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Chapter 1

Introduction

1.1 Motivation

Energy is an essential input for any economic activity and has been fundamental for

human and economic development. Technological innovation in the conversion and use

of energy is closely related to this development. The ability to convert ever larger quan-

tities of energy and consume these with increasing efficiency provided greater amounts

of power, heat, transport, and light and improved human societies’ standard of living

and economic prosperity (Fouquet, 2009). The progress from simple human power to

the use of draft animals, the water wheel, and the steam engine increased power avail-

able dramatically by about 600-fold. The steam engine, in particular, revolutionized

energy conversion and introduced the Industrial Age by making power plants geograph-

ically independent of the proximity to energy sources. Subsequent advances in energy

technology, such as electricity, more efficient steam engines, nuclear power, renewable

energy, energy distribution (such as electrical grid and pipelines), and improvements

in energy efficiency have led to ever more convenient, portable, versatile, and efficient

ways of energy conversion and use (Newell, 2011). This technological change can also

be observed in the improvements in energy intensity that have occurred in the world’s

industrialized countries: The amount of energy required to produce one unit of output

has been falling by approximately 1% per year over the last century. More recently,

similar improvements began to occur in many transition and some developing countries

(UNDP, 2000). This development allowed the world to produce ever more wealth per

unit of energy.

However, today’s ways of converting and consuming energy have substantial adverse ef-

fects on the environment. These include indoor and outdoor air pollution, hydrocarbon

1



Chapter 1. Introduction 2

and trace metal pollution of soil and groundwater, oil pollution of the oceans, radioac-

tive waste, and emissions of carbon dioxide (CO2) and other anthropogenic greenhouse

gases (GHG) (Gallagher et al., 2006). One of the greatest threats to the global environ-

ment is climate change caused largely by the human-induced increase in anthropogenic

GHG emissions since the pre-industrial era. Climate change has already had observ-

able negative impacts on the global environment, such as rising sea levels, expansion of

deserts, and more frequent extreme weather events. Without significant reductions in

GHG emissions these impacts are predicted to become severe, pervasive, and irreversible.

How to provide the energy required to sustain and increase economic prosperity and,

at the same time, mitigate climate change is therefore the most serious environmental

policy challenge the world faces today. Averting dangerous climate change will require

to limit the increase in global mean temperature to no more than two degrees Celsius

above pre-industrial levels. Reaching this two degrees Celsius goal requires substantial

and sustained reduction efforts to stabilize the concentration of greenhouse gases in the

atmosphere. Reducing emissions from energy conversion and use is a key component to

achieve this mitigation goal (IPCC, 2014).

Energy technology innovation is a crucial factor to address this challenge. Controlling

and limiting climate change will require a major change in the global energy system with

a transition from existing energy technologies to new green (that is, low-GHG and GHG-

neutral) energy technologies (Nakicenovic and Nordhaus, 2011). These green energy

technologies can reduce GHG emissions from energy conversion and use by lowering the

carbon intensity of energy or the energy intensity of economic activity. Thereby, they

can reduce the long-term costs of meeting a GHG reduction target to societies (IPCC,

2014). Accelerating innovation in green energy technologies is therefore essential to

combat global warming. While the importance of green energy innovation is widely seen

and an extensive research effort has been made to analyze these innovations, it is still

not completely understood what determines and what are the economic consequences of

innovation in these technologies.

This thesis aims to improve the understanding of green energy innovation. In three

interrelated essays it applies empirical methods to analyze the innovation process in green

energy technologies focusing on two main aspects. First, it studies the determinants of

green energy innovation: on the one hand for a set of different green energy technologies,

and on the other hand specifically for clean coal technologies. Second, it examines the

link between innovation in green energy technologies and the economic performance of

the innovating firms.

Chapter 2 empirically investigates the effect of energy prices and technological knowl-

edge on innovation in green energy technologies using country-level European patent
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data. The research is motivated by the ambiguous evidence on the determinants of

green energy innovation, especially with respect to the determinants of innovation in

specific technologies. It aims to deepen the understanding of these determinants in or-

der to answer the question, whether policies should foster green energy innovation by

stimulating the demand for green energy technologies via increasing energy prices, or by

enhancing the technological capability via improving the knowledge stock of an economy.

Chapter 3 empirically examines the determinants of clean coal innovation using firm-level

worldwide patent data. Motivated by the essential role coal plays in global electricity

generation and the large environmental footprint of this sector, the research seeks to

shed light on the factors enhancing innovation in technologies that allow coal use in

electricity generation while mitigating its impact on the environment. Understanding

these factors can help policymakers to design the appropriate energy and environmental

policies for encouraging more innovation in clean coal technologies.

Chapter 4 empirically analyzes and compares the impact of innovation in green and

non-green energy technologies on the economic performance of firms using firm-level

European patent data. The research is motivated by the insufficient evidence on the

economic effects of green energy innovation, especially regarding the relationship between

innovating in green energy technologies and the economic performance of the innovating

firms. It aims to answer the question, whether firms gain (forgo) economic opportunities

by innovating (not innovating) in green energy technologies.

1.2 Thesis Outline

After having discussed the motivation, the following section outlines the overall structure

of the thesis. The main part of the thesis consists of three interrelated empirical essays

dealing with two main topics of green energy innovation: its determinants and its impact

on firm performance. Each of the three essays has a dedicated chapter in this thesis and

can be read independently. The subsequent paragraphs briefly outline the research

questions, the data used, the econometric methodology employed, and the main results

of each of the three essays.

1.2.1 Energy Prices, Technological Knowledge, and Innovation in Green

Energy Technologies: a Dynamic Panel Analysis of European

Patent Data

The essay in Chapter 2, ”Energy Prices, Technological Knowledge, and Innovation in

Green Energy Technologies: a Dynamic Panel Analysis of European Patent Data”,



Chapter 1. Introduction 4

empirically investigates the effect of energy prices and technological knowledge on inno-

vation in green energy technologies. It is forthcoming in the Journal CESifo Economic

Studies (Kruse and Wetzel, 2015).1 The essay was written in co-authorship with Heike

Wetzel. Contributions to all aspects of the essay were made in equal parts.

In the essay, we consider both demand-pull effects, which induce innovative activity from

the demand side by increasing the expected value of innovations, and technology-push

effects, which drive innovative activity from the supply side by extending the technolog-

ical capability of an economy. We aim to answer the question, whether demand-pull or

technology-push factors are the main drivers of green energy innovation. Our analysis

is conducted using patent data from the European Patent Office (EPO) on a panel of

26 Organisation for Economic Co-operation and Development (OECD) countries over a

32-year period from 1978 to 2009. We investigate the determinants of innovation sepa-

rately for 11 different green energy technologies. Utilizing a dynamic count data model

for panel data based on the pre-sample mean scaling estimator, we account for path de-

pendencies in knowledge generation, endogeneity issues, and unobserved heterogeneity.

The results indicate that the existing stock of knowledge is the main determinant of

innovation in green energy technologies. This confirms the technology-push hypothesis

stating that innovation is induced by advances in the technological capability of an econ-

omy. Furthermore, the results reveal significant differences across technologies in that

energy prices have a positive impact on innovation for some but not all green energy

technologies. This finding confirms the demand-pull hypothesis for some technologies

suggesting energy prices as a major driver of green energy innovation and supports our

approach of a technology-specific analysis. Moreover, we uncover significant differences

comparing the period before and after the Kyoto protocol agreement in 1997. More pre-

cisely, the results indicate that the effect of energy prices and technological knowledge on

green energy innovation becomes more pronounced after the Kyoto protocol agreement.

1.2.2 Innovation in Clean Coal Technologies: Empirical Evidence from

Firm-Level Patent Data

Chapter 3, ”Innovation in Clean Coal Technologies: Empirical Evidence from Firm-

Level Patent Data”, empirically examines the determinants of clean coal innovation.

This essay has been published in the Working Paper Series of the Institute of Energy

Economics at the University of Cologne (Kruse and Wetzel, 2016). It is a joint work

with Heike Wetzel, who co-authored the essay and equally contributed to all parts.

1 This article is copyrighted by Oxford Journals and reprinted by permission. The presented article
first appeared in CESifo Economic Studies, online first October 2015, doi: 10.1093/cesifo/ifv021.
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In the essay, we analyze supply-side and demand-side factors expected to affect clean

coal innovation. The factors analyzed are: scientific and technological capacity, overall

propensity to patent, public R&D, coal prices, market size as well as environmental

policies and regulations aiming at the reduction of emissions from coal-fired electricity

generation. Our analysis builds on a panel of 3,648 firms that filed 7,894 clean coal

patents across 55 national and international patent offices over a 32-year period from

1978 to 2009. The study inquires into the determinants of clean coal innovation at the

firm-level using almost the entire population of worldwide clean coal patents filed in

the considered period. We utilize a negative binomial count panel data model based on

the pre-sample mean scaling estimator that accounts for endogeneity issues, unobserved

heterogeneity, and overdispersion in the count variable. Our results indicate that energy

prices have a negative impact on innovation in after pollution control technologies, but

do not affect innovation in efficiency improving combustion technologies. These findings

suggest that increasing energy prices leads to less innovation in technologies that make

the conversion of coal into electricity even more expensive. Moreover, we find evidence

of a strong relationship between environmental regulation of emissions from coal-fired

power plants and clean coal innovation. While regulation of CO2 emissions has a posi-

tive impact on clean coal patenting in general, nitrogen oxide (NOX) (and sulfur dioxide

(SO2)) regulation is found to positively affect after pollution control patenting only. A

firm’s history in clean coal patenting and its total patent filings are found to positively

affect clean coal innovation. These results indicate that firms build on existing knowl-

edge and innovate more in clean coal technologies the higher their overall propensity to

innovate.

1.2.3 Innovation in Green Energy Technologies and the Economic Per-

formance of Firms

The essay presented in Chapter 4, ”Innovation in Green Energy Technologies and the

Economic Performance of Firms”, empirically analyzes and compares the impact of

innovation in green and non-green energy technologies on the economic performance of

firms. It was written solely by the author of this thesis and has been published in the

Working Paper Series of the Institute of Energy Economics at the University of Cologne

(Kruse, 2016).

In the essay, I seek to understand the economic effects of green energy innovation and

answer the question, whether firms gain (forgo) economic opportunities by innovating

(not innovating) in green energy technologies. My analysis is based on a panel of 8,619

patenting firms including 968 green energy patenters from 22 European countries over
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an estimation period of 8 years (2003-2010) and a patent count period of 32 years (1977-

2010). To construct the panel, firm accounts data from the AMADEUS database is

combined with data on firms’ patent applications from the OECD REGPAT database.

I measure economic firm performance in terms of productivity and use a panel data

model based on an extended Cobb-Douglas production function in which productivity is

a function of capital, labor, and innovative output. My results show that green energy

innovation has a statistically significant negative impact on economic firm performance.

In contrast, non-green energy innovation is found to have a statistically significant posi-

tive impact on economic firm performance. This suggests that private economic returns

in terms of productivity are lower for green energy than for non-green energy innovation.

I also find evidence that the negative effect on firm performance is more pronounced for

renewable energy sources than for energy efficiency technologies. Moreover, my findings

indicate that the negative relationship between green energy innovation and performance

is stronger for larger firms. Furthermore, the negative impact of green energy innovation

on performance is found to be stronger with a larger time lag between both. Finally,

the results show that the negative impact of new green energy patents on performance

is less pronounced when firms can build on an existing stock of green energy knowledge.

1.3 Literature Review and Contribution

The final section of the introduction reviews the related empirical literature on the deter-

minants and performance effects of innovation in energy and environmental technologies

and discusses the fit and contribution of the three thesis essays to this literature.

1.3.1 Determinants of Innovation in Energy and Environmental Tech-

nologies - Empirical Evidence

There is a large and growing empirical literature on the factors that affect innovation

in energy and environmental technologies. The following paragraphs survey the key

empirical studies in this field. Table 1.1 provides a summary of these studies.2

The first contributions to this literature investigate the effect of environmental regu-

lation on energy and environmental innovation. Lanjouw and Mody (1996) examine

the impact of environmental regulation stringency proxied by pollution abatement con-

trol expenditures (PACE) on innovation in environmental technologies. Innovation is

measured by patent data from the United States (US), Japan, Germany, and 14 low-

and middle-income countries from 1972 to 1980. On a descriptive account they find

2 In addition to the surveyed literature this section draws on Popp et al. (2010).
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strong evidence of a positive relationship between PACE and environmental innovation.

Jaffe and Palmer (1997) also investigate the correlation between PACE and innovation.

Their investigation is based on R&D expenditures and US patent filings across a panel

of US manufacturing industries from 1974 to 1991. However, while Lanjouw and Mody

(1996) focus on environmental innovation, Jaffe and Palmer (1997) look at overall (that

is, environmental and non-environmental) innovation. They identify a positive impact

of PACE on R&D spending, but find no effect on patenting. Brunneimer and Cohen

(2003) study how environmental innovation by US manufacturing industries is affected

by changes in PACE. They measure innovation by US patent filings during 1983 and

1992. In contrast to the descriptive examination in Lanjouw and Mody (1996) and Jaffe

and Palmer (1997), they estimate the relationship between abatement pressures and

environmental patenting using multivariate regression analysis. Their results indicate

that PACE has just a small impact on environmental patenting.

Popp (2006) tests the impact of environmental regulation on innovation more directly.

He investigates the effect of SO2 and NOX regulations on air pollution control technolo-

gies. Using patents filed in the US, Japan, and Germany during the period 1970 to 2000,

he finds that patenting in pollution control significantly increased in response to higher

environmental regulatory pressure. Johnstone et al. (2012) also analyze the effect of

environmental regulation stringency on innovation in environmental technologies. Their

study is based on worldwide patent filings by 77 countries between 2001 and 2007. Data

from a World Economic Forum survey of top management business executives is used to

proxy regulation stringency. They find that more stringent environmental regulations

do lead to more environmental patents.

Popp (2002) contributes to the literature by considering not only the effect of demand-

side factors, but also the effect of supply-side factors on technological change. He uses

US patent data from 1970 to 1994 to estimate the impact of energy prices and scientific

knowledge on innovation in energy and energy-efficiency technologies. Estimating a

distributed-lag pooled regression model, he finds a significant positive impact of energy

prices on innovation. He also shows that the existing stock of knowledge has strong

positive effects on innovation. Popp (2002) concludes that both the supply of ideas and

the demand for ideas shape the direction of energy and energy-efficiency innovation.

A similar analysis was carried out by Verdolini and Galeotti (2011). They study the

impact of energy prices and scientific knowledge on innovation in energy technologies

using panel data on US patent applications by 17 countries from 1975 to 2000. Their

baseline results confirm the positive effects of both factors on innovation. Although

the authors do not differentiate by individual technologies, separate estimations reveal

differences between energy-supply and energy-demand technologies. While the effect
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of energy prices stays significant for supply technologies, it becomes insignificant for

demand technologies.

This result is a first indicator that the relative importance of demand-pull and technology-

push factors is specific to individual technologies. Johnstone et al. (2010) add to the

literature by further investigating the technology-specific drivers of energy and environ-

mental innovation. They use filings at the EPO from 25 OECD countries during 1978

to 2003 to investigate the determinants of technological change in five renewable energy

technologies. The analysis shows that energy prices and renewable energy policies have

a significant impact on patenting for some types of technologies. It is also shown that

government expenditures on renewable energy R&D and growing electricity consump-

tion are likely to increase renewable energy patenting. However, their study focuses on

the policies and does not explicitly account for technology-push effects. Nesta et al.

(2014) also examine the effect of renewable energy policies on innovation. They extend

Johnstone et al. (2010)’s analysis by additionally looking at the interplay between these

policies and competition, but do not differentiate by technologies. Based on world-

wide renewable energy patent filings from 27 OECD countries over the period 1976 to

2007, they find that renewable energy policies induce innovation, but that they are more

effective in countries with liberalized energy markets.

A number of papers investigate the determinants of innovation for specific energy-

efficiency and renewable energy technologies. Crabb and Johnson (2010) study if higher

fuel prices and stricter Corporate Average Fuel Economy (CAFE) standards lead to in-

creased innovation in energy-efficient automobile technologies. Measuring innovation by

US patent filings from 1980 to 1990 and using a dynamic model of patenting they find a

positive impact of fuel prices but no impact of CAFE regulations on innovation. Peters

et al. (2012) focus on the innovation effects of domestic and foreign technology-push

and demand-pull policies for solar photovoltaic technologies. They analyze a panel of 15

OECD countries over the period 1978 to 2005 using worldwide patent filings. First, they

find that domestic technology-push policies foster domestic but not foreign innovation.

Second, they show that both domestic and foreign demand-pull policies induce domestic

innovation. In a very similar setting Dechezleprêtre and Glachant (2014) analyze the

effect of domestic and foreign demand-pull policies on innovation in wind power gener-

ation technologies. Worldwide wind power patent filings from 28 OECD countries are

used as an indicator for innovation. In line with Peters et al. (2012), they find evidence

that wind power technology innovation is positively affected by policies both from home

and abroad. However, they find that the marginal effect of domestic policies is 12 times

larger. Lindman and Söderholm (2015) also analyze wind energy technologies but aim

at identifying the innovation impacts of different domestic policies. Using PCT patent

applications from four western European countries, they show that both public R&D



Chapter 1. Introduction 9

and feed-in tariffs have a positive impact on wind energy innovation. In addition, they

find that the impact of feed-in tariffs is more profound for mature technologies and

that public R&D induces more innovation in combination with feed-in tariffs. From the

latter result they conclude that innovation in wind energy technologies requires both

R&D and learning-by-doing. Finally, Costantini et al. (2015) look at the differentiated

impact of demand-pull and technology-push policies on biofuels innovation. Conduct-

ing an empirical analysis on EPO patents in biofuels technologies filed by 35 countries

(OECD and some non-OECD), they find positive effects of technological capabilities and

environmental regulation on innovation.

Our work (Kruse and Wetzel (2015); Chapter 2 of this thesis) analyzes the impact of

energy prices and technological knowledge on green energy innovation based on EPO

patent data from 26 OECD countries over the 1978 to 2009 period. It contributes to

the literature discussed above in three respects: First, by investigating the impacts sep-

arately for 11 different green energy technologies, second, by using European patent

data to assess the validity of the conclusions reached on US patent data, and third, by

applying state-of-the-art count data techniques. Our findings show a positive impact of

energy prices on innovation for some but not all technologies. This is, apart from differ-

ences for a small part of technologies, in line with the findings of Johnstone et al. (2010)

and Verdolini and Galeotti (2011). Technological knowledge is found to have a positive

effect on innovation for all technologies, which is also consistent with previous research

by Popp (2002) and Verdolini and Galeotti (2011). Moreover, the results indicate that

both effects are more pronounced after the Kyoto protocol agreement.

More recent studies investigate the determinants of energy and environmental innovation

directly at the firm-level. Ayari et al. (2012), using data on EPO renewable energy patent

counts for 154 firms from 19 European countries over the 1987 to 2007 period, find that

firms’ own R&D expenditures have a positive impact on renewable energy patenting,

but that R&D expenses from competitors or other industries have no effect. They also

find that increasing oil prices and primary energy consumption are likely to induce

renewable energy innovation. Calel and Dechezleprêtre (2014) investigate the effect of

the European Union Emissions Trading system (EU ETS) on innovation in low-carbon

technologies. Based on EPO patent filings by 5,568 firms from 18 countries, they find

that the EU ETS has increased low-carbon innovation among regulated firms, but has

not affected patenting for non-regulated firms.

Barbieri (2015) and Aghion et al. (2016) focus on drivers of technological change in the

automotive industry. Barbieri (2015) uses patent data on green automotive technologies

filed worldwide by 355 firms between 1999 and 2010 to analyze the impact of European



Chapter 1. Introduction 10

environmental policies on innovation. The results indicate that post-tax fuel prices, en-

vironmental vehicle taxes, CO2 standards, and European emission standards positively

affect green automotive patenting. Using a panel of 3,423 automotive industry inno-

vators, Aghion et al. (2016) analyze which factors direct technical change from dirty

(internal combustion engine) to clean (for example, electric, hybrid, and hydrogen) car

technologies. They show that increasing tax-inclusive fuel prices leads to more patenting

in clean and less patenting in dirty technologies. Analyzing the effect of knowledge they

find path dependence for both technologies caused by firm’s own patenting history and

spillovers between firms.

The study by Noailly and Smeets (2015) focuses on directing technical change from

fossil-fuel (FF) to renewable energy (REN) technologies in the electricity generation

sector. They analyze worldwide FF and REN patents filed by 5,471 firms over the 1978

to 2006 period. Distinguishing between specialized firms, which innovate in either FF or

REN technologies, and mixed firms, which innovate in both technologies, they find that

FF prices positively affect innovation for both technologies. FF and REN knowledge is

found to induce FF and REN innovation, respectively. FF market size only has a positive

effect on FF patenting in mixed firms, while REN market size positively impacts REN

innovation in specialized firms only.

Our study (Kruse and Wetzel (2016); Chapter 3 of this thesis) investigates the deter-

minants of clean coal innovation using worldwide patent filings from 3,648 firms over

the 1978 to 2009 period. It contributes to the existing literature in four respects: First,

by focusing specifically on innovation in clean coal technologies, second, by inquiring

into the determinants of clean coal innovation directly at the innovator-level, third, by

conducting an analysis based on almost the entire population of clean coal patents,

and fourth, by providing quantitative evidence on the global pattern of clean coal in-

novation. Our results show a negative impact of energy prices on innovation in after

pollution control technologies, but no impact on innovation in efficiency increasing com-

bustion technologies. In line with Popp (2006), we find a positive effect of NOX/SO2

regulation on after pollution control innovation. Moreover, we identify positive impacts

of CO2 regulation and technological knowledge on clean coal innovation in general.
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1.3.2 Innovation in Energy and Environmental Technologies and the

Economic Performance of Firms - Empirical Evidence

The empirical literature on the relationship between innovative activity and economic

performance at the firm-level is large and diverse. Table 1.2 summarizes the key empirical

studies in this field. It gives an overview of the indicators used to proxy innovation and

performance, the samples examined, and the central results. The majority of these

studies identifies a positive impact of innovative activity on firm performance. However,

since these studies analyze the impact of general innovation, the findings cannot be

simply transferred to energy and environmental innovation.

Very few empirical studies have specifically investigated the direct link between innova-

tive activity in energy and environmental technologies and economic firm performance.

Since the focus of this section is on the relationship between energy and environmen-

tal innovation and firm performance, I will confine myself at this point to referring to

the studies exploring specifically this relationship. These studies are reviewed in the

following paragraphs and are also summarized in Table 1.2.

To my knowledge, the study by Ayari et al. (2012) is the first attempt to investigate

the direct association between innovation in energy and environmental technologies and

firm performance. Ayari et al. (2012) analyze the impact of renewable energy innovation

on performance based on a panel of 154 firms from 14 European countries over the

1987 to 2007 period. They use EPO renewable energy patent counts as a proxy for

innovation and return on assets and stock market return as alternative measures of

firm performance. They find evidence that renewable energy patenting has a significant

positive impact on both measures of performance. However, since the analysis is based

on a relatively small sample, the results should be read with some caution.

Marin (2014) analyzes the effect of environmental and non-environmental innovation on

firm performance based on a larger but shorter panel of 5,905 Italian firms over the period

2000 to 2007. Innovation is measured by patents filed at the EPO and firm performance

is proxied by value added. He finds that in most cases environmental patents have no

significant impact on firm performance. For non-environmental patents, on the other

hand, the effect on performance is found to be statistically significant positive. The

return of environmental innovation is therefore substantially lower than that of non-

environmental innovation. Since firms have innovated in environmental technologies

and since resources that can be allocated to R&D activities are limited, Marin (2014)

concludes that this result evidences a crowding out of environmental innovation at the

expense of non-environmental innovation.
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In a very similar study, Marin and Lotti (2016) assess the effect of environmental and

non-environmental innovation on firm performance for a once more larger and longer

panel of 11,938 Italian firms from 1995 to 2006. They use EPO and PCT-WIPO patent

counts as alternative measures of innovation and value added as a proxy for performance.

As in Marin (2014), they find evidence of a generally lower return for environmental

compared to non-environmental innovation. This result leads them again to the con-

clusion, that environmental innovation crowds out more profitable non-environmental

innovation.

Wörter et al. (2015) examine the link between environmental innovation and perfor-

mance based on industry-level data. Their analysis is conducted on a panel of 22 man-

ufacturing industries from 12 OECD countries over the period 1980 to 2009. They use

accumulated patent counts (that is, patent stocks) from 12 different countries to mea-

sure the environmental innovation activity of the industries. Performance is, as in Marin

(2014) and Marin and Lotti (2016), measured in terms of value added. The results show

that the general relationship between environmental patenting and industry performance

is U-shaped. But since the turning point is very high, this result is only relevant for a

few industries that already have a very large environmental knowledge stock. For most

industries, environmental patenting is negatively related to performance. From this

finding they conclude, that environmental innovation will not proceed without further

policy incentives.

Finally, my work (Kruse (2016); Chapter 4 of this thesis) analyzes the contribution of

green and non-green energy innovation to economic firm performance using a panel of

8,619 firms from 22 European countries over the 2003 to 2010 period. Sales are used as a

proxy for firm performance and EPO patent stocks as an indicator for innovative activity.

My study contributes to the literature presented in this section in three respects: First,

by providing additional evidence on the return of energy and environmental innovation,

second, by comparing the return to the one of more general innovation, and third, by

analyzing a comparatively large and broad sample of European firms. I find evidence

that green energy patenting is negatively related to firm performance, while non-green

energy patenting is positively related. The finding suggests that returns are lower for

green energy than for non-green energy innovation and is in line with previous results

found by Marin (2014), Marin and Lotti (2016), and Wörter et al. (2015). I conclude,

that green energy innovation crowds out more rewarding non-green energy innovation,

but that this crowding out can be welfare increasing if green energy technologies have

higher social returns than non-green energy technologies.
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Chapter 2

Energy Prices, Technological

Knowledge, and Innovation in

Green Energy Technologies: a

Dynamic Panel Analysis of

European Patent Data

2.1 Introduction

In a growing field of literature, economists have empirically investigated which economic

and political factors influence the rate and direction of innovation in green energy tech-

nologies. However, researchers still lack evidence on the determinants of green energy

innovation, especially when it comes to the determinants of innovation in specific tech-

nologies. Understanding these determinants is crucial in order to design the appropriate

policies to foster green energy innovation. Should these policies stimulate the demand

for green energy technologies by increasing energy prices, or should they enhance tech-

nological capability by improving the knowledge base of an economy?

This article empirically investigates how green energy innovation in different technolo-

gies has developed in response to changes in energy prices and technological knowledge.

For the purpose of this article we define green energy technologies as energy efficiency,

renewable energy, fuel cell, carbon capture and storage (CCS), and energy storage tech-

nologies. We consider both demand-pull effects, which induce innovative activity from

the demand side by increasing the expected value of innovations, and technology-push

17
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effects, which drive innovative activity from the supply side by extending the techno-

logical capability of an economy. We aim to shed light on the ongoing debate as to

whether demand-pull or technology-push factors are the main drivers of green energy

innovation. We hypothesize that both increasing demand, due to higher energy prices,

and increasing technological capability induce green energy innovation.

To test these hypotheses, we analyze a panel on green energy innovation, drawing from

data on patent applications at the European Patent Office (EPO). Patent counts rep-

resent an output-oriented measure of innovative activity. Compared to other measures,

such as research and development (R&D) expenditures, patents are closely linked to

invention, are easy to collect, and are available for a long time period at the coun-

try and technology level. The limitations are that not all inventions are patented or

patentable, patents differ in their economic value, and the propensity to patent varies

across technologies and countries. Some of these limitations can be addressed by count-

ing high-value multinational patents and controlling for technology- and country-specific

effects. All together, despite some problems associated with patent counts, the findings

in the literature indicate that patents are a fairly good proxy for innovative activities.3

In line with this, we count patent applications in green energy technologies following

a structure defined by the International Energy Agency (IEA) and using International

Patent Classification (IPC) codes from the green inventory developed at the World Intel-

lectual Property Organization. Our data set covers 11 distinct green energy technologies

for 26 Organization for Economic Co-operation and Development (OECD) countries,

spanning over a 32-year period from 1978 to 2009.

This article is related to the empirical body of literature on the determinants of green

energy innovation. In particular, we build on the pioneering work of Popp (2002),

who uses US patent data from 1970 to 1994 to estimate the impact of energy prices

and quality-weighted knowledge on innovation in environmentally friendly technologies.

Estimating a pooled regression model for all technologies, Popp finds that both factors

have a significant positive impact on innovation.

More recently, a similar analysis was carried out by Verdolini and Galeotti (2011). They

study the impact of energy prices and knowledge stocks on innovation in energy tech-

nologies using panel data on United States Patent and Trademark Office patent appli-

cations for 17 countries from 1975 to 2000. Their baseline results confirm the positive

effects of both factors on innovation. Although the authors do not differentiate by indi-

vidual technologies, separate estimations reveal differences between energy-supply and

3 For a more detailed discussion on the advantages and disadvantages of using patents as a proxy for
innovation see, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy
Technologies: a Dynamic Panel Analysis of European Patent Data 19

energy-demand technologies. While the effect of energy prices stays significant for supply

technologies, it becomes insignificant for demand technologies.

This result is a first indicator that the relative importance of demand-pull and

technology-push factors is specific to individual technologies. However, up to now, re-

liable and detailed technology-specific empirical evidence is still missing. One notable

exception is Johnstone et al. (2010), who use European patent data from 1978 to 2003 to

investigate the determinants of technological change in five renewable energy technolo-

gies. They find important differences across technologies. However, their study focuses

on policy instruments and does not explicitly account for technology-push effects. Our

study seeks to fill this void in previous research by accounting for these technology-push

effects and by additionally covering a broader base of technologies.

Our work contributes to the existing literature in three respects. First, we investigate the

determinants of innovation separately for 11 different green energy technologies. This

may help scholars and policy makers understand the divergent effects of energy prices

and technological knowledge on green energy innovation across technologies. Second, our

analysis uses European patent data to assess the validity of the conclusions reached using

US patent data. Third, we apply state-of-the-art count data techniques to control for

unobserved heterogeneity, account for the dynamic character of knowledge generation,

and address endogeneity issues.

The remainder of the article is organized as follows. Section 2.2 provides a brief outline

of the baseline theory guiding our empirical analysis. Section 2.3 presents the data.

Section 2.4 describes the econometric methodology employed. Section 2.5 presents and

discusses the results. Section 2.6 concludes.

2.2 Theoretical Background

For green energy technologies, the process of technological change is characterized by two

key market failures. First, the harmful consequences of energy conversion and energy

use on the environment constitute a negative externality. In the absence of appropriate

price signals, there is no economic incentive to reduce these negative consequences.

Since there is no demand for reduction, the demand for reduction technologies will also

be low. Consequently, there is insufficient private incentive to invest in R&D for such

technologies. Even if this negative externality was internalized via, for example, a tax

or a cap-and-trade system, a second market failure persists: the value accruing from

private investments in R&D tends to spill over to other technology producers. These

spillovers constitute a positive externality. Since the private investor incurs the full costs
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of its efforts but cannot capture the full value, there is insufficient private incentive to

invest in R&D. This second market failure applies to private R&D activity in general

and is not specific to green energy R&D. However, it has been shown that spillovers

are larger for green than for the average of technologies (Dechezleprêtre et al., 2013).

As a result, the two market failures together lead to a double underprovision of green

energy technologies by market forces. This double underprovision can be addressed

by a combination of environmental policies (addressing the negative externality) and

innovation policies (addressing the positive externality) (see, for example, Jaffe et al.,

2005, Newell, 2010).

The underlying concept is policy-induced innovation. This concept is the theoretical

basis for the demand-pull and technology-push effects on innovation activities. First

proposed by Hicks (1932), it originally states that changes in relative factor prices in-

duce innovation, which reduces the need for the factor which has become relatively more

expensive. More generally, it posits that both changes in demand and changes in tech-

nological capability determine the rate and direction of innovation. Changes in demand

include shifts on the macro level that affect the profitability of innovative activity at

a given level of technological capability. Analogously, changes in technological capa-

bility include scientific and technological advancements that affect the profitability of

innovative activity at a given level of demand (Griliches, 1990, Verdolini and Galeotti,

2011).

Following Verdolini and Galeotti (2011), the relationship between demand, technological

capability, and innovation can be formalized as

It = f(Dt, TCt), (2.1)

where I denotes innovative activity, Dt denotes demand, and TCt denotes technological

capability. A standard proxy for innovative activity is the number of patent applica-

tions, which measures the invention of new or the improvement of already-existing green

energy technologies. This does not include the mere activation of existing green energy

technologies.

Demand can be proxied by expected energy prices pet , which signal the expected general

scarcity of energy in an economy. Increasing energy prices increase the willingness to

pay for R&D in technologies that either convert energy at a lower average cost or use

energy more efficiently. More concretely, a policy-induced increase in the energy price

triggers the generation of new clean or energy-saving technology patents because the

value of a given patent is higher than in the scenario without the policy-induced change.
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Technological capability can be proxied by technological knowledge, a concept which is

typically measured by innovation activities undertaken in the past. Innovation activities

in the past are expected to induce innovation activities today or, as expressed by Baumol

(2002), ‘innovation breeds innovation’. Due to the cumulative nature of research, earlier

innovations facilitate later ones, as these can build on existing technological knowledge.

The positive effect of earlier innovations consists of making later innovations possible, re-

ducing costs, or accelerating development and, as such, creating private benefits for later

innovators (Scotchmer, 1991). Acemoglu et al. (2012) show that this path dependence

exists in green technological change. Firms in economies with a history of innovation in

green technologies in the past are more likely to innovate in green technologies in the

future. Using the end-of-period stock of past patents, Kt−1, as a measure for innovation

activities in the past, Equation 2.1 becomes

It = g(pet ,Kt−1), (2.2)

where both factors are expected to have a positive impact on innovation activity.

Following these expectations, governments can foster green energy innovation in two

ways: implement policies that increase energy prices and thus increase the private pay-

off to successful innovation, that is demand-pull, and implement policies that increase

the stock of knowledge and thus decrease the private cost of producing innovation, that is

technology-push. Examples of policies that increase energy prices are emission taxes and

emission trading systems. Examples of policies that increase the knowledge stock are

government support for the private generation and patenting of scientific and technolog-

ical knowledge, the provision of high quality education and training systems, promotion

of business networks and technology transfer as well as government-sponsored R&D and

tax incentives to invest in private R&D. Researchers have come to a consensus that in

order to stimulate innovation in green energy technologies, both types of instruments

are necessary (Nemet, 2009).

2.3 Data

Our analysis is conducted using patent data from the OECD REGPAT database (OECD,

2013). The database combines information on patent activities from two complementary

sources: the EPO’s Worldwide Patent Statistical Database (PATSTAT) and the OECD

patent database. It contains patent applications filed at the EPO based on the priority

date, that is, the first filing date of the invention worldwide. Several studies have

shown that this date is strongly related to R&D activities and is closest to the date of

discovery of an invention (see, for example, Griliches, 1990, OECD, 2009). Furthermore,
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in contrast to patent applications filed at national institutions, multinational patent

applications such as those filed at the EPO often constitute innovations of high value

that are expected to be commercially profitable and thus justify the relatively high

application costs (Johnstone et al., 2010). Hence, utilizing EPO patent applications

ensures that applications for low-value inventions are excluded from our analysis.

All patents are classified according to the IPC system, which assigns each patent to a

specific area of technology (WIPO, 2013a). In particular, the ‘IPC Green Inventory’

provides the IPC codes for patents relating to so-called Environmentally Sound Tech-

nologies (WIPO, 2013b). Combining the IPC codes with the energy technology structure

developed at the IEA (IEA, 2011), we count the technology-specific annual green en-

ergy patent applications at the EPO between 1978 and 2009 on the country level.4 The

patent applications are assigned by country of origin (based on the country of the in-

ventor) using fractional counts. That is, each patent application is counted as a fraction

for the respective country, depending on the inventor’s share in the patent.

As a result of the availability of appropriate IPC codes and missing values for some of

the utilized variables, our analysis covers 11 green energy technologies and 26 OECD

countries. The technologies are: energy efficiency in residential and commercial build-

ings, appliances, and equipment (EEBAE), energy efficiency in transport (EET), other

energy efficiency (EEO),5 solar energy, wind energy, ocean energy, biofuels, geothermal

energy, fuel cells, CCS, and energy storage.

Table 2.1 provides an overview of the development of the total number of EPO patent

applications in these technologies for the 26 countries. As shown, in the whole sample

period, the highest number of green energy patent applications is observed for the USA,

followed by Japan and Germany. The lowest number of green energy patent applica-

tions belongs to Slovakia. Furthermore, all countries significantly increase their patent

activities in green energy technologies over time. Across all countries, we observe an

increase in green energy patenting of more than 130% from the 1978-1984 period to

the 2005-2009 period. In total, our database contains more than 175,000 green energy

patent applications.

As patent activities in green energy technologies may be affected by a country’s overall

propensity to patent innovations, we include a control variable covering the country-

specific total number of annual EPO patent applications. In doing so, we control for

variations in the propensity to patent both across countries and across time. Figure 2.1

4 Patents with multiple IPC codes belonging to multiple green energy technologies are counted for
each of these technologies. The total number of green energy patents corresponds to the sum of patents
from all green energy technologies.

5 Following the IEA energy technology structure, the other energy efficiency group includes waste
heat recovery and utilization, heat pumps, and measurement of electricity consumption.



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy
Technologies: a Dynamic Panel Analysis of European Patent Data 23

Table 2.1: Number of green energy EPO patent applications by country and time
period.

Country 1978-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 Total

AT 213 226 316 328 543 752 2,379
AU 157 173 204 340 487 413 1,774
BE 171 148 202 378 442 422 1,763
CA 170 259 266 671 966 993 3,325
CH 654 609 563 766 780 896 4,269
CZ 1 1 5 11 32 70 120
DE 4,544 3,829 3,555 5,303 7,421 8,394 33,046
DK 69 130 238 448 546 939 2,371
ES 30 32 91 170 278 651 1,252
FI 45 92 185 224 274 348 1,168
FR 1,630 1,619 1,512 1,900 2,101 2,670 11,433
GB 1,323 1,260 1,046 1,592 1,788 1,572 8,581
GR 5 9 26 23 26 51 140
HU 64 40 27 32 27 42 232
IE 7 14 6 36 60 121 244
IT 341 515 471 612 1,080 1,364 4,383
JP 1,647 2,628 3,195 5,934 10,043 10,082 33,528
LU 10 3 7 18 15 32 84
NL 615 634 656 1,008 1,439 1,542 5,894
NO 35 45 68 130 206 327 810
NZ 9 18 20 48 72 68 236
PT 1 7 7 9 16 49 88
SE 415 255 373 481 505 633 2,663
SK 0 0 1 8 19 18 45
TR 2 2 1 5 14 39 63
US 5,849 6,628 7,362 12,324 13,341 9,824 55,328
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Note: The country codes represent Austria (AT), Australia (AU), Belgium (BE), Canada (CA),
Switzerland (CH), Czech Republic (CZ), Germany (DE), Denmark (DK), Spain (ES), Finland (FI),
France (FR), United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Italy (IT), Japan (JP),
Luxembourg (LU), Netherlands (NL), Norway (NO), New Zealand (NZ), Portugal (PT), Sweden (SE),
Slovakia (SK), Turkey (TR), and United States (US).

shows the annual trends in green energy and total patenting for the six leading (in terms

of green energy) innovative countries in our database. Green energy patent applications

are shown on the left axis and total patent applications on the right axis. In all countries,

we see a steady and similar growth in green energy and total patent applications.

Figure 2.2 illustrates the annual trends in patenting for the 11 technologies. First of

all, it can be seen that the number of patent applications differs significantly among

the technologies. A huge number of patent applications is related to biofuels, EET,

and EEO. In contrast, the number of patent applications in ocean energy is rather

low. Furthermore, for all technologies, we observe an increase in patent activities over

time. However, the growth paths differ substantially. For example, for biofuels and fuel

cells, we see a significant increase during the 1990s. After that, patent activities begin

to decrease. A completely different picture emerges for wind and solar energy. Here,

we observe an above-average growth starting from the mid-1990s, with exceptionally

high growth from the mid-2000s. This result emphasizes the increasing prominence of
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Figure 2.1: Annual number of green energy EPO patent applications and annual number
of total EPO patent applications by six leading innovative countries and by time period,

1978-2009. Note: The country codes are the same as in Table 2.1.

electricity generation from wind and solar energy resources over the last two decades.

Especially in the case of solar photovoltaics, the technological development is reflected

by a tremendous reduction in panel costs, peaking at a 75% cost decrease between 2008

and 2011 (IEA, 2012b).

Energy storage, CCS, and geothermal energy have experienced relatively steady growth

but on rather low levels. Apart from different growth paths, there is also a significant

difference in the level of patent activity between the categories considered. In particular,

patent activity has grown from about 0 to above 1,000 for solar energy and the three

energy efficiency technologies, while other technologies grew on rather low levels. An

exception is biofuels, which had a high level of patent activity already in 1980.

As the main focus of our analysis is to investigate the impact of energy prices and

technological knowledge on green energy innovation, we include a price index and a

knowledge stock in our model. The price index is drawn from the Energy Prices and

Taxes Database of the IEA (IEA, 2012a). It depicts the country-specific real total

energy end-use price (including taxes) for households and industry with the base year

2005. As described in Section 2.2, expected energy prices signal the expected scarcity

of energy in an economy and thus affect the demand for innovation in green energy

technologies. Our energy index is used as a proxy for these expected energy prices.
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Figure 2.2: Total annual number of EPO patent applications of 26 OECD countries by
green energy technology and by time period, 1978-2009.

Using different energy prices for different technologies would be preferable.6 However,

technology-specific price series often show a high amount of missing values. Furthermore,

as we have technology groups covering several sub-technologies, it is not always possible

to identify the appropriate price. Overall, as the index used in this study is a composite

of industry and household prices for oil products, coal, natural gas, and electricity,

it is expected to be a reliable proxy for the average development of energy prices.7

Comparable indices have been used in a number of other studies (see, for example,

Popp, 2002, Verdolini and Galeotti, 2011).

Figure 2.3 displays the average real total energy end-use price index for households

and industry among the 26 OECD countries in the database from 1978 to 2009. After

a peak in the early 1980s (following the oil crises of the 1970s), a rough decrease in

the energy price index is seen until the late 1990s. From then on, the index almost

continuously increases. In 2008, it indicates an increase in the total energy end-use price

of approximately 15%, relative to the base year 2005. A similar pattern can be observed

for the vast majority of the country-specific indices.8

6 For instance, we would prefer to use electricity prices for electricity generation technologies and oil
prices for transport technologies.

7 In fact, the development of the individual energy price time series for the years and countries where
detailed data are available is very similar to the development of the utilized composite index.

8 The country-specific price indices are provided in the appendix (Figure A.5).
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Figure 2.3: Average real total energy end-use price for households and industry among
26 OECD countries (index: 2005=100), 1978-2009.

The knowledge stock is constructed using the perpetual inventory method following

Cockburn and Griliches (1988) and Peri (2005). Basically, the technology-specific knowl-

edge stock is obtained by counting all patents which have accumulated for the respective

technology in a country up to a certain year. The technology-specific knowledge avail-

able to researchers and inventors in each country and year is then represented by the

end-of-period stock, which covers all patents accumulated up to the previous year.

The end-of-period knowledge stock Kijt−1 for technology j = 1, ...,M in country i =

1, ..., N and year t = 1, ..., T is calculated as

Kijt−1 = PATijt−1 + (1 − δ)Kit−2, (2.3)

where PATijt−1 is the number of patent applications, and δ is a depreciation rate that

accounts for the fact that knowledge becomes obsolete as time goes by. The rate of

depreciation is set to 10%, which is consistent with other applications in the patent and

R&D literature (see, for example, Verdolini and Galeotti (2011)). The initial knowledge

stock Kijt0 is given by Kijt0 = PATijt0/(δ + g), where PATijt0 is the number of patent

applications in 1978, the first year observed. The growth rate g is the pre-1978 growth
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in knowledge stock, assumed to be 15%, and δ again represents depreciation of 10%.9

Figure 2.4 depicts the development of the accumulated technology-specific knowledge

stocks over time. Except for biofuels and EEO, all technologies start at a very low level

of patents (close to zero) in 1978. Thereafter, the majority of technologies exhibit a

distinct development: the accumulated stock rises linearly until it begins to increase

sharply at the end of the 1990s. The increase of CCS, EEO, and geothermal patents

at the end of the 1990s remains moderate. The development of ocean patents stands

still throughout the 1990s before it also starts to sharply increase. In 2009, the highest

accumulated stocks are observed for biofuels and EEO, whereas the lowest stocks are

for geothermal and ocean.
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Figure 2.4: Accumulated knowledge stocks of 26 OECD countries by green energy
technology and by time period, 1978-2009.

In addition to the price, knowledge stock, and total patents variables, we also include

a variable reflecting publicly funded research, development, and demonstration expen-

ditures. The data are drawn from the Energy Technology Research and Development

Database of the IEA (IEA, 2012c) and contains the annual national government expendi-

tures on energy research, development, and demonstration disaggregated by technology

in million constant US dollars at 2011 prices.

9 Note that our empirical analysis is conducted for the time span 1983-2009. Thus, the influence of
any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated is
rather small.
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2.4 Model Specification

As we measure green energy innovation by patent counts, we use count data techniques

in our econometric approach. A standard Poisson regression model for panel data takes

the following exponential form:

yit = exp(x′itβ + ηi) + uit, (2.4)

where yit is a nonnegative integer count variable, x′it is a vector of explanatory variables,

ηi is a unit-specific fixed effect, and uit is a standard error term. The subscripts i =

1, ..., N and t = 1, ..., T denote the observation unit and time, respectively.

It should be noted that the values of our dependent variable, the fractional counts of

patent applications, are not necessarily integers. That is, strictly speaking, our de-

pendent variable is not count data. However, as noted by Silva and Tenreyro (2006)

and Wooldridge (2002), the dependent variable does not have to be an integer for the

Poisson estimator to be consistent. An alternative approach used in a number of empir-

ical studies is the estimation of a log-linear model by ordinary least squares. However,

this approach cannot handle zero values in the data and hence would be unnecessarily

restrictive. For this reason, Silva and Tenreyro (2006) strongly recommend a Poisson

specification for a nonnegative continuous dependent variable with zero values.

Following this recommendation, our baseline model can be defined as

PATijt = exp(β0 + βp ln Pit−1 + βK lnKijt−1 + βR&D lnR&Dijt−1

+ βTPAT ln TPATit−1 + βt Tt + ηi) + uijt,
(2.5)

where PATijt is the fractional patent count for technology j in country i and time

t, P is a price index, K represents the end-of-period knowledge stock as defined in

Equation 2.3, R&D denotes publicly funded expenditures on research, development,

and demonstration, TPAT is the fractional patent count of all patent applications, T

represents a time trend, ηi is a unit-specific fixed effect, and uijt is a standard error

term. The independent variables Pit, R&Dijt, and TPATit are lagged by 1 year in order

to mitigate any reverse causality problems.

Another econometric issue that needs to be addressed is the dynamic character of our

model. As defined in Section 2.3, our knowledge stock variable is a function of the lagged

dependent variable. This path dependence violates the assumption of strict exogeneity

of all regressors required by the traditional fixed effect count data estimator developed

by Hausman et al. (1984).



Chapter 2. Energy Prices, Technological Knowledge, and Innovation in Green Energy
Technologies: a Dynamic Panel Analysis of European Patent Data 29

To account for this problem of predetermined (that is, weakly exogenous) regressors in

dynamic count data models, Blundell et al. (1995, 2002) propose an alternative estima-

tor: the pre-sample mean (PSM) scaling estimator. This estimator relaxes the strict

exogeneity assumption by modeling the unit-specific fixed effects via pre-sample infor-

mation on the dependent variable. Following this approach, the unit-specific fixed effects

in Equation 2.5 are defined as

ηi = θ ln ¯PAT ij , (2.6)

where ¯PAT ij = (1/N)
∑N

n=1 PATijn is the PSM of patent applications by country i

in technology j and year n. N is the number of pre-sample observations and θ is an

unknown parameter to be estimated.

Another alternative to estimate dynamic count data models with predetermined regres-

sors is the quasi-differenced generalized method of moments (GMM) estimator developed

by Chamberlain (1992) and Wooldridge (1997). However, as noted by Blundell et al.

(2002), a well-known problem of this estimator is that it can be severely biased. In

particular, when the sample is small and the regressors are highly persistent over time,

the lagged values of the predetermined regressors can be weak predictors of the future.

Conducting Monte Carlo simulations, Blundell et al. (2002) show that the PSM scal-

ing estimator outperforms the quasi-differenced GMM estimator in almost all settings.

Furthermore, while formally shown to be consistent for a large number of pre-sample

periods only, it outperforms the quasi-differenced GMM estimator even in the case of

only four pre-sample observations. We therefore follow Blundell et al. (1995, 2002) and

build our empirical model on the PSM scaling estimator as defined in Equations 2.5 and

2.6.

2.5 Results

2.5.1 Baseline Results

Our baseline results are presented in Table 2.2. As the explanatory variables enter the

estimations in log form, the estimated coefficients can be interpreted as elasticities. We

estimate our model for each technology separately as well as for all technologies together.

As shown, the results differ significantly between the technologies, which strongly sup-

ports our approach of a technology-specific analysis. The observed differences can be

explained by the different application areas, cost structures as well as maturity levels

of the technologies. Nevertheless, one common result for all technologies is the positive

impact of the knowledge stock on patent applications. The corresponding coefficients
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are positive and statistically significant at the 1% level in all models. The estimated

elasticities between 0.534 and 1.020 suggest that, depending on the technology, a 10%

increase in knowledge stock is associated with a 5.3-10.2% increase in patent activities.

This finding is consistent with previous research (see, for example, Popp, 2002, Ver-

dolini and Galeotti, 2011) and in line with the technology-push hypothesis stating that

innovation is induced by advances in the technological capability of an economy.

Table 2.2: Estimated coefficients of the PSM Poisson model. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean

Energy pricet−1

(log)

−0.559 0.205 0.059 1.115∗∗∗ −0.180 0.612∗

(0.350) (0.179) (0.166) (0.150) (0.496) (0.348)

Knowledge stockt−1

(log)

0.930∗∗∗ 1.011∗∗∗ 0.534∗∗∗ 0.640∗∗∗ 0.884∗∗∗ 0.743∗∗∗

(0.095) (0.067) (0.079) (0.080) (0.069) (0.128)

Public R&Dt−1 (log) −0.002 −0.004 −0.001 0.036 0.187∗∗∗ 0.072

(0.011) (0.011) (0.008) (0.051) (0.042) (0.063)

Total patentst−1

(log)

0.316∗∗ 0.185∗∗∗ 0.558∗∗∗ 0.497∗∗∗ −0.049 −0.002

(0.145) (0.058) (0.075) (0.133) (0.060) (0.098)

Time trend
−0.026∗∗ −0.036∗∗∗ −0.039∗∗∗ 0.013∗∗ 0.059∗∗∗ 0.030∗∗∗

(0.012) (0.007) (0.006) (0.006) (0.007) (0.010)

Constant
0.029 −2.706∗∗∗ −2.642∗∗∗ −1.917∗∗∗ −1.228∗ −4.349

(2.170) (0.950) (0.727) (1.137) (2.244) (1.595)

Observations 518 517 517 534 518 462

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet−1

(log)

−0.638∗ 0.370∗∗ 1.730 0.563∗∗∗ 0.026 0.086

(0.380) (0.145) (1.847) (0.215) (0.250) (0.165)

Knowledge stockt−1

(log)

0.749∗∗∗ 0.793∗∗∗ 0.948∗∗∗ 1.020∗∗∗ 0.732∗∗∗ 1.013∗∗∗

(0.130) (0.117) (0.207) (0.068) (0.081) (0.032)

Public R&Dt−1 (log) 0.100∗∗∗ 0.050 0.024 −0.057∗∗ 0.048 0.017∗

(0.024) (0.043) (0.068) (0.023) (0.035) (0.010)

Total patentst−1

(log)

0.371∗∗∗ 0.215∗∗∗ 0.017 −0.015 0.510∗∗∗ 0.138∗∗∗

(0.107) (0.069) (0.212) (0.047) (0.137) (0.022)

Time trend
−0.058∗∗∗ 0.006 −0.218∗∗ −0.024∗∗∗ −0.018∗ −0.036∗∗∗

(0.007) (0.009) (0.088) (0.005) (0.010) (0.006)

Constant
1.232 −4.351∗∗∗ −3.011 −3.436∗∗∗ −4.062∗∗∗ −1.856∗∗

(1.673) (0.735) (5.785) (1.052) (1.523) (0.848)

Observations 523 503 114 485 519 5210

Notes: All models control for unit-specific fixed effects by using PSM information on the first 5
years available (1978-1982). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1, 5, and
10% level.

A completely different picture emerges for our second focus of interest, the impact of

energy prices or demand-pull effects on innovation activities. Here, our results reveal

significant differences among the technologies. The coefficient for the energy price is

positive and statistically significant for solar, ocean, geothermal energy, and CCS only.
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The strongest impact is observed for solar energy, indicating a price elasticity higher than

1. This finding is in accordance with Johnstone et al. (2010), who also find a significant

positive effect of the energy price on patent activities in solar energy. Furthermore, also

in common with Johnstone et al. (2010), we do not find any effect of the energy price

on patent activities in wind energy. For the other two technologies, however, our results

differ from those of Johnstone et al. (2010). While Johnstone et al. (2010) do not find

any effect of the energy price on patent activities in geothermal or ocean energy, our

results indicate a positive effect. However, the estimated coefficient for ocean energy

is only significant at the 10% level. Interestingly enough, for biofuels, we observe a

statistically significant negative coefficient for the energy price, however, again only at

the 10% level.

Finally, for the three energy efficiency technologies, we do not find any significant impact

of the energy price on patent activities. This is in line with the concept of the energy

efficiency gap. While the demand-pull hypothesis assumes that increasing energy prices

increase the market value of innovations that convert energy at a lower average cost or

use energy more efficiently, market success of energy-saving technologies is not always

assured. Due to the uncertainty about future energy prices and the irreversible nature of

the investment, consumers heavily discount and thus undervalue future savings from en-

ergy efficiency improvements (Greene et al., 2013). Other explanations for failing market

diffusion include imperfect information, costs of adoption, and consumer heterogeneity

(Jaffe and Stavins, 1994). When innovators predict non-adoption by consumers despite

cost-effectiveness at current prices, they are not reacting to price signals. Empirical evi-

dence of the energy efficiency gap in particular stems from energy demand technologies,

which confirms our empirical findings (see, for example, Alberini et al., 2013, Greene

et al., 2013).10

Our result of insignificant price coefficients for the three considered energy efficiency

technologies is also in line with the findings of Verdolini and Galeotti (2011) for a pooled

group of energy demand technologies. Regarding energy supply technologies, however,

we observe a more heterogeneous picture. While the pooled approach of Verdolini and

Galeotti (2011) suggests a significant positive impact of the energy price on patent ac-

tivities in a group of energy supply technologies, our technology-specific approach with

a separated regression for each technology reveals divergent effects. We find a signifi-

cant positive impact of the energy price on patent activities in four supply technologies

(solar, ocean, geothermal energy, and CCS), a negative impact in one supply technology

(biofuels), and no significant impact in three supply technologies (wind, fuel cells, and

storage).

10 For a discussion of theoretical explanations and the controversial empirical evidence see, for exam-
ple, Gillingham and Palmer (2014).
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Referring to public R&D expenditures, the estimated coefficients indicate either no or

just a minor impact of public R&D expenditures on patent activities. A statistically

significant impact of public R&D expenditures is shown for wind energy, biofuels, and

CCS only. Among these, the highest elasticity can be observed for wind energy. The

estimated elasticity of 0.187 suggests that a 10% increase in public R&D expenditures

results in an approximate 1.9% increase in patent activities. This result is consistent

with Klaassen et al. (2005), who find that public R&D plays a key role in inducing

cost-reducing wind energy innovations in Europe. In contrast, the estimated negative

elasticity of public R&D expenditures for CCS indicates a decrease in patent activi-

ties when public R&D expenditures increase. As noted by Popp (2002), such a result

may be driven by a crowding-out effect of public R&D expenditures on private R&D

expenditures.11

The estimation results for our control variable total patents are generally as expected.

For 7 of the 11 technologies, we find a statistically significant and positive coefficient, sug-

gesting that for the majority of green energy technologies, patent activities are affected

by the overall propensity to patent. This is also confirmed by the highly statistically

significant and positive coefficient for total patents in the model including all technolo-

gies. Only for wind energy, ocean energy, fuel cells, and CCS do overall patent activities

seem to have no impact on the technology-specific patent activities.

In order to account for the development of green energy innovation activities over time,

we also add a time trend to our estimations. Here, we observe a statistically significant

negative time trend for 7, a statistically significant positive time trend for 3, and a

statistically insignificant time trend for 1 of the 11 technologies. A negative time trend

suggests diminishing returns to R&D activities or, in other words, more difficulties in

developing new innovations. As new innovations are more difficult for relatively mature

technologies, the different signs of the time coefficients point to different maturity levels

of the technologies.

2.5.2 Robustness Tests

In order to test the sensitivity of our baseline results, we conduct a number of robustness

tests. First, we repeat the estimations in Table 2.2 with different dynamic specifications

for the energy price. More specifically, we reestimate our baseline model with the energy

price lagged 2 years, 3 years, and with a moving average of past energy prices over 5

11 As noted before, we lag the R&D variable by 1 year in order to mitigate any reverse causality prob-
lems. This approach also accounts for the fact that R&D efforts do not immediately lead to innovative
output (Hall et al., 1986). In order to test the sensitivity of the R&D results to other lag structures, we
reestimate the baseline model from Table 2.2 with public R&D expenditures lagging 2, 3, and 4 years.
Overall, the results are robust to these alternative specifications.
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years. The estimated coefficients for the alternative energy prices as well as for the

1-year lagged energy price used in our baseline model are depicted in Table 2.3.

Table 2.3: Different dynamic specifications for the energy price. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean

Energy pricet−1 (log) −0.559 0.205 0.059 1.115∗∗∗ −0.180 0.612∗

(0.350) (0.179) (0.166) (0.150) (0.496) (0.348)

Energy pricet−2 (log) −0.481 0.340∗∗ 0.085 1.198∗∗∗ −0.015 0.577

(0.346) (0.148) (0.144) (0.165) (0.526) (0.365)

Energy pricet−3 (log) −0.366 0.353∗∗ 0.138 1.209∗∗∗ 0.007 0.610∗∗∗

(0.311) (0.164) (0.130) (0.182) (0.535) (0.227)

Energy priceMA (log) −0.411 0.344∗ 0.119 1.275∗∗∗ 0.006 0.526∗

(0.363) (0.182) (0.154) (0.169) (0.617) (0.295)

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet−1 (log) −0.638∗ 0.370∗∗ 1.730 0.563∗∗∗ 0.026 0.086

(0.380) (0.145) (1.847) (0.215) (0.250) (0.165)

Energy pricet−2 (log) −0.552 0.382∗∗∗ 0.600 0.703∗∗∗ 0.148 0.159

(0.368) (0.128) (1.186) (0.127) (0.224) (0.146)

Energy pricet−3 (log) −0.528∗ 0.322∗∗ 1.413 0.818∗∗∗ 0.253 0.211∗

(0.307) (0.145) (0.991) (0.105) (0.231) (0.118)

Energy priceMA (log) −0.714∗ 0.375∗∗ 3.369∗∗ 0.805∗∗∗ 0.216 0.179

(0.405) (0.152) (0.145) (0.145) (0.259) (0.144)

Notes: Estimations are based on the same specification as in Table 2.2. To conserve space,
only the coefficients for the different energy prices are presented. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1, 5, and
10% level. Energy priceMA: Moving average of the energy prices of the previous 5 years.

Overall, the estimated coefficients are very similar for all specifications. Only for EET,

ocean energy, and fuel cells do we see some notable changes in statistical significance or

magnitude. With an increasing time lag between energy prices and patent activities, the

price coefficients for EET become statistically significant. Thus, it seems that energy

prices from 2 or more years prior have a positive impact on patent activities in trans-

port energy efficiency. A similar effect can be observed for fuel cells, with the moving

average of past energy prices being statistically significant at the 1% level. For ocean

energy, however, the results remain ambiguous. While the highly statistically significant

coefficient for the 3-year lagged price indicates a positive price effect, the other price

coefficients are either insignificant or only significant at the 10% level.

The second robustness test we conduct is the utilization of different depreciation rates

in the calculation of the end-of-period knowledge stock. Table 2.4 reports the estimated

knowledge stock coefficients for depreciation rates of 5%, 10% (as used in the baseline

model depicted in Table 2.2), 15%, and 20%. For all specifications, the coefficients are

positive and highly statistically significant at the 1% level. Furthermore, the magnitude
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of the coefficients is very similar within each technology. Thus, our baseline result saying

that the knowledge stock is a significant driver of patent activities in all technologies is

robust to different assumptions on the depreciation rate.

Table 2.4: Different depreciation rates for the knowledge stock. Estimation time span:
1983-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean

Knowledge stockt−1,
δ = 0.05 (log)

0.952∗∗∗ 1.055∗∗∗ 0.522∗∗∗ 0.641∗∗∗ 0.941∗∗∗ 0.741∗∗∗

(0.107) (0.079) (0.083) (0.091) (0.071) (0.156)

Knowledge stockt−1,
δ = 0.10 (log)

0.930∗∗∗ 1.011∗∗∗ 0.534∗∗∗ 0.640∗∗∗ 0.884∗∗∗ 0.743∗∗∗

(0.095) (0.067) (0.079) (0.080) (0.069) (0.128)

Knowledge stockt−1,
δ = 0.15 (log)

0.915∗∗∗ 0.980∗∗∗ 0.547∗∗∗ 0.638∗∗∗ 0.844∗∗∗ 0.718∗∗∗

(0.086) (0.060) (0.075) (0.070) (0.070) (0.113)

Knowledge stockt−1,
δ = 0.20 (log)

0.904∗∗∗ 0.958∗∗∗ 0.560∗∗∗ 0.635∗∗∗ 0.814∗∗∗ 0.684∗∗∗

(0.079) (0.055) (0.072) (0.063) (0.071) (0.105)

Biofuels Geothermal Fuel cells CCS Storage All

Knowledge stockt−1,
δ = 0.05 (log)

0.804∗∗∗ 0.836∗∗∗ 0.948∗∗∗ 1.063∗∗∗ 0.738∗∗∗ 1.069∗∗∗

(0.138) (0.133) (0.229) (0.087) (0.094) (0.039)

Knowledge stockt−1,
δ = 0.10 (log)

0.749∗∗∗ 0.793∗∗∗ 0.948∗∗∗ 1.020∗∗∗ 0.732∗∗∗ 1.029∗∗∗

(0.130) (0.117) (0.207) (0.068) (0.081) (0.034)

Knowledge stockt−1,
δ = 0.15 (log)

0.723∗∗∗ 0.746∗∗∗ 0.949∗∗∗ 0.977∗∗ 0.720∗∗∗ 0.980∗∗∗

(0.124) (0.107) (0.191) (0.063) (0.072) (0.028)

Knowledge stockt−1,
δ = 0.20 (log)

0.716∗∗∗ 0.702∗∗∗ 0.950∗∗∗ 0.938∗∗∗ 0.704∗∗∗ 0.960∗∗∗

(0.118) (0.101) (0.179) (0.065) (0.067) (0.025)

Notes: Estimations are based on the same specification as in Table 2.2. To conserve space,
only the coefficients for the different knowledge stocks are reported. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1, 5, and
10% level.

Another robustness test is conducted by limiting our sample to the time span 1998-

2009. The reasoning for this is 2-fold: First, we observe a significant growth in green

energy patent applications within the latter periods of our sample. Hence, our results

may be influenced, in particular, by developments in these periods. Second, a shorter

sample period implies a longer pre-sample period that can be used to calculate the PSM

information. By choosing the cut-off year 1998, we increase the number of pre-sample

periods from 5 to 20 years.

Furthermore, 1998 is the first year after the Kyoto protocol was signed. The Kyoto

protocol was the first international agreement among the world’s industrialized countries

that aimed to reduce greenhouse gas emissions via a legally binding commitment. Even

though the protocol did not come into force until 2005, it can be interpreted as a first

indicator toward a more green energy-oriented policy. This change of future policy
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expectations may have affected the development of green energy innovations in the years

following (Johnstone et al., 2010).12 13

Table 2.5 reports the results of our short-term model with the estimation time span 1998-

2009. Still, for all technologies, the knowledge stock seems to be a major driver of green

energy innovation. Moreover, for most technologies, the magnitude of the correspond-

ing coefficient is much higher than in our baseline estimations. Assuming diminishing

marginal productivity of the stocks in generating patents, this result indicates that the

stocks significantly increased in the period after the Kyoto protocol was signed. As

depicted in Figure 2.4 in the data section, such a development can be observed for the

majority of the technologies.

The most pronounced impact of the knowledge stock in the short-term model is shown

for fuel cells, with an estimated elasticity of 1.378. This value indicates that a 10%

increase in knowledge stock is associated with an approximately 14% increase in patent

activities.

For the energy price, a more diversified picture is shown. In fact, we observe a number of

significant changes compared to the results of our baseline model depicted in Table 2.3.

While the formerly statistically significant price coefficients for ocean energy, biofuels,

and CCS are now insignificant, the respective coefficients for EET and energy storage

become significant. Furthermore, the magnitude of the still positive and statistically

significant price coefficients for solar and geothermal energy is much higher than before.

Referring to the other variables, public R&D, total patents, and the time trend the

results of the short-term model are in general in line to those obtained from the baseline

model. Still, public R&D expenditures seem to have only a minor impact on patent

activities. However, compared to our baseline model indicating a statistically significant

and positive impact of public R&D on patent activities for wind energy and biofuels only,

we now observe a statistically significant and positive impact of public R&D for two more

technologies, namely EEBAE and energy storage. Furthermore, in spite of some changes

in significance, the estimated coefficients for total patents and the time trend again

suggest a positive impact of the overall propensity to patent and diminishing returns to

R&D activities over time on green energy patent activities for most technologies.

12 The signature of the Kyoto protocol may not be the only factor that changed the development of
green energy innovation in these years. Other political and economic reasons might be, for instance, the
rise of China and India or the liberalization of the European energy markets. Nevertheless, since the
Kyoto protocol marks a substantial break in international environmental policy, the Kyoto argumentation
seems to be the most plausible one in this context.

13 In the European Union, the Kyoto obligations were fulfilled via the implementation of an Emissions
Trading System, which sets a price on emissions from power generators and specific industries from 2005
onward. Its effect on energy prices is captured in the energy price index.
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Table 2.5: Estimated coefficients of the PSM Poisson model. Estimation time span:
1998-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean

Energy pricet−1

(log)

0.376 0.766∗ 0.163 1.735∗∗∗ 0.721 −1.158

(0.750) (0.429) (0.389) (0.480) (0.592) (0.795)

Knowledge stockt−1

(log)

1.362∗∗∗ 1.260∗∗∗ 0.816∗∗∗ 1.005∗∗∗ 0.955∗∗∗ 1.015∗∗∗

(0.092) (0.111) (0.200) (0.085) (0.071) (0.154)

Public R&Dt−1 (log) 0.054∗∗∗ 0.008 −0.020∗∗ −0.010 0.194∗∗∗ 0.069

(0.016) (0.008) (0.010) (0.040) (0.053) (0.072)

Total patentst−1

(log)

−0.067 0.040 0.496∗∗∗ 0.485∗∗∗ −0.132∗∗ −0.048

(0.198) (0.074) (0.154) (0.127) (0.054) (0.095)

Time trend
−0.134∗∗∗ −0.084∗∗∗ −0.054∗∗∗ −0.053∗∗ −0.016 0.072∗∗

(0.029) (0.022) (0.018) (0.022) (0.020) (0.036)

Constant
0.467 −3.104 −2.102 −9.407∗∗∗ −2.805 2.564

(3.638) (1.906) (1.744) (2.109) (2.502) (3.183)

Observations 241 240 241 248 243 225

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet−1

(log)

0.251 1.536∗∗∗ 1.398 0.093 1.080∗∗∗ 0.529∗∗

(0.158) (0.239) (1.907) (0.499) (0.317) (0.234)

Knowledge stockt−1

(log)

0.824∗∗∗ 0.817∗∗∗ 1.378∗∗∗ 0.916∗∗∗ 0.369∗∗ 1.235∗∗∗

(0.269) (0.184) (0.139) (0.189) (0.165) (0.083)

Public R&Dt−1 (log) 0.129∗∗ 0.066 0.029 −0.033 0.089∗∗∗ 0.012

(0.059) (0.040) (0.050) (0.023) (0.029) (0.012)

Total patentst−1

(log)

0.277∗∗∗ 0.277∗∗∗ 0.281∗ −0.104∗∗ 0.011 0.139∗∗∗

(0.073) (0.101) (0.160) (0.046) (0.097) (0.026)

Time trend
−0.154∗∗∗ −0.037 −0.218∗∗ −0.014 −0.035∗∗ −0.096∗∗∗

(0.022) (0.024) (0.087) (0.023) (0.014) (0.015)

Constant
0.648 −8.598∗∗∗ −2.850 −0.728 −5.727∗∗∗ −1.649

(0.709) (1.355) (6.244) (2.114) (1.761) (1.208)

Observations 247 229 114 236 242 2506

Notes: All models control for unit-specific fixed effects by using PSM information on the first
20 years available (1978-1997). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1, 5, and
10% level.

Our last robustness test deals with the observed differences between the estimated price

coefficients in our short-term and baseline models (see Tables 2.2 and 2.5). In order to

obtain a more comprehensive picture and to check whether these differences are only

related to the usage of a 1-year lagged energy price specification, we reestimate our

short-term model with different dynamic specifications for the energy price (as done

before for the baseline model, see Table 2.3). The results are shown in Table 2.6.

First of all, it can be seen that all estimated price coefficients in the model including

all technologies are positive and statistically significant at least at the 5% level. In our

baseline model, we observe a positive impact of the energy price on patent activities
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Table 2.6: Different dynamic specifications for the energy price. Estimation time span:
1998-2009. Dependent variable: Number of patent applications at the EPO.

Variable EEBAE EET EEO Solar Wind Ocean

Energy pricet−1 (log) 0.376 0.766∗ 0.163 1.735∗∗∗ 0.721 −1.158

(0.750) (0.429) (0.389) (0.480) (0.592) (0.791)

Energy pricet−2 (log) 0.379 1.125∗∗∗ 0.151 1.728∗∗∗ 1.002∗ −1.273

(0.690) (0.266) (0.339) (0.458) (0.553) (0.916)

Energy pricet−3 (log) 0.597 1.095∗∗∗ 0.331 1.662∗∗∗ 0.891∗ −0.742

(0.493) (0.319) (0.292) (0.468) (0.486) (0.661)

Energy priceMA (log) 0.766 1.155∗∗∗ 0.342 1.879∗∗∗ 1.227∗∗ −1.394

(0.554) (0.333) (0.328) (0.429) (0.607) (0.916)

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet−1 (log) 0.251 1.536∗∗∗ 1.398 0.093 1.080∗∗∗ 0.529∗∗

(0.158) (0.239) (1.907) (0.499) (0.317) (0.234)

Energy pricet−2 (log) 0.320∗∗ 1.479∗∗∗ −0.366 0.624∗ 1.166∗∗∗ 0.650∗∗∗

(0.133) (0.238) (1.057) (0.334) (0.277) (0.196)

Energy pricet−3 (log) 0.832∗∗∗ 1.457∗∗∗ 0.453 1.094∗∗∗ 1.151∗∗∗ 0.848∗∗∗

(0.190) (0.252) (0.958) (0.283) (0.326) (0.169)

Energy priceMA (log) 0.979∗∗∗ 1.757∗∗∗ 1.858 0.941∗∗ 1.181∗∗∗ 0.886∗∗∗

(0.361) (0.297) (1.562) (0.420) (0.353) (0.194)

Notes: Estimations are based on the same specification as in Table 2.5. To conserve space,
only the coefficients for the different knowledge stocks are reported. The complete tables are available
from the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1, 5, and
10% level.

in green energy technologies only for the 3-year lagged price and just at a 10% level

of significance. This finding, together with the other observed differences in the esti-

mates of our baseline and short-term models, points to the fact that, at least for some

green energy technologies, the development of patent activities changed significantly af-

ter the signing of the Kyoto protocol. With the number of green energy patents rapidly

increasing within this period, our results for the knowledge stock and for the energy

price suggest that both technology-push effects and demand-pull effects gain a more

pronounced impact on patent activities in this period.

Nevertheless, while this observation holds for all technologies in the case of technology-

push effects, demand-pull effects seem to affect only some technologies. With at least

three of the four energy price specifications tested being statistically significant, the

results in Table 2.6 clearly indicate a positive impact of the energy price on patent

activities in 7 of the 11 technologies, namely EET, solar energy, wind energy, biofuels,

geothermal energy, CCS, and energy storage. In our baseline model, this is only the case

for four technologies: EET, solar energy, geothermal energy, and CCS.
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Referring to the magnitude of the estimated price coefficients, some other interesting re-

sults are obtained from our short-term model estimations. For EET, solar, and geother-

mal energy, the magnitude of the price coefficients is much higher in the short-term

model than in the baseline model. Moreover, for solar and geothermal energy, the price

coefficients are much higher than the knowledge stock coefficients, indicating that the

energy price for these technologies is the main driver of patent activities after the Kyoto

protocol was signed.

A similar result can be observed for energy storage. While the estimated price coefficients

are insignificant for all energy price specifications tested in our baseline model, they are

highly statistically significant and positive in our short-term model. Moreover, the

magnitude of the price coefficients is much higher than the magnitude of the knowledge

stock coefficient.

Overall, these results point to a shift in expectations after the Kyoto protocol agreement.

In particular, they suggest that market participants expected green energy-oriented poli-

cies to be pushed forward and energy prices to persistently increase in the future. Argu-

ing on the basis of a classical demand curve for fossil energy, such a development induces

both an upward movement along and an inward shift of the curve. The demand for fossil

energy decreases, and already-available clean substitutes or energy-saving technologies

come into use earlier than without green energy-oriented policies and increased prices.

In addition, the market conditions of green energy technologies become more profitable

and, hence, new patents are generated in this area.

2.6 Conclusions

In this article, we analyzed the effect of energy prices and technological knowledge on

innovation in green energy technologies. We based our analysis on green energy patent

counts from 26 OECD countries and 11 technologies over the period 1978-2009. Our

contribution to the induced innovation literature is 3-fold. We investigated demand and

supply determinants of green energy innovation separately for different technologies. We

used European patent data to consolidate previous results reached on US patent data.

Finally, we estimated a dynamic count data model for panel data using the PSM scaling

estimator proposed by Blundell et al. (1995, 2002). This approach allowed us to account

for path dependencies in knowledge production, endogeneity issues, and unobserved

heterogeneity.

Our analysis yields several interesting findings. First of all, our results indicate that

the main determinant of innovation in green energy technologies is the availability of
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technological knowledge. This confirms the technology-push hypothesis, stating that

innovation is induced by advances in the technological capability of an economy. It also

confirms previous results suggesting that inventors build on existing knowledge and ‘see

further by standing on the shoulders of giants’. Moreover, concerning the demand-pull

hypothesis suggesting energy prices as a major driver of green energy innovation, our

results reveal significant differences across technologies. We find that increasing energy

prices induce innovation in some but not all green energy technologies. This result

supports our approach of a technology-specific analysis. However, even more important

is that we uncovered significant differences comparing the period before and after the

Kyoto protocol adoption. More precisely, our results indicate that the effect of both

energy prices and technological knowledge on green energy innovation is stronger after

the Kyoto protocol agreement. This suggests that the general awareness for clean energy

generation increased. Finally, evidence is presented that government R&D plays either

no or just a minor role in inducing green energy innovation.

From our results, several policy implications can be drawn. First, the strong evidence

for the technology-push hypothesis suggests that policies should enhance technological

capability to foster green energy innovation. That is, policies should support the pri-

vate generation and patenting of scientific and technological knowledge as well as enable

economies to exploit their existing knowledge base. As existing patents spur further

innovative activity, research conditions for companies should be designed accordingly.

Furthermore, depending on the technology, subsidizing energy R&D can encourage inno-

vation and thus increase the economy’s stock of knowledge. Second, concerning demand-

pull, our results show that policies increasing the energy price to internalize the negative

externality have very different inducement effects on different technologies. Policy mak-

ers should be aware of these differences but, once the negative externality is internalized,

let the market decide on innovation activity and the evolution of the energy technology

mix. All together, it may be concluded that distinct technologies have distinct innova-

tion characteristics and, thus, the same set of policies may have different consequences

for different green energy technologies.

Further research could extend our analysis in several aspects. First, the observed dif-

ferences across technologies appear to merit further examination in more detail. In

particular, as our analysis does not include any spillover effects among technologies or

countries, further research could help clarify as to what extent knowledge spillovers are

of particular relevance for green energy innovations. Second, a closer analysis of the

period after the Kyoto protocol agreement seems promising. A deeper understanding of

how this agreement and the related country-specific green energy policies have changed

the innovators’ patent behavior could lead to more targeted policy recommendations

toward a green energy economy.





Chapter 3

Innovation in Clean Coal

Technologies: Empirical Evidence

from Firm-Level Patent Data

3.1 Introduction

Currently, about 40% of world electricity is produced from coal which makes it globally

the first source of electricity generation. World electricity demand is predicted to in-

crease by around two-thirds until 2035 and coal to remain the leading fuel in electricity

production (IEA, 2013b). Reasons for this development are that coal reserves are large

and geopolitically secure, coal is an affordable energy source, and coal-based power can

be easily integrated into existing power systems (IEA, 2013a). In light of this, it is un-

likely that alternative forms of energy can or will completely replace coal-based power

in the near future.

However, coal burning in its current form has strong environmental impacts. On the one

hand, the negative impacts of air pollutants like sulfur dioxide (SO2) and nitrogen oxide

(NOX) on the air quality and, on the other hand, the negative impact of greenhouse

gas emissions like carbon dioxide (CO2) on the climate. The large reliance of electricity

production on coal explains why this sector is, with about 41%, the largest contributor

to worldwide CO2 emissions. Coal accounts for about 70% of these emissions (IEA,

2013b). Therefore, it is essential to develop new and advanced technologies that allow

coal use in electricity generation while mitigating its impact on the environment.

Clean coal technologies (CCT) may help achieving this goal. These technologies aim at

the reduction of emissions in coal-based electricity generation: indirectly, by increasing

41
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the efficiency of the conversion of coal into electricity (efficiency improving combustion

technologies), or by reducing emissions entering the atmosphere directly at the end of

the pipe (after pollution control technologies).14 Regarding CO2, today the intensity

of the most efficient coal-fired power plants lies around 700 grams of CO2 per kilowatt-

hour (gCO2/kWh). Next generation efficiency enhancing technologies are expected to

reduce CO2 emissions from coal-based electricity generation to less than 670 gCO2/kWh.

In addition, Carbon capture and storage (CCS) technologies inherent the potential to

reduce emissions to less than 100 gCO2/kWh (IEA, 2012b).

Despite the important role played by coal in electricity generation and the high mit-

igation potential of this sector, very little attention has been devoted to the factors

determining innovation in CCT. Understanding these factors will help policymakers to

design the appropriate energy and environmental policies for encouraging more innova-

tion. Therefore, the goal of this article is to empirically investigate the determinants that

enhance innovation in CCT. We measure innovation at the firm-level by using patent

data from the Worldwide Patent Statistical Database (PATSTAT) maintained by the

European Patent Office (EPO) (EPO, 2014). Altogether our database contains 7,894

CCT first priority patents filed worldwide by 3,648 firms over a 32-year period from

1978 to 2009. We analyze supply-side and demand-side factors expected to affect CCT

innovation. These factors include scientific and technological capacity, overall propen-

sity to patent, public R&D, coal prices, market size as well as environmental policies

and regulations aiming at the reduction of SO2, NOX , and CO2 emissions.

The article generally relates to the empirical literature on the determinants of innovation

in clean energy technologies using patent data (see, for example, Jaffe and Palmer,

1997, Johnstone et al., 2010, Popp, 2002, Verdolini and Galeotti, 2011). In particular,

we build on Voigt et al. (2008), who use EPO patent data for 22 countries from 1974

to 2005 to examine country-specific determinants of patenting activity in the field of

CCT. Within their empirical analysis, the authors find a positive impact of public R&D

expenditures and negative impacts of the Kyoto protocol and the share of renewables

on CCT innovation.

Our study extends this analysis and contributes to the existing literature in three re-

spects. First, we inquire into the determinants of CCT innovation using international

firm-level panel data. This allows us to investigate factors that enhance CCT innovation

activities directly at the innovator-level. Second, our study conducts a global analysis

based on data from 93 national and international patent offices. This data includes

14 The term CCT is controversial as the impact of CCT innovations on the environment is ambiguous.
On the one hand, CCT innovations increase the efficiency of coal conversion into electricity and therefore
reduce the amount of coal use per kilowatt-hour. On the other hand, these innovations make electricity
generation from coal cheaper, thereby increasing the share of coal in overall electricity generation (Aghion
et al., 2016).
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almost the entire population of all worldwide CCT patent applications filed in the con-

sidered period. Third, we provide quantitative evidence on the temporal trends and the

distribution across countries and firms of CCT innovation. This helps understanding

the global patterns of CCT innovation.

The remainder of this article is structured as follows. Section 3.2 presents the principal

hypotheses tested in our empirical analysis. Section 3.3 presents the data and some

descriptive statistics. In section 3.4, we describe the empirical strategy and discuss the

results. Section 3.5 summarizes the main findings and concludes.

3.2 Principal Hypotheses

The purpose of this article is to test how firm-level CCT innovation is affected by eco-

nomic and political factors. The theory of induced innovation is the theoretical basis

for this relationship (see, for example, Binswanger, 1974, Hicks, 1932). In general, the

theory recognizes that knowledge production is a profit-motivated investment activity

and posits that both changes on the supply-side and changes on the demand-side affect

the rate and direction of knowledge production. Changes on the supply-side include sci-

entific and technological advancements that affect the profitability of innovative activity

at a given level of demand. Analogously, changes on the demand-side include shifts

on the macro level that affect the profitability of innovative activity at a given level of

scientific and technological capability (Griliches, 1990).

On the supply-side, a firm’s scientific and technological capacity, that is, its existing stock

of knowledge, is expected to influence its innovative activity in the future (Acemoglu

et al., 2012). This stock is typically measured by innovation activities undertaken in

the past, that is by historic patent filings (see, for example, Popp, 2002, Verdolini and

Galeotti, 2011). Hence, we expect that firms with a broad history of CCT innovation

in the past are more likely to innovate in CCT in the future. Additionally, a firm’s

patenting activity may be affected by its overall propensity to patent innovations. This

propensity is likely to vary across firms and countries as well as across time, because

different strategies are adopted by firms to capture the rents from innovation and because

legal conditions differ across countries and change over time (Jaumotte and Pain, 2005).

Thus, firms with an overall high propensity to seek for patent protection (typically

measured by total patent filings) are expected to file more patents in CCT. Moreover,

public effort in support of technological development is likely to incentivize innovation

at the firm-level. Government R&D expenditures are an indicator for this effort (Popp

et al., 2010). Therefore, higher CCT-related government R&D expenditures should

induce technological change and hence lead to higher innovative activity in CCT.
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On the demand-side, the price level (or a policy that changes the price level) can be

expected to affect a firm’s innovative activity. Increasing input prices change the op-

portunity costs associated with the use of an input and thus induce innovation in tech-

nologies that aim to reduce the use of this input (Acemoglu et al., 2012, Hicks, 1932).

Thus, increasing the price of coal should lead to innovation in more efficient forms to

produce electricity from coal. However, an increase in the price of coal should, in con-

trast, lead to less innovation in after pollution control technologies since these make

electricity production from coal even more expensive. In addition, the size of the poten-

tial market is likely to affect innovation (Acemoglu et al., 2012). A large market, that

is, a large demand, makes it easier for a firm to recoup its R&D investments. Hence,

a potentially large market for CCT, typically proxied by electricity production, should

lead to more research towards CCT (Johnstone et al., 2010). Finally, environmental

policies and regulations typically affect firms’ innovative activities. Restricting for ex-

ample air pollutant (for example SO2 and NOX) and greenhouse gas (for example CO2)

emissions from coal-fired power plants increases the value of both efficiency improving

combustion and after pollution control technologies. The first ones allow to produce the

same output with less input and by this decrease the emissions per unit of output. The

second ones reduce the emissions directly (Popp, 2006). Thus, introducing policies and

regulations aiming at the restriction of emissions should incentivize CCT innovation.

The hypotheses presented above are summarized in Table 3.1.

Table 3.1: Expected determinants of CCT innovation.

CCT (EI/AP)

Supply-side determinants

Scientific and technological capacity + (+/+)

(CCT knowledge stock)

Propensity to patent + (+/+)

(Total patent filings)

Public effort in support of technological development + (+/+)

(CCT-related government R&D)

Demand-side determinants

Price level o (+/−)

(Coal price)

Size of potential market + (+/+)

(Electricity production)

Environmental policies and regulations + (+/+)

(Dummies indicating introduction of emission restricting policies/regulations)

Note: + positive effect; o positive or negative effect; − negative effect. EI = Efficiency improving
combustion technologies; AP = After pollution control technologies.
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3.3 Data

In this section, we present the data used in our empirical analysis and describe the

construction of the explanatory variables. We then show descriptive statistics which

provide instructive insights into the data and the global patterns of CCT innovation.

3.3.1 Data Sources

We use patent data as an output measure of innovative activity at the firm-level to

analyze the potential determinants of innovation in CCT.15 The data originates from

PATSTAT, a statistical database on worldwide patenting activities maintained by the

EPO (EPO, 2014). Patent applications related to CCT are identified by using Interna-

tional Patent Classification (IPC) codes taken from Voigt et al. (2008).16 We count CCT

innovations in two technology groups: efficiency improving combustion technologies (EI)

and after pollution control (AP) technologies. The EI group contains technologies which

improve efficiency in the conversion process of coal into electricity and thus indirectly re-

duce emissions. These technologies are Pulverized Coal Combustion under supercritical

and ultra-supercritical steam conditions (PCC), Fluidized Bed Combustion (FBC), and

Integrated Gasification Combined Cycle (IGCC). The AP group contains technologies

directly reducing emissions. These are post-combustion pollution control technologies,

that is end-of-pipe (EOP) technologies, and Carbon Capture and Storage (CCS) tech-

nologies. Table 3.2 provides an overview on the considered technologies.17

Table 3.2: Clean coal technologies.

Efficiency improving combustion technologies

Pulverized Coal Combustion

Fluidized Bed Combustion

Integrated Gasification Combined Cycle

After pollution control technologies

End-of-pipe

Carbon Capture and Storage

15 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).

16 To identify CCT innovations filed at the United States Patent and Trademark Office (USPTO),
we follow an approach by Aghion et al. (2016). We use the same IPC codes as the ones used for non-
USPTO patents and complement these with their US equivalents according to the USPC-to-IPC reverse
concordance table available on the USPTO website. The reason is that the IPC system for classifying
patent documents has been adopted just recently by the USPTO. Therefore some older USPTO patents
have no IPC codes.

17 A detailed list of the technologies including the IPC codes can be found in Voigt et al. (2008) and
Rennings and Smidt (2010).
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For our analysis, we count annual CCT first priority patent filings by firms across 93

national and international patent offices over the period 1978 to 2009.18 19 Counting first

priority patents ensures that the same invention, which is protected by multiple patents

filed in multiple patent offices, for example by one patent in Germany, one patent in the

US, and two patents in Japan, is counted as one single patent.20

We ensure that patent applications for low-value inventions are excluded from our anal-

ysis by considering only so called claimed priorities, that is patent applications for which

protection is sought in at least two of the considered offices. The patents are assigned

to years based on their priority date. The priority date refers to the first filing date of

the invention worldwide. It is strongly related to R&D activities and closest to the date

of invention as well as to the decision to apply for a patent (see, for example, Griliches,

1990, OECD, 2009). The resulting data set contains 8,414 high-value CCT first priority

patents filed by 6,302 firms across 60 offices.

A common problem with patent data is the heterogeneity of applicants’ names to be

found in patent documents. We use the ECOOM-EUROSTAT-EPO PATSTAT Person

Augmented Table (EEE-PPAT) database (ECOOM, 2014) to identify unique patent

holders. This database provides a grouping of patent applicant’s names achieved by

harmonizing names through a comprehensive computer algorithm. In addition, we vi-

sually inspect the name match and merge associated applicants (for example, we merge

Siemens with its differently named subsidiaries). This procedure enables us to reduce

the number of distinct applicants of CCT patents from 6,302 to 5,028 (by using the

EEE-PPAT database) and then to 4,330 (by visual inspection).

To investigate the effect of a firm’s scientific and technological capacity, we construct

knowledge stocks Kit for firm i at time t using the perpetual inventory method following

Cockburn and Griliches (1988) and Peri (2005):

Kit = PATit + (1 − δ)Kit−1 (3.1)

where PATit is the number of CCT patent applications and δ is a depreciation rate ac-

counting for the fact that knowledge becomes obsolete as time goes by. The depreciation

rate is set to 10%, as is often assumed in the literature (see, for example, Verdolini and

Galeotti (2011)). The initial knowledge stock Kit0 is given by Kit0 = PATit0/(g + δ),

18 If a single first priority patent is filed by multiple firms, we count it fractionally. That is, if a
patent is filed by more than one firm, the patent count is divided by the number of firms and each firm
receives equal shares of the patent. This avoids giving a higher weight to a patent filed by multiple firms
compared to one filed by just one firm.

19 As it is standard in the literature, we count USPTO patents only if they were granted. The reason
is that until 2001 only granted patent applications are published by the USPTO.

20 Multiple patents filed for the same invention are part of a patent family. To identify patents
belonging to the same patent family, we use the DOCDB data set in PATSTAT.
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where PATijt0 is the number of CCT patent applications in 1978, the first year observed.

The growth rate g is the pre-1978 growth in knowledge stock, assumed to be 15%, and

δ again represents depreciation of 10%.21

As a control for a firm’s overall propensity to patent innovations, we use data from

PATSTAT on the firm-specific total count of annual patent filings (all patents, not only

CCT) across the 93 offices. Again we only count claimed priorities, that is high-value

inventions filed in at least two offices.

In order to estimate the impact of coal prices on innovation in CCT, we proxy the coal

price using a country-year specific real total energy end-use price for households and

industry. The price is an index with the base year 2005 and includes taxes. The data

is drawn from the Energy Prices and Taxes database of the IEA (IEA, 2014b) and is

available for 30 countries.22 Using coal prices instead would be preferable. However,

as noted by the IEA (2014a), coal prices for electricity generation are not necessarily

comparable between countries because of a great variety of coal qualities in domestic

and international trade. For example, in Germany 40% of total coal input for electricity

generation is lignite. This is usually produced by mines that are located right next to

the power station and owned by the utilities. Hence, for most of the lignite a market

price is not available and the coal price for electricity generation published by the IEA

is only based on prices for domestic and/or imported steam coal (IEA, 2014a). For this

reason, we opted for using a more general price index that is less affected by this kind of

information gap. In addition, as shown in Section 3.3.2, the development of the average

firm-level real total energy end-use price and the average real steam coal end-use price

over time is very similar.23

Since the energy price index is available only at the country-year level, we make the

energy price firm-year specific by constructing firm-specific weights based on the distri-

bution of a firm’s patent-portfolio across countries (Aghion et al., 2016, Barbieri, 2015,

Noailly and Smeets, 2015). The underlying theory is that firms’ innovation decisions

are more likely to be affected by price changes in countries with high importance for

their innovative activity than in countries with low importance. For example, consider

a firm that produces its innovations mainly for the German market. The innovative

activity of such a firm is in all likelihood more influenced by the German energy price

21 Note that our empirical analysis is conducted for the time span 1983 to 2009. Thus, the influence
of any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated is
rather small.

22 For the EPO we construct an energy price using the mean of GDP-weighted energy prices from
EPO member states.

23 In order to capture not only the effect of changing absolute prices, but also the effect of changing
relative prices on CCT innovation, one could use spreads between different energy prices. However,
to construct price spreads one needs data on fuel-specific price series. These series often show a high
amount of missing values. Therefore, we chose to use absolute energy prices in our empirical analysis.
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than by energy prices from other countries. Hence, we assume that firms’ are differently

exposed to energy prices from different countries and that this exposure depends on the

geographical distribution of its patent-portfolio across countries. The energy price faced

by firm i at time t is therefore computed as the weighted average of energy prices across

countries:

Pit =
∑
c

wPPic × Pct (3.2)

where wPPic is a fixed firm-specific patent-portfolio weight for country c and Pct is the

energy price in country c at time t.24 The weight proxies the relative importance of

country c’s market for firm i’s innovation activity. The weight is calculated as wPPic =
sPP
ic ×GDPc∑
c s

PP
ic ×GDPc

, where sPPic is the share of country c in firm i’s overall (that is including all

patents, not only CCT) patent-portfolio25 over the period 1978 to 2009. Furthermore, in

order to account for country c’s economic size, sPPic is weighted by the share of country

c’s GDP in world GDP over the same time period, GDPc. Data on the countries’ GDP

is taken from the World Bank’s World Development Indicators (The World Bank, 2015).

The firm-specific weights are time-invariant since sPPic and GDPc are computed using

the patent-portfolio of each firm averaged over the whole sample period as in Barbieri

(2015) and Noailly and Smeets (2015). This approach avoids endogeneity issues that

could arise using time-varying weights. If changes in energy prices affect the relative

importance of countries in the firms’ overall patent-portfolios or the countries’ shares in

world GDP, there might be a feed back of the altered weights into energy prices.

Another approach to avoid this potential endogeneity is to compute the weights using

the patent-portfolio of each firm averaged over a pre-sample period and run the regres-

sions over the residual period as in Aghion et al. (2016). However, this approach has two

disadvantages. First, weights computed over a pre-sample period do not reflect changes

in the patent-portfolio distribution across countries that take place after the pre-sample

period. The shorter the pre-sample period, the larger this problem is. Second, a longer

pre-sample period could alleviate this problem but has the drawback of a shorter es-

timation period which would cover neither the development in CCT patenting in the

1980s (see Figure 3.1) nor the introduction of NOX regulations (see Figure 3.3) in this

period. Therefore, we decided to use in-sample weights.

Following Noailly and Smeets (2015), we measure the effect of the market size on CCT

innovation by using country-year specific data on electricity production. The data is

24 If there is no energy price available for a country or year, the other energy prices get proportionally
higher weights that add up to 1. This approach is also used for the computation of the other firm-specific
variables.

25 We checked the robustness of our estimation results by using the CCT patent-portfolio instead of
the overall patent-portfolio. Calculating the weights from this narrower patent pool leaves our main
results unchanged.
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obtained from the IEA Energy Balances database (IEA, 2015a) and is measured in TWh

per year. Data is available for 50 countries.2627 To make market size firm-year specific,

we use the same approach as with prices. That is, we assume that firms’ innovation

decisions are more likely to be influenced by the market size of countries with high

importance for the firms’ innovative activity than of countries with low importance.

Hence, market size for firm i at time t is computed as the weighted average market size

across countries:

Mit =
∑
c

wPPic ×Mct (3.3)

where wPPic is a fixed firm-specific patent-portfolio weight for country c as in (3.2) and

Mct is the market size measured by electricity production in country c at time t.

To examine the influence of emission restricting environmental policies and regulations

on CCT innovation, we use country-year specific dummy variables indicating the years

after the introduction of stringent NOX regulation28 for coal-fired power plants and

the implementation of CO2 regulation (predominantly cap-and-trade programs), respec-

tively.29 Data is taken from Popp (2006) (NOX) and World Bank Group, Ecofys (2014)

(CO2). During our considered time period, 18 of the 60 countries in the data set in-

troduced stringent NOX regulation and 28 implemented CO2 regulation. To make the

dummy variables firm-year specific, we use the same approach as with prices and elec-

tricity production. Thus, we assume that firms’ exposure to country-specific NOX and

CO2 regulations depends on the geographical distribution of its patent-portfolio across

countries. The respective dummy variable for firm i at time t is therefore computed

as the weighted average dummy variable across countries based on the importance of

country c’s market for firm i’s innovation activity:

Dit =
∑
c

wPPic ×Dct (3.4)

where wPPic is a fixed firm-specific patent-portfolio weight for country c as in (3.2) and

(3.3)30 and Dct is the dummy variable in country c at time t.

26 For the EPO we construct data on electricity production by adding up production from EPO
member states.

27 Using the share of coal in electricity production as a proxy for the size of the potential market
for CCT innovations would be preferable. However, since data on electricity production from coal is
available only for a fraction of countries and years, we decided to use total electricity production.

28 In order to capture the impact of air pollution regulation on CCT innovation, one would ideally
control for both NOX and SO2 regulation. However, comparable data for stringent SO2 regulation is
not available. Since historically there were strong linkages between the introduction of NOX and SO2

regulation, we decided to use stringent NOX regulation as a proxy for both.
29 For the EPO we construct these variables using the mean of the respective GDP-weighted dummy

variables from EPO member states.
30 We use the same patent-portfolio weights to compute the firm-year specific energy price, electricity

production, and regulatory variables because we think that firms’ exposure to these determinants has
the same driver, that is the geographical distribution of patenting across countries. Since we have no
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Finally, to analyze the influence of government R&D on CCT innovation, we use coal

country-year specific government R&D expenditures. Since no data is available for CCT-

specific R&D expenditures, we use coal combustion plus CCS R&D expenditures as a

proxy. The data is drawn from the IEA Energy Technology R&D database (IEA, 2015b)

and contains the annual national government expenditures on coal combustion plus CCS

research, development, and demonstration in million USD (2014 prices and PPP). Data is

available for 28 countries.31 The expenditures are made firm-year specific using a similar

approach to that for prices, electricity production, and regulatory variables. However,

now we incorporate information on the geographical location of patent inventors, that is,

where the inventors worked at the discovery of the invention, to construct firm-specific

weights (Aghion et al., 2016). The underlying theory is that patent inventors are more

likely to benefit from government R&D subsidies in a country they work in than from

R&D subsidies in other countries. Hence, we assume that firms’ are differently exposed

to government R&D subsidies from different countries and that this exposure depends

on the geographical distribution of its various patent inventors across countries. Thus,

government R&D expenditures faced by firm i at time t are:

RDit =
∑
c

wIic ×RDct (3.5)

where wIic is a fixed firm-specific inventor weight for country c and RDct is the R&D

expenditure in country c at time t. The weight proxies the relative importance of country

c in firm i’s pool of inventors. The weight is calculated as wIic =
sIic×GDPc∑
c s

I
ic×GDPc

, where

sIic is the share of all firm i’s inventors in country c over the period 1978 to 2009.32 In

order to account for country c’s economic size, sIic is weighted by the share of country

c’s GDP in world GDP over the same time period, GDPc.
33

After matching the patent data with energy prices, electricity production, regulatory

variables, and government R&D, our final panel data set contains 7,894 high-value CCT

first priority patents filed by 3,648 firms across 55 patent offices over the period 1978 to

good theory why the exposure would have different drivers, we decided not to use different weights
for a robustness test. Using the same weights could of course create multicollinearity problems among
these explanatories. However, as multicollinearity problems only arise if the number of observations
is low or if the correlation between explanatory variables is high and since we have a large number of
observations and since the correlation among our explanatories is fairly low (see Table B.5 (Appendix)),
multicollinearity is very unlikely to pose a problem for our estimations (see, for example, Wooldridge,
2016).

31 For the EPO we construct coal R&D expenditures by adding up expenditures from EPO member
states.

32 If a patent is filed by multiple inventors, we count inventor countries fractionally. This avoids giving
a higher weight to a patent filed by multiple inventors compared to one filed by just one inventor.

33 Note that the inventor weight wI
ic in equation (3.5), which is based on the distribution of a firm’s

various inventors across countries, is very distinct from the patent-portfolio weight wPP
ic in equation

(3.2), (3.3), and (3.4), which is based on the distribution of a firm’s patent-portfolio across countries.
Figure B.1 (Appendix) shows for the USA, that these distributions vary considerably across firms.
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2009. In total (all patents, not only CCT), these firms have filed 832,621 first priority

patents over the same period. Table 3.3 reports summary statistics for the sample.

Table 3.3: Summary statistics for all 3,648 firms from 1978 to 2009.

Mean Std. dev. Min. Max.

CCT patents 0.07 0.57 0.00 36

CCT knowledge stock 0.51 3.34 0.00 139

Total patents 7.36 89.24 0.00 8163

CCT-related government R&D 151.88 418.36 0.00 3511

Energy price 91.12 12.74 51.35 149

Electricity production 2559.84 668.67 16.40 4343

NOX dummy 0.53 0.31 0.00 1

CO2 dummy 0.07 0.18 0.00 1

Observations 113035

Note: Energy prices are an index with the base 2005 including taxes. Electricity production is in
TWh/year. CCT-related government R&D is in 2014 million USD (PPP).
Source: Authors’ calculations, based on PATSTAT, IEA Energy Technology R&D, IEA Energy Prices
and Taxes, IEA Energy Balances, Popp (2006) and World Bank Group, Ecofys (2014).

3.3.2 Descriptive Statistics

0

50

100

150

N
u

m
b

e
r 

o
f 

p
a

te
n

ts

1980 1990 2000 2010

Year

PCC patents FBC patents IGCC patents

EOP patents CCS patents

Figure 3.1: Total number of PCC, FBC, IGCC, EOP, and CCS priority patent appli-
cations (claimed priorities) filed worldwide of all firms, 1978-2009. Source: Authors’

calculations, based on PATSTAT.

Figure 3.1 shows the trends in annual priority patent counts of the considered CCT.

Consistent with Voigt et al. (2008), we observe that the different CCT peak at different
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points in time. PCC peaks in the early-1980s and FBC in the early- and almost again

in the late-1980s. IGCC shows a positive trend since the beginning of the early-1990s

and peaks at the end of the sample period. The developments allow to identify three

generations of the EI technologies. From the AP technologies EOP peaks in the mid-

1980s and almost again in the mid-1990s and late-2000s but never drops under a level of

about 50 patents per year. CCS stays nearly constant until the late-1990s and increases

significantly afterwards.

Table 3.4: Top ten inventor firms in CCT.

Firm Rank CCT
patents

Other
patents

Total
patents

Relative
share of
CCT in

total
inventions

Relative
share in

world CCT
inventions

Mitsubishi 1 377 26,680 27,057 1.39 4.78

Alstom 2 252 1,689 1,941 12.99 3.19

Babcock & Wilcox 3 252 926 1,178 21.36 3.19

Siemens 4 233 42,996 43,229 0.54 2.95

Asea Brown Boveri (ABB) 5 218 4,056 4,274 5.09 2.76

Foster Wheeler 6 199 177 375 52.93 2.52

General Electric (GE) 7 132 17,481 17,613 0.75 1.67

Hitachi 8 125 33,731 33,856 0.37 1.58

Royal Dutch Shell 9 95 5,619 5,713 1.66 1.20

Combustion Engineering 10 91 482 573 15.88 1.15

Total — 1,974 133,837 135,809 1.45 24.99

Note: The table reports the top ten CCT patent holders based on total number of CCT prior-
ity patent applications (claimed priorities) filed worldwide by all firms from 1978 to 2009. It also reports
the total number of total priority patent applications (including CCT and other patents; claimed
priorities) filed worldwide by these firms from 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.

Table 3.4 shows the top ten inventor firms in CCT, which together account for one

quarter of worldwide CCT inventions during the sample period. The firms are listed in

declining order of their rank. In addition, the total number of patents is reported so that

the relative share of CCT patents in total inventions can be computed. Looking at the

results, a great heterogeneity between the firms can be observed. The firms differ greatly

with respect to their overall innovative activity ranging from 375 (Foster Wheeler) to

43,229 (Siemens) patents. The relative share of CCT inventions ranges from at most

52.93% to 0.54%, again attributable to Foster Wheeler and Siemens respectively. This

reflects the fact that the top ten is composed of firms focusing on CCT innovation on

the one hand and others having an overall high propensity to patent innovations on the

other hand. Both factors are expected to influence patent filings in CCT. The market

leader in CCT is Mitsubishi with 377 patents, followed by Alstom and Babcock & Wilcox

with more than 250 patents in this field. Regarding total patents, Hitachi, Mitsubishi,
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and General Electric have the highest innovative activity after Siemens, all exhibiting

five-figure patent numbers. The other listed firms patent significantly less.

Table 3.5: Geographical coverage of CCT patent protection across top twenty countries
respectively patent offices for all firms from 1978 to 2009.

Country Share Country Share

USA 81% Denmark 10%

EPO 69% United Kingdom 9%

Japan 57% Russia 9%

Germany 44% Brazil 9%

Canada 42% South Africa 8%

China 35% Mexico 8%

Australia 31% France 8%

South Korea 16% Norway 7%

Spain 15% Finland 6%

Austria 13% Poland 6%

Note: The patents in our data set are claimed priorities, that is patents filed in at least two
offices. The table reports the share of these patents that are filed in the top 20 countries respectively
patent offices.
Source: Authors’ calculations, based on PATSTAT.

As described in the section on data sources, we know for every CCT first priority patent

in our data set whether the invention subsequently has also been protected in any of the

other considered 93 patent offices. Accordingly, Table 3.5 summarizes the geographical

coverage of CCT patent protection across the main countries from 1978 to 2009. More

than 80% of CCT inventions are filed, amongst other countries, in the USA. EPO is the

second most important patent office covering nearly 70% of CCT patents of the sample.

Other countries holding high shares include Japan (57%), Germany (44%), and Canada

(42%). While about one third of the patents is filed in China and Australia, all other

countries are characterized by lower coverage of patenting activity.

Turning to the demand-side effects, Figure 3.2 displays the average firm-level develop-

ment of the weighted average real steam coal end-use price as well as the real total energy

end-use price for all firms in the sample from 1978 to 2009. The coal price increases

sharply until the early-1980s before entering a long period of decline which was mainly

caused by technological progress and excess capacities (Ellermann, 1995). During the

2000s, the coal price again increases substantially starting from 30 USD per tonne in

1999 and peaking at nearly 80 USD per tonne in 2009. The reason for the increasing

price trend can be found in the low level of investments in the period with depressed

prices and a subsequent rapid increase in coal demand, especially from newly industri-

alizing countries (Wårell, 2006). The data thus provides a great amount of variation

which will be useful in determining the effect of changes in the coal price on innovation.

However, as discussed before, the coal price would be preferable but because of the

mentioned information gaps the total energy price will be used in the empirical analysis
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Figure 3.2: Average firm-level development of the weighted average real total energy
end-use price (index with base year 2005) and real steam coal end-use price for all firms
(USD per tonne, 1996 prices and PPP), 1978-2009. Source: Authors’ calculations,

based on PATSTAT and IEA Energy Prices and Taxes.

instead. Since both variables follow a very similar trend, we consider the total energy

price to be a good proxy for the coal price.

Figure 3.3 depicts further demand-side determinants, namely the average firm-level de-

velopment of the weighted average NOX and CO2 dummy variables for all firms in the

sample from 1978 to 2009. The firm-specific dummies depend on the introduction of

NOX and CO2 regulations in all countries with importance for the firms’ overall innova-

tions. Therefore, the developments in countries with a larger coverage of patents have a

larger effect on the average firm-level dummies. Chronologically, NOX regulation kicks

in first in 1983 (Germany and Switzerland). Other countries follow among which Japan

(1996) and the USA (1998) can be found. As the three individually most important

countries have implemented NOX regulations, the dummy variable jumps to the value

0.8 in 1998. Regulation on CO2 was almost exclusively implemented in the European

Union with the introduction of the cap-and-trade system in 2005. This is reflected in a

dummy variable of about 0.4 from 2005 onwards.
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Figure 3.3: Average firm-level development of the weighted average NOX and CO2

dummy variables for all firms, 1978-2009. Source: Authors’ calculations, based on
PATSTAT, Popp (2006), and World Bank Group, Ecofys (2014).

3.4 Empirical Strategy and Results

In this section we specify the empirical model and discuss the estimation method. Then

we present the estimation results of our baseline specifications and conduct a number of

robustness tests.

3.4.1 Empirical Model

Given the hypotheses stated in Section 3.2 and the variables described in Section 3.3.1,

our empirical model can be specified as follows:

PATijt = exp(β0 + β1 ln Pit−1 + β2 lnKijt−1 + β3 lnRDit−1 + β4 ln TPATit−1

+ β5 lnMit−1 + β6CO2it + β7NOxit + τt + ηi) + uijt
(3.6)

where i, j, and t index the firm, technology, and time, respectively. PAT is the an-

nual firm-level patent count for technology j and TPAT is the annual firm-level patent

count for all patents. K represents the end-of-period knowledge stock as defined in

Equation 3.1. P , RD, and M denote the weighted firm-year energy price, the weighted

firm-year government R&D expenditures, and the weighted firm-year market size as
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defined in Equations 3.2-3.4. CO2 and NOx are dummy variables indicating the imple-

mentation of CO2 regulations (mainly cap-and-trade programs) and (stringent) NOX

regulations, respectively. Like the energy price and the market size, the dummy vari-

ables are weighted by the share of firm i’s patent filings in country c and country c’s

economic importance (that is, share in world GDP). τ and η capture unobserved firm-

and time-specific heterogeneity and uijt is a standard error term. The variables P , K,

RD, TPAT , and M are lagged by one year in order to mitigate any reverse causality

problems.

Given the count data nature of our dependent variable we use count data techniques to

estimate Equation 3.6. A standard approach for panel data is the Poisson fixed effect

count data estimator developed by Hausman et al. (1984). However, this estimator

requires strict exogeneity of all regressors to be consistent. In our model, the regulatory

variables (CO2 and NOx) and the market size variable M are unlikely to be strictly

exogenous. In addition, as the knowledge stock variable K is a function of the lagged

dependent variable, it is predetermined.

To account for this problem, Blundell et al. (1995, 2002) proposed an alternative es-

timator: the pre-sample mean (PSM) scaling estimator. This estimator relaxes the

strict exogeneity assumption by modeling firm heterogeneity via pre-sample information

on the firm’s patenting activities. Following this approach, the firm-specific effects in

Equation 3.6 are defined as:

ηi = θ1 ln ¯PAT ij + θ2D( ¯PAT ij > 0) (3.7)

where ¯PAT ij = (1/N)
∑N

n=1 PATijn is the pre-sample mean of patent applications by

firm i, technology j, and year n. N is the number of pre-sample observations and D is

a dummy variable equal to one if the firm ever patented in the pre-sample period.

Another econometric issue that needs to be addressed is possible overdispersion in the

data. A standard Poisson regression model assumes equidispersion, that is, the mean

and the variance of the counts are equal. However, in many real data applications the

variance is greater than the mean, which is named overdispersion. In this case the

standard Poisson regression model yields inefficient estimates with downwardly biased

standard errors.

A model that relaxes the equidispersion assumption of the standard Poisson regression

model is the negative binomial regression model. The model includes a so called dis-

persion parameter α, that allows the variance and the mean of the counts to differ from
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each other. If α is equal to zero, the negative binomial model reduces to the Poisson

model (see, for example, Long and Freese, 2014).

3.4.2 Empirical Results

The estimation results of our empirical model are presented in Table 3.6. We estimate

the model defined in Equation 3.6 separately for EI-CCT and AP-CCT as well as for all

CCT together. Pre-estimation analyses of the data reveal that for CCT and EI-CCT the

variance of the patents counts is about five times higher than the mean. For AP-CCT it is

about 2.5 times higher. For this reason, we start our empirical analysis with a comparison

of the PSM Poisson and negative binomial regression results. Several standard tests for

model selection, the Akaike Information Criteria (AIC), the Baysian Information Criteria

(BIC), and the likelihood-ratio (LR) test of including the overdispersion parameter α in

the model are reported in Table 3.6. For all technology groups the null hypothesis of α

equal to zero is strongly rejected. Furthermore, the AIC and BIC statistics are always

lower for the negative binomial than for the Poisson regression model. These results

consistently indicate that the negative binomial regression model is preferred over the

Poisson regression model.

Column (3) in Table 3.6 reports the negative binomial estimation results for all CCT

together. As the explanatory variables enter the estimations in log form, the estimated

coefficients can be interpreted as elasticities. Interestingly, the energy price has a neg-

ative and statistically significant impact on CCT patent activities. While this seems

counterintuitive at first glance, the estimated price coefficients for the EI-CCT and AP-

CCT models in Column (5) and (7) reveal that this result is driven by the price reaction

of patent activities in AP technologies. The energy price has no significant impact in

the EI-CCT model but a relatively high negative and strongly significant impact in

the AP-CCT model. The estimated elasticity of -2.155 suggests that a 1% increase in

energy prices results in an approximately 2% decrease in AP patent activities. This

result is in line with our hypothesis that higher energy prices lead to less innovation in

AP technologies, since these make electricity production from coal even more expensive.

Nevertheless, the insignificance of the energy price in the EI-CCT model is unexpected.

In general, we would expect a positive impact of higher energy prices on patent activi-

ties, since innovation in EI-CCT aims at producing electricity from coal more efficiently,

that is with less energy (coal) input.

For the knowledge stock and total patents we observe a common result for both tech-

nology groups. The corresponding coefficients are positive and statistically significant

at the 1% level in all models. In the preferred negative binomial regression models the
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Table 3.6: Baseline results for CCT, EI-CCT, and AP-CCT.

CCT EI-CCT AP-CCT

Poisson NegBin Poisson NegBin Poisson NegBin

Energy pricet−1

(log)
−1.094 −1.839∗∗∗ −0.513 −1.250 −1.514 −2.155∗∗

(1.145) (0.684) (1.759) (1.095) (1.056) (0.845)

Knowledge stockt−1

(log)
0.844∗∗∗ 0.954∗∗∗ 0.883∗∗∗ 0.996∗∗∗ 0.892∗∗∗ 0.964∗∗∗

(0.049) (0.038) (0.066) (0.053) (0.051) (0.049)

Public R&Dt−1

(log)
−0.039∗∗∗ −0.066∗∗∗ −0.059∗∗∗ −0.088∗∗∗ −0.033∗∗ −0.048∗∗∗

(0.013) (0.009) (0.016) (0.013) (0.015) (0.012)

Total patentst−1

(log)
0.319∗∗∗ 0.390∗∗∗ 0.325∗∗∗ 0.371∗∗∗ 0.310∗∗∗ 0.341∗∗∗

(0.024) (0.018) (0.025) (0.022) (0.018) (0.017)

Electricity prod.t−1

(log)
−0.020 −0.059 0.017 −0.011 −0.062 −0.091∗

(0.049) (0.037) (0.083) (0.067) (0.054) (0.048)

CO2 regulation
0.808∗∗ 0.519∗∗∗ 1.138∗∗∗ 0.777∗∗∗ 0.761∗∗∗ 0.502∗∗

(0.335) (0.171) (0.416) (0.254) (0.281) (0.208)

NOX regulation
0.457∗∗∗ 0.518∗∗∗ 0.239 0.311 0.621∗∗∗ 0.631∗∗∗

(0.158) (0.135) (0.217) (0.201) (0.203) (0.182)

Pre-sample mean
−0.256 −0.924∗∗ 0.235 −0.657 −0.963∗∗∗ −1.171∗∗∗

(0.408) (0.363) (0.461) (0.487) (0.331) (0.334)

Pre-sample dummy
0.219∗ 0.150 −0.092 0.069 0.163 0.057

(0.128) (0.101) (0.209) (0.138) (0.112) (0.097)

Constant
2.083 6.370∗ −1.102 3.147 4.483 8.029∗∗

(5.637) (3.266) (8.735) (5.392) (5.173) (3.970)

Log-likelihood -16735 -15924 -8415 -7888 -9577 -9384

Overdispersion
parameter α

0.943 1.115 0.772

LR-test of α = 0
1622∗∗∗ 1055∗∗∗ 387∗∗∗

(0.000) (0.000) (0.000)

AIC 33540 31920 16900 15847 19224 18839

BIC 33870 32259 17206 16162 19535 19159

Observations 91219 91219 46043 46043 53375 53375

Firms 3638 3638 1820 1820 2138 2138

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed effects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. ***,
** and *: Significant at the 1%-, 5%-, and 10%-level. For likelihood-ratio test of α = 0, Prob ≥ χ2 in
parentheses. AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion.
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estimated elasticities for the knowledge stock between 0.954 and 0.996 suggest that a 1%

increase in knowledge stock is associated with an approximately 1% increase in patent

activities. The corresponding elasticities for total patents vary between 0.341 in the

AP-CCT model and 0.390 in the CCT model. These findings are consistent with pre-

vious research (see, for example, Popp, 2002, Verdolini and Galeotti, 2011) and confirm

our hypotheses that innovation in CCT is positively affected by both the scientific and

technological capacity and the overall propensity to patent of the firms.

A different picture emerges for public R&D expenditures. A negative and statistically

significant impact is shown in the CCT, EI-CCT, and AP-CCT model. Although we did

not expect such a result, it may indicate that public R&D expenditures have a crowding-

out effect on private R&D expenditures (Popp, 2002). Nevertheless, the magnitude of the

coefficients is rather small suggesting that from an economic point of view public R&D

expenditures do not really affect firm-level patent activities in CCT. A similar result

is observed for the potential market size. In contrast to our hypothesis, the negative

coefficients for electricity production indicate a negative impact of the potential market

size on innovation activities in CCT. However, the coefficients are small in magnitude

and only statistically significant at the 10% level in the AP-CCT model.

Referring to our regulatory variables, implementation of CO2 regulation and implemen-

tation of NOX regulation, the estimated coefficients for the different technologies provide

some interesting results. The estimated coefficients for CO2 regulation are positive and

statistically significant in all models, as expected. For NOX regulation a positive impact

is shown in the CCT and AP-CCT model only. This outcome can be explained by the

specific focus of AP technologies on SO2 and NOX abatement processes.

In our baseline models firm-specific fixed effects are captured by two pre-sample vari-

ables: the firm’s average patent count in CCT in the pre-sample period and a dummy

variable equal to one if the firm ever patented in CCT in the pre-sample period. We find

statistically significant coefficients for the pre-sample mean in the CCT and the AP-CCT

model indicating that the applied pre-sample mean estimator is able to capture at least

some of the unobserved firm heterogeneity in our sample.

As a robustness check of this approach, we re-estimate the preferred negative binomial

regression models with a different specification of the pre-sample variables. Instead of

using pre-sample information on CCT patent activities, we now use pre-sample infor-

mation on patent activities in general. The results are presented in Columns (2)-(4) in

Table 3.7. As shown, the magnitude as well as the sign of the statistically significant

coefficients are robust to this alternative specification. Only for electricity consumption

a change in significance is observed. The coefficient is not statistically significant any

more in the AP-CCT model. Furthermore, the pre-sample variables are statistically
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Table 3.7: Robustness results for different pre-sample specification and exclusion of top
innovative firms.

Pre-sample information: total patents Without top ten CCT firms

CCT EI-CCT AP-CCT CCT EI-CCT AP-CCT

Energy pricet−1

(log)
−1.706∗∗ −1.011 −2.107∗∗ −1.785∗∗∗ −1.455 −1.976∗∗

(0.690) (1.099) (0.864) (0.671) (1.018) (0.826)

Knowledge stockt−1

(log)
0.925∗∗∗ 0.966∗∗∗ 0.915∗∗∗ 0.953∗∗∗ 0.997∗∗∗ 0.956∗∗∗

(0.034) (0.043) (0.044) (0.039) (0.050) (0.052)

Public R&Dt−1

(log)
−0.066∗∗∗ −0.087∗∗∗ −0.049∗∗∗ −0.072∗∗∗ −0.097∗∗∗ −0.052∗∗∗

(0.009) (0.013) (0.012) (0.009) (0.013) (0.012)

Total patentst−1

(log)
0.417∗∗∗ 0.402∗∗∗ 0.359∗∗∗ 0.401∗∗∗ 0.369∗∗∗ 0.337∗∗∗

(0.020) (0.027) (0.022) (0.017) (0.022) (0.017)

Electricity prod.t−1

(log)
−0.046 0.012 −0.080 −0.065∗ −0.035 −0.092∗∗

(0.039) (0.070) (0.050) (0.037) (0.066) (0.047)

CO2 regulation
0.528∗∗∗ 0.792∗∗∗ 0.505∗∗ 0.521∗∗∗ 0.723∗∗∗ 0.500∗∗

(0.176) (0.261) (0.212) (0.165) (0.233) (0.200)

NOX regulation
0.422∗∗∗ 0.254 0.519∗∗∗ 0.555∗∗∗ 0.391∗ 0.660∗∗∗

(0.136) (0.202) (0.183) (0.137) (0.207) (0.185)

Pre-sample mean
−0.593∗∗∗ −0.518∗∗∗ −0.487∗∗∗ −1.246∗∗∗ −1.419∗∗ −0.965∗

(0.110) (0.146) (0.117) (0.342) (0.562) (0.526)

Pre-sample dummy
0.464∗∗∗ 0.397∗∗∗ 0.422∗∗∗ 0.130 0.171 −0.049

(0.075) (0.111) (0.080) (0.087) (0.123) (0.098)

Constant
5.642∗ 1.787 7.746∗ 6.170∗ 4.353 7.229∗

(3.302) (5.418) (4.068) (3.211) (5.006) (3.869)

Log-likelihood -15894 -7873 -9371 -15094 -7128 -8875

Observations 91219 46043 53375 90959 45783 53115

Firms 3638 1820 2138 3628 1810 2128

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed effects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. ***, **
and *: Significant at the 1%-, 5%-, and 10%-level.

significant in all models. This suggests that the pre-sample information on patent ac-

tivities in general is an even better indicator for unobserved firm heterogeneity than the

pre-sample information on patent activities in CCT only.

The second robustness test we conduct is the exclusion of the top ten innovative firms

in CCT. These firms are responsible for approximately 25% of all CCT patents in the

sample and thus may bias some of our baseline results. As seen in Columns (5)-(7) in

Table 3.7, our main results carry over. In addition, the weak statistical significance of

electricity production in the AP-CCT model is back and NOX regulation is shown to

be statistically significant in all models.
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Table 3.8: Robustness results for different lagged and forward values of the energy
price, public R&D expenditures, and electricity production.

CCT EI-CCT AP-CCT

Energy pricet−1 (log)
−1.839∗∗∗ −1.250 −2.155∗∗∗

(0.684) (1.095) (0.845)

Energy pricet−2 (log)
−1.955∗∗∗ −1.641 −2.140∗∗∗

(0.653) (1.012) (0.825)

Energy pricet−3 (log)
−2.392∗∗∗ −2.510∗∗ −2.263∗∗∗

(0.660) (0.998) (0.844)

Energy pricet+1 (log)
−1.314∗ −0.511 −1.704∗

(0.743) (1.198) (0.894)

Public R&Dt−1 (log)
−0.066∗∗∗ −0.088∗∗∗ −0.048∗∗∗

(0.009) (0.013) (0.012)

Public R&Dt−2 (log)
−0.056∗∗∗ −0.077∗∗∗ −0.038∗∗∗

(0.010) (0.014) (0.013)

Public R&Dt−3 (log)
−0.048∗∗∗ −0.066∗∗∗ −0.033∗∗

(0.010) (0.015) (0.014)

Electricity prod.t−1 (log)
−0.059 −0.011 −0.091∗

(0.037) (0.067) (0.048)

Electricity prod.t−2 (log)
−0.052 −0.007 −0.092∗

(0.037) (0.064) (0.048)

Electricity prod.t−3 (log)
−0.048 −0.012 −0.088∗

(0.039) (0.065) (0.049)

Electricity prod.t+1 (log)
−0.083∗∗ −0.046 −0.109∗∗

(0.040) (0.069) (0.052)

Notes: Estimations are based on the same specification as in Table 3.6. To conserve space only
the coefficients for the different lagged and forward values of the energy price, public R&D expenditures,
and electricity production are presented. The complete tables are available from the authors upon
request. Robust standard errors clustered at the firm-level are in parentheses. ***, ** and *: Significant
at the 1%-, 5%-, and 10%-level.

Given the somehow unexpected results for the energy price, public R&D, and market

size in some of our baseline models, we complete our robustness analysis with alternative

specifications on the lag structure of these variables. More specifically, we re-estimate

our baseline negative binomial specification with a two-year and three-year lagged energy

price, public R&D, and market size (electricity production) variable. Furthermore, as

firms rather consider the future than the past for their innovation decisions, we also

estimate model specifications with forward values, that is, values in t+ 1, for the energy

price and the market size. Of course, the utilization of forward values as a proxy for the

firm’s expectations assumes that the expected value in the future is equal to the realized

value in the future.
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The estimated coefficients for the different lag and forward structures of the energy price,

public R&D, and electricity production variables are depicted in Table 3.8. As shown,

our baseline results are left intact. The estimated coefficients for all lagged and forward

values of the energy price indicate a negative impact of higher energy prices on patent

activities in the AP-CCT model. Except for the third lag, the coefficients for EI-CCT

are not statistically significant. In the case of public R&D expenditures the magnitude

of the coefficients gets smaller with increasing lags. Finally, the coefficients for all lagged

and forward values of electricity production indicate a statistically significant negative

impact of market size on patent activities in the AP-CCT model at the 10% level.

3.5 Conclusions

In this article, we empirically analyzed the determinants of innovation in clean coal

technologies. We conducted our analysis on a panel of 3,648 firms which filed 7,894

CCT patents across 55 patent offices over the period 1978 to 2009. We examined supply-

side and demand-side factors expected to affect innovation in CCT. Our contribution

to the literature is 3-fold. First, we investigate the determinants of CCT innovation

directly at the firm-level. Second, our analysis builds on an almost entire population of

all CCT patents filed worldwide in the considered period. Third, we provide interesting

descriptive evidence on firms’ global CCT patenting behavior.

Overall, our results show that a number of supply- and demand-side factors influence

firm-level patenting activities in CCT. On the supply-side we find evidence that firms

with a higher technological capacity, that is a longer history of patent activities in CCT

and a higher overall propensity to patent, are more active in CCT innovation than

others. This finding confirms previous results for other technologies and is in line with

the technology-push hypothesis stating that innovation activities are path dependent

and build on existing knowledge. Public policies should keep this in mind and create a

research friendly economic environment that fosters the private generation of scientific

and technological knowledge and enables firms to exploit their existing knowledge base.

Another supply-side policy that is usually assumed to push private innovation activi-

ties is public R&D spending. However, for CCT we do not find such an impact. On

the contrary, our findings suggest that public R&D spending reduces or ‘crowds-out’

private R&D investments and thus reduces private innovation activities. Nevertheless,

this potential crowding-out effect seems to be very small and, hence, is economically

negligible.
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Referring to the demand-side, we find a strong relationship between emission restricting

regulations and CCT innovation. Regulation of CO2 emissions has a positive impact on

CCT patenting activities in general and NOX regulation has a positive impact on AP-

CCT innovation. Given the ongoing high dependence of worldwide electricity production

on coal-fired power plants, this finding emphasizes the importance of strict environmental

regulations on the way towards a cleaner electricity system.

For energy prices a diversified picture emerges. Our hypothesis was that higher energy

prices have a positive impact on input-saving EI-CCT innovation and a negative impact

on post-combustion AP-CCT innovation. However, the findings only support the lat-

ter. As AP technologies make electricity production from coal even more expensive, an

increase in energy prices leads to less innovation in these technologies.

The outcome that we do not find a positive impact of increasing energy prices on EI-

CCT innovation may be due to two effects. On the one hand, we would expect that

increasing energy prices induce innovation in input-saving EI-CCT, as stated in our ini-

tial hypothesis. On the other hand, increasing energy prices may indicate a stronger

support of public authorities for other less polluting types of electricity generation tech-

nologies, in particular electricity generation from renewables and natural gas. In this

case, increasing energy prices would have a negative impact on coal-burning patenting

activities in general. The two effects are opposed to each other and, hence, may cancel

each other out.

Finally, referring to market size, our results contradict the hypothesis that a potentially

larger market size leads to more innovation in CCT. We either find no statistically signif-

icant impact or a slightly significant negative impact. We do not have an explanation for

this result. However, as both the statistical significance and the economic significance

are very low, this unexpected result should not be taken too seriously.

Further research in this field should examine the impact of environmental regulations on

the diffusion of CCT. In this study we analyzed one stage of technological progress, that

is, innovation. The following stage is diffusion. It would be interesting to analyze how

environmental regulations influence the adoption of new CCT in electricity production

processes. Another promising path for additional research is the analysis of spillover

effects among the firms.





Chapter 4

Innovation in Green Energy

Technologies and the Economic

Performance of Firms

4.1 Introduction

Recent empirical economic literature has focused to a great extent on the determinants

and inducement mechanisms of innovation in green energy (GE) (or environmental,

or eco-) technologies. A large number of contributions provides a robust understand-

ing of factors determining and policies inducing GE innovation (see, for example, Jaffe

and Palmer, 1997, Johnstone et al., 2010, Popp, 2002, Verdolini and Galeotti, 2011).

However, little attention has been devoted to the economic effects of GE innovation,

especially to the relationship between innovating in GE technologies and the economic

performance of the innovating firms. Understanding this relationship helps to answer the

widely debated question in the literature on green innovation (see, for example, Marin

and Lotti, 2016, Wörter et al., 2015), whether firms gain (forgo) economic opportunities

by innovating (not innovating) in GE technologies.

This article empirically investigates the impact of innovation in GE technologies on the

economic performance of firms. In addition, the impact of GE innovation is compared

to the one of non-GE innovation. I analyze a panel of 8,619 patenting firms from

22 European countries over a period of 8 years from 2003 to 2010. Economic firm

performance is measured in terms of productivity. Using productivity as performance

indicator has several advantages. First, results from production function approaches are

easily interpretable and comparable to other studies (Bloom and Van Reenen, 2002).

Second, firm performance is mainly driven by productivity trends which are closely
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linked to innovation dynamics (Cainelli et al., 2011). Furthermore, compared to data on

market valuation, data on productivity is available for a large number of firms including

medium- and small-sized ones. I specify a panel data model based on an extended Cobb-

Douglas production function in which productivity is a function of capital, labor, and

innovation output. Firm accounts data is taken from the AMADEUS database provided

by Bureau van Dijk (BvD). Innovation at the firm level is measured using patent data

from the Organisation for Economic Co-operation and Development (OECD) REGPAT

database.

My work is related to two strands of empirical literature on innovation and economic firm

performance. The link between innovation and economic performance at the firm level

has been analyzed in a large number of empirical economic articles (see, for example,

Bloom and Van Reenen, 2002, Blundell et al., 1999, Comanor and Scherer, 1969, Ernst,

2001, Griliches, 1981, Griliches et al., 1991, Hall et al., 2005, Lanjouw and Schankerman,

2004, Scherer, 1965). The majority of these investigations identifies a positive relation-

ship between innovative output and economic performance. However, since these studies

focus on general innovation, the results cannot be simply transferred to GE innovation.

There are fewer articles exploring the relationship between GE (or environmental or eco)

innovation and economic firm performance. Ayari et al. (2012) investigate the impact

of renewable energy innovation (patents) on firm performance (return on assets, stock

market return) using a panel of 154 firms from 14 European countries (1987-2007). They

find evidence that renewable energy innovation has a significant positive impact on both

measures of firm performance. Marin (2014) analyzes the effect of environmental and

non-environmental innovation (patents) on firm performance (value added) for a panel

of 5,905 Italian firms (2000-2007). He shows that environmental innovation in most

cases has no significant effect on firm performance, while non-environmental innovation

has a positive effect. In a very similar study Marin and Lotti (2016) analyze the same

relationship using a larger and longer panel of 11,938 Italian firms (1996-2006). They

find positive impacts of both environmental and non-environmental patenting, while

observing a substantially lower return for environmental patents. Wörter et al. (2015)

examine the link between environmental innovation (patents) and performance (value

added) on the industry-level. Their analysis is conducted on a panel of 22 manufactur-

ing industries from 12 OECD countries (1980-2009). In contrast to Ayari et al. (2012)

and Marin and Lotti (2016), they find that green innovation is negatively related to

performance for most industries. Overall, the empirical evidence concentrating on GE

innovation can thus be described as ambiguous.

This study contributes to the existing literature in three respects. First, I provide new

evidence on the unsolved question how innovation in GE technologies impacts firms’ eco-

nomic performance. Second, the impact of GE and non-GE innovation on performance
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is compared. Moreover, as robustness check I distinguish two subgroups of GE technolo-

gies: (a) Renewable Energy Sources (RES) and (b) Energy Efficiency (EE) technologies.

Third, I base my analysis on a comparatively large and broad panel of 8,619 European

patenting firms including 968 GE patenters from 22 countries over an estimation period

of 8 years (2003-2010) and a patent count period of 32 years (1977-2010).

The remainder of the article is structured as follows. Section 4.2 outlines the theoretical

background my analysis is based on. Section 4.3 presents and discusses the data. Sec-

tion 4.4 describes the empirical strategy employed. Section 4.5 discusses the results of

the econometric estimations and of the robustness tests. Finally, Section 4.6 summarizes

the main findings and concludes.

4.2 Theoretical Background

Innovative activity in market economies to large parts exists because private profit-

maximizing firms allocate resources to the research and development (R&D) of new

products and processes, for which they see innovation opportunities and market success

and consequently expect a positive impact on future economic performance, that is

positive private returns (Dosi, 1988). The resulting innovation output of private firms is

widely believed to be an important source of economic wealth and growth in economies

(see, for example, Romer, 1986, 1990). In addition, innovation in the subgroup of GE

technologies is acknowledged to be a crucial factor for handling climate change while

maintaining reasonable economic growth (so called green growth) (see, for example,

Acemoglu et al., 2012, Jaffe et al., 2002, Popp et al., 2010).

Private profit-maximizing firms decide about R&D investments solely on the basis of

private returns. Therefore, a firm deciding about two R&D investment projects, one a

GE option and one a non-GE option, would always choose the option with the higher

private return, even though the GE option might have higher social returns (the sum of

both private and non-private returns). Higher social returns for a GE compared to a non-

GE option can result from higher non-private economic returns due to positive innovation

spillovers and the internalization of negative environmental externalities (Dechezleprêtre

et al., 2014). As a consequence, private R&D investments in GE technologies depend

on the private return of these investments compared to the private return of non-GE

investments.

In economic theory, arguments can be found in favor and against higher private returns

of GE compared to non-GE innovation. Higher returns may be expected because: (a)

GE technologies are newer and less explored than other technology fields. Therefore,
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research in GE technologies builds on a lower knowledge stock than research in more

mature technologies. This could imply greater development perspectives and opportu-

nities for high marginal private returns (Popp and Newell, 2012). (b) GE technologies

bear the potential of having an impact on many sectors and becoming general purpose

technologies. General purpose technologies are expected to generate large economic

gains (Helpman, 1998). (c) Markets are increasingly shaped by strict environmental

regulations. This induces a larger demand for GE technologies and hence increases the

probability of higher private returns from GE innovation (Colombelli et al., 2015).

Contrariwise, lower returns could arise because: (a) GE technologies often are new to

a firm and lie outside their traditional technological scope. In addition, adjustments of

business processes, working routines, employment, and organizational structures may

be necessary. This could lead to large adjustment costs (Noci and Verganti, 1999). (b)

Financial markets are usually imperfect with regard to technological innovation. These

market imperfections are even more pronounced for GE innovation due to the higher

technical risk and uncertainty about market developments. This may imply high costs

of capital (Wörter et al., 2015).

Thus, I derive two rival hypotheses: H1: Private economic returns measured in terms of

productivity are higher for GE than for non-GE innovation, and H2: Private economic

returns measured in terms of productivity are lower for GE than for non-GE innovation.

This work aims to find out which of these hypotheses is right.

4.3 Data

4.3.1 Data Sources

To analyze the impact of GE innovation on the economic performance of firms, I combine

two different databases and construct a unique firm-level data set that matches patent

applicants at the European Patent Office (EPO) to firm accounts.

The first performance-related database is BvD’s AMADEUS which contains annual fi-

nancial data taken from the registries of approximately 19 million firms from 44 Western

and Eastern European countries (Bureau van Dijk, 2015). It covers all sectors with ex-

ception of the financial one and contains up to ten recent years of information per firm.

The database includes firm-level financial information in a standardized format for 26

balance sheet items, 26 profit and loss items, and 26 financial ratios.34 First, I use

information on sales as a measure of economic performance respectively productivity.

34 The coverage of the items varies across countries and time.
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Second, I collect information on the number of employees as a measure of labor input

and information on total assets as a measure of capital input. A GDP deflator from

the World Bank’s World Development Indicators (The World Bank, 2015) is used to

deflate all nominal values. To avoid double-counting firms and subsidiaries, I consider

only firms that report unconsolidated statements.

In order to measure innovation activities at the firm level, I extend the financial data

with patent data from the OECD REGPAT database (OECD, 2015).35 The REGPAT

database covers patent applications filed at the EPO from 1977 to 2011, derived from the

EPO’s Worldwide Patent Statistical Database (PATSTAT, Autumn 2014). To avoid a

truncation downward bias towards the end of the sample period, I consider only patents

filed until 2010. Using EPO patent applications ensures that applications for low-value

inventions are excluded from the analysis. Application costs for multinational EPO

patent applications are generally higher than for applications filed at national institu-

tions. Accordingly, patent applications filed at the EPO often constitute innovations of

high value that are expected to be commercially profitable and thus justify the relatively

high application fees (Johnstone et al., 2010).

The financial data is combined with the EPO patent information using the OECD Har-

monised Applicants’ Names (HAN) database (OECD, 2014). This database provides

a grouping of patent applicants’ names constructed by harmonising names and match-

ing them against company names from business register data. The business register

data stems from the ORBIS database from BvD. Since AMADEUS is a component

of the ORBIS database, the HAN database allows me to match EPO patent informa-

tion to AMADEUS company names. The intersection of the AMADEUS and REGPAT

databases then results in a panel of 11,001 firms from 27 countries36 over a period of 34

years (1977 to 2010) that applied for at least one patent at the EPO during this period.

I count GE and non-GE (all patents except GE ones) patent applications filed by these

firms at the EPO over the period 1977 to 2010.37 I date the patents based on their

priority date which refers to the first filing date of the invention worldwide since this

date is strongly related to R&D activities and closest to the date of invention as well as

to the decision to apply for a patent (Griliches, 1990, OECD, 2009). The GE patents are

35 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD (2009).

36 The countries are (sorted by country code): Austria (AT), Belgium (BE), Switzerland (CH), Czech
Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France (FR),
United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT), Liechtenstein
(LI), Luxembourg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT),
Romania (RO), Russian Federation (RU), Sweden (SE), and Slovenia (SI).

37 If a single patent is filed by multiple firms, I count it fractionally. That is, if a patent is filed by
more than one firm, the patent count is divided by the number of firms and each firm receives equal
shares of the patent. This avoids giving a higher weight to a patent filed by multiple firms compared to
one filed by just one firm.
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identified by using International Patent Classification (IPC) codes from the “IPC Green

Inventory” (WIPO, 2015a,b). The inventory provides IPC codes for patents relating to

so-called Environmentally Sound Technologies. Combining these codes with the energy

technology structure developed at the IEA (IEA, 2011), I count GE patents from two

groups: RES and EE. The RES group contains five RES technologies: solar energy, wind

energy, geothermal energy, ocean energy, and fuel cells. The EE group contains three

EE technologies: energy efficiency in residential and commercial buildings, appliances

and equipment, energy efficiency in transport, and other energy efficiency38. Table 4.1

provides an overview on the considered technologies.

Table 4.1: Green energy technologies.

Renewable energy sources technologies

Wind energy

Solar energy

Geothermal energy

Ocean energy

Fuel cells

Energy efficiency technologies

Energy efficiency in residential and commercial buildings, appliances and equipment

Energy efficiency in transport

Other energy efficiency

To investigate the effect of firms’ GE and non-GE knowledge, I construct a GE knowl-

edge stock (GKS) and a non-GE knowledge stock (NKS) for firm i at time t using the

perpetual inventory method following Cockburn and Griliches (1988) and Peri (2005):

GKSit = GPATit + (1 − δ)GKSit−1 and (4.1)

NKSit = NPATit + (1 − δ)NKSit−1, (4.2)

where GPATit (respectively NPATit) is the number of GE (respectively non-GE) patent

applications and δ is a depreciation rate accounting for the fact that knowledge becomes

obsolete as time goes by. The depreciation rate is set to 10% as is often assumed in the

literature (see, for example, Verdolini and Galeotti, 2011).39 40

38 Following the IEA energy technology structure, the other energy efficiency group includes waste
heat recovery and utilization, heat pumps, and measurement of electricity consumption.

39 The initial knowledge stock GKSit0 (respectively NKSit0) is given by GKSit0 = GKSit0/(g + δ)
(respectively NKSit0 = NKSit0/(g + δ)) where GPATijt0 (respectively NPATijt0) is the number of
patent applications in 1977, the first year observed. The growth rate g is the pre-1977 growth in patent
stock, assumed to be 15%, and δ again represents depreciation of 10%.

40 I test the robustness of the regression results against the utilization of different depreciation rates
in the calculation of the knowledge stocks in Section 4.5.2, Table 4.10.
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The availability of the AMADEUS financial firm information is limited. The first avail-

able year is 2003. Since I count patents filed until 2010, I use AMADEUS data from 2003

to 2010. For approximately 22% of the matched firms I have no information on sales,

employment, and/or total assets. For the remaining firms, there are missing values for

some years. Because of these missings, the number of firms and years and, by this, the

number of observations that can be used for the econometric estimations is lower than

in the base sample with 11,002 firms and 34 years. The resulting estimation data set is

an unbalanced panel of 8,619 firms from 22 countries41 over a period of 8 years (2003 to

2010), that have filed at least one EPO patent between 1977 and 2010. In total, these

8,619 firms filed 3,021 GE patents and 100,835 non-GE patents at the EPO between

1977 and 2010. The GE patents were filed by a subset of 968 firms from 17 countries42

since not every firm in the full sample applied for a GE patent. The non-GE patents

were filed by a subset of 8,345 firms from 22 countries which shows that almost every

firm in the full sample filed a non-GE patent.

Table 4.2 reports summary statistics for the full sample of 8,619 patenting firms. The

mean values of sales and total assets suggest the presence of some major firms as the

means lie well above the threshold for the AMADEUS classification of a very large

firm. The knowledge stock values demonstrate the difference in patent counts between

GE and non-GE technologies, reflecting that just about 11% of the sampled firms are

GE patenters. The standard deviations of the knowledge stock of GE and non-GE

technologies have a similar level of about 10% of the mean value. The last row shows

that I have on average almost 6 years of data for each firm.

Table 4.2: Summary statistics.

Mean Std. dev. Min. Max.

Sales (million EUR) 186.83 2526.82 0.00 323387

Employees (100s) 3.56 38.85 0.01 2888

Total assets (million EUR) 335.96 4091.64 0.00 310898

GE knowledge stock 0.15 1.35 0.00 108

Non-GE knowledge stock 6.11 63.92 0.00 3627

Observations per firm 5.70 1.93 1.00 8

Note: Sales and total assets are both in 2006 million. The knowledge stock variables are calculated using
the patent data from 1977 to 2010.
Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

Table 4.3 reports correlations between the variables sales, employees, and total assets as

well as GKS and NKS. The highest correlation persists between GKS and NKS (0.552).

This shows that the development of GKS is positively related to those of the significantly

larger group of NKS. The two knowledge stocks are all only weakly correlated to the

41 The countries are AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IT, LI, LU, LV, NL,
NO, PL, SE, and SI.

42 The countries are AT, BE, CH, CZ, DE, DK, ES, FI, FR, GB, IT, LU, LV, NL, NO, PL, and SE.



Chapter 4. Innovation in Green Energy Technologies and the Economic Performance
of Firms 72

measure of firms’ performance, labor, and capital input. As expected, there is also a

positive correlation between the firm indicators themselves, the one between sales and

total assets (0.621) being the highest.

Table 4.3: Correlation matrix.

Sales Employees Total assets GKS NKS

Sales 1

Employees 0.202 1

Total assets 0.621 0.282 1

GKS 0.101 0.101 0.121 1

NKS 0.080 0.106 0.131 0.552 1

Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

4.3.2 Descriptive Statistics

Figure 4.1 shows the development of yearly GE and non-GE patenting activities of all

firms during 1977 and 2010. GE patent applications are shown on the left axis and non-

GE applications on the right axis. Both variables show an increasing trend from 1977

to 2010. The number of yearly non-GE patent applications increases monotonically and

it can be seen that the yearly increases become significantly larger since the beginning

of the 1990s. Yearly non-GE patent applications peak after a small drop at about

8,000 in 2009. The development of the yearly number of GE patents in my sample

is characterized by two periods of growth. While they remain fairly stable well below

100 at the beginning, there is a steep increase to over 100 yearly GE patents at the

end of the 1990s. After a phase of stagnation at the beginning of the 2000s, again an

increase to over 300 yearly GE patents from 2005 to 2008 can be observed. Overall, the

development of GE patents is less steady than the one of non-GE patents.

Table 4.4 shows the distribution of firms by GE and non-GE patents. In the range from

one to 1,000 or more patents, it can be seen how many firms have filed at least a certain

number of patents. As stated before, the sample contains 8,619 firms of which 968 firms

have filed at least one GE and 8,345 firms at least one non-GE patent. Only about 13%

(1,059) of the non-GE firms have filed ten or more non-GE patents while the respective

figure lies at 5% (51) for GE patents, that is the majority of firms has filed less than ten

patents, even more so with regard to GE patents. There are some particularly innovative

firms in the sample as 439 firms have filed 25 non-GE patents or more, 121 firms 100 or

more and still 51 firms 250 or more. Finally, 12 firms have filed 1,000 or more non-GE

patents. Concerning GE patents, there are 15 firms which have filed 25 or more patents

and 2 firms which have filed 100 or more patents.
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Figure 4.1: Number of yearly GE (left axis) and non-GE (right axis) patent applications
filed at the EPO by all firms. Source: Authors’ calculations, based on AMADEUS and

REGPAT data.

Table 4.4: The distribution of firms by GE and non-GE patents.

1 or more 10 or more 25 or more 100 or
more

250 or
more

1,000 or
more

Firms (GE) 968 51 15 2 0 0

Firms (Non-GE) 8,345 1,059 439 121 51 12

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

Table 4.5 gives complementary information on the distribution of the firms with regard

to technology, firm size43, industry44, and country. The GE patenters in the sample are

more involved in EE than RES innovation as 73% of GE firms have patented in the

field of EE technologies and only 41% in RES technologies. GE firms tend to be larger

compared to the non-GE sample. While 31% of GE firms are categorized as very large,

only 17% of the non-GE sample are. The distribution among industries and countries

43 AMADEUS groups firms into the three size categories very large, large, and medium. For firms to
be classified as very large, they have to satisfy at least one of the following criteria: Operating revenue
of at least 100 million EUR, total assets of at least 200 million EUR, at least 1000 employees, or the
firm has to be publicly listed. The respective criteria for large companies are: at least 10 million EUR
operating revenue, at least 20 million EUR total assets, or at least 150 employees. For medium sized
firms these criteria are: at least 1 million EUR operating revenue, at least 2 million EUR total assets,
or at least 15 employees.

44 AMADEUS assigns firms to industries using NACE (for the French term ”nomenclature statis-
tique des activités économiques dans la Communauté européenne”), the standard European industry
classification system.
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is very similar between GE firms and the non-GE sample. 50% and 54% respectively

are classified as manufacturers which is thus the most prominent industry group. Other

well represented groups are professional, scientific and technical activities, wholesale and

retail trade as well as construction. Concerning the country distribution of the non-GE

firms, Germany (32%) and France (30%) dominate the sample followed by Spain (11%)

and Italy (10%). It is interesting to note that GE patenters disproportionately come

from Germany (38%).

Table 4.5: Distribution of firms by technology, size, industry, and country.

Technology RES EE GE

No. of GE firms 399 704 968

% in GE firms 41% 73% 100%

Size Very Large Large Medium All

No. of GE firms 296 305 367 968

% in GE firms 31% 32% 38% 100%

No. of non-GE firms 1,399 2,684 4,262 8,345

% in non-GE firms 17% 32% 51% 100%

Industry Manu-
facturing

Professional,
scientific

and
technical
activities

Wholesale
and retail

trade

Construction Other All

No. of GE firms 485 159 126 70 128 968

% in GE firms 50% 16% 13% 7% 13% 100%

No. of non-GE firms 4,559 977 1,357 346 1,106 8,345

% in non-GE firms 54% 12% 16% 4% 13% 100%

Country DE FR ES IT Other All

No. of GE firms 369 290 72 65 172 968

% in GE firms 38% 30% 7% 7% 18% 100%

No. of non-GE firms 2,630 2,542 894 834 1,445 8,345

% in non-GE firms 32% 30% 11% 10% 17% 100%

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

4.4 Empirical Strategy

To empirically evaluate the impact of GE innovation on firm performance, I follow the

approach by Bloom and Van Reenen (2002) who measure firm performance by produc-

tivity. I use a panel data model based on a standard Cobb-Douglas production function

for firm i at time t, extended by innovation respectively knowledge as an additional

input:
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Qit = ALαitK
β
itI

γ
it, (4.3)

where Q is the output, L is the labor input, K is the capital input, I is the knowledge

stock, and A is a constant. The parameters α, β, and γ are elasticities with respect to

labor, capital, and knowledge respectively.

The elasticity with respect to labor accounts for the effect on output caused by growth

in labor input. The elasticity with respect to capital accounts for the effect in output

caused by growth in capital input. These parameters measure the corresponding single

factor productivity (SFP) growth. The elasticity with respect to knowledge measures

the total factor productivity (TFP) by accounting for the effect in output not caused by

the growth in labor and capital input. This is in line with the conventional view that

TFP is the measure of the rate of technical change (Krugman, 1996). Precisely, since I

will use sales as a proxy for output, I measure revenue productivity which includes both

changes in factor productivity as well as in markups as firms are able to raise prices for

new innovations (Bloom and Van Reenen, 2002).

Expressing 4.3 in logarithms yields:

ln (Q)it = ln (A) + αln (L)it + βln (K)it + γln (I)it . (4.4)

In the empirical application, I use sales as a proxy for output Q, the number of em-

ployees engaged as a proxy for labor L, and total assets as a proxy for capital K. The

knowledge stock I is proxied by the firm’s GE knowledge stock (GKS), capturing GE

specific knowledge, and the respective non-GE knowledge stock (NKS), capturing non-

GE knowledge. This allows a separate assessment of the productivity impact of GE

and non-GE innovation. Including the non-GE knowledge stock also controls for differ-

ences in the firms’ overall propensity to patent innovations. The knowledge stocks are

included in levels and not in logarithmic form since a substantial number of firms have

knowledge stocks of zero (Wooldridge, 2002). In the complete sample of 8,619 firms the

share of zero observations is 91% for the GE and 17% for the respective non-GE knowl-

edge stock. Thus, this share is substantial especially with respect to the GE knowledge

stock.45 In order to mitigate any reverse causality problems and to account for the fact,

that the impact of innovation on productivity is dynamic and comes with a certain time

lag (Bloom and Van Reenen, 2002), the knowledge stock variables are lagged by two

45 In a robustness test, I address this approach. I use an alternative specification that includes the
logged total knowledge stock instead of the separated GE and non-GE stocks in levels. Therefore, the
problem of zero knowledge stocks is less pronounced. Using the total knowlege stock in logs does not
change the sign and significance of the coefficients so that I continue to use the knowledge stocks in
levels in the main specification.
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years.46 To control for correlated unobserved heterogeneity, I include year fixed effects

Tt and firm-specific fixed-effects ηi. The baseline specification to be estimated then is

given by:

ln (Q)it = ln (A) + αln (L)it + βln (K)it + γ1 (GKS)it−2 + γ2 (NKS)it−2

+ Tt + ηi + uit,
(4.5)

where uit is a standard varying error term (across time and firms). I estimate (4.5)

using OLS and fixed-effects (within) regression (least-squares dummy-variable regres-

sion) with standard errors cluster-robust to heteroscedasticity (Section 4.5.1). To test

the robustness of the baseline model, I use alternative specifications with modifications

(Section 4.5.2).

4.5 Results

4.5.1 Baseline Results

The baseline results of estimating the Cobb-Douglas production function (4.5) are pre-

sented in Table 4.6. Initially, the full sample of 8,619 firms is used. Column (1) gives

the OLS estimates of the production function. As the independent variables employ-

ment and total assets enter the estimations in log form, the estimated coefficients can

be interpreted as elasticities. The coefficients on employment and total assets are both

positive and statistically significant at the 1% level. This result is in line with general

expectations. As one would also expect, the sum of the coefficients is close to unity

suggesting constant returns to scale. Column (2) has the results of the fixed-effects

estimator which controls for time-invariant unobserved heterogeneity between firms by

including firm-specific fixed effects. Again the coefficients on employment and total as-

sets are both positive and statistically significant while slightly smaller for employment

and slightly higher for total assets. The estimated elasticities of 0.639 and 0.469 suggest

that a 10% increase in employment or capital is associated with a 6.4 and 4.7% increase

in productivity respectively.

Column (3) reports the results from adding the firm’s GE knowledge stock and the

corresponding non-GE stock as proxies for a firm’s knowledge. As the knowledge stocks

enter the estimation in levels, the estimated coefficients have a percentage interpretation

when they are multiplied by 100, commonly called semi-elasticity. The GE knowledge

stock is negative and significant at the 5% level. The coefficient suggests that an increase

of the stock by 1 would lead to a 3.6% decrease in productivity. A doubling of the stock

46 I test the robustness of my results against other lag structures in Section 4.5.2, Table 4.9.
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Table 4.6: Estimated coefficients of the Cobb-Douglas production function. Estimation
time span: 2003-2010. Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All All All GE patenters

Employees (log) 0.700∗∗∗ 0.639∗∗∗ 0.643∗∗∗ 0.441∗∗∗

(0.029) (0.055) (0.055) (0.094)

Total assets (log) 0.408∗∗∗ 0.469∗∗∗ 0.469∗∗∗ 0.730∗∗∗

(0.027) (0.047) (0.046) (0.167)

GE knowledge stockt−2 −0.036∗∗ −0.031∗∗

(0.014) (0.012)

Non-GE knowledge stockt−2 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000)

Year dummies yes yes yes yes

Firm dummies no yes yes yes

Adj. R-Squared 0.581 0.896 0.896 0.915

No. observations 39152 39152 39152 4482

No. firms 8619 8619 8619 968

Note: Column (1), (2), and (3) present the results using the population of all patenting firms. Column
(4) presents the results for the subset of firms with GE patents. The knowledge stock variables are
calculated using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in
parentheses. ***, **, and *: Significant at the 1%, 5%, and 10%-level.

with respect to its sample average (0.15) would lead to a 0.5% decrease in productivity.

In contrast, the corresponding non-GE stock is positive and significant at the 1% level.

Here an increase of the stock by 1 would result in a 0.1% increase in productivity. A

doubling of the stock with respect to its sample average (6.11) would result in a 0.6%

increase in productivity. Thus, the marginal effect of GE innovation is negative while

the marginal effect of non-GE innovation is positive indicating that sales markets do not

provide sufficient incentives to increase firms’ GE innovation activities but do provide

enough incentives to increase firms’ non-GE innovation activities. The results suggest,

that there is a positive return in terms of productivity for non-GE innovation, but a

negative return for GE innovation. Thus, hypothesis H2 can be confirmed: Private

economic returns measured in terms of productivity are lower for GE than for non-GE

innovation. The findings are in line with the aforementioned examinations by Marin

(2014), Marin and Lotti (2016), and Wörter et al. (2015).

The last column (4) gives the results of the previous specification for the subset of the

968 GE patenters. Using this specification, I test if the results in column (3) are robust

or mainly driven by the shift from a firm without any GE patents to a firm with GE

patents. Again the estimate on the GE knowledge stock is negative and significant

although slightly smaller than in column (3). Likewise the coefficient on the respective

stock in non-GE patents is still positive and significant but slightly lower. The lower

estimates on employment and higher estimates on total assets indicate that the GE
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patenting firms are on average more capital intensive than the non-GE patenting firms.

In fact the GE patenters have on average a 37% higher capital to labor ratio compared

to the complete sample.

4.5.2 Robustness Tests

In order to test the sensitivity of the baseline results presented in Table 4.6, I conduct

a number of robustness tests based on the main model in column (3).

Table 4.7: Differentiating by technology group. Estimation time span: 2003-2010.
Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All RES patenters All EE patenters

Employees (log) 0.643∗∗∗ 0.508∗∗∗ 0.642∗∗∗ 0.343∗∗∗

(0.055) (0.165) (0.055) (0.100)

Total assets (log) 0.469∗∗∗ 0.714∗∗∗ 0.469∗∗∗ 0.707∗∗∗

(0.046) (0.174) (0.046) (0.238)

RES knowledge stockt−2 −0.055∗ −0.061∗∗

(0.031) (0.025)

Non-RES knowledge stockt−2 0.001∗∗ 0.001∗∗∗

(0.000) (0.000)

EE knowledge stockt−2 −0.044∗∗ −0.029∗

(0.022) (0.016)

Non-EE knowledge stockt−2 0.001∗∗ 0.001∗∗

(0.001) (0.000)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.937

No. observations 39152 1816 39152 3344

No. firms 8619 399 8619 704

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1) and (3)
present the results using the population of all patenting firms. Column (2) and (4) present the results
for the subset of firms with RES respectively EE patents. The knowledge stock variables are calculated
using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in parentheses.
***, **, and *: Significant at the 1%, 5%, and 10%-level.

First, I repeat the main specification differentiating between two subgroups of GE tech-

nologies: RES and EE technologies. Column (1) and (3) in Table 4.7 present results

using the population of all patenting firms. Overall, the estimated coefficients are sim-

ilar but show differences between the two technology groups. The negative coefficients

of the RES and EE knowledge stocks are higher compared to the coefficient of the GE

knowledge stock, even more so for the RES knowledge stock. Thus, patents in the field

of RES have a more pronounced negative impact on productivity than EE patents. This

finding may be explained by different maturity levels of RES and EE markets. Again
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in contrast, the corresponding coefficient of the non-RES and non-EE knowledge stocks

are small, but positive and significant.

Column (2) and (4) give the results for the subset of firms with RES respectively EE

patents. Doing this, I test again if the results in column (1) and (3) are robust or mainly

driven by the shift from non-RES respectively non-EE patenters to RES- respectively

EE patenters. The coefficient on the RES knowledge stock is negative and significant

and increases slightly in absolute terms compared to column (1). Contrary, the coef-

ficient on the EE knowledge stock decreases slightly compared to column (3) but still

remains negative and significant. The coefficients on the respective stocks in non-RES

and non-EE patents do not change compared to columns (1) and (3). The estimates

on employment and total assets show that both RES and EE patenters are on aver-

age more capital intensive than non-GE firms, with EE patenters having the highest

capital-intensity. The sum of the coefficients is 1.22 in column (2) and 1.05 in column

(2), suggesting higher returns to scale in tangible factors for RES than EE patenters.

Table 4.8: Differentiating by firm size. Estimation time span: 2003-2010. Dependent
variable: Sales (log).

(1) (2) (3)

Firms Very large Large Medium

Employees (log) 0.686∗∗∗ 0.652∗∗∗ 0.606∗∗∗

(0.140) (0.066) (0.063)

Total assets (log) 0.530∗∗∗ 0.541∗∗∗ 0.412∗∗∗

(0.105) (0.063) (0.070)

GE knowledge stockt−2 −0.031∗ −0.039 −0.056

(0.017) (0.040) (0.113)

Non-GE knowledge stockt−2 0.001∗ 0.000 0.004∗∗∗

(0.001) (0.001) (0.001)

Year dummies yes yes yes

Firm dummies yes yes yes

Adj. R-Squared 0.870 0.846 0.814

No. observations 8109 13956 17087

No. firms 1428 2775 4416

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1) presents
the results for the subset of very large, column (2) for the subset of large, and column (3) for the subset
of medium sized firms. The knowledge stock variables are calculated using the patent data from 1977
to 2010. Robust standard errors clustered by firm are in parentheses. ***, **, and *: Significant at the
1%, 5%, and 10%-level.

The relationship between innovation and productivity may be dependent on a firm’s

size. Therefore, I conduct a second robustness test differentiating between the size of

the investigated firms. Table 4.8 reports estimated coefficients of the main model for

very large, large, and medium sized firms. The coefficient on the GE knowledge stock,

which has been significant in all previous specifications, is only significant for very large

firms. For very large firms it also has the same size as in the main specification. The
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coefficient on the non-GE knowledge stock, likewise always significant before, is highly

significant for medium sized firms only, significant at the 10% level for very large firms

and insignificant for large firms. Overall, the results are very similar in size but not

always statistically significant. The results suggest that the (negative) impact of GE

innovation on productivity tends to be more pronounced for larger firms whereas the

(positive) productivity effect of non-GE innovation seems to be more important for

smaller firms. Possible reasons for the lower levels of significance are that the sample

sizes are smaller and the variation of the knowledge stocks is lower between firms of

similar size.

Table 4.9: Different lags for the knowledge stocks. Estimation time span: 2003-2010.
Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All All All All

Employees (log) 0.643∗∗∗ 0.643∗∗∗ 0.643∗∗∗ 0.642∗∗∗

(0.055) (0.055) (0.055) (0.055)

Total assets (log) 0.469∗∗∗ 0.469∗∗∗ 0.469∗∗∗ 0.469∗∗∗

(0.046) (0.046) (0.046) (0.046)

GE knowledge stock −0.029∗∗ −0.028∗ −0.036∗∗ −0.034∗∗

(0.013) (0.015) (0.014) (0.017)

Non-GE knowledge stock 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗

(0.000) (0.000) (0.000) (0.001)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.896

No. observations 39152 39152 39152 39152

No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Column (1),
(2), (3), and (4) present the results for the current knowledge stocks and for knowledge stocks lagged
one, two, and three years, respectively. The knowledge stock variables are calculated using the patent
data from 1977 to 2010. Robust standard errors clustered by firm are in parentheses. ***, **, and *:
Significant at the 1%, 5%, and 10%-level.

As noted before, in the baseline specification I lag the knowledge stock variables by two

years in order to mitigate any reverse causality problems and to account for the fact that

innovative output does not immediately have an effect on a firm’s productivity. In order

to test the sensitivity of the knowledge stock results to other lag structures, I conduct a

third robustness test and re-estimate the main model with the current knowledge stocks

and with knowledge stocks lagged one, two (as used in the baseline specification depicted

in Table 4.6), and three years. The results are given in Table 4.9. Overall, the results are

robust to these modifications. The impact of additional GE innovation on productivity

is still negative and the impact of additional non-GE innovation still positive. The higher

point estimates on the two- and three-year lag compared to the zero- and one-year lag
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for both knowledge stocks47 support the hypothesis of a time lag between innovation

and its effect on performance. In other words, patented innovations take some time to

enter the production function. Another explanation for the stronger negative impact of

additional GE innovation for longer lags might be that marginal costs of GE innovation

were higher and demand for GE innovation was lower in earlier periods (for a similar

result and reasoning see Wörter et al., 2015).

Table 4.10: Different depreciation rates for the knowledge stocks. Estimation time
span: 2003-2010. Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All All All All

Employees (log) 0.642∗∗∗ 0.643∗∗∗ 0.643∗∗∗ 0.643∗∗∗

(0.055) (0.055) (0.055) (0.055)

Total assets (log) 0.469∗∗∗ 0.469∗∗∗ 0.469∗∗∗ 0.468∗∗∗

(0.046) (0.046) (0.046) (0.047)

GE knowledge stockt−2 −0.026∗∗ −0.036∗∗ −0.042∗∗∗ −0.046∗∗∗

(0.012) (0.014) (0.016) (0.017)

Non-GE knowledge stockt−2 0.001∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.001) (0.001)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.896

No. observations 39152 39152 39152 39152

No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 4.6. Columns (1),
(2), (3), and (4) present the results for knowledge stock depreciation rates of 5%, 10%, 15%, and 20%,
respectively. The knowledge stock variables are calculated using the patent data from 1977 to 2010.
Robust standard errors clustered by firm are in parentheses. ***, **, and *: Significant at the 1%, 5%,
and 10%-level.

The final robustness test is done by utilizing different depreciation rates in the calculation

of the knowledge stocks. Table 4.10 reports the main model estimates for depreciation

rates of 5%, 10% (as used in the baseline estimation depicted in Table 4.6), 15%, and

20%. The higher the depreciation rate, the lower the importance of past knowledge. A

depreciation rate of 100% would mean that the knowledge stock becomes a flow variable,

that is only the patents from the current period contribute to a firm’s productivity. For

all specifications, the coefficients on the GE and non-GE knowledge stocks are significant

at least at the 5% level. While the coefficient on the non-GE knowledge stock does

not vary in size, the coefficient on the GE stock becomes more negative using higher

depreciation rates. Hence, the negative effect of GE knowledge on productivity becomes

larger when firms can rely on less previous GE knowledge. In other words, a larger GE

knowledge stock mitigates the negative effect that an increase in GE knowledge has on

47 For the non-GE coefficients, the increase concerns the fourth decimal place and cannot be seen in
the presented output table.
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productivity. An explanation might be that firms with a larger knowledge stock in GE

technologies have lower R&D costs for the same amount of inventive output than firms

with a lower knowledge stock.

4.6 Conclusions

In this article, I studied the effect of innovation in GE technologies on the economic

performance of firms and compared it to the effect of non-GE innovation. I based my

study on a panel of 8,619 patenting firms including 968 GE patenters from 22 European

countries over the period 2003 to 2010. To construct the panel, I combined firm accounts

data with data on firms’ patent applications.

My results show that, all else equal, innovation in GE technologies has a negative im-

pact on the economic performance of firms while innovating in non-GE technologies

positively affects firms’ economic performance. This confirms the hypothesis H2 that

private economic returns in terms of productivity are lower for GE than for non-GE in-

novation, which corresponds to previous results found by Marin (2014), Marin and Lotti

(2016), and Wörter et al. (2015). I also find evidence for different performance effects

across GE technologies. My results reveal that the negative effect on firm performance is

more pronounced for RES than for EE technologies. Moreover, my findings suggest that

the negative relationship between GE innovation and performance is stronger for larger

firms. Furthermore, the negative impact of GE innovation on performance is found to

be stronger with a larger time lag between both. On the one hand, this supports the hy-

pothesis of a time lag between innovation and its impact on performance. On the other

hand, it indicates that marginal costs of GE innovation decreased and demand for GE

innovation increased over time. Finally, the use of different knowledge depreciation rates

shows that the negative impact of new GE patents on performance is less pronounced

when firms can build on an existing stock of GE knowledge.

Given these results, the initial research question can be answered: since GE innova-

tion guarantees lower private returns than non-GE innovation, firms forgo economic

opportunities by innovating in GE technologies and gain economic opportunities by

concentrating on innovation in non-GE technologies. However, as one can observe in the

data, firms nevertheless have invested in GE technologies. Since the resources that firms

can allocate to R&D investment projects are limited and since firms always choose the

project with the highest private return, this observation evidences a potential crowding

out of GE innovation at the expense of (more rewarding) non-GE innovation. Thus it

seems that there where factors (for example political expectations, environmental reg-

ulation) that somewhat forced firms to use their scarce R&D funds for projects with
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comparatively low returns (Marin, 2014). Assuming that the non-private returns for

the GE and the non-GE project are the same, this crowding out would be welfare de-

creasing. However, if the GE project has higher social returns (that is combined private

and non-private returns) compared to the non-GE project, this crowding out would be

welfare increasing. This then would be an argument for policy intervention aiming to

increase private returns of GE innovation in order to promote socially beneficial green

growth.
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Figure A.1: Total number of green energy EPO patent applications of 26 OECD coun-
tries, 1978-2009.
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Figure A.2: Annual number of green energy EPO patent applications by country, 1978-
2009. Note: The country codes are the same as in Table 2.1.
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Figure A.3: Total number of green energy EPO patent applications over 1978-2009 by
country. Note: The country codes are the same as in Table 2.1.
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Figure A.5: Real total energy end-use price for households and industry by country
(index: 2005=100), 1978-2009. Note: The country codes are the same as in Table 2.1.
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Table A.2: Number of EPO patent applications by green energy technology and time
period.

Technology 1978-
1984

1985-
1989

1990-
1994

1995-
1999

2000-
2004

2005-
2009

Total

Biofuels 8,848 8,277 6,442 11,780 10,778 6,488 52,614
CCS 408 542 628 912 1,026 1,184 4,701
Fuel cells 434 465 687 1,792 4,522 3,555 11,455
Geothermal 312 244 357 532 723 1,013 3,181
Ocean 221 166 161 229 383 694 1,853
EEO 3,546 4,938 5,957 6,940 8,213 7,450 37,044
EEBAE 760 925 1,348 2,461 4,741 4,632 14,867
Solar 1,554 1,202 1,492 2,425 3,932 6,684 17,290
Storage 293 367 606 1,331 1,696 2,037 6,330
EET 1,430 1,926 2,576 4,027 5,450 6,229 21,640
Wind 197 123 149 367 1,059 2,348 4,245
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Table A.3: Total number of total EPO patent applications and total number of green
energy EPO patent applications over 1978-2009 by country.

Country Number of
total patents

Relative share
in sum of total

patents

Number of
green energy

patents

Relative share
in sum of green
energy patents

Ratio of green
energy patents

to total patents

AT 27,813 1.19% 2,378 1.36% 8.55%
AU 19,492 0.83% 1,773 1.01% 9.10%
BE 27,320 1.17% 1,763 1.01% 6.45%
CA 35,753 1.53% 3,324 1.90% 9.30%
CH 65,331 2.79% 4,268 2.44% 6.53%
CZ 1,588 0.07% 120 0.07% 7.57%
DE 475,912 20.35% 33,045 18.86% 6.94%
DK 18,896 0.81% 2,370 1.35% 12.55%
ES 17,496 0.75% 1,251 0.71% 7.15%
FI 23,121 0.99% 1,167 0.67% 5.05%
FR 175,655 7.51% 11,433 6.53% 6.51%
GB 131,161 5.61% 8,580 4.90% 6.54%
GR 1,363 0.06% 139 0.08% 10.26%
HU 3,239 0.14% 231 0.13% 7.16%
IE 4,258 0.18% 244 0.14% 5.74%
IT 86,489 3.70% 4,383 2.50% 5.07%
JP 419,708 17.95% 33,527 19.13% 7.99%
LU 1,596 0.07% 84 0.05% 5.29%
NL 67,132 2.87% 5,894 3.36% 8.78%
NO 8,065 0.34% 810 0.46% 10.05%
NZ 2,925 0.13% 235 0.13% 8.05%
PT 1,050 0.04% 87 0.05% 8.37%
SE 48,335 2.07% 2,663 1.52% 5.51%
SK 347 0.01% 45 0.03% 13.08%
TR 1,927 0.08% 63 0.04% 3.29%
US 672,831 28.77% 55,328 31.58% 8.22%
Total 2,338,817 100.00% 175,220 100.00% 7.49%

Note: The country codes are the same as in Table 2.1.
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Figure B.1: Patent-portfolio weights versus inventor weights for the USA. Source:
Authors’ calculations, based on PATSTAT. Note: The figure shows combinations of
patent-portfolio weights (y-axis) and inventor weights (x-axis) for the USA for all 3,648

firms.
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Table B.1: Total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS patents.

Year CCT EI AP PCC FBC IGCC EOP CCS

1978 172 101 72 27 31 43 44 28

1979 152 103 49 41 26 36 32 17

1980 193 119 74 25 47 47 47 27

1981 197 120 77 38 44 38 44 33

1982 194 104 90 35 33 36 48 42

1983 207 110 97 53 29 28 68 29

1984 231 116 115 36 37 43 90 26

1985 241 109 132 30 45 34 94 39

1986 223 100 123 22 46 32 96 27

1987 213 113 100 27 48 38 69 31

1988 209 97 112 17 37 43 81 32

1989 207 109 98 17 38 54 70 29

1990 204 96 108 23 36 37 66 42

1991 218 111 107 25 31 55 72 35

1992 225 108 117 15 34 59 74 43

1993 224 126 98 23 31 72 67 31

1994 254 124 130 18 28 78 99 31

1995 255 136 120 32 21 83 86 34

1996 242 140 102 22 23 95 58 44

1997 248 142 107 19 23 100 82 25

1998 234 120 114 12 16 92 66 48

1999 220 111 109 24 19 68 60 49

2000 253 134 119 11 21 102 65 54

2001 240 143 97 31 13 99 40 58

2002 258 147 111 30 18 99 59 52

2003 221 120 101 23 18 79 54 47

2004 258 151 108 26 12 113 45 62

2005 296 141 155 23 20 97 75 80

2006 322 168 155 34 20 113 72 83

2007 406 193 213 46 16 131 87 126

2008 436 219 217 43 28 148 84 133

2009 443 205 239 36 23 146 97 141

Total 7,894 4,129 3,765 883 911 2,335 2,190 1,575

Note: The table reports the total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS
priority patent applications (claimed priorities) filed worldwide per year of all firms.
Source: Authors’ calculations, based on PATSTAT.
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Table B.2: Distribution of patent-portfolio weights across top four countries respectively
patent offices for the top ten CCT inventor firms from 1978 to 2009.

Firm and countries/patent offices Weight Firm and countries/patent offices Weight

(1) Mitsubishi (6) Foster Wheeler

Japan 0.324 USA 0.155

USA 0.273 Japan 0.133

Germany 0.106 Canada 0.126

EPO 0.065 EPO 0.099

(2) Alstom (7) General Electric (GE)

EPO 0.212 USA 0.235

USA 0.200 Japan 0.183

Germany 0.158 EPO 0.151

Japan 0.072 Germany 0.100

(3) Babcock & Wilcox (8) Hitachi

USA 0.182 Japan 0.342

Canada 0.124 USA 0.322

EPO 0.114 EPO 0.083

Japan 0.112 Germany 0.072

(4) Siemens (9) Royal Dutch Shell

Germany 0.270 USA 0.133

EPO 0.239 EPO 0.133

USA 0.175 Japan 0.093

Japan 0.095 Canada 0.093

(5) Asea Brown Boveri (ABB) (10) Combustion Engineering

EPO 0.230 USA 0.274

Germany 0.205 Japan 0.126

USA 0.142 Canada 0.119

Japan 0.074 EPO 0.089

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent portfo-
lios across countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.

Table B.3: Distribution of patent-portfolio weights across top twenty countries respec-
tively patent offices averaged over all firms from 1978 to 2009.

Country/patent office Weight Country/patent office Weight

USA 0.233 France 0.015

Japan 0.189 Austria 0.014

EPO 0.130 Spain 0.012

Germany 0.110 Brazil 0.009

China 0.070 South Africa 0.005

South Korea 0.065 Norway 0.005

Canada 0.032 Mexico 0.005

Australia 0.023 Russia 0.004

Taiwan 0.017 Denmark 0.004

United Kingdom 0.017 Italy 0.004

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent portfo-
lios across countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.
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Table B.4: Distribution of inventor weights across top twenty countries averaged over
all firms from 1978 to 2009.

Country Weight Country Weight

Germany 0.295 Belgium 0.006

USA 0.285 Sweden 0.006

South Korea 0.149 Finland 0.006

Japan 0.099 Canada 0.005

France 0.056 Italy 0.005

Switzerland 0.020 Norway 0.003

Netherlands 0.015 Denmark 0.003

United Kingdom 0.012 Singapore 0.003

Taiwan 0.009 Australia 0.002

Austria 0.009 China 0.002

Note: Inventor weights are constructed based on the distribution of firms’ inventors across
countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.
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Figure C.1: Number of firms, 2003-2010. Source: Authors’ calculations, based on
AMADEUS and REGPAT data.
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Table C.1: Number of yearly patent applications filed at the EPO by all firms by
technology group.

Year RES EE GE Non-GE

1977 0 0 0 66

1978 0 3 3 212

1979 2 7 9 309

1980 1 9 10 390

1981 1 12 13 504

1982 4 14 18 530

1983 5 16 18 548

1984 7 20 24 647

1985 3 32 35 749

1986 7 26 27 891

1987 4 28 32 1,024

1988 3 25 28 1,140

1989 11 30 32 1,267

1990 5 33 38 1,268

1991 3 29 31 1,331

1992 5 40 45 1,390

1993 10 45 52 1,609

1994 8 42 47 1,768

1995 12 35 40 2,034

1996 11 33 40 2,487

1997 20 57 68 2,886

1998 25 62 77 3,419

1999 26 88 100 3,883

2000 41 108 119 4,278

2001 59 101 143 4,440

2002 51 94 134 4,911

2003 46 94 130 5,522

2004 63 110 168 6,142

2005 54 89 141 6,959

2006 82 142 207 7,324

2007 106 168 241 7,739

2008 132 181 261 7,558

2009 195 192 356 7,925

2010 189 207 336 7,691

Total 1,190 2,171 3,021 100,835

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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Table C.2: Country distribution of GE firms.

Country No. %

DE 369 38.12

FR 290 29.96

ES 72 7.44

IT 65 6.71

SE 49 5.06

AT 46 4.75

BE 24 2.48

NO 23 2.38

FI 6 0.62

CH 5 0.52

PL 5 0.52

GB 4 0.41

DK 3 0.31

LU 3 0.31

CZ 2 0.21

LV 1 0.10

NL 1 0.10

Total 968 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

Table C.3: Country distribution of non-GE firms.

Country No. %

DE 2630 31.51

FR 2542 30.46

ES 894 10.71

IT 834 9.99

SE 502 6.02

AT 313 3.75

NO 234 2.80

BE 184 2.20

FI 45 0.54

PL 37 0.44

CH 32 0.38

DK 25 0.30

GB 22 0.26

LU 17 0.20

EE 9 0.11

NL 9 0.11

CZ 6 0.07

HU 4 0.05

LV 3 0.04

GR 1 0.01

LI 1 0.01

SI 1 0.01

Total 8345 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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