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Abstract  This thesis consists of six parts. In the first part, we give a general
introduction of our topics.

In the second part, we study the harmonic space of line bundle valued forms over
a covering manifold with a discrete group action, and obtain an asymptotic estimate
for the von Neumann dimension of the space of harmonic (n, ¢)-forms with values in
high tensor powers of a semipositive line bundle. In particular, we estimate the von
Neumann dimension of the corresponding reduced L?-Dolbeault cohomology group.
The main tool is a local estimate of the pointwise norm of harmonic forms with
values in semipositive line bundles over Hermitian manifolds.

In the third part, we study the holomorphic extension problem of smooth forms
with values in holomorphic vector bundles from the boundary of a pseudo-concave
domain, which is in a compact Hermitian manifold associated with a holomorphic
line bundle. We prove the existence of the meromorphic extension of dy-closed
(n,q + 1)-forms with values in holomorphic vector bundles, when the domain is
g-concave and the line bundle is semi-positive everywhere and positive at one point.

In the fourth part, we study the L? holomorphic functions on hyperconcave ends
and prove that the dimension of the space of L? holomorphic functions on hyper-
concave ends is infinite. The main tool is the construction of L?-peak functions
at boundary points by using the solution of d-Neumann problem of Kohn and the
compactification theorem of Marinescu-Dinh.

In the fifth part, we give a remark on the Bergman kernel of symmetric tensor
power of trivial vector bundles on compact Hermitian manifold by the Theorem of
Le Potier.

In the last part, we study the d-equation on C”* with growing weights, and gener-
alize a related result of Hedenmalm on C.

Kurzzusammenfassung

Die Doktorarbeit ist in sechs Teile unterteilt. Im ersten Teil wird eine Einfiihrung
in die behandelten Themen gegeben.

Im zweiten Teil wird der Raum der harmonischen Formen auf einem Linienbiindel
iiber einer Uberdeckungsmannigfaltigkeit mit einer diskreten Gruppenwirkung un-
tersucht und eine asymptotische Abschéatzung fiir die von Neumann-Dimension des
Raumes der harmonischen (n,q)-Formen mit Werten in den hohen Tensorproduk-
ten eines semipositiven Linienbiindels bewiesen. Insbesondere wird die von Neu-
mann Dimension der entsprechenden reduzierten L?-Dolbeault Kohomologiegruppe
abgeschétzt. Das wichtigste Werkzeug dabei ist eine lokale Abschiatzung der punk-
tweisen Norm von harmonischen Formen mit Werten in semipositiven Linienbiindeln
iiber hermitischen Mannigfaltigkeiten.

Im dritten Teil wird das Problem der holomorphen Erweiterung von glatten For-
men mit Werten in holomorphen Vektorbiindeln vom Rand eines pseudo-konkaven
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Gebiets behandelt, das in einer kompakten hermitische Mannigfaltigkeit liegt, die
mit einem holomorphen Linienbiindel assoziiert ist. Es wird die Existenz einer mero-
morphen Erweiterung von d,-geschlossenen (n,q + 1)-Formen mit Werten in holo-
morphen Vektorbiindeln bewiesen unter der Annahme, dass das Gebiet ¢-konkav
und das Linienbiindel iiberall semipositiv und positiv an einem Punkt ist.

Im vierten Teil werden die L? holomorphen Funktionen auf hyperkonkaven En-
den studiert und bewiesen, dass die Dimension des Raumes der L? holomorphen
Funktionen auf hyperkonkaven Enden unendlich ist. Der wichtigste Schritt ist die
Konstruktion von L? maximierenden Funktionen in Randpunkten, wobei die Losung
des O-Neumann Problems von Kohn und der Kompaktifizierungssatz von Marinescu-
Dinh angewendet wird.

Im finften Teil, wird der Bergman Kern eines symmetrischen Tensorprodukts
von trivialen Vektorbiindeln auf kompakten Hermitischen Mannigfaltigkeiten mit
der Hilfe des Satzes von Le Potier betrachtet.

Im letzten Teil, wird die 9-Gleichung auf C™ mit wachsenden Gewichten studiert
und eine verwandtes Resultat von Hedenmal auf C verallgemeinert.
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1 Introduction

For a compact manifold X, the growth of the dimension of the Dolbeault cohomology
H%(X,L* ® F) as k — oo is of fundamental importance in algebraic and complex
geometry and is linked to the structure of the manifold, cf. [10 11, 30]. If (L, k%) is
positive, then H%4(X, L*®FE) = 0 for ¢ > 1 and k large enough, by the Kodaira-Serre
vanishing theorem [30, Theorem 1.5.6]. This reflects the fact that the remaining
cohomology space H*?(X, L* ® E) is rich enough to provide a projective embedding
of X, for large k.

Assume now (L, h") is semipositive. The solution of the Grauert-Riemenschneider
conjecture by Demailly [I1] and Siu [40] shows that dim H%¢(X, LF ® E) = o(k")
as k — oo for ¢ > 1. This can be used to show that X is a Moishezon manifold,
if (L, h") is moreover positive at at least one point. Berndtsson [5] showed that
we have actually dim H%(X, L* @ E) = O(k" %) as k — oo for ¢ > 1. Note that
the latter estimate can be proved by induction on the dimension if X is projective,
see [12, (6.7) Lemmal. For the Bergman kernel BY on (n,0)-forms with values in a
semipositive line bundle, it was shown by Hsiao-Marinescu [22] Theorem 1.7] that
it has an asymptotic expansion on the set where the curvature is strictly positive.

The global information of complex manifolds associated with bundles, such as
the dimension of cohomology spaces, can be deduced from the local behaviour of
the Bergman kernels, see [30]. Let (X,w) be a Hermitian manifold and (L, h*) and
(E, h¥) be Hermitian holomorphic line bundles over X. For the space H™4(X, LF ®
E) of harmonic L ® E-valued (n, q)-forms and an orthonormal basis {s¥};>1, the
Bergman density function is defined by

Z|S ’hkomx X7

j>1

where | - |5, . is the pointwise norm of a form. So the integration of this function on
X is exactly the dimension of the harmonic space, see [5] for the compact case.
For a general Hermitian manifold (X,w) and a compact subset K C X. Suppose
that (L, h*) is semipositive on a neighborhood of K. Then, see Theorem [2.1] we
can show that there exists C' > 0 depending on the compact set K, the metric w
and the bundles (L, hY) and (FE, h¥), such that for any z € K, k > 1 and ¢ > 1,

BY(z) < Ck"1, (1.0.1)

The study of L? cohomology spaces on coverings of compact manifolds has also
interesting applications, cf. [I8, 29]. The results are similar to the case of compact
manifolds, but we have to use the reduced L? cohomology groups and von Neumann
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dimension instead of the usual dimension. The estimate (L.0.1), see Theorem [2.2]
can be used to obtain the following bounds for the von Neumann dimension of the
harmonic spaces on covering manifolds with a semipositive line bundle (L, h%),

dimp H™(X, L* @ E) < Ck™™1, dimp H*4(X,LF @ E) < Ck" 1. (1.0.2)
The same estimate also holds for the reduced L?-Dolbeault cohomology groups,
dimr H (X, L* ® E) < Ck" . (1.0.3)

In the situation of , see Theorem , if the invariant line bundle (L, h%)
is positive, the Andreotti-Vesentini vanishing theorem [3] shows that F(()S(X ,LF
E) =2 H%(X,L* ® E) =0 for ¢ > 1 and k large enough. The holomorphic Morse
inequalities of Demailly [I1] were generalized to coverings by Chiose-Marinescu-
Todor [34, 41] (cf. also [30, (3.6.24)]) and yield in the conditions of (1.0.2) (see
Theorem that dimp H?é?(X, L*® FE) = o(k™) as k — oo for ¢ > 1. Hence (1.0.2
(see Theorem generalizes [5] to covering manifolds and refines the estimates
obtained in [34] 41]. Note also that the magnitude £" % cannot be improved in
general [5 Proposition 4.2].

As applications of the growth of dimension of harmonic spaces (or Dolbeault
cohomology) of semipositive and positive line bundles over manifolds, see [30], we
can prove some holomorphic or meromorphic extension results for differential forms
from the boundary of domains satisfying certain convexity conditions.

For a bounded domain M in C", n > 2, with a smooth connected boundary bM
and a smooth function f defined on bM, if f is holomorphic in a neighbourhood
of bM, then it can be extended to the whole M by the theorem of Hartogs. The
generalization to manifolds by Kohn-Rossi [28] shows that, if M is a relatively
compact domain with smooth boundary bM in a complex manifold, and the Levi
form on bM has one positive eigenvalue everywhere, then every function on bM which
satisfies the tangential Cauchy-Riemann equations, i.e., d,-closed, has a holomorphic
extension to all of M. In addition, they also proved a result on holomorphic extension
of Oy-closed sections of vector bundles, when the Levi form on bM has at least one
positive eigenvalue.

By applying various estimates of the growth of the dimensions of harmonic spaces
(or Dolbeault cohomology) associated to line bundles, and using the criterion of
Kohn-Rossi [28] on the holomorphic extension of dj-closed forms, we can show the
following holomorphic extension result, see Theorem [3.3]

Let (X,w) be a n-dimensional compact Hermitian manifold. Let (E,h¥) and
(L, h*) be the holomorphic Hermitian vector bundles over X and rank(L) = 1. Let
M be a relatively compact domain in X and the boundary dM is smooth. Let
1 < g <n-—3. Assume L is semi-positive on X and positive at one point, and
the Levi form of a defining function of M has at least n — ¢ negative eigenvalues
on bM. Then, there exists a non-zero holomorphic section s € H°(X, L*) for some
ko € N, such that for every dy-closed form o € Q™41 (bM, E), there exists a d-closed




extension S of the Jy-closed so € Q™+L(bM, Lk ® E), i.e.,
Se QT (M, LF ® E) (1.0.4)

such that 05 = 0 on M and u(S|ps) = p(so).

In particular, if ¢ = 1, which is equivalent to say M is a strictly pseudo-concave
domain (also 1-concave manifold) in X associated with the line bundle L, then, for
each 2 < r < n — 2, we can extend J,-closed (n,r)-forms on bM, which are with
values in E, to meromorphic (resp. holomorphic) forms on M (resp. M except a
small set of zero points), see Remark

Besides, we also study some related topics in several complex variables and com-
plex geometry, such as the L2-peak functions on hyperconcave ends.

The Levi problem is as follows, the strongly pseudo-convex domain is a domain of
holomorphy, which was firstly proved in [I5] by using sheaf theory. In [25],[27] and
[26], Kohn provided a different proof. In fact, Kohn showed the existence and global
regularity of the solution of d-Neumann problem on a (relatively compact) strong
pseudo-convex domain €2 in a complex manifold M. As an application, there exists
a peak function for O(2) at each boundary point of Q and dim¢ O(€2) = co. So there
does not exist holomorphic function extending peak functions crossing the boundary
b2 at any boundary point, which implies that € is a domain of holomorphy, see [14].

In order to extend these results to the case when 2 is not relatively compact in
M, cf. [18], Gromov-Henkin-Shubin studied the regular covering € of a (relatively
compact) strongly pseudo-convex domain. They showed that there exists a L?-local
peak functions for O(f2) at each boundary point and the von Neumann dimension
dimp L*(Q) N O(2) = co. In particular, if the discrete group is trivial, i.e., T' = {e},
the L%local peak functions reduces to L?-peak function and

dime L*(2) N O(Q) = oo.

We wish to extend the above result to a class of complex manifolds, namely,
hyperconcave ends as follows (see [33]). A complex manifold X with dim X > 2
is called a hyperconcave end, if there exist a € R U {400} and a proper, smooth
function ¢ : X — (—o00,a), which is strictly plurisubharmonic on a set of the
form {z € X : p(z) < b} for some b < a. In Theorem [4.2] we show that, for
X.={x € X : p(r) < ¢} with —oo < ¢ < b, there exists L*peak functions for
O(X.) associated with some Hermitian metric ©, i.e., for every x € bX,, there exists
a function

?, € O(X.)NL*(X,,0)NeC2(X.\ {z}) (1.0.5)
such that lim,_,, |®,(y)| = +oo for y € X.. And thus

dime L*(X,,0) N O(X,) = oco. (1.0.6)

Note that, for a hyperconcave end, the existence of @, € O(X,)NC>®(X,\ {x}) with
blowing up at x, was firstly established by Marinescu-Dinh [33]. So our result is a
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refinement and the only new feature is @, € L*(X,,0). Our result also verifies on
strongly pseudo-convex domains in normal Hermitian spaces of pure dimensional.

In additional, we give some remarks on Bergman kernels for high tensor powers of
trivial vector bundles over compact manifolds, and the solution of d-equations with
growing weights on C".

The organization of this thesis is as follows.

In Chapter 2, we study the harmonic space of line bundle valued forms over a
covering manifold with a discrete group action, and obtain an asymptotic estimate
for the von Neumann dimension of the space of harmonic (n, ¢)-forms with values in
high tensor powers of a semipositive line bundle. In particular, we estimate the von
Neumann dimension of the corresponding reduced L?-Dolbeault cohomology group.
The main tool is a local estimate of the pointwise norm of harmonic forms with
valued in semipositive line bundles over Hermitian manifolds.

In Chapter 3, we study the holomorphic extension problem of smooth forms with
values in holomorphic vector bundles from the boundary of a pseudo-concave do-
main, which is in a compact Hermitian manifold associated with a holomorphic
line bundle. And we prove the existence of the meromorphic extension of 9,-closed
(n,q + 1)-forms with values in holomorphic vector bundles, when the domain is
g-concave and the line bundle is semi-positive everywhere and positive at one point.

In Chapter 4, we study the L? holomorphic functions on hyperconcave ends and
prove that the dimension of the space of L? holomorphic functions on hyperconcave
ends is infinite. The main tools is the construction of L2-peak functions at boundary
points by using Kohn’s solution of 9-Neumann problem and the compactification
theorem of Marinescu-Dinh.

In Chapter 5, we study the relation of L?-orthonormal basis of the space of holo-
morphic sections of symmetric tensor power of a holomorphic vector bundle on a
compact manifold and the space of holomorphic sections of the induced line bundle.
And we get a formula on the Bergman kernel of symmetric tensor power of trivial
vector bundles on compact Hermitian manifold by the Theorem of Le Potier.

In Chapter 6, we study the J-equation on C™ with growing weights, and generalize
a related result of Hedenmalm on C. The method is analogue to Hedenmalm, which
is essentially due to the classical works of Hormander.



2 On the growth of von Neumann
dimension of harmonic spaces of
semipositive line bundles over
covering manifolds

The purpose of this chapter is to study the growth of the von Neumann dimension of
the space of harmonic forms with values in powers of an invariant semipositive line
bundle over a Galois covering of a compact Hermitian manifold. The main technical
tool will be an estimate of the Bergman kernel on a compact set of a Hermitian
manifold, which generalizes a result of Berndtsson [5] for compact manifolds.

This chapter is organized in the following way. In Section we state the main
results of this chapter. In Section [2.2] we introduce the notations and recall the
necessary facts. In Section we prove some properties of harmonic line bundle
valued forms, including d0-formulas on non-compact manifolds and submeanvalue
formulas, which imply Theorem [2.1} In Section we prove our main results and
corollaries, and explain that Theorem implies Theorem [2.2]

2.1 The main results

Let (X,w) be a Hermitian (paracompact) manifold of dimension n and (L, h%) and
(E,h*) be Hermitian holomorphic line bundles over X. For k € N we form the
Hermitian line bundles LF := L®* and L* ® E, the latter endowed with the metric
hy = (RE)®* @ BE.

To the metrics w, h” and h* we associate the Kodaira Laplace operator [J;, acting
on forms with values in L* ® E and also L? spaces of forms with values in LF ® E,
and [y has a (Gaffney) self-adjoint extension in the space of L?-forms, denoted by
the same symbol.

The space HP?(X, L* ® E) of harmonic L* @ E-valued (p, q)-forms is defined as
the kernel of (the self-adjoint extension of) [J;, acting on the L? space of (p, q)-forms.

In this chapter we mainly work with (n, q)-forms. Since H™(X, L* @ E) is sep-
arable, let {sf };>1 be an orthonormal basis and denote by B} the Bergman density
function defined by

Z|S |hkw7 Xy (211)

j>1



2 On the growth of von Neumann dimension of harmonic spaces

where | - |5, is the pointwise norm of a form. Definition (2.1.1) is independent of
the choice of basis.

The first main result of this chapter is a uniform estimate of the Bergman density
function for semipositive line bundles in a neighborhood of a compact subset of a
Hermitian manifold.

Theorem 2.1. Let (X,w) be a Hermitian manifold and (L,h%) and (E,h¥) be
Hermatian holomorphic line bundles over X. Let K C X be a compact subset and
assume that (L, h') is semipositive on a neighborhood of K.

Then there exists C' > 0 depending on the compact set K, the metric w and the
bundles (L, h") and (E,h¥), such that for anyx € K, k> 1 and ¢ > 1,

Bi(z) < Ck™ 1, (2.1.2)

where Bjl(x) is the Bergman kernel function (2.1.1)) of harmonic (n,q)-forms with
values in L* @ E.

For X compact and K = X, Theorem reduces to [5, Theorem 2.3]. Theorem
will be used to obtain the following bounds for the von Neumann dimension of
the harmonic spaces on covering manifolds.

Theorem 2.2. Let (X,w) be a Hermitian manifold of dimension n on which a dis-
crete group I' acts holomorphically, freely and properly such that w is a I'-invariant
Hermitian metric and the quotient X/T is compact. Let (L, h*) and (E,h%) be two
[-invariant holomorphic Hermitian line bundles on X. Assume (L,h%) is semi-
positive on X. Then there exists C > 0 such that for any ¢q > 1 and k > 1 we
have

dimp H™(X, L* ® E) < Ck"1, dimp H*(X,LF @ E) < Ck" 1. (2.1.3)
The same estimate also holds for the reduced L*-Dolbeault cohomology groups,
. =0, .
dimp H ) (X, L* @ E) < Ck™7. (2.1.4)
Note also that the magnitude k"7 in (2.1.3) cannot be improved in general [5]
Proposition 4.2].
2.2 Preliminaries

We introduce here the notations and recall the necessary facts used in this chapter.
Let (X, J) be a complex manifold with the complex structure J and dim¢ X = n.

Let ¢g”¥ be a Riemannian metric on the real tangent bundle T'X which is compatible

with J. Explicitly, J : TX — TX is an automorphism such that J? = —Id and

g (U V) =g (U, V)
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for any U,V € T,X, v € X. We can extend the Riemannian metric ¢’* to a
C-bilinear form (-,-)® on the complexification of the real tangent bundle TX ®@g C
by

(aU,bV)C := abg™™ (U, V)

for a,b € Cand U,V € TX. And we can extend J to a C-linear map
J:TXRrC—->TX R C

by J(aU) = aJ(U) for a € C and U € TX. Thus we still have J? = —Id and (-, -)©
is compatible with J on T X ®g C by

(J(aU), J(OV)E = (aJU,bJV)C = abg™ (JU, JV) = abg™* (U, V') = (aU, bV ).
Then J induces a splitting 7X ®r C = THOX @ TOD X where
TOOX = {u e TX®pC : Ju=+v—1u}, TOVX = {uec TX@C : Ju = —v/—1u},

and the C-bilinear form (-, -)€ vanishes on T X x TUOX and TOVX x TOD X,
Let T0:9*X and T(®Y*X be the corresponding dual bundles. We denote the asso-
ciated complex Hermitian vector bundle by

APUX o= ANPTOO* X @ AITOD* X
We have a Hermitian inner product h on 700X by
h(u,v) = (u,0)",

which induces the Hermitian inner product A""* on APX. The non-degenerate
skew-symmetric 2-form w associated to g7~ is defined by

w(U, V) = g™ (JU, V)

for U,V € TX, which is called the fundamental form. A complex manifold (X, J)
associated a compatible Riemannian metric g’* is called a Hermitian manifold,
which is denoted by (X,w). A Hermitian manifold (X,w) is called complete, if all
geodesics are defined for all time for the underlying Riemannian manifold. Every
complex manifold has a compatible Riemannian metirc, thus it is a Hermitian man-
ifold. We denote the volume form by dvx := w,, where w, := “;—;1 for 1 < g < n.
Suppose {32 }i; is a local frame of 79X with dual frame {dz;}},, and {z£}1,
is a local frame of T(®Y X with dual frame {dZz}"_, respectively. The fundamental
form is a real (1, 1)-form and can be locally represented by

W=V —1 Z hZ]dZZ VAN dZ_Z,

ij=1

where h;; = h(a%_, %) = (-2 9)\C gatisfy hij = h_ﬂ and h;; > 0 on X.

0z %



2 On the growth of von Neumann dimension of harmonic spaces

For differential (p, ¢)-forms on X, we have the Lefschetz operator
L:=wA-

and its dual operator A (the Hermitian metric adjoint of the operator exterior mul-
tiplication with w), that is,

<AO{, 6>h“"q = <Oé, L/8>h/\p’q

where """ is the Hermitian inner product on AP94X.

2.2.1 Positive forms and the local representation of forms in
QWX F)

Let (X,w) be a Hermitian manifold of dimension n and (F,h!) be a Hermitian
holomorphic line bundles over X. Let QP9(X, F') be the space of smooth (p,q)-
forms on X with values in F for p,q € N, i.e.,

OP(X, F) = C(X, \P1X ® F).

And we denote by QP4(X) := QPI(X,C) = C(X,APX) the space of smooth
(p, q)-forms. The curvature of (F,h!") is defined by

RY := 00log |s|}r

for any local holomorphic frame s of F', and the Chern-Weil form of the first Chern
character of F' is

V-1

CI(F> hF) - o

RY, (2.2.1)
which is a real (1,1)-form on X.

We will use several times the notion of positive (p, p)-form, for which we refer to
[10, Chapter III, §1, (1.1) (1.2)(1.5)(1.7)]. Positivity is a property on the exterior
algebra of complex vector spaces, and essentially the positivity of a differential form
is pointwisely defined. Let U be an open subset in X.

Definition 2.3. A differential (1,1)-form u € QY}(U,C) is called a positive (resp.
semi-positive) Hermitian (1, 1)-form, if it can be represented locally by

U= —1 Z uijdzi A dE]
1,j=1

such that the matrix (u;;),xn i a positive (resp. semi-positive) definite Hermitian
matrix at each point of U.

By the definition, the fundamental form w is a positive Hermitian (1, 1)-form on
X.
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Definition 2.4. A Hermitian holomorphic line bundle (F,h%) is called positive
(resp. semi-positive) on U, if the Chern-Weil form ¢; (F, h'") is a positive (resp. semi-
positive) Hermitian (1,1)-form on U. And we denote it by F' > 0 or ¢;(F,h’") > 0
(resp. F >0 or c;(F,h") >0) on U.

In general, we also can discuss the positivity for (p,p)-forms and the related
propositions as follows, see [10, Chapter III, §1, (1.1)].

Definition 2.5. (cf. [10, Chapter III, §1, (1.1)])
A (p,p)-form T € QPP(U,C) is called positive, if for any «; € QM(U,C), 1 < j <
n — p, there exists a non-negative function A > 0 on U, such that

TA (lag ANaq) A oo A (io—p A O—p) = Aw™.
And we denoted it by T > 0. Also we say that 17 > Ty, if 77 — T, > 0.

By the definition, the volume form dvyx := w, is a positive (n,n)-form. And if
T >0isa (p,p)-form and u > 0 is a (1, 1)-form, then

T Au>0. (2.2.2)

Since there exists (1,0)-forms 5;, 1 < j < r < n, such that u = /-1 25:1 Bi A B;
after diagonalizing u at a fixed point.
The following proposition is from [I0, Chapter III, §1, (1.2)(1.5)(1.7)].

Proposition 2.6.
(1) P B A B is positive for every 8 € OPO(U, C);
(2) a (p,p)-form T > 0 implies T =T is a real form; and

(3) A (1,1)-form u is positive if and only if u is a semi-positive Hermitian (1,1)-
form.

Proof. Since the positivity of a (p, p)-form is pointwisely defined, we only need to
consider the positivity at a point in U. We choose a local holomorphic coordinate
chart (z1, ..., z,) around x € U such that w(z) = g > j— dzj N dz;. Then

2%, (x) = idzy Ndzy A ... Nidzy, N dZ,.
For any a; € Q'Y9(U,C), 1 < j <n—p,

P BABA (iay AaT) A oo A (iC—p A Ty)
= PBABANTP P A LAy AT A A Gy
= "BAUNAN ANy ABAGA A Oy
= " Aa)dz...dzg ANT)d2.d2
= |\@)|Pidz AdZy A ... Nidz, A dZ,
= 2"\ (z)[Pwn(2).




2 On the growth of von Neumann dimension of harmonic spaces

Then B A B >0 at x € U, and thus (1) follows.
For any a; € QY°(U,C),1 < j <n—p, T > 0 implies that there exists a function
A > 0 on U such that

TA (g Naq) A oo A (io—p A O—p) = AW™.

Since io; A @ and Aw, are real forms,

(T —=T) A (iocn ANaq) A ... A (tog—p N Cp) = 0.

Then T =T is a real form by the arbitrary choices of a;, and thus (2) follows.

Let S be a 1-dimensional subspace of T4 X and {a% »_, be a basis of 7" X. By
changing coordinates, we can assume S = Sy := {k;2- : k € C}. Let u € Q"'(U,C).
Then the restriction u(z) on S is

u(z)|s = As(x)idzy A dz; = 2Xg(2)w|s(x),
where Ag(x) is given by
u(z) Nidzo NdZa N ... Nidz, NdZ, = Ag(x)idzy Ndzy A ... Nidz, N\ dZ,

= 2"As(x)w, (). (2.2.3)

In particular, we consider 1-dimensional subspaces of ngl’o)X associated to & €
C"™\ {0}, which are given by

& 0
S5 = {tzgja—z te (C}
j=1 !

Then

u(@)ls, = iy wm()dz; Adzis,
= Y w(x)é;Eidt A dt
= Qzujk<x)§j§_kw|35(x)-

If a (1,1)-form u > 0 on U, then Ag(z) > 0 for all 1-dimensional subspaces S by
(2.2.3). Then > wji(x)&;& > 0 for all £ € C™ \ {0}. That is, a (1,1)-form u > 0
implies u is a semi-positive Hermitian (1, 1)-form on U.

Conversely, if u is a semi-positive Hermitian (1, 1)-form on U, then Ag(x) > 0 for
any l-dimensional subspace S in 1) Let Sy := {ta%c :te€C}, k=1,..,n. For
any a; € QY(U,C),1 < j <n—1, there exist u(z) >0, k =1,...,n — 1, such that

n
(ios ATTNA oo Nty AT () = Y p()idzy AdZy A idzy, A dZ... Nidz, A dZ,.
k=1

10



2.2 Preliminaries

Then
u(z) A (fog Aag A oo Niy,—1 A @p—1) ()
= 3 w(@)ule)ide Az A idzg A dzy... Nidz, A dZ,
k=1
k=1
Then 2" Y| p(x)As, () > 0 implies u > 0, and thus (3) follows. O

Next we present the trivialization of holomorphic line bundles and some local
formulas of smooth sections, which are quite useful in the following calculations.

Let F 5 X be a holomorphic line bundle on X. A trivialization of F is given by
an open covering {U; };e; and biholomorphic maps

©; - W_I(Ui) — Uz x C (224)
such that
i N z) = {r} xC~C (2.2.5)
is a C-linear isomorphism. Then the transition maps, which are holomorphic non-
zero functions, are given by

(z, pij(2)§) = (902'90;1)(3775)-
forx € U;NU; and £ € C.
In this trivialization, a section s € €>°(X, F') can be locally represented by
si=ywis: U — U; xC, (2.2.7)
r — (z,s(2)).
Here we identify s;(z) with a smooth function over U;. Then on U; N U; we have

pilsi=s =05 's;, si=(piv;)sg, (2:2.8)
(z,5i(x)) = (, i (x)s;(x)).
Thus, we can describe a section by s =~ (s;, ;;) in the trivialization.

By (2.2.4) and (2.2.5)), we obtain a holomorphic frame of F' over U; by

e U, — F |Ui:: 7T71<Ui), 62(.73) = (p;l(l’, 1), (229)
then 7~ !(x) = Ce;(x). And for x € U; N Uj, we have
piei(x) = (2,1) = gje;(x),  ej(x) = (o) @i)ei(). (2.2.10)

Moreover, by (2.2.5), (2.2.6) and (2.2.9), it is clear that

pij(@)ei(z) = @i (@,1) = ¢; Hz, 0i(x)) = @; Lip; H(x,1) = @) ' (2,1)
= ej(x). (2.2.11)

11



2 On the growth of von Neumann dimension of harmonic spaces

Proposition 2.7. Let s >~ (s;, pi;) € C°(X, F') under the trivialization. Then, the
representation of s, given by

sly, () = si(x)e;(x), (2.2.12)
15 globally well-defined.
Proof. For x € U,
5(2) = 7 (@, si(2)) = si(2)er (2, 1) = si(2)es(@). (2.2.13)
For z € U; N U;, by (2.2.8) and (2.2.11)),
si(z)ei(x) = sj(z)ej(x). (2.2.14)
O
Proposition 2.8. Let h be a Hermitian metric on F. Then, there exist
Vi U > R (2.2.15)

such that |e;(z)|?, = e™"®). Let s,t € C°(X,F). Then (s(z),t(x))r and |s(z)[?;
under the trivialization, given by

(s(x), t(@)prle, = si(x)ti(z)e and

[5(2) e o, [s4(2)%e ),
are globally well-defined.
Proof. We can define ¢; € € (U;,R) by e %) := |e;(z)|?,. Then for z € Uj,

(s(x), t(@))nr = si(@)ti(@)]es(@) or = si(@)ts(x)e™ ),
By (2.2.8)) and , for x € U; N Uj, we see

si(2)ti(x)e Vi = s;(x)t;(x)e Vi@ (2.2.16)

In the same way, let s € C®°(X, AP2X ® F') be represented by
si=@is: U — U x \PY(X), (2.2.17)
x — (z,s(2)).

Here we identify s;(x) with a smooth (p,q)-form over U;. Then on U; N U; we still
have

pilsi=s= 80]16)'7 Si = (901903 1>SJ7 (2.2.18)

(@, 5i(7)) = (2, pi;(x)s;(x))
by (2, 5:(2)) = pi5(x) = @iy ' 035(x) = 9i7 (@, 85(2)) = (3, 015 (2)55(2))- As same
as (2.2.12)) and (2.2.15)), we have the following propositions.

12
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Proposition 2.9. Let s € C°(X,A\P9X ® F). Then the representation of s under
the trivialization, given by

s(x)

v, = si(7) @ ei(x), (2.2.19)
is globally well-defined.
Proof. For x € U;,

s(z) = @; H(w, si(z)) = si(x)g; H(w, 1) = 54(x) @ e;(). (2.2.20)

For z € U; N Uj, by and ,
si(x) ®ei(x) = sj(x) ® ej(x). (2.2.21)
]

Proposition 2.10. Let hY be a Hermitian metric on F and h,, the induced Hermi-
tian metric on AP9X by w. Let h = h, @ h*. Then, there exist

W U = R (2.2.22)

such that |e;(z)|2, = e V@), Let s,t € (X, \P1X @ F). (s(z),t(z)), and |s(x)[
under the trivialization, given by

(s(@), t(@)nlv, = (si(@), ti@)n, e,
s@)lilo, = Isi@)fi, e,

are globally well-defined.
Proof. We can define ¢; € C*(U;,R) by e @) := |e;(z)|?. Then for z € Uy,

(s(x), 1) = (si(@), ta(2))n,les(@)[hr = (si(x), b)), e
For x € U; N Uj, by (2.2.18) and (2.2.11f), we see

(su(e), @) lea@) e = (55(2), 15 (@) les (@) e (2:2.23)
]

Proposition 2.11. Let o, 8 be differential forms with values in F' over X. Then
a A Be¥, given by
aABe |y, =i A Bie Vi, (2.2.24)

1s a globally well-defined, scalar-valued differential form.

Proof. We set a = a; ® ¢;, f = 0; ® ¢; on U;. Then m follows by (2.2.18 m

E211) and @2229).
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2 On the growth of von Neumann dimension of harmonic spaces

Proposition 2.12. The curvature form O of a holomorphic Hermitian line bundle
F over X can be represented by

U, - —V —].RF
And the representation is globally well-defined.

Proof. Let us choose a local frame e; as in (2.2.9). Then, by (2.2.1)) and ({2.2.22))

over Uj;,

OF

v, = v/ —100;. (2.2.25)

Or = V—1R" = —/=1001og |e;|2r = V/—100;. (2.2.26)
On U; NUj, since the transition function ¢;; is holomorphic as in ([2.2.6]), we see

OBlog fes(a)f2e = 9Dl () les(a) e (2227
= 90log|wji(x)[* + 9dlog |e;(x) |}
= 00log |e;(x)|7r.

[
Definition 2.13. Hodge star operator of the Hermitian manifold (X, w) is defined
by
*: QPUU,C) — Q9" P(U,C) such that (2.2.28)
/8 ANxa = <Ba a>wwn

for any open set U C X and any g € QP4(U,C), where (-, ), = (-, -)n, is the induced
Hermitian metric on AP9.X.

Hodge star operator is well-defined, since the exterior product provides a non-
degenerate pairing pointwisely. Essentially, Hodge star operator is defined on C-
vector spaces AP4X at each point x € U, and (xa)(z) = *(a(z)) for a € QP4(U, C).
Thus we can verify the following proposition under a local coordinate at point z € U
such that (T3"9* X, hy) is isometric to C".

The following proposition is from [23, Proposition 1.2.20,1.2.24,1.2.31].

Proposition 2.14. Let a € Q™4(U,C) and NEX 1= @,y g AP? X. Then
(1) %2 = (=1)*=k) op ALX ;
(2) a = Ch_y(*xa) Nw, , where Cy_, = (=0 ;
(3) ¥*a = (=1)""1C_g(xa) Ny ;
(4) a Axa = |a|>w, ;

(5) | *ale = lal..

14



2.2 Preliminaries

Proof. For a fixed point z € U, we can choose a local coordinate (z1, ..., z,) around
x, such that {dz,...,dz,} forms an orthonormal basis of T X at 2. Then

q
we(T) = wq—('x) = > idzy, NdZj, A .. Nidzg, A dE,

1<51<g2<...<jq<n

for 1 < g < n. By the notation of the ordered muti-indices J,

wy(z) = Z iCdzy N dzy.

|J]=q

In particular, w,(x) = i"dz Adz, where dz := dz; A... Adz, and dz = dzy A ... ANdZ,,.
It is clear that * is C-linear on APYX | then we only need to consider dz; A dz; €
AP4X . Let us denote by I¢, J¢ the ordered complementary multi-indices of I, J. By
the definition,
*(dZ[ A dEJ) = )\dZ]c A dEJc

where A € C is given by
dzy Ndzy N (Mdzpe N dZze) = wy(x).

Then -
*(dZ[ A\ dEJ) = (_1)(”—Q)("—P))\dzjc A dEIC c /\Z_q’n_pX.

By the definition,

**(dzl/\dzj) :deJ/\dz[

where ¢ € C is given by
*(dZ[ VAN dEJ) VAN gdZJ VAN dEI = wn(x)
Then we have

(—1)=DC=DXGy o A dZe Afdzy AdZp = wa(t) = wn(2)
- dZ] A dZ VAN (AdZIc VAN dzjc)

Then ¢ = (—1)PTOC=@+a)+pa_that is, x*(dz;AdZy) = (—1)PHOC=+0) gz NdZ;.
Then (1) follows.
Let dz ANdz; € A»9X. By the definition,

*(dz Ndzy) = TdZ e
where 7 € C is given by
dz AdZy ATdZge = wy(z) =i dz A dZ.

Then
2
TdZy NdZje = 1" dz.

15



2 On the growth of von Neumann dimension of harmonic spaces

Then

Cn_q(*(dz A dZ])) A wq(x) = i(”_Q)Q?dZJC A wq(l’)

= ("D Fdze NiTdzy A dzy
iR A dZy A dzge
(_1)q(n—Q)Z'("—‘1)2+q2?dzJ ANdzje NdzZy
(_1)q(nfq)i(nfq)2+q2 <_1)”2i”2dz Ndzy
dz N\ dEJ.

Then (2) follows.
From (1) and (2), (3) follows. And (4) is trivial. Finally, by (1) and (4), [*a|*w, =
|a|?w,, at x implies (5). O

We can associate a scalar valued form to a form with value in line bundles by
the local representation of sections as follows. Let F' be a holomorphic Hermitian
bundle over a complex manifold X. Let {U;} be a covering of X such that F|y, is
trivial. Let o € Q"9(X, F'). Then a|y, = a; ® e; on Uj, where a; is a scalar valued
(n, q)-form and e; is a holomorphic section of F|y, such that |e;|* = e™¥. Then

’}/j = ’}/aj = *Oéj

is a (n — ¢,0)-form over U;. Furthermore, we have a form v, € Q""%°(X, F'), given
by

Yalv; 7= Yo, ® €5 = (x;) @ ¢j, (2.2.29)
globally well-defined by ([2.2.18]) and (2.2.11)), where «; verifies (2.2.28)) and e; verifies
(2.2.15)). Thus, we can extend the notion x to each form a € Q™(X, F) by setting
*(a) =74 € QX F).

Definition 2.15. Let v € Q™9(X, F'). The associated (n — ¢,n — ¢q)-form T,, on X
is given by
Tolu, = Co_gyj AVj€ %7 (2.2.30)

where C,_, := i Also we denote it by T := Tp.

Proposition 2.16. T, is a globally well-defined, positive form on X, i.e., T, €
Q=9 X) and T, > 0.

Proof. By (2.2.18) and (2.2.11)), for any x € U; N U},

e = Jej(@)* = i (2) Plea(w) P = | (x) e ). (2.2.31)
Thus
— S SR 71 € p— —
ATe Vi =, o AT —————e Y = T A Ame Y =y A eV
HOTE T e TR o @R T el VT T
(2.2.32)
And Proposition [2.6(1) implies T, > 0. O
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Note that we encode the curvature of F' to a local function ¢ and also encode line
bundle valued form « to usual differential form T for the purpose of further local
calculations. Trivially, if F = X x C with trivial metric, then the function ¢ = 0
everywhere. Generally, for arbitrary z € X, we can choose a trivialization of F'
around x € U; such that i;(x) = 0, that is, |e;(x)|,» = 1 and then (a(z), B(x))n =
{au(), Bi(@))n, for any a, B € (X, F),

2.2.2 Reduced L?-Dolbeault cohomology

Let (X,w) be a Hermitian manifold and (F, h’") is a Hermitian holomorphic vector
bundle on X. Let QP9(X, F) := C®°(X,AP(THD*X) @ AY(TOV*X) ® F) be the
space of smooth (p, ¢)-forms with values in F' for p,q € N. Let Qy?(X, F) be the
subspace of QP9( X, F) consisting of elements with compact support.

The L*-scalar product on QP4(X, F) is give by

(s1,82) = /){<Sl($),32(l’)>hF7deX(fL') (2.2.33)

where (,),r, is the pointwise Hermitian inner product induced by w and h*. We
set the L%norm by || [|7. = (, ).

We denote by L2 (X, F) the L? completion of QOF?(X, F') with respect to || ||z,
And we set L, (X F) n L2 (X, F).

Let a € qu(X C) and s E C>(X, F) such that aAs € QP(X, F'). The Dolbeault
operator 9 CQ0UXF) — L2 (X, F) is given by

J (ans)=(0a)As+ (=1)P g AT s.

In particular, J CX(X,F) — QY'(X, F) is defined as follows. For s € € (X, F),
s = Y., &, where & is a local holomorphic frame of F' and ¢; are smooth func-

tions, we set EFS = Zl@@)& = Z (ZJ a¢l

(21, 29y vany Zn)-

We denote by 9" the formal adjoint of EF, which is given by

dz;)& in holomorphic coordinates

—F'x

(@ s1,85) = (51,0 83)

for s; € QPY(X, F) and s, € Q07X F).
For s; € Lf),q(X, F), we define 5F$1 in the current sense: @Fsl, Sg) = (81,5F*32>

for s, € QPITY(X, F). Clearly, 9" "s, in the current sense for s, € L2 (X, F) is
similar.
The following lemma is from [30, Lemma 3.1.1].

Lemma 2.17. (¢f. [30, Lemma 5.1.1])
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2 On the growth of von Neumann dimension of harmonic spaces

The operator giax defined by

Dom(Dy,) = {s€L’.(X,F):9 seL’,(X,F)}, (2.2.34)
Oy Dom(By) = L2 (X, F)
s giaxs —=3"s in the sense of currents

1s a densely defined, closed extension, called the mazimal extension of a .

Furthermore, we define the Hilbert space adjoint (0,,,.)} of giax by
Dom((Dy)ir) (2.2.35)
= {s€L2(X,F)[3C>0,| (Ohpv,s) |<C | v|? for Vv € Dom(d,,)}

= {se Ll (X,F)|3we L (X F), <5F v,s) = (v,w) for Vv € Dom(giax)}.

max ~?

Definition 2.18. The Kodaira Laplacian operator on Q§?(X, F') is defined by
OfF =979 +99" (2.2.36)

It is clear that (J¥ is a densely defined, positive operator on Lﬁyq(X , F'), which is
by L2 (X, F) = Q0Y(X, F) in the L*-norm and (O"s,s) > 0 for s € Qf(X, F).

We describe now a self-adjoint extension of [Jf" for L?-cohomology, called the
Gaffney extension. For simplifying the notations, we still denote the maximal ex-
tension giax by 9" and the Hilbert space adjoint (5F I by 9. Consider the

complex of closed, densely defined operators

max)

2
Lp,qfl

Here (5F)2 = 0 by <(5F)28,U> = (s,(0

seDom(d )N L2, (X, F).
The following proposition is from [30, Propersition.3.1.2].

5F 51«“
(X, F) == L (X, F) — L2 (X, F) (2.2.37)
%

)?v) = 0 for any v € QP9"Y(X, F) and

p,q—1

Proposition 2.19. (¢f. [30, Propersition.3.1.2])

The operator defined by

Dom(OF) = {s¢ Dom(gF) N Dom(EF*) O s e Dom(éF*), s e Dom (%)},
OFs = 99 s+ 9 s for s € Dom(O"), (2.2.38)

is a positive, self-adjoint extension of Kodaira Laplacian, called the Gaffney exten-
sion. The quadratic form associated to OF is the form Q given by

Dom(Q) = Dom(d )N Dom(d" ), (2.2.39)
Q(s1,82) = (EFS,EFS) + (EF*S,EF*S) for s1,s2 € Dom(@Q).
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Remark 2.20. (cf. [30, Propersition C.1.4])

The associated quadratic form Q to O (a positive self-adjoint operator) satisfies
that

Dom(0F)
= {s€Dom(Q):3ve Liq(X, F), Q(s,w) = (v,w) for any w € Dom(Q)},
O0Fs =wv for s € Dom(O"). (2.2.40)

Thus for s; € Dom (") C Dom(Q) and sy € Dom(Q),

Q(s1,80) = (OF 51, 59) = (5F31,5F32) + (EF*sl,gF*sg). (2.2.41)
Definition 2.21. The space of harmonic forms H®? (X, F) is defined by

HPUX, F) = Ker(O") = {s € Dom(O") : OFs = 0}. (2.2.42)
The g-th reduced L2-Dolbeault cohomology is defined by

Ker(@") N L2, (X, F)
Mm@ )N L3, (X, F)]

_Oq

Hey (X, F) =

(2.2.43)

where [V] denotes the closure of the space V.

Remark 2.22. According to the general regularity theorem of differential operators
(also see [30, Theorem A.3.4]), s € HP(X, F') implies s € QP9(X, F'). Thus (2.2.42)
becomes

HP(X,F) = {s € Q(X,F)nDom(D") : O"s = 0} Cc O")(X, F)N L; (X, F).
(2.2.44)

Since H™(X, L¥ @ E) is separable, let {s5};>1 be an orthonormal basis.
Definition 2.23. The Bergman density function B} is defined by

Z’S ’hkuﬂ X7

where | - |5, » is the pointwise norm of a form.

The Bergman kernel function defined in (2.1.1)) is well-defined by an adaptation
of [9, Lemma 3.1]. By weak Hodge decomposition, we have a canonical isomorphism
as follows (see [30] (3.1.22)]).

Proposition 2.24.
Z70:9

Hy (X, F) = H"(X, F) (2.2.45)
for any q € N.
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2 On the growth of von Neumann dimension of harmonic spaces

Proof. By ([2.2.41]), we see that

FO9(X, F) = Ker(d ) N Ker(@ ). (2.2.46)
Combining with the complex sequence (2.2.37)) and the following
L2, (X F) 25 12 (X, F) 25 12, (X, F), (2.2.47)
we have
Im@ )" = Ker(@ ) =Ker(@ )N L2, (X,F) (2.2.48)
= Ker(@ )N (Ker(@ ) @ Ker(d' )4)
= (Ker(@ )nKer(@)) @ (Ker(@ ) nKer(d )b).
Since Ker( ) = [Im(0 F*)], (EF)2 =0, then [Im(éF*) C Ker@F*) and Ker@F*) N
Ker(@ )+ = [Im (5F )]. Combining with (2.2.47)) and (2.2.48)), we see
m(d )t = HOD(X, F) @ [Im(@ ). (2.2.49)
Likewise, by Im(@ )* = Ker(3' ),
Ker(@) = Ker(@ )N L2, (X,F) (2.2.50)

")

— ( r(5 )N Ker(@ ) @ (Ker(@ ) N [Imd' )
(X,

%9(X, F) ® Im(@")).

Form (2.2.49)),
L3 (X, F) =Im(@ )" & [Im(@")] = KO (X, F) & [Im(
From ([2.2.50)) and (2.2.51)), we have

Ker(@") _ Ker(@") N L2, (X, F)
m@")]  [m@)]NL,(X, F)

F'x

e

=H

HO)(X, F) =

Mm(@)]. (2.2.51)

O (X, F) (2.2.52)

]

Remark 2.25. Similarly, we can define the maximal extension of 9" and denote

Fx

@

Jmax- Now we have two type adjoint operator : (EF*)maX and (5F

o) 7 induced

by the initial differential operator 5F and L2?-scalar product (2.

2.33). In general,

they are not equal.
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Remark 2.26. (cf. [30, Corollary 3.3.3]) If g is a complete metric on X, then the

*

two type adjoint operators are equal, i.e., @F*)max = @iax) 7, and the Gaftney
extension and Fridrichs extension coincide for OF by [30, Corollary 3.3.4]. In this

case, if we denote the maximal extension R.x by R, where R is 9" and @ . Then
we have for s; € Dom@F) and s9 € Dom(gF*)

=F* =F*

J = 0y, (2.2.53)
(5F31,82) = <31,5F*32). (2.2.54)

In particular, we will see in the section for a covering manifold (X, w,T),

the Riemannian metric g is complete, which is from the compactness of X/I" and

2.2.3 Covering manifolds and von Neuman dimension
(I"-dimension)

Let (X, J) be a (paracompact) complex manifold of dimension n with a compatible
Riemannian metric g. Let w be the associated real (1, 1)-form defined by w(X,Y) =
g(JX,Y) on TX. Then (X,w) is a Hermitian manifold.

Definition 2.27. A group I is called a discrete group acting holomorphically, freely
and properly on X, if I is equipped with the discrete topology such that

(1) the map Q@ x X — X, (r,x) — r.z is holomorphic,

(2) r.x = x for some x € X implies that » = e the unit element of I', and

(3) the map ©Q x X — X is proper.

Definition 2.28. g (or w) is called T-equivariant, if the map r : X — X is an
isometric with respect to g for every r € I' .

Definition 2.29. We say a Hermitian manifold (X, w) is a covering manifold, if
there exists a discrete group I' acting holomorpically, freely and properly on X such
that w is '-equivariant and the quotient X/T" is compact.

In this section, I' is a discrete group acting holomorpically, freely and properly
on a Hermitian manifold (X,w) such that g is [-equivariant and the quotient X /T’
is compact. Let X be paracompact so that I' will be countable. We denote the
canonical projection by 7 : X — X/I'. Then g is complete due to the compactness
of X/I" and g = mpgT*/D),

Definition 2.30. An relatively compact open set U C X is called a fundamental
domain of the action I' on X, if the following conditions are satisfied:

( ) X = UTEFT(U)

(b) r1(U) Nro(U) is empty for 1,75 € T', 71 # 19, and

(¢c) U\ U has zero measure.
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2 On the growth of von Neumann dimension of harmonic spaces

The fundamental domain exists, and we can construct one in the following way.
Let {Uy} be a finite cover of X/I" with open balls having the property that for each
k, there exists an open set ﬁk C X such that np : ﬁk — U}, is biholomorpic with
inverse map ¢y, : U, — U,. Define W, = U, \ (Uj<xU; N U). Then U := Upgy(Wy)

is a fundamental domain, see [30].

Definition 2.31. A holomrphic Hermitian vector bundle (F, k%) over X is called
[-invariant, if there is a map rr : F© — F associated to every r : X — X € I,
which commutes with the fibre projection 7 : F' — X (i.e., rom = worp), such that
hE (v, w) = b (rpv, rpw) for any v, w € F.

Next we introduce some definitions and propositions on I'-dimension on covering
manifolds, see [39] for details.
Let ' be a discrete group with the neutral element e. Let

LT = {f|f:F—>(C,Z|f(r)]2<oo}. (2.2.55)

rel
This is a Hilbert space with the scalar product

=> f(r)glr), VfgeLT. (2.2.56)

rel’

It has an orthonormal basis {d,|r € '}, where

5.(x) = { (1) z; o (2.2.57)

There are two natural unitary representations of I' in L?T": Left regular representa-
tion ' — U(L?T"), r+ L, and Right regular representation I' — U(L?T), r — R,,
where U(L’T) = {A € L(L’T) : AA* = A*A = 1} is the set of all unitary operator
on LT, and

(Lof)(@) = fr"2),  (R.f)(x) = f(ar), rE€T, feLT, (2.2.58)
By (L1 Lo f)(x) = (L, f)(ra) = f(x), and
(Lef,g) =D fr'a)glx) = fx)g(re) = (f, L-g),

zel zel
we obtain
L= (L) =L, R =(R)™ =Ry (2:2.59)

Let Lr (resp. Rr) be the von Neumann algebra generated by {L,|r € T'} ( resp.
{R,|r € I'}). This is simply a weak closure of the set of all finite linear combinations
of L, (resp. R,).

The following lemma is from [39, 1.A.] and [I3], Part I, ch.9].
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2.2 Preliminaries

Lemma 2.32. (¢f. [15, Part I, ch.9])

Rr = {B € L(L’T)|BA = AB for A€ Lr}, (2.2.60)
Lr={B € L(L*T")|BA= AB for A€ Rr}.

By the definition in (2.2.56)), if B ="
z € I'. We can introduce a trace

¢, R, € Rr, then (Bd,,d,) = c. for any

rel’

t,A = (Ade,de), for A€ER. (2.2.61)

Consider the Hilbert space (LT ® H, (-,-)) where H is a complex Hilbert space
associated with an orthonormal basis {h;};es, then {6, ® h;} is an orthonormal
basis of LI ® H. Thus as before, we have two unitary representations: I' —
UL T®Id), r—~ L ®Idand T — U(L*T ® Id), r — R, ® Id. Let Lr ® Id
(resp. Rr ® Id) be the von Neuman algebra generated by {L, ® Id|r € '} (resp.
{R, ® Id|r € T}).

According to Lemma [2.32] we define

Ar :=Rr ® L(H) = {A € L(L*T @ H)|AB = BA for B€ Ly ® Id}. (2.2.62)

Definition 2.33.
Trr[A] = (t, ®T,)A (2.2.63)

where A € Ar and 7, is the usual trace on £(H).

Definition 2.34. A subspace V C L*T' ® H is call a [-module, if (L, ® Id)V C V
for all r € ' (i.e V is left I-invariant).

For example, L' ® H is a I'-module trivially.

Proposition 2.35. V C L?T' ® H is a T'-module if and only if the orthogonal
projection Py : )T @ H — V € Ar

Proof. Assume Py € Ar, thus Py (L, ®Id) = (L, ®Id) Py for any r € T, and for any
veV, (L ®Idv= (L ®Id)Pyv=Py(L ®Id)veV. That is, (L, ® [d)V C V.
Conversely, Py satisfies P2 = Py and Py = Py, then for any w € L*T' ® H, it can
be decomposed as w = w; ® wy, where wy € V, Pbwy, = 0. By the assumption,
for any v € V| (L1 @ Id)v € V, thus ((L, ® Id)ws,v) = (we, (L1 ® Id)v) = 0.
Hence (L, ® Id)wy LV, Py (L, ®Id)wy =0 and Py (L, ® Id)w = Py (L, ® [d)w, =
(Lr X Id)w1 = (Lr X Id)Ple = (Lr X ]d)PVw ]

Now assume Py € Ar (i.e. V is a I-module), let {s;} be an orthonormal basis of
V' represented by

sk= Y 6, ®h;, (2.2.64)

zel',jed
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2 On the growth of von Neumann dimension of harmonic spaces

where {0, ® h;} is the orthonormal basis of L?T' @ H and s}’ € C. Consider the
projection

V & oH~H (2.2.65)

sg = sk(e) == (g, 0e @ hj)0e @ hj = szjée ® h; ~ szjhj = Sk|n
For example, later we will see, if f € V C L*(X,F) ~ LT ® L*(U, F), then
f(e) € L*(X, F) can be consider as f(e)(z) = f(z) when z € U and f(e)(z) = 0

when x € X —U.
Hence it follows ([2.2.64]) that Py, can be written by

LToH —V (2.2.66)

f&h = Pr(foh) =Y (f@hsy)si =Y (f0,)(hhi)sy'si?6, @ hy.
k

k

Definition 2.36. The I'-dimension of a I'-modula V C L?T' @ H is
dimr V.= T’I“F [Pv] (2267)

Then, (2.2.63))-(2.2.67) imply a useful formula

dimpV = Trp[Py]=(t. T, )Py = Z(Pv(5 ), 0e ® hy) Z Edk
= ) (su(e), sile)). (2.2.68)

k

Proposition 2.37. Assume I' = {e} is trivial. Then
(a) Any subspace V' of H is a I'-module,
(b) the I'-dimension of V' and the usual dimension coincide:

dimp V = dime V. (2.2.69)

Proof. I)T @ H =Co. @ H ~H,if T ={e}. (L.®Id)V =V, then V is I-module.
And by (2.2.65) and (2.2.3)), we have si(e) = s; and thus dimp V' = dim¢ V. ]

Proposition 2.38.
dimp LT @ H = dimc H (2.2.70)

Proof. {0, ® hy} is the orthonormal basis of L*T' @ H, then (5, ® hy)(e) = d. @ hy,
when = = e, otherwise it is zero. Hence dimr L’T @ H = >, (0 ® hg, 0, @ hy) =
zk(hk, hk) = dlm(c H. ]

As a special case, we set the above Hilbert space H to be L?(U, F), and focus
on L[*(X,F) ~ LT ® L*(U, F), where U C X is the fundamental domain, F' is
a T-invariant holomorphic Hermitian vector bundle, and the L2?-space L*(X, F) is
given by F, X in the usual way.

The following lemma is from [30, Lemma 3.6.2].
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Lemma 2.39. Let V C L*(X, F) be a T'-modula, then
dimp V = 2/ |5i(2)|2dvx (), (2.2.71)
—Ju

where {s;} is an orthonormal basis of V. Moreover, here the domain U can be
replace by U.

Proof. s; € V. C L*(X,F) ~ LT ® L*(U,F), then s; >~ (s;|,v)rer- And s;(e) =
sily € L*(X, F) can be considered as s;(e)(x) = s;(x) when x € U and s;(e)(z) =0
when z € X — U. By (2.2.3), we have

dime V= Y (sife), si(e) = 3 /X si(e) (o) Pox (2) = 3 / j54(2) P (2).
Z 2 Z (2.2.72)

Moreover, notice s;(e)(x) = 0, when z is in the boundary of U. O

Finally we combine these facts on I'-dimension and reduced L2-cohomology.

Let (X,w) be a Hermitian manifold of dimension n on which a discrete group I
acts holomorphically, freely and properly, such that w is a I'-invariant, the quotient
X = X is compact and X is paracompact so that I' will be countable. Let U C X
be a fundamental domain such that U is compact. Moreover, suppose (F,h") is
a I-invariant holomorphic Hermitian vector bundle on X. Let O := OF be the
Gaffney self-adjoint extension of the Kodaira Laplacian.

As in the proof of , let L, ® Id be the left I'-action on Lg’q(X, F) ~
LT ® L2 (U, F), then any s € L? (X, F) ~ L*T' ® L2 (U, F), then s ~ (s|,y)rer,
and s(r) = sl,y € L2 (X, F) can be considered as s(r)(x) = s(x) when x € 7U and
s(r)(x) =0 when x € X —rU.

The following lemma is from [30, Lemma 3.6.3].

Lemma 2.40. H®?9(X, F) is a T-modula in L2 (X, F).

Proof. We only need to prove that [(1¥'s = 0 implies (L, ® Id)s = 0. Assume s =
(sg0)ger = 2o ger 0y @ squ € Ker(OF) = HOD(X, F), then 0 = OFs = (O0Fsyu) ger,
and O s,y = 0 for any g € I'. By (L, ® Id)s = > ger Org @ Spgu = (Srgu7)ger, We
have O (L, ® Id)s = (OF s,417) ger = 0. O

Lemma 2.41.
dimy HEO (X, F) = 3 / 15:(2) [2dv (x) (2.2.73)
,Z: U

where {s;} is an orthonormal basis of H®D (X, F) with respect to the scalar product

in L, (X, F). In particular, dimp Fg;q) (X, F) = dimp KO9(X, F).
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2 On the growth of von Neumann dimension of harmonic spaces

Proof. Combining the (2.2.71)), (2.2.45) and notice that H»9 (X, F) is a [-modula
in L2 (X, F), we have

dimp H{y" (X, F) = dimp KOV (X, F) = 3 / 1si(2) 2dvx (2) (2.2.74)
. JU

for {s;} is an orthonormal basis of H®? (X, F). O

Remark 2.42. In this chapter, we focus on the estimate of the right side of (2.2.73))
when p = n.

2.3 Some properties of harmonic line bundle valued
forms

In this section, we work under the following general setting, and later the covering
manifold with a group action I' will be treated as a special case in the section [2.4.2]

Let (X,w) be a Hermitian manifold of dimension n and (F, k") be a holomorphic
Hermitian line bundle on X. For the Kodaira Laplacian (J := [ we denote still by
O its (Gaffney) self-adjoint extension.

2.3.1 The 90-Bochner formula for non-compact manifolds

By the local representation of forms in the section [2.2.1] we use the following nota-
tions instead of those in the section as follows. Let o € Q»4(X | F'). Let U be
an open set such that F'|y is trivial and let er be a local holomorphic frame on U
and set |ep|}r = e™¥. We can write a|y = { ® ep with £ € Q™(U,C).

=F

For simplifying the notations, we still denote the maximal extension giax by 0
=F

and the Hilbert space adjoint (0,,,.)% by ", Moreover, we can rephrase
9:=9 on Dom(d)NQri(X,F) (2.3.1)
9,:=8  on Dom(@ )nQPUX,F), (2.3.2)

where 1) is from the Hermitian metric on F' as above.
Then the Kodaira Laplacian becomes

0:=0":=030,+09,0 on Dom(O")NQ(X,F). (2.3.3)

Let {U;} be a covering of X such that F|y, is trivial. Let s € QP9(X, F'). Then
slu, = s; @ e;, where s; is a local_(p, q)-form on U; and e; is a local holomorphic
frame of F'|y,. Then the operator 0 can be represented by

53|U¢ = (581) & €, (234)

which is globally well-defined by (2.2.18) and ([2.2.11]).
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For u € Dom(d" ) N QP4(X, F) and v € Dom(d' ") N QP4 (X, F),

(Ou,v)p2 = <u,5;U>L2, ie., /

(Ou, v)pr dvx :/<u,5;v>hp’wdvx (2.3.5)
X

X

And we can define a differential operator § corresponding to 9, which is globally

well defined by (2.2.18) and ([2.2.11)).

Definition 2.43. Let n € QP4(X, F') with 5|y, = n; ® e; The differential operator ¢
is given by

§ OPYX F) — QFTY(X R, (2.3.6)
()|, = (6n); @ &; == (o) ® e; := ("' D(e”V'm;)) ® e;.

Let n € QP4(X, F) and £ € Q*(X, F). By and (2.2.24), we have
Onnée™)=0nNEe ¥ + (—1)98M A S, (2.3.7)
which indicates the relation between 0 and ¢, that is, locally
A AN&e™") = I A Ge™V 4 (=1) ™8, A SEe .

Then we have Chern connection and the curvature with respect to the holomorphic
Hermitian line bundle F' as follows.

D = §+0, (2.3.8)
D?* = 60+05=00¢y =R"

over QP9( X, F). And they are also denoted by

vE o= (v 40 (2.3.9)
RF = (VM)

Then the following proposition indicates the relation between 5; and 0.

=%

Proposition 2.44. Let o € Dom(9,,) N Q™(X, F'). Then

e = (=1)" 107,

Dy = —*(67a), (2.3.10)
where x(-) = . is defined by (2.2.29).
Proof. For any n € Q091 (X, F) € Dom(0) NQ™ (X, F) c L2, (X, F), we have

n,q—1

(On,a) s = <77,5;04>L2, ie, /(577,0é>d?}x—/<77,5;&>d’l}x (2.3.11)
b b
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2 On the growth of von Neumann dimension of harmonic spaces

by (2.3.5)). According to Proposition [2.14(4), (2.2.24) and (2.2.22)), we have

(On,a)w, = OnAFae " ie., (2.3.12)
(gm,ai>6_¢iwn = Em/\'y_aie_w",

where the first (,) is induced by k¥ and w, and the second is by w.

The left side of (2.3.11]) equals, by (2.3.12)) and ([2.3.7)),
/57)/\%61" = (—1)""/ nAmew—l—/ o A7ge™)
X X X
= (—1)”—Q/ nA Ve Y, (2.3.13)
X

where the last equality is from Stokes’ theorem. The right side of (2.3.11)) is

A Y
/X N A5 at

by (2.3.12). By combining it with (2.3.13]), we see

0 = [ ange = (0 [ gade

= / nA*(—%0vy,)e
X
= (0, = *07a)z2, (2.3.14)

where we use Proposition [2.14(1) acting on (n — ¢ + 1,0)-forms. So (2.3.14) leads
to the second equality in (2.3.10]) by the density. By acting v = % to the both sides,
then we obtain the first equality. O]

Next we give a property of harmonic line bundle valued forms in our setting.
Proposition 2.45. Let o € Q™9(X, F).
(—1)" %y, ANOwy, = —07a, Awy, when Oa =0 (2.3.15)
e = 0, when Jya=0 (2.3.16)
In particular, they both verify when Oa = 0.

Proof. The first equation follows that 0 = da = (Jay) ® ¢; = E(Cn_q% Awy) ® e; by
Proposition [2.14] And the second one is from ([2.3.10)). O

The following 90-formula was obtained by B. Berndtsson in [5] and [6] for O-
closed, line bundle valued, (n, ¢)-forms over compact manifolds. We can rephrase it
for O-closed, line bundle valued, (n, ¢)-forms over any compact subset of a Hermitian
(possibly non-compact) manifold. The proof is analogue to [B, Proposition 2.2] and
[6, Proposition 6.2].
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Let a € H™(X, F). We define now a positive (n — ¢,n — ¢)-form T, on X as
before. Let U be an open set such that F'|y is trivial and let e be a local holomorphic
frame on U and set |ep|?, = e™¥. We write a|y = £ ® ep with £ € Q™9(U,C). The
(n —q,n — q) form T, is defined locally by T,|y := i("*q)Q(*ﬁ) A (x€)e?, where
x: QM4(U,C) — Q" 49%(U, C) is the Hodge star operator associated to the metric w
given by & A x€ = [£|2wy. It is easy to check that T, is well defined globally.

We have a F-valued (n — ¢,0) form ~, € Q" 29X, F) associated to « defined
locally by v4|v := (*¢) ® ep, which is also well defined globally. Let L := w A -
be the Lefschetz operator on Q”9(X, F') and let A be its dual operator defined by
(A Y = (- L

The curvature form is given by Op := /=1RF = 2mc,(F, ).

Theorem 2.46. Let (F,hY) be a holomorphic Hermitian line bundle over a Her-
mitian manifold (X,w). Assume a € H"I(X,F), ¢ > 1, and K C X is a compact
subset. Then there exist non-negative constants Cy and Cy depending on w and K,
such that

7 —F
100(Tp N wy—1) ((Op Ao, a)pr, — Clla]iF’w + (0 'ya]iF,w)wn

>
> ((©p Ao, a)pr, — Ol|a|ip7w)wn (2.3.17)

on K. Here (Op N Ao, a)w, = Op AT, Awy—1 on X.
In particular, if X is Kdahler, then

i00(Ty ANwy—1) = (100T,) A wy (2.3.18)
= ((Br AN, ) + [0 alir )wn
Z <®F A AOé, Oé>wn

on X. Above (, Yur,, and | |2.  denote the pointwise Hermitian metric and norm

on F-valued differential forms induced by w and h* .

Proof. First of all, we fix our notions for further arguments. Let o € H(™9 (X, F).
Let {U;} be a covering of X such that F|y, is trivial. Then oy, = a; ® e; such that
le; |ZF = ¢~ ¥% and this representation is globally well defined under the trivialization
of F. Let C, := i7" for ¢ € N. Then iCy = (—1)9C,y and C;_y = Cyy1. Moreover,
we have

Tolu; = Crugvi A ”y_je_%',

where the scalar valued (n,g)-form 7v; = *a;. And we know 1" := T, is a globally
well defined (n — ¢,n — ¢)-form. Then, we can drop the subscription j of v and 1
in T, and denote it by

T =Ch gy NTe ",

since our following computation is independent of the choice of Uj;.
Let o, f € QP9(X, F) such that a|y, = a; ® e; and S|y, = B; ® ¢; as before.
Based on the trivialization of F', we denote by (-, ), the Hermitian metric (, ),r,,

29



2 On the growth of von Neumann dimension of harmonic spaces

on QP X, F) and by (-, -) the metric (, ), on Q”%(X,C) in this proof. Then, they
can be linked by the following formula

(o, B)ylu, = (o, B)e ™. (2.3.19)

Since our computation is independent of the choice of U;, we can simply denote the
formula ([2.3.19) by dropping the subscription j and Uj,

(@, B)y = (@, B)e™. (2.3.20)

Notice that («, 8), € €>*(X,C) for given a and 3, thus we can discuss its value at
each point in X, in particular, the maximum and minimum of its absolute value on
a compact subset K later.

Then, in the spirit of our notions,

|a|iwn = (a,a)e™? (2.3.21)
= aAFae ¥
= Cp gy Nwg AFe™?
To A wy.

After fixing the notions, we wish to control the F-valued (n, n)-form i09(T Aw,_1).

i00(T Nwy—1) = 00T Nwy_y —i0T A Owy_y +i0T A Owy_1 + T NidOw,
= O+@+03+®. (2.3.22)

Immediately, it follows that the second term conjugates to the third term, i.e,

@=0.
Secondly, we estimate the term (D). By (2.3.6) and (2.3.7)), we see
O AEe™)=0nNEe™ + (—1)%8M A dfe, (2.3.23)

O An&e™)=0nAée "V + (—1)%Em A sle™,

where 7, £ are scalar valued forms in our local representation.
Combining ([2.3.23)), (2.3.8)) and v = 0 by ([2.3.16|), we have

DOy AFe ) = 00y AFe™)
= OF A Ove™)
= YAOye U+ (=1)""F A§(Dy)e ¥
= (=)o A Dye ™ + 5(0y) AFye?
= (=) Iy A Dve  + OO Ay AT V. (2.3.24)
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Then, by (2.3.24) and the definition of T,
D = iCpqwg1 NIy ATFe )
= 100U A Crg ANy ANFe Ywy1 +iCh_ w1 A (—=1)" 719y A Dye
= Op AT ANwyq + Z'Cn_q(—l)"_q“gfy A %wq_leﬂ/’
= @+®. (2.3.25)

We claim that
@ = (OF A Aa, ) ywy. (2.3.26)

In fact, by [23, Propostion 1.2.31]:
v =%a € P70 = {y e A0 Ay = 0}

is a primitive (n — ¢, 0)-form, implies

x* Ly=+Lxa=(—1)""1C,_;7 Nwg_1. (2.3.27)
Combining ([2.3.27) with Proposition M(l), ie, x 1 = (—=1)Mky on AL, then
*x P Lxa=Cpgy ANwg_1. (2.3.28)

We also have the dual Lefschetz operator
A=x1Lx

by [23, Lemma 1.2.23], then ([2.3.28]) becomes

Aa = Chyy Nwyr, (2.3.29)
thus (2.3.24)) implies
@ = (100 A Cr_g ANy A w1, @)ypwy = (Op A Ao, @) yw,. (2.3.30)

In order to estimate (), we need the following two facts in Hermitian and complex
structure.

e Hodge-Riemann bilinear relation (cf. [23, Definition 1.2.35,Corllary 1.2.36]):

Let (V2" (,),J) be an Euclidean vector space endowed with a compatible
almost complex structure. Then the Hodge-Riemann pair () satisfies

PHIQ(X) = (n— (P + O)lIx[*wn (2.3.31)

for 0 # x € PP4 = {x € APAV* : "~ P+ Ay = 0} with p 4 ¢ < n, where
Q(u,0) := (—1)%u AT AW PH9) for any u,v € APIV*,
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2 On the growth of von Neumann dimension of harmonic spaces

o Lefschetz decomposition (cf. [23, Proposition 1.2.30)):

AV = @l (PE?) (2.3.32)
NGV = @ L"(PE"TTY),
where AL = @) A\PY, LD = Wi, PE = &, kPP, PPI:={xy € NP1 :

Ax = 0} is the space of primitive forms, and PP? = {y € AP7 : "~ PFOFI Ay =
0} when p+ ¢ <n.

Now we apply these facts to our case: V = TX at points, APIV* = APTX 10"
AT XOD* “and 9y € A" 91X C AL X. We obtain

v =x1® (wA Xxo) (2.3.33)

where y; € P91 = {x: x Awl = 0}, xo € P10 = An=a=10X " Note that if
our manifold is Kéahler, then 0y = y;. Here @ is respect to @, that is,
- (n—g+1)(n—q) -
Q(x1,wAxo) = (-1) B X1 AWA X0 Awi™? (2.3.34)

(n—=q+1)(n—q)

= (=) = xiANw'AXo
= 0.
And we also know, for y; # 0 in P"~ %!,

"Qxa x1) = (¢ — Dlxa[fwn > 0. (2.3.35)
Consider a bilinear form on (n — ¢, 1) forms defined by

X, Mwn = iCp_o(=1)" T AT A wy1, (2.3.36)

then the relation between [,] and @ is given by

,L’n—q—l

(X mjwn = = 1)!Q(X,ﬁ). (2.3.37)

It is clear that [x1, xo A w]w = 0 by (2.3.34)), and notice (2.3.35)) and (2.3.37)), then

® = [57,57]6*1/’ (2.3.38)
= [x,xale” +[wAXo,w/\Xo] W
= palfeYw, + [W/\Xan/\Xo] Wn
= |X1‘12pwn [w A X0, w A Xole™ wn
= \gy—w/\XO\wwn [w A Xxo,w A Xole™Ywy.

We claim
[w A X0, W A XO] Wp =2 _C‘alfpwn (2339)
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2.3 Some properties of harmonic line bundle valued forms

on K, where ¢ = c(w, K) > 0. In fact, da = 0 implies (2.3.15), and then

(Xo Aw) Awy = (07 — x1) Awy = 07 Aw, = (=1)""7 1y A O, (2.3.40)
Note xg is of (n — ¢ — 1,0) form and (2.3.40)), then
Ixoly < clv]e = a1 x aly = alaly, (2.3.41)

where ¢; = ¢;(w, K) < 27 supK(||2°fl|l). (Note: In Kahler case, ¢; is zero by dw =

0w = 0w = 0) And by (2.3.36), we have

X0 A w, xo Awle™| < calxo Awl, < eslxols < calal (2.3.42)
where c3 = co(w, K) = supg |wf‘ U ¢y = c3(w, K) = casupg |w|?, and ¢4 = cx(w, K) =
c12c3 > 0, which leads to 1) Here the constant ¢ = ¢4(w, K) is from the com-
pact set K C X.

And we claim

|07 — X0 A wliwn > c6lO7V[Fwn — crlaliwn (2.3.43)
on K, where cg > 1/2 is a constant, and c; = cr(w, K) > 0. In fact, by (2.3.41)),
2
1) and Young’s inequality ab < &- —|— %7
07 —xo Awll > {197y — xo Awlyl®
19712 + [xo0 Awl? — 2[073x0 Awl?

> (L=e)onli+ (1 - ClxoAwly

> (1—¢)|0v[5 + (1= Coeslal?, (2.3.44)
where small € < 2 < 1 and big C. > 1 can be chosen, and ¢5 = c5(w, K) =
¢ supg [w|?. Then we set ¢g = 1 —¢ > 3, and ¢7 = ¢7(w, K) = (C. — 1)es > 0,

which lead to (2.3.43)).
Hence ([2.3.38)), (2.3.39)), (2.3.43) and (2.3.44) indicate

® > cl07]5wn — (ca + c7)|alfwn (2.3.45)
on K. Combining ([2.3.45) and (2.3.30]), we get
O = @+0 (2.3.46)

> (Op A Ao, a)ypw, + 06|5'7|12j;wn — (ca+ C7)|O‘|@2bw”’

In particular, for the Kahler case (i.e., dw = 0), we see ® = |57|12pwn and @ =
(OF A A, o) yw, + |5’y|iwn.

Thirdly, we estimate the term @ + @) = —i0T A Ow,_1 + 10T A Ow,_1.

@ = —iC,_ g0y ANY A Owy 1€ (2.3.47)
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2 On the growth of von Neumann dimension of harmonic spaces

by 0=08a =8 o = —xd0y and Iy AFe ¥) = dy AFe ¥ + (—1)%97y Adye¥. Then
@1 < cslBr1y Tl = cslPrlylaly < eFr? + Cal?, (2.3.48)

where c¢g = cs(w, K) = supy |Owg—1| > 0. Then,

@+ = @+@ (2.3.49)

—eloy[Fwn — Cclaffwn

AVARAVARLY,

where small 0 < ¢ < min{3, ¢} and C. > 1 can be chosen such that they only
depend on (w, K). B
Fourthly, let us consider the term @ = T A 100w,.

(@] < |T[i00w,| < co|T)| (2.3.50)
= |Crogy AT Y| < colrl
= olal}.
Then
@ > ~|@|w, = —colaliwn, (2.3.51)

where ¢y = cg(w, K) = supg |00w,| > 0.
Finally, © + @ + @ + @ can be estimate by (2.3.51)), (2.3.49)) and ({2.3.46)), that
is,

i00(T Awy—1) > (O A Aa, a)pw, + (cg — 6)|57|an —(ca+cr+Ce+ 09)|a|iwn
(OF A Ao, a)ywy, + 010|57|iwn — 011|a|iwn (2.3.52)

where ¢19 = cio(w, K) = cg—€ > 0and ¢;; = epy(w, K) = ¢y + 7+ Ce + 9 > 1.

Then (2.3.17)) follows. B
If (X,w) is Kéhler, the above 00-inequality (2.3.52)) reduces to

i00T Nw, 1 = (Op A A, a)yw, + |57|iwn (2.3.53)
> (Op A A, a)ypwy,
= @F ANT A Wg—1-

In fact, Ow, = 0 in (2.3.40)) implies that (2.3.45) becomes ®) = \57@%, then (|2.3.46))

becomes D) = (OpAAa, a>¢wn+|5’y@wn. By Ow;1 =0w,.1 =0, =03 =@ =0.
Then (2.3.18]) follows. [

Based on the complete same argument of Theorem and O-closed case in
[5, Proposition 2.2], we have the following equality for Kahler manifolds, which
generalizes both the above formula and the Kéhler case of [5, Proposition
2.2]. The proof is analogue to Theorem , thus we omit it here. For compact
Kéhler manifolds, a general formula of this type can be found in [7].
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2.3 Some properties of harmonic line bundle valued forms

Figure 2.1: The holomorphic coordinate chart at x

Corollary 2.47. Let (F,h") be a holomorphic Hermitian line bundle over a Kdihler
manifold (X,w). Assume o € Q™(X, F') ﬁDom@F) ﬂDom(éF*) such that 9 o =0
and q > 1. Then,

i00(Ty ANwy—1) = (100T,) A wy (2.3.54)

= —2Re<5F§F*a, Ve oy + (2mer (B, R7) A Ao, o) ywn
=Fx* =F
_Ha a’%zF,ww" + |8 ")/Oz‘iF,wwn
where (-, )pr, and |- 3o are the pointwise Hermitian metric and norm on F-
valued differential forms induced by w and h¥.

2.3.2 Submeanvalue formulas of harmonic forms in
H™(X, LF® E)

Let (L,h%) and (E,h¥) be Hermitian holomorphic line bundles over X. For any
compact subset K in X, the interior of K is denoted by K. Let K 1, K5 be compact
subsets in X, such that K; C K,. Then there exists a constant ¢, = co(w, K1, Ky) >
0 such that for any xy € K;, the holomorphic coordinate around zyis V = W C C",
where

W= B(c) :=={z € C": |z| <o}, V :=B(zo,¢)) C Ky C Ky,

Z(mo) = 0, and CL)(Z) = -1 Zi,j hij(Z)dZi A dEJ with hlj(O) = %6”
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2 On the growth of von Neumann dimension of harmonic spaces

Lemma 2.48. Let (X,w) be a Hermitian manifold of dimension n and (L, h*) and
(E,h¥) be Hermitian holomorphic line bundles over X. Let K| and Ky be compact
subsets in X such that K; C I%g. Assume L > 0 in [%2 and g > 1. Then there exists
a constant C' > 0 depending on w, Ky, Ky and (E, hg), such that

/ o}, wdux < CT2q/ |alf, Ldux (2.3.55)
|z|<r X

forany o« € H™(X, LFQE) and 0 < r < £, where H%Lkw is the pointwise Hermitian
norm induced by w, h* and h*.

Proof. For simplifying notations, we denote by (-, ), and |- |, the associated point-
wise Hermitian metrics and norms here, and their meaning will be clear in the
context. For 0 <t < ¢y, we define

o(t) ::/ 3w, :/ To A wy.
lz|<t |z|<t

Assume |a||7, = [ |a|fw, = 1. Then this lemma says that: These exists a constant
C, which is independent of the point zy and k in LF ® E, such that

o(r) < Cr*, (2.3.56)

when 0 < 7 < ¢y/2" (eventually we will use the special case r = \/lg as k — 00).

From the Theorem for F = L* ® E, there exists C3 = C3(w, Ko, E, hg) > 0
such that

(Op NAa,a)pw, = Op AT, ANwyq

= (kOL+0Op) ATy Awy
Op ANTy N w1
(O N Aa, a)pwy,

_C3|O‘|l21wn

v

v

on Ko, since L > 0, T, > 0 and w is positve Hermitian (1,1)-form on K,. Thus over

K, becomes

i00(Ty Awy_1) > —Cylaliw, (2.3.57)
where Cy = Cy(w, Ky, E, hg) > 0. Then, it follows that

/ (2 — |22)i0B(Ty Aewyr) > / _O(E — |2 fiwn
|z|<t |z|<t

= —C4t20'(t> —+ C4|z|2|oz|iwn

lz|<t

> —Cyt’o(t). (2.3.58)
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2.3 Some properties of harmonic line bundle valued forms

We denote the standard metric on C" by
1 .= 1
5 = 588|z]2 = §;d2j N dz;
And we apply Stokes’ formula to the left side of (2.3.58]), that is,
/ (t* — |2]?)i00(Ty A wy—1)
|2|<t

= O z|> Nid(Ty A wy +/ O[(t* — |2)id (T A wy1)]

|z|<t |z|<t

= O z|> Nid(To N wy1 +/ — 122)i0(To A wy—1)]
|z[<t |z|<t

= / 02> Nid(Ty A wy1 —i—/ — 1212)i0(To A wy_1)
|z]<t |z|=t

= 2> Nid(To A wy_1).

|z|<t

Then, by ([2.3.58)),

IN
[\]
?«\
i
2
>
&£
L
>
™

= / 100|212 A Ty A wy1
|z|<t
= —/ dli0|z> N Ty A wy1) —/ i0|z> N d(Ty A wy1)
|z|<t |z|<t
_ i/ MﬁARA%A—/ i0]2[2 A B(To A w1
|z|=t 2| <t

—iTy Awy_1 AO|2|* — / (t* — |2]2)i00(Ty A wy_1)

=t j2/<t
—iTy A w1 AO|2]* — / (t* — |2]?)i00(Ty A wy—1)

|=t |z|<t

< —iTy Awy1 A0|2]* + Cyt?o(t). (2.3.59)

z|=t

I
4\(\4(\

By the choice of holomorphic coordinates,
1

for any z € B(cp). In particular, for |z| = ¢ with 0 < ¢ < ¢y, we can approximate
the metric w on X by the standard one $ on C™ in the following sense

(1— Ri($)B <w(z) < (1+ Ri(t)8 (2.3.61)
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2 On the growth of von Neumann dimension of harmonic spaces

by the smoothness of w, where Ry(t) > 0 and Ry(t) = O(t) as t — 0. (Trivially if
X = C" then R;(t) =0). Hence
ToNwg1 AB > Ty Awg—1 A (1 — Ro(t))w (2.3.62)
= q(1—Ry(t)))Ta N w,
= (1 — Ra(t))|affwn
where Ro(t) > 0 and Ra(t) = O(t).

Let dS be the surface measure of B(t). By (14 Ry(t)) ™™ <w™/p" < (14 Ry(1))™,
we have

/ _iTw A Byt A D)2 < t/ la|2dS.
|z|=t |z|=t
Then (2.3.61)) implies

/ —iTy Awy1 AOJ2]? < (1+ Rl(t))ql/ —iTy A By1 N O|z|?
2=t |zl=t

< 114 Ru(t)! / af2dS

|z|=t
< e @y [ jalias
= t(1+ R3(t))o’'(t) (2.3.63)

where o'(t) = [, _, o3 (wn/Ba)dS by the definition of o, Rs(t) > 0 and Ry(t) =
O(t).
Combining (2.3.59)),(2.3.62)) and ([2.3.63)), we have

2q(1 — Ry(t))o(t) < 2/ To Nwg—1 A\ B

|z]<t

< t(1+ Rs(t))o'(t) + Cyt?a(t).

Then, for any 0 <t < ¢,

2q(1 = Ra(t))o(t) < to'(t)
where R4(t) > 0 and Ry(t) = O(t).
Substituting s(t)? := o (t) > 0 and dividing by 2¢s(t), we obtain

q@ ~ By(0))s(t) < (1 (2.3.64)

for ¢ > 1 and any 0 < t < ¢g, where R5(t) > 0 and R5(t) = O(1) for 0 < t < c.
Now we only need to prove the statement as follows. There exists C' > 0, such
that for any 1 < ¢ <nand 0 <t < 32,

s(t) < O, (2.3.65)
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2.3 Some properties of harmonic line bundle valued forms

which is equivalent to (2.3.56)).
Next we fix ¢ > 1, so we only need to prove that s(t) < Ct™ for any 0 < m < ¢
and 0 <t < ¢/2? by induction over m. Firstly, for m = 0,

(1) = o(t) ::/ 2w, < 1
|z|<t

for 0 <t < ¢p. Secondly, assume there exists a constant C5 > 0 such that
S(t) S O5tm

for 0 <m < gand 0 <t < ¢y/2™. Thirdly, in particular, we consider 1 < m+1=gq
for 0 <t < ¢p/2™", and thus ({2.3.64) becomes

() — (m+ 1) (% ~ By(0))s(t) > 0, (2.3.66)

Let &(t) := (m + 1)(logt — [; Rs(u)du) and Re(t) := t"'e®® for 0 < t <
co/2™ L. Then R4(t) = e(m+1) J Rs(wdu > 1 And according to (2.3.66)), for 0 < t <
00/2m+1,

<s(t)R6(t))' _ <s(t)e*¢“>>, > 0. (2.3.67)

tm+1
For any 0 < 7 < ¢o/2™"!| by integration of (2.3.67)) from r to cq/2™"!, we have

S(%)RG(%) > S(T)RG(T) > 8(7")

Gyl = gmel = gl (2.3.68)
Finally, for the fixed ¢ > 1 and any 0 < r < ¢¢/29, we have
s(r) 29 Co
—- < G—R (—) 2.3.69
re = Py 0\ 2a ( )

Let ¢ run over {1,...,n} in (2.3.69). Then there exists C' = C(w, K1, Ky, E,hg) >0
such that (2.3.65)) verifies and also (2.3.56]) and ([2.3.55]). m

We will consider the following trivialization of holomorphic Hermitian line bundles
in local charts. For any zo € K; C K, we fix the holomorphic normal coordinate
on V =W C C" as before such that

V=T

(.U(.’L’()) = 5 = T Zdzj A dgj,
7=1

which is the standard metric on C". Let L > 0 on K,. Then we can choose the
trivialization of L and E over V such that for any z € B(cy), |er(2)[}, = e~ and
|eE<Z)|}2LE = ¢~ %?) satisfying
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2 On the growth of von Neumann dimension of harmonic spaces

ZA |z + O(2°), (2 Zmlzzl2+(9(|2| ) (2.3.70)

and \; = A\;(z9) > 0. The induced Hermitian metric on F := LF @ E is given by
ler(2)[2r = e () with

Y(2) == ko(2) + p(2). (2.3.71)
The quadratic part of ¢ is denoted by

i=1

Assume a € QP4( X, F'), then it has the form a = £ ® ep around xy € K, where
£ =>_ frsdzr Ndz; is a local (p, q)-form and f;; are smooth functions on W C C".
The scaled functions and sections with respect to k € N are defined by

B (2) = w(z/VE), €W (z) = ep(z/VE), for z € VEW = B(Vkey), (2.3.73)

hence |e A hF = %" The scaled forms are defined for z € VEW by

(z) = \/_thj z)dz; N dz; \/_Zh” (z/VE) k)dz; N dZ;,
§<k (2) := f,J (2)dz; Adzy = f1,(z/VE)dz A dzy, (2.3.74)
®(z) =W () @ e (2).

Lemma 2.49. Let (X,w) be a Hermitian manifold of dimension n and (L, h*) and
(E, h¥) be Hermitian holomorphic line bundles over X. Let K| and Ky be compact
subsets in X such that K, C _[%2. Assume L > 0 on [%2 and g > 1. Then there
exists a constant C > 0 depending on w, Ky, Ky, (L,h") and (E,hg), such that

a(zo)f, . < Ck”/ \Oz|hk LAUx. (2.3.75)
l2l< 2=

Jor any xo € Ky, o € H™(X, L* ® E) and k sufficiently large, where | - |}, is the
pointwise Hermitian norm induced by w, h* and h¥.

Pmof. Denote a ball centred at the origin in C" with radius r > 0 by B(r) := {z €

: |z] < r}. Then, B(r) is a subset of W = V C X via the local chart, when
0 < r < ¢p. Thus the right side of (2.3.75 m is well defined, when k is large enough.
Let ry, := lng’forkeN Then 0 <r, <1andr, — 0 as k — oo.

Under the local representation of forms valued in F' := L*® E as in (2.3.3)), ,
and 1’ the Kodaira Laplacian can be represented by O = 38 —|— 8 0

locally over B (k\’%’“) for k large enough, where 81/) — 3", Then the scaled Laplacian

k)= %Z)(k) + 5;(19)5 (2376)
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2.3 Some properties of harmonic line bundle valued forms

is well defined on B(log k) for k large enough.
Under our assumptions, we consider the harmonic L* @ E—valued (n,q)-form o =

a B(lgky On B(lc\’gfk) for k large enough, then the rescaled a® is a L* ® E-valued
k

(n, ¢)-forms on B(logk) by (2.3.74).
We claim that

1
Ok o) — E(Da)(k) _0 (2.3.77)

over B(log k). That is, the scaled forms are still harmonic with respect to the scaled
Laplacian. In fact, by the local representation o = £ ® e, and notice o = 0
globally, we only need to prove,

EO®) o (F) — (Doz)(k).
To see this, firstly we notice

Jpa = (—*x3x&) ®ep = (*[(OY) A (¥)] —*Ix€) @ep,  (2.3.78)
Dy = (D[ A (+E)] = Dx 0% €) @ep,
9,0a = (%[(0Y) A (x0€)] — %0+ 0E) @ ep.

Then we can represent Laplacian by

Oa = (9%[(0v) A (%E)] +*[(0v) A (x0E)] + L56) ® er, (2.3.79)
OWal® = @ [(0u™) A (<£M)] +x[(O0) A (DEW)] + 2™ @ €,

where Azé = —0x0%E —x0x0¢ and NzE®) = —9x0x W) —x0x9¢®. By definition
of 1®) and Proposition [2.14(4) for scalar valued forms ¢ and 7 as follows

€9 Ax® = (€W, ") = (& mwn)® = (€ A ()
W A (),
then
VEIW® = (00)®, VEIW® = @) B, an® = () ®. (2.3.80)

Now we consider the term 9 %9 x£®) in Az¢® to prove kO x 9 x E*) = (O x = &)P

and thus kAzE® = (A5¢)"). By (2.3.80),

Dx0+EW(2) = Ix W) (2) = D% 0(xE) W) (2) (2.3.81)
= 104 (0xW(2) = (30 *
= %(5*8*5)(’“)@).

By the same argument, (2.3.77) follows.
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2 On the growth of von Neumann dimension of harmonic spaces

Next we introduce the following L?-norms,

I I = | e (23.82)

S

I oo i= [ 1B
B(2)

where Hermitian norm | - |, is induced by w, and | - |g is by 5.
We claim that there exist C'(k) > 0 bounded above and below for k large enough
(in fact, C'(k) — 1 as k — o0) such that

@113, 5@ = COR" el 2. (2.3.83)
In fact, by (2.3.70)-(2.3.73), ¥®(2) — go(2) = LEL and thus
lim sup |9V (™ — ¢o)(2)| =0, (2.3.84)

k=00 |21 <log k

which means the scaled Hermitian metric on L¥ ® E convergences to a model metric
on B(log k) with all derivatives. In particular, as k — oo, 1) (z) — ¢o(2) uniformly

over B(logk), and also w®(z) — 3. Hence (2.3.83) follows by
ol = [ €GB8, (2385)

anO‘Hé(i) = k”/B( £(2) 2y Pwn(2)

vk )
— / €
B(2)

Finally, we apply [4, Lemma 3.1] and identify o) with a form in L*(C",¢y)
by extending with zero outside B(logk). Then there exists a constant C; > 0
independent of k£ such that

e

k)(z) i<k>(z)€_¢(k)(z)w7(zk)<z)-

sup 10®)(2)[3 4, < Cilla™3, 52 (2.3.86)
FAS]

for k large enough, where |- |%7¢0 = |%e_¢°. In fact, we also can obtain (2.3.86)) by
combining [35], Friedrichs’ inequality 3.6.11] and [35, Sobolev lemma 3.5.12]. That

is, there exists Cy, C}, > 0 such that

sgg)m““)(z)m < Olla™]|2m,p0,803/2) (2.3.87)
zE

< GUIE™Y™a® 40 @) + 169 |g0.52))
Crlla™]| 0,502
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where 2m > n and log k > 2 such that a¥) is harmonic on B(2). Since O® converges
to Og, on the ball By by (2.3.84)),(2.3.76) and (2.3.79)), here C}, can be chosen to be
independent of k£ and denote it by C}. Thus we have ([2.3.86)).

Combining (2.3.83)) and ([2.3.86)), we get

a(@0) o = 0P O, < Cilla®E, sy < 201K al3 =) (23.89)

for k large enough. Notice that here C'; works for all points sufficiently close to xg
by continuity. That is, there exists a constant C; > 0 and a neighbourhood B(x, €)
of xg, such that

@@, . < 204"l 5
for any x € B(xg, €) and k large enough. Since K is compact, there exists a uniform
constant C' > 0 which works for all x € K7, and ([2.3.75)) follows. O]

To summarize, we have a local estimate of the pointwise norm of harmonic forms
valued in semipositive line bundles, which is equivalent to Theorem 2.1 We define

2
SH(z) := sup { @)l ca € H™(X,LF® E)} :

ol 12

where (L, h%) and (E, h*) are holomorphic Hermitian line bundles over a Hermitian
manifold (X,w) as before.

Theorem 2.50. Let (X,w) be a Hermitian manifold of dimension n and (L, h™) and
(E,h¥) be Hermitian holomorphic line bundles over X. Let K| and Ky be compact
subsets in X such that K; C [%2. Assume L > 0 on [%2 and ¢ > 1. Then there
ezists C > 0 depending on w, Ky, Ky, (L, h*) and (E,h¥) such that

SHz) < Ck" 1. (2.3.89)
for any x € Ky and k > 1.

Proof. Combine ([2.3.75)) and the case r = \% of ([2.3.55]). O

Remark 2.51. In particular, when X is compact without boundary, and K; =
Ky = X, then ({2.3.89) implies the case A = 0 in [5, Theorem 2.3].

2.4 Proof of the main results and applications

Let (L,h%) and (E,h”) are holomorphic Hermitian line bundles over a Hermitian
manifold (X,w) as before. Let {s%},>1 be an orthonormal basis of H™(X, L¥ @ E).
Let | - |, w is the pointwise Hermitian norm of a form.
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2 On the growth of von Neumann dimension of harmonic spaces

2.4.1 Proof of Theorem 2.1]

At first, the following proposition is clear by the definitions of S{(x) and B{(x) in
Theorem [2.50] and Theorem [2.1] for 2 € X. Namely,

Bi(z) = ) |sf(@)[}, ws

j>1

a(z)]?
SHz) = sup{%:aeﬂ{"’q(X,LkébE)}.
[l |72

Proposition 2.52. S{(z) < Bl(z) < C1Si(x) on X.

Proof. For simplifying notions, we denote by {s;} an orthonormal basis of Ker (] =
HO(X, L@ ), and thus Bx) = X, |si(@)* and S(z) = supgercers S22, Then

we wish to show

S(z) < B(z) < C1S(x). (2.4.1)
For any s € Ker [, there exists a; € C such that s = ), 4;s;. Fix a x € X, we have

@) P = | S as(o) P <Z|az-||si<x> bs (242)
< ClaPX s )=l I Ba)

7

which implies S(z) < B(z).
We set N := C4 = rank(L*®@ EQ A™T* X ), then for any s € C®(L*\@ EQ A™IT*X)
and a fixed x € X, we have a local trivialization such that

LFQE@ ANYT*X |,=V x CV,
s(z) = (cM(z), A(x), ..., N (x)) € CV,

where z € V' C X. Then |s(z)[> = 3.1V, |!(z)[?>. Moreover, we can assume s;(z) =
(ck(z), 3(x),...,cN(x)) € CN for the given orthonormal basis {s;}, thus

= ls@P =32 la@)P (2.4.3)

For a fixed [, we have

Skl =A@l < (21 d@d @ =1 d

k=1 7

And the definition of S(x) 1ndlcates that 1> . A(x)si(a)] < > |z A(x) )25 ()12,
Then Y, |c(z)[* < S(z). And by (2.4.3), it follows that

ZZ Id(2)]? < NS(z). (2.4.4)

]
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2.4 Proof of the main results and applications

By this lemma and the submeanvalue formulas of harmonic forms in H™4(X, L¥ ®
E) in the section , we can prove the first main result immediately.

Proof of Theorem [2.1} Assume U is a neighbourhood of K such that L is
semipositive on U. Then we choose K, such that K; C Ky C K, C U, and apply
Theorem and Proposition 2.52] O

Remark 2.53. Let (X,w) be a complete Hermitian manifold of dimension n and
(L,hY) and (E,h") be Hermitian holomorphic line bundles over X. Suppose X, L
and E have bounded geometry (i.e, X has positive injectivity radius, and the cur-
vature tensor of X is uniformly bounded, as are all its covariant derivatives and the
curvature tensors of L, E also. For examples, any compact manifold has bounded
geometry; the covering of a compact manifold has bounded geometry. Any noncom-
pact manifold of bounded geometry has infinite volume). And we suppose L > 0
over X. By Theorem [2.1], there exists a constant C' > 0 such that the Bergman
kernel function Bf(z) < Ck" 7 for any x € X, k > 1 and ¢ > 1.

2.4.2 Proof of Theorem

Now we can prove the second main results on ['-dimension and covering manifolds.

Proof of Theorem : Under the assumption of X, I' and X/I', there exists
an open fundamental domain U C X of the action I' on X such that the closure U
is compact.

Since L and F are I'-invariant holomorphic Hermitian line bundles over X, the
induced Hermitian line bundle F := L*¥ ® F is also I'-invariant and holomorphic.
Then the Kodaira Laplacian [0 := [OF is I-invariant. Thus O is essentially self-
adjoint (see [30] Corollary 3.3.4), and we denote still by [ its self-adjoint extension,
which commutes to the action of I'. According to Lemma[2.40] (also see [30, Lemma
C.3.1, Lemma 3.6.3]), the space of harmonic F-valued (n, q)-forms H™?(X, F) is a
['-module on which I'-dimension is well-defined. By (also see [30, (3.6.11),
(3.6.17)]), we have

dimp H™(X, F) :Z /U |s:(2) |7 L dvx (2), (2.4.5)

where {s;} is an orthonormal basis of H™?(X, F') with respect to the scalar product
in L7 (X, F). Using Theorem [2.1| we have

Bi(x) =) |si(x)[5, ., < Ck" (2.4.6)

for any x € U. Then integrating B/(x) over U and combining these two formulas
above we obtain dimp H™?(X, L*®@ F) < Ck™ 9, that is the first asymptotic estimate
in (2.1.3).
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2 On the growth of von Neumann dimension of harmonic spaces

Let ﬁ?é‘;(X ,L* ® E) be the reduced L2-Dolbeault cohomology group, which is
canonically isomorphic to H*?(X, L¥ ® E) as I'-modules by the weak Hodge decom-
position, see ([2.2.45)), thus dimp ﬁ(();;(X, L*®FE) = dimp H*(X, L*®E). Substitut-
ing £ @ A" (T X) for E in the first estimate of , then the same asymptotic

estimate also holds for the space of harmonic L* ® E valued (0, q)-forms and ([2.1.4)
follows. O

Corollary 2.54. Let (X,w) be a compact Hermitian manifold of dimension n and
(E,h¥) be a semipositive holomorphic Hermitian vector bundle of rank v (i.e.,
L(E*)* > 0). Then there exists C > 0 such that for any ¢ > 1 and k > 1 we
have

dim HY(X, S¥(E)) £ Ckmtr—1-e (2.4.7)
where S*(E) is the k-th symmetric tensor power of E.

Proof. We assume I' and E are trivial in (2.1.4), and notice the theorem of Le
Potier (see [24, Chap.III §5 (5.7)]), which relates vector bundle cohomology to line
bundle chohomology, then

dim HY(X, S*(E)) = dim HY(P(E*), (L(E*)*)*) £ CEmt=1-1, (2.4.8)
where P(E*) is a compact manifold of dimension n + r — 1, called the projective
bundle associated to E*, and L(E*)* is a semi-positive line bundle on P(E*), which
are induced by (X,w) and (E,h¥). O
Corollary 2.55. Let (X,w) be a Hermitian manifold of dimension n on which a
discrete group I' acts holomorphically, freely and properly such that w is a I'-invariant
Hermitian metric and the quotient X/T' is compact. Let (L,h%) be a T-invariant
holomorphic Hermitian line bundle on X. Assume (L,h') is semi-negative (i.e.
L* > 0). Then, there exists C > 0 such that for any 0 < g <n—1and k > 1 we

have .,
dimr H 3 (X, L) < Ck*. (2.4.9)

In particular, for all k € N, dimp ﬁ?;))(X, Lk <.

Proof. According to Serre duality (cf. [8, 3.15]) and Theorem [2.2] there exists C' > 0
such that for any ¢ <n — 1 and k > 1 we have
dimp Hs)(X, L) = dimp Hpy) (X, L)
= dimp Hpyy (X, AT 0 X) @ L)
Ck1.

IN

]

Remark 2.56. In the situation of Theorem , if (L,h") is semi-positive and
positive at some point,

dimp H iy (X, L) = k" (2.4.10)
as k — +o00, see [41], [34] and [30]. This can also be obtained by using Theorem
and the asymptotic Hirzebruch-Riemann-Roch formula on covering manifolds.
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3 On the holomorphic extension of
forms with values in a holomorphic
vector bundle from boundary of a
pseudo-concave domain

We study the holomorphic extension problem of smooth forms with values in a vector
bundle from the boundary of a pseudo-concave domain in a compact Hermitian
manifold associated a line bundle. And we proved a result on the meromorphic
extension of (n,q + 1)-forms with values in a vector bundle, when the domain is
g-concave and the line bundle is semi-positive and positive at one point.

This chapter is organized in the following way. In Section we state the main
result of this chapter. In Section [3.2] we introduce the notations and recall the
necessary facts on the convexity. In Section [3.3] we prove the main result.

3.1 The main result: A J-extension theorem

Let (X, w) be a n-dimensional compact Hermitian manifold. Let (E,h¥) and (L, h%)
be the holomorphic Hermitian vector bundles over X and rank(L) = 1.

Let QP9 be the sheaf of smooth (p, ¢)-forms on X. We also denote by E (resp.
L) the sheaf of smooth sections of E (resp. L). Let M (resp. O) be the sheaf
of meromorphic (resp. holomorphic) functions on X. Let M(FE) := M ®o O(F)
(resp. O(E)) be the sheaf of meromorphic (resp. holomorphic) sections of £. We
denote by I'(U, F) the space of sections of a sheaf F on a open subset U C X. Then
H(X,E) :=T(X,0O(F)) is the space of holomorphic sections over X.

Let M be a relatively compact domain in X and the boundary bM is smooth. We
denote its closure by M = M UbM. Assume there exists a real smooth function
on X such that

M={zxeX:r(x)<0}, bM={zxe X :r(z)=0}
and dr(xz) # 0 for any z € bM. We say that r is a defining function of M. Let
TX @ C = TIOX @ TOVX be the splitting of complex tangential bundle. The
analytic tangent space to bM at x € bM is given by

TOOM = {v € TMOX - 9r(v) = 0}.
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3 On the holomorphic extension of forms from boundary

The definition does not depend on the choice of . The Levi form of r is the 2-form
L, € (LM, THD*bM @ TOV*bM) given by

L, (U, V) := (00r)(U,V) (3.1.1)

for U,V € T, L0y , x € bM. The number of positive and negative eigenvalues of
the Levi form is independent of the choice of the defining function (see [30, B.3]).

Let QP9(X, E) be the space of smooth (p,q)-forms with values in £, which is
endowed with the pointwise Hermitian metric (, ),z induced by w and h¥. Let
QP9(bM, F) be the (p, q¢)-forms with values in F over bM, i.e.,

QPI(bM, E) = PI(X, E)oar.

Definition 3.1. A form « € QP4(bM, E) is called complex normal, if there exists
Y € QP 1(bM, E) such that B
a=1UNA(0r)|pm,

where 7 is a defining function of M. We denote by C*?(bM, E) the subspace of
QOP9(bM, E) consisting of complex normal forms. A form g € QP9(bM, E) is called
complex tangential, if

<Oé(33), 5($)>hE,w =0

for every o € CP4(bM, E) and every x € bM. We denote by DP4(bM, E) the
subspace of QP4(bM, E') consisting of complex tangential forms.

Thus we see
QOPYpM, E) =CP1 (DM, E) ® D™ (bM, E) (3.1.2)

with respect to the pointwise Hermitian product (-, ),z . Moreover, we denote the
projections by
w: QPYbM, E) — DPY(bM, F), (3.1.3)

and by ut from QP4(bM, E) to CP4(bM, E).
Definition 3.2. We define a map
0y : QP1(OM, E) — QP (OM, E), 040 := p((30")|oar) (3.1.4)

where J’SQM(W, E_?) and o[y = 0. We say o is 5b—clo§ed, if 0,0 = 0. We say
Y e QP(M,E) is a 0-closed extension of a dj-closed o, if 0¥ = 0 on M and

w(Elorr) = p(o),

i.e., ¥ is O-closed and ¥ = o in the complex tangential direction on bM (see [28,

2.]).
Our basic assumptions: The triple (X, L, M) satisfies:

(A) L is semi-positive on X and positive at one point;
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3.1 The main result: A O-extension theorem

(B) The Levi form £, of a defining function of M has at least n — ¢ negative
eigenvalues on b M.

Our main result is the following extension theorem of 9;-closed forms with values
in a holomorphic vector bundle under our basis assumptions (A) and (B). The
main ideas and techniques follow from the Kohn-Rossi extension theorem and its
applications (see [28, 7.5. Theorem], [31, Lemma 2.5.]).

Theorem 3.3. Let (X,w) be a n-dimensional compact Hermitian manifold. Let
(E,h¥) and (L, h*) be holomorphic Hermitian vector bundles over X and rank(L) =
1. Let M be a relatively compact domain in X and the boundary bM is smooth. Let
1 <qg<n-—3. Assume L is semi-positive on X and positive at one point, and the
Levi form of a defining function of M has at least n — q negative eigenvalues on bM .

Then, there exists a non-zero holomorphic section s € H(X, L*) for some ko €
N, such that for every Oy-closed form o € Q™Y (bM, E), there exists a 0-closed
extension S of the Oy-closed so € QY (bM, L* ® E), i.e.,

S et (M, L @ E)
such that 0S = 0 and p(S|sns) = p(s0).

Remark 3.4. As a consequence of Theorem we obtain a result on meromorphic
extensions as follows. Under the same assumption as above, there exists a non-zero
holomorphic section s € H°(X, L*) for some ko € N, such that for every 0p-closed
form o € Q¥ (bM, E) and the 0-closed extension S € Q™4 (M, L* ® E) of so,
and we can construct a section

Y=s5s'®S
of the sheaf M(L™%) ® L* @ E @ Q™+ on a neighbourhood of M satisfying

(i) The restriction of ¥ on M is a meromorphic (n,q + 1)-form with values in F,
which is denoted by

Sla € T(M, M(E) @ Q™)

(ii) ¥ is a meromorphic extension of ¢ from the boundary bM outside the zeros
of s in bM, i.e., 3 is meromorphic on M and u(X|p) = p(o) on the set
{z € bM : s(x) # 0};

(iii) ¥ is a holomorphic extension of o from the boundary bM outside the zeros of
sin M, i.e., ¥ is holomorphic on M \ {x € M : s(z) = 0} and u(X|pnr) = u(o)
on the set {x € bM : s(x) # 0}.

Remark 3.5. In particular, if ¢ = 1 in Theorem 3.3 M is a strongly pseudo-concave
domain (also 1-concave manifold) in X associated with the line bundle L. Tt follows
that, for each 2 < r < n — 2, we can extend y-closed (n,r)-forms on the boundary
bM , which are with values in F, to meromorphic (resp. holomorphic) forms on M
(resp. M except a small set of zero points) in the sense of Remark [3.4] (ii), (iii).
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3 On the holomorphic extension of forms from boundary

Figure 3.1: Strongly pseudo-concave domain

Example 3.6. For the projective space with the Fubini-Study metric (CP", wgg),
the induced line bundle O(1) is positive everywhere. In general, if X is Kahler and
Moishezon (i.e., X is a compact complex manifold which is embeddable in CP™, see
[30]) with the induced metric w := wgg|as, the induced line bundle L := O(1)|x is
positive on X. Thus, we can extend dj-closed forms with values in E on pseudo-
concave domains M C X by Theorem |3.3| and Remark

3.2 Preliminary on the convexity of complex
manifolds

Let (X,w) be a n-dimensional Hermitian manifold and (F,h%) be a holomorphic
Hermitian vector bundle over X. Let M CC X be a relatively compact domain with
a smooth boundary bM. We denote its closure by M = M | JbM. Let QP4(M, F) be
the space of (p, ¢)-forms with values in ' which are smooth up to and including bM,
ie., WI(M,F) = OP4(X, F)lz7. We denote by (-, -),r,, the pointwise Hermitian
product induced by w and hf on QP4(X, F). The L?-scalar product on QP4(M, F)
is given by

(81, 89) == [W<31<m)732($)>hF’deM($)

where dV)y = w" /n! is the volume form of M. We denote by |[-|| 2 the corresponding
L?-norm and by LP4(M, F) the L? completion of QP4(M, F).

Let 0 : Dom(gF) — LP9T (M, F) be the closure of the Cauchy-Riemann opera-
tor, whose graph is the closure of the graph of 3" on QP4(M, F). Sometimes we will
use O instead of &' for simplifying notations. Let A Dom(éF*) — [P (M, F)
be the Hilbert space adjoint of a" (see [28, (1.12)(1.13)]). Further we can define
OF =90 +9 9 and

Dom(0F) = {s € Dom(éF) N Dom(éF*) 0 s€ Dom(?F*), 9 s € Dom(?F)}.
We denote by

HPUM, F) := Ker(OF) = {s € Dom(O") : O s = 0}
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3.2 Preliminary on the convexity of complex manifolds

the space of harmonic (p, ¢)-forms with values in F', and by
H:LPYM,F)— HP(M,F)

the orthogonal projection. Finally, we denote by HY(M, F') the ¢-th cohomology
group of the sheaf O(F"), which is isomorphic to the Dolbeault cohomology

0.q F): s =
HO’Q<M, F) = {S € SEF (M, ) J s O}
3" Q0a-L(M, F)

We recall some facts on the convexity of domains and manifolds (see [30, B.3]).

Definition 3.7. We say that M satisfies the condition Z(q) if the Levi form £, has
at least n — ¢ positive eigenvalues or at least ¢+ 1 negative eigenvalues at each point
of bM (see [14, P57)).

The number of positive and negative eigenvalues of the Levi form is independent
of the choice of the defining function r (see [30, Lemma B.3.8]).

Definition 3.8. A complex manifold M of dimension n is said to be g-concave if
there exists a smooth function ¢ : M — R such that {x € M : ¢(x) < ¢} are
relatively compact in M for any ¢ < sup ¢ and 100 has at least n — ¢ + 1 negative
eigenvalues outside a compact subset of M; ¢ is called an exhaustion function (see

[32, Definition 4.1]).
We recall the following theorems which are fundamentally important for our proof.

Theorem 3.9. (Kohn-Rossi [28, 5.11. Theorem])
If M satisfies the condition Z(q) and q > 0, then there exists a bounded operator
(the Neumann operator) N : LP4(M, F) — LP9(M, F') such that

(a) NLP4(M, F) C Dom(0F) and LP9(M, F) = OFNLPO(M, F) + HP9(M, F);
(b) N commutes with (OF (79F, (79F*, H;

(c) N(QPa(M, F)) C Q¢(M,F) and H(QP4(M, F)) C QP(M, F);

(d) HPU(M, F) is finite dimensional.

Theorem 3.10. (Hormander [14), (4.3.1) Theorem])
If M satisfies the conditions Z(q) and Z(q + 1), then

HY(M,F)=H"(M,F).

Theorem 3.11. (Marinescu [32, Corollary 4.3.])
If L and F' are holomorphic vector bundle of rank 1 and r over the n-dimensional
q-concave manifold M (n > 3) and L is semi-negative outside a compact set K, then

dim HP(M, IF @ F) < r' / (—1)9(= (L))" + o(k™)
n' M(p,hL) 27T

ask — oo andp <n—q—2.
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3 On the holomorphic extension of forms from boundary

Theorem 3.12. (Kohn-Rossi [28, 5.153.Proposition])

Suppose bM has property Z(n —q—1) andn —q—1> 0. Let F' be a holomorphic
vector bundle over X. If ¢ € QP4(bM, F), there exists a O-closed extension ¢ of v
iof and only iof

Oppo =0 and / ON@py=0, VOcH P LM, F*).
bM

3.3 Proof of the 0-extension theorem

Let (X,w) be a n-dimensional compact Hermitian manifold. Let (E, h%) and (L, h*)
be the holomorphic Hermitian vector bundles over X and rank(L) = 1. Let M be
a relatively compact domain in X and the boundary bM is smooth. We denote by
Lk .= L®* the kth tensor product of L and by E* (resp. L™!) the dual bundle of £
(resp. L).

The following proposition is from [30, Theorem 2.2.27 (2.2.43)].

Proposition 3.13. Under our basic assumption (A), there exist Cy, Cy > 0 such
that for k large enough,

C1k™ < dim H(X, L*) < Cyk™.
Proposition 3.14. Under our basic assumption (B), if 1 < q <mn —2, then
(1) M satisfies the conditions Z(n —q —2) and Z(n —q—1); and
(2) M is a p-concave manifold for each p > q.

Proof. (1) follows from the definition of Z(gq) and the assumption (B). By [20] (6.7)]
and the assumption (B), there exists C' > 0 and a compact subset K C M such that
the exhaustion function has the form

p=e""—1

such that i00¢ has at least n — ¢ + 1 negative eigenvalues in M \ K. Then, (2)
follows from the definition of ¢-concave manifold. m

Proposition 3.15. Under our basis assumption (B), we have
dim HO"~02(M, E*) = dim H"™9"2(M, E*) < 00
for1 <qg<n-—2.

Proof. By the proposition [3.14] (1) and Theorem for the conditions Z(n—q—2)
and Z(n — ¢ — 1), the first equality follows. By the proposition [3.14] (2) and [30]
Theorem 4.6(33)] for ¢ + 1-concave manifolds, the second inequality follows. O
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3.3 Proof of the D-extension theorem

Proposition 3.16. Under our basic assumptions (A) and (B), then
dim HO"" 1 2(M, L™" @ E*) = dim H" 7 *(M, L™" @ E*) = o(k"™).
ask — oo and1 < qg<n-—2.

Proof. By Proposition[3.14] (1) and Theorem [3.10] for the conditions Z(n—g—2) and
Z(n — q — 1), the first equality follows. By the assumption (A), the subset M (n —
q—2,h ") :={x e M : ic(L',h"") has n — ¢ — 2 negative eigenvalues and ¢ +
2 positive ones} is empty. Then, by Proposition m (2) and Theorem for ¢-
concave manifolds M and the bundles L=! and E*, the second equality follows. [

Proposition 3.17. Under our basic assumptions (A) and (B) and 1 < g <n — 2,
then for the harmonic projection

H:HX,LF) x KO 12(M, L% @ B*) — H"""172(M, E),
there exist kg € N and a non-zero holomorphic section s € H(X, L*) such that
H(sf) =0
for every 0 € HO"=972(M, L= @ E*).

Proof. For simplifying of notations, we set V := H(X, L*), U := HO"~9=2(M, E*)
and
W= HO"2(M, L% @ E¥).

Moreover, we define a bilinear map
F(s,a):= H(sa)
for s € V and a € W. Then we obtain a linear map
G:V-oW'®U

by G(s) := F(s,-). Suppose the assertion would be false, that is, for any £k € N
and any non-zero s € V, there exists ag € W such that F(s,ag) # 0. If G(sg) =0
for some sy € V', then F(sg,) = 0 for any o € W. Thus s¢ is zero, that is, G is
injective. And it follows that

dimV < dim(W*®@ U) = dim W x dim U,
that is, for any k£ € N,
dim H°(X, L¥) < dim HO" 7 3(M, L™" @ E*) x dim K"~ 772(M, E¥).

And it follows that k" < o(k™) for k large enough by the propositions|3.13] and
[3.16] which can not hold. Thus, the assertion is true. O
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3 On the holomorphic extension of forms from boundary

Lemma 3.18. Under our basis assumptions (A) and (B) and 1 < ¢ < n — 3, let
s € HO(X, L*) be the non-zero holomorphic section in the proposition and
o € QuItY(bM, E) be Oy-closed.

Then, there exists a O-closed extension S of the 0p-closed so € QW1 (DM, Lo @
E), i.e., S € Qi (M, L* ® E) such that S = 0 and

1(Slore) = p(so).

Proof. Let o' € Q97 (M, E) such that o'|y; = 0. Let 0 € HO"972(M, L™F @ E*).
Thus
O A (so') € Q"1 (M)

and sf € QU"=972(M, E*) is O-closed.
By Theorem (a), (b) and H(s) = 0, there exists ¢ € QO"~973(M, E*) such
that
s = 06 + H(sf) = O¢. (3.3.1)

Then, by the Stokes’ formula,

[ onen) = [ sono=[ @ no= [ aders)= [ d@Ens
Iy

= (=) [ £A(00). (3.3.2)
bM
By , and Oyo = 0, we have
(50/>|(,M = 550’ -+ (w /\ET)’bM = (w /\57’)|bM (333)

where ¢ € Q+1(M, E) and 7 is the defining function of M. By the Stokes’ formula
and bM = {x € X : r(x) = 0}, we have

/ EN(00)) = gAwAEr:/5(5/\¢A5r):/5(§A¢)/\5r
bM M M

bM

— _/Mé(é(g/\w)/\r):— AENY) AT =0. (3.3.4)

bM
Then, by (3.3.2) and (3.3.4)), it follows that
/ A (so)=0 (3.3.5)
bM

for the Jy-closed form so € Q™4 (bM, L@ E) and any § € HO"~"*(M, LF @ E*).
Finally, there exists a 0-closed extension S of so by Theorem for Z(n—q—2)
with n — ¢ — 2 > 0 in our case. O
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3.3 Proof of the D-extension theorem

Finally we can prove our main result and its remark as follows.

Proof of Theorem [3.3} It follows from Lemma [3.1§ and Proposition 3.17] O

Proof of Remark [3.4f Let s € H%(X, L*)\ {0} be the non-zero holomorphic
section given by Proposition [3.17] Let {U,} be an open covering of X such that
Lko|y. is trivial. The holomorphic section s has the form

s = focea

where f, € O(U,) is a holomorphic function on U, and e, € ['(U,, O(L*)) is a
local holomorphic frame.

Let L% be the dual bundle of L* and t, € I'(U,, O(L~%)) be the holomorphic
frame which is dual to e,. For the meromorphic function f;' € M(U,), we define
locally

sThi= f .

Thus, s~! is a meromorphic section on X, which is globally well defined and denoted
by
st e T(X, M(L*)).

We denoted the d-closed extension of the dj-closed so from Lemma by
S et (M, LF @ E).
Finally, we can define a section on a neighbourhood of M by
Yi=s5'®S. (3.3.6)

And its restriction on M is a meromorphic (n,q + 1)-form with values in E, which

is denoted by
Y|y € T(M, M(E) @ Q™11

Moreover, pu(X|pr) = p(o) at each point of the subset {z € bM : s(x) # 0}, since

Shy = (57 ®9) |
s oar @ (1(Sonr) @ - (Sloar))
= 5 owr © (p(s0) @ i (Sloar))
1w(o) ® (s~ oar @ p(Slor))
= (o) & pt (Sloar)- (3.3.7)
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4 The dimension of the space of L?
holomorphic functions over
hyperconcave ends

We study the L? holomorphic functions on hyperconcave ends with some Hermitian
metrics and obtain that the dimension of the space of L? holomorphic functions on
some domains in hyperconcave ends is infinite. The main tool is the existence of L?-
peak functions at boundary points by the classical solution of O-Neumann problem
on manifolds and the compactification theorem.

The organization of this chapter is as follows. In Section [4.I] we state our main
results. In Section 4.2 we introduce the notations and recall the necessary facts. In
Section , we construct L?-peak functions on strongly pseudo-convex domain in
normal Hermitian spaces of pure dimensional and apply it to hyperconcave ends.

4.1 The main result

Let M be a complex manifold with dimension n. Let €2 be a relatively compact
open subset of M with smooth boundary bS2. We denote by O(£2) the space of all
holomorphic functions on Q. A point x € b2 is called a peak point for O(€2) if there
exists a function f € O(€) such that f is unbounded on €2 but bounded outside
V' N Q2 for any neighbourhood V' of z in 2. And we say f is a peak function for O(€2)
at x.

In particular, we say f is a L*-peak function for O(f2), or a peak function for
L3(Q,w) NO(Q), if additionally f € L2 (Qw) = {f: Q= C: [,|f[’w" < o} for a

Figure 4.1: Peak function
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4 The dimension of the space of L? holomorphic functions over hyperconcave ends

Hermitian metric w on Q. The existence of peak (resp. L%-peak) function for O(Q)
is obtained by Kohn [27] (resp. Gromov-Henkin-Shubin [I8]) when €2 is strongly
pseudo-convex. As applications, Levi problem can be solved immediately, see [25],
[18].

In this chapter, we wish to extend their results to certain domains with singular-
ities and smooth domains which are not relatively compact. Our main results are
the existence of L?-peak functions for strongly pseudo-convex domains in normal
Hermitian spaces and hyperconcave ends as follows.

Theorem 4.1. Let X be a normal complex space of pure dimension n > 2. Let
D CcC X be a strongly pseudo-conver domain with smooth boundary bD. Let w be a
Hermaitian form on a neighbourhood of the closure D.

Then, there exists a L*-peak function for O(D) at each boundary point, i.e., for
every x € bD, there exists a function

W, € O(D) N L*(Dyeg,w) NC®(D \ {x}) (4.1.1)
such that lim,_,, |¥,(y)| = +oo fory € D. Thus
dimg L?(Dyeg, w) N O(D) = oc. (4.1.2)

Let (X, ¢, a,b) be a hyperconcave end and X, := {z € X : p(x) < b}, see Section
Let p : X = p(X,) C X, be a biholomorphic map given by the compactification

X, of Xy, where X} is a normal Stein spaces with at worst isolated singularities, see
Theorem E4.8

Theorem 4.2. Let (X, p,a,b) be a hyperconcave end. Let X, = {x € X : p(z) < ¢}
for —o0o < ¢ < b <a. Let © be a Hermitian metric on )/(\C suc/h\that there exists a
Hermatian form w on a neighbourhood of the closure of X. in X, with © < p*w on
X..

Then, there exists a L*-peak function for O(X.) at each boundary point, i.e., for
every x € bX,, there exists a function

?, € O(X.) N L*(X,,0)NC2(X.\ {r}) (4.1.3)
such that lim,_,, |®,(y)| = 400 fory € X.. Thus
dime L*(X.,0) N O(X,) = co. (4.1.4)

Remark 4.3. For a hyperconcave end (X, p,a,b), the existence of &, € O(X,) N
C®(X.\ {z}) with blowing up at z, was firstly established by Marinescu-Dinh [33].
Theorem is a refinement and the new feature is ¢, € L*(X,, ©).
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4.2 Notions and preliminary

Figure 4.2: Hyperconcave end

4.2 Notions and preliminary

Let X be a relatively compact open subset in a complex manifold with the smooth
boundary bX. Assume bX = bX; UbX, and bX; NbX, = @. Moreover, we suppose
bXs is strongly pseudo-convex and bX; is strongly pseudo-concave. We say that X
can be compactified, if there exists a compact manifold X with smooth boundary bX
such that X is biholomorphic to an open subset in X and the i image of b.X, is exactly
bX. We say that X has a pseudoconcave hole at bX;. For example, let B(0,r) be
an open ball of radius r and center 0 in C*,n > 2. Let X = B(0,2) \ B(0,1) be
an annulus, bXs = bB(0,2) and bX; = bB(0,1). Then, the compacification of X is
B(0,2).

In general, any relatively compact domain X, which has a pseudoconcave hole at
bX; as above, can be compactified when dim X > 3 (see [38, Theorem 3, P245],[2]
Proposition 3.2]). However, it is not true when dim X = 2 (see a counterexample in
[16],[2] and [38]). If we consider the following manifolds, which have a pseudocon-
cave hole at —oo, the compactification result still holds when dim X = 2 (see [33]
Theorem 1.2]).

Definition 4.4 ([33]). A complex manifold X with dim X > 2 is called a hy-
perconcave end, if there exist a € R U {+o00} and a proper, smooth function
¢ : X — (—00,a), which is strictly plurisubharmonic on a set of the form {x €
X : p(z) < b} for some b < a. We say ¢ is the exhaustion function and set
X, :={z € X :p(x) <r} forany —oo < r < a. We denote by (X, p,a,b) the all
dates of a hyperconcave end.

We say that a hyperconcave end can be compactified, if there exists a complex
space X such that X is biholomorphic to an open subset in X and (X \X)U{p < 7“}
is a compact subset in X under the biholomorphic map for any r < a. We say X
the completion of X.

Example 4.5. The regular part of a variety with isolated singularities is a hy-
perconcave end. The complement of a compact completely pluripolar set (the set
{¢ = —o0} where ¢ is a strongly plurisubharmonic function) in a complex manifold
is a hyperconcave end, see [33].
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4 The dimension of the space of L? holomorphic functions over hyperconcave ends

Example 4.6. In the definition [4.4], if @ = 400 and ¢ is bounded from above, the
manifold X is called hyperconcave manifold (or hyper 1-concave). The regular part
of a compact complex space with isolated singularities is a hyperconcave manifold. A
complete Kahler manifold of finite volume and bounded negative sectional curvature
is a hyperconcave manifold, see [30].

We introduce the notions on normal Stein spaces with isolated singularities of
pure dimensional, see [I7] and [30] for details.

A C-ringed space (X, Ox) is a pair (X, Ox) of a topological space X and a subsheaf
of rings Ox of the sheaf of continuous functions Cx such that Oy is sheaf of C-
algebra and each stalk Ox, has unique maximal ideal mx , satisfying the quotient
field Ox,/mx, = C. A morphism (X,0x) — (Y,0Oy) of C-ringed spaces is a
continuous map f : X — Y such that the induced map f Oy — f.Ox is a
C-algebra morphism.

A reduced complex space (X, Ox) is a C-ringed space which is Hausdroff and has
the property that for each x € X there exist an open neighbourbood U of x and
an analytic subset A in CV such that (U, Oy) is isomorphic to (A4, 04) as C-ringed
spaces, where O is the sheaf given by restriction of the sheaf Ox on U, and O4 is
the sheaf of holomorphic function defined on open subset of A. We denote by X,
the set of regular points, i.e., x € X,4 if A can be chosen to be an open subset in
C¥. The other part of X are called singular and denoted by KXsing-

A Hermitian form on a reduced complex space X is defined as a smooth (1,1)-
form w on X such that for every point x € X there exists a local embedding
7:U>=2ACGcCCV as above with € U and a Hermitian form @ on G with
w="T1won UN X,e.

A normal complex space (X, Oy) is a reduced complex space such that the local
ring Oy, is a normal ring for every z € X. For a normal space X, every holomorphic
function on X, extends uniquely to a holomorphic function on X.

Definition 4.7. A normal Hermitian space (X, w) is a normal complex space (X, Ox)
associated with a Hermitian form w on X.

A normal space with pure dimensional is defined as follows. Let X be a normal
complex space. To each point x € X there exists a neighborhood U and finitely many
functions fi, ..., fr € O(U) such that the set of common zeros of f1, ..., fx in U consists
of z only: N(f1,..., fr) = {z}. Among all systems fi, ..., fx with N(f1,..., fx) = {z},
there exists one (defined in a suitable neighborhood) with minimal k. This minimal
integer is called the (analytic) dimension of X at x and will denoted by dim, X.
The global dimension of the space X is defined by dim X := sup,.y dim, X. A
normal complex space X is called pure dimensional if dim, X = dim X for all
x € X, see [I7, P.93]. For example, complex manifolds are normal complex spaces
with pure dimensional. If the normal complex space X is of pure dimensional n,
then dim X = dim¢ X,., = n, where the regular set X,., is a complex manifold of
dimension n.
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4.3 L?-peak functions on normal Hermitian spaces and hyperconcave ends

For a normal complex space X of pure dimensional, the (relatively compact)
strongly pseudo-convex domain D with smooth boundary bD in X can be defined
as same as for the case of complex manifolds, i.e., there exists a smooth function ~
on a neighbourhood U C X of bD such that DNU = {z € U : y(x) < 0}, dy # 0 on
bD and the Levi form £, is positive definite on Tél’o)bD for all x € bD, see .

A normal Stein space X is a normal complex space satisfying holomorphically sep-
arable, regular and convex, see [30]. For a normal Stein space X of pure dimensional
with finitely many isolated singularities, the regular set X, is a hyperconcave end
with @ = b = 400 in the definition Conversely, Marinescu-Dinh [33] shows that
the completion of a hyperconcave end can be chosen a normal Stein space with at
worst isolated singularities by the compactification theorem as follows.

Theorem 4.8 ([33],Theorem 1.2). Any hyperconcave end X can be compactified.
Moreover, if @ is strictly plurisubharmonic on the whole X, the completion X can
be chosen a normal Stein space with at worst isolated singularities.

4.3 L*-peak functions on normal Hermitian spaces
and hyperconcave ends

We study the existence of L2-peak functions for strongly pseudo-convex domains,
which are in normal Hermitian spaces of pure dimensional. As applications, we
obtain the existence of L2-peak functions on some domains in hyperconcave ends.
The method is by using compactification theorem and the existence of L2-peak
functions on strongly pseudo-convex domain in complex manifolds.

4.3.1 On normal Hermitian spaces of pure dimensional

Let X be a normal complex space of pure dimension n > 2. Let D CcC X be a
strongly pseudo-convex domain with smooth boundary bD. Let w be a Hermitian
form on D. We define the L? space of functions on D,., associated with w by

L*(Dyeg,w) = {f : Dyeg = C: / |fPw" < oo} . (4.3.1)
D

reg

We have the following result on D by using resolution of singularities and the
existence of L2-peak functions on smooth strongly pseudo-convex domain.

Theorem 4.9. Let X be a normal complex space of pure dimension n > 2. Let
D CC X be a strongly pseudo-convex domain with smooth boundary bD. Let w be a
Hermitian form on a neighbourhood of the closure D.

Then, there exists a L*-peak function for O(D) at each boundary point, i.e., for
every x € bD, there exists a function

W, € O(D) N L*(Dyeg,w) NC®(D \ {z}) (4.3.2)
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4 The dimension of the space of L? holomorphic functions over hyperconcave ends

such that lim,_,, |¥,(y)| = +oo fory € D. Thus
dimg L*(Dyeq,w) N O(D) = oc. (4.3.3)

Proof. Let X' be a neighbourhood of D such that D CC X’ CC X, Dginy = Xiings
and the Hermitian form w is well-defined on X’. By our assumptions, we can always

choose such an open set X’. We have a resolution of singularities
T M — X' (4.3.4)

such that M is a complex connected manifold of dimension n and 7 is a proper

holomorphic surjection. Moreover, we denote by E = m~'(X/,, ) the exceptional

set, and we can assume the restriction of 7 on M \ FE is a biholomoprhic map

T-M\E=ZX],,. (4.3.5)
By restriction the biholomorphic map 7% to D,y C X, eq» We have
T:Q\ E = D, (4.3.6)

where ) = 771(D) C M is a (relatively compact) strongly pseudo convex domain
with smooth boundary b2 in M. Note that b2 N E is empty.

By the compactness of . there exists a Hermitian metric # on a neighbourhood
Q; of Q such that Q € Q; cC M and

0>r"'w on Q\E. (4.3.7)

Note 6 is a Hermitian metric on €2; but not necessary on the whole M.

We consider {2 as a (relatively compact) strongly pseudo-convex domain in £2; with
a Hermitan metric 6 on ;. By applying Kohn’s solution of d-Neumann problem
and its global regularity on Q (see [I8], [27]), there exists a L?-peak function for
0O(£2) at each boundary point, i.e., for every boundary point y € bS2,

h, € O(Q) N L*(Q,0) N C=(Q\ {y}) (4.3.8)
such that lim,_,, |h,(2)| = +oo for z € . Thus
dime L*(2,0) N O(Q) = . (4.3.9)

Let hylo\g be the restriction of h, on Q\ E. Then, hy|o\g is a L*-peak function

for O(Q\ E) at each point of b2, i.e., (4.3.8) and (4.3.9) still verify on Q\ E in stead
of Q. By using (4.3.7) on Q\ E C ; \ E, we have

L*(Q\ E,0) C L*(Q\ B, m*w). (4.3.10)
So it follows that

hylowe € O(Q\ E) N LAQ\ E, 7'w) N €= (Q\ E)Ub)\ {y}).  (4.3.11)
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4.3 L?-peak functions on normal Hermitian spaces and hyperconcave ends

We can define a function ¥, on D,., for every x € bD as follows. Let y := 7 !(z) €
b2 and
@, := (hylovg) 07" : Dyey — C. (4.3.12)

Then, by (4.3.11]) and the biholomorphic map = on M \ E,
W, € O(Dyeg) N L*(Dyeg, w) N C°((Dyeg UbD) \ {x}) (4.3.13)

such that limg_,, |¥,(§)| = +oo for £ € D. By Riemann’s second extension theorem
on normal complex space [I7], we have O(D,.,) = O(D) and

U, € O(D) N L*(Dyeg,w) N C2(D\ {z}). (4.3.14)

Thus
dimg L*(Dyeg,w) N O(D) = oc. (4.3.15)
O

Remark 4.10. For a complex manifold X or D C Xyeg, Theorem reduces to
the case of I' = {e} in [18, Theorem 0.2].

Remark 4.11. Suppose X and D are as same as in Theorem [4.9) Let 7 be a
resolution of singularities on a neighbourhood of D. Let w be a Hermitian form on
D such that there exists a Hermitian metric € on a neighbourhood of the closure
of #71(D) satisfying § > 7m*w on 7 '(D,¢,). The conclusion of Theorem [4.9] still
verifies under these weaker hypothesises.

Corollary 4.12. Let (X,w) be a normal Hermitian space of pure dimension n > 2.
Let D CC X be a strongly pseudo-convex domain with smooth boundary bD.

Then, there exists a L*-peak function for O(D) at each boundary point, i.e., for
every x € bD, there exists a function

W, € O(D) N L*(Dyeg,w) NC®(D \ {z}) (4.3.16)
such that lim,_,, |¥,(y)| = +o0 for y € D. Thus

dimg L*(Dyeq,w) N O(D) = oc. (4.3.17)

4.3.2 On hyperconcave ends

Let (X, ¢, a,b) be a hyperconcave end. Let X, := {x € X : p(x) < b} on which ¢
is strictly plurisubharmonic. We set X, = {z € X : p(z) < ¢} for each —00 < ¢ <
b <a. . .

Suppose X} is the completion of X, such that X, is a normal Stein space with
isolated singularities due to Theorem [.8. Then there exists a biholomorphic map

P X, 2 p(X,) C X, (4.3.18)
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4 The dimension of the space of L? holomorphic functions over hyperconcave ends

The restriction of p on X, is given by
p: X2 p(X,) C X, (4.3.19)
where )/(\C = ()/(\b \ p(Xb)> U p(X.) is the completion of X.. The closure of )/(\C is

()/(\b \ p(Xb)> Up(X.UbX,), which is compact in X;. The boundary bX, = p(bX.) =
bp(X.) is smooth and strongly pseudo-convex by the biholomorphic map p.

We have X, is a relatively compact strongly pseudo-convex domain with smooth
boundary in Xp. Let © be a Hermitian metric on X, such that there exists a
Hermitian form w on a neighbourhood of the closure of X with © < p*w on X.. By
using Theorem (4.9 for X cC Xb and w, for each = € bXC, there exists a function

v, €0 (X ) N L2 ((Xc)mg,w) nex (Xc \ {x}) (4.3.20)
such that lim,_,, |¥,(y)| = +o0o for y € X.. Thus
dime L2 (()?c)reg,w) no ()?) . (4.3.21)
The restriction of ¥, on p(X.) C ()/(\C)reg is given by

Vel € O(p(Xe)) N L (p(Xe),w) N1 € (p(X0) \ {2}) (4.3.22)

Finally, we can define a function @, on X, for every point p € bX,. as follows. Let
z:=p(p) € p(bX,) = bX, and

B, = (Yalpx.)) 0 p: Xe — C. (4.3.23)
By L*(X,,p*w) C L*(X,,©), it follows that
D, € O(Xe) N L* (X, ©) N C* (X, N\ {p}) (4.3.24)
such that lim,_,, |®,(y)| = +oo for y € X.. Thus
dime L*(X,,0) N O(X,) = co. (4.3.25)

Thus we are lead to the following results on hyperconcave ends by the above
argument.

Theorem 4.13. Let (X, ¢, a,b) be a hyperconcave end. Let X, = {x € X : p(z) <
c} for —oo < c < b<a. Let © be a Hermitian metric on X, such that there exists
a Hermaitian form w on a neighbourhood of the closure of the completion )/(\c with
O < p*w on X..

Then, there exists a L*-peak function for O(X.) at each boundary point, i.e., for
every x € bX,, there exists a function

®, € O(X,)NL*(X,0)NC?(X,\ {z}) (4.3.26)
such that lim,_,, |9, (y)| = +o0 fory € X.. Thus
dime L*(X,,0) N O(X,) = oco. (4.3.27)
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Corollary 4.14. Let (X, ,a,b) be a hyperconcave end. Let © be a Hermitian metric
on Xy which can be extended to_a Hermitian form on the completion )/(\b, 1.e., there
exists a Hermitian form w on X satisfying © = p*w on Xp. Let X, = {x € X :
p(x) < ¢} for —oo < c<b.

Then, there exists a L*-peak function for O(X.) at each boundary point, i.e., for
every x € bX,., there exists a function

?, € O(X,) N L* (X, 0)NEC*(X.\ {z}) (4.3.28)
such that lim,_,, |9, (y)| = +oo fory € X.. Thus
dime L*(X,,0) N O(X,) = oco. (4.3.29)

Remark 4.15. Another method to prove Theorem 4.2 associated with a complete
metric is the classical construction of L?-peak functions by studying the existence
and global regularity of the solution of the d-Neumann problem for (0, 1)-forms
on domain X, with strongly pseudo-convex boundary b.X,. endowed with a complete
metric in [33]. In fact, the existence and interior regularity of the solution was proved
in [33]. Moreover, for each point p € bX, there exists a function g € O(X,)NC®(X,\
{p}) such that lim,_,, |g(z)| = co. But g maybe not in L?(X.). The difficulty is the
boundary regularity of the solution due to Kohn, Folland-Kohn, see [25], [27] and
[26]. Suppose we have the boundary regularity in the following sense,

N(Imd N QY (U NX,)) c Q"Y(X,),

where N is the Neumann operator and U is an arbitrary sufficient small holomor-
phic coordinate chart with U N bX, # @. Then, one can directly construct a L?
holomorphic function on X, which only blows up at any given boundary point.
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5 A remark on Bergman kernel of
symmetric tensor power of
holomorphic vector bundles

Our purpose is to study the relation of L?-orthonormal basis of the space of holo-
morphic sections of symmetric tensor power of a holomorphic vector bundle on a
compact manifold and the space of holomorphic sections of the induced line bundle.
Moreover, we obtain a formula on the induced Bergman kernels for trivial bundles.

Let (X,w) be a compact Hermitian manifold of dimension n. Let (E,hf) be a
holomorphic Hermitian vector bundle of rank » on X. Let £* be the dual bundle of
E. We denote by P(E*) the projective bundle associated to E*, which is a compact
Hermitian manifold of dimension n +r — 1. Let Og+(—1) be the tautological line
bundle on P(E*) and Og«(1) its dual bundle (see [42} 3.3.2]). Let S?(E) be the p-th
symmetric tensor power of £ and Og«(p) the p-th tensor power of Opg«(1).

We start from the theorem of Le Potier on compact Hermitian manifolds (see
[24 Chap.III §5 (5.7)]), which implies that there exists an isomorphism between the
spaces of holomorphic sections as follows

HO(X,SP(E)) ~ H°(P(E*), 05 (p)), S 5. (5.0.1)

For any z € X, we denote by E, the fibre of £ at x, which is a C-linear vector
space of dimension r. For v € E,, we denote its metric dual vector by v*, which is
given by v* = h¥(-,v). And we denote the space of such dual vectors by E*. Let
SP(EY) be the p-th symmetric tensor power of E* and P(E}) the projectlization of
it. We denote the equivalent class of non-zero elements v* by [v*] in P(E?). Notice
that P(EY) is isomorphic to P(C") as Hermitian vector spaces.

By our notations, suppose v € E, \ {0} for x € X, then

vt e BE v e SP(EY), [v'] € P(EY).
And, by the definition of (5.0.1)), we see
S([v) () = S(z)(v**) € C,

where g([v*]) € Og:(p)

(] acting on the C-linear space of dimension 1, namely
OE;<_1)®P
and S(x) € SP(F)|, acting on SP(E,)* = SP(EX).

) = { WP X e C},
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It follows that _
S([v*]) = (S(x), v*P)ne?,

where v € E, with |v|,z = 1 and eZ? € Opg«(p)|j+ such that eZP(v**P) = 1. As a

consequence, the following lemma is clear.

Lemma 5.1. Let (X,w) be a compact Hermitian manifold and (E, h¥) the holomor-
phic Hermitian vector bundle. Suppose x € X, v € E, with unit norm, and p € N.
For any S,T € H°(X, SP(E)),

(S, T D) = (S(x), v™ ) (v, T(2))n, (5.0.2)

where {,);, denote Hermitian metrics on the induced bundles by (E, hF) respectively.

In the sequel, we always assume (E,h¥) is trivial, i.e., E = X x C" and h¥ is
the standard Hermitian product on C"i.e., hf(z,w) = 2w for every x € X and
z,w € C". In this case,

P(E*) = X x P(C7), Op-(—1) =X x O(—1),

and if 7 : X x P(C") — X is the natural projection, then the induced metric and
volume form on P(E*) are given by

wpEry = T (wx)+ wper) = wx +wper),

dVP(E*) = dVX/\dVP((CT) (503)

Proposition 5.2. Let (X,w) be a compact Hermitian manifold of dimension n.
Let (E,h¥) be a holomorphic Hermitian vector bundle of rank r on X. Suppose
E = X x C" and h¥ the standard Hermitian product on C". Let {S;} be an L>-
orthonormal basis of HY(X, SP(E)). Then

o 1
(Si; Sj)pe = p+D(p+2)...(p+r—1)

where {, )2 are L* inner products on H°(X, SP(E)) and H°(P(E*),Og-(p)) respec-
tively. In particular, the above coefficient is one if r = 1.

(i, Sj)i2, (5.0.4)

Proof. Given z € X, we can assume S;(z) # 0, then
Ai(x) :==|S;i(x)|n > 0.

Choose an orthonormal basis of SP(E,) with respect to the induced Hermitian metric
h, such that
Si(x) = Ni(w)ey”,

where e; € I, with [e;|,z = 1. By the definitions, we have

(S;,8;) 12 = /P (E*)<§i([v*]),§j([v*])>hdvp(,g*>: /X A(z)dVy, (5.0.5)
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where

A= [ G S Vi

is the integration along fibres.

By (0.2

A(r) = / (S:(), 0%) 1 (0P, 8, (2) ) dVir(is) (5.0.6)
\v|h§:1,[v*}6P(E;)
For any unit norm vector v € E,, by extending e; to an orthonormal basis {e;}I_,
of E,, then
v = Zviei and v* = Zﬁef e Ly,
1 1
and thus

(Si(x), v®P)), = (Ni(@)elP v®PY, = Ni(a)ol” (5.0.7)

Moreover, we have

Si(x) =) by =Y b®..0l € S'(E,),
k k

where .
b= be; € B,
i=1
then )
W, Si(@)n = [Jw bkon =Y _TIO vioy). (5.0.8)
koi=1 kol=1 i=1
Next we consider [v*] € P(E:) with [v|,z = [v*], = 1, then v* = Y] vie} such

that > 7 |v|*> = 1. By || we can assume v! # 0, Then the integral area of
P(E?) in (5.0.6) consists of (v, u?,...,u") € C" as follows:

vl £ 0
and o
0J
wi==, j=2,..,r
Ul
such that ]
212 2
T+ e+ ...+ u|* = PIER

where (u?,...,u") € C". It follows that

w;{gl B dey Ndyy N\ ... Ndx,_1 N dy,_q
(r=1! =114+ 7 (gl + i)
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where A
zj+V-ly;:=w*and j=1,.,r—1

By the definitions of z; + v/—1y;, v/ and v, combining (5.0.7) and - we
see that for the fixed x € X, §; and 5,

ZH b”+2t1(wt \/—_1%)@)‘

Si x 7v@zo ®p S
(Si(2), v*F)n{v (14 320 (e + [yef?)»

(5.0.10)

We substitute | and (| into ( -
Ai() Z 1, (bll + 30 (e — V= Ty)b

Az) =
(z) =l — Jr2r—2 (1+ Zt:l (el + [ge2))rt

dﬂl‘l/\dyl .. .d.ﬁCr,l /\dyr,1 .

(5.0.11)
Changing the coordinates of R>~2 by

e =x, + /1y, fort =1,...,r —1,
then we see on the following integral area

R2r72 ~ {(7’]1,91, ---,777“71791"71) M > 0,0 < Ht < 27T,t = 1, ey T — 1},

bll _th bl,t+1
/H + i O )b )771d7]1/\d91/\---/\'Urfldnr*l/\de“l'

Alz) =
0=3A EESSRI
(5.0.12)
By the fact that
/ e 4o =0,
0<6<2r
It follows that
A(z) A"(x)Z/ o b dy A dOy A .. Ay_rdig_y A dO
€T = r— r— r—
1 g (1"‘2:;117%2)"”771 m 1 Tr—1Q71r—1 1

Ai() - ] —1/ m--Nr—1
= b )(2m)" dm A ... \dn,_
ﬂl(% [To:hen) w1 ST T M1

t=1 "It

= )\i(x)<ei®pasj(x)>h2r71 /(‘R+) ( - Tn; 12 dTh/\.../\dT]r,1

L+ mi Pt
= (S [ oI A Ay
n L+ mi)rt
- Sil), S5(@)n . (5.0.13)
(p+r—=1Dp+r—2)..(p+1)
Finally, we substitute it into ([5.0.5)), then (5.0.4)) follows. O
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Let d := dim H°(X, SP(E)) = dim H°(P(E*), Og-(p)). Let P,¥(z) be the Bergman
kernel associated to SP(FE) given by

d

PY(x) =) Si(z) ® Si(x)",

i=1

and Py (E*)(f) the Bergman kernel associated to Opg-(p) given by

where {T;} is a L? orthonormal basis of H*(P(E*), Og«(p)). Then we have a corre-
sponding relation between them as follows.

Theorem 5.3. Let (X,w) be a compact Hermitian manifold of dimension n. Let
(E,h%) be a holomorphic Hermitian vector bundle of rank r on X. Suppose E =
X x C" and h* the standard Hermitian product on C". Suppose p > 2. Let v € E,
be an unit norm vector at x € X. Then

P ([
(p+r—Dp+r—2)..(p+1)

<PPX(I)U®p, U®p>hsp(E) ==

(5.0.14)

Proof. By Proposition , {(Vip+r—1Dp+r—2)..(p+ 1)S;} is an orthonormal
basis of H(X, SP(E)). Suppose the dimension of this space is d, then

(P (x)o®, 0%, = () Si(x) ® Si(z)"v®, %),

=1

(Si(@), v (0™, Si())n

(Si([v*]), Si[v" )

B ()
(p+r—1(p+r—2)..(p+1)

>

=1

]

Remark 5.4. For a general holomorphic Hermitian vector bundle E on a compact
Kahler manifold, one can refer to [42] for the construction of the metric wp(g-)
on the projectlization of the bundle P(E*). However, in general case, since the
decomposition of wp(g-) as may not hold, we may not decompose the volume
form of P(E*) to be the disjoint product of the volume form of X and the volume

form of P(E?) = PC™! as simple as (5.0.3).
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6 A generalization of Hedenmalm’s
solution of the J-equation in C"

We generalize a result of Hedenmalm on the Hérmander’s solution of the d-equation
in C with a growing weight to the case of C".

6.1 Basic notations and the J-equation with growing
weights

Let C" be the complex n-space and (zi, ..., 2,) the n-tuples of complex numbers.
We identify C" with R** by (21, ..., 2n) = (T1,Y1, - Tn, Yn). Here z; = x; + iy, for
7=1,...n. For j =1,...,n, we denote by

_ 1 1
5_0 10 .9 0 o .9

R R I F R R T

the complex differential operators. For a €'-smooth function f € €*(C"), we set

f =Y (0;f)dz

We denote by dA := dx1dy;...dx,dy, the volume form on C". And it is clear that
the standard hermitian metric (dz;, dz;) = 20;; on C" by (dz;, dz;) = (dy;, dy;) = d;;
and (dz;,dy;) = 0. For j =1,...,n, the Laplacian operator is given by

= 02 0?
A= ZAJ7 AVE 3]=(a$ +a—ng)-
Let C2°(C™) be the space of smooth functions on C" with compact support
and Q%!(C") the space of smooth (0,1)-forms on C" with compact support. Let
gf) € C?(C",R) be a real valued €*smooth function on C". Let L*(C",e*??) and
5.1)(C", %) be the L*-completion of CX(C") and QP'(C") with the indicated
Welghts The L*norms are given by |72 (cn sx26) = fon [f[?e**?dA, and for each

f =301 fidz; with f; € L*(C",e**?), we see

1132, | (onsan) = Q/Cn SR = 257 | £ 2 e
1 1
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6 The 0-equation with growing weights

We denote by || ||zz and (, )z2 the standard norm and inner product in the space
L*(C™). B
For f € L*(C",e**), 9, f is defined in the sense of currents by

<5jf7 g> = <f7 5;9>L27

for g € C*(C"), where 5: is the formal adjoint of 5]» in L?-inner product. For
7 =1,...,n, we define two subspaces as follows

A?((C", e ) = {f e L*C" e )| d;f =0 in the sense of currents},
A%Ovl)((C", e ) = {fe L(QOJ)(C”, e ) | Zgjfj = 0 in the sense of currents}.
1

The following is our main result, which give a generalization of Hedenmalm’s
solution of the d-equation in C" with a growing weight (see [19]). Our proof is
analogue to [19], which is essentially due to the works of Hérmander on 0-equations.

Theorem 6.1. Let ¢ be a real-valued C*-smooth function on C" with A¢ > 0
everywhere. Suppose f € L%OJ)((C”, e*?) with f = > f;dz; such that,

Z f]g]dA = 0,
1 Jen

for all g € A?O’l)(C”, e %) with g = Y1 gjdz;. Then, there exists a solution to the
0-equation Ou = f with

HUH%Q(@L,&M@ < HfH%?O’l)((C”,eQd’)’

i€, Jon lulPe??ApdA < 2 [, 37 |f;?e*?dA.

6.2 A norm identity and the solution of the

0-equation on C”
Let 0; = %J_ : C®(C") — L*(C™) and 5; be its formal adjoint. We still denote their
maximal extensions by the same notations. And we can define 9; and 0} similarly.
Then 5: = —0; and 97 = —0d; on CX(C™). For a function F, we let My denote
the operator of multiplication by F. Let T; : C(C") — L*(C") be a differential
operator given by

7} = 5j - M5j¢.
Then its formal adjoint is given by T = —0d; — Mpy,4,. Moreover, we define the
differential operator T': €°(C") — L% ,,(C") by
Tf:=) (T;)dz; =) (0;f — f0;0)dz; = Of — f0¢.
1 1
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6.2 A norm identity and the solution of the 0-equation on C"

Then, its formal adjoint T : QX'(C*) — L*(C") is given by T*f = 23 T f; for
f=221fidz

Lemma 6.2. Let ¢ : C" — R be C*-smooth function. Let v € C*(C") and
j=1,....,n. Then,

— — 1

B0~ Byl — o 0ol =3 [ Paeds,  G21)
ZHTUHLQ Z||T*vy|L2 _ -/ W AGdA, (6.2.2)
HTUHL%OJ)(@) > |lv\/Ad||72,  when Ag > 0. (6.2.3)

Proof. Firstly, it is clear that 0;Mp = Mg, . + Mpd; and 9;Mp = Mp,p + Mpd; on
Cl-smooth functions when F is €'. Then

* * =) * (0 * 1
T3 Tyv = TjTjv = (95 — Mg,4)™(0; — Mp,4)v — (05 + Mojs)"(0; + Mpye)v = 5 Ma,ev.

By [on [V[PA;¢dA = (Ma,4v,v) 2 and
B0 — 0B3l% = (T Tyo,0) 1, (1050 +v036l% = (TyTv,0) 2

6.2.1) follows. And (6.2.2) follows by - ) and A = > 7 A,. Finally, we see
6.2.3) by (6.2.2) and ”TUHL2 NGO ”Z1TUdZJHL2 (€ =237 (I Thvl7.. H

Let TC(C") be the L?

(0.1y(C™)-closure of TCX(C").

Lemma 6.3. Let h € TCx(C") C L%o,n((cn) and A¢p > 0, then there exists a
function v € L*(C", A¢) such that Tv = h in the sense of currents and

”UH%Q(C",A@ S ||h||%%&1)(cn), i.e.,/c |U’2A¢dz4 S 2/(C Z |h]|2dA (624)
n n 1

Proof There exists a sequence {v;}7_; C €(C") such that h = lim; o T; in
o1)(C"). By (6.2. 3), the sequence {v;/Ag} converges in L*(C"). We set u :=
limj_m vjv/A¢ in LZ(C”). We denote that v := ﬁ and it is clear that v €
12(C", Ag)
Firstly, we show that (6.2.4)) verifies. By ((6.2.1)) and the definitions of v, v and h,

we have
[0l 22(cn ng) = llullzz = hm lvjv/ Adll7 < hm IITUJIILz NGO ||h||L(O (e

Secondly, for f =7 f;dz; € Q%'(C"), we claim

T*f=2) T;f; € CX(C"). (6.2.5)
1
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6 The 0-equation with growing weights
In fact, by the definitions, (IT™f, g)2 = (f, T9>L§0 ) for each g € €°(C"). And
SUT:f; € €2(CY) by T:f; € €2(C"). Then

(£ Tz =2 (fiTige =2 (T} fi 002 = (2) T f.9)re.
1 1 1

and ((6.2.5)) follows.

Finally, we show Tv = h in the sense of currents. T'v = h in the sense of currents
is equivalent to

(Tv, f) = (h, iz, VF € Q0D(EC)

& (0T )= (h, f>L%o,1)
= <\/A_¢7 T f>L2 - ]1LI£IO<T/U]’ f>L(20’1) = jli)r{.lo@]], T f>L2

& lim (

u % -
P \/T(b_vj’T f>L2 =0.

We notice that

(s~ T Dl = l(u=uv/B6, Ly
< u= /Al 2 e
< Cllu—vj\/Ad||2 — 0, j — 0.
Then, Tv = h follows. [

Lemma 6.4. Let h € L%O (D) ©KerT™. Then there exists a solution to Tv = h in
the sense of currents with .

Proof. Let k € L7, ,y(D) and k € TCX(D)*, ie., (k,Tv>L%0 , =0, Ve (D).
Then, the distribution theory gives (T*k,v) = 0, i.e., T"k = 0 in the sense of
currents. Then k € Ker T*. It follows that T€(D)* C Ker T* and

L{1y(D) © Ker T* = Ker T+ C (T€®(D)*)* = T€x(D).
Then, we have h € TC>®(D). By Lemme for h, the assertion follows. ]

Lemma 6.5. Let k€ L, (C) and k =37 kjdz;. Then k € Ker T* if and only if
S°10;(e%k;) = 0 in the sense of currents.
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6.2 A norm identity and the solution of the 0-equation on C"

Proof. In the sense of currents, we see
T°k=0 < (T"k,v) = (k,Tv), 2= 0, Yv € €°(C")

& (k) (Tiv)dz;) )1z, _ZZk Tiv) 2 = 0
1

n n

& > (Trkjv) = (O (=0 — Mag)kj,v) =0

1 1

S (=) 0i(e%k;),v) =
1
= Zaj(€¢/€j) =0
1
= Zgj(e‘i%j) =0
1

]

Proof of Theorem : Let h := e?f. Then h € L ,(C"). We assume
= > " h;dz;, then h; = e°f; for j = 1,..,n. For g € A%Ovl)((C”,e*Q‘i’) with
g =1 g;dz;, we set k; := e g, and k := ) | k;dz;. By our assumption,

0:2/ -dA:Q/ hik;dA = (h, k "
Cnglzf]g] "21: 37 )12 2,1)(C™)-

As g run over A%OJ)((C", e=2?), k run over all elements of Ker T* by Lemma
We have h € KerT*t = 2 1H(C") & KerT*. By the Lemma there exists
v € L*(C", A¢) such that Tv = h and ||U||L2(Cn Ag) S ||h||L2 ey

We set u = e~%v and notice h = e?f. Then, in the sense of currents,

ef = Z T;(e®u)dz;
= Z(e(ﬁg‘jMe*qb)(@qbu)dzj =e” Z(@u)di
1 1
= e®Ou.

Then du = f. And it follows that ||u||L2 Cn 20ng) < 112

. U
L%Oyl)((cn,e%)

Remark 6.6. Theorem implies [19, Theorem 1.2] by choosing n = 1. The
following result is clear and the proof is analogue to above. Let j be a fixed number
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6 The 0-equation with growing weights

in {1,...,n} and ¢ : C* — R is C%*-smooth with A;¢ > 0. Suppose f € L*(C",e*?)
with
fgdA=0, Vge A?((C", e 2.
(Cn

Then there exists a solution to the d-equation gju = f such that

ullZoen om0 < 20F 172 (cn e2e)-
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