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Abstract

In recent papers, Wied and his coauthors have introduced change-point procedures to de-
tect and estimate structural breaks in the correlation between time series. To prove the
asymptotic distribution of the test statistic and stopping time as well as the change-point
estimation rate, they use an extended functional Delta method and assume nearly con-
stant expectations and variances of the time series.

In this thesis, we allow asymptotically infinitely many structural breaks in the means and
variances of the time series. For this setting, we present test statistics and stopping times
which are used to determine whether or not the correlation between two time series is and
stays constant, respectively. Additionally, we consider estimates for change-points in the
correlations. The employed nonparametric statistics depend on the means and variances.
These (nuisance) parameters are replaced by estimates in the course of this thesis. We
avoid assuming a fixed form of these estimates but rather we use ‘blackbox‘ estimates, i.e.
we derive results under assumptions that these estimates fulfill. These results are supple-
ment with examples.

This thesis is organized in seven sections. In Section 1, we motivate the issue and present
the mathematical model. In Section 2, we consider a posteriori and sequential testing pro-
cedures, and investigate convergence rates for change-point estimation, always assuming
that the means and the variances of the time series are known. In the following sections,
the assumptions of known means and variances are relaxed.

In Section 3, we present the assumptions for the mean and variance estimates that we will
use for the mean in Section 4, for the variance in Section 5, and for both parameters in
Section 6. Finally, in Section 7, a simulation study illustrates the finite sample behaviors
of some testing procedures and estimates.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Strukturbruchanalyse in den Korrelationen
zwischen zwei Zeitreihen. In kiirzlich erschienenen wissenschaftlichen Arbeiten haben sich
Wied und seine Koautoren sowohl mit a-posteriori und sequenziellen Testverfahren als
auch mit Schatzmethoden fiir Strukturbriiche in den Korrelationen befasst. Hierbei haben
die Autoren nahezu konstante Erwartungswerte und Varianzen fiir die beiden Zeitreihen
angenommen.

In der vorliegenden Arbeit prisentieren wir das asymptotische Verhalten von Testver-
fahren (sowohl fiir a-posteriori als auch fiir sequenzielle Testprobleme) und Schétzern fiir
die Strukturbriiche in den Korrelationen zwischen zwei Zeitreihen, bei denen jeweils Struk-
turbriiche in den Erwartungswerten und Varianzen erlaubt sind. Dabei ist die Arbeit wie
folgt aufgebaut: In Kapitel 1 motivieren wir die Problematik und erlautern das mathema-
tische Modell. In Kapitel 2 stellen wir die oben genannten Verfahren und Schatzmethoden
vor, die die exakten Parameter, d.h. die Erwartungswerte und die Varianzen, verwenden.
Diese Verfahren werden in den folgenden Kapiteln erweitert, um mit unbekannten Er-
wartungswerten und Varianzen umgehen zu konnen. In Kapitel 3 prasentieren wir die
Annahmen der Parameterschitzung, die in den nachfolgenden Kapiteln zugrunde gelegt
werden.

In Kapitel 4, 5 und 6 prasentieren wir Verfahren, in denen ein Austauch der exakten Pa-
rameter durch ihre Schétzer stattfindet. Dabei werden in Kapitel 4 die (unbekannten)
exakten Erwartungswerte durch ihre Schétzer ersetzt; in Kapitel 5 ist dies der Austausch
der Varianzen und in Kapitel 6 ersetzen wir beide der vorgenannten Parameter durch ihre
Schatzer. In Kapitel 7 beleuchten wir schliellich das Verhalten der verschiedenen Meth-
oden bei endlicher Beobachtungszahl mit Hilfe von Simulationen und wenden die neuen
Verfahren auf Finanzdaten an.
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INTRODUCTION

1 Introduction

1.1 Introduction

In our modern society the amount of collected data per year is higher than ever before. For this
reason it is necessary to provide suitable big data storage and highly efficient search algorithms.
Examples of where such procedures are required to draw conclusions from enormous quantities are
predictions in financial markets, early warning systems for natural disasters, and buying patterns
of internet users. In each of these fields certain parameters structure the data set and reveal the
required information concerning future development. Sometimes it is important to know whether these
parameters have undergone gradual changes, have suddenly changed significantly, or have remained
more or less constant, e.g. when observing the changes of the global mean surface temperature, of
the risk of some stock price, of the linear correlation between two groups etc. Omne possibility to
investigate whether there is a change of a parameter or not is the change-point analysis. For a survey
on the change-point analyses we refer to Miiller and Siegmund (1994), Aue and Horvath (2013), and
Brodsky and Darkhovsky (2013).

This thesis investigates the issue whether there may be a change in the correlation between two
time series. Among many other things, this is motivated by questions such as: Does the risk of a
portfolio of many stock prices remain constant or not? Is the correlation between sunshine duration
and the electricity rates traded at the market stable?

Testing whether there is a change in a correlation or not is not new and has been treated by
some research studies. Firstly, Aue et al. (2009) investigated the related issue of break detection in
the covariance structure of multivariate time series. Then, Wied (2010) treated structural breaks in
the correlation and published the main results in Wied et al. (2012). They presented a cumulative
sum (CUSUM) test where the asymptotic property of test statistic, the convergence in distribution,
was proved by a functional Delta method. Under certain assumptions these results allow to test
a posteriori whether there has been a change in the correlation between two given time series. Testing
whether there is a sudden change in the correlations while the observation of the data set is incomplete
was considered by Wied and Galeano (2013). Again the testing procedure is based on CUSUM
detectors and the convergence in distribution was proved by the same functional Delta method as
before. Recently, Wied and Galeano (2014) introduced a multiple break detection method for the
correlations.

Each of the main results in these papers possesses some special kind of assumptions. Technically,
the authors’ proofs are based on the functional Delta method for which a little bit more than the
fourth moments of the two considered time series have to be bounded. Furthermore, they assume that
the mean and the variance of both time series do not change significantly. In our approach to analyze
a change of the correlations we present different CUSUM test statistics, which allow changes in the
means and the variances in the two time series.

This thesis is organized in seven sections. Section 1 illustrates the mathematical models and the
motivation for the approach. In Section 2, we consider the case where it is assumed that the means
and variances of the time series are known. Under this assumption we demonstrate an asymptotic
a posteriori change-point procedure under a functional central limit theorem (FCLT'). For normaliza-
tion of the limit process we present long-run variance (LRV) estimates. Additionally, we investigate a
change-point estimate and consider open-end and closed-end sequential change-point procedures. In
Section 3, we introduce the mean and variance estimate assumption. In contrast to a special type of
estimate we present some sufficient conditions for the estimation errors so that the main results of
Section 2 are still satisfactory. Section 4 contains the same procedures and change-point estimates
as Section 2, but we replace the expectations by some unspecified mean estimates which fulfill the
assumptions of the third section. In Section 5, we concentrate on the same procedures as in Section 4,
now assuming that the expectations are once again known and the variances will be replaced by some
estimates. In Section 6, we consider the already known procedures with both parameters replaced by
their estimates. Finally, in Section 7, we illustrate the asymptotic behavior of the testing procedures
and change-point estimates by some simulation studies.



MAIN MODEL AND ITS ASSUMPTIONS

1.2 Main Model and its Assumptions

This subsection presents the main models and their assumptions. The following box contains the basic
assumptions of the mathematical model:

Let Xi,...,X, and Y7,....Y,, be a part of two real-valued time series {X,}nen and {Y,}nen
on a probability space (2,F,P), which will have the following general design throughout the whole
thesis:

Xi\ _ (21 _ ([ NGY )
(Y;> a (ZZ,Z'> B <M2i> + Bi (€27¢> for i €N, (1.2.1)

where {€1,}nen and {€2,}nen are two centered and normalized random sequences with

2 e .
Corr (gl’i,ggﬁ') =0 and EXY,i = BIBZT = (01 0’01510 01’;0;’”)1> (1.2.2)
52 2 2.1

for all i € N, where {17 }nen, {O'%n}neN, {p2,n tnen, {O‘%m}ne[\], and {pn}nen are deterministic,
uniformly bounded sequences, which represent the mean, variance and correlation of {X,,},en and
{Y5 }nen, respectively. Furthermore, we assume that inf, 0;,, >0 for [ =1,2 and for all n € N.

Remark 1.2.1. 1. We use Zi, and Zy, instead of X, and Y,, respectively, to avoid
repetitions if something holds for both.

2. It holds that p;,; = IE[Z; ], O’l27i = Var [Z;;], and p; = Corr (X;,Y;) for all i € N.

7

3. With Zi(o) = (X; — p14)(Yi — p2,i)/(01,i02,4) we obtain that p; = IE [Z.(O)] The variance of

Zi(o) depends on the matrix B;, which is not unique. Notably for each i € N there are infinitely
many B; fulfilling the conditions of the same model. This could provide structural breaks in

the second moments of Zi0 and could influence our methods such that the fluctuation of B;
will be implicitly restricted by further assumptions.

A Posteriori Analysis One aim of this thesis is to present asymptotic tests and to prove their
asymptotic distributions, where the tests decide for given samples whether the null hypothesis

Hol pP1L = ... = Pn (HO)

cannot be rejected or whether it is rejected in favor of an alternative. Firstly, we investigate a local
alternative of the form:

Assumption Hya. Suppose {p,} fulfills

1 7
Pi = Pin = Po + %gp <n> R (1.2.3)

where g, :[0,1] = R is a bounded integrable function with

[nz] . 5
sup} n~! ng (;) —/0 gp(x)dx| =o(1), asn — oo. (1.2.4)
i=1

z€[0,1

Secondly, we analyze the following (local) epidemic change-point setting:

Assumption Ha. Set Ry~ = (k},k3] C [1,n) and suppose {p,} fulfills for i=1,....n

R P, ) ¢ Rk*7
Pi = Pijn = {p—I—Ap, i € Ry, (1.2.5)

where | Ay MRy MRS )n ™32 — 00 as n — oo.
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Remark 1.2.2. 1. The so—called change-points ki and k5 depend on the sample size n, whereas
the change size A, # 0 could depend on n. Furthermore, we denote (ki,k3] to be the change-
set. We will see that the assumed divergence of the combination between the change size and
change location is necessary to obtain an asymptotic power one under Ha . Heuristically, the
change-sets must not be too small or too large compared with [1,n].

2. The epidemic change-point setting goes back to Levin and Kline (1985) and is a generalization
of the at most one change (AMOC) alternative, p1 = ...= pgx # Pkr41 = ... = pn. If kT =
we would get an AMOC' alternative.

After we have decided that the null hypothesis can be rejected, we want to know where the change-
points are. Hence, the estimation of the change-points is another aim of this work. Moreover, we want
to estimate the numbers and the locations of the unknown change-points in a multiple change-point
setting.

Assumption Hgvl). Suppose {pn} fulfills for i=1,....n

R*

pi=po+ L <iyBpgn (1.2.6)
=1

where R* €N, 1=kj <ki <...<kp <kpyy=n, A,=inf1<;|Ap;u[ >0 forall neN, and
k:;‘/n —0,;€[0,1] as n—o00 forall j=1,...,R. Furthermore, we set Ap«,, =k:—ki_; and
Apx p, = mMiN<p<pi1 Dpr -

Remark 1.2.3. We refer to ki and 0,5, j=1,...,R, as change-points.

Summing up, we will deal with asymptotic tests which decide whether there is or is not a change
in the correlation for two given time series. Additionally, we will present some change-point estimates.
The following Figure 1 contains one example under the null hypothesis, Hy, and one for each presented
alternatives above, Hpa, Ha, and HSVI). The figure shows cases where a change in the correlation
is not really visible on the basis of the plotted processes X and Y. To illustrate the correlation
between the two time series we added the exact correlations (in green) and the sliding window sample

correlations (in black).
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Figure 1: Each box contains a figure showing two graphs of a Moving-average (MA) process path, one red- and one
blue-colored, and a second figure showing a green graph of the correlations between the two MA processes.
The black graph shows the path of the sample correlation coefficient based on a sliding window method
with a forward-backward window size of 50-50.
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MAIN MODEL AND ITS ASSUMPTIONS

Sequential Analysis The previous analyses and estimations assume a given sample of the two time
series {X,,} and {Y,}. But if they are not completely given and we receive the samples one by one,
we want to test sequentially whether the correlation remains constant or not, i.e., we want to decide
whether

Héz): PlL= . =Pn="Pntl =-.. (1.2.7)
cannot be rejected or whether the alternative
2
Hl(): PlL= e =Pn = .= Ppx F Pkl = --- (1.2.8)

is accepted. This procedure is called sequential change-point analysis. Here, we distinguish between
closed-end, i.e., the observation will be finished after n + [mn] observations with m > 0, and
open-end, i.e., the observation will only be stopped if a change-point comes up.

Again, we are interested in a local setting:

Assumption H() Suppose {pn} fulfills

1 .
POo=pP1L=...=Pp and Pi = Pi;n = PO + \/79[0 ( ) ]l{z>n}7 (129)
where g, is a bounded, integrable function on [1,1+m| with
n+[nz| 142
~1 _
sup [n Z 9p < > / gp(x)dx| =o(1), asn — oo. (1.2.10)
z€[0,m] i=n+1 1

In an AMOC model we assume:

Assumption HE:). Suppose {pn} fulfills

P zE{l,,n—i—[@Zn]},
i — . g 1.2.11
i = pi, {p—l—Ap, i€ {n+[0n],...,n+[nm]}, ( )

where 0 <05 <m and A, #0.
Additionally, we consider the open-end local setting and an open-end AMOC model:

Assumption H() Suppose {pn} fulfills

1 .
Pi = Pin = po + fgp < ) ]1{z>n}7 (1212)
where g, s a bounded, integrable function on [1,00) with
n+[nz| 142
-1 _
sup [n Z < > / gp(x)dx| =0(1), asn — oo. (1.2.13)
z€[0,00) i=nt1 1

Assumption HE,C:). Suppose {pn} fulfills

p, ie{l,...,n+[0*n]},
i = Pin = . * 1.2.14
Pi = pi, {p—{—Ap, i€ {n+[0"n],..} ( )

with 0 < 0* < oo and A, #0.

In this setting we continue the observation until we detect a possible change-point. Mathematically,
this procedure can be described by a stopping time. Hence, we are interested in the asymptotic
behavior of stopping times.

Figure 2 illustrates the path of two MA processes where the observations until n(= 200) are
already observed and do not reject H(()2). The data are analyzed to determine whether the correlation
is changing or not. On the one hand, in a closed-end procedure we stop the analysis at n+mn(= 500)
if no change is detected in the correlation. On the other hand, an open-end procedure we only stop

the analysis until we detect a change.
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Figure 2: Each box contains a figure showing two graphs of a path of a Moving-average (MA) process, one red-
and one blue-colored, and a second figure showing a green graph of the correlation coefficient between
the two MA processes. The black graph shows the path of the sample correlation coefficient based on a
sliding window method with a backward window of size 100.
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1.3 Test Statistics and Stopping Times

For the a posteriori setting we construct asymptotic tests to decide whether there is a change in
the correlation between two given time series Xi,...,X,, and Yi,...,Y, or not. This means that if
some suitable detectors are larger than a critical value, we will reject the null hypothesis, otherwise
we will not. Hence, we consider the following test

1 T 7#)7[77 > Is
T O(XY ’ bl 1.3.1
L (XY = {0 T < oy (1.3.1)

where we call T}, WY 5 detector and Ca,up, the critical value. The other indices will be specified

later on. The test gbjw [(X)Y) =9 w (X1, XY, 0Y,) s called consistent if it has asymptotic

. P
power one under an alternative, i.e., ¢L¢ (X, XY, Y,) — 1 as no— oo

Firstly, we consider the mean change model for the random variables Zi,...,Z,. For this testing
problem the classical approach is based on the maximum-likelihood statistic, which depends on the
distribution of the random variables. If we assume that the innovations are independent, identically
N(0,1)—distributed, and that the change-point is known to be located at k*, then the log-likelihood
ratio will yield the detector

w(k* )| Z — Zy),

where Zj, is the sample mean of the observations Zi,...,7Z; and w(k*mn) is a suitable weighting
function. Since k* is not known in general, we take the maximum over all possible k*’s. Alter-
natively, we can transfer the previous form into a functional one, i.e., consider w([n-],n)|Z},) — Zn|

and apply some other continuous functional mapping from D[0,1] on R, where D[0,1] is the Sko-
rokhod space, i.e., the set of all cadlag functions from [0,1] to R. More generally, we may consider
a weighting map of the distance between two estimates, calculated by the observations Z1,...,Z[y
and Z1,...,Z,. This concept of splitting the samples into the groups with indices from 1 to k,
or [n], and from k+1, or [n]+1,to n to compare the estimates will be used throughout the thesis.

If we adapt this detector to our change-point problem in the correlation, we get a similar detector
of the form:

T,=f (w([[n]vn)m[n] - ﬁn|) )

where py is some estimate for the correlation and f : D[0,1] — R any suitable, continuous function.
Wied et al. (2012) considered

1 0, if k < 2,
fg() = sup |g(2)], w(km)=—=D"2, fi= Ziu( 0 ) BT
z€[0,1] \/Z )Z (Y Yk)ga = 4y
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where D~1/2 is a certain unknown weighting factor which can be estimated and p,, is the well-known
sample correlation coefficient. They proved that the test statistic converges under certain assump-
tions in distribution towards the maximum of a Brownian bridge: In particular, they assumed that
the five dimensional vector (X?2,Y;2,X;,Y;,X;Y;) is Lo near epoch dependent (see Def. on p. 39) with
uniformly bounded rth moments (r > 2) and nearly constant first and second moments. They relied
on a new functional Delta method and came up with the estimate D3,

In Heuser (2013), we considered another weighting function, namely w(k,n) = w,(k,n) = %D‘lm(kz(n—
k)/n?)~7 with some v € [0,1/2).

In this thesis we consider the general statistics in an a posteriori model of the following form
Ty = f(BYY()) (1.3.2)

under more general assumptions where the basic assumptions are the following:

e . is an index to distinguish functions f, : D[0,1] — R which are continuous with respect
to [l - |ljpy; and fulfill the property that f.(g1) > f.(g2) for all g1,go0 € D[0,1] with
lg1(2)| > |g2(2)|,Vz € [0,1]. Here, we have the functions fi(g) = SUPc[0,1] lg(2)| and fa(g) =

fol lg(z)|dz in mind;

BYMY() s a process defined by

A zZn zn N ~
BT’/L’J,W(z) = Dl 1/2w'y <[n]> [\/ﬁ] (p%[zn} — pwm) ; (133)

n is the sample size, which tends towards infinity;

[ is the index to distinguish the different real valued long—run variance estimates D, where
[ = 0 denotes some suitable consistent LRV estimate;

e 7 is a constant to specify a weighting function w., which allows us to highlight some special
areas where we suppose a change-point;

e ¢ is the index to distinguish the different correlation estimates p.

In the sequential model we construct a stopping time to decide sequentially whether there
is or is not a sudden change in the correlation between observations Xi,...,X,, X,41,... and
Yi,...,Y,, Y 41,... that come in bit by bit. Wied and Galeano (2013) have already considered the
closed-end stopping time

A k
7, = inf {1 <k<nm : D—l/Qw(k,mﬁmzﬁ -l > ca,b,w,z}
with
)
w(k,n) = <max{e,(1 +k/n) <n—|—k> }) , 7€][0,1/2), e >0,

where p¥, k > 144, is Pearson’s correlation coefficient calculated by the observations (X;,Y;), ... ,(X,Y).

Relying on the same idea we get the following closed-end and open-end stopping times

Tt = nf {0 <a <nm : u (LB () (@/n) > ca,b,@z},z} (1.3.4)
and
Tr(:b),w,l,'y = inf {0 <a o UL(B;L%ZN('))(Z‘/”) > Ca,L,zp,l} 5 (1.3.5)

where inf() = oco and
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e ¢ is an index to distinguish functions wu, : D[0,00) — D[0,00) which are continuous with respect
t0 || [l(0.00) and fulfill

1. u,(g91)(2) > u,(g2)(2) forall z € [0,00) and all g1,g2 € D[0,00) with |g1(z)| > |g2(2)], Vx €
[0,00);

2. u(Tp<y9()) (@) = Tgp<yw(g())(z) for all x € [0,00), g € D[0,00) and z € R,.
Here, we have the functions w(g)(z) = |g(x)| and wua(g)(z) = 2+ 11+$ lg(z)|dz in mind;

o BY ’m(-) is a process defined by

N ~—1/2 [nz] n_ [nz] [ ant[nz] o .
B (z) = {Dl w”< " ) ] Ve (pwﬁ[nzml ”%[mlvl)’ ! [nf] - (1.3.6)
0, else;

e w,, p and the indices 1, [, and ~ have the same meaning as in the a posteriori setting.

Remark 1.3.1. With the different functions f, and u, we can regulate the sensitivity of the test,
as well as the robustness. The above f1 and w; produce a quite sensitive test, whereas the above
fo and wus produce a test statistic which is rather robust against single outliers of B}f’l"y(') and
B}f’m('), respectively. (Some other robust test are discussed on p. 8 of Dehling et al. (2015))
Essentially, we will prove under the null hypotheses Hy and H(()Z), as well as under the alternatives
Hpa, Hiigl, and Hg)g that BY™() and BYY([n))  converge in distribution towards Gaus-
sian processes on some functional space and apply the CMT to obtain the asymptotic distribution of
LB and u,(BYY)([n]). However, it is sometimes possible to relaz the assumptions of our
model if we use functions f, and wu, which results in a more robust method. For example, if we
use fa(g) = fol lg(x)|dz, the convergence of fg(B;f’l”y + R) will be independent of the error function
R([n-]/n) in case of > iy [R(i/n)| = op(n), whereas for the case fi(g) = supgepqyl9(z)|, the error
function must vanish uniformly in probability so that the error has no influence on the limit. However,
in the case of fy we get that By (-) + R([n]/n) does not have to converge towards the limit of
BY ’m(-) in order to guarantee that the limits of the transformed terms are equal.

As a result, we consider many different test statistics, different stopping times and investigate their
asymptotic behaviors. We focus our attention on the effect of the location parameters {u;,} and
{pan}, as well as the effect of the variation parameters {of,} and {o3,} of the observed time
series {X,} and {Y,}.

Remark 1.3.2. In this thesis we focus on the one—dimensional change-point setting, i.e., we consider
a change in the one—dimensional correlation. Naturally, it is possible to consider a d-dimensional
random sequence {X,} with d > 2 and investigate whether there is a change in the dxd-dimensional
sequence of correlation matrices

1 P12,n e Pldn
P21 1 . P2d,n
2X7p7n = M .
pPdin -+ Pdd—1n 1

Many of the following testing procedures can be extended without much effort by replacing the functional
central limit theorem by a multidimensional one or the absolute value by supremum norm. Naturally,
the assumptions of the alternatives Hpa and HaA have to be adapted, e.g. under Hya the change
function g, maps from [0,1] to RUN/2 and in equation (1.2.3) the absolute value is replaced
by the FEuclidean or the supremum norm. Additionally, the test statistics are based on functions f,
mapping from D[0,1]44=D/2 to R.



2 Change-Point Analysis of the Correlations under Known Means
and Variances

In addition to the main model, we assume in this section that the parameters p1;, p2;, o015, and o9;
are known. Then our estimate for the correlation in (1.3.3) is defined for n € N as

R 1m0 1= (X — pa) (Vi — pa2)

P 01i02i
and the sequential correlation estimates in (1.3.6) are defined as

. l+k. L,
Péﬁle:T,{)O,Hk—%POJ for I=1,....m—1, k=1,....n—1.

This section is divided into three subsections, where we consider well-known general results of the
change-point analysis. Firstly, we focus on the asymptotic behavior of the test statistics with estimates
for the change-points and for the long-run variance. Secondly, we consider the asymptotic behavior
of the stopping times. Afterwards, we present some examples.

2.1 A Posteriori Analysis under General Dependency Framework

2.1.1 Testing under a Functional Central Limit Theorem

It is well-known that the asymptotic behavior of CUSUM test statistics is based on FCLTs, cf. Aue
and Horvath (2013). In the following theorem we summarize the asymptotic behavior which we are
interested in.

Theorem 2.1.1. Let a Brownian motion W(-) and a standard Brownian bridge B(-) on [0,1],
D >0, and

)
1 DI[0,1]
%E (2 — pi) =5 DY () (2.1.1)
i=1

be given. Then, it holdsA
(i) under Hy and |Dg— D|=o0p(1) that
700,00 D, Fo(B()); (2.1.2)
(ii) under Assumption Hya and |Dy — D| = op(1) that
TR0 25 fo(B() + h()), (2.1.3)
where h(z) = D~1/? (foz gp(x)da — 2 fol gp(a:)da:> ;

(iii) under Assumption Ha and for each finite ¢ € RY, each continuous fy : D[0,1] — R with
lim|5 500 fo(z) = 00, \15(1)/2| = 0p(an| Ap| MR )A(RE)NT2), and a, — oo that

P <f0 <\°}%327070> > c> 1. (2.1.4)

Proof. See appendix (p. 173). O

Remark 2.1.2. 1. We obtain the convergence in (i) even if > . | |pi| = o(v/n).

2. Choosing fo(g) = SUPp<.ci—p |g(z+h)+g(2_h)_29(z) , h €(0,3) provides the well-known procedure

of sliding windows with bandwidth [nh]. To avoid the search of an optimal bandwidth choice
2N(1—2) |g(2+h)+9(}z;h)729(z

. )\dh for an arbitrarily small ¢ > 0.
Furthermore, it is possible to choose € =0 without any additional assumptions, for which the
law of the iterated logarithm comes into account.

we could use fo(g) = SUpzf
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8. Under Assumption Ha the conditions lim|,_ fo(z) =00 and
|D2] = 0p(an| Ap| ARy )M(Rf)n ™)

can be replaced by the conditions that fo satisfies the triangle inequality and that

nA(Rp 0 (0,[72]2)) - [n-])\(Rk*)) P

fo <D_1/2anAp\/ﬁ

4. More generally, assuming that fo fulfills the property of the triangle inequality, Hg will be
rejected with power one if

. [n] B B P
Hfo (Dn 1/2%@[”.] —7,) || — oo, as mn — oo.
5. The proof makes it clear that each of the three claims holds true if we replace B0 by BY0O 4
OP(D()). In the preceding theorem, we indirectly assume that the variances of {Zno)} are nearly

constant such that the LRV D exists. This assumption can be weakened if we replace ZZ-(O)

by Zi(o)/o’z(o)ﬁ', where 07, . = Var |:Zi(0):|

is mot necessarily constant. Since this parameter is
usually unknown, we have to estimate it. Then, the claimed convergences of Theorem 2.1.1 hold

true under the replacement of o4 ,; by G40 ,; if

[n]
070 ;
Z( o ”) (2" = pi)|| = op(n'?).

i—1 &Z(‘)),i

In the proof of Theorem 4.1.10 below, we will consider similar equations. There, we will see
sufficient conditions for this equation to hold.

6. The convergence of the test statistic in a multidimensional change-point setting can similarly be
proven if we replace the one—dimensional FCLT by a multidimensional one.

We are also interested in weighted test statistics, which allow to be more sensitive in areas where
we expect a change. Assuming the weighting function w(-) to be continuous on [0,1], we can just
apply the CMT to obtain the weighted convergence. Thus, the limit would be fo(wy(-)B(:)) or
fo(wy(-)(B(:) + h(:))). But to highlight the observation’s start or end more prominently we may
drop the continuity of w, in 0 or 1. To get weighted asymptotic results in this case, we pursue
various approaches. One is to assume a FCLT rate, as Csorgd and Horvéath (1997) do in their proof
of Theorem 4.1.2. (ii). Another approach is to impose some additional assumptions on the random
sequence, over which the partial sum is taken, e.g. the fulfillment of Kolmogorov-type inequalities.
We consider three settings, where {S,} is the sequence of the partial sums of {Z,} with Sp =0

(a.s.):

Definition. We say that a random sequence {Z,}nen fulfills the first Kolmogorov-type inequality
for >0 if a constant C € R exists such that for each n € N, and n >0

P < max |Sk| > 77) < ;Zai (/C,(~1))
=1

1<k<n

holds true. Here {an}nen is a non-negative, uniformly bounded sequence.

Definition. We say that a random sequence {Z,}nen fulfills the second Kolmogorov-type inequality
for 7 >0 if a constant C € R exists such that for each n € N, m e {1,...,n}, and n>0

P ( max |Sp — Sp_x| > n) < gzam )
=1

1<k<m

holds true. Here {an,i}neN,ie{l,...,n} s a non-negative, uniformly bounded array.

10
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Definition. We say that a random sequence {Zp}nen fulfills the third (shifted) Kolmogorov-type
inequality for r >0 if a constant C € R exists such that for each n,v € N and n >0

P<maX ‘S’U+k_S | >77> < n—zalv (ICI(-3))
=1
holds true. Here {ounp}lnven 15 a non-negative, uniformly bounded array.

Remark 2.1.3. 1. Usually, the first Kolmogorov-type inequality is defined without the assumption
of auy, being uniformly bounded. We add this assumption since we will only use the Kolmogorov-

type inequality in this context. In the following, we will denote them (Kﬁl)), (ICSZ)), and (IC£3)).

2. Tomacs and Libor (2006) showed that (ICI(.l)) is equivalent to the Hdjek—Rényi inequality

~ m
D Er % (2.15)
= &

for each m € N, where {f,} is a non-decreasing sequence of positive constants, n,r,c,¢ > 0.
This statement is traceable to Fazekas and Klesov (2001), Theorem 1.1.

P< max B

1<k<m

3. Similarly, it is possible to show that (IC?)) s equivalent to

) < 720‘”’ (2.1.6)

where [, 1is a non-decreasing sequence of positive constants, n,r,c,c >0 and n—1 2> m.

p< x| n = Snk| 5
1<k<m B

Moreover, (IC,(~3)) can also be extended to a Hdjek—Rényi-type inequality.

“©

4. When stating that “a d-dimensional random vector {Z,} fulfills a Kolmogorov-type inequality
we mean that each of the d components fulfills the Kolmogorov-type inequality.

As described above, we are interested in weighted convergence with weighting functions which are
noncontinuous in 0 and 1. The following sets of weighting functions are useful to point out which
additional condition is sufficient in the various steps of the proof. Later, we will only use the last set,

e., (2.1.9), of the following four sets of weighting functions for the a posteriori analysis. Basically,
we assume that each weighting function is an element of

WF = {w :(0,1) - Rsp : w is continuous, non-increasing in a neighborhood of zero

and increasing in a neighborhood of one}.

The next set contains continuous weighting functions so that the maximum over (0,1) of a weighted
Brownian bridge, w(-)B(:), exists a.s.

VW(A) = {wEW}" o(1/+/tloglog(1/t)) = w(l —t) ast—>0}. (2.1.7)

The next set of weighting functions contains those which enable us to work with the Hajek—Rényi-type
inequality

V/\;?(%T) = {w :(0,1) = Rsg : w continuous, non-increasing in a neighborhood

of zero, increasing in a neighborhood of one, and it holds that (2.1.8)
[nt] o

—7“/22 (i/n)" — 0, n”/QZ (1—i/n)" ﬁ(),asn%oo,tﬂ()}.

11
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The last set contains those weighting functions which we will focus on, that is

WFO = {w7 :(0,1) = Rsg : w, is continuous so that
(2.1.9)

1
wy(t) =0t™7) =w,(1 —t),as t = 0, for some v € [0,2> }

— (A
It is obvious that WF() c WF0O2 c WF “) holds true. We will see that it is sufficient that,

additionally, the Kolmogorov-type inequalities are fulfilled for » > 2 and w, € WF (12) to ensure
that the weighted test statistics converge towards a non-degenerate distribution.

Theorem 2.1.4. Let w, € WFY) for some fized ~ € 0,3), and let {Zflo) — pn} fulfill (ICSl)) and

(Kﬁz)) for 1. =2. Then, under the assumption of Theorem 2.1.1 it holds
(i) under Hy and |Do— D|=op(1) that

70007 Py fo(wy ()VB(-)); (2.1.10)
(ii) under Assumption Hpa and |Do — D| = op(1) that
TRO0() = folun()(B() + h()) (2.1.11)

with h(z) = D1/2 (foz gp(x)d zfo gp(x da:)
(iii) under Assumption Ha and with

1Dy/% = op (anAp\ (]:;k*) ((f)l_7 <nil/<:f>7 Y <n:zk§>l_V <’Z>V>> ’

where a, — oo, that for each finite ¢ € RY and each continuous fo : D[0,1] — R with
lim) 3500 Jo(2) = 00

P (fo (3%3270”> > c> Sl

Remark 2.1.5. 1. The remarks on Theorem 2.1.1 can be adapted to Theorem 2.1.4.

2. The assumption that {ZT(LO) — pn} fulfills (/Cf«l)) and (ICE«z)) can be reduced to: {Zfo), e Z(O)}}

" ne

and {Z e (0)} fulfill (K (1)) and (IC(2)) for an arbitrarily small € > 0, respectively.
This allows for a stronger dependency in {Zne]+1’ .. ,ng[nd}.

We split the proof into several lemmas. In the following, we will call (2.1.14) the weighted functional
convergence (WFC).

— (A
Lemma 2.1.6. Suppose g € W.F( ) and let {Z,} fulfill the FCLT

\FZZ PO przyy (), (2.1.12)

If and only if

N k- B S _ 1
11_1}(1) nh_)rroloP <{k<n5}151{z}€>§n_m} g(k/n)\F(Z;,C Zn)| > 77) 0 (2.1.13)
holds true for every n >0, we obtain
n — _D[o,1]
ol00)/m) Py = Zo) P g () D). (21.14)

12
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Proof. 7=": The CMT yields that the process B,(-) = %(7[%] — Zy) converges in distribution
towards a Brownian bridge as n — co. Since g is continuous on [e,1—¢| for every e > 0, the weighted
process g,B, = g([n-] /n)B,, converges in distribution towards a weighted Brownian bridge ¢(-)B(-)
on [61 —¢] by applying the CMT again. Define Bj = g,B,11_q and B¢ = gBl| ;_,. Then,
Billingsley (1968, Th. 4.2) completes this part of the proof since (2.1.13) holds and B¢ converges in
probability towards the weighted Brownian bridge gB on [0,1] as e — 0. Here, we also use the law
of iterated logarithm and w(t) = o(1/4/tloglog(1/t)) =w(l —t) as t — 0.

7<": Suppose (2.1.14) holds true, the CMT implies that for every 1 > 0

N [nz]
lim lim P | sup |g(|nz]/n Zind — Zn)| > 2.1.15
lim lim (ZE[M (102) ) 2 Ziy ~ Zo) (2.1.15)
=lim P [ sup |g(2)B(z)|>n| =0, (2.1.16)

=0 z€[0,€]

where the last equality follows from the law of the iterated logarithm. The convergence on [1 — €,1]
can be shown in the same way as on [0,€]. O

Lemma 2.1.7. Let the assumptions of Lemma 2.1.6 hold true and g € WF  for a ~ € [0,%).
Then the equation (2.1.13) can be reduced to

n]

n 71 -
—o0,(1) and (n - [n-]> = Zi = 0p(1)  (2.1.17)
5 B [T
as n — 0o, followed by € — 0.
Proof. Firstly, we obtain that
mux |g(k/n)—=(Z, ~ Z,)
kgneukazxn—ne g " \/ﬁ K "
_ Eo_
< . _ v _
< max g(k/n)\f(Zk Zn)| + , max g(k/n)\/ﬁ(Zk Zn)
n k
k 1 n—k 1
< _ .
< max g(k Z Z; + max g(k/n) - nZZZ
- z 1+k =1
+ max k:/n Z Zi| + max |g(k/ )n_kliZ
k>n—ne k>n—ne g " n n “ !
z 1+k i=1
Since
ax|g(k/n)~ | = o(1) Sz ax|glk/m) "] = o(1)
}%n}é g " n ¢ ’ k<ne \Fz Tk nZ%nX—ne g " - ’
and max,>k>n—ne | 7= le il = Op(1) the first and the fourth summand is equal to op(1) as n —

00, followed by € — 0. The uniform boundedness of g(k/n)(n—k)/n(k/n)Y and g(k/n)(k/n)(n/(n—
k))Y holds for each k < me and for k > n — ne, such that (2.1.13) holds if and only if (2.1.17) is
fulfilled. O

Remark 2.1.8. In the same way it can be proven that under the assumptions of Lemma 2.1.6 the
equation (2.1.13) can be reduced to

[n]

1 1
o 2.1.18
V1og(log(n/ [n-])) /n-] ; (1) ( )

13
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and

1 1
Z z _0,(1) (2.1.19)
Viog(log(1 —n/[n])) v/n — [n] =1+ e

as first n — oo, followed by € — 0.

Lemma 2.1.9. Under the assumptions of Lemma 2.1.7, the equations in (2.1.17) are satisfied if
(IC](rl)) and (ICI(F)) hold for some r > 2.

(1)) is satisfied, it follows from the H&jek—Rényi-

Proof. Since the first Kolmogorov-type inequality (Ky
type inequality (2.1.5), which equivalent to (IC( )), that

[n]
g Z; >n| =PFP| max L
o1 kE[L [ne]] K7

[0.€]
ne —r(z=)
o [ne o e [ne] . ?Eﬁ_ )2 ) for vr > 1,
< ﬁzﬁ < ﬁzﬁ = O(n " log(ne)), for yr =1,
e = U O(elnl"3), for yr <1
This implies that lim, o limy,_ o, P (H ([L) sz, . n) _
Since 7
n Sn — Sn—k L.
> =P v
<n - [n'} Z = (1<kI22X[ne] kY = > ’
1
Z il e
it similarly follows that lim._,olim P ’ ( L )7 Ls Z; >n)=0. O
y e—0 1Mp 00 n—n]) n 2ei=1+[n] Zi 1e] n

Remark 2.1.10. 1. Under the assumptions of Lemma 2.1.6 the equations (2.1.18) and (2.1.19)
are satisfied if (lCl(pl)) and (lCl(?)) hold for r > 2. Note that this assumption contradicts the one

— (A
of the FCLT. Hence, we will not consider W]-"( ) anymore.

2. Analogously, we can prove

k [ne]
Jnax 2w (k/n)| ;Zi| = Op | n71/? ;w(i/n)r = op(1),
1/r
w(l — k/” Z| =0 —1/2 - CINT
1§Hklgf;d - ;k pln ;w(l —i/n) =op(1)

as n — 00, followed by € — 0 for all w € )//\;.7-'(%7”).

Proof of Theorem 2.1.4. The convergence under Hy directly follows from the combination of
Lemma 2.1.6, Lemma 2.1.7, and Lemma 2.1.9. Furthermore, it holds that w,([n:]/n) and

%251}1 gp([n-]/n) converge towards w,(-) and [, g,(z)dz uniformly on [e,1—¢], € > 0, respectively.
In addition, w,([n:]/n)Ry ,(-) converges uniformly towards zeroon [0,e] and [1—e 1] as n — oo and

e = 0. Hence, wy([nz]/n)R, ,(2) converges uniformly towards w-(z) (foz gp(z)d zfo gp(x dx)

on [0,1] and we get the second result. In the third claim, we obtain that

ooz 45 () () (55) () )

Thus, the assertion follows from using the same arguments. O

14
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Remark 2.1.11. Obwiously, the asymptotic distribution of a test statistic in a multidimensional set-
ting can similarly be proven.

Misspecification of the Parameters So far, we have assumed that the exact values of all parame-
ters p1pn, Hon, O‘%n, and O‘%n are known. But the question is, what happens if information about the
true parameters is incorrect? The next lemma shows that there is some tolerance for misinformation
in these parameters.

Lemma 2.1.12. Let the assumptions of Theorem 2.1.1 hold true and set
Mg =my; +dyg; and o1 = 81+ di g,

where infiens;; >€>0 and Y i |di| = o(/n) foreach {di} € {{di i}, {dopi}, {di6:} {d2oi}}-
Then, Z; = (X;—mu;)(Y:i —ma;)(s14824)" L — pi fulfills @ FCLT. Thus, if we replace Zi(o) by Z;,
the convergences of Theorem 2.1.1 hold true.

Proof. Firstly, we note that

[n] L]
1 —my)(Yi—mo) ) 1 o _
(% ‘“)wﬁZ(Zi )

S1.4S
i—1 1,922 —
Z dl,,u i Y ma, z Z d2,u i\ ,ul,i)
f 51,52, \f 51,i82,i

['N]
e (e (G ) ) ) ()
F— <Z. . ) Thi ) (22 g ) 4 (T ) (22 )|,
vn ; i A 51, 52, 51, 52
Now, we show that each of the last three summands is of order op(1). We use Markov’s inequality
and the uniform boundedness of the first moments:

P Z dl#h Y mao ,) > 7 < l]E 1 Z dl,p,l i/z mo z)

51,i52,i n 51,i52,5

di i | IE[]Y; — may
Z ’ 1,p, ’ ‘ ma H 0(1>7
51,i52,i

as n — 00. Analogously, both other summands are of order op(1). So the claim follows. O

Remark 2.1.13. 1. The errors {d;} have no effect on the asymptotic of the unweighted test
statistics.

2. To get a WFC (v > 0), we need to impose further dependence and moment assumptions on
{(X,Yn)} or assumptions on the {d;;}. One option is to assume that Y1 i~ 7V|d;| = o(n'/?>77)
so that we can estimate the weighted error terms in the following way:

Zdl,uz Y:L m21) Snv_%zn:

51,i52,i i—1

di,u,i(Yi — ma;)
1781525

= Op(l).

The first step follows from the triangle inequality. In the second step we use Markov’s inequality
and the uniform boundedness of the moments and of the parameter sequences.

Another option is to assume that the sequences d;.; have no influence on the fulfillment of the
Kolmogorov-type inequalities:

Lemma 2.1.14. Let the assumptions of Theorem 2.1.4 and Lemma 2.1.12 hold true. Moreover, for
each {d;Z;} with {Z;} € {{e1:}.{€2,i}, {Zi(o)—pi}} and some sequence {d;} with Y, |di| = o(y/n)
let (ICI(.I)) and (ICI(?)) be satisfied for r = 2. Then, the convergences of Theorem 2.1.4 hold true.
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Proof. 1t is clear that the three additive error summands of the proof of Lemma 2.1.12 weighted by
¥ .
(n/[n])? are of the order op(1). Each of these can be divided into sums of type & (i) ﬁ Z,Eﬁl d;Z;,

[n]
where {Z;} € {{e1:},{€2}, {Zi(o) —pit}, C€{o1,02,0102}, and
{di} € {{d1 i} {do it {dioi} Ad2oit {d1pido it {dioido e} {digido it
{d1 idooi}t}
Hence, it is sufficient to verify that for each combination it holds, on the one hand, that

‘N

[n]
1 n\7 1
——) — d;iZ; = 1
o (o) 7 et
=1
[0,€]
and, on the other hand, that

n

é’(n—n[n]>7\/lﬁ S dz, = op(1)

i=[n]+1 [1—e,€]

as n — oo, followed by € — 0. Both relations are fulfilled because of the Kolmogorov-type inequalities.
The result now follows. O

2.1.2 Change-Point Estimation

This sub-subsection presents a change-point estimate under the epidemic change-point model and we
prove some rates for the speed of convergence. Since p; is the expectation of ZZ.(O), a change-point
estimate in a correlation model is similar to a change-point estimate in a ”change in the mean” model,
for which many different results are known, cf. Bai (1994), Lombard and Hart (1994), Bai (1997), Bai
and Perron (1998), Lavielle and Moulines (2000), Qu and Perron (2007), and for a survey we refer to
Aue and Horvéth (2013).

In an AMOC model and under the assumptions of Theorem 2.1.1 we already know that B?L’O’O(-) =
By(-) + Rnp(-), where B, converges towards a Brownian bridge and R, , satisfies that

VA
uniformly on [0,1]. Here, 6, € (0,1) is the change-point. Since the function on the right-hand side

is continuous and its maximum is at 6, it remains to show that B, = op(DY?(y/n|A,])™") to get
with the help of Kim and Pollard (1990, Th. 2.7) that

- ‘( *9p>+ —-(1 *ep)‘

Pop (2.1.20)

arg max | BO0

In the following, we are interested in the convergence rates of the estimates, i.e., we look for sequences
a, — 0o such that

anlf — 6] = Op(1).

Epidemic Change-Points Firstly, we consider the slightly more general model, the epidemic
change-point setting, cf. Yao (1993), Huskova (1995), or Antoch and Huskova (1996). For the sake of
completeness we prove the following result, which is based on the proof of Bucchia and Heuser (2015,
Th. 4.1), which is stated under the more general setting of multidimensional panel data.

Theorem 2.1.15. Under Assumption Ha set (ki,k3) = ([n07],[n05]) with 0 < 67 < 65 < 1.
Additionally, let {Z — p,} fulfill (K®) and (K®)) for r. > 1. Then, it holds that

n||6 — 6| = Op(1), (2.1.21)
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where 6 = (01,0) € argmax{Q,(s,t) : 0<s <t <1} with

[n1] o [nt] L
Qu(st) = | > (2 - 20, S (2 -z0,)|. (2.1.22)
i=1+4[ns] i=1+[ns]
Proof. See appendix (p. 173). O

If we additionally allow that the change-points are local, we obtain the following result.

Theorem 2.1.16. Under the assumption of Theorem 2.1.15 with A;}z = o(n~==1/"=) it holds that
nA, .0 — 0%|| = Op(1). (2.1.23)
Proof. See appendix (p. 175). O

Remark 2.1.17. The preceding theorem shows that the local epidemic change-points can be estimated
with some rate if the change size does not vanish “too fast”, which is the case under Assumption Hya
(Ap_}l = 0(n'/?)). In the case of r, =2 and a local change vanishing slightly more ”slowly”, we will
still get some estimation rate.

Furthermore, it is possibly to extend these results by allow large or small change sets, cf. Huskovd
(1995). Thereby, rate conditions of a combination of Ay, kY, n—Fk3, k3 —ki, and n— (k3 —k})
are necessary.

Multiple Change-Points In the following we are interested in the more general multiple change-

point setting, Assumption Hgvl).

Firstly, we assume that the number of abrupt changes R* = R € Nyg is known and we want to

estimate the change-points 61, ... ,0r. To estimate these we use the well-known least square estimate
and define
(l;:y/)), . ,l;:gb)) € argmin{QS’b)(kl, ookg) tl=ko<ki <...<kpy1 = n} (2.1.24)
with
R+1 kr &
QW(ky,...kp) = Lpon > (2 —ZW )2 w=01,... (2.1.25)
r=1 i=kp_1+1

which has already been considered with ¢ = 0, for instance by Lavielle and Moulines (2000) in
a modified form. These authors use the assumption that the distances between two change-points
have a rate of n to construct their estimates:

(K, ... ) eargmax{Qg‘))(kl,...,kR) R znAn},

where A, - 0 as n — oo. Note that if we define A, = 2/n, we will get the same estimates as
for 12:1, . ,l%R. However, in this case the results of Lavielle and Moulines (2000) do not provide the
possible estimation rate of |k, — k*| = Op(1).

Before we consider the general case we want to keep an eye on the special case of estimating one
change-point which has already been considered by Bai (1994). Here, we additionally investigate the
influence of the positions and the sizes of the structural breaks.

Theorem 2.1.18. Under Hg\/[) set R=1, define k* = kj

Tno Apn = Apinm, and assume

2ry

1A, 7T = O (K V (n— KY)) . (2.1.26)

If {Z,SO) — pn} fulfills (Kﬁl)) and (lCl(pz)) for some 1, > 1, then it holds that

~ _ 27z
59— k| = 0p (\Apyn\ rz—l). (2.1.27)
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Proof. See appendix (p. 175). O]

Remark 2.1.19. Under Hy we obtain that

k 2 n 2
argmian(lo)(k:) = argmax |k} (Z(ZZ.(O) — p)> +(n—k)" ( Z (Zi(O) _ p))

=1

k n 2
= argmaxﬁ (Z(Zi(ﬂ) ) %Z(Zim) _ p)) ,

i=1 =1

where the right-hand side has already been investigated by several authors, cf. Lombard and Hart
(1994), Ferger (1994), or Ferger (2001). Under suitable assumptions the estimate k/n converges in
distribution towards a Bernoulli distributed random variable Z with P(Z =0)=P(Z =1) =3, f.
Ferger (2001, Th. 2.7).

In the following theorem we consider the behavior of the estimate sequentially calculated. More
precisely, in a sequential procedure we obtain the data one by one. After a stopping time exceeds the
critical value and asserts that there is a break in structure, we want to estimate the location of this
change. Without stopping our observations and assuming that no second change—point will occur, we
use each new observation to estimate the change-point again and again. In the next theorem, we will
see that the maximal estimation error of all calculations after a certain period of time by, ,, after the
change-point k* is of the same rate as in the above one-time estimation.

27y
Theorem 2.1.20. Set by., = m|A,,| 7==1. Then, under the assumptions of Theorem 2.1.18 it
holds that

272
rrl) , as n — oo, followed by m — oo.

Proof. Firstly, for a, a = by we obtain that

P ma v — k> a .
(kT,n+bn,m)(§N§n| l’N 1,77,‘ - n7M + )

sel U e aVw=aelu)

kj|k—k*|>
kf’n+bn,mSNSn 7‘ |_an,M

and with Zi = ZZ-(O) — p; that

N — k* A—2 LI A2
=A% (k* -k 1 Zipi + —21 Zipi | 1pope
i=k+1 i=k*+1

E* —2 k* A—Q
+A2 (k k*) zpz Z Zzpz IL{l<:>k*}

i=k*+1

Since the Héjek—Rényi-type inequality implies that

I/Tz
N n—kx*
Zool = —r B rr.
k;n+bn,iX§N§n N — '%;H ipil = Op kzb: k = 0p(b; " )
= =0On,m

as n — oo, followed by m — 0o, we obtain with the arguments used in the proof of Theorem 2.1.18
that the content of the previous brackets is asymptotically positive, as n — oo, m — o0, and
M — oo. Hence, the claim follows. O

18



A POSTERIORI ANALYSIS UNDER GENERAL DEPENDENCY FRAMEWORK

Now, we focus on the multiple change-point estimation. Therefore, we need the following technical
Lemma.

Lemma 2.1.21. Define a class of step-functions with m jumps on [1,n], n > 1, by
_f,. (o) — o N A : (m)
Dy = {g [I;n] =R ¢ g(z) =po+ ZlAj 1{k§m)§[x}}, with some k; 7’ € N
]:
such that 1= K§™ < k™, < kG < K0y =, inf |AT™] > 0},
1<y J
Then, it holds for any m € N, m <n that for all g1 € Dy,,, and go € U?izl D,

1 . (m)\2 . (m) (m
ilgzl'lénm(Ai ) 13%11,2“(]{2‘ kiZ1)-

[ 0@ - ga(a)de >
1
Proof. See appendix (p. 176). O

Theorem 2.1.22. Under Assumption Hf,iv[) let {Zy(lo) — pn}  fulfill (Kﬁl)) and (ICI(F)) for ry >1
and let their rth (r > 2) moments be uniformly bounded. In addition, let

pt/reHl/r — o(min A2 Dy ) (2.1.28)
as n — o0o. Then, it holds that

g9 =
1r§njfaéXR anlepd 0p,]| OP(l)?

where 0, ; = lim, o0 k;‘/n, é](p) = l%J(»O)/n, and

ro/(r.—1)
_ . 2 A A2 L2/t
anp =n [(12?RAW/ lrélia§>§%|Ap7z> A (mim Ap’m/mrax\Ak ol )] . (2.1.29)
Remark 2.1.23. 1. The above theorem contains some scenarios where, on the one hand, the

change sizes may asymptotically vanish and, on the other hand, the asymptotic change-points
01,...,0r do not have to be different.

2. If the number of change-points R is misspecified and is expected to be too high, then there are
R change-point estimates which satisfy an|6,; — ép7j| = Op(1). Otherwise, if the number of
change-points is expected to be too low, the change-point estimates approximate a subset of the
change-points depending on ki —kj_; and A,; such that anlf,; — 0, = Op(1).

3. The second condition of the preceding theorem can be replaced by

1 0 2
0 ' _ C A2
el B B e
1=K1

4o If ming, [Apin| >€>0, Ape,,~n, 7>2, and 1, =2, then we can choose a, = n.

Proof of Theorem 2.1.22. Define aj, v = Nn/ay.
Firstly, we obtain with ko =0, kry1 = n, and with some 79 € {1,...,R} that

l<k1<...<kR<n;\kTD—k::0 |>a1,n,N

H%@fwM2N+nsp< min Q@MSQQWO.
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Set Zi(o) = Zi(o) — p;. Then, we get

R+1 kr

Q;O)(k) - Q(O)(k*) = Z Z |:2 (pz - ﬁ(kr—lakr)) ZZ(O) + (pz - ﬁ(kr—lakr))Q]
r=1i=k,_1+1
R+1

" Z [ (k" — k* (%( L, :))2 — (ky — kr—1) (Z(O)(kr—l,kr))z] ;

where we will show that ZRH EZ ko141 (Pi = P(kr—1,kr ))? is the dominating summand. Further-

more, we obtain that S (k* — k:_1)< ©) (K k*)) is non-negative.

r—1:"r

Secondly, we define

R+1

9p - [Ln] - [_1>1]7 T = Pla] and 9o,k - [1 n] [_171]5 T Z ]l[ac]e(kT,l,kT}ﬁ(kr—hkr)
r=1

and obtain that

R+1 kr

> 3 - plerk)) = [ (g(o) - gaa(o)Pd

r=1i=k,_1+1
Furthermore, it holds for each fixed * € {1,...,R} with k.~ # k. that:

1. If k- € [1,kf, —1], then g, and gz are step-functions with at least R —r*+1 and exactly

1k
R —r* many steps on [k,«,n|, respectively.

2. If k. €[k, +1n], then g, and g5 are step-functions with at least * and exactly r* —1
many steps on [1,k,+], respectively.

In the first case it holds with Lemma 2.1.21 that

[ @0te) = gpa@Pe > [ 00) = gpate)
1 -

1

> 5 (0 =) A min (20— D)) min, A2

r*<i< r*<i<R pit
and in the second case that
n 2 kr* 2
[ @) - gpat@) s = [ (aple) — gua(o)aa

1<i<r* 1<i<ps PO

vV
DN | =

Hence, we get for Ap«;, = ki —kj_; that

(Hk* K[ A Ag ) m1<nRA%7i7n.

/ " (gp(@) — gpa(a) e >

[\ \

Thus if there is a r* € {1,...,R} and an € >0 so that |k — k| > €Ags,, Va1 N, then it is quite
clear that

R+1 kr ko
= >(0) . 5(0)
max > | > (pi—plkr-1,k) 2 | < e(R+1) 2ax |Bpinl _max | > 7
r=1 ’L:kr_l-‘rl Z:k1+1
-0 1/r, A
p(n7 max. |Apinl)-
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Hence, the above yields

R+1 9 1 ko o 2
kr — ke 1) (ZO) (kyp_1,ky)) < 1 - A
m’?ng( 1)( e )) < @ +1) 1<ki<ks<n vy — k1 ~;1—1 Z 7
r= 1=Fr1

where we can split the index set over k1 < ko into parts where the difference between ki and ko is
either bigger or smaller than b, = n!/"=~1/7_ This implies that

k‘g k‘2
1 >(0) 1/2 1/2 >(0)
a. —_— Z b / a. Z + b / a. Z
1§1€1}1<1§;§n Vko — Ky i%;—l ¢ 121 x| | ko Er}ﬂxbn i%;q !

_ Op(b711/2nl/r + br—Ll/2nl/rz)

and, in addition, that

R+1 _ 9
max 3 (kr = kr-1) (ZO(ke1,52)) " = Op(ban®’” + b 'n?/"=) = Op(n!/r=+1/7)

as n — 0o. Hence, using the rate as displayed in (2.1.28) we get that

QO (k) — QI (k) < o)

P min
1<k <..<krp<ni|lk—k*||>eApx ,
nl/r: maxy<i<r [Apinl
=P|1-0p -
€A, V a1, N Mini<i<r [Ap;

nl/errl/r
—Op - <0|] —>0
€Apr V@1, N MINI<i<R [Ap i

as n — oo, followed by N — oo. Finally, it remains to consider the case in which we minimize over
each k;, which is in an e-neighborhood of k; with a radius of €Ay. ,. Then, we get

QY (k) — QP (k)

R+1 - ) - )
> c||k* — k|| 1I<nlIlRA/2,7 + Z [ (ky — Ky ( ZO) (ky_ 17"7*)) — (kr — kr—1) (Z(O)(k‘r—lakro }
R kr+1Ak kr Ve kr1VEry
(1) >(0) (2) >(0) (3) >(0)
21> o D Z ok 2 L . > 4|
=0 =k VEE 41 =k AR A1 ik g1 AKE 41

where the second summand of the first line is in this case equal to Op(maxi<,<p+1 ]Ak*mn\z/ ey
due to the Kolmogorov-type inequalities. Here, ¢y, _, k. fulfills the following properties as n — oo

m E—k ' = * o — kS max |A
Ikz—kiléeék*,n,l=r,r+1’ r— 17’“?‘” I O((k741 r) rX’ pirin)
and
}naXHCm 1,kr|| = (gyg%mpml)

Hence, using the Kolmogorov-type inequalities we observe that

P(an|éro — 0| = N +1) <o(1)

Avs 2/r,—1 B
n P<611<111<DRA;2,7 _0p (maxr| k ,r,n’ —Op (maxApmAl/” 1)

Nn/a,
Sz
—~C(R+1 Ay AR >0
(B + )1%85%’ prt |1<a<XR1<|k£Iik*|<en|k — k¥ vV (Nn/ay) ~
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as n — oo followed by N — oo. Now, we use the Hajek-Rényi-type inequalities to obtain

kp VK 7
| it ki1 Zi |

1<|1<; k*\<sn |kr — kx| V (Nn/ay,)

— Op ((Nn/a )~(r=- 1>/Tz).

Due to the assumed displays (2.1.28) and (2.1.29), each of the three Op(-) terms is of order Op(éz)
so that the claim follows. O

Remark 2.1.24. Suppose Ap., ~n, ki ~n, r, =2, and r > 2. Then, we could set p; equal
to a g,(i/n), where g, is an integrable step function, and obtain that n_lQT(ZO)([n']) € D([o,1]%).

Furthermore, we obtain with the above proof that n_nglo)([n]) converges in probability towards a
deterministic function, i.e., it holds that

R+1 Ty d 2
sup n QO ([nzy], ... ,[nzg]) Z/ ( —fmrlgp(y)y> dz| = op(1).

TY,eeny IRG[O,I] Ly — Tp—1
z1<..<rpR

Now, we consider the assumption that the number of change-points R = R*, R* € N, is unknown.
Let the estimates be given by

(k) R®)) € arg min {Qggl’)(kl, kR FBYR 1 =ko < ki <...
(2.1.30)

<kp<kpy1=n,R< C*},

where C* € N is some upper bound for the number of change-points and % = 0,1... is a de-
sign index. Here, (3, is a sequence of non-negative numbers so that [3,R is a penalty term which
is applied to avoid over-fitting. This concept is not new and was already considered by Lavielle and
Moulines (2000) in a slightly modified way.

Theorem 2.1.25. Under the assumptions of Theorem 2.1.22 let be given that

dglo) np/r+l/re o Bn min A%, A, . (2.1.31)

- 40* 1<i<m — PEn=k
Then, the estimate R s consistent for the number of change-points R*.

Remark 2.1.26. 1. The lower (upper) bound for &(LO) is required to prevent overestimation (un-
derestimation) of the numbers of change-points. Heuristically, we get the best asymptotic be-

havior if we choose ﬁr(Lo) equal to the upper bound since the error terms of the change-point
estimation and of the change-point number estimation have the same upper bound in this case.

2. The problem is still that we have to postulate that we already know the minimal step size and
the distance between the closest change-points to choose an optimal B,. However, if r, = 2,

which is not unusual, and r is not bounded, i.e., each moment of Zflo) exists, it is sufficient
that BT(LO) tends to infinity as n — oo.

Proof of Theorem 2.1.25. Set [, = 5780). It is obviously sufficient to show that the sets {R < R*}
and {R > R*} are asymptotically empty. Firstly, we consider the set {R < R*}. It holds that

P(R<R)=P < min ~ QV(k)+B,R<  min  QU(k)+ BnR>

1<k<n;R<R* 1<k<n;R>R*

1<k<n;R<R*

<p ( min  QOR) — QOR) — Bu(R 1) < o)

1<i<m 2 1<i<m

1
:P( p( min ApmAk* n) + = min A 2By — Bu(RT = 1) <0> = o(1),
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where we use the same arguments as in the proof of Theorem 2.1.22 together with the assumption
that S, < g mini<icm A2, Ay

pzn—

Now, we consider the set {R > R*} and obtain

1<k<n;R>R* 1<k<n;R>R*

P(R>R*)=P < min ~ QWU(k)+B,R< min  QUk) + BnR>

§P< min Q,&O><k>—@,&0><k*>+ﬁn<o).

1<k<n;R>R*
Furthermore, it holds that

R+1 kr

QPR = QW) =D 37 (200 = plh—1k)) 2+ (ps = plhr-1.kr))?]
r=14i=k,._1+1
R*+1 2 R+1

MCEL 20 (2005 1kD) = S =) (20 aik)

r=1

We already know from the proof of Theorem 2.1.22 that the latter terms are of the order Op(n!/7t1/7=).

Next, we consider the double sum on the right-hand side of the above equation: For the first
term, for all » € {1,..., R+ 1}, and each [ € {2,... . R*+ 1} with k| < k,—1 < k. < kf we
obtain that p; — p(k,—1, k ») =0 forall i€ (k._1,k]. Hence, it remains to consider the cases where
ki o <kr_1 <k | <k, <k and k,._1 <k; | <k <k,. Inthe last case the inner sum is uniformly
bounded in k with rate

(= Fir)M" (e 18r) (OP(1) + (ke = Fre1) 70/ (k1K)

where we use the Kolmogorov-type inequalities and a,,(k,—1,k,) equal to |p; —p(kr—1,kr)| < 2 with ¢
in (k—1,k ], (kf k7], or (Kkf,k.]. In the case where ay(ky—1,k) > (kr—kr—1)~("=~1/™= the above
rate is asymptotically non-negative and it remains to show that 3, — oo to obtain that the inner sum
is dominated by B,. In the case of ay(ky—1,k.) = O((ky —ky—1)~T=71/2) = O((kj — k)~ ==/,
the above rate has a lower bound which has a rate of —(kf — kj ;)(2~7=)/7=,

In the case where k' , < k.1 <k | <k, <kJ, we obtain rates for the inner sum of the forms

Ky = Kol /") (Op(1) + [k, — ol O~/ (1))
and
K = Kol an (k) (Op(1) + [k, = kel 7/ (1))

with v € {r — 1,r} and w € {l — 1,I}, where, again, ay,(k) stands for |p; — p(ky—1,kr)|. The
latter expression has again three different values depending on 4. The same arguments yield that
Q%O)(k:) —Q%O)(k:*) is dominated by 8, if 8, > nl/"*1/"= Hence, we get |[R— R*| = op(1) if (2.1.31)
holds and the proof is complete.

O

Remark 2.1.27. If the sample size n is sufficiently large, the numerical complezity is of order n'
or 't depending on the number of changes being known or not. This order is quite high compared
to a binary segmentation algorithm, cf. Eckley et al. (2011). Wied and Galeano (2014) presented an
algorithm which could only detect some special kind of change-points. However, it is also possible to
combine the presented detector with a binary segmentation idea which yields a faster estimation. To
this goal, we have to calculate @, = Z?:l(ZZ-(O) —Z0)?2 and minj<p<y, ng)(k) + B, and compare
both. If the first term is smaller, it will be assumed that there is no change and we stop the procedure.
Otherwise, we can reason that there is at least one change, so we can argue on subsets such as

{1,...,[n/2]} and {[n/2]+1,. n} Then, the change-point estimates, ki, .. kR, are the collection
of the arguments which minimize Qn (-) on the disjoint sets {1,...,n1}, ...{np+1,...,n}, where
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on subsets {n;+1,....n;+ (nix1—n;)/2} and {ni+ (niz1—ni)/2,... nix1}t, i=1,... R, the terms
Qn are smaller than the corresponding min ng)(k) + 6.

The difference between this algorithm and the one of Wied and Galeano (2014) is the detector and the
bounds of the subsets. Here they are non-random whereas in Wied and Galeano (2014) they depend on

the estimates calculated by the iteration step before. If we assume that the change-points and change
size are such that for all 61 € {0,07,....05_1} and 0y € {61,....05,1}\ 01

z )d
argmin{ /01 (gp(z) W) dz
2 02 2
+ /6 (9/)(2) - fx 029{?2@@) dz

it is possible to use the algorithm presented in Wied and Galeano (2014) with our detection rule.
This technical assumption is suitable for the situation that one change-point between two others is
dominated in some sense.

€ [01,92]} S {9{, ce ,GE} N (01,92),

In the preceding remark we make use of the fact that the statistic Q%O) is and is not smaller than
ming <x<, Q%O)(k) + B, under Hy and Assumption Hpa, respectively. Thereby, we can construct a
quite simple test in the following theorem.

Theorem 2.1.28. Let {ZZ-(O) — pi} fulfill (IC,(rl)) and (ICI(F)) for r, > 1. Furthermore, we set

Sz 20

1=

minlgkgn Q7(10 (k;) + Bn .

1, 71,

. 0) _
0 70) <1 with TV =

n

DO(X)Y) = { (2.1.32)

Then, it holds under Hy with log(n)?V n?/"=~1 =o(B,) that
DOxY) 0

and under Assumption Ha with B,V n'/m™ = O(A(Rz*))\(Rk*VA%’nn_z) that
DO(XY) L5 1.

Proof. Under Hy we obtain by using ZZ-(O) = ZZ-(O) — po that

{T}LO) > 1} - {i(z}‘”—z(o)) — min QY (k )>6n}

; 1<k<n
=1

. 2
_ (0)
R R 1k:n— <ZZ _72 ' ) > Bn

i=1
= {OP <n2/rz—1]1{rz#2} + log(n)zll{rzzg}> > ,Bn} )

in which we use the Hajek-Rényi-type inequalities in the last line. Hence, it remains to show that
log(n)? vV n?m==1 = o(B,) as n — oo to obtain the claim. Under Assumption Ha we obtain

- (S0 T g a5

; 1<k<n
=1

k n 2
B k(n—k) . n 50) _ k20
=i T P e (AT -
ZPzZH' Z pzZH—k sz >5n}

=14k
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_ k(n_k) -k —=n 2 1/r.
= {g%?_l —— (PT = Pik)” + Op(n/72) > By

MREIN Ry )?
> Mg A 0pa) > .
Hence, using £, V n'/"= = o(A(Rf. )A(Ry+)?A% ,n~?) completes the proof. O
Remark 2.1.29. 1. It remains unclear how to choose [, such that the test is in some sense

optimal. However, the test is more conservative if a larger value of [, is chosen.

2. Assuming B, = log(n)? and a single change-point is existent at ki = n—+/n, we obtain that in
the preceding proof the positive deterministic function does not necessarily dominate the random
term. However, if ki =n — nl/2te for an arbitrarily small € > 0, this cannot happen.

3. Under some additional assumptions we can apply Darling and Erdés (1956) to obtain that
log(log(n)) < By still holds under Hy.

The following corollary will be used in Section 4. There, we sequentially estimate a change in the
means which has to be detected before the change in the mean influences the stopping time controlling
the change in the correlation.

Corollary 2.1.30. Assume a change-point ki = [nf], 6 € (0,1), in an AMOC model. Assume the
assumptions of Theorem 2.1.28 to be fulfilled with r, = 2. Moreover, set [, = /n and

) e (0) o
on = { " i Tn <1, (2.1.33)

arg min Q%O)(k), if 7 > 1,
where Téo) is defined in (2.1.32). Then, for any sequence ¢, — o0 as n — 0o we get

P ke < k* —1 — 00.
(1I£1]§1<Xn < 1+cn\/ﬁ> ,  asS M — 00

Proof. Firstly, we obtain with a, = ¢,/n that

iy = N1 1 in QY
gk mN( Loy gy are min, Oy ()

< (n * 1 .
- {mlnkf+an§N§n T](VO)SI}

+1 max  arg min Qgg)(k))

(0)
{maxps o, <n<n Tn >} kf4a, <N<n  ~ 1<k<N

Thus, it holds that

P( min T}VO)<1):1—P< min T}VO)>1>
ki+an<N<n ki+an<N<n
k(N — k)

<1_p . FUN 7 F) ok 2N V2 _ 0L nl/2) > 3.
a (ki+£1§nzvgn1§§cn§a§f(—1 NP1 Pi) P(n5) > B tan

kian 2 1/2
<1-—-P <k‘{ ta, (Ap,l) — Op(n / ) > ka-i-tln = 0(1)

if n'/2=0 (kl;ia;n (Ap71)2>. Theorem 2.1.20 yields

P in QY (k) < & 1
(k;+$2}z{vgnarg1£§lNQN( )<k +an) — 1,

which finally implies the claim. O
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2.1.3 Long-run Variance Estimation

This paragraph investigates the convergence rates of some LRV estimates. These estimates are needed
to normalize the limit process and have been investigated i.a. by Newey and West (1986) and Andrews
(1991) for multivariate time series. Juhl and Xio (2009) and Huskova and Kirch (2010) focus on LRV
estimates under changes in the location.

In the following, we assume that we already have a consistent kernel estimate for LRV using the exact
correlation coefficient p;. Since these coefficients are usually unknown, we replace them by some
estimates, i.e., we are interested in

0 ~ /. 0  ~ .
Po= D0, = 23S () (A0 puip( 2 - ) (21.31)
i=1 j=1
where ¢, is the bandwidth which tends towards infinite as n — co. Instead of assuming a specific
type of correlation estimates, we specify general conditions on the estimation errors of p, (i) — p;.

Definition 2.1. A kernel is a non-negative, real-valued, integrable function § which fulfills §(0) =1,

/00 f(x)dx =1 and f(—x) = f(x) for all z € R.

—0o0
Remark 2.1.31. For many results the symmetry of f is not necessary but simplifies the proof.

In the following theorem we consider eight different types, (A)-(H), of estimation errors. Case (A)
is motivated by the situation where the correlations p; and their estimates p; are constant for all .
Case (B) represents the scenario where the constant correlation is disturbed by a deterministic error
(e.g. in the situation of misspecified parameters). Case (C) includes the setting of a local change-point
assumption. In the case of (D) we consider the situation where the estimation error is just bounded
as in the case of Ha. Cases (E)-(H) represent situations (A)-(D) respectively, where the estimation
errors are now split on random intervals. This becomes necessary in the case of piecewise constant
correlation estimates.

Remark 2.1.32. Let {X;n}i=1,.. nnen be a random array and di, o deterministic array. We use
the notation X;, = Op(1)+di, to denote: X, —di, is independent of the index i and its absolute
value is equal to Op(1).

The following result is well-known and has already been investigated in many different contexts.
We prove it for the sake of completeness.

Theorem 2.1.33. Assume the following conditions:

1. § is a kernel and q, is a bandwidth with g, — oo and ¢, = o(n) as n — oo,
2. {Z7(10) — pn} fulfills (IC,(pl)) for some r, > 1,
3. it holds that n~'Var [Z?:l ZZ-(O)] — D >0 and

=y

=1 j=1

) 79 — (72 = p) L5 D, (2.1.35)

4. let the estimation error p; — pn(i) fulfill one of the following cases:

( Op(n=o), case (A),

Op(n=o) +d2(-711), case (B),

Op(n=%) + dl(-i), case (C),

) . Op(n=o) + dgz), case (D),

pi — pn(i) = Rpn(i) = iy e, (DO0p(n=%), case (E),
Z;ﬂ’:l 1s (i)Op(n=%) + dz(}l), case (F),

S e ()0p(n=%) +diy), case (G),

S e, (Op(n~) +df}). case (H),

26



A POSTERIORI ANALYSIS UNDER GENERAL DEPENDENCY FRAMEWORK

where 6; >0 forall je{1,...,m}, m €N and where
n 1 n 2 2 _
o Yl = o), il = O(VR), supicic, dE)] = O™ 1/2),
sup, sen |d{| < € < oo;

° . ZZj:1f<%) A2 — pi)| = 0p(al?) with aff) -0, for k=1,2,3;

e in cases of (E)-(G) we assume that Uje{l.,...7m} C’j ={1,...,n} and that there are sets
Cy,...,C, so that P (ﬂje{l,...,m} {éj C C}}) — 1.

Then, it holds that Dy, = Dy + R with

REY = 0p(gun~25) + Op(gun~0-1/r-+00) under (4)

REY + 0p(gun=0/200) + O(gun ) + Op(ai), under (B),

”7(1A) + Op(gnn~/219)) 4+ O(gon™1) + op(aﬁf))7 under (C),

20) _ R + 0p(qun) + O(galldyy |2) + O (al?), under (D)

" Op (qnn_l(nl/”_mm’€ Ok 4 Maxy, ks n 0k ~0ky #(Cky) A #(Ckl))) , under (E),

R + 0p(al))) + op(1) + op(gan1/2-minede), under (F),

R+ 0p(a?)) + O(gun™1) + Op(gun Y2 maxy #Ckn %), under (G),

| B +0(gn) + Op(ar”) + Op(gun~" maxy, #Cin %), under (H).
(2.1.36)
Proof. See appendix (p. 176). O
Remark 2.1.34. 1. Using Markov’s inequality it is obuvious that a,(zl) = O(an_l/Z), (17(12) =

O(gun=1?), and atd = O(qn) hold true. The latter is a rough estimate.

2. Later on, we will use the preceding theorem also in the case where {ZS]) —pn} fulfills a FCLT,
the (lCl(pl)) for r =2, and the r'th (' > 2) moments are uniformly bounded. Note that this

implies that the sample mean of Zq(zo) has an estimation error of Op(n~='/2) if the correlations
pi are constant. Thus, in this case 01 = 1/2.

In this subsection we have considered the asymptotic behavior of test statistic under known means
and variances. Therefore, we have presented some suitable LRV estimates. Moreover, in this section
we have presented change-point estimates and have proven their convergence rates.
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2.2 Sequential Analysis under General Dependency Framework

This subsection presents an open-end and a closed-end procedure.

2.2.1 Closed-end Procedure

In the following theorem we consider the asymptotic behavior of the stopping times. It uses the known
parameters fi1n, [2n, O'in, and U%,n‘ In the context of sequential analysis for changes in the mean
this result is well-known. We prove it for the sake of completeness.

Theorem 2.2.1. Given that
Z 0 D[o 1+m] Dl/QW( ) (2 2 1)
\f 2.

where W(-) is a Brownian motion and D, m >0, it holds
(i) under Hy and |Dg— D|=op(1) that

Pl o <o0) = P sup w(G)(z) > ca |, (2.2.2)
T z€[0,m]
(i) under Assumption H%JCA and |Do— D| = op(1) with §(z)=D"1/?2 1J1rz 1+ gp(x)dx that
Phﬁpy<m%+P<&mzuG+@uy>%), (2.2.3)
' z€[0,m]

(iii) and under Assumption H( o) ;2\150\ =op(n) and 1Moo SUP,cp+ u.(2)(2) = 00 that
P (TT(L?ZO’O < oo) — 1,
where G is a centered Gaussian process with covariance structure IE[G(s)G(t)] = 135 A 147

Proof. Firstly, under H, 2 Wwe obtain that

n+[n:]

] S~ ,0
mﬁy\féi RN P

o) n]  n
=/ fz P |

where f : D[0,1 +m]3 — D[0,m] with f(z,y,2) =
continuous it follows with the CMT, that under H, )

[n2]

2()(z(1 4+ ) —z(1) — y(-)z(1)). Since f is

By*%([n)) = D~2f \/15 > (2" p), [nnz]n +n[m] (2.2.4)
%ﬂiimm+»4uwwmh00 (2.2.5)

Under the assumption Hg& we get

[nz]

BY([n]) =D~ f f Z 7" [7:12]’71 —I-n[nz] (2:20)
n ﬁqﬂLl ni[%] g(i/n) (2.2.7)
n+ [n]n i=n-+1 B
14
%@GQ+DWLLK glz)dz = G() + §(-). (2.28)
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Now, we weight the statistic by 1;<,,; and apply the CMT with the continuous functions wu, :
D[0,00) = D[0,00) and f1 : D[0,00) =+ R with fi(h) = sup.cp o) h(z) so that it implies

P (710 < 00) = P (Ailw(BY(n])) > ca )
P (5. ooy (L (cmyG())(2) > o), under HY,
TP (sbcipe) () (GO + (D)) > ) . under B,
P(Supze[o,m} w (G)(2) >ca>, under H,
P <supz€[07m] w(G+§)(2) > ca) . under H{,,

where we use in the last step the main property 2 of wu,. Under the assumption HE:) we just have to

replace the summand in (2.2.7) by

n+[n-]
. 1 A n_ AR N (n,n+ [n]])
(V=D " Al =D1/? A
Bnl) n+[n]v/n izn-:i-l oL () n+ [n] Vn 7

where the maximum increases as \Ap|f)_1/ 2p1/2. Using the above displays and the property of w,
we get that

[, (BLOO) ([ )| - oo (2.2.9)

Hence, this implies that even under the assumption that A;2|D| = op(n) the stopping times are
asymptotically finite with probability one. O

Remark 2.2.2. 1. In (iii), the condition 1imj, o SUP,cp+ t.(2)(2) = 00 can be replaced by the
condition: wu, satisfies the triangle inequality and

. (Dl/Zn +n[n.] A(Rye N (\7/%71 + [n-]])Ap> H o

2. Considering R,(-) wunder Assumption HE:) makes it clear that we detect a change-point with

probability one within cant’? time-points after the change appears. Therefore, we assume
cn — 00 and D712 =0p(1).

In the following, we employ the set of weighting functions for the closed-end sequential analysis

WFE) = {wﬂY :(0,m) = Rso : w, continuous, w,(t) = O(t™7),

(2.2.10)
1
as t — 0, for some v € [0,2> }
Theorem 2.2.3. Let {27(10) — pn} satisfy (IC£3)) for r=2, let w, € WF®) and
= %(z@ —pp) P przyy (2.2.11)
\/ﬁ P 7 Pi ’ i
where W (-) is a Brownian motion and D > 0. Then, it holds
(i) under HéQ) and |Dy— D| = op(1) that
P(TT(LCL)O7 <o) — P ( sup u,(wyG)(z) > ca) , (2.2.12)
e z€[0,m]
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(ii) underAssumption Hécj)x and |Do— D| = op(1) with §(z)=D"'/? lez 11+Z gp(z)dx that

z€[0,m)]

P(Tﬁff,oﬂ <o) =+ P ( sup u,(wy(G + g))(2) > ca> : (2.2.13)

(iii) and under Assumption HE:), |Do| = op(y/n), and lim 4|00 SUP,er+ U (T)(2) = 00 that

P <7'7(3707,Y < oo) — 1,

_t
T+t-

where G is a Gaussian process with covariance structure IE[G(s)G(t)] = 35 A

Proof. Due to arguments quite analogous to those in the proof of Theorem 2.1.4, it is sufficient to
prove

sup i} O’

z€[1/n,[en]/n]

wr (1) B0 s

n

as n — oo followed by e — 0. Using the triangle inequality and the FCLT yields

wr (") B (e = 0) s ]'([” ) et 25|y,

sup
s[5

n nz| Vn

[en]

€ [%17
as n — oo, followed by € — 0 and with Sj = Zle(Zi(o) — pi). Now we apply the Héjek-Rényi-type
inequality, which is equivalent to the Kolmogorov-type inequality and obtain that the right—hand side
above is equal to op(1). The rest of the proof follows quite analogously to a combination of the proofs
of Theorem 2.1.4 and Theorem 2.2.1. O

Remark 2.2.4. 1. In the third result, the condition lim|y|—o SUP,er+ U (7)(2) = 00 can be
replaced by the condition w, fulfills the triangle inequality and

o (o (50) e )

P
'—>oo.

2. If we consider an AMOC model with an early change ki = n¢, € >0, we use u,(-) = |- |
and w(z) = (%z)’v v € [0,%), with a =~ near % to detect asymptotically the change within

n‘SA;I time-points after the change occurs with probability one. Here, § > % and we

assumed D, = Op(1).

)

2.2.2 Open-end Procedure

In this sub-subsection, we augment the (un-)weighted closed-end procedure presented before to an
open-end one. In order to do so, we define the weighting function in this sub-subsection as follows:

wy: (0,00) 5 R, wy(z) = (HZ)W, = [0,;>. (2.2.14)

z

Theorem 2.2.5. Let {Z\” — p;} fulfill (K®) for r =2 and let
L [zn%(z“)) — o) PR 2y (2.2.15)
7n 22 pi ; 2.

where W (-) s a Brownian motion and D, m > 0. Then, it holds
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1. under HSQ) and |Dy— D|=op(1) that

P(r\% 0, < 00) = P ( sup u, (w,G)(z) > ca> (2.2.16)
. 2€(0,00)

if for each A >0 and as m — oo
P <sup u, <ve]1[o,m](') — [w,y()?W(l) + 5Nm_)‘]]l{,2m}) (x)
e (2.2.17)
— sup u,(w,G)(z) > e> — 0;

0<z<m
2. under Assumption Héog‘, under the absolute integrability of g, on Ry and for |ﬁ0—D| =op(1)
that

P(r\% 0, < 00) = P < sup u, (wy(G +9)) (2) > ca> (2.2.18)
Y 2€(0,00)

with §(z) = D~1/? 1_}_2 11+Z gp(x)dx if for each A >0 and as m — oo

P (sup u (wm )L () — [t ()

x>m

iw(l) +39) + 5Nm_/\]]1{~>m}) ()
(2.2.19)

— sup wu,(wy(G+g))(x) > e) — 0;
0<z<m

3. and under Assumption HES), |Do| = op(y/n) and Mg —s00 SUP,er+ U (T)(2) = 00 that

P (7’72?370’077 < oo) — 1,

where G(-) = ﬁ WA+)—1+9)W(@Q)) and 6= sign(W(1)).

Proof. The convergence under Assumption HE:) obviously holds true by Theorems 2.2.1 and 2.2.3.
Under H(gz) and Hﬁi we obtain

P(7'7(10L)0,Y <o0)=P (sup uL(B%’O"Y)(x/n) > ca)
R 0<z

=P< sup ub<B;v°ﬂ><x/n>2ca)

0<z<nm

+P ( sup  u,(BL07)(x/n) < cq, sup u,(BLO)(z/n) > ca) )
0<z<mn r>nm

Now, it is sufficient to show that the first summand fulfills the claimed convergence and the second

vanishes as n — oo, followed by m — oco. We start with the first summand: From Theorems

2.2.1 and 2.2.3 follow that By"7([n-]) converges in distribution towards wy(-)G(-) and towards
wy(-)(G(-) + g(-)) under HéQ) and under Héoll, respectively, where G is a Gaussian process with
covariance structure IE[G(s)G(t)] = 135 A #t

Thus, the convergence of a monotone sequence of real numbers yields

P (O<su<p w (BYO) (/) > ) = P (0, = €a) = P (I, [j0.0) = ).

Now, it remains to show that the second term of the right—hand side in the first display vanishes as
n — 0o, followed by m — oco. We can estimate this summand by

P (s w(BE) /)~ swp (B o/ > )

r>nm 0<zx<mn
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for an € > 0. Under HéQ) we obtain that

BLOY(2) = DYy, ([m]) (n[zn]n

n n+ [zn])n

1/2

~ zn nizn 1/2
(ﬁZi[lz;g] _p> _D71/2w7 <[ ]) ( [ ] ]) (Plo P)

n n+ [zn

(n+nz)n w'Y( z+1

converges in distribution uniformly towards —w-(2)

and supzzm‘wy([nz]/n) ‘ = o(l) as n — oo. Thus, the second summand

77 W(1). For the first summand, we obtain

P (o ity < 2 n) < P, max fwsn+k—sr>n)
=0

k>nm 2inm<k<2i+lnm k

2it1nm

o0 [e.9]
1
< — > g =
s P (23m\/ﬁ |<keD L Sk = Sal = 77) (en)? Qﬂm\f Z @i = )

Jj=

as n — oo, followed by m — oo. Here, we use the assumed Kolmogorov-type inequality. Thus, it
holds under HéQ) that

P (s wBEO) /)~ s (B0 /) > o)
r>nm 0<z<mn

=P (Sup u, (B#O”(')ﬂ{.gm} + 3711’0’7(')]1{.>m}) (z) = sup u,(By*7")(x) > 6>

r>m 0<z<m

<P (sup U, (an/Z_’y]l{-Sn} + B71170ﬁ(')1{77<-§m}

r>m

—[D7V 2072, ([n2] /n) ——
2 (el fn) s

(5 —p)+ 5nNm—1/21n{.>m}) (@)

— s BLO7q — Lgey Npt/27 >)
O<}C1§mu( (> — Lp<pp Ny )(z) > €

nk . _
+ P <1231X w,y(k‘/n)mml/z(pnffo )| 2 m 1/2N>

+P <max |BLOY (k)| > nl/MN)

k<nn

- P (Sgg u, (nl/Q'yN]l{,<n} + wﬂ,G]I[mm](-) — [wv()?W(l) + 5Nm1/2]]1{,>m}) (z)

_ C
- S 0GB N7 2 €) +

0<zx<m

— P <sup u, <w7G]1[07m](-) = [0y ()W (1) + 5Nm_1/2]]1{.>m}> ()

r>m

— sup u,(wyG)(x) > e> + % —0
0<z<m

as n — oo, followed by n — 0, m — oo, and N — oo, where G(-) = ﬁ (W(l+-) =1+ )W(1)),

6 = sign(p} — p), and & = sign(W(1)). Here, we use the monotony of u,, for the first and second

convergence the CMT, as well as for the last one the assumed convergence. Both applications of the

CMT use that wu, : D[0,00) — D[0,00) is continuous with respect to || - ||j0,-c) and for the second we

additionally use Gw,T{.>p L Gwy as n— 0 on D[0,m].

Under Assumption Hﬁ)& we similarly obtain that

n+k
nk nl/?

B (k) = w, (k/n) S (20— pin) — wy(k/n)

—1/22 Z(O — pin)

(n+kn &k S (
+w (k/n)Ll ’i’“ i/n) —w (k/n)ik Z (i/n),
T itk k- anP T Ry &%
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and that the first and second summand have the same behavior as before. The third converges as
n — oo uniformly on [m,00) towards (-+ 1)7! 11+’ gp(x)dx, where we use the integrability of g,
on R. The last summand is zero by definition. Thus, we obtain with the same arguments

P<sup w (BYO)(x/n) —  sup uL<B3;0ﬁ><x/n>ze)

r>nm 0<z<mn

P <sup " (ww D)oy () — [y (=W (1) + §) + 6Nm—1/2u{.zm}) (x)

r>m + 1

— sup u,(wy(G+g))(z) > e) -0

0<z<m

as n — oo, followed by m — oco. Hence, under Assumption Hioji we get the convergence in display

(2.2.18). O

Remark 2.2.6. In the third result, the condition im0 SUP,er+ . (7)(2) = 00 can be replaced
by the condition w, fulfills the triangle inequality and

u, (wy [n] p-2_" AR N (nyn + [n'“)Ap
Furthermore, the convergences as displayed in (2.2.17) and (2.2.19) do not have to hold for each A > 0

but rather for certain As. In many cases this difference does not matter.

Proposition 2.2.7. The functions u1(g)(z) = |g(x)| and uz(g)(x) = [; (1+2)"2|g(z)|dz fulfill the
rate displayed in (2.2.17).

P
D,

Proof. uy is obvioulsy continous. For uy we obtain: Let g1, g2 € D[0,00) with |g1 — ¢2]| < € then
it holds that

|luz(g1) —u2(g2)| < llg1 — g2||/O (1+2)%dz < e

Thus, wg is also continuous. Obviously, u; and wug fulfill the two main assumptions. Now, we
show that the rate displayed in (2.2.17) holds:

P (Sup lw, () W(1) 4+ 6Nm ™ — sup lwy(2)G(x)] > e)
z>m r+1 0<z<m

<P <|W<1>| — sup wy(@)G()] > e - NmW)

m/2<z<m
1
<P|2 sup )VV(ZH’ >e— Nm™ | =0(1)
m/2<z<m (1 + Z)
due to the law of the iterated logarithm. For wuo we obtain the following upper bound
P (/m w,y(z)(z_’_%)?JW(lﬂdz + Nm™ /m (z+1)"2dz > 6> =o(1).
O

Proposition 2.2.8. Suppose G is a centered Gaussian process with covariance structure IE[G(s)G(t)] =

%H A %H and W a standard Brownian motion. Then, it holds that

1oaf ui(g())(z) = lg(2)| then

sup u,(w,G)(2) 2 sup [27TW(2)|

2€(0,00) z€(0,1)
and
- D _ -
sup U, (wy(G +§))(2) = sup [277(W(z) +g(2/(1 - 2)))l,
2€(0,00) z€(0,1)
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2. if wua(g =/ ; ((11:23;))4 x)|dx then
1/2
sup uz(G)(2) 2 B () dt
z€(0,00) 0

Proof. 1.: Using

{G(z) : z€[0,00)} 2 {W(z/(1+2)) : z€[0,00)}

(i) vii)

Analogously, we can show the second equality.
2.: Using the first equality implies

implies

D

2 sup |27 TW (2)].
z€(0,1)

sup u,(wyG)(2) sup
2€(0,00) z€(0,00)

7 (14 s)? D 7 (1+s)? /(s 245
sup /( G(s)*ds = sup)/o 1297 Wi(s/(s+1))d

2€(0,00) 1+ 28) z€(0,00 1+ 28)4
z/(1422) 1 4 2 + " 2 1
= sup - ft) ( /( +1)> g dl
z€(0,00) JO 1+21 2t) 1—-2t""1 -2t (1—2t)
1/2 ¢ \2
= sup (1- t (> dt
z€(0,1) JO 1-t
1/2
2 / B(t)?dt,
0
where we substitute s by ¢/(1—2t) and use {(1 —t)W (%_t)} 2 {B(t)}, where B is a Brownian
bridge. =
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2.3 Examples

This subsection highlights three examples for the main model (1.2.1). For each example we prove that
the assumptions on the main theorems of this section are fulfilled. Additionally, we show under which
cases which ones of the LRV estimates are useful.

For each example we assume that the following assumption holds:

Assumption (LRV). Let for each fized t > 0

. [nt] ?
== © _ ©)

D[nt]—n]E ;Zz IE[Zl } —tD >0, as n — oo.

2.3.1 Identical Independent Distribution

In the first example we consider the special case of i.i.d. innovations.

Assumption (IID). In the main model let {(€1,,62,)T} be i.i.d. Additionally, let € llry < o0

Y,
T
12 - 9
! 7 .
15

or 1=1,2 with v}, rh>2 and
1,72

Remark 2.3.1. 1. The assumption that the vectors {(€1n,€2.n)T} are identically distributed can
be weakened without much effort.

2. The differentiation in 1) and 15 makes sense, since it could be possible that

B_<Ul’t 0><1 O >
N0 om pt /1 —p;

and |[éinllyy < 0o and |[énll,, < 0o for some 1y > 1y, yielding |Yal,, < oo but not
necessarily ||Yn ||, < oco.

3. We already know that By is not unique, which implies that {ZT(LO)} is a sequence of indepen-
dent but not necessarily identically distributed random variables. In particular, B; has direct

influence on Var {Zt(o)]. However, Assumption (LRV) limits the fluctuation of Var [Zt(o)} and
thereby that of the matrices B1,Bs,....

1. Example for the WFC. Let Assumptions (IID) and (LRV) be fulfilled. Then, {ZZ»(O) — pi}
satisfies the WFC so that Theorem 2.1.4 holds. This essentially follows from the following steps:

Y,
. 0) .
1. Since r = 7"2142/2 > 2, ZZ.( ) s L.—-bounded, where

. gl’i 1 - Co - T 0
Z0) _ 05 (gw) (e &) B (1)

A
01,i02,i

Furthermore, {Zi(o) — pi} is centered and independent.

2. With item 1. and Assumption (LRV) it is easy to show that Lyapounov’s condition is fulfilled
and hence, the sequence {Z,SO) — pn} satisfies a CLT.

3. In analogy to the proof of Theorem 10.1 in Billingsley (1968) the finite-dimensional distributions
converge.

4. Now, we apply Theorem 15.6 of Billingsley (1968), where the second condition of this theorem
follows similarly to the second item. Hence, {Zi(o) — pi} fulfills @ FCLT with an asymptotic

LRV D=lim, oo 23" | [E [(Zfo) - Pz’)Q] :
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5. Due to the independence of {Zi(o) — pi} and the boundary of the second moments, we get the
Kolmogorov-type inequalities (lCl(pl)), (ICI(?)) for r, =2. This implies the WFC.

1. Example of Theorem 2.1.4. Let Assumption (IID) and Assumption (LRV) be fulfilled and set
1 Y
'LU»-Y . (071) — R+, w»y(Z) = <z(1—z)) .

Then, Theorem 2.1.4 holds with

1
folg()) = sup lg(2)| or  folg() = /0 19(2)|dz.

z€[0,1]

2. Example of Theorem 2.1.4. Under the assumption of 1. Example of Theorem 2.1.4 and ki = n°,
k3 =n—n° for some fizxed € >0 and |A,| >0, there exists a v >0 so that

an|Ap|n7(177)(176) — 00 with a, =+/n.
This implies that the test @), is consistent if D' =0p(1).

The preceding example shows that the test detects early and late changes if we choose ~ high
and the inverse of the LRV is bounded.

1. Example of Theorem 2.1.15. Under Assumption (I1ID) and Ha let [nd7] and [nbi] be the
unknown change-points where 0 < 07 < 05 <1 and A, # 0 are independent of n. Since {Zflo) —pn}
satisfies the Kolmogorov-type inequalities for r, = 2 and have uniformly bounded second moments,
we get from Theorem 2.1.15 an estimation rate of nl|0 — 0*|| = Op(1).

1. Example of Theorem 2.1.16. If we replace the condition A, # 0 in the 1. Example of
Theorem 2.1.15 by A} = o(n'/?), we get nA, |0 —6*|| = Op(1).

Thus, the estimates approximate the change-points by Theorem 2.1.16 if they do not vanish too
fast. The possibility of successful estimation with this estimate is only given (in some sense) if
A;}l = O(n'/?). Additionally, the change size influences the estimation rate.

1. Example of Theorem 2.1.22. Under Assumption (IID) and Hgvl) we have r, = 2, r =
rirh/(ry +rh) > 2, and assume that the condition

nt/2Hr = o(mmA AV,

p,i,mn

of Theorem 2.1.22 is fulfilled. Then, we can choose

2
c A2
an =n mlnA max |A A min A,
" [( /1<z<R| ‘”‘) i P

and get a,n'|k* — k| = Op(1). In particular, we obtain a, =n if min,, |Apin| >€>0.

1. Example of Theorem 2.1.25. Under the assumption of 1. Example of Theorem 2.1.22 the
condition

1
1/24+1/r < :
n <hn S pm in, A2 D

is sufficient for |R — R*| = op(1) as n — oco.

1. Example of Theorem 2.1.28. If we modify Assumption (IID) by just assuming that r, =

2 Ak /(ry +rh) > 1, the Kolmogorov-type inequalities hold for r, > 1. Moreover, we can choose
Bn  with

log(n)? v n*""t < B, and BV n'/m < MR A Rye)?|A2 073

to get an asymptotic test by Theorem 2.1.28.
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The above example demonstrates the possibility of a test with fewer assumptions than under
1. Example of Theorem 2.1.4. In particular, a FCLT is not necessary and even the second moments

of Z?) do not have to be bounded.

1. Example of Theorem 2.1.33. Under Hy and Assumptions (IID), (LRV) let § be an absolute
integrable kernel and q, = o(n). Then, we see that conditions 1., 2., and 3. of Theorem 2.1.33 are
fulfilled, since

|D — D| < |D,, — D| + |D — D,| =o(1) +

%Z ((ZZ.(O) — pz‘)2 — Var [Z,L-(O)D

=1

% Z f<l_j> 2" = p)(2)" ~ pj)| = op(1).

i,j=1,i#j

) ‘

Here, the first order follows from Assumption (LRV), the second from Kolmogorov’s inequality, and
the third from Markov’s inequality, the absolute boundary of § as well as ¢, = o(n). Under Hy and
with pn(i) = Z©), case (A) can be applied with & = 1/2 . Hence, from Theorem 2.1.33 we get that
|D — Dol = op(1).

2. Example of Theorem 2.1.33. If we just replace the assumption of Hy by Hpa in 1. Example
of Theorem 2.1.33, we obtain the same result by case (B).

3. Example of Theorem 2.1.33. If we just replace the assumption of Hg by Ha in 1. Example
of Theorem 2.1.33, we obtain for p,(i) = Z©) that case (D) could be applied with 51 = 0. Hence,
we get |D — Do| = Op(gy) which implies a consistent test if g, = o(n'/?).

4. Example of Theorem 2.1.33. In the model of multiple (finite) change-points which do not vanish
asymptotically and where the distances between the locations diverge with rate n, i.e., n~ Ay. ., let
Assumption (IID) and Assumption (LRV) be fulfilled. Then, we use a correlation estimate based on
a change-point estimate:

m+1

Z]l Tki
] 1+1’

where the kj ’s are the change-point estimates. Furthermore, we define
Cr=[Lk]N[LE]] Co=[ky+ Lk N[LE], ..., Clmyry = [km + 1n] N [K}, + 1,n],

where we get ||k* — k| = Op(1) by the 1. Example of Theorem 2.1.22. This implies that case (E) of
Theorem 2.1.33 is fulfilled with §; =1/2 forall j=(k—1)-m+k, k=1,....m+1, and 6; =0
forall j#(k—1)-m+k, k=1,...,m+ 1. Additionally, we define for instance

C1 = [Lk} +1og(n)], Cz= [k} —log(n),k] +log(n)],..., Cmy1)2 = [ky, — log(n),n]

which implies P(ﬂj{é’j C C;}) — 1. Hence, we get |D—Dg,| = Op(gun="/?) from Theorem 2.1.33,
which only implies a consistent estimate if ¢, = 0(n1/2). For a consistent test, it is just required that
gn = o(n), cf. item 3. of Theorem 2.1.4.

Remark 2.3.2. In each of the preceding examples of Theorem 2.1.33 we can clearly replace the
(piecewise) sample means by some generally weighted estimate types. In this case, we just have to
prove the necessary asymptotic property. Explicitly, we have the weighted sample mean in mind:

b (i) = Z"%k (M> k<w> or all i€ M,
e JGJ\%%OR #M0 (On]) /jel\/lzﬁ(o,n] #M N (0n]) ! )

where M € {[1,n],C1,...,Cmy1} and k() is a kernel function such as the Uniform, Triangular,

Epanechnikov, or Gaussian Kernel. Due to the independence of {ZT(LO)} and the change-point esti-
mation rate ||k* — k|| = Op(1), it is quite easy to obtain the same results in the case of (multiple)
change-point(s).
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1. Example of Theorem 2.2.1, 2.2.3 and 2.2.5. Under Assumptions (IID), (LRV) {Zi(o) — pi}
satisfies the WEC so that Theorem 2.2.1 holds. As in 1. Example for the WFC we prove the FCLT
on DI[0,1] and that {Zi(o) — pi} fulfills the Kolmogorov-type inequalities. Since a Brownian motion
is scale invariant we can extend the convergence on D[0,1 + m|. Possible (weighting) functions are,
with v €1[0,1/2),

1+ 2
z

w7<z>=( ) and (@) =lgOl o wele))= [ (1+0) o)l

2.3.2 Mixing

Definition 2.2. A process {Z,}nez is called a-mizing and respectively ¢-mizing of size —& if
the coefficient holds that
a(n) := sup Oz(]:foo,]:,?in) := sup sup |P(ANB) — P(A)P(B)| = o(n™%)
keZ k€Z AcFk . BeFs
and respectively that
() i= supd(F* T, ) i=sup  sup [P(AB) ~ P(B)] = ofn”),
€

k
keZ AeF* ,BeF:,

Throughout this sub-subsection, we assume that the following assumption is fulfilled:

Assumption (MIX). Let

<Xn) _ <M1n> + (Ul,n 0 ) (fl,n(fl,naflna .- )>

Yn H2on 0 02.n f2,n(€1,n762,n7 . ) ’

where the processes {emn,n € Z} are a-mizing (¢p—mizing) with coefficients an(m) (¢n(m)) for
each fited n € N and {e1n,n € Z} {ean,n € Z},... are totally independent of each other. Let

fin(-) and fan(-) be Borel-measurable functions for each n. Additionally, we assume that X, and
Y, possess the correlation p, and

1. &= fin(€in€2n,-..) and &ép:= fop(€1n.€2n,...) are centered and normalized;

’ /
Tl,nr2,n

2. |léin ‘Tll,n < oo and Hgl,nHré’n < 0o, where 14,75, >2 and inf o> 2;

3. for v’ € (2,r] with r =inf, Tzln’i::é"n let a(m) =721 an(m) fulfill
o
> (@(m))" M < oo (2.3.1)
m=0

and
o0 m _1/2
2
2 (Z @(k))—u—») <o (2.32)
m=0 \k=0
Remark 2.3.3. 1. The random variable €,; can be vector-valued.

2. If (2.3.1) is only fulfilled for 1’ =2, we can only prove the FCLT but not the WFC.
3. (2.3.2) is only used to show that the Kolmogorov-type inequalities hold.

4. If (€14,624) is a-mizing of size —r/(r —2), (2.3.1) and (2.3.2) hold true.
Additionally, for the LRV estimation we need the following conditions for the kernel:

Assumption (K2). For all z € R let |f(x)| <1, f(x)=7f(—=x), and §(0) = 1. Additionally, let
f be continuous at zero and for almost all x € R, [, [f(z)|dx < co, and there is a non-increasing
function 1(x) > [f(x)] so that [p|z|l(x)dzx < co.

38



EXAMPLES

Remark 2.3.4. The above kernel assumption includes Assumptions 1.1. and 1.4. of De Jong (2000).

2. Example for the WFC. Let Assumptions (LRV) and (MIX) be fulfilled. Then, {ZZ.(O) — pi}
satisfies the WFC and Theorem 2.1.4 holds. This follows from the following:

1. We apply Herrndorf (1984, Corollary 1) to get the FCLT, for which we need Assumption (LRV),
the centering as well as the upper bound of the second moments of {ZT(LO) —pn}, and that {Zflo) —
pn} is a-mizing with coefficient &(m) with Y 0 d(m)l_% <O a(m)2 M=) < oo
Since o(X,), o(Yy), and o(X,Y,) are sub—o-fields of o(X,,Y,) (c¢f. Davidson (1994, Th.
10.4)) it is sufficient to prove the mizing size of (Xpn,Yyn)! :

@ (0 (XooosYooo)s- - o o(XnVi)) s & (Xnsoms Yoo - -« (X, Yoo)))

(33 e} 13 ]

k=1 \i=—c0 k=1 \i=n+m
o0 n o0 [o@]
sza( \/ ol a<ek,i>)—zak<m>—&<m>,
k=1 \i=—oo i=ntm 1

where the first inequality follows from the monotonicity of « and the second from Bradley
(2009, Th. 6.2). Hence, by the third condition of Assumption (MIX), {Zy(Ll) — pn} 18 an a-
mizing process with coefficients &(m).

2. On the one hand, the Kolmogorov’s type inequalities are fulfilled, since {(ZT(LI) — pn),Fn} is an
Lo-mizingale with Fn = \[{_; V52, 0(eji) and sequence &, = a(n)\2=Y" which follows di-
rectly from Davidson (1994, Th. 14.2). This implies a mazximal moment inequality (cf. Davidson
(1994, p. 255)), which goes back to McLeish (1975) and directly implies (ICl(pl)), since

Z ( §k_2> < 0.
m=0 \k=0

On the other hand, we know that an «-mixing process is time—reversible so that {Zﬁln -
Pm—n}i<n<m @S an a-mizing process with sequence &(n) for each fived, but arbitrary m € N.

Hence, with the same arguments as before (IC,(FZ)) and (ICI(«B)) are fulfilled. Thus, the WFC' is
confirmed.

2. Example of Theorem 2.1.4, 2.1.15, 2.1.16, 2.1.22, 2.1.25, 2.1.28, and 2.2.1, 2.2.3, 2.2.5.
Replace Assumption (1ID) by Assumption (MIX) in each of the first ezamples. Then they hold true.

5. — 8. Example of Theorem 2.1.33. Under the assumptions on the 2. Example for the WFC' let
f additionally fulfill Assumption (K2) and let q, = o(n'/>=Y/"™") with ' from the third condition of
Assumption (MIX). Then, we apply De Jong (2000, Th. 2) to obtain |D, — D| = op(1), where we use
Assumption (LRV), Assumption (K2), and the condition » >~ _, 07(7)7,)1_%_e < oo for an arbitrarily
small e > 0. Additionally, we know by 2. Example for the WFC that the Kolmogorov-type inequalities
are fulfilled. Hence, we get the same estimation rates as \ZA)OJL — D| = op(1) as in the settings of
Ezxample 1 to 4 of Theorem 2.1.33.

2.3.3 Near Epoch Dependent

In this sub-subsection, we assume a near epoch dependent structure.

Definition 2.3. Davidson (1994, Def. 17.2) For a stochastic array {{Vpt}i2_o}52 1, possibly vector-
valued, on a probability space (U,F,P), let Fit = 0/Viit—my---Vaisim). If an integrable array

n,t,t—m
X 1520 31521, satisfies
1 Xne — I [ Xt Fr ] llp < diatim,

n,t,t—m

where vy, — 0, and {d} is an array of positive constants, it is said to be Ly-NED on {Vp:}.
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First, we want to reduce the dependency of Zt(o) to the dependency of X; and Y;.

Assumption (NED). Let X, be Ly, -NED on {V,} of size —a1 and sup, || Xyl < oo. Let
Y, be Lp,-NED on {Vn} of size —az and sup, ||Yyl,;, < oo, where V, is either a-mizing of
size —ay < —r/(r—2) or ¢-mizing of size —r/(2r —2) with r = rirh/(ry +1}). Furthermore, let
Corr (X,,,Yn) = pn,

1 1 r,'r/
(a17a27p17p27rllarl2) € M22 = M22 mRi X {(7”‘/1,7'5) € R?I» : ! 1—|—2T, > 2 } ’ (233)
1 2

Mg = { (a2 piprtorh) €RE ¢ —ag T (p) < —a with p =k}, (2.34)
and

/

a2,p2,T:
Ca= )

1,P1,71

—min{ay,az}, if Uy <p2 and Uz <p1,
—min{alC; aQC}?hr’l,ré,p}’ if 2rh, > Uy >pe and 2r] > Uy > py,
= —min{al,agcgl’%’ré’p}, if 2ri > Uy >pe and Uz <pp,
1""1"“%#”&2}’ if Ui <py and 2ry > U > p1,

0, else,

’o
1,771,790’

(2.3.5)

: 1
—min{a;C,

; . p1(riry—rip—THp) 2 p2(riry—rip—riHp)
whe’r'e U = _pri_ or 1= 1 2 Cl = — a/nd C = —_ <=
i =5 2 Gt P p1) L o p2)

Remark 2.3.5. Later, we will see that the condition NS 9 (2.3.3) yields that HZq(zl)—anT < 00

T+
as r > 2 and implies that r\,ry, > 2. Hence, the second moments of X, and Y, exist. The

1
parameter set M ensures with p = k that {Z,(ln)—pn} is L,-NED of size —a. Thus, M3

contains parameters so that {ZT(LR) —pn} is L"-bounded, r > 2, and Lo-NED of size —% on {V,},
where V, satisfies a certain mizing condition.

Assumption (K3). Davidson and De Jong (2000, Assumption 1) Suppose § € IC, where

K= {f R —=[-1,1] : f(0) =1,f(z) = f(—x)Vx € R, /00 [f(x)|dx < oo, /00 | (z)|de < oo,

f is continuous at 0 and at all points except for a finite number}

with (z) = (2m)~ [ §(2)e™*dz.

Remark 2.3.6. The Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernels are all elements
of K (Davidson and De Jong (2000, p. 409)).

Before we consider the examples under the NED dependency, we first analyze the NED—size of a
product of two NED time series. On the one hand, it holds if X, and Y, are L,-NED on {V,}
of respective sizes —¢x and —¢y, that X,Y, is L, NED of sizes —min{¢x,¢y} (Davidson
(1994, Th. 17.9)). On the other hand, if X, and Y, are Lo-NED on {V,} of size —a and
| Xnllor < 0o and ||Ya|l2r < 0o for 7> 2, it holds that X,,Y;, is Lo—NED of size —a(r—2)/2(r—1)
(Davidson (1994, Th. 17.17)). In the following lemma we combine both conclusions.

Lemma 2.3.7. Let X, be Ly -NED on {V,} of size —a1 and |Xpl|/x < oo. Moreover, let Y,
be Ly,-NED on {V,,} of size —az and |[Yyl,, <oco. Then, X,Y, is Lp,~NED on {V,}, where

1 <p<min{r{,r} and p; <r; for i=1,2, of size —a = —aaz’m’ré(p) defined in (2.3.5).

/
a1,p1,7y

Proof. Since

||XnYn - Ezi_m[XnYn]Hp < HXn(Yn - Eginml[yn])”p
+ (X = ERER X DER IR Yalllp + IERER [(Xn — ERER X)) (Ve — ER R Va1l

2.3.6
< Xl [V — BTVl (2:3.6)
X — B0y [ Yol g+ (X — EZF Xl ¥ — BRIV
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by use of the Holder inequality with selected k; so that Ti, + k% = i/ + ki = %. Now, we consider
1 Ty

1Yo = Enn[Valle, and (| X5 — ERERI] [k,

If r],j_lp =k <py and TZ?P =ko <p1, X,Y, is L, NED of size —min{a,as}.

2p = ko, where p; and py are smaller than 7}

alnd q’l,erespgctively, we can apply the L,-interpolation inequality with selected 6#; € (0,1) so that
1 — 17V + ZL.
k1

1Yo — ERtimYallle, < Y — ERERYalllp, 1Ya — ERRYAlITE < cdyy™vn 5"

m27

_ p2(riry—rip—r3p)

where 1 — 6 o p2)

. In the same way we get

| Xn —Eﬁfﬁ[Xn]sz < Cdl 62 e

ml7

= W Hence, the three above summands can be estimated to dnvm, where
2 1
d, = cmax{di n,dn2} with a suitable constant ¢ < co, and o, = rnax{v1 02 1~ 91} Thus, X,Y,

m,1 U
is L,~NED of size

where 1— 69

) rhrl, —rip — 1! rrrh —rlip — ol
_mm{alpl( 1/2 : 1P 219),@ p2( 1/2 : 1P 2]9)}7
rop(ry — p1) r1p(ry — p2)

which implies the claim. O

Remark 2.3.8. 1. The proof shows that the constants C°

il LT 1,2, lie in (0,1) if they
are in use.

2. If we insert the parameters of the two NED-series given by the two aforesaid results of Davidson

(1994, Th. 17.9 and 17.17), we get the same size by Lemma 2.3.7.

8. If we assume p =py = py = 2, the NED-size is reduced to

_ min {a (rirh, —2ry = 2rh)  (rirh —2r] — 2rh) }
1 ™ A2 ™ :
T9(ry —2) r1(ry —2)

To obtain a NED-size of —% for {Zél) — pn}, we have to postulate that the two time series
X: and Yy fulfill a NED-size o —% since 12721725 =, , €(0,1) for i=1,2.

r3—i(ri—2) 2,717,
Proposition 2.3.9. Lemma 2.3.7 holds true, even if the first, second, and third {V,,} is replaced by
{Vél)}, {Vn(2)}, and {( n(l),Vn@))}, respectively.
Proof. Set E5[] =E[V:" Vi, v VP, By, [ =BV, . Vi) and By [ = EL VY, L V)L
Then, it is sufficient to show that X, and Y, are L, NED on {(Vygl),Vf))} for p=7] and

p = rh, respectively:

X — BRIl < 11X — B [Xnllly + 1B (X — B [ Xl < 2en8m

X,n—m X,n—m

and for Y, analogously. O

Remark 2.3.10. If Vn(l) and VTE2) are «-mizing, this does not imply that {V,} = {(VTEU7 752))}
18 a—maxing, too.

Corollary 2.3.11. Under Assumption (NED) {ZT(LH) —pn} s L7 bounded with r = TZIB:%,Z as well
as it is Ly-NED of size —% on {V,}.
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CHANGE-POINT ANALYSIS OF THE CORRELATIONS UNDER KNOWN MEANS AND VARIANCES

Proof. Firstly, we obtain that £t and YF2t fylfil] the same assumptions as X; and Y},

O1,t 02t
1 _ _
respectively. Due to the definition of Mg, {%% — ptt is Lo-NED of size —% since
U; < rs_; by the assumption of ;,5:%, > p =2 and the definition of U; from Assumption (NED).
1 2

Let 7= max{rj,r4} and w.lo.g. be equal to rj. Moreover, let k be chosen so that =1+ I,

T
then, the Holder inequality yields

[ X:Yillr < | Xill7[|Yillx < oo

’ . ;o . . . rhr
So, for k = ry = min{r],r,}, the maximal possible r is equal to r§1+72"§ > 2. O

1
Remark 2.3.12. (%,%,2,2,2 +6,2+96) € M3 holds for an arbitrary § > 0.

3. Example for the WFC. Let Assumption (LRV) and Assumption (NED) be fulfilled. Then,

{Zy(lo) — pi}  satisfies the WFC and Theorem 2.1.4 holds true. This essentially follows from the
following:

1. The FCLT follows by combining Corollary 2.3.11 and Assumption (LRV) to apply Davidson
(2002, Th. 1.2).

2. We know from Davidson (1994, Th. 17.5(i)) that {Z,,F"..} is a Lo-mizingale of size —3

with uniformly bounded constants ¢, < max{||Z,|,.dn}, where we define Z, = 70 - Pn.-
On the other hand, {Zn} is also a Lo-NED on {Vy} of size —3% with uniformly bounded
constants dyn, where Znpy = Zyp_t, Vo = Vuer and dpy = dn—y. Hence, the Kolmogorov-type

inequalities (ICl(pl)) and (ng)) are fulfilled.
Similarly, it can be proven that {ZT(LO) — pn} satisfies (IC$3)).

3. Example of Theorems 2.1.4, 2.1.15, 2.1.16, 2.1.22, 2.1.25, 2.1.28, and 2.2.1, 2.2.3, 2.2.5.
Replace Assumption (IID) by Assumption (NED) in each of the first examples. Then each example
holds true.

9. — 12. Example of Theorem 2.1.33. Under the assumptions of 3. FExample for the WEC let

f additionally fulfill Assumption (K3) and let @, = o(n). Then, we can apply Davidson and De
Jong (2000, Th. 2.1) with X, = ﬁ(Zt(O) —pt), dp = ﬁdt; and ¢ = n Y2, which implies
that |D, — D| = op(1). Hence, we get the same estimation rate for |Dgy, — D| = op(1) as in the
settings of the 1. to 4. Examples of Theorem 2.1.33 so that these examples are also fulfilled under the
assumptions here.

2.3.4 Time Series

This sub-subsection presents different time series, which satisfy one of the different examples presented
before. Essentially they are applications of different literature works. Firstly, we consider the well-
known moving-average model (MA):

MA (o) Let
X, =Y 6ul, and Y=Y 6Pu,,
k=0 k=0

where { (ug),ug))}nez has zero mean and is a bivariate sequence of i.i.d. random variables with
Var [ugl)} =1, i =1,2 as well as Var [ugl)u?)] > 0. Additionally, let sup, ||u§1)||r/1 < oo and

suptHu?)HTé < o0, where 7}, > 2 and r?lfg > 2. Furthermore, let 6 = O(n~1-a=9)) for

42



EXAMPLES

I=1,2 and €>0, a3 = 292 v 1 and ay= 122 v 1

/ ! 7
riTg—2r] =215 T —27"1 —2rg

Due to Davidson (1994, Example 17.3), {X;} and {Y;} are Lo-NED of size —a; and —aq

on {V,} = {(ugl),u?))} with uniformly bounded r{th and r5th moments, respectively. Hence,
Assumption (NED) is fulfilled. Direct calculations yield that Assumption (LRV) is fulfilled, too.

Remark 2.3.13. 1. The i.i.d assumption on {(uﬁﬁ),uﬁf))} can be replaced by an a-mixing con-
dition. In doing so, it has to be ensured that Assumption (LRV) holds true. Additionally, the
constant mean and variance can be replaced since we assume that they are known.

2. Let {e} be ii.d. Gaussian with zero mean and variance o2, then wu; = ditobier—j s
stationary and we have a spectral density function

2

1 o0
=5 |20 e
™

Jj=0

if > 2olbil < oo and 6y > 0, cf. Davidson (1994, p. 215). Furthermore, we know from
Ibragimov and Linnik (1971, Th. 17.3.5.) that {u:} satisfies the strong-mizing condition. A
closer look at the proof of this theorem shows that we even get the size of

o0 rhrl
— AT € _r__¢
am < ¢ E 0j| =0 |m "= =0 <m r—2 )
j ]+1

w
/

T T
~ 2rlrl . *1*/172_/ .
for some € >0 and r= 5% if |0, =0 (m "1"-"17"2 | . Hence, under the conditions

/ /
ri+ry

described, wuy 1is a-mizing of size — 5 so that we can replace ugl) and u§2) by wuy if

)
Assumption (LRV) holds true.

ARMA(p,q) Let

p1 a P2 a2
X, = Z /\§1)Xt_j + ugl) + Z 9;1)u££)j and Y, = Z /\§2)Yt_j + u£2) + Z 6\ u£2)],
— - j=1 j=1
where ug) and ug) fulfill the same conditions as in the above MA(co) example. Additionally, we
assume that the characteristic roots of

2P — )\gl)zpl_l — = )\](31) =0 and 2 — )\52),2”2_1 - = )\1(022) =0

lie inside the unit circle.

Due to Qiu and Lin (2011, Lemma 3.1), {X:} and {Y;} can be expressed as X; =377, 03(1) g_)

and Y; = Z;)OOHJ(Q)ug )J, respectively, where |0( | = O(p") as m — oo for some 0 < p; < 1,
i =1,2. Now, we can apply the considerations of the MA(co) model.

Remark 2.3.14. As noted in Remark 2.5.13, we can weaken the assumption in the same way here.

Actually, there are many other different time series such as the Bilinear models, the GARCH(p,q)
models, cf. Davidson (2002), the IGARCH and the FIGARCH models as well as the ARCH(o0) mod-
els, cf. Davidson (2004), which are NED under some suitable assumptions so that they can satisfy
Assumptions (LRV) and (NED).

At the end of this sub-subsection, let us note that obviously {X,} and {Y,} do not have to

possess the same series type. However, since we assume a linear dependency between both time series,
we do expect related time series.
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3 Assumptions on the Unknown Means and Variances

This section presents the assumptions on the unknown parameters and their estimates. Hereby, we do
not go into detail about the estimate design but rather about the behavior of the estimation errors.
In particular, we want to get a general overview of two different approaches: On the one hand, we
want to optimally estimate the unknown parameters {s;;} and {o;;}. On the other hand, we want
to optimally estimate the correlation on the basis of the observations on 1,...,k and on 1,...n,
which is motivated by our introduction. Moreover, we divide both approaches into the cases where
the parameters are nearly constant and where the parameters might have, in the limit, infinitely many
structural breaks.

3.1 Assumptions in the a Posteriori Analysis

In what follows, we present four different assumptions for a parameter = € {u1, p2, 01, 09,
02,03}, which will be used in the next sections. We use the design index ¢ =1,2,3,4 to distinguish
the different estimates {ﬁ:%)n}lzlkkzln and their properties. Subsequently, we will say "the
parameter x fulfills the assumption” instead of the extensive phrase ”the sequences {x;}i=1, ., and
their estimates {g%%) .t fulfill the assumption”.

Firstly, we look at the cases where we assume that the considered parameters are nearly constant.

Assumption (PEEL). For the considered parameter x with sequence {x;} and estimates {ﬁ:glk)n}
there are sequences {dy;} and {ezn}, an estimate &y, and some constant 6, > 0 so that

Yoy ldei| = 0(v/n) as n— oo, :)3"(1) = I, and
Com = Ti — &n — dps with lexn| = Op(n%).
Remark 3.1.1. 1. We call the sequences {dyi}ien parameter error sequences (p.e.s.).

2. The above assumption implies that the considered parameter, e.g. p1 with 14, s nearly
constant, i.e., p1; = p10+dy1; for some pio € R and all i.

3. As estimates we have the sample means in mind.

4. The p.e.s. can be interpreted as the error of some incorrect information about the exact param-
eters which have already been treated in Lemma 2.1.12.

In contrast to the previous assumption, where the estimates just depend on the sample size n
and which could result in an optimal estimate for the considered parameter, we now look at estimates
depending on k =1,...,n, which is motivated by our introduction, p. 6.

Assumption (PEE2). For the considered parameter x with sequence {x;} and estimates {aﬁﬁ)n}
there exist sequences {dy;},{az N}, and {eyn}, an estimate Z,, and a constant 6, > 0 so that

{dy;} satisfies the condition of Assumption (PEE1), :i'ﬁ)n = Iy, and

max |e; | = max |z; — 2 — dys| = Op(1), as n — oo,
1<k<N 1<k<N
nax lexk| = nax T — & — dpi| = Op(n % au ) as n — oo, followed by N — oo,

where az n =o0(1) as N — oo.

Remark 3.1.2. 1. We will see, that N can be replaced by a sequence N, — oo with N, =
o(n'/?).

2. For example, we have in mind to use the sample means and sample variances as estimates based
on the observations Xi,...,X; and Yi,....Yy. In this special case the correlation estimate is
equal to the empirical correlation coefficient, which is under special assumptions the mazimum
likelihood estimate, cf. Anderson (1984, p. 65), and which leads us to the design of the test
statistic considered in Wied et al. (2012).



ASSUMPTIONS IN THE A POSTERIORI ANALYSIS

The two previous assumptions imply that the considered parameters are nearly constant. Now,
we implicitly allow that the parameters could have significant structural breaks. We distinguish the
estimates depending on the index either ¢ or ¢ and k. Again, we present sufficient properties of the
estimation error so that both main results of Subsection 2.1 hold true. In doing so, we assume that the
estimation error is a random step-function. Furthermore, we simplify the following theorems of this
paragraph in notation by assuming that the random intervals are subsets of well-chosen deterministic
intervals. To illustrate what we have in mind and where the motivation originates from, we consider
the following example:

Example 3.1.3. Let the mean parameters be given as
m17n+1

(i) = Z :ul,j]l{ie([nel,j—l] [(n01,51] }

j=1

for 1 =1,2, some fized unknowns 0=0,0 < ... <0 m,+1 =1 and my;. Let élm be some estimates
for 6; with 0=0;0<...<0pm,+1 =1. We define the index sets J;; = {1+ [nb;_1],...,[nb]}
with their estimates

Jo = {{1 + 01l 000) Y, if Oicin < Opin,
Jim — A A
0, if Oricin = Oin-

Moreover, we define the mean estimates for each i € {1,...,n} in the following way

min

lal,i = Z /ll,j]liejhj’nv [ = 17 27
j=1

where fu; is an estimate for p; ;. Then, we obtain with

Il,l,n e Il,mlm,n J1,1 N Jl71 e Jl71 N Jl,mz "
A fl myn,+1,n .. j N J :
vec(I) = vec ’ l’f‘ ’ ' = vec 5,2 b
Dz g o Dim2 i V1 oo Jimy, 0 Jimy,

that the mean estimation error is a random step-function with at most 2(my, + 1) unknown steps

min Mn

MOEITED DS Lic s,y nv,, g = fijs)-

Jj1=1j2=1

Furthermore, the error |Ml,j1 — ﬂl,jQ\ should be small on i” for each i=1,...,my, and at least
bounded on the remaining sets L;;, i # j, which should possess at least a small cardinality. In
addition, we obtain that each I;; could have another asymptotic property which can be categorized
as follows:

1. IAZJ converges in probability towards a non-empty set Il/j C (0,n], i.e., #IAl’jAIl/i =op(n);
2. flJ converges in probability towards the empty set, i.e., #fl,i =op(1);

3. IAM does not converge in probability.

At least in the third case, for each j € {1,...,m} } exists a deterministic set Il“j C (0,n] so that
IAM C Il/:j. Hence, we can split the index set {1,...,n} in the following way
mi, min
{1,...m}=J Ly with P | (\{L; CLy}| =1,
j=1 J=1
where I ; € {@,Il,j,llﬁj}. Furthermore, we note that we do not assume that Ij1,. ... I m,, are disjoint.
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ASSUMPTIONS ON THE UNKNOWN MEANS AND VARIANCES

At first, we are just interested in the second half of the preceding example, i.e., in the behavior
of the mean estimation errors which are random step-functions. Later, when we will present some
examples, the first part of the preceding example, i.e., the construction, will be interesting, too.

Assumption (PEE3). For the considered parameter x with sequence {x;} and estimate 7

ikn
there exist a sequence {d.;}, a subsequence Mg, of n, an array {ey;}j=1,..m.., estimates
{Zjn}i=1,..mom and an array of random intervals {fj,n}jzlywmz’n so that Y i |dzi| = o(y/n)
as n— oo, Ui Injn={1,...,n}, and azg?}gn =&, forall i€l,; and k. Furthermore, for all
o {wz - i’j,n - dm,ia Vi € jx,j,na
6337.] - T
07 Iz,j,n = @
with j=1,...,my, there exists an array byjn (j=1,...,man,n=1,...) so that
er
max 1l _ Op(1). (3.1.1)

1<j<min by jn
Additionally, there exists a sequence of intervals {I,;}j=1,. . m,., S0 that

Mx,n

P ﬂ{w: wjW) C L} | =1 (3.1.2)

Remark 3.1.4. 1. For example, the above assumption is fulfilled if the parameters are nearly con-
stant on a partition {C}};=1,. of the set {1,....n}. Assuming we have estimates C; for
j=1,...,v, and the pammeter estimate is constant on them, then the estimation error is nearly
constant on Ix ji4jeon = Cj; N C'J2 for ji,52 =1,...v,, in which case m, is qual to 122

Un

2. The rate assumption displayed in (3.1.2) can be weakened if we additionally assume that the
sequence of the deterministic sets {I.j}1<j<m,, depends on another control variable N’
which tends towards infinity after n does. In particular, each of the following theorems, which
use Assumption (PEES3), would hold true.

3. Assumption (PEES3) is a generalization of Assumption (PEE1).

The next assumption is motivated by a generalization of Assumption (PEE2). To that purpose,
we would like to take up a modification of Example 3.1.3.

Example 3.1.5. Under the settings of Example 3.1.3 we define for all i € {1,....,k} and k €

{1,...,n}

min
ik = Lici,nnomigks 1=1,2,
j=1
where
. - -1 -
fujp = (#Jl,j,n N (O,k]) S Ziy, for Jijnn (0] # 0.
v6j17j7nﬁ(0,k]
Then, we obtain with
mi o,
(i) = fuig =Y Uici, nouey (s = iy ). k)
j=1

that the mean estimation error is just depending on k if i and k lie in jl] As in Example 3.1.3
we expect that the estimation error should be small on L;; N (0,k], i=1,...,my,, especially for large

k. Hence, we introduce a second sequence of random sets {jg,l,j} to categorize the estimation rate
depending on the size of k.
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ASSUMPTIONS IN THE A POSTERIORI ANALYSIS

Assumption (PEE4). For the considered parameter x with sequence {x;} and estimate 3%54,3”

there exist a sequence {dy;}, subsequences my 1, and mgon, of n, an array {ezj j,}, and arrays
of random intervals {1z 1 jn}j=1,...mp1n 04 {Iz2jn}j=1,. me., SO that Yo ldzil = o(v/n) as

n — oo, UT:THILZJ,H ={1,...,n}, 1 =1,2. Furthermore, for all
(4 PR .
o x— fb‘gk)n —dai, if 1€ Lnjin N (0K], k€ Togjn 3.1.3
6$7k7]11]2 N ( o )
0, else,
with j=1,...,mgy there exists an array {by; j,,m} so that
max, _: € .1 o |
k€lp 2 j5,n | TRI1,]2
. max 232 =O0p(1), as n— 0. (3.1.4)
ISJIsz,l,n)IS.]QSmm,Q,n bqj7j17j27n

Furthermore, we assume that there exists a sequence of deterministic sets {Iy;;n}, | =1,2, so that
they satisfy (3.1.2).

A

Remark 3.1.6. 1. It is possible that some sets I3, are independent of n and depend on
another control parameter N which tends towards infinity after n does. Thereby, Assump-
tion (PEE4) could be interpreted as a generalization of Assumption (PEE2).

2. Under each of the four presented assumptions we will suppress the indices x and n of the
sequences m., 1., 1., ... if it is clear which sequence is mentioned.
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ASSUMPTIONS ON THE UNKNOWN MEANS AND VARIANCES

3.2 Assumptions in the Sequential Analysis

This subsection presents the assumptions on the unknown parameters which will be used in the
sequential testing procedure. We distinguish between the estimates sequentially using the whole
observation, i.e., from 1 until n+k =n+1,... to estimate the unknown parameters and the
estimates using the observations from 1 until n as well as the observations from n + 1 wuntil
k=n+1,...

Similarly to the assumptions on the a posteriori setting, we first assume nearly constant parameters.
~(¥)

Assumption (PEES5). For the considered parameter x with sequence {x;} and estimate ;. ,

¢ = 1, there are sequences {dy;} and {eyn}, an estimate I, and a constant 6, > 0 so that
Yo ldei| = o(v/n) as n— oo, :Eg}i_i_km =Ty, foral i=1,...m+k k=1,..., and

Crhn =Ti — Ty — dgy  with  max |egpn|= Op(n_&”)
keM,

n,m

I

where My, = {1,...,[nm]}, m >0, and M, = {1,...} in the closed- and open-end setting,
respectively.

Assumption (PEEG6). For the considered parameter x with sequence {x;} and estimate i:%)n,
Y = 2, there are sequences {dy;},{ay N} and {eyn}, an estimate T, and some constant 03, > 0 so

that Y1 |dzi| = o(v/n) as n — oo, and j(zk)n = 1<, 27 + ]1i>ni’2ff (i=1,...;n+k k=1,...).
Furthermore, we assume that

)

1. {zi}i<n fulfills Assumption (PEE1) with the estimate Z7,

2. maxj)<gp<nN \ex,k] = MaxX1<kp<N ’331 — i’Zi'If — d%i‘ = Op(l), and

3. MaxXy <p<inm] €2 k] = MAXN<p<fum [T — Ep it — duil = Op(n™7ag v),
as n — 00, followed by N — oo, where ay N = o(l) as N — oo and where the index set, which
we mazimize over in the last line, is replaced by {N,...} in the open-end setting.

Additionally to the previous assumptions, we consider the cases where the parameters are allowed
to have structural breaks. Again, we can separate them into two types of estimates, as already
considered. However, in both cases we sequentially provide the observations. To understand what we
have in mind we consider the following example:

Example 3.2.1. Let X; = €;+ o —I—Z?{:l ]ligk;‘A,u,j; i=1,...,n(14+m), be a stochastic process with
centered innovations €;, where ki ~mn, ki # ki, ki €{l,....[n(1+m)]} and [A,;| >0 for all
j=1,...,N.

Now, we observe one by one the samples Xp11,Xn+2---. Then, there are at least two options to
estimate the change-points in the mean of the process. On the one hand, we can split the data in the
data group from 1 wuntil n and from n+1 until Kk =n+1,... to estimate the change-points
in each group, respectively. It has the advantage that we estimate the change-points of the first group
only one time. On the other hand, we do not split the data into two groups and estimate for each new
observation the change-points of the whole data set once again. It has at least the advantage that a
possible change-point near the nth observation could be estimated more precisely.

Assumption (PEE7). Let the considered parameter x with sequence {x;}, estimate

~(3) A o ~n+k .
xz(,k,n = Tikn = ]lignl‘@n + 1¢>nx?’f+n (Z =1,...n+k k=1,.. )

and sequence M2z, fulfill the following conditions:

1. the parameter x with estimates {Z;n}ti=1,.n fulfills Assumption (PEE3);
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ASSUMPTIONS IN THE SEQUENTIAL ANALYSIS

2. foreachk =1,...,[mn] there exists a decomposition {fx,j,n+k,n}j:17..,7mz’2’n of {n+1,... n+k}
and a random array ey ; so that

4k . A
D e deyi, forall i€ Iy nikmn,
Cak,j =

0, else;
3. there exists a sequence byojn, (j=1,....mpon;n=1,.. .) so that
max €x.k,j
max 1<k<[mn] | T, ,J’ _ Op(l), (321)
1§j§m2,m,n bx’2,j,n

4. there exists a sequence of intervals {Iy2;}i=1,. myo.., SO that

Mz,2,n n+[mn)
Pl N {w: U Ljrnw) CLas}| =1L (3.2.2)
j=1 k=n+1

The following assumption is similar to Assumption (PEET7). The only difference is that the pa-
rameter estimate always depends on the whole, already observed, data set.

Assumption (PEES). Let the considered parameter x with sequence {x;} and estimate il(i)n
(i=1,...;m+k; k=1,...,[nm],j =4) fulfill the following conditions:
There is a sequence Mg, such that the following conditions hold:

1. for each k =1,...,[mn] there is a decomposition {fmjkn}]zlmg;n of {1,....,n+k} so that
(4 . _ ¢
Cakj = Tj — azgk)n —diq for all i € Iy jpn;
2. there is a sequence by jn, (j=1,...,mgp;n=1,...) so that
max Cr ki
max kMo [Cobil _ Op(1); (3.2.3)

1<j<ma.n bz jn

3. there is a sequence of intervals {I;;}j=1,. m,, So that

x,m

Mzn

PlN{w: U Ljrnw) CL;}t| =1 (3.2.4)
j=1 k€M, m

where My, = {n,...,[n(1 +m)]} and M, ., ={n+1,...} in the closed- and open-end setting,
respectively.

Remark 3.2.2. Some of the sets I 2, j=1,...,mzpn, n €N and I;;, j=1,... mgp, n €N
could be empty. In the open-end setting they could be even right-unbounded which later on produces
some technical condition between the estimation rates by 2 jn, by jn and the cardinality of the trimmed
sets I ;.
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4 Change-Point Analysis of the Correlation under Unknown Means
and Known Variances

In addition to the main model of Section 1 we assume in this section that the parameters p;; and
p2,; are unknown so that we have to replace them by some estimates.

4.1 A Posteriori Analysis under a General Dependency Framework and General
Mean Estimates

We define
k ~(¥) (¥) k
~ 1 ( 'U’lzkn)(Y_MQan 1
== - 4.1.1
Pwk lC;é; Ulﬂ021 }Cjéj anv ( )
where ¢ = 1,...,4 is a design index to distinguish the four different mean estimates which fulfill

(PEE1), (PEE2), (PEE3), and (PEE4), respectively.

Each of these parameter estimates results in an error and we are interested, as mentioned before,
in the behavior of these errors so that the main results of Section 2 hold true. Hence, it is sufficient
to consider the error terms R, ;) for ¢ =1,....n,1=1,2,3, and ¢ =1,...,4 of the following
decomposition

w (Xi— ﬂng)k Y= ﬂgi)kn)

01,i02,i
~ (Y ~ (Y
o  (Xi—p1q)(peg — ué,i?k,n) (1, — u&,ﬁk,n)(Yi — pi2,3)
Z;7 + +

01,02, 01,102,
N (11, — /lﬁﬁ?k,n)(m,i - Méwl)kn)

01,02,
0

:Zi( )+Ruknz<w> + Roiinz) + Rajpnzw) (4.1.2)

where we will suppress the unused indices of the parameter estimates, of the error terms, and of Z (w)

4.1.1 Testing under a Functional Central Limit Theorem and Unknown Means

In this sub-subsection, we consider sufficient properties of the mean estimation errors so that the
main results of Subsection 2.1, Theorem 2.1.1, and Theorem 2.1.4, can be retained, replacing the
expectations by their estimates. In doing so, we investigate the convergence behavior of the test
statistics under the estimation assumptions (PEE1)—(PEE4).

Nearly Constant Means In this paragraph, we treat the situation of nearly constant unknown
means, i.e., the expectations p; and pe fulfill either Assumption (PEE1L) or Assumption (PEE2).

Lemma 4.1.1. Let {din}ien satisfy > |din| = o(v/n) and {Zy,} be a triangle array of random
sequences with max; , IE[|Z;n|] < C < co. Then, it holds that

Z ZZTLd’LTL

Proof. We obtain that max;<p<y, | Zle Zindin| <> i1 | Zindin| and by Markov’s inequality

ZZzndm > 77) < 72 ’dm‘ - 0 )

= op(V/n).

max
1<k<n

max
1<k<n



A POSTERIORI ANALYSIS UNDER A GENERAL DEPENDENCY FRAMEWORK AND GENERAL
MEAN ESTIMATES

Theorem 4.1.2. Let the parameters pi and po  fulfill Assumption (PEE1) with 6,1, 0,2 >0 and
Su1 + Ou2 > 3. Moreover, for 1 =1,2, let {en/03-1n} satisfy (IC,(.I)) for 1 > (34 6u3-0)7"
Then, Theorem 2.1.1 holds true if we replace B0 by B0,

Proof. By using the decomposition displayed in (4.1.2) we have

3
BLOO() = D72 | DVIBIOOC) £ 3 Ry (413

=1

where
[n] n

n] [ 1 1
Ry, == | — Rz — — Ry 0 | - 4.1.4
[n],l Jn [n]; linZ (1 n; linZ (1 ( )

Hence, Theorem 2.1.1 holds true by Slutsky’s Theorem if for each [ = 1,2,3 the right-hand side
equals op(1). Furthermore, we obtain with the triangle inequality that

k
Ry, 70
nz linZ 1)

z:l

We obtain that the first summand dominates the second. For [ = 1, we have

4+ max
1<k<n

| Ry alljo,) < max (4.1.5)

1<k<n

E \f Z Ryjpzo| -

1 zk: (Xi — p1i)(p2i — flan) Op(n=92) 1 [i]: ‘L (1) (1)
max |——= = Upn )= op = op s
1<k<n [\/n P 01,02, vn — 02,
where we use Lemma 4.1.1, the main model, the assumed rates of Assumption (PEE1), and (lCl(pl)).
Hence, we get [|Rj,1llj0,1) = 0p(1) and similarly obtain || R}, 2llj01] = op(1). It remains to consider

n N ~
1R300, §C%|M1,i — i — digl|p2; — fian — dai| +op(1) +o(1) = op(1),

where we use the property of {d;,}, the uniform boundedness of the standard deviation, and the
assumed rates of Assumption (PEE1) with 6,1 + 0,2 > % Thus, Theorem 2.1.1 holds true if we

replace Zi(o) by Zﬁz O

Remark 4.1.3. Using the sample means as estimates under the Assumption (IID), (MIX), or (NED)
yields a 0,1, 0,2 = %

Under some additional technical assumptions we even get the weighted convergences of Theo-
rem 2.1.4.

Corollary 4.1.4. Under the assumptions of Theorem 4.1.2 let {en/03_1n} satisfy (IC?)) for
r > (3 +6u3-)"" and let {endus—1/03-1n} satisfy (ICI(«l)) and (IC,(.2)) for r=2 and 1 =1,.2.
Then, Theorem 2.1.4 holds true if we replace By by B2,

Proof. The proof follows the combination of the proofs’ arguments of Theorem 2.1.4 and Theo-
rem 4.1.2. Hence, it remains to prove

1Rl 0,1
2\ (s kN (4.1.6)
= [ - . _ ) _ 1
as nm — 0o, € — 0, which is fulfilled if for [ =1,2,3
i< Riinz)| = op 4.1.7
[(1—e)n]<k<n ((n ) zzk; linZ (1 (1) ( )
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and

op(1) (4.1.8)

max
1<k<]en]

as n — oo, followed by € — 0. We start with [ =1 and the second term:

Vn \k/ 4 01,i02,i
=1 > ’

1 (n)’Y zk: (Xi — pa)(pa — fi2n)

max
1<k<[en]

[0,€]

as n — oo, followed by € — 0, where we add +d,2; and apply (IC,(FI)) to {e1ndu2/02,}. Hence,
again by using (/Cﬁl)) for {e1n/021}, the right-hand side is equal to op(1) as n — oo, followed by
€ — 0. Analogously, we get the rates for [ = 2,3, where we additionally use

7[”1 n 7[”
S| =otvmand ()
=1

[0,€] [0,€]

= o(v/n)

as m — 0o, which holds by the property of {d,;,}. Analogously, the rate displayed in (4.1.7) can be
proven such that (4.1.6) hold. O

Remark 4.1.5. The preceding theorem and corollary present sufficient conditions on the mean es-
timates, which are constant for all i = 1,...,n, such that the convergences of Theorem 2.1.1 hold
true. In particular, the estimates have to be consistent. However, if one expectation has a non-local
structural break, these estimates are not consistent. For example let

oli=00;=1, p; =0, and po;=poin=gu(i/n), fin=Xn, and f1,=7Yn,

where g, #Z0 s a suitable function. Under weak assumptions we obtain that

3 Mg — fian) || = Op(V),

022

but not op(y/n). Notably, under certain assumptions, such as inter alia the asymptotic normality of
the sample means, we obtain that

[n]
1 ( n )’Y Z €14 ~ D[O,l]
— | =(p2,i — fizn) — G(),
vn\[n]) & o

where G is a Gaussian process with a covariance structure depending on g,. Furthermore, under
certain assumptions and under Hy we could even obtain that By 0’7() also converges towards a
Gaussian process where its covariance structure depends on g, too. Since g, is unknown, the test
statistic would be unusable under these assumptions since the critical value would be unknown.

Suppose there are non-local structural breaks in the expectations of both time series. Then, in many

cases Bip"(:) will not be bounded by an order of Op(1).

Now, we consider the estimates which are only calculated by the first k& observations so that they
are still independent of the index 1.

Theorem 4.1.6. Let py and pe  fulfill Assumption (PEE2) and let for 1 =1,2

fiae] = op(1) (4.1.9)

max —|/11

1<k<n \/n

as n — co. Moreover, for 1 =1,2, let {en/o3_1,} satisfy (ICf«l)) for r > (% +6,3-1)" . Then,
Theorem 2.1.1 holds true if we replace BYY by B200,
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Remark 4.1.7. In (PEE2) we can even replace N by an increasing sequence Ny if || Zgivl"] il =
op(n'/?).

Proof of Theorem 4.1.6. The proof is essentially similar to the proof of Theorem 4.1.2 so that we
do not reproduce every argument in detail. Due to (4.1.5), it is sufficient to show for [ =1,2,3 that

k

1

. ' N
1?1?%1 \/ﬁ;lez(% op(1)

For | =1 we obtain

1
max % ZRlikz(Z) < max

k
1 €1,
(p2 — i) § :
f =1

1<k<n 1<k<N oy
(4.1.10)
1 Fe
X 1i
(e — ; 1
+ Jax \/ﬁ(uz fl2.k) ; Py +op(1)

as n — 0o, where we use the triangle inequality and Lemma 4.1.1. We obtain that the first summand
is equal to op(l) as n — oo and that the second is op(l) as n — oo, followed by N — oo

since maxy<g<p |p2 — fl2.x] = Op(n~ 0.2 g ~N) and maxy<p<n ‘Z = Op(nl/”) with 1/r) <

1/2 4 0,2, where agny = o(1) as N — oo. Analogously, we get the desired rate op(1) for [ = 2.
Hence, we consider the third error term and obtain

HR[n] 3” >

€1,i
1=1 o9

-+ Op(l) = Op(l),

‘ 1 — Al lp2 = fiz ]

where we use the triangle inequality, the property of the p.e.s., and the assumed rate displayed in
(4.1.9). O

Corollary 4.1.8. Under the assumptions of Corollary 4.1.4 we replace the assumptions of Theo-
rem 4.1.2 by the ones of Theorem 4.1.6. Moreover, let

vk
- - = op(1 — -0
lgrggﬁd&) \/>|N1 i k|| 2 — fiz k] = op(1), as n— o0, €

and

n \" k
max — |y — [ — ji =op(l), as n— o0, € — 0.
e ()l el = o (1)

Then, Theorem 2.1.4 holds true if we replace B0 by B207,
Proof. The proof follows from the proofs’ arguments of Theorem 2.1.4 and Theorem 4.1.6. O

Remark 4.1.9. Similar to Remark 4.1.5 the process B,%’O’V(-) can still converge in distribution
towards a Gaussian process if there are non-local structural breaks in the expectations of one of the
two time series X1,...,X, and Yi,...,Y,. In this case, the covariance structure of this Gaussian
process depends on the unknown change-function g,,, meaning that the test is unusable.

Non-constant Mean Estimates In this paragraph, we consider some general sufficient conditions
on the mean estimation error where the mean estimates fi;;. are non-constant.
Theorem 4.1.10. Let the parameters p; and py fulfill Assumption (PEE3). Additionally, let
{en/os—1n}  fulfill (ICI(?)) for rp > 1, 1 =1,2, and let the arrays by;n = by jm (1 =1,2;7 =
L...,mup;n=1,...) satisfy

min

D b a# D = o(n™ Pmy P, (4.1.11)

j=1

min M2 n min

blvanwn#(IlvaQw):0(n1/27 and bl n
> D brombrwnt(he NI, g

v=1 w=1 i€l);

vn).  (4.1.12)

Then, Theorem 2.1.1 holds true if we replace BYY by BE’L’O’O.
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Proof. In analogy to the proofs of Theorem 4.1.2 and 4.1.6, it remains to show for [ =1,2,3 that

k
1
—= E Ryyz)
\/ﬁ =1

as n — oo. For [ =1 we obtain

=op(1)

max
1<k<n

= HR[n-},l

1 (Xi — p13) (2, — fl2,) 1 M2 — flo; — dp;
) ) ) — . ) ’ ) 1
éllfngn n ; 01,i02,4 1211?<Xn \/’ﬁ Z: €L 02,i * OP( )
m2 n
€2, €1,
< ) i + 0 1 ,
B Z volll . 2 02, r(1)
j=1 i€l3,;N[0,[n]]

where we use Lemma 4.1.1, the main model, and the assumed property of the mean estimate.
Now, we use max; |ej|/b;n = Op(1), i.e., equation (3.1.1), the assumed rate in (3.1.2), and the
o—additivity which implies

m2n m2n Nb
€25 €1,i 27]n €1,i
P > <P > + o(1
Z: . Z 02,i 7 Z . Z 02, 1 (1)
Jj=1 716121]‘0[0,[7%” 'LEIQJ‘O[O,[TL‘”
m2n Nb m2,n
27 '7 617 7
<Pled =2 D2 = zapn (kS hyt| +o())
j=1 ich;non]] i=1
ma n k'2

Nbg my €14

<> p| =22 max > =5 =0 | +o(1)
LD k1,ka€ls j;k1<ks | 02,i
7=1 i=kq ’

as n — oo, followed by N — oo. The above maximum of the partial sums is of the type
MaX0<k, <ko<M |SN+kys — SN+k,| and can be estimated to 2maxo<p<nar |SN+m — Sninm—k| for
N,M € N. Hence, by applying the second Kolmogorov-inequality it holds that

ma.n ko T1,,T1 ™M2,n

Nbg mo €14 )
E P VP25nh2n max E R >n| < c—_2" 2 n#I2J — 0( )
i vn ki ko€la jiki<ks | == 02, nr/2yr £ 1 o
Jj= =K1 J=

as n — oo, followed by N — oo, where we use the assumed equation (4.1.11). Combining the
previous arguments provides |[|Rp, ;] = op(1) and ||Rp, 2l =op(l) as n — oo. Hence, it remains
to consider ||Rj,]3]:

[E: Py — ) (2 — fi2,)
01,i02,i

Rpsllo

mi,, m2
Z Z Il,v,n N f2,w,n)

2 Min

ZZ D letumllds-i ] +o(1)

l 1 v= 1J€Ilun

IN

S\

mi,n M2 2 2 Myn
Z Z Ilﬂ}vn N IQ,w,n)b].,vm,bQ,’w,n + Z Z bl U, Z |d3_l’j’ + OP(l)
=1 w—1 =1 v=1 J€L vn

as n — oo, followed by N — oo, where we use the upper and lower bounds of o0;; > ¢ >0, [ =1,2.
Hence, with the assumed equations (4.1.12) the proof’s first display holds. O

Remark 4.1.11. If we recall Example 3.1.3, see p. 45, then there is for each | = 1,2 a sequence
{ain;} so that

J N
max M = op(1).
1§j§ml,n al,j,n
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If we additionally assume that maxi<;j<m, ;ZJ%’; <1, we set I;; ={minJ;; —a;n,..., maxJ;; +

aijnt, which fulfills equation (3.1.2). Furthermore, we recognize that a good estimation of the mean
is more important on big sets I;; than on small ones.

Corollary 4.1.12. Under the assumptions of Theorem 4.1.10 let d,; =0 for | =1,2. Moreover,
as n — 0o, followed by ¢ — 0 let

min

73— 1 ra_y(1/2—), —T3—
> b5 > e = (12 7ot (41.13)
Jj=1 1€1; ;N((0,[ne]]U(n—[ne],n))

min M2 n

#(L1,0 N 124, N (0,[n2 _
ap 353 e RO, s
e v=1 w=1

and
min M2 n

sup Z Z bl,v,an,w,n
z€[1—¢,1)

#(I1 o NI N ([n2]0])

Tl = o(n'/?7). (4.1.15)

v=1 w=1
Then, Theorem 2.1.4 holds true if we replace By by B,

Proof. The claim follows from the arguments used in the proofs of Theorem 2.1.4 and Theorem 4.1.10.
O

Now, we consider the asymptotic behavior of the test statistics. The idea goes back to the max-
imum likelihood approach. Hence, we are interested in some parameter estimates which satisfy As-
sumption (PEE4).

Theorem 4.1.13. Let the parameters 1 and po fulfill Assumption (PEE}), let {€1/02:} and
{e2i/o1,:} fulfill (ICI(F)) for rire > 1, and let for 1 =1,2

mg—_i2 m3_q 1 1/m
Yoo i D0 b p# i N (0, max Ty ] = o(n'/?), (4.1.16)
J2=1 n=1
mi,1 M1, 2
Lmax (I O T (0, max Do gy N o 3 )b i b o = o(n'/?),  (4.1.17)

1<ja<mg o 1=1142=1

and
miin

| nax > Bls g > |ds—1| = o(v/n). (4.1.18)
=J2=mm2 J1=1 iellylyjlﬂ(o,maxllygij]

as n — o0o. Then, Theorem 2.1.1 holds true if we replace B> by B0,

Proof. As in the proofs before it is sufficient that for [ =1,2,3

k

> Rizw

i=1

= op(n/?). (4.1.19)

max
1<k<n

Firstly, we consider the error term with [ =1

k k
1I§nl?§(n ;Rlikz(“) - élkagn ;(/‘271 — fgik — di)eri/ o2 +op(n'/?)
mao 1 o
< max > max fegel max |} sop(n'’?)
SI2ETRR o1 hel2.2g F€l2.2,55 i€lz1,5,N(0,k] 2
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m2,1 €
1,
< Op(1) max E bgdm2 max g — | 4+ 0p(n1/2)
1<32<m2 2 — kelz 2 j, - 02,i
i€l2,1,5; N(0,k]
1
ma,2 ma1 /m
_ T 1 ) ) 1/2
=0Op E , UL S E :bQ,jl,jZ#IZlJl M (0, max I 2 j,] +op(n'’7)
Jo=1 Ji=1

as n — oo, where we apply Lemma 4.1.1, the triangle inequality, the additivity of a probability
measure, and the Kolmogorov-type inequality. Hence, the equation displayed in (4.1.19) holds for
[ =1 and is additionally fulfilled for [ = 2 by using (4.1.16).

Now, we consider the case | = 3, use (4.1.18) and obtain that

< |R| +op(n'/?)

max E R 4
1<k<n 3ikZ®
with
k . .
Li — Mk — dig) (B2 — f2,ik — d2g
IR| = max Z(Nz K1 i) (Mo — fl2 i)
1<h<n | & 01,i02,i
(1 — ik — dig) (2 — P,k — dag)
= _max max
1<ji<my 9 7 AT o |4 01409
1<jp<ma s kel 2,5, Nl2,2,55 | =1 1,i024
mi,1 M21
<c _max max > > (i N i 0 OK)]eri g kllein o x
sl kel 2y N2y 21 y—1
<jaSm2 2 1=112=
mi,1mi, 2
- O 1<g1<a,'f)§2 1 Z Z # Il’l’il ﬂ 12’17i1 m (07max Ilv2ﬂj1 r\l 12721j2]>b17i11j1b27i27j2
1<ja<mg o 1=142=1
as n — oo. Hence, the claim follows by using (4.1.17). O

Corollary 4.1.14. Under the assumptions of Theorem 4.1.13 let d;; =0,

m3_y2 [m3 i1 ) 1/m i
71 .
Z Z 534’]‘17]‘2 Z e =o0 <m3l 1> , (4.1.20)
Je=1 \ 51=1 i€13-1,1,5, N0, max I3_; 2 j, ] A[ne] ;
m3_y2 [mM3_i1 . 1/m i
71 o .
Z Z b3fl,j17j2 Z (n— )7t =0 (mgl 1) , (4.1.21)
J2=1 =l i€l3_1,1,5, N([n—[ne|max I3y 5,) )
m m
wup  max i i #(Iy14, NIo14, N (0,[n2] Vmax Iy o, NI22.4])
2€(0] 12?:;; i1=1142=1 ] (4.1.22)
b1y, 02,050 = 0(711/277),
mi1mi, 2
sup max Z Z # 11,1721 N1z N ([nz],max]l,gm N I2,2,j2])
sell=el) 5 =1 =l (n = [nz])7 (4.1.23)
“b1i1,102,i0,50 = 0(n1/2—’y)

be fulfilled as n — oo, followed by € — 0. Then, Theorem 2.1.4 holds true if we replace BYO by
By,

Proof. The claim follows from the arguments used in the proofs of Theorem 2.1.4 and Theorem 4.1.13.
O
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In this sub-subsection, we have seen that under suitable estimation rates the mean estimation has
no influence on the limit of the test statistic. Note that, if these rate assumptions are not fulfilled,
especially if the estimates are not consistent, the processes B;O’L’O’V(-) and Bﬁ’o’w(-) can still converge
towards a Gaussian process, cf. Remark 4.1.5.

4.1.2 Change-Point Estimation under Unknown Means

In this sub-subsection, we consider the setting of the multiple change-point problem for the correlation
and under the conditions that the means are unknown. In the first paragraph, we consider the special
case where we assume that the parameters p1; and ps; are constant. In the second paragraph, we
allow for multiple change-points in these parameters.

Constant Means Firstly, we consider the special estimate for the change-points in an epidemic
change-point setting.

Theorem 4.1.15. Under the assumptions of Theorem 2.1.15 let
1. {e1n/o2m} and {ezn/o1n} fulfill (ng)) and (ICI(;’)) for ri,re >1;
2. the parameters gy and pp satisfy Assumption (PEE1) with d,;; =0 and 61V d > 0.
Then, it holds that
n||0M — 6%|| = Op(1), (4.1.24)

where 61 = (55”,9@”) € arg maX{Qg)(s,t) :0<s<t<1} with

T

[nt] [nt]
oWty = 3 (Zf”—ﬁn) 3 (ZZ@)_ﬁn) , (4.1.25)
i=1+[ns] i=1+[ns]

70, =n 1y 20 and 70 = (Xi = fnn) (Yi — fizn) /(01,02,).

Proof. Set QW[ [ns],[nt]) = Qg)(s,t). Firstly, we prove that it is sufficient that the following rates
hold true, where ZZ-(l) = ZZ-(O) + R; and agn =o0(1) as N — oo,

k k3
12221k, B — Ziil+ki‘ R

_ Op(1 4.1.26

o k& an20p(1) (4.1.26)
|k || >N

and

k

| = 4.1.2

max |, le op(n) (4.1.27)
1=

as n — 0o, N — oo. It holds with Ly, j, x, = O(1) form the proof of Theorem 2.1.15 that

P(nfo—6">N+1) <P~k =N) =P | max QW (ki k)~ QW (ki k5)) >0
[lk—k*|| =N

Q(kl,kQ) B Q( ik;)

= P(O < max Lnng’]€2 (

TRLR S Lo
k 0 7(0) k ) k3 -
Lol [2EE (27 - Z0) B (B~ B) = 2 e (R — R)|
Ln,kl,kz Hk - k*Hn

k* — _— k* _—
L 2Ty R (S, (20 - 70) - £ (29 - 70)]
1k = F*[|n
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where we use the rates of the proof of Theorem 2.1.15 for the first summand and n||k—k*|| /Ly k) ko =
O(1). In the square brackets we use the Kolmogorov-type inequality and (4.1.26) for the first summand,
(4.1.27) and Lemma B.0.2 for the second, and (4.1.26) and (4.1.27) for the third. Thus, it remains to
prove (4.1.26) and (4.1.27):

With the structure of R; = Z?:l R, z) as displayed in (4.1.2) and by the triangle inequality, it is
sufficient to prove the two necessary rates for each R, 7o) by itself with [ =1,2,3. We start with
the one displayed in (4.1.27) :

Since R, za) = €1,i(H2 — fi2,;n)/02,i, we apply the Kolmogorov-type inequality to obtain the rate
displayed in (4.1.27) for [ = 1. Analogously, we get the rate for [ = 2. Now, we consider the case
I =3 and recognize that —d; — do < 0 1is sufficient.

Hence, it remains to prove (4.1.26). For [ =1 we obtain that

— k* —_ 2
[E§i1+k1 (Ri — R) + Ziil+ki‘ (Ri — R)}
[k — E*|[n

<P (Op(1l)ay + AIQ, + Op(1)an2 <0),

*

! X K X
Dick1 €1iB2 — flan) /02,0 = 3032 1 €1i(H2i — fi2n) /02,

max

by <kz [k — k]
llk—k* || >N
ko k3
Zi:k1+1 61,@'/‘724' - Zi:kfﬂ 61,1’/0'2,1’
=or(l) max k=& = orla)

lk—kE*[ =N

by applying Lemma B.0.2, where {an} is a sequence with ay — 0 as N — oco. Since for [ =2
the rate similarly follows, we consider [ =3

k k3
o it iz = i Fuazo] 0 ek b Rl
sk k=& Y aske o k=R P
where —d&; — do < 0 is sufficient again. O

Remark 4.1.16. Note that it is not necessary that both means have to be consistently estimated.

In the last theorem we use a mean estimate depending on the whole sample. In the following
theorem this aspect will be dropped.

Theorem 4.1.17. Under the assumptions of Theorem 2.1.15 let for [ =1,2
1. {ein/osia} fulfill (K& and (K& for v >1;

2. Wi — [y kom = €lLki ks D€ independent of i and there be an € € (0,(65 —07)/3] and bounded
sequences {a;n} and {b, N} so that

l€1,k; k30l = Op(arn), (4.1.28)
max ek ky — €Lk ke| = OP(a1n), (4.1.29)
1<kz

len]2[[k—k*[|ZN

‘el,kf,kg,n - el,k1,]€27n|

=0Op(b 4.1.30
k=¥ >N
Iglgé (k2 — kl)|61,k1,k2,n”€27k1,k2,n| = op(n), (4.1.31)
(en)< | k—k*|
ai naz,, = o(1), naypbs_1nn =0(1), and az_i, = o(nlfl/”) (4.1.32)

as n — oo, followed by N — oo.
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Then, it holds that
n||0® — 0*|| = Op(1), (4.1.33)

where 62 = (552),952)) € arg max{@,(f)(s,t) :0<s<t<1} with

T
[nt] [nt]
5(2) _ (2) 702 (2 _ 7
Q7 (s8,t) = E 2 (Zi,[m]y[nﬂ Z( )n> g[ | (Zi’[m]’[m] Z( )n) 7 (4.1.34)
i=1+[ns i=1+[ns

where Z2), =n=13" Zz(2l)n and Z%)IJQ = (Xi = 11,k ky) (Yo — iz kg ko) /(01,i02,)-

2,

Proof. The proof essentially follows the proof of Theorem 4.1.15. Hence, we have to prove the rate

displayed in (4.1.26) with R; , k, = Z?:l R, k) kot instead of R;, where R; g, k, = Zi(i)l ke — i(o).

The second necessary rate displayed in (4.1.27) is replaced by the condition

ko
max E R; i 1, | =0p(n).
1<ki<ka<n | LR ()
i=k1+1

The triangle inequality yields that it remains to prove for each [ = 1,2, 3
ko

max | D Ry g 00| = 0p(n). (4.1.35)

ki <k
Ik—k* >N |i=k1+1

We start with the previously described modification of (4.1.26). For [ =1 we obtain

ke ks
‘ez,kl,kg D itk 41 €L/ 02 = €23 kg Dl i1 €L/ 02

max
k1 <kg H]{I — k* |
lk—k*|>N
k
‘(ez,kl,kz — €2kt kg) Doilky 41 €10/ 02
< max
ki <kg Hk’—k*”
llk—k*||=N
ko . . k3 . .
€2,k7 k3 Zi:kzﬁ-l 61,2/‘7271 - Zi:k{—f—l ﬁl,z/UQ,Z
+ max
by <k Ik — k||
llk—k* >N

= Op(n*"by ) + Op(agnan) = op(1)

as n — oo, followed by N — oo. Here, we use the rate assumption (4.1.30) combined with the
Kolmogorov-type inequality for the first summand. For the second summand we use (4.1.28) and
Lemma B.0.2, whereby we get a sequence {ay} with ay =o(l) as N — oo.

Analogously, we get the necessary rate for [ =2 so that we now consider the sequence for [ = 3:

k ks
‘Zlik1+1 Ri7k1 »k27 37” - Zlikf—‘rl Ri7k17k27 3,7’L
max
k1 <kg Hk:fk‘*”
[k=k*||>N
k. _ kX _
‘61,k1,k2€2,k1,k2 Dk (0102,0) T — ek kgl ks g Doitpy 1 (01,002,0) 7
= max
k1 <k [k — K]
l[k—k*||>N

2
Sc  max [H €1k ko — €rkr kgl + €1 ks ks llea ks ksl
[ne]>[lk—k*||>N LI=1

2
> lerkiky — ekr i lles—iir il
=1
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2
Hk kz*H <H‘ €l by — €LET k3| + Z etk ko — €L ky ks lle3—1kr ks >]
=1

‘el,kl,k2€2,k1,k2 Z?‘ikl_kl(o—l,io—li)il‘ + ‘61 ki k3 €2,kT k3 Z k*+1(01 i02,i)” 1‘

+c¢ max
k1<ko [ne]
Ik=k*]1>[ne]
2
= Op(a1nazn) + Y Op(nbipn nas_in) + op(1) = op(1),
=1

where we use the assumed rates (4.1.28) and (4.1.29) for the summands in the first line, (4.1.28) and
(4.1.30) in the second line, and (4.1.31) in the last line. Finally, we apply the assumed rates displayed
n (4.1.32).

Now, we prove display (4.1.35) and obtain that

*
Z R < ‘Zz ki+1 zkl,kg,l,n_ fiki‘—f—l Rzk k3.0
Hi{g]\%z\f i=k1+1 A ||k§{:-<?%N " Hk - k*H
k3
Z R g ks im

i=kj+1

= op(n) + Ly_zy0p(nainaz,) + LugsyOp(as—i,,n'/™) = op(n)

as n — oo, followed by N — oo, where we use the previous arguments for the first summand
and (4.1.32) for the two others. Hence, the two necessary rates are fulfilled and the claim finally
follows. 0

In the previous two theorems we have postulated an epidemic change-point setting. In the following

part of this paragraph, we will focus on the general multiple change-point setting Hgvl).

Theorem 4.1.18. Define Q,(Il) as QSLO) with Zi(l) instead of ZZ»(O). Then, Theorem 2.1.22 holds

(0)

true with 97(11) in place of oy if the following conditions are additionally fulfilled:

1. the {e1n/oom} and {ean/o1n} satisfy (ICI(?)) and (ICI@) for r1 >1 and re > 1, and have
uniformly bounded rith and rhth moments with 1,1} > 2, respectively;

2. the parameters w1 and po satisfy Assumption (PEE1) with d,;; = 0;

3. the sequences Ay« ,, Aprn, and a, of Theorem 2.1.22 as well as the parameters 61 and 42
of (PEE1) satisfy as n — oo:

é’;l:(l/r’l-‘rl/m—262)V(1/T‘§+1/r2—251) — o( min A%m)7 (4.1.36)
; 1<i<R P
ap\ (n—=1)/r1+62)A((r2—1)/r2461) mini<;<p Ap in
— = 4.1.
( n ) ( max, |A, ., > ’ (4.1.37)
-1 2/r1—1-202)V(2/ro—1—261) __
anmn mTaX|Ak*,r7n|( /i 2)V(2/r2 D = O(lgglRApzn) (4.1.38)

Proof. Firstly, with k9 =0, kry1 =n,and 79 € {1,...,R} we obtain that

1<ki<..<kr<nlkro =k}, |2Nn/an

Pap|fyy — 05| > N +1) < P ( min QM (k) < Qﬁ%*))
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and
QY (k) — QW (k")
R+1 ke . R+1 Ky
=23 N (- k ) ZV ST ST (o Blke1k))
r=1i=k,_1+1 r=1i=k,_1+1
Rtl _ 2 S 2
3 0= 5 2) (200051 = (b = ) (Z0-1.00)
with
Zfl) = ZZ»(O) — pi + %Op(nf&) + %Op(nﬂ;l) + Op(nﬂh*él)

and where the Op(-)-terms are independent of the index 1.

Now, we follow the idea of the proof of Theorem 2.1.22. In the first case, if there exists a r* €
{1,...,R} and an arbitrarily small ¢ >0 so that |k — k| > emini<i<pi1 Agsin = €Ay, for all
sufficient large n, we obtain that

R+1

;M| — 1/r2V/(1/r1—82)V(1/ra—61)
o |2 Z Plhe1,he)) 20| = Op((n ) ma |8
o i=ky_1

where we use the arguments of the proof of Theorem 2.1.22. Using the same arguments of the proof
of Theorem 2.1.22 for the last row yields that there is a lower bound which is equal to

Op (nl/r—i-l/rz + nl/r’1+1/r1—262 + nl/ré—i—l/rg—?&) )

Hence, by applying (4.1.36) and the rates of Theorem 2.1.22 we observe that

QW (k) — QW (k%) < 0) 0.

P min
1<k <...<kp<ni|lk—k*||>eApx ,

In the second case, we minimize over each k, which is inside an e-neighborhood of k; with a radius
of €Ay« ,,. Then, we get

P(n’ém - 07“0| > N+ 1) < 0(1)

—i—P(c min A ; —Op (max|Aan’A—l+l/er(l/r1 d2)V (1/r2—61)>

1<i<R Pt

—Op

max, | Ape | 2/r=m DV (@/r1—1=252)V(2/r—1-281)
Nn/a,

- C(R+1 AP
(B + )12%)% P 1<T<R1<\k£nk*|<en“€ —k*\\/(Nn/an)

krVE: ~(1)
|Z7, k. /\k*-l—l | > 0)

as n — oo, followed by N — oco. Here, we can now use the Hijek-Rényi-type inequalities to obtain

| Zkr\ék kr+1 Z (1)|
=k Nep — [(r==1)/r=A((r1—1)/r1+82)A((r2—1)/r2+1)]
o) N .
1<|k7 k*|<en |k’ — ]{3*‘ V (Nn/an) P <( n/a ) )

Due to the assumed (2.1.28) of Theorem 2.1.22, the rate assumption (2.1.29) of Theorem 2.1.22,
(4.1.36), (4.1.37), and (4.1.38) it holds that the previous probability converges towards zero as n — oo,
followed N — oo. This finally implies the claim. O

Remark 4.1.19. If 1/r, +1/r" > (1/r1 + 1/} —202) V (1/ro + 1/rh, — 261), the rate assumption in
(4.1.36) is implicitly fulfilled by the second condition of Theorem 2.1.22. If even

1/r,>1/r1—062)V (1)ro—01) and 1/r, > (1/re — 1)V (1/r1 — d2),
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the rate assumptions in (4.1.37) and (4.1.38) are implicitly fulfilled by the assumption of Theo-
rem 2.1.22, too. Thus, if 1, < 11 Ara, 1, <1y A71h, and 6 > 0, the estimation rate a, of
the change-points in the correlations is independent of the mean estimation.

Theorem 4.1.20. Define ]A%T(ll) as R with Zi(l) instead of ZZ(O). Under the assumptions of
Theorem 4.1.18 let

1
1) « g) < A2
dy’ < B0 < 1o @lgnmAp,z,nék*,n (4.1.39)

with
dﬁ}) _ d7(10) v n(l/r'1+1/r1—252)v(1/r§+1/r2—261)

and with dﬁ?) from Theorem 2.1.25. Then, the estimate RW s a consistent estimate for the number
of change-points R*.

Proof. Set B, = 7(11). This proof follows the arguments of the proof of Theorem 2.1.25. Hence,
it is sufficient to show that the sets {RM) < R*} and {R(M) > R*} are asymptotically empty.
The asymptotic behavior of {R(!) < R*} follows in the same way as {R < R*} in the proof of
Theorem 2.1.25 with the arguments of Theorem 4.1.18 instead of those of Theorem 2.1.22.

Now, we consider {R(l) > R*} and obtain by using the same arguments as in the proof of
Theorem 2.1.25 the lower bounds

Op (d(o) v n(l/r’l-i-l/m—262)v(1/r’2+1/r2—251) V max |Ag ’(2/7"1—1—252)\/(2/r2—1—261)>
n 1<i<R* o

and

’Ak*mn‘(2—T’z)/rzv[(2—r1)/Tl—262]V[(2—7»2)/7~2_251]

instead of

Op <n1/r;+1/r> and ‘Ak*yr’n|(2—7’z)/7"z,

respectively. Using maxi<j<ps [Agsrn| ~n and 1/r —1<1/r] yields the claim. O

Non-constant Means In this paragraph, we present change-point estimates for the change-points
in the correlation under the condition that the mean estimates are non-constant. Again, we consider
first the special case of epidemic changes before we focus on the general multiple change-point setting.
The first change-point estimator postulates an epidemic change in the correlation and uses for the
estimation of the unknown means the whole sample. Here, we allow structural breaks in the mean.

Theorem 4.1.21. Under the assumptions of Theorem 2.1.15 let
1. {e1n/o2m} and {ezn/o1n} fulfill (ICI(?)) and (ICE?’)) for ri,7r9 = 2;

2. 1 and p  fulfill Assumption (PEE3) with di; =0 such that it holds that

min
Y by # D = o(n/my)") (4.1.40)
j=1

and
min M2 n
DD b #lig Ny, = o(n); (4.1.41)
J1=1j2=1
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3. it holds for

Kf,k = (kl{ - kakﬂa K;,k = (k‘l?[ka + k]a K;,k: = (k; - kvks]a Kjl(,k’ = (kék?k; + k]
that

min M2,n

b1, [ (KN Dy N ogy) = o(1); 4.142
verg}§>f4}]z:1];| v [P e ka # (KN gy 0 Do) = o(1) (4.1.42)

4. for each f =1,2 exists Ky < oo sequences of natural numbers N = ajron < apfin <...<
aifKn = k‘g — 1 with a1, — oo so that for each v=1,... Ky, f=1,2 and [ =12 it

holds that
#Mypon)® Y B (max A K N_Qmm LA N _ o(1), (4.1.43)
JEM; fo,N .
(#M,, f,o,N)QjE%M b7, E\ijg (; Hllzﬁrf ; j1+_1])\3 ?V()) =o(1), (4.1.44)

as n — oo followed by N — oo, where

Ml,f,O,N = {1 <7< myn : min[ljj < k‘:;, k‘} —N< max[hj},
Ml,f,v = {1 <j< mpn : maXIl,j c (k} - av,l,f,nak}k“ - avfl,l,f,n]} ;

5. for each f =1,2 erist Ky < oo sequences of natural numbers N = b ron < by fin <...<
bif K = k:g — 1 with b f1,, —+ 0o so that for each v=1,.... K, f=1,2, and [ =12 it
holds that

(maxI;; —minl;; VE;) AN
#Migon)® Y by d R, = o(1), (4.1.46)

N2
JEMy 50N

(maxI;; —k}+1—-N) VO

H#Mipon)® > b . = o(1), (4.1.47)
Jehtaon N((maxI;; — k} +1) V.N)
#Ilj +1
(H#My o) D by ) _ = o(1), (4.1.48)
Mg J(max I j — k% + 1)[(min [y ; — k}) V N]
as n — oo followed by N — oo, where
M soN = {1 <j<myy :minl; <k;+ N, k< maxIlJ},
Mgy ={1<j<my, : minl; € (k} 4 bo_11 5.0k} + boipnl } -
Then, it holds that
n|0® —6*|| = Op(1), (4.1.49)
where 6 = (95 ),0(3)) € argmaX{Q%)(s t) : 0<s<t<1} with
) 1) T
Vst = Y (Zi(?’) - Z(3)n) 3 (Zf” - Z(3)n) (4.1.50)
i=1+[ns] i=1+[ns]
and where Z®) n-1 Yo Z n and ZZ( k)1 ky = = (Xis — f,in) (Yi — fi2,in) /(01,i02,4).
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Proof. The proof essentially follows the proof of Theorem 4.1.15. Hence, we prove that the equations
displayed in (4.1.26) and (4.1.27) hold for Zi(g) = Zi(o) + R, and R; = Z?:l R, | 7. Again, it is
sufficient to show the rates for each [ separately. We start with the proof of (4.1.27) and obtain that

max E R., 73| £2 max
1<ki <ka<n il,2®) 1<k<n ’

i=k1+1

Z R; 1,Z3)

which has already been treated in the proof of Theorem 4.1.10. Using (4.1.40) and (4.1.41) yields
that (4.1.27) is fulfilled. Now, we consider (4.1.26) and obtain that it is sufficient to prove the rate
for each [ = 1,2,3. Moreover, we obtain that we can fragment the set {1 < kj < ko < n} cut with
|k — k*|| > N, over which the maximum is taken, in the sets

{kl < kQ < kr < k;}, {kl < ki{ < kg < k;}, {ki < kl < kg < k;},

{ki <k < k?; < kg}, {kl < kf < k; < kg}, {kf < k; <Kk < k‘g},

where each set is cut with {1,...,n} and |k — k*|| > N. Hence, the primary maximum can be
estimated by the sum of the maxima on each of the above sets. Since k35 — k] ~ n, it holds on the
first and last set that |k — k*|| ~ n. Furthermore, this implies that

k*
‘Zz k1+1 1lZ(3) - Ziik;ﬂ Ri,l,Z(3>
max
1<k <ko<k}<kj,|k—k*||>N |k — k:*H

Z Rz

C
< — max E ) < — max
n 1<ki<kz2<n | o n 1<k<n
i=k1+1

)

where we have already treated these maximums in the proof of Theorem 4.1.10. The maximum on
the three other sets are estimated to a linear combination of the following types

Kk ki +k
° > R —
max ; 3 max ; 3
1<k<kt EV N | W2 ) e<kioki KV N | WLZ®
z:ki‘—s—l—k z:k’f—l—l
(4.1.51)
ks k5 +k
‘ Y R N
max R max R,
1<k<ki—ki kV N |, 2O ce<noky KV N | 23 |
i=k3+1-k 1=k3+1

where ¢ is a suitable constant. Since each of this maximum can be treated in the same way, we just
consider the first one. We start with [ = 1:

man
C C’€2j|
max g R, 70| < g max : E €1i/09;
1<k<k; kV N | <4 W2 = Lk (b —k+ 1) VN ) i/ o2
i=ki+1—k J=1 i€[k,kyINI;
<« clea, 3
2,J
< max ’ €1.i/02,
— ~ ~ * El ’
j=1 minly;<k<(kjAmax1y ;) (W —E+1) VN i€lk,kiIND,;
"1 3J
m2,n
< max cleay| E €1,i/02,i| +op(1)
< 1,/ 02, P
‘ in I, <k<(k*Amax1,),s1,s2€l; (kI —k+1) VN ’ ’
o1 min sk (kpAmax £;),s1,52€15 (ki +1) i€k, k1N N[s1,52]
man C|€
2’j
= max g €1,i/02,i| +op(1)
. * . * ) )
= min [; <k<s<(k}AmaxI;) (kl k+ 1) vV N i
man c’e ‘ (k:i‘/\maxlj)
2,j
<2§ max : g €1,i/02,;| +op(1
A =i min I;<k<(k*AmaxI;) (kf —k+1)V N — il 02, (1)
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man elb| (k% Amax I;)
=Op P min I <k (ki Amax 1) (K} — k + 1) V N z; /o2 | +op(l)
=0Op 5= max C’b2’j| Z €1,i/02i| | +op(1)
jo1 1Shek (Wi —k+1) VN i€k, k)N o ’
where we use the estimation rates of Assumption (PEE3). Now, we decompose {1,...,m2,} in

My ={1<j<mo, : maxl; € (0,k] —arx—1,l},
My ={1<j<ma, : maxl; € (k] —ax_1,,k —ax_2,]},

MK,N = {1 S] < man : maxlj & (kf — alyn,kf — N]},

MK+1,N = {1 << man : mian < k{, /{T —N< maij},
K+1

Mg gon ={1,...,man}\ | M

and obtain that the above estimated term is zero for each j € Mg o. Furthermore, we define

ax+1,, =1 to obtain that

man ‘b ‘ (ki Amax I;)
C 2,7
P12 max : €1/09: >
; min I;<k<(kfAmaxI;) (K} —k+1)V N ; 16/ 02i) 21

max I
1

K-
2 FY R Y i

JEM, t=min [

max [;
(#MKN 2 ’ 1
+C Z b3, Z * 2 2
77 JEMK N i=min I} (kl_k+1) VA
k¥ Amax I
(#Mpcs1,n)? > N !
+ 0—27 Z b2,j Z * 2 2
" o e (k¥ —k+1)2VN
K-1
<CZWZ[)2, #h
=T 27 (kf —minI; + 1)(kf — max I;)
#MKN 2 #l+ 1
T ) (R AR
(#MKN o | (maxI; AkT —minl;) AN
+ 0777 Z b2 N2
JEMK N

N ki —minl; +1—-N) VO
N((kf —minl; +1) V N)

—

where we use the above decomposition, the o-additivity, and the second Kolmogorov-type inequality
for the first inequality and the estimation by the integral method for the second. For [ = 2 we get a

similar rate so that we consider the case [ = 3 now:

&
max R 3
1<k<kikV N | 2. Rizo
i=ki+1—k

Mmin M2 n

Y0 bl 27J2’1<k<k* ka#([kT —k+ Lk NN N1z |,
Ji1=1j2=1
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where we use Assumption (PEE3). Hence, the first maximum of (4.1.51) fulfills the sufficient rate.
The third maximum essentially follows in the same way. For the second and the last one we use the
same arguments, where we apply the shifted Kolmogorov inequality. Hence, the claim is proven. [

Theorem 4.1.22. Define QS)) as QT(P) with ZZ.(?’) instead of ZZ.(O). Then, Theorem 2.1.22 holds
true with éﬁf’) in place of é,(f’) if the following conditions are additionally fulfilled:

1. the sequences {e1i/o2} and {e1:/o2} satisfy (ICI(?)) and (K£3)) for T, 9 > 1, respectively;
2. the parameters pi and pp satisfy Assumption (PEE3) with d,;; = 0;

3. the sequences Ay, Dprn, and an of Theorem 2.1.22, as well as the sequences by; and I ;
of (PEE3) satisfy for 1 =1,2 and as n — oo:

min A A r3_1
my Zb“ "#I; =0 (( e ) A Dy A2, )7“3—1/2> , (4.1.52)

maxi<,<g [y

ma n Min
ST bigbo#th Ny = Bi By Ay/A,. A2 (4.1.53)
17.7 21.7 17] 27] =0 ma.X]_< <R |A ‘ 2f* ,N=—=p,n I A
7’,“7 p7T

Jj=1 j=1
(rs_1—1) A
7"3 z —(rg—i—1) _ —pPn
IQTELXR(#AM 6; b5 (Nnjay) 0 (maXKKR’ AM) , (4.1.54)
J lyr,n - =

b1jba j# (k) — €Qps poky + €Qps ] N 1 gy N 2 5,)

max
1Sr<R. 40 7%@2” H((kf — €Ape oy + €Qpe y] NV 11, N 1) V (N1/an)

(4.1.55)

for an arbitrarily small € > 0, where

Al,r,n = {1 <J< min Il,j N (k: - eék* ky + Eék*,n] 7é @} .

T

Remark 4.1.23. The assumed rates in (4.1.52) and (4.1.53) are sufficient for the change-point esti-
mation of the correlation to guarantee that there are no big mean estimation errors over the whole time.
Additionally, in the direct neighborhood of the change-points of the correlations the mean estimation
should in particular be not too unfavorable in the sense of (4.1.54) and (4.1.55).

Proof of Theorem 4.1.22. Set a;, n = Nn/a,. Firstly, we obtain with ky =0, kry; = n, and
To € {1, - ,R} that

Plaplfy. — 0, |>N+1)< P i B (k) < QB (k*
(anlfi —0n = N 1) < (kkﬁﬁk“kN Q) < QP (k)
and that
R+l Ky R4l Ky
Q7(13)(k> - =2 Z Z 7" 17 + Z Z 7’ lakr))Q
r=1 i=k,_1+1 r=1 i=k,._1+1
Rtl S 2 S 2
+3) 0= k) (ZO051k0) = G = o) (20006 0))|
with
~ €14 N € N ~ N
i(S) = Zi(o) —pi + 012’ (2 — fi2) + 21 (1 — pg) + (1 — foi) (2 — f2)-
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Now, we follow the idea of the proof of Theorem 2.1.22. In the first case, if there is a r* € {1,... R}
and an arbitrarily small e > 0 so that |k~ — k.
obtain that

n Vai,n for all sufficient large n, we

R+1 ki

S N (i Blkerke) 28| = Op(n7 max |A,0)

max
Hk_k*||>EAk* \/CL1 n,N 1< <R
L A R S M |

man R+1

_ €1,
+ max e  — plkr_1,k :
o[> Var Z 252, 2. (e plheskn) o

1 2.1
r= Ze(k‘r 1,kr}|’7[2]

min R+1 €
_ 2.1
+ max > e > > (pi — p(kr—1,kr))
ke [2ehge o Var o | 47 A o1
J= r= ze(krfl,kr]ﬂfl,j
ma n Ml n R+1
+ max E E e1,j€2,j E E (pi — plkr—1,kr))| -
Hkik*llzeék*,nvala”,N 1 1
Jj=1 j= (k‘T 1, r]ﬂfl JﬁIQ j

Here, we use in the first row the arguments of the proof of Theorem 2.1.22. Furthermore, with the
triangle inequality, o-additivity, and the Kolmogorov-type inequality (and |A,,| < C) we get that

man R+1

_ €1,
||k— k’*H>eAk* Vai N Z 2 Z Z (pi = pllr—1,8r)) 09 Z N2k ”Ap"

1 2.1
r=14e(kr— 1,kr]ﬁ12 j

Rmi , ma: |A, ] e
1,n X1<r<R |Rp,r r )
=¢ ( NAg- A2 > Z by #12,5 + o(1)

Jj=1

as m — oo, followed by N — oco. Due to (4.1.52), this tends to zero. Similarly, we can treat the
above third summand. For the fourth we obtain

mo,n Min R+1
k2 IIPILELEDD > (= plk-k)
Mg1=171=1 r=1 ie(kr'flykr]mll,jlmIQ,]é
m2a2n Min
=0p | RY > bujbag#li Nz, max |Bprl |
J2=1j1=1 =

which tends to zero, if it is divided by Ay. A2, see (4.1.53). For the last summand of the second

n=pno
display in this proof we use the same arguments as in the proof of Theorem 2.1.22 which yield a lower

bound of an order of Op(bg’)) with

min 2/T37l Mmin M2 n 2
b = nt/rrl/re 4 Zmln Z b # 3 1, + [ D0 bijbap#h Ny,
Ji1=1j2=1
(4.1.56)

This tends to zero if it is divided by Ay. Apn, see (4.1.52) and (4.1.53). Analogously to the proof
of Theorem 2.1.22, it follows that

0Ok — QI (k) < o) Lo

P min
1<ki<...<krp<n;||k—k* ||Zeék*7nVa17n7N

In the second case, we minimize over each k, which is inside an e-neighborhood of k) with a radius
of €Ay« ,,. Then, we get

P(nlfr, — 6,5 > N +1) < o(1)
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2/r3-1
2 Ml 1T

2 _ o, [ X | A o] 2/771 _o > ml2n (Z; X b, i 1#1371,1')

Pt P Nn/ay, P ék*’nNn/an

min ml,nb b ) I . I . 2
Zjlzl Zjlzl 1j1 02,427 115y O 12,5,
+
Aps nNnjay,

- C(R+ 1) max Apm

VK ~(3)
| ik b 11 2 I) >0>

15reR 1< kr— k*|<eAk* o ke — KXV (Nn/an

as n — oo followed by N — oo, where we obtain that the first term dominates the second and third,
by using the fourth condition of Theorem 2.1.22, (4.1.52), and (4.1.53). For the last term we use the
Hajek-Rényi-type inequalities to obtain

krVE} ~(3)
| 2 iz henkz 1 Zi |
1< |k, e |<6Ak* W ke — KXV (Nn/an)

2 my €3—1,3

+ max ZE kr/\k‘,’r‘,k‘r\/k*}ﬂh J Ol
l7
Zz=1 1< kr—k7 <Ay, Z J — kx| vV (Nn/ay)

= Op(Nnfa,) = 0/m)

m2mn Mln

s S e m] H#(ky NS VRN N o
N e e |kr — KE[V (Nn/an)
/754
= Op((Nn/a,)~ ="/ 4 ZOP #An | D 0 (Nnjay)~eh
=1 JEALrm
+Op Z by b H#((ky — €Apr poky + €Ape ] N1 g N 1o j,)

HEAL o TH((ky — €Dpr okt + Qe n] N 11y N T2 jy) V(N fan) |

where
Al,r,n = {1 < ] < mpy, - Il,j N (k: - 6ék*,n>k: + €ék*,n} 7& (b} .

Due to the assumed rates in (4.1.54) and (4.1.55), the claim finally follows. O

Theorem 4.1.24. Define RS’) as R with ZZ-(3) instead of ZZ(O). Let the assumptions of Theo-
rem 4.1.22 be fulfilled and suppose that

dP < Y < —— min A2, Ay with dP) =0 vdP, (4.1.57)

- 40* 1<i<m _ Pbm

where b is from (4.1.56), d%o) and C* are defined as in Theorem 2.1.25. Then, R®) consistently
estimates the number of change-points R*.

Proof. Set B, = ﬂ,(l?’). This proof follows the arguments of the one of Theorem 2.1.25. Hence,
it is sufficient to show that the sets {R®) < R*} and {R® > R*} are asymptotically empty.
The asymptotic behavior of {R®) < R*} follows in the same way as {R < R*} in the proof of
Theorem 2.1.25 with the arguments of Theorem 4.1.22 instead of Theorem 2.1.22.

Now, we consider {R(S) > R*} by using the same arguments as in the proof of Theorem 2.1.25
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and obtain the lower bounds:

win QP(k) — QU (k) + 6,

1/rs_
min /T3 l

2
= min Qu(k) = Qu(k*) + Bn —Op | an V | D mun | D05 #I54,
= j=1
min Min

VDD D bipbep#lig Nlag, |

Jj1i=151=1

where ap = n¥/" /7 v b with 5 defined in (4.1.56). Since a, is the dominating sequence of
the last two lines, the claim is proven. O

4.1.3 Long-run Variance Estimation under Unknown Means

In this sub-subsection, we present some LRV estimates which can be used for the Theorems 4.1.2,
4.1.6, 4.1.10, and 4.1.13. Since both LRVs are the same in the constant mean setting, i.e. under
Theorems 4.1.2 and 4.1.6, and since both LRVs are the same in the non-constant mean setting, i.e.
under Theorems 4.1.10 and 4.1.13, we will present the two LRV estimates ]_A)Ln and ]_A)gvn defined by
(2.1.34). One LRV estimate uses the mean estimate-type which is presented in Assumption (PEE1)
and the other one uses a mean estimate-type as presented in Assumption (PEE3).

Nearly constant means In this paragraph, we consider the LRV estimate type using a mean
estimate. Since we are interested in the consequences of nonconsistent estimates, we display the
potential error in each case (A)-(H); cf. Subsection 2.1.3.

Theorem 4.1.25. Let the assumptions of Theorem 2.1.33 and the following conditions hold true:
1. the sequences {€1n/02n} and {ean/o1,} fulfill (ICI(«I)) for ri,ro > 1;
2. the parameters py and ps satisfy Assumption (PEE1);

3. for each Lllo = 1,2, k=1,2,3, and with d,; from Assumption (PEEI) and dy;) from
Theorem 2.1.33 let

Z f< )d(k Li| = Op(b*), (4.1.58)

1,7=1
sz ( ) (2" — pj) = op(n!*oma-1), (4.1.59)
=1 j=1

Zf ( ) €l1,i€la,j = OP(n1+6u’37ll+6u’37l2)‘ (4160)
=1 j=1
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Then, it holds that lA)Ln =D+ R,(LO) + ]%511), where ]_:{7(10) 1s defined as in Theorem 2.1.33 and

n

R(l) :OP(].) + OP (qnnf‘s“*l*é“’z (n—éuyl—éu,g vV n*lﬂLl/T V; blynn*1+1/7“2 v b27nn71+1/7"1)>

+ 0p(gnn ™) + op(qun /2 0u1M0u2)y 4 6p(1)

Op (gm0 (n =012 4 pl/ra1=1=(0u1Nu2))) under (A),
Ty(lA) + Op(max;—1,2 b:(3 )l n"0m1), under (B),
Ty(lA) + Op(max;—1,2 béjlm “Out), under (C),
TéA) + O(gun=0w17%2) 4 Op max;—1 2 bgi)l,nn*‘suvl), under (D),
" Op{gn ey ="~ n1—u2 =5k )
+OP(ZZ2 1 qnn71+1/1”3 lféulfminéky U/flde’l" (E)7
T 4 Op(max;—; Qbé )ln —Out), under (F),
T(E) + Op(max;—1 2 bé )l n 0w, under (G),
s )—i-O(q n0m1= 5“2)—|—Op(maxl 1 Qbé )ln —Out), under (H),

E)

as n — oo, where 7Y and TS denote the rate terms in the cases (A) and (E), respectively.

Proof. Define b;,, = n =%, Firstly, we obtain that

SN A - - g

=1 j=1
R N B
— () @O - mE” g
i=1 j=1 n
I [i— _
+n22f<qn )[R(Z(O) )+ RR; + (2 pZ)RJ],
i=1 j=1

where R; = Z?Zl R, ; 7o) and the first summand is equal to D + R, and R, is the estimation
error of the LRV defined in Theorem 2.1.33. Hence, it is necessary and sufficient to consider that the
second summand is equal to op(1):

Firstly, we obtain that

2
Ry, 700 Ry 700 + Ry z0 Y Ry, j 70
lo=1

Jrn L (s

=1 j=1

')

2 2 2
Ry 00 ) Ryazo + > Ry zoRy, 50 |-
=1 l1=112=1

Ly

i=1 j=1

Using Assumption (PEE1), we obtain terms of the following form

Lyt

=1 j=1

> bl nb2 n + bl nd2 K + b2 ndl z)(bl an n + bl nd2j + b2 ndl,])

+(b1nb2pn + b1 ndo; + b2 ndii)(bineaj + banerj + dijea; + dajer ;)
+(bineai + baner; + digea; + dager i) (binbayn + bipdaj + bopdi ;)
+(b1n€2;i + baner; + diiea; + doj€r;)(bineaj + banerj+dijea; + dajer ;)]
= O(anb 13 ) + 0 ((nb? b2nn ™/ 4 03 ,b1,an ™72 03, + brnbon +83.,) )
+ Op(gnbrnbann ™ (brun'/™ + by un'/™))
+ OP(an—1/2(1 + bl,n + b2,n)(b1,nb2,n + bl,n + b2,n))
+0p(bn + bay) + op(1)
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P

=1 j=1
= O(gnb? ,b3,,) + Op(anbinban(bran T2 4 by 1))
+ 0P<qnn_l/2(bljn —+ b?,n))

P (S

=1 j=1

> b2 n€1i€lj + b1 nb2 n€l1,i€2,5 bl n€2, 7,52,]]

2
) bz,nel,iel,j + b1 nboner i€ + b17n62,i€2,j} +op(1)

as n — oo, followed by N — oo, where we use b, = O(1) and

Z Zf < > e = Op(gnn*/™) and ZZf <

=1 j=1 i=1 j=1

zzf( D) dh et = oplaun®) ana zzf<

i=1 j=1 i=1 j=1

) d3—1i€1; = op(gn nl/?),

) dy, jd3—1, €1, = op(n)

for [,l1,lo = 1,2. Here, we use Markov’s and Kolmogorov’s inequality, as well as the kernel and p.e.s.
properties. Hence, the double sum with R;R; is of order op(1).
Furthermore, we obtain
> i — Pj)

LS () me-m =2 Y (S
) (2" — p)).

i=1 j=1 i=1 j=1
Then, in the case of (A) to (H) as defined in Theorem 2.1.33 we get that

Py (e
o (12 3i(s

=1 j=1
=1 j=1

) blnb2n+b1nd21+b2ndlz+b1n€2z

+baner; + dyea; + daier;) (pj — ﬁj))

( Op(qnn_51 (b1,nban + 252:1 bl,nnl/’?*l_l)) + 0p(qnn_51_1/2(bl,n +by,+1)), case (A),
TA + 0(gun ™2 (bynba,n + bin + b2n)) + Op(brabs ) + by bi), case (B),

T + 0(gun ™72 (b1 + b2.n)) + O(gn™2b1 nbo,n) + Op(brubS ) 4 by 0, case (O),

) T £ 0(gabinban) + 0(gn(bi g+ ban)n ) + Op(brnbS) +bo,,bY),  case (D),
- Op(gnb1,nb2,n max;n —1- 5k#0k) + Op(zlz:1 bl7nqnn_1+1/r3 1= mm‘sk) case (F),
T(E) + o(qn n_1/2(b1 nban +b1m +b2p)) + Op(by nbélzl + by nb(l)) case (F),

T3 + 0(gun=2(b1 5 + ba.n)) + O(gun™"/2b1 uba ) + Op (b1 ubS) + baabt)),  case (G),

[ T8 + O(gubinban) + 0(@n(bin + bap)n™12) + Op(br b5 + bg,nbg,%), case (H)

as n — oo by using Assumption (PEE1). Here, we can reduce the second rate in the case of (A) to
0p(qnn*51*1/2) and the second rate in the case of (B) to o(qnn*1/2(b1,n Vbay)) dueto by, =O(1).
Here, we denote by 7Y and T the rates in the case of (A) and of (E), respectively.

Finally, we obtain by using Assumption (PEE1) that

sz< > RU(ZO — p)

=1 j=1

1 n 7: .
=0Op (n Z f < . j) (b1,nb2n + b1 nda,i + bandi i + b1 nezi + baper; + dii€a; + dai€r;)
ij=1 n
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«4”—m0
=0p (qnbl nb2 nn_l-H/T) + OP(Qn(bl,n + b2,n)n_1/2) + OP(QHn_l/z)

Py

i=1 j=1

) (b1,n€2,i + bane€ri) (Z](O) - pj)-

Now, we use the 3rd assumption and combine the previous rates. This yields the claimed rates. [

Non-constant Means In contrast to the last theorem we assume that the p.e.s. is zero, i.e., d,;; =
0. Furthermore, we present sufficient conditions such that the estimation of the mean asymptotically
has no influence on the LRV estimate. Therefore, we have to add some assumption on the moments.
It would also be possible to display the additional rates R; ), but they are more technical than R(l)

of Theorem 4.1.25.

Theorem 4.1.26. Let the assumptions of Theorem 2.1.33 and the following conditions hold true:
1. max; ; B[[ViW|] < C €R for all {Vo}{Wa} € {{ern}, {ean} {28 — pu}}s
2. the sequences {€1n/02n} and {exn/o1n} fulfill (IC,(pz)) for rire > 1;
3. the parameters gy and po  fulfill Assumption (PEES) with d,;; = 0;

4. let the bandwidth q, and the sequences of Assumption (PEES3) fulfill

min man

Z Z (b1,1,62,1,01,0,02,05) | IélaX #11 , N 12, A gn] min #Ilw1 N 124,

lv
l1,v1=113,v2=1 wedl,

2 M3_in Min

+ Z Z Z (bl,ilbl,vle—l,vg_l)[(#Il,il \/ #Il,vl ﬂ I3—l,U31) /\ Qn]

=1 vs_;=14,v=1 (4161)
(FLgy ALy, N 310, ,)
2 2 Minp Myn
A Y DN brabu[(# DV #Lug) A ga) (L A #Iv,j)] = o(n),
=1 v=1 i=1 j=1
minM2n m
[Z > (rbon ) (#C; V #Iy, N o) A g (#C5 A #I1y, N Ioy,)
ll 1 l2 1 j 1
> min m (4.1.62)
FY DD b S [(# V #Ch) A anl (#; A#CH) | = o(n),
=1 i=1 j=1
m1,n M2 n 2 Min
Z Z b1ty mb2 iy n# (L1 N I20,) + Z Z biin#tli; = o ( > (4.1.63)
1=1 =1 =1 =1 n
Mi,n , 1/rs—t nlto
Zml N Z b # L ) ( > . (4.1.64)
dn
Then, it holds as n — oo that
D3n =Dy, + RO 4 0p(1).
Proof. Firstly, we obtain that
3) - 3 - I ns, (i 0 0 -
LS () @ - - = L S () @0 - o -5
i=1 j=1 i=1 j=1 n
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L1 ZZf(z—])[ Ri(Z” — p;) + RiR; + Ry (2" — ) |,

=1 j=1

where R; = Z?:l R, ; 73 and the first summand is equal to D + R%O), where R%O) is the estimation
error of the LRV defined in Theorem 2.1.33. Hence, it is necessary and sufficient to consider the
second summand, which can be split in three double sums:

Firstly, we obtain as n — oo, followed by N — oo,

(s

=1 j=1
k n
1(a)
n i=1

min man
:OP< [ Z Z b1l1b2l2b1v1b2vg)[max #11 w, N 12w, A gn] min #Ilwl N 124,

qn n
) Z f ( ) Z Liivkeonp RiRivk
=1

Ly an
1 dn

gﬁz

k=—qn

i+k‘

L
l1,v1=112,v2=1 we{ly wedl,

Mmin M2n

+ Z Z (b1,1301,00 02,00 [(F D11y V FL10y O L2,0y) A @] (#1105 A #1100, 0 12,0,)

l1,v1=1v2=1

2 Min M2n

+ Z Z Z (b1,i,01,0002,00 ) [(FL1in V #0110, 0 L205) A @] (F 130 N F 110, N 12,0,)

=1 vi=114;,v2=1
2 2 Mip Myn

YOS S S b (0 ) A g s A #zv,»] ) |
=1 v=1 i=1 j=1

where we use the triangle inequality, Assumption (PEE3), the upper bound of the kernel, Markov’s
inequality, and the uniform boundedness of the joint moments.
Now, we obtain that

ZZ( ) Ri(Z2" ZZ( ) @ = pi) + (05 = )]

i=1 j=1 i=1 j=1

where it holds that

I, (i 0
DONIC EIAR
i=1 j=1 n
qn mi,n M2 n
0
(P SSH(E) Y e
k_fqn l1=112=1 Z‘Gfl’llmfgﬂl2;7;+ke(07n]

+ (b1, n€2,i + b2,l2,n€1,i)<ZZ»(_?_)k — pwk)})

min M2n 2 Myn
q
=Op (; SN brimbopn# (T NV og) + Y brin#tl ) = op(1),

l1=11=1 =1 i=1

by using similar arguments as above as well as in the last step (4.1.61) and (4.1.63). Similarly, for
case (A) we obtain that

mi,n M2 n
~ q —
s () o= 00 5 S b
=1 j=1 =1 1l>=1
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mi g 1/r3—
Z M <Z b ;#Il,z) n5l)

which is equal to op(1) due to (4.1.61) and (4.1.63). In the cases (B), (C), and (D) we replace
01 by zero and have to add

2 Min
Op (qg Z Z bl,i,n#Il,i> :

=1 i=1

In case of (E) we obtain that
ZZf( ) pj — Pj)
=1 j=1
minM2n m
=Op (n [Z S0 (braboin )(#Cy V #L, N Iogy) A qul(#C A #T, 0 Toyy)

11=1l2=1 j=1
2
+)° )
=1

mMin m
> b O (# v #Ch) A qul (#103 A #CY)
7j=1
where the last step follows from (4.1.61) and (4.1.63). In the cases (F) to (H) we have to
add the same rates as in the cases (B) to (D). Analogously, we estimate the double sum with
Ri(Z” - ). O

=1
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4.2 Sequential Analysis under a General Dependency Framework and General
Mean Estimates

In this subsection, we consider the asymptotic behavior of the stopping time when the means are
unknown. Hence, we have to estimate them sequentially. We define for £ =1,2,...

n+k

; 1 ®) stk 1 )
p?yk,l = n ZZ’L k.n and p?zn+1 = E Z Zi,k,n (421)
=1 1=n-+1
with
Y) - (1) 3
(Xi = 7 ) Vi = 87 k) 0
Zi(fi?n = Ji,n+kn dntkn/ Zi( ) + Z Rli(nJrk)nZ(w), (4.2.2)

01,i02,i =

where ¢ = 1,...,4 is a design index for different mean estimate types fulfilling (PEE5), (PEE6),
(PEET7), and (PEES), respectively. Moreover, we use the decomposition of (4.1.2).
4.2.1 Closed-end Procedure under Unknown Means

Nearly Constant Means

Theorem 4.2.1. Let the parameters p and po  fulfill Assumption (PEES5) with §,.1, 6,2 > 0,

Ou1 + Op2 > % Moreover, for 1 =1,2, let {en/o3_1n} satisfy (IC,(~1)) for r; > (% +5u73—l)_1'

Then, Theorem 2.2.1 holds true if we replace T7(l L)O o by 772727170

Proof. Firstly, we obtain that

n+k n
A1/2 = nk
Do/ By™(k) + ke ( Z Rt kynz — ZRZi(n+k)nZ(l>> ]
=1 i=14n =1
(4.2.3)

5 A—1/2
By(k) = Dy Y

From Theorem 2.2.1 we already know the asymptotic behavior of the first summand inside the brackets.
Hence, by Slutsky’s Theorem it is sufficient to prove that the second summand vanishes in probability
since. D™Y2 = Op(1) under H0(2) and Hii)A Under Assumption HE:) this is sufficient since then,
the first summand is the dominating term. Hence, it remains to show that

3 n+k
ax == > Rinanzo| = op() (4.2.4)
=1 - - z 14+n
and
3
. g;ggjm; fZRh(m nzv| = op(1). (4.2.5)

Inserting the definition of Ry, for [ =1 in (4.2.4) yields that

1 n+k 1 n+k ¢
1
 Jnax Z Ryitnikynzm| =  Max e k.nl N Z - -| +op(1) = op(1),
z 14+n i=1+n 2,

where we use Lemma 4.1.1, Assumption (PEE5), and (ICI(FI)) for
n—+k i

1,7

f Z 0—22

€1,i
022

n(l 4+ m)
= max
Vvn 1<k<n(m+1)

max
1<k<nm

b

n(l+m) = 02,
which is equal to 0p(n5m2) as n — o0o. Analogously, we get the rate for [ = 2. For | =3 and with
the same arguments as before, we obtain that

1 n + [nm)
B2, [ 75 2 Fainaigna| S U5 ek leagnernl +or(1) = op(1).
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Since rate as displayed in (4.2.5) follows in the same way, the three convergence results of Theorem 2.2.1
hold true. O

Corollary 4.2.2. Under the assumptions of Theorem 4.2.1 let d,;, =0 for | =1,2. Moreover,

for 1=1,2, let {en/o3_1n} satisfy (ICI(«3)) for r > (% + 6,3-1)" . Then, Theorem 2.2.3 holds

: (o) (c)
true if we replace .00,y by ol 07"

Proof. Firstly, we obtain that we have to include the weighting function w,(k/n) in (4.2.3). Due to
the continuity of w,(-) on (e,00) for each arbitrarily small e > 0, it remains to consider the error
term on (0,] or for all k € [1,[enm]]. Since (kn~')7w,(k/n) is uniformly bounded on [1,[enm]],
it remains to prove

3
>, ()

as n — 0o, followed by € — 0. If we insert the definition of R;, 1), we can apply (K§3)) in case of
=12 and use 0,1 +du2 > % in case of [ = 3. Thereby, the claim directly follows. O

1 n+k

Tn > Riigninyzo| = or(1)
i=14n

Theorem 4.2.3. Let the parameters 1 and po  fulfill Assumption (PEE6) and let

k et etk
| Dnax 7|N1 A lle — a5t | = op(1) (4.2.6)

as n — oo. Additionally, let 6y, ;1,, 11, l2 € {1,2}, of Assumption (PEEG6) fulfill 61 41+ 01,2 > %
Moreover, for ly =1,2, let {€,n/03-1,n} satisfy ( ) for r, > (% + miny, 5;1%3_12)_1. Then,

Theorem 2.2.1 holds true if we replace 7'75737070 by 7'7572’2 0

Proof. Similarly to the proof of Theorem 4.2.1 it is sufficient to show

3 1 n+k 3
—op(1) and — on(l
g 1<k<nm z 124-77, Rlz(n—}—k)Z@) OP( ) an — 1<nklgnm n \/> Z RlznZ<2 OP( )
(4.2.7)

where the latter rate has already been proven in the proof of Theorem 4.1.2. Inserting the definition
of Ry;(ik)zn In the first term yields that

n+k

1
Z Rlz n+k)Z(2)
z 1+n

n+k

1 .
\/ﬁ Z el,z‘

g
i=1+n 2,

max €2 k.nl

1
 1<k<n +op(1),

1<l~c<nm

where we use the property of the p.e.s. To obtain that the first summand is equal to op(1), we just
have to split the index set over which the maximum is taken, into {1,...,N} and {N+1,...,[nm]}.

For the second index set we apply Assumption (PEEG) and (IC£3)). For the first one we use
n+k

sy
vn :
i=14+n

2,0

= op(1)

max
ke{l,.,N}

as n — oo, which clearly follows by Markov’s inequality. Analogously, we get the rate for [ = 2. For
[ =3 we obtain that

n+k k
| Dnax 21; Rs;(nq1) 2 = nax ﬁlez,k,nel,k,nl +op(1) = op(1)
’L n

with the the property of the p.e.s. and the assumed rate displayed in (4.2.6). Hence, the three
convergence results of Theorem 2.2.1 hold. O

Corollary 4.2.4. Corollary 4.2.2 holds true if we replace the assumption of Theorem 4.2.1 by Theo-

rem 4.2.3 and TTEZ 10 bY Téi)zm
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Non-constant Means

Theorem 4.2.5. Let the parameters p1 and po  fulfill Assumption (PEE7). Additionally, for

l=1,2 let (4.1.11) and (4.1.12) hold true, let {e,/03—1n} fulfill (ICI(F)) for r; > 1, and let the
arrays byojn =buy2in (J=1,....,mun;n=1,...) hold that

min
Z bt n# oy = o(n'sPm ), (4.2.8)

min M2 n
Z Z bl,Q,v,nb2,2,w,n#(Il,2,v N I2,2,w) = 0(’!7,1/2), (4'2'9)
v=1 w=1
and
mp2.mn

Z bi,2,5,m

n) (4.2.10)

Ze[l 2,5

as n — 0o. Then, Theorem 2.2.1 holds true under the assumption of Theorem 4.1.10 if we replace
qu(,?,o,o by T?’(L?L),g,o'
Proof. As in the proof of Theorem 4.2.1 it is sufficient to prove the rates as displayed in (4.2.4) and
(4.2.5) with Z(®) instead of Z(). Since the modified (4.2.5) is satisfied by (4.1.11) and (4.1.12), see
proof of Theorem 4.1.21, it remains to prove the modified (4.2.4).

Firstly, we consider the summand with [ =1 and obtain that

1 n+k 1 m2,2,n
— max ZR max Ze- Z €1.i/09. op(1
\/ﬁl<k<nm li(n+k)nZ®) | = \/ﬁl<k<nm : 2,5,k,n ) 171/ 24| p()
=ltn =1 €122 jntk,n
1
— max  max |eg g, Z €1i/024| +op(1)
\f 2.2n 1<j<man 1<k<nm X ' ’
€122 jnikn
mao 2,
:OP(l) 52T max b2’27j max Z 61,@'/02,1' +0P(1)
VI 1<j<maan 1<k<nm|
1€12 jnik,n
1/m
m2727
=0Op # Z byl i #12,2,j,m +op(1) =op(1)

1<j<ma 2.n

as n — oo, where we use Lemma 4.1.1, the triangle inequality, the 3rd and 4th assumptions on
(PEETY), as well as the Kolmogorov-type inequalities. Analogously, the summand with [ =2 vanishes
in probability. Hence, it remains to consider [ = 3:

n+k
max E R
V1 1<k<nm 3i(n+k)nz®
i=14+n
1 min M2n
= max | > > €1y km€2go kP gtk O 2o mikn| +0p(1)
\/ﬁ 1<k<nm | “ .
J1=1ja2=1
min M2 n
=Op f Y Y bragibezp g n N azgm | +op(1)
J1=1j2=1

as m — 0o, where we use the property of the p.e.s. and (4.2.10) in the second row. Thus, by (4.2.9)
the summand with [ =3 vanishes in probability as well. Then, the claim finally follows. O
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Corollary 4.2.6. Corollary 4.2.2 holds true if we replace the assumptions of Theorem 4.2.1 by the ones

of Theorem 4.2.5, T,(L L) 10 by TT(L 23 0+ ond if we additionally assume that maxjen, ., bi2; = O(1)

and #Mjen =0(1) as n— oo, followed by € — 0, where
Myen=1{1<j<myy, : LigjnN[n+1n+ [emn]] # 0}

Proof. As in the proof of Corollary 4.2.2 it is sufficient to prove

3 1 n+k
max wy(k/n) Ryintiom =op(1l
>, )| 7 D Rugariguson| = op(1).

If we use the assumed rates of Corollary 4.2.2 and the estimation as used in the proof of Theorem 4.2.5
for [ =1, it is easy to see that

n+k
a k R
1§?§[e}r{zm] wy(k/n) \f . Zl;m Li(n+k)nz®
=0 max max n €1i/024| + 0
P( )]EMlenkhsz[n—&—l n—i—[enm]]ﬁ]gjn 2/ szl 11/ 2 P( )
as nm — 00, € = 0. This tends towards zero in probability by using (IC§3)). O

Theorem 4.2.7. Let the parameters p1 and po  fulfill Assumption (PEES). Additionally, for
1=1,2 let {en/o51n} fulfill (K& for v > 1 and let (4.2.8), (4.2.9), and (4.2.10) be fulfilled
with {bjn} and {I,;n} instead of {bj2;n} and {I;2;n}, respectively. Then, Theorem 2.2.1
holds true if we replace 7'7(“)00 o by 7'7(1’3,40 0

Proof. 1t is sufficient to prove

3 n+k 1 n
Z 1<k Znm \f 21; timtk)zw | = op(1) and Z e |V Z; Ryj(jqmyz | = op(1).
: Z n 1=

Using Lemma 4.1.1, (IC,(pz)), and the rate assumptions of Assumption (PEES), we observe that

n+k mipn 1/T3_l
 dnax Z Riiniryzn| =Op | mup Z blrj VH#I ;0 (nn 4 nm] +op(1),
== i=14m
as n— oo and for [ =1,2. For [ =3 we get
1 n+k min M2 n
VRt Y Ryigninzn| = Op f D0 bijkbagekligin N Iz, O (R +nm] | +op(1),
i=n+1 Jj1=1j2=1

where we use the rate assumptions of Assumption (PEES) and the modified (4.2.10). Since both rates
are op(1l) by applying the modified (4.2.8) and (4.2.9), the first rate of the first displayed holds true.
Analogously, the second rate of the first display can be proven. This completes the proof. O

Now, we use the assumptions of Corollary 4.2.6 and Theorem 4.2.5 to get the results for the
weighted stopping times.

Corollary 4.2.8. Corollary 4.2.6 holds true if we replace the assumptions of Theorem 4.2.5 by the

ones of Theorem 4.2.7, bya; by by, Li2jn by I jn, and 7‘7(3’370’7 by 7‘15?274,077.

Proof. The claim directly follows from the combination of the arguments used in the proofs of Corol-
lary 4.2.2 and Corollary 4.2.6. O
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4.2.2 Open-end under Unknown Means
Nearly Constant Means

Theorem 4.2.9. Under the assumptions of Corollary 4.2.2 let rp > 1V (% +5u,3—l)_1' Then, we can

replace T,(L 2007 by 7'7(1 L)l 0~ and Theorem 2.2.5 holds true.

Proof. This proof follows the proof of Theorem 2.2.5. We already know that

n+k
~ ~ —1/2
B (k) = BY%V (k) + Dy *w, (k/n) —— f2< > Rininzo — ZRh ntk Z“))

i=1+n

On the one hand, we know from the proof of Corollary 4.2.2 that the maximum over k < [mn| of the
second summand converges in probability towards zero. Hence, if, on the other hand, we show that the
maximum over k > [mn] of the second summand convergences in probability towards zero as n — oo,
followed by m — oo, we get the claim by the same arguments as in the proof of Theorem 2.2.5.
Since maxjsnm [wy(k/n)k/(n+k)—1| converges towards zero as n — oo, followed by m — oo,

and Dy 12 -0 p(1) it remains to consider

n+k
max Z R y|  and  max Z R : 4.2.11
k>nm o li(n+k)Z) k>nm li(n+k)ZD) | > ( )
i=14n

where for the second term we directly obtain that k& has just influence on the estimation of the
parameter. So due Assumption (PEE5) and (lCl(pS)) it is equal to an order of Op(n'/"=1/27%us-1) =
op(1). Hence, it remains to estimate the first term. Due to Assumption (PEE5), we get for the
summand with [ =1

n+k \/Fl n+k
max — E Rlz ntk)Z(M) =0Op n %2 max Y E EQZ‘/O'LZ'
k>nm k>nm .

i=1+n i=14+n

as n— oo and

ntk rg j+1
-5 2 \/ﬁ ' ' CN nm?2 .
P (Nn ' Iggi{z _ZH €2i/014| 2 77) = nr2 Z g (29 mmOu.2+1/2)r2 =o(1)
1= n J=

as n — oo by the use of the Kolmogorov-type inequality. Here, we use r; > 1V (% + (5%3_1)*1.
Analogously, we get an upper bound for [ =2. For [ =3 the convergence rate directly follows from
the estimation rates with 6,1 + d,2 > % Hence, the second summand of the right—hand side in the
first display vanishes in probability as n — oo, followed by m — oo, so that we can apply the same
arguments as used in the proof of Theorem 4.2.1 to obtain the claim. O

Theorem 4.2.10. Under the assumptions of Corollary 4.2.4 let r > 1V (% + 5%371)*1. Then, we
(0)

can replace T, 04~ by 775 22 0~ and Theorem 2.2.5 holds true.

Proof. The proof essentially follows the way of the one of Theorem 4.2.9. We just have to replace
the arguments of Corollary 4.2.2 by the ones of Corollary 4.2.4 and the used Assumption (PEE5) by
(PEES). O

Non-constant Means

Theorem 4.2.11. Under the slightly modified assumptions of Corollary 4.2.6, i.e., replacing I;2; by
I1o ;N (0,n+nm] in (4.2.8) and in (4.2.9), we can replace T,(“)O(M by 7L and Theorem 2.2.5

n,4,3,0,y
holds true if additionally
my,

n oo
7=1 =0

yro- (#2500 [1,n+nm2i+1])

_1/2 T
l27.7 (2T‘3_l)i - O(nTS l/ ml,Q,:’;”L l) (4212)
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and
mi,2n M12n
— Lo, NIyo i, N n, k
ST bragbeag nax #2a 2’2]:2 n + ]zo(n_l/2) (4.2.13)
=1 ja=1

as n — oo, followed by m — oo.

Proof. As in the proof of Theorem 4.2.9 it is easy to see that the second term is of order op(1) such
that it remains to show that the first term displayed in (4.2.11) vanishes in probability as n — oo,
followed by m — oco. Under the slightly modified assumptions of Corollary 4.2.6 we obtain for the
summand with [ = 1:

n+k man
max— E R1Z ntk)z(h | = max —— E €25 k.n g €1,i/02,i| +op(1)
k>nm T k’>nm
1= n

1€lz jntkon

n
<maon 1;}%2}%(2’” g%ﬁ; \kf|62,j,kz,n| Z €1,i/02,i| +op(1)

1€ly jntkon

n
< Nmg, max by; max \F Z €1,i/02,i| +op(1) + Op(an).
1<j<ma pn k>nm k N
€12 j nik,n

For the first summand we obtain

n
P | Nmg, max by; maxf g €1,i/02i| >N
1<j<ma.n k>nm R
Z‘612,]',77,4»16?11

k2

n
<P | Nmg, max by; max L max g €1,i/02i| >N
1<j<ma n k>nm E1,k2€0a 5 nihom =

ko
NG

< P| Nm max by ; max — max €110 | > 1ol
> 2”1 <j<maon 2,J k>nm  k k1,k2€12 . nN[1,n+k] Zkl 171/ 24| 21 ( )

ma2n oo k;2
< P | Nmgnb max max €1:/09 > +o(1

JZ; Zzg 2nV2, 57 =", \/77’)’1,2@ nm2i<k<nm2i+1 ki, ka€ls ; nN[1,n+k] Z%:l 1,1/ 2,i| =1 ( )

N'imgh, L& #(Izjn N [1n + nm2itL)

< r1 27]771 N
SO TlmTlnT1/2 ; Zz;b (27"1)l -I-O(l)

as n — 0o, m— 00, and N — co. Analogously, we get a similar estimation for the summand with
[ = 2. Hence, it remains to consider the one with [ = 3:

n+k mi,n Mln
#1135, NIz 4, N[00 + K]
g% YIS Rz | = 0p [ VI D0 D bijibay, Jnax ?
i=1+n Jji1=1j2=1
as n — oo, followed by m — oo. O

Theorem 4.2.12. Under the assumptions of Corollary 4.2.8 let (4.2.8) and (4.2.9) be fulfilled with
I ;N (0,n +nm] instead of Ijo;. If (4.2.12) and (4.2.13) are satisfied with I ; and my, instead
(0)

of Io; and mysa.,, respectively, we can replace T1.0,0,0 by T7(H)40 and Theorem 2.2.5 holds true.

Proof. As in the proof of Theorem 4.2.11 we have to prove that both rates displayed in (4.2.11) are
fulfilled, where the second follows by the same arguments used in the proof of Theorem 4.2.11. Hence,
it remains to prove

3

Y3 Rupninyzo

=1 1i=1

max ——

k>nm \/>

= Op(l).
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For the summand with [ =1 we obtain that

man
max— = kn>lgi(n7 Z €9, j.k,n A Z 61,2‘/0271 +op(1)
ZGIQ,j,n+k7nr\I(0,n]
< ngm max bg max —— Z 6171/0272' + Op(l) -+ OP((ZN)

1<j<mapn k>nm \f R
1€15 5 ntk,nN(0,n]

and therefore by the Kolmogorov-type inequalities that

(Nmap)™ G
P(g‘gﬁ 7 | m) < iz 2 Vet (2 0 (Onl) + 0(1)
j=1

as n — oo, m — oo and followed by N — oo which is equal to o(1) by the modified (4.2.8).
The summand with [ =2 can be estimated in the same way. The one with [ =3 can be estimated
as in the proof of Theorem 4.2.5, where we intersect the sets I;. with (0,n] and use the assumed
modified rate assumption (4.2.9). O
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4.3 Examples

In this subsection, we continue the three example assumptions (IID), (MIX), and (NED) and present
scenarios resulting in the availability of the different main results of Section 4. Therefore, we will not
demonstrate in detail that every assumption of the considered results is fulfilled. Furthermore, in this
subsection we will consider the following specification of Assumption (MIX) and Assumption (NED):

Assumption (MIX1). Under Assumption (MIX) set r}=inf, 7, and let 19,75 > 2.
Assumption (NED1). Under Assumption (NED) let rj,r, >2 and p1,p2 = 2.

Firstly, we obtain that under each of the Assumption (IID), (MIX1), or (NED1) the sequences
{Z,SO) —pn}s {€1n}, and {e2,} (see Subsection 2.3) fulfill the Kolmogorov-type inequalities for r = 2,
respectively. Thus, we get r, =11 =19 = 2.

Since the dependency structure still holds after multiplication with any uniformly bounded, determin-
istic sequence {c,}, {elmag__ll’n} satisfies the Kolmogorov-type inequalities for r; = ry = 2, too.
Hence, it remains to prove the assumed properties of the estimates for the following parameter model:

Rl,n
Hii = Ho + z:l A,u,l,j]l{igl.;;’l’j} (4.3.1)

j:
for i=1,...,n and r=1,..., R, +1, where R;,, >0, A,;;#0 and 0= k;,lﬁ < k;,lJ <. <
iR, < kiR, +1 = Nn. Here Ny € {n,n(1+m),00} depends on the considered procedure: a

posteriori, closed-end or open-end. In addition, we assume that k; Litl — k; i —> 00 as n — oo for
all 1=1,....R;, — 1

Remark 4.3.1. In fact, under (NED) it is not necessary to set p; = 2. In general, (NED) implies
that {Z;,} is an Ly -mizingale of size —v; = —min{a;, ay (1p; — 1/r;)} which implies

)

[Enge {OP(nl/Q)’ ’Lf D1 =92 and — S _l’
lil| =

=1 Op(n'/P), if pre(1,2) and —v < —1.

It would also be possible to choose pi,p2 € (1,2) such that some of the following results hold true.
However, we will drop this additional case since the arguments are similar but more technical.

4.3.1 Constant Means

In this sub-subsection, we consider the special case of R;,, = 0.

A Posteriori Analysis We define ,&l(ln) and {,&Z(Qk)}k:ln as the general weighted sample mean

n
N _
Nl(g = Zigy =1~ Zwi,nZl,i (4.3.2)
i=1
and general cumulative average
iy =iy fork=1,...n, (4.3.3)

where the deterministic, positive weights {w;,,} fulfill Y27 w;, =n forall n € N and Y1) w?, ~
n. Then, from the Kolmogorov-type inequality and the Héjek-Rényi-type inequalities we observe that

= —1/2 £(2) _ -1/2
Op(n™/%) and  max |fy}; — ol =Op(N=7).

(1

’Mz(,n) — Hi1,0
Hence, we can apply Theorem 4.1.2, Theorem 4.1.6, and the weighted results, Corollary 4.1.4 and
Corollary 4.1.8, to obtain the asymptotic limits of the tests ¢Z1 and ¢Z2. The corresponding LRV

estimate from Theorem 4.1.25, case (A), is a consistent estimate under Hy and Héz) for each

qn = o(nl/ 2). Here, we use Markov’s inequality to obtain the rate conditions of this theorem.
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Remark 4.3.2. For example, if under Assumption (NED) p; € (1,2), —min{a;, ay(1p; —1/r)} <
—1, and 2 —1/p1 —1/p2 > 1/2, the assumptions of Theorem 4.1.2 are still fulfilled.

Furthermore, we can estimate the change-point k;j,l (k3 = n) with Theorem 4.1.18 under As-
sumption Ha and obtain the same estimation rate as in Section 2 if Assumption (IID), (MIX1), or
(NED1) and the rate conditions

kin(n—k) " =0(Apnl?) and |A,,]7=0(n'?)

hold true. Then we get n]Ap,nHHA;J — 0511 = Op(1). With the same theorem we estimate multiple
change-points with identical rates if the distance between the pair of change-points increases linear
with n and if each change size is of the same order. More generally, if the Kolmogorov-type inequality
is fulfilled for rq,79 = 2, we estimate the change-points in the correlation with the same rates as in
the situation of known means. In particular, we use this estimate for the LRV estimation by applying
Theorem 4.1.25, case (E), with some ¢, — oo and ¢, = o(n"'/?) as n — co. This might provide a
higher power under the alternative, cf. Bucchia and Heuser (2015).

Sequential Analysis Applying {,ELZ( 172+k}k:1 as estimates we could use the closed-end and open-

end procedures, Corollary 4.2.2 and Theorem 4.2.9, to test sequentially with the stopping times (1)1 ~

(0) ~ (1)

and 7,y ., whether there appears a change in the correlation. Otherwise, we could use ul for the

training phase and {/Ll L }k:Lm depending on the data set Zj,1,...,Z; 4, for the new observed

data. Then, we would apply Corollary 4.2.4 and Theorem 4.2.10 to obtain the limit distribution of

the stopping times TL(,C2),1,7 and 7(2),1,7

In addition, it is possible to use a piecewise weighted sample mean

~(3 A . £ .
/“Ll(,i?n:ZwIlj #Il,j Z wl#fl Zlk7 V’LEIM‘,] =1,....m
kEIlJ

with disjoint random sets le C (0,n] and min; #fl,j > en almost surely, for a fixed ¢ > 0. On
the one hand, we can test a posteriori and sequentially. On the other hand, we can estimate the
change-points in the correlation. For this reason, one can now apply the results for the non-constant
mean.

4.3.2 Non-constant Means

In this sub-subsection, we consider the case of R;, € N5o. Here, we first focus on the case of known
locations of the change-points.

A Posteriori Testing under Known Change-Points in the Mean If the change-points in the

mean, k,;1,...,k, r are known, we can use the piecewise weighted sample mean, i.e.,
k.
K aul
A(?)/) _ 7 Ml o * * —1
Hiim = le,k; L1 (k,u,l,r - k,u,,l,Tfl) E wk,ku,l,r—ku,l,r_lzl,k,
=k’ i+l
Vi € (k;jlvr_l,k;l’r], r=1,...,R;,+1, where the weights fulfill the same properties as in the previous

sub-subsection. Then, under Assumption (IID), (MIX1), or (NED1) we observe that

~ (3 * * — . * *
|Iu’l(,i,31 - lu’l,i| = OP((ku,l,r - ku,l,r—l) 1/2) Vi€ (ku,l,r—lvku,l,r]? r= 17 s ,le + 1.

Denote p7, as the exact mean on (k;,l,r—l’k;,l,r]' Then, we obtain
|Zl o o B lu;<7"|
lr—1 ) 1/2
ma =O0p(R,'7).
re{l,.. ,Rl w1} (k:u“ — k;,l,r—l)l/Q ln
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Moreover, we define
I,LL,Z,Z’ = {<kl*,z—1,n7 kl*,lﬂl] for Z = 17 st 7Rl,TL + 17

1/2,; 4 N _ .
buti = {Rl,{m (kjpg = ki) ™2 fori=1,.. Ry +1.

(4.3.4)

Then, we notice that the rate assumptions of Theorem 4.1.10 are fulfilled if

Rl,n Rl,n R2,n

2 2 ! -2 2 ! 1/2
SR A = R S o(nRi2) and SO bt bty 0 o < R, - o(n'/2),
j=1 j=1 i=1

Thus, these two rates are fulfilled if Ry, = o(n'/4).

Then, if 2r/(r1 — 1) < r9, we can test whether or not there is a change in the correlation. Here,
we use the LRV estimate from Theorem 4.1.26 with well chosen ¢,. The condition 2r;/(r;i —1) <9
implies that the moment condition of Theorem 4.1.26 is fulfilled. Furthermore, we can apply the
closed-end and open-end procedures under the same settings as used in Subsection 2.3, because the
change-points of the mean are known and thereby the mean estimation is sufficient.

Now, we consider the second testing procedure based on the second type of estimates where we
assume that the change-points in the means are known once again and R;, = It;. We define

kZ l,r/\k
~4) * * -1 § :
Ml:i7k,n - (k A k,u,,l,r B k/J,,l,?"—l) wi”g/\k:,l,'rikz,l,rflzl’k
k:k;,l,T—1+1
. % *
Vie (K, ok AR k=2 m, r =1, Ri+1

and note that Assumption (PEE4) is fulfilled for d,;, =0,

_ _ * *
e = Tuiar = (kg —1k, ],

>

* * *
w,l,22r+1 — Iu,l,2,2r+1 = (k'u,l,r?ku,l,rJrl A (k,u,l,r + CT,”)L

_ (X * *
pl22r+2 = Lpioorya = (ki A (K + o)y K rgals

for r=0,...,R, and

—-1/2 _ T
o R AT Rk ---/2
-1 * * —-1/2
0 0 1 c k —k
(bu,l,jl,jg) P 1,n (,u,l72 ml,l) 7
jo=1,...,2(R+1) 0 0 0 0
—1/2
0 0 0 0 1 Cron
where c¢i5,...,crR41,, are suitable chosen sequences which tend towards infinity, e.g., ¢, =
(K1 — Kop,)? with 8 € (7,3). Then, the rate assumptions (4.1.16) and (4.1.17) are fulfilled

so that we can apply Theorem 4.1.13 to test whether or not there is a change in the correlation.
Therefore, we use the consistent LRV estimate of Theorem 4.1.26.

Change-Point Estimation under Known Change-Points in the Mean Now, let R;, =
R € Nsg. The estimation of the changes in a multiple change-point setting of the correlations is
influenced by the mean estimation if at least two change-points in the mean lie in every ne-ball

around a change-point in the correlation. Let, for example, k7, = [0.5n], kj; = [0.5n — log(n)],
and kj o = [0.5n + log(n)] which implies that the mean estimation error between the two change-

points is equal to Op(log(n)~!). Hence, the rate assumption (4.1.54) is only fulfilled if a, =
O(n log(n)l/ 2 min; Apin/max; Ay, ), which could provide the change-point estimation rates of the
correlation if the change sizes of the correlation vanish with different rates.
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A Posteriori Testing under Unknown Change-Points in the Mean Now, we consider the
case where the change-points in the mean, k;J,i, are unknown. Thus, we estimate them and apply
Theorem 2.1.22 to get the estimation rate of these change-points. Assuming the change size does
not vanish and the distance between the change-points increases linearly with rate n, we obtain
max; [k}, — 12:“7l7r| = Op(1) under the three examples (IID), (MIX1), and (NED1). It is obvious
that the examples of the previous paragraphs hold true if we replace the exact change-points in the
mean by their estimates with this kind of estimation rate. Therefore, we consider a general estimation

rate in the following. Set

R ku,l,r
£ _ ke (L ] -1 Z R X
/”Ll,i,n - levl/%u,lﬂ"—l - (k,uﬁl?T k,u,,l,r—l) wvvku,l,’riku,l,rflzhv (4‘3'5)
U:k,u,,l,rfl""l

~ ~

Vi e (kml’r,l,ku’“], r=1,...,R;, + 1. Suppose the change-point estimates fulfill

max ‘k;,l,T - k/‘hly’r‘ —
r

op(1)  with  ¢rnVe1n=0 (( i Z,l,r—1)1/2> (4.3.6)

Clrn

as n — 0o, then, we get

~ ~

’/},l(g) — gl = Op ((kz,l,r B k;,l,r—l)ilﬂ) , foralliec (k’l*,r—l,n?kl*,r,n] N (kﬂylﬂ“*l’kuylﬂ“]v
o ’ Op(1), else.

Hence, p; satisfies assumption (PEE3) with ﬂ(g) d; =0,

l,i,n’

j,u,l,i = {(k’l*,jflma k‘lzjm] N (]%l,k:—l,na ]%l,k,n]a 1= ] + (k - 1) ' (Rl,n + 1)a ]7k = 17 cee aRl,n + 17

(4.3.7)
(k‘ll*’jan? kzk,],nL 1= .] + (] - 1) ' (Rl,n + 1)7 J= 1a s 7Rl,n + 17
IM L= (k;k’jmacl,j,n + kijm]) 1= ]+ (] - 2) : (Rl,n + 1)7 ] =2,... aRl,n +1, (438)
v (k;l*,j—l,n - Cl,j_L”?kl*,j—Ln]’ L= +] : (Rl,n + 1)7 J = 1) s JRl,n7
0 else,
and
1/2/7 4 ¥ _ . . .
b= VRIS Ky =Kl )72 fori =4 (1) (Rin+1), §=1.. Rin+ 1,
Hob 1, else,
(4.3.9)
where we use that
(Rl,n+1)2 Rl,n
P ﬂ {Iml,i - Iml,i} =1-P U {“’%lm - ku,l,r| > Cl,r,n} =1+o(1).
j=1 j=1
We obtain that the rate assumptions of Theorem 4.1.10 are fulfilled if
Rl,n Rl,n RQ,n
Rin =o', Y ain=o0mR?), and >3 clinAcrpn=on"?).  (4.3.10)
i=1 i1=11=1

Thus, if ¢, = max;, ¢ rn = o(nl/Q), the rate assumptions of Theorem 4.1.10 and of Theorem 4.1.26
are fulfilled, which is the case for the three examples (IID), (MIX) and (NED) with 7, > 2 and

pr =2 for [ =1,2 and in the case of non-local change-points with min,.; ’k;,l,r — k;,l,r—l’ ~n.
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Now, we consider the second estimate type under the condition that the change-points in the
means are unknown but can be estimated in the sense of max,; \k; 1r — Kuir| = Op(1) which holds
under a multitude of multiple change-point settings; cf. Theorem 2.1.22. We set

LRRAY
N - s DY
,"Ll,iJ{;’n - (k N k,LL,l,'f‘ - k‘)uvl"rfl) wz}k;/\]; i lek

u,lﬂ'*ku,lﬂ'*l
k=ky1,r—1+1

Vi€ (kypr 1k Akprrl k=2,...n,r=1,...,R+1.

(4.3.11)

Then, Assumption (PEE4) is fulfilled with d,,;, = 0, fl%l,i = Aw’,-, and Iy, = I, which are
displayed in (4.3.7) and (4.3.8) and fulfill

~ ~ ~ ~

Liioors1 = (kuirkuirs1 A (Bupr + crn)l,

Ligooris = (kuprir A (Rptr + ¢rn)s Eutrinl,

L2941 = (kz,l,r - Cm(kz,l,r—i-l +cn) A ( Z,l,r + Crn t cn)l;
Luj2.0r+2 = (((kz,l,r-f—l — ) A (kz,l,r + ¢rn — cn), k;l,r—i—l + ¢cnl,

and

(bu,l,]i \J2 ) J1=1,...,(R+1)2
Go=1,...,.2(R+1)

—-1/2  \—
1 CO,n/ (k:,u,l,l) 12
1 1 1 cee 1
1 1 1 1
—10 0 1 1 1
—-1/2 _
0 0 1 C2,n/ ( ;,z,2 - k;,m) 1/2
0 0 0 0 o 0 1 g2,
Here we used max, ]k;w —l%#,l’r = Op(1). Additionally, let ¢y,copn,...,CrRn be sequences increasing

1 l)
X 12/

If we just have max, ’k;,l,r — kur| = op(cn), we can replace ¢, and (kz;iw+1 — k;J,r) by
Crn — 2¢, and (k:;"hl,rJrl — k;,l,r — 2¢y,), respectively, which implies that ¢, must not be too large.
Now, it is easy to obtain that the rate assumptions of Theorem 4.1.13 are fulfilled so that the tests
are available.

towards infinity, e.g., ¢, =log(n) and cpn = (k). .1 — k;,l,r)é for some 0 € (

Sequential Procedures under Known Change-Points in the Means If we obtain the data
one by one, we have to estimate the change-points of the mean sequentially. Therefore, we consider
the simplified model characterized by:

Rl,n = Rl € N>0, k'

wilr — [nel,T‘L er,l € <071)7 r=1,....R—-1,1=1,2, er,l < 0r+1,l

and
k;,l,R = [n@l,R], 9;73 € (L,1+m).

Firstly, we look at the procedure where we estimate the change-points of the training period one time

and we estimate again and again the change-points in the means of the sequentially observed data.
3)

lin for the training set, ie., for i € {1,...,n}.

Hence, we use the previously presented estimate [

As in the above example, /ll(gi)n estimates the means so that the estimation error does not influence

the asymptotic behavior of p4,. For the sequentially observed data, i.e., for i € {n+1,... ,n+nm},
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we use an estimate-type such as /ll(? & 10 this estimate we replace l%%l, r by ifu,l, R,k since the last

change-points k:;’l’ r» 1 =1,2, are estimated sequentially. Thus,

nt(k 1, e AK)

1 . 7
o e Sz = (A ) s
. = Rty LT,
,ul,z,k,n Al n+kA 7. z:n—l—l;: Tl,—{-k; ( )
k_k,u,l,R,k i:n'f‘ku,l,R,k 1,35 wl,Rky -
where k,; ) can be an estimate based on the data Zj,y1,...,Z; n44 andis defined as k if there is

no change detected. Using Theorem 2.2.1 or 2.2.3 and the following remarks we obtain that the change
in the mean is asymptotically detected with probability one in the time-interval (n,k} + \/c,n] for
any sequence ¢, — oo. The number of early alarms of a stopping time, which controls a change
in the mean, can be reduced if we replace the critical value by c}/ 2 After this stopping time
alarms, we assume a structural break in the mean and estimate the possible change-point by the least
square estimate, Theorem 2.1.18. Henceforward, we can sequentially estimate the change-point in the
correlations by using Theorem 2.1.20. Thus, we can apply Theorem 4.2.5 to sequentially test whether

or not there is a change in the correlation if

#(nvkiR + Cn\/ﬁ] N (nak;,R + Cn\/ﬁ] = O(n1/2)'

Now, we take a look at the second procedure where every change-point in the means is estimated
sequentially, even the ones in the training period. Then, we apply Theorem 2.1.25 to estimate the
numbers and the locations of structural breaks in the mean. The number will be asymptotically
correct in a time-interval of length of n'/2t€ after the latter appeared structural break. Additionally,
each estimated change-point k;, is sufficiently close to the correct one so that we apply Theorem 4.2.7
in case for all ry,ro =1,...,R+1 it holds that

#(k:irl + n1/2+e] N (n,k‘;,w + nl/Q—i—e] — 0(n1/2).

General Mean Functions Until now, we have considered piecewise constant means. In this para-
graph, we look at the following model:

Ry
M = Mo = My + gui(i/n) and  m; = Z Aptjlii<mor , 1y (4.3.13)
=1

where g,,; is a Lipschitz continuous function. We define the estimates

(0,nh], if 1 <i< hn,

~ 1 .
filn = {R Zje[mh Zij o with I = {(z Cnhil, ifhn<i<n (4.3.14)

where h =h, -0 but nh — oo, as n — oo.

Firstly, we assume m; = 0 and obtain that the estimate can be split in a deterministic and in a
random part. Because of the Lipschitz continuity we get by

, 1 .
Aptin = gua(i/n) — — > g(j/n) that max Ay in| = O(h). (4.3.15)
J€Li nh

To illustrate that Theorem 2.1.1 holds true if we replace the exact means by the above estimates, it
is sufficient to prove for [ =1,2 that

[n]

[n] N N
€3—1L,i N H1i — H1ain) (B2, — K25,
) (i — fign)| = op(n?) and (> (b in) (12 in) | op(n'/?).
=1 b pa 01,i02,

Theorem 4.3.3. Under the (IID) assumption and the preceding mean model, the convergences of
Theorem 2.1.1 hold true if n~Y? < h < n~1/4,
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Proof. The claim is established if the previous two equalities are fulfilled. Firstly, for a fixed n € N
we obtain that

m

m
€1, . €2,i )

E Ay2insoleri,i<m)| and E Aptinio(eii<m)
092 01,5

i=1 i=1

are martingales. Thus, we can apply Doob’s martingale inequality to obtain

[n]
€l r
P Z L A,u,S—l,i,n > 77\/5 (77\/>) 'E [

Oa_ 7
i—1 3—1,i

03—1,i

S(n\/ﬁ)_”ZE[ A il } O(n'="72p™),
=1

where we use Bahr and Esseen (1964, Th. 2) for the last inequality. For r; = 2, the right-hand side
is of order o(1) if h — 0. Secondly, we get that

k
€1,i €ri€3—1; — IE [ €31 5]
max g E €3-1 E E
1<k<n |4 ’ 1<k<n : nh
1=

g g
3= ll ]Gli,nh 1=1 ]GI'L,nh 3= l’L

+Z nh Z [fl,z‘€3'—l,j] 7

.7611 nh Ugil’l
where the second term is equal to a rate of O(h~') which is o(n'/?) if h > n~'/2. For the first
summand, we use the following decomposition
" e [€1.i€ b €1,i€
Li€s—1i — E e ez, 1,i€3—1,
+ - -
2 T e DS oyt

i=1 =1 j=1V(i—nh)A(n—nh)

and obtain that the two summands are martingales with respect to o (e1,4,€24,7 < k). Hence, we can
apply the o-additivity and Doob’s martingale inequality for each of the summands and obtain

€1,i€3—1 €1,i€3—1,j
max E g " d Il j] > nvn
1<k<n nhos_;

= ljellnh
n r
€1:€3-1; — IE €631
(n\/ﬁ)_ [ [j : 1,i€3—1,1 [l,'L 3 l,z] ]
nhoz_i;
=1 ’
r
n—1 i—1

€1,i€3-1,j
+EDY Y
nhog_y;

=1 j=1V(i—nh)A(n—nh)

n i—1
< Cpr(n®?h) > B [lerieas — pil 1+ > IE [Jeriez—1,]']
i=1 j=1V(i—nh)A(n—nh)

-0 (n273r/2h177">

by using Bahr and Esseen (1964, Th. 2) in the last inequality. For r = 2, it is o(1) if nh — oc.
Finally, we decompose

Ayt Ao
> 0 M, 1,21 Hy4,2,1
(1 = Bian) (i = fizn) = DptinBpzin + — 27 > st T nh 2

JEL nh, J€Li mn
)2 > > (ergiergy — Eleng ) (nh )2 Y " Eleren,)
J1€l; jo€l; J1€l; jo€l;
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and get maxy ‘n_l/Q Z?Zl AptinAp2in| = O(y/nh?). Furthermore, we obtain by Markov’s inequal-

ity that

k

A 1
P | max Z% Z €2 > nv/n
n

1<k<n |4 .
=1 jeli’nh

IN

1
—_— max g A1 g €9
n(nhn) 1<k<n HrLibim "
]eli,nh

2ZZIE Yo an Y en|| =0Mm),

11=114=1 J1€liy mn J2€liy mn

where we use in the last row that for each i; there are at most 2nh many s such that there are at
most nh many dependent and at most (nh)? independent summands in the double sum. Moreover,
we use || X|1 < [|X]||2 for the rate of the sum of independent random variables. Similarly, we obtain
that

F 1
1<k:<n Z Z Z €Lie2is| = Op (\/M)

i=1 J1€l; j2€1;
and
i 1
max (Y s 3 S Elageasl| = 0r ()
1<ksn | (nh J1EL ja€l; vnh
Hence, if \/nh? =o0(1) and (y/nh)~! = o(1), the two necessary rates are fulfilled. O

Remark 4.3.4. 1. It is possible to weight the {Z;,} by some deterministic numbers.
2. Similar results can be proven under assumptions such as (MIX1) or (NED1).

3. Suppose the preceding Lipschitz continuous change functions g,1 and g,2 are only piecewise
Lipschitz continuous with finitely many bounded jumps. Then, we get the same result if each of
the common abrupt changes 1 < ki, <...<kj, <n and 1 <kj; <...<kj, <n of
9gu1 and g,o are isolated such that

mi1—1mo—1

Z Z # kl \ TLh kl ja+1 + nh] (ks,] - nh? k;,j+1 + ’I’Lh] N (O,TL] = 0(\/5)
=1 =

4. In many types of structures of gu, we can apply research results to observe the behavior of
9u — Gu which we can use to prove the two sufficient rates. For instance, if X and Y follow
processes with linear drift, i.e. g, ;(t) = aj4t with optionally piecewise constants a;; # 0, we
refer Horvdth and Steinebach (2000).
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5 Change-Point Analysis of the Correlation under Known Means
and Unknown Variances

5.1 A Posteriori Analysis under a General Dependency Framework and General
Variance Estimates

In this subsection, we consider a posteriori testing procedures and change-point estimates of structural
breaks in the correlation under known expectations but unknown variances. We set for k=1,...n

1 —p1) (Y —p 1 ¥)

~ - 12 21 . 4+

Pk,4+w—%z aw N gz ik (5.1.1)
=1 1,i,k,n” 2ikn =1

where ¢ = 1,...,4 is a design index to distinguish between the four different variance estimate-

types which we Wlll present. Below, we will omit the index n of the estimates and of Z (4+¢) For

{ ik }1§i§kgn€N we use the decomposition

) _ (X — i) (Yi — pa)
S ) 5 ()

0. 02,1,
_(0) (0) [ 91 0) [ 92, ) [ 01, 02,
=Z" + Z, -1 +Z -1|+2Z -1 -1
(ffﬁ‘.’) ) (6&@ ) (ﬂ@ ) (6&@ >
3
:Zi(O) + Ry zG+0 + Ry zare) + Ry gate) = Zi(O) (1 + Zrl.zwﬂ)) , (5.1.2)

where the points stand for the index k and/or index i. Moreover, we will eliminate the unused
indices.

5.1.1 Testing under a Functional Central Limit Theorem and General Variance Esti-
mates

Nearly Constant Variances In this paragraph, we assume that the unknown variances are nearly
constant. Firstly, we expect that the variances (or equivalently the standard deviations) satisfy As-
sumption (PEE1) with ¢; > 0. Thus, the positive variance or rather the positive standard deviation
can be estimated nearly consistently. Since the proof will be less technical if we postulate that the
standard deviations satisfy Assumption (PEE1), we will do so without loss of generality.

Theorem 5.1.1. Let the parameters o1 and oo fulfill Assumption (PEE1) with 51,052 > 0,
where 01; —dy; = 07> 0. Then, Theorem 2.1.1 holds true if we replace BY00 by BY.

Proof of Theorem 5.1.1. Firstly, we use the decomposition (5.1.2) and note that it is sufficient to
show for [ =1,2,3

k n
1 1
T (k > 2z ~ = :Zfo)?”uzw)) | = op(1). (5.1.3)
i=1 i=1

max
1<k<n |y/n

Furthermore, we obtain that the left-hand side can be bounded from above by

1 1
max </€ Z PiT517(5) — n Z Pirilz(fw))
i=1 i=1

+ 2 max
1<k<n|+/n

1<k<n

1
vn Z(Zi((]) — Pi)Tuz6) | - (5.1.4)

Starting with the second term and [ = 1, we obtain that

1n

o1 .
Tiiz() = <a L 1> =op(1) +di0i/01,n,
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where we use the consistence of the variance estimate. Hence, by the use of Lemma 4.1.1 it holds that

k
1
NG S (20~ piyruge | =
=1

max

1
max. op(1l) max

1) = 1
max. +op(1) = op(1),

k
1
% E (Zi(()) = pi)
i=1

which similarly follows as in the proof of Theorem 4.1.2. In a similar way we get the rates for [ = 2,3
so that it remains to consider the first summand of (5.1.4). We obtain that
+ 1)

1 18 E (1< 18
max | (kzp . zp)‘ _ op() (m L (kzp . zp)

1<k<n |y/n
so that we just have to replace R, ,(-) by Ry ,(-)(14+0p(1)) in the proof of Theorem 2.1.1 and the
claimed convergences follow analogously. O

Corollary 5.1.2. Under the assumptions of Theorem 5.1.1, let each {dn} € {{ds1n},{do2n}.,{1}}
Sfulfill that

k

Sz - pid;

=1

= op(1) (5.1.5)

e ()

and

> (2% = pdi

i=k+1

n \T L = op(1) (5.1.6)
[(1—5)15]12}15571—1 n—k) n = OPLY) o

as n — oo, followed by ¢ — 0. Then, we can replace 32’0’7 by 32’0’7 in Theorem 2.1.4 and the
convergences hold true.

Proof. Firstly, we decompose

B;?O,’Y( ) BO 0 7

n—[n] —1/2 &
n n sz‘mvn,l,zw
i=1
0
L "’Z Tind s
n

_ nyo_ 0
S Z PiT4n1,205) — [n] 2 Z (Zz'( ) _pi)ri,n,l,z(m :

i=[n]

||Mov

Then, the claim follows from the combination of the arguments of the proof of Theorem 5.1.1, (5.1.5),
and (5.1.6). O

Remark 5.1.3. Suppose the variances have non-local structural breaks in [[en],n — [en]], € > 0.
Then, the variance estimates &%’n and 6%771 are not consistent. Assuming the estimates converge in
probability towards a positive constant, then, it is still possible that the process BZ’O’O(-) converges in
distribution towards a Gaussian process whose covariance structure depends on both variance functions.
In particular, let us assume that o7 ; = go1(i/n) and 03; = gy1(i/n) with bounded, positive, and
piecewise continuous functions go;, the Assumption (1ID) with ]E[(éuém —p0)2] = 1, and the
sample variances as estimates. Then, under Hy we obtain that

w, <[n']) [\%(ﬁs,m-} — P5.n)

DI0,1] w () fo gal ga 2( )dl’ - ()W(l) f()1 ga,l(x)gaﬂ(x)dx
Y
VI go1(@)de [} goa(a)da
+p0w’7( fogGI 902( )d.’L‘— ) folgol )gUQ(x)dxa

\/fo gol dl’ fo 902 d.%'

which follows from an application of Davidson (1994, Corollary 29.11).
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Now, we consider the estimates which are only calculated by the first k& observations. In contrast
to the estimates of the mean, where it was sufficient that the estimation error is small, it is not
sufficient for the estimates of the variances. They have to fulfill a FCLT additionally.

Theorem 5.1.4. Let the parameters o1 and oo fulfill Assumption (PEEZ2), where 01; —dy1; =
o; > 0. Additionally, let max;—1 2 keN &fkl =O0p(1) for 1=1,2 and let

1 © Il 0w Pin] ], o 2 Pln] DY 1/2
72(2- —pi) = =01y —0 )20 %(02,[%] - Uz)zf‘% D W(), (5.1.7)

where Dy > 0. Then, the convergences of Theorem 2.1.1 hold if we replace each B% and D by
BS’O’O and D(G)

Remark 5.1.5. Suppose the variances are constant and the variance estimates are the sample vari-
ances with known means. Then, (5.1.7) fails for p; =1 or p; = —1 since the term on the left-hand
sitde equals zero.

Proof of Theorem 5.1.4. Firstly, from the triangle inequality and from the combination of the
FCTL from Theorem 2.1.1 and of (5.1.7) we obtain that

[n-] (&i[n'] — o) [n-] (657[7,] —03)

vn 203 vn 202

Furthermore, we obtain that

k n
- Z 1 1
BP0 (k) = B0 1/2 Vvn (ki Z ZZ'(O)rilZ(G) “n Z Zi(O)TilZ(G)) .
i=1 i=1

Define o7 = 07; — dy ;- Now, we con81der the summand with [ =1 and obtain that

[n] n
1 0 1 0
m Z Zi( )7”2'12(6) T Z Zi( )rilZ(G)
i=1 i=1

= Op(1).

n- 2 ~2 n ~
_ i i Z~(0) o1 — 01,[n~] _ l Z Z»(O) 0'% - U%,n
] " i+ oip)) nig " Gin(on+d1n)
[n] n
1 0 do1i 1 (0)do,1,i
— /et il LA )
- [”]Z " Ol nz oo |
’L:l 7[ ] 1:1 El

where the second summand weighted by [n:]/ n'/2  uniformly vanishes in probability because of
max; Hol I ]|| = Op(1) and the characteristic of the p.e.s. This follows analogously for the summand
with [ = 2. For the weighted first summand, temporarily defined as Sy 1 ) forl =1and Sy |, for
[ = 2, we obtain by using max; Hal,[n_] || = Op(1) and both estimation rates from Assumption (PEE2)
that

0 PN 5 PAPSRPPRY 5 v 16/ ) B Lo W)
bl = 01,n(01 + F1[n]) G1,n)(01 + 1 [n])

1 1,[n]
n (2 — ) T S | (]
~ Vilof —6%,) LS PO m e B T

G1n(01 + G1,0) Gin(o1+610) ) n

) (0_2 5’2 ) n! ZEZ]I Pi
T a-1,[n~} (Ul + 5-1,[71])

BV s B M T TG

+op(1)

bnlin 61n(01+01n)
2 A2 2 A2
_[”‘}(Ul_al,n- —1 Vn(of — 61 ,) [n] ol
—7T sz —17 ZPZ+OP 1)
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as n — oo. Hence, we get

2 ~2
[] [ (ot =) (@R 55)
\/7(‘511 1,[n] + SQ’L \/ﬁ 20_1 + 20_2 Pln]
Vn(ot —61,) \/77(0% —63,) \ [n]_
( 203 203 it oty

as n — 0o. Now, we consider the second summand of the first display with [ = 3:

1 [n] (0) 1 n 0) [n] 0) o1 — 6'17[,1.} g9 — (3'2’[”]
] 2% Tz = s D 2 | <02 40— 22| (i)
=1 i=1

i—1 91,[n] 02,[n]
as n — 0o, where we use the characteristic of the p.e.s. and max; ||6rlf[}ﬂ|| = Op(1) as well as
max ||Gy (|| = Op(1). Furthermore, we obtain
2 & (0) 71 = O1[n] 92 — O2[n] 2 |& (0) 01— 0102 — 02k
— ZZi — —= < max —— Z(Zl — pi)—— —=
V|| O1,n] G2, n] N<k<n \/n | = o1k 02k
k 2 _ 22 R
Ol — %1k 02 — 02k
+ max — - ——| +opr(l
N<k<n \/> Z 0'1714;(0'1 + Ul,k) 02,k ( )

as n — oo, where the first summand tends towards zero as n — oo, followed by N — o0, because
of Assumption (PEE2)
For the second summand we use Zle lpil <k, |[[n7]/v/n(o3— 01 )H = Op(1) and maxy<g<p |o5—

62, =op(1) as n — oo, followed by N — oo so that the second summand converges in probability
towards zero, too.
Hence, under Hy or Hpa we obtain

—1/2[ n:] (B0t = 010108 1))
" n 20%

_1/2[ ] (pna2 N ﬁ[n]a’;[n})
vn 20%

which implies the convergences under Hy and Hpa by the use of the CMT and the assumed FCLT.
Under Assumption Ha we obtain

B ([n) = BLO(nd) + Dy

+ D, +op(1)

BIO([n]) = BPO([n]) + Dy, *0p(1),
where the dominating term is B 00)([ \]). Thus, under Assumption Hpa the claimed convergence
holds true. O
Remark 5.1.6. 1. If 62 — 0% a.s., it follows that max,< |67 — o?| = op(1).

2. The influence of the variance estimates on the asymptotic behavior depends on the correlation. If
pi =0 under Hy, the asymptotic normality of [n-]/v/n(o;—61,.)) can be reduced to 61, — o0y
a.s., for which the fourth moments of X and Y are not always necessary.

Corollary 5.1.7. Let the assumptions in Theorem 5.1.4 hold true. Additionally, let both rate as-
sumptions of Corollary 5.1.2 be fulfilled and let for 1 =1,2

1%22@4 wv(k/”)%(a’z,n —6ix)| =op(l) and n—[ﬂ]ag}ign wv(k/”)%(@,n —6ix)| =op(1)

as n — oo, followed by € — 0. Then, Theorem 2.1.4 holds true if we replace B0 by B&O
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Proof. Firstly, we obtain that

—1 2 T
B’Svoy'\/( N = BO 0:7 / E ww [ e Z Pi ( 11,20 [n]ri’n’l’Z(G)>
P i
+n 2 E (Zi( ) <ri,[n-],l7z(6) B [n]r’;’”’l’zw)>

i=1
n

n-. _ n n- —
3 [n]n V2 ST e [n]n V25 (z0 —pi)Ti,n,l,z<6>)]-

i=[n]+1 i=[-n]+1

Using the representation of r, (0,26 the rate assumptions imply the claim. O

Non-constant Variances In this paragraph, we consider settings where the variances satisfy As-
sumption (PEE4).

Remark 5.1.8. 1. Under the assumption that the parameters oy and oo fulfill Assumption (PEES3)
with finitely many change-points and under some additional assumptions, we get under Hy that

D 0,1
By() = B(")

mi+1
~ () A oy — Ooj1) = () (0o — 9071,3'—1)(
20%

Wo1(00,1,5) — Wa,1(9a,1,j—1))>
7j=1

(]

- p m2+1 (() /\ 90’2’]. _ 0072’],_1) J— (-)(90.’2’]‘ - 00’72,]'—1)(
0 205

Wo2(0525) — Wa,2(9a,2,j—1))> ,

j=1 J

where B is a Brownian bridge, Ws1 and Wso are Brownian motions, and 0 =050 < ... <
O51,m;+1 = 1 are the change-points of the variances. In order to get a test statistic, we apply a
continuous function that maps in R. But in general, this distribution depends on the unknown
change-points 0y ; and therefore it is useless for testing if po # 0. Hence, an assumption

as (PEES3) is only suitable if we apply a continuous mapping into R so that the asymptotic
distribution is independent of these change-points.

Theorem 5.1.9. Let the parameters o: and o3 fulfill Assumption (PEEJ) and let the following
conditions hold true:

1. Dgy >0 and

0 . Pi . Pi | DIO,1] J1/2
f Z = pi) (Uiz’,[n-} - U%,i)?%i - (Ug,i,[n-] - ‘75,1)7 — D(é) W() (5.1.8)

under Hy and the left hand side is equal to Op(1) under the alternatives Ha or Hya ;
2. the sequence {Z7(10) — pn} fulfills (ICI(«I)) and (IC?)) for ry>1;
3. the estimates fulfill max;—; 2 pen &l_kl =0p(1) for 1=1,2;

4. the arrays {bs1i 3}, Loaa i}, and {Iz125,} of Assumption (PEE4) fulfill for 1=1,2 and
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as n — oo
ms_j 2 ms_j 1 1/r
1/2
Moo miy Y b s, 0 (0,max Ty g ] = o(n'/?), (5.1.9)
jo=1 j1=1

1/r
3 (nif mzlf #(L114, NI215 N(0,max ]y 95 N fz,z,ja])(bl,il,jlbz,iz,jz)”Z)

(maaVmgy)~! (5.1.10)

1<ji<mg 1 \i1=112=1

1<jp<ma o

= o(V/n),
max Z #(117171‘1 N 1271’1‘1 N (0, max 11727]‘1 n [2’27]‘2])1)17,‘17]‘1bg’i27j2 = o(nl/Q), (5.1.11)

1<ji<mg 1 )
1<jg<mog o 1S11SM1
T 1<ig<mg o
my 1
1/2
max Y b7 #1005, N (0,max o] = op(n'/?), (5.1.12)

1<ism g £
and for ll,lg e {1,2}

mll,l,n

D DL ) |diy il = o(v/n). (5.1.13)
)2 lg,2 j1: 7;6[11,17]'10(0,Ina.XIll’Qy]-Q]

Then, the convergences of Theorem 2.1.1 hold true if we replace B> and D by B30 and Dy,
respectively.

Proof. (To get more space we drop the index [n:] of &;; 1,1 but keep it in mind.) Firstly, we obtain

that

A2

n] L
1 ,‘ —61,)(20%,; — 61,i(61,i + 01,))
i 2 P = Z Z p T =T O ,
=1

207 ;61,i(61,i + 01,3)

where we note that the second sum can be estimated by Assumption (PEE4) in the following way

% (01, — 6%,)(207; — 61,4(51,: +01,1))
~ N
’ 20171'01,1(01,1' +01,i)
ml 1
=Op | n~ 1<]l;lg>7§l . Z b1 v #1150 N (0, max Ty 2] | + op(1)
mi,1,n

+Op | n” max Z b1,j1,jo,n Z |d3—1,4]

1<32<m1 2
7,61171’]'1(7(0, max Ilygij]

Furthermore, with Zi(o) = Zi(o) — p; and the Kolmogorov-type inequalities we get that

1/r.
n- mi, 2 mi,1
>(0) _ ) )
> Z v ipze|| =0 | D | miy >k, # i, N (0,max T o]
i=1 Jo=1 J1=1

Analogously, we obtain the rates for 7,5 ,2). Secondly, we obtain with Assumption (PEE4) that

[n] 1 [n] (Ul,i _ 6'171‘)(02@‘ — &271‘)
> Piriskze)|| = 7 > 51,40 =or(/
i1 =1

01,i02,
ml 1 ml 2

+Op |  _max Z Z #(I1,10 N 12,0, N (0,max T1 25, N I22,5,])b141 51 02,00,

1<Jl<m2 1
1<ja<mg g 1=112=1
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and
50
ZZi Tiskz® || = op(v/n)
=1
1/rs
+0 > (St S (i, N Ty 0 (0, max Ty 5, 0 Do ]) (b b2 )")
P —
1<j;<mog (ml,l \ m2,1) 1
1Sj2Sm2:2

where we use (5.1.13). Now, we use the above rates and the equations (5.1.9), (5.1.11), (5.1.12), and
(5.1.13) to get that

3 n
. . 1 1
BT(LS’O’O)(') = Bgo,o,o)(,) + Do,i/2 E :7[ 7 [ E :Zi(O)Til[.n}Z(s) o E Zz'(O)Tian(S)
- i=1 i=1

A 1 < 01; —01; 1 01; — 01y
B(ooo)()+ 1/2[”] i i ; 91, ,
o o \ T T, T w T,
[n] 2 2 n 2 2
—12lm] [ 1 02: 0245 1 024~ 02
+ - p ) ) 5 5 +OP(1)-
on o Vn [n]; " 203, ”; " 203,

Moreover, we obtain that the term on the right-hand side is a sum of D L/ 2[\} (pw ﬁn) and of

one continuous mapping of the left hand-side of (5.1.8). Hence, the convergences of Theorem 2.1.1

hold true.
O

Corollary 5.1.10. Let the assumptions of Theorem 5.1.9 hold true and let d;; = 0 be given.
Additionally, let both rate assumptions of Corollary 5.1.7 be fulfilled and for [ =1,2 let

1/r:
ms3_i.2 m3—i,1 brz
Tz 3—1,J1,52 _ 1/2—~
E my® g g T =o(n ) (5.1.14)
Jo=1 J1=1 i€I3_l71’j1ﬁ(O,[ne]/\maxI3_l’27j2]

Ulg_ l,l,jlm(n7[n6]7m3X137l,2,j2]

mi,1 My, 2

# IllilﬁIglilﬁ(O,[nz]/\maXh 2j1ﬁ122j2]) 1/2—~
I il 9 9, <, — 5'1'15
e APIPD Gt ibains) 02 o B

1<ji1<m
0 1=3m2.1
E( € } 1<]2<m22 i1=112=1

mi,1my, 2

Sy #1000 o0 ([m],lmaxfl,z,jl Nlzopl]) _ o(n!/2). (5.1.16)
b1,211J1b2ﬂ27j2)_ (n - [nz])V

sup max
_ 1<]1<m2 1
#€[l-e1) 1<ja<meg o 11=142=1

my1
sup  max Z #1115, N ((0,[nz] A maXQIz 2.j2) U (n — [nz],max I; 5 ;,]) — op(n'/>)
z2€(0,€] 1<ja<my 2 ji=1 bl 7 jz[ ]7

(5.1.17)

as n — oo and € — 0. Then, we can replace B0 by B¥%7 and the convergences of Theorem 2.1.4
hold true.

Proof. The proof strictly follows the proof of Theorem 5.1.9, where we just have to add the weighting
function. Since the weighting function is continuous on (€,1 —¢€) for each € >, we just have to
show that the test statistic vanishes in probability on (0,e] U [1 —¢,1). Using the assumed rates after
applying Assumption (PEE4) or both rate assumptions of Corollary 5.1.7 on the weighted error terms
of the proof of Theorem 5.1.9 yields the claim. O
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5.1.2 Change-Point Estimation under Unknown Variances

In this sub-subsection, we consider the change-point estimates of the correlation under the alterna-
tive and under unknown variances which are estimated. In doing so, we will focus on the general
multiple change-point estimate. The special change-point estimate for epidemic change-points in the
correlations can also be extended for the case of unknown variances, but we will not pursue these
estimates.

Constant Variances

Theorem 5.1.11. Define fo’) as leo) with ZZ@ instead of Zi(o). Then, Theorem 2.1.22 holds
true with 97(15) instead of «9&0) if the following conditions are additionally fulfilled:

1. the parameters 0% and o3 fulfill Assumption (PEE1) with dy2;; = 0;
2. for 1=1,2 let P(6;">0)—1 as n— oo.

Proof. Since

3
z;” = z{" (1 + Zrzzw)) ,
=1

we get

2R+l ke

3 5 9
QP (k) = (1 + Z V“ZZ(s)) Z Z 0 Z(O) 1)2 = (1 + Z lew)) QO (k)
(=1 =1

r=1i=k,_1+1
and

a0~ QP0k) —(1+an) (a9 - Qi)
- (22) (@0w -eu).

Hence, we obtain

P(an|0) — 6,y > N +1)

2
<P ((‘fl‘f?) min QO () — QO < 0)

01092 1<k1<...<kR<n;\krofk;§0|2a1,"7N

=o(1) + P ( min QW (k) — QY (k") < o) = o(1)

1<k1<...<kR<n;|krofk$0 [>ai,n, N

as n — oo, followed by N — oo, where we use the arguments of the proof of Theorem 2.1.22. O

Remark 5.1.12. The assumption P(&l_1 >0) =1 as n — oo of the last theorem is weak and
even allows that the estimates &; could tend to infinity with any arbitrary rate Op(ay), an — 00
as n— oo but a, #oo forall neN.

Theorem 5.1.13. Under the assumptions of Theorem 5.1.11 let sequences si, and S, exist so

that
(6163)"' = Op(s1n), 6165 = Op(san), (5.1.18)
1
1/7’+1/Tz (5) < i}
Sin <L By < TeL 12121<n ApﬂnAk 52n (5.1.19)

Then, RO) s a consistent estimate for the number of change-points R*.
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Proof. Set 5, = 7(15). Using the arguments of the proof of Theorem 2.1.22 combined with the ones
of Theorem 5.1.11 yields that

1<k<n;R<R*

P(R® < R*) <o(1)+ P < min QW (k) — QY (k") — Op(san)Bn(R* — 1) < 0> = o(1)
and

P(R® > R*) <o(1)+ P <op<sl,n> min QY (k) — QW (k") + B, < 0) =oll)

1<k<n;R>R*
This implies the claim. O
Non-constant Variances For the following theorem, we define for all M C R and z € R
d(z,M) =inf{|z —y| : Yy € M} and
d(z,M) =if{|lz —y| : Yy e M} with d(z,0) = oo.

Theorem 5.1.14. Define Qg) as QS)) with Zim instead of ZZ»(O). Then, Theorem 2.1.22 holds
true with 9%7) instead of 9&0) if the following conditions are additionally fulfilled:

1. the parameters of and o3 fulfill Assumption (PEE3) with dy2;; = 0;
2. the estimates fulfill maxj—1 2.keN (}fk,l =O0p(1);

3. let the following rates be satisfied

Ay nAp 2 2
— il =0(A. ,A? 5.1.20
G1n + G2n =0 (maX1<z<R |Apinl |’ T+ Gan = 0 (B nBin) ( )
2 min 1/TZ AQ
T * 7'z 1) _ —P,
lz; X, e z; b5 (d(k; T ) V Nnjfay)™ =0 (maxT | AM) : (5.1.21)
= ]:
mMin M2 n (b b )7’ 1/TZ AQ
1,j102,55) * =pn
max miren vV M2ren -1 =0\ A 1]
1<r<R ]1231 jgzl kx. Iy 5, N 1273'2) V Nn/an)rz <maXr |Ap,r|)
(5.1.22)
2 Mi,n * *
Z max ibl #(kr/\kr’kTva]mIl)j =0 i (5123)
= 1<r<R1<|ky— k*|<6Ak* = J |k7’ — k;’:’ vV Nn/an max, |Ap,7" ’ o
mi,n M2 n 2
H#H(kr NEX KoV E N, N o A
b b ry 'Vr T »J1 5J2 — P,1
1SrSR 1< by ShE[<eA 3121 %: L1022 Ik, — kx| V Nn/ay, ?\ max, |A,,]
(5.1.24)

as n — 0o, followed by N — oo, where
Ml,r,e,n = {]— <J< min : Il,j N (k: - eék*’k: + eék*) 7& Q)}’ Mmiren = #Ml,r,e,ny (5125)

1

min Tz mi,n M2n Tz
aln—zmln Zbl]#llﬁl +minVman Z Z bl,]1b27j2 (Iljlml2]2) ’
J1=1j2=1
(5.1.26)
2 Minp mMi,n M2 n
o =Y bi#lg + Y Y bujba g #(Tg, NTag,), (5.1.27)
=1 j=1 J1=1j2=1
2 Min min M2n
#11.5, N kl,kz #(L1,5, N 125, N [k1,k2])
Qa, = Inax ’— b b ” . .
s k1<ko lz; jz Vko—k1 +1 k1<k2 jz_:l j; L1 202 ko — k1 +1

(5.1.28)
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Proof of Theorem 5.1.14. We define

3 3

Zz-m = Zz-m —pi = ~,-(0) + Z,-(O) Z Tlin + Pi Z Tlin
I=1 =1

and use (ICl(pZ)), Assumption (PEE3), and the triangle inequality to obtain the following estimations:

3 ko 3
max ZZ Zr- =0Opla max E E r1in| = Op (a
<k She<n | - lin P ( 1,n) s <k She<n | - Pi - lin P ( Z,n) 5
1=k 1 = 1=k1 =

and

3
DUEID 3 e
max =0Op (as,n) .

1<ki<ka<n ko — k1 + 1

Now, we follow the proof of Theorem 2.1.22, and obtain

R+1 ki

Qg)(k) 7) k* Z Z [2 (pi - ﬁ(kr—lakr)) 21(7) + (pi - ﬁ(kr—lykr))ﬂ
r=1 i=k,_1+1
R+1

+ TZI [(k,’f —ki_1) (Z(7>( — 1,k*))2 — (kr — k1) <Z(7)(k7"—1,kr))2:| |

If there are r* € {1,...,R} and € >0 so that |k — k).

n Va1, N, then, it is clear that

R+l ky

max |3 30 (= Plhr-rki) 27| = Op(ma [8psnlln'™ + a1 + 020
r=1i= kr 1+1 - =

as n — oo. Furthermore, using the estimation of Theorem 2.1.22 we observe that
— 2
max (b, — k1) <Z(7)(kr_1,kr)) — Op <n1/’“+1/7°z +a2, + agjn)

as n — oo, which is a quite rough estimation but reduce the complexity. Additionally, we define the

rate of the right-hand side by Op(b( )) Using the (2.1.28) from Theorem 2.1.22, the previous rates,
and (5.1.20) yields that

P ( min QU (k) — QD (k) < 0) = o(1)

1<k <...<kp<ni|lk—k*||>eApx ,

as n — oo. Now, we consider the case where we minimize over each k, which is inside an (6ék*7n)*
neighborhood of k). Then, we get that

QY (k) — QY (k)

T A'f' n n a2n+a2n
zc|rk*—kuAZ<1—0p<1>—op (ma’“ﬁ < Brollonn 0z ))—op ( 3 )

Aje A Ape A7

—C(R+1)

max

krVE: ()
maxi<i<r [Apin| |2 il nks 1 Zi |
3 max "
A2 1<r<R1<|ky—kf|<edye [k — KE| V (Nn/ay)

as n — oo, followed by N — oco. Furthermore, we obtain that

‘Zk \;k k*4+1 (7)’

i=kr Ak} 4+ o (rz=1)/r-
m ma =Op((N "
ISRER 1< oy k| <eA s |k, — k*| V (Nn/ay) p((Nn/an)” )
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R 2 min L/r:
+ 3N 0p [ #Mipen | D05 Ak L)V Nnjay) =Y
r=1 =1 j=1
min M2 n (b . b ) )T’z l/TZ
+ OP #eren V#M2T€n L1 2,02 —
Z 1231]; kr,Iljlﬂlng)\/Nn/an)rz !
2 min
k/\k‘*k‘\/k‘*]ﬁfl'
O 7]
+ z; P 1r_<nra§XR 1<k — k*\<eAk* Z:: Li — kx| v Nn/ay,

min M2n

#Hkr NES e VES NI, N o
+0 max max by b r r 21 22
Plis<h 1< by —k |<€A Z Z L1 2’” |k, — kx| V Nn/a,

Ji=1 jo

Due to the combination of (2.1.29) and (5.1.21)—(5.1.24), each of the five Op(-)-terms is equal to
op(1). This finally implies the claim. O

Theorem 5.1.15. Under the assumptions of Theorem 5.1.14 let

(7) (7) i

d” < Pn <4c 2R AninBi (5:1:29)
with

d) = b0 +ai+az, and b =0TV 4ad taf (5.1.30)

where a1, azn, and az, are defined as in Theorem 5.1.14. Then, R s a consistent estimate
for the number of change-points R*.

Proof. Set B, = 67(17). This proof follows by the arguments of the proof of Theorem 2.1.25. Hence,
it is sufficient to show that the sets {R(" < R*} and {R(M > R*} are asymptotically empty. The
asymptotic behavior of {R(" < R*} follows in the same way as that of {R < R*} in the proof of
Theorem 2.1.25, while here we use the arguments of Theorem 5.1.14 instead of Theorem 2.1.22.

Now, we consider {R(7) > R*} and obtain the lower bounds by using the same arguments as in
the proof of Theorem 2.1.25:

R+l Ky
AW = QDU =3 3T [2os = plheorhe) 27+ (i = plke-1 )] = Op ()
r=1i=kr_1+1
R+1 K,
§ Z1 ‘ kz+1 (pi = plhr—1.h)” - OP(lglz%% 180l [P g + az,]) — Op(B),
r=11=kr-1

which is dominated by [,. This implies the claim. O

5.1.3 Long-run Variance Estimation under Unknown Variances

In this sub-subsection, we present some LRV estimates corresponding to the LRVs used in the Theo-
rems 5.1.1, 5.1.4, and 5.1.9.

Constant Variances The following theorem yields a consistent estimate which can be used for the
test statistics presented in Theorem 5.1.1.

Theorem 5.1.16. Let the assumptions of Theorem 2.1.33 and the following assumptions hold true:

1. The parameters o1 and o2 fulfill Assumption (PEE1) with dy;; = 0;

2. mﬁgs) fulfills the same condition as pp(v) in Theorem 2.1.33.

01,502,5
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Then, it holds that
Ds, =D+ Op(n_(é"’l/\é"’z)) + Op(n ~(%5.1705.2) 1)R7(10),
where R,(lo) 1s defined as in Theorem 2.1.33 and
b, :lzzf T2 (29— 502~ ),
5n = 7 i Pi — P
i=1 j=1 n

Proof. Firstly, we obtain that

S () @ - A - )

i=1 j=1

01020102 1 0 61.n02m (5 0 E1.mG2m (5
= Z ( ) )—#Pg))(zj()—ué ))
61003 =1 j=1 0102 0102
= Do (14 Op(nr119r2)))
since |% 1| = Op(n=0eando2)y, -

Lemma 5.1.17. If for each Wiy,,Wa,, € {Z s ni03 n} there exists a o € R so that
nCov(Wi n,Wa ) — o,

it holds that there exists a D >0 such that

L[ ,0 - pi P pi
Var 7 ; [(Zl — pi) — Vn(o1,, 01)20% —V/n(d3,, 02)2Jg — D. (5.1.31)
Proof. Using the bilinear property of the covariance we get the claim. O

Now, we present a LRV estimate which can be used in the setting of Theorem 5.1.4. To this goal,
we consider the special type of variance estimates:

L, 1w
On] = f Z
=1

which yields the following FCLT in Theorem 5.1.4

[n]
1 (0) ) , ' Pi : ‘ Pi \ D01 172
% ; (Zl — Pi — [(Xz - Ml,l) 0'1] 20_1 — [(Y; — ,LLQ,Z) 0'2] 20%) — D(G) W() (5132)

This provides a test statistic which is similar to the one of Wied et al. (2012), presented in
Subsection 1.3. Here we use the exact mean instead of the sequence of sample means. However, with
our approach we get another LRV estimate. In particular, the parameters o? and o3 in (5.1.32)
can be estimated in many different ways in which the sample variance is the natural estimate.

Theorem 5.1.18. Let the parameters o} and o3 fulfill Assumption (PEE1) with §,; = 0. Addi-
tionally, let the following conditions hold true:

1. § is a kernel with a bandwidth g, — oo;
2. the sequence {Z7(10) — pn} fulfills (IC,(pl)) for r,>1;

3. the sequences {eln —1} and {eln — 1} fulfill ( ) for rg2,re >1;
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4. set
{(Wl,n,WQ,mW&n)} = {(quo) — Pnspn/2 — (X — Ml,n)2pn/(2‘7%)a
pn/2 - (Yn - MQ,n)an/(2a%))}

and let for each j1,jo € {1,2,3} hold true that sup,, ,,en E[|[Wj 0 Wipn,|] < 0o and that
there exist constants Dj, ;, € R so that

n n
n=t YD Cov(W i Wis ) = Djy i, (5.1.33)
i=1 j=1
and
- NN, (i P
Djyjy=n"") > f p Wi, iWis.5 — Dijij (5.1.34)
i=1 j=1 n

with D = Z?,jzl D;; >0;

5. the estimate p; = pp(i) fulfills the 4th condition of Theorem 2.1.33.
Then, it holds with

i,j=1
70 _ (6 _ 5 _ (Xi —pa)* =010, (Yi = p2i)* — 65,
o\ %f, " %i, ")
n n Z ] 5
Don=n 1ZZf< - >z§6>z;6>
i=1 j=1 n

that D, = Do+ R\ with

R%ﬁ) — OP(qnn—((so-’l/\(so-’Q))
OP(qnnf617(5g,1/\50,2)) + Op(qnn72§1)
+Op(n™) + Op(gun 7 ot o2 O FL/ (rehr2hry2)y
+ Op(maxi<jy jo<m [(#Cj, V #Cjy) A qn] (#Cj, A #Cj,) n~ 00 0%2)
+0p(gn max;<j<m #Cjn~17%) (E),
+0p (g, maxi<j<m 170300, A00 2) F1/(ra ATy Aryg))

plus op(g,n=Y?), Op(g,n~Y?), or Op(q) in cases of (B), (C), or (D) and in cases of (F), (G),
or (H), respectively.

(A),

)

Proof. Firstly, we obtain that

6 . Xi—mi)?—oi, (Vi pe)?—63, >
Z B ~92 1 ) Pi
201771 2027n
=z —p) - - i@ 1) —Ri=W,—R
= ( i pi) Pl(el,z ) 291(52,1 ) i = Vi i
with
2 2
0109 (0) 1 o7 9 1 o5 9
Ri=|1—— | (Z" — p; - — — (e7. — 1) — | = — (€5, —1
' ( &1,n&2,n> ( ‘ pl) i <2 26’%71) pl(elﬂ ) (2 2&§7n> p2(62,l )
2 2
o R (o} ~
+ QA% (pi Pz)(fii -1+ 2A§ (pi pz)(€2,z - 1)
Ul,n 2.n
2 2 2 2
o1 . o . o7 op
+ + — i —pi) T il T o — 1
20%’71 (Pi — pi) 20%@ (pi — pi) + pi (20%771 20%771 )
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Thus, we get

D6n*D0n+n 122f(

=1 j=1

)RR — RW, — WiR;).

Furthermore, we obtain by Slutsky’s Theorem that it is sufficient to consider the second summand.
Using Assumption (PEE1) and (5.1.34) we get that

(s

) RiR; = Op(gun~20e1/.2)y

i=1 j=1
Op(gnn—1=00217602)) 1 Op(gan=21), under (A),
+9 Op(Cfioy sy [(#C5 V #Cj) A ga] (#Cj, A#Cj,) n=t 000 )
= ]2+10P(Qn]12§n:1 #7zcijn_1_6j_(6;77,11/\50,2)).’72 under (E)7
and
TLIZZf<Z )WR _OP( (Ul/\502))
i=1 j=1 n
OP( 761) 4 Op(qnn 1—(05,1N\05,2A01)+1/(rz AT 2 AT 2)) (A),
+ O (Qn Z] 1 #C n—l —4; )+ OP(Qn mMaxi<j<m n—l o, +1/(Tz/\r 2 AT 2)) .
+0P(Qn —1—(05,1N05,2)+1/(r=AT 2 AT 2)) ( )7

where we use the triangle inequality, Markov’s inequality, and the Kolmogorov-type inequalities. In
the cases of (B), (C), and (D) we add the rates op(g,n~"/?), Op(g,n~'/?), and Op(gy), respectively.
The same rates are also added in the cases of (F) , (G), and (H). Thus, if we combine all above rates
and use the finiteness of m, then, the claim finally follows.

O

Remark 5.1.19. [t is possible to use different bandwidths qy j, ;, instead of one single bandwidth
qn for all j1,j2=1,2,3 in (5.1.33).

Non-constant Variances In this paragraph, we present a consistent LRV estimate for Di(g) (cf.
Theorem 5.1.9). Therefore, we specify the test statistic and choose the following type of variance
estimate:

52 1 2 .7
Olin] = = (Zl,i - Mlﬂ') Vi € Il, j 5 (5135)
" #mgmumwbmmgimm :

where {(Z1n,Z2,)} = {(Xn,Ys)} and IAZJ is an estimate for the exact change set, i.e., where
the variances are non-constant. To be precise, this estimate yields the following FCLT under the
assumptions of Theorem 5.1.9:

()
2
1

20

K 2,1

[n]
! pi_\ plol
3 (40 06— - il 05— - il ) P D,
=1
(5.1.36)

where D > 0. Again, to estimate the LRV, we use general variance estimates for the remaining
parameters.

Theorem 5.1.20. Let the parameters o3 and o3 fulfill Assumption (PEE3) with doji =0 and
let the following conditions hold true:

1. § is an absolutely integrable kernel with a bandwidth q, — oo;
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VARIANCES
2. the sequence {Zr(lo) — pn} fulfills (ICI(«I)) and (IC?)) for some r, >1;
3. the sequences {ef, —1} and {e3, —1} fulfill ( )for Tg2,Ty2 > 1;
4. set

d.

{W10,Wan,Ws )} = {(Z’r(LO) —PnsPn/2— (Xn_Ml,n)zpn/(QU%,n)ypn/Q_ (Yn_NZ,n)zpn/@U%,n))}

and let for each ji,j2 € {1,2,3} hold true that sup,, ,,en E[|Wjin Wiy n,l] < 0o and that
there exist constants Dy, j, € R so that

nt Z Z Cov(Wj, i, Wj,5) = Dy, gy and (5.1.37)
=1 j=1
R B n n i ] P
Djy gy =n~" ZZf( . ) Wi1iWiag — Dji s (5.1.38)
i=1 j=1 n

as n — oo, where D = Z” 1 Dij >0 and lim, p, = po € [—1,1];

the estimate p; = pn(i) fulfills the 4th condition of Theorem 2.1.33.

Then, it holds with

3

A -1 (8) (8)
Po=Y Due De=n 3 35(2) 2920,
7,7=1 =1 j=1
X — 2 ~2 Y, — 2
5(8) (7) A ( 4 ,U/l,z) ~Olin . ( g lu’2ﬂ) 92imn .
Zi Z B ~9 n - ~9 n ’
201,i,n 202,i,n

that Ds, = Do+ RS with

Mo, 1 Mg, 1

R;8>:op(n S S [ L) V U, Aoz A ]

11,71=1142,j2=1

: (#(10,172'1 N 107272'2) A #(1071»]'1 N 10,27]'2)) (b0717i1 N b0'727i2)(b0'717jl v b0727j2)>

Mmg,1 Mg,1
+Op (n_l(Jn Z Z #(Lo1,6, N15245)(bo1,i; V ba,2,z‘2)>

i1=1iy=1
1 OQP(qnn_Q‘Sl) + Op(gun 0T e A2 Ar2)) (A),
Op(maxi<jy jo<m [(#Cj, V #Cj,) A an] (#Cjy, A #Cj,)n~ ' 00" 052)
+ +OP(”_IZT=12?:2121‘; [( ( 0111m10222)\/#0)/\qd
(F#H#Uo1i N o2,,) NF#CG) (bo1,iy V ba,l,ig)n76j>
+O0p(qn XLy #Cjn %),

(E),

plus op(gun=?), Op(gun=?), or Op(gn) in cases of (B), (C), or (D) and in cases of (F), (G),
or (H), respectively.

Proof. Firstly, we obtain that
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(7) ~ (XZ - M i)2 - 6—%,1',71 A~ (Y; - M2,i)2 - &%,i,n ~
Z;" = pi i Pi
n

Pi — N Pi — N
%,'L,n U%,i,
(0) Lo L5 p
= (2,7 —pi) — §Pi(€1,z' —1) - §Pi(€2,i -1)-R;=W; - R;
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with ) )
Ri=(1= 72D ) (5 = g Il =D = (g = g I D)
+ 2;’2 (hi = pi)(ei = 1) + 2; (ps = pi) (e = 1)
+ QQ%H (i — pi) + Zgn (i — pi) + pi (;%%n + 20§n - 1)
Thus, we get
Dgpn=Doy+n~ 1ZZf( > (R;R; — R;W; — WiR;).
i=1 j=1

Furthermore, we obtain with Slutsky’s Theorem that it is sufficient to consider the second summand.
Using Assumption (PEE3), we get that

CILL

i=1 j=1

mal mo‘l
( S S (o 1 Inzin) V T N oz A

11,J1=112,j2=1

(H#Uo1,i N 1o20,) NH#H o5 N 1o2.55)) (bo1iy V be2,i5) (bo1,51 V ba,2,j2))

Op (qnn_l_(Sl Z:?ii Zgzi #(Ia,l,il N Ia’,Q,ig)(bo',l,'h \ bo’,l,’ig)) (A)
+O0p(gan=2"), ’

OP(ZZL:l Zzzl [(#le v #Cjz) N Qn] (#le A #Cjz) n~1on 75]2)
+0p (7 7 YT St (#(Toais N Io2ia) VAC) Al (B),

(F#Uo1,i N g240) NH#C) (bo1,iy V ba,l,iz)n_éj)v

i

and

(s

=1 j=1
Mog,1 Mo, 1
=Op <n1Qn Z Z #(Lo1,i, N 1o 25) (0o, V bm?,ig))
i1=112=1

N OP(qnn71751+1/(rz/\rm2/\ry2))’ under (A),
Op(qn Z;n:1 #Cjn_l_éj), under (E),

where we use the triangle inequality, Markov’s inequality, and the Kolmogorov-type inequalities. In
the cases of (B) , (C), and (D) we add the rates op(g,n~?), Op(gon~/?), and Op(qn), respectively.
The same rates are also added in the cases of (F) , (G), and (H). Hence, the claim follows by combining

the above rates.
O
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5.2 Sequential Analysis under a General Dependency Framework and General
Variance Estimates

In this subsection, we consider the asymptotic behavior of the stopping time, where the variances are
unknown. We define for k=1,...

1 & ) 1 n+k @)

N P ~k Y

k1= Sz, and Phkns1 = 7 Sz, (5.2.1)
=1 i=n+1

where ¢ =5,... is a design index for different variance estimate types and

W) _ (Xi—p1) (Y — /m')'

7. =
ik,n ~() A ()
O1,ikn%2ikn

We distinguish between the variance estimate types as we did for the mean estimates in Subsection
4.2. One estimate type uses the whole observation, i.e., from 1 to n + k, to estimate the unknown
variances. The other estimate, on the one hand, uses the observations from 1 to n and, on the
other hand, the observations from n + 1 until n + k.

5.2.1 Closed-end Procedure under Unknown Variances

Nearly Constant Variances In the following theorem we sequentially use the whole sample to
estimate the variances. Since the proofs for the results of the weighted and unweighted testing pro-
cedures are similar, we just present the convergence of the weighted stopping times. In addition,
it is obvious that we can replace the assumptions of Theorem 2.2.3 by the slightly weaker ones of
Theorem 2.2.1 in order to get the result for the unweighted stopping times.

Theorem 5.2.1. Let the parameters o1 and oo fulfill Assumption (PEES5) with di, =0 and

d0.1,002 > 0. Then, Theorem 2.2.3 holds true if we replace TT(L(,:B,O,O,’Y by 7'53}570,7.

Proof. Firstly, we obtain that max; 6, kl "= Op(1) holds true since 0,1 A dy2 > 0. Moreover, we
observe that

B () = B+ (T 1) B () 522
[n],m

01,lnn02,
Due to Assumption (PEE5) and max; 6;, = Op(1), it follows that

0102
max
1<k<[nm]

G S - 1’ = Op(n~Or1Nd02))
01,kn02kn

Hence, it holds that
B ([n]) = (1+ Op(n™ 17502 B0 (],

which implies that the convergences in Theorem 2.2.3 hold true. OJ

Remark 5.2.2. Like in Remark 5.1.3, it is still possible that the test statistic converges towards
a Gaussian process if there are non-local structural breaks in the variances. Note that the covari-
ance structure now depends on these structural breaks. Let us assume, for example, that 0%,2‘ =
go1(i/n) and a%vi = go,1(i/n) with bounded, positive, and piecewise continuous functions g,

that (}%i = (X —wm)?, and 5%,1‘ = (Y — u2)?,,, and that the Assumption (1ID) is fulfilled with
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]E[(EMEM — pO)Q] = 1. Then, under Hég) we obtain that

<n> : A?:[Zil P5n,1)

) [T gor(@)goa(@)de — (- + D)W (L) [ go1 (2)goo(x)dx
VI o @) [ gos()da

St o1 (2)go2(@)dr — (- + 1) [§ g1 (2)go2(x)dz
VIE g1 @)da [} goa(a)de

which follows from an application from Davidson (1994, Corollary 29.11).

+ pow~ ()

)

Now, we consider the stopping times where the variances are estimated piecewise from 1 to n
and from n+1 until n+k, k=1,2,....

Theorem 5.2.3. Let the FCLT (as displayed in (5.1.7)) be fulfilled on D[0,1 4+ m]. Additionally, let
the variance estimates hold for all mi,me € N, mo > my

R n|+n,, )
R e N R
,m
(5.2.3)
Then, Theorem 2.2.1 holds true if we replace 77(1 20 o by Té(’:z,&o.
Proof. Firstly, we obtain that
n+[n-]
£6,0,0 7, 1\ — 30,0, ) 0102 : 71/2 n (0) _
Bn ([n]) _Bn 'Y([n])—’_ <An+[n]An+[n] 1) D \/» Z pz
1n+1 2n+1
0102 A—1/2 T ] 7(0)
11D L _
i (U?lggl ) n+[n] n vn z; o)

o n  [n] 0109 _nt{n] 0102 _
+ D712 | ——— 1] | =177
ol v \\ap e 0] T\,

On the right-hand side we obtain that the first and second summand are equal to Op(D~1/2p~1/2)
due to (5.2.3). Hence, it remains to consider the last term, where the last bracket can be rewritten in
the following way:

v TR Ly

ST (o1 4 2 T G (o 6P

+ ( U% A;Z——::llc ﬁn—’_k . U% - &S:? pn>
o5tk (oo + o2t 6y (o v o))

. ( ot — Tl e S Sl S Tl )pn>
GTER (on + 6T RY 63T (0 + 630 Y 67 (o1 + 677 63102+ 657)

Using the same arguments as before and
1
2 2n+tk ~2.n+k 2 ~2, 2
(0F o7 ) = 7 ((n+ W)@ = of) = (a7 = oP))

we obtain that

—_n+|n- —_n—+(n-
E6’O’O([n-]) _ BO,O,V([TL.]) + ﬁ—l/Q n M (0_2 . a_2,n—+—[n ])pn+[1 | + (02 _ 62,n+[n-])pn+[1 }
n n n+ [n] \/ﬁ 1,n+1 20_1 2 2n+1 20_%
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2 _ 452 Iz P1 —1/2
— (07 — 1?)2 2+( 02,1)202>+0 (D713,

where p} — po and even an wl

+[n]

Ha, pn 41 is just uniformly bounded. Hence, we get

By (In]) = By ([n])

H—1/2 n [’I’L] ~2n  A2n+[n] 2n  2n+[n]y PO
+D /n+[n‘]\/ﬁ(((7171_0’1n+1 )22—1—( L= 09t )T‘%

— po uniformly under Hy and Hya. In contrast to this, under

(1+0(1)) +op(D5 %),
under Hy and Hya, whereas o(1) is replaced by O(1) if Ha is assumed instead. Since

M(&Q,n . A2,n+[n-]) _ [n] —|—’I’L( 2 A2,n+[n-}) . (1 + [n]) n ( 2 A2,n)

NN Ol n+1 Jn 0 — 011 n % oy =011
by using the assumed property of the variance estimates, we obtain that

16,0,0 p-1/2 1 M 0 ], o 2y PO

ByU N ([]) = f(\/ﬁ 2 = pi) %(017@.] - 01)2f‘%

Jn 202" n nt ]

where f : D[0,1+m]3 — D[0,m] with f(x,y,2) = 2(-)(x(1+-)—2(1)—y(-)z(1)). Since f is continuous,
the first and second convergences of Theorem 2.2.1 hold true due the CMT. The third convergence
towards By ([n-]) analogously follows since |Ba"7([n:]) — BY™([n-])| = Op(D~1/2). O

63 oy — o)y, I )

Corollary 5.2.4. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.8 let additionally

(1) " Bl o

as n — 0o, followed by ¢ — 0. Then, Theorem 2.2.3 holds true if we replace

= op(1) (5.2.4)
0.

(c) (¢
Tn0007 Y o607

Proof. We just have to multiply each term by the weighting function w,([n-]/n) and additionally
use (5.2.4). O

Non-constant Variances

Theorem 5.2.5. Let the parameters o1 and oo fulfill Assumption (PEE7) with dj, =0 and let

the convergence in (5.1.8) be satisfied on D[0,1 + m|. Additionally, let {ZT(LO) — pn}t fulfill (ICI(?)) for
r. > 1 and the sequences byjn =0byjm ((=1,2,7=1,....mn,n=1,...) fulfil

mi,, M2, 1/rs

Z Z (D11 V ba,g,) = # (11,5, N 125,) = o((mi,n V ma,) tnt/?), (5.2.5)
J1=1j2=1

mi,, M2, 1/r:

Z Z (1,251 V b2,2,5,)  # (11,25, N I2,2,5,) = o((m1,n V may) " 'nt/?), (5.2.6)
J1=1j2=1

min M2 n

YD #oaiNIozj)boibez = o(n'/?), (5.2.7)
i=1 j=1
min M2 n

Z Z #(Io 1,2 N I522)b2,0.1,2,002.2,) = o(n'/?). (5.2.8)

i=1 j=1

Then, Theorem 2.2.1 holds true if we replace 7',(3’070 by 715?3,7,0'
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Proof. Firstly, we obtain that

n+k

57,0077\ _ 10,0, A—1/2 1 01,i02,i (0)
B, " (k) = B, (k) + D / n—}—k‘f Z <M 1> (Z;" = pi)
1,i,n+1"2d,n+1

A Bl <& 01509 0
p-12_" ,72 914920 1) (7O _ .
+ n+kny/n P 671051 (Z; pi)

4 pe_n 1 nif 01i92%i 4 _Ezn: 0102 1\,
n+kyn G ohTy S A ")

i=n+1 Glzn+1 2,i,n+1 i=1

Using Assumption (PEET7) and the Kolmogorov-type inequality we get that the third summand is
equal to

1/r
min M2n /z

Op | (m1n Vman)n Z Z bigy V b2j)  # (L1 N o2,5,) +op(1).
J1=1j2=1

Analogously, we get for the second summand the preceding rate plus

1/r
min M2 n /z

Op | (min Vman)n 2 [N " (bi2y Vbo.3s) " # (1,25, N Io2,2,0) +op(1).
J1=1j2=1

Using that p; is constant, constant plus O(n~'/2), or constant on at most three subsets of [1,n]
under Hy, Hpa, or Ha, we get with Assumption (PEET) that

n+[n-] 2 A2 ;n+[n 2 A2 ,n+[n-]

Z 01~ O1lin+1 02~ 02in+1 A
] [ A2ty antin 2t P

i=nt1 01 inr1(01i + 07 1) o n+1(‘7 2i + 05 ni1)

[0,m]
Mmi,n M2n
=0p § E #(I51,2,i N 15225)b01,2,ib522,5
i=1 j=1
and
n ~2n 2 A2n mi,n M2n
‘71@_‘7111 02i 02,41
> - — > > #Uo1i N Io2,)boriboo
i=1 ‘71,1',1(0'17%' + Jl,i,l) 02,1‘,1(‘72,1' + ‘72,i,1) i=1 j=1
Furthermore, we obtain that
1 n+{n] o2 _g2ntlnl 2 s2ntn]
57,0,0 50,0, A—1/2 1 Li =~ Ylin+l 2,i — Y2)i,n+1
BT (n]) = By (n]) + DV oo S TR
L P 1, 92,

+ OP(ZA)_l/Q)v

where under HE,)& and HE:) the summand BY%7([n-]) is the dominating one and we have to add
Op(b_l/ 2). Finally, we obtain that the right-hand side is a continuous mapping of the modified
display (5.1.8). Hence, the claim follows. O

Corollary 5.2.6. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.5 let additionally
Jr .
[n] ~ nt[n] 2nt[n] 9 B )
'y > G ot =or(Vn) (5.2.9)
i=n-+1 [0,6]

as n — 00, followed by € — 0. Then, Theorem 2.2.3 holds true if we replace TT(L?L),O,O,’)/ by Tr(L?L)J,O,y'
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Theorem 5.2.7. Under the assumption of Theorem 5.2.5 let Assumption (PEE7) be replaced by

Assumption (PEES). Additionally, let the rates as displayed in (5.2.5) and (5.2.7) hold true. Then,

Theorem 2.2.1 holds true if we replace TT(L 20 o by 7'75’2’80

Proof. The proof follows in a similar way as the proof of Theorem 5.2.7. O

Corollary 5.2.8. Under the assumptions of Theorem 2.2.3 and Theorem 5.2.7 let additionally

7 ”H
> (67 imyn — 01 = op(v/n) (5.2.10)

i=n+1 [0,¢]

as n — 0o, followed by ¢ — 0. Then, Theorem 2.2.3 holds true if we replace 7'7(370,077 by Tr(L?L),&O,'y'

5.2.2 Open-end Procedure under Unknown Variances

Constant Variances

Theorem 5.2.9. Let the parameters o1 and oo fulfill Assumption (PEE5) with 641,002 >0 and

di; =0. Then, Theorem 2.2.5 holds true if we replace T,S L)O o0~ by 77(52757077.

Proof. The proof follows in a similar way to the proof of Theorem 5.2.1 where we use Theorem 2.2.5
instead of Theorem 2.2.3. O

Theorem 5.2.10. Under the assumptions of Corollary 5.2.4 let for | =1,2 and some X >0

max |07 — (3121n+k| = Op(v/nm ™)
nm<k

(0)

as n — oo, followed by m — oo be given. Then, if we replace T00,0,y by T?S,?L),&O,’y’ Theorem 2.2.5

holds true.

Proof. Following the proof of Theorem 2.2.5 we use Theorem 5.2.3 instead of Theorem 2.2.3 to obtain
the claim under Assumption HE,C:). Under HO(O) we get that

P(r\) < o00) =P ( up ()W) > ca> +o(1)

+P ( max  u,(B%%7)(k) < ¢q, max u,(BS*7)(k) > ca) )
1<k<mn k>nm

Under Assumption H(L‘K we just have to add (1 —-) 11/(1_') gp(x)dx to (-)7YW(-) in the first line.
Furthermore, with the same arguments used in the proof of Theorem 2.2.5 combined with the above
rate assumption we obtain that the last row is equal to

P (sup (10,60 () = () W)+ N ) @)

r>m

— sup u,(wyG)(x) > e> +o0(1)

0<z<m

as n — 00, followed by m — 0o, N — 00, and € — 0, where G(-) = = (W(1+-) — (1 +)W(1)),

§ = sign(W (1)), and A € (0N A 3. O
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Non-constant Variances

Theorem 5.2.11. Under the assumptions of Corollary 5.2.6 let additionally hold that

minM2n o0

§ : § : § :(bg LV b2 9. )’I’Z #(1270717j1 n 1270727j2 N [1777’ + nm2i+1])
‘ . . ;051,71 054,72 (27‘Z)Z
J1=1 jo2=1 =0 (5.2.11)

m'rzn'rz/2
=0 o N
(ml,n \ mQ,n) #

min Min

3'%"2127 1,5 ﬂ]gy 2,7 M n,n—{—k:
Y 0> oo jibasa, max TRl 2050 [ ] = o(1), (5.2.12)
‘ ‘ k>mn k
J1=1j2=1

1 n—+k

2 ~2,n+k 2|
%%C nt k| §+1(0l,i - Ul,z'7n+1)/‘7l,z' = op(v/n) (5.2.13)
=N

as n — 0o, followed by m — oco. Then, Theorem 2.2.5 holds true if we replace 772?270’077 by 7'7(1?2,7,0,w'

Proof. Combining the arguments of the proofs of Theorem 5.2.10, Theorem 5.2.5, Theorem 4.2.11 and
the assumed rates (5.2.11), (5.2.12) implies

n 1 ntk ( 01,40 )
1,i02, (0)
max — E ——————— — 1| (Z7 —pi)| = op(1)
~nt+k  antk L v
nm<k n+k\/n i=n+1 \91,im+192in+1
and
n+k 2 ~2n+k 2 ~2n+k
max " 1 014~ O1int1 02i ~ 02int1 p op(1)
2 : | = op
<k ~n+k ) ~2n+k \ ~n+k ) ~2,n+k v
nm<k 4k v/n i1 01 ims1(01 07 01) 094 i1 (02, + 6305 ,01)

as n — oo, followed by m — oco. Now, we can follow Theorem 2.2.5, use the assumed rates, and
claim is proven. ]

Theorem 5.2.12. Under the assumptions of Corollary 5.2.8 let the equations (5.2.11), (5.2.12), and

1 n+k ) A2 )
max Tk 'ZH(UM — Giikn)/0ii| = op(v/n),
=n

as n — oo, followed by m — oo, be fulfilled. Then, Theorem 2.2.5 holds true if we replace 7

n7l’70707’y
by TT(L?L),&OW
Proof. The proof follows in a similar way as the proof of Theorems 5.2.11. O
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5.3 Examples

In this subsection, we continue with the three examples (IID), (MIX1), and (NED1), where we restrict
the assumptions depending on the testing procedures and estimates. We focus on scenarios where we
apply the different main results of this Section 5. Therefore, we set

Rl,n

0’52,2‘ = oj + Z Aa,l,j]l{igk;”}, (5.3.1)
j=1

where R;, >0, As;; # 0, and 0 = k;,LO < k;,l,l < ... < k;J,Rl,n < k;,l,Rz,nH = N, with
N, € {n,n(1+m),00} depending on the considered procedure: a posteriori, closed-end, or open-end.
In addition, we assume that kj;, ; —kJ;;, — 00 as n — oo.

5.3.1 Constant Variances

Firstly, we consider the special case of R;, = 0. Then, we use the variance estimates based on the
whole sample, i.e.,

(G0 =0t win(Zis — ma)?, (5.3.2)
=1

where the deterministic, positive, uniform bounded weights fulfill > " jw;, = n for all n € N.
Then, we get under Assumption (IID)

rh—2
(612 = ot = Op (w70)

which implies that the variance estimate is consistent for 7] > 2.

Under Assumption (MIX1) we obtain by Davidson (1994, Th. 14.1) that {an} is a-mixing of the
same size as {Z;,}. Hence, {Zﬁn,fn} is an Ly,-mixingale, p; <ry/2, with F, ==\, V72, o(ej)
and sequence &, = a(n)Y/P=2/ "1, which directly follows from Davidson (1994, Th. 14.2). This implies
that

P (1502 = ol = n) < (o) B

(Z(ZZZz - ‘712))

i=1

o _ov—1/2\2 .
<" P~ 1C (anozo (o s 2) / ) , i pr=2,
n Pt PO (300 &) it p<2.

Thus, if >0 (Xie, 51;2)_1/2 < 00, we choose p; = 2 and we get |(5V)2 — of| = Op (n~Y/2).

In

Otherwise, we choose p; =1'/2A(2—¢€), € >0, and 7’ € (2,r] from assumption (MIX) to obtain that

the sum is finite, since 1/p;—2/r] > 2(1/r' —1/r). This implies that |(6,.))2~ 07| = Op (n~@=1/m),
Under Assumption (NED) with p; = 2 and 7] > 4, we obtain by Davidson (1994, Th. 17.17)

that {Z?,} is Lo-NED of size —a;(r] —4)/(2r]—2). By Lemma 2.3.7 we obtain that there are more

combinations of p; and r] that are suitable. However, if we additionally assume under (NED) that

ap > (2r]—2)/(2r]—8) and ay > r}/(r] —4), we obtain that {Z2} isa Ly-mixingal of size —3.

This implies that {Z? — o7, } fulfills the Kolmogorov-type inequalities for r; = 2 and, especially,

(1 _
(01(,73)2 — 0?2 =0p(n~12).
Assumption (NED2). Let (NED) be fulfilled with a; > (2r; —2)/(2r; —8) and ay >1/(r] —4).

Thus, in all three previous examples the variance estimates are consistent and we can apply Theo-
rem 5.1.1 and Corollary 5.1.2 to test whether there is a change in the correlation or not. Therefore, the
LRV estimates from Theorem 5.1.16 are available. The estimation of change-points in the correlation
(1))2 = Op(1). The sequential procedures,

works with even less assumptions. It is sufficient that (&,

Theorem 5.2.1 and 5.2.9, can be applied by using (}ﬁ)n = 6’1(1) for all k€ N.

n
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Remark 5.3.1. The test statistic ¢$L’5’5’7 and the stopping time T,,55~ are equal to <Z>f{0’0’7

. A (5
Tn,.,0,0,y, Tespectively, if Ds, uses pg. ) — 01071153

and
pn(j), where pn(j) is as in Theorem 2.1.33 and
the variance estimates are the same as used for ZT(L ). This implies, that in this special case the

assumptions on Section 2.3 are sufficient for the convergence, even if the variance estimates are not
consistent.

Assumption (IID2). Let Assumption (IID) be fulfilled for r; > 4.
Assumption (LRV2). Let Assumption (LRV) be fulfilled with
77— pi (Xi = m13)?/ (207 ;) + (Yi = p2,0)* /(203 ) instead of Z.
Now, we consider the cumulative sample variances as estimates, i.e.

613 = 6% k=12,...n (5.3.3)

Suppose Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2) hold true.
Then, we can apply Theorem 5.1.4 to test for a constant correlation. Furthermore, we can use the
weighted test statistic of Corollary 5.1.7.

5.3.2 Non-constant Variances

In this sub-subsection, we consider two examples for Theorem 5.1.9. Additionally, we assume that
there are non-local changes and that the distance between the change-points increases with rate n.
Firstly, we postulate that we already know the change-points of the variance. Then, we set for all

i€ (ki kAKS) G=1,... R, k=12,

) 1 k/\k;’j
(6—l(jt,l)c)2 - Z (Zl,v - Ml,v)z- (534)

kENE:S . —k*
a,] O'] 1 k*,j—1+1

We observe that

[n] [n]
NS _ _
D (6150 — 0o =D (Zuw = mw)® = oi)er
i=1 i=1
Hence, under Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2) we
obtain that under H

» 2 P a o pi | DRI
§ — 0, — o) . — DSW
P ( 01,i,[n] Ul,z) 20%,1‘ (02,1,[n-] )20 (8) ( )

Thus, the assumptions of Theorem 5.1.9 are fulfilled by using the same arguments as used for the
mean estimation in Sub-Subsection 4.3.2.

Remark 5.3.2. For the sake of completeness, we define for all i=1,...n
( Rl+1 1 I;o,j
3) 9
(617 Z Leicth, v, ‘””T Z (Ziw — ) (5.3.5)
Jj=1 o,j—1 v:l%a,j,ﬁl

but we bear in mind that this estimate is useless for change-point analysis of the correlations.

Now, we consider the second example where we drop the assumptions on known variance change-
points. Therefore, we set for all i € (ko j—1,k ANkoj|, j=1,....,Ri+1, k=12

k‘/\’;:ayj

1
( l(éi)k) = c T Z (Zl,v _/Ll,v)2' (536)
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Suppose that there exist sequences a;;, such that

kouj = ko1 = Or(acijn) (5.3.7)
and

Qo ljn = O (( ol — Koii—1) AN (kgp 41 — k:;,l,j)) (5.3.8)
for j=1,...,R; and as n — oco. Those two conditions imply that

p (#(ka,l,j—lako,l,j] N (kg1 j—149:k5 1 j1o] = 0) — L

Thus, we obtain with Jj j (] = (ko j1.key ;] 0 (0, [n]] and Jyj ) = (kopj—1.kep] 0 (0, 0] that

[n] [n]
Z(&Zi,[n-] - UZQ,i)Ul?Q = Z((Zl,z' - Ml,z‘)2 - 012,1‘)0172

i=1 =1

R Ty g O JF

+Op Z 2k Z (Z1i — i)

Rl+1

#J1j 1) N Jigin] )
+Op S 2 (Z1i — 1)
JZ; #J15-1,[n] Z

i€J1j 1,

Ry

#jl,' 1,[n- N Jl,', n:
+0p [ D j;j[ '] 2] > (Zii— i)
j=1 Li+1,[n]

1€J1 541, [n]

The first summand on the right-hand side weighted by n~1/2 fulfills the FCLT under suitable
assumptions such as in the case of known change-points in the variance. Hence, it remains to show

that the three rates are equal to op(n~/?). Since each of the three rates can similarly be treated, we
just consider the first one (w.l.o.g. let 1;,; = 0):

Ri+1 #jl ) N Je. Ri+1

7.77[”'} l, s[ne Q 7l, —1 \/ Q ,l, j
Z ! Jrln] Z Zl2,z' < Z Op | || Z2k=L T Zoby Z (le,i — || | +Op(ags;)
j=1 #J15 [n) i€ o j=1 #J1j [ i€

Furthermore, we get that

._\/ -
p ||| %ti-1 Vol Y (2 -1 =nvn

#gm) 5
7]7[” ] ZEJl,j,[rr]
ko
Gglj—1V Qg
<P max N A E (ZE, —1)| > nv/n | +o(1)
R R e R R ky =k skt
k26<k;’l7j_17“0,]'71vk;’l,j+1+aa,j+1]vk1<k2
k;,l,jfl—i_ada]'—l a \/ a kz
7l1 j—1 )l"
< S P max A S (24 -1 = v | +o(1)
koe(k1,k* , . < - ’
=k ;170051 2R HG 1 o] 2 ! i=k1+1

* . * .
Ky o1taesi—1 kg i4q+as 1]

< (Aoj-1V agyj/(nV/n))*C > > ( ! )pl +0(1)

k1:k;7lyj71—ag’j_1 ko=ki1+1

=0 (n"N(agpj-1V ag15)%a05-1) + o(1),
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where we use (5.3.7), o-additivity, and a Kolmogorov-type inequality. Thus, we obtain

[n] [n]
2(512,1‘,[71.} - 01271‘)01}2 = Z(Zl%i - O-lQ,i)Usz? +op(1)

i=1 =1

if max;ag;;n = o(n'/3). Suppose that these restrictions combined with Assumption (IID2) or As-
sumption (NED2) and Assumption (LRV2) are fulfilled. Then, we get the assumed FCLT (5.1.8) from
Theorem 5.1.9. Furthermore, under these assumptions {(Z;, — fir.n)? — Jzn} fulfills the Kolmogorov-
type inequalities.

Now, the technical rate assumptions on several results remain to be considered. For that purpose,
we can use the examples of the non-constant means of Sub-subsection 4.3.2. There, we have seen
that the model of the structure breaks and the Kolmogorov-type inequalities for {Z;, — u;,} was
sufficient. If we transfer the conditions of these models to models of changes in the variances and
assume that {(Z;, — un)? — a?n} fulfills the Kolmogorov-type inequalities for r; = 2, as in the
previously presented assumptions; we can apply the results of Subsection 5.1 and Subsection 5.2.
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6 Change-Point Analysis of the Correlation under Unknown Means
and Variances

. . . . 2 2
In this section, we consider the setting where the four parameters p1,, po;, 07 i and oy, are

unknown and estimated. Naturally, the variance estimates depend on the mean estimates. But first,
we neglect this feature and will only come back to it at the end of each subsection.

6.1 A Posteriori Analysis under a General Dependency Framework, General Mean
and Variance Estimates

In this subsection, we set

k (41) ~ (1)

o 1 (X /’lekn)(Y 'u21kn 441p1 +44h2)

Pritrinvann = 3 2 (V2) (02 Tk ZZ”M o (6.1.1)
i=1 Ul,i,k,n 2,i,kn

where 1,9 = 1,...,4 are design indices to distinguish between the parameter estimates. Further-
more, in each estimate and Z, (4t +dyn)

i,k,n
not be used in the following.
For {Z(4+1/11+4¢)2

i,kn

, we will drop the index n and any other index which will
Hh<i<k<nen we will frequently use the decomposition

(6 = ) = )
b N 5_(71’2)6_(1/12)

0 0 01,02, 01,i02,5
:Z}’+Zf)<(>(¢2 ) Zthnszf ZthnNﬂ( (72)50) 1)’

where Ry w1, | =1,2,3, 1,92 = 1,...,4 are defined in Section 4, see (4.1.2). They are the
error terms of the mean estimation. The dot stands for the index k which will only appear if it is

in use. Thus, if the mean and variance estimates fulfill their corresponding assumptions on Section 4
(8+7)

Z(4+¢1 +dpa)

(6.1.2)

and Section 5, only the last summand is new. Furthermore, in this section we will write Z;.

just Z; ™) instead of Z; (4+¢1+4w2) for a suitable . If ¢ and w9 areequal to 1, 2, 3,or 4 the
correspondlng parameter& fulfill Assumption (PEEL), (PEE2), (PEE3), or (PEE4), respectively. To
avoid repetitions of similar results, we use the following notation for j, 1 € {1,2}

or

Miy = Myiln VMgi1in VY Me21n, Méj,l) = (Oamp,,l,j,n] X (Oyma,l,j,n] X (07m0,2,j,n]7

M;LJ()) = (Ovmu,l,j,n] X (Ovmu,Q,j,n] X (Oumcf,l,j,n] X (07ma,2,j,n]7

7 (0,9)
I i = Tuginm Vo gin Vlo2gis, Ly a0 = Tudginn NV p2gian N o gis N 12,5
o _ . (2 ) ¢! )
bij = bulirgin(boinge V bo2,s,55), J€ M7 €M,
0) _ o . . o ( ) s (1)
bi,j - bu,172141,nbu,2712a2,n(50,1,13,13 N ba,2,Z4,J4)a € M, 071 € Mn,m

where we set

mut; =1, I,51=(0,n], if p, pe fulfill (PEEL) or (PEE2),
Me1; =1, Is1;1=(0,n], if o1, oo fulfill (PEEL) or (PEE2),
mui2 =1, 1,121 =(0,n], if p1, pe fulfill (PEE3),
Mei2 =1, Iz121=(0,n], if o1, o9 fulfill (PEE3).

6.1.1 Testing under a Functional Central Limit Theorem, General Mean and Variance
Estimates

Theorem 6.1.1. Let one of the assumptions of the Theorems 4.1.2, 4.1.6, 4.1.10, or 4.1.13 and
one of the assumptions of the Theorems 5.1.1, 5.1.4, or 5.1.9 be fulfilled, where we assume that



A POSTERIORI ANALYSIS UNDER A GENERAL DEPENDENCY FRAMEWORK, GENERAL MEAN
AND VARIANCE ESTIMATES

dy1i = dgy; = 0. Additionally, let the following conditions be fulfilled as n — oo and for 1 =1,2

1/m
Do s D0 @ RET 0 Omax T | = o(n!?) (6.1.3)
jEMy(LI% 1 IGMS;, 1
and
max > #(IY 0 (0,max [7pfY = o(n'/?). (6.1.4)
jeM ) )
0 5enm!)

Then, Theorem 2.1.1 holds true if we replace B by Bt 42,00

Remark 6.1.2. The sequences {bflj)} and Ii(l’j) are allowed to depend on an integer N, which tends
towards infinity after n does, cf. Assumption (PEE2). Then, in the case of Assumption (PEE2) we
can set for 1 =1,2

(OaN]7 Zf j:(lel); 11 Zf j:(17171)7
[P = (N, if j=(222), and b7 = N2 i j=(222),
0, else 1, else,

and the rate displayed in (6.1.3) is directly fulfilled as n — oo, followed by N — oo.
Proof of Theorem 6.1.1. Firstly, we obtain with (6.1.2) that

n| 3
0.0 12 [ 01,i02,i
BJYO() = D; (B(H(Z“ZRWM@ W”

o[ 72,0, ]

1
3
1 01,i02,5
_RZZlenZh)( @) 0_( ) 1>>>7
=1

i=1 l,z,n 2,i,m

where the asymptotic behavior of D ~l/ 2Bn(-) is known under each combination of the theorems of
Section 4 and 5. Hence, it remains to consider the last summand. Here, we just consider the most
general case, i.e., that the assumptions of Theorem 4.1.13 and Theorem 5.1.9 are fulfilled. Using the
triangle inequality we individually consider each summand for [ =1,2,3. We start with [ =1 and
obtain by Kolmogorov’s inequality that

01,i02,i
> Ryjpgnz® W)—A
= 914, [n-] 2,2,[71

1/r1
= OP Z (mn72)m Z (bfj)) #[11(1123)23 (0 max IJ(l JE) 33)]

o 1 o 2
(]1732733)61\/1}1,% (11712713)61\47(1,%

Hence, this is equal to op(n~'/2) by (6.1.3). The same rate can be observed for the second term of
the difference. Quite similarly we can treat the term for [ = 2 so that it remains to consider the
term for [ = 3:

01,i02,i
Z Ryt nz® W '

1727[n 2’/[/7[77/

= Op | max Z #(1; 1 1)O(O maxI(O )])b(’J)

SEMS i ag)
Hence, using (6.1.4) it follows that BZ"0(:) = 150_1/2(371() + op(1)) such that the claim finally
follows. O
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Influence of the Mean Estimates on the Variance Estimates Now, we consider the influence
of the mean estimates on the variance estimates. Let msy denote the second moment. Then, we can

decompose a variance parameter ¢ in mo and 2, ie., 02 =my — u?. Thus, we get

o — (72 =mg — Mo, + ﬂ% — MQ = Op(n_(‘sm/\‘su)>
if

mg — Moy, = Op(n_5m) and pu— fi, =Op (n_‘sf‘) ,

which is relevant under the assumption of Theorem 4.1.2 and Theorem 5.1.1. Under the assumptions

of Theorem 5.1.4 the variance estimates &[Qn.] can be decomposed similarly. Then, there are at least

three possible cases

A2 5 ~2 A2 4 ~2 A2 4 ~2

O] = M2,n:] =~ Hn]p 9p] = M2n] = Hny  OT O[] = M2in — M-
In the last two cases, we can reduce the convergence assumption of Theorem 5.1.4 displayed in (5.1.7
by replacing 6?[71.} — 012 by 1o (n] — M2y oOr ul ,u[ ] respectively, since in the statistic B&OY

the other terms are canceled out.

6.1.2 Change-Point Estimation under Unknown Means and Variances

In this sub-subsection, we consider change-point estimates for the structural breaks in the correla-
tion under the setting where the means and the variances are unknown. For the estimation of the
parameters we always use the whole sample. More precisely, we consider the change-point estimates
under the assumption that each parameter pj, pe, o1, and oy fulfills Assumption (PEE1) and/or
(PEE3). This implies that the notations introduced at the beginning of this subsection will only be

used for [ = 1. Hence, we will drop this index and will use M, , I.(l), bi(l), for 1 =0,1,2.

1

Theorem 6.1.3. Let one of the assumptions on the Theorems 4.1.18 or 4.1.22 and one of the as-
sumptions on the Theorems 5.1.11 or 5.1.14 be fulfilled with d;; = 0. Additionally, let for 1 =1,2

AVSS LA2
—kmnZpn > ) a%,n + ag,n = (Ak* nAp7 ) (615)

maxi<i<r [Dpin

A?
et (r3—i=1) — __=pn
11<nﬁ<XRal T Z Z Z ] 711,7/2 (NTL/CL ) =0 (maxr |Ap,r|> ) (616)

JeAu,l,r,n z16140' 1,7,n 7426140,2 ™n

lr<nra<XR Z Z Z Z b§??j2 ,i1,12

7fleAd 1, rnz2€Ao'2 'r'ﬂ]lGAu 1 rn]QeA,u 2,r,n

alp +az2n =0 (

R (7o o N oy (s ( a2, ) (047
F#((kF — €Qpn ok + €Qp ] N j(?,)]g iip) vV (Nn/an) - \max, A,
as n — 0o, followed by N — oo, where for & € {u,0} and for € >0
> =
ain =Y mg | Y O)ysigr? ava =Y b#L”, (6.1.8)
=1 JEM, jEMn 0
(L O [k k2]
agn = ’glgéJEMno b; T E 1 (6.1.9)
Actrn ={1<7 <meip : TN (K — €Ape ki + e )] # 0} (6.1.10)
rn = FAplrn V #Acirn V #Ac2rn, (6.1.11)
and
muin =1, 1,1 = (0,n] under the assumptions of Theorem 4.1.18, (6.1.12)
Moin =1, Iy11=(0,n] wunder the assumptions of Theorem 5.1.11. (6.1.13)
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Then, it holds

B 8+w) _
ax anl0pi — 05" = Op(1),

where 0,; = lim,_,o kf/n and é§8+w) = /%gsﬂ})/n with

(l%§8+¢), . ,l%ngw)) € argmaX{Q,(ngrw)(k:l, cokr)  l=ko<...<kr<kpy = n} , (6.1.14)

R+1 kr

QB+ (ky, ... Z Z Z&T) _ Z6+) kH)?_ (6.1.15)

r=1 = kr_1+1

Proof. Since the settings of Theorems 4.1.22 and 5.1.14 are more general than the other ones, we just
consider this case and note that the other combinations can similarly be proven.

Define Zl-(S—W) = Z-(SHZ)) —p; and a1, N = Nn/ay. Following the proof of Theorem 2.1.22 yields

1

o Q(8+w)(k) Q(k*)(8+¢)
lk—k*>a1 N % min; |k — k|| A Ak*
ZRJFl Zz kr_1+1 |: (pl - (kr 1, k )) Zz(g+w)i|

3 1k = B A Agpe

2
S ey — Ky y) (Z(SW)(kr_l,kr))
[k —E*| A Age

pzn|

>1-— max
lk—Fk*|=a1,n,N

2
mlnzApm

L min; A2,

max
Hk‘_k*”Zal»naN 2 pln

Since Z; 78+Y) is a sum of terms considered in the proofs of the Theorems 4.1.22, 5.1.14 plus
01,i02
i = ZRMW ( )W) 1> ’
01409,

)

it remains to consider both maxima of the partial sums of 7; instead of ZZ»(SW
Using similar arguments as in proof of Theorem 4.1.22 yields that

ZR+1 Zz Ky 1+1[ (pi — p(kr—1,kr)) 7]

in the first display.

max =op(l
|k—k* | >a1,n,n 0.5min; A2, Nk —k*[| A Ay, r(h)
= 2
S (ke — k1) (F(Kr—1,kr))
and max 5 . = op(1)
lk=k*|>arn,n 0.5 ming A2, [[k — k*[| A Q-

as n— oo and N — oo by using (6.1.5)-(6.1.7).

O
Theorem 6.1.4. Under the assumptions of Theorem 6.1.3 let
1
(8+v) o gB+E) < 1 2
dyy < By Ter 121<nm AL i 0B (6.1.16)
with
d7(18+¢) — dq(;v”l) + dgf”w) + ain + ag’n + a1, + asp, (6.1.17)

where a1y, a2n, and a3, are defined as in (6.1.8) and (6.1.9). Then, RGBT s q consistent
estimate for the number of change-points R*.
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Proof. Set B, = ﬂ,(LSW) . This proof follows the arguments of the one of Theorem 2.1.25. Hence, it is
sufficient to show that the sets {R(S*‘w) < R*} and {R (8+¥) > R*} are asymptotically empty. The
asymptotic behavior of {R®T%) < R*} follows in the same way as the one for {R < R*} in the
proof of Theorem 2.1.25 with the arguments of Theorem 6.1.3 instead of those of Theorem 2.1.22.

Therefore, we consider {]%(8“[’) > R*} and by using the same arguments as in the proof of
Theorem 6.1.3 combined with the change-point estimate results of Section 4 and Section 5 we obtain
that the lower boundary rate:

QYT (k) — QFTV (k*) > —Op(df) + di?) +af |, + i, + arn + asn).
O

Similar to the previous section we can split the variance estimates in 7hg;,; and ﬂ%l Then, we
obtain that {&1271} = {1, — /l%n} fulfills the conditions of Assumptions (PEE3) if {rg;,} and
{/llQn} fulfill them with d,,, =0 and dufm =0, too.

6.1.3 Long-run Variance Estimation under Unknown Means and Variances

In this sub-subsection, we present some LRV estimates corresponding to the ones in Theorem 6.1.1.
Therefore, we have to separate the LRV estimates under the assumptions of Theorem 5.1.1 and under
the assumptions of Theorem 5.1.4 or 5.1.9.

Theorem 6.1.5. Let one of the assumptions of Theorem 4.1.25 or 4.1.26 and the assumptions of
Theorem 5.1.16 be fulfilled. Then, it holds for | =1,2 that

[)8-1—1777, =D+ Op(n—(aa,l,méa,z,n)) +Op(n —(05,1,nN\0o,2,n) \/ 1)(]%7(10) + ﬂ{lzl}fgg) + ]1{[:2}013(1))7

where RS}) and Rﬁf) are the corresponding estimation errors of the Theorems 2.1.33 and 4.1.25, as
well as

- 8+) (5 84+0) (5
Duin = D1 () (20 - 0 - 0
=1 j=1
Proof. Firstly, for [ =1,2 we obtain that

L ()

zlgl

01202101 i02.(1—J 2A-1)  O1n02n (5 2A-1) 010020 (5
Ly oy s ]f< ) (2270 - D 0y 7o) T s

. . J . .77
i=1 j=1 1n 2n 01,i02,i 01,502,;

:D2l—1,n< + Op(n (“"M””)))

since ]% 1] =Op(n ~(05,1,n 0o 2 ")) and where D n and Do n are the LRV estimates of

Theorem 4.1.25 and 4.1.26, respectively. Applying these theorems implies the claim. O

Remark 6.1.6. In the previous theorem we used general mean and variance estimates where it is
clear that the variance estimates may depend on the mean estimates. In the following theorem we will
present LRV estimates under the settings of Theorem 5.1.4 and Theorem 5.1.9, respectively. Therefore,
we assume the same variance estimate as introduced in Sub-subsection 5.1.3, whereas we replace the
means by some mean estimates.

Theorem 6.1.7. Let one of the assumptions of Theorem 4.1.25 or 4.1.26 and one of the assumptions
on the Theorems 5.1.18 or 5.1.20 be fulfilled. Then, it holds for li,la = 1;2 that Dgyj191,n =

Do + REHIH2)

Droyin — - ZZ)‘( )Z“O”) (20 )

=1 j=1
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and

> l
R7(110+ ) = Op (n ! 1<{E%§13 Z Z b, ,ib1,5 [(#Ilhi Vv #I127j) A ] #1y,i N #I127j>
ZeMll n]eMlg n

where

(b5 b1gg) = (bu,ljvbu,2,j7 bo,1,j1 V Y0255 Yo 1,51 00.2,525 D11 bp,2,a s
2 2 2 2
by1,1,5:01.2,5201,151 00,12 5011,2,51 00,2,52> D 1., Do, ’bu,zjlbo,z,jz) ;

(Ml,nv s 7M12,n) = ((07mu,1,n]>(0¢m#,2m]7(07m0117n] X (Ovmmln]v(()?mml,n]» (O’mm?,n]?
(O>m,u,1,n] X (0>mu,2,n]7 (O>m,u,1,n]7 (Ovmu,Q,n]a (Oam#,l,n] X (Ovmo,l,n]a
(O>mﬂ,2,n] X (O>m0,27n]v (O>m#,1,n] X (O>m0,17n]v (O7m,u,2,n] X (O>m0,27n]>7
(I1,5:% T2,5) = Ty - -5 dp2g N lo2,s) -

Proof. Firstly, we obtain that

I (1 (201 — N
T 0 O 1 WD il e ) G (T YD Rl G ¥ Y
Zi — pPi — 2(&(12) )2 2(&(12) )2 Pi
1, 2,i,n

0 1 1
= (2" = pi) = 5ol = 1) = Spile; — 1) + Ri= Wi+ R,
with
R 1 01i02i_(,(0) 1 O'%,z 2 1 U%,i 1
im0 G (A = )+~ Il D = - g (-

2 2

T (P p) (@ = 1) et (pi - ) (S~ 1)

2&%,1’,77, ! 26%,i,n !
2 2 2 2
01,i ~ 02, ~ 01, 2,1
+ + +pi | =2 L
26_%7i,n (pZ pl) 2&§,i,n (pl pl) r (26%71 " 26—%,2’,71 ) ]
3
01409
+ ZRmmz(ll) + ZRlzan(ll) ( U2 1>
01,02,

=1 =1

Oy.,i ,U*v i ﬂv,i)ﬁi (,U/v i ﬂv,i)2ﬁi
+ Z v+ :
'U 7 ,n UU ’L n

where we drop the indices I; and [ls. Hence, we get that

Ds 1,420 = Do+ — Z Zf (

7,—1] 1

> [Wsz + Rin + RZ‘R]} .
Furthermore, we obtain that

Ly

=1 j=1

_op zzf(

=1 j=1

) WiR; + RiW; + RiR;|

) (IWiRy |+ |RiW; | + | Ry
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We set

(01453 012,351 o)) = <bu71jvbu72,ja bo1,j1 V 002,425 Vo 1,415 002,525 Opu,1g1 D2, o s

2 2 2 2
b,u,l,j7bu,2,jvbuﬂlj1bcr,1,j2 7bu72,j1ba,27j27 bu,l,jlbU,Lj27bu,2,jlbU,27j2> )

(Ml,nv v 7M127n) = ((Ovm,u,l,n]v ceey (O7mu,2,n] X (07ma,2,n]) ’
(1o Di2,Gugn) = Tt -5 Lu2gi N lo2gs) -

Additionally, we define
bisj=n"", My,=1{1}, hs;= (0]
under case (A) and
biz; = n_5f, Misp = (0m], I©Liz;=C;
under case (E). Then, we obtain by Markov’s inequality that

% DD (Z —n]> (IWiRj| + |RiW;| + | RiBj | = 0p(1)

i=1 j=1 4

1<is,12<13 | .
€My n JEMig n

+Op <n1 max > > by by [(#D, V #Dy5) A g #06 A #1,2,j> .

The different cases (A) to (H) have no influence since the correlation estimates are bounded by a term
of order Op(1). In the cases of (B), (C) and (D) we add the rates op(g,n~"/?), Op(g,n"'/?) and
Op(qn), respectively. The same rates are added as well in the cases of (F), (G) and (H). Hence, the
claim follows by combining the above rates. O
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6.2 Sequential Analysis under General Dependency Framework and General Vari-
ance and Mean Estimates

In this subsection, we consider the asymptotic behavior of the stopping times, where the means and
variances are unknown. We define for k=1,...

k
D Ly (4+91+4¢2) stk 1S (4+¢1+41/12)
p2+¢1+41/)27k,1 = ﬁ Z Zi,k,n and pZ+1ZJ1+4¢2,k n+l — k’ Z ZZ kn (621)
i=1 i=n-+1
where 1,99 = 1,...,4 are design indices for different mean and variance estimate types and

~ (Y1) ~ (Y1)

Z(4+¢1+4¢2) . (X Ml ’le)(Y Ho 11k)

bkn N W2 5(W2) ’
Lz,k n- 2,4,kn

Now, we distinguish between the mean and variance estimates as presented in the Subsection 4.2 and
Subsection 5.2. To avoid repetition of similar results we use the following notation for [ = 1,2

Min = My i1n \ Mg i1n V Mg21,n, Mn,l = (Ovmu,l,l,n] X (Oama,l,l,n} X (Ova,Q,l,n],

MnO = (0 m,u,l,l,n] X (O’mu,Q,l,n] (Oama,l,l,n] X (07m0,2,1,n]7
1) .
L7 = 1ugin N Iotgis N Io2jis, 1€ My,
) _ .
L7 =1y jiim NV p2ji0m N o jis N 12540, 1€ My,
@ _
bl

5O

bl"’7l 7’1717n(b0’172271 \/ bU 2 1371) i 6 Mn l7

—bp,lulnbu2221n(b0113,1\/bo—214 1) ieMn,Oa

where we set for each ¢ € {y,0} and 1 =1,2

1, if & fulfills (PEES5) or (PEE6),
meiinm = § Mén + Mg, 2.n, if fl fulfills (PEE?),
Meym, it & fulfills (PEES),

( (0,n + [nm]], if & fulfills (PEES5) or (PEEG),
Ieji1n = b : b f fulfills (PEE7
St {IglaQJ_méz»n’ J > Mg n, : fl " i ( ),
\ Lo, it & fulfills (PEES),

1, if & fulfills (PEE5S) or (PEEG),
beri1m = b7 : L f fulfills (PEET),
€141, {b51,2,jmgl,n7 3 > Meums if & fulfills ( )
bo, if ¢ fulfills (PEES).

6.2.1 Closed-end Procedure with Unknown Means and Variances

Theorem 6.2.1. Let one of the assumptions on the Theorems 4.2.1, 4.2.3, 4.2.5, or 4.2.7 and one
of the assumptions on the Theorems 5.2.1, 5.2.3, 5.2.5, or 5.2.7 be fulfilled where we assume that
di; = 0. Let additionally

1/rs—y
myy, Z (bi(l))mfz#li(l) =0(n1/2) and Z bi(o)#li(o) :O(nl/Z) (6.2.2)

ieMn,l ieMn,O

(c)

as n— o0 and for | =1,2. Then, Theorem 2.2.3 holds true if we replace 7,7 0y by r(u)4+l1+4l2 0
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Proof. Firstly, we obtain that

n+[n-

1 "
[n-]
2 Ripi = 7 ;Rz‘,[n-]

i=n+1

n

RS
] \ Ve

B0 () = B0 (1) +

with
01,i02,

3
() (a) > Riinsnynzn-

i,[n NG
17?7[71‘] 2,i,[n] =1

Due to the assumptions of Theorem 4.2.1, 4.2.3, 4.2.5, or 4.2.7, we obtain that

n+n] 3 n 3
n 1 [n:]
n+n] |\ va Z ZRlz‘([n-Hn)nZ”l) T nvn ZZRli([n~]+n)nZ(ll) = op(1).

i=n-+1[=1 i=1 =1
Since
3 ||nt(n] 0109

Z Z 1- RO Bii(ng4nynztn

=1 || i=1 91,1, n1%2,i,[n]
) 1/r3—

= ZOP mip, Z (bi(l))rg”l#fi(l) +Op Z bi(O)#Ii(O) ;
=1 i€ M, 1€Mn.0

which is equal to op(y/n) by (6.2.2), we get by Slutsky’s Theorem that
By =0 ([n]) = B ([n]) + op(1).

Thus, the claim follows from Theorem 5.2.1, 5.2.3, 5.2.5, or 5.2.7. O

6.2.2 Open-end with Unknown Means and Variances

Theorem 6.2.2. Let one of the assumptions of Theorems 4.2.9, 4.2.10, 4.2.11, or 4.2.12 and one of
the assumptions on the Theorems 5.2.9, 5.2.10 , 5.2.11, or 5.2.12 be fulfilled where we assume that
dygi = dgi; = 0. Let additionally for 1 =1,2 and some XN >0 hold that

1/r3—y
oo 0] i+1
1. N1 2 /

i (330 @y DR 2T o2y (6.23)

J=1ieM, , (2m))

and

(0) #1." 0 [Ln + k] 12, —N
Z b; k1>n[ax] k= [nm] =0(n/*m="). (6.2.4)
i€ M, 0 o

as n — oo, followed by m — oo. Then, Theorem 2.2.5 holds true if we replace 775?370’077 by

)
n,, 4411 +412,0,v"

Proof. Firstly, we obtain that

P(qu,ob),4+h+4lz,w <oo)=P <Ziﬁ]p1] u,(()7TW()(z) = Coc) +o(1)

+ P max wu,(BXUuti07Y (k) < ¢, max u, (B TR0 (B) > ¢ ) .
1<k<mn k>nm
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Using the notation of Theorem 6.2.1 we get
n+(n-]

: : ! ] &
B;1L+l1+4l2,0,7 k) = BL%UW k) + n R — —— R; .
(k) (k) n+ [n] \/ﬁzz;-i,-l i[n] \/ﬁ; [n]

Using the arguments of the proof of Theorem 4.2.9, 4.2.10, 4.2.11, or 4.2.12 it remains to show that

3 ntn]

01,i02,;
g?n}; Z Z 1= () () Rl’i([n-H»n)nZ(ll)
=1 =1 Ul’i’[n.]a%’[n']
2 00 l #(I(l) A [Ln 4 nm2i)) 1/rs_y
- Z OP min Z (bl( ))r37l i (?2”)]
=1 j=1ieM,,
(0)
LNl k
+ Op Zbi()max#‘ (L + K]
k>[nm)| k— [nm]
leMn,O

which is equal to op(y/n) with (6.2.3) and (6.2.4). Thus, we get with the arguments of Theorem 6.2.1
that

P ( max uL(BﬁHlHlZ’O”)(lﬁ) < Cq, Max uL(BffleMl?’O”)(k) > ca>
1<k<mn k>nm

=P (sp (o ) = [0

sup n 1W(1) + 6Nm_>‘]]l{,2m}> (l’)

— sup w,(wyG)(z) > 6) +o(1)
0<z<m

as n — oo, followed by m — oo, N — 00, and € — 0, where G(-) = = (W(1+-) — (1 +)W(1)),

§ = sign(W(1)), and A € (0,N A 3]. Here we use the arguments of the proof of the Theorem 5.2.9,

Theorem 5.2.10, Theorem 5.2.11, or Theorem 5.2.12 combined with the arguments of the proof of
Theorem 2.2.5 the claim follows. O
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6.3 Examples

In this subsection, we continue with the two examples (IID2) and (NED2). Thereby, we focus on
different parameter settings which we will investigate by Monte—Carlo simulations in the next section.
We assume the following model

R,u,l,n Ro,l,n
2 2
M = o + Z Aprilgiskr, 3 and 01 = Ojp + Z Ao jlpi<ks, ) (6.3.1)
= =1

where it holds for u € {u,0} that Ry,;, >0, Ay;; #0 and 0=Ek} Lo <kpia<-. <kuyl7Rul <

kg, ,, +1 = Nn. Here, Ny € {n,n(1+m),00} depends on the considered procedure: a posteriori,
closed-end, or open-end. In addition, we assume that k:;“ 41 kz,” — oo as n — oo for all

i=1,... . Ryn— 1.

6.3.1 Constant Parameters
In this sub-subsection, we discuss some examples under the assumption that the parameters p;, and

o1, are constant, i.e., R, ;, = Ry, =0, such that the main results of this section can be applied.

Using the weighting sample mean and weighting sample variance,
n
(1 - _
i) =0y winZi; and (6]))% = 1szn Zii — i)’ (6.3.2)
i=1

with deterministic, positive weights {w;,} fulfilling > ; w;,, =n forall n € N and Y w2, ~ n.
Under (IID) the assumptions of Theorem 4.1.2 and Theorem 5.1.1 are fulfilled, see Sub-subsections
4.3.1 and 5.3.1. In particular, since i — p; = Op(n~"?) and o, — &; = op(1), the rate assumptions
(6.1.3) and (6.1.4) of Theorem 6.1.1 are satisfied. The necessary consistent LRV estimate is given
by Theorem 6.1.5, where its assumptions are fulfilled if we additionally provide Assumption (LRV).
Thus, we can apply Theorem 6.1.1 and use ¢Z979 to test whether the correlation is constant or not.
With the same line of arguments we get the same result under Assumption (NED2), see p. 112.

In the next example we consider the sequences of weighted sample mean and of sample variances,

k
{ﬂf?ﬁ}—{k—lzwi,kzl,i} and  {(512)?} = { 12 Zii — i) } (6.3.3)
=1

for k=1,...,n, n €N, where the weights {w;;} fulfill the previous conditions. To avoid that the
test statistic Bl4(z) was not defined (0,1/n], since the denominator of

P14,[nz] = ZEZZ} (Xi— ﬁnz})(Y ﬂg[)nz})
,Inz ~(2
\/Z?:l(zl,i - Ml(,[ZLz]) Zi:l(Yl i U; [)nz])2

would be zero, we redefine w.l.0.g.

Bl4( ) 07 if z¢ [072/71]7
z) = 2\ Il . X .
n Wry (%) % (Pl4,[-n] - p14,n) , if z € (2/n,1].

Then, under Assumption (IID2) or (NED2) the assumptions of Theorem 4.1.6 and Theorem 5.1.4 are
fulfilled. In particular Assumption (PEE2) is fulfilled with N = N,, = n¥/27¢, ¢ € (0,1) for each
parameter p; and o; such that 6,; = d5; = 1= 26 . Thus, (6.1.3) follows by Remark 6.1.2 and (6.1.4)
is satisfied by setting

(0,nY27€, if j=(1,1,1,1), 1, if j=(1,1,1),
0,2) _ 1/2— eos B _ ) —1/24¢ ¢ i _
77 =4 (n nl, if j=1(2,2,2,2), and bi; T =4qn , if j=1(2,2,2,2),
0, else 1, else.
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We get the corresponding consistent LRV estimate Dlo by Theorem 6.1.7 with p; = p14,, and
q = o(n'/?) if Assumption (LRV2) is satisfied.

In analogy, we can show under Assumption (IID2) or (NED2) combined with Assumption (LRV)
that Té?igjgﬂ and 7'72(7)3,97977 converge as given in Theorem 6.2.1 and Theorem 6.2.2, respectively. If

we combine Assumption (IID2) or (NED2) with Assumption (LRV2) we obtain the convergence of
) (0)

775344,10,7 and Tn(,)L,14,10,'y’ too.

6.3.2 Non-constant Parameters

In this sub-subsection, we present examples where the time series {X,} and {Y,,} possess structural
breaks in the means and the variances. Firstly, we consider the case where the change-points are
known before we consider the case of unknown change-points.

Known Change-Point in the Parameter Firstly, we consider the estimates

k*
w,lr
(3 x « _
Nz(zsz = (ki — ki) ! Z Wik, p—kpgr—1 2k (6.3.4)
k:k;,l,r—1+1
for ie(k};, 1. k;,,] and
KK,
~(4b « « — NE
{(Ul(,i,li)Q} = (k A ka,l,r - ko’,l,rfl) ! Z <Zl,v - ,U'g’i}L)Q (635)
U:k;,l,rflJrl
for i€ (k},, 1.k}, ]. We already know from Sub-subsection 4.3.2 that under (IID2) or (NED2) the

assumptions of Theorem 4.1.13 are fulfilled if R,,;, = o(nl/ 4). Furthermore, under these assumptions
we obtain that

] ]
1 ~ (4b 1 (4
T 2O —ot) = 5 360" — ot +or(1)
=1 =1

where (653111)2 is defined as in Sub-subsection 5.3.2 and differs from (61(32)2 by using the exact mean

;- The above equation immediately follows by the arguments used in the proofs of the results of Sub-
subsection 4.1.1. Thus, if Ry, = o(n'/4), we get under Assumption (ITD2) or Assumption (NED2)
combined with Assumption (LRV2) that Theorem 6.1.1 is available, which follows by Sub-subsections
4.3.2 and 5.3.2.

Next, we consider the example where we replace ﬂl(:?n by

k;,l,r/\k
,\(4’) _ * * —1
Pijen = (KA KL = Kpgpo1) Do Wik, K, Dk
k:k;,l,r—l—‘rl
V’L - (k;,l,’l‘—17k A\ k;,l,T]’ k = 2, cee, T = 1, . ,Rl + 1

which has also been considered in Sub-subsection 4.3.2. With the same arguments and assumptions
as in Sub-subsection 4.3.2 and Sub-subsection 5.3.2 we get the assumed conditions of Theorem 6.1.1
under Assumption (IID2) or Assumption (NED2) combined with Assumption (LRV2).

Unknown Change-Point in the Parameter Now, we suppose that the change-points of the
parameters are finite, unknown, and estimated. Furthermore, we suppose that Assumption (IID2) or
Assumption (NED2) is fulfilled. Then, using the corresponding settings of Sub-subsection 4.3.2 and
5.3.2, we can replace the above exact parameters by their estimates as given by Theorem 2.1.22 to
obtain that the assumptions of Theorem 6.1.1 are fulfilled.
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7 Simulation Study

In this section, we present the finite sample behavior of the tests ¢7 L of the stopping times TT(LCL) bl

and of the change-point estimates k@ under known and unknown, constant or non-constant param-
eters, and under Hj or some alternatives.

Simulation Setup The results, which will be presented in figures or tables, are based on 1000
repetitions, unless otherwise stated. Therefore, we consider the main model

) = )T . 2| g, .

Y; 12, 0 o02:i) \pi /1—p;) \€2,
with independent, centered, and normalized sequences {€;,} and {é,}. Since the behavior of the
test statistics, of the change-point estimates, and of the stopping-times are similar for p; and ps
with p; = —p2, we just consider the negative correlations. Furthermore, we are talking about a strong

or high correlation if |p| € (0.5,1], a moderate or middle correlation if |p| € (0.3,0.5], and a weak or
small correlation if [p| € (0,0.3]. Moreover, in the following we distinguish between

IID) 6171, oo ,61771,6271, oo ,€Q,n are i.i.d. N(O,l),
AR) {é,,} and {é,} areindependent and both AR(1) processes, i.e.

€t = Prei—1 + & with {§,} 1.i.d. N(0,1), ¢1 = 0.4, p2 = 0.5;

GARCH) {¢,,,} and {é,} are independent and both GARCH(1,1) processes,
S ~2 -2 ~2
&t =018t and 0p, =apo+ a1€ 1 +bi107,
{gl,n} ii.d. N(O,l), aio = 08, ail = 015’ bl,l = 005’ a0 = 075’ a1 = 015’ b2,1 = 017
and between
i) pii=p2;=0 and o1;=o09; = 1;
. R
) pui = 2252 DU, )<i<ing,,;)y and 01 = 02; = 1
i) o1 =1+ 300 Agijhiino, . y)<icingor;)y a0d p1i = pi = 0;

. R Ro
V) pi =352 A ne,  _1<i<ing, )y and o1 =143 700 Aoy g, o 1<i<ing, )}

In the following sections we will specify ii) to iv) and if we talk about the constant parameter case,
we actually mean case 1).

7.1 A Posteriori Testing

In this subsection we consider the behavior of the testing procedures ¢7 Wil based on the test statistics

k
. . . 1
bl _ ¢ [ H1/2 n\ [n] . . AP A e )
n i ( 1 Wy Jn (plb,['n] pi/%n) with Py k k ;:1: ik

n
where
(Xi—lt;,liz;g/i—uz,i), if =0,
S() N v ()
(¥) (Xi_ﬂ 77‘-,k)'(Yi_M ,i,k) . o
Zi,k = 101’102’1, 2 , if p=1,....4,
(Xi—p1,4)-(Yi—p2,4) . _
0T 50 , if ¥ =5,...8

91,i,k92,i,k



A POSTERIORI TESTING

and

X; — (7/)1)) (Y; — A(l/{1))
() _ (4+¢1+4¢2) ( 45,1 i Mok o
sz - Z YZ)Q]zAéw?lz for wl,wQ = 1,...,4.

Firstly, we specify the parameter estimates, then the corresponding LRV estimates, the weighting
function w,, and finally the detection function f,, before we will present the behavior of the test
statistics.

Parameter Estimates In the following, we focus on the mean estimates :“1(72 ) ,ul(Qk), /ll( Z)n, and /ll(?k:
which are defined in (4.3.2) on page 82 (sample mean), in (4.3.3) on page 82 (cumulative average),
in (4.3.5) on page 85 (piecewise sample means), and in (4.3.11) on page 86 (piecewise cumulative
averages) with weights w; ; = 1, respectively. For the variance we focus on the estimates defined in
(5.3.2) on page 112 (sample variance), in (5.3.3) on page 113 (cumulative average of the squares), in
(5.3.5) on page 113 (piecewise sample variances), and in (5.3.6) on page 113 (piecewise cumulative
averages of the squares) with weights w;, = 1, respectively. Furthermore, we use the exact means for

Zi(llﬁ), ¥ = 5,...,8, and their corresponding variance estimates. The piecewise estimates depend on
Ch’amge—point estimates for the corresponding change-points in the parameters. In this subsection, we
use change-point estimates for the change-points in the parameter types of the form defined in (2.1.33)
with (3, = y/n. In particular, in the case of unknown means and variances, 1 > 8, the change-point
estimates of structural breaks in the variances depend on the change-point estimates of the structural
breaks in the means. In addition to these estimates we will use the sliding window estimate type with
h =n=3/5 for the means which is defined in (4.3.14) in the case of 1) = *.

LRV Estimates The LRV estimates depend on the choice of the parameter estimates, i.e., the
index [ depends on 1. More precisely, we use

Dy - _1ZZI<<1_J> w0 o)W o) (7.1.1)

=1 j=1
with
Wi ={z it p=01359,...12, W ={zV it g =24
w AT S 1XG = ma) 61T+ (Y= )/ (63 )2, it 1 =68,
Wit = -1 _ (X )/ i) a5 g V=44 U+ gy,
i 2

’ o =24,

the Bartlett kernel k, and the bandwidth ¢, = log(n). For ¢ = % we use Dy. Thus, some LRV
estimates are equal to each other, e.g. Dy = Ds. Since we use only one LRV estimate for one 1, we
will omit the index [ of the test statistic and detector in the following.

Weighting Function Figure 3 shows the weighting function

wy(2) = (2-(1=2))77, 7 €[0,0.5),

which will be used in the following. With this weighting function we can highlight the beginning
and the end of the process to detect early and late changes better. v = 0.5 is excluded since
SUP¢(0,1) Wy(2)|B(2)| would be infinite almost surely.

Detection Function Later, we will consider the asymptotic size of the detectors. Therefore, we
have to specify the function f,. In the following, we focus on the three functions

1 1 1
filg0) = sup lg2)l, f2<g<~>>=< / |g<z>2dz) - o) = [ ool (7.1.2)

z€[0,1]
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Figure 3: The graph of w, with v =0 (black), v =0.15 (red), v = 0.25 (green), v = 0.45 (blue), and
v=0.49 (cyan).

where it holds that fi(g) > f2(g) > f3(g). Furthermore, the test statistic ¢;, .(X,Y) is more sensitive
for single outliers than ¢;, .(X,)Y) for is > iy, i1,ip € {1,2,3}.

In the Sections 2, 4, 5, and 6 we have seen that the test statistics converge towards f,(B,(-)) with
B, (-) = wy(-)B(-), where B(-) is a standard Brownian bridge and w,(z) = (2(1 —z2))"". Table 1
gives the approximate critical values such that P(f,(By) > cay) = .

1—a Tlo 0.25 0.45 0.49 0 0.25 0.45 0.49 0 0.25 0.45 0.49
0.9 1.215 1.804 2.678 3.037 | 0.59 0.886 1.267 1.372 | 0.499 0.767 1.113 1.205
0.95 1.351 1.982 2.898 3.272 | 0.68 1.018 1.445 1.558 | 0.584 0.893 1.289 1.396
0.99 1.616 2.34 3.338 3.751 | 0.859 1.279 1.808 1.946 | 0.75 1.149 1.652 1.788

Table 1: Critical values ca,, based on 40000 replications of fi(By), f2(By), and f3(By) (from left to right),
where B, was approximated on a grid of 10000 equi-spaced points in [0;1].

7.1.1 Influence of the Mean Estimates under H

In this subsection we consider the influence of the mean estimates on the test statistics. That there
is an influence through the mean estimation becomes obvious in the following IID) example with
pi = 0.5, o01;=o092; =1, and n = 1000 presented in Figure 4. Since the LRV is equal to 1 + p(z)
for each process, we drop this factor. On the one hand, the influence of structural breaks in the mean
is small if the structural breaks are only in one time series, on the other hand, it is high if shifts
in the means occur simultaneously in both time series, cf. the last row of Figure 4. Furthermore, it
is obvious that the two processes using change-point estimates in the means behave like the process
which depends on the exact means.

Marginal Distributions To begin with, we look at the constant parameter case i). Figure 5 and
Figure 6 show the empirical marginal distribution of a Brownian bridge, B?L’O, B}{O, B?{O, B%O,
By°, and Bj" in the cases of IID) and of GARCH), respectively.
Firstly, we see that all the marginal distributions of the test statistics approximate those of the
Brownian bridge similarly well. In particular, the test statistics, which are based on change-point
estimates for the mean, are nearly the same as the corresponding ones of B and B2Y.
Secondly, we recognize that all the test statistics seem to converge. Moreover, we identify that a high
correlation causes that there are more outliers at the beginning and the end of the processes B;?
which implies the left-skewed curves. Furthermore, we note that the curves for a positive correlation
are symmetric to the plotted one. In particular, the curves are a little right-skewed in cases of high
correlation.

In the case of GARCH) the empirical marginal distributions are quite similar to the IID) case. In
the case of AR) with 7 = 100 the mean estimates untruly register structural breaks in the mean. As
a consequence the detectors B}L’O and B%O differ from the detectors B,B{’O and Bﬁ’o. In particular,
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Figure 4: The left column contains the graphs of two fixed i.i.d. N(-,1)—processes with correlation po = 0.5. The
right column contains the processes D71/2%|ﬁ¢’k — pyn| with ¢ equal to 0 (red), 1 (black), 2
(gray), 3 (black dotted), 4 (gray dotted), and * (blue).

131



SIMULATION STUDY

-15

w0 0
T T

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Figure 5: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B%? (orange), BL° (yellow), B2° (green), B3° (blue), B>° (cyan),
and B;° (black) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n
is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is
approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by

the 'R’-function 'LOESS’. For B3° and BA° we use B, =+/n. For B:° weuse h= n=3/5.
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Figure 6: Caption as of Figure 5 with 1000 repetitions of case c).
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ByY has many outliers. This is pandered by high positive or high negative correlation. For higher
sample sizes like n =500 or n = 1000 the change-point detectors for the mean work almost exactly
such that Br? and B2 are nearly equal to B3Y and Bﬁ’o, respectively.

Now, we consider the cases of non-constant means ii) but known constant variances o;; = 1 under
Hy with the mean settings

1, ifi<n/4,
M1 = {0’ else/ and po; =0, (L)
_J1, ifi <n/4, f1, ifi<n/4,
H1i = {0, else and 2= {0, else, (Hu)
(4, iti<n/2, C[1, ifi<n/4,
L= {0, else and H2i = {O, else. (TTT,)

We already know from Remark 4.1.5 that the tests based on

po =10

-15
1

w© w0
T .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B%° (orange), Br° (yellow), B2° (green), B3° (blue), BA° (cyan),
and B;® (black) are calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n is taken
as 100, 500, and 1000 in the left, middle, and right column. A column contains the mean models
(I.), (II,), and (III,). Each Brownian bridge is approximated by a Fourier series with 1000 supporting
points and the quantile curve is smoothed by the 'R’-function 'LOESS’. For B3° and BX° we use
Bn = /n. For B weuse h= n3/5,
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setting since the limit depends on the unknown structural breaks in the means. Nevertheless, we will
also consider their empirical marginal distribution to verify the influence.

Since the correlation p has the same influence on the detectors as under the constant mean setting,
we will just consider the case of p; = 0. Figure 7 shows that a small structural break in the mean
induces nearly no problems in the asymptotic behavior in the case of n = 1000. Thus, all quantiles
of the marginal distribution of the five processes are near the exact quantiles in the cases displayed
in (I,) and (II,). In cases of high structural breaks in the mean such as in (III,) only the processes
based on the sliding window estimation or based on the change-point estimation work well, cf. row
three of Figure 7.

Empirical Size Since the empirical sizes of the tests in the cases of IID), AR), and GARCH) are
quite similar, we will only focus on the case of AR). In this case combined with case i) the empirical
size of each detector, with few exceptions, is near the postulated 5%, cf. Table 2. Furthermore, the
detectors based on f; are slightly conservative for n = 100. We get similar results in the cases of
IID) and of GARCH). In particular, the value of the constant correlation p is independent of the
behavior of the test statistics.

f1 f2 f3
v 0 .25 45 49 0 .25 45 49 0 .25 45 49

p=-0.9
100 7o .031 .03 .037 .03 .047  .043 .041 .036 | .053 .048 .036  .031
Ty .028 .031 .035 .028 | .052 .046 .037 .034 | .049 .044 031 .026
T .031 .034 .028 .02 .054 .047 .039 .038 | .052 .05 .037  .034
#) o5 | 029 .027 031 .027 | .046 .042 .033 .031 | .049 .047 .033  .029
#) oy | 034 .038 034 .026 | .049 .046 .043 .041 | .05 .048 .038 .036
¢;7 | .05 .051 .054 .04 .081 .077 .067 .065 | .078 .072 .062 .061
500 Vo .048 .053 .082 .077 | .062 .061 .058 .057 | .058 .061 .056 .053
Ty .051 .054 .082 .073 | .063 .059 .057 .056 | .06 .06 .054  .052
6 .054 .054 .064 .057 | .06 .063 .057 .056 | .062 .062 .055 .053
#) 53 | 052 054 .082 .073 | .063 .059 .057 .056 | .06 .06 .054  .052
# o4 | 055 .054 064 .057 | .06 .063 .057 .056 | .062 .062 .055 .053
¢;7 | .074 .08 109 .09 .086 .085 .087 .087 | .082 .083 .079 .076
p=-—0.5
100 7o .028 .028 .029 .024 | .055 .051 .04 .039 | .056 .05 .043 .04
vy .027  .023 .029 .022 | .0A3 .051 .042 .039 | .052 .048 .042 .041
3 .036 .032 .026 .015 | .061 .054 .044 .042 | .053 .05 .044 .04
B a5 | 023 .02 .025 .018 | .049 .05 .036 .034 | .044 .041 .034 .034
Vos | 035 .031  .027 .019 | .05 .046 .038 .035 | .046 .044 .036 .032
¢;7 | .043 .045 .043 .037 | .087 .074 .061 .061 | .079 .065 .053  .049
500 Vo .055 .05 .068 .055 | .059 .06 .055 .055 | .068 .057 .054 .053
Ty .054 .05 .06 .056 | .055 .056 .055 .051 | .055 .056 .053  .053
T .057 .053 .03 .038 | .0564 .054 .049 .047 | .052 .052 .048  .047
#) 53 | 054 .05 .06 .056 | .054 .055 .054 .051 | .054 .055 .053  .053
Jos | 057 .052 .053 .038 | .053 .053 .049 .047 | .052 .052 .049 .047
¢;7 | .079 .08 .099 .087 | .084 .089 .086 .082 | .083 .085 .078 .076
p=0
100 o .026 .023 .016 .013 | .053 .051 .042 .04 .053 .049 .043 .04
o .028 .025 .017 .01 .068 .05 .04 .037 | .052 .048 .04 .038
T .031  .027 .015 .01 .056 .051 .035 .035 | .047 .041 .035 .034
Vos | 027 .022 .012  .009 | .052 .043 .037 .035 | .048 .045 .035 .031
Vos | 031,029 .018 .011 | .051 .045 .034 .032 | .044 .04 .031  .029
¢;7 | .032 .028 .024 .016 | .094 .087 .072 .068 | .088 .081  .068  .066
500 Vo .048 .047 .053 .048 | .055 .057 .056 .054 | .055 .057 .053  .051
Ty .047  .045 .046 .043 | .055 .053 .052 .049 | .0563 .052 .053  .049
T .049 .043 .044 .04 052 .053 .049 .047 | .048 .049 .047 .043
})o5 | 047 045 045 .042 | .054 .053 .052 .049 | .053 .052 .052  .048
Vos | 049 044 048 042 | .052 .055 .05 .048 | .049 .05 .048  .044
¢;7 | .079 .083 .087 .07 .078 .08 075  .072 | .069 .07 .067  .064

Table 2: Empirical sizes of the detectors in the case of AR) under constant parameters.
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Now, we focus on the empirical size under structural breaks in the mean, i.e. under the case ii).
Firstly, no detector unjustified rejects Hq very often in the cases of (I,), (II,), or (III,). Therefore,
we just focus on case (III,), cf. Table 3. It turns out that the test ¢Z1> which is based on the sample
mean, is too conservative except for d)?,l in the case of small correlations. The other tests, and even

¢Z3, work well.

f1 fo f3
n v 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49
100 ZO .025 .024 .032 .03 .04 .037 .035 .034 .043 .037 .035 .034
¢7723 .026 .024 .028 .025 .038 .036 .03 .03 .04 .036 .03 .029
¢7724 .032 .033 .029 .017 .047 .041 .035 .034 .049 .046 .036 .036
qi):”y .028 .027 .029 .021 .046 .042 .033 .032 .043 .042 .033 .03
1000 ZO .038 .038 .062 .056 .051 .051 .049 .046 .05 .051 .047 .046
(1)7,23 .043 .041 .065 .069 .053 .054 .048 .047 .056 .057 .051 .05
(1)7)24 .044 .045 .061 .059 .058 .057 .052 .053 .058 .057 .053 .052
¢:”Y .044 .044 .059 .062 .047 .048 .046 .047 .053 .055 .05 .05
100 70 .024 .024 .023 .018 .04 .036 .031 .031 .04 .036 .03 .029
¢3}723 .025 .021 .018 .015 .041 .041 .034 .032 .043 .042 .034 .032
¢7 o4 .028 .032 .028 .022 .051 .044 .039 .038 .049 .047 .039 .037
d)f”y .02 .021 .016 .012 .039 .037 .033 .033 .042 .039 .036 .032
1000 ZO .044 .044 .055 .056 .052 .053 .047 .046 .049 .049 .046 .046
¢)223 .041 .041 .057 .057 .054 .053 .05 .045 .055 .057 .053 .052
d)L,24 .053 .057 .062 .046 .059 .062 .059 .057 .062 .063 .058 .056
d):w .052 .046 .06 .057 .056 .058 .05 .049 .054 .051 .051 .051
100 ’LYO .019 .013 .01 .005 .035 .03 .025 .023 .032 .03 .024 .023
¢?}23 .017 .007 .004 .002 .038 .034 .028 .025 .038 .033 .029 .024
¢?}24 .023 .018 .01 .007 .048 .045 .031 .027 .047 .043 .035 .027
d)f”y .027 .023 .008 .002 .039 .034 .029 .027 .035 .03 .026 .023
1000 770 .044 .045 .045 .038 .047 .044 .041 .041 .043 .046 .042 .041
d)ZQS .041 .044 .037 .034 .051 .056 .053 .049 .048 .048 .046 .046
¢>L’24 .05 .054 .045 .04 .063 .063 .058 .056 .06 .06 .057 .054
¢:,'y .053 .051 .042 .033 .055 .054 .051 .05 .049 .05 .048 .048

Table 3: Empirical sizes of the detectors in the case of IID) combined mean setting (III,,)
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7.1.2 Influence of the Variance Estimates under Hj

In this subsection, we consider the influence of the variance estimates on the test statistics. An
influence of the variance estimates becomes obvious through Figure 8 which presents an IID) example
with p; = 0.5, p1; = s = 0, n = 1000, and different variances. As the theoretical results
postulate, if the variances are constant, the four processes B;’f 0 with ¥ =5,...,8 behave as BYY.
In contrast, if the variances change, only B5Y s useful and behaves as BY°. To get a more precise
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Figure 8: The left column contains the graphs of two fixed i.i. d N(0,-)— processes Wlth correlation po = 0. 5 The

right column contains the processes Dw ﬁ|pw,k—pw,n| with 1 equal to 0 (red), 5 (black), 6
(gray), 7 (black dotted), and 8 (gray dotted).

impression on how good the different testing procedures work, we firstly analyze the (asymptotic)
marginal distributions of the processes.

Figure 9 and Figure 10 show the empirical

Marginal Distribution Firstly, we look at case 1i).
50, Bfi*“, BZ’O, and BS° in cases of IID) and

marginal distribution of a Brownian bridge, BS’O, By
of GARCH), respectively.

The marginal distributions of B and of B3® do not approximate the marginal distribution of
the Brownian bridge well in the case of p = —0.9 at the beginning. In contrast, each approximation
works well for p = 0. In the latter case, the main influence of the variance estimates is asymptotically
not visible, cf. Remark 5.1.6.
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Figure 9: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal distribution
of the Brownian Bridge (red), B2° (orange), B.° (yellow), BS°® (green), Bo° (blue), and BS°
(cyan) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n is taken as
100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is approximated by
a Fourier series with 1000 supporting points and the quantile curve is smoothed by the 'R’-function
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Figure 10: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal
distribution of the Brownian Bridge (red), B%° (orange), B3° (yellow), BS® (green), B.° (blue),
and B2° (cyan) on [0,1] calculated by 1000 repetitions of AR-processes defined in the case of
c). n is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is

approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by
the ’R’-function 'LOESS’.

137



SIMULATION STUDY

Secondly, the convergence of each test statistic seems to take place, even in the case of p = —0.9.
In case GARCH) the empirical marginal distributions is quite similar to case IID). In case AR) we
notice a little more fluctuation in the empirical marginal distribution.

Now, we consider case iii) with known constant means f;; =0 but non-constant variances

2, ifi<n/2
O'ii = {17 else/ and J%Z» =1, (I5)
1, ifi<n/2 1, ifi<n/4
2 ) = ) 2 o ) = )
E {27 else and 92, {2, else, (o)
or
1, ifi<n/2 0.5, ifi<n/4
2 ) = ) 2 L — ) = )
TLi = {2, else and T2, { 1, else. (IM,)

Figure 11 shows the empirical marginal distribution of our processes under the structural breaks in
the variance. The process B%Y is more concentrated in zero than the standard Brownian bridge
in cases of (I,) and (IIl,). In case of (II,) the process BS°, (green), possesses a higher fluctuation
than the Brownian bridge. The process B;?O, (yellow), behaves quite similarly to BS’O. Additionally,
before the change in the variance appears, BYY s a little more [less] fluctuated than a standard
Brownian bridge in cases of (I,) and (III,) [in the case of (II,)]. The empirical marginal distribution

po =

— — —
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Figure 11: Each figure contains the 0.01, 0.05, 0.25 0.5, 0.75, 0.95 and 0.99-quantiles of the marginal
distribution of the Brownian Bridge (red), BY° (orange), Bi° (yellow), BS° (green), BL° (blue),
and B2%° (cyan) on [0,1] calculated by 1000 repetitions with i.i. N(0,1)-distributed innovations. n
is taken as 100, 500, and 1000 in the left, middle, and right column. Each Brownian bridge is

approximated by a Fourier series with 1000 supporting points and the quantile curve is smoothed by
the 'R’-function 'LOESS’.
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curves of the processes BM and BS’O, which are based on change-point estimates for the variances,
run closely along those of the standard Brownian bridge.

Empirical Size Now, we focus on the empirical sample size of the tests which are based on the
variance estimates. Firstly, we note that the cases a), b), and ¢) are quite similar. Thus, we will only
focus on the AR-case b) in the following.

qﬁzo and qﬁzl are equal, which is no surprise since the variance estimates are canceled by the LRV
estimates. Secondly, we note that ¢Y76 and gblg falsely reject Hp quite often in the case of high
correlations and small sample sizes. For n = 1000 and p = —0.9, these two tests only work well for
~ = 0. This behavior has already been suggested by the empirical marginal distribution curves. <;57723
is conservative in the case of high correlations or p = 0 with small sample size. Overall, the tests
based on fy9 or f3 hold a better approximation for the given level of 5%.

f1 f2 f3
v 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49

p=-0.9
100 7o .026 .027 .035 .031 | .052 .048 .04 .036 | .054 .05 .039 .036
®) 4 .026 .027 .035 .031 | .052 .048 .04 .036 | .054 .05 .039 .036
ies | 17 249 293 278 | .093 .097 .103 .107 | .073 .068 .065 .062
¢ 93 | 006 .007 .006 .006 | .01 .006 .006 .004 | .009 .008 .004 .003
s 195 275 308 294 | .087 .088 .094 .098 | .075 .072 .059 .058
1000 7o .041 .043 .063 .068 | .046 .045 .04 .039 | .045 .045 .043 .039
¢, .041 .043 .063 .068 | .046 .045 .04 .039 | .045 .045 .043 .039
¢i6s | 06 103 253 264 | .058 .057 .051 .05 .053 .053 .051 .05
¢ 03 | 026 026 038 .042 | .028 026 .026 .025 | .028 .028 .026 .024
s .06 105 .25 .263 | .056  .057 .053 .053 | .052 .052 .048 .048
p=-0.5
100 7o .02 .02 029 .023 | .042 .038 .031 .025 | .045 .04 028 .027
3 .02 .02 .029 .023 | .042 .038 .031 .025 | .045 .04 .028 .027
¢l6s | 076 .081 .071 .056 | .075 .069 .063 .061 | .072 .063 .054 .052
¢ 53 | 009 008 .011 .008 | .022 .019 .016 .013 | .018 .017 .015 .014
s .058 .057 .059 .039 | .05 .049 .038 .037 | .049 .046 .037 .035
1000 7o .046  .046 .072 .065 | .047 .046 .042 .042 | .043 .045 .042 .041
3 .046 .046 .072 .065 | .047 .046 .042 .042 | .043 .045 .042 .041
¢l6s | 052 054 074 .067 | .052 .051 .047 .047 | .046 .046 .043 .042
¢ 03 | 037 033 .044 044 | .038 .037 .032 .032 | .036 .038 .034 .033
s .055 .054 .069 .061 | .05 .052 .049 .049 | .049 .045 .042 .04
p=0
100 7o .024 .028 .029 .019 | .054 .052 .045 .04 .057 .053 .041 .039
Ty .024 .028 .029 .019 | .054 .052 .045 .04 .057  .053 .041 .039
qﬁzf,&s .051  .057 .037 .022 | .062 .057 .03 .048 | .064 .058 .048 .048
¢/ 03 | 024 021 .016 .008 | .051 .047 .038 .037 | .05 .044 .038 .036
Ol s .05 .042 .02 .013 | .059 .051 .041 .038 | .052 .05 .04 .038
1000 7o .054 .055 .054 .049 | .059 .059 .059 .058 | .056 .058 .055 .054
3 .054 .055 .054 .049 | .059 .059 .059 .058 | .056 .058 .055 .054
¢;{,675 .06 .059 .047 .04 .059 .06 .058 .058 | .054 .058 .056 .054
¢/ 03 | 052 053 .049 .039 | .054 .056 .058 .056 | .054 .056 .053 .053
s .058 .057 .046 .032 | .057 .058 .056 .054 | .055 .056 .054 .051

Table 4: Empirical sizes of the detectors in the AR~case b) combined with case i)

Now, we focus on the behavior of tests under the case of iii) with the settings displayed in (I,),
(II,), and (III,). From Section 5, we already know that only the test qZ)ZS is useful. Again, we
remark that the behaviors are similar under cases IID), AR), and GARCH). Hence, we will only
analyze the GARCH-case ¢) in the following, cf. Table 5. The tests QSZS, i1 =1,2,3, are conservative
for small correlations (p = 0), while qﬁlg can not hold the given level o = 0.05 for high correlations
(p = —0.9). Overall, the test ¢ZS works well.
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fi ) f3
n v 0 .25 45 49 0 .25 45 49 0 .25 45 49
p=-09
100 .023 .026 .035 .031 | .048 .043 .036 .034 | .046 .041 .037 .034

(I») 2215 312 332 31 .091  .097 .102 .104 | .073 .074 .064 .063
(I1,) 193 285 297 .276 | .077 .082 .083 .082 | .065 .059 .05  .047
(I1I,) | .185 .275 .296 .282 | .084 .088 .101 .098 | .068 .067 .062 .06

1000 .039 .054 .076 .076 | .054 .056 .056 .055 | .057 .057 .054 .053
(I») 087 128 .289 .288 | .069 .066 .063 .063 | .058 .06 .057 .054
(I1,) 073 119 278 274 | .06 .061 .059 .059 | .057 .06 .058 .055
(Ill,) | .079 .131 .279 .277 | .065 .067 .066 .063 | .063 .062 .061 .059
p=-0.5
100 025 .025 .029 .026 | .046 .04 .034 .032 | .043 .042 .037 .036
(I») .049 .064 .059 .047 | .047 .045 .039 .035 | .046 .046 .038 .037
(I15) .06 .058 .0564 .043 | .061 .06 .052 .051 | .057 .053 .043 .039
(I1ly) | .077 .09 .089 .078 | .056 .053 .051 .049 | .0567 .051 .044 .042
1000 .041 .043 .065 .06 .049 .05 .051 .05 | .055 .054 .052 .051
(Is) .048 .057 .079 .076 | .061 .058 .056 .054 | .054 .058 .063 .051
(I1s) .047 .053 .061 .06 .047 .048 .05 .049 | .05 .052 .052 .05

(IT1,) | .041 .041 .05 .057 | .046 .047 .046 .045 | .047 .05 .05 .049
p=0
100 .014 .015 .018 .015 | .037 .029 .029 .028 | .041 .037 .03 .028
(I») .031 .027 .013 .007 | .039 .035 .031 .029 | .038 .036 .028 .028
(I1,) .043 .043 .023 .012 | .052 .048 .038 .036 | .053 .048 .038 .034
(Ill,) | .06 .055 .026 .012 | .056 .056 .049 .048 | .056 .056 .05  .046
1000 .039 .049 .062 .052 | .05 .049 .05 .047 | .044 .046 .041 .04

(I) .043 .054 .06 .039 | .058 .056 .052 .049 | .045 .045 .04 .041
(I1,) .035 .039 .03 .021 | .034 .035 .037 .036 | .029 .031 .028 .027
(I1I,) | .035 .035 .03 .018 | .037 .037 .035 .036 | .036 .036 .035 .033

Table 5: Empirical sizes in the GARCH-case c) in the settings (I,), (II,), and (III;) of the detectors ¢, and
1778. The empirical sizes of ¢7,0 is in the first row of each block and is independent of the settings.

7.1.3 Influence of the Combination of Mean and Variance Estimates under H

In this sub-subsection, we consider the test statistics which use the mean and variance estimates
BY', BM7. B27 and B2 and compare them with the test statistic BY” based on the known
parameters. The marginal distributions behave as in the sections before. If the means are constant,
the marginal distribution curves are alike the ones in the cases of Sub-subsection 7.1.2. If structural
breaks in the means or variances occur, the same impact as described in Sub-subsection 7.1.1 and
Sub-subsection 7.1.2 shows up.

Now, we consider the empirical size. Table 6 shows that the tests ¢ and ¢J. work well with the
exception of gbl, in the case of high correlations (p = —0.9) and a large7 v. In case of high correlation
only ¢¥79 can hold the given level of a = 0.05 for all v € {0,0.25,0.45,0.49}. If additionally the
sample size is high (n = 1000), then every gi)[l)’, works well. Overall, it seems that the tests gi);w and
qﬁgw hold the empirical size of 5% better than gi)l v

Now, we allow for structural breaks in the parameters. Table 7 presents the empirical sizes under
Hy of the non-useful tests gézg and (257,1 4 in the case of non-constant parameters with the settings
(I1,) and (II;). It is confirmed that the tests are non-useful since they often untruly reject the null
hypothesis.

In the following, we focus on the empirical sizes of the tests ¢7’23 and ¢7,24’ which respect
changes in the means and variances by change-point estimates. Tables 8-11 present their empirical
sizes under the mean setting (II,,) combined with constant variances or variances fulfilling (I, )—(IIl,).
Comparing their empirical sizes with the constant parameter setting, cf. Table 6, the structural breaks
in the means and variances are sufficiently well estimated such that the sizes are merely a little higher.
Additionally, we assert that in most cases the empirical sizes of ¢723 are a little lower than the ones
of ¢Z24‘ However, we can summarize that both test types work well.
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J1 f2 f3

U 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49
p=-—0.9
100 d)b 0 .029 .029 .063 .06 .043 .041 .037 .037 042 .04 .034 .033

¢>79 .027 .032 .056 .049 | .047 .044 .037 .037 .04 .041 .034 .03
¢l | 125 241 345 .337 .092 .099 .109 .109 .079  .077 073 .072

¢>7723 1 15 255 271 .066 .07 .074  .076 | .056 .058 .058 .052

¢>:’724 168 271 .368 .35 102 108 122 124 | .087 .087  .086 .082

1000 0 .055 .057 .077  .079 .052 .053 .052 .052 | .055 .056 .0563 .051
(bZQ .054 057 .077 .081 .056 .057 .055 .057 .053  .058 .057  .055

¢:{714 .077 .081 .321  .342 .074 .078 .069 .067 072 .07 .065  .062

\23 .076 .086 .161  .203 .071 .076 .069 .067 .066  .066 .06 .058

¢>724 .081 .085 .317 .331 .077 .078 .071 .067 .069 .072 065  .062

p=—0.5
100 ¢ 028 .035 .056 .049 | .048 .051 .046 .043 | .042 .041 .036 .035

b .027  .038 .052 .046 .042  .043 .04 .036 .042 .04 .032  .032
o)1, | 091 116 174 169 .098  .098 .092  .087 .091 .094 .083 .079
/ .057 069 .069 .065 .062 .057 .051 .051 .055  .055 .048 .046
¢724 .087 119 159 149 .085 .088 .076 .073 .08 077 .067  .062
1000 7o .056 .06 .079  .079 .061 .063  .057  .056 .051 .05 .05 .044
:’;9 .05 .06 .078 .074 .059 .056 .054 .053 | .05 .052 .046  .043
¢, | 067 .063 .076 .081 .065 .065 .059  .058 .061 .063 .061 .06
¢:/23 .069 .061 .073 .071 .062  .063  .061 .062 .06 .06 .057  .057
¢ oy | 07 .064 .077 .076 .067  .067 .062 .06 .062 .063 .061 .059
p=20
100 7o .019  .023 .041 .034 .057  .053  .048  .044 .048 .049 .046 .045
(15:{9 .023 025 .038 .032 .052  .055 .049 .044 .054  .051 .047  .042
¢:’;14 .068  .075 .062 .042 .078  .081 .084  .082 .086 .08  .077 .073
¢:"23 .04 .041  .038 .023 .061 .063 .058 .051 | .066 .066 .059 .056
Vo4 | 054 062 055 .04 .077 077 .066  .063 071 .072 .067  .062
1000 ZO .05 .05 .07 .063 .063  .052 .048  .045 .048 .048  .048 .045
o7y .047  .047 .067 .065 .052  .053  .051 .048 .05 .052 .049  .047
@71, | 048 .05 .054  .047 .051 .05 .047  .046 .052  .051 .05 .048

¢>L723 .049 .044 .047 .037 .05 .048 .047 .043 .052  .053 .049  .048
¢7724 .05 .048 .048 .039 .048 .048 .043 .043 .051  .052 .049  .046
Table 6: Empirical sizes of the detectors in the AR-case b) with constant parameters.
f1 f2 f3
" U 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49
p=—0.5

100 ZO .018 .025 .048 .037 | .056 .052 .047 .045 | .03 .05 .042  .038
d’jg 135 127 .075 .054 | .301 .282 257 245 | 279 268 .245  .235
¢:’]14 275 279 231 181 | 221 219 2 197 | 188 .18 .16 154
1000 ZO .06 .058 .075 .072 | .055 .062 .059 .059 | .055 .056 .055 .054
(;529 997 997 .994 989 | 997 997 .996 996 | 997 997 997 996
¢>7 14 | 778 784 .699 616 | .689 .702 697 698 | .666 .669 .663 .658

Table 7: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (II,) and (I,)

f1 f2 f3
n v 0 .25 .45 .49 0 .25 .45 .49 0 .25 45 .49
=075
100 770 .026 .033 .067 .066 .05 .047 .046 .046 .051 .048 .046 .044

@) o5 | 143 172207 .189 119 111 .101 .102 .098 .094 .089 .084
6oy | 211 255 .32 .299 153 143 .136 135 123 119 109 108
1000 7o .051 .054 .092 .098 .051 .051 .048 .045 .047 046 .046 .044
¢j23 .09 .097 157 187 .085 .081 .077 .074 .072 075  .072  .069
¢3}24 .097 103 .31 324 .081 .082 .078 .077 .07 .073 .068 .067

p=—0.5
100 ZO .034 .036 .061 .06 .059  .058 .057 .055 | .069 .065 .057 .053
¢123 .091 .08 .064 .048 | .083 .078 .066 .064 | .072  .069 .059  .055
Voy | 118 124 126 107 | .102 .1 096  .094 | .08  .081 .072 .069

1000 ZO .063 .05 074 .088 .055 .055 .065 .054 | .055 .058 .057 .053
‘157,23 .068  .068 .068  .067 .065 .063  .062 .06 .064 .065 .061 .059

¢y | 067 069 .082 077 | .068 .069  .062  .062 .061 .061  .059 .058

p=20
100 7 .037 .03 039 .027 053 .052  .051 .047 .052 .054 .045 .042

¢>223 .057 .055 .035 .023 .07 069  .063 .06 .069  .066 .058 .057

¢lyy | 082 085 .057 .04 .088 .09 .086  .083 .08 .08 .079  .077

1000 7 .066  .053 .067 .067 | .057 .059 .058  .058 .061 .061 .059 .057
¢7723 .0567  .055 .043  .036 .062 .061 .065  .064 .061 .064 .061 .059

¢ oy | -06 .056 .047 .037 | .063 .066  .067  .065 .062  .063 .063 .06

Table 8: Empirical sizes of the detectors in the AR-case b) with mean setting (II,,)



f1 f3
n v 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49
p=—0.75
100 d)L,O .021 .033 .06 .053 | .05 .052 .054 .052 | .053 .054 .052 .046
d):/723 A1 137 .196 .194 .083 .079 .075 .075 .068  .067 .065 .062
¢224 182 .239 .339 .324 .107 11 112 113 .09 .088 .08 .077
1000 ¢ZO .047 .048 .09 .09 .05 .052 .049 .048 .049 .05 .049 .047
¢Z23 .083 .084 152 181 .064 .065 .061 .061 .059  .059 .055 .053
¢y | -084 .085 .301 .33 .061 .06 .059 .058 .056  .054 .055 .053
p=-05
100 7o .026 .038 .057 .046 | .053 .052 .048 .047 .052  .051 .045 .042
¢j23 .063 .061 .07 .058 .063 .063 .052 .05 .063  .059 .053 .049
¢j24 .087 .098 132 123 .071 .071 .065 .062 .069  .067 .063 .056
1000 ? 0 .039 .047 .081 .084 .043 .046 .044 .044 .043  .045 .045 .043
/93 | -052  .053 .071 .065 .06 .057 .052 .052 | .055 .055 .05 .049
d):/24 .055 .057 .075 .077 .059 .058 .053 .053 .055 .056 .051 .05
p=0
100 ¢)L70 .018 .025 .029 .026 .051 .049 .04 .039 .05 .051 .04 .037
(;5123 .037 .043 .03 .019 .06 .06 .052 .049 | .057 .056 .047 .042
Vo4 | -05 .055 .043 .03 .076 .072 .065 .061 .072  .068 .059 .054
1000 ¢L,O .035 .036 .054 .063 .047 .048 .042 .043 .047  .046 .046 .042
d)ZQS .045 .045 .049  .037 .047 .052 .051 .048 .049  .052 .05 .047
¢224 .046 .049  .048 .035 .051 .051 .052 .05 .051  .055 .05 .05
Table 9: Empirical sizes of the detectors in the AR-case b) with mean and variance setting (II,,) and (I,)
f1 f2 f3
n U 0 .25 .45 49 0 .25 45 .49 0 .25 .45 49
=075
100 7’0 .027 .04 .056 .047 | .052 .05 .047 .045 .05 .047 .045 .045
(Z)Z23 152 168 199 183 115 .107 .096 .098 092  .088 .078 .076
7. | 231 281 320 311 | 120 134 133 132 | 107 106 095  .091
1000 d):{,O .058 .055 .083 .086 .051 .052 .051 .049 | .047 .051 .049 .047
¢Z23 .094  .085 .136 .165 .074 .077 077 .073 073 .074 .07 .067
)5y | 092 095 .298 .319 .074 .077 .076 .074 .068  .069 .067 .063
p=—-05
100 d)ZO .018  .025 .048 .037 .056 .052  .047 .045 .053 .05 .042 .038
¢>7723 .085  .089 .072 .059 .075 .069 .068 .062 .06 .059 .057 .052
:/724 121122 139 116 .081 .082 .076 .076 .076  .077 .069 .067
1000 ¢L,0 .06 .058 .075 .072 .055 .062 .059 .059 .055 .056 .055 .054
¢7723 077 .075 .081 .069 .072 .069 .063 .061 .066 .065 .061 .061
¢724 .08 .085 .079 .08 .069 .068 .065 .064 .066 .066 .064 .06
p =
100 ?. 0 024 .022 .026 .025 .038 .039 .036 .033 .039  .039 .034 .031
(15:/’23 .058 .051 .024 .013 .06 .057 .054 .052 | .056 .052 .047 .045
¢ oy | 088 079 .052 .034 077 .079 .069 .067 .069 .07 .064 .061
1000 7’0 .067  .063 .072 .068 .069 .076 .075 .072 .069 .071 .067 .063
¢, 03 | 063 .067 .051 .039 .075 .08 .073 .072 .068 .071 .068 .066
@5y | 07T 071 .055 .046 .079 .078 .073 .072 .066 .07 .068 .065

Table 10: Empirical sizes of the detectors in the AR-case b) with mean and

variance setting (I1,) and (IL,)

f1 f3
" v 0 .25 .45 .49 0 .25 .45 .49 0 .25 .45 .49
p=—0.75

100 &) .02 .025 .051 .045 .051 .045 .046  .044 .054  .055 .043 .038
¢>:’;23 .165 178 218 .19 A1 .108 .099  .098 .088 .085 .078 .073
¢>124 .232 .28 .322 .295 124 123 111 109 .098  .092 .079 .076

1000 ?, 0 .049 .054 .084 .096 .05 .052 .045  .045 046 .049 .048 .046
¢:”23 .082 .091 .153 .184 .073 .072 .064 .064 .061 .061 .059 .057
@) 54 | 081 .087 .302 .323 .076 .071 .06 .059 .065 .066 .061 .059

p=-05

100 ?, 0 .024 .023 .037 .033 .055 .056 .053 .049 | .056 .054 .051 .05
¢:’723 .091 .092 .077 .057 | .086 .081 .07 .065 .07 .064 .054 .054
)0y | 125 132 .137 .118 .101 .094 .083 .081 .078 .076 .072 .068

1000 7’0 .034 .041 .077 .08 .051 .051 .048 .047 .051 .054 .048 .044
d):”% .053 .055 .062 .067 .056 .053 .057  .055 .054  .053 .051 .051
@) 5 | -054 .062 .074 .07 .057 .053 .055  .055 .05 .054 .052 .051

p=0

100 ZO .028 .028 .035 .026 .059 .059 .056 .054 | .057 .057 .051 .049
¢Z23 .055 .054 .036 .015 .067 .064 .061  .059 .064 .062 .054 .052
@) 5y | -086 .082 .054 .033 .084 .083 075  .074 074 .074 .065 .062

1000 d)ZO .061 .056 .077 .074 .068 .071 .067  .066 .067  .062 .062 .059
¢>123 .059 .057 .057 .046 .064 .066 .062 .061 | .061 .063 .061 .059
¢>124 .059 .058 .058 .048 | .064 .066 .066  .063 .063  .065 .061 .059

Table 11: Empirical sizes of the detectors in the AR~case b) with mean and variance setting (II,) and (II1,).
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7.1.4 Asymptotic Power

In this subsection, we present the asymptotic power of the test statistics. In section 2, we have seen
that the limit of the detectors is a mapping of a Brownian bridge plus a deterministic function under
Hpa. Under the local alternative of an AMOC model with a change-point at [nf], 6 € (0,1), and a
change size of n~1/2A #0 we obtain that the deterministic functions are of the following form

ho(x) = 5 ?A (@ — 0)F —2(1—6))  with 5% >0, (7.1.3)

which are plotted in Figure 12 for ¥y = 1.
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Figure 12: The family of functions hg as defined in (7.1.3) with X9 =1 and A > 0.

In a local, epidemic change-point setting with change-points at 61, 62, and change size n12A we
obtain a deterministic function

hioy o (@) = S PA (A 0y — 00)F — 2(0, — 01))  with 5% > 0. (7.1.4)

This family is plotted in Figure 13 for g = 1.
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Figure 13: The family of functions h(g, ¢,) as defined in (7.1.4), where the left figure shows a part of the family
for a fixed 61 = 0.3 and the middle one for a fixed 62 = 0.7.

Finally, Figure 14 presents three examples for gradual change-point settings. All the previous alter-

natives have in common that the deterministic functions hg, hg, g,), and hgy are close to zero in the
neighborhood of zero and of one, which is due to the detector’s construction. While the maximum of
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Figure 14: Three examples for gradual-change functions with zero line (dotted): g¢i(xz) = A,z (solid), g2(x) =
A,sin(2rz) (dashed), and g3(z) = Ap(xlig<o.5y + (1 —2)L{s>0.51) (longdash) on the left-hand side
and the corresponding graphs of hy on the right-hand side.

the absolute value of the deterministic function is at a change-point in an AMOC (epidemic) model,
there are different possibilities in a gradual change-point setting.

To imagine the curves of the empirical marginal distributions under alternatives, we just have
to add the curves of the deterministic function h pointwisely. This implies that under certain
alternatives certain procedures detect changes better or worse. For example, the detectors based on
B&Y or BSY can detect early changes for A, <0 and pg = —0.9 better than late changes, while
BTV can detect late changes better than early ones for A, <0 and pp = —0.9. Now, we focus on
the empirical power and consider the following change-settings

pi = po + Apliisine,))s (7.1.5)

with

A, € {0.1,0.25,0.5,0.75} and 6, € {0.1,0.25,0.5}.

Furthermore, we will only discuss the IID) case, since the power similarly behaves under the other
dependency cases. Moreover, we already note here that the power of each test increases for the change
size and the sample size, respectively. Additionally, the difference between some procedures is small
such that we will only present the best and the worst performance of the tests using the different
parameter estimates. More precisely, for each 6, and ¢ =1,2,3 we plot for each A, the maximum
and the minimum of the empirical sizes of a group of tests. This group consists of tests which use
different weighting factors -~ and different mean, or variance estimates.

Tests based on Unknown Means In the case of constant parameters with 6 = 0.5, the power of
the best and worst test slightly differs with the exception of the tests based on fi, cf. Figure 15. In
particular, each of the six tests based on fy and f3 possesses almost the same power as the best
test based on fi. Furthermore, for n = 1000 each test has power one if the change size A, is at
least 0.5. Moreover, the tests using a small v provide a higher power than the ones using a large .

In the case of early changes such as for 8 = 0.1, cf. Figure 17, the best tests are based on f; and
a high ~ such as 7 € {0.45,0.49}. Additionally, the difference is bigger between the powers of the
tests. Moreover, the test based on f; performs worst if it uses ,tll(zk) as mean estimators. Not quite
so clear, we can glean the worst mean estimate for the power if the tests depend on fo or f3, but
the tests based on the mean estimates [‘1(213 or the sliding window appear frequently under the worst
power.

Finally, we focus on the power under structural breaks in the mean. The test using the exact
means possesses the best power, cf. Figure 18. In general the structural breaks in the mean do not

influence the power of the best and worst test.

144



A POSTERIORI TESTING

01 025 0.5 0.75 01 025 05 0.75 01 025 0.5 075
by Ji% Bp

Figure 15: Best (green) and worst power (red) of ¢4, ¢, ¢y, @3, ¢4 and ¢77 and for ~ €
{0,0.25,0.45,0.49} in the setting i) with 6 = 0.5. Here, we consider the best and worst power for
each ¢t =1 (solid), ¢+ =2 (dashed), and ¢ =3 (dotted), as well as for n = 200 and n = 1000,
where the upper three green and the upper three red lines are the ones generated with n = 1000.
Moreover, po is equal to —0.9, —0.5, and 0 (from left to right). The overlying table contains the
corresponding best and worst tests belonging to three figures (from left to right) for each n, ¢, and
A, =0.1,0.25, 0.5, 0.75. In each of these variations the upper row contains the best test and the lower
one presents the worst of the 6x4 tests.

Tests based on Variance Estimates and Known Means In this paragraph, we consider the
empirical powers of ¢,5, ¢.6, ¢.,7, and ¢, g under the case of constant variances as well as ¢, 7
and ¢,g in the case of structural breaks in the variances. In both cases we compare the powers with
those of the test ¢, o, which uses the exact variances.

In case of constant variances, the power of the best test is higher than the best power in the corre-
sponding case of known variances and unknown means, while the worst power stays nearly unchanged.
Additionally, the test ¢, is often the one with the highest power. In the case of n = 1000, each
test has power one if the change size is equal to 0.5 or 0.75.

In case of structural breaks in the variances, setting (II,), each test has power one if the change
size is equal to 0.5 or 0.75 and n = 1000. Furthermore, if the change size is smaller, the test ¢>Z8
possesses the best power for a suitable v and :. Again, the influence of the structural break in the
parameter is not observable.

Tests Based on Mean and Variance Estimates In this paragraph, we present the powers of
the tests ¢ and @)y, compared with ¢/ The powers of the ¢gg, @914 ¢/ 93, and
gi)ZQ 1,10 behave similarly as the tests described in the previous paragraph within the setting of constant
parameters. Thus, we will focus on the powers of the tests under structural breaks in the mean and
the variance, cf. Figure 21 and Figure 22. As in the paragraph before, the influence of the structural
breaks are not really observable, since the means and variance estimates use change-point estimators.
Hence, the properties of the tests recur.
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Figure 16: Caption of Figure 15 with 6 = 0.25 under constant parameters.
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Figure 18: Best (green) and worst power (red) of ¢, ¢35, ¢4, and ¢;"7 and for v € {0,0.25,0.45,0.49} under
the setting ii) with (II,) and with 6, = 0.25. Here, we consider the best and worst power for each ¢ =1
(solid), ¢+ =2 (dashed), and ¢ =3 (dotted), as well as for n =200 and n = 1000, where the upper
three green and upper three red lines are the ones generated with n = 1000. Moreover, po is equal to
—0.9, —0.5, and 0 (from left to right). The overlying table contains the corresponding best and worst
tests belonging to three figures (from left to right) for each n, ¢, and A, = 0.1, 0.25, 0.5, 0.75. In

each of these variations the upper row illustrates the best test and the lower one presents the worst of
the 4x4 tests.

147



SIMULATION STUDY

0.75
|

0.5
|

Figure 19: Best (green) and worst power (red) of ¢/,
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under the setting i) with 6 = 0.25. Here, we consider the best and worst power for each ¢ =1 (solid),
¢t =2 (dashed), and ¢ =3 (dotted), as well as for n =200 and n = 1000, where the upper three
green and upper three red lines are the ones generated with n = 1000. Moreover, po is equal to —0.9,
—0.5, and 0 (from left to right). The overlying table contains the corresponding best and worst tests
belonging to three figures (from left to right) for each n, ¢, and A, =0.1, 0.25, 0.5, 0.75. In each of
these variations the upper row illustrates the best test and the lower one presents the worst of the 5x4
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Figure 20: Caption of Figure 19 with 6 = 0.25 and under setting iv) with (II,).
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Figure 21: Best (green) and worst power (red) of ¢/,
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and for

v €

{0,0.25,0.45,0.49} under the setting ii) with (III,) and with 6 = 0.25. Here, we consider the best
and worst power for each ¢ =1 (solid), ¢ =2 (dashed), and ¢ =3 (dotted), as well as for n = 200
and mn = 1000, where the upper three green and upper three red lines are the ones generated with

n = 1000. Moreover,

Po

is equal to

-0.9,

—0.5, and 0 (from left to right). The overlying table

contains the corresponding best and worst tests belonging to three figures (from left to right) for each
n, ¢, and A, =0.1,0.25, 0.5, 0.75. In each of these variations the upper row illustrates the best test
and the lower one presents the worst of the 3x4 tests.

n\A, | 0.1 .25 .5 .75 0.1 .25 .5 75 0.1 .25 .5 .75
1000 0.45 0.25 0.49 0.49 0.25 ¢0.25 0.49 0.49 0.25 0.25 ¢0.49 0.49
1,b 1,b 1,b 1,b 1,b 1,b 1,b 1,b 1,b l,a 1,b 1,b
0 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
1,0 1,0 1,b 1,b 1,a 1,0 1,b 1,b 1l,a 1,0 1,b 1,b
77777 ~40.25 7 7,0.49 T 0.49 049 T ~045 — 2045 ~ 70497 ~ /0.497|” 0.45° " 0.45° ~,0.49 T~ ,0.49
2,b 2,b 2,b 2,b ¢2,b ¢2,b 2,b 2,b 2,b 2,b 2,b 2,b
0.49 0.49 0.49 0.49 0 0 0.49 0.49 0 0 0.49 0.49
2,0 2,0 2,0 2,b ¢2,0 ¢2,0 2,b 2,b ¢2,0 ¢2,0 2,b 2,b
77777 —,0.25 T T,0.49 T 0.49 T 7049 | (50725 T 20250 T 70497 T 0.497 |7 (0.257 T 40.25 7 T,0.49 T ,0.49
3,b 3,b 3,b 3,b 3,b 3,b 3,b 3,b 3,b 3,b 3,b 3,b
0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
3,0 3,0 3,0 3,b 3,0 3,0 3,b 3,b 3,0 3,0 3,0 3,b
200 0.49 0.25 0.25 0.25 0.49 ¢0445 0.25 0.25 0.25 0.25 0.25 0.25
1,b 1,b 1,b 1,b 1,0 1,0 1,b 1,b 1,b 1,b 1,b 1,a
0 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
1,a 1,a 1,0 1,0 1,a 1,a 1,a 1,0 1.a 1,0 1,0 1,0
77777 7¢U - 7 0.25 T 0.45 049 T (507 T 203450 T ;0457 T 0.457 |7 (0.257 T 40.25 7 T,0.45 T ,0.49
2,0 2,b 2,b 2,b 2,0 2,0 2,b 2,b 2,b 2,b 2,b 2,a
0.49 0.49 0 0.49 0.49 0.49 0 0 0.49 0.49 0.49 0
2.a 2,0 2,0 2.0 2.a 2.a ?3,q 2,0 2.0 2.0 2,0 2,0
77777 ~0.25 7 7,0.25 T 0.25 025 [ 2025 7(50257 7(50.25 (0.257 7 0.25~ ~0.25 7 ~,0.25 = 0.49 ~
3,0 3,b 3,b 3,b 3,0 3,0 3,0 3,b 3,b 3,b 3,b 3,b
0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
3,a 3,0 3,0 ¢3,0 3,a ,a ¢3,a ¢3,0 3,a ¢3,0 3,0 ¢3,0
po=-0.75 po=-0.5
-
n
~
o
n
2
["e}
N
(=]
o -
T T 1 T T T 1 T T
0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5

Figure 22: Caption of Figure 21 with § = 0.25 and under setting
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v) with (III,) and (IL,).

149



SIMULATION STUDY

7.2 Sequential Analysis

In this subsection, we present the behavior of the closed-end sequential testing procedures

) A _1/9 k n k /.,
Ty :mf{l <kE<nm : wuw (Dw / Wy () Wk (pw;knﬂ Pwkl)) > Ca,w}

with wi() =],

j+h

f)f;rkh] (h+1)" ZZ wp for1<j<j+h<(m+1n, k=1,...mn,

where
X,— ) N i}i_ww)
7 = § C e B nit) i =1, 4,
<Xj(1_11¢1 Z)A((};) k2. l)’ if w = 57 oo 787
01 i,n+k 2 i,n+k
and
~ (1) ~ (1)
(Xi—f k) (Yi—fu k)
Zz(qlﬁ) = Zz'(,?%%w) - lf(:;;; ~ (¥2) — for ¢1,92=1,... 4.

O-l,z,nJrkO-Q i,n+k

Firstly, we specify the parameter estimates, the corresponding LRV estimates, and the weighting
function w,, before we will present the behavior of the test statistics.

Parameter Estimates In the following we focus on these mean estimates:

A(Q) { 1Zj 1 X if i€ [1,n],

(1) -1
Ml,un—i—k =n ZXJ’ Plintk = Zn+k XJ, if 7€ [TL+ 1], kE=1,...,nm,

j=1 Jj=n+1
(1 A iy )~ zgﬁf“l”“ X;, if 1< <y nAn,
LG . . .
R i v S
” ((n—l—k‘)/\km, )~ Z] X i n+1<i < (k) ARy ks
(n+k) =y p)~ zi"*liku X i< fepy i <0 < (n+F),

[Lﬁ)k is of the form /fagggk,

whereas ,ugz) ; uses another change-point estimate l%%k as /1532 e In /1532.)  the change-point
estimate is defined as

. n+k, if n+k< 7,
11,k

YifYI”l , i n4+k > Ty,

i
argmaxi<i<r,, Wo.45 (Tm) N

with wg45(z) = [2(1 — 2)]7%4. In ﬂﬁ)k the change-point estimate is defined as

. n—+k, if n+k< 7y,
ky x = ; ; ~t ~ntk .
K1, arg Maxj<j<ntk Wo.45 (ﬁ) \/ﬁ ’Xl - X ], if ndk>Ty,,

where for both estimates 7,, is the stopping time which sequentially controls whether or not there
is a change in the means, i.e.,

) . o _1\05
Ty, = inf {1 < <nm : max (D’:UQTL:L—Z‘\/ZE (YZi; — X?)) > <mm> CO.BZ} .

Here, cos2 is the 0.82-quantile of |[W]|j,; where W is a standard Brownian motion. This
quantile is chosen quite arbitrarily, but it is also a compromise between a high number of false stops
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if no structural breaks occur in the mean and fast detection after changes appear. Heuristically,
(4)

[lek depends on sequentially estimated change-point estimates if the stopping time stops once. The

advantage over ﬂﬁ) i is that the sequential estimation of the change-point could save the mean

estimation in the case of early false detection of a change in the mean.

The mean estimates ,&éwi)k are defined analogously. The variance estimates (&Yl;)k)z and (&gﬁ)k)z
are similarly defined for ¥ = 1,2 as the mean estimates, whereas X; and Y; are just replaced by
(X; — p1,4)? and (Y; — p2,)? in the case of known means and by (X; — ﬂ%lg)Q and (Y; — ﬂ(wl))Q

2,i,k
in the case of unknown means. Furthermore, we set

nt YN (X — pg)?, it 1<i<n,

A _ n+k)Ak, . . A
(61202 = S (kA (ko =) zg,:njl VX =)t i n+ 1< i< (R4 k) Akgy g,

(k) =k )P (= 01)% i 1 <kp ki< (n+k)
1

and (&§4i)k)2 analogously. They only differ in the change-point estimate ]%0'17]'9 in the same way as

in the mean estimates. (6§1€)k)2 is correspondingly defined for = 3,4.

LRV Estimates The LRV estimates are the same as those used in the a posteriori procedure, which
means in particular that the estimate only depends on the training period 1,...,n.

Weighting Function In the following we focus on the weighting function

wy s (0,00) 2 R, wy(z) = <1+Z>W7 7€ [OD

z

for all stopping times. By the proof of Theorem 2.2.5 we already know that under the assumptions of
Theorem 2.2.3 and under H, it holds that

1 1/2—y
P(Tppy < 00) = P ( sup ‘(z)_VW(z)‘ > Cq (m—i—) > ,
z€[0,1] m

where W is a standard Brownian motion. Table 12 contains the corresponding critical values, where
we neglect the constant factor depending on m initially.

l-«a 0.9 0.95 0.975
0 0 .25 .45 49 0 .25 45 49 0 .25 45 49
1.946 2.095 2.505 2.732 | 2.221 2367 2.758 2.990 | 2.485 2.621 2.977 3.208

Table 12: Critical values cq,, based on 40.000 replications of u;(W5), where W, is approximated on a grid of
10.000 equi-spaced points in [0, 1].

151



SIMULATION STUDY

7.2.1 Influence of the Mean Estimates under HO(Q)

In this sub-subsection, we focus on the finite sample behavior of the stopping times 7,4+, ¥ =0,... 4,

under Hé2). Table 13 presents the relative frequency of false alarms under H(()Q), constant zero means,
and normalized variances. Furthermore, the number of false alarms of 7,1, consistently lies slightly
above the given level of « = 5%. Moreover, for higher ~ false stops appear more frequently in most
cases. Even the stopping times 7,3, and 7,4, work well, since they use change-point estimates
for the mean if the corresponding stopping times falsely trigger an alarm that there is a change in the
mean.

Po vy 0 .25 .45 0 .25 .45 0 .25 45 0 .25 .45
-0.9  Thon~ | 132 153 151 | .087 .089  .083 .07 071 .094 | .069 .065 .08
Tni,~ | 134 164 .15 094 .097  .086 .069 .072 .09 069 .066 .079
Tn,2,v | .06 .061 .059 | .078 .076 .044 || .044 .045 .05 .059 .063 .043
Tn,3,y | 057 .07 .088 | .082 .09 .083 .043 .045 .069 | .059 .06 .075
Tn,a,~y | -055 .069  .086 | .084 .09 .083 .043 .044 .068 | .06 061 .075
-0.5  Thon~ | 116 126 .13 081 .075  .092 074 .073 .09 061 .052 .075
Tni,~ | 118 131 139 | .08 .08 .097 .072  .078 .093 | .061 .054 .078
Tno2,~ | 054 .063 .053 | .078 .066 .045 || .042 .037 .047 | .062 .053 .038
Tn,3,~ | -051 .055 .079 | .082 .085 .098 .042 .036 .066 | .061 .055 .076
Tn,d,~y | 002 085 .08 .08 .087  .098 .041  .037 .065 | .06 055  .076
0 Tn,o,y | -1 114 113 | .069 .077  .089 .088 .087 .103 | .079 .072  .089
Tni,y | -106 117 123 | .073 .081  .091 .09 .09 105 | 082 .072 .09
Tn,2,, | 038 .038  .041 | .068 .064 .034 .06 .057 .058 | .075 .065 .048
Tn,3,y | 039  .047 .057 | .077 .077  .095 .062 .058 .068 | .075 .068  .083
Tna~ | 041 046 .058 | .076 .078  .095 .064 .059 .068 | .076 .066 .083

Table 13: Relative frequency of a false alarm under H(()Q) and constant parameters.

Tables 14, 15, and 16 present the empirical size under H0(2) and the following mean settings:

0, ifi<n+mn/2,
P = { ifi<n+mn/ and p2i =0, (L")

1, else,

~_f0, ifi<n+mn/4, 1, ifi <n+mn/4, ()

K14 = {1, else, and H2.i = {O, else, (L)
or

o 2, 1f1§n+3mn/4, o ()

e {07 else, and poi = 0. (IL.7)

As expected 7,1, and 7,2, are not suitable. In particular, this is at least obvious in the mean
setting (Hff)), where the means change in both time series at the same time. In this setting the relative
frequencies of the false alarms of the procedures 7,3, and 7,4, amount over 10%. Moreover,

the early change in the mean, setting (I,(f)), is handled slightly better than the late changes of mean

setting (IIILC)).
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n = 200 n = 2000
m = 0.5 m=1.5 m = 0.5 m=1.5
P0o vy 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45
-0.9  Tnon | 132 153 151 | .087 .089 .083 .07 071  .094 | .069 .065 .08
o~ | 192 0199 176 | .091 .095 .089 127 116 124 | .084 .078  .082
Tno2,~ | 071 .07 .062 | .083 .074 .045 || .066 .06 .055 | .075 .072 .043
Tn3,y | -069  .067 .087 | .084 .087 .08 .05 .054 .071 | .065 .062 .074
Tndy | -055 .065 .085 | .082 .088 .08 .046 .049 .069 | .063 .063 .074
-0.5  Tpo,n | 116 126 .13 | .081 .075 .092 074 .073 .09 .061 .052 .075
Tnin~ | 182 184 162 | .088 .083 .097 1360 134 13 .085 .064 .08
Tny2, | 076 .076 .062 | .083 .07 .046 || .074 .059 .055 | .069 .056 .038
Tn,3,y | -068 .059  .083 | .082 .089 .094 .047 .04 .067 | .057 .052 .076
Tndy | 048 .051 .08 | .079 .085 .094 .044 .041 .066 | .058 .054 .077
0 Tnoy | -1 114 113 | .069 .077 .089 .088 .087 .103 | .079 .072  .089
Tniy | 168 175 .16 .097  .092 .097 A76 172 147 | 109 .09 .094
Tn,2,y | -063 .06 .057 | .073 .069 .037 || .095 .086 .074 | .091 .076 .05
T3, | 043 .051 .064 | .072 .079 .092 .065 .058 .067 | .079 .069  .081
Tndy | 042 .048 .06 | .07 .078 .093 .058 .055 .067 | .078 .067 .083
Table 14: Relative frequency of a false alarm under HO<2> and mean setting (ILC>).
n = 200 n = 2000
m=0.5 m=1.5 m=0.5 m=1.5
P0 v 0 .25 .45 0 .25 .45 0 .25 45 0 .25 .45
-0.9 Tnhon | 132 153 151 | .087 .089 .083 || .07 .071  .094 | .069 .065 .08
Ty | 979 976 964 | .898  .856  .725 1 1 1 1 1 1
T2~ | -322 .32 267 | .308 .274 175 948 953 .92 949 936 .836
Tn3,~y | -111 148 167 | .102 114 .098 1 133 .16 103 .092 .099
Tna,~ | 117 155 174 | .094 105 .09 .066 .106 .137 | .066 .061 .076
-0.5 Tno, | 116 126 .13 .081 .075 .092 074 .073 .09 .061 .052 .075
Ty | 2995 996 992 | 957 949  .884 1 1 1 1 1 1
T2~ | 387 384 324 | 387 .345 234 989 988 982 | .99  .985  .961
T3,y | 113 143 161 | .094 .1 113 .089 .138 .166 | .069 .057 .079
Tndy | -123 166 176 | .086  .093  .108 .082 .13 161 | .062 .055  .075
0 Tnony | -1 114 113 | .069 .077  .089 .088 .087 .103 | .079 .072  .089
Ty | 998 998 998 | .984 976  .945 1 1 1 1 1 1
Tn2,~y | 441 441 367 | .463  .407  .238 996 996 995 | 996 .996  .988
Tn3,y | -097 136 154 | .085 .095  .108 106 .17 195 | 077 .064  .089
Tna,~ | 114 171 186 | .081  .091  .107 A1 163 188 | .075 .063 .084
Table 15: Relative frequency of a false alarm under HSQ) and mean setting (Hff)).
n = 200 n = 2000
m=0.5 m=1.5 m = 0.5 m=1.5
P0o 04 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45
-0.9  Thon~ | 132 153 151 | .087 .089 .083 .07 071 .094 | .069 .065 .08
Ty | 2156 213 186 | .1 .099 .09 155 138 132 | .078 .068  .081
Tn2,~ | -108 .1 .073 | .081 .077 .047 | .093 .077 .068 | .068 .061 .044
Tn,3,y | -086 .09 .099 | .083 .088 .083 .06 .059  .073 | .063 .06 .076
Tnd,y | -064 .074 .088 | .083 .087 .083 .045 .048 .069 | .061 .061 .075
-0.5 Tno, | 116 126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
Ty | 226 222 192 | .086 .086 .099 199 18 .15 .076 .065 .079
Tn2,y | -11 .099 .082 | .079 .07  .047 || .117 .105 .08 .073 .063  .036
Tn,3,~ | 086  .083 .092 | .083 .087 .098 .06 .052 075 | .061 .054 .076
Tnd,y | 065 .07  .084 | .081 .086 .097 || .048 .04 .067 | .06  .054 .076
0 Tn,0,y | -1 114 113 | .069  .077  .089 .088 .087 .103 | .079 .072  .089
Tn,i,~ | 2225 209 186 | .08 .086 .094 242 222 19 097  .081  .095
Tno2~ | 114 .101 .074 | .072 .069 .038 | .151 .134 .092 | .085 .069 .051
Tn3,y | 075 .075 .077 | .076 .078 .093 .08 .07 .072 | .077 .068  .084
Tnd,y | -052 .055 .065 | .078 .078 .094 .066 .061 .068 | .076 .066  .083

Table 16: Relative frequency of a false alarm under H((JQ) and mean setting (IIIEﬁ).
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7.2.2 Influence of the Variance Estimates under Héz) and Known Means

In this sub-subsection, we focus on the finite sample behavior of the stopping times 7, ., with

¥ =0,5,...,,8 under Hé2). Table 17 presents the empirical sizes under HSZ) and constant variances.
In the case of high correlations and n = 200 each stopping time lies over 10%. If additionally -
is high, only 7,5, seems to approximate the given level o = 5%. The stopping times 7,3,
which sequentially use change-point estimates for the mean, do not work well. Moreover, the relative
frequencies lie over 10% in the case of pg € {—0.5, — 0.9}. In most cases the relative frequencies of
the false alarms of 790008y are smaller than 790 s,,, but the differences are slight.

o 7 0 25 45 |0 25 45 || 0 25 45 |0 25 45
0.9 7no, | 132 153 151 | .087 089 .083 || .07 071 .094 | .069 .065 .08
Tas~ | 13415 165 | .095 .104 .11 || .076 .073 .086 | .058 .057 .078
Tme~ | 111 251 279 | 188 232 234 || .056 .108 .299 | .079 216 .246
Tar~ | 148 28 301 | 211 256 .25 || .073 .116 .306 | .091 .223 .25
Tns~ | 164 178 181 | 159 159 143 || .145 153 171 | 123 .129 137
05 Tmo~ | 116 126 .13 | 081 .075 092 || .074 073 .09 | .061 .052 .075
Tas~ | 108 115 139 | .091 091 .105 || .071 .073 .088 | .063 .054 .078
Tne~ | 053 061 097 | .084 091 .156 || .057 .067 .084 | .072 .065 .101
Tag~ | 054 063 .097 | .082 093 157 || .058 .069 .084 | .073 .066 .102
Tws~ | 11 118 121 | 109 111 123 || 101 .109 126 | .089 .096  .109
0 Thon | 1 114 113 | 069 .077 089 || .088 .087 .103 | .079 .072 .089
Tms~ | 102 124 135 | 08 086 .1 085 .091 .096 | .084 .07  .082
Tne~ | 042 .042 023 | 074 .066 .038 || .062 056 .045 | .078 .072 .04
Tar | 041 04 02 | 075 067 .037 || .063 .056 .046 | .078 .071 .04
Tag~ | 094 109 116 | .1 112 .13 || 082  .091 .102 | .079 .083  .094

Table 17: Relative frequency of a false alarm under HSQ) and constant parameters

Tables 18, 19, and 20 present the relative frequencies of false alarms under the following variance
settings:

1, ifi<n+nm/2, _
aii = {2’ else, / and agﬂ- =1, (IgC))
o 1, ifi<n+nm/4, o [ 1, ifi<n+nm/4, ()
TLi = {2, else, and 72i = 0.5, else, (57
or
1, ifi <n+3nm/4, _
U%yi - {2, else, / and Ug,i = 1. (HISIC))

Under these settings only 75,0, Tn,7,, and 7,8, fulfill the convergence in distribution towards
a maximum of the absolute value of a weighted Brownian motion. In contrast to the non-constant
mean settings, here the unsuitable stopping times can also converge to a Gaussian process in each
presented variance setting, cf. Remark 5.2.2. Nevertheless, 7,7, and 7,8, behave acceptably for
small or moderate correlations and for v = 0. Overall, the influence is unimportant for p = 0, and
Tn,7,y Performs better than 7, - .
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Po ¥ 0 .25 45 0 .25 .45 0 .25 45 0 .25 .45

09 7o, | 132 153 151 | .087 089 083 | .07 071 .094 | .069 .065 .08
Tns~ | 364 355 314 | 176 162 139 || .912 .897 841 | .479 379 233
Tme~ | 178 306 312 | 206 243 243 || 464 451 483 | 261 .335 .208
Tars | 18 311 321 | 221 254 251 || .166 .213 356 | .114 237 .26
Tws~ | 179 191 191 | 155 .16 145 || .159 .173 183 | .129 .13 .136

-0.5 Tno, | 116 126 .13 .081 .075 .092 074 073 .09 .061 .052 .075
Tn,5y | -28 265 231 | 124 126 .116 635 .611 514 | .263 .215  .137
Tne,~y | 065 .071  .099 | .071 .082 .154 087 .087 .102 | .076 .067 .1
o7~ | -061 072 101 | .076  .092 .159 .065 .071 .09 .074 .068  .102
Tng,~y | 115 122 126 | .109  .111 .124 107 1120 127 ) 091 .096 .11

0 Tn,oy | -1 114 113 | .069  .077  .089 .088 .087 .103 | .079 .072  .089
Tns~y | 177 .19 183 | 086  .094 .104 152 144 133 | .093 .078  .089
Tne6,~y | 055  .047 .027 | .071 .065 .036 | .074 .071 .052 | .072 .066 .037
o7~ | (047 043 024 | .073 .065 .035 .066 .061 .045 | .077 .07 .038
Tnsg,~y | 096 113 117 | .102  .113 .129 081 .092 .102 | .08 .083  .094

Table 18: Relative frequency of a false alarm under Héz) and variance setting (If,c)).

n = 200 n = 2000
m = 0.5 m = 1.5 m = 0.5 m = 1.5
00 ¥ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45
-0.9 Tho4 | 132 153 151 | .087 .089 .083 .07 071 .094 | .069 .065 .08
Tn5~y | 134 .15 165 | .095  .104 11 076 .073 .086 | .058 .057 .078
Tn,6,y | 466 .547 505 | .501  .502 .407 1 999 1 1 1 1

Tn,7y | 381 493 482 | 382 407  .339 439 553 .643 | .289 .382  .346
Tng,y | -204 263 .259 | .225 .217  .193 221247 253 | 172 172 165

-0.5  Tho, | 116 126 .13 .081 .075 .092 .074 .073 .09 061  .052  .075
Tn,s,~ | 108 115 139 | .091 .091  .105 .071  .073 .088 | .063 .054 .078
Tne,y | -061 .07 101 | 091 .092  .158 141 133 145 | .16 145 124

T~ | 06 068 .1 | .092 .096 .159 || .071 .075 .095 | .098 .076 .105
Tms~ | 104 11 121 | 105 .108  .126 || .107 .115 .126 | .098 .097 .11

0 Thon | 1 114 113 | .069 077 089 | .088 .087 .103 | .079 .072 .089
Tms~ | 102 124 135 | 08 086 .1 085 091 .096 | .084 .07  .082

Tn6,y | 036 .038 .023 | .067 .056  .033 .049 .044 .034 | .067 .063 .037
Tn,7y | 038 .033  .024 | .076 .064 .038 .058 .054 .045 | .078 .073 .041
Tng,~y | 092 107 115 | .098 .113 .13 .081 .09 .104 | .077  .081  .095

Table 19: Relative frequency of a false alarm under H(§2) and variance setting (IIS,C)).

P0o 04 0 .25 45 0 .25 45 0 .25 45 0 .25 45

-0.9 Thon~ | .132 153 151 | .087 .089 .083 || .07 .071 .094 | .069 .065 .08
Tns~ | 214 216 207 | .103 .112 112 442 397 328 | .093 .078  .088
Tn6,y | 150 278 293 | .193 .235  .236 342 341 411 | 12 241 257
Tn7~y | 181299 311 | 215 .259  .248 184 207 348 | 106 234  .256
Tng,~ | 178 185 188 | .159 .161  .145 168 172 184 | 127 .13 .136

-0.5 Tno, | 116 126 .13 .081 .075 .092 074 073 .09 .061 .052 .075
Tns~ | 164 159 167 | .096 .101  .106 245 214 186 | .08 .065  .082
Tne,~ | -062 .071 .099 | .081 .088  .155 082 .08 .097 | .075 .066 .1

Tn,7,y | -062 .07 1 .081 .091  .157 074 .069 .09 .076 .068  .101
Tng,~ | 114 121 124 | 1109 .11 123 101 109 127 | .09 .096  .109
0 Tn,0,y | -1 114 113 | .069 .077  .089 .088 .087 .103 | .079 .072  .089
Tns~ | 131 146 149 | .077 .087 .1 114 106 .111 | .083 .075  .082

Tne,~y | -048 .042 .025 | .075 .064 .038 || .075 .068 .049 | .079 .069 .04
o7y | 045 .042 021 | .073 .067  .037 .068 .059 .049 | .078 .069 .04
Tng,~y | 097 113 119 | .098 112 .13 083 .091 .103 | .08 .083  .094

Table 20: Relative frequency of a false alarm under Hé2> and variance setting (IIIE,C>).
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7.2.3 Influence of the Combination of Mean and Variance Estimates under HéQ)

In this paragraph, we focus on the behavior of stopping times using mean and variance estimates.
Table 21 presents the relative frequencies of false alarms under Hé2) and constant parameters. If
the correlation or ~ is not high, each stopping approximates the given level «. If the correlation is
high, only ~ =0 is useful.

Tables 22, 23, and 22 present the relative frequency of false stops under parameter setting (III,(f) &L(,c)),
(IIELC)&IIS,C)), and (IELC)&IIIE,C)), respectively. If the correlation is high (such as —0.9), each stopping time
using estimates for the parameter (even Tﬁ 90) nearly always stops falsely. If, however, the correlation
is moderate and small, 7‘1 90 approximates the given level acceptably and well, respectively.

n = 200 n = 2000

m = 0.5 m=1.5 m = 0.5 m=1.5

00 ¥ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9  Tion 132 153 151 | .087 .089 .083 .07 .071 .094 | .069 .065 .08
Ti,9,y 141 .159 165 | .094 .104 .108 077 .074 .084 | .055 .059 .079
Tij4,y | 212 .283 B17 | 212 242 .24 .057 .221 313 | .076 .216 .247
Ti,20,y | -219 .359 392 | 275 314 .294 .086 .159 .347 | .103 .246 .275

-0.5  Tion .116 .126 .13 .081 .075 .092 .074 .073 .09 .061 .052 .075
Ti,9,7 114 .116 148 | .089  .093 .108 .073 .071 .09 .061 .055 .079
Tij1a,y | 057  .069 171 | 085 .099 11 .059 .064 109 | .073 .064 .096
Ti20,4 | -057 .07 103 | .086  .094 161 .06 .068 .086 | .071 .063 .099

0 Ti,0,y 1 114 13 | 069 077 .089 .088 .087 103 | .079 .072 .089
Ti,9,~ .097 121 139 | 077 086 101 .086 .088 .096 | .083 071 .085
Ti14,y | 042 .041 .026 | .075 .067 .041 .06 .053 .047 | .074 .072 .039
Ti20,y | -043 .044 .034 | .076 .072 .037 .063 .053 .047 | .074 071 .042

Table 21: Relative frequency of a false alarm under Hé2) and constant parameters.

n = 200 n = 2000
m = 0.5 m = 1.5 m = 0.5 m = 1.5
Po ot 0 .25 45 0 .25 .45 0 .25 .45 0 .25 .45
-0.9 7y | .132 153 151 | .087 .089 .083 || .07 .071 .094 | .069 .065 .08
Tlo | 392 383 347 | 175 167 .14 898 876  .826 | .49  .384  .245
7‘114 1 1 998 | .867 .799 557 1 1 1 1 1 1
Tl | 779 803 772 | 355 374  .333 869 .875  .878 | .345 .392  .339
-0.5 TZO 116 126 .13 .081 .075 .092 074 .073 .09 .061 .052 .075
7',;/9 347 329 299 | 139 .13 122 671 642 .568 | .267 .222  .147
7'7-:’14 2 199 231 | 102 102 117 879 845 767 | 243 192 137
Ti9o | -102 112 119 | .079 .094  .166 JA17 0 .119 0 122 | .081  .069  .097
0 7';/0 1 114 113 | .069 .077  .089 .088 .087  .103 | .079 .072  .089
7'19 271 271 237 | 098  .104  .106 3 282225 | 112 .092  .096
74 | 057 .06 036 | .072 .065 .039 || .09 .083 .054 | .07  .067 .037
7,9 | -054 .055 .036 | .071 .07 .036 075 .071 .052 | .072 .068 .039
Table 22: Relative frequency of a false alarm under HSQ) and parameter setting (IIILC)&IS,C)).
n = 200 n = 2000
m = 0.5 m = 1.5 m = 0.5 m = 1.5
0 7 0 25 45 |0 25 45 0 25 45 |0 25 45
-0.9  Tion 132 153 .151 | .087 .089 .083 || .07 071 .094 | .069 .065 .08
Tion | B9 73 607 | .4 299 158 || 1 1 1 1 1 1
Tindn | 396 446 443 | 379 377 .306 996 994 987 | .99 985 919
Ti20~ | 838 .879 869 | .665 .672 .572 1 1 1 1 1 .999
-0.5  Tion 116 126 .13 .081 .075 .092 074 .073 .09 .061 .052 .075
Ti,9,y 871 854 .75 558 457 236 1 1 1 1 1 1
Ti14,4 | -046  .069 .17 102,104 107 351 346 317 | 441 375 237
Tij20,y | 085  .098 117 | .087 .099  .167 146 145 .15 A7 155 126
0 Tiony | -1 114 113 | .069 .077  .089 .088 .087 .103 | .079 .072  .089
Ti,9,y .94 931 .846 | 678 .549  .277 1 1 1 1 1 1
Titan | 241 231 149 | 309 .261 121 .98 979 959 | 988 981 .93
Ti20y | 061 .065 .054 | .066 .068 .037 || .055 .081 .084 | .066 .06 .038

Table 23: Relative frequency of a false alarm under HéQ) and parameter setting (IIELC>&IIS,C)).
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n = 200 n = 2000

m = 0.5 m=1.5 m = 0.5 m=1.5

Po ¥ 0 .25 .45 0 .25 .45 0 .25 .45 0 .25 .45

-0.9  Tio~ 132 153 151 | .087  .089 .083 .07 071 .094 .069 .065 .08
Ti,9,7 .242 .245 232 | 111 113 112 447 415 .348 102 .086 .096
Ti14,y | 904 1902 862 | .768 .715 .554 1 1 1 1 1 1
Ti20,y | -648 .705 676 | .379 .39 .35 737 759 767 179 291 .293

-0.5  Tio~ 116 126 .13 .081 .075 .092 074 .073 .09 .061 .052 .075
Ti,9,~ 21 .199 197 | .099  .099 107 301 282 .238 .096 .083 .088
Tij4a~y | 124 134 209 | (115 117 121 439 409 .356 .26 .199 .154
Ti,20,y | -099 105 115 | .087  .096 .164 .09 .094 .104 074 .064 Nl

0 Ti,0,y 1 114 113 | 069  .077 .089 .088 .087 .103 079  .072 .089
Ti,9,v 184 193 185 | .095  .094 .102 208 .192 .165 11 .09 .088
Ti1a,y | 048 .052 .032 | .07 .065 .038 073  .067 .055 077 .068 .035
Ti,20,y | 048 .048 .035 | .073 .067 .034 .076  .061 .051 | .075 .069 .039

Table 24: Relative frequency of a false alarm under Héz) and parameter setting (ILC)&IIL(,C)).

7.2.4 Stopping behavior under some Alternatives

In this sub-subsection, we focus on the stopping behavior under some alternatives. In doing so, we
focus on the following setups:

pi = po+ Bpliisniing,)} (7.2.1)

with pg € {—0.9, — 0.5,0}, A, € {0.1,0.25,0.5}, and 8, € {0.25,0.5,0.75}.

Mean Influence In this paragraph, we focus on the behaviors of stopping times under the alter-
natives and different mean estimates. Figure 23 presents relative frequency of alarms under constant
parameters. The relative frequency of stops increases with growing n, A,, and m. Furthermore,
Tn0, and 7,1, produce more alarms than 7,2,, 7,3,, and 7,4, where the latter two have
nearly the same the same relative frequencies.

Now, we focus on the alternatives under mean settings (I;(f)) and (H,(f)), cf. Figure 24 and 25. The
difference between the constant parameter setting and mean setting (Iff)) is not really observable.

However, in the mean setting (II,(f)) the unusable stopping times 7,1, (red) and 7,2, (green)
possess no monotone power in A,. In most of the cases the alarms are caused by the simultaneous
structural breaks in the means of X and Y. Here, the useful stopping times 7,3, (yellow) are
slightly better than 7,4, (blue), because 7,4, uses a sequential mean estimate which corrects false
early alarms for the mean change detection.

Variance Influence In this paragraph, we focus on the behavior of stopping times under the
alternatives and the different variance estimates. Figure 26 presents their relative frequency of alarms
under constant parameters. The relative frequency of stops increases with growing n, A, and m.
Furthermore, 7,6~ (green) and 7,7~ (yellow) produce more alarms than 7,1, (black), 7,5 (red),
and 7,8 (blue), where the relative frequencies of 7,6~ and 7,7, arenearly the same. In addition,
the alarm appears more frequently in the case of high correlation. Secondly, the sequential estimation
of variances after a false detection of a change in the variance yields a much conservative procedure

Tn,8 -
Now, we focus on the alternatives under variance setting (L(,c)) and (IL(,C)), cf. Figure 27 and 28. Again,
the unusable stopping times 7,5, and 7,6, profit by the structure changes in some cases. The

two useful stopping times 7,7, and 7,8, behave as in the constant parameter setting. Since the

changes in the variances of X and Y cancel each other out in case (ch)), Tns, (red) behaves as
in a constant parameter setting.

Finally, we consider the behavior under (IILC)+II((,C)), cf. Figure 29, where only the stopping times
Tn,20,y stay useful. We observe, that these stopping times and the ones using the exact parameters

are the only ones which have monotone power in each case.
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CHANGE-POINT ESTIMATION

7.3 Change-Point Estimation

This subsection presents the behavior of estimates for the change-points in the correlation @) =
Y /n with

2 kr

R R -
HZ0) =B cargmin {3 (2, 20 ) 0<k <nl,
r=1 Z*kr—l“!‘l
where
—k, 1 )
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Parameter Estimates Here, we use the following estimates

n k.,
~(1 1 ~(2 _
'U/gvr)lﬂkrflykr =n ZX“ 'Ulgzzlﬂkrflyk'r = (kT B kr_l) ! Z XZ
=1 i=kp_1+1
n kr
~(1 - ~(2 _
CEIS LD B SO SIC IS I SR DIC BTN
=1 i=kr_1+1

where the exact means are replaced by the mean estimate with index (¢1) if the means are assumed

to be unknown. ,&(131)1 ko1 k1S the piecewise sample mean which is based on change-point estimate

~

k.1, which is defined by

o DB~ X)) < cooss
]%(X), else.

Here, Dy is the classic LRV estimate with bandwidth ¢, = log(n), coo5 is the 0.95%-quantile,
and k(X) is the least square estimate defined in the first display of this page.

(&%371 . k:r)g is similarly defined with (X; — ,ulyi)Q instead of X;, whereas the exact means are
replaced by the mean estimate with index (1) in the case of unknown means. Analogously, we
define the mean and variance estimates of Y.

Simulation Setup In this subsection, we consider the following change-point model

pi = po+ DpLiisng,)ys

with the following change-point setup:

n ‘ 00 ‘ 0, ‘ A,
200, 1000, 2000 | —0.9, —0.5, 0 | 0.1,0.25, 0.5 | 0.1, 0.25, 0.5

In addition, we allow structural breaks in the parameters and consider the following parameter setup:
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1 H1i = 0 and M2 = O;

2) mi =4 1gcs/gny and po; = Liicors.n);

3) 01, =1 and o9; = 1;

(1)
(2)
(3) a1,
(4)

4) 01, =142 1gng/amy and 03, =141 Tisy 5}

Firstly, we consider the change-point estimates for the structural breaks of the correlation. Figure
30 shows the boxplots of the estimates in the case of constant means and known variances, no matter
whether a test rejects the null hypothesis or not. The presented estimates 6) behave quite similarly
for v =0,12,,3,5,6,14,19. Obviously, the estimates become more precise for larger sample sizes n
and change sizes A,. Furthermore, change-points in the middle of the observations can be estimated
better than the ones which occur at the beginning or at the end of the observations. However, for
n = 1000 the arithmetic mean is near zero in each case. The estimates 9(2), é(ﬁ), and 9(14), which
use the sequence of sample means and variances, i.e. ;1% and Z;;14%, for £ =1,...,n and
x € {11,02}, to estimate the mean and variance, are a little less precise than the estimates é(l), é(S),
é(S), and 619 using the whole sample to estimate the parameter.

Now, we consider the cases where the means are non-constant and fulfill (2) but the variance
remains constant to one. Then, the estimates é(0)7 é(5), and é(ﬁ), which use the exact means, as
well as the estimates 83 and 619, which use change-point estimates, remain useful. However, to
analyze the influence we plot the other estimates in Figure 31, too. The change-point estimate of the
correlation () untruly estimates the structural break of the means of Y, which is equal to 0.75.
In contrast, 6(2) untruly estimates the structural break of the means of X, which is equal to 0.625.
Furthermore, it seems that 63 and é(19)’ which behave similarly, are slightly better estimates
for the correct change-point in the correlations if these change-points lie at the beginning, i.e., for
6, € {0.1,0.25}.

Now, we focus on the case where the means are constantly zero but the variances possess structural
breaks. Therefore, we suppose the variances setup following (4). In this setting only 6© and 919
remain useful. Nevertheless, to indicate the behavior of the other estimates we present them in Figure
32 as well. In most of the cases the unusable estimates approximate the variance change-points of Y,
which is 0.75. If the change size is large (A, = 0.5) and the change-point of the correlation lies in the
middle, then even 9(1), 63, and 60 correctly estimate the change-point of the correlations. The
estimate 6(19) only works well if the sample size, change size, and location are appropriate. If two of
these parameters are “bad“ regarding a small sample size, change size, or that the change location is
too early, this estimate falsely approximates the change-points of the variances.

Finally, we consider the case where the means and the variances are non-constant. Figure 32
presents the boxplots of 0O and 619 for ne {200, 1000, 2000}. Overall, we can summarize the
behavior as a combination of the previous notes.
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Figure 30: Boxplots of change-point estimation error 6 — ¢ under parameter setup (1)
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Figure 31: Boxplots of change-point estimation error ™) — ¢ under mean setup (2)
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Figure 32:

Boxplots of change-point estimation error

6Y) — 9 under parameter setup (4)

169



= = =
-04 00 04 = -04 00 04 = -04 0.0 04 —
L L L1 1 b L1l b L1 1 K
D> D> D>
5 r-{ | -4 evk{ | -4 ?H | -4 !
@3 S o5 2 o5 =
===ttt ~ To—=t--{lH “Tep-{ M
-04 00 04 <= -04 0.0 04 — -04 00 04 —
I R R Ly b IR l
CD>O M“hwo Il m%mﬁ.-ﬂ}-_ Il CD>O |.__ __.I Lm
~ o = o = §
- 5L 5L ®
~ = ™
-04 00 04 £ -04 00 04 X -04 0.0 04 <=
L1 1 1 _Ql> L1 1 1 TJl> L1 1 1 ,a[>
5P I P2 a—blq-vm | P2t | || | I
ot |LE ! i
’g—o o + of & E—ﬁ[lﬁoo o] < ’,g—|.-- --.I
© ™ ~
-0.2 0.2 06 N -0.2 02 06 = -0.2 0.2 0.6 I
[ i’ [ i L1 b
D> D> D>
=H ] ERE Gl Moo= T )
@3 S o3 S o5 =
g—-mmoc_q[lp = g——acn*--mul = §—|.---<|:D.|
¥ B CA
-0.2 0.2 06 <= -0.2 0.2 06 < -0.2 02 06 I
I R I R IR
@> @> @> b0
S q[llh-)mm Il = |-- --+—— Il = |.-|:|:|--.| o/
> S @> S @> Q‘\;’,
el I 5% TH 5% T H
© = =~
-0.2 02 06 *» -0.2 02 06 @& -0.2 0.2 0.6 I
[ % [ i L1 b
GDZ o + Il CDZ + ) ) I CDZ |-- --_ I
@3 © o5 2 o3 =
%‘-mﬁk oo ’g—q[lp ® aom| ’g—|.- -.|
© = =
00 04 08 =& 0.0 04 08 = 00 04 08 —
Y Y Y MY L1111 b I B B R =
D> D> D>
= ] Moz N R
@3 S o5 S o5 2
e cem=t] e " ot {l| T T N
X S CN
0.0 04 08 <= 0.0 04 08 <« 0.0 04 08 I
Ly P I R R IR l
] L] L
> b @> b @> 5
e S I 5T °
N = 2
00 04 08 3 00 04 08 = 00 04 08 &
N Y By o L1111 b [ B I R
CD\>’§_+’°° o o Il m\%:-#l_.o o o Il CD; |.|]:| ..... .I L
o o
D> tr D2 e D> ot
it I | Lo S B

Figure 32: Boxplots of change-point estimation error ™) — 9 under mean setup (2) and variance setup (4). In
the columns (1,4,7) n = 200, in (2,5,8) n = 1000, and in (3,6,9) n = 2000. In each column the first
three rows are for 6, = 0.5, the second three for 6, = 0.25, and the last three for 6, = 0.1.



REAL DATA APPLICATION

7.4 Real Data Application

In this subsection, we adapt our presented procedures to real financial data, taken from Finanzen
(2016). We consider the correlations between the log-returns of the daily closed index DAX30 and
stock VW from January 2, 2015, to March 2, 2016. The curves and the log-returns are plotted in
Figure 33. (Non-trading days at Borse Frankfurt are omitted in the time axes.)
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Figure 33: Chart of DAX and VW

In the selected time period, the weight of the VW stocks in the DAX index has varied as follows:

Period | 01.01.2015-12.04.15 | 13.04.15-22.12.2015 | 23.12.2015-02.03.16
Amount | 3,36% | 3,9% | 2,359%

Table 25: Amount of the VW stock in the DAX, cf. DAX-Gewichtung (2016)

Since the composition of the DAX index changed on April 13, 2015, and December 23, 2015, the
correlation between these data might have changed on these two days. Regardless of the facts that we
cannot state whether or not a change in the correlations has actually occurred, and that we cannot
prove whether the assumptions on our results are fulfilled, we can still apply and evaluate the different
procedures.

Figure 34 presents the processes B?7, B4 B2?37 and B?*7 which are weighted by the critical
value cpo5~. Only B, B2 and B*7 reject Hy while B%7 does not exceed €0.05,4 for
each ~.

Table 26 presents the different change-point estimates which use the restriction that there is
only one change-point. Figure 35 illustrates the moving correlation based on Pearson’s correlation
coefficient. On the one hand, we ascertain that the correlation seems to be lower after September 16,
2015, on the other hand, we observe that the moving correlation rises back to a correlation of 0.8.
Thus, the period from September 16, 2015, to around February 10, 2016, could be a random anomaly.
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SIMULATION STUDY
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Figure 34: The left column contains the processes B??/cpos5,, and B'7/co0s,, and the right column contains
the processes B**7/co.05,, and B**7/cy o5, for v =0 (black), v = 0.25 (red), v = 0.45 (green), and
~v = 0.49 (blue).
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Table 26: Change-point estimates of the correlations between log returns of DAX and VW

Without claiming that there is coherence between the emissions scandal of VW and a change in the
DAX/VW correlation, we take note that the Environmental Protection Agency accused Volkswagen
on September 18, 2015, and VW published their apologized on September 20, 2015, cf. EPA (2015)
and Pressemitteilung der Volkswagen AG (20.09.15).
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Figure 35: Moving Pearson’s correlation coefficient with backward lag size of 10 (black), 15 (green), 20 (blue),
25 (cyan), 30 (pink), and 35 (yellow).
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Appendix

A Proofs of Section 2

In this section, we present, on the one hand, proofs of well-known results, proofs of some slightly new
results, and, on the other hand, technical lemmas for the main results.

Proof of Theorem 2.1.1. Firstly, we obtain with the CTM that

% (in) — hn) — Rup() 223 D2 () (A.0.1)
with
k
Rnp(-) = Ey}?]z (ﬁ[n.} - ﬁn> and  py = %sz (A.0.2)
=1

Under H it holds that R, ,(-) =0, since p; = pp for all i, whereas under Assumption Hy,4 it
holds that

R, () = Z (i/n) ——ng (i/n) — DY2h() as n — oo

=1

uniformly on [0,1]. Since D is a consistent estimate for D, Slutsky’s Theorem implies the first and
second result.
In the third case, we obtain that

Z Ig )\(Rk*
o (

where we get the underestimation directly by choosing k = ki and k = k3. With a suitable constant
c1 > 0, we therefore get that

|Rap()]| = max |A A AE)

> 91 .0.
max. 2Lyl (A.03)

-] 1/2 1/2
=D 2= (2O, = 200, ) || = —E D2 Ry (Ol = —= 1D 2(Ba() = Rap(0))]
f ﬁ< v ) \F v f ’
AR )ARES)
i (ROl = 1Bal) = RO - o (11VATES — Op (1))
1D v N v |
)\(Rk*)A(Rk*) . — .
where we use (A.0.1). Hence, if |A,|\/n=——"53—-~ — oo, which is given by Ha, the right-hand side
above is asymptotically positive. Furthermore with Dy? = op(an| Ay ARk )A(RS)n™2) it follows
for each ¢>0 and f, with lim|g o f.(7) =00 that P(f(ann=2BY"%) > ¢) — 1. O

Proof of Theorem 2.1.15. This proof exactly follows the proof of Bucchia and Heuser (2015, Th.
1) with the difference that here we deal with the special one-dimensional case (d = 1) and use the

notations Q([ns),[nt]) = Qn(s;t,), Z; = Zi(O) -E [ZZKO)}, and Ry = (0,k] in the AMOC setting as
well as Ry = (k1,k2] in the epidemic setting. Using the same decomposition of Bucchia and Heuser
(2015, Th. 1) implies

P(nf6—6"| > N+1) <P (|Jk—k"|>N)

=P | max (Q(kik) — QK[ k) > max (Q(kikz) — QK] E3))
1<kg kq<ko
l[k—k*| >N |k—k*|| <N

<P | max (Q(kiks) — Q(Kk3)) 20

kq <ko
Ih—k* || 3N
A(l) A(2) A(l) A(Q)
<P max Lo, k1,k2” "k, ko + kl,sz —i—A ki,k2 + A2 >0,
k1 <ko 1r2 ka B() B(Q) p
lE—k*|>N 1R k1,k2 k1,k2
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where
O > = ARp\Ry+) — A(Rp+\Ry) >
A= Do Zi— Y, Zi- - > 7,
1€ERE\ Ry* JERE*\ Rk 1<i<n
n A(Ry+)
Bk, = —AMBi\Ry) — (M Re\Ri+) — MRy \Ry)) ,
9 A(Ry) + M(Ry+) =
Al(ﬁ)sz = Z Z + Z Z n Z Zi,
i€ Ry 1ER* 1<i<n
AR+
B(2)k2 = AMRp N Rg=) + AM(Rix) — (M(Rg) + ARy )) (nk )7
1 2
L"vklka = B’il?kQBl(ﬂ?k?'

Under the assumption that Ry- is an interval and Z; fulfills the Kolmogorov-type inequalities, it
follows that || E£1]1 Zi|| = Op(n'/7). Hence, just as in Bucchia and Heuser (2015) we get

(2) B®@
Bk1 k’g kl,k/‘Q
0<c< min = < max <4
ki <k ki <k n
|k—k*||>N [[k—k*||>N
and
2)
A2,
k1,k
ma: 1,k2 OP( 1/r. 1)
k1 <ko n
[k—k*| =N
Defining Ty, k, := |k1 — kT| V [k2 — k3| = ||k — k*|| yields
_pW _p
. ki1,ko k1,k2
0<c< min T < max Tig(},
ky <k <h
ek o Rk ek 2 Rk
. L gy i
0<ec¢< min M and max Ly, kg, < —¢ <0,
k1<kg nTkl ko k1 <kg
lk—k*|| >N ’ [e—k* =N

for suitable constants 0 < ¢ < C. It remains to be shown that

AL,
max  —2F2 — 55(1) + anOp(1)
k1<kg Tkth

lk—k*[[ 2N

for axy =o0(1) as N — co. The assumption of A(Ry+) ~ n implies

1) > 7.
max 7|Ak1’k2’ < max | 2ier, i = 2icr, Zil + Op(nt/m="1)
uklilkiﬁézv Tike Hklilkiﬁifv s ks

= anOp(1) + Op(n'/m=71),

where the last equality follows by Lemma B.0.2, for which the Kolmogorov-type inequalities are
required.
Combining the above results implies

P(nué—eou > N+1) < P(Hl%—k*u > N)

A(l) A(Q) A(l) A(2)
<P| max Ly, ’“i”’” b L BN+ A, 2+ A2 | 20
<
Ih—k* | 2N nokr k2 By ke By ks

<P max Lok, (0p(1) + anOp(1) + A7) > 0
k=% |2 N

<P (Op(l) + a,NOp(l) + AIQ) < 0) .
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Proof of Theorem 2.1.16. This proof essentially follows the proof of Theorem 2.1.15. Using the
notation Z; = ZZ-(O) —p;i and a, =nA,, implies

P (anHé — 6" >N+ 1) <P (||12; — | > Nn/an>

A(l) A(2) A(l) A(2)
<P max Lo ko b k1,k2* "k1,ka + kl’k2A n A k1,k2 + A2 >0
k1 <kg AR Lk k B(l) P P> B(2) P
lk—k*||>Nn/an 1,52 k1,k2 k1,k2

Since Ry is an interval and its cardinality rises with rate n, it holds with the arguments of the
proof of Theorem 2.1.15 that

2 1
Al(ﬂ),kz 1/r.—1 Agfl),kQ an
max =Op(n/™7") and max = Op(—>),
k1<ko (2) k1 <kg (1) nN
lk=k*[|=Nn/an k1,k2 lE—k*[|>Nn/an k1,k2

where we use the Kolmogorov-type inequalities for the last equality. Combining the preceding rates
implies

P (anﬂé — 6% >N+ 1) <P (||12; — | > Nn/an>

(1) 4(2) (1) (2)

-2 k1,k2" "k1,k2 A2 ki,ka A —1 ki,k2 A —1
=F b1y Lo B Ly iy Bpn 2@ Bont B? Bpnt 1] 20
lk—k*¥|>nN/an HHR2 k1,ko k1,k2

<P max Lo (Op (0 7IAZNT) 4 NTIOp (1) + Op (n/T1ALL) 1) 2 0
1
= k* | >nN/an

<P(op(1)+ N7'Op(1) +1<0) =0

as n — oo, followed by N — oo. Here, we insert the definition of a, = nA,, and use that
Ly gy gy < —€ for some € > 0.
O

Proof of Theorem 2.1.18. Firstly, for a suitable array a, y we obtain that

Pk =k 2oy + ) <P min Q00 < QP

kilk—k*|>an, N
and with Zi = Zi(O) — p; that

QY (k) — Q(k*)

o n—k* A2 LA A2 N
= Ap,n(k — k) S 1+ ok Zip; + S Z Zip; ﬂ{k<k*}
1=k+1 i=k*+1

k k* k—k*

k* A—Q k* B A—Q k 5
+ A2 (k= k)= (1 + =N Zipi+ 2 Zi,oi> Lgspey-
=1 i=k*+1

With the Hajek-Rényi-type inequalities

1/r;

1 k nfkl*
% - —(r==1)/r2
max E Zipil = Op E k™" =Op(a (r
n>k>k*+an n |k — k* iPi (a, n );
’ i=k*+1 k:an,N
1 k* kl* 1/”‘2
7 - - z*l)/rz
max Zipi| = O T = Op(a
1<k<k*—an n |k* — k Z iPi P Z p( n,N ),
) Z:k+1 k:an,N
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we obtain with (2.1.26) that the insides of the two brackets of the second display are asymptotically

272 N 2ry

positive if a,n = NA, ;"' Hence, we get |k —k*| = Op(|A,,|7-1).

O

Proof of Lemma 2.1.21. Base case m = 1: g = c is constant. Hence, it holds that

n k1 n —
/ (g1(z) — ¢)%dx = / (po — ¢)*dz + / (po + Ay — ¢)%dx > kl/\(gkl)
0 1 k1

2
A
for any c € R.

Induction step: Let the assumption hold for some m € N, m < n. Let now g1 € Dy41,, and
92 € Dy, . Then, we obtain that

n km n
/0 (91(x) — gol))2dec = / (91(2) — go(2))2da + Am<gl<x>—gz<x>>2dx.

Now, we distinguish between the cases:
1. go has at most m — 1 jumps on (1,kp];
2. go has m jumps on (1,k,].

In the first case, we obtain by the use of the induction hypothesis that

km n
[ @) - ga@nPde =22 [ /) = gl ) P
1 1

>~ min A% min (k; — ki—1)
2 1<i<m ' 1<i<m

—_

and

/” (g1(z) — g2(x))%dz > 0.

In the second case, we obtain by the same estimations as under the induction base that

km
/1 (91(x) — g2(x))*dz > 0

and

[ @) = o) e > Bt Bl R0 el e

Hence, by combining both cases we get that

<<m+1 ' 1<i<mA42

" 1 : .
/ (g1(z) — go(x))?dx > 5 ,uin A? min  (k —kiq).
0

O

Proof of Theorem 2.1.33. Set —d, = (1 —r,)/r,. Applying the Kolmogorov’s inequality we
observe that

1
— max

_ —d;
n 1<k< = Op(n™"),

Z(ZZ-(O) - pi)
1

1=

which will be used below. We obtain that

NN
Ry==>"f ( ‘7) (Th,ij + Toig + T3,i5)

n
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with
A 0 T 0 - . L )
T, = Rpnli) <ZJ( ) ﬂj) v Doy = <ZZ( ) - Pi) Ron())", Tsij = Ron(D)Rpn(j)"

We define R%W) for W € {A,B,C,D,E,F,G,H} as R, in the corresponding cases (A)-(H).
In case of (A) we get

Rq(lA) — Op(n_‘;l)% Z f (l—]> (Z(O) _Pz) "‘OP —261 Z f(

an

z‘j—l u 1
= Opln™ Z f( > > (2" = pj) + Oplawn™*")
i=—n JEN;

= OP(QHn_(dZ+61)) + OP(an_%l)a

where we use that N; is a union of two intervals and f is integrable. In the case of (B) and,
analogously, of (C) we obtain that

B_ A s (k) (k)
o £ )L ()

3,j=1 3,j=1

+2 Zf( D)z -y

1] 1
= Op(gun~ (dz+51)) + Op(qnnfwl) + Op(qnnf(l/“‘sl)) + O(qnnfl) + Op(a,(f))

for k = 1,2, where we use the absolute boundary of f and > !, |d | = o(y/n) in the situation
of case (B) and additionally, Hde = o(n~1'/?) in the case of (C). In case of (D), where we only
(3)

assume an uniform bound for d;’;, we get that
RP) = Op(gun™ =) 4 Op(gan™") + Op(gun™"") + Olaulldiy ) + Op(af?).

In case of (E) we obtain that

11— _ Ui _
Z f( )Tl,z',j <n ') Op(n~%) Z f( > > (Zﬁ)j — Pi+j)
’Lj 1 k=1 j=—n iGNJﬂC‘k

m J2
—1 -9 (0) .
ST SEARE

k=1 j=—n i=7j1

—(1-1/r,+miny Jk))
)

where we use the Kolmogorov-type inequality (IC,(FI)). In a similar way, we obtain the rate for T3 ;
by switching ¢ and j. Furthermore, we get that

Yol e £ S| ¥

k1=1ko=1 j=-n ~ |i€eN;NCyy i+i€Ck,

Lyt

1,7=1

=O0p [ an > 3 0710 (Cr,) A#(Cry) | +o0p(1)

k1=1ko=1

=0p <qn | max n 10k Ok (O ) A #(Ck1)> +op(1).
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In cases of (F)—(G) we use the triangle inequality so that we get the rates as in case of (E) plus types
of the form:

oS =) () et
;;;ﬂ 1) 15,1000

where the first appears in case of T7;; and of T;; and is equal to Op(a%k)). The two other

summands appear in case of Tj;;, where the first one is equal to o(1), O(g,n7'), or O(gy)
in cases of (F), (G), or (H), respectively. The last term is equal to op(g,n~1/27™% %) 4 op(1),
Op(gun~ 712 maxy, #(Cp)n %) + op(1), and Op(g,n~" maxy, #(C)n %) + op(1) in cases of (F),
(G), and (H), respectively. O

B Lemmas for the Main Results

Lemma B.0.1. For any arbitrary r* € [1,2] let {Z,} be a sequence of real-valued random variables
with uniformly bounded r*th moments and {d,} a deterministic sequence with Y . |d;| = o(y/n).
Then, {d,Z,} satisfies the first and second Kolmogorov inequality with r = r*.

Proof. Set |||l = (IE[[]|-["])*". Per definition we have to show that there is a constant C € R for
each n € N and 7 > 0 so that

n
> .
(m > ") I
1=1 =1
where {ay,} is a uniformly bounded sequence. We obtain with Markov’s inequality that
1
S az| > n) <L
: n"
i=1 T
T* T*
1 " 1 & Cy -
< ( ) ) (zw <Oy
n i=1 i=1 T3

where the first constant C7 is an upper bound of the uniformly bounded second moments and the
second derives from the property of > 7", |di| = o(y/n). O

r¥*

k

max d; Z;
1<k<n £
1=

A

*

max
1<k<n

r*

Lemma B.0.2. Let ||-| denote the Euclidean norm. Set k* = (ki,k3) and k= (k1,k2).

1. Let {d,} fulfill 37" ,|di| =o(v/n) and dn =o0(1), as n — co. Let /n = O(ks — ki) as
n — oo. Then, it holds that

1 ko k3
B e | 2 B 2 )=o)
lk—k* >N i=1+k1 i=1+k7

2. Let {Z,} be a real random sequence fulfilling the second and shifted Kolmogorov inequalities
(IC,(~2)) and (/C?)) for any r>1. Let kiV (n—k3) =o((ky — k)"). Then, it holds that

k*

1
1< ohy<n [k — k*|| Z Zi— ) Zi| =anOp(1),
Ik 1k*||2>1\l =14k =14k}

as n — oo, where ay =o(1), as N — oo.



3. Under the second conditions let I, a random set with P(fn CcI)—1 as n — oo, where
I c{1,...,n}. Then, it holds that

1
P max T —— Z — Z >
1<y akg<n [k — k¥ > i > L=
lik—k* =N i€ (k1 k2] n i€ (ks k3],

_0 < Lks >min1} L ks >min 1y
(

Vk —max D)1 (N V (k} — max D))

4 ]l{kfgmax]} ]l{kggmaxl} >

(NV (minl — k7))r—1 + (N V (min T — k3))) 1

Proof. 1. We obtain that

Zfimﬁ di — Zfiwq di, if k< ke <k} < k3,
fo 1+ky di — ZEprk? di, if ky <k} < ko < K3,
i d i 0 _Z;J Lok -—Zﬁl+k2d-, if k< ki < ke < K3,
e P 1+k1d + g di B Ry <K< K3 < ko,
Sy 1 di A Y 14+k3 d’u if kY <k < k3 <k,
S i = S di 0k <k < hy < o

o(n!/?), if k< ky <k < K3,

=< o(||k = K| A nl/z), else,
o(n'/?), it k< kj <k <k,

= o(|lk — k|| An'?),

where we use in the first and last case that ||k — k*|| = O(k5 — k}) and that for j=1,2

nk—k*uzN N§|kj—k;|§f
+omax > [di = o(1). (B.0.5)
PR Lt Zk: Z
lk—k*[|=v/n J

Here, we use dg, = o(1) for any a, — oo as m — oo for the first summand. Analogously, the
other case follows.

2. Now, we prove the second conclusion and use the same segmentation of the set, over which the
maximum is taken, as at the beginning. Since the maximum over the whole set is smaller than the
sum of the maximum over each segment area, it is sufficient to show that each maximum is equal to
Op(1). For the first segment it follows by Kolmogorov’s type inequalities that

k3
o>
P, max o k*” Z Zi— Z Zij z €

2
<P max g Zi — E Zil > €
k1<k2§ki‘<k*
|k—k*||>N i=1+k i=1+k7
k:* k’* g ¢ + T g ¢ = o
i=1+k7

as n — oo, where we use ki = o((k3 —k7)"). Similarly, we obtain the rate for the last segment, where
we use n — ki3 = o((k3 — kj)"). For the other segments we use the Hajek-Rényi type inequalities,
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which are equivalent to the Kolmogorov’s type inequalities, and get for example

kY
(& C;
P Z;| > < — - = O(1
B ;k ‘) <& L Gy ~wow,
[[E—k*[|>N

as n — 0o, where ay — 0 as N — oo.
3. In the third case, just as in the second, we use the decomposition of the set over which the maximum
is taken. On the first set k; < k2 < k] < k3 we obtain:

1 c
Z; — Zi| < Zi|.
rem ks [k — k| 2. & 2. < K — kT 1<ki<ha<ks 2. %

k—k*||>N i€(k1,ka]N Iy e (ks k3)Nin i€ (k1,ka)N Iy

Now, we use P(fn CI)—1 as n— oo so that the right-hand side above is estimated by

max [
C 2¢ a.
T _ * Zi N< —— 7. )
k3 — kT Idoel ‘E(%:k] i| +op(1) < Bk i 155X Ek |+ op(1)
? 1,R2 =

= Op(#1(ky — k1)7") + op(1) = op(1),

where we use the Kolmogorov-type inequalities for the rates. Analogously, we deal with the last set
kT < k3 < k1 < ko. Hence, we now consider the term on the second set ki1 < k7 < ko < k3 and
obtain:

1
1<k1<r29<k2<k ||k: k|| Z Zi = Z Zi

SISy i€ (k1,k2)NIn ekt k3])NIn

1 1
< . Z; SR S— Zi|.
= ik (k¥ — k1) VN Z o + Kt ko Sk (k3 — ko) VN Z !
i€(k1,k7]NI, 1€ (ko k3N,

We treat the first and second summand analogously so that we only consider the first one. Using
P(I, cI)—1 as n — oo, we obtain that the first summand is equal to op(1) if min/ > kj. In
the other case we estimate the summand by

max [Nk}

1 1
— Z; 1) <2 D T — Z; 1
kikoel (k7 — k1) VN |, 2 i Hor(l) < Tmax g Uy 2. Zif+or()
1€(0,k5]N(k1,k2] i=k

Now, we apply a Kolmogorov-type inequality, which yields that

1 max INk] kiAmax I 1
c
P N ANVEY: Z Zilzn| £ — Z T oy N
hel (ky—k)VN ~ U (k¥ —i)" VN

=0 (((k —max 1)V N~ )

Analogously, we handle the maximum over the other sets so that we get:

1
Plmex o | 2 Zi— > Ajzm
Ih—k* [N ik, ko] ek} k3]Nn

-0 ]l{kTZminl} + ]l{kgzmlnl}
O \(NV (kf —max )1 " (NV(k —maxI)) !
+ ]l{ki‘gmaxl} i ﬂ{kggmaxl}

(NV (minl —k3))1  (NV(minl —k3))) /)"
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Lemma B.0.3. Let m € N be finite and C,, = U, (nb_1,n0%], where 0; € (0,1) and 0; # 0;

for i # j. In addition let C, = Uﬁl(négi,l,négi] with )\(C'RACH) = O0p(n'~?%) and let {Z,} bea

random sequence, which fulfills the Kolmogorov’s inequalities (}C,(rl)) and (}C,(rz)) with a v > 1. Then,

it holds that

Op(mn'/2), if I —m| = Op(1)

max Z 7. :{ g
CeRn ' (1=8)(1/r43) A p1/2Y  §f 1y — | —
= liccn@nncy) Op(mn A2 if i —m| = op(1)

for any arbitrarily small & > 0, where R, = {U (nsint;] = sty € (0,1), 8 < t; < sit1}

Proof. Let 1> 0 then it holds that

P | max Zi| >
CERn Z i
i€CN(CrnACy)

=P max Z Zi| >n,|m—m| > N;
ieCN(Crn ACY)

P Z; n — < N
+ P | max Z i| >m,m—m| < N
i€C(CnAC)

< P (| — N)+ P 7. o —m| < N
< P (v —m| > Ni)+ P | max Z il >, i —m| < Ny
i€CN(CnACy)

as n — oo. Since C, is a union of at most m + N; disjoint intervals, C,AC,, and CNC,AC,
are a union of at most 2m + Nj intervals under the condition |m —m| < Nj. Hence, it holds that

max E Z;| < max g Z;
CeR, CEeRy, |4
ieC

i€CN(Cr ACY)

<2(2m+ N1) max [S, — S, x| = Op(mn/"),

where we just assume that |/ —m| = Op(1). If we assume |m —m| = op(1), we replace N; by an
€1 > 0 and consider

P | max Z Zi| >n,Im—m| <e, )\(C’nACn) < Non'—?

CeRy, -
ieCN(CnAC,)
m nba; nbz;+ko
<P Z max Z Z; — Z Zil >n|,
jo1 I ShukesNent=el, TEE i=nfa;_1—k1

where by applying Lemma B.0.2 it follows that

nfa; nb2;+k2 -
. | — 1/r+6 (1-8)(1/r+5) 1/2
max Zi — Zi| = Op(N. n An
1<k1,ko<Nonl=9 | Z C Z ' P 2 )
i=nfla; 1 i=nb;_1—k1
. < . 1+1/r+6
for any arbitrary 0 > 0. Choosing 7 = N, makes clear that the result follows. O

Lemma B.0.4. Under the assumption that g is piecewise continuous, it holds on [0,1] that

[n] .
%Zg(z/n) — /0 g(z)dz|| —0, as n— co. (B.0.6)
i=1

[e.e]
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Proof. Let € >0 and z,...,z, € [0,1], m € N, the discontinuous points of g. Then, we estimate
the maximum over [0,1] by the sum of the maxima over [z;,z;+1] , ¢ =1,...,m — 1. Therefore, it is
sufficient to show that each of those summands are smaller than ¢ =¢/m >0 for each n > N for

a suitably large . Since

1 [’VZZ] z j—1 1 [nZk+1] Zht1
sup | =S glifn) - / s@da <3| glifn) - [ ot
z€lzj,241] |V i 0 k=1 ni:[nzk] k

[nz]
1 . ‘
+ sup |- Z g(z/n)—/ g(z)dx
2€[2i,2i41] i=[z;] Zj

and 1 Zyi’z[k;ﬂ g(i/n) pointwise converges towards fzz:“ g(x)dzx , it is sufficient to consider

[n2]

1 . :
sup |— g(i/n) _/ g(x)dx
ZE[ZZ',ZH»I] n iZ[Zj] Zj
Z—Zj = . -
< sup Zg(z/n(z —2zj)) — g(x)da
2€[21,2i+1] [nz] i=1 “i
Z =z = . 1 = ;
+ sup Zg(z(z—zj)/n)—* Z g(i/n)|,
S Y | I " i=[z]
where the first summand converges towards zero, since fy,(2) = % i=19(i/n(z = 2j)) is equicon-

tinuous (g continuous) and converges pointwise towards the integral. O
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