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Summary

This purely theoretical thesis covers aspects of two contemporary research fields:

the non-equilibrium dynamics in quantum systems and the electronic properties of

three-dimensional topological insulators.

In the first part we investigate the non-equilibrium dynamics in closed quantum

systems. Thanks to recent technologies, especially from the field of ultracold quan-

tum gases, it is possible to realize such systems in the laboratory. The focus is on

the influence of hydrodynamic slow modes on the thermalization process. Generic

systems in equilibrium, either classical or quantum, in equilibrium are described by

thermodynamics. This is characterized by an ensemble of maximal entropy, but con-

strained by macroscopically conserved quantities. We will show that these conserva-

tion laws slow down thermalization and the final equilibrium state can be approached

only algebraically in time. When the conservation laws are violated thermalization

takes place exponential in time. In a different study we calculate probability distribu-

tions of projective quantum measurements. Newly developed quantum microscopes

provide the opportunity to realize new measurement protocols which go far beyond

the conventional measurements of correlation functions.

The second part of this thesis is dedicated to a new class of materials known

as three-dimensional topological insulators. Also here new experimental techniques

have made it possible to fabricate these materials to a high enough quality that their

topological nature is revealed. However, their transport properties are not fully un-

derstood yet. Motivated by unusual experimental results in the optical conductivity

we have investigated the formation and thermal destruction of spatially localized

electron- and hole-doped regions. These are caused by charged impurities which are

introduced into the material in order to make the bulk insulating. Our theoreti-

cal results are in agreement with the experiment and can explain the results semi-

quantitatively. Furthermore, we study emergent lengthscales in the bulk as well as

close to the conducting surface.



Deutsche Zusammenfassung

Die vorliegende rein theoretische Arbeit behandelt Aspekte zweier aktueller For-

schungsbereiche: die Nicht-Gleichgewichtsdynamik von Quantensystemen und die

elektronischen Eigenschaften von topologischen Isolatoren.

Im ersten Teil untersuchen wir die die Nicht-Gleichgewichtsdynamik in abge-

schlossenen Quantensystemen. Dank neuartiger Technologien, vor allem im Bereich

ultrakalter Quantengase, ist es möglich solche Systeme im Labor zu realisieren. Der

Schwerpunkt liegt auf der Untersuchung des Einflusses langsamer hydrodynami-

scher Moden auf den Prozess der Thermalisierung. Generische Systeme im Gleichge-

wicht könne mittels Thermodynamik beschrieben werden. Diese ist charakterisiert

durch ein Ensemble maximaler Entropie, unter Bedingungen die durch makroskopi-

sche Erhaltungssätze auferlegt werden. Wir werden zeigen, dass diese Erhaltungs-

größen die Thermalisierung verlangsamen, und der finale thermische Zustand nur

algebraisch in der Zeit erreicht werden kann. Werden die Erhaltungssätze verletzt,

erfolgt die Thermalisierung exponentiell in der Zeit. In einer anderen Studie berech-

nen wir Wahrscheinlichkeitsverteilungen von projektiven Quantenmessungen. Neu

entwickelte Quantenmikroskope bieten die Möglichkeit neuartige Messprotokolle zu

realisieren, die weit über die konventionellen Messungen von Korrelationsfunktio-

nen hinausgehen.

Im zweiten Teil der Arbeit widmen wir uns neuartigen Materialien, welche in die

Klasse der dreidimensionalen topologischen Isolatoren fallen. Auch hier haben neu-

artige experimentelle Methoden dazu geführt, dass diese Materialien in sehr guter

Qualität hergestellt werden können und die topologischen Eigenschaften zum Vor-

schein treten. Ihr Transportverhalten ist jedoch noch nicht vollständig verstanden.

Motiviert durch ungewöhnliche Messergebnisse in der optischen Leitfähigkeit, ha-

ben wir die Entstehung und thermische Vernichtung von räumlich begrenzten Elek-

tron und Loch-Bereichen in diesen Materialien untersucht. Diese werden verursacht

durch geladene Fremdatome welche ins Material eingebracht wurden um es isolie-

rend zu machen. Unsere Ergebnisse sind im Einklang mit dem Experiment, welches

durch diese Mechanismen semi-quantitativ erklärt werden kann. Des weiteren un-

tersuchen wir emergente Längenskalen in diesen Systemen, sowohl im Inneren, als

auch nahe der leitenden Oberfläche.
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PART I

Semiclassical dynamics after quantum quenches:

Hydrodynamic long-time tails
and projective measurements



1 Introduction I

Non-equilibrium is the absence of equilibrium. A system in equilibrium is described

by thermodynamics, a coarse-grained theory which only has the macroscopically con-

served quantities of the system as degrees of freedom. The density matrix is of a

universal form. Its structure is determined by having the highest entropy consis-

tent with the values of the conserved quantities. Equilibrium is accompanied by a

temporal invariance and expectation values are said to be time-independent. How-

ever, expectation values of non-conserved quantities fluctuate on microscopic scales.

A macroscopic description is implicit in the notion of equilibrium. On the coarse-

grained scales, correlations between different times depend only on the time differ-

ence.

Out of equilibrium this is in general not the case. Exceptions include non-equi-

librium steady states. For example, externally driven systems can show a steady

current flow. By contrast, in equilibrium the (average) current is zero. Due to the

more complex temporal structure of non-equilibrium systems it is generically harder

to describe these theoretically as compared to equilibrium systems. We start by intro-

ducing some terminology inherent to modern non-equilibrium quantum mechanics.

Closed quantum systems. In theoretical approaches to condensed matter systems

it is (almost) always assumed that the system of interest is in thermal equilibrium.

A coupling to an environment is implicitly assumed. The many degrees of freedom

of the environment enter the description only via their statistical properties, for ex-

ample via the temperature. If the environment is in equilibrium, and is much larger

than the system of interest, it is called a bath. The Hilbert space of the total system

is H = Hsystem ⊗ Henvironment where ⊗ denotes the tensor product. If the degrees of

freedom ofHenvironment are traced out the dynamics inHsystem is not unitary any more.

Furthermore the state of the system has to be described as a mixed state, in contrast

to the state of the full system which might be a pure state. In this approach also the

energy stored in the degrees of freedom of Hsystem is not necessarily conserved any

more. We will refer to this subsystem as an open (quantum) system.

We will consider the dynamics in closed quantum systems. They are defined by the

property that they are isolated from their environment and are described by a time-

independent Hamiltonian. This implies that the time evolution is unitary and that

the energy is conserved. It is obvious that the closedness of a system, if it is not the

full universe, can only be an approximation. However, in many experiments closed-
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ness is a decent approximation. In particular in recent years new techniques have

allowed experimentalists to realize quantum systems which are effectively closed on

the timescales of the experiments. These systems are, among others, ultracold atoms

in optical lattices. We will introduce them in the next section in more detail. Often

these systems are well described by Hamiltonians known from condensed matter sys-

tems, like Hubbard models or Heisenberg models. The reason is that in both systems

the relevant (low-energy) degrees of freedom are interacting particles in a periodic

potential. While typical condensed matter are performed at temperatures between

10−3K ( 3He/ 4He dilution refrigerator) and room temperature, ultracold atom exper-

iments are performed at temperatures 10−9 − 10−4K.

In condensed matter systems the periodic potential is provided by the atomic nu-

clei. There collective low-energy excitations, phonons, are often assumed to be in

equilibrium. They provide the aforementioned bath for the electronic and/or mag-

netic degrees of freedom. In optical lattices neutral atoms are trapped in periodic

laser potentials. Regimes can be reached where there is no energy exchange between

the atom and laser degrees of freedom. Therefore the atomic system can often be con-

sidered as closed on the experimental timescales. However, other processes restrict

these timescales, for example atom losses.

In contrast to condensed matter systems, in optical lattice experiments the mi-

croscopic parameters can be tuned, among them are dimensionality, lattice structure

and the interaction strength, exploring new regimes which are not realized in con-

densed matter systems. Furthermore quantities which are inaccessible in condensed

matter systems can be measured. Quantum microscopes, for example, can resolve

positions of individual atoms with single site precision. Due to the high control over

the microscopic parameters also new experimental protocols can be realized.

Quantum quenches. In a quantum quench a parameter in the Hamiltonian is

changed on very short timescale. If this is done fast enough, on a timescale smaller

than all intrinsic timescales of the system, the quantum state does not change. This

is in contrast to an adiabatic change of parameters. If the change of the parameter

is performed very slowly, on a timescale much larger than all intrinsic timescales,

the system remains in its time-evolving eigenstate if there are no energy crossings.

This is the statement of the adiabatic theorem. Since in a quantum quench the time

evolution operator is changed, but the quantum state is not, dynamical processes

are induced. This is the case even if the system was in an equilibrium state, for

example in the groundstate, before. The most-studied protocol, at least theoretically,
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of a quantum quench is the following1:

(QQ1) Prepare the system in the groundstate of a Hamiltonian Ĥ(Jini).

(QQ2) Instantaneously change Jini → Jfinal to obtain the Hamiltonian Ĥ(Jfinal) = Ĥf .

(QQ3) Study the time evolution of an observable 〈Ô〉(t) with the new Hamiltonian Ĥf .

As the system was in the groundstate before the quench, but it is not afterwards, this

can be viewed as a well-defined way to pump energy into the system. The problem of

a quantum quench can formally be solved easily:

(SQ1) Diagonalize the final Hamiltonian Ĥf |n〉 = En |n〉.

(SQ2) Decompose the initial state into the eigenstates {|n〉} of Ĥf : |ini〉 =
∑

n cn |n〉.

(SQ3) Calculate the unitary the time evolution for t > tini as

|t〉 = e−iĤf(t−tini) |ini〉 =
∑
n

cne−iĤf(t−tini) |n〉 =
∑
n

cne−iEn(t−tini) |n〉 . (1.1)

(SQ4) Evaluate the observable of interest as (we use tini = 0)

〈Ô〉(t) = 〈t|Ô|t〉 =
∑
n,m

c∗m cn ei(Em−En)t Ômn

=
∑
n

|cn|2 Ônn +
∑
n6=m

c∗m cn ei(Em−En)t Ômn. (1.2)

In practice one already fails at step (SQ1). Here an exponentially large (in the num-

ber of particles) matrix has to be diagonalized. One can make use of symmetries, if

present, to block-diagonalize Ĥ and in this way split the problem into smaller pieces.

But nevertheless in general it is a hopeless task. It is possible to use brute-force nu-

merical exact diagonalization methods (ED) to perform the scheme described above.

But for interacting systems this is restricted to a small number of particles, typically

10− 20 on present day computers. Nevertheless it can be very useful. For short times

one can use time-dependent perturbation theory. But also here the complexity grows

exponentially with the order of perturbation theory.
1Throughout this thesis we use ~ = 1. Then the unit of energy E is equal to the unit of frequency

ω and the unit of momenta p is equal to the unit of 1/length = 1/l. The dimensions can be restored by
E = ~ω and p = ~/l. We will reintroduce ~ only for dimensional considerations. Furthermore we use
the common notation that operators acting on the Hilbert space H are denoted with a hat on top, for
example Ĥ denotes the Hamilton operator. In addition we use the braket notation for quantum states
as introduced in standard textbooks of quantum mechanics. Matrix elements of an operator Ô in a basis
{|n〉} are denoted by 〈m|Ô|n〉 = Ômn. In continuous systems the sums have to be replaced by integrals.
We further use the term "observable" for hermitian linear operators (Ô = Ô†) having real eigenvalues.
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The formal solution, Eq. (1.2), does not really give any physical insight. In equi-

librium, mean field theories and renormalization group schemes are very successful

in identifying the relevant (low-energy) degrees of freedom. Nothing like this seems

to be within reach here. Non-equilibrium field theory methods are often needed to

make any progress [1–3].

In recent years time-dependent extensions of sophisticated numerical methods

have been developed: most prominently, the non-equilibrium dynamical mean field

theory (NEQ-DMFT) [4], and the time-dependent density matrix renormalization

group (t-DMRG) [5]. Both are tailored to a certain class of models. DMFT is a self-

consistent method for lattice models. The decisive approximation is the locality of

the self energy. This approximation is better the higher the dimension or, more pre-

cisely, the larger the coordination number of the lattice. DMRG methods are only

applicable for 1d systems or 2d systems in a rod geometry. In the modern formula-

tion DMRG works with matrix product states, which can only partially capture the

entanglement growth in generic non-equilibrium systems. Therefore the time range

in which reasonable results are obtained is restricted.

From Eq. (1.2) one can see that the expectation values of conserved quantities are

time-independent. A conserved quantity is defined by the property that the corre-

sponding operator Ĉ commutes with the Hamiltonian: [Ĉ, Ĥ] = 0. Then the eigen-

states of Ĉ are also eigenstates of Ĥ and the second term in Eq. (1.2) vanishes. The

result is 〈Ĉ〉(t) =
∑

n |cn|2 Ĉnn and independent of t. For example, the expectation

value of the energy is 〈Ĥ〉(t) =
∑

n |cn|2 Ĥnn =
∑

n |cn|2En.

Integrability. An exceptions to the failure of step (SQ1) are integrable models. Here

the Bethe ansatz [6–9], a unitary transformation to a non-interacting model [10] or

bosonization [11] allows one to diagonalize the Hamiltonian. In some cases it is even

possible to analytically calculate the time dependence of observables after a quan-

tum quench [12–19]. The hallmark of integrability is the existence of a macroscopic

number of local conservation laws, called charges or constants of motion. Often this

is the case in one dimensional models with short-ranged interactions. For example,

the Heisenberg XXX [6] and XXZ chain [20], the transverse field Ising model [10],

the Fermi Hubbard model [21, 22], the Luttinger liquid [11, 23], the Kondo model

[24] and the Lieb-Liniger model [25, 26] are integrable in one dimension. They have

been solved (diagonalized) in the respective references given above. In this mod-

els the dynamics is highly constrained as the initial expectation values of all the

conserved charges cannot change during the time evolution. By contrast, generic
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models only have a small number of conserved quantities related to the fundamental

symmetries. Therefore integrable models cannot be described by conventional ther-

modynamics. Rather their stationary properties are described by generalized Gibbs

ensembles (GGEs) [27, 28]. Here all the conserved charges have to be included into

the density matrix.

From Eq. (1.2) it can be directly seen, with the projection onto the eigenstates

Ô = |n〉 〈n|, that there are always as many conserved quantities as the dimension

of the Hilbert space. The addition local is essential. Here locality means that the

conserved quantity can be written as a sum over a density which has its support on a

finite number of lattice sites. Well-known examples include the energy, as a sum over

the energy density, and the particle number, as a sum over the particle density. In

general it can be very hard to find all conserved charges. It has also turned out that in

some models quasi-local charges exist and are important to understand the dynamics

[29]. For lattice models quasi-locality means that the corresponding density cannot be

defined on a finite number of lattice sites but has exponential tails. Non-interacting

models also have a macroscopic number of conserved quantities: the individual one-

particle quantum numbers.

For real systems integrability can only be an approximation. Almost any ad-

ditional term in the models mentioned above breaks the integrability, for example

adding longer-ranged interactions. However, many recent experiments can be de-

scribed by integrable models [30–35]. On the timescales of the experiments the dy-

namics is effectively integrable.

Another approach to distinguish integrable from non-integrable models is based

on random matrix theory. It is known that the level spacing distribution of generic

random matrices is described by Wigner-Dyson statistics [36]. The probability to find

two subsequent eigenstates with a (normalized) distance s is Pgeneric(s) ∼ sβ e−γs
2 .

β > 1 and γ > 0 depend on the symmetry class. In either case the probability to find

eigenvalues very close in energy, s → 0, vanishes. In contrast to that, in integrable

models a state does not "feel" the presence of the other states and the eigenvalues are

uncorrelated. This leads to a Poisson distribution of the level spacings Pintegrable(s) ∼
e−γs [37].

Equilibration. A further observation can be made from Eq. (1.2): if 〈Ô〉(t) ever

reaches a time-independent value, it can only be
∑

n |cn|2 Ônn. Only if there are de-

generacies in the spectrum, the second term in Eq. (1.2) can yield a time-independent

contribution. But for generic systems we do not expect any degeneracies (in a sec-
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tor with fixed particle number and, possibly, total momentum or magnetization).

The reason is level repulsion: as described above the probability distribution of the

level spacings in non-integrable models is ∼ sβ>1 e−γs
2 . The probability to have

degeneracies s → 0 is zero. Therefore, we expect for non-integrable models that

〈Ô〉(t) =
∑

n |cn|2 Ônn + F ini
Ô

(t) where FÔ has no time-independent term, and the su-

perscript "ini" indicates that F depends on the initial state, see Eq. (1.2). A possible

definition of equilibration is that for all initial states and all reasonable observables

Ô, to be specified below,

F ini
Ô

(t) =
∑
n6=m

c∗m cn ei(Em−En)t Ômn −→
t→∞

0. (1.3)

For finite systems, as for example simulated in ED, this definition can never be ful-

filled. There are finite size corrections which lead to fluctuations on the right hand

side. A pragmatic way is to take the definition in the thermodynamic limit. Further-

more there are quantum revivals [38, 39]. If there is only a finite number of eigen-

states the right hand side of Eq. (1.2), it is a sum of finitely many periodic terms.

Then, for mathematical reasons, F ini
Ô

(t) returns arbitrarily close to its initial value

during the time evolution. However, for generic systems this happens only on very

long time scales. Following [40], the time evolution in a Hilbertspace of dimension N

can be visualized by N clocks representing the phases φ of the individual eigenstates.

The probability to find a specific configuration, for example the initial one, within

a precision ∆φ is ∼ (∆φ
2π )N . The recurrence time of the full wavefunction is then

R ∼ (∆φ
2π )−N/ω where ω is the typical angular velocity – the energy. For ∆φ

2π = 0.01

and ω = 1eV ∼ 1.52× 1015sec−1 R exceeds the age of the universe already for N = 17.

Nevertheless observables can show recurrences at smaller times but for macroscopic

systems they are usually not of any relevance. Exceptions in a many particle system

can occur in Bose Einstein condensates where the phases are locked [41].

Eq. (1.3) depends on the observable Ô, which means that some observables can

equilibrate while others do not. This is generically the case; for example, the energy

does always equilibrate in this sense. But let us consider the operator Ôab = |a〉 〈b|+
|b〉 〈a| where |a〉 and |b〉 are eigenstates with Ea − Eb = ωab 6= 0 and ca, cb 6= 0. Then

Ôab does never equilibrate.

The definition, Eq. (1.3), is only useful for measurable quantities. A broad class

of measurable observables are local. Again, locality means that it can be written

as a sum of local terms: Ôlocal =
∑

j Ôj where Ôj has support (is non-zero) only

in a small region of space. In lattice models it must have support only on a small
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number of connected lattices sites. A prime example is the total magnetization in

lattice spin models: M̂ =
∑

j σ
z
j . Thanks to linearity of the time-evolution, it is

F ini
Ôlocal

(t) =
∑

j F
ini
Ôj

(t). Then all parts Ôj equilibrate independently and the rest of

the system can serve as an environment. One can decompose the Hilbertspace as a

tensor product H = ⊗jHj . The measurement is then performed only in one sector Hj
and the result is averaged over j. Higher order correlation functions include more

sectors. As long as the number of involved sectors is much smaller than the particle

number, the rest of the system can still serve as an environment.

An important quantity which does not fall into this class is the occupation of the

momentum modes n̂k. It can be accessed in time of flight measurements [42–44].

The equilibration of n̂k implies detailed balance. The transition rate into the single-

particle state |k〉 has to be equal to the transition rate out of |k〉. We will show further

examples for the measurement of distribution functions in the next section.

Prethermalization. Some systems show an emergent integrability on short time-

scales – prethermalization [45]. In this regime expectation values of observables show

prethermalization plateaus which means that they are time independent for some

time [46, 47]. But these values are not consistent with the thermal values. Only at

later times the non-integrability eventually leads to true thermalization. Many nu-

merical studies, for example [46, 48], and recent experimental studies, for example

[32, 49], have investigated this regime. The quasi-stationary properties can be de-

scribed by generalized Gibbs ensembles as in integrable systems. To be precise, all

real world manifestations of integrable models are in the prethermalized regime. As

aforementioned integrability can only be an approximation for real systems, which

are then rather described as prethermalized.

Irreversibility. The microscopic equations underlying the dynamics, either quan-

tum or classical, are time-reversal invariant. This is seemingly in contradiction to

the second law of thermodynamics: it states that the entropy (almost) always in-

creases, thereby distinguishing the two time directions. The system spontaneously

"finds" its highest entropy state – the equilibrium. If the system of interest is coupled

to a bath, it is plausible that the equilibrium, and thereby the time direction, in the

subsystem is externally imposed. But what about closed systems?

Irreversibility requires a coarse-grained point of view. Formally, this is achieved

by distinguishing microstates and macrostates. In a microstate all degrees of free-

doms of the system are specified. In classical physics this corresponds to one point in
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phase space, and in quantum mechanics this implies a knowledge of the full wave-

function or density matrix. This cannot be measured let alone experienced by the

sensory organs. A macrostate is obtained by fixing the (average) values of some ob-

servables. This defines a probability distribution – an ensemble – as a macrostate is

compatible with many microstates. In quantum mechanics, an ensemble is described

by a mixed state and represented in terms of a density matrix. In this description

the observables which are taken into account and all other degrees of freedom play a

very different role. The fact that the microstate is not specified leads to fluctuations

on microscopic scales.

In thermodynamics only the (average) values of macroscopically conserved quan-

tities are specified. Usually these are the energy and the particle number. The corre-

sponding thermodynamical ensemble is defined by having the largest entropy among

all ensembles consistent with the given values. This is the fundamental assumption

of statistical mechanics. Experience shows that this is often sufficient to describe ex-

perimental results. The entropy of a probability distribution P = {p1, p2, ...|
∑

j pj =

1} (a density matrix ρ̂) is defined as

S(P ) = −
∑
j

pj log(pj) (S(ρ̂) = −Tr (ρ̂ log(ρ̂))) . (1.4)

Under reasonable assumptions (most importantly additivity) the structure of the for-

mula given above can be uniquely determined, see for example [40]. The prefactor

has to be fixed by convention or normalization. The entropy is a measure for the lack

of information. The maximum entropy assumption and the second law of thermody-

namics then state that the time direction is fixed by the loss of information. This is,

of course, not the full story. Most importantly broken symmetries are ubiquitous on

all scales from particle physics to cosmology. By contrast, thermodynamic ensembles

respect the symmetries of the system, see for example the famous article "More Is

Different" by P. W. Anderson [50].

If a system can be locally described by a thermodynamic ensemble, a hydrody-

namic description is appropriate. Here "locally" refers to a scale which is much

smaller than the system size but much larger than any correlation length or mean

free path. Then one can specify the time and space dependent temperature T (r, t) or,

equivalently, the energy density e(r, t). The same holds for the densities of other con-

served quantities. If one chooses a coarse-grained, thermodynamic or hydrodynamic,

description of the system the fluctuations can be described only statistically.

It is common to refer to the equilibrium ensemble as the equilibrium state. We
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will also use this terminology, however, one has to keep in mind that this refers to a

probability distribution rather than to a (micro-)state.

A simple picture for irreversibility arises if one assumes that the dynamics is

ergodic. Ergodicity means that during the time evolution with the microscopic equa-

tions the full available phase space is covered equally. Then, if the system is ini-

tialized in an atypical (=non-equilibrium) state, thermalization is just a matter of

probabilities. For concreteness let us consider a classical closed system in which en-

ergy and particle number are conserved. Thermodynamically, this is described by a

microcanonical ensemble where all microstates consistent with the given energy and

particle number are equally probable. This probability distribution has the largest

entropy among all possible distributions. Seemingly there are no atypical states.

However, from a coarse-grained perspective this is not true. We consider an over-

simplified, yet very instructive, standard example: N = 1023 molecules in a box. We

assume that the probability for a distinguished particle to be in the left half of the box

is 1/2. We further assume that, independent of the energy, the number of available

microstates in the macrostate {N1, N2 = N−N1} is
(
N
N1

)
. HereN1 denotes the number

of molecules in the left half and N2 denotes the number of molecules in the right half.

We focus on a description with these macrostates giving a coarse-grained picture. We

totally omit the energy conservation for conceptual clarity. And, obviously, quantum

statistics is different.

The probability to find all the particles in one half of the box is ∼ 2−1023 . This

number is so ridiculously small that one would need billions of terabytes to store its

digits2. From the macroscopic point of view it is reasonable to call this an atypical

state. The notion of equilibrium itself requires a coarse-grained, macroscopic, point

of view. Otherwise it is not possible to distinguish typical from atypical, equilibrium

from non-equilibrium, configurations. In practice an atypical state can be realized

by connecting a ultrahigh vacuum chamber to a normal gas. If we release such a

system it is intuitively clear that after some time the number of molecules in both

boxes will be approximately the same (if they are of equal size). But we will never

find that a macroscopic ultrahigh vacuum region emerges spontaneously. From the

macroscopic point of view the process is irreversible. To produce an ultrahigh vacuum

chamber requires a high effort and sophisticated technology. A non-equilibrium state

is a highly fine-tuned state.

In equilibrium there will be fluctuations in the number of molecules per box. As-

suming equal sized boxes and ergodicity, the expectation value per box is µ = N/2.
2It is: 1023 bits ∼ 1022 bytes ∼ 1019 KB∼ 1016 MB∼ 1013 GB∼ 1010 TB
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The typical fluctuations are given by the square root of the variance of the corre-

sponding probability distribution. The probability to find M excess molecules in the

left or the right box, a macrostate {N/2 +M,N/2−M} or {N/2−M,N/2 +M}, is

P±M =
1

2N

(
N

N
2 ±M

)
=

1

2N
N !(

N
2 +M

)
!
(
N
2 −M

)
!

≈ 1

2N

√
2πN

(
N
e

)N
√

4π2((N/2)2 −M2)

( N
2 +M

e

)N
2 +M ( N

2 −M
e

)N
2 −M

=
1√

2π(N/4−M2/N)
e
N log

N√
N2−4M2 eM log

N−2M
N+2M ≈ 1√

π
2 N

e−
2M2

N , (1.5)

where we have used Stirling’s formula in the second line. The final result, valid in

the limit N � M , is just a Gaussian distribution with variance σ2 = N/4. Thus the

typical number of excess molecules in one of the boxes is σ =
√
N/2: this describes

the thermal fluctuations.

Note that we have not used the notion of time yet. By means of the ergodicity as-

sumption, the temporal average is replaced by an ensemble average. The fluctuation

formula, Eq. (1.5), is valid on large timescales. We can fix a macrostate at some in-

stant of time by reintroducing the barrier and thereby cutting the box in half. We will

find a macrostate {N/2+M1, N/2−M1} with probability PM1 . If we again release the

barrier, say at time t1, we can ask "What is the typical number of excess molecules

M2 at time t2 > t1?". This is an example of an unequal time correlation function

and the answer depends only on ∆t = t2 − t1. It is clear that M2(∆t → 0) = M1

and M2(∆t → ∞) = 0. In formulating the question we have implicitly defined a

non-equilibrium ensemble. At t1 only microstates compatible with the macrostate

{N/2 + M1, N/2 − M1} are allowed and this is not the ensemble with the highest

entropy consistent with N molecules.

Averaged over all possible {N/2+M1, N/2−M1}macrostates at t1, with the corre-

sponding probability, one obtains the equilibrium unequal-time autocorrelation func-

tion 〈M(t1)M(t2〉eq. Its equal time value is
∑

M M2PM ≈ σ2 = N/4. In diffusive

systems functions of this type show algebraic long-time tails. If not averaged over

all M1, a non-equilibrium initial condition, they also dominate the thermalization

process at late times.

Also in finite classical systems, due to mathematical reasons, the system will come

back arbitrarily close to its initial configuration as described by the Poincaré recur-

rence theorem [51]. However, the recurrence time for a system of 10 or 20 particles
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is again much larger than the age of the universe [52]. Thus it does not have any

physical consequences for macroscopic systems.

The initial states in quantum quench setups are very often low entanglement

states. Groundstates of gapped Hamiltonians, often chosen as initial states, show

area laws for the entanglement entropy [53]. Often product states are chosen. Only

the high effort of the experimentalists to prepare such an atypical state, by lowering

the entropy using sophisticated cooling schemes, make it possible to investigate the

non-equilibrium. Theorists don’t care since product states are easily written down

and can be nicely depicted. We will make use of this later.

All processes taking place in nature are accompanied by an entropy growth (re-

ferred to as friction or heating), an unavoidable consequence of the tendency to ther-

malize – or statistics. Even if it would be possible to microscopically change the

time direction (for example by letting Ĥ to −Ĥ in a quantum system), the tiniest

perturbation, which is unavoidable in practice, will hinder system to go back to its

initial non-equilibrium state. Only if the non-equilibrium is artificially maintained,

for example by driving, the (sub-)system can be prevented from going to equilibrium.

Exceptions can arise in highly inhomogeneous systems as further discussed below.

Thermalization. Eq. (1.2) can also be written in terms of a density matrix ρQQ(t) as

〈Ô〉(t) = Tr
(
Ô ρQQ(t)

)
. The time-independent part is called the diagonal ensemble,

its density matrix ρ̂DE is defined by

ρ̂DE =
∑
n

|cn|2 |n〉 〈n| , then
∑
n

|cn|2 Ônn = Tr
(
Ô ρ̂DE

)
. (1.6)

ρ̂DE depends on all the details of the initial state via the macroscopically many num-

bers cn. This is in vast contrast to the equilibrium density matrix ρ̂eq, which only

depends on a very small number of parameters. The full density matrix after a

quantum quench can never become a thermal density matrix. The density matrix

of the canonical ensemble ρ̂can = exp
(
−βĤ

)
/Zcan depends only on one parameter,

the temperature T , or, equivalently, its inverse β = 1/T (we use kB = 1 throughout).

Zcan = Tr
(
exp
(
−βĤ

))
denotes the canonical partition function. A possible defini-

tion of thermalization might be the following: a quantum system thermalizes if for

all measurable observables Ô and all initial states:

Tr
(
Ô ρ̂DE

)
= Tr

(
Ô ρ̂eq(T, . . . )

)
. (1.7)

This implicitly defines the temperature T and possibly other, but only very few, pa-
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rameters (fixed by the few macroscopically conserved quantities) as indicated by the

dots. Again, the definition has to be understood modulo finite size effects and quan-

tum revivals. According to the definition integrable models do not thermalize as they

have many conserved quantities. But they can, and often do, equilibrate.

Another class of interacting systems which fail to thermalize are many-body lo-

calized systems [54, 55]. While in non-interacting disordered systems the single-

particle states are, completely or partially (depending on the dimensionality) local-

ized [56, 57], many-body localization is a complex interplay of disorder and interac-

tions. First experiments have been reported recently [58, 59].

A widely accepted mechanism which leads to thermalization in closed quantum

systems is the eigenstate thermalization hypothesis (ETH) [60, 61]. The essential as-

sumptions are that 1) the diagonal matrix elements Ônn = O(En) depend smoothly

on the energy and that 2) the off-diagonal matrix elements Ôm6=n are typically much

smaller than the diagonal elements: |Ôm 6=n| � |Ônn|. If we assume that the distri-

bution of the energies is confined to the interval I〈Ĥ〉,∆E = [〈Ĥ〉 −∆E/2, 〈Ĥ〉+ ∆E/2]

containing N〈Ĥ〉,∆E states, we obtain from Eq. (1.2)

〈Ô〉(t) −→
t→∞

∑
n

|cn|2 Ônn +
∑
n 6=m

c∗m cn ei(Em−En)t Ômn

≈
∑
n

|cn|2O(En) ≈ 1

NĤ,∆E

∑
E∈I〈Ĥ〉,∆E

O(E). (1.8)

The last formula is exactly the definition of the microcanonical ensemble. For ∆E → 0

the result is just 〈Ô〉(t) −→
t→∞

O(〈Ĥ〉), and only depends on one number: the expectation

value of the energy 〈Ĥ〉. In this way the universal regime of thermodynamics can be

recovered. Since the result does not depend on the eigenstate that is picked out

of I〈Ĥ〉,∆E , provided that ∆E is small enough, this implies that each eigenstate is

intrinsically thermal. A numerical study and further details on the ETH can be

found in [62]. The ETH suggests a mechanism how thermalization arises in quantum

systems. Following [62], in the initial state the thermal properties are hidden by fine-

tuned phases of the contributing eigenstates. During the time evolution the different

eigenstates dephase and, eventually, reveal their thermal nature. However, a full

theory of quantum thermalization is not available at present.

In either case, quantum or classical, the non-equilibrium to equilibrium transition

is unavoidable and is irreversible on all reasonable timescales. There are exceptions

in inhomogeneous systems: either if the Hamiltonian itself is highly inhomogeneous,

for example in systems showing many-body localization, or if the initial state is inho-
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mogeneous. In the latter case the system can fail to thermalize in the thermodynamic

limit. Consider, for example, the two boxes as above one filled with a gas of molecules

the other initially empty. If we, hypothetically, increase the size of both boxes to an

infinite volume, it is obvious that in the box which was initially empty there are al-

ways regions that are still empty. If the maximal velocity of the molecules is c, then

regions which have a distance larger than ct from the former barrier cannot contain

any molecule. Therefore, the density can never become homogeneous and the sys-

tem fails to thermalize. This can be easily extended to quantum systems, where a

maximal velocity is provided by Lieb-Robinson bounds [63].

Our work. We will consider two different quantum quenches which, in principle,

can be realized with ultracold atoms in optical lattices.

In the first study we will investigate the bottleneck for thermalization in diffusive

homogeneous system: the build-up of thermal fluctuations. While many theoreti-

cal approaches predict an exponential decay towards equilibrium, we find only an

algebraic decay. We will describe the thermalization on a coarse-grained scale by

fluctuating hydrodynamics. This generically leads to long-time tails. If we accept

that quantum systems thermalize, we also have to accept that – close to equilibrium

– they are described by hydrodynamics. As an example to demonstrate this, we will

investigate the 1d bosonic Hubbard model. We will find that numerical results are in

perfect agreement with predictions from hydrodynamics and linear response theory.

Some of the results can be found in the publication [P1].

In a second study we will calculate the full distribution function of an observable.

In conventional experiments only, usually first or second, moments are measured.

The new experimental techniques make it possible to go beyond this. We will consider

the fragmentation of a spin line into bound states. We will calculate the bound state

distribution which arises as a result of projective quantum measurements. The model

we use is the XXZ Heisenberg model. The results can be found in the publication [P2].

As a preparation, we will introduce the experimental systems we have in mind

and the methods we have used in the next two sections. This is followed by a section

on fluctuating hydrodynamics and diffusion.
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2 Ultracold atoms in optical lattices

The field of ultracold quantum gases has offered a lot of trend-setting experiments

during the last years and no doubt there are still more to come. Many review arti-

cles are available by now, we have mainly used [43, 44, 64–67] for the foundations

presented below.

At the present day, temperatures as low as ∼ 10−9K for bosons [68] and ∼ 10−5K

for fermions [69] can be realized in experiments. To reach these ultralow temper-

atures, sophisticated cooling schemes have been developed [64, 70, 71]. In experi-

mental systems usually alkali atoms are used, having only a single valence electron.

Depending on the number of neutrons they can be either bosonic (B) or fermionic

(F). The most commonly used atoms are 87Rb (B), 23Na (B), 7Li (B), 6Li (F) and 40K

(F) [66]. Also the trapping of monoatomic [72] and diatomic [73] molecules has been

reported.

We will focus on trapping neutral atoms with optical dipole traps. Alternatives

include the trapping by inhomogeneous magnetic fields [74, 75]. Another related

field is the realm of trapped atomic ions [76, 77].

2.1 Producing a lattice for neutral atoms

The reason that neutral alkali atoms can be trapped with laser light is that they

have a simple dipole transition from nS (l = 0) to nP (l = 1) where l denotes the an-

gular momentum quantum number and n the principal quantum number. For Alkali

atoms, the energy difference is ω0 = 1.5−2eV , corresponding to a photon wavelengths

of 1600 − 1200nm. For simplicity, let us consider a toy atom that only has these two

states, denoted by |0〉 and |1〉. Furthermore we assume only two constituents: a pos-

itive nucleus+core electrons, kept fix at a position R with total charge +|e|, and a

negative valence electron with charge −|e|. Although this is of course oversimplified,

it captures all the relevant physics and is a decent approximation for alkali atoms at

low energies.

In second order perturbation theory, the energy shift of the groundstate in a

static electric field E is given by α = | 〈0|d̂ ·E|1〉 |2/ω0. Here d̂ = e(r̂e − R) de-

notes the dipole operator and α is the static polarizability. Laser fields are oscil-

lating with a frequency ω. We denote the corresponding electric field by E(r, t) =

E0(r) 2 cos (ωt) = êE0(r) 2 cos (ωt). The oscillating field induces an oscillating dipole

moment p = ê p(r)2 cos (ωt) in the atom. Its amplitude is given by p(r) = α(ω)E0(r)

where α is the dynamic polarizability, which depends on the laser frequency ω. The
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induced dipole moment gives rise to an effective interaction potential for the atom

[65]

Vdipole(r) = −1
2 〈p ·E〉t = −1

2 Re (α(ω)) |E0(r)|2 . (2.1)

Here 〈·〉t denotes an average over the rapidly oscillating terms, it arises as the time-

scale of the atom motion is much larger than 1/ω. |E0(r)|2 = I(r) is the intensity of

the laser field. The potential leads to a force F = −∇Vdipole(r) = 1
2Re(α(ω))∇I(r).

The polarizability can be calculated to be [65]

α(ω) =
2ω0

ω2
0 − ω2 − i(ω3/ω2

0)Γ

∣∣∣〈0|d̂ · ê |1〉∣∣∣2 where Γ =
ω3

0

3πε0c2

∣∣∣〈0|d̂ · ê |1〉∣∣∣2 (2.2)

is the decay rate of the excited state. In the experimentally relevant regime [44]

Γ � |∆| � ω0 where ∆ = ω − ω0 is the detuning, it follows that Re (α(ω)) ≈
−
∣∣∣〈0|d̂ · ê |1〉∣∣∣2 /∆ = −3πε0c2

ω3
0

Γ
∆ and thus

Vdipole(r) =

∣∣∣〈0|d̂ · ê |1〉∣∣∣2
2∆

I(r) =
3πε0c

2

2ω3
0

Γ

∆
I(r). (2.3)

A spatially varying intensity provides a trapping potential for the atoms. Depending

on whether the laser is red detuned (∆ < 0) or blue detuned (∆ > 0), the atoms

can be attracted or repelled from the intensity maxima. The decay rate Γ limits the

lifetime of the experimental system. Absorption of a single photon, with an energy

∼ eV , heats the system up considerably. In the same limit considered above, the

atom-photon scattering rate is given by Γsc = 3πε0c2

2ω3
0

( Γ
∆)2 I(r) such that Γsc = Γ

∆Vdipole.

Typical experimental values are Γ
∆ ∼ 10−6 [66], which guarantees that there is no

energy exchange between the atoms and the laser system on a reasonable timescale.

If I(r) is periodic in space, the laser forms a periodic potential for the atoms. This can

be reached by interference of counter propagating laser beams: the potential is then

given as Vdipole(r) = V0(sin2 (kxx) + sin2 (kyy) + sin2 (kzz)). In addition, an harmonic

trapping potential is used to prevent the atoms from leaving the lattice. By using

different trappings in different directions, the motion of the atoms can effectively be

confined to two or one spatial dimension.

The typical energy of an optical lattice is the recoil energy

Er =
~2

2m2λ2
(2.4)

where λ is the wavelength of the laser and m is the mass of the alkali atom. For
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typical experimental values (λ = 1000nm and m = 85u for an Rb atom), the recoil

energy is ≈ 10−11 eV ∼ 10−7K ∼ 2 kHz. If the intensity of the laser is high enough,

the atoms are confined to the potential minima (or maxima). The natural description

of such a system at low energies is a lattice model using Wannier functions. The

tunneling amplitude, or hopping strength, between the minima depends on the depth

of the optical lattice V0. It can be tuned in experiments. Tunneling to non-nearest

neighbor sites is highly suppressed and lattice models with only nearest neighbor

(nn) hopping provide a very good approximation [44]. In the limit V0 � Er, the nn-

hopping amplitude J is approximately given by [44]

J ≈ 4√
π

(
V0

Er

)3/4

e−2
√
V0/Er Er. (2.5)

In the Wannier basis, this leads to the hopping Hamiltonian

Ĥ0 = −J
∑
〈i,j〉

b̂†i b̂j (2.6)

where i and j label the lattice sites and 〈i, j〉 indicates only nn-hopping.

2.2 Interactions

Optically trapped neutral atoms interact via van der Waals interactions due to the

induced dipole moments. We will focus on two-particle scattering here. At large

distances r > rc, where rc is an atomic lengthscale (∼ nm), this decays as−C6/r
6 with

C6 > 0. The van der Waals interaction defines a lengthscale ac = (2mrC6/~2)1/4 � rc

where mr is the reduced mass.

Two-particle scattering only depends on the relative coordinates and can therefore

effectively be described by one-particle potential scattering. In 3d scattering theory,

the outgoing wavefunction can be decomposed into parts having different rotational

symmetry. They are distinguished by the angular momentum quantum number l.

The isotropic part (l = 0) is called s-wave scattering, the l = 1 part is called p-wave

scattering, etc. , as in the labeling of atomic orbitals. The energy of the l > 0 channels

is separated from the s-wave channel by an energy Rc ∼ ~2/(mra
2
c). Typical experi-

mental values are Rc ∼ mK and if T � Rc the l > 0 channels are effectively closed

and only s-wave scattering is relevant, or open. This can be taken as the definition

of the regime of ultracold atoms [44]. The s-wave scattering at low energies can be

parametrized by a single parameter, the scattering length as ∼ ac. The corresponding

scattering amplitude for radial momentum k is given by f(k) = −as
1+ikas

. This is the
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exact result for a pseudopotential Vpseudo(r) = 4π~2as
2mr

δ(r) = gδ(r). However, the regu-

larization of the δ-function can cause problems [44, 66]. The important result is that

the effective interaction is short-ranged and parametrized by a single parameter as.

For indistinguishable fermions there is no s-wave scattering due to anti-symmetry.

At low energies, kas � 1, they are effectively non-interacting.

In the pseudopotential approximation, the interaction between bosons is

Ĥint = g
2

∫
d3r b̂†r b̂

†
r b̂r b̂r. (2.7)

In the Wannier basis used for the lattice description this corresponds to an on-site

interaction U . In the limit V0 � Er, this is given by [44]

U ≈
√

8

π

as
l

(
V0

Er

)3/4

Er, (2.8)

where l is the lattice constant. In combination with the hopping term, Eq. (2.6), this

leads to the bosonic Hubbard model

ĤBH = −J
∑
<i,j>

b̂†i b̂j + U
∑
i

b̂†i b̂
†
i b̂i b̂i . (2.9)

This one band approximation is valid as long as the energy to the first excited band

is much larger than the temperature and U . Furthermore the Wannier functions

have to decay on a smaller length than the lattice constant l. The ratio J/U ≈
√

2 (l/as) e−2
√
V0/Er can be tuned by the lattice depth V0.

The bosonic Hubbard model has two quantum phases: the Mott insulator and the

Bose-Einstein condensate (BEC). The corresponding quantum phase transition has

been first observed in 3d [78]. The critical value of U/J depends on the dimensionality.

In [78] it was estimated to (U/J)exp,3d ≈ 36. The theoretical value (obtained from

quantum Monte Carlo) is (U/J)theory,3d ≈ 29.34 [79].

Bound states do usually not change the scattering picture given above. In the

pseudopotential approximation, there is only a single bound state, the pole of f(k),

with binding energy Eb = ~2/(2mra
2
s) (for as > 0) below the scattering continuum.

In real systems there are many bound states: approximately 100 for 87Rb [44]. How-

ever, at low energies they are not in resonance with the scattering states. The energy

of the bound states can, under the conditions described below, be tuned by Fesh-

bach resonances [44, 66]. In this way, the scattering length can be directly tuned.

The common situation is the presence of different atomic species, usually hyperfine

18



states, which have different magnetic moments in the open and closed channels. For

different fermion species there can be s-wave scattering if the spin, here the nu-

clear spin, wavefunction is in a triplet state. If there is a bound state in the closed

(singlet) channel at the appropriate energy, the wavefunctions hybridize and a res-

onance is encountered. The scattering length can then be effectively described by

as(B) = as (1 − ∆B
B−B0

) [44] where B denotes the magnetic field, and B0 and ∆B are

the position and the width of the resonance, respectively. The scattering length, and

thereby the interaction strength ∼ as, can be tuned from −∞ to ∞. The is widely

used, especially to explore the BCS-BEC crossover kF |as| ∼ 1 [80, 81] and the unitary

limit kFas →∞ [82, 83].

A new regime is offered by the trapping of polar molecules with a permanent

dipole moment [84–86], leading to long-ranged interactions. This can be used to de-

sign effective spin-spin interactions which, for example, can support to topological

phases [87].

2.3 Quantum microscopes

In the first course on quantum mechanics one usually learns that measurements on

a quantum mechanical systems lead to a collapse of the wavefunction. Let us assume

that the quantum system is in a state |Ψ〉 and that the measurement operator is

given by Ô =
∑

nOn |n〉 〈n|. Then it is said that the probability to measure On is

Pn(Ô) = | 〈Ψ|n〉 |2 and that the system is in the state |n〉 after the measurement. If

only one measurement is performed, with an outcome On1 , the only information that

can be extracted is that Pn1(Ô) 6= 0. But if many measurements are performed on the

same quantum state, one can, in principle, obtain the distribution function Pn(Ô).

Probability distributions can be fully characterized by their moments. For a Gaus-

sian distribution, all higher moments can be obtained from the first (expectation

value) and second (variance) moments. In almost all condensed matter experiments

expectation values or second order correlation functions are measured. Exceptions

include the measurement of full counting statistics of charge transfer in quantum

dots [89–91]. Quantum microscopes go beyond this as they can detect the position of

individual atoms in an optical lattice with single site precision. The first quantum

microscopes were build for bosonic atoms [88, 92]. Recently, in 2015, several groups

also reported on the realization of quantum microscopes for fermions [69, 93–95]. In

Fig. 2.1 quantum microscope images taken from [88] are shown. To obtain the images,

the lattice depth V0 is increased by a factor of ∼ 100 to fix the position of the atoms.

This is the actual measurement process in the sense described above. To detect the
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Figure 2.1: Quantum microscope images showing the BEC to Mott insulator
transition. (taken from [88]) The light dots in the upper two rows indicate the pres-
ence of an atom. In the lowest row reconstructed pictures are shown, depicting the
full lattice configuration of the atom cloud. The position of single atoms can be deter-
mined with single-site precision. Ring shaped structures arise due to the harmonic
trapping potential. In the Mott insulating phase, number fluctuations are highly
suppressed, as can be directly seen from the images.

atoms fluorescence imaging is used. Near resonant light is shone onto the sample

and the scattered photons are detected. Due to pairwise losses, the atom number can

be measured only modulo 2 in this way. The corresponding measurement operator is

the projection operator onto product states (N̂ = n̂1⊗ n̂2⊗ . . . ). It can already be seen

from the single-shots in Fig. 2.1 that the typical configurations (those occurring with

a high probability) are quite different in the respective quantum phases, see also [96].

While in the BEC phase the occupation numbers highly fluctuate from site to site, the

occupation in the Mott phase is almost uniform. From the images, in principle, full

distribution functions of N̂ can be obtained. This was, for example, used to detect

string order [97] and to measure the entanglement entropy for the first time [98].

For ultracold gases, also other techniques exist to measure higher order correla-

tion functions or even full distribution functions [49, 99–101]. For example, in [100]

correlation functions up to 8th order were measured by matter wave-interferometry

of one-dimensional superfluids. The authors performed a direct test of the Wick de-

composition of higher order correlation functions into lower order ones, a pillar of

quantum field theory.
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Figure 2.2: Time evolution of the probability distribution of a single particle
in a 1d lattice. (taken from [102]) Panels a) and b) show the quantum microscope
images from which the distribution functions were obtained. Post-selection was used
to restrict the initial state. The hopping in y-direction was suppressed leading to
an array of decoupled 1d systems. The Hamiltonian governing the unitary time-
evolution is of nearest neighbor hopping type. This single-particle problem can be
exactly solved, see the main text, and the result is indicated by the red lines.

2.4 Observing the unitary time evolution

To investigate the non-equilibrium, the quantum microscopes were used to measure

time and spatially resolved probability distributions [102–107]. To do so the system

has to be prepared in the same non-equilibrium state many times and the measure-

ments are performed at different times. The simplest example of a free particle hop-

ping on a 1d lattice was demonstrated in [102]. The main result from this publication

is shown in Fig. 2.2. Here many decoupled 1d lattices were measured at the same

time. The experiment made use of the fact that it is not only possible to read out

configurations with the quantum microscope, but that also the hyperfine states of

the atoms can be addressed with single-site precision [108]. In the Mott insulating

phase, the two different hyperfine species can effectively realize an isotropic Heisen-

berg model [109, 110]. In the experiment, a single "spin-flip" was performed in a

"ferromagnetic" background. This one magnon problem can be solved exactly. As the
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magnetization is conserved, it is equivalent to a free particle hopping on a lattice. If

the flipped spin was at the initial time tini at lattice site 0, the probability to find it at

time t on site n is J2
n (Jex(t− tini)) [102]. Here Jn denotes the n-th Bessel function of

the first kind and Jex is the effective exchange coupling, estimated by the experimen-

talists to ≈ 65Hz. This exact result is shown by the red lines in Fig. 2.2. One can

see the very good agreement with the experimental data. This demonstrates that the

time evolution is unitary, implying that the system is closed on the timescales of the

experiment. Deviations are due to the imperfect initial state, see the picture at 0ms,

and residual temperature effects.
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3 Methods

In this section we will provide the methods that we have used to study the dynamics

after quantum quenches. In the limit we will consider, the dynamics can be described

in terms of a dilute (low-density) gas of long-lived quasiparticles. The quasiparticles

are protected by a large gap and we will not consider excitations above this gap.

These, however, will emerge on large time scales. The creation and the scattering of

quasiparticles will be calculated fully quantum mechanically. We will use the exact

two-particle creation and scattering rates in the effective Hilbertspace without gap

excitations. The negligence of higher order scattering is justified by the low density

of quasiparticles. Their propagation will be treated semi-classically which, again,

is a valid approximation in the dilute limit. The dynamics of the quasiparticles is

governed by effective Hamiltonians in the respective subspace.

3.1 Derivation of effective Hamiltonians

The typical situation we will encounter is the following: the Hamiltonian

Ĥ =


Ĥ0 ĤJ 0

Ĥ†J ĤU ĤJ
...

0 Ĥ†J Ĥ2U

· · · . . .

 (3.1)

naturally divides the Hilbertspace in different sectors. They are separated by an en-

ergy U and coupled by an energy J � U . We are interested in the dynamics in a

sector with fixed U energy. In this subsection, we use the notation that the subscript

s on the Hamiltonian Ĥs indicates the maximal energy of its matrixelements. We in-

clude the couplings to the other sectors only perturbatively. One possibility to achieve

this, is to employ a unitary transformation Û such that the new Hamiltonian has the

structure

ˆ̃H = ÛĤÛ † =



Ĥ0 ĤJ2

U

0

Ĥ†
J2

U

ĤU ĤJ2

U

...

0 Ĥ†
J2

U

Ĥ2U

· · · . . .


. (3.2)

A well-known example is the Schrieffer-Wolff transformation, originally used to de-

rive the Kondo Hamiltonian from the Anderson Hamiltonian [111]. Further applica-
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tions include the derivation of the Heisenberg model from the Hubbard model [112]

and the strong disorder renormalization group [113]. In [111], the authors used the

following formulation: the Hamiltonian is split into Ĥ = Ĥ0+Ĥ1 whereH0 acts within

the Hilbertspace of interest and Ĥ1 collects all other terms. The unitary transforma-

tion is written as Û = eŜ where Ŝ is anti-unitary Ŝ† = −Ŝ, then:

ˆ̃H =ÛĤÛ † = eŜ
(
Ĥ0 + Ĥ1

)
e−Ŝ = (1 + Ŝ + 1

2 Ŝ
2 + . . . )

(
Ĥ0 + Ĥ1

)
(1− Ŝ + 1

2 Ŝ
2 + . . . )

=Ĥ0 + Ĥ1 + [Ŝ, Ĥ0 + Ĥ1]

− Ŝ
(
Ĥ0 + Ĥ1

)
Ŝ + 1

2 Ŝ
2
(
Ĥ0 + Ĥ1

)
+ 1

2

(
Ĥ0 + Ĥ1

)
Ŝ2 +O

(
Ŝ3
)
. (3.3)

If the condition [Ŝ, Ĥ0]
!

= −Ĥ1 is fulfilled, it is ˆ̃H = Ĥ0 + 1
2 [Ŝ, Ĥ1] +O

(
Ŝ3
)

. If H0 has

matrixelements ∼ U and H1 has matrixelements ∼ J , the matrixelements of Ŝ are

∼ J/U . If |J/U | � 1 a perturbative expansion in Ŝ is justified. Then the effective

Hamiltonian to leading order reads

Ĥeff = Ĥ0︸︷︷︸
∼U

+ 1
2 [Ŝ, Ĥ1]︸ ︷︷ ︸
∼J2/U

+O
(
J3/U2

)
. (3.4)

An equivalent approach is the following: the Schrödinger equation is written asĤU ĤJ

Ĥ†J Ĥ0

ΨU

Ψ0

 = E

ΨU

Ψ0

 , (3.5)

where ΨU and Ψ0 denote the wavefunction in the high-energy and low-energy sub-

space, respectively. The first equation can be solved for ΨU to obtain ΨU = (E −
ĤU )−1 ĤJΨ0. Inserting this into the second equation yields

(
Ĥ0 + Ĥ†J (E − ĤU )−1 ĤJ

)
Ψ0 = EΨ0. (3.6)

If we now replace the energy E on the left hand side by the energy scale of interest

and ĤU by the typical size of its matrixelements, we obtain E − ĤU → −U . Then the

effective Hamiltonian can be read off from the effective Schrödinger equation in the

low-energy subspace

Ĥeff Ψ0 =

(
Ĥ0 −

1

U
Ĥ†J ĤJ

)
Ψ0 = EΨ0. (3.7)

Again, the leading order correction is ∼ J2/U .

The physical process associated with this are excitations into the gapped states,
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called virtual processes. For example in the Heisenberg model, when derived from the

Hubbard model, these describe spin flips. They can occur only via charge excitations

(double occupancies), which leads to a spin-flip rate of ∼ J2/U .

3.2 Lattice scattering theory in 1d

On a lattice, the dispersion of a free particle is of cos form. If the hopping amplitude

on the lattice is−J and the lattice constant is a, the dispersion in one dimension reads

ε(k) = −2J cos(ak). The corresponding group velocity is vk = ∂kε(k) = 2Ja sin(ak). The

momenta are defined only modulo 2π/a. We will refer to this as the lattice momen-

tum. We restrict ourselves to the first Brillouin zone (1. BZ), such that all momenta

are defined in the interval (−π/a, π/a]. Equations involving different momenta have

to be understood in that context. Furthermore we will use a = 1 for convenience. The

momenta are then dimensionless, to be understood as measured in units ~/a. On a fi-

nite lattice the momenta are discrete in steps of 2π/L where L denotes the number of

lattice sites. We assume periodic boundary conditions and an even number of lattice

sites for the moment. The possible momenta in the first Brillouin zone, as defined

above, are then kn = 2πn
L , where n = −L/2 + 1, . . . , L/2 − 1, L/2 is an integer. In the

limit L → ∞ the lattice momenta become continuous, and the momentum sums can

be replaced by integrals:

1

L

∑
k

f(k) =
1

2π

∑
k

∆k f(k) −→
L→∞

∫ π

−π

dk

2π
f(k). (3.8)

In elastic two-particle scattering the total momentum and the total energy are con-

served. This gives d + 1 equations for 2d unknown variables: the momenta of the

outgoing particles. In d = 1 we have two equations for two unknowns. This fixes the

lattice momenta, and thereby the energy, of the outgoing particles completely. How-

ever, there can be Umklapp scattering, which does not conserve the total momentum

but only the total lattice momentum. We will use the convention that incoming mo-

menta are denoted by k1, k2 and outgoing momenta are denoted by p1, p2. The total

momentum is denoted by K. If both particles have the same hopping amplitude, say

−J , the individual lattice momenta are conserved:

k1 + k2 = p1 + p2

2J cos(k1) + 2J cos(k2) = 2J cos(p1) + 2J cos(p2)

=⇒
k1+k2 6=±π

(p1 = k1 and p2 = k2) or (p1 = k2 and p2 = k1) . (3.9)
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An exception arises when k1 +k2 = ±π. Then the total energy is zero and all outgoing

momenta p1 = π/2+q, p2 = π/2−q with q ∈ (−π/2, π/2) fulfill energy and momentum

conservation. As there are L different momentum states, the probability to have

k1 + k2 = ±π is (assuming an approximate uniform distribution) ∼ 1/L. Therefore

the effect can be neglected in the limit L→∞.

The conservation of the individual lattice momenta, Eq. (3.9), is not present in

higher dimensions. It is the reason that many one dimensional can be solved exactly,

which are precisely the integrable models which we introduced in the introduction.

The task in solving such models is then to find the degrees of freedom which maintain

their momenta. As an example, we consider the transverse field Ising model [10]

Ĥ = −J
∑
i

(gσ̂xi + σ̂zi σ̂
z
i+1). (3.10)

In the ferromagnetic (assuming J > 0) phase, g < 1, these are domain walls which

separate spin-up and spin-down domains (in the σ̂z basis). In the paramagnetic

phase, g > 1, these are flipped spins (in the σ̂x basis) [10]. In the ferromagnetic

phase, up-down domain walls have the same hopping amplitude as down-up domain

walls, namely −Jg. In the paramagnetic phase there is only one excitation having

a hopping amplitude of −J . In either case the individual momenta in a scattering

event are conserved and the wavefunction can acquire only a phase. As aforemen-

tioned these models fail to thermalize.

However, if two (quasi-)particles with different hopping amplitudes scatter they

can exchange momentum and energy. For example in the bosonic Hubbard model

with large U/J , holons (empty sites) and doublons (doubly occupied sites) serve as

stable quasiparticles and they show different hopping rates.

In the general case of the scattering of two different species with hopping ampli-

tudes −J1 and −J2, it is

k1 + k2 = p1 + p2

2J1 cos(k1) + 2J2 cos(k2) = 2J1 cos(p1) + 2J2 cos(p2)

=⇒ (p1 = k1 and p2 = k2) (3.11)

or


p1 = 2 ArcTan

 J2 sin

(
k1
2 +k2

)
−J1 sin

(
k1
2

)
J2 cos

(
k1
2 +k2

)
+J1 cos

(
k1
2

)


p2 = 2 ArcTan

 J1 sin

(
k2
2 +k1

)
−J2 sin

(
k2
2

)
J1 cos

(
k2
2 +k1

)
+J2 cos

(
k2
2

)
 . (3.12)

26



The first solution, Eq. (3.11) describes a transmission event, if microscopically possi-

ble, where the individual momenta are conserved. By contrast the second solution,

Eq. (3.12), does change the individual momenta (if J1 6= J2) and describes a reflection

event.

As a concrete example we consider the situation when the transmission only oc-

curs via a state which is separated by an energy gap. This is precisely the situation

we will encounter in the bosonic Hubbard model. Here the transmission channel

in doublon-holon scattering can be accessed only via a state without double occu-

pancy. We denote the different hopping amplitudes by J1 and J2 and choose a basis

{{|x1, x2〉 , x1 ∈ Z, x2 ∈ Z, x1 6= x2}, {|x, x〉 ≡ |x〉 , x ∈ Z}}. Here x1 and x2 denote the

position of the particle of species 1 and species 2, respectively. The state with x1 = x2

is denoted by |x〉 and separated by an energy gap U from the states with x1 6= x2. The

hopping onto this state can have a possibly different amplitude J3. The Hamiltonian

can be written as

Ĥ |x〉 =U |x〉+ J3 (|x+ 1, x〉+ |x− 1, x〉+ |x, x+ 1〉+ |x, x− 1〉) (3.13)

Ĥ |x, x− 1〉 =J1 |x+ 1, x− 1〉+ J3 |x− 1〉+ J3 |x〉+ J2 |x, x− 2〉 (3.14)

Ĥ |x, x+ 1〉 =J1 |x− 1, x+ 1〉+ J3 |x+ 1〉+ J3 |x〉+ J2 |x, x+ 2〉 (3.15)

Ĥ |x, x+ r〉 =J1 (|x− 1, x+ r〉+ |x− 1, x+ r〉)

+ J2 (|x, x+ r − 1〉+ |x, x+ r + 1〉) (3.16)

where the last line holds for r ≥ 2 and r ≤ −2. The eigenstates of this Hamiltonian

can be classified as bound states and scattering states. For the calculation of the

scattering rates it is convenient to use relative coordinates: we define r = x1 − x2

and R = x1+x2
2 . Note that R can take half-integer values but to have x1, x2 ∈ Z it is

R ∈ Z + 1
2 if r odd and R ∈ Z if r even. We could have also chosen R̃ = x1 + x2 but, of

course, at the end the result does not depend on the choice of the basis.

The new basis is {{|r,R〉 , r 6= 0, (r ∈ 2Z, R ∈ Z) or (r ∈ 2Z+1, R ∈ Z+ 1
2)}, {|0, R〉 ≡

|R〉 , R ∈ Z}}. We then perform a Fourier transformation in the center of position

coordinate R. We define

|r,K〉 = 1√
L

∑
R∈Z+

1
2 (r mod 2)

eiKR |r,R〉 and |r,R〉 = 1√
L

∑
K∈1.BZ

e−iKR |r,K〉 (3.17)

|K〉 = 1√
L

∑
R∈Z

eiKR |R〉 and |R〉 = 1√
L

∑
K∈1.BZ

e−iKR |K〉 . (3.18)
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In this new basis the Hamiltonian reads

Ĥ |K〉 = U |K〉+ 2J3 cos
(
K
2

)
|1,K〉+ 2J3 cos

(
K
2

)
|−1,K〉 (3.19)

Ĥ |1,K〉 = 2J3 cos
(
K
2

)
|K〉+ J∗K |2,K〉 (3.20)

Ĥ |−1,K〉 = 2J3 cos
(
K
2

)
|K〉+ JK |−2,K〉 (3.21)

Ĥ |r,K〉 = JK |r − 1,K〉+ J∗K |r + 1,K〉 (3.22)

where again the last line is valid r ≥ 2 or r ≤ −2. We have defined

JK = eiK/2J1 + e−iK/2J2 = eiφKIK (3.23)

where φK ∈ [0, 2π) and IK > 0. The Hamiltonian does not couple sectors with dif-

ferent K. It is now an effective one-particle Hamiltonian, which only parametrically

depends on K.

Before we consider the scattering states we first calculate the bound states. To

this end, we make the ansatz

|K〉B =
1

N

(
b |K〉+

∑
r>0

e−κr e−iφK(r−1) |r,K〉+
∑
r<0

eκr e−iφK(r+1) |r,K〉

)
. (3.24)

To have a bound state we need Re (κ) > 0, and N denotes a normalization constant.

Projection of this state onto Eqns. (3.19) - (3.22) yields

EB = IK(eκ + e−κ) (3.25)

EB = IKe−κ + 2J3 cos(K/2)eκ b (3.26)

(EB − U) b = 2J3 cos(K/2) (eκ + e−κ) (3.27)

where EB denotes the energy of the bound state: Ĥ |K〉B = EB |K〉B. We define y = eκ

and find the equation y =
8J2

3 cos2
(
K
2

)
I2
K (y+1/y)−U/IK

with the solutions

y± =
U ±

√
U2 + 32J2

3 cos2(K/2)− 4I2
K

2IK

=
U

2IK
±

√(
U

2IK

)2

+ 8

(
J3

IK

)2

cos2(K/2)− 1. (3.28)

To have a well-defined bound state the condition |Re (y) | > 1 has to be fulfilled, see

Eq. (3.24). If, for example, U = 0 and J1 = J2 = J , it is IK = 2J cos2(K/2) → y± =
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±
√

2(J3/J)2 − 1: bound states exist if |J3| > |J |/
√

2.

From Eq. (3.25) the energy of the boundstates can be calculated as

EB(K) = IK(y+ + 1/y+)

=
UI2

K − 2 J2
3 (1 + cos(K))

(
U +

√
U2 + 16 J2

3 (1 + cos(K))− 4I2
K

)
I2
K − 4 J2

3 (1 + cos(K))
(3.29)

−→
|J1|,|J2|,|J3|�|U |

U +
8J2

3 cos2
(
K
2

)
U

+ . . . (3.30)

The limit |J1|, |J2|, |J3| � |U | we could have obtained much faster: by perturbation

theory on Eq. (3.19). The width of the boundstate can be obtained by l = 1/Re (κ) =

1/ln(|y+|). From Eq. (3.27) we can also obtain b and, finally, the normalization N in

Eq. (3.24).

We now consider the scattering states. The ansatz |q,K〉 = 1√
L

∑
r eiqr |r,K〉 solves

Eq. (3.22), as here Ĥ |q,K〉 = (2J1 cos(K/2 + q) + 2J2 cos(K/2 − q)) |q,K〉. We have

to identify k1 = K/2 + q and k2 = K/2 − q, or K = k1 + k2 and q = (k1 − k2)/2.

The total momentum K has an extended 1.BZ, K ∈ (−2π, 2π] as underlying spatial

coordinate R can take half-integer values. The energy of the scattering states is given

by ES(q,K) = 2J1 cos(K/2 + q) + 2J2 cos(K/2 − q). We now make an ansatz for the

scattering including the incoming plane wave, having amplitude 1; the reflected part,

with amplitude R(q,K); and the transmitted part, with amplitude T (q,K):

|q,K〉S = c |K〉+
∑
r>0

(
eiq(r−1) +R(q,K) eip(q,K)(r−1)

)
|r,K〉

+
∑
r<0

T (q,K) eiq(r+1) |r,K〉 . (3.31)

Here we have assumed that the incoming wave is at r > 0, the case r < 0 is com-

pletely analogous. The relative momentum in the reflection channel p(q,K) is given

by Eq. (3.12) as

p(q,K) =
p1 − p2

2
=ArcTan

(
J2 sin(1

4(K − 2q))− J1 sin(1
4(3K + 2q))

J2 cos(1
4(K − 2q)) + J1 cos(1

4(3K + 2q))

)

+ ArcTan

(
J2 sin(1

4(3K − 2q))− J1 sin(1
4(K + 2q))

J2 cos(1
4(3K − 2q)) + J1 cos(1

4(K + 2q))

)
. (3.32)

One has to be careful with the direct evaluation of Eq. (3.32): for Umklapp scattering

events one has to shift K to the first Brillouin zone. We define BK = 2J3 cos
(
K
2

)
and

the relative velocity vS(q,K) = 2J2 sin
(
K
2 − q

)
−2 J1 sin

(
K
2 + q

)
. In a reflection event
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this is reversed, such that vS(q,K) = −vS(p(q,K),K). Projection of the scattering

ansatz, Eq. (3.31), onto the Hamiltonian Eqns. (3.19)–(3.22), yields

(Es − ivS) T = 2BKc (3.33)

(ES − U) c = BK (1 + T +R) (3.34)

(Es + ivS) = 2BKc− (ES − ivS)R. (3.35)

The solutions for the scattering amplitudes R and T are

R =
4B2

KES − (E2
S + v2

S)(ES − U)

(ES − ivS)((ES − ivS)(ES − U)− 4B2
K)

(3.36)

T =
−4ivS B

2
K

(ES − ivS)((ES − ivS)(ES − U)− 4B2
K)
. (3.37)

From this we obtain the reflection and transmission probabilities as

|R|2 =

(
4B2

KES − (E2
S + v2

S)(ES − U)
)2(

E2
S + v2

S

) (
(ES(ES − U)− 4B2

K)2 + v2
S(ES − U)2

) (3.38)

|T |2 =
16v2

S B
4
K(

E2
S + v2

S

) (
(ES(ES − U)− 4B2

K)2 + v2
S(ES − U)2

) . (3.39)

Since the velocities in both channels are equal (up to the sign) it is |R|2 + |T |2 = 1. In

the limit |J1|, |J2|, |J3| � |U | we find

|R|2 −→
|U |→∞

1−
16 B4

K v2
S

(E2
S + v2

S)2 U2
, (3.40)

|T |2 −→
|U |→∞

16 B4
K v2

S

(E2
S + v2

S)2 U2
. (3.41)

Now we have completely solved the problem and have found all eigenstates. Exten-

sions to more scattering channels and more intermediate states are possible.

Later, we will encounter situations where one dimensional channels are locally

coupled to a two dimensional continuum but we are only interested in the one di-

mensional dynamics. We will include this into the formalism by an effective emission

channel. Again, we present a simple example. The toy Hamiltonian consists of a one

dimensional wire coupled to a two dimensional region as illustrated in Fig. 3.1. It

reads

Ĥ |x < 0〉 = J1 (|x+ 1〉+ |x− 1〉) (3.42)

Ĥ |x > 0〉 = J2 (|x+ 1〉+ |x− 1〉) (3.43)
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Figure 3.1: Illustration of the toy model Eqns. (3.42) - (3.47) and the scattering
problem. A one dimensional wire at y = 0 is coupled to a 2d region at one lattice site
x = 0, y = 0. The hopping amplitudes in the wire for x < 0 and x > 0 can be different
and are denoted by J1 and J2, respectively. The coupling in the 2d region is J3. An
incoming plane wave eikx is scattered at x = 0. It can either be reflected as R e−ikx,
transmitted as T eipx (with a possibly different wavelength) or it can be scattered into
the two dimensional region y ≥ 1. We refer to this as emission.

Ĥ |0〉 = J2 |1〉+ J1 |−1〉+ J3 |0, 1〉 (3.44)

Ĥ |0, 1〉 = J3 |0〉+ J3 (|0, 2〉+ |1, 1〉+ |−1, 1〉) (3.45)

Ĥ |x 6= 0, 1〉 = J3 (|x, 2〉+ |x+ 1, 1〉+ |x− 1, 1〉) (3.46)

Ĥ |x, y > 1〉 = J3 (|x+ 1, y〉+ |x− 1, y〉+ |x, y + 1〉+ |x, y − 1〉) . (3.47)

Eq. (3.47) can be solved by the ansatz

|q〉 =

√
2

L

∑
x,y>0

eiqxx sin (qyy) |x, y〉 (3.48)

and the corresponding energy is εq = 2J3(cos(qx) + cos(qy)). Using this new basis the

Hamiltonian becomes

Ĥ |x < 0〉 = J1 (|x+ 1〉+ |x− 1〉) (3.49)

Ĥ |x > 0〉 = J2 (|x+ 1〉+ |x− 1〉) (3.50)

Ĥ |0〉 = J2 |1〉+ J1 |−1〉+

√
2J3

L

∑
q

sin(qy) |q〉 (3.51)

Ĥ |q〉 = εq |q〉+

√
2J3 sin(qy)

L
|0〉 . (3.52)
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We now consider the scattering of a plane wave incoming from x → −∞. The ansatz

for the scattering states is

|ψ〉S =
∑
q

φ∗q |q〉+ c∗ |0〉+
∑
x<0

(
eik(x+1) +R∗ e−ik(x+1)

)
|x〉+

∑
x>0

T ∗ eip(x−1) |x〉 , (3.53)

where the energy is given by the energy of the incoming wave to ES = 2J1 cos(q).

At x = 0 the wave can be reflected to x < 0, transmitted into x > 0 or it can be

scattered into the 2d region y > 0, we refer to this as emission. The momentum p

in the transmission channel has to be found from energy conservation 2 J1 cos(q)
!

=

2 J2 cos(p):

p(q) =

Arccos
(
J1
J2

cos(q)
)

, |J1
J2

cos(q)| ≤ 1

i
∣∣∣Arccosh

(
J1
J2

cos(q)
)∣∣∣ , |J1

J2
cos(q)| > 1.

(3.54)

When transmission is not allowed due to energy conservation (|J1
J2

cos(q)| > 1) this

channel is closed and p is imaginary. Then the wavefunction decays exponentially for

x > 1.

Projection of S 〈ψ| on Eqns.(3.49)–(3.52) and eliminating the φq yields

(1 +R)ES = J1 c+ J1

(
eik +R e−ik

)
(3.55)

T ES = J2 c+ J2 T e−ip (3.56)

ESc = J1 (1 +R) + J2 T + c ∆+(ES) (3.57)

In Eq. (3.57) we have defined

∆±(ω) =
2 J2

3

L

∑
q

sin2(qy)

ω − εq ± iε
−→
L→∞

J2
3

π2

∫ π

0
dqy

∫ π

−π
dqx

sin2(qy)

ω − 2J3(cos(qx) + cos(qy))± iε

=
ω

2
− J3

2π

∫ π

−π
dqx

√(
ω

2J3
− cos(qx)

)2
− 1 Sign

(
ω

2J3
− cos(qx)

)
Θ
(∣∣∣ ω2J3

− cos(qx)
∣∣∣− 1

)
∓ i J3

2π

∫ π

−π
dqx

√
1−

(
ω

2J3
− cos(qx)

)2
Θ

(
1−

(
ω

2J3
− cos(qx)

)2
)
. (3.58)

If | ES2J3
± 1| < 1, implying that the energy of incoming scatterer is in the 2d spectrum,

∆±(ES) has a finite imaginary part. Eqns.(3.55) - (3.57) can be solved for R, T and c:

R =
1/2(ES −∆+(ES))(ES − iv′S)(ES + ivS)− J2

1 (ES − iv′S)− 2J1 J
2
2

J2
2 (ES − ivS) + (ES − iv′S)(J2

1 − 1/2(ES − ivS)(ES −∆+(ES)))
(3.59)

T =
−2i J1 J2 vS

J2
2 (ES − ivS) + (ES − iv′S)(J2

1 − 1/2(ES − ivS)(ES −∆+(ES)))
(3.60)
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Figure 3.2: Examples for the scattering and emission probabilities. k denotes
the momentum of the incoming wave. The red lines show the reflection probabilities,
the blue lines show the transmission probabilities and the black lines are the emis-
sion probabilities. In the left panel it is J1 = 3, J2 = 2 and J3 = 4. Emission is always
possible, while the transmission channel is closed for k > Arccos(−2/3) ≈ 2.3 and
k < Arccos(2/3) ≈ 0.84 due to energy conservation. In the right panel it is J1 = 4,
J2 = 3 and J3 = 1. The transmission channel is closed for k > Arccos(−3/4) ≈ 2.4 and
k < Arccos(3/4) ≈ 0.72. Due to the smallness of J3 also the emission channel is closed
for slow scatters. Seen here for k > Arccos(−1/2) = 2π/3 and k < Arccos(1/2) = π/3.

c =
−i J1 vS (ES − iv′S)

J2
2 (ES − ivS) + (ES − iv′S)(J2

1 − 1/2(ES − ivS)(ES −∆+(ES)))
. (3.61)

We have defined the scattering velocity vS = −2J1 sin(k) and the velocity in the trans-

mission channel v′S = −2J2 sin(p), where p was defined in Eq. (3.54). If we denote the

emission probability by |E|2, conservation of the probability current dictates that

|R|2 +

∣∣∣∣v′SvS
∣∣∣∣ |T |2 = 1− |E|2. (3.62)

If p is imaginary, v′S has to be chosen to 0 here. From Eq. (3.62) we obtain the emission

probability as

|E|2 =
2 J2

1 vS (E2
S + v′2S ) (−Im (∆+(ES)))∣∣J2

2 (ES − ivS) + (ES − iv′S)(J2
1 − 1/2(ES − ivS)(ES −∆+(ES)))

∣∣2 . (3.63)

The sign of ∆± is chosen such that Im (∆±(ES)) < 0 for vS > 0. It is generically

|E|2 ∼ |Im (∆(ES)) |. Two examples for the scattering- and emission-rates are shown

in Fig. 3.2.

We have found the exact scattering amplitudes in the 1d wire. The strategy for-

mulated above can be extended to more complex situations including more reflection
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channels, transmission channels and intermediate states that can emit. Also the gen-

eralization to two-particle scattering is possible, since in relative and center of posi-

tion coordinates this is an effective one-particle problem. For all setups, the problem

can be cast as a system of linear equations for the amplitudes R, T1, T2, . . . and the

occupation of the intermediate states c1, c2, . . .

S ·
(
R, T1 T2, · · · , c1, c2, · · ·

)T
= I, (3.64)

where S denotes the scattering matrix. The vector I on the right hand side has to

be chosen according to the incoming channel. The scattering amplitudes are found

through inversion of S as

(
R, T1, T2, · · · , c1, c2, · · ·

)T
= S−1 · I. (3.65)

The emission probability is then given by |E|2 = 1 − |R|2 −
∑

i |v′i/vS | |Ti|2. Later

in section 7 we will encounter two-particle scattering problems with 3 transmission

channels, 3 reflection channels, emission and more than 30 intermediate states.

3.3 Quasiparticle momentum distribution

In the quantum quenches we will study a low-density of quasiparticles is induced

by the quench. These are created in pairs and only quasiparticles originating from

the same pair are entangled initially. Therefore, we can calculate the momentum

distribution of a pair with an effective Hamiltonian acting only on a the zero- and

two-particle Hilbertspace.

We study a concrete example: a quench in the bosonic Hubbard model. The ini-

tial state is given by the product state with one boson per site, denoted by |ini〉 =

|. . . 111 . . .〉. We use the usual conventions and write the Hamiltonian as

Ĥ = −J
∑
<i,j>

b̂†i b̂j +
U

2

∑
i

b̂†i b̂i

(
b̂†i b̂i − 1

)
− U (3.66)

where U, J > 0. We have subtracted a constant for convenience such that 〈ini|Ĥ|ini〉 =

−U . We are interested in the limit U � J and consider the effective Hamiltonian in

the subspace including |ini〉 and all states which have one doublon and one holon. To

leading order, the doublon and holon dispersion and the corresponding group veloci-
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ties are, respectively,

εD(k) = −4 J cos(k) , vD(k) =
d εD(k)

dk
= 4 J sin(k), (3.67)

εH(k) = −2 J cos(k) , vH(k) =
d εH(k)

dk
= 2 J sin(k). (3.68)

When xH is the position of the holon and xD the position of the doublon, this state

will be denoted by |xH , xD〉. Since |ini〉 is translationally invariant, it couples only to

states with zero total momentum K = 0. We define the Fourier transformation in

relative and center of position coordinates

|K, q > 0〉 =
1√
2L

∑
xD,xH

eiK
xD+xH

2 sin(q|xD − xH |) (|xH , xD〉+ |xD, xH〉) , (3.69)

which is properly normalized. Due to the spatial symmetrization used here we have

to restrict q > 0.

To lowest order in J/U we obtain the effective Hamiltonian in the K = 0 sector

Ĥ = −U â†â+
∑
q

εq ĉ
†
q ĉq +

∑
q

Vq

(
ĉ†qâ+ â†ĉq

)
, (3.70)

where â†, â are the creation and annihilation operators of |ini〉 and ĉ†q, ĉq are the cre-

ation and annihilation operators of |K = 0, q〉. Furthermore we have defined εq =

−6J cos(q) and Vq = −2
√

2J sin(q).

Starting from |ini〉 as the initial state, the time evolution creates doublon-holon

pairs with relative momentum q. We want to calculate the occupation probability W̃q

after long times:

W̃q ≡ W̃q(t→∞) = lim
t→∞

〈ini| eiĤt ĉ†q ĉq e−iĤt |ini〉 = lim
t→∞

∣∣∣〈vac|ĉq e−iĤt â†|vac〉
∣∣∣2 (3.71)

where we have used the vacuum state |vac〉 and we assumed the quench is performed

at t0 = 0. The second equality holds since we consider a single particle problem and

start from the vacuum.

We define the retarded propagator from the initial state to a quasiparticle pair

with momenta q and its Fourier transformed

GRq (t) = −iΘ(t) 〈vac|ĉq e−iĤt â†|vac〉 , (3.72)

GRq (ω) =

∫ ∞
−∞

dt eiωtGRq (t), (3.73)
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such that W̃q = limt→∞ |GRq (t)|2. If we define the free retarded Green functions of the

initial state and the quasiparticle pairs as

gRini(ω) =
1

ω + U + iε
, (3.74)

gRq (ω) =
1

ω − εq + iε
, (3.75)

we obtain

GRq (ω) = gRini(ω)Vq g
R
q (ω) + gRini(ω)

=∆(ω)︷ ︸︸ ︷∫ π

0

dq′

π
Vq′ g

R
q′(ω)Vq′ g

R
ini(ω)Vq g

R
q (ω) + . . .

= gRini(ω)Vq g
R
q (ω)

(
1 + gRini(ω) ∆(ω) + (gRini(ω) ∆(ω))2 + . . .

)
= gRini(ω)Vq g

R
q (ω)

∞∑
n=0

(gRini(ω) ∆(ω))n

=
gRini(ω)Vq g

R
q (ω)

1− gRini(ω) ∆(ω)
=

Vq g
R
q (ω)

gRini(ω)−1 −∆(ω)
, (3.76)

which has a nice interpretation in terms of diagrams, see Fig. 3.3. ∆(ω) can be calcu-

lated as

∆(ω) =

∫ π

0

dq

π
V 2
q g

R
q (ω) =

8J2

π

∫ π

0
dq

sin2(q)

ω + 6J cos(q) + iε

=
8J2

π

∫ π

0
dq

sin2(q) (ω + 6J cos(q))

(ω + 6J cos(q))2 + ε2
− i8J2

∫ π

0
dq sin2(q)δ (ω + 6J cos(q))

=
2ω

9
− 2

9
sign(ω/J)

√
ω2 − 36J2 Θ

(
ω2 − 36J2

)
− i2

9

√
36J2 − ω2 Θ

(
36J2 − ω2

)
. (3.77)

We then obtain for the occupation probability

W̃q(t) = V 2
q

∣∣∣∣∫ ∞
−∞

dω

2π

eiωt

ω + 6J cos(q) + iε
× 1

ω + U −∆(ω)

∣∣∣∣2 (3.78)

−→
time average for t→∞

V 2
q

∣∣∣∣ i e−iεqt

εq + U −∆(εq)

∣∣∣∣2
=

8 J2 sin2 q

|εq + U + 4/3 J (cos(q) + i sin(q)) |2
(3.79)

The limit t → ∞ in Eq. (3.78) is a bit subtle. It turns out that in the time-averaged

result only the pole of gRq (ω) contributes, and one can simply use the Residue theorem

to find Eq. (3.79). We have checked this by exact diagonalization.
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Figure 3.3: Diagrammatic derivation of the formula Eq. (3.76). The propagation
of the initial state into a state with momentum q can occur via different paths. The
resulting diagrams can be summed in a geometric series which leads to the final
result.

However, 1
ω+U−∆(ω) has branch cuts, which have to be found by analytic continua-

tion of Eq. (3.77) to the upper complex plane. They do matter a short times: Pq(t)→ 0

for t → 0 as the initial state had no doublon-holon pairs. They also lead to late time

oscillations such that a time average is necessary. Unfortunately, it was not pos-

sible to obtain any reasonable results by direct numerical integration of Eq. (3.78).

Therefore we present a second calculation to check the result in Eq. (3.79).

To this end we rewrite the problem in terms of a scattering problem. We consider

the Hamiltonian given above in the form

Ĥ |ini〉 = −U |ini〉 − 2J |1〉 , (3.80)

Ĥ |1〉 = −2J |ini〉 − 3J |3〉 , (3.81)

Ĥ |r > 1〉 = −3J |r + 1〉 − 3J |r − 1〉 . (3.82)

Here |r〉 denotes the spatially symmetrized doublon-holon wavefunction

|r〉 = 1/
√

2(|xH , xD〉+ |xD, xH〉) with |xD − xH | = r (3.83)

and fixed center of position coordinate R = xH+xD
2 . We do not consider the bound

state but calculate only the scattering states. We make the ansatz

|q〉S = c∗q |ini〉+
∑
r

(eiq(r−1) +R∗e−iq(r−1)) |r〉 (3.84)

and find

(εq + U) cq = −2J (1 +R) and (1 +R) εq = −2J cq − 3J(e−iq +Reiq). (3.85)
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This has the solution

R = −e2iq εq + U + 4
3 J e−iq

εq + U + 4
3 J eiq

, (3.86)

cq = ieiq
4J sin(q)

εq + U + 4
3 J eiq

. (3.87)

Of course it is |R|2 = 1. cq gives the overlap of the initial state with the q-scattering

state (which is not normalized) as cq = 〈ini|q〉∗S . However, the relative weight is

W q = |cq|2 =
16J2 sin2(q)

|εq + U + 4/3 Jeiq|2
(3.88)

and agrees up to a factor of 2 with the result found above in Eq. (3.79). This indi-

cates that we have not calculated the same quantity. Indeed, in the first calculation

we considered the decay of the initial state into free momentum states, which are

not eigenstates. Here the result is time dependent and one has to use time averag-

ing. In the second calculation we have decomposed the initial state into exact eigen-

states, which gives a time independent result. Therefore the first method presented

above, albeit intuitive, is not really suitable to calculate the momentum distribution.

Nevertheless it gives results very similar, a disagreement by a factor of two, to that

obtained from the exact two-particle eigenstates. In [114], also a factor of two was

found in the occupation of bare and dressed excitations after a quantum quench in

the fermionic Hubbard model. In the following we will use the exact two-particle

weights in Eq. (3.88). In the limit U � J we find

Wq =
16J2 sin2(q)

|εq + U + 4/3 Jeiq|2
, (−π < q ≤ π) (3.89)

−→
U�J

16

(
J

U

)2

sin2(q). (3.90)

Eq. (3.89) is the final result for the momentum distribution, it is not a probability

distribution as it is not normalized. The result in the limit U � J can be obtained by

perturbation theory, for example by a Schrieffer-Wolff transformation as presented in

section 3.1 [115]. In this limit the total number of pair excitations can be calculated

to be

N =
∑
q

16

(
J

U

)2

sin2(q) = 16L

(
J

U

)2 ∫ π

−π

dq

2π
sin2(q) = 8L

(
J

U

)2

(3.91)

and is proportional to the system size L. The density of quasiparticle pairs is given

38



by ρ = N/L = 8 ( JU )2. Accordingly, their mean distance is ρ−1 = 1/8(UJ )2.

The generalization of the formulas given above to more creation channels is pos-

sible. For example, for a Hamiltonian with two channels

Ĥ = −U â†â+
∑
q

ε1,q ĉ
†
1,q ĉ1,q +

∑
q

V1,q

(
ĉ†1,qâ+ â†ĉ1,q

)
+
∑
q

ε2,q ĉ
†
2,qĉ2,q +

∑
q

V2,q

(
ĉ†2,qâ+ â†ĉ2,q

)
, (3.92)

we find

Pj,q(t→∞) =

∣∣∣∣ Vj,q
εj,q + U −∆1(εj,q)−∆2(εj,q)

∣∣∣∣2 . (3.93)

We will need this formula later in section 7.

3.4 Semiclassical dynamics after weak quantum quenches

In the next sections we will study weak quenches where the density of quasiparticles

is low. Before the quench the system is in a product state. After the quench quasipar-

ticle pairs are created and their momentum distribution can be calculated as shown

above. In this limit, only quasiparticles originating from the same pair are entan-

gled, while quasiparticles created at different space points are incoherent [116, 117].

As the mean distance of quasiparticles is large and they are protected by a large gap,

their propagation can be treated semiclassically with their respective group velocity

[118, 119]. A schematic picture is shown in Fig. 3.4.

The semiclassical method was first introduced by Sachdev,Young and Damle to

calculate equilibrium correlation functions [118, 119]. It was extended to out of equi-

librium situations by Calabrese and Cardy [116, 117]. In [116], it was used to cal-

culate the entanglement entropy after a quantum quench. The method was further

used for analytic calculations of the dynamics after a quantum quench in the trans-

verse field Ising model within the ferromagnetic phase [120]. The authors reproduced

the leading order of the exact result [13]. However, in this integrable model the scat-

tering is trivial and the system does not thermalize.

We have adapted the method to the quantum dynamics of non-integrable models.

We have performed semiclassical simulations along the following lines: at the ini-

tial time, quasiparticle pairs are created with opposite momenta. These were chosen

randomly according to the exact two-particle creation rates, calculated as shown in

section 3.3. The quasiparticles propagate with different velocities as they have dif-

ferent dispersions, see for example Eqns. (3.67) and (3.68) for the quench in the Hub-
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Figure 3.4: Schematic illustration of the semiclassical quasiparticles. In the
limit U � J the mean distance of quasiparticles is much larger larger than their
wavelength. Then their propagation can be treated semiclassically, the velocity is
given by the corresponding group velocity.

bard model. The scattering was evaluated locally in space and time with the exact

two-particle scattering rates. This leads to a worldline picture for the quasiparticle

trajectories, see Fig. 3.5 for a schematic example with two different quasiparticles

(doublons and holons). There can be three qualitatively different scattering events

as indicated by the circled numbers in Fig. 3.5: when two quasiparticles of the same

kind scatter, ¬, the individual momenta are conserved and the corresponding world-

lines are straight. When two quasiparticles of different kind scatter, ­ and ®, the

momenta are changed and energy is exchanged: the corresponding worldlines show

kinks. There can be scattering events where the total momentum is conserved, as

in ­. Due to the underlying lattice structure there can also be Umklapp scattering

events where the total momentum is not conserved, as in ®.

The algorithm we have used works as follows:

(SCD1) Randomly choose the positions and momenta of the quasiparticle pairs

according to the quantum mechanical distribution functions;

(SCD2) Make a sorted list TLIST of the future scattering events;

(SCD3) Take the first element of TLIST and erase it;

Evaluate the scattering according to

the quantum mechanical scattering rates;

Update the involved quasiparticles and the time;

Calculate the future scatterings of the involved quasiparticles;

Sort them into TLIST;

IF(required)(Calculate observables;)

(SCD4) Repeat (SCD3) as long as you want;
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Figure 3.5: Schematic illustration of the semiclassical dynamics. The lines
have to be understood as worldlines of quasiparticles. Shown is an example with
two different quasiparticles , holons and doublons, as present in the bosonic Hubbard
model. At time t = 0 quasiparticles are created in pairs with opposite momentum
q and −q. As doublons and holons have a different dispersion, they propagate with
different group velocities. ¬ The scattering of like quasiparticles is trivial and no
momentum is exchanged. ­ In the scattering of unlike quasiparticles momentum is
exchanged. ® Umklapp scattering can lead to unusual worldlines.

(SCD5) Average over many realizations;

If an appropriate data structure is used for TLIST this works very efficiently: sort-

ing into a sorted list can be done in log time and is, for example, implemented in

the multimap class of C++. The length of TLIST is ∼ N where N denotes the number

of quasiparticles, this implies that each scattering event in (SCD3) has a runtime

of O(log(N)). The number of scattering events can be used as an exit condition in

(SCD4). By demanding that each quasiparticle scatters ∼ s times, the runtime is

O(sN log(N)). In this way simulations with millions of quasiparticles can be per-

formed, where each of them scatters thousands of times.

To make further contact to quantum mechanics, a possible interpretation could

be the following: a single run of the algorithm, a path, represents an (approximate)

eigenstate contributing to the dynamics. It was argued in the introduction that dif-

ferent eigenstates dephase and interference effects can be omitted in the long-time

limit. Then it is reasonable to assume that the long-time behavior is correctly de-

scribed by the ensemble of paths. In this way the diagonal ensemble of the initial
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state is sampled. As interference of paths is omitted, and the initial state has fine-

tuned phases, the short time behavior is not correctly described. The validity requires

stable long-lived quasiparticles and can be valid only on timescales below the lifetime

of these. We will consider only cases where the lifetime of the quasiparticles is expo-

nentially large in the gap. Then it is expected the correct (to leading order) quantum

mechanical correlation functions can be extracted [118, 119].

Similar algorithms were used to simulate classical models of particles with alter-

nating masses interacting via hard-core collisions [121–123].
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4 Diffusion and fluctuating hydrodynamics

According to a general principle due to Onsager, the final stages of the relaxation can

be described by macroscopic hydrodynamic equations [124, 125]. Or, put in the words

of Kubo [126], p.1204:

The average behavior of fluctuation of a physical quantity in an aged sys-

tem is governed by the macroscopic physical law which governs the macro-

scopic change of the corresponding macroscopic variable.

He called this Onsager’s assumption (ibid.). This principle manifests itself in fluctu-

ation-dissipation relations [126–128]. The response to an externally applied pertur-

bation, provided that it is small enough, is the same as the response to spontaneous

fluctuations. This leads to the regime of linear response, where transport coefficients

can be calculated by means of equilibrium correlation functions as described by Kubo

formulas [126–128].

In this section we consider the diffusive behavior of macroscopically conserved

quantities. We focus on the generic conservation laws of energy and particle number.

In the lattice models we will investigate later, momentum is not conserved due to

Umklapp scattering. An introduction to the general principles of hydrodynamics can

be found in volume 6 of Landau’s and Lifshitz’ Course of Theoretical Physics [129].

We take a coarse-grained point of view and explicitly exclude long-ranged, power-

law, interactions. The time differences have to be much larger than all scattering

times and the lengthscales have to be much larger than any mean free path and

correlation length. This is the limit of long wavelength and low frequencies. We will

keep only terms which are most relevant in this limit. Therefore, we cannot expect

that the short time and small distance behavior is correctly described. Correlations

on microscopic scales will be assumed to be δ-correlated.

Due to the many scattering events in this limit, a tagged single-particle effec-

tively performs a random walk. We first consider a simple example. However, we

will see below that a gradient in the density causes a directed flow. Furthermore,

long-ranged correlations in time will show that the motion of different particles is

highly correlated. And of course in quantum-mechanical systems, tagged must not

be taken literally. Here diffusion characterizes by a different scaling behavior when

compared to ballistic scaling. In clean non-interacting or integrable systems there

is no diffractive scattering and everything presented below is not applicable. Disor-

dered non-interacting systems can also show diffusive behavior [1, 130].
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We restrict ourselves to homogenous, inversion-symmetric systems. Furthermore,

we explicitly exclude situations where the system is close to a (quantum-)critical

point [131] or in an ordered phase [132]. In both cases there are additional long

wavelength modes which have to be included into the theory. Most importantly, the

order parameter describing the broken symmetry has long-ranged correlations. Close

to critical points, a variety of systems is described in the Hohenberg-Halperlin clas-

sification of dynamic universality classes [131]. Hydrodynamics in broken symmetry

phases is discussed in the book by Forster [132]. Our considerations are restricted to

energy scales well above any ordering temperature. In a quantum quench setup the

temperature, determined by the excess energy, has to be larger than the temperature

of any phase transition, if present.

4.1 Random Walks

The prime example of diffusive scaling is a random walk. Let us assume that a 1d

particle is located at x = x0 at time t0 = 0. It shall evolve in time by performing

random, uncorrelated steps of ±a at discrete times ∆t. After a time tn = t0 + n∆t

its position is xn = x0 + a
∑n

j=1 pj , where {p1, p2, . . . , pn} is a random sequence of

±1. The probability to have m ∈ {0, 1, . . . , n} times +1 (implying n −m times −1) is(
n
m

)
/2n. The probability to have covered a distance ∆x = al, l ∈ {−n, . . . , n} , is then

Pn(l) =
(

2n
n+l

)
/22n. By means of Stirling’s approximation one then finds in the limit

n→∞ and |l| � n

Pn(l)→ 1√
2πn

exp
(
− l

2

2n

)
. (4.1)

The probability to come back to the initial position (l = 0) after many steps (n � 1)

decreases as n−1/2. The typical distance at a large time t = n∆t from the starting

position is then (∆x)typ = a
√
n or, equivalently,

〈x2〉 = a2n =
a2

∆t
t ≡ 2D t. (4.2)

The constant D = a2/(2∆t) is the diffusion constant. Its dimension is LENGTH2

TIME : diffu-

sive behavior is characterized by a scaling LENGTH2 ∼ TIME. This is in contrast to

ballistic behavior as found in free particle or integrable systems: here the propaga-

tion scaling is LENGTH ∼ TIME and the corresponding proportionality constant is the

velocity with dimension LENGTH
TIME . After inserting n = t

∆t and l = ∆x
a in Eq. (4.1), and di-

viding by a to obtain a proper probability density, one finds in the limit a→ 0,∆t→ 0
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with D = constant:

Pn(l)→ Pt(∆x) =
1√

4πDt
exp
(
−∆x2

4Dt

)
. (4.3)

In d dimensions, this generalizes to

Pt(∆x1,∆x2, . . . ,∆xd) =
1

(4πDt)
d
2

exp

(
−
∑d

i=1 ∆x2
i

4Dt

)
. (4.4)

Below we will see that diffusion is characterized by a propagator which has exactly

the same structure as the distribution in Eq. (4.4).

4.2 Fluctuations

Arguably the simplest example to see that fluctuations are necessary to correctly de-

scribe the equilibrium is the following [128, 132, 133]. Consider a fast, heavy particle

which is damped by a bath of light particles at temperature T . Its equation of motion

is

m
d

dt
v + γv = 0. (4.5)

where v is the velocity, m the mass and γ denotes the damping constant. The solution

to Eq. (4.5) for an initial velocity v0 at t = 0 is v(t) = v0e−γt/m →
t→∞

0. This is the

correct result, since in equilibrium 〈v〉eq = 0.

However, by the equipartition theorem, the average kinetic energy of the particle

in equilibrium is 〈Ekin〉eq = m
2 〈v

2〉eq = d
2T or, in components, 〈vivj〉eq = T/m. This

is not correctly described by Eq. (4.5). The energy of the damped particle is not

conserved: it is an open system coupled to a huge number of degrees of freedom–

the bath. Having chosen this approach, the feedback of the bath can be described

only statistically. A fluctuating term ξ(t) has to be included on the right hand side:

m
d

dt
v + γv = ξ(t). (4.6)

This equation has the solution

v(t) = v0e−γt/m +
1

m

∫ t

0
dt′ e−γ(t−t′)/m ξ(t′). (4.7)

Eq. (4.6) is the simplest example of a Langevin equation [133]. The velocity v has to

be interpreted as a stochastic variable. Eq. (4.6) can be rewritten into a deterministic

equation for the probability distribution, a Fokker-Planck equation [128]. To obtain
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〈v〉eq = 0, the first moment of ξ has to be zero 〈ξ(t)〉 = 0. But to obtain 〈Ekin〉eq = d
2T ,

its second moment must be nonzero. We write 〈ξi(t)ξj(t′)〉 = δijηδ(t − t′) and obtain

from Eq. (4.7)

〈vi(t)vj(t)〉 = v0
i v

0
j e
−2γt/m +

1

m

∫ t

0
dt′
∫ t

0
dt′′ e−γ/m(2t−t′−t′′) 〈ξi(t′)ξj(t′′)〉eq

= v0
i v

0
j e
−2γt/m + δij

ηm

2γ

(
1− e−2tγ/m

)
. (4.8)

To match the thermal fluctuations in the limit t � m/γ we have to choose η = 2γ T

and thus

〈ξi(t)ξj(t′)〉 = 2γ T δijδ(t− t′). (4.9)

The relation η ∼ γT is the manifestation of a fluctuation-dissipation theorem [128]

and was first derived, in a slightly different form, by Einstein [134].

The stochastic approach is sufficient, or even necessary, for many practical pur-

poses. However, it needs some phenomenological input: here the equipartition the-

orem, which is a consequence of the maximum entropy principle. Supposed that we

could solve the system of coupled differential equations for all M ∼ 1023 particles

with fixed energy Etot = M d
2T (assuming hard-core collisions without any interac-

tion energy). This would lead to the same conclusion, namely that the time-averaged

energy of each particle is 〈Ekin〉time = d
2T .

The situation we are aiming to describe is a system in local equilibrium. The con-

dition of local equilibrium gives the notion of a local temperature and a local chemical

potential. Equivalently, one can use the space-dependent energy density and parti-

cle density. If those very slowly in space and time, the limit q → and ω → 0, the

time evolution of the conserved densities is described by hydrodynamic equations

[124, 125, 127–129, 135].

For simplicity we first consider systems with a single conserved quantity – it

might be either the energy or the particle number. Its density will be denoted by

n(x, t) and the corresponding current by j = v n where v is the velocity. The den-

sity n and the current j have to be interpreted as stochastic fields. Its expectation

values and correlations can be obtained from a statistical average of a, in general

non-equilibrium, ensemble of the microscopic variables or, for quantum theories, op-

erators. This ensemble is provided by all the microscopic degrees of freedom which

are not part of the description. n(x, t) describes a macrostate which may have differ-

ent microscopic realizations. In equilibrium this ensemble coincides with the equilib-

rium ensemble. The fluctuation theory treated here phenomenologically can be made
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rigorous by means of the memory function formalism due to Zwanzig [136] and Mori

[137], reviewed in [132].

The macroscopic conservation law can be cast in a continuity equation

∂tn+ ∂xj = 0. (4.10)

For convenience we use the notation that ∂x = ∇ = (∂x1 , . . . , ∂xd) and ∂2
x = ∇ · ∇ =∑d

i=1 ∂
2
xi . From Eq. (4.10) we obtain

∂t

∫
V
ddxn(x, t) =

∫
V
ddx ∂xj =

Stokes

∫
∂V
dd−1xj|∂V = 0. (4.11)

In the last equality we have made use of the fact that we are dealing with a closed

system and there is no current flow across the boundary ∂V . Then the local continuity

equation, Eq. (4.10), is equivalent to the macroscopic conservation law in Eq. (4.11).

If the density is inhomogeneous this causes a current flow

j = −F (∂xn, ∂
2
xn, ∂xn

2, . . . ). (4.12)

This can be motivated by the highest entropy principle: in equilibrium all densities

are spatially uniform (on average). A homogenous state is more probable than an

inhomogeneous state and therefore an inhomogeneous density will have the tendency

to flatten.

Inserting Eq. (4.12) into Eq. (4.10) yields a partial differential equation for the

density

∂tn− ∂xF (∂xn, ∂
2
xn, ∂xn

2, . . . ) = 0. (4.13)

For systems with more conserved quantities there will generically be couplings. For

example, a gradient in the particle density can cause an energy current flow and vice

versa. Close to equilibrium, this coupling is described by the Onsager relations [124,

125]. We will first ignore these couplings and come back to that below in subsection

4.6.

If the inhomogeneity is not too strong, to be specified below in section 4.3, we can

expand F (∂xn, ∂
2
xn, . . . ) = Dn ∂xn + . . . , where we have included only the leading

order linear term. Dn > 0 denotes the diffusion constant related to the transport

of the density n. It can be calculated from the Kubo formula of the corresponding

current. The relation

j = −Dn ∂xn (4.14)
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is known as Fick’s law [138]. Inserting this into Eq. (4.13) yields the diffusion equa-

tion

∂tn−Dn ∂
2
xn = 0. (4.15)

While the conservation law in Eq. (4.10) is exact, the current is subject to fluctuations.

To include those, we alter Fick’s law to j = −Dn ∂xn− ξ. A constant contribution can

clearly be excluded as it implies a persistent current. Therefore it must be 〈ξ〉 = 0.

The average 〈·〉 has to be interpreted as an ensemble average over the aforementioned

ensemble provided by all the microscopic degrees of freedom that are omitted in the

coarse-grained description. We will refer to ξ as a noise or fluctuating term. The

noisy, or fluctuating, diffusion equation then reads

∂tn−Dn ∂
2
xn = ∂xξ. (4.16)

We assume that the fluctuations in the different directions are uncorrelated and write

〈ξi(x, t) ξj(x′, t′)〉 =
δij
d
ηn δ(x− x′) δ(t− t′) (4.17)

〈ξ(x, t) ξ(x′, t′)〉 = ηn δ(x− x′) δ(t− t′). (4.18)

where ηn determines the strength of the fluctuations for the current of n.

By means of Fourier transformation,n(x, t)

ξ(x, t)

 =

∫
ddq

(2π)d

∫
dω

2π
e−iq·x+iωt

n(q, ω)

ξ(q, ω)

 , (4.19)

the fluctuating diffusion equation, Eq. (4.16), can be rewritten as

(
iω +Dnq

2
)
n(q, ω) = −iq · ξ(q, ω), (4.20)

which can be solved easily to

n(q, ω) =
−iq · ξ(q, ω)

iω +Dnq2
. (4.21)

The fluctuations, Eq. (4.18), transform to

〈ξ(q, ω) ξ(q′, ω′)〉 = ηn (2π)d+1 δ(q + q′) δ(ω + ω′). (4.22)

The right hand side of Eq. (4.20) has correlations ∼ q2, which is the hallmark of a

conserving noise [131, 132]. In the following we assume 〈n〉eq = 0, which can always
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be reached by a redefinition n→ n− 〈n〉eq. Here and in the following 〈·〉eq denotes an

average over the equilibrium ensemble. The equilibrium fluctuations of the density

can then be obtained as

〈n(x, t)n(x′, t′)〉eq =

∫
ddq

(2π)d

∫
dω
2π

∫
ddq′

(2π)d

∫
dω′

2π e−iq·x+iωt−iq′·x′+iω′t′ 〈n(q, ω)n(q′, ω′)〉eq

= ηn

∫
ddq

(2π)d

∫
dω
2π e−iq·(x−x

′)+iω(t−t′) q2

ω2 +D2
n q

4

=
ηn

2Dn

exp
(
− |x−x

′|2
8Dn|t−t′|

)
(4πDn|t− t′|)d/2

(4.23)

−→
t→t′

ηn
2Dn

δ(x− x′). (4.24)

In the last line we have taken the limit |t−t′| → 0. On the coarse-grained scale beyond

any mean free path and correlation length, the equal-time equilibrium correlations of

a conserved quantity can generally be expressed as 〈n(x)n(x′)〉eq = Cn δ(x−x′). Most

importantly, Cn is independent of the diffusion constant Dn as it can be calculated

from the thermodynamical ensemble. This leads to the relation ηn = 2DnCn. Again,

this is a manifestation of the fluctuation-dissipation relation [128, 129, 132]. If n ≡ e
is the energy density, it is Ce = T 2cV where cV is the specific heat per volume [129]. If

n is the particle density, it is Cn = n2
0 T κT where κT is the isothermal compressibility

per volume and n0 is the equilibrium density [139]. This implies

〈ξe(x, t) ξe(x′, t′)〉 = 2De T
2 cV δ(x− x′) δ(t− t′) (4.25)

〈ξn(x, t) ξn(x′, t′)〉 = 2Dn n
2
0 T κT δ(x− x′) δ(t− t′). (4.26)

These current fluctuations reproduce the correct equilibrium correlations of the den-

sities. Due to the fluctuation-dissipation relations, we can then expect that also the

time evolution of non-equilibrium correlations in systems close to equilibrium is gov-

erned by Eqns. (4.25) and (4.26). Here "close to equilibrium" refers to regimes where

linear response theory is valid. For convenience we will use Cn as the prefactor of the

current fluctuations in the following, keeping in mind that this refers to Eqns. (4.25)

and (4.26).

From Eq. (4.23) we make the following observation: if we fix one time, for example

t′ = 0, and consider the limit t� |x−x′|2
Dn

, we find

〈n(x, t)n(x′, 0)〉eq −→
t�|x−x

′|2
Dn

Cn

(4πDnt)d/2
∼ 1

td/2
. (4.27)
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Here we have encountered a hydrodynamic long-time tail for an equilibrium correla-

tion function. Before we discuss long-time tails in section 4.4 in more detail, we first

consider the scaling properties of the fluctuating diffusion equation.

4.3 Scaling analysis of the diffusion equation

The fluctuating diffusion equation in combination with the correlations

∂tn−Dn ∂
2
xn = ∂xξ (4.28)

〈ξ(x, t) ξ(x′, t′)〉 = 2DnCn δ(x− x′) δ(t− t′) (4.29)

defines a fixpoint relative to which we can investigate the effect of further possible

terms.

Let us consider a scaling transformation λx̃ = x with λ > 1. If we assume that the

diffusion constant is scale invariant, the left hand side of Eq. (4.28) implies t̃ = λ−2 t.

From Eq. (4.29) we find ξ̃ = λ(1+d/2) ξ. Finally, inserting this into Eq. (4.28) yields

ñ = λd/2 n

We adapt the notation of the book by Altland and Simons [140] and denote the

rescaling of a quantity by square brackets, for example [n] = λd/2 corresponds to a

rescaling n → λd/2n = ñ. The exponent, here d/2, is called the scaling dimension

or engineering dimension. Terms which have a negative scaling dimension are called

irrelevant, as they become unimportant on larger length- and timescales. By contrast,

terms showing a positive scaling dimension are called relevant. If such terms exist

one may have chosen the wrong fixpoint and one has to include these terms into the

theory. Terms with scaling dimension zero are called marginal.

Let us first consider terms with higher order derivatives: αj ∂
j
xn. The scaling

dimension of αj is 2 − j as [αj ] = λ2−j and all terms with j > 2 are irrelevant. Next,

we consider terms which are of higher order in the densities but have second order

derivatives: βj ∂2
xn

j . We find [βj ] = λd/2(1−j), corresponding to a scaling dimension

d/2 (1− j), and terms with j > 1 are irrelevant.

Let us now discuss terms with lower order derivatives. Including all possible

terms, we add

γj (n(x, t)− nf )j + ζj · ∂xnj(x, t) (4.30)

with j ≥ 1. The various terms transform according to [γj ] = λ2+(1−j)d/2 and [ζj ] =

λ1+(1−j)d/2, implying scaling dimensions 2 + (1− j) d/2 and 1 + (1− j) d/2 respectively.

As the densities in the terms ∼ γj do not carry a spatial derivative, these terms
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cannot be derived from the current. This implies that the continuity equation, Eq.

(4.10), is violated. The most relevant term, given for j = 1, is relevant in any dimen-

sion. For consistency the (physical) dimension of γ1 is 1
TIME and we write γ1 = 1/τf

to obtain ∂tn − Dn ∂
2
xn + (n − nf )/τf = ∂x · ξ, where nf is constant. We will discuss

this equation in more detail below in section 4.5.

The terms ∼ ζj yields the equation ∂tn − Dn ∂
2
xn + ζj · ∂xnj = ∂x · ξ. The most

relevant term is again given for j = 1. However, for inversion symmetric systems it is

not allowed: if we consider a inversion symmetry transformation x I−→ −x, this term

does not transform as the other terms independent of whether n I−→ n or n I−→ −n.

Note that ξ transforms as a current and thus in the opposite way as the corresponding

density.

The next term ∼ ζ2 yields the equation of motion

∂tn−Dn ∂
2
xn+ 2n ζ2 · ∂xn = ∂x · ξ. (4.31)

If n I−→ n, it is again not allowed by inversion symmetry. However if n I−→ −n, it

is allowed and it is relevant in d < 2 and marginal in d = 2. The transformation

n
I−→ −n is fulfilled for the momentum density but not for the energy density or the

particle density. In one dimensional systems with momentum conservation this leads

to a breakdown of linear hydrodynamics and an anomalous transport behavior [141–

143]. This has also been confirmed numerically [121, 144–147]. The corresponding

fixpoint is described by the Kardar-Parisi-Zhang (KPZ) universality class [148, 149].

4.4 Long-time tails

Long-time tails were first observed in numerical molecular dynamic studies of hard

disks (2d) and hard spheres (3d) around 1970 by Alder and Wainwright [150–152].

The authors found a decay of the equilibrium velocity-velocity correlation function as

t−1 in 2d and t−3/2 in 3d. Reviews discussing the kinetic origin and the history of long-

time tails can be found in [153–156]. The interest in the unequal time equilibrium

autocorrelation functions can be rationalized by the fact that they naturally appear

as integrands in the calculation of transport coefficients in the Kubo formalism [126–

128].

Soon after the long-time tails have been detected, theoretical work reproduced

the asymptotic behavior ∼ t−d/2 [157–160]. Ultimately, the long-time tails rely only

on hydrodynamical slow modes. Thus they arise in very different areas of physics,

including non-equilibrium steady states [161, 162], critical phenomena [163] and cos-
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mology [164, 165]. In the following we will see, both analytically and numerically,

that they also dominate the thermalization process.

There exist different formalisms which are able to capture the physics relevant for

the long-time tails, taken together under the name mode-coupling theories [135, 153].

The approach we use is fluctuating hydrodynamics as already used in the first theory

paper by Ernst, Hauge and van Leeuwen [157]. Connection to microscopic equations

is provided by the memory function formalism [136, 137]. In [158, 159] Dorfman and

Cohen derived the long-time tails from microscopic kinetic theory, see also [153]. Here

the term "kinetic theory" is used much more general as it is usually done. Often it is

used as a synonym for conventional Boltzmann equation approaches. However, in the

long-time tail literature it is used for equations also including n-particle distribution

functions. The physics of the long-time tails is captured by the two-particle (pair)

distribution function [158, 159].

To derive the long-time tails in this framework, the correlation function is writ-

ten in a power series of the density. The coefficients can be represented graphically

in terms of collision diagrams [166]. It has been noticed before that in the density

expansion of the pair distribution function divergences appear [167]. The origin are

multiple binary collisions of the same two particles where one of the particles has

scattered with other particles in between. Including only a few other particles, the

contributions of such events do not converge for long times and small wavenumbers.

However when including all other particles, it is very unlikely that a particle has not

scattered after a few scattering times. This leads to an exponential suppression in

space and time and a natural cutoff for the divergent integrals. Resummation of the

most divergent terms leads to terms logarithmic in the density [166]. In [158, 159],

Dorfman and Cohen showed that this resummation in a density expansion of the cor-

relation functions also leads to the observed long-time tails, see also [168]. They are

undoubtedly a correlation effect and thus cannot be reproduced by Boltzmann type

equations, which assume uncorrelated collisions. Furthermore, the long-time tails

cannot be captured by low order perturbation theory due to the divergences.

In Eq. (4.27) we have already seen that the unequal time density-density equilib-

rium correlation function decays as t−d/2. To calculate further equilibrium correlation

functions and, eventually, non-equilibrium correlation functions it is useful to intro-

duce the general solution of the diffusion equation. As Eq. (4.20) is linear, it can be

solved by the Greens function method. We define the diffusion propagator GDn(x, t)

by

∂tGDn(x, t)−Dn∂
2
xGDn(x, t) = δ(x)δ(t)→ GDn(q, ω) =

1

iω +Dnq2
(4.32)
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and thus

GDn(x, t) = Θ(t)
exp
(
− x2

4Dnt

)
(4πDnt)d/2

. (4.33)

Up to normalization, this is exactly the result obtained above for the probability dis-

tribution of a random walk, see Eq. (4.4). This remarkable agreement, obtained from

totally different starting points, shows the connection between diffusion (arising from

a very complicated many-body problem) and random walks (arising from a very sim-

ple stochastic problem).

Solutions of an arbitrary right hand side in Eq. (4.32) are then found from Eq.

(4.33) by convolution. From Eq. (4.20) we obtain

n(x, t) =Θ(t)

∫
ddy

exp
(
− |x−y|

2

4Dnt

)
(4πDnt)d/2

ni(y)

+

∫
ddy

∫ t

0
dt′

exp
(
− |x−y|2

4Dn(t−t′)

)
(4πDn(t− t′))d/2

∂yξ(y, t′), (4.34)

where we have imposed an initial condition n(x, 0) = ni(x) at t = 0.

As a further equilibrium quantity we calculate the unequal time, local current

-current correlation function. From Eq. (4.34) we find with the equilibrium initial

condition 〈ni(y)ni(y
′)〉 = Cn δ(y − y′)

〈∂xn(x, t) ∂x′n(x′, t+ ∆t)〉eq = Cn

∫
ddy ∂x∂x′

e−
|x−y|2
4Dnt e−

|x′−y|2
4Dn(t+∆t)(

4πDn

√
t(t+ ∆t)

)d
+

∫
dd(y,y′)

t∫
0

dt′
t+∆t∫
0

dt′′
∂x∂x′ e

− |x−y|2
4Dn(t−t′)−

|x′−y′|2
4Dn(t+∆t−t′′)

(4πDn

√
(t− t′)(t+ ∆t− t′′))d

∂y∂y′〈ξ(y, t′) ξ(y′, t′′)〉

−→
|x−x′|→0

d π

2

Cn

(4πDn ∆t)d/2+1
. (4.35)

The result, of course, depends only on ∆t. The equilibrium current autocorrelation

function decays faster as its density counterpart, namely as t−(1+d/2). The spatial

derivatives suppress two scaling dimensions, which corresponds to a factor t−1. In

systems with momentum conservation the energy current autocorrelation function

decays as t−3/5 (in 1d), t−1 (in 2d) and t−3/2 (in 3d) [169].

Let us now consider non-equilibrium correlation functions. We assume that the

system is in the regime of linear response – implying that it is close to equilibrium.
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From Eqns. (4.18), (4.21), (4.23), (4.34) we then find for t > 0

〈n(x, t)n(x′, t)〉 =

∫
ddy

∫
ddy′

e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
〈ni(y)ni(y

′)〉

+

∫
dd(y,y′)

t∫
0

dt′
t∫

0

dt′′
e−

|x−y|2
4Dn(t−t′)−

|x′−y′|2
4Dn(t−t′′)

(4πDn

√
(t− t′)(t− t′′))d

∂y∂y′〈ξ(y, t′) ξ(y′, t′′)〉

=

∫
dd(y,y′)

e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
〈ni(y)ni(y

′)〉+ Cn

∫
ddq

(2π)d
e−iq·(x−x

′)(1− e−2Dntq2
)

=

∫
dd(y,y′)

e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
〈ni(y)ni(y

′)〉+ Cnδ(x− x′)− Cn
e−
|x−x′|2

8Dnt

(8πDnt)d/2
. (4.36)

If the initial correlations are short-ranged 〈ni(y)ni(y
′)〉 = An δ(y − y′), this yields

〈n(x, t)n(x′, t)〉 − 〈n(x, t)n(x′, t)〉eq = 〈n(x, t)n(x′, t)〉 − Cnδ(x− x′)

=(An − Cn)
exp
(
− |x−x

′|2
8Dnt

)
(8πDnt)d/2

−→
t�|x−x′|2/(8Dn)

An − Cn
(8πDnt)d/2

. (4.37)

If the initial state was an equilibrium state, An = Cn, we recover the equilibrium

fluctuations. However, if the initial state was not an equilibrium state, An 6= Cn, we

find that the thermal fluctuations are built-up only algebraically ∼ 1/td/2. Therefore

we expect that generically the thermalization is dominated by hydrodynamic long-

time tails. This can be viewed as the bottleneck for thermalization. This also includes

the case when the initial state was an equilibrium state at a different temperature or

density. The short-rangeness of the initial correlations is often fulfilled in quantum

quench setups, for example if the initial state was a product state. The prefactor

of the non-equilibrium long-time tails depends on the initial state via the coefficient

An. By contrast, the prefactors of the equilibrium long-time tails are determined by

equilibrium correlation functions, see for example Eqns. (4.27) and (4.35).

Finally, we consider long-ranged initial correlations 〈ni(y)ni(y
′)〉 = An

|y−y′|ν real-

ized, for example, if the initial state was critical [10] or a free fermion system. If

0 < ν < d, we find

〈n(x, t)n(x′, t)〉 − 〈n(x, t)n(x′, t)〉eq

=

∫
ddy

∫
ddy′

e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
An

|y − y′|ν
− Cn

(8πDnt)d/2

=
An

(4πDnt)d

∫
ddy

e−
|y−x+x′|2

4Dnt

|y|ν

∫
ddy′e−

|y′|2+y′·(y−x+x′)
2Dnt − Cn

(8πDnt)d/2
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=
An

(8Dnt)ν/2
Γ
(
d−ν

2

)
Γ
(
d
2

) 1F1

(
ν
2 ,

d
2 ,−

|x−x′|2
8Dnt

)
− Cn

(8πDnt)d/2
(4.38)

where Γ denotes the Euler gamma function and 1F1(a, b, z) is the Kummer confluent

hypergeometric function. The local correlations are found by 1F1(a, b, 0) = 1. For

|x − x′| �
√

8Dnt we can expand 1F1(ν2 ,
d
2 , z → −∞) → (−z)−ν/2 Γ(d−ν2 )/Γ(d2). With

z = − |x−x
′|2

8Dnt
we recover the initial correlations. The decay of the first term is slower

than the decay of the second term, since ν < d, and the thermalization is as slow as

∼ 1/tν/2.

For ν ≥ d the integral leading to Eq. (4.38) does not converge and one has to

introduce a short distance cutoff a. For free fermions, for example, this is naturally

given by the inverse Fermi momentum. As a concrete example, we consider a free

fermion quench in 3d. We calculate only the relaxation of the density correlations.

This is not intended to give a full picture, as we do not consider couplings to the other

conserved quantities, but just as an example for a calculation with long-ranged initial

correlations where ν > d.

We denote the groundstate of the non-interacting fermions, the Fermi sea, by

|FS〉 =
∏

s=↑,↓;|k|<kF

Ψ̂†k,s |vac〉 (4.39)

where kF denotes the Fermi momentum. We consider a hypothetical quench where

suddenly a local interaction U is switched on. In the continuum, the expectation

value of the density

n̂(x) = Ψ̂†↑(x)Ψ̂↑(x) + Ψ̂†↓(x)Ψ̂↓(x) (4.40)

and its correlations are given by

〈FS| n̂(x) |FS〉 =
k3
F

3π2
≡ ρF (4.41)

〈FS| n̂(x)n̂(x′) |FS〉 = ρF δ
(
x− x′

)
− (sin(kF r)− kF r cos(kF r))

2

2π4r6
(4.42)

where r = |x− x′| and ρF denotes the total density. The initial correlations decay as

cos2(kF r)/r
4 at large distances and a short distance cutoff is provided by 1/kF , as

〈FS| n̂(x)n̂(x′) |FS〉 − ρF δ (x) −→
kF r→0

−k6
F /(18π4) = −ρ2

F /2. (4.43)
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Calculating the relaxation of the density as in Eq. (4.38), we find

〈n(x, t)n(x′, t)〉 − 〈n(x, t)n(x′, t)〉eq

−→
|x−x′|→0

ρF − CU
(8πDU t)

3/2
− 3 ρF

16π (4πDU t)
3/2

+O(t−2). (4.44)

Here DU denotes the diffusion constant and we have assumed that the final equilib-

rium correlations are given by

〈n(x, t)n(x′, t)〉eq = CU δ(x− x′) (4.45)

which is valid only on large scales beyond any correlation length. The first term in

Eq. (4.44) arises from the change in the local part of the correlations and decays as

t−3/2. The second term arises from the destruction of the long-range correlations in

Eq. (4.42) and also decays as t−3/2.

4.5 Violation of the conservation laws

In section 4.3 we have seen that a term n(x,t)−nf
τf

in the diffusion equation is rele-

vant but violates the underlying conservation law. The continuity equation has to be

rewritten to ∂tn+ ∂xj = −(n− nf )/τf and the (former) diffusion equation has a new

relevant term and now reads

∂tn(x, t)−D∂2
xn(x, t) +

n(x, t)− nf
τf

= 0. (4.46)

From now on we omit the constant term nf , which can always be absorbed in the

definition of n(x, t). We find the propagator of Eq. (4.46) as

∂tGDn,τf (x, t)−Dn∂
2
xGDn,τf (x, t) +

GDn,τf (x, t)

τf
= δ(x)δ(t)

→ GDn,τf (x, t) = Θ(t)
e−t/τf e−

|x−x′|2
4Dnt

(4πDnt)d/2
. (4.47)

As the macroscopic conservation law is not valid any more, we expect that there is a

new fluctuating term in the continuity equation. It will be denoted by µ which yields

∂tn+ ∂xj = −n/τf + µ(x, t), (4.48)

〈µ(x, t)〉 = 0 〈µ(x, t)µ(x′, t′)〉 =
2Bn
τf

δ(x− x′) δ(t− t′). (4.49)

56



The final equation then reads

∂tn−D∂2
xn+ n/τf = ∂xξ + µ. (4.50)

This description can only be valid if τf is a large timescale, much larger than the scat-

tering time. Then the continuity equation approximately holds for some scattering

events and we expect that the corresponding mode is still slow. The correlations of

the new noise term have a finite value at q = 0: they are not ∼ q2 for q → 0, indicat-

ing the non-conserving origin. One can argue, or show by a scaling analysis, that the

fluctuations of the current can be omitted in the limit q → 0. However, we will keep

the ξ term but omit correlations of µ and ξ: we use 〈µ(x, t) ξ(x′, t′)〉 = 0. Then the

equilibration can be calculated as in Eq. (4.36) to be

〈n(x, t)n(x′, t)〉 =

∫
dd(y,y′)

e−2t/τf e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
〈ni(y)ni(y

′)〉

+

∫
dd(y,y′)

t∫
0

dt′
t∫

0

dt′′
e−(t−t′)/τf−(t−t′′)/τf e−

|x−y|2
4Dn(t−t′)−

|x′−y′|2
4Dn(t−t′′)

(4πDn

√
(t− t′)(t− t′′))d

×
(
∂y∂y′〈ξ(y, t′) ξ(y′, t′′)〉+ 〈µ(y, t)µ(y′, t′)〉

)
= e−2t/τf

∫
dd(y,y′)

e−
|x−y|2+|x′−y′|2

4Dnt

(4πDnt)d
〈ni(y)ni(y

′)〉+ Cnδ(x− x′)

− (Bn + Cn)Sd(|x− x′|) + (Bn − Cn)
e−2t/τf e−

|x−x′|2
8Dnt

(8πDnt)d/2
+ O

(
e−2t/τf

td/2+1

)
(4.51)

where the final result is valid if t >
√
|x−x′|2τf

16Dn
. We find two modifications: most

importantly, the decay towards the stationary state is not algebraic any more, but

it is exponential. Furthermore, this stationary state has additional non-local, not

δ-correlated, static correlations ∼ Sd given in the respective dimensions by

S1(r) =
e
− r√

Dnτf

2
√
Dnτf

, (4.52)

S2(r) =

K0

(
r√
Dnτf

)
2πDnτf

−→


− log(

r√
Dnτf

)

2πDnτf
, r �

√
Dnτf ,

e
−

r√
Dnτf

√
8πr(Dnτf )3/4 , r �

√
Dnτf ,

(4.53)

S3(r) =
e
− r√

Dnτf

4πDnτf r
. (4.54)
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For τf →∞ we recover the results of section 4.4. In this limit, the correlation length√
τfDn of the static correlations Sd diverges while the amplitude is suppressed in a

way such that ∫
ddrSd(|r|) = 1. (4.55)

If the initial correlations were short-ranged, 〈ni(y)ni(y
′)〉 = An δ(y − y′), the final

result for t >=

√
|x−x′|2τf

16Dn
= r
√

τf
16Dn

can be written as

〈n(x, t)n(x′, t)〉 − Cnδ(x− x′)

= −(Bn + Cn)Sd(r) + (An +Bn − Cn)
e−2t/τf e−

r2

8Dnt

(8πDnt)d/2
+ O

(
e−2t/τf

td/2+1

)
. (4.56)

We will find numerical evidence for the static correlations, including the divergent

correlation length, predicted by Eq. (4.52) later in section 6.

4.6 Mode couplings

In generic systems the diffusive modes of different conserved quantities are coupled.

Here we consider the case when particle density n and the energy density e fulfill

a continuity equation. The respective currents are now given by jn = −Dn∂xn −
κ(1)∂xe+ξn and je = −De∂xe−κ(2)∂xn+ξe, where we have included only the relevant

terms, see section 4.3. Close to equilibrium, the coupling is symmetric due to mi-

croscopic reversibility as described by the Onsager relations [124, 125]. κ(1) and κ(2)

can be calculated via the Kubo formula from the equilibrium correlation functions.

For charged particles, the coupling leads to a variety of thermoelectric effects, includ-

ing the Peltier effect, the Thomson effect and the Seebeck effect [170]. The coupled

fluctuating diffusion equations read

∂tn−Dn ∂
2
xn− κ(1) ∂2

xe = ∂xξn, (4.57)

∂te−De ∂
2
xe− κ(2) ∂2

xn = ∂xξe. (4.58)

In general the fluctuations of the energy current and the particle current are corre-

lated: 〈ξn · ξe〉 6= 0. Eqns. (4.57) and (4.58) can be cast in a matrix structure, which

after Fourier transformation is given by

D ·

n
e

 =

iω +Dnq
2 κ(1)q2

κ(2)q2 iω +Deq
2

 ·
n
e

 =

i q · ξn
i q · ξe

 . (4.59)
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Assuming that De, Dn, κ
(1) and κ(2) are scale-invariant, a scaling analysis as in sec-

tion 4.3 shows that both n and e have the same scaling dimension. The results ob-

tained there are applicable, one rather has to use a two-component field. Therefore

we do not expect that the form of the long-time tails is changed by the coupling.

Finally, let us consider a situation where one of the conservation laws is violated,

but the other remains intact. One could just argue that one can exclude the non-

conserved quantity from the theory. Again, one finds the same scaling behavior and

the same form of the long-time tails. Nevertheless, we want to see how this arises

from the coupled equations

∂tn−Dn ∂
2
xn− κ(1) ∂2

xe = ∂xξn (4.60)

∂te−De ∂
2
xe− κ(2) ∂2

xn = − e

τf
+ ∂xξe + µ (4.61)

where the energy conservation is explicitly violated. Fourier transformation yields

(
iω +Dnq

2
)
n+ κ(1)q2e = iq · ξn. (4.62)(

iω +Deq
2 + 1/τf

)
e+ κ(2)q2n = iq · ξe + µ, (4.63)

Solving Eq. (4.63) for e and inserting the result into Eq. (4.62) gives

(
iω +Dnq

2
)
n− κ(1) κ(2)q4

iω +Deq2 + 1/τf
n = iq · ξn −

κ(1)q2

iω +Deq2 + 1/τf
(iq · ξe + µ)

ω,q→0−→
(
iω +Dnq

2 − τf κ(1) κ(2) q4
)
n = iq · ξn − τf κ(1)q2 (iq · ξe + µ) . (4.64)

In the second line we have kept only the term in the denominator which is finite in

the limit q → 0 and ω → 0. The new term on the left hand side, ∼ q4, corresponds to

a term ∂4
xn and it is irrelevant as shown in section 4.3. The new noise terms on the

right side are suppressed by a factor q2, two scaling dimensions, relative to the noise

term of the n-current. Therefore they can also be omitted in the scaling limit.
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5 Hydrodynamic long-time tails after a quantum quench

In this section we will give numerical evidence for the hydrodynamic long-time tails

as discussed in section 4.4. We consider a quantum quench following the scheme

given in the introduction. As a model we have chosen the bosonic Hubbard model,

the "standard model" of ultracold bosons, which was already presented in section 2

and whose Hamiltonian reads

Ĥ = −J
∑
i

(
b̂†i b̂i+1 + b̂†i+1 b̂i

)
+
U

2

∑
i

b̂†i b̂i

(
b̂†i b̂i − 1

)
. (5.1)

We restrict ourselves to one dimension since here the problem is numerically tract-

able. In contrast to many other 1d models, the bosonic Hubbard model is not in-

tegrable (except for the trivial cases U/J = 0 and U/J = ∞) and we expect that

it thermalizes after a quantum quench. We will study the time evolution towards

the thermal state and will find that, indeed, this is approached only algebraically as

predicted by hydrodynamics. As the initial state we have chosen the product state

with one boson per site. This is the groundstate of the model for U/J → ∞. We

then consider a sudden quench to finite U/J , which can be realized experimentally

by changing the lattice depth, see section 2. A graphical illustration is shown in

Fig. 5.1.

In the limit U � J we can use the semiclassical dynamics as introduced in section

3. This is not applicable any more when U ∼ J . We have investigated this regime

by exact diagonalization. In the semiclassical regime, the doublon lifetime is expo-

nentially large in U/J , as confirmed experimentally in a fermionic Hubbard setup

[171]. For recombination, or creation of new pairs at late times, the doublon energy

U has to be converted into kinetic energy or vice versa. For a single particle the ki-

netic energy is of order J . Therefore a scattering process involving ∼ U/J particles is

required to fulfill the local energy conservation. These processes are not covered by

our semiclassical simulations. This implies that the total kinetic energy is constant

in this approximation.

In the following we will use leading order results in U/J for all expressions.

Then the doublon and holon dispersions become εD(k) = −4 J cos(k) and εH(k) =

−2 J cos(k), respectively. The transmission amplitude for doublon-holon scattering

can be obtained from the calculations in section 3.2: inserting J1 = J, J2 = 2J and

J3 =
√

2J in Eq. (3.41), we find that the transmission probability for a scattering of a
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Figure 5.1: Graphical illustration the quantum quench in the 1d bosonic
Hubbard model. The initial state is the groundstate with U/J = ∞, a product
state with one boson per site. The lattice depth is lowered such that U/J < ∞ and
hopping is possible. Doublon-holon pairs are created on neighboring lattice sites and
can propagate through the lattice. Due to the bosonic statistics they have different
hopping amplitudes −2J and −J , respectively. A doublon has an additional inter-
action energy cost of U . In the limit U � J this protects doublon-holon pairs from
recombination for exponentially large times ∼ eU/J , as explained in the main text.
Scattering of doublons and holons leads to thermalization. Very similar quenches
have already been realized experimentally [103, 172].

doublon with momentum kD and a holon with momentum kH is

|T |2 =
128 cos4

(
kD+kH

2

)
(2 sin(kD)− sin(kH))2

(5 + 4 cos(kD + kH))2

(
J

U

)2

. (5.2)

Therefore the transmission probability is ∼ (J/U)2 and thus highly suppressed in the

semiclassical regime. All results below are shown for a transmission probability of

zero. We have checked that including a tiny transmission rate, for example with U =

100 J , does not change the results qualitatively. It only has a very small quantitative

effect. However, omitting the transmission channel introduces a new macroscopically

conserved quantity: the sequence of quasiparticles. We will come back to that below.

In the following all lengths are measured in units of the mean distance of quasi-

particle pairs ρ−1 = 1/8(UJ )2, where ρ is the pair density see Eq. (3.91), and time is

measured in units of the doublon-holon scattering time τdh. Then all semiclassical

results are independent of U/J . Furthermore, if not stated otherwise, we measure

energies in units of J which was set to 1 in the simulations. Since the quasiparticle

velocity is v ∼ J , it is τdh ∼ ρ−1/v ∼ U2/J3. The prefactor was found numerically

to be 0.031, which yields τdh ≈ 0.031U2/J3. For small times t � τdh no scattering

has taken place yet. This can be interpreted as the prethermalized regime, where
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the individual momenta are conserved. All observables have stationary values and

equilibration only starts when t ∼ τdh. However, at short times interference effects

are important and this regime is not correctly described by our simulations.

The density of quasiparticle pairs can also be obtained by other means. It is easy

to show that for a system with L lattice sites it is 〈Ĥ〉 = 〈0| Ĥ |0〉 = 0 and 〈Ĥ2〉 =

4 J2 L. Here |0〉 denotes the initial state and the Hamiltonian was given in Eq. (5.1).

Furthermore the energy of the groundstate, the Mott insulator, is in second order

perturbation theory given by E
(2)
GS = −8LJ2/U . Let us denote the operator which

counts quasiparticle pairs by N̂ . To leading order, omitting the kinetic energy ∼ J ,

each pair has an energy of U . To match the condition 〈Ĥ〉 = 0 we find E(2)
GS +〈N̂〉U = 0,

or 〈N̂〉 = 8LJ2/U2. This also gives a density ρ = 〈N̂〉/L = 8 (J/U)2, in full agreement

with the calculation in section 3.3.

Exactly the same results can be obtained from a leading order Schrieffer-Wolff

transformation, see section 3.1, with

Ŝ ≈ 2
√

2 J

U

L∑
j=1

(
b̂†j+1 b̂j − h. c.

)
. (5.3)

When acting with eŜ on the initial state one obtains a wavefunction in the quasi-

particle basis containing any number of pairs. The quasiparticle pairs follow an ap-

proximate Poisson distribution due to the exponential. This is in accordance with the

intuition that the creation of different quasiparticle pairs is uncorrelated in the low

density limit. We use this explicitly in the semiclassical simulations. It is further

supported by the work of Calabrese and Cardy [116] who showed that quasiparticles

originating from different pairs are not entangled initially. The subleading correc-

tions to the Poisson distribution come from the rare processes where pairs are cre-

ated very close to each other. The probability to find n pairs is Pn ≈ λn e−λ/(n!) where

λ = 8L (J/U)2. Again, the expectation value of the density is

ρ =
〈N̂〉
L

=
1

L

∞∑
n=0

nPn =
λ

L
= 8

(
J

U

)2

. (5.4)

In the quasiparticle basis the overlap with the initial state is exponentially small in

the system size L:
∣∣∣〈0| eŜ |0〉∣∣∣2 ≈ e−λ = e−8L (J/U)2 .

Related quenches in high dimensional Fermi Hubbard models have been studied

in [114] and [173]. The same quench as studied by us has been investigated in [174].

The authors compared numerical results (ED and t-DMRG) to the assumptions un-
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Figure 5.2: Thermalization of the doublon momentum distribution. It is
shown in units of the density ρ. The initial distribution is 2ρ sin2(k). If thermalizes to
a flat, infinite temperature, distribution. Shown is data for t = 0, 1, 2, 3, 4, 5, 10, 20 τdh
after the quench.

derlying the ETH and different thermodynamic ensembles.

Quantum quenches very similar to the one studied here have already been re-

alized experimentally [103, 172]. In [103] a ballistic short time expansion of corre-

lations was observed, a light-cone-like effect. In [172] the expansion dynamics of a

localized bosonic cloud was investigated in one and two dimensions.

5.1 Diffusive thermalization after weak quenches

We now consider the time evolution after the quench in the semiclassical limit U � J .

On short timescales ∼ 1/J after the quench doublon-holon pairs are created with a

density ρ = 8( JU )2. Their initial momentum distribution was calculated in section 3.3

to sin2. This implies that the total kinetic energy of the system in the initial state is

zero:

〈Ekin〉 =
M

2

∫ π

−π
dk
sin2(k)

π
((−4 J cos(k)) + (−2 J cos(k))) = 0. (5.5)

As we do not consider recombination or creation of pairs at late times, the kinetic

energy is conserved. The thermal state is then given by an infinite temperature

state (β = 0), where all momenta are equally probable, shown in section 5.2 below.

The numerical result for the time evolution of the doublon momentum distribution is

shown Fig. 5.2.
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As observables, we define the moments of the momentum distributions as

QD/Hm (t) = 〈cos(mki(t))〉D/H . (5.6)

The subindex i labels the quasiparticles in an ordered way and ki denotes the ki-

netic energy of the i-th quasiparticle. The expectation value 〈·〉 in Eq. (5.6) includes

a spatial average, a sum over i, and additionally an average over different initial

configurations. The subscript D or H indicates that the average is taken only with

regard to the momenta of the doublons or holons, respectively.

In the dimensionless units the initial distribution is Pk(t) = sin2(k)/π = 1
2π (1 −

cos(2k)) and the initial values of QD/Hm are given by

Q
D/H
0 =

1

2
, Q

D/H
2 = −1

2
, Q

D/H
m 6=0,2 = 0. (5.7)

Since Q2 is nonzero initially and zero in the long-time thermal state, it is instructive

to study its relaxation in detail. As cos(2k) = 2 cos2(k)− 1, Q2 is also directly related

to the kinetic energy squared.

As further observables we define energy-energy correlation functions as

Tn(t) = 〈εi(t) εi+n(t)〉 (5.8)

where εi denotes the kinetic energy of the i-th quasiparticle. In the initial state it is

T0(t = 0) =

∫ π

−π

dk

π
sin2(k)

1

2

(
(−4 cos(k))2 + (−2 cos(k))2

)
=

5

2
(5.9)

T1(t = 0) =

∫ π

−π

dk

π
sin2(k)

1

2

(
− 4 cos(k)

)(
− 2 cos(k)

)
= 1 (5.10)

Tn>1(t = 0) = 0. (5.11)

In Fig. 5.3 we show the time evolution of T1 after the quench. It can be clearly seen

that this quantity shows very pronounced algebraic long-time tails. The prediction

from hydrodynamics, a decay as t−1/2, is met only for more than approximately 300

scattering times. This means that each particle has, on average, scattered 300 times.

The data are obtained from simulations with ∼ 106 quasiparticles and are averaged

over ∼ 1600 initial configurations. This implies that more than 106 × 103 × 103 = 1012

collisions have been evaluated to obtain the plot.

Fitting with a single exponent for times 30τdh < t < 200τdh yields 0.19 (t/τdh)−0.664,

shown by the gray dotted line in the inset. The exponent is very close to the value
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Figure 5.3: Non-equilibrium long-time tails in the energy-energy correlation
function. The dashed black line is a fit according to the hydrodynamic prediction
0.079 (t/τdh)−1/2. This asymptotic behavior is seen only for more than∼ 300 scattering
times. The inset shows the data in a log-log plot. In the time range t = 10 . . . 200 τdh a
fit to the data with a single exponent yields 0.19 (t/τdh)−0.66, shown by the gray dotted
line.

expected in the KPZ universality class which is −2/3 [121, 146]. However, an effec-

tively momentum conserving regime over such long times can be excluded from the

fact that approximately 1/4 of the doublon-holon scatterings are Umklapp scattering

events. The long timescale needed to see the asymptotic behavior is probably due to

the fact that slowest subleading term decays only as∼ t−3/4. The leading order irrele-

vant term in 1d is of the form ∼ (∂xe)
2 with a scaling dimension −d/2, see section 4.3.

Rescaling of the diffusion equation as in section 4.3 with λ > 1 shows that this term

is suppressed only as λ−d/2. The engineering dimension of the time is −2, meaning

that t → λ2t upon rescaling. This implies that that the long-time tails are described

by ∼ t−1/2 S( t
λ2 ,

α
λ1/2 , . . . ), where we have extracted the asymptotically known t−1/2

factor. To reach S →constant for t→∞ we have to set λ =
√
t, which yields

t−1/2 S
λ=
√
t−→ t−1/2 S(1, α/t1/4, . . . )

t→∞−→ t−1/2 +O(t−3/4). (5.12)

A fit of the data of the form a t−1/2 + b t−3/4 in the range 30 τdh < t < 200 τdh yields

0.032 t−1/2 + 0.180 t−3/4. The subleading term(s) seem to have large prefactors, which

explains why the t−1/2 behavior can be seen only after that many scattering times.

As the long-time tails originate from diffusive transport of energy we expect that

all observables which are sensitive to energy fluctuations will eventually show long-
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Figure 5.4: Hydrodynamic long-time tails in the momentum distribution. The
second moment of doublon and holon momentum distribution are shown in blue and
red, respectively. The green curve is the data for T1 already shown in Fig. 5.3. The
dashed black lines are of the form according to the hydrodynamic prediction ∼ t−1/2.
The lines for QD/H2 are not fitted, but predicted from the prefactor of the tail in T1, by
an equilibrium calculation, see the main text. Up to ∼ 30 scattering times the decay
of Q2 is exponential on a timescale τlocal ≈ 4. Data are averaged over two scattering
times (4 data points) to reduce the noise level.

time tails. In section 5.2 we will show that in equilibrium close to infinite tempera-

ture, βJ ≈ 0, it is

QD2,eq. = 2 (βJ)2, QH2,eq. = 1/2 (βJ)2 and T1,eq. = 41/2 J2 (βJ)2. (5.13)

Therefore for J = 1 as used in the simulations

QD2,eq. = 4
41 T2,eq. and QH2,eq. = 1

41 T2,eq.. (5.14)

From Eq. (5.19) below, we see that β(〈e〉eq.) = −1/5〈e〉eq./J
2. If we assume that the

system is in local equilibrium, we can promote this equation to a local equation,

β(x) = −1/5 e(x)/J2. Inserting this in Eq. (5.13) we find that QD2 , QH2 and T1 depend

on 〈e2(x)〉 with the same relative prefactors as given above.

Furthermore, we can even use this equilibrium prefactors to predict the relative

prefactors of the non-equilibrium long-time tails. This is shown in Fig. 5.4 for QD2 (t)

and QH2 (t). The black dashed lines there are not fits, but are calculated from the fit

of T1(t)
t&300 τdh−→ 0.079 t−1/2 by means of Eq. (5.14). We see a very good agreement for
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Figure 5.5: Hydrodynamic long-time tails in the distance-distance correla-
tion function. The red dashed line shows a fit 0.094 (t/τdh)−1/2. As can be seen in
the log-log plot in the inset, this matches the numerical result for times larger than
∼ 200 scattering times. This long-time tail is caused by particle number conservation.

t & 200 τdh. This agreement shows that the relaxation is determined by the linear

response of the equilibrium ensemble. This justifies our assumptions in the hydro-

dynamic calculations presented in section 4. However, there is an absolute prefactor

which depends on the initial state and cannot be calculated from the coarse-grained

description.

For times t . 30 τdh both, QD2 (t) and QH2 (t), decay exponentially. This is a conse-

quence of local equilibration. The observables equilibrate locally to a value slightly

smaller or larger than the real temperature would dictate. Typically this already

happens after a few collisions. An exponential fit to times 5 τdh < t < 20 τdh yields

the local equilibration times τlocal,D ≈ 4.67 τdh and τlocal,H ≈ 3.97 τdh for doublons and

holons, respectively. This regime can approximately be described by the Boltzmann

equation, as shown below in section 5.3.

In addition to the energy also the particle number is conserved in the dynamics.

Therefore we expect to see long-time tails also in the density-density correlation func-

tion and in all observables which are sensitive to density fluctuations. To measure the

density we could subdivide the system into segments of equal length and calculate

the correlation functions in this way. We have chosen a different observable, which is

directly related to the density, namely the distance-distance correlation function. To
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Figure 5.6: Diffusive scaling of the energy-energy correlations. Tn was defined
in Eq. (5.8) as Tn(t) = 〈εi(t) εi+n(t)〉. Data for n = 1, 2, . . . , 99 is included. The black
dashed line is the scaled diffusion propagator, where the diffusion constant was cal-
culated in equilibrium via the Kubo formula. For small times t/τdh . 20 after the
quench clear deviations from the scaling behavior can be seen. At later times the
scaling is fulfilled for n &

√
t/τdh.

this end we define

Dn(t) =
〈didi+n〉 − 〈di〉〈di+n〉

〈di〉2
(5.15)

where di is the distance between particle i and particle i + 1. The normalization

is chosen such that the result does not depend on the mean distance used in the

simulations. In Fig. 5.5 we show D1(t). It also shows very clear long-time tails with

a prefactor ≈ 0.1. The t−1/2 behavior can be observed for t & 200 τdh, see the log-log

plot in the inset. As the energy does not depend on the density there are no couplings

between the the energy and the particle diffusion in the simulated model. Both,

energy and particle density, thermalize independently. This is an artifact for models

with hard-core collisions of point-like particles.

Up to now we have considered only nearest-neighbor correlation functions, but

hydrodynamics also predicts a scaling TIME ∼ LENGTH2: a decay of non-local corre-

lations as ∼ t−1/2e−|x−x
′|2/(8Det), see section 4.4. In Fig. 5.6 we show a scaling plot of

√
tTn as a function of n/t1/2. For t & 20 τdh and n &

√
t/τdh a scaling collapse of the

data can be observed within the numerical precision. As the long time-tails of Tn rely

on the energy conservation we expect that the energy diffusion constant De appears

here. In the dimensionless units we obtain a dimensionless energy diffusion constant
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as D̃e = Deρ
2τdh. Then the correlation function becomes ∼ t−1/2e−n

2/(8D̃et/τdh). We

have determined D̃e numerically in equilibrium by means of the Kubo formula to

D̃e ≈ 0.91, details are postponed to the next section. The thick black line in Fig. 5.6 is

the scaled diffusion propagator prediction e−x
2/7.28. Only the absolute prefactor was

adjusted. One can see that the width of the numerical data match the value predicted

from the equilibrium correlation function. This finally shows that the thermalization

is really diffusive.

Also the crossover to integrability can be studied with the same methods in the

same model. Suppose that that initial state is not the product state with one bo-

son per site but with n � 1 bosons per site. Then the dispersions of the n + 1 and

n − 1 bosons per sites excitations, formerly known as doublon and holons, become

−2 J (n + 1) cos(k) and −2 J n cos(k) respectively. The relative difference in the hop-

ping amplitudes becomes smaller with increasing n and finally, for n → ∞, they are

equal excluding thermalization. This limit has been studied by Marvin Pinkwart in

his Bachelor thesis [175].

5.2 Equilibrium results

In this section we will provide some equilibrium results which, partially, have already

been used above. Since the energy of the system depends only on the momenta but

not on the position of the particles, the partition function ZM for M doublon-holon

pairs can be calculated as

ZM =
∑

{kD1 ,kH1 ,kD2 ,kH2 ... }

e−β E(kD1 ,k
H
1 ,··· ) =

∑
{kD/H1 ,k

D/H
2 ,... }

e−β
∑
j ε(k

D/H
j )

=
∑

{kD/H1 ,... }

∏
j

e−βε(k
D
j ) e−βε(k

H
j ) =

∏
j

∑
kD,kH

e−βε(k
D) e−βε(k

H)

=

((∑
kD

e−βε(k
D)

) (∑
kH

e−βε(k
H)

))M
≡ (ZD ZH)M . (5.16)

It factorizes into a product of pair partition functions. This is a consequence of the

hard-core collisions and the aforementioned fact that the energy does not depend on

the density.

In the last line we have defined the partition function of a single doublon and a

single holon, respectively, as

ZD =
∑
k

e4βJ cos(k) →
∫ π

−π

dk

2π
e4βJ cos(k) = I0(4βJ) (5.17)
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ZH =
∑
k

e2βJ cos(k) →
∫ π

−π

dk

2π
e2βJ cos(k) = I0(2βJ) (5.18)

where I0 denotes the modified Bessel function of the first kind.

From the partition function we can directly calculate thermodynamic expectation

values. As the partition function factorizes we can do this for each particle-pair in-

dependently. We are interested in the regime βJ ≈ 0 and thus we calculate the

observables to leading order in βJ . The expectation value of the energy density is

given by

〈e〉eq. =
1

2

(
1

ZD

∫ π

−π

dk

2π
(−4J cos(k)) e4βJ cos(k) +

1

ZH

∫ π

−π

dk

2π
(−2J cos(k)) e2βJ cos(k)

)
=− 4 J I1(4βJ)

I0(4βJ)
− 2 J I1(2βJ)

I0(2βJ)
= −5 J2β +O

(
J(Jβ)3

)
. (5.19)

From this we can see that, indeed, a kinetic energy of zero implies that the thermal

state is at infinite temperature as stated in section 5.1. The local energy-energy

correlation function is obtained as

〈e(x)e(x)〉eq. =

1

2

(
1

ZD

∫ π

−π

dk

2π
(−4J cos(k))2 e4βJ cos(k) +

1

ZH

∫ π

−π

dk

2π
(−2J cos(k))2 e2βJ cos(k)

)
= 10 J2 − J I1(2βJ)

β I0(2βJ)
− 2 J I1(4βJ)

β I0(4βJ)
= 5 J2 +

17

2
J2(Jβ)2 +O

(
J2(Jβ)4

)
. (5.20)

The expectation value of the second moments of the momentum distributions for

doublons and holons are given by

QD2,eq. =〈cos(2k)〉D =
1

ZD

∫ π

−π

dk

2π
cos(2k) e4βJ cos(k) = 2 J2β2 +O

(
(Jβ)4

)
(5.21)

QH2,eq. =〈cos(2k)〉H =
1

ZH

∫ π

−π

dk

2π
cos(2k) e2βJ cos(k) =

1

2
J2β2 +O

(
(Jβ)4

)
. (5.22)

Finally, the nearest neighbor energy-energy function can be calculated to be

T1,eq. =
1

8

(
1

ZD

∫ π

−π

dk

2π
(−4J cos(2k)) e4βJ cos(k)

)2

+
1

8

(
1

ZH

∫ π

−π

dk

2π
(−2J cos(2k)) e2βJ cos(k)

)2

+
3

4

(
1

ZD

∫ π

−π

dk

2π
(−4J cos(2k)) e4βJ cos(k)

)(
1

ZH

∫ π

−π

dk

2π
(−2J cos(2k)) e2βJ cos(k)

)
=J2

(
I2

1 (2βJ)

2I2
0 (2βJ)

+
2I2

1 (4βJ)

I2
0 (4βJ)

+
6I1(4βJ)I1(2βJ)

I0(4βJ) I0(2βJ)

)
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=
41

2
J4β2 +O

(
J2(Jβ)4

)
. (5.23)

Therefore in equilibrium for J = 1, it is QD2,eq. = 4
41 T2,eq. and QH2,eq. = 1

41 T2,eq.. These

relative prefactors were used above in section 5.1 to predict the relative prefactors of

the non-equilibrium long-time tails.

The prefactors 1/8, 1/8 and 3/4 as used in the calculation of T2,eq. are the proba-

bilities that a randomly chosen pair of neighboring quasiparticles are two doublons,

two holons or one doublon and one holon, respectively. This reflects that the quasi-

particles maintain their initial order: a doublon (holon) cannot have two doublons

(holons) as nearest neighbors. If transmission would be allowed, or the order is ran-

dom for other reasons, this prefactors change to 1/4, 1/4 and 1/2. The result would be

T1,eq. = 25J4β2, while QD2,eq. and QH2,eq. are not changed. The omission of the transmis-

sion channel has macroscopic consequences, although the microscopic effect is tiny. It

introduces a new macroscopically conserved quantity: the sequence of quasiparticle

species.

The energy diffusion constant De, as used in Fig. 5.6, can be calculated from the

Kubo formula as follows [126, 127, 176]. In linear response, the heat conductivity

κ can be calculated as the ω = 0 component of the energy current autocorrelation

function:

κ =
2

LT 2

∫ ∞
0

dt〈Je(t)Je(0)〉eq., (5.24)

where Je denotes the total energy current and L the system size. Then it is

De = κ

(
∂ 〈e〉eq.

∂T

)−1

=
1

5LJ2

∫ ∞
0

dt〈Je(t)Je(0)〉eq., (5.25)

where we have used Eq. (5.19). The current-current correlation function was deter-

mined numerically in equilibrium. From Eq. (5.25) we have obtained

De ≈ 0.91 ρ−2 τ−1
dh ≈ 0.5

U2

J
. (5.26)

The energy-energy correlation function in equilibrium is also expected to show

hydrodynamic long-time tails, see Eq. (4.27). In Fig. 5.7 we show the unequal time

energy-energy correlation function

T0,eq.(t1, t2) = 〈εi(t1) εi(t2)〉eq. ≡ T0,eq. (|t2 − t1|) , (5.27)
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Figure 5.7: Unequal times energy-energy correlations in equilibrium. The red
dashed line is a fit 1.26 (t/τdh)−1/2. Again, the asymptotic behavior is reached only for
large times t & 200 τdh as can be seen from the log-log plot in the inset.

which is a function of the time difference only. Its equal time value is given by∫ π

−π

dk

2π

1

2

(
(−2 cos(k))2 + (−4 cos(k))2

)
= 5, (5.28)

the β = 0 and J = 1 result of Eq. (5.20). Again, the eventual t−1/2 behavior is only

seen after many scattering times t & 200 τdh

Finally, we consider the local energy current–energy current correlation function

ce(t1, t2) = 〈jei (t2)jei (t2)〉eq. ≡ ce (|t2 − t1|) (5.29)

where jei (t) = vi(t) εi(t) denotes the energy current of the i-th particle at time t. Its

equal time value can be calculated as

ce(t, t) =
1

2ZD

∫ π

−π

dk

2π
((−4J cos(k))(4J sin(k)))2 e4βJ cos(k)

+
1

2ZH

∫ π

−π

dk

2π
((−2J cos(k))(2J sin(k)))2 e2βJ cos(k)

=− 30
J2

β2
+

4 J(3J + 2J2β2) I1(2βJ)

β3 I0(2βJ)
+

4 J(3 + 8J2β2) I1(4βJ)

β3 I0(4βJ)

=17 J4 − 257

24
J4 (Jβ)4 +O

(
J4(Jβ)8

)
. (5.30)
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Figure 5.8: Long time-tails in the equilibrium energy current autocorrelation
function. The red dashed line is a fit according to the hydrodynamic prediction
1.495 (t/τdh)−3/2. The inset shows the short time behavior. It is dominated by a drastic
reduction of the equal time correlation 17 J4, see Eq. (5.30), to a small negative value.

In Fig. 5.8 we show numerical results for ce(t). As seen in the linear plot in the

inset, the short time behavior is dominated by a sign change and a drastic reduction

of the correlations. Within approximately two scattering times, ce drops from its

initial value ce(0) = 17 to ce(t ∼ 2τdh) ≈ −0.7. Then it develops a small negative

long-time tail. In section 4.4, see Eq. (4.35), we have shown that the local current

autocorrelation function decays as ∼ t−3/2 in one dimension. A corresponding fit

1.495 (t/τdh)−3/2 is shown by the red dashed line.

In the fluctuating hydrodynamics approach, as introduced in section 4, the short

time behavior of ce was approximated by a δ-peak. From the inset in Fig. 5.8 we see

that this is a decent approximation on timescales larger than a scattering time. The

negative part, including the long-time tail, of ce arises from the coupling to the slow

diffusion mode, and thus was not part of the fluctuating term ξ as used in section 4.

All numerical results presented above are in perfect agreement with the predic-

tions from fluctuating hydrodynamics and linear response theory. We have shown

that the exponents and relative prefactors of the, equilibrium and non-equilibrium,

long-time tails can be calculated analytically within this framework.
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5.3 Comparison to the Boltzmann equation

It is instructive to investigate the semiclassical relaxation as described above with

the results from a Boltzmann equation approach. As this assumes uncorrelated colli-

sions it can describe only local equilibration. It cannot reproduce the long-time tails

as explained in section 4.

Denoting the semiclassical distribution functions of doublons and holons as nDk
and nHk , respectively, the Boltzmann equation takes the form

∂

∂t
nDk =

∫
dq

2π

∫
dk′

2π

∫
dq′

2π
Wk,q;k′,q′

× δ
(
εDk + εHq − (εDk′ + εHq′ )

)
δU
(
k + q − (k′ + q′)

) (
nDk′ n

H
q′ − nDk nHq

)
, (5.31)

∂

∂t
nHq =

∫
dk

2π

∫
dk′

2π

∫
dq′

2π
Wk,q;k′,q′

× δ
(
εDk + εHq − (εDk′ + εHq′ )

)
δU
(
k + q − (k′ + q′)

) (
nDk′ n

H
q′ − nDk nHq

)
, (5.32)

where δU (k) =
∑

n δ(k+ 2π n) guarantees conservation of the lattice momentum. The

transition rate W for hard-core collisions in one dimension is exactly given by

Wk,q;k′,q′ = (2π)2|vDk − vHq ||vDk′ − vHq′ | = (2π)2|∂kεDk − ∂qεHq ||∂k′εDk′ − ∂q′εHq′ |. (5.33)

This can be obtained as follows: for small ∆t the change in the distribution function

nk is

nk(t+ ∆t) = nk(t) + ∆t
∑
p

(
W IN
p→knp(t)−WOUT

k→p nk(t)
)
, (5.34)

where the in and out scattering rates are given by

W IN
p→k =

∑
p′,k′

np′ δE δM |vp − vp′ | f IN(k, k′) (5.35)

WOUT
k→p =

∑
p′,k′

nk′ δE δM |vk − vk′ | fOUT(p, p′). (5.36)

δE and δM indicate, respectively, energy and momentum conservation. The probabil-

ity that two particles with momenta p and p′ collide within a very small time ∆t is

proportional to the relative velocity |vp − vp′ |. To obtain detailed balance it is then

necessary that f IN(k, k′) ∝ |vk − vk′ | and fOUT(p, p′) ∝ |vp − vp′ |. The factors of 2π in

Eq. (5.33) are a normalization and could be absorbed in the definition of nD/H .
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Figure 5.9: Short time dynamics predicted by the Boltzmann equation and
numerical results. The solid lines show the numerical data, while the dashed lines
show the results from the Boltzmann equation, Eqns. (5.38) and (5.39). The relax-
ation of the modes 〈cos(nk)〉 is shown for n = 2, 4, 6 (from left to right) for doublons,
panels a) - c), and holons, panels d) - f). The largest discrepancy is seen in panel e).
But also here the tendency at very short times is the same, although this cannot be
seen in the plot.

Performing the Fourier series expansion of the distribution functions as

nD,Hk =
∑
m

cos(mk) dm/hm, (5.37)

we find the following equations for the Fourier components:

∂

∂t
dm =2

∑
m′,m′′

dm′hm′′

∫
dk

2π

∫
dq

2π
cos(mk)

× |∂kεdk − ∂qεhq |
(
cos(m′kd) cos(m′′(k + q − kd))− cos(m′k) cos(m′′q)

)
(5.38)

∂

∂t
hm =2

∑
m′,m′′

dm′hm′′

∫
dk

2π

∫
dq

2π
cos(mq)

× |∂kεdk − ∂qεhq |
(
cos(m′kd) cos(m′′(k + q − kd))− cos(m′k) cos(m′′q)

)
. (5.39)

kd(k, q) is the doublon momentum after the scattering of a doublon with momentum k

and a holon with momentum q, determined from energy and momentum conservation

(modulo Umklapp scattering), see Eq. (3.12).

We have solved Eqns. (5.38) and (5.39) numerically, including all modes up to

m = 8, with the initial conditions h0(0) = d0(0) = −h2(0) = −d2(0) = ρ and hm(0) =

dm(0) = 0 otherwise, to match the initial sin2 distribution. The results for the even
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modes are compared to the results of the simulation in Fig. 5.9. The odd modes are

all zero. The Boltzmann equation predicts correctly the times scale of relaxation,

see Figs. 5.9a) and 5.9d). But even at short times there is no quantitative agreement.

The reason is that in 1d there is high probability that the same particles scatter again

and correlation effects set in quite quickly.

5.4 Exact diagonalization for strong quenches

The semiclassical approach used above is not applicable for quenches where U ∼ J .

Therefore we have used exact diagonalization (ED) to study the quench in this limit,

we show results for U = J . The ED calculations have been performed in collab-

oration with Jan Müller using the ALPS code [177]. The same initial state as in

the semiclassical regime was used: the product state with one boson per site. To

reach larger system sizes, the maximal occupation of a single site was restricted to

two. In principle, this corresponds to a different model where higher occupation is

suppressed. Although this changes the results quantitatively, the qualitative behav-

ior should be the same. Furthermore periodic boundary conditions were used. As

the initial state is translationally invariant, we can restrict the analysis to the total

momentum, K = 0, sector. In this way a system size of L = 14 could be reached, cor-

responding to a Hilbert space dimension of 44046. Unfortunately, it was not possible

to simulate larger systems due to memory constraints.

As an observable, we define the doublon density operator as

d̂i =
1

2
b̂†i b̂i

(
b̂†i b̂i − 1

)
=

1

2
n̂i (n̂i − 1) (5.40)

The number of doublons can be measured directly: either by the quantum micro-

scopes introduced in section 2.3 or by other techniques [171, 178]. In the present

setup 〈d̂i〉 does not depend on the site index i and is zero in the initial state. It is

directly related to the energy as the total interaction energy is given by

〈Ĥint〉 = U
∑
i

〈d̂i〉 = UL〈d̂i0〉, (5.41)

where i0 is arbitrary. In the left panel of Fig. 5.10 we show the time evolution of 〈d̂i〉
for system sizes L = 10, 12, 14. The black solid line is the long time average obtained

from the diagonal ensemble. For L = 10 and L = 12 the dynamics is distorted due to

finite size fluctuations. The results for L = 14, however, clearly show that the long

time value is approached only algebraically. But still, the finite size fluctuations are
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Figure 5.10: Exact diagonalization results for different systems sizes L =
10,12,14 and U = J . The solid black lines indicate the long time average ob-
tained from the diagonal ensemble. In the left panel results for the doublon density
〈d̂i〉 are shown which is proportional to the interaction energy and can be measured
experimentally[171]. The right panel shows nearest-neighbor doublon density corre-
lations. For both observables the long time average is approached only algebraically,
as can be clearly seen in the data for L = 14. Two fit functions are shown for each
observable. For 〈d̂i〉, fitting a single exponent yields −0.06(Jt)−1.23 (black, dashed
line), but the data are described equally well with the hydrodynamic prediction
0.016(Jt)−1/2−0.048(Jt)−3/4 (solid green line). For the doublon correlations, a fit with
a single exponent yields −0.022(Jt)−0.69 (black, dashed line). Again, the data are de-
scribed equally well with the hydrodynamic prediction −0.0033(Jt)−1/2− 0.02(Jt)−3/4

(solid green line).

too large for a reasonable quantitative analysis. We show, nevertheless, two differ-

ent fit functions with two fitting parameters each. One is of the form a (Jt)b (black

dashed line) and the other is of the form expected from hydrodynamics including a

subleading term, see above, a (Jt)−1/2 +b (Jt)−3/4 (green solid line). Both describe the

data equally well.

In the right panel of Fig. 5.10 the nearest neighbor doublon density correlation

function 〈d̂i〉2 − 〈d̂i d̂i+1〉 is shown. Due to the translational invariance, this does also

not depend on the site index i. Here the algebraic decay is more pronounced. Two fit

functions of the form given above, a (Jt)b and a (Jt)−1/2 +b (Jt)−3/4, are shown. Again,

both describe the data equally well. As in the semiclassical simulations, the prefac-

tor of the subleading term (b ≈ −0.02) is larger than the prefactor of the eventual

asymptotic term (a ≈ −0.0033).
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The ED results presented above are consistent with the prediction from hydrody-

namics – if subleading corrections are included. If the transport is diffusive, as we

believe, the time scales as L2. This explains why the slow relaxation is visible already

in the small 14 site system and is, potentially, also present in smaller systems. How-

ever, for L = 10 and L = 12 finite size fluctuations completely rule out any reasonable

analysis, see panels b) and c) of Fig. 5.10.

Diffusive spreading of energy has also been observed in ED of a non-integrable

variant of the transverse field Ising model with 16 sites (Hilbert space dimension

32896) [179]. Here the propagation of energy and entanglement after a local pertur-

bation in a random product state was investigated. The authors found that entangle-

ment spreads ballistically∼ t, while the energy spreads diffusively ∼
√
t. This is fully

consistent with the quasiparticle worldline picture given in section 3.4. Initially only

quasiparticles originating from the same pair are entangled. In each collision infor-

mation is passed over to the outgoing quasiparticles: entanglement is not a conserved

quantity, but it is generated in each collision. Thereby the entanglement spreads bal-

listically and shows a light cone effect. By contrast, the energy can be transported

only diffusively as it is locally conserved.

Prethermalization can also lead to power law decay of correlation functions in the

collisionless regime [14, 115]. However, the limit U = J is not close to an integrable

point. For the hopping rates of order J we expect that at times Jt ∼ 25, the maximal

time in Fig. 5.10, many scattering events must have taken place. In the ED results,

Fig. 5.10, we further that it is the eventual value of the diagonal ensemble which is

approached algebraically. Therefore, we conclude that the algebraic decay is probably

not related to any quasi-stationary regime.
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6 Violation of the conservation laws: Numerical Results

Since the hydrodynamic long-time tails rely on the macroscopic conservation laws,

it is worthwhile to investigate what happens if these are violated. In this section

we will study three different ways of doing so. In section 6.3 we will investigate the

effect of a time-dependent dispersion. But first, we will consider a situation where

the momenta of single quasiparticles are randomly changed. We will study two dif-

ferent setups: the first being that new momenta a chosen according to the eventual

equilibrium distribution, as determined by the mean energy. In the second setup the

new momenta are chosen according to a non-equilibrium distribution. This will lead

to competition between thermalization and the exchange mechanism. In the long-

time limit, this will lead to a stationary momentum distribution which is neither the

full equilibrium distribution nor the exchange distribution. We will refer to this as a

driven system.

We have implemented a setup, where the initial state was chosen as in section 5,

including a momentum distribution ∼ sin2. During the time evolution, the momenta,

but not the positions, of randomly chosen quasiparticles are changed on some typical

timescale τf = 1/ωf (for a single particle). The parameter which determines the

influence of this exchange mechanism is the ratio of this new timescale and scattering

time α = τf/τdh.

In section 4.5 we have shown that an exponential decay of the correlation func-

tions is expected if the conservation laws are violated. The long-time result was given

in Eq. (4.56). Here we show the result again, in one dimension and for short-ranged

initial correlations as realized in the numerical simulations:

〈n(x, t)n(x′, t)〉 − Cnδ(x− x′)

−→
t large

−(Bn + Cn)
e
− |x−x

′|√
Dnτf

2
√
Dnτf

+ (An +Bn − Cn)
e−2t/τf e−

|x−x′|2
8Dnt

(8πDnt)1/2

=
Fn

α1/2
exp
(
− r̃

(D̃n α)1/2

)
+
Gn

t̃1/2
exp
(
− t̃

α/2

)
× exp

(
− r̃2

8D̃n t̃

)
. (6.1)

"t large" and the prefactors An, Bn and Cn are explained in section 4.5. In the second

line we have used dimensionless parameters and we have absorbed all constants in

the definition of Fn and Gn. Explicitly, the dimensionless parameters are given by

D̃n = ρ2τdhDn, r̃ = ρ |x − x′|, α = τf/τdh and t̃ = t/τdh. The first term ∼ Fn describes

possible stationary correlations, while the second term ∼ Gn describes how the sta-

tionary state is approached. While Gn depends on the initial state (via An), Fn does
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Figure 6.1: Energy-energy correlation function in the absence of energy con-
servation. The decay is exponential, the red dashed line is a fit according to the
analytic formula Eq. (6.1), 0.16 (t/τdh)−1/2 e−0.031 (t/τdh). It describes the numerical
data for t & 2τdh. Data is shown for α = τf/τdh ≈ 77.

not. We expect that when α is large the corresponding mode is still slow and the

relaxation can be described by Eq. (6.1). In the derivation of Eq. (6.1), correlations

between the noise of the current and the noise in the continuity equation were omit-

ted. However, for q → 0 the noise of the current becomes irrelevant (if τf < ∞) and

one can use Cn → 0 in the formulas shown above. This leads to a redefinition of Fn
and Gn but does not change the final result qualitatively.

6.1 Thermalization in the absence of conservation laws

We first consider the situation where the exchange distribution is chosen according

to the eventual equilibrium distribution. In the present setup this corresponds to a

infinite temperature distribution. We have changed only the momenta, but not the

position, of randomly chosen particles with a single-particle rate ωf = 1/τf . The be-

havior of the distance-distance correlation as defined in Eq. (5.15) function is totally

unchanged. A fit to the data yields 0.0943 t−1/2 (not shown, see Fig. 5.5). For the data

obtained in the closed system the fit was 0.0941 t−1/2. The agreement shows that a

coupling between the energy and the particle number mode can be excluded within

the precision of the data. Therefore we still find long-time tails related to the local

conservation of the particle number.

By contrast, the behavior of the energy-energy correlations is drastically changed.

The decay is now exponential rather than algebraic as predicted by Eq. (6.1). In

80



0 5 10 15 20 25 30

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

t/τDH

T
n
>
1
(t
)

10 20 30 40 50 60

0.050

0.020

0.010

0.005

0.002

0.001

n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10

Figure 6.2: Non-local energy-energy correlation functions. The main panel
shows the short time behavior. The inset shows the long-time behavior in a semi-log
plot, here −Tn is shown. The decay is exponential, the black dashed line is the fit
obtained from T1, see Fig. 6.1, 0.16 (t/τdh)−1/2 e−0.031 (t/τdh). For all n the correlations
decay to zero, showing the absence of static correlations in the final state. Data is
shown for α = τf/τdh ≈ 77.

Fig. 6.4 we show results for α ≈ 77. The red dashed line is a fit according to Eq. (6.1):

a (t/τdh)−1/2e−(t/τdh)/b, which yields a ≈ 0.16 and b ≈ 33. From Eq. (6.1) we expect

b = α/2 ≈ 38.5. The final state is the T =∞ equilibrium state and does not show any

non-local correlations. This can be seen in Fig. 6.2, where we show the time evolution

of Tn with n > 1. The main panel shows the evolution at times t < 30τdh. At very short

times, the behavior is dominated by the propagation of the positive initial correlations

as seen by the positive peak. At t = 0 it is T0(t = 0) = 5/2, T1(t = 0) = 1 and Tn>1(t =

0) = 0, see Eqns. (5.9), (5.10) and (5.11). A sign change indicates the crossover to

the relaxation regime. All Tn approach the stationary value, which is 0 here, from

the negative side. The inset shows a semi-log plot of −Tn. At large times all curves

collapse onto a single curve as shown by the black dashed line. This is the fit obtained

for T1 in Fig. 6.1. From Eq. (6.1) we expect that this happens for t & n2. This behavior

can be seen in the scaling plot Fig. 6.3. Here we show [−
√
t et/τfitTn(t)]t→tn2 . From

Eq. (6.1) we then expect that the result is independent of n and approaches a constant

value at long times. This is confirmed by the numerical results. The constant value

is approximately −0.16 as obtained from the fit of T1 above. This shows that the

diffusive scaling is still present in the relaxation. However, the relaxation towards

the equilibrium is not dominated by the diffusion, but by the exchange mechanism.
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Figure 6.3: Scaling of the non-local energy-energy correlation functions. The
y−axis is rescaled such that Tn → const. for t → ∞, τfit is ≈ 33. The time is rescaled
with n2 such that the result is independent of n at long-times.

Gradients in the density can be compensated locally instead of globally: this leads to

an exponential decay instead of an algebraic decay.

6.2 Relaxation in the driven system

This work was done in collaboration with Florian Lange and results very similar to

those presented below can also be found in his Bachelor thesis [180]. The setup is the

same as above but now the exchange distribution is not the equilibrium distribution

but the initial sin2 distribution.

The momentum distribution is permanently filled around ±π/2, the maxima of

sin2. Therefore it will not be able to relax to the full equilibrium distribution. Rather

we find that it becomes stationary with a finite value of QD/H2 = 〈cos(2k)〉D/H which

depends on α (not shown, see [180]). The equilibrium distribution has QD/H2,eq. = 0

while the initial and the exchange distribution have QD/H2,ini. = −1/2. Therefore it is

Q
D/H
2,driven(t) −→

t→∞
Q
D/H
2,stat.(α) ∈ [−1/2, 0] (6.2)

with Q
D/H
2,stat.(α) −→

α→∞
0 and Q

D/H
2,stat.(α) −→

α→0
−1/2. (6.3)

In Fig. 6.4 we show the time evolution of the nearest neighbor energy correlations for

different values of α = τf/τdh. In the main panel the unscaled data is shown. Here
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Figure 6.4: Nearest neighbor energy-energy correlation function in the
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stationary value ∼ α1/2 is reached as predicted by Eq. (6.1). The main panel shows
the unscaled data. At short times T1 is independent of α. The smaller α, the earlier
derivations can be seen.

one can see that at short times the results are independent of α. This is the regime

where the effect of the exchange mechanism has not yet set in. The smaller α the

earlier the curve deviates. At larger times the scaling behavior is reached if the data

is plotted as a function of t/τf as shown in the inset. In the long time-limit T1 shows

a finite value ∼ α−1/2 as predicted by Eq. (6.1).

Eq. (6.1) predicts an exponential decay of the non-local energy-energy correlations

with a correlation length ∼
√
α and a prefactor ∼ 1/

√
α in the stationary state. In

Fig. 6.5 we demonstrate that this is indeed fulfilled here. We plot α1/2 Tn(t → ∞) =

α1/2 T stat.
n as a function of x = n/

√
α. From Eq. (6.1) we then expect a scaling function

a e−b x. An according fit with a = −0.58 and b = 0.93 is shown by the black dashed

line.

The results show that there is a divergent correlation length in the limit τf →∞.

This implies that the weaker the deviation from the conserving regime, the larger the

correlation length. This can be rationalized as follows. If the non-conserving events

are very rare the system can adjust to this perturbation only diffusively. The rarer

this non-conserving events, the larger is the length on which this has to be compen-

sated. On length x a perturbation can be balanced within a time ∼ x2/D. Within a

time t a perturbation can be balanced on a length ∼
√
Dt. When the perturbations

occur in steps of τf this has influence on a length xc ∼
√
Dτf , which is exactly the
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Figure 6.5: Stationary values of the non-local energy-energy correlation
function in the driven system. There are non-local, albeit exponentially de-
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correlation length found above. This is only valid if τf is larger than some scattering

times and xc is larger than some mean free path such that the diffusive scaling can

develop.
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6.3 Adiabatic limit

Above we have presented results for instantaneous quantum quenches. Now we want

to consider a different limit namely the crossover to the adiabatic regime. In quan-

tum mechanics the adiabatic theorem due to Born and Fock [181] states the follow-

ing. Suppose that the system is in an eigenstate of a Hamiltonian Ĥ(λ) which is

parametrized by λ. If λ is changed very slowly, on timescales much larger than all

intrinsic timescales of the system (including the inverse level spacing), the system re-

mains in the corresponding instantaneous eigenstate. An exception can occur when

there are level crossings such that the occupied state is degenerate with another state

at some time.

In classical equilibrium systems an adiabatic process is a process in which energy

is transferred only as work but not as heat. To keep contact to quantum mechanics,

we use a slightly different definition. We will use the word "adiabatic" for a time-

dependent process which is so slow that the system is always in equilibrium. Then

no entropy is produced and the process is reversible.

We will investigate a periodic modulation of the dispersion. This introduces a new

time scale, the period τc ∼ 1/ωc of one cycle. We study the system in the semiclassical

limit and we consider the case where only one of the dispersions is time-dependent:

ε0(k) = −2J0 cos(k) (6.4)

ε1(k, t) = −2J1(t) cos(k), (6.5)

where J1(t) = J1(0) + (J2 − J1(0))r(t/τc) and r is periodic r(0) = r(1) = 0, r(1/2) = 1.

For example we could use r(t/τc) = sin(πt/τc) or

r(t/τc) =


2t
τc

, t < τc/2

2(1− t
τc

) , t > τc/2
(6.6)

which is just a triangular modulation of the dispersion. We haven chosen the modula-

tion Eq. (6.6), because it is the easiest to implement numerically. In the semiclassical

simulations, time is discretized by the scattering events. Therefore the sharp edges

of r, as defined in Eq. (6.6), do not matter. In a true quantum mechanical framework,

where time is continuous, one has to choose a smoother onset of the perturbation.

The positions of the quasiparticles can be calculated according to

x0(t) = x0(t0) +

∫ t

t0

dt′v0(k) = x0(t0) + 2J0 sin(k)(t− t0) (6.7)
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for species 1 and

x1(t) = x1(t0) +

∫ t

t0

dt′v1(k, t) = x1(t0) + 2 sin(k)

∫ t

t0

dt′J1(t) (6.8)

= x1(t0) + 2 sin(k)

∫ t

t0

dt′(J1(0) + (J2 − J1(0)2t/τc)) (6.9)

= x1(t0) + 2J1(0) sin(k)(t− t0) + 2(J2 − J1(0)) sin(k)(t2 − t20)/τc (6.10)

for species 2 at t, t0 < τc/2. Then the calculation of next scattering position of neigh-

boring particles x0(thit) = x1(thit), x1a(thit) = x1b(thit) are quadratic equations for the

hitting time thit.

The Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥ1 + Ĥ01 + ∆Ĥ(t), where ∆Ĥ(t) = λr(t/τc)Ĥ1, (6.11)

and we have defined λ = ∆J = J2 − J1(0).

We will consider the situation where the system is initially in equilibrium at some

temperature Tini. We then switch on the time dependence of the dispersion, which

changes the energy of the system and therefore the equilibrium temperature. If the

change is performed slowly enough, we expect that the response can be calculated

from linear response theory.

We can calculate the change in the total energy E of the system according to

∆E(t) = E(t)− E(0) =

∫ t

0
dt′

d

dt′
E(t′) =

∫ t

0
dt′

d

dt′
〈∆Ĥ(t′)〉

=

∫ t

0
dt′λṙ(t′) 〈Ĥ1〉(t′). (6.12)

The expectation value 〈Ĥ1〉(t′) can be written in terms of a response function χ as

〈Ĥ1〉(t) =

∫ t

0
dt′λr(t′/τc)χĤ1,Ĥ1

(t− t′). (6.13)

Within linear response theory the response function χ can be calculated in equilib-

rium and Eq. (6.13) becomes a Kubo formula [126–128]. In the classical limit we

obtain [127, 128]

χĤ1,Ĥ1
(t)→ χH1,H1(t) =

1

T

d

dt

(
〈H1(t)H1(0)〉eq. − 〈H1〉2eq.

)
, (6.14)

In this high temperature limit χ has an additional prefactor ω/T when compared to
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the quantum formulas.

As we know from the previous sections, see in particular section 4, the equilibrium

energy-energy correlation function shows hydrodynamic long-time tails for t � τs,

where τs is the scattering time. This means that

〈H1(t)H1(0)〉eq. − 〈H1〉2eq. = C1

√
τs
t
, for t� τs. (6.15)

With this result we can calculate the energy change in the system after a half cycle

(t = τc/2). From Eq. (6.12) and the linear response formula we obtain the deviation

from the adiabatic case, where system is always in equilibrium, as

∆E
(τc

2
; τc � τs

)
=

∫ τc/2

0
dtλṙ(t/τc)

∫ t

0
dt′
λr(t′/τc)

T

(−1/2) τ
1/2
s C1

t′3/2

≈ −2λ2C1 τ
1/2
s

Tτ2
c

∫ τc/2

τs

dt

∫ t

τs

dt′
1

t′1/2
= − 2

√
2λ2C1

3T

(
τs
τc

)1/2

+O
(
τs
τc

)
. (6.16)

We see that we can expect long-time tails as a function of the periodicity τc. In Fig. 6.6

we show numerical results for the ratio γ(t = τc/2) = E(t = τc/2)/E(t = 0). The

parameters used were Tini = 2, J0 = 1, J1(0) = 1.25, J2 = 4. In the limits τc → 0 and

τc →∞ we can calculate the result exactly.

For an instantaneous quench τc → 0 we just have to calculate the energy in the old

equilibrium state with the new dispersion. The partition functions can be calculated

as in section 5.2. As shown there we obtain a modified Bessel function I0 and we

define ZJ(β) = I0(2Jβ). The energy for the instantaneous change, Equench, and energy

in the initial equilibrium state can be calculated as

Equench =
1

2

(∫ π

−π

dk

2π
(−2J0 cos(k))

e2J0 cos(k)βini

ZJ0(βini)

+

∫ π

−π

dk

2π
(−2J2 cos(k))

e2J1(0) cos(k)βini

ZJ1(0)(βini)

)
, (6.17)

Eini =
1

2

(∫ π

−π

dk

2π
(−2J0 cos(k))

e2J0 cos(k)βini

ZJ0(βini)

+

∫ π

−π

dk

2π
(−2J1(0) cos(k))

e2J1(0) cos(k)βini

ZJ1(0)(βini)

)
. (6.18)

With the parameters as used above (βini = 1/2, J0 = 1, J1(0) = 1.25, J2 = 4) we obtain

γquench(τc/2) =
Equench(t = τc/2)

E(t = 0)
=
Equench

Eini
≈ 2.3124. (6.19)
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Figure 6.6: Relative energy change in a half cycle t = τc/2. Parameters are
T = 2, J0 = 1, J1(0) = 1.25, and J2 = 4, error bars represent one standard deviation.
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a fit according to the prediction from linear response, see Eq. (6.16): Eadab/E0 −
0.18 (τc/τs)

−1/2.

This is shown by the lower black dashed line in Fig. 6.6.

In the adiabatic limit τc → ∞ the final temperature can calculated from the con-

dition that the entropy S does not change. The entropy is given by

S(β, J) = −
∫ π

−π

dk

2π

e2J0 cos(k)β

ZJ(β)
log

(
e2J0 cos(k)β

ZJ(β)

)

= −2J βI1(2Jβ)

I1(0, 2Jβ)
+ log (I0(2Jβ)) . (6.20)

Adiabaticity, as defined above, dictates

Sini = S(βini, J0) + S(βini, J1(0))
!

= Sfinal(t = τc/2) = S(βfinal, J0) + S(βfinal, J2) (6.21)

and the temperature of the final state, Tfinal = 1/βfinal, can be calculated by solving

Eq. (6.21). The energy of the final equilibrium state is then given by

Eadab. =
1

2

(∫ π

−π

dk

2π
(−2J0 cos(k))

e2J0 cos(k)βfinal

ZJ0(βfinal)

+

∫ π

−π

dk

2π
(−2J2 cos(k))

e2J1(0) cos(k)βfinal

ZJ1(0)(βfinal)

)
. (6.22)
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Solving Eq. (6.21) numerically with the parameters given above yields Tfinal ≈ 4.703

or βfinal ≈ 0.2126. Inserting this into Eq. (6.22) yields the final energyEadab. ≈ −2.7761

and, finally,

γadab.(τc/2) =
Eadab.

Eini
≈ 2.50914. (6.23)

This number is shown by the upper black dashed line Fig. 6.6.

The red dashed line is a fit according to the prediction from linear response theory

γadab.(τc/2) − A(τs/τc)
1/2. While it seems that the data are well described by the fit,

a further analysis shows that the data can be described equally well by other fit

functions. To clarify this point, results for longer timescales are needed. In section

5 we have seen that the eventual 1/
√
t behavior is only seen after more than 200

scattering times.

Results for a full cycle can be obtained analogously and do not give further in-

sights. In both limits, (a) τc → 0 and (b) τc → ∞, it is ∆E = 0 since in (a) nothing

changes and in (b) the process is reversible.
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7 Quench dynamics and statistics of measurements

In this section we study a quantum quench in two dimensions. We consider the dy-

namical fragmentation of a spin line into bound states. We will describe the system

as an open, effectively one dimensional, system which is locally coupled to the two di-

mensional environment. This is justified for the initial state and the observables that

we have studied. The feedback of the two dimensional environment onto the one di-

mensional dynamics is omitted. As the main result we obtain statistical information

on quantum measurements which cannot be described by conventional correlation

functions.

As an initial state we have chosen a line of flipped spins in y-direction in a ferro-

magnetic background (in Ŝz basis). This choice is motivated by an experimental setup

realized in the group of Immanuel Bloch in Munich [102, 105, 108]. The Hamiltonian

governing the time evolution is given by the 2-dimensional spin 1/2 ferromagnetic,

J > 0, XXZ Heisenberg model

Ĥ =− J
∑
ix,jy

[
1

2

(
Ŝ+
ix,jy

Ŝ−ix+1,jy
+ Ŝ+

ix+1,jy
Ŝ−ix,jy

)
+ ∆Ŝzix,jy Ŝ

z
ix+1,jy

]

− Jα
∑
ix,jy

[
1

2

(
Ŝ+
ix,jy

Ŝ−ix,jy+1 + Ŝ+
ix,jy+1Ŝ

−
ix,jy

)
+ ∆Ŝzix,jy Ŝ

z
ix,jy+1

] (7.1)

We will consider the Ising limit ∆� 1 only. In this limit we find stable quasiparticles

which have a very long lifetime protected by the largeness of ∆. We can then use the

semiclassical methods as presented in section 3. We expect that this gives accurate

results to leading order in 1/∆. The coupling in the y-direction, αJ , is assumed to

be stronger than the coupling J in the x-direction: α − 1 > 1/∆. In the following

we present results for α = 2, an arbitrary choice. We will call the interaction energy

(∼ ŜzŜz ) the Ising energy.

It is possible to realize effective Heisenberg models with ultracold atoms in opti-

cal lattices [44, 182]. The parameters of the Hamiltonian, Eq. (7.1), can be adjusted

by Feshbach resonances or by different atomic species showing different hopping am-

plitudes [182]. Slight modifications can already be obtained by varying the laser

intensity [182]. Due to the high precision techniques, arbitrary product states in the

Ŝz basis can be prepared [108].

The experimental protocol is shown in Fig. 7.1. Here and in all the following

graphics the z-component of the spins is depicted. Spin-down is shown in orange,

while up-spins are colored blue. At t = 0 a line of flipped spins is prepared in the
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Figure 7.1: The initial state and the experimental protocol. The initial state is
a line of flipped spins in a ferromagnetic background. Depicted are the z-components
of the spins. The time evolution is according to the anisotropic XXZ Hamiltonian in
the Ising limit. After long times, projective measurements are performed, as realized
by the quantum microscope measurements, see section 2.3.

ferromagnetic background. The initial state, as depicted in the left panel of Fig. 7.1,

was used in the experiment reported in [102]. However in [102], the Hamiltonian

of the time evolution was in a limit where the individual rows were effectively de-

coupled, α → 0 in Eq. (7.1). After a time evolution with the Hamiltonian shown in

Eq. (7.1) projective real space measurements in the Ŝz basis are performed. By means

of the quantum microscopes, introduced in section 2.3, it is possible to perform such

measurements. This, in principle, gives access to full distribution functions. In each

run one obtains a different result, according to the quantum mechanical probabili-

ties. The collection of possible final states weighted by their probabilities defines a

time-dependent ensemble. We will investigate how these measurements can be de-

scribed quantitatively. The goal is to obtain statistical properties of this ensemble

after long times. This also contains information on typical single-shot results. Low

order correlation functions are not sufficient to describe the ensemble of final states.

First, we will present the zoology of quasiparticles, their creation and their pos-

sible scatterings. The time evolution is characterized by the emission of single spins

from the 1d line into the ferromagnetic background. We will consider only the 1d

dynamics along the initial line. We will not keep track of the emitted spins. In the

infinite system without boundaries there is a vanishing probability that they scatter,

as they form a very dilute 2d gas. Therefore they will not influence the 1d dynamics.

We will describe the 1d line as an effectively open system which can emit but not ab-

sorb. During the time evolution the quasiparticles can transform into each other and,

as time evolves, more and more single spins are emitted from the 1d line. Eventually,

this leads to freezing out of the 1d dynamics. The final ensemble consists of bound
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states and defects which are immobile to leading order in 1/∆. We will determine the

probability distributions of these immobile objects, which describe the outcome of the

projective measurements. The dynamics is calculated by means of semiclassical sim-

ulations as described in 3.4. As an analytical input, the exact quantum mechanical

two-particle creation and scattering rates have been calculated. They were tabulated

and the dynamics was simulated according to this rates.

7.1 Creation of quasiparticles

To describe the creation of quasiparticles, we use a Schrieffer-Wolff transformation

as described in section 3.1 We demand the cancellation of [Ŝ, Ĥ0] and Ĥ1 only when

acting on the initial state |Ψ(0)〉:

[Ŝ, Ĥ0] |Ψ(0)〉 = −Ĥ1 |Ψ(0)〉 (7.2)

where Ĥ0 describes the spin flip terms and Ĥ1 is the Ising Hamiltonian. As all spin

flips raise the Ising energy by 2α∆J , see Fig. 7.2a)→b), we find:

Ŝ ≈ − 1

4α∆

L∑
j=1

(
Ŝ+

0,j(Ŝ
−
1,j + Ŝ−−1,j)− h. c.

)
(7.3)

where L is length of the 1d line. When eŜ acts on the initial state this creates a

wavefunction containing any number of quasiparticles. Due to the exponential their

distribution approximately follows a Poisson distribution. The overlap with the ini-

tial state is exponentially small in L and given by
∣∣∣〈Ψ(0)| eŜ |Ψ(0)〉

∣∣∣2 ≈ e−L/(8α
2∆2).

To calculate the quasiparticle density, we denote the operator which counts the

number of quasiparticles by N̂ . Its expectation value can be calculated to be

〈Ψ(0)| e−ŜN̂ eŜ |Ψ(0)〉 ≈ 2L

(4α∆)2
=

L

8 (α∆)2
. (7.4)

We define the quasiparticle density ρ, their mean distance r0 and a typical timescale

τ0 as

ρ =
1

8α2 ∆2
, r0 = 1/ρ = 8α2 ∆2, τ0 = r0/J =

8α2 ∆2

J
. (7.5)

If length and time are measured in these units, the results in the semiclassical limit

(∆→∞) are independent of ∆.

The quasiparticles originating from the transformation Eq. (7.3) are depicted in

Fig. 7.2. There are two creation channels. In one channel kink (k) - antikink (k̄) pairs
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Figure 7.2: Quasiparticle creation on short timescales.
a) The initial state: A 1d line of flipped spins is prepared in a 2d ferromagnetic back-
ground.
b) The only state (up to translations and reflection) that can be reached from the
initial state by a single spin flip. A second spin flip leads to state c) or e) without a
change of the Ising energy.
c) A state with two quasiparticles, a hole (h, left marker) and a free spin (f , right
marker).
d) While the free spin is emitted into the ferromagnetic background, the hole prop-
agates along the line by spin flips in y−direction. In the absence of boundaries the
emitted spin has a vanishing probability to influence the 1d dynamics along the line.
e) In a further channel, kink (k, lower marker) and antikink (k̄k, upper marker) pairs
are created.
f) Both, kink and antikink, propagate along the line by spin flips in x−direction.

are formed. They propagate along the 1d line with spin flips in x−direction and thus

have a hopping rate of−J/2. In the other channel holes (h) are formed by the emission

of single free spins (f ) into the ferromagnetic background. The holes propagate along

the 1d line with spin flips in y−direction, therefore having a hopping rate of −αJ/2.

The low density of quasiparticles ρ = (8α2 ∆2)−1 permit a description where the

quasiparticles propagate with their respective group velocities ∂qε
k/h
q . To lowest order

in 1/∆, the hole and kink/antikink dispersions are given by εhq ≈ −αJ cos(q) and

ε
k/k̄
q ≈ −J cos(q), respectively. The propagation of a kink or antikink shifts the 1d line

by one lattice spacing, see panels e) and f) in Fig. 7.2

The initial momentum distributions of kink-antikink pairs and holes are calcu-

lated as shown in section 3.3, see Eq. (3.93). We find

Pkk̄(q) =
2J2 sin2(q)

|εkk̄q − J2 ∆kk̄
0 (εkk̄q,0, 0)− J2

4 ∆hf
0 (εkk̄q,0, 0)|2

(7.6)
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Phf (ky) =

π∫
0

dkx
π

1
2J

2 sin2(kx)

|εhfk,0 − J2 ∆kk̄
0 (εhfk,0, 0)− J2

4 ∆hf
0 (εhfk,0, 0)|2

(7.7)

where

∆kk̄
0 (ω,Ky) =

π∫
0

dq

π

2 sin2(q)

ω − εkk̄q,Ky + iε
(7.8)

∆hf
0 (ω,Ky) =

π∫
−π

dky
2π

π∫
0

dkx
π

2 sin2(kx)

ω − εhfk,Ky + iε
(7.9)

and

εkk̄q,Ky = −2J cos(
Ky

2
) cos(q) (7.10)

εhfk,Ky = −J cos(kx)− 2αJ cos(
Ky

2
) cos(ky). (7.11)

We have checked numerically that
∫ π

0
dq
π Pkk̄(q) +

∫ π
−π

dky
2π Phf (ky) = 1. As we are not

interested in the kx component of Phf we integrate over this momentum in Eq. (7.7).

For α = 2 we find that 89.8 % of the created quasiparticle pairs are of kink-antikink

type, while the remaining 10.2 % are holes and emitted spins. The initial quasipar-

ticle creation can be cast in a reaction scheme, in analogy to a chemical reaction,

as

|Ψ(0)〉 →

h+ f (c1)

k + k̄ (c2)
. (7.12)

(c1) and (c2) denote the different possible channels. Once the quasiparticles are

formed they are very stable and protected by the large gap ∼ J∆. As for the dou-

blons in section 5, a high order scattering process is needed to transform the Ising

energy into kinetic energies of single quasiparticles.

7.2 Scattering and emission

As many kink-antikink pairs are created initially, the dominant reaction at the be-

ginning of the time evolution is

k + k̄ →

k + k̄ (o1)

h+ f (o2)
(7.13)
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Figure 7.3: Schematic plot of more
complex defects δ(n,m). n and m de-
scribe the shift of the line in x and
y directions, respectively (in units of
the lattice constant). Defects with |n+
m| > 1 are immobile to leading order
in 1/∆, as they cannot propagate by
a single spin flip. In between the de-
fects the spin-down bound states de-
velop. For example, the δ(2,1) and the
δ(−1,4) defect are separated by a bound
state including two spins. The δ(−1,4)

and the δ(1,2) defect are separated by
a bound state including four spins.
Lengthscales are not correctly repro-
duced in this schematic plot.

We need the momentum distribution P kk̄→fhk1,k2
(q) for the creation of a hole with mo-

mentum q in a scattering process of a k+ k̄ pair with momenta k1 and k2. This can be

calculated along the lines of section 3.2 and reads

P kk̄→fhk1,k2
(q)

=
8J
∣∣∣cos(k1+k2

2 ) sin(k1−k2
2 )

∣∣∣√J2 − (ES(k1, k2) + 2αJ cos(k1+k2
2 ) cos(k1+k2

2 − q))2∣∣∣2J cos(k1+k2
2 ) exp(i |k1−k2|

2 ) + J2

2 ∆hf
0 (ES(k1, k2), k1 + k2)

∣∣∣2
Θ

(
J −

∣∣∣∣ES(k1, k2) + 2αJ cos(
k1 + k2

2
) cos(

k1 + k2

2
− q)

∣∣∣∣) (7.14)

where ES(k1, k2) = −J(cos(k1) + cos(k2)) is the energy of the incoming k + k̄ pair and

Θ denotes the Heaviside step function. The total emission probability is Pemission =∫ π
−π

dq
2πP

kk̄→fh
k1,k2

(q). Accordingly, the reflection probability in channel (o1) is 1−Pemission.

The function in Eq. (7.14) depends on three momenta.

During the time evolution more and more spins are emitted from the 1d line,

which leads to a decrease of the spin-down density in the 1d subsystem. In this

way defects δ(n,m) in the line are created. Examples are shown in Fig. 7.3. Here n

denotes the shift in x−direction and m denotes the shift in y−direction, both in units

of the lattice spacing. As the defects cannot propagate via a single spin flip they are

immobile to leading order in 1/∆

When mobile particles hit these defects new and more complicated defects are cre-

ated. We have calculated all scattering rates of kinks, antikinks and holes at defects

up to n = 2 and m = 10. In total more than 70 scattering problems have been solved,
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all including an emission channel and various reflection and transmission channels.

An explicit example is shown below. For large defects δ(n,m) with |n| ≥ 3 or m > 10

only the reflection and emission channels have been taken into account. Here the

transmission probabilities are very small. Fortunately, in all but the kink-antikink

scattering at least one immobile particle is involved. Therefore these scatterings can

be described by functions of one or two momenta which have been tabulated. The

scatterings in the semiclassical simulations have been performed according to this

exact two-particle scattering rates.

Finally, we present one example of a more complex scattering event which hap-

pens at later times, when larger defects have formed. We have arbitrarily chosen the

scattering of a kink at an immobile δ(1,4) defect. The corresponding outgoing scatter-

ing channels are shown in Fig. 7.4. The associated reaction schemes are:

k + δ(1,4) →



k + δ(1,4) (o1)

f + δ(0,5) (o2)

k̄ + δ(−1,4) (o3)

h+ δ(0,3) (o4)

δ(−1,4) + k̄ (o5)

δ(1,4) + k (o6)

δ(0,3) + h (o7)

(o1) is a simple reflection into the incoming channel. For slow quasiparticles q ≈ 0 or

q ≈ ±1 this is the dominant channel, the probabilities of all other channels vanish

as sin(k) ∼ k. This leads to very long lifetimes of the slow quasiparticles. However,

these are not well described by the semiclassical approach, a they have very long

wavelength ∼ 1/k. (o2) is an emission event. A free spin is emitted and the immobile

defect grows by one lattice site. The emission of holes at immobile defects cause an

increase of the vertical defect size by two lattices sites (not shown). (o3) describes the

transformation of a kink into an antikink. When compared to the incoming channel

its propagation shifts the 1d line to the right by two lattice sites. In this way defects

with large n can be created. In (o4) the kink is transformed into a reflected hole. This

decreases the size of the defect by one. (o5)–(o7) are the transmission analogs of (o1),

(o3) and (o4). The momentum of the new quasiparticle is fixed by energy conserva-

tion. In all but channels (o5) and (o6) the momentum is changed and therefore also

the momentum of the defect. However, its kinetic energy is of order J/∆a>4 and, as
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Figure 7.4: The scattering of a kink at an immobile δ(1,4) defect. There are seven
outgoing channels (o1)-(o7), depicted in the left panel, including the emission channel
(o2). The kink can be reflected on the same (o1) or the other side (o3) of the line. It
can be transmitted as a kink on the same (o5) or the other side (o6) of the line. It can
also be transformed into a hole either being reflected (o4) or being transmitted (o7).
In each channel a different immobile defect remains. The momentum of the mobile
particle is not conserved, as the defect can absorb or provide momentum. Only in
channels (o5) and (o6) it is conserved due to energy conservation, as the defect cannot
absorb energy.
In the right panel the probabilities for the different channels are shown as function
of the incoming kink momentum. For small momenta close to 0, and momenta close
to π, the reflection probability (o1) approaches 1. As shown in the inset, all other
scattering and emission rates vanish linearly with the velocity ∼ sin(k) ≈ k.

a subleading term, not part of the dynamics. For fast incoming kinks, having a mo-

mentum close to ±π/2 emission and transmission channels dominate. Fast incoming

holes, having a momentum close to ±π/2, cannot transform into kinks or antikinks

due to energy conservation as α > 1 (not shown).

7.3 Time dependent results

The 1d semiclassical dynamics can be nicely visualized in worldline pictures. An ex-

ample is shown in Fig. 7.5. At the initial time, quasiparticle pairs are created accord-

ing to the quantum mechanical rates, see section 7.1. Kinks and antikinks are shown

in green and blue, respectively, and hole wordlines are shown in red. When holes

are created, a free spin is emitted as shown by the orange dots. Several scattering

events are marked with circled numbers: at ¬ a reflection of a hole and an antikink

takes place. As they have different hopping rates, their dispersions are different, the

momenta are changed. ­ shows the scattering of two holes: the individual momenta

are conserved. Here also an emission event could have taken place, creating a δ(0,3)
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Figure 7.5: Typical worldline picture describing the semiclassical dynamics.
At t = 0 kink-antikink pairs (green and blue worldlines) and holes (red) are created
along the 1d line. The creation of a hole is accompanied by the emission of a single
spin (only shown as an orange dot) in the direction perpendicular to the line, see
Fig. 7.2. Subsequent scattering leads to further emission of single spins, see the
orange dots. Larger defects form (shown in black), they are immobile to leading order
in 1/∆ and have zero velocity. The circled numbers are explained in the main text.

defect, see the other hole-hole scattering nearby. The annihilation of a kink-antikink

pair into a hole and an emitted free spin is shown in ®. The momentum of the hole is

chosen randomly according to the distribution given above in Eq. (7.14). At ¯ a defect

(black line) is formed by a hole-kink scattering accompanied by an emission. The de-

fect is immobile, in the approximation considered here, and its wordline is parallel to

the time axis. Further emissions increase the size of the defects as shown in °. Here

the scattering of a hole into a free spin increases the size of the defect by two lattice

sites. The transmission of mobile particles shift the defect as shown in ±. Here the

transmission of a hole shifts the δ(0,5) defect by two lattice sites.

As can already be seen from Fig. 7.5 the number of mobile 1d quasiparticles drops

rapidly during the time evolution. The fraction of remaining quasiparticles as a func-

tion of time is shown in Fig. 7.6. The total fraction is shown in black. Due to the

high probability for emission of fast particles it drops exponentially at short times

t . 50τ0. The blue, thinner line shows the fraction of holes. This increases at very

short times t . 10τ0 due to the annihilation of kink-antikink pairs, see ® in Fig. 7.5.

Both quantities show an algebraic long-time tail for t & 100τ0. The reason here is the

small emission rate of slow quasiparticles. In section 7.2 we have seen from an ex-

plicit example that the emission probability vanishes linearly for slow quasiparticles

with momentum close to 0 or ±π. In Fig. 7.7 the time evolution of the quasiparticle

momentum distributions are shown. For large times, only momentum states close to

0 or ±π are occupied. For these slow particles, the velocity and the emission proba-

bility are both proportional to the momentum q. The occupation of the momentum
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Figure 7.6: Time evolution of the remaining fraction of mobile particles. The
total quasiparticle fraction is shown by the black line. On short timescales t/τ0 . 50
this decays exponentially. For larger times t/τ0 & 100 there is an algebraic long-time
tail ∼ (τ0/t)

1/2 as shown by the red dashed line. The lower blue thin line shows which
fraction of the mobile particles are holes. This increases for short times t . 10 τ0 due
to annihilation processes of kink-antikink pairs, see ® in Fig. 7.5.

modes close to q = 0 and q = ±π is thus given by

nq(t+ ∆t) = nq(t)−∆t|vq| Pemission(q) nq(t) ≈ nq(t)−∆tJ̃q2 nq(t)

→ d
dtnq(t) = −J̃q2 nq(t)

→ nq(t) = nq(0) e−J̃q
2t ≡ nq(0) e−t/τslow(q). (7.15)

Here J̃ is a constant of order J and we have defined the lifetime as τslow(q) = 1/(J̃q2).

Then the total number of slow quasiparticle is

Ntot ∼
∫
dq e−t/τslow(q) =

∫
dq e−J̃q

2t ∼ 1

t1/2

∫
dq e−J̃q

2 ∼ 1

t1/2
, (7.16)

and likewise for momenta close to±π. This leads to a power law decay of total number

of quasiparticles.

The initial momentum distribution of kink-antikink pairs and holes is shown by

the purple lines in Fig. 7.7. The kinks and antikinks have an approximate sin2 dis-

tribution. However, it is slightly changed when compared to the doublon-distribution

calculated in 3.3 due to the presence of the second creation channel. The momentum

distribution of the holes is different and flattened at 0,±π/2,±π. The reason is that it

is integrated over all possible qx momenta of the emitted spin. During the time evolu-

tion all the weight of the momentum distributions shifts to q = 0 and q = ±π. When
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Figure 7.7: Time evolution of the quasiparticle momentum distributions. The
left panel shows the distribution of kinks and antikinks and the right panel shows
the distribution of the holes. The times are from t = 0 τ0 (purple lines) to t ≈ 100 τ0

(red lines). For the kink-antikink pairs the initial distribution is very close to a sin2

distribution. The hole distribution is different, as the momentum of the emitted spin
is integrated out, see Eq. (7.7). For better visibility, each momentum distribution is
normalized,

∫
nqdq = 1. However, one has to keep in mind that the total number of

mobile particles drops rapidly as shown in Fig. 7.6. The humps in the hole distri-
bution close to ±π/2 are due to the creation of holes by kink-antikink annihilation.
Both distributions develop maxima at k = 0 and k = ±π, corresponding to very slow
quasiparticles. These have a high probability of reflection, see Fig. 7.4.

these momenta dominate, also the algebraic tails in the total quasiparticle number

become visible. The distributions shown in Fig. 7.7 are all normalized and thus do

not reflect the drastic reduction of the particle number. Otherwise, the long-time dis-

tributions would be hardly visible: for example at t = 100τ0 only ≈ 1 % of the initial

quasiparticles are left, see Fig. 7.6. The momentum distribution of the holes develops

small humps close to q = ±π/2. These arise from the annihilation of kink-antikink

which produces holes, see ® in Fig. 7.5.

Eventually, when all mobile quasiparticles have been emitted from the 1d line, the

system freezes into a stationary state without any dynamics to leading order in 1/∆.

We stopped the simulation when there were ≈ 10 mobile quasiparticles left. These

were the slowest of the slowest and they undergo millions of reflections before they

are emitted.

7.4 Characterization of the final ensemble

Each final configuration at the end of the simulation is characterized by a collection

of bound states and corresponds to a possible outcome of a projective quantum micro-

scope measurement. Here a bound state of size l is defined as a vertical line segment

of l down-spins in the ferromagnetic background. Examples are shown in Fig. 7.8.
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Figure 7.8: Schematic plot of a pos-
sible final configuration. Two bound
states are shown in the center, one with
l = 3 spins and one containing l = 4
spins. They are separated by a δ(−1,1)

defect. The initial spin-line has frag-
mented into bound states and single emit-
ted spins. While in the simulations the
bound states are immobile, they can prop-
agate with a hoping rate ∼ J/∆(l−1). Fur-
thermore, some bound states can trans-
form into other shapes or even emit fur-
ther single spins. Lengthscales are not cor-
rectly reproduced in this schematic plot.

In the true Ising case ∆ = ∞, all bound states are true eigenstates. However,

for ∆ < ∞, they are dressed by quantum fluctuations. The quantum fluctuations

also lead to a propagation of the bound states with a hopping amplitude ∼ J/∆l−1.

Therefore their kinetic energy is also of order ∼ J/∆l−1. Furthermore if there are

degeneracies in the Ising energy, a bound state can transform into a different shape

All theses effects are not covered by the semiclassical approach.

We consider the simplest example, a vertical bound state of two spins. Its Ising

energy relative to the ferromagnetic background is EB = ∆J(2 + α). The state with

two single spins has a respective Ising energy of ES = ∆J(1 + 2α). The energy of the

bound state is lower by ∆E = ∆ J α. By means of the methods introduced in section

3.1, we can derive an effective Hamiltonian in the subspace of the bound states. It is

easy to see that, to leading order, the effective hopping amplitude in this subspace is

given by J2 = (J/2)2

−∆αJ = −J/(4 ∆α). The bandwidth of the resulting bound state band

is J/∆. The timescale on which this state propagates is then given by ∆/J . Similarly,

one finds that bound states of l spins propagate on a timescale ∆l−1/J .

For larger line segments, and commensurate values of α, resonances with more

compact shaped bound states can exist. Also the emission of further spins and bound-

states is possible. For example, a line segment with l = 13 spins and α = 2 can emit

by compactification. Its Ising energy is, again relative to the ferromagnetic state,

E13 = ∆J(13 + α) = 15∆J . The Ising energy of a single emitted spin is 3∆J . A bound

state configuration consisting of a 3 × 3 spin square with a line of 3 spins attached

vertically has 12 down spins and its energy is 12∆J . The Ising energy and the num-

ber of spins of this object plus a single spin is exactly the same as for the line segment
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Figure 7.9: Probability distribution of the bound states. Shown is the probabil-
ity to find a line segment of down-spins with the respective length. The dark blue line
gives the result directly after the quench. Due to the Poisson statistics of the creation
process, it is exponential with decay length r0 = 32∆2. The light orange line shows
the results at the end of the simulation, when there are no mobile particles left. The
final distribution is exponential only for large (l & 8r0) line segments (dotted line in
the inset) and decays on the length scale (1.98± 0.02)r0. A broad maximum is located
at (0.51 ± 0.05)r0. Including also the emitted single spins would lead to a huge peak
at a length of one lattice site.

with l = 13. This means that this is only a quasi-bound state. After long times, it will

decay into a bound states with 12 spins. However, to do so a rearrangement of 6 spins

is needed and this complex process is highly suppressed on all reasonable timescales.

For larger line segments more complex transformations with the emission of more

single spins, or smaller bound states, are possible. They all happen on very large

timescales, far beyond any experimental timescale.

In Fig. 7.9 we show the initial and the final distributions of the line segment

bound states. The length is measured in units of r0 = 32 ∆2. The initial distribution

is characterized by an exponential decay, reflecting the Poisson process underlying

its creation. The final distribution is flat for l . 10 r0 and decays exponentially for

l ≥ 10 r0 on a length (1.98± 0.02) r0. A maximum is located at l = (0.51± 0.05) r0. The

expectation value of the distribution is 3.04 r0. These numbers contain information

on the possible outcomes of a projective quantum measurement.

At the end of the simulation, also the defects have a characteristic distribution.

However, propagation of bound states will further change this distribution. Further-

more, the defects can also propagate along the 1d line. δ(0,3) and δ(±1,2) defects are
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Figure 7.10: Probability dis-
tribution of the immobile
defects. In panel a) we show
the distribution Pδ(n,m) of the
immobile defects at the end of
the simulation, when there are
no mobile particles left. The
probabilities shown in b) are
summed over n. They show a
maximum for m = 3.

the fastest with hopping rates ∼ J/∆2. Nevertheless we show the distribution

in Fig. 7.10. Due to the possible scatterings only defects δ(n,m) with n + m odd are

produced. Each emission and scattering changes n + m by two. The holes can be de-

noted by δ(0,1), while kinks and antikinks correspond to δ(1,0) and δ(−1,0), respectively.

Therefore the distribution in panel a) shows a checkerboard pattern. When summed

over n, the distribution of the bound state distance in y-direction is obtained. It has

a maximum at m = 3 and an expectation value of m̄ ≈ 5.

All results presented above are valid only in the Ising limit ∆� 1. Their validity

is restricted to timescales where the bound states are effectively immobile. In addi-

tion, δ(0,3) and δ(±1,2) propagate with velocities ∼ J/∆2 and scatter with other defects

at times t ∼ τ0∆2 ∼ ∆4/J . Furthermore the typical wavelength of the quasiparticles

increases with ∼
√
t, as 1/τk ∼ k2, see Eq. (7.16). It becomes of the order of the mean

distance ρ−1 ∼ ∆2 when t ∼ ∆4/J . To summarize, the approach is valid on timescales

1/J � t� ∆4/J .

Although we studied the dynamics in a non-integrable model, the system does

not thermalize in the thermodynamic limit. The reason is that the initial state has

a finite (in the x−direction) region, the 1d line, with very high energy density. In the

thermal state, the energy has to be distributed homogeneously throughout the whole

system. However, it is clear from a light-cone picture, or Lieb-Robinson bounds [63],

that there are always regions in space, namely |x| � tJ , where the energy density

cannot have changed yet. In this sense the energy can never be homogeneously dis-

tributed and the system can never thermalize. This is different in a finite system

where reflections at the boundaries take place. Here we expect that the system ther-

malizes.
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8 Outlook I

A full quantum approach which can describe all regimes of thermalization in non-

integrable systems including

(T1) Formation of quasiparticles, if existing

(T2) Prethermalization, if present

(T3) Local equilibration

(T4) Global thermalization

is still lacking. In (T1) one has to identify long-lived excitations which drive the dy-

namics. In the semiclassical limit considered by us, these were single-particle like

excitations, quasiparticles, which were identified by perturbation theory. However

if there is no large energy scale which protects single-particle like excitations from

decaying, this is different. If a large number of approximately conserved constants of

motion exist on short timescales, a prethermalization regime (T2) arises. This can,

for example, be realized in a quantum quench setup when the initial state is the

groundstate of an integrable model and a small integrability breaking perturbation

is turned on [46]. Then scattering is very inefficient and it takes a long time until

scattering effects become apparent. If stable quasiparticles exist, and they have a

low density, their occupation numbers are conserved for times smaller than the scat-

tering time. This can also lead to a quasi-stationary regime on timescales smaller

than the scattering time. Local equilibration (T3) can approximately be described by

Boltzmann equations. However we have seen in section 5.3 that, at least in one di-

mension, correlation effects set in very quickly. Here the Boltzmann equation can not

describe the short-time dynamics quantitatively. It can also not capture the physics

relevant for global thermalization (T4). Here correlations of conserved quantities are

important. This generically leads to hydrodynamic long-time tails.

Numerical methods are constrained by the exponentially large Hilbert space in

many-particle systems. Exact diagonalization is restricted to small particle num-

bers. Direct numerical integration of Kadanoff-Baym equations suffers equally from

huge memory consumption and is restricted to small times [183]. Time-dependent

density matrix renormalization group methods are not applicable at long times as

they suffer from errors due to the Trotter decomposition and runaway times related

to the truncation of the Hilbert space [184].

One way to include correlations in the Boltzmann equation is a fluctuating Boltz-

mann, or Boltzmann-Langevin, equation. Different approaches have been reported
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in the literature, see for example [185–190]. Another way might be to include (the

relevant) four-point functions (expectation values of four operators) into the theory.

Quantum kinetic equations can be obtained by truncation schemes to the BBGKY-

hierarchy of correlation functions [191]. This, in principle, also makes it possible

to derive equations beyond conventional quantum kinetic (Boltzmann–like) equa-

tions. Equivalently, it is possible to use irreducible action methods, see for example

[192, 193].

It will be interesting to investigate the effect of the divergent correlation length

as seen in sections 4.5 and 6.2 in more detail. Thermalization processes within the

KPZ universality class might be a further object of study. Quantum quenches from

initial states with long-ranged correlations, provided that the decay is slow enough,

are also expected to show a qualitatively different behavior.

The experimental techniques to measure higher-order correlation functions and

full quantum distributions will develop further in the future. This can give access

to genuine quantum effects, for example the entanglement entropy, which can not be

measured by other means. Also here new theoretical methods beyond the semiclassi-

cal approach used by us will be needed to describe this measurements theoretically.
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PART II

Coulomb disorder in three-dimensional topological
insulators



9 Introduction II

The mathematical concept of topology has entered condensed matter physics in the

last decade. Topology is the theory of continuous transformations – independent of

geometry – and does not need the notion of "distance" and "angle". The prime example

is the topological equivalence of a doughnut and a cup, since both have exactly one

hole. An apple is different since it has no hole.

The band structure of non-interacting Hamiltonians can be classified using topo-

logical concepts. Depending on the dimensionality and the the symmetry class, topo-

logical phases can be supported or not [194]. Topological properties of band structures

are characterized by discrete topological invariants.

Topological insulators. Many reviews on topological insulators (TIs) are available

by now, for example [195, 196]. TIs are characterized by an insulating bulk and con-

ducting surface states which are protected by topology. The topological protection can

be removed by symmetry breaking. The topological invariant, an integer in suitable

units, can be defined only in insulators. To change it, which is only possible in dis-

crete steps, the band gap has to close. This is the analogue of drilling a hole into an

apple to transform it into a doughnut (topologically). If the band structure changes

its topology by changing a parameter in the Hamiltonian, the band gap has to close

at the transition. If the band structure changes its topology due to a spatial bound-

ary, the band gap has to close at the boundary. This implies the existence of gapless

modes at the boundary – edge states. The implication "nontrivial bulk band topology"

⇒ "gapless edge states" is called bulk-boundary correspondence. The inverse is not

true.

It became evident that also the quantum Hall effect (QHE) can be viewed as a

realization of a topological insulator. Shortly after the discovery of the QHE by von

Klitzing et. al. in 1980 [197], it was realized that the quantization of the Hall con-

ductance can be understood in terms of a topological invariant [198]. This today goes

under the name of TKNN invariant (named after the authors of [198]: Thouless,

Kohmoto, Nightingale and den Nijs) or Chern number (the mathematical concept be-

hind this work). Due to the strong magnetic field in a quantum Hall system, the

bands become flat and extensively degenerate and are called Landau levels. The

topological invariant corresponds to the number of filled Landau levels and can take

any integer value. In quantum Hall systems time-reversal symmetry is broken by

the magnetic field.
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The existence of topological insulators in the presence of time reversal symmetry

has been predicted in 2005 by Kane and Mele [199, 200] for two-dimensional systems.

Here the topological invariant can take only two values (Z2-invariant). This is known

today as the quantum spin Hall insulator. The first experimental observation was re-

ported in 2007 by König et. al. in HgTe quantum wells [201]. It was demonstrated

that the longitudinal conductance is approximately 2e2/h and, in small systems, in-

dependent of the system size. This is clear evidence that charge is transported only

at the surface and agrees with the theoretical predictions [199, 202].

For three-dimensional topological insulators the first progress from the theory

side was made in 2007 by Fu, Kane and Mele [203]. In 3d there is no analogue of

the quantum Hall effect since here, in the absence of symmetries, only a topologically

trivial band structure is supported [194, 204]. But the analogue of the quantum

spin Hall insulator (with time reversal symmetry intact) exists, showing also a Z2-

invariant [204]. This is called a strong topological insulator (in contrast to a weak

topological insulator, which is a layered stack of 2d TIs).

The first proposals for the realization of 3d topological insulators included the

Bi1−x Sbx compounds [205, 206]. In this class of materials the first direct experi-

mental observation (with x ≈ 0.1) of topological surface states was made [207]. Us-

ing angle-resolved photoemission spectroscopy (ARPES), the existence of gapless and

linear dispersing surface states was demonstrated. Here it is important to note that

there is an odd number of crossings of the Fermi energy: the topological invariant

can be calculated as ν = number of crossings mod 2 ∈ {0, 1}, and ν = 0 means topolog-

ically trivial. The authors of [207] also measured the resistivity. They found a value

of ρ(T → 0) ≈ 10−4 Ωm at low temperatures and a value of ρ(T ≈ 300K) < 10−5 Ωm

at room temperature. Good insulators show resistivities ρinsulator > 1012 Ωm, while

typical metals have ρmetal ≈ 10−8 Ωm (both at room temperature). In this spirit it is

not really justified to call the material an insulator. Although the materials show a

band gap of order eV the charge transport cannot be explained by the surface states

alone.

Doping and compensation. When the Bi1−x Sbx compounds are grown, the Fermi

level is in the conduction band as can directly be seen in ARPES measurements [208].

Donors feed the excess electrons into the conduction band. A well-known technique

to change the conductivity of semiconductors, having bandgaps of order eV , is doping.

Here impurities with suitable chemical properties are introduced in the material on

purpose. This has to be done at high temperatures during the growth process, when
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Figure 9.1: (taken from [210]) The re-
sistivity of different compositions
Bi2−x Sbx Te3−y Sey. In the high tem-
perature regime T & 100K the resistiv-
ity shows an activated behavior ρxx ∼
exp (EA/T ), where EA denotes the acti-
vation energy (kB = 1). At very low
temperatures the resistivity saturates –
in contrast to real insulators where it di-
verges. This shows that charge is trans-
ported through the sample.

the material crystallizes. Induced acceptors remove the excess electrons from the

conduction band, which shifts the band structure relative to the Fermi level. This

process is called compensation and implies a decreased density of free charge car-

riers. It was demonstrated that, by partially substituting Sb for Bi in Bi2 Se3, the

conductivity can be reduced significantly [209]. To further reduce the bulk conduc-

tivity Te and Se atoms were added, resulting in the Bi2−x Sbx Te3−y Sey compounds

(BSTS). Here Te antisite defects and Se vacancies compensate the free charges [210].

A systematic study of the temperature dependence of the BSTS resistivities can be

found in [210], see also Fig. 9.1 taken from this publication. The resistivity is in-

creased by a factor 102 − 103 compared to the Bi1−x Sbx compounds. The authors of

[210] found that the resistivity was sample dependent and varied by a factor of 3

within the same composition.

Charged disorder. Since the dopants are introduced into the material at high tem-

peratures (T ∼ 850 K, [210]), they are located at random, uncorrelated positions. As

the task of the acceptors to remove the excess electrons is fulfilled, as seen by the re-

duced conductivity, they carry an extra electron and thus are charged. Due to charge

neutrality, the same amount of donors has to be positively charged. It is the influence

of this randomly distributed localized charges which we will study in the following.

The theory also applies to conventional semiconductors and the topological nature

of the materials will be mostly omitted in the theoretical analysis. Only later, we

will include the effect of the metallic surface, which provides an additional screening

channel. A comprehensive introduction to the theory of compensated semiconductors

can be found in the book Electronic Properties of Doped Semiconductors by Efros and

Shklovskii [211].
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Our work. This theoretical work was initiated by an experiment, mainly performed

by Nick Borgwardt in the group of Markus Grüninger. In the experiment the opti-

cal conductivity of BiSbTeSe2 (BSTS2) was measured. The high-quality sample was

fabricated in the group of Yoichi Ando. An unusual increase of the optical weight at

low temperatures was found. We will first describe the experimental results and the

model we have used.

In the following sections we will present our results. We have used an algorithm

invented by Efros and Shklovskii [211] and we have extended this to finite tempera-

tures by a standard Metropolis Monte Carlo method. First, we study the low temper-

ature behavior. The focus will be on emergent lengthscales and the puddle formation.

Here the term (electronic) puddles is used for spatially confined regions which have

a finite density of electrons or holes. The existence of puddles was predicted in the

1970’s by Efros and Shklovskii and others [211]. However, we will find that different

lengthscales as suggested by simple scaling arguments govern the puddle formation

in the simulated parameter range. Afterwards, the finite temperature results and

their connection to the experiment are discussed. It will turn out that the experi-

ment can be consistently explained by the low temperature formation and thermal

destruction of puddles. To our knowledge, the experiment demonstrates the first

direct observation of the optical response of these bulk puddles. Also their disap-

pearance with increasing temperature has, to our knowledge, not been noticed before

neither theoretically nor experimentally. Finally, we will include the effect of the con-

ducting surface. We will only consider the limit of a large density of states on the

surface. Here the same lengthscales (parametrically) as in the bulk are found. The

experimental results and some of the theoretical results can be found in the publica-

tion [P3].
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10 The experiment

Although the existence of electron and hole puddles in the bulk of compensated semi-

conductors has been predicted by Efros and Shklovskii more than 40 years ago [211],

direct experimental evidence of this was still lacking until recently. Here we report on

the, to our knowledge, first experiment which revealed the optical response of these

bulk puddles. Nick Borgwardt Ignacio Vergara and Markus Grüninger performed the

optical measurements presented below. Zhiwei Wang, Alexey Taskin, Kouji Segawa

and Yoichi Ando grew the used high-quality single crystals and characterized them

(actually only a single sample was used). Paul van Loosdrecht, Yoichi Ando and

Markus Grüninger designed the experimental study. The experimental techniques

will be discussed here only briefly since the focus in this thesis is on the theoretical

analysis. For details we refer to the publication [P3]. All figures shown in this section

are taken from there.

In graphene the existence of puddles was directly observed in real space by us-

ing a single-electron transistor (STE) [212] or scanning tunneling microscopy (STM)

measurements [213]. In both experiments highly inhomogeneous carrier densities

can be seen. This real space measurements are only possible as graphene is a two-

dimensional material. It has turned out that the inclusion of puddles is necessary

to understand the transport properties of graphene close to charge neutrality [214–

216]. Puddle formation can occur by extrinsic means due to charged impurities in the

substrate [214, 215] or intrinsically due to corrugations [217, 218]. In some regards

the surface of a 3d TI is similar to graphene on a substrate. Puddles on the surface

of thin samples (∼ 10nm) have been shown to influence the transport properties of

the surface states [219, 220]. STM measurements on TI surfaces further revealed a

highly inhomogeneous local density of states [221]. This is consistent with puddle

formation in the bulk since this induces a spatially varying electrostatic potential

on the surface. In [221] the correlation length of these energy fluctuations was esti-

mated to 26nm and their typical size was 20 − 40meV . The authors explained their

results with charged bulk dopants but the focus was on the consequences for the sur-

face states. However, surface measurements like STM are not ideally suited to study

bulk puddles. In the experiment we will describe now, optical methods were used to

directly access the bulk properties.

Optical properties of a solid are equally described by different response functions:

optical conductivity σ(ω) = σ1(ω)+ iσ2(ω), the dielectric function ε(ω) = ε1(ω)+ iε2(ω)

and the refractive index ñ(ω) = n(ω) + iκ(ω). All three quantities are, in general,
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Figure 10.1: Infrared Transmit-
tance spectra of BSTS2. The Fabry-
Perot interference fringes are caused
by multiple reflections at the front and
back surface. The interference pat-
tern links refractive index and thick-
ness of the sample. The transmit-
tance is strongly temperature depen-
dent and highest at intermediate tem-
peratures ∼ 50K.
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Figure 10.2: Reflectance and di-
electric function at low frequen-
cies. The dashed lines in the re-
flectance panel on the left are Drude-
Lorentz fits. They do not account for
the interference effects. The right
panel shows the dielectric function at
50K and 300K.

complex and carry the same information. They are related via

ε(ω) = ε0 + i
σ(ω)

ω
, ñ(ω) =

√
ε(ω)/ε0. (10.1)

n, the real part of the refractive index, gives the renormalization of the speed of light

v = nc. The imaginary part, κ, describes damping of the light, meaning that energy

is absorbed by the solid. Accordingly, the real part of σ is also a measure for the ab-

sorption of energy. As solids have huge number of degrees of freedom there are many

mechanisms which can absorb energy. In the optical data obtained from experiments,

the sum of all optically active resonances is seen. Therefore it can be hard to disen-

tangle the different contributions. To do so, models are needed which then serve as

fit functions for the experimental data. The most well-known models are the Drude

model, for free charge carriers, and the Lorentz model, for bound charges. Deriva-

tions of corresponding expressions for σ(ω) can be found in standard textbooks, see

for example [222, 223].

For free charge carriers Drude theory predicts the optical conductivity

σDrude(ω) =
e2 n τ/m∗

1 + iωτ
=
σDrude(0)

1 + iωτ
→ σ1,Drude(ω) =

σDrude(0)

1 + ω2τ2
(10.2)

where n is the carrier density, e denotes their charge and m∗ their effective mass. τ is

the scattering time. The scattering time and the carrier density can be temperature
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dependent. Integrating the real part of the optical conductivity yields the optical sum

rule:
∞∫

0

dω σ1,Drude(ω) =
πe2

2
·

optical weight︷︸︸︷
N

m∗
= N

me

m∗︸ ︷︷ ︸
Neff

π

2

e2

me
. (10.3)

This defines the optical weight and the effective charge carrier density Neff. We will

use both expressions almost synonymously as they are connected by a simple conver-

sion factor, the electron mass me.

10.1 Optical properties of solids

Optical properties of a solid, as described above, can be measured by optical spec-

troscopy. Here monochromatic light field with intensity I(ω) is used. When it hits

the sample the light can be reflected, with intensity R(ω); transmitted, with intensity

T(ω); absorbed, with intensity A(ω); or scattered, with intensity S(ω). Energy conser-

vation dictates that I(ω) = R(ω) + T(ω) + A(ω) + S(ω). The ratios R(ω) = R(ω)/I(ω)

and T (ω) = T(ω)/I(ω) are known as reflectance and transmittance, respectively, and

are measurable quantities. If the scattering part is negligible and R and T are mea-

sured, the absorption can be determined. From this the response functions can be

obtained. In Fig. 10.1 we show experimental results of the transmittance in BSTS2.

The most noticeable feature, at first sight, is the strongly oscillating behavior. This is

caused by multiple reflections at the front and back surface leading to a pronounced

interference pattern. Also note that the transmittance is highest at intermediate

temperatures T ∼ 50K implying that here the absorption is least. In Fig. 10.2 exam-

ples for reflectance in the low frequency range measurements are shown. In the right

panel we can see that the dielectric constant is very large and that its static value is

given by ε(ω → 0) ≈ 200.

If the sample is thick, or highly absorbing, the transmittance can be effectively

zero. Then, only the reflectance can be measured, but one can still obtain the re-

sponse functions: there is a simple connection between the refractive index and the

single-bounce reflectance (no reflections at back surface as ensured by thick sam-

ple) at normal incidence (light beam perpendicular to the surface). At an interface

between vacuum (with ñvac = 1) and a solid with refractive index ñ it is given by

(derivation in appendix A of [224])

R(ω) =

∣∣∣∣1− ñ(ω)

1 + ñ(ω)

∣∣∣∣2 =
(n(ω)− 1)2 + κ(ω)2

(n(ω) + 1)2 + κ(ω)2
. (10.4)
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Then the response functions can be obtained via a Kramers-Kronig analysis [222,

223]. The real and imaginary part of response functions are connected due to causal-

ity. If we apply an electric field E at t = 0 the current

j(t) =

∫ ∞
−∞

dω

2π
eiωtσ(ω)E(ω) =

∫ ∞
0

dt′E(t′)

∫ ∞
∞

dω

2π
eiω(t−t′)σ(ω) (10.5)

has to be zero for t < 0. This implies constraints on σ(ω) – the Kramers-Kronig

relations. For a Kramers-Kronig analysis the reflectance has to be known for all fre-

quencies: one has to interpolate the experimental results in the high frequency range.

In addition to the reflectance and transmittance measurements at lower frequencies

(ω < 7500cm−1) ellipsometry measurements were performed at higher frequencies

(6500 − 44.000 cm−1). Here and in the following frequencies are given in units of

cm−1 and the conversion factor to electronvolt is 1 eV ≈ 8065 cm−1. In ellipsometry

measurements polarized light is reflected at the sample. Ellipsometry measures the

complex ratio of the light amplitude polarized parallel to the plane of incidence and

the light amplitude polarized perpendicular to the plane of incidence. With a model

analysis the optical response functions can be obtained.

10.2 Experimental results for the optical conductivity

The main quantity which was studied in the experiment is real part of the optical

conductivity σ(ω) = σ1(ω) + iσ2(ω). In Fig. 10.3 results for σ1 are shown at different

temperatures. The most pronounced feature is the increase of σ1 by almost two orders

of magnitude at frequencies 1000−2000 cm−1 depending on the the temperature. This

is a manifestation of the bandgap, which is strongly temperature dependent in this

class of materials. If the photons have enough energy they can produce particle-hole

excitations on a minimal energy cost of the bandgap ∆(T ). At low temperatures∼ 5K

the sample shows a gap of ∆ ≈ 0.26 eV . This is the value we will use later when we

compare the theoretical results to the experiment.

Below the gap the main contributions are of electronic and phononic origin. While

the phonon and multi-phonon contributions show a narrow peak-like structure, the

electronic contributions are expected to be Drude-like, see Eq. (10.2). In the deriva-

tion of the Drude formula it is assumed that the charge carriers can move through

the whole system. Then the largest response is expected for ω → 0. Let us consider a

different scenario. Suppose we have an insulator with a conducting region which does

not extend through the whole sample. In DC transport measurements we will hardly

see any response, since the carriers are confined to a finite region and no charge
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Figure 10.3: Optical conductivity
of BSTS2 on a logarithmic scale.
The drastic increase at ω ≈ 1500 −
2000 cm−1 is a manifestation of the
band gap, which is T dependent here.
The lowest response is found at ∼
50K. At lower T , here only the 5K
curve is shown, the response increases
again. We will show later that this can
be explained by the thermal destruc-
tion of puddles.
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Figure 10.4: DC resistivity from
transport measurements and op-
tical results. The values from the
optical data are interpolated to ω →
0. While the data at higher tempera-
tures agree within a factor of 2, there
is clear discrepancy at T . 50K. This
is clear hint towards a small cutoff fre-
quency, which is occurs naturally in
the presence of puddles as explained
in the main text.

can be transported through the sample. However, at higher frequencies the response

should be of Drude type since the charges are oscillating in a finite region anyway.

Upon lowering the frequency, the oscillation length will increase and at some point

there will be a drastic reduction of the response. This is the case when the oscillation

length exceeds the (linear) size L of the conducting region. The corresponding energy

scale is called the Thouless energy ωc. If the transport within the conducting region

is diffusive, with diffusion constant D, the time which is needed to diffusive through

is typically ∼ L2/D. Hence the maximal frequency at which one can expect a sig-

nificant contribution is ωc ∼ D/L2. This scenario is exactly what is expected in the

presence of puddles. Thus the experimental hallmark of puddles is a discrepancy in

the DC conductivity from transport and optical measurements, given that σoptical(ω)

is known only for ω > ωc and extrapolated to ω → 0. This is exactly what was found

in the experiment. In Fig. 10.4 the DC resistivity is shown together with the optical

data. At low temperatures, T . 50K, there is an obvious discrepancy. This is a clear

signature of spatially confined conducting regions – puddles.

The diffusion constant can be expressed via the mobility µ as D = µT/e (Ein-

stein relation). µ was extracted from the transport measurements at 300K to µ ∼
62 cm2/(V s) which yields D ≈ 2cm2/s. We further need the typical size of a pud-
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Figure 10.5: The optical conductivity below the gap. The left panel shows the
results at low temperatures T ≤ 50K. The lowest response is found at 40K, which
then gradually increases on lowering the temperature. The inset shows the different
contributions for 40K as fitted by the experimentalists. The right panel shows the
data already presented in Fig. 10.3 in more detail.

dle to estimate ωc. We will see later in sections 12 and 13 that it is difficult to de-

termine the puddles size Lpudd precisely. Nevertheless from the parameters given

there, and the fact that puddle consists of many dopants separated by a distance

1 − 10nm, we estimate Lpudd > 100nm. Then the Thouless energy in the sample is

ωc ∼ D/Lpudd < 0.1 cm−1, this is far below the smallest frequencies that could be

resolved in the experiment, see Fig. 10.3.

In Fig. 10.5 the results for the optical conductivity below the gap are shown. As

explained above, this is a sum of different contributions. To isolate the electronic con-

tribution from the rest, a fitting procedure was performed by the experimentalists.

In the inset of the left panel in Fig. 10.5 an example is shown. The electronic contri-

bution was fitted with a Drude curve, Eq. (10.2), using the scattering time τ and the

effective carrier density Neff as fit parameters. The scattering time was found to be

roughly temperature independent in the range 5−300K with the value τ ≈ 7×10−15 s.

Its inverse, the scattering rate, 1/τ ≈ 1.4×1014 s−1 shows the smallest value observed

so far in the BSTS family. Typical values of the scattering rate found before in similar

compounds are 1− 2 order of magnitudes smaller [225–232].

10.3 Experimental results for the optical weight

The main result of the experimental study is the temperature dependence of the

the optical weight. This is shown in Fig. 10.6 for different sample thicknesses. The

striking feature, as could already be anticipated by the data shown in Fig. 10.5, is the
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Figure 10.6: Temperature dependence
of Neff for different sample thick-
nesses. For temperatures T . 50K the
optical weight increases. At T = 5K, it
is larger by a factor ∼ 5 when compared
to the value at 40K. We attribute this
increase to the formation of electron and
hole puddles. The mechanism will be ex-
plained in details in the next sections. At
higher temperatures the experimental re-
sults show an activated behavior. This can
be seen in the Arrhenius plot (log(Neff) vs
1/T ) in the inset.

unusual increase at low temperatures T . 40K. At T = 30K the effective density is

Neff(30K) ≈ 2× 1017 cm−3 and thus lowered by a factor ∼ 5 compared to the value at

5 K, where Neff(5K) ≈ 1.2× 1018 cm−3. The non-monotonic behavior is in contrast to

a simple metal where a saturation occurs at low temperatures and the conductivity

is decreased at higher temperatures due to the excitation of phonons. The result

is also in contrast to lightly doped semiconductors where the density freezes out at

low temperatures. In the experimental results the temperature dependence shows

a qualitatively different behavior. The theoretical analysis will reveal that this can

be explained by puddle formation at low temperatures T . Ec and their thermal

destruction at T ∼ Ec. One important result will be the identification of the energy

scale Ec as the typical Coulomb energy between neighboring impurities.

A non-monotonic, but much less pronounced, temperature dependence of Neff has

also been found in related materials [225, 231–233]. In these experiments the reduc-

tion of Neff at intermediate temperatures was at most by a factor of 2. The authors of

[231] speculate about the significance of charge inhomogeneities without giving any

theoretical support.

The optical result has to be compared to the transport results in Fig. 10.4. Here

the temperature dependence is monotonic. This is clear evidence that the increase

of the optical weight at low temperatures has to be attributed to localized charges –

puddles. At higher temperatures the optical weight shows an activated behavior ∼
e−EA/T as can be seen in the Arrhenius plot in the inset. The fitted activation energy

is EA = 26meV which is much smaller than the bandgap ∆ ∼ 0.26 eV = 260meV .

A reduced activation energy has also been found in similar systems before, see for

example [210]. Skinner et. al. suggested the existence of a percolation threshold for

hopping conductivity at 0.15∆ [234, 235].
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10.4 Contribution of the surface states

What remains to be clarified is the role of the surface states. As we are dealing with

a topological insulator, we expect that charge is transported at the surface and that

this contributes to σ as measured. To check this the experiment has been performed

on three different sample thicknesses – but using the same sample which was cut

into thinner pieces. All three results are shown in Fig. 10.6. They agree within the

experimental uncertainty. In Fig. 10.7 we show the optical conductivity for all three

thicknesses at different temperatures. All results agree within a few percent while

the thickness is reduced by almost a factor of 2. If there would be a significant con-

tribution from the surface there would be a much larger influence of the thickness.

Although this is intuitively comprehensible, one has to note that the unit of the con-

ductivity depends on the spatial dimension. This is in contrast to the conductance

which has (in SI) the unit 1/Ω in all dimensions. But the conductance and its inverse,

the resistance, in general dependent on the sample size and therefore are not a use-

ful comparative measure. On the other hand, the conductivity is a material property.

For example for a sample of thickness t, if there was no response from the bulk and a

2d response of x/Ω, the 3d response would be x/(tΩ) ∼ 1/t.

In principle there are two contributions to the optical conductivity from a Dirac

cone on the surface. The first is Drude-like due to a finite density of charge carriers.

Let us try to estimate its value. A Dirac cone is characterized by a single param-

eter: the effective speed of light vF . For the class of materials at hand it can be

deduced from the ARPES measurements in [236]: from Fig. 2 f) in [236] we read off

that E(0.1Å
−1

) ≈ 0.25 eV and thus vF ≈ 0.25 eV/(0.1Å
−1 ~) ∼ 4 × 105m/s. The mo-

bility of the surface states was determined in [237] from Hall measurements to µ =

1450cm2/(V s). Using the Einstein relation for the diffusion constant, D = µT/e, we

find the scatting rate 1/τsurf ∼ v2
F /D = ev2

F /(µT ) ≈ 16× 1010(m/s)2/(1450cm2)eV/T ≈
1012

T [eV ]s
−1. For T = 50K ≈ 0.0043 eV this yields 1/τsurf ≈ 2.3 × 1014s−1, very close to

the scattering rate found for the bulk. However, for typical surface densities nsurf ∼
1012cm−2 and a thickness of 100µm we find a 3d density of ∼ 1012cm−2/(100µm) =

1014cm−3. This is much too low to have a significant influence since the bulk densities

are higher by more than 2 orders of magnitude. There is another contribution to the

optical response from the surface due to interband excitations. For the Fermi level

very close to the Dirac point this was predicted to be independent of the frequency

and of order e2/h [238, 239]. For a sample thickness of 100µm this would result in

a 3d conductivity of ∼ 0.004 (Ωcm)−1 again more than two orders of magnitude be-
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Figure 10.7: The optical conductivity
for different sample thicknesses. All
results agree within a few percent al-
though the thickness was reduced by al-
most a factor of 2. If the surface states
would have a significant influence a more
drastic effect would be seen.

low the values observed in the experiment. From this analysis we conclude that the

surface states cannot have a significant influence. In [237] a similar system was ana-

lyzed and the authors estimated the surface contribution to the total conductance to

6 % for a sample thickness of ≈ 260µm.

120



11 Theoretical description of compensated semiconduc-
tors

A characteristic property of a solid state system is how it responds to an applied

electric field. This is quantified by the conductivity σ. Often this is even used to

divide solids into two classes: insulators and conductors (or metals). Semiconductors

are located between the two ends of the spectrum. Typically they show a band gap

which is of order of a few eV . An experimental way to change the electronic properties

of semiconductors is the artificial insertion of specific impurities, doping.

The first TI-materials were n-doped semiconductors. See, for example, [208] for

ARPES measurements on Bi2 Se3 and Bi2 Te3. In these materials there are free

electrons which make it conducting. Thus many bulk properties of those materials,

excluding everything related to the topological nature, can be explained by theories

designed for semiconductors. To reach a bulk-insulating behavior acceptors are intro-

duced into the material during the growth process [210]. This removes excess elec-

trons from the conduction band. With higher degree of compensation K = NA/ND,

where NA and ND are the densities of acceptors and donors respectively, the Fermi

level shifts below the conduction band. At perfect compensation, K = 1, the Fermi

energy is exactly in the middle of the band gap ∆. Here the best insulating behavior

is reached. But after the compensation procedure the dopants are charged (actually

not all of them as we will see later). It is the effect of these localized charges which

we want to investigate in the following. The goal of this section is to motivate the

model which is able to describe the experimental results.

11.1 Doped semiconductors

Let us consider a single impurity, say a donor, in a semiconductor with a band gap

∆ and dielectric constant ε. We use the effective mass theory by Luttinger and

Kohn [211, 240, 241] to estimate the energies of the impurity states. In the sim-

plest case the conduction band has a single minimum at k = 0 and can be described

by a quadratic dispersion Eband(k) = k2/(2m∗) where m∗ is the effective mass. This

serves as a continuum for the electrons. If we assume that the extent of the electron

wavefunction bound to the impurity center is much larger than the lattice constant

(to be justified below), we can omit the details of the impurity center and treat it like

a positive point charge. In this approximation, the problem is equivalent to that of a

Hydrogen atom and can be solved by elementary means. The ionization energy of the

impurity is then the modified Rydberg energy which corresponds to the groundstate
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energy of the Hydrogen atom:

ESC =
m∗e4

2 (4πε0ε)2 ~2
=
m∗

me

1

ε2
ERyd ≈

m∗

me

1

ε2
13.6 eV. (11.1)

Accordingly the size of the wavefunction (the extent of the impurity state) is then

given by the (modified) Bohr radius

aSC =
4πε0ε~2

m∗e2
= ε

me

m∗
aB ≈ ε

me

m∗
5.3× 10−11m. (11.2)

This effective Bohr radius of the impurities we will simply call Bohr radius in the

following and it will be denoted by aB. We have seen in Fig. 10.2 that the dielectric

constant of the materials under consideration is very large: ε(ω → 0) ≈ 200. The

effective mass is not known precisely but is about m∗ ≈ 0.14−0.24me in Bi2 Se3 [242].

We will use m∗ = 0.2me in the following. Inserting these numbers into Eq. (11.1) and

Eq. (11.2) leads to ESC ≈ 7× 10−5 eV and aSC ≈ 5× 10−8m. For the material used in

the experiment, Bi Sb Te Se2, the gap is ∆ ≈ 0.26 eV at low temperatures T . 50K,

see Fig. 10.5. Therefore the binding energy of the impurities is much smaller than

the gap: ESC � ∆. This type of impurities, located very close to the band edge, are

called shallow. Since ESC � ∆ the energy of the shallow impurity states can be

approximated by +∆/2 for the donors and −∆/2 for the acceptors. Here and in the

following the energy is measured with respect to the middle of the band gap. Full

compensation then corresponds to µ = 0. Note that the details of the impurity do not

matter at all and therefore the result is universal. Furthermore aB is much larger

than the lattice constant of the BSTS compounds which is of order 4 Å [210].

In a real system there are many impurities and we will denote the total density

by Ntot = NA +ND. Two cases have to be distinguished [211]:

1) lightly doped semiconductors, where the overlap of the impurity states is small

(Ntota
3
B � 1) and 2) heavily doped semiconductors, where the overlap of the impurity

states is large (Ntota
3
B � 1).

In the experiment the impurity density is not known precisely but there is evidence

that it is at least 1018cm−3 [210]. Then it isNtota
3
B > 1018cm−3 (5×10−8m)3 ∼ 100� 1.

Hence we are dealing with a heavily doped semiconductor.

In materials where the dielectric constant is smaller (than the very large ε ≈ 200)

the dopants typically form an impurity band. The effective Rydberg energy 13.6 eV/ε2

is larger and the impurity states do not merge with the conduction or valence band.

This type of impurities located "far away" from the band edges are called deep. An
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impurity band is not a band in the usual sense, in contrast to a regular Bravais lattice

the impurity atoms are located at random positions and thus Bloch’s theorem is not

applicable.

At high compensation, 1−K = 1−NA/ND � 1, the Fermi level is located close to

the middle of the band gap. When the Fermi level shifts below the band edge of the

conduction band the charge transport properties change from metallic to activated

and the conductivity is σ ∼ e−EA/T . Charge carriers have to be thermally activated

into the conduction band to contribute to the transport. In heavily doped systems, it

was found experimentally that the the activation energy can be significantly lower

than the band gap ∆ [210]. It was suggested that this is due to the existence of a

percolation level for hopping conductivity [234]. Here the charge is not transported

by free carriers but rather by hopping of charges on localized orbitals (variable range

hopping). This can also change the temperature dependence of the conductivity to

σ ∼ e−(EA/T )x with x < 1 [210, 234, 243, 244].

In the following we focus on heavily doped and highly compensated semiconduc-

tors as this is the regime of the experiment. We assume that the Bohr radii of ac-

ceptors and donors are equal (= aB). We will denote the density of excess dopants,

donors, by N . At K = 1 it is NA = ND = N . We further define the typical interaction

energy between neighboring dopants as

Ec =
e2

4πεε0N−1/3
. (11.3)

As aforementioned the dopants are introduced in the material at high temperatures

and are located at random positions. When all dopants are charged the electric po-

tential shows large fluctuations [211, 234]. Here the charges are uncorrelated, up to

a trivial correlation due to charge neutrality. We will call this the uncorrelated state.

In a volume V ∼ R3 the typical charge is QR ∼
√
R3 e. Then the typical potential

felt by a charged test particle located in this volume is φtyp(R) ∼ QR/R ∼
√
R. This

means that the potential can increase without bound on larger lengthscales. The po-

tential fluctuations must be suppressed. There are different mechanisms which come

to mind.

The first is screening by band states. In the local density approximation the local

Fermi level is given by µ+eφ(r) where φ(r) denotes the electrical potential due to the

dopants. This can be locally above the conduction band edge (or below the valence

band edge). This leads to regions of finite densities which are able to screen the local

fluctuations. As we will show below, in heavily doped semiconductors these densities
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are much too low to have a significant influence. Close to the surface there is an

additional screening channel from the topological surface states. We will study its

influence in section 14.

The next mechanism is screening by excess carriers due to imperfect compensa-

tion. The density of the excess electrons is given by n = ND −NA = (1−K)N . Efros

and Shklovskii proposed the following argument [211]. The typical charge density

under the conditions described above is ∆N(R) ∼ e
√
NtotR3/R3 = e

√
Ntot/R

3/2 where

Ntot = NA +ND = (1 +K)N . This has to be compared to the the density of the excess

electrons n. As long as ∆N(R) . n the potential fluctuations can be screened by the

excess electrons. One can define a length scale rn by ∆N(rn)
!

= n which gives

rn = N
1/3
tot /n

2/3 = (ND +NA)1/3/(ND −NA)2/3 =
(1 +K)1/3

(1−K)2/3
N−1/3. (11.4)

This means that potential fluctuations larger than

eφ = N−1/3
√
Ntotrn Ec =

(1 +K)2/3

(1−K)1/3
Ec (11.5)

can be screened by excess dopants.

But what happens in the limit of full compensation n → 0 (or K → 1)? Here the

potential fluctuations can be suppressed by discharging – pairwise neutralization – of

dopants. An electron can be transferred from a charged acceptor to a charged donor at

an energy cost of the band gap ∆. If the potential fluctuation reaches the energy of the

bare impurity states, φ = ±∆/(2e), at the position of a dopant it can be energetically

favorable to discharge (neutralize) this dopant. In regions with very large potential

fluctuations this changes the potential landscape in the vicinity significantly. Hence

this screening mechanism is a highly non-linear process. This leads to a clustering of

neutral dopants and these clusters will be identified with electron and hole puddles.

For K → 1, Ec is the maximal energy up to which the potential can extend into

the bands. If, for example, eφ(r)� ∆/2+Ec the potential fluctuation can be (and will

be) suppressed by discharging donors in that region. This is energetically favorable

as long as eφ & ∆/2 + Ec. Upon discharging an additional donor the potential would

drop below ∆/2 and the energy gain cannot be larger than ∆ anymore. Thus the local

Fermi level can be at most ∆/2 + Ec and has to be at least −∆/2− Ec.

Let us estimate the corresponding density of band charge carriers for a spherical

band with effective mass m∗, say in the conduction band. At very low temperatures
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in a volume where the local Fermi level is ∆/2 + Ec the electron density is given by

nband ≈ 2

∫
d3k

(2π)3
Θ

(
Ec −

~2k2

2m∗

)
=

2 ∗ 4π

(2π)3

∫ ∞
0

dk k2Θ

(√
2m∗Ec

~
− k
)

=
1

3π2

(2m∗Ec)
3/2

~3
=

1

3π2~3

(
2m∗e2

4πεε0

)3/2

N1/2. (11.6)

For the parameters estimated for the experiment (ε = 200, m∗ = 0.2me, N = 1018

cm−3) we find nband ≈ 8× 1015 cm−3. For N = 1019 cm−3 we find nband ≈ 3× 1016 cm−3.

In either case nband � Ntot. After this analysis we conclude that charge carriers from

the bands cannot play a significant role if ∆ � Ec. Using the same parameters as

above, and ∆ = 0.26 eV , we find that in the experimental system it is ∆/Ec ∼ 75−100.

Therefore the bands will not be considered in the analysis presented below which

simplifies the model considerably.

11.2 The model

As we have seen above, see Eq. (11.1), the acceptor and donor states have bare ener-

gies of approximately −∆/2 and +∆/2, respectively. They are immobile and located

at random, uncorrelated positions. If they are charged, they interact via long-ranged

Coulomb interactions V (r). For convenience we introduce a variable fi for the i-th

dopant at position ri which distinguishes acceptors (fi = −1) and donors (fi = +1).

For a specific realization of the dopant positions (say r1, r2, . . . ), the Hamiltonian

reads [234]

H =
∆

2

∑
i

fini +
1

2

∑
i 6=j

Vij qiqj . (11.7)

qi denotes the charge in units of the elementary charge of the dopant at position ri.

It can be either 0 or −1 for acceptors and either 0 or +1 for donors. The occupation ni
of the i-th dopant is related to its charge qi by

qi =
fi + 1

2
− ni. (11.8)

To our knowledge the model presented above has been studied for the first time in

2000 by Basylko et. al. [245]. It is valid for ∆� Ec (otherwise one has to include the

band states) and ε � 1 to ensure that the dopants are shallow. A schematic plot of

the model is shown in Fig. 11.1.

The Coulomb interaction Vij between the dopants at ri and rj needs some extra

attention. If the dopants are far apart, rij = |ri − rj | � N−1/3, it shows the usual

125



Figure 11.1: Schematic plot of the model. For perfect compensation, K = 1, the
Fermi level µ is located exactly in the middle of the band gap ∆ which we choose as
our reference energy such that µ = 0. The bare energies of the randomly placed shal-
low acceptor (A) and donor (D) states are at −∆/2 and ∆/2, respectively. Each dopant
can be either charged or neutral, the charge is indicated by ±q. Occupied acceptors
are negatively charged, while empty donors are positively charged. Charged dopants
interact via long-ranged Coulomb interactions.

1/r dependence. But if the dopants are close-by, rij . N−1/3, quantum mechanical

effects may play a role. The dopant wavefunction has a finite extent, the effective

Bohr radius aB. We have seen above that this can become quite large, of order 10nm,

thereby exceeding N−1/3. Skinner et. al. [234, 235] suggested to incorporate these

quantum effects by a short distance cutoff of the order of the Bohr radius:

Vij =
e2

4πεε0

√
|ri − rj |2 + a2

B

(11.9)

We will use this approximation in the following to account for the finite extent of

the wavefunctions. Furthermore this cutoff removes high energies as the maximal

energy of two close-by dopants now is ∼ 1/aB.

For the theoretical analysis it is convenient to rewrite the Hamiltonian, Eq. (11.7),

in dimensionless units. To do so we divide Eq. (11.7) by Ec to obtain

H

Ec
=

∆

2Ec

∑
i

fini +
1

2Ec

∑
i 6=j

e2

4πεε0

√
|ri − rj |2 + a2

B

qiqj

=
∆

2

∑
i

fini +
1

2

∑
i 6=j

1√
|ri − rj |2 + aB

2
qiqj (11.10)

where the quantities with a bar on top are now dimensionless. Energy is measured in

units of Ec and lengths are measured in units of N−1/3: ∆ = ∆/Ec, r = rN−1/3, aB =

aBN
−1/3. In the following we omit the bar, all theoretical results will be presented

in dimensionless units. Later we will restore the units for a comparison with the

experimental results.
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Note that the model is static and does not show any dynamics. In this regard it

is similar to a two-species, disordered Ising model with long-ranged interactions. To

understand the experimental results in more detail on a microscopic level, one would

need a dynamic model which takes into account the response to an applied field and

the frequency dependence of the dielectric constant. Nevertheless, the model contains

the mechanism which is responsible for the unusual increase of the optical weight at

low temperatures as shown in Fig. 10.6.

At zero temperature we are seeking for the groundstate of the model Eq. (11.10).

For a simulation with M dopants, there are
(
M
M/2

)
∼ 2M/

√
M different configurations.

In principle one has to check all these exponentially many possibilities to find the true

groundstate. However, there is a trick to find an approximate groundstate – called a

pseudo-groundstate – in polynomial time invented by Efros and Shklovskii [211, 234].

Let us assume that the system is its lowest energy configuration. We can calculate

the energy difference to a state where the occupation of two dopants is swapped. We

denote occupations and charges in the groundstate by n̄ and q̄ respectively. Let us

further assume that a dopant at rα is occupied (n̄α = 1 and q̄α = (fα − 1)/2) in the

groundstate while another dopant at rβ is empty (n̄β = 0 and q̄β = (fβ+1)/2). For two

dopants which are both either empty or occupied, the occupation cannot be swapped.

The change of the occupation of a single dopant would violate the charge neutrality.

A basic excitation is then given by a transition into a state with nα = 0 and nβ = 1.

The corresponding energy difference can be calculated to be

∆E(α,β) = Eexciatation at (α,β) − Egroundstate

=
∆

2

∑
i 6=α,β

fin̄i +
∆

2
(fα(1− n̄α) + fβ(1− n̄β)) +

1

2

∑
i 6=j;i,j 6=α,β

Vij q̄iq̄j +
∑
i 6=α,β

Viα
fα + 1

2
q̄i

+
∑
i 6=α,β

Viβ
fβ − 1

2
q̄i + Vαβ

(
fα + 1

2

)(
fβ − 1

2

)
−

∆

2

∑
i

fin̄i +
1

2

∑
i 6=j

Vij q̄iq̄j


=

∆

2
(fβ − fα) +

∑
i 6=α,β

Viα q̄i −
∑
i 6=α,β

Viβ q̄i +
Vαβ
2

(fβ − fα)

=
∆

2
(fβ − fα) +

∑
i 6=α

Viα q̄i −
∑
i 6=β

Viβ q̄i − Vαβ =
∆

2
(fβ − fα) + φα − φβ − Vαβ (11.11)

where we have defined the potential at the position rj as φj =
∑

i 6=j Vij qi. It is

convenient to introduce the single-electron energies as

εj =
∆

2
fj − φj =

∆

2
fj −

∑
i 6=j

Vij qi. (11.12)
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The meaning of εj can be understood by realizing that εj = δH({n1,n2,... })
δnj

: it is the

energy change due to adding or removing a single particle. At T = 0 all states with

εj < µ are filled (nj = 1) while all states with εj > µ are empty (nj = 0). Then we

know from Eq. (11.11) that in the groundstate the inequality

∆E(α,β) = εβ − εα − Vαβ > 0, for nβ = 0 and nα = 1 (11.13)

has to be fulfilled. This is known as the Efros-Shklovskii stability criterion. A pseudo-

groundstate is defined by the property that Eq. (11.13) is satisfied for all proper pairs

(α, β). But this does not determine the state uniquely. There can be many of these

pseudo-groundstates which are very close in energy. In principle the energy can still

be lowered by the exchange of two pairs while both intermediate states (reached

by only swapping one of the pairs) have a higher energy. This also applies to the

exchange of m > 2 pairs.

The existence of many almost degenerate minima is the hallmark of a glass [246].

This is why models similar to that presented above are called Coulomb glass or elec-

tron glass [247]. The most-studied Coulomb glass model, for example in the book by

Efros and Shklovskii [211], is the following lattice model (on a regular lattice):

H =
∑
i

Φini +
1

2

∑
i 6=j

ni nj
|ri − rj |

. (11.14)

The disorder is implemented by a random on-site potential Φi chosen from a box dis-

tribution and ni ∈ {0, 1} denotes the occupation of lattice site i. This is equivalent to a

random-field Ising model with long-ranged, antiferromagnetic interactions. Other re-

lated models are the Ising spin glass models where the randomness is implemented

by random couplings Jij . For example, the Edwards-Anderson Hamiltonian of an

Ising spin glass reads [248]

H = −
∑
〈i,j〉

Jij Si Sj (11.15)

where Si ∈ {−1, 1} denotes the spin at lattice site i and 〈i, j〉 means nearest neighbor

interactions only. It is known that finding the groundstate of the Ising spin glass

model, Eq. (11.15), is a NP hard problem in 3d [249]. It was suggested to be a good

candidate for testing quantum annealing [250, 251].

11.3 Numerical implementation

The algorithm to find a pseudo-groundstate works as follows [211, 234, 252]:
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(GS1) Randomly choose the positions of the M dopants in a volume V = L3;

(GS2) Choose an initial state which is charge neutral;

Calculate the single-electron energies εj for all dopants;

(GS3) Randomly choose a pair (α, β) with nβ = 0 and nα = 1

IF(∆E(α,β) < 0)THEN(

Swap occupation to nβ = 1 and nα = 0;

Update all single-electron energies;)

(GS4) Repeat (GS3) until ∆E(α,β) > 0 for all pairs proper (α, β);

(GS5) Calculate the observables of interest;

For K = 1 we have always used the state where all acceptors are occupied and all

donors are empty as an initial state. For K < 1 all MK acceptors and M(1 − K)

donors (randomly chosen) were initialized with an electron while the remaining MK

donors were left empty. The resulting pseudo-groundstate configuration depends on

the initial state and on the sequence of exchanged pairs. At the end of the simulation

we have checked systematically that ∆E(α,β) > 0 is fulfilled for all proper pairs. The

average runtime of the algorithm is O
(
M2
)
:

In (GS1) one has to distribute the M dopants, the runtime is ∼M .

In (GS2) all single-electron energies have to be calculated, the runtime is ∼M2.

In (GS3) all single-electron energies have to be changed, the runtime is linear in M .

In (GS4) one has to check the condition Eq. (11.13) for all pairs and the number of

pairs is ∼ M2. The runtime of (GS5) strongly depends on the observables that are

calculated, but for none of those considered this exceeds M2.

In the worst case a runtime of O (M) + O
(
M2
)

+ O
(
M ×M2

)
= O

(
M3
)

is obtained.

But the number of pairs which are exchanged during a single run is rather ∼M and

not ∼ M2. Then the update step (GS3) has to be executed only ∼ M times while in

∼ M2 cases no update is needed. Hence the runtime is rather O (M)(from (GS1))

+O
(
M2
)
(from (GS2)) +O

(
M2
)

(from (GS3), no update) +O (M ×M) (from (GS3)

times ∼ M updates) = O
(
M2
)
. The observables in (GS5) depend on the disorder

configuration chosen in (GS1). For each observable we have performed a disorder av-

erage. Depending on the observable, the disorder average includes 100−1000 different

disorder configurations.

For the finite temperature simulations a standard Metropolis Monte Carlo al-

gorithm was used [253]. The algorithm does not converge to a single state but

the configurations fluctuate and the probability to visit a state with energy E is
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∼ exp (−E/T ). In this way a canonical ensemble is sampled and thermal expectation

values (and fluctuations) of physical observables can be calculated. The implementa-

tion works as follows:

(MC1) Randomly choose the potions of the M dopants in a volume V = L3;

(MC2) Choose an initial state which is charge neutral;

Calculate the single-electron energies εj for all dopants;

(MC3) Randomly choose a pair (α, β) with nβ = 0 and nα = 1

IF(∆E(α,β) < 0) THEN(

Swap occupation to nβ = 1 and nα = 0;

Update all single-electron energies;)

IF(∆E(α,β) > 0) THEN( with a probability exp(−∆E(α,β)

T ):

Swap occupation to nβ = 1 and nα = 0;

Update all single-electron energies;)

(MC4) Repeat (MC3) until the probability to visit

a state with energy E is ∼ exp (−E/T );

(MC5) Repeat (MC3) as long as you want (say m times);

Calculate the observables of interest when the system has reached a

configuration which is uncorrelated to the last configuration

at which observables were calculated;

The runtime of steps (MC1) - (MC4) is O
(
M2
)

as above with a temperature depen-

dent prefactor. The higher the temperature, the more Monte Carlo steps are accepted.

Since observables are calculated m-times during a single Monte Carlo run the algo-

rithm is self-averaging. We have typically used m = 100. Then averaging over 10− 30

different disorder configurations is sufficient to obtain reasonable results.

To check the accuracy of the pseudo-groundstate algorithm we have used the sim-

ulated annealing technique [254]. Here the system is initialized at a high tempera-

ture which then is successively reduced to zero. In 15 test runs, with two different an-

nealing schemes each, the largest relative energy difference that we have found was

(EPGSalgorithm−Eannealing)/Eannealing < 10−5. Depending on the cooling scheme the run-

time of the annealing algorithm is much higher. For convenience we will (sometimes)

use the term groundstate in the following as a synonym for the pseudo-groundstates.

In the simulations we have used different kind of boundary conditions. Open

boundary conditions (OBC) lead to a reduction of the potential fluctuations close to
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the surface. To avoid this, one can use periodic boundary conditions (PBC). Here

the distance r between two dopants at (x1, y1, z1) and (x2, y2, z2) was calculated as

r2
PBC = Min(|x1 − x2|, |x1 − x2 ± L/2|)2 + Min(|y1 − y2|, |y1 − y2 ± L/2|)2 + Min(|z1 −
z2|, |z1−z2±L/2|)2. The simulation volume was chosen as a cube with volume V = L3.

In this volume we have used L3 donor and KL3 acceptor states, the corresponding

dopant number is (1 +K)L3. Accordingly, the total density in dimensionless units is

Ntot = 1+K. All results presented below are shown for L ≥ 40 (128.000 dopants). The

largest system size that was simulated was L = 64 (524.288 dopants).
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12 Low temperatures: Puddles and lengthscales

In this section we consider T = 0 (pseudo-groundstate) properties of the disordered

Coulomb system. The focus will be on emergent lengthscales and on the the mecha-

nisms which lead to puddle formation. In the model introduced in the last section a

puddle has a to be identified with a critical accumulation of neutral dopants. We will

introduce a measure for that which, however, is not justified by any operational def-

inition. It serves as an auxiliary quantity to estimate the density of charges located

in puddles.

12.1 Coulomb gap

A well-known feature of disordered localized charges interacting via long-ranged in-

teractions is the Efros-Shklovskii Coulomb gap [211, 255]. This gap occurs in the

groundstate where the single-electron density of states (d. o. s.) vanishes at the Fermi

level. The d.o.s. , denoted by g(ε), is the distribution function of the single-particle

energies εj = ∆
2 fj − φj , its dimension is 1/(ENERGY VOLUME). The disappearance at

the Fermi level is a direct consequence of the groundstate condition, see Eq. (11.13),

εβ − εα − Vαβ > 0, for nβ = 0 and nα = 1. (12.1)

In the groundstate all states below the Fermi level (ε < µ) are filled with an elec-

tron, while all states above the Fermi level (ε > µ) are empty. In the following we

present the original argument due to Efros and Shklovskii [255]. Let us assume

that the d.o.s. is finite at the Fermi level g(µ) = g0 > 0 and that the condition in

Eq. (12.1) is fulfilled. We consider two states of the same type, both acceptors or both

donors, such that Vαβ > 0. One of the levels shall have an energy slightly below

the Fermi level, while the other shall have an energy slightly above the Fermi level.

This results in a small energy difference εβ − εα = ∆ε. Via g0 = 1/(∆εR3) this de-

fines a lengthscale R = (g0∆ε)−1/3. This has to be interpreted as the typical distance

between the dopants with energy difference ∆ε. Inserting this into Eq. (12.1) and

restoring the prefactors yields ∆ε − e2(g0∆ε)1/3/(4πεε0) > 0. This inequality is vio-

lated for ∆ε < e3g
1/2
0 /(4πεε0)3/2, in contradiction to the assumption. The conclusion

is that the d.o.s. at the Fermi level cannot be finite. The dependence of g on the en-

ergy ε at small ε can be inferred from dimensional considerations: the Coulomb gap

is due to the long-ranged Coulomb interaction where LENGTH ∼ 1/ENERGY. Then

g ∼ 1/(ENERGY LENGTH3) ∼ ENERGY2. This quadratic behavior g(ε) ∼ ε2 for ε → 0
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Figure 12.1: Single-particle density of states in the groundstate. The single-
particle d.o.s. shows a soft gap at the Fermi level µ = 0 the well-known Coulomb gap.
States with ε < 0 are occupied by an electron while states with ε > 0 are empty. In
the figure the d.o.s. is split into the four different contributions. The neutral donors
form narrow peaks located very close to the Fermi level. The total d.o.s. is given by
the black line. Data is shown for ∆ = 15, L = 40 and aB = 1.

was found in numerical simulations [234, 256, 257] as well as in experiments [258].

In 2d the same argument as presented above lead to g2d(ε) ∼ |ε| for ε → 0. This

has also been observed experimentally [259]. In graphene nanoribbons experimental

results also indicate the existence of a Coulomb gap [243, 260].

In Fig. 12.1 we show the dimensionless d.o.s. g∗ = gEc/N . One can clearly see the

Coulomb gap at ε = 0. The d.o.s. is split into the 4 different contributions: occupied

donors and acceptors (ε < 0) and empty donors and acceptors (ε > 0). The density

of the states of the neutral dopants shows narrow peaks slightly above (acceptors)

or below (donors) the Fermi level which lead to a unique shape of the total density

of states. This peaks confining the Coulomb gap have to be identified with the con-

tribution of the neutral dopants. The axes are rescaled in a way that the result is,

approximately, independent of ∆. The overlap of the d.o.s. to ε < −∆ and ε > ∆

has a sharp cutoff at Ec. The results are shown for ∆ = 15 which corresponds to

ε/∆ ≈ ±1.07. To achieve such a low noise level as presented in Fig. 12.1 one has to

perform a disorder average over more than 300 disorder configurations. For each re-

alization the Fermi level is not exactly located at µ = 0. Thus naive averaging leads

to a finite d.o.s. at ε = 0. To avoid this issue one can assess the Fermi level of a single

realization by the mean of highest occupied and lowest empty single-electron energy

µ̄ = (εmax occpd. + εmin empty)/2 [261]. This value is subtracted from each data set and
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Figure 12.2: Density of states for externally screened interactions. The in-
teraction used in the simulations was V ∼ e−r/λ/

√
r2 + a2

B. The main panel shows
that the Coulomb gap is still present for short-ranged interactions λ & 2. The black
line (λ = ∞) is the result for the unscreened interaction as shown in Fig. 12.1. For
very small values of λ ∼ 1 the d.o.s. approaches its non-interacting shape and shows
a "screening gap". The inset shows the fraction of neutral dopants normalized by
the value for λ = ∞. The dashed line is a guide to the eye. The full width at half
maximum is surprisingly small λ1/2 ≈ 3.1. All data is for L = 40 and ∆ = 15.

the d.o.s. vanishes for ε→ 0.

To investigate the effect of external screening we have also performed simulations

with the interaction

Vαβ(λ) =
e−|rα−rβ |/λ√
|rα − rβ|2 + a2

B

. (12.2)

Here λ denotes the screening length which is the range of the interaction. In Fig. 12.2

the d.o.s. is shown for different values of λ and ∆ = 15. As λ becomes smaller, the

d.o.s. has to approach its non-interacting shape, two peaks at ±∆/2. However, this

happens only at a surprisingly small screening length: for λ = 2 one can still see a

dip in the d.o.s. at ε→ 0 and that the Coulomb gap is still existing.

In the inset we show the density of neutral dopants normalized by the value for

λ = ∞ (no external screening). The full width at half maximum is at λ1/2 ≈ 3.1

the system size in the simulation was L = 40. Within a "screening volume" of size

Vscr = (λ1/2)3 there are 2 ∗ 3.13 ≈ 60 dopants on average. To produce a net charge

of at least ±10 the number of acceptors or donors in Vscr has to be at most 25. The
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probability for this to happen is given by 2× 2−60
∑25

i=0

(
60
i

)
≈ 0.25. The typical charge

in a volume Vscr is ∼
√

60 e ≈ 7.75 e Hence, it is possible to build up potentials |φ| >
∆/2 = 7.5 in a screening volume. By contrast, for λ = 1 there are two dopants

on average in a screening volume λ3 = 1, and there will (almost) never be a net

charge of ±10. In the simulations for λ = 1 there was 1 pair of neutral dopants out

of 3200000 pairs in total. This estimate was intended to show that the smallness of

λ1/2, albeit surprising, is plausible. The result suggests that the neutralization of

dopants is mainly controlled by the local environment. The Coulomb gap survives

as long as there are enough dopants in a screening volume, charges that "talk" to

each other, to provide potentials of order ±∆/2. For short-ranged interactions the

Coulomb gap is replaced by a screening gap, as seen for λ = 1 in Fig. 12.2, and the

formation of neutral dopants is totally suppressed. Below we will further investigate

the lengthscales which control the puddle formation.

12.2 Correlation functions and lengthscales

A simple scaling argument by Efros, Shklovskii and Skinner [211, 234, 235, 261]

suggests that there exists a lengthscale Rg ∼ ∆2 in the correlated groundstate. The

short version was already presented in section 11.1. The argument is as follows: in a

volume of size V ∼ R3 the typical charge in the uncorrelated state is QR ∼ ±e
√
R3 ∼

R3/2. This implies a typical potential φR ∼ QR/R ∼
√
R within that region. The

potential is cutoff at ±∆/2 and to reach φR ∼
√
R ∼ ∆ a typical distance Rg ∼ ∆2

is needed. Accordingly the charge density in a volume V = R3
g is ρg ∼ QV /V ∼√

R3
g/R

3
g = R

−3/2
g ∼ 1/∆3. To summarize, this scaling argument suggests

Rg ∼ ∆2 and ρg ∼ ∆−3. (12.3)

The prefactor can also be calculated from the correlation function of

φ(rB)− φ(rA) =

∫
γA→B

ds · (∇φ)(s) =

∫
γA→B

ds

∫
d3r′

ρ(r′) (r′ − s)
|r′ − s|3

(12.4)

to be

〈 (φ(rB)− φ(rA)) (φ(rB)− φ(rA))〉 = 8π |rB − rA| = 8πR. (12.5)

Here and in the following the expectation value 〈·〉 denotes a disorder average. After

disorder averaging all correlation functions only depend on the distance. In the nu-

merical simulations this is also true for PBC while OBC may lead to deviations close

to the boundary. Equating Eq. (12.5) with ∆2 yields, with the dimensions restored,
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Figure 12.3: Properties of the uncorrelated state. The left panel shows the non-
local part of the charge-charge correlation function C0

ρρ, Eq. (12.6), calculated as ex-
plained in the main text. We find the expected behavior C0

ρρ = −2/V . In the simula-
tion we used L = 40, then −2/V = −2/403 ≈ −3.1 × 10−5. The data is averaged over
2000 disorder realizations but the noise level is still quite high. Periodic boundary
conditions were used. For r > L/2 = 20 the number of charges available decreases
(is not ∼ r2 anymore) leading to a suppression of C0

ρρ. In the right panel we show the
probability distribution of the potential φ0 in the uncorrelated state for different val-
ues of the cutoff aB. The dashed lines are Gaussian fits to the data. All curves are per-
fectly Gaussian as expected. The system size was L = 40 and the width of the Gaus-
sian is ∼

√
L as shown in the main text. For aB = 0.001 the fit yields σ = 12.55 – the

value from Eq. (12.8) for spherical symmetry is σ =
√

4.104L =
√

4.104× 40 = 12.81.

Rg = N−1/3

8π

(
∆
Ec

)2
. This is exactly the result of Skinner et. al. [234, 235]. We will call

the scaling behavior LENGTH ∼ ENERGY2 Gaussian scaling as it arises from uncorre-

lated charges. To perform the integrals in Eq. (12.5) we have used the charge-charge

correlation function of the uncorrelated system. In dimensionless units it is given by

〈ρ0(r)ρ0(r′)〉 = Ntot

(
δ(r − r′)− 1

V

)
= Ntotδ(r − r′) + C0

ρρ(r). (12.6)

The density was Ntot = (1 +K) in the simulations, in this subsection we present only

results for perfect compensation, K = 1. The second term, −Ntot/V , term ensures

charge neutrality:∫
d3r

∫
d3r′ 〈ρ0(r)ρ0(r′)〉

= Ntot

(∫
d3r − 1

V

∫
d3r

∫
d3r′

)
= Ntot

(
V − 1

V
V 2

)
= 0. (12.7)
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If there is a charge q at r the rest of the system has charge −q which, after disorder

averaging, is homogeneously distributed. In Fig. 12.3 we show the non-local part of

〈ρ0(r)ρ0(r′)〉. Since we are dealing with a discrete system, there is no unique way to

calculate the correlation functions. Here they were obtained as follows: 1) Around

each charged dopant we have counted the charge in spherical shells (with thickness

dr = 0.5) around this dopant. 2) The charges themselves are counted separately

which gives the δ−contribution in Eq. (12.6). 3) The result is normalized by the

volume such that the δ-peak has weight Ntot = 2.

For periodic boundary conditions used here, the number of dopants in each shell

grows as 4πr2dr for r . L/2. For r > L/2 the number of dopants does not increase

as r2 any more. This leads to a suppression of C0
ρρ(r) for r > L/2 as seen in the left

panel of Fig. 12.3. Although the data is averaged over 2000 disorder realizations,

the simulations can be done very quickly as no optimization has to be performed, the

noise level is still quite high.

From Eq. (12.6) the (square of the) typical size of the potential can be calculated

as

〈φ0(r)φ0(r)〉 = 〈φ0(0)φ0(0)〉 =

∫
d3r

∫
d3r′

〈ρ0(r)ρ0(r′)〉
r r′

=

∫
d3s

∫
d3R

2δ(s)− 2/V

|R+ s/2| |R− s/2|

= 2

∫
d3R

1

R2
− 2

V

∫
d3s 4πL− 4π

V

∫ L

0
ds s3I(s/L)

=
−4π

V

∫ L

0
ds s3I(s/L) =

−4πL4

V

∫ 1

0
ds s3I(s) ∼ L, (12.8)

where L is the linear system size (V ∼ L3) and

I(x) = 2π
(π

4
− 1
)

+
2π

x2

(
ArcSin

(
4x

4 + x2

)
− x
)
− πArcTan

(
2

x

)
= −2π +

π

3
x+O

(
x3
)
. (12.9)

In this calculation we have used spherical symmetry. In general I(x) depends on the

boundary conditions and on the geometry of the simulation volume but the leading

order in x = s/L has to be a (negative) constant. For spherical symmetry, where

V = 4πL3/3, we find 〈φ0(r)φ0(r)〉 = 4.104L. The potential becomes arbitrarily large

in a large system and the typical potential is φtyp =
√
〈φ0(0)φ0(0)〉 ∼

√
L. Since the

charges are uncorrelated, we expect a Gaussian distribution of the potential. This

is shown in the right panel of Fig. 12.3 for L = 40 for different values of aB. In the
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Figure 12.4: Distribution function of the potential in the groundstate. The
main panel shows the scaled distribution function P∆ of the potential for L = 40
and ∆ = 8 − 24. It has a cutoff at ±∆/2, as indicated by the dashed lines. Only
for |φ| > ∆/2 neutralization and puddle formation can arise. The inset shows the
unscaled data, P (φ) as a function φ.

following scaling analysis we will omit the cutoff aB. Later, in section 14 , we will

investigate the influence of the the cutoff aB on the lengthscales. In 2d a similar

calculation as in Eq. (12.8) yields 〈φ0φ0〉2d ∼ log(L) suggesting an exponentially large

lengthscale.

The large potential fluctuations ∼
√
L have to be screened. To investigate this

we consider the charge and the potential correlation functions in the groundstate.

Since φ(r) =
∫
d3r′V (|r − r′|) ρ(r′), where V denotes the Coulomb interaction, they

contain the same information. In Fig. 12.4 we show the probability distribution of

the potential, the inset shows the unscaled data. The weight of the distribution is

restricted between −(∆/2+1/a) and (∆/2+1/a), where a ≈ 1. The dashed lines indi-

cate the region where |φ| > ∆/2, it is here that neutralization can arise. The overlap

is a measure for the density of neutral dopants. The main panel shows the rescaled

∆P (φ/∆). The height where the different curves cut the dashed lines still depends

on ∆. The distributions shown in Fig. 12.4 are not Gaussian anymore and therefore

they cannot be fully characterized by their second moment. Nevertheless we antic-

ipate from Fig. 12.4 that 〈φ(r)φ(r)〉 ∼ ∆2. The distributions have an approximate

height of 1/∆ and an approximate width of ∼ ∆ which gives 〈φφ〉 ∼ ∆2 plus sublead-

ing corrections. In Fig. 12.5 we show different fits to the numerically calculated 〈φφ〉

138



●
●

●
●

●
●

●

0 5 10 15 20 25 30 35

0

20

40

60

80

Δ

<
ϕ
ϕ
>

a1 Δ
2
+a2 Δ

c Δ2

b1 Δ
2
+b2 Δ

3/2

Figure 12.5: The local potential-potential correlations as a function of ∆. The
leading order term is ∼ ∆2. However, subleading terms are needed to describe the
data correctly in the simulated parameter range. The respective fits yield c = 0.064,
a1 = 0.043, a2 = 0.562 and b1 = 0.016, b2 = 0.250.

for different values of ∆. The data cannot be described with a simple c∆2 fit, see

the green dashed line. Subleading terms are needed and we show two different fit

functions which match the data.

To investigate this further, we have numerically determined how the probability

distribution of the potential is build up in space. To this end we have calculated the

potential distributions PR(φ) where only charges located within a sphere of radius R

contribute. For R > L this is identical to the results shown in Fig. 12.4. We have

further calculated the distribution P neut
R (φ) at the position of the neutral dopants

only. For R > L this has to restricted to the region where |φ| > ∆/2 as necessary for

neutralization. In Fig. 12.6 we show numerical results for L = 50, aB = 1 and ∆ = 24.

At very small R, PR(φ) has only discrete values due to the discreteness of charge.

This is shown for the example of R = 0.25 in the left panel. Surprisingly, both PR(φ)

and P neut
R (φ) reach their final form only when R is of the order of the system size. For

intermediate R, PR is approximately described by a Gaussian distribution, where the

width depends on R. An example is shown by the black dashed line. Only when

R & 35 the Gaussian tails of PR(φ) vanish leading to a sharp cutoff. Also P neut
R (φ)

reaches its eventual shape, two peaks at ±(∆/2+Ec), only for R & 40. For 5 < R < 30

P neut
R is almost independent of R showing a well at φ = 0. We have checked that the

qualitative behavior is the same in the same in the range ∆ = 8 to ∆ = 32.

Before we further investigate the correlations of the potential we show some re-

139



-20 -10 0 10 20

0.00

0.01

0.02

0.03

0.04

0.05

0.06

ϕ

P
R
(ϕ
)

R=0.25

-20 -10 0 10 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

ϕ

P
Rn
e
u
t (
ϕ
)

R=5.25
R=10.25
R=15.25
R=20.25
R=25.25
R=30.25
R=35.25
R=40.25
R=45.25

Figure 12.6: Build up of the potential distributions. Shown is the data for
L = 50, aB = 1 and ∆ = 24. The potential distribution PR is calculated using only
dopants within a distance R. P neut

R (φ) is the distribution at the positions of the neu-
tral dopants. Both, PR(φ) and P neut

R (φ), develop their final shape only when R is of
order of the system size. For very small R the distributions reflect the discreteness of
the charge as seen for R = 0.25 in the left panel.

sults on the charge correlations. As charges are neutralized in the groundstate the

weight of the δ-peak in Eq. (12.6) is reduced. Furthermore also the weight in the

non-local part, denoted by Cnl
ρρ, is redistributed. We parametrize

〈ρ(r)ρ(r′)〉 = Q0δ(r − r′) + Cnl
ρρ(r − r′). (12.10)

Thanks to charge neutrality we know that
∫
d3rCnl

ρρ(r) = −Q0. The weight of the

δ-peak Q0 corresponds to Ntot (1− n0) = 2 (1− n0) where n0 is the fraction of neutral

dopants. As n0 → 0 for ∆ → ∞ we expect that it can be described with a scal-

ing ansatz n0 ∼ ∆−γ with γ > 0. If the charges are screened, the compensation

4π
∫
ds s2Cnl

ρρ(s) = −Q0 is realized on a finite lengthscale, the screening length Rs,

such that ∫
s<Rs

dsW (s)Cnl
ρρ(s) = −Q0. (12.11)

To investigate this we define the screening function

Sρρ(r) =

∫ r

0
dsW (s)Cnl

ρρ(s). (12.12)

The weight function W (s) depends on the geometry and the boundary conditions. For
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Figure 12.7: Screening function Sρρ for different boundary conditions and in
the uncorrelated state. We have used ∆ = 0 here to demonstrate some features of
this function. The dashed, black lines indicate the total charge −Q0 that has to be
compensated. In the uncorrelated state, when all dopants are charged, the compen-
sation happens only at a length R0

s ∼ L indicating the absence of screening. In the
correlated state the charge compensation happens on a very short lengthscale Rs ∼ 4
and the charges are screened. A strange effect can be seen for periodic boundary con-
ditions (PBC): while the short distance screening does not depend on the boundary
conditions, there are correlations emerging at r ∼ L/2 = 20.

spherical symmetry is it just Wspherical(s) = 4πs2. From the numerical algorithm, as

described above, it is clear that we have directly calculated W (s)Cnl
ρρ(s). For small

s it is always W (s) ∼ s2 independent of the geometry and whether the boundary

conditions are open or periodic. Clearly, the screening function fulfills Sρρ(r → 0)→ 0

and Sρρ(r → L)→ −Q0.

In Fig. 12.7 we show Sρρ for different boundary conditions and in the uncorrelated

state. We have chosen ∆ = 0 to demonstrate some features of this function. It

can be clearly seen that in the uncorrelated state the charge compensation happens

on a lengthscale R0
s ∼ L: screening is absent. In the groundstate, however, the

compensation happens on a small lengthscale Rs ∼ 4 and the charges are screened.

The weight Q0 is ≈ 1.7 for ∆ = 0, which corresponds to a fraction of neutral dopants

n0(∆ = 0) = 1 − Q0/2 ≈ 0.15. For periodic boundary conditions (PBC) a strange

feature emerges at r ≈ L/2 = 20: there is a finite correlation starting at this length

which is absent for open boundary conditions. At r = L/2 the weight function for

PBC is maximal and the effect may be related to this.
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Figure 12.8: Screening function and the non-local charge-charge correla-
tions. The upper plot shows the integrand of Sρρ(∆, r) =

∫ r
0 dsW (s)Cnl

ρρ(∆, s) and the
lower plot shows Sρρ(∆, r). In the main panel of both plots length is scaled by ∆α=1.12.
With this value an approximate scaling collapse is obtained for r, s . 0.5∆1.12. Scaling
with slightly different values in the range α = 1.0− 1.2 also gives reasonable results,
see Fig. 12.11 below. This suggests a scaling function Cnl

ρρ(r/∆
α) = ∆3αCnl

ρρ(∆, r)
(since W (s)ds ∼ s2ds at short distances). However, there are deviations for r, s &
0.5∆1.12. The inset in the upper plot shows the unscaled data. The inset of the lower
plot shows the charge density Q0(∆) = 2− n0(∆) which has to be compensated. Full
charge neutrality is reached only at length of the order of the system size (L = 50 in
that plot). Both plots show results for PBC, however, the behavior at large distances
differs for different boundary conditions. Parameters used in the plots are aB = 1
with L = 50 for ∆ < 20 and L = 60 for ∆ ≥ 20.
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In Fig. 12.8 we show Sρρ =
∫ r

0 dsW (s)Cnl
ρρ(∆, s) and its integrand for different

values of ∆. Within the numerical precision a scaling collapse at short distances can

be reached if the length is scaled with ∆α=1.−1.2. We have chosen α = 1.12 which

shows the best agreement, see Fig. 12.11 below. The plots suggest a scaling function

Cnl
ρρ(r/∆

α) = ∆3αCnl
ρρ(∆, r). However at larger distances, r, s & 0.5∆α, deviations

are seen. While this is hidden by the noise in the upper plot, it can be clearly seen

in Sρρ. Below we present three different scenarios which might explain this. The

negative peak at short distances, s . 0.5∆α, in the upper plot overcompensates the

local charge correlations. This can be interpreted as an overscreening where more

charge than needed for screening is accumulated. This effect can be seen in the lower

plot where Sρρ is smaller than the eventual value, and even smaller than −2, for

r & 0.4∆α. The values of Sρρ(∆, r ∼ L) are shown in the inset of the lower plot – total

charge neutrality is only reached at r ∼ L = 50.

As in Eq. (12.8) we can calculate the local correlation function of the potential as

〈φ(r)φ(r)〉 =

∫
d3r

∫
d3r′

〈ρ(r)ρ(r′)〉
r r′

=

∫
d3s

∫
d3R

Q0δ(s) + Cnl
ρρ(s)

|R+ s/2| |R− s/2|

=
spherical

4πLQ0 +

∫
d3s sCnl

ρρ(s)

(
I(s/L) +

4πL

s

)
=

∫
ds sW (s)Cnl

ρρ(s) I(s/L) =
spherical

4π

∫
ds s3Cnl

ρρ(s) I(s/L) (12.13)

where I(s/L) = −2π +O(s/L) was defined in Eq. (12.9). For non-spherical situations

a different weight function W has to be used, but it has to be ∼ s2 for small s. Also in

the evaluation of the R integral spherical symmetry was assumed and I(s/L) might

be different for non-spherical situations. If the screening is realized on finite length,

Rs < L, only the leading order term of I can contribute. Then charge neutrality and

the constraint on the potential yield the equations∫
ds s2Cnl

ρρ(s) ∼ −Q0 = 2(−1 + n0(∆)) ∼ ∆0 +O
(

1

∆γ>0

)
(12.14)∫

ds s3Cnl
ρρ(s) ∼ 〈φ2〉 ∼ ∆2 +O

(
∆δ<2

)
. (12.15)

The exponents of the subleading terms γ and δ are not known apriori.

In Fig. 12.9 we show n0(∆). It cannot be described by a simple fit of the form

c∆−γ . In the simulated parameter range further terms are needed to fit the data.

Three fit functions in the range ∆ = 16 − 32 are shown. The gray solid line is a fit

3.73 ∆−2 − 20.05 ∆−3, the black dashed line is a fit 0.045 ∆−1 + 1.75 ∆−2 and the red

dotted line is a fit 0.51 ∆−3/2 + 1.69 ∆−5/2. From the fits as shown it is not possible
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Figure 12.9: Density of neutral dopants as a function of ∆. The large green dots
are data for L = 50 while the smaller light dots are data for L = 40. The data cannot
be described by a simple fit of the form a∆−b, subleading terms are needed. Three
fits with different asymptotic behavior for ∆→∞ are shown: the gray solid line is a
fit a1 ∆−2 + b1 ∆−3, the black dashed line is a fit a2 ∆−1 + b2 ∆−2 and the red dotted
line is a fit a3 ∆−3/2 + b3 ∆−5/2. All fits are in the range ∆ = 16− 32.

to decide on the asymptotic behavior. The last point at ∆ = 32 might suffer slightly

from finite size effects. The lighter smaller dots are results for L = 40.

We can also express the energy of the system in terms of Cnl
ρρ: the Coulomb inter-

action energy HC is

〈HC〉 =
1

2

∑
i 6=j

〈qiqj〉
|ri − rj |

→ 1

2

∫
d3r

∫
d3r′

Cnl
ρρ(|r − r′|)
|r − r′|

=
1

2

∫
d3R

∫
d3s

Cnl
ρρ(s)

s
= 2π V

∫
ds sCnl

ρρ(s). (12.16)

The local part of the charge-charge correlations does not contribute due to the i 6= j

constraint on the sum and would give a contribution ∼ V log(L) in the continuum

limit. The neutralization energy, Hn = V ∆n0, can be calculated from Eq. (12.14) as

〈Hn〉 = V ∆n0 = V ∆(1−Q0/2) = V ∆ + 2π V ∆

∫
ds s2Cnl

ρρ(s) ∼ V ∆1−γ . (12.17)

In the uncorrelated state, where Cnl
ρρ(s) = −2/V and n0 = 0, it is

〈H0〉uc

V
= ∆ + 2π∆

∫ L

0
ds s2

(
−2

V

)
= ∆− 4π∆

3V
L3 = 0

(
V =

4π

3
L3

)
, (12.18)
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Figure 12.10: Coulomb energy density as a function of ∆. Shown are the nega-
tive values in a log-log plot. The large green dots are data for L = 50 while the smaller
light dots are data for L = 40. The data cannot be described by a simple fit of the
form a∆−b. Two fits including subleading terms are shown. The solid gray line is a fit
a1 ∆−1+b1 ∆−3/2+c1 ∆−2 while the dashed black line is a fit a1 ∆−2+b1 ∆−5/2+c1 ∆−3.
Both fits can describe the data and it is not possible to decide on the asymptotic be-
havior for ∆→∞.

〈HC〉uc

V
= 2π

∫ L

0
ds s

(
−2

V

)
= −2π

L2

V
= O

(
L−1

)
. (12.19)

The total energy density can be written as

〈H〉
V

=
〈Hn +HC〉

V
= ∆ + 2π

∫
ds sCnl

ρρ(∆, s) (1 + s∆) . (12.20)

In Fig. 12.10 we show − 〈HC〉
V as a function of ∆. No fit of the form a∆−b can describe

the data. The best fits were obtained including two subleading corrections. Two

examples are shown in Fig. 12.10. The solid gray line is a fit 4.08 ∆−1 + 21.71 ∆−3/2 −
68.26 ∆−2, and the dashed black line is a fit 678.5 ∆−2 − 3839.2 ∆−5/2 + 5820.3 ∆−3.

Both fits match the data equally well in the range ∆ = 12− 32.

To summarize, we have found a set of equations for disordered 3d Coulomb sys-

tems which relate the energy density, the charge density and the local potential cor-

relation function. For systems with spherical symmetry they read:

〈HC〉
V

= 2π

∫
ds s1Cnl

ρρ(∆, s), (12.21)

〈Hn〉
V

= 2π∆

∫
ds s2Cnl

ρρ(s) + ∆, (12.22)
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Figure 12.11: Different scalings of Sρρ. The data is the same as used in Fig. 12.8.
This motivates our choice αnum = 1.12. A scaling with ∆2 can be clearly excluded in
the simulated parameter range.

〈Q〉
V

= −4π

∫
ds s2Cnl

ρρ(∆, s), (12.23)

〈φφ〉 = −8π2

∫
ds s3Cnl

ρρ(∆, s) +O
(
L−1

)
. (12.24)

Let us first consider by means of scaling what happens if we assume that there is

a single lengthscale. Then Cnl
ρρ(∆, s) has a scaling form Cnl

ρρ(∆, s) = ∆−β Cnl
ρρ(s/∆

α),

where the scaling function Cnl
ρρ does not depend on ∆. We then find from the leading

order in Eqns. (12.23) and (12.24), and Eqns. (12.14) and (12.15),

∆0 ∼
∫
ds s2Cnl

ρρ(∆, s) =

∫
ds s2 ∆−β Cnl

ρρ(s/∆
α) = ∆−β+3α

∫
ds s2Cnl

ρρ(s) (12.25)

∆2 ∼
∫
ds s3Cnl

ρρ(∆, s) =

∫
ds s3 ∆−β Cnl

ρρ(s/∆
α) = ∆−β+4α

∫
ds s3Cnl

ρρ(s). (12.26)

This implies −β + 3α = 0 and −β + 4α = 2 and therefore α = 2 and β = 6. There is a

length Rs ∼ ∆2 and a typical charge density ∼ 1/∆3. This is a refined version of the

argument due to Skinner and Shklovskii presented above in Eq. (12.3). However, this

is not consistent with our numerical results. They suggest that there is a lengthscale

∼ ∆αnum with αnum in the range 1.0 − 1.2. Here and in the following the subscript

"num" indicates the values estimated from the numerical results. Later, in section

14, we will see more evidence for a lengthscale ∼ ∆α≈1 also for larger values of ∆

up to ∼ 40. In Fig. 12.11 we show 4 different scalings of the screening function Sρρ.

A scaling ∼ ∆2 can be clearly excluded in the simulated parameter range. The plot

motivates our choice α = 1.12 as used in Fig. 12.8. Below we present 3 scenarios

which are, more or less, consistent with the numerical results. All of them have

influence in the experimental relevant regime ∆ & 20 [234].
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Scenario I. We cannot fully exclude that we have not yet reached the scaling regime

with the simulated parameter range. This would mean that eventually, for very large

∆, there is a lengthscale Rs ∼ ∆2 and a typical charge density ∼ 1/∆3. The scaling

function would fulfill Cnl
ρρ

(I)
(∆, s) = ∆−6Cnl

ρρ

(I)
(s/∆2) and the Coulomb energy density

would be ∼ −1/∆2.

In Fig. 12.12 the width of the potential distribution PR(φ), see Fig. 12.6, is shown.

〈φφ〉R is calculated by taking into account only charges within a sphere of radius R.

On a short lengthscale ∼ 0.5∆ a large potential builds up which exceeds the eventual

value at R → L. In the left panel it is seen that the potential reaches its final value

only when R ∼ L. The large values of 〈φφ〉R∼∆ make it possible that the potential

changes by ∆ on a lengthscale ∼ ∆. The maximum 〈φφ〉max is well described by a

fit function fmax(∆) ≈ 1.04 ∆1.39 (not shown). In Fig. 12.5 two fit functions for the

asymptotic value 〈φφ〉L ≡ 〈φφ〉 were shown: f1(∆) = 0.043 ∆2 + 0.562 ∆ and f2(∆) =

0.016 ∆2 + 0.562 ∆3/2. If we interpolate these fits to larger of ∆ we find that fmax(∆) =

f1(∆) at ∆1 ≈ 160 and fmax(∆) = f2(∆) at ∆2 ≈ 325. It might be that such large

values of ∆ are needed for the eventual crossover when 〈φφ〉 exceeds 〈φφ〉R∼∆. These

values are far beyond any values that can be numerically simulated with present day

computers. They are also larger than the typical values in the highly compensated

topological insulators.

Scenario II. Let us consider the situation when the result depends system size L.

We make the ansatz

Cnl
ρρ

(II)
(∆, s) = ∆−β1 Cnl

ρρ

(IIa)
(s/∆α1) + ∆β2L−ξ Cnl

ρρ

(IIb)
(s/L), (12.27)

where the numerical results suggest that α1 = αnum = 1.1 ± 0.1 and β1 = 3αnum =

βnum = 3.3 ± 0.3, see Fig. 12.8. This gives the leading order term in Eq. (12.25) and

a subleading term ∼ ∆αnum in Eq. (12.26). The corresponding Coulomb energy gain is

∼ ∆−αnum . From Eqns. (12.14) and (12.15) we find

∆0 + c1
1

∆γ>0
∼
∫
ds s2Cnl

ρρ(s) ∼ ∆0 + c3 ∆β2L3−ξ (12.28)

∆2 + c2 ∆δ<2 ∼
∫
ds s3Cnl

ρρ(s)I(s/L) ∼ ∆1 + c4 ∆β2L4−ξ. (12.29)

If β2 = 2 and ξ = 4 we find that 〈φφ〉 ∼ ∆2 L0. The contribution to the charge

density and energy density are 〈Q〉V ∼ ∆2L−1 and 〈HC〉
V ∼ ∆2L−2, respectively. This is

consistent with the result shown in Fig. 12.12 where a clear system size dependence
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Figure 12.12: The width of the potential distributions PR(φ). It was calculated
as the second moment of the distributions PR(φ) shown Fig. 12.6. In the left panel
the solid lines are results for L = 50 while the dashed lines are results for L = 40.
The asymptotic values at R ∼ L coincide suggesting the absence of finite size effects.
Also the behavior at short distances R . 20 is approximately independent of L. In
the right panel the data are divided by their maximum value. When R is scaled by
∆α≈1 the short distance behavior, R . 0.5 ∆, is independent of ∆.

can be seen in the left panel. While the short distance and the asymptotic behavior

are not much influenced by the system size, there is an intermediate regime where

L matters. This scenario implies the absence of screening: full charge neutrality is

reached only on lengthscales of the order of the system size.

Scenario III. Let us consider the scaling behavior when there are two lengthscales.

We make the ansatz

Cnl
ρρ

(III)
(∆, s) = ∆−β1 Cnl

ρρ

(IIIa)
(s/∆α1) + ∆−β2 Cnl

ρρ

(IIIb)
(s/∆α2), (12.30)

where we again choose α1 = αnum and β1 = βnum according to the numerical results.

If we include the subleading terms in Eqns. (12.14) and (12.15) we find

∆0 + c1
1

∆γ>0
∼
∫
ds s2Cnl

ρρ(s) ∼ ∆0 + c3 ∆−β2+3α2 (12.31)

∆2 + c2 ∆δ<2 ∼
∫
ds s3Cnl

ρρ(s) ∼ c4 ∆−β2+4α2 + ∆αnum . (12.32)

From the second contribution, Cnl
ρρ

(2)
, we then get the relations −γ = −β2 + 3α2 and

2 = −β2+4α2. This are two equations for three unknown variables and we would need

148



an additional equation to solve this. We can deduce that γ = α2− 2 > 0 and therefore

α2 > 2. From the numerical results, we can also see that γ ≥ 1, see Fig. 12.9. This

leads to α2 ≥ 3 and β2 ≥ 10. This scenario implies that the lengthscale dependence

as seen in Figs. 12.8 and 12.12 is a finite size effect where the ∆α≥3 scale is squeezed

by the system size. This further includes an overscreening on a scale ∼ ∆1.1±0.1 while

full charge neutrality, screening, is only realized on a length ∼ ∆α2≥3.

The pseudo-groundstate algorithm is tailored to minimize the total energy. This

is the sum of the neutralization energy ∆n0 and the Coulomb energy and we expect

a competition of this two terms. Neutralization of a pair at an energy cost of ∆ can

arise as long as the Coulomb energy gained by this is > ∆. The total energy is given

as, see Eq. (12.20),

〈Hn +HC〉 = V

(
∆/2 + π∆

∫
ds s2Cnl

ρρ(∆, s) + 2π

∫
ds sCnl

ρρ(∆, s)

)
= V

(
∆/2 + 2π

∫
ds sCnl

ρρ(∆, s)

(
1 + s

∆

2

))
. (12.33)

In all scenarios the constant term V∆/2 is canceled by the contribution leading to

〈Q〉/V ∼ ∆0. In scenario I there is no subleading term to 〈Hn〉 and in scenario II it is

∼ ∆2L−1 → 0.

In the following we make the additional assumption that both energy contribu-

tions scale in the same way for large ∆: 〈Hn〉 ∼ 〈HC〉 ∼ ∆−ν . While plausible, this is

not justified apriori. In scenario III the leading order in 〈HC〉 is ∼ ∆−αnum . To obtain

the same scaling for the neutralization energy we need α2 = 3 + αnum = 4.1± 0.1 and

β2 = 10 + 4αnum = 14.4± 0.4. This implies γ = 1 +αnum = 2.1± 0.1 and n0 ∼ ∆−1−αnum .

This is consistent with the numerically found n0, see Fig. 12.9. The total energy

gain is ∼ ∆−αnum . From I in Eq. (12.13) we expect corrections of order ∆4/L which

is of course by no means small for the parameters used here. It is not possible to

numerically check the scaling Cnl
ρρ

(IIIb)
(∆, s) = ∆−(10+4αnum)Cnl

ρρ

(IIIb)
(s/∆3+αnum).

One can also include a further term in scenario I which accounts for the neutral

dopants. The typical charge density accumulated in a screened volume VS ∼ (∆2)3 is

∼ V −3/2
S ∼ ∆−3. To ensure charge neutrality in VS the density of neutral dopants has

to be n0 ∼ ∆−3. If we change the scaling function to

Cnl
ρρ

(I)
(∆, s) = (∆−6 − a(I)∆

−9)Cnl
ρρ

(I)
(s/∆2), (12.34)

the new term gives a subleading contribution to the total charge, which is then Q(I)
0 =
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Ntot(1 − a(I)∆
−3). It also accounts for a neutralization energy ∼ 1/∆2 in agreement

with the Coulomb energy. However, the total energy gain is only ∼ 1/∆2 and thus

smaller by a factor of ∆2−αnum≈0.9 when compared to scenarios II and III.

Based on the numerical results presented in this section, it is not possible to rule

out one of the scenarios. Larger values of ∆ are needed to see the eventual scaling

behavior. However, for larger values of ∆, larger systems sizes are needed to avoid

finite size effects, and these can not be simulated with reasonable computational

effort. For analytical insights, a tailored disorder renormalization group or replica

method is probably needed.
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12.3 Puddles

In the modeling, an electronic puddle corresponds to a spatial accumulation of neu-

tral dopants. Electron puddles are formed by neutral donors, while hole puddles are

formed by neutral acceptors. Neutral dopants, and therefore puddles, can emerge

only in regions where the potential exceeds half of the band gap. Only then the in-

teraction energy gained by discharging a pair of dopants can be larger than the band

gap ∆. In Fig. 12.13 we show a typical 1d-cut of the potential. The local energies

φ(r)±∆/2 of acceptors (lower solid line) and donors (upper solid line) can exceed the

Fermi level µ. Here electron and hole puddles can form as indicated by the colored

regions in the figure. A typical 3d configuration is shown in Fig. 12.14. Neutral ac-

ceptors and donors are colored differently. One can see that neutral dopants of equal

type tend to form clusters, which have to be identified with the puddles.

Since the effective Bohr radius of a neutral dopant is very large, see section 11, the

wave functions of electrons or holes of close-by neutral dopants overlap. Furthermore

the potential fluctuations within a puddle are small ∼ Ec, see Fig. 12.13. Charges in

Figure 12.13: Typical potential
fluctuations in the groundstate.
Shown is the energy diagram (energy
vs. space). The dashed lines indicate
the upper and lower band edges. The
solid lines show the potential fluctu-
ations φ(r) ± ∆/2 as seen by accep-
tors (lower line) and donors (upper
line). When this crosses the Fermi
level µ puddle formation arises. Elec-
tron puddles formed by neutral donors
are shown in green, while hole pud-
dles formed by neutral acceptors are
shown in brown. The fluctuations of
the potential do not exceed the Fermi
level by more than Ec. The data is ob-
tained from a simulation where ∆ = 5.

Figure 12.14: Real space picture of
puddles. Neutral donors are shown
in green, while neutral acceptors are
shown in brown. One can clearly see
the clustering of neutral dopants of
the same kind. These clusters are the
electronic puddles, which form locally
conducting regions in space. The data
is obtained from a simulation where
∆ = 10.
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Figure 12.15: Schematic plot of puddle
identification. To estimate the puddle
density we consider an imaginary sphere
of radius r = 1.42N−1/3 (explained in the
main text) around each neutral dopant.
The fraction of spheres with n additional
neutral dopants of the same type is de-
noted by p0(n). We define the puddle den-
sity as pp =

∑
n≥4 p0(n). This 2d plot does

not reflect any properties of the 3d system.
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Figure 12.16: The fraction of neutral
dopants with n neutral neighbors.
The quantity p0(n) is explained in the cap-
tion of Fig. 12.15. In the groundstate, neu-
tral dopants show a tendency to form clus-
ters as seen by the maximum at n = 3− 4.

such regions are mobile and can contribute to the optical weight. However, there has

to be some critical accumulation which cannot be deduced from the static model.

A theory taking into account the response to the applied field and the frequency

dependence of the dielectric constant would be needed.

The problem is to find an appropriate measure for the density of charge carriers

located within the puddles. A neutral dopant contributing to a puddle shall have neu-

tral dopants of the same type in its vicinity. Therefore, to decide whether a neutral

dopant belongs to a puddle or not, we count the number of neutral dopants of the

same type within a sphere of radius r0 = 1.42N−1/3. This, somewhat arbitrary, choice

is made such that on average there are 12 dopants of the same type within the sphere.

This corresponds to the number of nearest neighbors in a close-packing of spheres.

In the following when we use the term "y has x neighbors" we always refer to the

imaginary sphere with radius 1.42N−1/3 as explained above. In Fig. 12.15 we show

a schematic 2d plot of an electron puddle. The color indicates the type of the dopant,

green corresponds to acceptors, while donors are colored brown. The symbol on each

dopant indicates its charge. Around each neutral dopant we draw a sphere and count

the number of neutral donors n within the sphere, examples with n = 0, 1, 2, 3 are

shown. Note that this 2d plot does not reflect any properties of the 3d system and is

shown only for illustration purposes.

As an observable we calculate the fraction of neutral dopants with n neutral
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Figure 12.17: Puddle density at lower compensation. For (1−K)∆ & 0.3 the pud-
dle density does not depend ∆ anymore but is fully controlled by the excess dopants.
The black dashed line is a fit pp = 0.316(1−K).

neighbors, denoted by p0(n). We then, again somewhat arbitrarily, define that a

neutral dopant belongs to a puddle if it has at least 4 neutral neighbors. We have

checked that the results do not depend qualitatively on this choice. A similar cri-

terion to identify clusters in disordered systems was used in [262]. We define the

fraction of dopants located within a puddle as

pp =
∑
n≥4

p0(n). (12.35)

Then the density of dopants located in puddles, we will call this the puddle density,

is (NA +ND)pp. This is, of course, unrelated to any operational definition of puddles.

A proper definition would be to identify a puddle by its contribution to the optical

weight.

In Fig. 12.16 we show the distribution of p0(n) in the groundstate for perfect com-

pensation, K = 1, and ∆ = 15, 20, 25. One can clearly see the tendency to form clus-

ters: isolated neutral dopants are rare and the curves show a maximum at n = 3− 4.

Up to now we have discussed only the case of perfect compensation NA = ND.

For imperfect compensation, K = NA/ND < 1, puddles will be dominantly formed by

donors leading to n−doped regions. The excess density of neutral donors is (1−K)ND.

When this becomes larger than the puddle density at perfect compensation, we expect

that the puddles are mainly formed by the excess donors. This is shown in Fig. 12.17.
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For (1−K)∆ & 0.3 the puddle density is independent of ∆. A fit, shown by the black

dashed line, yields pp ≈ 0.32(1−K).

This is not in agreement with the arguments given in section 11.1, see in particu-

lar the discussion related to Eq. (11.5). Following Efros and Shklovskii [211], it was

stated that potential fluctuations larger than (1+K)2/3

(1−K)1/3 Ec can be screened by excess

dopants. This implies a crossover as a function of ∆3 1−K
(1+K)2

K→1∼ ∆3(1−K). This can

be clearly excluded in the parameter regime shown in Fig. 12.17. The discrepancy is

a manifestation of the different lengthscales as discussed above.
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13 Puddle destruction at finite temperatures

In this section we will study the finite temperature dependence of the disordered

Coulomb system by a Monte Carlo algorithm as introduced in section 11. Finite tem-

perature Monte Carlo simulations have been performed for disordered Coulomb sys-

tems before [247, 256, 257, 263–265]. The model simulated in these references is the

Coulomb glass model as introduced in Eq. (11.14). This model also shows a Coulomb

gap at T = 0, and the focus in the references given above is on the finite temperature

behavior of the Coulomb gap or on the possible existence of a glass transition. The

Coulomb glass model was claimed to have a glass transition at finite temperatures

within mean-field theory [266–268], but this was not confirmed numerically in 3d

[256, 257].

However, we have not found any finite T simulations for the model of shallow im-

purities, Eq. (11.10), in the literature. In our analysis the focus is on the temperature

behavior of the puddles. In section 12 we have seen that electronic puddles, accumu-

lations of neutral dopants, form at low temperatures. We will show in the following

that the puddles disappear on a temperature scale given by the Coulomb interaction

of neighboring dopants Ec. At higher temperatures the puddles reappear in a ther-

mally activated manner. This mechanism can explain the experiment presented in

section 10 qualitatively.

T=0.2Δ
T=0.1Δ
T=0Δ

μ

Δ/2

-Δ/2

Figure 13.1: Typical spatial
potential fluctuations at fi-
nite temperatures. Compared
to the T = 0 case, the black
line, the potential fluctuations
are reduced at finite tempera-
tures. This implies that the po-
tential is screened by thermal
fluctuations. The potential does
not exceed the band edges at
±∆/2 any more. The data is ob-
tained from a simulation where
∆ = 5.

13.1 Thermal screening

The main effect of finite temperatures can be already be anticipated from Fig. 13.1:

the fluctuations of the potential are reduced with increasing temperature. This can

be seen in more detail in Fig. 13.2. In the left panel we show the d.o.s. at finite
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Figure 13.2: Single-particle density of states and potential distribution at
finite temperatures. The left panel shows the d. o. s. which shows a Coulomb gap
at T = 0. At intermediate T ∼ Ec/2 the Coulomb gap vanishes and there is a finite
d.o.s. at ε = 0. With increasing T , a thermal gap builds up. The right panel shows
that the potential fluctuations are suppressed at finite temperatures. With increasing
temperature the width of the potential distribution is reduced approaching its non-
interacting shape. Parameters used in this plot are ∆ = 15, aB = 2, L = 40 (T > 0)
and L = 50 (T = 0).

temperatures. It shows a Coulomb gap in the groundstate, see section 12.1. At tem-

peratures T ≤ Ec the Coulomb gap vanishes and there is a finite d.o.s. at ε = 0. At

higher temperatures the gap at reappears but it is of different origin. With increas-

ing temperature the d.o.s. approaches its non-interacting shape: two peaks at ±∆/2

reflecting the bare dopant energies. One can notice a similarity to the results for an

externally screened interaction, see section 12.1. Therefore we call this effect ther-

mal screening. It is also seen in the distribution of the potential as shown in the right

panel of Fig. 13.2. With increasing temperature the potential fluctuations, the width

of the distribution, are reduced. This implies an enhanced screening.

The thermal screening can also be seen in the simulations of the Coulomb glass

model. Here the non-interacting d.o.s. is just a flat distribution reflecting that the

random on-site energies are chosen from a box distribution. In [264], for example,

the d.o.s. at finite T was studied. In Fig. 1 b) there it can be clearly seen that the

it approaches a box shape with increasing temperature. In [257] it was found that

the d.o.s. g(ε → 0, T ) ∼ T 2, in agreement with simple scaling arguments since g(ε →
0, T = 0) ∼ ε2. We have not checked this. In [268] it was pointed out that simple

Thomas-Fermi theory predicts a screening length rs ∼ g(µ, T )−1/2 ∼ 1/T . To our
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knowledge this has also not been checked numerically.

13.2 Numerical results

We now want to study the effect of the thermal screening on the puddle formation. In

Fig. 13.3 we show the density of neutral dopants n0 as a function of the temperature

for K = 1 and K = 0.95. One can see that it increases with increasing temperature.

At low temperatures n0 saturates at a finite value, see section 12. For K = 0.95 this

value is independent of ∆. This monotonic temperature behavior can not explain the

experimental observations. This is another justification for our assumption that iso-

lated neutral dopants do not contribute to the optical weight in the frequency range

studied in the experiment. Therefore we analyze the puddle density.
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Figure 13.3: Density of neutral dopants at finite temperatures. It increases
with increasing temperature and can not explain the non-monotonic behavior found
in the experiment. For K = 0.95 the low temperature density is independent of the
temperature. At higher temperatures an activated behavior is seen.

pp, as introduced in Eq. (12.35), is very sensitive on the choice of the short distance

cutoff aB. In Fig. 13.4 results for aB = 0.5, 1, 2 are shown. For aB = 2, pp shows a very

pronounced minimum and the puddle density is highly suppressed on a temperature

scale T ∼ Ec. For aB = 1 there is still a minimum, albeit much less pronounced. For

aB = 0.5 there is almost no reduction of pp at temperatures T ∼ Ec. In the following

we present only results for aB = 2.

In Fig. 13.5 we show the distribution of neutral dopants p0(n) at different temper-

atures and ∆ = 15. n0 is obtained as pp =
∑∞

n=0 p0(n). The main effect we are inter-

ested in is the reduction of the neutral dopants located in puddles pp =
∑

n≥4 p0(n). In
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Figure 13.4: Cutoff dependence of pp. This quantity, as defined in section 12.3,
is very sensitive on the choice of the short distance cutoff aB. Results are shown for
∆ = 15 and L = 40. In the following only results for aB = 2 are presented where a
drastic reduction of pp arises on a temperature scale T ∼ Ec.
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Figure 13.5: Distribution of neutral dopants at finite temperatures. Results
are shown for ∆ = 15 with K = 1 (left panel) and K = 0.95 (right panel). The density
of neutral dopants with a small number of neutral neighbors increases with tem-
perature. By contrast, the density of neutral dopants with many neutral neighbors
decreases for temperatures T . Ec. At higher temperatures it increases again due
to thermal activation.

the groundstate, p0(n) shows a maximum at n = 3−4 indicating the correlation origin

of the puddles. At finite temperatures the total number of neutral dopants increases,

see Fig. 13.3, but pp decreases: most of the thermally activated neutral dopants are

isolated or only have a very small number of neutral nearest neighbors. Within the

puddles thermal fluctuations recharge neutral dopants which leads to a significant

reduction of neutral dopants with more than 3 neutral neighbors. As can be seen in

the left panel of Fig. 13.5, at K = 1 the occupation at n = 3 is almost independent
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Figure 13.6: Puddle density at finite temperatures. At low temperatures pp de-
creases on a scale T ∼ Ec independent of the band gap ∆. At higher temperatures
puddles are thermally activated, the activation energy depends on ∆ and K. For
K = 1 two plots are shown. In the left panel the data are normalized by the T = 0
value. Then the puddle destruction is almost independent of ∆. The T = 0 value of
pp does not show scaling behavior in the simulated parameter range.

of the temperature. This is compatible with our definition of puddles with nmin = 4:

thermal fluctuations outside the puddles increases the number of neutral dopants,

while thermal fluctuations within the puddles reduce the number of neutral dopants.

In Fig. 13.6 we show the puddle density for different values of ∆ and K. For all

simulated parameters, pp decreases on a temperature scale T ∼ Ec. For larger T ther-

mal activation reincreases pp. While the decrease at low T is independent of ∆, the

activation energy depends on ∆. For K = 0.98 and K = 0.95 the results at low tem-

peratures are completely independent of ∆. The values are proportional to the excess

density and approximately given by 0.32N(1 −K), see Fig. 12.17. For K = 0.98 this

gives 0.0064 and for K = 0.95 this gives 0.016 in agreement with Fig. 13.6. This shows
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that the puddles are almost exclusively formed by the donors. This can be directly

seen by plotting the contributions to pp from acceptors and donors independently (not

shown).

13.3 Comparison to the experiment

As shown in section 10, the main result of the experimental study was the temper-

ature dependence of the optical weight or, equivalently, the effective carrier density

Neff = Nexp me/m
∗. Qualitatively we can explain the minimum in the experiment, see

Fig. 10.6, by thermal screening effects as explained above. The density drops at a typ-

ical temperature scale ∼ Ec = e2N1/3

4πεε0
independent of ∆, the increase is of an activated

origin and therefore does depend on ∆. The dopant density N is not precisely known

for the sample used in the experiment. It was estimated to N ≈ 1019 − 1020 cm−3 by

the experimentalists. Inserting this, and ε = 200, we find

Eexp
c =

e2(1019 . . . 1020)1/3

4π × 200ε0 cm
≈ 20 . . . 40K. (13.1)

This is in good agreement with the temperature scale for the minimum found in the

experiment, see Fig. 10.6, which was seen at 30− 40K.

For the dimensionless gap, ∆/Ec, we then find 0.26 eV/(30 . . . 40K) ≈ 75 − 150.

To estimate the density of charge carriers located in puddles, Npudd = Neff m
∗/me,

we need the effective mass. In [242] it was measured to m∗ = 0.14 − 0.24me in

Bi2 Se3 depending on the orientation. As in section 11, we will use m∗ = 0.2me.

This yields Nexp ≈ 0.2Neff ≈ 2 × 1017 cm−3 at low temperatures. This leads to a

puddle density of Npudd/Nexp = 0.002− 0.005 at 5K. As seen in Fig. 13.6 the value for

T → 0 is expected to be a bit larger. Hence, the experimental system was probably

in the excess dominated regime, see Fig. 12.17, where the K = 1 behavior is not that

important. Estimating the experimentalKexp via pp ≈ 0.316(1−K) as found in section

12.3, we find Kexp = 0.97− 0.99 for N = (4− 10)× 1019 cm−3. Here we have assumed

that the T = 0 value is 1.5 times the value at T = 5K, which is approximately fulfilled

for all values of K. In Fig. 13.7 we compare the experimental results to simulations

with ∆ = 25 and K = 0.98. In this regime the results for T . Ec are independent

of ∆, see Fig. 13.6. The experimental data are scaled to the dimensionless units as

used in the simulation. We have assumed ε = 200 and m∗ = 0.2me to calculate Ec

and Nexp = Neff m
∗/me. Results for different values of N are shown. We can see that

the results for N ≈ 7× 1019 cm−3 give the best agreement.

However, in Fig. 13.4 we have shown that our definition of pp is very sensitive
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Figure 13.7: The experimental data in the dimensionless units used in the
simulations. To convert the data we have used ε = 200, m∗ = 0.2me and different
values of N as shown. K is estimated in the main text to 0.97−0.99, here we compare
the data with the theoretical results for K = 0.98.

to the choice of aB. Furthermore, it was defined in a somewhat arbitrary manner

unrelated to any operational definition. Nevertheless, the characteristic energy scale

of the decrease in the density connects the experimental results with the simulations.

It is independent of the choice of aB, see Fig. 13.4. By using the experimentally

unknown N and K as fit parameters, one can also reach a quantitative agreement.

The parameters obtained in this way (Nexp ≈ 7 × 1019 cm−3 and Kexp ≈ 0.98) are

reasonable and well within the realistic experimental range.
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14 Including the surface states

In the previous sections we have omitted the main feature which make the materials

under study interesting: the fact that they are topological insulators (TIs). In section

10 we have shown that the influence of the surface states was negligible in the ex-

periment. Therefore we have not included them in the theoretical analysis. But close

to the surface, or for thin samples, the surface states and the charges in the bulk

influence each other. In this section we want to investigate how this effect arises and

we want to quantify what "close to the surface" or "thin samples" mean. The surface

states contribute an additional screening channel and we want to investigate how far

the effect reaches into the bulk. To study the influence of the surface in detail, we

have to review some basic properties of 2d Dirac systems and screening theory.

14.1 Dirac systems

Since the surface states form a Dirac cone on the surface their electronic properties

are similar to that of graphene [269, 270]. While graphene has four Dirac cones in

the first Brillouin zone, the surface of a TI shows an odd number of Dirac cones. We

will consider static properties of a single Dirac cone only.

A 2d Dirac system is characterized by two bands with a linear dispersion E±(q) =

±~vF q. The density of electrons (µ > 0) or holes (µ < 0) for a single Dirac cone at

T = 0 is given by (nF is the Fermi function)

ne/h =

∫
d2q

(2π)2
nF (E(q)) =

1

8π

(
µ

~vF

)2

. (14.1)

Note that the spin degree of freedom, while present in graphene, is absent on the

surface of topological insulators due to spin-momentum locking.

The interaction strength on the surface is characterized by the effective fine struc-

ture constant

α =
e2

4πεs~vF
where εs =

ε(z < 0) + ε(z > 0)

2
=
εout + εTI

2
. (14.2)

Here we have assumed that the TI surface is located at z = 0. The TI, with dielectric

constant εTI, is located at z > 0 and at z < 0 we have a different material, possibly

vacuum, with a different dielectric constant εout. We will use this convention through-

out the rest of this section. If we insert realistic values, vF = c/1500 (from [221], c
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denotes the speed of light) and εTI = 200 ε0, we find

α = (2ε0/ε) (c/vF )αQED ≈ 15αQED ≈ 0.11 (14.3)

Evaluation of the bubble diagram yields the static polarization function

ΠR(ω → 0, q, µ = 0, T = 0) =
1

2π

q

~vF
(14.4)

ΠR(ω → 0, q, µ� T ) =
1

2π

|µ|
(~vF )2

. (14.5)

The Fourier transformation of the Coulomb interaction V (r) = e2/(4πεε0r) in two di-

mensions gives U(q) = e2/(2εsq). In random phase approximation (RPA) the effective

interaction is given by

URPA(q, ω → 0) =
1

U−1(q) + ΠR(q, ω → 0)
, (14.6)

URPA(q, ω → 0, µ� T ) =
e2

4πεs(q + qs)
, (14.7)

where qs = α|µ|/(~vF ). For µ 6= 0 the interaction is screened on a length rs = q−1
s . In

intrinsic graphene, where the Fermi level is exactly at the Dirac cone (µ = 0), it is

found that Π(q, ω → 0) ∼ q, see Eq. (14.4), and screening is a non-linear effect.

14.2 Screening theory

In the following we want to study the screening of the bulk potential by the Dirac

cone on the surface. We denote the 2d coordinates on the surface (z = 0) by x and the

corresponding wavevectors by q. The 3d coordinates are denoted by r. The distance of

a point from the surface is denoted by d: we will use r = (x, d) or r = (y, d). The total

potential on surface will be denoted by φs(x) and is given by the external potential

φext plus the induced potential φind as

φs(x) = φext(x) + φind(x) = φext(x) +

∫
d2x′

ρind(x′)

4πεs|x− x′|
. (14.8)

Here ρind is the induced surface charge density. The external potential is due to

the randomly distributed acceptors and donors in the bulk. For charges qj located

at rj = (yj , dj)
T (dj > 0) the bulk potential in a homogenous background (no space
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dependence of the dielectric constant) is

φbulk
ext (r) =

∑
j

qj
4πεTI

1

|r − rj |
. (14.9)

To obtain the external potential φext(q) on the surface, we first have to include the

jump of the dielectric constant. The potential in the bulk (z > 0) in the presence of a

dielectric boundary at z = 0 is given by [271]

φbulk
ext (r) =

∑
j

qj
4πεTI

(
1

|r − rj |
+
εTI − εout

εTI + εout

1

|r − r̃j |

)
(14.10)

where r̃j = (yj ,−dj)T is the mirror point of rj outside the TI. If εout � εTI the second

contribution are just the mirror charges and the potential for z < 0 is zero. This would

be the case if a very good conductor is placed at z < 0 and leads to the classical method

of image charges [271]. However, in the experiments we have εout ≈ ε0 � εTI ≈ 200 ε0.

On the surface z = 0 we find

φext(x) =
∑
j

Qj
4πεTI

 1√
|x− yj |2 + d2

j

+
εTI − εout

εTI + εout

1√
|x− yj |2 + d2

j


=
∑
j

Qj
4πεs

1√
|x− yj |2 + d2

j

. (14.11)

The bulk dielectric constant εTI is replaced by the mean of the bulk and the outer

dielectric constant εs = (εTI + εout)/2. We perform a partial Fourier transformation in

the 2d coordinates and obtain

φext(q) =
∑
j

∫
d2x

eixqqj

4πεs

√
|x− yj |2 + d2

j

=
∑
j

eiyjq
qj e−qdj

2εsq
(14.12)

where q is the 2d wavevector parallel to the surface. To linear order the induced

charge density is given by [272]

ρind(x′) =

∫
d2x′′ χ(x′,x′′)φs(x

′′)
if χ(x′,x′′)=χ(x′−x′′)→ ρind(q) = χ(q)φs(q) (14.13)

where we have defined the polarizability χ(ω, q) = −e2Π(ω, q). To arrive at this result

we consider the density in Thomas-Fermi approximation [261]

ρind(x) = −e(n[φs(x)]− n0), (14.14)
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where n0 is the density (of electrons or holes) in the homogenous system without the

external potential and n[φs(x)] is the density with a induced surface potential φs.

The homogenous density was given in Eq. (14.1) as ne/h = µ2

4π(~vF )2 . Within the local

density approximation it is µ[φs(x)] → µ(x) = µ + eφs(x). In this approximation the

induced charge density is given by (assuming µ ≥ 0 for the moment, the case µ < 0 is

analog)

ρind(x) =
−e

4π(~vF )2

(
(µ+ eφs(x))2 − µ2

)
=

−e2

4π(~vF )2
(2µ+ e φs(x)) φs(x). (14.15)

Inserting this in Eq. (14.8) yields a non-linear equation for the surface potential φs:

φs(x) = φext(x)− α
∫
d2x′

|2µ+ e φs(x
′)| φs(x

′)

4π ~vF |x− x′|
, (14.16)

For µ→ 0 a non-linear equation is obtained:

φs(x) = φext(x)− eα

4π~vF

∫
d2x′

φs(x
′)|φs(x

′)|
|x− x′|

. (14.17)

When α is small, which is the case for the typical TIs under study (where α ∼ 0.1, see

Eq. (14.3)), this can be solved iteratively. Inserting the external potential, Eq. (14.11),

gives the result as a power series in α. To order α2 one obtains a two-body interaction,

higher powers of α lead to interactions involving more than two charges (3-body for

α4 etc.).

In the following we will consider the linear case only. From Eq. (14.16) we see that

this is justified when the chemical potential is much larger than the typical potential

fluctuations (|µ| � |eφtyp|). Then the linear formula Eq. (14.13) is obtained and it is

ρind ∼ φs. In this case we obtain from Eq. (14.8)

φs(x) = φext(x) +

∫
d2x′

∫
d2x′′

χ(x′,x′′)φs(x
′′)

4πεs|x− x′|
, (14.18)

and Fourier transformation yields

φs(q) =φext(q) +
χ(q)

2εsq
φs(q)

⇒ φs(q) =
q

q − χ(q)/(2εs)
φext(q) =

q

q + e2

2εs
Π(ω = 0, q)

φext(q). (14.19)

In the limit |µ| � T we then find

φs(q) =
q

q + qs
φext(q) (14.20)
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where qs = α|µ|/~vF is the inverse screening length, see Eq. (14.7). The corresponding

induced charge density on the surface is

ρind(q) =
−2εsqsq

q + qs

∑
j

eiyjq
qj e−qdj

2εsq
=

qs

q + qs

∑
j

(−qj) e−qdj eiyjq. (14.21)

Fourier transformation yields

ρind(x) =
qs

2π

∑
j

(−qj)
∞∫

0

dq
q e−djq

q + qs
J0(q|x− yj |), (14.22)

where J0 is zero-order Bessel function of the first kind. Accordingly the potential,

which is induced in the bulk by the surface charge, is

φbulk
ind (r = (x, z)) =

∫
d2x′ ρind(x′)

4πεs|r − x′|

=
1

4πεs

∑
j

(−qj)
∫
dq

qs

q + qs
e−q(z+dj)J0(q|x− yj |) (14.23)

=
qs

4πεs

∑
j

(−qj)
∫
dq

1

q + 1
e−q(qsz+qsdj)J0(qqs|x− yj |), (14.24)

where we have rescaled q → qqs in the last line. We now consider the strong screening

limit of Eq. (14.23). When qsdj � 1 for all j, or zqs � 1, one can approximate 1
q+1 → 1.

Since the minimal dj is of order N−1/3 the first case corresponds to qsN
−1/3 � 1. For

N = 1019 cm−3 and α ≈ 0.11, as above, we obtain qsN
−1/3 ≈ 3.86 × |µ|/eV . Thus the

TIs investigated in the experiments are probably not in this regime. Nevertheless,

its interesting and instructive to investigate the effect. In this strong screening limit

we find for the induced bulk potential

φbulk
ind (r) −→

qsN−1/3→∞

1

4πεs

∑
j

(−qj)
∫
dq e−q(z+dj)J0(q|x− yj |)

=
1

4πεs

∑
j

−qj√
|x− yj |+ (z + dj)2

=
1

4πεs

∑
j

(−qj)
|r − r̃j |

. (14.25)

The total potential in the bulk is then given as the sum of the external potential, the

potential due to the jump in the dielectric constant and the potential of the induced

surface charges:

φ(r; z > 0) =
∑
j

qj
4π

(
1

εTI|r − rj |
+
εTI − εout

εTI + εout

1

εTI|r − r̃j |
− 1

εs|r − r̃j |

)
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=
∑
j

qj
4πεTI

(
1

|r − rj |
− 1

|r − r̃j |

)
. (14.26)

The dielectric constant of the outer region, εout, drops out and the result corresponds

to that obtained from the method of image charges. We will call this the mirror-

charge limit. For completeness, we also give the potential on the other side of the

boundary, outside the TI,

φ(r; z < 0) =
∑
j

qj
4πεeff

1

|r − rj |
, (14.27)

with an effective dielectric constant εeff = εout
εout+εTI
εout−εTI

. If εout 6= εTI, this is in contrast

to the usual result where the mirror charges are due to a bulk conductor. Here the

potential on the other side of the boundary is zero.

In the strong screening limit the induced surface charge density, Eq. (14.22), sim-

plifies to

ρind(x) =
qs

2π

∑
j

(−qj)
∞∫

0

dq
q e−djq

q + qs
J0(q|x− yj |)

=
1

2π

∑
j

(−qj)
∞∫

0

dq q e−djq J0(q|x− yj |)

=
1

2π

∑
j

(−qj)
dj(

d2
j + |x− yj |2

)3/2
. (14.27)

Its Fourier transform reads

ρind(q) =

∫
d2x eiqxρind(x) =

∑
j

(−qj)e−djq eiqyj . (14.28)

The total charge induced on the surface by a single charge Q at a distance d0 is then

given by the q = 0 component of a single charge in Eq. (14.28), or explicitly from

Eq. (14.27)∫
d2x

(
−Q
2π

)
d0(

d2
0 + |x− y0|2

)3/2 = −Q
∫ ∞

0
dx

d0x(
d2

0 + x2
)3/2 = −Q. (14.29)

The induced surface charge exactly compensates the chargeQ, which leads to a dipole

field at distances much larger than d0.
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14.3 Numerical implementation

To implement the result obtained above into the algorithm we have to consider the

additional contributions to the energy. As in section 11 we will use dimensionless

units in the following. Energies are measured in units of Ec = e2N1/3/(4πεTI), lengths

are measured in units of N−1/3 and charges are measured in units of the elementary

charge e. In principle, there are three new contributions to the energy when we

include the surface states: the kinetic energy of the surface states, surface–surface

interaction energy and surface-bulk interaction energy.

1) In the homogenous system the kinetic energy density (for µ� T ) is given by

ekin =

∫
d2q

(2π)2
E±(q)nF (q) =

|µ|3

4π(~vF )2
,

and, for a system with volume V = L3, the total kinetic energy is L2ekin. The

bulk energies scale as L3 and therefore we can neglect the kinetic energy of the

surface states at this point.

2) With U2d(q) = 1
2εsq

, the 2d Fourier transform of U(x) = 1
4πεsx

and Eq. (14.28), the

surface-surface interaction energy is obtained to be

Hs−s =
1

2

∫
d2x

∫
d2x′ ρind(x) ρind(x′)U

(
x− x′

)
=

1

2

∫
d2q

(2π)2
ρind(q) ρind(−q)U(q)

=
1

8πεs

∑
j,m

qmqj

∫
dqe−(dj+dm)qJ0 (|yj − ym|q)

=
1

2

∑
j,m

qmqj
4πεs

1√
(dj + dm)2 + |yj − ym|2

(14.30)

3) The surface-bulk interaction energy can be calculated from Eq. (14.26) as

Hs−b =
1

2

∑
m

qmφ
bulk
ind (rm) = −1

2

∑
j,m

qjqm
|rm − r̃j |

= −1

2

∑
m 6=j

qjqm
|rm − r̃j |

−
∑
m

q2
m

2dm
. (14.31)

The full dimensionless Hamiltonian including the surface-bulk interaction reads:

H =
∑
m

(
fmnm

∆

2
− q2

m

2dm

)
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+
1

2

∑
m 6=j

qmqj

 1√
|rm − rj |2 + a2

B

− 1√
|rm − r̃j |2 + a2

B


=
∑
m

(
fmnm

∆

2
− q2

m

2dm

)
+

1

2

∑
m6=j

qmqjV
eff
mj . (14.32)

Here we have restored the short distance cutoff and we have defined an effective

interaction V eff . The self interaction term −q2/(2d) describes the effect that a single

charge q interacts with its mirror charge −q at a distance 2d via the induced surface

charge. A calculation analogously to that presented in Eq. (11.11) shows that we can

use the same algorithm as before when the single-particle energies are changed to

εm =

(
∆

2
+

1

2dm

)
fm −

∑
j 6=m

qj V
eff
jm. (14.33)

14.4 Numerical results

Some of the results presented below were obtained in collaboration with Qingyufei

Terenz Feng during his research internship, and can also be found in his report [273].

To investigate the boundary effects on the bulk properties we have to find an appro-

priate observable. We have chosen the density of neutral dopants as a function of

the distance from the surface n0(d). Deep in the bulk, this is constant after disorder

averaging. In Fig. 14.1 we show n0(d) for different boundary conditions with ∆ = 12

and aB = 1. For the mirror-charge boundary conditions, we see that there are no

neutral dopants close to the surface since the potential approaches zero there. For

open boundary conditions (OBC), the formation of neutral dopants is also suppressed

close to the surface. This is plausible since charges are located only at one side and

it is harder to build up large potentials. For a dielectric jump on the surface from

the vacuum value εout = εvac = ε0 to εTI = 200 ε0 in the bulk, there are more neutral

dopants close to the surface. This is a direct consequence of Eq. (14.10) which was

used for the effective interaction in this simulation. For εTI � εout the potential is

increased by almost a factor of 2 close to the surface.

From Fig. 14.1 we can see that there is a lengthscale associated with the bound-

ary: at a distance d ≈ 4, n0(d) reaches its bulk value independent of the boundary

conditions. As a measure for the penetration depth of the surface effects we define

lsurf as the distance from the surface where n0(d) reaches half of its bulk value. This

is the full width at half maximum (FWHM). In Fig. 14.1 this is approximately given

by lsurf ≈ 2 as indicated by the dashed line. We have seen in section 12 that neutral
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Figure 14.1: The density of neutral dopants for different boundary condi-
tions. Boundary conditions parallel to the surface are periodic. For periodic bound-
ary conditions (PBC) there is no effect. For open boundary conditions (OBC) the
density very close to the surface is approximately one half of the bulk value. For a
jump in the dielectric constant from εout = 1 to εTI = 200 the density is enhanced. For
the mirror-charge boundary conditions, where the potential is zero at d = 0, there are
no neutral dopants for d . 1. For d & 4 all curves reach the same bulk value inde-
pendent of the boundary conditions. The dashed line indicates the full width at half
maximum for the mirror-charge boundary conditions denoted by lsurf. Parameters
used in this plot are ∆ = 12, L = 40 and aB = 1.

dopants are necessarily located in regions where the potential is |φ| > ∆/2. In the

mirror-charge limit the potential on the surface is zero. Therefore the penetration

depth lsurf, as defined above, can be interpreted as the typical lengthscale on which

the potential changes from zero to ±∆/2.

Let us consider first what happens in the uncorrelated system where all dopants

are charged. Here the charge-charge correlations are given by

〈ρMC(x, y, z)ρMC(z′, y′, z′)〉 = δ(x− x′)δ(y − y′)
(
δ(z − z′)− δ(z + z′)

)
− 1/V. (14.34)

Here and in the following the subscript MC indicates the mirror-charge boundary

conditions. The normalization is chosen such that the TI-volume (z > 0) is still

charge neutral: ∫
V
d3r

∫
V
d3r′〈ρMC(x, y, z)ρMC(z′, y′, z′)〉 = 0 (14.35)

We are interested in the typical potential φtyp
MC(d) =

√
〈φMC(0, 0, d)φMC(0, 0, d)〉 at a
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Figure 14.2: The integrand of
Eq. (14.36) for d = 4 and
different values of aB. The
plot shows the average contri-
butions to a typical fluctuation
at d = 4. For aB = 0 it di-
verges at z = d but the peak
has zero weight. For aB > 0 con-
tributions from the interval z ∈
[d − aB, d + aB] are suppressed.
For z � d + aB all curves decay
as 2πd2

z2 .

distance d away from the surface. For simplicity we assume x = y = 0. Then it is

〈φMC(0, 0, d)φMC(0, 0, d)〉

=

∫
d3r

∫
d3r′

〈ρMC(r)ρMC(r′)〉√
x2 + y2 + (z − d)2 + a2

B

√
x′2 + y′2 + (z′ − d)2 + a2

B

=2π

∫ ∞
0

dr

∫ ∞
−∞

dz

 r

r2 + (z − d)2 + a2
B

− r√
r2 + (z − d)2 + a2

B

√
r2 + (z + d)2 + a2

B



=π

∫ ∞
0

dz Log


(

a2
B + d2 + z2 +

√
(a2

B + d2)2 + 2(a2
B − d2)z2 + z4

)2

4(a2
B + (z− d)2)(a2

B + (z + d)2)

 . (14.36)

The integrand is shown in Fig. 14.2. It shows the average contributions to a typical

potential fluctuation at d. For aB = 0, there is a logarithmic divergence at z = d.

However, this divergence has zero weight, meaning that it does not contribute to the

integral. If we integrate the peak from d − ε to d + ε, we obtain 4πε ln(d/ε) which

vanishes for ε→ 0. For aB > 0, the peak is truncated at d±aB. Therefore we conclude

that the corrections for finite aB � d are∼ −aB ln(d/aB), and thus can not be obtained

by a finite perturbation series at aB = 0. For aB = 0 the integral Eq. (14.36) can be

solved exactly and we obtain

〈φMC(0, 0, d)φMC(0, 0, d)〉 = 4πd. (14.37)

Since the charge distribution is uncorrelated we expect that the probability distri-

bution of the potential at a distance d away from the surface, denoted by Pd(φ), is
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Figure 14.3: Probability distribu-
tion of the uncorrelated potential
φ at a different distances d. Shown
are distances d = 0.25, 0.5, . . . , 8. All
curves have a Gaussian shape, and
the width increases with the distance
from the surface d. Data from simula-
tion with L = 50.
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Figure 14.4: Same data as shown
in Fig. 14.3 scaled with

√
d. The

black line is a Gaussian with width
σ = 4.4. From Eq. (14.36) we expect
σ =

√
4π ≈ 3.54. The discrepancy

is due to periodic boundary conditions
in x and y direction and geometrical
effects. For d = 0.25 (black, dashed
line) the scaling behavior is not yet
reached.

Gaussian. According to Eq. (14.37) we expect a width σ =
√

4πd such that Pd(φ) =

1/
√

2π(4πd) exp
(
−φ2/(2× 4πd)

)
. In Figs. 14.3 and 14.4 we show this probability dis-

tribution for distances d = 0.25, 0.5, . . . , 8 and aB = 0.001. In Fig. 14.4 we have scaled

the data as
√
dPd(φ̃

√
d) which then, indeed, are independent of d for d & 0.5. The black

line is a Gaussian fit with width σ = 4.4. We attribute the discrepancy to the value

obtained above, σ =
√

4π ≈ 3.54, to the different boundary conditions and to a dif-

ferent geometry of the simulation volume compared to the spherical symmetry used

in the derivation of Eq. (14.36). The scaling φtyp
MC(d) ∼

√
d, and the fact the potential

fluctuations are suppressed for |φ| & ∆/2, suggest that lsurf(∆) ∼ ∆2. This argument

is in total analogy to the argument for the bulk lengthscale Rg ∼ ∆2 presented by

Skinner et. al. [234, 235], see section 12 for the details. However we will show below

that this scaling LENGTH ∼ ENERGY2, while present in the uncorrelated system, is

not present in the correlated groundstate (in the simulated parameter range).

In the limit d� aB we obtain from Eq. (14.36)

〈φMC(0, 0, d)φMC(0, 0, d)〉 d�aB−→ π

∫ ∞
0

dz
2d2πz2

(a2
B + z2)2

=
π2d2

2aB
. (14.38)

This would lead to a scaling LENGTH ∼ ENERGY and suggests, following the same
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Figure 14.5: The density of neutral dopants n0(d) at a distance d from the
surface. Data from simulations with L = 50 and aB = 0.001. The scaling in the inset
shows that the bulk value is reached at d ∼ 0.3 ∆.

reasoning as above, lsurf(∆) ∼ ∆. We have first chosen the very small aB = 0.001 for

the following analysis to ensure that we are not in this limit. We have also checked

the Gaussian scaling for larger values of aB (not shown). The scaling behavior is still

fulfilled but starts only at larger values of d.

In Fig. 14.5 we show the density of neutral dopants n0(d) as a function of the

distance d from the surface for ∆ = 10−38. With increasing ∆ the bulk value (n0)bulk

decreases and the penetration depth lsurf increases. In the inset the unscaled data is

shown. To study the penetration length the y-axis is normalized by the bulk value.

We can see that scaling of the distance d by ∆α≈1 results in an approximate scaling

collapse of the data. Fig. 14.6 shows the numerically calculated full width at half

maximum. To obtain the fit, we first have calculated the bulk value by averaging over

the region where n0(d) has saturated. Then we have used an interpolating function

nint
0 to numerically solve nint

0 (dFWHM ) = 1/2(n0)bulk for dFWHM . The result for the fit

function slightly depends on the ∆ values that are fitted. A fit of the form lsurf(∆) =

c∆α yields

lsurf(∆, aB → 0) = c∆α, with c = 0.65− 0.77 and α = 0.99− 1.04. (14.39)

We have plotted lsurf = 0.07 ∆1.02 in Fig. 14.6, which matches the numerical data for

∆ = 14 to ∆ = 36. The exponent is in analogy to the scaling found in the bulk, see
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scales found in the bulk.

section 12.2. Note that the parameters, L = 50 and aB = 0.001, are the same as used

in Fig. 14.4 where we can clearly observe the LENGTH ∼ ENERGY2 scaling.

To exclude any finite-size or cutoff effects we have also performed simulations

with L = 60 (432000 dopants) and aB = 0.01. The results are shown in Figs. 14.7

and 14.8, respectively. In both cases the results agree within the size of the noise

of the bulk values with the simulations for L = 50 and aB = 0.001. From Fig. 14.8

we can also see that we are not in the regime of Eq. (14.38), which also predicts a

scaling LENGTH ∼ ENERGY, since then the prefactor would depend on aB. Therefore

we have to conclude that the Gaussian scaling LENGTH ∼ ENERGY2 is not present in

the groundstate for the simulated parameter range.

Now, that we have excluded possible issues we consider the case aB ∼ 1. In

Fig. 14.9, n0(d) is shown for different values of aB and ∆ = 12. The data for aB ≈ 0 are

the same as shown as above (aB = 0.001). The formation of neutral dopants is totally

suppressed up to d ≈ aB. For d . aB all charges are screened by their mirror charges

and no large potential can build up. In the inset of Fig. 14.1 it can be seen that also

the bulk value (n0)bulk depends on aB. The maximal potential provided by a single

dopant is ∼ 1/aB. When aB is small the number of dopants needed to create a poten-

tial of order ±∆/2 is smaller. Therefore the number of neutral dopants is larger for

smaller values of aB. For the results shown above, where aB = 0.001, a single dopant

can neutralize another dopant if they are accidentally located very close to each other
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shifted by ∼ aB. Data is shown for ∆ = 12 and L = 50.

within a distance r . 1/∆. For larger values of aB this effect vanishes. Nevertheless,

the bulk values for aB = 1 are larger by almost a factor of 2 compared to aB = 2, as

can be seen in the inset of Fig. 14.9. When d is shifted by aB and the data are scaled

with the bulk values, the full width at half maximum, approximately, is the same for

all curves (when measured from 0). This is shown in the main panel of Fig. 14.9. The

effect of aB on the penetration depth is that it is increased by ≈ aB. Therefore we

expect that for aB ∼ 1 the scaling behavior as shown above for aB = 0.001 is still valid
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when d is shifted by ≈ aB.

In Fig. 14.10 we present results for aB = 1 and ∆ = 10 − 26. The unscaled data

is shown in the inset of the upper plot. Neutralization only starts at d & aB = 1.

When d is shifted by ≈ aB = 1 we again find an approximate scaling collapse when

the x-axis is scaled by ∆α≈1. This is shown in the main panel of Fig. 14.10, where n0

is normalized by its bulk value. The shift is a subleading effect for ∆→∞ but for the

values of ∆ shown in Fig. 14.10 the scaling behavior can be improved significantly.

The penetration depth is as small as 2 − 4 and a shift by 1 influences the scaling

behavior. We have determined the full width at half maximum as explained above to

obtain numerical value for the scaling exponent α. The results depend on the shift.

For a shift of aB = 1 the fits yield, depending on the fit interval, lsurf(∆) − aB ≈
0.066 − 0.074 ∆1.09−1.14. The prefactor is the same as found above for aB = 0.001, see

Eq. (14.39). But the exponent α ≈ 1.1 is slightly larger than 1. When d is shifted by

0.8aB = 0.8 we obtain lsurf(∆) − 0.8aB ≈ 0.106 − 0.118 ∆0.98−1.01. Here we reproduce

the exponent α ≈ 1 as in Fig. 14.6 but the prefactor is slightly larger. The fits are

shown in the lower panel of Fig. 14.10. Both describe the data equally well. To obtain

certainty, one would have to perform simulations for larger values of ∆ where the

subleading shift effect vanishes.

From the analysis we conclude that the penetration depth of the surface effects is

lsurf(∆) ∼ ∆α, where α is around 1.05 but definitely not 2 in the simulated parameter

range. Therefore we estimate that

lsurf(∆, aB) ≈ b aB + c∆α, where

b ≈ (0.9± 0.1), c ≈ (0.085± 0.035), and α ≈ (1.06± 0.07). (14.40)

Unfortunately, it was not possible to determine the FWHM in a reasonable way for

single runs since the noise level is too high. From this it would be possible to ob-

tain the values and the error bars of the the numbers b, c and α in Eq. (14.40) on a

statistical basis.

To get a feeling for the numbers we insert the material parameters from the ex-

periment. For ∆ = 100, N = 1019 cm−3 and aB = N−1/3 = 4.6 nm we find lsurf ≈
(12 ± 4)N−1/3 ∼ 37 − 74 nm. For N = 1018 cm−3 we find lsurf ∼ 80 − 160 nm. This

means that for samples with a thickness ∼ µm we expect that puddle formation

arises. When the Fermi level is close to the Dirac point, and the linear screening

theory breaks down, we expect the effects to be even smaller, see Eq. (14.16), thanks

to the smallness of the effective fine structure constant.
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Scaling of the
surface pene-
tration depth
lsurf for aB = 1.
The upper plot
shows the density
of neutral dopants
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We are aware of one other study that investigated the surface screening in 3d

disordered TIs by Skinner and Shklovskii [261] (reviewed in [235]). Here also non-

linear effects were studied. The authors assumed that all donors and acceptors in

the bulk are ionized. Motivated by the the STM experiment [221] the size of the

fluctuations of the surface-potential was calculated self-consistently by solving the

non-linear Eq. (14.16) numerically.

14.5 Connection to the bulk lengthscales

The results above indicate that there is a lengthscale ∼ ∆α≈1.05 related to the mirror-

charge boundary conditions. The length obtained by counting the number of neutral

dopants at a distance d away from the surface. Neutralization implies that the po-

tential is |φ| > ∆/2. On the surface the potential is zero and the lengthscale can be

interpreted as the typical length on which the potential changes from zero to ±∆/2.

We can define a related quantity in the bulk. With regard to the position of a

neutral dopant neutralization of a dopant of the other type requires a change of the

potential by ∆. Therefore, we define nAD(DA)(d) as the density of neutral acceptors

(donors) at a distance d from a neutral donor (acceptor). The corresponding length-
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d then the data collapse onto a single curve for d . aB + 0.6 ∆ when scaled with ∆.

scale is the typical length on which the potential changes from ∆/2 to −∆/2 (−∆/2 to

∆/2). For K = 1, the only value of K considered here, it is nAD = nDA. In Fig. 14.11

we show numerical results for aB = 1, L = 50 and different values of ∆. A scaling col-

lapse at small distances d− aB . 0.6 ∆ can be obtained by plotting nAD as a function

of (d − aB)∆−1. The shift by aB improves the scaling behavior but it is not as impor-

tant as for n0(d) close to the surface. The inset shows the unscaled data. At large d

nAD is constant. The data in the main panel are normalized by this asymptotic value

nasympt
AD . The plot suggest that the potential changes from ±∆/2 to ∓∆/2 on a typical

length ∼ ∆α≈1. This is in agreement with the results found in section 12.2.
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15 Outlook II

In graphene, electronic puddles are well established and important to understand

almost all transport experiments close to charge neutrality. Further experiments are

needed to clarify the role of the puddles in topological insulators, also in view of pos-

sible future applications of the BSTS and related materials. For topological insulator

surfaces which are not highly doped, there will be a complex interplay between sur-

face states and the bulk charges. Non-linear effects are important and may lead to

different behavior. In graphene, disorder restricts the possibility to reach ultralow

densities of charge carriers. Furthermore, the influence of the magnetic field on the

puddle formation has to be investigated. First interesting experimental results have

been obtained [274].

The numerical results show that some aspects of the theory of compensated semi-

conductors may have to be revised. However, the existence of a parametrically dif-

ferent lengthscale needs to be settled. We have not found any numerical evidence

for a lengthscale ∼ ∆2 in the simulated parameter regime up to ∆ ∼ 40. This has

influence in the experimentally relevant regime. To get further analytic insight, a

tailored disorder renormalization group or replica method is probably needed. The

results further show that the puddle formation and the density of states depend sen-

sitively on the temperature. This may be important to understand the transport

behavior in the bulk and on the surface. It is worthwhile to further investigate the

thermal screening effect and the lengthscales related to this.

179



References

[1] J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of

metals, Rev. Mod. Phys. 58, 323–359 (1986).

[2] A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press,

Cambridge, UK, 2011).

[3] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh Field Theory for Driven Open Quan-

tum Systems, ArXiv e-prints 1512.00637 (2015).

[4] H. Aoki, et al., Nonequilibrium dynamical mean-field theory and its applications, Rev.

Mod. Phys. 86, 779–837 (2014).

[5] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, Time-dependent density-matrix

renormalization-group using adaptive effective Hilbert spaces, Journal of Statistical

Mechanics: Theory and Experiment 2004, P04005 (2004).

[6] H. Bethe, Zur Theorie der Metalle, Zeitschrift für Physik 71, 205–226.

[7] M. Karbach and G. Müller, Introduction to the Bethe ansatz I, Computers in Physics

11, 36–43 (1997).

[8] M. Karbach, K. Hu, and G. Müller, Introduction to the Bethe ansatz II, Computers in

Physics 12, 565–573 (1998).

[9] M. T. Batchelor, The Bethe ansatz after 75 years, Physics Today 60, 36 (2007).

[10] S. Sachdev, Quantum Phase Transitions, 2nd edition (Cambridge University Press,

Cambridge, UK, 2011).

[11] S.-i. Tomonaga, Remarks on Bloch’s Method of Sound Waves applied to Many-Fermion

Problems, 5, 544–569 (1950).

[12] A. Faribault, P. Calabrese, and J.-S. Caux, Bethe ansatz approach to quench dynamics

in the Richardson model, Journal of Mathematical Physics 50, 095212 (2009).

[13] P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum Quench in the Transverse-Field

Ising Chain, Phys. Rev. Lett. 106, 227203 (2011).

[14] P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum quench in the transverse field

Ising chain: I. Time evolution of order parameter correlators, Journal of Statistical

Mechanics: Theory and Experiment 2012, P07016 (2012).

[15] P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum quenches in the transverse field

Ising chain: II. Stationary state properties, Journal of Statistical Mechanics: Theory

and Experiment 2012, P07022 (2012).



[16] J.-S. Caux and F. H. L. Essler, Time Evolution of Local Observables After Quenching to

an Integrable Model, Phys. Rev. Lett. 110, 257203 (2013).

[17] D. Iyer, H. Guan, and N. Andrei, Exact formalism for the quench dynamics of integrable

models, Phys. Rev. A 87, 053628 (2013).

[18] B. Wouters, et al., Quenching the Anisotropic Heisenberg Chain: Exact Solution and

Generalized Gibbs Ensemble Predictions, Phys. Rev. Lett. 113, 117202 (2014).

[19] W. Liu and N. Andrei, Quench Dynamics of the Anisotropic Heisenberg Model, Phys.

Rev. Lett. 112, 257204 (2014).

[20] R. Orbach, Linear Antiferromagnetic Chain with Anisotropic Coupling, Phys. Rev. 112,

309–316 (1958).

[21] E. H. Lieb and F. Y. Wu, Absence of Mott Transition in an Exact Solution of the Short-

Range, One-Band Model in One Dimension, Phys. Rev. Lett. 20, 1445–1448 (1968).

[22] B. S. Shastry, Exact Integrability of the One-Dimensional Hubbard Model, Phys. Rev.

Lett. 56, 2453–2455 (1986).

[23] J. M. Luttinger, An Exactly Soluble Model of a Many-Fermion System, Journal of Math-

ematical Physics 4, 1154–1162 (1963).

[24] N. Andrei, Diagonalization of the Kondo Hamiltonian, Phys. Rev. Lett. 45, 379–382

(1980).

[25] E. H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General

Solution and the Ground State, Phys. Rev. 130, 1605–1616 (1963).

[26] E. H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum,

Phys. Rev. 130, 1616–1624 (1963).

[27] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a Completely Inte-

grable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly

Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 050405 (2007).

[28] J.-S. Caux and R. M. Konik, Constructing the Generalized Gibbs Ensemble after a Quan-

tum Quench, Phys. Rev. Lett. 109, 175301 (2012).

[29] E. Ilievski, M. Medenjak, and T. Prosen, Quasilocal Conserved Operators in the

Isotropic Heisenberg Spin-1/2 Chain, Phys. Rev. Lett. 115, 120601 (2015).

[30] H. Ishii, et al., Direct observation of Tomonaga-Luttinger-liquid state in carbon nan-

otubes at low temperatures, Nature 426, 540–544 (2003).

[31] T. Kinoshita, T. Wenger, and D. Weiss, A quantum Newton’s cradle, Nature 440, 900–

903 (2006).

181



[32] M. Gring, et al., Relaxation and Prethermalization in an Isolated Quantum System,

Science 337, 1318–1322 (2012).

[33] T. Langen, et al., Local emergence of thermal correlations in an isolated quantum many-

body system, Nature Physics 9, 640–643 (2013).

[34] R. Geiger, T. Langen, I. E. Mazets, and J. Schmiedmayer, Local relaxation and light-

cone-like propagation of correlations in a trapped one-dimensional Bose gas, New Jour-

nal of Physics 16, 053034 (2014).

[35] T. Langen, et al., Experimental observation of a generalized Gibbs ensemble, Science

348, 207–211 (2015).

[36] M. Mehta, Random Matrices (Elsevier/Academic Press, Amsterdam, NL, 2004).

[37] D. Poilblanc, et al., Poisson vs. GOE Statistics in Integrable and Non-Integrable Quan-

tum Hamiltonians, EPL (Europhysics Letters) 22, 537 (1993).

[38] P. Bocchieri and A. Loinger, Quantum Recurrence Theorem, Phys. Rev. 107, 337–338

(1957).

[39] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Periodic Spontaneous Col-

lapse and Revival in a Simple Quantum Model, Phys. Rev. Lett. 44, 1323–1326 (1980).

[40] W. Thirring, Lehrbuch der Mathematischen Physik - 4. Quantenmechanik großer Sys-

teme (Springer, Wien, New York, 1980).

[41] M. Greiner, O. Mandel, T. Hansch, and I. Bloch, Collapse and revival of the matter wave

field of a Bose-Einstein condensate, Nature 419, 51–54 (2002).

[42] M. Köhl, et al., Fermionic Atoms in a Three Dimensional Optical Lattice: Observing

Fermi Surfaces, Dynamics, and Interactions, Phys. Rev. Lett. 94, 080403 (2005).

[43] I. Bloch, Ultracold atoms in optical lattices, Nature Physics 1, 23–30 (2005).

[44] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev.

Mod. Phys. 80, 885–964 (2008).

[45] J. Berges, S. Borsányi, and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002

(2004).

[46] M. Kollar, F. A. Wolf, and M. Eckstein, Generalized Gibbs ensemble prediction of

prethermalization plateaus and their relation to nonthermal steady states in integrable

systems, Phys. Rev. B 84, 054304 (2011).

[47] N. Nessi, A. Iucci, and M. A. Cazalilla, Quantum Quench and Prethermalization Dy-

namics in a Two-Dimensional Fermi Gas with Long-Range Interactions, Phys. Rev.

Lett. 113, 210402 (2014).

182



[48] M. Marcuzzi, J. Marino, A. Gambassi, and A. Silva, Prethermalization in a Noninte-

grable Quantum Spin Chain after a Quench, Phys. Rev. Lett. 111, 197203 (2013).

[49] D. A. Smith, et al., Prethermalization revealed by the relaxation dynamics of full distri-

bution functions, New Journal of Physics 15, 075011 (2013).

[50] P. W. Anderson, More Is Different, Science 177, 393–396 (1972).

[51] H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta

mathematica 13, 1–270 (1890).

[52] H. D. Zeh, The Physical Basis of The Direction of Time, 4th edition (Springer, 2001).

[53] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium : Area laws for the entanglement

entropy, Rev. Mod. Phys. 82, 277–306 (2010).

[54] D. Basko, I. Aleiner, and B. Altshuler, Metal-insulator transition in a weakly interacting

many-electron system with localized single-particle states, Ann. Phys. 321, 1126–1205

(2006).

[55] R. Nandkishore and D. Huse, Many-Body Localization and Thermalization in Quan-

tum Statistical Mechanics, Ann. Rev. of Cond. Mat. Phys. 6, 15–38 (2015).

[56] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492–

1505 (1958).

[57] A. Lagendijk, B. van Tiggelen, and D. Wiersma, Fifty years of Anderson localization,

Physics Today 62, 24–29 (2009).

[58] M. Schreiber, et al., Observation of many-body localization of interacting fermions in a

quasirandom optical lattice, Science 349, 842–845 (2015).

[59] P. Bordia, et al., Coupling Identical 1D Many-Body Localized Systems, ArXiv e-prints

1509.00478 (2015).

[60] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43,

2046–2049 (1991).

[61] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888–901 (1994).

[62] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic

isolated quantum systems, Nature 452, 854–858 (2008).

[63] E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems,

Communications in Mathematical Physics 28, 251–257 (1972).

[64] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York,

1999).

183



[65] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical Dipole Traps for Neutral

Atoms, volume 42 of Advances In Atomic, Molecular, and Optical Physics, pp. 95–170

(Academic Press, 2000).

[66] A. Lamacraft, Cold Atoms for Condensed Matter Theorists (Lecture Notes, Oxford,

2006).

[67] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quna-

tum gases, Nature Physics 8, 267–276 (2012).

[68] D. M. Weld, et al., Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices,

Phys. Rev. Lett. 103, 245301 (2009).

[69] A. Omran, et al., Microscopic Observation of Pauli Blocking in Degenerate Fermionic

Lattice Gases, Phys. Rev. Lett. 115, 263001 (2015).

[70] A. Aspect, et al., Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective

Coherent Population Trapping, Phys. Rev. Lett. 61, 826–829 (1988).

[71] W. D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral atoms, Rev. Mod.

Phys. 70, 721–741 (1998).

[72] T. Takekoshi, B. M. Patterson, and R. J. Knize, Observation of Optically Trapped Cold

Cesium Molecules, Phys. Rev. Lett. 81, 5105–5108 (1998).

[73] J. F. Barry, et al., Magneto-optical trapping of a diatomic molecule, Nature 512, 286–

289 (2014).

[74] D. E. Pritchard, Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy,

Phys. Rev. Lett. 51, 1336–1339 (1983).

[75] J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod.

Phys. 79, 235–289 (2007).

[76] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single

trapped ions, Rev. Mod. Phys. 75, 281–324 (2003).

[77] L.-M. Duan and C. Monroe, Colloquium : Quantum networks with trapped ions, Rev.

Mod. Phys. 82, 1209–1224 (2010).

[78] M. Greiner, et al., Quantum phase transition from a superfluid to a Mott insulator in a

gas of ultracold atoms, Nature 415, 39–44 (2002).

[79] B. Capogrosso-Sansone, N. V. Prokof ’ev, and B. V. Svistunov, Phase diagram and ther-

modynamics of the three-dimensional Bose-Hubbard model, Phys. Rev. B 75, 134302

(2007).

184



[80] T. Bourdel, et al., Experimental Study of the BEC-BCS Crossover Region in Lithium 6,

Phys. Rev. Lett. 93, 050401 (2004).

[81] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases,

Rev. Mod. Phys. 80, 1215–1274 (2008).

[82] K. M. O’Hara, et al., Observation of a Strongly Interacting Degenerate Fermi Gas of

Atoms, Science (2002).

[83] T.-L. Ho, Universal Thermodynamics of Degenerate Quantum Gases in the Unitarity

Limit, Phys. Rev. Lett. 92, 090402 (2004).

[84] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, Optical Production of Ultracold

Polar Molecules, Phys. Rev. Lett. 94, 203001 (2005).

[85] K.-K. Ni, et al., A High Phase-Space-Density Gas of Polar Molecules, Science 322, 231–

235 (2008).

[86] A. Chotia, et al., Long-Lived Dipolar Molecules and Feshbach Molecules in a 3D Optical

Lattice, Phys. Rev. Lett. 108, 080405 (2012).

[87] A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar

molecules, Nature Physics 2, 341–347 (2006).

[88] J. F. Sherson, et al., Single-atom-resolved fluorescence imaging of an atomic Mott insu-

lator, Nature 467, 68–72 (2010).

[89] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, Bidirectional Counting of Single

Electrons, Science 312, 1634–1636 (2006).

[90] S. Gustavsson, et al., Counting Statistics of Single Electron Transport in a Quantum

Dot, Phys. Rev. Lett. 96, 076605 (2006).

[91] L. Fricke, et al., Counting Statistics for Electron Capture in a Dynamic Quantum Dot,

Phys. Rev. Lett. 110, 126803 (2013).

[92] W. S. Bakr, et al., A Quantum Gas Microscope for detecting single atoms in a Hubbard

regime optical lattice, Nature 462, 74–77 (2009).

[93] E. Haller, et al., Single-atom imaging of fermions in a quantum-gas microscope, Nature

Physics 11, 738–742 (2015).

[94] L. W. Cheuk, et al., Quantum-Gas Microscope for Fermionic Atoms, Phys. Rev. Lett.

114, 193001 (2015).

[95] M. F. Parsons, et al., Site-Resolved Imaging of Fermionic 6Li in an Optical Lattice, Phys.

Rev. Lett. 114, 213002 (2015).

185



[96] W. S. Bakr, et al., Probing the Superfluid to Mott Insulator Transition at the Single-

Atom Level, Science 329, 547–550 (2010).

[97] M. Endres, et al., Observation of Correlated Particle-Hole Pairs and String Order in

Low-Dimensional Mott Insulators, Science 334, 200–203 (2011).

[98] R. Islam, et al., Measuring entanglement entropy in a quantum many-body system,

Nature 528, 77–83 (2015).

[99] N. Malossi, et al., Full Counting Statistics and Phase Diagram of a Dissipative Rydberg

Gas, Phys. Rev. Lett. 113, 023006 (2014).

[100] T. Schweigler, et al., On solving the quantum many-body problem, ArXiv e-prints

1505.03126 (2015).

[101] K. Sakmann and M. Kasevich, Single-shot simulations of dynamic quantum many-body

systems, Nature Physics (2016).

[102] T. Fukuhara, et al., Quantum dynamics of a mobile spin impurity, Nature Physics 9,

235–241 (2013).

[103] Cheneau Marc, et al., Light-cone-like spreading of correlations in a quantum many-

body system, Nature 481, 484–487 (2012).

[104] S. Trotzky, et al., Probing the relaxation towards equilibrium in an isolated strongly

correlated one-dimensional Bose gas, Nature physics 8, 325 – 330 (2012).

[105] T. Fukuhara, et al., Microscopic observation of magnon bound states and their dynam-

ics, Nature (2013).

[106] S. Hild, et al., Far-from-Equilibrium Spin Transport in Heisenberg Quantum Magnets,

Phys. Rev. Lett. 113, 147205 (2014).

[107] P. M. Preiss, et al., Strongly correlated quantum walks in optical lattices, Science 347,

1229–1233 (2015).

[108] C. Weitenberg, et al., Single-spin addressing in an atomic Mott insulator, Nature 471,

319–324 (2011).

[109] A. B. Kuklov and B. V. Svistunov, Counterflow Superfluidity of Two-Species Ultracold

Atoms in a Commensurate Optical Lattice, Phys. Rev. Lett. 90, 100401 (2003).

[110] L.-M. Duan, E. Demler, and M. D. Lukin, Controlling Spin Exchange Interactions of

Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 91, 090402 (2003).

[111] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltoni-

ans, Phys. Rev. 149, 491–492 (1966).

186



[112] C. L. Cleveland and R. Medina A., Obtaining a Heisenberg Hamiltonian from the Hub-

bard model, American Journal of Physics 44, 44–46 (1976).

[113] C. Dasgupta and S.-k. Ma, Low-temperature properties of the random Heisenberg anti-

ferromagnetic chain, Phys. Rev. B 22, 1305–1319 (1980).

[114] M. Moeckel and S. Kehrein, Interaction Quench in the Hubbard Model, Phys. Rev. Lett.

100, 175702 (2008).

[115] P. Barmettler, D. Poletti, M. Cheneau, and C. Kollath, Propagation front of correlations

in an interacting Bose gas, Phys. Rev. A 85, 053625 (2012).

[116] P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional sys-

tems, Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).

[117] P. Calabrese and J. Cardy, Quantum quenches in extended systems, Journal of Statisti-

cal Mechanics: Theory and Experiment 2007, P06008 (2007).

[118] S. Sachdev and K. Damle, Low temperature spin diffusion in the one-dimensional quan-

tum O(3) nonlinear σ model, Phys. Rev. Lett. 78, 943–946 (1997).

[119] S. Sachdev and A. P. Young, Low Temperature Relaxational Dynamics of the Ising

Chain in a Transverse Field, Phys. Rev. Lett. 78, 2220–2223 (1997).

[120] H. Rieger and F. Iglói, Semiclassical theory for quantum quenches in finite transverse

Ising chains, Phys. Rev. B 84, 165117 (2011).

[121] P. Grassberger, W. Nadler, and L. Yang, Heat Conduction and Entropy Production in a

One-Dimensional Hard-Particle Gas, Phys. Rev. Lett. 89, 180601 (2002).

[122] P. Cipriani, S. Denisov, and A. Politi, From Anomalous Energy Diffusion to Levy

Walks and Heat Conductivity in One-Dimensional Systems, Phys. Rev. Lett. 94, 244301

(2005).

[123] L. Delfini, et al., Energy diffusion in hard-point systems, The European Physical Jour-

nal Special Topics 146, 21–35 (2007).

[124] L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37, 405–426

(1931).

[125] L. Onsager, Reciprocal Relations in Irreversible Processes. II., Phys. Rev. 38, 2265–2279

(1931).

[126] R. Kubo, M. Yokota, and S. Nakajima, Statistical-Mechanical Theory of Irreversible Pro-

cesses. II. Response to Thermal Disturbance, Journal of the Physical Society of Japan

12, 1203–1211 (1957).

187



[127] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and

Simple Applications to Magnetic and Conduction Problems, Journal of the Physical

Society of Japan 12, 570–586 (1957).

[128] R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics 29, 255

(1966).

[129] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, volume 6 of Course of Theoretical

Physics, 2nd edition (Pergamon Press, Oxford, UK, 1987).

[130] D. Vollhardt and P. Wölfle, Anderson Localization in ≤ 2 Dimensions: A Self-Consistent

Diagrammatic Theory, Phys. Rev. Lett. 45, 842–846 (1980).

[131] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod.

Phys. 49, 435–479 (1977).

[132] D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions (W.

A. Benjamin, Inc. Reading Massachusetts, 1975).

[133] G. E. Uhlenbeck and L. S. Ornstein, On the Theory of the Brownian Motion, Phys. Rev.

36, 823–841 (1930).

[134] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewe-

gung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik 322,

549–560 (1905).

[135] M. H. Ernst, E. H. Hauge, and J. M. J. Leeuwen, Asymptotic time behavior of correla-

tion functions. III. Local equilibrium and mode-coupling theory, Journal of Statistical

Physics 15, 23–58 (1976).

[136] R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124, 983–992

(1961).

[137] H. Mori, Transport, Collective Motion, and Brownian Motion, Progress of Theoretical

Physics 33, 423–455 (1965).

[138] A. Fick, Ueber Diffusion, Annalen der Physik 170, 59–86 (1855).

[139] D. Chandler and I. Oppenheim, Fluctuation Theory and Critical Phenomena, The Jour-

nal of Chem. Phys. 49, 2121–2127 (1968).

[140] A. Altland and B. Simons, Condensed matter field theory, 2nd edition (Cambridge Univ.

Press, Cambridge, 2010).

[141] H. van Beijeren, R. Kutner, and H. Spohn, Excess Noise for Driven Diffusive Systems,

Phys. Rev. Lett. 54, 2026–2029 (1985).

188



[142] H. van Beijeren, Exact Results for Anomalous Transport in One-Dimensional Hamilto-

nian Systems, Phys. Rev. Lett. 108, 180601 (2012).

[143] H. Spohn, Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains, Journal of

Statistical Physics 154, 1191–1227 (2014).

[144] C. B. Mendl and H. Spohn, Equilibrium time-correlation functions for one-dimensional

hard-point systems, Phys. Rev. E 90, 012147 (2014).

[145] S. G. Das, et al., Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-

Ulam chain, Phys. Rev. E 90, 012124 (2014).

[146] C. B. Mendl and H. Spohn, Current fluctuations for anharmonic chains in thermal

equilibrium, Journal of Statistical Mechanics: Theory and Experiment 2015, P03007

(2015).

[147] Y. Li, et al., 1D momentum-conserving systems: the conundrum of anomalous versus

normal heat transport, New Journal of Physics 17, 043064 (2015).

[148] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of Growing Interfaces, Phys.

Rev. Lett. 56, 889–892 (1986).

[149] M. Prähofer and H. Spohn, Exact Scaling Functions for One-Dimensional Stationary

KPZ Growth, Journal of Statistical Physics 115, 255–279 (2004).

[150] B. J. Alder and T. E. Wainwright, Velocity Autocorrelations for Hard Spheres, Phys. Rev.

Lett. 18, 988–990 (1967).

[151] B. J. Alder and T. E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys.

Rev. A 1, 18–21 (1970).

[152] T. E. Wainwright, B. J. Alder, and D. M. Gass, Decay of Time Correlations in Two Di-

mensions, Phys. Rev. A 4, 233–237 (1971).

[153] Y. Pomeau and P. Resibois, Time dependent correlation functions and mode-mode cou-

pling theories, Physics Reports 19, 63 – 139 (1975).

[154] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic Long-Range Correlations

in Molecular Fluids, Annual Review of Physical Chemistry 45, 213–239 (1994).

[155] T. R. Kirkpatrick and J. R. Dorfman, Nonequilibrium is different, Phys. Rev. E 92,

022109 (2015).

[156] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Why Non-equilibrium is Different,

ArXiv e-prints 1512.02679 (2015).

[157] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Asymptotic Time Behavior of

Correlation Functions, Phys. Rev. Lett. 25, 1254–1256 (1970).

189



[158] J. R. Dorfman and E. G. D. Cohen, Velocity Correlation Functions in Two and Three

Dimensions, Phys. Rev. Lett. 25, 1257–1260 (1970).

[159] J. R. Dorfman and E. G. D. Cohen, Velocity-Correlation Functions in Two and Three

Dimensions: Low Density, Phys. Rev. A 6, 776–790 (1972).

[160] M. H. Ernst, E. H. Hauge, and J. M. J. Leeuwen, Asymptotic time behavior of correlation

functions. II. Kinetic and potential terms, Journal of Statistical Physics 15, 7–22 (1976).

[161] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Fluctuations in a nonequilibrium

steady state: Basic equations, Phys. Rev. A 26, 950–971 (1982).

[162] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Light scattering by a fluid in a

nonequilibrium steady state. II. Large gradients, Phys. Rev. A 26, 995–1014 (1982).

[163] D. Belitz, T. R. Kirkpatrick, and T. Vojta, How generic scale invariance influences quan-

tum and classical phase transitions, Rev. Mod. Phys. 77, 579–632 (2005).

[164] P. Kovtun and L. G. Yaffe, Hydrodynamic fluctuations, long-time tails, and supersym-

metry, Phys. Rev. D 68, 025007 (2003).

[165] S. Caron-Huot and O. Saremi, Hydrodynamic long-time tails from Anti de Sitter space,

Journal of High Energy Physics 2010, 1–31 (2010).

[166] K. Kawasaki and I. Oppenheim, Logarithmic Term in the Density Expansion of Trans-

port Coefficients, Phys. Rev. 139, A1763–A1768 (1965).

[167] J. Dorfman and E. Cohen, On the density expansion of the pair distribution function for

a dense gas not in equilibrium, Physics Letters 16, 124 – 125 (1965).

[168] Y. Pomeau, Transport Theory for a Two-Dimensional Dense Gas, Phys. Rev. A 3, 1174–

1194 (1971).

[169] S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lat-

tices, Physics Reports 377, 1 – 80 (2003).

[170] H. B. Callen, The Application of Onsager’s Reciprocal Relations to Thermoelectric, Ther-

momagnetic, and Galvanomagnetic Effects, Phys. Rev. 73, 1349–1358 (1948).

[171] N. Strohmaier, et al., Observation of Elastic Doublon Decay in the Fermi-Hubbard

Model, Phys. Rev. Lett. 104, 080401 (2010).

[172] J. P. Ronzheimer, et al., Expansion Dynamics of Interacting Bosons in Homogeneous

Lattices in One and Two Dimensions, Phys. Rev. Lett. 110, 205301 (2013).

[173] M. Eckstein, M. Kollar, and P. Werner, Thermalization after an Interaction Quench in

the Hubbard Model, Phys. Rev. Lett. 103, 056403 (2009).

190



[174] S. Sorg, L. Vidmar, L. Pollet, and F. Heidrich-Meisner, Relaxation and thermalization

in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum

quench from the atomic limit, Phys. Rev. A 90, 033606 (2014).

[175] M. Pinkwart, Thermalization and Integrability in the one-dimensional Bose-Hubbard

Model (Bachelor thesis, Universität zu Köln, 2014).

[176] M. Garst and A. Rosch, Transport in a classical model of a one-dimensional Mott insu-

lator: Influence of conservation laws, EPL (Europhysics Letters) 55, 66 (2001).

[177] B. Bauer, et al., The ALPS project release 2.0: open source software for strongly corre-

lated systems, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001

(2011).

[178] Jordens Robert, et al., A Mott insulator of fermionic atoms in an optical lattice, Nature

455, 204–207 (2008), 10.1038/nature07244.

[179] H. Kim and D. A. Huse, Ballistic Spreading of Entanglement in a Diffusive Noninte-

grable System, Phys. Rev. Lett. 111, 127205 (2013).

[180] F. Lange, Equilibrierung und Hydrodynamik in offenen Systemen (Bachelor thesis,

Universität zu Köln, 2014).

[181] V. Born, M.and Fock, Beweis des Adiabatensatzes, Zeitschrift für Physik 51, 165–180

(1928).

[182] L.-M. Duan, E. Demler, and M. D. Lukin, Controlling Spin Exchange Interactions of

Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 91, 090402 (2003).

[183] M. Bonitz, private communication (Bad Honnef, 2015).

[184] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz, Real-time dynamics in spin- 12
chains with adaptive time-dependent density matrix renormalization group, Phys. Rev.

E 71, 036102 (2005).

[185] M. Bixon and R. Zwanzig, Boltzmann-Langevin Equation and Hydrodynamic Fluctua-

tions, Phys. Rev. 187, 267–272 (1969).

[186] J. Randrup and B. Remaud, Fluctuations in one-body dynamics, Nuclear Physics A 514,

339–366 (1990).

[187] P. G. Reinhard, E. Suraud, and S. Ayik, The Boltzmann-Langevin Equation Derived

from the Real-Time Path Formalism, Ann. Phys. (N.Y.) 213 (1992).

[188] S. Ayik, Long-range correlations in Boltzmann-Langevin model, Zeitschrift für Physik

A Hadrons and Nuclei 350, 45–49 (1994).

191



[189] E. Calzetta and B. L. Hu, Stochastic dynamics of correlations in quantum field theory:

From the Schwinger-Dyson to Boltzmann-Langevin equation, Phys. Rev. D 61, 025012

(1999).

[190] E. Calzetta, Fourth-order full quantum correlations from a Langevin–Schwinger–Dyson

equation, Journal of Physics A: Mathematical and Theoretical 42, 265401 (2009).

[191] M. Bonitz, Quantum Kinetic Equations, 1st edition (B. G. Teubner, Leipzig, 1998).

[192] J. Berges, n-particle irreducible effective action techniques for gauge theories, Phys. Rev.

D 70, 105010 (2004).

[193] M. Kronenwett and T. Gasenzer, Far-from-equilibrium dynamics of an ultracold Fermi

gas, Applied Physics B 102, 469–488 (2011).

[194] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-

superconducting hybrid structures, Phys. Rev. B 55, 1142–1161 (1997).

[195] M. Z. Hasan and C. L. Kane, Colloquium : Topological insulators, Rev. Mod. Phys. 82,

3045–3067 (2010).

[196] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.

83, 1057–1110 (2011).

[197] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination

of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett.

45, 494–497 (1980).

[198] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Con-

ductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405–408 (1982).

[199] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95,

226801 (2005).

[200] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect,

Phys. Rev. Lett. 95, 146802 (2005).

[201] M. König, et al., Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science

318, 766–770 (2007).

[202] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum Spin Hall Effect and Topolog-

ical Phase Transition in HgTe Quantum Wells, Science 314, 1757–1761 (2006).

[203] L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in Three Dimensions, Phys.

Rev. Lett. 98, 106803 (2007).

192



[204] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological

insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125

(2008).

[205] L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76,

045302 (2007).

[206] S. Murakami, Phase transition between the quantum spin Hall and insulator phases in

3D: emergence of a topological gapless phase, New Journal of Physics 9, 356 (2007).

[207] Hsieh D., et al., A topological Dirac insulator in a quantum spin Hall phase, Nature

452, 970–974 (2008).

[208] B. Zhou, et al., Controlling the carriers of topological insulators by bulk and surface

doping, Semiconductor Science and Technology 27, 124002 (2012).

[209] Analytis James G., et al., Two-dimensional surface state in the quantum limit of a

topological insulator, Nat Phys 6, 960–64 (2010), 10.1038/nphys1861.

[210] Z. Ren, et al., Optimizing Bi2−x Sbx Te3−y Sey solid solutions to approach the intrinsic

topological insulator regime, Phys. Rev. B 84, 165311 (2011).

[211] A. L. Efros and B. I. Shklovskii, Electronic Properties of Doped Semiconductors

(Springer Berlin Heidelberg, 1984).

[212] J. Martin, et al., Observation of electron-hole puddles in graphene using a scanning

single-electron transistor, Nature Physics 4, 144–148 (2008).

[213] Zhang Yuanbo, et al., Origin of spatial charge inhomogeneity in graphene, Nature

Physics 5, 722–726 (2009).

[214] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, A self-consistent theory

for graphene transport, Proceedings of the National Academy of Sciences 104, 18392–

18397 (2007).

[215] E. H. Hwang, S. Adam, and S. D. Sarma, Carrier Transport in Two-Dimensional

Graphene Layers, Phys. Rev. Lett. 98, 186806 (2007).

[216] R. V. Gorbachev, et al., Strong Coulomb drag and broken symmetry in double-layer

graphene, Nature Physics 8, 896–901 (2012).

[217] V. Geringer, et al., Intrinsic and extrinsic corrugation of monolayer graphene deposited

on SiO2, Phys. Rev. Lett. 102, 076102 (2009).

[218] M. Gibertini, et al., Electron-hole puddles in the absence of charged impurities, Phys.

Rev. B 85, 201405 (2012).

193



[219] Kim Dohun, et al., Surface conduction of topological Dirac electrons in bulk insulating

Bi2Se3, Nat Phys 8, 459–463 (2012), 10.1038/nphys2286.

[220] D. Kim, et al., Ambipolar Surface State Thermoelectric Power of Topological Insulator

Bi2Se3, Nano Letters 14, 1701–1706 (2014).

[221] H. Beidenkopf, et al., Spatial fluctuations of helical Dirac fermions on the surface of

topological insulators, Nature Physics 7, 939–943 (2011).

[222] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, volume 8 of Course of Theoretical

Physics, 2nd edition (Pergamon Press, Oxford, UK, 1963).

[223] F. Wooten, Optical Properties of Solids, 1st edition (Academic Press, Inc., London, UK,

1972).

[224] M. Fox, Optical Properties of Solids, 1st edition (Oxford University Press, Oxford, UK,

2002).

[225] G. A. Thomas, et al., Large electronic-density increase on cooling a layered metal: Doped

Bi2Te3, Phys. Rev. B 46, 1553–1556 (1992).

[226] A. D. LaForge, et al., Optical characterization of Bi2Se3 in a magnetic field: Infrared

evidence for magnetoelectric coupling in a topological insulator material, Phys. Rev. B

81, 125120 (2010).

[227] A. Segura, et al., Trapping of three-dimensional electrons and transition to two-

dimensional transport in the three-dimensional topological insulator Bi2Se3 under high

pressure, Phys. Rev. B 85, 195139 (2012).

[228] P. Di Pietro, et al., Optical conductivity of bismuth-based topological insulators, Phys.

Rev. B 86, 045439 (2012).

[229] A. Akrap, et al., Optical properties of Bi2Te2Se at ambient and high pressures, Phys.

Rev. B 86, 235207 (2012).

[230] K. W. Post, et al., Thickness-dependent bulk electronic properties in Bi2Se3 thin films

revealed by infrared spectroscopy, Phys. Rev. B 88, 075121 (2013).

[231] S. V. Dordevic, et al., Signatures of charge inhomogeneities in the infrared spectra of

topological insulators Bi2Se3, Bi2Te3 and Sb2Te3, Journal of Physics: Condensed Mat-

ter 25, 075501 (2013).

[232] Y. Aleshchenko, et al., Infrared spectroscopy of Bi2Te2Se, JETP Letters 99, 187–190

(2014).

[233] B. C. Chapler, et al., Infrared electrodynamics and ferromagnetism in the topological

semiconductors Bi2Te3 and Mn-doped Bi2Te3, Phys. Rev. B 89, 235308 (2014).

194



[234] B. Skinner, T. Chen, and B. I. Shklovskii, Why Is the Bulk Resistivity of Topological

Insulators So Small?, Phys. Rev. Lett. 109, 176801 (2012).

[235] B. Skinner, T. Chen, and B. Shklovskii, Effects of bulk charged impurities on the bulk

and surface transport in three-dimensional topological insulators, Journal of Experi-

mental and Theoretical Physics 117, 579–592 (2013).

[236] T. Arakane, et al., Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey,

Nature Comm. 3, 636 (2012).

[237] Z. Ren, et al., Large bulk resistivity and surface quantum oscillations in the topological

insulator Bi2Te2Se, Phys. Rev. B 82, 241306 (2010).

[238] Z. Li and J. P. Carbotte, Hexagonal warping on optical conductivity of surface states in

topological insulator Bi2Te3, Phys. Rev. B 87, 155416 (2013).

[239] D. Schmeltzer and K. Ziegler, Optical conductivity for the surface of a Topological In-

sulator, ArXiv e-prints:1302.4145 (2013).

[240] J. M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic

Fields, Phys. Rev. 97, 869–883 (1955).

[241] F. Bassani, G. Iadonisi, and B. Preziosi, Electronic impurity levels in semiconductors,

Reports on Progress in Physics 37, 1099 (1974).

[242] K. Eto, et al., Angular-dependent oscillations of the magnetoresistance in Bi2Se3 due to

the three-dimensional bulk Fermi surface, Phys. Rev. B 81, 195309 (2010).

[243] M. Y. Han, J. C. Brant, and P. Kim, Electron Transport in Disordered Graphene

Nanoribbons, Phys. Rev. Lett. 104, 056801 (2010).

[244] T. Chen and B. I. Shklovskii, Anomalously small resistivity and thermopower of strongly

compensated semiconductors and topological insulators, Phys. Rev. B 87, 165119

(2013).

[245] S. A. Basylko, et al., Coulomb gap in a model with finite charge-transfer energy, Phys.

Rev. B 63, 024201 (2000).

[246] L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous

materials, Rev. Mod. Phys. 83, 587–645 (2011).

[247] J. H. Davies, P. A. Lee, and T. M. Rice, Electron Glass, Phys. Rev. Lett. 49, 758–761

(1982).

[248] S. F. Edwards and P. W. Anderson, Theory of spin glasses, Journal of Physics F: Metal

Physics 5, 965 (1975).

195



[249] F. Brahona, On the computional complexity of Ising spin glass models, J. Phys. A:

Math. Gen. 15, 3241–3253 (1982).

[250] T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model,

Phys. Rev. E 58, 5355–5363 (1998).
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