
 

 

Regulation+of+the+mammalian+
mitochondrial+unfolded+protein+response+

!

!

I+n+a+u+g+u+r+a+l+5+D+i+s+s+e+r+t+a+t+i+o+n+

!

zur!

Erlangung!des!Doktorgrades!

der!Mathematisch6Naturwissenschaftlichen!Fakultät!

der!Universität!zu!Köln!

!

!

 

 

 

 

 

vorgelegt!von!

Dominic!Seiferling!

aus!Heidelberg!

!

!

Köln!2015!

 



 

!

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter:!! Prof.+Dr.+Aleksandra+Trifunovic!

! ! ! ! ! ! ! Prof.+Dr.+Elena+I.+Rugarli+

!

Tag!der!mündlichen!Prüfung:!18.01.2016!!



 

To!my!family,!friends!and!Lisi+

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



 IV 

Table+of+contents+

List+of+figures+.............................................................................+VII!

List+of+tables+...............................................................................+IX!

Abbreviations+..............................................................................+X!

Abstract+.....................................................................................+XV!

Zusammenfassung+....................................................................+XVI!

1! Introduction+.............................................................................+1!
1.1! Mitochondrial+structure+and+function+.......................................................+1!
1.2! Mitochondrial+genetics+and+disease+.........................................................+3!
1.3! Mitochondrial+translation+........................................................................+6!
1.3.1! The!mitochondrial!translational!machinery!......................................................!6!
1.3.2! The!mitochondrial!translation!process!..............................................................!8!
1.3.3! Aminoacyl6tRNA!synthetases!and!mitochondrial!disorders!............................!10!

1.4! Mitochondrial+protein+homeostasis+........................................................+13!
1.4.1! Protein!import!.................................................................................................!14!
1.4.2! Protein!folding!in!the!matrix!............................................................................!16!
1.4.3! Protein!degradation!.........................................................................................!20!

1.5! The+mitochondrial+unfolded+protein+response+(UPRmt)+...........................+24!
1.5.1! The!UPRmt!in!C.!elegans!...................................................................................!25!
1.5.2! The!UPRmt!in!mammals!....................................................................................!28!
1.5.3! Crosstalk!of!the!UPRmt!with!other!stress!responses!........................................!30!

1.6! Objectives+..............................................................................................+32!

2! Material+&+Methods+...............................................................+33!
2.1! Cell+culture+.............................................................................................+33!
2.1.1! Cell!lines!...........................................................................................................!33!
2.1.2! Culture!and!maintenance!of!mammalian!cells!................................................!34!
2.1.3! Liposome6mediated!transient!transfection!.....................................................!35!
2.1.4! Cell!harvest!and!lysis!........................................................................................!35!
2.1.5! RNA!interference!.............................................................................................!36!
2.1.6! Colocalization!imaging!.....................................................................................!37!

2.2! Mouse+experiments+...............................................................................+37!
2.2.1! Animal!care!......................................................................................................!37!



 V 

2.2.2! Mouse!handling!and!breeding!.........................................................................!38!
2.2.3! Experimental!mouse!models!...........................................................................!38!

2.3! Molecular+biology+..................................................................................+38!
2.3.1! Isolation!of!genomic!DNA!from!mice!tissues!...................................................!38!
2.3.2! Isolation!of!total!RNA!from!mice!tissues!.........................................................!39!
2.3.3! Quantification!of!Nucleic!Acids!........................................................................!39!
2.3.4! Polymerase!chain!reaction!(PCR)!.....................................................................!39!
2.3.5! Reverse!transcriptase!PCR!(gene!expression!analysis)!....................................!42!
2.3.6! DNA!gel!extraction!and!PCR!clean!up!..............................................................!44!
2.3.7! Restriction!hydrolysis!of!DNA!..........................................................................!44!
2.3.8! Ligation!of!DNA!................................................................................................!45!
2.3.9! Transformation!into!E.!coli!..............................................................................!45!
2.3.10!Preparative!and!analytical!scale!plasmid!DNA!preparation!.............................!46!
2.3.11!Agarose!gel!electrophoresis!............................................................................!46!
2.3.12!DNA!sequencing!..............................................................................................!47!

2.4! Biochemistry+..........................................................................................+48!
2.4.1! Protein!isolation!from!tissues!..........................................................................!48!
2.4.2! Isolation!of!mitochondria!from!heart!..............................................................!48!
2.4.3! SDS6PAGE!.........................................................................................................!49!
2.4.4! BN6PAGE!and!in6gel!activity!of!respiratory!chain!complexes!I!and!IV!..............!49!
2.4.5! Western!blot!analysis!......................................................................................!50!
2.4.6! Oxygen!consumption!rates!..............................................................................!52!
2.4.7! In#organello!translation!...................................................................................!53!

2.5! Histological+analysis+...............................................................................+53!
2.5.1! Cryostat!sections!.............................................................................................!53!
2.5.2! COX6SDH!staining!.............................................................................................!54!
2.5.3! Masson’s!trichrome!staining!...........................................................................!54!

2.6! Label5free+quantification+of+the+mitochondrial+proteome+.......................+54!
2.7! Densitometry+analysis+............................................................................+56!
2.8! Statistical+analysis+..................................................................................+56!
2.9! Chemicals+and+biological+material+..........................................................+57!

3! Results+...................................................................................+63!
3.1! Modelling+UPRmt+signalling+in#vitro+.........................................................+63!
3.1.1! HSP60!and!mtHSP70!are!not!suitable!as!markers!for!UPRmt!induction!in#vitro!63!
3.1.2! Downregulation!of!UPRmt!signalling!................................................................!71!

3.1.2.1! Physiological!oxygen!conditions!do!not!influence!the!HSP60!&!mtHSP70!levels!.!71!

3.1.2.2! Knockdown!of!ATF5!mildly!reduces!UPRmt!markers!..............................................!72!

3.1.3! ATF5!is!localized!to!the!nucleus!under!regular!cell!culture!conditions!............!74!



 VI 

3.1.4! Knockdown!of!HSP60!and!mtHSP70!affect!the!levels!of!mitochondrial!matrix!

proteases!.....................................................................................................................!77!
3.1.5! UPRmt!markers!depend!on!LONP1,!a!novel!UPRmt!marker!itself!......................!79!

3.2! Modelling+UPRmt+signalling+in#vivo+..........................................................+81!
3.2.1! Generation!of!tissue!specific!DARS2/CLPP!double!deficient!mice!...................!81!
3.2.2! Phenotypic!changes!caused!by!DARS2!deficiency!can!be!alleviated!by!the!loss!

of!CLPP!........................................................................................................................!83!
3.2.3! Mitochondrial!and!cellular!stress!responses!do!not!depend!on!CLPP!under!

proteotoxic!stress!........................................................................................................!86!
3.2.4! Loss!of!CLPP!in!DARS26deficient!heart!mitochondria!increases!mitochondrial!

respiratory!activity!......................................................................................................!90!
3.2.5! Label6free!mass!spectrometric!analysis!of!the!mitochondrial!proteome!reveals!

a!partial!correction!of!the!DARS2!phenotype!upon!loss!of!CLPP!................................!93!
3.2.6! Dysregulation!of!mitochondrial!protein!synthesis!is!partially!rescued!by!the!

loss!of!CLPP!.................................................................................................................!99!

4! Discussion+............................................................................+103!
4.1! UPRmt+signalling+is+constitutively+active+under+regular+cell+culture+
conditions+....................................................................................................+104!
4.1.1! HSP60!and!mtHSP70!levels!cannot!be!further!elevated!through!stress!

induction!in#vitro!.......................................................................................................!104!
4.1.2! Low!oxygen!conditions!cannot!reduce!the!levels!of!HSP60!and!mtHSP70!....!107!

4.2! ATF5+is+implicated+into+mitochondrial+stress+signalling+.........................+108!
4.3! LONP1+displays+and+regulates+UPRmt+signalling+.....................................+111!
4.4! Mammalian+CLPP+regulates+mitochondrial+translation,+but+not+the+
mitochondrial+unfolded+protein+response+in#vivo+..........................................+113!

Bibliography+.............................................................................+119!

Acknowledgements+..................................................................+150!

Erklärung+..................................................................................+152!

Teilpublikationen+......................................................................+153!

Curriculum+Vitae+.......................................................................+154!
 
 
 
 



 VII 

List+of+figures+

Figure!1.1:!The!mitochondrial!translational!machinery.!.......................................................!8!

Figure!1.2:!The!mitochondrial!import!machinery.!..............................................................!15!

Figure!1.3:!UPRmt!signalling!in!C.#elegans.!...........................................................................!27!

Figure!3.1:!Mutant!mitochondrial!proteins!do!not!affect!HSP60!and!mtHSP70!levels.!......!64!

Figure!3.2:!UPRmt6inducing!agents!do!not!affect!HSP60!and!mtHSP70!levels.!....................!66!

Figure!3.3:!Sequence!of!the!mouse!Hspd1/Hspe1!promoter!region.!..................................!68!

Figure!3.4:!Sequence!of!the!mouse!Hspa9!promoter!region.!.............................................!69!

Figure!3.5:!Hspd1!and!Hspa9!reporters!are!active!under!regular!cell!culture!conditions.!..!70!

Figure!3.6:!Physiological!oxygen!conditions!do!not!reduce!HSP60!&!mtHSP70!levels.!.......!72!

Figure!3.7:!Tree!panel!of!the!phylogenetic!relationship!among!the!ATF4/5!family.!...........!73!

Figure!3.8:!Knockdown!of!ATF5!reduces!UPRmt!marker!levels.!...........................................!74!

Figure!3.9:!ATF5!is!localized!to!the!nucleus!under!regular!cell!culture!conditions.!............!76!

Figure! 3.10:! Knockdown! of! HSP60! and! mtHSP70! affect! the! levels! of! mitochondrial!

proteases.!....................................................................................................................!78!

Figure!3.11:!LONP1,!a!novel!UPRmt!marker,!regulates!other!UPRmt!markers.!.....................!80!

Figure!3.12:!Targeting!strategy!for!conditional!disruption!of!the!Clpp!gene.!.....................!81!

Figure!3.13:!Breeding!scheme!to!generate!WT,!ClpP!KO,!Dars2!KO!and!DKO!animals.!......!82!

Figure!3.14:!Lifespan!analysis!and!phenotypic!characterization!of!DKO!mice.!...................!84!

Figure! 3.15:! Molecular! characterization! and! immunohistochemical! analysis! of! mutant!

hearts.!.........................................................................................................................!85!

Figure!3.16:!UPRmt!markers!do!not!depend!on!CLPP!under!proteotoxic!stress.!.................!87!

Figure!3.17:!Cellular!stress!markers!do!not!depend!on!CLPP.!.............................................!89!

Figure! 3.18:! Lack! of! CLPP! in! DARS26deficienct! hearts! corrects! mitochondrial! OXPHOS!

complex!levels.!............................................................................................................!91!

Figure!3.19:! Lack!of!CLPP! in!DARS26deficienct!hearts! increases!mitochondrial! respiratory!

activity.!........................................................................................................................!92!

Figure!3.20:!Quantitative!assessment!of!proteomes!of!purified!mitochondria!(1).!...........!95!

Figure!3.21:!Quantitative!assessment!of!proteomes!of!purified!mitochondria!(2).!...........!96!



 VIII 

Figure!3.22:!Quantitative!assessment!of!proteomes!of!purified!mitochondria!(3).!...........!98!

Figure!3.23:!Dysregulation!of!mitochondrial!translation!can!be!partially!rescued!be!the!loss!

of!CLPP!(1).!................................................................................................................!101!

Figure!3.24:!Dysregulation!of!mitochondrial!translation!can!be!partially!rescued!be!the!loss!

of!CLPP!(2).!................................................................................................................!102!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IX 

List+of+tables+

Table!1.1:!Pathologies!associated!with!mutations!in!mtARS.!.............................................!12!

Table!2.1:!Cell!lines!used!in!this!study!.................................................................................!33!

Table!2.2:!siRNA!sequences!................................................................................................!36!

Table!2.3:!Genotyping!PCR!primer!sequences!....................................................................!41!

Table!2.4:!Cloning!PCR!primer!sequences!...........................................................................!42!

Table!2.5:!Primers!used!for!SYBR!Green!quantitative!real6time!PCR!..................................!43!

Table!2.6:!Taqman!probes!used!for!quantitative!real6time!PCR!.........................................!44!

Table!2.8:!Cell!culture!.........................................................................................................!57!

Table!2.9:!Enzymes,!Markers!and!kits!.................................................................................!57!

Table!2.10:!Chemicals!.........................................................................................................!58!

Table!2.11:!Buffers!and!solutions!........................................................................................!60!

Table!3.1:!Mitoprot!II!analysis!of!ATF5,!ATFS61!and!XBP1!...................................................!75!

Table!3.2:!Relative!protein!changes!determined!by!quantitative!proteomics.!...................!97!

Table!3.3:!Proteins!rescued!in!Dars2!KO!mitochondria!due!to!the!lack!of!CLPP.!................!98!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 X 

Abbreviations+

3’   three prime end of DNA sequence 
35S-met  radioactive methionine isotope 

5’   five prime end of DNA sequence 

A   adenosine 

ADP  adenosine diphosphate 

AMA  antimycin A 

AmpR ampicillin resistance gene 

APS  ammonium persulfate 

ATF  activating transcription factor 

ATFS-1 activating transcription factor associated with stress 

ATP   adenosine triphosphate 

BN  blue native 

bp   base pairs 

BSA  bovine serum albumine 

C   cytosine 

C/EBP CCAAT-enhancer-binding protein 

CAM  chloramphenicol 

CAT   chloramphenicol acetyltransferase 

CCD  charge-coupled device 

cDNA  complementary DNA 

CHOP C/EBP-homologous protein 

Ci   Curie 

Ckmm muscle creatinine kinase 

CLPP caseinolytic mitochondrial matrix peptidase proteolytic subunit  

CMV  promoters for cytomegalovirus 

COX  cytochrome c oxidase 

Cre   bacteriophage P1 derived site-specific recombinase  

CTRL control 

Cyt   cytochrome  

Da   Dalton 



 XI 

DAB   diaminobenzidine tetrahydrochloride 

DAPI  4,6-diamidino-2-phenylindole 

DARS2  mitochondrial aspartyl-tRNA synthetase 

DKO  double knockout 

DMSO dimethyl sulfoxide 

DNA  desoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP  desoxyribonucleotide-triphosphate 

DOX  doxycycline 

DPE  downstream promoter element 

dsRNA double stranded ribonucleic acid 

DTT  dithiothreitol 

dTTP  deoxythymidine triphosphate 

E-box enhancer box 

ECL   enhanced chemoluminiscence 

EDTA  ethylendiamine tetraacetate 

eGFP  enhanced green fluorescent protein 

eIF2α α subunit of the eukaryotic initiation factor 2 

ER  endoplasmatic reticulum 

ETC   electron transport chain 

EtOH  ethanol 

FADH2 flavin adenine dinucleotide hydrate 

FBS   fetal bovine serum 

FCCP  carbonylcyanide p-trifluoromethoxyphenylhydrazone 

FGF21  fibroblast growth factor 21 

Flp  flippase 

Frt  flippase recognition target 

g   gram 

G   guanine 

GTP  Deoxyguanosine triphosphate 

H2O   water 

HCl   hydrochloric acid 



 XII 

HEPES  N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid 

HPRT hypoxanthine-guanine phosphoribosyltransferase  

HSE   heat shock element 

HSP60 60 kDa heat shock protein, mitochondrial 

HSR  heat shock response 

i.e.   id est 

IMM  inner mitochondrial membrane 

IMS  inter membrane space 

ISR   integrated stress response 

k   kilo 

KanR  kanamycin resistance gene 

kb  kilo bases 

KCl   potassium chloride 

KO  knockout 

l   liter 

L   loxP flanked 

lacZ   gene encoding β-galactosidase 

LB  lysogeny broth 

LC-MS liquid chromatography–mass spectrometry   

LUC   luciferase 

m   milli 

M   molar 

MEF   mouse embryonic fibroblasts 

MgCl2  magnesium chloride 

MIA  mitochondrial intermembrane space import and assembly protein 

MIB   mitoisolation buffer 

min   minute 

mRNA  messenger RNA 

mtARS  mitochondrial aminoacyl-tRNA synthetase 

mtDNA mitochondrial DNA 

mtEFG mitochondrial elogantion factor G 

mtHSP70  heat shock 70 kDa protein, mitochondrial 



 XIII 

mtIF  mitochondrial initiation factor 

MTS  mitochondrial targeted sequence 

MURE mitochondrial unfolded protein response element 

n  nano 

NaCl   sodium chloride 

NADH β-Nicotinamide adenine dinucleotide, reduced 

NaF   sodium fluoride 

NAH2PO4  monosodium phosphate 

NaHCO3  sodium bicarbonate 

NaOH  sodium hydroxide 

nDNA nuclear DNA 

NeoR  neomycin resistance gene 

NLS  nuclear localization signal 

NTB   nitrotetrazolium blue 

OD  optical density 

OMM outer mitochondrial membrane 

ORF   open reading frame 

OXPHOS oxidative phosphorylation 

p  pico 

PAGE  polyacrylamide gel electrophoresis 

PAM  presequence translocase-associated motor 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PFA  paraformaldehyde   

Pi   phosphates 

PKR  protein kinase R 

PQ   paraquat 

PuroR    puromycin resistance gene 

PVDF polyvinylidene fluoride 

qPCR quantitative polymerase chain reaction 

RNA   ribonucleic acid 

RNAi RNA interference 



 XIV 

RNase  ribonuclease 

ROS  reactiove oxygen species 

ROT   rotenone 

rpm  revolutions per minute 

rRNA ribosomal RNA 

SAM  sorting and assembly machinery 

SDH   succinate dehydrogenase 

SDHA succinate dehydrogenase 

SDS   sodiumdodecylsulfate 

S.E.M.  standard error of the mean 

siRNA small interfering RNA 

T   transgene 

TBE   tris-borate-EDTA buffer 

TBS  tris buffered saline 

TCA  tricarboxylic acid cycle 

TEMED tetramethylethylenediamine 

TFAM mitochondrial transcription factor A 

TIM  translocase of the inner membrane 

TOM  translocase of the outer membrane 

Tris   2-amino-2-(hydroxymethyl)-1,3-propandiole  

tRNA transfer RNA 

TSS   transcription start sites 

TWEEN  polyoxethylene-sorbitan-monolaureate 

U   units 

UPRER ER unfolded protein response 

UPRmt mitochondrial unfolded protein response 

V   volt 

v/v   volume per volume 

w/v   weight per volume 

WT  wild type 

ΔOTC  truncated ornithine transcarbamylase 

μ  micro 



 XV 

Abstract+
The molecular mechanisms of the mammalian mitochondrial unfolded protein 

response (UPRmt) are largely unknown. In this study, in vitro as well as in vivo models were 

used to assess the role of the mitochondrial chaperones and proteases as well as potential 

signalling factors in the context of the mammalian UPRmt.  

The mitochondrial chaperones HSP60 and mtHSP70 were found to be highly 

expressed under regular cell culture conditions in various cell types and not amenable to 

further induction by mutant mitochondrial proteins or toxins compromising mitochondrial 

function. It is argued that highly proliferative cells constantly express mitochondrial 

chaperones at high levels as they were found to orchestrate a broad cellular survival 

programme. The data in this study collectively demonstrate that HSP60 and mtHSP70 are 

not suitable as a readout for UPRmt induction in vitro. Further, this study provides the first 

direct evidence that levels of the transcription factor ATF5 correlate with the expression of 

known UPRmt markers in vitro and in vivo upon mitochondrial stress. In addition, it is 

shown that ATF5 is able to translocate to mitochondria in vivo, whereas it is found in the 

nucleus in stressed cells in vitro. Intriguingly, it was also found that the matrix protease 

LONP1 not only responds to mitochondrial unfolded protein stress, but also seems to 

regulate the mammalian UPRmt signalling. Thus, the conclusion can be drawn that both 

ATF5 and LONP1 are implicated in the UPRmt in mammals. 

The matrix protease CLPP exerts a key role in the induction of the UPRmt signalling 

in C. elegans. To better understand the role of CLPP in UPRmt signalling in vivo, CLPP was 

depleted in hearts from DARS2-deficient animals that show a strong upregulation of UPRmt 

signalling due to disrupted mitochondrial translation. Notably, it could be demonstrated that 

CLPP is not required, nor does it activate UPRmt signalling in vivo. Surprisingly, the 

pathological changes and diminished respiration due to DARS2 deficiency can be mitigated 

by the loss of CLPP by partially rescuing mitochondrial translation. Therefore, evidence is 

provided that on the one hand questions our current understanding of the UPRmt signalling 

in mammals, but on the other hand identifies CLPP as novel modulator of mitochondrial 

translation, which might be used for the development of new therapeutic approaches 

against translational defects in mitochondrial disease.  



 XVI 

Zusammenfassung+
 Die molekularen Mechanismen der ungefalteten Proteinantwort in Mitochondrien 

(UPRmt) sind in Säugetieren weitestgehend unerforscht. Um den UPRmt Signalweg besser 

zu verstehen, wurde in dieser Studie, unter Zuhilfenahme von in vitro und in vivo 

Modellen, zum ersten Mal die Rolle mitochondrialer Chaperone und Proteasen sowie 

potenzieller Signalfaktoren näher charakterisiert. 

 Es konnte gezeigt werden, dass die mitochondrialen Chaperone HSP60 und mtHSP70 

unter regulären Zellkulturbedingungen in mehreren Zelllinien äußerst hoch exprimiert 

werden. Weder die Expression mutierter mitochondrialer Proteine, noch die Behandlung 

mit verschiedenen Chemikalien konnten den Gehalt von HSP60 und mtHSP70 weiter 

erhöhen. Hieraus kann gefolgert werden, dass proliferierende Zellen eine kontinuierlich 

hoch regulierte mitochondriale Chaperon-Expression besitzen, was damit erklärt werden 

könnte, dass diese während der Aktivierung von zellulären Überlebensprogrammen eine 

wichtige Rolle spielen. Infolgedessen sind die mitochondrialen Chaperone HSP60 und 

mtHSP70 nicht geeignet um eine UPRmt Aktivierung in Zellkultur zu bemessen. Ferner 

konnte diese Studie den ersten unmittelbaren Nachweis erbringen, dass während 

mitochondrialem Stress der zelluläre Gehalt des Transkriptionsfaktors ATF5 mit der 

Expression von bereits bekannten UPRmt Markern sowohl in vitro als auch in vivo 

korreliert. Darüber hinaus kann sich ATF5 in vivo in die Mitochondrien verlagern, 

wohingegen es sich unter Stress in vitro im Zellkern befindet. Interessanterweise konnte 

außerdem gezeigt werden, dass die Matrixprotease LONP1 im Laufe von ungefaltetem 

Proteinstress aktiviert wird, als auch selbst einen potentiellen Regulator des UPRmt 

Signalwegs in Säugern darstellt. Demnach kann geschlussfolgert werden, dass sowohl 

ATF5 als auch LONP1 eine Rolle in der UPRmt von Säugetieren spielen. 

 Die Matrixprotease CLPP spielt eine entscheidende Rolle bei der Auslösung des UPRmt 

Signalwegs in C. elegans. Um die Funktion von CLPP im UPRmt Signalweg in Säugern 

näher zu charakterisieren, wurde CLPP in DARS2-defizienten Mäusen deletiert. DARS2-

defiziente Mäuse selbst weisen, bedingt durch einen starken mitochondrialen 

Translationsdefekt, eine massive Hochregulierung des UPRmt Signalwegs auf. 

Bemerkenswerterweise konnte in dieser Studie gezeigt werden, dass CLPP weder für die 



 XVII 

UPRmt benötigt wird, noch als Aktivator der UPRmt in Säugern fungiert. Darüber hinaus 

verbessert der Verlust von CLPP sowohl die ausgeprägte Pathologie als auch die 

verminderte Zellatmungsleistung von DARS2-defizienten Tieren. Der mildere Phänotyp 

hat seine Ursache dabei in einer partiell verbesserten Translation in doppel-defizienten 

Tieren. Diese Ergebnisse stellen zwar das momentane Verständnis des UPRmt Signalwegs 

in Säugern in Frage, allerdings identifizieren sie auch gleichermaßen eine gänzlich neue 

Rolle für CLPP in der Modulation der mitochondrialen Translation. Dies wiederum 

eröffnet neue Wege für die Entwicklung von Therapien zur Verbesserung von 

translationalen Defekten in mitochondrialen Krankheiten. 
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1 Introduction+

Roughly 2 billion years ago, the ambient oxygen level dramatically increased in the 

earth’s atmosphere (Kurland and Andersson, 2000). Most likely, this environmental trauma 

marked a turning point in the evolution of life. Organisms were forced to adapt to the new 

environment and the fittest survived by natural selection. It is believed that at the time a so-

called symbiogenesis (Greek: syn “together”; bios “living”; genesis “origin or birth”) took 

place, where a α-proteobacterium invaded a single cell organism, this time not for the sake 

of killing, but rather to start a long lasting cooperation. This phenomenon is known as 

“endosymbiotic theory” that suggests how eukaryotic cells originated from prokaryotes 

(Margulis, 1970). Mitochondria are thought to be derived from such ancestral bacterial 

endosymbionts, introducing an oxidative respiratory system into the host cell (Gray et al., 

1999).  

1.1 Mitochondrial+structure+and+function+

Mitochondria (Greek: mitos “thread”; chondros “granules”) were first discovered in 

the 19th century, as small structures found in the cytosol of almost every eukaryote (Ernster 

and Schatz, 1981). Mitochondria are enclosed by two single membranes, the outer (OMM) 

and inner mitochondrial membrane (IMM) that create two distinct compartments within the 
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organelle, the intermembrane space (IMS) and the matrix (Alberts et al., 1983). 

Mitochondria are dynamic organelles that form a network among the cell comprising 

approx. 20% of its volume (McBride et al., 2006). Mitochondria contain their own circular 

DNA (mtDNA) in the matrix that comprises a great similarity to the genome of the 

bacterium Rickettsia prowazekii (Andersson et al., 1998). During the course of evolution 

the symbiont genome has been strongly reduced in size and genes were transferred to the 

host nucleus through a process called endosymbiotic gene transfer (Timmis et al., 2004). 

Mitochondria harbour their own separate replication, transcription and protein-synthesis 

machinery that maintains and produces polypetides encoded by the mtDNA. The 

mitochondrial proteome comprises roughly 1500 proteins of which 99% are nuclear-

encoded mitochondrial proteins that need to be actively imported into mitochondria, sorted 

to the right compartment, properly folded and assembled to complexes (Neupert and 

Herrmann, 2007). The dual origin of the mitochondrial proteome gave rise to a highly 

complex process that coordinates respiratory complexes to be assembled in the correct time 

and right stoichiometric (Kurland and Andersson, 2000). 

The hallmark ability of mitochondria is the use of oxygen to efficiently produce 

ATP, the cell’s major energy source, via oxidative phosphorylation (OXPHOS). This 

process enables the generation of roughly 15 times more ATP from glucose compared to 

glycolysis under anaerobic conditions. Energy can be derived from the breakdown of 

carbohydrates via glycolysis and tricarboxylic acid (TCA) cycle, fatty acid oxidation, 

pyrimidine biosynthesis or choline and amino acid oxidation that all fuel the OXPHOS 

machinery. Mitochondria are not only the “powerhouses of the cell”, but also carry out 

various other processes such as iron-sulfur (Fe-S) cluster biogenesis, programmed cell 

death (apoptosis), steroid synthesis, calcium homeostasis and reactive oxygen species 

(ROS) formation (Lill and Muhlenhoff, 2008; Miller, 2013; Nunnari and Suomalainen, 

2012). 

During oxidative phosphorylation electrons are passed along a series of complexes 

that is called the electron transport chain (ETC) (Hatefi, 1985). The ETC is embedded in a 

specialized invaginated region of the IMM, termed cristae, that greatly increase the surface 

area, allowing a greater capacity for ATP generation. The ETC consists of four respiratory 

enzyme complexes (complex I - NADH:ubiquinone oxidoreductase; complex II - Succinate 
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dehydrogenase; complex III - Ubiquinol cytochrome-c reductase; and complex IV - 

cytochrome c oxidase) that are organized in a specific order within the IMM that enables a 

flux of electrons between complexes. In the beginning, the electrons are donated via redox 

reactions from NADH (via complex I) or FADH2 (via complex II) into the electron 

transport chain and terminally accepted by oxygen (via complex IV). The flow of electrons 

through these complexes releases energy in three steps that is transiently stored as an 

electrochemical proton gradient across the IMM. The resulting chemiosmosis drives the 

ATP synthase (F1F0 ATPase or Complex V) that produces ATP from ADP and phosphate. 

This utilizes the potential energy of the concentration gradient formed by the amount of 

protons that flow back through the ATP synthase into the matrix. Reduced oxygen, 

generated through acceptance of electrons via complex IV, is terminally joined to protons 

coming though complex V to build up H2O. The electrochemical gradient is a crucial 

attribute of mitochondria that drives also other important processes, such as organelle 

biogenesis via protein import and calcium buffering (Neupert and Brunner, 2002; Williams 

et al., 2013). Reduced membrane potential is accounting for mitochondrial dysfunction that 

in turn activates stress pathways (Martindale and Holbrook, 2002; Zamzami et al., 1995). 

1.2 Mitochondrial+genetics+and+disease+

Mitochondria possess their own genome, termed mtDNA, that is a small, circular, 

double-stranded DNA molecule of approx. 16 kb in size. mtDNA harbours genes for 13 

proteins that are essential core components of the mitochondrial respiratory complexes I, 

III, IV and V. This vital information allows mitochondria together with nuclear-encoded 

OXPHOS subunits to build up the respiratory chain that is essential for mitochondrial 

activity. In addition, 2 ribosomal and 22 transfer RNAs essential for mitochondrial 

translation are also encoded by mtDNA. All together, mtDNA contains 37 genes in 

vertebrates that encompass nearly 93% of its total sequence, which makes the genetic 

information very dense throughout the whole molecule (Wallace, 2007). The residual 7% 

are non-coding sequences that harbour regulatory elements, such as the D-loop region 

(approx. 1000 bp) comprising the heavy and light strand promoter (HSP and LSP, 
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respectively) and the origin of replication for the heavy strand (OH), whereas the origin for 

replication for the light strand (OL) is located in a distant position relative to the D-loop.  

Single polycistronic transcripts are made from these promoters that were further 

processed to generate mature rRNAs, tRNAs, and mRNAs. These transcripts also serve as 

primers for the replication of one of the strands. Mammalian mtDNA replication is divided 

into two phases (i) the leading-strand synthesis and (ii) the lagging-strand synthesis 

(Clayton, 2003). First, the leading-strand synthesis starts at OH and runs unidirectionally 

copying roughly two-third of the mtDNA. As a result, the origin of replication of the 

lagging-strand (OL) gets exposed as single strand, allowing through a specific secondary 

structure the initiation of the lagging-strand synthesis. Eventually, both strands are joined 

together after completed synthesis and ligation generating a closed circular mtDNA 

molecule. 

Mitochondrial DNA is organized in nucleoid structures that have roughly 100 nm in 

diameter and contain 1-2 copies of mtDNA in average (Kukat et al., 2011). It has been 

proposed that nucleoids are complex structures, containing a core, where replication and 

transcription takes place as well as peripheral layers that harbour mitochondrial translation 

and OXPHOS complex assembly (Bogenhagen et al., 2008). In contrast to nuclear DNA, 

the mtDNA is present in multiple copies that range from a few in sperm to greater then 

100000 in mature oocytes (DeLuca and O'Farrell, 2012; Wai et al., 2010). Interestingly, a 

third of the total DNA content in oocytes is mtDNA. Unlike nuclear DNA that is carefully 

copied chromosome-by-chromosome, mtDNA is replicated and turned over at random, to a 

rate independent of the cell cycle (Bogenhagen and Clayton, 1977). 

In vertebrates, mtDNA is almost completely maternally inherited, whereas the 

paternal mtDNA is degraded after fertilization and never transmitted to the offspring (Al 

Rawi et al., 2011). Due to the fact that children inherit their entire mtDNA from their 

mothers, mtDNA mutations and therefore mtDNA disorders, are transmitted maternally. 

Mitochondria contain between 2 to 10 mtDNA molecules that might vary in sequence 

therefore causing a mixed pool of mtDNAs within the cell, termed heteroplasmy (Larsson, 

2010). In mtDNA diseases, some of the mtDNAs are wild type, while some carry 

mutations. The load of mutations determines the manifestation as well as the outcome of a 
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possible mitochondrial disease (Tuppen et al., 2010). Since mitochondria are randomly 

distributed during cell division, leading to an incidental sort among daughter cells, it is 

important for the cell that the proportion of mitochondria carrying wild type and mutant 

mtDNA does not exceed a certain threshold (Stewart and Chinnery, 2015). Once a certain 

threshold is exceeded it is very likely that cells develop a mitochondrial dysfunction. In 

contrast, homoplasmy describes a cell that has only identical mtDNA copies, however, 

copies might be all normal or all mutated.  

Mutations in mtDNA can cause defects in OXPHOS that might lead to 

mitochondrial disorders (Holt et al., 1988; McFarland et al., 2004; Wallace et al., 1988). 

Over the years more than 250 pathogenic mtDNA mutations have been described that cause 

a broad clinical spectrum of mitochondrial disorders (Tuppen et al., 2010). Further, it has 

been shown that not only mtDNA mutations, but also a decrease in the mtDNA copy 

number can trigger mitochondrial malfunction (Clay Montier et al., 2009). In addition to 

mitochondrial disorders, mtDNA mutations are connected with various other pathologies 

such as cancer, diabetes, cardiovascular disorders, neurodegeneration, as well as age-

associated mitochondrial dysfunction (Wallace, 2005). During ageing is has been observed 

that a mosaic distribution of cells develop mitochondrial respiratory chain dysfunction due 

to accumulation of point mutations or deletions in their mtDNA (Larsson, 2010).  

In the past two decades this pattern was not only found in many human tissues, but 

also in mouse models with enhanced rates of mtDNA mutations (Trifunovic et al., 2004) or 

deletions (Tyynismaa et al., 2005) that also displayed hallmarks of ageing. The proposed 

source of mutations in mtDNA occurring during ageing was mainly accounted to the 

mitochondrial free radical theory of ageing that argues that ageing results from the damage 

generated by reactive oxygen species (ROS) (Beckman and Ames, 1998; Harman, 1956). It 

was believed that ROS are only toxic molecules that exclusively cause oxidative stress, 

directly damaging sensitive and biologically significant targets. However, ROS generation 

was also interpreted as beneficial event since it is also believed that they are involved in 

cell signalling by acting as redox signals through a process known as mitohormesis, and 

their detrimental consequences are possibly just side effects of compromised signalling 

(Yun and Finkel, 2014). In contrast to the mitochondrial free radical theory of ageing, low 
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levels of ROS promote health and ultimately extend lifespan (Ristow and Schmeisser, 

2014). 

1.3 Mitochondrial+translation+

Mitochondria possess their own protein synthesis machinery that allows the 

generation of the 13 OXPHOS subunits encoded by the mtDNA. Although this process was 

discovered as early as 1958 (McLean et al., 1958), the exact mechanisms as well as all the 

components contributing to mitochondrial translation are still not completely known. The 

main obstacle in order to decipher this process is the lack of a proper in vitro translation 

system that allows correct initiation and synthesis of mtDNA-encoded proteins. It should be 

noted that mitochondrial translation resembles its prokaryotic counterpart more closely than 

its eukaryotic. However, it still presents specific characteristics that are present in neither 

case. Firstly, the mitochondrial genetic code exhibits several distinct differences from the 

universal code (Osawa et al., 1992). For instance, UAG serves as stop codon. Furthermore, 

UGA is used as codon for tryptophan rather than a stop codon. In addition, AUA encodes 

for methionine instead of isoleucine. Secondly, mitochondrial mRNAs contain very few 

5’untranslated nucleotides and no cap structure (Grohmann et al., 1978; Montoya et al., 

1981). Thirdly, the decoding system in mitochondria is simplified using only 22 tRNAs 

instead of 31 suggested by Crick’s wobble hypothesis (Barrell et al., 1980). Fourthly, 

mammalian mitochondria only use a single tRNAMet for initiation as well as elongation in 

contrast to the prokaryotic and eukaryotic cytoplasmic translation that need two specialized 

species (Mikelsaar, 1983). 

1.3.1 The+mitochondrial+translational+machinery+

Mitochondrial translation requires roughly 150 different proteins that are involved 

in the protein synthesis of the 13 OXPHOS subunits. All components of the mitochondrial 

translational machinery, apart from 2 rRNAs and 22 tRNA, are encoded by the nucleus and 

therefore need to be imported from the cytosol. The basic mitochondrial translational 

machinery consists of: (i) several initiation, elongation and termination factors; (ii) 
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mitochondrial ribosomal proteins (MRPs) and assembly factors; (iii) aminoacyl-tRNA 

synthetases, tRNA-modifying enzymes and rRNA methylating enzymes.  

The mammalian mitoribosome exhibits a sedimentation coefficient of 55S and 

comprises large subunit (39S) and a small subunit (28S), containing a 16S rRNA and a 28S 

rRNA, respectively (Amunts et al., 2015; Greber et al., 2015). The bacterial 5S rRNA is 

replaced by structural similar tRNA in mammals, such as tRNAVal (human) or tRNAPhe 

(porcine) (Brown et al., 2014; Greber et al., 2014). In contrast to bacteria, mammalian 

mitoribosomes have shorter rRNAs and the overall rRNA content is much lower. 

Nevertheless, mitoribosomes compensate the reduction in rRNA levels with a 

correspondingly higher protein content (Amunts et al., 2015; Greber et al., 2015). Overall 

the mitoribosome contains 80 ribosomal proteins, of which 36 are specific to mitochondria 

(Amunts et al., 2015). Moreover, mitoribosomal proteins are roughly 60% larger than their 

corresponding bacterial counterparts (Brown et al., 2014). The higher protein mass leads to 

a strikingly different morphology compared to the bacterial 70S ribosome (Sharma et al., 

2009; Yusupov et al., 2001). Numerous mitoribosomal proteins cover almost completely 

the surface, shielding the rRNA core from reactive oxygen species (Amunts et al., 2015). 

Since all proteins translated in mitochondria are hydrophobic, integral membrane proteins, 

mitoribosomes are permanently tethered to the IMM via the 39S subunit (Amunts et al., 

2015). 

Mammalian mitochondria contain 22 tRNAs corresponding to each amino acid 

apart from serine and leucine that possess two tRNAs each. Mitochondrial tRNAs have 

distict features that separate them from their canonical counterparts. In general, 

mitochondrial tRNAs are shorter and often miss key nucleotides that are important for the 

L-shaped tertiary structure of bacterial and eukaryotic cytoplasmic tRNAs. It has been also 

observed that mitochondrial tRNAs lack conserved tertiary interactions, particulary long-

range interactions of D- and T-arms, which result in a weaker three-dimensional structure 

(Helm et al., 1999; Steinberg et al., 1994; Zagryadskaya et al., 2004). Although direct 

structural evidence is missing, cryo-EM revealed that tRNAs bound to the P-site basically 

reconstitutes the L-shape with a breach elbow region (Sharma et al., 2003). The structure of 

this tRNA roughly resembles the one of canonical tRNAs, however, some regions remain 

strikingly different.   
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Although, many of the core components necessary for mitochondrial translation 

have been discovered, it is very likely that many more factors play a role, directly or 

indirectly, in mitochondrial translation, which still remain to be identified 

Figure+1.1:+The+mitochondrial+translational+machinery.++
Nuclear6encoded!mitoribosomal!proteins!are!imported!into!mitochondria!and!combined!with!mitochondrial6

encoded! rRNA! to!assemble! the! functional!mitoribosome.!mtDNA6encoded!mRNAs!get! translated!by! these!

mitoribosomes! with! the! help! of! tRNAs! also! encoded! by! the!mtDNA.! All! other! enzymes! required! for! the!

mitochondrial! translational! machinery! are! nuclear6encoded! and! get! imported! from! the! cytosol! (e.g.!

aminoacyl6tRNA! synthetases).!Orange! icons!depict! nuclear6encoded!protein,!whereas!blue! lines! represent!

mtDNA6encoded!transcription!products.!Reprinted!with!modifications!from!(Jacobs!and!Turnbull,!2005).+

1.3.2 The+mitochondrial+translation+process+

Mitochondrial translation is split into three main phases: initiation, elongation, 

termination as well as a final ribosome recycling step that all require specific sets of 

supporting factors (Christian and Spremulli, 2012). Our knowledge about the basic 
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mechanism of mitochondrial protein synthesis is derived from studies in bacteria and some 

studies in mitochondria. Nevertheless, the exact mechanism how the protein synthesis starts 

is poorly understood to date. Mitochondrial mRNAs miss important features that regularly 

facilitate ribosome binding or guide the ribosome to the start codon, such as a Shine-

Dalgarno sequence or a 7-methylguanlyate cap structure, which are found in prokaryotes or 

in the eukaryotic cytoplasm, respectively (Temperley et al., 2010). It is believed that the 

28S subunit contains a special mRNA entry gate that detects the unstructured 5’sequences 

of mitotochondrial mRNAs leading to the initiation of translation (Jones et al., 2008; 

Sharma et al., 2003).  

The current model proposes that the mitochondrial initiation factor mtIF3 catalyses 

the dissociation of the mitoribosome into the small and the large subunit, that allows a 

sequence-independent binding of the mRNA to the 28S small subunit, while preventing 

premature binding of the 39S large subunit (Christian and Spremulli, 2009; Koc and 

Spremulli, 2002). Moreover, mtIF3 induced complex formation is also thought to correctly 

position the start codon to the peptidyl (P) site of the mitoribosome, creating access for 

fMet-tRNAMet. Subsequently, a second initiation factor mtIF2 mediates binding of fMet-

tRNAMet to the 28S small subunit that is considerably enhanced by GTP (Liao and 

Spremulli, 1990; Ma and Spremulli, 1996). Recombining both the large and the small 

mitoribosome subunits leads to dissociation of mtIF3 (Haque et al., 2008). In addition, the 

39S large subunit promotes GTP hydrolysis on mtIF2, enabling the release from the 

complex and the completion of the initiation phase.  

As a next step, the elongation phase is carried out by mitochondrial specific 

elongation factors such as mtEFTu, mtEFTs, and mtEFG (Smits et al., 2010). First, the 

elongation factor mtEFTu associates with GTP and an aminoacylated tRNA to form a 

ternary complex. In this step, mtEFTu protects the tRNA from hydrolysis as well as 

transports it to the acceptor (A) site of the 28S small subunit facilitating the codon-

anticodon recognition. During this step GTP is hydrolyzed on mtEFTu that triggers the 

release of mtEFTu-GDP, which is subsequently recycled by mtEFTs to active mtEFTu-

GTP. After the release, the aminoacyl-tRNA translocates into the peptidyl (P) site of the 

mitoribosome, enabling the peptide bond formation, thereby adding one amino acid to the 

growing peptide. The elongation factor mtEFG1 catalyses the translocation step that moves 
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the tRNA from P to exit (E) site of the mitoribosome, whereby the mRNA is advanced by 

one codon. It is not clear by now, whether the mitoribosome contains an actual E site, since 

the bovine mitoribosomal E site deviates markedly from corresponding bacterial and 

eukaryotic cytosolic sites. This might also suggests that the E site is either very weak or 

even absent in the mitoribosome (Mears et al., 2002; Mears et al., 2006). Finally, the tRNA 

dissociates from the mitoribosome, enabling the re-start of a new elongation cycle. To date 

not all factors implicated in the elongation process are known, as well as the functional role 

of mtEFG2 is still missing. 

Once a stop codon (UAA, UAG, AGA or AGG) enters the A site, the termination 

phase initiates (Chrzanowska-Lightowlers et al., 2011). The stop codon gets recognized by 

the mitochondrial release factor (mtRF1 or mtRF1a), which causes the polypeptide that is 

connected to the final tRNA in the P site to be released. Subsequently, the nascent 

polypeptide dissociates from the tRNA through hydrolyzation of the connecting ester bond, 

which is catalysed by GTP. Once the newly synthetized protein has been released, the 

mitochondrial ribosome recycling factors (mtRRF and possibly mtEFG2) facilitate the 

dissociation of mitoribosomal subunits, tRNA and mRNA, enabling their recycling for a 

new round of protein synthesis (Bertram et al., 2001; Marintchev and Wagner, 2004). 

1.3.3 Aminoacyl5tRNA+synthetases+and+mitochondrial+disorders+

Aminoacylation of mitochondrial tRNAs is catalysed by mitochondrial aminoacyl-

tRNA synthetases (mtARSs) that are key enzymes for the translation of the genetic 

information. Therefore, the fidelity of translation depends on the accurate recognition of 

amino acids and tRNA by these enzymes. mtARSs catalyse the ligation of a specific amino 

acid to their cognate tRNA, using the same two-step reaction as cytosolic tRNAs, where 

they form an intermediate aminoacyl-adenylate through activation with ATP followed by 

the transfer of the aminoacyl group to the tRNA (Ibba and Soll, 2000).  

Mitochondrial translation uses 20 different ARSs that are all encoded in the nucleus, 

thus being translated in the cytosol and imported into mitochondria. Three mtARSs 

(GARS, KARS, and QARS) also act in the cytosol, making them essential for both 
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mitochondrial and cytoplasmic translation (Antonellis and Green, 2008). It should be noted 

that mtARSs seem to have a reduced catalytic efficiency for tRNA aminoacetylation by 

contrast to prokaryotic and cytosolic homologues, as demonstrated for various mtARSs 

(Bonnefond et al., 2005; Bullard et al., 2000; Sanni et al., 1991). The glutaminyl-tRNA 

synthetase is absent in mitochondria as well as many bacteria. However, an indirect 

transamidation pathway generates glutaminyl-tRNAGln, where tRNAGln first gets charged by 

EARS2 (aminoacylates both tRNAGlu/Gln) with glutamate and converted to glutaminyl-

tRNAGln by tRNA-dependent aminotransferases (Nagao et al., 2009). Thus, 19 different 

mtARS generate 20 charged tRNA, while 3 mtARS have double localization. Some 

mtARSs are capable to aminoacylate both mitochondrial as well as prokaryotic tRNAs, but 

prokaryotic ARSs fail to do so in mammalian mitochondria (Fender et al., 2006; 

Kumazawa et al., 1991). This illustrates the high sequence and structural relaxation of mt-

tRNAs that is likely a result of the high divergence of mtDNA during evolution (Fender et 

al., 2012).  

The general structure of ARSs comprises a catalytic domain, an anticodon binding 

domain, and sometimes an editing domain that removes mischarged amino acids, 

circumventing the incorporation of a wrong amino acid during translation (Beebe et al., 

2008). Further, there are two distinct classes of AARSs with respect to their catalytic site: 

class I enzymes that are comprised of five parallel β-strands connected through α-helices 

and the two signature motifs; class II enzymes that mainly consist of a sheet of six 

antiparallel β-strands and three motifs of less-conserved sequences (Bonnefond et al., 

2005). Interestingly, it has been shown that ARSs also have acquired additional functions 

during evolution. Cytosolic ARSs are associated with extracellular and intracellular events 

such as apoptosis, synthesis of rRNA, or tRNA export to the cytosol (Guo and Schimmel, 

2013). Mitochondrial ARSs were also found having additional roles; for instance, the 

mitochondrial lysyl-tRNA synthetase in yeast has a role in both aminoacetylation and 

import of cytosolic tRNALys into mitochondria (Smirnova et al., 2012). 

Mutations in ARSs are found to cause mitochondrial protein synthesis deficiencies 

that have been associated with diverse clinical pathologies (Table 1.1) (Antonellis and 

Green, 2008). The clinical presentations are mainly characterized with an early onset and a 

transmission via autosomal recessive traits. Interestingly, the high tissue specificity of 
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mtARSs disorders is difficult to explain by their role in mitochondrial translation since all 

ARSs are ubiquitous enzymes working in the same pathway. However, it is possible that 

this very strict genotype-phenotype correlation found for most of the genes is due to still 

unknown functions of mitochondrial ARSs. It has been suggested that loss-of-function 

mutations might result in some residual enzymatic activity that cause alterations in different 

tissues during development (Konovalova and Tyynismaa, 2013). For instance, mutations in 

synthetases for glycine (GARS) and lysine (KARS) lead to peripheral neural pathologies, 

like autosomal dominant forms of Charcot–Marie–Tooth disease type 2D (CMT2D) and a 

dominant intermediate Charcot–Marie–Tooth disease (DI-CMT), respectively (Antonellis 

and Green, 2008). Since both GARS and KARS are acting not only in the cytosol but also 

in mitochondria the question of the primary cause for the disease is still matter of 

investigation. The first mitochondrial ARSs found to cause a disease was a mutation in 

DARS2 (aspartate-tRNA-synthetase) that leads to leukoencephalopathy with brain stem 

and spinal cord involvement and lactate elevation (LBSL) (Scheper et al., 2007). Since the 

first discovery of diseases caused by AARS2 mutations numerous other AARS2 

pathologies have been described (Table 1.1).  

Table+1.1:+Pathologies+associated+with+mutations+in+mtARS.+

Gene+ Clinical+picture+ Organ+ Onset+ Reference+

DARS2+ Cerebellar!ataxia,!spasticity,!
dorsal!column!dysfunction,!
cognitive!impairment!

Brain! Childhood/Adulthood! (Scheper!et!al.,!2007)!

RARS2+ Encephalopathy!with!lethargia,!
hypotonia,!epilepsy,!and!
microcephaly!

Brain! Perinatal! (Edvardson!et!al.,!
2007)!

YARS2+ Myopathy,!lactic!acidosis,!and!
sideroblastic!anemia!(MLASA)!

Muscle! Childhood! (Riley!et!al.,!2010)!

SARS2+ Hyperuricemia,!pulmonary!
hypertension,!renal!failure,!and!
alkalosis!(HUPRA)!

Kidney! Perinatal! (Belostotsky!et!al.,!
2011)!

AARS2+ Hypertrophic!cardiomyopathy,!
delayed!motor!development,!
cerebellar!ataxia!

Heart! Childhood! (Gotz!et!al.,!2011)!

MARS2+ Autosomal!recessive!spastic!
ataxia!

Brain! Childhood/Adulthood! (Bayat!et!al.,!2012)!

HARS2+ Sensorineural!hearing!loss!and!
ovarian!dysgenesis!(Perrault!
syndrome)!

Cochlea,!
ovary!

Childhood/Adulthood! (Pierce!et!al.,!2011)!

LARS2+ Sensorineural!hearing!loss!and!
ovarian!dysgenesis!(Perrault!
syndrome)!

Cochlea,!
ovary!

Childhood/Adulthood! (Pierce!et!al.,!2013)!
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FARS2+ Epileptic!encephalopathy,!liver!
disease,!and!lactic!acidosis!

Brain,!
muscle!

Perinatal! (Elo!et!al.,!2012)!

EARS2+ Global!developmental!delay!or!
arrest,!epilepsy,!dystonia,!
spasticity,!and!high!lactate!

Brain! Early!childhood! (Steenweg!et!al.,!2012)!

VARS2+ Psychomotor!delay,!seizures,!
facial!dysmorphism,!lactic!
acidosis!

Brain! Childhood! (Pierce!et!al.,!2013)!

TARS2+ Psychomotor!delay,!hypotonia! Brain! Perinatal/early!
childhood!

(Pierce!et!al.,!2013)!

GARS+ Charcot6Marie6Tooth!(CMT)!
disease!2D!or!distal!hereditary!
motor!neuropathy!VA!

Nerve! Childhood/Adulthood! (Seburn!et!al.,!2006)!

KARS+ Autosomal!recessive!CMT!
(intermediate,!B)!

Nerve! Childhood/Adulthood! (Santos6Cortez!et!al.,!
2013)!

 

1.4 Mitochondrial+protein+homeostasis+

The life of proteins can be influenced by a broad variety of environmental changes, 

disease and ageing. A functional cellular machinery, which constantly monitors and 

supports protein folding and protein degradation, is essential to maintain a functional 

protein homeostasis. On the one hand, chaperones facilitate a functional protein-folding 

environment for newly synthetized as well as misfolded proteins; on the other hand 

proteases clear out the overload of irreversibly misfolded or misassembled proteins (Bukau 

et al., 2006; Sauer and Baker, 2011). Since the majority of the mitochondrial proteome 

(around 1500 proteins) is encoded in the nucleus and subsequently produced in the cytosol, 

a massive influx of proteins has to be timed and proteins have to be specifically distributed 

in each compartment exhibiting its right folding (Neupert and Herrmann, 2007). Thus, a 

major challenge in mitochondria occurs during import, where proteins have to be unfolded, 

cleaved, properly refolded and often assembled with proteins encoded by the mitochondrial 

DNA (mtDNA). In addition, transient stresses, such as infections or reactive oxygen 

species (ROS), or chronic stresses, such as diseases or age-related pathologies, perturb the 

protein homeostasis in mitochondria (Galluzzi et al., 2012). 
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1.4.1 Protein+import+

The majority of mitochondrial proteins are imported by the use of a cleavable 

amino-terminal presequence that is also known as mitochondrial targeting sequence (MTS) 

(Chacinska et al., 2009). The MTS forms positively charged amphipathic α-helices that 

interact with the translocase of the outer mitochondrial membrane (TOM complex) (Abe et 

al., 2000). After translocation through the TOM complex the preproteins are passed to the 

presequence translocase of the inner mitochondrial membrane (TIM23 complex). The 

membrane potential across the inner mitochondrial membrane (ΔΨ, negatively charged on 

the matrix side) drives the translocation of the positively charged preproteins into the 

matrix (Martin et al., 1991). Finally, the presequence-targeted protein is pulled inside the 

matrix via the concerted action of the presequence translocase-associated motor (PAM) 

together with the ATP-dependent heatshock protein 70 (mtHsp70) (Chacinska et al., 2005; 

Mapa et al., 2010). The MTS is generally cleaved by the mitochondrial processing 

peptidase (MPP).  

Proteins targeted to the inner membrane contain a hydrophobic part c-terminal to 

the presequence that enables a lateral release within the TIM23 complex (Glick et al., 1992; 

Meier et al., 2005). Alternatively, designated innermembrane proteins can be fully or 

partially translocated into the matrix and then inserted into the IMM through the OXA 

export machinery, which also integrates mtDNA-encoded OXPHOS subunits (He and Fox, 

1997; Hell et al., 1998; Ott and Herrmann, 2010). In contrast, complete hydrophobic inner 

membrane proteins do not contain a presequence and therefore use alternative import routes 

(Endres et al., 1999; Rehling et al., 2003). The so-called carrier pathway imports and sorts 

proteins containing an internal targeting sequence that mainly comprises members of the 

large metabolite carrier family (Brix et al., 1999). This pathway also makes use of the TOM 

complex, but then alternatively guides to the small TIM chaperones in the intermembrane 

space and the carrier translocase of the inner membrane (TIM22 complex) that make use of 

the membrane potential for insertion (Curran et al., 2002; Endres et al., 1999; Rehling et al., 

2003).  

Again another mitochondrial import pathway makes use of the mitochondrial 

intermembrane space import and assembly (MIA) machinery that is used by cysteine-rich 
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intermembrane space proteins (Banci et al., 2009; Chacinska et al., 2004). In principle, 

intermembrane space proteins enter mitochondria via the TOM complex in a reduced, 

unfolded confirmation. Subsequently, the central component of the MIA machinery Mia40 

forms a transient disulfide bond with the incoming protein through its oxidoreductase 

function. The generated disulfide bond allows the intermembrane space protein to be stably 

folded and also prevents relocation to the cytosol. Finally, Mia40 gets reoxidized by the 

sulfhydryl oxidase Erv1 that facilitates its recycling for new rounds of precursor import and 

oxidation.  

 
Figure+1.2:+The+mitochondrial+import+machinery.++
The! vast! majority! of! the! mitochondrial! proteome! is! generated! in! the! cytosol! and! imported! via! the!

translocase! of! the! outer! mitochondrial! membrane! (TOM)! complex! [1].! Subsequently,! newly! imported!

proteins!get!sorted!via!different!pathways!according!to!their!final!destination![2].!Matrix!proteins!follow!the!

presequence! pathway! through! the! translocase! of! the! inner! membrane! (TIM23)! complex! and! the!

presequence! translocase6associated! motor! (PAM).! Presequences! are! removed! from! the! mitochondrial!

processing! peptidase! (MPP)!within! the!matrix! [3].! Some! inner!membrane! proteins! are! released! from! the!

TIM23! complex! in! lateral! direction! [4].! Intermembrane! space! proteins! get! imported! and! oxidized! by! the!

mitochondrial! inter!membrane! space! assembly! (MIA)!machinery! [5].! Small! TIM! chaperones! (TIM96TIM10!

chaperone!complex)!guide!hydrophobic!precursor!proteins!either!to!the!OMM!via!the!sorting!and!assembly!

(SAM)!machinery![6]!or!to!the!IMM!via!the!TIM22!complex!(carrier!pathway)![7].!Outer!membrane!proteins!

bypass! the! TOM! channel! and! get! inserted! directly! into! the! membrane! using! different! pathways! (e.g.!

mitochondrial!import!(MIM)!complex![8].!Proteins!synthesized!within!mitochondria!are!exported!to!the!IMM!

by!the!oxidase!assembly!(OXA)!machinery![9].!Reprinted!with!modifications!from!(Schmidt!et!al.,!2010).!
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Outer mitochondrial membrane proteins are subdivided into two classes. One the 

one hand, β-barrel proteins enter mitochondria via the TOM complex, interact with small 

TIM chaperones (TIM9-TIM10 chaperone complex) of the intermembrane space, and are 

embedded into the outer membrane by the sorting and assembly machinery (SAM 

complex) (Kutik et al., 2008; Paschen et al., 2005). On the other hand, the class of α-helical 

outer membrane proteins have several suggested import routes, however, this process is not 

completely understood. It has been described that some α-helical proteins are imported via 

the mitochondrial import (MIM) complex (Becker et al., 2011; Dimmer et al., 2012). It is 

generally believed that most α-helical outer membrane proteins bypass the TOM channel 

using alternative entry pathways (Krumpe et al., 2012; Meineke et al., 2008; Otera et al., 

2007). 

1.4.2 Protein+folding+in+the+matrix++

Mitochondria contain numerous chaperones and co-chaperones that facilitate 

folding and thereby stabilize the three-dimensional structures, preventing proteins from 

aggregation (Voos, 2013). Here, we focus on the mitochondrial chaperones mtHSP70 and 

HSP60 as they are key for the protein homeostasis in the mitochondrial matrix. These 

chaperones create a so-called mitochondrial folding network that is responsible not only for 

import and folding of matrix proteins, but also various other protein quality control 

reactions. Most aspects so far have been extensively studied in yeast, however, more and 

more data are also available from the mammalian system (Deocaris et al., 2006; Voos and 

Rottgers, 2002). 

mtHsp70+

The major mitochondrial Hsp70 (mammals: mtHsp70; yeast: Ssc1) is an essential 

protein that plays a role in the translocation of mitochondrial proteins into the matrix as 

well as facilitates folding of newly imported proteins to their native confirmation (Liu et 

al., 2001; Strub et al., 2000). These attributes have been described to be inevitable for 

cellular survival under all growth conditions (Craig et al., 1987). 
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 The mtHsp70/Ssc1 associated protein import can be divided into two functional 

aspects: (i) the protein translocation through both the TOM and TIM complex and (ii) the 

complete protein unfolding as consequence of the small channel of the translocase 

complexes (Gambill et al., 1993; Voisine et al., 1999). The energy for both processes 

comes from the inner mitochondrial membrane potential (ΔΨ) as well as the ATP 

hydrolysis in the matrix. As the membrane potential is used to insert polypeptides into the 

translocase complexes, ATP hydrolysis is carried out by the ATPase domain of mtHsp70 

enabling the movement and unfolding of the matrix-targeted proteins through the 

membrane pores. mtHsp70 is the only ATP-dependent protein in this process, which again 

highlights its importance during the import of matrix proteins (Moro et al., 2002). 

 The activity of mtHsp70 during matrix import is closely connected with 

constituents of the TIM23 translocase complex, such Tim44, Pam18 and Pam16, which 

influence the import-specific activity of mtHsp70 and are inevitable for an effective 

transport of polypetides into the matrix (Kronidou et al., 1994; Li et al., 2004; Rassow et 

al., 1994; Truscott et al., 2003). In addition, the nucleotide exchange factor Mge1 facilitates 

recycling of nucleotide-regulated substrate affinity states of mtHsp70 during preprotein 

translocation (Schneider et al., 1996).  

Furthermore, the interaction of mtHsp70 with the channel might exert an active 

pulling force on the incoming preprotein chain that is needed to master conformational 

limitations during the unfolding reaction, however, a detailed molecular mechanism still 

remains elusive (Lim et al., 2001; Voisine et al., 1999). Once an unfolded preprotein enters 

the matrix, the folding process is initiated by mtHsp70 (Liu et al., 2001). In this regard, 

mtHsp70s closely resemble the chaperone function of cytosolic Hsp70s that fold nascent 

polypeptides during translation (Peisker et al., 2010). It is believed that mtHsp70 stabilizes 

nascent polypeptide chains in order to avoid irregular interactions of still unfolded 

segments. In this process the folding reaction per se is slowed down, which allows more 

proteins to be folded properly. The folding reaction is carried out in close cooperation with 

another major mitochondrial matrix chaperone, Hsp60. The specificity of mtHsp70 for 

either import or protein folding is determined by the interaction with different types of J-

family co-chaperones (Horst et al., 1997). For instance, the protein Mdj1 (mitochondrial 

DnaJ homolog) is implicated in the folding reaction of mtHsp70 (Rowley et al., 1994; 
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Westermann et al., 1995). Additionally to its chaperone and translocation activity, mtHsp70 

is also involved in the protein biosynthesis of OXPHOS subunits as well as their assembly 

to functional complexes in the inner membrane (Herrmann et al., 1994).  

Another feature of mtHsp70 function is the ability to keep proteins soluble during 

protein degradation in order to prevent aggregation (Wagner et al., 1994). Interestingly, 

knockdown of hsp-6 (homolog of mammalian mtHsp70) in Caenorhabditis elegans (C. 

elegans) induced a premature ageing phenotype that highlights its importance in 

multicellular organisms (Kimura et al., 2007). In mammals, mtHsp70 has also been 

described to a play crucial role in various human pathologies, such as cancer and 

Parkinson’s disease (Jin et al., 2006; Wadhwa et al., 2006). Nevertheless, a clear role for 

mtHsp70 in mammalian mitochondrial protein quality control and its effects on pathology 

still needs to be defined. 

Hsp60+

In the mitochondrial matrix, Hsp60 is the key component of the protein machinery 

that facilitates folding and assembly of newly imported preproteins (Martin, 1997). Like the 

whole Hsp60 protein family, mitochondrial Hsp60 forms a homo-oligomer of 14 subunits 

that is arranged in two rings of 7 subunits each that give rise to a “double doughnut” 

structure (Sigler et al., 1998; Xu et al., 1997). Both rings shape a large inner cavity that 

allows accommodation of unfolded proteins with a size up to 50 kDa. Substrates of Hsp60 

not only interact with hydrophobic amino acid residues in the inner cavity, but also get 

protected inside from other components of the surrounding environment. Upon binding of 

ATP, the Hsp60 molecule undergoes a large conformational change that converts the inner 

cavity to be more hydrophilic, allowing the release of bound proteins and thus new rounds 

of folding (Walter, 2002). Hsp60 closely cooperates with a specific cochaperone, termed 

Hsp10, which forms a lid on top of Hsp60 to cover the opening of the central cavity 

(Fenton et al., 1996). Hsp10 is believed to coordinate the release of bound substrates by 

regulating both single Hsp60 monomer behaviour as well as the ATPase cycle (Martin et 

al., 1993).  
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The crucial role of Hsp60 in mitochondrial biogenesis was initially demonstrated 

using a yeast null mutant that was unviable due to its severe folding defects (Cheng et al., 

1989). The same study also showed that conditional Hsp60 mutants tend to accumulate 

unfolded proteins in the matrix that could not be further assembled into functional enzyme 

complexes. Subsequent analyses demonstrated that newly imported preproteins physically 

interact with Hsp60 in the matrix, thereby significantly elevating the overall folding 

efficiency (Langer and Neupert, 1991; Ostermann et al., 1989; Reading et al., 1989). A 

yeast proteomics approach aiming at identifying potential Hsp60 substrates in mitochondria 

suggested that it is not generally required for all mitochondrial proteins (Dubaquie et al., 

1998). Interestingly, some substrates can also fold without the Hsp10 cochaperone, while 

others do not even need the Hsp60/Hsp10 system in the first place. However, a subset of 

mitochondrial proteins has also been shown to be dependent on Hsp60 to acquire their 

native conformation (Rospert et al., 1996). Nascent polypeptide chains that arise from 

translocation always interact first with Hsp70 chaperones and then with Hsp60 chaperones 

in a subsequent step (Voos, 2013). This again illustrates the close cooperation of both 

major chaperone classes in the folding of mitochondrial matrix proteins.  

Despite being mainly implicated in folding after import, Hsp60 is also suggested to 

play a role in general protein quality control reactions. Recent studies demonstrated that 

Hsp60 protects from protein aggregation of endogenous matrix proteins upon heat stress 

(Bender et al., 2011), which supports a more central role in maintaining protein 

homeostasis upon normal as well as stress conditions. In agreement with these 

observations, mammalian Hsp60 is upregulated upon oxidative stress as well as under 

conditions where protein folding is compromised (Mitsumoto et al., 2002; Yoneda et al., 

2004; Zhao et al., 2002). Numerous studies demonstrated a neuropathological role for 

Hsp60; for instance, in patients with an autosomal dominant form of hereditary spastic 

paraplegia (Bross et al., 2007; Bross et al., 2008; Hansen et al., 2007; Hansen et al., 2002). 

Additionally, it has been described that Hsp60 interacts with mutant mitochondrial 

enzymes in patient cell lines, which is in line with its role in protein quality control 

reactions (Pedersen et al., 2003). Remarkably, patient cell lines that exhibit Hsp60 

deficiencies displayed a decrease of matrix protease components, possibly linking different 

protein quality control networks intrinsically (Hansen et al., 2008). 
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1.4.3 Protein+degradation+

Mitochondrial protein homeostasis not only relies on molecular chaperones, but also 

on a selective proteolysis of terminally damaged, misfolded, and non-assembled proteins 

that cannot be rescued anymore. Under regular conditions, mitochondrial proteins are 

continuously recycled by proteases to guarantee a constant functionality of the 

mitochondrial proteome (Augustin et al., 2005). Moreover, during mitochondrial protein 

transport, sorting, maturation, and assembly an overload of improperly targeted, 

unassembled, or damaged proteins might occur that also needs to be degraded by proteases 

(Anand et al., 2013; Fischer et al., 2012). Various endogenous stress conditions, such as 

ROS-induced protein damage and ageing also increase the load of non-functional proteins 

that bear a serious threat to cellular homeostasis (Stadtman and Berlett, 1998). 

Mitochondrial proteases are highly conserved proteins that serve as a first line of defence 

against proteotoxic stress (Baker et al., 2011). Apart from various mitochondrial peptidases, 

that are not further discussed here, there are three classes of chambered mitochondrial 

proteases: the soluble protease families Lon and ClpP, as well as the FtsH/membrane AAA 

protease family. 

Lon+

The Lon protease family was initially found and extensively studied in bacteria and 

was shown to be conserved among virtually all eukaryotes (Desautels and Goldberg, 1982; 

Gottesman, 1996; Van Dyck et al., 1994). Lon family members form homo-oligomeric 

ring-shaped protein complexes that belong to the AAA+ protein family. Lon proteases 

comprise three functional domains, the catalytic protease domain, the ATP-binding domain 

and a substrate binding N-terminal domain (Cha et al., 2010). In prokaryotes, Lon was 

described as one of the key proteases that degrade damaged proteins (Desautels and 

Goldberg, 1982; Goldberg and Waxman, 1985).  

Functional studies in Saccharomyces cerevisiae (S. cerevisiae) showed that Pim1 

(homologue of mammalian Lon) is essential for the degradation of denatured or oxidatively 

damaged proteins (Bota and Davies, 2002; Suzuki et al., 1994). The importance for Pim1 

has been demonstrated by the consequences of a deletion, which resulted in a respiratory 
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deficient phenotype due to mtDNA defects (Suzuki et al., 1994; Van Dyck et al., 1994). In 

human cells, LON was found to be involved in protein quality control, removal of oxidized 

proteins as well as in the regulation of respiration (Voos, 2013). However, it has not been 

fully characterized by now. Lon tightly cooperates with matrix chaperones, which retain 

proteins unfolded prior to proteolysis (Bender et al., 2011; Wagner et al., 1994).  

To date, most of the Lon substrates found could not be systematically categorized 

by a specific motif. However, there is evidence that proteins with complex structures and 

organisations, such as iron/sulfur cluster containing proteins, are more prone for Lon 

degradation. For instance, mammalian LON has been described to degrade ACO2 

(aconitase 2, mitochondrial), an iron/sulfur cluster protein, the steroidogenic acute 

regulatory protein (StAR), as well as the mitochondrial transcription factor A (TFAM) 

(Bota and Davies, 2002; Granot et al., 2007; Matsushima et al., 2010). It was reported that 

LON levels decline in an age-dependent manner as observed in aged mice, which is 

accompanied by ROS-induced protein damage and enhanced mitochondrial dysfunction 

(Bota et al., 2005; Bota et al., 2002). In line with these observations it was shown that 

lifespan of the fungus Podospora anserina could be significantly increased by 

overexpression of Lon (Luce and Osiewacz, 2009). In general, Lon was found to be 

upregulated in response to various cellular or environmental stresses. For instance, both 

oxidative stress and heat stress induce Pim1 in yeast (Bender et al., 2011; Van Dyck et al., 

1994). Similarly, the mammalian Lon protease responds to oxidative and heat stress, as 

well as serum starvation, ER stress and hypoxia (Fukuda et al., 2007; Hori et al., 2002; Ngo 

and Davies, 2007, 2009; Pinti et al., 2011). 

ClpXP+

The second protein family of soluble proteases is the Clp protein family 

(caseinolytic protease), which was mainly studied in bacteria (Baker and Sauer, 2012). 

Whereas the human Lon protease has been extensively analysed, the ClpXP protein 

complex is one of the most understudied proteases in higher organisms. The missing 

knowledge is partly due to the fact that the yeasts S. cerevisiae or S. pombe do not contain 

any ClpXP homolog (Yu and Houry, 2007). ClpP forms a large homo-oligomeric ring-

shaped protein complex composed of two stacked rings with 7 subunits each that serves as 
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proteolytic core. Additionally, ClpP needs to pair with its corresponding ClpX chaperone to 

form the fully active holo-protease (Santagata et al., 1999). The ClpX chaperone exerts 

three different functions: (i) recognition of the substrates, (ii) ATP-dependent substrate 

unfolding, and (iii) the translocation of the substrate proteins into the proteolytic chamber 

of the ClpP complex.  

In prokaryotes, ClpXP serves as major quality control protease that degrades 

proteins under stress conditions (Baker and Sauer, 2012), and translation products that 

contain a SsrA-tag (Gottesman et al., 1998). Similar to the bacterial system, mammalian 

mitochondria contain a complete ClpXP system, whose structural properties have been 

studied in vitro (Bross et al., 1995; Kang et al., 2005; Kang et al., 2004). Even though 

similar activities in the degradation of model peptides and proteins such as casein were 

observed in bacteria and mammals, the endogenous substrate specificity, largely 

determined by the respective ClpX subunits, remains uncharacterized in mammals (Kang et 

al., 2002; Lowth et al., 2012). In general, structural differences between mammalian and 

prokaryote ClpX translate into differences in substrate specificities (Kang et al., 2002). 

Moreover, it has not been described so far, which recognition motifs are used by the 

mammalian ClpXP, therefore a detailed functional characterisation is required. However, it 

was suggested that it is implicated in protein quality control and the mitochondrial stress 

response signalling by its similarity to homologs in bacteria and C. elegans, respectively 

(see chapter 1.5.). 

FtsH/membrane+AAA+proteases+

In addition to the soluble chambered matrix proteases Lon and ClpXP, mitochondria 

harbour a separate proteolytic system that is responsible for the degradation of membrane-

integrated substrate proteins (Gerdes et al., 2012). These enzymes have evolved from the 

bacterial FtsH (filament-forming temperature-sensitive) protein family that are present in 

the plasma-membrane facing the cytosol with their catalytic domain (Ito and Akiyama, 

2005). These proteases comprise a zinc metallo-protease domain, a regulatory domain 

belonging to the AAA family, and a transmembrane domain that enables their insertion into 

the inner mitochondrial membrane (Voos, 2013).  
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In mitochondria, two forms of inner membrane bound AAA proteases with different 

membrane topology are present: (i) the m-AAA protease that is active in the matrix 

compartment, as well as (ii) the i-AAA protease that faces the intermembrane space 

(Leonhard et al., 1996). The m-AAA protease forms a ring-like hexameric structure, 

comprising a central cavity that serves as proteolytic core. In humans it is either present as 

heterooligodimer composed of the subunits Afg3l2 and paraplegin or as homooligodimer 

only composed of Afg3l2 (Koppen et al., 2007). In mice, the m-AAA protease incorporates 

an additional subunit, Afg3l1, that is able to form homooligomeric complexes or 

heterooligomeric complexes together with Afg3l2 and/or paraplegin (Koppen et al., 2007). 

In contrast, the i-AAA protease is build up only of a single subunit, Yme1l (S. cerevisiae: 

Yme1) (Weber et al., 1996).  

Mitochondrial AAA proteases are implicated in different fundamental processes: (i) 

membrane protein quality control processes (mainly m-AAA protease) (Arlt et al., 1998; 

Augustin et al., 2005), (ii) assembly of respiratory chain complexes (both AAA proteases) 

(Arlt et al., 1998; Leonhard et al., 1999), and (iii) import and maturation of certain 

mitochondrial proteins (Nolden et al., 2005; Rainey et al., 2006). Furthermore, the i-AAA 

protease was found in yeast to be implicated in the maintenance of mitochondrial 

phospholipid levels (Potting et al., 2010), as well as in the regulation of mitochondrial 

fusion by cleavage of OPA1 (Griparic et al., 2007; Song et al., 2007). The crucial role of 

AAA proteases in protein quality control was highlighted by the finding that mutations in 

either paraplegin or Afg3l2 result in the neurological disorders hereditary spastic paraplegia 

(HSP) and spinocerebellar ataxia type 28 (SCA28), respectively (Di Bella et al., 2010; 

Martinelli et al., 2009; Martinelli and Rugarli, 2010; Rugarli and Langer, 2006). On the one 

hand, an autosomal recessive form of HSP caused by SPG7 (paraplegin) mutations is 

highly progressive, mainly characterized by lower extremity spasticity (Rugarli and Langer, 

2006). On the other hand, autosomal dominant mutations in AFG3L2 cause SCA28, which 

is slowly progressive and mainly affecting the cerebellum and motor coordination (Cagnoli 

et al., 2010; Di Bella et al., 2010). It is quite striking that mutations in either subunit cause 

are quite tissue-specific, causing very different clinical outcomes. Remarkably, mutations 

in HSP60, another ubiquitously expressed mitochondrial quality control component, causes 

also tissue specific pathologies, such as autosomal dominant HSP (Hansen et al., 2007; 
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Hansen et al., 2002) or autosomal recessive hypomyelinating leukodystrophy (HML) 

(Magen et al., 2008). 

1.5 The+mitochondrial+unfolded+protein+response+(UPRmt)+

Protein homeostasis, also termed proteostasis, is constantly challenged by the 

accumulation of unfolded proteins that might occur during biogenesis, disease and ageing 

(Jensen and Jasper, 2014). Unfolded proteins may aggregate to toxic intermediates that 

pose a serious risk not only for orgenellar function, but also for the entire cell. In each 

individual cellular compartment, chaperones aim at restoring protein homeostasis to 

counteract unfolded protein accumulation (Hartl et al., 2011). When the load of unfolded 

proteins exceeds the folding capacity of chaperones, it is sensed and signalled to the 

nucleus, where a specific proteostatic surveillance programme gets activated, a process 

termed “unfolded protein response”.  

To date, unfolded protein responses were found in the cytosol, the endoplasmatic 

reticulum (ER) and in mitochondria (Hetz et al., 2015; Lindquist, 1986; Pellegrino et al., 

2013). The first unfolded protein response described was the cytosolic heat shock response 

(HSR) that induces the heat shock factor (HSF) transcription factors, thereby regulating 

Hsp70 and Hsp90 expression (Richter et al., 2010). The unfolded protein response in the 

ER (UPRER) also has been studied in great detail, where the response is determined by the 

transmembrane proteins inositol-requiring 1 (IRE-1), the activating transcription factor 6 

(ATF6) and protein-like endoplasmic reticulum kinase (PERK) that together account for 

the induction of chaperones as BiP (GRP-78) (Buchberger et al., 2010; Mori, 2009; Walter 

and Ron, 2011). In contrast to HSR and UPRER, the mitochondrial unfolded protein 

response (UPRmt) has been discovered rather recently.  

The first direct evidence for a mitochondria-to-nucleus response triggered by 

unfolded/misfolded proteins was identified by the use of a folding impaired mutant 

mitochondrial protein (ΔOTC) that was found to stimulate the expression of Hsp60, Hsp10, 

the protease ClpP and the Hsp40 family chaperone mtDNAJ (Zhao et al., 2002). Even 

though the UPRmt was initially found in mammalian cells, the molecular mechanisms 
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underlying this pathway have been mainly studied by the use of C. elegans models (Jensen 

and Jasper, 2014). The following chapters will summarize the UPRmt signalling in 

C.elegans and mammals as well as highlights its role in broader cellular context. 

1.5.1 The+UPRmt+in+C.+elegans+

By the use of C. elegans models, various stresses leading to UPRmt induction as well 

as the UPRmt signalling cascade itself could be studied in great detail. The UPRmt induction 

can be monitored by transcriptional reporters that drive GFP expression under the control 

of either hsp-6 (mammalian mtHsp70) or hsp-60 (mammalian Hsp60) promoters (Yoneda 

et al., 2004).  

Ethidium bromide, an inhibitor of mitochondrial translation, was the first stressor 

described to trigger UPRmt signalling in C. elegans (Yoneda et al., 2004). It is generally 

believed that inhibition of mitochondrial transcription and replication results in an 

imbalance between nuclear- and mtDNA-encoded proteins that increase the load of 

unfolded and unassembled OXPHOS complexes (Houtkooper et al., 2013). In line with 

these findings it also has been shown that interference of mitochondrial translation either 

through inhibitors, such as doxycycline, or by knockdown of ribosomal proteins, induces 

UPRmt signalling (Houtkooper et al., 2013). Moreover, the activation of mitochondrial 

biogenesis by rapamycin as well as by NAD+ administration creates a mitonuclear 

imbalance, which activates the UPRmt (Houtkooper et al., 2013; Mouchiroud et al., 2013; 

Pirinen et al., 2014). Another way to activate UPRmt signalling is achieved by ETC mutants 

that perturb mitochondrial physiology by elevating ROS levels. For instance, this is true for 

mutations in nuo-6 (encoding NADH ubiquinone oxidoreductase) (Yang and Hekimi, 

2010) or isp-1 (encoding cytochrome b-c1 complex subunit Rieske) (Feng et al., 2001). In 

addition, toxins such as rotenone or antimycin A that perturb ETC function also have been 

shown to trigger an UPRmt response (Runkel et al., 2013). In line with that, administration 

of paraquat induces UPRmt signalling in C. elegans, most likely as a consequence of ROS-

induced protein damage (Runkel et al., 2013; Yoneda et al., 2004).  
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Signalling+in+C.#elegans+

In the past decade much progress was made to unravel the UPRmt signalling events 

in C. elegans by the use of large-scale RNAi screens and UPRmt reporter worms. Initially, it 

was found that knockdown of the mitochondrial matrix protease CLPP-1 prevented UPRmt 

reporter gene expression during mitochondrial stress (Haynes et al., 2007). Based on this 

observation, it has been proposed that CLPP-1 degrades accumulated unfolded proteins into 

small peptides that might serve as initial signals for UPRmt induction. In line with this 

assumption, the matrix exporter HAF-1 was found not only to be essential for UPRmt 

induction and survival under proteotoxic stress, but also dependent on CLPP-1, suggesting 

that CLPP-1 acts upstream of HAF-1 (Haynes et al., 2010). In a first model, it was 

proposed that peptides produced by CLPP-1 are pumped out of the matrix via HAF-1 and 

subsequently reach the cytosol via passive diffusion. 

 Downstream of HAF-1, the bZip transcription factor ATFS-1 (Activating 

Transcription Factor associated with Stress, also described as ZC376.7) was found to be 

required for UPRmt signalling (Haynes et al., 2010). Moreover, ATFS-1 translocates to the 

nucleus in a HAF-1 dependent manner, suggesting that peptides exported from 

mitochondria stimulate ATFS-1 (Haynes et al., 2010). A detailed mechanism that controls 

ATFS-1 translocation was recently described (Nargund et al., 2012). Apart from its nuclear 

localization sequence (NLS), this transcription factor also possesses a N-terminal 

mitochondrial targeting sequence (MTS). During normal mitochondrial function ATFS-1 is 

constantly translocated into mitochondria and degraded by the Lon protease (Nargund et 

al., 2012). Under mitochondrial stress the import machinery is impaired, which enables a 

translocation of ATFS-1 to the nucleus, where it can induce the UPRmt (Haynes et al., 2010; 

Nargund et al., 2012) Through this mechanism the cell monitors the mitochondrial import 

efficiency via ATFS-1 and therefore the need of UPRmt induction.  
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Figure+1.3:+UPRmt+signalling+in+C.#elegans.+
The! matrix! protease+ CLPP61! degrades! misfolded/unfolded! proteins! to! peptides! that! subsequently! are!

exported!by!HAF61.!It!has!been!suggested!that!high!peptide!efflux!slows!down!import!of!the!central!UPRmt!

mediator! ATFS61.! During! normal! mitochondrial! function! the! transcription! factor! ATFS61! is! constantly!

translocated! into!mitochondria!and!degraded!by! the!Lon!protease.!Upon!mitochondrial! stress,! the! import!

machinery! is! impaired,! which! enables! a! translocation! of! ATFS61! to! the! nucleus.! In! addition,! the! two!

transcription! factors! UBL65! and! DVE61! form! a! complex! in! a! HAF616! or! CLPP61! dependent! manner,!

respectively.! Together,! the! transcription! factors! orchestrate! the! activation! of! protective! factors! such! as!

mitochondrial! chaperones! and! proteases,! ROS6detoxification! enzymes,! glycolytic! enzymes,! as! well! as! the!

mitochondrial!import!machinery.!Reprinted!with!modifications!from!(Munkacsy!and!Rea,!2014).+

In the nucleus, ATFS-1 enables a broad transcriptional response consistent with the 

proposed mechanism of UPRmt, including upregulation of chaperones, proteases, ROS-

scavenging enzymes and the TIM23 import complex (Harbauer et al., 2014; Nargund et al., 

2012). A detailed mechanism by which HAF-1 exported peptides influence ATFS-1 is 

unknown, however, it has been suggested that the peptide export might hamper the import 

of ATFS-1 into mitochondria, thus favouring nuclear translocation (Nargund et al., 2012). 

The mitochondrial import machinery has a crucial role for the mitochondrial localization of 

ATFS-1, which is further supported by the finding that knockdown of either TIM-17 or 
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TIM-23 triggers UPRmt activation in an ATFS-1-dependent manner (Nargund et al., 2015; 

Rainbolt et al., 2013). In addition, ATFS-1 regulates OXPHOS levels directly by matching 

the OXPHOS expression to the protein-folding capacity of mitochondria (Nargund et al., 

2015). 

 Apart form ATFS-1, the transcription factors ubiquitin-like protein UBL-5 and the 

homeobox protein DVE-1 are also needed for transcriptional upregulation of the 

mitochondrial chaperone genes hsp-6 and hsp-60 (Benedetti et al., 2006; Haynes et al., 

2007). Upon perturbation of mitochondrial proteostasis, DVE-1 undergoes nuclear re-

distribution, whereas UBL-5 translocates to the nucleus to dimerize with DVE-1. On the 

one hand, nuclear re-distibution of DVE-1 is CLPP-1 dependent, but not HAF-1 dependent; 

on the other hand, UBL-5 expression is activated in a DVE-1 and HAF-1 dependent 

manner (Haynes et al., 2007; Haynes et al., 2010). It was suggested that both DVE-1 and 

UBL-5 might help in chromatin remodelling to enable ATFS-1 binding to specific UPRmt 

target promoters, however, the importance of the UBL-DVE complex also in the context of 

ATFS-1 still needs to be further characterized.  

1.5.2 The+UPRmt+in+mammals+

In mammals, far less is known about the UPRmt signalling events that occur during 

unfolded protein stress. Nevertheless, the first signs of a specific signalling in response to 

protein perturbations were found in mammalian cells upon treatment of ethidium bromide 

or by overexpression of a folding impaired mutant mitochondrial protein (ΔOTC) 

(Martinus et al., 1996; Zhao et al., 2002). The mitochondrial chaperones HSP60, HSP10 

and mtDnaJ, as well as the matrix protease ClpP were shown to be specifically induced in 

response to unfolded protein stress in mammalian cells (Zhao et al., 2002). Moreover, the 

mitochondrial protease YME1L1, the import component TIMM17A and the enzymes 

NDUFB2, endonuclease G and thioredoxin 2 are induced upon UPRmt signalling (Aldridge 

et al., 2007).  

Promoters of these genes contain a mitochondrial stress responsive element that 

corresponds to the CHOP transcription factor consensus binding site as well as two 
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mitochondrial unfolded protein response elements (MURE1 and MURE2) (Aldridge et al., 

2007; Horibe and Hoogenraad, 2007). Upon overexpression of ΔOTC, the transcription 

factor CHOP dimerizes with C/EBPβ, which has been proposed to induce mitochondrial 

chaperones, proteases, as well as the import machinery (Aldridge et al., 2007; Horibe and 

Hoogenraad, 2007; Zhao et al., 2002). Interestingly, CHOP is activated during the UPRER 

signalling and is found to mediate apoptosis under strong ER stress conditions 

(McCullough et al., 2001; Schroder, 2006; Szegezdi et al., 2006). However, it has been 

proposed that the UPRmt specificity of CHOP and C/EBPβ is achieved through their 

selective expression due to activator protein-1 (AP-1) promoter elements that are not 

activated by UPRER signalling (Horibe and Hoogenraad, 2007). The AP-1 site is bound by 

the transcription factor c-Jun that is regulated by JNK2, implicating the JNK pathway in 

UPRmt signalling (Jaeschke et al., 2006; Weiss et al., 2003).  

Recently it was reported that overexpression of ΔOTC in intestinal epithelial cells 

induces phosphorylation of c-Jun in a ClpP and dsRNA-activated protein kinase (PKR) 

dependent manner (Rath et al., 2012). Interestingly, similar to GCN-2 in C. elegans the 

PKR phosphorylates eIF2α in mammals, thereby attenuating cytosolic translation during 

UPRmt signalling (see section 1.5.3) (Baker et al., 2012; Rath et al., 2012). Nevertheless, 

how the transcriptional regulation of AP-1 is specifically triggered during UPRmt signalling, 

remains elusive.  

In addition to a bona fide UPRmt response coming from the matrix, there is also 

evidence for a response to unfolded proteins occurring in the IMS, since overexpression of 

a mutant form of the IMS resided endonuclease G specifically induced the IMS protease 

HTRA2 (also known as Omi) as well as the proteasome (Papa and Germain, 2011, 2014; 

Radke et al., 2008). Protein aggregates in the IMS trigger ROS production and protein 

kinase B (AKT) phosphorylation, which leads to activation of the estrogen receptor α 

(ERα), boosting HTRA2, the nuclear respiratory factor 1 (NRF1), and the proteasome 

(Papa and Germain, 2011, 2014). Interestingly, this response is independent from CHOP-

mediated signalling (Papa and Germain, 2011).  
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1.5.3 Crosstalk+of+the+UPRmt+with+other+stress+responses+

Maintenance of mitochondrial proteostasis upon unfolded protein stress does not 

only induce overexpression of mitochondrial chaperones and proteases, but also 

orchestrates a broad transcriptional response including other cellular pathways (Jovaisaite 

and Auwerx, 2015). A gene expression analysis in C. elegans using ATFS-1 mutant and 

wild type worms revealed that among 685 differentially expressed genes in response to 

mitochondrial stress, only 391 genes were dependent on ATFS-1, suggesting the 

involvement of other pathways (Nargund et al., 2012). In line with these findings, the 

UPRmt signalling seems to be interconnected with other cellular stress signalling pathways 

such as the integrative stress response (ISR) as well as the antioxidant response (Baker et 

al., 2012; Mouchiroud et al., 2013).  

Cytosolic translational attenuation through eIF2α phosphorylation is activated 

during mitochondrial stress through the eukaryotic translation initiation factor 2 - kinase 

4/GCN2-like protein in a ROS-dependent manner (GCN-2) (Baker et al., 2012). This is 

very similar to the situation found during ER stress that also triggers translational 

attenuation by phosphorylating eIF2α in parallel to the well-characterized UPRER (Shen et 

al., 2001). Both UPRmt and UPRER seem to be interconnected through the regulation of 

eIF2α that is phosphorylated on the one hand by PEK-1 (PERK in mammals) during ER 

stress, and on the other hand by GCN-2 in response to mitochondrial stress (Baker et al., 

2012; Harding et al., 1999). Organelle-specific stress responses depend on their 

corresponding kinases; however, inhibition of UPRmt signalling during mitochondrial stress 

increases ISR signalling as determined by elevated eIF2α phosphorylation (Baker et al., 

2012). It should be noted that the mechanism that defines one or the other pathway remains 

poorly understood.  

Furthermore, levels of NAD+ are crucial not only for the activation of sirtuins, but 

also activate UPRmt signalling through mito-nuclear protein imbalance (Kincaid and Bossy-

Wetzel, 2013; Mouchiroud et al., 2013). In both mice and C. elegans, application of 

nicotinamide riboside (NR), a NAD+ precursor, induces CLPP-1, HSP-6, an antioxidant 

response, activating SOD-3 (SOD2 in mammals) as well as DAF-16 nuclear localization 

(FOXO3A in mammals) (Mouchiroud et al., 2013). Again both pathway share common 
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regulators since SOD-3 induction was dependent on UBL-5, a transcription factor involved 

in UPRmt signalling (Mouchiroud et al., 2013).  

Another pathway that shares feature, which seems to be interconnected with UPRmt 

signalling is the mitophagy pathway (Burbulla et al., 2014; Jin and Youle, 2013). Damaged 

mitochondria are specifically eliminated via autophagic degradation, a process known as 

mitophagy (Youle and Narendra, 2011). Upon loss of mitochondrial membrane potential, 

the kinase PINK1 specifically accumulates on the outer membrane of mitochondria 

(Narendra et al., 2010). Subsequently, PINK1 labelled mitochondria recruit Parkin to the 

OMM, which then directs damaged mitochondria to the downstream autophagy machinery 

(Lazarou et al., 2012). Remarkably, it was reported that UPRmt stresses ultimately also 

induce mitophagy. For instance, mtDNA depletion, overexpression of mutant OXPHOS 

subunits as well as application of the ROS-inducing agent paraquat resulted in both UPRmt 

and mitophagy activation (Narendra et al., 2008; Suen et al., 2010). It is very likely that 

UPRmt serves as a first line of defence upon mild stress; however, if mitochondrial damage 

becomes too heavy, the organelle undergoes mitophagy. Remarkably, it was recently 

described that overexpression of ΔOTC as well as knockdown of mitochondrial chaperones 

and proteases directly affects PINK1 levels on the OMM (Burbulla et al., 2014; Jin and 

Youle, 2013). These findings further illustrate that the UPRmt cannot be just assessed as a 

single pathway, but rather ties various stress signalling pathways in response to 

mitochondrial stress. 
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1.6 Objectives+

The molecular mechanism of the UPRmt signalling in mammals especially in vivo is 

largely unknown. Therefore, the aim of this thesis was to decipher UPRmt signalling in 

mammals using in vitro cell culture models on the one hand, and in vivo mouse models on 

the other hand. 

Modelling UPRmt signalling in C. elegans gave rise to many new insights into this 

fundamental process in recent years (Jensen and Jasper, 2014). However, only a limited 

number of findings has been transferred to the mammalian system. In order to fill that gap, 

a first objective was to assess the potential of the mitochondrial chaperones HSP60 and 

mtHSP70 as UPRmt markers upon mitochondrial stress in vitro. Furthermore, the role of 

ATF5, a potential homolog of ATFS-1, the central mediator of the UPRmt signalling in C. 

elegans (Nargund et al., 2012), was investigated in both in vitro and in vivo. Finally, novel 

UPRmt markers and signalling components were analysed. 

In addition, a mouse model that modulates factors implicated in UPRmt signalling 

was developed. On the one hand, the heart-specific DARS2 knockout mouse model 

exhibits a high UPRmt upregulation due to a strong dysregulation of mitochondrial protein 

synthesis (Dogan et al., 2014). On the other hand, the matrix protrease CLPP was shown to 

be part of the UPRmt signalling in worms and in mammalian cell culture (Haynes et al., 

2007; Rath et al., 2012; Zhao et al., 2002). In order to dissect the role of CLPP in vivo, 

heart-specific DARS2/CLPP double knockout mice were generated, since this allows the 

investigation of CLPP under activated UPRmt conditions. 

This work outlined here will be a necessary step towards the understanding of this 

fundamental process and might be instrumental for the development of new therapies for 

age-related pathologies as well as the cure of mitochondrial disorders.  

 

!
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2 Material+&+Methods+

2.1 Cell+culture+

2.1.1 Cell+lines+

+++Table+2.1:+Cell+lines+used+in+this+study+

Organism+ Cell+line+ Reference+

Mus+musculus+ Mouse!embryonic!fibroblasts!

(MEF)!

(Xu,!2005)!

C2C12!myoblasts! (Yaffe!and!Saxel,!1977)!

Hepa!166!hepatoma!cells! (Darlington!et!al.,!1980)!

Homo+sapiens+ Human!Embryonic!

Kidney/Flp6In™!T6REx™!

HEK293!(HEK293FT)!cells!

Invitrogen,!Karsruhe,!

Germany!

Cervical!cancer!cell!line!from!

Henriette!Lacks!(HeLa)!

(Scherer!et!al.,!1953)!

Simia+aethiops+ Immortalized!kidney!cells!

from!the!african!green!

monkey!(COS67)!

(Gluzman,!1981)!
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2.1.2 Culture+and+maintenance+of+mammalian+cells+

Cell lines (MEF, HEK293FT, C2C12, HeLa, Hepa 1-6, COS-7) were cultivated as 

monolayers in cell culture medium containing Dulbecco’s modified Eagle’s essential 

medium (DMEM) (4.5g/L glucose, with GlutaMAX/Glutamin and sodium pyruvate; Gibco 

Life Technologies, Karlsruhe, Germany), supplemented with 10% fetal bovine serum 

(FBS), penicillin 100 units/ml and streptomycin 100 mg/ml. As soon as cells reached 90% 

confluency, cells were split and again seeded in the ratio 1:6 to 1:20 depending on the cell 

type. Typically, adherent cells were split every 3 – 4 days using TrypLE Express (Gibco 

Life Technologies, Karlsruhe, Germany). Every second day a medium change was 

conducted. Cells were maintained at 37 °C in a humified atmosphere containing 5 % CO2. 

For hypoxic treatment, cells were grown in a hypoxia chamber with a humidified gas 

containing 5% oxygen, 5% CO2, and 90% nitrogen. The cells were exposed under hypoxic 

conditions for various time courses as indicated. For mitochondrial stress assays, cell 

culture medium was supplemented with 25 μM paraquat, 100 nM rotenone, 20 nM 

antimycin A, 50 μg/ml chloramphenicol or 30 μg/ml doxycycline. In all conditions, the 

medium was supplemented with 50 μg/ml uridine. 

Cell lines were passaged according to their confluency. For this purpose, the 

medium was aspirated from the culture dish and cells were washed once using PBS. 

Subsequently, TrypLE Express was added to the cells. Cells were then incubated at 37°C 

until they detached from the culture dish – typically around 5 minutes. Carefully slapping 

the dish from time to time on each side can speed up trypsinization. The reaction was 

stopped using medium containing serum. In order to count the cells, a single cell 

suspension was prepared by carefully pipetting the cells. Thereafter cells were transferred 

into a 15 ml centrifuge tube and collected at 1000rpm (≈ 170g) for 5 minutes at 4°C. Cell 

pellets were then re-suspended in fresh medium and seeded onto fresh plates.  

In order to seed appropriate numbers of cells onto cell culture dishes, the cells 

were counted in advance. For this purpose, a cell suspension was prepared directly from the 

cell culture and depending on this density the suspension was further diluted. This 

suspension was mixed in a 1:1 ratio with 0.4% trypan blue (Gibco Life Technologies, 

Karlsruhe, Germany). Trypan blue is able to enter dead cells, which allows the 
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discrimination between blue stained dead cells and living cells. Approximately 10μl of the 

solution were transferred to a Countess™ counting chamber slide (Invitrogen, Karlsruhe, 

Germany) and the solution was aspirated by capillary force. Subsequently, cells were 

automatically counted using the Countess™ automated cell counter (Invitrogen, Karlsruhe, 

Germany) according to manufacturer’s instructions. 

For cryoconservation and long-term storage, the cells were trypsinized and 

resuspended in fresh medium to inactivate the trypsin. Therefore, the freezing medium 

(90% FBS + 10% DMSO) was added to the cell pellets and cells were re-suspended and 

transferred into a cryovial (Nunc, Langenselbold, Germany). Cryovials were stored at -

80°C in a Cryo 1°C Freezing container (Nalgene, Roskilde, Denmark) filled with 

isopropanol enabling slow and gentle freezing of the cells. The next day cells were 

transferred into liquid nitrogen for long time storage. To thaw cells, cryovials were quickly 

transferred from liquid nitrogen into a 37°C water bath and thawed until only a small ice 

crystal in the middle of the cryovial remained.  Cells were then transferred from the 

cryovial into a 15mL centrifugation tube containing pre‐warmed cell culture medium. Cells 

were centrifuged at 800rpm (≈ 110g) for 3 minutes at 4°C. The supernatant was aspirated 

and the cells were carefully resuspended and finally seeded on a cell culture dish. 

2.1.3 Liposome5mediated+transient+transfection+

Cells were plated 24 h prior to transfection at approx. 30-50% confluency. At 60 to 

80 % confluency, cells were transfected using Lipofectamine 2000 (Invitrogen, Karsruhe, 

Germany) reagent according to manufacturer’s instructions. The transfection mix was 

prepared in OptiMEM (Gibco Life Technologies, Karlsruhe, Germany) and added to the 

cells over night. Subsequently, the medium was replaced by fresh medium the next day and 

cells were analysed.  

2.1.4 Cell+harvest+and+lysis+

For protein extraction, cells were washed twice with ice-cold PBS and directly 

lysed on the plate using RIPA buffer containing protease SIGMAFAST™ protease inhibitor 
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cocktail tablets (Sigma-Alderich, Seelze, Germany). In general, 150 μl RIPA buffer were 

added onto a 6 well plate whereas 70 μl onto a 12 well plate. A cell scraper was used to 

break the cells in presence of RIPA buffer and the suspension was kept on ice for 30 min. 

Afterwards, cell lysate was transferred into 1.5 ml tubes and centrifuged at full speed for 30 

min to allow cell debris to be pelleted. The supernatant was then transferred to a new tube 

and kept on -80°C for long time storage.  

Total RNA was isolated from cells using TRIzol reagent (Life Technologies 

GmbH, Darmstadt, Germany). To start with, cells were washed twice using PBS and 1 ml 

TRIzol was added directly to a growing 3.5 cm cell culture dish. Subsequently, the 

manufacturer’s instructions were followed. 

2.1.5 RNA+interference+

Cells were grown to 60-70% confluence and subsequently subjected to RNA 

interference (RNAi) that results in a transient reduction in gene expression. For this 

purpose, 50 pM of small interfering RNA (stealth siRNA from Eurogentec, Seraing, 

Belgium) were transiently transfected using Lipofectamine 2000 (Invitrogen, Karlsruhe, 

Germany) or Lipofectamine RNAiMAX (Invitrogen, Karlsruhe, Germany) according to 

manufacturer’s instructions. Cells were harvested and lysed 72 hours after transfection. 

++++ +++Table+2.2:+siRNA+sequences+

Oligoname+ Sequence+(Sense+strand)+
ATF5+siRNA+(1)+ CAGAUGGAAGACUUCUUCCTT!

ATF5+siRNA+(2)+ GCUCGUAGACUAUGGGAAATT!

LONP1+siRNA+(1)+ CACUGCUCAUCAAGCAAUATT!

LONP1+siRNA+(2)+ CCACUCCUCUGAGUUCAAUTT!

HSP60+siRNA+ CAUCACAACUAGUGAAUAUTT!

mtHSP70+siRNA+ CACCACUAUUCCAACCAAATT!
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2.1.6 Colocalization+imaging+

Cells were grown on coverslips over night and the next day transfected with 

eGFP-tagged factors (Section 2.1.3) to assess a possible import into mitochondria. Again 

24 hours later cells were additionally stained for mitochondria by incubation with 

MitoTrackerRed CMXRos (Invitrogen, Karlsruhe, Germany), (dilution 1:10,000 in cell 

culture medium – see Section 2.1.2) for 15 minutes at 37 °C in a humified atmosphere 

containing 5 % CO2. After exchanging the staining medium with fresh cultivation medium, 

cells were incubated for additional 15 minutes in the incubator to destain the background. 

Cells were then washed and subsequently fixed using 4% PFA for 20 min. After another 

washing step, the samples were finally mounted with one drop Mowiol (Sigma-Alderich, 

Seelze, Germany) with 2.5 µg/ml DAPI (AppliChem, Darmstadt, Germany). Mitochondrial 

colocalization was analysed using the DeltaVision microscope system equipped with 

Softworx software (Applied Precision). 

2.2 Mouse+experiments+

2.2.1 Animal+care+

Mice (Mus musculus, C57Bl/6) were housed in the pathogen-free animal facility 

of the CECAD (Cologne, Germany) in groups of 3-5 mice per cage at 22-24°C ambient 

temperature at a 12-hour light / 12-hour dark cycle. All animal had unlimited access to 

standard rodent chow diet (NCD; Teklad Global Rodent 2018; Harlan, IN, USA) 

containing 53.5% carbohydrates, 18.5% protein, and 5.5% fat (12% of calories from fat)) as 

well as water (ad libitum). Animals were handled in accordance with the guidelines of the 

institutional animal care committee. Every animal experiment or procedure was carried out 

in compliance with protocols, approved by local government authorities (Bezirksregierung 

Köln, Cologne, Germany) and were in accordance with NIH guidelines. Mice were 

sacrificed by cervical dislocation. 
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2.2.2 Mouse+handling+and+breeding+

Laboratory mice were maintained and handled in accordance to guidelines 

gathered from “Mouse Genetics” by Lee M. Silver (Silver, 1995). 

2.2.3 Experimental+mouse+models+

On the one hand, the mitochondrial aspartyl-tRNA synthetase (Dars2) gene 

targeting was carried out as part of the International Knockout Mouse Consortium (KOMP) 

that was described earlier (Dogan et al., 2014)(additional information available at 

http://www.knockoutmouse.org, Project ID: 41773). On the other hand, the caseinolytic 

peptidase, ATP dependent proteolytic subunit (Clpp) gene targeting was conducted from 

Taconic Artemis, Germany, in Art B6/3.5 embryonic stem cell line on a C57BL/6 NTac 

genetic background (for a detailed targeting scheme and information see section 3.2.1). 

Double deficient heart and skeletal muscle specific knockout mice were generated by 

mating double floxed mice (Dars2L/L; ClpPL/L) with transgenic mice expressing cre 

recombinase under the control of muscle creatine kinase promoter (Ckmm-cre) (Larsson et 

al., 1998). To reduce the overall mouse litter numbers, experiments were performed using 

ClpP KO and Dars2 KO that were heterozygous for Dars2 and ClpP, respectively (For 

detailed mating scheme see section 3.2.1). However, additional control animals were 

obtained from the following matings: (i) Dars2-deficient animals - Dars2+/L, Ckmm-Cre+/T 

mated with Dars2L/L and  (ii) ClpP-deficient animals - ClpP+/L; Ckmm-Cre+/T mated with 

ClpPL/L.  

2.3 Molecular+biology++

2.3.1 Isolation+of+genomic+DNA+from+mice+tissues+

Mice ear clips/tails/tissues were incubated overnight in tissue lysis buffer at 55 °C 

under agitation using a thermoshaker (Eppendorf, Hamburg, Germany). Subsequently, 

DNA was precipitated using equal volumes of pure isopropanol and centrifuged at 12.000 g 
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for 20 min in a benchtop centrifuge (Eppendorf, Hamburg, Germany). The supernatant was 

carefully removed and the DNA pellet was washed with ice-cold 70% (v/v) ethanol and 

centrifuged again at 12.000 g for 15 min in a benchtop centrifuge. Finally, the supernatant 

was removed completely and the DNA pellet was dried under a hood for 10 min. The pellet 

was resupended in 50-100 μl H2O and shook at 37°C for 30 min to allow complete 

dissolving. 

2.3.2 Isolation+of+total+RNA+from+mice+tissues+

Fresh tissue samples were either snap frozen using liquid nitrogen or directly 

subjected to RNA isolation. RNA was isolated from tissues using TRIzol reagent (Life 

Technologies GmbH, Darmstadt, Germany) according to the manufacturer’s protocol. In 

general, 50-100 mg tissues (approx. 3 mm3 tissue cube) were placed into a Precellys CK 14 

(Bertin Technologies, Versailles, France) 2 ml tubes with beads in the presence of 1 ml 

TRIzol. Subsequently, tissues were homogenized using a pre-chilled Precellys 24 

Homogenizer (PeqLab, Erlangen, Germany) at 5500 rpm for 2 x 30 seconds, before 

continuation with the regular protocol. 

2.3.3 Quantification+of+Nucleic+Acids+

The concentration of DNA or RNA was quantified using a NanoDrop ND-1000 

UV-Vis spectrophotometer (Peqlab, Erlangen, Germany). Both DNA and RNA will absorb 

at 260 nm. The purity of the solution was assessed by the ratio of absorbance between 260 

nm and 280 nm (protein absorbance). A ratio of 1.8 is considered pure for DNA, whereas a 

ratio of 2.0 correlates with pure RNA. 

2.3.4 Polymerase+chain+reaction+(PCR)++

The polymerase chain reaction (PCR) is a method to amplify double-stranded 

DNA fragments of a defined length (Saiki et al., 1985). A typical PCR program consists of 



Material!&!Methods!

 

 40 

a denaturing step (95 - 98 °C), an annealing step (45 – 65°C) and an elongation step (72 

°C). At the beginning, the double stranded DNA is denatured by high temperatures (95-

98°C). The following annealing step enables hybridization of the oligonucleotide primers to 

the single stranded DNA. The used primer pair is complementary to the 3' ends of each of 

the sense and anti-sense strands of the DNA target. The annealing temperature of the 

primers depends on their length and composition. The annealed oligonucleotides are the 

starting point for the elongation by a thermostable DNA polymerase, which uses the free 3’ 

hydroxyl termini for the synthesis of the new strands. Desoxynucleotides (dATP, dCTP, 

dGTP, dTTP) in the reaction mix are incorporated while elongation. These steps are 

repeated in cycles until an adequate amount of DNA is produced. The PCR reactions were 

carried out using a Veriti Thermal Cycler (Applied Biosystems, Life Technologies GmbH, 

Darmstadt, Germany). 

 

Genotyping PCR 

PCR reactions were carried out to determine the correct genotype of mutant mice. 

Based on the tissue specific approach we distinguished between wild type (WT) alleles, 

floxed (LoxP flanked) alleles as well as knock out (KO) alles. In addition, genotyping for 

the transgenic cre-recombinase (Cre) allele, was performed. Primers (purchased from 

Sigma-Alderich, Seelze, Germany) used are found in Table 2.3. 

All PCR amplifications were conducted using the GoTag® DNA polymerase 

(Promega, Mannheim, Germany) in a total reaction volume of 20 µl. For all Dars2 and 

ClpP PCRs, 12.35 µl of dH2O, 4 µl of 5x GoTaqBuffer (Promega), 1 µl of dNTPs    (1.25 

mM each), 0.8 µl of each primer (10 µM), and 0.05 µl of GoTaq (5 U/µl, Promega) were 

added to 1 µl of sample DNA. For Cre PCR, 10.5 µl of dH2O, 4 µl of   5x GoTaqBuffer, 

3.2 µl of dNTPs (1.25 mM each), 0.6 µl of each primer (10 µM) and 0.1 µl of GoTaq (5 

U/µl) were added to 1 µl of sample DNA.  
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+++Table+2.3:+Genotyping+PCR+primer+sequences+

Primer+ Sequence+
Dars25Forward5WT+ ATGAATTCTAGGCCAGCCAC!

Dars25Reverse5WT+ TGGCAATCTCTTAGGACTAAG!

Dars25Forward5KO+ CGCTACCATTACCAGTTGGT!

Dars25Reverse5KO+ TGACTGGCTATAATGCTGAAG!

ClpP5Forward5WT+ GTGGATGATGGTCAGTAGAATCC!

ClpP5Reverse5WT+ CCCAGACATGATTCCTAGCAC!

ClpP5Forward5KO+ TGTGCATTCTTACCATAGTCTGC!

Cre5Forward+ CACGACCAAGTGACAGCAAT!

Cre5Reverse+ AGAGACGGAAATCCATCGCT!

 

PCR cycling conditions for Dars2 and ClpP  

1. Initial denaturation at 95°C for 5 minutes 
2. Denaturation at 95°C for 30 seconds 
3. Annealing at 60°C for 30 seconds 
4. Extension at 72°C for 45 seconds (Dars2) or 1 minute (ClpP) 
5. Final extension at 72°C for 7 minutes 
6. Hold at 4°C 

Steps 2 - 4 were repeated 30 times. 
 
PCR cycling conditions Cre 

1. Initial denaturation at 95°C for 5 minutes 
2. Denaturation at 95°C for 30 seconds 
3. Annealing at 53°C for 30 seconds 
4. Extension at 72°C for 30 seconds 
5. Final extension at 72°C for 7 minutes 
6. Hold at 4°C 

Steps 2 - 4 were repeated 35 times. 

 

 

Cloning PCR 

To amplify on the one hand, the ATF5 or XBP1 open reading frame (ORF) from a 

cDNA mouse library for cloning; and on the other hand, the promoter fragments of Hspd1 

and Hspa9 from genomic DNA to generate promoter reporter constructs, the Phusion® 
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High-Fidelity DNA polymerase kit (New England Biolabs (NEB), Ipswich, USA) was 

used. Primer pairs can be found in Table 2.4. 

All PCR amplifications were conducted in a total reaction volume of 50 µl, with 

the following composition: 24.5 µl of dH2O, 10 µl of 5x GC-Phusion buffer (NEB), 6.5 µl 

of dNTPs (1.25 mM each), 2.5 µl of each primer (10 µM), 1.5 ul DMSO and 0.5 µl of 

Phusion®Taq (2 U/µl, NEB) were added to 1 µl of sample DNA.  

+++Table+2.4:+Cloning+PCR+primer+sequences++

Primer+ Sequence+

Atf55Forward5EcoRI+ GATAGAATTCATGTCACTCCTGGCGACCCT!

Atf55Reverse5SalI+ GATAGTCGACGGTGCTGCGGGTCCTCTG!

Xbp15Forward5HindIII+ GACAAAGCTTATGGTGGTGGTGGCAGC!

Xbp15Reverse5SalI+ GACAGTCGACGAGGCTTGGTGTATACATGG!

Hspd15Foward5AseI+ GACAATTAATTTCCCTGTCTGGTGTGTGT!

Hspd15Reverse5EcoRI+ GACAGAATTCTTCTGGGGAAGGAAAAAAGA!

Hspa95Foward5PciI+ GACAACATGTATGCTCCTCCTGCCTCAGTAT!

Hspa95Reverse5BamHI+ GATAGGATCCTGGACAGAGGGGGTTACG!

 

 

PCR cycling conditions: 

1. Initial denaturation at 98°C for 30 seconds 
2. Denaturation at 98°C for 20 seconds 
3. Annealing at 60°C for 20 seconds 
4. Extension at 72°C for 45 seconds 
5. Final extension at 72°C for 7 minutes 
6. Hold at 4°C 

Steps 2 - 4 were repeated 35 times. 

2.3.5 Reverse+transcriptase+PCR+(gene+expression+analysis)+

Total RNA was isolated either from cell culture or tissue samples as described 

before. Subsequently, DNA contaminations were removed using DNase digestion (DNA-

free Kit, Ambion, Life Technologies GmbH, Darmstadt, Germany). Afterwards, 2 µg RNA 

were subjected to reverse transcription using the High capacity reverse transcription kit 
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(Applied Biosystems, Life Technologies GmbH, Darmstadt, Germany). The resulting 

cDNA was used for quantitative real-time PCR, in which 50 ng of cDNA was amplified 

using either Taqman Assay-on-Demand kits (Applied Biosystems, Life Technologies 

GmbH, Darmstadt, Germany; see Table 2.5) or Brilliant III Ultra-Fast SYBR Green QPCR 

Master Mix (Agilent Technologies, Waldbronn, Germany, see Table 2.6). Real-time PCR 

analysis was carried out in an ABIPRISM 7700 Sequence detector (Applied Biosystems, 

Life Technologies GmbH, Darmstadt, Germany). The target gene expression was assessed 

relative to the endogenous control genes: Hypoxanthine-guanine phosphoribosyltransferase 

(Hprt) or Peptidyl-prolyl cis-trans isomerase A (Ppia). Relative mRNAs levels were 

calculated using the comparative 2−δδCT method according to the ABI Relative 

Quantification Method. 

Table+2.5:+Primers+used+for+SYBR+Green+quantitative+real5time+PCR+

Gene+ Primer+forward+ Primer+reverse+
human#Hsp60+ CTACTGTACTGGCACGCTCTA! CAACAGCTAACATCACACCTCTC!

mouse#Hsp60+ GCCTTAATGCTTCAAGGTGTAGA! CCCCATCTTTTGTTACTTTGGGA!

human+mtHsp70+ TGGTGAGCGACTTGTTGGAAT! ATTGGAGGCACGGACAATTTT!

mouse+mtHsp70+ ATGGCTGGAATGGCCTTAGC! ACCCAAATCAATACCAACCACTG!

human+Lonp1+ GTTCCCGCGCTTTATCAAGAT! GTAGATTTCATCCAGGCTCTC!

mouse+Lonp1+ ATGACCGTCCCGGATGTGT! CCTCCACGATCTTGATAAAGCG!

mouse+Chop+ CTGGAAGCCTGGTATGAGGAT! CAGGGTCAAGAGTAGTGAAGGT!

human+Atf5+ TGGCTCGTAGACTATGGGAAA! ATCAACTCGCTCAGTCATCCA!

mouse+Trap1+ CAGGACAGTTATACAGCACACAG! CTCATGTTTGGAGACAGAACCC!

mouse+Nppa+ ATGGGCTCCTTCTCCATCA! CCTGCTTCCTCAGTCTGCTC!

mouse+Nppb+ GGATCTCCTGAAGGTGCTGT! TTCTTTTGTGAGGCCTTGGT!

mouse+Afg3l2+ GTTGATGGGCAATACGTCTGG! GACCCGGTTCTCCCCTTCT!

mouse+Atf4+ GCAAGGAGGATGCCTTTTC! GTTTCCAGGTCATCCATTCG!

mouse+Ppia+ GAGCTGTTTGCAGACAAAGTTC! CCCTGGCACATGAATCCTGG!

human+Hprt+ TGACACTGGCAAAACAATGCA! GGTCCTTTTCACCAGCAAGCT!

mouse+Hprt+ GCCCCAAAATGGTTAAGGTT! TTGCGCTCATCTTAGGCTTT!

+

+

+

+
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Table+2.6:+Taqman+probes+used+for+quantitative+real5time+PCR+

Gene+ Product+number+
Atf5# Mm00459515_m1!

Fgf21# Mm00840165_g1!

Nd1# Mm04225274_s1!!

Nd5/Nd6# Mm04225315_s1!

Cytb# Mm04225271_g1!

Cox1# Mm04225243_g1!

Cox2# Mm03294838_g1!!

Atp6# Mm03649417_g1!

Hprt# Mm00446968_m1!
 

2.3.6 DNA+gel+extraction+and+PCR+clean+up+

After running the gel at standard conditions the desired band was cut out under UV 

light using a scalpel. The extraction was performed with the QIAquick Gel Extraction Kit 

(Qiagen, Hilden, Germany) according to manufacturer’s instructions. With this technique 

the gel fragment is dissolved at 50 °C under slight acidic conditions. Subsequently, the 

DNA binds to a sepharose column and after a washing step; the DNA can be eluted under 

alkaline conditions. 

The PCR clean up was carried out using the QIAquick PCR Purification Kit 

(Qiagen, Hilden, Germany). An equal volume of acidic buffer was added to the PCR 

reaction mixture and samples were processed as mentioned above. 

2.3.7 Restriction+hydrolysis+of+DNA+

For digestion of DNA exclusively type II restriction endonucleases (NEB, 

Ipswich, USA) were used at a concentration of 2 to 5 units of enzyme per µg of DNA. The 

restriction reaction was performed using an appropriate NEB buffer supplemented with 1% 

BSA if needed at the temperatures recommended by the manufacturer. Incubation time 

varied between 1 to 2 hours for analytical purposes, whereas for preparative approaches the 

incubation time was extended up to 4 hours. 
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2.3.8 Ligation+of+DNA+

Genomic DNA fragments were blunt-end cloned using the Zero Blunt® TOPO® 

PCR Cloning Kit (Invitrogen, Karlsruhe, Germany) generating intermediate cloning 

products. After restriction digest, corresponding DNA fragments were re-ligated using the 

DNA T4 ligase (NEB, Ipswich, USA), which catalyses the formation of phosphodiester 

bonds between juxtaposed 5’phosphate and 3’hydroxyl termini of DNA. The ligation 

reaction was incubated for 1 to 2 hours at room temperature or over night at 16 °C. 

Subsequently, the T4 ligase was heat-inactivated for 15 minutes at 65 °C. Target vector 

peGFP-N3 was obtained from Clontech, Saint-Germain-en-Laye, France. 

2.3.9 Transformation+into+E.+coli+

Generation of competent E. coli 
For the generation of competent E.coli, an adapted version of the protocol 

published by Chung & Miller was used (Chung and Miller, 1988). It is important to use 

only prechilled (0 - 4 °C) buffers, pipettes, tubes and glassware. 

A 5 ml LB medium culture was inoculated with DH5α E.coli bacteria and 

incubated over night at 37 °C. The next day, 100 – 200 ml LB medium were inoculated 

with the overnight culture in the ratio 1:100 and again cultivated at 37 °C under shaking 

(120 rpm). When the suspension reached an OD600 of 0.40 - 0.45 the culture was incubated 

on ice for 5 minutes and was transferred into prechilled 50 ml Falcon tubes. The cells were 

spinned down for 8 minutes at 4500 g and 4 °C. The supernatant was discarded and the 

pellet was carefully resuspended in ice-cold TSS buffer using 1/10 volumes of the original 

culture volume. The competent cells were finally shock frozen in liquid nitrogen as 100 µl 

aliquots. Competent cells can be stored at -80 °C.  

Transformation of competent E. Coli 

An aliquot of 100 µl competent bacterial cells was thawed on ice for 10 minutes. 

Subsequently, about 100 ng of the desired plasmid was added to the competent bacteria. 

After carefully flipping the tube, the solution was incubated for 30 minutes on ice. 
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Thereafter, cells were heat-shocked at 42 °C for 40 - 60 seconds in a water bath. Again, 

cells were incubated on ice for 2 minutes. After incubation 900 µl SOC medium were 

added and the cells were grown for 1 hour at 37 °C while shaking. Cells were then 

collected by centrifugation for 3 minutes at 3000 g and 90% of the supernatant was 

discarded. The remaining medium was used to re-suspend the bacteria. The bacterial 

solution was dispersed on a LB-agar plate containing the appropriate antibiotic. 

2.3.10 Preparative+and+analytical+scale+plasmid+DNA+preparation+

Preparation of large amounts of Plasmid DNA out of E. coli 

An overnight culture of 300 mL LB medium containing an appropriate antibiotic 

was inoculated with bacteria, either from LB-agar plate or directly with transformed cells. 

Cells were incubated overnight at 37°C using a bacterial shaker (New Brunswick Scientific, 

Nürtingen) at 120 rpm. The next day plasmid DNA was extracted using the QIAfilter 

Plasmid Midi/Maxi Kit (Qiagen, Hilden, Germany). The purification was performed 

according to the manufacturer’s instructions. 

Preparation of small amounts of Plasmid DNA out of E. coli 

An overnight culture of 3 mL LB medium supplemented with the appropriate 

antibiotic was inoculated with bacterial colonies cultivated on a LB-agar plate. Cells were 

grown at 37°C and 120 rpm. After incubation the bacteria were harvested by centrifugation 

and pellets were processed using the StrataPrep Plasmid Miniprep Kit (Agilent 

Technologies, Waldbronn, Germany) according to the manufacturer’s protocol. The 

plasmid DNA was eluted with 50 μl H2O. 

2.3.11 Agarose+gel+electrophoresis+

DNA fragments were separated according to their size by agarose gel 

electrophoresis. Through application of an electrical field the DNA moves towards the 

anode due to the negative charge of its phosphate backbone. The velocity of the DNA 

fragment is inversely proportional to the logarithm of its molecular weight. The 
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intercalating fluorescent dye GelRed (Biotium, Hayward, CA) is used to visualize the DNA 

within the gel using short-wave UV light. The actual size can be determined by including a 

DNA ladder, which consists of defined DNA fragments. Depending on the size of the 

expected fragments, different concentrations of agarose (0.5% - 2% [w/v]) were boiled in 

0.5X TBE buffer. After cooling of the agarose solution, GelRed was added in a ratio of 

1:50.000 and subsequently poured into a gel chamber with slot combs. The solidified 

agarose gel was put into an electrophoresis chamber and covered with 0.5X TBE buffer. 

Before applying the samples to the gel, they were either diluted 1:6 with an agarose gel 

loading buffer or non-diluted, when the PCR mix already contained a loading dye. After 

running the gel, it was analysed on a UV table or with the GelDoc system from Biorad 

(Munich, Germany). 

2.3.12 DNA+sequencing+

The sequencing and analysis was carried out by the company GATC (Köln, 

Germany). For that, 400 – 500 ng pure DNA (A260:280: ~1.8) and 25 pmol sequencing 

primers had to be prepared in a volume of 5 µl.  

DNA sequencing was performed using a technique based on the chain-terminator 

method through fluorescent dye-labelled nucleotides. For that, nucleotides are labelled at 

their 3’ hydroxyl termini with fluorescent dyes, each of which emits light at different 

wavelengths. Labelled nucleotides and non-labelled nucleotides are mixed and used for the 

sequencing polymerization. If a labelled nucleotide is incorporated into the DNA fragment, 

the following nucleotide cannot be attached to the previous nucleotide due to the missing 3’ 

hydroxyl terminus and the synthesis reaction will stop. The probability that a longer strand 

is synthesized increases towards the end, because the amount of non-bond labelled 

nucleotides decreases. Automated DNA sequencing instruments carry out capillary 

electrophoresis for size separation, detection and recording of dye fluorescence, which 

results in fluorescent peak trace chromatograms, which are translated into a DNA sequence.  
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2.4 Biochemistry+

2.4.1 Protein+isolation+from+tissues+

Proteins from mice tissues were extracted using organ lysis buffer. At first, a tissue 

cube of 3 mm3 was cut off the respective tissue and transferred into Precellys CK 14 (Bertin 

Technologies, Versailles, France) 2 ml tubes with beads (500 μl of organ lysis buffer). The 

tissues were homogenized using a pre-chilled Precellys 24 Homogenizer (PeqLab, 

Erlangen, Germany) at 5500 rpm for 2x30 seconds. Subsequently, samples were incubated 

for 10 minutes on ice and centrifuged at 13000 rpm for 45 minutes at 4 °C. Next, the 

supernatant was transferred into a fresh tube and the protein concentrations were 

determined using the Bradford reagent (Sigma Aldrich, Seelze, Germany) according to the 

manufacturer's protocol. At last, protein solutions were stored at -80 °C. 

2.4.2 Isolation+of+mitochondria+from+heart+

Mice were sacrificed by cervical dislocation and dissected. Subsequently, the heart 

was transferred into a 50 ml falcon tube containing pre-chilled mitoisolation buffer (MIB). 

Next, the tissue was passed onto a petri dish and cut into small pieces using a razor blade. 

Tissue was weighed and transferred into a glass homogenizer tube and combined with 5 ml 

MIB containing Subtilisin A (1 mg per 1g tissue). The tissue pieces were homogenised 

using a Potter S (Santorius, Göttingen, Germany) homogenizer at 1000 rpm (approx. 20 

long strokes). Then, the homogenate was passed into a 50 ml falcon and centrifuge at 8500 

g at 4 °C for 5 minutes. The supernatant was removed and the pellet was resuspended in 30 

ml MIB by shaking. Again the homogenate was centrifuged at 800 g for 5 minutes at 4°C. 

Afterwards, the supernatant was transferred into a tube and mitochondria were pelleted at 

8500 g at 4 C for 5 minutes. Subsequently, the supernatant was discarded and the residual 

pellet was resuspended in 50 µl MIB. Mitochondria were either processed directly or snap 

frozen in liquid nitrogen for long term storage. The concentration was determined using 

Bradford reagent (Sigma Aldrich, Seelze, Germany) according to the manufacturer's 

protocol. 
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2.4.3 SDS5PAGE+

Sodium dodecyl sulfate polyacryamide gel electrophoresis (SDS-PAGE) was used 

to separate proteins according to their size. The separation of the proteins was performed 

using a discontinuous gel electrophoresis (Laemmli, 1970). The SDS gel is split into two 

parts. The upper part, called stacking gel exhibits bigger pore sizes due to the low amount 

of (bis)acrylamide used, and all proteins concentrate in a small part of the stacking gel 

before uniformly entering the separating gel. In addition, both parts exhibit different pH 

values, which is also important for a clear separation of the proteins. The high amount of 

(bis)acrylamide in the separating gel possesses smaller pores, which enables separation of 

the proteins according to their mass. After the discontinuous gel was solidified, it was 

transferred into a gel chamber containing SDS-PAGE running buffer. SDS-PAGE loading 

buffer was added to 30-50 µg whole protein lysate and subsequently boiled at 95°C for 10 

minutes. After loading the samples as well as the PageRuler™ Prestained Protein Ladder 

(Thermo Fisher Scientific Inc., Schwerte, Germany) onto the gel, electrophoresis was 

carried out at a voltage of 200V for 1 hour. Afterwards, the gel was incubated either with a 

coomassie staining solution to visualize the protein bands or processed in a Western blot in 

order to detect specific proteins.  

 

 

 

 

 

 

 

 

2.4.4 BN5PAGE+and+in5gel+activity+of+respiratory+chain+complexes+I+and+IV+

Separation of protein complexes was performed with a blue native polyacrylamide 

gel electrophoresis (BN-PAGE) using the Novex Bis-Tris system (Life Technologies 

GmbH, Darmstadt, Germany) according to the manufacturer’s protocol. In-gel activities 

were assessed by incubating the BN-PAGE gel in either 0.1 mg/ml NADH, 2.5 mg/ml 

Stacking Gel 

• 4% Acryamide-
Bisacrylamide (37.5:1) 

• 125 mM Tris-HCl (pH 6.8) 
• 0.1% SDS 
• 1.25 % APS 
• 0.125% TEMED 

Separating Gel 

• 10-15% Acryamide-
Bisacrylamide (37.5:1) 

• 375 mM Tris-HCl (pH 8.8) 
• 0.1% SDS 
• 1.25 % APS 
• 0.125% TEMED 
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nitrotetrazolium blue (NTB) diluted in 5mM Tris-HCl (pH 7.4) for complex I; or in 0.24 

unit/ml catalase, 10% Cytochrome C and 0.1% Diaminobenzidine tetrahydrochloride 

(DAB) diluted in 50 mM Tris-HCl (pH 7.4) for complex IV. Both solutions were kept on 

individual gels for 1 hour at room temperature for complex I and at 37°C for complex IV. 

For immunodection of mitochondrial protein complexes, the proteins were transferred from 

the gel onto a PVDF membrane and detected via specific antibodies (see section 2.4.5). 

2.4.5 Western+blot+analysis+

Western blot analysis was performed using the Criterion™ blotting system 

(Biorad, Munich, Germany). After the SDS-PAGE the gel was transferred into Western 

blot transfer buffer and incubated for several minutes. Subsequently, the Western blot was 

assembled in a way that the black side of the cassette was down followed by a fiber pad and 

3 Whatman filter papers (GE Healthcare, Munich, Germany). The gel was placed on top 

followed by a nitrocellulose (GE Healthcare, Munich, Germany) or PVDF membrane 

(Biorad, Munich, Germany). The assembly was completed by 3 additional Whatman filter 

papers and another fiber pad. All components were incubated in Western blot transfer 

buffer for several minutes prior to assembling. Thereafter, the assembly was closed and put 

into the Criterion™ blotter (Biorad, Munich, Germany) and placed in the cold room. 

Western blot transfer buffer was filled inside the buffer tank and an electrical current of 600 

mA was applied for 1 hour. Then the blot was disassembled and nitrocellulose membrane 

were transiently stained with PonceauS (Sigma-Alderich, Seelze, Germany). Subsequently, 

the membrane was put into blocking solution (5% milk powder in TBS-T) and incubated 

for 1 hour at room temperature. Blocking solution can vary, which depends on the antibody 

used and the corresponding instructions of the manufacturer. After blocking the membrane 

was washed 3 times for 5 minutes in TBS-T. Then, the membrane was incubated for 2 

hours at room temperature or over night at 4°C either with the respective antibody (Table 

2.7) each dissolved in TBS-T with 0.5% milk powder. Again, 3 washing steps each for 5 

minutes with TBS-T are needed in order to continue with the secondary antibody (α-mouse 

1:2000 & α-rabbit 1:2000 (Sigma-Alderich, Seelze, Germany); α-goat 1:20000 (Acris, 

Herford, Germany)) typically in TBS-T for 1 hour at room temperature. Finally, the 
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membrane was washed 3 times for 5 minutes in TBS-T and analysed by applying a 

substrate solution, which enabled a specific detection reaction. ECL solution (GE 

Healthcare, Munich, Germany) was used depending on the relative abundance of the 

protein. The chemiluminescence was evaluated using the Imagequant LAS 4000 (GE 

Healthcare, Little Chalfont, United Kingdom). Western blots were quantified relative to 

control levels of housekeeping proteins using the ImageJ software as intensity per mm2. 

Table+2.7:+Primary+antibodies+used+for+Western+blot+analysis+

Antigen+ Distributor+ Dilution+

ACTIN+ Santa!Cruz!(Dallas,!USA)! 1:5000!

AFG3L2+ Polyclonal!antisera!made!by!Prof.!Elena!I.!Rugarli! 1:1000!

ATP5A1+ Mitosciences!(Abcam,!Cambridge,!UK)! 1:1000!

CLPP+ Sigma!Aldrich,!Seelze,!Germany! 1:1000!

DARS2+ Proteintech!(Chicago,!USA)! 1:1200!

HSC70+ Santa!Cruz!(Dallas,!USA)! 1:4000!

HSP60+ StressMarq!(Victoria,!Canada)! 1:10000!

LONP1+ Abcam!(Cambridge,!UK)! 1:1000!

MnSOD+ Millipore!(Merck,!Darmstadt,!Germany)! 1:500!

mtHSP70+ Abcam!(Cambridge,!UK)! 1:1000!

p62/SQSTM1+ Abnova!(Taipei,!Taiwan)! 1:1000!

SDHA+ Invitrogen!(Karlsruhe,!Germany)! 1:10000!

TFAM+ Polyclonal!antisera!made!by!Prof.!Nils6Göran!Larsson! 1:1000!

TRAP1+ BD!Biosciences!(East!Rutherford,!USA)! 1:1000!

eIF2α+ Abcam!(Cambridge,!UK)! 1:1000!

P5eIF2α+ Santa!Cruz!(Dallas,!USA)! 1:1000!

VDAC+ Cell!Signalling!(Cambridge,!UK)! 1:1000!

TOM20+ Santa!Cruz!(Dallas,!USA)! 1:1000!

ATF5+ Abcam!(Cambridge,!UK)! 1:500!

NDUFA9+ Invitrogen!(Karlsruhe,!Germany)! 1:1000!



Material!&!Methods!

 

 52 

NDUFB6+ Invitrogen!(Karlsruhe,!Germany)! 1:1000!

NDUFS3+ Mitosciences!(Abcam,!Cambridge,!UK)! 1:1000!

UQCRC1+ Invitrogen!(Karlsruhe,!Germany)! 1:1000!

UQCRFS1+ Mitosciences!(Abcam,!Cambridge,!UK)! 1:1000!

COX1+ Invitrogen!(Karlsruhe,!Germany)! 1:1000!

COX4I1+ Invitrogen!(Karlsruhe,!Germany)! 1:1000!

 

 

Immunoblot stripping 
In order to analyse another protein of interest on the same membrane with 

different primary and secondary antibodies, it is possible to remove the initially used 

antibodies from the membrane. This procedure is called stripping. For this the 

nitrocellulose membrane was incubated with pre-warmed stripping buffer for 30 minutes at 

55°C in water bath under agitation. The combination of heat and strong denaturing agents 

as SDS and β-mercaptoethanol strip the antibodies off the blot. Subsequently, the 

membrane was rinsed 5-7 times with TBS-T for 5 min each in order to remove denaturing 

agents. The immunoblot could then be treated as a freshly blotted membrane.  

2.4.6 Oxygen+consumption+rates+

Mitochondria were isolated from heart (section 2.4.2) and oxygen consumption 

rates were assessed using the OROBOROS Oxygraph-2k for high-resolution respirometry 

(Oroboros Insturments, Vienna, Austria). Firstly, the mitochondrial complex I respiration 

was measured by applying 2 mM ADP, 5 mM pyruvate, 2 mM malate, and 20 mM 

glutamate. Subsequently, the combined complex I + complex II respiration was determined 

by further adding 10 mM of succinate. Next, coupling of mitochondria was analysed by 

inhibition of the ATP synthase by supplementing 1.5 μg/ml oligomycin and uncoupling by 

a multiple-step carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) titration. All 

measurements were conducted using 25 μg of purified mitochondria. 
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2.4.7 In#organello+translation+

In organello translation was performed using 1-2 mg of freshly isolated 

mitochondria that were incubated in “hot” translation buffer containing 0.25 mCi/ml 35S-

met for 1 hour (Pulse) at 37°C on a rotating wheel. Next, half of mitochondria were lysed 

using SDS-PAGE loading buffer, whereas the other half was incubated for another 3 h in 

“cold” translation buffer containing all aminoacids, including non-radioactive methionine 

(chase). Subsequently, chased mitochondria were also lysed and both fractions were 

separated using SDS-PAGE. To assess loading, the gel was stained with coomassie staining 

solution. The gel was then incubated in 5% glycerol as well as Amplify solution (GE 

Healthcare, Munich, Germany) and dried at 80 °C for 2 hours using a Model 583 Gel Dryer 

(Biorad, Munich, Germany). Finally, newly produced polypeptides were detected using 

autoradiography. 

Quantification of de novo protein synthesis rate was assessed by analysis of 

densitometric profiles obtained from scanned films in each condition. Either the whole 

range (overall rate) or only fractions (proficient or abortive) of newly synthetized proteins 

were quantified and normalized to their respective control conditions. The turnover rate of 

de novo protein synthesis was assessed as ratio of chase/pulse for the whole range of 

proteins (overall rate) or only for full-length polypeptides (Proficient). Individual fractions 

were also correlated with each other to determine their relative production rates. 

2.5 Histological+analysis+

2.5.1 Cryostat+sections+

For cryostat sections, mice were sacrificed and hearts were isolated and 

immediately embedded in Tissue-Tek (Sakura, Alphen aan den Rijn, The Netherlands). The 

trays containing the embedded heart were then place onto dry ice that allowed freezing of 

the Tissue-Tek. Subsequently, hearts were stored at -80 °C. Hearts were sectioned on a 

Leica CM1850 cryostat with a thickness of 7 µm. Heart sections were immediately 

mounted on glass slides and kept at -20 °C. 
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2.5.2 COX5SDH+staining+

Mounted cryosections were subjected to COX/SDH staining. First, sections were 

dried at room temperature for 1 hour and a hydrophobic circle was drawn around the slide-

mounted tissue using a PAP pen (Sigma-Aldrich, Seelze, Germany). Subsequently, slides 

were incubated in COX solution (0.8 ml 3,3 diaminobenzidine tetrahydrochloride, 0.2 ml 

500 µM cytochrome c, a few grains of catalase) at 37 °C for 40 minutes in a humid 

chamber. After a washing step in PBS, the sections were incubated in SDH solution (0.8 ml 

1.875 mM Nitroblue tetrazolium, 0.1 ml 1.3 M sodium succinate, 0.1 ml 2 mM Phenazine 

methosulphate, 0.01 ml 100 mM Sodium azide) for 90 minutes at 37 °C in a humid 

chamber. Next, sections were washed again in PBS and dehydrated with increasing ethanol 

concentration (75% for 2 minutes, 95% for 2 minutes, 100% for 10 minutes). Finally, 

stained sections were air dried and mounted in DPX Mountant (VWR, Darmstadt, 

Germany). Light microscopic imaging was performed using a Leica SCN400 slide scanner 

(Leica Microsystems, Wetzlar, Germany). 

2.5.3 Masson’s+trichrome+staining+

Masson’s trichrome staining was conducted on slide-mounted tissue sections using 

the Trichrome Stain (Masson) kit (Sigma Aldrich, Seelze, Germany), according to the 

manufacturer's protocol. Light microscopic imaging was carried out using a Leica SCN400 

slide scanner (Leica Microsystems, Wetzlar, Germany). 

2.6 Label5free+quantification+of+the+mitochondrial+proteome+

In-gel digestion 

Mitochondrial protein extracts were separated by SDS-PADE and subsequently 

stained with a coomassie staining solution to visualize the protein bands. In general, the in-

gel digestion was performed according to a previously published protocol (Shevchenko et 

al., 2006). In brief, each gel lane was divided into 6 parts and cut into small 1mm2 cubes 

using a razor blade. Subsequently, gel pieces were washed several times and proteins were 
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reduced (10 mM DTT at 56 °C for 30 minutes) and alkylated (IAA, 30 minutes, room 

temperature in the dark). After another washing step, a dehydration step using ethanol and a 

rehydration step using 50 mM Ammonium bicarbonate. Afterwards, trypsin (40 µl of 12 

ng/µl stock solution) was added to each tube, followed by 30 minutes incubation on ice. 

Next, gel pieces were covered with 50 mM Ammonium bicarbonate solution and incubated 

overnight at 37°C. Increasing amounts of acetonitrile were used to extract the generated 

peptides and further concentrated using a vacuum concentrator (Eppendorf, Hamburg, 

Germany). Peptides were primed using the STAGE tip technique before LC-MS/MS 

analysis was conducted (Rappsilber et al., 2003). 

Liquid chromatography and mass spectrometry 
The liquid chromatography and mass spectrometry (LC-MS/MS) device was made 

up of an EASY n-LC (Thermo Scientific, Waltham, USA) linked via a nano-electrospray 

ionization source (Thermo Scientific, Waltham, USA) to an ion-trap based bench top LTQ 

Discovery instrument (Thermo Scientific, Waltham, USA). An in-house packed 15 cm 

column (3 µm C18 beads, Dr. Maisch, Ammerbuch-Entringen, Germany) was loaded with 

4 µl of peptide mixture. Peptides were separated using a binary buffer system consistent of 

0.1% acetic acid (buffer A) and 0.1% acetic acid in acetonitrile (buffer B). Buffer B content 

was linearly increased from 7% to 20% within 220 minutes and further elevated to 40% 

within 60 minutes more. Subsequently, the column was washed with 95% buffer B and 

incubated for 20 minutes. The flow-rate was set to constant 200 nl/min throughout the 

complete gradient. To blank and re-equilibrate the column, it was washed after each run 

with 5% buffer B. 

Peptides were ionized during elution from the column by an applied voltage of 1.8 

kV. The capillary voltage was adjusted to 44 V and Multipole RF Amplifier (Vp-p) was set 

to 400. For the first MS scans a resolution of 30.000 (400 m/z), a maximal injection time of 

500 milliseconds, and an automatic gain control (AGC) target of 2E5 was used. The 10 

most pronouced peaks were used for the second MS level scans. A resolution of 7.500 (400 

m/z), an AGC target of 1E54, an isolation window of 3.0 Th, and a maximal injection time 

of 200 milliseconds was applied. The normalized collision energy for CID scans was 35 
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and the activation time for second MS scans was 30 milliseconds. The waveform setting 

was enabled for both scan types. 

MaxQuant processing and data analysis 

Raw data were analysed and processed by MaxQuant 1.5.1.0 and the integrated 

Andromeda search engine (Cox and Mann, 2008; Cox et al., 2011). MS/MS spectra were 

blasted against the mouse Uniprot database (downloaded February 2015) including a list of 

common contaminants. Search criteria were applied as the following: minimal peptide 

length: 7 amino acids, mass tolerances for MS/MS spectra was 0.5 Dalton. The 

implemented decoy algorithm estimated the false discovery rate (FDR) to 1%. Label-free 

quantification intensities were log2 transformed and evaluated for using a two-sided t-test. 

To further correct multiple testing errors the FDR was calculated by a permutation-based 

algorithm using a FDR cut off of 5% and fudge-factor s0 of 0.1. To determine significantly 

enriched GO terms we applied the 1D enrichment tool in Perseus (Cox and Mann, 2012). 

Data were visualized in the statistical environment R. 

2.7 Densitometry+analysis+

In order to measure the optical density as intensity (dynamic range of grey scale) 

per mm2 of scanned films or CCD camera obtained pictures the public domain software 

Image J (National Institutes of Health (NIH) Image for Macintosh) was used. Densitometric 

values were normalized relative to control conditions. 

2.8 Statistical+analysis+

Statistical calculations were conducted using Microsoft Excel (Microsoft Corp., 

Redmond WA, USA) and GraphPad Prism (GraphPad Software, Inc., La Jolla CA, USA). 

In general, a two-tailed unpaired student’s t-test was used to determine statistical 

significance unless otherwise specified in the respective experiment. All p values below 

0.05 were considered significant. Error bars represent standard error of the mean (S.E.M.). 

*p<0.05 ; **p<0.01 ; ***p<0.001; ****p<0.0001. 
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2.9 Chemicals+and+biological+material+

Table+2.8:+Cell+culture++

Name+ Supplier+

DMEM+(Dulbecco's+Modified+Eagle+
Medium)+Glutamax+

Gibco!Life!Technologies,!Karlsruhe,!Germany!

Fetal+bovine+serum+(FBS)+ Merck,!Darmstadt,!Germany!

Lipofectamine+RNAiMAX++ Invitrogen,!Karlsruhe,!Germany!

Lipofectamine+2000++ Invitrogen,!Karlsruhe,!Germany!

MitoTrackerRed+CMXRos++ Invitrogen,!Karlsruhe,!Germany!

OptiMEM+ Gibco!Life!Technologies,!Karlsruhe,!Germany!

PBS++ Gibco!Life!Technologies,!Karlsruhe,!Germany!

Penicillin5Streptomycin+ Gibco!Life!Technologies,!Karlsruhe,!Germany!

Trypan+blue++ Gibco!Life!Technologies,!Karlsruhe,!Germany!

TrypLE+Express++ Gibco!Life!Technologies,!Karlsruhe,!Germany!

 

Table+2.9:+Enzymes,+Markers+and+kits+

Name+ Supplier+
Amplify+solution++ GE!Healthcare,!Munich,!Germany!

Bradford+reagent++ Sigma!Aldrich,!Seelze,!Germany!

Brilliant+ III+ Ultra5Fast+ SYBR+ Green+
QPCR+Master+Mix++

Agilent!Technologies,!Waldbronn,!Germany!

Catalase,+bovine+liver+ Sigma!Aldrich,!Seelze,!Germany!

Creatine+ Phosphokinase+ Type+ III,+
bovine+

Sigma!Aldrich,!Seelze,!Germany!

Cytochrome+C,+bovine+heart+ Sigma!Aldrich,!Seelze,!Germany!

DNA+T4+ligase++ NEB,!Ipswich,!USA!

DNase+digestion+(DNA5free+Kit)++ Ambion,! Life! Technologies! GmbH,! Darmstadt,!

Germany!

DPX+Mountant+ VWR,!Darmstadt,!Germany!

ECL+solution++ GE!Healthcare,!Munich,!Germany!

GelRed++ Biotium,!Hayward,!CA!

GoTag+DNA+polymerase++ Promega,!Mannheim,!Germany!

High+capacity+reverse+transcription+
kit++

Applied! Biosystems,! Life! Technologies! GmbH,!

Darmstadt,!Germany!

Mowiol+ Sigma6Alderich,!Seelze,!Germany!
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Novex+Bis5Tris+system+ Life!Technologies!GmbH,!Darmstadt,!Germany!

PageRuler+Prestained+Protein+
Ladder++

Thermo! Fisher! Scientific! Inc.,! Schwerte,!

Germany!

Phusion+High5Fidelity+DNA+
polymerase+kit+

NEB,!Ipswich,!USA!

Proteinase+k+ AppliChem,!Darmstadt,!Germany!

QIAfilter+Plasmid+Midi/Maxi+Kit++ Qiagen,!Hilden,!Germany!

QIAquick+Gel+Extraction+Kit++ Qiagen,!Hilden,!Germany!

QIAquick+PCR+Purification+Kit++ Qiagen,!Hilden,!Germany!

Sigmafast+protease+inhibitor+
cocktail+tablets+

Sigma6Alderich,!Seelze,!Germany!

StrataPrep+Plasmid+Miniprep+Kit++ Agilent!Technologies,!Waldbronn,!Germany!

Subtilisin+A+ Sigma!Aldrich,!Seelze,!Germany!

Taqman+Assay5on5Demand+kits++ Applied! Biosystems,! Life! Technologies! GmbH,!

Darmstadt,!Germany!

Trichrome+Stain+(Masson)+kit++ Sigma!Aldrich,!Seelze,!Germany!

TRIzol+ Life!Technologies!GmbH,!Darmstadt,!Germany!

trypsin+ Sigma!Aldrich,!Seelze,!Germany!

type+II+restriction+endonucleases++ NEB,!Ipswich,!USA!

Zero+Blunt+TOPO+PCR+Cloning+Kit++ Invitrogen,!Karlsruhe,!Germany!

 

Table+2.10:+Chemicals+

Name+ Supplier+

35Indoleacetic+acid+(IAA)+ Sigma!Aldrich,!Seelze,!Germany!
35S5met+ Perkin6Elmer,!Waltham,!USA!

Acetic+acid+ AppliChem,!Darmstadt,!Germany!

Acetonitrile+ Sigma!Aldrich,!Seelze,!Germany!

Acryamide5Bisacrylamide+40+ Carl!Roth,!Karlsruhe,!Germany!

Adenosine+5’5diphosphate+sodium+salt+ Sigma!Aldrich,!Seelze,!Germany!

Adenosine+5’5triphosphate+disodium+
salt+(ATP)+

Sigma!Aldrich,!Seelze,!Germany!

Agarose+LE+ Ambion,! Life! Technologies! GmbH,!

Darmstadt,!Germany!

Albumin+from+bovine+serum+fatty+acid+
free+(BSA)+

Sigma!Aldrich,!Seelze,!Germany!

Amino+acids+ Sigma!Aldrich,!Seelze,!Germany!

Ammonium+bicarbonate+ Sigma!Aldrich,!Seelze,!Germany!
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Ammonium+persulfate+(APS)+ Sigma!Aldrich,!Seelze,!Germany!

Antimycin+A+ Sigma!Aldrich,!Seelze,!Germany!

Boric+Acid+ Sigma!Aldrich,!Seelze,!Germany!

Bromophenol+blue+ Merck,!Darmstadt,!Germany!

Carbonyl+ cyanide545(trifluoromethoxy)+
phenylhydrazone+(FCCP)+

Sigma!Aldrich,!Seelze,!Germany!

Chlormaphenicol+ Sigma!Aldrich,!Seelze,!Germany!

Coomassie+Brilliant+Blue+R5250+ Merck,!Darmstadt,!Germany!

DAPI++ AppliChem,!Darmstadt,!Germany!

Diaminobenzidine+tetrahydrochloride+
(DAB)+

Sigma!Aldrich,!Seelze,!Germany!

Diethyl+Malate+ Sigma!Aldrich,!Seelze,!Germany!

Dimethylsulfoxide+(DMSO)+ Sigma!Aldrich,!Seelze,!Germany!

Disodium+phosphate+(Na2HPO4)+ Sigma!Aldrich,!Seelze,!Germany!

Dithiothreitol+(DTT)+ Sigma!Aldrich,!Seelze,!Germany!

Doxycycline+monohydrate+ Sigma!Aldrich,!Seelze,!Germany!

Ethanol+ AppliChem,!Darmstadt,!Germany!

Ethylenediaminetetraacetic+acid+
(EDTA)+

Sigma!Aldrich,!Seelze,!Germany!

Glucose+ Merck,!Darmstadt,!Germany!

Glycerol+ Sigma!Aldrich,!Seelze,!Germany!

Glycine+ AppliChem,!Darmstadt,!Germany!

Guanosine+ 5’triphosphate+ sodium+ salt+
hydra+

Sigma!Aldrich,!Seelze,!Germany!

HEPES+ AppliChem,!Darmstadt,!Germany!

Hydrochloric+acid+(HCl)+ VWR,!Langenfeld,!Germany!

Isopropanol+ AppliChem,!Darmstadt,!Germany!

L5Glutamic+Acid+ Sigma!Aldrich,!Seelze,!Germany!

Magnesium+chloride+hexahydrate+ Sigma!Aldrich,!Seelze,!Germany!

Magnesium+sulfate+(MgSO4)+ Merck,!Darmstadt,!Germany!

Methanol+ AppliChem,!Darmstadt,!Germany!

Methyl+viologen+dichloride+hydrate+
(Paraquat)+

Sigma!Aldrich,!Seelze,!Germany!

Milk+powder+ AppliChem,!Darmstadt,!Germany!

Monopotassium+phosphate+(KH2PO4)+ Sigma!Aldrich,!Seelze,!Germany!

Nicotinamide+adenine+dinucleotide+
reduced+Sodium+salt+(NADH)+

Sigma!Aldrich,!Seelze,!Germany!

Nitrotetrazolium+blue+(NTB)+ Sigma!Aldrich,!Seelze,!Germany!
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Oligomycin+ Sigma!Aldrich,!Seelze,!Germany!

Paraformaldehyde+ Sigma!Aldrich,!Seelze,!Germany!

Peptone+from+meat+ Merck,!Darmstadt,!Germany!

Phenazine+methosulphate+(PMS)+ Sigma!Aldrich,!Seelze,!Germany!

Phosphocreatine+disodium+salt+
hydrate+enzymatic+

Sigma!Aldrich,!Seelze,!Germany!

Polyethylenglycol++ Sigma!Aldrich,!Seelze,!Germany!

PonceauS+ Sigma!Aldrich,!Seelze,!Germany!

Potassium+chloride+(KCl)+ AppliChem,!Darmstadt,!Germany!

Rotenone+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+azide+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+chloride+(NaCl)+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+deoxycholate+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+dodecyl+sulfate+(SDS)+ AppliChem,!Darmstadt,!Germany!

Sodium+fluoride+(NaF)+ AppliChem,!Darmstadt,!Germany!

Sodium+hydroxide+(NaOH)+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+orthovanadat+ AppliChem,!Darmstadt,!Germany!

Sodium+pyruvate+ Sigma!Aldrich,!Seelze,!Germany!

Sodium+succinate+dibasic+hexhydrate+ Sigma!Aldrich,!Seelze,!Germany!

Sucrose+ Sigma!Aldrich,!Seelze,!Germany!

Tetramethylethylenediamine+(TEMED)+ Sigma!Aldrich,!Seelze,!Germany!

Tris+ Sigma!Aldrich,!Seelze,!Germany!

Triton+X5100+ Sigma!Aldrich,!Seelze,!Germany!

Tryptone+Biochemica+ AppliChem,!Darmstadt,!Germany!

Tween520+ VWR,!Langenfeld,!Germany!

Uridine+ Sigma!Aldrich,!Seelze,!Germany!

Yeast+extract+granulate+for+
Microbiology+

Merck,!Darmstadt,!Germany!

β5mercaptoethanol+ Sigma!Aldrich,!Seelze,!Germany!

 

Table+2.11:+Buffers+and+solutions+

Name+ Composition+
Coomassie+staining+solution+(1l)+
+

1g!Coomassie!Brilliant!Blue!R6250!

500!ml!Methanol!

100!ml!Acetic!acid!

400!ml!H2O!
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LB+medium+(1+l)+
+

10g!!Tryptone/Peptone!

5g!Yeast!extract!

10g!NaCl!

!

Solve!ingredients!in!800mL!dH2O!and!adjust!pH!

to! 7.5!with!NaOH.! Thereafter! fill! up! to! 1L!with!

dH2O!and!sterilize!by!autoclaving.!

Mitoisolation+buffer+(MIB)++ 100!mM!sucrose!

50!mM!KCl!

1!mM!EDTA!

20!mM!TES!

0,2%!BSA!free!from!fatty!acids!

!

adjust!pH!to!7.2!

Organ+lysis+buffer++
+

50!mM!HEPES!(pH!7.4)!

50!mM!NaCl!

10!mM!EDTA!

1%!Triton!X6100!

10!mM!sodium!orthovanadat!

100!mM!NaF!

0.1%!SDS!

1!tablet!of!protease!inhibitor!cocktail!

PBS+ 1.5mM!KH2PO4!

2.7mM!KCl!

8.1mM!Na2HPO4!

137mM!NaCl!

RIPA+buffer++
+

50!mM!Tris6HCl!(pH!7.4)!

150!mM!NaCl!

0.5%!Sodium!deoxycholate!

0.1%!SDS!

1!mM!EDTA!!

10!mM!NaF!

SDS5PAGE+loading+buffer++
+

50!mM!Tris6HCl!(pH!6.8)!

2%!SDS!

10%!Glycerol!

1%!β6Mercaptoethanol!

12.5!mM!EDTA!

0.02%!Bromophenol!Blue!
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SDS5PAGE+running+buffer++
+

25!mM!Tris6HCl!(pH!8.3)!

250!mM!Glycine!

0.1%!SDS!

SOC+medium+
+

0.5%!Yeast!extract!

2%!Tryptone/Peptone!

10mM!NaCl!

2.5mM!KCl!

20mM!Glucose!

10mM!MgCl2!

10mM!MgSO4!

Dissolve!in!nanopure!water!and!autoclave.!

Stripping+buffer++ 62.5!mM!Tris!(pH!6.7)!

2%!SDS!

0.78%!β6Mercaptoethanol!

TBE+buffer++ 89!mM!Tris6HCl!(pH!8)!

89!mM!Boric!acid!

2!mM!EDTA!

TBS5T++
+

50!mM!Tris6HCl!(pH!7.6)!

150!mM!NaCl!

0.05%!Tween620!

Tissue+lysis+buffer++
+

50!mM!Tris6HCl!(pH!8.0)!

2.5!mM!EDTA!

0.5%!SDS!!

0.1!M!NaCl!

10!mg/ml!Proteinase!K!

TSS+medium+ 10%!Polyethylenglycol!!

5%!DMSO!

50mM!MgCl2!

Dissolve!in!LB!medium!(pH!6.5)!and!sterile!filter!

it.!

Western+blot+transfer+buffer++
+

25!mM!Tris6HCl!

192!mM!glycine!

0.1%!SDS!

20%!methanol!
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3 Results+

3.1 +Modelling+UPRmt+signalling+in#vitro#

3.1.1 HSP60+and+mtHSP70+are+not+suitable+as+markers+for+UPRmt+induction+
in#vitro++

Mutant mitochondrial proteins have no effect on HSP60 & mtHSP70 levels 

The mitochondrial chaperones HSP-60 and HSP-6 are used in C. elegans as 

markers to measure the induction of UPRmt signalling (Yoneda et al., 2004). The 

corresponding mammalian homologues are HSP60 and mtHSP70. HSP60 (also known as 

CPN60) was also observed to be upregulated in ρ0 cells and upon transfection of a defective 

mitochondrial matrix protein, a truncated ornithine decarboxylase (ΔOTC) (Martinus et al., 

1996; Zhao et al., 2002). No effect was reported on mtHSP70 levels. To study the effects of 

mutant mitochondrial proteins on the levels of HSP60 & mtHSP70, the ΔOTC plasmid 

(kindly provided by Nicolas Hoogenraad) was also transfected into COS-7 cells mimicking 

the original experiment (Figure 3.1A). On the protein level of the indicated markers no 

difference was observed compared to control conditions in contrast to what was reported 

before (Zhao et al., 2002). To further explore the potential of ΔOTC to induce UPRmt, its 
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reactivity in HEK293FT cells was tested and HSP60 as well as mtHSP70 were measured 

on both protein and mRNA level (Figures 3.1B-C). No changes were detected on the 

protein level, whereas a slight upregulation in mtHSP70 mRNA levels were found. A 

second question arising was whether disturbing the mitochondrial import machinery has an 

impact on the load of unfolded proteins in the intermembrane space as well as on the 

functionality of matrix proteins. To answer this question, the effect of a mutant 

TIM14/DNAJC19 (TIM14ΔH3) form (kindly provided by Thomas Langer) was 

investigated that is a part of the TIM23 import machinery shown to directly interact with 

mtHSP70 in yeast (Mokranjac et al., 2003). Moreover, in C. elegans it was found that 

downregulation of TIM-23 or TIM-17 strongly induced hsp-60::gfp expression (Nargund et 

al., 2012; Rainbolt et al., 2013). Transfection of HEK293FT cells with a plasmid carrying 

TIM14ΔH3 did not change the levels of HSP60 and mtHSP70 on both protein and mRNA 

level (Figures 3.1B-C). Taken together, no elevation of HSP60 and mtHSP70 was observed 

upon transfection of mutant mitochondrial proteins. As for both HSP60 and mtHSP70 very 

high endogenous levels were found, it could be concluded that those proteins are rather 

stably expressed, and hence are not very amenable to transient stress induction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure+3.1:+Mutant+mitochondrial+proteins+do+not+affect+HSP60+and+mtHSP70+levels.+
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Figure+3.1:+Mutant+mitochondrial+proteins+do+not+affect+HSP60+and+mtHSP70+levels.+
(A)!COS67!cells!were!transfected!with!a!ΔOTC!containing!plasmid!and!incubated!for!48!hours.!Subsequently,!

proteins!were!isolated!and!subjected!to!Western!blot!analysis.!(B6C)!HEK293FT!cells!were!transfected!with!

either! a! ΔOTC! or! TIM14ΔH3! containing! plasmid! and! incubated! for! 48! hours.! Subsequently,! proteins! and!

mRNAs!were!isolated!and!subjected!to!Western!blot!analysis!or!realtime!PCR,!respectively.!HSC70!serves!as!

control!(CTRL).!mRNA!levels!were!normalised!to!HPRT.!Bars!represent!mean!±!S.E.M.!(Student’s!t!test,!*p!<!

0.05),!(n=3).!

 

Stress induction had mild or no effects on HSP60 & mtHSP70 levels 

In order to find potential factors that upregulate UPRmt signalling in vitro, different 

chemical compounds compromising mitochondrial function were applied and screened for 

induction of HSP60 and mtHSP70 in various cell lines. In C. elegans it was shown that the 

ROS generating complex I inhibitor paraquat triggered the UPRmt as displayed by induction 

of hsp-60::gfp as well as hsp-6::gfp reporters (Yoneda et al., 2004). Also rotenone, 

targeting ubiquinone of complex I, and antimycin A, preventing electron transfer from 

coenzyme Q to cytochrome C, have been found to activate ROS-induced UPRmt (Runkel et 

al., 2013). On the other hand, inhibition of mitochondrial translation by exposure to low 

doses of chloramphenicol and doxycycline also induced UPRmt signalling in worms 

(Houtkooper et al., 2013). Based on these observations, the same set of chemicals was 

applied to different cell lines for 48 hours and measured HSP60 and mtHSP70 protein 

levels (Figure 3.2). Unlike what was described in C. elegans, only little or no effects were 

observed on the levels of these two suggested markers using a direct readout by Western 

blot. Having no effect on MEFs and HeLa cells (Figure 3.2A and 3.2F), a slight decrease in 

protein levels was found in C2C12, Hepa 1-6 and COS-7 cells (Figures 3.2 B-D). The only 

minor upregulation was observed in HEK293FT cells (Figure 3.2 E). Taken together, on 

protein level HSP60 and mtHSP70 barely respond to the previously described chemicals in 

cell lines of human, mouse and monkey origin.  
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Figure+3.2:+UPRmt5inducing+agents+do+not+affect+HSP60+and+mtHSP70+levels.+
Different!cell!types!were!treated!with!ROS6inducing!agents!(25!μM!paraquat!(PQ),!100!nM!rotenone!(ROT),!

20!nM!antimycin!A!(AMA))!or!mitochondrial! translation! inhibitors! (50!μg/ml!chloramphenicol! (CAM)!or!30!

μg/ml! doxycycline! (DOX))! for! 48!hours.! The!medium!was! supplemented!with! 50!μg/ml! uridine,! since! it! is!

known!that!cells!without!full!mitochondrial!gene!expression!become!auxotrophic!for!pyrimidines!(King!and!

Attardi,! 1989).! Cell! lysates!were! subjected! to!Western! blot! analysis.! ACTIN! serves! as! control! (CTRL).! The!

quantification!relative!to!the!CTRL!levels!can!be!found!in!the!diagrams!below.!Black!bars!display!the!HSP60!

levels,!whereas!grey!bars!display!the!mtHSP70!levels.!This!small6scale!screen!was!only!performed!once.!
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Hsp60 and mtHsp70 transcriptional reporters are constitutively active in vitro 

In C. elegans the readout for transcriptional activation of the hsp-6 or hsp-60 gene, 

hence the induction of UPRmt signaling, is measured by transcriptional reporters that drive 

GFP expression (Yoneda et al., 2004). Also for cell culture studies transcriptional reporters 

driving luciferase (LUC) or chloramphenicol acetyltransferase (CAT) were used to measure 

UPRmt induction (Zhao et al., 2002). Typically, a transcriptional reporter consists of a 

promoter fragment of a few kilobases upstream of the start codon that harbours a 

significant amount of the cis-regulatory information necessary to provide expression 

pattern of the endogenous gene under study. To examine the transcriptional activation in 

cell culture reporter constructs were generated under the control of the Hspd1 (Hsp60) or 

Hspa9 (mtHsp70) promoter fragment of approx. 2 kb size driving GFP expression (Figures 

3.3, 3.4 and 3.5A). Promoter sequences were retrieved and predicted transcription start sites 

(TSS) assigned using the TRED database (Zhao et al., 2005). For both Hspd1 and Hspa9 

three possible TSSs were found (Figure 3.3 and 3.4). The Hspd1 gene is co-regulated with 

the Hspe1 (Hsp10) gene sharing one bidirectional promoter (Hansen et al., 2003).          

Cis-acting transcriptional elements were analysed and assigned to the respective promoter 

sequence (Figure 3.3 and 3.4). Apart from regular promoter motifs, both contained a heat 

shock element (HSE) that is activated by specific transcription factors upon heat shock or 

protein folding perturbations (Ryan et al., 1997). In addition, the Hspd1 promoter contains 

a CHOP responsive element that cannot be found in Hspa9 promoter region. Instead, the 

Hspa9 promoter harbours a motif associated to the tricarboxylic acid cycle (TCA motif) 

(Cora et al., 2004). Reporter constructs that detect transcriptional activation of Hspd1 

(pHSPD1-GFP) and Hspa9 (pHSPA9-GFP) were transfected into COS-7 as well as 

HEK293FT cells without further stress application (Figure 3.5B). A moderate to strong 

GFP expression was observed in both COS-7 and HEK293FT cells using the Hspd1 as well 

as the Hspa9 reporter that was comparable to the CMV promoter driven GFP expression 

(Control). Given the fact that no stress was applied to the cells, the data suggest that both 

genes are constitutively active in both cell types under regular cell culture conditions.  

 

 

 
 



Results!

 

 68 

Figure+3.3:+Sequence+of+the+mouse+Hspd1/Hspe1+promoter+region.++
The!nucleotide!position!+1!corresponds! to! the! start!of! the!open! reading! frame! (ORF)!of!Hspd1.! Predicted!

transcription! start! sites! (TSS)! are! depicted! in! red.! Potential! cis6acting! elements! of! interest! are! shown!

underneath!the!sequence.!Cis6regulatory!elements!were!assigned!according!to!(Aldridge!et!al.,!2007;!Cora!et!

al.,!2004;!Smale!and!Kadonaga,!2003). 



Results!

 

 69 

 

Figure+3.4:+Sequence+of+the+mouse+Hspa9+promoter+region.+
The!nucleotide!position!+1!corresponds! to! the! start!of! the!open! reading! frame! (ORF)!of!Hspa9.! Predicted!

transcription! start! sites! (TSS)! are! depicted! in! red.! Potential! cis6acting! elements! of! interest! are! shown!

underneath!the!sequence.!Cis6regulatory!elements!were!assigned!according!to!(Aldridge!et!al.,!2007;!Cora!et!

al.,!2004;!Smale!and!Kadonaga,!2003).!
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Figure+3.5:+Hspd1+and+Hspa9+reporters+are+active+under+regular+cell+culture+conditions.++
(A)! Schematic! outline!of! the! reporter! assay.!A!CMV! promoter! upstream!of! the!GFP! coding! sequence!was!

used!as!control.!Numbers!indicate!the!size!of!the!assigned!promoter!regions!upstream!of!the!respective!ORF!

that!was!cloned!upstream!of!the!GFP!gene.!(B)!COS67!and!HEK293FT!cells!were!transfected!with!pEGFP6N3!

(CMV::GFP);! pHSPD16GFP! and! pHSPA96GFP! respectively! and! incubated! for! 24! hours.! Levels! of! GFP!

expression!were!analysed!using!fluorescence!microscopy.!White!scale!bars,!100!μm.!
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3.1.2 Downregulation+of+UPRmt+signalling++

Based on the observation that HSP60 and mtHSP70 are highly expressed in 

regular cell culture and stress induction did not further increase their levels, the question 

was asked vice versa whether reduction of UPRmt signalling affects their levels, thereby 

yielding new insights into this fundamental process. 

3.1.2.1 Physiological+oxygen+conditions+do+not+influence+the+HSP60+&+mtHSP70+
levels+

Cells are routinely cultured under atmospheric oxygen conditions (approx. 21%) 

in the majority of cell culture laboratories. However, in vivo, the oxygen concentrations 

range from 1-12% rather than the 21% ex vivo. These differences already alter cellular 

functions, especially challenging mitochondria and oxidative metabolism. It has been 

shown that reduction of oxygen levels to more physiological conditions improves the 

mitochondrial network and shape as well as lowers the ROS production (Tiede et al., 2011). 

On the other hand hypoxic conditions (0.1%-5%) also perturb mitochondrial energy 

metabolism and induce ROS production (Solaini et al., 2010). To explore whether the high 

oxygen conditions in regular cell culture are the primary cause for the high levels of HSP60 

and mtHSP70, hence the UPRmt induction, different cell lines were cultivated at 5% oxygen 

for 1 week and HSP60 and mtHSP70 levels were measured (Figure 3.6A and 3.6 B). Only 

in C2C12 cells we a slight decrease in HSP60 levels could be detected. However, mtHSP70 

levels were not affected. Taken together, no general reduction in the levels of HSP60 and 

mtHSP70 was found under more physiological oxygen conditions. 
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Figure+3.6:+Physiological+oxygen+conditions+do+not+reduce+HSP60+&+mtHSP70+levels.++
(A)!Different!cell!lines!were!incubated!for!1!week!under!5%!oxygen!conditions.!Subsequently,!proteins!were!

isolated!and!subjected!to!Western!blot!analysis.!ACTIN!serves!as!control!(CTRL).!(B)!Protein!levels!obtained!

in!(A)!were!quantified!relative!to!CTRL!levels.!Bars!represent!the!5%!oxygen!condition,!whereas!the!dashed!

line!corresponds!to!the!21%!oxygen!condition.!This!experiment!was!only!performed!once.!
 

 

3.1.2.2 Knockdown+of+ATF5+mildly+reduces+UPRmt+markers+

By the use of reporter worms and large-scale RNAi screens, the bZIP transcription 

factor ATFS-1 was found to be the central player in mediating the UPRmt in C. elegans        

(Nargund et al., 2012). To date no mammalian homologue has been found. However, 

ATFS-1 contains a C-terminal basic leucine zipper domain that comprises a distant 

similarity to the mammalian ATF4 and ATF5 as determined by the gene ontology software 

PANTHER (Mi et al., 2010) (Figure 3.7). Knowing that ATF4 is the key transcription 

factor of the integrated stress response (Harding et al., 2003), the further analysis focused 

on ATF5. The hypothesis that ATF5 exerts a similar role in the mammalian system as 

ATFS-1 does in C. elegans was tested by performing a knockdown of ATF5 and 

subsequent analysis of HSP60 and mtHSP70 levels. The idea behind this was that 

downregulation of the potential UPRmt signal should affect the UPRmt marker levels. Based 

on the observation that both HSP60 and mtHSP70 are highly upregulated in cell culture, a 
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decrease in the marker levels upon knockdown of ATF5 was expected, if ATF5 is 

transmitting the signal. Indeed, a slight downregulation of HSP60 and mtHSP70 was found 

after 3 days knockdown of ATF5 using 2 different siRNAs (Figure 3.8A and 3.8B). 

Moreover, CLPP, a potential UPRmt marker, was slightly reduced upon ATF5 knockdown. 

ATF5 mRNA levels after siRNA treatment generally correlated with the observed effects of 

HSP60, mtHSP70 and CLPP (Figure 3.8C). Therefore, these data indicate that reducing the 

ATF5 level does translate into a reduction of UPRmt markers as well. It should be noted that 

although the knockdown efficiency of ATF5 siRNA (1) was lower compared to ATF5 

siRNA (2), the effect on the UPRmt markers was comparable or even more pronounced 

(Figures 3.8 B-C). It was reported that detection of siRNA-mediated knockdown by 

realtime PCR is highly dependent on the primers used (Holmes et al., 2010). Thus, it is 

possible that residual mRNA fragments are detected, although the knockdown is present. 

 

Figure+3.7:+Tree+panel+of+the+phylogenetic+relationship+among+the+ATF4/5+family.++
The!longer!the!(horizontal)!branch!length,!the!more!distant!the!groups!joined!by!those!branches.!There!are!3!

types!of!nodes!in!the!phylogenetic!tree:!blue!diamonds!(subfamily!nodes);!orange!circles!(gene!duplication!

nodes)!and!green!circles!(speciation!nodes).!ATF4!and!ATF5!can!be!found!at!the!top!of!the!chart.!ATFS61!is!

highlighted!with!a!blue!background.!!
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Figure+3.8:+Knockdown+of+ATF5+reduces+UPRmt+marker+levels.+
HEK293FT! cells! were! transfected!with! the! indicated! siRNA! for! 3! days.! Subsequently,! proteins! and!mRNA!

were!isolated!and!subjected!to!Western!blot!analysis!(A)!or!realtime!PCR!(C).!(B)!Relative!quantification!of!

UPRmt! markers! to! control! conditions.! Actin! level! serves! as! control! (CTRL).! Bars! represent! mean! ±! S.E.M.!

(Student’s!t!test,!**p!<!0.01),!(n=3).!
 

3.1.3 ATF5+is+localized+to+the+nucleus+under+regular+cell+culture+conditions+

In C. elegans the transcription factor ATFS-1 accumulates in the nucleus during 

mitochondrial stress since it comprises a nuclear localization sequence (NLS). In addition, 

it consists of a mitochondrial targeting sequence (MTS) allowing the translocation to 

mitochondria under non-stressed conditions (Nargund et al., 2012). The MTS was found 

using a protein sequence prediction algorithm, called Mitoprot II (Claros and Vincens, 

1996). The same algorithm was used here to assess ATF5 for its potential to enter 

mitochondria (Table 3.1). A probability of 0.2907 for ATF5 to be imported into 
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mitochondria was found, however, no cleavage site and therefore no cleaved sequence. In 

contrast, ATFS-1 had a probability of 0.8658 to end up in mitochondria, but also no 

cleavage site was predicted. Interestingly, we obtained a high probability of 0.7052 and 

also a cleavage site for XBP1, the central factor of the UPRER (Ron and Walter, 2007). 

Mitoprot II analyses indicate a trend for mitochondrial proteins to be imported into 

mitochondria. However, false positives or false negatives are retrieved quite frequently, 

therefore experimental validation is inevitable. 

 
Table+3.1:+Mitoprot+II+analysis+of+ATF5,+ATFS51+and+XBP1+

Transcription+
factor+

Length+ Cleavage+
site+

Cleaved+sequence+ Probability+of+export+
to+mitochondria+

ATF5+ 283!AA! n/a! n/a! 0.2907!

ATFS51+ 472!AA! n/a! n/a! 0.8658!

XBP1+ 267!AA! 41! MVVVAAAPSAATAAPKVL

LLSGQPASGGRALPLMVP

GPRA!

0.7052!

 

 

To examine experimentally whether ATF5 is imported into mitochondria, colocalization 

studies using fluorescence microscopy were performed. A GFP-tagged versions of ATF5 

and XBP1 (Control) were generated (Figure 3.9A). Both constructs were transfected into 

MEFs for 24 hours and subsequently stained with MitoTracker and DAPI. Fluorescence 

microscopy revealed that ATF5 is exclusively found in the nucleus (Figure 3.9B). XBP1, 

however, did not colocalize with mitochondria or the nucleus, but was detected in a 

structure likely to be the ER as it was described before. Based on the observation that 

regular cell culture conditions constitutively induce the UPRmt markers one would also 

expect that ATF5 is found in the nucleus, if it acts in the same way as ATFS-1 upon stress 

induction. Therefore, it was difficult to examine in cell culture whether ATF5 is able to 

translocate to mitochondria or not. 
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Figure+3.9:+ATF5+is+localized+to+the+nucleus+under+regular+cell+culture+conditions.+
(A)!Vector!maps!of!cloned!eGFP6tagged!factors.!Vector!maps!were!generated!using!the!SnapGene!software!

(from!GSL! Biotech;! available! at!snapgene.com).! (B)! Colocalization! analysis! of!MEFs! transfected!with! GFP6

tagged!constructs!for!ATF5!and!XBP1!incubated!for!24!hours.!Cells!were!stained!with!DAPI!and!MitoTracker!

and!analysed!by!fluorescence!microscopy.!White!scale!bars,!10!μm.!
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3.1.4 Knockdown+of+HSP60+and+mtHSP70+affect+the+levels+of+
mitochondrial+matrix+proteases+

Knockdown of HSP-6 and HSP-60 induced UPRmt signalling in C. elegans as 

shown by the activation of both the hsp-6::gfp and the hsp-60::gfp reporter (Yoneda et al., 

2004). Knowing that the pHSPD1-GFP and pHSPA9-GFP reporter constructs are activated 

in cell culture without further stress application (see section 3.1.1), it was not possible to 

use the same approach to investigate the mammalian UPRmt signalling. Instead, a 

knockdown of HSP60 and mtHSP70 in HEK293T cells was performed and endogenous 

protein and mRNA levels were analysed. A strong knockdown efficiency of mtHSP70 

siRNA of approx. 80% was found on the protein levels, while only 25% in the case of 

HSP60 siRNA (Figure 3.10A-B). No effect was observed of HSP60 knockdown on 

mtHSP70 levels and vice versa, contrary to what was described in C. elegans. The protein 

quality control system in mitochondria relies not only on chaperones but also on proteases 

to degrade unfoldable polypeptides. Based on this fact, it was hypothesized that increased 

unfolded protein stress should not only affect the levels of chaperones, but also proteases. 

Thus, the levels of the matrix proteases CLPP and LONP1 were assessed, both reported to 

deal with the degradation of unfolded proteins (Voos, 2009). Interestingly, CLPP was 

found reduced upon increased unfolded protein stress, which is also in contrast to what was 

described before (Figure 3.10A-B) (Zhao et al., 2002). Unlike CLPP, LONP1 was induced 

upon HSP60 and mtHSP70 knockdown on protein level (Figure 3.10A-B). On mRNA level 

only mtHSP70 knockdown strongly increased LONP1 expression levels (Figure 3.10C). As 

a next step, ATF5 mRNA levels were examined upon HSP60 or mtHSP70 knockdown. 

Increased expression levels of ATF5 were found using both siRNA species, however, 

upregulation failed to be significant (Figure 3.10D). Taken together, these data demonstrate 

that knockdown of HSP60 and mtHSP70 indeed trigger the UPRmt, using LONP1 and 

ATF5 as novel readout, rather than the proposed UPRmt markers HSP60, mtHSP70 and 

CLPP. 
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Figure+3.10:+Knockdown+of+HSP60+and+mtHSP70+affect+the+levels+of+mitochondrial+proteases.++
HEK293FT!cells!were!transfected!with!the!indicated!siRNA!and!incubated!for!3!days.!Subsequently,!proteins!

and!mRNA!was!isolated!and!subjected!to!Western!blot!analysis!(A6B)!or!realtime!PCR!(C6D).!(B)!Protein!levels!

were!quantified!relative!to!the!control! levels! (ACTIN!or!HSC70).!Bars!represent!mean!±!S.E.M.!(Student’s!t!

test,!*p!<!0.05;!**p!<!0.01),!(n=3).!

!
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3.1.5 UPRmt+markers+depend+on+LONP1,+a+novel+UPRmt+marker+itself+

Based on the observation that LONP1 was induced upon HSP60 and mtHSP70 

knockdown, the question arose whether this upregulation is also dependent on ATF5. To 

study the effect of ATF5 on LONP1, a knockdown of ATF5 in HEK293FT cells was 

performed and LONP1 protein and mRNA levels were analysed. A significant induction of 

LONP1 was found on both protein as well as mRNA level upon ATF5 knockdown, 

showing that reduction of ATF5 levels increase mitochondrial stress in vitro (Figure 3.11A-

C). Furthermore, these data demonstrate that activation of LONP1 was independent of 

ATF5. Since LONP1 instantly reacts to mitochondrial perturbations, it was checked 

whether LONP1 is upstream of known UPRmt markers. To test this, LONP1 was knocked 

down in C2C12 cells, since siRNA against mouse Lonp1 mRNA was available, and the 

effect on ATF5 was examined (Figure 3.11D). A strong correlation between the LONP1 

and ATF5 expression levels was observed upon LONP1 knockdown, showing that ATF5 

expression is dependent on LONP1. In addition, expression levels of mitochondrial 

chaperones as well as CHOP, a multifunctional transcription factor involved in both UPRmt 

and UPRER, were assessed (Horibe and Hoogenraad, 2007; Nishitoh, 2012; Zhao et al., 

2002). A general reduction was found in all UPRmt markers analysed (Figure 3.11E). The 

knockdown efficiency of Lonp1 mRNA levels strongly correlated with the reduction of 

mtHsp70, Trap1, implicated in the UPRmt signalling in Drosophila melanogaster (Baqri et 

al., 2014), as well as Chop. For Hsp60 only a minor effect was found on the expression 

levels, which is in line with previous experiments, indicating that HSP60 is a high abundant 

protein, difficult to regulate (see section 3.1.1). Taken together, these data show that 

LONP1 regulates the levels of UPRmt markers, whereas mitochondrial unfolded protein 

stress can be sensed by LONP1 independent of ATF5. 
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+
Figure+3.11:+LONP1,+a+novel+UPRmt+marker,+regulates+other+UPRmt+markers.++
(A)!Western!blot!analysis!and!(B)!relative!protein!levels!of!LONP1!upon!ATF5!knockdown!in!HEK293FT!cells.!

HSC70!serves!as!control!(CTRL).!(C)!Relative!mRNA!levels!of!Lonp1!upon!ATF5!knockdown!in!HEK293FT!cells.!

(D6E)!Relative!mRNA!levels!of!UPRmt!markers!upon!LONP1!knockdown!in!C2C12!cells.!Bars!represent!mean!±!

S.E.M.!(Student’s!t!test,!*p!<!0.05;!**p!<!0.01;!***p!<!0.001),!(n=3).+
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3.2 Modelling+UPRmt+signalling+in#vivo#

3.2.1 Generation+of+tissue+specific+DARS2/CLPP+double+deficient+mice++

To decipher the in vivo role of CLPP under mitochondrial protein perturbations, 

CLPP was selectively deleted in DARS2-deficient heart and skeletal muscle using a muscle 

creatine kinase promoter driven Cre-recombinase (Ckmm-Cre). On the one hand, Dars2 

conditional gene targeting was conducted in the context of the International Knockout 

Mouse Consortium (KOMP) as previously reported (Dogan et al., 2014). On the other 

hand, conditional targeting of the Clpp gene was performed at Taconic Artemis (Germany), 

which was achieved by flanking the exons 3 to 5 with loxP sites, while also introducing a 

Frt flanked puromycin resistance (PuroR) selection marker into intron 5 (Figure 3.12). 

Upon successful germline transmission the resulting heterozygous Clpp+/PuroR-L mice were 

intercrossed to Flp deletor mice, removing the PuroR selection cassette. Eventually, mice 

were bred with Cre expressing animals that led to the knockout of exons 3 to 5, resulting in 

both the deletion of the protease domain as well as a frameshift from exon 2 to 6.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure+3.12:+Targeting+strategy+for+conditional+disruption+of+the+Clpp+gene.++
Puromycin! resistance! cassette!was! used! as! positive! selection!marker! (PuroR).! Arrows! display! the! primers!

used!for!genotyping!PCR;!forward!primer!for!loxP!allele!(green!arrow);!forward!primer!for!KO!allele!(orange!

arrow)!and!shared!reverse!primer!(black).!
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The resulting ClpP-floxed mice (ClpPL/L) were then intercrossed with Dars2-

floxed mice (Dars2L/L) to generate double floxed animals (Dars2L/L; ClpPL/L). Subsequently, 

those animals were bred with mice expressing the Ckmm-Cre transgene to obtain triple 

transgenic mice (Dars2+/L; ClpP+/L; Ckmm-Cre+/T). Double floxed mice  (Dars2L/L; ClpPL/L) 

were crossed to triple transgenic animals (Dars2+/L; ClpP+/L; Ckmm-Cre+/T) to generate 

wildtype (WT), ClpP KO (Dars2+/L, ClpPL/L, Ckmm-Cre+/T), Dars2 KO (Dars2L/L, ClpP+/L, 

Ckmm-Cre+/T) and DKO (Dars2L/L, ClpPL/L, Ckmm-Cre+/T) mice (Figure 3.13). To minimize 

the overall mouse litter numbers, experiments were performed using ClpP KO and Dars2 

KO that were heterozygous for Dars2 and ClpP, respectively. However, additional control 

animals were obtained from the following matings: (i) Dars2-deficient animals - Dars2+/L, 

Ckmm-Cre+/T mated with Dars2L/L and  (ii) ClpP-deficient animals - ClpP+/L; Ckmm-Cre+/T 

mated with ClpPL/L.  

 

 
Figure+3.13:+Breeding+scheme+to+generate+WT,+ClpP+KO,+Dars2+KO+and+DKO+animals.++
Note! that! ClpP! KO! and! Dars2! KO! animals! are! heterozygous! for! Dars2! and! ClpP,! respectively.! Allele!

nomenclature:!wild!type!(+),!floxed!(L)!and!transgene!(T).+
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3.2.2 Phenotypic+changes+caused+by+DARS2+deficiency+can+be+alleviated+
by+the+loss+of+CLPP+

Tissue specific deletion in heart and skeletal muscle was mediated by the Ckmm 

promoter that triggers activation of Cre after embryonic day 15.5 (E15.5) (Lyons et al., 

1991). It has been shown that DARS2 deletion in heart leads to a severe progressive 

cardiomyopathy starting at 3 weeks of age leading to the ultimate death of the animal at 

approx. 7 weeks of age (Dogan et al., 2014). Based on this observation, it was not very 

likely that additional knockout of a mitochondrial matrix protease would give rise to living 

animals. However, mice of all different genotypes were born at the expected Mendelian 

ratios (data not shown). Moreover, it turned out that DKO mice were not only born, but 

also significantly increased their lifespan of about 35%, from approx. 7 to 10 weeks of age 

(Figure 3.14A). In stark contrast, ClpP KO mice displayed no signs of lethality at that time 

and also did not appear to be compromised later (Figure 3.14A). To decipher the phenotype 

observed in DKO mice, all following experiments were conducted using 6-week-old mice. 

As described before Dars2 KO mice displayed a strong increase in heart size accompanied 

by a decrease of body weight (Figure 3.14B-H) (Dogan et al., 2014). Surprisingly, DKO 

heart morphology and weight revealed a significant reduction in heart size compared to 

Dars KO animals (Figures 3.14B-C, 3.14F). Additionally, DKOs exhibited normal body 

weight that was significantly elevated compared to Dars2 KO mice (Figures 3.14D, 3.14G). 

Expressed as heart-to-body weight ratios, a clear reduction could be observed at the level of 

cardiomyopathy in DKOs compared to Dars2 KOs (Figure 3.14E, 3.14H). Interestingly, a 

very mild, but significant increase in the heart-to-body weight ratio of ClpP KO could be 

found compared to WT animals, indicating a possible, low-level cardiac hypertrophy 

(Figure 3.14E). Since no phenotypical changes were observed in skeletal muscle due to loss 

of CLPP, neither in DARS2 nor in WT background, no further experiments were conducted 

in this respect (data not shown). 

 

 

 
+
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+
Figure+3.14:+Lifespan+analysis+and+phenotypic+characterization+of+DKO+mice.++
(A)!Kaplan6Meier!survival!curves!for!WT,!ClpP!KO,!Dars2!KO!and!DKO!(n!=!12!6!16).!Lifespan!is!significantly!

increased! between! DKO! and! Dars2! KO! (ρ! =! 0,0000014679! (****)).! Lifespan! of! ClpP! KO! animals! are!

comparable! to!WT.! (B)!Heart! gross!morphology.! (C)!Heart!weight;! (D)!Body!weight! and! (E)!Heart6to6body!

weight! ratio!of!WT,!ClpP!KO,!Dars2!KO!and!DKO! (n!=!28640).! (F6H)!Heart!weight! (F),!Body!weight! (G)! and!

Heart6to6body!weight!ratio!(H)!of!Dars2!KO!mice!that!are!homozygous!for!the!ClpP!allele!(n!=!10!6!14).!Bars!

represent!mean!±!S.E.M.!(Student’s!t!test;!**p!<!0.01,!****p!<!0.0001). 

The observed milder phenotype in DKOs hearts compared to Dars2 KOs 

suggested an additional measurement of the expression levels of molecular hypertrophy 

markers in these hearts. The Natriuretic peptides B (Nppb) expression levels were 

significantly decreased upon CLPP depletion in DARS2-deficient animals, but still elevated 

compared to WT and ClpP KO (Figure 3.15A). Nppa levels did also display a trend 
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towards less expression in DKO, which was insignificant to WT and ClpP KO (Figure 

3.15A). To further visualize the mitochondrial respiratory function in hearts sections, an 

enzyme histochemical double staining was performed for cytochrome c oxidase/succinate 

dehydrogenase (COX/SDH). Remarkably, COX/SDH staining demonstrated a strong 

increase in COX activity in DKO compared to Dars2 KO heart sections, which is in line 

with reduced interstitial fibrosis shown by Masson’s trichrome staining (Figures 3.15B-C). 

In agreement with the previously reported increase in mitochondrial mass and hypertrophy 

in DARS2 deficient hearts (Dogan et al., 2014), a strong correlation could be found 

between the amount of SDH positive cells (blue staining) and the heart size as determined 

by the whole sections displayed (Figure 3.15B). Taken together, the data demonstrate that 

CLPP deficiency in the context of high mitochondrial stress, as detected in DARS2-

deficient hearts, clearly alleviates mitochondrial cardiomyopathy and sustains animals 

healthier for a longer period of time. 

 

 
Figure+3.15:+Molecular+characterization+and+immunohistochemical+analysis+of+mutant+hearts.++
(A)!Relative!expression!levels!of!cardiac!hypertrophy!markers!(Nppa!and!Nppb)!(n!=!5).!Bars!represent!mean!

±!S.E.M.! (Student’s! t! test;!**p!<!0.01,!****p!<!0.0001).! (B)!Enzyme!histochemical!double! staining! for!COX!

and!SDH!activities.!(n!=!4).!(C)!Assessment!of!cardiac!fibrosis!by!Masson’s!trichrome!staining!(n!=!4).!White!

scale!bars,!100μm;!black!scale!bars,!1!mm.!Stainings!were!performed!with!Steffen!Hermans.+
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3.2.3 Mitochondrial+and+cellular+stress+responses+do+not+depend+on+CLPP+
under+proteotoxic+stress++

A mouse model deficient for DARS2 and CLPP was created to elucidate the role 

of CLPP in UPRmt signalling in vivo, since CLPP has been described to be a central player 

in mediating the UPRmt response in C. elegans and to be activated upon mitochondrial 

protein perturbations in mammalian cells (Haynes et al., 2007; Zhao et al., 2002). Based on 

the observation that CLPP mitigates the strong cardiomyopathy in DARS2 deficient heart, 

the question how loss of CLPP could actually be beneficial for the animal was investigated 

if needed for the UPRmt activation. Initially, the levels of mitochondrial chaperones and 

proteases were examined that are commonly used as markers to show activation of UPRmt 

signalling. The mitochondrial chaperones mtHSP70 and TRAP1 were clearly elevated on 

protein level in both Dars2 KO and DKO hearts, while HSP60 was only slightly increased 

(Figures 3.16A-B). Interestingly, CLPP deficiency itself induced mitochondrial protein 

perturbations as observed by an activation of the mitochondrial chaperones mtHSP70 and 

TRAP1 (Figures 3.16A-B). In contrast, the mitochondrial proteases, LONP1 and AFG3L2 

were only found activated in Dars2 KO and DKO hearts (Figures 3.16A-B). Since Dars2 

and ClpP KO animals were heterozygous for the Clpp and Dars2 allele, respectively, the 

UPRmt marker levels were also assessed in their single mutant counterparts. Nevertheless, 

similar changes of mitochondrial chaperones and proteases were observed in hearts of both 

genotypes (Figure 3.16C-D). To explore whether a mitochondrial biogenesis effect causes 

the upregulation of chaperones and proteases, the steady state levels of all UPRmt markers 

were assessed in isolated mitochondria. Here, similar levels of the UPRmt markers could be 

found in both whole tissue lysate and isolated mitochondria (Figure 3.16A-B). On the one 

hand, the mitochondrial biogenesis marker TFAM (mitochondrial transcription factor A) 

(Virbasius and Scarpulla, 1994) was decreased in ClpP KO and DKO mitochondria, 

although being unchanged in whole tissue lysates (Figure 3.16E, and data not shown). On 

the other hand, DARS2 depletion in the heart itself increased mitochondrial biogenesis to 

compensate for the respiratory chain deficiency as previously described (Figure 3.16E) 

(Dogan et al., 2014). A hallmark of UPRmt activation is the increase in transcript levels of 

mitochondrial chaperones and proteases, which is also present in Dars2 KO and DKO 

hearts, as shown by increased mtHsp70, Lonp1 and Afg3l2 mRNA levels (Figure 3.16F). In 



Results!

 

 87 

contrast, Hsp60 mRNA levels were not elevated in any condition, corresponding to the very 

slight increase in the steady-state protein levels (Figures 3.16A, 3.16F). Taken together, the 

results clearly demonstrate that the activation of the mammalian UPRmt in vivo does not 

depend on CLPP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure+3.16:+UPRmt+markers+do+not+depend+on+CLPP+under+proteotoxic+stress.+
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Figure+3.16:+UPRmt+markers+do+not+depend+on+CLPP+under+proteotoxic+stress.++
(A)!Western!blot!analysis!and!(B)!Relative!quantification!of!UPRmt!markers!in!heart!extracts.!HSC70!is!used!as!

a! loading! control! (CTRL),! (n! =! 3).! (C! and!D)!Western! blot! analysis! of!UPRmt!markers! in! (C)! Dars2! KO!with!

heterozygous!vs.!homozygous!ClpP!background!and!in!(D)!ClpP!KO!with!heterozygous!vs.!homozygous!Dars2!

background.! HSC70! and! PonceauS! staining! serve! as! loading! controls.! (E)! Western! blot! analysis! of!

mitochondrial! chaperones,! proteases! and!maintenance!markers! in! isolated!heart!mitochondria.! PonceauS!

staining! serve!as! loading! control.! (F)!Relative!expression! levels!of!UPRmt!markers! in!heart! extracts! (n!=!5).!

Bars!represent!mean!±!S.E.M.!(Student’s!t!test,!*p!<!0.05,!**p!<!0.01,!***p!<!0.001,!****p!<!0.0001).!

It is known that mitochondrial dysfunction also comprises cellular function, which 

causes cellular stress responses such as autophagy or the integrated stress response (ISR) to 

be affected in response to mitochondrial stress aimed at restoring homeostasis (Dogan et 

al., 2014; Evstafieva et al., 2014; Marzetti et al., 2013). Since DARS2 deficiency has been 

shown to influence both autophagy and the ISR (Dogan et al., 2014), it was examined 

whether the loss of CLPP has any impact on these cellular stress responses. On the one 

hand, inhibition of autophagy is characterized by accumulation of p62, which was present 

in both Dars2 KO and DKO, but not in WT and ClpP KO hearts (Figures 3.17A-B). On the 

other hand, ISR activation is defined by induction of the activating transcription factor 4 

(ATF4) upon phosphorylation of the α subunit of the eukaryotic initiation factor 2 (eIF2α) 

that was observed in DARS2 deficient hearts and not compromised by the loss of CLPP 

(Figures 3.17A-B, 3.17C). In addition, the expression levels of the transcription factors 

Chop and Atf5 (potential mammalian homolog of C. elegans ATFS-1) that are implicated in 

the activation of the UPRmt signalling (Horibe and Hoogenraad, 2007; Nargund et al., 2012) 

were greatly increased in DKO and Dars2 KO hearts, showing that loss of CLPP does not 

impair UPRmt signalling in mammals (Figure 3.17C). Interestingly, using heart extracts, no 

clear pattern of up- or downregulation of ATF5 could be found on the protein level (Figure 

3.17D). However, using isolated mitochondria, it was observed that (i) ATF5 was clearly 

localized to mitochondria and (ii) ATF5 levels within mitochondria negatively correlate to 

the level of chaperones and/or proteases, hence the stress inside mitochondria (Figure 

3.17D). Thus, these data suggest a similar mechanism of ATF5 in mammals to ATFS-1 in 

C. elegans, where the level of mitochondrial stress is sensed via the import efficiency of 

ATFS-1 (Nargund et al., 2012). The fibroblast growth factor 21 (FGF21) was recently 

found to be a stress sensor that serves as a “mitokine” upon mitochondrial dysfunction 
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(Tyynismaa et al., 2010). Loss of DARS2 in the heart also leads to a huge upregulation of 

Fgf21 mRNA levels (Dogan et al., 2014) that was again not altered upon deletion of CLPP 

(Figure 3.17E). In conclusion, the overall data show that both mitochondrial and cellular 

stress responses are not affected by loss of CLPP in mammals. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure+3.17:+Cellular+stress+markers+do+not+depend+on+CLPP.++
(A)!Western!blot!analysis!and!(B)!Relative!quantification!of!cellular!stress!markers!in!heart!extracts.!HSC70!is!

used!as!a! loading!control! (CTRL),! (n!=!3).! (C)!Relative!expression!of! transcription! factors! involved! in!UPRmt!

and! ISR! in! heart! extracts! (n! =! 5).! (D)!Western! blot! analysis! of! ATF5! levels! in! heart! extracts! (upper)! and!

isolated!mitochondria!(lower).!HSC70!serves!as!loading!control!(CTRL,!upper),!while!relative!levels!of!LONP1!

and!mtHSP70!are!shown!with!respect!to! isolated!mitochondria! (lower).! (E)!Relative!expression!of!Fgf21# in!

heart!extracts!(n!=!5).!Bars!represent!mean!±!S.E.M.!(Student’s!t!test,!*p!<!0.05,!**p!<!0.01,!***p!<!0.001,!

****p!<!0.0001).+
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3.2.4 Loss+of+CLPP+in+DARS25deficient+heart+mitochondria+increases+
mitochondrial+respiratory+activity++

Since DKO animals live longer and show less signs of cardiac dysfunction 

compared to Dars2 KOs (Figure 3.14, 3.15), it was investigated whether the mitochondrial 

respiratory activity was also improved in these mice. First, the steady-state levels of 

individual OXPHOS subunits were examined to allocate potential improvements upon loss 

of CLPP. Remarkably, a general correction in the steady-state levels of individual complex 

I, III and IV subunits in DKO compared to Dars2 KO hearts was observed, including the 

mtDNA-encoded complex IV subunit COXI/MT-CO1 (Figure 3.18A). It seems reasonable 

that the increased availability of mtDNA-encoded subunits impacts the levels of C I, C III 

and C IV nDNA-encoded subunits since both sets of proteins need to be assembled in 

correct stoichiometry, as it was found before in the mtDNA mutator mouse (Edgar et al., 

2009). Nevertheless, complex II (SDHA) and complex V (ATP5A1) subunits were stably 

expressed in all mutants analyzed, hence not influenced by the loss of CLPP or DARS2 

(Figure 3.18A). Next, the levels of complexes by BN-PAGE and subsequent Western Blot 

analysis were determined using different antibodies against individual OXPHOS subunits. 

As previously described, Dars2 KO animals exhibit a strong reduction of complex I, III, IV 

levels in the heart, while complex V is not affected (Dogan et al., 2014). Lack of ClpP in 

the DARS2-deficient hearts increased the levels of complex I and IV, while having a minor 

effect on the amount of other OXPHOS complexes (Figures 3.18B, 3.18C and 3.18D). 

Interestingly, in ClpP KOs a slight increase in complex III levels was found, but no change 

for the other complexes (Figure 3.18B). 
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Figure+3.18:+Lack+of+CLPP+in+DARS25deficienct+hearts+corrects+mitochondrial+OXPHOS+complex+levels.++
(A)! Western! blot! analysis! of! individual! OXPHOS! subunits! in! isolated! mitochondria.! (B)! BN6PAGE! and!

subsequent!Western!blot!analysis!for!OXPHOS!complexes!in!isolated!mitochondria.!(C!and!D)!BN6PAGE!and!

subsequent! Western! blot! analysis! of! OXPHOS! complexes! in! isolated! mitochondria:! (C)! Dars2! KO! with!

heterozygous!vs.!homozygous!ClpP!background!and! (D)!ClpP!KO!with!heterozygous!vs.!homozygous!Dars2!

background.! Antibodies! against! individual! OXPHOS! subunits! (on! the! left)! were! used! to! detect! OXPHOS!

complexes!(on!the!right).!Experiments!were!performed!with!Katharina!Senft.!

 
 
 

Having found an increase of complex levels in DKOs, it was examined whether 

the activity of these complexes is also elevated. Here, in-gel activity assays were performed 

for complex I and IV. Collectively, both assays showed higher activities in DKO compared 

to Dars2 KO, showing that loss of ClpP not only increases the level of individual 

complexes, but also their activity in a state of disrupted mitochondrial proteostasis (Figures 
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3.19A and 3.19B, respectively). Thereafter, the analysis of the bioenergetic consequences 

of the increased complex I and complex IV activity was continued by assessing the 

mitochondrial respiratory capacity in freshly isolated cardiac mitochondria using a high-

resolution respirometer (Figure 3.19C). Therefore, mitochondria were incubated with a 

physiological substrate combination feeding electrons into complex I (pyruvate, glutamate, 

malate) or II (succinate) and recorded the oxygen consumption rate in the phosphorylating 

(state 3: ADP and Pi), non-phosphorylating (state 4: oligomycin) and uncoupled state 

(FCCP) using a SUIT protocol (Lemieux et al., 2011). Respiration (state 3: ADP and Pi) 

through complex I significantly improved in DKO compared to Dars2 KO (Figure 3.19C). 

Furthermore, combined respiration, feeding electrons though complex I and II 

simultaneously, was almost significantly elevated (ρ = 0,053) (Figure 3.19C). However, 

respiration in DKOs still remained lower than in WT (Figure 3.19C). Non-phosphorylating 

(state 4: oligomycin) respiration as well as electron transfer system (ETS) capacity 

(uncoupled state: FCCP) did not improve in DKO compared to Dars2 KO (Figure 3.19C). 

Taken together, the overall respiratory capacity was improved in DARS2-deficient mice 

when CLPP was missing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure+3.19:+Lack+of+CLPP+in+DARS25deficienct+hearts+increases+mitochondrial+respiratory+activity.++++
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Figure+3.19:+Lack+of+CLPP+in+DARS25deficienct+hearts+increases+mitochondrial+respiratory+activity.++++
(A!and!B)! In#gel! activity!of! complexes! I! (A)! and! IV! (B)!performed!after!BN6PAGE.! (C)!Oxygen! consumption!

rates! in! intact! heart! mitochondria! in! the! presence! of! pyruvate6glutamate6malate! (C! I)! and! pyruvate6

glutamate6malate! +! succinate! (C! I! +! C! II)! as! substrates.! State! 3! (substrates+ADP);! State! 4! (+oligomycin);!

Uncoupled! (+FCCP).! (n = 3).! Bars! represent!mean!±! S.E.M.! (Student’s! t! test,! *p! <! 0.05,! **p!<! 0.01,! ***p!<!

0.001).!Experiments!were!performed!with!Katharina!Senft!and!Christina!Becker.!

 

 

3.2.5 Label5free+mass+spectrometric+analysis+of+the+mitochondrial+
proteome+reveals+a+partial+correction+of+the+DARS2+phenotype+upon+
loss+of+CLPP+

Mass spectrometric analysis of the mitochondrial proteome was performed to 

establish a quantitative map of mitochondrial protein abundance to further understand the 

impact of loss of CLPP on DARS2-deficient mitochondria (carried out together with 

Hendrik Nolte, CECAD Proteomics Facility, Cologne). To do so, quantitative proteomics 

of mouse heart mitochondria were performed using a label-free approach. It was possible to 

quantify 483 of approx. 1000 annotated mitochondrial proteins in the mitochondrial 

fraction of all mutants analysed. The low coverage observed was due to (i) low resolution 

of the mass spectrometric device as well as (ii) the fact that only proteins that had been 

quantified in at least two samples out of three were used for comparative analysis. The 

following analysis mainly focused on respiratory chain subunits, proteins involved into 

mitochondrial translation as well as proteins, which are part of the protein quality control, 

processing or transport, since these processes were key to the previously described 

phenotypes. In ClpP KO mitochondria significant changes of only 18 quantified proteins 

were found, which is in line with our previous findings that ClpP KO mitochondria are 

phenotypically close to WT mitochondria (Figure 3.20A and Table 3.2). However, an 

increase of mitochondrial chaperones TRAP1, HSPA9 and GRPEL1 was found as well, 

which is consistent with previous findings (Figure 3.16). The complex I subunit 

NDUFA11, shown to be involved in assembly of the complex I membrane arm (Andrews et 

al., 2013), was highly downregulated upon loss of CLPP. On the other hand, MTIF2, an 

essential component for mitochondrial translation initiation, was upregulated upon CLPP 

deletion (Figure 3.20A and Table 3.2). Proteomic changes upon DARS2 deletion were 

more dramatic with respect to mitochondrial-encoded as well as nuclear encoded subunits 
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of the respiratory chain (Figure 3.20B and Table 3.2). All the subunits quantified were 

highly reduced upon DARS2 depletion. Both the amount of subunits affected as well as the 

decreasing fold change could be alleviated by the loss of CLPP (Figures 3.20B, 3.21A and 

Table 3.2). Similarly, direct correlation of protein abundance between DKO and Dars2 KO 

mitochondria revealed a strong increase of mitochondrial as well as nuclear encoded 

subunits in DKO mitochondria (Figure 3.22 and Table 3.3). Although the abundance of 

most OXPHOS subunits still remained lower in DKO compared to WT, some were also 

found to be insignificant, showing a partial correction of the respiratory defects in DKO 

mitochondria (Figures 3.21A and 3.22; Table 3.2 and 3.3). By the use of a scatter plot, a 

general trend of proteins that migrate towards WT levels when comparing Dars2 KO to 

DKO mitochondria could be found (Figure 3.21B, green area). Furthermore, it was 

observed that components of the large mitoribosomal subunits were highly enriched in both 

Dars2 KO as well as DKO mitochondria, most likely as a compensatory mechanism for the 

strong translational defect caused by DARS2 deficiency (Figures 3.20B and 3.21A; Table 

3.2). Interestingly, there was also a fraction of large mitoribosomal subunits that was 

upregulated either in Dars2 KO or DKO mitochondria, showing that both translational 

machineries differ from each other with respect to the large mitoribosomal subunit (Table 

3.2). Mitochondrial UPRmt markers such as HSPE1 and LONP1 were elevated in both 

Dars2 KO and DKO mitochondria (Figures 3.20B and 3.21A; Table 3.2). In addition, 

HSPA9 and GREPEL1 were found to be upregulated in both ClpP KO and Dars2 KO and 

to have an additive effect in DKO (Figure 3.21A and Table 3.2). The major UPRmt 

chaperone Hsp60 was found to be slightly elevated (log2 fold change: 0.74) in DARS2 

deficient mice only, which further supports the hypothesis that it is a rather stable protein 

not very suitable for the UPRmt readout. Interestingly, the chaperone DNAJA33 was highly 

elevated exclusively in DKO mitochondria (log2 fold change: 3.37). As expected, all these 

changes were similar to what was found earlier using western blot analysis and realtime 

PCR (Figure 3.16). Taken together, mitochondrial proteomic analysis revealed a partial 

correction of the OXPHOS defects in DKO mitochondria and further supports the idea that 

mitochondrial stress responses are regulated independent of CLPP. 
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Figure+3.20:+Quantitative+assessment+of+proteomes+of+purified+mitochondria+(1).++
Proteins! are! ranked! in! a! volcano! plot! according! to! their! statistical! ρ6value! (y6axis)! and! their! relative!

abundance!ratio!(log2!fold!change)!between!(A)!ClpP!KO!and!WT!or!(B)!Dars2!KO!and!WT.!Highlighted!dots!

represent!both!a!high!fold!change!(log2!fold!change:!±0,5849!corresponds!to!a!fold!change!of!±1.5)!as!well!as!

high!statistical!significance!(6log!ρ6value:!>1.3!corresponds!to!a!ρ6value:!<0.05).!!
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Figure+3.21:+Quantitative+assessment+of+proteomes+of+purified+mitochondria+(2).++
(A)+ Proteins! are! ranked! in! a! volcano! plot! according! to! their! statistical! ρ6value! (y6axis)! and! their! relative!
abundance! ratio! (log2! fold! change)! between! DKO! and!WT.! Highlighted! dots! are! represented! as! in! Figure!

3.21.! (B)!Scatter!plot!of! log2! fold!changes!of!DKO!to!WT!versus! log2! fold!changes!of!Dars2!KO!to!WT.!Blue!

circles! display! a! high! statistical! significance! (6log! ρ6value:! >1.3! corresponds! to! a! ρ6value:! <0.05),! whereas!

dashed!lines!represent!the!log2!fold!change!thresholds!of!±0,5849!that!corresponds!to!a!fold!change!of!±1.5.!

The!green!area!displays!the!partial!convergence!of!DKOs!towards!WT!compared!to!Dars2!KO.!!
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Table+3.2:+Relative+protein+changes+determined+by+quantitative+proteomics.++
Proteins! are! clustered! according! to! their! changes! that! occurred! only! in! a! single!mutant! (left! table)! or! to!

those!that!appeared!in!multiple!mutants!(right!table).!Values!are!calculated!relative!to!WT.!All!proteins!listed!

have!a!fold!change!cut6off!≥1.5!and!p<0.05!(log2!fold!change:!≈!±0,58!and!6log!ρ6value:!>1.3).!!

!

!

 



Results!

 

 98 

Table+3.3:+Proteins+rescued+in+Dars2+KO+mitochondria+due+to+the+lack+of+CLPP.+
Proteins!that!changed!significantly!in!DKO!compared!to!Dars2!KO!(left!table),!in!contrast!to!proteins!that!are!

normalized!in!DKO!that!were!changed!before!in!Dars2!KO!(right!table).!Fold!change!and!cut6off!see!table!3.2.!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
+
Figure+3.22:+Quantitative+assessment+of+proteomes+of+purified+mitochondria+(3).+
Proteins! are! ranked! in! a! volcano! plot! according! to! their! statistical! ρ6value! (y6axis)! and! their! relative!

abundance! ratio! (log2! fold! change)! between! DKO! and! Dars2! KO.! Highlighted! dots! are! represented! as! in!

Figure!3.21.!+
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3.2.6 Dysregulation+of+mitochondrial+protein+synthesis+is+partially+rescued+
by+the+loss+of+CLPP+

Since the mitochondrial respiratory capacity was improved in DKOs compared to 

Dars2 KO mice, it was examined how the loss of CLPP could actually increase the levels of 

functionally active OXPHOS complexes. Based on the fact that loss of DARS2 first of all 

disrupts mitochondrial translation, the rates of protein synthesis and degradation in isolated 

cardiac mitochondria were analysed. Therefore, an in organello translation assay was 

performed using radioactive methionine (35S-met) to label newly produced OXPHOS 

polypeptides (pulse) as well as to be able to follow their degradation over time (chase). The 

analysis displayed that the overall protein synthesis is strongly reduced when CLPP is 

absent, which is further supported by a clear reduction in the protein synthesis rate in CLPP 

deficient animals as determined by a time course pulse labeling (Figures 3.23 and 3.24A). 

Quantification of the whole range of proteins (overall rate) relative to WT showed that 

CLPP deficiency leads to a 25% decrease in mitochondrial translation both in DARS2-

deficient as well as in WT background (Figures 3.23A, 3.23B and 3.24A). This effect was 

not caused by a general reduction in the levels of mitochondrial transcripts, since CLPP 

deficiency mainly elevates steady state levels of mitochondrial mRNAs (Figure 3.24B). 

Moreover, it was found that newly produced polypeptides are faster degraded in Dars2 KO 

and DKO mitochondria (Figures 3.23A-B), which is presumably caused by the higher 

levels of mitochondrial proteases available upon proteotoxic stress (Figure 3.16A-B). 

Remarkably, an overall increase in the amounts of individual OXPHOS subunits 

synthetized in DKO mitochondria was observed compared to Dars2 KO, although protein 

synthesis rate was reduced upon loss of CLPP (Figure 3.24C). Here, a profound 

upregulation was detected in the generation of cytochrome c oxidase I (COX1), NADH 

dehydrogenase subunit 6 (ND6), cytochrome b (CYTB) and ATP synthase F0 subunit 6 

(ATP6) (Figure 3.24C). It could further be demonstrated that this effect was not caused by 

any residual DARS2 presence, since no protein was detected in either Dars2 KO or DKO 

heart extracts (Figure 3.24D). Instead, it became evident that loss of CLPP in in DARS2-

deficient mitochondria leads to a substantial increase in the proficient versus abortive 

protein synthesis (Figures 3.23A and 3.24E). As DARS2 deficiency leads to abortion of 

mitochondrial protein synthesis, nearly 50 % of all newly synthetized OXPHOS subunits 
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exhibit low molecular mass, whereas in DKOs, the abortive translation is significantly 

decreased and accompanied by a raise in the synthesis rate of full-length OXPHOS subunits 

(Figures 3.23A and 3.24E). In contrast, ClpP KO mitochondria show no signs of aborted 

protein synthesis, since only ATP8/ND4L polypeptides were found in the low molecular 

weight fraction, suggesting that CLPP deficiency itself does not dysregulate mitochondrial 

protein synthesis, despite the reduction of the overall rate of translation (Figures 3.23A and 

3.24E). Interestingly, full-length polypeptides generated in DKO mitochondria exhibit 

increased turnover rates, implicating that these OXPHOS subunits are more prone to 

degradation, although synthesized in higher amounts compared to Dars2 KOs (Figure 

3.24F). Taken together, lack of CLPP in DARS2-deficients hearts leads to a partial rescue 

of translation, by increasing proficient protein synthesis and reducing abortive protein 

synthesis. 
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Figure+3.23:+Dysregulation+of+mitochondrial+translation+can+be+partially+rescued+be+the+loss+of+CLPP+(1).++
(A6B)!Representative!gel!of!the!in#organello!translation!analysis!of!heart!mitochondria!(A)!and!corresponding!

relative! overall! protein! synthesis! and! turnover! rate! (B).! De# novo! synthetized! proteins! are! isolated! after!

labelling! with! 35S6met! (1! hour! Pulse)! or! after! cold! chase! (3h! Chase).! Positions! of! individual! proteins! are!

indicated! on! the! left.! Position! of! full6length! proteins! (Proficient)! and! low!molecular! weight! polypeptides!

(Abortive)! are! indicated! on! the! right.! Note! that! in! WT! and! ClpP! KO! low! molecular! weight! polypeptides!

include! ATP8/ND4L! proteins.! (C6D)!Mitochondrial! translation! rate! assessed! by! in# organello! 35S6met! pulse!

labelling!for!10,!30!and!60!minutes!in!isolated!heart!mitochondria!of!WT!and!ClpP!KO!(C)!and!!corresponding!

overall!protein! synthesis! rate!curves! (D).!Bars! represent!mean!±!S.E.M.! (Student’s! t! test,!*p!<!0.05,!**p!<!

0.01,!****p!<!0.0001),!(n=364).!In#organello!translation!was!performed!with!Dr.!Alexandra!Kukat.+



Results!

 

 102 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure+3.24:+Dysregulation+of+mitochondrial+translation+can+be+partially+rescued+be+the+loss+of+CLPP+(2).++
(A)! Representative! densitometric! analysis! of!de# novo! synthesized! proteins! in!WT,! ClpP! KO,!Dars2! KO! and!

DKO!heart!mitochondria!after!labelling!as!in!Figure!3.19A.!(B)!Relative!expression!levels!of!mtDNA6encoded!

OXPHOS!subunits! in!ClpP!KO,!Dars2!KO!and!DKO!hearts!normalized!to!WT!(n=5).! (C)!Relative! levels!of! the!

individual! de# novo! synthesized! OXPHOS! subunits! in! DKO! mitochondria! normalized! to! the! corresponding!

Dars2!KO!polypeptide! level,! (n=364).! (D)!Western!blot!analysis!of!DARS2! levels.!HSC70! is!used!as!a! loading!

control! (CTRL).! (E)!Relative! levels!of!protein! synthesis!of!Proficient!and!Abortive!polypeptides,! (n=364).! (F)!

Quantification! of! the! turnover! rate! of! full6length! (Proficient)! de# novo! synthesized! proteins,! (n=364).! Bars!

represent!mean!±!S.E.M.!(Student’s!t!test,!*p!<!0.05,!**p!<!0.01,!***p!<!0.001,!****p!<!0.0001).!!
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4 Discussion+

Mitochondria received a broad interest from the scientific community in recent years, 

since mitochondrial dysfunction contributes to the ageing process, as well as to diseases 

such as cancer, diabetes and various neurological disorders (Nunnari and Suomalainen, 

2012). Organelle dysfunction, caused by mtDNA depletion, oxidative stress, alterations in 

morphology and dynamics or by aggregation of misfolded proteins, triggers a 

mitochondrial-to-nucleus response that orchestrates the expression of nuclear genes aimed 

at restoring homeostasis (Cagin and Enriquez, 2015). Understanding these so called 

“retrograde signalling” responses is key to develop new therapeutic approaches against a 

wide range of pathologies caused by mitochondrial dysfunction. A mitochondrial quality 

control machinery, which constantly monitors and supports protein folding and 

degradation, is essential to maintain a functional protein homeostasis. An early response 

here is the so-called mitochondrial unfolded protein response (UPRmt) that is an emerging 

quality control pathway, ensuring the functionality of the mitochondrial proteome 

(Pellegrino et al., 2013). Even though the UPRmt has been investigated to some extent by 

now, this stress response is still poorly studied in mammals. So far, the UPRmt signalling is 

mainly defined in C. elegans models and has not been translated into the mammalian 

system yet. 
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This study aimed at deciphering the regulation of the mammalian UPRmt signalling. For 

this purpose, in vitro studies were performed using the proposed UPRmt markers HSP60 as 

well as mtHSP70 and their potential for stress induction was assessed. Second, it was 

investigated whether the regulation of potential UPRmt mediators or mitochondrial 

chaperones and proteases in vitro could shed some light on this fundamental process. 

Finally, it was evaluated whether CLPP, a mitochondrial matrix protease shown to be 

essential for UPRmt signalling in worms (Haynes et al., 2007), is required for the 

mammalian UPRmt in vivo. Mouse models lacking the CLPP protease in a basal and a 

condition of high mitochondrial proteostatic stress were developed to answer this question. 

To fuel mitochondrial proteostatic stress, heart and skeletal muscle-specific DARS2-

deficient mice were used, which lack the mitochondrial aspartyl aminoacyl-tRNA 

synthetase, essential for mitochondrial translation (Dogan et al., 2014). 

4.1 UPRmt+signalling+is+constitutively+active+under+regular+cell+
culture+conditions+

4.1.1 HSP60+and+mtHSP70+levels+cannot+be+further+elevated+through+
stress+induction+in#vitro+

This study demonstrates that the mitochondrial chaperones HSP60 and mtHSP70 

are highly abundant in 6 different cell types under regular cell culture conditions (Section 

3.1.1). It also shows that expression of mutant mitochondrial proteins such as a defective 

ornithine decarboxylase (ΔOTC) as well as a mutant inner membrane import protein 

(TIM14ΔH3) did not further increase the levels of HSP60 and mtHSP70 (Section 3.1.1). 

Moreover, it was found that inhibition of mitochondrial translation or the generation of 

ROS by small molecules also did not elevate the levels of the UPRmt markers in vitro. 

Finally, it was shown conclusively that Hspd1 (HSP60) and Hspa9 (mtHSP70) 

transcriptional reporters are constitutively active under regular cell culture conditions, 

proving that both proteins are highly expressed in various cell lines in vitro (Section 3.1.1). 

The high levels of HSP60 and mtHSP70 are consistent with the fact that both are reported 
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to be among the top 5-10% of the most abundant proteins in both human and mice tissues 

and cell lines (Wang et al., 2012). 

These findings add weight to the notion that HSP60 is highly expressed in various 

human tumours, orchestrating a broad cell survival response (Lianos et al., 2015). It was 

shown that HSP60 is associated with survivin, one of the most “cancer-specific” genes, as 

well as it inhibits p53 tumour suppression (Ghosh et al., 2008). The cytoprotective role of 

HSP60 observed in cancer might also be true for proliferating cells in general, however, the 

cell lines used in this study were also of tumour origin or had been immortalized, which 

could be key for the constant elevation in HSP60 levels. Similarly, mtHSP70 

(GRP75/Mortalin) was found elevated in many human tumours, tumour-derived cell lines 

and in vitro immortalized cells (Wadhwa et al., 2006). These authors also reported that 

upon immortalization of human embryonic fibroblasts subclones spontaneously increased 

mtHSP70 expression levels, which was shown to be the key change for increased 

tumourigenesis. Vice versa, reduction of mtHSP70 levels in human immortalized cells lead 

to a senescence-like growth arrest (Wadhwa et al., 2004). These observations further 

support the hypothesis that upregulation of HSP60 and mtHSP70 is inevitable in 

proliferating cells in order to keep their mitotic integrity. 

Unlike the study of Zhao et al., the current study found no upregulation of HSP60 

levels by the use of ΔOTC (Section 3.1.1). However, one possible explanation is that the 

basal levels of HSP60 shown by other studies were rather below the ones found in this 

investigation, showing that cells did not yet elevate HSP60 levels to the maximum and 

therefore were still capable of an upregulation (Martinus et al., 1996; Zhao et al., 2002). 

Also the fact that HSP60 is highly abundant in our cells without further stress application 

could explain why a possible increase is masked on the protein level (Section 3.1.1). 

Strikingly, upregulation of mtHSP70 was not observed in mammalian cell culture upon 

mitochondrial protein perturbations (Martinus et al., 1996; Zhao et al., 2002). However, 

mtHSP70 mRNA levels were found to be slightly elevated upon ΔOTC treatment that was 

not further translated into higher protein levels, showing that increase in expression not 

necessarily translates into more proteins (Section 3.1.1).  
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Some evidence also suggests that interfering with the mitochondrial import 

machinery resulted in increased HSP60 mRNA levels in HEK cells (Rainbolt et al., 2013). 

In contrast, similar changes could neither be observed on HSP60 mRNA nor for protein 

levels upon transfection of a mutant TIM14ΔH3 isoform using the same cell line in this 

study (Section 3.1.1). However, it can again be suspected that the general upregulation of 

HSP60 in vitro makes it difficult to assess whether these markers do respond to 

mitochondrial import perturbations. It seems likely that these cultured cells experienced 

another degree of stress already or that the passage number strongly influenced the HSP60 

as well as mtHSP70 levels. 

Another way to measure Hsp60 induction upon mitochondrial stress was achieved 

by the use of transcriptional reporters in both mammalian cells and in C. elegans 

(Houtkooper et al., 2013; Yoneda et al., 2004; Zhao et al., 2002). In addition, a 

transcriptional reporter for hsp-6 (homologue of mammalian mtHSP70) was extensively 

used in C. elegans to study UPRmt induction, which displayed a greater sensitivity to 

mitochondrial stress then the hsp-60 transcriptional reporter (Yoneda et al., 2004). Various 

studies in C. elegans exploited the use of chemical compounds to induce reporter 

expression of either hsp-6 or hsp-60. Inhibition of mitochondrial translation, by doxycyline 

or chloramphenicol, or the ROS-inducing agents such as paraquat, rotenone or antimycin A 

highly increased UPRmt reporter expression (Houtkooper et al., 2013; Runkel et al., 2013; 

Yoneda et al., 2004). In contrast, no changes on the protein levels of HSP60 and mtHSP70 

could be observed in the current study using the same set of chemical compounds (Section 

3.1.1). The results are in line with those of other studies, which show that endogenous 

expression of UPRmt markers is not influenced by these small molecules in Hep3B cells as 

well as in primary hepatocytes (Ishikawa et al., 2009; Michel et al., 2015). Interestingly, 

these authors found that rather the integrated stress response (ISR) reacts to the 

mitochondrial specific stresses, showing that mitochondrial dysfunction translates earlier 

into cellular stresses instead mitochondrial specific stress responses, such as the UPRmt. 

Despite the number of C. elegans reports suggesting that translational inhibitors or ROS 

generating agents induce UPRmt, there is still no evidence that this reflects the current 

endogenous situation because transcriptional reporters in worms do not necessarily 

correlate with the endogenous expression of the gene of interest, since promoter fragments 
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are rather short and possibly miss important cis-regulating elements. Moreover, it has not 

yet been proven that hsp-6 and hsp-60 expression initiates with direct recognition of 

unfolded proteins induced by small molecules. 

Finally, the current study shows that GFP transcriptional reporters harbouring 2 kb 

upstream of the respective ORF of either Hspd1 or Hspa9 were constitutively active in cell 

culture, which is consistent with the observation that both proteins are highly abundant 

under regular cell culture conditions (Section 3.1.1). However, it can be suspected that 

rather short transcriptional reporters used by others could exclude some important up- or 

downstream regulatory elements (Yoneda et al., 2004; Zhao et al., 2002). In cell culture, 

Hspd1 and Hspa9 miss the key features of an ideal reporter gene, which would be a gene 

that is not or only mildly endogenously expressed in the cell of interest and is susceptible to 

assays that are sensitive, quantitative and reproducible. In contrast C. elegans GFP 

reporters fulfil these criteria, however, it is not clear whether the strong induction also 

reflects the changes on the protein levels.  

Collectively, these findings demonstrate that HSP60 and mtHSP70 are not suitable 

to study the UPRmt induction in cell culture, since they are highly endogenously expressed 

and not amenable to further upregulation. 

 

4.1.2 Low+oxygen+conditions+cannot+reduce+the+levels+of+HSP60+and+
mtHSP70+

This study shows that prolonged exposure of cells to low oxygen conditions does 

not reduce the high expression of HSP60 and mtHSP70 (Section 3.1.2.1). It has been 

demonstrated that reduction from 21% atmospheric oxygen conditions to 5% low oxygen 

conditions in 6 different cell lines does not decrease UPRmt marker levels. Several reports 

have suggested that on the one hand high oxygen levels increase antioxidant defence 

mechanisms such as upregulation of mtHSP70 and on the other hand that hypoxic 

conditions (approx. 0,5% O2) do not influence constitutive active proteins such as HSP60, 

which is in line with the observations of this study (Papandreou et al., 2006; Williamson et 

al., 2008). 
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This finding further supports the hypothesis that HSP60 and mtHSP70 are stably 

expressed proteins since they do not react to changes introduced by reduced oxygen levels. 

Both high oxygen levels as well as very low oxygen levels, also known as hypoxia, can 

lead to increased ROS levels, therefore leading to mitochondrial perturbations (Solaini et 

al., 2010; Tiede et al., 2011). Despite the number of reports suggesting that oxygen levels 

affect ROS production, hence the activation of adaptive stress responses, no changes in the 

UPRmt markers HSP60 and mtHSP70 could be detected upon low oxygen conditions 

(Section 3.1.2.1). There are three possible explanations for these findings. First, oxygen 

levels and therefore the amount of ROS do not influence the levels of unfolded proteins. 

Second, the time exposed to low oxygen levels was too short in order to alleviate the stress 

inside mitochondria. Finally, cells have been kept for too long already under high oxygen 

conditions, which permanently changed expression levels of UPRmt markers. Similarly, it 

was reported that cell cultivation in general induces adaptations not only in antioxidant 

defence enzymes such as the superoxide dismutase or catalase, but also in the levels of heat 

shock proteins, such as HSP60 (Halliwell, 2014; Khassaf et al., 2003; Tiede et al., 2011). 

Therefore, it seems likely that changes due to variation of the oxygen levels only mildly 

affect the general stress that cell have to cope with in cell culture.  

Thus, these findings suggest that inferring with oxygen level for a short term does 

not influence mitochondrial chaperone abundance in vitro. 

4.2 ATF5+is+implicated+into+mitochondrial+stress+signalling+

The current study provides a more comprehensive understanding of ATF5 within 

mitochondrial as well as cellular stress responses. It shows that downregulation of ATF5 

causes a decrease of known UPRmt markers in vitro (Section 3.1.2.2). Moreover, ATF5 has 

been shown to be located in the nucleus under regular cell culture conditions, whereas in 

vivo ATF5 is found in mitochondria (Section 3.1.3 and 3.2.3). Finally, it has been 

demonstrated that ATF5 is elevated upon mitochondrial perturbations both in vitro and in 

vivo (Section 3.1.4 and 3.2.3). It was suggested that ATF5 is the mammalian homologue of 

ATFS-1, the central mediator of the UPRmt in C. elegans (Haynes et al., 2010). 
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The transcription factor ATF5 plays a major role in the development of the nervous 

system and in the survival of neural tumours (Greene et al., 2009). Similarly, a general pro-

survival function as well as a role in cell cycle control was reported (Madarampalli et al., 

2015; Persengiev et al., 2002; Persengiev and Green, 2003). The results of this study lend 

further credence to an earlier suggestion that ATF5 is induced in response to various 

cellular stresses such as ER stress, mitochondrial stress, arsenite exposure and proteasome 

inhibition (Dogan et al., 2014; Zhou et al., 2008). However, no role has been defined so far 

for ATF5 during UPRmt signalling. Proceeding from the assumption that ATF5 is indeed 

corresponding to ATFS-1, ATF5 has been found to be localized to the nucleus under 

regular cell culture conditions, adding weight to the observation that UPRmt signalling is 

active in these cells, as determined by high levels of both HSP60 and mtHSP70 (Section 

3.1.1). In addition, ATF5 localizes to mitochondria in wild type mouse hearts, showing that 

ATF5, a transcription factor by nature, is able to translocate into mitochondria under 

endogenous conditions (Section 3.2.3). This is further supported by the observation that 

increasing levels of mitochondrial dysfunction in mutant hearts correlate with decreasing 

levels of ATF5 found in heart mitochondria (Section 3.2.3). These results further support 

the hypothesis that ATF5 may act as the C. elegans homologue ATFS-1 that is regularly 

imported into mitochondria and only translocated to the nucleus under mitochondrial stress 

conditions (Nargund et al., 2012). It should be noted that ATF5, in contrast to ATFS-1, was 

shown to be subject to translational control through phosphorylation of eIF2α in response 

to cellular stress (Zhou et al., 2008). This feature is shared with another transcription factor 

ATF4 that is the key activator of the integrated stress response (ISR) (Dey et al., 2010). It 

seems likely that a general programme is activated under various stress conditions, such as 

ER or mitochondrial stress, which results in a common cellular stress response. In 

accordance, the GCN2 kinase was found to be the upstream activator of eIF2α inducing 

ATF4/5 and a global attenuation of cytosolic translation (Michel et al., 2015). Interestingly, 

it was shown in C. elegans that the GCN2-eIF2α axis acts in parallel to the UPRmt in order 

to sustain mitochondrial proteostasis and function (Baker et al., 2012). However, it is not 

clear by now, whether in the mammalian system both pathways are merged or if there is 

also another response branch leading to more organelle specific changes, as well. Evidence 

for another parallel signalling arises from the finding that UPRmt markers directly correlate 

with ATF5 levels (Section 3.1.2.2 and 3.23). Nevertheless, a common feature of both the 
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UPRmt and the ISR concentrates on the multifunctional transcription factor CHOP, which 

gets activates downstream of ATF4 and ATF5 (Oyadomari and Mori, 2004; Yamazaki et 

al., 2010). The UPRmt markers HSP60 and ClpP harbour a CHOP-responsive element, but 

do not contain any ATF5 binding site (Section 3.1.1) (Zhao et al., 2002). Therefore, it is not 

clear whether the changes observed during ATF5 knockdown are direct or indirect via 

CHOP. Interestingly, it was shown recently that disruption of mtDNA expression leads to 

activation of CHOP that only triggers activation of the ISR but not the UPRmt markers 

HSP60 and CLPP (Cortopassi et al., 2006; Michel et al., 2015). Nevertheless, there is some 

evidence that HSP60 and CLPP are not or only mildly changed upon mitochondrial 

perturbations, which raises the question if these markers are at all suitable to study UPRmt 

induction (Cortopassi et al., 2006; Dogan et al., 2014; Moisoi et al., 2009; Piechota et al., 

2006). In line with this evidence only slight changes of HSP60 could be observed in the 

experiments performed in this study (Section 3.1 and 3.23). However, mtHSP70 and 

LONP1 were found highly responsive to mitochondrial dysfunction in vivo, corresponding 

very well to levels of ATF4, ATF5 and CHOP (Section 3.2.3). Thus, the basic assumption 

in the current model is that ATF5 is induced upon mitochondrial stress activating cellular 

stress responses and subsequently mitochondrial quality control pathways. However, future 

studies will be important to discover a detailed mechanism. 

Taking into account the data presented so far, it is recommended to re-evaluate how 

actually mitochondrial dysfunction, especially due to unfolded proteins, triggers general 

cellular or rather organelle-specific responses. For that reason, it is very important to 

unravel the upstream events of a mitochondria-induced ISR as well as how cap-dependent 

translational attenuation by eIF2α, a common feature of the UPRer, UPRmt and the ISR, 

affects distinct cellular pathways. Moreover, CHOP, the linking key transcription factor of 

all these responses, needs to be further assessed regarding post-transcriptional 

modifications as well as other potential transcriptional co-activators that ultimately 

determine the specificity of the response. 
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4.3 LONP1+displays+and+regulates+UPRmt+signalling+

In this study, it is shown for the first time that the matrix protease LONP1 not only 

responds to mitochondrial unfolded protein stress, but also regulates the mammalian UPRmt 

signalling. The upregulation of LONP1 during unfolded protein stress has been 

demonstrated in three ways: (i) knockdown of the mitochondrial chaperones HSP60 and 

mtHSP70 elevated LONP1 expression (Section 3.1.4) (ii) knockdown of ATF5 also 

resulted in a vast increase of LONP1 levels (Section 3.1.5); and (iii) dysregulation of 

mitochondrial translation in vivo, resulting in the accumulation of unfolded/unassembled 

respiratory chain subunits, strongly induced LONP1 on both protein and mRNA level 

(Section 3.2.3). It is also shown that knockdown of LONP1 is accompanied by a reduction 

in the levels of mitochondrial chaperones, ATF5 as well as CHOP (Section 3.1.5). Here the 

study provides the first evidence that LONP1 is an upstream component of the UPRmt 

signaling cascade in mammals.  

To date numerous studies reported that LONP1 degrades denatured or oxidized 

proteins (Bota and Davies, 2002; Suzuki et al., 1994). However, LONP1 has not been 

directly linked to the UPRmt signalling so far, although it was reported to degrade the UPRmt 

mediator ATFS-1 upon import into mitochondria in C. elegans (Nargund et al., 2012). 

Instead, CLPP another mitochondrial matrix protease, was shown to be indispensable for 

UPRmt signaling in C. elegans (Haynes et al., 2007). Interestingly, a recent study revealed 

that it is not CLPP which alleviates unfolded protein induced PINK1-accumulation in HeLa 

cells, but LONP1 (Jin and Youle, 2013). Moreover, the same authors demonstrate that 

downregulation of LONP1 strongly increases the load of overexpressed ΔOTC, showing 

that LONP1 degrades excess of unfolded or misfolded proteins. Consistent with these 

results, an increased LONP1 expression could be observed upon reduced chaperone 

capacity or by increased unfolded OXPHOS subunits in the current study (Section 3.1.4 

and 3.2.3). These findings further support the hypothesis that the abundance of LONP1 

reflects the levels of unfolded proteins in the mitochondrial matrix. Remarkably, it has been 

shown that the relative contribution of yeast Pim1 (homolog of mammalian LONP1) to the 

prevention of protein aggregates under high stress conditions was by far greater compared 

to the mitochondrial chaperones Hsp60 and mtHsp70, although less abundant (Bender et 
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al., 2011). These observations add weight to the notion that LONP1 is the central factor in 

clearing unfolded proteins and preventing stress, rather than the mitochondrial chaperones 

HSP60 and mtHSP70. Very recently it has been demonstrated that loss of LONP1 leads to 

a reduction of HSP60 and mtHSP70 protein levels under oxidative stress (Kao et al., 2015). 

Moreover, it was shown that LONP1 directly interacts with the HSP60-mtHSP70 complex 

regulating their levels under cellular stress. Consistent with the study of Kao et al., the 

current study also demonstrated the dependency of HSP60 and mtHSP70 expression on 

LONP1 (Section 3.1.5). Strikingly, LONP1 overexpression is associated with cancer, 

whereas its decline is connected with age, senescence and apoptosis (Bota et al., 2005; 

Cheng et al., 2013; Ngo and Davies, 2007). These features are shared with HSP60 and 

mtHSP70 (Section 4.1.1), showing that mitochondrial quality control pathways are 

intimately linked to cell health. 

The current study shows that the expression of the mitochondrial chaperone TRAP1 

as well as the previously described transcription factors ATF5 and CHOP also correlates 

with LONP1 levels, suggesting that LONP1 ultimately determines the response (Section 

3.15). These observations add weight to the notion that LONP1 regulates the levels of 

UPRmt markers, hence UPRmt signalling. Since loss of ATF5 triggers a strong LONP1 

induction, it can be suspected that LONP1 expression is induced independent of ATF5 

(Section 3.1.5). These results gave rise to the hypothesis that loss of ATF5 increases the 

load of unfolded/misfolded proteins in mitochondria that are probably the cause for LONP1 

induction. It seems likely that an alternative feedback loop triggers LONP1 expression 

upon unfolded protein stress that is separated from ATF5-CHOP-induced UPRmt signalling. 

It can be suspected that loss of ATF5 influences other cellular stress pathways, such as the 

ISR or the UPRer via ATF4/CHOP, that challenge the load of unfolded proteins in 

mitochondria (Section 4.2). In line with that it was reported that LONP1 as well as 

mtHSP70 were strongly induced upon ER stress that further indicates the existence of a 

connection between ER and mitochondrial function (Hori et al., 2002). Interestingly, the 

ER-stress induced upregulation of LONP1 and mtHSP70 could be inhibited by loss of 

PERK, an ER stress-dependent kinase that also phosphorylates eIF2α (Hori et al., 2002). 

This observation further supports the hypothesis that ER and mitochondrial homeostasis are 

interconnected and stress response pathways are shared. 
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Although the regulatory mechanisms governing LONP1 expression are still unclear, 

this study suggests that LONP1 is upregulated during unfolded protein stress. Moreover, 

first evidence is provided that the levels of UPRmt markers are dependent on LONP1. 

However, future studies need to unravel the specific mechanisms by which the 

mitochondrial quality control network integrates into the cellular stress pathways. Based on 

the observation that UPRmt is difficult to model in cell culture, the generation of mouse 

models that either lack or overexpress potential factors implicated in UPRmt signalling, such 

as ATF5 or LONP1, is recommended. 

 

4.4 Mammalian+CLPP+regulates+mitochondrial+translation,+but+
not+the+mitochondrial+unfolded+protein+response+in#vivo+

At the current stage, this is the first study that demonstrates that the mitochondrial 

matrix protease CLPP is not part of the mammalian UPRmt signalling using an in vivo 

model (Section 3.2.3). The role of CLPP in the regulation of the UPRmt has attracted much 

interest in the past years using C. elegans or mammalian cell culture models (Haynes et al., 

2007; Rath et al., 2012; Zhao et al., 2002). These studies suggest CLPP either as a read out 

for UPRmt activation or as factor that indirectly regulates UPRmt markers.  

The cutting-edge study on the UPRmt in mammalian cells showed that CLPP is 

induced upon overexpression of a mutant, aggregation-prone protein (ΔOTC) in the 

mitochondrial matrix (Zhao et al., 2002). Moreover, it was shown that a stoichiometric 

mismatch of nDNA and mtDNA-encoded proteins, termed mitonuclear imbalance, 

triggered UPRmt activation, amongst others Clpp expression (Houtkooper et al., 2013). In 

contrast, it was recently found that loss of DARS2 in heart causes strong dysregulation of 

mitochondrial protein synthesis leading to high UPRmt upregulation, without any effect on 

CLPP expression (Dogan et al., 2014). In line with this finding it was reported that other 

types of mitochondrial stresses, such as inhibition of mitochondrial translation or depletion 

of mtDNA, MELAS and NARP mtDNA point mutations, OXPHOS inhibition, or loss of 

HTRA2 expression do not trigger CLPP expression (Fujita et al., 2007; Ishikawa et al., 

2009; Michel et al., 2015; Moisoi et al., 2009). It should be noted that the C. elegans 
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homologue CLPP-1 is required for hsp-6 and hsp-60 induction (Haynes et al., 2007). 

Furthermore, it was proposed that CLPP-1 function is required because it generates 

peptides that are exported through HAF-1 that inhibit the mitochondrial import of ATFS-1 

by a yet unknown mechanism (Haynes et al., 2010; Nargund et al., 2012). However, a 

detailed mechanism by which CLPP signals this response in mammals was not found. 

The current study provides the first direct evidence that CLPP is dispensable for the 

UPRmt activation in a DARS2-deficient background, as an unaffected increase of both 

protein and transcript levels of mitochondrial chaperones and proteases could be detected in 

the absence of CLPP (Section 3.2.3). Recent studies have shown that a CLPP-deficient 

mouse model displays ubiquitous induction of mitochondrial chaperones and inflammatory 

factors (Gispert et al., 2013). In line with that, the current study showed that loss of CLPP 

induced also a mild stress that upregulates chaperones exclusively (Section 3.2.3). It should 

be noted that activation of mitochondrial proteases serves as second defence system, which 

was not only induced in Dars2 KO but also in DKOs (Section 3.2.3). Moreover, loss of 

CLPP did not diminish the high expression of two transcription factors (CHOP and ATF5) 

that were proposed to play central roles in the UPRmt (Haynes et al., 2010; Zhao et al., 

2002). As described before (Section 4.2), both CHOP and ATF5 are also implicated in the 

ISR (Teske et al., 2013; Zhou et al., 2008). In line with the current observations, the ISR 

was found activated upon mitochondrial dysfunction in mammals (Dogan et al., 2014; Silva 

et al., 2009). In addition, phosphorylation of eIF2α as well as upregulation of ATF4 caused 

by mitochondrial dysfunction were not compromised by the lack of CLPP, showing that the 

ISR is activated independent of CLPP (Section 3.2.3). Conversely, it was reported that 

eIF2α phosphorylation is dependent on CLPP in murine cells (Rath et al., 2012). However, 

this study made use of a of a bacterial CLPP inhibitor Z-LY-CMK that was shown to be 

functional in worms (Haynes et al., 2007), but not further assessed in mammalian cells. 

Nevertheless, the results mentioned in section 3.2.3 demonstrate that eIF2α can be 

phosphorylated in vivo independent of CLPP under unfolded protein stress. Moreover, the 

activation of systemic stress signalling measured by the “mitokine” FGF21 (Tyynismaa et 

al., 2010) remains also unchanged upon CLPP deletion (Section 3.2.3). Interestingly, ClpP 

KO hearts already display signs of cellular stress responses as indicated by elevated ATF4 

and FGF21 expression levels (Section 3.2.3). Intrigued by the observation that either 
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mitochondrial stress or ER stress induce the ISR, it can be postulated that both responses 

are intrinsically tied to each other (Section 4.2). This is consistent with the fact that the 

“mitokine” FGF21 is induced not only during mitochondrial stress, but also during ER 

stress (Dogan et al., 2014; Jiang et al., 2014). Finally, the impairment of autophagy 

characterized by accumulation of P62 that was induced upon loss of DARS2 (Dogan et al., 

2014), was also not affected by the loss of CLPP (Section 3.2.3). Thus, all stress response 

pathways investigated do not involve a CLPP-mediated response. 

This study has not only shown that CLPP is not required for UPRmt signaling, but 

has also provided a way how to investigate this rather complex signaling in vivo by using a 

heart-specific short lived mouse model of mitochondrial dysfunction such as Dars2 KO 

mice. This straightforward approach can be used in future to study other potential factors 

that have been shown to be implicated in the UPRmt in other organisms. Taken together 

these results suggest that mammalian UPRmt might be intimately linked with ISR leading to 

cell non-autonomous changes in metabolism, yet the current study refutes any role of CLPP 

in this process.  

Another key finding of this study is that loss of CLPP, a major mitochondrial matrix 

protease, in an environment of disrupted mitochondrial translation is actually beneficial for 

the animal. Lifespan increased significantly by roughly 30%, which was due to a milder 

phenotype in the heart as shown by decrease in heart weight, regain of normal body weight, 

less signs of hypertrophy and less fibrosis (Section 3.2.2). Altogether, it was demonstrated 

that double-deficient mice are healthier for longer period of time and clearly reduce the 

signs of cardiomyopathy. Most importantly COX/SDH staining revealed a profound rescue 

of COX negative cells (Section 3.2.2). Sequential analysis of OXPHOS complex levels and 

in gel activity showed that complex I and complex IV exhibit higher activities in DKO 

compared to Dars2 KO (Section 3.2.4). In agreement with these findings, respiration 

through complex I and combined complex I and II significantly improved as well (Section 

3.2.4). The analysis of individual OXPHOS subunits by SDS-PAGE revealed that 

mitochondrial-encoded and also nuclear-encoded subunits not only of complex I and IV, 

but also complex III strongly increased their levels (Section 3.2.4). A plausible explanation 

is that the levels of nuclear-encoded subunits depend on the availability of mitochondrial-

encoded subunits in order to be assembled in correct stoichiometry. Unassembled subunits 
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overload mitochondria and are more prone to degradation (Leonhard et al., 2000). 

Interestingly, complex V subunits are not affect in their levels, even though complex V also 

contains mitochondrial-encoded subunits (Section 3.2.4). In addition, the improved 

phenotype of DKO compared to DARS2 KO mitochondria could be confirmed by the use 

of a label-free mass spectrometric analysis (Section 3.2.5). Not only mitochondrial encoded 

subunits, but also nuclear encoded subunits could be rescued by loss of CLPP in DARS2-

deficient mitochondrial, which is in line with steady-state level obtained by Western blot 

analysis (Section 3.2.4). Taken together, mitochondrial respiration can be partially rescued 

in DARS2-deficient mice, when CLPP is lost. 

These results were clearly not expected since CLPP deficiency on its own accounts 

for Perrault syndrome that gives rise to sensorineural hearing loss and premature ovarian 

failure in humans (Jenkinson et al., 2013). In accordance with the situation in humans, a 

similar phenotype was observed in CLPP deficient mice (Gispert et al., 2013); however, the 

molecular basis leading to the specific phenotypes has not been defined so far. The current 

study provides the first evidence that loss of CLPP leads to a moderate defect in 

mitochondrial protein synthesis that could be the primary cause of the disease (Section 

3.26). Likewise, mutations in HARS2 (Pierce et al., 2011), LARS2 (Pierce et al., 2013) and 

TWINKLE (Morino et al., 2014), three out of four other genes causing Perrault syndrome, 

also have a straight impact on mitochondrial translation. In line with these observations, a 

recent study demonstrated that loss of CLPP impairs mitoribosome assembly that might be 

the cause for the translational defect (Priyanka Maiti, PhD Thesis). Strikingly, inhibition of 

CLPP as well as inhibition of mitochondrial translation could be used as therapeutic 

strategy for human acute leukemia, suggesting also that CLPP might be intimately linked to 

mitochondrial translation (Cole et al., 2015; Skrtic et al., 2011). 

High rates of translation in cells were shown to be disadvantageous for protein 

folding (Sherman and Qian, 2013). Moreover, inhibition of translation by roughly 15-20% 

highly reduced the formation of protein aggregates resulting from mutant folding impaired 

proteins (Meriin et al., 2012a; Meriin et al., 2012b). In line with these observations in the 

current study it could be found that reduction of mitochondrial translation of approx. 25% 

due to loss of CLPP was also beneficial for a switch from aborted to proficient protein 

synthesis in DARS2-deficient mice, preventing the generation of toxic protein 
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intermediates, hence a possible aggregation of aborted proteins (Section 3.2.6). This would 

explain the reduction of proteotoxic stress in DKO mitochondria, although it does not add 

weight to the notion that proficient protein synthesis is improved in these animals.  

Based on these observations, it can be argued that a reduced rate of mitochondrial 

translation inflicted by the loss of CLPP allows an augmented generation of full-length 

OXPHOS subunits to occur inside DARS2-deficient mitochondria, thus partially correcting 

the respiratory defect. This effect was not due to an increased stability of OXPHOS 

subunits, as they are subject to higher degradation in DKO hearts (Section 3.2.6). There are 

two possible scenarios of how the loss of CLPP enhances the level of proficient 

mitochondrial protein synthesis (Figure 4.1). Firstly, tRNAs are generally less consumed 

during slowed down translation in CLPP-deficient mitochondria, hence the aspartate-tRNA 

pool lasts longer, enabling a prolonged proficient protein synthesis. The second explanation 

would be that slow mitochondrial translation caused by the absence of CLPP allows other 

tRNAs to replace aspartate-tRNA in the nascent polypeptides. Probably anticodons similar 

to the one of aspartate-tRNA get incorporated generating “pseudo” mitochondrial-encoded 

OXPHOS subunits that exhibit some residual activity. Moreover, overrepresentation of 

uncharged tRNAs can also lead to wrong charging (Raina and Ibba, 2014). Given the fact 

that uncharged tRNAs cognate for aspartate are overrepresented in DARS2-deficient 

mitochondria and loss of CLPP causes slowed down translation, possibly enabling 

misincorporation, it can be speculated that this could be the reason for enhanced proficient 

protein synthesis. These suboptimal OXPHOS subunits would be more prone to misfolding 

and degradation. An indirect proof for this scenario would be the fact that full-length 

mtDNA-encoded subunits generated in DKO mitochondria are more rapidly turned over 

(Section 3.2.6). Similar observations were made in mtDNA mutator mice that accumulate 

high levels of mtDNA mutations, leading to the expression of OXPHOS subunits with 

amino acid substitutions that are more rapidly degraded (Edgar et al., 2009). Apart from the 

obvious effect on the proficient protein synthesis, a tremendous decrease in the level of 

aborted peptides produced in DKOs compared to Dars2 KO mitochondria could also be 

found (Section 3.2.6). High amounts of these peptides could cause proteotoxic stress 

independent of the effect on the levels of OXPHOS complexes and put an additional burden 

to already troubled mitochondria. Most probably, the improved phenotype in DKO 
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mitochondria arises from a combination of both, the enhanced mitochondrial respiratory 

capacity and the strong decline in the amount of potentially toxic aberrant polypeptides.  

This study has not only shown that CLPP is not implicated in the UPRmt signalling, 

but has also provided evidence that it is actually involved in the regulation of mitochondrial 

translation. Another key finding was that CLPP is not involved in the degradation of 

unassembled or misfolded mitochondrial-encoded subunits in mammals. At the current 

stage there was no clear role defined for CLPP in mammalian mitochondria, only 

observations made in other organisms mainly bacteria and C. elegans that implicate CLPP 

in the degradation of misfolded or damaged proteins (Baker and Sauer, 2012; Haynes et al., 

2007). In summary, the results of the current study provide the first evidence for a role of 

CLPP in mammalian mitochondrial translation, while refuting its role in the UPRmt 

signalling. They also open a possibility for exploration of therapeutic intervention targeting 

CLPP activity in the large group of mitochondrial diseases that directly affect 

mitochondrial protein synthesis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Proposed model of mitochondrial translation in DKO compared to WT or single mutant 
phenotype. CLPP deficiency leads to a slowed down mitochondrial translation, whereas DARS2 deficiency 
causes aborted protein synthesis. However, translational rate is not affected by the loss of DARS2. DKO 
mitochondrial translation shifts aborted protein synthesis to proficient protein synthesis by a slowed down 
translation. This improvement in DKO mitochondrial translation is either achieved by hypothesis I or II. 
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