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Preface

Energy has been the focus of my interest since the first days of my engineering stud-

ies at ETH Zurich starting in 2005. Nevertheless, having finished my Master’s the-

sis in 2011, I was somehow unsatisfied with the level of specific knowledge I had

reached. So it was quite clear to me that I needed to continue learning as a doc-

toral student. However, it was not clear to me at all how much more I really had

to learn. That I resolved to complement my engineering perspective with a doctoral

thesis in economics did not really contribute to simplify the task. Even though I was

able to draw on what I had learned so far, I had to start asking questions differently,

and to broaden the foundation of my work based on economic principles. Thus,

my decision inevitably brought along additional workload and frustration, but also

inspiration and satisfaction. In fact, it has probably been exactly that shift of per-

spective that had a significant, sustainably positive impact on my knowledge about

energy and power systems in particular. Moreover, it probably affected the devel-

opment of my soft skills in a very positive way, too. Overall, my years as a doctoral

student at the University of Cologne were very enriching in several respects, and an

experience I would not want to miss.

During this adventure, several people and institutions have supported me in dif-

ferent ways, for which I am deeply grateful. First and foremost, I want to thank

Felix Höffler for academic supervision and support. His clear line and typical man-

ner of giving dry yet constructive comments forced and motivated me to reflect the

existing, and tackle the continuation of my work. His high standards and degree

of rationality were certainly reasons why I have learned so much rigorous economic

thinking. I am also very grateful to Ulrich Thonemann for academic advice and com-

ments as well as for being the second assessor of my thesis, and to Van Anh Vuong

for chairing the defense of my dissertation.

An institutionally and financially stable framework has been provided by the In-

stitute of Energy Economics (EWI) and the University of Cologne, as well as by the

German Research Foundation (DFG) with the research grant HO5108/2-1 and the

German Federal Ministry for Economic Affairs and Energy (BMWi) and the German

Federal Ministry of Education and Research (BMBF) with their Energy Storage Ini-

tiative (grant 03ESP239).
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1 Introduction

Power systems regulation is never at rest. [...] [T]here are

quieter periods and more active ones. Present times appear

to demand a particularly active regulatory response.

Ignacio J. Pérez-Arriaga (2013)

Power systems have been sparking public attention ever since the first central

power plant was commissioned by Thomas Edison on Pearl Street, New York City, in

September 1882. They have played an important role in the growth of economies

worldwide, and will continue to do so in the future. As an inevitable consequence

of public attention and societal importance, power systems have also been subject

to intense scrutiny and debates about their best possible organization. After a pe-

riod of private initiatives and competition at the end of the 19th and the beginning

of the 20th century, the power sector was for a long time organized by means of

vertically integrated monopolies. The entire supply chain – including production,

transmission, distribution, and retailing – was hence comprised within a few elec-

tric utilities that were either state-owned or private and subject to heavy regulation.

However, this paradigm has been overthrown by the deregulation wave beginning in

the 1980ies, aiming at a reorganization of power systems to create far-reaching eco-

nomic benefits. As a consequence, nowadays the production and retail sides of the

supply chain typically involve numerous competitive firms. It is a recognized fact

that if properly implemented, deregulation was indeed able to involve substantial

improvements in the performance of power sectors (Joskow (2008b)).

Nevertheless, regulation remains at the core of power systems. Two of the most

important reasons for regulatory interventions to be present in today’s power systems

are negative environmental externalities from power generation, and the fact that

the power grid is a natural monopoly. The former reason has once more gained

momentum during the very recent UN Climate Change Conference in Paris. Indeed,

to implement the strategies the 195 parties have agreed upon, the supply side of the

power sector – with 25% currently the largest single source of global greenhouse

gas emissions – will be key for future developments (IPCC (2014)). It is and will

be a major challenge to design a regulatory framework for the power sector that
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1 Introduction

incentivizes and manages its transformation towards low-carbon power production

(e.g., by means of renewable energies) in an effective and economically efficient

way.

The other important reason for regulatory intervention stems from the natural

monopoly characteristics of the power grid. Recent advances in the theory of reg-

ulation make it imperative to rethink and redesign regulatory approaches for the

power grid in order to reap efficiency gains. Especially in the light of the above

mentioned fundamental changes in power systems, taking advantage of better reg-

ulation gains even more importance. In fact, greenhouse gas emissions in the power

sector and grid regulation are closely related when it comes to the expansion of vari-

able renewable electricity sources (such as wind and solar), which typically requires

expansion of the electricity network.

Generally speaking, getting the economics and regulation of power system right

is important since weak designs may entail significant losses of social welfare. In

fact, due to the large turnover of the power sector (e.g., around 455 bn. €in Eu-

rope in 2013, representing more than 3% of European GDP1), even small relative

inefficiencies cause a large absolute excess burden.

Against this background, it is the goal of this thesis to investigate some aspects

of the economics and regulatory design of power systems. The focus lies on the

above mentioned fields where regulatory intervention is particularly relevant and

economically justified: The integration of variable renewable energies into power

systems on the one hand, and electricity network expansion and operation on the

other. Overlapping areas are also taken into account. As I will show in this thesis,

these fields are promising candidates to yield substantial improvements when being

reformed. To this end, novel approaches shall be suggested to identify and tackle

economic and regulatory deficits and to improve the related outcomes. In the context

of renewable expansion and grid regulation, my thesis contributes to the academic

debate with the following four papers that are contained in Chapters 2-5. Three of

those chapters are joint work with co-authors whose contribution I shall once more

gratefully acknowledge here. If elaborated as joint work, all authors contributed

equally to all parts of the corresponding paper.

1The annual turnover of the European electricity sector can be estimated with a simple calcula-
tion based on 3101 TWh of net electricity production and an average price of electricity for end-
consumers of 0.147 €/kWh. European GDP in 2013 was 13520 bn. €(all numbers taken from
Eurostat (2015)).
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1.1 Outline of the thesis

Chapter 2: Spatial dependencies of wind power and interrelations with spot price

dynamics (with Christina Elberg). Published in the European Journal of

Operational Research, Vol. 241 (1), pp. 260-272, 2015.

Chapter 3: Supply chain reliability and the role of individual suppliers. Forthcoming

as EWI Working Paper, in preparation for submission to Management

Science.

Chapter 4: Congestion management in power systems – Long-term modeling frame-

work and large-scale application (with Joachim Bertsch and Lisa Just).

Published as EWI Working Paper 2015/03, Revised and resubmitted to

the Journal of Regulatory Economics.

Chapter 5: Regulation of non-marketed outputs and substitutable inputs (with

Joachim Bertsch). Published as EWI Working Paper 2015/06, in prepa-

ration for submission to the International Journal of Industrial Organi-

zation.

In the following Section 1.1, I will outline the contents of these four chapters and

put them into context as well as into relation with each other. In Section 1.2, I discuss

the methodologies that are applied in the different chapters. Section 1.3 concludes

the introduction.

1.1 Outline of the thesis

In my thesis, I investigate several aspects of the economics and regulatory design of

power systems. I focus on the production and transmission sectors (even though the

contents of Chapter 5 may also be applied to the distribution sector). Along this part

of the supply chain, I analyze different economic activities and how they should be

organized in order to induce short- and long-term efficiency. The specific challenges

I address in the first two papers stem from the time-varying and interdependent

temporal and spatial distribution of production (especially, from variable renewable

energies) and demand, while the latter two papers focus on the degree and exchange

of information between different players in the supply chain.

Chapter 2 deals with the integration of variable renewable energies, especially

wind energy, into power systems. If wind and solar were to (only) receive the whole-

sale electricity price (and no subsidies via, e.g., fixed feed-in-tariffs), they would face

the challenge that their generation is highly correlated: on a windy day in northern

3



1 Introduction

Germany, all wind generators along the coast are able to produce. For that reason,

prices earned by renewables will typically be below the average price level. Hence,

it may make sense to install renewable capacities where correlation with other pro-

ducers is favorable, even if the place is less windy.

In this paper, we assess the market value of variable generation assets at different

locations using a stochastic simulation model that covers the full spatial dependence

structures of generation by using copulas, incorporated into a supply and demand

based model for the electricity spot price. This model is calibrated with German data.

We find that the specific location of a wind turbine – i.e., its spatial dependence with

respect to the aggregated wind power in the system – is of high relevance for its mar-

ket value. It is reduced by up to 8 €/MWh (i.e., 15%) compared to average spot

price levels, and varies by up to 6 €/MWh for the different locations that were ana-

lyzed. Many of the locations show an upper tail dependence that adversely impacts

the market value. Therefore, a model that assumes a linear dependence structure

would systematically overestimate the market value of wind power in many cases.

This effect becomes more important for increasing levels of wind power penetration

as the price effect of wind power becomes more pronounced.

Regulatory practice so far often ignores the complex dynamics and interactions of

generation and electricity prices by offering, e.g., spatially and temporally fixed feed-

in-tariffs. In contrast, to reveal the actual value of electricity at each specific time

and place – needed to trigger incentives for efficient investments – the dynamics and

interactions that are depicted in this section should be represented in the regulatory

design of renewable energy integration.

Chapter 3 picks up a related issue arising from the stochastic nature of wind and

solar generation. It analyzes the contribution of individual stochastic suppliers to

the supply reliability of the overall system, as well as an appropriate payoff scheme.

How valuable an individual stochastic supplier really is for a given system is difficult

to determine, since it not only depends on the stochastic nature of the individual

supplier itself, but also on all other stochastic suppliers that are present. For reg-

ulatory purposes, the contribution of intermittent renewables to system reliability

is important because it should be the basis for any capacity payment to these gen-

erators. In particular, it should influence the payments individual suppliers could

receive in any sort of capacity mechanism that have been intensively discussed and

implemented in many electricity markets.

To this end, I first investigate the statistical properties of the supply chain, includ-

ing stochastic and interdependent supply and demand. Based on these finding, I
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1.1 Outline of the thesis

show that an efficient organization of the suppliers is difficult to achieve in a com-

petitive environment (e.g., in the context of capacity mechanisms). To overcome

this problem, I propose a payoff scheme based on marginal contributions and the

Shapley value which may, for instance, be applied in a centralized procedure. The

proposed concept exhibits desirable properties, including static efficiency as well

as efficient investment incentives. In order to demonstrate the relevance and ap-

plicability of the concepts developed, I investigate an empirical example based on

wind power in Germany, thereby confirming my analytical findings. In practice, my

approach could improve the design of capacity or renewable support mechanisms.

More generally, the approach could be applied to organize supply chains and their

reliability more efficiently.

In Chapter 4, I turn my attention towards the impact of electricity generation,

especially from renewable energies, on the electricity grid. Due to the fact that

favorable sites for renewable electricity generation are typically far away from load

centers, new grid infrastructures are often needed. However, as generation and grid

services are unbundled in today’s liberalized power systems, it may be difficult to

obtain a system outcome where planning and operational activities in the generation

and grid sector are well coordinated. In this context, an appropriate regulatory

design can help to improve or even resolve this coordination problem.

Key ingredient to organize the interaction between generation and grid is the way

how congestion in the grid is managed. In principle, several congestion management

designs are available, differing with respect to the definition of market areas, the reg-

ulation and organization of grid operators, the way of managing congestion besides

grid expansion, and the type of cross-border capacity allocation. In order to inves-

tigate and compare the performance of different designs, we develop a generalized

and flexible economic modeling framework based on a decomposed inter-temporal

equilibrium model including generation, transmission, as well as their inter-linkages.

The model covers short-run operation and long-run investments and hence, allows

to assess short and long-term efficiency.

Based on our modeling framework, we are able to identify and isolate implicit fric-

tions and sources of inefficiencies in the different regulatory designs, and to provide

a comparative analysis including a benchmark against a first-best welfare-optimal

result. Moreover, we provide quantitative results by calibrating and numerically

solving our model for a detailed representation of the Central Western European

(CWE) region, consisting of 70 nodes and 174 power lines. Analyzing six particu-

larly relevant congestion management designs until 2030, we show that compared to

5



1 Introduction

the first-best benchmark, inefficiencies of up to 4.6% arise. Inefficiencies are mainly

driven by the national organization of markets and responsibilities for the grid in-

frastructures, which could be overcome by a coordinated European approach.

Chapter 5 takes a closer look at the specific activities in the grid sector itself, and

investigates a problem that was neglected in the previous section: due to the fact that

the electricity grid is a natural monopoly, the firm being in charge has its own (profit-

maximizing) agenda and hence, needs to be regulated in order to align its activities

with social preferences. This can be a challenging task if the firm has exclusive

knowledge about the economic and technical characteristics of its activities which it

is not willing to share voluntarily. For instance, in the case of electricity grids, the

responsible firm may have multiple options to cope with an increasing deployment

of renewable energy sources, such as grid expansion or improved grid operation.

At the same time, electricity systems are highly complex, and for the regulator it is

often hard to observe and judge whether the mix and overall level of measures taken

by the firm are adequate, let alone optimal.

This setting appears to be unresolved by the existing literature on regulation. We

hence derive the theoretically optimal regulation strategy based on a menu of con-

tracts that is able to make the firm reveal its exclusive knowledge. As an additional

contribution, we then contrast our theoretical findings with other regulatory ap-

proaches that are practically applied by regulatory authorities in many countries,

even though they are seemingly simplistic and outdated from a theoretical perspec-

tive. With this comparative analysis, we provide regulators with useful information

about ways to improve their strategies. At the same time, we also show for the exem-

plary case of Germany that the relatively simple (cost-based) regulatory approach

may – under certain conditions – in fact be close to the theoretically optimal strategy.

1.2 Discussion of methodological approaches

Methodological approaches were chosen and developed to suitably address the spe-

cific research question of each chapter. As discussed in Section 1.1, the specific

challenges investigated in Chapters 2 and 3 stem from the interdependent tempo-

ral and spatial distribution of supply (especially from variable renewable energies)

and demand. Correspondingly, we apply statistical analysis and stochastic simula-

tion models that are able to cover the stochastic nature of the underlying problem.

Interdependencies between the random variables are a main focus in both papers.

However, they are depicted in greater detail in Chapter 2, where copulas, i.e., full
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1.2 Discussion of methodological approaches

multivariate dependence structures, are explicitly analyzed and modeled. In con-

trast, Chapter 3 represents dependence structures based on covariance, i.e., a linear

measure of dependence. Hence, Chapter 3 could be extended by covering general,

non-linear dependence structures, possibly allowing for interesting additional in-

sights. However, it should be noticed that the analytical tractability – which is indeed

one of the main advantages and contributions of Chapter 3 – is probably jeopardized,

or at least very complex.

Furthermore, it could be argued that the first two chapters appear to be some-

what "incomplete". Indeed, they both conduct analyses of fundamental drivers on

the supply side, especially regarding the availability of renewable resources. Both

papers’ goal is to determine a system value for the product at hand (value of produc-

tion in Chapter 2, and value of reliability in Chapter 3). Furthermore, both papers

propose payoff mechanisms that are – in contrast to existing designs – in line with

these system values, while inducing desirable properties, such as static efficiency and

efficient investment incentives. However, even though many implications of these

payoff schemes are thoroughly discussed, further analytical techniques could be ap-

plied, such as optimization routines or game-theoretical equilibrium analysis. This

would be a necessary and interesting next step in order to determine, e.g., the most

promising business cases or the economic equilibrium under the suggested payoff

schemes as well as possible deviations from a welfare-optimal benchmark.

The latter two papers (Chapters 4 and 5) both focus on the degree of information

available to different firms in the system. Specifically, Chapter 4 focuses on informa-

tion deficits stemming from the spatially aggregated uniform prices in zonal markets.

In this setting, asymmetric information is exogenously introduced at the interface

between the production and transmission sector by means of different congestion

management designs. Importantly, this information deficit cannot be resolved by

the parties involved, such that the outcome is necessarily inefficient. The reason lies

in the inherent incompleteness of aggregated uniform prices that do not represent

real grid scarcities. Representing such an information deficit in a fundamental (par-

tial) equilibrium model is not easy. In fact, classic equilibrium models build upon

the assumption of perfect information for all market participants. Hence, in order to

introduce this regulatory deficiency, we decompose our problem into the production

and transmission sector and limit the amount of information that can be exchanged.

This is a novel methodological approach that was derived based on economic princi-

ples and proved to be applicable to large-scale problems while producing consistent

and robust results. For instance, we are able to confirm the economic inferiority

7



1 Introduction

of zonal markets in comparison to nodal pricing that necessarily follows from the

introduced information deficit. Nevertheless, it is fair to say that the methodology

could benefit from further research. So far, neither the existence and uniqueness

of a global optimum of the problem, nor the convergence of the solution algorithm

have been analytically proven. Moreover, we build on the assumption of a perfectly

regulated (i.e., cost-minimizing) firm responsible for the operation and expansion of

the transmission sector. As such, we only consider information deficits induced by a

flawed market design and disregard strategic withholding of information. While this

isolation is indeed intended for this paper, its integration (especially on the trans-

mission side) would represent an interesting extension. However, such an analysis

would render the numerical solution even more complex, and would probably come

at the cost of a higher level of abstraction to ensure numerical feasibility.

In a certain sense, the methodology of Chapter 5 is on the opposite side of the

one applied in Chapter 4. It is a purely theoretical and highly stylized principle-

agent model. Yet, it essentially considers a similar problem of information deficits

between the involved parties (here, e.g., a monopolistic transmission firm and the

regulator). However, in contrast to Chapter 4, the information deficit – even though

also introduced exogenously – can here be resolved by means of a suitable contract

framework. This endogeneity of information revelation is the reason why the frame-

work is so complex (and interesting) to solve, and why the analytical analysis needs

such a high level of abstraction.

Lastly, I shall mention that my entire thesis largely disregards the complexities of

the retail sector, and instead assumes an inelastic demand in all chapters. There are

essentially two reasons why this assumption is made: First, demand for electricity is

indeed relatively inelastic, especially in the short-term. This is mainly due to large

shares of consumers not being exposed to short-term price variations, rather paying

a uniform price that only changes, e.g., once a year – even though consumers’ utility

from consuming electricity is in fact often highly time-dependent (for instance, elec-

tric lighting is an essential service that people are typically not willing to postpone).

Second, assuming an inelastic demand often facilitates the analytical and numerical

analysis and solution. For instance, it may under certain conditions allow to for-

mulate a non-linear welfare-maximization as a linear cost-minimization that can be

solved much more easily (as done in Chapter 4, for instance). Despite these reasons,

the inelastic demand assumption can be seen as a fairly strong assumption. Hence,

even though the analysis will quickly become complex, future research could relax

this assumption and introduce elastic demand functions.

8



1.3 Concluding remarks

1.3 Concluding remarks

Nearly all energy-related (research) questions can be posed and answered from dif-

ferent perspectives, using different assumptions, methodologies and ways of inter-

pretation. Unsurprisingly, energy-related research is hence conducted by several

academic disciplines, among which the technical and economic sciences are proba-

bly the ones that are involved the most. Moreover, interdisciplinary interfaces are

often included or even crossed in order to embrace the full scope of a problem.

My thesis is primarily meant as a contribution in the field of energy economics,

while in addition, some of the papers reach out to a generalized economic prob-

lem and broader area of interest and application.2 It applies economic ideas and

concepts, and provides novel approaches and insights regarding the economics and

regulatory design of power systems. Specifically, it focuses on the efficiency of design

alternatives, which serves as an objective analysis framework and basis of valuation.

While doing so, I largely take into account the technological features of the under-

lying system, e.g., aspects of meteorology, technical functionalities of power plants,

or Kirchhoff’s laws in power grids. In contrast, however, I focus less on aspects of

equity, i.e., the question how resources could be distributed throughout society in

a way that we consider to be fair. At the same time, I believe that one of the main

future challenges in the energy sector will be to complement economically efficient

designs with notions of equity. To this end, economic analysis could be joined by

political and sociological approaches. As an example, let me mention the European

discussion about nodal pricing. Even though many researchers have clearly argued

in favor of a nodal pricing regime in terms of efficiency, it seems that (political)

decision-makers have been avoiding serious consideration of this issue, perhaps due

to a general aversion towards changes, but certainly also because an implementation

would entail significant redistributional effects. It will be necessary yet challenging

to overcome such barriers, e.g., by means of second-best approaches that still pro-

vide a high level of economic efficiency while at the same time being politically

feasible.3 To this end, distributive effects will need to be taken into perspective to

make efficient solutions work.

2This mainly applies to the contents of Chapter 3 and 5. Both papers take power systems as an
(important) exemplary area of application, but refer to more general issues (i.e., supply chain
reliability in the former, and monopoly regulation in the latter paper).

3In the mentioned example, it could for instance be interesting to only expose the supply side to nodal
prices, while retail prices remain uniform throughout the country.
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2 Spatial dependencies of wind power and
interrelations with spot price dynamics

Wind power has seen strong growth over the last decade and increasingly affects

electricity spot prices. In particular, prices are more volatile due to the stochastic

nature of wind, such that more generation of wind energy yields lower prices. There-

fore, it is important to assess the value of wind power at different locations not only

for an investor but for the electricity system as a whole. In this paper, we develop

a stochastic simulation model that captures the full spatial dependence structure of

wind power by using copulas, incorporated into a supply and demand based model

for the electricity spot price. This model is calibrated with German data. We find

that the specific location of a turbine – i.e., its spatial dependence with respect to

the aggregated wind power in the system – is of high relevance for its value. Many

of the locations analyzed show an upper tail dependence that adversely impacts the

market value. Therefore, a model that assumes a linear dependence structure would

systematically overestimate the market value of wind power in many cases. This ef-

fect becomes more important for increasing levels of wind power penetration and

may render the large-scale integration into markets more difficult.

2.1 Introduction

The amount of electricity generated by wind power plants has increased significantly

during recent years. Due to the fact that wind power is stochastic, its introduction

into power systems caused changes in electricity spot price dynamics: Prices have

become more volatile and exhibit a correlated behavior with wind power fed into the

system. In times of high wind, spot prices are observed to be generally lower than

in times with low production of wind power plants. Empirical evidence of this ef-

fect has been demonstrated for different markets characterized by high wind power

penetration, e.g., by Jónsson et al. (2010) for Denmark, Gelabert et al. (2011) for

Spain, Woo et al. (2011) for Texas or Cutler et al. (2011) for the Australian market.

Due to the cost-free availability of wind energy, wind power plants are characterized

by marginal costs of generation that are close to zero and therefore lower than those
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

for other types of power plants such as coal or gas. Hence – if the wind blows – wind

power replaces other types of generation and thus leads to lower spot market prices

in such hours. As a consequence, power plants are faced with increasingly difficult

conditions and an additional source of price risk when participating in the market.

Until now, fluctuating renewable energy technologies (including wind power itself)

have often been exempted from this price risk by support mechanisms (e.g., by fixed

feed-in-tariff systems) in order to incentivize investments. However, their price risk

draws more and more attention as they make up an increasing share of the genera-

tion mix and may at some point be fully integrated in the liberalized power market.

Therefore, for an individual investor as well as for a social planner it becomes in-

creasingly important to understand the value of wind generation and how it depends

on the location of the wind turbine.

The purpose of this paper is to derive revenue distributions and the market value

of wind power, i.e., the weighted average spot price wind power is able to achieve

when selling its electricity on the spot market, at specific locations. It is clear that the

value of a wind turbine at a specific location depends on whether it tends to produce

when many other wind turbines at other locations can also produce, or whether it is

one out of few producers at a given time. To capture the full stochastic dependence

structure of wind power, we use copulas and incorporate the stochastic wind gen-

eration in a supply and demand based model for electricity prices. More precisely,

we take the following two steps. At first, we develop a stochastic simulation model

for electricity spot prices that incorporates the market’s aggregated wind power as

one of the determinants. We use the residual demand, given by the difference of to-

tal demand and aggregated wind power, to establish the relationship between wind

power and spot prices. Secondly, we link the market’s aggregated wind power to

the wind power of single turbines in order to quantify their market value and the

revenues depending on their specific location. We use copulas to model this inter-

relation. The model is calibrated with German data, since Germany already has a

high share of wind power.

We find that taking into account the entire spatial dependence structure is indeed

necessary, and that considering only correlations between a specific turbine and the

aggregate wind power would be misleading. Even if the correlation of a specific tur-

bine is lower compared to another, the resulting market value may be lower due to a

non-linear, asymmetric dependence structure. In fact, we find a pronounced upper

tail dependence that adversely impacts the market value for many of the locations

analyzed. Therefore, a model solely based on linear dependence measures would

12



2.1 Introduction

systematically overestimate the market value of wind power in many cases. More-

over, it is shown that this effect becomes increasingly important for higher levels of

wind power penetration.

Our paper contributes to three lines of literature. First, we complement the litera-

ture on supply and demand based models. Within this class of models, Bessembinder

and Lemmon (2002) were among the first to study the importance of demand and

production costs for electricity prices. The model developed by Burger et al. (2006)

follows a similar conceptual approach by including a non-linear functional depen-

dence of the electricity spot price on a stochastic demand process as well as a long-

term non-stationarity. Howison and Coulon (2009) further extend the number of

state variables explaining the electricity spot price by including fuel prices. With

our paper, we contribute to this line of literature by including stochastic produc-

tion quantities of wind power that may impact the supply side and hence electricity

prices.

Secondly, we extend the literature employing copulas, especially in the context

of wind power applications. Copulas have first been identified by Papaefthymiou

(2006) to be a suitable tool for modeling multivariate dependencies of wind speeds.

Subsequently, copulas have been employed in different studies to model spatial and

temporal dependencies of wind speeds or wind power. Spatial dependencies have

been modeled with the help of copulas by Haghi et al. (2010) for PV and wind

power as well as system load in an Iranian case study, by Grothe and Schnieders

(2011) for wind speeds in an optimization problem minimizing aggregated wind

power fluctuations in Germany, by Hagspiel et al. (2012) for wind speeds in a Eu-

ropean probabilistic load flow analysis, and by Louie (2014) for power generation

from a multitude of pairs of wind turbines in order to identify the best-suited bivari-

ate copula models. In contrast, copulas are used for temporal dependence structures

in Pinson and Girard (2012) to model the multivariate stochastic process of short-

term wind power trajectories (based on a methodology developed in Pinson et al.

(2009)) and in Zhou et al. (2013) to investigate wind power forecasting based on

probabilistic kernel densities. We contribute to this second line of literature by apply-

ing conditional copulas to model the dependence structure between specific turbines

and the aggregated wind power. This approach allows us to specify and investigate

interrelations between the physical characteristics of a wind turbine and electricity

spot prices, and hence to value wind power assets more appropriately.

In fact, the valuation of power generation assets is the third line of literature our

paper complements. So far, research on the valuation of power generation assets

13



2 Spatial dependencies of wind power and interrelations with spot price dynamics

has mainly focused on conventional power (e.g., Thompson et al. (2004), Porchet

et al. (2009) or Falbo et al. (2010)) and the optimization of hydro power schedules

(e.g., García-González et al. (2007) or Densing (2013)). The relatively few papers

that deal with the valuation of wind power is primarily based on historical data of

wind power and day-ahead market prices (e.g., Green and Vasilakos (2012)). In a

recent study presented by Girard et al. (2013), wind power predictability is assessed

as a decision factor during the planning phase of a wind power project, showing

that the financial loss due to imbalance costs induced by imperfect predictions only

represents a low share of revenue in the day-ahead market. Even though they find

that the aggregation of wind farms over large distances has an impact on the market

value, they do not further elaborate on spatial dependencies. Our paper concentrates

on this particular issue and shows that spatial dependencies are indeed crucial for

the market value of wind power projects, especially for increasing penetration levels.

The remainder of this article is organized as follows: Section 2.2 provides a short

introduction to copula modeling with a particular focus on conditional copula sam-

pling which we apply in our model. The model itself is presented in Section 2.3.

Section 2.4 reports the results of the methodology applied to the case of wind power

in Germany, namely the revenues and the market value of specific wind turbines.

Section 2.5 concludes.

2.2 Stochastic dependence modeling using copulas

In this section, we briefly discuss the modeling of stochastic dependencies with the

help of copulas. A more detailed introduction is provided e.g., in Joe (1997), Nelsen

(2006) or Alexander (2008). For a comprehensive literature review of the current

status and applications of copula models, the interested reader is referred to Genest

et al. (2009), Durante and Sempi (2010) and Patton (2012).

2.2.1 Copulas and copula models

A copula is a cumulative distribution function with uniformly distributed marginals

on [0, 1]. Sklar’s theorem is the main theorem for most applications of copulas,

stating that any joint distribution of some random variables is determined by their

marginal distributions and the copula (Sklar (1959)). The bivariate form of Sklar’s

theorem is as follows: For the cumulative distribution function F : R2 → [0,1] of

any random variables X , W , with marginal distribution functions FX , FW , there exists
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2.2 Stochastic dependence modeling using copulas

a copula C : [0,1]2→ [0, 1] such that

F(x , w) = C (FX (x), FW (w)) . (2.1)

Sklar’s theorem also holds for the multivariate case of n > 2 dimensions. The cop-

ula function is unique if the marginals are continuous. Conversely, if C is a copula

and FX and FW are continuous distribution functions of the random variables X , W ,

then (2.1) defines the bivariate joint distribution function. From Sklar’s theorem,

it follows that copulas can be applied with any marginal distributions. Particularly,

marginal distributions may differ for each of the random variables considered.

In our application we are interested in the dependence structure of the market’s

aggregated wind power W and a single turbine wind power X . The copula captures

the complete dependence structure of X and W . The selection of an appropriate

copula model can be made independent from the choice of the marginal distribution

functions. Taking advantage of this, the joint distribution of W and X is determined

in a two stage process: First, the marginal distribution functions FW and FX are

determined, followed by the selection of the most appropriate copula model.

Copula functions are mostly determined in a parametric way. There are different

types of parametric copula models that can be used to capture the pairwise depen-

dence. In many applications – such as ours – it is particularly important to differ-

entiate between symmetric or asymmetric, tail or no tail, and upper or lower tail

dependence structures. Therefore, one can test several parametric copula models

that are able to capture these characteristics: The Gaussian copula is symmetric and

has zero or weak tail dependence (unless the correlation is 1). In contrast, the sym-

metric Student-t copula has a relatively strong symmetric tail dependence. Whereas

the Frank copula is another symmetric copula with particularly low tail dependence,

Clayton and Gumbel copulas incorporate an asymmetric tail dependence. Lower tail

dependence is captured by the Clayton copula, while the Gumbel copula incorpo-

rates an upper tail dependence.1 These copulas are listed in Table 2.1.

The marginals u and v can be interpreted as FX (x) and FW (w), respectively. ΦΣ
denotes the multivariate normal distribution function with covariance matrix Σ and

tΣ,ν the multivariate Student-t distribution with ν degrees of freedom and covari-

ance matrix Σ. The copula parameters can be estimated based on observed data by

1Gaussian and Student-t copulas belong to the group of Elliptical copulas, whereas Frank, Gumbel
and Clayton copulas belong to the group of Archimedian copulas. For a more extensive discussion
of different copula families, see, e.g., Nelsen (2006)
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

Copula family Copula function C (u, v)

Gaussian ΦΣ
�

Φ−1(u),Φ−1(v)
�

Student-t tΣ,ν

�

t−1
ν
(u), t−1

ν
(v)
�

Clayton
�

max
�

u−θ + v−θ − 1,0
	�−1/θ

Frank −1
θ ln

�

1+ (
e−uθ−1)(e−vθ−1)

e−θ−1

�

Gumbel e−((− ln(u))θ+(− ln(v))θ )1/θ

Table 2.1: Copula models

optimizing the log-likelihood function:

θ̂ =max
θ

∑

t

ln c (FX (x t) , FW (wt) ;θ ) (2.2)

where θ denotes the parameter vector and c the copula density. The selection of

the most appropriate copula model can then be determined based on the Akaike

Information Criteria (AIC).

2.2.2 Conditional copula and simulation procedure

Like any ordinary joint distribution function, copulas have conditional distribution

functions. The conditional copula can be calculated by taking first derivatives with

respect to each variable, i.e., for u= FX (x) and v = FW (w) we have

C(u|v) =
∂ C(u, v)
∂ v

and C(v|u) =
∂ C(u, v)
∂ u

. (2.3)

For the application presented in this paper, there is one inherent advantage of

using conditional copulas rather than sampling directly from the bivariate copula

distribution: Samples can be conditioned on time series that may serve as inputs

to the simulation procedure. The time series characteristics can thus be preserved

during the simulation process. We use time series of the market’s aggregated wind

power as an input variable for the spot price model.

We consider the stochastic processes (X t)t∈N and (Wt)t∈N. FX t
(X t), FWt

(Wt) are

uniformly distributed random variables on [0, 1]. For random variables Ut , Vt ∼
U (0, 1), F−1

X t
(Ut) and F−1

Wt
(Vt) thus follow the distributions of X t and Wt , respec-

tively. It is important to notice that by applying the inverse distribution functions,

the dependence structure is not influenced, i.e., Ut and Vt as well as FX t
(X t) and

FWt
(Wt) have the same copula C .
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2.3 The model

The conditional sampling procedure can be summarized as follows:

1. Apply the marginal distribution function FWt
to the time series of the market’s

aggregated wind power (w1, w2, w3, ...) in order to get
�

v∗1 , v∗2 , v∗3 , ...
�

.

2. Simulate (u1, u2, u3, ...) from independent uniformly distributed random vari-

ables.

3. For each observation FWt
(wt) = v∗t , apply the inverse conditional copula

C−1
FWt (Wt ),FXt (X t )

�

·|v∗t
�

to translate ut into u∗t by:

u∗t = C−1
FWt (Wt ),FXt (X t )

�

ut |v∗t
�

(2.4)

4. Apply the inverse marginal distribution functions to
�

u∗1, u∗2, u∗3, ...
�

in order to

obtain the corresponding simulations of the random variable

X t :
�

F−1
X1

�

u∗1
�

, F−1
X2

�

u∗2
�

, F−1
X3

�

u∗3
�

, ...
�

.

2.3 The model

We develop a stochastic simulation model for the single turbine wind power and

electricity spot prices, including a precise representation of their interrelations. The

interrelation is established by the aggregated wind power that is related to both

the electricity spot prices as well as the single turbine wind power. Hence, we set

up a model that represents these two relationships: First, a supply and demand

based model that takes, among others, the aggregated wind power as an input.

Second, a stochastic dependence model that links the single turbine wind power

to the aggregated wind power. These two parts of the model can be summarized by

the following two equations:

St = ht (Dt −Wt) + Zt (2.5)

X t = F−1
X t

�

C−1
FXt (X t ),FWt (Wt )

�

Ut |FWt
(Wt)

�

�

(2.6)

where St is the hourly stochastic spot price and X t the hourly single turbine wind

power, for t ∈ N. The spot price St is determined by two components: First, the

function ht describes the dependence of the spot price on the residual demand that

is determined by the difference of the electricity demand level Dt and the stochastic

aggregated wind power Wt . Second, a short term stochastic component adds to the

spot price that is denoted by Zt . As operators of wind power plants are able to curtail
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

their power output in case of negative spot prices, their price is non-negative, i.e.,

SW
t =max {0, St}.

The second part of the model links the hourly single turbine wind power X t to the

aggregated wind power Wt . FX t
and FWt

denote the corresponding marginal distri-

bution functions. The joint distribution function of these two random variables is de-

termined by the corresponding copula, i.e., FX t ,Wt
(x t , wt) = C

�

FX t
(x t) , FWt

(wt)
�

.

Due to the copula’s ability to separate marginal distribution functions and the de-

pendence structure, the joint distribution function can be modeled in a two-step

process: First, the marginal distribution functions FX ,t and FW,t are determined.

Second, the appropriate copula CFXt (X t ),FWt (Wt ) is selected and estimated. We deploy

the conditional copula in order to keep the time series properties of the stochastic

process (Wt)t∈N. For the simulation procedure, independent [0,1]-uniformly ran-

dom variables Ut are needed. Note that the marginal distribution functions are the

same within a month m, i.e., FX i
= FX j

if i, j ∈ m. The same holds for FWt
, ht and

CFXt (X t ),FWt (Wt ).

Based on Equations (2.5) and (2.6), the amount of hourly wind power produced

by a single turbine and the spot prices can be simulated. We sample from these model

equations using a Monte Carlo simulation (n=10000) in order to investigate the

market value and revenue distributions as well as the relevance of the dependence

structure with the aggregated wind power for single turbines at different locations.

While the revenue is simply the sum of the products of electricity generation and

prices, the market value of a wind turbine is the average spot price weighted with

the electricity generation of the respective wind turbine:

MV =

∑

t X tSt
∑

t X t
. (2.7)

In the following subsections, we explain the input parameters and the different parts

of the model in more detail.

2.3.1 The data

Different data sets are deployed in order to calibrate and estimate the different parts

of the model. In the following, we explain the content and origin of these sets, as

well as the way in which the data are preprocessed.
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2.3 The model

Expected and realized generation by the German aggregated wind power:

For the supply and demand based model (represented by ht in Equation (5)), data

is needed on the effectively delivered day-ahead prognosis of the German aggregated

wind power in 2011. Note that the day-ahead prognosis – and not the actual aggre-

gated wind power – is used, since this is the relevant information for the day-ahead

market (Jónsson et al. (2010))). In contrast, for the estimation of the appropriate

copula (C) the realized generation of 2011 is used in order to determine its depen-

dence structure with the realized single turbine wind power at different locations.

Expected as well as realized generation data are provided by the transmission sys-

tem operators and published on the EEX Transparency Platform (EEX Transparency

Platform (2012)).

Wind speeds of single stations: Hourly mean wind speeds for various stations in

Germany are provided via the national climate monitoring of the German Weather

Service for the years 1990-2011 (DWD (2014)). The measurement data for 19 lo-

cations are used in this project to determine the corresponding power output series

of wind turbines.2 Wind speeds are scaled to the hub height of currently installed

wind turbines (100 meters) assuming a power law: vh1
= vh0

(h1/h0)α, where h0 is

the measurement height, h1 the height of interest and α the shear exponent. Ac-

cording to Firtin et al. (2011), α is assumed to be 0.14.

Wind power capacities: The development of currently installed wind power ca-

pacities per federal state between 1995 and 2011 is available from the German Wind

Energy Association (German Wind Energy Association (BWE) (2012)). In 2011, in-

stalled wind power capacities in Germany amounted to 27.1 GW.

Electricity demand levels: Hourly electricity demand levels for the German mar-

ket in 2011 — used as one of the explaining variables for spot prices and denoted

by Dt in Equation (2.5) — are provided by ENTSO-E (2012).

Spot prices: EPEX day-ahead prices from 2011 are deployed for the calibration

of the spot price model (Equation (2.5)). The EPEX day-ahead market is organized

by an auctioning process that matches supply and demand curves once a day, thus

determining prices at which electricity is exchanged in each respective hour.

2Missing data are interpolated based on the previous and next available value if the missing gap is
not exceeding 12 hours. If the gap is longer, the values are replaced by data of the same station
and same hours of the previous year.
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

2.3.2 Derivation of synthetic aggregated wind power

As an important input for the model, curves are needed that describe the wind power

that the currently installed wind power capacities would have produced during the

last decades (i.e., the long-term stochastic behavior of aggregated wind power in the

power system). In the model, the curve is needed for the estimation of the marginal

distribution FW,t of the aggregated wind power Wt . It is important to notice that this

curve has to be derived synthetically, as wind power capacities changed significantly

during the last years.

Based on wind speeds and wind power capacities, the synthetic German aggre-

gated wind power is generated as follows: By applying a power curve capturing the

characteristics of the transformation process from wind energy to electrical power,

wind turbine power generation profiles can be derived. In this study, the power

curve is assumed to be one of a GE 2.5 MW turbine (General Electric (2010)). Alter-

natively, one could use an average taken from multiple turbines. The transformation

is based on a look-up table derived from the power curve and linear interpolation.

Furthermore, electrical output is determined as a ratio of installed wind power ca-

pacity (i.e., scaled to [0,1]). Multiplying this ratio with the wind power capacity

installed in the corresponding federal state yields the wind power. The above steps

are repeated for 16 locations (one for each federal state) and all available years

(1990–2011), resulting in a time series for what would have been produced during

the last 22 years with current wind power capacities. In order to check the plausibil-

ity of this approach, historical wind energy time series and volumes can be compared

to the model estimates. The comparison for the 2011 time series yields high con-

formity with an R2 of 0.84. Another check of consistency is done by calculating the

accumulated aggregated wind power production volumes for the past 10 years from

the synthetically generated curves, and comparing them to the overall wind power

production as reported in Eurostat (2012). We find the deviations to be less than

12%.

2.3.3 Supply and demand based model for the electricity spot price

We develop a supply and demand based model to derive electricity spot prices de-

pendent on the level of wind power. A similar approach has been applied in Burger

et al. (2006). The main difference between our and their approach is that we use

the residual demand instead of total demand. We are therefore able to integrate the

effect of wind power on spot prices.
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2.3 The model

We describe the non-linear relation between residual demand and spot prices (i.e.,

ht in Equation (2.5)) by an empirical function estimated from historical hourly spot

prices, demand and wind power data. To derive a functional form for ht we use

spline fits which are suitable to capture the non-linearities in the demand-price de-

pendence. The parameters of ht are estimated from historical data for the reference

year 2011 on a monthly basis in order to capture seasonal differences and variations

on the supply side that occur, e.g., because of planned outages or variations in fuel

costs.
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Figure 2.1: Demand-price dependence in February 2011 and spline fit

Note that if demand were totally price-inelastic, the function ht would approxi-

mate the supply curve that represents all available sources of electricity generation

ranked in ascending order of their marginal generation costs (excluding wind en-

ergy) that is often referred to as the merit order. Even though the electricity is

generally very inelastic in the short term, there may be some price-response of de-

mand. Hence, our function ht should not be seen as an unbiased estimator of the

merit order.

The data and the corresponding spline fit are shown in Figure 2.1 for the month

of February 2011. All other months of 2011 are presented in Figure 2.10 in the

Appendix. As can be observed, the dependence between residual demand levels

and prices is characterized by steep ends and a comparatively flat part in between

(i.e., for the residual demand ranging between 40 and 70 GW). The steeper part

in the lower tail is generally more pronounced than the price increase for higher

residual demand levels. Rather moderate price increases in the upper tail may be

interpreted by prevailing excess capacity in the German power market, leading to

very few instances at which scarcity prices occur.

Besides the functional dependence on (residual) demand, additional stochastic
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

factors influence spot market prices such as speculation, unplanned power plant

outages or scarcity prices or demand side management. These effects are lumped

together and captured by the residual price process Zt in Equation (2.5). In the

following, we aim at finding a model for Zt that is capable of capturing the charac-

teristics observed in the data. We can derive the observed residual price component

based on ht , the observations of residual demand and spot prices from zt = st − ht ,

and use the result for the calibration of the residual price process (Zt)t∈N. The

time series zt is visually observed to be stationary within the considered time frame,

which is confirmed by an augmented Dickey-Fuller test that indicates that the null

hypothesis of a unit root can be rejected at the 95% level.

The empirical auto-correlation function of zt decays slowly, however, with an ap-

parent dependence at a lag of 24 hours. We therefore choose to model Zt as a

seasonal ARIMA (SARIMA) model with a 24 hour seasonality. In order to do so, the

ARIMA model needs to be extended to include non-zero coefficients at lag s, where s

is the identified seasonality period. SARIMA models can be specified in a multiplica-

tive form, resulting in a more parsimonious model than simply extending ARIMA to

s lags.

As the Engle’s ARCH test indicates that there is conditional heteroscedasticity in

the data, we extend the SARIMA by a GARCH component. GARCH-type models are

able to capture conditional heteroscedasticity by splitting the error term εt into a

stochastic component ηt and a time-dependent standard deviation σt . The latter

can then be expressed dependent on lagged elements of ε and σt (Engle (1982),

Bollerslev (1986)).

Various specifications of SARIMA-GARCH models are estimated and evaluated.

Based on the AIC, a GARCH(1,1)-SARIMA(2,0,2)×(1,0,1)24 model is found to per-

form best. The inclusion of additional parameters hardly improves the fit. Note that

no constant needs to be added to the model of Zt due to the fact that the process

has been already centered by applying a spline fit.

Comparing the residual’s distribution to the normal distribution yields unsatisfac-

tory results (Figure 2.2, left hand side). Thus, alternatively, the error term can be

specified as a t-distribution which leads to an improved match of the distributional

shapes (Figure 2.2, right hand side). Instead of ηt ∼ N (µ,σ2) we therefore use

ηt ∼ t(ν), with ν being the t-distribution’s degrees of freedom that are estimated

from the data.
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Figure 2.2: QQ-plots of the 2011 residuals compared against a normal distribution and a
Student-t distribution

Written explicitly, the model for Zt now takes the following form:

Zt =φ1Zt−1 +φ2Zt−2 +Φ1Zt−24 +Φ1(φ1Zt−25 −φ2Zt−26) (2.8)

+ εt + θ1εt−1 + θ2εt−2 +Θ1εt−24 +Θ1(θ1εt−25 − θ2εt−26)

εt =σtηt (2.9)

σ2
t =α+ β1ε

2
t−1 + γ1σ

2
t−1 (2.10)

ηt ∼t(ν) (2.11)

The parameters for the above model are estimated from the time series zt by

optimizing the log-likelihood function. The estimates are presented in Table 2.2.

Parameter φ1 φ2 Φ1 θ1 θ2 Θ1 α β1 γ1 ν

Estimate 0.37 0.36 0.97 0.57 0.07 -0.85 2.96 0.30 0.47 3.61
Std. Error 0.15 0.12 0.00 0.15 0.02 0.01 0.03 0.03 0.27 0.16

Table 2.2: Parameter estimates for the residual price process model

2.3.4 Estimation and selection of copula models

In this section, we select and estimate models for the joint distribution of a single

turbine wind power and the German aggregated wind power for 19 wind power sta-

tions in Germany3. We apply the two-stage process introduced in Section 2.2: First,

3We determine the models for the joint distribution functions between the German aggregated wind
power and the following stations: Aachen, Angermünde, Augsburg, Bremen, Dresden, Emden,
Erfurt-Weimar, Idar-Oberstein, Kahler Asten, Kleiner Feldberg, Konstanz, Leipzig-Halle, Magde-
burg, Münster-Osnabrück, Oldenburg, Potsdam, Rostock, Saarbrücken and Schleswig.
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

the marginal distributions are determined, followed by the selection and estimation

of the copula model that best describes the dependence structure.

In order to determine the marginal distributions, we consider the hourly synthetic

wind power data for the years 1990–2011 for the different stations as well as for

the German aggregated wind power. The yearly data is split into monthly intervals

in order to capture seasonal differences. We thus obtain 22x12 subsamples from

which we get 22x12 empirical distribution functions. With 22 years, the data covers

a wide range of weather uncertainties that largely determine the quantity risk of

wind power. Furthermore, the extensive database allows us to use the empirical dis-

tribution functions as marginal distribution functions (FWt
, FX t

) of the two variables

of interest, namely the single turbine wind power and the aggregated wind power.4

The copula model CFXt (X t ),FWt (Wt ) is estimated from the data of the realized Ger-

man aggregated wind power in 2011 and the corresponding hourly single turbine

wind power. We hereby avoid a possible source of imprecision in the dependence

structure by relying on observed rather than synthetically generated data. Moreover,

with subsamples consisting of approximately 700 observations, the database is suffi-

ciently large for a reliable estimation of the copula parameters. Just as the empirical

distribution functions, the copula models are selected and estimated on a monthly

basis.

To find the most appropriate copula model, various types are fitted to the data

based on the procedure introduced in Section 2.2.1.5 Table 2.8 in 2.6 report the

copulas that provide the best fit to the data in terms of AIC for all stations that are

considered in this paper. Note that the data we use may comprise ties, especially

for the upper and lower bounds of the single turbine wind power when zero and

nominal power output is observed multiple times. As ties can affect the copula esti-

mation quality, we apply the approach described in Kojadinovic and Yan (2010) and

construct pseudo-observations by randomly breaking the ties.

In the following, we will first concentrate on particular stations (namely Bremen,

Kleiner Feldberg and Augsburg) in order to point out the most important aspects with

respect to the dependence structure and the effect on the results. Bremen is located

in northern Germany where most of the current wind capacity is installed due to gen-

erally high average wind speeds. Kleiner Feldberg is a mountain in central Germany,

4Note that instead of using the empirical distribution function, a parametric distribution, e.g., a beta
distribution (which is supported on a bounded interval), could be assumed or estimated. This
would become particularly attractive when there is a lack of data.

5The following copula models are tested: Gaussian copulas, Frank copulas, Clayton copulas, Gumbel
copulas and Student-t copulas for ν=1,2,3,4,5,10,20,30,40,50.
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also characterized by comparatively favorable wind speeds but less surrounded by

other wind turbines. Finally, we analyze Augsburg, which is located in southern

Germany and far away from most wind power capacities. Augsburg has the fewest

full load hours among the three stations considered. Table 2.3 lists the copulas pro-

viding the best fit to the data (in terms of AIC) for these three locations in every

month. The table reporting the AIC values for all months and all copulas fitted to

the data of the three stations considered is provided in Appendix A. For Bremen and

Augsburg, the copula that provides the best fit in almost every month is the Gumbel

copula. For these locations, there is a distinctive asymmetric upper tail dependence

in the dependence structure of the single turbine wind power and the aggregated

wind power. In contrast, there is hardly any tail dependence for the turbine located

at Kleiner Feldberg. Here, most of the copulas that best fit the data are symmetric

(Gaussian, Student-t and Frank copula).

Month Augsburg Bremen Kleiner Feldberg
January Gaussian T40 Gaussian

February Gumbel Gumbel Gaussian
March Gumbel Gumbel Frank

April Gumbel Gumbel Frank
May Gumbel Gumbel Frank
June Gumbel Gumbel Clayton
July Frank Gumbel Frank

August Gumbel Gumbel Frank
September Gumbel Gumbel T10

October Gumbel Gumbel Gaussian
November Gumbel Gumbel Frank
December Frank T10 Gaussian

Table 2.3: Copula selection for the three stations of interest

Once the marginal distributions and copulas are estimated, the conditional cop-

ula model can be used to simulate the single turbine wind power conditional on the

German aggregated wind power, based on the the sampling procedure that was in-

troduced in Section 2.2.2. We loop through the 22 years and the 12 months of data

and draw n = 10000 samples of the single turbine wind power for each point of

the aggregated wind power curve, while applying the corresponding single turbine

marginal distribution out of the 22x12 available.

As an example, Figure 2.3 shows the dependence structure of the original data as

well as simulations from three different types of copula models for a wind turbine

in Bremen. Visually, the Gumbel copula provides the best fit to the data, which is

confirmed by the comparison of the AIC. It can be observed that there is a distinc-

tive upper tail dependence between the single turbine wind power and the German
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

aggregated wind power. It should be noted that this type of dependence is generally

undesirable for wind turbines selling their power on the spot market, as there is a

high probability that spot prices are low in case of high power generation.
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Figure 2.3: Dependence structure of the original data and simulations from three copula
models

Figure 2.4 shows the original data together with simulations from the Gumbel

copula for the single turbine wind power located in Bremen and the aggregated wind

power, transformed back to their marginal distributions. The turbine is assumed to

be a single GE 2.5 MW turbine. As can be seen, simulations match the original data

very well.

2.4 Results

This section presents the results of our simulation with respect to revenue distri-

butions and market values at different locations. In particular, we demonstrate the

relevance of the dependence structure for the market value in today’s context as well

as under increasing wind power penetration levels.

26



2.4 Results

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
x 104

Single turbine wind power [MW]

Ag
gr

eg
at

ed
 w

in
d 

po
w

er
 [M

W
]

 

 

sample
observations

Figure 2.4: Observations and sample of the single turbine wind power and the aggregated
wind power

Figure 2.5 presents the yearly revenue distribution for a wind turbine located in

Bremen together with the 5% value at risk. The expected revenue amounts to 82000

Euro/MW/a, with a standard deviation of 3800 Euro/MW/a and a slightly negative

skew. The 5% value at risk is found to be 75000 Euro/MW/a. Note that the distri-

bution of absolute revenue is determined by both the number of full load hours that

can be achieved at the specific site of interest and the corresponding market value.

However, the scope of this paper lies on the dependence structures of different sites

and their impact on the market value, which is thus the main focus in the following

analysis.
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Figure 2.5: Yearly revenue distribution of the Bremen station and the 5% value-at-risk
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

2.4.1 Revenues and market value of different wind turbines

To quantify the effect arising from the dependence structures, distribution functions

of the market value are determined and compared for the three stations Augsburg,

Bremen and Kleiner Feldberg. Table 2.4 lists the main results for these three stations

for the month of February. The expected average spot price of the simulations is

48.52 Euro/MWh. In contrast, the expected market value of the wind turbines is

much lower for all turbines due to the dependence between the single turbine wind

power and the aggregated wind power, which in turn has a price damping effect.

From only the correlation coefficient ρ, one would have anticipated the expected

market value of a turbine in Augsburg (ρ = 0.37) to be much higher than the ex-

pected market value of a turbine in Kleiner Feldberg (ρ = 0.51) which in turn should

have a higher market value than a turbine in Bremen (ρ = 0.75). However, this is

not the case: Although the correlation coefficient for a turbine in Kleiner Feldberg is

much higher than that of a turbine in Augsburg, the expected market value is also

higher. The reason lies in the dependence structure. As shown in Section 2.3.4, the

dependence structure for Augsburg in February is best described by a Gumbel copula,

thus incorporating an upper tail dependence between the single turbine wind power

and the aggregated wind power. In contrast, the dependence structure between the

single turbine wind power in Kleiner Feldberg and the aggregated wind power is mod-

eled most accurately by a symmetric Gaussian copula. Therefore, Kleiner Feldberg

benefits from an advantageous dependence structure when selling its wind power

at the spot market.

Augsburg Bremen Kleiner Feldberg
Expected average spot price [Euro/MWh] 48.52 48.52 48.52

Correlation coefficient 0.37 0.75 0.51
Selected copula model Gumbel Gumbel Gaussian

Expected market value [Euro/MWh] 43.10 41.31 44.33
Standard deviation [Euro/MWh] 5.98 6.63 5.63

Table 2.4: Main results for the month of February

The distributions of the yearly market value for the three stations considered are

shown in Figure 2.6. Following the same logic as discussed for the specific month

of February, the yearly market value of a turbine in Kleiner Feldberg is higher than

the market value for Augsburg. As can be seen in Table 2.3, the dependence struc-

ture for Augsburg is modeled with a copula incorporating an upper tail dependence

in almost every month, whereas the one for Kleiner Feldberg is mostly symmetric.

Consequently, for the three distributions that are shown in Figure 2.6, the depen-

dence structure reduces the expected yearly market value of the turbines by 3.54,
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4.97 and 2.63 Euro/MWh, respectively, compared to the expected average spot price

level (49.80 Euro/MWh).
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Figure 2.6: Yearly market value of the three turbines

2.4.2 Market value variations in Germany

Germany is characterized by a surface area of 357,021 km2 and a maximum horizon-

tal width and vertical length of 642 km and 833 km, respectively. Furthermore, there

are several diverse geographical regions, suggesting that meteorological conditions

may vary substantially when analyzing different locations throughout the country.

With the model developed, we analyze the market value for 19 different stations

in Germany, as depicted in Figure 2.7. As the analyzed stations differ with respect

to their exact location (and thus with respect to their dependence structure related

to the aggregated German wind power), we expect market values to differ as well.

Specifically, we expect the market value to be lowest for the stations that are closest

to the majority of installed wind power. Indicated by different colors, Figure 2.7

shows the expected market value of the stations that were considered.

Results indicate that the expected market value ranges from 42 to 48 Euro/MWh

for the analyzed stations, compared to an expected average spot price level of 49.80

Euro/MWh. Hence, the market value lies between 6 and 15% lower than the average

spot price. As expected, lowest values are found for the stations that are closest to

the majority of currently installed wind power, i.e., mainly in the area of Magdeburg

and Münster-Osnabrück. For stations in this area, the dependence structure shows a

pronounced asymmetric upper tail dependence. It is observed that expected market

values are similar for all stations located in the so called ’North German Plain’, which

is a geographical region in Northern Germany characterized by constant lowlands

and hardly any hills. Note that Aachen is at the far end of the North German Plain
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Figure 2.7: Expected market value for 19 stations in Germany (in Euro/MWh)

and, as such, equally characterized by comparatively low expected market values of

43.47 Euro/MWh. In contrast, Kahler Asten is located in Germany’s Central Uplands,

where meteorological conditions are different (e.g., due to pronounced thermals),

which is reflected by higher values. Other stations in or south of the Central Uplands

show higher expected market values as there are very few installed wind power

capacities.

Kahler Asten and Kleiner Feldberg are special cases, as they are characterized by

advantageous, symmetric dependence structures, resulting in expected market val-

ues that are the highest compared to the other stations considered. Similarly, Emden

and Rostock – both located at the seashore – show higher values, compared to other

stations in the North German Plain, due to comparatively advantageous dependence

structures.
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2.4.3 The impact of changing wind power penetration levels

In the previous section, model parameters were set and estimated to reflect the cur-

rent environment with respect to the physical generation mix and the market con-

ditions. In this section, some of the model parameters are modified to analyze their

impact on the outcome. As has been clarified, the effect of wind power on spot

market prices largely depends on the quantities of wind power being integrated in

the market. With the help of the model presented in this paper, the aforementioned

effect is quantified for the case of changing wind power penetration levels in Ger-

many. First, we scale up the wind power penetration up to two times the capacity

that is currently installed. Note that this is roughly in line with targets envisaged by

the German government, which wants to further extend wind power to 45.8 GW in

2020 (installed capacity was 27.1 GW in 2011). Second, we compare the impact of

today’s wind power penetration to a situation with no wind power installed. For the

analysis, installed wind power capacities are scaled-up stepwise and simulation runs

are repeated for each of these steps. The underlying assumptions of this approach

are as follows:

• The proportionate geographic distribution of wind power capacities within

Germany remains the same. Note that due to the linear up-scaling, the depen-

dence structure is preserved. Alternatively, region-specific changes in installed

capacities could be implemented, e.g., for testing the effect of an increased

wind power extension in some specific area.

• The functional dependence between residual demand levels and spot prices

is again estimated from 2011 data, as explained in Section 2.3.3. This is cer-

tainly a strong assumption, as the conventional power sector will dynamically

develop with increasing wind power penetration. However, it should be kept in

mind that current wind power capacities are being rapidly expanded, whereas

the conventional power sector seems to be behind in terms of capacity adjust-

ments. Also note that the functional dependence could also be altered (e.g., by

shifting or assuming a different shape). However, this was not implemented

in order to focus on the specific impact of the wind power penetration levels.

• The parameter estimates for the residual price process remain the same. Here

again, the model could be adjusted in order to represent expectations regard-

ing future price movements.

The resulting distributions of the yearly market value of the Bremen station under

increasing wind power penetration ranging from 100-200% are shown in Figure 2.8.
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2 Spatial dependencies of wind power and interrelations with spot price dynamics

As can be observed, the market value distribution is highly affected both in average

level and variance. While the expected market value is at 44.83 Euro/MWh at 100%

scaling, it decreases to 30.13 Euro/MWh at a scaling of 200%. At the same time, its

standard deviation increases from 1.94 to 3.40 Euro/MWh, respectively.
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Figure 2.8: Yearly market value of the Bremen station under increasing wind power
penetration

To achieve further insights regarding the effect of the wind power penetration

level, we repeat the simulation for all three stations considered in Section 2.4.1 and

a wind penetration level ranging from 0-200%. The relative change in expected

values of the resulting market value distributions are presented in Figure 2.9. For

completeness, the expected average spot price level is also included. Compared to an

expected average spot price of 56.70 Euro/MWh at 0% scaling, the level is reduced

by 12% to 49.80 Euro/MWh for today’s penetration level. Hence, provided that the

rest of the system remains the same, the spot price level would be 7 Euro/MWh

higher with no wind power penetration. In this case, resulting market values are

above average spot price levels (due to higher wind power infeeds during wintertime

when overall demand as well as prices tend to be also higher) and almost equal for

any single wind turbine as spot prices are only marginally affected by wind power.

Just as average spot price levels, expected market values decrease as the penetration

level increases, however, at very different slopes. Whereas the average spot price

itself is affected the least, the expected market value decreases corresponding to

their dependence structure. They drop below average spot price levels at penetration

levels as low as around 30% of today’s capacities. A scaling of 100% corresponds

to the current situation described in detail in Section 2.4.1. As can be observed, the

difference between the average spot price and the market value further increases

as the scaling factor approaches 200%, reaching levels of 8.34, 11.63, and 6.20
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Euro/MWh for Augsburg, Bremen and Kleiner Feldberg, respectively.
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Figure 2.9: Relative change in expected values of the spot price and the market value under
changing wind power penetration levels

2.5 Conclusions

The purpose of this paper has been to derive the value of wind power at different

locations. In particular, the impact of the dependence structure of wind power on its

value has been analyzed. This analysis becomes increasingly important as shares of

wind power in electricity markets rise. We therefore developed a model for the sim-

ulation of single turbine wind power and electricity spot prices, including a precise

representation of their interrelations. Copula theory has been applied to model sin-

gle turbine wind power and aggregated wind power, thus allowing to decouple their

dependence structure from their marginal distributions. The formation of prices

has been formulated as a function of the aggregated wind power in a supply and

demand based model. As such, the model extends formerly known modeling ap-

proaches through the ability to simulate and quantify the price effect of wind power,

and hence to determine market values.

We find that the market value highly depends on the specific location and the

corresponding dependence structure between the wind power of a single turbine at

this location and the aggregated wind power. Whereas most locations are found to

be characterized by rather adverse asymmetric dependence structures, some of the

locations analyzed are identified as being related to the aggregated wind power such

that their realizable selling prices are comparatively high. For the nineteen locations

in Germany that we have analyzed in detail, we have shown that the expected market

value is reduced by up to 8 Euro/MWh (i.e., 15%) compared to average spot price

levels and varies by up to 6 Euro/MWh for the different locations.
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Moreover, our results indicate that, in case of increasing wind power capacities,

the adverse upper tail dependence structure of many locations has a negative impact

on the market value, which makes market integration of wind power even more

difficult. Nevertheless, integrating wind power into the market would allow market

prices to reveal their key function by indicating the actual value of electricity and thus

triggering investments in wind power projects characterized by high realizable spot

prices. These projects would deploy balancing potentials much better and reduce

the volatility in the electricity spot market as well as in the physical system.

Although a powerful tool to analyze the market value of wind power in a prede-

fined setting, the model reveals its limitations in not being able to determine the

dynamic reaction of the power system development in response to changing levels

of wind power penetration. Further research could be done by extending the model

in order to use it as a forecasting and derivative pricing tool. Moreover, the impact

of spatial dependencies on short-term balancing capabilities of wind power could

be analyzed (e.g., by extending the work presented by Girard et al. (2013)). This

could become particularly relevant as balancing needs in a system depend on the

aggregated wind power, while the balancing potential of a single turbine depends

on its current output. By combining financial rewards from different markets, fu-

ture analyses could address a comprehensive valuation and optimization of wind

power projects. Besides the relevance for other markets, the methodology may also

be applied to other forms of fluctuating renewable energies, such as solar power.

Acknowledgments

We would like to thank Oliver Grothe, Felix Höffler, Christian Growitsch and an

anonymous referee for helpful comments and suggestions. Also, we acknowledge

valuable discussions at the EURO-INFORMS 2013 as well as at the European IAEE

Conference 2013.

34



2.6 Appendix

2.6 Appendix

Residual demand [GW]

P
ric

e 
[E

ur
o/

M
W

h]

20 40 60 80
50

0

50

100

150
Januar

20 40 60 80
50

0

50

100

150
February

20 40 60 80
50

0

50

100

150
March

20 40 60 80
50

0

50

100

150
April

20 40 60 80
50

0

50

100

150
May

20 40 60 80
50

0

50

100

150
June

20 40 60 80
50

0

50

100

150
July

20 40 60 80
50

0

50

100

150
August

20 40 60 80
50

0

50

100

150
September

20 40 60 80
50

0

50

100

150
October

20 40 60 80
50

0

50

100

150
November

20 40 60 80
50

0

50

100

150
December

Figure 2.10: Demand-price dependence and spline fits for all months of 2011
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3 Supply chain reliability and the role of
individual suppliers

We study a one-period supply chain problem consisting of numerous suppliers de-

livering a homogenous good. Individual supply is uncertain and may exhibit de-

pendencies with other suppliers as well as with the stochastic demand. Assuming

that reliability of supply represents an economic value for the customer that shall

be paid accordingly, we first derive an analytical solution for the contribution of an

individual supplier to supply chain reliability. Second, applying concepts from coop-

erative game-theory, we propose a payoff scheme based on marginal contributions

that explicitly accounts for the statistical properties of the problem. A number of

desirable properties is thus achieved, including static efficiency as well as efficient

investment incentives. Lastly, in order to demonstrate the relevance and applicabil-

ity of the concepts developed, we consider the example of payoffs for reliability in

power systems that are increasingly penetrated by interdependent variable renew-

able energies. We investigate empirical data on wind power in Germany, thereby

confirming our analytical findings. In practice, our approach could be applied to de-

sign and organize supply chains and their reliability more efficiently. For instance,

in the field of power systems, the approach could improve designs of capacity or

renewable support mechanisms.

3.1 Introduction

While most supply chains face the requirement to provide high levels of reliability,

the consequences of supply shortages in power systems can be particularly dramatic.

For instance, in the early 2000s insufficient supply capacities caused a series of black-

outs in the Californian power system affecting several hundred thousand customers.

The State of California was forced to initiate short-term countermeasures to allevi-

ate the crisis, amounting to an estimated 40 bn.$ in additional energy costs from

2001 to 2003 (Weare (2003)). The economy was estimated to slow down by 0.7-

1.5%, entailing an increase in unemployment by 1.1% (Cambridge Energy Research

Associates (2001)). But also other supply chains, such as manufacturing or food
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3 Supply chain reliability and the role of individual suppliers

production industries, may suffer severe economic losses from supply shortages.

To manage and foster supply chain reliability, sourcing from multiple suppliers is

an effective and often applied practice.1 While the principle idea of risk diversifi-

cation is rather simple, organizing and coordinating multiple individual suppliers

to ensure envisaged levels of supply chain reliability at reasonable costs is often

challenging. An economic approach to tackle this challenge consists in defining reli-

ability as a good that can be provided by individual suppliers. The provision is then

paid according to the individual supplier’s contribution to supply chain reliability,

with a price determined in a competitive auction, for instance. In principle, such an

approach ensures and incentivizes an efficient short- and long-term management of

supply chain reliability.

An example for such explicit reliability-related payments can be found in so-called

capacity mechanisms, nowadays established in many power markets.2 Key ingredi-

ent to all such mechanisms is the determination of an individual supplier’s contribu-

tion to supply chain reliability, commonly known as prequalification, which is used

as a basis for subsequent payments. Despite the apparent relevance of this measure,

it appears that existing approaches for its determination lack generality and consis-

tency.3 The reason may lie in the difficulty to assess an individual supplier’s con-

tribution, especially when accounting for the full complexity of the problem which

is inherently stochastic. Indeed, a contribution not only depends on the stochastic

nature of the individual supplier itself, but also on all other stochastic suppliers that

are present.

It is hence the goal of this paper to comprehensively investigate supply chain re-

liability and the role of individual suppliers therein. For this purpose, we consider a

one-period supply chain problem consisting of numerous suppliers delivering a ho-

mogenous good.4 Individual supply is uncertain and may exhibit dependencies with

1For a general overview of mitigation strategies, see, e.g., Tang (2006), Tomlin (2006) or Snyder
et al. (2014).

2In fact, the Californian electricity crisis has triggered much of the worldwide debate and development
around capacity mechanisms (for a good overview, see, e.g., Joskow (2008a) or Cramton et al.
(2013)). Recently, the discussion about the need and design of capacity mechanisms has been
regaining momentum due to the large-scale deployment of variable renewable energies (such as
wind or solar power), whose impact on power system reliability is considered a crucial issue of
common interest (Council of European Energy Regulators (2014)).

3For instance, there seems to be no best practice on how to deal with the reliability of intermittent and
interdependent renewable resources in power systems, reflected in a variety of different existing
approaches. Moreover, all of them incorporate inefficient design features, as we will show in the
course of this paper.

4The need to source a homogenous good from multiple suppliers may stem, e.g., from capacity con-
straints or the requirement for risk diversification (e.g., Minner (2003) or Tang (2006)).
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3.2 Related literature

other suppliers as well as with the stochastic demand. Due to the stochastic nature of

the problem, demand can be served at an intended reliability level, possibly includ-

ing supply disruptions.5 Assuming that reliability of supply represents an economic

value for the customer and shall be paid accordingly, we are particularly interested in

answering the following two questions: First, what is the contribution of individual

suppliers to supply chain reliability? And second, how should individual suppliers

be paid for what they contribute? In addition, we shall demonstrate practical rele-

vance and applicability of our analytical findings in a novel and pertinent empirical

case study based on wind energy in the German power system.

By solving these problems, our paper contributes a general, consistent and applica-

tive framework to address the role of individual suppliers for supply chain reliability.

In practice, it could be employed to design and manage supply chain reliability more

efficiently. It may proof to be a useful tool for allocation problems in monopsonis-

tic markets or public procurements, for designing bonus payments, for accounting

issues in integrated supply chains, or for the assessment of existing or new contract

conditions. In the field of power systems, the approach could improve the design of

capacity mechanisms which so far appears to be incomplete.

The rest of the paper is structured as follows: Section 3.2 reviews the related liter-

ature. Section 3.3 introduces and solves for the contribution of individual suppliers

to supply chain reliability. In Section 3.4, we characterize our problem as a cooper-

ative game to develop and investigate a suitable payoff scheme. The empirical case

study is presented in Section 3.5. Section 3.6 concludes.

3.2 Related literature

Our paper is closely related to the literature dealing with supply chain reliability and

the problem of strategic sourcing of a homogenous good from multiple suppliers, fac-

ing either supply disruptions (i.e., a binomial distribution of uncertainty) or capacity

uncertainty (i.e., an uncertain upper bound on the actual quantity supplied).6

5Note that instead of reliability, one could also consider the generalized case of supply quality. How-
ever, for the sake of clarity, we will stick to the term reliability throughout the paper. Nevertheless,
the concepts and results derived could also be applied to other dimensions of supply quality, such
as time-to-respond, etc.

6Note that the former is an extreme case of the latter. Also note that both are different from yield
uncertainty which incorporates a dependency of the uncertainty on the order quantity. As we con-
sider yield uncertainty as a different problem class, we do not review the related literature here.
For a broader review of the literature dealing with supply chain risks, the reader is referred to Tang
(2006) and Snyder et al. (2014).
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3 Supply chain reliability and the role of individual suppliers

Supply disruptions in a supply chain consisting of multiple suppliers have been

studied by Parlar and Perry (1996), Gürler and Parlar (1997), Li et al. (2004) and

Tomlin (2006), however, without considering stochastic dependencies among the

suppliers. As a natural extension, later papers allow for dependencies between bi-

nomial supply disruptions (i.e., Babich et al. (2007), Wagner et al. (2009) and Li

et al. (2010)).

Continuous distributions of the suppliers’ uncertainties – as used in our paper –

were presented by Dada et al. (2007) and Masih-Tehrani et al. (2011). The former

paper proves that when selecting among a set of possible suppliers that are different

in reliability and costs, cost generally takes precedence over reliability. While this

result is derived under the assumption of supply distributions being independent,

Masih-Tehrani et al. (2011) captures capacity uncertainty including multivariate de-

pendencies, finding that the buyer’s best strategy is risk diversification by choosing

suppliers with independent distributions in order to avoid simultaneous supply dis-

ruptions.

In contrast to the above literature on supply chain reliability, our paper deviates

in several important aspects. First and foremost, instead of analyzing the costs of

supply chain reliability under exogenous prices,7 we take a different perspective on

the problem by endogenously determining the individual supplier’s value (i.e., con-

tribution and corresponding payoff) for supply chain reliability.8 Note that this is a

fundamentally different view on the problem that becomes relevant, e.g., for man-

aging supply chains in public procurements or bonus payments where prices are not

fixed ex-ante.

In addition, and in contrast to most papers mentioned, we consider arbitrary and

interdependent distributions of (un)availability and demand. Moreover, we study

implications for the supply chain organization as well as investment incentives that

are, to the best of our knowledge, hardly considered in the existing literature.

Our paper is also related to the more specific field of supply chain reliability in

power systems, which has been investigated either from a technical or economic

perspective. From a technical perspective, the goal has been to develop method-

ologies to assess the technical ability to provide reliability of supply (e.g., Garver

(1966), Billinton (1970) or Billinton and Allan (1996)). The role of individual units

7In the reviewed literature, suppliers’ prices are either given as a parameter, or result from some
supplier interaction (such as a Cournot game) without the buyer being able to have an influence.

8Technically, the difference stems from the fact that we determine the individual supplier’s contri-
bution based on an endogenous demand adjustment, while the literature’s objective is to serve an
exogenous (though, often stochastic) demand level.
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3.3 Supply chain reliability and the contribution of individual suppliers

for supply reliability, often referred to as capacity credit or capacity value, has also

been discussed (for recent surveys, see, e.g., Amelin (2009) or Keane et al. (2011)).

However, it appears that these analyses remain very technical and have never been

transferred to a broader and generalized supply chain context. Moreover, they al-

most exclusively deal with the problem numerically rather than in a consistent an-

alytical framework. In contrast, our paper contributes a comprehensive and consis-

tent analytical framework along with generalized implications for managing supply

chain reliability.

Economically, power system reliability has been studied with respect to the

(in)ability and potential failures of power markets to provide reliability as a market

outcome (e.g., Joskow (2008a) or Cramton et al. (2013)). However, even though

various designs of capacity-related payoffs have been proposed, the role and im-

plications of stochastic and interdependent suppliers have so far been disregarded.

Our paper fills this gap by suggesting suitable approaches to incorporate those sup-

pliers into reliability-related mechanisms in order to ensure economically efficient

outcomes.

3.3 Supply chain reliability and the contribution of

individual suppliers

3.3.1 Supply chain reliability

We consider a one-period supply chain S consisting of numerous suppliers deliver-

ing a homogenous good. Suppliers are characterized by their joint stochastic avail-

ability of supply capacity C .9 Demand D is also assumed stochastic. Due to consid-

ering only one period without additional backup (such as, e.g., inventory storage,

emergency service, etc.), supply shortages occur whenever C is unable to cover D.

Consequently, we define supply chain reliability in probabilistic terms as follows:10

9Here and in the following – unless indicated differently – capital letters are used for random vari-
ables.

10Note that we implicitly assume an inelastic demand with no reaction as capacity becomes scarce.
If the good is marketed, this implies that market clearing cannot be guaranteed, e.g., because of
the lack of real time pricing. Consequently, there is a risk of situations with all available capacities
producing, but still being unable to fully serve demand – irrespective of the price level.
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3 Supply chain reliability and the role of individual suppliers

Definition 1. Supply chain reliability: Probability of a supply chainS , characterized

by the stochastic overall availability of supply capacity C, to be able to cover a stochastic

demand D, i.e.:

RS = Pr(D ≤ C) = Pr(D− C ≤ 0) = Pr(X ≤ 0) = FX (0). (3.1)

In Equation (3.1), we have used FX for the cumulative distribution function (cdf)

of the capacity shortage X = D − C . Note that stochastic dependencies between

the random variables are so far unspecified. For instance, the overall availability

of supply capacity C may result from multiple interdependent supply capacities of

numerous individual suppliers. Furthermore, C may exhibit dependencies with the

stochastic demand D.

It is worthwhile to mention structural correspondence of our Definition 1 with an-

other well-known risk measure, i.e., Value-at-Risk (VaR), defined as Pr(X ≤ VaR) =

RS (e.g., Jorion (2007)). The measures coincide for VaR being normalized to zero,

i.e., when RS corresponds to the probability that X is lower than zero.

3.3.2 The contribution of individual suppliers

We now investigate the contribution of an individual supplier with random produc-

tion capacity Y < C to the reliability of supply chain S . To this end, we remove it

from the existing system S , and subsequently determine the reliability of supply of

the new diminished supply chain T as:

RT = Pr(D ≤ C − Y ) (3.2)

Note that as Y is positive, RT ≤ RS always holds. With the goal to capture the

contribution of Y to supply chain reliability, we follow the concept of incremental

VaR. I.e., we capture the change in risk exposure induced by the adjustment of X

by Y while requiring the corresponding probability to remain at the original level

(e.g., Tasche and Tibiletti (2003) or citeJorion2007). In other words, we measure

the demand reduction necessary to bring RT back to the original reliability level

RS .11,12 Analytically, we define the contribution of an individual supplier as follows:

11Noticeably, this approach has for long been used in the context of power systems under the name of
effective load carrying capability, which was originally developed by Garver (1966).

12As an alternative measure, one could also consider the change in reliability induced by removing
supply capacity Y , i.e., ∆R = RS − RT , however, without altering the principle results derived
hereafter.

44



3.3 Supply chain reliability and the contribution of individual suppliers

Definition 2. Contribution of an individual supplier to supply chain reliability:

Level of demand v by which D needs to be reduced in order to maintain the original

level of reliability, i.e.:

Pr(D− v ≤ C − Y ) = RS (3.3)

Due to its complexity, Equation (3.3) has commonly been solved for v numerically

by means of iteration (see, e.g., Wang (2002) or Keane et al. (2011)). Advantages

of the numerical solution include its straightforward implementability as well as the

implicit coverage of statistical dependencies when using concurrent observations of

demand and supply. However, numerical solutions – even if conducted for a wide

range of parameter constellations and application examples – do not allow for gen-

eralizations of the results obtained. Moreover, the numerical solution often entails

a high computational burden.

In contrast, analytical solutions allow to readily calculate the desired results and

provide further general insights. Nevertheless, only very few authors have engaged

with the analytical analysis of Equation (3.3). In the literature related to portfolio

risks, the incremental VaR is conveniently solved analytically up to a first order ap-

proximation (e.g., Tasche and Tibiletti (2003) or citeJorion2007). In contrast, Dra-

goon and Dvortsov (2006) propose the z-method, considering higher order terms

and the special case of a normally distributed capacity shortage over demand and

independence with the individual supplier (i.e., X ∼N and X ⊥ Y ). Extending this

approach, Zachary and Dent (2011) present a closed-form solution with an arbitrary

distribution of X , but for independent X and Y . Even though the latter paper dis-

cusses the natural extension to the case of dependent distributions, the formal proof

is not included. Hence, in the following proposition we present the generalized so-

lution of Equation (3.3) for v, with arbitrary dependence between the distributions

of X and Y , and σ(·) being their standard deviation.

Proposition 1. For σY � σX , the contribution v of an individual capacity Y to supply

chain reliability is approximated by

v = µY |X≈0 −
σ2

Y |X≈0

2

f ′X (0)

fX (0)
. (3.4)

Proof. From Equations (3.3) and (3.1) it follows that the equation to be solved for

v is

Pr(D− v ≤ C − Y ) = Pr(X + Y ≤ v) = Pr(X ≤ 0) = FX (0). (3.5)

The cumulative distribution function Pr(X + Y ≤ v) can be expressed as integrals
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3 Supply chain reliability and the role of individual suppliers

over the joint probability density function fX ,Y , with X , Y being arbitrary dependent

distributions. Reformulating using conditional distributions and integrating over x ,

we obtain

Pr(X + Y ≤ v) =

∫ ∞

−∞

∫ x=v−y

−∞
fX ,Y (x , y)d xd y (3.6)

=

∫ ∞

−∞

∫ x=v−y

−∞
fY |X (y|x) fX (x)d xd y (3.7)

=

∫ ∞

−∞
fY |X≤v−y(y|X ≤ v − y)FX (v − y)d y = FX (0). (3.8)

Instead of continuing with the explicit form of the cumulative distribution function

FX , we approximate it via Taylor expansion around the critical point v− y = 0 up to

the second order polynomial degree, i.e.,

FX (v − y)≈ FX (0) + fX (0)(v − y) +
f ′X (0)

2
(v − y)2. (3.9)

Noticeably, in the above equation we have induced and accepted an approximation

error of o((v− y)2), which occurs if derivatives of order two or higher are non-zero.

Next, note that if σY � σX , it follows that Pr(X + Y ≤ v) ≈ Pr(X + µY ≤ v) and

hence, that v ≈ µY in Equation (3.5). We now insert (3.9) in (3.8), and reformulate

using the concept of conditional expectations:

∫ ∞

−∞
fY |X≤v−y(y|X ≤ v − y)

�

FX (0) + fX (0)(v − y) +
f ′X (0)

2
(v − y)2

�

d y (3.10)

= FX (0) + fX (0)E [(v − Y )|X ≈ 0] +
f ′X (0)

2
E
�

(v − Y )2|X ≈ 0
�

≈ FX (0), (3.11)

which can be simplified using standard deviation σ as well as expected values µ

to

fX (0)(v −µY |X≈0) +
f ′X (0)

2

�

(v −µY |X≈0)
2 +σ2

Y |X≈0

�

≈ 0. (3.12)

Equation (3.12) represents a quadratic equation in (v − µY |X≈0) that can readily

be solved for v based on the assumption of small σY (so that the error of order

O (σ4
Y |X≈0) is small), such that Equation (3.4) follows.

From Equation (3.4), we observe that two terms including two different statistical

features of the individual supplier are decisive for its contribution to supply chain
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3.3 Supply chain reliability and the contribution of individual suppliers

reliability: its average availability µ on the one hand, and its standard deviation σ

on the other, both at times of scarce capacity, i.e. for X ≈ 0. Specifically, higher

average availability at times of critical capacity directly contributes to reliability. In

contrast, the effect of the standard deviation getting larger may be either positive

or negative for reliability, depending on the sign of f ′X (0) (i.e., the convexity of the

cdf).13,14 It should typically hold true that high levels of reliability are required from

supply chains, such that the critical point X = 0 is located at the left hand side of the

distribution where the probability for insufficient capacity is still low and increasing

in x , which yields f ′(x) > 0. Then, the individual supplier’s contribution to relia-

bility decreases in its standard deviation. Somewhat counterintuitive, however, the

individual supplier’s contribution to reliability may also benefit from a high standard

deviation. This is the case for f ′(x) < 0, resulting in a situation where positive

deviations weight more than negative ones. This could hold true and represent an

interesting feature, e.g., for supply chains that are still at an early stage of devel-

opment while already facing high levels of demand, or for well-established systems

that underwent a sudden and substantial increase in demand.

Two further points are worth mentioning. First, the contribution of an individual

supplier to supply chain reliability may – instead of absolute numbers – be reported

relative to its maximum available capacity y = max Y , i.e., as a fraction ṽ = v/y ,

with 0 ≤ ṽ ≤ 1. Second, Equation (3.4) can readily be extended to multiple (n)

suppliers contributing jointly to supply chain reliability. In this case, define Y as the

sum of the individual unit’s generation, i.e., Y =
∑n

i=1 Yi . Denoting with N the set

of all n suppliers in the system contributing jointly to generation adequacy, we will

write v(N) for their joint contribution. To determine the joint contribution of a few

units only, we will use the set S ⊆ N , and denote the corresponding contribution

by v(S). The joint contribution of multiple units (or, in other words, a coalition of

units) will become important for large parts of the subsequent analysis.

13Note that the density function f (x) is always positive by definition.
14The effect of the standard deviation essentially stems from the difference in impact from positive

and negative deviations from the average availability. If positive and negative deviations had an
equal impact and would outweigh each other, the expected overall contribution would not change.
However, the impact of the standard deviation on the reliability contribution increases with the
absolute level of f ′(x) = F ′′(x), i.e., with the level of convexity of the cumulative distribution
function F(x). It also increases with f (x) = F ′(x) (i.e., the slope of the cdf) decreasing, as the
difference in impact from positive and negative deviations then becomes more important.
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3 Supply chain reliability and the role of individual suppliers

3.3.3 Statistical properties of the contribution

In the following, three corollaries shall be discussed that describe essential proper-

ties of the individual supplier’s contribution v. For the formal proofs, we build on

the explicit formulation for the supplier’s contribution to supply chain reliability as

presented in Proposition 1. Even though derived statistically, we will also discuss

first economic implications the identified properties may have.

Corollary 1. The contribution of an individual supplier is generally subject to changing

returns to scale.

Proof. Inserting a scaled random production capacity aY in Equation (3.4), and

using the fact that both, mean and standard deviation scale directly with the scaling

factor of the random variable, it follows that

v(aS) = µaY |X≈0 −
σ2

aY |X≈0

2

f ′X (0)

fX (0)
(3.13)

= aµY |X≈0 −
a2σ2

Y |X≈0

2

f ′X (0)

fX (0)
. (3.14)

Whereas the first term on the right hand side increases linearly with a, the second

term decreases with higher order a2 as long as σY |X≈0 > 0 and f ′(x) > 0. Under

these conditions, it holds that v(aS) < av(S), i.e. decreasing returns to scale result

when considering an increasing amount of capacity with equal availability Y . In

contrast, σY |X≈0 > 0 and f ′(x)< 0 yields increasing returns to scale.

Economically, Corollary 1 may be of particular relevance for a supply chain if it

shall increasingly rely on one particular supplier. For illustration, imagine a power

system that aims at replacing an increasing number of fossil power plants with wind

power capacities while keeping its original reliability level.15 Corollary 1 implies

that with each additional unit of wind power installed, a decreasing amount of fossil

power can be safely removed from the system.

Corollary 2. Gains of diversification may apply for the contribution of individual sup-

pliers.

Proof. We assess the contribution of some capacity Y1 to supply chain reliability. In

order to analyze possible gains of diversification – without loss of generality – we

15Suppose a reliable power system with f ′X (0)> 0, and variable wind power resources withσY |X≈0 > 0.
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3.3 Supply chain reliability and the contribution of individual suppliers

assume that some share α ∈ [0,1] of capacity Y1 can be sourced from an alternative

supplier S2 instead of S1. Depending on the choice of α, the joint production capacity

becomes Y12 = (1−α)Y1+αY2. The joint contribution of this portfolio to supply chain

reliability writes as

v((1−α)S1 ∪αS2) =µY12|X −
σ2

Y12|X

2

f ′X (0)

fX (0)
(3.15)

=(1−α)µY1|X≈0 +αµY2|X≈0

−
�

(1−α)2σ2
Y1|X≈0 +α

2σ2
Y2|X≈0 + 2α(1−α)σY1,Y2|X≈0

� f ′X (0)

2 fX (0)
.

(3.16)

To identify gains of diversification, we need to check the derivative of v with re-

spect to α in the region of α= 0, i.e.,

∂

∂ α
v((1−α)S1 ∪αS2)

�

�

�

�

α=0
=−µY1|X≈0 +µY2|X≈0 + ( (1−α)σ2

Y1|X≈0

−ασ2
Y2|X≈0 − (1− 2α)σY1,Y2|X≈0 )

f ′X (0)

fX (0)

�

�

�

�

α=0
(3.17)

=−µY1|X≈0 +µY2|X≈0 +
�

σ2
Y1|X≈0 −σY1,Y2|X≈0

� f ′X (0)

fX (0)
.

(3.18)

From the derivative evaluated at α= 0, we observe that it is positive (and hence,

v((1 − α)S1 ∪ αS2) increasing) as long as the average availability of supplier S2 is

similar to that of supplier S1, and their covariance is either not particularly strong in

case of f ′X (0)> 0 or particularly strong otherwise. Under those conditions, the joint

contribution is subject to gains of diversification.

The meaning of gains from diversification, as identified in Corollary 2, is quite

intuitive, and essentially follows from balancing effects that may result from statisti-

cal aggregation. Hence, a diversified portfolio with the good sourced from multiple

suppliers is often better able to reliably supply a certain load level. This holds true

as long as the expected yield is similar and they are not highly correlated (for the
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3 Supply chain reliability and the role of individual suppliers

typically more relevant case of f ′X (0)> 0).16

Corollary 3. The contributions of individual suppliers are generally non-additive.

Proof. Similar to Corollary 2, without loss of generality, let us consider a supply chain

comprising two suppliers S1 and S2 with (possibly dependent) production capacities

Y1 and Y2, respectively. The joint contribution of S1 and S2 to supply chain reliability

writes as

v(S1 ∪ S2) = µY12|X −
σ2

Y12|X

2

f ′X (0)

fX (0)
(3.19)

= µY1|X≈0 +µY2|X≈0 −
�

σ2
Y1|X≈0 +σ

2
Y2|X≈0 + 2σY1,Y2|X≈0

� f ′X (0)

2 fX (0)
. (3.20)

In contrast, if these suppliers were to be assessed independently, we can simply

apply Equation (3.4) to each of them to get

v(S1) = µY1|X≈0 −
σ2

Y1|X≈0

2

f ′X (0)

fX (0)
(3.21)

v(S2) = µY2|X≈0 −
σ2

Y2|X≈0

2

f ′X (0)

fX (0)
. (3.22)

From the above equations, we see that as long as σY1,Y2|X≈0 6= 0, it follows that

v(S1 ∪ S2) 6= v(S1) + v(S2). Hence, any type of (positive or negative) dependence

changes the joint contribution compared to the sum of independent contributions.

Specifically, the sum of the independent assessments is then inconsistent with the

joint contribution. Generalizing to all n suppliers in the system,
∑n

i=1 v(i) 6= v(N)

as long as σYj ,Yk|X≈0 6= 0 for any pair j, k.

From Corollary 3, it follows that a comprehensive and coordinated approach is

16Note that in finance, the concept of risk spreading is well-known from Markowitz’ portfolio theory
that shows similar characteristics when valuing properties of multi-asset portfolios (assets are here
the equivalent to our suppliers). However, while the interest in a Markowitz portfolio lies in find-
ing an efficient tradeoff between risk and expected returns, we are here interested in reliability
contributions which are, as found in Equation (3.4), dependent on both variance and expectation
(together with additional characteristics captured by fX which are not occurring in Markowitz).
Also note that one of the main criticisms with respect to Markowitz’ portfolio theory, namely the
linear dependence assumption between the joint distributions, also applies to our case here. In fact,
non-linear dependencies can indeed be relevant for supply chain risks, as shown, e.g., by Wagner
et al. (2009), Masih-Tehrani et al. (2011) or Elberg and Hagspiel (2015). While this would be
an interesting extension of our analysis, it would go beyond the scope of this paper and is left for
future research.
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imperative to assess supply chain reliability in order to reach a consistent repre-

sentation of all dependent suppliers. In other words, the joint contribution of all

suppliers is essentially the only relevant one for supply chain reliability. However,

with the goal to provide explicit reliability-related payments in order to manage and

incentivize supply chain reliability, allocations need to be made to individual sup-

pliers according to their individual value. Thus, Corollary 3 represents a particular

challenge that will be tackled by a suitable payoff scheme in the next Section.

3.4 Payoff scheme

To approach the problem of designing a suitable payoff scheme, we apply concepts

from cooperative game-theory. Specifically, we characterize the (joint) value of one

or multiple suppliers for supply chain reliability as the output of a coalitional game

(N , v) with transferable utility, where N is a finite set of units in the system, and

v a characteristic function. v(·) measures the (joint) contribution of a nonempty

coalition of suppliers S ⊆ N as defined implicitly in Equation (3.3), or explicitly in

Equation (3.4). Note that v(S) ∈ Rs, i.e., for every coalition S, a corresponding

contribution can be determined. A solution concept for this coalitional game is a

payoff vector Φ ∈ RN allocating the joint value v(N) to the coalition members.

The subsequent analysis consists of three steps: First, we assess the properties

of the coalitional game (N , v) and implications regarding the organizational design

of the supply chain. Second, we develop our solution concept, i.e., how payoffs

are allocated to individual suppliers. Lastly, we investigate investment incentives

resulting from our allocation rule.

3.4.1 Supply chain organization

Here and in the following, let us suppose it is the goal for the supply chain to reach or

sustain some envisaged level of reliability RS . In an appealing approach to organize

the supply chain, the buyer would determine his/her envisaged level of reliability,

and invite tenders among the suppliers to reach it. In other words, (s)he would

implement a competitive procurement of reliability contributions. For instance, in

the context of a capacity procurement auction in power systems, the state, regula-

tor, or some other independent authority could fix the envisaged reliability of power

supply, and implement a platform that provides suppliers with the possibility to bid
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3 Supply chain reliability and the role of individual suppliers

their contribution – either individually or jointly by forming coalitions.17 Hence,

regulatory intervention by the authority would be limited, and the need to adminis-

tratively determine individual allocations be avoided. Individual bids would be rela-

tively easy to verify, e.g., by means of random checks and sufficiently high penalties,

hence ensuring truthful individual bidding.18 However, this approach could result

in unsatisfactory outcomes, as stated and proven in the following Proposition.

Proposition 2. The equilibrium in a competitive reliability procurement is inefficient

if suppliers are positively related and the buyer only verifies individual bids.

Proof. Consider a supply chain organization that lets suppliers bid their individual

contribution in a competitive procurement of reliability that features a multiunit

auction. The auction is cleared by accepting all bids that are necessary to achieve

the requested reliability level. To assess the quality of the auction outcome, we need

to identify the suppliers’ optimal bidding strategy.

To this end, without loss of generality, consider the case of two suppliers S1 and

S2 for which the joint contribution v(S1 ∪ S2) has been derived in Equation (3.20) –

in contrast to their individual contributions v(S1) and v(S2) (Equations (3.21) and

(3.22)). As we see, a positive dependency (i.e., covariance σY1,Y2|X≈0 > 0) implies

sub-additivity of the contributions (i.e., v(S1∪S2)< v(S1)+ v(S2)) and hence, disin-

centives to cooperate. Technically, sub-additivity implies an empty core of our game

(N , v), i.e., in every situation there is an alternative coalition able to improve the

payoffs of all its members. As a consequence, the optimal bidding strategy consists

of individual or coalitions of suppliers with positive dependencies bidding by them-

selves.

While the buyer is able to verify these individual bids (and hence, to avoid over-

statements by imposing sufficiently high penalties), their sum does not correspond

to the true joint contribution. In fact, the buyer accepts bids whose sum is larger

than their actual joint contribution. Consequently, even though a competitive equi-

librium exists, an insufficient amount of supply bids is contracted, and the reliability

target undershot. Moreover, contracted suppliers would be overpaid for what they

essentially deliver to the buyer. Hence, the auction outcome under positively related

suppliers is unavoidably inefficient.

17For instance, the PJM capacity market has implemented such a design. It offers the possibility to
make coupled offers (PJM (2015)).

18We abstract here from additional problems such as limited liabilities, etc.
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It is worthwhile to make a couple of remarks regarding this important proposition.

First, note that the inefficiency of the procurement essentially stems from negative

externalities emerging from positive dependencies that are not internalized in the

competitive equilibrium. Also note that if all suppliers were independent, exter-

nalities would be non-existent, and they would be strictly positive with negative

relations. In the former case, suppliers would still bid individually (thus avoiding

coordination effort), while in the latter case they would bid jointly into the auction

(thus taking advantage of the coalition surplus). Both cases would be consistent

with the true joint contribution and hence, yield an efficient equilibrium.

To overcome the inefficiency revealed in Proposition 2, two strategies could be fol-

lowed: Either, the buyer could require consistency of all (accepted) bids with their

true joint contribution. Suppliers would then be forced to form and bid as a coalition

that is truly able to deliver the required level of reliability. This would in principle

entail an efficient auction outcome. However, in order to ensure the optimal coali-

tion really emerges, all suppliers would need to know and process the properties of

all other suppliers, including their interdependencies. In practice, ensuring such a

level of complex information and information processing among the suppliers would

probably be hard to achieve. Moreover, related transaction costs (that would subse-

quently be internalized in the bids and paid by the buyer) would probably be very

high. Hence, as an alternative, the buyer could centralize the process of determining

the optimal coalition in the auction clearing, thus only requiring the physical prop-

erties of the suppliers along with their prices. The buyer would then determine the

joint contribution of the suppliers for reliability himself instead of inviting tenders

for them.

Either way, it is the joint contribution that essentially counts for the buyer and

that suppliers should be paid for. However, in order to design at a corresponding

payoff scheme, the joint contribution (or value) needs to be split and allocated to

the suppliers. A suitable allocation rule that disentangles the value of individual

suppliers under complex interrelations will be discussed hereafter.

3.4.2 Allocation rule

There is an infinite number of allocation rules that could be applied to split the joint

contribution and allocate it to individual suppliers. To name a few examples, the

joint contribution could simply be split into equal parts, or be allocated according

to average availabilities of the suppliers. However, instead of choosing an arbitrary
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allocation rule, it is important to note that the specific choice may have an impact

that feeds back to the supply chain performance. For instance, consider a rule that

is perceived particularly unfair by some suppliers. This could, as a consequence,

reduce the exerted effort or even conscious insurrection (e.g. in form of a strike) of

those suppliers, and hence, trigger a suboptimal supply chain performance. Equally

important are long-term investment incentives that are implicitly provided by the

choice of an allocation rule. Hence, we aim at identifying an allocation rule that in-

corporates a number of desirable properties to suitably address the aforementioned

aspects.

Proposition 3. A normatively fair allocation of reliability-related payoffs to interde-

pendent individual suppliers can be obtained by the Shapley value:

Φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (3.23)

Proof. Taking as given the physical and strategic realities captured by the charac-

teristic function, the Shapley value is an attempt to distribute the joint contribution

of a coalition in a reasonable, or fair way. The motivation of the Shapley value is

normative, and the criterion of fairness applied is egalitarianism (Mas-Colell et al.

(1995)). It pays off the average marginal contribution of a supplier i to the set of

predecessors, with the average taken over all orderings. It aims at incorporating the

following desirable properties:

• Static efficiency:
∑

i Φi(v) = v(N), i.e., the joint value of the grand coali-

tion is distributed and no utility is wasted. In our application, this property

ensures that the sum of the individual payoffs according to the Shapley value

corresponds to the joint contribution. Hence, the Shapley value ensures static

efficiency of the allocation rule.

• Symmetry: If two suppliers i and j have an equivalent position in the game

(i.e., if v(S∪{i}) = v(S∪{ j})), or, in other words, if their individual contribu-

tion for reliability is the same, then their Shapley value is identical.

• Linearity: Φi(v1 + v2) = Φi(v1) + Φi(v2) for two characteristic functions v1

and v2, and Φi(av) = aΦi(v) for any real number a. Hence, individual payoffs

are equally affected if the coalition payoff (e.g., the price in an auction for

reliability) changes.

• Dummy: If a supplier i offers no contribution to reliability (i.e., if v(S∪{i}) =
v(S) for all coalitions S), then the Shapley value of this supplier is zero.
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All the above properties are meaningful and relevant for allocations to individual

suppliers according to their reliability contribution. Shapley (1953) showed that

the payoff allocation according to the Shapley value given in Equation (3.23) is the

unique value satisfying the efficiency, symmetry, linearity and dummy axioms.

3.4.3 Investment incentives

We investigate the investment incentives induced by the above allocation rule (Equa-

tion (3.23)) based on the concept of biform games, studying the impact of surplus di-

vision on non-cooperative investment decisions (Brandenburger and Stuart (2007)).

Investments take place in a stage prior to surplus allocation, such that the suppliers’

profits are maximized. To assess the incentives of our allocation rule with respect to

investment behavior, we focus on the relative weight placed on different investment

options (i.e., suppliers). I.e., we analyze how investments would be distributed,

instead of the absolute level of investment.19 We compare the distribution of in-

vestments under two different premises. First, let us state the first-best benchmark.

From an overall supply chain perspective, the aim is to maximize a weighted trade-

off between high reliability (i.e., high v) and high production volumes (i.e., high

µ), with parameter β ∈ [0,1] reflecting the relative weight given to high generation

volumes and reliability, respectively. Without loss of generality, let us suppose the

case of two suppliers, and the possibility to distribute investments among this set of

suppliers by adjusting the choice variable α ∈ [0, 1]. Then the first-best benchmark

is obtained by maximizing the following objective function:

max
α

β[v((1−α)S1 ∪αS2)] + (1− β)[(1−α)µY1
+αµY2

]. (3.24)

Second, we consider the case of a price-taking independent investor who wants

to extend an amount I ∈ [0, inf) of supply capacity, and needs to decide on the

share γ ∈ [0,1] (respectively 1 − γ) to be invested in supplier 1 (2). Under the

assumption that reliability-related payoffs according to the Shapley value are being

complemented by revenues from a production-related procurement or market, the

19Reaching a certain absolute investment level would simply require the allocation of an investment
volume that is sufficiently high (especially, sufficiently high to cover the costs of the investment).
The linearity property of the Shapley value would ensure that increasing the investment volume
would affect individual suppliers equally, and hence, that the distribution of investment is not al-
tered.
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investor’s profit function becomes

Π= pr((1−α)Φ1 +αΦ2) + pp((1−α)µY1
+αµY2

)− I c, (3.25)

with pr the price paid per reliable capacity (e.g., determined through a capacity

auction, as previously discussed), pp the price per production volume, and c the

capacity cost. We assume that pr , pp and c are constant and independent of the

supplier.

Proposition 4. The optimal distribution of independent investments coincides with the

first-best benchmark if the ratio of prices for reliability and production is properly set.

Proof. First-best benchmark: From a social perspective, we shall derive the system-

optimal diversification strategy α∗ ∈ [0, 1] for two suppliers S1 and S2 with produc-

tion capacity (1 − α)Y1 and αY2, respectively. Hence, we differentiate (3.24) with

respect to α, which – after a few calculations – yields:

α∗ =

�

(µY2
−µY1

)1−β
β + (µY2|X≈0 −µY1|X≈0)

�

fX (0)
f ′X (0)

+σ2
Y1|X≈0 −σY1,Y2|X≈0

σ2
Y1|X≈0 +σ

2
Y2|X≈0 − 2σY1,Y2|X≈0

. (3.26)

Independent investor: Now consider the case of a price-taking independent in-

vestor characterized by the profit function (3.25). For the case of two suppliers, the

Shapley values Φ1,Φ2 can easily be calculated as

Φ1 =
1
2

v(S1) +
1
2
(v(S1 ∪ S2)− v(S2)) (3.27)

Φ2 =
1
2

v(S2) +
1
2
(v(S1 ∪ S2)− v(S1)). (3.28)

Inserted in Equation (3.25), the optimal weight for the distribution of the invest-

ment can be derived from the first-order condition ∂Π
∂ γ = 0, which – after a few

calculations – yields γ∗. We find that γ∗ = α∗, i.e., equality of the investor’s optimal

choice and the first-best benchmark, however, only as long as the ratio of prices ( pr
pp

)

equals the ratio of supply chain preferences for reliability and production ( β
1−β ).

Note that we have so far assumed a greenfield investment with no supply capacity

being present. However, it is straightforward to relax this assumption, and instead

allow for some arbitrarily distributed capacity already being installed. These capac-

ities will, due to their stochastic interdependence, impact the investor’s profit (and

hence, investment decisions) via the amount and shares in payoffs allocated to the
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investor’s capacities. However, the impact on the independent investor’s decision

induced by the Shapley value is such that the additional capacity is ensured to be

installed where it is supply chain optimal. The reason is that an investment in line

with supply chain optimality yields highest overall contributions to reliability, which

in turn is distributed among the coalition members. As the Shapley value strictly

increases with the overall surplus (linearity axiom), it follows that an independent

investor aligns its strategy with the supply chain optimal result. Hence, the Shap-

ley value is able to ensure that additional investments bring the system towards the

first-best optimal distribution of capacities.

Lastly, generalization to n > 2 suppliers is straightforward using Var
�∑n

i=1 Yi

�

=
∑n

i=1

∑n
j=1σYi ,Yj

=
∑n

i=1σ
2
Yi
+ 2

∑∑

1≤i< j≤nσYi ,Yj
.

Let us briefly discuss the plausibility of the results derived in Proposition 4 and

its proof. Consider the extreme case of β = 0, i.e., when full preference is given to

production volumes. Then, the first-best result becomes

α̃∗ |β→0 =















0 : µY2
< µY1

1 : µY2
> µY1

indifferent : µY2
= µY1

,

(3.29)

i.e., – as expected – a simple preference for the location with higher average avail-

ability if there is any, and indifference otherwise.

For the case of some preference being given to reliability, i.e., for β 6= 0, the re-

sult reveals that the optimal share depends upon the difference between the average

availabilities of the two suppliers, their variances, as well as their covariance. Specif-

ically, the following characteristics require a stronger redistribution from supplier S1

to S2: high average availability of S2; low average availability of S1; large variability

of S1; and low covariance between S1 and S2.

Some further remarks concerning Proposition 4 are worthwhile: First, note that it

always needs a certain price level to incentivize investments. For reliability-payoffs

only, it would be individually rational to invest as long as pr
c >

I
v(γS1∪(1−γ)S2)

, whereas

for complementary payoffs, the individual rationality constraint becomes pr
c (Φ1 +

Φ2) +
pp
c (µY1

+ µY2
) > I . Second, we want to point the readers interest to possi-

ble extensions of our analysis of investment incentive effects: Besides the case of

one investor, it would also possible to consider one or multiple players per supplier

optimizing their payoffs by choosing an investment level while strategically consid-
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ering the action performed by the other investors. For the case of one player per

supplier, we have found an underinvestment of individual players compared to the

supply chain optimal outcome, also impacting the distribution of capacities towards

an inefficient balance.20 As expected, this inefficiency increases with the level of in-

terdependencies among the locations, and vanishes for independent resources. This

result might indicate possible problems occurring from the exercise of market power

within the Shapley value approach.

Lastly, we remark that from a supply chain organization perspective, properly set-

ting the ratio of prices for reliability and production may indeed be challenging.

An appropriate weighting of prices in the case of complementary reliability- and

production-related payoffs could be ensured, e.g., through efficient prices stemming

from appropriately designed markets.

3.5 Empirical case study: Wind power in Germany

This section presents an empirical case study for wind power embedded in the Ger-

man power system. Based on real-world data, it is meant to demonstrate applica-

bility of the concepts developed in the previous sections as well as their practical

relevance, and to empirically confirm our analytical results. The case of wind power

in Germany appears to be novel and pertinent. With 34.02 out of 188.68 GW pro-

duction capacity being installed, wind power plays a major role in Germany’s gen-

eration portfolio, while it is a declared goal to integrate the technology into general

market structures. Moreover, power system reliability as well as possible regulatory

interventions, such as capacity mechanisms, have been heavily discussed for several

years.

3.5.1 Estimation procedure

Recall Equation (3.3) that needs to be solved for v in order to obtain the contribution

of individual suppliers. We assume random variable C , i.e., the availability of the

power supply fleet apart from wind power, to be independent from wind power Y

and demand D, and that its distribution can be determined through convolution of

the suppliers’ outage probabilities (see below). In contrast, the joint distribution of

Y and D is estimated from simultaneous historical observations. As we only have

one observation per instant in time t, we need to extend Equation (3.3) to multiple

20The result shows strong similarities with the withholding situation in a Cournot-Duopoly.

58



3.5 Empirical case study: Wind power in Germany

time periods, such that random variables Y, D may be replaced by corresponding

observations yt , dt :
21

T
∑

t=1

Pr(dt + v ≤ C + yt)≡
T
∑

t=1

Pr(dt ≤ C) (3.30)

Note that summing up the probabilities over time yields the expected value during

the considered number of hours T . This measure is often applied to formulate or

benchmark reliability levels. For instance, a 1-day-in-10-years criterion has often

been used as a benchmark or target value, both in the academic literature (e.g., see

Keane et al. (2011)) and in practice (e.g., by the Midcontinent ISO or the ISO New

England).22

3.5.2 Data

The necessary data can be classified into three main areas: First, detailed infor-

mation is needed about installed capacities and availability factors of dispatchable

power suppliers apart from wind (C in Equation (3.30)). Second, the analysis re-

quires high-resolution data on wind power capacities as well as their infeed profiles

(yt). Third, load levels with the same temporal resolution and regional coverage are

needed to perform the calculations (dt). Descriptions of the data along with some

preparatory calculations can be found in the 3.7. Importantly, we find clearly posi-

tive dependencies among all wind power profiles (see 3.7 for a detailed analysis).

Regarding the level of detail in our analysis, we would ideally opt for a represen-

tation of each individual supplier in the system. However, for large systems with

many interdependent suppliers, this would quickly involve impractical data require-

ments and calculation efforts. This is mainly due to the fact that each of the 2n − 1

possible coalitions needs to be calculated. Hence, some administrative division may

provide a satisfactory level of disaggregation while still being manageable.23 In our

21The validity and consistency of the result obtained from this reformulation may be justified by the
central limit theorem (Zachary and Dent (2011)).

22Alternative economic approaches would try to estimate efficient reliability levels from the value
of lost load (VOLL) and costs of maintaining a certain level of supply chain reliability (Telson
(1975)). A thorough discussion would clearly be beyond the scope of this paper, such that the in-
terested reader is referred to Stoft (2002) for the necessary calculations, and attempts to quantify
the VOLL, e.g., by Anderson and Taylor (1986) for Sweden or by Growitsch et al. (2014) for Ger-
many. Noticeably, due to the fact that data requirements and estimation procedures are far from
being straightforward, it is not surprising that rules of thumb and common practice, such as the
1-day-in-10-years, are often applied – both by academics as well as practitioners.

23The same (relative) Shapley value would then apply to all units within that area.
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empirical example, we will hence aggregate wind power on the federal state level.24

3.5.3 Results

Reliability of Germany’s dispatchable power fleet

To determine the cumulative distribution function FC describing the availability dis-

tribution of Germany’s power supply fleet apart from wind power, we assume that

each supplier is either fully available or not,25 and that individual failure probabili-

ties are independent. Based on these assumptions, FC can be derived via convolution

of the individual suppliers’ failure probabilities. We implemented the algorithm de-

veloped in Hasche et al. (2011) which proved to be fast enough to calculate the cdf

for our supply chain (consisting of nearly 900 dispatchable power supply units) in

less than a minute on a standard laptop. The resulting (complementary) cumulative

distribution function is shown in Figure 3.1, together with a histogram of load levels.

Load levels are for the most part far left of the critical range of around 90 GW where

the complementary cdf begins to drop sharply.

From Equation (3.30) and our data, we obtain a basically perfect reliability of

supply of RS = 1− 1.15e−12 hours/year.26 Hence, installed capacities appear to be

largely sufficient to reliably cover today’s load profile.
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Figure 3.1: Complementary cdf of Germany’s power plants without wind power together
with a histogram of 2013 load levels

Having previously mentioned the often applied 1-day-in-10-years target, we find

that a 30% increase in current (2013) load levels could be sustained in order to

24Germany consists of 16 federal states: Baden-Württemberg (BW), Bayern (BY), Berlin (BE), Bran-
denburg (BB), Bremen (HB), Hamburg (HH), Hessen (HE), Mecklenburg-Vorpommern (MV),
Niedersachsen (NI), Nordrhein-Westfalen (NW), Rheinland-Pfalz (RP), Saarland (SL), Sachsen
(SN), Sachsen-Anhalt (ST), Schleswig-Holstein (SH), and Thüringen (TH).

25I.e., no partial failures are taken into account.
26Note that RS is a risk measure, not implying that a certain number of load shedding events effectively

occurs. Hence, the figures presented here and in the following should not be confused with realized
statistical numbers, such as the Average System Interruption Duration Index (ASIDI).
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reach that threshold, again indicating large amounts of over-capacity in the German

system.

The contribution of wind power to reliability of supply

We find the joint contribution of Germany’s aggregated wind power to reliability of

supply v(N) to be 3376 MW, corresponding to ṽ(N) = 9.9% relative to the installed

capacity of 34.02 GW.

To provide empirical evidence for the decreasing returns to scale found in Corol-

lary 1, we scale today’s wind power capacity by factors of 0 to 3, while assuming

unchanged characteristics of load and dispatchable power (Figure 3.2, left hand

side). As expected, the contribution decreases monotonically along a convex func-

tion. To empirically confirm gains of diversification (Corollary 2), we first calculate

the contribution of wind capacities being installed in two states (S1 and S2) sepa-

rately, ranging from 100 to 900 MW. We take Sachsen (SN) and Thüringen (TH) as

an example.27 We then calculate the joint contribution of a diversified portfolio of

the same aggregated capacity being installed in both the states (capacity split half-

half, i.e., v(1
2S1 ∪

1
2S2)). Whereas the joint contribution of the diversified portfolio

lies in between the separate states for small capacities, it clearly yields higher contri-

butions for increasing penetration levels. Especially, the rate at which the diversified

contribution drops is significantly smaller.
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Figure 3.2: Decreasing returns to scale (left); Gains of diversification (right)

The following Table 3.1 presents today’s installed wind power capacities per state,

along with the individual absolute (v(Si)) and relative contributions (ṽ(Si)). Indi-

vidual relative contributions vary significantly, ranging from 13.9 to 31.3%. Sum-

27These two states have a similar average availability of wind power and a correlation coefficient of
0.59.
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ming up the individual contributions would clearly yield a false joint contribution

of 19.6%. Compared to the previously determined consistent joint contribution of

9.9%, this is a huge overestimation that would be induced by neglecting the positive

interdependencies between the resource availability at different locations. This em-

pirical finding underlines the importance of the non-additivity property, as stated in

Corollary 3.

State Installed Capacity [MW] Absolute Contribution [MW] Relative Contribution
BW 624 156 24.9%
BY 1066 158 14.8%
BE 2 1 31.3%
BB 5233 1013 19.4%
HB 114 34 30.0%
HH 55 16 28.1%
HE 961 145 15.1%
MV 2301 588 25.6%
NI 7676 1392 18.1%

NW 3473 483 13.9%
RP 2366 395 16.7%
SL 223 44 19.9%
SN 1055 281 26.6%
ST 4093 955 23.3%
SH 3683 723 19.6%
TH 1097 295 26.9%

Table 3.1: Installed capacity, absolute and relative contributions calculated for each state
individually

Supply chain organization

For our case study, empirical evidence shows that our game is largely subadditive,

and that the core is empty. The following Figure 3.3 is meant to illustrate the sub-

additive nature of our problem from two perspectives. The left hand side shows the

coalition’s joint contribution vs. its size (in terms of coalition members) for all 65535

possible coalitions,28 clearly indicating an inverse relation. Similarly, the right hand

side shows the error that would be induced by neglecting the (positive) interdepen-

dencies by plotting each possible coalition’s sum of individual contributions vs. its

consistent joint contribution.29 Whereas superadditivity would require all points to

be above the perfect additivity line, we find that virtually all points lie well below,

with the error substantially increasing for larger individual contributions (essentially

due to decreasing returns to scale, i.e., in line with Corollary 1).

28For a game with 16 players, the number of possible coalitions is 216 − 1= 65535.
29The most exterior point, i.e. the grand coalition of all states, has already been discussed in the

previous paragraph.
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The results of both figures are driven by the positive interdependencies among the

16 states that are illustrated in Figure 3.9. They demonstrate the empirical relevance

of Proposition 2, i.e., the inefficiency of a competitive equilibrium in a reliability

procurement where only individual bids are verified.
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Figure 3.3: Relative joint contribution vs. size of coalition (left); Sum of individual contri-
butions vs. joint contribution (right)

Payoff allocation according to the Shapley value

Turning to the core result, Figure 3.4 presents the relative Shapley value Φ̃i(v(N)),

i.e. the payoffs relative to installed capacities allocated to each of the 16 states (green

squares). To put these values into perspective, they are presented in combination

with the suppliers’ average availability (µi) as well as with their separately calculated

individual contribution (ṽ(Si)). We find that the individual contribution as well as

the Shapley value tends – as expected – to decrease with average availability. How-

ever, the Shapley values also show pronounced deviations from the joint contribu-

tion (9.9%), as well as from the ordering of the individual contributions and average

availabilities. For instance, Niedersachsen (NI) and Sachsen-Anhalt (ST) both have

high average availabilities, but also large installed capacities as well as pronounced

positive dependencies with other states – and hence comparatively low Shapley val-

ues. Overall, the Shapley values range from 15.1% for Baden-Württemberg (BW)

and Sachsen (SN) to 5.7% for Bavaria (BY).

Relating the Shapley value to the possibility of emerging coalitions in a competitive

environment (Proposition 2), we find that 50337 out of 65535 possible coalitions

would be able to block this allocation, due to the subadditivity found above. Hence,

it seems indeed reasonable to transfer the process of determining the joint contri-

bution of the coalition and allocating individual payoffs to an independent central

authority.
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Figure 3.4: Average availabilities, individual contributions and Shapley values (all relative)

In practice, it will be most plausible to pay power supply units according to a

weighted production- and reliability-related preference (i.e., if existing markets for

energy are or were to be complemented by a capacity mechanism). As discussed

in Section 3.4.3 and Proposition 4, it would then be important to find a balance

between high production volumes (i.e., high average availability) and high Shap-

ley values. Figure 3.5 presents this tradeoff, showing that states perform strikingly

different on both dimensions. Separating the field into quadrants, we find that

Baden-Württemberg (BW) and Sachsen (SN) perform particularly well for the case of

more preference given to reliability, Niedersachsen (NI) and Sachsen-Anhalt (ST) for

the case of more preference on production volumes, and Mecklenburg-Vorpommern

(MV) for an equal balance. Nordrhein-Westfalen (NW), Bavaria (BY) and Hessen

(HE) perform poorly with respect to both properties. Moreover, it should be no-

ticed that even though a general positive trend can be found, the tradeoff is widely

scattered around a straight line. In practice, this property would offer the possibil-

ity to effectively incentivize investments that contribute much better to reliability

than purely production-based decisions by means of appropriate payoffs reflecting

(weighted) preferences for production volumes and reliability.

3.6 Conclusions

Supply chain reliability is a timely and relevant subject that has been studied inten-

sively in the academic literature. However, the specific role of individual, possibly

stochastic and interdependent suppliers for supply chain reliability has so far been

disregarded. To fill this gap, we have thoroughly investigated the issue based on
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Figure 3.5: Average availability vs. Shapley value

statistical and economic analyses. Especially, we have derived an analytical solution

for the contribution of individual suppliers to reliability as well as a corresponding

payoff scheme that accounts for the statistical properties of the problem. Practical

applicability and relevance has been demonstrated with a numerical example based

on wind energy in the German power system, thereby confirming our analytical find-

ings.

With the concepts developed, the reliability of supply chains could in the future

be designed and managed more efficiently. For instance, our payoff scheme could be

applied to write payoff contracts in monopsonistic markets or public procurements

from various suppliers, or to allocate individual payoffs in a bonus system. To name

a practical example, the approach could improve the design of capacity mechanisms

in power systems, where the state or regulator procures reliability from power sup-

ply units. In fact, our analysis reveals that existing designs to incorporate variable

renewable energies into capacity-mechanisms contain substantial shortcomings.30

In contrast, the properties of the approach developed in this paper would ensure a

30For instance, the selective Spanish capacity mechanism excludes intermittent resources by allocating
zero reliable capacity, hence inducing a situation of static inefficiency as soon as there is any posi-
tive contribution – which is likely to be the case as presented in our empirical case study. Moreover,
the Spanish design fails to incentivize investments into suppliers that are beneficial for reliability,
hence also inducing an additional long-term inefficiency. As a serious design flaw in the PJM capac-
ity auction, they attempt to prequalify suppliers individually – which contradicts the non-additivity
we have found in Corollary 3. Moreover, while PJM allows suppliers using intermittent resources
(i.e., wind and solar power) to cooperate and bid jointly, there will be disincentives to do so as
implied in Proposition 2. These shortcomings will necessarily entail an inefficient outcome. Draw-
backs in the UK and French capacity mechanisms can be found in the average payoff allocated to
each unit in the same technology-class. While the approach ensures static efficiency by complying
with the consistent joint contribution, it lacks the provision of locational investment incentives. In
addition, the approach may face opposition from underrated suppliers whose individual contribu-
tion to reliability lies well above the average level.
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3 Supply chain reliability and the role of individual suppliers

level playing field for all suppliers, and clearly outperform existing, currently applied

alternatives.

Our analysis could be extended in several directions: It would be worthwhile to

consider a strict optimization applied within our framework with costs attached to

individual suppliers, e.g., to determine an optimal subset among a broader set of

interdependent suppliers. The investment incentives provided by our Shapley value

approach should be studied in more detail, including variations in the number and

role of market participants (e.g., market power) as well as a more sophisticated

representations of investment decisions. The effect of an endogenous demand-side

response on reliability would also be interesting. Our approach could be applied

to other supply chains incorporating stochastic suppliers and demand, especially

those with positive dependencies. For instance, it would be interesting and relevant

to assess the value of an additional call center for reliable customer services, or to

design suitable payoffs for individual drivers in a large network providing transport

services.
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3.7 Appendix: Data and preparatory calculations

Installed capacities and availability factors

For information about currently installed power supply units, we use the List of

Power Plants prepared and provided by the Federal Network Agency (Bundesnetza-

gentur (2014)). It lists all existing units in Germany with a net nominal electricity

capacity of at least 10 MW.31 Moreover, supply facilities of less than 10 MW are also

included on an aggregated basis grouped by energy source. Extracted net nominal

capacities by fuel type are depicted in Table 3.2. As for wind power, 34.02 GW were

installed by mid 2014, distributed among the 16 federal states as shown in Figure

3.6.
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Figure 3.6: Distribution of installed wind power capacities (34.02GW total)

Regarding the suppliers’ availabilities, we assume fuel-type specific factors accord-

ing to historical observations, taken from VGB and Eurelectric (2012), and comple-

mented with dena (2010) for Hydro, Geothermal and Biomass, as reported in Table

3.2. For PV, we assume an availability factor of 0%.32

Wind speed data and wind to power conversion

As we want to focus on the supply side uncertainty of wind power in our empirical

example, coverage and resolution of the wind data are crucial for obtaining reliable

results. Consequently, we use hourly wind speed data of 32 years (1982-2013) to

31In addition, it also comprises capacities directly feeding into the German grid from Luxembourg,
Switzerland and Austria (which we assume to contribute to Germany’s generation adequacy)

32This is a conservative estimate, however, consistent with the observation that highest load hours
occur in the late evening during winter time.

67



3 Supply chain reliability and the role of individual suppliers

Fuel type Availability Capacity [GW]
Biomass 88.0% 6.38

Coal 83.9% 27.73
Gas 88.3% 25.42

Geothermal 90.0% 0.03
Hydro (pump) storage 90.0% 10.63

Hydro run-of-river 40.0% 3.92
Lignite 85.3% 20.95

Nuclear 83.3% 12.07
Oil 89.2% 4.14

Others (Waste, Landfill gas, etc.) 90.0% 5.32
PV 0.0% 37.45

Wind to be calculated 34.02

Table 3.2: Availability factors and installed capacities per fuel type

cover a broad range of possible wind patterns in Germany, provided by the national

climate monitoring of the German Weather Service (DWD (2014)).33 We select one

representative location per federal state according to the agglomeration of wind

turbines within each state.34

State DWD-ID Observatory name
BW 4887 Stötten
BY 5705 Würzburg
BE 3987 Potsdam
BB 164 Angermünde
HB 691 Bremen
HH 1975 Hamburg-Fuhlsbüttel
HE 1420 Frankfurt
MV 4271 Rostock
NI 891 Cuxhaven

NW 2483 Kahler Asten
RP 2385 Idar-Oberstein
SL 4336 Saarbrücken
SN 1048 Dresden
ST 1957 Halle-Kröllwitz
SH 4466 Schleswig
TH 1270 Erfurt-Weimar

Table 3.3: Selected DWD observatories

The conversion of wind speed to electrical power output is described by a turbine-

specific power curves. As a representative power curve, we use the Nordex S77 tur-

bine with a hub height of 77 meters and a rated power of 1.5kW (Nordex (2007)).

33In case of missing data, empty entries are replaced by interpolations based on the previous and
next available value if the empty space is not exceeding 12 hours. If the gap is longer, entries are
replaced by data of the same station and same hours of the previous year. As measurements are
taken a couple of meters above ground only, wind speeds are scaled to the wind turbines’ hub height
assuming a power law: vh1

= vh0
(h1/h0)a, where h0 is the measurement height, h1 the height of

interest and α the shear exponent. According to Firtin et al. (2011), a is assumed to be 0.14.
34The list of selected observatories is presented in the following Table 3.3.
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Wind speed to power conversion is implemented via lookup-tables with linear inter-

polation.

To validate this relatively simple model for generating wind power profiles, we

compare statistical profiles and volumes with our synthetic model-generated data.

Figure 3.7 compares statistical yearly production per federal state (available from

Agentur für erneuerbare Energien (2014) for the years 2001-2012, except for 2007)

against our modeling results (based on historically installed wind capacities taken

from German Wind Energy Association (BWE) (2012) and wind speeds from the

corresponding years). As can be seen, our model overestimates production for the

first years, whereas satisfactory conformity is reached for more recent periods. This

is probably due to improvements in turbine technologies over the years (remember

that we have applied the power curve of a relatively modern turbine).
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Figure 3.7: Yearly wind power production per federal state (model: left, statistics: right)

Another step of validation has been carried out for the hourly profiles, based on

a comparison of the distributions of the model-based data with historical produc-

tion profiles (available for the years 2010-2013) by means of QQ-plots (Figure 3.8).

Distributions are found to be very similar for those years, however, with slightly

decreasing conformity for upper quantiles. Conducting a simple regression analysis

yields an R2 of 0.80, 0.81, 0.82 and 0.81 for the years 2010-2013. For completeness,

summary statistics of the obtained profiles (based on 2014 wind capacities) are also

provided in Table 3.4.

Load profiles

Germany’s load levels are reported on an hourly basis by ENTSO-E (2012), repre-

senting the hourly average active power absorbed by all installations connected to

the transmission or distribution network. Instead of using multiple years of load
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Figure 3.8: QQ-plots of model-based and historical production profiles, for the years 2010-
2013

Profile Min Max Mean Std
Load Germany (2013) 29.55 75.623 52.8916 9.6327

Wind Power BW (1982-2013) 0 0.6241 0.1340 0.1828
Wind Power BY (1982-2013) 0 1.0666 0.1363 0.2513
Wind Power BE (1982-2013) 0 0.002 0.0004 0.0005
Wind Power BB (1982-2013) 0 5.2331 1.01 1.4062
Wind Power HB (1982-2013) 0 0.1142 0.0256 0.0321
Wind Power HH (1982-2013) 0 0.0551 0.0102 0.0138
Wind Power HE (1982-2013) 0 0.961 0.1239 0.2147
Wind Power MV (1982-2013) 0 2.3014 0.5572 0.731
Wind Power NI (1982-2013) 0 7.6757 2.0334 2.3978

Wind Power NW (1982-2013) 0 3.4732 0.3751 0.7232
Wind Power RP (1982-2013) 0 2.3661 0.4126 0.6694
Wind Power SL (1982-2013) 0 0.2233 0.0322 0.051
Wind Power SN (1982-2013) 0 1.0545 0.2048 0.2865
Wind Power ST (1982-2013) 0 4.0925 1.0465 1.3257
Wind Power SH (1982-2013) 0 3.6828 0.6963 0.932
Wind Power TH (1982-2013) 0 1.0965 0.2073 0.3079

Table 3.4: Summary statistics of load and wind power profiles in [GW]

data, we restrict our attention to the most recent year 2013 in order to focus on the

supply side uncertainty. We hence refer to reliability under current load levels and

profiles. Summary statistics of the load profile are comprised in Table 3.4.
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Correlation analysis

As has been noticed several times during the theoretical analysis in Sections 3.3

and 3.4, covariance among the power production of the different locations crucially

impacts the properties and results of the problem. In order to get an impression of

the dependencies characterizing wind power and load in Germany, Figure 3.9 shows

the matrix of linear correlation coefficients ρ.

As can be seen, ρ among the wind power profiles is in a range of [0.10,0.77], with

a mean of 0.48 (excluding diagonal values). Correlations between wind power and

load are in a range of [0.06, 0.17], with a mean of 0.13. Hence, all dependencies

are clearly positive.35
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Figure 3.9: Correlation matrix of wind power profiles

35As reliability of supply is particularly relevant during tight capacities, we recalculate the same num-
bers for the data corresponding to the 5% highest load hours, resulting in a range of [0.15,0.79]
and a mean of 0.51 for correlations among wind power, and [−0.02,0.03] and a mean value of
0.00 for correlations between wind power and load. Hence, wind power dependencies are even
slightly more pronounced during high-load-hours, whereas wind power and load are independent.
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4 Congestion management in power systems -
Long-term modeling framework and
large-scale application

In liberalized power systems, generation and transmission services are unbundled,

but remain tightly interlinked. Congestion management in the transmission network

is of crucial importance for the efficiency of these inter-linkages. Different regula-

tory designs have been suggested, analyzed and followed, such as uniform zonal

pricing with redispatch or nodal pricing. However, the literature has either focused

on the short-term efficiency of congestion management or specific issues of timing

investments. In contrast, this paper presents a generalized and flexible economic

modeling framework based on a decomposed inter-temporal equilibrium model in-

cluding generation, transmission, as well as their inter-linkages. The model covers

short-run operation and long-run investments and hence, allows to analyze short and

long-term efficiency of different congestion management designs that vary with re-

spect to the definition of market areas, the regulation and organization of TSOs, the

way of managing congestion besides grid expansion, and the type of cross-border ca-

pacity allocation. We are able to identify and isolate implicit frictions and sources of

inefficiencies in the different regulatory designs, and to provide a comparative analy-

sis including a benchmark against a first-best welfare-optimal result. To demonstrate

the applicability of our framework, we calibrate and numerically solve our model for

a detailed representation of the Central Western European (CWE) region, consist-

ing of 70 nodes and 174 power lines. Analyzing six different congestion manage-

ment designs until 2030, we show that compared to the first-best benchmark, i.e.,

nodal pricing, inefficiencies of up to 4.6% arise. Inefficiencies are mainly driven by

the approach of determining cross-border capacities as well as the coordination of

transmission system operators’ activities.

4.1 Introduction

The liberalization of power systems entails an unbundling of generation and grid

services to reap efficiency gains stemming from a separate and different organiza-
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tion. While there is competition between generating firms, transmission grids are

considered a natural monopoly and are operated by regulated transmission system

operators (TSOs). However, strong inter-linkages remain between these two parts

of the power system: From a transmission perspective, TSOs are responsible for

non-discriminatory access of generating units to transmission services while main-

taining a secure grid operation. They are thus strongly influenced by the level and

locality of generation and load. Furthermore, due to Kirchhoff’s laws, operation and

investment decisions of one TSO may affect electricity flows in the area of another

TSO. From a generation firms’ perspective, activities are impacted by restrictions on

exchange capacities between markets or operational interventions by the TSOs to

sustain a reliable network.

An efficient regulatory design of those inter-linkages between generation and grid

will positively affect the overall efficiency of the system, for instance by providing lo-

cational signals for efficient investments into new generation or transmission assets.

To ensure an efficient coordination of short (i.e., operational) and long-term (i.e.,

investment) activities in the generation and grid sectors, congestion management

has been identified to be of utmost importance (e.g., Chao et al. (2000)). Different

regulatory designs and options are available to manage congestion, including the

definition of price zones as well as various operational and investment measures.

Because it is able to deliver undistorted and hence efficient price signals, nodal pric-

ing is a powerful market design to bring along efficiency. This was shown in the

seminal work of Schweppe et al. (1988) and Hogan (1992). Nevertheless, many

markets deviate and pursue alternative approaches, e.g., due to historical or political

reasons. For instance, most European countries deploy national zonal market areas

with uniform electricity prices. Implicitly, several challenges are thus imposed upon

the system: First, in zonal markets, intra-zonal network congestion remains uncon-

sidered by dispatch decisions. However, if a dispatch induces intra-zonal congestion

(which is typically often the case), it might be necessary to reconfigure the dispatch,

known as re-dispatch. Alternatively, the dispatch can be impacted by charging grid

costs directly to generators in order to avoid congestion in the market clearing pro-

cess (a so-called generator- or g-component, also known as grid connection charge).

Such charges reflect the locational scarcity of the grid, and are thus conceptually sim-

ilar to nodal prices, depending on the calculation method applied (see Brunekreeft

et al. (2005) for a comprehensive discussion). Second, cross-border capacity needs

to be managed. Whereas historically, cross-border capacities have often been auc-

tioned explicitly, many market areas are now turning to implicit market coupling

based on different allocation routines, such as net-transfer capacities (NTC) or flow-
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based algorithms (Brunekreeft et al. (2005), Oggioni and Smeers (2012), Oggioni

and Smeers (2013)).1

The literature has investigated various regulatory designs to manage congestion

in power systems from different perspectives. Static short term efficiency of nodal

pricing – as shown by Schweppe et al. (1988) – was confirmed, e.g, by van der Wei-

jde and Hobbs (2011) who compare nodal pricing and NTC based market coupling

in a stylized modeling environment. Furthermore, several papers have quantified

the increase in social welfare through a switch from zonal to nodal pricing for static

real world case studies (see for example: Green (2007), Leuthold et al. (2008),

Burstedde (2012), Neuhoff et al. (2013)). Similarly, Daxhelet and Smeers (2007)

show that generator and load components reflecting their respective impact on con-

gestion have a positive effect on static social welfare (as well as its distribution),

while Oggioni and Smeers (2012) investigate different congestion management de-

signs in a six node model and find that a single TSO or multi-lateral arrangements for

counter-trading between several TSOs may improve efficiency. Oggioni et al. (2012)

and Oggioni and Smeers (2013) show that in a zonal pricing system, the configu-

ration of zones as well as the choice of counter-trading designs have a significant

impact on efficiency.

A second line of literature deals with the dynamic long-term effects of congestion

management, i.e., the investment perspective. On the one hand, issues of timing

(e.g., due to uncertainty or commitment) in settings consisting of multiple players

(such as generation and transmission) have been addressed. Höffler and Wambach

(2013) find that long-term commitment of a benevolent TSO may lead to inefficient

investment decisions due to the locational decisions of investments in generation.

In contrast, Sauma and Oren (2006) and Rious et al. (2009) formulate the coor-

dination problem between a generation and a transmission agent as a decomposed

problem, and find that a prospective coordinated planning approach as well as trans-

parent price signals entail efficiency gains, though some inefficiencies remain and

the first-best is not realized. On the other hand, imperfect simultaneous coordina-

tion (e.g., due to strategic behavior or hidden information) has been investigated by

Huppmann and Egerer (2014) for the case of multiple TSOs being active in an inter-

connected system. They find that a frictionless coordinated approach outperforms

the system outcome with strategic TSOs maximizing social welfare within their own

jurisdiction.

1Under implicit market coupling, cross-border capacities and prices are implicitly taken into account
during the joint clearing process of coupled markets.
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With this paper, we contribute to the above literature with a generalized and flex-

ible economic modeling framework for analyzing the short as well as long-term ef-

fects of different congestion management designs in a decomposed inter-temporal

equilibrium model including generation, transmission, as well as their inter-linkages.

Specifically, with our framework we are able to represent, analyze and compare dif-

ferent TSO organizations, market areas (i.e., nodal or zonal pricing), grid expan-

sion, redispatch or g-components, as well as calculation methods for cross-border

capacity allocation (i.e., NTC and flow-based). A major advantage of our analyti-

cal and numerical implementation is its flexibility to represent different congestion

management designs in one consistent framework. We are hence able to identify

and isolate frictions and sources of inefficiencies by comparing these different reg-

ulatory designs. Moreover, we are able to benchmark the different designs against

a frictionless welfare-optimal result, i.e., the first-best. In order to exclusively fo-

cus on the frictions and inefficiencies induced by the congestion management de-

signs, we do not address issues of timing, such as uncertainty or sequential mov-

ing. Instead, we assume perfect competition, perfect information, no transaction

costs, utility-maximizing agents, continuous functions, inelastic demand and an en-

vironment where generation and grid problems are solved simultaneously. As an

additional contribution, we calibrate and numerically solve our model for a large-

scale problem. Specifically, we investigate a detailed representation of the Central

Western European (CWE) region.2 To tackle the complex nature of the optimiza-

tion problem, we develop a numerical solution algorithm based on decomposition,

while a detailed analysis of the convergence behavior suggests that the results ob-

tained are robust. Thereby, we offer a sound indication on how different congestion

management designs perform in practice, and provide empirical evidence that nodal

pricing is the efficient benchmark while alternative designs imply inefficiencies of up

to 4.6% until 2030.

The paper proceeds as follows: In Section 4.2, we analytically develop our model-

ing framework. In Section 4.3, a numerical solution method to solve this framework

is proposed. In Section 4.3, we apply the methodology to a detailed representa-

tion of the CWE region in scenarios up to the year 2030. Section 4.5 concludes and

provides an outlook on future research.

2The CWE region is one of seven regional initiatives to bring forward European market integration.
The countries within this area are Belgium, France, Germany, Luxemburg and the Netherlands.
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4.2 Economic framework

In order to develop a consistent analytical modeling framework for different con-

gestion management designs, we start with the well-known model for an integrated

optimization problem for planning and operating a power system.3 By design, this

model does not contain any frictions and inefficiencies. Hence, the results obtained

are necessarily first-best and may serve as the efficient benchmark for alternative

settings. Moreover, it corresponds to the concept of nodal pricing as introduced by

Schweppe et al. (1988).4

To depict various congestion management designs, we make use of the possibil-

ity to separate an integrated optimization problem into multiple levels (or, in other

words, subproblems). Even though the model structure is then different, it can be

shown that both formulations of the problem yield the same results. However, in

the economic interpretation we can take advantage of the separated model struc-

ture representing unbundled generation and transmission sectors. On the gener-

ation stage, competitive firms decide about investments in and dispatch of power

plants, whereas the transmission stage consists of one or multiple TSOs that effi-

ciently expand and operate transmission grid capacities.5 Lastly, with generation

and transmission separated, we are able to introduce six practically relevant conges-

tion management designs through the manipulation of the exchange of information

between and among the two levels, and show how they deviate from the first-best.

Even though the modeling framework would allow to study an extensive range

of congestion management designs, we restrict our attention to four settings (and

two additional variations) that are both, relevant in practical applications and suf-

ficiently different from each other. Specifically, our settings vary in the definition

of market areas (nodal or coupled zonal markets), the regulation and organization

of TSOs (one single TSO for all zones or several zonal TSOs), the way of managing

congestion besides grid expansion (redispatch and g-component) and different alter-

natives for cross-border capacity allocation (NTC vs. flow-based market coupling).

We consider Net Transfer Capacity (NTC) and flow-based market coupling as cross-

border capacity allocation algorithms because they have been used extensively in the

European context (see, e.g., Glachant (2010)). NTCs are a rather simplified version

3Such a model is typically applied to represent the optimization problem of a social planner or an
integrated firm optimizing the entire electricity system, including generation and transmission.

4One main difference in our model is the assumption of an inelastic demand which was necessary to
formulate and solve the model as a linear program. We will elaborate on this issue in Section 4.2.1.

5Efficient in this context means that the TSO(s) are perfectly regulated to expand and operate the
grid at minimal costs.
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of cross-border trade restrictions, widely neglecting the physical properties of the

grid as well as its time-varying characteristics. Under flow-based market coupling,

cross-border transmission capacities are calculated taking into account the impact

of (cross-border) line flows on every line in the system (e.g., Oggioni and Smeers

(2013)), hence providing a much better consideration of the physical grid properties

which is crucially important in case of meshed networks. As a consequence, more

capacity can generally be offered for trading between markets, and a better usage

of existing infrastructures is achieved. The analyzed settings are summarized in the

following Table 4.1.

Market area and coupling TSO scope TSO measures

I Nodal markets One TSO Grid expansion
II - NTC Zonal markets, NTC-based coupling One TSO Grid expansion, redispatch
II - FB Zonal markets, Flow-based coupling One TSO Grid expansion, redispatch
III - NTC Zonal markets, NTC-based coupling Zonal TSOs Grid expansion, redispatch
III - FB Zonal markets, Flow-based coupling Zonal TSOs Grid expansion, redispatch
IV Zonal markets Zonal TSOs Grid expansion, g-component

Table 4.1: Analyzed congestion management designs

Noticeably, despite the separated generation and transmission levels, agents are in

all settings assumed to act rationally and simultaneously while taking into account

the activities of the other stage.6 Furthermore, we assume perfect competition on the

generation stage and perfect regulation of the TSOs in the sense that TSO activities

are aligned with social objectives. TSOs as well as generators are price taking, with

an independent institution (e.g., the power exchange) being responsible for coordi-

nating the activities of the different participating agents and for market clearing.7

Importantly, while in the first-best design all information is available to all agents, al-

ternative congestion management designs may induce an adverse (e.g., aggregated)

availability of information. The solution of the problem is an intertemporal equilib-

rium which is unique under the assumption of convex functions. We will thoroughly

discuss issues of convexity in the context of the numerical implementation in Section

4.3. Noticeably, with the above assumptions, our general modeling approach can be

thought of as a way to compare today’s and future performances of different conges-

tion management designs based on today’s state of the system, today’s information

horizon, as well as rational expectations about future developments and resulting

6I.e., sequential moving and issues of timing are not considered.
7By assuming perfect competition and an inelastic demand, we are able to treat the general problem

as a cost minimization problem. This assumption is commonly applied for formulation of electricity
markets in the literature. An alternative formulation with a welfare maximization approach would
be possible, but wouldn’t impact the general conclusions.
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investment decisions.8

For the sake of readability (and in contrast to the large-scale application presented

in Section 4.4), we make some simplifications in the theoretical framework: dispatch

decisions are realized in several points of time, but invest decisions are undertaken

only once. Furthermore, we neglect different types of generation technologies that

may be available at a node. This simplification does not change any of the conclu-

sions drawn from the theoretical formulation.9

For developing the economic modeling framework in the following subsections,

we will deploy parameters, variables and sets as depicted in Table 4.2 in the Ap-

pendix 4.6.

4.2.1 Setting I – First-Best: Nodal pricing with one TSO

By design, nodal pricing avoids any inefficiency by covering and exchanging all in-

formation present within the problem – leading to a welfare-optimal electricity sys-

tem. It hence represents the first-best setting in our analysis of different congestion

management designs. With the assumption of a social planner or perfect competi-

tion and regulation, nodal prices can be derived from locational marginal costs (of

generation and capacity) in a market clearing that implicitly considers the physi-

cal properties of the electricity network (specifically, loop flows). Abstracting from

economies of scale and lumpiness of investment, it can be shown that an efficient

and unique equilibrium exists under nodal prices (Caramanis (1982), Joskow and

Tirole (2005), Rious et al. (2009)). In line with these findings, we assume constant

marginal grid costs as well as continuous generation and transmission expansion.10

Another assumption in our formulation is an inelastic (yet time-varying) demand.

The reason for assuming an inelastic demand is mainly triggered by the excessive

computational burden that would be induced by an elastic demand in the numer-

ical solution approach (an inelastic demand allows us to formulate and solve the

model as a linear instead of a non-linear program). As a drawback, the assumption

of an inelastic demand differs from the formulation in Schweppe et al. (1988) and

8In our numerical application, this approach is supplemented with discounted future cash flows. See
Section 4.4 for further details.

9To include multiple instances in time for investments, the formulation could easily be adapted by
adding an index to all parameters, variables and equations related to installed capacities (gener-
ation and transmission). In the same vein, an additional index could be inserted to account for
different types of generation technologies.

10This assumption is certainly more critical for transmission investments which require a certain mag-
nitude to be realized. Generation investment might also be lumpy, but smaller plant sizes are
possible.
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leads to the artifact that demand can never set the price. However, scarcity rents

to cover capacity costs are still possible under perfect information and competition

(including entry and exit of generators). For instance, consider the bid of a peak

load plant during a single peak load hour when it is dispatched and pivotal. The bid

will consist of the variable costs plus the long-term marginal costs of the capacity.

If the bid was lower, the peak load plant would leave the market due to an overall

loss. If the bid was higher, another peak load plant would enter the market due to

the possibility of making a profit. This forces the peak load plant to bid its true vari-

able plus marginal capacity costs. Once accepted, this bid can be interpreted as the

resulting market prices under capacity scarcity. Lastly, note that off-peak hours can

also have capacity components in prices if there is a diversified mix of generation

technologies, characterized by different cost structures.

The following optimization problem P1 is similar to the formulation of an inte-

grated problem for operating generation and transmission as in Schweppe et al.

(1988), except for the major change of demand being inelastic. In this formulation,

a social planner or an integrated firm minimizes total system costs of the operation

and investment of generation and transmission.

P1 Integrated Problem

min
G i ,Gi,t ,Ti, j,t ,P i, j

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

i, j

µi, j P i, j (4.1a)

s.t. Gi,t −
∑

j

Ti, j,t = di,t ∀i, t |λi,t (4.1b)

Gi,t ≤ G i ∀i, t (4.1c)

|Ti, j,t |= |Pi, j,t(Pk,l , Gk,t , dk,t)| ≤ P i, j ∀i, j, t |κi, j,t (4.1d)

Ti, j,t = −T j,i,t ∀i, j, t (4.1e)

Indices i, j, k, l represent nodes in the system. Generation Gi,t , generation capacity

G i , trade Ti, j,t and transmission capacity P i, j are optimization variables. Additional

capacities can be installed at the costs of δi for generation and µi, j for transmission.

Nodal prices are derived from the dual variables λi,t of the equilibrium constraint

which states that the demand level di,t at node i can be either satisfied by generation

at the same node or trade between nodes (Equation (4.1b)). Equations (4.1c) and

(4.1d) mirror that generation is restricted by installed generation capacities, and

physical flows by installed transmission capacities. Furthermore, trades from node

i to node j are necessarily equal to negative trades from node j to node i (Equation
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(4.1e)). As the market clearing fully accounts for the transmission network in the

nodal pricing regime, trade between adjacent nodes is equal to physical flows on the

respective line, i.e., Ti, j,t = Pi, j,t (Equation (4.1d)).

Load flows on transmission lines are based on Kirchhoff’s law, which we represent

based on a linearized load flow approach.11 Thereby, flows are impacted by gen-

eration (Gk,t) and demand (dk,t), i.e., power balances of all nodes in the system,

as well as by the physical properties of the transmission system, represented by in-

stalled transmission capacities Pk,l . Thus, there is a functional dependency of flows

and trades on generation, demand, and line capacities throughout the system, i.e.,

Ti, j,t = Ti, j,t(Pk,l , Gk,t , dk,t).

As has been shown, e.g., by Conejo et al. (2006), an integrated optimization prob-

lem can be decomposed into subproblems which are solved simultaneously, while

still representing the same overall situation and corresponding optimal solution. In

our application, we take advantage of this possibility to represent separated gener-

ation and transmission levels in problem P1’. The generation stage P1’a states the

market clearing of supply and demand while respecting generation capacity con-

straints. As in P1, the same nodal prices are obtained by the dual variable λi,t of the

equilibrium constraint (4.2b). Instead of including the explicit grid expansion costs

in the cost minimization, the objective function of the generation stage now contains

transmission costs which assign transmission prices κi, j,t to trade flows between two

nodes i and j. These prices are derived from the dual variable of the equilibrium

constraint on the transmission stage (Equation (4.2g)). We assume that the TSO

is perfectly regulated to minimize costs of grid extensions accounting for the phys-

ical feasibility of the market clearing as determined on the generation stage while

considering all grid flows and related costs (problem P1’b). As trade is a function

of P, which in turn is the decision variable in the transmission problem, the market

clearing conditions need to reoccur in the transmission problem.

11We will use the PTDF approach shown in Appendix 4.6 in our numerical implementation in Section
4.3, as this enables a linearization of the generally non-linear load flow problem, given a fixed
transmission network (cf. Hagspiel et al. (2014)).
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P1’a Generation

min
G i ,Gi,t ,Ti, j,t

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

i, j,t

κi, j,t Ti, j,t (4.2a)

s.t. Gi,t −
∑

j

Ti, j,t = di,t ∀i, t |λi,t (4.2b)

Gi,t ≤ G i ∀i, t (4.2c)

Ti, j,t = −T j,i,t ∀i, j, t (4.2d)

P1’b Transmission

min
P i, j

Y =
∑

i, j

µi, j P i, j (4.2e)

s.t. Gi,t −
∑

j

Ti, j,t = di,t ∀i, t (4.2f)

|Ti, j,t |= |Pi, j,t(Pk,l , Gk,t , dk,t)| ≤ P i, j ∀i, j, t |κi, j,t (4.2g)

Ti, j,t = −T j,i,t ∀i, j, t (4.2h)

As can be seen, all terms of P1 reappear in P1’, however, allocated to two separated

levels. Mathematically, the equivalence of P1 and P1’ is shown in Appendix 4.6,

where the first order conditions of both formulations are compared.

4.2.2 Setting II: coupled zonal markets with one TSO and zonal
redispatch

In zonal markets, a number of nodes are aggregated to a market with a uniform

price. In contrast to nodal pricing, coupled zonal markets only consider aggregated

cross-border capacities between market zones during market clearing (instead of all

individual grid elements). Thus, the obtained prices for generation do not reflect

the true total costs of the entire grid infrastructure. This is due to the fact that zonal

prices only reflect those cross-border capacities that limit activities between zonal

markets. Cross-border capacities can be allocated in different ways. We consider

Net Transfer Capacity (NTC) and the more sophisticated flow-based market coupling

as cross-border capacity allocation algorithms (see Oggioni and Smeers (2013)).

Under the latter regime, more capacity can generally be offered for trading between

markets, and a better usage of existing infrastructures is achieved.

Because intra-zonal congestion is neglected in the zonal market-clearing, it needs
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to be resolved in a subsequent step by the TSO. Besides the expansion of grid capac-

ities, in Setting II we provide the TSO with the opportunity of zonal redispatch. The

TSO may instruct generators located behind the bottleneck to increase production

(positive redispatch), and another generator before the bottleneck to reduce produc-

tion (negative redispatch).12 We assume here a perfectly discriminating redispatch:

the TSO pays generators that have to increase their production their variable costs,

and in turn receives the avoided variable costs of generators that reduce their sup-

ply. As the generator with positive redispatch was not part of the original dispatch,

it necessarily has higher variable costs than the generator that reduces supply. Thus,

the TSO has to bear additional costs that are caused by the redispatch which amount

to the difference between the variable costs of the redispatched entities. Assuming

further that the TSO has perfect information about the variable costs of the generat-

ing firms, redispatch measures of the TSO have no impact on investment decisions

of generating firms as the originally dispatched generation capacity is still able to

cover capital costs from the spot market result. Hence, additional costs for the econ-

omy are induced by inefficient investment decisions of those generators that are not

aligned with the overall system optimum due to missing locational price signals.

In the formulation of problem P2a zonal pricing is represented by the zonal mar-

ket indices n, m, each containing one or several nodes i. Market clearing, depicted

by the equilibrium Equation (4.3f), now takes place on zonal instead of nodal mar-

kets. The corresponding dual variable λm,t represents zonal prices, which do not

include any grid costs except for cross-border capacities. This is indicated by the

term
∑

m,n,t κm,n,t Tm,n,t instead of the nodal formulation (with κi, j,t) above. Trans-

mission prices are determined on the transmission stage (Equation (4.3j)). However,

contrary to nodal pricing, these prices are calculated based on some regulatory rule

(e.g., NTC or FB) and are thus inherently incomplete since they do not represent

real grid scarcities.13 In addition to grid expansion, the TSO may relieve intra-zonal

congestion and optimize the situation by means of redispatch measures Ri,t at costs

of γi,tRi,t .

12Redispatch is always feasible due to the fact that the TSO can foresee congestion and hence, coun-
teract by expanding line capacities.

13Note that the duality of the problem would also allow for an alternative formulation of the cross-
border transmission constraint by means of quantity constraints instead of prices. Hence, the cost
of transmission in the objective function of the generation stage (

∑

m,n,t κm,n,t Tm,n,t) would disap-
pear and an additional constraint for trading would be implemented (|Tm,n,t | ≤ Cm,n,∀m, n, t). The
restriction of trading volumes Cm,n,t would be calculated on the transmission stage P2b via a con-
straint Cm,n = h(P i, j) instead of the prices κm,n,t . These prices would then be the dual variable of
the volume constraint on the generation stage, and necessarily coincide with κm,n,t .
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P2a Generation

min
G i ,Gi,t ,Tm,n,t

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

m,n,t

κm,n,t Tm,n,t (4.3a)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t |λm,t (4.3b)

Gi,t ≤ G i ∀i, t (4.3c)

Tm,n,t = −Tn,m,t ∀m, n, t (4.3d)

P2b Transmission

min
P i, j ,Ri,t

Y =
∑

i, j

µi, j P i, j +
∑

i,t

γi,tRi,t (4.3e)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t (4.3f)

|Ti, j,t |= |Pi, j,t(Pk,l , Gk,t , Rk,t , dk,t)| ≤ P i, j ∀i, j, t |κi, j,t (4.3g)
∑

i∈Im

Ri,t = 0 ∀m, t (4.3h)

0≤ Gi,t + Ri,t ≤ G i ∀i, t (4.3i)

κm,n,t = g(κi, j,t) (4.3j)

Tm,n,t = −Tn,m,t ∀m, n, t (4.3k)

The following two examples illustrate the fundamental differences between Set-

ting I and II.

Example for 2 nodes and 2 markets: If the electricity system consists of 2 nodes

and 2 markets (Figure 4.1, left hand side), Setting I and II are identical: There is only

one element i ∈ Im, such that Equation 4.3h fixes variable Ri to zero. Equation 4.3i

is then no longer relevant, and the cost term of redispatch in the objective function

(
∑

i,t γi,tRi,t) becomes zero. The only difference remaining between 1’b P2b is then

Equation 4.3j. However, due to I = M , it follows that κm,n,t = κi, j,t , which, inserted

on the generation level, yields equivalence of problems P1’ and problem P2 for the

chosen example.

Example for 3 nodes and 2 markets: Figure 4.1, right hand side, shows an elec-

tricity system consisting of two markets m and n, where m includes one node (1)

and n two nodes (2,3) at a point in time t. Function g for calculating the transmis-

sion price κm,n,t (Equation (4.3j)) between the markets has to be defined, e.g., by

averaging the single line prices κm,n,t = (κ1,2,t+κ1,3,t)/2. Still, the TSO cannot sup-
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ply the locational fully differentiated prices κ1,2,t ,κ1,3,t and κ2,3,t to the market, and

hence, efficient allocation of investments is (partly) achieved between the markets,

but not within the markets. Redispatch does not fully solve this problem, because it

is revenue-neutral and does not affect the investment decision.

1 2
𝜅12 1 2

𝜅𝑚𝑛

3
𝜅13 𝜅23

market𝑚 market 𝑛

𝜅12

Figure 4.1: Two simple examples. Left: 2 nodes, 2 markets. Right: 3 nodes, 2 markets

Overall, Settings I and II differ in the way grid costs are reflected on the generation

stage. Specifically, Setting II lacks locational differentiated prices, thus impeding

efficient price signals κi, j,t for the generation stage. Of course, the level of ineffi-

ciency depends substantially on the regulatory rule determining the calculation of

prices based on a specification of function g(κi, j,t). In general, it is clear that the

closer the specification of g reflects real-time conditions and the more it enables the

full usage of existing grid infrastructures, the more efficiently the general problem

will be solved. While we limit our analysis in this section to this general finding,

we will discuss two possible specifications often implemented in practice (NTC and

flow-based market coupling) in the empirical example in Section 4.4. Given the in-

efficiency induced by the specification of function g, the question remains whether

and how redispatch measures may help to relieve the problem. We find that the re-

sulting inefficiency cannot be fully resolved by redispatch because the latter remains

a zonal measure (Equation (4.3h)). Hence, the TSO cannot induce an efficient us-

age of generation and transmission across zonal borders. Furthermore, investments

into generation capacities are not influenced by redispatch and only zonal prices as

well as their costs are considered.14 Hence, the setting lacks locational signals for

efficient generation investments within zonal markets.

14For obtaining a unique equilibrium we assume that costs differ over all nodes, such that decisions
for generation and investments are unambiguously ordered.
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4.2.3 Setting III: coupled zonal markets with zonal TSOs and zonal
redispatch

In this setting, we consider zonal markets with zonal TSOs being responsible for grid

expansion as well as a zonal redispatch. Thus, the problem on the generation stage

remains exactly the same as in the previous setting (i.e., P3a = P2a). However, the

transmission problem changes, such that now multiple zonal TSOs are considered.

Each TSO solves its own optimization problem according to the national regulatory

regime (in our case corresponding to a cost-minimization within the zones). For-

mally, problem P3b, now consists of multiple separate optimization problems for

each zonal TSO, with the objective to minimize costs from zonal grid as well as from

zonal redispatch measures. However, cross-border line capacities are also taken into

account. As these are by definition located within the jurisdiction of two adjacent

market areas, the two corresponding TSOs have to negotiate about the extension of

these cross-border capacities. In fact, cross-border capacities built by two different

TSOs may be seen as a Leontief production function, due to the fact that the line

capacities built on each side are perfect complements. Corresponding costs from

inter-zonal grid extensions are assumed to be shared among the TSOs. Due to the

fact that situations may arise where an agreement on specific cross-border lines be-

tween neighboring TSOs cannot be reached (which would imply that an equilibrium

solution cannot be found), we assume the implementation of a regulatory rule that

ensures the acceptance of a unique price for each cross-border line by both of the

neighboring TSOs. For instance, the regulatory rule may be specified such that both

TSOs are obliged to accept the higher price offer, or, equivalently, the lower of the

two capacities offered for the specific cross-border line.

As a consequence, grid capacities, especially cross-border capacities, are extended

inefficiently as they do not result from an optimization of the entire grid infrastruc-

ture. In addition – just as in the previous setting – inefficient investment incentives

for generation and grid capacities are caused by the lack of locational differentiated

prices. Hence, overall, system outcomes in Setting III must be inferior or at most

equal to those of Setting II.15

The mathematical program as well as further technical details of Setting III can be

found in the Appendix 4.6.

15The only mathematical difference of problem P3b compared to P2b is that the transmission level is
partitioned into several optimization problems that are solved separately from each other. Hence,
compared to problem P2b where the transmission level is solved comprehensively, this represents
a more restrictive problem that must be inferior (or at most equal) to the one of P3b.
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4.2.4 Setting IV: coupled zonal markets with zonal TSOs and generator
component

In this last setting, we again consider coupled zonal markets with zonal TSOs. How-

ever, instead of having the possibility to perform a zonal redispatch (as in Setting

III), zonal TSOs may now determine local, time-varying prices for generators, i.e.,

a g-component, at each node belonging to its zone to cope with intra-zonal con-

gestion. A g-component charges grid costs directly to generators in order to avoid

congestion in the market clearing process reflecting the impact of generators on the

grid at each node and each instant of time. Thus, grid costs are being transferred

to the generating firms which consider them in their investment and dispatch deci-

sion. In other words, TSOs are able to provide locationally differentiated prices (and

hence, generation and investment incentives) for generators within their zone. No-

ticeably, we do not consider an international g-component here as this would yield

the same results as a nodal pricing regime due to generators considering the full

set of information concerning grid costs. However, two frictions that may cause an

inefficient outcome of this setting remain. When determining nodal g-components,

zonal TSOs only consider grid infrastructures within their zone, and not within the

entire system. Furthermore, as in Setting III, the desired expansion of cross-border

lines, which is here assumed to be solved by some regulatory rule ensuring successful

negotiation, may deviate between/across neighboring TSOs.

The mathematical program as well as further technical details of Setting IV can be

found in the Appendix 4.6.

4.3 Numerical solution approach

Our approach to numerically solve the problem depicted in the previous section

builds on the concept of decomposition. In fact, it follows the approach already

applied in the context of Setting I (Section 4.2.1), where we decomposed the inte-

grated problem into two separate levels that are solved simultaneously and showed

that they can – in economic terms – be interpreted as generation and transmission

levels. Algorithmically, according to Benders (1962), decomposition techniques can

be applied to optimization problems with a decomposable structure that can be ad-

vantageously exploited. The idea of decomposition generally consists of splitting

the optimization problem into a master and one or several subproblems that are

solved iteratively. For the problem we are dealing with, namely the simultaneous
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optimization of generation and grid infrastructures under different congestion man-

agement designs and a varying number of TSOs, decomposing the overall problem

entails two major advantages: First, the decomposition allows to easily implement

variations of the generation and transmission levels including the underlying con-

gestion management design. Hence, the model can be flexibly adjusted to represent

the various settings described in the previous section. Second, the iterative nature of

the solution process resulting from the decomposition allows to readily update PTDF

matrices every time changes in the grid infrastructure have been made, according

to Equation (4.15) and the PTDF calculation procedure presented in Section 4.6.

This iterative update of the grid properties, as applied in Hagspiel et al. (2014) and

Ozdemir et al. (2015), successively linearizes the non-linear optimization problem

to ensure a consistent representation of generally non-linear grid properties, and al-

lows for solving a corresponding linear problem.16 In turn, linear problems can be

solved effectively for global optima using standard techniques, such as the Simplex

algorithm (e.g., Murty (1983)).

Even though the PTDF update ties in nicely with the iterative solution of the de-

composed problem, it also imposes a particular challenge stemming from the non-

linearity in the PTDF calculation (see Appendix 4.6). Specifically, despite the suc-

cessive linearization and iterative solution, the non-linearity of the transmission ex-

pansion problem remains. Hence, neither the existence and uniqueness of a global

optimum of the problem, nor the convergence of the solution algorithm can gener-

ally be guaranteed (e.g., Bazaraa et al. (2006)). This would change, however, if the

problem was convex. Then, there would be a unique equilibrium, corresponding to

a global optimum. Furthermore, deploying a Benders-type decomposition, the algo-

rithm would preserve convexity and guarantee that the iterative solution converges

towards this global optimum (Benders (1962) and, e.g., Conejo et al. (2006) for a

general overview). Unfortunately, to the best of our knowledge, a formal proof of

the (non-)convexity of the transmission expansion problem is still missing. Mean-

while, it would also be beyond the scope of this paper to approach this challenging

problem. As an alternative, we build on numerical experience that has been gained

by two papers that are closely related to ours in terms of the algorithmic approach:

The analysis in Hagspiel et al. (2014) is closest to our application as they deploy

the same successive PTDF update to co-optimize generation and transmission as-

sets (including operation and investment). They show that the algorithm converges

in a large number of configurations, including small analytically tractable test sys-

16Accordingly, in our model PT DF is depicted as a parameter that is updated in each iteration instead
of a variable.
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tems as well as large-scale applications. Furthermore, they do not detect issues of

multiple equilibria in their analysis. In a very similar vein, Ozdemir et al. (2015)

develop a methodology based on successive linear programming and Gauss-Seidel

iteration to jointly optimize transmission and generation capacities. They report

that even though they cannot guarantee convergence or global optimality either,

their approach shows good performance. In the course of preparing the results pre-

sented in this paper, we were able to confirm the above findings in several model

runs where we varied starting values over a broad range and did not find evidence

neither against convergence nor against uniqueness of our optimum. Hence, even

though not guaranteed, empirical evidence indicates that we are facing a numerical

problem that we are able to reliably solve with our algorithm while converging to-

wards an optimal solution. In our application, the obtained solution represents an

intertemporal equilibrium without uncertainty. Interestingly, in economic terms, the

iterative algorithm to solve the decomposed problem can be readily interpreted as

a price adjustment by a Walrasian auctioneer, also know as tatonnement procedure

(e.g., Boyd et al. (2008)).

With some minor modifications, we can directly follow the (economically intu-

itive) formalization developed in the previous section and implement separate opti-

mization problems representing the different tasks of generation and grid as well as

the various settings (I-IV). We follow the Benders decomposition approach described

in Conejo et al. (2006), while considering the transmission capacities as complicat-

ing variables. We define the generation stage as the master problem, whereas the

subproblem covers the transmission stage.17 The principle idea of the solution al-

gorithm is to solve the simultaneous generation and transmission stage problem

iteratively, i.e., in a loop that runs as long as some convergence criterion is reached.

In this process, optimized variables and marginal values are exchanged between the

separated generation and grid levels reflecting the configuration of congestion man-

agement and TSO organization. For the settings described in the previous section,

prices, which are iterated and thus adjusted, differ with respect to the information

they contain and hence determine to which degree efficiency can be reached. Com-

pared to nodal pricing (Setting I), the other settings provide prices or products that

describe the underlying problem only incompletely – and hence, entail an inefficient

outcome.

The numerical algorithm to solve the nodal pricing model is sketched below. Pa-

rameters that save levels of optimal variables for usage in the respective other stage

17Noticeably, the model could be inverted such that the master problem represents the grid sector
which would, however, not change any of the results obtained.
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are indicated by (·). It should be noticed that for the sake of comprehensibility, we

still represent a simplified version of a more complete power system model that

would need to account for multiple instances in time for investments, multiple gen-

eration technologies, etc. However, the extension is straightforward and does not

change the principle approach depicted here.

Information passed from the transmission to the generation stage is captured by

α, for which a benders cut (lower bound constraint) is added in each iteration u

up to the current iteration v (Equation (4.4e)). This benders cut consists of total

grid costs Y (u) as well as the marginal costs each unit of trade Ti, j,t is causing in

the grid per node, denoted by κ(u)i, j,t . Both pieces of information are provided in the

highest possible temporal and spatial resolution. As these components occur in the

objective function of the generation stage (via α), the optimization will try to avoid

the additional costs it is causing on the transmission stage, e.g., by moving power

plant investments to alternative locations. The variable α is needed to correctly

account for the impact of the transmission on the generation stage. On the trans-

mission stage, the TSO is coping with the exchange (i.e., trade) of power stemming

from the dispatch situation delivered by the master problem, thereby determining

the marginal costs the trade is causing on the transmission stage, i.e., κ. Power flows

are calculated by linearized load-flow equations represented by PTDF matrices map-

ping. The TSO then expands the grid such that it supports the emerging line flows

at minimal costs.

v = 1; convergence=false

While(convergence=false) {

Master problem: generation

min
G i ,Gi,t ,Ti, j,t ,α

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +α (4.4a)

s.t. Gi,t −
∑

j

Ti, j,t = di,t ∀i, t (4.4b)

Gi,t ≤ G i ∀i, t (4.4c)

Ti, j,t = −T j,i,t ∀i, j, t (4.4d)

Y (u) +
∑

i, j

κ
(u)
i, j,t · (Ti, j,t − T (u)i, j,t)≤ α ∀u= 1, ..., v − 1|v > 1 (4.4e)

−−−−−−−−−−−−−−−−−−−−−−−

G(v)i,t = Optimal value of Gi,t ∀i, t (4.4f)
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Sub-problem: transmission

min
P i, j ,Ti, j,t

Y =
∑

i, j

µi, j P i, j (4.4g)

s.t.
�

�Pi, j,t

�

�=

�

�

�

�

�

∑

k

PT DF (v)k,i, j · (G
(v)
k,t − dk,t)

�

�

�

�

�

≤ P i, j ∀i, j, t |κ(v)i, j,t (4.4h)

−−−−−−−−−−−−−−−−−−−−−−−

Y (v) = Optimal value of Y (4.4i)

PT DF (v) = PTDF matrix calculated based on P i, j (4.4j)

if(convergence criterion < threshold; convergence=true)

v = v + 1

};

As regards the representation of settings II-IV, only very few modifications are

needed compared to the nodal pricing regime (Setting I). The numerical algorith-

mic implementation of the various settings and modifications directly follows the

procedure discussed in Section 4.2 and is thus not discussed again in detail here.18

4.4 Large-scale application

In this section, we apply the previously developed methodology to a detailed repre-

sentation of the power sector in the Central Western European (CWE) region up to

the year 2030. The application demonstrates the suitability of the modeling frame-

work for large-scale problems and allows to assess and quantify the welfare losses

in the considered region caused by different congestion management designs.

Given its historical, current and foreseen future development, the CWE region

appears to be a particularly timely and relevant case study for different congestion

management designs. In order to increase the market integration of European elec-

tricity markets towards an internal energy market, the European Union (EU) has

declared the coupling of European electricity markets, which are organized in uni-

form price zones, an important stepping stone (see, e.g., Glachant (2010)). As for

the cross-border capacity allocation, after a phase of NTC (Net Transfer Capacities)

based market coupling, the CWE region is currently implementing a flow-based mar-

18Nevertheless, for the sake of completeness and reproducibility, we have included one more complete
model formulation illustrating the main differences of the other settings in Appendix 4.6.
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ket coupling which is expected to increase the efficiency of the utilization of trans-

mission capacities as well as overall social welfare (Capacity Allocating Service Com-

pany (2014)). Even though nodal pricing regimes have often been discussed for the

European power sector (see, e.g., Ehrenmann and Smeers (2005) or Oggioni and

Smeers (2012)), it can be expected that uniform price zones that correspond to na-

tional borders will remain. In fact, zonal markets coupled via a flow-based algorithm

have been declared the target model for the European power sector (ACER (2014)).

In each zonal market, the respective zonal (i.e., national) TSO is responsible for

the transmission network. Thereby, TSOs are organized and regulated on a national

level, such that they can be assumed to care mainly about grid operation and expan-

sion planning within their own jurisdiction. Although there are an umbrella orga-

nization (ENTSO-E) and coordinated actions, such as the (non-binding) European

Ten-Year-Network-Development-Plan (TYNDP), the incentives of the national regu-

latory regime to intensify cross-border action might fall short of effectiveness. At the

same time, Europe is heavily engaged in the large-scale deployment of renewable

energies, hence causing fundamental changes in the supply structure. Generation

is now often built with respect to the availability of primary renewable resources,

i.e., wind and solar irradiation, and not necessarily close to load. This implies that

the current grid infrastructure is partly no longer suitable and needs to be substan-

tially redesigned, rendering an efficient congestion management even more impor-

tant than before.

4.4.1 Model configuration and assumptions

The applied model for the generation stage belongs to the class of partial equilibrium

models that aim at determining the cost-optimal electricity supply to customers by

means of dispatch and investments decisions based on a large number of technolog-

ical options for generation. As power systems are typically large and complex, these

models are commonly set up as a linear optimization problem which can efficiently

be solved. Our model is an extended version of the linear long-term investment

and dispatch model for conventional, renewable, storage and transmission technolo-

gies as presented in Richter (2011) and applied in, e.g., Jägemann et al. (2013) or

Hagspiel et al. (2014). In contrast to previous versions, the CWE region, i.e., Bel-

gium, France, Germany, Luxembourg and Netherlands, is considered with a high

spatial (i.e., nodal) resolution. In order to account for exchanges with neighbor-

ing countries, additional regions are defined, but at an aggregated level: Southern

Europe (Austria, Italy and Switzerland), South-West Europe (Portugal and Spain),
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North-West Europe (Ireland and UK), Northern Europe (Denmark, Finland, Norway

and Sweden), and Eastern Europe (Czech Republic, Hungary, Poland, Slovakia and

Slovenia). Figure 4.2 depicts the regional coverage and aggregation as they are rep-

resented in the model. In total, the model represents 70 nodes (or markets) and 174

power lines (AC and DC).

The model determines a possible path of how installed capacities will develop and

how they are operated in the future assuming that electricity markets will achieve

the cost-minimizing mix of different technologies which is obtained under perfect

competition and the absence of market failures and distortions. Among a number

of techno-economic constraints, e.g., supply coverage or investment decisions, the

model also includes a number of politically implied constraints: nuclear power is

phased-out where decided so, and then only allowed in countries already using it;

a CO2-Quota is implemented corresponding to currently discussed targets for the

European energy sector, i.e., 20% reduction with respect to 1990 levels in 2020, and

40% in 2030 (European Commission (2013, 2014)); nation-specific 2020 targets for

renewable energy sources are assumed to be reached until 2020 whereas from 2020

onwards there are no further specific renewable energy targets. At the same time,

endogenous investments into renewable energy technologies are always possible.

The utilized model for the transmission stage is based on PTDF matrices which are

calculated using a detailed European power flow model developed by Energynautics

(see Ackermann et al. (2013) for a detailed model description). The number of

nodes (70) corresponds to the nodal markets implemented in the generation market

model and represents generation and load centers within Europe at an aggregated

level. Those nodes are connected by 174 high voltage alternating current (AC) lines

(220 and 380kV) as well as high voltage direct current (HVDC) lines. Even though

the model is generally built for AC load flow calculations, it is here used to determine

PTDF matrices for different grid expansion levels. Details on how the PTDF matrices

are calculated can be found in Appendix 4.6.

As a starting point, the optimization takes the situation of the year 2011, based on

a detailed database developed at the Institute of Energy Economics at the Univer-

sity of Cologne which in turn is largely based on the Platts WEPP Database (Platts

(2009)). From these starting conditions, the development for the years 2020 and

2030 is optimized.19 As for the temporal resolution, we represent the operational

phase by nine typical days representing weekdays and weekend as well as variations

19Technically, we implement the optimization routine up to 2050, but only report results until 2030.
This is necessary to avoid problematic results at the end of the optimization timeframe.
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Figure 4.2: Representation of the CWE and neighboring regions in the model

in and interdependencies between demand and power from solar and wind. One of

the typical days represents an extreme day during the week with peak demand and

low supply from wind and solar. Specific numerical assumptions for the generation

and transmission model can be found in the 4.6.

As in Settings II-IV zonal markets are being considered, assumptions about the

cross-border price function g(κi, j,t) are necessary. For the NTC-based coupling of

market zones, we define function g(κi, j,t) = 1.43 · κi, j,t P i, j
∑

i, j P i, j
∀i, j ∈ Im,cb for each

market border. The function consists of the weighted average of cross-border line

marginals multiplied by a security margin. The security margin is the inverse of the

ratio of NTC capacity to technical line capacity and has been derived heuristically by

comparing currently installed cross-border grid capacities with NTC values reported

by ENTSO-E for the CWE region. For flow-based market coupling, we set this security

margin to one, in order to account for enhanced cross-border capacities provided to
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the power market.20 In the case of zonal TSOs, we have made the following two

assumptions: Differing interest of TSOs regarding cross-border line extensions are

aligned by taking the smaller one of the two expansion levels.21 The costs of cross-

border lines are shared half-half by the two TSOs concerned, i.e., σi, j = 0.5.

4.4.2 Results and discussion

As usual in a Benders decomposition, we trace convergence based on the difference

between an upper (i.e., the objective value of the integrated problem with solution

values of the current iteration) and a lower bound (i.e., the objective of the master

problem with the same solution values). We found that all settings undershoot a

convergence threshold of 2.5% within 20 to 60 iterations (corresponding to a solu-

tion time of 2 to 7 days).22 For practical reasons, we let all settings solve for one

week and – after having double-checked that the convergence threshold of 2.5 % is

met – take the last iteration to obtain our final results. The convergence threshold

is chosen to keep the solution process computationally treatable, but is also based

on empirical observations as well as expected convergence behavior. In fact, a lower

convergence criterion increases computational time significantly, while further im-

provements on the objective value and optimized capacities are hardly observable.

To illustrate the convergent behavior of our problem, Figure 4.3, left hand side,

shows the development of the optimality error (relative difference between the up-

per and lower bound of the optimization), along with the (absolute) rate of change

of the lower bound obtained during the iterative solution of the nodal pricing setting.

The lower bound is observed to change only slightly, reaching change rates smaller

than 0.01% after some 40 iterations. Moreover, as can be derived from the inter-

polation curves presented in Figure 4.3, left hand side, the relative error decreases

at much faster rates with a ratio of approximately 200 for an estimated exponential

20Of course, this is just a simple representation of the cross-border capacity allocation. However, a
more detailed representation is rather complex and would go beyond the scope of this paper. For
more sophisticated models of flow-based capacity allocation, the reader is referred to Kurzidem
(2010).

21Equation (4.24m) in Appendix 4.6. Note that this assumption may influence the equilibrium solution
of the coordination between the TSOs. Due to the fact that the minimum of the line capacities is
chosen, the solutions for the TSOs are no longer continuous. Hence, some equilibria might be
omitted during the iterative solution of the problem. We accept this shortfall in our numerical
approach for the sake of the large-scale application. The general approach, however, remains
valid, and a process for determining all equilibria could be implemented in the numerical solution
method (e.g., through randomized starting values).

22All models were coded in GAMS 24.2.2 and solved with CPLEX 12.6 on a High Performance Com-
puter with two processors (1600 and 2700Mhz) and physical/virtual memory of 98/150GB.
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trend and an iteration count of 60. Based on the fact that in a Benders decompo-

sition the lower bound is non-decreasing (i.e., change rates are always positive as

demonstrated in Figure 4.3, left hand side), and the empirically observed behavior

of the lower bound, it can be concluded that the error further decreases mainly due

to changes in the upper bound. Hence, we argue that the lower bound can be taken

as a good approximation of the optimal objective value as soon as our convergence

criterion is met. To support this argument and to deepen our insights, we closely

analyzed optimized levels of the variables, observing that they reach fairly stable

levels in the last iterations before reaching the convergence criterion.23 As an exam-

ple, the right hand side of Figure 4.3 shows aggregated AC line capacities obtained

in the final runs of the nodal pricing setting.

Based on the interpolation curves estimated from the observed changes in the op-

timality error, a 1% threshold is expected to be reached after around 150 iterations.

The estimated increase of the lower bound and hence, the improvement of the op-

timal solution, will then be around 0.21% higher compared to our obtained value.

At around 300 iterations, the optimal solution will deviate by about 0.24% from our

obtained value, and further improvements of the optimal solution would be negligi-

ble. Considering the extensive computational burden as well as the expected limited

improvements, we do not consider a smaller convergence threshold and rather ac-

cept some level of uncertainty regarding the different levels of optimality achieved

in the different settings.
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Figure 4.3: Development of lower bound, optimality error and aggregated AC line capacities
during the iteration in Setting I

Costs are reported as accumulated discounted system costs.24 In the generation

sector, costs occur due to investments, operation and maintenance, production as

well as ramping, whereas in the grid sector, investment as well as operation and

23Note that this argument is also supported by the analysis of convergence in a very similar setting
published in Hagspiel et al. (2014).

24The discount rate is assumed to be 10% throughout all calculations.
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maintenance costs are considered. Overall costs of electricity supply can be consid-

ered as a measure of efficiency and are reported in the following Figure 4.4 for the

different settings. Besides the absolute costs, which are subdivided into generation

and grid costs, the relative cost increase with respect to the overall costs of the nodal

pricing setting is also depicted.

Considering the optimality error in the obtained solution, it should be stressed that

the exact differences reported here do not necessarily persist after full convergence.

However, based on the above discussion about convergence, the general conclusions

and order of magnitude are expected to remain valid.
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Figure 4.4: Total costs and relative performance of the different settings

As expected, nodal pricing (Setting I) is most efficient, with total costs summing

up to 899.0 bn. €2011 (874.3 bn. for generation and 24.7 bn. for the grid). Overall,

costs increase by up to 4.6% relative to Setting I for the other settings. Thereby,

NTC-based market coupling induces highest inefficiencies of 3.8% and 4.6% for one

single TSO or zonal TSOs, respectively, both with the possibility to do redispatch on a

national basis (Setting II-NTC and Setting III-NTC).25 Hence, offering few amounts of

trading capacity to the generation market, as implied by NTC-based market coupling,

induces significant inefficiencies. In fact, by increasing trading capacities via flow-

based market coupling, system costs can be lowered and inefficiencies amount to

2.5% for the single TSO, respectively 3.5% for zonal TSOs compared to nodal pricing

(Setting II-FB and Setting III-FB). Hence, efficiency gains of 1.1-1.3 % of total system

costs can be achieved by switching from NTC to flow-based market coupling. In turn,

enhanced trading activities induced by flow-based market coupling entail greater

25Since topology control (as, e.g., in Kunz (2013) is not considered, costs of redispatch could possi-
bly be lower. However, since topology control would also be available in the market clearing of
the nodal pricing, efficiency gains would persist for all regimes. Hence, the reported differences
between the inefficiencies should be similar.
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TSO activity, both in the expansion as well as in the redispatch. For this reason, TSO

costs are higher for flow-based than for NTC-based market coupling. However, these

additional costs are overcompensated by lower costs in the generation sector. The

net effect of a switch from NTC to flow-based market coupling is beneficial for the

overall system.

Somewhat surprisingly, the national g-component (Setting IV) hardly performs

better than the same setting with redispatch (Setting III-FB). Hence, the optimal al-

location of power generation within market zones is hardly influenced by grid restric-

tions within that zone. In contrast, the optimal allocation induced by nodal prices

throughout the CWE region entails substantial gains in efficiency due to reduced

system costs. The setting that comes closest to nodal pricing consists of flow-based

coupled zonal markets with a single TSOs and induces an inefficiency of 2.5% in

comparison to nodal pricing (Setting II-FB vs. Setting I).

Even though the share of TSO costs on total costs is very small compared to the

share of generation costs in all settings (1.3-2.7%)26, the amount of grid capacities

varies greatly between the different settings. Figure 4.5 shows the aggregated high

voltage (HV) AC and HVDC line capacities.
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Figure 4.5: Aggregated line capacities AC and DC

Grid capacities are generally lower in the case of zonal TSOs where they only

agree on the smaller of the two proposed expansion levels for cross-border lines

(Setting III-FB and Setting III-NTC). In these cases, overall AC grid capacities increase

from 331GW in 2011 to 398GW (Setting III-NTC) respectively 418GW (Setting III-

FB) in 2030, corresponding to an increase of 20-28%. In case of a single TSO, cross-

border along with overall line expansions are significantly higher compared to zonal

TSOs, with 2030 levels reaching 519GW (Setting II-NTC) to 724GW (Setting II-FB).

Especially in Setting II-FB, the TSO is obliged to cope with inefficiently allocated

generation plants by excessively expanding the grid, while not being able to avoid

those measures with suitable price signals. DC line expansions appear to be crucial

26The rather minor role of grid costs compared to costs occurring in the generation sector has already
been identified, e.g., in Fürsch et al. (2013).
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for an efficient system development, especially towards the UK where large wind

farms help to reach CO2-targets and to supply the UK itself as well as the continent

with comparatively cheap electricity. Thereby, the high DC expansion level in the

nodal pricing regime is remarkable. Whereas in zonal markets prices are averaged

across the zone, nodal prices reveal the true value of connecting specific nodes via

DC-lines and thus enable efficient investments in those projects. In consequence, in

the nodal pricing regime, DC line capacities are about double as high as in the other

settings. This helps to reduce overall costs to a minimum (Setting I).

Besides the overall level of grid and generation capacities, their regional alloca-

tion also differs between the various settings, mainly due to differences in the (local)

availability of transmission upgrades. As has been seen, higher grid expansion lev-

els result from a single TSO (Setting I and Setting II), enabling a better utilization of

renewable energies at favorable sites (i.e., sites where the specific costs of electricity

generation are lowest). In Figure 4.6, we exemplarily illustrate this effect based on

a cross-border line between France and Germany (line 80 in our model). However,

the same effect is observable for other interconnections, e.g., between France and

Belgium. Higher grid capacities allow the use of high wind speed locations in North-

ern France and thus foster more expansion of wind capacities in this area. In case of

zonal TSOs (Setting III and Setting IV) only low amounts of wind capacity are built

in France (e.g., in node FR-06) as these areas cannot be connected with the rest

of the system. To still meet the European CO2-target, PV power plants are built in

the southern part of Germany (e.g., in node DE-27). Obviously, these locations are

non-optimal with respect to other options as they are not used in the setting with

one TSO. Thus, implemented market designs significantly influence the amount and

location of renewable energies within the system.27
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Figure 4.6: Exemplary grid expansion and regional allocation of renewable energies

27Conventional capacities are also affected. However, the effect is less pronounced as the differences
between the site-specific costs of generation are smaller.
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4.5 Conclusions

In the context of liberalized power markets and unbundled generation and trans-

mission services, the purpose of this paper was to develop a modeling framework

for different regulatory designs regarding congestion management including both,

the operation as well as the investment perspective in the generation and transmis-

sion sector. We have presented an analytical formulation that is able to account for

different regulatory designs of market areas, a single or zonal TSOs, as well as differ-

ent forms of measures to relieve congestion, namely grid expansion, redispatch and

g-components. We have then proposed an algorithm to numerically solve these prob-

lems, based on the concept of decomposition. This technique has shown to entail a

number of characteristics that work to our advantage, especially flexible algorithmic

implementation as well as consistency of the grid flow representation through PTDF

update.

Calibrating our model to the CWE region, we have demonstrated the applicabil-

ity of our numerical solution algorithm in a large-scale application consisting of 70

nodes and 174 lines along with a detailed bottom-up representation of the gener-

ation sector. Compared to nodal pricing as the efficient benchmark, inefficiencies

induced by alternative settings reach additional system costs of up to 4.6%. Major

deteriorative factors are TSOs activities restricted to zones as well as low trading

capacities offered to the market. These findings may serve as a guideline for pol-

icymakers when designing international power markets. For instance, our results

confirm ongoing efforts to implement flow-based market coupling and to foster a

closer cooperation of TSOs in the CWE region. In fact, we find that such a regu-

latory design could come close to the nodal pricing benchmark, with an efficiency

difference of only 2.5%. Reported cost differences might be impacted by numerical

imprecision in the solution algorithm, although empirical observations of the con-

vergence behavior suggest that the general effects as well as the order of magnitude

persist. Noticeably, the magnitude of these results should be interpreted as the lower

bound of efficiency gains, since we focus on frictions in the congestion management

only.

More generally, we find that a single TSO (or enhanced coordination between the

zonal TSOs) is key for an efficient development of both, grid and generation in-

frastructures. Whereas the expansion of grid infrastructure is immediately affected,

the generation sector indirectly takes advantage of increased grid capacities and

hence, can develop more efficiently. Better allocation of generation units with re-
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spect to grid costs through high resolution price signals gains importance for larger

geographical areas and larger differences between generation costs and expansion

potentials (such as wind or solar power). This has been found for the CWE region,

and may prove even more important for the whole of Europe. It should be noted,

however, that efficiency gains need to be put into the context of transaction costs oc-

curring from the switch to a different congestion management design. In addition,

socio-economic factors such as acceptance for grid expansion are not considered in

the analysis, but might also play a role considering the large differences of necessary

grid quantities.

Limitations of our approach that leave room for extensions and improvement stem

from the fact that we assume linear transmission investments, and do not consider

strategic behavior of individual agents, imperfectly regulated TSOs, or uncertainty

about future developments (e.g., delays in expansion projects). The assumption of

an inelastic demand probably reduces the magnitude of the measured inefficiencies,

since demand does not react to any price changes and hence only supply-side ef-

fects are captured. Algorithmically, the effectiveness of our solution process could

be further improved, e.g., through better usage of numerical properties of the prob-

lem (such as gradients, etc.). Nevertheless, in its present form, our framework may

serve as a valuable tool to assess a number of further relevant questions, such as

the tradeoff between different flexibility options (such as grids, storages or renew-

able curtailment), the impact of different forms of congestion management in other

European regions, or the valuation of grid expansion projects.
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4.6 Appendix

Notation list

Abbreviation Dimension Description

Model sets

i ∈ I, j ∈ J, k ∈ K, l ∈ L Nodes, I,J,K,L= [1, 2, ...]
m, n ∈M Zonal markets, M= [1,2, ...]
i ∈ Im, j ∈ Jm Nodes that belong to zonal market m, Im ⊂ I, Jm ⊂ J
i ∈ Im,cb, j ∈ Jm,cb Nodes that belong to zonal market m and are connected to a

another zone n by a cross-border line, Im,cb ⊂ Im, Jm,cb ⊂ Jm
t ∈ T Point in time for dispatch decisions (e.g., hours)

Model parameters

δi EUR/kW Investment and FOM costs of generation capacity in node i
γi,t EUR/kWh Variable costs of generation capacity in node i
µi, j EUR/kW Investment costs of line between node i and node j
di,t kW Electricity demand in node i
PT DFk,i, j − Power Transfer Distribution Factor

(impact of the power balance in node k on flows on line i, j)
σi, j % Cost share for an interconnector capacity between node i

and node j, i ∈ Im,cb, j ∈ Jm,cb

Model primal variables

G i kW Generation capacity in node i, G i ≥ 0
Gi,t kW Generation dispatch in node i, Gi,t ≥ 0
Ti, j,t , Tm,n,t kW Electricity trade from node i to node j, or market m to market n
X EUR Costs of generation
Y EUR Costs of TSO
P i, j kW Line capacity between node i and node j, P i, j ≥ 0 ∀ i, j 6= j, i
Pi, j,t kW Electricity flow on line between node i and node j
Ri,t kW Redispatch in node i
α EUR Helping variable to include transmission costs of the current

iteration in the master problem

Model dual variables

κi, j,t ,κm,n,t EUR/kW price for transmission between nodes (i and j) or zones (m and n)
λi,t ,λm,t EUR/kW nodal or zonal price for electricity

Table 4.2: Model sets, parameters and variables

Derivation of the load flow equations by means of PTDFs

Power Transfer Distribution Factors (PTDFs) are a well-established method to ac-

count for load flows in meshed electricity networks by means of linearization. They

can be derived from the network equations in an AC power network that write as
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follows:28

Pi = Ui

∑

j∈I
U j(gi, j cos(ϕi −ϕ j) + bi, j sin(ϕi −ϕ j)) (4.5)

Q i = Ui

∑

j∈I
U j(gi, j sin(ϕi −ϕ j)− bi, j cos(ϕi −ϕ j)) (4.6)

Pi, j = U2
i gi, j − UiU j gi, j cos(ϕi −ϕ j)− UiU j bi, j sin(ϕi −ϕ j) (4.7)

Q i, j = − U2
i (bi, j + bsh

i, j) + UiU j bi, j cos(ϕi −ϕ j)− UiU j gi, j sin(ϕi −ϕ j). (4.8)

Pi and Q i represent the net active and reactive power infeed (i.e., nodal power

balances), and Pi, j and Q i, j the active and reactive power flows between node i and

j. Voltage levels U and phase angles ϕ of the nodes as well as series conductances

g and series susceptances b of the transmission lines determine active and reactive

power flows in a highly nonlinear way.

In order to linearize the above equations, a number of assumptions are made:

• All voltages are set to 1 p.u.

• Voltage angles are all similar (and hence, sin(ϕi −ϕ j)≈ ϕi −ϕ j).

• Reactive power is neglected (i.e., Q i =Q i, j = 0).

• Losses are neglected and line reactances are much larger than their resistance,

such that x � r ≈ 0.

Under these assumptions and using Kirchoff’s power law, the network equations

can be simplified to

Pi, j ≈
1

x i, j
(ϕi −ϕ j) (4.9)

Pi ≈
∑

j∈Ωi

1
x i, j
(ϕi −ϕ j), (4.10)

with Ωi representing the nodes adjacent to i. If there are multiple nodes and

branches, this can be written in a more convenient matrix notation as P̃i = B̃ · Θ̃,

with P̃i being the vector of net active nodal power balances Pi , Θ̃ the vector of phase

28The following is based on Andersson (2011), even though the general approach can be found in
most electrical engineering textbooks.
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angles, and B̃ the nodal admittance matrix with the following entries:

B̃i, j = −
1

x i, j
(4.11)

B̃i,i =
∑

j∈Ωi

1
x i, j

. (4.12)

By deleting the row and column belonging to the reference node (thus assuming

a zero reference angle at this node), the previously singular matrix B̃ becomes B,

the vector of phase angles Θ, and the vector of net active nodal power balances Pi .

We can now solve for Θ by matrix inversion:

Θ = B−1 · Pi . (4.13)

Defining Hki = 1/x i, j , Hk j = −1/x i, j and Hkm = 0 for m 6= i, j (with k running

over the branches i, j), Equation (4.9) can be rewritten in matrix form as Pi, j = H ·Θ.

Inserting Θ from Equation (4.13) finally yields

Pi, j = H ·Θ = H · B−1 · Pi = PT DF · Pi (4.14)

The elements of PT DF are the power transfer distribution factors that constitute

a linear relationship between nodal power balances and load flows. Note that the

size of the PT DF matrix is determined by the size of the system, with the number

of matrix lines corresponding to the number of transmission lines, and the number

of matrix columns representing the number of nodes. The matrix entry PT DFk,i, j

represents the impact of the power balance in node k on power flows on line between

node i and j. Also note that PT DF essentially depends (only) on the line impedances

x i, j in the system that in turn depend primarily on the respective line capacities P i, j .

Hence, as done, e.g., in Hogan et al. (2010), we apply the law of parallel circuits to

adjust line reactances when altering transmission capacities, i.e.,

x i, j =
P

0
i, j

P i, j

x0
i, j , (4.15)

where {P0
i, j , x0

i, j} is a point of reference taken from the original configuration of

the transmission network. Overall, this yields a functional dependency of power

flows on nodal balances (determined by generation Gk and load dk in all nodes) as

well as line capacities Pk,l of all lines in the system, i.e., Pi, j = Pi, j(Pk,l , Gk, dk).
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Equivalence of Problem P1 and P1’

To show the equivalence of the optimal solution of P1 and P1’, we compare the prob-

lems by means of their Karush-Kuhn-Tucker (KKT)conditions. If they are equal, the

optimal solution has to be equal, too (e.g., Bazaraa et al. (2006)). For the deriva-

tions, note that trade is a function of line capacity, generation and demand, i.e.,

Ti, j,t = Ti, j,t(Pk,l , Gk,t , dk,t), and that Ti, j,t = −T j,i,t . The following is the Lagrangian

function belonging to Problem P1:

L(G i , Gi,t , Ti, j,t , P i, j ,λi,t ,τi,t ,κi, j,t) =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

i, j

µi, j P i, j

+
∑

i,t

(λi,t(Gi,t −
∑

j

Ti, j,t − di,t)

+τi,t(Gi,t − G i)) +
∑

i, j,t

(κi, j,t(|Ti, j,t | − P i, j))

(4.16)

The corresponding KKT conditions are:

∂ L
∂ G i

= δi −
∑

t

τi,t ≤ 0, G i ≥ 0, G i(
∂ L

∂ G i

) = 0 ∀i (4.17a)

∂ L
∂ Gi,t

= γi,t +λi,t(1−
∑

j

∂ Ti, j,t

∂ Gi,t
) +τi,t +

∑

j

κi, j,t
∂ Ti, j,t

∂ Gi,t
≤ 0, (4.17b)

Gi,t ≥ 0, Gi,t(
∂ L
∂ Gi,t

) = 0 ∀i, t (4.17c)

∂ L
∂ P i, j

= µi, j −
∑

t

λi,t
∂ Ti, j,t

∂ P i, j

+
∑

t

κi, j,t(
∂ Ti, j,t

∂ P i, j

− 1)≤ 0, (4.17d)

P i, j ≥ 0, P i, j(
∂ L

∂ P i, j

) = 0 ∀i, j (4.17e)

∂ L
∂ κi, j,t

= |Ti, j,t | − P i, j ≤ 0, κi, j,t ≥ 0, κi, j,t(
∂ L
∂ κi, j,t

) = 0 ∀i, j, t (4.17f)

∂ L
∂ τi, j

= Gi,t − G i ≤ 0, τi, j ≥ 0, τi, j(
∂ L
∂ τi, j

) = 0 ∀i, j (4.17g)

∂ L
∂ λi,t

= Gi,t −
∑

j

Ti, j,t − di,t = 0 ∀i, t (4.17h)

∂ L
∂ Ti, j,t

= κi, j,t −λi,t +λ j,t = 0 ∀i, j, t (4.17i)

105



4 Congestion management in power systems

The Langragian functions for P1’ are:

L′a(G i , Gi,t , Ti, j,t ,λi,t ,τi,t) =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

i, j,t

κi, j,t Ti, j,t

+
∑

i,t

(λi,t(Gi,t −
∑

j,t

Ti, j,t − di,t) + κi, j,t(Gi,t − G i))

(4.18)

L′b(P i, j ,κi, j,t) =
∑

i, j

µi, j P i, j+
∑

i,t

(λi,t(Gi,t−
∑

j,t

Ti, j,t−di,t))+
∑

i, j,t

(κi, j,t(|Ti, j,t |−P i, j))

(4.19)

The KKT conditions of P1’a are:

∂ L′a

∂ G i
= δi −

∑

t

τi,t ≤ 0, G i ≥ 0, G i(
∂ L

∂ G i

) = 0 ∀i (4.20a)

∂ L′a
∂ Gi,t

= γi,t +λi,t(1−
∑

j

∂ Ti, j,t

∂ Gi,t
) +τi,t +

∑

j

κi, j,t
∂ Ti, j,t

∂ Gi,t
≤ 0, (4.20b)

Gi,t ≥ 0, Gi,t(
∂ L
∂ Gi,t

) = 0 ∀i, t (4.20c)

∂ L′a
∂ τi, j

= Gi,t − G i ≤ 0, τi, j ≥ 0, τi, j(
∂ L′a

∂ τi, j
) = 0 ∀i, j (4.20d)

∂ L′a
∂ λi,t

= Gi,t −
∑

j

Ti, j,t − di,t ∀i, t (4.20e)

∂ L′a
∂ Ti, j,t

= κi, j,t −λi,t +λ j,t = 0 ∀i, j, t (4.20f)

The KKT conditions of P1’b are:

∂ L′b

∂ P i, j
= µi, j −

∑

t

λi,t
∂ Ti, j,t

∂ P i, j

+
∑

t

κi, j,t(
∂ Ti, j,t

∂ P i, j

− 1)≤ 0, (4.21a)

P i, j ≥ 0, P i, j(
∂ L

∂ P i, j

) = 0 ∀i, j (4.21b)

∂ L′b
∂ κi, j,t

= |Ti, j,t | − P i, j ≤ 0, κi, j,t ≥ 0, κi, j,t(
∂ L
∂ κi, j,t

) = 0 ∀i, j, t(4.21c)

Comparing the KKT conditions of problem P1 to the ones of P1a and P1b, we can

conclude that the problems are indeed equivalent.
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Model of Setting III: coupled zonal markets with zonal TSOs and zonal

redispatch

Mathematically, the model of Setting III, representing coupled zonal markets with

zonal TSOs and zonal redispatch, is formulated as follows:

P3a Generation

min
G i ,Gi,t ,Tm,n,t

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

m,n,t

κm,n,t Tm,n,t (4.22a)

s.t.
∑

i∈Im

Gi,t −
∑

n,t

Tm,n,t =
∑

i∈Im

di,t ∀m, t |λm (4.22b)

Gi,t ≤ G i ∀i, t (4.22c)

Tm,n,t = −Tn,m,t ∀m, n, t (4.22d)

P3b Transmission

min
P i, j∈Im ,Ri∈Im ,t

Ym =
∑

i, j∈Im

µi, j P i, j +
∑

i, j∈Im,cb

σi, jµi, j P i, j +
∑

i∈Im,t

γi,tRi,t ∀m(4.22e)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t (4.22f)

|Ti, j,t |= |Pi, j,t(Pk,l , Gk,t , Rk,t , dk,t)| ≤ P i, j ∀t, i, j ∈ Im |κi, j∈Im
(4.22g)

∑

i∈Im,t

Ri,t = 0 (4.22h)

0≤ Gi,t + Ri,t ≤ G i ∀t, i ∈ Im (4.22i)

κm,n,t = g(κi, j,t) (4.22j)

Tm,n,t = −Tn,m,t ∀m, n, t (4.22k)

In problem P3, there are now separate optimization problems for each zonal TSO

(indicated by Ym), with the objective to minimize costs from zonal grid and cross-

border capacity extensions as well as from zonal redispatch measures (Equation

(4.22e)). For the redispatch, TSOs have to consider the same restrictions as in the

previous setting (Equations (4.22h) and (4.22i)). TSOs are assumed to negotiate

about the extension of cross-border capacities according to some regulatory rule that

ensures the acceptance of a unique price for each cross-border line by both of the

neighboring TSOs. For instance, the regulatory rule may be specified such that both

TSOs are obliged to accept the higher price offer, or, equivalently, the lower of the

two capacities offered for the specific cross-border line. Corresponding costs from
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inter-zonal grid extensions are assumed to be shared among the TSOs according to

the cost allocation key σi, j . According to Equation (4.22j), prices for transmission

between zones that are provided to the generation stage (κm,n,t) are determined

just as in the previous Setting II with only one TSO, depending on the type of market

coupling, i.e., the specification of function g. The only difference is that line-specific

prices κi, j,t may now deviate from Setting II as they result from the separated activ-

ities of each zonal TSO (specifically, from Equation (4.22g), i.e., the restriction of

flows on intra-zonal and cross-border lines).

Model of Setting IV: coupled zonal markets with zonal TSOs and g-component

Mathematically, the model of Setting IV, representing coupled zonal markets with

zonal TSOs and g-component, is formulated as follows:

P4a Generation

min
G i ,Gi,t ,Tm,n,t

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +
∑

i, j,t

κi, j,t Ti, j,t (4.23a)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t |λm (4.23b)

Gi,t ≤ G i ∀i, t (4.23c)

Tm,n,t = −Tn,m,t ∀m, n, t (4.23d)

P4b Transmission

min
P i, j∈Im ,Im,cb

Ym =
∑

i, j∈Im

µi, j P i, j +
∑

i, j∈Im,cb

σi, jµi, j P i, j ∀m (4.23e)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t (4.23f)

|Ti, j,t |= |Pi, j,t(Pk,l , Gk,t , dk,t)| ≤ P i, j ∀t, i, j ∈ Im, Im,cb |κi, j∈Im,Im,cb,t (4.23g)

Tm,n,t = −Tn,m,t ∀m, n, t (4.23h)

Problem P4a is almost identical to P2a (and P3a), with the exception of one term

in the objective function (4.23a). With a g-component, generators pay nodal in-

stead of zonal prices for transmission (κi, j,t instead of κm,n,t), depending on the im-

pact of their nodal generation level on the grid infrastructure (by means of Ti, j,t =

Ti, j,t(Gk,t , dk,t)). These prices are determined by the zonal TSOs via their flow-

restriction (4.23g).
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Numerical algorithm for NTC-coupled zonal markets, zonal TSOs, and zonal

redispatch

In Section 4.3, we have shown the numerical implementation of the nodal pricing

regime. For the sake of clarifying the major changes needed to represent the al-

ternative Settings II-IV, we here present the model for m zonal (instead of nodal)

markets that are coupled via NTC-based capacity restrictions, along with multiple

zonal TSOs (instead of only one), all having the possibility to deploy zonal redis-

patch as an alternative to grid expansion. Hence, the model corresponds to Setting

III with NTC-based market coupling. Compared to nodal pricing, no more nodal or

time-specific information about grid costs is provided. Instead, an aggregated price

κ
(v)
m,n,t for each border is calculated via a function gN T C and passed on to generation

level. The model with flow-based market coupling works in the same way, only that

the price κ(v)m,n,t is calculated via a different function gFB.

v = 1; convergence=false

While(convergence=false) {

Master problem: generation

min
G i ,Gi,t ,Tm,n,t ,α

X =
∑

i

δiG i +
∑

i,t

γi,t Gi,t +α (4.24a)

s.t.
∑

i∈Im

Gi,t −
∑

n

Tm,n,t =
∑

i∈Im

di,t ∀m, t (4.24b)

Gi,t ≤ G i ∀i, t (4.24c)

Tm,n,t = −Tn,m,t ∀m, n, t (4.24d)
∑

m

Y (u)m +
∑

m,n,t

κ
(u)
m,n,t · (Tm,n,t − T (u)m,n,t)≤ α ∀u= 1, ..., v − 1|v > 1 (4.24e)

−−−−−−−−−−−−−−−−−−−−−−−

G(v)i,t = Optimal value of Gi,t ∀i, t (4.24f)
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Sub-problem: transmission

min
P i, j∈Im ,Im,cb

,Ri∈Im ,t ,Tm,n,t

Ym =
∑

i, j∈Im

µi, j P i, j +
1
2

∑

i, j∈Im,cb

µi, j P i, j +
∑

i∈Im,t

Ri,tγi,t ∀m(4.24g)

s.t.
�

�Pi, j,t

�

�=

�

�

�

�

�

∑

k

PT DFk,i, j · (G
(v)
k,t + Rk,t − dk,t)

�

�

�

�

�

≤ P i, j ∀i, j, t |κ(v)i, j,t(4.24h)

0≤ Ri,t + G(v)i,t ≤ G i ∀i, t ∈ Im (4.24i)
∑

i∈Im

Ri,t = 0 (4.24j)

−−−−−−−−−−−−−−−−−−−−−−−

Y ∗m = Optimal value of Ym(4.24k)

PT DF (v) = New PTDF matrix calculated based on P i, jκm,n,t = gN T C(κ
(v)
i, j,t)(4.24l)

P i, j∈Im,cb
= P i, j∈In,cb

=min
¦

P i, j∈Im,cb
; P i, j∈In,cb

©

(4.24m)

if(convergence criterion < threshold; convergence=true)

v = v + 1

};

Numerical assumptions for the large-scale application

Country 2011 2020 2030
Belgium 87 98 105

Germany 573 612 629
France 466 524 559

Luxembourg 7 8 8
Netherlands 113 128 137

Eastern 276 328 366
Northern 387 436 465
Southern 450 528 594

Southwest 317 378 433
United Kingdom 400 450 481

Table 4.3: Assumptions for the gross electricity demand [TWh]

To depict the CWE region in a high spatial resolution, we split the gross electricity

demand per country among the nodes belonging to this country according to the

percentage of population living in that region.
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Technology 2020 2030
Wind Onshore 1253 1188

Wind Offshore (<20m depth) 2800 2350
Wind Offshore (>20m depth) 3080 2585

Photovoltaics (roof) 1260 935
Photovoltaics (ground) 1110 785

Biomass gas 2398 2395
Biomass solid 3297 3295

Biomass gas, CHP 2597 2595
Biomass solid, CHP 3497 3493

Geothermal 10504 9500
Compressed Air Storage 1100 1100

Pump Storage 1200 1200
Lignite 1500 1500

Lignite Innovative 1600 1600
Coal 1200 1200

Coal Innovative 2025 1800
IGCC 1700 1700
CCGT 711 711
OCGT 400 400

Nuclear 3157 3157

Table 4.4: Assumptions for the generation technology investment costs [€/kW]

Fuel type 2011 2020 2030
Nuclear 3.6 3.3 3.3
Lignite 1.4 1.4 2.7

Oil 39.0 47.6 58.0
Coal 9.6 10.1 10.9
Gas 14.0 23.1 25.9

Table 4.5: Assumptions for the gross fuel prices [€/MWhth]

Grid Technology Extension costs FOM costs
AC overhead line incl. compensation 445 €/(MVA*km) 2.2 €/(MVA*km)

DC overhead line 400 €/(MW*km) 2.0 €/(MW*km)
DC underground 1250 €/(MW*km) 6.3 €/(MW*km)

DC submarine 1100 €/(MW*km) 5.5 €/(MW*km)
DC converter pair 150000 €/MW 750.0 €/MW

Table 4.6: Assumptions for the grid extension and FOM costs
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5 Regulation of non-marketed outputs and
substitutable inputs

We study the regulation of a monopolistic firm that provides a non-marketed out-

put based on multiple substitutable inputs. The regulator is able to observe the

effectiveness of the provision, but faces information asymmetries with respect to

the efficiency of the firm’s activities. Motivated by the example of electricity trans-

mission services, we consider a setting where one input (grid expansion) and the

output (uninterrupted electricity transmission) are observable, while another input

(sophisticated grid operation) and related costs are not. Multi-dimensional informa-

tion asymmetries are introduced by discrete distributions for the functional form of

the marginal rate of substitution between the inputs as well as for the input costs.

For this novel setting, we investigate the theoretically optimal Bayesian regulation

mechanism. We find that the first-best solution cannot be obtained in case of shadow

costs of public funding. The second-best solution implies separation of the most ef-

ficient type with first-best input levels, and upwards distorted (potentially bunched)

observable input levels for all other types. Moreover, we compare these results to a

simpler non-Bayesian approach and hence, bridge the gap between the academic dis-

cussion and regulatory practice. We provide evidence that under certain conditions,

a single contract non-Bayesian regulation can indeed get close to the second-best of

the Bayesian menu of contracts regulation.

5.1 Introduction

Numerous goods and services are provided by regulated firms with a monopolistic

status. For instance, uninterrupted electricity transmission services - being a text-

book example of a natural monopoly - are usually provided by a single firm. Cur-

rently, an increasing deployment of renewable energy sources leads to substantially

changing requirements to secure an uninterrupted electricity transmission, while

multiple substitutable measures may exist to cope with it, such as grid expansion
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or sophisticated grid operation.1 Due to the fact that an uninterrupted electricity

transmission is crucial for society, the regulator will be well aware of whether or not

it has been provided effectively.2 In contrast, however, electricity systems are highly

complex, such that interdependent activity levels as well as related cost figures are

hard to assess. Hence, it may be difficult for the regulator to judge the efficiency

of the firm’s underlying measures. Technically speaking, this situation may be seen

as a production process involving multiple substitutable inputs, incorporating two

adverse selection problems: First, the regulator may have a hard time estimating

the necessary overall level of the firm’s activity, determined by the marginal rate of

technical substitution (MRTS), i.e., the isoquant function describing the relation of

inputs needed to produce the requested output. Second, the regulator may have

difficulties verifying the unit costs of one or multiple inputs. This multi-dimensional

asymmetric information increases the complexity of finding an adequate regulation.

In theory as well as in practice, problems of information asymmetry between the

regulator and the firm have been tackled by different forms of regulation. Typi-

cal approaches in regulatory practice range from cost-based regulation to widely

applied incentive regulation (discussed, e.g., in Joskow (2014)), or a linear combi-

nation of those two extremes (e.g., Schmalensee (1989)). For instance, the German

regulator offers one single contract to electricity transmission firms, dependent on

grid expansion, which corresponds to a cost-based regulation of capital.3 The aca-

demic discussion has not yet fully covered the specific multi-dimensional problems

of asymmetric information regarding the level and mix of inputs, but more recent

theoretical approaches suggest that the best theoretical solution consists of the reg-

ulator offering the firm a menu of contracts, such that the firm reveals her private

information (e.g., Laffont and Tirole (1993)). Even though the dichotomy between

such Bayesian models of regulation (which tend to dominate the academic discus-

sion) and simpler non-Bayesian models (which are closer to regulatory practice) is

well perceived, corresponding explanations are rather vague. For instance, as Arm-

1The German Transmission System Operators estimate the necessary investments into grid rein-
forcements and expansion to be around 22 bn. for the period 2013-2022 (Netzentwicklungsplan
(2013)), which doubles the annual figures for 2012 and quadruples the value for 2006 (Monitor-
ingbericht (2013)).

2For instance, in Germany the regulator has defined five observable, quantifiable dimensions for
measuring grid quality.

3In Germany, transmission system operators formulate a network expansion plan for which they get
an allowed investment. In line with economic theory, the chosen levels may be suspected to be
inefficiently high (see Footnote 1 for related cost figures). This regulation corresponds to a cost-
based regulation for the input factor grid expansion, while neglecting any other possible input,
such as better operational measures. Obviously, this triggers some sort of Averch-Johnson-effect
and leads to suboptimal distortions of the input levels.
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strong and Sappington (2007) note, [...] regulatory plans that encompass options are

’complicated’, and therefore prohibitively costly to implement.

The goal of this paper is twofold: First, to identify and investigate the optimal

Bayesian regulation for the multi-dimensional problem at hand, and second, to

bridge the gap between the theoretically optimal solution and simpler regimes ap-

plied in regulatory practice.

To derive an optimal regulation strategy, we build on the theory of incentives and

contract menus. It is well known that in a simple setting with two types of the firm,

the efficient type is incentivized via a contract with first-best (price) levels along

with some positive rent, while the inefficient type’s contract includes prices below

the first-best and no rent (e.g., Laffont and Tirole (1993)). This analysis has been

extended to represent multiple dimensions of information asymmetry in terms of

adverse selection, e.g., by Lewis and Sappington (1988b), Dana (1993), Armstrong

(1999) or Aguirre and Beitia (2004). While Dana (1993) analyzes a multi-product

environment, Lewis and Sappington (1988b), Armstrong (1999) and Aguirre and

Beitia (2004) consider two-dimensional adverse selection with only one screen-

ing variable. Specifically, the latter three derive optimal regulation strategies in a

marketed-good environment (in the sense of Caillaud et al. (1988)) with unknown

cost and demand functions. In our paper, unlike Lewis and Sappington (1988b) and

Armstrong (1999), we consider shadow costs of public funding instead of distribu-

tional welfare preferences. Despite technical differences, this is largely in line with

the analysis of Aguirre and Beitia (2004).4 However, in contrast to all these papers,

we solve the two-dimensional adverse selection problem for a non-marketed good

environment and a production process that involves two substitutable inputs with

an uncertain isoquant and input factor costs.5

For the novel setting of multi-dimensional inputs and a non-marketed output, we

are able to confirm the general insights from the above literature. We find that ex-

pected social welfare necessarily includes positive rents for some types of the firm,

such that the first-best solution cannot be achieved. While the efficient type is always

set to first-best input levels, the other contracts’ (observable) input levels are dis-

4Aguirre and Beitia (2004) show the difference between shadow costs of public funding and distri-
butional welfare preferences based on a model with continuous probability distribution, while we
assume a discrete distribution.

5Noticeably, with the (discrete) two-dimensional adverse selection problem, our problem setting is
technically closest to the model discussed by Armstrong (1999).
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torted upwards.6 Separation of at least three types is always possible, while bunch-

ing of two types may be unavoidable in case of a very asymmetric distribution of

costs or very flat isoquants.

We compare the obtained optimal Bayesian regulation to the results of a non-

Bayesian regulation that we obtain by restricting our regulation problem to one sin-

gle contract. We find that despite the general inferiority a non-Bayesian cost-based

regulatory regime may indeed be close to the optimal Bayesian solution for specific

circumstances. This especially holds true if the overall input level probably needs

to be high, and shadow costs of public funding are large. Considering current cir-

cumstances observed in the electricity sector, i.e., substantial changes in the supply

structure and ongoing intense discussions about grid tariffs, these conditions may

indeed prevail.

The paper is organized as follows: Section 5.2 introduces the model, Section 5.3

presents the optimal regulation strategy, Section 5.4 compares the optimal regula-

tion to simpler regimes, and Section 5.5 concludes.

5.2 The model

Consider a single firm that is controlled by a regulator. The firm uses two inputs to

provide an output in terms of a good or service level q that is requested by the reg-

ulator. The regulator’s choice of q could, for instance, result from counterbalancing

the economic value of the provided with the related social costs. For simplicity, how-

ever, we assume q to be invariant throughout the paper. Although this assumption

might seem restrictive at first sight, it may indeed fit a number of relevant cases very

well. For instance, due to the very high societal value of uninterrupted electricity

transmission, changes in costs will hardly affect the desired level of the transmission

service quality q.

In our model, probability µ (respectively 1−µ) leads to a low (high) aggregated

input that is necessary to reach the same requested output q. This could, e.g., be

an exogenous shock induced by the increased deployment of renewable energies,

triggering a changing spatial distribution of supply and hence impacting the neces-

6Upwards distorted observable input levels coincide with upwards distorted prices for the inefficient
type as shown in Laffont and Tirole (1993). They also agree with the results in a setting with
unknown cost and demand functions as long as shadow costs of public funding are considered
(Aguirre and Beitia (2004)). Noticeably, the case of prices below marginal costs, as found in Lewis
and Sappington (1988b) and Armstrong (1999), is mainly triggered by using a distributive social
welfare function instead of shadow costs of public funding.
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sary overall activity level in the grid sector to achieve secure electricity transmission.

From the firm’s perspective, an output level q can be provided by means of two dif-

ferent inputs, one of which is observable (x) and one non-observable (y) by the

regulator. Stressing again our introductory example of electricity transmission ser-

vices, x could be the level of grid expansion that is easily observable by the regulator,

even by people unfamiliar with the details of electricity transmission. Utilization

and measures of sophisticated grid operation, especially as a partial substitute to

grid expansion, however, are hardly observable. The tradeoff between those two

inputs needed to reach output q is commonly described by a production function

q = f (x , y) which can be illustrated by means of isoquants. We assume smooth and

decreasing marginal returns of both inputs, such that the isoquants are downward

sloping, convex and differentiable. Noticeably, two different isoquants can never

cross. An example fulfilling these requirements is a Cobb-Douglas-type production

function. The inverse production function g(q, x) reflects the necessary level of the

non-observable input y needed to reach output q, given a level of x . We will mostly

use this inverse function hereafter. Due to the exogenous shock leading to a low (l)

or high (h) aggregated input necessary for the envisaged output level q, the inverse

function takes one of two possible functional forms, i.e. gi(q, x), with i ∈ [l, h] and

gl(q, x)< gh(q, x).

The optimal rate of substitution between the two inputs minimizing total costs

for reaching the requested output depends on the cost functions of the inputs. We

consider the cost function c x(x) of the the observable input to be fixed and common

knowledge, while the cost function of the non-observable input c y
j (y) is subject to

a nature draw, which leads with probability ν (respectively 1 − ν) to a low (high)

cost function (i.e., j ∈ [l, h]). For simplicity, we assume constant factor costs of

both inputs, i.e., c x(x) = c x and c y
j (y) = c y

j . The realization of c y
j influences the

isocost line of the two inputs and hence, the optimal rate of substitution.7 Hence,

depending on the two random draws for the isoquant and the costs of the non-

observable input, there are four possible firstbest bundles of inputs, which we denote

by {x f b
l l , y f b

l l }, {x
f b
lh , y f b

lh }, {x
f b
hl , y f b

hl } and {x f b
hh , y f b

hh }. As a last precondition, we

require the expansion path, i.e. the curve connecting the optimal input combinations

of the different isoquants, to be pointing rightwards as the necessary aggregated

7As it is well known from production theory, the optimal rate of substitution is determined by equating
the marginal rate of technical substitution between the factors (i.e., the slope of the isoquant) with
the relative factor costs (i.e., the slope of the isocost line).
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Figure 5.1: Problem setting with double adverse selection

input increases.8 In terms of the first-best input levels, this requires x f b
l l > x f b

hl and

x f b
lh > x f b

hh , which again holds true for a wide range of possible production function

specifications, including the above mentioned Cobb-Douglas type.

Under optimal Bayesian regulation, the goal of the regulator is to incentivize the

firm via a suitable contract framework to choose the welfare-optimizing bundle of

inputs, which we will derive based on classic mechanism design entailing truthful

direct revelation. Contrary to the firm, the regulator cannot observe the realizations

of the two random draws, although the possible realizations as well as the occurrence

probabilities are common knowledge. She knows the cost function of the observable

input and can observe the corresponding input level. The output is also observable

and verifiable.9 For an optimal regulation, the regulator offers the firm a menu of

four contracts, each with a level of the observable input x i j and a corresponding

transfer Ti j . Naturally, the contracts can be conditioned on observable parameters

only, i.e., the output as well as the amount of the observable input used. Both are

enforceable by means of suitably high penalties in case the firm deviates from the

requested/contracted level.

The timing – as shown in Figure 5.2 – is as follows. First, the random draws

are realized and the cost function of the non-observable input and the necessary

8For an analysis involving continuous variables, this would require the expansion path to behave like
a function with a unique function value y for each x , or, in other words, an expansion path that is
not bending backwards.

9Stochastic deviations due to force majeure are supposed to be detectable and excludable from the
contract framework.
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aggregated input relation (isoquant) are observed by the firm. The firm then chooses

between several (in our case, four) contracts offered by the regulator. She then

realizes the input levels to produce the requested output. The regulator observes

one input level (x) and whether the output is as requested; if those are as agreed

upon, the contract is executed and the transfer realized.

time

t = 1

Firm learns the
realization of the

two random draws

t = 2

Firm chooses
one of the contracts

offered by the regulator

t = 3

Firm realizes
input levels;

Output is realized;
Contract is executed

Figure 5.2: Timing

The rent of the firm Ri j given a realization i ∈ [l, h] and j ∈ [l, h], results from the

transfer Ti j minus the private cost of the firm’s activities:10

Ri j = Ti j − c x x i j − c y
j gi(q, x i j) (5.1)

The regulator maximizes expected social welfare, defined as the sum of expected

social utility and firm surplus, by adjusting the observables, i.e.:

max
x i j ,Ti j

W = E






Sq − (1+λ)Ti j
︸ ︷︷ ︸

Net social utility

+(Ti j − c x x i j − c y
j gi(q, x i j))

︸ ︷︷ ︸

Firm’s rent (Ri j)






(5.2)

where Sq is the gross social utility from reaching output q, and λ denotes the

shadow costs of public funding, i.e., the costs due to raising and transferring finances

through public channels (for a discussion, see, e.g., Laffont and Tirole (1993)). As

discussed previously, we assume q – and hence also gross social utility Sq – to be

invariant and independent of the random draws, yielding11

max
x i j ,Ti j

W = Sq −E






(1+λ)Ti j
︸ ︷︷ ︸

Transfer costs

− (Ti j − c x x i j − c y
j gi(q, x i j))

︸ ︷︷ ︸

Firm’s rent (Ri j)






(5.3)

10It goes without saying here that the firm is characterized such that she tries to maximize her rent.
11This is the reason why q appears as a subscript here. In case of a more complex analysis involving

q as a variable, Sq would be replaced by S(q, x) to reflect the counterbalancing of the economic
value of the provided output with the related social costs.
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As an important consequence of Equation (5.3), we see that the optimization prob-

lem of the regulator can be reformulated in terms of a cost-minimization problem,

essentially stating that the desired output shall be reached at minimal expected so-

cial costs:

min
x i j ,Ti j

C = E
�

Ci j

�

= E









λ Ri j
︸︷︷︸

Firm’s rent

+(1+λ)( c x x i j
︸︷︷︸

Costs of
observable input

+ c y
j gi(q, x i j)
︸ ︷︷ ︸

Costs of
non-observable input

)









(5.4)

While choosing x i j and Ti j such that social costs are minimized, the regulator is

restricted by several participation and incentive constraints for the firm’s rent:

Ri j ≥ 0 ∀i, j (5.5)

Ri j ≥ Ri′ j′ + c y
j′ gi′(q, x i′ j′)− c y

j gi(q, x i′ j′) ∀ pairs i, j and i′, j′ (5.6)

Equation (5.5) ensures that all types of firms have a non-negative profit and there-

fore participate.12 In line with the revelation principle, Equation (5.6) provides the

firm with the incentive to truthfully report the realized isoquant and non-observable

input costs.

Written explicitly, the four participation constraints for the four possible firm types

become

Rl l ≥ 0 (5.7a)

Rlh ≥ 0 (5.7b)

Rhl ≥ 0 (5.7c)

Rhh ≥ 0, (5.7d)

and the twelve incentive constraints (each of the four types might be tempted to

12Hence, we implicitly assume zero liability for the firm.
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choose a contract of one of the other three types)

Rl l ≥ Rlh + c y
h gl(q, x lh)− c y

l gl(q, x lh) (5.8a)

Rl l ≥ Rhl + c y
l gh(q, xhl)− c y

l gl(q, xhl) (5.8b)

Rl l ≥ Rhh + c y
h gh(q, xhh)− c y

l gl(q, xhh) (5.8c)

Rlh ≥ Rl l + c y
l gl(q, x l l)− c y

h gl(q, x l l) (5.8d)

Rlh ≥ Rhl + c y
l gh(q, xhl)− c y

h gl(q, xhl) (5.8e)

Rlh ≥ Rhh + c y
h gh(q, xhh)− c y

h gl(q, xhh) (5.8f)

Rhl ≥ Rl l + c y
l gl(q, x l l)− c y

l gh(q, x l l) (5.8g)

Rhl ≥ Rlh + c y
h gl(q, x lh)− c y

l gh(q, x lh) (5.8h)

Rhl ≥ Rhh + c y
h gh(q, xhh)− c y

l gh(q, xhh) (5.8i)

Rhh ≥ Rl l + c y
l gl(q, x l l)− c y

h gh(q, x l l) (5.8j)

Rhh ≥ Rlh + c y
h gl(q, x lh)− c y

h gh(q, x lh) (5.8k)

Rhh ≥ Rhl + c y
l gh(q, xhl)− c y

h gh(q, xhl). (5.8l)

5.3 Optimal regulation

5.3.1 Preparatory analysis

As a first preparatory step in the analysis we shall check whether the contract variable

x is actually suitable to provide incentives to the firm to reveal her true type. To

this end, we investigate whether the incentive to choose another type’s contract

(motivated by a potential increase in rent) regarding one of the two random draws

is impacted by an adjustment of x . This is often referred to as “single crossing”

conditions. For the incentive to choose another type’s contract regarding the realized

input cost, we find that13

∂

∂ x
(Rih(x)− Ril(x)) = (c

y
l − c y

h )g
′
i(q, x) for i = l, h, (5.9)

which is clearly greater than zero due to ch > cl and g ′i(q, x) < 0. Hence, by an

upwards distortion of x , we are able to reduce the incentive for the firm to choose

the contract of a high cost type instead of truly revealing the realized low cost type.

13Here and in the following, a prime denotes derivation with respect to x .

121



5 Regulation of non-marketed outputs and substitutable inputs

Similarly, for the incentive to choose a contract for an isoquant different from the

realized one, we find that

∂

∂ x
(Rh j(x)− Rl j(x)) = c y

j (g
′
l (q, x)− g ′h(q, x)) for j = l, h (5.10)

which is greater than zero as long as g ′h(q, x) < g ′l (q, x). Recalling from Section

5.2 that we have assumed rightwards pointing expansion paths (a property exhibited

by a wide range of possible production function specifications, including the Cobb-

Douglas type), this condition will always hold true. Hence, upwards distorting x

will provide a possibility to reduce the incentive for the firm to choose the contract

with a high isoquant instead of truly revealing the realized low isoquant.

The effect of changing incentives following a distortion of x helps us to derive

a first characterization of the optimal solution of our regulatory problem. In fact,

in order to comply with the incentive constraints (5.8a)-(5.8l) (which need to be

fulfilled for the optimal solution anyway), input levels x i j need to follow a certain

ordering. Note that for each pair of types there are two relevant incentive constraints

(e.g., Equations (5.8a) and (5.8d) for the types l l and lh). Adding those and using

the above single crossing conditions, the necessary ordering can be obtained as fol-

lows:14

x l l ≤ x lh ≤ xhh (5.11)

x l l ≤ xhl ≤ xhh (5.12)

Moreover, from the incentive constraints (5.8a) and (5.8i) it follows that only the

participation constraints (5.7b) and (5.7d) (i.e., limited liability of the lh and the hh-

type) remain relevant for further analyses. In contrast, the other two participation

constraints (those of the low-cost types) are implicitly fulfilled if these two incentive

constraints hold.

So far unclear from the above analysis, however, is the ordering of the intermedi-

ate cases x lh and xhl , which depends on whether the term Rhl(x)−Rlh(x) is increas-

ing or decreasing in x . Differentiating with respect to x yields

∂

∂ x
(Rhl(x)− Rlh(x)) = (c

y
h g ′l (q, x)− c y

l g ′h(q, x)) (5.13)

14For instance, adding Equations (5.8a) and (5.8d) yields (c y
l − c y

h )g
′
l (q, x lh) ≥ (c

y
l − c y

h )g
′
l (q, x l l),

which, together with (5.9), implies that x lh ≥ x l l .
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which is increasing in x as long as

c y
h

c y
l

<
gh(q, x)
gl(q, x)

, (5.14)

and decreasing in x otherwise. Together with incentive constraints (5.8e) and

(5.8h) we infer that if the cost variation is small compared to the isoquant variation,

then x lh ≤ xhl . If the aggregated input level variation is small compared to the

cost variation, then x lh ≥ xhl . For an intuition, recall Figure 5.1. If the aggregated

input level variation and hence the distance between the isoquants is large, x f b
hl is

larger than x f b
lh . If the cost variation, and hence, the vertical distance between the

corresponding first-best solutions is large, x f b
lh is larger than x f b

hl .

The results of our preparatory analysis are summarized in the following two Lem-

mas.

Lemma 1. Limited liability is only an issue for the high-cost types. Hence, the only

relevant participation constraints are (5.7b) and (5.7d), whereas (5.7a) and (5.7c)

are implicitly fulfilled.

Lemma 2. In order to reach incentive compatibility, input levels x i j must be ordered

as follows:

(A) If the cost variation is small compared to the isoquant variation, then Rhl(x)−
Rlh(x) is increasing in x and requires

x l l ≤ x lh ≤ xhl ≤ xhh. (5.15)

(B) If the cost variation is large compared to the isoquant variation, then Rhl(x)−
Rlh(x) is decreasing in x and requires

x l l ≤ xhl ≤ x lh ≤ xhh. (5.16)

5.3.2 Full information benchmark

If the regulator had no information deficit, she would observe the realized isoquant

as well as the realized isocost line. Differentiating all possible realizations of the

social cost function Ci j with respect to the observable input levels x i j shows that

all of them are single-peaked with a unique minimum at g
′

i(q, x i j) = −
cx

c y
j
, which
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is necessarily realized at x i j = x f b
i j . The regulator would easily derive the first-

best levels of inputs to supply the requested output at minimal social costs, i.e.,

{x f b
i j , y f b

i j }, by equating the known realized marginal rate of technical substitution

of the inputs with the realized isocost line. Moreover, she would be able to enforce

the implementation of the first-best due to the full observability. The corresponding

optimal transfers would be T f b
i j = c x x f b

i j + c y
j y f b

i j , leaving all types of the firm with

zero rent. In the case of full information, social costs amount to C f b
i j = (1+λ)T

f b
i j =

(1+λ)(c x x f b
i j + c y

j y f b
i j ), corresponding to the welfare-optimizing first-best solution

that could thus be obtained.

5.3.3 Asymmetric information

In the case of asymmetric information, the only two observables for the regulator

are the output q and the observable input x . In addition, she can choose an ap-

propriate level of transfer payment T . As q is invariable and observable, its im-

plementation can be enforced by means of suitably high penalties in case the firm

deviates. Hence, x and T are the two variables the regulator will condition her

contracts on. The general idea for the regulator’s optimal regulation strategy is to

offer a menu of contracts with optimized variables {x∗i j , T ∗i j}, such that expected so-

cial costs are minimized (as stated in Equation (5.4)), and participation (Equation

(5.5)) and incentive constraints (Equation 5.6) fulfilled. Hence, we restrict our at-

tention to incentive compatible contracts ensuring that the firm always reveals her

true type. Under these conditions, the revelation principle requires that the solu-

tion found (if any) is a Bayesian-Nash equilibrium (Myerson (1979), Laffont and

Martimort (2002)).

One-dimensional asymmetric information

We shall first investigate a simplified problem with one-dimensional asymmetric in-

formation only, i.e., isoquant or cost uncertainty. Eliminating the isoquant uncer-

tainty (by setting µ = 0, µ = 1 or gl j = gh j), we are left with two constraints

binding: the participation constraint of the high cost type (5.7b or 5.7d) and the

incentive constraint from the low to the high cost type (5.8a or 5.8i). This leads to
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the simplified cost function:

C =ν
�

λ
�

gi(x ih)(c
y
h − c y

l )
�

+ (1+λ)
�

c x x il + c y
l gi(x il)

��

(5.17)

+ (1− ν)
�

(1+λ)
�

c x x ih + c y
h gi(x ih)

��

Derivating with respect to x i j , j ∈ l, h yields the following first order conditions:

∂ C
∂ x il

= 0⇔ g ′i(x
∗
il) = −

c x

c y
l

, (5.18)

∂ C
∂ x ih

= 0⇔ νλ(c y
h − c y

l )g
′
i(x
∗
ih)

︸ ︷︷ ︸

<0

+(1− ν)(1+λ)(c x + c y
h g ′i(x

∗
ih))

︸ ︷︷ ︸

=0 for xih=x f b
ih

<0 for xih<x f b
ih

>0 for xih>x f b
ih

= 0 (5.19)

Similarly, in case of no cost uncertainty, the observable input levels of the low iso-

quant types are first-best, whereas the high isoquant types are distorted upwards:15

Lemma 3. In case of asymmetric information about either costs or isoquants, the re-

spective l-type is set to first-best, while the h-type is distorted upwards compared to its

first-best.

Note that the result of an adverse selection problem with one-dimensional in-

formation asymmetry on costs is well-known from the literature (e.g., Baron and

Myerson (1982) or Sappington (1983)). Also note that the results concerning iso-

quant uncertainty are strikingly different compared to the one-dimensional demand

uncertainty (which essentially corresponds to the isoquant in our setting) studied

by Lewis and Sappington (1988a) or Armstrong (1999). In contrast to our model –

due to neglecting shadow costs of public funding – they find that the first-best can

be achieved in the one-dimensional case of demand uncertainty.

Two-dimensional asymmetric information

Solving the full optimal regulation problem requires minimization of social costs,

subject to all imposed four participation and twelve incentive constraints. Due to

the large number of constraints, we approach the optimization by solving a relaxed

problem where only a subset of the constraints is considered. To this end, we need

to come up with an educated guess about the binding constraints in the optimum. If

15Due to the obvious symmetry of the problem, we omit the detailed calculation here.
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5 Regulation of non-marketed outputs and substitutable inputs

we can later show that the remaining constraints are fulfilled at the solution of the

relaxed problem, we will have obtained the solution of the full problem.

We already know from Lemma 1 that the participation constraints of the high-

cost types are the only relevant ones. Furthermore, it generally seems to be a good

approach to assume the “upwards” incentive constraints, i.e., from low to high iso-

quant, and from low to high costs, to be binding. Moreover, it seems plausible to

assume binding incentive constraints from the most efficient to an intermediate type

(i.e., lh or hl), and from an intermediate type to the least efficient type. If we con-

sider the isoquant variation more relevant than the cost variation, assuming the

incentive constraints according to the ordering shown in Lemma 2, Case (A), to be

binding appears to be the most educated guess we can come up with.16 Hence, we

assume that incentive constraints (5.8a) (l l → lh), (5.8e) (lh → hl), and (5.8i)

(hl → hh) are fulfilled with equality. In addition, we assume the participation con-

straint of the hh-type to bind since this is the only type remaining that is not at-

tracted by any other type. Figure 5.3 illustrates with arrows the binding incentive

constraints, such that the former type is not attracted by the latter type-contract.

Diamonds mark the binding participation constraints.

Isoquant (gi(q, x))

In
pu

t
co

st
s

(c
y j
)

�

l h

l

h

Figure 5.3: Constraints considered binding for Case (A)

We find that this set of assumptions does indeed lead us to the optimal regulation

strategy. The results are summarized in the following Proposition 1.

16The ordering and solution of Case (B) is reversed, but similar. The corresponding discussion can be
found in the appendix.

126



5.3 Optimal regulation

Proposition 1. For Case (A),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗l l = x f b
l l (5.20)

x∗lh ≥ x f b
lh (5.21)

x∗hl ≥ x f b
hl (5.22)

x∗hh ≥ x f b
hh , (5.23)

while respecting x∗l l < x∗lh ≤ x∗hl ≤ x∗hh.

(ii) The most efficient (l l) type can always be separated. Moreover, separation of

at least three types is always possible, while bunching of the lh and hl types is

unavoidable in case of ν→ 1. The hl and hh types may need to be bunched in

case of g ′l (q, x)→ 0 together with c y
l being large.

Proof. See Appendix.

Corollary 1. For λ = 0, the optimal solution is first-best. All input levels amount to

x∗i j = x f b
i j , and expected social costs to C = C f b.

Proof. Follows immediately from the solution of Case (A) when setting λ= 0.

According to Corollary 1, with no shadow costs of public funding, all input levels

x∗i j are first-best. The regulator optimizes overall welfare, but has no preference re-

garding the distribution of social surplus. Hence, she can give the firm an arbitrarily

high budget at no social costs, and the firm maximizes her rent by setting efficient

input levels. In this case, the maximization of the firm and the maximization of so-

cial welfare coincide, i.e., there is no problem of aligning the activities of the firm

with social interests. Of course, larger parts of the welfare are then given to the firm.

For the general case of λ > 0, observable input levels of all types besides the l l-one

are distorted above first-best levels, leading to a second-best solution only. Naturally,

the overall level of inefficiency increases in λ, but also for decreasing µ and ν (i.e.,

when there is a high probability for “costly” outcomes of the random draws) as well

as for c y
h − c y

l and gh(q, x) − gl(q, x) getting large. In contrast, however, the less

significant the cost variation becomes compared to the isoquant variation, the more

efficient the solution will be.

Due to keeping the most efficient (l l) type at first-best level combined with the
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5 Regulation of non-marketed outputs and substitutable inputs

ordering according to Lemma 2, the type can always be separated in the contract

framework. Moreover, we find that at least three types can always be separated,

while bunching of two types may be unavoidable in case of vanishing isoquant or

cost uncertainties, or if the isoquant variation becomes extremely large. As a last

remark, it is worth mentioning that the ordering of rents is (and must be) as depicted

in Figure 5.3, i.e. 0= R∗hh < R∗hl < R∗lh < R∗l l .

The results for Case (B) are symmetric but structurally identical to Case (A), i.e.,

the l l-type is incentivized to first-best input levels while the other types show up-

wards distortions of x i j . However, roles of isoquants and costs are interchanged,

reflected in the inverse occurrence of the terms gi ↔ c y
j and µ←→ ν. At the same

time, as imposed by Lemma 2, Case (B), the sequence of the “intermediate” types

is now hl → lh. Hence, the ordering of observable input levels x lh and xhl as well

as rents Rlh and Rhl need to be reversed to obtain an optimal regulatory contract

framework.17

5.4 Comparing the optimal regulation to simpler regimes

In contrast to the optimal Bayesian menu of contracts studied in the previous sec-

tion, regulatory authorities often apply alternative, simpler approaches. In fact, in

the case of electricity transmission grids, it appears that they mostly offer a non-

Bayesian, i.e., single, contract, while the application of Bayesian contracts in terms

of menus of contracts, has been very rare.18 For instance, regulatory practice in Ger-

many is such that TSOs formulate a grid expansion plan, which is then reviewed

and approved by the regulator. For the approved measures, the TSOs get their costs

reimbursed. This corresponds to a cost-based regulation for the input factor grid ex-

pansion, while neglecting any other possible input, such as better operational mea-

sures. Meanwhile, driven e.g. by social acceptance issues, the regulator is expected

to limit the approval of extensive grid expansion to some reasonable level.

Transferring such a simple non-Bayesian approach into our model, we need to

limit the set of regulatory choice variables to one single contract with contract vari-

ables x̄ and T̄ , such that the objective function of the regulator (in contrast to Equa-

17See the appendix for a detailed discussion and the corresponding proposition and proof.
18The system operator for England and Wales and the electric distribution companies in the UK are

the only two examples for menus of contracts being applied in regulatory practice Joskow (2014).
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5.4 Comparing the optimal regulation to simpler regimes

tion (5.4) as in the case of optimal regulation) becomes:

min
x̄ ,T̄

C̄ = E









λ R̄i j
︸︷︷︸

Firm’s rent

+(1+λ)( c x x̄
︸︷︷︸

Costs of
observable input

+ c y
j gi(q, x̄)
︸ ︷︷ ︸

Costs of
non-observable input

)









(5.24)

In contrast to the solution of the optimal regulation, this minimization is only

subject to the participation constraints (5.5). With a sole contract and hence, only

one observable input x̄ for all types, the regulator has no possibility to separate types,

which makes the incentive constraints obsolete. As before, the only participation

constraint holding with equality is the one of the hh-type. Considering that this

type gets full cost reimbursement but cannot be distinguished from the other types,

it becomes clear that all other types must then necessarily receive a positive rent.

The following proposition summarizes the solution of this non-Bayesian regulatory

approach.19

Proposition 2. Under a single contract cost-based regulation with quantity restriction,

the optimal input level x̄∗ represents an expected average of the first-best solutions of the

four possible types, adjusted by some upwards distortion in case of λ > 0. As an expected

average, it lies between the extreme types’ first-best input levels, i.e. x f b
l l < x̄∗ < x f b

hh .

Proof. See Appendix.

Proposition 3. Compared to a single contract, the regulatory approach based on a

menu of contracts is superior with respect to expected social welfare.

Proof. It is easy to show that the optimal solution of the single contract is a feasible

solution of the menu of contracts problem. Due to the fact that the solution for the

menu of contracts, as stated in Proposition 1, is both optimal and different from the

one in Proposition 2, it must necessarily be superior.

As stated in Proposition 3, the solution of the single contract regime is always infe-

rior to the one obtained with the menu of contracts. Nevertheless, the characteristics

of the different regimes can be compared and deserve a closer look. We contrast the

19Note that the solution for a pure cost-based regulation without quantity restriction would simply
reimburse the costs of the observable input. This would incentivize the firm to choose infinitely
high values of x (known as the gold-plating effect). Assuming that the regulator restricts her set of
choices by an upper level of x̄ = x f b

hh in order to limit excessive (socially costly) rents, all types would
then choose this level. In contrast to this very simple approach, the regulatory regime considered
in this section makes use of being able to use the observable input x as a contracting variable.
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5 Regulation of non-marketed outputs and substitutable inputs

outcome of the optimal menu of contracts with the one of the single contract regime

considering three aspects: input levels, cost-efficiency of the input levels, and rents

of the firm.

Input levels for the different types have been characterized in Proposition 1 for

the menu of contract, stating that all types besides the l l-one are distorted above

first-best levels. According to Proposition 3, the optimal input level for the single

contract regime, x̄∗, represents an expected average of the first-best solution of the

four possible types, adjusted by some upwards distortion in case of λ > 0. Hence,

chosen input levels are generally different. However, x̄∗ may get close to x∗hl in case

of λ being large and µ small (i.e., for a high probability of realizing a high isoquant).

At the same time, it will never be as high as x∗hh, due to x̄∗ < x f b
hh < x∗hh.

Cost-efficiency of the input levels is closely connected to the input levels and

their deviation from the first-best optimal solution. The optimal menu of contracts

approaches first-best cost-efficiency of the input levels for λ → 0, as input levels

then converge towards first-best levels, i.e., {x∗i j , y∗i j} → {x
f b
i j , y f b

i j }. In contrast,

cost-efficiency is poor for the single contract regime under this condition. However,

first-best input levels may also be reached, but only under very restrictive conditions,

namely if λ→ 0 and the occurrence probability for one specific type is particularly

large (e.g., if µ,ν→ 1). Type-specific as well as expected cost-efficiency of input lev-

els is (only) then approaching first-best optimality for both contracting frameworks.

For the general case of λ ≥ 0, it is clear that cost-efficiency of the input levels is in-

ferior for the l l type in the single contract regime, while the ordering is ambiguous

for all other types, depending on the optimal choice of x̄∗ in comparison to x∗i j .

Regarding rents of the firm, remember that they are only an issue for social wel-

fare if there are shadow costs of public funding, i.e., if λ > 0. Then, however,

the well known trade-off for rent-extraction and efficiency becomes relevant. For

both contracting regimes, the rent of the inefficient hh type is set to zero. More-

over, for both regimes it holds true that 0 = R∗hh < R∗hl � R∗lh < R∗l l (respectively,

0 = R̄∗hh < R̄∗hl � R̄∗lh < R̄∗l l), if isoquant variation is more relevant than cost vari-

ation. For the rent of specific types, we find that R∗hl < R̄∗hl , while the ordering of

other types’ rent is generally ambiguous. Interestingly, however, if g ′i(x) is small in

the relevant range, R∗i j < R̄∗i j for all i, j.

Based on the above comparative statics, a singular interesting constellation can

be identified for which the two contracting frameworks effectively approach each

other.
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5.5 Conclusion

Proposition 4. For λ being large and µ small, the performance of the single contract

is close to the one of the menu of contracts.

Proof. For λ being large, x̄∗ is distorted upwards (see Proposition 2), while x∗hl ≈
x f b

hl for µ small. Hence, in this case, x̄∗ ≈ x∗hl . Moreover, due to the fact that we

consider Case (A) where cost uncertainty is relatively low, we know that the upwards

distortion of x∗hh is low (see Equation (5.29)), such that x∗hl is not far from x∗hh. Under

these conditions, C̄∗ ≈ C∗.

Transferring Proposition 4 to our example of electricity transmission services and

the regulation of the German TSOs, one may indeed come to the conclusion that the

practically applied non-Bayesian regulatory approach could be close to the optimal

second-best strategy. In fact, a high overall input level appears to be likely due

to the strongly changing supply infrastructure, while ongoing intense discussions

about the burden of electricity costs and grid tariffs for consumers could indicate

high shadow costs of public funding. In the end, however, reasons for the chosen

regulation are probably manifold, and might also include an explicit disutility of grid

expansion, a commitment problem,20 or the prohibitively high costs of implementing

a ’complicated’ regulatory regime (Armstrong and Sappington, 2007).

5.5 Conclusion

We considered a regulated firm providing a non-marketed output with substitutable

inputs. We presented the optimal Bayesian regulation in terms of a menu of con-

tracts when the regulator faces information asymmetries regarding the aggregated

input level needed to provide the output as well as the realized optimal marginal

rate of substitution between the inputs. Finally, the optimal Bayesian regulation

was compared to a simpler non-Bayesian approach which appears to be closer to

regulatory practice.

We found that in the optimal Bayesian regulation, the first-best solution cannot be

20Noticeably, a commitment problem of the regulator might impede the implementation of an
incentive-based approach, which would be welfare-superior compared to a cost-based regula-
tion. If the firm gets an unconditional payment representing the pay-off of the hh-type, i.e.,
T̃ = c x x f b

hh + c y
h gh(q, x f b

hh ), she will realize first-best input quantities {x f b
i j , y f b

i j }. In this case, the

realized rent of the firm becomes Ri j = c x x f b
hh + c y

h gh(q, x f b
hh )− c x x f b

i j − c y
j gi(q, x f b

i j ). However, due
to the (observable) separation of types via the realized input x , the regulator might be tempted
to adjust the regulatory contract ex-post, and hence, jeopardize the regulatory success if the firm
anticipates this behavior.
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achieved under the considered information asymmetries and shadow costs of public

funding. This implies a strictly positive rent for the firm. The second-best solution

that we then characterized depends on the relative importance of the information

asymmetries. However, the most efficient type is always set to first-best, while the

levels of the observable input are distorted upwards for all other types. At least three

types can always be separated, while bunching of two types may be unavoidable in

case of a very asymmetric distribution of costs or very flat isoquants. These re-

sults are structurally similar to the solutions for multi-dimensional adverse selection

problems in the literature (e.g. Lewis and Sappington (1988b), Armstrong (1999)

or Aguirre and Beitia (2004)). However, in contrast to existing results, our model

explains upwards distortions of input levels rather than prices. Hence, we obtained

important insights regarding the optimal mechanism design in the context of a reg-

ulated monopolistic firm producing a non-marketed good with multi-dimensional

inputs.

The comparison to a single contract cost-based approach, as it is often applied in

regulatory practice, showed that the menu of contracts is welfare superior. However,

there are situations in which the performance of the approaches converge, namely

if the overall input level probably needs to be high, and shadow costs of public

funding are large. Given our motivating example of electricity transmission services

and the current situation, e.g., in Germany, these circumstances may indeed prevail,

possibly explaining the gap between the theoretically optimal Bayesian approach

and the simpler non-Bayesian regulation applied in practice.

Lastly, we note that our general approach as well as our insights might also be

applicable to other industries that show similar characteristics, such as public works

or administrative services. Besides investigating such areas of application, future

research could relax the limited liability assumption and hence, allow for a shut

down of firms. Another expansion could allow the good to be marketed, which

would trigger a demand reaction of the regulator (or consumers) and possibly lead

to interesting variations of the conclusions derived in this paper.
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5.6 Appendix

Proof of Proposition 1

Proof. (i) Under the constraints considered binding for Case (A) – as discussed

and shown in Figure 5.3 – the social cost function (5.4) becomes

C =

µν
�

λ
�

gh(xhh)(c
y
h − c y

l ) + c y
l gh(xhl)− c y

h gl(xhl) + gl(x lh)(c
y
h − c y

l )
�

+(1+λ)
�

c x x l l + c y
l gl(x l l)

��

+µ(1− ν)
�

λ
�

gh(xhh)(c
y
h − c y

l ) + c y
l gh(xhl)− c y

h gl(xhl)
�

+(1+λ)
�

c x x lh + c y
h gl(x lh)

��

+ (1−µ)ν
�

λ
�

gh(xhh)(c
y
h − c y

l )
�

+ (1+λ)
�

c x xhl + c y
l gh(xhl)

��

+ (1−µ)(1− ν)
�

(1+λ)
�

c x xhh + c y
h gh(xhh)

��

. (5.25)

To derive the optimal observable input levels, we need to derive the above

equation with respect to each of the four possible x i j . Minimizing C with

respect to x l l yields

g ′l (x
∗
l l) = −

c x

c y
l

, (5.26)

which implies that x∗l l = x f b
l l . Derivations of C with respect to x lh, xhl and xhh

take the following forms:

∂ C
∂ x lh

= µνλ(c y
h − c y

l )g
′
l (x lh)

︸ ︷︷ ︸

<0

+µ(1− ν)(1+λ)(c x + c y
h g ′l (x lh))

︸ ︷︷ ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(5.27)

∂ C
∂ xhl

= µλ(c y
l g ′h(xhl)− c y

h g ′l (xhl))
︸ ︷︷ ︸

<0

+(1−µ)ν(1+λ)(c x + c y
l g ′h(xhl))

︸ ︷︷ ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(5.28)
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∂ C
∂ xhh

= (µ+ (1−µ)ν)λg ′h(xhh)(c
y
h − c y

l )
︸ ︷︷ ︸

<0

+ (1−µ)(1− ν)(1+λ)(c x + c y
h g ′h(xhh))

︸ ︷︷ ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

. (5.29)

From Equation (5.27), we see that ∂ C
∂ x lh

is strictly smaller than 0 for x lh = x f b
lh

and monotonically increasing in x lh, which implies that x∗lh > x f b
lh must always

hold. The same logic applies for x∗hl and x∗hh.

(ii) From the fact that x f b
l l < x f b

lh and the strict upwards distortion of all other

types, it follows that the l l-type can always be separated. In order to investi-

gate whether the types lh, hl and hh can be separated or need to be bunched,

we proceed as follows: For each of the possible pairs lh − hl, hl − hh and

lh − hh, we check the derivative of C with respect to the former type at the

optimal level of x∗ of the latter type (derived from the first order condition).

If the change in C is greater than 0 we can conclude that we have already

surpassed the optimal level of the former type, which then must be smaller

than the optimal level of the latter type. In other words, we check the level

of upwards distortion for the lh, hl and hh types while considering the neces-

sary ordering of the types according to Lemma 2. For the pair lh-hl, we find

that x∗lh may surpass x∗hl in case of ν → 1, while they are otherwise clearly

separated from each. For the pair hl-hh, bunching may occur for g ′l (q, x)→ 0

together with c y
l being large. Furthermore, we find that lh-hh can always be

separated, implying that at most two types (i.e., either lh-hl or hl-hh) may be

bunched under certain parameter constellations.

Lastly, it is straightforward to check that the remaining constraints are satisfied

under the obtained solution of the relaxed problem. Hence, we have indeed obtained

to optimal solution for the full regulatory problem we are facing in Case (A).

134



5.6 Appendix

Proof of Proposition 2

Proof. Written explicitly, Equation (5.24) becomes

C̄ =µν
�

λ
�

c y
h gh( x̄)− c y

l gl( x̄)
�

+ (1+λ)
�

c x x̄ + c y
l gl( x̄)

��

+µ(1− ν)
�

λ
�

c y
h gh( x̄)− c y

h gl( x̄)
�

+ (1+λ)
�

c x x̄ + c y
h gl( x̄)

��

+ (1−µ)ν
�

λ
�

c y
h gh( x̄)− c y

l gh( x̄)
�

+ (1+λ)
�

c x x̄ + c y
l gh( x̄)

��

+ (1−µ)(1− ν)
�

(1+λ)
�

c x x̄ + c y
h gh( x̄)

��

. (5.30)

Deriving the above with respect to x̄ yields, after a few calculations,

E(g ′i( x̄
∗))E(c y

j ) + c x +λ(c y
h g ′h( x̄

∗) + c x) = 0. Hence, for λ= 0, E(g ′h( x̄
∗)) = − cx

E(c y
j )

.

Two-dimensional asymmetric information, Case (B): Cost variation large

compared to isoquant variation

To solve the second case following from Lemma 2, we need to apply a different

educated guess with respect to the binding constraints. However, we apply a similar

reasoning as in Case (A), but take account of the fact that now, cost variation is more

relevant than isoquant variation. Hence, we choose a symmetric setting and imply

incentive constraints (5.8b) (l l → hl), (5.8h) (hl → lh) and (5.8f) (lh→ hh) to be

binding. Again, we assume the participation constraint of the hh-type to be binding.

Figure 5.4 illustrates this setting.

After having determined the results and checked all remaining constraints, we

find the setting of binding constraints as in Figure 5.4 indeed to be optimal for Case

(B). Results are summarized in the following Proposition 5.

Proposition 5. For case (B),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗l l = x f b
l l (5.31)

x∗lh ≥ x f b
lh (5.32)

x∗hl ≥ x f b
hl (5.33)

x∗hh ≥ x f b
hh , (5.34)

while respecting x∗l l < x∗hl ≤ x∗lh ≤ x∗hh.
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(ii) The most efficient (l l) type can always be separated. Moreover, separation of

at least three types is always possible, while bunching of the hl and lh types is

unavoidable in case of µ→ 1.The lh and hh types may be bunched in case of c y
l

being small and g ′h(q, x) large.

Proof. (i) Under the constraints considered binding for Case (B) – as discussed

and shown in Figure 5.4 – the social cost function (5.4) becomes

C =

µν
�

λ
�

c y
h (gh(xhh)− gl(xhh)) + c y

h gl(x lh)− c y
l gh(x lh) + c y

l (gh(xhl)− gl(xhl))
�

+(1+λ)
�

c x x l l + c y
l gl(x l l)

��

+µ(1− ν)
�

λ
�

c y
h (gh(xhh)− gl(xhh))

�

+ (1+λ)
�

c x x lh + c y
h gl(x lh)

��

+ (1−µ)ν
�

λ
�

c y
h (gh(xhh)− gl(xhh))

�

+ c y
h gl(x lh)− c y

l gh(x lh)

+(1+λ)
�

c x xhl + c y
l gh(xhl)

��

+ (1−µ)(1− ν)
�

(1+λ)
�

c x xhh + c y
h gh(xhh)

��

. (5.35)

Minimizing C with respect to x l l yields

g ′l (x
∗
l l) = −

c x

c y
l

, (5.36)
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Figure 5.4: Constraints considered binding for Case (B)
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5.6 Appendix

which implies that x∗l l = x f b
l l . Derivation of C with respect to x lh, xhl and xhh

yields:

∂ C
∂ x lh

= µλ(c y
h g ′l (x lh)− c y

l g ′h(x lh)
︸ ︷︷ ︸

<0

+µ(1− ν)(1+λ)(c x + c y
h g ′l (x lh))

︸ ︷︷ ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(5.37)

∂ C
∂ xhl

= µνλ(c y
l g ′h(xhl)− c y

l g ′l (xhl))
︸ ︷︷ ︸

<0

+(1−µ)ν(1+λ)(c x + c y
l g ′h(xhl))

︸ ︷︷ ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(5.38)

∂ C
∂ xhh

= (µ+ (1−µ)ν)λc y
h (g

′
h(xhh)− g ′l (xhh))

︸ ︷︷ ︸

<0

(5.39)

+ (1−µ)(1− ν)(1+λ)(c x + c y
h g ′h(xhh))

︸ ︷︷ ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

. (5.40)

From Equation (5.37), we see that ∂ C
∂ x lh

is strictly smaller than 0 for x lh = x f b
lh

and monotonically increasing in x lh, which implies that x∗lh > x f b
lh must always

hold. The same logic applies for x∗hl and x∗hh.

(ii) From x f b
l l < x f b

lh and the strict upwards distortion of all other types, it follows

that the l l-type can always be separated. x∗hl may surpass x∗lh in case of µ→ 1.

If the low costs c y
l are small and g ′h(q, x) becomes large, lh and hh types may

need to be bunched, without impacting the separation of the other types.

The remaining constraints are satisfied under the obtained solution.

As in Case (A), the first-best solution can be obtained for λ= 0, while the solution

is second-best and incurring an increasing level of inefficiency for increasing levels

of λ. Also again, the most efficient type can always be separated, while bunching of

the hl and lh types (lh and hh types) may occur for very high occurrence probability

of low isoquants, or if gh(q, x) is very steep and c y
l small.

137





Bibliography

ACER, March 2014. Report on the influence of existing bidding zones on electricity

markets.

Ackermann, T., Cherevatskiy, S., Brown, T., Eriksson, R., Samadi, A., Ghandhari,

M., Söder, L., Lindenberger, D., Jägemann, C., Hagspiel, S., Cuk, V., Ribeiro, P. F.,

Cobben, S., Bindner, H., Isleifsson, F. R., Mihet-Popa, L., May 2013. Smart Model-

ing of Optimal Integration of High Penetration of PV - Smooth PV. Final Report.

Agentur für erneuerbare Energien, 2014. Yearly power generation from wind energy

per federal state.

URL http://www.foederal-erneuerbar.de/uebersicht/kategorie/

wind/bundeslaender/BW|BY|B|BB|HB|HH|HE|MV|NI|NRW|RLP|SL|SN|

ST|SH|TH|D

Aguirre, I., Beitia, A., 2004. Regulating a monopolist with unknown demand: Costly

public funds and the value of private information. Journal of Public Economic

Theory 6 (5), 693–706.

Alexander, C., 2008. Market Risk Analysis Volume II: Practical Financial Economet-

rics. John Wiley & Sons Ltd.

Amelin, M., 2009. Comparison of capacity credit calculation methods for conven-

tional power plants and wind power. IEEE Transactions on Power Systems 24 (2),

685–691.

Anderson, R., Taylor, L., 1986. The social cost of unsupplied electricity: A critical

review. Energy Economics 8 (3), 139 – 146.

Andersson, G., 2011. Power System Analysis. Eidgenössische Technische Hochschule

Zürich (ETH).

Armstrong, M., 1999. Optimal regulation with unknown demand and cost functions.

Journal of Economic Theory 84, 196–215.

139

http://www.foederal-erneuerbar.de/uebersicht/kategorie/wind/bundeslaender/BW|BY|B|BB|HB|HH|HE|MV|NI|NRW|RLP|SL|SN|ST|SH|TH|D
http://www.foederal-erneuerbar.de/uebersicht/kategorie/wind/bundeslaender/BW|BY|B|BB|HB|HH|HE|MV|NI|NRW|RLP|SL|SN|ST|SH|TH|D
http://www.foederal-erneuerbar.de/uebersicht/kategorie/wind/bundeslaender/BW|BY|B|BB|HB|HH|HE|MV|NI|NRW|RLP|SL|SN|ST|SH|TH|D


Bibliography

Armstrong, M., Sappington, D., 2007. Chapter 27 recent developments in the the-

ory of regulation. In: Armstrong, M., Porter, R. (Eds.), Handbook of Industrial

Organization. Elsevier, pp. 1557–1700.

Babich, V., Burnetas, A. N., Ritchken, P. H., 2007. Competition and diversification

effects in supply chains with supplier default risk. Manufacturing & Service Oper-

ations Management 9 (2), 123–146.

Baron, D. P., Myerson, R. B., 1982. Regulating a monopolist with unknown costs.

Econometrica: Journal of the Econometric Society 50 (4), 911–930.

Bazaraa, M. S., Sherali, H. D., Shetty, C. M., 2006. Nonlinear Programming - Theory

and Algorithms. John Wiley & Sons.

Benders, J. F., 1962. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik 4, 238–252.

Bessembinder, H., Lemmon, M. L., 2002. Equilibrium pricing and optimal hedging

in electricity forward markets. The Journal of Finance 57, 1347–1382.

Billinton, R., 1970. Power system reliability evaluation. Taylor & Francis.

Billinton, R., Allan, R. N., 1996. Reliability evaluation of power systems, 2nd ed.

New York: Plenum Publishing Corporation.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Jour-

nal of Econometrics 31, 307–327.

Boyd, S., Xiao, L., Mutapcic, A., Mattingley, J., 2008. Notes on Decomposition

Methods.

URL http://see.stanford.edu/materials/lsocoee364b/

08-decomposition_notes.pdf

Brandenburger, A., Stuart, H., 2007. Biform games. Management Science 53 (4),

537–549.

Brunekreeft, G., Neuhoff, K., Newbery, D., 2005. Electricity transmission: An

overview of the current debate. Utilities Policy 13 (2), 73–93.

Bundesnetzagentur, 2014. Kraftwerksliste Bundesnetzagentur (Bundesweit; alle

Netz- und Umspannebenen); Stand 16.07.2014.

URL http://www.bundesnetzagentur.de/cln_1432/EN/Areas/Energy/

Companies/SpecialTopics/PowerPlantList/PubliPowerPlantList_

node.html

140

http://see.stanford.edu/materials/lsocoee364b/08-decomposition_notes.pdf
http://see.stanford.edu/materials/lsocoee364b/08-decomposition_notes.pdf
http://www.bundesnetzagentur.de/cln_1432/EN/Areas/Energy/Companies/SpecialTopics/PowerPlantList/PubliPowerPlantList_node.html
http://www.bundesnetzagentur.de/cln_1432/EN/Areas/Energy/Companies/SpecialTopics/PowerPlantList/PubliPowerPlantList_node.html
http://www.bundesnetzagentur.de/cln_1432/EN/Areas/Energy/Companies/SpecialTopics/PowerPlantList/PubliPowerPlantList_node.html


Bibliography

Burger, M., Klar, B., Müller, A., Schindlmayr, G., 2006. A spot market model for

pricing derivatives in electricity markets. Quantitative Finance 4, 109–122.

Burstedde, B., 2012. Essays on the economic of congestion management - theory

and model-based analysis for Central Western Europe. Ph.D. thesis, Universität

zu Köln.

Caillaud, B., Guesnerie, R., Rey, P., Tirole, J., 1988. Government intervention in

production and incentives theory: A review of recent contributions. The RAND

Journal of Economics 29 (1), 1–26.

Cambridge Energy Research Associates, 2001. Short circuit: will the California en-

ergy crisis derail the state’s economy? The UCLA Anderson forecast for the nation

and California. Los Angeles, California.

Capacity Allocating Service Company, May 2014. Documentation of the CWE FB MC

solution - As basis for the formal approval-request.

Caramanis, M., December 1982. Investment decisions and long-term planning under

electricity spot pricing. IEEE Transactions on Power Apparatus and Systems PAS-

101 (12), 4640–4648.

Chao, H.-p., Peck, S., Oren, S., Wilson, R., 2000. Flow-based transmission rights and

congestion management. The Electricity Journal 13 (8), 38–58.

Conejo, A. J., Castillo, E., Minguez, R., Garcia-Bertrand, R., 2006. Decomposition

Techniques in Mathematical Programming - Engineering and Science Applications.

Springer.

Council of European Energy Regulators, 2014. Recommendations for the assessment

of electricity generation adequacy.

Cramton, P., Ockenfels, A., Stoft, S., 2013. Capacity market fundamentals. Eco-

nomics of Energy & Environmental Policy 2 (2), 27–46.

Cutler, N. J., Boerema, N. D., MacGill, I. F., Outhred, H., 2011. High penetration wind

generation impacts on spot prices in the australian national electricity market.

Energy Policy 39, 5939–5949.

Dada, M., Petruzzi, N. C., Schwarz, L. B., 2007. A newsvendor’s procurement prob-

lem when suppliers are unreliable. Manufacturing & Service Operations Manage-

ment 9 (1), 9–32.

141



Bibliography

Dana, J. D., 1993. The organization and scope of agents: Regulating multiproduct

industries. Journal of Economic Theory 59, 288–310.

Daxhelet, O., Smeers, Y., 2007. The EU regulation on cross-border trade of electricity:

A two-stage equilibrium model. European Journal of Operations Research 181,

1396–1412.

dena, 2010. Kurzanalyse der Kraftwerksplanung in Deutschland bis 2020 (Aktual-

isierung).

Densing, M., 2013. Dispatch planning using newsvendor dual problems and occupa-

tion times: Application to hydropower. European Journal of Operational Research

228, 321–330.

Dragoon, K., Dvortsov, V., 2006. Z-method for power system resource adequacy ap-

plications. Power Systems, IEEE Transactions on 21 (2), 982–988.

Durante, F., Sempi, C., 2010. Copula theory: An introduction. In: Jaworski, P., Du-

rante, F., Hardle, W. K., Rychlik, T. (Eds.), Copula Theory and Its Applications.

Lecture Notes in Statistics. Springer Berlin Heidelberg, pp. 3–31.

DWD, 2014. Hourly mean values of wind speeds.

URL ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/

climate/hourly/wind/historical/

EEX Transparency Platform, 2012. Day-ahead prognosis of German wind power.

URL http://www.transparency.eex.com/en/Statutory%

20Publication%20Requirements%20of%20the%20Transmission%

20System%20Operators/Power%20generation/Expected%20wind%

20power%20generation

Ehrenmann, A., Smeers, Y., 2005. Inefficiencies in European congestion manage-

ment proposals. Utilities policy 13 (2), 135–152.

Elberg, C., Hagspiel, S., 2015. Spatial dependencies of wind power and interrela-

tions with spot price dynamics. European Journal of Operational Research 241 (1),

260–272.

Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates of

variance of united kingdom inflation. Econometrica 50, 987–1008.

ENTSO-E, 2012. Hourly load levels for Germany.

URL https://www.entsoe.eu/resources/data-portal/consumption/

142

ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/wind/historical/
http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Expected%20wind%20power%20generation
http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Expected%20wind%20power%20generation
http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Expected%20wind%20power%20generation
http://www.transparency.eex.com/en/Statutory%20Publication%20Requirements%20of%20the%20Transmission%20System%20Operators/Power%20generation/Expected%20wind%20power%20generation
https://www.entsoe.eu/resources/data-portal/consumption/


Bibliography

European Commission, March 2013. Green Paper - A 2030 framework for climate

and energy policies. COM(2013) 169 final.

URL http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

52013DC0169

European Commission, January 2014. Impact Assessment - A 2030 framework for

climate and energy policies. SWD(2014) 15 final.

URL http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

52013DC0169

Eurostat, 2012. Electricity production from wind energy.

URL http://epp.eurostat.ec.europa.eu/portal/page/portal/

statistics/search_database

Eurostat, 2015. Energy statistics (nrg).

URL http://ec.europa.eu/eurostat/data/database

Falbo, P., Felletti, D., Stefani, S., 2010. Integrated risk management for an electricity

producer. European Journal of Operational Research 207, 1620–1627.

Firtin, E., Önder Güler, Akdag, S. A., 2011. Investigation of wind shear coefficients

and their effect on electrical energy generation. Applied Energy 88 (11), 4097–

4105.

Fürsch, M., Hagspiel, S., Jägemann, C., Nagl, S., Lindenberger, D., Tröster, E., 2013.

The role of grid extensions in a cost-effcient transformation of the European elec-

tricity system until 2050. Applied Energy 104, 642–652.

García-González, J., Parrilla, E., Mateo, A., 2007. Risk-averse profit-based optimal

scheduling of a hydro-chain in the day-ahead electricity market. European Journal

of Operational Research 181 181, 1354–1369.

Garver, L. L., 1966. Effective load carrying capability of generating units. IEEE Trans-

actions on Power Appartus and Systems 85 (8), 910–919.

Gelabert, L., Labandeira, X., Linares, P., 2011. An ex-post analysis of the effect of

renewables and cogeneration on spanish electricity prices. Energy Economics 33,

S59–S65.

General Electric, 2010. 2.5 mw wind turbine series. Tech. rep.

URL http://site.ge-energy.com/prod_serv/products/wind_

turbines/en/downloads/GEA17007A-Wind25Brochure.pdf

143

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0169
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0169
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0169
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0169
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
http://ec.europa.eu/eurostat/data/database
http://site.ge-energy.com/prod_serv/products/wind_turbines/en/downloads/GEA17007A-Wind25Brochure.pdf
http://site.ge-energy.com/prod_serv/products/wind_turbines/en/downloads/GEA17007A-Wind25Brochure.pdf


Bibliography

Genest, C., Gendron, M., Bourdeau-Brien, M., 2009. The advent of copulas in fi-

nance. The European Journal of Finance 15 (7-8), 609–618.

German Wind Energy Association (BWE), 2012. Installed wind power capacities in

the German federal states.

URL http://www.wind-energie.de/en/infocenter/statistiken/

deutschland/installed-wind-power-capacity-germany

Girard, R., Laquaine, K., Kariniotakis, G., 2013. Assessment of wind power pre-

dictability as a decision factor in the investment phase of wind farms. Applied

Energy 101 (0), 609 – 617.

Glachant, J.-M., 2010. The achievement of the EU electricity internal market through

market coupling. EUI Working Papers, RSCAS 2010/87.

Green, R., 2007. Nodal pricing of electricity: how much does it cost to get it wrong?

Journal of Regulatory Economics 31 (2), 125–149.

Green, R., Vasilakos, N., 2012. Storing wind for a rainy day: What kind of electricity

does denmark export? Energy Journal 33, 1–22.

Grothe, O., Schnieders, J., 2011. Spatial dependence in wind and optimal wind

power allocation: A copula-based analysis. Energy Policy 39, 4742–4754.

Growitsch, C., Malischek, R., Nick, S., Wetzel, H., 2014. The costs of power inter-

ruptions in Germany: A regional and sectoral analysis. German Economic Review.

Gürler, Ü., Parlar, M., 1997. An inventory problem with two randomly available

suppliers. Operations Research 45 (6), 904–918.

Haghi, H. V., Bina, M. T., Golkar, M., Moghaddas-Tafreshi, S., 2010. Using copulas

for analysis of large datasets in renewable distributed generation: Pv and wind

power integration in iran. Renewable Energy 35 (9), 1991–2000.

Hagspiel, S., Jägemann, C., Lindenberger, D., Brown, T., Cherevatskiy, S., Tröster, E.,

2014. Cost-optimal power system extension under flow-based market coupling.

Energy 66, 654–666.

Hagspiel, S., Papaemannouil, A., Schmid, M., Andersson, G., 2012. Copula-based

modeling of stochastic wind power in Europe and implications for the Swiss power

grid. Applied Energy 96, 33–44.

144

http://www.wind-energie.de/en/infocenter/statistiken/deutschland/installed-wind-power-capacity-germany
http://www.wind-energie.de/en/infocenter/statistiken/deutschland/installed-wind-power-capacity-germany


Bibliography

Hasche, B., Keane, A., O’Malley, M., 2011. Capacity value of wind power, calculation,

and data requirements: the irish power system case. IEEE Transactions on Power

Systems 26 (1), 420–430.

Höffler, F., Wambach, A., 2013. Investment coordination in network industries: The

case of electricity grid and electricity. Journal of Regulatory Economics 44 (3),

287–307.

Hogan, W., Rosellón, J., Vogelsang, I., 2010. Toward a combined merchant-

regulatory mechanism for electricity transmission expansion. Journal of Regula-

tory Economics 38, 113–143.

Hogan, W. W., 1992. Contract networks for electric power transmission. Journal of

Regulatory Economics 4 (2), 211–242.

Howison, S., Coulon, M. C., 2009. Stochastic behaviour of the electricity bid stack:

From fundamental drivers to power prices. The Journal of Energy Markets 2, 29–

69.

Huppmann, D., Egerer, J., 2014. National-strategic investment in European power

transmission capacity. DIW Discussion Papers, No. 1379.

IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Cambridge Uni-

versity Press, Cambridge, United Kingdom and New York, NY, USA, Ch. Contri-

bution of Working Group III to the Fifth Assessment Report of the Intergovern-

mental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E.

Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B.

Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx

(eds.)].

Jägemann, C., Fürsch, M., Hagspiel, S., Nagl, S., 2013. Decarbonizing Europe’s

power sector by 2050 - analyzing the implications of alternative decarbonization

pathways. Energy Economics 40, 622–636.

Jónsson, T., Pinson, P., Madsen, H., 2010. On the market impact of wind energy

forecasts. Energy Economics 32, 313–320.

Joe, H., 1997. Multivariate models and dependence concepts. Chapman & Hall, Lon-

don.

Jorion, P., 2007. Value at risk: the new benchmark for managing financial risk. Vol. 3.

McGraw-Hill New York.

145



Bibliography

Joskow, P., Tirole, J., June 2005. Merchant transmission investment. The Journal of

Industrial Economics LIII (2), 233–264.

Joskow, P. L., 2008a. Capacity payments in imperfect electricity markets: Need and

design. Utilities Policy 16 (3), 159–170.

Joskow, P. L., 2008b. Lessons learned from electricity market liberalization. The En-

ergy Journal 29 (2), 9–42.

Joskow, P. L., 2014. Incentive Regulation in Theory and Practice: Electric Transmis-

sion and Distribution Networks. University of Chicago Press, Ch. 5.

Keane, A., Milligan, M., Dent, C., Hasche, B., D’Annunzio, C., Dragoon, K., Holttinen,

H., Samaan, N., Soder, L., O’Malley, M., 2011. Capacity value of wind power. IEEE

Transactions on Power Systems 26 (2), 564–572.

Kojadinovic, I., Yan, J., 2010. Modeling multivariate distributions with continuous

margins using the copula r package. Journal of Statistical Software 34 (9), 1–20.

Kunz, F., 2013. Improving congestion management: How to facilitate the integration

of renewable generation in Germany. The Energy Journal 34 (4), 55–78.

Kurzidem, M. J., 2010. Analysis of flow-based market coupling in oligopolistic power

markets. Ph.D. thesis, ETH Zurich.

Laffont, J.-J., Martimort, D., 2002. The theory of incentives - the principial-agent

model. Princeton University Press.

Laffont, J.-J., Tirole, J., 1993. A Theory of Incentives in Procurement and Regulation.

MIT Press.

Leuthold, F., Weigt, H., von Hirschhausen, C., 2008. Efficient pricing for European

electricity networks - the theory of nodal pricing applied to feeding-in wind in

Germany. Utilities Policy 16, 284–291.

Lewis, T. R., Sappington, D. E., 1988a. Regulating a monopolist with unknown de-

mand. The American Economic Review 78 (5), 986–998.

Lewis, T. R., Sappington, D. E., 1988b. Regulating a monopolist with unknown de-

mand and cost functions. The RAND Journal of Economics 19 (3), 438–457.

Li, J., Wang, S., Cheng, T. E., 2010. Competition and cooperation in a single-retailer

two-supplier supply chain with supply disruption. International Journal of Pro-

duction Economics 124 (1), 137–150.

146



Bibliography

Li, Z., Xu, S. H., Hayya, J., 2004. A periodic-review inventory system with supply

interruptions. Probability in the Engineering and Informational Sciences 18 (01),

33–53.

Louie, H., 2014. Evaluation of bivariate archimedean and elliptical copulas to model

wind power dependency structures. Wind Energy 17 (2), 225–240.

Mas-Colell, A., Whinston, M. D., Green, J. R., et al., 1995. Microeconomic theory.

Vol. 1. Oxford university press New York.

Masih-Tehrani, B., Xu, S. H., Kumara, S., Li, H., 2011. A single-period analysis of a

two-echelon inventory system with dependent supply uncertainty. Transportation

Research Part B: Methodological 45 (8), 1128–1151.

Minner, S., 2003. Multiple-supplier inventory models in supply chain management:

A review. International Journal of Production Economics 81, 265–279.

Monitoringbericht, 2013. Bundesnetzagentur, Bundeskartellamt.

Murty, K. G., 1983. Linear Programming. John Wiley & Sons.

Myerson, R. B., 1979. Incentive compatibility and the bargaining problem. Econo-

metrica: Journal of the Econometric Society 47 (1), 61–73.

Nelsen, R., 2006. An Introduction to Copulas. Springer, New York.

Netzentwicklungsplan, 2013. Netzentwicklungsplan Strom 2013 - Zweiter Entwurf

der Übertragungsnetzbetreiber. 50Hertz Transmission, Amprion, TenneT TSO,

TransnetBW.

Neuhoff, K., Boyd, R., Grau, T., Barquin, J., Echabarren, F., Bialek, J., Dent, C., von

Hirschhausen, C., Hobbs, B. F., Kunz, F., Weigt, H., Nabe, C., Papaefthymiou, G.,

Weber, C., 2013. Renewable electric energy integration: Quantifying the value of

design of markets for international transmission capacity. Energy Economics 40,

760–772.

Nordex, 2007. Nordex s70/s77.

URL http://www.nordex-online.com/fileadmin/MEDIA/

Produktinfos/Nordex_S70-S77_D.pdf

Oggioni, G., Allevi, Y. S. E., Schaible, S., 2012. A generalized nash equilibrium model

of market coupling in the European power system. Networks & Spatial Economics

12, 503–560.

147

http://www.nordex-online.com/fileadmin/MEDIA/Produktinfos/Nordex_S70-S77_D.pdf
http://www.nordex-online.com/fileadmin/MEDIA/Produktinfos/Nordex_S70-S77_D.pdf


Bibliography

Oggioni, G., Smeers, Y., 2012. Degree of coordination in market coupling and

counter-trading. The Energy Journal 33 (3), 39–90.

Oggioni, G., Smeers, Y., 2013. Market failures of market coupling and counter-

trading in Europe: An illustrative model based discussion. Energy Economics 35,

74–87.

Ozdemir, O., Munoz, F. D., Ho, J. L., Hobbs, B. F., 2015. Economic analysis of trans-

mission expansion planning with price-responsive demand and quadratic losses

by successive lp. IEEE Transactions on Power Systems PP (99), 1–12.

Papaefthymiou, G., 2006. Integration of stochastic generation in power systems.

Ph.D. thesis, Technische Universiteit Delft.

Parlar, M., Perry, D., 1996. Inventory models of future supply uncertainty with single

and multiple suppliers. Naval Research Logistics (NRL) 43 (2), 191–210.

Patton, A. J., 2012. A review of copula models for economic time series. Journal of

Multivariate Analysis 110, 4–18.

Pérez-Arriaga, I. J., 2013. Regulation of the power sector. Springer Verlag London.

Pinson, P., Girard, R., 2012. Evaluating the quality of scenarios of short-term wind

power generation. Applied Energy 96 (0), 12–20.

Pinson, P., Madsen, H., Nielsen, H. A., Papaefthymiou, G., Klöckl, B., 2009. From

probabilistic forecasts to statistical scenarios of short-term wind power production.

Wind Energy 12, 51–62.

PJM, 2015. PJM Manual 18: PJM Capacity Market.

Platts, December 2009. UDI World Electric Power Plants Data Base (WEPP).

Porchet, A., Touzi, N., Warin, X., 2009. Valuation of power plants by utility indiffer-

ence and numerical computation. Mathematical Methods of Operations Research

70 (1), 47–75.

Richter, J., 2011. DIMENSION - a dispatch and investment model for European elec-

tricity markets. EWI WP 11/03.

Rious, V., Dessante, P., Perez, Y., 2009. Is combination of nodal pricing and average

participation tariff the best solution to coordinate the location of power plants

with lumpy transmission investment? EUI Working Papers, RSCAS 2009/14.

148



Bibliography

Sappington, D., 1983. Optimal regulation of a multiproduct monopoly with un-

known technological capabilities. The Bell Journal of Economics 14 (2), 453–463.

Sauma, E. E., Oren, S. S., 2006. Proactive planning and valuation of transmission

investment in restructured electricity markets. Journal of Regulatory Economics

30, 261–290.

Schmalensee, R., 1989. Good regulatory regimes. The RAND Journal of Economics

20 (3), 417–436.

Schweppe, F. C., Caramanis, M. C., Tabors, R. D., Bohn, R. E., 1988. Spot Pricing of

Electricity. Norwell, MA: Kluwer.

Shapley, L., 1953. A value for n-person games. In: Kuhn, H., Tucker, W. (Eds.), Annals

of Mathematical Studies. Vol. 28. Princeton University Press, Ch. Contributions to

the Theory of Games II.

Sklar, A., 1959. Fonctions de repartition a n dimensions et leurs marges. Publications

de l’Institut de Statistique de L’Universite de Paris.

Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., Sinsoysal, B., 2014. OR/MS

models for supply chain disruptions: A review. Available at SSRN 1689882.

Stoft, S., June 2002. Power System Economics: Designing Markets for Electricity.

Wiley-IEEE Press.

Tang, C. S., 2006. Perspectives in supply chain risk management. International Jour-

nal of Production Economics 103 (2), 451–488.

Tasche, D., Tibiletti, L., 2003. A shortcut to sign incremental value at risk for risk

allocation. The Journal of Risk Finance 4 (2), 43–46.

Telson, M. L., 1975. The economics of alternative levels of reliability for electric

power generation systems. The Bell Journal of Economics 6 (2), 679–694.

Thompson, M., Davison, M., Rasmussen, H., 2004. Valuation and optimal operation

of electric power plants in competitive markets. Operations Research 52 (4), 546–

562.

Tomlin, B., 2006. On the value of mitigation and contingency strategies for managing

supply chain disruption risks. Management Science 52 (5), 639–657.

149



Bibliography

van der Weijde, A. H., Hobbs, B. F., 2011. Locational-based coupling of electricity

markets: benefits from coordinating unit commitment and balancing markets.

Journal of Regulatory Economics 39, 223–251.

VGB and Eurelectric, 2012. Availability of Thermal Power Plants 2002 - 2011, Edition

2012.

Wagner, S. M., Bode, C., Koziol, P., 2009. Supplier default dependencies: Empirical

evidence from the automotive industry. European Journal of Operational Research

199 (1), 150–161.

Wang, Z., 2002. The properties of incremental var in monte carlo simulations. The

Journal of Risk Finance 3 (3), 14–23.

Weare, C., 2003. The California Electricity Crisis: Causes and Policy Options. Public

Policy Institute of California.

Woo, C., Horowitz, I., Moore, J., Pacheco, A., 2011. The impact of wind genera-

tion on the electricity spot-market price level and variance: The texas experience.

Energy Policy 39, 3939–3944.

Zachary, S., Dent, C. J., 2011. Probability theory of capacity value of additional gen-

eration. Proceedings of the Institution of Mechanical Engineers, Part O: Journal

of Risk and Reliability 226 (1), 33–43.

Zhou, Z., Botterud, A., Wang, J., Bessa, R., Keko, H., Sumaili, J., Miranda, V., 2013.

Application of probabilistic wind power forecasting in electricity markets. Wind

Energy 16, 321–338.

150


	Preface
	Introduction
	Outline of the thesis
	Discussion of methodological approaches
	Concluding remarks

	Spatial dependencies of wind power and interrelations with spot price dynamics
	Introduction
	Stochastic dependence modeling using copulas
	Copulas and copula models
	Conditional copula and simulation procedure

	The model
	The data
	Derivation of synthetic aggregated wind power
	Supply and demand based model for the electricity spot price
	Estimation and selection of copula models

	Results
	Revenues and market value of different wind turbines
	Market value variations in Germany
	The impact of changing wind power penetration levels

	Conclusions
	Appendix

	Supply chain reliability and the role of individual suppliers
	Introduction
	Related literature
	Supply chain reliability and the contribution of individual suppliers
	Supply chain reliability
	The contribution of individual suppliers
	Statistical properties of the contribution

	Payoff scheme
	Supply chain organization
	Allocation rule
	Investment incentives

	Empirical case study: Wind power in Germany
	Estimation procedure
	Data
	Results

	Conclusions
	Appendix: Data and preparatory calculations

	Congestion management in power systems - Long-term modeling framework and large-scale application
	Introduction
	Economic framework
	Setting I – First-Best: Nodal pricing with one TSO
	Setting II: coupled zonal markets with one TSO and zonal redispatch
	Setting III: coupled zonal markets with zonal TSOs and zonal redispatch
	Setting IV: coupled zonal markets with zonal TSOs and generator component

	Numerical solution approach
	Large-scale application
	Model configuration and assumptions
	Results and discussion

	Conclusions
	Appendix

	Regulation of non-marketed outputs and substitutable inputs
	Introduction
	The model
	Optimal regulation
	Preparatory analysis
	Full information benchmark
	Asymmetric information

	Comparing the optimal regulation to simpler regimes
	Conclusion
	Appendix

	Bibliography

