becomes, according to calculation of residual entropy.
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The calculated diagram in Figure 4.41 is described with Equation (4.2). Although
this equation is a second degree polynomial equation, it matches the diagram, because
only its descending range is taken into account.

y = 0.1543X 2−0.419X −0.8764 (4.2)

where y = ln( −Sr
NA kB
), X =ln (∆x

σ ), x is the Monte Carlo shift parameter and Sr is residual
entropy.

4.5 Estimating the errors

Some of the problems that are the causes of errors in calculations of the residual
entropy with the simulation program, are:

• poor sampling of the con�guration space (small trial-move distance, or in other words
high density of the system).

• It should be noted that the number of equilibration cycles has to be high enough.
The number of cycles required for equilibration is not known beforehand and it should
ideally be determined by test runs (e.g, by plotting density vs. cycle number) [77].

• su�cient numbers of production cycles.

• The volume, pressure and temperature must be chosen in a single-phase state.

• The choice of cut-o� distance has an important e�ect on the estimated error. More-
over, if the cut-o� distance exceeds half of the box size, the error increases.

4.6 Calculation of the residual entropy and estimation of
relative errors

In this section, the results of the residual entropy from Equations (4.1) and (4.2) are
compared with the results of simulation program. The relative errors is also estimated.
The achieved results of Equations (4.1) and (4.2) are already presented in Tables 4.20
and 4.21, and Figures 4.42 and 4.43.
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Figure 4.42: Entropy vs. MC shift parameter for hard sphere argon, T=400 K, acceptance
ratio 50%.
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Figure 4.43: Entropy vs. MC shift parameter for Mie-potential argon dimers (10/6),
T=200 K, acceptance ratio 50%.
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Table 4.20: Estimates of the relative error for hard-sphere argon, T=400 K, 500 particles,
acceptance ratio 50%.

Vm(cm3/mol) ∆x (Å) ln(Sr/Sr
ref)

(from simulation
program)

ln(Sr/Sr
ref)

(from Equation
(4.1))

relative
error in %

50 2.234700 2.400705 2.397578 0.001303
60 3.289410 2.172442 2.173946 0.000692
70 5.674070 1.984928 1.973536 0.005739
75 8.594130 1.906757 1.911153 0.002305

Table 4.21: Estimates of the relative error for Mie-potential argon dimers (10/6), T=200
K, 500 particles, acceptance ratio 50%.

Vm(cm3/mol) ∆x (Å) ln(Sr/Sr
ref)

(from simulation
program)

ln(Sr/Sr
ref)

(from Equation
(4.1))

relative
error in %

50 0.216313 4.727951 3.568644 0.686297
100 0.619039 2.474837 2.404331 0.068078
200 0.921472 1.927562 2.052780 0.133395
300 5.255410 1.126608 1.088754 0.037146

4.7 Calculation of the residual entropy with different meth-
ods

4.7.1 Lennard-Jones fluids

In sections 2.9.5 and 2.9.6 two alternative methods were presented for the calcula-
tion of the residual entropy of Lennard-Jones �uids. In the current and the next sections
we try to compare the results of these methods (Scheraga theory (section 2.9.5) and
calculation the residual entropy from the radial distribution function (section 2.9.6))
with results obtained with di�erent equations of state and results of the simulation.

In order to calculate residual entropy according to the Scheraga theory, simulations
were run with di�erent acceptance ratios ranging from 2% to 95%. The results are
presented in Figures 4.44 and 4.45. The calculation of residual entropy, according to
Scheraga theory, is presented in section 2.9.5, page 57, in detail.

To estimate the entropy from radial distribution function (RDF), �rst of all, we
need to calculate the RDF. For this, we used an algorithm that was presented by
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Frenkel and Smidt to write a program [30]. The algorithm is presented in Chapter 6
on page 119. The results of the RDF program are presented on the page 124 and 125.

The details of simulations in this section were presented before in sections 4.1 to
4.2.9. The comparison between the results of ThermoC, simulation program, Scheraga
theory, and Equation (4.2) for the residual entropy of Lennard-Jones argon in di�erent
temperatures and volumes are presented in Tables 4.23 and 4.25.
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Figure 4.44: Acceptance ratio vs. MC shift parameter for argon, T = 200 K,
V =50 cm3mol−1, 500 molecules.

According to Tables 4.23 and 4.25, it can be seen that the results of the simulation
program are in very good agreement with Equation (4.2), KN-LJ and mBW2-nLJ
equation of states. However, the residual entropy values calculated with the Scheraga
theory do not agree with the other methods.

The low accuracy of Scheraga theory for calculation of residual entropy, is due to
the di�culties to obtain residual entropy for acceptance ratios between 0% to 5% and
95% to 100% .

On the other hand, it is not always possible to obtain the best equation to ex-
plain the connection between acceptance average and Monte Carlo shift parameter
in Lennard-Jones �uids. These two points impress the accuracies of Scheraga theory
results and cause high inaccuracies of results.

According to Tables 4.23 to 4.25, the results of Equation (4.2), which gives us the
residual entropy of Lennard-Jones �uids, are in very good agreement with the results
of various equations of state (KN-LJ, CSJS-LJ, mBW1-LJ and mBW2-nLJ). This fact
con�rms the high accuracy of this equation. According to the results, the accuracy of
Equation (4.2) is more than 92% compared to ThermoC.
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Table 4.22: Results of the simulation program for argon, T=200 K, V =50 cm3mol−1, 500
molecules.

Thermodynamic
properties

simulation results

Z 0.72115
Ur -3.09208×103 J/mol
µ -1.37630×103 J/mol
∆x 8.67082e-01 Å

Table 4.23: Calculation of the residual entropy with different EOS for argon, T=200 K,
V =50 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
KN-LJ -10.010

CSJS-LJ -9.9836
mBW1-LJ -9.7793

mBW2-nLJ -10.0085
Simulation program -10.8973

Scheraga theory -10.2381
Equation (4.2) -8.22507

estimate from radial distribution
function

-7.77701

Table 4.24: Results of the simulation program for argon, T=300 K, V =100 cm3mol−1, 500
molecules.

Thermodynamic
properties

simulation results

Z 0.95587
Ur -1.45578×103 J/mol
µ -3.28170×103 J/mol
∆x 2.57859 Å
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Figure 4.45: Acceptance ratio vs. MC shift parameter for argon, T=300 K,
V =100 cm3mol−1, 500 molecules.

Table 4.25: Calculation of the residual entropy with different EOS for argon, T=300 K,
V =100 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
KN-LJ -3.9847

CSJS-LJ -3.9782
mBW1-LJ -3.9574

mBW2-nLJ -4.0499
Simulation program -4.1256

Scheraga theory -5.8611
Equation (4.2) -3.9545

estimate from radial distribution
function

-2.93523
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4.7.2 Hard-sphere fluids

To assess the accuracy of Equation (4.1) for the hard-sphere �uid, the results for
the this equation were compared with simulation results, calculation of entropy from
radial distribution function and Scheraga theory.

The details of simulation are shown in section 4.3 page 102. The results for the
residual entropy, calculated from radial distribution function, simulation and Equation
(4.1) for di�erent volumes of hard-sphere argon are presented in Tables 4.26 to 4.31.

The radial distribution functions (RDF) of hard-spheres are calculated from the
Percus-Yevick method, which was presented before in section 2.8.2 on page 49. The
results of these calculations are presented on pages 126 to 131.
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Figure 4.46: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =45 cm3mol−1, 500 molecules.

Table 4.26: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =45 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
Simulation program -12.6567

Equation (4.1) -11.77089
Scheraga theory -8.81749

estimate from radial
distribution function

-9.74095
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Figure 4.47: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =50 cm3mol−1, 500 molecules.

Table 4.27: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =50 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
Simulation program -11.00425

Equation (4.1) -10.8548
Scheraga theory -12.7779

estimate from radial
distribution function

-14.22126
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Figure 4.48: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =55 cm3mol−1, 500 molecules.

Table 4.28: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =55 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
Simulation program -9.7853

Equation (4.1) -9.85524
Scheraga theory -9.181425

estimate from radial
distribution function

-10.67601
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Figure 4.49: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =60 cm3mol−1, 500 molecules.

Table 4.29: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =60 cm3mol−1, 500 molecules.

Theory Sr (J/mol K)
Simulation program -8.7769

Equation (4.1) -8.8198
Scheraga theory -9.6343

estimate from radial
distribution function

-8.2386
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Figure 4.50: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =65cm3mol−1, 500 molecules.

Table 4.30: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =65 cm3mol−1, 500 molecules.

Theory Sr(J/mol K)
Simulation program -7.9659

Equation (4.1) -7.9308
Scheraga theory -8.838335

estimate from radial
distribution function

-6.470996
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Figure 4.51: Acceptance ratio vs. MC shift parameter for hard-sphere argon, T=200 K,
V =70 cm3mol−1, 500 molecules.

Table 4.31: Calculation of the residual entropy with different EOS for hard-sphere argon,
T=200 K, V =70 cm3mol−1, 500 molecules.

Theory Sr (J/mol K)
Simulation program -7.2752

Equation (4.1) -7.2075
Scheraga theory -6.40174

estimate entropy from radial
distribution function

-5.1855
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Conclusion

The relation between the residual entropy and the Monte Carlo shift parameter
in Lennard-Jones �uids at high densities was studied. A new computer program was
developed to perform canonical ensemble (N , V , T ) and isothermal-isobaric ensemble
(N , p , T ) Monte Carlo simulations.

The Widom test particle insertion method was applied to calculate the chemical
potentials, while the intermolecular interactions were modeled as two-body interactions
to decrease the computing time. Moreover, periodic boundary conditions (PBC) were
applied to avoid problems with boundary and �nite-size e�ects.

The calculations were performed on 1-center, dimers, Mie-potential argon, linear
and nonlinear Lennard-Jones trimers of argon, a dimer (CH3CH3) and hard-sphere
argon at higher density.

Our research shows that percolation can occur during the simulation. Its starting
point depends on the number of sites in Lennard-Jones �uids as well as the temperature.

According to the results, under the same conditions, the percolation occurs at low
densities where the number of sites is increased. In other words, the percolation occurs
in Lennard-Jones argon trimers at lower reduced densities than in 1-center Lennard-
Jones argon and Lennard-Jones argon dimers at same temperature and number of
particles. In addition, a comparison of the results for linear Lennard-Jones argon
trimers and nonlinear Lennard-Jones argon trimers shows that the percolation occurs
in nonlinear Lennard-Jones argon trimers at lower densities than for linear Lennard-
Jones argon trimers.

The temperature is another factor that in�uences the starting point of percolation,
i. e. by increasing the temperature, the percolation is shifted to higher densities.

Our simulations show that the connection between residual entropy and the Monte
Carlo shift parameter in Lennard-Jones �uid can be described with a second degree
equation at temperatures above the critical point. It was also shown that this equation
is not valid for hard-sphere �uids.

We propose another second degree equation for hard-sphere �uids to calculate the
residual entropy with the help of a Monte Carlo shift parameter.

At last, our results from the simulation program and our second degree equation are
compared with the other methods (Scheraga theory and estimate entropy from radial
distribution function) and the results of di�erent equation of states. It is shown that
the relative error to calculation of residual entropy from Monte Carlo shift parameter
with this new second degree equation is about 5%, which shows the high accuracy of
this method.
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Algorithm 1: Algorithm to calculation of radial distribution function. Taken from
[30].

subroutine gr(switch) radial distribution function
switch=0 initialization,
=1 sample, and =2 results

if(switch.eq.0) then initialization
ngr=0
delg=box/(2*nhis) bin size
do i=0, nhis nhis total number of bins

g(i)=0
enddo

else if (switch.eq.1) then sample
ngr=ngr+1
do i=1,npart-1

do j=i+1,npart loop over all pairs
xr=x(i)-x(j)
xr=xr-box*nint(xr/box) periodic boundary conditions
r=sqrt(xr**2)

if (x.lt.box/2) then only within half the box length
ig=int(r/delg)
g(ig)=g(ig)+2 contribution for particle i and j

endif
enddo

enddo
else if (switch.eq.2) then determine g (r )

do i=1, nhis
r=delg*(i+0.5) distance r
vb=((i+1)**3-i**3)*delg**3 volume between bin i+1 and i
nid=(4/3)*pi*vb*rho number of ideal gas part. in vb
g(i)=g(i)/(ngr*npart*nid) normalize g (r )

enddo
endif
return
end
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Table 6.1: Vapour-pressure curve of argon from mBWR2-nLJ equation of state.

T (K) p (MPa) Vml(cm3/mol) Vmg(cm3/mol) dHm(J /mol)
55.00 1.04817e-03 2.86509e+01 4.35772e+05 1.88740e+03
60.00 1.83862e-03 2.78031e+01 2.70896e+05 4.15091e+03
65.00 3.90628e-03 2.73373e+01 1.37980e+05 5.51981e+03
70.00 8.59005e-03 2.72183e+01 6.74292e+04 6.29497e+03
75.00 1.81816e-02 2.73941e+01 3.40094e+04 6.65756e+03
80.00 3.59566e-02 2.77882e+01 1.82405e+04 6.75394e+03
85.00 6.60236e-02 2.83257e+01 1.04701e+04 6.70091e+03
90.00 1.13124e-01 2.89527e+01 6.40083e+03 6.57453e+03
95.00 1.82475e-01 2.96394e+01 4.13132e+03 6.41482e+03

100.00 2.79666e-01 3.03747e+01 2.78970e+03 6.23871e+03
105.00 4.10571e-01 3.11602e+01 1.95488e+03 6.05087e+03
110.00 5.81291e-01 3.20057e+01 1.41193e+03 5.85020e+03
115.00 7.98095e-01 3.29277e+01 1.04508e+03 5.63292e+03
120.00 1.06739e+00 3.39495e+01 7.88889e+02 5.39386e+03
125.00 1.39569e+00 3.51042e+01 6.04693e+02 5.12662e+03
130.00 1.78969e+00 3.64407e+01 4.68721e+02 4.82305e+03
135.00 2.25630e+00 3.80361e+01 3.65799e+02 4.47185e+03
140.00 2.80287e+00 4.00255e+01 2.85855e+02 4.05539e+03
145.00 3.43754e+00 4.26818e+01 2.21812e+02 3.54170e+03
150.00 4.17008e+00 4.67079e+01 1.67996e+02 2.85792e+03
155.00 5.01377e+00 5.52877e+01 1.16863e+02 1.72817e+03
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Table 6.2: Acceptance ratio vs. residual entropy for argon, T=200 K, Vm=50 cm3mol−1,
500 molecules.

average acceptance shift parameter (Å)
0.00 1.75441
0.05 1.75295
0.10 1.73839
0.15 1.37087
0.20 1.22201
0.22 1.19210
0.25 1.15265
0.26 1.14055
0.28 1.11780
0.30 1.09782
0.32 1.07386
0.34 1.05268
0.35 1.04138
0.36 1.03046
0.38 1.00848
0.40 0.98504
0.41 0.97500
0.43 0.95187
0.45 0.92917
0.50 0.86708
0.55 0.80457
0.60 0.73400
0.65 0.66470
0.70 0.58826
0.75 0.51058
0.80 0.42160
0.85 0.32739



123

Table 6.3: Acceptance ratio vs. residual entropy for argon, T=300 K, Vm=100 cm3mol−1,
500 molecules.

average acceptance shift parameter (Å)
0.00 7.43342
0.05 7.42646
0.15 7.44014
0.20 7.43059
0.22 7.43527
0.25 7.43273
0.26 7.43314
0.28 7.42887
0.30 7.43286
0.32 7.41710
0.35 6.48966
0.36 5.65498
0.38 4.65097
0.40 3.99152
0.41 3.73372
0.43 3.34246
0.45 3.04891
0.50 2.57859
0.55 2.25255
0.60 1.96793
0.65 1.70541
0.70 1.46176
0.75 1.22313
0.80 0.99372
0.85 0.75540
0.90 0.51628
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Table 6.4: Radial distribution function of argon, T=200 K, Vm=50 cm3mol−1, 500
molecules.
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Table 6.5: Radial distribution function of argon, T=300 K, Vm=100 cm3mol−1, 500
molecules.
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Table 6.6: Radial distribution function of a hard-sphere fluid in the Percus-Yevick approx-
imation, T=200K, Vm=45 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0492
1.1 1.0403
1.2 1.0321
1.3 1.0247
1.4 1.0182
1.5 1.0125
1.6 1.0078
1.7 1.0041
1.8 1.0014
1.9 0.9999
2.0 0.9995
2.1 0.9997
2.2 0.9998
2.3 0.9999
2.4 0.9999
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.7: Radial distribution function of a hard-sphere fluid in the Percus-Yevick approx-
imation, T=200K, Vm=50 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0441
1.1 1.0362
1.2 1.0289
1.3 1.0223
1.4 1.0164
1.5 1.0113
1.6 1.0071
1.7 1.0037
1.8 1.0014
1.9 0.9999
2.0 0.9996
2.1 0.9997
2.2 0.9998
2.3 0.9990
2.4 1.0000
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.8: Radial distribution function of a hard-sphere fluid in the Percus-Yevick approx-
imation, T=200K, Vm=55 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0400
1.1 1.0329
1.2 1.0262
1.3 1.0202
1.4 1.0149
1.5 1.0103
1.6 1.0065
1.7 1.0035
1.8 1.0013
1.9 1.0000
2.0 0.9996
2.1 0.9998
2.2 0.9999
2.3 0.9999
2.4 1.0000
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.9: Radial distribution function of a hard-sphere fluid in the Percus-Yevick approx-
imation, T=200K, Vm=60 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0366
1.1 1.0301
1.2 1.0240
1.3 1.0186
1.4 1.0137
1.5 1.0095
1.6 1.0060
1.7 1.0032
1.8 1.0012
1.9 1.0000
2.0 0.9997
2.1 0.9998
2.2 0.9999
2.3 0.9999
2.4 1.0000
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.10: Radial distribution function of a hard-sphere fluid in the Percus-Yevick ap-
proximation, T=200K, Vm=65 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0337
1.1 1.0227
1.2 1.0222
1.3 1.0171
1.4 1.0127
1.5 1.0088
1.6 1.0056
1.7 1.0030
1.8 1.0012
1.9 1.0001
2.0 0.9997
2.1 0.9998
2.2 0.9999
2.3 0.9999
2.4 1.0000
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.11: Radial distribution function of a hard-sphere fluid in the Percus-Yevick ap-
proximation, T=200K, Vm=70 cm3mol−1, 500 molecules.

r (Å) g (r )
1.0 1.0313
1.1 1.0257
1.2 1.0206
1.3 1.0159
1.4 1.0118
1.5 1.0082
1.6 1.0052
1.7 1.0028
1.8 1.0011
1.9 1.0001
2.0 0.9998
2.1 0.9999
2.2 0.9999
2.3 0.9999
2.4 1.0000
2.5 1.0000
2.6 1.0000
2.7 1.0000
2.8 1.0000
2.9 1.0000
3.0 1.0000
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Table 6.12: The results of MC++ simulation program for argon, T=200 K, 500 particles,
acceptance ration 50%.

V(cm3/mol) µr(J/mol) Ur(J/mol K) Z ∆x (Å) Sr(J/mol K)

5.00000e+01 -1.53824e+03 -3.09733e+03 0.72229 0.86640 -10.1043
6.00000e+01 -1.56630e+03 -2.60493e+03 0.63389 1.78060 -8.23698
7.00000e+01 -1.48082e+03 -2.25563e+03 0.62337 1.29217 -7.00535
8.00000e+01 -1.44544e+03 -1.99472e+03 0.62875 1.50365 -5.83297
9.00000e+01 -1.28668e+03 -1.78386e+03 0.64659 1.51210 -20.2560
1.00000e+02 -1.21035e+03 -1.61515e+03 0.66377 1.98964 -4.81941
1.10000e+02 -1.13893e+03 -1.47993e+03 0.68215 2.24506 -4.34760
1.20000e+02 -1.10517e+03 -1.36231e+03 0.70190 2.54542 -3.76410
1.30000e+02 -1.00561e+03 -1.26382e+03 0.71118 2.88513 -3.69229
1.40000e+02 -9.75017e+02 -1.17721e+03 0.73081 3.29612 -3.24900
1.50000e+02 -9.10018e+02 -1.10388e+03 0.74303 3.81927 -3.10570
1.60000e+02 -8.50972e+02 -1.03588e+03 0.75534 4.53683 -2.95864
1.70000e+02 -8.29578e+02 -9.78244e+02 0.76822 5.41672 -2.67034
1.80000e+02 -7.62059e+02 -9.26589e+02 0.77488 6.63814 -2.69429
1.90000e+02 -7.58404e+02 -8.77937e+02 0.78646 8.55248 -2.37303
2.00000e+02 -7.08778e+02 -8.35334e+02 0.79427 11.5604 -2.34325
2.10000e+02 -6.77741e+02 -7.97377e+02 0.80207 13.8122 -2.24377
2.20000e+02 -6.63403e+02 -7.61825e+02 0.81034 14.6729 -2.06894
2.30000e+02 -6.16041e+02 -7.29946e+02 0.81736 15.3075 -2.08799
2.40000e+02 -5.81970e+02 -7.00787e+02 0.82539 15.8575 -2.04579
2.50000e+02 -5.83617e+02 -6.74257e+02 0.83074 16.3943 -1.86042
2.70000e+02 -5.34646e+02 -6.23710e+02 0.84137 17.4404 -1.76416
2.80000e+02 -5.21362e+02 -6.02320e+02 0.84718 17.9128 -1.67558
2.90000e+02 -5.03224e+02 -5.82248e+02 0.85168 18.4030 -1.62850
3.10000e+02 -4.76715e+02 -5.45426e+02 0.85921 19.3385 -1.51408
3.20000e+02 -4.61726e+02 -5.28895e+02 0.86236 19.7739 -1.48183
3.30000e+02 -4.50303e+02 -5.12609e+02 0.86710 20.2193 -1.41641
3.40000e+02 -4.40167e+02 -4.97974e+02 0.87132 20.6555 -1.35888
3.50000e+02 -4.23879e+02 -4.84268e+02 0.87371 21.0732 -1.35196
3.60000e+02 -4.16374e+02 -4.70304e+02 0.87781 21.4916 -1.28553
3.70000e+02 -3.92966e+02 -4.57617e+02 0.88093 21.8922 -1.31320
3.80000e+02 -4.00053e+02 -4.46490e+02 0.88207 22.2873 -1.21027
3.90000e+02 -3.84384e+02 -4.34697e+02 0.88708 22.6771 -1.19038
4.00000e+02 -3.79409e+02 -4.24250e+02 0.88817 23.5090 -1.15395
4.10000e+02 -3.55600e+02 -4.14614e+02 0.89206 23.4298 -1.19248
4.20000e+02 -3.62337e+02 -4.04596e+02 0.89380 23.7957 -1.09420
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V(cm3/mol) µ(J/mol) Ur (J/mol K) Z ∆x (Å) Sr(J/mol K)

4.30000e+02 -3.55991e+02 -3.95094e+02 0.89619 24.1523 -1.05859
4.40000e+02 -3.34571e+02 -3.85967e+02 0.89862 24.5262 -1.09985
4.50000e+02 -3.53554e+02 -3.77368e+02 0.90029 24.8745 -0.98058
4.60000e+02 -3.27121e+02 -3.69972e+02 0.90162 25.2013 -1.03218
4.70000e+02 -3.24097e+02 -3.61568e+02 0.90478 25.5532 -0.97901
4.80000e+02 -3.03718e+02 -3.54685e+02 0.90594 25.8829 -1.03684
4.90000e+02 -3.05721e+02 -3.46810e+02 0.90744 26.2192 -0.97498
5.00000e+02 -3.01264e+02 -3.40353e+02 0.90908 26.5329 -0.95135
5.10000e+02 -2.92577e+02 -3.33966e+02 0.91190 26.8504 -0.93940
5.20000e+02 -2.94875e+02 -3.27283e+02 0.91247 27.1571 -0.88974
5.30000e+02 -2.84895e+02 -3.21032e+02 0.91447 27.4935 -0.89178
5.40000e+02 -2.90760e+02 -3.16086e+02 0.91523 27.7738 -2.83140
5.50000e+02 -2.80301e+02 -3.09637e+02 0.91744 28.0900 -0.83308
5.60000e+02 -2.67002e+02 -3.04394e+02 0.91869 28.3735 -0.86130
5.70000e+02 -2.75386e+02 -2.99136e+02 0.92035 28.6658 -0.78096
5.80000e+02 -2.67475e+02 -2.93550e+02 0.92191 28.9659 -0.77961
5.90000e+02 -2.71924e+02 -2.88901e+02 0.92314 29.5531 -0.72389
6.00000e+02 -2.60219e+02 -2.83954e+02 0.92435 29.5389 -0.74762
6.10000e+02 -2.45421e+02 -2.79625e+02 0.92584 29.8040 -0.78750
6.20000e+02 -2.48140e+02 -2.75068e+02 0.92661 20.0820 -0.74480
6.30000e+02 -2.40448e+02 -2.70742e+02 0.92712 30.3521 -0.75738
6.40000e+02 -2.51260e+02 -2.66281e+02 0.92870 30.6223 -0.66789
6.50000e+02 -2.36666e+02 -2.62633e+02 0.92979 30.8861 -0.71356
6.60000e+02 -2.43516e+02 -2.58671e+02 0.93036 31.1450 -0.65476
6.70000e+02 -2.30836e+02 -2.54766e+02 0.93101 31.4107 -0.69326
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