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Abstract

In recent papers, Wied and his coauthors have introduced change-point procedures to de-
tect and estimate structural breaks in the correlation between time series. To prove the
asymptotic distribution of the test statistic and stopping time as well as the change-point
estimation rate, they use an extended functional Delta method and assume nearly con-
stant expectations and variances of the time series.
In this thesis, we allow asymptotically infinitely many structural breaks in the means and
variances of the time series. For this setting, we present test statistics and stopping times
which are used to determine whether or not the correlation between two time series is and
stays constant, respectively. Additionally, we consider estimates for change-points in the
correlations. The employed nonparametric statistics depend on the means and variances.
These (nuisance) parameters are replaced by estimates in the course of this thesis. We
avoid assuming a fixed form of these estimates but rather we use ‘blackbox‘ estimates, i.e.
we derive results under assumptions that these estimates fulfill. These results are supple-
ment with examples.
This thesis is organized in seven sections. In Section 1, we motivate the issue and present
the mathematical model. In Section 2, we consider a posteriori and sequential testing pro-
cedures, and investigate convergence rates for change-point estimation, always assuming
that the means and the variances of the time series are known. In the following sections,
the assumptions of known means and variances are relaxed.
In Section 3, we present the assumptions for the mean and variance estimates that we will
use for the mean in Section 4, for the variance in Section 5, and for both parameters in
Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors
of some testing procedures and estimates.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Strukturbruchanalyse in den Korrelationen
zwischen zwei Zeitreihen. In kürzlich erschienenen wissenschaftlichen Arbeiten haben sich
Wied und seine Koautoren sowohl mit a-posteriori und sequenziellen Testverfahren als
auch mit Schätzmethoden für Strukturbrüche in den Korrelationen befasst. Hierbei haben
die Autoren nahezu konstante Erwartungswerte und Varianzen für die beiden Zeitreihen
angenommen.
In der vorliegenden Arbeit präsentieren wir das asymptotische Verhalten von Testver-
fahren (sowohl für a-posteriori als auch für sequenzielle Testprobleme) und Schätzern für
die Strukturbrüche in den Korrelationen zwischen zwei Zeitreihen, bei denen jeweils Struk-
turbrüche in den Erwartungswerten und Varianzen erlaubt sind. Dabei ist die Arbeit wie
folgt aufgebaut: In Kapitel 1 motivieren wir die Problematik und erläutern das mathema-
tische Modell. In Kapitel 2 stellen wir die oben genannten Verfahren und Schätzmethoden
vor, die die exakten Parameter, d.h. die Erwartungswerte und die Varianzen, verwenden.
Diese Verfahren werden in den folgenden Kapiteln erweitert, um mit unbekannten Er-
wartungswerten und Varianzen umgehen zu können. In Kapitel 3 präsentieren wir die
Annahmen der Parameterschätzung, die in den nachfolgenden Kapiteln zugrunde gelegt
werden.
In Kapitel 4, 5 und 6 präsentieren wir Verfahren, in denen ein Austauch der exakten Pa-
rameter durch ihre Schätzer stattfindet. Dabei werden in Kapitel 4 die (unbekannten)
exakten Erwartungswerte durch ihre Schätzer ersetzt; in Kapitel 5 ist dies der Austausch
der Varianzen und in Kapitel 6 ersetzen wir beide der vorgenannten Parameter durch ihre
Schätzer. In Kapitel 7 beleuchten wir schließlich das Verhalten der verschiedenen Meth-
oden bei endlicher Beobachtungszahl mit Hilfe von Simulationen und wenden die neuen
Verfahren auf Finanzdaten an.
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Notation and Convention

Zl,n Z1,n = Xn And = Z2,n = Yn p. 3
µl,i, σ

2
l,i and ρi IE [Zl,i] = µl,i, Var [Zl,i] = σ2

l,i, Corr (Xi,Yi) = ρi for
i = 1, 2, . . .

p. 3

k∗, k∗i and ∆ρ, ∆ρ,i change-point(s) and change size(s) in the correlations p. 3ff.
∆k∗ and ∆ρ minr |k∗r − k∗r−1| and minr |∆ρ,r| p. 4

k∗ξ,i and ∆ξ,i change-point(s) and change size(s) in the parameter ξ ∈
{µ1,µ2,σ

2
1,σ

2
2}

p. 83

T ι,ψ,l,γn general detector which is equal to fι(B
ψ,l,γ
n (·)) p. 7

τ
(c)
n,ι,ψ,l,γ and τ

(o)
n,ι,ψ,l,γ general closed-end and open-end stopping times p. 7f.

Dl and D̂l long-run variance (LRV) and its estimate p. 7

Q̃
(ψ)
n (s,t) detector for the change-points in an epidemic change-point

setting
p. 17

Q
(ψ)
n (·) detector for the change-points in a general (multiple)

change-point setting
p. 17

gρ(·), gµ(·), and gσ2(·) bounded and integrable functions represent the changes in
the correlations, means, and variances

p. 3, 87,
and 91

mµ,l,n, mσ,l,n, and ml,n number of change-points in the means, variances p. 45
cα,· critical value for the significance level α p. 6

n, i, k, l frequently used natural numbers
x, z, s frequently used real numbers
W (·) and B(·) standard Brownian motion and bridge
AT transpose of a matrix A
[x] integer part of 1 + x for x ∈ R
λ(·), #(·) Lebesgue measure and cardinality
maxA and minA maximum and minimum of a set A ⊂ R with max ∅ = −∞

and min ∅ =∞
‖ · ‖p, ‖ · ‖A, and ‖ · ‖ Lp-norm, uniform norm on a set A ⊂ R, and uniform norm

on a corresponding set
D−→,

D[0,1]−→ ,
P−→ convergence in distribution of a random variable, of a ran-

dom càdlàg function, convergence in probability
an ∼ bn the real valued sequences an and bn fulfill limn→∞

an
bn

=
c ∈ R 6=0

an � bn an/bn = o(1) as n→∞ for real valued sequences
Yn = Xn + oP (1) the S-valued random sequences {Xn} and {Yn} fulfill

‖Xn − Yn‖S
P−→ 0

Xn ≤ Yn + oP (1) for random sequences {Xn} and {Yn} a random sequence
rn = oP (1) exists such that Xn ≤ Yn + rn almost surely
(a.s.)

a ∧ b and a ∨ b the minimum and maximum of a, b ∈ R
an ≡ a an = a for all n ∈ N
x and xk, sample means of a set {x1, . . . ,xn}, i.e., x = n−1

∑n
i=1 xi

and x = k−1
∑k

i=1 xi
xkj sample means of a set {xl+1, . . . ,xk} for j, k ∈ N and

j < k, i.e., xkj = (k − j)−1(kxk − jxj)



INTRODUCTION

1 Introduction

1.1 Introduction

In our modern society the amount of collected data per year is higher than ever before. For this
reason it is necessary to provide suitable big data storage and highly efficient search algorithms.
Examples of where such procedures are required to draw conclusions from enormous quantities are
predictions in financial markets, early warning systems for natural disasters, and buying patterns
of internet users. In each of these fields certain parameters structure the data set and reveal the
required information concerning future development. Sometimes it is important to know whether these
parameters have undergone gradual changes, have suddenly changed significantly, or have remained
more or less constant, e.g. when observing the changes of the global mean surface temperature, of
the risk of some stock price, of the linear correlation between two groups etc. One possibility to
investigate whether there is a change of a parameter or not is the change-point analysis. For a survey
on the change-point analyses we refer to Müller and Siegmund (1994), Aue and Horváth (2013), and
Brodsky and Darkhovsky (2013).

This thesis investigates the issue whether there may be a change in the correlation between two
time series. Among many other things, this is motivated by questions such as: Does the risk of a
portfolio of many stock prices remain constant or not? Is the correlation between sunshine duration
and the electricity rates traded at the market stable?

Testing whether there is a change in a correlation or not is not new and has been treated by
some research studies. Firstly, Aue et al. (2009) investigated the related issue of break detection in
the covariance structure of multivariate time series. Then, Wied (2010) treated structural breaks in
the correlation and published the main results in Wied et al. (2012). They presented a cumulative
sum (CUSUM) test where the asymptotic property of test statistic, the convergence in distribution,
was proved by a functional Delta method. Under certain assumptions these results allow to test
a posteriori whether there has been a change in the correlation between two given time series. Testing
whether there is a sudden change in the correlations while the observation of the data set is incomplete
was considered by Wied and Galeano (2013). Again the testing procedure is based on CUSUM
detectors and the convergence in distribution was proved by the same functional Delta method as
before. Recently, Wied and Galeano (2014) introduced a multiple break detection method for the
correlations.

Each of the main results in these papers possesses some special kind of assumptions. Technically,
the authors’ proofs are based on the functional Delta method for which a little bit more than the
fourth moments of the two considered time series have to be bounded. Furthermore, they assume that
the mean and the variance of both time series do not change significantly. In our approach to analyze
a change of the correlations we present different CUSUM test statistics, which allow changes in the
means and the variances in the two time series.

This thesis is organized in seven sections. Section 1 illustrates the mathematical models and the
motivation for the approach. In Section 2, we consider the case where it is assumed that the means
and variances of the time series are known. Under this assumption we demonstrate an asymptotic
a posteriori change-point procedure under a functional central limit theorem (FCLT). For normaliza-
tion of the limit process we present long-run variance (LRV) estimates. Additionally, we investigate a
change-point estimate and consider open-end and closed-end sequential change-point procedures. In
Section 3, we introduce the mean and variance estimate assumption. In contrast to a special type of
estimate we present some sufficient conditions for the estimation errors so that the main results of
Section 2 are still satisfactory. Section 4 contains the same procedures and change-point estimates
as Section 2, but we replace the expectations by some unspecified mean estimates which fulfill the
assumptions of the third section. In Section 5, we concentrate on the same procedures as in Section 4,
now assuming that the expectations are once again known and the variances will be replaced by some
estimates. In Section 6, we consider the already known procedures with both parameters replaced by
their estimates. Finally, in Section 7, we illustrate the asymptotic behavior of the testing procedures
and change-point estimates by some simulation studies.
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MAIN MODEL AND ITS ASSUMPTIONS

1.2 Main Model and its Assumptions

This subsection presents the main models and their assumptions. The following box contains the basic
assumptions of the mathematical model:

Let X1, . . . ,Xn and Y1, . . . ,Yn be a part of two real-valued time series {Xn}n∈N and {Yn}n∈N
on a probability space (Ω,F ,P ), which will have the following general design throughout the whole
thesis:(

Xi

Yi

)
=

(
Z1,i

Z2,i

)
=

(
µ1i

µ2i

)
+Bi

(
ε̃1,i
ε̃2,i

)
for i ∈ N, (1.2.1)

where {ε̃1,n}n∈N and {ε̃2,n}n∈N are two centered and normalized random sequences with

Corr (ε̃1,i,ε̃2,i) = 0 and ΣXY,i = BiB
T
i =

(
σ2

1,i σ1,iσ2,iρi
σ1,iσ2,iρi σ2

2,i

)
(1.2.2)

for all i ∈ N, where {µ1,n}n∈N, {σ2
1,n}n∈N, {µ2,n}n∈N, {σ2

2,n}n∈N, and {ρn}n∈N are deterministic,
uniformly bounded sequences, which represent the mean, variance and correlation of {Xn}n∈N and
{Yn}n∈N, respectively. Furthermore, we assume that infn σl,n > 0 for l = 1, 2 and for all n ∈ N.

Remark 1.2.1. 1. We use Z1,n and Z2,n instead of Xn and Yn, respectively, to avoid
repetitions if something holds for both.

2. It holds that µl,i = IE [Zl,i], σ2
l,i = Var [Zl,i], and ρi = Corr (Xi,Yi) for all i ∈ N.

3. With Z
(0)
i = (Xi − µ1,i)(Yi − µ2,i)/(σ1,iσ2,i) we obtain that ρi = IE

[
Z

(0)
i

]
. The variance of

Z
(0)
i depends on the matrix Bi, which is not unique. Notably for each i ∈ N there are infinitely

many Bi fulfilling the conditions of the same model. This could provide structural breaks in

the second moments of Z
(0)
i and could influence our methods such that the fluctuation of Bi

will be implicitly restricted by further assumptions.

A Posteriori Analysis One aim of this thesis is to present asymptotic tests and to prove their
asymptotic distributions, where the tests decide for given samples whether the null hypothesis

H0 : ρ1 = . . . = ρn (H0)

cannot be rejected or whether it is rejected in favor of an alternative. Firstly, we investigate a local
alternative of the form:

Assumption HLA. Suppose {ρn} fulfills

ρi = ρi,n = ρ0 +
1√
n
gρ

(
i

n

)
, (1.2.3)

where gρ : [0,1]→ R is a bounded integrable function with

sup
z∈[0,1]

∣∣∣∣∣∣n−1

[nz]∑
i=1

gρ

(
i

n

)
−
∫ z

0
gρ(x)dx

∣∣∣∣∣∣ = o(1), as n→∞. (1.2.4)

Secondly, we analyze the following (local) epidemic change-point setting:

Assumption HA. Set Rk∗ = (k∗1,k
∗
2] ⊂ [1,n) and suppose {ρn} fulfills for i = 1, . . . ,n

ρi = ρi,n =

{
ρ, i /∈ Rk∗ ,

ρ+ ∆ρ, i ∈ Rk∗ ,
(1.2.5)

where |∆ρ|λ(Rk∗)λ(Rck∗)n
−3/2 →∞ as n→∞.

3



INTRODUCTION

Remark 1.2.2. 1. The so–called change-points k∗1 and k∗2 depend on the sample size n, whereas
the change size ∆ρ 6= 0 could depend on n. Furthermore, we denote (k∗1,k

∗
2] to be the change-

set. We will see that the assumed divergence of the combination between the change size and
change location is necessary to obtain an asymptotic power one under HA. Heuristically, the
change-sets must not be too small or too large compared with [1,n].

2. The epidemic change-point setting goes back to Levin and Kline (1985) and is a generalization
of the at most one change (AMOC) alternative, ρ1 = . . . = ρk∗ 6= ρk∗+1 = . . . = ρn. If k∗1 = 1,
we would get an AMOC alternative.

After we have decided that the null hypothesis can be rejected, we want to know where the change-
points are. Hence, the estimation of the change-points is another aim of this work. Moreover, we want
to estimate the numbers and the locations of the unknown change-points in a multiple change-point
setting.

Assumption H
(M)
A . Suppose {ρn} fulfills for i = 1, . . . ,n

ρi = ρ0 +
R∗∑
j=1

1{k∗j<i}∆ρ,j,n, (1.2.6)

where R∗ ∈ N, 1 = k∗0 < k∗1 < . . . < k∗R∗ < k∗R∗+1 = n, ∆ρ = inf1≤j |∆ρ,j,n| > 0 for all n ∈ N, and
k∗j /n→ θρ,j ∈ [0,1] as n→∞ for all j = 1, . . . ,R. Furthermore, we set ∆k∗,r,n = k∗r − k∗r−1 and
∆k∗,n = min1≤r≤R+1 ∆k∗,r,n.

Remark 1.2.3. We refer to k∗j and θρ,j, j = 1, . . . ,R, as change-points.

Summing up, we will deal with asymptotic tests which decide whether there is or is not a change
in the correlation for two given time series. Additionally, we will present some change-point estimates.
The following Figure 1 contains one example under the null hypothesis, H0, and one for each presented

alternatives above, HLA, HA, and H
(M)
A . The figure shows cases where a change in the correlation

is not really visible on the basis of the plotted processes X and Y . To illustrate the correlation
between the two time series we added the exact correlations (in green) and the sliding window sample
correlations (in black).
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Figure 1: Each box contains a figure showing two graphs of a Moving-average (MA) process path, one red- and one
blue-colored, and a second figure showing a green graph of the correlations between the two MA processes.
The black graph shows the path of the sample correlation coefficient based on a sliding window method
with a forward–backward window size of 50–50.
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MAIN MODEL AND ITS ASSUMPTIONS

Sequential Analysis The previous analyses and estimations assume a given sample of the two time
series {Xn} and {Yn}. But if they are not completely given and we receive the samples one by one,
we want to test sequentially whether the correlation remains constant or not, i.e., we want to decide
whether

H
(2)
0 : ρ1 = . . . = ρn = ρn+1 = . . . (1.2.7)

cannot be rejected or whether the alternative

H
(2)
1 : ρ1 = . . . = ρn = . . . = ρk∗ 6= ρk∗+1 = . . . (1.2.8)

is accepted. This procedure is called sequential change-point analysis. Here, we distinguish between
closed-end, i.e., the observation will be finished after n + [mn] observations with m > 0, and
open-end, i.e., the observation will only be stopped if a change-point comes up.

Again, we are interested in a local setting:

Assumption H
(c)
LA. Suppose {ρn} fulfills

ρ0 = ρ1 = . . . = ρn and ρi = ρi,n = ρ0 +
1√
n
gρ

(
i

n

)
1{i>n}, (1.2.9)

where gρ is a bounded, integrable function on [1,1 +m] with

sup
z∈[0,m]

∣∣∣∣∣∣n−1

n+[nz]∑
i=n+1

gρ

(
i

n

)
−
∫ 1+z

1
gρ(x)dx

∣∣∣∣∣∣ = o(1), as n→∞. (1.2.10)

In an AMOC model we assume:

Assumption H
(c)
A . Suppose {ρn} fulfills

ρi = ρi,n =

{
ρ, i ∈ {1, . . . , n+ [θ∗ρn]},

ρ+ ∆ρ, i ∈ {n+ [θ∗ρn], . . . ,n+ [nm]}, (1.2.11)

where 0 < θ∗ρ < m and ∆ρ 6= 0.

Additionally, we consider the open-end local setting and an open-end AMOC model:

Assumption H
(o)
LA. Suppose {ρn} fulfills

ρi = ρi,n = ρ0 +
1√
n
gρ

(
i

n

)
1{i>n}, (1.2.12)

where gρ is a bounded, integrable function on [1,∞) with

sup
z∈[0,∞)

∣∣∣∣∣∣n−1

n+[nz]∑
i=n+1

gρ

(
i

n

)
−
∫ 1+z

1
gρ(x)dx

∣∣∣∣∣∣ = o(1), as n→∞. (1.2.13)

Assumption H
(o)
A . Suppose {ρn} fulfills

ρi = ρi,n =

{
ρ, i ∈ {1, . . . , n+ [θ∗n]},

ρ+ ∆ρ, i ∈ {n+ [θ∗n], . . .} (1.2.14)

with 0 < θ∗ <∞ and ∆ρ 6= 0.

In this setting we continue the observation until we detect a possible change-point. Mathematically,
this procedure can be described by a stopping time. Hence, we are interested in the asymptotic
behavior of stopping times.

Figure 2 illustrates the path of two MA processes where the observations until n(= 200) are

already observed and do not reject H
(2)
0 . The data are analyzed to determine whether the correlation

is changing or not. On the one hand, in a closed-end procedure we stop the analysis at n+mn(= 500)
if no change is detected in the correlation. On the other hand, an open-end procedure we only stop
the analysis until we detect a change.
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Figure 2: Each box contains a figure showing two graphs of a path of a Moving-average (MA) process, one red-
and one blue-colored, and a second figure showing a green graph of the correlation coefficient between
the two MA processes. The black graph shows the path of the sample correlation coefficient based on a
sliding window method with a backward window of size 100.

1.3 Test Statistics and Stopping Times

For the a posteriori setting we construct asymptotic tests to decide whether there is a change in
the correlation between two given time series X1, . . . ,Xn and Y1, . . . ,Yn or not. This means that if
some suitable detectors are larger than a critical value, we will reject the null hypothesis, otherwise
we will not. Hence, we consider the following test

φγι,ψ,l(X,Y ) =

{
1, T ι,ψ,l,γn > cα,ι,ψ,l,

0, T ι,ψ,l,γn ≤ cα,ι,ψ,l,
(1.3.1)

where we call T ι,ψ,l,γn a detector and cα,ι,ψ,l the critical value. The other indices will be specified
later on. The test φγι,ψ,l(X,Y ) = φγι,ψ,l(X1, . . . ,Xn;Y1, . . . ,Yn) is called consistent if it has asymptotic

power one under an alternative, i.e., φγι,ψ,l(X1, . . . ,Xn;Y1, . . . ,Yn)
P−→ 1, as n→∞.

Firstly, we consider the mean change model for the random variables Z1, . . . ,Zn. For this testing
problem the classical approach is based on the maximum-likelihood statistic, which depends on the
distribution of the random variables. If we assume that the innovations are independent, identically
N(0,1)–distributed, and that the change-point is known to be located at k∗, then the log-likelihood
ratio will yield the detector

w(k∗,n)|Zk∗ − Zn|,

where Zk is the sample mean of the observations Z1, . . . ,Zk and w(k∗,n) is a suitable weighting
function. Since k∗ is not known in general, we take the maximum over all possible k∗’s. Alter-
natively, we can transfer the previous form into a functional one, i.e., consider w([n·],n)|Z [n·] − Zn|
and apply some other continuous functional mapping from D[0,1] on R, where D[0,1] is the Sko-
rokhod space, i.e., the set of all càdlàg functions from [0,1] to R. More generally, we may consider
a weighting map of the distance between two estimates, calculated by the observations Z1, . . . ,Z[·n]

and Z1, . . . ,Zn. This concept of splitting the samples into the groups with indices from 1 to k,
or [n·], and from k+1, or [n·]+1, to n to compare the estimates will be used throughout the thesis.

If we adapt this detector to our change-point problem in the correlation, we get a similar detector
of the form:

Tn = f
(
w([[n·],n)|ρ̂[n·] − ρ̂n|

)
,

where ρ̂k is some estimate for the correlation and f : D[0,1]→ R any suitable, continuous function.
Wied et al. (2012) considered

f(g(·)) = sup
z∈[0,1]

|g(z)|, w(k,n) =
k√
n
D−

1
2 , ρ̂k =


0, if k < 2,∑k

i=1(Xi−Xk)(Yi−Y k)√∑k
i=1(Xi−Xk)

2 ∑k
i=1(Yi−Y k)

2
, if k ≥ 2,

6



TEST STATISTICS AND STOPPING TIMES

where D−1/2 is a certain unknown weighting factor which can be estimated and ρ̂n is the well-known
sample correlation coefficient. They proved that the test statistic converges under certain assump-
tions in distribution towards the maximum of a Brownian bridge: In particular, they assumed that
the five dimensional vector (X2

i ,Y
2
i ,Xi,Yi,XiYi) is L2 near epoch dependent (see Def. on p. 39) with

uniformly bounded rth moments (r > 2) and nearly constant first and second moments. They relied

on a new functional Delta method and came up with the estimate D̂−
1
2 .

In Heuser (2013), we considered another weighting function, namely w(k,n) = wγ(k,n) = k√
n
D−1/2(k(n−

k)/n2)−γ with some γ ∈ [0,1/2).

In this thesis we consider the general statistics in an a posteriori model of the following form

T ι,ψ,l,γn = fι(B
ψ,l,γ
n (·)) (1.3.2)

under more general assumptions where the basic assumptions are the following:

• ι is an index to distinguish functions fι : D[0,1] → R which are continuous with respect
to ‖ · ‖[0,1] and fulfill the property that fι(g1) ≥ fι(g2) for all g1,g2 ∈ D[0,1] with
|g1(z)| ≥ |g2(z)|, ∀z ∈ [0,1]. Here, we have the functions f1(g) = supz∈[0,1] |g(z)| and f2(g) =∫ 1

0 |g(z)|dz in mind;

• Bψ,l,γ
n (·) is a process defined by

Bψ,l,γ
n (z) = D̂

−1/2
l wγ

(
[zn]

n

)
[zn]√
n

(
ρ̂ψ,[zn] − ρ̂ψ,n

)
; (1.3.3)

• n is the sample size, which tends towards infinity;

• l is the index to distinguish the different real valued long–run variance estimates D̂, where
l = 0 denotes some suitable consistent LRV estimate;

• γ is a constant to specify a weighting function wγ which allows us to highlight some special
areas where we suppose a change-point;

• ψ is the index to distinguish the different correlation estimates ρ̂.

In the sequential model we construct a stopping time to decide sequentially whether there
is or is not a sudden change in the correlation between observations X1, . . . ,Xn, Xn+1, . . . and
Y1, . . . ,Yn, Yn+1, . . . that come in bit by bit. Wied and Galeano (2013) have already considered the
closed-end stopping time

τn = inf

{
1 ≤ k ≤ nm : D̂−1/2w(k,n)

k√
n
|ρ̂n+k
n+1 − ρ̂

n
1 | > cα,ι,ψ,l

}
with

w(k,n) =

(
max

{
ε,(1 + k/n)

(
k

n+ k

)γ})−1

, γ ∈ [0,1/2), ε > 0,

where ρ̂ki , k ≥ 1+i, is Pearson’s correlation coefficient calculated by the observations (Xi,Yi), . . . ,(Xk,Yk).

Relying on the same idea we get the following closed-end and open-end stopping times

τ
(c)
n,ι,ψ,l,γ = inf

{
0 ≤ x ≤ nm : uι(1{·≤m}B̃

ψ,l,γ
n (·))(x/n) > cα,ι,ψ,l

}
(1.3.4)

and

τ
(o)
n,ι,ψ,l,γ = inf

{
0 ≤ x : uι(B̃

ψ,l,γ
n (·))(x/n) > cα,ι,ψ,l

}
, (1.3.5)

where inf ∅ =∞ and
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INTRODUCTION

• ι is an index to distinguish functions uι : D[0,∞)→ D[0,∞) which are continuous with respect
to ‖ · ‖(0,∞) and fulfill

1. uι(g1)(z) ≥ uι(g2)(z) for all z ∈ [0,∞) and all g1,g2 ∈ D[0,∞) with |g1(x)| ≥ |g2(x)|,∀x ∈
[0,∞);

2. uι(1{·≤z}g(·))(x) = 1{x≤z}uι(g(·))(x) for all x ∈ [0,∞), g ∈ D[0,∞) and z ∈ R+.

Here, we have the functions u1(g)(x) = |g(x)| and u2(g)(x) = x−1
∫ 1+x

1 |g(z)|dz in mind;

• B̃ψ,l,γ
n (·) is a process defined by

B̃ψ,l,γ
n (z) =

{
D̂
−1/2
l wγ

(
[nz]
n

)
n

n+[x]
[nz]√
n

(
ρ̂
n+[nz]
ψ,[nz],n+1 − ρ̂

n
ψ,[nz],1

)
, if [nz] ≥ 1,

0, else;
(1.3.6)

• wγ , ρ̂ and the indices ψ, l, and γ have the same meaning as in the a posteriori setting.

Remark 1.3.1. With the different functions fι and uι we can regulate the sensitivity of the test,
as well as the robustness. The above f1 and u1 produce a quite sensitive test, whereas the above
f2 and u2 produce a test statistic which is rather robust against single outliers of Bψ,l,γ

n (·) and

B̃ψ,l,γ
n (·), respectively. (Some other robust test are discussed on p. 8 of Dehling et al. (2015))

Essentially, we will prove under the null hypotheses H0 and H
(2)
0 , as well as under the alternatives

HLA, H
(c)
LA, and H

(o)
LA that Bψ,l,γ

n (·) and B̃ψ,l,γ
n ([·n]) converge in distribution towards Gaus-

sian processes on some functional space and apply the CMT to obtain the asymptotic distribution of
fι(B

ψ,l,γ
n ) and uι(B̃

ψ,l,γ
n )([·n]). However, it is sometimes possible to relax the assumptions of our

model if we use functions fι and uι which results in a more robust method. For example, if we
use f2(g) =

∫ 1
0 |g(x)|dx, the convergence of f2(Bψ,l,γ

n + R̂) will be independent of the error function

R̂([n·]/n) in case of
∑n

i=1 |R(i/n)| = oP (n), whereas for the case f1(g) = supx∈[0,1] |g(x)|, the error
function must vanish uniformly in probability so that the error has no influence on the limit. However,
in the case of f2 we get that Bψ,l,γ

n (·) + R̂([n·]/n) does not have to converge towards the limit of

Bψ,l,γ
n (·) in order to guarantee that the limits of the transformed terms are equal.

As a result, we consider many different test statistics, different stopping times and investigate their
asymptotic behaviors. We focus our attention on the effect of the location parameters {µ1,n} and
{µ2,n}, as well as the effect of the variation parameters {σ2

1,n} and {σ2
2,n} of the observed time

series {Xn} and {Yn}.

Remark 1.3.2. In this thesis we focus on the one–dimensional change-point setting, i.e., we consider
a change in the one–dimensional correlation. Naturally, it is possible to consider a d-dimensional
random sequence {Xn} with d > 2 and investigate whether there is a change in the d×d-dimensional
sequence of correlation matrices

ΣX,ρ,n =


1 ρ12,n . . . ρ1d,n

ρ21,n 1 . . . ρ2d,n
...

. . .

ρd1,n . . . ρdd−1,n 1

 .

Many of the following testing procedures can be extended without much effort by replacing the functional
central limit theorem by a multidimensional one or the absolute value by supremum norm. Naturally,
the assumptions of the alternatives HLA and HA have to be adapted, e.g. under HLA the change
function gρ maps from [0,1] to Rd(d−1)/2 and in equation (1.2.3) the absolute value is replaced
by the Euclidean or the supremum norm. Additionally, the test statistics are based on functions fι
mapping from D[0,1]d(d−1)/2 to R.
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2 Change-Point Analysis of the Correlations under Known Means
and Variances

In addition to the main model, we assume in this section that the parameters µ1i, µ2i, σ1i, and σ2i

are known. Then our estimate for the correlation in (1.3.3) is defined for n ∈ N as

ρ̂0,n =
1

n

n∑
i=1

Z
(0)
i =

1

n

n∑
i=1

(Xi − µi1)(Yi − µi2)

σ1iσ2i
, (2.0.7)

and the sequential correlation estimates in (1.3.6) are defined as

ρ̂l+k0,k,l+1 =
l + k

k
ρ̂0,l+k −

l

k
ρ̂0,l for l = 1, . . . ,n− 1, k = 1, . . . ,n− l.

This section is divided into three subsections, where we consider well-known general results of the
change-point analysis. Firstly, we focus on the asymptotic behavior of the test statistics with estimates
for the change-points and for the long-run variance. Secondly, we consider the asymptotic behavior
of the stopping times. Afterwards, we present some examples.

2.1 A Posteriori Analysis under General Dependency Framework

2.1.1 Testing under a Functional Central Limit Theorem

It is well-known that the asymptotic behavior of CUSUM test statistics is based on FCLTs, cf. Aue
and Horváth (2013). In the following theorem we summarize the asymptotic behavior which we are
interested in.

Theorem 2.1.1. Let a Brownian motion W (·) and a standard Brownian bridge B(·) on [0,1],
D > 0, and

1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)

D[0,1]−→ D1/2W (·) (2.1.1)

be given. Then, it holds
(i) under H0 and |D̂0 −D| = oP (1) that

T 0,0,0,0
n

D−→ f0(B(·)); (2.1.2)

(ii) under Assumption HLA and |D̂0 −D| = oP (1) that

T 0,0,0,0
n

D−→ f0(B(·) + h(·)), (2.1.3)

where h(z) = D−1/2
(∫ z

0 gρ(x)dx− z
∫ 1

0 gρ(x)dx
)

;

(iii) under Assumption HA and for each finite c ∈ R+, each continuous f0 : D[0,1] → R with

lim‖x‖→∞ f0(x) =∞, |D̂1/2
0 | = oP (an|∆ρ|λ(Rk∗)λ(Rck∗)n

−2), and an →∞ that

P

(
f0

(
an√
n
B0,0,0
n

)
≥ c
)
→ 1. (2.1.4)

Proof. See appendix (p. 173).

Remark 2.1.2. 1. We obtain the convergence in (i) even if
∑n

i=1 |ρi| = o(
√
n).

2. Choosing f0(g) = suph<z<1−h |
g(z+h)+g(z−h)−2g(z)

h |, h ∈ (0,12) provides the well-known procedure
of sliding windows with bandwidth [nh]. To avoid the search of an optimal bandwidth choice

we could use f0(g) = supz
∫ z∧(1−z)
ε |g(z+h)+g(z−h)−2g(z)

h |dh for an arbitrarily small ε > 0.
Furthermore, it is possible to choose ε = 0 without any additional assumptions, for which the
law of the iterated logarithm comes into account.
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3. Under Assumption HA the conditions lim‖x‖→∞ f0(x) =∞ and

|D̂1/2| = oP (an|∆ρ|λ(Rk∗)λ(Rck∗)n
−2)

can be replaced by the conditions that f0 satisfies the triangle inequality and that

f0

(
D̂−1/2an∆ρ

√
n
nλ(Rk∗ ∩ (0,[n·]))− [n·]λ(Rk∗)

n2

)
P−→∞.

4. More generally, assuming that f0 fulfills the property of the triangle inequality, H0 will be
rejected with power one if∥∥∥∥f0

(
D̂−1/2
n

[n·]√
n

(ρ[n·] − ρn)

)∥∥∥∥ P−→∞, as n→∞.

5. The proof makes it clear that each of the three claims holds true if we replace B0,0,0
n by B0,0,0

n +

oP (D̂0). In the preceding theorem, we indirectly assume that the variances of {Z(0)
n } are nearly

constant such that the LRV D exists. This assumption can be weakened if we replace Z
(0)
i

by Z
(0)
i /σZ(0),i, where σ2

Z(0),i
= Var

[
Z

(0)
i

]
is not necessarily constant. Since this parameter is

usually unknown, we have to estimate it. Then, the claimed convergences of Theorem 2.1.1 hold
true under the replacement of σZ(0),i by σ̂Z(0),i if∥∥∥∥∥∥

[n·]∑
i=1

(
σZ(0),i

σ̂Z(0),i

− 1

)
(Z

(0)
i − ρi)

∥∥∥∥∥∥ = oP (n1/2).

In the proof of Theorem 4.1.10 below, we will consider similar equations. There, we will see
sufficient conditions for this equation to hold.

6. The convergence of the test statistic in a multidimensional change-point setting can similarly be
proven if we replace the one–dimensional FCLT by a multidimensional one.

We are also interested in weighted test statistics, which allow to be more sensitive in areas where
we expect a change. Assuming the weighting function w(·) to be continuous on [0,1], we can just
apply the CMT to obtain the weighted convergence. Thus, the limit would be f0(wγ(·)B(·)) or
f0(wγ(·)(B(·) + h(·))). But to highlight the observation’s start or end more prominently we may
drop the continuity of wγ in 0 or 1. To get weighted asymptotic results in this case, we pursue
various approaches. One is to assume a FCLT rate, as Csörgö and Horváth (1997) do in their proof
of Theorem 4.1.2. (ii). Another approach is to impose some additional assumptions on the random
sequence, over which the partial sum is taken, e.g. the fulfillment of Kolmogorov-type inequalities.
We consider three settings, where {Sn} is the sequence of the partial sums of {Zn} with S0 = 0
(a.s.):

Definition. We say that a random sequence {Zn}n∈N fulfills the first Kolmogorov-type inequality
for r > 0 if a constant C ∈ R exists such that for each n ∈ N, and η > 0

P

(
max

1≤k≤n
|Sk| ≥ η

)
≤ C

ηr

n∑
i=1

αi (K(1)
r )

holds true. Here {αn}n∈N is a non-negative, uniformly bounded sequence.

Definition. We say that a random sequence {Zn}n∈N fulfills the second Kolmogorov-type inequality
for r > 0 if a constant C ∈ R exists such that for each n ∈ N, m ∈ {1, . . . , n}, and η > 0

P

(
max

1≤k≤m
|Sn − Sn−k| ≥ η

)
≤ C

ηr

m∑
i=1

αn,i (K(2)
r )

holds true. Here {αn,i}n∈N,i∈{1,...,n} is a non-negative, uniformly bounded array.
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Definition. We say that a random sequence {Zn}n∈N fulfills the third (shifted) Kolmogorov-type
inequality for r > 0 if a constant C ∈ R exists such that for each n, v ∈ N and η > 0

P

(
max

1≤k≤n
|Sv+k − Sv| ≥ η

)
≤ C

ηr

n∑
i=1

αi,v (K(3)
r )

holds true. Here {αn,v}n,v∈N is a non-negative, uniformly bounded array.

Remark 2.1.3. 1. Usually, the first Kolmogorov-type inequality is defined without the assumption
of αn being uniformly bounded. We add this assumption since we will only use the Kolmogorov-

type inequality in this context. In the following, we will denote them (K(1)
r ), (K(2)

r ), and (K(3)
r ).

2. Tomacs and Ĺıbor (2006) showed that (K(1)
r ) is equivalent to the Hájek–Rényi inequality

P

(
max

1≤k≤m

∣∣∣∣Skβk
∣∣∣∣ ≥ η) ≤ c̃

ηr

m∑
i=1

αi
βri

(2.1.5)

for each m ∈ N, where {βn} is a non-decreasing sequence of positive constants, η,r,c,c̃ > 0.
This statement is traceable to Fazekas and Klesov (2001), Theorem 1.1.

3. Similarly, it is possible to show that (K(2)
r ) is equivalent to

P

(
max

1≤k≤m

∣∣∣∣Sn − Sn−kβk

∣∣∣∣ ≥ η) ≤ c̃

ηr

m∑
i=1

αn,i
βri

(2.1.6)

where βn is a non-decreasing sequence of positive constants, η,r,c,c̃ > 0 and n − 1 ≥ m.

Moreover, (K(3)
r ) can also be extended to a Hájek–Rényi-type inequality.

4. When stating that “a d-dimensional random vector {Zn} fulfills a Kolmogorov-type inequality“
we mean that each of the d components fulfills the Kolmogorov-type inequality.

As described above, we are interested in weighted convergence with weighting functions which are
noncontinuous in 0 and 1. The following sets of weighting functions are useful to point out which
additional condition is sufficient in the various steps of the proof. Later, we will only use the last set,
i.e., (2.1.9), of the following four sets of weighting functions for the a posteriori analysis. Basically,
we assume that each weighting function is an element of

WF =
{
w : (0,1)→ R>0 : w is continuous, non-increasing in a neighborhood of zero

and increasing in a neighborhood of one
}
.

The next set contains continuous weighting functions so that the maximum over (0,1) of a weighted
Brownian bridge, w(·)B(·), exists a.s.

W̃F
(A)

=
{
w ∈ WF : w(t) = o(1/

√
t log log(1/t)) = w(1− t), as t→ 0

}
. (2.1.7)

The next set of weighting functions contains those which enable us to work with the Hájek–Rényi-type
inequality

W̃F
(γ,r)

=
{
w : (0,1)→ R>0 : w continuous, non-increasing in a neighborhood

of zero, increasing in a neighborhood of one, and it holds that

n−r/2
[nt]∑
i=1

w(i/n)r → 0, n−r/2
[nt]∑
i=1

w(1− i/n)r → 0, as n→∞, t→ 0
}
.

(2.1.8)

11
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The last set contains those weighting functions which we will focus on, that is

WF (γ) =

{
wγ : (0,1)→ R>0 : wγ is continuous so that

wγ(t) = O(t−γ) = wγ(1− t), as t→ 0, for some γ ∈
[
0,

1

2

)}
.

(2.1.9)

It is obvious that WF (γ) ⊂ WF (γ,2) ⊂ W̃F
(A)

holds true. We will see that it is sufficient that,
additionally, the Kolmogorov-type inequalities are fulfilled for r ≥ 2 and wγ ∈ WF (γ,2) to ensure
that the weighted test statistics converge towards a non-degenerate distribution.

Theorem 2.1.4. Let wγ ∈ WF (γ) for some fixed γ ∈ [0,12), and let {Z(0)
n − ρn} fulfill (K(1)

r ) and

(K(2)
r ) for rz = 2. Then, under the assumption of Theorem 2.1.1 it holds

(i) under H0 and |D̂0 −D| = oP (1) that

T 0,0,0,γ
n

D−→ f0(wγ(·)B(·)); (2.1.10)

(ii) under Assumption HLA and |D̂0 −D| = oP (1) that

T 0,0,0,γ
n (·) D−→ f0(wγ(·)(B(·) + h(·))) (2.1.11)

with h(z) = D−1/2
(∫ z

0 gρ(x)dx− z
∫ 1

0 gρ(x)dx
)

;

(iii) under Assumption HA and with

|D̂1/2
0 | = oP

(
an|∆ρ|

λ(Rk∗)

n

((
k∗1
n

)1−γ ( n

n− k∗1

)γ
∨
(
n− k∗2
n

)1−γ ( n

k∗2

)γ))
,

where an → ∞, that for each finite c ∈ R+ and each continuous f0 : D[0,1] → R with
lim‖x‖→∞ f0(x) =∞

P

(
f0

(
an√
n
B0,0,γ
n

)
≥ c
)
→ 1.

Remark 2.1.5. 1. The remarks on Theorem 2.1.1 can be adapted to Theorem 2.1.4.

2. The assumption that {Z(0)
n − ρn} fulfills (K(1)

r ) and (K(2)
r ) can be reduced to: {Z(0)

1 , . . . ,Z
(0)
[nε]}

and {Z(0)
n−[nε], . . . ,Z

(0)
n } fulfill (K(1)

r ) and (K(2)
r ) for an arbitrarily small ε > 0, respectively.

This allows for a stronger dependency in {Z(0)
[nε]+1, . . . ,Z

(0)
n−[nε]}.

We split the proof into several lemmas. In the following, we will call (2.1.14) the weighted functional
convergence (WFC).

Lemma 2.1.6. Suppose g ∈ W̃F
(A)

and let {Zn} fulfill the FCLT

1√
n

[n·]∑
i=1

Zi
D[0,1]−→ D1/2W (·). (2.1.12)

If and only if

lim
ε→0

lim
n→∞

P

(
max

{k≤nε}∪{k≥n−nε}

∣∣∣∣g(k/n)
k√
n

(Zk − Zn)

∣∣∣∣ ≥ η) = 0 (2.1.13)

holds true for every η > 0, we obtain

g([n·]/n)
[n·]√
n

(Z [n·] − Zn)
D[0,1]−→ g (·)D1/2B(·). (2.1.14)

12
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Proof. ”⇒”: The CMT yields that the process Bn(·) = [n·]√
n

(Z [n·] − Zn) converges in distribution

towards a Brownian bridge as n→∞. Since g is continuous on [ε,1−ε] for every ε > 0, the weighted
process gnBn = g([n·] /n)Bn converges in distribution towards a weighted Brownian bridge g(·)B(·)
on [ε,1 − ε] by applying the CMT again. Define Bε

n = gnBn1[ε,1−ε] and Bε = gB1[ε,1−ε]. Then,
Billingsley (1968, Th. 4.2) completes this part of the proof since (2.1.13) holds and Bε converges in
probability towards the weighted Brownian bridge gB on [0,1] as ε→ 0. Here, we also use the law
of iterated logarithm and w(t) = o(1/

√
t log log(1/t)) = w(1− t) as t→ 0.

”⇐”: Suppose (2.1.14) holds true, the CMT implies that for every η > 0

lim
ε→0

lim
n→∞

P

(
sup
z∈[0,ε]

∣∣∣∣g([nz] /n)
[nz]√
n

(Z [nz] − Zn)

∣∣∣∣ ≥ η
)

(2.1.15)

= lim
ε→0

P

(
sup
z∈[0,ε]

|g(z)B(z)| ≥ η

)
= 0, (2.1.16)

where the last equality follows from the law of the iterated logarithm. The convergence on [1− ε,1]
can be shown in the same way as on [0,ε].

Lemma 2.1.7. Let the assumptions of Lemma 2.1.6 hold true and g ∈ WF (γ) for a γ ∈ [0,12).
Then the equation (2.1.13) can be reduced to∥∥∥∥∥∥

(
n

[n·]

)γ 1√
n

[n·]∑
i=1

Zi

∥∥∥∥∥∥
[0,ε]

= op(1) and

∥∥∥∥∥∥
(

n

n− [n·]

)γ 1√
n

n∑
i=1+[n·]

Zi

∥∥∥∥∥∥
[1−ε,1]

= op(1) (2.1.17)

as n→∞, followed by ε→ 0.

Proof. Firstly, we obtain that

max
k≤nε∪k≥n−nε

∣∣∣∣g(k/n)
k√
n

(Zk − Zn)

∣∣∣∣
≤ max

k≤nε

∣∣∣∣g(k/n)
k√
n

(Zk − Zn)

∣∣∣∣+ max
k≥n−nε

∣∣∣∣g(k/n)
k√
n

(Zk − Zn)

∣∣∣∣
≤ max

k≤nε

∣∣∣∣∣g(k/n)
k

n

1√
n

n∑
i=1+k

Zi

∣∣∣∣∣+ max
k≤nε

∣∣∣∣∣g(k/n)
n− k
n

1√
n

k∑
i=1

Zi

∣∣∣∣∣
+ max
k≥n−nε

∣∣∣∣∣g(k/n)
k

n

1√
n

n∑
i=1+k

Zi

∣∣∣∣∣+ max
k≥n−nε

∣∣∣∣∣g(k/n)
n− k
n

1√
n

k∑
i=1

Zi

∣∣∣∣∣ .
Since

max
k≤nε

∣∣∣∣g(k/n)
k

n

∣∣∣∣ = o(1), max
k≤nε

∣∣∣∣∣ 1√
n

n∑
i=1+k

Zi

∣∣∣∣∣ = OP (1), max
n≥k≥n−nε

∣∣∣∣g(k/n)
n− k
n

∣∣∣∣ = o(1),

and maxn≥k≥n−nε

∣∣∣ 1√
n

∑k
i=1 Zi

∣∣∣ = OP (1) the first and the fourth summand is equal to oP (1) as n→
∞, followed by ε→ 0. The uniform boundedness of g(k/n)(n−k)/n(k/n)γ and g(k/n)(k/n)(n/(n−
k))γ holds for each k ≤ nε and for k ≥ n − nε, such that (2.1.13) holds if and only if (2.1.17) is
fulfilled.

Remark 2.1.8. In the same way it can be proven that under the assumptions of Lemma 2.1.6 the
equation (2.1.13) can be reduced to∥∥∥∥∥∥ 1√

log(log(n/ [n·]))
1√
[n·]

[n·]∑
i=1

Zi

∥∥∥∥∥∥
[0,ε]

= Op(1) (2.1.18)
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and ∥∥∥∥∥∥ 1√
log(log(1− n/ [n·]))

1√
n− [n·]

n∑
i=1+[n·]

Zi

∥∥∥∥∥∥
[1−ε,1]

= Op(1) (2.1.19)

as first n→∞, followed by ε→ 0.

Lemma 2.1.9. Under the assumptions of Lemma 2.1.7, the equations in (2.1.17) are satisfied if

(K(1)
r ) and (K(2)

r ) hold for some r ≥ 2.

Proof. Since the first Kolmogorov-type inequality (K(1)
r ) is satisfied, it follows from the Hájek–Rényi-

type inequality (2.1.5), which equivalent to (K(1)
r ), that

P


∥∥∥∥∥∥
(
n

[n·]

)γ 1√
n

[n·]∑
i=1

Zi

∥∥∥∥∥∥
[0,ε]

≥ η

 = P

(
max

k∈[1,[nε]]

1

kγ

∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣ ≥ ηn 1
2
−γ

)

≤ C

ηrnr(
1
2
−γ)

[nε]∑
i=1

αi
iγr
≤ C1

ηrnr(
1
2
−γ)

[nε]∑
i=1

1

iγr
=


O(n−r(

1
2
−γ)), for γr > 1,

O(n−r(
1
2
−γ) log(nε)), for γr = 1,

O(ε1−γrn1−r 1
2 ), for γr < 1.

This implies that limε→0 limn→∞ P

(∥∥∥( n
[n·]

)γ
1√
n

∑[n·]
i=1 Zi

∥∥∥
[0,ε]
≥ η

)
= 0.

Since

P


∥∥∥∥∥∥
(

n

n− [n·]

)γ 1√
n

n∑
i=1+[n·]

Zi

∥∥∥∥∥∥
[1−ε,1]

≥ η

 = P

(
max

1≤k≤n−[nε]

∣∣∣∣Sn − Sn−kkγ

∣∣∣∣ ≥ ηn 1
2
−γ
)
,

it similarly follows that limε→0 limn→∞ P

(∥∥∥( n
n−[n·]

)γ
1√
n

∑n
i=1+[n·] Zi

∥∥∥
[1−ε,1]

≥ η
)

= 0.

Remark 2.1.10. 1. Under the assumptions of Lemma 2.1.6 the equations (2.1.18) and (2.1.19)

are satisfied if (K(1)
r ) and (K(2)

r ) hold for r > 2. Note that this assumption contradicts the one

of the FCLT. Hence, we will not consider W̃F
(A)

anymore.

2. Analogously, we can prove

max
1≤k≤[nε]

n−1/2w(k/n)|
k∑
i=1

Zi| = OP

n−1/2

 [nε]∑
i=1

w(i/n)r

1/r
 = oP (1),

max
1≤k≤[nε]

w(1− k/n)√
n

∣∣∣∣∣
n∑

i=n−k
Zi

∣∣∣∣∣ = OP

n−1/2

 [nε]∑
i=1

w(1− i/n)r

1/r
 = oP (1)

as n→∞, followed by ε→ 0 for all w ∈ W̃F
(γ,r)

.

Proof of Theorem 2.1.4. The convergence under H0 directly follows from the combination of
Lemma 2.1.6, Lemma 2.1.7, and Lemma 2.1.9. Furthermore, it holds that wγ([n·]/n) and
1
n

∑[n·]
i=1 gρ([n·]/n) converge towards wγ(·) and

∫ ·
0 gρ(x)dx uniformly on [ε,1−ε], ε > 0, respectively.

In addition, wγ([n·]/n)Rn,ρ(·) converges uniformly towards zero on [0,ε] and [1−ε,1], as n→∞ and

ε → 0. Hence, wγ([nz]/n)Rn,ρ(z) converges uniformly towards wγ(z)
(∫ z

0 gρ(x)dx− z
∫ 1

0 gρ(x)dx
)

on [0,1] and we get the second result. In the third claim, we obtain that

‖wγ([n·]/n)Rn,ρ(·)‖ ≥ |∆ρ|
λ(Rk∗)√

n

((
k∗1
n

)1−γ ( n

n− k∗1

)γ
∨
(
n− k∗2
n

)1−γ ( n

k∗2

)γ)
.

Thus, the assertion follows from using the same arguments.
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Remark 2.1.11. Obviously, the asymptotic distribution of a test statistic in a multidimensional set-
ting can similarly be proven.

Misspecification of the Parameters So far, we have assumed that the exact values of all parame-
ters µ1,n, µ2,n, σ2

1,n, and σ2
1,n are known. But the question is, what happens if information about the

true parameters is incorrect? The next lemma shows that there is some tolerance for misinformation
in these parameters.

Lemma 2.1.12. Let the assumptions of Theorem 2.1.1 hold true and set

µl,i = ml,i + dµ,l,i and σl,i = sl,i + dl,σ,i,

where infi∈N sl,i > ε > 0 and
∑n

i=1 |di| = o(
√
n) for each {di} ∈ {{d1,µ,i}, {d2,µ,i}, {d1,σ,i}, {d2,σ,i}}.

Then, Zi = (Xi −m1,i)(Yi −m2,i)(s1,is2,i)
−1 − ρi fulfills a FCLT. Thus, if we replace Z

(0)
i by Zi,

the convergences of Theorem 2.1.1 hold true.

Proof. Firstly, we note that

1√
n

[·n]∑
i=1

(
(Xi −m1,i)(Yi −m2,i)

s1,is2,i
− ρi

)
=

1√
n

[·n]∑
i=1

(
Z

(0)
i − ρi

)

+
1√
n

[·n]∑
i=1

d1,µ,i(Yi −m2,i)

s1,is2,i
+

1√
n

[·n]∑
i=1

d2,µ,i(Xi − µ1,i)

s1,is2,i

+
1√
n

[·n]∑
i=1

(
Z

(0)
i − ρi

)[(σ1,i

s1,i
− 1

)(
σ2,i

s2,i
− 1

)
+

(
σ1,i

s1,i
− 1

)
+

(
σ2,i

s2,i
− 1

)]
.

Now, we show that each of the last three summands is of order oP (1). We use Markov’s inequality
and the uniform boundedness of the first moments:

P

∥∥∥∥∥∥ 1√
n

[·n]∑
i=1

d1,µ,i(Yi −m2,i)

s1,is2,i

∥∥∥∥∥∥ ≥ η
 ≤ 1

η
IE

∥∥∥∥∥∥ 1√
n

[·n]∑
i=1

d1,µ,i(Yi −m2,i)

s1,is2,i

∥∥∥∥∥∥


≤ 1

η
√
n

n∑
i=1

|d1,µ,i|IE [|Yi −m2,i|]
s1,is2,i

= o(1),

as n→∞. Analogously, both other summands are of order oP (1). So the claim follows.

Remark 2.1.13. 1. The errors {di} have no effect on the asymptotic of the unweighted test
statistics.

2. To get a WFC (γ > 0), we need to impose further dependence and moment assumptions on
{(Xn,Yn)} or assumptions on the {dl,i}. One option is to assume that

∑n
i=1 i

−γ |di| = o(n1/2−γ)
so that we can estimate the weighted error terms in the following way:∥∥∥∥∥∥

(
n

[·n]

)γ 1√
n

[·n]∑
i=1

d1,µ,i(Yi −m2,i)

s1,is2,i

∥∥∥∥∥∥ ≤ nγ− 1
2

n∑
i=1

∣∣∣∣d1,µ,i(Yi −m2,i)

iγs1,is2,i

∣∣∣∣ = oP (1).

The first step follows from the triangle inequality. In the second step we use Markov’s inequality
and the uniform boundedness of the moments and of the parameter sequences.

Another option is to assume that the sequences dl,·,i have no influence on the fulfillment of the
Kolmogorov-type inequalities:

Lemma 2.1.14. Let the assumptions of Theorem 2.1.4 and Lemma 2.1.12 hold true. Moreover, for

each {diZi} with {Zi} ∈ {{ε1,i},{ε2,i}, {Z(0)
i −ρi}} and some sequence {di} with

∑n
i=1 |di| = o(

√
n)

let (K(1)
r ) and (K(2)

r ) be satisfied for r = 2. Then, the convergences of Theorem 2.1.4 hold true.
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Proof. It is clear that the three additive error summands of the proof of Lemma 2.1.12 weighted by

(n/[·n])γ are of the order oP (1). Each of these can be divided into sums of type 1
C

(
n

[n·]

)γ
1√
n

∑[·n]
i=1 diZi,

where {Zi} ∈ {{ε1,i},{ε2,i}, {Z(0)
i − ρi}}, C ∈ {σ1,σ2,σ1σ2}, and

{di} ∈ {{d1,µ,i},{d2,µ,i},{d1,σ,i},{d2,σ,i},{d1,µ,id2,µ,i},{d1,σ,id2,σ,i},{d1,σ,id2,µ,i},
{d1,µ,id2,σ,i}}.

Hence, it is sufficient to verify that for each combination it holds, on the one hand, that∥∥∥∥∥∥ 1

C

(
n

[n·]

)γ 1√
n

[·n]∑
i=1

diZi

∥∥∥∥∥∥
[0,ε]

= oP (1)

and, on the other hand, that∥∥∥∥∥∥ 1

C

(
n

n− [n·]

)γ 1√
n

n∑
i=[·n]+1

diZi

∥∥∥∥∥∥
[1−ε,ε]

= oP (1)

as n→∞, followed by ε→ 0. Both relations are fulfilled because of the Kolmogorov-type inequalities.
The result now follows.

2.1.2 Change-Point Estimation

This sub-subsection presents a change-point estimate under the epidemic change-point model and we

prove some rates for the speed of convergence. Since ρi is the expectation of Z
(0)
i , a change-point

estimate in a correlation model is similar to a change-point estimate in a ”change in the mean” model,
for which many different results are known, cf. Bai (1994), Lombard and Hart (1994), Bai (1997), Bai
and Perron (1998), Lavielle and Moulines (2000), Qu and Perron (2007), and for a survey we refer to
Aue and Horváth (2013).

In an AMOC model and under the assumptions of Theorem 2.1.1 we already know that B0,0,0
n (·) =

Bn(·) +Rn,ρ(·), where Bn converges towards a Brownian bridge and Rn,ρ satisfies that

D̂
1/2
0

|Rn(·)|√
n|∆n|

→
∣∣(· − θρ)+ − ·(1− θρ)

∣∣
uniformly on [0,1]. Here, θρ ∈ (0,1) is the change-point. Since the function on the right–hand side
is continuous and its maximum is at θρ, it remains to show that Bn = oP (D̂1/2(

√
n|∆n|)−1) to get

with the help of Kim and Pollard (1990, Th. 2.7) that

arg max |B0,0,0
n | P−→ θ. (2.1.20)

In the following, we are interested in the convergence rates of the estimates, i.e., we look for sequences
an →∞ such that

an|θ̂ − θ| = OP (1).

Epidemic Change-Points Firstly, we consider the slightly more general model, the epidemic
change-point setting, cf. Yao (1993), Hušková (1995), or Antoch and Hušková (1996). For the sake of
completeness we prove the following result, which is based on the proof of Bucchia and Heuser (2015,
Th. 4.1), which is stated under the more general setting of multidimensional panel data.

Theorem 2.1.15. Under Assumption HA set (k∗1,k
∗
2) = ([nθ∗1],[nθ∗2]) with 0 < θ∗1 < θ∗2 < 1.

Additionally, let {Z(0)
n − ρn} fulfill (K(2)

r ) and (K(3)
r ) for rz > 1. Then, it holds that

n‖θ̃ − θ∗‖ = OP (1), (2.1.21)
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where θ̃ = (θ̃1,θ̃2) ∈ arg max{Q̃n(s,t) : 0 ≤ s < t ≤ 1} with

Q̃n(s,t) =

 [nt]∑
i=1+[ns]

(Z
(0)
i − Z(0)

n)

 [nt]∑
i=1+[ns]

(Z
(0)
i − Z(0)

n)

 . (2.1.22)

Proof. See appendix (p. 173).

If we additionally allow that the change-points are local, we obtain the following result.

Theorem 2.1.16. Under the assumption of Theorem 2.1.15 with ∆−1
ρ,n = o(n−(rz−1)/rz), it holds that

n∆ρ,n‖θ̃ − θ∗‖ = OP (1). (2.1.23)

Proof. See appendix (p. 175).

Remark 2.1.17. The preceding theorem shows that the local epidemic change-points can be estimated
with some rate if the change size does not vanish ”too fast”, which is the case under Assumption HLA

(∆−1
ρ,n = O(n1/2)). In the case of rz = 2 and a local change vanishing slightly more ”slowly”, we will

still get some estimation rate.
Furthermore, it is possibly to extend these results by allow large or small change sets, cf. Hušková
(1995). Thereby, rate conditions of a combination of ∆ρ,n, k∗1, n− k∗2, k∗2 − k∗1, and n− (k∗2 − k∗1)
are necessary.

Multiple Change-Points In the following we are interested in the more general multiple change-

point setting, Assumption H
(M)
A .

Firstly, we assume that the number of abrupt changes R∗ = R ∈ N>0 is known and we want to
estimate the change-points θ1, . . . ,θR. To estimate these we use the well-known least square estimate
and define

(k̂
(ψ)
1 , . . . ,k̂

(ψ)
R ) ∈ arg min

{
Q(ψ)
n (k1, . . . ,kR) : 1 = k0 < k1 < . . . < kR+1 = n

}
(2.1.24)

with

Q(ψ)
n (k1, . . . ,kR) =

R+1∑
r=1

1{kr>kr−1}

kr∑
i=kr−1+1

(Z
(ψ)
i − Z(ψ)

kr
kr−1

)2, ψ = 0,1, . . . (2.1.25)

which has already been considered with ψ = 0, for instance by Lavielle and Moulines (2000) in
a modified form. These authors use the assumption that the distances between two change-points
have a rate of n to construct their estimates:

(k′1, . . . ,k
′
R) ∈ arg max

{
Q(0)
n (k1, . . . ,kR) : kr − kr−1 ≥ n∆n

}
,

where ∆n → 0 as n → ∞. Note that if we define ∆n = 2/n, we will get the same estimates as
for k̂1, . . . ,k̂R. However, in this case the results of Lavielle and Moulines (2000) do not provide the
possible estimation rate of |k̂r − k∗r | = OP (1).

Before we consider the general case we want to keep an eye on the special case of estimating one
change-point which has already been considered by Bai (1994). Here, we additionally investigate the
influence of the positions and the sizes of the structural breaks.

Theorem 2.1.18. Under H
(M)
A set R = 1, define k∗ = k∗1,n, ∆ρ,n = ∆ρ,1,n, and assume

|∆ρ,n|−
2rz
rz−1 = O (k∗ ∨ (n− k∗)) . (2.1.26)

If {Z(0)
n − ρn} fulfills (K(1)

r ) and (K(2)
r ) for some rz > 1, then it holds that

|k̂(0)
1 − k

∗| = OP

(
|∆ρ,n|−

2rz
rz−1

)
. (2.1.27)

17
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Proof. See appendix (p. 175).

Remark 2.1.19. Under H0 we obtain that

arg minQ(0)
n (k) = arg max

k−1

(
k∑
i=1

(Z
(0)
i − ρ)

)2

+ (n− k)−1

(
n∑

i=k+1

(Z
(0)
i − ρ)

)2


= arg max
n

k(n− k)

(
k∑
i=1

(Z
(0)
i − ρ)− k

n

n∑
i=1

(Z
(0)
i − ρ)

)2

,

where the right-hand side has already been investigated by several authors, cf. Lombard and Hart
(1994), Ferger (1994), or Ferger (2001). Under suitable assumptions the estimate k̂/n converges in
distribution towards a Bernoulli distributed random variable Z with P (Z = 0) = P (Z = 1) = 1

2 , cf.
Ferger (2001, Th. 2.7).

In the following theorem we consider the behavior of the estimate sequentially calculated. More
precisely, in a sequential procedure we obtain the data one by one. After a stopping time exceeds the
critical value and asserts that there is a break in structure, we want to estimate the location of this
change. Without stopping our observations and assuming that no second change–point will occur, we
use each new observation to estimate the change-point again and again. In the next theorem, we will
see that the maximal estimation error of all calculations after a certain period of time bn,m after the
change-point k∗ is of the same rate as in the above one-time estimation.

Theorem 2.1.20. Set bn,m = m|∆ρ,n|−
2rz
rz−1 . Then, under the assumptions of Theorem 2.1.18 it

holds that

max
k∗1,n+bn,m≤N≤n

|k̂1,N − k∗1,n| = OP

(
|∆ρ,n|−

2rz
rz−1

)
, as n→∞, followed by m→∞.

Proof. Firstly, for an,M = bn,M we obtain that

P ( max
k∗1,n+bn,m≤N≤n

|k̂1,N − k∗1,n| ≥ an,M + 1)

≤ P

 ⋃
k∗1,n+bn,m≤N≤n

{
min

k;|k−k∗|≥an,M
Q

(0)
N (k) ≤ Q(0)

N (k∗)

}
and with Z̃i = Z

(0)
i − ρi that

Q
(0)
N (k)−Q(0)

N (k∗)

= ∆2
ρ,n(k∗ − k)

N − k∗

N − k

(
1 +

∆−2
ρ,n

k∗ − k

k∗∑
i=k+1

Z̃iρi +
∆−2
ρ,n

N − k∗
N∑

i=k∗+1

Z̃iρi

)
1{k<k∗}

+ ∆2
ρ,n(k − k∗)k

∗

k

(
1 +

∆−2
ρ,n

k∗

k∗∑
i=1

Z̃iρi +
∆−2
ρ,n

k − k∗
k∑

i=k∗+1

Z̃iρi

)
1{k≥k∗}.

Since the Hájek–Rényi–type inequality implies that

max
k∗1,n+bn,m≤N≤n

∣∣∣∣∣ 1

N − k∗
N∑

i=k∗+1

Z̃iρi

∣∣∣∣∣ = OP


 n−k∗∑
k=bn,m

k−rz

1/rz
 = OP (b−(rz−1)/rz

n,m )

as n→∞, followed by m→∞, we obtain with the arguments used in the proof of Theorem 2.1.18
that the content of the previous brackets is asymptotically positive, as n → ∞, m → ∞, and
M →∞. Hence, the claim follows.
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Now, we focus on the multiple change-point estimation. Therefore, we need the following technical
Lemma.

Lemma 2.1.21. Define a class of step-functions with m jumps on [1,n], n > 1, by

Dm,n =
{
g : [1,n]→ R : g(x) = ρ0 +

m∑
j=1

∆
(m)
j 1{k(m)

j ≤[x]}, with some k
(m)
i ∈ N

such that 1 = k
(m)
0 < k

(m)
1 , . . . < k(m)

m < k
(m)
m+1 = n, inf

1<j
|∆(m)

j | > 0
}
.

Then, it holds for any m ∈ N, m < n that for all g1 ∈ Dm,n and g2 ∈
⋃m−1
i=1 Di,n∫ n

1
(g1(x)− g2(x))2dx ≥ 1

2
min

1≤i≤m
(∆

(m)
i )2 min

1≤i≤m+1
(k

(m)
i − k(m)

i−1).

Proof. See appendix (p. 176).

Theorem 2.1.22. Under Assumption H
(M)
A let {Z(0)

n − ρn} fulfill (K(1)
r ) and (K(2)

r ) for rz > 1
and let their rth (r > 2) moments be uniformly bounded. In addition, let

n1/rz+1/r = o(min
i

∆2
ρ,i,n∆k∗,n) (2.1.28)

as n→∞. Then, it holds that

max
1≤j≤R

an|θρ,j − θ̂(0)
ρ,j | = OP (1),

where θρ,j = limn→∞ k
∗
j /n, θ̂

(0)
j = k̂

(0)
j /n, and

an = n

[(
min

1≤i≤R
∆2
ρ,i/ max

1≤i≤R
|∆ρ,i|

)rz/(rz−1)

∧
(

min
i

∆2
ρ,i,n/max

r
|∆k∗,r,n|2/rz−1

)]
. (2.1.29)

Remark 2.1.23. 1. The above theorem contains some scenarios where, on the one hand, the
change sizes may asymptotically vanish and, on the other hand, the asymptotic change-points
θ1, . . . ,θR do not have to be different.

2. If the number of change-points R is misspecified and is expected to be too high, then there are
R change-point estimates which satisfy an|θρ,j − θ̂ρ,j | = OP (1). Otherwise, if the number of
change-points is expected to be too low, the change-point estimates approximate a subset of the
change-points depending on k∗j − k∗j−1 and ∆ρ,j such that an|θρ,j − θ̂ρ,j | = OP (1).

3. The second condition of the preceding theorem can be replaced by

max
1≤k1<k2≤n

1

k2 − k1

 k2∑
i=k1+1

(Z
(0)
i − ρi)

2

= oP (min
i

∆2
ρ,i,n∆k∗,n).

4. If mini,n |∆ρ,i,n| ≥ ε > 0, ∆k∗,n ∼ n, r > 2, and rz = 2, then we can choose an = n.

Proof of Theorem 2.1.22. Define a1,n,N = Nn/an.
Firstly, we obtain with k0 = 0, kR+1 = n, and with some r0 ∈ {1, . . . ,R} that

P (an|θ̂r0 − θr0 | ≥ N + 1) ≤ P

(
min

1<k1<...<kR<n;|kr0−k∗r0 |≥a1,n,N
Q(0)
n (k) ≤ Q(0)

n (k∗)

)
.
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Set Z̃
(0)
i = Z

(0)
i − ρi. Then, we get

Q(0)
n (k)−Q(0)(k∗) =

R+1∑
r=1

kr∑
i=kr−1+1

[
2 (ρi − ρ(kr−1,kr)) Z̃

(0)
i + (ρi − ρ(kr−1,kr))

2
]

+

R+1∑
r=1

[
(k∗r − k∗r−1)

(
Z̃(0)(k∗r−1,k

∗
r)
)2
− (kr − kr−1)

(
Z̃(0)(kr−1,kr)

)2
]
,

where we will show that
∑R+1

r=1

∑kr
i=kr−1+1 (ρi − ρ(kr−1,kr))

2 is the dominating summand. Further-

more, we obtain that
∑R+1

r=1 (k∗r − k∗r−1)
(
Z̃(0)(k∗r−1,k

∗
r)
)2

is non-negative.

Secondly, we define

gρ : [1,n]→ [−1,1], x 7→ ρ[x] and gρ,k : [1,n]→ [−1,1], x 7→
R+1∑
r=1

1[x]∈(kr−1,kr]ρ(kr−1,kr)

and obtain that

R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr))
2 =

∫ n

1
(gρ(x)− gρ,k(x))2dx.

Furthermore, it holds for each fixed r∗ ∈ {1, . . . ,R} with kr∗ 6= k∗r∗ that:

1. If kr∗ ∈ [1,k∗r∗− 1], then gρ and gρ,k are step-functions with at least R− r∗+ 1 and exactly
R− r∗ many steps on [kr∗ ,n], respectively.

2. If kr∗ ∈ [k∗r∗ + 1,n], then gρ and gρ,k are step-functions with at least r∗ and exactly r∗ − 1
many steps on [1,kr∗ ], respectively.

In the first case it holds with Lemma 2.1.21 that∫ n

1
(gρ(x)− gρ,k(x))2dx ≥

∫ n

kr∗
(gρ(x)− gρ,k(x))2dx

≥ 1

2

(
(k∗r∗ − kr∗) ∧ min

r∗≤i≤R
(k∗i+1 − k∗i )

)
min

r∗≤i≤R
∆2
ρ,i,n,

and in the second case that∫ n

1
(gρ(x)− gρ,k(x))2dx ≥

∫ kr∗

1
(gρ(x)− gρ,k(x))2dx

≥ 1

2

(
(k∗r∗ − kr∗) ∧ min

1≤i≤r∗
(k∗i − k∗i−1)

)
min

1≤i≤r∗
∆2
ρ,i,n.

Hence, we get for ∆k∗,i,n = k∗i − k∗i−1 that∫ n

1
(gρ(x)− gρ,k(x))2dx ≥ 1

2

(
‖k∗ − k‖ ∧∆k∗,n

)
min

1≤i≤R
∆2
ρ,i,n.

Thus if there is a r∗ ∈ {1, . . . ,R} and an ε > 0 so that |kr∗ − k∗r∗ | ≥ ε∆k∗,n ∨ a1,n,N , then it is quite
clear that

max
k

∣∣∣∣∣∣
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(0)
i

∣∣∣∣∣∣ ≤ c(R+ 1) max
1≤i≤R

|∆ρ,i,n| max
1≤k1<k2≤n

∣∣∣∣∣∣
k2∑

i=k1+1

Z̃
(0)
i

∣∣∣∣∣∣
= OP (n1/rz max

1≤i≤R
|∆ρ,i,n|).
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Hence, the above yields

max
k

R+1∑
r=1

(kr − kr−1)
(
Z̃(0)(kr−1,kr)

)2
≤ (R+ 1)

 max
1≤k1<k2≤n

1√
k2 − k1

∣∣∣∣∣∣
k2∑

i=k1+1

Z̃
(0)
i

∣∣∣∣∣∣
2

,

where we can split the index set over k1 < k2 into parts where the difference between k1 and k2 is
either bigger or smaller than bn = n1/rz−1/r. This implies that

max
1≤k1<k2≤n

1√
k2 − k1

∣∣∣∣∣∣
k2∑

i=k1+1

Z̃
(0)
i

∣∣∣∣∣∣ ≤ b1/2n max
1≤k≤n

|Z̃(0)
k |+ b−1/2

n max
k2−k1≥bn

∣∣∣∣∣∣
k2∑

i=k1+1

Z̃
(0)
i

∣∣∣∣∣∣
= OP (b1/2n n1/r + b−1/2

n n1/rz)

and, in addition, that

max
k

R+1∑
r=1

(kr − kr−1)
(
Z̃(0)(kr−1,kr)

)2
= OP (bnn

2/r + b−1
n n2/rz) = OP (n1/rz+1/r)

as n→∞. Hence, using the rate as displayed in (2.1.28) we get that

P

(
min

1<k1<...<kR<n;‖k−k∗‖≥ε∆k∗,n
Q(0)
n (k)−Q(0)

n (k∗) ≤ 0

)

= P

(
1−OP

(
n1/rz

ε∆k∗,n ∨ a1,n,N

max1≤i≤R |∆ρ,i,n|
min1≤i≤R |∆ρ,i,n|

)

−OP

(
n1/rz+1/r

ε∆k∗,n ∨ a1,n,N min1≤i≤R |∆ρ,i,n|

)
≤ 0

)
→ 0

as n → ∞, followed by N → ∞. Finally, it remains to consider the case in which we minimize over
each kr, which is in an ε-neighborhood of k∗r with a radius of ε∆k∗,n. Then, we get

Q(0)
n (k)−Q(0)

n (k∗)

≥ c‖k∗ − k‖ min
1≤i≤R

∆2
ρ,i +

R+1∑
r=1

[
(k∗r − k∗r−1)

(
Z̃(0)(k∗r−1,k

∗
r)
)2
− (kr − kr−1)

(
Z̃(0)(kr−1,kr)

)2
]

− 2

∣∣∣∣∣∣
R∑
r=0

c(1)
kr,kr+1

kr+1∧k∗r+1∑
i=kr∨k∗r+1

Z̃
(0)
i + c

(2)
kr,kr+1

kr∨k∗r∑
i=kr∧k∗r+1

Z̃
(0)
i + c

(3)
kr,kr+1

kr+1∨k∗r+1∑
i=kr+1∧k∗r+1+1

Z̃
(0)
i

∣∣∣∣∣∣ ,
where the second summand of the first line is in this case equal to OP (max1≤r≤R+1 |∆k∗,r,n|2/rz−1)
due to the Kolmogorov-type inequalities. Here, ckr−1,kr fulfills the following properties as n→∞

max
|kl−k∗l |≤ε∆k∗,n,l=r,r+1

|c(1)
kr−1,kr

|‖k − k∗‖−1 = O((k∗r+1 − k∗r)−1 max
r
|∆ρ,r,n|)

and

max
l=2,3

‖c(l)
kr−1,kr

‖ = O( max
1≤i≤R

|∆ρ,i,n|).

Hence, using the Kolmogorov-type inequalities we observe that

P (an|θ̂r0 − θr0 | ≥ N + 1) ≤ o(1)

+ P

(
c min

1≤i≤R
∆2
ρ,i −OP

(
maxr |∆k∗,r,n|2/rz−1

Nn/an

)
−OP

(
max
r

∆ρ,r,n∆
1/rz−1
k∗,n

)

− C(R+ 1) max
1≤i≤R

|∆ρ,i,n| max
1≤r≤R

max
1≤|kr−k∗r |≤εn

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(0)
i |

|kr − k∗r | ∨ (Nn/an)
≥ 0

)
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as n→∞ followed by N →∞. Now, we use the Hájek-Rényi-type inequalities to obtain

max
1≤|kr−k∗r |≤εn

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(0)
i |

|kr − k∗r | ∨ (Nn/an)
= OP

(
(Nn/an)−(rz−1)/rz

)
.

Due to the assumed displays (2.1.28) and (2.1.29), each of the three OP (·) terms is of order oP (∆2
ρ)

so that the claim follows.

Remark 2.1.24. Suppose ∆k∗,n ∼ n, k∗i ∼ n, rz = 2, and r > 2. Then, we could set ρi equal

to a gρ(i/n), where gρ is an integrable step function, and obtain that n−1Q
(0)
n ([n·]) ∈ D([0,1]R).

Furthermore, we obtain with the above proof that n−1Q
(0)
n ([n·]) converges in probability towards a

deterministic function, i.e., it holds that

sup
x1,...,xR∈[0,1]
x1<...<xR

∣∣∣∣∣∣n−1Q(0)
n ([nx1], . . . ,[nxR])−

R+1∑
r=1

∫ xr

xr−1

(
gρ(z)−

∫ xr
xr−1

gρ(y)dy

xr − xr−1

)2

dz

∣∣∣∣∣∣ = oP (1).

Now, we consider the assumption that the number of change-points R = R∗, R∗ ∈ N, is unknown.
Let the estimates be given by

(k̂(ψ),R̂(ψ)) ∈ arg min
{
Q(ψ)
n (k1, . . . ,kR) + β(ψ)

n R : 1 = k0 < k1 < . . .

< kR < kR+1 = n,R ≤ C∗
}
,

(2.1.30)

where C∗ ∈ N is some upper bound for the number of change-points and ψ = 0,1 . . . is a de-
sign index. Here, βn is a sequence of non-negative numbers so that βnR is a penalty term which
is applied to avoid over-fitting. This concept is not new and was already considered by Lavielle and
Moulines (2000) in a slightly modified way.

Theorem 2.1.25. Under the assumptions of Theorem 2.1.22 let be given that

d(0)
n = n1/r+1/rz � β(0)

n ≤
1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,n. (2.1.31)

Then, the estimate R̂(0) is consistent for the number of change-points R∗.

Remark 2.1.26. 1. The lower (upper) bound for β
(0)
n is required to prevent overestimation (un-

derestimation) of the numbers of change-points. Heuristically, we get the best asymptotic be-

havior if we choose β
(0)
n equal to the upper bound since the error terms of the change-point

estimation and of the change-point number estimation have the same upper bound in this case.

2. The problem is still that we have to postulate that we already know the minimal step size and
the distance between the closest change-points to choose an optimal βn. However, if rz = 2,

which is not unusual, and r is not bounded, i.e., each moment of Z
(0)
n exists, it is sufficient

that β
(0)
n tends to infinity as n→∞.

Proof of Theorem 2.1.25. Set βn = β
(0)
n . It is obviously sufficient to show that the sets {R̂ < R∗}

and {R̂ > R∗} are asymptotically empty. Firstly, we consider the set {R̂ < R∗}. It holds that

P (R̂ < R∗) = P

(
min

1≤k≤n;R<R∗
Q(0)
n (k) + βnR < min

1≤k≤n;R≥R∗
Q(0)
n (k) + βnR

)
≤ P

(
min

1≤k≤n;R<R∗
Q(0)
n (k)−Q(0)

n (k∗)− βn(R∗ − 1) < 0

)
= P

(
oP ( min

1≤i≤m
∆2
ρ,i,n∆k∗,n) +

1

2
min

1≤i≤m
∆2
ρ,i,n∆k∗,n − βn(R∗ − 1) < 0

)
= o(1),
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where we use the same arguments as in the proof of Theorem 2.1.22 together with the assumption
that βn ≤ 1

4C∗ min1≤i≤m ∆2
ρ,i,n∆k∗,n.

Now, we consider the set {R̂ > R∗} and obtain

P (R̂ > R∗) = P

(
min

1≤k≤n;R>R∗
Q(0)
n (k) + βnR < min

1≤k≤n;R≥R∗
Q(0)
n (k) + βnR

)
≤ P

(
min

1≤k≤n;R>R∗
Q(0)
n (k)−Q(0)

n (k∗) + βn < 0

)
.

Furthermore, it holds that

Q(0)
n (k)−Q(0)

n (k∗) =

R+1∑
r=1

kr∑
i=kr−1+1

[
2 (ρi − ρ(kr−1,kr)) Z̃

(0)
i + (ρi − ρ(kr−1,kr))

2
]

+
R∗+1∑
r=1

(k∗r − k∗r−1)
(
Z̃(0)(k∗r−1,k

∗
r)
)2
−
R+1∑
r=1

(kr − kr−1)
(
Z̃(0)(kr−1,kr)

)2
.

We already know from the proof of Theorem 2.1.22 that the latter terms are of the order OP (n1/r+1/rz).
Next, we consider the double sum on the right-hand side of the above equation: For the first

term, for all r ∈ {1, . . . ,R + 1}, and each l ∈ {2, . . . ,R∗ + 1} with k∗l−1 < kr−1 < kr ≤ k∗l we
obtain that ρi − ρ(kr−1,kr) = 0 for all i ∈ (kr−1,kr]. Hence, it remains to consider the cases where
k∗l−2 < kr−1 ≤ k∗l−1 < kr ≤ k∗l and kr−1 ≤ k∗l−1 < k∗l < kr. In the last case the inner sum is uniformly
bounded in k with rate

(kr − kr−1)1/rzan(kr−1,kr)
(
OP (1) + (kr − kr−1)(rz−1)/rzan(kr−1,kr)

)
,

where we use the Kolmogorov-type inequalities and an(kr−1,kr) equal to |ρi−ρ(kr−1,kr)| ≤ 2 with i
in (kr−1, k

∗
l−1], (k∗l−1,k

∗
l ], or (k∗l ,kr]. In the case where an(kr−1,kr)� (kr−kr−1)−(rz−1)/rz the above

rate is asymptotically non-negative and it remains to show that βn →∞ to obtain that the inner sum
is dominated by βn. In the case of an(kr−1,kr) = O((kr−kr−1)−(rz−1)/rz) = O((k∗l −k∗l−1)−(rz−1)/rz),

the above rate has a lower bound which has a rate of −(k∗l − k∗l−1)(2−rz)/rz .
In the case where k∗l−2 < kr−1 ≤ k∗l−1 < kr ≤ k∗l , we obtain rates for the inner sum of the forms

|k∗l−1 − kv|1/rzan(k)
(
OP (1) + |k∗l−1 − kv|(rz−1)/rzan(k)

)
and

|k∗w − kr|1/rzan(k)
(
OP (1) + |k∗w − kr|(rz−1)/rzan(k)

)
with v ∈ {r − 1,r} and w ∈ {l − 1,l}, where, again, an(k) stands for |ρi − ρ(kr−1,kr)|. The
latter expression has again three different values depending on i. The same arguments yield that

Q
(0)
n (k)−Q(0)

n (k∗) is dominated by βn if βn � n1/r+1/rz . Hence, we get |R̂−R∗| = oP (1) if (2.1.31)
holds and the proof is complete.

Remark 2.1.27. If the sample size n is sufficiently large, the numerical complexity is of order nR
∗

or nR
∗+1, depending on the number of changes being known or not. This order is quite high compared

to a binary segmentation algorithm, cf. Eckley et al. (2011). Wied and Galeano (2014) presented an
algorithm which could only detect some special kind of change-points. However, it is also possible to
combine the presented detector with a binary segmentation idea which yields a faster estimation. To

this goal, we have to calculate Qn =
∑n

i=1(Z
(0)
i − Z(0))2 and min1≤k≤nQ

(0)
n (k) + βn and compare

both. If the first term is smaller, it will be assumed that there is no change and we stop the procedure.
Otherwise, we can reason that there is at least one change, so we can argue on subsets such as
{1, . . . ,[n/2]} and {[n/2]+1, . . . ,n}. Then, the change-point estimates, k̂1, . . . ,k̂R̂, are the collection

of the arguments which minimize Q
(0)
n (·) on the disjoint sets {1, . . . , n1}, . . . {nR̂ + 1, . . . , n}, where
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on subsets {ni+ 1, . . . ,ni+ (ni+1−ni)/2} and {ni+ (ni+1−ni)/2, . . . ,ni+1}, i = 1, . . . R̂, the terms

Qn are smaller than the corresponding minQ
(0)
n (k) + βn.

The difference between this algorithm and the one of Wied and Galeano (2014) is the detector and the
bounds of the subsets. Here they are non-random whereas in Wied and Galeano (2014) they depend on
the estimates calculated by the iteration step before. If we assume that the change-points and change
size are such that for all θ1 ∈ {0, θ∗1, . . . ,θ∗R−1} and θ2 ∈ {θ1, . . . ,θ

∗
R, 1} \ θ1

arg min

{∫ x

θ1

(
gρ(z)−

∫ x
θ1
gρ(y)dy

x− θ1

)2

dz

+

∫ θ2

x

(
gρ(z)−

∫ θ2
x gρ(y)dy

θ2 − x

)2

dz

∣∣∣∣∣ x ∈ [θ1,θ2]

}
∈ {θ∗1, . . . ,θ∗R} ∩ (θ1,θ2),

it is possible to use the algorithm presented in Wied and Galeano (2014) with our detection rule.
This technical assumption is suitable for the situation that one change-point between two others is
dominated in some sense.

In the preceding remark we make use of the fact that the statistic Q
(0)
n is and is not smaller than

min1≤k≤nQ
(0)
n (k) + βn under H0 and Assumption HA, respectively. Thereby, we can construct a

quite simple test in the following theorem.

Theorem 2.1.28. Let {Z(0)
i − ρi} fulfill (K(1)

r ) and (K(2)
r ) for rz > 1. Furthermore, we set

D(0)
n (X,Y ) =

{
1, T

(0)
n > 1,

0, T (0) ≤ 1
with T (0)

n =

∑n
i=1(Z

(0)
i − Z(0))2

min1≤k≤nQ
(0)
n (k) + βn

. (2.1.32)

Then, it holds under H0 with log(n)2 ∨ n2/rz−1 = o(βn) that

D(0)
n (X,Y )

P−→ 0

and under Assumption HA with βn ∨ n1/rz = o(λ(Rck∗)λ(Rk∗)
2∆2

ρ,nn
−2) that

D(0)
n (X,Y )

P−→ 1.

Proof. Under H0 we obtain by using Z̃
(0)
i = Z

(0)
i − ρ0 that

{
T (0)
n > 1

}
=

{
n∑
i=1

(Z
(0)
i − Z(0))2 − min

1≤k≤n
Q(0)
n (k) > βn

}

=

 max
1≤k≤n−1

n

k(n− k)

(
k∑
i=1

Z̃
(0)
i −

k

n

n∑
i=1

Z̃
(0)
i

)2

> βn


=
{
OP

(
n2/rz−11{rz 6=2} + log(n)21{rz=2}

)
> βn

}
,

in which we use the Hájek-Rényi-type inequalities in the last line. Hence, it remains to show that
log(n)2 ∨ n2/rz−1 = o(βn) as n→∞ to obtain the claim. Under Assumption HA we obtain

{
T (0)
n > 1

}
=

{
n∑
i=1

(Z
(0)
i − Z(0))2 − min

1≤k≤n
Q(0)
n (k) > βn

}

=

 max
1≤k≤n−1

k(n− k)

n
(ρk1 − ρn1+k)

2 +
n

k(n− k)

(
k∑
i=1

Z̃
(0)
i −

k

n

n∑
i=1

Z̃
(0)
i

)2

+2

[
k∑
i=1

ρiZ̃
k

1 +
n∑

i=1+k

ρiZ̃
n

1+k −
n∑
i=1

ρiZ̃
n

1

]
> βn

}

24



A POSTERIORI ANALYSIS UNDER GENERAL DEPENDENCY FRAMEWORK

=

{
max

1≤k≤n−1

k(n− k)

n
(ρk1 − ρn1+k)

2 +OP (n1/rz) > βn

}
⊃
{
λ(Rck∗)λ(Rk∗)

2

2n2
∆2
ρ,n +OP (n1/rz) > βn

}
.

Hence, using βn ∨ n1/rz = o(λ(Rck∗)λ(Rk∗)
2∆2

ρ,nn
−2) completes the proof.

Remark 2.1.29. 1. It remains unclear how to choose βn such that the test is in some sense
optimal. However, the test is more conservative if a larger value of βn is chosen.

2. Assuming βn = log(n)2 and a single change-point is existent at k∗1 = n−
√
n, we obtain that in

the preceding proof the positive deterministic function does not necessarily dominate the random
term. However, if k∗1 = n− n1/2+ε for an arbitrarily small ε > 0, this cannot happen.

3. Under some additional assumptions we can apply Darling and Erdös (1956) to obtain that
log(log(n))� βn still holds under H0.

The following corollary will be used in Section 4. There, we sequentially estimate a change in the
means which has to be detected before the change in the mean influences the stopping time controlling
the change in the correlation.

Corollary 2.1.30. Assume a change-point k∗1 = [nθ], θ ∈ (0,1), in an AMOC model. Assume the
assumptions of Theorem 2.1.28 to be fulfilled with rz = 2. Moreover, set βn =

√
n and

k̂n =

{
n, if T

(0)
n ≤ 1,

arg minQ
(0)
n (k), if T

(0)
n > 1,

(2.1.33)

where T
(0)
n is defined in (2.1.32). Then, for any sequence cn →∞ as n→∞ we get

P

(
max

1≤k≤n
k̂k ≤ k∗1 + cn

√
n

)
→ 1, as n→∞.

Proof. Firstly, we obtain with an = cn
√
n that

max
1≤N≤n

k̂N = max
1≤N≤n

(
N ∗ 1{T (0)

N ≤1} + 1{T (0)
N >1} arg min

1≤k≤N
Q

(0)
N (k)

)
≤
(
n ∗ 1{mink∗1+an≤N≤n

T
(0)
N ≤1}

+ 1{maxk∗1+an≤N≤n
T

(0)
N >1} max

k∗1+an≤N≤n
arg min

1≤k≤N
Q

(0)
N (k)

)
.

Thus, it holds that

P

(
min

k∗1+an≤N≤n
T

(0)
N ≤ 1

)
= 1− P

(
min

k∗1+an≤N≤n
T

(0)
N > 1

)
≤ 1− P

(
min

k∗1+an≤N≤n
max

1≤k≤N−1

k(N − k)

N
(ρk1 − ρN1+k)

2 −OP (n1/2) > βk∗1+an

)
≤ 1− P

(
k∗1an
k∗1 + an

(∆ρ,1)2 −OP (n1/2) > βk∗1+an

)
= o(1)

if n1/2 = o
(
k∗1an
k∗1+an

(∆ρ,1)2
)

. Theorem 2.1.20 yields

P

(
max

k∗1+an≤N≤n
arg min

1≤k≤N
Q

(0)
N (k) ≤ k∗1 + an

)
−→ 1,

which finally implies the claim.
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2.1.3 Long-run Variance Estimation

This paragraph investigates the convergence rates of some LRV estimates. These estimates are needed
to normalize the limit process and have been investigated i.a. by Newey and West (1986) and Andrews
(1991) for multivariate time series. Juhl and Xio (2009) and Hušková and Kirch (2010) focus on LRV
estimates under changes in the location.
In the following, we assume that we already have a consistent kernel estimate for LRV using the exact
correlation coefficient ρi. Since these coefficients are usually unknown, we replace them by some
estimates, i.e., we are interested in

D̂0 = D̂0,n =
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(0)
i − ρ̃n(i))(Z

(0)
j − ρ̃n(i)), (2.1.34)

where qn is the bandwidth which tends towards infinite as n → ∞. Instead of assuming a specific
type of correlation estimates, we specify general conditions on the estimation errors of ρ̃n(i)− ρi.
Definition 2.1. A kernel is a non-negative, real-valued, integrable function f which fulfills f(0) = 1,∫ ∞

−∞
f(x) dx = 1 and f(−x) = f(x) for all x ∈ R.

Remark 2.1.31. For many results the symmetry of f is not necessary but simplifies the proof.

In the following theorem we consider eight different types, (A)-(H), of estimation errors. Case (A)
is motivated by the situation where the correlations ρi and their estimates ρ̂i are constant for all i.
Case (B) represents the scenario where the constant correlation is disturbed by a deterministic error
(e.g. in the situation of misspecified parameters). Case (C) includes the setting of a local change-point
assumption. In the case of (D) we consider the situation where the estimation error is just bounded
as in the case of HA. Cases (E)-(H) represent situations (A)-(D) respectively, where the estimation
errors are now split on random intervals. This becomes necessary in the case of piecewise constant
correlation estimates.

Remark 2.1.32. Let {Xi,n}i=1,...,n,n∈N be a random array and din a deterministic array. We use
the notation Xi,n = OP (1) +din to denote: Xi,n−din is independent of the index i and its absolute
value is equal to OP (1).

The following result is well-known and has already been investigated in many different contexts.
We prove it for the sake of completeness.

Theorem 2.1.33. Assume the following conditions:

1. f is a kernel and qn is a bandwidth with qn →∞ and qn = o(n) as n→∞,

2. {Z(0)
n − ρn} fulfills (K(1)

r ) for some rz > 1,

3. it holds that n−1Var
[∑n

i=1 Z
(0)
i

]
→ D > 0 and

D̂n =
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(0)
i − ρi)(Z

(0)
j − ρj)

P−→ D, (2.1.35)

4. let the estimation error ρi − ρ̃n(i) fulfill one of the following cases:

ρi − ρ̃n(i) = R̂ρ,n(i) =



OP (n−δ1), case (A),

OP (n−δ1) + d
(1)
in , case (B),

OP (n−δ1) + d
(2)
in , case (C),

OP (n−δ1) + d
(3)
in , case (D),∑m

j=1 1Ĉj
(i)OP (n−δj ), case (E),∑m

j=1 1Ĉj
(i)OP (n−δj ) + d

(1)
in , case (F ),∑m

j=1 1Ĉj
(i)OP (n−δj ) + d

(2)
in , case (G),∑m

j=1 1Ĉj
(i)OP (n−δj ) + d

(3)
in , case (H),
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where δj ≥ 0 for all j ∈ {1, . . . ,m}, m ∈ N and where

•
∑n

i=1 |d
(1)
in | = o(

√
n),

∑n
i=1 |d

(2)
in | = O(

√
n), sup1≤i≤n |d

(2)
i,n | = O(n−1/2),

supn,i∈N |d
(3)
i,n | ≤ C <∞;

• 1
n

∣∣∣∑n
i,j=1 f

(
i−j
qn

)
d

(k)
jn (Z

(0)
i − ρi)

∣∣∣ = OP (a
(k)
n ) with a

(k)
n → 0, for k = 1, 2, 3;

• in cases of (E)-(G) we assume that
·⋃

j∈{1,...,m} Ĉj = {1, . . . ,n} and that there are sets

C1, . . . ,Cn so that P
(⋂

j∈{1,...,m}

{
Ĉj ⊂ Cj

})
→ 1.

Then, it holds that D̂0,n = D̂n + R̂
(0)
n with

R̂(0)
n =



R̃
(A)
n = OP (qnn

−2δ1) +OP (qnn
−(1−1/rz+δ1)), under (A),

R̃
(A)
n +OP (qnn

−(1/2+δ1)) +O(qnn
−1) +OP (a

(1)
n ), under (B),

R̃
(A)
n +OP (qnn

−(1/2+δ1)) +O(qnn
−1) +OP (a

(2)
n ), under (C),

R̃
(A)
n +OP (qnn

−δ1) +O(qn‖d(3)
in ‖2) +OP (a

(3)
n ), under (D)

OP
(
qnn

−1(n1/r−mink δk + maxk1,k2 n
−δk1−δk2#(Ck1) ∧#(Ck1))

)
, under (E),

R̃
(E)
n +OP (a

(1)
n )) + oP (1) + oP (qnn

−1/2−mink δk), under (F ),

R̃
(E)
n +OP (a

(2)
n ) +O(qnn

−1) +OP (qnn
−1−1/2 maxk #Ckn

−δk), under (G),

R̃
(E)
n +O(qn) +OP (a

(3)
n ) +OP (qnn

−1 maxk #Ckn
−δk), under (H).

(2.1.36)

Proof. See appendix (p. 176).

Remark 2.1.34. 1. Using Markov’s inequality it is obvious that a
(1)
n = o(qnn

−1/2), a
(2)
n =

O(qnn
−1/2), and a

(3)
n = O(qn) hold true. The latter is a rough estimate.

2. Later on, we will use the preceding theorem also in the case where {Z(0)
n − ρn} fulfills a FCLT,

the (K(1)
r ) for r = 2, and the r′th (r′ > 2) moments are uniformly bounded. Note that this

implies that the sample mean of Z
(0)
n has an estimation error of OP (n−1/2) if the correlations

ρi are constant. Thus, in this case δ1 = 1/2.

In this subsection we have considered the asymptotic behavior of test statistic under known means
and variances. Therefore, we have presented some suitable LRV estimates. Moreover, in this section
we have presented change-point estimates and have proven their convergence rates.

27



CHANGE-POINT ANALYSIS OF THE CORRELATIONS UNDER KNOWN MEANS AND VARIANCES

2.2 Sequential Analysis under General Dependency Framework

This subsection presents an open-end and a closed-end procedure.

2.2.1 Closed-end Procedure

In the following theorem we consider the asymptotic behavior of the stopping times. It uses the known
parameters µ1,n, µ2,n, σ2

1,n, and σ2
2,n. In the context of sequential analysis for changes in the mean

this result is well-known. We prove it for the sake of completeness.

Theorem 2.2.1. Given that

1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)

D[0,1+m]−→ D1/2W (·), (2.2.1)

where W (·) is a Brownian motion and D, m > 0, it holds
(i) under H0 and |D̂0 −D| = oP (1) that

P (τ
(c)
n,ι,0,0 <∞)→ P

(
sup

z∈[0,m]
uι(G)(z) > cα

)
, (2.2.2)

(ii) under Assumption H
(c)
LA and |D̂0 −D| = oP (1) with g̃(z) = D−1/2 1

1+z

∫ 1+z
1 gρ(x)dx that

P (τ
(c)
n,ι,0,0 <∞)→ P

(
sup

z∈[0,m]
uι(G+ g̃)(z) > cα

)
, (2.2.3)

(iii) and under Assumption H
(c)
A , ∆−2

ρ |D̂0| = oP (n) and lim‖x‖→∞ supz∈R+ uι(x)(z) =∞ that

P
(
τ

(c)
n,ι,0,0 <∞

)
→ 1,

where G is a centered Gaussian process with covariance structure IE [G(s)G(t)] = s
1+s ∧

t
1+t .

Proof. Firstly, under H
(2)
0 we obtain that

n

n+ [n·]

 1√
n

n+[n·]∑
i=n+1

(Z
(0)
i − ρ0)− [n·]

n
√
n

n∑
i=1

(Z
(0)
i − ρ0)


= f

 1√
n

[n·]∑
i=1

(Z
(0)
i − ρi),

[n·]
n
,

n

n+ [n·]

 ,

where f : D[0,1 + m]3 → D[0,m] with f(x,y,z) = z(·)(x(1 + ·) − x(1) − y(·)x(1)). Since f is

continuous it follows with the CMT, that under H
(2)
0

B̃1,0,0
n ([n·]) = D̂−1/2f

 1√
n

[nz]∑
i=1

(Z
(0)
i − ρ0),

[nz]

n
,

n

n+ [nz]

 (2.2.4)

D[0,m]−→ 1

1 + ·
(W (1 + ·)− (1 + ·)W (1)) = G(·). (2.2.5)

Under the assumption H
(c)
LA we get

B̃1,0,0
n ([n·]) =D̂−1/2f

 1√
n

[nz]∑
i=1

(Z
(0)
i − ρi),

[nz]

n
,

n

n+ [nz]

 (2.2.6)

+ D̂−1/2 n

n+ [n·]
1

n

n+[n·]∑
i=n+1

g(i/n) (2.2.7)

D[0,m]−→ G(·) +D−1/2 1

1 + ·

∫ 1+·

1
g(x)dx = G(·) + g̃(·). (2.2.8)
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Now, we weight the statistic by 1{·≤m} and apply the CMT with the continuous functions uι :
D[0,∞)→ D[0,∞) and f1 : D[0,∞)→ R with f1(h) = supz∈[0,∞) h(z) so that it implies

P
(
τ

(c)
n,ι,1,0 <∞

)
= P

(
f1(uι(B̃

1,0,0
n ([n·]))) > cα

)
→

 P
(

supz∈[0,∞) uι(1{·≤m}G(·))(z) > cα

)
, under H

(2)
0 ,

P
(

supz∈[0,∞) uι(1{·≤m}(G(·) + g̃(·)))(z) > cα

)
, under H

(c)
LA,

=

 P
(

supz∈[0,m] uι(G)(z) > cα

)
, under H

(2)
0 ,

P
(

supz∈[0,m] uι(G+ g̃)(z) > cα

)
, under H

(c)
LA,

where we use in the last step the main property 2 of uι. Under the assumption H
(c)
A we just have to

replace the summand in (2.2.7) by

Rn(·) = D̂−1/2 n

n+ [n·]
1√
n

n+[n·]∑
i=n+1

∆ρ1Rk∗ (i) = D̂−1/2 n

n+ [n·]
λ(Rk∗ ∩ (n,n+ [n·]])√

n
∆ρ,

where the maximum increases as |∆ρ|D̂−1/2n1/2. Using the above displays and the property of uι
we get that

‖uι(B̃1,0,0
n )([n·])‖ P−→∞. (2.2.9)

Hence, this implies that even under the assumption that ∆−2
ρ |D̂| = oP (n) the stopping times are

asymptotically finite with probability one.

Remark 2.2.2. 1. In (iii), the condition lim‖x‖→∞ supz∈R+ uι(x)(z) =∞ can be replaced by the
condition: uι satisfies the triangle inequality and∥∥∥∥uι(D̂−1/2 n

n+ [n·]
λ(Rk∗ ∩ (n,n+ [n·]])√

n
∆ρ

)∥∥∥∥ P−→∞.

2. Considering Rn(·) under Assumption H
(c)
A makes it clear that we detect a change-point with

probability one within cnn
1/2 time-points after the change appears. Therefore, we assume

cn →∞ and D̂−1/2 = OP (1).

In the following, we employ the set of weighting functions for the closed-end sequential analysis

WF (Sc) =

{
wγ : (0,m)→ R>0 : wγ continuous, wγ(t) = O(t−γ),

as t→ 0, for some γ ∈
[
0,

1

2

)}
.

(2.2.10)

Theorem 2.2.3. Let {Z(0)
n − ρn} satisfy (K(3)

r ) for r = 2, let wγ ∈ WF (Sc) and

1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)

D[0,1+m]−→ D1/2W (·), (2.2.11)

where W (·) is a Brownian motion and D > 0. Then, it holds

(i) under H
(2)
0 and |D̂0 −D| = oP (1) that

P (τ
(c)
n,ι,0,γ <∞)→ P

(
sup

z∈[0,m]
uι(wγG)(z) > cα

)
, (2.2.12)
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(ii) underAssumption H
(c)
LA and |D̂0 −D| = oP (1) with g̃(z) = D−1/2 1

1+z

∫ 1+z
1 gρ(x)dx that

P (τ
(c)
n,ι,0,γ <∞)→ P

(
sup

z∈[0,m]
uι(wγ(G+ g̃))(z) > cα

)
, (2.2.13)

(iii) and under Assumption H
(c)
A , |D̂0| = oP (

√
n), and lim‖x‖→∞ supz∈R+ uι(x)(z) =∞ that

P
(
τ

(c)
n,ι,0,γ <∞

)
→ 1,

where G is a Gaussian process with covariance structure IE [G(s)G(t)] = s
1+s ∧

t
1+t .

Proof. Due to arguments quite analogous to those in the proof of Theorem 2.1.4, it is sufficient to
prove

sup
z∈[1/n,[εn]/n]

∣∣∣∣wγ ( [nz]

n

)
B̃1,0,γ
n ([nz])

∣∣∣∣ P−→ 0,

as n→∞ followed by ε→ 0. Using the triangle inequality and the FCLT yields

sup
z∈

[
1
n
,
[εn]
n

]
∣∣∣∣wγ ( [nz]

n

)
B̃1,0,γ
n ([nz])

∣∣∣∣ = O(1) sup
z∈

[
1
n
,
[εn]
n

]
∣∣∣∣( n

[nz]

)γ (Sn+[nz] − Sn)
√
n

∣∣∣∣+ oP (1),

as n→∞, followed by ε→ 0 and with Sk =
∑k

i=1(Z
(0)
i − ρi). Now we apply the Hájek-Rényi-type

inequality, which is equivalent to the Kolmogorov-type inequality and obtain that the right–hand side
above is equal to oP (1). The rest of the proof follows quite analogously to a combination of the proofs
of Theorem 2.1.4 and Theorem 2.2.1.

Remark 2.2.4. 1. In the third result, the condition lim‖x‖→∞ supz∈R+ uι(x)(z) = ∞ can be
replaced by the condition uι fulfills the triangle inequality and∥∥∥∥uι(wγ ( [n·]

n

)
D̂−1/2 n

n+ [n·]
λ(Rk∗ ∩ (n,n+ [n·]])√

n
∆ρ

)∥∥∥∥ P−→∞.

2. If we consider an AMOC model with an early change k∗1 = nε, ε > 0, we use uι(·) = | · |
and wγ(z) =

(
1+z
z

)γ
, γ ∈ [0,12), with a γ near 1

2 to detect asymptotically the change within

nδ∆−1
ρ time-points after the change occurs with probability one. Here, δ > 1−2γ

2(1−γ) and we

assumed D̂n = OP (1).

2.2.2 Open-end Procedure

In this sub-subsection, we augment the (un-)weighted closed-end procedure presented before to an
open-end one. In order to do so, we define the weighting function in this sub-subsection as follows:

wγ : (0,∞)→ R, wγ(z) =

(
1 + z

z

)γ
, γ ∈

[
0,

1

2

)
. (2.2.14)

Theorem 2.2.5. Let {Z(0)
i − ρi} fulfill (K(3)

r ) for r = 2 and let

1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)

D[0,1+m]−→ D1/2W (·), (2.2.15)

where W (·) is a Brownian motion and D,m > 0. Then, it holds
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1. under H
(2)
0 and |D̂0 −D| = oP (1) that

P (τ
(o)
n,ι,0,0,γ <∞)→ P

(
sup

z∈(0,∞)
uι(wγG)(z) > cα

)
(2.2.16)

if for each λ > 0 and as m→∞

P

(
sup
x>m

uι

(
wγG1[0,m](·)− [wγ(·) ·

·+ 1
W (1) + δNm−λ]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγG)(x) ≥ ε
)
→ 0;

(2.2.17)

2. under Assumption H
(o)
LA, under the absolute integrability of gρ on R+ and for |D̂0−D| = oP (1)

that

P (τ
(o)
n,ι,0,0,γ <∞)→ P

(
sup

z∈(0,∞)
uι (wγ(G+ g̃)) (z) > cα

)
(2.2.18)

with g̃(z) = D−1/2 1
1+z

∫ 1+z
1 gρ(x)dx if for each λ > 0 and as m→∞

P

(
sup
x>m

uι

(
wγ(G+ g̃)1[0,m](·)− [wγ(·)( ·

·+ 1
W (1) + g̃) + δNm−λ]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγ(G+ g̃))(x) ≥ ε
)
→ 0;

(2.2.19)

3. and under Assumption H
(o)
A , |D̂0| = oP (

√
n) and lim‖x‖→∞ supz∈R+ uι(x)(z) =∞ that

P
(
τ

(c)
n,ι,0,0,γ <∞

)
→ 1,

where G(·) = 1
1+· (W (1 + ·)− (1 + ·)W (1)) and δ = sign(W (1)).

Proof. The convergence under Assumption H
(o)
A obviously holds true by Theorems 2.2.1 and 2.2.3.

Under H
(2)
0 and H

(c)
LA we obtain

P (τ
(o)
n,ι,0,γ <∞) = P

(
sup
0≤x

uι(B̃
1,0,γ
n )(x/n) ≥ cα

)
= P

(
sup

0≤x≤nm
uι(B̃

1,0,γ
n )(x/n) ≥ cα

)
+ P

(
sup

0≤x≤mn
uι(B̃

1,0,γ
n )(x/n) < cα, sup

x>nm
uι(B̃

1,0,γ
n )(x/n) ≥ cα

)
.

Now, it is sufficient to show that the first summand fulfills the claimed convergence and the second
vanishes as n → ∞, followed by m → ∞. We start with the first summand: From Theorems
2.2.1 and 2.2.3 follow that B̃1,0,γ

n ([n·]) converges in distribution towards wγ(·)G(·) and towards

wγ(·)(G(·) + g̃(·)) under H
(2)
0 and under H

(o)
LA, respectively, where G is a Gaussian process with

covariance structure IE [G(s)G(t)] = s
1+s ∧

t
1+t .

Thus, the convergence of a monotone sequence of real numbers yields

P

(
sup

0≤x≤nm
uι(B̃

1,0,γ
n )(x/n) ≥ cα

)
→ P

(
‖uι(wγG)‖[0,m] ≥ cα

)
→ P

(
‖uι(wγG)‖[0,∞) ≥ cα

)
.

Now, it remains to show that the second term of the right–hand side in the first display vanishes as
n→∞, followed by m→∞. We can estimate this summand by

P

(
sup
x>nm

uι(B̃
1,0,γ
n )(x/n)− sup

0≤x≤mn
uι(B̃

1,0,γ
n )(x/n) ≥ ε

)
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for an ε > 0. Under H
(2)
0 we obtain that

B̃1,0,γ
n (z) = D̂−1/2wγ

(
[zn]

n

)
n[zn]n1/2

(n+ [zn])n
(ρ̂
n+[zn]
n+1,0 − ρ)− D̂−1/2wγ

(
[zn]

n

)
n[zn]n1/2

(n+ [zn])n
(ρ̂n1,0 − ρ)

and supz≥m

∣∣∣wγ([nz]/n) n[nz]
(n+[nz])n − wγ(z) z

z+1

∣∣∣ = o(1) as n → ∞. Thus, the second summand

converges in distribution uniformly towards −wγ(z) z
z+1W (1). For the first summand, we obtain

P

(
max
k>nm

|n1/2(ρ̂n+k
n+1,0 − ρ)| ≥ η

)
≤
∞∑
j=0

P

(
max

2jnm≤k≤2j+1nm

√
n

k
|Sn+k − Sn| ≥ η

)

≤
∞∑
j=0

P

(
1

2jm
√
n

max
1≤k≤2j+1nm

|Sn+k − Sn| ≥ η
)
≤ 1

(cη)2

∞∑
j=0

1

(2jm
√
n)2

2j+1nm∑
i=1

αi = O(m−1)

as n → ∞, followed by m → ∞. Here, we use the assumed Kolmogorov-type inequality. Thus, it

holds under H
(2)
0 that

P

(
sup
x>nm

uι(B̃
1,0,γ
n )(x/n)− sup

0≤x≤mn
uι(B̃

1,0,γ
n )(x/n) ≥ ε

)
= P

(
sup
x>m

uι

(
B̃1,0,γ
n (·)1{·≤m} + B̃1,0,γ

n (·)1{·>m}
)

(x)− sup
0≤x≤m

uι(B̃
1,0,γ
n )(x) ≥ ε

)
≤ P

(
sup
x>m

uι

(
Nη1/2−γ1{·≤η} + B̃1,0,γ

n (·)1{η<·≤m}

−[D̂−1/2n−1/2wγ([nz]/n)
n[nz]

(n+ [nz])n
(ρ̂n1 − ρ) + δ̂nNm

−1/2]1{·>m}

)
(x)

− sup
0≤x≤m

uι(B̃
1,0,γ
n 1{·≥η} − 1{·≤η}Nη1/2−γ)(x) ≥ ε

)
+ P

(
max
k>nm

wγ(k/n)
nk

(n+ k)n
|n1/2(ρ̂n+k

n+1,0 − ρ)| ≥ m−1/2N

)
+ P

(
max
k<nη

|B̃1,0,γ
n (k)| ≥ η1/2−γN

)
→ P

(
sup
x>m

uι

(
η1/2−γN1{·≤η} + wγG1[η,m](·)− [wγ(·) ·

·+ 1
W (1) + δNm−1/2]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγG1{·≥η} − 1{·≤η}Nη1/2−γ)(x) ≥ ε
)

+
C

N2

→ P

(
sup
x>m

uι

(
wγG1[0,m](·)− [wγ(·) ·

·+ 1
W (1) + δNm−1/2]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγG)(x) ≥ ε
)

+
C

N2
→ 0

as n→∞, followed by η → 0, m→∞, and N →∞, where G(·) = 1
1+· (W (1 + ·)− (1 + ·)W (1)),

δ̂ = sign(ρ̂n1 − ρ), and δ = sign(W (1)). Here, we use the monotony of uι, for the first and second
convergence the CMT, as well as for the last one the assumed convergence. Both applications of the
CMT use that uι : D[0,∞)→ D[0,∞) is continuous with respect to ‖ · ‖[0,∞) and for the second we

additionally use Gwγ1{·≥η}
P→ Gwγ as η → 0 on D[0,m].

Under Assumption H
(c)
LA we similarly obtain that

B̃1,0,γ
n (k) = wγ(k/n)

nk

(n+ k)n

n1/2

k

n+k∑
i=n+1

(Z
(0)
i − ρi,n)− wγ(k/n)

nk

(n+ k)n
n−1/2

n∑
i=1

(Z
(0)
i − ρi,n)

+ wγ(k/n)
nk

(n+ k)n

1

k

n+k∑
i=n+1

gρ(i/n)− wγ(k/n)
nk

(n+ k)n

1

n

n∑
i=1

gρ(i/n),
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and that the first and second summand have the same behavior as before. The third converges as
n → ∞ uniformly on [m,∞) towards (· + 1)−1

∫ 1+·
1 gρ(x)dx, where we use the integrability of gρ

on R. The last summand is zero by definition. Thus, we obtain with the same arguments

P

(
sup
x>nm

uι(B̃
1,0,γ
n )(x/n)− sup

0≤x≤mn
uι(B̃

1,0,γ
n )(x/n) ≥ ε

)
→ P

(
sup
x>m

uι

(
wγ(G+ g̃)1[0,m](·)− [wγ(·)( ·

·+ 1
W (1) + g̃) + δNm−1/2]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγ(G+ g̃))(x) ≥ ε
)
→ 0

as n→∞, followed by m→∞. Hence, under Assumption H
(o)
LA we get the convergence in display

(2.2.18).

Remark 2.2.6. In the third result, the condition lim‖x‖→∞ supz∈R+ uι(x)(z) = ∞ can be replaced
by the condition uι fulfills the triangle inequality and∥∥∥∥uι(wγ ( [n·]

n

)
D̂−1/2 n

n+ [n·]
λ(Rk∗ ∩ (n,n+ [n·]])√

n
∆ρ

)∥∥∥∥ P−→∞.

Furthermore, the convergences as displayed in (2.2.17) and (2.2.19) do not have to hold for each λ > 0
but rather for certain λs. In many cases this difference does not matter.

Proposition 2.2.7. The functions u1(g)(x) = |g(x)| and u2(g)(x) =
∫ x

0 (1 + z)−2|g(z)|dz fulfill the
rate displayed in (2.2.17).

Proof. u1 is obvioulsy continous. For u2 we obtain: Let g1, g2 ∈ D[0,∞) with ‖g1− g2‖ < ε then
it holds that

‖u2(g1)− u2(g2)‖ ≤ ‖g1 − g2‖
∫ ∞

0
(1 + z)−2dz < ε.

Thus, u2 is also continuous. Obviously, u1 and u2 fulfill the two main assumptions. Now, we
show that the rate displayed in (2.2.17) holds:

P

(
sup
x>m
|wγ(x)

x

x+ 1
W (1) + δNm−λ| − sup

0≤x≤m
|wγ(x)G(x)| ≥ ε

)
≤ P

(
|W (1)| − sup

m/2≤x≤m
|wγ(x)G(x)| ≥ ε−Nm−1/2

)

≤ P

(
2 sup
m/2≤x≤m

∣∣∣∣W (z + 1)

(1 + z)

∣∣∣∣ ≥ ε−Nm−λ
)

= o(1)

due to the law of the iterated logarithm. For u2 we obtain the following upper bound

P

(∫ ∞
m

wγ(z)
z

(z + 1)3
|W (1)|dz +Nm−λ

∫ ∞
m

(z + 1)−2dz ≥ ε
)

= o(1).

Proposition 2.2.8. Suppose G is a centered Gaussian process with covariance structure IE [G(s)G(t)] =
s

1+s ∧
t

1+t and W a standard Brownian motion. Then, it holds that

1. if u1(g(·))(z) = |g(z)| then

sup
z∈(0,∞)

uι(wγG)(z)
D
= sup

z∈(0,1)
|z−γW (z)|

and

sup
z∈(0,∞)

uι(wγ(G+ g̃))(z)
D
= sup

z∈(0,1)
|z−γ(W (z) + g̃(z/(1− z)))|,
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2. if u2(g(·))(z) =
∫ z

0
(1+x)2

(1+2x)4
|g(x)|dx then

sup
z∈(0,∞)

u2(G)(z)
D
=

∫ 1/2

0
B (t)2 dt

Proof. 1.: Using

{G(z) : z ∈ [0,∞)} D= {W (z/(1 + z)) : z ∈ [0,∞)}

implies

sup
z∈(0,∞)

uι(wγG)(z)
D
= sup

z∈(0,∞)

∣∣∣∣∣
(

z

1 + z

)−γ
W

(
z

1 + z

)∣∣∣∣∣ D= sup
z∈(0,1)

|z−γW (z)|.

Analogously, we can show the second equality.
2.: Using the first equality implies

sup
z∈(0,∞)

∫ z

0

(1 + s)2

(1 + 2s)4
G(s)2ds

D
= sup

z∈(0,∞)

∫ z

0

(1 + s)2

(1 + 2s)4
W (s/(s+ 1))2ds

= sup
z∈(0,∞)

∫ z/(1+2z)

0

(1 + t
1−2t)

2

(1 + 2 t
1−2t)

4
W

(
t

1− 2t
/(

t

1− 2t
+ 1)

)2 1

(1− 2t)2
dt

= sup
z∈(0,1)

∫ 1/2

0
(1− t)2W

(
t

1− t

)2

dt

D
=

∫ 1/2

0
B (t)2 dt,

where we substitute s by t/(1− 2t) and use
{

(1− t)W
(

t
1−t

)}
D
= {B(t)}, where B is a Brownian

bridge.
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2.3 Examples

This subsection highlights three examples for the main model (1.2.1). For each example we prove that
the assumptions on the main theorems of this section are fulfilled. Additionally, we show under which
cases which ones of the LRV estimates are useful.
For each example we assume that the following assumption holds:

Assumption (LRV). Let for each fixed t > 0

D[nt] =
1

n
IE

 [nt]∑
i=1

Z
(0)
i − IE

[
Z

(0)
i

]2→ tD > 0, as n→∞.

2.3.1 Identical Independent Distribution

In the first example we consider the special case of i.i.d. innovations.

Assumption (IID). In the main model let {(ε̃1,n,ε̃2,n)T } be i.i.d. Additionally, let ‖ε̃l,1‖r′l < ∞
for l = 1, 2 with r′1, r

′
2 > 2 and

r′1r
′
2

r′1+r′2
> 2.

Remark 2.3.1. 1. The assumption that the vectors {(ε̃1,n,ε̃2,n)T } are identically distributed can
be weakened without much effort.

2. The differentiation in r′1 and r′2 makes sense, since it could be possible that

Bt =

(
σ1,t 0
0 σ2t

)
·
(

1 0

ρt
√

1− ρ2
t

)
and ‖ε̃1n‖r′1 < ∞ and ‖ε̃2n‖r′2 < ∞ for some r′1 > r′2, yielding ‖Yn‖r′2 < ∞ but not
necessarily ‖Yn‖r′1 <∞.

3. We already know that Bt is not unique, which implies that {Z(0)
n } is a sequence of indepen-

dent but not necessarily identically distributed random variables. In particular, Bt has direct

influence on Var
[
Z

(0)
t

]
. However, Assumption (LRV) limits the fluctuation of Var

[
Z

(0)
t

]
and

thereby that of the matrices B1,B2, . . ..

1. Example for the WFC. Let Assumptions (IID) and (LRV) be fulfilled. Then, {Z(0)
i − ρi}

satisfies the WFC so that Theorem 2.1.4 holds. This essentially follows from the following steps:

1. Since r =
r′1r
′
2

r′1+r′2
> 2, Z

(0)
i is Lr–bounded, where

Z
(0)
i =

(
1 0

)
Bi

(
ε̃1,i
ε̃2,i

)(
ε̃1,i ε̃2,i

)
BT
i

(
0
1

)
σ1,iσ2,i

.

Furthermore, {Z(0)
i − ρi} is centered and independent.

2. With item 1. and Assumption (LRV) it is easy to show that Lyapounov’s condition is fulfilled

and hence, the sequence {Z(0)
n − ρn} satisfies a CLT.

3. In analogy to the proof of Theorem 10.1 in Billingsley (1968) the finite-dimensional distributions
converge.

4. Now, we apply Theorem 15.6 of Billingsley (1968), where the second condition of this theorem

follows similarly to the second item. Hence, {Z(0)
i − ρi} fulfills a FCLT with an asymptotic

LRV D = limn→∞
1
n

∑n
i=1 IE

[
(Z

(0)
i − ρi)2

]
.
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5. Due to the independence of {Z(0)
i − ρi} and the boundary of the second moments, we get the

Kolmogorov-type inequalities (K(1)
r ), (K(2)

r ) for rz = 2. This implies the WFC.

1. Example of Theorem 2.1.4. Let Assumption (IID) and Assumption (LRV) be fulfilled and set

wγ : (0,1)→ R+, wγ(z) =

(
1

z(1− z)

)γ
.

Then, Theorem 2.1.4 holds with

f0(g(·)) = sup
z∈[0,1]

|g(z)| or f0(g(·) =

∫ 1

0
|g(z)|dz.

2. Example of Theorem 2.1.4. Under the assumption of 1. Example of Theorem 2.1.4 and k∗1 = nε,
k∗2 = n− nε for some fixed ε > 0 and |∆ρ| > 0, there exists a γ > 0 so that

an|∆ρ|n−(1−γ)(1−ε) →∞ with an =
√
n.

This implies that the test φγι,0,0 is consistent if D̂−1
n = OP (1).

The preceding example shows that the test detects early and late changes if we choose γ high
and the inverse of the LRV is bounded.

1. Example of Theorem 2.1.15. Under Assumption (IID) and HA let [nθ∗1] and [nθ∗2] be the

unknown change-points where 0 < θ∗1 < θ∗2 < 1 and ∆ρ 6= 0 are independent of n. Since {Z(0)
n −ρn}

satisfies the Kolmogorov-type inequalities for rz = 2 and have uniformly bounded second moments,
we get from Theorem 2.1.15 an estimation rate of n‖θ̂ − θ∗‖ = OP (1).

1. Example of Theorem 2.1.16. If we replace the condition ∆ρ 6= 0 in the 1. Example of

Theorem 2.1.15 by ∆−1
ρ,n = o(n1/2), we get n∆ρ,n‖θ̂ − θ∗‖ = OP (1).

Thus, the estimates approximate the change-points by Theorem 2.1.16 if they do not vanish too
fast. The possibility of successful estimation with this estimate is only given (in some sense) if
∆−1
ρ,n = O(n1/2). Additionally, the change size influences the estimation rate.

1. Example of Theorem 2.1.22. Under Assumption (IID) and H
(M)
A we have rz = 2, r =

r′1r
′
2/(r

′
1 + r′2) > 2, and assume that the condition

n1/2+1/r = o(min
i

∆2
ρ,i,n∆k∗,n)

of Theorem 2.1.22 is fulfilled. Then, we can choose

an = n

[(
min
i

∆2
ρ,i/ max

1≤i≤R
|∆ρ,i|

)2

∧min
i

∆2
ρ,i,n

]

and get ann
−1‖k∗ − k̂‖ = OP (1). In particular, we obtain an = n if mini,n |∆ρ,i,n| > ε > 0.

1. Example of Theorem 2.1.25. Under the assumption of 1. Example of Theorem 2.1.22 the
condition

n1/2+1/r � βn ≤
1

4C∗
min

1≤i≤R∗
∆2
ρ,i,n∆k∗,n

is sufficient for |R̂−R∗| = oP (1) as n→∞.

1. Example of Theorem 2.1.28. If we modify Assumption (IID) by just assuming that rz =
2 ∧ r′1r′2/(r′1 + r′2) > 1, the Kolmogorov-type inequalities hold for rz > 1. Moreover, we can choose
βn with

log(n)2 ∨ n2/rz−1 � βn and βn ∨ n1/rz � λ(Rck∗)λ(Rk∗)
2|∆2

ρ,nn
−2|

to get an asymptotic test by Theorem 2.1.28.
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The above example demonstrates the possibility of a test with fewer assumptions than under
1. Example of Theorem 2.1.4. In particular, a FCLT is not necessary and even the second moments

of Z
0)
i do not have to be bounded.

1. Example of Theorem 2.1.33. Under H0 and Assumptions (IID), (LRV) let f be an absolute
integrable kernel and qn = o(n). Then, we see that conditions 1., 2., and 3. of Theorem 2.1.33 are
fulfilled, since

|D̂ −D| ≤ |Dn −D|+ |D̂ −Dn| =o(1) +

∣∣∣∣∣ 1n
n∑
i=1

(
(Z

(0)
i − ρi)

2 −Var
[
Z

(0)
i

])∣∣∣∣∣
+

∣∣∣∣∣∣ 1n
n∑

i,j=1,i 6=j
f

(
i− j
qn

)
(Z

(0)
i − ρi)(Z

(0)
j − ρj)

∣∣∣∣∣∣ = oP (1).

Here, the first order follows from Assumption (LRV), the second from Kolmogorov’s inequality, and
the third from Markov’s inequality, the absolute boundary of f as well as qn = o(n). Under H0 and

with ρ̂n(i) ≡ Z(0), case (A) can be applied with δ1 = 1/2 . Hence, from Theorem 2.1.33 we get that
|D − D̂0,n| = oP (1).

2. Example of Theorem 2.1.33. If we just replace the assumption of H0 by HLA in 1. Example
of Theorem 2.1.33, we obtain the same result by case (B).

3. Example of Theorem 2.1.33. If we just replace the assumption of H0 by HA in 1. Example
of Theorem 2.1.33, we obtain for ρ̂n(i) ≡ Z(0) that case (D) could be applied with δ1 = 0. Hence,
we get |D − D̂0,n| = OP (qn) which implies a consistent test if qn = o(n1/2).

4. Example of Theorem 2.1.33. In the model of multiple (finite) change-points which do not vanish
asymptotically and where the distances between the locations diverge with rate n, i.e., n ∼ ∆k∗,n, let
Assumption (IID) and Assumption (LRV) be fulfilled. Then, we use a correlation estimate based on
a change-point estimate:

ρ̂n(i) =
m+1∑
j=1

1i∈R̂j,nZ
(0)

k̂j

k̂j−1+1,

where the k̂j’s are the change-point estimates. Furthermore, we define

Ĉ1 = [1,k̂1] ∩ [1,k∗1] Ĉ2 = [k̂1 + 1,k̂2] ∩ [1,k∗1], . . . , Ĉ(m+1)2 = [k̂m + 1,n] ∩ [k∗m + 1,n],

where we get ‖k∗ − k̂‖ = OP (1) by the 1. Example of Theorem 2.1.22. This implies that case (E) of
Theorem 2.1.33 is fulfilled with δj = 1/2 for all j = (k − 1) ·m+ k, k = 1, . . . ,m+ 1, and δj = 0
for all j 6= (k − 1) ·m+ k, k = 1, . . . ,m+ 1. Additionally, we define for instance

C1 = [1,k∗1 + log(n)], C2 = [k∗1 − log(n),k∗1 + log(n)], . . . , C(m+1)2 = [k∗m − log(n),n]

which implies P (
⋂
j{Ĉj ⊂ Cj})→ 1. Hence, we get |D−D̂0,n| = OP (qnn

−1/2) from Theorem 2.1.33,

which only implies a consistent estimate if qn = o(n1/2). For a consistent test, it is just required that
qn = o(n), cf. item 3. of Theorem 2.1.4.

Remark 2.3.2. In each of the preceding examples of Theorem 2.1.33 we can clearly replace the
(piecewise) sample means by some generally weighted estimate types. In this case, we just have to
prove the necessary asymptotic property. Explicitly, we have the weighted sample mean in mind:

ρ̂n(i) =
∑

j∈M∩(0,n]

Z
(0)
j k

(
|j − i|

#(M ∩ (0,n])

)
/

∑
j∈M∩(0,n]

k

(
|j − i|

#(M ∩ (0,n])

)
for all i ∈M,

where M ∈ {[1,n],Ĉ1, . . . ,Ĉm+1} and k(·) is a kernel function such as the Uniform, Triangular,

Epanechnikov, or Gaussian Kernel. Due to the independence of {Z(0)
n } and the change-point esti-

mation rate ‖k∗ − k̂‖ = OP (1), it is quite easy to obtain the same results in the case of (multiple)
change-point(s).
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1. Example of Theorem 2.2.1, 2.2.3 and 2.2.5. Under Assumptions (IID), (LRV) {Z(0)
i − ρi}

satisfies the WFC so that Theorem 2.2.1 holds. As in 1. Example for the WFC we prove the FCLT

on D[0,1] and that {Z(0)
i − ρi} fulfills the Kolmogorov-type inequalities. Since a Brownian motion

is scale invariant we can extend the convergence on D[0,1 + m]. Possible (weighting) functions are,
with γ ∈ [0,1/2),

wγ(z) =

(
1 + z

z

)γ
and u1(g)(·) = |g(·)|, or u2(g)(·) =

∫ ·
0

(1 + x)−2|g(x)|dx.

2.3.2 Mixing

Definition 2.2. A process {Zn}n∈Z is called α-mixing and respectively φ-mixing of size −ξ if
the coefficient holds that

α(n) := sup
k∈Z

α(Fk−∞,F∞k+n) := sup
k∈Z

sup
A∈Fk−∞,B∈F∞k+n

|P (A ∩B)− P (A)P (B)| = o(n−ξ)

and respectively that

φ(n) := sup
k∈Z

φ(Fk−∞,F∞k+n) := sup
k∈Z

sup
A∈Fk−∞,B∈F∞k+n

|P (A|B)− P (B)| = o(n−ξ).

Throughout this sub-subsection, we assume that the following assumption is fulfilled:

Assumption (MIX). Let(
Xn

Yn

)
=

(
µ1n

µ2n

)
+

(
σ1,n 0

0 σ2,n

)(
f1,n(ε1,n,ε2,n, . . .)
f2,n(ε1,n,ε2,n, . . .)

)
,

where the processes {εm,n,n ∈ Z} are α–mixing (φ–mixing) with coefficients αn(m) (φn(m)) for
each fixed n ∈ N and {ε1,n,n ∈ Z},{ε2,n,n ∈ Z}, . . . are totally independent of each other. Let
f1,n(·) and f2,n(·) be Borel-measurable functions for each n. Additionally, we assume that Xn and
Yn possess the correlation ρn and

1. ε̃1,n := f1,n(ε1,n,ε2,n, . . .) and ε̃2,n := f2,n(ε1,n,ε2,n, . . .) are centered and normalized;

2. ‖ε̃1,n‖r′1,n <∞ and ‖ε̃1,n‖r′2,n <∞, where r′1,n,r
′
2,n ≥ 2 and inft

r′1,nr
′
2,n

r′1,n+r′2,n
> 2;

3. for r′ ∈ (2,r] with r = infn
r′1,nr

′
2,n

r′1,n+r′2,n
let α̃(m) =

∑∞
n=1 αn(m) fulfill

∞∑
m=0

(α̃(m))2(1/r′−1/r) <∞ (2.3.1)

and
∞∑
m=0

(
m∑
k=0

(α̃(k))−(1− 2
r

)

)−1/2

<∞. (2.3.2)

Remark 2.3.3. 1. The random variable εn,t can be vector-valued.

2. If (2.3.1) is only fulfilled for r′ = 2, we can only prove the FCLT but not the WFC.

3. (2.3.2) is only used to show that the Kolmogorov-type inequalities hold.

4. If (ε̃1,t,ε̃2,t) is α-mixing of size −r/(r − 2), (2.3.1) and (2.3.2) hold true.

Additionally, for the LRV estimation we need the following conditions for the kernel:

Assumption (K2). For all x ∈ R let |f(x)| ≤ 1, f(x) = f(−x), and f(0) = 1. Additionally, let
f be continuous at zero and for almost all x ∈ R,

∫
R |f(x)|dx < ∞, and there is a non-increasing

function l(x) ≥ |f(x)| so that
∫
R |x|l(x)dx <∞.
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Remark 2.3.4. The above kernel assumption includes Assumptions 1.1. and 1.4. of De Jong (2000).

2. Example for the WFC. Let Assumptions (LRV) and (MIX) be fulfilled. Then, {Z(0)
i − ρi}

satisfies the WFC and Theorem 2.1.4 holds. This follows from the following:

1. We apply Herrndorf (1984, Corollary 1) to get the FCLT, for which we need Assumption (LRV),

the centering as well as the upper bound of the second moments of {Z(0)
n −ρn}, and that {Z(0)

n −
ρn} is α-mixing with coefficient α̃(m) with

∑∞
m=1 α̃(m)1− 2

r ≤ C
∑∞

m=1 α̃(m)2(1/r′−1/r) <∞:

Since σ(Xn), σ(Yn), and σ(XnYn) are sub–σ-fields of σ(Xn,Yn) (cf. Davidson (1994, Th.
10.4)) it is sufficient to prove the mixing size of (Xn,Yn)T :

α (σ ((X−∞,Y−∞), . . . ,(Xn,Yn)) , σ ((Xn+m,Yn+m), . . . ,(X∞,Y∞)))

≤ α

( ∞∨
k=1

{
n∨

i=−∞
σ(εk,i)

}
,

∞∨
k=1

{ ∞∨
i=n+m

σ(εk,i)

})

≤
∞∑
k=1

α

(
n∨

i=−∞
σ(εk,i),

∞∨
i=n+m

σ(εk,i)

)
=
∞∑
k=1

αk(m) = α̃(m),

where the first inequality follows from the monotonicity of α and the second from Bradley

(2009, Th. 6.2). Hence, by the third condition of Assumption (MIX), {Z(1)
n − ρn} is an α-

mixing process with coefficients α̃(m).

2. On the one hand, the Kolmogorov’s type inequalities are fulfilled, since {(Z(1)
n − ρn),Fn} is an

L2-mixingale with Fn :=
∨n
i=1

∨∞
j=1 σ(εj,i) and sequence ξn = α̃(n)1/2−1/r, which follows di-

rectly from Davidson (1994, Th. 14.2). This implies a maximal moment inequality (cf. Davidson

(1994, p. 255)), which goes back to McLeish (1975) and directly implies (K(1)
r ), since

∞∑
m=0

(
m∑
k=0

ξ−2
k

)−1/2

<∞.

On the other hand, we know that an α-mixing process is time–reversible so that {Z(1)
m−n −

ρm−n}1≤n≤m is an α-mixing process with sequence α̃(n) for each fixed, but arbitrary m ∈ N.

Hence, with the same arguments as before (K(2)
r ) and (K(3)

r ) are fulfilled. Thus, the WFC is
confirmed.

2. Example of Theorem 2.1.4, 2.1.15, 2.1.16, 2.1.22, 2.1.25, 2.1.28, and 2.2.1, 2.2.3, 2.2.5.
Replace Assumption (IID) by Assumption (MIX) in each of the first examples. Then they hold true.

5. – 8. Example of Theorem 2.1.33. Under the assumptions on the 2. Example for the WFC let
f additionally fulfill Assumption (K2) and let qn = o(n1/2−1/r′) with r′ from the third condition of
Assumption (MIX). Then, we apply De Jong (2000, Th. 2) to obtain |D̂n−D| = oP (1), where we use

Assumption (LRV), Assumption (K2), and the condition
∑∞

m=1 α̃(m)1− 2
r
−ε < ∞ for an arbitrarily

small ε > 0. Additionally, we know by 2. Example for the WFC that the Kolmogorov-type inequalities
are fulfilled. Hence, we get the same estimation rates as |D̂0,n − D| = oP (1) as in the settings of
Example 1 to 4 of Theorem 2.1.33.

2.3.3 Near Epoch Dependent

In this sub-subsection, we assume a near epoch dependent structure.

Definition 2.3. Davidson (1994, Def. 17.2) For a stochastic array {{Vnt}∞t=−∞}∞n=1, possibly vector-
valued, on a probability space (Ω,F ,P ), let F t+mn,t,t−m = σ/Vn,t−m, . . . ,Vn,t+m). If an integrable array
{{Xnt}∞t=−∞}∞n=1, satisfies

‖Xnt − IE
[
Xnt|F t+mn,t,t−m

]
‖p ≤ dntνm,

where νm → 0, and {dnt} is an array of positive constants, it is said to be Lp-NED on {Vnt}.
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First, we want to reduce the dependency of Z
(0)
t to the dependency of Xt and Yt.

Assumption (NED). Let Xn be Lp1-NED on {Vn} of size −a1 and supn ‖Xn‖r′1 < ∞. Let
Yn be Lp2-NED on {Vn} of size −a2 and supn ‖Yn‖r′2 < ∞, where Vn is either α-mixing of
size −aV ≤ −r/(r − 2) or φ-mixing of size −r/(2r − 2) with r = r′1r

′
2/(r

′
1 + r′2). Furthermore, let

Corr (Xn,Yn) = ρn,

(a1,a2,p1,p2,r
′
1,r
′
2) ∈M

1
2
2 = M

1
2

2

⋂
R4

+ ×
{

(r′1,r
′
2) ∈ R2

+ :
r′1r
′
2

r′1 + r′2
> 2

}
, (2.3.3)

Mα
k =

{(
a1,a2,p1,p2,r

′
1,r
′
2

)
∈ R6

+ : −aa2,p2,r
′
2

a1,p1,r′1
(p) ≤ −α with p = k

}
, (2.3.4)

and

−a = −aa2,p2,r
′
2

a1,p1,r′1
(p)

=



−min{a1,a2}, if U1 ≤ p2 and U2 ≤ p1,
−min{a1C

1
p1,r′1,r

′
2,p
,a2C

2
p1,r′1,r

′
2,p
}, if 2r′2 ≥ U1 > p2 and 2r′1 ≥ U2 > p1,

−min{a1,a2C
2
p1,r′1,r

′
2,p
}, if 2r′2 ≥ U1 > p2 and U2 ≤ p1 ,

−min{a1C
1
p1,r′1,r

′
2,p
,a2}, if U1 ≤ p2 and 2r′1 ≥ U2 > p1,

0, else,

(2.3.5)

where Ui = pri
ri−p for i = 1, 2, C1

p1,r′1,r
′
2,p

=
p1(r′1r

′
2−r′1p−r′2p)

r′2p(r
′
1−p1)

and C2
p1,r′1,r

′
2,p

=
p2(r′1r

′
2−r′1p−r′2p)

r′1p(r
′
2−p2)

.

Remark 2.3.5. Later, we will see that the condition
r′1r
′
2

r′1+r′2
> 2 in (2.3.3) yields that ‖Z(1)

n −ρn‖r <∞
as r > 2 and implies that r′1,r

′
2 > 2. Hence, the second moments of Xn and Yn exist. The

parameter set Mα
k ensures with p = k that {Z(n)

n − ρn} is Lp-NED of size −α. Thus, M
1
2
2

contains parameters so that {Z(n)
n −ρn} is Lr-bounded, r > 2, and L2-NED of size −1

2 on {Vn},
where Vn satisfies a certain mixing condition.

Assumption (K3). Davidson and De Jong (2000, Assumption 1) Suppose f ∈ K, where

K =

{
f : R→ [−1,1] : f(0) = 1, f(x) = f(−x)∀x ∈ R,

∫ ∞
−∞
|f(x)|dx <∞,

∫ ∞
−∞
|ψ(x)|dx <∞,

f is continuous at 0 and at all points except for a finite number

}
with ψ(x) = (2π)−1

∫∞
−∞ f(z)eixzdz.

Remark 2.3.6. The Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernels are all elements
of K (Davidson and De Jong (2000, p. 409)).

Before we consider the examples under the NED dependency, we first analyze the NED–size of a
product of two NED time series. On the one hand, it holds if Xn and Yn are Lp–NED on {Vn}
of respective sizes −φX and −φY , that XnYn is Lp/2–NED of sizes −min{φX ,φY } (Davidson
(1994, Th. 17.9)). On the other hand, if Xn and Yn are L2–NED on {Vn} of size −a and
‖Xn‖2r <∞ and ‖Yn‖2r <∞ for r > 2, it holds that XnYn is L2–NED of size −a(r−2)/2(r−1)
(Davidson (1994, Th. 17.17)). In the following lemma we combine both conclusions.

Lemma 2.3.7. Let Xn be Lp1-NED on {Vn} of size −a1 and ‖Xn‖r′1 <∞. Moreover, let Yn
be Lp2-NED on {Vn} of size −a2 and ‖Yn‖r′2 <∞. Then, XnYn is Lp–NED on {Vn}, where

1 ≤ p < min{r′1,r′2} and pi ≤ ri for i = 1, 2, of size −a = −aa2,p2,r
′
2

a1,p1,r′1
(p) defined in (2.3.5).

Proof. Since

‖XnYn − En+m
n−m[XnYn]‖p ≤ ‖Xn(Yn − En+m

n−m[Yn])‖p
+ ‖(Xn − En+m

n−m[Xn])En+m
n−m[Yn]‖p + ‖En+m

n−m[(Xn − En+m
n−m[Xn])(Yn − En+m

n−m[Yn])]‖p
≤ ‖Xn‖r′1‖Yn − En+m

n−m[Yn]‖k1
+ ‖Xn − En+m

n−m[Xn]‖k2‖E
n+m
n−m[Yn]‖r′2 + ‖Xn − En+m

n−m[Xn]‖r′1‖Yt − En+m
n−m[Yn]‖k1 ,

(2.3.6)

40



EXAMPLES

by use of the Hölder inequality with selected ki so that 1
r′1

+ 1
k1

= 1
r′2

+ 1
k2

= 1
p . Now, we consider

‖Yn − En+m
n−m[Yn‖k1 and ‖Xn − En+m

n−m[Xn]‖k2 .

If
pr′1
r′1−p

= k1 ≤ p2 and
pr′2
r′2−p

= k2 ≤ p1, XnYn is Lp–NED of size −min{a1,a2}.

In the other case if p2 <
pr′1
r′1−p

= k1 and p1 <
pr′2
r′2−p

= k2, where p1 and p2 are smaller than r′2
and r′1, respectively, we can apply the Lp–interpolation inequality with selected θ1 ∈ (0,1) so that
1
k1

= 1−θ1
p2

+ θ1
r′2

:

‖Yn − En+m
n−m[Yn]‖k1 ≤ ‖Yn − En+m

n−m[Yn]‖1−θ1p2 ‖Yn − En+m
n−m[Yn]‖θ1

r′2
≤ cd1−θ1

n,1 v1−θ1
m,2 ,

where 1− θ1 =
p2(r′1r

′
2−r′1p−r′2p)

r′1p(r
′
2−p2)

. In the same way we get

‖Xn − En+m
n−m[Xn]‖k2 ≤ cd

1−θ2
n,1 v1−θ2

m,1 ,

where 1− θ2 =
p1(r′1r

′
2−r′1p−r′2p)

r′2p(r
′
1−p1)

. Hence, the three above summands can be estimated to d̃nṽm, where

d̃n = cmax{d1,n,dn,2} with a suitable constant c < ∞, and ṽm = max{v1−θ2
m,1 ,v1−θ1

m,2 }. Thus, XnYn
is Lp–NED of size

−min

{
a1
p1(r′1r

′
2 − r′1p− r′2p)

r′2p(r
′
1 − p1)

,a2
p2(r′1r

′
2 − r′1p− r′2p)

r′1p(r
′
2 − p2)

}
,

which implies the claim.

Remark 2.3.8. 1. The proof shows that the constants Cip1,r′1,r′2,p
, i = 1, 2, lie in (0,1) if they

are in use.

2. If we insert the parameters of the two NED-series given by the two aforesaid results of Davidson
(1994, Th. 17.9 and 17.17), we get the same size by Lemma 2.3.7.

3. If we assume p = p1 = p2 = 2, the NED-size is reduced to

−min

{
a1

(r′1r
′
2 − 2r′1 − 2r′2)

r′2(r′1 − 2)
,a2

(r′1r
′
2 − 2r′1 − 2r′2)

r′1(r′2 − 2)

}
.

To obtain a NED-size of −1
2 for {Z(1)

n − ρn}, we have to postulate that the two time series

Xt and Yt fulfill a NED-size of −1
2 since

(r′1r
′
2−2r′1−2r′2)
r3−i(ri−2) = Ci2,r′1,r′2,2

∈ (0,1) for i = 1, 2.

Proposition 2.3.9. Lemma 2.3.7 holds true, even if the first, second, and third {Vn} is replaced by

{V (1)
n }, {V (2)

n }, and {(V (1)
n ,V

(2)
n )}, respectively.

Proof. Set Esn[·] = E[·|V (1)
n ,V

(2)
n , . . . ,V

(1)
s ,V

(2)
s ], EsX,n[·] = E[·|V (1)

n , . . . ,V
(1)
s ], and EsY,n[·] = E[·|V (2)

n , . . . , V
(2)
s ].

Then, it is sufficient to show that Xn and Yn are Lp–NED on {(V (1)
n ,V

(2)
n )} for p = r′1 and

p = r′2, respectively:

‖Xn − En+m
n−m[Xn]‖r′1 ≤ ‖Xn − En+m

X,n−m[Xn]‖r′1 + ‖En+m
n−m[Xn − En+m

X,n−m[Xn]]‖r′1 ≤ 2cnξm

and for Yn analogously.

Remark 2.3.10. If V
(1)
n and V

(2)
n are α-mixing, this does not imply that {Vn} = {(V (1)

n ,V
(2)
n )}

is α–mixing, too.

Corollary 2.3.11. Under Assumption (NED) {Z(n)
n − ρn} is Lr bounded with r =

r′1r
′
2

r′1+r′2
as well

as it is L2-NED of size −1
2 on {Vn}.
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Proof. Firstly, we obtain that
Xt−µ1,t
σ1,t

and
Yt−µ2,t
σ2,t

fulfill the same assumptions as Xt and Yt,

respectively. Due to the definition of M
1
2

2 , {Xt−µ1,tσ1,t

Yt−µ2,t
σ2,t

− ρt} is L2–NED of size −1
2 since

Ui ≤ r3−i by the assumption of
r′1r
′
2

r′1+r′2
> p = 2 and the definition of Ui from Assumption (NED).

Let r̃ = max{r′1,r′2} and w.l.o.g. be equal to r′1. Moreover, let k be chosen so that 1
r = 1

r̃ + 1
k ,

then, the Hölder inequality yields

‖XiYi‖r ≤ ‖Xi‖r̃‖Yi‖k <∞.

So, for k = r′2 = min{r′1,r′2}, the maximal possible r is equal to
r′1r
′
2

r′1+r′2
> 2.

Remark 2.3.12. (1+δ
2δ ,

1+δ
2δ ,2,2,2 + δ,2 + δ) ∈M

1
2
2 holds for an arbitrary δ > 0.

3. Example for the WFC. Let Assumption (LRV) and Assumption (NED) be fulfilled. Then,

{Z(0)
n − ρi} satisfies the WFC and Theorem 2.1.4 holds true. This essentially follows from the

following:

1. The FCLT follows by combining Corollary 2.3.11 and Assumption (LRV) to apply Davidson
(2002, Th. 1.2).

2. We know from Davidson (1994, Th. 17.5(i)) that {Zn,Fn−∞} is a L2–mixingale of size −1
2

with uniformly bounded constants cn ≤ max{‖Zn‖r,dn}, where we define Zn = Z
(0)
n − ρn.

On the other hand, {Znt} is also a L2–NED on {Vnt} of size −1
2 with uniformly bounded

constants dnt, where Znt = Zn−t, Vnt = Vn−t and dnt = dn−t. Hence, the Kolmogorov-type

inequalities (K(1)
r ) and (K(2)

r ) are fulfilled.

Similarly, it can be proven that {Z(0)
n − ρn} satisfies (K(3)

r ).

3. Example of Theorems 2.1.4, 2.1.15, 2.1.16, 2.1.22, 2.1.25, 2.1.28, and 2.2.1, 2.2.3, 2.2.5.
Replace Assumption (IID) by Assumption (NED) in each of the first examples. Then each example
holds true.

9. – 12. Example of Theorem 2.1.33. Under the assumptions of 3. Example for the WFC let
f additionally fulfill Assumption (K3) and let qn = o(n). Then, we can apply Davidson and De

Jong (2000, Th. 2.1) with Xnt = 1√
n

(Z
(0)
t − ρt), dnt = 1√

n
dt, and cnt = n−1/2, which implies

that |D̂n −D| = oP (1). Hence, we get the same estimation rate for |D̂0,n −D| = oP (1) as in the
settings of the 1. to 4. Examples of Theorem 2.1.33 so that these examples are also fulfilled under the
assumptions here.

2.3.4 Time Series

This sub-subsection presents different time series, which satisfy one of the different examples presented
before. Essentially they are applications of different literature works. Firstly, we consider the well-
known moving-average model (MA):

MA(∞) Let

Xt =
∞∑
k=0

θ
(1)
k u

(1)
t−k and Yt =

∞∑
k=0

θ
(2)
k u

(2)
t−k,

where {(u(1)
n ,u

(2)
n )}n∈Z has zero mean and is a bivariate sequence of i.i.d. random variables with

Var
[
u

(i)
1

]
= 1, i = 1, 2 as well as Var

[
u

(1)
1 u

(2)
1

]
> 0. Additionally, let supt ‖u

(1)
t ‖r′1 < ∞ and

supt ‖u
(2)
t ‖r′2 < ∞, where r′1,r

′
2 > 2 and

r′1r
′
2

r′1+r′2
> 2. Furthermore, let θ

(l)
n = O(n−1−al−ε)) for
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EXAMPLES

l = 1, 2 and ε > 0, a1 =
r′2(r′1−2)

r′1r
′
2−2r′1−2r′2

∨ 1
2 , and a2 =

r′1(r′2−2)
r′1r
′
2−2r′1−2r′2

∨ 1
2 .

Due to Davidson (1994, Example 17.3), {Xt} and {Yt} are L2-NED of size −a1 and −a2

on {Vn} = {(u(1)
t ,u

(2)
t )} with uniformly bounded r′1th and r′2th moments, respectively. Hence,

Assumption (NED) is fulfilled. Direct calculations yield that Assumption (LRV) is fulfilled, too.

Remark 2.3.13. 1. The i.i.d assumption on {(u(1)
n ,u

(2)
n )} can be replaced by an α-mixing con-

dition. In doing so, it has to be ensured that Assumption (LRV) holds true. Additionally, the
constant mean and variance can be replaced since we assume that they are known.

2. Let {εt} be i.i.d. Gaussian with zero mean and variance σ2, then ut =
∑∞

j=0 θjεt−j is
stationary and we have a spectral density function

f(x) =
1

2π

∣∣∣∣∣∣
∞∑
j=0

θ
(1)
j eixj

∣∣∣∣∣∣
2

if
∑∞

i=0 |θi| < ∞ and θ0 > 0, cf. Davidson (1994, p. 215). Furthermore, we know from
Ibragimov and Linnik (1971, Th. 17.3.3.) that {ut} satisfies the strong-mixing condition. A
closer look at the proof of this theorem shows that we even get the size of

am ≤ c
∞∑

j=[m/2]+1

|θj | = O

(
m
− r′1r

′
2

r′1r−r
′
1−r
′
2
−ε̃
)

= O
(
m−

r
r−2
−ε̃
)

for some ε̃ > 0 and r =
2r′1r

′
2

r′1+r′2
if |θm| = O

(
m
−1− r′1r

′
2

r′1r−r
′
1−r
′
2

)
. Hence, under the conditions

described, ut is α-mixing of size − r
r−2 so that we can replace u

(1)
t and u

(2)
t by ut if

Assumption (LRV) holds true.

ARMA(p,q) Let

Xt =

p1∑
j=1

λ
(1)
j Xt−j + u

(1)
t +

q1∑
j=1

θ
(1)
j u

(1)
t−j and Yt =

p2∑
j=1

λ
(2)
j Yt−j + u

(2)
t +

q2∑
j=1

θ
(2)
j u

(2)
t−j ,

where u
(1)
n and u

(2)
n fulfill the same conditions as in the above MA(∞) example. Additionally, we

assume that the characteristic roots of

zp1 − λ(1)
1 zp1−1 − . . .− λ(1)

p1 = 0 and zp2 − λ(2)
1 zp2−1 − . . .− λ(2)

p2 = 0

lie inside the unit circle.

Due to Qiu and Lin (2011, Lemma 3.1), {Xt} and {Yt} can be expressed as Xt =
∑∞

j=0 θ
(1)
j u

(1)
t−j

and Yt =
∑∞

j=0 θ
(2)
j u

(2)
t−j , respectively, where |θ(i)

m | = O(ρmi ) as m → ∞ for some 0 < ρi < 1,
i = 1, 2. Now, we can apply the considerations of the MA(∞) model.

Remark 2.3.14. As noted in Remark 2.3.13, we can weaken the assumption in the same way here.

Actually, there are many other different time series such as the Bilinear models, the GARCH(p,q)
models, cf. Davidson (2002), the IGARCH and the FIGARCH models as well as the ARCH(∞) mod-
els, cf. Davidson (2004), which are NED under some suitable assumptions so that they can satisfy
Assumptions (LRV) and (NED).

At the end of this sub-subsection, let us note that obviously {Xn} and {Yn} do not have to
possess the same series type. However, since we assume a linear dependency between both time series,
we do expect related time series.
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3 Assumptions on the Unknown Means and Variances

This section presents the assumptions on the unknown parameters and their estimates. Hereby, we do
not go into detail about the estimate design but rather about the behavior of the estimation errors.
In particular, we want to get a general overview of two different approaches: On the one hand, we
want to optimally estimate the unknown parameters {µl,i} and {σl,i}. On the other hand, we want
to optimally estimate the correlation on the basis of the observations on 1, . . . ,k and on 1, . . . ,n,
which is motivated by our introduction. Moreover, we divide both approaches into the cases where
the parameters are nearly constant and where the parameters might have, in the limit, infinitely many
structural breaks.

3.1 Assumptions in the a Posteriori Analysis

In what follows, we present four different assumptions for a parameter x ∈ {µ1, µ2, σ1, σ2,
σ2

1, σ
2
2}, which will be used in the next sections. We use the design index ψ = 1, 2, 3, 4 to distinguish

the different estimates {x̂(ψ)
i,k,n}i=1,...,k, k=1,...,n and their properties. Subsequently, we will say ”the

parameter x fulfills the assumption” instead of the extensive phrase ”the sequences {xi}i=1,...,n and

their estimates {x̂(ψ)
i,k,n} fulfill the assumption”.

Firstly, we look at the cases where we assume that the considered parameters are nearly constant.

Assumption (PEE1). For the considered parameter x with sequence {xi} and estimates {x̂(1)
i,k,n}

there are sequences {dx,i} and {ex,n}, an estimate x̂n, and some constant δx ≥ 0 so that∑n
i=1 |dx,i| = o(

√
n) as n→∞, x̂

(1)
i,k,n ≡ x̂n, and

ex,n = xi − x̂n − dx,i with |ex,n| = OP (n−δx).

Remark 3.1.1. 1. We call the sequences {dx,i}i∈N parameter error sequences (p.e.s.).

2. The above assumption implies that the considered parameter, e.g. µ1 with µ1,i, is nearly
constant, i.e., µ1,i = µ1,0 + dµ,1,i for some µ1,0 ∈ R and all i.

3. As estimates we have the sample means in mind.

4. The p.e.s. can be interpreted as the error of some incorrect information about the exact param-
eters which have already been treated in Lemma 2.1.12.

In contrast to the previous assumption, where the estimates just depend on the sample size n
and which could result in an optimal estimate for the considered parameter, we now look at estimates
depending on k = 1, . . . ,n, which is motivated by our introduction, p. 6.

Assumption (PEE2). For the considered parameter x with sequence {xi} and estimates {x̂(2)
i,k,n}

there exist sequences {dx,i}, {ax,N}, and {ex,n}, an estimate x̂n, and a constant δx ≥ 0 so that

{dx,i} satisfies the condition of Assumption (PEE1), x̂
(2)
i,k,n ≡ x̂k, and

max
1≤k≤N

|ex,k| = max
1≤k≤N

|xi − x̂k − dx,i| = OP (1), as n→∞,

max
N≤k≤n

|ex,k| = max
N≤k≤n

|xi − x̂k − dx,i| = OP (n−δxax,N ) as n→∞, followed by N →∞,

where ax,N = o(1) as N →∞.

Remark 3.1.2. 1. We will see, that N can be replaced by a sequence Nn → ∞ with Nn =
o(n1/2).

2. For example, we have in mind to use the sample means and sample variances as estimates based
on the observations X1, . . . ,Xk and Y1, . . . ,Yk. In this special case the correlation estimate is
equal to the empirical correlation coefficient, which is under special assumptions the maximum
likelihood estimate, cf. Anderson (1984, p. 65), and which leads us to the design of the test
statistic considered in Wied et al. (2012).



ASSUMPTIONS IN THE A POSTERIORI ANALYSIS

The two previous assumptions imply that the considered parameters are nearly constant. Now,
we implicitly allow that the parameters could have significant structural breaks. We distinguish the
estimates depending on the index either i or i and k. Again, we present sufficient properties of the
estimation error so that both main results of Subsection 2.1 hold true. In doing so, we assume that the
estimation error is a random step-function. Furthermore, we simplify the following theorems of this
paragraph in notation by assuming that the random intervals are subsets of well-chosen deterministic
intervals. To illustrate what we have in mind and where the motivation originates from, we consider
the following example:

Example 3.1.3. Let the mean parameters be given as

µl(i) =

ml,n+1∑
j=1

µl,j1{i∈([nθl,j−1] [nθl,j ]]}

for l = 1, 2, some fixed unknowns 0 = θl,0 < . . . < θl,mn+1 = 1 and ml,j. Let θ̂l,i,n be some estimates

for θl,i with 0 = θ̂l,0 < . . . < θ̂l,mn+1 = 1. We define the index sets Jl,i = {1 + [nθl,i−1], . . . ,[nθl,i]}
with their estimates

J̃l,i,n =

{
{1 + [nθ̂l,i−1,n], . . . ,[nθ̂l,i,n]}, if θ̂l,i−1,n < θ̂l,i,n,

∅, if θ̂l,i−1,n = θ̂l,i,n.

Moreover, we define the mean estimates for each i ∈ {1, . . . ,n} in the following way

µ̃l,i =

ml,n∑
j=1

µ̂l,j1i∈J̃l,j,n , l = 1, 2,

where µ̂l,j is an estimate for µl,j. Then, we obtain with

vec(̂I) = vec


Îl,1,n . . . Îl,ml,n,n

Îl,ml,n+1,n . . .
...

... . . .
...

Îl,m2
l,n−ml,n,n

. . . Îl,m2
l,n,n

 = vec


J̃l,1 ∩ Jl,1 . . . J̃l,1 ∩ Jl,ml,n
J̃l,2 ∩ Jl,1 . . .

...
... . . .

...

J̃l,ml,n ∩ Jl,1 . . . J̃l,ml,n ∩ Jl,ml,n


that the mean estimation error is a random step-function with at most 2(ml,n + 1) unknown steps

µl(i)− µ̃l,i =

ml,n∑
j1=1

ml,n∑
j2=1

1i∈Jl,j1∩J̃l,j2
(µl,j1 − µ̂l,j2).

Furthermore, the error |µl,j1 − µ̂l,j2 | should be small on Îi,i for each i = 1, . . . ,ml,n and at least
bounded on the remaining sets Îi,j, i 6= j, which should possess at least a small cardinality. In
addition, we obtain that each Îl,j could have another asymptotic property which can be categorized
as follows:

1. Îl,j converges in probability towards a non-empty set I
′
l,j ⊂ (0,n], i.e., #Îl,j∆I

′
l,i = oP (n);

2. Îl,j converges in probability towards the empty set, i.e., #Îl,i = oP (1);

3. Îl,j does not converge in probability.

At least in the third case, for each j ∈ {1, . . . ,m2
l,n} exists a deterministic set I

′′
l,j ⊂ (0,n] so that

Îl,j ⊂ I
′′
l,j. Hence, we can split the index set {1, . . . ,n} in the following way

{1, . . . ,n} =

m2
l,n⋃

j=1

Il,j with P

m2
l,n⋂

j=1

{Îl,j ⊆ Il,j}

→ 1,

where Il,i ∈ {∅,I
′
l,j ,I

′′
l,j}. Furthermore, we note that we do not assume that Il,1, . . . ,Il,ml,n are disjoint.
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ASSUMPTIONS ON THE UNKNOWN MEANS AND VARIANCES

At first, we are just interested in the second half of the preceding example, i.e., in the behavior
of the mean estimation errors which are random step-functions. Later, when we will present some
examples, the first part of the preceding example, i.e., the construction, will be interesting, too.

Assumption (PEE3). For the considered parameter x with sequence {xi} and estimate x̂
(3)
i,k,n

there exist a sequence {dx,i}, a subsequence mx,n of n, an array {ex,j}j=1,...,mx,n, estimates

{x̂j,n}j=1,...,mx,n, and an array of random intervals {Îj,n}j=1,...,mx,n so that
∑n

i=1 |dx,i| = o(
√
n)

as n→∞,
⋃mn
j=1 Îx,j,n = {1, . . . ,n}, and x̂

(3)
i,k,n ≡ x̂j,n for all i ∈ Îx,j and k. Furthermore, for all

ex,j =

{
xi − x̂j,n − dx,i, ∀i ∈ Îx,j,n,

0, Îx,j,n = ∅

with j = 1, . . . ,mx,n there exists an array bx,j,n (j = 1, . . . ,mx,n, n = 1, . . .) so that

max
1≤j≤ml,n

|el,j |
bx,j,n

= OP (1). (3.1.1)

Additionally, there exists a sequence of intervals {Ix,j}j=1,...,mx,n so that

P

mx,n⋂
j=1

{ω : Îx,j(ω) ⊆ Ix,j}

→ 1. (3.1.2)

Remark 3.1.4. 1. For example, the above assumption is fulfilled if the parameters are nearly con-
stant on a partition {Cj}j=1,...,vn of the set {1, . . . ,n}. Assuming we have estimates Ĉj for
j = 1, . . . ,vn and the parameter estimate is constant on them, then the estimation error is nearly
constant on Îx,j1+j2·vn = Cj1 ∩ Ĉj2 for j1, j2 = 1, . . . vn, in which case mn is qual to v2

n.

2. The rate assumption displayed in (3.1.2) can be weakened if we additionally assume that the
sequence of the deterministic sets {Ix,j}1≤j≤mx,n depends on another control variable N ′

which tends towards infinity after n does. In particular, each of the following theorems, which
use Assumption (PEE3), would hold true.

3. Assumption (PEE3) is a generalization of Assumption (PEE1).

The next assumption is motivated by a generalization of Assumption (PEE2). To that purpose,
we would like to take up a modification of Example 3.1.3.

Example 3.1.5. Under the settings of Example 3.1.3 we define for all i ∈ {1, . . . ,k} and k ∈
{1, . . . ,n}

µ̃l,i,k =

ml,n∑
j=1

1i∈J̃l,j,n∩(0,k]µ̂l,j,k, l = 1, 2,

where

µ̂l,j,k =
(

#J̃l,j,n ∩ (0,k]
)−1 ∑

v∈J̃l,j,n∩(0,k]

Zl,v, for J̃l,j,n ∩ (0,k] 6= ∅.

Then, we obtain with

µl(i)− µ̃l,i,k =

m2
l,n∑

j=1

1{i∈Îl,j∩(0,k]}(µl,j − µ̂l,[j/ml,n],k)

that the mean estimation error is just depending on k if i and k lie in J̃l,j. As in Example 3.1.3
we expect that the estimation error should be small on Îi,i ∩ (0,k], i = 1, . . . ,ml,n, especially for large

k. Hence, we introduce a second sequence of random sets {Î2,l,j} to categorize the estimation rate
depending on the size of k.
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ASSUMPTIONS IN THE A POSTERIORI ANALYSIS

Assumption (PEE4). For the considered parameter x with sequence {xi} and estimate x̂
(4)
i,k,n

there exist a sequence {dx,i}, subsequences mx,1,n and mx,2,n of n, an array {ex,k,j1,j2}, and arrays

of random intervals {Îx,1,j,n}j=1,...,mx,1,n and {Îx,2,j,n}j=1,...,mx,2,n so that
∑n

i=1 |dx,i| = o(
√
n) as

n→∞, ∪mnj=1Îx,l,j,n = {1, . . . ,n}, l = 1, 2. Furthermore, for all

ex,k,j1,j2 =

{
xi − x̂(4)

i,k,n − dx,i, if i ∈ Îx,1,j1,n ∩ (0,k], k ∈ Îx,2,j2,n
0, else,

(3.1.3)

with j = 1, . . . ,mx,n there exists an array {bx,j1,j2,n} so that

max
1≤j1≤mx,1,n,1≤j2≤mx,2,n

maxk∈Îx,2,j2,n
|ex,k,j1,j2 |

bx,j1,j2,n
= OP (1), as n→∞. (3.1.4)

Furthermore, we assume that there exists a sequence of deterministic sets {Ix,l,i,n}, l = 1, 2, so that
they satisfy (3.1.2).

Remark 3.1.6. 1. It is possible that some sets Îx,2,j,n are independent of n and depend on
another control parameter N which tends towards infinity after n does. Thereby, Assump-
tion (PEE4) could be interpreted as a generalization of Assumption (PEE2).

2. Under each of the four presented assumptions we will suppress the indices x and n of the
sequences m·, I·, Î·, . . . if it is clear which sequence is mentioned.
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ASSUMPTIONS ON THE UNKNOWN MEANS AND VARIANCES

3.2 Assumptions in the Sequential Analysis

This subsection presents the assumptions on the unknown parameters which will be used in the
sequential testing procedure. We distinguish between the estimates sequentially using the whole
observation, i.e., from 1 until n + k = n + 1, . . . to estimate the unknown parameters and the
estimates using the observations from 1 until n as well as the observations from n + 1 until
k = n+ 1, . . .

Similarly to the assumptions on the a posteriori setting, we first assume nearly constant parameters.

Assumption (PEE5). For the considered parameter x with sequence {xi} and estimate x̂
(ψ)
i,k,n,

ψ = 1, there are sequences {dx,i} and {ex,n}, an estimate x̂n, and a constant δx ≥ 0 so that∑n
i=1 |dx,i| = o(

√
n) as n→∞, x̂

(1)
i,n+k,n = x̂k,n for all i = 1, . . . ,n+ k, k = 1, . . ., and

ex,k,n = xi − x̂k,n − dx,i with max
k∈Mn,m

|ex,k,n| = OP (n−δx),

where Mn,m = {1, . . . ,[nm]}, m > 0, and Mn,m = {1, . . .} in the closed- and open-end setting,
respectively.

Assumption (PEE6). For the considered parameter x with sequence {xi} and estimate x̂
(ψ)
i,k,n,

ψ = 2, there are sequences {dx,i}, {ax,N} and {ex,n}, an estimate x̂n and some constant δ2,x ≥ 0 so

that
∑n

i=1 |dx,i| = o(
√
n) as n→∞, and x̂

(2)
i,k,n = 1i≤nx̂

n
1 +1i>nx̂

n+k
n+1 (i = 1, . . . ,n+ k; k = 1, . . .).

Furthermore, we assume that

1. {xi}i≤n fulfills Assumption (PEE1) with the estimate x̂n1 ,

2. max1≤k≤N |ex,k| = max1≤k≤N |xi − x̂n+k
n+1 − dx,i| = OP (1), and

3. maxN≤k≤[nm] |ex,k| = maxN≤k≤[nm] |xi − x̂n+k
n+1 − dx,i| = OP (n−δ2,xax,N ),

as n → ∞, followed by N → ∞, where ax,N = o(1) as N → ∞ and where the index set, which
we maximize over in the last line, is replaced by {N, . . .} in the open-end setting.

Additionally to the previous assumptions, we consider the cases where the parameters are allowed
to have structural breaks. Again, we can separate them into two types of estimates, as already
considered. However, in both cases we sequentially provide the observations. To understand what we
have in mind we consider the following example:

Example 3.2.1. Let Xi = εi+µ0 +
∑N

j=1 1i≤k∗j∆µ,j, i = 1, . . . ,n(1 +m), be a stochastic process with

centered innovations εi, where k∗j ∼ n, k∗j 6= k∗j+1, k∗j ∈ {1, . . . ,[n(1 +m)]} and |∆µ,j | > 0 for all
j = 1, . . . ,N .
Now, we observe one by one the samples Xn+1,Xn+2 · · · . Then, there are at least two options to
estimate the change-points in the mean of the process. On the one hand, we can split the data in the
data group from 1 until n and from n + 1 until k = n + 1, . . . to estimate the change-points
in each group, respectively. It has the advantage that we estimate the change-points of the first group
only one time. On the other hand, we do not split the data into two groups and estimate for each new
observation the change-points of the whole data set once again. It has at least the advantage that a
possible change-point near the nth observation could be estimated more precisely.

Assumption (PEE7). Let the considered parameter x with sequence {xi}, estimate

x̂
(3)
i,k,n = x̂i,k,n = 1i≤nx̂i,n + 1i>nx̂

n+k
i,1+n (i = 1, . . . ,n+ k; k = 1, . . .)

and sequence m2,x,n fulfill the following conditions:

1. the parameter x with estimates {x̂i,n}i=1,...,n fulfills Assumption (PEE3);
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ASSUMPTIONS IN THE SEQUENTIAL ANALYSIS

2. for each k = 1, . . . , [mn] there exists a decomposition {Îx,j,n+k,n}j=1,...,mx,2,n of {n+1, . . . ,n+k}
and a random array ex,k,j so that

ex,k,j =

{
xi − x̂n+k

i,n+1 − dx,i, for all i ∈ Îx,j,n+k,n,

0, else;

3. there exists a sequence bx,2,j,n, (j = 1, . . . ,mx,2,n; n = 1, . . .) so that

max
1≤j≤m2,x,n

max1≤k≤[mn] |ex,k,j |
bx,2,j,n

= OP (1), (3.2.1)

4. there exists a sequence of intervals {Ix,2,j}j=1,...,mx,2,n so that

P

mx,2,n⋂
j=1

{ω :

n+[mn]⋃
k=n+1

Îx,j,k,n(ω) ⊆ Ix,2,j}

→ 1. (3.2.2)

The following assumption is similar to Assumption (PEE7). The only difference is that the pa-
rameter estimate always depends on the whole, already observed, data set.

Assumption (PEE8). Let the considered parameter x with sequence {xi} and estimate x̂
(ψ)
i,k,n

(i = 1, . . . ,n+ k; k = 1, . . . , [nm], j = 4) fulfill the following conditions:
There is a sequence mx,n such that the following conditions hold:

1. for each k = 1, . . . , [mn] there is a decomposition {Îx,j,k,n}j=1,...,mx,n of {1, . . . ,n+k} so that

ex,k,j ≡ xi − x̂
(4)
i,k,n − di,x for all i ∈ Îx,j,k,n;

2. there is a sequence bx,j,n, (j = 1, . . . ,mx,n; n = 1, . . .) so that

max
1≤j≤mx,n

maxk∈Mn,m |ex,k,j |
bx,j,n

= OP (1); (3.2.3)

3. there is a sequence of intervals {Ix,j}j=1,...,mx,n so that

P

mx,n⋂
j=1

{ω :
⋃

k∈Mn,m

Îx,j,k,n(ω) ⊆ Ix,j}

→ 1; (3.2.4)

where Mn,m = {n, . . . ,[n(1 + m)]} and Mn,m = {n + 1, . . .} in the closed- and open-end setting,
respectively.

Remark 3.2.2. Some of the sets Ix,2,j, j = 1, . . . ,mx,n, n ∈ N and Ix,j, j = 1, . . . ,mx,n, n ∈ N
could be empty. In the open-end setting they could be even right-unbounded which later on produces
some technical condition between the estimation rates bx,2,j,n, bx,j,n and the cardinality of the trimmed
sets Ix,j.
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4 Change-Point Analysis of the Correlation under Unknown Means
and Known Variances

In addition to the main model of Section 1 we assume in this section that the parameters µ1,i and
µ2,i are unknown so that we have to replace them by some estimates.

4.1 A Posteriori Analysis under a General Dependency Framework and General
Mean Estimates

We define

ρ̂ψ,k =
1

k

k∑
i=1

(Xi − µ̂(ψ)
1,i,k,n)(Yi − µ̂(ψ)

2,i,k,n)

σ1,iσ2,i
=

1

k

k∑
i=1

Z
(ψ)
i,k,n, (4.1.1)

where ψ = 1, . . . ,4 is a design index to distinguish the four different mean estimates which fulfill
(PEE1), (PEE2), (PEE3), and (PEE4), respectively.

Each of these parameter estimates results in an error and we are interested, as mentioned before,
in the behavior of these errors so that the main results of Section 2 hold true. Hence, it is sufficient
to consider the error terms RlinZ(ψ) for i = 1, . . . ,n, l = 1, 2, 3, and ψ = 1, . . . ,4 of the following
decomposition

Z
(ψ)
i,k,n =

(Xi − µ̂(ψ)
1,i,k,n)(Yi − µ̂(ψ)

2,i,k,n)

σ1,iσ2,i

=Z
(0)
i +

(Xi − µ1,i)(µ2,i − µ̂(ψ)
2,i,k,n)

σ1,iσ2,i
+

(µ1,i − µ̂(ψ)
1,i,k,n)(Yi − µ2,i)

σ1,iσ2,i

+
(µ1,i − µ̂(ψ)

1,i,k,n)(µ2,i − µ̂(ψ)
2,i,k,n)

σ1,iσ2,i

=Z
(0)
i +R1iknZ(ψ) +R2iknZ(ψ) +R3iknZ(ψ) , (4.1.2)

where we will suppress the unused indices of the parameter estimates, of the error terms, and of Z
(ψ)
i,k,n.

4.1.1 Testing under a Functional Central Limit Theorem and Unknown Means

In this sub-subsection, we consider sufficient properties of the mean estimation errors so that the
main results of Subsection 2.1, Theorem 2.1.1, and Theorem 2.1.4, can be retained, replacing the
expectations by their estimates. In doing so, we investigate the convergence behavior of the test
statistics under the estimation assumptions (PEE1)–(PEE4).

Nearly Constant Means In this paragraph, we treat the situation of nearly constant unknown
means, i.e., the expectations µ1 and µ2 fulfill either Assumption (PEE1) or Assumption (PEE2).

Lemma 4.1.1. Let {din}i∈N satisfy
∑n

i=1 |din| = o(
√
n) and {Zin} be a triangle array of random

sequences with maxi,n IE [|Zin|] ≤ C <∞. Then, it holds that

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Zindin

∣∣∣∣∣ = oP (
√
n).

Proof. We obtain that max1≤k≤n |
∑k

i=1 Zindin| ≤
∑n

i=1 |Zindin| and by Markov’s inequality

P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Zindin

∣∣∣∣∣ ≥ η
)
≤ C

η

n∑
i=1

|din| = o(
√
n).
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Theorem 4.1.2. Let the parameters µ1 and µ2 fulfill Assumption (PEE1) with δµ,1, δµ,2 > 0 and

δµ,1 + δµ,2 >
1
2 . Moreover, for l = 1, 2, let {εl,n/σ3−l,n} satisfy (K(1)

r ) for rl > (1
2 + δµ,3−l)

−1.

Then, Theorem 2.1.1 holds true if we replace B0,0,0
n by B1,0,0

n .

Proof. By using the decomposition displayed in (4.1.2) we have

B1,0,0
n (·) = D̂−1/2

[
D̂1/2B0,0,0

n (·) +
3∑
l=1

R[n·],l

]
, (4.1.3)

where

R[n·],l =
[n·]√
n

 1

[n·]

[n·]∑
i=1

RlinZ(1) −
1

n

n∑
i=1

RlinZ(1)

 . (4.1.4)

Hence, Theorem 2.1.1 holds true by Slutsky’s Theorem if for each l = 1, 2, 3 the right–hand side
equals oP (1). Furthermore, we obtain with the triangle inequality that

‖R[n·],l‖[0,1] ≤ max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

RlinZ(1)

∣∣∣∣∣+ max
1≤k≤n

∣∣∣∣∣kn 1√
n

n∑
i=1

RlinZ(1)

∣∣∣∣∣ . (4.1.5)

We obtain that the first summand dominates the second. For l = 1, we have

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

(Xi − µ1,i)(µ2,i − µ̂2,n)

σ1,iσ2,i

∣∣∣∣∣ = OP (n−δµ,2)
1√
n

∥∥∥∥∥∥
[n·]∑
i=1

ε1,i
σ2,i

∥∥∥∥∥∥+ oP (1) = oP (1),

where we use Lemma 4.1.1, the main model, the assumed rates of Assumption (PEE1), and (K(1)
r ).

Hence, we get ‖R[n·],1‖[0,1] = oP (1) and similarly obtain ‖R[n·],2‖[0,1] = oP (1). It remains to consider
‖R[n·],3‖[0,1]:

‖R[n·],3‖[0,1] ≤C
n√
n
|µ1,i − µ̂1,n − d1,i||µ2,i − µ̂2,n − d2,i|+ oP (1) + o(1) = oP (1),

where we use the property of {dl,n}, the uniform boundedness of the standard deviation, and the
assumed rates of Assumption (PEE1) with δµ,1 + δµ,2 >

1
2 . Thus, Theorem 2.1.1 holds true if we

replace Z
(0)
i by Z

(1)
i,n .

Remark 4.1.3. Using the sample means as estimates under the Assumption (IID), (MIX), or (NED)
yields a δµ,1, δµ,2 = 1

2 .

Under some additional technical assumptions we even get the weighted convergences of Theo-
rem 2.1.4.

Corollary 4.1.4. Under the assumptions of Theorem 4.1.2 let {εl,n/σ3−l,n} satisfy (K(2)
r ) for

rl ≥ (1
2 + δµ,3−l)

−1 and let {εl,ndµ,3−l/σ3−l,n} satisfy (K(1)
r ) and (K(2)

r ) for r = 2 and l = 1,2.

Then, Theorem 2.1.4 holds true if we replace B0,0,γ
n by B1,0,γ

n .

Proof. The proof follows the combination of the proofs’ arguments of Theorem 2.1.4 and Theo-
rem 4.1.2. Hence, it remains to prove

‖R[n·],l‖[0,1]

= max
k∈[1,[εn]]∪
[[(1−ε)n],n]

∣∣∣∣∣
(

n2

k(n− k)

)γ
1√
n

(
k∑
i=1

RlinZ(1) −
k

n

n∑
i=1

RlinZ(1)

)∣∣∣∣∣ = oP (1)
(4.1.6)

as n→∞, ε→ 0, which is fulfilled if for l = 1, 2, 3

max
[(1−ε)n]≤k≤n

∣∣∣∣∣
(

n

(n− k)

)γ 1√
n

n∑
i=k+1

RlinZ(1)

∣∣∣∣∣ = oP (1) (4.1.7)
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and

max
1≤k≤[εn]

∣∣∣∣∣(nk)γ 1√
n

k∑
i=1

RlinZ(1)

∣∣∣∣∣ = oP (1) (4.1.8)

as n→∞, followed by ε→ 0. We start with l = 1 and the second term:

max
1≤k≤[εn]

∣∣∣∣∣ 1√
n

(n
k

)γ k∑
i=1

(Xi − µ1,i)(µ2,i − µ̂2,n)

σ1,iσ2,i

∣∣∣∣∣ = oP (1) +OP (n−δ2−
1
2 )

∥∥∥∥∥∥
(
n

[n·]

)γ [n·]∑
i=1

ε1,i
σ2,i

∥∥∥∥∥∥
[0,ε]

as n → ∞, followed by ε → 0, where we add ±dµ,2,i and apply (K(1)
r ) to {ε1,ndµ,2/σ2,n}. Hence,

again by using (K(1)
r ) for {ε1,n/σ2,n}, the right–hand side is equal to oP (1) as n→∞, followed by

ε→ 0. Analogously, we get the rates for l = 2, 3, where we additionally use∥∥∥∥∥∥
(
n

[n·]

)γ [n·]∑
i=1

|dµ,l,i|

∥∥∥∥∥∥
[0,ε]

= o(
√
n) and

∥∥∥∥∥∥
(
n

[n·]

)γ [n·]∑
i=1

|dµ,l,idµ,3−l,i|

∥∥∥∥∥∥
[0,ε]

= o(
√
n)

as n→∞, which holds by the property of {dµ,l,n}. Analogously, the rate displayed in (4.1.7) can be
proven such that (4.1.6) hold.

Remark 4.1.5. The preceding theorem and corollary present sufficient conditions on the mean es-
timates, which are constant for all i = 1, . . . ,n, such that the convergences of Theorem 2.1.1 hold
true. In particular, the estimates have to be consistent. However, if one expectation has a non-local
structural break, these estimates are not consistent. For example let

σ1,i = σ2,i ≡ 1, µ1,i ≡ 0, and µ2,i = µ2,i,n = gµ(i/n), µ̂1,n = Xn, and µ̂1,n = Y n,

where gµ 6≡ 0 is a suitable function. Under weak assumptions we obtain that∥∥∥∥∥∥
(
n

[n·]

)γ [n·]∑
i=1

ε1,i
σ2,i

(µ2,i − µ̂2,n)

∥∥∥∥∥∥ = OP (
√
n),

but not oP (
√
n). Notably, under certain assumptions, such as inter alia the asymptotic normality of

the sample means, we obtain that

1√
n

(
n

[n·]

)γ [n·]∑
i=1

ε1,i
σ2,i

(µ2,i − µ̂2,n)
D[0,1]−→ G(·),

where G is a Gaussian process with a covariance structure depending on gµ. Furthermore, under

certain assumptions and under H0 we could even obtain that B1,0,γ
n (·) also converges towards a

Gaussian process where its covariance structure depends on gµ, too. Since gµ is unknown, the test
statistic would be unusable under these assumptions since the critical value would be unknown.
Suppose there are non-local structural breaks in the expectations of both time series. Then, in many
cases B1,0,0

n (·) will not be bounded by an order of OP (1).

Now, we consider the estimates which are only calculated by the first k observations so that they
are still independent of the index i.

Theorem 4.1.6. Let µ1 and µ2 fulfill Assumption (PEE2) and let for l = 1, 2

max
1≤k≤n

k√
n
|µ1 − µ̂1,k||µ2 − µ̂2,k| = oP (1) (4.1.9)

as n→∞. Moreover, for l = 1, 2, let {εl,n/σ3−l,n} satisfy (K(1)
r ) for rl ≥ (1

2 + δµ,3−l)
−1. Then,

Theorem 2.1.1 holds true if we replace B0,0
n by B2,0,0

n .
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Remark 4.1.7. In (PEE2) we can even replace N by an increasing sequence Nn if ‖
∑[·Nn]

i=1 εl,i‖ =
oP (n1/2).

Proof of Theorem 4.1.6. The proof is essentially similar to the proof of Theorem 4.1.2 so that we
do not reproduce every argument in detail. Due to (4.1.5), it is sufficient to show for l = 1, 2, 3 that

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

RlikZ(2)

∣∣∣∣∣ = oP (1).

For l = 1 we obtain

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

RlikZ(2)

∣∣∣∣∣ ≤ max
1≤k≤N

∣∣∣∣∣ 1√
n

(µ2 − µ̂2,k)

k∑
i=1

ε1,i
σ2,i

∣∣∣∣∣
+ max
N≤k≤n

∣∣∣∣∣ 1√
n

(µ2 − µ̂2,k)
k∑
i=1

ε1,i
σ2,i

∣∣∣∣∣+ oP (1)

(4.1.10)

as n→∞, where we use the triangle inequality and Lemma 4.1.1. We obtain that the first summand
is equal to oP (1) as n → ∞ and that the second is oP (1) as n → ∞, followed by N → ∞
since maxN≤k≤n |µ2 − µ̂2,k| = OP (n−δµ,2a2,N ) and maxN≤k≤n

∣∣∣∑k
i=1

ε1,i
σ2,i

∣∣∣ = OP (n1/r1) with 1/r1 ≤
1/2 + δµ,2, where a2,N = o(1) as N → ∞. Analogously, we get the desired rate oP (1) for l = 2.
Hence, we consider the third error term and obtain

‖R[n·],3‖ ≤C
∥∥∥∥ [n·]√

n
|µ1 − µ̂1,[n·]||µ2 − µ̂2,[n·]|

∥∥∥∥+ oP (1) = oP (1),

where we use the triangle inequality, the property of the p.e.s., and the assumed rate displayed in
(4.1.9).

Corollary 4.1.8. Under the assumptions of Corollary 4.1.4 we replace the assumptions of Theo-
rem 4.1.2 by the ones of Theorem 4.1.6. Moreover, let

max
1≤k≤[nε]

(n
k

)γ k√
n
|µ1 − µ̂1,k||µ2 − µ̂2,k| = oP (1), as n→∞, ε→ 0

and

max
n−[nε]≤k≤n−1

(
n

n− k

)γ k√
n
|µ1 − µ̂1,k||µ2 − µ̂2,k| = oP (1), as n→∞, ε→ 0.

Then, Theorem 2.1.4 holds true if we replace B0,0,γ
n by B2,0,γ

n .

Proof. The proof follows from the proofs’ arguments of Theorem 2.1.4 and Theorem 4.1.6.

Remark 4.1.9. Similar to Remark 4.1.5 the process B2,0,γ
n (·) can still converge in distribution

towards a Gaussian process if there are non-local structural breaks in the expectations of one of the
two time series X1, . . . ,Xn and Y1, . . . , Yn. In this case, the covariance structure of this Gaussian
process depends on the unknown change-function gµ, meaning that the test is unusable.

Non-constant Mean Estimates In this paragraph, we consider some general sufficient conditions
on the mean estimation error where the mean estimates µ̂l,i,· are non-constant.

Theorem 4.1.10. Let the parameters µ1 and µ1 fulfill Assumption (PEE3). Additionally, let

{εl,n/σ3−l,n} fulfill (K(2)
r ) for rl > 1, l = 1, 2, and let the arrays bl,j,n = bµl,j,n (l = 1, 2; j =

1, . . . ,ml,n; n = 1, . . .) satisfy

ml,n∑
j=1

b
r3−l
l,j,n#Il,j = o(nr3−l/2m

−r3−l
l,n ), (4.1.11)

m1,n∑
v=1

m2,n∑
w=1

b1,v,nb2,w,n#(I1,v ∩ I2,w) = o(n1/2), and

ml,n∑
j=1

bl,j,n
∑
i∈Il,j

|d3−l,i| = o(
√
n). (4.1.12)

Then, Theorem 2.1.1 holds true if we replace B0,0
n by B3,0,0

n .

53



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER UNKNOWN MEANS AND KNOWN
VARIANCES

Proof. In analogy to the proofs of Theorem 4.1.2 and 4.1.6, it remains to show for l = 1, 2, 3 that

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

RlinZ(3)

∣∣∣∣∣ = ‖R[n·],l‖ = oP (1)

as n→∞. For l = 1 we obtain

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

(Xi − µ1,i)(µ2,i − µ̂2,i)

σ1,iσ2,i

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

ε1,i
µ2,i − µ̂2,i − dl,i

σ2,i

∣∣∣∣∣+ oP (1)

≤
m2,n∑
j=1

∣∣∣∣e2,j√
n

∣∣∣∣
∥∥∥∥∥∥

∑
i∈Î2,j∩[0,[n·]]

ε1,i
σ2,i

∥∥∥∥∥∥+ oP (1),

where we use Lemma 4.1.1, the main model, and the assumed property of the mean estimate.
Now, we use maxj |ej |/b2,j,n = OP (1), i.e., equation (3.1.1), the assumed rate in (3.1.2), and the

σ–additivity which implies

P

m2,n∑
j=1

∣∣∣∣e2,j√
n

∣∣∣∣
∥∥∥∥∥∥

∑
i∈Î2,j∩[0,[n·]]

ε1,i
σ2,i

∥∥∥∥∥∥ ≥ η
 ≤ P

m2,n∑
j=1

Nb2,j,n√
n

∥∥∥∥∥∥
∑

i∈Î2,j∩[0,[n·]]

ε1,i
σ2,i

∥∥∥∥∥∥ ≥ η
+ o(1)

≤ P


m2,n∑
j=1

Nb2,j,n√
n

∥∥∥∥∥∥
∑

i∈Î2,j∩[0,[n·]]

ε1,i
σ2,i

∥∥∥∥∥∥ ≥ η
 ∩

m2,n⋂
j=1

{Î2,j ⊆ I2,j}

+ o(1)

≤
m2,n∑
j=1

P

Nb2,j,nm2,n√
n

max
k1,k2∈I2,j ;k1≤k2

∣∣∣∣∣∣
k2∑
i=k1

ε1,i
σ2,i

∣∣∣∣∣∣ ≥ η
+ o(1)

as n → ∞, followed by N → ∞. The above maximum of the partial sums is of the type
max0≤k1≤k2≤M |SN+k2 − SN+k1 | and can be estimated to 2 max0≤k≤M |SN+M − SN+M−k| for
N,M ∈ N. Hence, by applying the second Kolmogorov-inequality it holds that

m2,n∑
j=1

P

Nb2,j,nm2,n√
n

max
k1,k2∈I2,j ;k1≤k2

∣∣∣∣∣∣
k2∑
i=k1

ε1,i
σ2,i

∣∣∣∣∣∣ ≥ η
 ≤ CN r1mr1

2,n

nr1/2ηr1

m2,n∑
j=1

br12,j,n#I2,j = o(1)

as n → ∞, followed by N → ∞, where we use the assumed equation (4.1.11). Combining the
previous arguments provides ‖R[n·],1‖ = oP (1) and ‖R[n·],2‖ = oP (1) as n→∞. Hence, it remains
to consider ‖R[n·],3‖:

‖R[n·],3‖[0,1] =

∥∥∥∥∥∥ 1√
n

[n·]∑
i=1

(µ1,i − µ̂1,i)(µ2,i − µ̂2,i)

σ1,iσ2,i

∥∥∥∥∥∥
≤ C√

n

m1,n∑
v=1

m2,n∑
w=1

#(Î1,v,n ∩ Î2,w,n)|e1,v,n||e2,w,n|+
C√
n

2∑
l=1

ml,n∑
v=1

∑
j∈Îl,v,n

|el,v,n||d3−l,j |+ o(1)

≤ CN2

√
n

m1,n∑
v=1

m2,n∑
w=1

#(I1,v,n ∩ I2,w,n)b1,v,nb2,w,n +
CN2

√
n

2∑
l=1

ml,n∑
v=1

bl,v,n
∑

j∈Il,v,n

|d3−l,j |+ oP (1)

as n→∞, followed by N →∞, where we use the upper and lower bounds of σl,i ≥ ε > 0, l = 1, 2.
Hence, with the assumed equations (4.1.12) the proof’s first display holds.

Remark 4.1.11. If we recall Example 3.1.3, see p. 45, then there is for each l = 1, 2 a sequence
{al,n,j} so that

max
1≤j≤ml,n

#(J̃l,j4Jl,j)
al,j,n

= oP (1).
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If we additionally assume that max1≤j≤ml,n
al,j,n
#Jl,j

< 1, we set Il,j = {min Jl,j − al,j,n, . . . , max Jl,j +

al,j,n}, which fulfills equation (3.1.2). Furthermore, we recognize that a good estimation of the mean
is more important on big sets Il,i than on small ones.

Corollary 4.1.12. Under the assumptions of Theorem 4.1.10 let dµ,l ≡ 0 for l = 1,2. Moreover,
as n→∞, followed by ε→ 0 let

ml,n∑
j=1

b
r3−l
l,j,n

∑
i∈Il,j∩((0,[nε]]∪(n−[nε],n))

1

(i ∧ (n− i))γr3−l
= o(nr3−l(1/2−γ)m

−r3−l
l,n ), (4.1.13)

sup
z∈(0,ε]

m1,n∑
v=1

m2,n∑
w=1

b1,v,nb2,w,n
#(I1,v ∩ I2,w ∩ (0,[nz]])

[nz]γ
= o(n1/2−γ), (4.1.14)

and

sup
z∈[1−ε,1)

m1,n∑
v=1

m2,n∑
w=1

b1,v,nb2,w,n
#(I1,v ∩ I2,w ∩ ([nz],n])

(n− [nz])γ
= o(n1/2−γ). (4.1.15)

Then, Theorem 2.1.4 holds true if we replace B0,0,γ
n by B3,0,γ

n .

Proof. The claim follows from the arguments used in the proofs of Theorem 2.1.4 and Theorem 4.1.10.

Now, we consider the asymptotic behavior of the test statistics. The idea goes back to the max-
imum likelihood approach. Hence, we are interested in some parameter estimates which satisfy As-
sumption (PEE4).

Theorem 4.1.13. Let the parameters µ1 and µ2 fulfill Assumption (PEE4), let {ε1,i/σ2,i} and

{ε2,i/σ1,i} fulfill (K(2)
r ) for r1,r2 > 1, and let for l = 1, 2

m3−l,2∑
j2=1

mrl
3−l,1

m3−l,1∑
j1=1

brl3−l,j1,j2#I3−l,1,j1 ∩ (0,max I3−l,2,j2 ]

1/rl

= o(n1/2), (4.1.16)

max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])b1,i1,j1b2,i2,j2 = o(n1/2), (4.1.17)

and

max
1≤j2≤ml,2

ml,1,n∑
j1=1

bl,j1,j2,n
∑

i∈Il,1,j1∩(0,max Il,2,j2 ]

|d3−l,i| = o(
√
n). (4.1.18)

as n→∞. Then, Theorem 2.1.1 holds true if we replace B0,0
n by B4,0,0

n .

Proof. As in the proofs before it is sufficient that for l = 1, 2, 3

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

RlikZ(4)

∣∣∣∣∣ = oP (n1/2). (4.1.19)

Firstly, we consider the error term with l = 1

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

R1ikZ(4)

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(µ2,i − µ̂2,i,k − di)ε1,i/σ2,i

∣∣∣∣∣+ oP (n1/2)

≤ max
1≤j2≤m2,2

m2,1∑
j1=1

max
k∈Î2,2,j2

|e2,j1,j2,k| max
k∈Î2,2,j2

∣∣∣∣∣∣∣
∑

i∈Î2,1,j1∩(0,k]

ε1,i
σ2,i

∣∣∣∣∣∣∣+ oP (n1/2)
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≤ OP (1) max
1≤j2≤m2,2

m2,1∑
j1=1

b2,j1,j2 max
k∈Î2,2,j2

∣∣∣∣∣∣∣
∑

i∈Î2,1,j1∩(0,k]

ε1,i
σ2,i

∣∣∣∣∣∣∣+ oP (n1/2)

= OP

m2,2∑
j2=1

mr1
2,1

m2,1∑
j1=1

br12,j1,j2
#I2,1,j1 ∩ (0,max I2,2,j2 ]

1/r1
+ oP (n1/2)

as n → ∞, where we apply Lemma 4.1.1, the triangle inequality, the additivity of a probability
measure, and the Kolmogorov-type inequality. Hence, the equation displayed in (4.1.19) holds for
l = 1 and is additionally fulfilled for l = 2 by using (4.1.16).

Now, we consider the case l = 3, use (4.1.18) and obtain that

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

R3ikZ(4)

∣∣∣∣∣ ≤ |R|+ oP (n1/2)

with

|R| = max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(µ1,i − µ̂1,i,k − d1,i)(µ2,i − µ̂2,i,k − d2,i)

σ1,iσ2,i

∣∣∣∣∣
= max

1≤j1≤m1, 2
1≤j2≤m2,2

max
k∈Î1, 2,j1∩Î2,2,j2

∣∣∣∣∣
k∑
i=1

(µ1,i − µ̂1,i,k − d1,i)(µ2,i − µ̂2,i,k − d2,i)

σ1,iσ2,i

∣∣∣∣∣
≤ c max

1≤j1≤m2,1
1≤j2≤m2,2

max
k∈Î1, 2,j1∩Î2,2,j2

m1,1∑
i1=1

m2,1∑
i2=1

#(Î1,1,i1 ∩ Î2,1,i1 ∩ (0,k])|e1,i1,j1,k||e2,i2,j2,k|

= OP

 max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])b1,i1,j1b2,i2,j2


as n→∞. Hence, the claim follows by using (4.1.17).

Corollary 4.1.14. Under the assumptions of Theorem 4.1.13 let dl,i ≡ 0,

m3−l,2∑
j2=1

m3−l,1∑
j1=1

brl3−l,j1,j2

∑
i∈I3−l,1,j1∩(0,max I3−l,2,j2 ]∧[nε]]

1

iγr3−l

1/rl

= o

(
n1/2

m3−l,1

)
, (4.1.20)

m3−l,2∑
j2=1

m3−l,1∑
j1=1

brl3−l,j1,j2

∑
i∈I3−l,1,j1∩([n−[nε],max I3−l,2,j2 )

1

(n− i)γr3−l

1/rl

= o

(
n1/2

m3−l,1

)
, (4.1.21)

sup
z∈(0,ε]

max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,[nz] ∨max I1, 2,j1 ∩ I2,2,j2 ])

[nz]γ

· b1,i1,j1b2,i2,j2 = o(n1/2−γ),

(4.1.22)

sup
z∈[1−ε,1)

max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ ([nz],max I1, 2,j1 ∩ I2,2,j2 ])

(n− [nz])γ

· b1,i1,j1b2,i2,j2 = o(n1/2−γ)

(4.1.23)

be fulfilled as n → ∞, followed by ε → 0. Then, Theorem 2.1.4 holds true if we replace B0,0,γ
n by

B4,0,γ
n .

Proof. The claim follows from the arguments used in the proofs of Theorem 2.1.4 and Theorem 4.1.13.
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In this sub-subsection, we have seen that under suitable estimation rates the mean estimation has
no influence on the limit of the test statistic. Note that, if these rate assumptions are not fulfilled,
especially if the estimates are not consistent, the processes B3,0,γ

n (·) and B4,0,γ
n (·) can still converge

towards a Gaussian process, cf. Remark 4.1.5.

4.1.2 Change-Point Estimation under Unknown Means

In this sub-subsection, we consider the setting of the multiple change-point problem for the correlation
and under the conditions that the means are unknown. In the first paragraph, we consider the special
case where we assume that the parameters µ1,i and µ2,i are constant. In the second paragraph, we
allow for multiple change-points in these parameters.

Constant Means Firstly, we consider the special estimate for the change-points in an epidemic
change-point setting.

Theorem 4.1.15. Under the assumptions of Theorem 2.1.15 let

1. {ε1,n/σ2n} and {ε2,n/σ1n} fulfill (K(2)
r ) and (K(3)

r ) for r1, r2 > 1;

2. the parameters µ1 and µ2 satisfy Assumption (PEE1) with dµ,l,i ≡ 0 and δ1 ∨ δ2 > 0.

Then, it holds that

n‖θ̃(1) − θ∗‖ = OP (1), (4.1.24)

where θ̃(1) = (θ̃
(1)
1 ,θ̃

(1)
2 ) ∈ arg max{Q̃(1)

n (s,t) : 0 ≤ s < t ≤ 1} with

Q̃(1)
n (s,t) =

 [nt]∑
i=1+[ns]

(
Z

(1)
i − Z(1)

n

)T  [nt]∑
i=1+[ns]

(
Z

(1)
i − Z(1)

n

) , (4.1.25)

Z(1)
n = n−1

∑n
i=1 Z

(1)
i , and Z

(1)
i = (Xi − µ̂1,n) (Yi − µ̂2,n) /(σ1,iσ2,i).

Proof. Set Q̃(1)([ns],[nt]) = Q̃
(1)
n (s,t). Firstly, we prove that it is sufficient that the following rates

hold true, where Z
(1)
i = Z

(0)
i +Ri and a2,N = o(1) as N →∞,

max
k1<k2

‖k−k∗‖≥N

|
∑k2

i=1+k1
Ri −

∑k∗2
i=1+k∗1

Ri|
‖k − k∗‖

= aN,2OP (1) (4.1.26)

and

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Ri

∣∣∣∣∣ = oP (n) (4.1.27)

as n→∞, N →∞. It holds with Ln,k1,k2 = O(1) form the proof of Theorem 2.1.15 that

P
(
n‖θ̂ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂ − k∗‖ ≥ N

)
= P

 max
k1<k2

‖k−k∗‖≥N

(Q̃(1)(k1,k2)− Q̃(1)(k∗1,k
∗
2)) ≥ 0


= P

(
0 ≤ max

k1<k2
‖k−k∗‖≥N

Ln,k1,k2

(
Q̃(k1,k2)− Q̃(k∗1,k

∗
2)

Ln,k1,k2

+
n‖k − k∗‖
Ln,k1,k2

·

[
2
∑k2

i=1+k1
(Z

(0)
i − Z(0))

[∑k2
i=1+k1

(Ri −R)−
∑k∗2

i=1+k∗1
(Ri −R)

]
‖k − k∗‖n

+
2
∑k∗2

i=1+k∗1
(Ri −R)

[∑k2
i=1+k1

(Z
(0)
i − Z(0))−

∑k∗2
i=1+k∗1

(Z
(0)
i − Z(0))

]
‖k − k∗‖n
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+

[∑k2
i=1+k1

(Ri −R) +
∑k∗2

i=1+k∗1
(Ri −R)

]2

‖k − k∗‖n

]))
≤ P

(
OP (1)aN + ∆2

ρ +OP (1)aN,2 ≤ 0
)
,

where we use the rates of the proof of Theorem 2.1.15 for the first summand and n‖k−k∗‖/Ln,k1,k2 =
O(1). In the square brackets we use the Kolmogorov-type inequality and (4.1.26) for the first summand,
(4.1.27) and Lemma B.0.2 for the second, and (4.1.26) and (4.1.27) for the third. Thus, it remains to
prove (4.1.26) and (4.1.27):
With the structure of Ri =

∑3
l=1Ri,l,Z(1) as displayed in (4.1.2) and by the triangle inequality, it is

sufficient to prove the two necessary rates for each Ri,l,Z(1) by itself with l = 1, 2, 3. We start with
the one displayed in (4.1.27) :

Since Ri,1,Z(1) = ε1,i(µ2 − µ̂2,n)/σ2,i, we apply the Kolmogorov-type inequality to obtain the rate
displayed in (4.1.27) for l = 1. Analogously, we get the rate for l = 2. Now, we consider the case
l = 3 and recognize that −δ1 − δ2 < 0 is sufficient.
Hence, it remains to prove (4.1.26). For l = 1 we obtain that

max
k1<k2

‖k−k∗‖≥N

∣∣∣∑k2
i=k1+1 ε1,i(µ2,i − µ̂2,n)/σ2,i −

∑k∗2
i=k∗1+1 ε1,i(µ2,i − µ̂2,n)/σ2,i

∣∣∣
‖k − k∗‖

= oP (1) max
k1<k2

‖k−k∗‖≥N

∣∣∣∑k2
i=k1+1 ε1,i/σ2,i −

∑k∗2
i=k∗1+1 ε1,i/σ2,i

∣∣∣
‖k − k∗‖

= oP (aN )

by applying Lemma B.0.2, where {aN} is a sequence with aN → 0 as N → ∞. Since for l = 2
the rate similarly follows, we consider l = 3

max
k1<k2

‖k−k∗‖≥N

∣∣∣∑k2
i=k1+1Ri,3,Z(1) −

∑k∗2
i=k∗1+1Ri,3,Z(1)

∣∣∣
‖k − k∗‖

= oP (1) max
k1<k2

‖k−k∗‖≥N

|k2 − k∗2 + k∗1 − k1|
‖k − k∗‖

= oP (1),

where −δ1 − δ2 < 0 is sufficient again.

Remark 4.1.16. Note that it is not necessary that both means have to be consistently estimated.

In the last theorem we use a mean estimate depending on the whole sample. In the following
theorem this aspect will be dropped.

Theorem 4.1.17. Under the assumptions of Theorem 2.1.15 let for l = 1,2

1. {εl,n/σ3−l,n} fulfill (K(2)
r ) and (K(3)

r ) for rl > 1;

2. µl,i − µ̂l,k1,k2,n = el,k1,k2 be independent of i and there be an ε ∈ (0,(θ∗2 − θ∗1)/3] and bounded
sequences {al,n} and {bl,n,N} so that

|el,k∗1 ,k∗2 ,n| = OP (al,n), (4.1.28)

max
k1<k2

[εn]≥‖k−k∗‖≥N

|el,k1,k2 − el,k1,k2 | = OP (al,n), (4.1.29)

max
k1<k2

‖k−k∗‖≥N

∣∣el,k∗1 ,k∗2 ,n − el,k1,k2,n∣∣
‖k − k∗‖

= OP (bl,n,N ), (4.1.30)

max
k1<k2

[εn]≤‖k−k∗‖

(k2 − k1)|e1,k1,k2,n||e2,k1,k2,n| = oP (n), (4.1.31)

a1,na2,n = o(1), nal,nb3−l,n,N = o(1), and a3−l,n = o(n1−1/rl) (4.1.32)

as n→∞, followed by N →∞.
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Then, it holds that

n‖θ̃(2) − θ∗‖ = OP (1), (4.1.33)

where θ̃(2) = (θ̃
(2)
1 ,θ̃

(2)
2 ) ∈ arg max{Q̃(2)

n (s,t) : 0 ≤ s < t ≤ 1} with

Q̃(2)
n (s,t) =

 [nt]∑
i=1+[ns]

(
Z

(2)
i,[ns],[nt] − Z(2)

n

)T  [nt]∑
i=1+[ns]

(
Z

(2)
i,[ns],[nt] − Z(2)

n

) , (4.1.34)

where Z(2)
n = n−1

∑n
i=1 Z

(2)
i,1,n and Z

(2)
i,k1,k2

= (Xi − µ̂1,k1,k2) (Yi − µ̂2,k1,k2) /(σ1,iσ2,i).

Proof. The proof essentially follows the proof of Theorem 4.1.15. Hence, we have to prove the rate

displayed in (4.1.26) with Ri,k1,k2 =
∑3

l=1Ri,k1,k2,l,z(2) instead of Ri, where Ri,k1,k2 = Z
(2)
i,k1,k2

−Z(0)
i .

The second necessary rate displayed in (4.1.27) is replaced by the condition

max
1≤k1<k2≤n

∣∣∣∣∣∣
k2∑

i=k1+1

Ri,k1,k2

∣∣∣∣∣∣ = oP (n).

The triangle inequality yields that it remains to prove for each l = 1, 2, 3

max
k1<k2

‖k−k∗‖≥N

∣∣∣∣∣∣
k2∑

i=k1+1

Ri,k1,k2,l,z(2)

∣∣∣∣∣∣ = oP (n). (4.1.35)

We start with the previously described modification of (4.1.26). For l = 1 we obtain

max
k1<k2

‖k−k∗‖≥N

∣∣∣e2,k1,k2

∑k2
i=k1+1 ε1,i/σ2,i − e2,k∗1 ,k

∗
2

∑k∗2
i=k∗1+1 ε1,i/σ2,i

∣∣∣
‖k − k∗‖

≤ max
k1<k2

‖k−k∗‖≥N

∣∣∣(e2,k1,k2 − e2,k∗1 ,k
∗
2
)
∑k2

i=k1+1 ε1,i/σ2,i

∣∣∣
‖k − k∗‖

+ max
k1<k2

‖k−k∗‖≥N

∣∣∣e2,k∗1 ,k
∗
2

(∑k2
i=k1+1 ε1,i/σ2,i −

∑k∗2
i=k∗1+1 ε1,i/σ2,i

)∣∣∣
‖k − k∗‖

= OP (n1/r1b2,n,N ) +OP (a2,naN ) = oP (1)

as n → ∞, followed by N → ∞. Here, we use the rate assumption (4.1.30) combined with the
Kolmogorov-type inequality for the first summand. For the second summand we use (4.1.28) and
Lemma B.0.2, whereby we get a sequence {aN} with aN = o(1) as N →∞.

Analogously, we get the necessary rate for l = 2 so that we now consider the sequence for l = 3:

max
k1<k2

‖k−k∗‖≥N

∣∣∣∑k2
i=k1+1Ri,k1,k2, 3,n −

∑k∗2
i=k∗1+1Ri,k1,k2, 3,n

∣∣∣
‖k − k∗‖

= max
k1<k2

‖k−k∗‖≥N

∣∣∣e1,k1,k2e2,k1,k2

∑k2
i=k1+1(σ1,iσ2,i)

−1 − e1,k∗1 ,k
∗
2
e2,k∗1 ,k

∗
2

∑k∗2
i=k∗1+1(σ1,iσ2,i)

−1
∣∣∣

‖k − k∗‖

≤ c max
k1<k2

[nε]≥‖k−k∗‖≥N

[
2∏
l=1

|el,k1,k2 − el,k∗1 ,k∗2 |+ |e1,k∗1 ,k
∗
2
||e2,k∗1 ,k

∗
2
|

+

2∑
l=1

|el,k1,k2 − el,k∗1 ,k∗2 ||e3−l,k∗1 ,k∗2 |
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+
k∗2 − k∗1
‖k − k∗‖

(
2∏
l=1

|el,k1,k2 − el,k∗1 ,k∗2 |+
2∑
l=1

|el,k1,k2 − el,k∗1 ,k∗2 ||e3−l,k∗1 ,k∗2 |

)]

+ c max
k1<k2

‖k−k∗‖≥[nε]

∣∣∣e1,k1,k2e2,k1,k2

∑k2
i=k1+1(σ1,iσ2,i)

−1
∣∣∣+
∣∣∣e1,k∗1 ,k

∗
2
e2,k∗1 ,k

∗
2

∑k∗2
i=k∗1+1(σ1,iσ2,i)

−1
∣∣∣

[nε]

= OP (a1,na2,n) +
2∑
l=1

OP (nbl,n,Na3−l,n) + oP (1) = oP (1),

where we use the assumed rates (4.1.28) and (4.1.29) for the summands in the first line, (4.1.28) and
(4.1.30) in the second line, and (4.1.31) in the last line. Finally, we apply the assumed rates displayed
in (4.1.32).

Now, we prove display (4.1.35) and obtain that

max
k1<k2

‖k−k∗‖≥N

∣∣∣∣∣∣
k2∑

i=k1+1

Ri,k1,k2,l,n

∣∣∣∣∣∣ ≤ max
k1<k2

‖k−k∗‖≥N

n

∣∣∣∑k2
i=k1+1Ri,k1,k2,l,n −

∑k∗2
i=k∗1+1Ri,k∗1 ,k∗2 ,l,n

∣∣∣
‖k − k∗‖

+

∣∣∣∣∣∣
k∗2∑

i=k∗1+1

Ri,k∗1 ,k∗2 ,l,n

∣∣∣∣∣∣
= oP (n) + 1{l=3}oP (na1,na2,n) + 1{l 6=3}OP (a3−l,nn

1/rl) = oP (n)

as n → ∞, followed by N → ∞, where we use the previous arguments for the first summand
and (4.1.32) for the two others. Hence, the two necessary rates are fulfilled and the claim finally
follows.

In the previous two theorems we have postulated an epidemic change-point setting. In the following

part of this paragraph, we will focus on the general multiple change-point setting H
(M)
A .

Theorem 4.1.18. Define Q
(1)
n as Q

(0)
n with Z

(1)
i instead of Z

(0)
i . Then, Theorem 2.1.22 holds

true with θ̂
(1)
n in place of θ̂

(0)
n if the following conditions are additionally fulfilled:

1. the {ε1,n/σ2n} and {ε2,n/σ1n} satisfy (K(2)
r ) and (K(3)

r ) for r1 > 1 and r2 > 1, and have
uniformly bounded r′1th and r′2th moments with r′1, r

′
2 ≥ 2, respectively;

2. the parameters µ1 and µ2 satisfy Assumption (PEE1) with dµ,l,i ≡ 0;

3. the sequences ∆k∗,n, ∆ρ,r,n, and an of Theorem 2.1.22 as well as the parameters δ1 and δ2

of (PEE1) satisfy as n→∞:

∆
−1+(1/r′1+1/r1−2δ2)∨(1/r′2+1/r2−2δ1)
k∗,n = o( min

1≤i≤R
∆2
ρ,i,n), (4.1.36)

(an
n

)((r1−1)/r1+δ2)∧((r2−1)/r2+δ1)
= O

(
min1≤i≤R ∆2

ρ,i,n

maxr |∆ρ,r,n|

)
, (4.1.37)

ann
−1 max

r
|∆k∗,r,n|(2/r1−1−2δ2)∨(2/r2−1−2δ1) = O( min

1≤i≤R
∆2
ρ,i,n). (4.1.38)

Proof. Firstly, with k0 = 0 , kR+1 = n, and r0 ∈ {1, . . . ,R} we obtain that

P (an|θ̂r0 − θr0 | ≥ N + 1) ≤ P

(
min

1<k1<...<kR<n;|kr0−k∗r0 |≥Nn/an
Q(1)
n (k) ≤ Q(1)

n (k∗)

)
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and

Q(1)
n (k)−Q(1)

n (k∗)

= 2

R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(1)
i +

R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr))
2

+
R+1∑
r=1

[
(k∗r − k∗r−1)

(
Z̃(1)(k∗r−1,k

∗
r)
)2
− (kr − kr−1)

(
Z̃(1)(kr−1,kr)

)2
]

with

Z̃
(1)
i = Z

(0)
i − ρi +

ε1,i
σ2,i

OP (n−δ2) +
ε2,i
σ1,i

OP (n−δ1) +OP (n−δ2−δ1)

and where the OP (·)-terms are independent of the index i.
Now, we follow the idea of the proof of Theorem 2.1.22. In the first case, if there exists a r∗ ∈

{1, . . . ,R} and an arbitrarily small ε > 0 so that |kr∗ − k∗r∗ | ≥ εmin1≤i≤R+1 ∆k∗,i,n = ε∆k∗,n for all
sufficient large n, we obtain that

max
‖k−k∗‖≥ε∆k∗,n

∣∣∣∣∣∣
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(1)
i

∣∣∣∣∣∣ = OP ((n1/rz∨(1/r1−δ2)∨(1/r2−δ1)) max
1≤i≤R

|∆ρ,i,n|),

where we use the arguments of the proof of Theorem 2.1.22. Using the same arguments of the proof
of Theorem 2.1.22 for the last row yields that there is a lower bound which is equal to

OP

(
n1/r+1/rz + n1/r′1+1/r1−2δ2 + n1/r′2+1/r2−2δ1

)
.

Hence, by applying (4.1.36) and the rates of Theorem 2.1.22 we observe that

P

(
min

1<k1<...<kR<n;‖k−k∗‖≥ε∆k∗,n
Q(1)
n (k)−Q(1)

n (k∗) ≤ 0

)
→ 0.

In the second case, we minimize over each kr which is inside an ε-neighborhood of k∗r with a radius
of ε∆k∗,n. Then, we get

P (n|θ̂r0 − θr0 | ≥ N + 1) ≤ o(1)

+ P

(
c min

1≤i≤R
∆2
ρ,i −OP

(
max
r
|∆ρ,r,n|∆−1+1/rz∨(1/r1−δ2)∨(1/r2−δ1)

k∗,n

)
−OP

(
maxr |∆k∗,r,n|(2/rz−1)∨(2/r1−1−2δ2)∨(2/r2−1−2δ1)

Nn/an

)

− C(R+ 1) max
1≤i≤R

∆ρ,i,n max
1≤r≤R

max
1≤|kr−k∗r |≤εn

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(1)
i |

|kr − k∗r | ∨ (Nn/an)
≥ 0

)
as n→∞, followed by N →∞. Here, we can now use the Hájek-Rényi-type inequalities to obtain

max
1≤|kr−k∗r |≤εn

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(1)
i |

|kr − k∗r | ∨ (Nn/an)
= OP

(
(Nn/an)−[(rz−1)/rz∧((r1−1)/r1+δ2)∧((r2−1)/r2+δ1)]

)
.

Due to the assumed (2.1.28) of Theorem 2.1.22, the rate assumption (2.1.29) of Theorem 2.1.22,
(4.1.36), (4.1.37), and (4.1.38) it holds that the previous probability converges towards zero as n→∞,
followed N →∞. This finally implies the claim.

Remark 4.1.19. If 1/rz + 1/r′ ≥ (1/r1 + 1/r′1 − 2δ2) ∨ (1/r2 + 1/r′2 − 2δ1), the rate assumption in
(4.1.36) is implicitly fulfilled by the second condition of Theorem 2.1.22. If even

1/rz ≥ (1/r1 − δ2) ∨ (1/r2 − δ1) and 1/rz ≥ (1/r2 − δ1) ∨ (1/r1 − δ2),
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the rate assumptions in (4.1.37) and (4.1.38) are implicitly fulfilled by the assumption of Theo-
rem 2.1.22, too. Thus, if rz ≤ r1 ∧ r2, r′z ≤ r′1 ∧ r′2, and δl > 0, the estimation rate an of
the change-points in the correlations is independent of the mean estimation.

Theorem 4.1.20. Define R̂
(1)
n as R̂ with Z

(1)
i instead of Z

(0)
i . Under the assumptions of

Theorem 4.1.18 let

d(1)
n � β(1)

n ≤
1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,n (4.1.39)

with

d(1)
n = d(0)

n ∨ n(1/r′1+1/r1−2δ2)∨(1/r′2+1/r2−2δ1)

and with d
(0)
n from Theorem 2.1.25. Then, the estimate R̂(1) is a consistent estimate for the number

of change-points R∗.

Proof. Set βn = β
(1)
n . This proof follows the arguments of the proof of Theorem 2.1.25. Hence,

it is sufficient to show that the sets {R̂(1) < R∗} and {R̂(1) > R∗} are asymptotically empty.
The asymptotic behavior of {R̂(1) < R∗} follows in the same way as {R̂ < R∗} in the proof of
Theorem 2.1.25 with the arguments of Theorem 4.1.18 instead of those of Theorem 2.1.22.

Now, we consider {R̂(1) > R∗} and obtain by using the same arguments as in the proof of
Theorem 2.1.25 the lower bounds

OP

(
d(0)
n ∨ n(1/r′1+1/r1−2δ2)∨(1/r′2+1/r2−2δ1) ∨ max

1≤i≤R∗
|∆k∗,r,n|(2/r1−1−2δ2)∨(2/r2−1−2δ1)

)
and

|∆k∗,r,n|(2−rz)/rz∨[(2−r1)/r1−2δ2]∨[(2−r2)/r2−2δ1]

instead of

OP

(
n1/r′z+1/r

)
and |∆k∗,r,n|(2−rz)/rz ,

respectively. Using max1≤i≤R∗ |∆k∗,r,n| ∼ n and 1/r1 − 1 ≤ 1/r′1 yields the claim.

Non-constant Means In this paragraph, we present change-point estimates for the change-points
in the correlation under the condition that the mean estimates are non-constant. Again, we consider
first the special case of epidemic changes before we focus on the general multiple change-point setting.

The first change-point estimator postulates an epidemic change in the correlation and uses for the
estimation of the unknown means the whole sample. Here, we allow structural breaks in the mean.

Theorem 4.1.21. Under the assumptions of Theorem 2.1.15 let

1. {ε1,n/σ2n} and {ε2,n/σ1n} fulfill (K(2)
r ) and (K(3)

r ) for r1, r2 = 2;

2. µ1 and µ2 fulfill Assumption (PEE3) with dl,i ≡ 0 such that it holds that

ml,n∑
j=1

b
r3−l
l,j #Il,j = o((n/ml,n)rl) (4.1.40)

and
m1,n∑
j1=1

m2,n∑
j2=1

b1,j1b2,j2#I1,j1 ∩ I2,j2 = o(n); (4.1.41)
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3. it holds for

K∗1,k = (k∗1 − k,k∗1], K∗2,k = (k∗1,k
∗
1 + k], K∗3,k = (k∗2 − k,k∗2], K∗4,k = (k∗2,k

∗
2 + k]

that

max
v∈{1,...,4}

m1,n∑
j1=1

m2,n∑
j2=1

|b1,j1 ||b2,j2 | max
1≤k≤n

1

k ∨N
#
(
K∗v,k ∩ I1,j1 ∩ I2,j2

)
= o(1); (4.1.42)

4. for each f = 1, 2 exists Kf <∞ sequences of natural numbers N = al,f,0,N < al,f,1,n < . . . <

al,f,K,n = kf0 − 1 with al,f,1,n → ∞ so that for each v = 1, . . . ,Kf , f = 1, 2, and l = 1,2 it
holds that

(#Ml,f,0,N )2
∑

j∈Ml,f,0,N

b2l,j
(max Il,j ∧ k∗f −min Il,j) ∧N

N2
= o(1), (4.1.43)

(#Ml,f,0,N )2
∑

j∈Ml,f,0,N

b2l,j
(k∗f −min Il,j + 1−N) ∨ 0

N((k∗f −min Il,j + 1) ∨N)
= o(1), (4.1.44)

(#Ml,f,v)
2
∑

j∈Ml,f,v

b2l,j
#Il,j + 1

(k∗f −min Il,j + 1)[(k∗f −max Il,j) ∨N ]
= o(1), (4.1.45)

as n→∞ followed by N →∞, where

Ml,f,0,N =
{

1 ≤ j ≤ ml,n : min Il,j ≤ k∗f , k∗f −N < max Il,j
}
,

Ml,f,v =
{

1 ≤ j ≤ ml,n : max Il,j ∈ (k∗f − av,l,f,n,k∗f − av−1,l,f,n]
}

;

5. for each f = 1, 2 exist Kf < ∞ sequences of natural numbers N = bl,f,0,N < bl,f,1,n < . . . <

bl,f,K,n = kf0 − 1 with bl,f,1,n → ∞ so that for each v = 1, . . . ,K, f = 1, 2, and l = 1,2 it
holds that

(#Ml,f,0,N )2
∑

j∈Ml,f,0,N

b2l,j
(max Il,j −min Il,j ∨ k∗f ) ∧N

N2
= o(1), (4.1.46)

(#Ml,f,0,N )2
∑

j∈Ml,f,0,N

b2l,j
(max Il,j − k∗f + 1−N) ∨ 0

N((max Il,j − k∗f + 1) ∨N)
= o(1), (4.1.47)

(#Ml,f,v)
2
∑

j∈Ml,f,v

b2l,j
#Il,j + 1

(max Il,j − k∗f + 1)[(min Il,j − k∗f ) ∨N ]
= o(1), (4.1.48)

as n→∞ followed by N →∞, where

Ml,f,0,N =
{

1 ≤ j ≤ ml,n : min Il,j ≤ k∗f +N, k∗f ≤ max Il,j
}
,

Ml,f,v =
{

1 ≤ j ≤ ml,n : min Il,j ∈ (k∗f + bv−1,l,f,n,k
∗
f + bv,l,f,n]

}
.

Then, it holds that

n‖θ̃(3) − θ∗‖ = OP (1), (4.1.49)

where θ̃(3) = (θ̃
(3)
1 ,θ̃

(3)
2 ) ∈ arg max{Q̃(3)

n (s,t) : 0 ≤ s < t ≤ 1} with

Q̃(3)
n (s,t) =

 [nt]∑
i=1+[ns]

(
Z

(3)
i − Z(3)

n

)T  [nt]∑
i=1+[ns]

(
Z

(3)
i − Z(3)

n

) (4.1.50)

and where Z(3)
n = n−1

∑n
i=1 Z

(2)
i,1,n and Z

(3)
i,k1,k2

= (Xi − µ̂1,i,n) (Yi − µ̂2,i,n) /(σ1,iσ2,i).
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Proof. The proof essentially follows the proof of Theorem 4.1.15. Hence, we prove that the equations

displayed in (4.1.26) and (4.1.27) hold for Z
(3)
i = Z

(0)
i + Ri and Ri =

∑3
l=1Ri,l,Z(3) . Again, it is

sufficient to show the rates for each l separately. We start with the proof of (4.1.27) and obtain that

max
1≤k1<k2≤n

∣∣∣∣∣∣
k2∑

i=k1+1

Ri,l,Z(3)

∣∣∣∣∣∣ ≤ 2 max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Ri,l,Z(3)

∣∣∣∣∣ ,
which has already been treated in the proof of Theorem 4.1.10. Using (4.1.40) and (4.1.41) yields
that (4.1.27) is fulfilled. Now, we consider (4.1.26) and obtain that it is sufficient to prove the rate
for each l = 1,2,3. Moreover, we obtain that we can fragment the set {1 ≤ k1 < k2 ≤ n} cut with
‖k − k∗‖ ≥ N , over which the maximum is taken, in the sets

{k1 < k2 ≤ k∗1 < k∗2}, {k1 ≤ k∗1 ≤ k2 < k∗2}, {k∗1 < k1 < k2 < k∗2},
{k∗1 < k1 ≤ k∗2 < k2}, {k1 ≤ k∗1 < k∗2 ≤ k2}, {k∗1 < k∗2 ≤ k1 < k2},

where each set is cut with {1, . . . ,n} and ‖k − k∗‖ ≥ N . Hence, the primary maximum can be
estimated by the sum of the maxima on each of the above sets. Since k∗2 − k∗1 ∼ n, it holds on the
first and last set that ‖k − k∗‖ ∼ n. Furthermore, this implies that

max
1≤k1<k2≤k∗1<k∗2 ,‖k−k∗‖≥N

∣∣∣∑k2
i=k1+1Ri,l,Z(3) −

∑k∗2
i=k∗1+1Ri,l,Z(3)

∣∣∣
‖k − k∗‖

≤ C

n
max

1≤k1<k2≤n

∣∣∣∣∣∣
k2∑

i=k1+1

Ri,l,Z(3)

∣∣∣∣∣∣ ≤ 2C

n
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Ri,l,Z(3)

∣∣∣∣∣ ,
where we have already treated these maximums in the proof of Theorem 4.1.10. The maximum on
the three other sets are estimated to a linear combination of the following types

max
1≤k≤k∗1

c

k ∨N

∣∣∣∣∣∣
k∗1∑

i=k∗1+1−k
Ri,l,Z(3)

∣∣∣∣∣∣ , max
1≤k≤k∗2−k∗1

c

k ∨N

∣∣∣∣∣∣
k∗1+k∑
i=k∗1+1

Ri,l,Z(3)

∣∣∣∣∣∣ ,
max

1≤k≤k∗2−k∗1

c

k ∨N

∣∣∣∣∣∣
k∗2∑

i=k∗2+1−k
Ri,l,Z(3)

∣∣∣∣∣∣ , max
1≤k≤n−k∗2

c

k ∨N

∣∣∣∣∣∣
k∗2+k∑
i=k∗2+1

Ri,l,Z(3)

∣∣∣∣∣∣ ,
(4.1.51)

where c is a suitable constant. Since each of this maximum can be treated in the same way, we just
consider the first one. We start with l = 1:

max
1≤k≤k∗1

c

k ∨N

∣∣∣∣∣∣
k∗1∑

i=k∗1+1−k
Ri,l,Z(3)

∣∣∣∣∣∣ ≤
m2,n∑
j=1

max
1≤k≤k∗1

c|e2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
∑

i∈[k,k∗1 ]∩Îl,j

ε1,i/σ2,i

∣∣∣∣∣∣
≤

m2,n∑
j=1

max
min Îl,j≤k≤(k∗1∧max Îl,j)

c|e2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
∑

i∈[k,k∗1 ]∩Îl,j

ε1,i/σ2,i

∣∣∣∣∣∣
≤

m2,n∑
j=1

max
min Ij≤k≤(k∗1∧max Ij),s1,s2∈Ij

c|e2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
∑

i∈[k,k∗1 ]∩Ij∩[s1,s2]

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

=

m2,n∑
j=1

max
min Ij≤k≤s≤(k∗1∧max Ij)

c|e2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
∑
i∈[k,s]

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

≤ 2

m2,n∑
j=1

max
min Ij≤k≤(k∗1∧max Ij)

c|e2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
(k∗1∧max Ij)∑

i=k

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)
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= OP

m2,n∑
j=1

max
min Ij≤k≤(k∗1∧max Ij)

c|b2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
(k∗1∧max Ij)∑

i=k

ε1,i/σ2,i

∣∣∣∣∣∣
+ oP (1)

= OP

m2,n∑
j=1

max
1≤k≤k∗1

c|b2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
∑

i∈[k,k∗1 ]∩Ij

ε1,i/σ2,i

∣∣∣∣∣∣
+ oP (1),

where we use the estimation rates of Assumption (PEE3). Now, we decompose {1, . . . ,m2,n} in

M1 = {1 ≤ j ≤ m2,n : max Ij ∈ (0,k∗1 − aK−1,n]} ,
M2 = {1 ≤ j ≤ m2,n : max Ij ∈ (k∗1 − aK−1,n,k

∗
1 − aK−2,n]} ,

...

MK,N = {1 ≤ j ≤ m2,n : max Ij ∈ (k∗1 − a1,n,k
∗
1 −N ]} ,

MK+1,N = {1 ≤ j ≤ m2,n : min Ij ≤ k∗1, k∗1 −N < max Ij} ,

MK+2,N = {1, . . . ,m2,n} \
K+1⋃
i=1

Mi

and obtain that the above estimated term is zero for each j ∈ MK+2. Furthermore, we define
aK+1,n = 1 to obtain that

P

2

m2,n∑
j=1

max
min Ij≤k≤(k∗1∧max Ij)

c|b2,j |
(k∗1 − k + 1) ∨N

∣∣∣∣∣∣
(k∗1∧max Ij)∑

i=k

ε1,i/σ2,i

∣∣∣∣∣∣ ≥ η


≤ C
K−1∑
v=1

(#Mv)
2

η2

∑
j∈Mv

b22,j

max Ij∑
i=min Ij

1

(k∗1 − k + 1)2

+ C
(#MK,N )2

η2

∑
j∈MK,N

b22,j

max Ij∑
i=min Ij

1

(k∗1 − k + 1)2 ∨N2

+ C
(#MK+1,N )2

η2

∑
j∈MK+1,N

b22,j

k∗1∧max Ij∑
i=min Ij

1

(k∗1 − k + 1)2 ∨N2

≤ C
K−1∑
v=1

(#Mv)
2

η2

∑
j∈Mv

b22,j
#Ij + 1

(k∗1 −min Ij + 1)(k∗1 −max Ij)

+ C
(#MK,N )2

η2

∑
j∈MK,N

b22,j
#Ij + 1

(k∗1 −min Ij + 1)[(k∗1 −max Ij) ∨N ]

+ C
(#MK,N )2

η2

∑
j∈MK,N

b22,j

[
(max Ij ∧ k∗1 −min Ij) ∧N

N2

+
(k∗1 −min Ij + 1−N) ∨ 0

N((k∗1 −min Ij + 1) ∨N)

]
,

where we use the above decomposition, the σ-additivity, and the second Kolmogorov-type inequality
for the first inequality and the estimation by the integral method for the second. For l = 2 we get a
similar rate so that we consider the case l = 3 now:

max
1≤k≤k∗1

c

k ∨N

∣∣∣∣∣∣
k∗1∑

i=k∗1+1−k
Ri,l,Z(3)

∣∣∣∣∣∣
= OP

m1,n∑
j1=1

m2,n∑
j2=1

|b1,j1 ||b2,j2 | max
1≤k≤k∗1

1

k ∨N
# ([k∗1 − k + 1,k∗1] ∩ I1,j1 ∩ I2,j2)

 ,
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where we use Assumption (PEE3). Hence, the first maximum of (4.1.51) fulfills the sufficient rate.
The third maximum essentially follows in the same way. For the second and the last one we use the
same arguments, where we apply the shifted Kolmogorov inequality. Hence, the claim is proven.

Theorem 4.1.22. Define Q
(3)
n as Q

(0)
n with Z

(3)
i instead of Z

(0)
i . Then, Theorem 2.1.22 holds

true with θ̂
(3)
n in place of θ̂

(0)
n if the following conditions are additionally fulfilled:

1. the sequences {ε1,i/σ2i} and {ε1,i/σ2i} satisfy (K(2)
r ) and (K(3)

r ) for r1, r2 > 1, respectively;

2. the parameters µ1 and µ2 satisfy Assumption (PEE3) with dµ,l,i ≡ 0;

3. the sequences ∆k∗,n, ∆ρ,r,n, and an of Theorem 2.1.22, as well as the sequences bl,j and Il,j
of (PEE3) satisfy for l = 1, 2 and as n→∞:

m
r3−l
l,n

ml,n∑
j=1

b
r3−l
l,j #Il,j = o

((
∆k∗,n∆2

ρ,n

max1≤r≤R |∆ρ,r|

)r3−l
∧ (∆k∗,n∆2

ρ,n)r3−l/2

)
, (4.1.52)

m2,n∑
j=1

m1,n∑
j=1

b1,jb2,j#I1,j ∩ I2,j = o

(
∆k∗,n∆2

ρ,n

max1≤r≤R |∆ρ,r|
∧
√

∆k∗,n∆2
ρ,n

)
, (4.1.53)

max
1≤r≤R

(#Al,r,n)r3−l
∑

j∈Al,r,n

b
r3−l
l,j (Nn/an)−(r3−l−1) = o

(
∆2
ρ,n

max1≤r≤R |∆ρ,r|

)
, (4.1.54)

max
1≤r≤R

∑
j1∈A1,r,n,j2∈A2,r,n

b1,jb2,j#((k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] ∩ I1,j1 ∩ I2,j2)

#((k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] ∩ I1,j1 ∩ I2,j2) ∨ (Nn/an)

= o

(
∆2
ρ,n

‖∆ρ,r‖

)
,

(4.1.55)

for an arbitrarily small ε > 0, where

Al,r,n =
{

1 ≤ j ≤ ml,n : Il,j ∩ (k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] 6= ∅

}
.

Remark 4.1.23. The assumed rates in (4.1.52) and (4.1.53) are sufficient for the change-point esti-
mation of the correlation to guarantee that there are no big mean estimation errors over the whole time.
Additionally, in the direct neighborhood of the change-points of the correlations the mean estimation
should in particular be not too unfavorable in the sense of (4.1.54) and (4.1.55).

Proof of Theorem 4.1.22. Set a1,n,N = Nn/an. Firstly, we obtain with k0 = 0, kR+1 = n, and
r0 ∈ {1, . . . ,R} that

P (an|θ̂r0 − θr0 | ≥ N + 1) ≤ P

(
min

1<k1<...<kR<n;|kr0−k∗r0 |≥a1,n,N
Q(3)
n (k) ≤ Q(3)

n (k∗)

)
and that

Q(3)
n (k)−Q(3)

n (k∗) = 2
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(3)
i +

R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr))
2

+
R+1∑
r=1

[
(k∗r − k∗r−1)

(
Z̃(3)(k∗r−1,k

∗
r)
)2
− (kr − kr−1)

(
Z̃(3)(kr−1,kr)

)2
]

with

Z̃
(3)
i = Z

(0)
i − ρi +

ε1,i
σ2,i

(µ2,i − µ̂2,i) +
ε2,i
σ1,i

(µ1,i − µ̂1,i) + (µ1,i − µ̂1,i)(µ2,i − µ̂2,i).
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Now, we follow the idea of the proof of Theorem 2.1.22. In the first case, if there is a r∗ ∈ {1, . . . ,R}
and an arbitrarily small ε > 0 so that |kr∗ − k∗r∗ | ≥ ε∆k∗,n ∨ a1,n,N for all sufficient large n, we
obtain that

max
‖k−k∗‖≥ε∆k∗,n∨a1,n,N

∣∣∣∣∣∣
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(3)
i

∣∣∣∣∣∣ = OP (n1/rz max
1≤i≤R

|∆ρ,i,n|)

+ max
‖k−k∗‖≥ε∆k∗,n∨a1,n,N

∣∣∣∣∣∣
m2,n∑
j=1

e2,j

R+1∑
r=1

∑
i∈(kr−1,kr]∩Î2,j

(ρi − ρ(kr−1,kr))
ε1,i
σ2,i

∣∣∣∣∣∣
+ max
‖k−k∗‖≥ε∆k∗,n∨a1,n,N

∣∣∣∣∣∣
m1,n∑
j=1

e1,j

R+1∑
r=1

∑
i∈(kr−1,kr]∩Î1,j

(ρi − ρ(kr−1,kr))
ε2,i
σ1,i

∣∣∣∣∣∣
+ max
‖k−k∗‖≥ε∆k∗,n∨a1,n,N

∣∣∣∣∣∣
m2,n∑
j=1

m1,n∑
j=1

e1,je2,j

R+1∑
r=1

∑
i∈(kr−1,kr]∩Î1,j∩Î2,j

(ρi − ρ(kr−1,kr))

∣∣∣∣∣∣ .
Here, we use in the first row the arguments of the proof of Theorem 2.1.22. Furthermore, with the
triangle inequality, σ-additivity, and the Kolmogorov-type inequality (and |∆ρ,r| ≤ C) we get that

P

 max
‖k−k∗‖≥ε∆k∗,n∨a1,n,N

∣∣∣∣∣∣
m2,n∑
j=1

e2,j

R+1∑
r=1

∑
i∈(kr−1,kr]∩Î2,j

(ρi − ρ(kr−1,kr))
ε1,i
σ2,i

∣∣∣∣∣∣ ≥ η∆k∗,n∆2
ρ,n


≤ C

(
Rm1,n max1≤r≤R |∆ρ,r|

η∆k∗,n∆2
ρ,n

)r1 m2,n∑
j=1

br12,j#I2,j + o(1)

as n → ∞, followed by N → ∞. Due to (4.1.52), this tends to zero. Similarly, we can treat the
above third summand. For the fourth we obtain

max
‖k−k∗‖≥ε∆k∗,n

∣∣∣∣∣∣∣
m2,n∑
j1=1

m1,n∑
j1=1

e1,j1e2,j2

R+1∑
r=1

∑
i∈(kr−1,kr]∩Î1,j1∩Î2,j2

(ρi − ρ(kr−1,kr))

∣∣∣∣∣∣∣
= OP

Rm2,n∑
j2=1

m1,n∑
j1=1

b1,j1b2,j2#I1,j1 ∩ I2,j2 max
1≤r≤R

|∆ρ,r|

 ,

which tends to zero, if it is divided by ∆k∗,n∆2
ρ,n, see (4.1.53). For the last summand of the second

display in this proof we use the same arguments as in the proof of Theorem 2.1.22 which yield a lower

bound of an order of OP (b
(3)
n ) with

b(3)
n = n1/r+1/rz +

2∑
l=1

m2
l,n

ml,n∑
j=1

b
r3−l
l,j #I3−l,j

2/r3−l

+

m1,n∑
j1=1

m2,n∑
j2=1

b1,j1b2,j2#I1,j1 ∩ I2,j2

2

.

(4.1.56)

This tends to zero if it is divided by ∆k∗,n∆2
ρ,n, see (4.1.52) and (4.1.53). Analogously to the proof

of Theorem 2.1.22, it follows that

P

(
min

1<k1<...<kR<n;‖k−k∗‖≥ε∆k∗,n∨a1,n,N
Q(3)
n (k)−Q(3)

n (k∗) ≤ 0

)
→ 0.

In the second case, we minimize over each kr which is inside an ε-neighborhood of k∗r with a radius
of ε∆k∗,n. Then, we get

P (n|θ̂r0 − θr0 | ≥ N + 1) ≤ o(1)
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+ P

(
c min

1≤i≤R
∆2
ρ,i −OP

(
maxr |∆k∗,r,n|2/rz−1

Nn/an

)
−OP


∑2

l=1m
2
l,n

(∑ml,n
j=1 b

r3−l
l,j #I3−l,j

)2/r3−l

∆k∗,nNn/an

+

(∑m1,n

j1=1

∑m1,n

j1=1 b1,j1b2,j2#I1,j1 ∩ I2,j2

)2

∆k∗,nNn/an


− C(R+ 1) max

1≤i≤R
∆ρ,i,n max

1≤r≤R
max

1≤|kr−k∗r |≤ε∆k∗,n

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(3)
i |

|kr − k∗r | ∨ (Nn/an)
≥ 0

)

as n→∞ followed by N →∞, where we obtain that the first term dominates the second and third,
by using the fourth condition of Theorem 2.1.22, (4.1.52), and (4.1.53). For the last term we use the
Hájek-Rényi-type inequalities to obtain

max
1≤|kr−k∗r |≤ε∆k∗,n

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(3)
i |

|kr − k∗r | ∨ (Nn/an)
= OP ((Nn/an)−(rz−1)/rz)

+
2∑
l=1

max
1≤|kr−k∗r |≤ε∆k∗,n

∣∣∣∣∣∣
ml,n∑
j=1

el,j

∑
i∈(kr∧k∗r ,kr∨k∗r ]∩Îl,j

ε3−l,i
σl,i

|kr − k∗r | ∨ (Nn/an)

∣∣∣∣∣∣
+ max

1≤|kr−k∗r |≤ε∆k∗,n

∣∣∣∣∣∣
m2,n∑
j=1

m1,n∑
j=1

e1,je2,j
#(kr ∧ k∗r ,kr ∨ k∗r ] ∩ Î1,j ∩ Î2,j

|kr − k∗r | ∨ (Nn/an)

∣∣∣∣∣∣
= OP ((Nn/an)−(rz−1)/rz) +

2∑
l=1

OP

#Al,r,n

 ∑
j∈Al,r,n

b
r3−l
l,j (Nn/an)−(r3−l−1)

1/r3−l


+OP

 ∑
j1∈A1,r,n,j2∈A2,r,n

b1,jb2,j
#((k∗r − ε∆k∗,n,k

∗
r + ε∆k∗,n] ∩ I1,j1 ∩ I2,j2)

#((k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] ∩ I1,j1 ∩ I2,j2) ∨ (Nn/an)

 ,

where

Al,r,n =
{

1 ≤ j ≤ ml,n : Il,j ∩ (k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] 6= ∅

}
.

Due to the assumed rates in (4.1.54) and (4.1.55), the claim finally follows.

Theorem 4.1.24. Define R̂
(3)
n as R̂ with Z

(3)
i instead of Z

(0)
i . Let the assumptions of Theo-

rem 4.1.22 be fulfilled and suppose that

d(3)
n � β(3)

n ≤
1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,n with d(3)

n = b(3)
n ∨ d(0)

n , (4.1.57)

where b
(3)
n is from (4.1.56), d

(0)
n and C∗ are defined as in Theorem 2.1.25. Then, R̂(3) consistently

estimates the number of change-points R∗.

Proof. Set βn = β
(3)
n . This proof follows the arguments of the one of Theorem 2.1.25. Hence,

it is sufficient to show that the sets {R̂(3) < R∗} and {R̂(3) > R∗} are asymptotically empty.
The asymptotic behavior of {R̂(3) < R∗} follows in the same way as {R̂ < R∗} in the proof of
Theorem 2.1.25 with the arguments of Theorem 4.1.22 instead of Theorem 2.1.22.

Now, we consider {R̂(3) > R∗} by using the same arguments as in the proof of Theorem 2.1.25
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and obtain the lower bounds:

min
k

Q(3)
n (k)−Q(3)

n (k∗) + βn

= minQn(k)−Qn(k∗) + βn −OP

an ∨
 2∑
l=1

ml,n

ml,n∑
j=1

b
r3−l
l,j #I3−l,j

1/r3−l


∨

m1,n∑
j1=1

m1,n∑
j1=1

b1,j1b2,j2#I1,j1 ∩ I2,j2

 ,

where an = n1/rz+1/r ∨ b(3)
n with b

(3)
n defined in (4.1.56). Since an is the dominating sequence of

the last two lines, the claim is proven.

4.1.3 Long-run Variance Estimation under Unknown Means

In this sub-subsection, we present some LRV estimates which can be used for the Theorems 4.1.2,
4.1.6, 4.1.10, and 4.1.13. Since both LRVs are the same in the constant mean setting, i.e. under
Theorems 4.1.2 and 4.1.6, and since both LRVs are the same in the non-constant mean setting, i.e.
under Theorems 4.1.10 and 4.1.13, we will present the two LRV estimates D̂1,n and D̂3,n defined by
(2.1.34). One LRV estimate uses the mean estimate-type which is presented in Assumption (PEE1)
and the other one uses a mean estimate-type as presented in Assumption (PEE3).

Nearly constant means In this paragraph, we consider the LRV estimate type using a mean
estimate. Since we are interested in the consequences of nonconsistent estimates, we display the
potential error in each case (A)–(H); cf. Subsection 2.1.3.

Theorem 4.1.25. Let the assumptions of Theorem 2.1.33 and the following conditions hold true:

1. the sequences {ε1,n/σ2l,n} and {ε2,n/σ1,n} fulfill (K(1)
r ) for r1,r2 > 1;

2. the parameters µ1 and µ2 satisfy Assumption (PEE1);

3. for each l,l1,l2 = 1, 2, k = 1, 2, 3, and with dµ,l from Assumption (PEE1) and d
(k)
jn from

Theorem 2.1.33 let

1

n

∣∣∣∣∣∣
n∑

i,j=1

f

(
i− j
qn

)
d

(k)
jn εl,i

∣∣∣∣∣∣ = OP (b
(k)
l,n ), (4.1.58)

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
εl,i(Z

(0)
j − ρj) = oP (n1+δµ,3−l), (4.1.59)

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
εl1,iεl2,j = oP (n1+δµ,3−l1+δµ,3−l2 ). (4.1.60)
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Then, it holds that D̂1,n = D + R̂
(0)
n + R̂

(1)
n , where R̂

(0)
n is defined as in Theorem 2.1.33 and

R̂(1)
n =oP (1) +OP

(
qnn

−δµ,1−δµ,2(n−δµ,1−δµ,2 ∨ n−1+1/r ∨ b1,nn−1+1/r2 ∨ b2,nn−1+1/r1)
)

+ oP (qnn
−δ1) + oP (qnn

−1/2−(δµ,1∧δµ,2)) + oP (1)

+



OP (qnn
−δ1(n−δµ,1−δµ,2 + n1/r3−l−1−(δµ,1∧δµ,2))), under (A),

T
(A)
n +OP (maxl=1, 2 b

(1)
3−l,nn

−δµ,l), under (B),

T
(A)
n +OP (maxl=1, 2 b

(2)
3−l,nn

−δµ,l), under (C),

T
(A)
n +O(qnn

−δµ,1−δµ,2) +OP maxl=1, 2 b
(3)
3−l,nn

−δµ,l), under (D),

OP (qn maxk n
−1−δµ,1−δµ,2−δk#Ck)

+OP (
∑2

l=1 qnn
−1+1/r3−l−δµ,l−min δk)

, under (E),

T
(E)
n +OP (maxl=1, 2 b

(1)
3−l,nn

−δµ,l), under (F),

T
(E)
n +OP (maxl=1, 2 b

(2)
3−l,nn

−δµ,l), under (G),

T
(E)
n +O(qnn

−δµ,1−δµ,2) +OP (maxl=1, 2 b
(3)
3−l,nn

−δµ,l), under (H),

as n→∞, where T
(A)
n and T

(E)
n denote the rate terms in the cases (A) and (E), respectively.

Proof. Define bl,n = n−δµ,l . Firstly, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(1)
i − ρ̃i)(Z

(1)
j − ρ̃j)

=
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(0)
i − ρ̃i)(Z

(0)
j − ρ̃j)

+
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
Ri(Z

(0)
j − ρ̃j) +RiRj + (Z

(0)
i − ρ̃i)Rj

]
,

where Ri =
∑3

l=1Rl,i,Z(1) and the first summand is equal to D + R̃n and R̃n is the estimation
error of the LRV defined in Theorem 2.1.33. Hence, it is necessary and sufficient to consider that the
second summand is equal to oP (1):
Firstly, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
RiRj =

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
R3,i,Z(1)R3,j,Z(1) +R3,i,Z(1)

2∑
l2=1

Rl2,j,Z(1)

+R3,j,Z(1)

2∑
l1=1

Rl1,i,Z(1) +

2∑
l1=1

2∑
l2=1

Rl1,i,Z(1)Rl2,j,Z(1)

]
.

Using Assumption (PEE1), we obtain terms of the following form

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
[(b1,nb2,n + b1,nd2,i + b2,nd1,i)(b1,nb2,n + b1,nd2,j + b2,nd1,j)

+(b1,nb2,n + b1,nd2,i + b2,nd1,i)(b1,nε2,j + b2,nε1,j + d1,jε2,j + d2,jε1,j)

+(b1,nε2,i + b2,nε1,i + d1,iε2,i + d2,iε1,i)(b1,nb2,n + b1,nd2,j + b2,nd1,j)

+(b1,nε2,i + b2,nε1,i + d1,iε2,i + d2,iε1,i)(b1,nε2,j + b2,nε1,j + d1,jε2,j + d2,jε1,j)]

= O(qnb
2
1,nb

2
2,n) + o

(
(qnb

2
1,nb2,nn

−1/2 + qnb
2
2,nb1,nn

−1/2 + b21,n + b1,nb2,n + b22,n)
)

+OP (qnb1,nb2,nn
−1(b1,nn

1/r2 + b2,nn
1/r1))

+ oP (qnn
−1/2(1 + b1,n + b2,n)(b1,nb2,n + b1,n + b2,n))

+ oP (b1,n + b2,n) + oP (1)
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+
1

n

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
b22,nε1,iε1,j + b1,nb2,nε1,iε2,j + b21,nε2,iε2,j

]∣∣∣∣∣∣
= O(qnb

2
1,nb

2
2,n) +OP (qnb1,nb2,n(b1,nn

−1+1/r2 + b2,nn
−1+1/r1))

+ oP (qnn
−1/2(b1,n + b2,n))

+
1

n

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
b22,nε1,iε1,j + b1,nb2,nε1,iε2,j + b21,nε2,iε2,j

]∣∣∣∣∣∣+ oP (1)

as n→∞, followed by N →∞, where we use bl,n = O(1) and

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
εl,i = OP (qnn

1/rl) and

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
d3−l,iεl,i = oP (qnn

1/2),

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
dl1,jεl2,i = oP (qnn

1/2) and
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
dl1,jd3−l2,iεl2,i = oP (n)

for l,l1,l2 = 1, 2. Here, we use Markov’s and Kolmogorov’s inequality, as well as the kernel and p.e.s.
properties. Hence, the double sum with RiRj is of order oP (1).

Furthermore, we obtain

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(Z

(0)
j − ρ̃j) =

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(ρj − ρ̃j)

+
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(Z

(0)
j − ρj).

Then, in the case of (A) to (H) as defined in Theorem 2.1.33 we get that

OP

(
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(b1,nb2,n + b1,nd2,i + b2,nd1,i + b1,nε2,i

+b2,nε1,i + d1,iε2,i + d2,iε1,i) (ρj − ρ̃j)

)

=



OP (qnn
−δ1(b1,nb2,n +

∑2
l=1 bl,nn

1/r3−l−1)) + oP (qnn
−δ1−1/2(b1,n + b2,n + 1)), case (A),

T
(A)
n + o(qnn

−1/2(b1,nb2,n + b1,n + b2.n)) +OP (b1,nb
(1)
2,n + b2,nb

(1)
1,n), case (B),

T
(A)
n + o(qnn

−1/2(b1,n + b2.n)) +O(qnn
−1/2b1,nb2,n) +OP (b1,nb

(2)
2,n + b2,nb

(2)
1,n), case (C),

T
(A)
n +O(qnb1,nb2,n) + o(qn(b1,n + b2,n)n−1/2) +OP (b1,nb

(3)
2,n + b2,nb

(3)
1,n), case (D),

OP (qnb1,nb2,n maxk n
−1−δk#Ck) +OP (

∑2
l=1 bl,nqnn

−1+1/r3−l−min δk), case (E),

T
(E)
n + o(qnn

−1/2(b1,nb2,n + b1,n + b2.n)) +OP (b1,nb
(1)
2,n + b2,nb

(1)
1,n), case (F ),

T
(E)
n + o(qnn

−1/2(b1,n + b2.n)) +O(qnn
−1/2b1,nb2,n) +OP (b1,nb

(2)
2,n + b2,nb

(2)
1,n), case (G),

T
(E)
n +O(qnb1,nb2,n) + o(qn(b1,n + b2,n)n−1/2) +OP (b1,nb

(3)
2,n + b2,nb

(3)
1,n), case (H)

as n→∞ by using Assumption (PEE1). Here, we can reduce the second rate in the case of (A) to
oP (qnn

−δ1−1/2) and the second rate in the case of (B) to o(qnn
−1/2(b1,n ∨ b2,n)) due to bl,n = O(1).

Here, we denote by T
(A)
n and T

(E)
n the rates in the case of (A) and of (E), respectively.

Finally, we obtain by using Assumption (PEE1) that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(Z

(0)
j − ρj)

= OP

(
1

n

n∑
i,j=1

f

(
i− j
qn

)
(b1,nb2,n + b1,nd2,i + b2,nd1,i + b1,nε2,i + b2,nε1,i + d1,iε2,i + d2,iε1,i)
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· (Z(0)
j − ρj)

)
= OP (qnb1,nb2,nn

−1+1/r) + oP (qn(b1,n + b2,n)n−1/2) + oP (qnn
−1/2)

+
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(b1,nε2,i + b2,nε1,i) (Z

(0)
j − ρj).

Now, we use the 3rd assumption and combine the previous rates. This yields the claimed rates.

Non-constant Means In contrast to the last theorem we assume that the p.e.s. is zero, i.e., dµ,l,i ≡
0. Furthermore, we present sufficient conditions such that the estimation of the mean asymptotically
has no influence on the LRV estimate. Therefore, we have to add some assumption on the moments.

It would also be possible to display the additional rates R̂
(3)
n , but they are more technical than R̂

(1)
n

of Theorem 4.1.25.

Theorem 4.1.26. Let the assumptions of Theorem 2.1.33 and the following conditions hold true:

1. maxi,j IE [|ViWj |] ≤ C ∈ R for all {Vn},{Wn} ∈ {{ε1,n}, {ε2,n}, {Z(0)
n − ρn}};

2. the sequences {ε1,n/σ2,n} and {ε2,n/σ1,n} fulfill (K(2)
r ) for r1,r2 > 1;

3. the parameters µ1 and µ2 fulfill Assumption (PEE3) with dµ,l,i ≡ 0;

4. let the bandwidth qn and the sequences of Assumption (PEE3) fulfill[ m1,n∑
l1,v1=1

m2,n∑
l2,v2=1

(b1,l1b2,l2b1,v1b2,v2)[ max
w∈{l,v}

#I1,w1 ∩ I2,w2 ∧ qn] min
w∈{l,v}

#I1,w1 ∩ I2,w2

+
2∑
l=1

m3−l,n∑
v3−l=1

ml,n∑
il,vl=1

(bl,ilbl,vlb3−l,v3−l)[(#Il,il ∨#Il,vl ∩ I3−l,v3l) ∧ qn]

· (#Il,il ∧#Il,vl ∩ I3−l,v3−l)

+
2∑
l=1

2∑
v=1

ml,n∑
i=1

mv,n∑
j=1

bl,ilbv,j [(#Il,i ∨#Iv,j) ∧ qn](#Il,i ∧#Iv,j)

]
= o(n),

(4.1.61)

[m1,n∑
l1=1

m2,n∑
l2=1

m∑
j=1

(b1,l1b2,l2n
−δj )[(#Cj ∨#I1,l1 ∩ I2,l2) ∧ qn](#Cj ∧#I1,l1 ∩ I2,l2)

+
2∑
l=1

ml,n∑
i=1

m∑
j=1

bl,in
−δj [(#Il,i ∨#Cj) ∧ qn](#Il,i ∧#Cj)

]
= o(n),

(4.1.62)

m1,n∑
l1=1

m2,n∑
l2=1

b1,l1,nb2,l2,n#(I1,l1 ∩ I2,l2) +

2∑
l=1

ml,n∑
i=1

bl,i,n#Il,i = o

(
n

qn

)
, (4.1.63)

2∑
l=1

ml,n

(ml,n∑
i=1

b
r3−l
l,i,n#Il,i

)1/r3−l

= o

(
n1+δ1

qn

)
. (4.1.64)

Then, it holds as n→∞ that

D̂3,n = D̂n + R̂(0)
n + oP (1).

Proof. Firstly, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(3)
i − ρ̃i)(Z

(3)
j − ρ̃j) =

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(0)
i − ρ̃i)(Z

(0)
j − ρ̃j)
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+
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
Ri(Z

(0)
j − ρ̃j) +RiRj +Rj(Z

(0)
i − ρ̃i)

]
,

where Ri =
∑3

l=1Rl,i,Z(3) and the first summand is equal to D+ R̂
(0)
n , where R̂

(0)
n is the estimation

error of the LRV defined in Theorem 2.1.33. Hence, it is necessary and sufficient to consider the
second summand, which can be split in three double sums:

Firstly, we obtain as n→∞, followed by N →∞,

∣∣∣∣∣∣ 1n
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
RiRj

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
qn∑

k=−qn

f

(
k

qn

) n∑
i=1

1{i+k∈(0,n]}RiRi+k

∣∣∣∣∣∣
≤ 1

n

qn∑
k=−qn

∣∣∣∣f( k

qn

)∣∣∣∣ n∑
i=1

1{i+k∈(0,n]} |RiRi+k|

= OP

(
n−1

[ m1,n∑
l1,v1=1

m2,n∑
l2,v2=1

(b1,l1b2,l2b1,v1b2,v2)[ max
w∈{l,v}

#I1,w1 ∩ I2,w2 ∧ qn] min
w∈{l,v}

#I1,w1 ∩ I2,w2

+

m1,n∑
l1,v1=1

m2,n∑
v2=1

(b1,l1b1,v1b2,v2)[(#I1,l1 ∨#I1,v1 ∩ I2,v2) ∧ qn](#I1,l1 ∧#I1,v1 ∩ I2,v2)

+
2∑
l=1

m1,n∑
v1=1

m2,n∑
il,v2=1

(b1,ilb1,v1b2,v2)[(#Il,i2 ∨#I1,v1 ∩ I2,v2) ∧ qn](#Il,i2 ∧#I1,v1 ∩ I2,v2)

+
2∑
l=1

2∑
v=1

ml,n∑
i=1

mv,n∑
j=1

bl,ilbv,j [(#Il,i ∨#Iv,j) ∧ qn](#Il,i ∧#Iv,j)

])
,

where we use the triangle inequality, Assumption (PEE3), the upper bound of the kernel, Markov’s
inequality, and the uniform boundedness of the joint moments.

Now, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(Z

(0)
j − ρ̃j) =

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri

[
(Z

(0)
j − ρj) + (ρj − ρ̃j)

]
,

where it holds that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(Z

(0)
j − ρj)

= OP

(
1

n

qn∑
k=−qn

m1,n∑
l1=1

m2,n∑
l2=1

f

(
k

qn

) ∑
i∈Î1,l1∩Î2,l2 ;i+k∈(0,n]

[
b1,l1,nb2,l2,n(Z

(0)
i+k − ρi+k)

+ (b1,l1,nε2,i + b2,l2,nε1,i)(Z
(0)
i+k − ρi+k)

])

= OP

(
qn
n

m1,n∑
l1=1

m2,n∑
l2=1

b1,l1,nb2,l2,n#(I1,l1 ∩ I2,l2) +
2∑
l=1

ml,n∑
i=1

bl,i,n#Il,i

) = oP (1),

by using similar arguments as above as well as in the last step (4.1.61) and (4.1.63). Similarly, for
case (A) we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(ρj − ρ̃j) = OP

(
qn
n

m1,n∑
l1=1

m2,n∑
l2=1

b1,l1,nb2,l2,n(#I1,l1 ∩ I2,l2)n−δ1

73



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER UNKNOWN MEANS AND KNOWN
VARIANCES

+
qn
n

2∑
l=1

ml,n

(ml,n∑
i=1

b
r3−l
l,i,n#Il,i

)1/r3−l

n−δ1

)

which is equal to oP (1) due to (4.1.61) and (4.1.63). In the cases (B), (C), and (D) we replace
δ1 by zero and have to add

OP

(
qn
n

2∑
l=1

ml,n∑
i=1

bl,i,n#Il,i

)
.

In case of (E) we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Ri(ρj − ρ̃j)

= OP

(
n−1

[m1,n∑
l1=1

m2,n∑
l2=1

m∑
j=1

(b1,l1b2,l2n
−δj )[(#Cj ∨#I1,l1 ∩ I2,l2) ∧ qn](#Cj ∧#I1,l1 ∩ I2,l2)

+
2∑
l=1

ml,n∑
i=1

m∑
j=1

bl,in
−δj [(#Il,i ∨#Cj) ∧ qn](#Il,i ∧#Cj)

])
,

where the last step follows from (4.1.61) and (4.1.63). In the cases (F ) to (H) we have to
add the same rates as in the cases (B) to (D). Analogously, we estimate the double sum with

Rj(Z
(0)
i − ρ̃i).
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4.2 Sequential Analysis under a General Dependency Framework and General
Mean Estimates

In this subsection, we consider the asymptotic behavior of the stopping time when the means are
unknown. Hence, we have to estimate them sequentially. We define for k = 1, 2, . . .

ρ̂nj,k,1 =
1

n

n∑
i=1

Z
(ψ)
i,k,n and ρ̂n+k

j,k,n+1 =
1

k

n+k∑
i=n+1

Z
(ψ)
i,k,n (4.2.1)

with

Z
(ψ)
i,k,n =

(Xi − µ̂(ψ)
1,i,n+k,n)(Yi − µ̂(ψ)

2,i,n+k,n)

σ1,iσ2,i
= Z

(0)
i +

3∑
l=1

Rli(n+k)nZ(ψ) , (4.2.2)

where ψ = 1, . . . ,4 is a design index for different mean estimate types fulfilling (PEE5), (PEE6),
(PEE7), and (PEE8), respectively. Moreover, we use the decomposition of (4.1.2).

4.2.1 Closed-end Procedure under Unknown Means

Nearly Constant Means

Theorem 4.2.1. Let the parameters µ1 and µ2 fulfill Assumption (PEE5) with δµ,1, δµ,2 > 0,

δµ,1 + δµ,2 >
1
2 . Moreover, for l = 1, 2, let {εl,n/σ3−l,n} satisfy (K(1)

r ) for rl > (1
2 + δµ,3−l)

−1.

Then, Theorem 2.2.1 holds true if we replace τ
(c)
n,ι,0,0 by τ

(c)
n,ι,1,0.

Proof. Firstly, we obtain that

B̃1,0,0
n (k) = D̂

−1/2
0

[
D̂

1/2
0 B̃0,0,0

n (k) +

√
nk

n+ k

3∑
l=1

(
1

k

n+k∑
i=1+n

Rli(n+k)nZ(1) −
1

n

n∑
i=1

Rli(n+k)nZ(1)

)]
.

(4.2.3)

From Theorem 2.2.1 we already know the asymptotic behavior of the first summand inside the brackets.
Hence, by Slutsky’s Theorem it is sufficient to prove that the second summand vanishes in probability

since D̂−1/2 = OP (1) under H
(2)
0 and H

(c)
LA. Under Assumption H

(c)
A this is sufficient since then,

the first summand is the dominating term. Hence, it remains to show that

3∑
l=1

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

Rli(n+k)nZ(1)

∣∣∣∣∣ = oP (1) (4.2.4)

and
3∑
l=1

max
1≤k≤nm

k

n

∣∣∣∣∣ 1√
n

n∑
i=1

Rli(n+k)nZ(1)

∣∣∣∣∣ = oP (1). (4.2.5)

Inserting the definition of Rlin for l = 1 in (4.2.4) yields that

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

R1i(n+k)nZ(1)

∣∣∣∣∣ = max
1≤k≤nm

|e2,k,n|

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

ε1,i
σ2,i

∣∣∣∣∣+ oP (1) = oP (1),

where we use Lemma 4.1.1, Assumption (PEE5), and (K(1)
r ) for

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

ε1,i
σ2,i

∣∣∣∣∣ =

√
n(1 +m)√

n
max

1≤k≤n(m+1)

∣∣∣∣∣ 1√
n(1 +m)

k∑
i=1

ε1,i
σ2,i

∣∣∣∣∣+

∣∣∣∣∣ 1√
n

n∑
i=1

ε1,i
σ2,i

∣∣∣∣∣ ,
which is equal to oP (nδµ,2) as n→∞. Analogously, we get the rate for l = 2. For l = 3 and with
the same arguments as before, we obtain that

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

R3i(n+k)nZ(1)

∣∣∣∣∣ ≤ n+ [nm]√
n

max
1≤k≤nm

|e2,k,ne1,k,n|+ oP (1) = oP (1).
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Since rate as displayed in (4.2.5) follows in the same way, the three convergence results of Theorem 2.2.1
hold true.

Corollary 4.2.2. Under the assumptions of Theorem 4.2.1 let dµ,l,n ≡ 0 for l = 1, 2. Moreover,

for l = 1, 2, let {εl,n/σ3−l,n} satisfy (K(3)
r ) for rl ≥ (1

2 + δµ,3−l)
−1. Then, Theorem 2.2.3 holds

true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,1,0,γ.

Proof. Firstly, we obtain that we have to include the weighting function wγ(k/n) in (4.2.3). Due to
the continuity of wγ(·) on (ε,∞) for each arbitrarily small ε > 0, it remains to consider the error
term on (0,ε] or for all k ∈ [1,[εnm]]. Since (kn−1)γwγ(k/n) is uniformly bounded on [1,[εnm]],
it remains to prove

3∑
l=1

max
1≤k≤[εnm]

(n
k

)γ ∣∣∣∣∣ 1√
n

n+k∑
i=1+n

Rli(n+k)Z(1)

∣∣∣∣∣ = oP (1)

as n → ∞, followed by ε → 0. If we insert the definition of RlinZ(1) , we can apply (K(3)
r ) in case of

l = 1,2 and use δµ,1 + δµ,2 >
1
2 in case of l = 3. Thereby, the claim directly follows.

Theorem 4.2.3. Let the parameters µ1 and µ2 fulfill Assumption (PEE6) and let

max
1≤k≤mn

k√
n
|µ1 − µ̂n+k

1,n+1||µ2 − µ̂n+k
2,n+1| = oP (1) (4.2.6)

as n→∞. Additionally, let δl1,µ,l2, l1, l2 ∈ {1, 2}, of Assumption (PEE6) fulfill δ1,µ,1 + δ1,µ,2 >
1
2 .

Moreover, for l2 = 1, 2, let {εl2,n/σ3−l2,n} satisfy (K(3)
r ) for rl2 > (1

2 + minl1 δl1,µ,3−l2)−1. Then,

Theorem 2.2.1 holds true if we replace τ
(c)
n,ι,0,0 by τ

(c)
n,ι,2,0.

Proof. Similarly to the proof of Theorem 4.2.1 it is sufficient to show

3∑
l=1

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

Rli(n+k)Z(2)

∣∣∣∣∣ = oP (1) and

3∑
l=1

max
1≤k≤nm

k

n

∣∣∣∣∣ 1√
n

n∑
i=1

RlinZ(2)

∣∣∣∣∣ = oP (1),

(4.2.7)

where the latter rate has already been proven in the proof of Theorem 4.1.2. Inserting the definition
of R1i(n+k)Z(1) in the first term yields that

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

R1i(n+k)Z(2)

∣∣∣∣∣ = max
1≤k≤nm

|e2,k,n|

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

ε1,i
σ2,i

∣∣∣∣∣+ oP (1),

where we use the property of the p.e.s. To obtain that the first summand is equal to oP (1), we just
have to split the index set over which the maximum is taken, into {1, . . . ,N} and {N + 1, . . . ,[nm]}.
For the second index set we apply Assumption (PEE6) and (K(3)

r ). For the first one we use

max
k∈{1,...,N}

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

ε1,i
σ2,i

∣∣∣∣∣ = oP (1)

as n→∞, which clearly follows by Markov’s inequality. Analogously, we get the rate for l = 2. For
l = 3 we obtain that

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

R3i(n+k)Z(2)

∣∣∣∣∣ = max
1≤k≤nm

k√
n
|e2,k,ne1,k,n|+ oP (1) = oP (1)

with the the property of the p.e.s. and the assumed rate displayed in (4.2.6). Hence, the three
convergence results of Theorem 2.2.1 hold.

Corollary 4.2.4. Corollary 4.2.2 holds true if we replace the assumption of Theorem 4.2.1 by Theo-

rem 4.2.3 and τ
(c)
n,ι,1,0,γ by τ

(c)
n,ι,2,0,γ.
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Non-constant Means

Theorem 4.2.5. Let the parameters µ1 and µ2 fulfill Assumption (PEE7). Additionally, for

l = 1, 2 let (4.1.11) and (4.1.12) hold true, let {εl,n/σ3−l,n} fulfill (K(2)
r ) for rl > 1, and let the

arrays bl,2,j,n = bµl,2,j,n (j = 1, . . . ,ml,n; n = 1, . . .) hold that

ml,n∑
j=1

b
r3−l
l,2,j,n#Il,2,j = o(nr3−l/2m

−r3−l
l,2,n ), (4.2.8)

m1,n∑
v=1

m2,n∑
w=1

b1, 2,v,nb2,2,w,n#(I1, 2,v ∩ I2,2,w) = o(n1/2), (4.2.9)

and
ml,2,n∑
j=1

bl,2,j,n
∑
i∈Il,2,j

|d3−l,i| = o(
√
n) (4.2.10)

as n → ∞. Then, Theorem 2.2.1 holds true under the assumption of Theorem 4.1.10 if we replace

τ
(c)
n,ι,0,0 by τ

(c)
n,ι,3,0.

Proof. As in the proof of Theorem 4.2.1 it is sufficient to prove the rates as displayed in (4.2.4) and
(4.2.5) with Z(3) instead of Z(1). Since the modified (4.2.5) is satisfied by (4.1.11) and (4.1.12), see
proof of Theorem 4.1.21, it remains to prove the modified (4.2.4).

Firstly, we consider the summand with l = 1 and obtain that

1√
n

max
1≤k≤nm

∣∣∣∣∣
n+k∑
i=1+n

R1i(n+k)nZ(3)

∣∣∣∣∣ =
1√
n

max
1≤k≤nm

∣∣∣∣∣∣
m2,2,n∑
j=1

e2,j,k,n

∑
i∈Î2,2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

≤ 1√
n
m2,2,n max

1≤j≤m2,n

max
1≤k≤nm

|e2,j,k,n|

∣∣∣∣∣∣
∑

i∈Î2,2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

= OP (1)
m2,2,n√

n
max

1≤j≤m2,2,n

b2,2,j max
1≤k≤nm

∣∣∣∣∣∣
∑

i∈Î2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

= OP

m2,2,n√
n

 ∑
1≤j≤m2,2,n

br12,2,j#I2,2,j,n

1/r1
+ oP (1) = oP (1)

as n → ∞, where we use Lemma 4.1.1, the triangle inequality, the 3rd and 4th assumptions on
(PEE7), as well as the Kolmogorov-type inequalities. Analogously, the summand with l = 2 vanishes
in probability. Hence, it remains to consider l = 3:

1√
n

max
1≤k≤nm

∣∣∣∣∣
n+k∑
i=1+n

R3i(n+k)nZ(3)

∣∣∣∣∣
=

1√
n

max
1≤k≤nm

∣∣∣∣∣∣
m1,n∑
j1=1

m2,n∑
j2=1

e1,j1,k,ne2,j2,k,n#Î1,j1,n+k,n ∩ Î2,j2,n+k,n

∣∣∣∣∣∣+ oP (1)

= OP

 1√
n

m1,n∑
j1=1

m2,n∑
j2=1

b1, 2,j1b2,2,j2#I1, 2,j1,n ∩ I2,2,j2,n

+ oP (1)

as n → ∞, where we use the property of the p.e.s. and (4.2.10) in the second row. Thus, by (4.2.9)
the summand with l = 3 vanishes in probability as well. Then, the claim finally follows.
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Corollary 4.2.6. Corollary 4.2.2 holds true if we replace the assumptions of Theorem 4.2.1 by the ones

of Theorem 4.2.5, τ
(c)
n,ι,1,0,γ by τ

(c)
n,ι,3,0,γ, and if we additionally assume that maxj∈Ml,ε,n

bl,2,j = O(1)
and #Ml,ε,n = O(1) as n→∞, followed by ε→ 0, where

Ml,ε,n = {1 ≤ j ≤ ml,n : Il,2,j,n ∩ [n+ 1,n+ [εmn]] 6= ∅}.

Proof. As in the proof of Corollary 4.2.2 it is sufficient to prove

3∑
l=1

max
1≤k≤[εnm]

wγ(k/n)

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

Rli(n+k)nZ(3)

∣∣∣∣∣ = oP (1).

If we use the assumed rates of Corollary 4.2.2 and the estimation as used in the proof of Theorem 4.2.5
for l = 1, it is easy to see that

max
1≤k≤[εnm]

wγ(k/n)

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

R1i(n+k)nZ(3)

∣∣∣∣∣
= OP (1) max

j∈Ml,ε,n

max
k1,k2∈[n+1,n+[εnm]]∩I2,j,n

wγ(k2/n)
1√
n

∣∣∣∣∣∣
k2∑
i=k1

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

as n→∞, ε→ 0. This tends towards zero in probability by using (K(3)
r ).

Theorem 4.2.7. Let the parameters µ1 and µ2 fulfill Assumption (PEE8). Additionally, for

l = 1, 2 let {εl,n/σ3−l,n} fulfill (K(2)
r ) for rl > 1 and let (4.2.8), (4.2.9), and (4.2.10) be fulfilled

with {bl,j,n} and {Il,j,n} instead of {bl,2,j,n} and {Il,2,j,n}, respectively. Then, Theorem 2.2.1

holds true if we replace τ
(c)
n,ι,0,0,0 by τ

(c)
n,ι,4,0,0.

Proof. It is sufficient to prove

3∑
l=1

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n+k∑
i=1+n

Rli(n+k)Z(4)

∣∣∣∣∣ = oP (1) and

3∑
l=1

max
1≤k≤nm

∣∣∣∣∣ 1√
n

n∑
i=1

Rli(k+n)Z(4)

∣∣∣∣∣ = oP (1).

Using Lemma 4.1.1, (K(2)
r ), and the rate assumptions of Assumption (PEE8), we observe that

max
1≤k≤nm

∣∣∣∣∣
n+k∑
i=1+n

Rli(n+k)Z(4)

∣∣∣∣∣ = OP

ml,n

ml,n∑
j=1

b
r3−l
l,j,n#Il,j ∩ (n,n+ nm]

1/r3−l
+ oP (1),

as n→∞ and for l = 1,2. For l = 3 we get

1√
n

max
1≤k≤nm

∣∣∣∣∣
n+k∑
i=n+1

R3i(n+k)Z(4)

∣∣∣∣∣ = OP

 1√
n

m1,n∑
j1=1

m2,n∑
j2=1

b1,j1,kb2,j2,kI1,j1,n ∩ I2,j2,n ∩ (n,n+ nm]

+oP (1),

where we use the rate assumptions of Assumption (PEE8) and the modified (4.2.10). Since both rates
are oP (1) by applying the modified (4.2.8) and (4.2.9), the first rate of the first displayed holds true.
Analogously, the second rate of the first display can be proven. This completes the proof.

Now, we use the assumptions of Corollary 4.2.6 and Theorem 4.2.5 to get the results for the
weighted stopping times.

Corollary 4.2.8. Corollary 4.2.6 holds true if we replace the assumptions of Theorem 4.2.5 by the

ones of Theorem 4.2.7, bl,2,j by bl,j, Il,2,j,n by Il,j,n, and τ
(c)
n,ι,3,0,γ by τ

(c)
n,ι,4,0,γ.

Proof. The claim directly follows from the combination of the arguments used in the proofs of Corol-
lary 4.2.2 and Corollary 4.2.6.
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4.2.2 Open-end under Unknown Means

Nearly Constant Means

Theorem 4.2.9. Under the assumptions of Corollary 4.2.2 let rl > 1∨ (1
2 + δµ,3−l)

−1. Then, we can

replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,1,0,γ and Theorem 2.2.5 holds true.

Proof. This proof follows the proof of Theorem 2.2.5. We already know that

B̃1,0,γ
n (k) = B̃0,0,γ

n (k) + D̂
−1/2
0 wγ(k/n)

n

n+ k

k√
n

3∑
l=1

(
1

k

n+k∑
i=1+n

Rli(n+k)Z(1) −
1

n

n∑
i=1

Rli(n+k)Z(1)

)
.

On the one hand, we know from the proof of Corollary 4.2.2 that the maximum over k ≤ [mn] of the
second summand converges in probability towards zero. Hence, if, on the other hand, we show that the
maximum over k > [mn] of the second summand convergences in probability towards zero as n→∞,
followed by m→∞, we get the claim by the same arguments as in the proof of Theorem 2.2.5.

Since maxk>nm |wγ(k/n)k/(n+ k)− 1| converges towards zero as n→∞, followed by m→∞,

and D̂
−1/2
0 = OP (1) it remains to consider

max
k>nm

3∑
l=1

∣∣∣∣∣
√
n

k

n+k∑
i=1+n

Rli(n+k)Z(1)

∣∣∣∣∣ and max
k>nm

3∑
l=1

∣∣∣∣∣ 1√
n

n∑
i=1

Rli(n+k)Z(1)

∣∣∣∣∣ , (4.2.11)

where for the second term we directly obtain that k has just influence on the estimation of the

parameter. So due Assumption (PEE5) and (K(3)
r ) it is equal to an order of OP (n1/rl−1/2−δµ,3−l) =

oP (1). Hence, it remains to estimate the first term. Due to Assumption (PEE5), we get for the
summand with l = 1

max
k>nm

√
n

k

∣∣∣∣∣
n+k∑
i=1+n

R1i(n+k)Z(1)

∣∣∣∣∣ = OP

(
n−δµ,2 max

k>nm

√
n

k

∣∣∣∣∣
n+k∑
i=1+n

ε2i/σ1,i

∣∣∣∣∣
)

as n→∞ and

P

(
Nn−δµ,2 max

k>nm

√
n

k

∣∣∣∣∣
n+k∑
i=1+n

ε2i/σ1,i

∣∣∣∣∣ ≥ η
)
≤ CN r2

ηr2

∞∑
j=0

nm2j+1

(2jmnδµ,2+1/2)r2
= o(1)

as n → ∞ by the use of the Kolmogorov-type inequality. Here, we use rl > 1 ∨ (1
2 + δµ,3−l)

−1.
Analogously, we get an upper bound for l = 2. For l = 3 the convergence rate directly follows from
the estimation rates with δµ,1 + δµ,2 >

1
2 . Hence, the second summand of the right–hand side in the

first display vanishes in probability as n→∞, followed by m→∞, so that we can apply the same
arguments as used in the proof of Theorem 4.2.1 to obtain the claim.

Theorem 4.2.10. Under the assumptions of Corollary 4.2.4 let rl > 1 ∨ (1
2 + δµ,3−l)

−1. Then, we

can replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,2,0,γ and Theorem 2.2.5 holds true.

Proof. The proof essentially follows the way of the one of Theorem 4.2.9. We just have to replace
the arguments of Corollary 4.2.2 by the ones of Corollary 4.2.4 and the used Assumption (PEE5) by
(PEE6).

Non-constant Means

Theorem 4.2.11. Under the slightly modified assumptions of Corollary 4.2.6, i.e., replacing Il,2,j by

Il,2,j ∩ (0,n+nm] in (4.2.8) and in (4.2.9), we can replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,3,0,γ and Theorem 2.2.5

holds true if additionally

ml,n∑
j=1

∞∑
i=0

b
r3−l
l,2,j

#(Il,2,j,n ∩ [1,n+ nm2i+1])

(2r3−l)i
= o(nr3−l/2m

−r3−l
l,2,n ) (4.2.12)
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and
m1,2,n∑
j1=1

m1,2,n∑
j2=1

b1,2,j1b2,2,j2 max
k≥mn

#I1,2,j1 ∩ I2,2,j2 ∩ [n,n+ k]

k
= o(n−1/2) (4.2.13)

as n→∞, followed by m→∞.

Proof. As in the proof of Theorem 4.2.9 it is easy to see that the second term is of order oP (1) such
that it remains to show that the first term displayed in (4.2.11) vanishes in probability as n → ∞,
followed by m → ∞. Under the slightly modified assumptions of Corollary 4.2.6 we obtain for the
summand with l = 1:

max
k>nm

√
n

k

∣∣∣∣∣
n+k∑
i=1+n

R1i(n+k)Z(1)

∣∣∣∣∣ = max
k>nm

√
n

k

∣∣∣∣∣∣
m2,n∑
j=1

e2,j,k,n

∑
i∈Î2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

≤ m2,n max
1≤j≤m2,n

max
k>nm

√
n

k
|e2,j,k,n|

∣∣∣∣∣∣
∑

i∈Î2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

≤ Nm2,n max
1≤j≤m2,n

b2,j max
k>nm

√
n

k

∣∣∣∣∣∣
∑

i∈Î2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1) +OP (aN ).

For the first summand we obtain

P

Nm2,n max
1≤j≤m2,n

b2,j max
k>nm

√
n

k

∣∣∣∣∣∣
∑

i∈Î2,j,n+k,n

ε1,i/σ2,i

∣∣∣∣∣∣ ≥ η


≤ P

Nm2,n max
1≤j≤m2,n

b2,j max
k>nm

√
n

k
max

k1,k2∈Î2,j,n+k,n

∣∣∣∣∣∣
k2∑
i=k1

ε1,i/σ2,i

∣∣∣∣∣∣ ≥ η


≤ P

Nm2,n max
1≤j≤m2,n

b2,j max
k>nm

√
n

k
max

k1,k2∈I2,j,n∩[1,n+k]

∣∣∣∣∣∣
k2∑
i=k1

ε1,i/σ2,i

∣∣∣∣∣∣ ≥ η
+ o(1)

≤
m2,n∑
j=1

∞∑
i=0

P

Nm2,nb2,j
1√
nm2i

max
nm2i≤k≤nm2i+1

max
k1,k2∈I2,j,n∩[1,n+k]

∣∣∣∣∣∣
k2∑
i=k1

ε1,i/σ2,i

∣∣∣∣∣∣ ≥ η
+ o(1)

≤ C
N r1mr1

2,n

ηr1mr1nr1/2

m2,n∑
j=1

∞∑
i=0

br12,j

#(I2,j,n ∩ [1,n+ nm2i+1])

(2r1)i
+ o(1)

as n→∞, m→∞, and N →∞. Analogously, we get a similar estimation for the summand with
l = 2. Hence, it remains to consider the one with l = 3:

max
k>nm

√
n

k

∣∣∣∣∣
n+k∑
i=1+n

R3i(n+k)Z(1)

∣∣∣∣∣ = OP

√nm1,n∑
j1=1

m1,n∑
j2=1

b1,j1b2,j2 max
k≥mn

#I1,j1 ∩ I2,j2 ∩ [n,n+ k]

k


as n→∞, followed by m→∞.

Theorem 4.2.12. Under the assumptions of Corollary 4.2.8 let (4.2.8) and (4.2.9) be fulfilled with
Il,j ∩ (0,n+ nm] instead of Il,2,j. If (4.2.12) and (4.2.13) are satisfied with Il,j and ml,n instead

of Il,2,j and ml,2,n, respectively, we can replace τ
(o)
n,ι,0,0 by τ

(o)
n,ι,4,0 and Theorem 2.2.5 holds true.

Proof. As in the proof of Theorem 4.2.11 we have to prove that both rates displayed in (4.2.11) are
fulfilled, where the second follows by the same arguments used in the proof of Theorem 4.2.11. Hence,
it remains to prove

max
k>nm

1√
n

∣∣∣∣∣
3∑
l=1

n∑
i=1

Rli(n+k)Z(1)

∣∣∣∣∣ = oP (1).
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For the summand with l = 1 we obtain that

max
k>nm

1√
n

∣∣∣∣∣
n∑
i=1

R1i(n+k)Z(1)

∣∣∣∣∣ = max
k>nm

1√
n

∣∣∣∣∣∣
m2,n∑
j=1

e2,j,k,n

∑
i∈Î2,j,n+k,n∩(0,n]

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1)

≤ Nm2,n max
1≤j≤m2,n

b2,j max
k>nm

1√
n

∣∣∣∣∣∣
∑

i∈Î2,j,n+k,n∩(0,n]

ε1,i/σ2,i

∣∣∣∣∣∣+ oP (1) +OP (aN )

and therefore by the Kolmogorov-type inequalities that

P

(
max
k>nm

1√
n

∣∣∣∣∣
n∑
i=1

R1i(n+k)Z(1)

∣∣∣∣∣ ≥ η
)
≤ (Nm2,n)r1

ηr1nr1/2

m2,n∑
j=1

br12,j# (I2,j,n ∩ (0,n]) + o(1)

as n → ∞, m → ∞ and followed by N → ∞ which is equal to o(1) by the modified (4.2.8).
The summand with l = 2 can be estimated in the same way. The one with l = 3 can be estimated
as in the proof of Theorem 4.2.5, where we intersect the sets Il,· with (0,n] and use the assumed
modified rate assumption (4.2.9).
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4.3 Examples

In this subsection, we continue the three example assumptions (IID), (MIX), and (NED) and present
scenarios resulting in the availability of the different main results of Section 4. Therefore, we will not
demonstrate in detail that every assumption of the considered results is fulfilled. Furthermore, in this
subsection we will consider the following specification of Assumption (MIX) and Assumption (NED):

Assumption (MIX1). Under Assumption (MIX) set r′l = infn r
′
l,n and let r′1, r

′
2 > 2.

Assumption (NED1). Under Assumption (NED) let r′1, r
′
2 > 2 and p1, p2 = 2.

Firstly, we obtain that under each of the Assumption (IID), (MIX1), or (NED1) the sequences

{Z(0)
n −ρn}, {ε1,n}, and {ε2,n} (see Subsection 2.3) fulfill the Kolmogorov-type inequalities for r = 2,

respectively. Thus, we get rz = r1 = r2 = 2.
Since the dependency structure still holds after multiplication with any uniformly bounded, determin-
istic sequence {cn}, {εl,nσ−1

3−l,n} satisfies the Kolmogorov-type inequalities for r1 = r2 = 2, too.
Hence, it remains to prove the assumed properties of the estimates for the following parameter model:

µl,i = µl0 +

Rl,n∑
j=1

∆µ,l,j1{i≤k∗µ,l,j} (4.3.1)

for i = 1, . . . ,n and r = 1, . . . , Rl,n + 1, where Rl,n ≥ 0, ∆µ,l,j 6= 0 and 0 = k∗µ,l,0 < k∗µ,l,1 < . . . <
k∗µ,l,Rl,n < k∗µ,l,Rl,n+1 = Nn. Here Nn ∈ {n, n(1 + m),∞} depends on the considered procedure: a

posteriori, closed-end or open-end. In addition, we assume that k∗µ,l,i+1 − k∗µ,l,i →∞ as n→∞ for
all i = 1, . . . ,Rl,n − 1.

Remark 4.3.1. In fact, under (NED) it is not necessary to set pl = 2. In general, (NED) implies
that {Zl,n} is an Lpl-mixingale of size −vl = −min{al, aV (1pl − 1/rl)} which implies∥∥∥∥∥∥

[n·]∑
i=1

εl,i

∥∥∥∥∥∥ =

{
OP (n1/2), if pl = 2 and −vl ≤ −1

2 ,

OP (n1/pl), if pl ∈ (1,2) and −vl ≤ −1.

It would also be possible to choose p1, p2 ∈ (1,2) such that some of the following results hold true.
However, we will drop this additional case since the arguments are similar but more technical.

4.3.1 Constant Means

In this sub-subsection, we consider the special case of Rl,n ≡ 0.

A Posteriori Analysis We define µ̂
(1)
l,n and {µ̂(2)

l,k }k=1,...,n as the general weighted sample mean

µ̂
(1)
l,n = Zl

n
w,1 = n−1

n∑
i=1

wi,nZl,i (4.3.2)

and general cumulative average

µ̂
(2)
l,k = µ̂

(1)
l,k for k = 1, . . . ,n, (4.3.3)

where the deterministic, positive weights {wi,n} fulfill
∑n

i=1wi,n = n for all n ∈ N and
∑n

i=1w
2
i,n ∼

n. Then, from the Kolmogorov-type inequality and the Hájek-Rényi-type inequalities we observe that

|µ̂(1)
l,n − µl,0| = OP (n−1/2) and max

N≤k≤n
|µ̂(2)
l,k − µl,0| = OP (N−1/2).

Hence, we can apply Theorem 4.1.2, Theorem 4.1.6, and the weighted results, Corollary 4.1.4 and
Corollary 4.1.8, to obtain the asymptotic limits of the tests φγι,1 and φγι,2. The corresponding LRV

estimate from Theorem 4.1.25, case (A), is a consistent estimate under H0 and H
(2)
0 for each

qn = o(n1/2). Here, we use Markov’s inequality to obtain the rate conditions of this theorem.

82



EXAMPLES

Remark 4.3.2. For example, if under Assumption (NED) pl ∈ (1,2), −min{al, aV (1pl − 1/rl)} ≤
−1, and 2− 1/p1 − 1/p2 ≥ 1/2, the assumptions of Theorem 4.1.2 are still fulfilled.

Furthermore, we can estimate the change-point k∗ρ,1 (k∗2 = n) with Theorem 4.1.18 under As-
sumption HA and obtain the same estimation rate as in Section 2 if Assumption (IID), (MIX1), or
(NED1) and the rate conditions

(k∗1 ∧ (n− k∗1))−1 = o
(
|∆ρ,n|2

)
and |∆ρ,n|−1 = O(n1(2)

hold true. Then we get n|∆ρ,n||θ̂∗ρ,1 − θ∗ρ,1| = OP (1). With the same theorem we estimate multiple
change-points with identical rates if the distance between the pair of change-points increases linear
with n and if each change size is of the same order. More generally, if the Kolmogorov-type inequality
is fulfilled for r1, r2 = 2, we estimate the change-points in the correlation with the same rates as in
the situation of known means. In particular, we use this estimate for the LRV estimation by applying
Theorem 4.1.25, case (E), with some qn →∞ and qn = o(n−1/2) as n→∞. This might provide a
higher power under the alternative, cf. Bucchia and Heuser (2015).

Sequential Analysis Applying {µ̂(1)
l,n+k}k=1,... as estimates we could use the closed-end and open-

end procedures, Corollary 4.2.2 and Theorem 4.2.9, to test sequentially with the stopping times τ
(c)
ι,1,1,γ

and τ
(o)
ι,1,1,γ whether there appears a change in the correlation. Otherwise, we could use µ̂

(1)
l,n for the

training phase and {µ̂(1)
l,k }k=1,... depending on the data set Zl,n+1, . . . ,Zl,n+k for the new observed

data. Then, we would apply Corollary 4.2.4 and Theorem 4.2.10 to obtain the limit distribution of

the stopping times τ
(c)
ι,2,1,γ and τ

(o)
ι,2,1,γ .

In addition, it is possible to use a piecewise weighted sample mean

µ̂
(3)
l,i,n = Zlw,Îl,j = (#Îl,j)

−1
∑
k∈Îl,j

wi,#Îl,jZl,k, ∀i ∈ Îl,j , j = 1, . . . ,m

with disjoint random sets Îl,j ⊂ (0,n] and minj #Îl,j ≥ εn almost surely, for a fixed ε > 0. On
the one hand, we can test a posteriori and sequentially. On the other hand, we can estimate the
change-points in the correlation. For this reason, one can now apply the results for the non-constant
mean.

4.3.2 Non-constant Means

In this sub-subsection, we consider the case of Rl,n ∈ N>0. Here, we first focus on the case of known
locations of the change-points.

A Posteriori Testing under Known Change-Points in the Mean If the change-points in the
mean, kµ,l,1, . . . ,kµ,l,R are known, we can use the piecewise weighted sample mean, i.e.,

µ̂
(3′)
l,i,n = Zl

k∗µ,l,r
w,k∗µ,l,r−1

= (k∗µ,l,r − k∗µ,l,r−1)−1

k∗µ,l,r∑
k=k∗µ,l,r−1+1

wk,kµ,l,r−kµ,l,r−1
Zl,k,

∀i ∈ (k∗µ,l,r−1,k
∗
µ,l,r], r = 1, . . . ,Rl,n+ 1, where the weights fulfill the same properties as in the previous

sub-subsection. Then, under Assumption (IID), (MIX1), or (NED1) we observe that

|µ̂(3′)
l,i,n − µl,i| = OP ((k∗µ,l,r − k∗µ,l,r−1)−1/2) ∀i ∈ (k∗µ,l,r−1,k

∗
µ,l,r], r = 1, . . . ,Rl,n + 1.

Denote µ∗l,r as the exact mean on (k∗µ,l,r−1,k
∗
µ,l,r]. Then, we obtain

max
r∈{1,...,Rl,n+1}

|Zl
k∗µ,l,r
w,k∗µ,l,r−1

− µ∗l,r|

(k∗µ,l,r − k∗µ,l,r−1)1/2
= OP (R

1/2
l,n ).
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Moreover, we define

Iµ,l,i =
{

(k∗l,i−1,n, k
∗
l,i,n] for i = 1, . . . ,Rl,n + 1,

bµ,l,i =
{
R

1/2
l,n (k∗µ,l,i − k∗µ,l,i−1)−1/2 for i = 1, . . . ,Rl,n + 1.

(4.3.4)

Then, we notice that the rate assumptions of Theorem 4.1.10 are fulfilled if

Rl,n∑
j=1

b2µ,l,j#Il,j = R2
l,n

!
= o(nR−2

l,n ) and

R1,n∑
j=1

R2,n∑
i=1

bµ,1,jbµ,2,i#I1,j ∩ I2,i ≤ cR2
l,n

!
= o(n1/2).

Thus, these two rates are fulfilled if Rl,n = o(n1/4).
Then, if 2r1/(r1 − 1) ≤ r2, we can test whether or not there is a change in the correlation. Here,

we use the LRV estimate from Theorem 4.1.26 with well chosen qn. The condition 2r1/(r1− 1) ≤ r2

implies that the moment condition of Theorem 4.1.26 is fulfilled. Furthermore, we can apply the
closed-end and open-end procedures under the same settings as used in Subsection 2.3, because the
change-points of the mean are known and thereby the mean estimation is sufficient.

Now, we consider the second testing procedure based on the second type of estimates where we
assume that the change-points in the means are known once again and Rl,n ≡ Rl. We define

µ̂
(4′)
l,i,k,n = (k ∧ k∗µ,l,r − k∗µ,l,r−1)−1

k∗µ,l,r∧k∑
k=k∗µ,l,r−1+1

wi,k∧k∗µ,l,r−k
∗
µ,l,r−1

Zl,k

∀i ∈ (k∗µ,l,r−1,k ∧ k∗µ,l,r], k = 2, . . . ,n, r = 1, . . . ,Rl + 1

and note that Assumption (PEE4) is fulfilled for dµ,l,n ≡ 0,

Îµ,l,1,r = Iµ,l,1,r = (k∗µ,l,r−1,k
∗
µ,l,r],

Îµ,l,2,2r+1 = Iµ,l,2,2r+1 = (k∗µ,l,r,k
∗
µ,l,r+1 ∧ (k∗µ,l,r + cr,n)],

Îµ,l,2,2r+2 = Iµ,l,2,2r+2 = (k∗µ,l,r+1 ∧ (k∗µ,l,r + cr,n), k∗µ,l,r+1],

for r = 0, . . . ,R, and

(bµ,l,j1,j2) j1=1,...,R+1
j2=1,...,2(R+1)

=


1 c

−1/2
0,n (k∗µ,l,1)−1/2 . . .

0 0 1 c
−1/2
1,n (k∗µ,l,2 − k∗µ,l,1)−1/2 . . .

0 0 0 0
. . .

. . .

0 0 0 . . . 0 1 c
−1/2
R,n


T

,

where c1,n, . . . ,cR+1,n are suitable chosen sequences which tend towards infinity, e.g., cr,n =
(k∗µ,l,r+1 − k∗µ,l,r)

δ with δ ∈ (1
4 ,

1
2). Then, the rate assumptions (4.1.16) and (4.1.17) are fulfilled

so that we can apply Theorem 4.1.13 to test whether or not there is a change in the correlation.
Therefore, we use the consistent LRV estimate of Theorem 4.1.26.

Change-Point Estimation under Known Change-Points in the Mean Now, let Rl,n ≡
R ∈ N>0. The estimation of the changes in a multiple change-point setting of the correlations is
influenced by the mean estimation if at least two change-points in the mean lie in every nε-ball
around a change-point in the correlation. Let, for example, k∗ρ,1 = [0.5n], k∗µ,1 = [0.5n − log(n)],
and k∗µ,2 = [0.5n + log(n)] which implies that the mean estimation error between the two change-

points is equal to OP (log(n)−1). Hence, the rate assumption (4.1.54) is only fulfilled if an =
O(n log(n)1/2 mini ∆ρ,i,n/maxi ∆ρ,i,n), which could provide the change-point estimation rates of the
correlation if the change sizes of the correlation vanish with different rates.
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A Posteriori Testing under Unknown Change-Points in the Mean Now, we consider the
case where the change-points in the mean, k∗µ,l,i, are unknown. Thus, we estimate them and apply
Theorem 2.1.22 to get the estimation rate of these change-points. Assuming the change size does
not vanish and the distance between the change-points increases linearly with rate n, we obtain
maxr,l |k∗µ,l,r − k̂µ,l,r| = OP (1) under the three examples (IID), (MIX1), and (NED1). It is obvious
that the examples of the previous paragraphs hold true if we replace the exact change-points in the
mean by their estimates with this kind of estimation rate. Therefore, we consider a general estimation
rate in the following. Set

µ̂
(3)
l,i,n = Zl

k̂µ,l,r

w,k̂µ,l,r−1
= (k̂µ,l,r − k̂µ,l,r−1)−1

k̂µ,l,r∑
v=k̂µ,l,r−1+1

wv,k̂µ,l,r−k̂µ,l,r−1
Zl,v (4.3.5)

∀i ∈ (k̂µ,l,r−1,k̂µ,l,r], r = 1, . . . ,Rl,n + 1. Suppose the change-point estimates fulfill

max
r

|k∗µ,l,r − k̂µ,l,r|
cl,r,n

= oP (1) with cl,r,n ∨ cl,r−1,n = O
(

(k∗µ,l,r − k∗µ,l,r−1)1/2
)

(4.3.6)

as n→∞, then, we get

∣∣∣µ̂(3)
l,i,n − µl,i

∣∣∣ =

{
OP

(
(k∗µ,l,r − k∗µ,l,r−1)−1/2

)
, for all i ∈ (k∗l,r−1,n,k

∗
l,r,n] ∩ (k̂µ,l,r−1,k̂µ,l,r],

OP (1), else.

Hence, µl,i satisfies assumption (PEE3) with µ̂
(3)
l,i,n, dl,i ≡ 0,

Îµ,l,i =
{

(k∗l,j−1,n, k
∗
l,j,n] ∩ (k̂l,k−1,n, k̂l,k,n], i = j + (k − 1) · (Rl,n + 1), j,k = 1, . . . ,Rl,n + 1,

(4.3.7)

Iµ,l,i =


(k∗l,j−1,n, k

∗
l,j,n], i = j + (j − 1) · (Rl,n + 1), j = 1, . . . ,Rl,n + 1,

(k∗l,j,n,cl,j,n + k∗l,j,n], i = j + (j − 2) · (Rl,n + 1), j = 2, . . . ,Rl,n + 1,

(k∗l,j−1,n − cl,j−1,n,k
∗
l,j−1,n], i = j + j · (Rl,n + 1), j = 1, . . . ,Rl,n,

∅ else,

(4.3.8)

and

bµ,l,i =

{
R

1/2
l,n (k∗µ,l,r − k∗µ,l,r−1)−1/2, for i = j + (j − 1) · (Rl,n + 1), j = 1, . . . ,Rl,n + 1,

1, else,

(4.3.9)

where we use that

P

(Rl,n+1)2⋂
j=1

{
Îµ,l,i ⊂ Iµ,l,i

} = 1− P

Rl,n⋃
j=1

{
|kµ,l,r − k̂µ,l,r| ≥ cl,r,n

} = 1 + o(1).

We obtain that the rate assumptions of Theorem 4.1.10 are fulfilled if

Rl,n = o(n1/4),

Rl,n∑
i=1

cl,i,n = o(nR−2
l,n ), and

R1,n∑
i1=1

R2,n∑
i2=1

c1,i1,n ∧ c2,i2,n = o(n1/2). (4.3.10)

Thus, if cn = maxl,r cl,r,n = o(n1/2), the rate assumptions of Theorem 4.1.10 and of Theorem 4.1.26
are fulfilled, which is the case for the three examples (IID), (MIX) and (NED) with r′l > 2 and
pl = 2 for l = 1, 2 and in the case of non-local change-points with minr,l |k∗µ,l,r − k∗µ,l,r−1| ∼ n.
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Now, we consider the second estimate type under the condition that the change-points in the
means are unknown but can be estimated in the sense of maxr,l |k∗µ,l,r − k̂µ,l,r| = OP (1) which holds
under a multitude of multiple change-point settings; cf. Theorem 2.1.22. We set

µ̂
(4)
l,i,k,n = (k ∧ k̂µ,l,r − k̂µ,l,r−1)−1

k̂µ,l,r∧k∑
k=k̂µ,l,r−1+1

wi,k∧k̂µ,l,r−k̂µ,l,r−1
Zl,k

∀i ∈ (k̂µ,l,r−1,k ∧ k̂µ,l,r], k = 2, . . . ,n, r = 1, . . . ,R+ 1.

(4.3.11)

Then, Assumption (PEE4) is fulfilled with dµ,l,n ≡ 0, Î1,µ,l,i = Îµ,l,i, and I1,µ,l,i = Iµ,l,i, which are
displayed in (4.3.7) and (4.3.8) and fulfill

Îµ,l,2,2r+1 = (k̂µ,l,r,k̂µ,l,r+1 ∧ (k̂µ,l,r + cr,n)],

Îµ,l,2,2r+2 = (k̂µ,l,r+1 ∧ (k̂µ,l,r + cr,n), k̂µ,l,r+1],

Iµ,l,2,2r+1 = (k∗µ,l,r − cn,(k∗µ,l,r+1 + cn) ∧ (k∗µ,l,r + cr,n + cn)],

Iµ,l,2,2r+2 = (((k∗µ,l,r+1 − cn) ∧ (k∗µ,l,r + cr,n − cn), k∗µ,l,r+1 + cn],

and

(bµ,l,j1,j2) j1=1,...,(R+1)2

j2=1,...,2(R+1)

=



1 c
−1/2
0,n (k∗µ,l,1)−1/2 . . .

1 1 1 . . . . . . . . . . . . 1
...

...
...

...
...

...
...

...
1 1 1 . . . . . . . . . . . . 1
0 0 1 1 1 . . .

0 0 1 c
−1/2
2,n (k∗µ,l,2 − k∗µ,l,1)−1/2 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 . . . 0 1 c
−1/2
R+1,n


.

Here we used maxr,l |k∗µ,l,r−k̂µ,l,r| = OP (1). Additionally, let cn,c0,n, . . . ,cR,n be sequences increasing

towards infinity, e.g., cn = log(n) and cr,n = (k∗µ,l,r+1 − k∗µ,l,r)δ for some δ ∈ (1
4 ,

1
2).

If we just have maxr,l |k∗µ,l,r − k̂µ,l,r| = oP (cn), we can replace cr,n and (k∗µ,l,r+1 − k∗µ,l,r) by
cr,n − 2cn and (k∗µ,l,r+1 − k∗µ,l,r − 2cn), respectively, which implies that cn must not be too large.
Now, it is easy to obtain that the rate assumptions of Theorem 4.1.13 are fulfilled so that the tests
are available.

Sequential Procedures under Known Change-Points in the Means If we obtain the data
one by one, we have to estimate the change-points of the mean sequentially. Therefore, we consider
the simplified model characterized by:

Rl,n ≡ Rl ∈ N>0, k∗µ,l,r = [nθl,r], θr,l ∈ (0,1), r = 1, . . . ,R− 1, l = 1, 2, θr,l < θr+1,l

and

k∗µ,l,R = [nθl,R], θl,R ∈ (1,1 +m).

Firstly, we look at the procedure where we estimate the change-points of the training period one time
and we estimate again and again the change-points in the means of the sequentially observed data.

Hence, we use the previously presented estimate µ̂
(3)
l,i,n for the training set, i.e., for i ∈ {1, . . . ,n}.

As in the above example, µ̂
(3)
l,i,n estimates the means so that the estimation error does not influence

the asymptotic behavior of ρ̂4,n. For the sequentially observed data, i.e., for i ∈ {n+ 1, . . . ,n+nm},
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we use an estimate-type such as µ̂
(4)
l,i,k,n. In this estimate we replace k̂µ,l,R by k̂µ,l,R,k, since the last

change-points k∗µ,l,R, l = 1, 2, are estimated sequentially. Thus,

µ̂
(4′)
l,i,k,n =


1

k̂µ,l,R,k∧k

∑n+(k̂µ,l,R,k∧k)
i=n+1 Zl,i, i = n+ 1, . . . ,n+ (k ∧ k̂µ,l,R,k)

1
k−k̂µ,l,R,k

∑n+k

i=n+k̂µ,l,R,k
Zl,i, i = n+ k̂µ,l,R,k, . . . ,n+ k

(4.3.12)

where k̂µ,l,R,k can be an estimate based on the data Zl,n+1, . . . ,Zl,n+k and is defined as k if there is
no change detected. Using Theorem 2.2.1 or 2.2.3 and the following remarks we obtain that the change
in the mean is asymptotically detected with probability one in the time-interval (n,k∗l,R +

√
cnn] for

any sequence cn → ∞. The number of early alarms of a stopping time, which controls a change

in the mean, can be reduced if we replace the critical value by c
1/2
n . After this stopping time

alarms, we assume a structural break in the mean and estimate the possible change-point by the least
square estimate, Theorem 2.1.18. Henceforward, we can sequentially estimate the change-point in the
correlations by using Theorem 2.1.20. Thus, we can apply Theorem 4.2.5 to sequentially test whether
or not there is a change in the correlation if

#(n,k∗1,R + cn
√
n] ∩ (n,k∗2,R + cn

√
n] = o(n1/2).

Now, we take a look at the second procedure where every change-point in the means is estimated
sequentially, even the ones in the training period. Then, we apply Theorem 2.1.25 to estimate the
numbers and the locations of structural breaks in the mean. The number will be asymptotically
correct in a time-interval of length of n1/2+ε after the latter appeared structural break. Additionally,
each estimated change-point k∗µ· is sufficiently close to the correct one so that we apply Theorem 4.2.7
in case for all r1,r2 = 1, . . . ,R+ 1 it holds that

#(k∗1,r1 + n1/2+ε] ∩ (n,k∗2,r2 + n1/2+ε] = o(n1/2).

General Mean Functions Until now, we have considered piecewise constant means. In this para-
graph, we look at the following model:

µl,i = µl,i,n = ml,i + gµ,l(i/n) and mi =

Rl∑
j=1

∆µ,l,j1{i≤[nθ∗µ,l,j ]}, (4.3.13)

where gµ,l is a Lipschitz continuous function. We define the estimates

µ̂i,l,n =
{

1
hn

∑
j∈Ii,nh Zl,j with Ii,nh =

{
(0,nh], if 1 ≤ i ≤ hn,

(i− nh,i], if hn < i ≤ n, (4.3.14)

where h = hn → 0 but nh→∞, as n→∞.

Firstly, we assume mi ≡ 0 and obtain that the estimate can be split in a deterministic and in a
random part. Because of the Lipschitz continuity we get by

∆µ,l,i,n = gµ,l(i/n)− 1

nh

∑
j∈Ii,nh

g(j/n) that max
i
|∆µ,i,n| = O(h). (4.3.15)

To illustrate that Theorem 2.1.1 holds true if we replace the exact means by the above estimates, it
is sufficient to prove for l = 1, 2 that∥∥∥∥∥∥

[n·]∑
i=1

ε3−l,i
σl,i

(µl,i − µ̂i,l,n)

∥∥∥∥∥∥ = oP (n1/2) and

∥∥∥∥∥∥
[n·]∑
i=1

(µ1,i − µ̂1,i,n)(µ2,i − µ̂2,i,n)

σ1,iσ2,i

∥∥∥∥∥∥ = oP (n1/2).

Theorem 4.3.3. Under the (IID) assumption and the preceding mean model, the convergences of
Theorem 2.1.1 hold true if n−1/2 � h� n−1/4.
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Proof. The claim is established if the previous two equalities are fulfilled. Firstly, for a fixed n ∈ N
we obtain that(

m∑
i=1

ε1,i
σ2,i

∆µ,2,i,n ;σ(ε1,i, i ≤ m)

)
and

(
m∑
i=1

ε2,i
σ1,i

∆µ,1,i,n ;σ(ε2,i, i ≤ m)

)
are martingales. Thus, we can apply Doob’s martingale inequality to obtain

P

∥∥∥∥∥∥
[n·]∑
i=1

εl,i
σ3−l,i

∆µ,3−l,i,n

∥∥∥∥∥∥ ≥ η√n
 ≤ (η

√
n)−rlIE

[∣∣∣∣∣
n∑
i=1

εl,i
σ3−l,i

∆µ,3−l,i,n

∣∣∣∣∣
rl
]

≤ (η
√
n)−rl

n∑
i=1

IE

[
|
εl,i
σ3−l,i

∆µ,l,i,n|rl
]

= O(n1−rl/2hrl),

where we use Bahr and Esseen (1964, Th. 2) for the last inequality. For rl = 2, the right-hand side
is of order o(1) if h→ 0. Secondly, we get that

max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

εl,i
σ3−l,i

1

nh

∑
j∈Ii,nh

ε3−l,j

∣∣∣∣∣∣ ≤ max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

1

nh

∑
j∈Ii,nh

εl,iε3−l,j − IE [εl,iε3−l,j ]

σ3−l,i

∣∣∣∣∣∣
+

n∑
i=1

∣∣∣∣∣∣ 1

nh

∑
j∈Ii,nh

IE [εl,iε3−l,j ]

σ3−l,i

∣∣∣∣∣∣ ,
where the second term is equal to a rate of O(h−1) which is o(n1/2) if h � n−1/2. For the first
summand, we use the following decomposition

k∑
i=1

εl,iε3−l,i − IE [εl,iε3−l,i]

nhσ3−l,i
+

k∑
i=1

i−1∑
j=1∨(i−nh)∧(n−nh)

εl,iε3−l,j
nhσ3−l,i

and obtain that the two summands are martingales with respect to σ (ε1,i,ε2,i, i ≤ k). Hence, we can
apply the σ-additivity and Doob’s martingale inequality for each of the summands and obtain

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

∑
j∈Ii,nh

εl,iε3−l,j − IE [εl,iε3−l,j ]

nhσ3−l,i

∣∣∣∣∣∣ ≥ η√n


≤ (η
√
n)−r

[
IE

[∣∣∣∣∣
n∑
i=1

εl,iε3−l,i − IE [εl,iε3−l,i]

nhσ3−l,i

∣∣∣∣∣
r]

+ IE

∣∣∣∣∣∣
n−1∑
i=1

i−1∑
j=1∨(i−nh)∧(n−nh)

εl,iε3−l,j
nhσ3−l,i

∣∣∣∣∣∣
r

≤ Cη,r(n3/2h)−r
n∑
i=1

IE [|ε1,iε2,i − ρi|r] +

i−1∑
j=1∨(i−nh)∧(n−nh)

IE [|εl,iε3−l,j |r]


= O

(
n2−3r/2h1−r

)
by using Bahr and Esseen (1964, Th. 2) in the last inequality. For r = 2, it is o(1) if nh → ∞.
Finally, we decompose

(µl,i − µ̂i,1,n)(µl,i − µ̂i,2,n) = ∆µ,1,i,n∆µ,2,i,n +
∆µ,1,i,n

nh

∑
j∈Ii,nh

ε2,j +
∆µ,2,i,n

nh

∑
j∈Ii,nh

ε1,j

+
1

(nh)2

∑
j1∈Ii

∑
j2∈Ii

(ε1,j1ε2,j2 − IE [ε1,j1ε2,j2 ]) +
1

(nh)2

∑
j1∈Ii

∑
j2∈Ii

IE [ε1,j1ε2,j2 ]
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and get maxk

∣∣∣n−1/2
∑k

i=1 ∆µ,1,i,n∆µ,2,i,n

∣∣∣ = O(
√
nh2). Furthermore, we obtain by Markov’s inequal-

ity that

P

 max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

∆µ,1,i,n

nh

∑
j∈Ii,nh

ε2,j

∣∣∣∣∣∣ ≥ η√n


≤ 1

n(nhη)2
IE

 max
1≤k≤n

 k∑
i=1

∆µ,1,i,n

∑
j∈Ii,nh

ε2,j

2
≤ 1

n3η2

n∑
i1=1

n∑
i2=1

IE

∣∣∣∣∣∣
∑

j1∈Ii1,nh

ε2,j1
∑

j2∈Ii1,nh

ε2,j2

∣∣∣∣∣∣
 = O(h),

where we use in the last row that for each i1 there are at most 2nh many i2 such that there are at
most nh many dependent and at most (nh)2 independent summands in the double sum. Moreover,
we use ‖X‖1 ≤ ‖X‖2 for the rate of the sum of independent random variables. Similarly, we obtain
that

max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

1

(nh)2

∑
j1∈Ii

∑
j2∈Ii

ε1,j1ε2,j2

∣∣∣∣∣∣ = OP

(
1√
nh

)
and

max
1≤k≤n

∣∣∣∣∣∣
k∑
i=1

1

(nh)2

∑
j1∈Ii

∑
j2∈Ii

IE [ε1,j1ε2,j2 ]

∣∣∣∣∣∣ = OP

(
1√
nh

)
.

Hence, if
√
nh2 = o(1) and (

√
nh)−1 = o(1), the two necessary rates are fulfilled.

Remark 4.3.4. 1. It is possible to weight the {Zl,n} by some deterministic numbers.

2. Similar results can be proven under assumptions such as (MIX1) or (NED1).

3. Suppose the preceding Lipschitz continuous change functions gµ,1 and gµ,2 are only piecewise
Lipschitz continuous with finitely many bounded jumps. Then, we get the same result if each of
the common abrupt changes 1 < k∗1,1 < . . . < k∗1,m1

< n and 1 < k∗2,1 < . . . < k∗2,m2
< n of

gµ,1 and gµ,2 are isolated such that

m1−1∑
i=1

m2−1∑
j=1

#(k∗1,i − nh, k∗1,i+1 + nh] ∩ (k∗2,j − nh, k∗2,j+1 + nh] ∩ (0,n] = o(
√
n).

4. In many types of structures of gµ, we can apply research results to observe the behavior of
gµ − ĝµ which we can use to prove the two sufficient rates. For instance, if X and Y follow
processes with linear drift, i.e. gµ,l(t) = al,tt with optionally piecewise constants al,t 6= 0, we
refer Horváth and Steinebach (2000).
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5 Change-Point Analysis of the Correlation under Known Means
and Unknown Variances

5.1 A Posteriori Analysis under a General Dependency Framework and General
Variance Estimates

In this subsection, we consider a posteriori testing procedures and change-point estimates of structural
breaks in the correlation under known expectations but unknown variances. We set for k = 1, . . . ,n

ρ̂k,4+ψ =
1

k

k∑
i=1

(Xi − µ1,i)(Yi − µ2,i)

σ̂
(ψ)
1,i,k,nσ̂

(ψ)
2,i,k,n

=
1

k

k∑
i=1

Z
(4+ψ)
i,k,n , (5.1.1)

where ψ = 1, . . . ,4 is a design index to distinguish between the four different variance estimate-

types which we will present. Below, we will omit the index n of the estimates and of Z
(4+ψ)
i,k,n . For

{Z(ψ)
i,k }1≤i≤k≤n∈N we use the decomposition

Z
(4+ψ)
i,· =

(Xi − µ1,i)(Yi − µ2,i)

σ̂
(ψ)
1,· σ̂

(ψ)
2,i,·

=Z
(0)
i + Z

(0)
i

(
σ1,i

σ̂
(ψ)
1,·

− 1

)
+ Z

(0)
i

(
σ2,·

σ̂
(ψ)
2,·

− 1

)
+ Z

(0)
i

(
σ1,i

σ̂
(ψ)
1,·

− 1

)(
σ2,i

σ̂
(ψ)
2,·

− 1

)

=Z
(0)
i +R1·Z(j+4) +R2·Z(4+ψ) +R3·Z(4+ψ) = Z

(0)
i

(
1 +

3∑
l=1

rl·Z(ψ+4)

)
, (5.1.2)

where the points stand for the index k and/or index i. Moreover, we will eliminate the unused
indices.

5.1.1 Testing under a Functional Central Limit Theorem and General Variance Esti-
mates

Nearly Constant Variances In this paragraph, we assume that the unknown variances are nearly
constant. Firstly, we expect that the variances (or equivalently the standard deviations) satisfy As-
sumption (PEE1) with δl > 0. Thus, the positive variance or rather the positive standard deviation
can be estimated nearly consistently. Since the proof will be less technical if we postulate that the
standard deviations satisfy Assumption (PEE1), we will do so without loss of generality.

Theorem 5.1.1. Let the parameters σ1 and σ2 fulfill Assumption (PEE1) with δσ,1, δσ,2 > 0,

where σl,i − dσ,l,i = σl > 0. Then, Theorem 2.1.1 holds true if we replace B0,0,0
n by B5,0,0

n .

Proof of Theorem 5.1.1. Firstly, we use the decomposition (5.1.2) and note that it is sufficient to
show for l = 1, 2, 3

max
1≤k≤n

∣∣∣∣∣ k√n
(

1

k

k∑
i=1

Z
(0)
i rilZ(5) −

1

n

n∑
i=1

Z
(0)
i rilZ(5)

)∣∣∣∣∣ = oP (1). (5.1.3)

Furthermore, we obtain that the left–hand side can be bounded from above by

max
1≤k≤n

∣∣∣∣∣ k√n
(

1

k

k∑
i=1

ρirilZ(5) −
1

n

n∑
i=1

ρirilZ(5)

)∣∣∣∣∣+ 2 max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

(Z
(0)
i − ρi)rilZ(5)

∣∣∣∣∣ . (5.1.4)

Starting with the second term and l = 1, we obtain that

ri1Z(5) =

(
σ1,i

σ̂1,n
− 1

)
= oP (1) + d1,σ,i/σ̂1,n,
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where we use the consistence of the variance estimate. Hence, by the use of Lemma 4.1.1 it holds that

max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

(Z
(0)
i − ρi)rilZ(5)

∣∣∣∣∣ = oP (1) max
1≤k≤n

∣∣∣∣∣ 1√
n

k∑
i=1

(Z
(0)
i − ρi)

∣∣∣∣∣+ oP (1) = oP (1),

which similarly follows as in the proof of Theorem 4.1.2. In a similar way we get the rates for l = 2, 3
so that it remains to consider the first summand of (5.1.4). We obtain that

max
1≤k≤n

∣∣∣∣∣ k√n
(

1

k

k∑
i=1

ρirilZ(5) −
1

n

n∑
i=1

ρirilZ(5)

)∣∣∣∣∣ = oP (1)

(
max

1≤k≤n

∣∣∣∣∣ k√n
(

1

k

k∑
i=1

ρi −
1

n

n∑
i=1

ρi

)∣∣∣∣∣+ 1

)
so that we just have to replace Rn,ρ(·) by Rn,ρ(·)(1 + oP (1)) in the proof of Theorem 2.1.1 and the
claimed convergences follow analogously.

Corollary 5.1.2. Under the assumptions of Theorem 5.1.1, let each {dn} ∈ {{dσ,1,n}, {dσ,2,n},{1}}
fulfill that

max
1≤k≤[εn]

(n
k

)γ 1√
n

∣∣∣∣∣
k∑
i=1

(Z
(0)
i − ρi)di

∣∣∣∣∣ = oP (1) (5.1.5)

and

max
[(1−ε)n]≤k≤n−1

(
n

n− k

)γ 1√
n

∣∣∣∣∣
n∑

i=k+1

(Z
(0)
i − ρi)di

∣∣∣∣∣ = oP (1), (5.1.6)

as n → ∞, followed by ε → 0. Then, we can replace B0,0,γ
n by B5,0,γ

n in Theorem 2.1.4 and the
convergences hold true.

Proof. Firstly, we decompose

B5,0,γ
n (·) = B0,0,γ

n (·)−
3∑
l=1

wγ([n·]/n))

[
n− [n·]

n
n−1/2

[n·]∑
i=1

ρiri,n,l,z(5)

+
n− [n·]

n
n−1/2

[n·]∑
i=1

(Z
(0)
i − ρi)ri,n,l,z(5)

− [n·]
n
n−1/2

n∑
i=[·n]

ρiri,n,l,z(5) −
[n·]
n
n−1/2

n∑
i=[·n]

(Z
(0)
i − ρi)ri,n,l,z(5)

]
.

Then, the claim follows from the combination of the arguments of the proof of Theorem 5.1.1, (5.1.5),
and (5.1.6).

Remark 5.1.3. Suppose the variances have non-local structural breaks in [[εn], n − [εn]], ε > 0.
Then, the variance estimates σ̂2

1,n and σ̂2
2,n are not consistent. Assuming the estimates converge in

probability towards a positive constant, then, it is still possible that the process B5,0,0
n (·) converges in

distribution towards a Gaussian process whose covariance structure depends on both variance functions.
In particular, let us assume that σ2

1,i = gσ,1(i/n) and σ2
2,i = gσ,1(i/n) with bounded, positive, and

piecewise continuous functions gσ,l, the Assumption (IID) with IE
[
(ε̃1,iε̃2,i − ρ0)2

]
≡ 1, and the

sample variances as estimates. Then, under H0 we obtain that

wγ

(
[n·]
n

)
[n·]√
n

(ρ̂5,[n·] − ρ̂5,n)

D[0,1]−→ wγ(·)
W (·)

∫ ·
0 gσ,1(x)gσ,2(x)dx− (·)W (1)

∫ 1
0 gσ,1(x)gσ,2(x)dx√∫ 1

0 gσ,1(x)dx
∫ 1

0 gσ,2(x)dx

+ ρ0wγ(·)
∫ ·

0 gσ,1(x)gσ,2(x)dx− (·)
∫ 1

0 gσ,1(x)gσ,2(x)dx√∫ 1
0 gσ,1(x)dx

∫ 1
0 gσ,2(x)dx

,

which follows from an application of Davidson (1994, Corollary 29.11).

91



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER KNOWN MEANS AND UNKNOWN
VARIANCES

Now, we consider the estimates which are only calculated by the first k observations. In contrast
to the estimates of the mean, where it was sufficient that the estimation error is small, it is not
sufficient for the estimates of the variances. They have to fulfill a FCLT additionally.

Theorem 5.1.4. Let the parameters σ1 and σ2 fulfill Assumption (PEE2), where σl,i − dσ,l,i =
σl > 0. Additionally, let maxl=1, 2,k∈N σ̂

−1
l,k = OP (1) for l = 1, 2 and let

1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)−

[n·]√
n

(σ̂2
1,[n·] − σ

2
1)
ρ[n·]

2σ2
1

− [n·]√
n

(σ̂2
2,[n·] − σ

2
2)
ρ[n·]

2σ2
2

D[0,1]−→ D
1/2
(6) W (·), (5.1.7)

where D(6) > 0. Then, the convergences of Theorem 2.1.1 hold if we replace each B0,0
n and D by

B6,0,0
n and D(6).

Remark 5.1.5. Suppose the variances are constant and the variance estimates are the sample vari-
ances with known means. Then, (5.1.7) fails for ρi ≡ 1 or ρi ≡ −1 since the term on the left-hand
side equals zero.

Proof of Theorem 5.1.4. Firstly, from the triangle inequality and from the combination of the
FCTL from Theorem 2.1.1 and of (5.1.7) we obtain that∥∥∥∥∥ [n·]√

n

(σ̂2
1,[n·] − σ

2
1)

2σ2
1

+
[n·]√
n

(σ̂2
2,[n·] − σ

2
2)

2σ2
2

∥∥∥∥∥ = OP (1).

Furthermore, we obtain that

B(6,0,0)
n (k) = B(0,0,0)

n (k) + D̂
−1/2
0,n

3∑
l=1

k√
n

(
1

k

k∑
i=1

Z
(0)
i rilZ(6) −

1

n

n∑
i=1

Z
(0)
i rilZ(6)

)
.

Define σl = σl,i − dσ,l,i. Now, we consider the summand with l = 1 and obtain that 1

[n·]

[n·]∑
i=1

Z
(0)
i ri1Z(6) −

1

n

n∑
i=1

Z
(0)
i ri1Z(6)


=

 1

[n·]

[n·]∑
i=1

Z
(0)
i

σ2
1 − σ̂2

1,[n·]

σ̂1,[n·](σ1 + σ̂1,[n·])
− 1

n

n∑
i=1

Z
(0)
i

σ2
1 − σ̂2

1,n

σ̂1,n(σ1 + σ̂1,n)


+

 1

[n·]

[n·]∑
i=1

Z
(0)
i

dσ,1,i
σ̂1,[n·]

− 1

n

n∑
i=1

Z
(0)
i

dσ,1,i
σ̂1,n

 ,

where the second summand weighted by [n·]/n1/2 uniformly vanishes in probability because of
maxl ‖σ̂−1

l,[n·]‖ = OP (1) and the characteristic of the p.e.s. This follows analogously for the summand
with l = 2. For the weighted first summand, temporarily defined as S1,1,[n·] for l = 1 and S2,1,[n·] for

l = 2, we obtain by using maxl ‖σ̂−1
l,[n·]‖ = OP (1) and both estimation rates from Assumption (PEE2)

that

[n·]√
n
S1,1,[n·] =

[n·]√
n

(σ2
1 − σ̂2

1,[n·])

(
[n·]−1∑[n·]

i=1(Z
(0)
i − ρi)

σ̂1,[n·](σ1 + σ̂1,[n·])
+

[n·]−1∑[n·]
i=1 ρi

σ̂1,[n·](σ1 + σ̂1,[n·])

)

−
√
n(σ2

1 − σ̂2
1,n)

(
n−1

∑n
i=1(Z

(0)
i − ρi)

σ̂1,n(σ1 + σ̂1,n)
+

n−1
∑n

i=1 ρi
σ̂1,n(σ1 + σ̂1,n)

)
[n·]
n

=
[n·]√
n

(σ2
1 − σ̂2

1,[n·])
n−1

∑[n·]
i=1 ρi

σ̂1,[n·](σ1 + σ̂1,[n·])
+ oP (1)

−
√
n(σ2

1 − σ̂2
1,n)

[n·]
n

n−1
∑n

i=1 ρi
σ̂1,n(σ1 + σ̂1,n)

+ oP (1)

=
[n·]√
n

(σ2
1 − σ̂2

1,[n·])

2σ2
1

[n·]−1
[n·]∑
i=1

ρi −
√
n(σ2

1 − σ̂2
1,n)

2σ2
1

[n·]
n
n−1

n∑
i=1

ρi + oP (1)
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as n→∞. Hence, we get

[n·]√
n

(S1,1,[n·] + S2,1,[n·]) =
[n·]√
n

(
(σ2

1 − σ̂2
1,[n·])

2σ2
1

+
(σ2

2 − σ̂2
2,[n·])

2σ2
2

)
ρ[n·]

−

(√
n(σ2

1 − σ̂2
1,n)

2σ2
1

+

√
n(σ2

1 − σ̂2
2,n)

2σ2
2

)
[n·]
n
ρn + oP (1)

as n→∞. Now, we consider the second summand of the first display with l = 3:∥∥∥∥∥∥ 1

[n·]

[n·]∑
i=1

Z
(0)
i ri3Z(6) −

1√
n

n∑
i=1

Z
(0)
i ri3Z(6)

∥∥∥∥∥∥ ≤ c
∥∥∥∥∥∥

[n·]∑
i=1

Z
(0)
i

σ1 − σ̂1,[n·]

σ̂1,[n·]

σ2 − σ̂2,[n·]

σ̂2,[n·]

∥∥∥∥∥∥+ oP (
√
n)

as n → ∞, where we use the characteristic of the p.e.s. and maxl ‖σ̂−1
l,[n·]‖ = OP (1) as well as

maxl ‖σ̂l,[n·]‖ = OP (1). Furthermore, we obtain

2√
n

∥∥∥∥∥∥
[n·]∑
i=1

Z
(0)
i

σ1 − σ̂1,[n·]

σ̂1,[n·]

σ2 − σ̂2,[n·]

σ̂2,[n·]

∥∥∥∥∥∥ ≤ max
N≤k≤n

2√
n

∣∣∣∣∣
k∑
i=1

(Z
(0)
i − ρi)

σ1 − σ̂1,k

σ̂1,k

σ2 − σ̂2,k

σ̂2,k

∣∣∣∣∣
+ max
N≤k≤n

2√
n

∣∣∣∣∣
k∑
i=1

ρi
σ2

1 − σ̂2
1,k

σ̂1,k(σ1 + σ̂1,k)

σ2 − σ̂2,k

σ̂2,k

∣∣∣∣∣+ oP (1)

as n → ∞, where the first summand tends towards zero as n → ∞, followed by N → ∞, because
of Assumption (PEE2)

For the second summand we use
∑k

i=1 |ρi| ≤ k, ‖[n·]/
√
n(σ2

1−σ̂2
1,[·n])‖ = OP (1) and maxN≤k≤n |σ2

2−
σ̂2

2,k| = oP (1) as n→∞, followed by N →∞ so that the second summand converges in probability
towards zero, too.

Hence, under H0 or HLA we obtain

B(6,0,0)
n ([n·]) = B(0,0,0)

n ([n·]) + D̂
−1/2
0,n

[n·]√
n

(ρnσ̂
2
1,n − ρ[n·]σ̂

2
1,[n·])

2σ2
1

+ D̂
−1/2
0,n

[n·]√
n

(ρnσ̂
2
2,n − ρ[n·]σ̂

2
2,[n·])

2σ2
2

+ oP (1)

which implies the convergences under H0 and HLA by the use of the CMT and the assumed FCLT.
Under Assumption HA we obtain

B(6,0,0)
n ([n·]) = B(0,0,0)

n ([n·]) + D̂
−1/2
0,n OP (1),

where the dominating term is B
(0,0,0)
n ([n·]). Thus, under Assumption HA the claimed convergence

holds true.

Remark 5.1.6. 1. If σ̂2
n → σ2 a.s., it follows that maxn≤k |σ̂2

k − σ2| = oP (1).

2. The influence of the variance estimates on the asymptotic behavior depends on the correlation. If
ρi ≡ 0 under H0, the asymptotic normality of [n·]/

√
n(σl− σ̂l,[n·]) can be reduced to σ̂l,n → σl

a.s., for which the fourth moments of X and Y are not always necessary.

Corollary 5.1.7. Let the assumptions in Theorem 5.1.4 hold true. Additionally, let both rate as-
sumptions of Corollary 5.1.2 be fulfilled and let for l = 1, 2

max
1≤k≤[nε]

∣∣∣∣wγ(k/n)
k√
n

(σ̂2
l,n − σ̂2

l,k)

∣∣∣∣ = oP (1) and max
n−[nε]≤k≤n

∣∣∣∣wγ(k/n)
k√
n

(σ̂2
l,n − σ̂2

l,k)

∣∣∣∣ = oP (1)

as n→∞, followed by ε→ 0. Then, Theorem 2.1.4 holds true if we replace B0,0,γ
n by B6,0,γ

n .
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Proof. Firstly, we obtain that

B6,0,γ
n (·) = B0,0,γ

n (·)− D̂−1/2
0,n

3∑
l=1

wγ([n·]/n)

[
n−1/2

[n·]∑
i=1

ρi

(
ri,[n·],l,z(6) −

[n·]
n
ri,n,l,z(6)

)

+ n−1/2

[n·]∑
i=1

(Z
(0)
i − ρi)

(
ri,[n·],l,z(6) −

[n·]
n
ri,n,l,z(6)

)

− [n·]
n
n−1/2

n∑
i=[·n]+1

ρiri,n,l,z(6) −
[n·]
n
n−1/2

n∑
i=[·n]+1

(Z
(0)
i − ρi)ri,n,l,z(6))

]
.

Using the representation of ri,[n·],l,z(6) , the rate assumptions imply the claim.

Non-constant Variances In this paragraph, we consider settings where the variances satisfy As-
sumption (PEE4).

Remark 5.1.8. 1. Under the assumption that the parameters σ1 and σ2 fulfill Assumption (PEE3)
with finitely many change-points and under some additional assumptions, we get under H0 that

B7,0,0
n (·) D[0,1]−→ B(·)

− ρ0

(
m1+1∑
j=1

((·) ∧ θσ,1,j − θσ,1,j−1)− (·)(θσ,1,j − θσ,1,j−1)

2σ2
1,j

(Wσ,1(θσ,1,j)−Wσ,1(θσ,1,j−1))

)

− ρ0

(
m2+1∑
j=1

((·) ∧ θσ,2,j − θσ,2,j−1)− (·)(θσ,2,j − θσ,2,j−1)

2σ2
2,j

(Wσ,2(θσ,2,j)−Wσ,2(θσ,2,j−1))

)
,

where B is a Brownian bridge, Wσ,1 and Wσ,2 are Brownian motions, and 0 = θσ,l,0 < . . . <
θσ,l,ml+1 = 1 are the change-points of the variances. In order to get a test statistic, we apply a
continuous function that maps in R. But in general, this distribution depends on the unknown
change-points θσ,l,j and therefore it is useless for testing if ρ0 6= 0. Hence, an assumption
as (PEE3) is only suitable if we apply a continuous mapping into R so that the asymptotic
distribution is independent of these change-points.

Theorem 5.1.9. Let the parameters σ2
1 and σ2

2 fulfill Assumption (PEE4) and let the following
conditions hold true:

1. D(8) > 0 and

1√
n

[n·]∑
i=1

[
(Z

(0)
i − ρi)− (σ̂2

1,i,[n·] − σ
2
1,i)

ρi
2σ2

1,i

− (σ̂2
2,i,[n·] − σ

2
2,i)

ρi
2σ2

2,i

]
D[0,1]−→ D

1/2
(8) W (·) (5.1.8)

under H0 and the left hand side is equal to OP (1) under the alternatives HA or HLA;

2. the sequence {Z(0)
n − ρn} fulfills (K(1)

r ) and (K(2)
r ) for rz > 1;

3. the estimates fulfill maxl=1, 2,k∈N σ̂
−1
l,k = OP (1) for l = 1, 2;

4. the arrays {bσ,l,j1,j2}, {Iσ,l,1,j1}, and {Iσ,l,2,j2} of Assumption (PEE4) fulfill for l = 1, 2 and
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as n→∞

m3−l,2∑
j2=1

mrz
3−l,1

m3−l,1∑
j1=1

brz3−l,j1,j2#I3−l,1,j1 ∩ (0,max I3−l,2,j2 ]

1/rz

= o(n1/2), (5.1.9)

∑
1≤j1≤m2,1
1≤j2≤m2,2

(m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])(b1,i1,j1b2,i2,j2)rz

(m1,1 ∨m2,1)−1

)1/rz

= o(
√
n),

(5.1.10)

max
1≤j1≤m2,1
1≤j2≤m2,2

∑
1≤i1≤m1,1
1≤i2≤m1,2

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])b1,i1,j1b2,i2,j2 = o(n1/2), (5.1.11)

max
1≤j2≤ml,2

ml,1∑
j1=1

b2l,j1,j2#Il,1,j1 ∩ (0,max Il,2,j2 ] = oP (n1/2), (5.1.12)

and for l1,l2 ∈ {1,2}

max
1≤j2≤ml2,2

ml1,1,n∑
j1=1

bl1,j1,j2,n
∑

i∈Il1,1,j1∩(0,max Il1,2,j2 ]

|dl2,i| = o(
√
n). (5.1.13)

Then, the convergences of Theorem 2.1.1 hold true if we replace B0,0
n and D by B8,0,0

n and D(8),
respectively.

Proof. (To get more space we drop the index [n·] of σ̂l,i,[n·] but keep it in mind.) Firstly, we obtain
that

1√
n

[n·]∑
i=1

ρiri1kZ(8) =
1√
n

[n·]∑
i=1

ρi
σ2

1,i − σ̂2
1,i

2σ2
1,i

+
1√
n

[n·]∑
i=1

ρi
(σ2

1,i − σ̂2
1,i)(2σ

2
1,i − σ̂1,i(σ̂1,i + σ1,i))

2σ2
1,iσ̂1,i(σ̂1,i + σ1,i)

,

where we note that the second sum can be estimated by Assumption (PEE4) in the following way∥∥∥∥∥∥ 1√
n

[n·]∑
i=1

ρi
(σ2

1,i − σ̂2
1,i)(2σ

2
1,i − σ̂1,i(σ̂1,i + σ1,i))

2σ2
1,iσ̂1,i(σ̂1,i + σ1,i)

∥∥∥∥∥∥
= OP

n−1/2 max
1≤j2≤m1, 2

m1,1∑
j1=1

b21,j1,j2#I1,1,j1 ∩ (0,max I1, 2,j2 ]

+ oP (1)

+OP

n−1/2 max
1≤j2≤m1,2

m1,1,n∑
j1=1

b1,j1,j2,n
∑

i∈I1,1,j1∩(0,max Il,2,j2 ]

|d3−l,i|

 .

Furthermore, with Z̃
(0)
i = Z

(0)
i − ρi and the Kolmogorov-type inequalities we get that∥∥∥∥∥∥

[n·]∑
i=1

Z̃
(0)
i ri1[n·]Z(8)

∥∥∥∥∥∥ =OP

m1, 2∑
j2=1

mr1
1,1

m1,1∑
j1=1

brz2,j1,j2#I1,1,j1 ∩ (0,max I1, 2,j2 ]

1/rz
 .

Analogously, we obtain the rates for ri2kZ(2) . Secondly, we obtain with Assumption (PEE4) that∥∥∥∥∥∥
[n·]∑
i=1

ρiri3kZ(8)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1√
n

[n·]∑
i=1

ρi
(σ1,i − σ̂1,i)(σ2,i − σ̂2,i)

σ̂1,iσ̂2,i

∥∥∥∥∥∥ = oP (
√
n)

+OP

 max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])b1,i1,j1b2,i2,j2


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and ∥∥∥∥∥∥
[n·]∑
i=1

Z̃
(0)
i ri3kZ(8)

∥∥∥∥∥∥ = oP (
√
n)

+OP

 ∑
1≤j1≤m2,1
1≤j2≤m2,2

(∑m1,1

i1=1

∑m1, 2

i2=1 #(I1,1,i1 ∩ I2,1,i1 ∩ (0,max I1, 2,j1 ∩ I2,2,j2 ])(b1,i1,j1b2,i2,j2)rz
)1/rz

(m1,1 ∨m2,1)−1

 ,

where we use (5.1.13). Now, we use the above rates and the equations (5.1.9), (5.1.11), (5.1.12), and
(5.1.13) to get that

B(8,0,0)
n (·) = B(0,0,0)

n (·) + D̂
−1/2
0,n

3∑
l=1

[·n]√
n

 1

[·n]

[·n]∑
i=1

Z
(0)
i ril[·n]Z(8) −

1

n

n∑
i=1

Z
(0)
i rilnZ(8)


= B(0,0,0)

n (·) + D̂
−1/2
0,n

[·n]√
n

 1

[·n]

[·n]∑
i=1

ρi
σ2

1,i − σ̂2
1,i

2σ2
1,i

− 1

n

n∑
i=1

ρi
σ2

1,i − σ̂2
1,i

2σ2
1,i


+ D̂

−1/2
0,n

[·n]√
n

 1

[·n]

[·n]∑
i=1

ρi
σ2

2,i − σ̂2
2,i

2σ2
2,i

− 1

n

n∑
i=1

ρi
σ2

2,i − σ̂2
2,i

2σ2
2,i

+ oP (1).

Moreover, we obtain that the term on the right–hand side is a sum of D̂
−1/2
0,n

[n·]√
n

(
ρ[n·] − ρn

)
and of

one continuous mapping of the left hand-side of (5.1.8). Hence, the convergences of Theorem 2.1.1
hold true.

Corollary 5.1.10. Let the assumptions of Theorem 5.1.9 hold true and let dl,i ≡ 0 be given.
Additionally, let both rate assumptions of Corollary 5.1.7 be fulfilled and for l = 1, 2 let

m3−l,2∑
j2=1

mrz
3−l,1

m3−l,1∑
j1=1

∑
i∈I3−l,1,j1∩(0,[nε]∧max I3−l,2,j2 ]

∪I3−l,1,j1∩(n−[nε],max I3−l,2,j2 ]

brz3−l,j1,j2
iγrz


1/rz

= o(n1/2−γ), (5.1.14)

sup
z∈(0,ε]

max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ (0,[nz] ∧max I1, 2,j1 ∩ I2,2,j2 ])

(b1,i1,j1b2,i2,j2)−1[nz]γ
= o(n1/2−γ), (5.1.15)

sup
z∈[1−ε,1)

max
1≤j1≤m2,1
1≤j2≤m2,2

m1,1∑
i1=1

m1, 2∑
i2=1

#(I1,1,i1 ∩ I2,1,i1 ∩ ([nz],max I1, 2,j1 ∩ I2,2,j2 ])

(b1,i1,j1b2,i2,j2)−1(n− [nz])γ
= o(n1/2−γ), (5.1.16)

sup
z∈(0,ε]

max
1≤j2≤ml,2

ml,1∑
j1=1

#Il,1,j1 ∩ ((0,[nz] ∧max Il,2,j2 ] ∪ (n− [nz],max Il,2,j2 ])

b−2
l,j1,j2

[nz]γ
= oP (n1/2−γ)

(5.1.17)

as n→∞ and ε→ 0. Then, we can replace B0,0,0
n by B8,0,γ

n and the convergences of Theorem 2.1.4
hold true.

Proof. The proof strictly follows the proof of Theorem 5.1.9, where we just have to add the weighting
function. Since the weighting function is continuous on (ε,1 − ε) for each ε >, we just have to
show that the test statistic vanishes in probability on (0,ε] ∪ [1− ε,1). Using the assumed rates after
applying Assumption (PEE4) or both rate assumptions of Corollary 5.1.7 on the weighted error terms
of the proof of Theorem 5.1.9 yields the claim.
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5.1.2 Change-Point Estimation under Unknown Variances

In this sub-subsection, we consider the change-point estimates of the correlation under the alterna-
tive and under unknown variances which are estimated. In doing so, we will focus on the general
multiple change-point estimate. The special change-point estimate for epidemic change-points in the
correlations can also be extended for the case of unknown variances, but we will not pursue these
estimates.

Constant Variances

Theorem 5.1.11. Define Q
(5)
n as Q

(0)
n with Z

(5)
i instead of Z

(0)
i . Then, Theorem 2.1.22 holds

true with θ
(5)
n instead of θ

(0)
n if the following conditions are additionally fulfilled:

1. the parameters σ2
1 and σ2

2 fulfill Assumption (PEE1) with dσ2,l,i ≡ 0;

2. for l = 1, 2 let P (σ̂−1
l > 0)→ 1 as n→∞.

Proof. Since

Z
(5)
i = Z

(0)
i

(
1 +

3∑
l=1

rlZ(5)

)
,

we get

Q(5)
n (k) =

(
1 +

3∑
l=1

rlZ(5)

)2 R+1∑
r=1

kr∑
i=kr−1+1

(Z
(0)
i − Z(0)

kr
kr−1

)2 =

(
1 +

3∑
l=1

rlZ(5)

)2

Q(0)
n (k)

and

Q(5)
n (k)−Q(5)

n (k∗) =

(
1 +

3∑
l=1

rlZ(5)

)2 (
Q(0)
n (k)−Q(0)

n (k∗)
)

=

(
σ1σ2

σ̂1σ̂2

)2 (
Q(0)
n (k)−Q(0)

n (k∗)
)
.

Hence, we obtain

P (an|θ̂(5)
r0 − θr0 | ≥ N + 1)

≤ P

((
σ1σ2

σ̂1σ̂2

)2

min
1<k1<...<kR<n;|kr0−k∗r0 |≥a1,n,N

Q(0)
n (k)−Q(0)

n (k∗) ≤ 0

)

= o(1) + P

(
min

1<k1<...<kR<n;|kr0−k∗r0 |≥a1,n,N
Q(0)
n (k)−Q(0)

n (k∗) ≤ 0

)
= o(1)

as n→∞, followed by N →∞, where we use the arguments of the proof of Theorem 2.1.22.

Remark 5.1.12. The assumption P (σ̂−1
l > 0) → 1 as n → ∞ of the last theorem is weak and

even allows that the estimates σ̂l could tend to infinity with any arbitrary rate OP (an), an → ∞
as n→∞ but an 6=∞ for all n ∈ N.

Theorem 5.1.13. Under the assumptions of Theorem 5.1.11 let sequences s1,n and s2,n exist so
that

(σ̂2
1σ̂

2
2)−1 = OP (s1,n), σ̂2

1σ̂
2
2 = OP (s2,n), (5.1.18)

s1,nn
1/r+1/rz � β(5)

n ≤
1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,ns

−1
2,n. (5.1.19)

Then, R̂(5) is a consistent estimate for the number of change-points R∗.
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Proof. Set βn = β
(5)
n . Using the arguments of the proof of Theorem 2.1.22 combined with the ones

of Theorem 5.1.11 yields that

P (R̂(5) < R∗) ≤ o(1) + P

(
min

1≤k≤n;R<R∗
Q(0)
n (k)−Q(0)

n (k∗)−OP (s2,n)βn(R∗ − 1) < 0

)
= o(1)

and

P (R̂(5) > R∗) ≤ o(1) + P

(
OP (s1,n) min

1≤k≤n;R>R∗
Q(0)
n (k)−Q(0)

n (k∗) + βn < 0

)
= o(1).

This implies the claim.

Non-constant Variances For the following theorem, we define for all M ⊂ R and x ∈ R
d(x,M) = inf{|x− y| : ∀y ∈M} and

d(x,M) = inf{|x− y| : ∀y ∈M} with d(x,∅) =∞.

Theorem 5.1.14. Define Q
(7)
n as Q

(0)
n with Z

(7)
i instead of Z

(0)
i . Then, Theorem 2.1.22 holds

true with θ
(7)
n instead of θ

(0)
n if the following conditions are additionally fulfilled:

1. the parameters σ2
1 and σ2

2 fulfill Assumption (PEE3) with dσ2,l,i ≡ 0;

2. the estimates fulfill maxl=1, 2;k∈N σ̂
−1
l,k = OP (1);

3. let the following rates be satisfied

a1,n + a2,n = o

(
∆k∗,n∆2

ρ,n

max1≤i≤R |∆ρ,i,n|

)
, a2

1,n + a2
3,n = o

(
∆k∗,n∆2

ρ,n

)
, (5.1.20)

2∑
l=1

max
1≤r≤R

ml,r,ε,n

ml,n∑
j=1

brzl,j (d(k∗r ,Il,j) ∨Nn/an)−(rz−1)

1/rz

= o

(
∆2
ρ,n

maxr |∆ρ,r|

)
, (5.1.21)

max
1≤r≤R

m1,r,ε,n ∨m2,r,ε,n

m1,n∑
j1=1

m2,n∑
j2=1

(b1,j1b2,j2)rz

(d(k∗r ,I1,j1 ∩ I2,j2) ∨Nn/an)rz−1

1/rz

= o

(
∆2
ρ,n

maxr |∆ρ,r|

)
,

(5.1.22)

2∑
l=1

max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

ml,n∑
j=1

bl,j
#(kr ∧ k∗r , kr ∨ k∗r ] ∩ Il,j
|kr − k∗r | ∨Nn/an

= o

(
∆2
ρ,n

maxr |∆ρ,r|

)
, (5.1.23)

max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

m1,n∑
j1=1

m2,n∑
j2

b1,j1b2,j2
#(kr ∧ k∗r , kr ∨ k∗r ] ∩ I1,j1 ∩ I2,j2

|kr − k∗r | ∨Nn/an
= o

(
∆2
ρ,n

maxr |∆ρ,r|

)
(5.1.24)

as n→∞, followed by N →∞, where

Ml,r,ε,n = {1 ≤ j ≤ ml,n : Il,j ∩ (k∗r − ε∆k∗ ,k
∗
r + ε∆k∗) 6= ∅} , ml,r,ε,n = #Ml,r,ε,n, (5.1.25)

a1,n =

2∑
l=1

ml,n

ml,n∑
j=1

brzl,j#I1,j1

 1
rz

+m1,n ∨m2,n

m1,n∑
j1=1

m2,n∑
j2=1

(b1,j1b2,j2)rz#(I1,j1 ∩ I2,j2)

 1
rz

,

(5.1.26)

a2,n =

2∑
l=1

ml,n∑
j=1

bl,j#Il,j1 +

m1,n∑
j1=1

m2,n∑
j2=1

b1,j1b2,j2#(I1,j1 ∩ I2,j2), (5.1.27)

a3,n = max
k1≤k2

2∑
l=1

ml,n∑
j=1

bl,j
#Il,j1 ∩ [k1,k2]√
k2 − k1 + 1

+ max
k1≤k2

m1,n∑
j1=1

m2,n∑
j2=1

b1,j1b2,j2
#(I1,j1 ∩ I2,j2 ∩ [k1,k2])√

k2 − k1 + 1
.

(5.1.28)
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Proof of Theorem 5.1.14. We define

Z̃
(7)
i = Z

(7)
i − ρi = Z̃

(0)
i + Z̃

(0)
i

3∑
l=1

rlin + ρi

3∑
l=1

rlin

and use (K(2)
r ), Assumption (PEE3), and the triangle inequality to obtain the following estimations:

max
1≤k1≤k2≤n

∣∣∣∣∣∣
k2∑
i=k1

Z̃
(0)
i

3∑
l=1

rlin

∣∣∣∣∣∣ = OP (a1,n) , max
1≤k1≤k2≤n

∣∣∣∣∣∣
k2∑
i=k1

ρi

3∑
l=1

rlin

∣∣∣∣∣∣ = OP (a2,n) ,

and

max
1≤k1≤k2≤n

∣∣∣∑k2
i=k1

ρi
∑3

l=1 rlin

∣∣∣
√
k2 − k1 + 1

= OP (a3,n) .

Now, we follow the proof of Theorem 2.1.22, and obtain

Q(7)
n (k)−Q(7)(k∗) =

R+1∑
r=1

kr∑
i=kr−1+1

[
2 (ρi − ρ(kr−1,kr)) Z̃

(7)
i + (ρi − ρ(kr−1,kr))

2
]

+
R+1∑
r=1

[
(k∗r − k∗r−1)

(
Z̃(7)(k∗r−1,k

∗
r)
)2
− (kr − kr−1)

(
Z̃(7)(kr−1,kr)

)2
]
.

If there are r∗ ∈ {1, . . . ,R} and ε > 0 so that |kr∗ − k∗r∗ | ≥ ε∆k∗,n ∨ a1,n,N , then, it is clear that

max
k

∣∣∣∣∣∣
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr)) Z̃
(7)
i

∣∣∣∣∣∣ = OP ( max
1≤i≤R

|∆ρ,i,n|[n1/rz + a1,n + a2,n])

as n→∞. Furthermore, using the estimation of Theorem 2.1.22 we observe that

max
k

(kr − kr−1)
(
Z̃(7)(kr−1,kr)

)2
= OP

(
n1/r+1/rz + a2

1,n + a2
3,n

)
as n→∞, which is a quite rough estimation but reduce the complexity. Additionally, we define the

rate of the right–hand side by OP (b
(7)
n ). Using the (2.1.28) from Theorem 2.1.22, the previous rates,

and (5.1.20) yields that

P

(
min

1<k1<...<kR<n;‖k−k∗‖≥ε∆k∗,n
Q(7)
n (k)−Q(7)

n (k∗) ≤ 0

)
= o(1)

as n→∞. Now, we consider the case where we minimize over each kr which is inside an (ε∆k∗,n)–
neighborhood of k∗r . Then, we get that

Q(7)
n (k)−Q(7)

n (k∗)

≥ c‖k∗ − k‖∆2
ρ

(
1− oP (1)−OP

(
max1≤r≤R |∆r,ρ|(a1,n + a2,n)

∆k∗,n∆2
ρ

)
−OP

(
a2

1,n + a2
3,n

∆k∗,n∆2
ρ

)

− C(R+ 1)
max1≤i≤R |∆ρ,i,n|

∆2
ρ

max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(7)
i |

|kr − k∗r | ∨ (Nn/an)

)

as n→∞, followed by N →∞. Furthermore, we obtain that

max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

|
∑kr∨k∗r

i=kr∧k∗r+1 Z̃
(7)
i |

|kr − k∗r | ∨ (Nn/an)
= OP ((Nn/an)−(rz−1)/rz)
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+

R∑
r=1

2∑
l=1

OP

#Ml,r,ε,n

ml,n∑
j=1

brzl,j (d(k∗r ,Il,j) ∨Nn/an)−(rz−1)

1/rz


+
R∑
r=1

OP

#M1,r,ε,n ∨#M2,r,ε,n

m1,n∑
j1=1

m2,n∑
j2=1

(b1,j1b2,j2)rz

(d(k∗r ,I1,j1 ∩ I2,j2) ∨Nn/an)rz−1

1/rz


+
2∑
l=1

OP

 max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

ml,n∑
j=1

bl,j
#(kr ∧ k∗r , kr ∨ k∗r ] ∩ Il,j
|kr − k∗r | ∨Nn/an


+OP

 max
1≤r≤R

max
1≤|kr−k∗r |≤ε∆k∗

m1,n∑
j1=1

m2,n∑
j2

b1,j1b2,j2
#(kr ∧ k∗r , kr ∨ k∗r ] ∩ I1,j1 ∩ I2,j2

|kr − k∗r | ∨Nn/an

 .

Due to the combination of (2.1.29) and (5.1.21)–(5.1.24), each of the five OP (·)-terms is equal to
oP (1). This finally implies the claim.

Theorem 5.1.15. Under the assumptions of Theorem 5.1.14 let

d(7)
n � β(7)

n ≤
1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,n (5.1.29)

with

d(7)
n = b(7)

n + a1,n + a2,n and b(7)
n = n1/r+1/rz + a2

1,n + a2
3,n, (5.1.30)

where a1,n, a2,n, and a3,n are defined as in Theorem 5.1.14. Then, R̂(7) is a consistent estimate
for the number of change-points R∗.

Proof. Set βn = β
(7)
n . This proof follows by the arguments of the proof of Theorem 2.1.25. Hence,

it is sufficient to show that the sets {R̂(7) < R∗} and {R̂(7) > R∗} are asymptotically empty. The
asymptotic behavior of {R̂(7) < R∗} follows in the same way as that of {R̂ < R∗} in the proof of
Theorem 2.1.25, while here we use the arguments of Theorem 5.1.14 instead of Theorem 2.1.22.

Now, we consider {R̂(7) > R∗} and obtain the lower bounds by using the same arguments as in
the proof of Theorem 2.1.25:

Q(7)
n (k)−Q(7)

n (k∗) =
R+1∑
r=1

kr∑
i=kr−1+1

[
2 (ρi − ρ(kr−1,kr)) Z̃

(7)
i + (ρi − ρ(kr−1,kr))

2
]
−OP (b(7)

n )

≥
R+1∑
r=1

kr∑
i=kr−1+1

(ρi − ρ(kr−1,kr))
2 −OP ( max

1≤i≤R
|∆ρ,i,n|[n(2−rz)/rz + a1,n + a2,n])−OP (b(7)

n ),

which is dominated by βn. This implies the claim.

5.1.3 Long-run Variance Estimation under Unknown Variances

In this sub-subsection, we present some LRV estimates corresponding to the LRVs used in the Theo-
rems 5.1.1, 5.1.4, and 5.1.9.

Constant Variances The following theorem yields a consistent estimate which can be used for the
test statistics presented in Theorem 5.1.1.

Theorem 5.1.16. Let the assumptions of Theorem 2.1.33 and the following assumptions hold true:

1. The parameters σ1 and σ2 fulfill Assumption (PEE1) with dσ,l,i ≡ 0;

2.
σ̂1,nσ̂2,n
σ1,jσ2,j

ρ̃
(5)
j fulfills the same condition as ρ̃n(ψ) in Theorem 2.1.33.
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Then, it holds that

D̂5,n = D +OP (n−(δσ,1∧δσ,2)) +OP (n−(δσ,1∧δσ,2) ∨ 1)R̂(0)
n ,

where R̂
(0)
n is defined as in Theorem 2.1.33 and

D̂5,n =
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(5)
i − ρ̃

(5)
i )(Z

(5)
j − ρ̃

(5)
j ).

Proof. Firstly, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(5)
i − ρ̃

(5)
i )(Z

(5)
j − ρ̃

(5)
j )

=
σ1σ2σ1σ2

σ̂2
1,nσ̂

2
2,n

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(0)
i −

σ̂1,nσ̂2,n

σ1σ2
ρ̃

(5)
i )(Z

(0)
j −

σ̂1,nσ̂2,n

σ1σ2
ρ̃

(5)
j )

= D̂0,n

(
1 +OP (n−(δσ,1∧δσ,2))

)
since |σ1,iσ2,iσ1,jσ2,j

σ̂2
1,nσ̂

2
2,n

− 1| = OP (n−(δσ,1∧δσ,2)).

Lemma 5.1.17. If for each W1n,W2,n ∈ {Z(0)
n,σ̂

2
1,n,σ̂

2
2,n} there exists a σ ∈ R so that

nCov(W1,n,W2,n)→ σ,

it holds that there exists a D ≥ 0 such that

Var

[
1√
n

n∑
i=1

[
(Z

(0)
i − ρi)−

√
n(σ̂2

1,n − σ2
1)

ρi
2σ2

1

−
√
n(σ̂2

2,n − σ2
2)

ρi
2σ2

2

]]
→ D. (5.1.31)

Proof. Using the bilinear property of the covariance we get the claim.

Now, we present a LRV estimate which can be used in the setting of Theorem 5.1.4. To this goal,
we consider the special type of variance estimates:

σ̂2
[n·] =

1

[·n]

[n·]∑
i=1

(Zi − IE [Zi])
2

which yields the following FCLT in Theorem 5.1.4

1√
n

[n·]∑
i=1

(
Z

(0)
i − ρi − [(Xi − µ1,i)

2 − σ2
1]
ρi

2σ2
1

− [(Yi − µ2,i)
2 − σ2

2]
ρi

2σ2
2

)
D[0,1]−→ D

1/2
(6) W (·). (5.1.32)

This provides a test statistic which is similar to the one of Wied et al. (2012), presented in
Subsection 1.3. Here we use the exact mean instead of the sequence of sample means. However, with
our approach we get another LRV estimate. In particular, the parameters σ2

1 and σ2
2 in (5.1.32)

can be estimated in many different ways in which the sample variance is the natural estimate.

Theorem 5.1.18. Let the parameters σ2
1 and σ2

2 fulfill Assumption (PEE1) with δl,i ≡ 0. Addi-
tionally, let the following conditions hold true:

1. f is a kernel with a bandwidth qn →∞;

2. the sequence {Z(0)
n − ρn} fulfills (K(1)

r ) for rz > 1;

3. the sequences {ε21,n − 1} and {ε21,n − 1} fulfill (K(1)
r ) for rx2 , ry2 > 1;
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4. set

{(W1,n,W2,n,W3,n)} =
{

(Z(0)
n − ρn,ρn/2− (Xn − µ1,n)2ρn/(2σ

2
1),

ρn/2− (Yn − µ2,n)2ρn/(2σ
2
2))
}

and let for each j1,j2 ∈ {1, 2, 3} hold true that supn1,n2∈N IE [|Wj1,n1Wj2,n2 |] < ∞ and that
there exist constants Dj1,j2 ∈ R so that

n−1
n∑
i=1

n∑
j=1

Cov(Wj1,i,Wj2,j)→ Dj1,j2 (5.1.33)

and

D̂j1,j2 = n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Wj1,iWj2,j

P−→ Dj1,j2 (5.1.34)

with D =
∑3

i,j=1Di,j > 0;

5. the estimate ρ̂i = ρ̂n(i) fulfills the 4th condition of Theorem 2.1.33.

Then, it holds with

D̂0 =

3∑
i,j=1

D̂i,j ,

Z̃
(6)
i =

(
Z

(5)
i − ρ̂n −

(Xi − µ1,i)
2 − σ̂2

1,n

2σ̂2
1,n

ρ̂n −
(Yi − µ2,i)

2 − σ̂2
2,n

2σ̂2
2,n

ρ̂n

)
,

D̂6,n = n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Z̃

(6)
i Z̃

(6)
j

that D̂6,n = D̂0 + R̂
(6)
n with

R̂(6)
n = OP (qnn

−(δσ,1∧δσ,2))

+



OP (qnn
−δ1−(δσ,1∧δσ,2)) +OP (qnn

−2δ1)

+OP (n−δ1) +OP (qnn
−1−(δσ,1∧δσ,2∧δ1)+1/(rz∧rx2∧ry2 )),

(A),

OP (max1≤j1,j2≤m [(#Cj1 ∨#Cj2) ∧ qn] (#Cj1 ∧#Cj2)n−1−δj1−δj2 )
+OP (qn max1≤j≤m #Cjn

−1−δj )

+OP (qn max1≤j≤m n
−1−(δjδσ,1∧δσ,2)+1/(rz∧rx2∧ry2 )),

(E),

plus oP (qnn
−1/2), OP (qnn

−1/2), or OP (qn) in cases of (B), (C), or (D) and in cases of (F), (G),
or (H), respectively.

Proof. Firstly, we obtain that(
Z

(5)
i − ρ̂i −

(Xi − µ1,i)
2 − σ̂2

1,n

2σ̂2
1,n

ρ̂i −
(Yi − µ2,i)

2 − σ̂2
2,n

2σ̂2
2,n

ρ̂i

)
= (Z

(0)
i − ρi)−

1

2
ρi(ε

2
1,i − 1)− 1

2
ρi(ε

2
2,i − 1)−Ri = W̃i −Ri

with

Ri =

(
1− σ1σ2

σ̂1,nσ̂2,n

)
(Z

(0)
i − ρi) +

(
1

2
− σ2

1

2σ̂2
1,n

)
ρi(ε

2
1,i − 1)−

(
1

2
− σ2

2

2σ̂2
2,n

)
ρi(ε

2
2,i − 1)

+
σ2

1

2σ̂2
1,n

(ρ̂i − ρi)(ε21,i − 1) +
σ2

2

2σ̂2
2,n

(ρ̂i − ρi)(ε22,i − 1)

+
σ2

1

2σ̂2
1,n

(ρ̂i − ρi) +
σ2

2

2σ̂2
2,n

(ρ̂i − ρi) + ρi

(
σ2

1

2σ̂2
1,n

+
σ2

2

2σ̂2
2,n

− 1

)
.

102



A POSTERIORI ANALYSIS UNDER A GENERAL DEPENDENCY FRAMEWORK AND GENERAL
VARIANCE ESTIMATES

Thus, we get

D̂6,n = D̂0,n + n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(RiRj −RiW̃j − W̃iRj).

Furthermore, we obtain by Slutsky’s Theorem that it is sufficient to consider the second summand.
Using Assumption (PEE1) and (5.1.34) we get that

n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
RiRj = OP (qnn

−2(δσ,1∧δσ,2))

+


OP (qnn

−δ1−(δσ,1∧δσ,2)) +OP (qnn
−2δ1), under (A),

OP (
∑m

j1=1

∑m
j2=1 [(#Cj1 ∨#Cj2) ∧ qn] (#Cj1 ∧#Cj2)n−1−δj1−δj2 )

+OP (qn
∑m

j=1 #Cjn
−1−δj−(δσ,1∧δσ,2)),

under (E),

and

n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
W̃iRj = OP (n−(δσ,1∧δσ,2))

+


OP (n−δ1) +OP (qnn

−1−(δσ,1∧δσ,2∧δ1)+1/(rz∧rx2∧ry2 )), (A),

OP (qn
∑m

j=1 #Cjn
−1−δj ) +OP (qn max1≤j≤m n

−1−δj+1/(rz∧rx2∧ry2 ))

+OP (qnn
−1−(δσ,1∧δσ,2)+1/(rz∧rx2∧ry2 )),

(E),

where we use the triangle inequality, Markov’s inequality, and the Kolmogorov-type inequalities. In
the cases of (B), (C), and (D) we add the rates oP (qnn

−1/2), OP (qnn
−1/2), and OP (qn), respectively.

The same rates are also added in the cases of (F) , (G), and (H). Thus, if we combine all above rates
and use the finiteness of m, then, the claim finally follows.

Remark 5.1.19. It is possible to use different bandwidths qn,j1,j2 instead of one single bandwidth
qn for all j1, j2 = 1, 2, 3 in (5.1.33).

Non-constant Variances In this paragraph, we present a consistent LRV estimate for D(8) (cf.
Theorem 5.1.9). Therefore, we specify the test statistic and choose the following type of variance
estimate:

σ̂2
l,i,[n·] =

1

#(Îl,j ∩ [1,[n·]])

∑
i∈(Îl,j∩[1,[n·]])

(Zl,i − µl,i)2 ∀i ∈ Îl,j , (5.1.35)

where {(Z1,n,Z2,n)} = {(Xn,Yn)} and Îl,j is an estimate for the exact change set, i.e., where
the variances are non-constant. To be precise, this estimate yields the following FCLT under the
assumptions of Theorem 5.1.9:

1√
n

[n·]∑
i=1

(
Z

(0)
i − ρi − [(Xi − µ1,i)

2 − σ2
1,i]

ρi
2σ2

1,i

− [(Yi − µ2,i)
2 − σ2

2,i]
ρi

2σ2
2,i

)
D[0,1]−→ D1/2W (·),

(5.1.36)

where D > 0. Again, to estimate the LRV, we use general variance estimates for the remaining
parameters.

Theorem 5.1.20. Let the parameters σ2
1 and σ2

2 fulfill Assumption (PEE3) with dσ,l,i ≡ 0 and
let the following conditions hold true:

1. f is an absolutely integrable kernel with a bandwidth qn →∞;
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2. the sequence {Z(0)
n − ρn} fulfills (K(1)

r ) and (K(2)
r ) for some rz > 1;

3. the sequences {ε21,n − 1} and {ε22,n − 1} fulfill (K(2)
r ) for rx2 , ry2 > 1;

4. set

{(W1,n,W2,n,W3,n)} = {(Z(0)
n −ρn,ρn/2−(Xn−µ1,n)2ρn/(2σ

2
1,n),ρn/2−(Yn−µ2,n)2ρn/(2σ

2
2,n))}

and let for each j1,j2 ∈ {1, 2, 3} hold true that supn1,n2∈N IE [|Wj1,n1Wj2,n2 |] < ∞ and that
there exist constants Dj1,j2 ∈ R so that

n−1
n∑
i=1

n∑
j=1

Cov(Wj1,i,Wj2,j)→ Dj1,j2 and (5.1.37)

D̂j1,j2 = n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Wj1,iWj2,j

P−→ Dj1,j2 (5.1.38)

as n→∞, where D =
∑3

i,j=1Di,j > 0 and limn→∞ ρn = ρ0 ∈ [−1,1];

5. the estimate ρ̂i = ρ̂n(i) fulfills the 4th condition of Theorem 2.1.33.

Then, it holds with

D̂0 =
3∑

i,j=1

D̂i,j , D̂8 = n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
Z̃

(8)
i Z̃

(8)
j ,

Z̃
(8)
i =

(
Z

(7)
i − ρ̂n −

(Xi − µ1,i)
2 − σ̂2

1,i,n

2σ̂2
1,i,n

ρ̂n −
(Yi − µ2,i)

2 − σ̂2
2,i,n

2σ̂2
2,i,n

ρ̂n

)
,

that D̂8,n = D̂0,n + R̂
(8)
n with

R̂(8)
n = OP

(
n−1

mσ,1∑
i1,j1=1

mσ,1∑
i2,j2=1

[(#(Iσ,1,i1 ∩ Iσ,2,i2) ∨#(Iσ,1,j1 ∩ Iσ,2,j2)) ∧ qn]

· (#(Iσ,1,i1 ∩ Iσ,2,i2) ∧#(Iσ,1,j1 ∩ Iσ,2,j2)) (bσ,1,i1 ∨ bσ,2,i2)(bσ,1,j1 ∨ bσ,2,j2)

)

+OP

(
n−1qn

mσ,1∑
i1=1

mσ,1∑
i2=1

#(Iσ,1,i1 ∩ Iσ,2,i2)(bσ,1,i1 ∨ bσ,2,i2)

)

+



OP (qnn
−2δ1) +OP (qnn

−1−δ1+1/(rz∧rx2∧ry2 )), (A),

OP (max1≤j1,j2≤m [(#Cj1 ∨#Cj2) ∧ qn] (#Cj1 ∧#Cj2)n−1−δj1−δj2 )

+OP

(
n−1

∑m
j=1

∑mσ,1
i1=1

∑mσ,1
i2=1 [(#(Iσ,1,i1 ∩ Iσ,2,i2) ∨#Cj) ∧ qn]

· (#(Iσ,1,i1 ∩ Iσ,2,i2) ∧#Cj) (bσ,1,i1 ∨ bσ,1,i2)n−δj
)

+OP (qn
∑m

j=1 #Cjn
−1−δj ),

(E),

plus oP (qnn
−1/2), OP (qnn

−1/2), or OP (qn) in cases of (B), (C), or (D) and in cases of (F), (G),
or (H), respectively.

Proof. Firstly, we obtain that(
Z

(7)
i − ρ̂i −

(Xi − µ1,i)
2 − σ̂2

1,i,n

2σ̂2
1,i,n

ρ̂i −
(Yi − µ2,i)

2 − σ̂2
2,i,n

2σ̂2
2,i,n

ρ̂i

)
= (Z

(0)
i − ρi)−

1

2
ρi(ε

2
1,i − 1)− 1

2
ρi(ε

2
2,i − 1)−Ri = W̃i −Ri
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with

Ri =(1− σ1,iσ2,i

σ̂1,i,nσ̂2,i,n
)(Z

(0)
i − ρi) + (

1

2
−

σ2
1,i

2σ̂2
1,i,n

)ρi(ε
2
1,i − 1)− (

1

2
−

σ2
2,i

2σ̂2
2,i,n

)ρi(ε
2
2,i − 1)

+
σ2

1,i

2σ̂2
1,i,n

(ρ̂i − ρi)(ε21,i − 1) +
σ2

2,i

2σ̂2
2,i,n

(ρ̂i − ρi)(ε22,i − 1)

+
σ2

1,i

2σ̂2
1,i,n

(ρ̂i − ρi) +
σ2

2,i

2σ̂2
2,i,n

(ρ̂i − ρi) + ρi

(
σ2

1,i

2σ̂2
1,n

+
σ2

2,i

2σ̂2
2,i,n

− 1

)
.

Thus, we get

D̂8,n = D̂0,n + n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(RiRj −RiW̃j − W̃iRj).

Furthermore, we obtain with Slutsky’s Theorem that it is sufficient to consider the second summand.
Using Assumption (PEE3), we get that

n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
RiRj

= OP

(
n−1

mσ,1∑
i1,j1=1

mσ,1∑
i2,j2=1

[(#(Iσ,1,i1 ∩ Iσ,2,i2) ∨#(Iσ,1,j1 ∩ Iσ,2,j2)) ∧ qn]

· (#(Iσ,1,i1 ∩ Iσ,2,i2) ∧#(Iσ,1,j1 ∩ Iσ,2,j2)) (bσ,1,i1 ∨ bσ,2,i2)(bσ,1,j1 ∨ bσ,2,j2)

)

+



OP
(
qnn

−1−δ1∑mσ,1
i1=1

∑mσ,1
i2=1 #(Iσ,1,i1 ∩ Iσ,2,i2)(bσ,1,i1 ∨ bσ,1,i2)

)
+OP (qnn

−2δ1),
(A),

OP (
∑m

j1=1

∑m
j2=1 [(#Cj1 ∨#Cj2) ∧ qn] (#Cj1 ∧#Cj2)n−1−δj1−δj2 )

+OP

(
n−1

∑m
j=1

∑mσ,1
i1=1

∑mσ,1
i2=1 [(#(Iσ,1,i1 ∩ Iσ,2,i2) ∨#Cj) ∧ qn]

· (#(Iσ,1,i1 ∩ Iσ,2,i2) ∧#Cj) (bσ,1,i1 ∨ bσ,1,i2)n−δj
)
,

(E),

and

n−1
n∑
i=1

n∑
j=1

f

(
i− j
qn

)
W̃iRj

= OP

(
n−1qn

mσ,1∑
i1=1

mσ,1∑
i2=1

#(Iσ,1,i1 ∩ Iσ,2,i2)(bσ,1,i1 ∨ bσ,2,i2)

)

+

{
OP (qnn

−1−δ1+1/(rz∧rx2∧ry2 )), under (A),
OP (qn

∑m
j=1 #Cjn

−1−δj ), under (E),

where we use the triangle inequality, Markov’s inequality, and the Kolmogorov-type inequalities. In
the cases of (B) , (C), and (D) we add the rates oP (qnn

−1/2), OP (qnn
−1/2), and OP (qn), respectively.

The same rates are also added in the cases of (F) , (G), and (H). Hence, the claim follows by combining
the above rates.
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5.2 Sequential Analysis under a General Dependency Framework and General
Variance Estimates

In this subsection, we consider the asymptotic behavior of the stopping time, where the variances are
unknown. We define for k = 1, . . .

ρ̂nψ,k,1 =
1

n

n∑
i=1

Z
(ψ)
i,k,n and ρ̂kψ,k,n+1 =

1

k

n+k∑
i=n+1

Z
(ψ)
i,k,n, (5.2.1)

where ψ = 5, . . . is a design index for different variance estimate types and

Z
(ψ)
i,k,n =

(Xi − µ1,i)(Yi − µ2,i)

σ̂
(ψ)
1,i,k,nσ̂

(ψ)
2,i,k,n

.

We distinguish between the variance estimate types as we did for the mean estimates in Subsection
4.2. One estimate type uses the whole observation, i.e., from 1 to n+ k, to estimate the unknown
variances. The other estimate, on the one hand, uses the observations from 1 to n and, on the
other hand, the observations from n+ 1 until n+ k.

5.2.1 Closed-end Procedure under Unknown Variances

Nearly Constant Variances In the following theorem we sequentially use the whole sample to
estimate the variances. Since the proofs for the results of the weighted and unweighted testing pro-
cedures are similar, we just present the convergence of the weighted stopping times. In addition,
it is obvious that we can replace the assumptions of Theorem 2.2.3 by the slightly weaker ones of
Theorem 2.2.1 in order to get the result for the unweighted stopping times.

Theorem 5.2.1. Let the parameters σ1 and σ2 fulfill Assumption (PEE5) with dl,n ≡ 0 and

δσ,1, δσ,2 > 0. Then, Theorem 2.2.3 holds true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,5,0,γ.

Proof. Firstly, we obtain that maxl,k σ̂
−1
l,k,n = OP (1) holds true since δσ,1 ∧ δσ,2 > 0. Moreover, we

observe that

B̃5,0,γ
n ([n·]) = B̃0,0,γ

n ([n·]) +

(
σ1σ2

σ̂1,[n·],nσ̂2,[n·],n
− 1

)
B̃0,0,γ
n ([n·]). (5.2.2)

Due to Assumption (PEE5) and maxl,k σ̂
−1
l,k,n = OP (1), it follows that

max
1≤k≤[nm]

∣∣∣∣ σ1σ2

σ̂1,k,nσ̂2,k,n
− 1

∣∣∣∣ = OP (n−(δσ,1∧δσ,2)).

Hence, it holds that

B̃5,0,γ
n ([n·]) = (1 +OP (n−(δσ,1∧δσ,2)))B̃0,0,γ

n ([n·]),

which implies that the convergences in Theorem 2.2.3 hold true.

Remark 5.2.2. Like in Remark 5.1.3, it is still possible that the test statistic converges towards
a Gaussian process if there are non-local structural breaks in the variances. Note that the covari-
ance structure now depends on these structural breaks. Let us assume, for example, that σ2

1,i =

gσ,1(i/n) and σ2
2,i = gσ,1(i/n) with bounded, positive, and piecewise continuous functions gσ,l,

that σ̂2
1,i ≡ (X − µ1)2

n and σ̂2
2,i ≡ (Y − µ2)2

n, and that the Assumption (IID) is fulfilled with
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IE
[
(ε̃1,iε̃2,i − ρ0)2

]
≡ 1. Then, under H

(2)
0 we obtain that

wγ

(
[n·]
n

)
[n·]√
n

(ρ̂
n+[n·]
5,n,n+1 − ρ̂5,n,1)

D[0,m]−→ wγ(·)
W (1 + ·)

∫ 1+·
1 gσ,1(x)gσ,2(x)dx− (·+ 1)W (1)

∫ 1
0 gσ,1(x)gσ,2(x)dx√∫ 1

0 gσ,1(x)dx
∫ 1

0 gσ,2(x)dx

+ ρ0wγ(·)
∫ 1+·

1 gσ,1(x)gσ,2(x)dx− (·+ 1)
∫ 1

0 gσ,1(x)gσ,2(x)dx√∫ 1
0 gσ,1(x)dx

∫ 1
0 gσ,2(x)dx

,

which follows from an application from Davidson (1994, Corollary 29.11).

Now, we consider the stopping times where the variances are estimated piecewise from 1 to n
and from n+ 1 until n+ k, k = 1, 2, . . ..

Theorem 5.2.3. Let the FCLT (as displayed in (5.1.7)) be fulfilled on D[0,1 +m]. Additionally, let
the variance estimates hold for all m1,m2 ∈ N, m2 > m1

m2σ̂
2,m2

l,1 −m1σ̂
2,m1

l,1 = (m2 −m1)σ̂2,m2

l,m1+1 and

∥∥∥∥ [n·] + n√
n

(σ̂
2,n+[n·]
l,1 − σ2

l )

∥∥∥∥
[0,m]

= OP (1).

(5.2.3)

Then, Theorem 2.2.1 holds true if we replace τ
(c)
n,ι,0,0 by τ

(c)
n,ι,6,0.

Proof. Firstly, we obtain that

B̃6,0,0
n ([n·]) =B̃0,0,γ

n ([n·]) +

(
σ1σ2

σ̂
n+[n·]
1,n+1 σ̂

n+[n·]
2,n+1

− 1

)
D̂−1/2 n

n+ [n·]
1√
n

n+[n·]∑
i=n+1

(Z
(0)
i − ρi)

+

(
σ1σ2

σ̂n1,1σ̂
n
2,1

− 1

)
D̂−1/2 n

n+ [n·]
[n·]
n

1√
n

n∑
i=1

(Z
(0)
i − ρi)

+ D̂−1/2 n

n+ [n·]
[n·]√
n

((
σ1σ2

σ̂
n+[n·]
1,n+1 σ̂

n+[n·]
2,n+1

− 1

)
ρ
n+[n·]
n+1 −

(
σ1σ2

σ̂n1,1σ̂
n
2,1

− 1

)
ρn1

)
.

On the right–hand side we obtain that the first and second summand are equal to OP (D̂−1/2n−1/2)
due to (5.2.3). Hence, it remains to consider the last term, where the last bracket can be rewritten in
the following way:

(
σ2

1 − σ̂
2,n+k
1,n+1

σ̂n+k
1,n+1(σ1 + σ̂2,n+k

1,n+1 )
ρn+k
n+1 −

σ2
1 − σ̂

2,n
1,1

σ̂n1,1(σ1 + σ̂2,n
1,1 )

ρn1

)

+

(
σ2

2 − σ̂
2,n+k
2,n+1

σ̂n+k
2,n+1(σ2 + σ̂2,n+k

2,n+1 )
ρn+k
n+1 −

σ2
2 − σ̂

2,n
2,1

σ̂n2,1(σ2 + σ̂2,n
2,1 )

ρn1

)

+

(
σ2

1 − σ̂
2,n+k
1,n+1

σ̂n+k
1,n+1(σ1 + σ̂2,n+k

1,n+1 )

σ2
2 − σ̂

2,n+k
2,n+1

σ̂n+k
2,n+1(σ2 + σ̂2,n+k

2,n+1 )
ρn+k
n+1 −

σ2
1 − σ̂

2,n
1,1

σ̂n1,1(σ1 + σ̂2,n
1,1 )

σ2
2 − σ̂

2,n
2,1

σ̂n2,1(σ2 + σ̂2,n
2,1 )

)ρn1

)
.

Using the same arguments as before and

(σ2
l − σ̂

2,n+k
l,n+1 ) =

1

k

(
(n+ k)(σ̂2,n+k

l,1 − σ2
l )− n(σ̂2,n

l,1 − σ
2
l )
)

we obtain that

B̃6,0,0
n ([n·]) = B̃0,0,γ

n ([n·]) + D̂−1/2 n

n+ [n·]
[n·]√
n

(
(σ2

1 − σ̂
2,n+[n·]
1,n+1 )

ρ
n+[n·]
n+1

2σ2
1

+ (σ2
2 − σ̂

2,n+[n·]
2,n+1 )

ρ
n+[n·]
n+1

2σ2
2

107



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER KNOWN MEANS AND UNKNOWN
VARIANCES

− (σ2
1 − σ̂

2,n
1,1 )

ρn1
2σ2

1

+ (σ2
2 − σ̂

2,n
2,1 )

ρn1
2σ2

2

)
+ oP (D̂−1/2),

where ρn1 → ρ0 and even ρ
n+[n·]
n+1 → ρ0 uniformly under H0 and HLA. In contrast to this, under

HA, ρ
n+[n·]
n+1 is just uniformly bounded. Hence, we get

B̃6,0,0
n ([n·]) = B̃0,0,γ

n ([n·])

+ D̂−1/2 n

n+ [n·]
[n·]√
n

(
(σ̂2,n

1,1 − σ̂
2,n+[n·]
1,n+1 )

ρ0

2σ2
1

+ (σ̂2,n
2,1 − σ̂

2,n+[n·]
2,n+1 )

ρ0

2σ2
1

)
· (1 + o(1)) + oP (D̂

−1/2
0 ),

under H0 and HLA, whereas o(1) is replaced by O(1) if HA is assumed instead. Since

[n·]√
n

(σ̂2,n
l,1 − σ̂

2,n+[n·]
l,n+1 ) =

[n·] + n√
n

(σ2
l − σ̂

2,n+[n·]
l,1 )−

(
1 +

[n·]
n

)
n√
n

(σ2
l − σ̂

2,n
l,1 )

by using the assumed property of the variance estimates, we obtain that

B̃6,0,0
n ([·]) =D̂−1/2f

(
1√
n

[n·]∑
i=1

(Z
(0)
i − ρi)−

[n·]√
n

(σ̂2
1,[n·] − σ

2
1)
ρ0

2σ2
1

− [n·]√
n

(σ̂2
2,[n·] − σ

2
2)
ρ0

2σ2
2

,
[n·]
n
,

n

n+ [n·]

)
,

where f : D[0,1+m]3 → D[0,m] with f(x,y,z) = z(·)(x(1+·)−x(1)−y(·)x(1)). Since f is continuous,
the first and second convergences of Theorem 2.2.1 hold true due the CMT. The third convergence
towards B̃0,0,γ

n ([n·]) analogously follows since |B̃0,0,γ
n ([n·])− B̃6,0,γ

n ([n·])| = OP (D̂−1/2).

Corollary 5.2.4. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.3 let additionally∥∥∥∥∥
(

[n·]
n

)−γ [n·]√
n

(σ̂
2,n+[n·]
l,n − σ2

l )

∥∥∥∥∥
[0,ε]

= oP (1) (5.2.4)

as n→∞, followed by ε→ 0. Then, Theorem 2.2.3 holds true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,6,0,γ.

Proof. We just have to multiply each term by the weighting function wγ([n·]/n) and additionally
use (5.2.4).

Non-constant Variances

Theorem 5.2.5. Let the parameters σ1 and σ2 fulfill Assumption (PEE7) with dl,n ≡ 0 and let

the convergence in (5.1.8) be satisfied on D[0,1 +m]. Additionally, let {Z(0)
n − ρn} fulfill (K(2)

r ) for
rz > 1 and the sequences bl,j,n = bσl,j,n (l = 1, 2, j = 1, . . . ,ml,n, n = 1, . . .) fulfillm1,n∑

j1=1

m2,n∑
j2=1

(b1,j1 ∨ b2,j2)rz#(I1,j1 ∩ I2,j2)

1/rz

= o((m1,n ∨m2,n)−1n1/2), (5.2.5)

m1,n∑
j1=1

m2,n∑
j2=1

(b1, 2,j1 ∨ b2,2,j2)rz#(I1, 2,j1 ∩ I2,2,j2)

1/rz

= o((m1,n ∨m2,n)−1n1/2), (5.2.6)

m1,n∑
i=1

m2,n∑
j=1

#(Iσ,1,i ∩ Iσ,2,j)bσ,1,ibσ,2,j = o(n1/2), (5.2.7)

m1,n∑
i=1

m2,n∑
j=1

#(Iσ,1, 2,i ∩ Iσ,2,2,j)b2,σ,1, 2,ibσ,2,2,j = o(n1/2). (5.2.8)

Then, Theorem 2.2.1 holds true if we replace τ
(c)
n,ι,0,0 by τ

(c)
n,ι,7,0.
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Proof. Firstly, we obtain that

B̃7,0,0
n (k) = B̃0,0,γ

n (k) + D̂−1/2 n

n+ k

1√
n

n+k∑
i=n+1

(
σ1,iσ2,i

σ̂n+k
1,i,n+1σ̂

n+k
2,i,n+1

− 1

)
(Z

(0)
i − ρi)

+ D̂−1/2 n

n+ k

k

n

1√
n

n∑
i=1

(
σ1,iσ2,i

σ̂n1,i,1σ̂
n
2,i,1

− 1

)
(Z

(0)
i − ρi)

+ D̂−1/2 n

n+ k

1√
n

(
n+k∑
i=n+1

(
σ1,iσ2,i

σ̂n+k
1,i,n+1σ̂

n+k
2,i,n+1

− 1

)
ρi −

k

n

n∑
i=1

(
σ1,iσ2,i

σ̂n1,i,1σ̂
n
2,i,1

− 1

)
ρi

)
.

Using Assumption (PEE7) and the Kolmogorov-type inequality we get that the third summand is
equal to

OP

(m1,n ∨m2,n)n−1/2

m1,n∑
j1=1

m2,n∑
j2=1

(b1,j1 ∨ b2,j2)rz#(Iσ,1,j1 ∩ Iσ,2,j2)

1/rz
+ oP (1).

Analogously, we get for the second summand the preceding rate plus

OP

(m1,n ∨m2,n)n−1/2

m1,n∑
j1=1

m2,n∑
j2=1

(b1, 2,j1 ∨ b2,2,j2)rz#(Iσ,1, 2,j1 ∩ Iσ,2,2,j2)

1/rz
+ oP (1).

Using that ρi is constant, constant plus O(n−1/2), or constant on at most three subsets of [1,n]
under H0, HLA, or HA, we get with Assumption (PEE7) that∥∥∥∥∥∥

n+[n·]∑
i=n+1

σ2
1,i − σ̂

2,n+[n·]
1,i,n+1

σ̂
n+[n·]
1,i,n+1(σ1,i + σ̂

2,n+[n·]
1,i,n+1 )

σ2
2,i − σ̂

2,n+[n·]
2,i,n+1

σ̂
n+[n·]
2,i,n+1(σ2,i + σ̂

2,n+[n·]
2,i,n+1 )

ρi

∥∥∥∥∥∥
[0,m]

= OP

m1,n∑
i=1

m2,n∑
j=1

#(Iσ,1, 2,i ∩ Iσ,2,2,j)bσ,1, 2,ibσ,2,2,j


and ∣∣∣∣∣

n∑
i=1

σ2
1,i − σ̂

2,n
1,i,1

σ̂n1,i,1(σ1,i + σ̂2,n
1,i,1)

σ2
2,i − σ̂

2,n
2,i,1

σ̂n2,i,1(σ2,i + σ̂2,n
2,i,1)

)ρi

∣∣∣∣∣ = OP

m1,n∑
i=1

m2,n∑
j=1

#(Iσ,1,i ∩ Iσ,2,j)bσ,1,ibσ,2,j

 .

Furthermore, we obtain that

B̃7,0,0
n ([n·]) = B̃0,0,γ

n ([n·]) + D̂−1/2 n

n+ [n·]
1√
n

[
n+[n·]∑
i=1+n

ρi

(
σ2

1,i − σ̂
2,n+[n·]
1,i,n+1

2σ2
1,i

+
σ2

2,i − σ̂
2,n+[n·]
2,i,n+1

2σ2
2,i

)

− [n·]
n

n∑
i=1

ρi

(
σ2

1,i − σ̂
2,n
1,i,1

2σ2
1,i

+
σ2

2,i − σ̂
2,n
2,i,1

2σ2
2,i

)]
+ oP (D̂−1/2),

where under H
(c)
LA and H

(c)
A the summand B̃0,0,γ

n ([n·]) is the dominating one and we have to add

OP (D̂−1/2). Finally, we obtain that the right–hand side is a continuous mapping of the modified
display (5.1.8). Hence, the claim follows.

Corollary 5.2.6. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.5 let additionally∥∥∥∥∥∥
(

[n·]
n

)γ n+[n·]∑
i=n+1

(σ̂
2,n+[n·]
l,i,,n − σ2

l,i)

∥∥∥∥∥∥
[0,ε]

= oP (
√
n) (5.2.9)

as n→∞, followed by ε→ 0. Then, Theorem 2.2.3 holds true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,7,0,γ.
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Theorem 5.2.7. Under the assumption of Theorem 5.2.5 let Assumption (PEE7) be replaced by
Assumption (PEE8). Additionally, let the rates as displayed in (5.2.5) and (5.2.7) hold true. Then,

Theorem 2.2.1 holds true if we replace τ
(c)
n,ι,0,0 by τ

(c)
n,ι,8,0.

Proof. The proof follows in a similar way as the proof of Theorem 5.2.7.

Corollary 5.2.8. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.7 let additionally∥∥∥∥∥∥
(

[n·]
n

)γ n+[·]∑
i=n+1

(σ̂2
l,i,[n·],n − σ

2
l,i)

∥∥∥∥∥∥
[0,ε]

= oP (
√
n) (5.2.10)

as n→∞, followed by ε→ 0. Then, Theorem 2.2.3 holds true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,8,0,γ.

5.2.2 Open-end Procedure under Unknown Variances

Constant Variances

Theorem 5.2.9. Let the parameters σ1 and σ2 fulfill Assumption (PEE5) with δσ,1, δσ,2 > 0 and

dl,i ≡ 0. Then, Theorem 2.2.5 holds true if we replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,5,0,γ.

Proof. The proof follows in a similar way to the proof of Theorem 5.2.1 where we use Theorem 2.2.5
instead of Theorem 2.2.3.

Theorem 5.2.10. Under the assumptions of Corollary 5.2.4 let for l = 1, 2 and some λ′ > 0

max
nm≤k

|σ2
l − σ̂

2,n+k
l,1 | = OP (

√
nm−λ

′
)

as n→∞, followed by m→∞ be given. Then, if we replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,6,0,γ, Theorem 2.2.5

holds true.

Proof. Following the proof of Theorem 2.2.5 we use Theorem 5.2.3 instead of Theorem 2.2.3 to obtain

the claim under Assumption H
(o)
A . Under H

(o)
0 we get that

P (τ
(o)
n,ι,6,γ <∞) =P

(
sup
z∈[0,1]

uι((·)−γW (·))(z) ≥ cα

)
+ o(1)

+ P

(
max

1≤k≤mn
uι(B̃

6,0,γ
n )(k) < cα, max

k>nm
uι(B̃

6,0,γ
n )(k) ≥ cα

)
.

Under Assumption H
(o)
LA we just have to add (1− ·)

∫ 1/(1−·)
1 gρ(x)dx to (·)−γW (·) in the first line.

Furthermore, with the same arguments used in the proof of Theorem 2.2.5 combined with the above
rate assumption we obtain that the last row is equal to

P

(
sup
x>m

uι

(
wγG1[0,m](·)− [wγ(·) ·

·+ 1
W (1) + δNm−λ]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγG)(x) ≥ ε
)

+ o(1)

as n→∞, followed by m→∞, N →∞, and ε→ 0, where G(·) = 1
1+· (W (1 + ·)− (1 + ·)W (1)),

δ = sign(W (1)), and λ ∈ (0,λ′ ∧ 1
2 ].
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Non-constant Variances

Theorem 5.2.11. Under the assumptions of Corollary 5.2.6 let additionally hold that

m1,n∑
j1=1

m2,n∑
j2=1

∞∑
i=0

(b2,σ,1,j1 ∨ b2,σ,2,j2)rz
#(I2,σ,1,j1 ∩ I2,σ,2,j2 ∩ [1,n+ nm2i+1])

(2rz)i

= o

(
mrznrz/2

(m1,n ∨m2,n)rz

)
,

(5.2.11)

m1,n∑
j1=1

m1,n∑
j2=1

b2,σ,1,j1b2,σ,2,j2 max
k≥mn

#I2,σ,1,j1 ∩ I2,σ,2,j2 ∩ [n,n+ k]

k
= o(1), (5.2.12)

max
nm≤k

1

n+ k

∣∣∣∣∣
n+k∑
i=n+1

(σ2
l,i − σ̂

2,n+k
l,i,n+1)/σ2

l,i

∣∣∣∣∣ = oP (
√
n) (5.2.13)

as n→∞, followed by m→∞. Then, Theorem 2.2.5 holds true if we replace τ
(o)
n,ι,0,0,γ by τ

(o)
n,ι,7,0,γ.

Proof. Combining the arguments of the proofs of Theorem 5.2.10, Theorem 5.2.5, Theorem 4.2.11 and
the assumed rates (5.2.11), (5.2.12) implies

max
nm≤k

n

n+ k

1√
n

∣∣∣∣∣
n+k∑
i=n+1

(
σ1,iσ2,i

σ̂n+k
1,i,n+1σ̂

n+k
2,i,n+1

− 1

)
(Z

(0)
i − ρi)

∣∣∣∣∣ = oP (1)

and

max
nm≤k

n

n+ k

1√
n

∣∣∣∣∣
n+k∑
i=n+1

σ2
1,i − σ̂

2,n+k
1,i,n+1

σ̂n+k
1,i,n+1(σ1,i + σ̂2,n+k

1,i,n+1)

σ2
2,i − σ̂

2,n+k
2,i,n+1

σ̂n+k
2,i,n+1(σ2,i + σ̂2,n+k

2,i,n+1)
ρi

∣∣∣∣∣ = oP (1)

as n → ∞, followed by m → ∞. Now, we can follow Theorem 2.2.5, use the assumed rates, and
claim is proven.

Theorem 5.2.12. Under the assumptions of Corollary 5.2.8 let the equations (5.2.11), (5.2.12), and

max
nm≤k

1

n+ k

∣∣∣∣∣
n+k∑
i=n+1

(σ2
l,i − σ̂2

l,i,k,n)/σ2
l,i

∣∣∣∣∣ = oP (
√
n),

as n→∞, followed by m→∞, be fulfilled. Then, Theorem 2.2.5 holds true if we replace τ
(o)
n,ι,0,0,γ

by τ
(o)
n,ι,8,0,γ.

Proof. The proof follows in a similar way as the proof of Theorems 5.2.11.
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5.3 Examples

In this subsection, we continue with the three examples (IID), (MIX1), and (NED1), where we restrict
the assumptions depending on the testing procedures and estimates. We focus on scenarios where we
apply the different main results of this Section 5. Therefore, we set

σ2
l,i = σ2

l0 +

Rl,n∑
j=1

∆σ,l,j1{i≤k∗µ,l,j}, (5.3.1)

where Rl,n ≥ 0, ∆σ,l,j 6= 0, and 0 = k∗µ,l,0 < k∗µ,l,1 < . . . < k∗µ,l,Rl,n < k∗µ,l,Rl,n+1 = Nn with

Nn ∈ {n, n(1 +m),∞} depending on the considered procedure: a posteriori, closed-end, or open-end.
In addition, we assume that k∗σ,l,i+1 − k∗σ,l,i →∞ as n→∞.

5.3.1 Constant Variances

Firstly, we consider the special case of Rl,n ≡ 0. Then, we use the variance estimates based on the
whole sample, i.e.,

(σ̂
(1)
l,n )2 = n−1

n∑
i=1

wi,n(Zl,i − µl,i)2, (5.3.2)

where the deterministic, positive, uniform bounded weights fulfill
∑n

i=1wi,n = n for all n ∈ N.
Then, we get under Assumption (IID)

|(σ̂(1)
l,n )2 − σ2

l | = OP

(
n−(

r′l−2

2
∧ 1

2
)

)
which implies that the variance estimate is consistent for r′l > 2.

Under Assumption (MIX1) we obtain by Davidson (1994, Th. 14.1) that {Z2
l,n} is α-mixing of the

same size as {Zl,n}. Hence, {Z2
l,n,Fn} is an Lpl-mixingale, pl ≤ r′l/2, with Fn :=

∨n
i=1

∨∞
j=1 σ(εj,i)

and sequence ξn = α̃(n)1/pl−2/r′l , which directly follows from Davidson (1994, Th. 14.2). This implies
that

P
(
|(σ̂(1)

l,n )2 − σ2
l | ≥ η

)
≤ (nη)−plIE

[(
n∑
i=1

(Z2
l,i − σ2

l )

)pl]

≤

{
η−pln−1C

(∑∞
m=0

(∑m
k=0 ξ

−2
k

)−1/2
)2
, if pl = 2,

η−pln1−plC (
∑∞

k=0 ξk)
pl , if pl < 2.

Thus, if
∑∞

m=0

(∑m
k=0 ξ

−2
k

)−1/2
< ∞, we choose pl = 2 and we get |(σ̂(1)

l,n )2 − σ2
l | = OP

(
n−1/2

)
.

Otherwise, we choose pl = r′/2∧(2−ε), ε > 0, and r′ ∈ (2,r] from assumption (MIX) to obtain that

the sum is finite, since 1/pl−2/r′l ≥ 2(1/r′−1/r). This implies that |(σ̂(1)
l,n )2−σ2

l | = OP
(
n−(pl−1)/pl

)
.

Under Assumption (NED) with pl = 2 and r′l > 4, we obtain by Davidson (1994, Th. 17.17)
that {Z2

l,n} is L2-NED of size −al(r′l− 4)/(2r′l− 2). By Lemma 2.3.7 we obtain that there are more
combinations of pl and r′l that are suitable. However, if we additionally assume under (NED) that
al ≥ (2r′l − 2)/(2r′l − 8) and aV ≥ r′l/(r

′
l − 4), we obtain that {Z2

l,n} is a L2-mixingal of size −1
2 .

This implies that {Z2
l,n − σ2

l,n} fulfills the Kolmogorov-type inequalities for rl = 2 and, especially,

(σ̂
(1)
l,n )2 − σ2

l = OP (n−1/2).

Assumption (NED2). Let (NED) be fulfilled with al ≥ (2r′l − 2)/(2r′l − 8) and aV ≥ r′l/(r′l − 4).

Thus, in all three previous examples the variance estimates are consistent and we can apply Theo-
rem 5.1.1 and Corollary 5.1.2 to test whether there is a change in the correlation or not. Therefore, the
LRV estimates from Theorem 5.1.16 are available. The estimation of change-points in the correlation

works with even less assumptions. It is sufficient that (σ̂
(1)
l,n )2 = OP (1). The sequential procedures,

Theorem 5.2.1 and 5.2.9, can be applied by using σ̂
(1)
l,k,n = σ̂

(1)
l,n for all k ∈ N.
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Remark 5.3.1. The test statistic φι,5,5,γn and the stopping time τn,ι,5,5,γ are equal to φι,0,0,γn and

τn,ι,0,0,γ, respectively, if D̂5,n uses ρ̃
(5)
j = σ1σ2

σ̂1,nσ̂2,n
ρ̃n(j), where ρ̃n(j) is as in Theorem 2.1.33 and

the variance estimates are the same as used for Z
(5)
n . This implies, that in this special case the

assumptions on Section 2.3 are sufficient for the convergence, even if the variance estimates are not
consistent.

Assumption (IID2). Let Assumption (IID) be fulfilled for r′l > 4.

Assumption (LRV2). Let Assumption (LRV) be fulfilled with

Z0
i − ρi

(
(Xi − µ1,i)

2/(2σ2
1,i) + (Yi − µ2,i)

2/(2σ2
2,i)
)

instead of Z0
i .

Now, we consider the cumulative sample variances as estimates, i.e.

σ̂
(2)
l,k = (σ̂

(1)
l,k )2, k = 1, 2, . . . ,n. (5.3.3)

Suppose Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2) hold true.
Then, we can apply Theorem 5.1.4 to test for a constant correlation. Furthermore, we can use the
weighted test statistic of Corollary 5.1.7.

5.3.2 Non-constant Variances

In this sub-subsection, we consider two examples for Theorem 5.1.9. Additionally, we assume that
there are non-local changes and that the distance between the change-points increases with rate n.

Firstly, we postulate that we already know the change-points of the variance. Then, we set for all
i ∈ (k∗σ,j−1,k ∧ k∗σ,j ], j = 1, . . . ,Rl, k = 1, 2, . . .

(σ̂
(4′)
l,i,k)

2 =
1

k ∧ k∗σ,j − k∗σ,j−1

k∧k∗σ,j∑
v=k∗σ,j−1+1

(Zl,v − µl,v)2. (5.3.4)

We observe that

[n·]∑
i=1

((σ̂
(4′)
l,i,[n·])

2 − σ2
l,i)σ

−2
l,i =

[n·]∑
i=1

((Zl,v − µl,v)2 − σ2
l,i)σ

−2
l,i .

Hence, under Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2) we
obtain that under H0

1√
n

[n·]∑
i=1

[
(Z

(0)
i − ρi)− (σ̂2

1,i,[n·] − σ
2
1,i)

ρi
2σ2

1,i

− (σ̂2
2,i,[n·] − σ

2
2,i)

ρi
2σ2

2,i

]
D[0,1]−→ D

1/2
(8) W (·).

Thus, the assumptions of Theorem 5.1.9 are fulfilled by using the same arguments as used for the
mean estimation in Sub-Subsection 4.3.2.

Remark 5.3.2. For the sake of completeness, we define for all i = 1, . . . ,n

(σ̂
(3)
l,i )2 =

Rl+1∑
j=1

1{i∈(k̂σ,j−1,k̂σ,j ]}
1

k̂σ,j − k̂σ,j−1

k̂σ,j∑
v=k̂σ,j−1+1

(Zl,v − µl,v)2 (5.3.5)

but we bear in mind that this estimate is useless for change-point analysis of the correlations.

Now, we consider the second example where we drop the assumptions on known variance change-
points. Therefore, we set for all i ∈ (k̂σ,j−1,k ∧ k̂σ,j ], j = 1, . . . ,Rl + 1, k = 1, 2, . . .

(σ̂
(4)
l,i,k)

2 =
1

k ∧ k̂σ,j − k̂σ,j−1

k∧k̂σ,j∑
v=k̂σ,j−1+1

(Zl,v − µl,v)2. (5.3.6)
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Suppose that there exist sequences al,j,n such that

k̂σ,l,j − k∗σ,l,j = OP (aσ,l,j,n) (5.3.7)

and

aσ,l,j,n = o
(
(k∗σ,l,j − k∗σ,l,j−1) ∧ (k∗σ,l,j+1 − k∗σ,l,j)

)
(5.3.8)

for j = 1, . . . ,Rl and as n→∞. Those two conditions imply that

P
(

#(k̂σ,l,j−1,k̂σ,l,j ] ∩ (k∗σ,l,j−1±2,k
∗
σ,l,j±2] = 0

)
→ 1.

Thus, we obtain with Jl,j,[n·] = (kσ,l,j−1,kσ,l,j ] ∩ (0, [n·]] and Ĵl,j,[n·] = (k̂σ,l,j−1,k̂σ,l,j ] ∩ (0, [n·]] that

[n·]∑
i=1

(σ̂2
l,i,[n·] − σ

2
l,i)σ

−2
l,i =

[n·]∑
i=1

((Zl,i − µl,i)2 − σ2
l,i)σ

−2
l,i

+OP


∥∥∥∥∥∥∥
Rl+1∑
j=1

#Ĵl,j,[n·] ∩ Jcl,j,[n·]
#Ĵl,j,[n·]

∑
i∈Ĵl,j,[n·]

(Zl,i − µl,i)2

∥∥∥∥∥∥∥


+OP


∥∥∥∥∥∥∥
Rl+1∑
j=2

#Ĵl,j−1,[n·] ∩ Jl,j,[n·]
#Ĵl,j−1,[n·]

∑
i∈Ĵl,j−1,[n·]

(Zl,i − µl,i)2

∥∥∥∥∥∥∥


+OP


∥∥∥∥∥∥∥
Rl∑
j=1

#Ĵl,j+1,[n·] ∩ Jl,j,[n·]
#Ĵl,j+1,[n·]

∑
i∈Ĵl,j+1,[n·]

(Zl,i − µl,i)2

∥∥∥∥∥∥∥
 .

The first summand on the right–hand side weighted by n−1/2 fulfills the FCLT under suitable
assumptions such as in the case of known change-points in the variance. Hence, it remains to show
that the three rates are equal to oP (n−1/2). Since each of the three rates can similarly be treated, we
just consider the first one (w.l.o.g. let µl,i ≡ 0):∥∥∥∥∥∥∥

Rl+1∑
j=1

#Ĵl,j,[n·] ∩ Jcl,j,[n·]
#Ĵl,j,[n·]

∑
i∈Ĵl,j,[n·]

Z2
l,i

∥∥∥∥∥∥∥ ≤
Rl+1∑
j=1

OP


∥∥∥∥∥∥∥
aσ,l,j−1 ∨ aσ,l,j

#Ĵl,j,[n·]

∑
i∈Ĵl,j,[n·]

(Z2
l,i − 1)

∥∥∥∥∥∥∥
+OP (aσ,l,j).

Furthermore, we get that

P


∥∥∥∥∥∥∥
aσ,l,j−1 ∨ aσ,l,j

#Ĵl,j,[n·]

∑
i∈Ĵl,j,[n·]

(Z2
l,i − 1)

∥∥∥∥∥∥∥ ≥ η
√
n


≤ P

 max
k1∈(k∗σ,l,j−1

−aσ,j−1,k
∗
σ,l,j−1

+aσ,j−1]

k2∈(k∗σ,l,j−1
−aσ,j−1,k

∗
σ,l,j+1

+aσ,j+1],k1<k2

∣∣∣∣∣∣aσ,l,j−1 ∨ aσ,l,j
k2 − k1

k2∑
i=k1+1

(Z2
l,i − 1)

∣∣∣∣∣∣ ≥ η√n
+ o(1)

≤
k∗σ,l,j−1+aσ,j−1∑

k1=k∗σ,l,j−1−aσ,j−1

P

 max
k2∈(k1,k∗σ,l,j+1+aσ,j+1]

∣∣∣∣∣∣aσ,l,j−1 ∨ aσ,l,j
k2 − k1

k2∑
i=k1+1

(Z2
l,i − 1)

∣∣∣∣∣∣ ≥ η√n
+ o(1)

≤ (aσ,l,j−1 ∨ aσ,l,j/(η
√
n))2C

k∗σ,l,j−1+aσ,j−1∑
k1=k∗σ,l,j−1−aσ,j−1

k∗σ,l,j+1+aσ,j+1]∑
k2=k1+1

(
1

k2 − k1

)pl
+ o(1)

= O
(
n−1(aσ,l,j−1 ∨ aσ,l,j)2aσ,l,j−1

)
+ o(1),
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where we use (5.3.7), σ-additivity, and a Kolmogorov-type inequality. Thus, we obtain

[n·]∑
i=1

(σ̂2
l,i,[n·] − σ

2
l,i)σ

−2
l,i =

[n·]∑
i=1

(Z2
l,i − σ2

l,i)σ
−2
l,i + oP (1)

if maxj aσ,l,j,n = o(n1/3). Suppose that these restrictions combined with Assumption (IID2) or As-
sumption (NED2) and Assumption (LRV2) are fulfilled. Then, we get the assumed FCLT (5.1.8) from
Theorem 5.1.9. Furthermore, under these assumptions {(Zl,n−µl,n)2−σ2

l,n} fulfills the Kolmogorov-
type inequalities.

Now, the technical rate assumptions on several results remain to be considered. For that purpose,
we can use the examples of the non-constant means of Sub-subsection 4.3.2. There, we have seen
that the model of the structure breaks and the Kolmogorov-type inequalities for {Zl,n − µl,n} was
sufficient. If we transfer the conditions of these models to models of changes in the variances and
assume that {(Zl,n − µl,n)2 − σ2

l,n} fulfills the Kolmogorov-type inequalities for rl = 2, as in the
previously presented assumptions, we can apply the results of Subsection 5.1 and Subsection 5.2.
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6 Change-Point Analysis of the Correlation under Unknown Means
and Variances

In this section, we consider the setting where the four parameters µ1,i, µ2,i, σ2
1,i, and σ2

2,i are
unknown and estimated. Naturally, the variance estimates depend on the mean estimates. But first,
we neglect this feature and will only come back to it at the end of each subsection.

6.1 A Posteriori Analysis under a General Dependency Framework, General Mean
and Variance Estimates

In this subsection, we set

ρ̂k,4+ψ1+4ψ2 =
1

k

k∑
i=1

(Xi − µ̂(ψ1)
1,i,k,n)(Yi − µ̂(ψ1)

2,i,k,n)

σ̂
(ψ2)
1,i,k,nσ̂

(ψ2)
2,i,k,n

=
1

k

k∑
i=1

Z
(4+ψ1+4ψ2)
i,k,n , (6.1.1)

where ψ1,ψ2 = 1, . . . ,4 are design indices to distinguish between the parameter estimates. Further-

more, in each estimate and Z
(4+ψ1+4ψ2)
i,k,n , we will drop the index n and any other index which will

not be used in the following.

For {Z(4+ψ1+4ψ2)
i,k,n }1≤i≤k≤n∈N we will frequently use the decomposition

Z
(4+ψ1+4ψ2)
i,· =

(Xi − µ̂(ψ1)
1,· )(Yi − µ̂(ψ1)

2,· )

σ̂
(ψ2)
1,· σ̂

(ψ2)
2,·

= Z
(0)
i + Z

(0)
i

(
σ1,iσ2,i

σ̂
(ψ2)
1,· σ̂

(ψ2)
2,·

− 1

)
+

3∑
l=1

RliknZ(ψ1) +
3∑
l=1

RliknZ(ψ1)

(
σ1,iσ2,i

σ̂
(ψ2)
1,· σ̂

(ψ2)
2,·

− 1

)
,

(6.1.2)

where RliknZ(ψ1) , l = 1, 2, 3, ψ1, ψ2 = 1, . . . ,4 are defined in Section 4, see (4.1.2). They are the
error terms of the mean estimation. The dot stands for the index k which will only appear if it is
in use. Thus, if the mean and variance estimates fulfill their corresponding assumptions on Section 4

and Section 5, only the last summand is new. Furthermore, in this section we will write Z
(8+ψ)
i,· or

just Z
(ψ)
i,· instead of Z

(4+ψ1+4ψ2)
i,· for a suitable ψ. If ψ1 and ψ2 are equal to 1, 2, 3, or 4 the

corresponding parameters fulfill Assumption (PEE1), (PEE2), (PEE3), or (PEE4), respectively. To
avoid repetitions of similar results, we use the following notation for j, l ∈ {1, 2}

ml,n = mµ,l,1,n ∨mσ,1,1,n ∨mσ,2,1,n, M
(j)
n,l = (0,mµ,l,j,n]× (0,mσ,1,j,n]× (0,mσ,2,j,n],

M
(j)
n,0 = (0,mµ,1,j,n]× (0,mµ,2,j,n]× (0,mσ,1,j,n]× (0,mσ,2,j,n],

I
(l,j)
i1,i2,i3

= Iµ,l,j,i1,n ∩ Iσ,1,j,i2 ∩ Iσ,2,j,i3 , I
(0,j)
i1,i2,i3,i4

= Iµ,1,j,i1,n ∩ Iµ,2,j,i2,n ∩ Iσ,1,j,i3 ∩ Iσ,2,j,i4 ,

b
(l)
i,j = bµ,l,i1,j1,n(bσ,1,i2,j2 ∨ bσ,2,i3,j3), j ∈M (2)

n,l ,i ∈M
(1)
n,l ,

b
(0)
i,j = bµ,1,i1,j1,nbµ,2,i2,j2,n(bσ,1,i3,j3 ∨ bσ,2,i4,j4), j ∈M (2)

n,0,i ∈M
(1)
n,0,

where we set

mµ,l,j = 1, Iµ,l,j,1 = (0,n], if µ1, µ2 fulfill (PEE1) or (PEE2),
mσ,l,j = 1, Iσ,l,j,1 = (0,n], if σ1, σ2 fulfill (PEE1) or (PEE2),
mµ,l,2 = 1, Iµ,l,2,1 = (0,n], if µ1, µ2 fulfill (PEE3),
mσ,l,2 = 1, Iσ,l,2,1 = (0,n], if σ1, σ2 fulfill (PEE3).

6.1.1 Testing under a Functional Central Limit Theorem, General Mean and Variance
Estimates

Theorem 6.1.1. Let one of the assumptions of the Theorems 4.1.2, 4.1.6, 4.1.10, or 4.1.13 and
one of the assumptions of the Theorems 5.1.1, 5.1.4, or 5.1.9 be fulfilled, where we assume that
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dµ,l,i = dσ,l,i ≡ 0. Additionally, let the following conditions be fulfilled as n→∞ and for l = 1, 2

∑
j∈M(1)

n,3−l

(mn,3−l)
rl

∑
i∈M(2)

n,3−l

(b
(3−l)
i,j )rl#[I

(3−l,1)
i ∩ (0,max I

(3−l,2)
j )]


1/rl

= o(n1/2) (6.1.3)

and

max
j∈M(2)

n,0

∑
i∈M(1)

n,0

#(I
(0,1)
i ∩ (0,max I

(0,2)
j ])b

(0)
i,j = o(n1/2). (6.1.4)

Then, Theorem 2.1.1 holds true if we replace B0,0
n by B4+j1+4j2,0,0

n .

Remark 6.1.2. The sequences {b(l)i,j } and I
(l,j)
i are allowed to depend on an integer N , which tends

towards infinity after n does, cf. Assumption (PEE2). Then, in the case of Assumption (PEE2) we
can set for l = 1,2

I
(3−l,2)
j =


(0,N ], if j = (1,1,1),
(N,n], if j = (2,2,2),
∅, else

and b
(3−l)
1,j =


1, if j = (1,1,1),

N−1/2, if j = (2,2,2),
1, else,

and the rate displayed in (6.1.3) is directly fulfilled as n→∞, followed by N →∞.

Proof of Theorem 6.1.1. Firstly, we obtain with (6.1.2) that

Bj,0,0
n (·) = D̂

−1/2
0

(
Bn(·) +

[n·]√
n

(
1

[n·]

[n·]∑
i=1

3∑
l=1

Rli[n·]nZ(θ)

 σ1,iσ2,i

σ̂
(ψ)
1,i,[n·]σ̂

(ψ)
2,i,[n·]

− 1


− 1

n

n∑
i=1

3∑
l=1

RlinnZ(j1)

(
σ1,iσ2,i

σ̂
(ψ)
1,i,nσ̂

(ψ)
2,i,n

− 1

)))
,

where the asymptotic behavior of D̂
−1/2
0 Bn(·) is known under each combination of the theorems of

Section 4 and 5. Hence, it remains to consider the last summand. Here, we just consider the most
general case, i.e., that the assumptions of Theorem 4.1.13 and Theorem 5.1.9 are fulfilled. Using the
triangle inequality we individually consider each summand for l = 1, 2, 3. We start with l = 1 and
obtain by Kolmogorov’s inequality that∥∥∥∥∥∥

[n·]∑
i=1

R1i[n·]nZ(θ)

 σ1,iσ2,i

σ̂
(ψ)
1,i,[n·]σ̂

(ψ)
2,i,[n·]

− 1

∥∥∥∥∥∥
= OP

 ∑
(j1,j2,j3)∈M(1)

n,2

(mn,2)r1
∑

(i1,i2,i3)∈M(2)
n,2

(b
(2)
i,j )r1#[I

(1, 2)
i1,i2,i3

∩ (0,max I
(2,2)
j1,j2,j3

)]


1/r1
 .

Hence, this is equal to oP (n−1/2) by (6.1.3). The same rate can be observed for the second term of
the difference. Quite similarly we can treat the term for l = 2 so that it remains to consider the
term for l = 3:∥∥∥∥∥∥

[n·]∑
i=1

R3i[n·]nZ(θ)

 σ1,iσ2,i

σ̂
(ψ)
1,i,[n·]σ̂

(ψ)
2,i,[n·]

− 1

∥∥∥∥∥∥
= OP

 max
j∈M(2)

n,0

∑
i∈M(1)

n,0

#(I
(0,1)
i ∩ (0,max I

(0,2)
j ])b

(0)
i,j

 .

Hence, using (6.1.4) it follows that Bj,0,0
n (·) = D̂

−1/2
0 (Bn(·) + oP (1)) such that the claim finally

follows.

117



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER UNKNOWN MEANS AND VARIANCES

Influence of the Mean Estimates on the Variance Estimates Now, we consider the influence
of the mean estimates on the variance estimates. Let m2 denote the second moment. Then, we can
decompose a variance parameter σ2 in m2 and µ2, i.e., σ2 = m2 − µ2. Thus, we get

σ2 − σ̂2
n = m2 − m̂2,n + µ̂2

n − µ2 = OP (n−(δm∧δµ))

if

m2 − m̂2,n = OP (n−δm) and µ− µ̂n = OP

(
n−δµ

)
,

which is relevant under the assumption of Theorem 4.1.2 and Theorem 5.1.1. Under the assumptions
of Theorem 5.1.4 the variance estimates σ̂2

[n·] can be decomposed similarly. Then, there are at least
three possible cases

σ̂2
[n·] = m̂2,[n·] − µ̂2

[n·], σ̂2
[n·] = m̂2,[n·] − µ̂2

n, or σ̂2
[n·] = m̂2,n − µ̂2

[n·].

In the last two cases, we can reduce the convergence assumption of Theorem 5.1.4 displayed in (5.1.7)
by replacing σ̂2

l,[n·] − σ
2
l by m̂2,l,[n·] −m2,l or µ2

l − µ̂2
[n·], respectively, since in the statistic B6,0,γ

n

the other terms are canceled out.

6.1.2 Change-Point Estimation under Unknown Means and Variances

In this sub-subsection, we consider change-point estimates for the structural breaks in the correla-
tion under the setting where the means and the variances are unknown. For the estimation of the
parameters we always use the whole sample. More precisely, we consider the change-point estimates
under the assumption that each parameter µ1, µ2, σ1, and σ2 fulfills Assumption (PEE1) and/or
(PEE3). This implies that the notations introduced at the beginning of this subsection will only be

used for l = 1. Hence, we will drop this index and will use Mn,l, I
(l)
i , b

(l)
i , for l = 0,1, 2.

Theorem 6.1.3. Let one of the assumptions on the Theorems 4.1.18 or 4.1.22 and one of the as-
sumptions on the Theorems 5.1.11 or 5.1.14 be fulfilled with dl,i ≡ 0. Additionally, let for l = 1, 2

a1,n + a2,n = o

(
∆k∗,n∆2

ρ,n

max1≤i≤R |∆ρ,i,n|

)
, a2

1,n + a2
3,n = o

(
∆k∗,n∆2

ρ,n

)
, (6.1.5)

max
1≤r≤R

a
r3−l
l,r,n

∑
j∈Aµ,l,r,n

∑
i1∈Aσ,1,r,n

∑
i2∈Aσ,2,r,n

(b
(l)
j,i1,i2

)r3−l(Nn/an)−(r3−l−1) = o

(
∆2
ρ,n

maxr |∆ρ,r|

)
, (6.1.6)

max
1≤r≤R

∑
i1∈Aσ,1,r,n

∑
i2∈Aσ,2,r,n

∑
j1∈Aµ,1,r,n

∑
j2∈Aµ,2,r,n

b
(0)
j1,j2,i1,i2

·
#((k∗r − ε∆k∗,n,k

∗
r + ε∆k∗,n] ∩ I(0)

j1,j2,i1,i2
)

#((k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] ∩ I(0)

j1,j2,i1,i2
) ∨ (Nn/an)

= o

(
∆2
ρ,n

maxr |∆ρ,r|

)
,

(6.1.7)

as n→∞, followed by N →∞, where for ξ ∈ {µ,σ} and for ε > 0

a1,n =

2∑
l=1

ml,n

 ∑
j∈Mn,l

(b
(l)
j )r3−l#I

(l)
j

 1
r3−l

, a2,n =
∑

j∈Mn,0

bj#I
(0)
j , (6.1.8)

a3,n = max
k1≤k2

∑
j∈Mn,0

bj
#(I

(0)
j ∩ [k1,k2])
√
k2 − k1 + 1

, (6.1.9)

Aξ,l,r,n =
{

1 ≤ j ≤ mξ,l,n : Iξ,l,j ∩ (k∗r − ε∆k∗,n,k
∗
r + ε∆k∗,n] 6= ∅

}
, (6.1.10)

al,r,n = #Aµ,l,r,n ∨#Aσ,1,r,n ∨#Aσ,2,r,n, (6.1.11)

and

mµ,l,n = 1, Iµ,l,1 = (0,n] under the assumptions of Theorem 4.1.18, (6.1.12)

mσ,l,n = 1, Iσ,l,1 = (0,n] under the assumptions of Theorem 5.1.11. (6.1.13)
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Then, it holds

max
1≤i≤R

an|θρ,i − θ̂(8+ψ)
ρ,i | = OP (1),

where θρ,i = limn→∞ k
∗
i /n and θ̂

(8+ψ)
i = k̂

(8+ψ)
i /n with

(k̂
(8+ψ)
1 , . . . ,k̂

(8+ψ)
R ) ∈ arg max

{
Q(8+ψ)
n (k1, . . . ,kR) : 1 = k0 < . . . < kR < kR+1 = n

}
, (6.1.14)

Q(8+ψ)
n (k1, . . . ,kR) =

R+1∑
r=1

kr∑
i=kr−1+1

(Z
(8+ψ)
i − Z(8+ψ)

kr
kr−1

)2. (6.1.15)

Proof. Since the settings of Theorems 4.1.22 and 5.1.14 are more general than the other ones, we just
consider this case and note that the other combinations can similarly be proven.

Define Z̃
(8+ψ)
i = Z

(8+ψ)
i − ρi and a1,n,N = Nn/an. Following the proof of Theorem 2.1.22 yields

min
‖k−k∗‖≥a1,n,N

Q
(8+ψ)
n (k)−Q(k∗)(8+ψ)

1
2 mini ∆2

ρ,i,n‖k − k∗‖ ∧∆k∗,n

≥ 1− max
‖k−k∗‖≥a1,n,N

∑R+1
r=1

∑kr
i=kr−1+1

[
2 (ρi − ρ(kr−1,kr)) Z̃

(8+ψ)
i

]
1
2 mini ∆2

ρ,i,n‖k − k∗‖ ∧∆k∗,n

− max
‖k−k∗‖≥a1,n,N

∑R+1
r=1 (kr − kr−1)

(
Z̃(8+ψ)(kr−1,kr)

)2

1
2 mini ∆2

ρ,i,n‖k − k∗‖ ∧∆k∗,n

.

Since Z̃
(8+ψ)
i is a sum of terms considered in the proofs of the Theorems 4.1.22, 5.1.14 plus

r̃i =
3∑
l=1

RliknZ(θ)

(
σ1,iσ2,i

σ̂
(ψ)
1,i σ̂

(ψ)
2,i

− 1

)
,

it remains to consider both maxima of the partial sums of r̃i instead of Z̃
(8+ψ)
i in the first display.

Using similar arguments as in proof of Theorem 4.1.22 yields that

max
‖k−k∗‖≥a1,n,N

∑R+1
r=1

∑kr
i=kr−1+1 [2 (ρi − ρ(kr−1,kr)) r̃i]

0.5 mini ∆2
ρ,i,n‖k − k∗‖ ∧∆k∗,n

= oP (1)

and max
‖k−k∗‖≥a1,n,N

∑R+1
r=1 (kr − kr−1)

(
r̃(kr−1,kr)

)2
0.5 mini ∆2

ρ,i,n‖k − k∗‖ ∧∆k∗,n

= oP (1)

as n→∞ and N →∞ by using (6.1.5)–(6.1.7).

Theorem 6.1.4. Under the assumptions of Theorem 6.1.3 let

d(8+ψ)
n � β(8+ψ)

n ≤ 1

4C∗
min

1≤i≤m
∆2
ρ,i,n∆k∗,n (6.1.16)

with

d(8+ψ)
n = d(ψ1)

n + d(4+ψ2)
n + a2

1,n + a2
3,n + a1,n + a2,n, (6.1.17)

where a1,n, a2,n, and a3,n are defined as in (6.1.8) and (6.1.9). Then, R̂(8+ψ) is a consistent
estimate for the number of change-points R∗.

119



CHANGE-POINT ANALYSIS OF THE CORRELATION UNDER UNKNOWN MEANS AND VARIANCES

Proof. Set βn = β
(8+ψ)
n . This proof follows the arguments of the one of Theorem 2.1.25. Hence, it is

sufficient to show that the sets {R̂(8+ψ) < R∗} and {R̂(8+ψ) > R∗} are asymptotically empty. The
asymptotic behavior of {R̂(8+ψ) < R∗} follows in the same way as the one for {R̂ < R∗} in the
proof of Theorem 2.1.25 with the arguments of Theorem 6.1.3 instead of those of Theorem 2.1.22.

Therefore, we consider {R̂(8+ψ) > R∗} and by using the same arguments as in the proof of
Theorem 6.1.3 combined with the change-point estimate results of Section 4 and Section 5 we obtain
that the lower boundary rate:

Q(8+ψ)
n (k)−Q(8+ψ)

n (k∗) ≥ −OP (d(ψ1)
n + d(4+ψ2)

n + a2
1,n + a2

3,n + a1,n + a2,n).

Similar to the previous section we can split the variance estimates in m̂2,l,i and µ̂2
l,i. Then, we

obtain that {σ̂2
l,n} = {m̂2,l,n − µ̂2

l,n} fulfills the conditions of Assumptions (PEE3) if {m̂2,l,n} and

{µ̂2
l,n} fulfill them with dml,n ≡ 0 and dµ2l ,n

≡ 0, too.

6.1.3 Long-run Variance Estimation under Unknown Means and Variances

In this sub-subsection, we present some LRV estimates corresponding to the ones in Theorem 6.1.1.
Therefore, we have to separate the LRV estimates under the assumptions of Theorem 5.1.1 and under
the assumptions of Theorem 5.1.4 or 5.1.9.

Theorem 6.1.5. Let one of the assumptions of Theorem 4.1.25 or 4.1.26 and the assumptions of
Theorem 5.1.16 be fulfilled. Then, it holds for l = 1, 2 that

D̂8+l,n = D +OP (n−(δσ,1,n∧δσ,2,n)) +OP (n−(δσ,1,n∧δσ,2,n) ∨ 1)(R̂(0)
n + 1{l=1}R̂

(1)
n + 1{l=2}oP (1)),

where R̂
(0)
n and R̂

(1)
n are the corresponding estimation errors of the Theorems 2.1.33 and 4.1.25, as

well as

D̂8+l,n =
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(8+l)
i − ρ̃(5)

i )(Z
(8+l)
j − ρ̃(5)

j ).

Proof. Firstly, for l = 1, 2 we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(8+l)
i − ρ̃(5)

i )(Z
(8+l)
j − ρ̃(5)

j )

=
1

n

n∑
i=1

n∑
j=1

σ1,iσ2,iσ1,jσ2,j

σ̂2
1,nσ̂

2
2,n

f

(
i− j
qn

)
(Z

(2l−1)
i − σ̂1,nσ̂2,n

σ1,iσ2,i
ρ̃

(5)
i )(Z

(2l−1)
j − σ̂1,nσ̂2,n

σ1,jσ2,j
ρ̃

(5)
j )

= D̂2l−1,n

(
1 +OP (n−(δσ,1,n∧δσ,2,n))

)
since |σ1,iσ2,iσ1,jσ2,j

σ̂2
1,nσ̂

2
2,n

− 1| = OP (n−(δσ,1,n∧δσ,2,n)) and where D̂1,n and D̂2,n are the LRV estimates of

Theorem 4.1.25 and 4.1.26, respectively. Applying these theorems implies the claim.

Remark 6.1.6. In the previous theorem we used general mean and variance estimates where it is
clear that the variance estimates may depend on the mean estimates. In the following theorem we will
present LRV estimates under the settings of Theorem 5.1.4 and Theorem 5.1.9, respectively. Therefore,
we assume the same variance estimate as introduced in Sub-subsection 5.1.3, whereas we replace the
means by some mean estimates.

Theorem 6.1.7. Let one of the assumptions of Theorem 4.1.25 or 4.1.26 and one of the assumptions
on the Theorems 5.1.18 or 5.1.20 be fulfilled. Then, it holds for l1,l2 = 1; 2 that D̂8+l1+2l2,n =

D̂0 + R̂
(8+l1+2l2)
n with

D̂10+l,n =
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)
(Z

(10+l)
i − ρ̃i)(Z(10+l)

j − ρ̃j)
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and

R̂(10+l)
n = OP

(
n−1 max

1≤l1,l2≤13

∑
i∈Ml1,n

∑
j∈Ml2,n

bl1,ibl2,j [(#Il1,i ∨#Il2,j) ∧ qn] #Il1,i ∧#Il2,j

)
where

(b1,j , . . . , b12,j) =

(
bµ,1j ,bµ,2,j , bσ,1,j1 ∨ bσ,2,j2 , bσ,1,j1 , bσ,2,j2 , bµ,1,j1bµ,2,j2 ,

b2µ,1,j ,b
2
µ,2,j ,bµ,1j1bσ,1,j2 ,bµ,2,j1bσ,2,j2 , b

2
µ,1,j1bσ,1,j2 ,b

2
µ,2,j1bσ,2,j2

)
,

(M1,n, . . . ,M12,n) =

(
(0,mµ,1,n],(0,mµ,2,n],(0,mσ,1,n]× (0,mσ,2,n],(0,mσ,1,n], (0,mσ,2,n],

(0,mµ,1,n]× (0,mµ,2,n], (0,mµ,1,n], (0,mµ,2,n], (0,mµ,1,n]× (0,mσ,1,n],

(0,mµ,2,n]× (0,mσ,2,n], (0,mµ,1,n]× (0,mσ,1,n], (0,mµ,2,n]× (0,mσ,2,n]

)
,

(I1,j ,×, I12,j) = (Iµ,1,j , . . . , Iµ,2,j1 ∩ Iσ,2,j2) .

Proof. Firstly, we obtain that(
Z

(8+l1+2l2)
i − ρ̂i −

(Xi − µ̂(2l1−1)
1,i )2 − (σ̂

(l2)
1,i,n)2

2(σ̂
(l2)
1,i,n)2

ρ̂i −
(Yi − µ̂(2l1−1)

2,i )2 − (σ̂
(l2)
2,i,n)2

2(σ̂
(l2)
2,i,n)2

ρ̂i

)

= (Z
(0)
i − ρi)−

1

2
ρi(ε

2
1,i − 1)− 1

2
ρi(ε

2
2,i − 1) +Ri = W̃i +Ri

with

Ri =−

[
(1− σ1,iσ2,i

σ̂1,i,nσ̂2,i,n
)(Z

(0)
i − ρi) + (

1

2
−

σ2
1,i

2σ̂2
1,i,n

)ρi(ε
2
1,i − 1)− (

1

2
−

σ2
2,i

2σ̂2
2,i,n

)ρi(ε
2
2,i − 1)

+
σ2

1,i

2σ̂2
1,i,n

(ρ̂i − ρi)(ε21,i − 1) +
σ2

2,i

2σ̂2
2,i,n

(ρ̂i − ρi)(ε22,i − 1)

+
σ2

1,i

2σ̂2
1,i,n

(ρ̂i − ρi) +
σ2

2,i

2σ̂2
2,i,n

(ρ̂i − ρi) + ρi

(
σ2

1,i

2σ̂2
1,n

+
σ2

2,i

2σ̂2
2,i,n

− 1

)]

+

[
3∑
l=1

RliknZ(l1) +
3∑
l=1

RliknZ(l1)

(
σ1,iσ2,i

σ̂1,·σ̂2,·
− 1

)

+

2∑
v=1

(
σv,i(µv,i − µ̂v,i)ρ̂i

σ̂2
v,i,n

εv,i +
(µv,i − µ̂v,i)2ρ̂i

2σ̂2
v,i,n

)]
,

where we drop the indices l1 and l2. Hence, we get that

D̂8+l1+2l2,n = D̂0 +
1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
W̃iRj +RiW̃j +RiRj

]
.

Furthermore, we obtain that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
W̃iRj +RiW̃j +RiRj

]

= OP

 1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
|W̃iRj |+ |RiW̃j |+ |RiRj |

]
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We set

(
b1,j , . . . , b12,(j1,j2)

)
=

(
bµ,1j ,bµ,2,j , bσ,1,j1 ∨ bσ,2,j2 , bσ,1,j1 , bσ,2,j2 , bµ,1,j1bµ,2,j2 ,

b2µ,1,j ,b
2
µ,2,j ,bµ,1j1bσ,1,j2 ,bµ,2,j1bσ,2,j2 , b

2
µ,1,j1bσ,1,j2 ,b

2
µ,2,j1bσ,2,j2

)
,

(M1,n, . . . ,M12,n) = ((0,mµ,1,n], . . . , (0,mµ,2,n]× (0,mσ,2,n]) ,(
I1,j , . . . , I12,(j1,j2)

)
= (Iµ,1,j , . . . , Iµ,2,j1 ∩ Iσ,2,j2) .

Additionally, we define

b13,j = n−δ1 , M13,n = {1}, I13,j = (0,n]

under case (A) and

b13,j = n−δj , M13,n = (0,m], I13,j = Cj

under case (E). Then, we obtain by Markov’s inequality that

1

n

n∑
i=1

n∑
j=1

f

(
i− j
qn

)[
|W̃iRj |+ |RiW̃j |+ |RiRj |

]
= oP (1)

+OP

(
n−1 max

1≤l1,l2≤13

∑
i∈Ml1,n

∑
j∈Ml2,n

bl1,ibl2,j [(#Il1,i ∨#Il2,j) ∧ qn] #Il1,i ∧#Il2,j

)
.

The different cases (A) to (H) have no influence since the correlation estimates are bounded by a term
of order OP (1). In the cases of (B), (C) and (D) we add the rates oP (qnn

−1/2), OP (qnn
−1/2) and

OP (qn), respectively. The same rates are added as well in the cases of (F), (G) and (H). Hence, the
claim follows by combining the above rates.
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6.2 Sequential Analysis under General Dependency Framework and General Vari-
ance and Mean Estimates

In this subsection, we consider the asymptotic behavior of the stopping times, where the means and
variances are unknown. We define for k = 1, . . .

ρ̂n4+ψ1+4ψ2,k,1 =
1

n

n∑
i=1

Z
(4+ψ1+4ψ2)
i,k,n and ρ̂n+k

4+ψ1+4ψ2,k,n+1 =
1

k

n+k∑
i=n+1

Z
(4+ψ1+4ψ2)
i,k,n , (6.2.1)

where ψ1,ψ2 = 1, . . . ,4 are design indices for different mean and variance estimate types and

Z
(4+ψ1+4ψ2)
i,k,n =

(Xi − µ̂(ψ1)
1,i,k)(Yi − µ̂

(ψ1)
2,i,k)

σ̂
(ψ2)
1,i,k,nσ̂

(ψ2)
2,i,k,n

.

Now, we distinguish between the mean and variance estimates as presented in the Subsection 4.2 and
Subsection 5.2. To avoid repetition of similar results we use the following notation for l = 1, 2

ml,n = mµ,l,1,n ∨mσ,l,1,n ∨mσ,2,1,n, Mn,l = (0,mµ,l,1,n]× (0,mσ,1,1,n]× (0,mσ,2,1,n],

Mn,0 = (0,mµ,1,1,n]× (0,mµ,2,1,n]× (0,mσ,1,1,n]× (0,mσ,2,1,n],

I
(l)
i = Iµ,l,j,i1,n ∩ Iσ,1,j,i2 ∩ Iσ,2,j,i3 ,, i ∈Mn,l,

I
(0)
i = Iµ,1,j,i1,n ∩ Iµ,2,j,i2,n ∩ Iσ,1,j,i3 ∩ Iσ,2,j,i4 , i ∈Mn,0,

b
(l)
i = bµ,l,i1,1,n(bσ,1,i2,1 ∨ bσ,2,i3,1), i ∈Mn,l,

b
(0)
i = bµ,1,i1,1,nbµ,2,i2,1,n(bσ,1,i3,1 ∨ bσ,2,i4,1), i ∈Mn,0,

where we set for each ξ ∈ {µ,σ} and l = 1, 2

mξ,l,1,n =


1,

mξl,n +mξl,2,n,
mξl,n,

if ξl fulfills (PEE5) or (PEE6),
if ξl fulfills (PEE7),
if ξl fulfills (PEE8),

Iξ,l,j,1,n =


(0,n+ [nm]],{
Iξl,j , j ≤ mξl,n,

Iξl,2,j−mξl,n , j > mξl,n,

Ix,j ,

if ξl fulfills (PEE5) or (PEE6),

if ξl fulfills (PEE7),

if ξl fulfills (PEE8),

bξ,l,j,1,n =


1,{

bξl,j , j ≤ mξl,n,
bξl,2,j−mξl,n , j > mξl,n,

bx,j ,

if ξl fulfills (PEE5) or (PEE6),

if ξl fulfills (PEE7),

if ξl fulfills (PEE8).

6.2.1 Closed-end Procedure with Unknown Means and Variances

Theorem 6.2.1. Let one of the assumptions on the Theorems 4.2.1, 4.2.3, 4.2.5, or 4.2.7 and one
of the assumptions on the Theorems 5.2.1, 5.2.3, 5.2.5, or 5.2.7 be fulfilled where we assume that
dl,i ≡ 0. Let additionally

ml,n

 ∑
i∈Mn,l

(b
(l)
i )r3−l#I

(l)
i

1/r3−l

= o(n1/2) and
∑

i∈Mn,0

b
(0)
i #I

(0)
i = o(n1/2) (6.2.2)

as n→∞ and for l = 1, 2. Then, Theorem 2.2.3 holds true if we replace τ
(c)
n,ι,0,0,γ by τ

(c)
n,ι,4+l1+4l2,0,γ

.
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Proof. Firstly, we obtain that

B̃4+l1+4l2,0,γ
n (k) = B̃l2,0,γ

n (k) +
n

n+ [n·]

 1√
n

n+[n·]∑
i=n+1

Ri,[n·] −
[n·]
n
√
n

n∑
i=1

Ri,[n·]


with

Ri,[n·] =
σ1,iσ2,i

σ̂
(l2)
1,i,[n·]σ̂

(l2)
2,i,[n·]

3∑
l=1

Rli([n·]+n)nZ(l1) .

Due to the assumptions of Theorem 4.2.1, 4.2.3, 4.2.5, or 4.2.7, we obtain that∥∥∥∥∥∥ n

n+ [n·]

 1√
n

n+[n·]∑
i=n+1

3∑
l=1

Rli([n·]+n)nZ(l1) −
[n·]
n
√
n

n∑
i=1

3∑
l=1

Rli([n·]+n)nZ(l1)

∥∥∥∥∥∥ = oP (1).

Since

3∑
l=1

∥∥∥∥∥∥
n+[n·]∑
i=1

1− σ1,iσ2,i

σ̂
(l2)
1,i,[n·]σ̂

(l2)
2,i,[n·]

Rli([n·]+n)nZ(l1)

∥∥∥∥∥∥
=

2∑
l=1

OP

ml,n

 ∑
i∈Mn,l

(b
(l)
i )r3−l#I

(l)
i

1/r3−l
+OP

 ∑
i∈Mn,0

b
(0)
i #I

(0)
i

 ,

which is equal to oP (
√
n) by (6.2.2), we get by Slutsky’s Theorem that

B̃4+l1+4l2,0,γ
n ([n·]) = B̃l2,0,γ

n ([n·]) + oP (1).

Thus, the claim follows from Theorem 5.2.1, 5.2.3, 5.2.5, or 5.2.7.

6.2.2 Open-end with Unknown Means and Variances

Theorem 6.2.2. Let one of the assumptions of Theorems 4.2.9, 4.2.10, 4.2.11, or 4.2.12 and one of
the assumptions on the Theorems 5.2.9, 5.2.10 , 5.2.11, or 5.2.12 be fulfilled where we assume that
dµ,l,i = dσ,l,i ≡ 0. Let additionally for l = 1, 2 and some λ′ > 0 hold that

ml,n

 ∞∑
j=1

∑
i∈Mn,l

(b
(l)
i )r3−l

#(I
(l)
i ∩ [1,n+ nm2i+1])

(2rl)j

1/r3−l

= O(n1/2m−λ
′
) (6.2.3)

and ∑
i∈Mn,0

b
(0)
i max

k>[nm]

#I
(0)
i ∩ [1,n+ k]

k − [nm]
= O(n1/2m−λ

′
). (6.2.4)

as n → ∞, followed by m → ∞. Then, Theorem 2.2.5 holds true if we replace τ
(o)
n,ι,0,0,γ by

τ
(o)
n,ι,4+l1+4l2,0,γ

.

Proof. Firstly, we obtain that

P (τ
(o)
n,ι,4+l1+4l2,γ

<∞) = P

(
sup
z∈[0,1]

uι((·)−γW (·))(z) ≥ cα

)
+ o(1)

+ P

(
max

1≤k≤mn
uι(B̃

4+l1+4l2,0,γ
n )(k) < cα, max

k>nm
uι(B̃

4+l1+4l2,0,γ
n )(k) ≥ cα

)
.
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Using the notation of Theorem 6.2.1 we get

B̃4+l1+4l2,0,γ
n (k) = B̃l2,0,γ

n (k) +
n

n+ [n·]

 1√
n

n+[n·]∑
i=n+1

Ri,[n·] −
[n·]
n
√
n

n∑
i=1

Ri,[n·]

 .

Using the arguments of the proof of Theorem 4.2.9, 4.2.10, 4.2.11, or 4.2.12 it remains to show that

max
k>mn

∣∣∣∣∣∣
3∑
l=1

n+[n·]∑
i=1

1− σ1,iσ2,i

σ̂
(l2)
1,i,[n·]σ̂

(l2)
2,i,[n·]

Rli([n·]+n)nZ(l1)

∣∣∣∣∣∣
=

2∑
l=1

OP

ml,n

 ∞∑
j=1

∑
i∈Mn,l

(b
(l)
i )r3−l

#(I
(l)
i ∩ [1,n+ nm2i+1])

(2rl)j

1/r3−l


+OP

 ∑
i∈Mn,0

b
(0)
i max

k>[nm]

#I
(0)
i ∩ [1,n+ k]

k − [nm]


which is equal to oP (

√
n) with (6.2.3) and (6.2.4). Thus, we get with the arguments of Theorem 6.2.1

that

P

(
max

1≤k≤mn
uι(B̃

4+l1+4l2,0,γ
n )(k) < cα, max

k>nm
uι(B̃

4+l1+4l2,0,γ
n )(k) ≥ cα

)
= P

(
sup
x>m

uι

(
wγG1[0,m](·)− [wγ(·) ·

·+ 1
W (1) + δNm−λ]1{·≥m}

)
(x)

− sup
0≤x≤m

uι(wγG)(x) ≥ ε
)

+ o(1)

as n→∞, followed by m→∞, N →∞, and ε→ 0, where G(·) = 1
1+· (W (1 + ·)− (1 + ·)W (1)),

δ = sign(W (1)), and λ ∈ (0,λ′ ∧ 1
2 ]. Here we use the arguments of the proof of the Theorem 5.2.9,

Theorem 5.2.10, Theorem 5.2.11, or Theorem 5.2.12 combined with the arguments of the proof of
Theorem 2.2.5 the claim follows.
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6.3 Examples

In this subsection, we continue with the two examples (IID2) and (NED2). Thereby, we focus on
different parameter settings which we will investigate by Monte–Carlo simulations in the next section.
We assume the following model

µl,i = µl0 +

Rµ,l,n∑
j=1

∆µ,l,j1{i≤k∗µ,l,j} and σ2
l,i = σ2

l0 +

Rσ,l,n∑
j=1

∆σ,l,j1{i≤k∗σ,l,j}, (6.3.1)

where it holds for u ∈ {µ,σ} that Ru,l,n ≥ 0, ∆u,l,j 6= 0 and 0 = k∗u,l,0 < k∗u,l,1 < . . . < k∗u,l,Ru,l,n <

k∗u,l,Ru,l,n+1 = Nn. Here, Nn ∈ {n, n(1 +m),∞} depends on the considered procedure: a posteriori,

closed-end, or open-end. In addition, we assume that k∗u,l,i+1 − k∗u,l,i → ∞ as n → ∞ for all
i = 1, . . . ,Ru,l,n − 1.

6.3.1 Constant Parameters

In this sub-subsection, we discuss some examples under the assumption that the parameters µl,n and
σl,n are constant, i.e., Rµ,l,n ≡ Rσ,l,n ≡ 0, such that the main results of this section can be applied.

Using the weighting sample mean and weighting sample variance,

µ̂
(1)
l,n = n−1

n∑
i=1

wi,nZl,i and (σ̂
(1)
l,n )2 = n−1

n∑
i=1

wi,n(Zl,i − µ̂
(1)
l,n)2 (6.3.2)

with deterministic, positive weights {wi,n} fulfilling
∑n

i=1wi,n = n for all n ∈ N and
∑n

i=1w
2
i,n ∼ n.

Under (IID) the assumptions of Theorem 4.1.2 and Theorem 5.1.1 are fulfilled, see Sub-subsections
4.3.1 and 5.3.1. In particular, since µ̂l − µl = OP (n−1/2) and σl − σ̂l = oP (1), the rate assumptions
(6.1.3) and (6.1.4) of Theorem 6.1.1 are satisfied. The necessary consistent LRV estimate is given
by Theorem 6.1.5, where its assumptions are fulfilled if we additionally provide Assumption (LRV).
Thus, we can apply Theorem 6.1.1 and use φγι,9,9 to test whether the correlation is constant or not.
With the same line of arguments we get the same result under Assumption (NED2), see p. 112.

In the next example we consider the sequences of weighted sample mean and of sample variances,{
µ̂

(2)
l,k

}
=

{
k−1

k∑
i=1

wi,kZl,i

}
and

{
(σ̂

(2)
l,n )2

}
=

{
k−1

k∑
i=1

(Zl,i − µ̂
(2)
l,k )2

}
(6.3.3)

for k = 1, . . . ,n, n ∈ N, where the weights {wi,k} fulfill the previous conditions. To avoid that the
test statistic B14

n (z) was not defined (0,1/n], since the denominator of

ρ̂14,[nz] =

∑[nz]
i=1(Xi − µ̂(2)

1,[nz])(Yi − µ̂
(2)
2,[nz])√∑k

i=1(Zl,i − µ̂
(2)
l,[nz])

2
∑k

i=1(Y1,i − µ̂(2)
2,[nz])

2

would be zero, we redefine w. l. o. g.

B14
n (z) =

{
0, if z ∈ [0,2/n],

wγ

(
[n·]
n

)
[n·]√
n

(
ρ̂14,[·n] − ρ̂14,n

)
, if z ∈ (2/n,1].

Then, under Assumption (IID2) or (NED2) the assumptions of Theorem 4.1.6 and Theorem 5.1.4 are
fulfilled. In particular Assumption (PEE2) is fulfilled with N = Nn = n1/2−ε, ε ∈ (0,12) for each
parameter µl and σl such that δµ,l = δσ,l = 1−2ε

4 . Thus, (6.1.3) follows by Remark 6.1.2 and (6.1.4)
is satisfied by setting

I
(0,2)
j =


(0,n1/2−ε], if j = (1,1,1,1),

(n1/2−ε,n], if j = (2,2,2,2),
∅, else

and b
(3−l)
1,j =


1, if j = (1,1,1),

n−1/2+ε, if j = (2,2,2,2),
1, else.
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We get the corresponding consistent LRV estimate D̂10 by Theorem 6.1.7 with ρ̃i ≡ ρ̂14,n and
q = o(n1/2) if Assumption (LRV2) is satisfied.

In analogy, we can show under Assumption (IID2) or (NED2) combined with Assumption (LRV)

that τ
(c)
n,ι,9,9,γ and τ

(o)
n,ι,9,9,γ converge as given in Theorem 6.2.1 and Theorem 6.2.2, respectively. If

we combine Assumption (IID2) or (NED2) with Assumption (LRV2) we obtain the convergence of

τ
(c)
n,ι,14,10,γ and τ

(o)
n,ι,14,10,γ , too.

6.3.2 Non-constant Parameters

In this sub-subsection, we present examples where the time series {Xn} and {Yn} possess structural
breaks in the means and the variances. Firstly, we consider the case where the change-points are
known before we consider the case of unknown change-points.

Known Change-Point in the Parameter Firstly, we consider the estimates

µ̂
(3′)
l,i,n = (k∗µ,l,r − k∗µ,l,r−1)−1

k∗µ,l,r∑
k=k∗µ,l,r−1+1

wi,kµ,l,r−kµ,l,r−1
Zl,k (6.3.4)

for i ∈ (k∗µ,l,r−1, k
∗
µ,l,r] and{

(σ̂
(4b)
l,i,k)

2
}

=

(k ∧ k∗σ,l,r − k∗σ,l,r−1)−1

k∧k∗σ,l,r∑
v=k∗σ,l,r−1+1

(Zl,v − µ̂
(3′)
l,i,n)2

 (6.3.5)

for i ∈ (k∗σ,l,r−1, k
∗
σ,l,r]. We already know from Sub-subsection 4.3.2 that under (IID2) or (NED2) the

assumptions of Theorem 4.1.13 are fulfilled if Rµ,l,n = o(n1/4). Furthermore, under these assumptions
we obtain that

1√
n

[n·]∑
i=1

((σ̂
(4b)
l,i,k)

2 − σ2
l,i) =

1√
n

[n·]∑
i=1

((σ̂
(4′)
l,i,k)

2 − σ2
l,i) + oP (1),

where (σ̂
(4′)
l,i,k)

2 is defined as in Sub-subsection 5.3.2 and differs from (σ̂
(4b)
l,i,k)

2 by using the exact mean
µl,i. The above equation immediately follows by the arguments used in the proofs of the results of Sub-
subsection 4.1.1. Thus, if Rσ,l,n = o(n1/4), we get under Assumption (IID2) or Assumption (NED2)
combined with Assumption (LRV2) that Theorem 6.1.1 is available, which follows by Sub-subsections
4.3.2 and 5.3.2.

Next, we consider the example where we replace µ̂
(3)
l,i,n by

µ̂
(4′)
l,i,k,n = (k ∧ k∗µ,l,r − k∗µ,l,r−1)−1

k∗µ,l,r∧k∑
k=k∗µ,l,r−1+1

wi,k∧k∗µ,l,r−k
∗
µ,l,r−1

Zl,k

∀i ∈ (k∗µ,l,r−1,k ∧ k∗µ,l,r], k = 2, . . . ,n, r = 1, . . . ,Rl + 1

which has also been considered in Sub-subsection 4.3.2. With the same arguments and assumptions
as in Sub-subsection 4.3.2 and Sub-subsection 5.3.2 we get the assumed conditions of Theorem 6.1.1
under Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2).

Unknown Change-Point in the Parameter Now, we suppose that the change-points of the
parameters are finite, unknown, and estimated. Furthermore, we suppose that Assumption (IID2) or
Assumption (NED2) is fulfilled. Then, using the corresponding settings of Sub-subsection 4.3.2 and
5.3.2, we can replace the above exact parameters by their estimates as given by Theorem 2.1.22 to
obtain that the assumptions of Theorem 6.1.1 are fulfilled.
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7 Simulation Study

In this section, we present the finite sample behavior of the tests φγι,ψ,l, of the stopping times τ
(c)
n,ι,ψ,l,γ ,

and of the change-point estimates k̂(ψ) under known and unknown, constant or non-constant param-
eters, and under H0 or some alternatives.

Simulation Setup The results, which will be presented in figures or tables, are based on 1000
repetitions, unless otherwise stated. Therefore, we consider the main model(

Xi

Yi

)
=

(
µ1,i

µ2,i

)
+

(
σ1,i 0
0 σ2,i

)( 1 0

ρi

√
1− ρ2

i

)(
ε̃1,i
ε̃2,i

)
with independent, centered, and normalized sequences {ε̃1,n} and {ε̃2,n}. Since the behavior of the
test statistics, of the change-point estimates, and of the stopping-times are similar for ρ1 and ρ2

with ρ1 = −ρ2, we just consider the negative correlations. Furthermore, we are talking about a strong
or high correlation if |ρ| ∈ (0.5,1], a moderate or middle correlation if |ρ| ∈ (0.3,0.5], and a weak or
small correlation if |ρ| ∈ (0,0.3]. Moreover, in the following we distinguish between

IID) ε̃1,1, . . . ,ε̃1,n,ε̃2,1, . . . ,ε̃2,n are i.i.d. N(0,1);

AR) {ε̃1,n} and {ε̃2,n} are independent and both AR(1) processes, i.e.

ε̃l,t = φlεl,t−1 + ξl,t with {ξl,n} i.i.d. N(0,1), φ1 = 0.4, φ2 = 0.5;

GARCH) {ε̃1,n} and {ε̃2,n} are independent and both GARCH(1,1) processes,

ε̃l,t = σ̃l,tξl,t and σ̃2
l,t = al,0 + al,1ε̃

2
l,t−1 + bl,1σ̃

2
l,t−1

{ξl,n} i.i.d. N(0,1), a1,0 = 0.8, a1,1 = 0.15, b1,1 = 0.05, a2,0 = 0.75, a2,1 = 0.15, b2,1 = 0.1;

and between

i) µ1,i ≡ µ2,i ≡ 0 and σ1,i ≡ σ2,i ≡ 1;

ii) µl,i =
∑Rµ

j=1 ∆µ,l,j1{[nθµ,l,j−1]≤i<[nθµ,l,j ]} and σ1,i ≡ σ2,i ≡ 1;

iii) σl,i = 1 +
∑Rσ

j=1 ∆σ,l,j1{[nθσ,l,j−1]≤i<[nθσ,l,j ]} and µ1,i ≡ µ2,i ≡ 0;

iv) µl,i =
∑Rµ

j=1 ∆µ,l,j1{[nθµ,l,j−1]≤i<[nθµ,l,j ]} and σl,i = 1 +
∑Rσ

j=1 ∆σ,l,j1{[nθσ,l,j−1]≤i<[nθσ,l,j ]}.

In the following sections we will specify ii) to iv) and if we talk about the constant parameter case,
we actually mean case i).

7.1 A Posteriori Testing

In this subsection we consider the behavior of the testing procedures φγι,ψ,l based on the test statistics

T ι,ψ,l,γn = fι

(
D̂
−1/2
l wγ

(
[n·]
n

)
[n·]√
n

(
ρ̂ψ,[·n] − ρ̂ψ,n

))
with ρ̂ψ,k =

1

k

k∑
i=1

Z
(ψ)
i,k

where

Z
(ψ)
i,k =


(Xi−µ1,i)·(Yi−µ2,i)

σ1,iσ2,i
, if ψ = 0,

(Xi−µ̂
(ψ)
1,i,k)·(Yi−µ̂

(ψ)
2,i,k)

σ1,iσ2,i
, if ψ = 1, . . . ,4,

(Xi−µ1,i)·(Yi−µ2,i)
σ̂
(ψ)
1,i,kσ̂

(ψ)
2,i,k

, if ψ = 5, . . . ,8
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and

Z
(ψ)
i,k = Z

(4+ψ1+4ψ2)
i,k =

(Xi − µ̂(ψ1)
1,i,k) · (Yi − µ̂

(ψ1)
2,i,k)

σ̂
(ψ2)
1,i,kσ̂

(ψ2)
2,i,k

for ψ1,ψ2 = 1, . . . ,4.

Firstly, we specify the parameter estimates, then the corresponding LRV estimates, the weighting
function wγ , and finally the detection function fι, before we will present the behavior of the test
statistics.

Parameter Estimates In the following, we focus on the mean estimates µ̂
(1)
l,n , µ̂

(2)
l,k , µ̂

(3)
l,i,n, and µ̂

(4)
l,i,k

which are defined in (4.3.2) on page 82 (sample mean), in (4.3.3) on page 82 (cumulative average),
in (4.3.5) on page 85 (piecewise sample means), and in (4.3.11) on page 86 (piecewise cumulative
averages) with weights wi,k ≡ 1, respectively. For the variance we focus on the estimates defined in
(5.3.2) on page 112 (sample variance), in (5.3.3) on page 113 (cumulative average of the squares), in
(5.3.5) on page 113 (piecewise sample variances), and in (5.3.6) on page 113 (piecewise cumulative
averages of the squares) with weights wi,k ≡ 1, respectively. Furthermore, we use the exact means for

Z
(ψ)
i,k , ψ = 5, . . . ,8, and their corresponding variance estimates. The piecewise estimates depend on

change-point estimates for the corresponding change-points in the parameters. In this subsection, we
use change-point estimates for the change-points in the parameter types of the form defined in (2.1.33)
with βn =

√
n. In particular, in the case of unknown means and variances, ψ > 8, the change-point

estimates of structural breaks in the variances depend on the change-point estimates of the structural
breaks in the means. In addition to these estimates we will use the sliding window estimate type with
h = n−3/5 for the means which is defined in (4.3.14) in the case of ψ = ∗.

LRV Estimates The LRV estimates depend on the choice of the parameter estimates, i.e., the
index l depends on ψ. More precisely, we use

D̂l = n−1
n∑
i=1

n∑
j=1

k

(
i− j
qn

)
(W

(l)
i −W (l))(W

(l)
j −W (l)) (7.1.1)

with

W
(ψ)
i =

{
Z

(ψ)
i , if ψ = 0,1,3,5,9, . . . ,12, W

(ψ)
i =

{
Z

(ψ−1)
i , if ψ = 2,4,

W
(ψ)
i =


Z

(ψ−1)
i − [(Xi − µ1,i)/(σ̂

(ψ−5)
1,i )2 + (Yi − µ2,i)/(σ̂

(ψ−5)
2,n )2]/2, if l = 6,8,

Z
(ψ−4)
i − [(Xi−µ̂

(ψ1)
1,i )/(σ̂

(ψ2−1)
1,i )2+(Yi−µ̂

(ψ1)
2,i )/(σ̂

(ψ2−1)
2,n )2]

2 , if
ψ = 4 + ψ1 + 4ψ2,

ψ2 = 2,4,

the Bartlett kernel k, and the bandwidth qn = log(n). For ψ = ∗ we use D̂1. Thus, some LRV
estimates are equal to each other, e.g. D̂1 = D̂2. Since we use only one LRV estimate for one ψ, we
will omit the index l of the test statistic and detector in the following.

Weighting Function Figure 3 shows the weighting function

wγ(z) = (z · (1− z))−γ , γ ∈ [0, 0.5),

which will be used in the following. With this weighting function we can highlight the beginning
and the end of the process to detect early and late changes better. γ = 0.5 is excluded since
supz∈(0,1)wγ(z)|B(z)| would be infinite almost surely.

Detection Function Later, we will consider the asymptotic size of the detectors. Therefore, we
have to specify the function fι. In the following, we focus on the three functions

f1(g(·)) = sup
z∈[0,1]

|g(z)|, f2(g(·)) =

(∫ 1

0
|g(z)|2dz

) 1
2

, f3(g(·)) =

∫ 1

0
|g(z)|dz, (7.1.2)
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Figure 3: The graph of wγ with γ = 0 (black), γ = 0.15 (red), γ = 0.25 (green), γ = 0.45 (blue), and
γ = 0.49 (cyan).

where it holds that f1(g) ≥ f2(g) ≥ f3(g). Furthermore, the test statistic φi1,·(X,Y ) is more sensitive
for single outliers than φi2,·(X,Y ) for i2 > i1, i1,i2 ∈ {1,2,3}.

In the Sections 2, 4, 5, and 6 we have seen that the test statistics converge towards fι(Bγ(·)) with
Bγ(·) = wγ(·)B(·), where B(·) is a standard Brownian bridge and wγ(z) = (z(1− z))−γ . Table 1
gives the approximate critical values such that P (fι(Bγ) > cα,γ) = α.

1− α
γ

0 0.25 0.45 0.49 0 0.25 0.45 0.49 0 0.25 0.45 0.49

0.9 1.215 1.804 2.678 3.037 0.59 0.886 1.267 1.372 0.499 0.767 1.113 1.205
0.95 1.351 1.982 2.898 3.272 0.68 1.018 1.445 1.558 0.584 0.893 1.289 1.396
0.99 1.616 2.34 3.338 3.751 0.859 1.279 1.808 1.946 0.75 1.149 1.652 1.788

Table 1: Critical values cα,γ based on 40000 replications of f1(Bγ), f2(Bγ), and f3(Bγ) (from left to right),
where Bγ was approximated on a grid of 10000 equi-spaced points in [0; 1].

7.1.1 Influence of the Mean Estimates under H0

In this subsection we consider the influence of the mean estimates on the test statistics. That there
is an influence through the mean estimation becomes obvious in the following IID) example with
ρi ≡ 0.5, σ1,i = σ2,i ≡ 1, and n = 1000 presented in Figure 4. Since the LRV is equal to 1 + ρ2

0

for each process, we drop this factor. On the one hand, the influence of structural breaks in the mean
is small if the structural breaks are only in one time series, on the other hand, it is high if shifts
in the means occur simultaneously in both time series, cf. the last row of Figure 4. Furthermore, it
is obvious that the two processes using change-point estimates in the means behave like the process
which depends on the exact means.

Marginal Distributions To begin with, we look at the constant parameter case i). Figure 5 and
Figure 6 show the empirical marginal distribution of a Brownian bridge, B0,0

n , B1,0
n , B2,0

n , B3,0
n ,

B4,0
n , and B∗,0n in the cases of IID) and of GARCH), respectively.

Firstly, we see that all the marginal distributions of the test statistics approximate those of the
Brownian bridge similarly well. In particular, the test statistics, which are based on change-point
estimates for the mean, are nearly the same as the corresponding ones of B1,0

n and B2,0
n .

Secondly, we recognize that all the test statistics seem to converge. Moreover, we identify that a high
correlation causes that there are more outliers at the beginning and the end of the processes B·,0n
which implies the left-skewed curves. Furthermore, we note that the curves for a positive correlation
are symmetric to the plotted one. In particular, the curves are a little right-skewed in cases of high
correlation.

In the case of GARCH) the empirical marginal distributions are quite similar to the IID) case. In
the case of AR) with n = 100 the mean estimates untruly register structural breaks in the mean. As
a consequence the detectors B1,0

n and B2,0
n differ from the detectors B3,0

n and B4,0
n . In particular,
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µ1,i = µ2,i ≡ 0
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Figure 4: The left column contains the graphs of two fixed i.i.d. N(·,1)–processes with correlation ρ0 = 0.5. The

right column contains the processes D−1/2 k√
n
|ρ̂ψ,k − ρ̂ψ,n| with ψ equal to 0 (red), 1 (black), 2

(gray), 3 (black dotted), 4 (gray dotted), and ∗ (blue).
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Figure 5: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B0,0

n (orange), B1,0
n (yellow), B2,0

n (green), B3,0
n (blue), B4,0

n (cyan),
and B∗,0n (black) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n
is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is
approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by
the ’R’-function ’LOESS’. For B3,0

n and B4,0
n we use βn =

√
n. For B∗,0n we use h = n−3/5.
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Figure 6: Caption as of Figure 5 with 1000 repetitions of case c).
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B4,0
n has many outliers. This is pandered by high positive or high negative correlation. For higher

sample sizes like n = 500 or n = 1000 the change-point detectors for the mean work almost exactly
such that B1,0

n and B2,0
n are nearly equal to B3,0

n and B4,0
n , respectively.

Now, we consider the cases of non-constant means ii) but known constant variances σl,i = 1 under
H0 with the mean settings

µ1,i =

{
1, if i ≤ n/4,
0, else

and µ2,i ≡ 0, (Iµ)

µ1,i =

{
1, if i ≤ n/4,
0, else

and µ2,i =

{
1, if i ≤ n/4,
0, else,

(IIµ)

µ1,i =

{
4, if i ≤ n/2,
0, else

and µ2,i =

{
1, if i ≤ n/4,
0, else.

(IIIµ)

We already know from Remark 4.1.5 that the tests based on B1,0
n and B2,0

n are not useful in this
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Figure 7: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B0,0

n (orange), B1,0
n (yellow), B2,0

n (green), B3,0
n (blue), B4,0

n (cyan),
and B∗,0n (black) are calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n is taken
as 100, 500, and 1000 in the left, middle, and right column. A column contains the mean models
(Iµ), (IIµ), and (IIIµ). Each Brownian bridge is approximated by a Fourier series with 1000 supporting
points and the quantile curve is smoothed by the ’R’-function ’LOESS’. For B3,0

n and B4,0
n we use

βn =
√
n. For B∗,1,0n we use h = n−3/5.
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setting since the limit depends on the unknown structural breaks in the means. Nevertheless, we will
also consider their empirical marginal distribution to verify the influence.
Since the correlation ρ has the same influence on the detectors as under the constant mean setting,
we will just consider the case of ρi ≡ 0. Figure 7 shows that a small structural break in the mean
induces nearly no problems in the asymptotic behavior in the case of n = 1000. Thus, all quantiles
of the marginal distribution of the five processes are near the exact quantiles in the cases displayed
in (Iµ) and (IIµ). In cases of high structural breaks in the mean such as in (IIIµ) only the processes
based on the sliding window estimation or based on the change-point estimation work well, cf. row
three of Figure 7.

Empirical Size Since the empirical sizes of the tests in the cases of IID), AR), and GARCH) are
quite similar, we will only focus on the case of AR). In this case combined with case i) the empirical
size of each detector, with few exceptions, is near the postulated 5%, cf. Table 2. Furthermore, the
detectors based on f1 are slightly conservative for n = 100. We get similar results in the cases of
IID) and of GARCH). In particular, the value of the constant correlation ρ is independent of the
behavior of the test statistics.

f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.9

100 φγι,0 .031 .03 .037 .03 .047 .043 .041 .036 .053 .048 .036 .031
φγι,1 .028 .031 .035 .028 .052 .046 .037 .034 .049 .044 .031 .026
φγι,6 .031 .034 .028 .02 .054 .047 .039 .038 .052 .05 .037 .034
φγι,23 .029 .027 .031 .027 .046 .042 .033 .031 .049 .047 .033 .029
φγι,24 .034 .038 .034 .026 .049 .046 .043 .041 .05 .048 .038 .036
φ∗,γi .05 .051 .054 .04 .081 .077 .067 .065 .078 .072 .062 .061

500 φγι,0 .048 .053 .082 .077 .062 .061 .058 .057 .058 .061 .056 .053
φγι,1 .051 .054 .082 .073 .063 .059 .057 .056 .06 .06 .054 .052
φγι,6 .054 .054 .064 .057 .06 .063 .057 .056 .062 .062 .055 .053
φγι,23 .052 .054 .082 .073 .063 .059 .057 .056 .06 .06 .054 .052
φγι,24 .055 .054 .064 .057 .06 .063 .057 .056 .062 .062 .055 .053
φ∗,γi .074 .088 .109 .09 .086 .085 .087 .087 .082 .083 .079 .076

ρ = −0.5

100 φγι,0 .028 .028 .029 .024 .055 .051 .04 .039 .056 .05 .043 .04
φγι,1 .027 .023 .029 .022 .053 .051 .042 .039 .052 .048 .042 .041
φγι,6 .036 .032 .026 .015 .061 .054 .044 .042 .053 .05 .044 .04
φγι,23 .023 .02 .025 .018 .049 .05 .036 .034 .044 .041 .034 .034
φγι,24 .035 .031 .027 .019 .05 .046 .038 .035 .046 .044 .036 .032
φ∗,γi .043 .045 .043 .037 .087 .074 .061 .061 .079 .065 .053 .049

500 φγι,0 .055 .05 .068 .055 .059 .06 .055 .055 .058 .057 .054 .053
φγι,1 .054 .05 .06 .056 .055 .056 .055 .051 .055 .056 .053 .053
φγι,6 .057 .053 .053 .038 .054 .054 .049 .047 .052 .052 .048 .047
φγι,23 .054 .05 .06 .056 .054 .055 .054 .051 .054 .055 .053 .053
φγι,24 .057 .052 .053 .038 .053 .053 .049 .047 .052 .052 .049 .047
φ∗,γi .079 .086 .099 .087 .084 .089 .086 .082 .083 .085 .078 .076

ρ = 0

100 φγι,0 .026 .023 .016 .013 .053 .051 .042 .04 .053 .049 .043 .04
φγι,1 .028 .025 .017 .01 .058 .05 .04 .037 .052 .048 .04 .038
φγι,6 .031 .027 .015 .01 .056 .051 .035 .035 .047 .041 .035 .034
φγι,23 .027 .022 .012 .009 .052 .043 .037 .035 .048 .045 .035 .031
φγι,24 .031 .029 .018 .011 .051 .045 .034 .032 .044 .04 .031 .029
φ∗,γi .032 .028 .024 .016 .094 .087 .072 .068 .088 .081 .068 .066

500 φγι,0 .048 .047 .053 .048 .055 .057 .056 .054 .055 .057 .053 .051
φγι,1 .047 .045 .046 .043 .055 .053 .052 .049 .053 .052 .053 .049
φγι,6 .049 .043 .044 .04 .052 .053 .049 .047 .048 .049 .047 .043
φγι,23 .047 .045 .045 .042 .054 .053 .052 .049 .053 .052 .052 .048
φγι,24 .049 .044 .048 .042 .052 .055 .05 .048 .049 .05 .048 .044
φ∗,γi .079 .083 .087 .07 .078 .08 .075 .072 .069 .07 .067 .064

Table 2: Empirical sizes of the detectors in the case of AR) under constant parameters.
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Now, we focus on the empirical size under structural breaks in the mean, i.e. under the case ii).
Firstly, no detector unjustified rejects H0 very often in the cases of (Iµ), (IIµ), or (IIIµ). Therefore,
we just focus on case (IIIµ), cf. Table 3. It turns out that the test φγι,1, which is based on the sample
mean, is too conservative except for φγ1,1 in the case of small correlations. The other tests, and even
φγι,3, work well.

f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

100 φγι,0 .025 .024 .032 .03 .04 .037 .035 .034 .043 .037 .035 .034

φγι,23 .026 .024 .028 .025 .038 .036 .03 .03 .04 .036 .03 .029

φγι,24 .032 .033 .029 .017 .047 .041 .035 .034 .049 .046 .036 .036

φ∗,γi .028 .027 .029 .021 .046 .042 .033 .032 .043 .042 .033 .03
1000 φγι,0 .038 .038 .062 .056 .051 .051 .049 .046 .05 .051 .047 .046

φγι,23 .043 .041 .065 .069 .053 .054 .048 .047 .056 .057 .051 .05

φγι,24 .044 .045 .061 .059 .058 .057 .052 .053 .058 .057 .053 .052

φ∗,γi .044 .044 .059 .062 .047 .048 .046 .047 .053 .055 .05 .05

100 φγι,0 .024 .024 .023 .018 .04 .036 .031 .031 .04 .036 .03 .029

φγι,23 .025 .021 .018 .015 .041 .041 .034 .032 .043 .042 .034 .032

φγι,24 .028 .032 .028 .022 .051 .044 .039 .038 .049 .047 .039 .037

φ∗,γi .02 .021 .016 .012 .039 .037 .033 .033 .042 .039 .036 .032
1000 φγι,0 .044 .044 .055 .056 .052 .053 .047 .046 .049 .049 .046 .046

φγι,23 .041 .041 .057 .057 .054 .053 .05 .045 .055 .057 .053 .052

φγι,24 .053 .057 .062 .046 .059 .062 .059 .057 .062 .063 .058 .056

φ∗,γi .052 .046 .06 .057 .056 .058 .05 .049 .054 .051 .051 .051

100 φγι,0 .019 .013 .01 .005 .035 .03 .025 .023 .032 .03 .024 .023

φγι,23 .017 .007 .004 .002 .038 .034 .028 .025 .038 .033 .029 .024

φγι,24 .023 .018 .01 .007 .048 .045 .031 .027 .047 .043 .035 .027

φ∗,γi .027 .023 .008 .002 .039 .034 .029 .027 .035 .03 .026 .023
1000 φγι,0 .044 .045 .045 .038 .047 .044 .041 .041 .043 .046 .042 .041

φγι,23 .041 .044 .037 .034 .051 .056 .053 .049 .048 .048 .046 .046

φγι,24 .05 .054 .045 .04 .063 .063 .058 .056 .06 .06 .057 .054

φ∗,γi .053 .051 .042 .033 .055 .054 .051 .05 .049 .05 .048 .048

Table 3: Empirical sizes of the detectors in the case of IID) combined mean setting (IIIµ)
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7.1.2 Influence of the Variance Estimates under H0

In this subsection, we consider the influence of the variance estimates on the test statistics. An
influence of the variance estimates becomes obvious through Figure 8 which presents an IID) example
with ρi ≡ 0.5, µ1,i = µl,i ≡ 0, n = 1000, and different variances. As the theoretical results

postulate, if the variances are constant, the four processes Bψ,0
n with ψ = 5, . . . ,8 behave as B0,0

n .
In contrast, if the variances change, only B8,0

n is useful and behaves as B0,0
n . To get a more precise

σ2
1,i = σ2

2,i ≡ 1
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Figure 8: The left column contains the graphs of two fixed i.i.d. N(0,·)–processes with correlation ρ0 = 0.5. The

right column contains the processes D
−1/2
ψ

k√
n
|ρ̂ψ,k − ρ̂ψ,n| with ψ equal to 0 (red), 5 (black), 6

(gray), 7 (black dotted), and 8 (gray dotted).

impression on how good the different testing procedures work, we firstly analyze the (asymptotic)
marginal distributions of the processes.

Marginal Distribution Firstly, we look at case i). Figure 9 and Figure 10 show the empirical
marginal distribution of a Brownian bridge, B0,0

n , B5,0
n , B6,0

n , B7,0
n , and B8,0

n in cases of IID) and
of GARCH), respectively.
The marginal distributions of B6,0

n and of B8,0
n do not approximate the marginal distribution of

the Brownian bridge well in the case of ρ = −0.9 at the beginning. In contrast, each approximation
works well for ρ = 0. In the latter case, the main influence of the variance estimates is asymptotically
not visible, cf. Remark 5.1.6.
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Figure 9: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B0,0

n (orange), B5,0
n (yellow), B6,0

n (green), B7,0
n (blue), and B8,0

n

(cyan) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n is taken as
100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is approximated by
a Fourier series with 1000 supporting points and the quantile curve is smoothed by the ’R’-function
’LOESS’.
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Figure 10: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal
distribution of the Brownian Bridge (red), B0,0

n (orange), B5,0
n (yellow), B6,0

n (green), B7,0
n (blue),

and B8,0
n (cyan) on [0,1] calculated by 1000 repetitions of AR-processes defined in the case of

c). n is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is
approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by
the ’R’-function ’LOESS’.
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Secondly, the convergence of each test statistic seems to take place, even in the case of ρ = −0.9.
In case GARCH) the empirical marginal distributions is quite similar to case IID). In case AR) we
notice a little more fluctuation in the empirical marginal distribution.

Now, we consider case iii) with known constant means µl,i = 0 but non-constant variances

σ2
1,i =

{
2, if i ≤ n/2,
1, else

and σ2
2,i ≡ 1, (Iσ)

σ2
1,i =

{
1, if i ≤ n/2,
2, else

and σ2
2,i =

{
1, if i ≤ n/4,
2, else,

(IIσ)

or

σ2
1,i =

{
1, if i ≤ n/2,
2, else

and σ2
2,i =

{
0.5, if i ≤ n/4,
1, else.

(IIIσ)

Figure 11 shows the empirical marginal distribution of our processes under the structural breaks in
the variance. The process B6,0

n is more concentrated in zero than the standard Brownian bridge
in cases of (Iσ) and (IIIσ). In case of (IIσ) the process B6,0

n , (green), possesses a higher fluctuation
than the Brownian bridge. The process B5,0

n , (yellow), behaves quite similarly to B6,0
n . Additionally,

before the change in the variance appears, B5,0
n is a little more [less] fluctuated than a standard

Brownian bridge in cases of (Iσ) and (IIIσ) [in the case of (IIσ)]. The empirical marginal distribution
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Figure 11: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal
distribution of the Brownian Bridge (red), B0,0

n (orange), B5,0
n (yellow), B6,0

n (green), B7,0
n (blue),

and B8,0
n (cyan) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n

is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is
approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by
the ’R’-function ’LOESS’.
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curves of the processes B7,0
n and B8,0

n , which are based on change-point estimates for the variances,
run closely along those of the standard Brownian bridge.

Empirical Size Now, we focus on the empirical sample size of the tests which are based on the
variance estimates. Firstly, we note that the cases a), b), and c) are quite similar. Thus, we will only
focus on the AR-case b) in the following.
φγι,0 and φγι,1 are equal, which is no surprise since the variance estimates are canceled by the LRV
estimates. Secondly, we note that φγ1,6 and φγ1,8 falsely reject H0 quite often in the case of high
correlations and small sample sizes. For n = 1000 and ρ = −0.9, these two tests only work well for
γ = 0. This behavior has already been suggested by the empirical marginal distribution curves. φγι,23

is conservative in the case of high correlations or ρ = 0 with small sample size. Overall, the tests
based on f2 or f3 hold a better approximation for the given level of 5%.

f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.9

100 φγι,0 .026 .027 .035 .031 .052 .048 .04 .036 .054 .05 .039 .036
φγι,1 .026 .027 .035 .031 .052 .048 .04 .036 .054 .05 .039 .036
φγi,6,5 .17 .249 .293 .278 .093 .097 .103 .107 .073 .068 .065 .062

φγι,23 .006 .007 .006 .006 .01 .006 .006 .004 .009 .008 .004 .003
φγi,8 .195 .275 .308 .294 .087 .088 .094 .098 .075 .072 .059 .058

1000 φγι,0 .041 .043 .063 .068 .046 .045 .04 .039 .045 .045 .043 .039
φγι,1 .041 .043 .063 .068 .046 .045 .04 .039 .045 .045 .043 .039
φγi,6,5 .06 .103 .253 .264 .058 .057 .051 .05 .053 .053 .051 .05

φγι,23 .026 .026 .038 .042 .028 .026 .026 .025 .028 .028 .026 .024
φγi,8 .06 .105 .25 .263 .056 .057 .053 .053 .052 .052 .048 .048

ρ = −0.5

100 φγι,0 .02 .02 .029 .023 .042 .038 .031 .025 .045 .04 .028 .027
φγι,1 .02 .02 .029 .023 .042 .038 .031 .025 .045 .04 .028 .027
φγi,6,5 .076 .081 .071 .056 .075 .069 .063 .061 .072 .063 .054 .052

φγι,23 .009 .008 .011 .008 .022 .019 .016 .013 .018 .017 .015 .014
φγi,8 .058 .057 .059 .039 .05 .049 .038 .037 .049 .046 .037 .035

1000 φγι,0 .046 .046 .072 .065 .047 .046 .042 .042 .043 .045 .042 .041
φγι,1 .046 .046 .072 .065 .047 .046 .042 .042 .043 .045 .042 .041
φγi,6,5 .052 .054 .074 .067 .052 .051 .047 .047 .046 .046 .043 .042

φγι,23 .037 .033 .044 .044 .038 .037 .032 .032 .036 .038 .034 .033
φγi,8 .055 .054 .069 .061 .05 .052 .049 .049 .049 .045 .042 .04

ρ = 0

100 φγι,0 .024 .028 .029 .019 .054 .052 .045 .04 .057 .053 .041 .039
φγι,1 .024 .028 .029 .019 .054 .052 .045 .04 .057 .053 .041 .039
φγi,6,5 .051 .057 .037 .022 .062 .057 .053 .048 .064 .058 .048 .048

φγι,23 .024 .021 .016 .008 .051 .047 .038 .037 .05 .044 .038 .036
φγi,8 .05 .042 .02 .013 .059 .051 .041 .038 .052 .05 .04 .038

1000 φγι,0 .054 .055 .054 .049 .059 .059 .059 .058 .056 .058 .055 .054
φγι,1 .054 .055 .054 .049 .059 .059 .059 .058 .056 .058 .055 .054
φγi,6,5 .06 .059 .047 .04 .059 .06 .058 .058 .054 .058 .056 .054

φγι,23 .052 .053 .049 .039 .054 .056 .058 .056 .054 .056 .053 .053
φγi,8 .058 .057 .046 .032 .057 .058 .056 .054 .055 .056 .054 .051

Table 4: Empirical sizes of the detectors in the AR-case b) combined with case i)

Now, we focus on the behavior of tests under the case of iii) with the settings displayed in (Iσ),
(IIσ), and (IIIσ). From Section 5, we already know that only the test φγi,8 is useful. Again, we
remark that the behaviors are similar under cases IID), AR), and GARCH). Hence, we will only
analyze the GARCH-case c) in the following, cf. Table 5. The tests φγi,8, i = 1, 2, 3, are conservative
for small correlations (ρ = 0), while φγ1,8 can not hold the given level α = 0.05 for high correlations
(ρ = −0.9). Overall, the test φγi,8 works well.
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f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.9

100 .023 .026 .035 .031 .048 .043 .036 .034 .046 .041 .037 .034
(Iσ) .215 .312 .332 .31 .091 .097 .102 .104 .073 .074 .064 .063
(IIσ) .193 .285 .297 .276 .077 .082 .083 .082 .065 .059 .05 .047
(IIIσ) .185 .275 .296 .282 .084 .088 .101 .098 .068 .067 .062 .06

1000 .039 .054 .076 .076 .054 .056 .056 .055 .057 .057 .054 .053
(Iσ) .087 .128 .289 .288 .069 .066 .063 .063 .058 .06 .057 .054
(IIσ) .073 .119 .278 .274 .06 .061 .059 .059 .057 .06 .058 .055
(IIIσ) .079 .131 .279 .277 .065 .067 .066 .063 .063 .062 .061 .059

ρ = −0.5

100 .025 .025 .029 .026 .046 .04 .034 .032 .043 .042 .037 .036
(Iσ) .049 .064 .059 .047 .047 .045 .039 .035 .046 .046 .038 .037
(IIσ) .06 .058 .054 .043 .061 .06 .052 .051 .057 .053 .043 .039
(IIIσ) .077 .09 .089 .078 .056 .053 .051 .049 .057 .051 .044 .042

1000 .041 .043 .065 .06 .049 .05 .051 .05 .055 .054 .052 .051
(Iσ) .048 .057 .079 .076 .061 .058 .056 .054 .054 .058 .053 .051
(IIσ) .047 .053 .061 .06 .047 .048 .05 .049 .05 .052 .052 .05
(IIIσ) .041 .041 .05 .057 .046 .047 .046 .045 .047 .05 .05 .049

ρ = 0

100 .014 .015 .018 .015 .037 .029 .029 .028 .041 .037 .03 .028
(Iσ) .031 .027 .013 .007 .039 .035 .031 .029 .038 .036 .028 .028
(IIσ) .043 .043 .023 .012 .052 .048 .038 .036 .053 .048 .038 .034
(IIIσ) .06 .055 .026 .012 .056 .056 .049 .048 .056 .056 .05 .046

1000 .039 .049 .062 .052 .05 .049 .05 .047 .044 .046 .041 .04
(Iσ) .043 .054 .06 .039 .058 .056 .052 .049 .045 .045 .04 .041
(IIσ) .035 .039 .03 .021 .034 .035 .037 .036 .029 .031 .028 .027
(IIIσ) .035 .035 .03 .018 .037 .037 .035 .036 .036 .036 .035 .033

Table 5: Empirical sizes in the GARCH-case c) in the settings (Iσ), (IIσ), and (IIIσ) of the detectors φγι,0 and

φγi,8. The empirical sizes of φγι,0 is in the first row of each block and is independent of the settings.

7.1.3 Influence of the Combination of Mean and Variance Estimates under H0

In this sub-subsection, we consider the test statistics which use the mean and variance estimates
B9,γ
n , B14,γ

n , B23,γ
n , and B24,γ

n and compare them with the test statistic B0,γ
n based on the known

parameters. The marginal distributions behave as in the sections before. If the means are constant,
the marginal distribution curves are alike the ones in the cases of Sub-subsection 7.1.2. If structural
breaks in the means or variances occur, the same impact as described in Sub-subsection 7.1.1 and
Sub-subsection 7.1.2 shows up.

Now, we consider the empirical size. Table 6 shows that the tests φγ2,· and φγ3,· work well with the
exception of φγ1,· in the case of high correlations (ρ = −0.9) and a large γ. In case of high correlation
only φγ1,9 can hold the given level of α = 0.05 for all γ ∈ {0, 0.25, 0.45, 0.49}. If additionally the

sample size is high (n = 1000), then every φ0
1,· works well. Overall, it seems that the tests φγ2,ψ and

φγ3,ψ hold the empirical size of 5% better than φγ1,ψ.
Now, we allow for structural breaks in the parameters. Table 7 presents the empirical sizes under

H0 of the non-useful tests φγι,9 and φγι,14 in the case of non-constant parameters with the settings
(IIµ) and (IIσ). It is confirmed that the tests are non-useful since they often untruly reject the null
hypothesis.

In the following, we focus on the empirical sizes of the tests φγι,23 and φγι,24, which respect
changes in the means and variances by change-point estimates. Tables 8–11 present their empirical
sizes under the mean setting (IIµ) combined with constant variances or variances fulfilling (Iσ)–(IIIσ).
Comparing their empirical sizes with the constant parameter setting, cf. Table 6, the structural breaks
in the means and variances are sufficiently well estimated such that the sizes are merely a little higher.
Additionally, we assert that in most cases the empirical sizes of φγι,23 are a little lower than the ones
of φγι,24. However, we can summarize that both test types work well.
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f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.9
100 φγι,0 .029 .029 .063 .06 .043 .041 .037 .037 .042 .04 .034 .033

φγι,9 .027 .032 .056 .049 .047 .044 .037 .037 .04 .041 .034 .03

φγι,14 .125 .241 .345 .337 .092 .099 .109 .109 .079 .077 .073 .072

φγι,23 .1 .15 .255 .271 .066 .07 .074 .076 .056 .058 .058 .052

φγι,24 .168 .271 .368 .35 .102 .108 .122 .124 .087 .087 .086 .082

1000 φγι,0 .055 .057 .077 .079 .052 .053 .052 .052 .055 .056 .053 .051

φγι,9 .054 .057 .077 .081 .056 .057 .055 .057 .053 .058 .057 .055

φγι,14 .077 .081 .321 .342 .074 .078 .069 .067 .072 .07 .065 .062

φγι,23 .076 .086 .161 .203 .071 .076 .069 .067 .066 .066 .06 .058

φγι,24 .081 .085 .317 .331 .077 .078 .071 .067 .069 .072 .065 .062

ρ = −0.5
100 φγι,0 .028 .035 .056 .049 .048 .051 .046 .043 .042 .041 .036 .035

φγι,9 .027 .038 .052 .046 .042 .043 .04 .036 .042 .04 .032 .032

φγι,14 .091 .116 .174 .169 .098 .098 .092 .087 .091 .094 .083 .079

φγι,23 .057 .069 .069 .065 .062 .057 .051 .051 .055 .055 .048 .046

φγι,24 .087 .119 .159 .149 .085 .088 .076 .073 .08 .077 .067 .062

1000 φγι,0 .056 .06 .079 .079 .061 .063 .057 .056 .051 .05 .05 .044

φγι,9 .05 .06 .078 .074 .059 .056 .054 .053 .05 .052 .046 .043

φγι,14 .067 .063 .076 .081 .065 .065 .059 .058 .061 .063 .061 .06

φγι,23 .069 .061 .073 .071 .062 .063 .061 .062 .06 .06 .057 .057

φγι,24 .07 .064 .077 .076 .067 .067 .062 .06 .062 .063 .061 .059

ρ = 0
100 φγι,0 .019 .023 .041 .034 .057 .053 .048 .044 .048 .049 .046 .045

φγι,9 .023 .025 .038 .032 .052 .055 .049 .044 .054 .051 .047 .042

φγι,14 .068 .075 .062 .042 .078 .081 .084 .082 .086 .086 .077 .073

φγι,23 .04 .041 .038 .023 .061 .063 .058 .051 .066 .066 .059 .056

φγι,24 .054 .062 .055 .04 .077 .077 .066 .063 .071 .072 .067 .062

1000 φγι,0 .05 .05 .07 .063 .053 .052 .048 .045 .048 .048 .048 .045

φγι,9 .047 .047 .067 .065 .052 .053 .051 .048 .05 .052 .049 .047

φγi,14 .048 .05 .054 .047 .051 .05 .047 .046 .052 .051 .05 .048

φγι,23 .049 .044 .047 .037 .05 .048 .047 .043 .052 .053 .049 .048

φγι,24 .05 .048 .048 .039 .048 .048 .043 .043 .051 .052 .049 .046

Table 6: Empirical sizes of the detectors in the AR-case b) with constant parameters.
f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.5
100 φγι,0 .018 .025 .048 .037 .056 .052 .047 .045 .053 .05 .042 .038

φγι,9 .135 .127 .075 .054 .301 .282 .257 .245 .279 .268 .245 .235

φγι,14 .275 .279 .231 .181 .221 .219 .2 .197 .188 .18 .16 .154

1000 φγι,0 .06 .058 .075 .072 .055 .062 .059 .059 .055 .056 .055 .054

φγι,9 .997 .997 .994 .989 .997 .997 .996 .996 .997 .997 .997 .996

φγι,14 .778 .784 .699 .616 .689 .702 .697 .698 .666 .669 .663 .658

Table 7: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (IIµ) and (IIσ)
f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.75
100 φγι,0 .026 .033 .067 .066 .05 .047 .046 .046 .051 .048 .046 .044

φγι,23 .143 .172 .207 .189 .119 .111 .101 .102 .098 .094 .089 .084

φγι,24 .211 .255 .32 .299 .153 .143 .136 .135 .123 .119 .109 .108

1000 φγι,0 .051 .054 .092 .098 .051 .051 .048 .045 .047 .046 .046 .044

φγι,23 .09 .097 .157 .187 .085 .081 .077 .074 .072 .075 .072 .069

φγι,24 .097 .103 .31 .324 .081 .082 .078 .077 .07 .073 .068 .067

ρ = −0.5
100 φγι,0 .034 .036 .061 .06 .059 .058 .057 .055 .069 .065 .057 .053

φγι,23 .091 .086 .064 .048 .083 .078 .066 .064 .072 .069 .059 .055

φγι,24 .118 .124 .126 .107 .102 .1 .096 .094 .086 .081 .072 .069

1000 φγι,0 .053 .05 .074 .088 .055 .055 .055 .054 .055 .058 .057 .053

φγι,23 .068 .068 .068 .067 .065 .063 .062 .06 .064 .065 .061 .059

φγι,24 .067 .069 .082 .077 .068 .069 .062 .062 .061 .061 .059 .058

ρ = 0
100 φγι,0 .037 .03 .039 .027 .053 .052 .051 .047 .052 .054 .045 .042

φγι,23 .057 .055 .035 .023 .07 .069 .063 .06 .069 .066 .058 .057

φγι,24 .082 .085 .057 .04 .088 .09 .086 .083 .08 .08 .079 .077

1000 φγι,0 .056 .053 .067 .067 .057 .059 .058 .058 .061 .061 .059 .057

φγι,23 .057 .055 .043 .036 .062 .061 .065 .064 .061 .064 .061 .059

φγι,24 .06 .056 .047 .037 .063 .066 .067 .065 .062 .063 .063 .06

Table 8: Empirical sizes of the detectors in the AR-case b) with mean setting (IIµ)



f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.75
100 φγι,0 .021 .033 .06 .053 .05 .052 .054 .052 .053 .054 .052 .046

φγι,23 .11 .137 .196 .194 .083 .079 .075 .075 .068 .067 .065 .062

φγι,24 .182 .239 .339 .324 .107 .11 .112 .113 .09 .088 .08 .077

1000 φγι,0 .047 .048 .09 .09 .05 .052 .049 .048 .049 .05 .049 .047

φγι,23 .083 .084 .152 .181 .064 .065 .061 .061 .059 .059 .055 .053

φγι,24 .084 .085 .301 .33 .061 .06 .059 .058 .056 .054 .055 .053

ρ = −0.5
100 φγι,0 .026 .038 .057 .046 .053 .052 .048 .047 .052 .051 .045 .042

φγι,23 .063 .061 .07 .058 .063 .063 .052 .05 .063 .059 .053 .049

φγι,24 .087 .098 .132 .123 .071 .071 .065 .062 .069 .067 .063 .056

1000 φγι,0 .039 .047 .081 .084 .043 .046 .044 .044 .043 .045 .045 .043

φγι,23 .052 .053 .071 .065 .06 .057 .052 .052 .055 .055 .05 .049

φγι,24 .055 .057 .075 .077 .059 .058 .053 .053 .055 .056 .051 .05

ρ = 0
100 φγι,0 .018 .025 .029 .026 .051 .049 .04 .039 .05 .051 .04 .037

φγι,23 .037 .043 .03 .019 .06 .06 .052 .049 .057 .056 .047 .042

φγι,24 .05 .055 .043 .03 .076 .072 .065 .061 .072 .068 .059 .054

1000 φγι,0 .035 .036 .054 .063 .047 .048 .042 .043 .047 .046 .046 .042

φγι,23 .045 .045 .049 .037 .047 .052 .051 .048 .049 .052 .05 .047

φγι,24 .046 .049 .048 .035 .051 .051 .052 .05 .051 .055 .05 .05

Table 9: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (IIµ) and (Iσ)
f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.75
100 φγι,0 .027 .04 .056 .047 .052 .05 .047 .045 .05 .047 .045 .045

φγι,23 .152 .168 .199 .183 .115 .107 .096 .098 .092 .088 .078 .076

φγι,24 .231 .281 .329 .311 .129 .134 .133 .132 .107 .106 .095 .091

1000 φγι,0 .058 .055 .083 .086 .051 .052 .051 .049 .047 .051 .049 .047

φγι,23 .094 .085 .136 .165 .074 .077 .077 .073 .073 .074 .07 .067

φγι,24 .092 .095 .298 .319 .074 .077 .076 .074 .068 .069 .067 .063

ρ = −0.5
100 φγι,0 .018 .025 .048 .037 .056 .052 .047 .045 .053 .05 .042 .038

φγι,23 .085 .089 .072 .059 .075 .069 .068 .062 .06 .059 .057 .052

φγι,24 .121 .122 .139 .116 .081 .082 .076 .076 .076 .077 .069 .067

1000 φγι,0 .06 .058 .075 .072 .055 .062 .059 .059 .055 .056 .055 .054

φγι,23 .077 .075 .081 .069 .072 .069 .063 .061 .066 .065 .061 .061

φγι,24 .08 .085 .079 .08 .069 .068 .065 .064 .066 .066 .064 .06

ρ = 0
100 φγι,0 .024 .022 .026 .025 .038 .039 .036 .033 .039 .039 .034 .031

φγι,23 .058 .051 .024 .013 .06 .057 .054 .052 .056 .052 .047 .045

φγι,24 .088 .079 .052 .034 .077 .079 .069 .067 .069 .07 .064 .061

1000 φγι,0 .067 .063 .072 .068 .069 .076 .075 .072 .069 .071 .067 .063

φγι,23 .063 .067 .051 .039 .075 .08 .073 .072 .068 .071 .068 .066

φγι,24 .077 .071 .055 .046 .079 .078 .073 .072 .066 .07 .068 .065

Table 10: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (IIµ) and (IIσ)
f1 f2 f3

n
γ

0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

ρ = −0.75
100 φγι,0 .02 .025 .051 .045 .051 .045 .046 .044 .054 .055 .043 .038

φγι,23 .165 .178 .218 .19 .11 .108 .099 .098 .088 .085 .078 .073

φγι,24 .232 .28 .322 .295 .124 .123 .111 .109 .098 .092 .079 .076

1000 φγι,0 .049 .054 .084 .096 .05 .052 .045 .045 .046 .049 .048 .046

φγι,23 .082 .091 .153 .184 .073 .072 .064 .064 .061 .061 .059 .057

φγι,24 .081 .087 .302 .323 .076 .071 .06 .059 .065 .066 .061 .059

ρ = −0.5
100 φγι,0 .024 .023 .037 .033 .055 .056 .053 .049 .056 .054 .051 .05

φγι,23 .091 .092 .077 .057 .086 .081 .07 .065 .07 .064 .054 .054

φγι,24 .125 .132 .137 .118 .101 .094 .083 .081 .078 .076 .072 .068

1000 φγι,0 .034 .041 .077 .08 .051 .051 .048 .047 .051 .054 .048 .044

φγι,23 .053 .055 .062 .067 .056 .053 .057 .055 .054 .053 .051 .051

φγι,24 .054 .062 .074 .07 .057 .053 .055 .055 .05 .054 .052 .051

ρ = 0
100 φγι,0 .028 .028 .035 .026 .059 .059 .056 .054 .057 .057 .051 .049

φγι,23 .055 .054 .036 .015 .067 .064 .061 .059 .064 .062 .054 .052

φγι,24 .086 .082 .054 .033 .084 .083 .075 .074 .074 .074 .065 .062

1000 φγι,0 .061 .056 .077 .074 .068 .071 .067 .066 .067 .062 .062 .059

φγι,23 .059 .057 .057 .046 .064 .066 .062 .061 .061 .063 .061 .059

φγι,24 .059 .058 .058 .048 .064 .066 .066 .063 .063 .065 .061 .059

Table 11: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (IIµ) and (IIIσ).
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7.1.4 Asymptotic Power

In this subsection, we present the asymptotic power of the test statistics. In section 2, we have seen
that the limit of the detectors is a mapping of a Brownian bridge plus a deterministic function under
HLA. Under the local alternative of an AMOC model with a change-point at [nθ], θ ∈ (0,1), and a
change size of n−1/2∆ 6= 0 we obtain that the deterministic functions are of the following form

hθ(x) = Σ
−1/2
0 ∆

(
(x− θ)+ − x(1− θ)

)
with Σ

−1/2
0 > 0, (7.1.3)

which are plotted in Figure 12 for Σ0 = 1.
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Figure 12: The family of functions hθ as defined in (7.1.3) with Σ0 = 1 and ∆ > 0.

In a local, epidemic change-point setting with change-points at θ1, θ2, and change size n−1/2∆ we
obtain a deterministic function

h(θ1,θ2)(x) = Σ
−1/2
0 ∆

(
(x ∧ θ2 − θ1)+ − x(θ2 − θ1)

)
with Σ

−1/2
0 > 0. (7.1.4)

This family is plotted in Figure 13 for Σ0 = 1.
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Figure 13: The family of functions h(θ1,θ2) as defined in (7.1.4), where the left figure shows a part of the family
for a fixed θ1 = 0.3 and the middle one for a fixed θ2 = 0.7.

Finally, Figure 14 presents three examples for gradual change-point settings. All the previous alter-
natives have in common that the deterministic functions hθ, h(θ1,θ2), and hg are close to zero in the
neighborhood of zero and of one, which is due to the detector’s construction. While the maximum of
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Figure 14: Three examples for gradual-change functions with zero line (dotted): g1(x) = ∆ρx (solid), g2(x) =
∆ρ sin(2πx) (dashed), and g3(x) = ∆ρ(x1{x≤0.5} + (1− x)1{x≥0.5}) (longdash) on the left-hand side
and the corresponding graphs of hg on the right-hand side.

the absolute value of the deterministic function is at a change-point in an AMOC (epidemic) model,
there are different possibilities in a gradual change-point setting.

To imagine the curves of the empirical marginal distributions under alternatives, we just have
to add the curves of the deterministic function h pointwisely. This implies that under certain
alternatives certain procedures detect changes better or worse. For example, the detectors based on
B6,0
n or B8,0

n can detect early changes for ∆ρ < 0 and ρ0 = −0.9 better than late changes, while

B7,0
n can detect late changes better than early ones for ∆ρ < 0 and ρ0 = −0.9. Now, we focus on

the empirical power and consider the following change-settings

ρi = ρ0 + ∆ρ1{i>[nθρ]}, (7.1.5)

with

∆ρ ∈ {0.1, 0.25,0.5,0.75} and θρ ∈ {0.1, 0.25,0.5}.

Furthermore, we will only discuss the IID) case, since the power similarly behaves under the other
dependency cases. Moreover, we already note here that the power of each test increases for the change
size and the sample size, respectively. Additionally, the difference between some procedures is small
such that we will only present the best and the worst performance of the tests using the different
parameter estimates. More precisely, for each θρ and ι = 1, 2, 3 we plot for each ∆ρ the maximum
and the minimum of the empirical sizes of a group of tests. This group consists of tests which use
different weighting factors γ and different mean, or variance estimates.

Tests based on Unknown Means In the case of constant parameters with θ = 0.5, the power of
the best and worst test slightly differs with the exception of the tests based on f1, cf. Figure 15. In
particular, each of the six tests based on f2 and f3 possesses almost the same power as the best
test based on f1. Furthermore, for n = 1000 each test has power one if the change size ∆ρ is at
least 0.5. Moreover, the tests using a small γ provide a higher power than the ones using a large γ.

In the case of early changes such as for θ = 0.1, cf. Figure 17, the best tests are based on f1 and
a high γ such as γ ∈ {0.45, 0.49}. Additionally, the difference is bigger between the powers of the

tests. Moreover, the test based on f1 performs worst if it uses µ̂
(2)
l,k as mean estimators. Not quite

so clear, we can glean the worst mean estimate for the power if the tests depend on f2 or f3, but

the tests based on the mean estimates µ̂
(2)
l,k or the sliding window appear frequently under the worst

power.
Finally, we focus on the power under structural breaks in the mean. The test using the exact

means possesses the best power, cf. Figure 18. In general the structural breaks in the mean do not
influence the power of the best and worst test.
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n\∆ρ 0.1 .25 .5 .75 0.1 .25 .5 .75 0.1 .25 .5 .75

1000 φ∗1 φ0
1,0 φ0

1,0 φ0
1,0 φ0

1,0 φ0
1,0 φ0

1,0 φ0
1,0 φ0

1,1 φ0
1,0 φ0

1,0 φ0
1,0

φ0.49
1,2 φ0.49

1,2 φ0
1,0 φ0

1,0 φ0.49
1,2 φ0.49

1,2 φ0
1,0 φ0

1,0 φ0.49
1,2 φ∗,0.491 φ0

1,0 φ0
1,0

1000 φ∗,02 φ0
2,1 φ0

2,0 φ0
2,0 φ0

2,0 φ0
2,0 φ0

2,0 φ0
2,0 φ0

2,0 φ0
2,1 φ0

2,0 φ0
2,0

φ0.49
2,2 φ0.49

2,2 φ0
2,0 φ0

2,0 φ0.49
2,2 φ∗,0.492 φ0

2,0 φ0
2,0 φ∗,0.492 φ∗,0.492 φ0

2,0 φ0
2,0

1000 φ∗,0.253 φ0
3,0 φ0

3,0 φ0
3,0 φ∗,0.253 φ0

3,0 φ0
3,0 φ0

3,0 φ0.25
3,0 φ∗,03 φ0

3,0 φ0
3,0

φ0.49
3,2 φ0.49

3,2 φ0
3,0 φ0

3,0 φ0.49
3,2 φ∗,0.493 φ0

3,0 φ0
3,0 φ∗,0.493 φ∗,0.493 φ0

3,0 φ0
3,0

200 φ∗,0.451 φ∗1 φ0
1,0 φ0

1,0 φ0.45
1,1 φ0

1,1 φ0
1,0 φ0

1,1 φ∗1 φ0
1,0 φ0

1,0 φ0
1,0

φ0.49
1,2 φ0.49

1,2 φ0.49
1,2 φ0.49

1,2 φ0.49
1,4 φ0.49

1,2 φ0.49
1,2 φ∗,0.491 φ0.49

1,2 φ0.49
1,2 φ0.49

1,1 φ∗,0.491

200 φ∗,02 φ∗,02 φ0
2,0 φ0

2,0 φ∗,02 φ∗,02 φ0
2,0 φ0

2,0 φ∗,02 φ∗,02 φ0
2,0 φ0

2,0

φ0.49
2,2 φ0.49

2,2 φ0.49
2,2 φ∗,0.492 φ0.49

2,2 φ0.49
2,2 φ0.49

2,2 φ∗,0.492 φ0.49
2,0 φ∗,0.492 φ0.49

2,1 φ∗,0.492

200 φ∗,03 φ∗,03 φ0
3,0 φ0

3,0 φ∗,03 φ∗,03 φ0
3,0 φ0

3,0 φ∗,03 φ0
3,0 φ0

3,2 φ0
3,0

φ0.49
3,2 φ0.49

3,2 φ0.49
3,2 φ∗,0.493 φ0.49

3,2 φ0.49
3,2 φ0.49

3,2 φ∗,0.493 φ0.49
3,0 φ∗,0.493 φ∗,0.493 φ∗,0.493
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Figure 15: Best (green) and worst power (red) of φγι,0, φγι,1, φγι,2, φγι,3, φγι,4, and φ∗,γι and for γ ∈
{0,0.25,0.45,0.49} in the setting i) with θ = 0.5. Here, we consider the best and worst power for
each ι = 1 (solid), ι = 2 (dashed), and ι = 3 (dotted), as well as for n = 200 and n = 1000,
where the upper three green and the upper three red lines are the ones generated with n = 1000.
Moreover, ρ0 is equal to −0.9, −0.5, and 0 (from left to right). The overlying table contains the
corresponding best and worst tests belonging to three figures (from left to right) for each n, ι, and
∆ρ = 0.1, 0.25, 0.5, 0.75. In each of these variations the upper row contains the best test and the lower
one presents the worst of the 6x4 tests.

Tests based on Variance Estimates and Known Means In this paragraph, we consider the
empirical powers of φι,5, φι,6, φι,7, and φι,8 under the case of constant variances as well as φι,7
and φι,8 in the case of structural breaks in the variances. In both cases we compare the powers with
those of the test φι,0, which uses the exact variances.

In case of constant variances, the power of the best test is higher than the best power in the corre-
sponding case of known variances and unknown means, while the worst power stays nearly unchanged.
Additionally, the test φι,6 is often the one with the highest power. In the case of n = 1000, each
test has power one if the change size is equal to 0.5 or 0.75.

In case of structural breaks in the variances, setting (IIσ), each test has power one if the change
size is equal to 0.5 or 0.75 and n = 1000. Furthermore, if the change size is smaller, the test φγι,8
possesses the best power for a suitable γ and ι. Again, the influence of the structural break in the
parameter is not observable.

Tests Based on Mean and Variance Estimates In this paragraph, we present the powers of
the tests φγι,23 and φγι,24,10 compared with φγι,0. The powers of the φγι,9,9, φγι,9,14, φγι,23, and
φγι,24,10 behave similarly as the tests described in the previous paragraph within the setting of constant
parameters. Thus, we will focus on the powers of the tests under structural breaks in the mean and
the variance, cf. Figure 21 and Figure 22. As in the paragraph before, the influence of the structural
breaks are not really observable, since the means and variance estimates use change-point estimators.
Hence, the properties of the tests recur.
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n\∆ρ 0.1 .25 .5 .75 0.1 .25 .5 .75 0.1 .25 .5 .75

1000 φ∗,0.451 φ0.25
1,0 φ0

1,0 φ0
1,0 φ∗,0.451 φ∗,0.251 φ0

1,0 φ0
1,0 φ∗,0.251 φ0.25

1,1 φ0
1,0 φ0

1,0

φ0
1,2 φ0.49

1,2 φ∗,0.491 φ0
1,0 φ0

1,2 φ0.49
1,2 φ∗,0.491 φ0

1,0 φ0.49
1,2 φ0.49

1,0 φ0
1,0 φ0

1,0

1000 φ∗,0.452 φ0.25
2,0 φ0

2,0 φ0
2,0 φ∗,0.252 φ0.45

2,1 φ0
2,0 φ0

2,0 φ∗,0.252 φ0.45
2,2 φ0

2,0 φ0
2,0

φ0.49
2,2 φ0

2,2 φ∗,02 φ0
2,0 φ0

2,2 φ0
2,2 φ∗,02 φ0

2,0 φ0
2,0 φ∗,02 φ0

2,0 φ0
2,0

1000 φ0
3,1 φ0.25

3,0 φ0
3,0 φ0

3,0 φ∗,0.253 φ0.45
3,0 φ0

3,0 φ0
3,0 φ0.25

3,1 φ0.25
3,0 φ0

3,0 φ0
3,0

φ0.49
3,2 φ∗,03 φ0

3,0 φ0
3,0 φ0.49

3,2 φ0
3,2 φ∗,0.493 φ0

3,0 φ0.49
3,0 φ0

3,1 φ0
3,0 φ0

3,0

200 φ∗,0.451 φ∗,0.451 φ0.25
1,1 φ0.25

1,0 φ0.45
1,0 φ∗,0.251 φ0.25

1,0 φ0.25
1,0 φ∗,0.451 φ∗,0.251 φ∗,0.251 φ0.25

1,2

φ0
1,2 φ0.49

1,2 φ0.49
1,2 φ0.49

1,2 φ0.49
1,2 φ0.49

1,2 φ0.49
1,2 φ0.49

1,2 φ0.49
1,2 φ0.49

1,2 φ0.49
1,0 φ∗,0.491

200 φ∗,0.252 φ∗,0.252 φ0.25
2,0 φ0.25

2,0 φ∗,0.252 φ0.25
2,0 φ0.25

2,0 φ0.45
2,0 φ∗,0.252 φ0

2,2 φ0.25
2,2 φ0.25

2,2
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Figure 16: Caption of Figure 15 with θ = 0.25 under constant parameters.
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Figure 17: Caption of Figure 15 with θ = 0.1 under constant parameters.
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Figure 18: Best (green) and worst power (red) of φγι,0, φγι,3, φγι,4, and φ∗,γι and for γ ∈ {0,0.25,0.45,0.49} under
the setting ii) with (IIµ) and with θρ = 0.25. Here, we consider the best and worst power for each ι = 1
(solid), ι = 2 (dashed), and ι = 3 (dotted), as well as for n = 200 and n = 1000, where the upper
three green and upper three red lines are the ones generated with n = 1000. Moreover, ρ0 is equal to
−0.9, −0.5, and 0 (from left to right). The overlying table contains the corresponding best and worst
tests belonging to three figures (from left to right) for each n, ι, and ∆ρ = 0.1, 0.25, 0.5, 0.75. In
each of these variations the upper row illustrates the best test and the lower one presents the worst of
the 4x4 tests.
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Figure 19: Best (green) and worst power (red) of φγι,0, φγι,5,5, φγι,6, φγι,7, and φγι,8 and for γ ∈ {0,0.25,0.45,0.49}
under the setting i) with θ = 0.25. Here, we consider the best and worst power for each ι = 1 (solid),
ι = 2 (dashed), and ι = 3 (dotted), as well as for n = 200 and n = 1000, where the upper three
green and upper three red lines are the ones generated with n = 1000. Moreover, ρ0 is equal to −0.9,
−0.5, and 0 (from left to right). The overlying table contains the corresponding best and worst tests
belonging to three figures (from left to right) for each n, ι, and ∆ρ = 0.1, 0.25, 0.5, 0.75. In each of
these variations the upper row illustrates the best test and the lower one presents the worst of the 5x4
tests.
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Figure 20: Caption of Figure 19 with θ = 0.25 and under setting iv) with (IIσ).
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Figure 21: Best (green) and worst power (red) of φγι,0, φγι,a = φγι,23, and φγι,b = φγι,24,10, and for γ ∈
{0,0.25,0.45,0.49} under the setting ii) with (IIIµ) and with θ = 0.25. Here, we consider the best
and worst power for each ι = 1 (solid), ι = 2 (dashed), and ι = 3 (dotted), as well as for n = 200
and n = 1000, where the upper three green and upper three red lines are the ones generated with
n = 1000. Moreover, ρ0 is equal to −0.9, −0.5, and 0 (from left to right). The overlying table
contains the corresponding best and worst tests belonging to three figures (from left to right) for each
n, ι, and ∆ρ = 0.1, 0.25, 0.5, 0.75. In each of these variations the upper row illustrates the best test
and the lower one presents the worst of the 3x4 tests.
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Figure 22: Caption of Figure 21 with θ = 0.25 and under setting v) with (IIIµ) and (IIσ).
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7.2 Sequential Analysis

In this subsection, we present the behavior of the closed-end sequential testing procedures

τn,ψ,γ = inf

{
1 ≤ k ≤ nm : u1

(
D̂
−1/2
ψ wγ

(
k

n

)
n

n+ k

k√
n

(
ρ̂n+k
ψ,k,n+1 − ρ̂

n
ψ,k,1

))
> cα,ψ

}
with u1(·) = | · |,

ρ̂j+hψ,k,j = (h+ 1)−1
j+h∑
i=j

Z
(ψ)
i,k,h for 1 ≤ j ≤ j + h ≤ (m+ 1)n, k = 1, . . . ,mn,

where

Z
(ψ)
i,k =


(Xi−µ1,i)·(Yi−µ2,i)

σ1,iσ2,i
, if ψ = 0,

(Xi−µ̂
(ψ)
1,i,n+k)·(Yi−µ̂

(ψ)
2,i,n+k)

σ1,iσ2,i
, if ψ = 1, . . . ,4,

(Xi−µ1,i)·(Yi−µ2,i)
σ̂
(ψ)
1,i,n+kσ̂

(ψ)
2,i,n+k

, if ψ = 5, . . . ,8,

and

Z
(ψ)
i,k = Z

(4+ψ1+4ψ2)
i,k =

(Xi − µ̂(ψ1)
1,i,n+k) · (Yi − µ̂

(ψ1)
2,i,n+k)

σ̂
(ψ2)
1,i,n+kσ̂

(ψ2)
2,i,n+k

for ψ1,ψ2 = 1, . . . ,4.

Firstly, we specify the parameter estimates, the corresponding LRV estimates, and the weighting
function wγ , before we will present the behavior of the test statistics.

Parameter Estimates In the following we focus on these mean estimates:

µ̂
(1)
1,i,n+k ≡ n

−1
n∑
j=1

Xj , µ̂
(2)
1,i,n+k =

{
n−1

∑n
j=1Xj , if i ∈ [1,n],

k−1
∑n+k

j=n+1Xj , if i ∈ [n+ 1], k = 1, . . . ,nm,

µ̂
(3)
1,i,k =



(n ∧ k̂µ1,k)−1
∑n∧k̂µ1,k

j=1 Xj , if 1 ≤ i ≤ k̂µ1,k ∧ n,

(n− k̂µ1,k)−1
∑n

j=1+k̂µ1,k
Xj , if 1 + k̂µ1,k ≤ i ≤ n,

((n+ k) ∧ k̂µ1,k)−1
∑(n+k)∧k̂µ1,k

j=1 Xj , if n+ 1 ≤ i ≤ (n+ k) ∧ k̂µ1,k,
((n+ k)− k̂µ1,k)−1

∑(n+k)

j=1+k̂µ1,k
Xj , if n+ 1 < k̂µ1,k ≤ i ≤ (n+ k),

µ̂
(4)
1,i,k is of the form µ̂

(3)
1,i,k,

whereas µ̂
(4)
1,i,k uses another change-point estimate k̂µ1,k as µ̂

(3)
1,i,k. In µ̂

(3)
1,i,k the change-point

estimate is defined as

k̂µ1,k =

{
n+ k, if n+ k ≤ τµ1 ,

arg max1≤i<τµ1 w0.45

(
i
τµ1

)
i√
τµ1

∣∣∣Xi
1 −X

τµ1
1

∣∣∣ , if n+ k > τµ1

with w0.45(z) = [z(1− z)]−0.45. In µ̂
(4)
1,i,k the change-point estimate is defined as

k̂µ1,k =

{
n+ k, if n+ k ≤ τµ1 ,

arg max1≤i<n+k w0.45

(
i

n+k

)
i√
n+k

∣∣∣Xi
1 −X

n+k
1

∣∣∣ , if n+ k > τµ1 ,

where for both estimates τµ1 is the stopping time which sequentially controls whether or not there
is a change in the means, i.e.,

τµ1 = inf

{
1 ≤ i ≤ nm : max

(
D̂−1/2
µ

n

n+ i

i√
n

(
X
n+i
n+1 −X

n
1

))
>

(
m− 1

m

)0.5

c0.82

}
.

Here, c0.82 is the 0.82–quantile of ‖W‖[0,1] where W is a standard Brownian motion. This
quantile is chosen quite arbitrarily, but it is also a compromise between a high number of false stops
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if no structural breaks occur in the mean and fast detection after changes appear. Heuristically,

µ̂
(4)
1,i,k depends on sequentially estimated change-point estimates if the stopping time stops once. The

advantage over µ̂
(3)
1,i,k is that the sequential estimation of the change-point could save the mean

estimation in the case of early false detection of a change in the mean.

The mean estimates µ̂
(ψ)
2,i,k are defined analogously. The variance estimates (σ̂

(ψ)
1,i,k)

2 and (σ̂
(ψ)
2,i,k)

2

are similarly defined for ψ = 1,2 as the mean estimates, whereas Xi and Yi are just replaced by

(Xi − µ1,i)
2 and (Yi − µ2,i)

2 in the case of known means and by (Xi − µ̂(ψ1)
1,i,k)

2 and (Yi − µ̂(ψ1)
2,i,k)

2

in the case of unknown means. Furthermore, we set

(σ̂
(3)
1,i,k)

2 =


n−1

∑n
j=1(Xj − µ1,j)

2, if 1 ≤ i ≤ n,

(k ∧ (k̂σ1,k − n))−1
∑(n+k)∧k̂σ1,k

j=n+1 (Xj − µ1,j)
2, if n+ 1 ≤ i ≤ (n+ k) ∧ k̂σ1,k,

((n+ k)− k̂σ1,k)−1
∑(n+k)

j=1+k̂σ1,k
(Xj − σ1,j)

2, if n+ 1 < k̂σ1,k ≤ i ≤ (n+ k)

and (σ̂
(4)
1,i,k)

2 analogously. They only differ in the change-point estimate k̂σ1,k in the same way as

in the mean estimates. (σ̂
(ψ)
2,i,k)

2 is correspondingly defined for ψ = 3,4.

LRV Estimates The LRV estimates are the same as those used in the a posteriori procedure, which
means in particular that the estimate only depends on the training period 1, . . . ,n.

Weighting Function In the following we focus on the weighting function

wγ : (0,∞)→ R, wγ(z) =

(
1 + z

z

)γ
, γ ∈

[
0,

1

2

)
for all stopping times. By the proof of Theorem 2.2.5 we already know that under the assumptions of
Theorem 2.2.3 and under H0 it holds that

P (τn,ψ,γ <∞)→ P

(
sup
z∈[0,1]

∣∣(z)−γW (z)
∣∣ > cα

(
m+ 1

m

)1/2−γ
)
,

where W is a standard Brownian motion. Table 12 contains the corresponding critical values, where
we neglect the constant factor depending on m initially.

1− α 0.9 0.95 0.975

γ 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

1.946 2.095 2.505 2.732 2.221 2.367 2.758 2.990 2.485 2.621 2.977 3.208

Table 12: Critical values cα,γ based on 40.000 replications of u1(Wγ), where Wγ is approximated on a grid of
10.000 equi-spaced points in [0, 1].
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7.2.1 Influence of the Mean Estimates under H
(2)
0

In this sub-subsection, we focus on the finite sample behavior of the stopping times τn,ψ,γ , ψ = 0, . . . ,4,

under H
(2)
0 . Table 13 presents the relative frequency of false alarms under H

(2)
0 , constant zero means,

and normalized variances. Furthermore, the number of false alarms of τn,1,γ consistently lies slightly
above the given level of α = 5%. Moreover, for higher γ false stops appear more frequently in most
cases. Even the stopping times τn,3,γ and τn,4,γ work well, since they use change-point estimates
for the mean if the corresponding stopping times falsely trigger an alarm that there is a change in the
mean.

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,1,γ .134 .164 .15 .094 .097 .086 .069 .072 .09 .069 .066 .079
τn,2,γ .06 .061 .059 .078 .076 .044 .044 .045 .05 .059 .063 .043
τn,3,γ .057 .07 .088 .082 .09 .083 .043 .045 .069 .059 .06 .075
τn,4,γ .055 .069 .086 .084 .09 .083 .043 .044 .068 .06 .061 .075

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,1,γ .118 .131 .139 .08 .08 .097 .072 .078 .093 .061 .054 .078
τn,2,γ .054 .053 .053 .078 .066 .045 .042 .037 .047 .062 .053 .038
τn,3,γ .051 .055 .079 .082 .085 .098 .042 .036 .066 .061 .055 .076
τn,4,γ .052 .055 .08 .08 .087 .098 .041 .037 .065 .06 .055 .076

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,1,γ .106 .117 .123 .073 .081 .091 .09 .09 .105 .082 .072 .09
τn,2,γ .038 .038 .041 .068 .064 .034 .06 .057 .058 .075 .065 .048
τn,3,γ .039 .047 .057 .077 .077 .095 .062 .058 .068 .075 .068 .083
τn,4,γ .041 .046 .058 .076 .078 .095 .064 .059 .068 .076 .066 .083

Table 13: Relative frequency of a false alarm under H
(2)
0 and constant parameters.

Tables 14, 15, and 16 present the empirical size under H
(2)
0 and the following mean settings:

µ1,i =

{
0, if i ≤ n+mn/2,
1, else,

and µ2,i ≡ 0, (I
(c)
µ )

µ1,i =

{
0, if i ≤ n+mn/4,
1, else,

and µ2,i =

{
1, if i ≤ n+mn/4,
0, else,

(II
(c)
µ )

or

µ1,i =

{
2, if i ≤ n+ 3mn/4,
0, else,

and µ2,i ≡ 0. (III
(c)
µ )

As expected τn,1,γ and τn,2,γ are not suitable. In particular, this is at least obvious in the mean

setting (II
(c)
µ ), where the means change in both time series at the same time. In this setting the relative

frequencies of the false alarms of the procedures τn,3γ and τn,4,γ amount over 10%. Moreover,

the early change in the mean, setting (I
(c)
µ ), is handled slightly better than the late changes of mean

setting (III
(c)
µ ).
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n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,1,γ .192 .199 .176 .091 .095 .089 .127 .116 .124 .084 .078 .082
τn,2,γ .071 .07 .062 .083 .074 .045 .066 .06 .055 .075 .072 .043
τn,3,γ .059 .067 .087 .084 .087 .08 .05 .054 .071 .065 .062 .074
τn,4,γ .055 .065 .085 .082 .088 .08 .046 .049 .069 .063 .063 .074

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,1,γ .182 .184 .162 .088 .083 .097 .136 .134 .13 .085 .064 .08
τn,2,γ .076 .076 .062 .083 .07 .046 .074 .059 .055 .069 .056 .038
τn,3,γ .058 .059 .083 .082 .089 .094 .047 .04 .067 .057 .052 .076
τn,4,γ .048 .051 .08 .079 .085 .094 .044 .041 .066 .058 .054 .077

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,1,γ .168 .175 .16 .097 .092 .097 .176 .172 .147 .109 .09 .094
τn,2,γ .063 .06 .057 .073 .069 .037 .095 .086 .074 .091 .076 .05
τn,3,γ .043 .051 .064 .072 .079 .092 .065 .058 .067 .079 .069 .081
τn,4,γ .042 .048 .06 .07 .078 .093 .058 .055 .067 .078 .067 .083

Table 14: Relative frequency of a false alarm under H
(2)
0 and mean setting (I

(c)
µ ).

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,1,γ .979 .976 .964 .898 .856 .725 1 1 1 1 1 1
τn,2,γ .322 .32 .267 .308 .274 .175 .948 .953 .92 .949 .936 .836
τn,3,γ .111 .148 .167 .102 .114 .098 .1 .133 .16 .103 .092 .099
τn,4,γ .117 .155 .174 .094 .105 .09 .066 .106 .137 .066 .061 .076

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,1,γ .995 .996 .992 .957 .949 .884 1 1 1 1 1 1
τn,2,γ .387 .384 .324 .387 .345 .234 .989 .988 .982 .99 .985 .961
τn,3,γ .113 .143 .161 .094 .1 .113 .089 .138 .166 .069 .057 .079
τn,4,γ .123 .166 .176 .086 .093 .108 .082 .13 .161 .062 .055 .075

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,1,γ .998 .998 .998 .984 .976 .945 1 1 1 1 1 1
τn,2,γ .441 .441 .367 .463 .407 .238 .996 .996 .995 .996 .996 .988
τn,3,γ .097 .136 .154 .085 .095 .108 .106 .17 .195 .077 .064 .089
τn,4,γ .114 .171 .186 .081 .091 .107 .11 .163 .188 .075 .063 .084

Table 15: Relative frequency of a false alarm under H
(2)
0 and mean setting (II

(c)
µ ).

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,1,γ .215 .213 .186 .1 .099 .09 .155 .138 .132 .078 .068 .081
τn,2,γ .108 .1 .073 .081 .077 .047 .093 .077 .068 .068 .061 .044
τn,3,γ .086 .09 .099 .083 .088 .083 .06 .059 .073 .063 .06 .076
τn,4,γ .064 .074 .088 .083 .087 .083 .045 .048 .069 .061 .061 .075

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,1,γ .226 .222 .192 .086 .086 .099 .199 .18 .15 .076 .065 .079
τn,2,γ .11 .099 .082 .079 .07 .047 .117 .105 .08 .073 .063 .036
τn,3,γ .086 .083 .092 .083 .087 .098 .06 .052 .075 .061 .054 .076
τn,4,γ .065 .07 .084 .081 .086 .097 .048 .04 .067 .06 .054 .076

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,1,γ .225 .209 .186 .08 .086 .094 .242 .222 .19 .097 .081 .095
τn,2,γ .114 .101 .074 .072 .069 .038 .151 .134 .092 .085 .069 .051
τn,3,γ .075 .075 .077 .076 .078 .093 .08 .07 .072 .077 .068 .084
τn,4,γ .052 .055 .065 .078 .078 .094 .066 .061 .068 .076 .066 .083

Table 16: Relative frequency of a false alarm under H
(2)
0 and mean setting (III

(c)
µ ).

153



SIMULATION STUDY

7.2.2 Influence of the Variance Estimates under H
(2)
0 and Known Means

In this sub-subsection, we focus on the finite sample behavior of the stopping times τn,ψ,γ with

ψ = 0, 5, . . . ,,8 under H
(2)
0 . Table 17 presents the empirical sizes under H

(2)
0 and constant variances.

In the case of high correlations and n = 200 each stopping time lies over 10%. If additionally γ
is high, only τn,5,γ seems to approximate the given level α = 5%. The stopping times τn,8,γ ,
which sequentially use change-point estimates for the mean, do not work well. Moreover, the relative
frequencies lie over 10% in the case of ρ0 ∈ {−0.5,− 0.9}. In most cases the relative frequencies of
the false alarms of τ2000,8,γ are smaller than τ200,8,γ , but the differences are slight.

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,5,γ .134 .15 .165 .095 .104 .11 .076 .073 .086 .058 .057 .078
τn,6,γ .111 .251 .279 .188 .232 .234 .056 .108 .299 .079 .216 .246
τn,7,γ .148 .28 .301 .211 .256 .25 .073 .116 .306 .091 .223 .25
τn,8,γ .164 .178 .181 .159 .159 .143 .145 .153 .171 .123 .129 .137

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,5,γ .108 .115 .139 .091 .091 .105 .071 .073 .088 .063 .054 .078
τn,6,γ .053 .061 .097 .084 .091 .156 .057 .067 .084 .072 .065 .101
τn,7,γ .054 .063 .097 .082 .093 .157 .058 .069 .084 .073 .066 .102
τn,8,γ .11 .118 .121 .109 .111 .123 .101 .109 .126 .089 .096 .109

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,5,γ .102 .124 .135 .08 .086 .1 .085 .091 .096 .084 .07 .082
τn,6,γ .042 .042 .023 .074 .066 .038 .062 .056 .045 .078 .072 .04
τn,7,γ .041 .04 .02 .075 .067 .037 .063 .056 .046 .078 .071 .04
τn,8,γ .094 .109 .116 .1 .112 .13 .082 .091 .102 .079 .083 .094

Table 17: Relative frequency of a false alarm under H
(2)
0 and constant parameters

Tables 18, 19, and 20 present the relative frequencies of false alarms under the following variance
settings:

σ2
1,i =

{
1, if i ≤ n+ nm/2,
2, else,

and σ2
2,i ≡ 1, (I

(c)
σ )

σ2
1,i =

{
1, if i ≤ n+ nm/4,
2, else,

and σ2
2,i =

{
1, if i ≤ n+ nm/4,

0.5, else,
(II

(c)
σ )

or

σ2
1,i =

{
1, if i ≤ n+ 3nm/4,
2, else,

and σ2
2,i ≡ 1. (III

(c)
σ )

Under these settings only τn,0,γ , τn,7,γ , and τn,8,γ fulfill the convergence in distribution towards
a maximum of the absolute value of a weighted Brownian motion. In contrast to the non-constant
mean settings, here the unsuitable stopping times can also converge to a Gaussian process in each
presented variance setting, cf. Remark 5.2.2. Nevertheless, τn,7,γ and τn,8,γ behave acceptably for
small or moderate correlations and for γ = 0. Overall, the influence is unimportant for ρ = 0, and
τn,7,γ performs better than τn,8,γ .
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n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,5,γ .364 .355 .314 .176 .162 .139 .912 .897 .841 .479 .379 .233
τn,6,γ .178 .306 .312 .206 .243 .243 .464 .451 .483 .261 .335 .298
τn,7,γ .18 .311 .321 .221 .254 .251 .166 .213 .356 .114 .237 .26
τn,8,γ .179 .191 .191 .155 .16 .145 .159 .173 .183 .129 .13 .136

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,5,γ .28 .265 .231 .124 .126 .116 .635 .611 .514 .263 .215 .137
τn,6,γ .065 .071 .099 .071 .082 .154 .087 .087 .102 .076 .067 .1
τn,7,γ .061 .072 .101 .076 .092 .159 .065 .071 .09 .074 .068 .102
τn,8,γ .115 .122 .126 .109 .111 .124 .107 .112 .127 .091 .096 .11

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,5,γ .177 .19 .183 .086 .094 .104 .152 .144 .133 .093 .078 .089
τn,6,γ .055 .047 .027 .071 .065 .036 .074 .071 .052 .072 .066 .037
τn,7,γ .047 .043 .024 .073 .065 .035 .066 .061 .045 .077 .07 .038
τn,8,γ .096 .113 .117 .102 .113 .129 .081 .092 .102 .08 .083 .094

Table 18: Relative frequency of a false alarm under H
(2)
0 and variance setting (I

(c)
σ ).

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,5,γ .134 .15 .165 .095 .104 .11 .076 .073 .086 .058 .057 .078
τn,6,γ .466 .547 .505 .501 .502 .407 1 .999 1 1 1 1
τn,7,γ .381 .493 .482 .382 .407 .339 .439 .553 .643 .289 .382 .346
τn,8,γ .254 .263 .259 .225 .217 .193 .221 .247 .253 .172 .172 .165

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,5,γ .108 .115 .139 .091 .091 .105 .071 .073 .088 .063 .054 .078
τn,6,γ .061 .07 .101 .091 .092 .158 .141 .133 .145 .16 .145 .124
τn,7,γ .06 .068 .1 .092 .096 .159 .071 .075 .095 .098 .076 .105
τn,8,γ .104 .11 .121 .105 .108 .126 .107 .115 .126 .098 .097 .11

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,5,γ .102 .124 .135 .08 .086 .1 .085 .091 .096 .084 .07 .082
τn,6,γ .036 .038 .023 .067 .056 .033 .049 .044 .034 .067 .063 .037
τn,7,γ .038 .033 .024 .076 .064 .038 .058 .054 .045 .078 .073 .041
τn,8,γ .092 .107 .115 .098 .113 .13 .081 .09 .104 .077 .081 .095

Table 19: Relative frequency of a false alarm under H
(2)
0 and variance setting (II

(c)
σ ).

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τn,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τn,5,γ .214 .216 .207 .103 .112 .112 .442 .397 .328 .093 .078 .088
τn,6,γ .155 .278 .293 .193 .235 .236 .342 .341 .411 .12 .241 .257
τn,7,γ .181 .299 .311 .215 .259 .248 .184 .207 .348 .106 .234 .256
τn,8,γ .178 .185 .188 .159 .161 .145 .168 .172 .184 .127 .13 .136

-0.5 τn,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τn,5,γ .164 .159 .167 .096 .101 .106 .245 .214 .186 .08 .065 .082
τn,6,γ .062 .071 .099 .081 .088 .155 .082 .08 .097 .075 .066 .1
τn,7,γ .062 .07 .1 .081 .091 .157 .074 .069 .09 .076 .068 .101
τn,8,γ .114 .121 .124 .109 .11 .123 .101 .109 .127 .09 .096 .109

0 τn,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τn,5,γ .131 .146 .149 .077 .087 .1 .114 .106 .111 .083 .075 .082
τn,6,γ .048 .042 .025 .075 .064 .038 .075 .068 .049 .079 .069 .04
τn,7,γ .045 .042 .021 .073 .067 .037 .068 .059 .049 .078 .069 .04
τn,8,γ .097 .113 .119 .098 .112 .13 .083 .091 .103 .08 .083 .094

Table 20: Relative frequency of a false alarm under H
(2)
0 and variance setting (III

(c)
σ ).
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7.2.3 Influence of the Combination of Mean and Variance Estimates under H
(2)
0

In this paragraph, we focus on the behavior of stopping times using mean and variance estimates.

Table 21 presents the relative frequencies of false alarms under H
(2)
0 and constant parameters. If

the correlation or γ is not high, each stopping approximates the given level α. If the correlation is
high, only γ = 0 is useful.

Tables 22, 23, and 22 present the relative frequency of false stops under parameter setting (III
(c)
µ &I

(c)
σ ),

(II
(c)
µ &II

(c)
σ ), and (I

(c)
µ &III

(c)
σ ), respectively. If the correlation is high (such as −0.9), each stopping time

using estimates for the parameter (even τγ1,20) nearly always stops falsely. If, however, the correlation
is moderate and small, τγ1,20 approximates the given level acceptably and well, respectively.

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τi,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τi,9,γ .141 .159 .165 .094 .104 .108 .077 .074 .084 .055 .059 .079
τi,14,γ .212 .283 .317 .212 .242 .24 .057 .221 .313 .076 .216 .247
τi,20,γ .219 .359 .392 .275 .314 .294 .086 .159 .347 .103 .246 .275

-0.5 τi,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τi,9,γ .114 .116 .148 .089 .093 .108 .073 .071 .09 .061 .055 .079
τi,14,γ .057 .069 .171 .085 .099 .111 .059 .064 .109 .073 .064 .096
τi,20,γ .057 .07 .103 .086 .094 .161 .06 .068 .086 .071 .063 .099

0 τi,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τi,9,γ .097 .121 .139 .077 .086 .101 .086 .088 .096 .083 .071 .085
τi,14,γ .042 .041 .026 .075 .067 .041 .06 .053 .047 .074 .072 .039
τi,20,γ .043 .044 .034 .076 .072 .037 .063 .053 .047 .074 .071 .042

Table 21: Relative frequency of a false alarm under H
(2)
0 and constant parameters.

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τγi,0 .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08

τγi,9 .392 .383 .347 .175 .167 .14 .898 .876 .826 .49 .384 .245

τγi,14 1 1 .998 .867 .799 .557 1 1 1 1 1 1

τγi,20 .779 .803 .772 .355 .374 .333 .869 .875 .878 .345 .392 .339

-0.5 τγi,0 .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075

τγi,9 .347 .329 .299 .139 .13 .122 .671 .642 .568 .267 .222 .147

τγi,14 .2 .199 .231 .102 .102 .117 .879 .845 .767 .243 .192 .137

τγi,20 .102 .112 .119 .079 .094 .166 .117 .119 .122 .081 .069 .097

0 τγi,0 .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089

τγi,9 .271 .271 .237 .098 .104 .106 .3 .282 .225 .112 .092 .096

τγi,14 .057 .06 .036 .072 .065 .039 .09 .083 .054 .07 .067 .037

τγi,20 .054 .055 .036 .071 .07 .036 .075 .071 .052 .072 .068 .039

Table 22: Relative frequency of a false alarm under H
(2)
0 and parameter setting (III

(c)
µ &I

(c)
σ ).

n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τi,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τi,9,γ .759 .73 .607 .4 .299 .158 1 1 1 1 1 1
τi,14,γ .396 .446 .443 .379 .377 .306 .996 .994 .987 .99 .985 .919
τi,20,γ .838 .879 .869 .665 .672 .572 1 1 1 1 1 .999

-0.5 τi,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τi,9,γ .871 .854 .75 .558 .457 .236 1 1 1 1 1 1
τi,14,γ .046 .069 .17 .102 .104 .107 .351 .346 .317 .441 .375 .237
τi,20,γ .085 .098 .117 .087 .099 .167 .146 .145 .15 .17 .155 .126

0 τi,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τi,9,γ .94 .931 .846 .678 .549 .277 1 1 1 1 1 1
τi,14,γ .241 .231 .149 .309 .261 .121 .98 .979 .959 .988 .981 .93
τi,20,γ .051 .065 .054 .066 .068 .037 .055 .081 .084 .066 .06 .038

Table 23: Relative frequency of a false alarm under H
(2)
0 and parameter setting (II

(c)
µ &II

(c)
σ ).
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n = 200 n = 2000

m = 0.5 m = 1.5 m = 0.5 m = 1.5

ρ0 γ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9 τi,0,γ .132 .153 .151 .087 .089 .083 .07 .071 .094 .069 .065 .08
τi,9,γ .242 .245 .232 .111 .113 .112 .447 .415 .348 .102 .086 .096
τi,14,γ .904 .902 .862 .768 .715 .554 1 1 1 1 1 1
τi,20,γ .648 .705 .676 .379 .39 .35 .737 .759 .767 .179 .291 .293

-0.5 τi,0,γ .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
τi,9,γ .21 .199 .197 .099 .099 .107 .301 .282 .238 .096 .083 .088
τi,14,γ .124 .134 .209 .115 .117 .121 .439 .409 .356 .26 .199 .154
τi,20,γ .099 .105 .115 .087 .096 .164 .09 .094 .104 .074 .064 .1

0 τi,0,γ .1 .114 .113 .069 .077 .089 .088 .087 .103 .079 .072 .089
τi,9,γ .184 .193 .185 .095 .094 .102 .208 .192 .165 .11 .09 .088
τi,14,γ .048 .052 .032 .07 .065 .038 .073 .067 .055 .077 .068 .035
τi,20,γ .048 .048 .035 .073 .067 .034 .076 .061 .051 .075 .069 .039

Table 24: Relative frequency of a false alarm under H
(2)
0 and parameter setting (I

(c)
µ &III

(c)
σ ).

7.2.4 Stopping behavior under some Alternatives

In this sub-subsection, we focus on the stopping behavior under some alternatives. In doing so, we
focus on the following setups:

ρi = ρ0 + ∆ρ1{i>n+[nθρ]} (7.2.1)

with ρ0 ∈ {−0.9,− 0.5,0}, ∆ρ ∈ {0.1, 0.25,0.5}, and θρ ∈ {0.25,0.5,0.75}.

Mean Influence In this paragraph, we focus on the behaviors of stopping times under the alter-
natives and different mean estimates. Figure 23 presents relative frequency of alarms under constant
parameters. The relative frequency of stops increases with growing n, ∆ρ, and m. Furthermore,
τn,0,γ and τn,1,γ produce more alarms than τn,2,γ , τn,3,γ , and τn,4,γ , where the latter two have
nearly the same the same relative frequencies.

Now, we focus on the alternatives under mean settings (I
(c)
µ ) and (II

(c)
µ ), cf. Figure 24 and 25. The

difference between the constant parameter setting and mean setting (I
(c)
µ ) is not really observable.

However, in the mean setting (II
(c)
µ ) the unusable stopping times τn,1,γ (red) and τn,2,γ (green)

possess no monotone power in ∆ρ. In most of the cases the alarms are caused by the simultaneous
structural breaks in the means of X and Y . Here, the useful stopping times τn,3,γ (yellow) are
slightly better than τn,4,γ (blue), because τn,4,γ uses a sequential mean estimate which corrects false
early alarms for the mean change detection.

Variance Influence In this paragraph, we focus on the behavior of stopping times under the
alternatives and the different variance estimates. Figure 26 presents their relative frequency of alarms
under constant parameters. The relative frequency of stops increases with growing n, ∆ρ and m.
Furthermore, τn,6,γ (green) and τn,7,γ (yellow) produce more alarms than τn,1,γ (black), τn,5,γ (red),
and τn,8,γ (blue), where the relative frequencies of τn,6,γ and τn,7,γ are nearly the same. In addition,
the alarm appears more frequently in the case of high correlation. Secondly, the sequential estimation
of variances after a false detection of a change in the variance yields a much conservative procedure
τn,8,γ .

Now, we focus on the alternatives under variance setting (I
(c)
σ ) and (II

(c)
σ ), cf. Figure 27 and 28. Again,

the unusable stopping times τn,5,γ and τn,6,γ profit by the structure changes in some cases. The
two useful stopping times τn,7,γ and τn,8,γ behave as in the constant parameter setting. Since the

changes in the variances of X and Y cancel each other out in case (II
(c)
σ ), τn,5,γ (red) behaves as

in a constant parameter setting.

Finally, we consider the behavior under (II
(c)
µ +II

(c)
σ ), cf. Figure 29, where only the stopping times

τn,20,γ stay useful. We observe, that these stopping times and the ones using the exact parameters
are the only ones which have monotone power in each case.
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Figure 23: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under constant parameters.
In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even ones
n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.
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Figure 24: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under mean setting (I
(c)
µ ).

In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even ones
n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.



●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●

●

●

●

●

●

●

●
●

●

●
●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●

●

●

●

● ●

●

● ●

●

● ●● ● ●

●

●

●

●

● ●

●

● ●

●

● ●● ● ●

●

●

●

●

● ●

●

● ●

●

● ●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●

●

●

●

● ●

●

● ●

●

● ●● ● ●
●

●

●

●

● ●

●

● ●

●

● ●● ● ●

●

●

●

●

● ●

●

● ●

τ0,γ τ1,γ τ2,γ τ3,γ τ4,γ ● m = 0.5 m = 1.5 γ = 0 γ = 0.25 γ = 0.45

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

● ● ●
● ●

●

● ●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●
●

●

●

●

●

●
●

●

● ●
●

●
● ●

● ●

●

● ●

●

●

●

●

0.1 0.2 0.3 0.4 0.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

∆ρ

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●
●

●

●
●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●
●

●

●

●

●

●

●

●

●

●

●● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●● ● ●
● ●

●

●

●

●

●

●

●

●

●

●● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●● ●
●

●

●

●

●

●

●

●

●

●● ● ●● ● ●

●

●

●

●

●

●

●

●

●● ● ●● ● ●

●

●

●

●

●

●

τ0,γ τ1,γ τ2,γ τ3,γ τ4,γ ● m = 0.5 m = 1.5 γ = 0 γ = 0.25 γ = 0.45

● ●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

● ● ●

● ●
●

● ●
●

● ●
●

● ● ●

● ● ●

● ●
●

● ●
●

● ●
●

● ● ●

● ● ●

● ● ●● ● ●

●
●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●
● ●

● ●
●

● ●

●

●
●

●

● ● ●

● ● ●

● ●
●

● ●
●

● ●
●

● ● ●

● ● ●

● ● ●● ● ●

●
●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

●
● ●

● ●

●

● ●

●

●
●

●

● ● ●

●
● ●

● ●

●
● ●

●

● ●

●

● ● ●

● ● ●

● ●
●● ●
●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ●

●
●

●

●
●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●● ● ●

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

●

●

●

●

●

●

●

●

●

● ● ●
● ● ●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

∆ρ

● ● ●● ● ●

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

●

●

●

●

●

●

τ0,γ τ1,γ τ2,γ τ3,γ τ4,γ ● m = 0.5 m = 1.5 γ = 0 γ = 0.25 γ = 0.45

Figure 25: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under mean setting (II
(c)
µ ).

In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even ones
n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.
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Figure 26: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under constant parameters.
In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even ones
n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.
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Figure 27: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under variance setting

(I
(c)
σ ). In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even

ones n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.
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Figure 28: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under variance setting

(II
(c)
σ ). In the first till the third column ρ = −0.9, − 0.5, 0 and in the odd rows n = 200 and in even

ones n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.
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Figure 29: Each graph contains the relative frequency of stops for ∆ρ = 0.1, 0.25, 0.5 under mean and variance

setting (II
(c)
µ +II

(c)
σ ). In the first till the third column ρ = −0.9, −0.5, 0 and in the odd rows n = 200

and in even ones n = 2000. In the first, second, and third two rows θρ = 0.25, 0.5, 0.75.



CHANGE-POINT ESTIMATION

7.3 Change-Point Estimation

This subsection presents the behavior of estimates for the change-points in the correlation θ̂(ψ) =

k̂
(ψ)
1 /n with

k̂(Z(ψ)) = k̂
(ψ)
1 ∈ arg min

{ 2∑
r=1

kr∑
i=kr−1+1

(Z
(ψ)
i,kr−1,kr

− Z(ψ)
kr
kr−1

)2 : 0 < k1 < n
}
,

where

Z(ψ)
kr
kr−1

= (kr − kr−1)−1
rr∑

i=kr−1+1

Z
(ψ)
i,kr−1,kr

with

Z
(ψ)
i,kr−1,kr

=


(Xi−µ1,i)·(Yi−µ2,i)

σ1,iσ2,i
, if ψ = 0,

(Xi−µ̂
(ψ)
1,i,kr−1,kr

)·(Yi−µ̂
(ψ)
2,i,kr−1,kr

)

σ1,iσ2,i
, if ψ = 1, . . . ,4,

(Xi−µ1,i)·(Yi−µ2,i)
σ̂
(ψ)
1,i,kr−1,kr

σ̂
(ψ)
2,i,kr−1,kr

, if ψ = 5, . . . ,8

and

Z
(ψ)
i,kr−1,kr

= Z
(4+ψ1+4ψ2)
i,,kr−1,kr

=
(Xi − µ̂(ψ1)

1,i,,kr−1,kr
) · (Yi − µ̂(ψ1)

2,i,,kr−1,kr
)

σ̂
(ψ2)
1,i,,kr−1,kr

σ̂
(ψ2)
2,i,,kr−1,kr

for ψ1,ψ2 = 1, . . . ,4.

Parameter Estimates Here, we use the following estimates

µ̂
(1)
1,n,kr−1,kr

≡ n−1
n∑
i=1

Xi, µ̂
(2)
1,n,kr−1,kr

= (kr − kr−1)−1
kr∑

i=kr−1+1

Xi

(σ̂
(1)
1,n,kr−1,kr

)2 ≡ n−1
n∑
i=1

(Xi − µ1,i)
2, (σ̂

(2)
1,n,kr−1,kr

)2 = (kr − kr−1)−1
kr∑

i=kr−1+1

(Xi − µ1,i)
2,

where the exact means are replaced by the mean estimate with index (ψ1) if the means are assumed

to be unknown. µ̂
(3)
1,n,kr−1,kr

is the piecewise sample mean which is based on change-point estimate

k̂µ,1, which is defined by

k̂µ,1 =

{
n, if D̂

−1/2
X ‖ [n·]√

n
(X [n·] −Xn)‖ ≤ c0.05,

k̂(X), else.

Here, D̂X is the classic LRV estimate with bandwidth qn = log(n), c0.05 is the 0.95%-quantile,
and k̂(X) is the least square estimate defined in the first display of this page.

(σ̂
(3)
1,n,kr−1,kr

)2 is similarly defined with (Xi − µ1,i)
2 instead of Xi, whereas the exact means are

replaced by the mean estimate with index (ψ1) in the case of unknown means. Analogously, we
define the mean and variance estimates of Y .

Simulation Setup In this subsection, we consider the following change-point model

ρi = ρ0 + ∆ρ1{i>[nθρ]},

with the following change-point setup:

n ρ0 θρ ∆ρ

200, 1000, 2000 −0.9, −0.5, 0 0.1, 0.25, 0.5 0.1, 0.25, 0.5

In addition, we allow structural breaks in the parameters and consider the following parameter setup:
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SIMULATION STUDY

(1) µ1,i ≡ 0 and µ2,i ≡ 0;

(2) µ1,i = 4 · 1{i≤5/8·n} and µ2,i = 1{i≤0.75·n};

(3) σ1,i ≡ 1 and σ2,i ≡ 1;

(4) σ2
1,i = 1 + 2 · 1{i>3/4·n} and σ2

2,i = 1 + 1 · 1{i>4/5·n}.

Firstly, we consider the change-point estimates for the structural breaks of the correlation. Figure
30 shows the boxplots of the estimates in the case of constant means and known variances, no matter
whether a test rejects the null hypothesis or not. The presented estimates θ̂(ψ) behave quite similarly
for ψ = 0, 1 2, ,3, 5, 6, 14, 19. Obviously, the estimates become more precise for larger sample sizes n
and change sizes ∆ρ. Furthermore, change-points in the middle of the observations can be estimated
better than the ones which occur at the beginning or at the end of the observations. However, for
n = 1000 the arithmetic mean is near zero in each case. The estimates θ̂(2), θ̂(6), and θ̂(14), which
use the sequence of sample means and variances, i.e. x̂l,i,1,k and x̂l,i,1+k,n for k = 1, . . . ,n and

x ∈ {µ,σ2}, to estimate the mean and variance, are a little less precise than the estimates θ̂(1), θ̂(3),
θ̂(5), and θ̂(19) using the whole sample to estimate the parameter.

Now, we consider the cases where the means are non-constant and fulfill (2) but the variance
remains constant to one. Then, the estimates θ̂(0), θ̂(5), and θ̂(6), which use the exact means, as
well as the estimates θ̂(3) and θ̂(19), which use change-point estimates, remain useful. However, to
analyze the influence we plot the other estimates in Figure 31, too. The change-point estimate of the
correlation θ̂(1) untruly estimates the structural break of the means of Y , which is equal to 0.75.
In contrast, θ̂(2) untruly estimates the structural break of the means of X, which is equal to 0.625.
Furthermore, it seems that θ̂(3) and θ̂(19), which behave similarly, are slightly better estimates
for the correct change-point in the correlations if these change-points lie at the beginning, i.e., for
θρ ∈ {0.1, 0.25}.

Now, we focus on the case where the means are constantly zero but the variances possess structural
breaks. Therefore, we suppose the variances setup following (4). In this setting only θ̂(0) and θ̂(19)

remain useful. Nevertheless, to indicate the behavior of the other estimates we present them in Figure
32 as well. In most of the cases the unusable estimates approximate the variance change-points of Y ,
which is 0.75. If the change size is large (∆ρ = 0.5) and the change-point of the correlation lies in the

middle, then even θ̂(1), θ̂(3), and θ̂(5) correctly estimate the change-point of the correlations. The
estimate θ̂(19) only works well if the sample size, change size, and location are appropriate. If two of
these parameters are “bad“ regarding a small sample size, change size, or that the change location is
too early, this estimate falsely approximates the change-points of the variances.

Finally, we consider the case where the means and the variances are non-constant. Figure 32
presents the boxplots of θ̂(0) and θ̂(19) for n ∈ {200, 1000, 2000}. Overall, we can summarize the
behavior as a combination of the previous notes.
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Figure 30: Boxplots of change-point estimation error θ̂(ψ) − θ under parameter setup (1)
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ρ0 = −0.9, n = 1000, θ = 0.5, ∆ = 0.5
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ρ0 = −0.5, n = 200, θ = 0.25, ∆ = 0.1
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ρ0 = −0.5, n = 1000, θ = 0.25, ∆ = 0.1
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ρ0 = −0.5, n = 200, θ = 0.25, ∆ = 0.25
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ρ0 = −0.5, n = 1000, θ = 0.25, ∆ = 0.25

●●●

●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●●●

●●●

●

●
●

●

●●

●

●●●●●
●
●●
●●●
●
●

●

●

●

●
●
●●
●

●

●
●

●

●

●

●
●●●●●●
●
●

●

●

●

●

●●

●●
●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●
●
●

●

●●●

●●●

●

●

●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●
●●

●

●

●

●
●

●

●●●

●

●

●●

●●

●●●

●

●

●●

●●

●●
●

●

●
●●
●●
●●
●

●●●●●●●

●

●●

●
●●
●
●●
●

●

●
●
●

●

●●●●

●

●●

●
●●

●●
●

●

●●●

●

●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●
●

●

●
●●

●

●
●

●
●
●
●●
●●

●

●

●
●
●●

●●●

●

●
●●

●
●
●●

●

●

●
●

●

●

●
●●

●
●

●
●●

●

●
●●●

●

●

●●●●●
●

●

●

●

●●

●

●●●
●●●
●●
●
●
●
●

●●

●

●

●

●
●
●
●

●●●●

●●

●

●

●
●

●

●

●●

●●

●

●
●●

●

●●

●●

●

●●

●

●●

●●

●

●
●

●
●●●●
●
●

●

● ●●

●●
●●●
●
●●●

●

●
●
●

●●●

●

●

●

●●●

●●
●
●●●●●●●●●●●●

●

●●

●
●●
●●
●

●

●
●

●●●●●●●

●

●●●
●

●
●●
●
●
●●
●
●●●●●●
●
●●●●●●●

●
●●

●●
●

●

θ̂
(0)

θ̂
(1)

θ̂
(2)

θ̂
(3)

θ̂
(5)

θ̂
(6)

θ̂
(14)

θ̂
(19)

−
0.

2
0.

2
0.

6

ρ0 = −0.5, n = 200, θ = 0.25, ∆ = 0.5
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Figure 31: Boxplots of change-point estimation error θ̂(ψ) − θ under mean setup (2)
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Figure 32: Boxplots of change-point estimation error θ̂(ψ) − θ under parameter setup (4)
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Figure 32: Boxplots of change-point estimation error θ̂(ψ) − θ under mean setup (2) and variance setup (4). In
the columns (1,4,7) n = 200, in (2,5,8) n = 1000, and in (3,6,9) n = 2000. In each column the first
three rows are for θρ = 0.5, the second three for θρ = 0.25, and the last three for θρ = 0.1.



REAL DATA APPLICATION

7.4 Real Data Application

In this subsection, we adapt our presented procedures to real financial data, taken from Finanzen
(2016). We consider the correlations between the log-returns of the daily closed index DAX30 and
stock VW from January 2, 2015, to March 2, 2016. The curves and the log-returns are plotted in
Figure 33. (Non-trading days at Börse Frankfurt are omitted in the time axes.)
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Figure 33: Chart of DAX and VW

In the selected time period, the weight of the VW stocks in the DAX index has varied as follows:

Period 01.01.2015–12.04.15 13.04.15–22.12.2015 23.12.2015–02.03.16

Amount 3,36% 3,9% 2,359%

Table 25: Amount of the VW stock in the DAX, cf. DAX-Gewichtung (2016)

Since the composition of the DAX index changed on April 13, 2015, and December 23, 2015, the
correlation between these data might have changed on these two days. Regardless of the facts that we
cannot state whether or not a change in the correlations has actually occurred, and that we cannot
prove whether the assumptions on our results are fulfilled, we can still apply and evaluate the different
procedures.

Figure 34 presents the processes B9,γ , B14,γ , B23,γ , and B24,γ which are weighted by the critical
value c0.05,γ . Only B14,γ , B23,γ , and B24,γ reject H0 while B9,γ does not exceed c0.05,γ for
each γ.

Table 26 presents the different change-point estimates which use the restriction that there is
only one change-point. Figure 35 illustrates the moving correlation based on Pearson’s correlation
coefficient. On the one hand, we ascertain that the correlation seems to be lower after September 16,
2015, on the other hand, we observe that the moving correlation rises back to a correlation of 0.8.
Thus, the period from September 16, 2015, to around February 10, 2016, could be a random anomaly.
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SIMULATION STUDY
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Figure 34: The left column contains the processes B9,γ/c0.05,γ and B14,γ/c0.05,γ and the right column contains
the processes B23,γ/c0.05,γ and B24,γ/c0.05,γ for γ = 0 (black), γ = 0.25 (red), γ = 0.45 (green), and
γ = 0.49 (blue).

θ̂(1) θ̂(2) θ̂(3) θ̂(14) θ̂(19) arg maxBψ,γ

04.02.16 05.08.15 04.02.16 18.09.15 04.02.16 18.09.16

Table 26: Change-point estimates of the correlations between log returns of DAX and VW

Without claiming that there is coherence between the emissions scandal of VW and a change in the
DAX/VW correlation, we take note that the Environmental Protection Agency accused Volkswagen
on September 18, 2015, and VW published their apologized on September 20, 2015, cf. EPA (2015)
and Pressemitteilung der Volkswagen AG (20.09.15).
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Figure 35: Moving Pearson’s correlation coefficient with backward lag size of 10 (black), 15 (green), 20 (blue),
25 (cyan), 30 (pink), and 35 (yellow).
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Appendix

A Proofs of Section 2

In this section, we present, on the one hand, proofs of well-known results, proofs of some slightly new
results, and, on the other hand, technical lemmas for the main results.

Proof of Theorem 2.1.1. Firstly, we obtain with the CTM that

[n·]√
n

(
ρ̂[n·] − ρ̂n

)
−Rn,ρ(·)

D[0,1]−→ D1/2B(·) (A.0.1)

with

Rn,ρ(·) =
[n·]√
n

(
ρ[n·] − ρn

)
and ρk =

1

k

k∑
i=1

ρi. (A.0.2)

Under H0 it holds that Rn,ρ(·) ≡ 0, since ρi = ρ0 for all i, whereas under Assumption HLA it
holds that

Rn,ρ(·) =
1

n

[n·]∑
i=1

gρ(i/n)− [n·]
n2

n∑
i=1

gρ(i/n) −→ D1/2h(·) as n→∞

uniformly on [0,1]. Since D̂ is a consistent estimate for D, Slutsky’s Theorem implies the first and
second result.

In the third case, we obtain that

‖Rn,ρ(·)‖ = max
1≤k≤n

|∆ρ|
√
n

∣∣∣∣∣ 1n
k∑
i=1

1Rk∗ (i)−
kλ(Rk∗)

n2

∣∣∣∣∣ ≥ 2−1√n|∆ρ|
λ(Rk∗)λ(Rck∗)

n2
, (A.0.3)

where we get the underestimation directly by choosing k = k∗1 and k = k∗2. With a suitable constant
c1 > 0, we therefore get that

an√
n
‖D̂−1/2

n

[n·]√
n

(
Z(0)

[n·] − Z(0)
n

)
‖ ≥ an√

n
‖D̂−1/2

n Rn,ρ(·)‖ −
an√
n
‖D̂−1/2

n (Bn(·)−Rn,ρ(·))‖

≥ an

|D̂1/2
n |

(‖Rn,ρ(·)‖ − ‖(Bn(·)−Rn,ρ(·))‖)√
n

≥ an

|D̂1/2
n |

(
c1|∆ρ|

√
n
λ(Rk∗ )λ(Rc

k∗ )

n2 −OP (1)
)

√
n

,

where we use (A.0.1). Hence, if |∆ρ|
√
n
λ(Rk∗ )λ(Rc

k∗ )

n2 →∞, which is given by HA, the right–hand side

above is asymptotically positive. Furthermore, with D̂
1/2
n = oP (an|∆ρ|λ(Rk∗)λ(Rck∗)n

−2) it follows

for each c > 0 and fι with lim‖x‖→∞ fι(x) =∞ that P (fι(ann
−1/2B0,0,0

n ) ≥ c)→ 1.

Proof of Theorem 2.1.15. This proof exactly follows the proof of Bucchia and Heuser (2015, Th.
1) with the difference that here we deal with the special one-dimensional case (d = 1) and use the

notations Q̃([ns],[nt]) = Q̃n(s,t,), Z̃i = Z
(0)
i − IE

[
Z

(0)
i

]
, and Rk = (0,k] in the AMOC setting as

well as Rk = (k1,k2] in the epidemic setting. Using the same decomposition of Bucchia and Heuser
(2015, Th. 1) implies

P
(
n‖θ̃ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂ − k∗‖ ≥ N

)
= P

 max
k1<k2

‖k−k∗‖≥N

(Q̃(k1,k2)− Q̃(k∗1,k
∗
2)) ≥ max

k1<k2
‖k−k∗‖<N

(Q̃(k1,k2)− Q̃(k∗1,k
∗
2))


≤ P

 max
k1<k2

‖k−k∗‖≥N

(Q̃(k1,k2)− Q̃(k∗1,k
∗
2)) ≥ 0


≤ P

 max
k1<k2

‖k−k∗‖≥N

Ln,k1,k2

A(1)
k1,k2

A
(2)
k1,k2

Ln,k1,k2
+
A

(1)
k1,k2

B
(1)
k1,k2

∆ρ + ∆ρ

A
(2)
k1,k2

B
(2)
k1,k2

+ ∆2
ρ

 ≥ 0

 ,
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where

A
(1)
k1,k2

=
∑

i∈Rk\Rk∗

Z̃i −
∑

j∈Rk∗\Rk

Z̃j −
λ(Rk\Rk∗)− λ(Rk∗\Rk)

n

∑
1≤i≤n

Z̃i,

B
(1)
k1,k2

= −λ(Rk∗\Rk)− (λ(Rk\Rk∗)− λ(Rk∗\Rk))
λ(Rk∗)

n
,

A
(2)
k1,k2

=
∑
i∈Rk

Z̃i +
∑
i∈Rk∗

Z̃i −
λ(Rk) + λ(Rk∗)

n

∑
1≤i≤n

Z̃i,

B
(2)
k1,k2

= λ(Rk ∩Rk∗) + λ(Rk∗)− (λ(Rk) + λ(Rk∗))
λ(Rk∗)

n
,

Ln,k1,k2 = B
(1)
k1,k2

B
(2)
k1,k2

.

Under the assumption that Rk∗ is an interval and Z̃i fulfills the Kolmogorov-type inequalities, it

follows that ‖
∑[n·]

i=1 Z̃i‖ = OP (n1/rz). Hence, just as in Bucchia and Heuser (2015) we get

0 < c ≤ min
k1<k2

‖k−k∗‖≥N

B
(2)
k1,k2

n
< max

k1<k2
‖k−k∗‖≥N

B
(2)
k1,k2

n
≤ 4

and

max
k1<k2

‖k−k∗‖≥N

|A(2)
k1,k2
|

n
= OP (n1/rz−1).

Defining Tk1,k2 := |k1 − k∗1| ∨ |k2 − k∗2| = ‖k − k∗‖ yields

0 < c ≤ min
k1<k2

‖k−k∗‖≥N

−B(1)
k1,k2

Tk1,k2
≤ max

k1<k2
‖k−k∗‖≥N

−B(1)
k1,k2

Tk1,k2
≤ C,

0 < c ≤ min
k1<k2

‖k−k∗‖≥N

|Ln,k1,k2 |
nTk1,k2

and max
k1<k2

‖k−k∗‖≥N

Ln,k1,k2 ≤ −c < 0,

for suitable constants 0 < c ≤ C. It remains to be shown that

max
k1<k2

‖k−k∗‖≥N

|A(1)
k1,k2
|

Tk1,k2
= oP (1) + aNOP (1)

for aN = o(1) as N →∞. The assumption of λ(Rk∗) ∼ n implies

max
k1<k2

‖k−k∗‖≥N

|A(1)
k1,k2
|

Tk1,k2
≤ max

k1<k2
‖k−k∗‖≥N

|
∑

i∈Rk Z̃i −
∑

i∈Rk∗ Z̃i|
Tk1,k2

+OP (n1/rz−1)

= aNOP (1) +OP (n1/rz−1),

where the last equality follows by Lemma B.0.2, for which the Kolmogorov-type inequalities are
required.
Combining the above results implies

P
(
n‖θ̂ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂ − k∗‖ ≥ N

)
≤ P

 max
k1<k2

‖k−k∗‖≥N

Ln,k1,k2

A(1)
k1,k2

A
(2)
k1,k2

Ln,k1,k2
+
A

(1)
k1,k2

B
(1)
k1,k2

∆ρ + ∆ρ

A
(2)
k1,k2

B
(2)
k1,k2

+ ∆2
ρ

 ≥ 0


≤ P

 max
k1<k2

‖k−k∗‖≥N

Ln,k1,k2
(
oP (1) + aNOP (1) + ∆2

ρ

)
≥ 0


≤ P

(
oP (1) + aNOP (1) + ∆2

ρ ≤ 0
)
.
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Proof of Theorem 2.1.16. This proof essentially follows the proof of Theorem 2.1.15. Using the

notation Z̃i = Z
(0)
i − ρi and an = n∆ρ,n implies

P
(
an‖θ̃ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂ − k∗‖ ≥ Nn/an

)
≤ P

 max
k1<k2

‖k−k∗‖≥Nn/an

Ln,k1,k2

A(1)
k1,k2

A
(2)
k1,k2

Ln,k1,k2
+
A

(1)
k1,k2

B
(1)
k1,k2

∆ρ,n + ∆ρ,n

A
(2)
k1,k2

B
(2)
k1,k2

+ ∆2
ρ,n

 ≥ 0

 .

Since Rk∗ is an interval and its cardinality rises with rate n, it holds with the arguments of the
proof of Theorem 2.1.15 that

max
k1<k2

‖k−k∗‖≥Nn/an

∣∣∣∣∣∣A
(2)
k1,k2

B
(2)
k1,k2

∣∣∣∣∣∣ = OP (n1/rz−1) and max
k1<k2

‖k−k∗‖≥Nn/an

∣∣∣∣∣∣A
(1)
k1,k2

B
(1)
k1,k2

∣∣∣∣∣∣ = OP (
an
nN

),

where we use the Kolmogorov-type inequalities for the last equality. Combining the preceding rates
implies

P
(
an‖θ̂ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂ − k∗‖ ≥ Nn/an

)
≤ P

 max
k1<k2

‖k−k∗‖≥nN/an

Ln,k1,k2∆−2
ρ,n

A(1)
k1,k2

A
(2)
k1,k2

Ln,k1,k2
∆2
ρ,n +

A
(1)
k1,k2

B
(1)
k1,k2

∆−1
ρ,n +

A
(2)
k1,k2

B
(2)
k1,k2

∆−1
ρ,n + 1

 ≥ 0


≤ P

 max
k1<k2

‖k−k∗‖≥nN/an

Ln,k1,k2

(
OP

(
n1/rz−1∆−1

ρ,nN
−1
)

+N−1OP (1) +OP

(
n1/rz−1∆−1

ρ,n

)
+ 1
)
≥ 0


≤ P

(
oP (1) +N−1OP (1) + 1 ≤ 0

)
→ 0

as n → ∞, followed by N → ∞. Here, we insert the definition of an = n∆ρ,n and use that
Ln,k1,k2 < −ε for some ε > 0.

Proof of Theorem 2.1.18. Firstly, for a suitable array an,N we obtain that

P (|k̂ − k∗n| ≥ an,N + 1) ≤ P
(

min
k;|k−k∗|≥an,N

Q(0)
n (k) ≤ Q(0)

n (k∗)

)
and with Z̃i = Z

(0)
i − ρi that

Q(0)
n (k)−Q(k∗)

= ∆2
ρ,n(k∗ − k)

n− k∗

n− k

(
1 +

∆−2
ρ,n

k∗ − k

k∗∑
i=k+1

Z̃iρi +
∆−2
ρ,n

n− k∗
n∑

i=k∗+1

Z̃iρi

)
1{k<k∗}

+ ∆2
ρ,n(k − k∗)k

∗

k

(
1 +

∆−2
ρ,n

k∗

k∗∑
i=1

Z̃iρi +
∆−2
ρ,n

k − k∗
k∑

i=k∗+1

Z̃iρi

)
1{k≥k∗}.

With the Hájek–Rényi–type inequalities

max
n≥k>k∗+an,N

∣∣∣∣∣ 1

k − k∗
k∑

i=k∗+1

Z̃iρi

∣∣∣∣∣ = OP


 n−k1∗∑
k=an,N

k−rz

1/rz
 = OP (a

−(rz−1)/rz
n,N ),

max
1≤k≤k∗−an,N

∣∣∣∣∣ 1

k∗ − k

k∗∑
i=k+1

Z̃iρi

∣∣∣∣∣ = OP


 k1∗∑
k=an,N

k−rz

1/rz
 = OP (a

−(rz−1)/rz
n,N ),
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we obtain with (2.1.26) that the insides of the two brackets of the second display are asymptotically

positive if an,N = N∆
− 2rz
rz−1

ρ,n . Hence, we get |k̂ − k∗| = OP (|∆ρ,n|
2rz
rz−1 ).

Proof of Lemma 2.1.21. Base case m = 1: g2 ≡ c is constant. Hence, it holds that∫ n

0
(g1(x)− c)2dx =

∫ k1

1
(ρ0 − c)2dx+

∫ n

k1

(ρ0 + ∆1 − c)2dx ≥ k1 ∧ (n− k1)

2
∆2

1

for any c ∈ R.

Induction step: Let the assumption hold for some m ∈ N, m � n. Let now g1 ∈ Dm+1,n and
g2 ∈ Dm,n. Then, we obtain that∫ n

0
(g1(x)− g2(x))2dx =

∫ km

1
(g1(x)− g2(x))2dx+

∫ n

km

(g1(x)− g2(x))2dx.

Now, we distinguish between the cases:

1. g2 has at most m− 1 jumps on (1,km];

2. g2 has m jumps on (1,km].

In the first case, we obtain by the use of the induction hypothesis that∫ km

1
(g1(x)− g2(x))2dx =

km
n

∫ n

1
(g1(xkm/n)− g2(xkm/n))2dx

≥ 1

2
min

1≤i≤m
∆2
i min

1≤i≤m
(ki − ki−1)

and ∫ n

km

(g1(x)− g2(x))2dx ≥ 0.

In the second case, we obtain by the same estimations as under the induction base that∫ km

1
(g1(x)− g2(x))2dx ≥ 0

and ∫ n

km

(g1(x)− g2(x))2dx ≥ (km+1 − km) ∧ (n− km+1)

2
∆2
m+1.

Hence, by combining both cases we get that∫ n

0
(g1(x)− g2(x))2dx ≥ 1

2
min

1≤i≤m+1
∆2
i min

1≤i≤m+2
(ki − ki−1).

Proof of Theorem 2.1.33. Set −dz = (1 − rz)/rz. Applying the Kolmogorov’s inequality we
observe that

1

n
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

(Z
(0)
i − ρi)

∣∣∣∣∣ = OP (n−dz),

which will be used below. We obtain that

R̃n =
1

n

n∑
i,j=1

f

(
i− j
qn

)
(T1,i,j + T2,i,j + T3,i,j)
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with

T1,i,j = R̂ρ,n(i)
(
Z

(0)
j − ρj

)T
, T2,i,j =

(
Z

(0)
i − ρi

)
R̂ρ,n(j)T , T3,i,j = R̂ρ,n(i)R̂ρ,n(j)T .

We define R̃
(W )
n for W ∈ {A,B,C,D,E,F,G,H} as R̃n in the corresponding cases (A)–(H).

In case of (A) we get

R̃(A)
n = OP (n−δ1)

1

n

n∑
i,j=1

f

(
i− j
qn

)
(Z

(0)
i − ρi) +OP (n−2δ1)

1

n

n∑
i,j=1

f

(
i− j
qn

)

= OP (n−δ1)
n∑

i=−n
f

(
i

qn

)
1

n

∑
j∈Ni

(Z
(0)
j − ρj) +OP (qnn

−2δ1)

= OP (qnn
−(dz+δ1)) +OP (qnn

−2δ1),

where we use that Ni is a union of two intervals and f is integrable. In the case of (B) and,
analogously, of (C) we obtain that

R̃(B)
n = R̃(A)

n +OP (n−δ1)
2

n

n∑
i,j=1

f

(
i− j
qn

)
d

(k)
i,n +

1

n

n∑
i,j=1

f

(
i− j
qn

)
d

(k)
i,nd

(k)
j,n

+
2

n

n∑
i,j=1

f

(
i− j
qn

)
d

(k)
i,n (Z

(0)
j − ρj)

= OP (qnn
−(dz+δ1)) +OP (qnn

−2δ1) +OP (qnn
−(1/2+δ1)) +O(qnn

−1) +OP (a(k)
n )

for k = 1, 2, where we use the absolute boundary of f and
∑n

i=1 |d
(1)
i,n | = o(

√
n) in the situation

of case (B) and additionally, ‖d(2)
i,n‖ = o(n−1/2) in the case of (C). In case of (D), where we only

assume an uniform bound for d
(3)
i,n , we get that

R̃(D)
n = OP (qnn

−(dz+δ1)) +OP (qnn
−2δ1) +OP (qnn

−δ1) +O(qn‖d(3)
in ‖

2) +OP (a(3)
n ).

In case of (E) we obtain that∣∣∣∣∣∣ 1n
n∑

i,j=1

f

(
i− j
qn

)
T1,i,j

∣∣∣∣∣∣ ≤ n−1
m∑
k=1

OP (n−δk)

∣∣∣∣∣∣
n∑

j=−n
f

(
j

qn

) ∑
i∈Nj∩Ĉk

(Z
(0)
i+j − ρi+j)

∣∣∣∣∣∣
≤ n−1

m∑
k=1

OP (n−δk)

∣∣∣∣∣∣
n∑

j=−n
f

(
j

qn

)∣∣∣∣∣∣ max
1≤j1≤j2≤n

∣∣∣∣∣∣
j2∑
i=j1

(Z
(0)
i − ρi)

∣∣∣∣∣∣
= OP (qnn

−(1−1/rz+mink δk)),

where we use the Kolmogorov-type inequality (K(1)
r ). In a similar way, we obtain the rate for T2,i,j

by switching i and j. Furthermore, we get that∣∣∣∣∣∣ 1n
n∑

i,j=1

f

(
i− j
qn

)
T3,i,j

∣∣∣∣∣∣ ≤ n−1
m∑

k1=1

m∑
k2=1

OP (n−δk1−δk2 )

∣∣∣∣∣∣
n∑

j=−n
f

(
j

qn

)∣∣∣∣∣∣ max
1≤j≤n

∣∣∣∣∣∣∣
∑

i∈Nj∩Ĉk1 ,i+j∈Ĉk2

1

∣∣∣∣∣∣∣
= OP

qn m∑
k1=1

m∑
k2=1

n−1−δk1−δk2#(Ck1) ∧#(Ck1)

+ oP (1)

= OP

(
qn max

1≤k1,k2≤m
n−1−δk1−δk2#(Ck1) ∧#(Ck1)

)
+ oP (1).
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In cases of (F)–(G) we use the triangle inequality so that we get the rates as in case of (E) plus types
of the form:

1

n

∣∣∣∣∣∣
n∑

i,j=1

f

(
i− j
qn

)
d

(k)
jn (Z

(0)
i − ρi)

∣∣∣∣∣∣ , 1

n

∣∣∣∣∣∣
n∑

i,j=1

f

(
i− j
qn

)
d

(k)
jn d

(k)
in

∣∣∣∣∣∣ ,
1

n

∣∣∣∣∣∣
m∑
l=1

n∑
i,j=1

f

(
i− j
qn

)
d

(k)
jn 1Ĉl

(j)OP (n−δl)

∣∣∣∣∣∣ ,
where the first appears in case of T1,i,j and of T2,i,j and is equal to OP (a

(k)
n ). The two other

summands appear in case of T3,i,j , where the first one is equal to o(1), O(qnn
−1), or O(qn)

in cases of (F), (G), or (H), respectively. The last term is equal to oP (qnn
−1/2−mink δk) + oP (1),

OP (qnn
−1−1/2 maxk #(Ck)n

−δk) + oP (1), and OP (qnn
−1 maxk #(Ck)n

−δk) + oP (1) in cases of (F),
(G), and (H), respectively.

B Lemmas for the Main Results

Lemma B.0.1. For any arbitrary r∗ ∈ [1, 2] let {Zn} be a sequence of real–valued random variables
with uniformly bounded r∗th moments and {dn} a deterministic sequence with

∑n
i=1 |di| = o(

√
n).

Then, {dnZn} satisfies the first and second Kolmogorov inequality with r = r∗.

Proof. Set ‖ · ‖r = (IE [[] | · |r])1/r. Per definition we have to show that there is a constant C ∈ R for
each n ∈ N and η > 0 so that

P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

diZi

∣∣∣∣∣ ≥ η
)
≤ C

ηr∗

n∑
i=1

αi,

where {αn} is a uniformly bounded sequence. We obtain with Markov’s inequality that

P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

diZi

∣∣∣∣∣ ≥ η
)
≤ 1

ηr∗

∥∥∥∥∥ max
1≤k≤n

k∑
i=1

diZi

∥∥∥∥∥
r∗

r∗

≤ 1

ηr∗

∥∥∥∥∥
n∑
i=1

|diZi|

∥∥∥∥∥
r∗

r∗

≤ 1

ηr∗

(
n∑
i=1

‖diZi‖r∗
)r∗
≤ C1

ηr∗

(
n∑
i=1

|di|

)r∗
≤ C2

ηr∗

n∑
i=1

1,

where the first constant C1 is an upper bound of the uniformly bounded second moments and the
second derives from the property of

∑n
i=1 |di| = o(

√
n).

Lemma B.0.2. Let ‖ · ‖ denote the Euclidean norm. Set k∗ = (k∗1,k
∗
2) and k = (k1,k2).

1. Let {dn} fulfill
∑n

i=1 |di| = o(
√
n) and dn = o(1), as n → ∞. Let

√
n = O(k∗2 − k∗1) as

n→∞. Then, it holds that

max
1≤k1<k2≤n
‖k−k∗‖≥N

1

‖k − k∗‖

 k2∑
i=1+k1

di −
k∗2∑

i=1+k∗1

di

 = o(1).

2. Let {Zn} be a real random sequence fulfilling the second and shifted Kolmogorov inequalities

(K(2)
r ) and (K(3)

r ) for any r > 1. Let k∗1 ∨ (n− k∗2) = o((k∗2 − k∗1)r). Then, it holds that

max
1≤k1<k2≤n
‖k−k∗‖≥N

1

‖k − k∗‖

 k2∑
i=1+k1

Zi −
k∗2∑

i=1+k∗1

Zi

 = aNOP (1),

as n→∞, where aN = o(1), as N →∞.



3. Under the second conditions let În a random set with P (În ⊂ I) → 1 as n → ∞, where
I ⊂ {1, . . . ,n}. Then, it holds that

P

 max
1≤k1<k2≤n
‖k−k∗‖≥N

1

‖k − k∗‖

 ∑
i∈(k1,k2]∩În

Zi −
∑

i∈(k∗1 ,k
∗
2 ]∩În

Zi

 ≥ η


= O

(
1{k∗1≥min I}

(N ∨ (k∗1 −max I))r−1
+

1{k∗2≥min I}

(N ∨ (k∗2 −max I))r−1

+
1{k∗1≤max I}

(N ∨ (min I − k∗1))r−1
+

1{k∗2≤max I}

(N ∨ (min I − k∗2)))r−1

)
.

Proof. 1. We obtain that

k2∑
i=1+k1

di −
k∗2∑

i=1+k∗1

di =



∑k2
i=1+k1

di −
∑k∗2

i=1+k∗1
di, if k1 < k2 ≤ k∗1 < k∗2,∑k∗1

i=1+k1
di −

∑k∗2
i=1+k2

di, if k1 ≤ k∗1 ≤ k2 < k∗2,

−
∑k1

i=1+k∗1
di −

∑k∗2
i=1+k2

di, if k∗1 < k1 < k2 < k∗2,∑k∗1
i=1+k1

di +
∑k2

i=1+k∗2
di, if k1 < k∗1 < k∗2 < k2,

−
∑k1

i=1+k∗1
di +

∑k2
i=1+k∗2

di, if k∗1 < k1 ≤ k∗2 < k2,∑k2
i=1+k1

di −
∑k∗2

i=1+k∗1
di, if k∗1 < k∗2 ≤ k1 < k2

=


o(n1/2), if k1 < k2 ≤ k∗1 < k∗2,

o(‖k − k∗‖ ∧ n1/2), else,

o(n1/2), if k∗1 < k∗2 ≤ k1 < k2,

= o(‖k − k∗‖ ∧ n1/2),

where we use in the first and last case that ‖k − k∗‖ = O(k∗2 − k∗1) and that for j = 1, 2

max
kj≤k∗j

‖k−k∗‖≥N

1

‖k − k∗‖

k∗j∑
i=kj

|di| = max
kj≤k∗j

N≤|kj−k∗j |≤
√
n

1

‖k − k∗‖

k∗j∑
i=kj

|di| (B.0.4)

+ max
kj≤k∗j

‖k−k∗‖≥
√
n

1

‖k − k∗‖

k∗j∑
i=kj

|di| = o(1). (B.0.5)

Here, we use dan = o(1) for any an → ∞ as n → ∞ for the first summand. Analogously, the
other case follows.
2. Now, we prove the second conclusion and use the same segmentation of the set, over which the
maximum is taken, as at the beginning. Since the maximum over the whole set is smaller than the
sum of the maximum over each segment area, it is sufficient to show that each maximum is equal to
OP (1). For the first segment it follows by Kolmogorov’s type inequalities that

P

 max
k1<k2≤k∗1<k

∗
2

‖k−k∗‖≥N

1

‖k − k∗‖

∣∣∣∣∣∣
k2∑

i=1+k1

Zi −
k∗2∑

i=1+k∗1

Zi

∣∣∣∣∣∣ ≥ ε


≤ P

 max
k1<k2≤k∗1<k

∗
2

‖k−k∗‖≥N

1

(k∗2 − k∗1)

∣∣∣∣∣∣
k2∑

i=1+k1

Zi −
k∗2∑

i=1+k∗1

Zi

∣∣∣∣∣∣ ≥ ε


≤ c

εr(k∗2 − k∗1)r

k∗1∑
i=1

ci +
c

εr(k∗2 − k∗1)r

k∗2∑
i=1+k∗1

ci = o(1),

as n→∞, where we use k∗1 = o((k∗2−k∗1)r). Similarly, we obtain the rate for the last segment, where
we use n − k∗2 = o((k∗2 − k∗1)r). For the other segments we use the Hájek-Rényi type inequalities,
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which are equivalent to the Kolmogorov’s type inequalities, and get for example

P

 max
k1≤k∗1

‖k−k∗‖≥N

1

‖k − k∗‖

∣∣∣∣∣∣
k∗1∑

i=1+k1

Zi

∣∣∣∣∣∣ ≥ ε
 ≤ c

εr

k∗1∑
i=1

ci
(i ∨N)r

= aNO(1),

as n→∞, where aN → 0 as N →∞.
3. In the third case, just as in the second, we use the decomposition of the set over which the maximum
is taken. On the first set k1 < k2 ≤ k∗1 < k∗2 we obtain:

max
1≤k1<k2≤k∗1
‖k−k∗‖≥N

1

‖k − k∗‖

∣∣∣∣∣∣
∑

i∈(k1,k2]∩În

Zi −
∑

∈(k∗1 ,k
∗
2 ]∩În

Zi

∣∣∣∣∣∣ ≤ c

k∗2 − k∗1
max

1≤k1<k2≤k∗2

∣∣∣∣∣∣
∑

i∈(k1,k2]∩În

Zi

∣∣∣∣∣∣ .
Now, we use P (În ⊂ I)→ 1 as n→∞ so that the right–hand side above is estimated by

c

k∗2 − k∗1
max
k1,k2∈I

∣∣∣∣∣∣
∑

i∈(k1,k2]

Zi

∣∣∣∣∣∣+ oP (1) ≤ 2c

k∗2 − k∗1
max

min I≤k≤max I

∣∣∣∣∣
max I∑
i=k

Zi

∣∣∣∣∣+ oP (1)

= OP (#I(k∗2 − k∗1)−r) + oP (1) = oP (1),

where we use the Kolmogorov-type inequalities for the rates. Analogously, we deal with the last set
k∗1 < k∗2 ≤ k1 < k2. Hence, we now consider the term on the second set k1 ≤ k∗1 ≤ k2 < k∗2 and
obtain:

max
1≤k1≤k∗1≤k2≤k

∗
2

‖k−k∗‖≥N

1

‖k − k∗‖

∣∣∣∣∣∣
∑

i∈(k1,k2]∩În

Zi −
∑

∈(k∗1 ,k
∗
2 ]∩În

Zi

∣∣∣∣∣∣
≤ max

1≤k1≤k∗1

1

(k∗1 − k1) ∨N

∣∣∣∣∣∣
∑

i∈(k1,k∗1 ]∩În

Zi

∣∣∣∣∣∣+ max
k∗1≤k2≤k∗2

1

(k∗2 − k2) ∨N

∣∣∣∣∣∣
∑

i∈(k2,k∗2 ]∩În

Zi

∣∣∣∣∣∣ .
We treat the first and second summand analogously so that we only consider the first one. Using
P (În ⊂ I) → 1 as n → ∞, we obtain that the first summand is equal to oP (1) if min I > k∗1. In
the other case we estimate the summand by

max
k1,k2∈I

1

(k∗1 − k1) ∨N

∣∣∣∣∣∣
∑

i∈(0,k∗1 ]∩(k1,k2]

Zi

∣∣∣∣∣∣+ oP (1) ≤ 2 max
k∈I

1

(k∗1 − k) ∨N

∣∣∣∣∣∣
max I∧k∗1∑
i=k

Zi

∣∣∣∣∣∣+ oP (1)

Now, we apply a Kolmogorov-type inequality, which yields that

P

max
k∈I

1

(k∗1 − k) ∨N

∣∣∣∣∣∣
max I∧k∗1∑
i=k

Zi

∣∣∣∣∣∣ ≥ η
 ≤ c

ηr

k∗1∧max I∑
i=min I

1

(k∗1 − i)r ∨N r

= O
(

((k∗1 −max I) ∨N)1−r
)
.

Analogously, we handle the maximum over the other sets so that we get:

P

 max
1≤k1<k2≤n
‖k−k∗‖≥N

1

‖k − k∗‖

 ∑
i∈(k1,k2]∩În

Zi −
∑

∈(k∗1 ,k
∗
2 ]∩În

Zi

 ≥ η


= O

(
1{k∗1≥min I}

(N ∨ (k∗1 −max I))r−1
+

1{k∗2≥min I}

(N ∨ (k∗2 −max I))r−1

+
1{k∗1≤max I}

(N ∨ (min I − k∗1))r−1
+

1{k∗2≤max I}

(N ∨ (min I − k∗2)))r−1

)
.
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Lemma B.0.3. Let m ∈ N be finite and Cn = ∪mi=1(nθ2i−1,nθ2i], where θi ∈ (0,1) and θi 6= θj
for i 6= j. In addition let Ĉn = ∪m̂i=1(nθ̂2i−1,nθ̂2i] with λ(Ĉn4Cn) = OP (n1−δ) and let {Zn} be a

random sequence, which fulfills the Kolmogorov’s inequalities (K(1)
r ) and (K(2)

r ) with a r > 1. Then,
it holds that

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ =

{
OP (mn1/2), if |m̂−m| = OP (1)

OP (mn(1−δ)(1/r+δ̃) ∧ n1/2) if |m̂−m| = oP (1)

for any arbitrarily small δ̃ > 0, where Rn = {
⋃m
i=1(nsi,nti] : si,ti ∈ (0,1), si ≤ ti < si+1}

Proof. Let η > 0 then it holds that

P

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ > η


= P

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ > η, |m̂−m| > N1


+ P

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ > η, |m̂−m| ≤ N1


≤ P (|m̂−m| > N1) + P

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ > η, |m̂−m| ≤ N1


as n→∞. Since Ĉn is a union of at most m+N1 disjoint intervals, Ĉn4Cn and C ∩ Ĉn4Cn
are a union of at most 2m+N1 intervals under the condition |m̂−m| ≤ N1. Hence, it holds that

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ ≤ max
C∈Rn

∣∣∣∣∣∑
i∈C

Zi

∣∣∣∣∣ ≤ 2(2m+N1) max
1≤k≤n

|Sn − Sn−k| = OP (mn1/r),

where we just assume that |m̂−m| = OP (1). If we assume |m̂−m| = oP (1), we replace N1 by an
ε1 > 0 and consider

P

max
C∈Rn

∣∣∣∣∣∣
∑

i∈C∩(Ĉn4Cn)

Zi

∣∣∣∣∣∣ > η, |m̂−m| ≤ ε1, λ(Ĉn4Cn) ≤ N2n
1−δ


≤ P

 m∑
j=1

max
1≤k1,k2≤N2n1−δ

∣∣∣∣∣∣
nθ2j∑

i=nθ2j−1

Zi −
nθ2j+k2∑

i=nθ2j−1−k1

Zi

∣∣∣∣∣∣ > η

 ,

where by applying Lemma B.0.2 it follows that

max
1≤k1,k2≤N2n1−δ

∣∣∣∣∣∣
nθ2j∑

i=nθ2j−1

Zi −
nθ2j+k2∑

i=nθ2j−1−k1

Zi

∣∣∣∣∣∣ = OP (N
1/r+δ̃
2 n(1−δ)(1/r+δ̃) ∧ n1/2)

for any arbitrary δ̃ > 0. Choosing η = N
1+1/r+δ̃
2 makes clear that the result follows.

Lemma B.0.4. Under the assumption that g is piecewise continuous, it holds on [0,1] that∥∥∥∥∥∥ 1

n

[n·]∑
i=1

g(i/n)−
∫ ·

0
g(x)dx

∥∥∥∥∥∥
∞

→ 0, as n→∞. (B.0.6)
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LEMMAS FOR THE MAIN RESULTS

Proof. Let ε > 0 and z1, . . . ,zm ∈ [0,1], m ∈ N, the discontinuous points of g. Then, we estimate
the maximum over [0,1] by the sum of the maxima over [zi,zi+1] , i = 1, . . . ,m− 1. Therefore, it is
sufficient to show that each of those summands are smaller than ε′ = ε/m > 0 for each n ≥ N for
a suitably large N . Since

sup
z∈[zj ,zj+1]

∣∣∣∣∣∣ 1n
[nz]∑
i=1

g(i/n)−
∫ z

0
g(x)dx

∣∣∣∣∣∣ ≤
j−1∑
k=1

∣∣∣∣∣∣ 1n
[nzk+1]∑
i=[nzk]

g(i/n)−
∫ zk+1

zk

g(x)dx

∣∣∣∣∣∣
+ sup
z∈[zi,zi+1]

∣∣∣∣∣∣ 1n
[nz]∑
i=[zj ]

g(i/n)−
∫ z

zj

g(x)dx

∣∣∣∣∣∣
and 1

n

∑[nzk+1]
i=[nzk] g(i/n) pointwise converges towards

∫ zk+1

zk
g(x)dx , it is sufficient to consider

sup
z∈[zi,zi+1]

∣∣∣∣∣∣ 1n
[nz]∑
i=[zj ]

g(i/n)−
∫ z

zj

g(x)dx

∣∣∣∣∣∣
≤ sup

z∈[zi,zi+1]

∣∣∣∣∣z − zj[nz]

n∑
i=1

g(i/n(z − zj))−
∫ z

zj

g(x)dx

∣∣∣∣∣
+ sup
z∈[zi,zi+1]

∣∣∣∣∣∣z − zjn

n∑
i=1

g(i(z − zj)/n)− 1

n

[nz]∑
i=[zj ]

g(i/n)

∣∣∣∣∣∣ ,
where the first summand converges towards zero, since fn(z) =

z−zj
[nz]

∑n
i=1 g(i/n(z − zj)) is equicon-

tinuous (g continuous) and converges pointwise towards the integral.
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Csörgö, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley New York.

Darling, D. A. and Erdös, P. (1956). A limit theorem for the maximum of normalized sums of inde-
pendent random variables. Duke Math. J. 23, 143–155.

Davidson, J. (1994) Stochastic Limit Theory: An Introduction for Econometricians. Oxford university
press.

Davidson, J. and De Jong, R. M. (2000). Consistency of kernel estimators of heteroscedastic and
autocorrelated covariance matrices. Econometrica, 68, 407-423.

Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and
semiparametric time series processes. Elsevier, 106, 243–269.

Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models,
and a new model. Journal of Business and Economic Statistics, 22, 16-29.

DAX-Gewichtung (2016). Accessed on 05.03.2016. URL: http://www.finitmat.de/DAX-
Gewichtung.html.

De Jong, R. M. (2000). A strong consistency proof for heteroskedasticity and autocorrelation consistent
covariance matrix estimators. Econometric Theory, 16, 262-268.



REFERENCES

Dehling, H., Vogel, D., Wendler, M., and Wied, D. (2015). Testing for Changes in the Rank Correlation
of Time Series. URL: http://arxiv.org/abs/1203.4871v4, 1-26.

Donsker, M. (1951). An invariance principle for certain probability limit theorems, Four Papers on
Probability. Mem. Amer. Math. Soc. 6.

Eckley, I., Fearnhead, P., and Killick, R. (2011). Analysis of changepoint models. Bayesian Time Series
Models, Cambridge University Press Chapter: 10.

California Environmental Protection Agency. (18.09.15). In-use Compliance Letter.

Fazekas, I. and Klesov, O. (2001). A general approach to the strong law of large numbers. Theory of
Probability & Its Applications, 45, 436-449.

Ferger, D. (1994). Change-point estimators in case of small disorders. Journal of Statistical Planning
and Inference, 40, 33-49.

Ferger, D. (2001). Analysis of Change-Point Estimators under the Null Hypothesis . Bernoulli Society
for Mathematical Statistics and Probability, 7, 487-506.

Finanzen (2016).Accessed on 06.03.2016. URL: http://www.finanzen.net/historische-
kurse/Volkswagen and http://www.finanzen.net/index/DAX/Historisch.

Herrndorf, N. (1984). A Functional central limit theorem for weakly dependent sequences of random
variables. Ann. Probab. 12, 141-153.

Heuser, C. (2013). Testprozeduren zum Aufdecken von Strukturbrüchen in den Korrelationen von
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Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsord-
nung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Josef G.
Steinebach betreut worden.
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