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Kurzzusammenfassung

Die Dynamik, Form, Verformung und Ausrichtung roter Blutzellen in der Mikrozirkulation
beeinflussen Rheologie, Fließwiderstand und Transporteigenschaften des Blutes. Dies führt
zu wichtigen Zusammenhängen der zellulären und Kontinuums-Skalen. Des Weiteren ist
die Dynamik roter Blutzellen, die verschiedenen Strömungen und Gefäßgeometrien unter-
liegen, relevant für sowohl Grundlagenforschung als auch biomedizinische Anwendungen
(z.B. Medikamentenzuführung).
In dieser Arbeit wird das Verhalten roter Blutzellen für verschiedene Strömungen mittels
Computersimulationen untersucht. Wir benutzen eine Kombination zweier mesoskopischer
teilchenbasierter Simulationstechniken, Dissipative Particle Dynamics und Smoothed Dis-
sipative Particle Dynamics. Wir konzentrieren uns auf die mikrokapillarische Skala von
einigen µm. Auf dieser Skala kann Blut nicht auf der Kontinuumsskala betrachtet, sondern
muss auf der zellulären Skala untersucht werden. Die Verknüpfung zwischen zellulärer Be-
wegung und Blut-Rheologie wird untersucht.
Rote Blutzellen werden als viskoelastische Objekte modelliert, die mit einer viskosen flüs-
sigen Umgebung wechselwirken. Die Membraneigenschaften, wie Biegesteifigkeit oder Scher-
festigkeit, sind so gewählt, dass sie experimentellen Werten entsprechen. Des Weiteren wer-
den thermische Fluktuationen mittels Zufallskräften betrachtet.
Analysen, die Lichtstreuungsmessungen entsprechen, werden durchgeführt, um mit Experi-
menten zu vergleichen und nahezulegen, für welche Situationen diese Methode geeignet ist.
Statische Lichtstreuung von roten Blutzellen charakterisiert deren Form und erlaubt Vergle-
iche mit Objekten wie Kugeln oder Zylindern, deren Lichtstreuungssignale analytisch lösbar
sind, im Gegensatz zu denen roter Blutzellen. Dynamische Lichtstreuung roter Blutzellen
wird hinsichtlich seiner Eignung, Bewegungen, Verformungen und Membranfluktuationen
nachzuweisen und zu analysieren, untersucht. Analysen zur dynamischen Lichtstreuung
werden sowohl für diffundierende als auch fließende Zellen durchgeführt. Streusignale
hängen von den Zelleigenschaften ab und erlauben daher, verschiedene Zellen voneinander
abzugrenzen. Die Streuung diffundierender Zellen lässt mittels des effektiven Diffusionsko-
effizienten Rückschlüsse auf ihre Biegesteifigkeit zu. Die Streuung fließender Zellen lässt
mittels der Streuamplitudenkorrelation Rückschlüsse auf die Scherrate zu.
Im Fluss weist eine rote Blutzelle verschiedene Formen und dynamische Zustände auf, ab-
hängig von Bedingungen wie eingeschränkter Geometrie, physiologischen/pathologischen
Zuständen und Zellalter. In dieser Arbeit werden zwei wesentliche Strömungen untersucht:
einfacher Scherfluss und Fluss durch eine zylindrische Röhre.
Einfacher Scherfluss als eine grundlegende Strömung ist Teil jeder komplexeren Strömung.
Das Geschwindigkeitsprofil ist linear und die Scherspannung ist homogen. In einfachem
Scherfluss finden wir eine Abfolge verschiedener Zellformen, wenn die Scherrate erhöht
wird. Mit steigender Scherrate finden wir rollende Zellen in Schalenform, Trilobe- und
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Quadrulobe-Formen. Dies stimmt mit aktuellen Experimenten überein. Des Weiteren wird
der Einfluss der anfänglichen Ausrichtung auf die Dynamik untersucht. Um Verdrängungs-
und kollektive Effekte zu untersuchen, werden Systeme mit höherem Hämatokrit aufge-
setzt.
Die Strömung durch eine Röhre dient als idealisiertes Modell für die Strömung durch an-
nähernd zylinderförmige Mikrogefäße. Ohne Zelle liegt ein parabolisches Geschwindigkeit-
sprofil vor. Eine einzelne rote Blutzelle wird in der Röhre platziert und einem Poiseuille-
Profil ausgesetzt. Bei der Rohr-Strömung finden wir verschiedene Zellformen und -dynamiken,
abhängig von der Einschränkung durch Geometrie (hier der Rohrdurchmesser), Scherrate
und Zelleigenschaften. Für enge Röhren und hohe Scherraten finden wir Fallschirm-förmige
Zellen. Obwohl nicht perfekt symmetrisch, sind sie dem Flussprofil angepasst und be-
halten eine stationäre Form und Ausrichtung. Für weite Röhren und niedrige Scherraten
finden wir taumelnde Slipper-Formen, die sich drehen und ihre Form moderat ändern.
Für weite Röhren und hohe Scherraten finden wir Slippers mit sogenannter Panzerketten-
Membranrotation, die ihren Anstellwinkel leicht oszillieren und periodisch ihre Form stark
ändern. Für die niedrigsten Scherraten finden wir Zellen, die eine Schlängelbewegung
ausführen. Aufgrund der Zelleigenschaften und sich daraus ergebender Verformungen un-
terscheiden sich alle Formen von bisherigen Beschreibungen in der Literatur, wie z.B. sta-
tionäre Panzerketten-Membranrotation oder symmetrische Fallschirmformen. Wir führen
Phasendiagramme ein, um die Parameterbereiche verschiedener Formen und Dynamiken
zu identifizieren. Verändert man die Zelleigenschaften, ändern sich auch die Grenzen dieser
Bereiche in den Phasendiagrammen.
In beiden Strömungstypen sind sowohl der Viskositätskontrast als auch die Wahl der span-
nungsfreien Form wichtig. Bei in vitro Experimenten war die Viskosität des Lösungsmittels
bisher oft höher als die des Cytosols, was zu anderen Bewegungsformen führt, wie z.B. sta-
tionäre Panzerketten-Membranrotation. Die spannungsfreie Form einer roten Blutzelle, die
den Zustand bei verschwindender Scherbelastung darstellt, ist noch umstritten, und Com-
putersimulationen ermöglichen direkte Vergleiche möglicher Kandidaten bei ansonsten gle-
ichen Strömungsbedingungen.



Abstract

The dynamics, shape, deformation, and orientation of red blood cells in microcirculation
affect the rheology, flow resistance and transport properties of whole blood. This leads to
important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs
subject to different flow conditions and vessel geometries is relevant for both fundamental
research and biomedical applications (e.g drug delivery).
In this thesis, the behaviour of RBCs is investigated for different flow conditions via com-
puter simulations. We use a combination of two mesoscopic particle-based simulation tech-
niques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus
on the microcapillary scale of several µm. At this scale, blood cannot be considered at the
continuum but has to be studied at the cellular level. The connection between cellular mo-
tion and overall blood rheology will be investigated.
Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a vis-
cous fluid environment. The properties of the membrane, such as resistance against bending
or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations
are considered via random forces.
Analyses corresponding to light scattering measurements are performed in order to com-
pare to experiments and suggest for which situations this method is suitable. Static light
scattering by red blood cells characterises their shape and allows comparison to objects such
as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to
those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its
suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic
light scattering analysis is performed for both diffusing and flowing cells. We find that scat-
tering signals depend on various cell properties, thus allowing to distinguish different cells.
The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the
effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on
the shear rate via the scattering amplitude correlation.
In flow, a RBC shows different shapes and dynamic states, depending on conditions such as
confinement, physiological/pathological state and cell age. Here, two essential flow condi-
tions are studied: simple shear flow and tube flow.
Simple shear flow as a basic flow condition is part of any more complex flow. The velocity
profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of
different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling
cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent exper-
iments. Furthermore, the impact of the initial orientation on the dynamics is studied. To
study crowding and collective effects, systems with higher haematocrit are set up.
Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a
parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to
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a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on
confinement, shear rate and cell properties. For strong confinements and high shear rates,
we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the
flow profile and maintain a stationary shape and orientation. For weak confinements and
low shear rates, we find tumbling slippers that rotate and moderately change their shape.
For weak confinements and high shear rates, we find tank-treading slippers that oscillate in
a limited range of inclination angles and strongly change their shape. For the lowest shear
rates, we find cells performing a snaking motion. Due to cell properties and resultant defor-
mations, all shapes differ from hitherto descriptions, such as steady tank-treading or sym-
metric parachutes. We introduce phase diagrams to identify flow regimes for the different
shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams
change.
In both flow types, both the viscosity contrast and the choice of stress-free shape are impor-
tant. For in vitro experiments, the solvent viscosity has often been higher than the cytosol
viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-
free state of a RBC, which is the state at zero shear stress, is still controversial, and computer
simulations enable direct comparisons of possible candidates in equivalent flow conditions.
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Chapter 1

Introduction

1.1 Blood as a Cell Suspension

Blood is a suspension of red and white blood cells, platelets and plasma. The latter makes up
about 55% of blood volume and contains mostly water and dissolved proteins, electrolytes
and smaller constituents such as neurotransmitters and hormones. Blood transports nutri-
ents, metabolic waste products and oxygen to muscles and organs in living organisms [106].
The shape of red blood cells (RBCs) is intimately coupled to the ambient plasma, leading to
a variety of RBC morphologies in the blood circulation [82]. Thus, blood is a complex fluid
and its flow cannot be described by traditional laws for Newtonian fluids [82].
In the following, blood components are described as in reference [1].

1.1.1 Red Blood Cells

In one microlitre of blood, there are 4.2 - 6.1 million red blood cells [126]. Red blood cells
(RBCs) supply tissues and organs with oxygen. RBCs can react to changes in their environ-
ment. For example, under shear stress in constricted vessels, they release ATP (adenosine
triphosphate), relaxing and dilating the vessel walls, thus promoting normal blood flow
[180].
With a volume fraction (haematocrit) of 45%, RBCs make up the major part of whole blood.
With a cellular volume of about 92µm3, in one litre of blood, there are around 5 · 1012 RBCs.
Thereby, their dynamics, shape, deformation, and orientation in microcirculation affect the
rheology, flow resistance and transport properties of whole blood [32, 46], leading to non-
trivial correlations of cellular and continuum scale. For example, the viscosity of whole
blood is not simply the weighted sum of the viscosities of its plasma and the cell cytosol.
Erythropoiesis, the formation of RBCs is described according to reference [139].
Mature blood cells have a relatively short lifespan on the order of 10 hours (eosinophils) to
120 days (RBCs). Thus, they have to be renewed continuously (haematopoiesis). To replace
senescent or dead RBCs, around 25 · 1011 new RBCs are required daily.
In early embryos, blood cells arise from the mesoderm of the yolk sac. Later, the liver and
spleen, and finally, the red bone marrow act as haematopoietic tissue. In adults, the red
bone marrow at the ends of the long bones (particularly humerus and femur) and the flat
bones (pelvis, ribs, sternum, vertebrae, clavicles, scapulae, and skull) produce blood cells.
The bone marrow is enclosed by bone, thus, small arteries must penetrate the bone casing to

1
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provide its blood supply. Small arterial branches communicate directly (without intervening
capillaries) with venous sinuses, which are thin-walled vessels (diameters of 50-75µm).
RBCs develop in association with macrophages near the wall of the sinuses before diapedesis
(being delivered to the circulation). Most red cells enter the circulation in an immature state.
Although blood contains many different cells with different functions, all of them originate
from haematopoietic stem cells in the bone marrow. These cells are self renewing and mul-
tipotent: through a series of cell divisions, they can give rise to all of the different blood
cells. Stem cells divide to form progenitor cells, which, in turn, give rise to precursor cells,
committed to form the various types of blood cells.
Haematopoietic growth factors control the cell formation. These growth factors come from
the bone marrow stoma, the liver, the kidneys, and WBCs. These growth factors are local
signalling molecules called cytokines which are supplemented by two hormones. One of
them is erythropoietin (EPO), balancing the rate of erythropoiesis to the prevailing need in
the circulation. RBC production is accelerated due to for instance haemorrhage, donation
of blood, and chronic hypoxia. Secretion of EPO is probably stimulated by a fall in tissue
oxygenation, and its concentration in plasma is inversely related to the partial pressure of
oxygen in the arterial blood. EPO accelerates the differentiation of progenitor cells into ery-
throblasts. Further essential components for RBC production are iron, folic acid, vitaminB12

and the glycoprotein intrinsic factor. If there is a lack in these components, RBC develop-
ment is impaired resulting in pernicious anaemia.
The formation of RBCs is depicted in figure 1.1. Apparently, this is a stepwise process involv-
ing different mechanisms such as division, growth factors and mechanical changes. Once a
RBC has entered the circulation, it lives around 120 days. Eventually, it is destroyed in the
spleen, the liver, or lymph nodes by macrophages.
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Figure 1.1: Erythropoiesis: shown are the growth factors interleukin-3 (IL-3), stem cell fac-
tor (SCF), and thrombopoietin (TPO). EPO is the hormone erythropoietin. After losing their
mitochondria and ribosomes, RBCs cannot synthesise haemoglobin or generate ATP by ox-
idative metabolism anymore. Thus, they rely on glucose and the glycolytic pathway for
their metabolic needs. This pathway can produce a glycerate that reduces the oxygen affin-
ity of haemoglobin, thus facilitating oxygen release to the tissues. Information taken from
reference [139].

1.1.2 White Blood Cells

In one microlitre of blood, there are 4000-11000 white blood cells [56]. White blood cells
(WBCs) or leukocytes are the key players in the immune response. Out of many different
WBC types, two are briefly described here as in reference [1].
Neutrophils fight bacteria and fungi. As the body’s first response, they dominate early stages
of acute inflammation. They live for about five days and make up 60-70% of the total WBC
count. Neutrophiles destroy bacteria via phagocytosis (devouring a particle by engulfing) to
defend the body against infection. To digest microbes, lysosomes are required. These are or-
ganelles containing enzymes that can degrade and recycle cellular waste [152]. Neutrophiles
are unable to renew lysosomes, thus, after phagocytosing a few bacterial cells, they die.
Monocytes live for several hours to days and make up 5% of the total WBC count. Their
first task is to present pathogene pieces to T-cells in order to start an antibody response and
to memorise the pathogene. Their second task is to assist neutrophils with phagocytosis.
Both task are performed in the bloodstream. Monocytes eventually leave the blood stream
through the vascular wall to the underlying tissue. There, they become macrophages and
phagocytose dead cell debris and microorganisms.
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Phagocytosis starts through the binding of the receptors on the WBC surface to ligands on
the particle. Then, the WBC deforms, surrounds and engulfs the particle. Thus, cell de-
formability is important. Furthermore, if bacteria have to be destroyed within the tissue,
monocytes will have to deform to squeeze through small openings in the vessel wall.
Phagocytability increases with shear stress [147]. Thus, it is worthwhile to study the influ-
ence of shear rate on cell deformability.

1.1.3 Platelets

In one microlitre of blood, there are 200000-500000 platelets [56]. Platelets have a discoid
shape and a characteristic size of about 2-3µm. They are the key players in both physiolog-
ical haemostasis and pathological thrombosis. The first phenomenon occurs e.g. in case of
an injured vessel. A blood clot forms and seals a wound to stop blood loss. Clotting needs
three main steps. First, platelets adhere to thrombogenic surfaces. Second, they get activated
and release procoagulant agonists. Third, the latter induce further activation, thus causing a
positive feedback (coagulation cascade). The growing clot seals the wound.
Mechanical conditions affect these steps, such as atherosclerosis, medical devices, the dif-
ferences between arteries and veins, or between artery centre and wall. Depending on the
shear rate, platelets show different behaviour. At low shear rates (γ̇ < 1000s−1), platelets are
slow compared to their environment (surfaces, dissolved proteins, other platelets). Thus,
their receptors have enough time to interact and bind to surfaces. In turn, adjacent activated
platelets are bridged by binding.
At high shear rates (1000s−1 < γ̇ < 10000s−1), platelet adhesion is supported by the von
Willebrand factor (vWf) [174]. Thrombogenic surfaces have vWf immobilised on it, which,
in turn, binds to the platelet via a transmembrane protein [122].
Alternating shear stress significantly enhances platelet aggregation [117, 153]. Probably, the
period of high stress promotes initial interaction between vWf and a transmembrane protein,
and the period of low stress decelerates this interaction to allow more binding time.

1.2 Physical Aspects of Blood Cells and Blood Flow

A physiological, mature RBC has a biconcave shape of 6-8 µm in diameter and 2 µm thick-
ness. The RBC’s non-sphericity permits shape changes at constant volume and surface area.
Shape changes are induced by external forces. RBC deformation is reversible: after removing
the force, the RBC recovers its original biconcave shape within 100-200ms [9, 74, 108, 170].
In vivo, the cell’s dynamic viscoelastic rigidity and recovery time are important for the dis-
tribution and flow through microvessels [35]. Recovery time can be used as a measure for
membrane properties, as it is linked to membrane viscosity η and shear elastic modulus µ as
tc = η

µ [74, 35], in case the shear modulus dominates.
The RBC membrane consists of a lipid bilayer and spectrin network (cytoskeleton; inner
layer). They are connected by transmembrane proteins that can detach and reattach and
thus, allow the bilayer and the cytoskeleton to slide with respect to each other [30]. The
membrane encloses the cytosol, which for a RBC is a solution of haemoglobin. The mem-
brane exhibits various mechanical features: the bilayer is incompressible and elastic to bend-
ing, the cytoskeleton is compressible and elastic to shearing. Thereby, a RBC is often mod-
elled either as a vesicle or a capsule. It is eligible to combine the mechanical properties of
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both models [46]. Elasticity and deformability are vital in microcirculation since RBCs have
to squeeze through 0.5 µm-thick endothelial slits in spleen and they experience elastic re-
versible deformation during their 120 day life span [177]. Less deformability may lead to
impaired perfusion, higher blood viscosity, ischemia, and occlusion in microvessels. Possi-
ble causes are changes in membrane mechanics, cytoplasm viscoelasticity and surface area
or volume [177].
The lipid composition on the RBC membrane is different on inner and outer leaflet [70].
Thereby, the physical properties on both sides differ and thermodynamic forces act across
the membrane (electrostatic field gradients, chemical potentials, etc.) [70].
In certain pathologies, the mechanical properties of a RBC are altered, leading to different
flow behaviour and corresponding problems in transport functions. E.g. in case of sickle
cell anaemia, due to their shape change, the cells tend to entangle or form clots, particu-
larly close to vessel bifurcations. In case of malaria, a parasite invades the cells and makes it
more spherical and rigid [44]. Thus, the cell cannot enter more narrow vessels anymore and
supply them with oxygen.

Figure 1.2: Whole blood with white (de-
picted in green) and red cell and platelets
(depicted in yellow). Taken from refer-
ence [141]. Reprinted with permission.

Figure 1.3: Sickle cell anaemia RBCs.
Taken from medicinenet.com. Reprinted
with permission.

1.3 Physical Aspects of the Cardiovascular System

The heart pumps oxygenated blood coming from the lungs to the tissue, where it is deoxy-
genated. This blood is pumped into the lungs again for (re-)oxygenation. The cardiac cycle
comprises the alternating contraction and relaxation of the heart muscle [139]. During dias-
tole, the chambers of the heart relax and fill with blood. During early diastole, both the atria
and ventricles fill with blood. Towards the end of ventricular diastole, the atria contract to
force blood into the ventricles. During systole, the chambers contract to eject blood. The
so-called stroke work, performed by the heart during each beat, is the product of the rise in
ventricular pressure (occurring during systole) and the stroke volume.
A physical description of the circulation consists of a pump (the heart) and a series of inter-
connected pipes (the blood vessels) [139]. The overall arrangement has two circulations in
series: pulmonary and systemic circulation. Via the first, blood is pumped from the right
side of the heart through the lungs, via the second, blood is pumped from the left side of the
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heart to the rest of the body.
Heart pumping raises the pressure in the aorta above that of the large veins, where the pres-
sure is close to that of the atmosphere [139]. This pressure difference makes blood flow
around the systemic circulation. The pressure in the major arteries is the (systemic arte-
rial) blood pressure. Analogously, the pressure difference of pulmonary arteries and -veins
makes blood flow through the lungs. The structure of systemic blood vessels can be com-
pared to a tree: arteries branch and get smaller (arterioles) until they reach the tissue as
capillaries. There, oxygen is exchanged. The deoxygenated blood flows back in the opposite
order: leaving the capillaries, it enters the small venules and eventually the larger veins. All
vessels have their characteristic length scales and for studying them, a proper resolution has
to be chosen.
During embryonic development, remodelling of the cardiovascular system makes the net-
work more efficient [1]. It achieves its function (transport of nutrients and waste) with mini-
mal effort (work performed by the heart, homeostasis) [1]. The system’s hierarchy in most of
both embryo and adult animals is a prime example: large vessels transport blood efficiently
while small vessels exchange nutrients efficiently [1].
An idealised model for blood flow is the Poiseuille description. The vessel is considered as
a rigid cylinder of radius r and the solvent as a Newtonian fluid of viscosity η. The flow
profile is then parabolic: v(r) = − 1

4η

(
r2

0 − r2
) dp
dz . Pulsatile flow, caused by the beating heart,

modulates the pressure gradient periodically: dpdz = c0 + c1e
iωt [1].

Experiments with chicken eggs show that the early embryo is small enough to accomplish
mass transport via diffusion. However, later, the grown embryo needs flow (i.e. advection)
for efficient transport. Thus, the embryonic heart has to start beating [1].

1.4 Models for Blood-Related Phenomena

This section gives an overview of various phenomena linked to the fluid dynamics of blood.
It suggests how such phenomena can be modelled, partially differing conceptually from the
cell-based model used here.

1.4.1 Haemorheology

In small blood vessels, the particulate nature of blood dominates [140, 109, 1]. The fact that
blood is a suspension of RBCs becomes apparent when blood is forced through geometries
with a diameter D that is of the same order or smaller than the dimensions of a RBC: for
D < 6µm, the effective viscosity increases dramatically [1, 143].
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Figure 1.4: Relative effective viscosity as a function of blood vessel diameter. This viscosity is
the apparent viscosity in a tube with a certain diameter, normalised by the plasma viscosity
[1]. For tube diameters of 4.4, 7, and 17 µm, micrographs of human blood flowing through
glass tubes (flow is from left to right) are shown. Taken from reference [143]. Reprinted with
permission.

Figure 1.4 shows the effective viscosity as a function of diameter D. For low D, RBCs
strongly deform and align in a single file.
The radial distribution of RBCs shows that cells tend to migrate away from the wall, leaving
a cell-free layer (CFL) near the wall. Its viscosity is lower than that of bulk blood, thereby,
the CFL acts as an effective lubrication layer [42, 25, 140]. The CFL thickness is on the order
of a RBC diameter [88]. The CFL occupies a larger relative volume in smaller blood vessels
[85, 42]. Hence, the effective viscosity, obtained via Poiseuille’s law, will be lower (F̊ahræus-
Lindqvist effect) [143, 1, 38]. For D larger than 500µm = 0.5mm, the CFL is relatively thin.
The F̊ahræus-Lindqvist effect thus becomes negligible and blood can safely be considered
continuous (one-phase) [1].
Another important phenomenon in haemodynamics is shear-thinning. The viscosity is not
constant, as it would be in a Newtonian fluid, but decreases under shear stress. Figure 1.5
shows that both haematocrit and species affect haemorheology [31, 67].
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Figure 1.5: Dynamic viscosity as a function of shear rate. Both the viscosity values and
the shear-thinning behaviour depend on species and haematocrit. Taken from references
[62, 1, 5, 166]. Reprinted with permission.

In contrast to human RBCs, avian RBCs are nucleated. The latter deform less when forced
through capillaries [55]. Since human RBCs are biconcave disks, they have a large surface-
to-volume ratio, facilitating rouleaux formation, an alignment of RBCs in stacks [1]. Since
nucleated avian RBCs are more spherical, they are less prone to rouleaux formation [5, 115].
However, different plasma proteins may also change the aggregation.
Figure 1.5 shows that avian blood viscosity is lower and relatively constant [5]. The former
is due to the lower haematocrit, while the latter is linked to the lower deformability and
inability to form rouleaux [5, 55].

1.4.2 Haemolysis

Haemolysis is defined as the release of haemoglobin into the plasma due to a mechanical
damage of the RBC membrane [1].
A RBC deforms in shear flow, while preserving volume and surface area. Above a critical
shear stress, the membrane is forced to stretch. Haemoglobin may be released via complete
rupture of the cell [144] or through pores appearing at high stress in the viscoelastic mem-
brane [195]. Shear stress-exposure time is a key factor in haemolysis [103]. Below a critical
shear stress threshold, surface-effects dominate, whereas above, shear-stress effects domi-
nate. Haemolysis occurs as a power-law function of the shear stress τ acting on the cells and
the time t of exposure to that stress [103, 189, 188, 61, 194]. Thus, the damage index H is
described as a power law:

H = Cτatb (1.1)
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with constants O(C) = 10−5, a ≈ 2, b ≈ 0.7.
Older RBCs have more viscous, stiffer membranes and a smaller surface area [161]. Presum-
ably, damage by shear stress depends on the current level of damage. On top of that, damage
accumulates over the lifetime of the cells. As soon as RBC have been damaged sufficiently,
they are removed from the circulation by the spleen.
To consider this accumulation, infinitesimal damage is based on the idea of mechanical dose
and shear stress-exposure history via a time integral [65, 64]:

dH = Cb

(∫ t

t0

τ(ε)a/bdε+H(t0)

)b−1

τ(t)a/bdt (1.2)

1.4.3 Haemodynamic Quantities

Flow-input waveforms and vessel geometry, such as expansions, bends, bifurcations, or
stents, alter and possibly disturb blood flow patterns [1]. This enables flow separation, reat-
tachment, recirculation, stagnation, atherosclerosis and spreading of vascular cells towards
the vessel interior [89]. To quantify changes in blood flow, the following quantities have
been defined.
Wall shear stress (WSS) is crucial to study atherosclerosis [22]. WSS describes the viscous
stress acting on the surface.

~τw = ~n · τijτijτij (1.3)

with vector ~n normal to the arterial wall surface and fluid viscous stress tensor τijτijτij .
For the case of time-dependent flows, the time-averaged WSS is defined as

TAWSS =
1

T

∫ T

0
|~τw| dt (1.4)

with duration T of the cardiac cycle.
WSS alters endothelial cell morphology and orientation. For WSS > 1 Pa, endothelial cells
elongate and align in flow direction [113]. At the sites of low WSS in a stented coronary
artery, tissue regrows [99].
Pulsatile flow makes the shear stress oscillate, which influences in-stent restenosis [22]. Thus,
an oscillatory shear index (OSI) is defined [94]:

OSI =
1

2

1−

∣∣∣∫ T0 ~τwdt
∣∣∣∫ T

0 |~τw| dt

 (1.5)

High oscillatory shear stress enhances arterial narrowing [193, 187, 1].
The relative residence time (RRT)

RRT =
1

(1− 2 OSI) TAWSS
=

T∣∣∣∫ T0 ~τwdt
∣∣∣ (1.6)

is critical for atherogenesis and in-stent restenosis and associated with the residence time of
particles near the wall [73, 76].
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1.5 Thermodynamics of Lipid Membranes

The membrane of erythrocytes consists of a cytoskeleton and a lipid membrane. The latter
shall be considered more closely in this section; following the notion of and citing reference
[70].

1.5.1 General Considerations

Biological membranes display a wealth of physical phenomena including phase transitions,
propagating voltage pulses, variable permeability, structural transitions (as in exo- and en-
docytosis), and domain formation.
Thermodynamics is always valid as it is based on only two basic and intuitive laws: the
conservation of energy and the maximum entropy principle. It thereby serves as a basis for
physics on all length scales, e.g. on the level of biomembranes.
Cells and their compartments have a large variety of membranes. Membranes surround both
the cell as a whole and each organelle as the nucleus, mitochondria, or the endoplasmic retic-
ulum. The major building blocks of membranes are thousands of different lipid molecules.
One example, DPPE, is shown in figure 1.6. The combination of a lipophilic (= hydrophobic)
and a hydrophilic part is called ’amphiphilic’ (Greek for ’loving both’). These basic building
units self-assemble into larger structures, depending on the surrounding medium. In water,
the hydrophobic tails avoid contact to the environment by forming e.g. circular shapes (mi-
celles), with the hydrophobic heads outside, exposed to the water. Another possible shape
is a bilayer as shown in figure 1.7.
At oil-water interfaces, lipids arrange such that the heads touch the water and the tails touch
the oil. This interfacial layer reduces the surface tension.

Figure 1.6: Head group and tail structure of phosphatidylethanolamine (DPPE) as well
as the coarse-grained model of hydrophilic head and hydrophobic tails. Taken from
http://www.ck12.org/user:bGVldEBoYXJncmF2ZS5lZHU./book/General-Chemistry-
FlexBook-by-Mrs.Tomi-Lee/section/15.3/.
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Figure 1.7: In an aqueous solution, phospholipids form a bilayer where the hydropho-
bic tails point towards each other, and only the hydrophilic heads are exposed to the wa-
ter. Taken from http://www.ck12.org/user:bGVldEBoYXJncmF2ZS5lZHU./book/General-
Chemistry-FlexBook-by-Mrs.Tomi-Lee/section/15.3/.

Figure 1.8: The phospholipid bilayer of a cell membrane contains embedded protein
molecules which allow for selective passage of ions and molecules through the membrane.
Taken from http://www.ck12.org/user:bGVldEBoYXJncmF2ZS5lZHU./book/General-
Chemistry-FlexBook-by-Mrs.Tomi-Lee/section/15.3/.

The notion of thermodynamics and statistical mechanics comes into play since the plasma
membrane of one eukaryotic cell contains O

(
1010

)
lipid molecules. Thus, lipid membranes

are thermodynamically large ensembles.
Biological molecules interact with specific binding partners, abundant lipid surfaces, pro-
tons, ions, and water. Additionally, different orientations and conformations complicate
these interactions. In many cases, it is not feasible to investigate all possible interactions.
Biological processes and cooperative phenomena such as membrane melting can be treated
on a scale coarser than binary molecular interactions. In the case of biological systems, the
variety of proteins, lipids, and ions is represented by their chemical potentials. These are
functions of intensive thermodynamic variables as the concentrations of other molecules,
temperature or pressure. In thermal equilibrium, a multimolecular ensemble such as a mem-
brane fluctuates around the state of maximum entropy. Out of equilibrium, the first deriva-
tive of entropy constitutes the thermodynamic forces, driving the system to equilibrium. The
second derivatives constitute the susceptibilities, such as heat capacity or elastic constants.
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These are related through the Maxwell relations, such as:(
dS

dp

)
T,ni

= −
(
dV

dT

)
p,ni

. (1.7)

They provide both deeper insights into membrane behaviour and access to quantities that
are difficult to measure. In equation (1.7), the derivative of the entropy with respect to pres-
sure is difficult to measure, yet it is equivalent to the isobaric volume expansion, which
can be measured easily. Thereby, thermodynamics provides considerable insight into all the
couplings between seemingly different (membrane) processes.

Figure 1.9: A calorimetric experiment on a native E. coli membrane. Below growth temper-
ature, lipid melting takes place. Above growth temperature, protein unfolding takes place.
Taken from reference [71]. Reprinted with permission.

1.5.2 Elasticity and Curvature

Lipid membranes can be described analogously to liquid crystals, as they are composed of
axial molecules that influence each other in their orientation. In liquid crystalline phases, an
equilibrium order of molecules exists, which can be altered by performing work (distortion).
Let us consider an infinitely thin membrane without chirality in its molecules. The free
energy density is described by Helfrich’s form [72]:

g =
1

2
KB (s1 + s2 − s0)2 +KGs1s2 (1.8)

where s1 and s2 are the splays in the two directions of the membrane plane and s0 is the
spontaneous splay. KB is called bending modulus, even though it is technically rather a
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splay modulus. KG is the Gaussian modulus.
A vesicle, which can be used as a model for a RBC, has a closed structure. Due to this topo-
logical boundary condition, the elastic free energy is not necessarily minimal. Let us consider
first the special case of a spherical vesicle (|Rx| = |Ry| = |R|). Additionally, its membrane
shall be made of the same lipids on both sides. Due to this symmetry, the spontaneous
curvature vanishes. Integrating equation (1.8) yields the total elastic free energy:

Gvesicle =
KB

2

∮
A

(
4

R2

)
dA+KG

∮
1

R2
dA = 8πKB + 4πKG (1.9)

Thus, the total energy is independent of the radius. Both moduli typically have values on the
order of 10−19J , which corresponds to about 20kBT in case of room or body temperature.
The free energy of equation (1.9) depends on shape and thus deformation. However, it can
be shown that the integrated Gaussian term is independent of shape of the vesicle, as long
as it is closed and topologically intact. Thus, for deformations one can ignore the Gaussian
term.
It shall be emphasised that one assumption is not met in case of a RBC: its membrane is
made of different lipids on both sides, see figure 1.10. Thus, there should be a non-zero
spontaneous curvature.

(a)

(b)

Figure 1.10: Composition of the (a) inner (b) outer leaflet of the RBC membrane. PC: phos-
phatidylcholine, SM: sphingomyelin, PE: phosphatidylethanolamine, PS: phosphatidylser-
ine, PA: phosphatidic acid, LPC: Lysophosphatidylcholine. Data taken from references
[148, 176, 190, 178, 198, 173] .
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1.5.3 Response Functions of a Membrane

Lipid melting is quantified via calorimetry as shown in figure 1.9. Heat capacity is defined
as

cp =

(
δ̄Q

dT

)
p

(1.10)

with δ̄Q being the differential process-quantity heat and T being the temperature; under iso-
baric conditions. Considering dH = δ̄Q+V dp, one can exchange δ̄Q by dH in equation (1.10).
In a canonical ensemble with Boltzmann probability distribution p(x) = exp

(
−H(x)−H0

kBT

)
,

where H(x) depicts the enthalpy of a certain state and index 0 the ground state, the heat
capacity is linked to the fluctuations:

cp =

〈
H2
〉
− 〈H〉2

RT 2
. (1.11)

Equation (1.11) is called fluctuation theorem [95].
Lipid membranes are compressible to a certain degree. Volume compression can be mea-
sured via ultrasonic velocity. Sound velocity depends on the compressibility of a medium:

c0 =
√

1
κsρ

for a 3D liquid or gas, with ρ being mass density and κs being the adiabatic com-
pressibility.
Let us consider now an isothermal compression, in which the released heat is absorbed by a
heat reservoir (aqueous environment). For lipid vesicles, this is fulfilled if the compression
is much slower than the membrane relaxation. Hydrostatic pressure causes relative volume
changes, with KV being the modulus of compression:

∆p = −KV

(
∆V

V0

)
(1.12)

The infinitesimal change in Gibb’s free energy is dG = −SdT + V dp. Here, dT = 0. Then,
we consider the change in Gibb’s free energy density:

gV =

∫
∆V

V0
dp = −KV

∫
∆V

V0
d

(
∆V

V0

)
=

1

2
KV

(
∆V

V0

)2

(1.13)

This corresponds to Hooke’s law. For the change in area, the relations are analogous. This
is also reflected in the potentials for the present RBC model. It should be noted that the
membrane in this model comprises both lipid bilayer and cytoskeleton, but the contribution
of both parts is assumed to be in the form of equation (1.13).

1.5.4 Shapes and Deformations of Vesicles

For closed vesicles, the integrated Gaussian term is constant and thus irrelevant. For spher-
ical vesicles and symmetric membranes, the ’bending’ term gets minimal, as the curvature
terms enter the equation quadratically. For a sphere, the volume-to-area ratio is V

A = R
3 .

Membranes possess a water permeability depending on their excess heat capacity. Outside
of the transition regime and for short periods of time, the membrane permeability for ions
and water is low. Thereby, the volume can be assumed constant. Thus, a spherical vesicle
cannot be deformed, because V

A has to remain constant.
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However, if V
A < R

3 , as for a RBC, the vesicle cannot get completely spherical, because no
fluid can enter and increase the volume. Then, the minimal elastic free energy has to be
found by assuming a fixed reduced volume V

A
3
2

. Examples for shapes at different volume-

to-area ratios are shown in figure 1.11.

Figure 1.11: Temperature-induced ’endocytosis’: unilamellar vesicles during a temperature
increase of only 1K. Lower panel: theoretical shapes of minimal bending energy with con-
straints on volume, area, and total mean curvature. The shape at the very right represents a
small spherical bud that is contained in the larger sphere; both spheres are connected by a
small neck or ’worm-hole’. Taken from references [110, 16]. Reprinted with permission.

1.6 Blood Flow: Previous Numerical Approaches and Results

Blood has been studied numerically for several years. Particulate considerations, thus stud-
ies that model blood as a suspension of cells, are briefly summarised here.
The deformation of RBCs by micropipette aspiration, thus a purely static system, has been
studied because it characterises the elasticity and plasticity of the cytoskeleton [29]. The cy-
toskeleton of RBCs has been modelled by coarse-grained Monte Carlo simulations. Two- and
three-body effective potentials represent the nonlinear chain elasticity and sterics of more
microscopic models. The cytoskeleton is represented by a triangulated network and used
in three different versions. Two of them are stress free (with/out internal attraction) and
one of them is prestressed. These models are used in simulations regarding a finite ambi-
ent temperature. The prestressed model agrees best with experiments, thus, the anisotropic
strain of the triangulated mesh is focused to understand how a cytoskeleton is deformed in
experiments. Segmented polymer chains (spectrin level model) can be replaced by effective
potentials, reducing the degrees of freedom.
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Figure 1.12: RBC aspirated in a micropipette. The reduced volume of the cell is 0.6 and the
cell shape is initially stress-free. Taken from reference [43].

To study the impact of depletion-mediated RBC aggregation on blood rheology with a
fully cellular approach, a 3D model coupling Navier-Stokes equation with cell interactions
has been introduced [111]. An immersion continuum model tracks the RBC deformation.
This model captures effects such as shear thinning, the impact of cell rigidity on blood vis-
cosity, and the F̊ahræus-Lindqvist effect, which is linked to axial migration of deformable
cells. Concerning aggregation, the change in viscosity due to break-up of rouleaux structures
was shown. Lower RBC deformability and shear rates> 0.5s−1 facilitate disaggregation and
affect the effective viscosity.
To simulate 3D RBCs subject to simple shear flow, cells have been approximated by Newto-
nian liquid drops enclosed by Skalak membranes, accounting for membrane shear elasticity
and membrane area incompressibility [158]. RBCs have an initially biconcave resting shape,
and the internal fluid is assumed to be equivalent to the ambient fluid. At large shear rates,
the cells perform a swinging motion, in which inclination angle periodically oscillates and
the shape deforms during membrane tank-treading. With decreasing shear rate, the swing-
ing amplitude of the cell increases, and eventually, triggers a transition to tumbling motion.
During this transition, the apparent viscosity of the suspension increases monotonically.
The effect of haematocrit and vessel diameter on the velocity profile, flow resistance and
cell-free layer has also been studied [43]. The cell membrane is modelled as a viscoelastic
network and a suspension of cells models whole blood. The distribution of cells shows a mi-
gration and the formation of a cell-free layer, reproducing the F̊ahræus-Lindqvist effect. The
CFL effectively lubricates the flow of the cells concentrated in the centre. The CFL formation
agrees with in vitro and in vivo experiments.
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Figure 1.13: Velocity profiles v(r) for blood flow in a cylindrical vessel of diameter 2r =
40µm for different haematocrit Ht. The dashed line represents the analytical velocity profile
for a purely Newtonian fluid (continuous). Dotted lines mark the CFL thickness. Taken from
reference [43]. Reprinted with permission.

Higher haematocrit leads to both blunter velocity profiles and larger blood flow resis-
tance.
The dynamic phase behaviour of single RBCs in linear shear flow has been studied because
it characterises the coupling of all shape, deformation, and dynamics [191]. The model in-
cludes not only resistance against shear deformation, area dilatation, and bending, but also
considers the viscosity difference between inner and suspending fluids. Thus, a larger va-
riety of shapes has been observed. At moderate bending rigidity, the newly introduced
breathing motion shows flow alignment and deformations or swinging motion with dim-
ples periodically emerging and disappearing. The shapes-/dynamics transition depends on
the viscosity difference.
The dynamics of RBCs in low shear-rate flows has also been studied by a multiscale fluid-
structure interaction model incorporating several coarse-graining levels, down to the spec-
trin polymer level [134]. The stress-free state of the cytoskeleton is spheroidal, thereby, it is
predictable that the cell maintains its biconcave shape during tank-treading motions. As the
stress-free state approaches a sphere, the threshold shear rate for tank-treading decreases.
At low shear rates, the RBC response is a measure for distribution of shear stress in the
cytoskeleton in the natural state.
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Chapter 2

Numerical Methods

2.1 Simulation Framework

Blood is a liquid that shows shear-thinning and its viscosity depends on the flow conditions.
Thereby, blood cannot be considered as a Newtonian fluid. We intend to link the behaviour
of blood cells to the flow properties of the blood suspension. Thus, it is essential to separate
properly different length scales. The RBC is on the micrometre (µm) scale and its characteris-
tic shape recovery time is about 100-200ms [9, 74, 108, 170]. In contrast, the solvent molecules
move much faster at a time scale of 10−14s. Thereby, at the scale of a cell, the motion of sol-
vent molecules can be neglected and their impact on the cell can be modelled as stochastic
collisions. Here, we consider small fluid volumes as constituents of the plasma surrounding
the RBC. Assuming a density of n = 12 (simulation units, see below), these volumes are on
the µm scale and represent clusters of many water molecules (O = 109). The explicit con-
sideration of water volumes allows the simulation of hydrodynamic interactions, which are
mediated by the solvent, e.g. in case of flow.
The Navier-Stokes equation (NSE) describes the flow of a viscous fluid. It is derived from
Newton’s second law and assumes that the fluid stress is the sum of a diffusing viscous and
a pressure term. To model blood plasma via the NSE, one can assume incompressibility as
blood plasma mainly consists of water. Thus, the NSE becomes:

∇ · ~v = 0

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ η∇2~v + ~fext (2.1)

We consider a regime in which dissipation dominates inertia (low Reynolds number Re =
nvL
η ). Thus, the inertia term on the left side of equation (2.1) can be neglected and we obtain

the Stokes equation. In our mesoscale computer simulations, we use the package LAMMPS
[138] modified by our group. The fluid particles represent microscale fluid volumes; this
resolution is appropriate on the scale of a RBC.

2.1.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical method discretising partial differ-
ential equations into particles i of a certain mass mi (and other physical quantities like den-
sity ρi and pressure pi), moving along with the flow [90, 57]. SPH was first applied in astro-
physics, but now in various fields.

19
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Essential in this method is the fact that the particles themselves are employed as mobile in-
tegration nodes, at whose places the quantities are calculated (in contrast to methods based
on fixed lattices). This simplifies the simulation of complex geometries, free boundaries or
vacuum regions, yet reduces spatial resolution.
The hydrodynamic equations are approximated by first averaging of a spatial field quantity
f(~r) with a kernel-convolution and then discretising the equations. The set of field variables{

density ρ, velocity ~v, energy e, pressure P , heat flux Q
}

is interpolated by means of kernel
interpolation.

f(~r) ≈
∫
V
f(~r ′)W (|~r − ~r ′|;h)dV ′ (2.2)

with r = |~r−~r ′| being the distance. The normalised kernelW approximates the δ-distribution.
It has to be at least once continuously differentiable and has to vanish for distances larger
r than the so-called smoothing length h. Thereby, interactions occur only between adjacent
particles, allowing the use of cell lists.
A kernel for three dimensional systems is given by

W (r) =
8

πh3


6
(
r
h

)3 − 6
(
r
h

)2
+ 1 for 0 ≤ r

h <
1
2

2
(
1− r

h

)3
for 1

2 ≤
r
h ≥ 1

0 for r
h > 1

(2.3)

Equation (2.2) is further approximated by a sum. The function is evaluated at the current
position ~ri of particle i:

f(~ri) =
N∑
j=1

mj

ρ(~rj)
f(~rj)W (|~ri − ~rj |;h) . (2.4)

Thus, spatial derivatives are easily obtained:

~∇f(~r) ≈
∫
V
f(~r ′)~∇ ′W (|~r − ~r ′|;h)dV ′ . (2.5)

It is therefore possible to describe the basic hydrodynamic equations in a system of discre-
tised particle quantities f , where only f and its temporal derivatives are unknown.
A drawback of this method is its lack of uniqueness. One should choose those versions that
provide symmetries (like conservation of momentum) on the scale of particles.
The Euler equation can be discretised as follows:

d~vi
dt

= −
N∑
j=1

mj
pj + pi
ρiρj

~∇Wij(h) (2.6)

The expression for the density of particle i, ρi, is simply obtained from the particle distribu-
tion:

ρi =
N∑
j=1

mjWij(h) . (2.7)

The particles move with the velocity of the fluid

d~ri
dt

= ~vi (2.8)
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and their state is described by
pi = ρ0ρ

γ
i , (2.9)

which, along with equations (2.6) and (2.7), describe the system completely.
Special attention has to be payed to the initial distribution of particles, as it defines the phys-
ical problem to a large extent. This distribution has to approximate the given initial density
and fluid field. The differences in the density can be achieved by the particles’ positions or
their masses (or combination of these). A modified version of the Leap-Frog-Integrator is
used, with a characteristic time step of ∆t = ηh

maxi=1...N (~vi)
. The analysis of the resulting parti-

cle distribution comprises the evaluation of the physical quantities at the particles’ positions.
On account of the discretisation, numerical artefacts such as pressure (shock) waves can oc-
cur. To reduce such effects, the acceleration in equation (2.6) is modified by a pressure-like
term, the so-called artificial viscosity:

d~vi
dt

∣∣∣∣
art. visc

= −
N∑
j=1

mjΠij∇iWij(h) . (2.10)

Advantages of SPH is e.g. the fact that no lattice is needed and thus, also more complex
geometries are feasible. On top of that, both viscosity and equation of state are set as input
parameters. Drawbacks are e.g. the low spatial resolution. Further details are outlined in
reference [90].

2.1.2 Dissipative Particle Dynamics

DPD is a simulation method capable of describing systems on mesoscopic length scales,
bridging the atomistic and the macroscopic scales [66]. Thereby, it allows to study the struc-
ture formation and supramolecular aggregation of macromolecules. This mesoscopic length-
scale is relevant for many soft and condensed matter systems.
The DPD-interactions are governed by three different forces between particles:

~Ftot = (FC + FD + FR) r̂ij (2.11)

describing conservative, dissipative and random (thermal) contributions, which all act along
the connective line of two particles.
A weighting function, depending on particle distance, is used for every force:

w (r) =

(
1− r

rc

)κ
(2.12)

where rc is the cutoff radius beyond which w vanishes: w (r > rc) = 0. κ determines the
steepness of w and thereby, the influence of distant neighbours. We employ κ = 0.15.
In the following, two interacting particles i and j are considered. A conservative force mod-
els the mutual repulsion of soft spheres, a dissipative force models friction (viscosity) and a
random force models the coupling to a thermal bath:

~FCij = aijw
R (rij) r̂ij

~FDij = −γijwD (rij) (r̂ij · ~vij) r̂ij
~FRij = σijw

R (rij) ζij (∆t)−
1
2 r̂ij (2.13)
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ζij is a Gaussian random number with zero mean and unit variance and ∆t is the timestep.
In order to obtain a Gibbs-Boltzmann equilibrium distribution, the weight functions have to
be related to each other and the friction and random parameters have to obey the fluctuation-
dissipation theorem [34]:

wD(r) =
[
wR(r)

]2
and σ2 = 2γkBT. (2.14)

DPD is an NVT method that respects the third Newtonian law of actio & reactio, thus yield-
ing momentum conservation and thereby preserving hydrodynamics.
With the soft conservative interaction, the particles represent molecules or liquid elements
rather than atoms, permitting a larger timestep in comparison to Molecular Dynamics (MD).
The liquid elements are considered portions of the fluid, representing moving thermody-
namic subsystems [33]. On top of that, the soft interaction does not diverge at r = 0, as it is
the case of a Lennard-Jones-interaction in MD.
To conclude, the advantages of DPD are:

• thermodynamic consistency

• appropriate representation of thermal fluctuations

• modelling of a viscous fluid

An essential drawback is that both viscosity and equation of state have to be obtained from
a (preparatory) simulation.

2.1.3 Smoothed Dissipative Particle Dynamics

SDPD is a simulation method which combines the advantages of both SPH and DPD, and
avoids their drawbacks [33]. SPH offers a discrete version of the Navier-Stokes-equations
and a sound physical interpretation, but suffers from thermodynamic inconsistencies; it
does not explicitly consider the 2nd law. In contrast, DPD is thermodynamically consis-
tent and can describe thermal fluctuations and dissipation, but the physical interpretation
is rather vague. With DPD’s conservative forces, one cannot generate an arbitrary equation
of state, the transport coefficients are not immediately related to the model parameters and
the physical scale is undefined [33]. SDPD is suitable for a length scale at which the fluid
flow recognises the underlying molecular nature of the fluid, describing fluctuations of the
hydrodynamic variables [100]. In SDPD, the fluid is divided into subsystems, characterised
by position ~ri, velocity ~vi, mass mi, entropy Si, volume Vi and energy Ei.
The equations of state are:

Ti =
∂Eeq

∂Si

Pi = −∂E
eq

∂Vi
(2.15)

Similar to SPH, an interpolant function as in equation (2.3) is employed. A set of equations
describes the independent variables ~ri, ~vi, and Si [33] with both reversible and irreversible
dynamics:



2.2. PRESENT RBC MODELS 23

m~̇vi =
∑
j

[
Pi
d2
i

+
Pj
d2
j

]
Fij~rij −

(
5η

3
− ζ
)∑

j

Fij
didj

~vij − 5
(
ζ +

η

3

)∑
j

Fij
didj

êij êij · ~vij

TiṠi = (φ)i − 2κ
∑
j

Fij
didj

Tij

(φ)i =

(
5η

6
− ζ

2

)∑
j

Fij
didj

~v 2
ij +

5

2

(
ζ +

η

3

)∑
j

Fij
didj

(êij · ~vij)2 (2.16)

φ is the viscous heating. Friction forces increase internal energy to conserve total energy.
The particles interact with each other within the range h of the interpolant function. Repul-
sion depends on pressure and density. Friction depends on the relative velocities. The ~vij -
term breaks the conservation of total angular momentum.
The entropy equation describes heat conduction, minimising temperature differences be-
tween particles by corresponding energy exchange and conserving total energy on account
of its symmetries.

2.1.4 Integration of Equations of Motion

To update the position ~r, velocity ~v and angular velocity ~ω of particle i from time t to t+ dt,
Newton’s second law is followed:

~̇ri = ~vi , ~̇vi =
N∑
j=1

~Fij
mj

, ~̇ωi =
N∑
j=1

~Nij

Ij
. (2.17)

~Fij and ~Nij are the force and torque, respectively, for a particle j acting on particle i. mi and
Ii are the mass and the moment of inertia, respectively, of particle i. ~ω is required particularly
for SDPD with angular momentum conservation [121].
In analogy to the procedure in reference [6], a velocity-Verlet algorithm approximates the
temporal integration:

~ri (t+ dt) = ~ri (t) + dt ~vi (t) +
1

2
dt2 ~fi (t)

~̃vi (t+ dt) = ~vi (t) +
1

2
dt ~fi (t)

~fi (t+ dt) = ~fi

(
~ri (t+ dt) , ~̃vi (t+ dt)

)
~vi (t+ dt) = ~vi (t) +

1

2
dt
(
~fi (t) + ~fi (t+ dt)

)
(2.18)

with ~f being the force per unit mass.

2.2 Present RBC Models

Early modelling of blood flow can be found e.g. in reference [155]; later numerical studies
comprise e.g. references [125, 44, 163, 26]. Reference [50] reviews numerical simulation
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techniques describing blood on the cell-scale.
Until today, there are several different RBC models. They may differ conceptually, in their
scope of validity and scope of application. Some models are described in the following
sections.

2.2.1 Vesicle Model

A 2D vesicle is considered, representing an impermeable membrane made of a bilayer of
phospholipids, as a simplistic representation of a RBC [83, 84]. Their bending rigidity is
κ = 3 · 10−19J and the typical RBC diameter (the diameter of a sphere having the same area)
is about 6µm. The vesicle’s reduced area is defined as its actual area over that of a circle
having the same perimeter. For human RBCs, the reduced area is 0.6.
Area and volume constraints originate from the following: at room- and at physiological
temperature, the membrane is fluidic (compare to figure 1.9) [83]. The membrane can be
viewed as a 2D incompressible fluid. This incompressibility property implies the inextensi-
bility of the membrane, and therefore, the conservation of local area. Furthermore, since the
vesicle encloses an incompressible fluid and the membrane permeability is very small, the
vesicle volume must be conserved. Due to membrane impermeability, the membrane veloc-
ity is equal to the fluid velocity of the adjacent layer. Thereby, and because of the incom-
pressibility condition ∇ · ~v = 0 for fluids, the enclosed volume is automatically conserved.
The area of the membrane is not conserved automatically. In order to conserve membrane
local area (or perimeter in 2D), a surface (local) Lagrange multiplier ζ(s, t) is introduced. It
depends on the curvilinear coordinate s along the vesicle contour and on time t. ζ(s, t) is the
surface analogue of the pressure field p(~r, t) which enforces local volume conservation of a
3D fluid.
Mechanically, the membrane can be viewed as a thin shell, where the soft (or easy) mode is
the bending one. The corresponding energy is given by the Helfrich curvature energy [72]:

E =
κ

2

∫
vesicle

H2ds+

∫
vesicle

ζ(s, t)ds (2.19)

where κ is the membrane rigidity and H is the local membrane curvature. ds is the elemen-
tary arc length along the vesicle contour. A spontaneous curvatureH0 is not considered. The
second integral constraints the area in 3D (perimeter in 2D).
Deriving the vesicle energy E with respect to the membrane displacement, one obtains the
membrane forces. The vesicle membrane possesses bending forces, local area conservation
and tension forces ζ against membrane extension or compression.

~f =

[
κ

(
∂2H

∂s2
+
H3

2

)
− H

ζ

]
~n+

∂ζ

∂s
~t (2.20)

including normal (~n) and tangent
(
~t
)

terms. The perimeter conservation is alternatively
achieved by describing the cohesive forces among boundary elements by quasi-rigid springs.
The fluids inside and outside the vesicle (’inner and outer fluids’) are same in reference [83].
No-slip boundary conditions at the membrane are used (see also section 2.6.2). Due to a
small Reynolds number (Re ≈ 10−2), the fluid flow is approximated by Stoke’s equation
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[83]:

−~∇p+ η∇2~v = ~f

~∇ · ~v = 0 (2.21)

with pressure p, velocity ~v and ~f is the force imposed by the deformable vesicle membrane
on the two fluids.
Blood vessels are elastic and thus, react to stresses from the fluid. In the microvasculature
(especially in the capillaries), the inertia is small and the Stokes regime is a good approxi-
mation. A boundary integral formulation is used. Both vesicle membrane and vessel wall
forces modify the imposed Poiseuille flow so that the velocity of each point of the membrane
is

~v( ~x0) =
1

η

∮
vesicle

~G (~x− ~x0) · ~f(~x) ds+
1

η

∫
walls

~G (~x− ~x0) · ~fw(~x) ds (2.22)

with viscosity η and free space Green’s function

Gij (~x− ~x0) = −δij ln |~x− ~x0|+
(~x− ~x0)i (~x− ~x0)j

(~x− ~x0)2 (2.23)

The membrane contour is discretised ([83, 20]). The contribution of the undisturbed Poiseuille
flow can simply be added due to linearity of the Stokes equations.
The force of the flexible walls ~fw is assumed Hookean. The vessel wall elasticity is affected
by the glycocalyx [184]. This is a soft, brush-like biopolymer covering the endothelium, on
which cells ”surf”. The wall rigidity is estimated to be K ∝ E/W [11] where E ≈ 10Pa
[184] is the effective Young modulus and W ≈ 0.2µm [184] is the glycocalyx thickness.
When compared to the membrane, the wall is stiff, so its response to fluid stresses is quasi-
instantaneous. This is confirmed by numerical studies [84, 175]. After calculating the forces,
equation (2.22) is used to determine the velocities, which, in turn, are used to calculate the
positions via an Euler scheme.

2.2.2 Hyperelastic Model

A hyperelastic model accounts for the shear resistance of the cytoskeleton and the area dila-
tion resistance of the lipid bilayer, while Helfrich’s bending model accounts for the bending
resistance of the lipid bilayer [60].
The transport of deformable particles within a carrying fluid is modelled. The particles, in
turn, may carry an internal fluid differing from the external fluid. Both fluids are assumed
incompressible and Newtonian. Thus, the flows are subject to continuity and Navier-Stokes
equation:

∇ · ~v = 0

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+∇ ·

[
η
(

(∇~v) + (∇~v)T
)]

(2.24)

with fluid velocity ~v, time t, pressure p and viscosity η. Density variations are neglected
and thus, ρ = const. The flexible membrane is modelled as an infinitely thin, massless and
completely closed structure S.
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The hyperelastic model is defined by Keller and Skalak’s strain energy function WSK [156],
with the in-plane principal values of strain λ1 and λ2, membrane shear modulusEs and area
dilation modulus Ea (measured in N

m ).

WSK =
Es
4

[(
λ2

1 + λ2
2 − 2

)2
+ 2

(
λ2

1 + λ2
2 − λ2

1λ
2
2 − 1

)]
+
Ea
4

(
λ2

1λ
2
2 − 1

)2
. (2.25)

The non-linear nature of this model allows for strain hardening effects[156].
Helfrich’s bending model [72] has the following bending energy function:

Wb =
Eb
2

∫
S

(2κ− c0)2 dS (2.26)

Fluid-structure coupling is achieved by the immersed boundary and front-tracking methods.
Adherence of the fluid over the membrane (no-slip) makes fluid velocity continuous at the
membrane location and equal to the membrane velocity. The membrane is transported by
the fluid. The membrane coordinates ~X(t) are related to the fluid velocity ~u(t) as follows:

d ~X(t)

dt
= ~U( ~X(t), t) =

∫
Ω
~u(~x, t) δ

(
~X(t)− ~x

)
d~x (2.27)

The fluid domain Ω comprises both inner and outer fluids. Particle deformation enables
fluid inhomogeneity (different viscosities inside and outside) and exerts a reaction force ~f
on the fluid.

~f(~x, t) =

∫
S

~F ( ~X(t), t) δ
(
~X(t)− ~x

)
dS (2.28)

For the right stress discontinuity across the membrane, ~f is added on the right side of equa-
tion (2.24).
The fluid equations are discretised using unstructured grids. This introduces discrete Dirac
functions wm into the transport equations ~U and ~f of the membrane vertices. The hyper-
elastic membrane forces are calculated by a first-order finite element method [21]. Let us
consider a membrane deformation with the displacements u and v in x- and y-direction, re-
spectively. The membrane is modelled with a 2-dimensional hyperelastic law W . Reducing
it to first order gives:

δW = {δu}T
[
∂W

∂λ1

∂λ1

∂u
+
∂W

∂λ2

∂λ2

∂u

]
+ {δv}T

[
∂W

∂λ1

∂λ1

∂v
+
∂W

∂λ2

∂λ2

∂v

]
(2.29)

With the principle of virtual work, one identifies the forces Fx and Fy:

δW =
1

Ve

(
{δu}T {Fx}+ {δv}T {Fy}

)
(2.30)

2.2.3 Combined Immersed Boundary Lattice Boltzmann & Finite Element Method

In references [93, 92], a combined 3D model is used: lattice Boltzmann (LB) [157, 159] for the
fluid solver, a constitutive model for the membrane dynamics, and a finite element method
(FEM) for the strains in the capsule. An immersed boundary method (IBM) captures the
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interaction of the fluid and the membrane.
The lattice-Boltzmann-equation (2.31) discretises the Boltzmann-equation. It introduces a
number of q populations fi (i = 0, ..., q − 1) streaming along a regular lattice with constant
∆x in discrete time steps ∆t. Those populations can be regarded as mesoscopic particle
packets which propagate and collide. fi evolve as

fi (~x+ ~ci∆t, t+ ∆t)− fi (~x, t) = −1

τ

(
fi (~x, t)− f eq

i (~x, t)
)

+ Fi∆t (2.31)

where τ is the fluid relaxation parameter, linked to viscosity and the speed of sound as

ν = c2
s

(
τ − 1

2

)
∆t and cs =

√
1
3

∆x
∆t .

At each time step t, the populations propagate along the q discretised velocity vectors ~ci
to the next neighbours. At those points, they collide according to the right-hand side of
equation (2.31). Equilibrium populations are

f
eq
i = wiρ

(
1 + 3~ci · ~u+

9

2
(~ci · ~u)2 − 3

2
~u · ~u

)
(2.32)

with wi being lattice weights. Appropriately chosen, the fluid is isotropic and the Navier-
Stokes-equations are approximated. Equation (2.32) resembles a truncated Maxwell distri-
bution, approximating small Mach numbers. Fi in equation (2.31) incorporates body force
densities ~f which represents fluid-membrane coupling or external forces:

Fi =

(
1− 1

2τ

)
wi

(
~ci − ~u
c2
s

+
~ci · ~u
c4
s

~ci

)
· ~f (2.33)

The macroscopic fluid properties are obtained from the populations fi. At each fluid lattice
node, density and velocity are extracted from the zeroth and first moments, respectively:

ρ =
∑
i

fi

ρ~u =
∑
i

fi~ci +
∆t

2
~f . (2.34)

Simple shear flow is implemented via a bounce-back method of moving walls [98], with the
velocity vw. For a valid LB method, the Mach number, and thus vw, has to be small. For the
flow to be Stokesian, the Reynolds number has to be small, further reducing vw.
The constitutive model for the membrane is described by the total energy W = Ws + Wb +
WA +WV , made up of contributions such as areal strain, bending, surface and volume con-
servation. A hyperelastic model (neither viscosity nor plasticity) describes the areal strain
energy density Ws =

∫
wsdA which depends only on the invariants I1 = λ2

1 + λ2
2 − 2 and

I2 = λ2
1λ

2
2 − 1, which are the local principal in-plane stretch ratios. This applies for a thin

membrane with isotropic and homogeneous elastic properties.
Deformations of biological cells can have non-linear stress-strain relations and this has to be
considered by the energy model [156]:

ws =
ks
12

(
I2

1 + 2I1 − 2I2

)
+
kα
12
I2

2 (2.35)

with elastic shear modulus ks and area dilation modulus kα.
The capsule membrane is triangulated and the membrane forces are determined at the nodes.
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The strains λ are obtained from the node displacements, described by the linear displace-
ment field ~ν(x, y). The displacement gradient tensor D leads to the strain:

λ2
1 + λ2

2 = trDTD

λ2
1λ

2
2 = detDTD (2.36)

With the principle of virtual work, the forces by node i on the fluid are calculated:

Fi = −∂W (~xi)

∂xi
(2.37)

Figure 2.1: Immersed boundary method in 2D. The forces of the membrane mesh (light grey)
affect the fixed fluid grid (black) via the interpolation stencil (dashed square). Taken from
reference [93].

In IBM, an arbitrary membrane coordinate system (coordinates ~xi(t)) is coupled to the
fixed regular fluid lattice (coordinates ~X) [135, 136]. As the membrane is deformed, it exerts
a force ~Fi(t) on the fluid, which experiences a body force density:

~f( ~X, t) =
∑

node i

~Fi(t) δ
(
~X − ~xi(t)

)
(2.38)

with kernel δ being a discretised Dirac delta distribution with finite support. Its choice de-
fines momentum and angular momentum conservation.
The new velocities of membrane node i are calculated through the new lattice velocities and
the old node positions:

~ui (t+ ∆t) =
∑
~X

~u( ~X, t+ ∆t)δ
(
~X − ~xi(t)

)
(2.39)

At the membrane, a no-slip boundary condition is assumed. Thus, the membrane moves
with the ambient fluid. The membrane nodes are advected via the Euler rule:

~xi(t+ ∆t) = ~xi(t) + ~ui(t+ ∆t)∆t (2.40)

2.2.4 Multiscale Model

The multiscale model considers the viscoelasticity of lipid bilayer and cytoskeleton, the flex-
ible connectivity between them, and the interactions with inner and outer fluids [134]. Char-
acteristic is the multiscale structural description of the membrane (see figure 2.2), predicting
physical mechanisms of the dynamic response at molecular level.
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Figure 2.2: Multiscale model: (a) complete cell level (b) protein skeleton molecular detailed
level (c) spectrin level. Taken from reference [134].

The complete cell level models the membrane as two continuous layers using FEM.
The skeleton and bilayer interact via a normal contact force and via a lateral slide due to
the mobility of the skeleton-bilayer pinning points. The normal direction follows a linear
spring-softened potential, while the tangential direction follows viscous friction. The type
of friction is determined by the diffusion of transmembrane proteins. Although the overall
surface area is conserved, bilayer and skeleton can differ locally in their deformations. The
constitutive properties of the bilayer are taken from measurements, while the constitutive
properties of the skeleton are calculated by the intermediate level.
The generalised Voigt-Kelvin stress-strain relation [36] describes viscoelasticity:

Θ1hi = T +
µi

2λ2
1λ

2
2

(
λ2

1 − λ2
2

)
+ 2µi

1

λ1

Dλ1

Dt
(2.41)

where Θ1/2 are the principal stresses, T is the isotropic tension, λ1/2 are the principal stretches
and µi is the surface shear stiffness. D/Dt is the material derivative and νi is the surface
viscosity. hi is the layer thickness (i for bilayer or cytoskeleton). Θ2 can be calculated ex-
changing the indices 1 and 2 in equation (2.41).

The protein skeleton molecular detailed level yields the constitutive law for the inner
layer. It models the junctional complex and considers the dynamic response of the fully
coupled skeleton-bilayer structure. The junction between spectrin and actin protofilament,
and thermal effects are considered, based on the molecular architecture. µs and T depend
on deformation and are fed into the complete cell model to represent the cytoskeleton:

µs =
1

A0

∂Φ

∂β
|α

T =
1

A0

∂Φ

∂α
|β −

C

A2
(2.42)
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with junction complex strain energy Φ, initial and current junction areas A0 and A, steric
coefficient C, α = λ1λ2 − 1 and β =

λ21+λ22
2λ1λ2

− 1. For the bilayer, T = Kb (λ1λ2 − 1) with area
stiffness Kb.

The spectrin level uses a stress-strain model based on the Arrhenius equation to model
the mechanical properties of spectrin, including (un)folding reactions. Spectrin is a multido-
main protein able to overstretch due to unfolding of domain or multiple repeats. Thus, its
transient force-extension curve has a sawtooth shape, and each peak represents an unfolding
event [146, 101]. This curve also depends on the rate of extension.

An information-passing algorithm couples the levels: predictions of more detailed levels
are summarised as constitutive laws and input into the coarser levels. Conversely, 3D con-
figurations and deformations, predicted by the complete cell level, are used by the skeleton
level to determine mesoscale mechanics and mechanical loads at the protein links (’mechan-
ically induced structural remodelling’).
The fluid-structure interaction is modelled by a boundary element method (BEM) and a dis-
tribution of stokeslets on the membrane surface. To discretise the boundary integral equa-
tion, isoparametric bilinear quadrilateral boundary elements are used, avoiding the shear-
locking problem [13, 179]. The principle of virtual work relates surface traction and nodal
forces [179]. The boundary integral equation of interface dynamics [142] is the basis for the
BEM:

~vf (~x0) =
2

1 + Λ
~vf0 (~x0)

− 1

4πη1(Λ + 1)

∫ ∫
Γfb

G(~x, ~x0) ·∆~tf (~x) dΓ(~x)

+
1− Λ

4π(Λ + 1)

∫
p.v.

∫
Γfb

~vf (~x) · T(~x, ~x0) · ~n(~x) dΓ(~x) (2.43)

with the undisturbed velocity field ~vf0 (~x0), fluid-solid boundary Γfb and the ratio of internal
and external fluid viscosity Λ. ∆~tf is the discontinuity in the interfacial surface traction.

∫
p.v.

means principal value integration. G and T are the Green’s functions for velocity and stress,
respectively.

2.3 Red Blood Cell Model of this Thesis

RBCs of humans and other mammals have neither a nucleus nor intracellular organelles
[91]. Their cytoskeleton is only two-dimensional. The effective volume Veff is the ratio of the
volume of an arbitrary object to the volume of a sphere with the same surface area Atot. For
RBCs, Veff ≈ 0.63. Thus, RBCs are deformable, i.e., the cell shape can vary under constant
Atot and V , which is necessary for its physiological functioning. The cell volume is stabilised
homeostatically by ion pumps [75, 91]. Physically-mechanically, a mammalian RBC is a thin
viscoelastic shell filled with a viscous fluid and suspended into another viscous fluid.
The RBC is modelled as an impenetrable membrane enclosing an inner fluid. When required,
we use bounce-back reflections to reflect fluid particles on the membrane, both from inside
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and outside [40]. The membrane is modelled as a triangulated network of springs, featuring
stretching, bending and compression resistance. The membrane is made up of Nv = 500 −
3000 vertices, see figure 2.3. Governing potentials, numerical implementation and parameter
values are identical to those in reference [46], except when noted in the text.

Figure 2.3: The RBC membrane is composed of N = 500− 3000 vertices, which are intercon-
nected by springs, triangles and dihedrals. Taken from reference [130].

2.3.1 Membrane Triangulation

To build the RBC membrane, Nv vertices are distributed randomly on a spherical surface.
The vertices are displaced by assigning electrostatic-like interactions to them [39]. The re-
sulting mutual repulsion shall distribute them more evenly. The positions of the vertices are
projected onto an axisymmetric shape that models the RBC [39, 37]:

z(r) = ±D0

√
1− r

(
c0 + c1 r + c2 r

2
)

(2.44)

with r = x2+y2

D2
0

, cell diameter D0, c0 = 0.1035805, c1 = 1.001279, and c2 = −0.561381.
The spring and bending energies are further relaxed by flipping adjacent triangles appropri-
ate for energy minimisation [41].

2.3.2 Membrane Potentials

The RBC membrane is composed of Nv vertices. Depending on the phenomena under con-
sideration, the inner fluid might be separated from the outside (see section 2.6.1) [39]. Oth-
erwise, the membrane is permeable and the inner fluid is equivalent to the outer fluid.
The vertices are grouped as bonds, triangles and dihedrals. A preferably homogeneous dis-
tribution of sizes and triangulation degree is pursued [39]. The membrane potentials govern
the interactions among the DPD particles constituting the cell [39]. The following potential
models the area and volume conservation constraints, analogously to a Hookean spring:

Vangle =
ka(A−Atot0 )2

2Atot0

+
∑

k∈1...Nt

kd(Aj −Ak0)2

2Ak0
+
kv(V − V tot

0 )2

2V tot
0

(2.45)
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with A being the membrane area, Atot0 the global equilibrium area, Ak the area of the kth
triangle, Ak0 the equilibrium area of the kth triangle, V the volume and V tot

0 the equilibrium
volume. Furthermore, ka, kd and kv are the global area, local area and volume constraint
constants, respectively. The related forces ~F = −∇V for the area constraint are:

(fx1, fy1, fz1) = α(~ξ × ~a32)

(fx2, fy2, fz2) = α(~ξ × ~a13) (2.46)

(fx3, fy3, fz3) = α(~ξ × ~a21)

with ~aij , (i, j) ∈ {1, 2, 3} the three edge vectors of one triangle, the normal ~ξ = ~a21 ×~a31 and
Ak = |~ξ|/2. For the global area conservation, α = βα/(4Ak) with βα = ka(A − Atot0 )/Atot0

for the kth triangle. For the local area constraint, α = −kd(Ak − A0)/(4A0Ak). The volume
constraint force is

(fx1, fy1, fz1) =
βv
6

(~ξ/3 + ~tc × ~a32)

(fx2, fy2, fz2) =
βv
6

(~ξ/3 + ~tc × ~a13) (2.47)

(fx3, fy3, fz3) =
βv
6

(~ξ/3 + ~tc × ~a21)

with ~tc being the centre of mass of the kth triangle and βv =
kv(V−V tot0 )

V tot0
.

To model shear elasticity, a bond potential connects two vertices. An attractive worm-like-
chain model, combined with a repulsive power function, models a spring-behaviour be-
tween vertices:

Ubond = Uwlc + Upow

Uwlc = kBT
lm
4p

3x2 − 2x3

1− x
(2.48)

Upow(li) =

{ kp
(m−1)lm−1

i

for m > 0,m 6= 1

−kp log (li) for m = 1

with x = l/lm ∈ (0, 1), l the spring length, lm the maximum spring extension, p the persis-
tence length and kBT the energy per unit mass, kp the force coefficient and m an exponent.
The forces are

~fwlc(l) = −kBT
p

(
1

4(1− x2)
− 1

4
+ x

)
Îij

~fpow(l) =
kp
lm
Îij (2.49)

with Îij = ~lij/l being the vector of unit length between the spring ends i and j, l = |~lij |,
x = l/lm. In the simulation p and kp are not known, but the macroscopic shear modulus is
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given by

µ0 =

√
3

4

(
kBT

plmx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+
kp(m+ 1)

lm+1
0

)
(2.50)

with l0 being the equilibrium spring length. If the spring length equals the equilibrium
spring length, the superposition of the two forces (equations (2.49)) should be zero and we
obtain for kp:

kp =
lm0
p
kBT

(
1

4(1− x0)2
− 1

4
+ x0

)
(2.51)

A bending potential between two adjacent triangles with a common edge determines the
angle between the normals of these two triangles:

Vbend =
∑

j∈1..Ns

kb[1− cos(θj − θ0
j )] (2.52)

with θj being the instantaneous and θ0
j the spontaneous angle between the triangles. The

force is given by

(fx1, fy1, fz1) = b11(~ξ × ~a32) + b12(~ζ × ~a32)

(fx2, fy2, fz2) = b11(~ξ × ~a13) + b12(~ξ × ~a34 + ~ζ × ~a13) + b22(~ζ × ~a34)

(fx3, fy3, fz3) = b11(~ξ × ~a21) + b12(~ξ × ~a42 + ~ζ × ~a21) + b22(~ζ × ~a42)

(fx4, fy4, fz4) = b12(~ξ × ~a23) + b22(~ζ × ~a23) (2.53)

with the triangle normals ~ξ (see above) and ~ζ = ~a34 × ~a24 and the corresponding areas
A1 = ξ/2 and A2 = ζ/2 and b11 = −βb cos θ/ξ2, b12 = βb/(ξζ) and b22 = βb cos θ/ζ2 with
βb = kb(sin θ cos θ0 − cos θ sin θ0)/

√
1− cos2 θ. Note that kb = 2√

3
kc with bending rigidity kc

(see also equation 1.8 and section 1.5.2, there, the bending rigidity is called KB).
In this work, mostly KB = 70kBT is used.

2.4 Choices about the Rheological Properties of RBCs

Stress-Free State

An important question concerns the stress-free shape of a RBC. This shape is defined as the
state of zero shear stress [134, 87, 162]. Under physiological conditions, a stressed, biconcave
shape with a constant surface area prevails. This so-called resting shape is characterised by
minimal elastic energy, which comprises the shear energy of the cytoskeleton and bending
energy of the bilayer [134].
An indicator for a spherical stress-free shape is a low critical shear rate for the resting shape,
to transit from tumbling to tank-treading dynamics in shear flow [134, 171]. On the other
hand, a RBC has a shape memory of the resting shape, corroborating that membrane ele-
ments are distinguishable and do not originate from a spherically symmetric state [47]. In
those studies, a RBC membrane was marked with tracer particles. Applying a shear force,
the membrane elements change their positions. After stopping the force and relaxing the
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cell, the tracers return to their former position. Thus, each surface element has its particular
place, i.e. memory effect. This has been discussed recently [26, 134].

Figure 2.4: Two candidates for the RBC stress-free shape.

In this thesis, a spheroidal stress-free shape of V
V0

= 96% is chosen [86, 105]. V0 is the
volume of a sphere of equal surface area. The spheroid can be identified as the nucleated
erythroblast originating from the bone marrow. During maturation, the erythroblast (see
graphics 2.5,1.1) expells its core to become the anucleate erythrocyte [118, 23]. We use vol-
ume deflation at constant surface area to obtain a biconcave resting shape of V

V0
= 64%. This

is in contrast to reference [46], where a biconcave stress-free shape was used. This has con-
sequences on the cell’s flow behaviour, see section 5.5.
A spheroid is described mathematically by

(
x2 + y2

a2

)2

+
(z
b

)2
= 1 (2.54)

with a, b being radii [185]. Its area is S = 2πa2 + π b
2

e ln
(

1+e
1−e

)
with the ellipticity e =√

1−
(
b
a

)
. Its volume is V = 4

3πa
2b.

Figure 2.5: Erythroblasts still have a cell nucleus, which is expelled during maturation to
become an erythrocyte. Taken from Imperial College London, Department of Medicine.
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Cytosol Viscosity

A further important factor for determining RBC dynamics is the viscosity ratio λ of cytosol
(inner fluid) and blood plasma (outer, surrounding fluid) [191]. In vivo, for physiological
conditions, λ ≈ 5. Experiments were often performed with λ < 1 [3, 49, 183]. Numerical
studies often use equal viscosities (λ = 1) for simplicity [158, 46]. Changes with λ in the
phase diagram for cell shapes were verified, in agreement with experiments [163].

Figure 2.6: Simulation snapshot of a RBC with separate inner and outer fluid.

2.5 Simulation Units of Measurement

In order to relate the parameter values employed in the simulations (superscript M ) with
their corresponding physical values (superscript P ) and to be able to compare simulations
with experiments, the parameters have to obey certain dimensionless ratios. We construct
dimensionless ratios which have to be equal in simulation and reality [132]. Considering e.g.
the viscosity η, which has a unit of Pa · s =

[
force
area · time

]
, the dimensionless ratio can be:

ηP ·DP

τP · Y P
=
ηM ·DM

τM · YM
. (2.55)

It is practical to select measures accessible in experiments. With the help of their dimen-
sionless ratios, the remaining simulation parameters can be obtained. If, for example, the
effective radius of a RBC has DP = 3.3335µm in reality and DM = 3.3335 chosen in sil-
ico, other lengths in the simulation can also be found using this relation. With µM0 = 180,
µP0 = 7.7 · 10−7N

m , ηP = 10−3Pa · s, ηM = 32.85 and τM = 1, a corresponding physical time
scale of τP = 0.0071s can be found.
The unit of the shear modulus can also be formed in terms of energy and RBC radius [133].
The expression µD2 has units of energy. It corresponds to the energy cost of a given pre-
defined stretch applied to a membrane patch of area R2. On the other hand, kBT gives the
typical energy stored in fluctuations. This way, µD

2

kBT
is simply the ratio of these two energy

scales, as L
R is a ratio of two length scales.

2.6 Boundary Conditions in Flow

These concepts have been developed in reference [39].
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2.6.1 Impermeability of Membranes and Walls

In order to mimic boundary effects correctly, different microscopic behaviours are conceiv-
able. To start with the classical behaviour, specular reflection refers to the law of reflection
(the angle of incidence equals the angle of reflection). However, on the length scales con-
sidered here, this is not necessarily valid. The reason is that the real surface might exhibit a
rough structure at the microscale.
In order to correctly model no-slip and the distribution of temperature and density close
to a boundary, several procedures have to be implemented. Particle trajectories close to a
boundary (solid or dynamic) are checked for boundary crossing. If yes, the exact time of
contact t′ =

(
p− xBC

)
/
(
vBC − vp

)
and position of contact ~p

′
are calculated. p and vp are

the position and velocity of the particle; BC refers to the boundary. The particle moves to the
boundary until t′, then it is reflected and moves away from the boundary. New velocities and
positions are assigned, conserving linear momentum for the system of particle and bound-
ary. This is illustrated for the case of a triangulated boundary. The plane of one triangle is
described as:

(~n · ~s+ nd) = 0 (2.56)

where ~n is the surface normal and nd can be obtained by setting ~s equal to one of the corner
vertices. To see if the particle is on the positive or negative side of the surface normal, the
following scalar product is defined:

b(t) = ~n(t) · (~p(t)− ~s1(t)) (2.57)

If b(0)b(∆t) ≤ 0, crossing has happened and reflection is needed. Instead of specular re-
flection, here, mostly the bounce back method is used. It essentially reverses the particle’s
motion:

~v pnew = 2~vBC − ~v pold (2.58)

~pnew = ~p
′
+
(
∆t− t′

)
~v pnew (2.59)

2.6.2 No-Slip Boundary Conditions and Adaptive Shear Force

The adaptive shear force corrects the velocities of particles close to non-periodic boundaries.
The tangential components of these velocities shall match the shear rate (velocity gradient)
determined by the boundary’s velocity vBCt . Every particle interacts with its neighbours
within a distance of rc (sphere of interaction centred around a particle, see figure 2.8). Close
to a solid boundary, this sphere contains wall particles. As they have equal velocities, the
wall lacks a velocity gradient, see figure 2.7.
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Figure 2.7: Velocities of solvent (blue) and wall particles (grey) shown as arrows.
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In order to correct this, all particles close to the boundary, i.e. h < rshear, experience a
tangential force:

F kt (h) = Ck (∆vt)w(h) (2.60)

with k being the iteration number and the weight function

w(h) =

(
1− r

rshear

)power
(2.61)

and the iterative adaptive force strength

Ck+1 = Ck + α∆vt (2.62)

where α is a relaxation parameter. ∆vt = vBCt − vestt . The estimated velocity is extrapo-
lated from the near-boundary velocity profile, which is obtained through local cell averag-
ing. After a number of iterations, the particles’ velocities approach the boundary’s velocity
(−→ ∆vt ≈ 0) so that F kt (h) and Ck converge to constant values.
Additional pressure forces minimise disturbances in density profile. Particles close to a
boundary experience an imbalance of forces, as each of them interacts with a not-fully spher-
ical region of fluid particles, see figure 2.8.
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Figure 2.8: Interactions of a solvent particle in bulk and of a solvent particle close to wall.
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Chapter 3

Light Scattering by a RBC

3.1 Introduction

Light scattering (LS) is used frequently in condensed and soft matter to investigate the struc-
ture and dynamics of the constituting particles [28], [18], particularly for polymer and col-
loidal suspensions [128]. Dynamic Light Scattering (DLS) can be employed for the moni-
toring of certain medical conditions without the need of contrast agents or radiation doses
[124]. In this work, the theoretical framework corresponds to the Rayleigh Gans Debye -
approximation (RDG), which is appropriate for small ratios of the refractive indices of scat-
terer and surrounding medium. This approximation assumes elastic scattering, such that
the wavelength is not altered by the scattering process [28]. Multiple scattering and light
absorption are neglected; the dielectric permittivity is set to unity.
The scattered electric field strength is proportional to a Fourier component1 of the instan-
taneous microscopic density of scatterers [28]. The reason is that an assembly of particles
acting like a set of scattering centres at the different positions ~ri induces a different phase
shift ∆φ of the scattered light. The scattered field strength ~Es of an incident monochromatic
plane wave is influenced by the particles’ instantaneous positions ~ri(t) which determine
the density ρ(t). This structural information can only be obtained if the mutual distances
between particles are on the order of the incident wavelength. Then, the scattered waves
from different particles interfere destructively or constructively and allow conclusions on
the structure, shape and motion of suspended components.
In light scattering experiments [124, 150, 96, 104, 12], a laser beam is directed to a sample
and the scattered light is measured at a scattering angle. The part of the sample that is il-
luminated by the (laser) light is called scattering volume [114, 27]. The distance between
detector and source has to satisfy the far-field-approximation, which describes the incident
and scattered light as plane waves. The finite size of the detector is considered theoretically
by integrating over the detector area [114, 81]. This finite area corresponds to a certain range
of scattered wave vectors ~ks, thus momentum transfer vectors ~q, resulting in an average
over temporally fluctuating speckles. The correlation decreases with increasing coherence
area occupied by the detector, due to the averaging out of less correlated fluctuations. Here,
the time correlations of the scattering amplitudes are averaged over the orientations of the
momentum transfer q̂, which is equivalent to averaging over the orientations of the scatterer.
Experimental LS suffers from several difficulties: impurities or air bubbles in the samples,

1This component is determined by the direction in which the scattered light is measured.

39



40 CHAPTER 3. LIGHT SCATTERING BY A RBC

strong light absorption, particle sedimentation, multimodal distributions, high polydisper-
sity and particle interactions. Such problems are absent in simulations, making numerical LS
approaches appropriate for complementary comparisons and validations, despite a number
of modelling assumptions.

Figure 3.1: Experimental setup for light scattering. A laser beam traverses optical devices
until it hits the (blood) sample. A detector receives the light that is scattered at an angle Θ
to the transmitted beam. Then, the signal is processed by a correlator and analysed in a PC.
Taken from reference [150].

3.2 Characteristic Quantities

The total scattered electric field strength of the incident light (characterised by the strength
~E0 and wave vector ~q0) can be described by the contributions of all scattering centres, each
with an individual scattering strength f(~r):

~Es =
N∑
j=1

∫
Vj

f(~r)ei(~q0−~qs)·~r ~E0 d~r (3.1)

with ~qs being the scattered wave length. f(~r) is only non-zero within theN particles, thereby,
the integration does not need to be performed over the whole macroscopic region of interest,
but only over the corresponding regions Vj .
While in experiments absolute field strengths are considered, in simulations, the relative
phase change due to the positions of scattering centres suffices. The interference of scattered
waves can be described by the superposition of all scattering phases, which is called the
scattering amplitude:

Ab(~q) =

∫
V

ei~q·~r︸︷︷︸
def
= ~∇·~ψ(~r,~q)

d3r
Gauss

=

∮
A

~ψ (~r, ~q) · n̂ d2r . (3.2)
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Here, the divergence (Gauss) theorem can be employed to relate the bulk scattering ampli-
tude (corresponding to the volume) with the surface amplitude [132]. The surface integral is
later useful in connection with the triangulated surface of a cell. ~ψ (~r, ~q) is chosen such that
its divergence is the exponential function in the volume integral.
The ergodicity of a system of cells is also employed in the field of scattering [28]; time av-
erages are equivalent to ensemble averages. Light scattering quantities are measured as a
function of the scattering angle Θs, which, at some fixed wavelength λ, sets the magnitude
of the wave vector q:

q = |~q0 − ~qs| =
4π

λ
sin

(
Θs

2

)
. (3.3)

Equation (3.3) includes the difference of incoming and scattered wave vector, and describes
the momentum transfer of incident light wave to an object.
The interpretation of Ab(~q) in experiments requires ensemble averaging over the orienta-
tions and positions of the suspended particles. In experiments or simulations, this ensemble
average is obtained by time averaging. Thus, the amplitude should be collected over a time
interval that is much larger than the time required for the suspended particles to attain all
accessible configurations.

3.2.1 Form Factor

The form factor describes the interference of the scattered electric fields from different vol-
ume elements of the same particle [28]. First, the scattering amplitude Bj of the jth colloidal
particle of volume V 0

j is introduced.

Bj(~q) ≡
∫
V 0
j

ε(~r ′)− εf
εf

ei ~q·~r
′
d~r ′ (3.4)

ε(~r) is the isotropic dielectric constant at point ~r, which is generally inhomogeneous. εf is
the dielectric constant of the suspending fluid, which is assumed homogeneous.
The form factor is defined as the squared absolute value of the scattering amplitude nor-
malised by its value without momentum transfer:

P (q) ≡
∣∣∣∣B(q)

B(0)

∣∣∣∣2 (3.5)

Considering the special case of spherical (radius a) and optically homogeneous particles
(ε(r) = ε0), the form factor can be simplified to

P (q) =

∣∣∣∣ 3

a3

∫ a

0
r2 sin(qr)

qr
dr

∣∣∣∣2 =

[
3
qa cos(qa)− sin(qa)

(qa)3

]2

(3.6)

3.2.2 Structure Factor

The structure factor accounts for the interference of fields scattered from different (Brownian)
particles. The structure factor is interesting because it is the Fourier transform of the pair-
correlation function g(r), which can predict many thermodynamic properties of a colloidal
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system [28].

SF(q) ≡ 1

N

N∑
i,j=1

Bi(~q)Bj(~q) < ei~q·(~ri−~rj) >= 1 + 4πρ

∫ ∞
0

r2 (g(r)− 1)
sin(qr)

qr
dr (3.7)

3.2.3 Dynamic Scattering Function

In dynamic light scattering (DLS), the dynamic scattering function is employed [137, 132,
169]. It is a time-averaged correlation function with time lag t and reference time t0. For a
single scatterer, it is given by:

S(~q, t) =< A(~q, t0)A∗(~q, t0 + t) >t0

=< ei~q·(~rCM (t0)−~rCM (t0+t))

∫
ei~q·~r

′(t0)dV ′
∫
e−i~q·~r

′(t0+t)dV ′ >t0 .

(3.8)

The global position ~r of each scattering element is the sum of the centre of mass (CM) and a
local vector:

~r = ~rCM + ~r ′ . (3.9)

The ~rCM (t0)−~rCM (t0 + t) in the prefactor is the distance the CM has passed within t, which
yields information about the dynamics of the scattered object(s). Global translations do not
affect the scattering intensity or the form factor (3.5), but they influence the correlation func-
tion.
In order to sample over the scatterer orientation, S(~q, t) is averaged over the orientations of
the momentum transfer q̂. In the RDG theory, ~q occurs only at the scalar product ~q ·~r, thereby,
this method of sampling is possible.

S(q, t) =< S(~q, t) >q̂

∝ exp
(
−q2Deff(q)t

)
(3.10)

Thus, the simulation has to be long enough for the correlations to decay.
The decay is approximated as a monoexponential function, characterised by the effective
diffusion constant Deff(q). To obtain Deff(q), the initial slope of − ln

(
S(q,t)
S(q,0)

)
vs. t is fitted

and divided by q2.
Equation (3.10) is exact for a rigid sphere, with Deff(q) = DT . Rotational diffusion is not
relevant in this case.
In general, Deff(q) has a limiting behaviour as:

lim
q→0

Deff(q) = DT

lim
q→∞

Deff(q) = Drot , (3.11)

where q (equation (3.3)) is a quantity of reciprocal space. Small q correspond to large length
scales and vice versa. Thus, the limit of small q describes translational motion while the limit
of large q describes rotational motion.
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Equation (3.10) can be motivated as follows: let us consider a suspension of diffusing, scat-
tering particles. Instead of the amplitude A(~q, t), we can consider the concentration c(~r, t).
This is justified, since an amplitude can arise only at the locations of scattering particles (see
also equation (3.7) with the pair correlation function).
Fick’s law of diffusion is given by:

∂c(~r, t)

∂t
= D∇2c(~r, t) (3.12)

In this partial differential equation, diffusion coefficient D is assumed to be independent of
position and concentration. Solving equation (3.12) by Fourier transform yields:

c̃(~q, t) = c̃0 exp
(
−Dq2t

)
(3.13)

3.3 Light Scattering by Simple Objects

In order to validate numerical calculation of scattering quantities, the model is applied to
simple shapes with analytically obtained scattering amplitude.

3.3.1 Light Scattering by Spheres

The form factor of a sphere has been described in equation (3.6) and the effective diffusion
coefficient of a sphere in references [96, 17, 151].
Here, a spherical shell is modelled as an ensemble of vertices connected by springs and
arranged as triangles. The form factor of this triangulated model sphere is obtained from the
surface integral in equation (3.2). It is calculated as the sum of the scattering contributions of
all triangles. It reproduces accurately the theoretical prediction, which can be seen in figure
3.2. Deviations occur only at the zeroes of equation (3.6) where destructive interferences
extinguish the scattered signal. These zeroes show up as singularities in the logarithmic
plot.
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Figure 3.2: Form factor of a sphere; comparison of a numerical calculation and the analytical
result from equation (3.6). The momentum transfer ~q is in x-direction. Due to symmetry, all
directions of ~q yield equivalent form factors.
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To calculate the correlation functions and the effective diffusion coefficient, the simu-
lated sphere was subjected to Langevin dynamics. The advantage of a Langevin simulation,
compared to DPD, lies with a lower computational cost as no explicit solvent needs to be
simulated. In addition, rotational dynamics or (an)isotropic friction are not important in the
case of a spherically symmetric object. The parameters are listed in table 3.1. The simulation

Symbol Meaning in units of value
R sphere radius l = 1µm 1
σ diameter of the vertices l 0.25
m vertex mass m 1
T temperature of the system ε

kB
1

damp damping time of Langevin
model

√
ml2

ε 0.5

ε Lennard-Jones interaction ε 1
nsim number of simulation steps 1 3 · 106

∆t width of DPD time step
√

ml2

ε 10−4

Table 3.1: System parameters used for DLS on a sphere.

results, depicted in figure 3.3 fit well to the theoretical expectation that Deff = DT [96], [17],
[151]. The deviations appear only at the q-values for which the logarithmised form factor
shows those singularities mentioned above. It should be noted here that the scaling of fig-
ures 3.2 and 3.3 is different; the q-axis of the form factor is normalised by the sphere’s radius
R = 1µm and the q-axis of the effective diffusion coefficient Deff(q) is normalised by lmin (in
analogy to reference [132]). The latter is the smallest length scale (∼= resolution) of the DLS-
calculation and given by the average of triangle edge length lmin =

√
4A√
3ntri
≈ 0.15µm, where

A is the object’s total surface area and ntri the number of triangles composing the surface.
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Figure 3.3: Effective diffusion coefficient of a sphere.
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3.3.2 Light Scattering by Cylinders

Due to the cylinder’s geometry, its amplitude differs for ~q parallel or perpendicular to the
cylinder axis.
Here, these two directions are considered as they have analytically calculable amplitudes.
The modelling and calculation is analogous to that of the sphere in section 3.3.1. For a cylin-
der with radius R = 5µm and length L = 20µm, the corresponding amplitudes are:

A(~q‖) =
2πR2

q
sin(qL/2)

A(~q⊥) =
2πLR

q
J1(qR) (3.14)

where J1 is the Bessel function of the first kind of order 1. Normalising the amplitude by the
scatterer’s volume (here, V = πR2L), taking the absolute square and taking its logarithm,
one obtains the form factor. It is compared to theory in figures 3.4 and 3.5. The fit function,
gained from equation (3.14), accurately reproduces the size parameters.
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Figure 3.4: Form factor of a cylinder; comparison of a numerical calculation and the analyti-
cal result from equation (3.14). ~q is in axial direction.
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Figure 3.5: Form factor of a cylinder; comparison of a numerical calculation and the analyti-
cal result from equation (3.14). ~q is in lateral direction.

3.4 Light Scattering by Red Blood Cells

3.4.1 Introduction

Both static and dynamic scattering properties of red blood cells (RBCs) are investigated.
Scattering techniques allow experimentalists to measure various blood flow properties [106].
However, it is not always clear how different signals (e.g., static and dynamic structure fac-
tor) can be interpreted. Thus, simulated trajectories of a single moving RBC are analysed a
posteriori with a parallel C-code written for light scattering calculations. Scattering proper-
ties of a diffusing or flowing cell are examined to distinguish (superimposing) effects, such
as translation, rotation or deformation in a physiologically realistic environment.
These results can be employed both for validation of the theoretical approach and the inter-
pretation of experimental data [145], such as scattering in Couette or Poiseuille flow. The
insights from these studies could deepen the understanding of specific types of blood flow
and lead to a development of improved means of detection [7].
Measuring time-dependent velocity fields is important when studying the cardiovascular
system. Doppler ultrasound velocimetry provides one velocity component along a profile.
Velocities are determined from the Doppler shift in the sound scattered by moving RBCs [1].
Ultrasound frequencies between 20 and 55 MHz yield a resolution of the order of tens of
microns [129, 77]. While Doppler ultrasound is viable to explore the velocity fields in large
vessels, the resolution is limited by the sound frequency. Using monochromatic, coherent
laser light instead improves the resolution drastically [1]. As the velocities of RBCs and light
differ by orders of magnitude, the Doppler shift will be difficult to detect. Thereby, a sec-
ond signal is mixed with the first. This heterodyned signal is order of magnitude lower in
frequency. It yields the Doppler shift and thus, local blood velocity [1] (laser-Doppler ve-
locimetry).
The haemoglobin suspended in cytosol causes RBCs - and thereby whole blood - to both
scatter and absorb light in the UV, blue and green spectral range [116].
The diffraction pattern from illumination of a dilute suspension of RBCs has been investi-
gated experimentally [123, 150]. This allows to draw conclusions about the inhomogeneity
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in cell shape and deformability and about a cell’s characteristic motion. As these properties
may differ for normal and pathological situations, light scattering can be used to measure the
state of health of erythrocytes. The properties of the intensity of scattered light, such as the
speckle pattern on a screen, quantify the variance in cell shape-parameter. Optical force on
diseased blood cells and the haemoglobin refractive index were studied [63]. Earlier studies
span from theoretical approaches using ellipsoidal disks to experimental approaches using
rat erythrocytes [52, 154].
The absorption spectrum of blood is used for blood analysis, e.g. in a pulsoxymeter to mea-
sure the oxygen saturation. In our simulations, the phenomenon of absorption is neglected.
In light scattering it is essential to consider the dielectric constant of a sample, in terms
of its homogeneity and isotropy. The ability of RBCs to scatter light originates from iron-
containing haemoglobin, which is presumably homogeneously distributed within a cell. The
dielectric constant parallel and perpendicular to the main axis are different in the case of
birefringence. This can have two causes: form birefringence by multiple scattering or from
intrinsic birefringence by a specific molecular structure. For simplicity, both causes are ne-
glected in simulations.
RBCs are more comparable to thick disks than to spheres. Light scattering by a rod of
length L and thickness D has been treated theoretically [28], see also section 3.3.2. The auto-
correlation function is found to be multi-exponential, even for a dilute case. The number
of non-negligible exponentials depends on the value of the momentum transfer. For larger
values of the momentum transfer, rotational motion gains impact and more exponentials are
required to represent the decay of the correlation function properly. For smaller scattering
angles such that |~q| · L < 1 and |~q| · D < 1.2, rotational motion does not significantly influ-
ence the decay and translational motion dominates. Unlike for spherical scatterers, changes
in orientation also change the interference of scattering signals from different parts of the
object, thereby changing the form factor.
In this chapter, the membrane is assumed to be permeable and the inner fluid has the same
viscosity as the outer fluid.

3.4.2 Index of Refraction of Blood and Choice of Wavelength

The open-source software ADDA [192] can be employed to calculate scattering by consid-
ering the object as a discretisation of cubic dipoles interacting with the incident light ac-
cording to classical electrodynamics. This approach makes it possible (and necessary) to
regard quantities like incident and scattered beam separately, unlike only their difference in
the RDG-approach. Furthermore, the index of refraction n can be set individually for differ-
ent parts of the scatterer.
n is generally a complex quantity; its imaginary part describes the absorption of light. The
value of n for haemoglobin [196], single RBC [131] and whole blood solution [116] has been
researched in the last decades with varying outcomes.
Here, the n-value obtained in reference [131] is employed as it fits best our dilute approach
where a single cell is considered (several cells and multiple scattering is not feasible with
ADDA due to the high computational cost). Their value of n is obtained by tomographic
phase microscopy [24], where a wavelength of 633nm was used. Wavelength-dependency
of haemoglobin was investigated [196] and it is assumed that this result is close to the value
needed here for a wavelength of 802nm. This value of λ was chosen for comparison with
the results from the experimental group at University Konstanz, led by Professor G.Maret.
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λ = 802nm is the isosbestic wave length at which light absorption is equal for oxygenated
and deoxygenated blood [150, 116]. Thus, oxygen saturation should have no impact on light
scattering in these experiments.
ADDA is built for static scattering functions. A framework parallel code was developed to
process each snapshot of a RBC trajectory and input the static information (position, ori-
entation) into ADDA. The static data was processed by ADDA while the correlation was
computed using the developed framework code.
Due to computational expense and inconsistencies with the RDG results, the ADDA ap-
proach was not pursued further. Only the q2 dependence in equation (3.10) was obtained,
yet the function Deff(q) was so different from that of the RDG approach that conclusions
were not eligible.

3.4.3 Static Light Scattering by a Single Red Blood Cell

The dynamics of RBCs in shear flow and their aggregation at low shear rates has been stud-
ied by laser diffractometry [68]. Figure 3.6 nicely combines shear and aggregation ordering
in one plot of the scattered light (ordinate). The abscissa shows the time course before and
after the shear motion has been stopped. When still in shear motion, RBCs are elongated and
aligned. The light signal is thus small. After the flow has been stopped, the cells disorder
and give rise to more light scattering. Due to the lack of shear forces, they can aggregate
with time and thereby reorder. Thus, scattering decreases again. The conclusion is that dis-
ordering makes the RBC suspension turbid and increases its scattering. Light is scattered
multiple times from cells in proximity with different orientations. This is more probable
in a suspension of random distribution and orientations than in an ordered phase, such as
separate stacks of rouleaux. Ordering, due to shearing or aggregation, decreases scattering.

Figure 3.6: Light scattering depends on the ordering of RBCs. Cells are first sheared, then
flow is stopped. Subsequently, cells start to aggregate. Taken from reference [68]. Reprinted
with permission.
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Figure 3.7: Form Factor of a RBC for different directions of momentum transfer ~q. R is the
effective radius, which is the radius of a sphere of the same surface area.

Here, a single RBC is considered. The calculation of quantities such as the form factor is
analogous to section 3.3.1.
Figure 3.7 shows the form factor of a RBC oriented in x̂. The orientation of a RBC is given by
its axis of symmetry. The cell’s symmetry is clearly reflected in the form factors for different
directions of momentum transfer ~q. It is either parallel (~q = qêx) or perpendicular (~q = qêy/z)
to the cell’s axis of symmetry. Due to the cell’s cylindrical symmetry, the form factors for
~q = qêy and for ~q = qêz overlap.
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Figure 3.8: Scattering Amplitude of a RBC obtained by orientational averaging. n is the
sample size. n = 12 is sufficient to obtain a representative average.
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Figure 3.8 shows the scattering amplitude vs. dimensionless parameter qR for a RBC.
Different curves show the averages of the amplitude, sampling over different orientations
of ~q. Due to the RBC anisotropy, the direction of momentum transfer matters. For the static
case, however, about 10 different orientations are sufficient for a converged average.
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Figure 3.9: Intensity of a RBC obtained by temporal averaging (see section 3.2).

Figure 3.9 shows the scattering intensity of a RBC, temporally averaged. Thus, these data
come from a simulated trajectory, involving translational, rotational and vibrational motion.
The time average means that the cell is arbitrarily oriented towards ~q (and vice versa).
Comparing the RBC to a cylinder, with equation (3.14), the first zeros of these amplitudes are
at q = 2π

L and q ≈ 3.83
R . For the RBC values of R = 3.25µm and L = 2.6µm, one can identify

approximately a minimum and a shoulder indicating the effect of shape parameters on the
scattering.

3.4.4 Dynamic Light Scattering by a Single Diffusing Red Blood Cell

Equation (3.10), applied to RBCs diffusing in a viscous solvent, yields information about
both cell structure and diffusive motion. Here, emphasis is put on the effect of membrane
fluctuations on DLS signals. Thus, cells of different bending rigidities are examined. The
values are given in relation to an energy unit: κ

kBT
= 10; 20; 40.

RBC flickering has been described as a random process of stochastic bending oscillations of
the whole RBC surface having a broad wavelength distribution on the cell scale [91]. The
flickering of an erythrocyte membrane is of both active (metabolic energy conversion) and
passive (thermal fluctuations) nature [91, 172]. Potentially, DLS can shed light on RBC mem-
brane motion and distinguish these contributions. In the present simulations, the fluctua-
tions are purely thermal. Comparing these numerical data with experimental data, differ-
ences caused by a metabolic activity could be identified.
In a fourth parameter set we employ κ

kBT
= 20 but a Young’s modulus Y is reduced by a

factor of 6.2 (correspondingly, the shear modulus is reduced by a factor of 7.4). This was
done to compare the results to those of an MPC simulation by Matti Peltomaeki (unpub-
lished work). Cell area and volume constraint parameters and simulation box size have also
been adjusted to this former study (see table 3.2).



3.4. LIGHT SCATTERING BY RED BLOOD CELLS 51

Symbol Meaning value
A total cell area 132.899
V cell volume 92.2088

Dr effective radius
√

A
π = 2R = 6.5

kBT temperature 1.0
L system size 80

5.7Dr

kd local area constraint 4.2·106kBT
D4
r

At

ka global area constraint 0.0
kV volume constraint 3.4∗104kBT

D6
r

V

YM Young’s modulus kBT
M

kBTP
(DP )

2

(DM )2
YP

c0 spontaneous curvature C0R = 3

Table 3.2: System parameters used in section 3.4.4. Basic length is 1µm. Upper index M
denotes model, while upper index P denotes physical units. Y differs in the fourth setup.

A non-zero spontaneous curvature is applied in order to compensate for the effect of a
nearly spherical stress-free shape [134]. Without spontaneous curvature, such a cell is prone
to develop a cup-shape. Still, only the fourth setup with reduced Young’s modulus shows
a persistent biconcave shape; all other setups eventually exhibit cup-shapes. This has to be
considered when interpreting the scattering data. For each of the cells, a trajectory was cal-
culated and analysed a posteriori by a DLS-code written in C.
An estimate for the decay time of the amplitude correlation function in equation (3.10) is
τdecay = 1

Dq2
= 6πηR

kBTq2
. To capture this dynamics for the analysis, the time interval for saving

cell configurations is set finer than τdecay.
The total simulation length is also crucial, because the cell has to perform enough rotations
to significantly decorrelated the scattering amplitude from that for the initial orientation.
Rotational diffusion time is approximated by the value for a sphere: τrot = 1

2Dr
= 4πηR3

kBT
. The

total simulation time for the four setups is about 20 times longer than τrot to ensure sufficient
rotation of a cell.
Using equation (3.10) for fitting the correlation function with a monoexponential decay func-
tion (see figures 3.10 and 3.11), the effective diffusion coefficient Deff is obtained. In contrast
to a constant Deff for a diffusing sphere (figure 3.3), for a RBC, it shows characteristic peaks
(figure 3.12). The error bars in figure 3.12 have been generated by a more expensive anal-
ysis that considers the standard deviations arising from orientational averaging. For some
|q|-values, the fits yield different values ofDeff if these standard deviations are considered as
error bars, particularly for the low Y simulation.
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Figure 3.10: Decay of intermediate scattering function S(q, t) for κB = 10kBT and different
q. The decay is much faster for higher q, because relaxation times become smaller at smaller
length scales.
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Figure 3.11: Decay of intermediate scattering function S(q, t) for q = 0.5/µm and different
bending rigidities κB . κB has clearly an influence on the decay of the correlation. The curves
for κB = 10kBT and κB = 20kBT are almost the same; yet κB = 40kBT is clearly faster. This
non-linear dependence is reflected in the effective diffusion coefficient in figure 3.12.
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Figure 3.12: Effective diffusion coefficient of a RBC. Different values of the bending rigidity
κB show the impact of membrane fluctuations. The setup with reduced Young’s modulus,
which is the only one exhibiting a biconcave shape, shows stronger diffusion and different
curve characteristics. All curves have been normalised with individual translational dif-
fusion coefficients DT . The symbols on the curves show the error bars obtained from the
orientational averaging.
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Figure 3.13: Effective diffusion coefficient of a RBC, compared to results of a MPC simula-
tion by Matti Peltomaeki and Simón Poblete (unpublished work). All curves have been nor-
malised with individual translational diffusion coefficients DT and minimum length scale
lmin. The plots differ significantly in magnitude and shape.

Figure 3.13 shows a comparison of DPD results to DLS-analysis of an MPC simulation
by Matti Peltomaeki and Simón Poblete (unpublished work). MPC was used to produce the
cell trajectory and a post-processing tool has been used to calculate the scattering functions.
The hydropro result is also based on the MPC trajectory. Hydropro is described in section
3.4.5.
The curves in figure 3.13 differ significantly. In the cases of reduced Young’s modulus, all
cell force parameters should match. That is why, the differences have to arise either from the
simulation method or the degree of discretisation. The latter means the number of vertices
constituting the RBC. In case of MPC, Nv = 500, whereas in DPD, Nv = 1000. To distinguish
the possible reasons for the discrepancy, the MPC result is compared with another DPD
simulation with Nv = 500 in figure 3.14.
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Figure 3.14: Effective diffusion coefficient of a RBC, compared to results of a MPC simulation
by Matti Peltomaeki and Simón Poblete (unpublished work). All setups use cells modelled
by 500 membrane vertices.

Figure 3.14 shows a better agreement between DPD and MPC results, particularly in the
small qR-regime.
We conclude from these comparisons, that for light scattering, the following conditions are
important:

• cell properties, described by Young’s modulus Y or bending rigidity κ

• different cell resolutions (number of vertices) lead to different characteristics of the
effective diffusion coefficient Deff

• different simulation techniques agree for momentum transfer (scattering angle) q lmin <
2, but deviate for q lmin > 2.

3.4.5 Diffusion Coefficient from Hydropro

The effective diffusion coefficient Deff of a rigid scatterer defined by a set of vertices ri can
be obtained from the expression [19]

Deff(q) =
1

q2S(q)

∑
j,k

〈
bjbke

−iq·rj (3.15)

(
q

q× rj

)
D

(
q

q× rk

)
eiq·rk

〉
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with D being the diffusion matrix, S(q) being the static form factor and bj being the scat-
tering length of particle j. A bead model of a discocyte is constructed by taking a volume
occupied by a hcp-lattice of particles of radius rb each and removing all particles outside the
discocyte volume. The diffusion matrix is calculated on the remaining set of particles us-
ing the software HYDRO++ [58, 59]. The calculation introduces hydrodynamic interactions
between the beads of the model using the Kirkwood-Riseman approximation with volume
correction for the calculation of rotational properties [58]. The hydrodynamic radius of the
particles assumes the values 5a, 3a, 2a and 1.5a. The Deff converges below r = 2a, and it
changes by less than 0.5% when r ≈ 1.5a. Both translational and rotational diffusion coeffi-
cients agree well with those of the MPC simulations. The orientational average is performed
over 2500 q-vectors.

3.4.6 Multiple Scattering

Before considering the scattering by several cells, the concept of multiple scattering is briefly
outlined. The light scattered by one object can act as an incident beam on adjacent objects,
leading to secondary scattering. This can hardly be calculated due to high computational
cost. Ray tracing [107, 164, 14, 15] is not possible in the framework of Rayleigh-Debye-Gans
approximation for the case of multiple scattering. So far, there has been only static consider-
ations for simplified scattering geometries [102].
For RBCs, multiple scattering is non-negligible under certain geometrical conditions, such as
if the cells are aligned in direction of the incident light, as it might be the case for Rouleaux
structures or flow through narrow vessels [69]. However, if the cells are aligned laterally
to the incident light, simple concepts like superposition of the scattered fields of the indi-
vidual cells can be employed. For example, for the scattered light of aggregates of blood
platelets and polystyrene beads, adding single components is a valid approximation [119].
However, in this reference, RDG is not favoured as it does not regard multiple scattering
within a single scatterer. On the other hand, this effect is expected to be small for RBCs as
the biconcave shape does not provoke strong multiple scattering from one part of the cell to
another. Azimuthal averaging (corresponding in a certain way to the orientational diffusion
in a dynamic study such as ours) eliminates the interference of partial waves in the far field,
except for near-forward or backward scattering or orientations coinciding with the incident
direction [69, 119].
For the cases of free diffusion, where multiple cells are aligned randomly, or shear, where
the orientation of the cells is constantly changed, superposition approaches are justified.
The superposition of the light scattering amplitudes of different RBCs can be implemented
straight-forwardly into the Rayleigh-Debye-Gans code used in our work.

3.4.7 Red Blood Cells in Shear Flow

Theory

Cells in shear flow show different structure and dynamics than in equilibrium. They deform
and align according to the flow. These affect optical properties of the blood cell solution,
such as absorption, scattering and anisotropy [116, 97, 51].
Scattering by RBCs in shear flow is used for medical analysis in ektacytometry [68]. Cells are
sheared in a Couette double-cylinder setup and a laser illuminates the sample. The diffrac-
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tion pattern produced by the cells allows conclusions on cell deformability. Deformation
by shear flow is linked to light reflectance and transmission [10]. RBCs are randomly ori-
ented in equilibrium (no flow) and have a maximum absorption and scattering cross-section
per cell [116]. Cell morphologies associated with higher degrees of organisation, such as
aligned RBCs in flow, scatter less. With increasing shear rate, the random cell orientation is
decreased and thus, the cross sections decrease asymptotically. The aligning of cells levels
off at a shear rate of about 200s−1.
DLS measurements become complex when shear flow is present [27, 4, 53, 114, 181]. Indeed,
shear flow induces decorrelation at small time scales compared to diffusing motion, reduc-
ing DLS to a shear-rate measurement. For instance, the signal produced by oscillating blood
flow can be disturbed by contributions of extravascular tissue shearing, which arises from
blood pressure [124]. To distinguish these contributions, the contribution of shear flow to the
DLS signals is investigated. In general, if light is scattered from a particle moving in a fluid
with a velocity ~v, the frequency is Doppler-shifted by the projection of the velocity difference
between two particles i and j in the direction of the momentum-transfer vector ~q · ~vij [114],
with ~q = ~ks − ~k0 as defined above.
In contrast to diffusion [81], for shear experiments [114] the geometry of source and detector
changes the correlation function. When the scattered light is produced by particles that are
spatially correlated, as in fluid flow (seeded by small, light-scattering particles), this spatial
averaging alters the form of the intensity correlation function g(t). This is because particles
separated by large distances r, (considered as incoherent) contribute less to g(t).
The effect of shear rate on the orientation of scatterers and its influence on the intensity cor-
relation function, as well as the establishment of a shear plateau above a critical shear rate
γ̇c, leading to partitioning of the fluid into regions of low shear rate/low turbidity/high
birefringence and high shear rate/high turbidity/low birefringence have been investigated
[145]. The different bands are characterised by different γ̇, turbidity and birefringence2. The
treatment in reference [145] of turbidity through shear-induced structures (SIS) can be em-
ployed in future when examining multiple RBCs in shear flow. SIS can give rise to new
scattering centres.
DLS by small, rigid particles under shear conditions is described theoretically [27, 17, 150, 4,
53, 114, 145]. Next, it shall be outlined for which conditions light scattering is applicable to
measure the shear rate.
Figure 3.15 shows the experimental setup to measure DLS in shear. The typical DLS quan-
tities are defined as above; Da, Df , L and the Photomultiplier Tube (PMT) are means of
detection of the speckle pattern. The rhombic shape of the scattering volume V (grey) arises
from the intersection of the incident beam with the detected image and shall not be confused
with the shear motion, whose gradient is in y-direction.

2Birefringence describes the anisotropic scattering of light; a dependence of the index of refraction on polari-

sation and direction of incident light: n
(
~P , k̂

)
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Figure 3.15: Experimental setup to measure DLS in shear flow (taken from reference [27]).

The auto-correlation function in equation (3.10) can be separated as follows:

S(q, t) = 1 + CS
∣∣g′(q, t)∣∣2 (3.16)

with CS being the device contrast. In case of both identical and independent scatterers, the
heterodyne correlation function g′(t) becomes:

g′(t) =

∫
V

〈
e−i~q·(~r(t)−~r0)

〉
d~r0 =

∫
V
p̂ (~q, t, ~r0) d~r0 (3.17)

where p̂ (~q, t, ~r0) is the Fourier transform of p(~r, t, ~r0), which is the probability to find a par-
ticle at ~r(t) when initially (t = 0) at ~r0.
For the shear flow applied in this work, the velocity field is described as

~v(~r) = ~v0 + γ̇(z0 − z)êx (3.18)

with ~v0 being the mean velocity in the scattering volume, γ̇ the shear rate, z0 the profile’s
centre and êx the flow direction. Our flow, vorticity and gradient directions differ from
those of figure 3.15. Here, ~v0 = ~0.
The transformed probability is given by [27]:

p̂ (~q, t, ~r0) = exp

−Dq2t︸ ︷︷ ︸
diffusion

−i ~q · ~v(~r0)︸ ︷︷ ︸
Doppler shift

t −D (γ̇qx)2

3
t3 −Dγ̇qxqzt2︸ ︷︷ ︸

coupling diffusion & shear

 (3.19)

where ~r0 is the position at time t = 0.
Several time scales derived from this expression have to be considered:

• diffusion decorrelation time τD = 1
Dq2

• transit time τt = L
v0

through the scattering volume V ; L is the characteristic size of V
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• shear decorrelation time τγ̇ = 1
qxLγ̇

(see equation (3.20))

The term with shortest time scale dominates and allows to measure the corresponding mo-
tion (diffusion, transit or shear).
In case τt is large compared to the other time scales, equation (3.17) can be simplified to

g′(t) ≈ exp
(
−Dq2t− i~q · ~v(~r0)t

)
×

∫
V

exp (−iγ̇qxzt) dz︸ ︷︷ ︸
shear−modified spatial coherence of the scattered light

(3.20)

Here, v0 = 0, leading to τt = ∞. Both walls move in opposite directions and the cell, on
average, remains in the box centre.
In reference [145], a Couette geometry is investigated with parameters such that τt

τγ̇
≈ 10,

meaning that the fluid is profiled at the moving wall and that the transit term in equation
(3.19) can be neglected. Thus, to determine γ̇, the only condition that has to be met concerns
the Péclet number: Pe = τD

τγ̇
& 1. For certain ratios of time scales, it is possible to obtain the

diffusion coefficient (τD � τγ̇ −→ qxLγ̇ � Dq2). However, this is not pursued in this thesis.
DLS will be employed to access the local shear rate [53]. The shear contribution to the scat-
tering functions is the quantity of interest. Now only basic directions of ~q are considered:
q̂ = êi with i being x or y or z.
For the present parameter values, the conditions to measure γ̇ are:

τD � τγ̇ −→ Dq2 � qxLγ̇ (3.21)

Let us consider light scattering with q̂ = êx, thus Dqx � Lγ̇.
With L = 30 for the simulation box in both flow and gradient direction,O(D) = 10−3− 10−4

and O(γ̇min) = 10−1, the resulting condition is qx � 500/µm, which is fulfilled here.

τt � τγ̇ −→
L

v0
� 1

qxLγ̇
=

Lz
qxL∆vx

(3.22)

with ∆vx being the wall velocity. If both walls move in opposite directions, v0 = 0 and the
condition is already fulfilled. In case of one stationary wall, v0 = 1

2vx and:

qx �
1

2L
(3.23)

which is fulfilled for all |q| considered.
Now let us consider light scattering with qx = 0, namely the vorticity (~q = |q|êy) and the
gradient (~q = |q|êz) directions. Both τD � τγ̇ and τt � τγ̇ apply, so that the shear rate will not
be measurable via the correlation decay. Yet it is interesting for which conditions diffusion or
transit (convection) will dominate the decay. Therefore, the order of magnitude of the time

scale ratio O
(
τt
τD

)
= O

(
Dq2

( v0L )

)
has to be calculated.

For different wall velocities vx, different effects will dominate. If v0 = 0, the diffusion will,
on average, dominate as there is no preferred direction for transit motion. For one stationary
wall, v0 = 1

2vx. For small vx, a high enough q can make τt an order of magnitude larger than
τD and thus, diffusion will dominate. For large wall velocities, transit motion can dominate
the scattering signal.
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Reference [53] describes the homodyne correlation function for a general linear flow for the
case of short τγ̇ compared to the other time scales:

gho (~q, t) =

∣∣∣∣∫ ∫ ∫ I(~x) exp
(
−i~q Γ̇ ~xt

)
d3~x

∣∣∣∣2 (3.24)

In this work, the shear flow is directed in positive x and the gradient in z-direction. This
implies the following shear matrix

Γ̇ =

0 0 γ̇
0 0 0
0 0 0

 (3.25)

which leads to ~q Γ̇ ~x = qxγ̇z and

gho (~q, t) =

∣∣∣∣−LxLyiqxγ̇t
[exp (−iqxγ̇Lzt)− 1]

∣∣∣∣2
=

(
2LxLy
qx γ̇ t

sin

(
1

2
qx γ̇ Lz t

))2

=

(
V

α
sin (α)

)2

(3.26)

with α def
= 1

2 qxγ̇Lzt and V = Lx Ly Lz .

lim
t→0

gho (~q, t) = |V |2 (3.27)

Simulation Results

The influence of Couette flow on light scattering signals is examined. The purpose is to show
that the shear motion is reflected in the scattering signals. Additionally, different shapes due
to shearing cause different behaviour of the scattering functions.
Two planar, rigid walls are located at z = −Lz

2 and z = Lz
2 . The space between the walls

is filled with solvent and a RBC. The walls move with constant, but opposing velocities in
x-direction. Via friction and hydrodynamics, the wall motion induces a shear flow. Different
wall velocities vx are tested corresponding to different shear rates given by γ̇ = ∆vx

Lz
.

For DLS by RBCs in shear flow, we deal with the scattering amplitude (and its temporal
auto-correlation function), depending on two variables q-magnitude and shear rate.
It is important to note that the theory in section 3.4.7 assumes small, rigid particles. Thereby,
rotations and deformations, typical for RBCs in shear flow, are not represented in that for-
malism. Thus, relations cannot be transferred directly, such as the conditions under which
the shear rate is measurable by light scattering.
Simple shear flow simulations of shear rates in the range of 57−2005s−1 have been analysed
with a post-processing C-code. These simulations are described in section 4.3.1. The dif-
ference to the analysis in section 3.4.4 is that here, no orientational averaging is performed.
The different directions (flow, gradient and vorticity) shall remain separate to identify their
effects on light scattering. Thus, all functions are shown for these three different directions.
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Examples of the correlation decay are shown in figures 3.16, 3.17, 3.18. The temporal corre-
lations for different shear rates show oscillations. For certain directions and magnitudes of
~q, these oscillations roughly match in scale. Considering however that the lag time is scaled
by the individual shear rates, it is clear that the oscillation rate is coupled to the shear rate.
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Figure 3.16: Decay of correlation function S(q, t) for different shear rates and q values. Here,
~q is in the flow direction. (a) q = 0.5/µm: the normalised oscillation rates differ among
different shear rates. (b) q = 2.5/µm: apart from the smallest shear rate, the normalised
oscillation rates are in the same order of magnitude among different shear rates. (c) q =
5.0/µm: the normalised oscillation rates are in the same order of magnitude among different
shear rates.
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Figure 3.17: Decay of correlation function S(q, t) for different shear rates and q values. Here,
~q is in the vorticity direction. (a) q = 0.5/µm: the decays are to slow to recognise the os-
cillation rates. (b) q = 2.5/µm: the normalised oscillation rates are in the same order of
magnitude among different shear rates. (c) q = 5.0/µm: the normalised oscillation rates are
in the same order of magnitude among different shear rates.
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Figure 3.18: Decay of correlation function S(q, t) for different shear rates and q values. Here,
~q is in the gradient direction. (a) q = 0.5/µm: the normalised oscillation rates are in the same
order of magnitude among different shear rates. (b) q = 2.5/µm: the normalised oscillation
rates are in the same order of magnitude among different shear rates. (c) q = 5.0/µm: the
normalised oscillation rates are in the same order of magnitude among different shear rates..
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Equation (3.10) assumes diffusion. Thereby, it is not suitable for scattering under shear
motion. Thus, our analysis focuses on the correlation decay and defines quantities which
describe the connection of shear motion and scattering signals. First, the average intensity
is shown in figures 3.19, 3.20, 3.21. It is equivalent to the correlation function for zero time
lag: 〈I(q, t)〉t = S(q, t = 0). The average intensity has been normalised by the RBC volume
to make it dimensionless.
Second, the half-life of correlation functions is shown in figures 3.22, 3.23, 3.24. It is defined
as the time after which the correlation has decreased to half of its value at time lag zero:
S(q, τ1/2) = 1

2S(q, 0). Additionally, it has been normalised by the shear rate: τ ′1/2 = τ1/2 γ̇ to
make it dimensionless.
Third, the dominant frequency of the decay of the correlation function is shown in figures
3.25, 3.26, 3.27. It is obtained from a Fourier analysis of S(q, t) in time. Additionally, it has
been normalised by the shear rate: f ′ = f/γ̇ to make it dimensionless. It is important to
point out that the normalisation by γ̇ values differs among the four curves in each figure.
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Figure 3.19: The average intensity 〈I(q, t)〉t = S(q, t = 0) in the flow direction. The typical
oscillatory pattern, as seen in figure 3.7, disappears at higher shear rates. The less biconcave
the cell gets (see the trilobe shape in section 4.3.1), the more the average intensity deviates
from that of the original RBC.
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Figure 3.20: The average intensity 〈I(q, t)〉t = S(q, t = 0) in the vorticity direction. The
typical oscillatory pattern, as seen in figure 3.7, is not very apparent at the lowest shear rate.
The curve for the lowest shear rate seems to be the envelope for the other curves.
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Figure 3.21: The average intensity 〈I(q, t)〉t = S(q, t = 0) in the gradient direction. Higher
shear rates lead to larger intensity values.
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Figure 3.22: Half-life time τ1/2 of the correlation function in the flow direction. Here, a
logarithmic scale is used. As already seen for the case of diffusion (section 3.4.4), higher
magnitude of the momentum transfer |q| leads to faster correlation decay (τ1/2 decreases
with |q|). The normalised half-life time is nearly independent of shear rate.
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Figure 3.23: Half-life time τ1/2 of the correlation function in the vorticity direction. Here, a
linear scale is used. Apparent are the oscillations with |q|which get stronger with shear rate.
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Figure 3.24: Half-life time τ1/2 of the correlation function in the gradient direction. Here,
a logarithmic scale is used. As already seen for the case of diffusion (section 3.4.4), higher
magnitude of the momentum transfer |q| leads to faster correlation decay. The normalised
half-life time is nearly independent of shear rate.
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Figure 3.25: Dominant frequency of decay of the correlation function in the flow direction.
Higher magnitude of the momentum transfer |q| or higher shear rates cause a faster correla-
tion decay.
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Figure 3.26: Dominant frequency of decay of the correlation function in the vorticity direc-
tion. The dependencies are different here in comparison to the cases of flow and gradient
direction, and the different orders of magnitude of f

γ̇
have to be considered.
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Figure 3.27: Dominant frequency of decay of the correlation function in the gradient direc-
tion. Higher magnitude of the momentum transfer |q| causes faster correlation decay. In all
cases, the decay frequency f is in the range of the shear rate γ̇.

For the decay in flow direction, as already seen for the case of diffusion (section 3.4.4), a
higher magnitude of the momentum transfer |q| (corresponding to larger scattering angles
in experiments) leads to a faster correlation decay (f increases with |q|). Higher shear rates
cause higher decay frequencies, even if the frequencies are normalised by γ̇. Both values are
on the same order of magnitude: f/γ̇ = O(1). Thus, it is possible to infer the underlying
shear rate from scattering in the flow direction. The decay in vorticity direction behaves
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differently: lower shear rates result in higher decay frequencies. Additionally, f/γ̇ � 1.
Thus, it would be difficult to infer the underlying shear rate from scattering in the vorticity
direction. The decay frequency in gradient direction shows the same |q|-dependence as that
in the flow direction. However, the dependence on shear rate is not that clear. Nevertheless,
the decay frequency is strongly related to the shear rate: f/γ̇ = O(1). Thus, also by scattering
in the gradient direction, it is possible to infer the underlying shear rate.

3.5 Comparison with Polymers in Shear Flow

Here, the scattering signal of a RBC in shear flow has been linked to the shear rate. Anal-
ogously, the tumbling motion of polymers in shear flow has been linked to the shear rate
[78, 79].
Polymers in shear flow exhibit a non-periodic, cyclic tumbling motion, characterised by ro-
tations and shape changes. The polymer (re)coils and stretches during rotation. This can
be compared to the motion of a trilobe or a quadrulobe, which are RBC shapes occuring
in simple shear flow, see section 4.3.1. Dilute and semidilute concentrations are considered
[78, 79]. Instead of the scattering amplitude, the radius of gyration tensor is used to con-
struct a time correlation. It allows conclusion from the tumbling frequency to the shear rate.
The tumbling frequencies depend on the so-called Weissenberg number, which is the shear
rate scaled by the relaxation time γ̇ τ . The tumbling frequency depends on the shear rate as
f ∝ γ̇2/3. In the athermal case, a linear dependence is found.
As here, different directions are considered: flow, gradient and vorticity. In the dilute case,
however, for polymers, all directions have similar frequencies. These frequencies differ only
in the semidilute case.
The consideration of different concentrations hints at dynamics light scattering of RBCs at
different haematocrit, a possible future scenario for simulations. It is interesting to check if
also for RBCs, the frequencies in different directions will diverge for higher concentrations.

3.6 Conclusion

Light scattering signals depend sensitively on many cell properties, such as the bending
rigidity or the Young’s modulus. We have compared the DLS signals obtained from differ-
ent simulation techniques, namely dissipative particle dynamics and multi-particle collision
dynamics. Equality is found only for matching resolution, bending rigidity, and Young’s
modulus. The course of Deff (q) characterises the shape of a diffusing object. The Deff (q)
of cup-shaped RBCs differs from that of biconcave RBCs. Thus, light scattering signals can
distinguish cells of different shape properties. This provides a basis to non-invasively distin-
guish cells of different (pathological) states, such as malaria or sickle cell anaemia. Diffusing
RBCs of different bending rigidities were simulated. Cells of higher bending rigidity are
less prone to thermally induced membrane fluctuations. Dynamic light scattering (DLS)
provides a basis to draw conclusions on membrane fluctuations. The nature of membrane
fluctuations, passive (thermal) or active (metabolic) or a combination, has been discussed
recently [172]. The present RBC model does not include active membrane fluctuations. By
comparing via DLS the simulational purely thermal membrane fluctuations with experimen-
tal membrane fluctuations, one might identify differences corresponding to active contribu-
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tions.
In case of RBCs in shear flow, under certain conditions, light scattering signals, such as the
decay of the scattering amplitude correlation function, allow conclusions on the shear rate.
The dominant frequency of this decay is on the order of the shear rate, if the momentum
transfer ~q is either in the flow or gradient direction.
This relation could measure shear rates in vivo non-invasively, which is interesting in case
of altered flow conditions, e.g. vessel occlusions [1].
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Chapter 4

Dynamics of a RBC in Simple Shear
Flow

4.1 Introduction

In this chapter, the impact of shear stress on the dynamics of RBCs is studied. Shear stress
occurs in the cardiovascular system in various situations. For example, shear stress occurs
in cylindrical vessels, close to stents, in the heart and at bifurcations. In the case of stents,
an insufficient shear stress can lead to thrombogenesis, thus to in-stent restenosis and vessel
occlusion [1].
Simple shear flow is the simplest setup to model shear stress. Two planar walls are placed
at a distance L, with a fluid of viscosity η0 between them. The walls move in opposite direc-
tions, parallel to their planes. The interjacent (Newtonian) fluid develops planes of different
velocities; these planes follow the wall motion parallel. Across the fluid, a linear velocity
gradient establishes. Simple shear flow comprises extensional and rotational forces [28].
Here, in the first setup, a single RBC is placed between the walls to study its behaviour when
subject to an environment in simple shear flow. In the second approach, realistic haemat-
ocrits are probed. Multiple RBCs are added to the fluid. They increase the effective viscosity
of the interjacent fluid and affect each other by hydrodynamic and direct (volume exclusion)
interactions.
Simple shear flow is often called Couette flow after the French physicist who performed ex-
periments with the flow between two counter-rotating cylinders. Taylor-Couette flow refers
to the work of the British physicist who studied the stability of Couette Flow [165].
Here, simulations are performed in narrow slits with a characteristic size similar to that
of microvessels. This study is motivated by previous simulations [45], where a biconcave
stress-free shape was used, and by experiments of the group of M. Abkarian (University of
Montpellier, unpublished work, [112]). Here, a spheroidal stress-free shape will be used.
Additionally, a realistic viscosity ratio of five is employed and its effect on the dynamics,
shapes, and transition between various types of motion is investigated. Simulations for dif-
ferent shear rates show different shapes and dynamics. Also, the initial orientation of a RBC
seems to matter. In agreement with unpublished experiments, the RBC adopts different
shapes for different shear rates. Increasing the shear rate, the cell rolls, becomes a trilobe,
and finally, becomes a quadrulobe. Moreover, the tank-treading behaviour is suppressed in
favour of a trilobe dynamics. We will discuss the importance of the viscosity contrast on

73
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the flow resistance, and the effect of different stress-free shapes of the RBC [134, 26] on its
dynamics in flow.

4.2 Models & Methods

4.2.1 Numerical Method

We employ a combination of dissipative particle dynamics (DPD, see section 2.1.2 and refer-
ences [66, 40]) with smoothed DPD (SDPD, see section 2.1.3) conserving angular momentum
[33, 121]. SDPD is used for the bulk interactions as we can specify the pressure equation of
state and viscosity directly. DPD is used for the coupling of RBC membrane and surround-
ing fluids as we can specify the friction interaction directly. The friction force is adjusted
to properly transfer the shear stresses by the fluids, thus allowing no-slip at the membrane.
SDPD is used analogously to reference [46].
For the viscosity contrast to have an effect, the inner solvent must not mix with the outer
solvent, see graphics 2.6. This requires an impenetrable membrane, which is implemented
numerically by bounce-back reflections, see section 2.6.1.

4.2.2 Measured Quantities

An important quantity of measure is the orientation of a cell relative to the flow direction. It
is found through the gyration tensor

Gij =
1

N

N∑
n

(xn,i − xc,i) · (xn,j − xc,j) (4.1)

where i and j are x, y, or z; ~xn is the position of membrane vertex n and ~xc is the centre of
mass of the cell. Diagonalisation of the gyration tensor Gij yields its eigenvalues λi. Then,
the eigenvector that corresponds to the smallest eigenvalue is determined. This vector is
defined as the cell’s orientation. Its projection onto the flow direction can show rotations of
the cell in the slit.
The eigenvalues are also used to construct another important measure, the asphericity O,
which characterises the deviation from a sphere:

O =
[
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

]
/
(
2R4

g

)
(4.2)

with R2
g = λ1 + λ2 + λ3.

Furthermore, the eigenvalues are used to construct the acylindricity C, which characterises
the deviation from a cylinder:

C1 =
λ2

3 − λ2
2

λ2
3 + λ2

2

(4.3)

with analogous definitions for C2 and C3 [149]. These quantities have been used in experi-
ments as well [167].
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Figure 4.1: Simple Shear Flow, γ̇ = 2vw
D , ~v = γ̇zêx.

4.2.3 Single Cell in a Couette-Flow Setup with Walls

Simulations of a single RBC in shear flow (Couette flow) have been performed, see figure
4.1. This setup will be called ’dilute’ further on. Two planar walls, with a separation in z-
axis, move in opposite directions (±x̂) and create a linear flow field. We model the walls by
immobile particles that have the same density, temperature and radial distribution function
as the fluid. The shear rate is homogeneous, and so is the shear stress, when proper no-slip
boundary conditions are enforced. These conditions are ensured by using an adaptive shear
force [45]. It adjusts the wall friction to compensate for the slip, which arises due to a lack of
velocity gradient in the wall.
The fact that the shear rate is independent of the position implies the following shear matrix
(velocity gradient matrix)

Γ̇ =

0 0 γ̇
0 0 0
0 0 0

 (4.4)

with Γ̇ij = ∇j vi.
The box size is kept fixed, only the shear rate is varied. The shear rate is given by the ratio of
the walls’ velocity difference and their distance: γ̇ = 2vw

D . The viscosity is chosen to satisfy
a low Reynolds number of Re = 0.3 for a fixed dimensionless shear rate γ̇∗. Thereby, the
viscosity is calculated as:

η =

√
n κr γ̇∗

Re Dr
. (4.5)

Thus, the wall velocity is determined to be

~vw =
D

2

√
Re κr γ̇∗

n D5
r

êx. (4.6)

The real (physical) shear rate is obtained by dividing the dimensionless shear rate by the
physical relaxation time (at 20◦ Celsius and in water): γ̇real = γ̇∗/1.1s. Four different shear
rates 57s−1, 286s−1, 573s−1 and 2005s−1 were simulated.
The initial orientation of the cell affects its dynamics [32]. It is studied in section 4.3.1.

4.2.4 Multiple Cells in Shear Flow using Lees-Edwards Boundary Conditions

A further set of simulations has been performed using multiple cells that make up 45% of
the simulation box volume. This corresponds to the physiological systemic haematocrit.
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This setup will be called ’dense’ further on. 128 cells are put into a box of 32× 32× 28.4µm3.
Here, Lees-Edwards boundary conditions are used. This means that the simulation box
is fully periodic and particles leaving the box in shear-gradient direction are assigned the
opposite velocity. No walls and no adaptive shear forces are required. In these simulations,
flow is in y-direction, while the gradient direction is x, implying the shear matrix (velocity
gradient matrix) to be

Γ̇ =

0 0 0
γ̇ 0 0
0 0 0

 . (4.7)

4.3 Results

4.3.1 Single Cell in Couette-Flow Setup with walls

The simulations have been performed for four different shear rates and two different initial
orientations. All eight simulations are at least 12 million time steps long; this corresponds to
7.6s, 1.5s, 0.76s and 0.22s for shear rates 57s−1, 286s−1, 573s−1 and 2005s−1, respectively.

Shapes and Dynamics Observed in Couette Flow

In table 4.1, we show characteristic motions that appear for different shear rates and initial
orientations. The motions are listed in their order of appearance. Visual analysis of the tra-
jectories is the first step to identify these motions, and the quantitative analysis (see below)
confirms essential differences among them. It is apparent that the cell’s motion not only de-
pends on the shear rate, but also on the initial orientation. Two interpretations are possible:
first, the trajectories should be longer to decorrelate the motion from the initial orientation,
as it seems to be the case for γ̇ = 57s−1, where rolling eventually dominates. Second, for each
shear rate, there could be multiple metastable states that are accessed depending on condi-
tions such as the initial orientation. For cells that are initially tilted, the rolling/wheeling
motion is preserved up to medium shear rates. At shear rates γ̇ = 57s−1 and γ̇ = 2005s−1,
the simulations for upright and tilted initial orientation finally agree. For the low shear rate,
both configurations show rolling, while for the high shear rate, both configurations show a
quadrulobe transforming into a trilobe.

Distinct Shapes and their Geometry

We identify different shapes and describe them by their extensions in the directions of flow,
gradient and vorticity. The extension is the maximum length of the cell in a particular direc-
tion.
For a cell that tumbles initially and then rolls like a wheel, the cell extensions develop as
shown in figure 4.2. A typical trilobe cell is shown in figure 4.3. Characteristics are the
different sizes and their amplitudes, e.g. the size in vorticity direction is the largest and fluc-
tuates least. Figure 4.4 shows the initially upright quadrulobe transforming into a trilobe.
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γ̇ upright orientation
57s−1 rotations in shear plane, rotating cup,

flipping around vorticity, rotating cup,
precessing around vorticity, wheeling

286s−1 rotations in shear plane,
axis gets unstable, trilobe

573s−1 early trilobe, rotations,
two dimples + one notch, rotations and squeezings,

stable rotations
2005s−1 quadrulobe rotations,

stable phase, squeezing,
deformation, elongation, trilobe

γ̇ tilted orientation
57s−1 rotations, wobbling,

precession around vorticity,
wheeling cup with oval shape

286s−1 precession, rolling,
cup, squeezed in gradient direction, tank-treading

573s−1 wheeling, tumbling, wobbling,
quadrulobe cap, wheeling, rotation of squeezed

cup or parachute-like, shape changes, parachute-like
2005s−1 shrivelled quadrulobe

rotating, stable phase,
quadrulobe with shape changes, trilobe

Table 4.1: For four shear rates and two initial orientations, different shapes and dynamics
appear which change with time. The description of shapes for each shear rate is in temporal
order.

Figure 4.2: Extensions of a single cell in different directions at shear rate of 57s−1. The
transition from tumbling to rolling is visible when the cell gets smaller in vorticity direction
and the sizes in flow and gradient direction tend towards constant values.
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Figure 4.3: Extensions of a single cell in different directions at shear rate of 573s−1. Offsets
and amplitudes differ among the directions.

Figure 4.4: At high shear rates (2005s−1), a quadrulobe is found. With time, it may transform
into a trilobe.

Quantifying the Different Types of Motion

All simulations show a strong dependency of RBC shape and dynamics on shear rate. For
example, the angle to flow direction shows these differences in figure 4.5. On top of that,
the cells require a long time to acquire their final shapes/dynamics; for example the rolling
motion at shear rate 57s−1, which does not set in until tγ̇ ≈ 350. Then, the cells are oriented to
both the flow and gradient direction with 90◦ and to the vorticity direction with 180◦, which
corresponds to 0◦ due to shape symmetry. Still, the cell oscillates about this orientation,
which seems to be stable.
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Figure 4.5: Orientation angle of initially upright cells.

In order to distinguish shape changes and membrane motion, we consider two different
measures. Both describe the angle to the flow direction, but one comes from the gyration
tensor and the other one comes from the connective vector of a tracer vertex and the centre
of the cell. Often, both angles are synchronised in the beginning but tend to deviate later
on. This can be considered a transition from tumbling to tank-treading-motion, such that
the membrane motion gets decoupled from the shape motion.
Figure 4.6 contrasts both measures for a typical rolling cell. As soon as rolling in the shear
plane is established, the shape hardly changes whereas the membrane performs 2π-rotations.
In figure 4.7, one can see that the shape change is first coupled to the membrane motion.
After five full rotations of the cell, the deformations alter the shape (vertex distribution)
such that the gyration tensor yields different orientations. Due to these deformations, the
cell faces a smaller range of orientations and oscillates in a half rotation cycle. Thus, it attains
the double frequency compared to the membrane motion.
For the quadrulobe at high shear rates γ̇ = 2005s−1, the curves (not shown) look similar
to the trilobe case. Therefore, these measures are not very useful to distinguish trilobe and
quadrulobe. Yet this method is suitable to identify rolling and to separate it from multilobe-
shapes.
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Figure 4.6: Membrane and shape motion of a typical rolling cell at shear rate of 57s−1. Dilute
system, initially tilted cell.
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Figure 4.7: Membrane and shape motion of a typical trilobe at shear rate of 286s−1. Dilute
system, initially upright cell.

Dependence on Initial Orientation

As suggested in reference [32], here, the effect of the cell’s axis of revolution initially being
off-shear-plane is studied. For low (57s−1) and high (2005s−1) shear rates, two different ini-
tial angles do not cause essential differences. However, it is important to note that the cells
need a long time to decorrelate from the initial orientation, see figure 4.8, where behaviour
is dissimilar until tγ̇ ≈ 350. Then, the angles of upright and tilted cell also agree separately
in gradient and vorticity direction (not shown). This agreement is also reflected in the as-
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phericity, shown in figure 4.9. In contrast, for intermediate shear rates as 286s−1 and 573s−1,
different initial orientations lead to different shapes and dynamics, see figure 4.10.
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Figure 4.8: Orientation angle of cells at shear rate 57s−1; different initial orientations.
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Figure 4.9: Asphericity of cells at shear rates 57s−1 and 2005s−1 for different initial orienta-
tions. The high shear rates agree and both exhibit quadrulobes transforming to trilobes. The
low shear rates agree only at large times, when both have established the rolling motion.
Still, these different shapes can be distinguished by the asphericity.
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Figure 4.10: Asphericity of cells at shear rates 286s−1 and 573s−1 for different initial orienta-
tions. The tilted cell at γ̇ = 286s−1 is clearly distinguished from the upright cell at the same
shear rate. Its value is higher (closer to the RBC’s equilibrium) and shows less fluctuations.
Thus, its rolling motion can be identified by the asphericity.

This orientation dependency agrees with the results in reference [182]. Wang et. al. find
trajectories that change with initial orientation for G = µka

E =̂ηoutγ̇DR/2
µ0

= 0.004 and G =
0.001, whereas for G = 0.01, their trajectories are rather similar (here, the shear modulus is
µ0). Our shear rates range is between G = 0.043 and G = 1.5. Furthermore, the comparison
is precarious due to a different viscosity contrast (unity) and the fact that Wang et. al. use a
capsule and not a RBC.
In fact, we had expected that the thermal fluctuations present in our (S)DPD simulations
would average out the effects of initial orientations. Yet, this does not seem to be the case
for all shear rates, at least not within the simulation time scale considered here. Thus, this
system may possess multiple quasistable states.

Effect of Membrane Viscosity

In our RBC model, membrane viscosity is not incorporated. Thus, differences to experiments
can arise. The group of M. Abkarian indicated a slightly different aspect ratio under shear
flow in experiments. In vitro, the cell is extended less in flow direction, in favour of the ex-
tension in the vorticity direction.
To check possible impacts of the membrane viscosity, we used a cell with higher inter-
nal viscosity (contrast 10) as an effective membrane viscosity. Bending displacements of
a membrane always induce the motion of adjacent layers of fluids, namely, intracellular
haemoglobin solution and suspension medium [91]. Thus, the energy dissipation in the
course of bending deformations of erythrocytes is affected by the viscosities of its cytoplasm
and the medium.

From the trajectories, it is clear that the cell with higher viscosity contrast (VC) needs a
higher shear rate to become a trilobe. For a shear rate of γ̇ = 2005s−1, both cells have similar



4.3. RESULTS 83

shapes. The results in figures 4.11 and 4.12 show that the cell with higher internal viscosity
gets more elongated in vorticity, but less elongated in flow direction, compared to the VC5-
case. This agrees with the experiments. Thus, higher internal viscosity makes certain cell
behaviour more realistic and is a good candidate to model the effects of membrane viscosity.
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Figure 4.11: Extensions of cells with different internal viscosity. VC is the viscosity contrast
of inner and outer fluids. γ̇ = 2005s−1.
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Figure 4.12: Aspect ratios of cells with different internal viscosity. The aspect ratio is the ratio
of the extension in flow and the extension in vorticity direction. VC is the viscosity contrast
of inner and outer fluids. γ̇ = 2005s−1.

4.3.2 Multiple Cells in Shear Flow using Lees-Edwards Boundary Conditions

Distribution of Shape Parameters

We consider the cells’ extension in gradient, flow and vorticity directions, the eigenvalues of
the gyration tensor and corresponding acylindricities. Their distribution is obtained by both
temporal and ensemble averaging. In figure 4.13, one can identify different ranges for the
eigenvalues. Furthermore, smaller eigenvalues show sharper distributions, which is advan-
tageous here, as we mostly need the smallest eigenvalue to quantify the cell’s orientation.
Figure 4.14 shows that the smallest eigenvalue is larger and its distribution is broader for
shear rates 30s−1 and 100s−1 and gets smaller and sharper for shear rates from 500s−1 to
2000s−1.
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Figure 4.13: Histogram of the gyration tensor’s eigenvalues. γ̇ = 1000s−1.
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Figure 4.14: Histogram of the gyration tensor’s smallest eigenvalue at different shear rates.

For a shear rate of 1000s−1, figure 4.15 shows that the cell is rather flat (or lying) in
gradient direction, where different layers of cells are driven over each other; the cells are
compressed in vorticity direction and elongated in flow direction (the equilibrium value of
8µm lying between the two peaks). This corroborates the visual assessment.
Figure 4.16 shows, for low shear rates 30s−1 and 100s−1, a size of about 8µm, which is close
to the equilibrium value, and a rather narrow distribution. For high shear rates from 500s−1
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to 2000s−1, the cells are extended to about on average 9µm and their distribution gets larger.
This means that beyond a critical shear energy, the cells deform more strongly both through
compression and extension.
Figure 4.17 shows the acylindricity calculated using equation (4.3). The acylindricity C1 cor-
responds to the plane that is orthogonal to the first (thus smallest) eigenvalue’s eigenvector.
It has both the lowest value and broadest distribution. This confirms that the smallest eigen-
value corresponds to the orientation of the flat side of a RBC, which is most cylindrical,
thus has lowest acylindricity. The other two acylindricities resemble each other in value and
width and thus, reflect the cell’s symmetry in the directions orthogonal to the direction with
smallest eigenvalue.
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Figure 4.15: Histogram of the cell extensions in different directions. γ̇ = 1000s−1.
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Figure 4.16: Histogram of the cell extension in flow direction for different shear rates.

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

��
��

��
�
�
��
��

	


�
�
�



�	
��
���	��


��������������
�
������������
��������������

Figure 4.17: Histogram of the cell acylindricity corresponding to different cell axes. γ̇ =
1000s−1.

Comparison in Terms of Shear Rate and Haematocrit

The performed analysis is two-fold: first, as an ensemble average of cells, second, consid-
ering a few representative cells (randomly picked). In each time step, only bulk cells are
analysed. Bulk cells are those cells that are not divided by periodic boundary conditions,
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which act in the gradient direction. Thus, the ensemble average comprises about 60-70 (and
not all 128) cells in each time step.
The cells’ orientation is obvious from visualisation and confirmed by the angle statistics, see
figures 4.18, 4.19, 4.20 and 4.21. The separation (two peaks) in figures 4.20, 4.21 arises from
the calculation method: after a slight deformation, the cell can be interpreted as facing the
opposite direction. Thus, values differing by ≈ 180◦ actually mean a similar orientation.
Figure 4.21 shows a less pronounced orientation for shear rate 57s−1, reflecting the different
stages of motion before, eventually, rolling takes place. For the simulations with physio-
logical systemic haematocrit, throughout the five different shear rates, the average cell is
predominantly aligned with its flat side parallel to the layers of constant flow velocity.
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Figure 4.18: Histogram of the average cell’s angle to the flow direction (ensemble average of
Lees-Edwards simulation, H=45%).
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Figure 4.19: Histogram of the single cell’s angle to the flow direction (Couette flow with
walls).
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Figure 4.20: Histogram of the average cell’s angle to the gradient direction (ensemble aver-
age of Lees-Edwards simulation, H=45%).
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Figure 4.21: Histogram of the single cell’s angle to the gradient direction (Couette flow with
walls). All cells are initially in upright position.

In figure 4.22, we compare the shape changes of cells at different shear rates. We choose
the shear rates 286s−1 and 573s−1 with upright initial orientation (taken from the dilute
setup) for comparison as they show trilobes. Thus, we have a reference to identify possible
trilobe properties in the dense simulation. Both setups deviate from the equilibrium value,
which is 0.133 here. The crowded cells get more aspherical, while the single cell gets more
spherical. After increasing the shear rate, the cells get more elongated, thus less spherical.
The crowded system shows higher asphericity and shape changes that are more irregular
compared to the dilute case.
In figure 4.23, the shape of a single cell is compared to the shape of crowded cells. Therefore,
we consider the asphericity of a single cell, of some exemplary cells from the dense system,
and its ensemble average value. It is apparent that the cells of the dense system are more
aspherical and show more severe and more irregular shape changes in comparison to the
single cell.
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Figure 4.22: Asphericity of cells at different shear rates for crowded and single cell cases.
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Figure 4.23: Asphericity of cells at comparable shear rates≈ 500s−1 for different haematocrit.

Shear Stress and Whole Blood Viscosity

In each simulation, virial functions are used to calculate the stress. For each potential, such
as DPD interaction between membrane and fluid or bond potential of the vertices, the virial
provides a contribution to total stress. The stress is calculated as a symmetric 3× 3 matrix τ .
The most interesting entry is τxy as it corresponds to the shear stress.
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Dividing τxy by the dimensional shear rate ∆vy
∆Lx

, we obtain the viscosity of whole blood.
Normalised to the solvent’s viscosity, it has the values shown in table 4.2. η

η0
shows shear-

thinning. The viscosity values agree with experiments by the group of M.Abkarian (Uni-
versity of Montpellier, unpublished work). From the percental contributions of the different
potentials, one can see that with increasing shear rate, the bulk solvent (SDPD) and the sol-
vent/membrane coupling (DPD) gain importance. Meanwhile, membrane potentials con-
tribute less and less with increasing shear rate.

Medium Haematocrit

In microcirculation, the haematocrit is lower than in arteries or veins. Thereby, we have
performed simulations at H = 20% and H = 30%. The results for stress contributions and
overall viscosity are shown in table 4.2.

(a)

γ̇ (s−1) η
η0

kinetic SDPD DPD LJ/cut bonds angles dih

30 5.71 -0.05 41.71 0 0 58.89 -2.11 1.57
100 4.16 -0.05 56.37 0 0 39.89 1.94 1.85
500 2.85 -0.01 62.36 13.81 0.01 18.55 4.77 0.52
1000 2.6 0.01 65.99 15.78 0.01 13.71 4.16 0.36
2000 2.4 0.04 66.49 17.30 0.01 12.32 3.62 0.22

(b)

γ̇ (s−1) η
η0

kinetic SDPD DPD LJ/cut bonds angles dih

500 1.7 -0.03 84.90 0.0 0.0 12.86 1.66 0.59
1000 1.57 -0.01 89.28 0.0 0.0 8.77 1.64 0.32
2000 1.47 0.02 92.75 0.00 0.00 5.74 1.31 0.17

(c)

γ̇ (s−1) η
η0

kinetic SDPD DPD LJ/cut bonds angles dih

500 2.20 -0.01 80.70 0.00 0.00 15.76 2.85 0.70
1000 2.00 0.01 85.97 0.00 0.00 10.88 2.75 0.39
2000 1.86 0.05 88.98 0.00 0.00 8.32 2.42 0.22

Table 4.2: For different shear rates, the relative viscosity of whole blood and percental con-
tributions of different potentials to the total stress in the shear plane are shown. LJ means
Lennard-Jones-interaction (among membrane vertices). Bond-, angle-, and dihedral-stress
contributions are also shown. (a) Haematocrit H = 45%. (b) Haematocrit H = 20%. (c)
Haematocrit H = 30%.

Relative viscosity and stress distribution are similar to the case of H = 45% described in
section 4.3.2. Figure 4.24 gathers these results. The data confirm the expectations: there is
shear thinning, and higher haematocrit leads to a higher viscosity.
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Figure 4.24: Shear thinning of RBC suspension at different haematocrits.

Figure 4.25 shows the cell’s extension in flow direction for different values of H and
γ̇ = 2000s−1. The cell size increases with H . γ̇ does not seem to have a significant effect
on the cell size, when considering the same graphs for γ̇ = 500s−1 and γ̇ = 1000s−1 (not
shown). For the extension in gradient direction (figure 4.26) however, the dependencies on
H and γ̇ are not clear. For the sake of completeness, we also add the extension in the vorticity
direction in figure 4.27. Again, the dependencies on H and γ̇ are not clear.

��

����

����

����

����

��

�� �� �� �� �� ��� ��� ���

�
��
��
��
�
��
�
�

�	
���
�������

�������
�������
�������
��������

Figure 4.25: Extension of the cell in flow direction at a shear rate γ̇ = 2000s−1. Histograms
for different haematocrits.
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Figure 4.26: Extension of the cell in gradient direction at a shear rate γ̇ = 2000s−1. His-
tograms for different haematocrits.
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Figure 4.27: Extension of the cell in vorticity direction at a shear rate γ̇ = 2000s−1. His-
tograms for different haematocrits.

In order to have a better overview when looking at both different shear rates and haema-
tocrits, we plot only the mean values obtained from the histograms in figures 4.28, 4.29, and
4.30. We also include the values for the single cell (H ≈ 0.5%).
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Figure 4.28: Extension of the cell in flow direction at different haematocrits and shear rates.
For higher haematocrit, the cells get more stretched. Shear rate is less influential.
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Figure 4.29: Extension of the cell in gradient direction at different haematocrits and shear
rates. High stretching is only possible for dilute systems and low shear rates.
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Figure 4.30: Extension of the cell in vorticity direction at different haematocrits and shear
rates. High stretching is only possible for dilute systems and high shear rates.

4.4 Conclusion

The simulations of a RBC in simple shear flow agree well with the experiments when the se-
quence of shapes and dynamics is compared. For increasing shear rate, cup shapes, trilobes
and quadrulobes are found.
The initial orientation might affect the cell behaviour. However, it is possible that after a
sufficient simulation time, this influence will disappear. We could not definitely answer this
question due to computational limitations. We have found that two cells with different ini-
tial orientation show the same rolling motion after almost the whole simulation time. This
indicates that other shapes and motions can be also transient as well.
We have found essential differences for the shapes of RBCs at different haematocrits. First,
single cells are more spherical than cells in a more concentrated solution. Second, the higher
the haematocrit, the more the cells are stretched in flow direction. For both low haematocrit
and low shear rates, cells experience only small forces between the walls and thus, can ex-
tend in gradient direction. For both low haematocrit and high shear rates, cells are stretched
in vorticity direction.
The suspension’s viscosity depends on both haematocrit and shear rate. With a higher cell
concentration, the fraction of more viscous fluid is higher. However, the effective viscosity
of the suspension is not simply the superposition of the viscosity of its components. Defor-
mation and mutual interaction also affect the effective viscosity. In the past, tank-treading
was identified as a cause for the shear-thinning of blood. Tank-treading has been studied for
a range of shear rates (0-1000 s−1) [48]. Noteworthy, their surrounding medium had a vis-
cosity about 10 to 60 times larger than that of water, a condition that promotes tank-treading
of RBCs. If the viscosity contrast λ is larger than one (see section 2.4), tank-treading is sup-
pressed. Here, we set λ = 5 and find trilobes. We associate the formation of trilobes with the
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lower suspension viscosity.
In addition to the viscosity contrast, also membrane viscosity is essential. Certain effects of
membrane viscosity, such as elongation in flow, can be modelled by a higher internal fluid
viscosity. We have tested different measures, such as the asphericity or the distribution of
orientation angles, for suitability to describe and distinguish these effects.
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Chapter 5

Dynamics of a RBC in Tube Flow

5.1 Introduction

The dynamics of RBCs subject to external flow and geometrical confinement is relevant for
fundamental research and biomedical applications (e.g drug delivery [120]). To study the
fluid-mechanical behaviour of RBCs, we consider the flow of a single RBC in a microtube
with a size similar to microvessels.
The ambient solvent is driven by a pressure gradient creating a Poiseuille flow, which serves
as a minimalistic model for the passage of blood through microvessels. The present study
differs from the in vivo situation in the following aspects: idealised flow and vessel geome-
try; dilute suspension (single cell) and no membrane viscosity. Despite these limitations, we
can investigate the basic dynamics of a cell and its reaction to external flow conditions and
confinement.
This study is motivated by our previous simulations [46], where the viscosity ratio between
the RBC cytosol and suspending media was equal to one. Now, a realistic viscosity ratio
of five is employed and its effect on the dynamics, shapes, and transition between various
types of motion is investigated.
A RBC shows different shapes and dynamic states, depending on conditions such as flow,
confinement, physiological/pathological state and cell age [105]. Classical motions from
simple shear flow are tumbling and tank-treading (TT) [48, 54]. More recent discoveries
illustrate e.g. swinging or vacillating-breathing dynamics [191]. This sensitivity towards
physiological conditions offers diagnostic prospects. One could potentially infer the health
status from cell shapes or draw conclusions from the whole-blood viscosity, which depends
on the shapes and dynamics of its constituents.
Here, we emphasise the effects of shear rate and confinement. We provide phase diagrams
with the different cell shapes. Simulations for different shear rates and confinements lead to
phase diagrams of shapes and dynamics differing from the previously predicted diagrams
[46]. We can identify two dominant shapes: parachutes (symmetric to flow profile) and slip-
pers (asymmetric to flow profile). In agreement with the previous studies, the parachute
shape of RBCs occurs at strong confinements and high shear rates, whereas at weak confine-
ments, an unstable slipper shape occurs. The slipper may experience strong deformations
depending on the shear rate. The slippers all rotate and deform continuously, and can be
subdivided into two types: one with rather tumbling motion and the other one with rather
tank-treading motion. Additionally, there are snaking cells at low shear rates.
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The question of the stability of slippers has been raised in many works [125, 84, 2, 82, 168,
46]. Here, all slippers are unstable and their motion could be called as stationary rotation-
deformation. We will discuss the importance of the viscosity contrast on the flow resistance,
and the effect of different stress-free shapes of the RBC [134, 26] on its dynamics in flow.

5.2 Models & Methods

5.2.1 Numerical interaction model

Here, we employ the same methods as described in section 4.2.1.

5.2.2 Simulated Scenario

We simulate the flow of a single cell suspended in a viscous liquid inside a cylindrical, hol-
low tube of length 50 µm, see figure 5.1. Its axis is aligned with the x-direction. The tube
diameter D = 2R determines the confinement χ = Dr

D . The external fluid mimics the blood
plasma, the internal fluid mimics the cytosol. The basic length scale is one micrometre, in
contrast to reference [46]. A pressure drop ∆P is achieved in the tube by applying a force
f on each fluid particle. The pressure gradient equals the force per volume: ∆P

L = f n, n
being the density. The constant pressure drop in the cylindrical tube causes a Poiseuille flow,
characterised by the velocity profile:

~v (~r) =
1

4η

∆P

L

(
R2 − r2

)
êx (5.1)

Figure 5.1: Tube flow with Poiseuille velocity profile ~v (~r) = 1
4η

∆P
L

(
R2 − r2

)
êx.

http://cnx.org/contents/031da8d3-b525-429c-80cf-6c8ed997733a@8.8:89

The mean velocity is half of the centre (maximum) velocity: U = uc
2 . The pressure drop

is linked to the flow rate Q as: ∆P = 128ηLQ
πD4 , while the flow rate Q is linked to the mean

velocity as: Q = π
4D

2U [1].
In general, vessel bifurcations or upstream curvature disturb the parabolic profile [1]. The
distance required to return to the fully developed parabola is the entrance or inlet length L
[186]:

L

D
≈ 0.08 Re+ 0.7 . (5.2)

In the simulations performed here, periodic boundary conditions are employed. Thereby,
the flow is everywhere parabolic, if the impact of the RBC is neglected.
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5.2.3 Simulation Parameters and Scaling Equations

The density is set to n = 12 to provide a resolution sufficient to model large flow rates,
which cause strong membrane deformations. The temperature is set to kBTM = 0.2. The
masses for external fluid and wall particles are m = 1, for internal fluid particles m = 2 and
for membrane vertices m = 3. To compare with other studies, we set these dimensionless
quantities:

1. The Reynolds number Re = n¯̇γD2
r

η defines the ratio of inertial to friction forces. n is the
density, ¯̇γ is the dimensional shear rate and η is the external fluid’s viscosity. Re ≤ 0.3
throughout this work.

2. λ = ηi
ηo

denotes the viscosity contrast between cytosol and external plasma. λ = 5 in
the reference system.

3. γ̇∗ = ¯̇γ · τ is the dimensionless shear rate. τ is the RBC’s relaxation time given by
τ = ηD3

r
κr

. γ̇∗ is also the ratio of shear and bending energies. It is varied to study its
effect on shapes and dynamics of RBCs.

Via the Hagen-Poiseuille solution, these three quantities determine the following quantities:

• ηo =
√

γ̇∗nκr
DrRe

is the external viscosity

• ηi = ληo is the internal viscosity

• f = 32κr γ̇∗

D3
rDn

is the pressure force, representing the pressure gradient within the tube.
This force is applied to each fluid particle.

• ¯̇γ =
√

γ̇∗Reκr
D5
rn

is the dimensional shear rate, used here to normalise time. Counterin-
tuitively, it does not depend linearly on the dimensionless shear rate γ̇∗. The reason is
the scaling of η to comply with a certain γ̇∗ and Re.

Noteworthily, varying γ̇∗ to study different phases affects all these quantities. However,
the viscosity only sets the timescale and the important physical quantity is the shear stress,
which is given by

η¯̇γ =
γ̇∗κr
D3
r

(5.3)

5.2.4 Red Blood Cell Model

The RBC is modelled as an impenetrable membrane enclosing an inner fluid. We use bounce-
back reflections to reflect fluid particles on the membrane, both from inside and outside
[40]. The membrane is modelled as a triangulated network of springs, featuring stretching,
bending and compression resistance. The membrane is made up of N = 3000 vertices.
Governing potentials, numerical implementation and parameter values are identical to those
in reference [46], except where noted.
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5.2.5 Vessel Model

Blood vessels consist of vascular smooth muscle cells, elastin and collagen fibers. Thus, they
exhibit a variety of mechanical and rheological properties, such as anisotropy, incompress-
ibility, residual stresses and non-linearity [197, 8, 127]. For the length scales considered here,
a vessels appears rigid in comparison to a RBC. Thus, we neglect these properties and a
vessel is treated as a rigid, impermeable, hollow cylindrical tube. We model it by immo-
bile particles that have the same density, temperature and radial distribution function as the
fluid.

5.3 Distinguishing Different Shapes and Dynamics

We choose the set-up with a viscosity contrast of five as our reference set-up (denoted VC5).
This means that the cell’s internal fluid has a viscosity that is five times the viscosity of the
external fluid. This represents the physiological viscosity ratio. Different set-ups are studied
in section 5.5.
In analogy to reference [46], we consider quantities such as the distance to the centre line,
asphericity (see equation (4.2)) and angle to flow direction (see equation (4.1)) (figures 5.2,
5.4, 5.5). Additionally, in figure 5.6, we consider the bending energy, calculated by the poten-
tial energies of all adjacent triangles. For theory, see also section 1.5.2. This data are shown
depending on two important variables χ and γ̇∗. The confinement

χ =
Dr

D
(5.4)

is the ratio of cell and tube diameters, and the dimensionless shear rate

γ̇∗ =
¯̇γηD3

r

κr
(5.5)

is the ratio of shear and bending energies. Larger membrane rigidity, as in some infected
cells, yields smaller values for γ̇∗ [160, 84]. Thus, a wide interval of relevant γ̇∗-values for
healthy and diseased cells is covered.
Strong confinements lead to a stronger alignment: closer proximity to the tube’s centreline,
less rotations and a more spherical shape. Oscillations in orientation decline (see figure 5.3)
and there is a trend towards constant alignment. Low shear rates can withstand this trend up
to a certain confinement. Below certain shear rates, cells can remain in their relatively free
motion (a rotating, rather aspherical cell motion around the centreline) even for strongest
confinements. Vice versa, for weak confinements of χ ≤ 0.44, the oscillatory, free motion is
kept even for high shear rates.
For high enough γ̇∗, the shear energy provided by the flow is sufficient to deform the cell to
a slipper shape or a parachute (see figure 5.6). Small vessels reduce the entropy of cells and
cause stronger alignment. Furthermore, the flow profile in small vessels has a higher curva-
ture. Cells moving through different layers of shear planes experience different forces and
can exhibit asymmetric shapes and tank-treading motion. At strong confinements, the cell
is preferably located at the centre and shows less shape changes, as seen for the parachute
cases.
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Figure 5.2: Angle to the flow direction for varying γ̇∗ and χ in the case of VC5. Both higher
shear rate and confinement promote a more symmetrical alignment of the cells (parachutes).
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Figure 5.3: Variation in the angle to the flow direction for varying γ̇∗ and χ in the case of VC5.
Both higher shear rate and confinement promote a steadier alignment of the cells. Here, the
variation is the standard deviation.
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Figure 5.4: Distance to the centre line for varying γ̇∗ and χ in the case of VC5. Both higher
shear rates and confinements bring the cell closer to the centre line.
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Figure 5.5: Asphericity for varying γ̇∗ and χ in the case of VC5. Both higher shear rates
and confinements promote a more spherical cell, whereas low shear rates promote a less
spherical cell.
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Figure 5.6: Bending energy for varying γ̇∗ and χ in the case of VC5. Cells are bent more
strongly for both higher shear rates and confinements.

5.4 Domains of Shapes and Dynamics

We identify four different shapes/dynamics. Their appearance depends on the values of γ̇∗

and χ. Figure 5.7 illustrates them.

5.4.1 Phase Diagram
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Figure 5.8: Phase Diagram for VC5.
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The phase diagram for a viscosity contrast of five (VC5) is designed analogously to that in
reference [46], where equal viscosities and a biconcave stress-free shape were used. The
shapes/dynamic regions occupy similar domains; yet the slippers show essential differ-
ences. For VC5, the stable slipper is suppressed, but an asymmetric cell, rotating and de-
forming in the flow, prevails. In the deformation, a cell looses its dimple facing upstream
and develops an additional dimple facing downstream.
Some slippers tend to tumble while others tend to tank-tread. The tumblers rotate as a whole
and their angle to the flow direction oscillates through the whole range from 0 to 2π (see fig-
ure 5.13). The tank-treaders show a constant inclination angle while minor shape changes
also occur. The membrane, along with dimples and protrusions, rotates around the inner
fluid. In contrast to tumblers, the angle to the flow direction attains only limited values (see
figure 5.9).
In comparison to the phase diagram in reference [46], the tank-treaders here require a higher
shear rate. A possible reason is that a tank-treader needs energy to deform and bend the
membrane and rotate it relative to the inner volume. If this inner volume is more viscous,
there is more friction and more energy is needed. The shearing has to provide this additional
energy. The snaking regime is restricted to low shear rates, similar to reference [46].
Here, the parachute region ends at χ ≈ 0.5, in contrast to reference [46], where it extends
to χ ≈ 0.4. Presumably, a cell with higher inner friction more strongly hinders shape de-
formations, so to transform the cell into a parachute, a higher pressure force or entropic
force is required. The tank-treading slippers accumulate at weaker confinements and high
shear rates. The relatively large tubes offer enough space for cell rotations; the cell can be
located asymmetrically to the different cylindrical shear layers. High shear forces provide
enough energy for deformations and membrane rotations. Tank-treaders also show up in a
narrow belt ranging from weak confinements and high shear rates to strong confinements
and low shear rates. In general, strong confinements promote parachutes. As the cell cannot
move as much off-centre as for larger tubes, it is enforced symmetrically into the shear layers
and experiences radially symmetrical shear forces. The result is a symmetric shape like the
parachute. If the dimensionless shear rate is low, the effect of symmetrical forces gets less
important. Thereby, asymmetric shapes can occur. Unconfined slippers have been studied
[82, 163].
The parachutes for γ̇∗ ≥ 52 and χ = 0.53 are not symmetric and thus called slippers. They
make up the boundary between symmetric parachutes and tank-treaders. Unlike the other
slippers typically found here, they do not show the rotation-deformation-scheme; only oc-
casional reorientations and transient, partial membrane motion.

5.4.2 Representative Examples

To compare different shapes/dynamics, we select four representative cases.
We choose (γ̇∗ = 4;χ = 0.71) for the snaking, (36; 0.35) for the tumbling slipper, (76; 0.44) for
the tank-treading slipper and (68; 0.71) for the parachute. The angle α oscillates, thus, the
cell rotates in all cases but the parachute (figure 5.9). In the snaking regime, the oscillations
have a smaller amplitude; there is no complete rotation, only back-and-forth motions. The
parachute shows a stationary alignment with the tube axis.
The distance to the centre line in figure 5.10 is normalised by the cell’s diameter, and not by
the tube’s diameter as in reference [46], so the different confinements should be taken into
account when comparing. Thereby, the tank-treading cell departs about three times as much
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from the centre as the parachute, the tumbling cell about twice and the snaking cell about
five times. In absolute terms, the parachute barely moves away from the centre whereas the
others have similar distances.
For the asphericity in figure 5.11, the different types are clearly distinguishable. After initial
rearrangements in the developing flow, the parachute gets rather spherical. The slippers
oscillate, but among them, the tank-treader shows smaller frequency and smaller average
than the tumbling slipper. The tank-treader’s biconcave shape is lost to a larger extent than
the tumbler’s, leading to the lower average value. The snaking is closest to the equilibrium
RBC value of 0.15 and fluctuates only slightly.
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Figure 5.9: Orientation angle to the flow direction of different cell shapes.
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Figure 5.10: Distance to the centre line of different cell shapes.
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Figure 5.11: Asphericity of different cell shapes.
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The angular distribution in figure 5.12 distinguishes the parachute shape with its sharp
maximum around 150 ◦. A perfect parachute would peak at 180 ◦. One possible reason
is that the simulation time is still not long enough to probe all accessible configurations.
Furthermore, asymmetric shapes in symmetric flow can increase flow efficiency [82]. The
tank-treader also has a peak, around 125 ◦, so it also prefers a certain orientation. This cor-
responds to the rather steady inclination angle of the cell interior. This is in contrast to the
tumbling cell, which can face all directions, visible by the rather flat distribution of angles in
figure 5.12.
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Figure 5.12: The histogram for orientation angles in flow direction clearly distinguishes tank-
treaders and parachutes.

Figure 5.13: Orientation dynamics of a tumbling slipper.

In order to further elucidate the dynamics of a cell, the angle of a tumbling slipper
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(20; 0.44) is chosen, see figure 5.13. Different phases of the rotation and deformation can
be distinguished.

1. The cell is ’lying’, i.e. the normal facing out of its flat side is perpendicular to the tube
axis (flow direction). The flow can grasp under the lower side of the cell.

2. Rotation and deformation starts.

3. The cell is ’standing’; its front dimple has almost vanished.

4. The cell is a lying cup; rotation/deformation starts again.

5. The cell is ’standing’; its front dimple (facing the flow direction) has almost vanished.

6. The cell is a lying cup; rotation/deformation starts again.

7. The cell is ’standing’; its front dimple has almost vanished.

8. The cell has a cup-shape, there is no front dimple.

From t γ = 60 on, the dynamics is superimposed by a rotation around the y-axis. At point
7, the angle does not go back to 0 because the tumbling rotation is not perfect and neither
is the orientation of its axis. The apparent decrease at α = π is due to the implementation
of the angle by the arc cosine of a directional vector, so the actual rotation proceeds beyond
this point up to α ≈ 2π.
From the steepness of the curve, it is visible that the angular velocity changes during this
motion. A possible reason for this de-/acceleration might be that in certain phases, the sym-
metry axis of the cell is oriented perpendicular to the flow; thereby, the cell touches only a
few adjacent shear planes. When the flow starts turning the cell, it experiences the influences
of more shear planes and the velocity gradient from one cell rim to another increases.
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Figure 5.7: Four different shapes/dynamics of RBCs found in tube flow.
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5.5 Comparative Parameter Set-Ups

To study the influence of membrane and fluid properties on the shapes and dynamics, we
investigate modified set-ups. Each time, we changed one specific parameter (in comparison
to the reference system VC5 described above):

• Viscosity contrast of one (denoted VC1)

• Viscosity contrast of three (denoted VC3)

• less deformable cell: the RBC’s Young’s modulus is increased by a factor of five (de-
noted lessDef )

• spontaneous curvature: the RBC’s membrane is altered by imposing a spontaneous
curvature (denoted spont)

5.5.1 Viscosity Contrast of One

In this set-up, the inner and outer fluids have the same viscosity. The only difference to
the set-up in reference [46] is the stress-free shape of the RBC: instead of a biconcave shape,
here, it is a spheroid with 96% of the volume of a sphere of equal surface area (the model is
described in section 2.4). Further volume deflation to 64% transforms it into the biconcave,
stressed shape that is used here.
First, the phase diagram for VC1 in figure 5.14 shall be compared to the phase diagram in
reference [46] to identify the effect of the stress-free shape. Please keep in mind that here,
the confinement range is extended in comparison to the diagram in reference [46]. For weak
confinements such as χ = 0.35 and χ = 0.44, the boundary between tumblers and tank-
treaders is similar in both cases. Yet here, the domain of parachutes is extended towards
low shear rates such that for χ ≥ 0.45, the slippers are hardly present. The spheroidal
stress-free shape is prone to be deformed into a parachute, which is closer to a sphere (see
also figure 5.11). Thus, by approaching their original configuration, the membrane elements
are in a favourable bending state. This happens although the bending energy is higher for
parachutes (see figure 5.6). Probably, the shear elastic energy plays an important role in this
context.
Second, the present phase diagram for VC1 in figure 5.14 shall be compared to the phase
diagram for VC5 in figure 5.8 to identify the effect of the viscosity contrast. An apparent
difference is the shift in the boundary between slippers and parachutes. In both set-ups, for
higher shear rates (γ̇∗ ≥ 60), the boundary is at a certain confinement χ, independent of the
shear rate γ̇∗. However, for VC1, it lies at low χ ≈ 0.3, whereas for VC5, it lies at a medium
χ ≈ 0.5. Potentially, for a high viscosity contrast, the cell gets effectively more rigid and a
stronger confinement is needed to force the cell into a stable parachute with its stationary
shape and constant inclination angle. This question is addressed further in section 5.6. It
looks as if the VC5 diagram as a whole is shifted to the left (weaker confinements). This also
indicates that the tank-treaders form a rather slim, diagonal belt broadening towards weak
confinements and high shear rates.
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Figure 5.14: Phase Diagram for VC1 with extended confinement range to find the boundary.
Compared to the phase diagram in reference [46], the effect of a different stress-free shape
can be identified. Compared to figure 5.8, the effect of the viscosity contrast can be identified.

5.5.2 Viscosity Contrast of Three

In this set-up, the inner and outer fluids have a medium viscosity contrast of three. We ex-
pect this set-up to be an intermediate stage between VC1 and VC5. Comparing the phase di-
agrams in figures 5.14, 5.15 and 5.8, we can see a clear trend: as the inner viscosity increases,
the parachute domain is shifted to stronger confinements. The cell becomes effectively more
rigid and a stronger confinement (−→ a velocity profile of stronger curvature) is needed to
deform the cell to a parachute (see figure 5.6). Between parachutes and tumblers, there is
usually a layer of tank-treaders. With their steady inclination angle and periodic deforma-
tions/rotations, this layer can be a transition from the strict alignment of a parachute to the
rotations of a tumbler.
We have to emphasise that the differences between VC1 and VC3 are larger than those be-
tween VC3 and VC5. For example, the parachute-TT-boundary is only slightly shifted be-
tween VC3 and VC5. Some shapes for VC5 at χ = 0.53 and high shear rates are unclear and
correspond most likely to asymmetric parachutes. Thus, the cell’s viscosity contrast is an
important parameter to consider.
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Figure 5.15: Phase Diagram for VC3. This intermediate viscosity contrast confirms the trend
that the parachute domain is shifted to stronger confinements with increasing inner viscosity.

5.5.3 Less Deformable

This set-up is identical to the reference set-up VC5 except for an increased Young’s mod-
ulus. Here, the straining resistance is five times higher than the physiological value and
corresponds to 9.45 · 10−5N

m . The phase diagram in figure 5.16 clearly shows the dominance
of tumblers and disappearance of parachutes, in comparison to figure 5.8. There is a slim
domain at χ = 0.71, which shows features of the tank-treading slippers; but here, the rota-
tion/deformation cannot be completed and the cells remain in some squeezed state.
Again, tank-treading makes up a transition layer between tumblers and parachutes. The di-
agram could be thought of as figure 5.8 shifted to stronger confinements; thereby, a less de-
formable cell could correspond to a physiological cell in a weaker confinement. Thus, a less
deformable cell needs a stronger confinement (−→ a velocity profile of stronger curvature)
to become a parachute. Taking into account the effect of viscosity contrast, the Young’s mod-
ulus has an effect comparable to a higher inner viscosity; making the cell less deformable
and more prone to tumbling.
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Figure 5.16: Phase Diagram for lessDef. A less deformable cell is more prone to tumbling. It
requires a stronger confinement to become a parachute.

5.5.4 Spontaneous Curvature

This set-up is identical to the reference set-up VC5 except for an additional spontaneous
curvature, inspired by figure 4 in reference [134]. The boundary between tank-treaders and
parachutes is hard to identify. The tank-treaders at high shear rates with χ = 0.53 could also
be considered as asymmetric parachutes with membrane motion. Thus, the difference to fig-
ure 5.8 is not so apparent. The tendency, however, is clear: cells with a spontaneous curva-
ture are harder to deform into a symmetric parachute. Thus, the regions are shifted towards
higher confinements, which is needed to deform the cells into tank-treaders or parachutes.
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Figure 5.17: Phase Diagram for spont. A stronger confinement is required to deform cells
with a spontaneous curvature into parachutes or tank-treaders.
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5.6 A Closer Look at the Transition near the Border

Why does the cell with higher inner viscosity favour tank-treaders over parachutes? Com-
paring figures 5.8 and 5.14, we see that the borders are shifted in favour of tank-treaders
when increasing the cytosol viscosity. However, this is counterintuitive: a parachute has an
almost stable shape and thus, its inner fluid does not have to be moved so much. This is in
contrast to the tank-treader, where the inner fluid is constantly in motion. Considering that
we use no-slip boundary conditions at the membrane, for both outer and inner fluid, it is
clear that rotations and deformations of the membrane require rearranging of the inner fluid
as well. Thus, the parachute should be more appropriate if the inner viscosity is high.
A possible explanation is the initial equilibration phase, when the biconcave shape is trans-
formed into snaking cell, tumbler, tank-treader or parachute. The start-up phase of RBCs in
Poiseuille flow has been studied [167]. In this phase, more deformation energy is required
for a parachute than for a tank-treader. Thus, a tank-treader would be more easy to obtain
in a high-viscosity-contrast simulation in comparison to a parachute.
In order to verify this, two boundary cases were examined closer. We set up simulations
for confinement χ = 0.44 and shear rates γ̇∗ = 76 and γ̇∗ = 84. For these values, different
shapes are found depending on the viscosity contrast. For both setups, there are two scenar-
ios: one with increasing (VC1 −→ VC5) and one with decreasing (VC5 −→ VC1) viscosity
contrast. This means that after the first half of the simulation (6 million time steps), when
the equilibration phase is completed and a steady characteristic motion has been established,
the viscosity of the inner solvent particles is altered. Although this consideration might not
have a physiological counterpart, it is interesting to clarify the influence or importance of
the equilibration phase on the flow behaviour.

1. γ̇∗ = 76, increasing viscosity:
The RBC starts as a parachute in the first half. After increasing the inner viscosity, it
becomes a tank-treader that changes its rotation handedness. One clockwise, then one
counter-clockwise; then, this pattern repeats a further time.

2. γ̇∗ = 84, increasing viscosity:
The RBC starts as a parachute in the first half. After increasing the inner viscosity, it
becomes a tank-treader with steady rotation handedness.

3. γ̇∗ = 76, decreasing viscosity:
The RBC starts as a tank-treader and after decreasing the inner viscosity, it becomes a
parachute.

4. γ̇∗ = 84, decreasing viscosity:
The RBC starts as a tank-treader and after decreasing the inner viscosity, it becomes
a classical tank-treader: rotations and deformations vanish; the cell obtains a steady
inclination angle while the membrane rotates around the inner liquid. This is intuitive:
when the inner viscosity is not higher than the outer, it is easier to rotate the membrane
even at a constant shape. This membrane motion at constant shape drags the inner
fluid along.

As the change of inner viscosity causes shape changes, it is shown that the equilibration
phase does not determine the future behaviour for the cases studied here. It is the viscos-
ity contrast that matters. A parachute is more likely maintained in low viscosity-contrast
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simulations, whereas the tank-treader is more likely maintained in high viscosity-contrast
simulations. This issue needs further studies regarding flow field and flow efficiency close
to the membrane, both inside and outside the cell.

5.7 Conclusion

The flow of RBCs through a rigid cylinder is a basic model for blood flow in a vessel. It
exhibits a variety of shapes and dynamics depending on both flow and cell properties; such
as the shear rate, confinement, Young’s modulus, viscosity contrast and the stress-free shape
of the cell. Different measures, such as the asphericity, the orientation angles or their distri-
butions, were tested for suitability to distinguish different shapes and dynamics. Criteria for
identification have been introduced for each shape/dynamics.
For each shape/dynamics, a domain of shear rate and confinement was found. This gives
rise to phase diagrams, analogously to previous studies [84, 46, 163]. Different phase dia-
grams point out how different domains and their boundaries change with flow conditions.
Some details require further analysis, e.g. the shift of the boundary between tank-treading
and parachutes when changing the viscosity contrast.
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Chapter 6

Conclusion and Outlook

In this work, numerical simulations of RBCs under various flow conditions were performed.
Computer simulations are a third pillar besides theories and experiments. Numerical studies
of haemodynamics and haemorheology can test theories of blood flow, confirm experimen-
tal results, motivate experimental studies, and tackle scenarios that are difficult to access in
vivo or in vitro.
A particle-based simulation method allows for the study of cell dynamics, hydrodynamics,
membrane deformations, and thereby, rheology. The cell is built up of an elastic membrane
enclosing a viscous cytosol. The cell is embedded in a fluid with generally different viscosity.
Smoothed dissipative particle dynamics (SDPD) was used to model bulk fluid, such as the
ambient solvent and the cytosol. For SDPD, density and viscosity of a fluid are input di-
rectly. This is an advantage of SDPD compared to dissipative particle dynamics (DPD) in
the case of modelling bulk fluids. In DPD, the friction parameter is input and the viscosity
has to be determined by performing a simulation in advance. This makes DPD more suitable
for modelling the interaction of a fluid and a structure such as a membrane or a wall. The
friction can be adjusted such that the shear force at the membrane is compensated, giving
rise to no-slip boundary conditions.
Focus of the study has been on the motion and deformation of a RBC in different kinds of
shear flow and the suitability of certain quantities to describe the cell behaviour. Such quan-
tities of measure are e.g. light scattering signals or shape characteristics like asphericity and
acylindricity.
In comparative setups of diffusing RBCs, it was shown that the light scattering signal sensi-
tively depends on many cell properties, such as the bending rigidity or the Young’s modulus
(stretching resistance). We have also compared the dynamic scattering functions obtained
from different simulation techniques, namely dissipative particle dynamics and multi-particle
collision dynamics. Equality was found only for matching resolution, bending rigidity, and
Young’s modulus. Central to light scattering is the scattering amplitude, which is a spatial
Fourier transform of the scatterer’s geometry. It describes the light scattered by an object that
is large compared to the wavelength of the incoming light. Thereby, the light scattered from
different parts of the object differ in phase. Under each scattering angle, which is the angle
at which the scattered light is detected, the superposition of light of different phases causes
interferences that are characteristic for the scatterer’s geometry. Birefringence and multiple
scattering were neglected; the dielectricity was set to unity. The dynamic scattering quantity
considered here has been the effective diffusion coefficient Deff, which was obtained from
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the decay of the scattering amplitude self-correlation in time. Deff depends on the scatter-
ing angle, which is related to the momentum transfer ~q, the difference between incoming
and scattered wave vector. The course of Deff (q) is characteristic for the shape of a diffus-
ing object. For a diffusing sphere, this quantity is q-independent and equal to the diffusion
coefficient DT from Einstein’s fluctuation-dissipation theorem. The deviation from DT char-
acterises aspherical shapes. The Deff (q) of cup-shaped RBCs differs from that of biconcave
RBCs. Thus, light scattering signals can distinguish cells of different shape. This provides a
basis to non-invasively distinguish cells of different (pathological) states, such as malaria or
sickle cell anaemia. Diffusing RBCs of different bending rigidities were simulated. The bend-
ing energy parameter was set in relation to the thermal energy of the system. Cells of higher
bending rigidity are less prone to thermally induced membrane fluctuations. Dynamic light
scattering (DLS) provides a basis to draw conclusions on membrane fluctuations. The nature
of membrane fluctuations, passive (thermal) or active (metabolic) or a combination, has been
discussed recently [172]. The present RBC model does not include active membrane fluctu-
ations. If DLS is used to compare the simulational purely thermal membrane fluctuations
with experimental membrane fluctuations, one might identify differences corresponding to
active contributions.
In case of RBCs in shear flow, under certain conditions, light scattering signals allow con-
clusions on the shear rate. For the case of flow, the scattering signal considered has been the
decay of the scattering amplitude correlation function in time. The dominant frequency of
this decay is on the order of the shear rate, if the momentum transfer ~q is either in the flow
or gradient direction. This relation could enable non-invasive measuring of shear rates in
vivo, which is an important quantity in case of altered flow conditions, e.g. in case of vessel
occlusions [1].
Through the motion of a RBC in simple shear flow, general and basic behaviours could be
identified. A single RBC was placed between two planar walls moving in opposite direc-
tions. For this set-up, the possibility of periodic boundary conditions in simulations is ad-
vantageous. If the cell is transported out of the simulation domain by the flow, it will re-enter
on the opposite side. This enables linear flow patterns, which are harder to establish in ex-
periments. For different shear rates, we have found a sequence of shapes and dynamics,
in agreement with experiments of the group of M. Abkarian (University of Montpellier, un-
published work). For shear rates up to 100s−1, the cell is biconcave to cup-shaped and rolls
like a wheel. For shear rates up to 1000s−1, the cell is a trilobe with dimples, notches and
protrusions. For shear rates on the order of 2000s−1, the cell has a quadrulobe shape, but
can also return to the trilobe. Besides visual analysis of the trajectories, measures such as the
angle to the flow direction, the asphericity and the motion of a membrane tracer have been
used to distinguish different shapes. The asphericity is a measure for the deviation from a
sphere, and it is derived from the distribution of membrane elements. The membrane tracer
is analogous to e.g. a dextran bead attached to the membrane in experiments. Yet the in
silico tracer is advantageous: both the procedure of attachment and the additional mass are
avoided, and with them, a possible alteration of flow behaviour. Furthermore, histograms
for the angle to the flow or gradient direction or histograms for the size of the cell have been
presented. These measures are particularly suitable to identify the rolling cell.
Besides the single cell set-up, three set-ups of realistic haematocrit H were simulated and
analysed. H = 20% and H = 30% correspond to the microcirculation, while H = 45% corre-
sponds to larger venes and arteries. These set-ups show collective effects such as alignement
and mutual volume exclusion. Single cells are more spherical than cells at higher haemat-
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ocrit. The higher the haematocrit, the more the cells are stretched in flow direction. For both
low haematocrit and low shear rates, cells experience only small forces between the walls
and thus, can extend in gradient direction. For both low haematocrit and high shear rates,
cells are stretched in vorticity direction. The histograms were obtained from both time and
ensemble averaging. In comparison to the dilute set-up with only one RBC, ensemble effects
could be identified.
The sum of virial stresses in the shear plane yields the overall shear stress. By dividing
through the shear rate, the suspension viscosity was obtained, which is between the sol-
vent and the cytosol viscosity, as expected. Furthermore, shear thinning effects also found
in experiments could be examined. The deformations, partial tank-treading motions and
alignment effects of the cells influence the suspension viscosity. Traditionally, tank-treading
with steady shape and constant inclination angle has been identified for the shear-thinning
of blood. Together with recent experiments by the group of M. Abkarian, the present simu-
lations suggest that shape changes and rotations, as seen in the case of a trilobe, are crucial.
Furthermore, the initial orientation changes the cell motion. However, it is possible that the
deviations of cells of different initial orientation vanish with time. Cells with different initial
orientation both show rolling motion after sufficient time. This indicates that other shapes
and motions could be also transient as well.
In a further setup, a larger viscosity contrast was employed to substitute membrane vis-
cosity. Membrane motion induces cytosol motion, particularly in case of no-slip boundary
conditions, thus, dissipation in the membrane can be addressed to the cytosol [91]. The re-
sults agree better with experiments, thus showing the validity of this approach.
A RBC in tube flow is subject to a Poiseuille velocity profile. The cell exhibits different shapes
and dynamics, depending on various cell properties and flow conditions. The behaviour of
flowing cells was studied for different shear rates and confinements, i.e. vessel diameters.
Comparative setups point out the importance of both the viscosity contrast and the nature
of the stress-free shape. We have found two major groups of shapes and dynamics. First,
for high shear rates and strong confinements, there are parachute-like cells. Second, for low
shear rates or weak confinements, there are slippers. The parachutes are not perfectly sym-
metric, in contrast to previous studies [80]. The reason for the asymmetry may arise from
anisotropic membrane stresses; it has also been discussed in terms of flow efficiency [82].
The parachutes require both a strong confinement and high shear rate, in order to decrease
entropy and have enough energy to deform the cell, respectively. The slippers split up into
three subgroups: tumblers, tank-treaders and snaking cells. The tumblers rotate and de-
form. Their deformation is small such that the cell shape can still be identified during a
360◦-rotation. The tank-treaders, however, deform so severely that their cell shape is rebuilt
during rotation and the inclination angle remains in a limited range. This motion requires
more shear energy than the tumblers. The snaking cells exhibit small deformations and
slightly oscillate around an orientation angle. Summing up, a rich variety of shapes and dy-
namics was found, depending on the flow conditions. Several measures were introduced to
identify and distinguish these shapes and dynamics. Among them is the inclination angle,
which was obtained by diagonalising the gyration matrix, representing the distribution of
membrane elements. This angle distinguishes tumblers and tank-treaders. Another mea-
sure is the asphericity, obtained by the eigenvalues of the gyration matrix. This measure
distinguishes slippers and parachutes. This distinguishment has also been achieved by the
distribution of inclination angles, as parachutes are mostly oriented 150◦ towards the flow
direction. Besides, visual assessment through the trajectory videos has complemented the
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identification process.
Having identified the different shapes and dynamics, phase diagrams were provided, show-
ing the regimes of a certain shape in terms of shear rate and confinement, and the boundaries
between different shapes [84, 46, 163]. The regime of parachutes is located in the upper right
corner of strong confinements and high shear rates. A layer of tank-treaders surrounds the
parachutes and separates them from the tumblers. The snaking cells are located on the bot-
tom at low shear rates. Having introduced a phase diagram, certain cell properties were al-
tered and the simulations at the boundaries of shapes and dynamics were repeated. This has
given rise to new phase diagrams with shifted boundaries. The changes in phase diagrams
are consistent and could be explained by the altered cell properties. In case of increasing cy-
tosol viscosity, the boundary of parachutes and slippers is shifted to stronger confinements.
The cell becomes effectively more rigid and a stronger confinement, thus, a velocity pro-
file of stronger curvature, is needed to form a parachute. Increasing the Young’s modulus
has a comparable effect; making the cell less deformable and more prone to tumbling. It is
remarkable that the cell with higher inner viscosity favours tank-treaders over parachutes.
Considering the strong, oscillating deformations of a tank-treader, it should be energetically
more costly than the steady parachute. This was first thought to be due to the start-up phase,
in which the biconcave cell transforms into one of the types [167]. To clarify its effect, sim-
ulations were set up in which, long after the start-up phase, the inner viscosity changes. It
turned out that the viscosity contrast decides over the shapes. This still needs further inves-
tigation.

In the future, the following research directions are conceivable and promising.
First, the light scattering signals of an ensemble of cells can be calculated. Using a physio-
logical haematocrit will yield more realistic scattering signals. It could also provide insights
into the collective alignment of cells [68]. However, under certain conditions, multiple scat-
tering has to be accounted for and implemented [69].
Second, the rheology of a blood suspension including physiological fractions of RBCs, WBCs,
platelets and von Willebrand factor could be studied via simple shear flow setups to gain in-
sight into their interactions in flow.
Third, the impact of viscosity contrast on the boundary between parachutes and tank-treading
cells should be clarified, regarding flow field and its efficiency.
The confinements of this study are geometrically simple and rigid. In fact, real blood ves-
sels show bifurcations, occlusions, constrictions due to deposits, and a finite elasticity. This
could be incorporated into future flow simulations. Furthermore, the question of modelling
membrane viscosity will have to be addressed. Present implementations either lack a realis-
tic effect or stability.
Simulations of the dynamics of blood cells have potential for further optimisations and fu-
ture successful applications of complementing theories and experiments.
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[92] KRÜGER, T., HOLMES, D., AND COVENEY, P. V. Deformability-based red blood cell
separation in deterministic lateral displacement devices-A simulation study. Biomi-
crofluidics 8, 5 (Sep 2014).
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