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Abstract

Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological pro-

cesses important decisions must be made to form the embryo and hence ensure the next

generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be sup-

plied to the embryo. (2) Polarity must be established and axes must be specified. While

incorporation of maternal gene products occurs during oogenesis, the time point of po-

larity establishment and axis specification varies among species, as it is accomplished

either prior, during, or after fertilisation. But not only the time point when these events

take place varies among species but also the underlying mechanisms by which they are

triggered. For the nematode model Caenorhabditis elegans the underlying pathways and

gene regulatory networks (GRNs) are well understood. It is known that there the sperm

entry point initiates a primary polarity in the 1-celled egg and with it the establishment

of the anteroposterior axis. However, studies of other nematodes demonstrated that po-

larity establishment can be independent of sperm entry (Goldstein et al. 1998, Lahl et al.

2006) and that cleavage patterns, symmetry formation and cell specification also differ

from C. elegans. In contrast to the studied Chromadorea (more derived nematodes in-

cluding C. elegans), embryos of some marine Enoplea (more basal representatives) even

show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov

and Panchin 1998). The underlying pathways controlling the obviously variant embry-

onic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I

addressed this issue by performing a detailed unbiased comparative transcriptome anal-

ysis based on microarrays and RNA sequencing of selected developmental stages in a

variety of nematodes from different phylogenetic branches with C. elegans as a reference

system and a nematomorph as an outgroup representative. In addition, I made use

of available genomic data to determine the presence or absence of genes for which no

expression had been detected. In particular, I focussed on components of selected path-

ways or GRNs which are known to play essential roles during C. elegans development

and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated

differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt

and sex determination signaling are absent in these species. In this respect, I identified

female-specific expression of potential polarity associated genes during gonad develop-

ment and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show

that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and

PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity

complex does not exist in these nematodes. Instead, transcriptomes of nematodes (in-

cluding C. elegans), show expression of other polarity-associated complexes such as the

Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nema-

todes and nematomorphs to initiate polarity during early embryogenesis. I could show



that crucial pathways of axis specification, such as Wnt and BMP are very different in

C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is

mediated by four paralogous β-catenins, while other Chromadorea have fewer and Eno-

plea only one β-catenin. The transcriptomes of R. culicivorax and the nematomorph

show that regulators of BMP (e.g. Chordin), are specifically expressed during early

embryogenesis only in Enoplea and the close outgroup of nematomorphs.

In conclusion, my results demonstrate that the molecular machinery controlling oogen-

esis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be

taken as a general model for nematode development. Under this perspective, Enoplean

nematodes show more similarities with outgroups than with C. elegans. It appears that

certain pathway components were lost or gained during evolution and others adopted

new functions. Based on my findings I can conjecture, which pathway components may

be ancestral and which were newly acquired in the course of nematode evolution.



Zusammenfassung

Der biologische Prozess der Oogenese ist eine Vorraussetzung für die Embryogenese in

Metazoa. In beiden Prozessen müssen wichtige entwicklungsbiologische Entscheidungen

für die nächste Generation getroffen werden: (1) Maternale Vorprodukte (z.B. mRNAs

und Proteine) und Nährstoffe müssen dem Embryo zugeführt werden. (2) Polarität muss

etabliert und Achsen müssen festgelegt werden. Maternale Vorprodukte und Nährstoffe

werden während der Oogenese eingelagert. Der Zeitpunkt der Polaritätsetablierung und

Achsenfestlegung variiert zwischen einzelnen Spezies und kann vor, während, oder nach

der Befruchtung erfolgen. Aber nicht nur der Zeitpunkt der Aktivierung dieser biolo-

gischen Prozesse, sondern auch die molekularen Mechanismen, welche sie steuern sind

unterschiedlich. Für den Modellorganismus Caenorhabditis elegans sind die Signalwege

und genregulatorischen Netzwerke (GRN) gut untersucht. Es ist bekannt, dass der Ein-

trittspunkt des Spermiums die Polarität im einzelligen C. elegans Embryo festlegt, und

somit die anterior-posterior Achse determiniert. Andere Studien haben hingegen gezeigt,

dass die Polarität in Nematoden auch unabhängig vom Eintrittspunkt des Spermiums

festgelegt werden kann (Goldstein et al. 1998, Lahl et al. 2006) und dass Teilungsmuster,

Symmetriebildung und Zellspezifikation unterschiedlich zu C. elegans sein müssen. Im

Gegensatz zu den untersuchten Chromadorea (eher abgeleitete Nematoden, die auch C.

elegans beinhalten) existieren auch einige marine Enoplea (eher basale Vertreter der Ne-

matoden) deren Embryos keine klar ersichtliche Polarität zeigen und Blastomere können

unterschiedliche Zellschicksale annehmen (Voronov and Panchin 1998). Die unterliegen-

den Signalwege, die diese offensichtlich unterschiedlichen embryologischen Prozesse kon-

trollieren, sind in Nematoden außerhalb des Genus Caenorhabditis weitestgehend un-

bekannt. In dieser Doktorarbeit befasse ich mich mit diesem Problem, indem ich einen

Transkriptom-Vergleich mit Hilfe von Microarrays und RNA Sequenzierungen (RNAseq)

für ausgewählte Entwicklungsstadien von Nematoden unterschiedlicher phylogenetischer

Gruppen durchgeführt habe. Hierzu nutzte ich das Modell C. elegans als Referenzsystem

und einen Nematomorphen als repräsentativen Außengruppenvertreter. Zusätzlich habe

ich Genominformation genutzt, um das Vorhandensein und die Abwesenheit von Genen,

für die ich keine Expression nachweisen konnte, festzustellen. Hierbei habe ich mich auf

Komponenten von ausgewählten Signalwegen und GRNs fokussiert, von denen bekannt

ist, dass sie essentiell für die Entwicklung von C. elegans und Invertebraten- und Ver-

tebratenmodelle sind. Die Oogenese in C. elegans muss anders reguliert werden als in

Nematoden anderer Gattungen, da essentielle regulative Komponenten des Wnt und des

“Sex-Determinations” Signalweges in diesen Spezies nicht existieren. In diesem Zusam-

menhang habe ich spezifische Expression von Genen, die mit Gonadenentwicklung und

vii



Oogenese assoziiert werden können, in dem Enoplea Romanomermis culicivorax detek-

tiert. Zusätzlich konnte ich zeigen, dass bekannte Komponenten der Polaritätskomplexe

PAR-3/-6/PKC-3 und PAR-1/-2 in Spezies außerhalb des Genus Caenorhabditis nicht

existieren. Selbst PAR-2, als Bestandteil eines dieser Komplexes, existiert nicht in diesen

Nematoden. Hingegen zeigen Analysen der Nematodentranskriptome (einschließlich C.

elegans), dass andere polaritätsassoziierte Komplexe, wie z.B. Lgl (Lethal giant lar-

vae), exprimiert werden. Diese Ergebnisse zeigen einen alternativen Weg, um Polarität

während der Frühentwicklung in Nematoden festzulegen. Ich konnte auch zeigen, dass

wichtige Signalwege der Achsenfestlegung, wie z.B. Wnt und BMP, sehr unterschiedlich

zu C. elegans sein müssen. Zum Beispiel existieren für den Wnt Signalweg in C. elegans

vier β-Catenin Paraloge, während andere Chromadorea weniger und Enoplea nur ein

β-Catenin besitzen. Die Transkriptome von R. culicivorax und dem Nematomorphen

zeigen, dass Regulatoren des BMP Signalweges (z.B. Chordin) spezifisch in Enoplea und

Nematomorphen während der Frühentwicklung exprimiert werden.

Zusammenfassend zeigen meine Ergebnisse, dass die molekulare Maschinerie, die Ooge-

nese und Embryogenese in Nematoden reguliert, unerwartet variabel ist und somit kann

C. elegans nicht als repräsentatives Modell für Nematoden-Entwicklung betrachtet wer-

den. Es scheint so, als ob Komponenten bestimmer Signalwege während der Evolution

verloren gegangen sind oder neue Funktionen angenommen haben müssen. Basierend

auf meinen Ergebnissen kann ich vermuten, welche Signalweg-Komponenten anzestral

sind und welche während der Nematodenevolution neu erworben wurden.
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Chapter 1

Introduction

1.1 How is oogenesis and early embryogenesis molecularly

controlled in Enoplean and Chromadorean nematodes?

Oogenesis and early embryogenesis are crucial biological processes for formation of the

embryo and propagation of the next generation in most Metazoa. During both processes

important prerequisites must be met: The embryo must be supplied with maternal gene

products (e.g. mRNAs and proteins) and nutrients, polarity needs to be established

and the prospective axes need to be specified. In order to understand how this is man-

aged, it is necessary to understand oogenesis and early embryogenesis. Oogenesis can

be subdivided into the biological processes of oogonia and oocyte formation, oocyte

maturation (Kimble and Crittenden 2007) and oocyte-to-embryo transition (Govindan

et al. 2006). Oogenesis ends with fertilisation by sperm (where sperm is present) and

is followed by early embryogenesis. All these biological processes are spatially and tem-

porally regulated, but the exact time points and the molecular mechanisms controlling

these processes vary among different taxa (McCarter et al. 1999, Govindan et al. 2006,

Kimble and Crittenden 2007, Roth and Lynch 2009, Clift and Schuh 2013, Li and Al-

bertini 2013).

For the nematode model C. elegans oogenesis and early embryogenesis are very well

understood (Miller et al. 2003, Gönczy and Rose 2005, Govindan et al. 2006, Kimble

and Crittenden 2007). It has also been elucidated how important decisions, such as

polarity establishment and axis specification, are controlled in C. elegans: The entry of

1
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the sperm initiates a gene regulatory network (GRN) to induce polarity in the 1-celled

egg (for a review refer to Gönczy and Rose 2005). This is a prerequisite for axis specifi-

cation, soma-germline separation during the first cleavage (Gönczy and Rose 2005) and

its invariant embryogenesis (Sulston et al. 1983). However, for other nematodes it was

shown that polarity establishment can be independent of the sperm-entry point (Gold-

stein et al. 1998) and sperm may not even be required (as in parthenogenetic nematodes;

Lahl et al. 2006). In this respect cleavage patterns and cell specification during early

embryogenesis can be very different in comparison to C. elegans (Skiba and Schieren-

berg 1992, Wiegner and Schierenberg 1998, Wiegner and Schierenberg 1999, Laugsch

and Schierenberg 2004, Schulze and Schierenberg 2008, Lahl et al. 2009, Schulze and

Schierenberg 2009, Schulze and Schierenberg 2011, Schulze et al. 2012). Some repre-

sentatives of the Enoplea (phylogenetically rather basal nematodes; Fig. 1.1; De Ley

2006) show no polarity at all and blastomeres can adopt variable cell fates (Voronov and

Panchin 1998). This shows that early embryogenesis is very different among nematodes

and raises several questions: How and when are important developmental decisions like

polarity establishment and axis specification made in different nematodes? When does

polarity establishment occur? Prior, during or after fertilisation? Which pathways and

GRNs drive oogenesis and early embryogenesis?

In order to address these questions in this thesis, I used an unbiased transcriptome

analysis approach for oogenesis and early embryogenesis in selected nematode species

(Fig. 1.1; Blaxter et al. 1998). This approach is unbiased in the sense that specimen

were selected (here embryos) from wilde-type populations without experimental influ-

ences (neither physical, e.g. mechanical stress, nor chemical, e.g. application of drugs

or RNA interference). My main objective in this thesis is a transcriptome compari-

son of Chromadorea (phylogenetically rather derived nematodes; Fig. 1.1) and Enoplea

(phylogenetically more basal), with respect to oogenesis and early embryogenesis. For a

proper comparison I used the model C. elegans as a reference and I added the nemato-

morph Gordius sp. as an outgroup. Additionally, I used available nematode genomes

from all clades of the phylum to confirm genomic presence and absence of ortholo-

gous transcripts. My comparative transcriptome approach allows searches for expressed

orthologues by two strategies: (1) I can search for expressed orthologues of known path-

ways from the model C. elegans, or (2) I can use outgroup models such as fruit fly

(Drosophila melanogaster), claw frog (Xenopus laevis), zebrafish (Danio rerio), mouse

(Mus musculus) and humans (Homo sapiens) to search for commonalities to Enoplea
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and Chromadorea (including C. elegans).

For this unbiased transcriptome comparison I used RNA analysis techniques such as

microarrays and RNA sequencing (RNAseq) to identify orthologous transcripts which

are expressed during oogenesis and early embryogenesis. What are these techniques and

how are these applied to get information which helps with the objective of this thesis?

In the introduction I will give background information on what is known concerning

oogenesis and early embryogenesis in nematodes. I will explain how this mainly devel-

opmental biological topic can be put into an evolutionary perspective and how RNA

analysis techniques may help to understand the molecular underpinnings of oogenesis

and early embryogenesis. Furthermore, I will explain how my transcriptome comparison

may help to identify Enoplea- and Chromadorea-specific pathways and regulators dur-

ing oogenesis and early embryogenesis. I will also explain how such insights may add

to the understanding of the molecular mechanisms of polarity establishment and axis

formation in these nematode groups.

1.2 Evo-Devo and Next Generation Sequencing: The study

of development and evolution in the times of quanti-

tative high-throughput sequencing technologies

In order to deal with developmental questions for inter-species comparison it is neces-

sary to put them into a evolutionary perspective. Contributing to the main question

in this thesis (how is oogenesis and early embryogenesis controlled in nematodes) needs

understanding of (1) what we know about evolution (2) how can I combine it with the

concept of developmental biology and (3) what methods can we use to generate data

to answer this question. Here, I give a short overview about the study of “Evolution

and Development” (abbreviated as “Evo-Devo”) and how it benefited in the past from

crucial findings and how the underlying theoretical concept and advanced technologies

can be used to understand polarity establishment.

In the past the biological discipline of Evo-Devo dealt with the understanding of devel-

opmental cues which emerged in the course of evolution (for a review on Evo-Devo and

current scientific challenges refer to Müller 2007). The first pioneer studies in nematodes



Chapter 1. Introduction 4

were based on classical approaches such as mechanical manipulation of early embryos

(Boveri 1899, 1910), UV-radiation (Nelson et al. 1989, Stevens 1909) or laser ablations

(Kimble and White 1981, Schierenberg 1984).

These pioneer experiments unravelled fundamental principles of development, such as the

identifying the centriole as the “microtuble organising center” (MOC) (Boveri 1887, Wil-

son 2008), the chromosomes as stable entities and the process of chromatin diminution

in somatic but not germline cells in Ascaris (Boveri 1887). However, these experiments

lacked the knowledge of genes, DNA and their function.

Only via mutagenesis and screening for loss of function (lof) alleles, scientists were able

to pinpoint how genes interact with one another and form gene regulatory networks

(GRN), which drive development in model organisms such as Drosophila melanogaster

(Nüsslein-Volhard and Wieschaus 1980) or C. elegans (Brenner 1974). These experi-

ments allowed a broad understanding of genes, pathways and GRNs.

It did not took long before it became clear that certain developmental pathways, for

example Wnt, Hedgehog, and Hox signaling, were conserved among invertebrate and

vertebrate models (Gerhart 1999, Aboobaker and Blaxter 2003a,b). Nonetheless, a com-

parison of genes involved in development between different species could only be achieved

by putting the newly gained information into an evolutionary perspective. Hence, the

discipline of Evo-Devo was born.

Mutagenesis studies brought a unprecedented knowledge of developmental control and

showed which developmental key regulators are conserved in model organisms (Gerhart

1999). A serious cutback was, however, that these studies had been restricted to a

small number of model systems. Hence, the understanding of evolution of GRNs among

Metazoans still lacked important information due to insufficient species sampling in the

different animal phyla.

Recently, the methodology of Sanger, which dominated the market since the 1970s, was

replaced by sophisticated multiplexing sequencing platforms which allowed sequencing of

millions of reads in parallel and thus analysis of whole genomes of newly sampled species

even in laboratories with tight budget. Among the first of such techniques were the

Roche 454, the SOLiD and the Illumina platform (so-called second generation sequenc-

ing platforms; Strausberg et al. 2008). Recently, third generation sequencing platforms

such as PacBio, Biotorrent and Oxford Nanopore promise higher numbers and longer

sequencing reads (Niedringhaus et al. 2011). These changes in sequencing techniques

led to the new era of Next Generation Sequencing (NGS), which allows sequencing and
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assembling of whole genomes of genetically completely undescribed species.

Today, the wealth of genomic data and an extended spectrum of species which can be

used for analysis opens the door to better understand evolutionary aspects of taxon-

specific differences. Nonetheless, the unprecedented wealth of data comes with a very

basic shortcoming: While the amount and complexity of data increased dramatically, it

was impossible to compare whole genomes and relevant GRNs among species by pure

sequence alignments. Today, Genbank includes more than 360 million gene sequences

from more than 300,000 species (Benson et al. 2015). The combination of phylogenetics,

bioinformatics and data mining techniques allows now a reliable approach to analyse

these huge and complex data sets.

What can we learn from genomic sequencing for Evo-Devo? NGS allowed a first view

into the genomic background of a board diversity of animals to understand phyologen-

tic characteristics of whole phyla (for example in the case of the avian phylogenomics

project; Zhang et al. 2014). But especially Developmental Biology (and Evo-Devo) is

interested in crucial developmental stages. In this respect, RNA sequencing by Next

Generation Sequencing platforms (RNAseq) is a very advantageous method, as it allows

complete sequencing of various developmental stages on the messenger RNA (mRNA)

level. So, it is possible to correlate transcriptomes directly to specific developmental

stage of the studied species.

In my thesis I sought to better understand similarities and differences of GRNs, which

drive the early development of selected nematode species, by applying RNAseq.
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1.3 Caenorhabditis elegans: An established model for em-

bryogenesis

As explained in the previous section, Developmental Biology and Evo-Devo benefited

from model organisms in the past, as forward and reverse genetics could be established

in these species and strongly contributed to the understanding of gene regulatory net-

works (GRNs; Nüsslein-Volhard and Wieschaus 1980, St Johnston 2002). In the case

of nematodes, Sydney Brenner introduced Caenorhabditis elegans initially as a model

for genetic analysis of the nervous system (Brenner 1974). Later, reverse genetics was

also established in form of RNA interference (RNAi; Fire et al. 1998, Tabara et al. 1998,

Timmons and Fire 1998), different techniques for transformation (Boulin and Bessereau

2007, Robert and Bessereau 2007) and the CRISPR/Cas9 system for gene and genome

editing (Chen et al. 2013). C. elegans became the first Metazoan organism with a com-

pletely sequenced genome (Caenorhabditis elegans Sequencing Consortium 1998).

This broad set of methods and techniques not only led to the understanding of many

fundamental cellular, genetic and developmental aspects of the biology in general, it also

led to the nobelprizes for the genetic analysis of organ development and programmed cell

death (Brenner 1974, Sulston 1974, 1976, Sulston and Horvitz 1977, Sulston et al. 1983),

establishment of the RNA interference (RNAi) technique to selectively knock-down gene

function (Fire et al. 1998, Tabara et al. 1998, Timmons and Fire 1998) and the use of

green fluorescent protein (GFP) to visualise gene expression in vivo (Shimomura et al.

1962, Chalfie et al. 1994, Heim et al. 1995, Shaner et al. 2005).

Hence, C. elegans became one of the most famous model organisms studied by more

than 1000 laboratories around the globe (wormbase.org/resources/laboratory; version

WS246). Just in the year 2014 there were more than 1,500 papers published which used

information gathered by experiments using C. elegans (pubmed.org).

Eventhough, C. elegans is a very important model for numerous biological aspects, espe-

cially for Evo-Devo, several studies indicated doubt whether it is representative for the

whole phylum of nematodes. Many differences between C. elegans and other nematodes

have been found concerning cellular aspects of embryogenesis (Skiba and Schierenberg

1992, Goldstein et al. 1998, Voronov and Panchin 1998, Wiegner and Schierenberg 1998,

Wiegner and Schierenberg 1999, Laugsch and Schierenberg 2004, Schulze and Schieren-

berg 2008, Schulze and Schierenberg 2009, Lahl et al. 2009, Schulze and Schierenberg
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2011, Schulze et al. 2012) and loss of gene pathways such as Hedgehog signaling (per-

sonal communication P. H. Schiffer, M. Kroiher; Hao et al. 2006) and Hox-gene clusters

(Aboobaker and Blaxter 2003a,b).

Hence, in this thesis I want to make a contribution to the understanding of how em-

bryogenesis is controlled in these nematodes and what pathways may play a role.

1.4 Nematodes: A phylum with considerable wealth of de-

velopmental strategies
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clade IV
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Figure 1.1: Phylogenetic tree of selected nematode species. In this thesis I focus on
the early embryogenesis of the Chromadorean species Caenorhabditits elegans (clade V),
Diploscapter coronatus (clade V), Pristionchus pacificus (clade V), Ascaris suum (clade
III), the Enoplean species Romanomeris culicivorax (clade I) and the nematomorph
Gordius sp. (outgroup). The phylogenetic tree was modified from Blaxter et al. 1998.
Due to insufficient species from clade II, which cannot be cultured under laborartory
conditions, I could not include clade II species (indicated by ∗). A. suum embryonic
pictures were taken from Wang et al. 2014. The differential interference contrast (DIC)
pictures for all other species were taken in the Schierenberg laboratory (J. Schulze, E.
Schierenberg personal communication). Anterior is always left and dorsal at the top.

The phylum of nematodes is one of the most species-rich phyla in the kingdom of ani-

mals. There are estimations of several million to 100 million species (Meldal et al. 2007).

Nematodes occupy all conceivable biological niches, they exist in extreme habitats such
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as Antarctica (Wharton and Ferns 1995, Wharton 2003), African deep mines (Borgonie

et al. 2011), in any soil, fresh and salt water and on decaying fruits, as for example

the genus Caenorhabditis (Kiontke et al. 2011). Besides from that nematodes have an

enormous impact on our lives, as they are known to be crop-pests (Trudgill and Blok

2001), parasites of domestic animals and introduce health threatening diseases to the

human population, such as lymphatic filariasis or river-blindness (Fenwick 2012, Ottesen

et al. 2008).

Nematodes occupy different ecological niches and follow different modes of early devel-

opment (Fig. 1.1; Goldstein et al. 1998, Sommer 2001, Laugsch and Schierenberg 2004,

Schulze and Schierenberg 2008, Lahl et al. 2009, Schulze and Schierenberg 2009, Schulze

and Schierenberg 2011, Schulze et al. 2012, Sommer 2012). Depending on the positioning

of these species in the phylum of nematodes, early development can be rather different

from C. elegans. Yet, nearly all nematodes look very much alike during morphogenesis

and when they hatch as larvae (Fig. 1.1). Remarkably, the clade II nematode Enoplus

brevis passes through, equal division during early development (Voronov and Panchin

1998). Furthermore, it was shown previously that another clade II nematode, Tobriulus

stefanskii shows atypical gastrulation in comparison to the model C. elegans and instead

shows similarity to gastrulation known from vertebrates (Schulze and Schierenberg 2008;

Schierenberg personal communication; Fig. 1.1). Only recently scientists started to in-

vestigate the genetic basis of these striking developmental differences (Schiffer et al.

2014; personal communication M. Kroiher, J. Camps, N. Nsah).

So, nematodes are species rich and show certain unique characteristics with respect to

early embryogenesis, but the molecular underpinnings still need to be tapped. Here, I

chose a set of seven species which cover 4 of 5 clades (Fig. 1.1) which I intend to analyse

during early embryogenesis. Transcriptomic data from these species shall give insights

into early embryogenesis and may help to understand which contributing pathways exist

specifically in Enoplean and/or Chromadorean nematodes.
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1.5 Oocyte-to-embryo transition is essential for early em-

bryogenesis in all Metazoa

As mentioned in section 1.1, the time point of polarity establishment and primary (a-p)

axis formation might be prior, during or after fertilisation in certain species, hence it is

important to understand oogenesis.

Oogenesis includes oocyte maturation and oocyte-to-embryo transition and the oocyte

is subsequently fertilised by sperm (for reviews on this topic refer to Sardet et al. 2007,

Clift and Schuh 2013, Li and Albertini 2013 for chordates and vertebrates; for inverte-

brates refer to Roth 2001, Roth and Lynch 2009, Costache et al. 2014).

All three processes are important for the complex differentiation of the oocyte. This egg

cell must pass through specific “milestones” prior and after fertilisation to guarantee the

development and survival of the next generation: (1) The oocyte incorporates maternal

gene products to allow early cleavage prior to activation of zygotic transcription. (2)

The oocyte forms a specific chromatin structure, the synaptonemal complex to allow

continuity of transcription during meiotic arrest. (3) In most animals, except mammals,

the oocyte incorporates nutrients for embryonic metabolism. (4) Incorporated maternal

information modifies chromatin conformation (e.g. via histone-methylation) to estab-

lish a genomic imprinting (epigenome) for the embryo. (5) The oocyte establishes an

mechanism to prevent polyspermy (Li and Albertini 2013).

The described milestones possess general similarity in all investigated organisms, but

the details of accomplishing the milestones of oogenesis, oocyte maturation and fertili-

sation are very different among organisms: Taxon-specific differences include the stage

of meiotic arrest, the amount and types of incorporated maternal RNA, incorporation

of yolk and nutrients and composition of the oocyte surface.

Furthermore, the specific structure of the gonad may have important implications for the

oocyte, e.g. establishment of polarity in Drosophila (Roth and Lynch 2009). Here, as

well as in C. elegans the oocyte interacts with the surrounding somatic cells ( Govindan

et al. 2006, Roth and Lynch 2009). Similarly, mammalian oocytes also form cell-cell con-

tacts with the surrounding somatic cells (Li and Albertini 2013). Hence, oocyte-soma

interactions may have an effect on early embryogenesis and polarity establishment and

need to be investigated.

Despite the very general conformities among all animals, the mechanisms, of how these
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different processes are achieved, are different among organisms. All the explained pro-

cesses were investigated to a rather high level in model organisms, hence it is possible

to use these models as references to compare nematodes with. In the following sections,

I will first emphasize what we know from the model C. elegans about oocyte-to-embryo

transition. Second, I will address the question: Which GRNs regulate oogenesis and

oocyte-to-embryo transition C. elegans?
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1.6 Oocyte-to-embryo transition in C. elegans depends on

MAP-kinase signaling

Figure 1.2: Schematic representation of a gonad of an adult C. elegans hermaphrodite.
Oogonia (located in the distal arm of the gonad) are indicated by black dots. Box-
shaped oocytes are localised in the proximal gonad arm and are fully surrounded by
cell membranes (grey). The most proximal oocyte (indicated as “−1 oocyte”) undergoes
oocyte maturation (grey elipsoid). The nuclear envelopment breakdown (NEBD) of the
nucleus is indicated by a dashed lines in the “−1 oocyte”. Modified after McCarter

et al. (1999).

The C. elegans gonad resembles in its morphology and its function an assembly line

(McCarter et al. 1999, Greenstein 2005, Hubbard and Greenstein 2005): Oocyte precur-

sors, so-called oogonia, are located at the very tip of the distal end of the gonad arms

(Fig. 1.2). In this area oogonia interact via cell-cell interactions with the distal tip cell

(DTC). The DTC forms cell-cell contacts with the mitotically dividing oogonia (Kimble

and Crittenden 2007). The oogonia initiate meiosis by moving towards the proximal

end of the gonad and away from the DTC (Fig. 1.2).

For the oogonia meiosis starts with prophase and they undergo pachytene arrest (Fig. 1.2).

After migrating through the loop connecting the proximal with the distal gonad arm

(Fig. 1.2), oogonia start to form cell membranes and become completely encapsulated.

Furthermore, this transition is also marked by moving from pachytene to diplotene ar-

rest and the former oogonia become oocytes. The arrested oocytes are stacked as cuboid

cells in the proximal gonad arm (McCarter et al. 1999; Fig. 1.2). All oocyte resemble

this shape with exception of the most proximal “−1 oocyte” (Fig. 1.2). This oocyte

starts maturing, meaning that the diplotene arrest is lifted and the oocyte continues
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Figure 1.3: Schematic representation of the cell-cell interaction between somatic
sheath cells and the “-1 oocyte” and the underlying GRN which regulates the process of
oocyte maturation. Grey dashed lines indicate activating (arrow head) and inhibiting
(blunt end) signal of oocyte maturation under the condition of absent sperm and MSP.
However, under the condition of present sperm, MSP binds to seven-transmembrane
receptors and the ephrin receptor VAB-1 and activates the MAP-kinase MPK-1. MPK-
1 induces the process of oocyte maturation via an unknown transcription factors (TF).
Unknown receptors, gap-junction molecules, transcription factors and downstream tar-
get genes are indicated by red question marks. Modified after (Govindan et al., 2006).

with meiosis. Morphologically, this process is characterized by the nuclear envelope

breakdown (NEBD; McCarter et al. 1999).

The process of oocyte maturation is regulated by (1.) mitogen-activated protein (MAP)

kinase pathway (with MPK-1 as the C. elegans orthologue) and (2.) by the cell-cell

interactions between the somatic sheath cells of the gonad and the maturing oocyte at

the “−1” position (Fig. 1.2; Miller et al. 2001, 2003, Govindan et al. 2006). The neces-

sary cell-cell interactions take place via innexin gap junctions between sheath cells and
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the oocyte (Fig 1.3). The sperm induces oocyte maturation via secreted Major Sperm

Protein (MSP). MSP binds to the ephrin receptor VAB-1 of the oocyte as well as to

presently unknown seven-transmembrane receptors which are coupled to the G-protein

subunits GOA-1 and GSA-1 (Fig 1.3; Govindan et al. 2006). This interaction between

sperm and oocyte ensures that the diplotene arrest is lifted as long as sperm is available.

Thus, it is known that two cues are responsible for the maturation of the oocyte: 1.)

Cell-cell interaction via gap-junctions between the sheath cells of the somatic gonad and

2.) the excretion of the the MSP by the sperm.

Oocyte maturation is intrinsically suppressed by the G-protein alpha subunit GOA-

1. In the case of sperm being present MSP is secreted and binds to unknown seven-

transmembrane receptors and activates the G-protein alpha subunit GSA-1 which acti-

vates MAP kinase signaling, while GOA-1 is simultaneously deactivated by the binding

of MSP. In parallel to that MSP binds to the ephrin receptor VAB-1 (Fig 1.3; Miller

et al. 2003). This part of the pathway activates the oocyte maturation process without

interacting with the MAP-kinase pathway. Besides from this GAP-junction interactions

with the somatic gonad are inhibited by the binding of MSP, avoiding inhibition of

oocyte maturation (Fig 1.3; Miller et al. 2003, Govindan et al. 2006).

Even though, the GRN regulating oocyte maturation is elucidated to a very high de-

gree, certain key regulators of the pathways are still unknown (Fig. 1.3; marked by red

question marks): Possibly, not all of cell-cell interaction proteins and/or gap-junction

components which interact with the somatic gonad are elucidated, yet. Furthermore,

the seven-transmembrane receptors, as well as the acting transcription factor and the

downstream target genes of the GRN have not been identified (Fig. 1.3; red question

marks).

In order to identify potential upstream and downstream candidate genes for the MAP-

kinase pathway involved in oocyte maturation and oocyte-to-embryo transition we used

RNAi of known pathway components to find differentially over- and/or underexpressed

genes using microarrays (see Materials and Methods).
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1.7 Anteroposterior axis formation and soma-germline sep-

aration take place very early in C. elegans

How is polarity established in C. elegans? In C. elegans the sperm entry point deter-

mines the posterior pole and thus anteroposterior polarity of the embryo. It also initiates

the asymmetric division of the zygote into a larger somatic AB and a smaller germline

cell P1 (Deppe et al. 1978, Gönczy and Rose 2005).

This process induces a directed cortical flow, leading to an anterior positioning of the

PAR-3/-6/PKC-3 complex and a posterior positioning of the PAR-2/-5 complex. Espe-

cially, the first complex is conserved in nearly all Metazoa and an essential part of the

so-called planar cell polarity (PCP) pathway (Knust and Bossinger 2002). The differ-

ential positioning of both complexes results in the posterior positioning of the LET-99

protein at the cortex of the zygote (Gönczy and Rose 2005). This positioning of the

regulator LET-99 leads to the tethering of the Gα subunit to the posterior membrane

of the zygote. Gα binds GPR-1/-2 and the microtubule network (Nguyen-Ngoc et al.

2007). The latter generates an unequal pulling force onto both poles of the mitotic

spindle, thus moving the separating chromosomes from the center of the egg towards

a more posterior position. This acentric position marks the future division plane of

the zygote and thus leads to asymmetric cell division, giving rise to the larger anterior

AB cell (soma) and the smaller posterior P cell (germline). Hence, in contrast to most

other animal taxa both, establishment of the a-p axis and soma-germline separation, are

accomplished prior to the cleavage of the C. elegans zygote.

As indicated previously, early development in other nematodes deviates from C. elegans

with respect to polarity establishment and early embryogenesis. Here, I use C. elegans

as a reference system to better understand molecularly what are the differences to other

nematodes.
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1.8 Non-Caenorhabditis nematodes show considerable vari-

ances with respect to polarity establishment and axis

formation

Different studies in the past showed that unlike C. elegans the sperm-entry point is not

responsible for asymmetric cell division and anteroposterior axis formation in certain

other nematode species (Goldstein et al. 1998, Lahl et al. 2006, 2009). Such species

appear to exist in all clades of the nematode phylum: The best examples are represen-

tatives of clade III and IV, like Arobeloides and Panagrolaimus species (Goldstein et al.

1998). There is even a close relative of Caenorhabditis, the parthenogenote Diploscapter

coronatus with a very different mechanism of establishing of anteroposterior polarity

without the presence of sperm (Lahl et al. 2006).

In such species asymmetry within the zygote has to be controlled by a different molecular

mechanism compared to C. elegans. Furthermore, the above mentioned examples also

show variances with respect to early development. In the case of D. coronatus the 4-cell

stage is not rhomboid as in C. elegans, instead the cells are set-up in a linear sequence

without direct cell-cell contact between ABp and the P2 cell (Fig. 1.1 B3; Lahl et al.

2006). In C. elegans this contact is crucial to induce the fate of the ABp cell via Notch

signaling from the germline. In D. coronatus such an induction by Notch signaling is

impossible due to the lack of cell-cell contact (Fig. 1.1 C3).

Other nematodes such as R. culicivorax (clade I) rearrange cells into a rhomboid 4-cell

stage as in C. elegans, although spindles in the equal sized 2-cell blastomeres are both

oriented longitudinally. In the 4-cell stage, fates of the blastomeres are reversed along

the dorsoventral axis compared to C. elegans (Schulze and Schierenberg 2008, 2009), i.

e. the dorsal cell makes mesoderm and the ventral one ectoderm.

This shows that crucial differences between C. elegans and other nematodes exist and

C. elegans is an appropriate reference to compare other nematodes with.
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1.9 RNAseq allows molecular analysis of development in

non-model nematodes

By analysing development in detail on the cellular level, our laboratory revealed sig-

nificant differences among selected nematodes, which include (1) differences in the es-

tablishment of polarity, (2) a shift from maternally supplied fate determinants towards

zygotically expressed determinants, (3) considerable variations of gastrulation (Schulze

and Schierenberg 2011). In addition, we showed that spatio-temporal expression of genes

involved in cell fate specification is surprisingly variable among nematodes, indicating

that observed developmental diversity correlates with differences in molecular signaling

(Schiffer et al. 2014; personal communication Ndifon Nsah, Julia Camps and Michael

Kroiher, Köln). All these findings support our view that development in C. elegans is

not typical for nematodes in general.

Although it is known for many developmental stages in C. elegans which molecular

pathways determine certain cell fates, the knowledge of such pathways remains largely

elusive in other nematodes. Thus, in this thesis I will analyse the expression patterns

during early developmental stages among selected representatives of nematodes by em-

ploying RNAseq.

This approach allows analysis of expressed genes during early development in an un-

biased fashion. Combining RNAseq with global genome and transcriptome clusterings

shall give insights into the distribution of orthologues among the selected nematodes

species and outgroups (Fig. 1.1). One of the obstacles of following such an approach

is the small amount of total RNA that can be extracted from nematode embryos. To

circumvent this problem, in the past sampled RNA from C. elegans was amplified by in-

vitro transcription (IVT)-based methods prior to RNA sequencing (Hashimshony et al.

2012). Here, I will establish a similar method for other nematode embryos to facilitate

RNA sequencing. Concerning the selected nematodes of interest, I intend to get first

insights into early transcriptomes and underlying GRNs of Chromadorean and Enoplean

nematodes, as well as nematomorphs (Fig. 1.1). With this approach I intend to address

different questions such as:

(1) Which are the conserved pathways and genes found in nematode species of different

clades in comparison to other animal phyla? How do they control early embryogenesis?

Are they involved in polarity establishment?
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(2) Are there so far undescribed genes which are expressed in all investigated nematodes,

including C. elegans?

(3) In what respect is C. elegans different from other nematodes concerning gene ex-

pression during early development?

(4) Are there conserved GRNs among basal Enoplean nematodes and other model or-

ganisms?

(5) To what extent are there molecular differences among non-Caenorhabditis species

with respect to polarity establishment and axis specification?
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Materials and Methods

2.1 Materials and media

Most chemicals and solutions used for the methods presented here, were obtained from

the companies AppliChem GmbH (Darmstadt, Germany), Roche Diagnostics Inc. (In-

dianapolis, USA; Mannheim, Germany), Sigma Aldrich GmbH (Steinheim, Germany),

Merck KGaA (Darmstadt, Germany), Roth GmbH (Karlsruhe, Germany). All chem-

icals and solutions which were not produced by these companies will be listed separately.

DEPC-H2O:

• add 500 µl DEPC to 500 ml dH2O

• shake at RT for several hours

• autoclave at 130◦C for 20 min at a pressure of 2 bar

Low salt plates for nematode culturing (500 ml):

• 10 g agar

• 500 ml H2O

• autoclave at 130◦C for 20 min at a pressure of 2 bar

• 1 ml cholesterol (5 mg/ml) in EtOH

18
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Nematode growth medium (NGM) (1000 ml):

• 2.5 g bacto-peptone

• 10 g NaCl

• 17 g agar

• 925 ml H2O

• autoclave at 130◦C for 20 min at a pressure of 2 bar

• 1 ml 1M MgSO4

• 1 ml 1M CaCl2

• 1 ml cholesterol (5 mg/ml) in EtOH

• 25 ml KPO4 buffer (pH 6.0)

• 2 ml ampicillin (50 mg/ml)

• 1 µl 1 M IPTG

GU-mix (25 ml):

• 416.5 µl sarcrosyl (35%)

• 833.5 µl sodium citrate (0.75M)

• 11.8 g guadinium thiocyanate (118.16 g/mol)

• 3.6 µl β-mecaptoethanol

• ad 25 ml DEPC-H2O

Tri-mix (1 ml):

• 500 µl GU-mix

• 500 µl acid phenol

• 50 µl 2M Na-acetate
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• 7.2 µl β-mecaptoethanol

4% (v/v) Sodium hypochloride (NaOCl) solution (1.7 ml):

• 600 µl 12% (v/v) sodium hypochlorid

• 250 µl 5M KOH

• 850 µl dH2O

20 x SSC (1000 ml):

• 175.3 g NaCL

• 82.2 g sodium citrate

• add 1000 ml dH2O

• adjust pH to 7.0

Hybmix (10 ml):

• 5 ml 50% (v/v) formamide

• 2.5 ml 20 X SSC

• 10 mg DNA

• 10 µl heparine (100 mg/ml)

• 50 µl 20% (v/v) Tween20

• 2 ml 10% (v/w) destransulfate solution

2x SSC-formamide (75 ml):

• 7.5 ml 2x SSC

• 45 ml 60% (v/v) Formamid

• add H2O to a total volume of 75 ml
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2x TN (250 ml):

• 25 ml 100 mM Tris (pH 7.5)

• 7.5 ml 150 mM NaCl

Luria Bertani (LB) medium (1000 ml):

• 10 g Pepton

• 5 g yeast extract

• 10 g NaCl

• 17 g Agar

• add dH2O to a total volume of 1000 ml

• autoclave at 130◦C for 20 min at a pressure of 2 bar

• 2 ml ampicillin (50 mg/ml)

• 2.5 ml tetracycline (5 mg/ml)

2.2 Worm cultures and egg collection

I cultured the species Caenorhabditis elegans, Pristionchus pacificus, Diploscapter coro-

natus and Panagrolaimus sp. PS1159 on low salt agar plates with Escherichia coli

(strain OP50) as food source (Lahl et al. 2003).

Eggs of the nematodes Pristionchus pacificus, Diploscapter coronatus and Panagrolaimus

sp. PS1159 were directly collected from agar plates. The collected embryos were checked

by using dissection microscopes. For each species several biological replicates were cre-

ated by independent collection of eggs. Eggs were collected in Eppendorf tubes, filled

with 25 µl of dH2O. While collecting the eggs, Eppendorf tubes were kept on ice to

slow down embryogenesis. After collecting 100 embryos in the range of 1- to 4-cell stage

(in the case of D. coronatus 1- to 8-cell stage), collected embryos were shock-frozen by

treatment with liquid nitrogen and then kept at −80◦C.
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The Enoplean nematode Romanomermis culicivorax was retrieved as live cultures from

Prof. Dr. E. Platzer (Department of Nematology, University of Riverside, USA). A

volume of approximately 1 ml of R. culicivorax L4 larvae were put in 35 ml of spring

water (in 9 cm gamma-irradiated plastic petri-dishes; Sarstedt, Germany). L4 larvae

were kept at constant 24◦C until they reached adulthood (roughly for 4 weeks and with

approximately 8 hours of natural day light per day). Adult R. culivorax virgins and

males were collected separately prior to fertilisation and put into 25 µl of dH2O. Sam-

ples of adult virgins and males were shock-frozen using liquid nitrogen and afterwards

stored at −80◦C. R. culicivorax eggs were collected directly from the liquid cultures

after successful egg laying of fertilised females. The stage of the eggs was determined

by using dissection microscope. After confirming that embryos were at stages of 1- to

4-cell stage, embryos were immediately moved into Eppendorf tubes filled with 25 µl of

dH2O. Eppendorf tubes were kept on ice to slow down embryogenesis of collected eggs.

After collecting 100 eggs, eppendorf tubes were shock-frozen by using liquid nitrogen.

Collected eggs were stored at −80◦C.

The nematomoph Gordius. sp. was retrieved as live cultures from Prof. Dr. B. Hanelt

(Department of Biology, University of New Mexico, Albuquerque, USA). Gordius sp.

male and female adults were kept in water consisting of 75% demineralised and 25%

spring water. Uteri were collected after successful mating of the females with males.

Uteri were cut at both ends and few eggs from each end were immediately mounted

onto slides to determine the stage and verify synchronous development of the embryos.

Only such uteri which consisted of synchronised embryos at 1-cell stage were immediately

put into 25 µl of dH2O and afterwards shock-frozen by treatment with liquid nitrogen to

preserve mRNA content. For each independent biological replicate of Gordius sp. 1-cell

stages I retrieved approximately 10 mg of tissue, hence it was possible to extract total

RNA by conventional RNA precipitation methods (see section 2.5). Collected uteri were

stored at −80◦C.
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2.3 RNA extraction

In the cases of R. culicivorax adults and Gordius sp. uteri, I had enough tissue (more

than 10 mg) to successfully precipitate and extact total RNA without using RNA carrier

molecules (compare to section 2.4). Hence, I could use a modified version of the protocol

established by Chomczynski and Sacchi (1987).

For this purpose I produced Tri-mix (see section 2.1). I quickly transferred tissue pellets

of approximately 10 mg into 1 ml Tri-mix without letting the tissue thaw and then de-

stroyed the tissue using a homogeniser (Ultra-Turrax, IKA Werke GmbH). I homogenised

the sample for 10 min while cooling the tube with ice. Then, I added 200 µl chloroform

and vortexed the sample. I incubated the sample at room temperature (RT) for 5 min

and then centrifuged it for 10 min at 15,000 G. I transferred the transparent aquaneous

phase (without the inter-phase) into a new Eppendorf tube and thus I separated the

total RNA from protein and genomic DNA. I added 0.025 volumes of 1M acidic acid.

I vortext the sample and added 0.5 volumes of pre-cooled 100% EtOH (−20◦C). I vor-

texed again and precipitated the sample over night at −20◦C. Next day, I centrifuged

the sample at 15,000 G for 20 min. Afterwards, I removed the supernatant and dried the

RNA pellet for 10 min I resuspended the RNA pellet in 125 µl of GU-mix (see section

2.1) and added 3.125 µl 1M acidic acid, vortexed the sample and added 70 µl 100%

EtOH . I precipitated the RNA over night at −20◦C. The following day, I centrifuged

the sample at 15,000 G for 20 min and afterwards washed the sample by removing the

supernantant and adding 500 µl EtOH (70%). I repeated the last step once more. I

removed most of the supernatant and let the remaining EtOH evaporate, by incubating

the eppendorf tube with an open lid at RT. After approximately 15 min I dissolved the

RNA pellet in 20 µl DEPC-H2O. In order to avoid formation of secondary structures of

the RNA in the aquaneous medium, I incubated the sample in a pre-heated waterbath

(65◦C) for 5 min and vortexed the sample. I repeated the last step once more. Then, I

immediately put the tube onto ice. The quality of the total RNA was checked by using

degenerative agarose-gel electrophoresis and I quantified the amount of the total RNA

using the nanodrop 1000 photometer (Agilent Inc.). All used total RNAs were not de-

generated and had 230nm/260nm- and 230nm/260nm-absorbtion ratios of greater than 1.9.

Extracted RNA was stored at −80◦C.
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2.4 RNA extraction from samples with low RNA content

In order to have enough mRNA for RNA sequencing I first had to extract total RNA

without losing too much mRNA content, then I had to amplify the mRNA from the

extracted total RNA.

For each sample I retrieved from collected nematode embryos, I needed to precipitate

the RNA which was available from 100 embryos (which is roughly 1 to 3% of an esti-

mated total RNA content of 10 ng; section 2.5). I needed a method to quickly transfer

the samples into a medium which would inactivate RNAses while maintaining stable

mRNA. Hence, I used a modified version of the protocol after Baugh et al. (2001) and

Hashimshony et al. (2012) (personal communication Itai Yanai).

For the whole procedure I used DEPC-treated eppendorf tubes and RNAse-free pipette

tips. As shown in section 2.2 nematode embryo samples were stored in 25 µl dH2O at

−80◦C. I intended to precipitate the total RNA of the samples by destroying the tissue

and then dissolving mRNA, DNA and protein in a mix consisting of guandinium thio-

cyanate, phenol and β-mecaptoethanol, the so-called Tri-mix (Chomczynski and Sacchi

1987). In order to have the necessary concentration of 4M guandinium thiocyanate, I

had to increase the guandinium concentration in the Tri-Mix. For creating a proper

guandinium thiocyanate solution (or 6M-GU-mix) I used the following protocol:

6M-GU-mix (2.5 ml):

• 53.57 µl sarcrosyl (35%)

• 125.025 µl sodium citrate (0.75M)

• 1.77 g guandinium thiocyanate (118.16 g/mol)

• ad 2.5 ml DEPC-H2O

I prepared for each sample the Tri-Mix by the following protocol:

Tri-mix (200 µl):

• 75 µl 6M-GU-mix

• 100 µl acid phenol
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• 10 µl 2M Na acetate

• 1.44 µl β-mecaptoethanol

To the Tri-mix I added 1 µl (5 µg/µl) LPA (linear polyacylamide; Life Technologies Inc.)

and 1 µl (10 µg/µl) tRNA as carrier molecules for RNA precipitation. Now, I could start

to extract total RNA from the samples. By shock-freezing the samples I retrieved tissue

pellets which contained the frozen embryos. I transferred the pellets quickly into cryo-

tubes and kept them in liquid nitrogen. I quickly transferred the cryo-tube (containg

the tissue pellet) onto ice. I pipetted 175 µl of the prepared Tri-mix onto the tissue

pellet and used a homogeniser (Xenox, Proxxon GmbH, Föhren, Germany) to destroy

the tissue and dissolve RNA in the Tri-mix. I homogenised the disolved pellet for 10

min at 20,000 rpm (rounds per minutes) using the homogeniser (Xenox, Proxxon GmbH,

Föhren, Germany) while cooling the cryo-tube simultaneously with ice. Afterwards, I

transferred the Tri-mix with the homogenised tissue into a DEPC-treated eppendorf

tube. I vortexed the sample for 10 sec at the highest setting and then I added 40 µl

chloroform. I vortexed the sample again for 30 sec and then I centrifuged the sample

at 18,000 rpm for 5 min. I transferred the transperant aquaenous phase into a new

DEPC-treated eppendorf tube and added 120 µl isopropanol (100%). I mixed the sam-

ple by shaking and vortexing for 10 sec and then I incubated the sample for 2 min at

RT. I centrifuged for 10 min at 18,000 rpm with the eppendorf tube’s hinge aligned

with the rotor. I carefully removed the complete supernatant. In most cases I could

spot a transperant pellet at the bottom of the tube. I carefully added 500 µl of 70%

EtOH, vortexed for 10 sec and inverted the Eppendorf tube several times. I centrifuged

the sample again for 2 min at 18,000 rpm, but this time with the hinge alinged 180◦

relative to the previous centrifugation step. I carefully removed the supernatant and

centrifuged again at 18,000 rpm for 10 sec. I removed the remaining supernantant and

dried the pellet by opening the lid of the tube and waiting for 2 min. I dissolved the

RNA pellet in 2 µl DEPC-H2O and immediately transferred the eppendorf tube into liq-

uid nitrogen and stored the sample at −80◦C to avoid degradation of the extracted RNA.
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2.5 Amplification of low amounts of total RNA by in-vitro

transcription

The total RNA, and messenger RNA (mRNA) content of collected embryo samples for P.

pacificus, D. coronatus, Panagrolaimus sp. PS1159 and R. culicivorax could be roughly

estimated by comparing with C. elegans embryo samples. The total RNA content of

C. elegans embryo is approximately 200 ng per embryo (personal communication Itai

Yanai). Hence, an estimation of a total RNA content for embryonic samples for the

100 embryos of other species was approximately 20 ng and the mRNA content (which

correlates to 1 to 3% of the total RNA content) was estimated to be approximately

0.2 ng. This is by far too low for RNA sequencing by Illumina platforms (see section

2.6). Hence, amplification of the collected embryo samples was necessary for selected

nematode species (see above). Therefore, I established a technique in the Schierenberg

laboratory to amplify the low amount of mRNA so that RNA sequencing by Illumina

platforms was feasible. For this purpose I used the “Ambion Message AMP II aRNA

TM” amplification kit (AM1751; Life Technologies Inc.). This kit was previously used to

amplify the RNA content of single blastomeres of C. elegans (Hashimshony et al. 2012).

The RNA amplification of this kit is based on 4 successive steps (Life-Technologies 2011):

(1) Reverse transcription of mRNA into cDNA (complementary DNA) by usage of the

“ArrayScript TM” reverse transcriptase (Life Technologies Inc.) directed by primers

incorporating T7 promotor sequences and targeting the 3’-poly-A tail of mRNAs. (2)

Generation of double-stranded cDNA. (3) In-vitro transcription (IVT) by usage of the

incorporated T7 promotor of the double-stranded cDNA. (4) Purification of the synthe-

sised mRNA. The amplified and purified mRNA could then be used to create sequencing

libraries for the Illumina HiSeq and MiSeq platforms.

For the preparation of each sample, I used extracted total RNA of approximately 100

embryos, which was dissolved in 2 µl DEPC-H2O (see section 2.4). For the amplification

by the “Message AMP II aRNA TM” kit, I modified a few steps: I performed one round

of amplification by IVT (the kit allows up to two rounds of IVT) and for all pipetting

schemes to prepare solutions for each of the aforementioned steps, I only used 1/5 of the

recommended volumes (similar to single blastomere RNA sequencing by Hashimshony

et al. 2012). For most purification steps I used also 1/5 of the recommended volumes.
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This includes usage of the “cDNA binding buffer” and the “aRNA binding buffer” (Life-

Technologies 2011). For the “wash buffer” I used the recommended volumes. Instead of

using the “aRNA filter cartridges” for purification of amplified mRNA, I used “cDNA

filter cartridges” (AM10066G; Life Technologies Inc.). Before starting with the whole

procedure recommended by the handbook of the “Message AMP II aRNA TM” ampli-

fication kit, I mixed 2 µl of my previously extracted total RNA (see section 2.4) with

2 µl of the “reverse transcription master mix” (Life-Technologies 2011) and incubated

the reaction for 10 min at 70◦C to denaturate the total RNA in the samples and avoid

formation of secondary RNA structures.

Besides from the mentioned alterations to the protocol of the handbook of the “Message

AMP II aRNA TM” amplification kit, I followed all recommended steps as described

in the handbook (Life-Technologies 2011). All incubation steps were performed on a

“PeqSTAR 2X Universal Gradient TM” thermocycler (PEQLAB Biotechnolgie GmbH,

Erlangen, Germany). Successfully amplified mRNA was dissolved in 15µl DEPC-H2O

and stored at −80◦C before RNA sequencing.

For each amplified nematode total RNA sample I added two additional samples of puri-

fied total RNA of high quality as positive controls for successfull amplification of mRNA

(Tab. 2.1; Fig. 2.1) to test whether all reagents of the kit were functional and amplifica-

tion of low amounts of total RNA was possible. I used 20 ng total RNA of the nematode

Acrobeloides sp. PS1146 and 2,000 ng total RNA from human HeLa cells (which was

provided by the “Message AMP II aRNA TM” amplification kit). The amount of am-

plified mRNA was quantified using the “Qubit 2.0 TM” fluorometer (Life Technologies

Inc.) with the “Qubit RNA HS Assay Kit” (Q32852; Life Technologies Inc.). By usage

of these two postive controls I could quantify the level of amplification for both positive

controls to assure that the amplification by IVT in general was successful (Tab. 2.1).

I did not quantify the amount of amplified nematode samples to avoid loss of precious

amplified mRNA prior to RNA sequencing. In average I observed a 461-fold amplifica-

tion of the inital mRNA content (Tab. 2.1). This should correlate with approximately

20 ng of pure mRNA, enough material for construction of sequencing libraries and RNA

sequencing.
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Figure 2.1: Gel-photo visualising the quality of Acrobeloides sp. PS1146 total RNA
used as positive control (see text) after denaturating agarose-gel electrophoresis. The
band of the 28S rRNA is much brighter than the band of the 18S rRNA, indicating

high RNA quality.

Table 2.1: Amplification efficiency of the Ambion Message AMP II kit for 20 ng and
2,000 ng of total RNA. Abbreviations: A. s. - Acrobeloides sp. PS1146 ; HeLa - human

HeLa cells.

sample total RNA amount mRNA amount amplification
before amplification [ng] after amplification [ng] factor

A. s. total RNA 20 92.2 (±27.3) 461-fold (±136)

HeLa cell total RNA 2,000 33,300 (±6,011) 1,664-fold (±300)
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2.6 RNA sequencing

RNA sequencing was done on Illumina HiSeq and MiSeq platforms (Illumina Inc.;

Tab. 2.3) by the Cologne Center for Genomics (CCG, Cologne, Germany). For the

preparation of the sequencing libraries the “TrueSeq RNA Sample Prep kit” version 2

(Illumina Inc.) was used. For library construction of total RNA extracted from R. culi-

civorax adult virgins and males and for Gordius sp. embryos the Illumina “TrueSeq”

kit was used without modifications after standard procedure (see section 2.4).

Table 2.2: Quantity and average length of sequences of created TrueSeq libraries. (∗)
these libraries were sequenced twice and technical replicates were generated. Abbre-
viations: D. c. - Diploscapter coronatus; G. sp. - Gordius sp.; P. p. - Pristionchus

pacificus; P. sp. - Panagrolaimus sp. PS1159 ; R. c. - Romanomermis culicivorax.

species biologcial library concentration average sequence
sample [ng/µl] length [bp]

P. p. 1- to 4-cell Pp 20.7 275

D. c. 1- to 8-cell Dc#1 0.415 285

D. c. 1- to 8-cell Dc#2 1.91 281

D. c. 1- to 8-cell Dc#4∗ 25.9 290

D. c. 1- to 8-cell Dc#5 23.2 267

P. s. 1- to 4-cell Psp 1.37 264

R. c. 1- to 4-cell Rc#1∗ 53.3 287

R. c. 1- to 4-cell Rc#2 61.7 276

R. c. 1- to 4-cell Rc#3 42.5 286

R. c. virgins RcV 19.7 264

R. c. males RcM 26.5 269

G. sp. 1-cell Gsp#1 24.5 277

G. sp. 1-cell Gsp#2 26.4 280

For the amplified mRNA samples of P. pacificus, D. coronatus, Panagrolaimus sp.

PS1159 and R. culicivorax RNA libraries were created by using “TrueSeq RNA Sample

Prep kit” without the pre-liminary mRNA selection step. Instead the amplified mRNA

was directly used for the library preparation.

In total 13 libraries were created. The quantity and the quality of the sequencing results
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was either tested by using the Bioanalyzer 2100 (in the case of R. culicivorax adults;

Agilent Technologies Inc.) or by using the Tapestation 2200 (Agilent Technologies Inc.).

Most of the created libraries had a concentration of greater than 19 ng/µl and an average

DNA length of 278 bp (Tab. 2.2). This allowed sequencing by the Illumina platform,

as it was possible to retrieve an abundant number of reads from sequencing all created

libraries (Tab. 2.3).

Table 2.3: Results of sequencing by Illumina platforms. (∗) these libraries were
sequenced twice and technical replicates were generated. For abbreviations refer to

Tab 2.2

species biological library platform read number of
sample library platform length [bp] sequenced reads

P. p. 1- to 4-cell Pp MiSeq 75 bp 21,983,252

D. c. 1- to 8-cell Dc#1 MiSeq 75 bp 6,990,001

D. c. 1- to 8-cell Dc#2 MiSeq 75 bp 8,680,901

D. c. 1- to 8-cell Dc#3 MiSeq 75 bp 8,898,677

D. c. 1- to 8-cell Dc#4 ∗ HiSeq 3000 100 bp 31,199,716

D. c. 1- to 8-cell Dc#5 HiSeq 3000 100 bp 28,416,086

P. s. 1- to 4-cell Psp HiSeq 3000 100 bp 26,004,158

R. c. 1- to 4-cell Rc#1 ∗ HiSeq 3000 100 bp 44,716,067

R. c. 1- to 4-cell Rc#2 HiSeq 3000 100 bp 27,224,273

R. c. 1- to 4-cell Rc#3 HiSeq 3000 100 bp 24,005,760

R. c. 1- to 4-cell Rc#4 HiSeq 3000 100 bp 56,550,222

R. c. virgins RcV HiSeq 3000 100 bp 25,882,167

R. c. males RcM HiSeq 3000 100 bp 21,454,265

G. sp. 1-cell Gsp#1 HiSeq 3000 100 bp 31,629,341

G. sp. 1-cell Gsp#2 HiSeq 3000 100 bp 37,168,752
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2.7 Preparation of RNA interference experiments

RNA interference (RNAi) experiments were performed on 12-well NGM-plates. NGM

medium was prepared after the described protocol (section 2.1). Escherichia coli (strain

HT115) feeding bacteria (Timmons and Fire 1998) were prepared by inoculation of an

over night culture of 5 ml in Luria Bertani (LB) medium containing 100 µg/ml ampicillin

and kept at 37◦C (shaken at 200 rpm). The next day, the over-night cultures were di-

luted (1:30) in new LB medium (containing 100 µg/ml ampicillin) and shaken at 200 rpm

at 37◦C until the E. coli HT115 feeding bacteria reached an optical density of OD600 =

0.4 (this took approximately 90 min). Now I added 1 M IPTG, which equals an concen-

tration of 1 mM in solution. I incubated the E. coli HT115 feeding bacteria for 4 hours

at 37◦C (shaken at 200 rpm). dsRNA expressing bacteria were put on NGM-plates. The

prepared NGM-plates were stored at 4◦.

2.8 RNAi experiments of identified candidate genes in-

volved in oocyte maturation in C. elegans

RNA interference (RNAi) experiments for C. elegans adults were performed on NGM

(nematode growth medium) plates (see section 2.1) which were coated with the Es-

cherichia coli strain HT115 for RNAi by feeding (Timmons and Fire 1998). The used

constructs for the genes inx-19, unc-7, plx-2, str-102, cng-1, cnd-1, aptf-1, aptf-4, nhr-81

and ztf-11 were retrieved from a RNAi feeding construct library (Kamath et al. 2003).

We used squencing PCR (section 2.9) and confirmed by aligments the identity for these

constructs.

I repeated each RNAi experiment in 6 replicates on 12-well plates. One L4 larva was

placed onto the surface of a single well and raised to adulthood. C. elegans adults were

removed after the adult hermaphrodites had laid 5 eggs of the next generation. The F1

generation wwas raised to adulthood under the condition of dsRNA expressing bacteria.

The time point of first laid eggs was used as the starting point to score for phenotypes.

Adults of the F1 generation were transferred to the next well after 24 hours of egg laying.

After another 24 hours the eggs were checked for hatched larvae. Hatched larvae of the

F2 generation were raised to adulthood and afterwards analysed for RNAi phenotypes
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by usage of differential interference contrast (DIC) microscopy. It was tested if these

RNAi-treated adult hermaphrodites showed prominent phenotypes which were associ-

ated with oocyte maturation. For this purpose, I investigated the morphology of the

gonad, the usterus and the vulva (Fig. 3.7).

2.9 Sanger sequencing

RNAi constructs retrieved from the RNAi feeding library (Kamath et al. 2003) were

sequenced to confirm the identiy of the targeted C. elegans genes. For this purpose I

used the Big Dye Kit version 3.1 (Life Technologies Inc.). As all constructs were cloned

into the L4440 plasmid (Kamath et al. 2003) which incorporates T7 and T3 promotor

sequences, I used a primer against the T7 promotor sequence (Tab. 2.4) to amplify the

incorporated insert in the L4440 plasmid by PCR (Tab. 2.7). The PCR product was

sequenced by a ABI3730 (Life Technologies Inc.) capillary sequencer in the Cologne

Center for Genomics.

Table 2.4: Sanger sequencing primers used in this thesis.

primer target sequence sequence

dT7-seq sense T3 promtor site 5’-AAC-CTG-GCT-TAT-CGA-AAT-3’
of the L4440 plasmid

dT7-seq antisense T7 promtor site 5’-GTA-AAA-CGA-CGG-CCA-GTG-AG-3’
of the L4440 plasmid

Table 2.5: Programme of the sequencing PCR.

step temperature duration

1. inital denaturation 95◦C 1 min 20 sec
2. inital annealing 51◦C 20 sec
3. inital elongation 60◦C 4 min

4. denaturation 95◦C 20 sec
28x 5. annealing 51◦C 20 sec

6. elongation 60◦C 4 min

7. end elongation 60◦C 10 min
8. storrage 8◦C ∞
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2.10 Microarray analysis

RNAi experiments to knock-down the genes par-5, itr-1 and goa-1 were done previously

in the Schierenberg laboratory (personal communication Peter Heger). I did RNAi ex-

periments for mpk-1, mek-2, lip-1 and mbk-2 in a previous study in the Schierenberg

laboratory (Kraus 2009). Each RNAi experiment was done twice to generate indepen-

dent biologcial replicates.

Extracted total RNA of RNAi-treated C. elegans adults for knock-down of the genes

par-5, itr-1, goa-1, mpk-1, mek-2, lip-1 and mbk-2 were shipped to the company Atlas

Biolabs GmbH (Berlin, Germany). This company performed library preparations for hy-

bridisation of cDNA on C. elegans specific Affymetrix microarrys (“C. elegans Genome

Array”, catalogoue No. 900383, Affymetrix Inc.). This was done in two independent

rounds of experiments: In the first experiment cDNA libraries for par-5(RNAi), itr-

1(RNAi), goa-1(RNAi) and wild-type were hybridised to the microarrys. In the second

round cDNA libraries of mpk-1(RNAi), mek-2(RNAi), lip-1(RNAi), mbk-2(RNAi) and

wild-type were hybridised to the microarrays.

Raw data retrieved from both experiments was provided by Atlas Biolabs GmbH (Berlin,

Germany). I used this raw data from both rounds of experiments and prepared it for

analysis using the programming languages “R” and “Bioconductor” (bioconductor.org).

For this purpose I used the following packages of Bioconductor: “affy” (version 1.32.0;

Gautier et al. 2004), “simpleaffy” (version 2.30.0; Wilson and Miller 2005) and the C.

elegans specific affymetrix microarray annotation database “c.elegans.db” (version 2.8.0;

Carlson 2012). By this approach I could read the raw data and normalise it using the

algorithms MAS5 (Hubbell et al. 2002). I did pairwise comparisons between expression

data of the RNAi experiments and the wild-type control. Such genes (the more precise

term is “features” for the hybridising oligomeres on the surface of the microarray) which

showed a significant foldchange (fc) of at least ± 1 (two-tail t-test of <10−3; a fc of ±

1 equals a 2-fold over- or underexpression due to binary logarithmic nature of the unit)

were extracted (section 3.1).

For annotation of significantly over- and underexpressed genes the aforementioned C.

elegans database package was used (Carlson 2012). Quality assessment of the microar-

ray data was done by the quality control (QC) plots of Wilson and Miller (2005) and

MA-plots (Heber and Sick 2006).

The QC plot by Wilson and Miller (2005) uses 4 criteria to determine the quality of
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raw data provided by Affymetrix microarrys (see section 3.1; Fig. 3.1 and 3.2). A de-

tailed description of each of these quality criteria can be found in the manufacturer’s

handbook (Wilson and Miller 2005, Affymetrix 2004). Reference values for all 4 quality

criteria are also defined by the manufacturer (Affymetrix 2004) and if the margins of

reference values were met, the QC plots marked the quality criteria in blue. If, however,

any reference value for the quality criteria was not within the margins of the reference

values, the specific quality criterion is marked red. In the case of our RNAi experiments

all quality criteria had values which were in the margins of the reference values set up

by Affymetrix Inc. (Fig. 3.1, 3.2).

After confirming the quality of the microarray raw data, I needed to verify that normal-

isation was successful. For this purpose I used so-called “MA-plots”. The MA-plot is a

method to identify a systematic bias in expression data (Heber and Sick 2006) between

two experimental setups (here a comparison between RNAi experiments and wild-type

negative control). The log2 expression foldchange (M = log2
RNAi
wt ) is plotted against the

mean log2 expression (A = 1
2 · (log2(RNAi) + log2(wt))) of both experiments (Fig. 3.3).

If the expression data were normalised there should be (1) no correlation between M and

A, showing that expression values were not biased by the experimental setup between

RNAi experiment and wild-type control. (2) All foldchange values should tend to “clus-

ter” around a minimal value of zero (Fig. 3.3), indicating that expression foldchange is

indepdent of average expression between RNAi experiment and wild-type control. Here,

I could show by linear regression that the foldchange between RNAi experiments and

wild-type control was indeed independent of the average expression, showing that all

expression data were properly normalised (Tab. 2.6; Fig. 3.3). For testing for significant

independence of the expression values of RNAi experiments and the wild-type control

I used “Pearson product-moment correlation coefficient” (or short Pearson’s r; Pearson

1895; Tab 2.6).

After quality assessment I tested whether expression values between RNAi experiments

and wilde-type control were correlated, following the assumption that most expression

values should be similar between RNAi experiment and wild-type control. Only few

expression differences should exist and can be understood as a consequence of the ex-

perimental setup where RNAi treated adults are compared with wild type. I plotted

log2 expression values of RNAi experiments against wild-type control and used linear
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Table 2.6: Testing of correlation between log2 expression foldchange (M) and mean
of log2 expression (A). Abbreviations: M = log2 expression foldchange between RNAi
approach and wild-type; M = log2

RNAi
wt ; A = average log2 foldchange between RNAi

approach and wild-type; A = 1
2 · (log2(RNAi) + log2(wt)).

RNAi knock-down Pearson’s r p-value

par-5(RNAi) -0.081 < 2.2 · 10−16

itr-1(RNAi) -0.060 < 2.2 · 10−16

goa-1(RNAi) -0.116 < 2.2 · 10−16

lip-1(RNAi) -0.096 < 2.2 · 10−16

mbk-1(RNAi) -0.087 < 2.2 · 10−16

mek-2(RNAi) -0.027 < 6.1 · 10−5

mpk-1(RNAi) 0.207 < 0.01

regression analysis to test for possible correlation. Pearson’s r values were positive and

always greater than 0.97 (the maximum value for positive correlation is 1.00), indi-

cating a strong positive correlation between RNAi experiments and wild-type control

(Tab. 3.1). Hence, neither the RNAi nor the wild-type log2 expression data showed

any indication of a systematic bias so that both would not (Pearson’s r = 0) or even

negatively (Pearson’s r <0) be correlated (expression in RNAi would have an negative

effect on expression of wild-type or vice versa).

Thus, Affymetrix microarray-based expression data did not only meet all recommended

quality criteria set by the manufacturer, I also successfully normalised the data and could

show that neither the RNAi experiments, nor the wild-type controls showed biased data.

Therefore, our microarray expression data is reliable and can be used for identification

of significantly over- and/or underexpressed genes (see Results; section 3.1).

In order to identify expression of genes which do not follow the correlation between

RNAi experiments and wild-type and may be a consequence of RNAi effects, I identified

candidate genes by significant foldchange of ± 1 (which correlates with twice as high

expression under the condition of RNAi knock-down). I tested significance by two-tailed

t-tests (Results; Fig. 3.4 B).

2.11 In-situ hybridisations

R. culicivorax orthologues of hunchback and chordin were identified by orthology clus-

tering (section 2.13). Identified sequences were confirmed to be orthologues of the afore-

mentioned genes by phylogenetic analysis (section 2.14)
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Prior to in-situ hybridisation (ISH), it was necessary to clone the target sequence of

mRNAs which will be analysed and generate anti-sense RNA probes. For this purpose

R. culicivorax sequences orthologous to human Chordin and Drosophila huchback were

amplified from cDNA via polymerase chain reaction (PCR; Tab. 2.7) using mRNA spe-

cific primers (Tab. 2.8). Due to usage of a DNA polymerase which adds adenine residues

at the ends of amplicons (TAQ from Thermus aquaticus) it was possible to clone the

amplified DNA fragements via T/A cloning (Zhou et al. 1995, Hadjeb and Berkowitz

1996) into the expression plasmid pBluescript KS.

Anti-sense RNA probes for R. culicivorax orthologous of chordin and hunchback were

synthesised from linearised plasmid DNA by in-vitro transcription using the “Dig-RNA

labeling kit” from Roche (Mannheim, Germany). The synthesised probes were purified

by successive usage of precipitation using 4M LiCl and 12M LiCl. Successfully purified

probes were put into hybmix (see section 2.1) and stored at −20◦C.

Table 2.7: PCR programme for amplification of R. culicivorax chordin and hunchback.

step temperature duration

1. inital denaturation 95◦C 4 min

4. denaturation 95◦C 30 sec
40x 5. annealing 55◦C 30 sec

6. elongation 60◦C 4 min

7. end elongation 68◦C 10 min
8. addition of adenine residues 72◦C 10 min
9. storage 4◦C ∞

In total 3 probes were created: 2 anti-sense probes against the mRNAs of the orthologous

sequences of chrodin and hunchback and a single sense mRNA for the cloned sequence of

chrodin. The latter sense mRNA was used as a negative control to distinguish stainings

created by binding of the anti-sense probes against target mRNAs from tissue intrinsic

background stainings.

The procedure of hybridising the anti-sense probes against the target mRNAs in R.

culicivorax embryos is described in detail below:

Prior to the in-situ hybridisation it was necessary to sample enough R. culicivorax em-

bryos (section 2.2). Collected embryos were pooled by centrifuging at 500 g for 2 min

and then treated with hyprochloride solution for 2 min (NaOCl; section 2.1). The re-

action was stopped by adding 1x PBS. Embryos were centrifuged at 500 g and again
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washed with 1x PBS. The last two steps were repeated 3 times. Afterwards embryos were

washed with dH2O 4 times to remove residual PBS. Prepared R. culcivorax eggs were

put onto slides coated with poly-L-lysine. After putting coverslips onto the slides, the

slides were shock-frozen in liquid nitrogen. The coverslips were quickly removed using

razor blades to crack the egg-shells of the embryo. The prepared slides were immedi-

ately transferred into ice-cold MeOH (−20◦C). These slides could be stored for serveral

months at −20◦C.

MeOH was removed from prepared slides by a decreasing MeOH dilution series with

decreasing concentration: Slides were washed for 10 min in 90% (v/v) MeOH, then in

70% (v/v) MeOH and finally in 50% (v/v) MeOH. 50 µl of pre-heated (37◦C) fixating

solution (Streck Tissue Fixative; Streck Laboratories Ltd., Philadelphia, USA) was put

onto the slides. Slides were transferred into a prepared wet-chamber and incubated for

60 min at 37◦C to fix the collected embryos. Slides were washed 10 min in dH2O and

then 10 min in 2x SSC buffer (pH 7.0) and then 50 µL of pre-heated Hyb Mix (42◦C)

was added. The slides were incubated at 42◦C for 90 min in the wet chamber.

In order to prepare the anti-sense- and sense probes for ISH, it was necessary to degen-

erate the probes (to circumvent formation of secondary structures which would impair

hybridisation to target mRNA). 0.3 to 1 ng/µl of each probe was incubated for 10 min at

65◦C. After removal of the hybmix from slides, the RNA probes (cooled to 42◦C) were

put onto the slides and incubated at 42◦C overnight. During this step the anti-sense

probes hybridised to the target mRNAs.

The next day, the RNA probes were removed and the slides were washed in the following

solutions: (1) In 2x SSC at 42◦C for 20 min. (2) In SSC-formamide mix at 42◦C for 30

min. (3) Twice in 2x SSC for 10 min at RT. (4) In TN for 10 min at RT. The samples

were blocked at least for 30 min using 50 µl blocksolution (in wet chamber at RT) to

enhance specificity of the anti-digoxigenine (DIG) antibody.

Block solution:

• 5% (v/w) milk powder in dH2O

• TN buffer



Chapter 2. Materials and Methods 38

After blocking, slides were washed in TN buffer for 10 min at RT. Now, 50 µl of anti

DIG antibody was added (1:2000 diluted in block solution) to the sample and incubated

at 37◦C for 1 hour in the wet-chamber. Afterwards the slides were washed twice in

TN buffer for 10 min and then twice in TMN buffer (10 min each time). Now, 50 µl

developing mix (consisting of NBT/BCIP and TMN buffer and alkaline phosphatase;

“anti-digoxgenin AP NBT/BCIP kit”, Roche Diagnostics Inc.) were added. In order to

reduce the background staining by endogenous alcalic phosphatase, 500 mM levamisole

was added to the developing mix. The slides were incubated in a dark wet chamber

during the staining. The staining was constantly monitored. After successful staining,

the reaction was stopped by neutralising the pH-value (50 mM EDTA in 1x PBS were

added). Slides were finalised by removing residual stop mix and adding 50 µl mounting

buffer (stop mix + 50% (v/v) glycerol) and putting a cover-slip onto the slides.

Table 2.8: Primers used for amplification of the orthologues for R. culicivorax chrodin
and hunchback.

gene primer sequence

chrodin RCsca10161for1 chor 5’-GGC-GTT-TGG-CAA-AAT-ATT-CC-3’

chrodin RCsca10161rev1 chor 5’-TAT-TCA-CGT-GGT-GTT-TCG-ACC-3’

hunchback RCTm.4618 for1 5’-GAA-ATT-CGC-CCA-ATT-CGG-’3

hunchback RCTm.4618 rev1 5’-AAC-TTC-CAA-TTC-CAC-CGA-GG-’3

2.12 Reference Genomes and transcriptomes

Genomes and transcriptomes of nematode and outgroup species were retrieved from dif-

ferent sources. Tables 2.9, 2.10 and 2.11 explain the origin of each omics data set.

For the reference transcriptome of C. elegans I used published data from Hashimshony

et al. (2012). In order to have a complete set of early expressed transcripts, I cumu-

latively combined the expressed transcripts of each blastomere of the C. elegans 1- to

4-cell stage (Hashimshony et al. 2012). All transcripts which had an average TPM-value

(transcripts per million reads) value of >5 were considered as expressed (this is opposed
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to the original paper where a TPM-value of 100 was regarded as clearly expressed tran-

script; Hashimshony et al. 2012). By this step I ensured that the 1- to 4-cell stage should

include all expressed transcripts.

In order to have a similar reference transcriptome for early embryogenesis (1- to 4-cell

stage) I retrieved the data from the published transcriptome set(s) of A. suum (Wang

et al. 2014). Here I cumulatively pooled the expressed transcripts of the 1- to 4-cell

stages and subtracted expressed transcripts of the 10- to 26-cell stages to ensure that

expression during 1- to 4-cell stages would be part of the transcriptomic analysis for

early embryogenesis in the case of A. suum.

Table 2.9: Genomes of nematode species used in this thesis. (∗) The genome of D.
coronatus was sequenced in the Kohara laboratory and could be accessed and used for
further analysis due to cooperation with the Kohara laboratory (Yuji Kohara, Mishima,
Japan). (∗∗) Panagrolaimus sp. PS1159 was sequenced by Philipp H. Schiffer (personal
communication). (∗∗∗) Genomes sequenced in a colaboration between Blaxter (Mark

Blaxter, Edinburgh, UK) and Schierenberg laboratory.

species source

Ascaris suum Wang et al. (2012)

Brugia malayi Scott and Ghedin (2009)

Bursaphelenchus xylophilus Kikuchi et al. (2011)

Caenorhabditis angaria ftp://ftp.wormbase.org/pub/wormbase/species/c angaria/

Caenorhabditis briggsae Gupta and Sternberg (2003), Stein et al. (2003)

Caenorhabditis elegans Caenorhabditis elegans Sequencing Consortium (1998)

Caenorhabditis remanei Gupta and Sternberg (2003)

Diploscapter coronatus Kohara laboratory∗

Dirofilaria immitis Godel et al. (2012)

Enoplus brevis Blaxter, Schierenberg laboratory (∗∗∗)

Meloidogyne hapla Opperman et al. (2008)

Pristionchus pacificus Dieterich et al. (2008)

Panagrolaimus sp. PS1159 Schierenberg Laboratory (∗∗)

Romanomermis culicivorax Schiffer et al. (2013)

Trichinella spiralis Mitreva et al. (2011)

Table 2.10: Genomes of outgroup species used in this thesis. (∗) The transcriptome of
the nematomorph Gordius sp. was created from male, female and embryos in a collabo-
rative effort between the Blaxter (Mark Blaxter, Edinburgh, UK) and the Schierenberg

laboratories.

species source

Gordius sp. Blaxter, Schierenberg laboratory∗

Homo sapiens uniprot.org

Drosophila melanogaster flybase.org
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Table 2.11: Reference transcriptomes used in this thesis to confirm that identified
transcripts were indeed from transcriptomic data and not due to genomic or bacterial
contaminations (see section 3.6). (∗) The transcriptome of pooled mixed stage embryos,
larvae and adults D. coronatus was sequenced in the Kohara laboratory and could be
accessed and used for further analysis due to cooperation with the Kohara laboratory
(Yuji Kohara, Mishima, Japan). (∗∗) Transcriptomes sequenced in a colaboration be-
tween Blaxter (Mark Blaxter, Edinburgh, UK) and Schierenberg laboratory. (∗∗∗) The
Panagrolaimus sp. PS1159 transcriptome was also sequenced by Philipp H. Schiffer

(personal comunication).

species source

Ascaris suum Wang et al. (2014)

Caenorhabditis elegans Hashimshony et al. (2012)

Diploscapter coronatus Kohara laboratory∗

Gordius sp. Blaxter, Schierenberg laboratory ∗∗

Panagrolaimus sp. PS1159 Schierenberg laboratory ∗∗∗

Pristionchus pacificus ftp.wormbase.org/pub/
wormbase/species/
p pacificus/sequence/transcripts
(version WS247)
Sommer laboratory

Romanomermis culicivorax Schierenberg laboratory

2.13 OrthoMCL of nematode and outgroup species

For identifying orthologous proteins and protein families shared among 16 nematode-

species and 12 outgroup species (see section 2.12) the OrthoMCL algorithm (version

2.0.7; Li et al. 2003) was used and established as pipeline for orthologue detection in the

Schierenberg laboratory (this was done by Philipp H. Schiffer and Georgios Koutsovou-

los; both granted me permission to use data from the retrieved OrthoMCL clustering

to analyse my own data sets; personal communication Philipp H. Schiffer). Prior to

clustering protein families and orthologues, retrieved whole proteome sets for all species

involved (section 2.12), were filtered by the programme “Cd-hit” (Li and Godzik 2006)

for redundancy at a threshold of 99% identity. The procedure of OrthoMCL was done

after Fischer et al. (2011) with standard parameters. For the clustering step a inflation-

parameter of 1.5 was set (Li et al. 2003).
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2.14 Programmes and tools for post-sequencing analysis

For post-sequencing analysis (see Results; section 3.6) I used several methods (Fig. 3.11):

(1) I used Blast2GO (Conesa et al. 2005) to predict functions of early expressed tran-

scripts of seven species (Fig. 1.1). (2) I used Fisher’s Exact Test, which is integrated

in Blast2GO to test whether significantly over- and/or underrepresented gene-ontology

(GO) terms exist in transcriptomes of early embryogenesis in comparison to reference

transcriptomes (section 2.12; Blüthgen et al. 2005). (3) I accessed the provided or-

thologous clustering for whole genomes of 27 species (section 2.12 and 2.13) by custom

programmes which I wrote in the programming language Perl (see Appendix B). (4) I

used the GeneMANIA data base (Mostafavi et al. 2008, Warde-Farley et al. 2010) to

extend my search for proteins which physically, or genetically interact with identified

Caenorhabditis, Chromadorea, or Enoplea specific genes/proteins. (5) In special cases

I used phylogenetic analysis to confirm the prediction by the different OrthoMCL clus-

terings that proteins are indeed orthologues.

Interproscan pipeline: For prediction of protein domains, the programme “Inter-

proscan” (version 5 release RC6; Quevillon et al. 2005, Hunter et al. 2012) was used.

This programme was established as a pipeline in the Schierenberg laboratory by Philipp

H. Schiffer and Georgios Koutsovoulos (personal communication Philipp H. Schiffer and

Georgios Koutovoulos) to predict protein domains across all proteomes of 27 species

(section 2.12).

Blast2GO: Gene functions of sequenced transcripts were predicted by usage of the pro-

gramme Blast2GO (version 2.8; Conesa et al. 2005). For this purpose whole reference

transcriptomes (section 2.12) were compared with Genbank (Benson et al. 2015) via the

gateway of NCBI (National Center for Biotechnology Information). Transcripts were

translated by Transdecoder (Haas et al. 2013) and then compared with Genbank using

the programme Blastp at a threshold for the expection value of E <10−3 (Altschul et al.

1990). Afterwards, the integrated mapping and annotation procedures of Blast2GO were

used to infer predicted gene ontology (GO) terms for each transcript of whole reference

transcriptomes. I used the integrated procedure of Fisher’s Exact Test to test whether

specific GO-terms were over- and/or underrepresented in transcriptomes retrieved from
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early embryogeneis of seven species (section 2.6 and 2.12) in comparison to the reference

transcriptomes (Blüthgen et al. 2005).

Analysis of OrthoMCL clustering via custom Perl scripts: I used several cus-

tom Perl programmes (more precisely scripts) which I wrote. I did the main part of

the analysis with three custom Perl scripts (Appendix B): These programmes allowed

analysis of the OrthoMCL clustering for 27 species and the orthologous clustering of the

transcriptomes retrived from early embryos of seven species.

By establishing these programmes I analysed the broad data sets for different aspects:

(1) I could access the orthologous clustering for 27 species by using a single gene (or

more preciesely gene identifier retrieved from public databases such as uniprot.org fly-

base.org or wormbase.org) and looked in which species orthologues to this specific gene

were present or absent. (2) I could specifically identify transcripts of the transcriptomes

of early embryos which have orthologues during early embryogenesis in other species. (3)

I could extract whole protein sets in a batch approach for orthologous clusters expressed

during early embryogenesis of the selected species.

Search for physically or genetically interacting proteins: I used the data base

GeneMANIA (Mostafavi et al. 2008, Warde-Farley et al. 2010), to search for proteins

interacting with orthologues, which I previously identified by quering the orthology clus-

tering for 27 species (see above). GeneMANIA incorporates studies proving interactions

between proteins for model organisms such as C. elegans, Drosophila, zebrafish, mouse

and humans. This way I could search for absence and presence of orthologues compo-

nents of whole pathways and GRNs in our genome and in my transcriptome data.

Phylogenetic analysis: Retrieved protein sequences were aligned using the programme

“Clustal ω” (version 1.2.0; Sievers et al. 2011) using standard parameters. Afterwards,

appropriate models for correct amino acid replacement were identified by the programme

“Prottest3” (Abascal et al. 2005, Darriba et al. 2011). Search for appropriate models

was done under consideration of invariant amino acid sites. Found models were con-

firmed by Bayesian information criterion (BIC) and Akaike information criterion (AIC)

(Abascal et al. 2005). Based on the alignments provided by Clustal ω and the amino

acid replacement model suggested by Prottest3, phylogenetic trees were created using
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the programme “RAxML” for 100 bootstraps (Stamatakis 2006).

2.15 OrthoMCL for early transcriptomes

Transcriptome data retrieved from libraries for all sequenced species during early em-

bryogenesis (Tab. 2.3) was retrived from the Cologne Center for Genomics (section

2.7). Illumina TrueSeq (version 2) adaptors (section 2.7) were eliminated by the pro-

gramme “Trimmomatic” using stardard parameters for paired-end reads (Bolger et al.

2014). I filtered RNAseq sequencing reads, which were prone to false positve and false

negative nucleotides at the 3’- and 5’-ends of each read, by using the software tool

“Sickle” (https://github.com/najoshi/sickle). Afterwards, I used the de-novo sequence

assembler for transcriptome data “Trinity” (version r20140717; Grabherr et al. 2011) to

assemble the reads to a transcriptome. I used Trinity for paired-end reads for each repli-

cate of raw data retrieved from the CCG for a single species and early developmental

stage (Tab. 2.3). I reduced necessary memory resources required by Trinity by setting

the “min kmer cov” to the value 2. Generation of transcriptomes by Trinity was done

on the local CHEOPS computer cluster at the University of Cologne (http://rrzk.uni-

koeln.de/cheops.html?&L=0).

Generated transcriptomes were mapped against reference transcriptomes (section 2.12)

by usage of the mapping tools “Bowtie2” (Langmead and Salzberg 2012) and “BLAT”

(Kent 2002). I used the programme “Samtools” (version 0.2.0-rc12-1-gbbe85a9; Li et al.

2009) to extract only sequences which mapped to the reference transcriptomes. All

other sequences which were either the result of bacterial or genomic contamination were

excluded by this step. Hence, only transcriptomic data which was in concordance with

reference transcriptomic data was used for the postassembly analysis.

In order to identify early expressed orthologues among seven species (section 1.4; Fig. 1.1)

expressed transcripts were translated into protein using the programme “Transdecoder”

(section 3.6; Haas et al. 2013). For Transdecoder I used standard parameters, I only

changed the minimum translated protein length from 100 amino acids to 50 amino acids.

Translated amino-acid sequences from the transcriptomes of each species were used as in-

put for the algorithm OrthoMCL (Li et al. 2003). For setting up the necessary database,

aligning all incorporated protein sequences from all species (the so-call “all-vs-all blast
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step”) and the clustering of orthologous sequences I followed the instructions of Fischer

et al. (2011). As database served the open-source database MariaDB (version 10.0;

mariadb.com). For the “all-vs-all blast step” I used “Legacy BLAST” (version 2.2.26;

Altschul et al. 1990) and for the clustering step I used “Mcl” (version 14.137; Enright

et al. 2002).

For analysis of the identified orthologue clusters I wrote custom Perl scripts (Appendix

B). These scripts allowed custom searches for clusters shared or excluded from certain

species or the custom search for orthologues of a single protein of interest in the clus-

tering.

2.16 Genome predictions, allele analysis and single copy

gene analysis in Diploscapter coronatus

Genome sequencing, assembly and gene predictions:

DNA of Diploscapter coronatus (strain PDL 0010; originally provided by P. De Ley, Uni-

versity of California, Riverside) was collected and pooled from mixed-stage individuals.

A genome assembly was constructed in a hybrid assay by the Kohara laboratory (per-

sonal communication Yuji Kohara, Hiroshi Kagoshima, Hideaki Haruki). This genome

was available to me due to a cooperation between the Kohara (Yuji Kohara, Mishima,

Japan) and the Schierenberg laboratory.

Augustus protein prediction and identification of allelic gene variants:

We used Augustus (version 2.5.5; http://bioinf.uni-greifswald.de/augustus/; Stanke and

Morgenstern 2005, Stanke and Waack 2003) to de-novo predict genes in the D. coronatus

draft genome. We trained Augustus using a gene set derived from the CEGMA pipeline

and for additional hints D. coronatus EST libraries were used (retrieved from the Kohara

laboratory; personal communication Yuji Kohara, Hiroshi Kagoshima, Hideaki Haruki).

This way, we determined the intron-exon structure and the positions on the genome for

all of the predicted genes. By aligning and clustering all EST libraries making use of

Cd-hit (Li and Godzik 2006, Fu et al. 2012) at a threshold of 90% identity, we identified

ESTs belonging to the same gene. By re-mapping clustered ESTs against the genome
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using Blat (Kent 2002), we confirmed the exact positions of each predicted gene on

the genome. Augustus gene predictions, which were confirmed on EST-level and re-

confirmed on protein level by an all-versus-all protein blast approach (at a threshold of

98% site-specific identity; Altschul et al., 1990) to belong to each other, were considered

alleles of the same gene under the condition that these alleles are positioned on differ-

ent contigs. Taking into account the relative position on the genome, we deduced the

number of alleles by counting positions and contigs.

OrthoMCL clustering and identification of the presence and absence of or-

thologues for early expressed C. elegans genes:

To reliably compare orthologues we applied the OrthoMCL clustering pipeline including

proteomes of 6 Caenorhabditis species, D. coronatus, P. pacificus, Panagrellus redivivus

and A. suum (Tab. 2.12).

Gene expression data for the blastomeres AB and P1 from the C. elegans 2-cell stage,

were retrieved from Hashimshony et al. (2012). The OrthoMCL clustering was used to

identify orthologous genes in other species. The absence of C. elegans genes in the D.

coronatus genome was confirmed by reciprocal BLAST search.

Table 2.12: Nematode genomes used for clustering orthologues between D. coronatus
6 Caenorhabditis species and outgroups. (∗) The genome of D. coronatus was sequenced
in the Kohara laboratory and could be accessed and used for further analysis due to

cooperation with the Kohara laboratory (Yuji Kohara, Mishima, Japan).

species source

Ascaris suum Wang et al. (2012)

Caenorhabditis angaria Mortazavi et al. (2010)

Caenorhabditis briggsae Gupta and Sternberg (2003), Stein et al. (2003)

Canorhabditis elegans Caenorhabditis elegans Sequencing Consortium (1998)

Canorhabditis japonica www.wormbase.org/db/gb2/gbrowse/c japonica

Canorhabditis sp. 11 genome.wustl.edu/pub/organism/
Invertebrates/Caenorhabditis sp11 JU1373

Diploscapter coronatus Kohara laboratory∗

Panagrellus redivivus Srinivasan et al. (2013)

Pristionchus pacificus Dieterich et al. (2008)

Single-copy gene analysis:

Single-copy genes present in nematodes of clades I, III, IV and V, as well as in Drosophila

melanogaster and Saccharomyces cerevisiae were retrieved from Mitreva et al. (2011).
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Eleven single-copy genes were arbitrarily selected. D. coronatus and C. remanei ortho-

logues were identified by OrthoMCL. For C. remanei, candidates were identified using

the data from Mitreva et al. (2011) and for D. coronatus by re-blasting the C. elegans

orthologues against the D. coronatus genome. We compared orthologues by pairwise

alignments of D. coronatus alleles against each other and the C. elegans alleles against

the C. remanei sequence in clustalW (Thompson et al. 1994).

Orthologues of single-copy genes were scanned for conserved protein domains with In-

terProScan (http://www.ebi.ac.uk/interpro/; Quevillon et al. 2005, Hunter et al. 2012).

We counted the number of synonymous and non-synonymous mutations within the re-

spective single-copy genes by pairwise alignment of the sequences on the nucleotide level,

taking into account the appropriate reading frame by using the KaKs Calculator (version

1.2) with standard parameters (http://evolution.genomics.org.cn/software.htm; Zhang

et al. 2006). For statistics of average nucleotide exchange rates, the one-tailed Welch

t-test for non-equal variances was applied. We tested specifically the null hypothesis, i.e.

whether the portion of non-synonymous mutations is equal or greater than the portion

of synonymous mutations. The null hypothesis was rejected at a confidence level of α

>0.01.

D. coronatus ITS, SSU and LSU rDNA analysis:

For each D. coronatus rDNA gene, two individuals were picked and lysed. This procedure

was done by Theresa Vogt in the Schierenberg laboratory (Theresa Vogt granted me

permission to use this data here; Theresa Vogt personal communication; Vogt 2012).

Using single-worm PCR Williams et al. 1996) she cloned sequences from each rDNA

gene and individual into separate pBluescript KS cloning-vectors. For amplification of

the ribosomal small subunit (SSU) we used primers described in Holterman et al. (2006)

and Floyd et al. (2002), for the ribosomal large subunit (LSU) primers from Sonnenberg

et al. (2007) and for the ribosomal interspacer (ITS) from Vrain (1993).
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Results

3.1 Microarray analysis in combination with RNAi finds

new candidate genes for the C. elegans oocyte-to-embryo

transition and the oocyte-maturation pathway

The oocyte-to-embryo transition in C. elegans is mainly coordinated by the MAP-kinase

pathway (see introduction; Miller et al. 2003). Even though, much effort was put into

the elucidation of the underling gene regulatory network, the molecular regulators up-

stream and the transcription factors, as well as the downstream targets still need to

be identified (see introduction; Fig. 1.3). Hence, we sought to elucidate the biological

process of oocyte maturation in C. elegans further by using a combination of RNA in-

terference (RNAi) and microarray analysis. RNAi allows knock-downs of specific target

genes in the already elucidated pathway. Microarrays were used to better understand

the changes in gene expression after RNAi knock-down compared to wild-type (see in-

troduction and material and methods).

We designed in total 7 RNAi experiments for known genes of the pathway regulating

oocyte-to-embryo transition: par-5, itr-1, goa-1, lip-1, mek-2, mpk-1 and mbk-2. We

performed two successive microarray experiments on RNAi-treated C. elegans mixed

cultures in two replicates (Fig. 3.1 and 3.2; Materials and Methods).

47
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Figure 3.1: Quality control (QC) plot after Wilson and Miller 2005 was used to
visualise the quality of the RNAi knock-downs of par-5(RNAi) and itr-1(RNAi) goa-
1(RNAi). Each row represents one used experimental replicate. This plot includes
four quality criteria: (A) The expression ratio of 5’- to 3’-probes of the house-keeping
genes actin and gapdh (Glyceraldehyde-3-phosphate dehydrogenase) for RNA quality
assessment, (B) the percentage of identified genes of the complete microarray, (C) the
scale factor of the Mas5 algorithm (see Materials and Methods), indicating the average
expression differences between all microarrays, and (D) the signal background noise
of each microarray (see Materials and Methods). All values of the quality criteria are

within reference margins (highlighted in blue).
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Figure 3.2: Quality control (QC) plot after Wilson and Miller 2005 to visualise the
quality of microarray results for RNAi experiments for lip-1(RNAi), mek-2(RNAi),
mbk-2(RNAi), mpk-1(RNAi). Even though, there seemed to be a shift for the Mas5
scale factors (see Materials and Methods), this phenomenon was observed similarly for
all microarrays and hence all of them are comparable to each other. Therefore, all

quality control criteria were met (highlighted in blue).

In order to understand the expression changes of C. elegans, we used Mas5 (Hubbell

et al. 2002) algorithm to normalise the expression data (Materials and Methods). Fur-

thermore, I normalised the expression values of all RNAi experiments to compare the

expression levels of the different RNAi experiment versus wild-type control. By plotting

the relative expression differences between our RNAi experiments and the wild-type con-

trol, against the “rank”of the genes (see above) on the different microarrays, we found

that expression follows a regression line (Fig. 3.3 B). There was no correlation between

foldchange of the different experiments and the average expression values (Fig. 3.3 B),

indicating that these values were (1) not biased by the experimental setup and (2) av-

erage fold-change values ranged around zero (Fig. 3.3 B) and Tab. 3.1). This indicates

that all expression values were properly normalised, thus the conditions for a fair com-

parison between RNAi knock-downs and wild-type control were given. Since, most of
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the differences between our RNAi approaches and the wild-type control were correlated

(Fig. 3.4 A and Tab. 3.1), I am confident that the underlying microarray data are

conclusive.
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Figure 3.3: Additional qualitiy control testing for the microarray experiments of lip-
1(RNAi), mek-2(RNAi), mbk-2(RNAi) and mpk-1(RNAi). MA-plot (Materials and
Methods) for mpk-1(RNAi) versus wild-type expression. The average expression level
ratio of mpk-1(RNAi) and wild-type (X-coordinate) is plotted against the foldchange
(log2 expression ratio). The regression line (marked in green) shows no correlation
between foldchange and average expression levels (Pearson’s r equals 0.207; p-value

<10−16; Tab. 2.6; see Materials and Methods).
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Figure 3.4: (A) Expression of mpk-1(RNAi) versus wild-type. Both expression values
are positively correlated to each other (represented by green regression line; Pearson’s r
= 0.0996; p-value <10−16). (B) Volcano plot representing the relative expression values
as foldchange (binary logarithmic representation; log2) between mpk-1(RNAi) and wild-
type in comparison to the p-value of the underlying significance test for expression
values (two-tailed t-test; Materials and Methods). Two criteria were used to identify
significantly over- and/or underexpressed genes (marked by grey background): (1.) A
foldchange of greater than 1.0 (indicated by vertical dashed lines) and (2.) a significance

level of p <10−3 (horizontal dashed line).
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Table 3.1: Results for the correlation and the foldchange data of RNAi knockdowns vs
wild-type and their respective significance values (p-values). Correlations were tested

by Pearson’s r (Materials and Methods).

RNAi knock-down foldchange correlation
Pearson’s r p-value

par-5(RNAi) 0.989 < 2.2 · 10−16

itr-1(RNAi) 0.975 < 2.2 · 10−16

goa-1(RNAi) 0.995 < 2.2 · 10−16

lip-1(RNAi) 0.996 < 2.2 · 10−16

mbk-1(RNAi) 0.991 < 2.2 · 10−16

mek-2(RNAi) 0.995 < 2.2 · 10−16

mpk-1(RNAi) 0.996 < 2.2 · 10−16

I screened for candidate genes for two criteria: (1.) An expression foldchange of at least

1.0 (equalling a 2-fold over-/underexpression; see Materials and Methods; Fig. 3.4 B

horizontal lines). (2.) A significant change in expression (Fig. 3.4 B, horizontal dashed

lines).

I found in total 1,458 genes which conformed both criteria (Tab. 3.2). These genes might

be potential upstream and/or downstream targets of the MAP-kinase pathway (see in-

troduction; 1.3). I searched for relevant candidate genes of oocyte-to-embryo transition,

using the wormbase database (wormbase.org). Here I screened for RNAi phenotypes

related to oocyte-to-embryo transition (see Materials and Methods). I found in total

152 potential candidates (Tab. C.1).

Promising candidate genes were then selected to test their role in oocyte-to-embryo

transition by performing RNAi experiments (Tab. 3.2). For this purpose, I used RNAi

constructs specific for the candidate genes (Kamath et al. 2003) to test if these genes

are relevant for the MAP-kinase GRN in C. elegans (see section 3.2).
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Table 3.2: Candidate genes correlated with oocyte-to-embryo transition. Selected

candidates are presented in this table. (∗) RNAi experiment(s) which identified poten-
tial upstream and/or downstream genes for the MAP-kinase signaling during oocyte

maturation in C. elegans.

RNAi affected foldchange expression protein class function
knock-down(∗) candidate (log2) change

gene
par-5(RNAi) inx-19 −2.8 −6.9 innexin cell-cell

interaction
par-5(RNAi) unc-7 3.1 8.6 innexin cell-cell

interaction
itr-1(RNAi) plx-2 −1.3 −2.5 plexin cell
goa-1(RNAi) -1.5 receptor membrane
par-5(RNAi) str-102 2.4 5.3 serpentine cell
par-5(RNAi) 2.4 5.3 receptor membrane
itr-1(RNAi) cng-1 4.2 18.4 cyclic ion channel
goa-1(RNAi) 4.0 16.0 nucleotide activity
goa-1(RNAi) 4.0 16.0 gated channel
par-5(RNAi) cnd-1 −1.4 −2.6 helix-loop-helix DNA
goa-1(RNAi) -3.3 9.9 transcription binding

factor
itr-1(RNAi) aptf-1 −2.1 −4.3 AP-2 like DNA

transcription binding
factor

itr-1(RNAi) aptf-4 −1.6 −3.1 AP-2 like DNA
transcription binding
factor

par-5(RNAi) nhr-81 2.6 6.1 nuclear DNA
itr-1(RNAi) 3.0 8.0 hormone binding
goa-1(RNAi) 3.4 10.6 receptor
itr-1(RNAi) ztf-11 −1.3 −2.5 orthologue of DNA
itr-1(RNAi) −1.9 −3.7 human ZT18 binding
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3.2 RNAi of potential oocyte maturation regulators reveal

candidate genes for the gene regulatory network

In order to identify new target genes which are involved in oocyte maturation and

oocyte-to-embryo transition in C. elegans (see Introduction and section 3.1), I used

RNA interference (RNAi) against known target genes of the gene regulatory network

(GRN) of the MAP-kinase pathway which controls oocyte-to-embryo transition (Intro-

duction; section 3.1; Miller et al. 2003). My target genes were par-5, goa-1, itr-1, lip-1,

mek-2, mbk-2 and mpk-1 (mpk-1 encodes the MAP-kinase which initiates maturation

of the “-1” oocyte; McCarter et al. 1999, Miller et al. 2003).

By extracting the RNA from whole C. elegans N2 populations and by loading these

samples onto C. elegans-specific microarrys (Materials and Methods), I identified 1,458

potential candidate genes for the MAP-kinase signaling pathway (see section 3.1). I

screened the nematode database (wormbase.org) for potential genes with RNAi pheno-

types correlated with oocyte maturation (Materials and Methods). In total, I found

152 genes with potential functions in this GRN (Tab. C.1). We identifed candidate

genes with potential functions upstream of the MAP-kinase MPK-1 (Fig. 1.3), such as

innexins (Tab. 3.2) involved in the communication between somatic sheath cell with

the oocyte (see Introduction). I also found transcription factors potentially involved in

oocyte maturation (Tab. 3.2; section 3.1).

In order to verify the function of these candidate genes in oocyte maturation I used

RNAi. For this purpose, I brought parental C. elegans adults onto plates covered by

double stranded RNA (dsRNA) expressing bacteria (Timmons and Fire 1998; Materials

and Methods). The first generation of laid eggs was raised to adulthood and at the time-

point of the first egg-laying by the F1-generation I started scoring phenotypes (Materials

and Methods). As a suitable positive control, I applied RNAi against the known target

gene mpk-1 of the Map-kinase pathway (Miller et al. 2003). This verified the specificity

of our RNAi assay (Fig. 3.5, 3.6). To exclude unspecific RNAi effects, we applied RNAi

against the GFP sequences, absent in nematodes (Fig. 3.5, 3.6).

In my RNAi experiments against the selected candidate genes I scored for absent or

reduced hatched larvae and gonad aberrances. This way, I could narrow down the list

of interesting candidates to 8 genes (Fig. 3.5). For these 8 candidate genes I found

a significantly reduced number of hatched larvae for each time-point within 72 hours
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(Fig. 3.5, 3.6) in comparison to our negative control (GFP(RNAi)).

By using Differential Interference Contrast microscopy (DIC), I was able to determine

the reason for these observed phenotypes (Fig. 3.7). In the cases of inx-19(RNAi), nhr-

81(RNAi), plx-2(RNAi) and str-102(RNAi) the amount of box-shaped oocytes (Fig. 3.7

D, F, H, J; arrows) was strongly increased in comparison to the GFP(RNAi) control

(introduction; McCarter et al. 1999). These oocytes were much smaller and in the cases

of inx-19(RNAi) and nhr-81(RNAi) were even visible in the distal part of the gonad,

which is normally filled with small oogonia only (Fig. 3.7 D, F; open arrows).

Generally, the oocytes seemed to be densely packed in contrast to the GFP(RNAi) con-

trol. There was no ovoid shaped oocyte adjacent to the spermatheca, as known from

wild-type (McCarter et al. 1999) and the GFP negative control (Fig. 3.7 B; marked by

o′). Other markers of oocyte maturation, such as the nuclear envelope breakdown (see

Introduction; Fig. 1.2), could not be recognized, too (Fig. 3.7 D, F, H, J). This means

that there were no maturing oocytes present in the RNAi phenotypes of inx-19(RNAi),

nhr-81(RNAi), plx-2(RNAi) and str-102(RNAi). Hence, it seems that maturation did

not occur in these RNAi-treated animals. This explains the significantly decreased num-

ber of hatched larvae (Fig. 3.5 and 3.6). By comparing the uterus with the GFP(RNAi)

control, it became clear that embryos were either absent, as in the cases of inx-19(RNAi)

and str-102(RNAi) (Fig. 3.7 E, K), or most of the embryos in the uterus were degener-

ated (Fig. 3.7 G, I; arrows).

Henceforth, I could confirm 8 candidate genes to be involved in the process of oocyte-

to-embryo transition in C. elegans. Thus, a broad RNAi screening approach for my

set of 1,458 candidate genes (see section 3.1) has the potential to identify many more

regulators for the process of oocyte maturation and the underlying GRN in C. elegans.
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Figure 3.5: Bar plot representing the total amount of hatched larvae after 72 hours
in different RNAi experiments. GFP(RNAi) was used as negative control and mpk-
1(RNAi) as positive control. Differences concerning the number hatched larvae be-
tween both RNAi approaches were highly significant (one-tailed Welch test for variable
variances at a significance level of α <0.001; marked by three asterisks). RNAi ap-
proaches for inx-19, unc-7, str-102 and ztf-11 also showed a highly significant reduction
of hatched larvae in comparison to the negative control (GFP(RNAi)). In the case of
the double RNAi knock-down of inx-19 and unc-7 the number of hatched larvae was
even further reduced. In the case of the RNAi approaches for plx-2, cng-1, nhr-81, ztf-
11 and cnd-1 the number of hatched larvae was still significantly reduced (one-tailed

Welch test at a significance level of α <0.01; marked by a single asterisk).
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Figure 3.6: Average number of hatched larvae for (A) inx-19(RNAi), (B) nhr-
81(RNAi), (C) plx-2(RNAi) and (D) str-102(RNAi) over a time course of 72 hours
(marked as black curves). The negative control (GFP(RNAi)) is marked in red and the

positive control (mpk-1(RNAi)) is marked in green.
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Figure 3.7: Differential Interference Contrast (DIC) images of selected RNAi phe-
notypes. (A, B, C) GFP(RNAi) was used as negative control to exclude unspecific
RNAi effects. (B, C) Magnified images of the gonad (B) and the uterus (C) of an adult
hermaphrodite after treatment with GFP(RNAi) (A; dashed squares). (D, F, H, J)
Gonads of adult hermaphrodites after RNAi treatments. Aberrant oocytes in proximal
gonad are marked by arrows. Aberrant oocytes in distal gonad are marked by open
arrows. (E, G, I, K) Uteri of adult hermaphrodites after different RNAi treatments.
Abberant embryos are marked by arrows. All animals were screened for RNAi effects
about 24 hours after reaching adulthood. Anterior is to the left and dorsal to the top.
Abbreviations: o = oocyte; o′ = maturing ”-1” oocyte; e = embryo; v = vulva. Scale

bars: 100 µm.
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3.3 C. elegans gonad formation, spermatogenesis and oo-

genesis indicate clade V-specific signaling events

The C. elegans gonad is an essential and versatile organ. The gonad develops postembry-

onically, guided by the distal tip cell (DTC) and harbours later the maturing oocytes.

The DTC generates the niche for the germline stem cells (GSCs; introduction; Kim-

ble and Crittenden 2007). The whole process from initial differentiation of the DTCs,

through the formation of the male and female gametes, up to the final maturing oocytes

and their fertilisation, is precisely controlled (for a review on germline development refer

to Byrd and Kimble 2009, Kimble and Crittenden 2007).

The question arises whether the known C. elegans genes controlling tissue development

and functionality are found in other nematode species as well. To answer this question I

used several approaches: (1) OrthoMCL clustering (Materials and Methods) to identify

orthologues of the C. elegans germline set (Reinke et al. 2004, 2000) to identify whether

orthologues were present or absent in other nematodes. (2) I screened known C. elegans

genes for key processes such as gonad (Kimble and Crittenden 2007), stem-cell (Byrd

and Kimble 2009, Nadarajan et al. 2009), P granule formation (Voronina 2013) and

oocyte maturation (Miller et al. 2001, 2003, Govindan et al. 2006) for present or absent

orthologues in other nematodes. In total I screened 620 genes known to be important

for either of the aforementioned processes affecting the gonad for orthologues in other

clades and I found that the majority (84%) of Enoplean and Chromadorean species carry

homologues of these genes. 98 genes (16 %) of this set did not show any homologous

sequences. In order to get a deeper insight into the functionality of this gene set, I com-

pared 50 genes which play a role in gonad-associated processes (Fig. 3.8). Interestingly,

for each of the aforementioned gonad-associated processes I detected genes for which

orthologues are absent in non-Caenorhabditis species (Fig. 3.8).

In order to correlate gonad-associated processes with underlying GRNs, it is necessary

to give detailed background information for the model C. elegans. For easier reference,

this background information is given here and not in the introduction.
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Background information: The gonad formation initially starts with the extensive

postembryonic cleavage of gonad precursor cells, (Z1 to Z4; Fig. 3.8 A), where the so-

matic gonad forms from Z1 and Z4, while the inner pair (Z2 and Z3) generate all germ

cells (Friedman et al. 2000). Lateral signaling between the different Z cells determines

the fate of Z1 and Z4, including formation of the DTCs which depends on GON-4 ac-

tivity (Fig. 3.8 A). The germ cell precursors Z2 and Z3 are controlled via Wnt signaling

through the frizzled receptors LIN-17 and MOM-5, the disheveled orthologues DSH-2

and MIG-5, the β-catenin SYS-1 and the LEF/TCF transcription factor POP-1 (Fig. 3.8

A; Kimble and Crittenden 2007). The hermaphroditic gonad of C. elegans produces first

sperm and later shifts to oocyte production (Fig. 3.8 B). The so-called “global sex deter-

mination” pathway determines the switch from spermatogenesis to oogenesis (Fig. 3.8

B; Kimble and Crittenden 2007). This pathway depends on key-regulator proteins as

for example FEM-3, FOG-1/-3, TRA-1 and DAZ-1 (Fig. 3.8 B; Kimble and Crittenden

2007). Furthermore, oogenesis also depends onto different signaling pathways which

regulate the stem cell pool of mitotically dividing oogonia (Introduction; Kimble and

Crittenden 2007) the entry of oogonia into meiosis, pachytene and diplotene silencing

during prophase I, oocyte maturation and P granule formation (Fig. 3.8 C; Kimble and

Crittenden 2007). The pool of mitotically dividing oogonia depends on the interaction

with the DTC (Introduction). Here, Notch signaling via the DSL ligand LAG-2 and

the Notch receptor GLP-1, is crucial (Kimble and Crittenden 2007). The Notch signal

suppresses meiosis in the vicinity of the DTC (Fig. 3.8 C; Kimble and Crittenden 2007).

Meiosis staring with prophase I is arrested in pachytene and then diplotene (Introduc-

tion; Fig. 1.2). Both prophase I arrests are controlled by MES-2/-3/-4 and -6 (Fig. 3.8

C; Holdeman et al. 1998, Kelly and Fire 1998, Fong et al. 2002). During diplotene

arrest FLH-1 and -3 inhibit microRNAs which are supplied as maternal gene products

(Walhout et al. 2002, Ow et al. 2008).

During oocyte maturation the diplotene arrest is lifted from the most mature (−1)

oocyte and meiosis is resumed (Fig. 3.8 C grey circle, 1.2). During this process biva-

lents and chromatids are separated. In the case of C. elegans this is facilitated by the

DNA binding proteins ZIM-1/-2/-3 and HIM-8 (Fig. 3.8 C; Phillips and Dernburg 2006).

During oocyte maturation Anaphase-Promoting Complex (APC) activity is necessary,

in the case of C. elegans the APC5 subunit orthologue GFI-3 is required for this step

(Fig. 3.8 C; Stein et al. 2010). Also during oocyte maturation P granules form, which

are protein and mRNA aggregates (including e.g. GLH-1/-4, NOS-2; Fig. 3.8 C, small
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black dots; Voronina 2013) required for embryogenesis.

Screening the above mentioned regulatory genes for orthologues in clade I to V nemat-

doe genomes showed that there are key regulators during all above-mentioned processes

of gonad formation and germline activity which are only available in clade V nema-

todes (Fig 3.8): This includes DTC cell fate determination which is regulated by a

cascade including Wnt signaling and the β-catenine SYS-1 (Fig 3.8 A) (Kimble and

Crittenden 2007), as well as the switch from sperm to oocyte production which includes

the sex-determination genes FEM-3 and FOG-1 (Kimble and Crittenden 2007) (Fig 3.8

B). Intriguingly, oogonia and stemcell maintenance is also involved, as the DSL ligand

LAG-2 is only present in clade V nematodes (Fig 3.8 C, Kimble and Crittenden 2007).

Furthermore, the process of oocyte formation shows key regulators present only in clade

V, such as the MES-3 gene of the zygotene and diplotene silencing complex (Holdeman

et al. 1998, Kelly and Fire 1998, Fong et al. 2002). Even crucial steps of chromosome

pairing and separation during meiosis I and II involve clade V-specific chromosome adap-

tor genes such as ZIM-1/-2/-3/ and HIM-8 (Phillips and Dernburg 2006).

My results show that even though the majority of genes associated with gonad develop-

ment, including spermatogenesis, oogenesis and oocyte maturation are conserved among

clade I to V nematodes, important key regulators in each of the described processes are

specific for clade V. Hence, crucial steps during these processes must be controlled by

different proteins or even pathways outside of clade V.
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Figure 3.8: Schematic representation of the processes of (A) Z-cell primordium and
transition to L4 larval stage,(B) shift from spermatogenesis (during L4 larval stage)
to oogenesis (during young adulthood) and (C) oogenesis in C. elegans. All four pro-
cesses are controlled by different interacting genes (see text). Identified orthologues
of controlling genes in clade I to V nematodes are shown in boxes with clade-specific

colours.



Chapter 3. Results 63

3.4 RNAseq of R. culicivorax virgins and males finds or-

thologues for oogenesis from Drosophila and verte-

brates
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Figure 3.9: Heatmaps visualising the differential expression between adult virgins and
males in R. culicivorax. (A) Significant differential expression i. e. over- and under-
expression of 1,378 transcripts (p<10−3, FDR <0.05). A foldchange of -2 < log2, or
> +2 equals an over/-underexpression of at least 4-fold. By applying our Interproscan
pipeline and Blast2GO (Materials and Methods), I identified several orthologues known
to be involved in gonad-associated processes in other species (marked by asterisks) (B)
Identified expressed orthologues of known regulators for oogenesis, spermatogenesis and
gonad formation in R. culicivorax. These genes represent only a sub-set of the 1,378

significantly over- and/or underexpressed genes.

After analysing the Caenorhabditis gonad, its formation and oogenesis and finding a set

of crucial genes which are specific for clade V nematodes (section 3.3), I concentrated on

the clade I nematode R. culivorax (Fig. 1.2) to find candidate genes involved in Enoplean

gonad development. I sequenced the transcriptome of unfertilized adult females (virgins)

and compared them to the transcriptome of adult males (Materials and Methods). With

this approach I intended to identify expressed transcripts relevant for gonad formation,
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genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

MEX-3 + + + + + + + + + + + + + + + + +
Faf +** + - + - - - - - - - - - - - - -

Nipped
-A + + + + + + + + + + + + + + + + +

Kugelei + + + + + + + + + + + + + + + + +
Fry + + + + + + + + + + + + + + + + +

LSM14 + + + + + + + + + + + + + + + + +
LITAF + + + + + + + + + + + + + + + + +
Bic-C + + + + + + + + + + + + + + + + +
MSP + + + + + + + + + + + + + + + + +

MAEL +** + - - - - - - - - - - - - - - -
XPR1 + + + + + + + + + + + + + + + + +
ISL1 + + + + + + + + + + + + + + + + +
Ptc + + + + + + + + + + + + + + + + +

BTG1 +** + - - - - - - - - - - - - - - -

Figure 3.10: Phylum-wide comparison of orthologues involved in gonad development,
oogenesis and spermatogenesis of nematode and nematomorph species. Identified or-
thologues are symbolised by “+” and absent orthologues are symbolised by “−”. For
genes where orthologues were expected, but were not detected by OrthoMCL clustering,
genome-wide searches were repeated by using Blastp and orthologues were identified
by phylogenetic analysis (marked by two asterisks; see Materials and Methods). I-V,
clades (Fig 1.1; Blaxter et al. 1998). Abbreviations: A. s. - Ascaris suum; B. m. -
Brugia malayi ; B. x. - Bursaphelenchus xylophilus; C. a. - Caenorhabditis angaria; C.
b. - Caenorhabditis briggsae; C. e. - Caenorhabditis elegans; C. r. - Caenorhabditis
remanei ; D. c. - Diploscapter coronatus; D. i. - Dirofilaria immitis; E. b. - Enoplus
brevis; G. s. - Gordius sp.; L. l. - Loa loa; M. h. - Meloidogyne hapla; N - nemato-
morph; P. p. - Pristionchus pacificus; P. s. - Panagrolaimus sp. PS1159 ; R. c. -

Romanomermis culicivorax ; T. s. - Trichinella spiralis.

spermatogenesis, oogenesis and possibly incorporated maternal mRNAs in oocytes. By

differential expression analysis I sought to identify target mRNAs restricted to the gonad

and female specific reproduction. For this approach, I applied RSEM (RNAseq by ex-

pectation maximisation) transcript abundance estimation (Li and Dewey 2011, Li et al.

2010), TMM (trimmed mean of m values) based normalisation (Robinson and Oshlack

2010) and edgeR (empirical analysis of DGE in R) expression comparison (Robinson

et al. 2010, Robinson and Smyth 2007, 2008) (see Materials and Methods) to identify

significantly over- and underexpressed transcripts between virgins and males (Materials

and Methods). In total I found 1,378 differentially expressed genes (Fig. 3.9 A). 225 of

these genes were significantly upregulated in virgins, but not in males (FDR < 0.05).

By clustering protein sequences of 15 nematodes, one nematomorph genome and 12

outgroup genomes (Materials and Methods), I identified target genes which are known

to be expressed during gametogenesis in model organisms such as Drosophila, Xenopus

and mouse, verifying the efficacy of my RNAseq approach (Fig. 3.9 B). Among known
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germline regulators were genes such as fat facetes, furry, lsm14 and bic-C (Fig. 3.9 B).

By using an established pipeline for Interproscan from our laboratory (Materials and

Methods) and by combining these data with Blast2GO (Materials and Methods), I iden-

tified candidate genes with potential involvement in gonad formation and gametogenesis

in R. culicivorax (Fig. 3.9 B, 3.10).

These results suggest that most genes involved in gonad formation and gametogenesis

in R. culicivorax are conserved among the phylum of nematodes. Only for Faf and

Mael I identified Enoplean-restricted orthologues (Fig. 3.10). It would be interesting

to further investigate their role in Enoplean species in the aforementioned processes of

gonad formation and gametogenesis. Additionally, knock-outs of these genes via e. g.

the CRISPR/Cas9 system or RNAi, may reveal their potential impact on early embryo-

genesis in Enoplean species.

3.5 Ascaris suum germline-specific genes allow identifica-

tion of new candidate genes relevant for the germline

of C. elegans and other Chromadorean nematodes

I screened 686 Ascaris suum genes which are eliminated from the soma by a process called

“chromatin diminution” during the early asymmetric cleavages of the zygote (Wang

et al. 2012). As these genes persist in the germline, but not in the soma, and therefore

are germline-associated, I used these genes to screen for potential regulators of gonad

formation, oogenesis and spermatogenesis. By using a combination of our established

Interproscan pipeline and Blast2GO (Materials and Methods), I was able to identify

32 homologues specific for the germline. Furthermore, I identified on basis of this gene

set 10 orthologues of known germline-specific regulators for nematodes of clade III, IV

and V (Tab. 3.3). It would be highly interesting to explore whether the remaining un-

described candidate genes play a role in C. elegans during gonad formation, oogenesis

and/or spermatogenesis.
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Table 3.3: Chromadorean-specific germline regulators found in the A. suum gene
set (Wang et al. 2012). The functions of the respective A. suum genes were inferred
from blast to gene ontology∗ (Blast2GO) and protein domain analysis ∗∗ (Interproscan;
Quevillon et al. 2005, Hunter et al. 2012; Materials and Methods). For a detailed

description for GO terms refer to Carbon et al. 2009.

gene
name

clade
specific
ortho-
logues

best blast
hit

proposed gene function
∗

proposed protein
domain function ∗∗

ASU 08876 III caesin kinase
II subunit α
(Xenopus lae-
vis; Mus mus-
culus)

spermatogenesis
(GO:0007283)

Serine/threonine- dual
specificity protein ki-
nase, catalytic domain
(IPR002290)

ASU 10038 III FEM-3 (C.
elegans)
PUMILIO (D.
melanogaster)

reproductive process
(GO:0022414)

Pumilio RNA-binding re-
peat (IPR001313)

ASU 10497 III and IV CREB3L1
(Mus mus-
culus; Homo
sapiens)

spermatogenesis
(GO:0007283)

Basic-leucine zipper domain
(IPR004827) Eukary-
otic transcription factor,
Skn-1-like, DNA-binding
(IPR008917)

ASU 11448 III HIM-14 (C.
elegans);
MSH4 (Homo
sapiens)

pachytene (GO:0000239);
synaptonemal com-
plex (GO:0000795); fe-
male gamete generation
(GO:0007292); spermato-
genesis (GO:0007283);
ovarian follicle development
(GO:0001541);

DNA mismatch repair
protein MutS, core
(IPR007696) DNA mis-
match repair protein MutS,
C-terminal (IPR000432)

ASU 11803 III, IV and
V

BTF-3 (C. el-
egans) BTF3
(Mus muscu-
lus)

pachytene (GO:0000239)
synaptonemal com-
plex (GO:0000795) fe-
male gamete generation
(GO:0007292)

DNA mismatch repair
protein MutS, core
(IPR007696) DNA mis-
match repair protein MutS,
C-terminal (IPR000432)

ASU 11845 III and V MSH-5 (C.
elegans)
MSH5 (Homo
sapiens)

meiosis I (GO:0007127) DNA mismatch re-
pair protein MutS, core
(IPR007696); DNA mis-
match repair protein MutS,
C-terminal (IPR000432)

ASU 11963 III PIM1 (Homo
sapiens)

male meiosis (GO:0007140) Protein kinase, catalytic do-
main (IPR000719); Protein
kinase, ATP binding site
(IPR017441)

ASU 12478 III GLP-1 (C. el-
egans); Notch
2 (Homo sapi-
ens)

developmental process
involved in reproduction
(GO:0003006)

Ankyrin repeat-containing
domain (IPR020683);
EGF-like calcium-binding
(IPR001881); Epidermal
growth factor-like domain
(IPR000742)

ASU 13406 III SMC3 (Xeno-
pus laevis;
Homo sapi-
ens)

meiosis I (GO:0007127);
meiotic cohesion complex
(GO:0030892); chromosome
organization involved in
meiosis (GO:0070192)

P-loop containing nucleo-
side triphosphate hydrolase
(IPR027417); RecF/Rec-
N/SMC (IPR003395)

ASU 14618 III DAZ-1 (C.
elegans);
BOLL (Homo
sapiens)

single fertilization
(GO:0007338); germ cell
migration (GO:0008354);
germ cell development
(GO:0007281); positive
regulation of meiosis
(GO:0045836)

Nucleotide-binding, alpha-
beta plait (IPR012677);
RNA recognition motif
domain (IPR000504)
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3.6 Establishment of RNAseq post-sequencing data anal-

ysis - a comprehensive workflow to generate transcrip-

tomes of satisfying quality
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Trimmomatic
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Figure 3.11: Flow diagram depicting the comprehensive workflow of post-sequencing
steps to generate transcriptomes of satisfying quality. The procedure includes the fol-
lowing steps: (A) Sequencing adaptor removal and elimination of error-prone nucleotide
sequences at the 5’- and 3’-ends of each read. (B) De-novo assembly of the first tran-
scriptome by the programme Trinity. (C) Assessment of bacterial and genomic con-
taminations by reference mapping and blasting against Genbank. (D) Post-assembly

analysis of interesting transcripts.
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RNAseq in general and specifically for amplified mRNAs (see section 2.4 and Intro-

duction), needs a proper quality assessment before analysing the data. Especially, the

circumstances under which I had to extract mRNA by acid phenol/chloroform phase

separation and amplify by in-vitro transcription (IVT) (see Materials and Methods), led

to the problem that there was a certain amount of bacterial and genomic contamination

in my data. Henceforth, I sought to identify the important transcripts for my analysis.

For this purpose, I established a workflow to guarantee proper quality of my RNAseq

data (Fig. 3.11).

My workflow consists of four successive steps which can be re-iterated in case of missing

replicates to improve already analysed sequencing information (Fig. 3.11):

(1) First of all, I eliminated the incorporated Illumina adaptors which are part of the

PCR step on the Illumina sequencing platforms (Materials and Methods). Next, I

eliminated RNAseq sequencing reads which were prone to false positve and false nega-

tive nucleotides at the 3’- and 5’-ends of each read by using the software tool “Sickle”

(https://github.com/najoshi/sickle; Fig. 3.11, A).

(2) I used the de-novo assembler Trinity to assemble the different transcriptomes from

the RNAseq raw data (Grabherr et al. 2011; Fig. 3.11 B). I purposely used this assembler

instead of a reference based assembler, as this allowed me to identify transcripts which

are not part of draft reference genomes. Especially, NGS-based genomes are prone to

gaps in sequences due to the loss of DNA regions which are difficult to sequence (e.g. due

to inaccessible conformation of DNA as in the case of heterochromatin) and/or show in-

sufficient coverage. Besides from this, assemblers used for the assembly of whole genomes

are also prone to errors, especially in the case of repetitive sequences (Grabherr et al.

2011). Henceforth, instead of risking loss of scarce and/or not assembled transcripts due

to an error-prone reference genome, I used the de-novo assembler Trinity instead and,

if necessary, excluded sequences which were obviously not part of the reference genome

(or reference transcriptome) by post-assembly analysis (see below).

(3) In the third step, I used different approaches in parallel to filter out bacterial and

genomic contamination from my transcriptomes. For this, I used the short-sequence

mappers “Bowtie2” (Langmead and Salzberg 2012) and “Blat” (Kent 2002) to map

the transcripts to appropriate reference transcriptomes. Furthermore, I used “Transde-

coder” (Haas et al. 2013) to predict the amino-acid sequences for the identified tran-

scripts (Fig. 3.11, C). By blasting the assembled transcripts against Genbank (Benson
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et al. 2015) and by using only mapped sequences, I could successfully eliminate bacte-

rial transcripts from my transcriptome data. I mapped the transcripts against reference

transcriptomes for all developmental stages of the studied species (Fig. 1.1). The suc-

cessfully filtered transcriptomes were then used for further analysis (Fig. 3.11 C).

(4) For the comparative analysis of the complete transcriptomes, I used different means

in parallel to gather information about the found transcripts: I used Blast2GO to find

homologues of functionally described model organisms by sequence comparison with

Genbank (Benson et al. 2015). I also used Fisher’s exact test to identify over- or un-

derrepresented gene ontology (GO) terms for transcripts of each transcriptome in com-

parison to the reference transcriptomes. I used our established OrthoMCL clustering

pipeline for 27 species, including different invertebrate and vertebrate genomes and 13

nematode genomes (Material and Methods; Li et al. 2003), to identify orthologues among

the mentioned animal groups (Fig. 3.11 D). After successfully identifying existing and

expressed orthologues, I used the data base “GeneMANIA” (see Materials and Methods)

to identify interacting proteins which belong to the same pathway or complex. This way

I could increase my searches and could cover whole pathways which may be relevant to

my scientific objective.

In total I sequenced early transcriptomes of 5 species (introduction; Fig. 1.1) and by

using my work-flow, I successfully retrieved data from 13 RNA-libraries which are the

result of independent sampling of more than 100 eggs per replicate (Materials and Meth-

ods; Tab. 3.4).

For one single nematode (D. coronatus) I tested to what extent the use of several repli-

cates increases the quality assessed transcriptome. For this purpose I re-assembled

different combinations of the 5 libraries (Fig. 3.12). This sequential re-assembling of

transcriptomes from different libraries demonstrates that even though there was initial

bacterial and genomic contamination in my RNA-sequencing raw data, I was able to

reach a plateau of transcripts (Fig. 3.12). In the case of D. coronatus I could retrieve

nearly 89% of the number of transcripts in comparison to C. elegans (Tab. 3.5). In the

case of R. culicivorax I was even able to reach 99% of the number of expressed tran-

scripts in comparison to C. elegans (Tab. 3.4). These results suggest that I reached a

saturation for sequenced transcripts under the condition of amplificiation of mRNA via

IVT prior to RNAseq (Materials and Methods). Therefore, the presented transcriptomes

appear to be complete to a relatively high degree in the cases of R. culicivorax and D.

coronatus. Gordius sp., in contrast to the other species, could be sequenced without
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amplification of mRNAs, due to the huge amount of isolated embryos (see Materials and

Methods), thus its transcriptome is considered to be complete. In case of Panagrolaimus

sp. PS1159 the single RNAseq library which I could retrieve, yielded considerably more

transcripts than are known to be expressed in C. elegans. For this reason, I cannot

exclude that the transcriptome of Panagrolaimus sp. PS1159 is still fragmented due to

insufficient sequenced replicates and this high number of retrieved transcripts is due to

incomplete assembly of the sequencing reads. This may have led to an overestimation

of transcripts. In case of P. pacificus the transcriptome suffered from too little sequenc-

ing information as it shows the lowest number of transcripts probably due to the fact

that only a single RNAseq library was generated (Tab. 3.4). In order to improve the

quality of the P. pacificus transcriptome, I needed to identify which transcripts of the

published reference transcriptome (see Materials and Methods) were actually expressed.

For this purpose I mapped my P. pacificus transcripts to the reference transcriptome

and retrieved the complete sequences, yielding a much better median transcript length

(Materials and Methods; Tab. 3.5).

My RNAseq approach may not have detected all rare transcripts for the transcriptomes

of R. culicivorax, Panagrolaimus sp. PS1159 and D. coronatus, hence inference of ab-

sent transcripts in my transcriptomes is impossible. The transcriptomes of C. elegans

and A. suum can be considered as complete (Hashimshony et al. 2012, Wang et al.

2012) and will serve as a reliable reference to compare all other transcriptomes of early

embryonic stages with. Hence identification of present and absent orthologues during

early development of C. elegans and A. suum is feasible.

Table 3.4: Number of the number of retrieved transcripts and mean and median length
per sequences species after applying my workflow (Fig. 3.11) to the raw data. Gordius
sp. was sequenced without RNA amplification (marked by single asterisk). Addition-
ally, I included transcriptomes from the published transcriptomes for A. suum (Wang
et al. 2014) and C. elegans (Hashimshony et al. 2012). The number of independent
(biological) replicates used for the published transcriptomes was previously published

(see text) and is not part of this analysis (marked by two asterisks).

species number of number of median transcript
biological replicates transcripts length [bp]

Gordius sp.∗ 2 12,070 872.5

R. culicivorax 4 7,236 522

P. sp. PS1159 1 15,568 420

D. coronatus 5 6,546 381

P. pacificus 1 1,608 1,152

A. suum ∗∗ 3,093 1,062

C. elegans ∗∗ 7,304 1,431
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Figure 3.12: Number of retrieved transcripts by random re-assembly of the different
libraries for early development in the nematode D. coronatus. By using the original
RNAseq libraries (#1 to #5) as permutated input for the transcriptome assembly, the

number of retrieved transcripts appears to saturate at arround 6,500 transcripts.
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3.7 Sharing pathways with other Metazoa: Basal nema-

todes express signaling pathway components of inver-

tebrates and vertebrates during early development

4,113
Gordius sp.

395
R. culicivorax

26
A. suum

441
P. sp. PS1159

138
D. coronatus

52
P. pacificus

397
C. elegans

561

176

2,530

1,082

3,3981,719

764

2,429

1,001

Figure 3.13: Expressed clusters and genes during early development for seven species.
Shared clusters among all species (central circle). Numbers of early expressed genes
with no orthologues to other species during early embryogenesis are depicted next to
the circles. The number of orthologous clusters which are cumulatively shared among

species after exclusion of C. elegans is represented in red (dashed line).

I clustered early expressed transcripts in all available species via OrthoMCL (Fig. A.1

and 3.13). In total I found 561 clusters which were shared among the transcriptomes of

the Chromadorean species C. elegans, D. coronatus, P. pacificus, P. sp. PS1159 and A.

suum, as well as the Enoplean species R. culicivorax and the nematomorph outgroup

species Gordius sp.. I found 674 clusters shared by non-C. elegans species. There were

173 clusters which are specific to all Chromadorean species (i.e. excluding R. culcivorax

and Gordius sp). 1,944 clusters were shared among all nematodes (i.e. excluding Gordius
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sp.; Fig. A.1), suggesting that most protein families expressed during early development

are shared among all investigated nematodes. By subtracting all C. elegans-specific

clusters from the shared clusters of the remaining species I retrieved 1,001 cumulatively

shared ones among the remaining species (Fig. 3.13 dashed line). This indicates that

the majority of shared orthologues is not expressed in C. elegans during early embryo-

genesis. In order to what may be the potential function of orthologues which are not

expressed in the model C. elegans I focused on the Enoplean R. culicivorax and the

nematomorph Gordius sp.

To investigate to what extent specific early expressed transcripts in R. culicivorax and

Gordius sp. are shared by animal models from other taxa, I used these data to find

orthologues in models such as Drosophila, Xenopus, zebrafish, mouse, rat and humans.

By using Fisher’s exact test for enriched gene ontology (GO) terms in the Enoplean R.

culicivorax and the nematomorph Gordius sp., I found enrichment of 52 GO-terms for

R. culcivorax and enrichment of 98 GO-terms in case of Gordius sp. (Tab. C.2 and C.3).

The most striking GO-terms involved genes which are associated with NF-κb, the apop-

tosis signaling pathway and double strand break repair systems (Tab. C.2 and C.3).

I extended the search to find additional pathway components involved in early devel-

opment of aforementioned models in Gordius sp. and R. culicivorax. Screening the

genomes, and early transcriptomes for 15 pathways or biological processes known to

be involved in development, I found pathway components which are only in present in

Enoplean nematodes or nematomorphs (Tab. 3.5).

Most strikingly, I found orthologues specifically expressed during early development

of R. culicivorax and Gordius sp., such as Hunchback, NFKB1, Noggin, Chordin/Short

gastrulation, RSF1 (remodelling and spacing factor 1) and YY1 (Ying and Yang1; Pleio-

homeotic). This means that several genes in the pathway of BMP, Wnt, NF-κB and

SWI/SNF signaling which are known from model organisms such as Drosophila, mouse

and humans, are expressed during the early development of Gordius sp. and R. culi-

civorax, but not in the other analysed species. These pathways were further investigated

(Tab. 3.5; section 3.8 to 3.17).

In total I screened 10,454 early expressed Gordius sp. and 7,273 early expressed R.

culicivorax transcripts and found orthologues in 16 different signaling pathways and/or

biological processes (Tab. 3.5). Based on these results, I screened which orthologues of

these parthways are expressed during early development in Gordius sp., R. culicivorax,

A. suum, P. sp. PS1159, D. coronatus, P. pacificus, and C. elegans (section 3.8 to
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3.17). Furthermore, I also looked for essential pathways required for early development

in C. elegans, such as PAR-3/-6/PKC-3, SKN-1/MED, MOM-5/Wnt and GLP-1/Notch

signaling. Here, I found the unexpected absence of orthologues in all nematodes except

Caenorhabditis (section 3.9, 3.11, 3.15, 3.16).

Table 3.5: 10,454 Gordius sp. (G. sp.) and 7,273 R. culicivorax (R. c.) early
expressed transcripts were used as queries to search for homologues in Drosophila,
Xenopus, zebrafish, mouse, rat and humans by using Blastp against Genbank (Materials
and Methods). By applying Blast2GO onto this pre-screening approach, Gordius sp.
and R. culcivorax transcripts were selected for homologues to known regulators of

signaling pathways or biological processes of aforementioned model organisms.

signaling pathway pathway components
found in

or biological process G. sp. and/or R. c.

BMP/TGF-β signaling 50

Wnt signaling 44

notch signaling 29

SWI/SNF RSF1 complex 35

Toll/NF-κB signaling 38

LGL/DGL/Scrib and PCP signaling 34

mTORC signaling 25

C.elegans polarity establishment 33

early developmental genes 72

insulin/FOXO signaling 6

JNK signaling 8

Jak-Stat/Interleukin signaling 7

hedgehog signaling 7

gonad development 3

asymmetric cell division 14

stemcell factors 8

3.8 Early BMP signaling exists in the clade I nematode

R. culicivorax and the nematomorph Gordius sp.

One of the aims of my thesis is the detection of orthologues involved in axis formation and

polarity establishment in Enoplean and Chromadorean nematodes (Introduction), hence

I investigated the BMP/DPP (Bone morphogenetic protein; Decapentaplegic) and the

Wnt signaling pathways. In many invertebrates and vertebrates anterioposterior (a-p)

and dorsoventral (d-v) axis patterning is strongly depends on the interplay of Wnt and

BMP signaling pathways. While Wnt mainly drives a-p axis formation, BMP signaling
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genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

CHRD
Sog + + + - - - - - - - - - - - - - -

BMP1 + + + + + + + + + + + + + + + + +
BMP5/6

/7/8A
Scw/
Gbb

+ + + + + + + + + + + + + + + + +

BMP2/4
Dpp + + + + + + + + + + + + + + + + +

TWSG1
Tsg + + + + + + - - - - - - - - - - -

ZDH17 + + + + + + + + + + + + + + + + +
TLL1
Tdl + + + + + + + + + + + + + + + + +

NOG + + - + - - - - - - - - - - - - -
Cv + + + + + + - - - - - - - - - - -

Cv-2 + + + - + + - - - - - - - - - - -
Mad + + + + + + + + + + + + + + + + +
LanA + + + + + + + + + + + + + + + + +

Figure 3.14: Present (“+”) and absent (“−”) orthologues of the BMP signaling
pathway components among 16 nematode species and the nematomorph Gordius sp.
Species for which not only genomic but also transcriptomic data for early expressed
transcripts were available are marked by a single asterisk. I - V, clades (Fig 1.1; Blaxter
et al. 1998). Abbreviations: A. s. - Ascaris suum; B. m. - Brugia malayi ; B. x. -
Bursaphelencuhs xylophilus; C. a. - Caenorhabditis angaria; C. b. - Caenorhabditis
briggsae; C. e. - Caenorhabditis elegans; C. r. - Caenorhabditis remanei ; D. c. -
Diploscapter coronatus; D. i. - Dirofilaria immitis; E. b. - Enoplus brevis; G. s. -
Gordius sp.; L. l. - Loa loa; M. h. - Meloidogyne hapla; N - nematomorph; P. p. -
Pristionchus pacificus; P. s. - Panagrolaimus sp. PS1159 ; R. c. - Romanomermis

culicivorax ; T. s. - Trichinella spiralis.

is involved in d-v axis formation (Hikasa and Sokol 2013). Both signaling pathways act

via secreted ligands (e.g. BMP2/4/DPP) and inhibitors (Chordin/Short gasturlation,

or Noggin; Yamamoto and Oelgeschläger 2004, Hikasa and Sokol 2013) which form gra-

dients along the prospective axes within the embryo (Introduction; Hikasa and Sokol

2013).

Using our OrthoMCL clustering I screened for genes involved in BMP and Wnt signal-

ing (see 3.9 and 3.10) in the studies nematodes. For BMP/DPP signaling, I found not

only orthologues in the genomes of Enplean and Chromadorean nematodes, but also

early expression of the BMP/DPP inhibitors Sog (Short gastrulation) or Chordin, Tsg

(Twisted gastrulation), Cv (Crossveinless) and Cv-2 (Crossveinless−2) in R. culicivorax

and Gordius sp. (Fig. 3.14 and 3.15). I even found orthologues for the vertebrate spe-

cific BMP/DPP inhibitor Noggin, which was expressed in both species. In addition to

BMP/DPP inhibitors I found also orthologues for the Tld (Tolloid) and BMP1 metallo

proteases, orthologues for the receptor BMPR2, orthologues for the BMP/DPP ligand
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Figure 3.15: Schematic representation of the Drosophila signaling network for BM-
P/DPP pathway components. Expressed orthologues of the pathway components dur-
ing early transcriptomes of seven species are shown (inferred from transcriptomic data
and orthologous clustering; compare Fig. 3.14). Expressed orthologues are visualised
by a species-specific colour code. A. s. - Ascaris suum; C. e. - Caenorhabditis elegans;
D. c. - Diploscapter coronatus; G. sp. - Gordius sp.; P. p. - Pristionchus pacificus; P.

sp. - Panagrolaimus sp. PS1159 ; R. c. - Romanomermis culicivorax.

and SMAD transcription factors Med (Medea) and Mad (Mothers against Decapenta-

plegic) to be expressed in nearly all examined early transcriptomes (Fig. 3.15). This

result suggests that all necessary BMP signaling components exist in nematomorphs,

Enoplean and clade III nematodes to allow proper BMP/DPP signaling (Fig. 3.15). Es-

pecially, BMP/DPP inhibitors, such as Sog/Chordin, Noggin and Tsg are a prerequisite

for proper BMP signaling in invertebrate and vertebrate species (Smith and Harland

1992, Sasai et al. 1994, Chang et al. 2001). The presented results suggest that (1) BM-

P/DPP is fully functional in Gordius sp. and R. culicivorax and (2) may therefore play

a role in axis formation in both species. Taking into account that BMP signaling (and

dorsoventral patterning) C. elegans is only found during post-embryonic development

(e.g. postembryonic mesoderm patterning and dauer larva formation; Estevez et al.

1993, Foehr and Liu 2008, Tian et al. 2010, Gumienny and Savage-Dunn 2013), opens

the possibility that in Enoplean nematodes this signaling pathway is an altenative way

of polarity establishment and axis formation like in other invertebrates and vertebtates.
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In order to test whether BMP/DPP signaling against Chordin may have a role in axis

formation during early embryogenesis of R. culicivorax, we performed in-situ hybridis-

ations against the Sog/Chordin orthologue (Fig. 3.16). We found ubiquitous expression

during the 1-4 cell stages of R. culcivorax. Afterwards the expression of chordin grad-

ually decreased (Fig. 3.16 C, D, E, F). As chordin was ubiquitously expressed in R.

culcivorax the question arises whether BMP/DPP signaling can play the assumed role

as antagonist of BMP/DPP signaling. These results strongly suggests that components

of BMP/DPP signaling are expressed during early development and therefore may play

a role in controlling axis formation. In addition, I could show that important BMP/DPP

signaling components are conserved among Enoplean nematodes, nematomorphs, other

invertebrates and vertebrates.

Figure 3.16: In-situ hybridizations show chordin expression (purple) in R. culicivorax
during (A) 1-cell, (B) 2-cell, (C) 4-cell, (D) 16-cell, (E) morphogenesis and (F) sense
RNA negative control. Differential seggregation of natural dark pigment was previously

described Schulze and Schierenberg 2009.

3.9 Wnt signaling via β-catenin paralogues WRM-1 and

SYS-1 is specific for the genus Caenorhabditits

Wnt signaling is another major pathway involved in axis formation in vertebrates and

many invertebrates (Hikasa and Sokol 2013). Here, I investigated the potential role

of Wnt signaling for early development in nematodes by searching for early expressed
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genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

MOM-2 + + - - + + + + + + + + + + + + +
MOM-5 + + - + + + + + + + + + +** + + + +
POP-1 + + + + + + + + + + + + + + + + +
SYS-1 - - - - - - - - - - - - - + + + +
WRM-1 - - - - - - - - - - - - - + + + +
HMP-2 + + + + + + + + + + + + + + + + +
BAR-1 - - - - + + + + + + + + + + + + +
LIT-1 + + + + + + + + + + + + +** + + + +

SDZ-26 - - - - - - - - - - - - - - - + +
MOM-4 + + - + + + + + - + + + + + + + +
ZFP-1 + + - + + + + + - - + + + + + + +
TSN-1 + + + + + + + + + + + + + + + + +
PLP-1 + + + + + + + + + + + + +** + + + +
MUT-7 + - - + + + + + + + + + - + + + +
CAM-1 + + + - + + + + + + + + - + + + +
LIN-37 + + + - + + + + + + + + - + + + +
EFN-4 - - - - - - - - - - - - - - + + +
JUN-1 + +** - +** + + + + + + + + + - + + +
GOA-1 + + + + + + + + + - + + + + + + +
EGL-8 + + + + + + + + + + + + + + + + +
MES-1 - - - - - - - - - - - - - + + + +

Figure 3.17: Present (“+”) and absent (“−”) orthologues of the Wnt signaling path-
way components among 16 nematode species and the nematomorph Gordius sp. For

further details see caption of figure 3.14.

orthologues of C. elegans genes participating in Wnt signaling (Fig. 3.17, 3.18) and for

respective vertebrate orthologues (see section 3.10). I looked whether the Wnt ligand

MOM-2, the frizzled receptor MOM-5, the transcriptional TCF/LEF regulator POP-

1 and other interacting components of the Wnt pathway also exist in genomes of the

studied nematodes (Fig. 3.17) and if yes, whether they are expressed during early devel-

opment (Fig. 3.18). I found that highly conserved components of Wnt signaling, such

as MOM-2, MOM-5 and POP-1 have orthologues among all investigated nematodes

(Fig. 3.17). In concordance with this I found Wnt components acting in early embryo-

genesis in nearly all studied species (Fig. 3.18).

I also found components of the Wnt signaling network in C. elegans for which no ortho-

logues exist outside the genus Caenorhabditis, such as EFN-4, MES-1 and the β-catenins

SYS-1 and WRM-1 (Fig. 3.17). Interestingly, I also found orthologues of certain Wnt

signaling components only expressed in C. elegans (Fig. 3.18). In C. elegans Wnt signal-

ing differs from other invertebrates and vertebrates in that there exist several β-catenin
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Figure 3.18: Schematic representation of the C. elegans signaling network for Wnt
pathway components. Expressed orthologues of the pathway components during early
embryogenesis of seven species are shown (inferred from transcriptomic data and or-
thologous clustering; compare Fig. 3.17). For further details see caption of figure 3.14.

transcription factor paralogues with distinct functions during early development (Eisen-

mann 2005, Mizumoto and Sawa 2007). I investigated this particularity and found that

the crucial β-catenins WRM-1 and SYS-1 of the so-called “Wnt asymmetry pathway”

(Eisenmann 2005) only exists in the genus Caenorhabditis (Fig. 3.18, 3.17). Concern-

ing the four C. elegans β-catenin paralogues I found for Enoplean nematodes and the

nematomorph Gordius sp. only one orthologue, while most Chromadorean nematode

genomes possess 3 β-catenins (HMP-2, BAR-1, WRM-1). Only the genus Caenorhabdi-

tis has the additional SYS-1 (Fig. 3.19).

For orthologues of the β-catenin BAR-1 seems not to be expressed in all investigated

nematodes during early development (Fig. 3.18). As Wnt signaling is mediated in most

animals via a single β-catenin, I looked for the expression of the β-catenin orthologue
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HMP-2 which I found to be the closest orthologue to β-catenin/armadillo of the models

Drosophila, mouse and humans for Chromadorean nematodes (Fig. 3.19). I found that

HMP-2 was expressed during early development in all Chromadorean species (Fig. 3.18).

Here, I showed that most Wnt signaling components known from C. elegans have ortho-

logues in most nematodes of clade I to V (Fig. 3.17). Nevertheless, the early expression

of these Wnt signaling components seems to be in many cases exclusive in C. elegans

(Fig. 3.18). Adding to that, the number of essential β-catenins also differs among the

phylum of nematode (Fig. 3.19), showing that Wnt signaling may function differen-

tially between Enoplea and Chromadorea. Thus, I sought to investigate whether other

Enoplean-specific Wnt signaling components exist (see section 3.10).
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Figure 3.19: Unrooted phylogenetic tree for the β-catenin orthologues HMP-2, BAR-
1, WRM-1, SYS-1 and β-catenin/Armadillo. The phylogenetic tree is based on clustalω
alignment (Material and Methods; Sievers et al. 2011) for 84 homologous armadillo re-
peat domain protein sequences from 37 species. The tree was constructed based on
Maximum Likelihood statistics by the programme RAxML (Material and Methods;
Stamatakis 2006) for 100 bootstraps. β-catenin clusters are colour coded. Each clus-
ter, besides from one for the outgroup β-catenin/Armadillo proteins, was supported by
a bootstrap value of 100%. Intriguingly, nematomorph and Enoplean β-catenin ortho-
logues exclusively cluster with outgroup β-catenins of Drosophila and humans, while
Chromadorean nematodes partially possess all four β-catenins known from C. elegans.
Only species of the Caenorhabditis genus have orthologues of the SYS-1 beta-catenin.
Abbreviations: A. s. - Ascaris suum; B. m. - Brugia malayi ; B. x. - Bursaphelenchus
xylophilus; C. a. - Caenorhabditis angaria; C. b. - Caenorhabditis briggsae; C. e. -
Caenorhabditis elegans; C. r. - Caenorhabditis remanei ; D. c. - Diploscapter coronatus;
D. i. - Dirofilaria immitis; D. m. - Drosophila melanogaster ; E. b. - Enoplus brevis;
G. s. - Gordius sp.; H. s. - Homo sapiens; L. l. - Loa loa; M. h. - Meloidogyne hapla;
N - nematomorph; P. p. - Pristionchus pacificus; P. s. - Panagrolaimus sp. PS1159 ;

R. c. - Romanomermis culicivorax ; T. s. - Trichinella spiralis.
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3.10 Wnt pathway components exist in all studied nema-

todes and are expressed during early embryogenesis

genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

RYK + + + + + + - + + + + + + + + + +
TRABD

2B + + + + + + + + + + + + + + + + +
WNT1 + +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +**

WNT3 +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +**

WNT3A +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +**

WNT8A +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +** +**

FZD1 + + - + + + + + + + + + - + + + +
FZD8 + +** + + + + + + - + + + + + + + +
FAT3 + + + + + + + + + + + + + + + + +
FAT4 + + + + + + + + + + + + + + + + +

NPEPP
S + + + + + + + + + + + + + + + + +

DCHS1 + + + + + + + + + + + + + + + + +
CNNM2 + + + + + + + + + + + + + + + + +
EPHB3 + + + + +** + + + + + + + +** + + + +
LRP6 + + + + + + + + + + + + + + + + +
PORC

N + + + + + + + + + + + + + + + + +
CELSR

2 +** + + + + + + + - + + + + + + + +
AGK +** + + + + + + - + + + + + + + + +

Figure 3.20: Present (“+”) and absent (“−”) orthologues of the human Wnt signaling
pathway components with emphasis onto the Wnt receptor RYK among 16 nematode
species and the nematomorph Gordius sp. For further details see caption of figure 3.14.

In order to identify Enoplean-specific upstream components of Wnt signaling, I screened

more than 44 genes known to be involved in this pathway (Tab. 3.5) for orthologues exist-

ing specifically in Enoplean and nematomorph genomes and to be expressed in Gordius

sp. and/or R. culicivorax (Fig. 3.20, 3.21). I could not identify any Wnt signaling

component, besides from β-catenin/Armadillo (Fig. 3.19) to have specific orthologues

in Enoplean nematodes and the nematomorph Gordius sp. (Fig. 3.20). By investigating

the early expression of existing Wnt signaling orthologs, I detected Wnt signaling com-

ponents to be expressed in all investigated species (Fig. 3.21).

I found that most Wnt signaling components known from humans have orthologues in all

(or nearly all) nematodes (Fig. 3.20). In concordance with this I find early expression of

most orthologues in nearly all investigated species (Fig. 3.21). Interestingly, for the Wnt

co-receptor RYK and the Wnt inhibitor TRABD2B I did not detect any expression in

other nematodes except Gordius sp. and R. culicivorax and D. coronatus (Fig.. 3.21).

This result shows that most upstream components of Wnt signaling (such as ligands
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Figure 3.21: Schematic representation of the human signaling network for Wnt path-
way components. Expressed orthologues of the pathway components during early em-
bryogenesis of seven species are shown (inferred from transcriptomic data and ortholo-

gous clustering; compare Fig. 3.17). For further details see caption of figure 3.14.

and receptors) and downstream target genes are (1.) conserved among nematodes and

(2.) are also expressed during early development. The only components found to be

expressed only in a fraction of the studied nematodes seem to be the Wnt inhibitor

TRABD2B and the Wnt co-receptor RYK.
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3.11 Notch signaling acts during early development in all

nematodes, but specific core components seem to vary

between Enoplean and Chromadorean nematodes

genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

APX-1 - - - - - - - - - - - - - + + + +
GLP-1 + + + + + + + + + + + + + + + + +
LAG-1 + + + + + + + + + + + + + + + + +
PES-1 - - - - - - - - - - - - - - + + +
POS-1 - - - - - - - - - - - - - + + + +
SUR-2 + + + + + + + + + + + + - + + + +
EOR-2 + + + - + + + + + - + + + + + + +
KIN-15 - - - - + - - - - - - - - - - - +
KIN-19 + + + + + + + + + + + + + + + + +
SUP-17 + + + + + + + + + + + + + + + + +
PRO-1 + + + + + + + + + + + + + + + + +
GFL-1 + + + + + + + + + + + + + + + + +
ZFP-1 + + + + + + + + + + + + - + + + +

VPS-22 + + + + + + + + + + + + + - + + +
EPN-1 + + + + + + + + + + + + + + + + +
EGO-1 + + + + + + + + + + + + + + + + +
SEL-12 + + + + + + + + + + + + + + + + +
TEN-1 + + + + + + + + + + + + + + + + +
GSKA-

3 - - - - + + - - - - - - - + + + +
REF-1 - - - - - - - - - - - - - + + + +
CIR-1 + + + + + + + + + + + + + + - + +
LIN-11 + + + + + + + + + + + + - + + + +

Figure 3.22: Present (“+”) and absent (“−”) orthologues of the C. elegans Notch
signaling pathway for 16 nematode species and the nematomorph Gordius sp. For

further details see caption of figure 3.14.

From C. elegans it is known that Notch signaling is important for early development, as

it determines the fate fo the AB cells (Priess 2005). I found that Notch signaling is also

active in Enoplea, like in Chromadorean nematodes, as orthologues of the CSL protein

LAG-2 and the Notch receptor GLP-1 exist in their genomes (Fig. 3.22) plus they are

expressed during early development (Fig. 3.23). I searched therefore for orthologues of

the Drosophila and human DSL ligands and further identified orthologues in R. culicivo-

rax and Gordius. sp. I found that many known C. elegans Notch signaling components

and target genes exist exclusively in the genomes of Caenorhabditis species (Fig. 3.22),

such as REF-1, GSKA-3, KIN-15, POS-1 and APX-1. Especially, the finding that the

DSL ligand APX-1 is only present in the genus Caenorhabditis and plays an important
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Figure 3.23: Schematic representation of the C. elegans signaling network for Notch
pathway components. Expressed orthologues of the pathway components during early
embryogenesis of seven species are shown (inferred from transcriptomic data and or-
thologous clustering; compare Fig. 3.17). For further details see caption of figure 3.14.

role during the AB blastomere fate determination in C. elegans (Mickey et al. 1996)

indicates that Notch signaling during early embryogenesis must be different in non-C.

elegans nematodes. Nonetheless, my findings also suggest that Notch signaling per se

exists in all nematodes and is probably crucial for embryogenesis as conserved Notch
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signaling components such as GLP-1 and LAG-1 were found to be expressed during early

embryogenesis in all (or nearly all) investigated species.

The observed differences suggest that in more distant relatives of C. elegans Notch sig-

naling may be involved in other processes than the induction of AB fate, e.g. axis

determination.
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3.12 NF-κB signaling may play a role during early devel-

opment of Gordius sp. and R. culicivorax

genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

NFKB1 + + - - - - - - - - - - - - - - -
BOK + - - - - - - - - - - - - - - - -
BCL2 + + + + - - - - - - - - - - - - -
RBX1 +** + +** + + + + + + + + + + + + + +

BCL2L
1 + + + + - - - - - - - - - - - - -

VDAC1 + + + + + + + + + + + + + + + + +
AIFM1 + + + + + + + + + + + + + + + + +
MAP3K

8 - - - + + + + + + + +** - - - - - -
KPNA3 + + + + + + + + - + + + +** + + + +

Figure 3.24: Present (“+”) and absent (“−”) orthologues of the NF-κB signaling
pathway components among 16 nematode species and the nematomorph Gordius sp.

For further details see caption of figure 3.14.

Toll signaling, a variant of NF-κB signaling, is crucial in Drosophila for d-v axis for-

mation (Minakhina and Steward 2006). Here, I investigated whether known NF-κB

components have orthologues in nematodes and whether such orthologues are also ex-

pressed during early embryogenesis.

I found orthologues and expression of the most important component of the NF-κB

signaling pathway only in R. culicivorax and Gordius sp, namely the transcription fac-

tor NF-κB1 (Fig. 3.24, 3.25). These results suggest that in this respect the Enoplean

nematode R. culicivorax and the nematomorph Gordius sp. show more similarity to

Drosophila than to Chromadorean nematodes. Both species, R. culicivorax and Gordius

sp., may therefore use an alternative pathway for axis specification compared to C. ele-

gans (see section 3.8, 3.9 and 3.10).
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Figure 3.25: Schematic representation of the human signaling network for NF-κB
pathway components. Expressed orthologues of the pathway components during early
embryogenesis of seven species are shown (inferred from transcriptomic data and or-
thologous clustering; compare Fig. 3.17). For further details see caption of figure 3.14.
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3.13 Crucial polarity-inducing factors are specific for the

genus Caenorhabditis

genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

LET-99 - - - - - - - - - - - - - + + + +
PAR-1 + + + + + + + + + + + + + + + + +
PAR-2 - - - - - - - - - - - - - - - + +
PAR-3 + +** - +** + + + + - + + + + + + + +
PAR-4 + + + + + + + + + + + + + + + + +
PAR-5 - - + - - - - - - - - - - - + + +
PAR-6 + + + + + + + + + + + + + - + + +
GPR-1 - - - - - - - - - - - - - + + + +
GPR-2 - - - - - - - - - - - - - + + + +
LIN-5 - - - - - - - - - - - - - + + + +
LIS-1 + + + + + + + + + + + + +** + + + +
SPD-2 - - - - - - - - - - - - - + + + +
SPD-5 - - - - - - - - - - - - - + + + +
AIR-1 - - - - - + + + - - - - - - + + +

SIR-2.1 + + + + + + + + + + + + + + + + +
FEM-2 + + + + + + + + + + + + -** - + + +
COPB-

2 + + + + + + + + + + + + + + + + +
GPA-16 + + + + + + + + + + + + +** - + + +
OOC-3 + + + + + + + + + + + + + + + + +
NOCA-

1 + -** - - + + + + - - + + + + + + +
PKC-3 + + + + + + + + + + + + + + + + +

CDC-42 + + + + + + + + + + + + + + + + +
UBC-18 + + + + + - + - + + + + + + + + +
DHC-1 + + + + + + + + + + + + + + + + +
ZYG-1 - - - - + + + + - - - + + + + + +
COL-
139 - - - - - - - - - - - - - - + + +

T07C4.
10 - - - - - - - - - - - - - - + + +

F59E12
.11 + + + + + + + + + + + + -** + + + +

TPXL-1 - - - - - - - - - - - - - + + + +
ICP-1 - - - - - - - - - - - - - + + + +

Figure 3.26: Present (“+”) and absent (“−”) orthologues of essential components for
polarity establishment in C. elegans among 16 nematode species and the nematomorph

Gordius sp. For further details see caption of figure 3.14.

I also searched for orthologues of early cell polarity-inducing factors known from the

model C. elegans (Introduction; Gönczy and Rose 2005). I found orthologues for es-

sential proteins such as LET-99, PAR-2, PAR-5, GPR-1/-2, LIN-5, ZYG-1, SPD-2/-5
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Figure 3.27: Schematic representation of the C. elegans signaling network for proteins
involved in early polarity establishment. Only expressed orthologues of the pathway
components in the early transcriptomes of seven species are shown (Fig. 3.26). For

further details see caption of figure 3.14.

only in species of the genus Caenorhabditis (Fig. 3.26). Furthermore, I could verify the

expression of these proteins only for C. elegans during early development (Fig. 3.27).

In contrast to this, the core components of the PAR-3/-6/PKC-3 complex are generally

conserved among nematodes, as I could identify orthologues in all investigated genomes

(Fig. 3.26). All components of this protein complex are also expressed during early

development in all (or nearly all) investigated nematode species and in the nemato-

morph Gordius sp. (Fig. 3.27). Nonetheless, the force-generating proteins which act

in asymmetric cell division in C. elegans (GPR-1/2, LIN-5) and the upstream regula-

tors, SPD-2/-5, PAR-2/-5 and LET-99 do not seem to be conserved in other nematodes

(Fig. 3.26). Hence, this result suggests that polarity establishment in these species must

be achieved by a modified signaling mechanism.
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3.14 Early polarity establishment involves Lethal giant lar-

vae, Scribbled and Crumbs signaling in nematodes

genomes

N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

Lgl + + + + + + + + + + + + + + + + +
DLG-1 + + + + + + + + + + + + + + + + +
PAR-6 + + + + + + + + + + + + + - + + +
Sema-5

c + + + + - - - - - - - - - - - - -
Zip + + + + - - - - - - - - - - - - -
Sdt + + + + + + + - - - +** +** +** + + + +

Numb + + + + + + + + + + + + +** + + + +
Crb + + + + + + + + + + + + + + + + +

Scrib + + + + + + + + + + + + + + + + +
Nuf + + - + + + + + + + + + + + + + +

aPKC + + + + + + + + + + + + + + + + +
Tomos

yn + + + + + + + + - + + + + + + + +
Ssu72 + + + + + + + + + + +** + + + + + +
Pnt + + + + + + + + - - - - - - - - -

CycE + + - + + - - - + + + + + - + + +
Sec13 + + + + + + + + + + + + + + + + +
Pak + + + + + + + + + + + + + + + + +

Figure 3.28: Present (“+”) and absent (“-”) orthologues of basolateral polarity com-
plex components among 16 nematode species and the nematomorph Gordius sp. For

further details see caption of figure 3.14.

The Lethal giant larvae (Lgl) orthologue LGL-1 was recently found to be important for

early embryogenesis in C. elegans (Beatty et al. 2010, 2013), as it interacts with the

PAR-3/-6/PKC-3 complex during the 1-cell stage to induce polarity. In concordance

with this I found orthologues of Lgl in other nematodes and also its expression during

early development (Fig. 3.28, 3.29). I extended my search and detected orthologues

of other interacting basoapical polarity genes to be expressed in all (or nearly all) in-

vestigated nematode species (Fig. 3.28, 3.29). Among these are Scribbled and Crumbs

(Fig. 3.29). These proteins are members of the Lgl/Dlg/Scrib and Crumbs complexes

involved in basoapical polarity establishment in epithelia, e.g. during early development

of Drosophila (Knust and Bossinger 2002)

I found orthologues in all (or nearly all) nematodes. It would be interesting to explore

whether scrib and crumbs is also important for polarity establishment in the model C.
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Figure 3.29: Schematic representation of the Drosophila network for basoapical po-
larity pathway components. Only expressed orthologues in the early transcriptomes of

seven species are shown (Fig. 3.28). For further details see caption of figure 3.14.

elegans, a question not addressed so far.

My transcriptome analysis suggests that expression of the complexes PAR-3/-6/PKC-3,

Lgl/Dlg/Scrib and Crumbs takes place generally in nematodes during early development

(Fig. 3.29).
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3.15 Hunchback, a highly conserved regulator and its role

during Enoplean early development

genomes
N I II III IV V

G. s. (*) R. c. (*) T. s. E. b. A. s. (*) L. l. B. m. D. i. M. h. B. x. P. s. (*) D. c. (*) P. p. (*) C. a. C. b. C. r. C. e. (*)

Hb +** + + +** - - - - - - - - - - - - -
Ftz + + + + + + + + + + + + + + + + +

Ftz-f1 + + + +** + + + + +** + + + + + + + +

Mi-2 + + + + + + + + + + + + + + + + +
Pho + + + + + - - - + - - - - - - - -
Kr - - - - - - - - - - - - - - - - -
Kni - - - - - - - - - - - - - - - - -

Nanos +** +** +** +** +** - +** - +** +** - - - +** - - +**

Brat + + + + + + + + + + + + + + + + +
Tsl - - - - - - - - - - - - - - - - -
Bcd - - - - - - - - - - - - - - - - -
Tor - - - - - - - - - - - - - - - - -

Figure 3.30: Present (“+”) and absent (“-”) orthologues of the Drosophila signaling
components among 16 nematode species and the nematomorph Gordius sp. For further

details see caption of figure 3.14.
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Figure 3.31: Schematic representation of the Drosophila Hunchback signaling compo-
nents. Expressed orthologues of the pathway components during early embryogenesis
of seven species are shown (inferred from transcriptomic data; Fig. 3.30). For further

details see caption of figure 3.14.

I was interested whether early developmental genes from other model organisms may

play a role during early development in nematodes, hence I screened 72 genes known to

be expressed during early embryogenesis in other species such as Drosphila, Xenopus,
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Figure 3.32: R. culicivorax in-situ hybridization showing the hunchback expression
during (A) 2-cell, (B) 7-cell, (C) ca. 12-cell, (D) ca. 24-cell, (E) early morphogenesis

and (F) advanced morphogenesis stage.

zebrafish, mouse and humans (Tab. 3.5). I found orthologues of the Drosophila gene

hunchback in the genomes of Enoplean but not Chromadorean species (Fig. 3.30). Ex-

tending my search to interacting proteins, I found Fushi tarazu (Ftz), and its physically

interacting protein Ftz-f1. In addition, I detected orthologues for Pleiohomeotic (Pho)

in Enoplean nematodes and in the Chromadorean nematode D. coronatus (Fig. 3.30).

All these interacting orthologues are expressed during early development (Fig. 3.31).

Together with my collegues from the Schierenberg laboratory, I further investigated the

expression pattern of hunchback in R. culicivorax via in-situ hybridisation. We found the

R. culicivorax orthologue of hunchback to be stronger expressed in the somatic precursor

cell S1 (named AB in C. elegans) and its descendants (Fig.3.32 A, B, C). Much later,

during morphogenesis, we found strong expression in the head of the embryo (Fig. 3.32

F). Temporal and spatial expression is in concordance with the Drosophila orthologue,

indicating functional conservation between Drosophila and the Enoplean nematode R.

culicivorax. The late anterior expression seems to be in concordance with the Drosophila

orthologue as well, as Hunchback is known to be involved in head development in short

and long germ insects (Wolff et al. 1995, Perry et al. 2012). These results suggest

that Hunchback signaling and its expression is conserved between R. culicivorax and

Drosophila and thus may be conserved in all Enoplean nematodes and nematomorphs.
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3.16 The parthenogenotes Diploscapter coronatus and Pana-

grolaimus sp. PS1159 reveal unique transcriptomic

features

In my analysis of early expression among selected nematodes (Fig. 3.13) I incorporated

two parthenogenetic species of two different clades: Diploscapter coronatus (clade V)

and Panagrolaimus sp. PS1159 (clade IV). These parthenogenotes lack sperm which is

known to be the initial trigger for polarity establishment, subsequent asymmetric cell di-

vision and soma/germline separation in C. elegans (Introduction; Goldstein et al. 1998,

Lahl et al. 2006). Thus, these processes must be controlled by a different mechanism

in parthenogenetic species. Nevertheless, all three nematodes show similar character-

istics during early embryogenesis, even though there are some differences concerning

intracellular events and behaviour of blastomeres during the first divisions (Introduc-

tion; Goldstein et al. 1998, Lahl et al. 2006). Therefore, the question arises, what the

mechanism is, which drives the essential process of polarity establishment, subsequent

asymmetric cell division and soma/germline separation in the absence of sperm.

Through sequencing of early transcriptomes of both species and clustering of protein

families via OrthoMCL (section 3.7; Materials and Methods), I found 77 clusters which

are unique for these parthenogenotes. These clusters include 100 D. coronatus and 97

Panagrolaimus sp. PS1159 genes. By searching for homologues in other animal models

such as humans, mouse, Drosophila and C. elegans via Blastp, I identified 17 homolo-

gous sequences for humans, 16 for mouse, 8 for Drosophila and 260 for C. elegans.

Among the potentially interesting ones are the homologous sequences to the mTORC

signaling effectors LAMTOR4 and LAMTOR5. Aligning these sequences with outgroup

sequences, I confirmed that these are indeed orthologues (Fig. 3.33).

LAMTOR4 and LAMTOR5 are expressed early and exclusively in both parthenogenotes.

As both proteins are important components of the mTORC signaling pathway (Bar-

Peled et al. 2012), it would be fascinating to explore whether LAMTOR4/5 play a role

in polarity induction during early embryogenesis in both parthenogenotes as substitution

for the absent sperm. In addition, it would be interesting to overexpress LAMTOR4/5

orthologues from the parthenogenotes in C. elegans and check whether this induces

parthenogenetic development or at least certain steps towards it.
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Figure 3.33: Protein alignments of the mTOR modulators LAMTOR4 (A) and LAM-
TOR5 (B) of vertebrate species and the identified homologous protein sequences of the

parthenogenotes D. coronatus and Panagrolaimus sp. PS1159.

3.17 D. coronatus, a product of interspecies hybridisa-

tion?

The parthenogenetic nematode D. coronatus is a rather close relative to C. elegans

(Kiontke and Fitch 2005). This particularity leads to the question of what is required

for parthenogenesis to arise, especially with regard to the genus Caenorhabditis where

no parthenogenetic nematode has been found. Therefore, I compare the D. corona-

tus genome (which I could access due to a cooperation with the laboratory of Yuji

Kohara, Mishima, Japan; Materials and Methods) with other sexual species of clade

V (Fig. 3.34). In order to do so, I used OrthoMCL (Li et al. 2003) and increased
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the resolution of the clustering process by incorporating in addition to C. elegans four

other previously sequenced Caenorhabditis species, as well as the hermaphroditic satel-

lite model Pristionchus pacificus, and as outgroups the dioecious Panagrellus redivivus

(clade IV) and Ascaris suum (clade III). In total I found 8,135 orthologous clusters,

which includes 1,734 P. redivivus+A. suum specific clusters and shared clusters among

all investigated species (Fig. 3.34). 80% of these were present in clade V-species, indi-

cating a nematode-specific core set of protein families. 11,589 orthologue clusters were

not shared with P. redivivus+A. suum (Fig. 3.34). This indicates that the majority of

clusters are clade V specific.

I compared proteomes and their respective orthologues shared between the studied

species. By looking at the 5 Caenorhabditis species on the one hand and at D. coronatus,

P. pacificus and P. redivivus on the other hand, I found that 5,699 orthologue clusters,

or nearly 50% of all clade V-specific clusters were restricted to the genus Caenorhabdi-

tis. This suggests that during evolution a considerable number of new genes must have

arisen in the lineage leading to the genus Caenorhabditis.

I recognized a high number of D. coronatus-specific orthologue clusters (3,378; Fig. 3.34).

Roughly half of them (1,835) were found to consist of two proteins while the number

of unique species-specific proteins, that therefore do not cluster, was relatively small

(2,727). In contrast, in other nematode species also analysed by second generation se-

quencing, e.g. C. japonica or C. angaria (Materials and Methods; Mortazavi et al. 2010)

the number of clusters which consist exclusively of two proteins is much smaller (649

in the case of C. japonica and 699 in the case of C. angaria). This result means that

an unusually high percentage of D. coronatus-specific clusters contains exactly two pro-

teins. This led to the hypothesis that D. coronatus may have arisen from inter-species

hybridisation and hence its genome contains two alleles for each gene.

I noticed that most D. coronatus-specific clusters consisted of just two distinct protein

variants. In order to determine whether in general the D. coronatus genome contains

two distinguishable alleles for each gene, I performed a gene sequence analysis of the

whole genome and in contrast to C. elegans found for the vast majority of genes (93%)

two clearly distinguishable alleles (Fig. 3.36 A).

It has been claimed that parthenogenesis commonly arises via interspecies hybridisation

(Simon et al. 2003). To explore this possibility for D. coronatus together with other
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Figure 3.34: Distribution of shared and specific orthologous clusters for the clade V
species D. coronatus (blue), P. pacificus (orange) and the genus Caenorhabditis (red), as
well as for the respective outgroups Panagrellus redivivus (clade IV) and Ascaris suum
(clade III) (green). Numbers in the Venn diagramm indicate cumulative numbers of
unique or shared orthologous clusters, or protein families. 8,135 represents the sum
of outgroup-specific (green) clusters plus clusters shared with clade V species. 11,589

represents the sum of clade V-specific unique and shared clusters.

members of the Schierenberg laboratory we performed a single-worm amplification of

highly conserved rDNA genes and retrieved several clones of poly-copy rDNA genes

(Fig. 3.35 A). We separately cloned sequences of the ITS, SSU and LSU regions. When

aligning these and applying Maximum Likelihood and Bayesian statistics, all exhibited

single nucleotide polymorphisms (SNPs) could be allocated to one of two distinct vari-

ants (Fig. 3.35 B). This indicates the presence of two distinct alleles for each of three

tested rDNA genes (Fig. 3.35 B) a phenomenon not found in C. elegans.

These findings could either be explained with the coalescence of genomes from two
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closely related dioecious species. Alternatively, they may be the result of endodupli-

cation accompanied by accumulation of mutations as a consequence of parthenogenetic

reproduction (”Meselson effect”; Mark Welch and Meselson 2000, Birky 2004).

If these were in fact originally derived from two different species one should expect differ-

ences in synteny, i.e. in the positions of corresponding gene sequences in the genome. To

investigate this, we arbitrarily selected 11 single-copy genes conserved in the nematode

phylum (Mitreva et al. 2011) and found that they not only are present in exactly two

distinct alleles but are positioned on different contigs of the D. coronatus genome, too

(Fig. 3.36 D, 3.37).

In search for further evidence for a hybridisation event we studied single-copy genes.

While a Meselson effect should lead to a random distribution of synonymous and non-

synonymous exchanges, interspecies hybridisation should result in an enrichment of syn-

onymous mutations preserving protein function. Using Interproscan (Quevillon et al.

2005, Hunter et al. 2012) we identified conserved regions in D. coronatus single copy

genes and checked the type of amino acid exchanges. We found the number of synony-

mous exchanges to be significantly higher in conserved domains than in less conserved

regions (Fig 3.35 C). The same result was obtained when we compared C. elegans with

C. remanei (Fig 3.35 C). Thus, amino acid sequences of the selected single-copy genes

appear to be conserved to a similar extent between two closely related species as between

two alleles in D. coronatus.

In summary, for the case of D. coronatus our data favor the assumption of an inter-

species hybridisation. This does, however, not preclude an additional Meselson effect.
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A

B

Figure 3.35: Sequence comparison of the small interspacing sequence (ITS) rDNA
gene of D. coronatus. (A) Sequence alignment of individual clones (A-J) shows selected
regions with distinct single nucleotide polymorphisms (SNPs). (B) Collapsed Maximum
Likelihood tree visualizes two distinct clusters of sequenced clones. Bootstrap values
are shown above and posterior probability beneath branches. Figure adopted from

Theresa Vogt (2012; master thesis, University of Cologne; Vogt 2012)
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A

B

C D

Figure 3.36: Analysis of D. coronatus allele frequency over the whole genome (A)
and 11 arbitrarily selected highly conserved single copy genes (B, C, D). (A) Number
of of genes which were found to map to 1, 2, 3 or more positions on the genome. (B)
Amino-acid differences among variants of C. elegans (blue) and the two alleles of D.
coronatus orthologues (red). (C) Comparison of synonymous substitutions between D.
coronatus alleles and between C. elegans and C. remanei orthologues. No significant
increase of synonymous subsitutions were found in the parthenogenote D. coronatus
in comparison to the sexual relatives C. elegans and C. remanei. (D) Percentage of
synonymous and non-synonymous substitutions in non-conserved and conserved protein
regions. Significant differences are indicated by asterisks (α <0.01; n = 11; bars,
standard-deviation). Abbreviations: C. e., C. elegans; C. r., C. remanei ; D. c., D.

coronatus.
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Figure 3.37: Genomic alignment of D. coronatus contigs representing alleles of the
single copy gene F53G2.3 (blue). Alignment shows the most proximal upstream and
downstream approximately 20,000 bp on both contigs, including all gene predictions in
the vicinity of F53G2.3 (marked green). Arrowheads indicate exons and bars connecting

arrowheads indicate introns.
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Discussion

4.1 A Phylum-wide transcriptome comparison demonstrates

expression of developmental regulators so far not known

from nematodes

In my thesis I addressed questions dealing with the transition from gamete to embryo

and the early embryogenesis among Enoplean and Chromadorean nematodes (see Intro-

duction; section 1.9). My main focus is a phylum-wide comparison of Chromadorean

and Enoplean nematodes with the model C. elegans as reference system. Therfore, I

compared expressed orthologues during germline formation and early embryogenesis in

selected species among the phylum of nematodes and the nematomorph Gordius sp. This

allowed an relatively unbiased investigation (see Introduction) of underlying expression

patterns and inference of expressed pathways. Furthermore, I also wanted to contribute

to a better understanding of oogenesis in C. elegans and therefore investigated the gene

regulatory network (GRN) involved in oocyte maturation by knock-down of key regula-

tors and subsequent RNA analysis techniques (see Results).

In order to analyse expression patterns, I used two different strategies: (1) I searched

for orthologues involved in gonad formation, gametogenesis (see Results; sections 3.3

to 3.5) and early embryogenesis (see Results; sections 3.7 to 3.15), which do not ex-

ist on the genomic level in non-Caenorhabditis nematodes (and nematomorphs). (2) I

searched for nematomorph-, Enoplea- and Chromadorea-specific genes which either have

no orthologues in the genus Caenorhabditis, or are expressed exclusively in at least one

103
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of the three above-mentioned taxa. This way, I identified important regulators known

from other model organisms such as Drosophila, Xenopus, zebrafish, mouse and humans

which are specific for Chromadorea, Enoplea and nematomorphs with respect to gonad

formation, gametogenesis and/or early embryogenesis.

I identified crucial proteins of Wnt, Notch signaling, the global sex determination path-

way, oogenesis silencing complexes and constitutive P-granule proteins to be specific

for either the genus Caenorhabditis, or Chromadorea (section 3.3). These results sug-

gest that signaling during these developmental processes must be regulated differently

in Enoplea and nematomophs. From differentially expressed transcripts (analysed by

RNA sequencing; see Results) of R. culicivorax virgins and males, I found first candi-

dates which either are specific for Enolea and nematomorphs, or are at least not known

to be important for gonad formation and gametogenesis in C. elegans.

Investigating early embryogenesis of selected Chromadorea and Enoplea, I found path-

way components relevant to polarity establishment, such as the PAR-3/-6/PKC-3, Lgl/

Scrib/Dlg and the Crumbs complexes, to be conserved among all nematodes and to be

expressed during early embryogenesis in all (or nearly all) species. Strikingly, I found

orthologues of proteins expressed early, which do not exist in the model C. elegans and

other Caenorhabditits species. Such proteins are BMP/DPP inhibitors Chordin/Sog

(Short gastrulation), Noggin, Crossveinless-2 and the NF-κB transcription factor (see

Results). These findings point towards completely different signaling pathways which

were previously not known to act during early embryogenesis in nematodes.

As I wanted to get even deeper insights of the potential role of these pathways during

early embryogenesis, I screened for expressed genetically and/or physically interacting

proteins and found that all of the aforementioned Enoplean-specific components of sig-

naling pathways and complexes are expressed during early embryogenesis. Thus, at least

in theory, these pathways can be fully functional during early embryogenesis and may

have important roles in Enoplean early embryogenesis. Here, I want to discuss their

putative function and I want to explore whether they may play a role in polarity estab-

lishment, axis specification and patterning of the early embryo. In this context I also

want to explore what might be the function of PCP complexes such as Lgl/Scrib/Dlg

and Crumbs during early embryogenesis. I will propose a set of “core” pathways which

are conserved among all nematodes and I will show which pathways exist specifically in

Enoplea and what function these pathways may play in these nematodes. I will spec-

ulate about the conservation of such pathways between “basal” Enoplea other animal
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phyla. Furthermore, I want to speculate which set of pathways are ancestral and might

have been lost in the course of Chromadorean and Caenorhabditis evolution.

4.2 Gamete-to-embryo transition: a consequence of gonad

formation, oogenesis, oocyte maturation and mater-

nally expressed gene products

A prerequisite for early embryogenesis is the transition of the oocyte to the embryo, a

process which depends on several developmental processes such as oogenesis, and sper-

matogenesis. The special case of parthenogenetic nematodes will be discussed later.

Even though, the underlying genes and pathways have been already described for these

processes in the model C. elegans, we sought to better understand oocyte-to-embryo

transition by analysing the GRN of oocyte maturation in C. elegans (see Results; sec-

tions 3.1, 3.2). Here, I will discuss how our findings identified new candidate genes for

this GRN. Althrough, much is known about oocyte-to-embryo transition from C. ele-

gans (see Introduction; Miller et al. 2003, Govindan et al. 2006) it is unclear to what

extent the same genes also control these processes in other nematode species. Hence,

I analysed gonad formation and gametogenesis in other nematodes such as the clade I

nematode Romanomermis culicivorax (section 3.4) and the clade III nematode Ascaris

suum (section 3.5). This allows an investigation of present and absent orthologues for

each C. elegans genes involved in the described processes from three independent exper-

imental sets (see Results; sections 3.3, 3.4 and 3.5). I identified similarities with respect

to most genes relevant for these biological processes, but for the described key regulators

known from C. elegans, I found many genes to be absent in other nematodes. These re-

sults indicate fundamental differences in the developmental control. Here, I will discuss

what the differences are between Enoplea, Chromadorea and in particular species of the

genus Caenorhabditis. In the end, I will discuss which regulators can be considered as

the “original” gene set of the last common ancestor of all nematodes for the processes

looked at.
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4.2.1 C. elegans oocyte maturation: Recruitment of genes originally

involved in neuronal development?

Oocyte-to-embryo transition is a prerequisite for propagation in nearly all Metazoa. This

process includes oogenesis including oocyte maturation (see Introduction). In C. elegans

it is known that a MAP-kinase pathway controls this process (Miller et al. 2003, Govin-

dan et al. 2006). Nonetheless, knowledge of crucial components of signal transduction,

such as involved serpentine receptors, gap-junction molecules, transcription factors and

target genes remains rather elusive (Fig. 1.3). In this thesis, I presented our RNAi and

microarray-based approach to identify candidate genes involved in this GRN (see Re-

sults; section 3.1 and 3.2). By knocking out genes known to be involved in the underlying

GRN we found in total 1,458 candidate genes which may contribute to this GRN (sec-

tion 3.1). For 8 of these candidate genes (Tab. 3.2), I could demonstrate that they are

involved in oocyte maturation in C. elegans, as RNAi knock-down experiments showed

impaired oocyte maturation (Fig. 3.5, 3.6, 3.7). Interestingly the knock-down by RNAi

of these candidate genes not only decreased the number of hatched larvae (Fig. 3.5, 3.6),

it also showed prominent abnormal phenotypes (Fig. 3.7); i.e. the gonads contained

a high number of small box-shaped oocytes (Fig. 3.7 D, F, H, J). What could be the

explanation for such a phenotype? The continuous production of oogonia and oocytes

by the germ stem cells (Kimble and Crittenden 2007) seems to cause a continuous influx

of oocytes and their stacking in the gonad due to the absense of proper maturation and

subsequent fertilisation. This is in concordance with knock-down experiments, where

uteri either contain no embryos (Fig. 3.7 E, K) or only degenerated ones (Fig. 3.7 G,

I). Interestingly the knock-down experiments phenocopy defects in genes already known

to be involved in this GRN (Miller et al. 2003, Whitten and Miller 2007). Therefore,

my RNAi experiments caused impaired oocyte maturation and thus the knocked-down

genes have roles in oocyte maturation. Taking into account that all of the mentioned

genes are either innexins, transcription factors, or trans-membrane receptors (Tab. 3.2),

they may function upstream of MPK-1 or are directly involved in activation of oocyte

maturation (Fig. 4.1).

As, I did not characterise the role of each gene within this GRN. I can only specu-

late what the potential role of the identified genes may be: It is known that STR-102

and PLX-2 are transmembrane receptors (the former is a serpentine receptor and lat-

ter a semaphorin receptor involved in axon guidance; Ikegami et al. 2004; Tab 3.2), so
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these genes are candidates for the unknown sepertine receptors of the GRN (Fig. 4.1).

However, it remains to be determine whether MSP binds both receptors. The innexins

INX-19 and UNC-7 may be candidates for cell-cell interactions between the somatic

sheath cells and the oocyte (Fig. 4.1). Maybe both even interact in the formation of

innexin heterohexamers (innexons; gap junctions). Double knock-down of both genes

seem to have a synergistic effect, as the number of hatched larvae slightly decreased in

comparison to separate knock-downs of both genes (Fig. 3.5). Surprisingly, I also found

a cyclic nucleotide-gated channel protein (CNG-1) to be involved in oocyte maturation

(Fig. 3.5, 3.6). CNG-1, a protein known to be involved in thermo- and chemosensing

(Cho et al. 2005), opens the possibility of an alternative cell-cell interaction mechanism,

perhaps via ions or small molecules secreted by the somatic sheath cells, inducing oocyte

maturation (Fig. 4.1). Furthermore, I identified several DNA-binding proteins (CND-1,

APTF-1, APTF-4, NHR-81 and ZTF-11) which might play roles in initiating oocyte

maturation. These genes may be activated by phosphorylation of MPK-1. Especially

in the case of APTF-1 and APTF-4 this seems plausible as these transcription factors

are predicted to be homologous to AP-2 (Turek et al. 2013), a transcription factor of

Drosophila involved in c-Jun N-terminal kinase (JNK) signaling (Kockel et al. 2001).

It was shown for Drosophila that AP-1 acts downstream of Erk (the Drosophila ortho-

logue of MPK-1; Kockel et al. 2001). If the AP-1 homologues APTF-1/-4 indeed act

downstream to MPK-1, it would be interesting to investigate whether JNK signaling is

involved in the process of oocyte maturation in C. elegans.

Analysing the 8 genes acting in oocyte maturation in C. elegans, I noticed that these

genes are also involved in neuron development and function (Kockel et al. 2001, Ikegami

et al. 2004, Cho et al. 2005, Chuang et al. 2007, Starich et al. 2009, Turek et al. 2013).

In addition, VAB-1, an ephrin receptor tyrosine kinase (RTK), has also dual functions in

neuron development (Mohamed and Chin-Sang 2006, Grossman et al. 2013) and oocyte

maturation (Fig. 4.1; Miller et al. 2003). Hence, several genes important for neuron

development and function may have been recruited during the evolution of C. elegans to

mediate oocyte maturation and the oocyte-to-embryo transition. It would be fascinating

to investigate this particularity in other Chromadorea and in Enoplea to reveal whether

this dual function of certain genes is a conserved feature or emerged in one phylogenetic

branch secondarily.

Furthermore, it would be attractive to screen more of the remaining 1,450 candidate

genes by RNAi to find additional genes involved in oocyte maturation: In my analysis
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of the presented 8 candidate genes (Results; section 3.2), phenotypes with an elevated

production of defective embryos and simultaneously a depleted gonad were not found.

Such a phenotype would have uncovered genes which ectopically activate oocyte mat-

uration (downstream targets; Fig. 1.3) after knock-down of upstream regulators. In

conclusion the expression data documented in this thesis encourage further screening

for candidates to elucidate the GRN of oocyte maturation and of oocyte-to-embryo in

C. elegans.

MSP
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Figure 4.1: Schematic representation of cell-cell interactions between somatic sheath
cells and the “−1 oocyte” and the underlying GRN which regulates the process of
oocyte maturation. Grey dashed lines indicate activating (arrow head) and inhibiting
(blunt end) signal of oocyte maturation when sperm and MSP are absent. When sperm
is present (black arrows) MSP binds to seven-transmembrane receptors and the ephrin
receptor VAB-1 and activates the MAP-kinase MPK-1. New candidates involved in
oocyte maturation (see Results; section 3.2) are visualised in blue. Potential roles and
positions of new candidate genes in the regulatory network are indicated by blue arrows.

Modified after Govindan et al. (2006).
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4.2.2 Expression and genome analysis of the Enoplea R. culicivorax

and the Chromadorea A. suum indicate new candidate genes

associated with germline formation and gametogenesis in all ne-

matodes

Germline development and gamete formation include the processes of gonad formation,

gametogenesis, the shift from spermatogenesis to oogenesis (in case of hermaphrodites)

and oocyte maturation. These processes are prerequisites for fertilisation and embryo-

genesis (see Introduction). I showed that regulators, known from the model C. elegans,

may be abesent in other species (see section 3.3). On the other hand, I found conserved

regulators for all nematodes and regulators specific for Enoplea and/or Chromdorea (see

sections 3.4 and 3.5).

What are fundamental differences between C. elegans (and additional representatives

of the genus Caenorhabditis) and other nematode species? Here, I am going to dis-

cuss Chromadorea and/or Caenorhabditis-specific regulators for each mentioned pro-

cess. I also discuss which other orthologues, found by differential expression analysis

between adult R. culivorax virigns vs males (see Results; section 3.4) and by screening

for germline specific genes from the A. suum genome (see section 3.5; Wang et al. 2012),

may be involved in these processes and may even replace Caenorhabditis-specific regu-

lators:

Gonad formation: I found that important Wnt signaling components involved in go-

nad formation in C. elegans were absent in other nematodes outside clade V (Fig. 3.8).

These include the LIN-17 frizzled receptor and the β-catenin SYS-1. For the latter I

could show that this particular β-catenin exclusively exists in the genus Caenorhabdi-

tis (Fig. 3.19). Hence, Wnt signaling as known from C. elegans cannot be mediated

via these proteins in other nematodes, where alternative regulators must exist which

mediate gonad formation. In adult R. culicivorax virgins I found orthologues for the

Drosophila proteins Kugelei/Fat2 and Furry to be overexpressed (Fig. 3.19 and 3.10)

that are important for the control of gonad elongation in Drosophila. In Drosophila

they act in the so-called Fat/Dachsous planar cell polarity (PCP) pathway to control

gonad elongation (Viktorinová et al. 2009, Horne-Badovinac et al. 2012). Surprisingly,

in C. elegans orthologues of these genes cannot be correlated with gonad formation.

Presently, it cannot be excluded that the expression in R. culicivorax virgins takes place
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in some somatic tissues not important for germline-associated processes. Therefore,

it would be intriguing to test their potential involvement during gonad formation by

gene knock-out or mutagenesis. As Kugelei/Fat2 and Furry are essential for a-p axis

formation in Drosophila (Horne-Badovinac et al. 2012) orthologues of these proteins

may be important for axis formation and polarity establishment in non-C. elegans ne-

matodes. Whether orthologues to Kugelei/Fat2 and Furry are an alternative to Wnt

signaling during gonad formation needs to be investigated by functional assays, such as

gene knock-down via RNAi or genome editing. In addtion, ectopically overexpressed C.

elegans orthologues of Kugelei/Fat2 and Furry may show their possible function during

C. elegans gonad formation.

Shift from spermatogenesis to oogenesis: I found that certain orthologues for reg-

ulators of the spermatogenesis-to-oogenesis shift were specific to Chromadorean species

(Fig. 3.8 B). These involve components of the “global sex determination” pathway (Kim-

ble and Crittenden 2007), such as FEM-3, FOG-1 and TRA-1. The question arises

whether alternative proteins exist in other Chromadorean and Enoplean species with

similar functions in sex determination. In that respect I found several candidates in

A. suum which may have redundant function to the clade V-specific genes FOG-1 and

TRA-1 (Tab. 3.3): ASU 11803 and ASU 14618. These genes are predicted to play a role

in germ cell or gamete development, as homologous sequences were found in C. elegans,

Drosophila and humans by Blast2GO analysis (Tab. 3.3). Nonetheless, for both genes

I could only detect orthologues in nematodes from clade III (Tab. 3.3). Hence, these

genes may have taken up the role of the “missing” regulators FOG-1 and TRA-1 at least

for clade III nematodes. A redundant function could be tested by rescue experiments

in a tra-1 and/or fog-1 loss-of-function mutant background in C. elegans. In addition, I

found the A. suum gene ASU 10038 which is predicted to be homologous to C. elegans

FEM-3. But A. suum has an orthologue for FEM-3 (here called aFEM-3). aFEM-3 did

not cluster with ASU 10038, indicating that there might be two functionally redundant

genes which take up the role of aFEM-3 in the A. suum germline.

For Enoplean nematodes, and in particular for R. culicivorax, I could not identify or-

thologues in other vertebrate and invertebrate model organisms which are involved

in the shift from spermatogenesis to oogenesis. But this is not surprising, due to

two circumstances: (1.) The shift of oocyte production to spermatogenesis is spe-

cific for hermaphroditic nematodes, such as C. elegans (A. suum and R. culicivorax
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are bisexual species). Previously, it could be shown that the trait of hermaphroditism

evolved independently several times in nematodes (Kiontke et al. 2011) and in C. ele-

gans hermaphroditism is reversible after e.g. fog-2 knock-out (Nelson et al. 1978, Barton

et al. 1987). (2.) Especially, sex determination pathways tend to be extremly suscep-

tible to evolutionary change (True and Haag 2001). Hence, it must be doubted that

the molecular underpinnings which are part of C. elegans “global sex determination”

pathway exist in R. culicivorax and A. suum.

Germline stem cell maintenance and entry into meiosis: From C. elegans it is

known that mitotically dividing oogonia (or germline stem cells) are controlled by Notch

signaling between the Distal Tip Cell (DTC) and adjacent oogonia (Fig. 3.8 B; Kimble

and Crittenden 2007). I could show that Notch signaling and the subsequent pathway

inducing meiosis involve genes for which orthologues only exist in Chromadorean nema-

todes. These encode the proteins LAG-2, FBF-1/-2, NOS-3 and GLD-3 (Fig. 3.8 B).

However, the molecular signaling maintaning of a pool of mitotically dividing oogonia

and the entrance of meiosis must be different in Enoplean nematodes, as no orthologs

could be detected for LAG-2, FBF-1/-2, NOS-3 and GLD-3. I could not retrieve proteins

which may have the same function in R. culicivorax. Nonetheless, it is hard to believe

that Notch signaling is not responsible for gametic stem cell maintenance in Enoplean

nematodes, as this is the case in the outgroup model Drosophila (Song et al. 2007, Xie

et al. 2008). But the downstream signaling which involves FBF-1/-2, NOS-3 and GLD-3,

appears to be the same in all Chromadorea. In contrast, GLD-3, a Bicaudal-C homo-

logue which is essential for the shift from mitosis to meiosis in C. elegans (Eckmann

et al. 2002, Kimble and Crittenden 2007) seems to be absent in Enoplean nematodes.

Intriguingly, in C. elegans exists BCC-1, an orthologue of Bicaudal-C from Drosophila.

In Drosophila Bicaudal-C is essential for entry into meiosis and the posterior patterning

of the embryo (Chicoine et al. 2007). But BCC-1 is not known to play a role in this pro-

cess in C. elegans, nor was BCC-1 mRNA, or protein found to be expressed in the gonad

at all. Differential expression analysis in R. culicivorax virgins and males demonstrated

that the Drosophila Bicaudal-C orthologue not only exists in this Enoplean nematode,

but is also expressed during this process. This suggests in contrast to C. elegans that

the R. culicivorax Bicaudal-C orthologue may play a role during meiosis and axis spec-

ification during oogenesis. Especially, the latter aspect would be very interesting to
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test experimentally in Drosophila: Maybe expression of R. culicivorax Bicaudal-C could

rescue bicaudal-C loss of function (lof) alleles in Drosophila. Such an experiment would

proof conserved functions of both orthologues and would pose an alternative for axis

specification in Enoplean nematodes.

Oogenesis and oocyte maturation: The processes of oogenesis, including oocyte

maturation, is essential for oocyte-to-embryo transition (see Introduction). For both

processes I found genes which have orthologues only in Chromadorean species, or are

even limited to clade V nematodes (Fig. 3.8 C). These involve the microRNA suppres-

sors FLH-1/-3 (Walhout et al. 2002, Ow et al. 2008), the chromsome specific DNA

binding proteins ZIM-1/-2/-3 and HIM-8, required for bivalent and chromatid separa-

tion (Phillips and Dernburg 2006) and several mRNAs and/or proteins incorporated in

P granules (a form of germ granule composed of ribonucleotide complexes exclusively

localised in germline blastomeres; for a review see Updike and Strome 2010) (Voronina

2013; see section 3.4). While the suppression of microRNAs occurs during diplotene

silencing to inhibit microRNAs required for proper embryogenesis, the activity of the

DNA adaptor proteins and the formation of P granules are part of oocyte maturation

(Fig. 3.8 C). Especially, mRNAs and proteins incorporated into P granules represent a

set of maternal supplied gene products for embryogenesis (Voronina 2013). I showed

that crucial constitutive components of the P granules, such as GLH-4, PGL-1, -3 and

DPES-1 (Voronina 2013) are specific for clade V nematodes (Fig. 3.8 C). GLH-4, PGL-1,

-3 and DPES-1 are required for formation of P granules and the germline during em-

bryogenesis of C. elegans (Spike et al. 2008a,b), but are absent in other Chromadorean

and Enoplean nematodes. This shows that P-granule composition has to be different in

Enoplea and maybe other mechanisms are at work to assure proper germcell differenti-

ation. The dead-box helicase GLH-4, which is homologous to the Drosophila germline

gene Vasa, is specifc for clade V nematodes. Interestingly, another Vasa homologue,

GLH-1 was detected to be absent in Enoplean nematodes (Fig. 3.8). In total, C. elegans

has four Vasa helicase homologues, where GLH-2/-3 (also components of P granules)

have orthologous sequences in all nematodes (data not shown). It might be possible

that a true Drosophila Vasa orthologue exists in Enoplean species, but I could not proof

its exsistence. I found that the protein Faf (Fat facets) which determines the Vasa ex-

pression and germline formation in Drosophila (Liu et al. 2003), is expressed more than

2-fold higher in R. culicivorax virgins than in males (Fig. 3.9). Orthologues of Faf exist
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exclusively in Enoplean nematodes (Fig. 3.10). faf mRNA could be maternally supplied

in R. culicivorax oocytes and be relevant for germline formation during early embryo-

genesis. It would be interesting to analyse expression of the Vasa orthologue during R.

culicivorax embryogenesis. This could show that germline determination via Faf and

Vasa is conserved between Enoplea and insects. In conclusion, important regulators

for P-granule formation during oocyte maturation are absent in other Chromadorean

species and in Enoplean nematodes, hence other genes must act instead.

In summary, I found several orthologues which are specific to Enoplea and may have

been lost in the course of evolution being replaced either in a Chromadorea-specific or

in a clade V-specific manner. As Enoplea are considered to be closer to the root of the

nematode phylum than Chromadorea, it seems that a different set of regulators exists

for the discussed developmental processes in Enoplea. This leaves the exciting question

what could be the reason for such dramatic modifications.

4.3 Polarity establishment and axis specification

Polarity establishment during oogenesis or embryogenesis is essential for body axis for-

mation and proper development in all animals. In the case of the nematode model C.

elegans this step is initiated by the sperm entry establishing the posterior pole of the

embryo. This event activates a signaling cascade determining asymmetric cell division

and the formation of a larger anterior soma and a smaller posterior germline cell (see In-

troduction; Gönczy and Rose 2005). How is polarity and axis formation and patterning

managed in other nematdoes? Depending on the different clades it has been previously

shown that axis formation can be independent of the sperm entry point (Goldstein et al.

1998) and the situation is even more intriguing in parthenogenetic species which lack

sperm (Lahl et al. 2006). In order to address these questions, I used two strategies: (1)

I searched for orthologues and their expression of C. elegans genes active in the early

polarity pathway and downstream genes acting in pathways such as Notch and Wnt

signaling. (2) I searched for orthologues of genes affecting development in model organ-

isms such as Drosophila, Xenopus, zebrafish, mouse and humans, which are expressed
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exclusively in the Enoplea R. culicivorax and the nematomoprh Gordius sp. (see Re-

sults; section 3.7). By this unbiased approach (see Introduction) I found orthologues

for developmental regulators such as Hunchback, NFKB1, Noggin and Chordin/Short

gastrulation to be absent in C. elegans (section 3.7). These orthologues are known from

many species to be involved in axis formation, pattering and/or polarity establishment

(Yamamoto and Oelgeschläger 2004, Minakhina and Steward 2006, Hikasa and Sokol

2013). Focusing on these pathways I tried to identify interacting components which are

specifically expressed in R. culicivorax and Gordius sp (see Results; section 3.7). Here,

I will discuss my findings and show which pathways are expressed in (1) all nematodes

(2) specific for Chromadorea and (3) specific for Enoplea and/or nematomorphs. Then,

I will discuss if and how these pathways are involved in polarity establishment and axis

formation/patterning. In the end, I will conjecture which pathways may represent parts

of the ancestral gene regulatory network involved in the two considered processes.

4.3.1 Conserved planar cell polarity complexes may play a central role

in polarity establishment and axis formation in nematodes

From the model C. elegans it was shown that asymmetric cell division during the first

cleavage of the zygote highly depends on the PAR-3/PAR-6/PKC-3 and the PAR-1/-2

complexes (Gönczy and Rose 2005). While the former is localised at the anterior cor-

tex, the latter one is localised at the posterior cortex of the 1-cell embryo (Gönczy and

Rose 2005). Consequently, both complexes inhibit each other and hence form an antero-

posterior (a-p) polarity which determines the primary a-p axis and allows the typical

soma-germline separation (Gönczy and Rose 2005). But this classical image of polarity

formation is challenged by an increasing complexity as recently the Lethal giant larvae

(Lgl) orthologue LGL-1 was identified and was shown to act in a redundant fashion to

PAR-2 establishing polarity in C. elegans (Beatty et al. 2010, 2013). The orthologous

tumor supressor Lgl is also known from other model organisms to initiate polarity es-

tablishment, especially in the planar cell polarity pathway (Knust and Bossinger 2002).

Here it physically interacts with the proteins Dlg (Discs large) and Scrib (Scribbled),

but also with other planar cell polarity (PCP) complexes, such as the Crumbs complex

and the mentioned PAR-3/PAR-6/PKC-3 complex. Hence, I investigated for the C. el-

egans orthologues of the PAR-3/PAR-6/PKC-3 complex (see Results; section 3.14), the
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Lgl/Dlg/Scrib and Crumbs complexes (section 3.15) whether they are expressed early

in all six investigated nematodes and a single nematomorph species.

As expected the PAR-3/PAR-6/PKC-3 is conserved among all nematodes (Fig. 3.26) and

I could identify expressed orthologues during early embryogenesis (Fig. 3.27). Interest-

ingly, for PAR-2 I could not detect any orthologues outside the genus Caenorhabditis

(Fig. 3.26) which is in concordance with earlier studies (Schiffer et al. 2013). Fur-

thermore, I could identify several downstream proteins for polarity establishment in C.

elegans which were also restricted to the genus Caenorhabditis (Fig. 3.27). Examples

involve proteins required for asymmetric cell division during the 1-cell stage in C. elegans

such as LET-99, GPR-1/2, LIN-5, SPD-2, SPD-5 and AIR-1 (Gönczy and Rose 2005;

Nguyen-Ngoc et al. 2007; Fig. 3.26, 3.27). Consequently, it seems as if the machinery

of inital polarity establishment is not only conserved among nematodes and is also ex-

pressed during early embryogenesis (Fig. 3.27), but that the downstream components

which act in axis formation and asymmetric cell division are different. Yet, it was shown

for most studied nematodes (with few exception such as Enoplus brevis; Voronov and

Panchin 1998) that the first cleavage is asymmetric. Hence, the way how polarity is

established in nematodes outside the genus Caenorhabditis and the machinery control-

ling asymmetric cell division must be different to a certain degree. In that respect I

found conservation of Lgl and its expression in concordance with previous findings in C.

elegans (Beatty et al. 2010, 2013), but I also found that Lgl and all interacting proteins

of the same complex (1) have orthologues in all examined genomes (Fig. 3.28) and (2)

are expressed during early embryogenesis (Fig. 3.29).

I could also detect orthologues of Crumbs and Sdt (Stardust), the core components

of the Crumbs complex (Knust and Bossinger 2002), which are expressed during early

embryogenesis in all, or nearly all nematodes (in a few species there was no expression

detected which however is probably a false-negative result rather than actual absence

of these orthologues). All three complexes (PAR-3/PAR-6/PKC-3, Lgl/Dlg/Scrib and

Crumbs/Sdt) are known to interact especially in the PCP pathway to form e.g. basoapi-

cal polarity in epithelia of diverse animals (Knust and Bossinger 2002). Early expression

of these complexes is fascinating, as they may theoretically constitute an alternative way

of establishing polarity during early embryogenesis in nematodes. This is would be dif-

ferent from other animals where these PCP complexes are only known to play a critical

role in epithelia formation during later embryogenesis or in the case of Drosophila during

gastrulation (Bachmann et al. 2001, Hong et al. 2001). I also identified orthologues for
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Numb which is known from Drosophila to be asymmetrically localised by the PAR-3/-

6/PKC-3 and Lgl/Dlg/Scrib complexes to induce asymmetric cell divisions (Rhyu et al.

1994, Betschinger et al. 2003, Haenfler et al. 2012). Numb acts as a fate determinant

downstream of both complexes in Drosophila (Betschinger et al. 2003, Haenfler et al.

2012) and may act instead of other, Caenorhabditis specific, downstream components

in all other nematodes. Furthermore, I also found orthologues for other genes known

to act downstream to the PCP complexes such as Ssu72 and Sema5c (Fig. 3.29). At

this point the function of any of these genes during early embryogenesis is not clear in

nematodes (including C. elegans). It needs to be investigated whether they are part of

an alternative way to establish polarity and fate determination during the 1-cell stage.

The presented results show that complexes known from PCP in Drosophila are ex-

pressed in representatives of Chromadorea and Enoplea (and the nematomorph Gordius

sp.) during early embryogenesis. Whether and how these complexes interact during

early embryogenesis and to what extent they are involved in the establishment of po-

larity still needs to be determined. Experiments in C. elegans showed that in addition

to the PAR-3/-6/PKC-3 complex also Lgl is involved in polarity establishment (Beatty

et al. 2010, 2013), indicating that PCP complexes may contribute to polarity establish-

ment also in all other nematodes. In contrast to that many downstream components of

PCP complexes are Caenorhabditis-specific (see Results; section 3.14). The presented

expression analysis indicates alternative candidates for downstream components in other

Chromadorea and Enoplea (section 3.15; Fig. 3.29).

In conclusion, the presented expression analysis indicates that PCP complexes are ex-

pressed in Chromadorea and Enoplea during early embryogenesis. Downstream sig-

naling instead must be different in other Chromadorea and Enoplea compared to the

genus Caenorhabditis. Nonetheless, PCP complexes as polarity-inducing cues during

early embryogenesis seem to be specific to all nematodes and the nearest outgroup, the

nematomorphs, and may thus be the ancestral way of generating polarity in nematodes.

4.3.2 Wnt, BMP/DPP and NF-κB signaling may specify axes in Eno-

plean nematodes

Polarity establishment is a prerequisite for axis specification (Roth and Lynch 2009,

Gönczy and Rose 2005). I stated in the previous section that polarity establishment
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differs among animals and needs a triggering event prior, during or after fertilisation

(see previous section). Does axis specificiation also differ among representatives of ne-

matodes? From animal (model) organisms it is known that axis specification also varies

with respect to different pathways which coordinate this process. The best elucidated

pathways which act in vertebrate and invertebrate systems are Wnt, BMP/DPP and NF-

κB signaling (Yamamoto and Oelgeschläger 2004, Minakhina and Steward 2006, Hikasa

and Sokol 2013). I addressed the question whether (1) any of these pathways may be

involved in polarity establishment and axis formation in nematodes and (2) differences

exist between Enoplea, Chromadorea and the Caenorhabditis genus (see Results).

For Wnt and BMP/DPP signaling it is known that these two interacting pathways are

involved in dorsoventral axis specification in invertebrates and vertebrates (Yamamoto

and Oelgeschläger 2004, Minakhina and Steward 2006, Hikasa and Sokol 2013) and also

influence the posterior patterning of the embryo (Merrill et al. 2004, Satoh et al. 2004,

Martin and Kimelman 2009, Petersen and Reddien 2009). Is it possible that a similar

control takes place in Enoplea? Why would the genus Caenorhabditis be different from

other Chromadorea and Enoplea? First of all, BMP/DPP signaling is only required

post-embryonically in C. elegans (Estevez et al. 1993, Foehr and Liu 2008, Tian et al.

2010, Gumienny and Savage-Dunn 2013), while Wnt signaling is used by the P2-cell in

C. elgans to induce EMS fate (Mizumoto and Sawa 2007). But is Wnt signaling in all

other nematodes the same as in C. elegans? In the case of C. elegans a special kind of

Wnt signaling pathway acts to induce fates during early embryogenesis. The so-called

“Wnt asymmetry pathway” acts via competition of the β-catenin paralogues WRM-1

and SYS-1 on the TCF/LEF transcription factor POP-1 (Mizumoto and Sawa 2007).

Such signaling cannot work in Enoplean nematodes; I showed that these nematodes do

not have the β-catenin paralogues SYS-1 and WRM-1. Instead, my data indicate that

Enoplean nematodes have β-catenin orthologues which cluster together with human β-

catenin and the orthologous Armadillo from Drosophila (Fig. 3.19). Hence, Wnt, as well

as BMP/DPP signaling, must be different in Enoplean nematodes.

How is signaling via these pathways different in other Chromadorea and Enoplea? For

the Chromadorea D. coronatus and the nematomorph Gordius sp. I could show that the

alternative Wnt receptor RYK is expressed. As orthologues of this receptor exist in other

nematodes as well, even in the genus Caenorhabditis, I cannot preclude that expression

also occurs early in other nematodes. However, RYK is definitely not early expressed

in C. elegans, since its transcriptome is considered to be complete (see Materials and
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Methods; Results section 3.6). From vertebrate models it is known that RYK mediates

non-canonical Wnt signaling (Lin et al. 2010, Hikasa and Sokol 2013). In concordance

with this I identified expression of Dachsous (DCHS1), Fat3 and Fat4 all of which are

known to act in a PCP pathway (Fat/Dachsous pathway) in epithelia of vertebrates

and invertebrates (Viktorinová et al. 2009). This Fat/Dachsous pathway is associated

with Wnt signaling (Rodŕıguez 2004, Zecca and Struhl 2010) and binds directly to RYK

(Fig. 3.21). Especially for Drosophila it is known that these genes act in epithelia of

the somatic gonad during oogenesis (Viktorinová et al. 2009). In the case of Drosophila

it known that oogenesis determines the prospective anteroposterior and dorsoventral

axis before these axes are formed during embryogenesis (Roth and Lynch 2009). Maybe

Wnt and Fat/Dachsous signaling contributes to axis specification in non-Caenrhabditis

species. Taken together, the findings that several β-catenin paralogues exist in C. ele-

gans (see above), strongly suggest that even though Wnt signaling is pivotal for early

embryogenesis in nematodes, it must be definitely different in nematodes outside the

Caenorhabditis genus.

What about BMP/DPP signaling? From vertebrate models it is known that Wnt sig-

naling and the interplay between Wnt and BMP/DPP signaling controls dorsoventral

axis formation and even posterior cell fate determination (Hikasa and Sokol 2013). It

was shown that certain BMP/DPP antagonists are important targets of Wnt signaling

in vertebrate systems (Smith and Harland 1992, Sasai et al. 1994). Here, I showed that

the R. culicivorax orthologue of Chordin (one of the BMP/DPP inhibitors) is expressed

during early embryogenesis (Fig. 3.18, 3.19). Even though the expression domain of

chordin was ubiquitous during early embryogenesis of R. culicivorax it confirms the

data of my transcriptome analysis. One has to bear in mind, however, that in verte-

brates Chordin and other inhibitors such as Noggin are secreted from organising centers

such as the Mangold-Spemann organiser in Xenopus or the shield in zebrafish (Piccolo

et al. 1996, Srinivasan et al. 2002). If anything analogous to an “organiser” would exists

in nematodes, the best candidate is the P-cell. The R. culicivorax expression of Chordin

does not fit to this view, as expression is not limited to the P-cell linage. However, it

must be taken into account that the detected expression might be a consequence of the

maternally expressed mRNA and the protein distribution may be spatially limited in

the embryo to a certain area. Furthermore, I could show in R. culicivorax that Wnt and

BMP/DPP signaling exist. Furthermore, the expressed key factors of BMP/DPP sig-

naling show that formation of metalloprotease-inhibitor-DPP complexes as known from
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invertebrate and vertebrate systems are possible (Piccolo et al. 1997, Marqués et al.

1997, Scott et al. 1999, Shimmi and O’Connor 2003), as different BMP/DPP inhibitors

(Chordin, Noggin, Crossveinless-2, Twisted gastruation) and metalloproteases (BMP1

and Tolloid) are expressed in Enoplean nematodes (see Results; section 3.8; Fig. 3.15).

My new findings open the possibility that interaction between Wnt and BMP/DPP

signaling may be important for axis specification and posterior patterning in Enoplea

during embryogenesis in contrast to Chromadorea.

At which embryonic stage would such a potential interaction between Wnt and BM-

P/DPP signaling be important for embryogenesis? Well, from vertebrate system it is

known that the interaction of both pathways is pivotal for the dorsoventral axis spec-

ification prior to gastrulation and for posterior cell fate determination after gastrula-

tion (Hikasa and Sokol 2013). Why would I detect then the expression of Wnt and

BMP/DPP signaling components during early embryogenesis? It is possible that the

detected mRNAs are of maternal origin which are important only during later stages,

such as gastrulation. Hence, my transcriptome data not only reveals first insight into

the early polarity establishment in the investigated species (see section 4.3.1) but also

into maternally supplied gene products which may play a role during subsequent critical

embryonic processes such as dorsoventral axis specification and posterior patterning at

later stages.

How does NF-κB signaling fit into this picture? In many aspects NF-κB signaling is cor-

related with processes such as proliferation, migration of cells and immunity responses

(Gilmore 2006). Only in insects, such as Drosophila it was shown that this particular

pathway is important for dorsoventral axis specification (Minakhina and Steward 2006).

Could that mean that, if I detect expression of NF-κB and the obligatory inhibitor IκB in

Enoplean nematodes that this signaling pathway has a similar function as in Drosophila?

Obviously not, as NF-κB signaling in this specific form is thought to be unique to insects,

and in the taxon of insects representatives exist which depend less on NF-κB signaling

than on BMP signaling for dorsoventral axis specification (Özüak et al. 2014). Still, I

find components of NF-κB signaling to be expressed during early embryogenesis in the

Enoplea R. culicivorax and in the nematomorph Gordius sp.. In contrast to this I could

not detect expression of orthologues of the accompaning inhibtor IκB in any nematode

and nematomorph genomes, indicating its absence in both phyla. However, in C. elegans

exists an homologue of IκB, named IKB-1, which has no role during embryogenesis in

C. elegans (Pujol et al. 2001). For all other nematodes and the nematomorph Gordius
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sp. I could not detect IKB-1 expression. This makes it unlikely that canonical NF-κB

plays a role during early embryogenesis in any investigated species. This does, however,

not exclude the possibility that non-canonical NF-κB signaling may play a role (for a

review on non-canonical NF-κB signaling see Gilmore 2006 and Brasier 2006). Whether

and how NF-κB signaling is important to early embryogenesis in nematodes remains to

be investigated.

The presented examples show that the molecular circuity must be different in non-

Caenorhabditis nematodes and may even resemble fate determination via morphogen

secretion (Wolpert 1996), rather than cell-fate inductions via direct cell-cell interaction,

as known from the model C. elegans. It is difficult to imagine a morphogen gradient in

embryos which consist of little as 4 cells during early embryogenesis, but at later stages,

e.g. gastrulation such a scenario seems more plausible. Maybe secreted factors (or mor-

phogens) may even be secreted by organising centers at certain stages. In this respect

the Enoplean seawater nematodes such as Enoplus brevis is very interesting as it shows

equal divisions up to gastrulation rather than formation of a somatic AB and a germline

P cell (Voronov and Panchin 1998). Maybe this nematode resembles the ur-nematode

which I imagine to have late cell-fate determination and organising centers similar to

vertebrates. But why are all other nematodes I investigated so different from E. bre-

vis, showing asymmetric cell divisions during early embryogenesis? Maybe colonisation

of land by nematodes generated an evolutionary bottle-neck which led consequently to

the loss of certain particularities, such as essential components of Wnt, BMP/DPP and

NF-κB signaling.

4.3.3 The gap gene hunchback as first insight into anterior patterning

of Enoplean embryos

For Drosophila it was shown that Hunchback signaling is essential for anterior patterning,

head development and neurogenesis during embryogenesis (for review of all mentioned

processes refer to Niessing et al. 1997 and Li et al. 2013). By determining the expression

of orthologues for Hunchback and interacting proteins, I found only few to be present in

nematodes (Fig. 3.30, 3.31). Important gap genes, such as Kr (Krüppel) or Kni (Knirps),

or upstream acting genes like Bcd (Bicoid), which are known to interact with Hunchback

in Drosophila (Jaeger 2011), could not be identfied in any nematode genome (Fig. 3.30).
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Nevertheless, Hunchback itself was found to be expressed specifically in the Enoplean

nematode R. culicivorax and the nematomorph Gordius sp. (Fig. 3.31). This is also

supported by the expression of hunchback mRNA during early embryogenesis in R. culi-

ciorax by in-situ hybridisation (Fig. 3.32). These results show that (1) Hunchback exists

and is expressed during early development exclusively in Enoplea and nematomorphs

and (2) Hunchback signaling cannot be mediated as known from Drosophila in Enoplea

and nematomorphs.

What could then be the role of Hunchback signaling during early embryogenesis of R.

culicivorax, Gordius sp. and possibly all Enoplean nematodes? In-situ hybridisation of

R. culicivorax hunchback showed stronger expression in the somatic precursor cell S1

and its descendants during 2- to 24-cell stage (Fig. 3.32 A, B, C). At later stages the ex-

pression decreases dramatically (Fig. 3.32 D), but a much broader expression domain in

the head region of the embryo becomes visible during late morphogenesis (Fig. 3.32 F).

As Hunchback is known to be involved in head development and neurogenesis (Niessing

et al. 1997, Li et al. 2013), these results idicate a similar function in R. culicivorax, even

though the controlling GRN must be different.

As Hunchback is absent in Chromadrea, Hunchback signaling might indicate an alterna-

tive form of anterior patterning and neurogenesis in Enoplea. This particularity is inter-

esting, as only descendants of the somatic cell S1 show Chordin expression. Previously,

it was shown that descendants of S1 contributed as one linage to neurons (monoclonal;

Schulze and Schierenberg 2009). This is different to C. elegans where neurogenesis is

based on several cell linages (polyclonal; Sulston et al. 1983). As hunchback expression

coincides with the S1 cell linage in R. culicivorax descendants (Fig. 3.32), this suggests

functional conservation between the Drosophila and R. culicivorax orthologues, con-

trasting neurogenesis in C. elegans. This may represent the ancestral form of anterior

patterning and neurogenesis in nematodes.

4.4 Do modifiers of mTOR signaling facilitate polarity es-

tablishment in parthenogenetic nematodes?

In my analysis of early expression I included the pathenogenotes Panagrolaimus sp.

PS1159 and D. coronatus. By searching for orthologues which are exclusively expressed
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in both parthenogenotes during early development, I identified the genes LAMTOR4

and LAMTOR5 (see Results; section 3.17). The respective proteins were recently iden-

tified as modulators of the conserved mTOR pathway (Bar-Peled et al. 2012), which is

known to control primarily growth and proliferation of cells in tissues. Why are these

genes expressed exclusively in parthenogenotes in my analysis?

LAMTOR4 and LAMTOR5 were found to be a part of a higher molecular protein

complex the so-called “Regulator” which additionally contains LAMTOR1, -2, and -3

(Bar-Peled et al. 2012). This protein complex has a critical role in binding the mTOR

complex (mTORC) to the lysosome in Drosophila and mammalian cell cultures to facil-

itate mTOR signaling (Bar-Peled et al. 2012). In this respect it is important to mention

that Regulator has a function as a scaffold to the membrane and modifier of downstream

targets. If LAMTOR4 and LAMTOR5 were indeed involved in initiation of proliferation

and polarity establishment in the investigated parthenogenotes, this would mean that

the latter would be mediated via a so far undescribed pathway. Presently, it is impossi-

ble to correlate LAMTOR4/5 to any specific function in nematode embryos. However,

as these genes are exclusively expressed in the two only distantly related parthogenetic

species, it appears likely that these are somehow related to the mode of reproduction.

It would be attractive to ectopically overexpress either LAMTOR4, or LAMTOR5 or

even the whole protein complex Regulator in C. elegans in order to test whether this

way first changes towards a parthenogenetic species can be initiated.

4.5 Conclusion: Enoplean oogenesis and early embryoge-

nesis appear to be more similar to outgroups than to

Chromadorea

In summary, my unbiased comparison of existing and expressed orthologues during oo-

genesis and early embryogenesis (see Introduction) revealed that many key-regulators

known from C. elegans are absent in non-Caenorhabditis species. In contrast to that, I

find many examples of regulators known from outgroup models to be expressed during

both processes exclusively in Enoplea and nematomorphs. The presented analysis sug-

gests that Enoplea share a core set of regulators with outgroup species. Here I propose a
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core-set of developmental regulators for both processes which have functions in Enoplea

and/or Chromadorea.

For oogenesis I could show that crucial signaling components known from C. elegans,

are absent in other Chromadorea and Enoplean. Instead orthologues known from

Drosophila, such as Furry, Fat2/Kugelei and Faf (Fat facetes) are specifically expressed

during oogenesis in the Enoplean R. culicivorax and may represent parts of a GRN which

originally controlled oogenesis in nematodes. As Furry and Fat2/Kugelei were shown

to be part of Fat/Dachsous PCP pathway (Viktorinová et al. 2009, Horne-Badovinac

et al. 2012) it appears as if PCP has a role in the germline of Enoplean species. The

exact function of the Fat/Dachsous pathway in oogenesis of Enoplea remains to be de-

termined.

For early embryogenesis my transcriptome analysis of six nematode species and a single

nematomorph (Fig. 1.1), showed new findings with respect to the biological processes of

polarity establishment, axis specification in Enoplean nematodes (see section 4.3). My

transcriptome data suggest that polarity establishment in all nematodes may rely on

PCP complexes such as PAR-3/-6/PKC-3, Lgl/Dlg/Scrib and Crumbs/Stardust. This

view is further supported by the fact that the C. elegans Lgl orthologue was previously

shown to be involved in polarity establishment (Beatty et al. 2010, 2013). If it is true

that conserved PCP complexes are required for polarity establishment in nematodes,

why is there another Caenorhabdtitis-specific PAR-2 complex involved in polarity estab-

lishment in C. elegans (Gönczy and Rose 2005)? Maybe polarity establishment during

early embryogenesis originally depended on e.g. the Lgl/Dlg/Scrib complex in other

Chromadorea and Enoplea and in the special case of the Caenorhabditis genus was re-

placed by the function of par-2 and other genes. Nonetheless, these findings support the

idea that the mentioned PCP complexes may represent the ancestral form of polarity

establishment in the last common ancestor of all nematodes.

I also investigated axis specification during early embryogenesis by analysing the Wnt,

BMP/DPP and NF-κB signaling pathways. I found evidence that all three pathways are

fundamentally different in Enoplea in comparison to Chromadorea and specifically the

genus Caenorhabditis (see section 4.3.2). Furthermore, it seems like Wnt and BMP/DPP

signaling are more similar in Enoplea to vertebrate species than to Chromadorea, as Wnt

signaling can only be mediated via an orthologue of vertebrate β-catenin (section 4.3.2;

Fig. 3.19) and BMP signaling can be controlled by antagonists such as Chordin or Nog-

gin which do not even exist in Chromadorea (see section 3.8).
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Taken together these findings suggest that Enoplea show many aspects of oogenesis and

early embryogenesis which are more similar to outgroups than to Chromadorea, giving

strong support for the assumption that Enoplea are more basal in the phylum of ne-

matodes than Chromadorea. This is in concordance with previous considerations where

Enoplea were stated to be an “ancestral” taxon within the phylum of nematodes (De

Ley 2006).

For future studies it would be interesting to further investigate oogenesis, polarity es-

tablishment and axis formation in Enoplea and Chromadorea. In particular, it would be

fascinating to knock-out components of the aforementioned pathways and complexes to

see if this would have an impact on any of these biological processes. This could be done

by RNA interference, or genome editing via the CRISPR/Cas9 system in the Enoplean

R. culicivorax. Alternatively, it would be interesting to do the same experiments for

orthologs in the Chromadorean satellite model P. pacificus, where the CRISPR/Cas9

system has been successfully established (Witte et al. 2015).

Another approach would be to clone the sequences from Enoplea-specific genes, such as

Chordin, to transform Drosophila strains and possibly rescue Sog (Short gasturation)

loss-of-function alleles. Such experiments would demonstrate the functional conserva-

tion between Enoplean-specific orthologues and outgroup proteins. This would give even

further evidence that Enoplea are more similar to outgroup species with respect to oo-

genesis and early development than to Chromadorea.
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Figure A.1: Venn-diagram representing the orthology clustering of early transcrip-
tomes of the nematodes R. culicivorax (clade I), A. suum (clade III), P. sp. PS1159,
D. coronatus (clade V), P. pacificus (clade V) and C. elegans. As an outgroup I in-
culded the nematomorph Gordius sp. Transcripts for each species wre translated into
protein sequences via the programme Transdecoder and orthologs were identified via

OrthoMCL clustering (materials and methods).
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Figure A.2: Phylogentic tree for Human RYK orthologs. The tree was created by
maximum likelihood statistics with a subsitution matrix of LG, optimised for Γ and
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“search genes all.pl” a custom Perl script to access orthologous clusters of

27 species via specific queries:
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#! /usr/bin/perl  

use strict;
use utf8;
use 5.010;

die "USAGE: ./search_genes_all.pl <WB-ID, Flybase-ID, UNIprot-ID> <output file name>\n" unless (@ARGV 
== 2);

sub check_qual {
my $val = shift;
if ($val =~ />/ || $val =~ /</ || $val =~ /\|/ || $val =~ /\$/ || $val =~ /\^/ || $val =~ / /) 

{
die "error: $val: Symbols as \">, <, \|, \$, \^\" and SPACE are not allowed!\n";

}
}

for (@ARGV) {
&check_qual ($_);

}

my @error;
@error = map {

if (($_ =~ /\AWBGene[0-9]*\b/) || ($_ =~ /\AFBgn[0-9]*\b/) || ($_ =~ /\A\w*\b/)) {
0; 

} else {
$_;

}
} @ARGV;

for (@error) {
die "error: \"$_\" is not a valid ID!\n" if ($_);

}

my $ID_type = shift @ARGV;
my $file_name = shift @ARGV;

if ($ID_type =~ /\AUNI/) {
$ID_type =~ s/\AUNI/sp\\\|/;

}

#open headers.txt to get the cluster names
open my $fh, "<", "./headers.txt";

my $ortholog = $ID_type;
while (<$fh>) {

chomp;
my $line = $_;
my @line = split /\t/;
if ($line =~ /$ortholog/) {

$ID_type = $line[0];
$ID_type =~ s/\A>//g;
last;

}
}

close $fh;
$ID_type =~ s/\|/\\\|/g;

#open OrthoMCL groups file to get the clusters
open $fh, "<", "./27proteomes.groups.txt" or die "./27proteomes.groups.txt: $!\n";

my %orthologs;

while (<$fh>) {
chomp;
my @line = split / /;
shift @line; #getting rid of the first cluster header
shift @line; #getting rid of the empty first array element
foreach (@line) {

if (/$ID_type/) {
if ($orthologs{$_}) {

die "error: \"$ID_type\" exists multiple times in the clustering! 
\"$ID_type\" might be ambiguous or not a valid ID!\n";
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} else {
$orthologs{$_} = [ (@line) ];

}
}

}
}

close $fh;

#get the identifier of the fasta files.
open my $fh, "<", "./headers_index.txt";

my %fasta_names;
while (<$fh>) {

chomp;
my @line = split /\t/;
$line[0] =~ s/\A>//;
foreach my $query (sort keys %orthologs) {

foreach my $ortholog (@{ $orthologs{$query} }) {
if ($line[0] eq $ortholog) {

$fasta_names{$ortholog}=$line[1];
last;

}
}

}
}

close $fh;

my $current_ortholog;
my %ortholog_fh;
open my $ofh, ">", "$file_name.cluster.tsv" or die "$file_name.cluster.tsv: $!\n";
foreach my $cluster (sort keys %orthologs) {

my %counter;

#initializing %counter
$counter{'HSA'}= 0;#outgroups
$counter{'CCA'}= 0; 
$counter{'SPU'}= 0; 
$counter{'BFL'}= 0;
$counter{'DME'}= 0;
$counter{'TCA'}= 0;
$counter{'DPU'}= 0;
$counter{'API'}= 0; 
$counter{'SMA'}= 0; 
$counter{'HDU'}= 0;
$counter{'TUR'}= 0;

$counter{'GOR'}= 0;#nematomorphs

$counter{'RCT'}= 0;#cladeI
$counter{'RCU'}= 0;
$counter{'TSP'}= 0;

$counter{'EBR'}= 0;#cladeII

$counter{'ASU'}= 0;#cladeIII
$counter{'LOA'}= 0;
$counter{'BMA'}= 0;
$counter{'DIM'}= 0;

$counter{'MHA'}= 0;#cladeIV
$counter{'BUX'}= 0; 

$counter{'PPA'}= 0;#cladeV
$counter{'CAN'}= 0; 
$counter{'CBR'}= 0;
$counter{'CEL'}= 0;
$counter{'CRE'}= 0;

foreach my $ortholog (@{ $orthologs{$cluster} }) {
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my @tag = split /\|/, $ortholog;
$current_ortholog = $fasta_names{$ortholog};
unless ($current_ortholog eq ">" ) {

if ($ortholog_fh{$tag[0]}) {
$ortholog_fh{$tag[0]}->{$current_ortholog} = [ () ];

} else {
$ortholog_fh{$tag[0]} = { ( $current_ortholog,  [ ] ) };

}
}
$counter{$tag[0]} = $counter{$tag[0]} + 1;

}

print $ofh "HSA\t$counter{'HSA'}\n",
"CCA\t$counter{'CCA'}\n",

       "SPU\t$counter{'SPU'}\n",
"BFL\t$counter{'BFL'}\n", 
"DME\t$counter{'DME'}\n", 
"TCA\t$counter{'TCA'}\n",
"DPU\t$counter{'DPU'}\n", 
"API\t$counter{'API'}\n", 
"SMA\t$counter{'SMA'}\n", 
"HDU\t$counter{'HDU'}\n", 
"TUR\t$counter{'TUR'}\n",
"GOR\t$counter{'GOR'}\n",
"RCT\t$counter{'RCT'}\n",
"RCU\t$counter{'RCU'}\n",
"TSP\t$counter{'TSP'}\n",
"EBR\t$counter{'EBR'}\n",
"ASU\t$counter{'ASU'}\n",
"LOA\t$counter{'LOA'}\n",
"BMA\t$counter{'BMA'}\n",
"DIM\t$counter{'DIM'}\n",
"MHA\t$counter{'MHA'}\n",
"BUX\t$counter{'BUX'}\n",
"PPA\t$counter{'PPA'}\n",
"CAN\t$counter{'CAN'}\n",
"CBR\t$counter{'CBR'}\n",
"CEL\t$counter{'CEL'}\n",
"CRE\t$counter{'CRE'}\n";

print "HSA\t$counter{'HSA'}\n",
"CCA\t$counter{'CCA'}\n",

       "SPU\t$counter{'SPU'}\n",
"BFL\t$counter{'BFL'}\n", 
"DME\t$counter{'DME'}\n", 
"TCA\t$counter{'TCA'}\n",
"DPU\t$counter{'DPU'}\n", 
"API\t$counter{'API'}\n", 
"SMA\t$counter{'SMA'}\n", 
"HDU\t$counter{'HDU'}\n", 
"TUR\t$counter{'TUR'}\n",
"GOR\t$counter{'GOR'}\n",
"RCT\t$counter{'RCT'}\n",
"RCU\t$counter{'RCU'}\n",
"TSP\t$counter{'TSP'}\n",
"EBR\t$counter{'EBR'}\n",
"ASU\t$counter{'ASU'}\n",
"LOA\t$counter{'LOA'}\n",
"BMA\t$counter{'BMA'}\n",
"DIM\t$counter{'DIM'}\n",
"MHA\t$counter{'MHA'}\n",
"BUX\t$counter{'BUX'}\n",
"PPA\t$counter{'PPA'}\n",
"CAN\t$counter{'CAN'}\n",
"CBR\t$counter{'CBR'}\n",
"CEL\t$counter{'CEL'}\n",
"CRE\t$counter{'CRE'}\n";

}

close $ofh;

foreach my $tag (sort keys %ortholog_fh) {
open $fh, "<", "./fasta_files/$tag.fasta" or die "./fasta_files/$tag.fasta: $!\n";
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my $current_seq = "";

while (<$fh>) {
chomp;
if (/\A>/) {

my $header;
$current_seq = "";
if ($tag) { 

$header = substr($_, 0, 100); #Sequence-header in OrthoMCL clusters 
are truncated to 20 symbols!

foreach my $seq (sort keys %{ $ortholog_fh{$tag} }) {
if ($header eq $seq) {

$current_seq = $header;
}

}
#} elsif ($tag eq "CEL") { 
#$header = substr($_, 0, 61);
#foreach my $seq (sort keys %{ $ortholog_fh{$tag} }) {
#if ($header =~ /\A"$seq"/) { #Random names in CEL orthoMCL 

clustering! REGEX machine necessary!
# $current_seq = $seq;
#}
#}

}

} elsif (/\A\w/ && $current_seq) {
push @{ $ortholog_fh{$tag}->{$current_seq} }, $_;

}
}
close $fh;

}

open $ofh, ">", "$file_name.fasta" or die "$file_name.fasta: $!\n";

foreach my $species (sort keys %ortholog_fh) {
foreach my $header (sort keys %{ $ortholog_fh{$species} }) {

print $ofh "\n$header\n";
foreach my $seq ( @{ $ortholog_fh{$species}->{$header} } ) {

print $ofh "$seq\n";
}

}
}

close $ofh;
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“search transcriptomes.pl” a custom Perl script to access orthologous clus-

ters of transcriptomes of early embryos of seven species:

#! /usr/bin/perl 

use strict;
use utf8;
use 5.010;

die "USAGE: ./search_transcriptomes.pl <GOR|RCT> <GOR-ID|RCT-ID> <output name>\n" unless (@ARGV == 3);

sub check_qual {
my $val = shift;
if ($val =~ />/ || $val =~ /</ || $val =~ /\|/ || $val =~ /\$/ || $val =~ /\^/ || $val =~ / /) 

{
die "error: $val: Symbols as \", >, <, \|, \$, \^\" and SPACE are not allowed!\n";

}
}

for (@ARGV) {
&check_qual ($_);

}

my @error;
@error = map {

if (($_ =~ /\AGOR\b/) || ($_ =~ /\ARCT\b/) || ($_ =~ /\A\w*\b/)) {
0; 

} else {
$_;

}
} @ARGV;

for (@error) {
die "error: \"$_\" is not a valid species TAG, ID or output name!\n" if ($_);

}

my $species_TAG = shift @ARGV;
my $ID_type = shift @ARGV;
my $file_name = shift @ARGV;

open my $fh, "<", "./headers.txt" or die "./headers.txt: $!\n";
;

my $init_ortholog = "$species_TAG" . "\|" ."$ID_type";
while (<$fh>) {

chomp;
my $line = $_;
my @line = split /\t/;
if ($line =~ /\Q$init_ortholog\E/) {

my @tmp = split / /, $line[1];
$tmp[9] =~ s/:\S*\z//;
$ID_type = $tmp[9];
last;

}
}

close $fh;

#if its GOR open GOR_official_VS_GORC.index.txt to get the cluster names
if ($species_TAG eq "GOR") {

open $fh, "<", "./GOR_official_VS_GORC.index.txt" or die "./GOR_official_VS_GORC.index.txt: $!
\n";

my $hit = 0;
while (<$fh>) {

chomp; 
my @line = split /\t/;
if ($ID_type eq $line[1]) {

$ID_type = $line[0];
$hit = 1;
last;

}

}
unless ($hit) {

die "No early transcript found for the sequence \"$init_ortholog\" with the ID 
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\"$ID_type\" !\n";
}
$ID_type =~ s/\A/GORC\|cds\./;
$ID_type =~ s/\z/_GORC_m\./;

} elsif( $species_TAG eq "RCT") {
open $fh, "<", "./R_culi_1-4cell_VS_r_culicivorat_official.index.txt" or die "./

R_culi_1-4cell_VS_r_culicivorat_official.index.txt: $!\n";

my $hit = 0;
while (<$fh>) {

chomp; 
my @line = split /\t/;
if ($ID_type eq $line[1]) {

$ID_type = $line[0];
$hit = 1;
last;

}
}
unless ($hit) {

die "No early transcript found for the sequence \"$init_ortholog\" with the ID 
\"$ID_type\" !\n";

}
$ID_type =~ s/\A/RCU|cds\./;
$ID_type =~ s/\z/_RCU_m\./;

}

#open OrthoMCL groups file to get the clusters
open $fh, "<", "./GORC_PS11_CEL_PPA_ASU_RCU_G1C_DCO_goodProteins.groups.txt" or die "./
GORC_PS11_CEL_PPA_ASU_RCU_G1C_DCO_goodProteins.groups.txt: $!\n";

my %orthologs;

while (<$fh>) {
chomp;
my @line = split / /;
shift @line; #getting rid of the first cluster header
foreach (@line) {

if (/\Q$ID_type\E/) {
if ($orthologs{$_}) {

die "error: \"$ID_type\" exists multiple times in the clustering! 
\"$ID_type\" might be ambiguous or not a valid ID!\n";

} else {
$orthologs{$_} = [ (@line) ];

}
}

}
}

close $fh;

#get the identifier of the fasta files.

my %fasta_names;
foreach my $query (sort keys %orthologs) {

foreach my $ortholog (@{ $orthologs{$query} }) {
$fasta_names{$ortholog}=$ortholog;

}
}

close $fh;

my $current_ortholog;
my %ortholog_fh;
open my $ofh, ">", "$file_name.cluster.tsv" or die "$file_name.cluster.tsv: $!\n";
foreach my $cluster (sort keys %orthologs) {

my %counter;

#initializing %counter
$counter{'GORC'}= 0;
$counter{'G1C'}= 0; 
$counter{'PS11'}= 0; 
$counter{'CEL'}= 0;
$counter{'PPA'}= 0;
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$counter{'ASU'}= 0;
$counter{'RCU'}= 0;
$counter{'DCO'}= 0; 

foreach my $ortholog (@{ $orthologs{$cluster} }) {
my @tag = split /\|/, $ortholog;
$current_ortholog = $fasta_names{$ortholog};
unless ($current_ortholog eq ">" ) {

if ($ortholog_fh{$tag[0]}) {
$ortholog_fh{$tag[0]}->{$current_ortholog} = [ () ];

} else {
$ortholog_fh{$tag[0]} = { ( $current_ortholog,  [ ] ) };

}
}
$counter{$tag[0]} = $counter{$tag[0]} + 1;

}

print $ofh "GORC\t$counter{'GORC'}\n",
"G1C\t$counter{'G1C'}\n",

       "RCU\t$counter{'RCU'}\n",
       "ASU\t$counter{'ASU'}\n",

"PS11\t$counter{'PS11'}\n", 
"DCO\t$counter{'DCO'}\n",
"PPA\t$counter{'PPA'}\n", 
"CEL\t$counter{'CEL'}\n";

print "GORC\t$counter{'GORC'}\n",
"G1C\t$counter{'G1C'}\n",

       "RCU\t$counter{'RCU'}\n",
       "ASU\t$counter{'ASU'}\n",

"PS11\t$counter{'PS11'}\n", 
"DCO\t$counter{'DCO'}\n",
"PPA\t$counter{'PPA'}\n", 
"CEL\t$counter{'CEL'}\n";

}

close $ofh;

foreach my $tag (sort keys %ortholog_fh) {
open $fh, "<", "./compliantFasta/$tag.fasta" or die "./compilantFasta/$tag.fasta: $!\n";
my $current_seq = "";

while (<$fh>) {
chomp;
if (/\A>/) {

my $header;
$current_seq = "";
if ($tag) { 

$header = substr($_, 0, 100); #Sequence-header in OrthoMCL clusters 
are truncated to 20 symbols!

foreach my $seq (sort keys %{ $ortholog_fh{$tag} }) {
my $complete_seq = ">" . "$seq";
if ($header eq $complete_seq) {

$current_seq = $seq;
}

}
#} elsif ($tag eq "CEL") { 
#$header = substr($_, 0, 61);
#foreach my $seq (sort keys %{ $ortholog_fh{$tag} }) {
#if ($header =~ /\A"$seq"/) { #Random names in CEL orthoMCL 

clustering! REGEX machine necessary!
# $current_seq = $seq;
#}
#}

}

} elsif (/\A\w/ && $current_seq) {
push @{ $ortholog_fh{$tag}->{$current_seq} }, $_;

}
}
close $fh;

}



Appendix B. Custom programmes 136

open $ofh, ">", "$file_name.fasta" or die "$file_name.fasta: $!\n";

foreach my $species (sort keys %ortholog_fh) {
foreach my $header (sort keys %{ $ortholog_fh{$species} }) {

print $ofh "\n>$header\n";
foreach my $seq ( @{ $ortholog_fh{$species}->{$header} } ) {

print $ofh "$seq\n";
}

}
}

close $ofh;
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“extract clusters.pl” a custom Perl script to extract protein sequences from

orthologous clusters shared and/or excluded from transcriptomes of early

embryos:

#! /usr/bin/perl -w 

use utf8;
use 5.010;
use strict;

die "Please insert extract_clusters.pl <species TAGs, separated by \"-\"> <exclude TAGs, separated by 
\"-\"> <groups-file> <clusteroutput-file>\n" unless (@ARGV == 4);

my $species_TAG = shift @ARGV;

my @species;
unless ($species_TAG eq "-") {

@species = split /-/, $species_TAG;
} else {

$species[0] = $species_TAG;
}

my $species_hits = (@species);
my $exclude_TAGs = shift @ARGV;

my @exclude;
unless ($exclude_TAGs eq "-") {

@exclude = split /-/, $exclude_TAGs;
} else {

@exclude = ();
}

my $orthomclgroupsname = shift @ARGV;
my $output_spec = shift @ARGV;
open my $OUTPUT_cluster, ">", $output_spec or die $!;
open my $oMCL_groups, "<", $orthomclgroupsname or die $!;

my $cluster_no = 0;

#read in the data line by line
while(<$oMCL_groups>) {

chomp;
my $loop_exit = 0;
my $hit = 0;

#stealing this from georgios intending to split cluster tag from proteins
my @proteins = split(/\s+/, $_,2);
foreach my $spec (@species) {

if ($proteins[1]=~ m/($spec\|)+/) {
$hit ++;

}
}
if ($hit == $species_hits) {

if(@exclude) {
foreach my $exclude (@exclude) {

if ($proteins[1]=~ m/($exclude\|)+/) {
$loop_exit = 1;
last;

}
}

}
if ($loop_exit) {

next;
} else {

++$cluster_no; 
my @genes = split / /, $proteins[1];
foreach (@genes) {

foreach my $spec (@species) {
if ($_ =~ /\A$spec/) {

print $OUTPUT_cluster "$_\n";
}

}
}

}
}

}
print "Number of $species_TAG clusters: $cluster_no\n\n";
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close $oMCL_groups;
close $OUTPUT_cluster;
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Table C.1: Results of RNAi experiments in combination with affymetrix microarray

analysis. In total there were 152 signficantly over- and/or underexpressed genes with

wormbase entries for RNAi phenotypes such as ”egg-laying defect“, ”vulva protrusion“,

”larvae hatching defect“, or ”early embryogenesis defect“.

RNAi knock-

down

affymetrix microarray feature target gene

mek-2 179631 at srz-66

mek-2 180107 at srz-60

mek-2 181581 at srz-32

mek-2 182245 at grl-8

mek-2 188812 at srb-11

mek-2 188970 at cfi-1

mek-2 192765 at mab-3

mbk-2 177755 at srg-39

mbk-2 177807 at srg-40

mbk-2 178976 at str-263

mbk-2 179261 at srh-178

mbk-2 182245 at grl-8

mbk-2 182582 at srh-173

mbk-2 183047 at srab-2

mbk-2 184350 s at sta-1

mbk-2 185751 at srbc-33

139
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mbk-2 186055 at grd-10

mbk-2 187415 at sdz-1

mbk-2 187894 at lim-6

mbk-2 188140 at sra-7

mbk-2 188213 at ptr-19

mbk-2 189928 at nhr-219

mbk-2 190664 s at cfz-2

mbk-2 191316 at srj-57

mbk-2 191439 at srj-38

mbk-2 191476 at srh-245

mbk-2 191498 at str-143

mbk-2 191681 at sox-2

mbk-2 192431 at nhr-111

mbk-2 193511 at ceh-24

mbk-2 193759 at hlh-1

mbk-2 193833 s at ceh-43

lip-1 179072 at srh-118

lip-1 179631 at srz-66

lip-1 180564 at grl-13

lip-1 191439 at srj-38

goa-1 73854 s at dop-1

goa-1 174019 s at nhr-92

goa-1 174461 at gei-13

goa-1 175782 s at hbl-1

goa-1 175965 at unc-34

goa-1 176603 at srg-6

goa-1 177036 at lad-2

goa-1 177509 at srh-277

goa-1 178868 at eak-4

goa-1 180163 at srw-115

goa-1 180185 at str-9

goa-1 181042 at srh-295

goa-1 181049 at srv-7
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goa-1 182610 at srh-171

goa-1 183032 at srt-28

goa-1 184474 at srx-110

goa-1 186331 at jip-1

goa-1 187594 at cnd-1

goa-1 188084 s at plx-2

goa-1 188093 at sra-2

goa-1 188187 at ptr-13

goa-1 188255 at srd-1

goa-1 189216 at str-41

goa-1 189293 s at dsl-6

goa-1 189669 at ceh-48

goa-1 190803 at srh-7

goa-1 191152 at str-67

goa-1 191279 at srh-201

goa-1 193507 at nhr-81

goa-1 194043 at syd-1

goa-1 194074 at nhr-255

par-1 174493 at rab-37

par-1 175757 s at fax-1

par-1 181774 at str-111

par-1 182198 at inx-19

par-1 183032 at srt-28

par-1 183968 at vab-19

par-1 184081 at srx-16

par-1 184621 at srx-6

par-1 186284 at srv-30

par-1 191055 at str-20

par-1 191132 at sri-63

par-1 191279 at srh-201

par-1 191558 at srj-15

par-1 191586 at srh-185

par-1 192339 at pik-1
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par-1 192655 s at elt-1

par-1 192738 at unc-7

par-1 193328 at scl-20

par-1 193507 at nhr-81

par-1 194086 at mlt-11

par-1 188166 s at lin-40

par-1 188907 at str-102

par-1 189601 at srsx-30

par-1 190427 s at ftn-1

par-1 190493 at clec-153

par-1 190586 at nas-33

par-1 178937 at srd-45

par-1 179191 at srh-261

par-1 180164 at fbxc-16

par-1 182037 at fbxa-46

par-1 183568 at srz-56

par-1 184526 at trp-4

itr-1 171921 x at hil-7

itr-1 172530 x at srw-141

itr-1 173777 s at cng-1

itr-1 174159 at mnp-1

itr-1 174266 at nipi-3

itr-1 174406 at tir-1

itr-1 174461 at gei-13

itr-1 174603 at ets-4

itr-1 175782 s at hbl-1

itr-1 176778 s at rrf-2

itr-1 177054 at srv-24

itr-1 177258 at srt-45

itr-1 177336 at crn-2

itr-1 179445 at srm-4

itr-1 179677 at srh-257

itr-1 179837 s at cdh-3
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itr-1 179865 at sdz-21

itr-1 181070 at max-2

itr-1 181230 at zip-2

itr-1 181780 at ckk-1

itr-1 182198 at inx-19

itr-1 182257 at lam-3

itr-1 182750 at srbc-17

itr-1 183109 at srg-25

itr-1 183143 at srg-67

itr-1 183305 at srx-7

itr-1 184503 at srw-66

itr-1 184523 at srw-97

itr-1 184621 at srx-6

itr-1 184642 at spe-38

itr-1 185994 at srt-8

itr-1 186821 at srw-38

itr-1 187082 s at mlk-1

itr-1 187415 at sdz-1

itr-1 187962 at ins-35

itr-1 187985 at skr-3

itr-1 188042 at sra-4

itr-1 188228 at skr-4

itr-1 188340 at str-32

itr-1 188538 at ins-7

itr-1 188972 at str-47

itr-1 189293 s at dsl-6

itr-1 190874 at sprr-1

itr-1 191132 at sri-63

itr-1 191145 at aptf-1

itr-1 191249 at str-220

itr-1 191399 s at ztf-11

itr-1 191721 at ceh-17

itr-1 192272 at egl-46
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itr-1 193148 at vhp-1

itr-1 193507 at nhr-81

itr-1 193765 at eps-8

mpk-1 177397 at srg-32

mpk-1 178468 at srd-70

mpk-1 179242 at srx-44

mpk-1 180585 s at srbc-76

mpk-1 182245 at grl-8

goa-1 172991 at ptr-4

mpk-1 183032 at srt-28

mpk-1 187869 s at lgc-33

mpk-1 188213 at ptr-19

mpk-1 189136 at cog-1

mpk-1 190124 at sra-17

mpk-1 191481 at srh-192

itr-1 174266 at nipi-3

itr-1 175782 s at hbl-1

itr-1 184503 at srw-66

itr-1 188084 s at plx-2

itr-1 189293 s at dsl-6

itr-1 192254 at acr-9

itr-1 192254 at acr-9

par-1 175965 at unc-34

par-1 175965 at unc-34

par-1 183032 at srt-28

par-1 187594 at cnd-1

par-1 193507 at nhr-81

par-1 176778 s at rrf-2

par-1 182198 at inx-19

par-1 184621 at srx-6

par-1 187153 s at clp-4

par-1 190141 s at tba-7

par-1 191132 at sri-63
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par-1 193507 at nhr-81

mbk-2 174159 at mnp-1

mbk-2 179846 at srg-20

mbk-2 187415 at sdz-1

mbk-2 193833 s at ceh-43

mek-2 182245 at grl-8

mbk-2 182245 at grl-8

mbk-2 188213 at ptr-19

mbk-2 190124 at sra-17

lip-1 191439 at srj-38
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Table C.2: Significantly enriched GO-terms for Gordius sp. 1–cell stage.

GO-ID GO-term category FDR p-value

GO:0005829 cytosol C 5.018066E-7 4.072692E-10

GO:0097190 apoptotic signal-

ing pathway

P 1.143993E-3 7.564642E-6

GO:0043066 negative regula-

tion of apoptotic

process

P 1.261968E-3 8.705876E-6

GO:0005739 mitochondrion C 1.38367E-3 1.010695E-5

GO:0051052 regulation of

DNA metabolic

process

P 1.65268E-3 1.324558E-5

GO:0051049 regulation of

transport

P 2.033671E-3 1.733067E-5

GO:0006397 mRNA process-

ing

P 2.175984E-3 1.898495E-5

GO:0000075 cell cycle check-

point

P 2.284225E-3 2.061994E-5

GO:0001700 embryonic devel-

opment via the

syncytial blasto-

derm

P 2.911528E-3 2.806078E-5

GO:0009887 organ morpho-

genesis

P 2.919436E-3 2.843318E-5

GO:0019003 GDP binding F 4.649092E-3 5.707011E-5

GO:0031328 positive regula-

tion of cellular

biosynthetic

process

P 5.154205E-3 6.745383E-5

GO:0019901 protein kinase

binding

F 5.504285E-3 7.371062E-5
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GO:0045859 regulation of pro-

tein kinase activ-

ity

P 5.553645E-3 7.549847E-5

GO:1901701 cellular response

to oxygen-

containing com-

pound

P 5.850997E-3 8.139329E-5

GO:0060341 regulation of cel-

lular localization

P 6.387832E-3 9.012267E-5

GO:0051219 phosphoprotein

binding

F 7.928794E-3 1.211373E-4

GO:0010948 negative regula-

tion of cell cycle

process

P 9.173606E-3 1.43323E-4

GO:0048167 regulation of

synaptic plastic-

ity

P 9.373166E-3 1.483427E-4

GO:0008285 negative regula-

tion of cell prolif-

eration

P 9.620389E-3 1.547038E-4

GO:0008015 blood circulation P 9.620389E-3 1.573769E-4

GO:0050770 regulation of ax-

onogenesis

P 9.716347E-3 1.617638E-4

GO:0048749 compound eye

development

P 9.716347E-3 1.626456E-4

GO:0044765 single-organism

transport

P 1.047432E-2 1.785215E-4

GO:0044463 cell projection

part

C 1.048623E-2 1.797883E-4

GO:0048589 developmental

growth

P 1.13428E-2 2.006683E-4

GO:0003729 mRNA binding F 1.13428E-2 2.030165E-4
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GO:0031400 negative regula-

tion of protein

modification pro-

cess

P 1.13428E-2 2.036801E-4

GO:0010648 negative regula-

tion of cell com-

munication

P 1.138E-2 2.055026E-4

GO:0080134 regulation of re-

sponse to stress

P 1.257845E-2 2.32249E-4

GO:0045087 innate immune

response

P 1.262302E-2 2.351116E-4

GO:0014902 myotube differen-

tiation

P 1.354414E-2 2.570833E-4

GO:0001653 peptide receptor

activity

F 1.383455E-2 2.666697E-4

GO:0005730 nucleolus C 1.436057E-2 2.797229E-4

GO:0034702 ion channel com-

plex

C 1.439445E-2 2.868821E-4

GO:0060491 regulation of cell

projection assem-

bly

P 1.496156E-2 3.005366E-4

GO:0001558 regulation of cell

growth

P 1.578926E-2 3.235701E-4

GO:0004930 G-protein cou-

pled receptor

activity

F 1.630554E-2 3.421953E-4

GO:0001817 regulation of

cytokine produc-

tion

P 1.630554E-2 3.434199E-4

GO:0048011 neurotrophin

TRK recep-

tor signaling

pathway

P 1.630554E-2 3.434199E-4
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GO:0023057 negative regula-

tion of signaling

P 1.776377E-2 3.802531E-4

GO:0032868 response to in-

sulin stimulus

P 1.806155E-2 3.884597E-4

GO:0000082 G1/S transition

of mitotic cell cy-

cle

P 1.870821E-2 4.061639E-4

GO:0051291 protein het-

erooligomeriza-

tion

P 2.023182E-2 4.495119E-4

GO:0045937 positive regula-

tion of phosphate

metabolic pro-

cess

P 2.023182E-2 4.515573E-4

GO:0006302 double-strand

break repair

P 2.277007E-2 5.197591E-4

GO:0019221 cytokine-

mediated sig-

naling pathway

P 2.327713E-2 5.3843E-4

GO:0021766 hippocampus de-

velopment

P 2.327713E-2 5.455023E-4

GO:0033120 positive regu-

lation of RNA

splicing

P 2.327713E-2 5.455023E-4

GO:0032319 regulation of Rho

GTPase activity

P 2.327713E-2 5.455023E-4

GO:0004702 receptor sig-

naling protein

serine/threonine

kinase activity

F 2.327713E-2 5.455023E-4

GO:0090066 regulation of

anatomical struc-

ture size

P 2.346323E-2 5.52244E-4
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GO:0051147 regulation of

muscle cell differ-

entiation

P 2.428197E-2 5.764412E-4

GO:0009605 response to exter-

nal stimulus

P 2.607724E-2 6.244752E-4

GO:0048634 regulation of

muscle organ

development

P 2.607724E-2 6.322878E-4

GO:0005811 lipid particle C 2.772547E-2 6.891285E-4

GO:0006261 DNA-dependent

DNA replication

P 2.772547E-2 6.891285E-4

GO:0042326 negative regula-

tion of phospho-

rylation

P 2.772547E-2 6.891285E-4

GO:0007605 sensory percep-

tion of sound

P 2.772547E-2 6.891285E-4

GO:0030425 dendrite C 2.881658E-2 7.331663E-4

GO:0045597 positive regu-

lation of cell

differentiation

P 2.881658E-2 7.337893E-4

GO:0009628 response to abi-

otic stimulus

P 2.891036E-2 7.391104E-4

GO:0045202 synapse C 2.976301E-2 7.690505E-4

GO:0045216 cell-cell junction

organization

P 2.999982E-2 7.821805E-4

GO:0071417 cellular response

to organonitro-

gen compound

P 3.047228E-2 7.999331E-4

GO:0038093 Fc receptor sig-

naling pathway

P 3.047228E-2 8.080581E-4

GO:0005249 voltage-gated

potassium chan-

nel activity

F 3.047228E-2 8.080581E-4
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GO:1901990 regulation of mi-

totic cell cycle

phase transition

P 3.047228E-2 8.130475E-4

GO:0015291 secondary active

transmembrane

transporter

activity

F 3.058288E-2 8.191011E-4

GO:0035020 regulation of Rac

protein signal

transduction

P 3.297811E-2 8.899439E-4

GO:0000793 condensed chro-

mosome

C 3.387217E-2 9.209435E-4

GO:0010035 response to inor-

ganic substance

P 3.465751E-2 9.458123E-4

GO:0051260 protein ho-

mooligomeriza-

tion

P 3.546035E-2 9.713193E-4

GO:0014074 response

to purine-

containing

compound

P 3.64536E-2 1.015891E-3

GO:0008023 transcription

elongation factor

complex

C 3.64536E-2 1.015891E-3

GO:0046943 carboxylic acid

transmembrane

transporter

activity

F 3.64536E-2 1.017017E-3

GO:0042493 response to drug P 3.784497E-2 1.063514E-3

GO:0051648 vesicle localiza-

tion

P 3.832294E-2 1.080834E-3
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GO:0010628 positive regu-

lation of gene

expression

P 3.881158E-2 1.104541E-3

GO:0010557 positive regula-

tion of macro-

molecule biosyn-

thetic process

P 3.881158E-2 1.106427E-3

GO:0034654 nucleobase-

containing com-

pound biosyn-

thetic process

P 3.912425E-2 1.11931E-3

GO:0071705 nitrogen com-

pound transport

P 3.915869E-2 1.124268E-3

GO:0070374 positive regula-

tion of ERK1 and

ERK2 cascade

P 4.002634E-2 1.1573E-3

GO:0043596 nuclear replica-

tion fork

C 4.002634E-2 1.1573E-3

GO:0005887 integral to

plasma mem-

brane

C 4.120947E-2 1.195689E-3

GO:0046982 protein het-

erodimerization

activity

F 4.188171E-2 1.223693E-3

GO:0030855 epithelial cell dif-

ferentiation

P 4.188171E-2 1.227941E-3

GO:0008544 epidermis devel-

opment

P 4.224976E-2 1.243018E-3

GO:0045017 glycerolipid

biosynthetic

process

P 4.341869E-2 1.290624E-3
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GO:0051272 positive regula-

tion of cellular

component move-

ment

P 4.341869E-2 1.290624E-3

GO:0044212 transcription

regulatory region

DNA binding

F 4.371136E-2 1.312627E-3

GO:0051347 positive regu-

lation of trans-

ferase activity

P 4.48427E-2 1.373896E-3

GO:0048512 circadian behav-

ior

P 4.518468E-2 1.388958E-3

GO:0050778 positive regula-

tion of immune

response

P 4.827545E-2 1.489648E-3

GO:0048585 negative regula-

tion of response

to stimulus

P 4.827545E-2 1.493762E-3

GO:0072358 cardiovascular

system develop-

ment

P 4.851367E-2 1.510976E-3

GO:0045934 negative reg-

ulation of

nucleobase-

containing com-

pound metabolic

process

P 4.873565E-2 1.522835E-3

GO:0009890 negative regula-

tion of biosyn-

thetic process

P 4.98041E-2 1.561273E-3
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Table C.3: Significantly enriched GO-terms for R. culicivorax 1- to 4-cell stage.

GO-ID GO-term category FDR p-value

GO:0003735 structural con-

stituent of

ribosome

F 5.916601E-

12

6.939355E-15

GO:0006614 SRP-dependent

cotranslational

protein targeting

to membrane

P 3.254666E-8 1.086455E-10

GO:0006413 translational ini-

tiation

P 7.188691E-6 3.567106E-8

GO:0000184 nuclear-

transcribed

mRNA catabolic

process,

nonsense-

mediated decay

P 8.255783E-6 4.171092E-8

GO:0022625 cytosolic large ri-

bosomal subunit

C 4.334837E-5 2.659409E-7

GO:0044430 cytoskeletal part C 5.113338E-5 3.229283E-7

GO:0006415 translational ter-

mination

P 5.522951E-5 3.577907E-7

GO:0006414 translational

elongation

P 7.746521E-5 5.591138E-7

GO:0006898 receptor-

mediated en-

docytosis

P 2.021053E-4 1.641057E-6

GO:0006457 protein folding P 2.225521E-4 1.82716E-6

GO:0022627 cytosolic small ri-

bosomal subunit

C 5.054828E-4 4.697287E-6

GO:0005525 GTP binding F 6.611893E-4 6.382827E-6
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GO:0019083 viral transcrip-

tion

P 7.087416E-4 6.969761E-6

GO:0043234 protein complex C 1.827836E-3 2.044855E-5

GO:0006096 glycolysis P 2.767979E-3 3.296402E-5

GO:0007067 mitosis P 3.746738E-3 4.698634E-5

GO:0007052 mitotic spindle

organization

P 5.03855E-3 6.682307E-5

GO:0030660 Golgi-associated

vesicle membrane

C 5.629915E-3 7.771355E-5

GO:0005743 mitochondrial in-

ner membrane

C 5.699245E-3 7.918475E-5

GO:0007098 centrosome cycle P 8.072573E-3 1.201709E-4

GO:0051491 positive reg-

ulation of

filopodium

assembly

P 1.014146E-2 1.564588E-4

GO:0065004 protein-DNA

complex assem-

bly

P 1.148816E-2 1.804126E-4

GO:0003743 translation initia-

tion factor activ-

ity

F 1.148816E-2 1.804126E-4

GO:0003779 actin binding F 1.148816E-2 1.813811E-4

GO:0006626 protein targeting

to mitochondrion

P 1.414172E-2 2.283803E-4

GO:0048731 system develop-

ment

P 1.684012E-2 2.780351E-4

GO:0008565 protein trans-

porter activity

F 1.791862E-2 2.974581E-4

GO:0043254 regulation of pro-

tein complex as-

sembly

P 1.870178E-2 3.138335E-4

GO:0008380 RNA splicing P 1.896967E-2 3.200405E-4
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GO:0022618 ribonucleoprotein

complex assem-

bly

P 1.912525E-2 3.243908E-4

GO:0015630 microtubule

cytoskeleton

C 2.060259E-2 3.568836E-4

GO:0045737 positive reg-

ulation of

cyclin-dependent

protein kinase

activity

P 2.338331E-2 4.177098E-4

GO:0006301 postreplication

repair

P 2.338331E-2 4.177098E-4

GO:0016538 cyclin-dependent

protein ser-

ine/threonine

kinase regulator

activity

F 2.338331E-2 4.177098E-4

GO:0030422 production of

siRNA involved

in RNA interfer-

ence

P 2.338331E-2 4.177098E-4

GO:0008312 7S RNA binding F 2.338331E-2 4.177098E-4

GO:0042645 mitochondrial

nucleoid

C 2.602504E-2 4.716851E-4

GO:0005811 lipid particle C 2.675434E-2 4.899973E-4

GO:0031123 RNA 3’-end pro-

cessing

P 2.675434E-2 4.899973E-4

GO:0009792 embryo devel-

opment ending

in birth or egg

hatching

P 2.871033E-2 5.335914E-4

GO:0008340 determination of

adult lifespan

P 2.979121E-2 5.563677E-4
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GO:0042254 ribosome biogen-

esis

P 3.815584E-2 7.263517E-4

GO:0030552 cAMP binding F 4.129595E-2 7.935796E-4

GO:0016604 nuclear body C 4.303943E-2 8.3485E-4

GO:0006397 mRNA process-

ing

P 4.539838E-2 9.287963E-4

GO:0071480 cellular response

to gamma radia-

tion

P 4.539838E-2 9.297575E-4

GO:0048205 COPI coating of

Golgi vesicle

P 4.539838E-2 9.297575E-4

GO:0004360 glutamine-

fructose-6-

phosphate

transaminase

(isomerizing)

activity

F 4.539838E-2 9.297575E-4

GO:0007249 I-kappaB

kinase/NF-

kappaB cascade

P 4.563452E-2 9.412116E-4

GO:0006184 GTP catabolic

process

P 4.563452E-2 9.522424E-4

GO:0015629 actin cytoskele-

ton

C 4.597776E-2 9.66512E-4

GO:0034660 ncRNA

metabolic pro-

cess

P 4.87695E-2 1.033998E-3
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Möller, C., Erasmus, M., and Onstott, T. C. (2011). Nematoda from the terrestrial

deep subsurface of south africa. Nature, 474(7349):79–82.

Boulin, T. and Bessereau, J.-L. (2007). Mos1-mediated insertional mutagenesis in

Caenorhabditis elegans. Nat Protoc, 2(5):1276–1287.

Boveri, T. (1887). Ueber Differenzierung der Zellkerne wahrend der Furchung des Eies

von Ascaris megalocephala. Anat. Anz., 2:688–693.

Boveri, T. (1899). Festschrift für C. v. Kupffer, chapter Die Entwickelung von Ascaris
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