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Abstract

In this thesis we consider the surplus of a non-life insurance company and

assume that it follows either the classical Cramér–Lundberg model or its dif-

fusion approximation. That is, we consider a continuous time model, where

premiums are cashed at a constant rate and claims occur randomly with ran-

dom sizes modelled by a compound Poisson process.

In actuarial mathematics the risk of an insurance company is traditionally

measured by the probability of ruin, where the time of ruin is defined as the

first time when the surplus becomes negative. Using the ruin probability as a

risk measure has been criticised because the time value of money is neglected

and it is unrealistic to assume that an insurance company is ruined as soon

as the surplus becomes negative. As an extension one can consider the proba-

bility of bankruptcy, where negative surplus is allowed and bankruptcy is the

event of going out of business. In this approach, the insurance company goes

bankrupt randomly for negative surplus levels at some bankruptcy rate. An-

other measure considers the expected discounted dividend payments which are

paid to the shareholders until ruin. In this thesis, we use a similar measure,

but as distinguished from classical models, we assume that the insurer is not

ruined although the surplus becomes negative and that bankruptcy does not

occur. In order to avoid bankruptcy, penalty payments occur, depending on

the level of the surplus. For example, penalty payments occur if the insurance

company needs to borrow money. As a risk measure we consider the difference

between the expected discounted dividend and penalty payments.

In the first part of this thesis we consider the diffusion approximation to

the Cramér–Lundberg model and we aim to determine a dividend strategy



that maximises the difference between the expected discounted dividend and

penalty payments, where penalty payments are either modelled by an expo-

nential, linear or quadratic function. We show that the optimal strategy is

a barrier strategy and calculate the optimal barrier. Using this strategy, all

surplus above the barrier is paid as dividends and whenever the surplus is

below the barrier, no dividends are paid.

The second part studies the analogous problem where the surplus process

of an insurance company is given by a Cramér–Lundberg model. We show

that the optimal strategy is also a barrier strategy and consider exponentially

distributed claim sizes with exponential, linear and quadratic penalty functions

as examples.

In conclusion, we consider the problem where we have to determine an opti-

mal investment and reinsurance strategy and the surplus follows the diffusion

approximation to the Cramér–Lundberg model. The insurance company can

invest in several risky assets and reduce the insurance risk either by excess of

loss or proportional reinsurance. The aim is to find a strategy which minimises

the penalty payments that are necessary to avoid bankruptcy. Various penalty

functions are considered and closed form solutions are derived.





Zusammenfassung

In dieser Dissertation betrachten wir den Überschuss eines Sachversicherungs-

unternehmens, der entweder durch das klassische Cramér–Lundberg–Modell

modelliert ist oder der Diffusionsapproximation zu diesem Modell. Wir be-

trachten demzufolge ein Modell in stetiger Zeit, in dem die Prämienzahlungen

durch eine konstante Rate gegeben sind und Schäden zufällig auftreten. Dabei

werden die Schadenhöhen durch einen zusammengesetzen Poisson Prozess

modelliert.

Das Risiko eines Versicherungsunternehmens wird in der Versicherungsmathe-

matik in der Regel durch die Ruinwahrscheinlichkeit gemessen, wobei der Zeit-

punkt des Ruins als der erste Zeitpunkt definiert ist an dem der Überschuss

negativ wird. Die Verwendung der Ruinwahrscheinlichkeit als Risikomaß wird

kritisiert, da der Zeitwert des Geldes vernachlässigt wird und es nicht realis-

tisch ist anzunehmen, dass ein Versicherungsunternehmen ruiniert ist, sobald

der Überschuss negativ wird. Als eine Erweiterung kann auch die Wahrschein-

lichkeit des Bankrotts betrachtet werden, wobei negativer Überschuss zulässig

ist und Bankrott das Ereignis bezeichnet, dass der Geschäftsbetrieb eingestellt

wird. Bei diesem Ansatz tritt Bankrott zufällig ein, sobald der Überschuss

negativ wird. Ein weiteres Maß betrachtet die erwarteten diskontierten Divi-

dendenzahlungen, welche bis zum Ruin an die Aktionäre gezahlt werden. In

dieser Arbeit verwenden wir ein ähnliches Maß. Abweichend von klassischen

Modellen, nehmen wir jedoch an, dass das Versicherungsunternehmen nicht ru-

iniert ist, wenn der Überschuss negativ wird und dass Bankrott nicht eintritt.

Um den Bankrott zu verhindern muss das Versicherungsunternehmen jedoch

Strafzahlungen leisten, deren Höhe vom Niveau des Überschusses abhängt.



Strafzahlungen entstehen beispielsweise durch die Aufnahme von Fremdkapi-

tal. Als Risikomaß betrachten wir nun die Differenz zwischen den erwarteten

diskontierten Dividenden- und Strafzahlungen.

Im ersten Teil dieser Arbeit betrachten wir die Diffusionsapproximation des

Cramér–Lundberg–Modells und zielen darauf ab eine Dividendenstrategie zu

bestimmen, die die Differenz zwischen den erwarteten diskontierten Dividenden-

und Strafzahlungen maximiert, wobei Strafzahlungen entweder durch eine ex-

ponentielle, lineare oder quadratische Funktion modelliert werden. Wir zeigen,

dass die optimale Dividendenstrategie eine Barrierenstrategie ist und bestim-

men die optimale Barriere. Unter Anwendung dieser Strategie wird der An-

teil des Überschusses, der die Barriere überschreitet als Dividende ausgezahlt.

Sobald der Überschuss sich unterhalb der Barriere befindet, erfolgen keine

weiteren Dividendenzahlungen.

Im zweiten Teil betrachten wir das analoge Problem, wobei der Überschuss

hier durch das Cramér-Lundberg–Modell beschrieben ist. Wir zeigen, dass die

optimale Strategie ebenfalls eine Barrierenstrategie ist und betrachten expo-

nentialverteilte Schadenshöhen und exponentielle, lineare oder quadratische

Strafzahlungen als Beispiele.

Abschließend betrachten wir ein Problem, in dem eine optimale Kapitalanlage-

und Rückversicherungsstrategie zu bestimmen ist und der Überschuss durch

die Diffusionsapproximation des Cramér–Lundberg–Modells gegeben ist. Das

Versicherungsunternehmen hat die Möglichkeit in mehrere korrelierte Aktien

zu investieren und entweder XL-Rückversicherung oder proportionale Rück-

versicherung zu kaufen. Das Ziel ist es eine Strategie zu ermitteln, die die

erwarteten diskontierten Strafzahlungen, welche notwendig sind um Bankrott

zu vermeiden, minimiert. Es werden unterschiedliche Strafkostenfunktionen

betrachtet und geschlossene Lösungen bestimmt.
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Preface

Considering an insurance company, many think at first of traffic accidents,

cost of medical treatments, damage to property, etc. Indeed, we are reassured

about being protected by an insurance company if such events occur. Paying

a periodic premium, the insurance company promises to cover an uncertain

loss. The insurance policy determines the amount of premium and for which

claims the insurance company is committed to pay. Thus, the individual

relies on insurance companies in order to hegde against unpredictable events.

Concluding an insurance policy is somehow a form of risk management of the

individual.

However, the risk management of an insurance company is far more im-

portant for the purpose of staying solvent. For example, persons who are not

covered by health insurance may face unbearable costs of medical treatments

in case of illness but this does not directly affect others. On the other hand,

assume that the insurer becomes insolvent because of poor risk management.

Then, not only one person is concerned but rather all policyholders are left

without coverage. This also deteriorates the economic situation. The larger

the insurance company, the larger is the effect on the economic situation.

In particular during the financial crisis 2007-2008, it became evident which

dramatic effects occur if a major financial player becomes insolvent. Besides

several banks, for example Bradford & Bingley, Dexia, Lehman Brothers and



Hypo Real Estate, the insurance company AIG was also concerned of the finan-

cial crisis and the solvency was only ensured by interventions of the regulator.

Therefore, the solvency of an insurance company is commonly of great interest

and of course there are regulatory requirements for insurance companies, for

instance, the regulations of Solvency II. Nevertheless, since the regulations of

Solvency II primarily concern the capital adequacy requirements for insurance

companies, it is necessary to apply additional measures to reduce the risk of

an insurance company.

Over the last years, the theory of optimal stochastic control has become

more popular in actuarial mathematics, especially to put the risk management

onto a sound theoretical foundation. In concrete, the surplus of the insurance

company is described by a process S = St. The first time when S becomes

negative defines the time of ruin. Thus, S reflects the solvency of the insurance

company. The insurer’s strategy to reduce the risk is modelled by a control

strategy U = Ut that influences S. While S is most often defined as a Cramer–

Lundberg model or its diffusion approximation, various control strategies (for

example, U can describe a reinsurance or an investement strategy) have been

proposed. The problem is to determine a strategy U∗t maximising (or minimis-

ing) a specified gain functional. This is generally achieved through solving the

so-called Hamilton–Jacobi–Bellman (HJB) equation, giving the value function

of the optimal control process. The most important control problems in ac-

tuarial mathematics are listed in the following. Traditionally, the risk of an

insurance company is measured by the probability of ruin. For optimal deci-

sions, the probability of ruin is minimised – for example by reinsurance and/or

investments – in order to increase the solvency of an insurance company. This

problem was considered for examle in [11, 35, 60, 61, 62], where further ref-

erences can be found. The disadvantage of the ruin probability approach is

ii



that the time value of money is neglected and it is unrealistic to suppose

that the surplus tends to infinity. A second approach distributes dividends

to the shareholders. Here, the goal is to maximise the expected discounted

dividends until ruin. The formulation of the dividend problem in a discrete

time framework goes back to de Finetti [20]. Thereafter, Gerber [31] consid-

ered the problem in the Cramér–Lundberg model. In a more recent paper,

Gerber and Shiu [33] analysed the dividend approach in a diffusion model.

Li [46] considered the distribution of the dividend payments in the Cramér–

Lundberg model perturbed by a Wiener process. Mishura and Schmidli [52]

studied dividend strategies in a renewal risk model with generalized Erlang

interarrival times. Moreover, dividend problems were considered in a Markov-

modulated risk model (cf. [47, 48, 69]). In many models it was shown that

the optimal dividend strategy is a barrier strategy. Here, all surplus above a

specified barrier b ≥ 0 is paid as dividend and whenever the surplus is below

the barrier there are no dividend payments.

Asmussen et al. [7] also considered the dividend problem in a diffusion

framework, where the insurer can buy excess of loss (XL) and proportional

reinsurance. They showed that the optimal dividend strategy is a barrier

strategy and that excess of loss reinsurance is always better than the propor-

tional one. An overview of optimisiation techniques in the context of dividend

payments and reinsurance, where the surplus is given by a diffusion process,

can be found in [66]. Højgaard and Taksar [39] additionally assumed that the

insurer may invest in a risk free and a risky asset. Here, an optimal strategy

exists only if the discounting factor is larger than the yield of the stock and

the risk free interest rate. If this is fulfilled, the optimal dividend strategy is

also a barrier strategy and the optimal investment and reinsurance strategies

depend on the market price of risk. Azcue and Muler [9, 10] considered the

iii



dividend problem where the surplus process evolves as a Cramér–Lundberg

process. They showed that the optimal value function is the smallest viscosity

solution to the associated HJB equation. Avanzi [8] gave an overview on the

actuarial research that followed de Finetti’s original paper. The disadvantage

of the dividend approach is that, under the optimal strategy, generally ruin

occurs almost surely. Therefore, the idea of capital injections rises.

In an approach with capital injections the shareholders should have the

opportunity to inject capital whenever the surplus becomes negative in order

to avoid ruin. Eisenberg and Schmidli [24, 25, 26, 27] considered an approach

where the expected discounted capital injections are minimised. As proposed

in [21], Kulenko and Schmidli [43] combined the approach of dividends and

capital injections. They showed that the optimal strategy exists and is of

barrier type. In a diffusion model an analogous problem was considered by

Shreve et al. [65]. They also showed that the optimal strategy - if it exists -

is a barrier strategy.

In [36, 37] the discounted average of the future surplus of an insurance

company, which can buy cheap and non-cheap reinsurance, is optimised for dif-

fusion models. Taksar and Hunderup [67] extended this approach by a penalty

term for bankruptcy. A similar approach maximises the expected utility of ter-

minal wealth. For example, this was considered in [12, 70, 72]. An overview

on the application of optimal stochastic control in actuarial mathematics can

be found in [11, 34, 62].

All of the approaches above have one thing in common: If the surplus be-

comes negative, the insurer either has to inject capital or ruin occurs. However,

in practice, it can be observed that some companies continue doing business

although they had large losses for a long period. Often, the regulator in-

tervenes in order to avoid that a company goes out of business. As already
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mentioned, several banks and insurance companies were rescued by the reg-

ulator during the financial crisis of 2007–2008. Therefore, Albrecher et al.

[4] introduced a more general bankruptcy concept by distinguishing between

bankruptcy and ruin. They still define ruin as the event of the surplus be-

coming negative and bankruptcy as the event of going out of business. Unlike

the above approaches, they assume that the insurance company can continue

doing business until bankruptcy, where the probability of bankruptcy is a

function of the level of negative surplus. In this framework they assume that

the surplus of an insurance company follows a Brownian motion and they con-

sider the expectation of discounted dividends until bankruptcy. Albrecher and

Lautscham [5] studied the probability of bankruptcy in the Cramér–Lundberg

model. Another possibility to allow negative suplusses is to observe the sur-

plus only at discrete observation times. Such a model has been studied in [1],

[2] and [3]. Nevertheless, in practice bankruptcy does not occur randomly but

rather depends on the capital resources. Moreover, it is often very hard to

obtain explicit solutions in an approach with a bankruptcy function.

In this thesis, we assume that bankruptcy does not occur, but whenever

the surplus is negative, additional costs arise. Therefore, we introduce penalty

payments. These payments reflect all costs which are necessary to prevent

bankruptcy. For example, penalty payments can occur if the insurer needs

to borrow money, generate additional equity or if additional administrative

measures have to be taken (like reporting to the authorities). These costs

may also be extended to positive surplus to penalise small surplus. Interest

payments for negative surplus were also considered by Gerber [32], Embrechts

and Schmidli [28] and Schmidli [59]. Note that in our modelling, the penalty

payments are neither subtracted from the surplus nor be paid directly by the

shareholders. The penalty payments are rather technical in order to avoid

v



that the surplus becomes small or even negative. For a surplus level of x, we

model the penalty payments to apply at rate φ(x), where φ is an appropriate

penalty function. In particular, φ should be positive and decreasing because

we assume that interest or other penalty payments are always positive and

that the penalty payments increase whenever the economic situation is getting

worse. In this framework we consider two stochastic control problems:

In the first problem, dividends may be paid. The value of the controlled

surplus process {SDt } with accumulated dividends {Dt} is then

E
[∫ ∞

0
e−δt dDt −

∫ ∞
0

e−δt φ(SDt ) dt
∣∣∣SD0 = x] ,

where δ is a preference parameter. Dividends today are preferred to dividends

tomorrow, and costs tomorrow are preferred to costs today. Thus, we assume

that δ > 0. Our goal will be to maximise the expected value above by choosing

an optimal dividend policy.

The second problem aims to minimise the expected discounted penalty

payments by investments and reinsurance, where the insurer can invest in

n risky assets and reduce the insurance risk either by excess of loss or pro-

portional reinsurance. Let Rt a reinsurance strategy, where Rt describes the

retention level at time t and θt = (θ1
t , θ

2
t , ..., θ

n
t )T an investment strategy, where

θit describes the amount being invested into the ith asset at time t. Then, we

aim to minimise the value

E
[∫ ∞

0
e−δt φ(S(R,θ)

t ) dt
∣∣∣ S(R,θ)

0 = x
]
,

by choosing an optimal investment and reinsurance strategy.
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General Notation

N The natural numbers

R The real numbers

x1 ∧ x2 min(x1, x2) for x1, x2 ∈ R

P Probability measure

Ω Set of all possible outcomes

F Set of all possible events

F = {Ft}t≥0 Filtration of σ-algebras

(Ω,F,P) Probability space

E Expected value

S = {St}t≥0 Surplus process of an insurance company

L = {Lt}t≥0 Cramér–Lundberg process

x Initial capital

c Premium rate

N = {Nt}t≥0 Poisson process describing the amount of claims

λ Intensity of the Poisson process

{Yi}i=1,2,... Sequence of iid random variables modelling the

claim sizes

Y Generic random variable with the same

distribution as Yi
F Distribution function of the claim sizes



m1 Expected value of the random variable Yi
m2 Second moment of the random variable Yi
0 = T0 < T1 < T2 < ... Sequence of iid random variables modelling

the the claim times

η Safety loading of the insurer

X = {Xt}t≥0 Diffusion approximation to the

Cramér–Lundberg model

µ, σ Drift and diffusion parameter in the diffusion approximation

W = {Wt}t≥0 Wiener process (standard Brownian motion)

D = {Dt}t≥0 Dividend strategy

b ∈ R Barrier of a dividend strategy

SD = {SDt }t≥0 Surplus of an insurance company controlled by

a dividend strategy D

Z = {Zt}t≥0 Stock price evolution in the Black–Scholes model

a1 > 0 Stock return in the Black–Scholes model

v1 > 0 Stock volatility in the Black-Scholes model

Zi = {Zit}t≥0 Stock price evolution of the i-th stock

in an extension of the Black–Scholes model

a ∈ Rn Stock return vector, where a = (a1, a2, ..., an)

v ∈ Rn×n Volatility matrix of the stock prices,

where v = (vij)i,j=1,2,...,n

Σ ∈ Rn×n Covariance matrix of the stock prices

Bi, j = 1, 2, ..., n Independent Wiener processes

θ = {θt}t≥0 Investment strategy, where θ = (θ1, θ2, ..., θn)

Sθ = {Sθt }t≥0 Surplus of an insurance company controlled by

an investment strategy θ

R = {Rt}t≥0 Reinsurance strategy

ix



ρ Safety loading of the reinsurer

r Retention level of a reinsurance policy

s(r, Y ) Self-insurance function for a rentention level of

r and some insurance risk Y

SR = {SRt }t≥0 Surplus of an insurance company controlled by

a reinsurance strategy R

SU = {SUt }t≥0 Surplus of an insurance company controlled by

a reinsurance and investment strategy U = (R, θT )T

τr Time of ruin

ω(x) Bankruptcy function

τ Time of bankruptcy

φ(x) Penalty function

V (x) (Optimal) Value function

V D(x), V U (x) Value of the strategy D and U , respectively

δ > 0 Preference parameter

D,U Set of all admissible dividend /

reinsurance and investment strategies

x
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Chapter 1

Preliminaries

We start with an introduction to the most important models and formulate the

general settings in this thesis. Throughout this thesis all stochastic objects are

defined on a complete probability space (Ω,F,P). Moreover, {Ft} describes a

complete filtration.

In actuarial mathematics the surplus of an insurance company is classi-

cally represented by a stochastic process and the insurer has the possibility

to control the surplus by a number of variables. In the following chapter we

assume that the uncontrolled surplus process S = {St}t≥0 of an insurance

company is described either by the Cramér–Lundberg model or by a diffusion

approximation, i.e., we consider a continuous time framework. We start with

a rough introduction to these models.

1.1 The Cramér–Lundberg Model and Premium Prin-

ciples

A common model to describe the surplus of an insurance company is the

Cramér–Lundberg model (classical risk model or compound Poisson risk model),



that goes back to Cramér [18] and Lundberg [49].

Starting with an initial capital x and considering a constant premium rate

c > 0, the surplus process in the Cramér–Lundberg model is given by

Lt = x+ ct−
Nt∑
i=1

Yi , (1.1)

where N = {Nt}t≥0 is a Poisson process with intensity λ and {Yi}i=1,2,... a

sequence of positive, independent and identically distributed random variables

with mean m1, second moment m2 and distribution F . Moreover, {Yi}i=1,2,...

are independent ofN . The number of claims arriving until time t and the claim

size of the i–th claim are denoted by Nt and Yi, respectively. Claims occur at

random times 0 = T0 < T1 < T2 < ..., where the interarrival times Ti − Ti−1

are independent and exponentially distributed with mean 1/λ. Furthermore,

because N and {Yi}i=1,2,... are independent, we have

E[Lt − x] = ct− E
[
E
[ Nt∑
i=1

Yi
∣∣∣ Nt

]]
= ct− E[Nt]m1 = t(c− λm1) .

Therefore, we assume that the so-called net profit condition

c > λm1 (1.2)

holds.

There are numerous premium calculation principles, most importantly is

the net value principle. Here, the premium for a single claim Y is calculated

by

p = (1 + η)E[Y ] ,

where η > 0 denotes the safety loading of the insurer. In order to have a

higher sensibility against large insurance risks the variance principle and the

standard deviation principle are commonly used. Here, we have

p = E[Y ] + κVar[Y ]

2



and

p = E[Y ] + κ
√

Var[Y ] ,

respectively, for some κ > 0. The variance principle is criticised because a

change of the monetary unit also causes a change of the security loading. This

problem is fixed by the modified variance principle, where

p = E[Y ] + κ
Var[Y ]
E[Y ] .

An extension to the net value principle ist the adjusted risk principle with

p =
∫ ∞

0
(1− F (x))κ dx ,

where F denotes the distriubtion function of Y and κ ∈ (0, 1). The net value

principle is obtained as the special case κ = 1. If the insurance company

aims to weight high losses stronger than small losses, they may also apply the

principle of zero utility. Here, the premium p is the unique solution to the

equation

v(w) = E[v(w + p− Y )] ,

where w denotes the initial wealth of the insurer and v is a strictly increasing

and concave function with v(0) = 0. A well known special case is v(y) =

− e−κy, where κ > 0, i.e. the exponential premium principle.

We consider the net value principle, because the premium is easy to cal-

culate. In case of the Cramér–Lundberg model we have

c = (1 + η)λm1 .

1.2 A Diffusion Approximation to the Cramér–Lundberg

Model

According to Schmidli [62] it is often difficult to calculate characteristics in the

Cramér–Lundberg model. Therefore one tries to find an appropriate approx-
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imation of the Cramér–Lundberg model. Let Xn be a sequence of Cramér–

Lundberg models. We say that Xn converges weakly to a stochastic process

X if

lim
n→∞

E(ψ(Xn)) = E(ψ(X))

for every bounded continuous functional ψ. Our goal is to find a diffusion

process

dXt = µ(Xt)dt+ σ(Xt)dWt , (1.3)

where W denotes a standard Wiener process, such that Xn converges weakly

to X from equation (1.3). In [62] it is also mentioned that in case of a dif-

fusion approximation the limiting process should be a diffusion process with

stationary and independent increments, e.g.

Xt = x+ µt+ σWt . (1.4)

Let

Xn
t = xn + cnt−

Nn
t∑

i=1
Y n
i

where Nn defines a sequence of Poisson processes with intensity λn = nλ,

Y n
i = Yi/

√
n, xn = x and cn = c + λm1(

√
n − 1). Then, Xn is a sequence

of Cramér–Lundberg models and X1 describes the process in (1.1). Schmidli

shows in [58] that Xn converges weakly to X, where µ = c − λm1 and σ =
√
λm2. Considering the sequence Xn, the number of claims increases and

the claim sizes decrease if n increases. Therefore, the approximation is only

meaningful for large portfolios.

1.3 Dividend Payments

In the first part of this thesis we assume that the insurer has the possibility

to pay dividends to the shareholders. In this section we introduce the idea
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of measuring the risk of an insurance company by dividend payments and we

present the most popular dividend strategies in the literature.

As already mentionend, the risk of an insurance company is classically

measured by the probability of ruin. Let Lt define the surplus process of an

insurance company, where Lt is defined as in equation (1.1). Then, the time

of ruin τr is defined as the first time when the surplus becomes negative, i.e.

τr = inf{t ≥ 0: Lt < 0} .

Using the ruin probability as a risk measure, one point of criticism was that

the surplus generally tends to infinity under this approach. A possibility to

prevent that the surplus tends to infinity is to distribute some of the surplus to

the shareholders as dividends. Then - as proposed by de Finetti [20] - the risk

of an insurance company can be measured by the expected discounted dividend

payments which are paid to the shareholders until ruin. A dividend strategy

determines when and which amount should be paid to the shareholders. We

model a dividend strategy by a stochastic process Dt, where Dt denotes the

accumulated dividend payments up to time t. The controlled surplus process

now is given by

LDt = Lt −Dt .

We call a divdend strategy D a band strategy if the state space of the surplus

process is separated into three sets A, B, C and dividends are distributed

as follows: If x ∈ A, the incoming premium is paid as dividend until the

next claim arrives. If x ∈ B, a dividend is paid such that the process is

immediately brought back to the first set. If x ∈ C = (A ∪B)C, there is no

dividend payment.

A barrier strategy D is a special type of band strategy that is characterised

by a barrier b. Whenever the surplus is below b, there is no dividend payment.

As soon as the surplus exceeds b, the difference between the surplus and b is
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paid as dividend. Thus, A = {b}, B = (b,∞) and C = [0, b). Moreover, we

have D0 = (x− b)+ and

dDt =
∫ t

0
c1{LDs =b}ds

for t > 0. This means that a barrier strategy separates the state space into

two intervals ("bands") [0, b) and (b,∞). Figure 1.1 illustrates a sample path

of a surplus process controlled by a barrier strategy in the Cramér–Lundberg

model.

Now, we assume that the surplus follows the model in (1.4). Then, we call

D a barrier strategy with a barrier b if Dt = (Mt − b)+, where

Mt = sup
0≤s≤t

Xt .

Figure 1.2 illustrates a sample path of a surplus process controlled by a barrier

strategy in a diffusion approximation.

For an overview on dividend strategies see [8].
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Figure 1.1: Sample path of a surplus process controlled by a barrier strategy

in the Cramér–Lundberg model.

Figure 1.2: Sample path of a surplus process controlled by a barrier strategy

in a diffusion approximation.
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1.4 Investments and Reinsurance

In chapter 4, the insurer has the possibility to invest part of the surplus into

risky assets and to buy reinsurance. Therefore, we now give an overview of

some common investment and reinsurance models, in particular of those being

applied in this thesis.

The most famous model in financial mathematics is the Black–Scholes

model which goes back to Black, Scholes [15] and Merton [51]. The Black–

Scholes model assumes that the financial market only consists of one risky

asset (stock) and a riskfree asset (bond). The stock is modelled as

dZt = a1Zt dt+ v1Zt dB1
t ,

where a1 > 0 describes the return of the stock, v1 > 0 the volatility of the

stock and B1 denotes a Wiener process. Using Itô’s formula one obtains

Zt = Z0 exp
[
v1Bt + (a1 − 1

2v
2
1)t
]
.

The bond (sometimes called cash or money market) is modelled by

dZmt = mZmt dt ,

where m > 0 denotes the riskfree interest rate. Again, Itô’s formula yields

Zmt = Zm0 emt .

In this framework Black, Scholes [15] and Merton [51] derived a closed form

formula for evaluating the value of a European option (offers the buyer the

right, but not the obligation, to buy (call) or sell (put) a stock or other financial

assets at the maturity of the contract).

In this thesis we consider an extension to the Black–Scholes model. We

assume that the insurance company has the possibility to invest in n risky
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assets, modelled by

dZit = aiZ
i
t dt+ Zit

n∑
j=1

vij dBj
t , Si0 = 1

for i = 1, 2, ..., n. Here, B1, B2, ..., Bn are independent Wiener processes and

ai, vij ≥ 0, i, j = 1, 2, ..., n. The insurer can choose an investment strategy

θt = (θ1
t , θ

2
t , ..., θ

n
t )T , where θit describes the amount being invested into the

ith asset at time t. Considering a strategy θ the controlled surplus of the

insurer is given by

dSθt = dSt +
n∑
i=1

aiθ
i
t dt+

n∑
i=1

n∑
j=1

θitvij dBj
t .

Buying Reinsurance is another important possibility to control the risk

of an insurance company. A so called reinsurance company and the insurer

(cedent) agree to share part of the claims incurred by the cedent. In return,

the cedent pays a reinsurance premium to the reinsurance company. Gener-

ally, it is distinguished between facultative reinsurance, where each claim is

reinsured separately and treaty reinsurance, where the cedent and reinsurer

negotiate to share a part of all insurance policies which are specified in the

contract. In the following we only consider facultative reinsurance. In order to

model a reinsurance policy we introduce the so-called self-insurance function

0 ≤ s(r, Y ) ≤ Y for a retention level r, where s(r, Y ) denotes the part of a

claim Y which is still covered by the insurer. The most common types of rein-

surance are proportional reinsurance and excess of loss reinsurance. In case

of proportional reinsurance the reinsurer covers a stated ratio of the claim.

Thus, we have

s(r, Y ) = rY ,

where 0 ≤ r ≤ 1. Applying excess of loss reinsurance, the reinsurer only covers

the part exceeding a specified amount and therefore

s(r, Y ) = min(r, Y ) ,
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where 0 ≤ r ≤ ∞. Another possibility to buy reinsurance is proportional rein-

surance in a layer. Here, we have a multidimensional retention level (r1, r2, r3)

and

s((r1, r2, r3), Y ) = min(r1, Y ) + (Y − r1 − r3)+ + r2 min(r3, (Y − r1)+) .

In this thesis we only consider proportional reinsurance and excess of loss

reinsurance. Let ρ denote the safety loading of the reinsurer. Considering a

single claim and a retention level of r, the premium rate remaining for the

insurer is given by

(1 + η)m1 − (1 + ρ)E[Y − s(r, Y )] = (1 + ρ)E[s(r, Y )]− (ρ− η)m1 .

The insurer can choose the retention level at any time t. Thus, a reinsurance

strategy is an adapted process 0 ≤ Rt ≤ ∞. Then, under a reinsurance

strategy R the surplus in the Cramér–Lundberg model is given by

LRt = λ(1 + ρ)
∫ t

0
E[s(Rs, Y )] ds− λ(ρ− η)m1t−

Nt∑
i=1

s(RTi , Yi) .

1.5 From Ruin to Bankruptcy

At the beginning of the twenty–first century optimisation problems in acturial

mathematics have extensively been studied. Mostly, the surplus process St of

an insurance company has been considered until ruin occurs. For example one

has tried to maximise the expected discounted dividends payments

E
(∫ τr

0
e−δt dDt

)
until ruin, see Section 1.3.

In the preface we pointed out that at the very latest since the beginning

of the financial crisis in 2007, it can be observed that some companies, in

particular banks, can still do business even though they had large losses. In
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order to maintain systemic stability, public money was used to bail out banks.

Of course, it also could be possible that an insurance company can continue

doing business despite the surplus becomes negative. Therefore we have to

distinguish between the event of going out of business and the event of negative

surplus. This idea was first introduced by Albrecher et al. [4]. We still define

ruin as the event of negative surplus. In addition, we define bankruptcy as

the event of going out of business.

In order to model the event of bankruptcy Albrecher et al. [4] introduced

a bankruptcy rate function ω(x) with ω(x) ≥ 0, x ≤ 0 and ω(x) = 0, x > 0.

Whenever the surplus becomes negative, bankruptcy occurs at rate ω(x). This

means that

P(τ ≤ h|Fh) = 1− exp
(
−
∫ h

0
ω(St)dt

)
and

P(τ ≤ h) = E
[
P(τ ≤ h|Fh)

]
= E

[
1− exp

(
−
∫ h

0
ω(St)dt

)]
respectively, where Fh = σ(St, 0 ≤ t ≤ h). In particular, the time of bankruptcy

is given by

τ = inf
{
h > 0:

∫ h

0
ω(St)dt > E

}
,

where E ∼ Exp(1). It is assumed that ω is decreasing, i.e., the probability of

bankruptcy increases if the surplus becomes more negative. If there is a x̃ < 0

such that ω(x) =∞ for x ≤ x̃ and ω(x) ≥ 0 for x̃ < x ≤ 0, bankruptcy occurs

at the latest when the surplus falls below x̃.

Suppose that at time h we have Sh = x for some negative surplus. Then,
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the bounded convergence theorem implies

lim
s↓0

P(h < τ ≤ h+ s|τ > h)
s

= lim
s↓0

1
s
E
[1− e−

∫ h+s
0 ω(St)dt−

(
1− e−

∫ s
0 ω(St)dt

)
e−
∫ s

0 ω(Lt)dt

]

= lim
s↓0

1
s
E
[
1− e−

∫ s+h
s

ω(St)dt
]

= E(ω(Sh)) = ω(x) .

Thus, it is said that bankruptcy occurs at a bankruptcy rate function ω.

Considering a constant bankruptcy function ω(x) = λ, the following is

obtained: The concept of bankruptcy due to [4] coincides with the framework

of randomised observation periods in [1], [2] and [3] if the time lengths between

the observations are exponentially distributed with parameter λ. In [1], [2] and

[3] bankruptcy occurs the first time when the surplus is negative at one of the

observation times. Between the observation times it could be possible that

the surplus becomes negative.

1.6 Introduction of Penalty Payments

The main advantage of the bankrupcty concept due to Albrecher et al. [4] is

that, in contrast to classical risk models, the insurance company can continue

doing business even if the surplus is negative. Despite this positive aspect, it is

very hard to obtain explicit solutions and it is assumed that bankruptcy occurs

randomly. In practice the solvency of an insurance company rather depends

on the capital resources. In particular, an insurance company is able to raise

outside funds (e.g. by borrowing money) or to conduct a capital increase if

the economic situation deteriorates. Moreover, there are many other measures

by the regulator and the European insurance authority (EIOPA) intended to

prevent an insurance company from being insolvent. Therefore we assume that

bankruptcy does not occur, but the insurance company has to pay penalty
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payments in order to prevent bankrupcty. These penalty payments include all

costs for raising external capital or for conducting a capital increase as well

as all administrative costs which can occur because of additional measures

by the authorities. For a surplus level of x, we assume that the penalty

payments occur at a penalty rate φ(x). If the economic situation of the insurer

deteriorates, the penalty payments and the growth of the penalty payments

increase. Moreover, the penalty payments are always positive and vanish as

the surplus tends to infinity. Thus, φ should be a decreasing, convex and

positive function with φ(x) → 0, x → ∞. Since the expected discounted

penalty payments should be bounded we assume that

E
[∫ ∞

0
e−δt φ(St) dt

]
<∞ . (1.5)

Example 1.1. In this example we assume that for a negative surplus of x the

insurer has to borrow an amount of −x at rate α and that no other penalty

payments occur. This means that φ(x) = −αx1x>0 and the expected discounted

penalty payments are given by

−αE
[∫ ∞

0
e−δt S−t dt

]
.

1.7 Formulation of the Problems in this Thesis

After introducing all relevant models, we are now in the position to formulate

the stochastic control problems being considered in this thesis. In the previous

sections we pointed out, that in classical risk models the insurance company’s

solvency situation is often not appropriately modelled. Therefore, we consider

two optimisation problems which aim to augment classical models by penalty

payments.
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1.7.1 Maximisation of Dividends with Penalty Payments

The first problem which we consider is the dividend problem that was in-

troduced by De Finetti [20]. In the classical framework, the aim is to max-

imise the expected discounted dividend payments which are distributed to the

shareholders until ruin. The accumulated dividend payments are given by an

increasing and adapted process D. We consider the natural filtration {Ft}t≥0

generated by the surplus process St. As extension of the classical model, we

assume that neither ruin nor bankruptcy occurs, because penalty payments

more appropriately model the solvency situation of an insurance company. For

a surplus level of x the penalty payments occur at rate φ(x) as introduced in

the previous section. The controlled surplus process is given by

SDt = St −Dt .

We allow all increasing càdlàg processes D. The value of a strategy D is

defined by

V D(x) = E
[∫ ∞

0
e−δt dDt −

∫ ∞
0

e−δt φ(SDt ) dt
∣∣∣ SD0 = x

]
, (1.6)

where δ > 0 is a preference parameter. The preference parameter expresses the

investment preferences of the company holders. δ > 0 implies that investing

tomorrow is preferred to investing today. The set of all adapted strategies is

denoted by D and the (optimal) value function is defined by

V (x) = sup
D∈D

V D(x) .

We aim to find a strategy D∗ such that

V D∗(x) = V (x) .

In order that it is not optimal to pay an infinite amount of dividends, we have

to assume that

φ(x)− φ(y) > δ(y − x) (1.7)
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for x < y < x0 and some x0 ∈ R.

1.7.2 Minimisation of Penalty Payments

The second problem is an investment and reinsurance optimisation problem.

The aim is to minimise the expected discounted penalty payments by invest-

ments and reinsurance, where the insurer can invest in n risky assets and either

buy excess of loss or proportional reinsurance. Penalty payments occur at rate

φ(x) for a surplus level of x and the value of an investment and reinsurance

strategy U = (R, θT )T is given by

V U (x) = E
[∫ ∞

0
e−δt φ(SUt ) dt

∣∣∣ SU0 = x
]
. (1.8)

As above, δ > 0. Now, we have a control problem of the form

V (x) = inf
U∈U

V U (x) ,

where U is the set of all admissible strategies.

1.8 The Dynamic Programming Approach

In this section we introduce some optimisation techniques which will help us to

solve our stochastic control problems. There are many textbooks on stochastic

control theory in continuous time, for example see [19, 30, 44, 45, 54, 56, 64,

68, 71]. We refer to Schmidli [62] in the following. Note, that all steps in this

section are heuristic and aim to give an idea of the techniques we will use in

this thesis.

The key to the solution of a stochastic control problem is the dynamic

programming principle which has its origin in a discrete-time framework, see

Bellman [13, 14]. For a better understanding we first introduce the approach
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in discrete time. The idea is to break down the control problem into eas-

ier subproblems and then determine the optimal solution recursively. Let us

consider a discrete-time control system

X0 = x, Xn+1 = f(Xn, Un, Yn+1) ,

where n ∈ N and f is a measurable function. In this system X describes the

state of the system, Y is a stochastic influence and U a control strategy, which

should be adapted to the natural Filtration Fn = σ(Y1, Y2, ..., Yn), because we

have no future information. We start at a state x and have, at each time step

n, a stochastic influence y as well as a control variable u ∈ U , where U is an

arbitrary control space. In a discrete-time stochastic control problem we aim

to find a stragey U such that a specified value function is optimised on a finite

or infinite time horizon T . Often, the value function has the following form

V U
T (x) = E

[ T∑
n=0

g(Xn, Un) e−δn
]
,

where δ > 0 is a discount factor and g(Xn, Un) describes the gains or costs

(dependent on the current state and control variable) of the system in period

n. We just consider the case in which we have to maximise the value function

because we get the analogous minimisation problem if we maximise −V U
T (x).

The optimal value function is denoted by

VT (x) = sup
U
V U
T (x)

and a control process U∗ is optimal if

VT (x) = V U∗
T (x) .

The idea of Bellman [13, 14] is that the optimal strategy maximises the present

gains plus the future gains at each time step. In this way one can recursively
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determine the optimal strategy. Concretely, the optimal value function should

fulfil the so-called Bellman equation

VT (x) = sup
u∈U

{
g(x, u) + e−δ E[VT−1(f(x, u, Y ))]

}
. (1.9)

This equation can be proven in two steps. We just give a rough summary of

the proof. Firstly, let U be an arbitrary strategy and Ũn = Un+1. Then,

V U
T (x) = g(x, U0) + e−δ E

[T−1∑
n=0

g(Xn+1, Un+1) e−δn
]

= g(x, U0) + e−δ E[V Ũ
T−1(X1)]

= g(x, U0) + e−δ E[V Ũ
T−1(f(x, U0, Y1))]

≤ g(x, U0) + e−δ E[VT−1(f(x, U0, Y1))]

≤ sup
u∈U

{
g(x, u) + e−δ E[VT−1(f(x, u, Y ))]

}
.

On the other hand, let u ∈ U arbitrary and U ε be a strategy such that condi-

tioned on X1 = f(x, u, Y1) it holds

VT−1(X1) < V Uε

T−1(X1) + ε

for any ε > 0. Moreover, define the strategy Un = U εn−1 with U0 = u. Then,

VT (x) ≥ V Uε

T (x)

= g(x, u) + e−δ E[V U
T−1(X1)]

> g(x, u) + e−δ E[VT−1(X1)]− ε

= g(x, u) + e−δ E[VT−1(f(x, u, Y ))]− ε

As ε and u are arbitrary, equality holds.

Now let us consider the continuous time framework. Here we have a value

function of the form

V U (t, x) = E
[∫ T

t
e−δ(s−t) g(XU

s , Us) ds+ e−δ(T−t) gT (XU
T )
∣∣∣ Xt = x

]
,
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where either T is a stopping time or T = ∞. For simplicity, we set t = 0

in order to avoid partial derivatives with respect to t. Let U be an arbitrary

strategy on [0, T ∧ t] and U ε a strategy from time T ∧ t such that

V (XU
T∧t) < V Uε(XU

T∧t) + ε .

Similarly as above one can show that

V (x) > E
[∫ T∧t

0
e−δs g(XU

s , Us) ds+ e−δ(T∧t) V (XU
T∧t)

]
− ε .

Since ε is arbitrary, the weak inequality must hold for ε = 0. Then, taking

the supremum over all strategies U , we obtain

V (x) ≥ sup
U

E
[∫ T∧t

0
e−δs g(XU

s , Us) ds+ e−δ(T∧t) V (XU
T∧t)

]
.

On the other hand, considering the strategy Ũs = Ut+s, we also obtain as

above

V (x) ≤ sup
U

E
[∫ T∧t

0
e−δs g(XU

s , Us) ds+ e−δ(T∧t) V (XU
T∧t)

]
.

This implies the following dynamic programming principle

V (x) = sup
U

E
[∫ T∧t

0
e−δs g(XU

s , Us) ds+ e−δ(T∧t) V (XU
T∧t)

]
. (1.10)

Rearranging the terms and dividing by t yields

sup
U

E
[1
t

∫ T∧t

0
e−δs g(XU

s , Us) ds+ e−δ(T∧t) V (XU
T∧t)− V (x)

t
(1.11)

− 1− e−δ(T∧t)

t
V (x)

]
= 0 .

Letting t ↓ 0 and assuming that we can interchange the limit, supremum and

integration we obtain the Hamilton–Jacobi–Bellman (HJB) equation

sup
u∈U

[
g(x, u) +AuV (x)− δV (x)]

]
= 0 , (1.12)
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where Au denotes the infinitesimal generator of the process Xu being con-

trolled by the constant strategy Ut = u. Appendix B gives an introduction

to the infinitesimal generator of a Markov process. It is also possible to moti-

vate the HJB equation by the use of martingale techniques, see Schmidli [62].

Schmidli also states that the optimal strategy should be of the form u∗(Xt),

where u∗(x) maximises the left-hand side of (1.12).

Now, let us consider the case, where V is twice continuously differentiable

and XU
t a diffusion process of the form

dXU
t = µ(Xt, Ut) dt+ σ(Xt, Ut) dWt ,

where µ, σ functions such that Xt is a continuous process. Then, Itô’s formula

implies

V (XU
t ) = V (x) +

∫ t

0
V ′(XU

s )µ(Xs, Us) ds+
∫ t

0
V ′(XU

s )σ(Xs, Us) dWs

+ 1
2

∫ t

0
V ′′(XU

s )σ2(Xs, Us) ds .

Assuming that the stochastic integral is a martingale, we obtain

AuV (x) = 1
2σ

2(x, u)V ′′(x) + µ(x, u)V ′(x) .

In this case the HJB equation is just an ordinary differential equation. How-

ever, we also consider jump processes in this thesis and V is not always twice

continuously differentiable. Moreover, we made further assumptions which do

not hold in general. That is why it is not enough just to solve the HJB equa-

tion in order to get the solution to a stochastic control problem. Albrecher and

Thonhauser [6] state that there are generally two ways to obtain a solution

for the optimisation problem based on the HJB equation:

1) It is possible to prove that there exists a unique solution to the HJB equa-

tion. Ideally, it is also possible to construct an explicit solution. In this
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case a so-called verification theorem is needed that states that the unique

solution dominates all other values achieved by admissible strategies. This

gives the optimality. We will follow those steps in the case where we model

the surplus of an insurance company by a diffusion process.

2) It is possible to show that there exist solutions of the HJB equation, but

uniqueness is doubtful. Then a precise characterisation of the value func-

tion is needed and it has to be proven that the value function indeed fulfils

the HJB equation by verifying that all steps in the derivation of the HJB

equation are actually justified. We will follow this procedure in the case

where we model the surplus of an insurance company by the Cramér–

Lundberg model.

Another common approach, described in [6], is the following:

Maximise a certain value function over a (small) restricted class of admissible

strategies. Then, in some cases it is possible to verify by comparison that

the – within the restricted class – optimal strategy is also optimal within the

bigger class of general admissible strategies.
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Chapter 2

Maximisation of Dividends

with Penalty Payments in a

Diffusion Model

2.1 Introduction

In this chapter we consider the dividend problem described in Section 1.7.1

and we assume that the surplus of the insurance company follows a diffusion

approximation

Xt = x+ µt+ σWt , t ≥ 0 , (2.1)

where x ∈ R denotes the initial capital,Wt a Wiener process and µ, σ > 0. The

information is given by the natural filtration {Ft}t≥0 of the Wiener process.

Let Dt be adapted and denote the accumulated dividend payments until time

t. Then, the controlled surplus process is given by

XD
t = Xt −Dt .



We allow all increasing càdlàg processes D. The value of a strategy D is

defined by

V D(x) = E
[∫ ∞

0
e−δt dDt −

∫ ∞
0

e−δt φ(XD
t ) dt

∣∣∣ XD
0 = x

]
. (2.2)

The decreasing function φ is the penalty function fulfilling φ(x) → 0 as x →

∞. We further assume that φ is convex. The set of adapted and increasing

strategies is denoted by D and the (optimal) value function is defined by

V (x) = sup
D∈D

V D(x) .

We aim to find a strategy D∗ such that

V D∗(x) = V (x) .

The penalty payments are bounded by the payments obtained if no dividends

are paid. We therefore have to assume∫ ∞
0

e−δt E[φ(Xt)] dt <∞ .

Otherwise, the value function would be minus infinite. Moreover, we assume

that

φ(x)− φ(y) > δ(y − x) (2.3)

for x < y < x0 and some x0 ∈ R in order that it is not optimal to pay an

infinite amount of dividends. Since φ is assumed to be convex, this means

that there is an x0 such that φ′(x−) ≤ φ′(x+) ≤ −δ for x < x0, where φ′(x+)

denotes the derivative from the right and φ′(x−) the derivative from the left.

This chapter is organised as follows. In the second section we characterise

the optimal strategy and we motivate the HJB equation. In Section 2.3 we

prove the verification theorem. Section 2.4 considers the dividend problem

with an exponential penalty function φ(x) = α e−βx, where α, β > 0. Here,
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the value function exists only if r2 < −β, where r2 is the negative solution

to the equation σ2r2 + 2µr − 2δ = 0. If r2 ≥ −β no optimal strategy exists.

For r2 < −β, we show that the optimal strategy is a barrier strategy and

determine the optimal barrier. Section 2.5 studies a linear penalty function

φ(x) = −αx for some α > 0 if x < 0 and φ(x) = 0 if x ≥ 0. An optimal

strategy does only exist if δ < α, where δ denotes the discounting factor. In

this case the optimal strategy is a barrier strategy and the optimal barrier is

given by b∗ = 1/r2 log(δ/α). If δ ≥ α, the preference parameter is larger than

the slope of the penalty function and it is optimal to pay an infinite amount

of dividends. In the last section of this chapter we consider quadratic penalty

payments, described by φ(x) = (α2x
2 − α1x)1x<0. An optimal strategy does

always exist and is also a barrier strategy, but we have to distinguish between a

negative and positive dividend barrier. In both cases we determine the optimal

barrier.

2.2 Characterisation of the Optimal Strategy and

the HJB Equation

It is well-known that the optimal dividend strategy in the model without

penalty payments is a barrier strategy. A barrier strategy D is characterised

by a barrier b, where all surplus above b is paid as dividends and whenever

the surplus is below b, no dividends are paid. This means that

Dt = max
(

sup
0≤s≤t

Xs − b, 0
)
.

We expect that in our problem the optimal strategy is also a barrier strategy.

Then, V (x) = V (b) + x − b for x ≥ b. If x < b let τ b = inf{t > 0 : Xt > b}.

We find

V (x) = E
[
e−δ(τb∧h) V (XD∗

τb∧h)−
∫ τb∧h

0
e−δt φ(XD∗

t ) dt
]
.
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Assuming that V is twice continuously differentiable, Itô’s formula yields

e−δ(τb∧h) V (XD∗

τb∧h) = V (x) + σ

∫ τb∧h

0
e−δt V ′(XD∗

t ) dWt

+
∫ τb∧h

0
e−δt(µV ′(XD∗

t ) + 1
2σV

′′(XD∗
t )− δV (XD∗

t )) dt .

If the stochastic Integral is a martingale, we get

V (x) = E
[
e−δ(τb∧h) V (XD∗

τb∧h)

−
∫ τb∧h

0
e−δt(µV ′(XD∗

t ) + 1
2σV

′′(XD∗
t )− δV (XD∗

t )) dt
]
.

Thus,

E
[∫ τb∧h

0
e−δt

(
µV ′(XD∗

t ) + 1
2σV

′′(XD∗
t )− δV (XD∗

t )− φ(XD∗
t )

)
dt
]

= 0 .

Dividing by h and letting h→ 0 implies

1
2σ

2V ′′(x) + µV ′(x)− δV (x)− φ(x) = 0 . (2.4)

We will see below that V (x) is concave. Moreover, V ′(x) = 1 if x > b. This

motivates the HJB equation

max
(

1
2σ

2V ′′(x) + µV ′(x)− δV (x)− φ(x), 1− V ′(x)
)

= 0 . (2.5)

The concavity of V (x) implies that the optimal strategy is a barrier strategy.

If V ′(x) > 1 no dividends are paid. If V ′(x) = 1, a dividend is paid such that

the process reaches a point where V ′(z) = 1 and V ′(z − h) > 1 for any h > 0.

Such a boundary point cannot be crossed. Suppose there is x < x0 such that

the process is reflected at x and x < y ≤ x0. Let Dt be a dividend strategy for

initial capital x. Starting with initial capital y, we compare the two strategies

{Dt} or {D̃t} where D̃t = y − x + Dt. That is, we pay y − x at time zero or

not. Then XD
t −XD̃

t = y − x. So by our assumption on φ

E
[∫ ∞

0
e−δt(φ(XD̃

t )− φ(XD
t )) dt

]
> E

[∫ ∞
0

e−δt δ(y − x) dt
]

= y − x .

25



This shows that it is not optimal to pay the dividend y − x at time zero. We

conclude that it cannot be optimal to pay dividends for Xt < x0. In particular,

the function V (x) is bounded from above.

2.3 The Verification Theorem

We first show some basic properties of the value function.

Lemma 2.1. V is increasing and concave with V (y)−V (x) ≥ y−x for x ≤ y.

Moreover,

V (x) ≥ −
∫ ∞

0
e−δt E[φ(Xt)] dt .

Proof. Let D be an admissible strategy for initial capital x. In addition, we

consider the strategy D̃t = Dt + y − x for initial capital y. Then, we obtain

V (x) ≥ V D̃(x) = V D(y) + y − x .

Since D is arbitrary, we get V (x) ≥ V (y) + y − x. Hence, V is increasing.

Now, let x, y ∈ R and z = kx + (1 − k)y, where k ∈ [0, 1]. Moreover, we

consider the strategies Dx and Dy for the inital capital x and y, respectively.

Then, we define Dt = kDx
t + (1 − k)Dy

t for the initial capital z. Since −φ is

concave and

XD
t = kx+ (1− k)y + (k + 1− k)(µt+ σWt)− kDx

t − (1− k)Dy
t

= kXDx

t + (1− k)XDy

t
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we obtain

V (kx+ (1− k)y) = V (z) ≥ V D(z) = E
[∫ ∞

0
e−δt(k dDx

t + (1− k) dDy
t )

−
∫ ∞

0
e−δt φ(XD

t ) dt
]

≥ kE
[∫ ∞

0
e−δt dDx

t −
∫ ∞

0
e−δt φ(XDx

t ) dt
]

+ (1− k)E
[∫ ∞

0
e−δt dDy

t −
∫ ∞

0
e−δt φ(XDy

t ) dt
]

= kV Dx(x) + (1− k)V Dy(y) .

Taking the supremum over all strategies Dx and Dy, we get

V (kx+ (1− k)y) ≥ kV (x) + (1− k)V (y) .

Hence the concavity.

In conclusion, let V 0 be the value of the strategy where no dividends are

paid. Then, Fubini’s theorem implies

V (x) ≥ V 0(x) = −
∫ ∞

0
e−δt E[φ(Xt)] dt .

Now, we prove the verification theorem.

Theorem 2.1. Let f be a concave and twice continuously differentiable solu-

tion to (2.5). Suppose that there is a b∗, such that f(x) = f(b∗) + x − b∗ for

all x > b∗ and f(x) < f(b∗)− (b∗ − x) for all x < b∗. Moreover, we define

D∗t = max
(

sup
0≤s≤t

Xs − b∗, 0
)
.

If limt→∞ e−δt E[f(XD∗
t )] = 0, we obtain f(x) = V D∗(x) = V (x) and D∗ is

an optimal strategy.
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Proof. Let D be an arbitrary strategy, τn = inf(t > 0 : |XD
t | > n) and h > 0.

Then, Itô’s formula implies

e−δh f(XD
τn∧h) = f(x) +

∫ τn∧h

0
e−δt

(
µf ′(XD

t ) + 1
2σ

2f ′′(XD
t )− δf(XD

t )
)

dt

+ σ

∫ τn∧h

0
e−δt f ′(XD

t ) dWt −
∫ τn∧h

0
e−δt f ′(XD

t−) dDt

+
∑

0<t≤τn∧h
e−δt

(
f(XD

t )− f(XD
t−)− f ′(XD

t−)(XD
t −XD

t−)
)
.

The concavity of f implies that f lies below of its tangents. This means that

for all y, z it holds

f(y) ≤ f(z) + f ′(z)(y − z) .

Thus,
∑

0<t≤τn∧h
e−δs

(
f(XD

t )− f(XD
t−)− f ′(XD

t−)(XD
t −XD

t−)
)
≤ 0 .

Note that f ′(x) is bounded on [−n, n]. Thus, the stochastic integral is a

martingale with mean zero. Since f fulfils (2.5) and f ′(x) ≥ 1, we obtain

f(x) ≥ E
[
e−δτn∧h f(XD

τn∧h) +
∫ τn∧h

0
e−δt dDt −

∫ τn∧h

0
e−δt φ(XD

t ) dt
]
.

By bounded and monotone convergence, respectively, we get

f(x) ≥ E
[
e−δτn f(XD

τn) +
∫ τn

0
e−δt dDt −

∫ τn

0
e−δt φ(XD

t ) dt
]
,

where we interpret the first term as zero if τn = ∞. Since f is increasing,

we have e−δτn f(XD
τn) ≤ e−δτn f(Xτn). The expected value of the latter tends

to zero as n → ∞, provided τn → ∞. If τn → ∞ as n → ∞ we get f(x) ≥

V D(x). Since paying dividends if XD
t < x0 is not optimal, we can find a

strategy D̃ such that V D̃(x) ≥ V D(x) and τ̃n → ∞. Thus also in this case

f(x) ≥ V D̃(x) ≥ V D(x). Since D was arbitrary, we have f(x) ≥ V (x).

Using the strategy D∗t , all inequalities are replaced by equalities. Thus f(x) =

V D∗(x) ≤ V (x). This proves the result.
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Having a candidate solution fulfilling (2.4) on (−∞, b∗] and f(x) = f(b∗)+

x − b∗ on (b∗,∞) we will have to verify that (2.5) is satisfied. The following

lemma shows that this holds.

Lemma 2.2. Suppose that f is twice continuously differentiable and concave,

and solves (2.4) on (−∞, b∗] with f ′(b∗) = 1 and f ′′(b∗) = 0. If f(x) =

f(b∗) + x− b∗ on (b∗,∞), then f solves (2.5).

Proof. Since 0 = 1
2σ

2f ′′(x) + µf ′(x) − δf(x) − φ(x) ≤ µf ′(x) − δf(x) − φ(x)

for x ≤ b∗ with equality in b∗, we must have 0 ≥ µf ′′(b∗)− δf ′(b∗)−φ′(b∗−) =

−δ − φ′(b∗). Here φ′(b∗−) denotes the derivative from the left. Thus by the

convexity of φ, φ(x) ≥ φ(b∗)− δ(x− b∗). This implies for x ≥ b∗ that

µ− δ(f(b∗) + x− b∗)− φ(x) ≤ µ− δf(b∗)− φ(b∗) = 0 .

and therefore the assertion.

In the following examples we will show that a solution fulfilling the condi-

tions of the verification theorem can be found.

2.4 Exponential Penalty Payments

In this section we consider an exponential penalty function

φ(x) = α e−βx

with α, β > 0. Obviously, (3.4) is fulfiled for

x < y < x0 = −β−1 max{log δ − log(αβ), 0} .

The function

f(x) = C1 eξ1x−C2 eξ2x−A e−βx
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solves equation (2.4). Here, ξ2 < 0 < ξ1 are the roots of the equation

σ2ξ2 + 2µξ − 2δ = 0 ,

A = − 2α
σ2β2 − 2µβ − 2δ

and C1, C2 are some constants. Since E[e−βXt−δt] = exp{(1
2σ

2β2 − βµ− δ)t},

we see that V (x) = −∞ if β ≥ −ξ2. Therefore we assume 0 < β < −ξ2. In

particular, this means that A > 0.

Not paying dividends, we find

V (x) ≥ − α
∫ ∞

0
e−δt E[e−βXt ] dt

= − α
∫ ∞

0
e−δt−β(x+µt)+β2σ2t/2 dt = −A e−βx .

Now, f is increasing for small x only if C2 ≥ 0. Because C2 eξ2x > A e−βx and

C1 eξ1x < A e−βx for x small enough, our solution has to fulfil C2 = 0. We

look for constants b∗ and C1, such that f ′(b∗) = 1 and f ′′(b∗) = 0, that is

C1ξ1 eξ1b∗ +Aβ e−βb∗ = 1 , C1ξ
2
1 eξ1b∗ −Aβ2 e−βb∗ = 0 .

The solution is

b∗ = − 1
β

log
( ξ1
βA(ξ1 + β)

)
and

C1 = Aβ2

ξ2
1

e−(β+ξ1)b∗
> 0 .

Our candidate solution becomes now

f(x) =


C1 eξ1x−A e−βx , if x ≤ b∗

C1 eξ1b∗ −A e−βb∗ +x− b∗, if x > b∗
.

This candidate solution is a twice continuously differentiable solution. Note

that b∗ may become negative for α close to zero. We further observe that f is

concave with f ′(x) ≥ f ′(b∗) = 1 and on [b∗,∞) we have

1
2σ

2f ′′(x) + µf ′(x)− δf(x) + φ(x) ≤ 0
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by Lemma 2.2.

From the next result it will follow that f(x) = V (x).

Lemma 2.3. We have

lim
t→∞

E
[
e−δt f(XD∗

t )
]

= 0 .

Proof. By Fatou’s lemma, it suffices to show that e−δt e−βXD∗
t tends to zero

because C1 eξ1x is bounded for x ≤ b∗.

The process Yt = b∗ −XD∗
t is a Brownian motion reflected in zero. From

queueing theory it is known that the stationary distribution is exponential.

Thus XD∗
t /t tends to zero, and t(δ+XD∗

t /t) tends to infinity. This proves the

result.

Theorem 2.1 shows that D∗ is optimal and V (x) = f(x). Figure 2.1 shows

the value function for µ = σ = 1, δ = 0.05 and α = β = 0.1. The dividend

barrier is at b∗ = −15.59398. The solid line gives the optimal value, the dotted

line gives the value without dividend payments.

2.5 Linear Penalty Payments

Now, we set

φ(x) = −αx1x<0

for some α > 0. Then, for x < 0 equation (2.5) is solved by

f1(x) = C1 eξ1x +C2 eξ2x +α(µ+ δx)
δ2

and for x ≥ 0 by

f2(x) = C3e
ξ1x + C4e

ξ2x ,

where C1, C2, C3, C4 are constants and ξ1, ξ2 as above. The next lemma shows

that the value function exists only if δ ≤ α. In this case the value function is

linearly bounded.
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Figure 2.1: Value function for µ = σ = 1, δ = 0.05 and α = β = 0.1.

Lemma 2.4. i) If δ > α, an optimal strategy does not exist and V (x) =∞.

ii) For δ < α it holds

V (x) ≤ α(δx+ µ)
δ2 .

Moreover,

V (x) ≥ α(δx+ µ)
δ2 + C

for some C < 0 if x ≤ 0.

iii) Let δ = α, then

V (x) = α(δx+ µ)
δ2 .

Proof. i) Let D0 be a barrier strategy with the barrier b = 0. Then, we define

the strategy D(0,c)
t = D0

t + ct for some c > 0. Now, XD(0,c)
t ≤ 0 and

E
[∫ ∞

0
e−δt dD(0,c)

t

]
= δE

[∫ ∞
0

e−δtD(0,c)
t dt

]
.
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Thus, δ > α implies

V (x) ≥ V D(0,c)(x) = E
[∫ ∞

0
e−δt dD(0,c)

t + α

∫ ∞
0

e−δtXD(0,c)
t dt

]
= E

[
(δ − α)

∫ ∞
0

e−δtD(0,c)
t dt+ α

∫ ∞
0

e−δtXt dt
]

≥ c(δ − α)
δ2 + α(δx+ µ)

δ2 .

Letting c→∞ implies the assertion.

ii) Let D be an arbitrary strategy. W.l.o.g. we assume that

lim
t→∞

E
[
e−δtDt

]
= 0 .

Otherwise D cannot be optimal since it is not optimal to pay dividends if

Xt < 0. Then,

V D(x) ≤ E
[∫ ∞

0
e−δt dDt + α

∫ ∞
0

e−δtXD
t dt

]
= E

[∫ ∞
0

e−δt dDt − α
∫ ∞

0
e−δtDt dt

]
+ α(δx+ µ)

δ2

≤ E
[∫ ∞

0
e−δt dDt − δ

∫ ∞
0

e−δtDt dt
]

+ α(δx+ µ)
δ2

= α(δx+ µ)
δ2 .

Since D is arbitrary the first inequality follows. Now, let x ≤ 0. Here,

V (x) ≥ αE
[∫ ∞

0
e−δt min(Xt, 0) dt

]
= αE

[∫ ∞
0

e−δt 1
2(Xt − |Xt|) dt

]
= 1

2

(α(δx+ µ)
δ2 − α

∫ ∞
0

e−δt E[|Xt|] dt
)

≥ 1
2

(α(δx+ µ)
δ2 − α

∫ ∞
0

e−δt |x+ µt| dt− ασ
∫ ∞

0
e−δt E[|Wt|] dt

)
= α(δx+ µ)

δ2 − αµ

δ2 e
δx
µ −ασ2

∫ ∞
0

e−δt
√

2t/π dt .
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We set

C = −αµ
δ2 −

ασ

2

∫ ∞
0

e−δt
√

2t/π dt .

Then, for x ≤ 0 we have

V (x) ≥ α(δx+ µ)
δ2 + C .

iii) Consider the same strategy as in i). Now, δ = α implies

V (x) ≥ α(δx+ µ)
δ2 .

On the other hand ii) yields

V (x) ≤ α(δx+ µ)
δ2 .

In the following we assume that

δ < α . (2.6)

This means that the preference parameter is smaller than the slope of the

penalty function. Note, that this is consistent with assumption (3.4). More-

over, the dividend barrier b∗ must be positive.

Now, if C2 6= 0, we obtain for any C < 0 that for x small enough either

f ′1(x) < 0 or f1(x) < α(δx+µ)
δ2 + C. Thus, we let C2 = 0. Note that the

continuity of φ in x = 0 together with f1(0) = f2(0) and f ′1(0) = f ′2(0)

implies f ′′1 (0) = f ′′2 (0). At the dividend barrier we must have f ′2(b∗) = 1 and

f ′′2 (b∗) = 0. Then,

C4 = −ξ
2
1
ξ2

2
e(ξ1−ξ2)b∗

C3 ,

C3 = − ξ2 e−ξ1b∗

ξ1(ξ1 − ξ2) , C4 = ξ1 e−ξ2b∗

ξ2(ξ1 − ξ2) ,
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C1 = ξ1 e−ξ2b∗ −ξ2 e−ξ1b∗

ξ1(ξ1 − ξ2) − α

δξ1
,

and

b∗ = 1
−ξ2

log
(α
δ

)
> 0 .

We obtain

C3 = −ξ2(α/δ)ξ1/ξ2

ξ1(ξ1 − ξ2) > 0 ,

C4 = ξ1α

δξ2(ξ1 − ξ2) < 0 ,

and

C1 = ξ1(α/δ)− ξ2(α/δ)ξ1/ξ2

ξ1(ξ1 − ξ2) − α

δξ1
= αξ2
δξ1(ξ1 − ξ2)(1− (α/δ)ξ1/ξ2−1) < 0 .

The candidate for the solution

f(x) =


f1(x), x ≤ 0

f2(x), 0 < x ≤ b∗

f2(b∗) + x− b∗, x > b∗

is twice continuously differentiable.

Now,

f ′′′2 (x) = ξ3
1C3 eξ1x +ξ3

2C4 eξ2x > 0 .

Consequently, f ′′2 (x) ≤ f ′′2 (b∗) = 0 and f ′2(x) ≥ f ′2(b∗) = 1 if x ≤ b∗. Further-

more,

f ′′1 (x) = ξ2
1C1 eξ1x < 0

Therefore f ′1(x) ≥ f ′1(0) = f ′2(0) ≥ f ′2(b∗) = 1 if x ≤ 0. In particular, f

is concave and f ′(x) > 1 for all x < b∗. Alltogether, we obtain that f is an

increasing, concave and twice continuously differentiable function with f ′(x) ≥

1 and by Lemma 2.2 we get

1
2σ

2f ′′(x) + µf ′(x)− δf(x) + φ(x) ≤ 0
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for x ≥ b∗.

Since f is linearly bounded, the following obviously holds.

Lemma 2.5. We have

E
[
e−δt f(XD∗

t )
]
→ 0, t→∞ .

As in Section 2.4 we obtain that D∗ is optimal and V (x) = f(x) = V D∗(x).

Figure 2.2 shows the value function for µ = σ = 1, δ = 0.05 and α = 0.15.

The solid line gives the optimal value, the dotted line gives the value without

dividend payments. The dividend barrier is at b∗ = 0.53622.
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Figure 2.2: Value function for µ = σ = 1, δ = 0.05 and α = 0.15 .

2.6 Quadratic Penalty Payments

In this section we let

φ(x) = (α2x
2 − α1x)1x<0 ,
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where α1, α2 > 0. Here, we have

x0 = −1
2
α1 + δ

α2
.

For x < 0 the HJB equation is solved by

f1(x) = C1 eξ1x +C2 eξ2x−α2
δ
x2 + α1δ − 2µα2

δ2 x+ µα1δ − 2µ2α2 − σ2α2δ

δ3

and for x ≥ 0 by

f2(x) = C3e
ξ1x + C4e

ξ2x ,

where C1, C2, C3, C4 are constants and ξ1, ξ2 as above. Now, the value function

is quadratically bounded. Thus, again C2 = 0 must hold. Note, that in this

section it is possible to derive a solution with a negative optimal dividend

barrier. In this case, we do not need to consider equation (2.4) for x > 0.

Therefore, we have to distinguish between a negative and a positive dividend

barrier. Let us start with the easier case, where the optimal dividend barrier is

negative, i.e. b∗ = b− ≤ 0. Then, it must hold that f ′1(b−) = 1 and f ′′1 (b−) = 0.

This is fulfilled for

C1 = C−1 = 2α2
δξ2

1
e−ξ1b−

and

b− = α2ξ1σ
2 + α1δ − δ2

2δα2
.

Thus, a necessary condition for a negative optimal dividend barrier is that the

following inequality holds

α2ξ1σ
2 + α1δ ≤ δ2 . (2.7)

Note that,

b− − x0 = 1
2
α2ξ1σ

2 + 2α1δ

δα2
> 0 .

Define

f−1 (x) = C−1 eξ1x−α2
δ
x2 + α1δ − 2µα2

δ2 x+ µα1δ − 2µ2α2 − σ2α2δ

δ3 .
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Obviously, C−1 > 0 and therefore

(f−1 )′′′(x) = ξ3
1C
−
1 eξ1x > 0 .

Thus, we have for x ≤ b− that (f−1 )′′(x) ≤ (f−1 )′′(b−) = 0. In particular, f−1 is

concave on (−∞, b−]. This implies for x ≤ b− that (f−1 )′(x) ≥ (f−1 )′(b−) = 1.

Now, by Lemma 2.2, we obtain that

f−(x) =


f−1 (x), x ≤ b−

f−1 (b−) + x− b−, x > b−

fulfils the HJB equation. Furthermore, the following lemma obviously holds,

because f− is quadratically bounded.

Lemma 2.6. We have

E
[
e−δt f−(XD∗

t )
]
→ 0, t→∞ .

Together with the verification theorem, we obtain that the optimal divi-

dend barrier is given by b− and f−(x) = V (x) if (2.7) is fulfilled. Figure 2.3

shows the value function for µ = 0.1, σ = 0.4, δ = 0.05 and α1 = α2 = 0.01.

The dividend barrier is at b− = −1.38755.

Now, we try to determine a solution with a positive optimal dividend

barrier b+. As in the section with linear penalty payments we have to solve

the equations f1(0) = f2(0) and f ′1(0) = f ′2(0) in order to obtain, together with

the continuity of φ in x = 0, a twice continuously differentiable candidate for

the value function. At the dividend barrier we must have f ′2(b+) = 1 and

f ′′2 (b+) = 0. This is fulfilled for

C3 = C+
3 = − ξ2 e−ξ1b+

ξ1(ξ1 − ξ2) , C4 = C+
4 = ξ1 e−ξ2b+

ξ2(ξ1 − ξ2) ,

C1 = C+
1 = ξ1 e−ξ2b+ −ξ2 e−ξ1b+

ξ1(ξ1 − ξ2) − a1
ξ1

,
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Figure 2.3: Value function for µ = 0.1, σ = 0.4, δ = 0.05 and α1 = α2 = 0.01.

where

a1 = α1δ − 2µα2
δ2

and

b+ = 1
−ξ2

log
(α2ξ1σ

2 + α1δ

δ2

)
.

Thus, a necessary condition for a positive optimal dividend barrier is that

(2.7) does not hold. Moreover,

C+
3 = −ξ2(α/δ)ξ1/ξ2

ξ1(ξ1 − ξ2) > 0

and

C+
4 = ξ1α

δξ2(ξ1 − ξ2) < 0

Define

f+
1 (x) = C+

1 eξ1x−α2
δ
x2 + α1δ − 2µα2

δ2 x+ µα1δ − 2µ2α2 − σ2α2δ

δ3 .
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and

f+
2 (x) = C+

3 e
ξ1x + C+

4 e
ξ2x .

The candidate for the solution

f+(x) =


f+

1 (x), x ≤ 0

f+
2 (x), 0 < x ≤ b+

f+
2 (b+) + x− b+, x > b+

is twice continuously differentiable. Moreover,

(f+
1 )′′(0) = C+

1 ξ
2
1 − 2α2

δ

= −2α2ξ1σ
2 + α1δ

δ2

[
1−

(α2ξ1σ
2 + α1δ

δ2

)ξ1/ξ2−1]
< 0 .

Now,

(f+
2 )′′′(x) = ξ3

1C
+
3 eξ1x +ξ3

2C
+
4 eξ2x > 0 .

Consequently, (f+
2 )′′(x) ≤ (f+

2 )′′(b+) = 0 and (f+
2 )′(x) ≥ f ′2(b+) = 1 if x ≤ b+.

Furthermore, if C+
1 ≤ 0 it holds

(f+
1 )′′(x) = ξ2

1C
+
1 eξ1x−2α2

δ
< 0 .

On the other hand, if C+
1 > 0 we have for x ≤ 0 that

(f+
1 )′′(x) = ξ2

1C
+
1 eξ1x−2α2

δ
≤ C1ξ

2
1 − 2α2

δ
= (f+

1 )′′(0) < 0 .

Therefore (f+
1 )′(x) ≥ (f+

1 )′(0) = (f+
2 )′(0) ≥ (f+

2 )′(b+) = 1 if x ≤ 0. In

particular, f+ is concave and (f+)′(x) > 1 for all x < b+. Altogether, we

obtain that f+ is an increasing, concave and twice continuously differentiable

function with (f+)′(x) ≥ 1 and by Lemma 2.2 we get

1
2σ

2(f+)′′(x) + µ(f+)′(x)− δf+(x) + φ(x) ≤ 0

for x ≥ b+. As above the following lemma holds.
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Lemma 2.7. We have

E
[
e−δt f+(XD∗

t )
]
→ 0, t→∞ .

In sum we obtain that the optimal dividend barrier is given by b+ and

f+(x) = V (x) if (2.7) is not fulfilled. Figure 2.4 shows the value function for

µ = 0.08, σ = 0.4, δ = 0.05, α1 = 0.5 and α2 = 0.01. The dividend barrier is

at b+ = 1.62327.
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Figure 2.4: Value function for µ = 0.08, σ = 0.4, δ = 0.05, α1 = 0.5 and

α2 = 0.01.
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Chapter 3

Maximisation of Dividends

with Penalty Payments in the

Cramér–Lundberg Model

3.1 Introduction

Now, we consider the dividend problem in the Cramér–Lundberg model. That

is, the surplus is given by

Lt = x+ ct−
Nt∑
i=1

Yi , (3.1)

where x denotes the initial capital and c > 0 a constant premium rate.

The amount of claims arriving until time t is given by the Poisson process

N = {Nt}t≥0 with intensity λ and the claim size of the i-th claim is denoted

by Yi, where {Yi}i=1,2,... is a sequence of positive, independent and identically

distributed random variables with mean m1, second moment m2 and a con-

tinuous distribution function F . Moreover, {Yi}i=1,2,... are independent of N .

Claims occur at random times 0 = T0 < T1 < T2 < ... and we consider inde-



pendent and exponentially distributed interarrival times with mean 1/λ. In

addition, since E(Lt−x) = t(c−λm1), we assume that the so-called net profit

condition c > λm1 holds.

The information is given by the natural filtration {Ft}t≥0 of the aggre-

gate claim process. Let Dt be adapted and denote the accumulated dividend

payments until time t. Then, the controlled surplus process is given by

LDt = Lt −Dt .

We allow all increasing càdlàg processes D. The value of a strategy D is

defined by

V D(x) = E
[∫ ∞

0
e−δt dDt −

∫ ∞
0

e−δt φ(LDt ) dt
∣∣∣ LD0 = x

]
, (3.2)

where δ > 0 denotes a preference parameter and the continuous, decreasing,

positive and convex function φmodels the penalty payments fulfilling φ(x)→ 0

as x→∞. The set of admissible strategies is denoted by D and the (optimal)

value function is defined by

V (x) = sup
D∈D

V D(x) .

We aim to find a strategy D∗ such that

V D∗(x) = V (x) .

As in the chapter above, we assume that∫ ∞
0

e−δt E[φ(Lt)] dt <∞ . (3.3)

and that

φ(x)− φ(y) > δ(y − x) (3.4)

for x < y < x0 and some x0 ∈ R.
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This chapter is organised as follows. In the second section we show that

V is continuous, increasing and concave. Moreover, we derive some bounds

of the value function and show that it solves the Hamilton–Jacobi–Bellman

(HJB) equation

max
{
cV ′(x) + λ

∫ ∞
0

V (x− y) dF (y)− (λ+ δ)V (x)− φ(x),

1− V ′(x)
}

= 0 . (3.5)

In Section 3 we prove that the optimal strategy is a barrier strategy. Section

4 studies an exponential penalty function φ(x) = α e−βx for some α, β > 0,

a linear penalty function φ(x) = −αx1x<0 for some α > 0 and a quadratic

penalty function φ(x) = (α2x
2 − α1x)1x<0 for some α1, α2 > 0.

3.2 First Properties and the HJB Equation

We start with some basic properties of the value function that will help us to

prove the HJB equation.

The first lemma states that the value function is concave. The concavity

is crucially important to prove our main results.

Lemma 3.1. The function V (x) is concave.

Proof. The proof is analogous to the proof of Lemma 2.1 in Chapter 2.

Remark 3.1. The concavity implies that V is differentiable from the left and

from the right and V ′(x−) ≥ V ′(x+) ≥ V ′(y−) ≥ V ′(y+) for x < y. In par-

ticular, V is differentiable almost everywhere. Moreover, the concavity implies

that V is continuous.

The next result gives some useful bounds of the value function.
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Lemma 3.2. V (x) increasing with V (y)− V (x) ≥ y − x if x ≤ y and

−
∫ ∞

0
e−δt E[φ(Lt)] dt ≤ V (x) ≤ (x− x0)+ + c

δ
. (3.6)

Proof. Let D be an admissible strategy for initial capital x. In addition, we

consider the strategy D̃t = Dt + y − x for initial capital y. Then, we obtain

V (x) ≥ V D̃(x) = V D(y) + y − x .

Since D is arbitrary, we get V (x) ≥ V (y) + y − x.

As in Chapter 2 we can show that a strategy that pays dividends if the

surplus is below x0 is dominated by a strategy where no dividends are paid

for a surplus below x0. Then, consider the pseudo-strategy D where (x−x0)+

is immediately paid as dividends and thereafter dividends paid at rate c and

no penalty payments occur. Obviously,

V (x) ≤ V D(x) = (x− x0)+ + c

δ
.

Considering the strategy where no dividends are paid, the lower bound is

obtained by the application of Fubini’s theorem.

Using that V is locally bounded, we obtain the following

Lemma 3.3. The function V is locally Lipschitz continuous.

Proof. Let h > 0 and D̃ be a strategy with initial capital x + ch. Then, for

the strategy

Dt =


0, t ≤ h or T1 ≤ h,

D̃t−h, T1 ∧ t > h,

46



with initial capital x, we obtain

V (x) ≥ V D(x) = P(T1 > h)E
[∫ ∞

0
e−δt dDt −

∫ ∞
0

φ(LDt ) dt
∣∣∣ T1 > h

]
+ P(T1 ≤ h)E

[∫ ∞
0

e−δt dDt −
∫ ∞

0
φ(LDt ) dt

∣∣∣ T1 ≤ h
]

= e−(λ+δ)h V D̃(x+ ch)−
∫ h

0
e−δt E[φ(Lt)] dt

− (1− e−λh)
∫ ∞
h

e−δt E[φ(Lt)] dt .

Since D̃ is arbitrary, we get

V (x) ≥ e−(λ+δ)h V (x+ch)−
∫ h

0
e−δt E[φ(Lt)] dt−(1−e−λh)

∫ ∞
h

e−δt E[φ(Lt)] dt .

Thus,

0 ≤ V (x+ ch)− V (x) ≤ V (x+ ch)(1− e−(λ+δ)h)

+
∫ h

0
e−δt E[φ(Lt)] dt+ (1− e−λh)

∫ ∞
h

e−δt E[φ(Lt)] dt . (3.7)

Note that V is locally bounded and

1
h

[
V (x+ ch)(1− e−(λ+δ)h) +

∫ h

0
e−δt E[φ(Lt)] dt

+ (1− e−λh)
∫ ∞
h

e−δt E[φ(Lt)] dt
]

→ (λ+ δ)V (x) + φ(x) + λ

∫ ∞
0

e−δt E[φ(Lt)] dt, h→ 0 .

Dividing inequality (3.7) by h and letting h→ 0, we obtain that the derivatives

from the right are locally bounded. Similarly one can show that the derivatives

from the left are locally bounded. Thus, V is locally Lipschitz continuous.

We can now derive the HJB equation and prove that the value function is

a solution to this equation.
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Theorem 3.1. The function V (x) is differentiable and fulfils equation (3.5).

Moreover, there exists a b∗ ∈ R such that V ′(b∗) = 1 and V (x) = V (b∗)+x−b∗

for x ≥ b∗.

Proof. Let h > 0 and d ≥ 0. Since V is locally Lipschitz continuous and it

cannot be optimal to pay dividends if x < x0, we can choose in a measurable

way a strategy Dε such that V Dε(x′) > V (x′)− ε for x′ ∈ (−∞, x+ (c− d)h]

and for a fixed ε > 0. Then, we define the strategy

Dt =


dt, 0 ≤ t < T1 ∧ h,

Dε
t−T1∧h, t ≥ T1 ∧ h.
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For this strategy we obtain

V (x) ≥ V D(x)

= E
[∫ T1∧h

0
e−δs(d− φ(LDs )) ds+ e−δ(T1∧h) V Dε(LDT1∧h)

]
> E

[∫ T1∧h

0
e−δs(d− φ(LDs )) ds+ e−δ(T1∧h) V (LDT1∧h)

]
− ε

= E
[(∫ T1∧h

0
e−δs(d− φ(LDs )) ds

+ e−δ(T1∧h) V (LDT1∧h)
)
(1T1>h + 1T1≤h)

]
− ε

= P(T1 > h)
(∫ h

0
e−δs(d− φ(x+ (c− d)s)) ds

+ e−δh V (x+ (c− d)h)
)

+ E
[(∫ T1

0
e−δs(d− φ(LDs )) ds

+ e−δT1 V (x+ (c− d)T1 − Y1)
)
1T1≤h

]
= e−λh

(∫ h

0
e−δs(d− φ(x+ (c− d)s)) ds+ e−δh V (x+ (c− d)h)

)
+
∫ h

0
λ e−λt

[∫ t

0
(d− φ(x+ (c− d)s)) ds

+ e−δt
∫ ∞

0
V (x+ (c− d)t− y) dF (y)

]
dt− ε

+ V (x+ (c− d)h)− V (x+ (c− d)h) .

Since ε is arbitrary we can let it tend to zero and obtain the weak inequality.
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Rearranging the terms and dividing by h implies

0 ≥ V (x+ (c− d)h)− V (x)
h

− 1− e−h(δ+λ)

h
V (x+ (c− d)h)

+
e−λh

h

∫ h

0
e−δs(d− φ(x+ (c− d)s)) ds

+ 1
h

∫ h

0
λ e−λt

[∫ t

0
(d− φ(x+ (c− d)s)) ds

+ e−δt
∫ ∞

0
V (x+ (c− d)t− y) dF (y)

]
dt . (3.8)

Since V is concave, the derivatives from the left or from the right exist and

V is differentiable almost everywhere. Thus, the first term in the equation

above converges to V ′(x+)(c − d) if c > d and to V ′(x−)(c − d) if c < d and

vice versa if we start with an initial capital of x − (c − d)h. For simplicity

of notation we just write V ′(x) for the derivative from the left and from the

right. We will soon see that V ′(x+) = V ′(x−). Letting h ↓ 0, we get

(c− d)V ′(x)− (λ+ δ)V (x) + d− φ(x) + λ

∫ ∞
0

V (x− y) dF (y) ≤ 0 .

Since d is arbitrary, we obtain

sup
d≥0

[
(c− d)V ′(x)− (λ+ δ)V (x) + d− φ(x) +

λ

∫ ∞
0

V (x− y) dF (y)
]
≤ 0 . (3.9)

This implies that V ′(x) ≥ 1. Otherwise

(c− d)V ′(x)− (λ+ δ)V (x) + d− φ(x) + λ

∫ ∞
0

V (x− y) dF (y)

would be positive for d large enough. In addition we obtain for d = 0 that

cV ′(x) + λ

∫ ∞
0

V (x− y) dF (y)− (λ+ δ)V (x)− φ(x) ≤ 0 .

Thus, (3.9) can also be written as

max
{
cV ′(x) + λ

∫ ∞
0

V (x− y) dF (y)− (λ+ δ)V (x)− φ(x), 1− V ′(x)
}
≤ 0 .
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Analogously, one can show that ” ≥ ” holds. For example, see [62, Section

2.4.1]. Now, consider the value b∗ = inf{x : V ′(x−) = 1}. Assume that

b∗ = ∞. Then, we have V ′(x) > 1 for all x and therefore the HJB equation

implies

cV ′(x) = (λ+ δ)V (x)− λ
∫ ∞

0
V (x− y) dF (y) + φ(x)

> (λ+ δ)V (x)− λV (x)
∫ ∞

0
1 dF (y) = δV (x) .

But this yields that V (x) > eδx/c. Since V is linearly bounded from above,

we obtain b∗ < ∞. Obviously, V ′(x) = 1 for x > b∗ because of the concavity.

Consequently, V is differentiable on (b∗,∞) and V (x) = V (b∗) + x − b∗ for

x > b∗. For x < b∗ we have V ′(x−) ≥ V ′(x+) > 1 and therefore the HJB

equation implies that V ′(x−) and V ′(x+) fulfil

cV ′(x) = (λ+ δ)V (x)− λ
∫ ∞

0
V (x− y) dF (y) + φ(x) . (3.10)

Since F, V, and φ are continuous, we obtain

cV ′(x+) = (λ+ δ)V (x)− λ
∫ ∞

0
V (x− y) dF (y) + φ(x) = cV ′(x−) .

Thus, V is also differentiable on (−∞, b∗). In conclusion, we show that

V ′(b∗) = 1. As in [57, Section 3.2.2] we can show that V (b∗) is characterised

through

V (b∗) = c− φ(b∗)
λ+ δ

+ λ

λ+ δ

∫ ∞
0

V (b∗ − y) dF (y) .

Plugging V (b∗) into (3.10), we obtain V ′(b∗−) = 1. Again, the concavity

implies 1 = V ′(b∗−) ≥ V ′(b∗+). Thus, either V is differentiable at b∗ or

1 > V ′(b∗+). Since the latter is impossible, we obtain that V is differentiable

at b∗ with V ′(b∗) = 1.
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3.3 The Optimal Strategy and Characterisation of

the Value Function

In this section we show that the optimal strategy D∗ is a barrier strategy with

the barrier b∗. That is D∗t = Db∗
t , where

Db∗
t = max(x− b∗, 0) + c

∫ t

0
1{Lb∗s =b} ds

and Lb∗
s = LD

b∗

s . We first state a useful lemma.

Lemma 3.4. Let Nt be an Ft-adapted Poisson process with intensity λ and

Zt an Ft-predictable process with

E
[∫ t

0
|Zs| ds

]
<∞

for all t ≥ 0. Then, ∫ t

0
Zs dNs − λ

∫ t

0
Zs ds

is a Ft-adapted martingale.

Proof. See Brémaud [16, Page 27].

Now, we prove the main result in this chapter.

Theorem 3.2. The strategy Db∗ is optimal, that is, V (x) = V Db
∗
(x).
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Proof. Firstly, we consider the telescoping sum

e−δt V (Lb∗
t ) = V (x) +

Nt∑
i=1

[
e−δTi V (Lb∗

Ti)− e−δTi−1 V (Lb∗
Ti−1)

]
+ e−δt V (Lb∗

t )− e−δTNt V (Lb∗
TNt

)

= V (x) +
Nt∑
i=1

[
e−δTi V (Lb∗

Ti)− e−δTi V (Lb∗
Ti−)

]

+
Nt∑
i=1

[
e−δTi V (Lb∗

Ti−)− e−δTi−1 V (Lb∗
Ti−1)

]
+ e−δt V (Lb∗

t )− e−δTNt V (Lb∗
TNt

)

= V (x) +
Nt∑
i=1

[
e−δTi V (Lb∗

Ti− − Yi)− e−δTi V (Lb∗
Ti−)

]

+
Nt∑
i=1

[
e−δTi V (Lb∗

Ti−)− e−δTi−1 V (Lb∗
Ti−1)

]
+ e−δt V (Lb∗

t )− e−δTNt V (Lb∗
TNt

) .

Now, let Y be a generic random variable with the same distribution as Yi and

define the process

Zt = e−δt
[
V (Lb∗

t− − Y )− V (Lb∗
t−)
]
.

The lemma above implies that∫ t

0
Zs dNs − λ

∫ t

0
Zs ds

is a martingale with mean zero. Moreover,

e−δTi V (Lb∗
Ti−)− e−δTi−1 V (Lb∗

Ti−1) =
∫ Ti−

Ti−1

[
e−δs V (Lb∗

s )
]′

(1{Lb∗s <b∗} + 1{Lb∗s =b∗}) ds

=
∫ Ti−

Ti−1

e−δs
[
cV ′(Lb∗

s )− δV (Lb∗
s )
]
1{Lb∗s <b∗} ds

−
∫ Ti−

Ti−1
δ e−δs V (Lb∗

s )1{Lb∗s =b∗} ds
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and ∫ t

0
e−δs Zs dNs =

Nt∑
i=1

e−δTi ZTi .

Taking together, we obtain

0 = E
{∫ t

0
Zs dNs − λ

∫ t

0
Zs ds+ 0

}
= E

{
e−δt V (Lb∗

t )− V (x)

−
∫ t

0
e−δs

[
cV ′(Lb∗

s ) + λ

∫ ∞
0

V (Lb∗
s − y) dF (y)− (λ+ δ)V (Lb∗

s )
]
1{Lb∗s <b∗} ds

−
∫ t

0
e−δs

[
λ

∫ ∞
0

V (Lb∗
s − y) dF (y)− (λ+ δ)V (Lb∗

s )
]
1{Lb∗s =b∗} ds

}
.

On {Lb∗
s < b∗} we have V ′(Lb∗

s ) > 1 and therefore the HJB equation implies

cV ′(Lb∗
s ) + λ

∫ ∞
0

V (Lb∗
s − y) dF (y)− (λ+ δ)V (Lb∗

s ) = φ(Lb∗
s ) .

Similarly,

λ

∫ ∞
0

V (Lb∗
s − y) dF (y)− (λ+ δ)V (Lb∗

s ) = φ(Lb∗
s )− c

on {Lb∗
s = b}. Thus,

0 = E
[
e−δt V (Lb∗

t )− V (x) + c

∫ t

0
1{Lb∗s =b} ds−

∫ t

0
e−δs φ(Lb∗

s ) ds
]
.

Letting t→∞, we get by the bounded convergence theorem and by (3.6) that

V (x) = V Db
∗
(x).

The next theorem characterises the value function as the minimal solution

to the HJB equation.

Theorem 3.3. Let f be a solution to (3.5) with E[e−δt f(Lb∗
t )]→ 0 as t→∞.

Then, we have f(x) ≥ V (x).
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Proof. As in the proof above, one can show that

0 = E
{

e−δt f(Lb∗
t )− f(x)

−
∫ t

0
e−δs

[
cf ′(Lb∗

s ) + λ

∫ ∞
0

f(Lb∗
s − y) dF (y)− (λ+ δ)f(Lb∗

s )
]
1{Lb∗s <b∗} ds

−
∫ t

0
e−δs

[
λ

∫ ∞
0

f(Lb∗
s − y) dF (y)− (λ+ δ)f(Lb∗

s )
]
1{Lb∗s =b∗} ds

}
.

Moreover, we obtain from (3.5) that

cf ′(Lb∗
s ) + λ

∫ ∞
0

f(Lb∗
s − y) dF (y)− (λ+ δ)f(Lb∗

s ) ≤ φ(Lb∗
s )

and

λ

∫ ∞
0

f(Lb∗
s − y) dF (y)− (λ+ δ)f(Lb∗

s ) ≤ φ(Lb∗
s )− cf ′(Lb∗

s ) ≤ φ(Lb∗
s )− c .

Thus,

0 ≥ E
[
e−δt f(Lb∗

t )− f(x) + c

∫ t

0
1{Lb∗s =b} ds−

∫ t

0
e−δs φ(Lb∗

s ) ds
]

and the the assertion follows for t→∞.

Remark 3.2. In order to solve the HJB equation explicitly, we need an initial

condition. Kulenko and Schmidli [43] proposed to determine the value V (0) by

comparing the barrier strategies with a barrier b ≥ 0. Note that in our model

it is possible that b becomes negative. Let V b be the value of a barrier strategy

with the barrier b. Then, we have similarly as in [43] that

V (0) = sup
b∈R

V b(0) . (3.11)

As in Bühlmann [17] we can show that V b fulfils

c(V b)′(x) + λ

∫ ∞
0

V b(x− y) dF (y)− (λ+ δ)V b(x)− φ(x) = 0

on (−∞, b] with (V b)′(b) = 1 and V b(x) = V b(b) + x− b on (b,∞).
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3.4 Examples

In our examples we assume that the claim sizes are exponentially distributed.

That is F (y) = (1 − eγy)1y≥0 for some γ > 0. Then, m1 = 1/γ. Before we

consider the examples we have to prove analogous to Lemma 2.2 the following.

Lemma 3.5. Suppose that f is continuously differentiable and concave, and

solves

cf ′(x) = (λ+ δ)f(x)− λ
∫ ∞

0
f(x− y) dF (y) + φ(x) (3.12)

on (−∞, b∗] with f ′(b∗) = 1 and f ′′(b∗) = 0. Moreover, assume that φ is

differentiable for x ≥ b∗. If f(x) = f(b∗) + x − b∗ on (b∗,∞), then f solves

(3.5).

Proof. Note that (3.12) is equivalent to

cf ′(x) = (λ+ δ)f(x)− γλ e−γx
∫ x

−∞
f(z) eγz dz + φ(x) . (3.13)

If φ(x) is differentiable at x, the right-hand side of (3.13) is also differentiable

at x with

cf ′′(x) = (λ+ δ)f ′(x) + γ2λ e−γx
∫ x

−∞
f(z) eγz dz − γλf(x) + φ′(x) , (3.14)

Plugging (3.13) into (3.14) yields

cf ′′(x) = (λ+ δ − γc)f ′(x) + γδf(x) + φ′(x) + γφ(x) . (3.15)

Thus,

0 = cf ′′(b∗) = λ+ δ − γc+ γδf(b∗) + φ′(b∗) + γφ(b∗) .

Now, we set

g(x) = cf ′(x) + λ

∫ ∞
0

f(x− y) dF (y)− (λ+ δ)f(x)− φ(x)

= cf ′(x) + γλ e−γx
∫ x

−∞
f(z) eγz dz − (λ+ δ)f(x)− φ(x) . (3.16)
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Then, if φ(x) is differentiable at x, we obtain

g′(x) = cf ′′(x)− γ2λ e−γx
∫ x

−∞
f(z) eγz dz + γλf(x)

− (λ+ δ)f ′(x) + φ′(x) . (3.17)

As above, plugging (3.16) into (3.17) yields

g′(x) = −γg(x) + cf ′′(x) + (γc− λ− δ)f ′(x)− γδf(x)− φ′(x)− γφ(x) .

In the following we let x ≥ b∗. Then,

g′(x) = −γg(x) + (γc− λ− δ)− γδ(f(b∗) + x− b∗)− γφ(x)− φ′(x) .

As in Lemma 2.2 it holds φ(x) ≥ φ(b∗)−δ(x−b∗). Moreover, by the convexity

of φ, we obtain −φ′(x) ≤ −φ′(b∗). Taking together, we get

g′(x) ≤ −γg(x) + γc− λ− δ − γδf(b∗)− γφ(b∗)− φ′(b∗) = −γg(x) .

In conclusion, assume g(x) ≥ 0. Then, g′(x) ≤ 0 and therefore 0 = g(b∗) ≥

g(x). Thus, g(x) ≤ 0.

3.4.1 Exponential Penalty Payments

In this section we consider the function φ(x) = α e−βx with α, β > 0. Note

that (3.4) is fulfiled for

x < y < x0 = −β−1 max{log δ − log(αβ), 0} .

LetMY (r) = E[erY ] denote the moment-generating function of the claim sizes.

Then,

E[e−βLt−δt] = exp
[
−β(x+ ct) + λt(MY (β)− 1)− δt

]
.
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If the claim sizes are exponentially distributed, MY (β) only exists if β < γ.

In this case we have

E[e−βLt−δt] = exp
[
−β(x+ ct) + λt

β

γ − β
− δt

]

= exp
[
−βx+ t

cβ2 + (λ+ δ − γc)β − γδ
γ − β

]
.

Thus, (4.4) is fulfilled if

β < max(γ,−ξ2) , (3.18)

where ξ2 < 0 < ξ1 are the roots of the equation

cξ2 − (λ+ δ − γc)ξ − γδ = 0 .

Then,

V (x) ≥ −α
∫ ∞

0
E[e−βLt−δt] dt = −A e−βx ,

where

A = − α(γ − β)
cβ2 + (λ+ δ − γc)β − γδ .

If (3.18) is not fulfilled we have V (x) =∞.

For x > b∗ we have V (x) = V (b∗) +x− b∗. On (−∞, b∗] the value function

fulfils

cV ′(x) = (λ+ δ)V (x)− λ
∫ ∞

0
V (x− y) dF (y) + α e−βx

= (λ+ δ)V (x)− γλ e−γx
∫ x

−∞
V (z) eγz dz + α e−βx . (3.19)

Obviously, the right-hand side is differentiable and therefore

cV ′′(x) = (λ+ δ)V ′(x) + γ2λ e−γx
∫ x

−∞
V (z) eγz dz − γλV (x)− βα e−βx .

Using (3.19), we obtain

cV ′′(x) = (λ+ δ − γc)V ′(x) + γδV (x) + α(γ − β) e−βx .
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This equation is solved by

V (x) = C1 eξ1x +C2 eξ2x−A e−βx ,

where ξ1, ξ2 are defined above and C1, C2 are some constants. Note that this

solution solves equation (3.19) even though it was derived by differentiation

of it. Now, since ξ1 > 0 > −β > ξ2, we obtain that V (x) is only increasing for

x small enough if C2 ≤ 0. Furthermore, if C2 < 0 we have V (x) < −A e−βx

for x small enough. Thus, it must hold that C2 = 0. By V ′(b∗) = 1 we obtain

C1 = 1− βA e−βb∗

ξ1 eξ1b∗ .

The optimal barrier b∗ is calculated through (3.11). That is, b∗ maximises the

function

g(b) = 1− βA e−βb

ξ1 eξ1b
−A .

Solving

0 = g′(b) = (β + ξ1)βA e−(β+ξ1)b−ξ1 e−ξ1b

ξ1

we obtain

b∗ = − 1
β

log
( ξ1

(β + ξ1)βA
)
.

Since

g′′(b∗) = ξ2
1 e−ξ1b∗ −(β + ξ1)2βA e−(β+ξ1)b∗

ξ1

= ξ2
1 e−ξ1b∗ −(β + ξ1)ξ1 e−ξ1b∗

ξ1
= −β e−ξ1b∗

< 0 ,

we obtain that b∗ is a maximum of g. Note that

V ′′(b∗) = ξ1 − ξ1βA e−βb∗ −Aβ2 e−βb∗ = 0 .

Thus, Theorem 3.2 and Lemma 3.5 yield that D∗ is optimal with the barrier

b∗ and
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V (x) =


C1 eξ1x−A e−βx, x ≤ b∗,

C1 eξ1b∗ −A e−βb∗ +x− b∗, x > b∗.

In Figure 3.1 the value function is shown for c = γ = λ = 1, α = 0.3 and

β = δ = 0.1. In this case we have b∗ = −8.47049.

V x KA exp Kβ x

K20 K10 0 10

K20

K10

10

Figure 3.1: Value function for c = γ = λ = 1, α = 0.3 and β = δ = 0.1.

3.4.2 Linear Penalty Payments

Now, we let φ(x) = −αx1x<0 for some α > 0. That is, for a negative surplus

of x the insurer has to borrow an amount of −x at rate α in order to avoid

bankruptcy. Obviously, (4.4) holds. Moreover, (3.4) is also fulfilled if α > δ,

where x0 = 0. The following can be proved analogously as in the proof of

Lemma 2.4.

Lemma 3.6. i) If α < δ, an optimal strategy does not exist and V (x) =∞.
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ii) Let

f(x) = α(δx+ c− λm1)
δ2 .

Then, for α > δ, it holds V (x) ≤ f(x). Moreover, V (x) ≥ f(x) + C for

some C < 0 if x ≤ 0.

iii) Let δ = α, then V (x) = f(x).

In the following we assume that

α > δ . (3.20)

Then, the dividend barrier b∗ must be positive or equal to zero, because it

cannot be optimal to pay dividends if the surplus is negative. On (−∞, 0] we

have

cV ′(x) = (λ+ δ)V (x)− γλ e−γx
∫ x

−∞
V (z) eγz dz − αx .

As above we get by differentiation

cV ′′(x) = (λ+ δ − γc)V ′(x) + γδV (x)− α(γx+ 1) .

Here, a solution is given by

V1(x) = C1 eξ1x +C2 eξ2x +α(δx+ c− λm1)
δ2 ,

where C1, C2 some constants and ξ1, ξ2 as above. Since V is linearly bounded,

C2 = 0 must hold. On (0, b∗] the HJB equation is solved by

V2(x) = C3 eξ1x +C4 eξ2x

for some constants C3, C4. If b∗ = 0 we do not have to consider V2(x).

In order to determine the optimal dividend barrier we need to calculate

V b(0), where V b denotes the value of a barrier strategy with the barrier b. For

b = 0 we have

V 0(x) =


C0

1 eξ1x +α(δx+c−λm1)
δ2 , x ≤ 0,

C0
1 + α(c−λm1)

δ2 + x, x > 0,
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where

C0
1 = δ − α

δξ1
.

If b > 0 it holds

V b(x) = V b
+(x) =


C+

1 eξ1x +α(δx+c−λm1)
δ2 , x ≤ 0,

C+
3 eξ1x +C+

4 eξ2x, 0 < x ≤ b,

C+
3 eξ1b +C+

4 eξ2b +x− b, x > b,

where C+
1 , C+

3 and C+
4 determined such that V b

+(0−) = V b
+(0+), (V b

+)′(0−) =

(V b
+)′(0+) and (V b

+)′(b) = 1. That is,

C+
1 = C+

3 + C+
4 + λm1 − c

δ2 ,

C+
3 = 1− ξ2C

+
4 eξ2b

ξ1 eξ1b

and

C+
4 = α(λξ1 + γδ − γcξ1)

γδ2(ξ2 − ξ1) .

Now, b∗ is the maximum of

g(b) =


V 0(0), b = 0,

V b
+(0), b > 0

.

Note that

g(0−) = C0
1 + α(c− λm1)

δ2 = 1− ξ2C4
ξ1

+ C4 = g(0+) .

Thus, g is continuous at b = 0. Moreover, since

λξ1 + γδ − γcξ1 = −γδξ1
ξ2
− δξ1 ,

we obtain for b > 0 that

g′(b) = −ξ1 e−ξ1b +(ξ2 − ξ1)ξ2C
+
4 e(ξ2−ξ1)b

ξ1

= − e−ξ1b +ζ e(ξ2−ξ1)b

= e−ξ1b(ζ eξ2b−1) ,
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where

ζ = α(γ + ξ2)
δγ

.

If ζ ≤ 1, we obtain g′(b) ≤ 0 for b > 0. This yields b∗ = 0. If ζ > 1, we obtain

g′(b0) = 0, where

b0 = − 1
ξ2

log(ζ) .

and

g′′(b0) = ξ2ζ
ξ2
ξ1 < 0 .

Moreover, (V b0
+ )′′(b0) = 0 if ζ > 1. In the case where b∗ = 0 we cannot apply

Lemma 3.5. Thus we have to prove the following.

Lemma 3.7. If ζ ≤ 1, we obtain that V 0(x) fulfills (3.5).

Proof. We set

h(x) = cf ′(x) + λ

∫ ∞
0

f(x− y) dF (y)− (λ+ δ)f(x)− φ(x) .

For x > 0 it holds

h(x) = c+ λ

∫ x

0
(f(0) + x− y)γ eγy dy − (λ+ δ)(f(0) + x)

+ λ

∫ ∞
x

[
C1 eξ(x−y) +α(γδ(x− y) + γc− λ)

γδ2

]
γ eγy dy

= c+ λ(1− γf(0))
γ

e−γx +λ(γf(0) + γx− 1)
γ

− (λ+ δ)(f(0) + x)

+ λγC1
γ + ξ1

e−γx +λα(γc− λ− δ)
γδ2 e−γx

= c+ λ

γ

[
1− γ(δ − α)

δξ1
− α(γc− λ)

δ2

]
e−γx−λ

γ
− δ

[δ − α
δξ1

+ α(γc− λ)
γδ2

]
− δx

+ λγ(δ − α)
(γ + ξ1)δξ1

e−γx +λα(γc− λ− δ)
γδ2 e−γx

Note that γ + ξ2 > 0. Thus, from ζ ≤ 1 it follows α ≤ δγ/(γ + ξ2). Moreover,

α > δ, ξ1ξ2 = −γδ/c and ξ1 + ξ2 = (λ + δ − γc)/c. Therefore, for x > 0 we
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obtain

h′(x) = λξ1(α− δ) e−γx−γδ2 − δ2ξ1
δ(γ + ξ1)

≤ λξ1(α− δ)− γδ2 − δ2ξ1
δ(γ + ξ1)

≤ λξ1δγ − λξ1δγ − λξ1ξ2δ − γ2δ2 − γδ2ξ2 − γδ2ξ1 − δ2ξ1ξ2
(γ + ξ2)δ(γ + ξ1)

= λγδ2 − γ2δ2c+ (γc− λ− δ)γδ2 + δ3γ

c(γ + ξ2)δ(γ + ξ1) = 0 .

Thus, for x > 0 we have h(x) ≤ h(0) = 0.

In sum we get by Theorem 3.2, Lemma 3.5 and Lemma 3.7 that

b∗ = b0 ∨ 0

and

V (x) =


V 0(x), ζ ≤ 1,

V b0
+ (x), ζ > 1,

where D∗ is optimal with the barrier b∗. Figure 3.2 illustrates the value func-

tion for γ = λ = 1, δ = 0.1, c = 1.5 and α = 0.2. The optimal dividend

barrier is given by b∗ = 0.33408 and ζ = 1.15215. Figure 3.3 illustrates the

value function for γ = λ = 1, δ = 0.1, c = 2 and α = 0.11. Here, b∗ = 0 and

ζ = 0.50356.
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Figure 3.2: Value function for γ = λ = 1, δ = 0.1, c = 1.5 and α = 0.2.

V x f x
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Figure 3.3: Value function for γ = λ = 1, δ = 0.1, c = 2 and α = 0.11.
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3.4.3 Quadratic Penalty Payments

In this section we consider a quadratic function φ(x) = (α2x
2 − α1x)1x<0,

where α1, α2 > 0. Here, we have

x0 = −1
2
α1 + δ

α2
.

Therefore, it is possible that the optimal dividend barrier is negative. If b∗ is

positive, we have as above on (−∞, 0] that

cV ′(x) = (λ+ δ)V (x)− γλ e−γx
∫ x

−∞
V (z) eγz dz + α2x

2 − α1x

and by differentiation we get

cV ′′(x) = (λ+ δ − γc)V ′(x) + γδV (x) + γα2x
2 + (2α2 − α1)x− α1 .

Here, a solution is given by

V1(x) = C1 eξ1x +C2 eξ2x +h(x) ,

where C1, C2 some constants, ξ1, ξ2 as above and h(x) = p0 + p1x+ p2x
2 with

p0 = γδ(α1δ − 2cα2) + (λ+ δ − γc)(2α2δ − α1δ − 2α2(λ+ δ − γc))
δ3γ2 ,

p1 = 2α2λ+ α1δ − 2α2cγ

γδ2

and

p2 = −α2
δ
.

Since V is quadratically bounded, C2 = 0 must hold. On (0, b∗] the HJB

equation is solved by

V2(x) = C3 eξ1x +C4 eξ2x ,

where C3, C4 some constants. If b∗ is negative we do not have to consider

V2(x).
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Again, we first calculate V b(0), where V b denotes the value of a barrier

strategy with the barrier b. For b ≤ 0 we have

V b(x) = V b
−(x) =


C−1 eξ1x +h(x), x ≤ b,

C−1 eξ1b +h(b) + x− b, x > b,

where C−1 is given by (V b
−)′(b) = 1, i.e.

C−1 = 1− 2p2b− p1
ξ1 eξ1b

.

If b > 0 it holds

V b(x) = V b
+(x) =


C+

1 eξ1x +h(x), x ≤ 0,

C+
3 eξ1x +C+

4 eξ2x, 0 < x ≤ b,

C+
3 eξ1b +C+

4 eξ2b +x− b, x > b,

where C+
1 , C+

3 and C+
4 determined such that V b

+(0−) = V b
+(0+), (V b

+)′(0−) =

(V b
+)′(0+) and (V b

+)′(b) = 1. That is,

C+
1 = C+

3 + C+
4 − p0 ,

C+
3 = 1− ξ2C

+
4 eξ2b

ξ1 eξ1b

and

C+
4 = ξ1p0 − p1

ξ1 − ξ2
.

As above, b∗ is the maximum of

g(b) =


V b
−(0), b ≤ 0,

V b
+(0), b > 0

= p0 +


C−1 , b ≤ 0,

C+
1 , b > 0.

= 1
ξ1


e−ξ1b(1− 2p2b− p1) + p0ξ1, b ≤ 0,

e−ξ1b + ξ1p0−p1
ξ1−ξ2

(ξ1 − ξ2 e(ξ2−ξ1)b), b > 0.
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and g(0−) = p0ξ1+1−p1
ξ1

= g(0+). Now, define

b+ = − 1
ξ2

log
(α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ)

γδ2

)
and

b− = 1
2
α1δ + 2α2λ− 2cα2(ξ2 + γ)− γδ2

α2γδ
.

Let us first assume that b+ > 0 (in particular b− > 0). Then, g′(b+) = 0 and

g′′(b+) = ξ2
(α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ)

γδ2

) ξ1
ξ2 < 0 .

Moreover, for b < 0, we have

g′(b) = (2ξ1p2b+ ξ1p1 − 2p2 − ξ1)ξ2
ξ1ξ2

e−ξ1b

>
(ξ1p1 − 2p2 − ξ1)ξ2

ξ1ξ2
e−ξ1b

= α1δ + 2α2λ− 2cα2(ξ2 + γ)− γδ2

γδ2 e−ξ1b

>
2α2b

−

δ
e−ξ1b > 0 ,

where we used that ξ1ξ2 = γδ/c. Since g is continuous, we obtain that b+ max-

imises V b(0) and therefore b∗ = b+. Now, assume that b− < 0 (in particular

b+ does not exists or is negative). As above g′(b−) = 0 and

g′′(b−) = −2α2
δ

e−ξ1b−
< 0 .

For b > 0 it holds

g′(b) = ξ2(ξ1p0 − p1) e(ξ2−ξ1)b−ξ1 e−ξ1b

ξ1
.

If ξ1p0 − p1 > 0, we obtain directly g′(b) < 0 for b > 0. Moreover, by

ξ1(λ+ δ − γc) + γδ = −γδξ1/ξ2 and ξ1ξ2 = γδ/c we obtain

ξ2(ξ1p0 − p1)− ξ1
ξ1

= α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ)− γδ2

γδ2 .
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Thus, if ξ1p0 − p1 ≤ 0, we have

g′(b) ≤ ξ2(ξ1p0 − p1)− ξ1
ξ1

e−ξ1b

= α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ)− γδ2

γδ2 e−ξ1b

= 2α2b
−

δ
e−ξ1b < 0

for b < 0. As above, we obtain b∗ = b− if b− < 0. Note that

(b− − x0)2α2γδ = α1δ + 2α2λ+ α1γδ − 2cα2(ξ2 + γ)

> 2α2(λ− cξ2 − cγ)

= λ− δ − γc+
√

(λ+ δ − γc)2 + 4γδc
2

= λ− δ − γc+
√

(λ− δ − γc)2 + 4λδ
2 > 0

and therefore b− > x0.

In conclusion, let us consider the cases where b∗ = 0. If b− > 0, we obtain

as above that g′(b) > 0 for b < 0. If b+ does not exists, we have

α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ) ≤ 0 .

This implies ξ1p0 − p1 ≥ 0 and therefore g′(b) < 0 for b > 0. If b+ is negative,

we obtain for b > 0 that

g′(b) ≤ ξ2(ξ1p0 − p1)− ξ1
ξ1

e(ξ2−ξ1)b

= α1δ + 2α2λ+ α1δξ2 − 2cα2(ξ2 + γ)− γδ2

γδ2 e(ξ2−ξ1)b < 0 .

Note that (V b−
− )′′(b−) = 0 if b− < 0 and (V b+

+ )′′(b+) = 0 if b+ > 0.

Moreover, similar as in Lemma 3.7 one can show that V 0
− fulfils the HJB
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equation if b− ≥ 0 and b+ ≤ 0 or b+ does not exist. In sum, we get the

following. The optimal dividend barrier is given by

b∗ =


b−, b− < 0,

0, b− ≥ 0 ∧ (b+ ≤ 0 ∨ b+ does not exists)

b+, b+ > 0.

Moreover,

V (x) =


V b−
− (x), b− < 0,

V 0
−(x), b− ≥ 0 ∧ (b+ ≤ 0 ∨ b+ does not exists)

V b+
+ (x), b+ > 0,

where V b−
− (x), V 0

−(x) and V b+
+ as above.
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In Figure 3.4 the value function is shown for γ = λ = 1, δ = 0.1, c = 4,

α1 = 0.02 and α2 = 0.01. In this case we have b∗ = b− = −3.68071 and

b+ = −2.88519. Figure 3.5 illustrates the value function for γ = λ = 1,

δ = 0.1, c = 1.5, α1 = 0.05 and α2 = 0.02. Here, it holds b− = 0.10889 and

b+ = −0.43500. Thus, the optimal dividend barrier is 0. Figure 3.6, shows the

value function for γ = λ = 1, δ = 0.1, c = 1.5, α1 = α2 = 0.1 with a positive

barrier b∗ = b+ = 2.81196, where b− = 1.35889.
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Figure 3.4: Value function for γ = λ = 1, δ = 0.1, c = 4, α1 = 0.02 and

α2 = 0.01.
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Figure 3.5: Value function for γ = λ = 1, δ = 0.1, c = 1.5, α1 = 0.05 and

α2 = 0.02.
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Figure 3.6: Value function for γ = λ = 1, δ = 0.1, c = 1.5, α1 = α2 = 0.1.





Chapter 4

Minimisation of Penalty

Payments by Investments and

Reinsurance in a Diffusion

Model

4.1 Introduction

This chapter studies the investment and reinsurance problem described in

Section 1.7.2, where the surplus follows a diffusion process. In the Cramér–

Lundberg model, the surplus is given by

Lt = x+ ct−
Nt∑
i=1

Yi , (4.1)

where x denotes the initial capital, c > 0 a constant premium rate, Nt the

amount of claims arriving until time t and Yi the claim size of the i-th claim.

Moreover, we consider the net value principle. That is, the premium rate is



given by

c = (1 + η)λE(Y ) = (1 + η)λm1 ,

where η > 0 denotes the safety loading of the insurer.

The insurer has the possibility to buy excess of loss or proportional rein-

surance for individual claims. For a reinsurance strategy 0 ≤ Rt ≤ ∞ the

controlled surplus is given by

LRt = x+ λ(1 + ρ)
∫ t

0
E[s(Rs, Y )] ds− λ(ρ− η)m1t−

Nt∑
i=1

s(RTi , Yi) .

In Section 1.2 we have already introduced a diffusion approximation to the

uncontrolled Cramér-Lundberg process. The next lemma gives a motivation

for an approximation to the Cramér–Lundberg process that is controlled by a

reinsurance strategy.

Lemma 4.1. Let µ : R → R be a Lipschitz continuous function and X,Xn,

n ∈ N semi-martingales such that X0 = Xn
0 = 0. Further assume that Y n

fulfils the equation

Y n
t = x+Xn

t +
∫ t

0
µ(Y n

s ) ds

and Y fulfils the equation

Yt = x+Xn
t +

∫ t

0
µ(Ys) ds .

Then, Y n converges weakly to Y if and only if Xn converges weakly to X.

Proof. For proof see Schmidli [59].

Given a reinsurance strategy Rt we now assume that the surplus fulfils

XR
t = x+ λρ

∫ t

0
E[s(Rs, Y )] ds− λ(ρ− η)m1t+

∫ t

0

√
λE[s(Rs, Y )2] dWs .

In addition, the insurance company has the possibility to invest in n risky

assets, modelled by

dZit = aiZ
i
t dt+ Zit

n∑
j=1

vij dBj
t , Si0 = 1
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for i = 1, 2, ..., n. Here, B1, B2, ..., Bn and W are independent Wiener pro-

cesses and ai, vij ≥ 0, i, j = 1, 2, ..., n. We assume that the matrix v =

(vij)i,j=1,2,...,n of volatilities is invertible. Then, the covariance matrix vvT

is positive definite. The insurer can choose an investment strategy θt =

(θ1
t , θ

2
t , ..., θ

n
t )T , where θit <∞ describes the amount being invested into the i-

th asset at time t. For a control strategy U = (R, θT )T the surplus is governed

by

dXU
t = λ(ρE[s(Rt, Y )]− (ρ− η)m1) dt+

√
λE[s(Rt, Y )2] dWt

+
n∑
i=1

aiθ
i
t dt+

n∑
i=1

n∑
j=1

θitvij dBj
t . (4.2)

For simplicity of notation we set (R, θ) = (R, θT )T in the following. To ensure

that the differential equation (4.2) is well-defined we require that∫ t

0
(θis)2 ds <∞

for t > 0 and i = 1, 2, ..., n.

In order to prevent bankruptcy, the insurer has to pay penalty payments at

a rate φ(x), where φ(x) is the convex, decreasing and positive penalty function

vanishing at infinity. The value of a strategy U is given by

V U (x) = E
[∫ ∞

0
e−δt φ(XU

t ) dt
∣∣∣ XU

0 = x
]
, (4.3)

where δ > 0 denotes a preference parameter. The insurer aims to minimise

the penalty payments. That is, we consider the control problem

V (x) = inf
U∈U

V U (x) .

Let cad(F) be the set of all càdlàg processes being adapted to Ft = σ(Xt, t ≥

0). We only consider adapted càdlàg processes and at any time it is not allowed

to invest an infinite amount. Thus, U ⊂ cad(F) and for an admissible strategy
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U ∈ U it holds τUk → ∞ as k → ∞, where τUk = inf(t > 0 : |XU
t | > k) and

inf ∅ =∞. As in the chapters above, φ has to fulfil∫ ∞
0

e−δt E[φ(Xt)] <∞ . (4.4)

This chapter is organised as follows. In section 2 we motivate the HJB

equation and prove a verification theorem for a general penalty function φ.

Section 3 considers the control problem with an exponential penalty function

φ(x) = α e−βx, where α, β > 0. We show that the optimal investment and

reinsurance strategy is constant and determine an explicite solution. Section 4

studies a linear penalty function φ(x) = −αx1x<0 for some α > 0. Here, it is

very difficult to solve the HJB equation explicitly. Thus, we only determine an

optimal strategy in the case n = 1 without reinsurance and assume that there

are additional investment constraints. Under the same restrictions we obtain

an analogous result in section 5 for a quadratic penalty function φ(x) = (α2x
2−

α1x)1x<0, where α1, α2 > 0. Moreover, it is possible to determine an explicit

solution for n > 1 without reinsurance and with no investment constraints

if we make some restrictions on α1 and α2. In the last section we assume

that the penalty payments are given by a power function φ(x) = α(−x)k1x<0,

where α > 0 and k > 2. We derive a solution in the case where all claims are

reinsured by so-called cheap reinsurance.

4.2 The HJB Equation and the Verification Theo-

rem

We begin by stating some basic properties of the value function.

Lemma 4.2. V is positive, decreasing and vanishes at infinity. Moreover,

V (x) ≤
∫ ∞

0
e−δt E[φ(Xt)] dt < φ(x+ k)

δ
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for a constant k.

Proof. Obviously, V is positive, decreasing and vanishes at infinity. Moreover,

the first inequality follows because V (x) ≤ V U0(x), where U0 describes the

strategy where neither reinsurance is bought nor any investments are made.

Then, we prove the second inequality similar to the proof of the mean value

theorem for integrals. We set f(z) = φ(z + x+ µt) and

g(z) =
e

−z2
2σ2t

√
2πσ2t

.

Since f is decreasing with f ≥ 0 and limz→−∞ f(z) =∞ as well as limz→∞ f(z) =

0, we obtain by the intermediate value theorem that for

y =
∫∞
−∞ f(z)g(z) dz∫∞
−∞ g(z) dz =

∫ ∞
−∞

f(z)g(z) dz > 0

there exists a unique k ∈ R such that y = f(k). This implies

E[φ(Xt)] = E[φ(x+ µt+ σWt)]

= 1√
2πσ2t

∫ ∞
−∞

φ(u) e−
(u−x−µt)2

2σ2t du

= 1√
2πσ2t

∫ ∞
−∞

φ(z + x+ µt) e−
z2

2σ2t dz

=
∫ ∞
−∞

f(z)g(z) dz = φ(k + x+ µt)
∫ ∞
−∞

g(z) dz

= φ(k + x+ µt) < φ(x+ k)

and therefore the assertion.

Now, we motivate the HJB equation heuristically. We choose r ∈ [0,∞],

ϑ ∈ Rn and define the strategy

Ut =


(r, ϑ), t ≤ h,

U εt−h, t > h,
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where h > 0 and U ε is a strategy such that

V Uε(x) < V (x)− ε

for all x and some ε > 0. Note that we do not address the problem of whether

we can do that in a measurable way. In the case of proportional reinsurance,

r should be chosen within [0, 1]. This yields

V (x) ≤ V U (x) =
∫ h

0
e−δt φ(XU

t ) dt+ e−δh V U (XU
h )

<

∫ h

0
e−δt φ(XU

t ) dt+ e−δh V (XU
h )− ε . (4.5)

If V is twice continuously differentiable, Itô’s formula implies

V (XU
h ) = V (x) +

∫ h

0

[
{λ(ρE[s(r, Y )]− (ρ− η)m1) + aTϑ}V ′(XU

t )

+ 1
2{λE[s(r, Y )2] + ϑTΣϑ}V ′′(XU

t )
]

dt

+
∫ h

0

√
λE[s(r, Y )2]V ′(XU

t ) dWt +
n∑
i=1

n∑
j=1

∫ h

0
ϑivijV

′(XU
t ) dBj

t ,

where a = (a1, a2, ..., an)T and Σ = vvT . Let us assume that the stochastic

integrals are martingales with mean zero. Now, taking the expected value in

(4.5) and letting ε ↓ 0, we get

0 ≤ V (x)(e−δh−1) + E
(∫ h

0
e−δt φ(XU

t ) dt

+ e−δh
∫ h

0

[
{λ(ρE[s(r, Y )]− (ρ− η)m1)

+ aTϑ}V ′(XU
t ) + 1

2{λE[s(r, Y )2] + ϑTΣϑ}V ′′(XU
t )
]

dt
)
.

Dividing by h and letting h ↓ 0, we obtain

0 ≤ −δV (x) + φ(x) + {λ(ρE[s(r, Y )]− (ρ− η)m1) + aTϑ}V ′(x)

+ 1
2{λE[s(r, Y )2] + ϑTΣϑ}V ′′(x) .
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This motivates the HJB equation

inf
(r,ϑ)∈[0,r0]×I(x)

[
1
2{λE[s(r, Y )2] + ϑTΣϑ}V ′′(x) + {λ(ρE[s(r, Y )]

− (ρ− η)m1) + aTϑ}V ′(x)− δV (x) + φ(x)
]

= 0 , (4.6)

where I(x) ⊂ Rn describes the set of all admissible control values if there

are any investment constraints. In case of proportional and excess of loss

reinsurance we have r0 = 1 and r0 = ∞, respectively. Note that Σ is sym-

metric, positive definite and invertible. Moreover, we may minimise r and ϑ

independently. Thus, if I(x) = Rn and V ′(x) < 0 < V ′′(x), we obtain that

ϑ∗(x) = − V
′(x)

V ′′(x)Σ−1a

minimises the HJB equation in ϑ. Plugging this into (4.6), we obtain

inf
r∈[0,r0]

[
−γV

′(x)2

V ′′(x) + 1
2λE[s(r, Y )2]V ′′(x) + λ(ρE[s(r, Y )]− (ρ− η)m1)V ′(x)

− δV (x) + φ(x)
]

= 0 ,

where

γ = 1
2a

TΣ−1a .

Now, we are in the position to prove the following verification theorem.

Theorem 4.1. Let f be a twice continuously differentiable solution to (4.6)

with

f(x) ≤ φ(x+ k)
δ

(4.7)

for a constant k and assume that u∗(x) = (r∗(x), ϑ∗(x)) minimises the left-

hand side of (4.6). Moreover, assume that X∗t is a continuous solution to

dX∗t = λ(ρE[s(r∗(X∗t ), Y )]− (ρ− η)m1) dt+
√
λE[s(r∗(X∗t ), Y )2] dWt

+
n∑
i=1

aiϑ
∗
i (X∗t ) dt+

n∑
i=1

n∑
j=1

ϑ∗i (X∗t )vij dBj
t
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and

E
[
e−δh f(XU∗

h )
]
→ 0, h→∞ , (4.8)

where U∗t = u∗(X∗t ) is admissible. Then, we obtain f(x) = V U∗(x) = V (x)

and U∗ is an optimal strategy.

Proof. Let U = (R, θ) ∈ U be an arbitrary strategy, h > 0 and τk = inf(t >

0 : |XU
t | > k). Then,∫ τk∧h

0

√
λE[s(Rt, Y )2]V ′(XU

t ) dWt +
n∑
i=1

n∑
j=1

∫ τk∧h

0
θitvijV

′(XU
t ) dBj

t

is a martingale with mean zero. Thus, Itô’s formula implies

E[e−δ(τk∧h) f(XU
τk∧h)] = f(x) + E

{∫ τk∧h

0
e−δt

[
{λ(ρE[s(Rt, Y )]− (ρ− η)m1)

+ aT θt}V ′(XU
t ) + 1

2{λE[s(Rt, Y )2] + θTt Σθt}V ′′(XU
t )

− δV (XU
t )
]

dt
}
.

Since f fulfils (4.6), we obtain

E
[
e−δ(τk∧h) f(XU

τk∧h) +
∫ τk∧h

0
e−δt φ(XU

t ) dt
]
≥ f(x) .

We can assume that

E
[
e−δh f(XU

h )
]
→ 0, h→∞ (4.9)

for all strategies U . Indeed, if this not fulfilled for some strategy U , we get by

(4.7) that V U (x) = ∞ and therefore U cannot be optimal. Moreover, since

U ∈ U , we get τk →∞. Letting h, k →∞, we get by the bounded convergence

theorem that V U (x) ≥ f(x). Note that equality holds if U = U∗. Since U

is arbitrary, we get f(x) ≤ V (x). The optimality of the strategy U∗ follows

because f(x) = V U∗(x) ≥ V (x).
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In the following we study equation (4.6) for various penalty functions and

aim to find a solution fulfilling the regularity conditions of the verification

theorem.

4.3 Exponential Penalty payments

In this section we model the penalty payments by an exponential function

φ(x) = α e−βx with α, β > 0. Since E[e−βXt−δt] = exp{−βx+ (1
2σ

2β2 − βµ−

δ)t}, we obtain that (4.4) is fulfilled if

β < ξ1 , (4.10)

where ξ1 is the positive root of the equation

σ2ξ2 − 2µξ − 2δ = 0 .

If (4.10) holds, we get by Fubini’s theorem that

V 0(x) = E
[∫ ∞

0
e−δt φ(Xt) dt

]
= A e−βx

where

A = − 2α
σ2β2 − 2µβ − 2δ .

If β ≥ ξ1, we get V 0(x) =∞. In particular, it follows that (4.4) is not fulfilled.

For this reason we assume that (4.10) holds. Furthermore, we assume in this

section that there are no investment constraints. That is I(x) = Rn. Then,

the HJB equation becomes

inf
r∈[0,r0]

[
−γV

′(x)2

V ′′(x) + 1
2λE[s(r, Y )2]V ′′(x) + λ(ρE[s(r, Y )]

− (ρ− η)m1)V ′(x)− δV (x) + α e−βx
]

= 0 . (4.11)
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We make the ansatz f(x) = C e−βx for some constant C. Plugging this into

(4.11), we get

inf
r∈[0,r0]

[
−2γ + λE[s(r, Y )2]β2 − 2λ(ρE[s(r, Y )]− (ρ− η)m1)β

− 2δ + 2α
C

]
= 0 . (4.12)

Since this expression is continuous in r, there exists an r∗ at which the mini-

mum is attained and we have

− 2γ + λE[s(r∗, Y )2]β2 − 2λ(ρE[s(r∗, Y )]− (ρ− η)m1)β

−2δ + 2α
C

= 0 . (4.13)

Solving equation (4.13) in C, we obtain

C = 2α
2γ + 2λ(ρE[s(r∗, Y )]− (ρ− η)m1)β − λE[s(r∗, Y )2]β2 + 2δ .

Obviously,

λE[s(r∗, Y )2]β2 − 2λ(ρE[s(r∗, Y )]− (ρ− η)m1)β − 2δ

≤ λE[s(r0, Y )2]β2 − 2λ(ρE[s(r0, Y )]− (ρ− η)m1)β − 2δ

= σ2β2 − 2µβ − 2δ < 0

holds true and γ > 0 since Σ−1 is positive definite. This yields C > 0.

Moreover, we have a constant minimiser

u∗ =
(
r∗,

1
β

Σ−1a
)

and for U∗t = u∗ we obtain that

XU∗
t = x+ λ(ρE[s(r∗, Y )]− (ρ− η)m1)t+

√
λE[s(r∗, Y )2]Wt

+
n∑
i=1

aiϑ
∗
i t+

n∑
i=1

n∑
j=1

ϑ∗i vijB
j
t
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is a continuous process. Finally, we have

E[e−δt−βXU∗
t ] = exp

{
−δt− βx− βλ(ρE[s(r∗, Y )]− (ρ− η)m1)t

+ 1
2β

2λE[s(r∗, Y )2]t− βaTϑ∗t+ 1
2β

2ϑ∗TΣϑ∗t
}

= exp
{
−βx− t

2
[
2γ + 2λ(ρE[s(r∗, Y )]− (ρ− η)m1)β

− λE[s(r∗, Y )2]β2 + 2δ
]}

.

We have already shown that

2γ + 2λ(ρE[s(r∗, Y )]− (ρ− η)m1)β − λE[s(r∗, Y )2]β2 + 2δ > 0 .

Thus, (4.8) is fulfilled. In sum, we obtain that f is a solution to the HJB

equation fulfilling the regularity conditions of the verification theorem. As a

result V (x) = f(x) = V U∗(x) and U∗ is an optimal strategy.

Example 4.1. In case of proportional reinsurance we have s(r, Y ) = rY and

equation (4.12) becomes

inf
r∈[0,1]

[
−2γ + λr2m2β

2 − 2λm1(ρr − (ρ− η))β − 2δ + 2α
C

]
= 0 .

Here, the minimum is attained at

r∗ = m1ρ

m2β
∧ 1

and we get

C = 2α
2γ + 2λm1(ρr∗ − (ρ− η))β − λr∗2m2β2 + 2δ .

Example 4.2. Now, we consider excess of loss reinsurance. Then, s(r, Y ) =

min(r, Y ) and equation (4.12) reads

inf
r∈[0,∞]

[
−γ + λβ2

∫ r

0
y(1− F (y)) dy − λρβ

∫ r

0
(1− F (y)) dy

+ λm1(ρ− η)β − δ + α

C

]
= 0 . (4.14)
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Differentiating this expression w.r.t. r, we obtain

λβ(1− F (r))(βr − ρ)

Let y0 = inf{y : F (y) < 1}. If y0 ≤ ρ/β, it is optimal to buy no reinsurance at

all. If y0 > ρ/β the left-hand side of (4.14) is minimised at ρ/β. Thus,

r∗ = ρ

β
∧ y0

and

C = 2α
2γ + 2λρβ

∫ r∗

0 (1− F (y)) dy − 2λm1(ρ− η)β − 2λβ2 ∫ r∗

0 y(1− F (y)) dy + 2δ
.

Figure 4.1 illustrates the value functions for proportional and excess of loss

reinsurance, where the claims are exponentially distributed with m2 = 2m1 =

1 and λ = 10, ρ = 0.1, η = 0.05, δ = 0.06, α = 1, β = 0.1, n = 2, a1 = 0.1,

a2 = 0.15 and

b =

0.5 0

0.5 0.4

 .

4.4 Linear Penalty Payments

Now, we consider φ(x) = −αx1x<0 for some α > 0. Obviously, (4.4) is fulfilled.

The HJB equation becomes

inf
(r,ϑ)∈[0,r0]×I(x)

[
1
2{λE[s(r, Y )2] + ϑTΣϑ}V ′′(x) + {λ(ρE[s(r, Y )]− (ρ− η)m1)

+ aTϑ}V ′(x)− δV (x)− αx1x < 0
]

= 0 .

In the general case it is very difficult to find a closed-form solution. Therefore,

we have to make some restriction. At the beginning we investigate several

cases and we motivate the key problems. Firstly, let x ≥ 0. If η ≥ ρ, it is

optimal to apply the trivial strategy (Rt, θt) = (0,0) and V (x) = 0. If η < ρ
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Figure 4.1: Value functions for proportional and excess of loss reinsurance

from Example 4.1 and Example 4.2.

and investments are not constrained, we have the same equation as in [23,

Section 2.1]. Here, a solution is given by f(x) = C eζ1x, where C is a free

constant and ζ1 is choosen such that the HJB equation is solved.

If x < 0 it appears difficult to solve the HJB equation explicitly. Consid-

ering proportional reinsurance and I(x) = Rn, we obtain the equation

−γ̃ V
′(x)2

V ′′(x) − λm1(ρ− η)V ′(x)− δV (x)− αx = 0

where

γ̃ = γ + λ(ρm1)2

2m2

in case of

−ρm1
m2

V ′(x)2

V ′′(x) ≤ 1 .

A similar equation was already solved in [37]. Nevertheless, the problem re-
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mains to find a solution to the HJB equation in case of

−ρm1
m2

V ′(x)2

V ′′(x) > 1 .

Due to the complexity of reinsurance, this section is restricted to the case

where the insurer does not buy reinsurance and where n = 1. Moreover,

investment constraints are that neither short-selling nor taking money from

any other sources to buy stocks is allowed. That is, the set of all admissible

control values becomes

I(x) = {ϑ ∈ R : 0 ≤ ϑ ≤ max(x, 0)} .

Note, that it is not necessary to assume that 0 ≤ ϑ.

Now, the controlled surplus process is given by

dXθ
t = (µ+ a1θt) dt+ σ dWt + v1θt dB1

t (4.15)

and the HJB equation becomes

inf
ϑ∈I(x)

[
1
2(σ2 + v2

1ϑ
2)V ′′(x) + (µ+ a1ϑ)V ′(x)

− δV (x)− αx1x < 0
]

= 0 . (4.16)

Following [39] we assume that

a1 < δ . (4.17)

Otherwise the solution to the HJB equation becomes very complex. If the

surplus is negative, no investments are allowed at all and the HJB equation is

given by
1
2σ

2V ′′(x) + µV ′(x)− δV (x)− αx = 0 .

This equation is solved by

f1(x) = C1 eξ1x +C2 eξ2x−αδx+ µ

δ2 ,
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where ξ2 < 0 < ξ1 are the roots of the equation σ2ξ2 +2µξ−2δ = 0 and C1, C2

some constants. As in Section 2.5, the value function is linearly bounded which

enforces C2 = 0.

For x > 0 we have to solve

inf
0≤ϑ≤x

[
1
2(σ2 + v2

1ϑ
2)V ′′(x) + (µ+ a1ϑ)V ′(x)− δV (x)

]
= 0 . (4.18)

If V ′(x) < 0 < V ′′(x), we obtain the minimum at ϑ̃(x) = ϑ̄(x) ∧ x, where

ϑ̄(x) = −a1
v2

1

V ′(x)
V ′′(x) .

If 0 ≤ x ≤ ϑ̄(x), equation (4.18) becomes

1
2(σ2 + v2

1x
2)V ′′(x) + (µ+ a1x)V ′(x)− δV (x) = 0 . (4.19)

Paulsen and Gjessing [55] showed that, if (4.17) holds, equation (4.19) is solved

by

f2(x) = C3D(x, ν + 1) + C4E(x, ν + 1) ,

where

ν = 1
2

[√(2a1
v2

1
− 1

)2
+ 8δ
v2

1
−
(
1 + 2a1

v2
1

)]
,

D(x, κ) =
∫ ∞
x

(t− x)κK(t) dt, −1 < κ < 1 + 2ν + 2a1
v2

1
,

E(x, κ) =
∫ x

−∞
(x− t)κK(t) dt, −1 < κ < 1 + 2ν + 2a1

v2
1

with

K(t) = (v2
1t

2 + σ2)−(ν+1+a1/v2
1) exp

[
− 2µ
σv1

arctan
(v1t

σ

)]
and some constants C3, C4. Moreover, we find

d
dxD(x, κ) = −κD(x, κ− 1), d

dxE(x, κ) = κE(x, κ− 1)

and

d
dx2D(x, κ) = κ(κ− 1)D(x, κ− 2), d

dx2E(x, κ) = κ(κ− 1)E(x, κ− 2) .
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Notice that (4.17) implies ν > 0 and therefore f ′′2 (x) exists. If x > ϑ̄(x), we

obtain the equation

− a2
1

2v2
1

V ′(x)2

V ′′(x) + 1
2σ

2V ′′(x) + µV ′(x)− δV (x) = 0 .

A solution to this equation is given by

f3(x) = C5 eξ3x ,

where ξ3 is the negative solution to the equation σ2ξ2 + 2µξ − 2δ − a2
1/v

2
1 = 0

and C5 is a free constant. Supposing that V (x) = f3(x) for x ≥ ϑ̄(x), we get

ϑ̄(x) = ϑ̄ = − a1
v2

1ξ3
> 0 .

Now, we have to determine C1, C3, C4 and C5 such that f1(0) = f2(0), f ′1(0) =

f ′2(0), f2(ϑ̄) = f3(ϑ̄) and f ′2(ϑ̄) = f ′3(ϑ̄). These equations are fulfilled if

C1 = αµ

δ2 + C3D(0, ν + 1) + C4E(0, ν + 1) ,

C3 = Kα(δ − µξ1)[(ν + 1)E(ϑ̄, ν)− ξ3E(ϑ̄, ν + 1)] ,

C4 = Kα(δ − µξ1)[(ν + 1)D(ϑ̄, ν) + ξ3D(ϑ̄, ν + 1)]

and

C5 = Kα(δ − µξ1)[D(ϑ̄, ν + 1)E(ϑ̄, ν) +D(ϑ̄, ν)E(ϑ̄, ν + 1)] e−ξ3ϑ̄,

where

δ2

K
= ξ1(ν + 1)[D(0, ν + 1)E(ϑ̄, ν) +D(ϑ̄, ν)E(0, ν + 1)]

+ (ν + 1)2[D(0, ν)E(ϑ̄, ν)−D(ϑ̄, ν)E(0, ν)]

+ ξ1ξ3[D(ϑ̄, ν + 1)E(0, ν + 1)−D(0, ν + 1)E(ϑ̄, ν + 1)]

− (ν + 1)ξ3[D(0, ν)E(ϑ̄, ν + 1) +D(ϑ̄, ν + 1)E(0, ν)] .
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From the differential equations we get that f ′′1 (0) = f ′′2 (0) and f ′′2 (ϑ̄) = f ′′3 (ϑ̄).

In the next step, we show that the above function is a decreasing and con-

vex solution to the HJB equation. Obviously, D(x, κ), E(x, κ) > 0. Moreover,

D(x, κ) is decreasing and E(x, κ) is increasing. This implies

D(x, κ)E(y, κ)−D(y, κ)E(x, κ) > 0

if x < y. Together with ξ1, ν > 0 > ξ3, we obtain K > 0. Since δ − µξ1 =

−δξ1/ξ2 > 0, we also obtain that C3 and C5 are positive. Thus, f3(x) is convex

and decreasing. If C4 ≥ 0, we get f ′′2 (x) > 0. If C4 < 0 and x ≤ ϑ̄ we get that

f ′′2 (x) ≥ f ′′2 (ϑ̄) = f ′′3 (ϑ̄) > 0 .

Thus, f2 is convex at least on (−∞, ϑ̄]. In particular,

C1ξ
2
1 = f ′′1 (0) = f ′′2 (0) > 0 .

Therefore, C1 > 0 and f1 is also convex. Moreover,

f ′2(x) ≤ f ′2(ϑ̄) = f ′3(ϑ̄) < 0

if x ≤ ϑ̄ and

f ′1(x) ≤ f ′1(0) = f ′2(0) < 0

if x ≤ 0. In sum, we obtain that

f(x) =


f1(x), x ≤ 0,

f2(x), 0 < x ≤ ϑ̄,

f3(x), x > ϑ̄

is a solution to the HJB equation fulfilling the regularity conditions of the

verification theorem

Now, let ϑ∗(x) = ϑ̃(x) ∨ 0 and

dXθ∗
t = [µ+ a1ϑ

∗(Xθ∗
t )] dt+ σ dWt + v1ϑ

∗(Xθ∗
t ) dB1

t . (4.20)
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Obviously, there exists an unique and continuous solution Xθ∗
t of (4.20) and

(4.8) is fulfilled. Taken together, we get V (x) = f(x) = V θ∗(x), where θ∗t =

ϑ∗(Xθ∗
t ).

Example 4.3. Consider a HJB equation of the form

1
2p

2
1(x)V ′′(x) + p2(x)V ′(x)− δf(x) = 0 ,

where p1, p2 are continuous functions. In the literature it has been discussed

that the behaviour of the associated stochastic control problem can become very

complex if the assumption

p′1(x) ≤ δ (4.21)

is violated. For instance, see Shreve et al. [65]. If p1(x) =
√
σ2 + v2

1x
2 and

p2(x) = µ+ a1x, we obtain equation (4.19). Here, we had to assume that the

strict inequality holds in order to find a solution.

Nevertheless, there are some nice solutions even if (4.17) is violated. Let

v2
1 = 2, µ = 0 and σ2 = a1 = δ = 1. Then (4.19) is solved by

f2(x) = C1x+ C2
√

1 + 2x2 ,

where C1, C2 some constants. For

α = 1
3

√
2(11
√

6 + 26)√
6 + 6

,

we get

V (x) =



e
√

2x−αx, x ≤ 0,

(
√

2− α)x+
√

1 + 2x2, 0 < x ≤ ϑ̄,
√

5√
27+
√

32
e(1−

√
10x)/2, x > ϑ̄

and ϑ̄ =
√

1/10.
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Example 4.4. In this example, the insurer has the additional possibility to

inject capital in order to avoid penalty payments. Then, the controlled surplus

process becomes

dX(θ,Q)
t = (µ+ a1θt) dt+ σ dWt + v1θt dB1

t + dQt ,

where Qt denotes the accumulated capital injections until time t. The value of

a strategy is given by

W (θ,Q)(x) = Ex
[∫ ∞

0
e−δt dQt + α

∫ ∞
0

e−δtX(θ,Q)
t

−
dt
]

and

W (x) = inf
(θ,Q)

V (θ,Q)(x)

denotes the optimal value function. We allow all increasing and adapted càdlàg

processes Qt with Q0− = 0. Furthermore, we only consider the case α > δ

and suppose that there exists a level q∗ > 0 such that it is optimal to inject

capital as soon as the surplus drops to −q∗. That is, under the optimal strategy

(θ∗, Q∗) it holds that

X
(θ∗,Q∗)
t ≥ −q∗ .

This is fulfilled if

Q∗t = −min
(

inf
0≤s≤t

X(θ∗,Q∗)
s + q∗, 0

)
.

Moreover, q∗ is characterised by W ′(−q∗) = −1 and W ′′(−1∗) = 0. The HJB

equation becomes

min
{

1 +W ′(x), inf
ϑ∈I(x)

[
1
2(σ2 + v2

1ϑ
2)W ′′(x) + (µ+ a1ϑ)W ′(x)

− δW (x)− αx1x<0
]}

= 0 . (4.22)
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We define σ, µ, δ, a1, v1, α as in example 4.3. Let

f(x) =



f1(−q∗)− (x+ q∗), x ≤ −q∗,

f1(x), q∗ < x ≤ 0,

f2(x), 0 < x ≤ ϑ̄,

f3(x), x > ϑ̄,

where

f1(x) = C1 e
√

2x +C2 e−
√

2x ,

f2 = C3x+ C4
√

1 + 2x2 ,

f3(x) = C5 e−
√

10x/2

and C1, C2, C3, C4, C5, q
∗ are determined such that f ′1(−q∗) = −1, f ′′1 (−q∗) =

0, f1(0) = f2(0), f ′1(0) = f ′2(0), f2(ϑ̄) = f3(ϑ̄) and f ′2(ϑ̄) = f ′3(ϑ̄). Then,

f(x) is a twice continuously differentiable, decreasing and convex solution to

(4.22) that vanishes at infinity. Now, one can easily show that W (x) = f(x) =

W (θ∗,Q∗)(x), where X(θ∗,Q∗)
t is the unique solution to

dX(θ∗,Q∗)
t = ϑ∗(Xθ∗

t ) dt+ dWt +
√

2ϑ∗(Xθ∗
t ) dB1

t + dQ∗t

and that θ∗t = ϑ∗(X(θ∗,Q∗)
t ). It remains unclear whether or not this result also

holds in the general case.

Figure 4.2 illustrates the value functions of Example 4.3 and Example 4.4.

4.5 Quadratic Penalty Payments

In this section we study a quadratic function φ(x) = (α2x
2−α1x)1x<0, where

α1, α2 > 0. The condition (4.4) obviously holds. As in the section above it

is very hard to solve the general HJB equation explicitly and we assume that

the insurer does not buy reinsurance.
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Figure 4.2: Value function with and without capital injections from Exam-

ple 4.3 and Example 4.4.

If n = 1 and

I(x) = {ϑ ∈ R : 0 ≤ ϑ ≤ max(x, 0)} ,

the HJB equation becomes

1
2σ

2V ′′(x) + µV ′(x)− δV (x) + α2x
2 − α1x = 0

when x < 0. This equation is solved by

f1(x) = C1 eξ1x +C2 eξ2x +(α2x
2 − α1x)δ2 + [(σ2 + 2xµ)α2 − µα1]δ + 2µ2α2

δ3 ,

where ξ2 < 0 < ξ1 are the roots of the equation σ2ξ2 +2µξ−2δ = 0. For x ≥ 0

we obtain the same equations as in section 5 and therefore we can determine

the optimal strategy analogously. Thus, we only consider an example at the

end of this section.
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In the following we let n > 1 and set I(x) = Rn. If x ≥ 0, the HJB

equation reads

−γ V
′(x)2

V ′′(x) + 1
2σ

2V ′′(x) + µV ′(x)− δV (x) = 0

This equation is solved by h(x) = C eξ1x, where ξ1 is the negative root of the

equation σ2ξ2 + 2µξ − γ − 2δ = 0. If x < 0, we have

− γ V
′(x)2

V ′′(x) + 1
2σ

2V ′′(x) + µV ′(x)− δV (x) + α2x
2 − α1x = 0 . (4.23)

We make the ansatz

g(x) = C + Cξ1x+ 1
2Cξ

2
1x

2 .

Obviously,

f(x) =


g(x), x < 0,

h(x), x ≥ 0

is twice continuously differentiable and vanishes at infinity. Moreover, f is

convex and decreasing if C > 0. Choosing

C = 2α2
ξ2

1(δ + 2γ)

and plugging g(x) into equation (4.23), we obtain

(δ + γ)ξ1α1 + (4γ − 2µξ1 + 2δ)α2 = 0 . (4.24)

Thus, if we choose α1 and α2 such that (4.24) holds, f is a solution to the

HJB equation fulfilling the regularity conditions of the verification theorem .

For general α1 and α2 it is very difficult to find a closed-form solution. Nev-

ertheless, even under the restriction in (4.24) there are still some meaningful

parameters. For example, if

α1 = 2(2γ − µξ1 + δ)
4γ + 2δ − ξ1(2µ+ δ + 2γ) α2 = −ξ1(2γ + δ)

4γ + 2δ − ξ1(2µ+ δ + 2γ) , (4.25)
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we have 0 < α1, α2 < 1 and α1 + α2 = 1.

Let

ψ(x) =


−1/ξ1 − x, x < 0,

−1/ξ1, x ≥ 0

and

ϑ∗(x) = ψ(x)Σ−1a .

Then, the optimal strategy is given by

θ∗t = ϑ∗(Xθ∗
t
t ) ,

where Xθ∗
t
t is the unique solution to

dXθ∗
t
t = µ dt+ σ dWt + ψ(Xθ∗

t
t )aTΣ−1a dt+ ψ(Xθ∗

t
t )(Σ−1a)v dBt

with B = (B1, B2, ..., Bn).

Example 4.5. In this example we choose α1, α2 as in (4.25). Furthermore,

we set n = 3, µ = 0, σ2 = δ = 1, a = (1, 0.3, 0.2)T and

v =


√

2 0 0

0.5 0.2 0.3

0.3 0.4 0

 .

Then, the optimal value function is given by

V n=3(x) = C


1 + ξ1x+ 1

2ξ
2
1x

2, x < 0,

eξ1x, x ≥ 0,

where ξ1 = −
√

2(1 + γ), γ = 0.26299 and C = 0.22975. Moreover,

ϑ∗(x) = (0.62920− x)(0.64667,−0.52764, 0.18799)T .
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Example 4.6. As mentioned at the beginning of this section, we now consider

an example where n = 1 and investments are constrained by

I(x) = {ϑ ∈ R : 0 ≤ ϑ ≤ max(x, 0)} .

Moreover, we set µ, σ, δ, α1, α2 as in the previous example, a1 = 1 and

v1 =
√

2. Then, the optimal value function becomes

V n=1(x) =


C1 e

√
2 +α2 − α1x+ α2x

2, x < 0,

C2x+ C3
√

1 + 2x2, 0 ≤ x < ϑ̄,

C4 e−
√

10/2x, x ≥ ϑ̄,

where ϑ̄ = 1/
√

10 and C1, C2, C3, C4 are determined such that V n=1 is contin-

uously differentiable. As in section 5 it follows from the differential equations

that V n=1 is twice continuously differentiable. Moreover, θ∗t = ϑ∗n=1(Xθ∗
t ) is

an optimal strategy where ϑ∗n=1(x) = (ϑ̄∧x)∨0 and Xθ∗
t is defined as in (4.20).

Figure 4.3 and 4.4 illustrate the value and control functions from Exam-

ple 4.5 and Example 4.6.
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Figure 4.3: Value functions from Example 4.5 and Example 4.6.

4.6 Power Functions

Finally, we consider power functions φ(x) = α(−x)k1x<0, where α > 0 and

k > 2. Here, (4.4) holds for all α, k. In this section, we assume that all claims

are reinsured by proportional reinsurance with ρ = η and that there are no

investment constraints. In practice it is not usual that all claims are reinsured,

but note that it is optimal to apply the trivial strategy (Rt, θt) = (0,0) and

V (x) = 0 when x ≥ 0. The HJB equation becomes

− γ V
′(x)2

V ′′(x) − δV (x) + α(−x)k1x<0 = 0 . (4.26)

Plugging h(x) = C(−x)k1x<0 into the HJB equation, we obtain

−γ kC

k − 1 − δC + α = 0 .

Thus, h solves (4.26) if

C = α(k − 1)
γ + δ(k − 1) .
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Figure 4.4: Control functions from Example 4.5 and Example 4.6.

Now,

f(x) =


h(x), x < 0,

0, x ≥ 0

is a solution to the HJB equation that fulfils all regularity conditions. There-

fore, f(x) = V (x) and

ϑ∗(x) = −x1x<0
k − 1 Σ−1a

denotes the optimal control function.
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Appendix A

Stochastic Analysis

We used several results from probability theory and stochastic calculus in this

thesis. This appendix gives a short overview to this topic. For a more detailed

insight see for example [22, 40, 41, 53, 63]. Note, that we do not prove the

lemmas and theorems in this section, because we only mention well-known

results.

A.1 Stochastic Processes and Martingales

We assumed that the surplus of an insurance company is given by a stochastic

process. Before we give the mathematical definition of a stochastic process we

have to introduce the concept of almost surely (a.s.) and null sets.

Definition A.1. We say that an event A occurs almost surely (a.s.) or that

an event holds for almost all ω if it occurs with probabilty 1, that is P(A) = 1.

We call an event P−null set if P(A) = 0.

Definition A.2. A stochastic process is a family X = {Xt}t∈I of E-valued

random variables defined on a probability space (Ω,F,P), where (E, E) is a

measurable space and I is given either by N or R. If I = N, we call X a
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discrete-time stochastic process and if I = R+ we call X a continuous-time

stochastic process, respectively. For an ω ∈ Ω, the function t→ Xt(ω) is called

path or realisation of the process. If t→ Xt(ω) is continuous (left continuous,

right continuous) for almost all ω, the process X is called a.s. continuous (left

continuous, right continuous). If X is right-continuous and its left limits exist

at all points, we say that X is a càdlàg process.

The most popular stochastic process is the (standard) Wiener process

which is also called standard Brownian motion. We used this process to get

an approximation to the Cramér–Lundberg model.

Definition A.3. We call a process W = {Wt}t≥0 (standard) Wiener process

or Brownian motion if

1. It holds a.s. that W0 = 0.

2. For 0 < t0 < t1 < t2 < · · · < tn the increments Wt1 − Wt0 ,Wt2 −

Wt1 , . . . ,Wtn −Wtn−1 are independent.

3. If 0 ≤ s < t it holds that Wt −Ws ∼ N (0, t− s), where N (0, t− s) is a

normal distribution with mean 0 and variance t− s.

4. X is a.s. continuous.

The Wiener process has a number of nice properties given in the following

lemma.

Lemma A.1. Let W be a Wiener process and s, t ∈ R+. Then

i) We have EWsWt = s ∧ t.

ii) The processes {Ws+t −Ws}t≥0, {−Wt}t≥0 and {Bt}t≥0, with Bt = tW1/t

if t > 0 and B0 = 0, are Wiener processes.
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iii) Let s < t and (∆n)n∈N be a sequence of partitions s = tn0 < tn1 < · · · <

tnkn = t of the interval [s, t]. Define

Tn[s,t] =
kn−1∑
i=0

[Wtni+1
−Wtni

]2 .

If maxi=0,...,kn−1(tni+1 − tni ) converges to zero, then

lim
n→∞

P(|Tn[s,t] − (t− s)| ≥ ε) = 0

for all ε > 0. We say that Tn[s,t] converges to t− s in probability and that

the Wiener process is of bounded quadratic variation. Consequently, the

Wiener process has unbounded variation, i.e. the value

sup
∆n

kn−1∑
i=0

[Wtni+1
−Wtni

]

does not exist almost surely.

iv) It holds a.s. that

lim sup
t→∞

Wt√
2t log log t

= 1

and

lim inf
t→−∞

Wt√
2t log log t

= −1 .

Another popular process which we used to define the Cramér–Lundberg

model is the Poisson process.

Definition A.4. A càdlàg process P = {Pt}t≥0 is called Poisson process with

intensity λ if

i) P0 = 0 almost surely.

ii) Pt − Ps ∼ Pλ(t−s) for s < t, where Pλ(t−s) is a Poisson distribution with

parameter λ(t− s).
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iii) For 0 < t0 < t1 < t2 < · · · < tn the increments Pt1 − Pt0 , Pt2 −

Pt1 , . . . , Ptn − Ptn−1 are independent.

Obviously, a Poisson process is a jump process and does not have contin-

uous paths, but there are also some nice properties given in the next lemma.

Lemma A.2. Let P be a Poisson process and 0 < s < t. Then the following

holds.

i) The process {Ps+t − Ps}t≥0 is a Poisson process.

ii) Let (∆n)n∈N be a sequence of partitions 0 = tn0 < tn1 < . . . < tnk = t of the

interval [0, t]. If maxi=0,...,k−1(tni+1 − tni ) converges to zero, then

k−1∑
i=0

[Ptni+1
− Ptni ]2 → Pt

in probability. One says that a Poisson process has quadratic variation

equal to itself.

An extension to the Poisson process is the compound Poisson process,

which is used to model the claims in the Cramér–Lundberg model.

Definition A.5. Let N be a Poisson process and {Yn}n=1,2,... a sequence of

iid random variables independent of N . The process {Zt}t≥0 with

Zt =
Nt∑
n=1

Yn

is called compound Poisson process. As a special case the Poisson process is

obtained if Yn = 1 for all n.

Considering a stochastic process {Xt}t∈I , we are often interested in the

limiting value as t tends to ∞. The following theorems give sufficient condi-

tions for the interchange of the limit and the expectation.
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Theorem A.1 (Bounded convergence theorem). Let {Xt}t∈I be a stochastic

process and it holds a.s. that Xt → X, t→∞. Moreover, |Xt| ≤ Y for all t,

where E(Y ) <∞. Then, limt→∞ E(Xt) = E(X).

Theorem A.2 (Monotone convergence theorem). Let {Xt}t∈I be a stochastic

process and it holds a.s. that Xt → X, t → ∞. Moreover, Xs ≤ Xt a.s. for

all s < t. Then, limt→∞ E(Xt) = E(X).

Now, we introduce the concept of filtrations. A filtration contains all his-

torical information which is available about a stochastic process. Concretely,

a filtration is a family of σ-algebras {Ft}t∈I with Fs ⊂ Ft for s ≤ t, where

Ft represents all information of a process until time t. We call a filtration

complete if F0 contains all P-null sets. For I = R we call a filtration right-

continuous if

Ft = Ft+ :=
⋂
s>t

Fs .

A process X is adapted to the filtration {Ft}t∈I if Xt is Ft-measurable for all

t. The filtration FXt generated by the process X is called natural filtration.

Further important stochastic processes are martingales, which are used to

model a fair game. In this thesis, we consider martingales in continuous time.

Definition A.6. Let X = {Xt}t≥0 be a stochastic process in continuous time

and {Ft}t≥0 a filtration. Then, we call {(Xt,Ft)}t≥0 a martingale in contin-

uous time if for all t ≥ 0 it holds

i) Xt is Ft-measurable,

ii) E|Xt| <∞,

iii) E[Xt|Fs] = Xs for s < t.
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Remark A.1. i) Having a stochastic process {Xt}t≥0, one typically consid-

ers integrable random variables and the natural filtration. So the charac-

teristic property of a martingale is given by iii) in the definition above.

Therefore, we generally call {Xt}t≥0 a martingale if iii) is fulfilled.

ii) The process {Xt}t≥0 is called supermartingale if for s < t it holds

E[Xt|Fs] ≤ Xs

and submartingale if

E[Xt|Fs] ≥ Xs ,

respectively.

Example A.1. i) Let us consider a Wiener process W . Then, {Wt}t≥0,

{W 2
t − t}t≥0 and {W 4

t − 6tW 2
t + 3t2}t≥0 are martingales.

ii) For a Poisson process P = {Pt}t≥0 with intensity λ the process {Pt −

λt}t≥0 is also a martingale.

A very popular result in martingale theory is Doob’s martingale conver-

gence theorem stated in the following.

Theorem A.3 (Martingale convergence theorems). Let {Xt}t∈I be a sub-

martingale with supt E|Xt| < ∞ and I = R+ or I = N, then there exists a

random variable X∞ such that Xt converges a.s. to X∞.

In Chapter 1 we mentioned, that in classical risk models, ruin occurs the

first time when the surplus process becomes negative. To describe the time of

ruin we have to define a so-called stopping time.

Definition A.7. Let {Ft}t∈I be a filtration. A mapping τ : Ω → I is called

Ft-stopping time if {τ ≤ t} ∈ Ft for all t ∈ I. The set

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ∈ I}
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is called pre-τ -σ-algebra.

Example A.2. Let Xt = x + µt + σWt describe the surplus of an insurance

company and {Ft}t≥0 be the filtration generated from the process Xt. Then,

the first time when the surplus becomes negative τ = inf{t > 0 : Xt < 0} is a

Ft-stopping time.

Considering stopping times, the stopping theorem, mentioned below, is a

very helpful result.

Theorem A.4 (Stopping theorem). Let {(Xt,Ft)}t∈I be a submartingale,

I = R+ or I = N and τ a Ft-stopping time. Then, {(Xt∧τ ,Ft∧τ )}t∈I is also a

submartingale.

A.2 Stochastic Integration

In this thesis we considered integrals of the form
∫ t

0 f(Xt) dWs, where W is

a Wiener process, f a twice continuously differentiable function and Xt some

continuous stochastic process. Now, we give a short introduction to integrals,

where the integrator is a continuous martingale M .

In the first step we define the stochastic integral for so-called simple pro-

cesses given by

Hs(ω) =
n∑
i=1

hi−1(ω)1(ti−1,ti](s) ,

where n ∈ N, 0 = t0 < t1 < · · · < tn and hi−1 is bounded and Fti−1-measurable

for i = 1, 2, ..., n. Let H denote the set of all simple processes. For a simple

process we define ∫ t

0
Hs dMs =

n∑
i=1

hi−1(Mti∧t −Mti−1∧t) ,

for t ≥ 0.
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In the next step we consider progressively measurable processes, but first

we have to introduce the product σ-algebra.

Definition A.8. Let Ci be a σ-algebra on Ωi, i = 1, 2. Then, we define the

product σ-algebra C on

Ω = Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}

by

C = C1 ⊗ C2 = σ({π−1
i (Ai) : Ai ∈ Ci, i = 1, 2})

with πi : Ω→ Ωi, πi(ω) = ωi, i = 1, 2.

Definition A.9. Considering a filtration {Ft}t≥0, we call a process {Xt}t≥0

progressively measurable if for all t ≥ 0 the mapping

Ω× [0, t]→ R, (ω, s)→ Xs(ω)

is Ft ⊗ (B ∩ [0, t]) measurable, where B ∩ [0, t] is the Borel σ-algebra on the

interval [0, t].

Now, we have to introduce the quadratic variation of a continuous martin-

gale, which is specified by the next theorem.

Theorem A.5. Let {Mt}t≥0 be a continuous martingale. Then, there exists

an a.s. unique, continuous, increasing and adapted process {[M ]t}t≥0 with

[M ]0 = 0 such that {M2
t − [M ]t}t≥0 is a continuous martingale.

Remark A.2. i) The process [M ] is called quadratic variation of the con-

tinuous martingale M .

ii) For a Wiener process W , we get by Lemma A.1, iv) and Example A.1, i)

that

[W ]t = t = lim
n→∞

kn−1∑
i=0

[Wtni+1
−Wtni

]2 ,
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where (∆n)n∈N is a sequence of partitions 0 = tn0 < tn1 < · · · < tnkn = t of

the interval [0, t] with maxi=0,...,kn−1(tni+1 − tni )→ 0, n→∞.

iii) Considering stochastic martingales M,N one can also show that there

exists an a.s. unique and adapted process {[M,N ]t}t≥0 with [M,N ]0 = 0

such that {MtNt − [M,N ]t}t≥0 is a continuous martingale. The process

[M,N ] is called covariation of M and N and is given by

[M,N ]t = 1
4([M +N ]− [M −N ]) .

Note that [M,M ] = [M ].

Since [M ] is an increasing process, we can define the measure µ[M ]((0, t])(ω) =

[M ]t(ω). For a progressively measurable process H the Lebesgue-Stieltjes in-

tegral is given by∫ t

0
Hs(ω) d[M ]s(ω) =

∫
[0,t)

Hs(ω) dµ[M ](ω) ,

where the expression of the right-hand side is the Lebesgue integral of H

with respect to the measure µ[M ]. We do not introduce the Lebesgue integral

because we only consider Riemann integrable functions H and in case of a

Wiener process we get the Riemann integral∫ t

0
Hs d[B]s =

∫ t

0
Hs ds .

Now, let P2(M) be the set of all progressively measurable processes H with

‖H‖M =
(
E
[∫ t

0
H2
s d[M ]s

])1/2
<∞ .

Moreover, letM2 be the set of all continuous martingales with

‖M‖ =
(

sup
0≤s≤t

E[M2
t ]
)1/2

<∞ .

One can show that M2 is complete, that is every Cauchy sequence of points

inM2 has a limit inM2. Further, for H ∈ P2(M) there exists a sequence of
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simple processes Hn ∈ H such that ‖Hn −H‖M converges to zero as n tends

to infinity. The Itô isometry says that∥∥∥∫ t

0
Hn
s dMs

∥∥∥ = ‖Hn‖M .

Now, we define ∫ t

0
Hs dMs

as the limit of the Cauchy sequence

Int =
∫ t

0
Hn
s dMs .

A.3 Itô’s Formula and Stochastic Differential Equa-

tions

In this section we state the main result of stochastic calculus, Itô’s formula,

and we consider stochastic differential equations. Generally, we apply Itô’s

formula to continuous martingales in this thesis, but it is also possible to

apply Itô’s formula to semimartingales. The definition of a semimartingale is

given in the following.

Definition A.10. i) A stochastic process M adapted to a filtration {Ft}t≥0

is called a local martingale if there exists a sequence of stopping times

τn ↑ ∞ such that {Mτn∧t−M0}t≥0 is a martingale adapted to the filtration

{Fτn∧t}t≥0.

ii) A semimartingale is a stochastic process X with Xt = Mt + Yt, t ≥ 0,

where M is a local martingale and Y a process of bounded variation with

Y0 = 0.

Note that the stochastic integral introduced in the previous section can be

extended to semimartingales. In the next theorem we give Itô’s formula.
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Theorem A.6 (Itô’s formula). Let f : Rn → R be a twice continuously dif-

ferentiable function and X = (X1, X2, ..., Xn) be a semimartingale. Then, it

holds a.s.

f(Xt) = f(X0) +
n∑
j=1

∫ t

0

∂f

∂xj
(Xs−) dXj

s

+ 1
2

n∑
j,k=1

∫ t

0

∂2f

∂xj∂xk
(Xs−) d[Xj , Xk]s

+
∑

0<s≤t

[
f(Xs)− f(Xs−)−

n∑
j=1

∂f

∂xj
(Xs−)(Xj

s −X
j
s−)
]
.

Now, we introduce stochastic differential equations. We consider differen-

tial equations of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt , (A.1)

t ∈ [0, T ], where {Wt}t∈[0,T ] is a standardWiener process and µ, σ : [0, T ]×R→

R are measurable functions. Here, equation (A.1) is interpreted as the integral

equation

Xt = X0 +
∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs .

Definition A.11. A stochastic process X with initial value X0 is called a

solution to (A.1) if for all t ∈ [0, T ] it holds

Xt = X0 +
∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs .

A very popular differential equation is the following.

dXt = µXt dt+ σXt dWt , (A.2)

where µ, σ > 0. Let us suppose that we have a solution of the form Xt =
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f(t,Wt). Then, Itô’s formula implies

f(t,Wt) = f(0,W0) +
∫ t

0

∂f

∂s
(s,Ws) ds+

∫ t

0

∂f

∂w
(s,Ws) dWs

+ 1
2

∫ t

0

∂2f

∂w2 (s,Ws) d[W,W ]s

= f(0, 0) +
∫ t

0

(∂f
∂s

(s,Ws) + 1
2
∂2f

∂w2 (s,Ws)
)

ds

+
∫ t

0

∂f

∂w
(s,Ws) dWs

or in differential notation

dXt =
(∂f
∂t

(t,Wt) + 1
2
∂2f

∂w2 (t,Wt)
)

dt+ ∂f

∂w
(t,Wt) dWt .

Solving the differential equations

µf(t, w) = ∂f

∂t
(t, w) + 1

2
∂2f

∂w2 (t, w)

and

σf(t, w) = ∂f

∂w
(t, w)

we get a solution to (A.2). One easily can show that

Xt = X0 exp
[
(µ− σ2/2)t+ σWt

]
.

This process is called geometric Brownian motion and is commonly used to

model future prices in financial mathematics, for example to model the evolu-

tion of stock prices, FX rates and swap rates (here µ = 0).
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Appendix B

Markov Theory and

Infinitesimal Generators

In this thesis we considered HJB equations of the form

sup
u∈U

[
g(x, u) +AuV (x)− δV (x)]

]
= 0 ,

where Au denotes the infinitesimal generator of a stochastic process. Here, we

give a short introduction to Markov theory and infinitesimal generators. For

a more in depth study see [19, 29].

Firstly, we define a Markov process.

Definition B.1. Let (E, E) be some measurable space. An E-valued stochastic

Process X is called F-Markov process if X is adapted to F and

P[Xt+s ∈ A|Ft] = P[Xt+s ∈ A|Xt]

for each A ∈ E and s < t. One says that the future of the process only depends

on the present state of the process. The function

Pt(s, x,A) = P[Xt+s ∈ A|Xt = x]
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is called transition function. The process X is called homogenous Markov

process if the transition function does not depend on t. If

P(XT+s ∈ A|FT ) = P (s,XT , A)

for all stopping times T , we call X a strong Markov Process.

In the following B(E) denotes the set of all measurable bounded real func-

tions on E endowed with the supremum norm ‖f‖ = supx∈E |f(x)|. Now, we

define the infinitesimal generator of a Markov process

Definition B.2. Let X be a Markov process. Then, define the operator

Af(x) = lim
t↓0

1
t
E[f(Xt)− f(x)|X0 = x]

if the right-hand side converges uniformly on B(E). We call A the infinitesimal

generator of the process X. The set D(A) of all functions f for which Af(x)

exists is called domain of the infinitesimal generator.

Obviously, the Cramér–Lundberg process is a Markov process, because

it has stationary and independent increments. The next example gives the

generator of the Cramér–Lundberg process.

Example B.1. Let Lt = x + ct −
Nt∑
i=1

Yi, t ≥ 0 be a Cramér–Lundberg pro-

cess and F be the distribution function of the claims. Then, the infinitesimal

generator of X is given by

Af(x) = cf ′(x) + λ

∫ ∞
0

f(x− y) dF (y)− λf(x) .

A very popular theorem linking infinitesimal generators to martingales is

the following

Theorem B.1 (Dynkin’s theorem). Let X be a Markov process and f ∈ D(A).

Then, the process Y with

Yt = f(Xt)− f(X0)−
∫ t

0
Af(Xs) ds ,
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t ≥ 0, is a martingale.

The solution to the HJB equation is often unbounded. In the literature,

the definition above is extended to a full generator (cf. [29]).
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Poisson process, 2, 103

preference parameter, 14, 44, 76

premium rate, 2, 74

probability of ruin, 5

probability space, 1

product σ-algebra, 108

progressively measurable process, 108

proportional reinsurance, 9, 75

proportional reinsurance in a layer, 10

quadratic variation, 103, 108

reinsurance, 8

reinsurance strategy, 10, 75

right-continuous, 105

risk measure, 5

ruin, 5, 10, 11

safety loading, 2

self-insurance function, 9

semimartingale, 110

simple process, 107

standard Brownian motion, 102

standard deviation principle, 2

stochastic process, 101

stock, 8

stock return, 8

stock volatility, 8

stopping theorem, 107

stopping time, 106

strong Markov Process, 115

surplus, surplus process, 1

time of ruin, 5

transition function, 115

treaty reinsurance, 9

value function, 14, 15, 17, 23, 44, 76

variance principle, 2

verification theorem, 20, 27, 80

Wiener process, 102
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