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1. Introduction

In this thesis we consider planar piecewise-smooth systems of Liénard-type with a line

of discontinuity, i.e.
_ F+
, (y +((;”)> if x>0
— X
(x) = g (1.1)

y (y:gﬁj(:c(;”)> itz <0,

where F*(z), g% (z) and F~(z), ¢~ (z) are smooth functions for z > 0 and z < 0, respec-
tively.

Our aim is to analyse the dynamical and bifurcation behaviour of system (1.1). First of
all we identify the motivation for studying this kind of systems. For this we break system
(1.1) down into its component pieces, which are ”piecewise-smooth” and ”piecewise-
smooth of Liénard-type”. In the first section we motivate the analysis of general
piecewise-smooth systems and in the second section we identify the motivation for the
analysis of piecewise-smooth systems of Liénard-type. After discussing the already con-
sidered bifurcation phenomena for non-smooth systems by other authors the objective
of this thesis is given: the analysis of the piecewise-smooth system (1.1) in order to get
analytical and global results on dynamical and bifurcation behaviour. We finally give an
outline of the thesis.

1.1. Motivation for the analysis of piecewise-smooth
systems

There are many applications in different parts of science, in particular in mechanics and
engineering, which are modelled by piecewise-smooth systems of ordinary differential
equations. These systems are given by

&= f(z,p)

with f : R®" — R"™ being smooth on a finite number of domains G;, i = 1,..., N,
and losing smoothness on the boundaries M;; between adjacent domains G; and G;.
To be more precise, we have the restriction f(z) = fi(z) if x € G;, i = 1,..., N, with
f; smooth on G;. Thereby, u € R™ is a parameter vector and x € R™ the state
vector, see [Filippov,1988]. Famous examples of applications, which are modelled by
piecewise-systems, are mechanical systems with dry friction between two surfaces.
This may be the noise of a squeaking chalk on a blackboard or the sound of a violin.
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More relevant applications include noise generation in railway wheels, chattering of
machine tools or squealing car brakes, see [Bishop et al.,1995], [Kunze & Kuepper,1997]
or [Rudolph & Popp,2001].  Other examples are electric circuits, which include
switching of a system component (diode, transistor, etc.), and are therefore modelled
by piecewise-smooth systems, see [Stoker,1950] or [Andronov et al.,1966]. Moreover,
piecewise-smooth systems have a long tradition in control theory, see [Fliigge-Lotz,1947],
[Lefschetz,1965], [Andronov et al.,1966], [Sontag,1990] or [Utkin,1992], where relay
feedback is one of the most commonly used control techniques. These systems use
switching components and are thus non-smooth. Examples are velocity control units of
electric motors, course controllers for water torpedoes, electro mechanic temperature
controllers or automatic course controllers for an aircraft, see [Popow,1958]. These
systems tend to undesirable oscillations without external excitation. Although the
detection of these self-oscillations have been of great interest for more than a century,
there are still unsolved problems. It has been shown that piecewise-smooth systems
exhibit a richness of different dynamical behaviour and bifurcations. Many of these
phenomena are generated by the interaction between the system trajectories and the
boundaries of the different domains of phase space, where the system is non-smooth.
One particularly interesting type of solutions, which only exist for systems with
discontinuous right-hand sides, are the so-called sliding motion solutions. They occur
if trajectories do not cross the set of discontinuity, but continue their motion within it.
For control theory the application of sliding motion is of great importance, in particular,
for the control of electrical motors, see [Utkin,1992].

The last decades have witnessed an explosive development in the theory of
smooth dynamical systems, see for instance [Guckenheimer & Holmes,1983],
[Arrowsmith & Place,1990], [Troger & Steindl,1991], [Hale & Kocak,1991],
[Perko,1991], [Seydel,1994] or [Kuznetsov,1998], but a number of real-world sys-
tems controlled by switching actions cannot be explained in terms of standard
bifurcations of smooth systems. From a mathematical point of view, piecewise-smooth
systems are not easy to handle, because their right-hand sides are not differentiable or
even discontinuous. Since many concepts of classical dynamical systems and bifurcation
theory do rely on smoothness, it is necessary to find a different concept to analyse
piecewise-smooth systems.

1.2. Motivation for the analysis of piecewise-smooth
systems of Liénard-type

For smooth systems Hilbert’s 16th problem (third part) is a main source of motivation to
study the number of periodic solutions of planar systems with polynomial nonlinearity.
At the turn of the 19th century, the famous mathematician David Hilbert presented a
list of 23 outstanding problems at the Second International Congress of Mathematicians.
Hilbert’s 16th problem asks for the maximum number of periodic solutions of a planar
system with an polynomial nonlinearity of degree n, see [Hilbert,1902]. In the simplest
case, where n = 2, it is still an open problem although Hilbert’s 16th problem has
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generated much interesting mathematical research in recent years, see [Ilyashenko,2002].
In case of transcendental nonlinearities the problem is even more difficult to solve.

In 1928 the French physicist A. Liénard studied a special planar system, the so-called
Liénard-system, of the form

t=y— F(x)
g =—g(z) (1.2)
with F, g : R — R smooth, z,y € R, which is equivalent to the second-order equation
@+ f(z)z +g(x) =0 (1.3)

where f(z) = F'(z). He determined the exact number of periodic solutions with certain
conditions for the functions F' and g, see [Liénard,1928] or [Ye,1986].

Equation (1.3) includes the famous van der Pol equation (1926)
i+p@®-1D)i+x=0

with 4 € R, g(z) = z and F(z) = spa® — px of an electrical circuit with a triode valve,
see for example [Guckenheimer & Holmes,1983]. Another special case of equation (1.3)
is the Duffing equation (1918)

F4+0t—Pr+2°=0

with §, 8 € R, g(z) = —Bz + 2* and F(z) = dz. It describes a nonlinear oscillator with
a cubic stiffness term to derive the hardening spring effect observed in many mechanical
problems, see for example [Guckenheimer & Holmes,1983].

Control theory or other parts of engineering deal with many applications that can be
written in the form of a piecewise-smooth system of Liénard-type, which means as system
(1.2) with piecewise-smooth functions g and F. A control system is given by a system
of the form

z=kz—¢&b
£ =¢(0) (1.4)
o=cz— pE

with k,¢,b,p,2,6,0 € R, see [Lefschetz,1965]. The nonlinearity is caused by the
characteristic function ¢(o) of the control mechanism. o is the so-called feedback
signal. Characteristic functions may be smooth, continuous or even discontinuous.
Typical examples of characteristic functions are given in Figure 1.1. Many examples
use piecewise-constant characteristics like p(0) = a - sgn(o), a € R, see Figure 1.1(a).
Transforming equation (1.4), we get a Liénard-system with F(z) linear in z and
g(z) = Cy(z), C € R.
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Mechanical or electronic nonlinear vibration systems are described by the second-order
equation

mi + (&) + f(z) = 0 (1.5)

where mZ is the inertia force, —¢(&) the damping force and — f(z) the restoring or
spring force, see [Stoker,1950] or [Popow,1958]. Such equations arise, for example, in
the case of a pendulum when damping forces are present, or in problems concerning
unsteady motions of synchronous electrical machinery and in a variety of other phys-
ical problems. In the case of f(z) linear in z, equation (1.5) can be transformed to
a Liénard-system with g(z) linear and F(z) = Cp(z), C € R. As for control sys-
tems, the characteristic function ¢ can be smooth, continuous or even discontinuous. In
[Giannakopoulos & Oster,1997|, a mathematical model is considered for neural dynam-
ics of a simple network consisting of two nerve cells of the form 4 = Au + bp(u1) + ¢,
with u,b,c € R? and A a 2 x 2 real matrix and a sigmoid function ¢, see Figure
1.1(e). Another example with a smooth characteristic, corresponding to the type given
in Figure 1.1(d), is an electrical circuit involving vacuum tubes, see [Stoker,1950, pp.
119-125]. A valve generator, assuming that the characteristic saturates, can be mod-
elled by a continuous characteristic corresponding to the type given in Figure 1.1(b),
see [Andronov et al.,1966, pp. 461-468]. Assuming a hard mode of excitation, the valve
generator also can be modelled by a discontinuous characteristic corresponding to the
type given in Figure 1.1(a), see [Andronov et al.,1966, pp. 468-480]. There are a num-
ber of well known cases of mechanical systems where self-excited oscillations, oscillations
built up from an equilibrium in the absence of external forces, result from friction. For
instance, modeling a block on a rough belt leads to a discontinuous characteristic as in
Figure 1.1(c), see [Stoker,1950, pp. 126-127].

1.3. Literature survey

The fundamental work of Filippov, see [Filippov,1988], concerning non-smooth systems
extends discontinuous differential equations to differential inclusions, i.e. differential
equations whose right-hand sides are multi-valued. More results on differential in-
clusions can be found in [Aubin & Cellina,1984] or [Clarke,1998]. Results of more
theoretical character concerning non-smooth dynamical systems, or multi-valued
differential equations, are given in [Kunze,2000] and [Deimling,1992].

Because of the widespread interest in bifurcation theory for piecewise-smooth systems,
researchers from different areas of science and engineering have independently devel-
oped different methods of studying these bifurcations. A general theory of bifurcations
in piecewise-smooth systems is still lacking. Filippov has made a major contribution
by characterising all types of local singular points in a planar system with a line of
discontinuity and indicating their codimension one bifurcations, see [Filippov,1988]. In
[Kuznetsov et al.,2002] this approach is continued by deriving a catalogue of global and
local codimension one sliding bifurcations. Both use the classical approach of topolog-
ical equivalence, see [Guckenheimer & Holmes,1983] or [Kuznetsov,1998], for defining
bifurcations. Using this definition of bifurcation the appearance or disappearance of



1.3. Literature survey

"

’ ’ /’\ ’
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ing vacuum tubes

Figure 1.1.: Typical characteristics ¢
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sliding motion at a particular parameter value is a bifurcation, even if it leaves the num-
ber of attractors of the system unchanged. In [Kuznetsov et al.,2002] only bifurcations
from singular points on the line of discontinuity in consequence of sliding motion are
considered. Normal forms for these bifurcations are given, but without proofs.

Leine et al. have defined the so-called discontinuous bifurcations, see [Leine et al.,2000]
or [Leine,2000]. They have linearised the flow of both domains considering equilibria
situated at the line of discontinuity. A discontinuous bifurcation occurs if there exists
a convex combination of these linearisations containing an eigenvalue which crosses the
imaginary axis. Using this approach the mathematical base and the reduction to the
original piecewise-smooth system are not clear.

In Russian literature the so-called C-bifurcations are given, see [Feigin et al.,1999).
These bifurcations cannot be observed in smooth systems and include all bifurcations
which can be explained in terms of interactions of equilibria or periodic solutions with
the line of discontinuity. In [Dankowicz & Nordmark,1999] the so-called grazing bifurca-
tion is considered using the concept of a discontinuity map. Another type of bifurcation,
the sliding bifurcation, is considered in [di Bernardo et al.,2002]. This bifurcation oc-
curs when a periodic solution without sliding motion contacts the line of discontinuity
resulting in a periodic solution with sliding motion. With [di Bernardo et al.,2001] a
first attempt to form a basis of a consistent theory of bifurcations of piecewise-smooth
systems is made.

From an engineering point of view local solutions to control problems are often suffi-
cient. Having in mind the linearisation principle of control theory ”Designs based on
linearisations work locally for the original system”, see [Sontag,1990], piecewise-linear
systems are of great importance in control theory. In [Freire et al.,1998] a piecewise-
linear system is considered which is continuous but not smooth on the y—axis. They
determine bifurcations and the existence of periodic, homoclinic or heteroclinic so-
lutions. In [Llibre & Sotomayor,1996] the authors prove similar bifurcations for a
piecewise-linear system & = Azx + p(kz)b with A a 2 x 2 real matrix, b, k,z € R?

s€ Lif[s€| <1

and =
# (&) 1 if s > 1
In [Freire et al.,1999], the piecewise-linear system & = Ax + ¢(z1)b with A a 2 x 2

real matrix, b,z € R? and (§) = Zgn(ﬁ) ’ i :g: Z 1 a continuous piecewise-linear
function is considered. The authors prove a limit-cycle bifurcation, when the ori-
gin is a center. A. Teruel has presented a complete analysis of a continuous planar
piecewise-linear system in his PhD thesis, see [Teruel,2000]. These three systems are
continuous but not smooth on two straight lines and Z,—symmetric. However, sliding
motion solutions cannot occur in these systems. Symmetric piecewise-linear systems
& = Az —sgn(Cx)B with A a n X n real matrix and B, C,z € R™ with n > 2 are consid-
ered in [di Bernardo, Johansson & Vasca,2001]. The main aim of this paper is to study
the bifurcation phenomena leading to the formation of asymmetric periodic orbits and
periodic orbits with sliding motion. They give analytical conditions for these bifurcations
and determine numerically these bifurcations for a special system with n = 3.

There are more publications about piecewise-smooth planar systems with a line of

with s > 0 a continuous piecewise-linear function.
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discontinuity. But their results are local and do not consider sliding motion solutions.
The Liénard-system & + f(x,%)& + g(x) = 0 with g(z) = = and f(z, &) being discontin-
uous on a line is studied in [Coll et al.,1999] when the origin is a center. The authors
have derived the general expression of the Lyapunov constants with either a vertical or
horizontal straight line of discontinuity to study the stability of the origin. S. Moritz
has proved a kind of Hopf-bifurcation for a planar piecewise-smooth system with a line
of discontinuity in her diploma thesis. She assumes that the origin is a stable and an
unstable focus for the systems in the first and the second half-plane, respectively, see
[Moritz,2000] or [Kiipper & Moritz,2001]. In [Kiipper & Zou,2001(1)] a more general
system is considered and in [Kiipper & Zou,2001(2)] the system is discontinuous on
the two axes. It is assumed that the linear parts of the piecewise-smooth system in all
domains are given in canonical normal form. It is not for sure what will happen if they
are not given in canonical normal form which is the case in general.

There exists so far no complete analysis of a planar piecewise-smooth system with a
line of discontinuity including all bifurcations with and without sliding motion, not
even in the case of a piecewise-linear system. In [Giannakopoulos & Pliete,2001] and
[Giannakopoulos & Pliete,2002] we have derived a complete analysis including bifurca-
tions of periodic, homoclinic and heteroclinic solutions, with and without sliding motion,
for a planar piecewise-linear system with Zs—symmetry which is discontinuous on the
y—axis. This system has the form @ = Au + sgn(w?u)v with A a 2 x 2 real matrix,
u,v,w € R? and either 4det(A) > (tr(4))?, see [Giannakopoulos & Pliete,2001], or
det(A) < 0, see [Giannakopoulos & Pliete,2002]. A first attempt for the analysis of all
other cases 0 < 4det(A) < (tr(A))? can be found in [Pliete,1998].

1.4. Objective of the thesis

There are several reasons for considering piecewise-smooth planar systems of Liénard-
type with a line of discontinuity. One main reason is that this type of systems arises
from many applications of control theory, mechanics or engineering. Examples from con-
trol theory are velocity control units of electric motors and course or temperature con-
trollers, see [Fliigge-Lotz,1947], [Popow,1958], [Lefschetz,1965], [Andronov et al.,1966],
[Sontag,1990] or [Utkin,1992]. Noise generation in railway wheels, chattering of machine
tools or squealing of car brakes, see [Bishop et al.,1995], [Kunze & Kuepper,1997] or
[Rudolph & Popp,2001], are typical examples for mechanical systems with dry friction
between surfaces. Other applications are electric circuits including a switching compo-
nent, see [Stoker,1950] or [Andronov et al.,1966].

It is a usual method to extend piecewise-smooth systems to differential inclusions,
which means that the right-hand side of the non-smooth differential equation is re-
placed by a set-valued right-hand side. The existing theory on differential inclusions, see
[Aubin & Cellina,1984], [Filippov,1988], [Deimling,1992], [Clarke,1998] or [Kunze,2000],
provides some basic concepts. But methods as linearisation, Liénard’s method, stability
or bifurcation theory, which lead to analytical results in the case of smooth systems, are
missing for piecewise-smooth systems due to the lack of smoothness.
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In the smooth case, local approximation provides good properties. With polynomial non-
linearity equation (1.3) has been analysed very intensively. But even when f and g are
polynomials of lower degree, a complete analysis without numerical methods cannot be
presented, see for example [Khibnik et al.,1998] where f and g are polynomials of degree
2 and 3, respectively. Another approach is the approximation by transcendental func-
tions. In [Giannakopoulos & Oster,1997] the authors approximate a sigmoid function
by ¢(0) = trpzsy- They need local and numerical methods to determine all bifurca-
tion sets. Not even in special cases a complete analysis can be given without numerical
methods, see for example [Khibnik et al.,1998] or [Kooij & Giannakopoulos,2000).

When we approximate the smooth nonlinearity in equation (1.3) by piecewise-linear
functions the corresponding phase portraits are similar. However, we lose local prop-
erties. But in return, we obtain global results without using numerical methods. The
connection between piecewise-linear systems and their smooth counterparts is still an
open mathematical problem. However, numerical calculations confirm the approach of
using piecewise-linear systems.

1.5. Outline of the thesis

Before we start with the analysis of the dynamical and bifurcation behaviour of the
piecewise-smooth system (1.1), we need to give a precise definition of solutions of
piecewise-smooth systems. In chapter 2, we will first extend the piecewise-smooth system
to a differential inclusion and define standard and sliding motion solutions. Afterwards
we will define singular points, closed trajectories, with and without sliding motion, and
the term bifurcation for piecewise-smooth systems.

Chapter 3 will deal with analytical results for the piecewise-smooth system. We will
determine and characterise all singular points and verify the existence and uniqueness
of the corresponding initial value problem in dependency on parameters. Afterwards
we will present some lemmas on non-existence of closed trajectories assuming certain
conditions for the functions F'* and ¢g*. Assuming that the piecewise-smooth system
is Zo—symmetric, we will be able to prove the existence of a unique closed trajectory
without sliding motion. We will finally prove a local Hopf-like bifurcation of a periodic
solution with sliding motion. All these results will be new to our knowledge.

One main tool for detecting closed trajectories in piecewise-smooth systems is the de-
termination of appropriate discrete-time maps. We can define a Poincaré-map as the
composition of these maps. The fixed points of the Poincaré-map correspond to the
closed trajectories. We will obtain global results using this approach, which is our main
goal. For piecewise-smooth systems it is in general not possible to analytically determine
these discrete-time maps. But that is possible for piecewise-linear systems. For this rea-
son we will consider piecewise-linear systems in chapter 4. After introducing the system
and characterising all equilibria in G, we will derive the discrete-time maps with their
domains and properties. With the aid of these maps we will obtain stronger results on
non-existence of closed trajectories than in the case of piecewise-smooth systems. We
will provide a general concept for determining closed trajectories. We will prove that
the existence of a focus in G, or G_ is necessary for the existence of closed trajectories
of type II and identify a global Hopf-like bifurcation of a periodic solution with sliding

10
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motion. Furthermore, we will show that this periodic solution with sliding motion will
become homoclinic and will disappear.

Only for determining closed trajectories of type I, we will have to consider 144 different
cases depending on the eigenvalues of A*. Assuming Z,—symmetry in the piecewise-
linear system, we will be able to reduce the 144 to only 5 different cases. Thus, in chapter
5, we will derive a special normal form of the piecewise-linear system with Z,—symmetry.
After summarizing all results on singular points and non-existence of closed trajecto-
ries, we will provide a general concept for the determination of closed trajectories of
type I and their orbital stability. Then we will present complete analyses of dynamical
and bifurcation behaviour in the 5 different cases including bifurcation diagrams. The
analysis of two of these cases, the focus and the saddle case, have been published in a
modified form in [Giannakopoulos & Pliete,2001] and [Giannakopoulos & Pliete,2002],
respectively.

11
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2. Preliminaries

We consider the planar piecewise-smooth (PWS) system of Liénard-type being discon-

tinuous on the y—axis, i.e.
. y—Ft(z) .
(?) - {( _g;@g))) it >0 2.1)
y (o) Lifz <o,

where F™(z), g% (z) and F~(z), g~ (z) are smooth functions for z > 0 and z < 0, respec-
tively.

Our aim is to analyse system (2.1) in terms of equilibria, periodic, homoclinic or het-
eroclinic solutions and their bifurcations. For this we need to give a precise definition
for solutions of PWS systems by introducing a differential inclusion corresponding to
the PWS system, see [Filippov,1988] or [Aubin & Cellina,1984]. First we need some
notation. We set

o= ("1 e e o
[ (z,y) = (y:gf(‘i;v))  if (z,9) € G_

where

6= {(!) ewtio>0)
o {(() e

and G is the closure of G. Furthermore, we define the line of discontinuity

M::{@)e]R?:x:O}. (2.2)

Example 2.1 (Phase portrait).

We will see in chapter 3 that we can analytically derive bifurcation phenomena for system
(2.1) if we assume, for example, that F* and F~ are strictly increasing functions for
x > 0 and x < 0, respectively. The vector field is vertical (parallel to the y—azxis) on
the curves y = F*(z) and y = F~(z) for x > 0 and z < 0, respectively. The direction
depends on the sign of g*(z). It changes if there ezists a zero T of g™ (x) for x > 0 or
zy of g~ (x) for x <0, respectively. Then (z7,ys) with yi = F*(z7) is an equilibrium
of the PWS system (2.1) in Gi. Figure 2.1(a) shows a typical phase portrait if there
exist such xg > 0 and x; < 0, whereas in Figure 2.1(b) a typical phase portrait is shown
if these numbers do not exist.

13
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Yy = FH(z)o— (2 Yy = Ft(z
- (2)g™(z) . y (z)
Pz pd
(zo,y% N
g N
LA T T
J{% S A
U< A
y="F"(x) y=F(z) (@)

(a) Two equilibria (z3,yF) in G+ (denoted

(b) No equilibria in G4

by x)
Figure 2.1.: Typical phase portrait with F'* strictly increasing and g* strictly decreasing

On M system (2.1) is not defined. If for (0,y) € M, the transversal components f; (0, y)
and f; (0,y) (the subindex ; denotes the first component of the corresponding vector)
have the same sign, the orbit crosses M. But if f;"(0,y) and f; (0,%) have opposite signs,
the motion on M could be defined in different ways. The most natural definition is the
simplest convex definition as in [Filippov,1988], which we use here. Another approach
leading to the same result for equation (2.1) is Utkin’s equivalent control method, see
[Utkin,1992].

Replacing the right-hand side of equation (2.1) with the set-valued function

{f*(z,9)} ,if (z,y) € Gy
F(z,y) = {af*(0,9) + 1 —a)f~(0,y) : ¢ € [0,1]} ,if (z,y) €M (2.3)
{f(z,y)} ,if (z,y) € G-
with f*(x,y) as above, we obtain the differential inclusion
(2) € F(z,y). (2.4)

Note that F(x,y) is the convex combination of f*(z,y) and f~(x,y) for (z,y) € M.

Example 2.2 (Set-valued sgn—function).

The set-valued sgn—function is given by the convex combination of {—1} and {1} for
z=0, e

{-1} ,ifz<0

—1,1] ,ifz=0

{1} , if ¢ >0,

Sgn(z) =

see Figure 2.2.
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Sgn(x)

Figure 2.2.: Set-valued sgn—function

2.1. Definition of solutions

Following [Filippov,1988] we define a solution of equation (2.1) as an absolutely con-
tinuous function (z(?) defined on an interval J C R which satisfies (58) € F(z,y) for
almost all t € J. \s\}e distinguish between two different types of solutions of equation
(2.1). The first type consists of standard solutions which only have a finite number of
intersection points with M, i.e. they cross M or they do not intersect M at all. The
second type consists of solutions with sliding motion which intersect M and remain on
M for a finite time or never leave M. We define the sliding motion interval I, as the

subset of M in which the vector field is not transversal, i.e.

I :={0} x {y e R: f{(0,9)f; (0,y) < 0}.

I; is called attractive (repulsive) if the vector fields of G, and G_ are both oriented
towards (away from) I, which is equivalent to f;"(0,y) < 0 and f; (0,%) > 0 (f;7(0,y) > 0

and f;(0,y) < 0) for all (0,y) € I.
For each point (0,y) € I, we define the following convex combination f° of the two
vectors fT and f~:

f1(0,9)
fl_(oay) - fl—i—(oay)

Thereby, the subindex ; denotes the ith coordinate of the corresponding vector f*(0,y).

Note that o = F(0,y) N M, see equations (2.2) and (2.3). Thus, if ¢(¢) satisfies
o)

) = aff (0,9) + (1 — a)f;y (0,y) with o := e [0,1]

y(t) = °(y) (2.5)
and (y?t)) € I, for all t € J, then (¢>?t)) is a sliding motion solution of equation (2.1).

Lemma 2.3 (Sliding motion interval and vector field).
We set

b = — F%(0) (2.6)
by = — g (0).

15
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1. a) If b > by then I, = {0} x [=b], —b]] and it is repulsive.
b) If b < by then I, = {0} x [~by, —b]] and it is attractive.
c) If b = by then I, = {(0,—b])}.
2. If bi # by then
_ by — b;y by by — b by
by — by by — b

F(y)
for all (0,y) € I.

Proof. The assertions follow straight from the definitions above. O

2.2. Definition of singular points

In this section we give definitions for singular points of equation (2.1). In [Filippov,1988]
all local singularities of two-dimensional autonomous systems with separated lines of
discontinuity or a pointwise discontinuity are topologically classified. Because of the
simple structure of equation (2.1) it is sufficient to consider two types of singular points,
equilibria and tangential points.

Definition 2.4 (Equilibria, see [Filippov,1988]).
A point (xg,y0) € R? is called equilibrium of equation (2.1) if

0
(O) € F(zo,0)
with F as in (2.3).

Equilibria which belong to M are sometimes called pseudo-equilibria, see
[Kuznetsov et al.,2002], or quasi-equilibria, see [Filippov,1988].

In addition to equilibria there is another type of singular points in PWS systems. These
singular points form the boundary of the sliding motion interval where at least the vector
field of one side is tangential. Of special interest are those tangential points at which a
sliding motion solution can leave I or a solution from G can reach it, see Figure 2.3.

Definition 2.5 (Tangential, leaving, reaching points, see Figure 2.3).

1. A point (0,y;) € M is called tangential point of G, (G_) of system (2.1) if

2. A tangential point (0,vy;) of G4 (G_) is called leaving point of G, (G_) of
system (2.1) if the following two conditions hold:

a) foy)(y —ye) <0 for ay#y with (0,y) € L.
b) There exists a 6 > 0 such that for all (0,y) € M\I; with |y — y¢| < § there
holds £(0,) > 0 (7 (0,y) < 0).

16
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Y Y

—by y=F*(z) —bt
N SN

l N\

|
% ) ' L
y=F(z) Z —by
—bf y = F*(a)

a) Reaching point of G_ b) Leaving point of G_

Figure 2.3.: Examples of tangential points of G; x denotes an equilibrium

3. A tangential point (0,1:) of G4+ (G-) is called reaching point of G, (G_) of
system (2.1) if the following two conditions are fulfilled:

a) f(ye)(y —ye) > 0 for ay # y, with (0,y) € L.
b) There exists a 6 > 0 such that for all (0,y) € M\I; with |y — y| < & there
holds f(0,y) <0 (f7(0,y) > 0).

In [Kuznetsov et al.,2002] tangential points are separated in another way, visible and
invisible tangential points. A tangential point is a wvisible (invisible) point of G if the
trajectory starting at this point belongs to G4 (Gz) for all sufficiently small [t # 0.
For example, (0,—b7) is an invisible and (0, —b;) is a visible point of G, and G_,
respectively, in Figure 2.3 a). Note that leaving and reaching points are visible.

2.3. Definition of closed trajectories

In this section we give a definition for closed trajectories of system (2.1). These trajecto-
ries are closed curves in the plane. Let (z(t), y(¢)) be a periodic solution of system (2.1).
We denote the corresponding trajectory by . We distinguish between two different
types of closed trajectories which can appear in PWS systems:

I) The closed trajectory 7 lies in G, and G_ and crosses M twice, i.e. v C G4 U
MUG ,vyNGy #0, yNG_ # () and there exist y; < yo, such that yN M =

{(0,41), (0,32)}-

I1) The closed trajectory 7 lies in G, and/or G_ and the corresponding solution stays
for a whole time-interval in M (it ’slides’ along the y—axis). This means that
v C Gy ory C GLUG_ and there exist at least y; < y such that [(0,y1), (0, y2)] C
yN M.

17
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80

Figure 2.4.: Closed trajectory of type I

A closed trajectory of type I is characterised as follows. Starting from a point (0, sq)
with sg € M the trajectory crosses M at a point (0, s§) with s§ € M~ after finite time
ts. Thereby, M (M™) is defined as the set of points sy € R (s§ € R) with s > —bf
(s§ < —b7) and every solution starting at (0, sg) ((0, s§)) intersects M again after finite
time. Then, the system changes the properties of flow, the trajectory continues on the
other side of M until reaching it again at point (0,s;) € M after finite time ¢;. The
trajectory is closed if we have sy = s1, see Figure 2.4.

We can introduce appropriate discrete-time maps to characterise these solutions. Denote
by v* the part of v in G4. Then IIT : M+ — M~ is defined as the map which maps
(0, s0) to (0, sy) along y+:

nmt-M+— M-
so — s = y(tg)
Similarly, II= : M~ — M™ is defined as the map which maps (0, s§) to (0, s;) along

Yo

m :M — Mt
5o — 51 =y(ty)

Finally, we define the 1-dimensional Poincaré-map as the composition of IIT and II~,
I1:=1II" oIl". A fixed point sy of II correspond to a closed trajectory of type I starting
at (0, s9) with s € M. The Poincaré-map II is smooth and therefore we can use it to
consider existence and orbital stability of closed trajectories of type 1.

We consider now closed trajectories of type II. The solution starting at a point (0, sg)
with s € M™ may intersect with I, after finite time ¢§ at (0,0¢). This can happen at
any point of I, if it is attractive. Otherwise, it can only happen at reaching points of

18
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G.. The system changes the properties of flow, the trajectory continues along I, and
the solution solves now the differential equation (2.5). If I, is repulsive, the trajectory
can leave I at any point (0,0§). Otherwise, it can leave I, only at leaving points of G
or G_. We can introduce another discrete-time map

me: 1, — I,

0¢ — 0 = y(°)

for the sliding motion solution, which maps (0, 0y) to (0,0;) along 7°, where ~° is the
sliding motion part of . Then, v leaves I, after finite time 7° or it stays for all times
(79 = 00) on I,. TI° is defined by the solution y(¢) of system (2.5). A solution ¢°(¢) of
system (2.5) with initial value y(0) = oy, (0,00) € I, is given by

y(t) = erﬂot — Y%
where
b — by
pli=2 2 (2.7)
yo o= b2 — by
b

If (0,y(t)) leaves I, after finite time 7° > 0 at (0, o), then there holds
1°(00) = ¢°(7°) = 0pe® ™" — yo = 0.

A closed trajectory of type II can be described as composition of appropriate discrete-
time maps II*, II- and II°. Note that this composed Poincaré-map is continuous, but
not differentiable at the points where the trajectory reaches or leaves I;.

2.4. Definition of bifurcation

Our aim is to apply bifurcation analysis to the PWS system (2.1). The bifurcation
theory for smooth systems is not applicable to PWS systems because their right-hand
sides are not differentiable. However, PWS systems can undergo bifurcations which have
similarities, but also discrepancies, with bifurcations of smooth systems.

We say that (xo, Yo, to) is a bifurcation point regarding the parameter y of a PWS system
if the number of attractors or the topological structure of the phase portrait changes
when pu passes through . These can be bifurcations of solutions without sliding motion
which have similarities with those of smooth systems. But in addition, there can occur
bifurcations in consequence of sliding motion solutions which do not exist in this form
for smooth systems.
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3. Results for the piecewise-smooth
system

In this chapter, we analytically derive results on dynamical and bifurcation behaviour of
the PWS system (2.1). These results, to our knowledge, are new in this general form. As
mentioned in the introduction other publications deal with special cases of system (2.1),
piecewise-linear systems or system (2.1) with continuous functions F'* and g*. First, we
determine and characterise all singular points of the discontinuity M in dependency on
the parameters bljE and bQi. Afterwards, we provide a lemma on uniqueness and existence
of the corresponding initial value problem, again in dependency on bf and b;t. Section 3.3
summarizes results on non-existence of closed trajectories. We give necessary conditions
for the existence of closed trajectories of type II. Assuming additional conditions for
the functions F'* and g* we get results on non-existence of closed trajectories in G,
G_ or of type 1. Section 3.4 deals with a Hopf-like bifurcation of a closed trajectory of
type I of system (2.1) with the additional assumption of Zy,—symmetry. In section 3.5
we finally prove a local Hopf-like bifurcation of a periodic solution with sliding motion
which occurs when an equilibrium coincides with a leaving or reaching point.

3.1. Singular points

In this section we specify and characterise the singular points of system (2.1) in depen-
dency on the parameters by and by . First, we remark that there are equilibria (z3, y5)
in G if and only if we have ¢g*(z5) = 0 and y& = F*(2F) with 2y > 0 and z5; < 0,
respectively. These equilibria lie in a domain where system (2.1) is smooth. Therefore,
they can be characterised by the eigenvalues of the linearisation of the right-hand sides
f* at (z3,y3). In M\I, are no singular points because at these points the vector field
is transversal to M. Therefore, we only consider I;.

Lemma 3.1 (Equilibria of I, see Figure 3.1).
Consider the PWS system (2.1) with bf := —F*(0) and by := —g*(0).
1. If b = b, =0, all points of I, are equilibria. They are unstable if b] > b, and
stable if by < by .
2. If byby < 0, there exists exactly one equilibrium (0,v,) € I, with

_ bfby —brby

= 3.1
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3. Results for the piecewise-smooth system

a) If by > 0> b;, then (0,y,) is a saddle point.
b) If by <0 < b, and b] > by, then (0,yo) is an unstable node.
c) If b <0 < by and bj < by, then (0,y,) is a stable node.
3. In all other cases there are no equilibria in I,.
Proof. (0,1p) is an equilibrium of I, if f%(yy) = 0 and (0, %) € I,.

1. In case of b = b; we get fO(y) = by . If b # 0 there are no equilibria. If b3 =0
all points of I, are equilibria. Due to the repulsion (attraction) of I, for b7 > by
(bf < b;) the points of I, are unstable (stable).

2. In case of bj # b, there exists exactly one zero of f°:

biby — brby

0 = O =1 =
I~ (o) o= Ty

First, we verify for which conditions we have (0, yo) €I, and in that case we consider
the flow in a neighbourhood of (0,y), in order to characterise this equilibrium.
For this it is necessary to consider four different cases.

(i) b > by, by > by:
There holds (0, o) € I, if and only if yo € | — b], —b7[.

yo > —bf o biby —b7by > —bf (b3 —b3) o by >0
Yo < —by biby —byby < —by (b3 —by) b, <0

Therefore, (0,y0) € I, if and only if b > 0 > b, . I is repulsive because of
b > b7. We have f%(yo) = 0, and for the first derivative of f° we get

_i_ _ —
(y) = b =by

C b — b

which means that f° is strictly decreasing. From this we obtain

<0 ,ify>w
F(v) . ’
>0 Lify<uy

and consequently, (0, o) is a saddle point, see Figure 3.1(i).
(i) by > by, by < by:

Analogous to (i), there holds (0, o) € Ios if and only if b5 < 0 < b, and then
it is an unstable node, see Figure 3.1(ii).

(iii) b < by, by > by:

There holds (0, ) € I if and only if y € ] — by, —bi[ . This is, analogous to
(i), equivalent to b > 0 > b, and then it is a saddle point, see Figure 3.1(iii).
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- - 1 + 1+

Yo Yo Yo Yo

1 + + 1 _p 1 _p-

_bl T _bl bl bl
N pt s pe pt - : - —
(i) by > by, by > 0> by i) bF > b7, 67 <0< by i) b7 < b7, b5 >0>b;  (iv) bf <by, b <0< b;

1 1 2 2 1 1 2 2

Figure 3.1.: Characterisation of the equilibrium (0, ) in dependency on bF and b3

(iv) bf < by, by <by:

Analogous to (iii), there holds (0, yo) € Ios if and only if b < 0 < b, and then

it is a stable node, see Figure 3.1(iv).

O

Now, we consider the tangential points of I; and the conditions under which they are

leaving or reaching points.

Lemma 3.2 (Tangential points, see Figure 2.3).
Consider the PWS system (2.1) with bf := —F*(0).

1. (0,—b) is the unique tangential point of G .
2. (0, —b7) is the unique tangential point of G _.

Proof.
ffOp) =0 & y=F0)=—bf

Lemma 3.3 (Leaving and reaching points, see Figure 2.3).

Consider the PWS system (2.1) with bf := —F*(0) and by := —g*(0).

1. (0,=b7) is a leaving (reaching) point of G4 if and only if by > 0 and b < by

b+>b1)

(
2. (0,=by) is a leaving (reaching) point of G_ if and only if b < 0 and bf < b,
(

b+>b)

Proof. Because of Lemma 3.2 we only need to consider the points (

0, —b¥):

1. We verify the conditions of Definition 2.5 for (0, —b;). For the conditions 2.a) and

3.a) we choose y = —b7:

P00 (=br +61) <0 & b3 (bf —b7) <0
P00 (b +61) >0 & by (bf —by) >0
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3. Results for the piecewise-smooth system

For verifying the conditions 2.b) and 3.b) we choose a small § > 0 and y = —b] +c¢
with
0,9 i b < b7
ce IOl b <y
]_5,0[ ,1fb1>bl.
Then there holds (0,y) € M\, and | — bf —y| = |¢| < é:
H0,y)>0 & y+bf >0 & c>0 < bf <b
F0,9)<0 & y+bf <0 & c<0 & bf >b;
Altogether, we get the assertion, see Figure 2.3.

2. We verify the conditions of Definition 2.5 for (0, —b; ) analogous to 1., by choosing
y = —b] for the conditions 2.a) and 3.a). For verifying condition 2.b) and 3.b) we
choose a small 6 > 0 and y = —b] + ¢ with

. 10, 9] ,if by < bf
C .
| —46,0[ ,ifb] > b

Altogether, we get the assertion.

3.2. Existence and uniqueness of the initial value
problem

In this section we consider the initial value problem corresponding to system (2.1) with
initial values in (9, %0) € IR? concerning existence and uniqueness in dependency on the
parameters bf and b;.

Lemma 3.4 (Existence and Uniqueness).
Consider the PWS system (2.1) with bf :== —F*(0) and by := —g*(0).

1. If by < by, system (2.1) with initial values (zo,v0) € R? has a unique solution.
2. If bf > b, system (2.1) with initial values
a) (zo,y0) € R?\I; has a unique solution,

b) (x0,y0) € Is has at least three solutions,

¢) (zo,9) = (0,=b]) ((zo,40) = (0,—b7)) has at least two solutions, provided
by >0 (b <0),
d) (zo,90) = (0,—b7) ((zo,y0) = (0, —b7)) has a unique solution, provided by <
0 (b3 > 0).
3. If b = by, system (2.1) with initial value (z9,y0) = (0, —by) has at least two
solutions, provided by > 0 and b, < 0. In all other cases it has a unique solution,
see Figure 3.2.
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"~

by >0,b, >0 by >0,b, <0 by <0,by >0 bl <0,b, <0

—bf -

Figure 3.2.: Vector field in a neighbourhood of (0, —b]) in dependency on the sign of b ;
by = b7

Proof. In all cases with initial values (zo,y0) € R*\I, or in 3. with (zo,0) # (0, —b])
the vector field is smooth if (z, yo) € R2\M or transversal to M if (zg,yo) € M\I. Tt
exists therefore a unique solution for these initial values and we only consider (g, yo) € I
in 1. and 2. and (z¢,%0) = (0, —b;) in 3..

1. If b < by then I, is attractive. Therefore, for initial values (xq,%,) € I, there are

no solutions which evolve in G.. The only existing solution is the sliding motion
solution.
Consider now (0, —b7) ((0,—b7)) as initial value. In case of b > 0 (b; < 0) this
tangential point is a leaving point, see Lemma 3.3, and the only solution is the
leaving solution in G (G_). In case of by < 0 (b, > 0) only the sliding motion
solution exists, and in case of b = 0 (b, = 0) the equilibrium (0, —b) ((0, —b;))
itself is the only solution.

2. If b > b, then I, is repulsive. Therefore, for initial values (x4, y,) € I, in addition

to the sliding motion solution exists a solution which evolves in G, and a different
one which evolves in G_ exist.
With initial value (0,—b]) ((0,—b7)) a solution evolves in G (G). (0,—b])
((0, —by)) is a reaching point if b5 > 0 (b, < 0), see Lemma 3.3. This means that
additionally the sliding motion solution exists, whereas in case of b < 0 (b, > 0)
the sliding motion solution does not exist. (0,—bf) ((0,—b;)) is an equilibrium
and the only solution if by =0 (b, = 0).

3. For b = b, we consider the vector field in a neighbourhood of the singular point
(0, —b7) in four different cases in dependency on the sign of b and b,. There
holds

0, and 0,y) = by.
fl( y){<0 ,ify<—bic n f2( y) 2

Considering the vector field in all different cases, see Figure 3.2, we can conclude
that there are at least two solutions in case of by > 0 and b, < 0. In all other
cases there exists a unique solution.

O
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3.3. Non-existence of closed trajectories

In this section we prove some lemmas on non-existence of closed trajectories. First,
we give necessary conditions for the existence of closed trajectories of type II. Assuming
additional conditions for the functions F'* and ¢g*, we can prove lemmas on non-existence
of closed trajectories in G, G_ or of type L.

Lemma 3.5 (Non-existence of closed trajectories of type II).

Consider the PWS system (2.1) with b := —F*(0) and bf := —g*(0). The conditions
b # b, and by > 0 or b, < 0 are necessary for the existence of closed trajectories of
type I1.

Proof. The sliding motion interval I, only exists for b # b, . It is repulsive (attractive)
if b7 > b, (b7 < by), see Lemma 2.3. In case of b > b; a solution of G+ can only
reach I, at (0, —b7). In case of b < b a solution can only leave I, into G+ at (0, —b7).
Therefore, (0, —bF) must be a reaching or leaving point, which holds if and only if b5 > 0
or b, <0, see Lemma 3.3. O

Lemma 3.6 (Non-existence of closed trajectories in G ).
Consider the PWS system (2.1). Suppose that F* is strictly monotonous on 10, o[ with
at > 0. Then system (2.1) has no closed trajectory in ]0,a™[ xR.

Proof. System (2.1) is smooth on G,. Therefore, we can apply Bendixson’s Criterion,
see for instance [Guckenheimer & Holmes,1983], to

G) (o) - Gao)

for (z,y) € G. Hence, because of

ofi ofy '
g YJ2 _ _pt
5y () + o (z,9) (z) #0
for all z €]0,a™[, a closed trajectory cannot exist in ]0, at[xR. O]

Analogous to Lemma 3.6 we can prove the non-existence of closed trajectories in G_.

Lemma 3.7 (Non-existence of closed trajectories in G_).
Consider the PWS system (2.1). Suppose that F~ is strictly monotonous on o, 0] with
a~ < 0. Then system (2.1) has no closed trajectory in |a—, 0[xR.

The following two lemmas deal with the non-existence of closed trajectories of type I.
For the first one we need the monotony of the functions F* and F~. We modify the
proof of the Bendixson’s Criterion for Liénard systems, see proof of Lemma 3.6, and
obtain the following lemma.

Lemma 3.8 (Non-existence of closed trajectories of type I).

Consider the PWS system (2.1) with bf :== —F*(0). Suppose that F*, gt and F~, g~
are continuously differentiable functions on the intervals [0, [ and ], 0], respectively,
where a~ < 0 < at. Assume that either
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F(z) Ft F~ F(z)
\ .
—bf’ 1
€T _bil- X
—b;
F/

Ft

Figure 3.3.: Strictly increasing and decreasing discontinuous function F

1. F* and F~ are strictly increasing on [0, o[ and Ja, 0], respectively, and b] < by
or

2. F* and F~ are strictly decreasing on [0, a*[ and Ja, 0], respectively, and b > by .

Then there are no closed trajectories of type I in Ja~, o [xR.

The assertion still holds if F+ or F~ is only increasing (decreasing) and bi < b, (b7 >
by).

Remark 3.9 (Geometrical relevance of the conditions of Lemma 3.8).
Defining the discontinuous function

= JFt(x) ,ifz>0
F(@):= {F(x) ifz <0

the condition 1. (2.) means that F is strictly increasing (decreasing) on Ja~, o[, see
Figure 3.3.

Proof of Lemma 3.8.
The non-existence of closed trajectories of type I is a consequence of Green’s Theorem,

see [Apostol,1957]. Assume that system (2.1) has a closed trajectory v of type I which
intersects M twice at (0, so) and (0, sj) with sy > sj. Defining v* := vq,,

vt Uy and 4y~ U+, are closed trajectories in G and G_, respectively. Let D, and
D_ be the domains enclosed by ™ U~y and v~ U, , respectively, see Figure 3.4.
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Figure 3.4.: Closed trajectory of type I

f* is a continuously differentiable vector field on D, and therefore, we can apply Green’s
Theorem. From that we get

fE(2)n*(2)dz = /D ) divf*(2)dz = — /D ) F*(z)dz

dD4

where z := (x,y) and n*(z) is the normal vector corresponding to dD.. On the other
hand, y* U5 is a negatively oriented curve and thus, there holds for its interior D.:

+ “( de — £\t
aCls / 1 (2)n* (2)dz /ﬁf (2)n

Since 7= is part of a trajectory of the system z = f*(z), there holds fvi fE(z)dz = 0
and consequently,

/D+ F'(z)dz = — - fH(z)n*(2)dz —/ (2

— [ﬁ <f+(z), (é)>dz —/0 (5 + t(s0 — ) — F(0))(50 — s3)dt

0
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Assume now that F'+ and F~ are strictly increasing and b < b;. Then we get

o<Z;F#@mm+/ F~'(z)dz = (s0 — s5) (b — by)

>0 <0

which conflicts with sy > s§. Analogous we get a contradiction if we assume that F'*
and F~ are strictly decreasing and b > b, . O

The next lemma provides the non-existence of closed trajectories of type I without F'*
and F'~ necessarily being monotonous.

Lemma 3.10 (Non-existence of closed trajectories of type I, see Figure 3.5).

Consider the PWS system (2.1). Suppose that F*,g" and F~,g are continuously
differentiable functions on the intervals [0, at[ and Ja—, 0], respectively, where o~ < 0 <
at. Assume that

1. there ezists an x§ € )0, ™| with
a)
<0 ,ifzel0,zf|
g (@) 4=0 ,ifz=xf
>0 ,ifz€lrd,al|
b)
<yy ifzel0,zg]
Fia) =y ifz=a1]
>yd L ifz€lrd,af]
where yi = F*(zg);
2. there exists an x5 € |a~, 0] with
a)
<0 ifz€la,zg]
g ([@)4=0 ,ifz=um
>0 ,ifz €]z,

b)

<y, ,ifzx€la,xy]
Fr@)y=vw ife=1x
>y, S, ifx €lry,0]
where y; := F~(xy);
3.
Yo > Yo -

Then system (2.1) has no closed trajectory of type I in Ja™, at| XR.
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3. Results for the piecewise-smooth system

Figure 3.5.: Phase portrait of system (2.1) and level curves (dashed lines) of A*

Proof. We prove this result by using appropriate functions
1 T
N(e)i= 3=+ [ o (s)ds
0
and considering their level curves. This is an often used method in the theory of smooth

Liénard-systems, see [Levinson & Smith, 1942]. For the rate of change of trajectories
along a level curve of A* we find

B ) = =) 2+ g @)% = @)t ) ) <0
and
) =)Lt (@)% = @) (@) ) <0

for £ > 0 and x < 0, respectively. Therefore, any trajectory of system (2.1) inter-
sects level sets of AT (z,y), z > 0 and A~ (z,y), 2 < 0 in the exterior-to-interior direction.

Next we consider a trajectory v+ € G+ of system (2.1) starting at (0, s9). The condition
sp > FT(0) = —bf is necessary for the existence of ™. If yj > —b;, every trajectory
starting at (0,s0) with sq € ] — b, yJ] reaches the equilibrium (z7,ys), because of
%(m, y) < 0 for z > 0. Consequently, assume sy > y; and let (0, sj) be the intersection
point of the level set of A™(z,y), z > 0 with M below yg, which also contains (0, s),

see Figure 3.6. Because of
AT(0, sy) = AT(0, s9) = const,
so— ¥ <0,
So — yg' >0
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3.3.  Non-existence of closed trajectories

At (z,y)

Figure 3.6.: Trajectories 4= and level curves A* (dashed lines)

we obtain
8o = —So + 2yq -
If v* does not intersect M again, then there cannot exist a closed trajectory of type I.

That is why we assume that there is a different intersection point (0, s§) of v with M.
Because of %(x, y) < 0, z > 0 it follows

se > 8y = —So + 2ug,

see Figure 3.6.

If s§ > —b; = F~(0) then the trajectory cannot continue into G_ and thus there cannot
exist a closed trajectory of type L. If y; < —b] every trajectory v~ starting at (0, s})
with s} € Jyy, —by [ reaches the equilibrium (z7, ;) because of 4= (z,y) < 0 for z < 0.
Consequently, assume s < y, and consider a trajectory v~ of system (2.1) starting at
(0,s5). Let (0,s)) be the intersection point of the level set of A~ (x,y), z < 0 with M
above 7, , which also contains (0, s§), see Figure 3.6. On account of

A7(0,8}) = A7(0, s5) = const,

so— ¥ <0

we obtain
sy = =55+ 2y -
If we assume that y© U~ is a closed trajectory of type I then v~ intersects M again at
(0, 80). Concerning “-(z,y) <0, z < 0 it follows
So < 81 =—sy+ 2y, <so+2(yy —vg)

which conflicts with yi > v, . O

Remark 3.11. In [Kooij & Giannakopoulos,2000] the authors prove a similar re-
sult for smooth systems. We proved Lemma (3.10) by modifying the proof given in
[Kooij & Giannakopoulos,2000]. As a consequence of losing smoothness we obtain a
more global result.
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3. Results for the piecewise-smooth system

Considering the proof of Lemma 3.10 we can conclude that we have no closed trajectories
in G4 if the conditions of Lemma 3.10 are fulfilled. Note that the Lemmas 3.6 and 3.7
need the monotony of the functions F'*.

Corollary 3.12 (Non-existence of closed trajectories in G).

Consider the PWS system (2.1). Suppose that F'* and g* are continuously differentiable
functions on the interval [0, [ with o™ > 0. Assume that condition 1. of Lemma 3.10
is fulfilled. Then system 2.1 has no closed trajectory in [0, o[ xR.

Corollary 3.13 (Non-existence of closed trajectories in G_).
Consider the PWS system (2.1). Suppose that F~ and g~ are continuously differentiable
functions on the interval Ja—,0] with a= < 0. Assume that condition 2. of Lemma 8.10
is fulfilled. Then system 2.1 has no closed trajectory in |a—, 0] x R.

3.4. Existence and bifurcation of a closed trajectory of
type |

In this section we prove the unique existence of a closed trajectory of type I for PWS
systems with Zs—symmetry. For a corresponding smooth system this result has been
proved by [Levinson & Smith, 1942]. Using the properties of the Zs—symmetry, it is
sufficient to consider the system in one half-plane. In the different half-planes G, and
G_ the PWS system (2.1) is also smooth and therefore, we can adopt the prove of the
smooth system performing some modifications. As a consequence of this result, we can
define a Hopf-like bifurcation of a closed trajectory of type I. That is why we assume
that system (2.1) is Zs—symmetric. This means, if (z(¢),y(t)) is a solution of (2.1)
then (—z(t), —y(t)) is also a solution. This symmetry leads to special properties of
the functions F* and g*. Assume that (z(t),y(t)) with z(¢) > 0 is a solution of the
PWS system (2.1). Because of the Zs—symmetry, (—z(t), —y(t)) is also a solution with

—2(t) < 0. Then there holds
()=o)

O-(50)

and consequently,

g7 (@) =—g (-2). (3.2)
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3.4. Existence and bifurcation of a closed trajectory of type I

Lemma 3.14 (Existence of a unique asymptotically stable closed trajectory
of type I).

Consider system (2.1). Suppose that F*(x),g"(x) and F~(z), g™ (x) are smooth func-
tions for x > 0 and x < 0, respectively. Assume that

1.

for all z > 0;

2. there exists a zero g > 0 of F* with F™(x) <0 for 0 < z < 2y and F*(z) > 0
and F* is monotonically increasing for x > xy;

3. g7 (x) >0 for all z > 0;
4 [ F (2)dz = [° gF (z)dz = .
Then system (2.1) has a unique asymptotically stable closed trajectory of type L

Remark 3.15 (Geometrical relevance of the conditions).

From the symmetry properties in condition 1. together with condition 2. we get F~(x) >
0 for —xy < x < 0 and F~(z) < 0 and monotonically decreasing as x — —oo for
xr < —x¢. Additionally, we obtain by := —FT(0) > 0 and by := —F (0) = —b] < 0.
Considering the conditions 1. and 3. we get g () = —g"(—x) < 0 for all x < 0.
This leads to by := —g*(0) > 0 and by := —g (0) = —bj < 0. From Lemma 2.3 we
obtain that I, = [—bf,bf] is repulsive and from Lemma 8.1 we get that (0,0) is the
only equilibrium of Is which is an unstable node. Condition 3. provides that there exist
no equilibria in G and thus, because of the symmetry properties, no equilibria in G_,
either. If we have a closed trajectory v of type I, then v is symmetric with respect to the
origin. Especially, v crosses the y—axis twice at (0,s0) and (0, —s¢) with sy > b], see
Figure 3.7.

Proof of Lemma 3.14. The authors of [Levinson & Smith, 1942 use Liénard’s method
to prove an analogous result for a corresponding smooth system. They only need the
smoothness of the system in one half-plane, especially for x > 0. Because of the sym-
metry properties, it is sufficient to consider the part of v running through G,. Here,
system (2.1) is smooth, and thus, all statements of the proof for smooth systems still
hold. The only difference is that y must start at a point (0, y) with yo > b] instead of
Yo > 0 as in the smooth case, because in the PWS case 7 surrounds the sliding motion
interval I. ]

Analogous to Lemma 3.14 we can prove a lemma on the unique existence of an unstable
closed trajectory of type I.
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3. Results for the piecewise-smooth system

Y Y 9" ()
S0
bt > Y= F+($)
s
A
v
o x
< |-bf
Y= F- (33 —Sp
g (z)

Figure 3.7.: Closed trajectory of type I in the presence of Zy;—symmetry

Lemma 3.16 (Existence of a unique unstable closed trajectory of type I).
Consider system (2.1). Suppose that F*(z),g9"(x) and F~(x),9 (x) are smooth func-
tions for x > 0 and x < 0, respectively. Assume that

1.
Ff(z)=—-F (—x)
9" (z) =—g (-x)
forall z > 0;

2. there exists a zero xg > 0 of F* with F*(z) > 0 for 0 < z < xy and F*(z) <0
and F* is monotonically decreasing for x > xy;

3. gt(x) >0 for all z > 0;
4 [SFH(z)dz = —o0 and [)° g* (z)dz = oo.
Then (2.1) has a unique unstable closed trajectory of type I

As a consequence of the above lemmas, we can find a Hopf-like bifurcation for PWS
systems if we assume in addition that the functions F'* are monotonous. With Hopf-like
bifurcation we mean the bifurcation of a closed trajectory of type I, surrounding I; which
contains an equilibrium, when a parameter passes through zero. At the same time, this
equilibrium changes stability.

Corollary 3.17 (Bifurcation of a stable closed trajectory of type I).

Consider system (2.1). Suppose that F*(z),g9"(x) and F~(x),9 (x) are smooth func-
tions for x > 0 and x < 0, respectively. Assume that the conditions of Lemma 3.14 are
fulfilled but with F* monotonically increasing for all x > 0. Define by := bj = —F7(0).
Then the origin is a stable node and there exists no closed trajectory of type I, provided
by < 0. When by passes through zero the origin becomes unstable and a stable closed
trajectory of type I occurs surrounding I.
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3.4. Existence and bifurcation of a closed trajectory of type I

50 50

_—
\bl "

stable unstable

Figure 3.8.: Sketch of the Hopf-like bifurcation of a closed trajectory of type I

Proof. Because of the conditions 1. and 3. of Lemma 3.14, there holds b = —b; < 0.
From Lemma 3.1 we get that (0,0) is a unique equilibrium in ; and it is a stable node,
provided b; < 0, and an unstable node, provided b; > 0. On account of Lemma 3.8,
there exists no closed trajectory of type I if by < 0 and concerning Lemma 3.14 we
obtain the existence of a stable closed trajectory of type I for b; > 0. This completes
the proof. O

Corollary 3.18 (Bifurcation of an unstable closed trajectory of type I).
Consider system (2.1). Suppose that F*(z),g"(z) and F~(z),9 (x) are smooth func-
tions for x > 0 and © < 0, respectively. Assume that the conditions of Lemma 3.16 are
fulfilled but with F~ monotonically decreasing for all x > 0. Define by := bi = —F*(0).
Then the origin is an unstable node and there exists no closed trajectory of type I, pro-
vided by > 0. When b, passes through zero the origin becomes stable and an unstable
closed trajectory of type I occurs surrounding I.

Proof. Because of the conditions 1. and 3. of Lemma 3.16, there holds b = —b, < 0.
From Lemma 3.1 we get that (0,0) is a unique equilibrium in ; and it is a stable node,
provided b; < 0, and an unstable node, provided b; > 0. On account of Lemma 3.8,
there exists no closed trajectory of type Iif b > 0 and concerning Lemma 3.16 we obtain
the existence of an unstable closed trajectory of type I for b; < 0. This completes the
proof. O

Remark 3.19 (Bifurcation diagram).

Drawing a bifurcation diagram, it looks similar to the bifurcation diagram of a Hopf
bifurcation for smooth systems. But in case of the PWS system, the closed trajectory
surrounds the sliding motion interval I, which means that its amplitude does not con-
verge to zero as the bifurcation parameter by converges to zero, see Figure 3.8. We
cannot calculate the amplitude sy of the bifurcating closed trajectory in dependency on
by. Therefore, Figure 3.8 should be seen as a sketch.

We present now an example in order to demonstrate that we can get the existence of
a closed trajectory of type I even if the functions F*, given by an application, are not
monotonous.
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3. Results for the piecewise-smooth system

Example 3.20.
Consider the second-order equation

E+p@)+kE=0 (3.3)

with k > 0 and the characteristic ¢ schematically indicated in Figure 3.9. We can
transform equation (3.3) to a Liénard-system with F(z) = ¢(z) and g(x) = kx. All
conditions of Lemma 3.14 are fulfilled and thus we have a stable closed trajectory of type
L

o(z)

e

Figure 3.9.: The characteristic ¢ for equation (3.3)

3.5. Periodic solution with sliding motion in G

In this section we prove a local Hopf-like bifurcation which arises in consequence of sliding
motion in system (2.1). Hence, this kind of bifurcation cannot occur in case of smooth
systems. It is comparable with the Hopf bifurcation of smooth systems but nevertheless
different. In case of a smooth system (z) = f(x,y, p), depending on a parameter p € R
with an equilibrium (z¢,yo), a Hopf bifurcation occurs at a parameter value py when
the Jacobian D f(xg, yo, po) has a simple pair of pure imaginary eigenvalues. The local
phase portrait changes when g passes through the bifurcation value py. A periodic
solution is created when the stability of the equilibrium (g, 39) changes, see for example
[Guckenheimer & Holmes, 1983, pp. 150-156]. In case of the PWS system (2.1) the
Jacobian does not exist for £y = 0. Therefore, we cannot detect a Hopf-like bifurcation
by considering the eigenvalues of the Jacobians of the right-hand sides D f*(xq, yo, i) of
system (2.1) in dependency on p. But nevertheless we can show that the local phase
portrait changes when the parameter u passes through p.
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3.5. Periodic solution with sliding motion in G

3.5.1. Main results

Theorem 3.21 (Local existence of a periodic solution with sliding motion in
G)).

Consider the PWS system (2.1). Suppose that F* and g* are continuously differentiable
functions on the interval Ja~, o[ with = < 0 < a™. Assume that

A1+) there exists an € > 0 and an z7 with 0 < z§ < & such that
0 0
<0 ,ifze [0,z§]
g (@) 4=0 ,ifz=uxf
>0 ,ifz€lrd,al;
(A2+) a},’ + 4ai, < 0 where af, := —F*+'(0) # 0 and af, := —g*'(0) < 0;
(A8+) afi(by —by) < 0 where b := —F*(0).

Then there exists a periodic solution with sliding motion in G surrounding a focus
(zd,ys). The focus (z§,yy) is unstable (stable) and the periodic solution is stable (un-
stable), provided af; > 0 (af; <0).

) Yy
. Y

b - e =)
. y = F*(x) —br

by

a) b < by and F*'(0) = —aj; <0 b) b} > b, and F'(0) = —al, > 0

Figure 3.10.: Periodic solutions with sliding motion in G ; x denotes the focus (zg, yg ).

Remark 3.22 (Geometric relevance of the conditions).

Condition (Al+) signifies that (zg,ys) is an equilibrium in G and that the vector field,
which is vertical on the curve y = F*(x), changes its sign at x = x§. If x§ = 0 then
(g, yd) is a focus if and only if af,” +4ad, < 0 and a}, # 0, see condition (A2+). This
still holds for xf > 0 sufficiently small. Condition (A3+) means that (x,yd) is "on
the same height” as I, that is (0,yy) € I, see Figure 3.10.
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3. Results for the piecewise-smooth system

unstable stable

Figure 3.11.: Sketch of the Hopf-like bifurcation of a periodic solution with sliding mo-
tion, when z§ passes through zero

Theorem 3.23 (Local existence of a periodic solution with sliding motion in
G).

Consider the PWS system (2.1). Suppose that F~ and g~ are continuously differentiable
functions on the interval o, o[ with o= < 0 < at. Assume that

(A1-) there exists an € > 0 and an x, with —e < z; < 0 such that

<0,ifzela,z]
g (@){=0,ifr=1x
>0, if x €y, 0];

(A2-) a7’ + 4ay, < 0 where aj, == —F~"(0) # 0 and a3, == —g~'(0) < 0;
(A3-) a7, (b] — b7) < 0 where b = —F*(0);

Then there exists a periodic solution with sliding motion in G_ surrounding a focus
(g, Yo ). The focus (xy ,yy ) is unstable (stable) and the periodic solution is stable (un-
stable), provided aj; > 0 (ap; < 0).

Remark 3.24 (Local Hopf-like bifurcation of a periodic solution with sliding
motion).

We consider x§ € R as bifurcation parameter. If x§ < 0 then there exists neither an
equilibrium nor a periodic solution. When x§ passes through zero the focus (zg,yg)
occurs on M and at the same time a periodic solution with sliding motion bifurcates.
The focus moves into G, as xg increases and is surrounded by the periodic solution.
Considering a smooth system, the stability of an equilibrium changes, whereas in the
PWS case a new equilibrium occurs on M, see Figure 3.11.

3.5.2. Proofs of the main results

In this subsection we prove Theorem 3.21. We omit the proof of Theorem 3.23, because
it is analogous. The proof is divided into three parts: First, we show that the equilibrium
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3.5. Periodic solution with sliding motion in G

(zd,yg) is a focus for system (2.1) if z§ > 0 sufficiently small. In the second part, we
define an appropriate function in order to prove the local existence of a periodic solution
with sliding motion in G if the focus is stable. Finally, we prove the existence of this
periodic solution if the focus is unstable by reversing time in system (2.1).

(zd,ys) with yi = F*(z]) is an equilibrium of system (2.1) if z7 > 0. Consider the

linear system B
T ~(T b1
)=4()+(3) L
<y> (y> by (L)
O &11 1
A= (2 0).

bi,by € R and 11, @21 # 0. Then, the linear system (L) has an equilibrium (Zg, §) :=
(_};_2 d11bo
G217 G21

where

— by). It coincides with the equilibrium (z7, yg) of the nonlinear system

(5) = (=) o

when we define

by = —yy + F'(z)ay,

by 3=9+'($3)$8L,
iy = — F(zf) = af; + O(7),
i1 = —g" (af) = afy + O(a7).

O(z)
T

Here, with O(z) we mean lim,_,g ‘ < C € R. For z{ sufficiently small there holds,

because of (A2+),
This means that (Zg, 7o) is a focus of the linear system (L) which is unstable if @;; > 0
and stable if @;; < 0. The stability properties still hold for af; > 0 and af; < 0,

respectively, for z§ > 0 sufficiently small because of @i, = aj; + O(zg).
Using the new notation and Taylor expansion around zj, the nonlinear system (NL) has

the form
- + +(pt +
z y—yo —F (xo)($_$0)> +\2
L] = +0((z—=
()= S 2o (o=
~[T b1
=A + (~ > +o(|lr — zg
(5) + () + oo =3
Here, with o(z) we mean lim, ‘@‘ = 0. Setting v := r — xj and v = y — yg,

we can apply Theorem 2.2. in [Coddington & Levinson,1955, p. 376] and get that
(zd,ys) = (Zo, o) is also a focus with the same stability properties of the nonlinear
system (NL).
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3. Results for the piecewise-smooth system

We define now an appropriate function for proving the existence of the periodic solution
in G with sliding motion if z§ > 0 by

1 T
A, y) =5y —v5)” +/ g7 (s)ds
0
for x € [0,a™[,y € R. For this we consider the level curves of A.

We consider now the two different cases corresponding to (A3+).

Case 1: bf > b7 and af; < 0: o
For the rate of change of trajectories (z(t),y(t)) of system (2.1) in G along a level curve
of A we find

dA dy 4, dT +

ai = (y — N = Ft(z) —yb).

o @y) = —vo) o +97 (@) = —g (@) (F(2) —yp)

For zf > 0 sufficiently small there holds a;; = aj; + O(zg) < 0 and consequently, for
all z € [0,a"] and |z — z§| < § with § > 0 sufficiently small

Fi(z) —yg = F'(2) = F'(zg) = —au(z — 25) + o]z — 27 ])
<0 ,ifzx<af
>0 ifx>af.

Together with (A1+) we get

A
c;—t(a:,y) <0 forall |z —z§| < d,y € R.

Therefore, any trajectory of system (2.1) intersects a level set A(x,y), x > 0 in the
exterior-to-interior direction.

Next, we consider a trajectory v of system (2.1) starting at (0, s0) € I, with s > yq .
Due to the repulsion of I, = [—b], —b]], there exists a periodic solution with sliding
motion in G only if (0, —b]) is a reaching point, which is the case only if b > 0, see
Lemma 3.3. This yields

0=g" () = g7 (0) + g7 (0)z{ + o(af) = —b] — af i + o(a])
+
—09

& b = Ty + o(zg)
and consequently, b5 > 0 if zJ > 0 sufficiently small, where by := —gT(0). Thus,

(0, —b7) is a reaching point.

If v reaches (0, —b]") and starts at a point (0, ) with 5§ < min{—b], 5o}, then 7 together
with the sliding motion solution forms a periodic solution. For the definition of y, see
Lemma 3.1. Let s; be the y-coordinate of the intersection of the level set of A(z,y) with
the y-axis below ys which also contains (0, s), see Figure 3.12. Because of

A(0, sp) = A(0, s9) = const,
86 - y(_)F <0,
So — yg' > 0,
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3.5. Periodic solution with sliding motion in G

Figure 3.12.: Periodic solution « and level curve A (dashed line); x denotes the focus
(23, %)

we have
s9 = —50 + 2yg -
In case of s} > —b;, -y reaches the stable focus (zj,vg ), owing to the repulsion of I,. If
we assume g = 0 there holds y = —b], and setting sy := min{y,, —b] }, we get
So = —So + 2y = —so — 2b7

by —b  ,ifb, >0
= —b + < 4yt DT < =b,
! {% Jif by <0
where b, := —g (0). For z§ > 0 sufficiently small it still holds

s = —80+2yf = —s0 +2F1(0) + O(xf) = —s¢ — 2b] + O(zf) < —b.

Consequently, the trajectory v which reaches (0, —b]) for zj > 0 starts at a point (0, 5)
with (0,3) €] — by, min{—b; ,yo}[ and creates a periodic solution in G with sliding
motion surrounding the focus (z7,y, ). Because of the repulsion of I; and the stability
of (z{,yg), it is unstable.

Case 2: b < by and af; > 0:
We consider now instead of system (2.1) the corresponding system with reversed time

0 (o) ifu < 0. '
g9~ (v)

Note that ((z(¢),y(t)) is a solution of system (2.1) if and only if (u(—t),v(—t)) is a
solution of system (3.4) and (z{,y;) is also a stable focus of system (3.4). As in case 1
the sliding motion interval I, = [—b], —b{] is repulsive and (0, —b;) is a reaching point
for zg > 0 sufficiently small.

For the rate of change of trajectories (u(t),v(t)) of system (3.4) in G along a level curve
of A we find
dA dv du |

—p (W v) = (=) + g7 (w)— = g7 (u)(F" (u) = y)-
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3. Results for the piecewise-smooth system

For z§ > 0 sufficiently small there holds d;; = a]; + O(zg) > 0 and consequently for all
u € [0,a*] and |u — z§| < § with § > 0 sufficiently small

F¥(u) —yg = F'(u) = F(zg) = =@ (u - 2g) + o(u — z7)
>0 Lifu<af
<0 ifu>af.

Together with (A1+) we obtain

%(u,v) <0 forall [u—zf| <d,veR.
Analogous to case 1, we get the existence of a periodic solution 7 in G with sliding
motion for z§ > 0 sufficiently small which reaches I, at (0, —b;), surrounds the stable
focus (z{,yy) and is unstable. v := —7 is then a periodic solution of system (2.1) in G|
with sliding motion which leaves (0, —b; ), surrounds the unstable focus (zj,y,) and is
stable. This completes the proof.

O
In this chapter, we presented for the PWS system (2.1) a complete characterisation of
singular points in the sliding motion interval I; and the existence and uniqueness of
the corresponding initial value problem in dependency on the parameters bljE and b;t.
We analytically proved some results on non-existence of closed trajectories with certain
conditions for the functions F'* and g*. Furthermore, we proved the existence of a unique
closed trajectory of type I assuming additionally Zs—symmetry. These results were all
global. The last section provided a Hopf-like bifurcation of closed trajectories of type
IT. This result was local. In case of piecewise-linear systems we can prove an analogous
global result. In addition, it is possible to prove stronger results on existence and non-
existence of closed trajectories, because in the case of piecewise-linear systems we can
analytically determine the discrete-time maps, which are one main tool for detecting
closed trajectories. Therefore, we consider piecewise-linear systems in the following.
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system

As described in section 2.3 the main tool for detecting closed trajectories in PWS systems
is the determination of discrete-time maps I17, I~ and II° in the different domains G,
G_ and I,. These maps can be used to define a 1-dimensional Poincaré-map which maps
a point sq with (0,s9) € M to a point TI(sg) with (0,1I(s¢)) € M. In general, it is not
possible to analytically determine IT* and II~ for system (2.1). But in case of piecewise-
linear (PWL) systems we can analytically determine these maps, make statements about
their properties in dependence on the parameters and obtain global results.

In [Pliete,1998] we make a first step in this direction. But there, we only consider a PWL
system with A := AT = A~. We do not stress the bifurcation phenomena and highlight
the results only in the symmetric case, that is if b = —b] and b = —b; . For the special
cases tr(A4)® —4det(A) < 0, tr(A) # 0 and det(A) < 0 we give complete analyses in a
modified form in [Giannakopoulos & Pliete,2001] and [Giannakopoulos & Pliete,2002],
respectively.

In this chapter we consider the PWL system

<¢> AT@) 4 () i >0

. = _(r b . (41)
i) A @+ Litr<o
with
+ a1i1 1 + 4 3+ 1+
A* = o o) aiy, ag;, b7, by € R.
21

Note that we get such a system if we linearise the right-hand sides of system (2.1) at

xz=0:
—F£(0 b
0=\ pr0) 7
—F*(0) 1 af 1
+ — —. 11
Df (an)_ (_g:i:’ 0) o) a2i1 0
Before determining the discrete-time maps I1* we identify and characterise the equilibria

of system (4.1) in G+. We do this because the maps I+ depend on the eigenvalues of
AT and consequently on the kind of equilibria.
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4. Results for the piecewise-linear system

Lemma 4.1 (Equilibria in G.).

+
There exists an equilibrium (zg,ys) = ( 51 , “;1 b+) in G4 and an equilibrium
21 21
(Tg,y) := (—2%,“1;% — 1’) in G_ if aj; # 0, b2 < 0 and ay; # 0, = > 0, respec-
21 21
tively.

1. If a5, <0 and a3, = 0, then (x5, yi) is a center.

2. If aii” + 40, > 0 and aF, < 0, then (zF,yF) is a node, unstable if a5 > 0 and
stable if af, < 0.

3. If at> +4ak > 0 and al, > 0, then (2%, yi) is a saddle point.

4. If aiz +4a3;, < 0 and a3, # 0, then (z3,y5) is a focus, unstable if af; > 0 and
stable if ai; < 0.

Considering the discrete-time maps II™ and II~ we conclude results on existence and
non-existence of closed trajectories of type I. Moreover, we give necessary conditions
on the existence of closed trajectories of type II and we finally prove a theorem on the
bifurcation of a periodic solution with sliding motion in G+ of the PWL system (4.1). In
case of system (2.1) we proved a Hopf-like bifurcation of a periodic solution with sliding
motion in G. This result was local, whereas in case of the PWL system (4.1) we will
obtain a global result.

4.1. Existence and properties of the discrete-time
maps [1*

In this section we determine for which conditions the discrete-time maps II* exist.
We consider b¥ and by as bifurcation parameters. Nevertheless, we need to dif-
ferentiate between several cases, depending on the eigenvalues of A*. We will show
that these maps are in each case strictly decreasing and convex, concave or a straight line.

We only determine the map II" in detail. The determination of II~ is analogous.

Assume sq € M™T is given. Then, the solution ¢ of equation (4.1) with initial value

(ﬁ;ggg) = (S(L) is given by

o= ((2)+an (35)) -0 ()

1 ( N b+(af'2(f)a11 +1—afi(t) — afy(t)ag; (so + b)) )

ag, \b3 (s (t)aq; — ag(t)) — agy(t)(so + b)) + a3, bf

where aj; # 0 and o (t) := e”"* is the transition matrix, see Proposition C.1. We get

sp € M* if sp > —b] and there exists a minimal tJ > 0 with ¢;(¢J) = 0. Then, the

discrete-time map IT" is defined with II"(sq) = @o(td). If there exists a t7 > 0 with

oy (td) = 0, ITT exists for all sy > —b; in the case of b = 0 and it is not defined in the
12{lo 1 2

44



4.1. Existence and properties of the discrete-time maps I+

case of bf # 0. For aj; = 0 we need to compute ¢ separately, because in this case A™ is
not regular.

Lemma 4.2 (Properties of the discrete-time map IT").
Consider the PWL system (4.1). Then there holds for the half discrete-time map 117 :

1. af,’ + 4a; > 0, af, # 0 (saddle/node-case)
II* ezists if and only if by < 0.

Let nt+w™ and nt—w™t withnt := % andw™ = 34/ at,? + 4a}, be the eigenvalues
of AT.
a) If nt —wt <0 and n* + wt <0 (stable node),
bt
I ] - bif_a OO[ — ]a_-2|-(77+ +w+) o bi'—a _bf—[
21

15 strictly decreasing and convex.

b) If nt —wt >0 and n™ +w™ > 0 (unstable node),

b-l—
I ]=of, 2Ot —wh) =0f[ — ]—o00,=bf]
Qg
18 strictly decreasing and concave.

c) If nt —wt <0 and n*t +w™ > 0 (saddle point),

H+. —b b+ R _b+ 5 + + _b+ _b+
] —(m"=wh) =0 — 5O +w) =, b
a21 Qg

is strictly decreasing, concave if n*t > 0 and conver if n™ < 0.
d) If nt =0 (saddle point),
b;aﬁ b — ]b;’cﬁ

21 a21

H+: ]_b_lka

b, =b{ |

18 a straight line with slope —1.
T+ :=]0,00|] is the domain of the switching time tJ .

2. af,” +4af, < 0, aj, # 0 (focus-case)
1" ezists for all by € R.

+
Let n* + iwt and nt —iwt with gt = 4L and wt = %\/—an — 4daj;, be the

eigenvalues of A™.
mt: Mt — M*

is strictly decreasing, concave if nt > 0, conver if nt < 0 and a straight line with
slope —1 if n* = 0. The domains M™ and M* are given by

Mt - |=b7,00] ,ifby <0ornt>0
)5t o0 ,ifbg >0 andnt <0
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4. Results for the piecewise-linear system

+
ot .— _ byt 0 + 0, . = (gt s
where 57 := —Ze " " sin(wty) — b and t] is the unique zero of Z1(t;n",w™) in
I, 22, see Proposition B.1.

Kt JImoe bl by <0 ornt <0
o Ust, b ,ifbg >0 andnt >0

P En"‘ sin(wt))—2wt sinh(p*4?) ;4
where 8§ = i Sin () by .
0.t <0
]L+ 2—1[ by >0,m" =

{ = ,if by =0
is the domain of the switching time tJ .

3. all +4ag3; =0, af; # 0 # a3, (node-case)
I0* exists if and only if b < 0.

Let nt = a?i be the eigenvalue of A™T.
nt: Mt — Mt

is strictly decreasing and concave if nt > 0 and convez if n* < 0. The domains
M™* and M are given by

+ .
vt IO L it >0
]_bikaoo[ 7if77+<0,

M+ o ]_ofa_bi[ ’ Zf77+>0
' ]_%_bf—a_bf[ 7if77+<0-

T+ :=]0,00] is the domain of the switching time tg .

4- ag—l = 0,@1‘1 7& 0
II* ezists if and only if b < 0.

It : M+ — M+

is strictly decreasing and concave if at; > 0 and convez if af; < 0. The domains
M™ and M™ are given by

by .
Mt = {]_bi—’_ﬁ_bi’—[ 7lfa'1|—1>0

]—b+,00[ ’ ifaikl <0,
M™ = A -
] b b[ , ifaf; <O.

T+ :=]0,00| is the domain of the switching time t{ .
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4.1. Existence and properties of the discrete-time maps I+

Proof. The determination of the discrete-time map II* is very technical and therefore
located in Appendix D. O

Lemma 4.3 (Properties of the discrete-time map IT™).
Consider the PWL system (4.1). Then there holds for the half discrete-time map 11~ :

1. a5’ 4 4ay;, > 0, ay, # 0 (saddle/node-case)
[T~ exists if and only if b, > 0.

Letn™+w™ andn™—w™ withn™ := % andw™ = %\/ aﬁQ + 4a4, be the eigenvalues
of A™.

a) If 7 —w” <0 andn” +w™ <0 (stable node),
_ _ _by _
o ]_Ooa_bl[ ? ]_bla_g(n tw )_bl[

(g1

15 strictly decreasing and concave.
b) If n” —w™ >0 and n~ +w™ > 0 (unstable node),
L

Qo

I =" —w?) =br, =bi[ — ]=br,00]

18 strictly decreasing and convex.

¢c) If ~ —w” <0 andn~ +w™ > 0 (saddle point),
- by _ L by, o -
I 2 —w ) =by,=b [ — ]=0b, 2 +w)=b]
o1 531

is strictly decreasing, convez if n~ > 0 and concave if n~ < 0.
d) If n— =0 (saddle point),
by w™

b, =bi [ — J=b, == = b

In: ]_bzw_

Qo1 Qo1

s a straight line with slope —1.
T~ :=10,00[ is the domain of the switching time t .

2. a;,” +4a5, < 0, ay # 0 (focus-case)
IT™ emists for all b, € R.

Let n~ +iw™ and n~ — iw~ with n~ = % and w— = %\/ —aﬁ? —4ay;, be the

etgenvalues of A~. X

nm M — M-
18 strictly decreasing, convex if n~ > 0, concave if n~ < 0 and a straight line with
slope —1 if n~ = 0. The domains M~ and M~ are given by

M- | —o0,=by[ ,ifby; >00rn >0
| — 00,57 Lifby <0 andn” <0
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4. Results for the piecewise-linear system

__ by _p—10 . - : . - I
where 5 1= —2e™" Msin(wtl) — by and 1) is the unique zero of Zy(t;n~,w™) in
T 2n [ see Proposition B.1.

w w

M—:: ]—bl_,OO[ 77'fb2_2007‘777§0
|—b7,8 [ ,ifby <0andn >0

~l b, 1~ sin(w t9)—2w~ sinh(n—t?9 _
where § 1= to 1 sinw@ 4) - (n—#) _ by .
ay sin(wt?)

=80 L ifby, <0, #0
== ifb, <0, =0
0, = ,if by >0

{=} by =0

15 the domain of the switching time t; .

3. al_12 +4ay =0, a7y # 0 # ay (node-case)
IT~ emists +f and only if by > 0.
Let n~ := GQA be the eigenvalue of A™.
MM~ — M~
is strictly decreasing and convez if n= > 0 and concave if n~ < 0. The domains
M~ and M~ are given by
= mrw[,#m>o

M~ = I-

] o0, — [ ; Zf n- <0,
- ,ifn >0
[T ' oo ) ffn

] blv_i—_bl[ ;Zf77_<0-
T~ :=]0,00[ is the domain of the switching time t; .

4- a;l = 0,@1_1 7& 0
[T~ exists if and only if by > 0.

m M — M
is strictly decreasing and convez if a;; > 0 and concave if a;; < 0. The domains
M~ and M~ are given by

M,:F—;—W,V[,ﬁ@>o

] ’ bl[ ;ifafl<07
N —by,00 ,ifa;; >0
S e
]_b1a_é_bl[ TR
T~ :=]0,00[ is the domain of the switching time t .
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4.2. Closed trajectories of type I

Remark 4.4 (The cases aj; = aj; = 0 and aj; = a;; = 0).
For a solution in G starting at a point (S(L) with s > —b]" there holds

<x(t)> _ (%b;ﬁ + st + bft)
y(t)) byt + so '

x(t) is equal to zero if and only if t = 0. This means that M+ = () and II* is not defined.
Analogous, we have M~ = () and I1~ is not defined.

4.2. Closed trajectories of type |

First, we summarize the results on non-existence of closed trajectories in G, G_ and
of type I for the PWL system (4.1) as a consequence of Lemmas 3.6, 3.7, 3.8 and 3.10.
From the properties of the discrete-time maps II™ and II~ we can conclude statements on
the maximal number of closed trajectories of type 1. Afterwards we introduce a general
concept for determining them.

Corollary 4.5 (Non-existence of closed trajectories in G ).

Consider the PWL system (4.1). If we assume that af, # 0 or af,” +4af; > 0 then there
exists no closed trajectory in G.

Corollary 4.6 (Non-existence of closed trajectories in G_).
Consider the PWL system (4.1). If we assume that a;; # 0 or af12+4a§1 > 0 then there
exists no closed trajectory in G_.

Corollary 4.7 (Non-existence of closed trajectories of type I).
Consider the PWL system (4.1). If one of the conditions

1. af (bf = b7) >0 and a;; (bf —b7) >0

+ - =
2, a§1<0,af1<0,a2_1<0,a1_1<0,b§>0,b2_<0and%—bfz%—bf

1

holds, then system (4.1) has no closed trajectory of type I.

From the properties of the discrete-time maps II™ and IT~ we can draw consequences on
the maximal number of closed trajectories of type I.

Corollary 4.8 (Existence of closed trajectories of type I).

Consider the PWL system (4.1). There exist at most two closed trajectories of type I
for all b, b3, a3, € R, provided af, # 0 or ay; # 0. In case of ai, = a;; = 0 there either
exist no or infinitely many closed trajectories of type I.

Proof. The existence of a closed trajectory of type I containing the point (S(L) with
S9 € M™ is equivalent to the existence of the non-trivial fixed point sy of the Poincaré-
map IT := [T~ oIl*. As a consequence of Lemma 4.3 we have that IT~ is strictly decreasing
and thus invertible:

so =I(so) = " (II*(s0)) & (II7)"'(s0) = IT*(s0)
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4. Results for the piecewise-linear system

This means that there exists a closed trajectory of type I if and only if I[T* and (IT7)~!

have an intersection point in their domains. Due to Lemmas 4.2 and 4.3 it follows that
I and II~ are strictly decreasing and convex, concave or a straight line. Thus (IT7)~!
has the same properties as II~. Two functions which are strictly decreasing and concave,
convex or a straight line can have at most two intersection points, provided that not both
functions are straight lines. If both functions are straight lines, they have no intersection
points if they are parallel or they have infinitely many if they coincide. This is the case
if and only if af; = aj; = 0. O

We introduce now a general concept for determining closed trajectories of type I. A
closed trajectory of type I of the PWS system (2.1) is characterised as follows, see
section 2.3. Starting from a point (S(L) with sg € M the trajectory crosses M at a point

(50) with s; € M~. Here, the system changes the properties of flow, evolves on G_ until
0

reaching M again at a point (501) The trajectory is closed if we have sy = s; which is

equivalent to so = I17(sj). We get the discrete-time maps 1" (so(¢])) and I17 (s (¢, ))

from Lemmas 4.2 and 4.3. The times #j and #; are defined as the minimal numbers

greater zero with ¢ (tF) = 0, where ¢* is the solution of system (4.1) in G with initial

values ¢*(0) = (SO) and ¢~ (0) = (%), respectively.
In the case of af; # 0, using the transition matrix, see Proposition C.1, we obtain

o= () e () - ()
¢7(t) = |e ATy (A7) ¢
50 b bs
_ 1 ( by (eafz(t)af; + 1 = afy (1) — afy(t)ag; (so + b7) )
a by (e (t)agy — afy — g () — agy(t)(s0 + b7) + ag; b7
&7 () = 0 is equivalent to afy(tg) = 0, by = 0 and sy > —b] arbitrary or
by (afa(tg)ady +1—af;
afy(tg)as
The domains of sy and 7 are given in Lemma 4.2. Using equation (s0) we get
+ by (ag(ts ) + e (tg)afy — det(a (t7)))
o= BREACY

Note that sy and s} are functions of t§ depending on b and b3 .

‘121

sp = ) _ bf. (s0)

— b (s0%)

In case of ap,(ty) # 0, s; is given by ¢, (t5), where ¢~ is the solution of system (4.1)
with initial value ¢~ (0) = (s%) and s is given by equation (s0%*):
1 ., . _ _ _ NN _ _
S1=" (b2 (ag(to)aty — ayy — ay (ty)) — ax(t)(s5 +by) — by )
21

The domain of ¢, is given in Lemma 4.3. Note that s; is a function of ¢, depending on
ts, b and by

Assuming that there exists a closed trajectory of type I, there holds s; = sy which is
equivalent to

1 S B o RN B B
30(t0+§ b1+> b;) = T (b2 (a22(t0 Jay, — a; — a21(t0 ) — 0‘22(t0 )(So(tJS b1+a b2+) +b)— b ) .
21
(4.2)
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4.3. Non-existence of closed trajectories of type II

This equation depends on the transition matrices eA*15 which depend for their part
on the eigenvalues of A*. In case of af, # 0 we have to consider 10 x 10 = 100
different cases. In case of either aj; = 0 or a;; = 0 we get at each time 2 x 10 more
cases and 2 x 2 = 4 cases for aj; = a,; = 0, see Lemmas 4.2 and 4.3. This means
that we have all together 144 different cases. However, in the next chapter we will
show that the PWL system (4.1) with Zy—symmetry has only two parameters by, by
and that a complete analysis using the above mentioned approach is accessible, see also
[Pliete,1998], [Giannakopoulos & Pliete,2001] and [Giannakopoulos & Pliete,2002].

4.3. Non-existence of closed trajectories of type Il

In consequence of Lemma 3.5 we get necessary conditions for the existence of closed
trajectories of type II for the PWS system (2.1). In the case of the PWL system (4.1)
we can prove stronger result.

Lemma 4.9 (Non-existence of closed trajectories of type II).
Consider the PWL system (4.1). One of the following conditions is necessary for the
existence of a closed trajectory of type II:

1. aﬁQ +4aj; <0, af; #0, bf # by and by > 0.
2. a1_12 +4ay <0, a;; #0, b # b7 and b; < 0.

This means that the existence of a focus in G or G_ is necessary for the existence of a
closed trajectory of type I1.

Proof. In consequence of Lemma 3.5 we get that the conditions b # b, and b > 0 or
b, < 0 are necessary for the existence of a closed trajectory of type II. So, assume that
by > 0. We only prove this case. The case b, < 0 is analogous.

In case of b < by, all sliding motion solutions (0, y(¢)) with y(0) > min{y,, —b; } leave
I, = {0} x [~by, —b]] at (0, —b]") after finite time because of the attraction of I, and
(0, —b7) is a leaving point. Without loss of generality, assume that the solution ¢ leaves
I, at (0, —b]) at time ¢t = 0. Then ¢ evolves in G for ¢t > 0 and there holds

o= (@) ()
_ _E( afy(t)af +1 - o (t) ) B (0)

0;1 O@LQ(t)aE - ale - ag—l (t) bfL

if af; # 0 and

o(t) = by (e“ﬁt —-1- aﬁt) ( 0 )
afL12 aﬁzt by

. 2 ..
if aj, = 0. Assume now a;” + 4ad;, > 0 or af; = 0. A necessary condition for the

existence of a closed trajectory of type II is that ¢ intersects with M again after finite
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4. Results for the piecewise-linear system

time t > 0. But if we consider the first coordinate ¢;(t) of the solution with ¢ > 0 we
get that

+ .
—;%(aﬁ(t)aﬁ +1-a5(t) ,ifag #0
¢1(t) = b+21

+ .
#(eaut —-1- a_l'—lt) ) 1f a;l = Oa ai—l 7é 0
11
(b = + e+ +
——22E(0,wF) ifag; <0,af;, =0
by Ea(tmtwt : 2 + +
= < b+e7’+t . . +2 + + +
T Es(tn™) ifay” +4az = 0,07, # 0 # ag
by Pt +
o +2=7(t af;) ,ifag; = 0,07, #0

is greater zero for all ¢ > 0 or in case of af; = 0 and a3, < 0 for all ¢ €]0, 5—1[ Thereby,

+

a 2 _ -, - —_ . ..

we have nt 1= 41wt = 14/|a" + 4a | and =4, Z,, =5 and =, as in Propositions B.1
2 2 11 21 ) ’ )

B.2, B.5 and B.7.

In case of b > by, a solution in G can reach I, = {0} x [-b],—b]] only at the
reaching point (0, —b;). Without loss of generality, assume that the solution ¢ reaches
I, at (0, —b7) at time ¢ = 0. Then ¢ evolves in G, for —t < 0 and there holds

s = [ () @ (5] - e ()

by [ alb(~t)a; +1—afi (1) (0
a+ agy(—t)af;, — af; — ag (1) b

bi (e vt — 1+ apt 0
¢(_t) = + 12 +2 - b+
a1y —ap; t 1

: 2 .
if aj; = 0. Assume now af;” + 4aj; > 0 or af; = 0. A necessary condition for the

existence of a closed trajectory of type II is that ¢ intersects with M again after finite
time —t < 0. But if we consider the first coordinate ¢;(—t) of the solution with —¢ < 0
we get that

if ag1 7é 0 and

( b‘; — /4. + e+ + —
_a$w+\_.1(t,0,w ) ,1fa21 <0,a11—0
by Ea(ti—ntwh) T + +

qsl(—t) = < ot Qs . 5
’ ejl Es(t;—n") ifafy” +4ag; = 0,af; # 0 # a3

-{?257(1‘;7 _ai—l) ) if a’;l = Oa a’ikl 7& 0

is greater zero for all —t < 0 or —¢ €]0, = 211 in case of aj; < 0 and af; = 0. From this
we obtain the assertion. O
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4.4. Bifurcation of a periodic solution with sliding motion in G+

Example 4.10 (Geometrical proof for the saddle case).
In [Giannakopoulos & Pliete,2002] we use a more geometrical approach to prove the non-
existence of closed trajectories of type II in G, for the saddle-case, i.e. for the case
+2 + +
a; +4as; >0, ag; > 0.

Lemma 4.11.
1. System (4.1) has a sliding motion solution if and only if b7 # b, and by # by .

2. If b < b7 and by < 0, there are no sliding motion solutions which can leave I,
into G, see Figure 4.1(a).

8. If bf < b and by > 0, all sliding motion solutions leaving I, at (0, —b7) after a

finite time, evolve in G and become unbounded as t — oo, see Figure 4.1(b).

4. If b > b and b < 0, there are no solutions of G which enter I,, see Figure

4.1(c).

5. If bf > b7 and by > 0, any solution with sliding motion reaching I, at (0,—b;)
from G satisfies either (z(t),y(t)) — (0,y0) if by < 0, |z(¢)| + |y(¢)| = oo as
t — 00 or (z(t),y(t)) evolves in G_, see Figure 4.1(d).

Note that if b7 # b, and by > 0 the domain D := {(5) €eR?:2>0,y>—ajz— bf}
18 positive invariant under the flow on G.

4.4. Bifurcation of a periodic solution with sliding
motion in G
In section 3.5 we proved the bifurcation of a periodic solution in G with sliding motion

for the PWS system (2.1). We could only prove a local result, i.e. for sufficiently small

values of the parameters 2F. In case of the PWL system (4.1) we can prove a global

analogue. We can determine the whole parameter interval for which the periodic solution
exists and can show that this periodic solution becomes homoclinic and disappears.

4.4.1. Main results

Theorem 4.12 (Hopf-like bifurcation of a periodic solution with sliding motion
in G'_|_).
Consider the PWL system (4.1). Assume that

(L1+) af,” + 4a};, < 0, aly #0;
(L2+) aj;(b] —b7) < 0.
Then

1. there exist no equilibria and no closed trajectories in G—+, provided by < 0;
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4. Results for the piecewise-linear system

y v y'j(w) y:_aif‘lz_bil- y yi-lf_(a;) yzfai’_lsz?—
%
b} > b7
=] | ys (z)
T
=T
b T<—
é
é
y=—a;z— by y=-a,2 b
(a) b} < by and b <0 (b) b < b7 and b} > 0

y=—a;;T—by -
_bii',
%\
(z) <= vt )
¢) bf > by and bf <0 d) bf > b7 and b >0
1 1 2 1 1 2

Figure 4.1.: Phase portrait in a neighbourhood of I for the saddle-case, i.e. a1+12 + 4af; > 0,
af; > 0 and a3} < 0. Thereby, y; (z) and yF(z) are the unstable and stable
manifolds of the saddle point (:Eg', yg' ), respectively.
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4.4. Bifurcation of a periodic solution with sliding motion in G+

£t
2. there exzists a focus (zg,yd) := <—:%, a;lTb? - bT) for all by > 0. It is unstable
21 21

(stable) if af; > 0 (af; < 0);

3. there exists a number b’2’+ > 0 such that there exists a periodic solution with sliding
motion in G for all by €1]0,057[. It surrounds (z§,ys) and is stable (unstable)
if af, >0 (af, <0);

4. there erists a homoclinic solution with sliding motion in G, to the equilibrium
(0,) € I, for bf = b5", provided b, < 0. It is unstable (stable) if af; > 0
(ai—l < 0)7

5. there exists no homoclinic or periodic solution with sliding motion in G for by >

o
Theorem 4.13 (Hopf-like bifurcation of a periodic solution with sliding motion

G).
Consider the PWL system (4.1). Assume that

(L1-) a1_12 +4ay <0, ay; #0;
(L2-) ay;(b] —b7) < 0.
Then

1. there ezist no equilibria and no closed trajectories in G_, provided b, > 0;

2. there exists a focus (xy,yq ) = (—Z—g, ail,bz_ - bf) for all by, < 0. It is unstable
(stable) if a;; > 0 (ag; < 0);

3. there exists a number bb~ < 0 such that there exists a periodic solution with sliding
motion in G_ for all by € 1b57,0[. It surrounds (zy,yy ) and is stable (unstable)
if a;; >0 (a; < 0);

4. there erists a homoclinic solution with sliding motion in G_ to the equilibrium
(0,90) € Iy for by = b5, provided by > 0. It is unstable (stable) if aj; > 0
(al_l < 0)7

5. there exists no homoclinic or periodic solution with sliding motion in G_ for by, <

0

Remark 4.14.
In the case of by = bb" (by = b5") and by > 0 (b < 0) there is no equilibrium in I,.
Then the pertodic solution still exists and no homoclinic solution exists.
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_:l;l _%01_ _bi‘ —bii_
0
So 50
So So

_ —by- Yo
—bf ’ Yo —br
a) bf > b b) b > by c) b < by d) bf < by

by <0 by, >0 by, >0 by, <0

Figure 4.2.: Periodic solutions with sliding motion in G for b > 0

4.4.2. Proof of Theorem 4.12

+ o+
There exists an equilibrium (z7,y,) := (—2%, a;ﬂb bf) in G of system (4.1) if and
21 21

only if b5 > 0 and then it is a focus, see (L1+). As a consequence of Corollary 4.5 we
get that there exist no closed trajectories in G .

In case of by > b, the sliding motion interval I, = {0} X [=b]", —b7] is repulsive. For the
existence of a closed trajectory with sliding motion in G it is necessary that (0, —b]")
is a reaching point. So, we get from Lemma 3.3 the necessary condition b5 > 0. We

consider the reaching solution ¢ of

(5)=+C)+ () 05

with initial value (¢1(0), ¢2(0)) = (0, —b7). ¢ must reach I, after finite time —t; < 0 at
a point (0, so) with sy < min{ye, —b; }, where

yo o= 02 —biby
G

This means that (0, sy) € I and lies on the y—axis below the equilibrium (0, ) if it
exists, see Figures 4.2 a) and b).

In case b] < b, the sliding motion interval I, = {0} x [—b], —b]] is attractive. For the
existence of a closed trajectory with sliding motion in G it is necessary that (0, —b;")
is a leaving point. Again, we get from Lemma 3.3 the necessary condition b > 0. We
consider now the leaving solution ¢ of system (4.3) with initial value (¢1(0), $2(0)) =
(0,—b)). ¢ must reach I, again after finite time t, > 0 at a point (0,s¢) with s; >
max{yp, —b; }. This means that (0, s9) € I, and lies on the y—axis above the equilibrium
(0, o) if it exists, see Figure 4.2 ¢) and d).

Our next step is to determine the solution of the initial value problem. Defining

CI,+
nt = 2L and
2
1 2
+._ + +
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4.4. Bifurcation of a periodic solution with sliding motion in G+

we get for the solution of the initial value problem

0= (o) = () + () -0 ()

Based on the definition of the transition matrix o (¢) := e?"*, see Proposition C.1, we
get
¢(t) _ b; ( aig(t)a’i'—l + - af—l(t) ) - <0>
az \ag(t)af, — af; — ag (t) by
b et (nt sin(wtt) — wt cos(wtt)) + wt 0
C wtagy \em(sin(wtt) (Wt — nt?) + 2wtnt cos(wtt)) — 2nptwt bl )

Assuming b5 > 0 we verify for which conditions closed trajectories exit.

Case 1: b > b;: Assume that ¢ reaches M again after finite time —ty < 0 at (0, sp). Then
there holds
$1(~to) =0 & Ei(to;n",w") =0

with

Ei(t;n,w) == —e ™ (nsin(wt) + wcos(wt)) + w. (4.4)
From Proposition B.1 we get that there exists no solution of equation (4.4) ,
provided n* > 0. For n < 0 we get that t, = 1) € | %, 2%[ solves equation (4.4).
According to these assumptions we obtain for the intersection point (0, so)

S0 = ¢o(—t1)
by )
= _w+2a+ (e 8 (= sin(w ) (Wt — n*?) + 2ntwT cos(wTt?)) — 2ptw™) — b
21
_ —bfe " sin(wtt)) "
—_— w+ - 1 .

Because of Lemma 3.1 we get (0,%,) € I, if and only if b5 b, < 0. Therefore, the
periodic solution with sliding motion exits for all b5 € ]0, 5" with

(by fb+)w+e"+t(1) - ep 71—
v ) ey th ity <0
2 — _pHyutenTt]
(b —b )wte ‘1 cp 71—
lsinl(Tt?) 5 if b2 > 0.

Case 2: bf < by: Assume that ¢ reaches M again after finite time ¢, > 0 at (0, s9). Then
there holds
¢1(t0) = 0 = El(to, —n+,w+) = 0 (45)
From Proposition B.1 we get that there exists no solution of equation (4.5), pro-
vided n* < 0. For n* > 0 we get that ¢, = t{ € ], 2%[ solves equation (4.5).
According to these assumptions we obtain for the intersection point (0, sg)

bF e sin(w?)

wT

so = ¢a(t)) = — by
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4. Results for the piecewise-linear system

In this case, the periodic solution exists for all b5 € ]0, b’2’+[ with

(b b Jwte "
+ . sin(wt?)
o (b —b] Jwte ™™ i
sin(wt?)

+b; L ifby; <0
,if by > 0.

In case of b; < 0 the equilibrium (0, o) exists and lies in I; such that the periodic
solution becomes a homoclinic solution to (0, ), provided by = b5™.
O

4.4.3. Proof of Theorem 4.13

We can prove this theorem analogous to the proof of Theorem 4.12. There exists an
equilibrium (zy,yy) = (—%, a::;’iz — bl_) in G_ of system (4.1) if and only if b; < 0
and then it is a focus, see (L1—). As a consequence of Corallary 4.6 we know that there
exist no closed trajectories in G_. For the existence of a closed trajectory with sliding
motion in G_ it is necessary that (0, —b7) is a reaching or leaving point. So we get from
Lemma 3.3 the necessary condition b, < 0.

Defining

- a11
= d
n 5 an

_ 1 _2

we obtain for the solution of the initial value problem

0= (i) = () +7(2)) -0 ()
by &1y sin(w ) — w cos(w L)) + w- ) ~ ( 0 )

W ag (e”_t(sin(w—t)(u}—2 —n=2) + 2w=n~ cos(wt)) — 2n~w™

Assuming b, < 0 we verify for which conditions closed trajectories exist.
Case 1: b > b;: We get for n* < 0

—by e Y sin(wt9)

= ¢o(—19) = - b7,

W

where t9 is the unique solution of Z;(¢;n~,w™) in |Z, 2Z[, see Proposition B.1.

The periodic solution with sliding motion exits for all by, €1657,0[ with

(bf—b;)w_e”it(l)
- sin(w=?)
2 (b+fb7)w_e"_t(1)
179

sin(w=?)

+by ifbf >0
,if by < 0.
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4.4. Bifurcation of a periodic solution with sliding motion in G+

Case 2: b < by: We get for n* > 0

by e 1 sin(wt?)

so = ¢a(t)) = — by,

where #{ is the unique solution of Z;(t; —n~,w™) in |, 2X[, see Proposition B.1.
In this case, the periodic solution exists for all b; € b5, 0] with

b w e 49 .
R ALY

= -0
2 (by —bP)w= e~ "
sin(w—t9)

,if b3 < 0.

In case of b > 0 the equilibrium (0, ) exists and lies in I, such that the periodic

solution becomes a homoclinic solution to (0, o), provided b; = b5.
O

Remark 4.15 (Bifurcation diagram).

We present a bifurcation diagram of the Hopf-like bifurcation of a periodic solution with
sliding motion in G in case of by > 0 and b; < 0. In that case the equilibrium (0,y)
ezists and it is unstable (stable) if bf > by (bf < by). The focus (z§,yy) also exists
and it is stable (unstable) if af; < 0 (af; > 0) which is because of (L2+) equivalent
to bf > by (b < by). We draw the length of the sliding motion part of the peri-

o ¢ afti R,
odic solution against by . Note that y, = T_b1 and sy are linear in by , see Figure 4.3.
21

S0

bl > b ©af; <0 b <by & af; >0

Figure 4.3.: Homoclinic bifurcation from a periodic solution in G at by = b5"

As mentioned at the end of section 4.2, only for determining closed trajectories of type I
we have to consider 144 different cases, depending on the eigenvalues of A*. Assuming
Zs—symmetry for the PWL system (4.1), the 144 different cases can be reduced to only
5 different cases. For these 5 cases we can provide a complete analysis with global results
and bifurcation diagrams depending on two parameters. Therefore, in the next chapter
we consider system (4.1) with Zy—symmetry.
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5. Results for the piecewise-linear
system with Zs—symmetry

As mentioned before we consider now PWL systems with Z;—symmetry, because in
that case we can provide a complete analysis including global results and bifurca-
tion diagrams. Therefore, throughout this chapter we assume that system (4.1) is
Zo—symmetric. This means if (x(¢),y(¢)) is also a solution of (4.1) then (—z(t), —y(t))
is a solution. After deriving a special normal form for that system, we investigate a
complete analysis and present bifurcation diagrams for five different cases depending on
the kind of equilibria in G4. A first step is done in [Pliete,1998] and the focus- and
saddle-cases are investigated in a modified form in [Giannakopoulos & Pliete,2001] and
[Giannakopoulos & Pliete,2002], respectively.

5.1. Preliminaries

In this section we first derive a normal form of system (4.1) with Zy—symmetry. Af-
terwards we summerize all results on singular points, existence and non-uniqueness of
the initial value problem and non-existence of closed trajectories. Finally, we derive a
concept for determining existence and stability of closed trajectories of type I.

5.1.1. Derivation of the PWL system with Z;—symmetry

In this subsection we derive a normal form for the PWL system (4.1) with Zy—symmetry
which is investigated in the following.
As shown in section 3.4, the symmetry properties lead to

b x b,
() () -0)-6)
Y by Y b
We thus get the conditions
b = —=by =
by = —by =: By
aj; =aj =:an

+ — - —.
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5. Results for the piecewise-linear system with Zo—symmetry

in system (4.1) and thus the PWL system

U a1 1 u ﬁl
= . 5.1
(6) = (2 0) (0) +en () o
Using time rescaling, we transform system (5.1) to an equivalent system in a special
normal form.

Lemma 5.1. System (5.1) is equivalent to system

(Z) = Ay (Z) + sgn(z)b, (5.2)

-6 1
_p 0 ’

{_% ) ifafll 7é 0 (53)

where

A

pd

p . )
—a21 ,ifa;n =0

1 ,ifan #0
0 ,ifa11=0

J

and b = (by,by)T with

by = —lel ;ifa117é0’
B ,ifann =0

(1’372 , Zf a1 ?é 0
by = 11 . .
B, ifa =0
Proof. Setting
t
z(l) = u(——
(t) = u(~=-)
1 t
t) = ——v(——
y( ) a1 an
in case of ay; # 0 proves the lemma. O

Note that if tr(A) = ay; > 0, the transformation of system (5.1) to system (5.2) causes
a time reversing. This implicates that stable equilibria and periodic solutions become
unstable, and unstable equilibria (except saddle points) and periodic solutions become
stable.

Equation (5.2) is the system we investigate in this chapter. We assume § € {0,1} and
p, b1, b0 € R.
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5.2.  Existence and non-existence of closed trajectories

5.1.2. Singular points, sliding motion, existence and
non-uniqueness of the initial value problem

In this subsection we summarize the results on solutions of system (5.2) with initial
values (x(0),y(0)) = (xo, ¥o), see section 2.1 and Lemma 3.4. Afterwards we determine
and characterise all singular points of system (5.2).

Lemma 5.2 (Sliding motion interval and vector field).
Consider system (5.2). There holds

1. for the sliding motion interval I:
a) if by > 0, then I, = {0} x [—by, b1 is repulsive;
b) if by <O, then I, = {0} x [by, —bi] is attractive;
¢) if by =0, then I, = {(0,0)};

2. for the vector field on I, in case of by # 0:

All results on existence and non-uniqueness of the initial value problem and singular
points in I,, given in Lemmas 3.4, 3.1 and 3.3, still hold if we set b} = —b] = by,
by = —b; = by and yo = 0.

The next lemma provides a characterisation of the equilibria in G, see Lemma 4.1.

Lemma 5.3 (Equilibria in G.).
There are equilibria
(25,95) = (ib;za i% Fb1) in Gy if and only if p# 0 and %2 > 0.

1. If p>0, 6 =0, then (zF,yF) are centers.
2. If p < 0, then (25, yF) are saddle points.
3. If0<p< i, § =1, then (xF,yg) are stable nodes.

4. If p > i, § =1, then (z3,y3) are stable foci.

5.2. Existence and non-existence of closed trajectories

In this section we summarize the results on existence and non-existence of closed trajec-
tories for system (5.2), see Lemmas 3.8, 3.10, 3.5, Theorem 3.14 and Corollary 4.8. As a
consequence of Corollaries 4.5 and 4.6 we obtain the non-existence of closed trajectories
in Gy if p < % or § = 1. In the case of p > 0, § = 0 and b3 > 0 the equilibria (27, y)
exist and are centers.

63



5. Results for the piecewise-linear system with Zo—symmetry

Corollary 5.4 (Non-existence of closed trajectories of type I).
Consider system (5.2).

1. If § = 1, the condition by > 0 is necessary for the existence of closed trajectories
of type I and then there exist at most two.

2. If 6 = 0, the condition by > 0 is necessary for the existence of closed trajectories
of type I and then there exist none or infinitely many.

3. If 6 =1, p > 0, the condition by < byp is necessary for the existence of closed
trajectories of type I.

Corollary 5.5 (Non-existence of closed trajectories of type II).
Consider system (5.2). The conditions by > 0, by > 0, 6 =1 and p > i are necessary
for the existence of closed trajectories of type II.

Corollary 5.6 (Existence of closed trajectories of type I).
Consider system (5.2). Assume that by >0, by <0, d =1 and p > 0. Then there ezists
a unique stable closed trajectory of type I surrounding I.

5.2.1. Determination of existence and stability of closed
trajectories of type |

In the next sections we will detect closed trajectories of type I in different cases for system
(5.2) depending on § and p. Hence, we develop a general concept for determining closed
trajectories of type I and their orbital stability.

Existence

For detecting closed trajectories of type I, we consider solutions of system (5.2) which
start at a point (S(L) with s € M* at t = 0, enter G, and cross M at a point (s%) with
sy € M~ after finite time ¢; € T". Then they evolve in G_ until reaching M again at
a point () after finite time t; € T~. For the definitions of M* and T+ see Lemmas
4.2 and 4.3. The corresponding trajectories are closed if we have sy = s;. From the
symmetry properties of system (2.1) we obtain t* := t{f =1, and sj = —sp in case of a
closed trajectory.

If aq2(t*) # 0, from equation (s0) we get

. bg a11(t*) + (50[12(t*) -1
S = —
D a2(t*)

au(t) O!lg(t)
a(t) =
( ) <a21 (t) Olgg(t)
is the transition matrix, see Proposition C.1, and equation (4.2) is equivalent to

%(Ozll(t*) — C¥22(t*) + 250&12(75*) + det(a(t*)) — 1) = 2b16¥12(t*). (55)

~ by, (5.4)

where

Equations (5.4) and (5.5) provide all parameters, initial values and intersection times
for which system (5.2) has a periodic solution.
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5.3.  The center-case: 6 =0 and p > 0

Stability

Assume that (S(L) with so € M is a fixed point of IT := IT~ o IT*. This means that the

solution starting at (S(L) is periodic. From Lemmas 4.2 and 4.3 we get that IT* and I~
are both strictly decreasing. Furthermore, IT* is convex and II~ is concave if § = 1 and
they are both straight lines if 6 = 0.

Lemma 5.7 (Properties of the Poincaré-map II).
Consider system (5.2).

1. If § = 0, the Poincaré-map 11 is a straight line.
2. If § =1, the Poincaré-map 11 is strictly increasing and concave.
Proof. From the definition of IT as a composition of IT™ and I1~ it follows
IT'(s0) = 117" (IT* (s) ) - I*'(50) > 0,
where II-" and II*' are the first derivatives of II~ and II*.

1. If § = 0, IT* and IT~ are straight lines, see Lemmas 4.2 and 4.3. Consequently,
IT:=1I" oII" is also a straight line.

2. If § = 1, there holds for the second derivative of 11
d d

IT"(s0) = —-(I'(50)) = £(H"(H+(80)) -IT*(s0))
= IT""(IT* (s9)) (T1*' () + IT"(IT* (s9)) 1" () < 0.
<0 >0 <0 >0

O

In the following sections we investigate the existence of closed trajectories of system (5.2)
and their stability in five different cases. For this, let (z(t),y(t)) be a closed trajectory
of system (5.2). We denote the corresponding trajectory by . Closed trajectories of
system (5.2) are closed curves in the plane. From Lemma 5.4 we know that there exist
no closed trajectories if by < 0 and § = 1 or if b; < 0 and 6 = 0. As a consequence of
Lemma 5.5 we obtain that closed trajectories of type II can only exist in the focus-case
6=1and p > %. Consequently, throughout the following sections, we assume b; > 0
and consider only closed trajectories of type I, except for the focus-case. We present
in all different cases depending on § and p a complete analysis and bifurcation diagram
with respect to the parameters b; and by of system (5.2).

5.3. The center-case: 6 =0 and p >0

In this section we consider the center-case of system (5.2) which means we assume § = 0
and p > 0. We call it center-case, because the equilibria (z,y5) are centers if they
exist. We state our main results on existence, number and stability of closed trajectories
in dependency on the parameters b; and b,.
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5. Results for the piecewise-linear system with Zo—symmetry

Theorem 5.8.

If by = 0, for any sy with sq > 0 the solution starting at (x = 0,y = sq) is periodic
and surrounds (0,0). In all other cases there are no closed, heteroclinic or homoclinic
trajectories.

Proof. From Lemma 5.5 we know that in this case there exist no closed trajectories of
type II. Therefore, we only consider trajectories of type I.
Equation (5.4), which is equivalent to

by cos(ypt") =1
/b sin(/pt")

has a solution so € MT for all b # 0 and under this assumption for all t* €
10, %[ U]Z, 22, see Lemma 4.2. In case of by < 0, s is a strictly increasing func-

S0 = 1,

VP’ /P
tion of t* € |0, %[ with limg o4 8o(t*) = —b; and limt*%%_ so(t*) = oo. In case of
by > 0, so is a strictly decreasing function of t* € ]%, %[ with limt*_)%Jr So(t*) = o0

and limt*_)z_\/%_ So(t*) = —by. Since

equation (5.5) provides

o _ 2busin(/pt)
VP

for t* €10, %[ U ]%, %[ . This means that for any sy with sy > 0 the solution starting
at (x =0,y = s¢) is periodic, provided b; = 0 and by # 0. In case of by = 0 system (5.2)
is linear if 5, = 0 and (0,0) is a center. Otherwise there are no closed, homoclinic or

heteroclinic trajectories. O

5.4. The saddle-case: p < 0

In this section we consider the saddle-case of system (5.2) which means we assume p < 0.
We call it saddle-case, because the equilibria (27, yi) are saddle points if they exist. This
case is in a modified form published in [Giannakopoulos & Pliete,2002].

5.4.1. Main results

We first state our main results on existence, number and stability of closed
trajectories depending on the parameters §, b; and by, see Figure 5.1 and
[Giannakopoulos & Pliete,2002].

Theorem 5.9.

1. If § =0, by =0 and by < 0, for any so with |so| < bz‘z/)__p, the solution starting at
(x = 0,y = so) is periodic and surrounds (0,0). The two trajectories starting at
(x =0,y = +%__p) and (x = 0,y = —%__p) are heteroclinic. They connect the
saddle points (x,yg) and (zy,y, ) forming a heteroclinic cycle.
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5.4. The saddle-case: p < 0

by

Figure 5.1.: The dependence of equilibria and closed trajectories on the parameters b;
and by with 6 = 1 and p < 0. For notion see Figure A.1.

2. If 0 =1, by > 0 and by < 2pby, there exists exactly one closed trajectory which is
asymptotically stable and surrounds the sliding motion interval Iy = {0} x [—by, by].

3. If § =1, by > 0 and by = 2pby, there exist exactly two heteroclinic trajectories
connecting the saddle points (zf,ys) and (zy,yy) forming a heteroclinic cycle.
The sliding motion interval I lies inside the interior of the heteroclinic cycle.

In all other cases there are no closed, heteroclinic or homoclinic trajectories.

5.4.2. Proof of Theorem 5.9

Existence of closed trajectories

From Lemma 5.5 we know that in this case no closed trajectories of type II exist.
Therefore, we only consider closed trajectories of type I.

1. In case 6 = 0 equation (5.4), which is equivalent to

_ by —cosh(y/—pt*) -1
—pVP sinh(y/—pt*)

50

_bh
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68

has a solution sy € M™ if and only if b, < 0 and under this assumption for all
t* > 0, see Lemma 4.2. Further s, is a strictly increasing function of ¢t* > 0 with
limy- 04 $o(t*) = —by and limy o0 5o(t*) = 2¥=2 — by. Since

equation (5.5) provides
0 2b; sinh(\/—pt*)
v—P

for t* > 0. This means that for any sq with [so| < @ the solution starting at
(x = 0,y = sp) is periodic, provided b; = 0 and by, < 0. The solutions starting at
(x =0,y = I’Qpﬁ) and (z = 0,y = —%__p) are heteroclinic. They connect the
saddle points (zg,ys) and (x,,%, ) forming a heteroclinic cycle. Otherwise, there
are no closed, homoclinic or heteroclinic trajectories.

. In case 6 = 1 equation (5.4), which is equivalent to

*

_ b_ge’t? (sinh(wt*) + 2w cosh(wt*)) — 2w
2p e~'s sinh(wt*)

S0 - b17

with w := % 1—4p > %, has a solution s, € M™ if and only if by < 0 and under
this assumption for all ¢* > 0, see Lemma 4.2. If by, < 0, s is a strictly increasing

function of t* > 0 with limy o4 so(t*) = —by and limy ;o So(t*) = %(% +w)—b.
Since .
sinh(wt*)e™ =
aip(t*) = % # 0,

equation (5.5) provides

b t*
52 (sinh(wt*) — 2w sinh(g)) = 2l sinh(wt*)

with ¢* > 0 and by, < 0. This implies

2b1p sinh(wt*)
2= A(F) sinh(wt*) — 2w sinh (%) (5.6)

with t* > 0. £ is a well defined function of ¢* and satisfies

1B, AL = o

Jim B(t7) = 2pby.
For the first derivative of 8 there holds
_ 2bypw(sinh(wt*) cosh (%) — 2w cosh(wt*) sinh(%))

() (sinh(wt*) — 2w sinh(%))2

B is positive for all ¢* > 0. Consequently, S is strictly increasing.

We have proved the existence of exactly one closed trajectory, provided b; > 0 and
by < 2pb1



5.4. The saddle-case: p < 0

3. As shown in 2., there holds by = lim_,o, B(t*) = 2pb;. From equation (5.4) we get
b_gozn(t*) + (50412(#) -1 _

= li b

— lim b, 6_%(sinh(wt*2*+ 2w cosh(wt*)) — 2w b,
b =00 e 2 sinh(wt*)

= 21)1&).

We need the following proposition which deals with the seperatrices of the saddle
points.

Proposition 5.10. The unstable manifold of the saddle point (a:oi, ySE) 18 given by
1 by 1
Ya (z) = (5 +wa+ ;2(5 —w) F b

The stable manifold of the saddle point (:coi, y(:)t) 1s given by

1 by 1

+ 2

ys (x) := (5 —w)r + 5(5 + w) F by.

Note that y;" and y, , i € {u, s}, are defined for z > 0 and z < 0, respectively.
For the intersection points of the seperatrices of the saddle points (zg,y;) and
(g, Y, ) with the y—axis there holds in case of by = 2b;p:

by 1

yE(0) =+ (= —w) F b = F2uwh;
p 2
ys (0) = iE(E +w) F b = £2uwb
This means that if b; > 0 and by = 2pb;, the trajectories which start at (z =0,y =
sg) with |sg] = 2wb; connect the saddle points (zg,y,) and (zg,y,) forming a

heteroclinic cycle.

Stability of closed trajectories

Assume 6 = 1, by > 0, by < 2byp and sy € M™ is a fixed point of IT := II~ o II*. This
means that the solution starting at (S(L) is periodic. From Lemmas 4.2 and 4.3 we get
for the half Poincaré-maps

by 1 by 1

H+I ]_b1,5(5+w)_b1[ — ]E(i_w)_bl’_bl[’
by 1 by 1
I ]—§(§+w)—|—b1,bl[ — ]bl,—ﬁ(E—UJ)+b1[

The periodic solution is asymptotically stable if the first derivative of II at the fixed
point sq satisfies |II'(sg)| < 1 and unstable if |II'(sp)| > 1.

From Lemma 5.7 we know that II is strictly increasing and concave. Furthermore,
we know that IT has exactly one nontrivial fixed point sy € | — by, %(% +w) — b .

Since lim o H(s) < %2(% + w) — b1, the monotony and concavity of IT provide

ba 1

0 < IT'(sg) < 1 and thus, the closed trajectory corresponding to the fixed point sq is
asymptotically stable.
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5. Results for the piecewise-linear system with Zo—symmetry

5.4.3. Description of the occurring bifurcation phenomena

Figure 5.1 can also be seen as a 2-dimensional bifurcation diagram. We distinguish
between three different types of bifurcations.

1. Pitchfork-like bifurcation of equilibria on {(b1,bs) € R?> : by = 0}. For by > 0,
the trivial solution (0, 0) is a unique equilibrium of system (5.2) and it is a saddle
point. Passing from {(by,b2) € R? : by > 0} to {(b1,b2) € R?: by < 0} two saddle
points branch from (0, —b;) and (0, 1), and (0, 0) itself becomes a stable node if
by < 0 and an unstable node if by > 0. For by = 0 the sliding motion interval I
consists of equilibria.

2. Hopf-like bifurcation of periodic solutions without sliding motion on {(by, by) € R? :
by =0, by < 0}. When we cross the half-line
{(b1,b) € R?> : b = 0,by; < 0} from {(by,b,) € R? : b < 0,by < 0} to
{(b1,b) € R® : b > 0,by < 0} the asymptotically stable equilibrium (0,0)
becomes unstable and a stable periodic solution bifurcates from (0,0) surrounding
the sliding motion interval .

3. Heteroclinic cycle bifurcation from a periodic solution without sliding motion on
{(bl,bg) e R? : by > O, by = 2pb1} For b > 0 and by, < 2pb1 there is a
unique asymptotically stable periodic solution without sliding motion surrounding
the equilibrium (0,0) and the sliding motion interval I;. Crossing the half-line
{(by1,by) € R*: by > 0, by = 2pb;} the periodic solution becomes a heteroclinic
cycle consisting of two heteroclinic trajectories connecting the two saddle points
(g, yd) and (zy,y, ) and disappears.

Remark 5.11 (Comparison with piecewise-continuous and smooth cases).
We compare now the bifurcation diagram of the PWL saddle-case with a continuously
PWL and a smooth saddle-case. A similar bifurcation diagram to Figure 5.1 for equation
(5.2), where the nonlinearity is a continuous and piecewise-linear function p(o) of the
form o(o) = so if [so| < 1 and (o) = 1 if |so| > 1 with s > 0, can be found in
[Llibre & Sotomayor,1996]. The phase portraits of u = Au + o(wu)v with det(A) < 0,
tr(A+ svw™) < 0 and det(A + svw™) > 0 presented in [Llibre & Sotomayor,1996] relate
to those of (5.2) with by > 0 and by < 0 except the time direction.

A smooth example of the saddle-case can be found in [Guckenheimer & Holmes, 1983,
pp. 871-373]. The nonlinearity is a polynomial of degree 8. The smooth Liénard-system
(1.2) is given by F(z) = 32 — pox and g(z) = —2* — puz with parameters py, ps € R.
Note that the system is Zo—symmetric. This system provides locally around x = 0 and
1 = po = 0 all bifurcation phenomena in dependency on py and o as the PWL system
(5.2) in dependency on by and by. The bifurcation sets in the smooth case are locally

separated by straight lines as in the PWL case.

5.5. The node-case: 6 =1,0<p<1

In this section we consider the node-case of system (5.2) which means we assume ¢ = 1
and 0 < p < i. We call it node-case, because the equilibria (ac(jf, ygE) are nodes if they
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ba

Figure 5.2.: The dependence of equilibria and closed trajectories on the parameters b;
and by with d =1and 0 < p < i. For notation see Figure A.1.

exist.

5.5.1. Main results

We first state our main results on existence, number and stability of closed trajectories
depending on the parameters b; and by, see Figure 5.2.

Theorem 5.12.

1. If by > 0 and by < 0, there exists exactly one closed trajectory which is asymptoti-
cally stable and surrounds the sliding motion interval I, = {0} X [—by, by].

2. If by > 0 and by = 0, there exist exactly two heteroclinic trajectories connecting
the equilibria (0, —by) and (0,by) forming a heteroclinic cycle. The sliding motion

interval I, lies inside the interior of the heteroclinic cycle.

In all other cases there are no closed, heteroclinic or homoclinic trajectories.
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5. Results for the piecewise-linear system with Zo—symmetry

5.5.2. Proof of Theorem 5.12

Note that we get 1. as a consequence of Corollary 3.17. Nevertheless, we determine this
periodic solution to verify its disappearance in a heteroclinic cycle.

Existence of closed trajectories

From Lemma 5.5 we know that in this case there exist no closed trajectories of type II.
Therefore, we only consider trajectories of type I.

1. Incaseof 0 < p < % we can adopt the proof of Theorem 5.9 for the case § =1 and
p < 0 because the transition matrices coincide in these cases. Thus, there exists a
closed trajectory if and only if by = B(t*) with ¢* > 0 and /8 as in (5.6). Now, it
holds

lim B(t%)

t*—0+

lim B(t*)

t*—o0

—0Q,

0

and £ is still a strictly increasing function of t* > 0. We have proved the existence
of exactly one closed trajectory, provided b; > 0 and by < 0. Note that if by <
0, so is a strictly increasing function of ¢* > 0 with limy_,04 so(¢*) = —b; and
limt*_,oo So(t*) = OQ.

In case of p = } equation (5.4), which is equivalent to

bQ 1 t*
=2 (14+=t"—e7)—b
S0 pt*( +2 e ) 1,

has a solution so € M™ if and only if b, < 0 and under this assumption for all
t* > 0, see Lemma 4.2. If by < 0, sq is a strictly increasing function of t* > 0 with
limg 04 So(t*) = —by and limy 1 So(t*) = 00. Since

Oflg(t*) = Gi%t* ?é 0,
equation (5.5) provides

b * *
i(t* —eT e 7)) =2yt

with t* > 0 and by < 0. This implies

bit*
b2 = ﬂ(t*) = ¥ *
2Atr +e T —e7)
with t* > 0 and p = %. [ is a well defined function of ¢* and satisfies
R P = e
A ) =0
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For the first derivative of 8 there holds

bt cosh(£) — 2sinh(%))
= - ,

B'(t") 9 (t + b _ e5 )2

B is positive for all ¢* > 0. Consequently, S is strictly increasing.

We have proved the existence of exactly one closed trajectory, provided b; > 0 and
by < 0.

2. As shown in 1. there holds by = limy o 52(*) = 0. From equation (5.4) we get

lim so(t*) = —b;.

t*—o0

This means that if b; > 0 and by = 0, the trajectories which start at the equilibria
(0, —b;) and (0,b;) form a heteroclinic cycle.

Stability of closed trajectories

Assume b; > 0, by < 0 and so € M is a fixed point of IT := II~ o II*. This means, that
the solution starting at (s(:)) is periodic. From Lemmas 4.2 and 4.3 we get for the half
Poincaré-maps

by 1

ot: | =b,00 —> ]E(E_w)_bl’_bl[’
M ]—oob| — ]bl,—%(%—w)ml[.

The periodic solution is asymptotically stable if the first derivative of II at the fixed
point sq satisfies |I[I'(sg)| < 1 and unstable if |II'(sg)| > 1. From Lemma 5.7 we know
that II is strictly increasing and concave. Furthermore, we know that I has exactly one
nontrivial fixed point sy € | — by, 00[. Since II(s) is defined for s — oo, the monotony
and concavity of IT provide 0 < IT'(sg) < 1 and thus, the closed trajectory corresponding
to the fixed point sy is asymptotically stable.

5.5.3. Description of the occurring bifurcation phenomena

Figure 5.2 can also be seen as a 2-dimensional bifurcation diagram. We distinguish
between three different types of bifurcations.

1. Pitchfork-like bifurcation of equilibria on {(b1,bs) € R? : by = 0}. For by > 0,
the trivial solution (0,0) is a unique equilibrium of system (5.2) and it is a saddle
point. Passing from {(b1,b2) € R?: by > 0} to {(b1,b2) € R?: by < 0} two nodes
branch from (0, —b;) and (0, b1), and (0,0) itself becomes a stable node if b; < 0
and an unstable node if b > 0. For by = 0 the sliding motion interval I, consists
of equilibria.

2. Hopf-like bifurcation of periodic solutions without sliding motion on {(by,by) € R? :
by =0, by < 0}. When we cross the half-line

73



5. Results for the piecewise-linear system with Zo—symmetry

{(bl,bQ) € R? : by = 0, by < 0} from {(bl,bg) € R? : by < 0, by < 0} to
{(b1,b9) € R? : by > 0,by < 0} the asymptotically stable equilibrium (0, 0)
becomes unstable and a stable periodic solution bifurcates from (0,0) surrounding
the sliding motion interval I;.

3. Heteroclinic cycle bifurcation from a periodic solution without sliding motion on
{(b1,b) € R? : b > 0,bp = 0}. For by > 0 and by < 0 there is a
unique asymptotically stable periodic solution without sliding motion surrounding
the equilibrium (0,0) and the sliding motion interval I;. Crossing the half-line
{(b1,bs) € R%: by > 0, by = 0} the periodic solution becomes a heteroclinic cycle
consisting of two heteroclinic trajectories connecting the two equilibria (0, —b;)
and (0, b;) and disappears.

5.6. The focus-case: § =1 and p > 1

In this section we consider the focus-case of system (5.2) which means we assume 6 = 1
and p > i. We call it focus-case, because the equilibria (27, y;) are foci if they exist.
This case is in a modified form published in [Giannakopoulos & Pliete,2001].

5.6.1. Main results

We first state our main results on existence, number and stability of closed trajecto-
ries of type I and II in dependence on the parameters b; and bs, see Figure 5.3 and
[Giannakopoulos & Pliete,2001].

Theorem 5.13 (Closed trajectories of type I).
There ezist positive real numbers 0 < b3 < bl such that for by > 0 the following hold:

1. If by < b, there exists a unique closed trajectory of type I which is asymptotically
stable and surrounds the sliding motion interval I, :== {0} x [—by, by].

2. If by = 1Y, there exist exactly two closed trajectories v and 7y, of type I.
v 18 unstable and intersects the line of discontinuity M at (0,—by) and (0,b;).

The wnterior I of the sliding motion interval I lies inside the interior of ;.
Yo 1s asymptotically stable and surrounds 7.

3. If by € |63, b5, there exist exzactly two closed trajectories v, and vy of type L.
v1 @5 unstable and surrounds the sliding motion interval I.
Yo 15 asymptotically stable and encircles ;.

4. If by = UL, there exists a unique closed trajectory of type I surrounding the sliding
motion interval I,. It is semi-stable, more precisely, it is unstable from inside and
asymptotically stable from outside.

5. For by > bl there are no closed trajectories of type L.

For by > 0 all existing closed trajectories of type I surround the equilibria (zF,yg).
b and b, are given in Proposition 5.16, used in the proof of this theorem, see next
subsection.
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by

(]

%

Figure 5.3.: The dependence of equilibria and closed trajectories on the parameters b;
and by with § =1 and p > ;. For notation see Figure A.1.

Theorem 5.14 (Closed and homoclinic trajectories of type II).
For given by > 0 there is a positive real number b§ with 0 < b§ < b < b, where b3 and
b, are given in Proposition 5.16, such that:

1 If 0 < by < b5, there exist two closed trajectories v~ and ~T of type II. Both
trajectories are unstable. v* lies in G+ and surrounds the equilibrium (xF,yg).

2. If by = b5, there exist exactly two homoclinic trajectories v~ and ~T to the equilib-
rium (0,0). v* lies in G= and surrounds the equilibrium (z,y3).

3. If b5 < by < b, there exists a unique closed trajectory of type II. It is unstable, lies
in G4 UG_ and surrounds the three equilibria (zy,vy ), (0,0) and (zd, ).

4. If by <0 or by > 1Y, there are neither homoclinic nor closed trajectories of type II.

Remark 5.15.

By homoclinic trajectory we mean a solution (x(t),y(t)) of system (5.2) with
limy 100 (z(t), y(t)) = (0,0).
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5. Results for the piecewise-linear system with Zo—symmetry

5.6.2. Proof of Theorem 5.13

Note that we get the existence of a unique asymptotically stable closed trajectory of
type I from Corollary 3.17, provided b; > 0 and by < 0. Nevertheless, we determine this
closed trajectory to verify what happens to it if by becomes greater than 0.

Existence of closed trajectories

Equation (5.4), which is equivalent to

_ by sin(wt*) + 2w cos(wt*) — 2ues
2 sin(wt*)

S0 - bl;
with w = %\/4p — 1, has a solution sy € M™ for all b, € R and t* € T, see Lemma
4.2. Assume now by # 0. Then there holds

sin(wt*)e” >

t* e —— 0
aa(t) ” #
and equation (5.5) provides

b t
52 (sin(wt*) — 2w sinh(g)) = 2b; sin(wt”)

with ¢* € Tt and by # 0. This implies

by = B(t) = 2b1p sin(wt*)

~ sin(wt*) — 2wsinh(£) (5.7)

with £* € T*. In case of by = 0 there holds t* = , see Lemma 4.2.

Proposition 5.16.
The function 8 defined in (5.7) is continuously differentiable for all t €]0,8%[, where t?

1s the unique zero of
t
1 ez, .
w) = ?(sm(wt) — 2wcos(wt)) +w

in |T, %’r[ , see Proposition B.1. If by > 0, there exists a unique number t' € )X 1] such

that there holds, see Figure 5.4:
1. B is strictly increasing in 0, ;
2. B 1s strictly decreasing in |t', 9] ;
8. limy_,o4 B(t) = —00, B(X) =0 and 0 < by < b, where b := B(tY) and bl := B(t").

Proof. Tt is easy to see that (3 is continuously differentiable for ¢ €]0,¢%] and for the first
derivative of 3 we obtain
Bt = 2b1pw (sin(wt*) cosh (L) — 2w cos(wt*) sinh (%))

B (sin(wt*) — 2wsinh(%))?
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by

Figure 5.4.: The function 8

There exists a unique number t' € 1=, %[, given by

tt tt
B'(t") = 0 & sin(wt") cosh(g) — 2w cos(wt) sinh(g) =0,

such that 3 is strictly increasing in |0, [ and strictly decreasing in ¢!, ¢[. Furthermore
we have that limy_o4 8(t) = —o0, B(Z) = 0 and 0 < by < b}, where b := 3(#) and
b, := B(t'). This completes the proof. 0O

We have proved the existence of exactly one closed trajectory of type I, provided b; > 0
and by < b or by = bl respectively. If b; > 0 and b < by < b we have exactly two and
in all other cases no closed trajectories of type I.

Stability of closed trajectories

We get the stability properties of the closed trajectories of type I from the following
lemma:

Lemma 5.17.
Suppose by > 0. With b5 and b, as in Proposition 5.16 there holds:

(a) If by < b3, I has a unique fized point s* > 8T which is attracting.

(b) If by = b3, TI has ezactly two fized points st = 5% and s > 5%. st is repelling from
the right and s} is attracting.

(c) If by < by < b, I has ezactly two fized points st and s} with 57 < sT < s5. s} is
repelling and s is attracting.
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5. Results for the piecewise-linear system with Zo—symmetry

(d) If by = b, 11 has a unique fized point s* > 51 which is attracting from the left and
repelling from the right.

+0

1.
Thereby, there holds 57 := —b2€2+m(m?) — by, see Lemma 4.2.

Remark 5.18.
In case by = 1Y, if we say 57 is a fived point of 11, we mean lim,_,z+, II(s) = 7.

Proof of the lemma. From Lemma 4.2 we get the half Poincaré-maps I+ : M+ —s M+
and I : M~ — M~. The periodic solution is asymptotically stable if the first
derivative of II := II~ o IT* at the fixed point s, satisfies |II'(sg)| < 1 and unstable if
IIT'(sg)| > 1. From Lemma 5.7 we know that II is strictly increasing and concave.

We distinguish between the following cases:

1. If by < b, there exists exactly one nontrivial fixed point

S*E ]—bl,OO[ ,lbeSO
]§+,OO[ ,if 0 < by <bg

Since II(s) is defined for s — oo, the monotony and concavity of II provide 0 <

IT'(s*) < 1.
2. If by = b3, there exist two nontrivial fixed points st = 57 and s > 5+ of II. There
holds
. ! . _! + +I . E% (t*7 %’ W
lim II'(s) = lim II7(II"(s))II" (s) = lim —; : 0.
ssi+ sFHE e+ B (1% —3,w)

Since II(s) is defined for s — oo, the monotony and concavity of II provide 0 <
IT'(s3) < 1.

3. If b < by < b%, the monotony and concavity of I provide 0 < IT'(s3) < 1 < IT'(s?)
for the fixed points s7 < s5 of II.

4. If by = b%, the unique fixed point s* of II fulfills

[1]

G
(tt; —

N =
N -

I1/(s7) = 1=/ (I (s)) I (5) = )

(1]
=10

7

t' is defined as the solution of B/(#!) = 0 which is equivalent to =;(¢; L, w) =

)9
El(tt;—%,w). Thus, we have II'(s*) = 1. Since II is concave, it follows, s* is
attracting from the left and repelling from the right.

Hence, the lemma, is proved. O
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5.6.3. Proof of Theorem 5.14

For by, > 0 there exists §7 > —b; such that a trajectory starting at (0,5") at time
t = 0 evolves in G, and reaches I, at (0, —b;) tangentially after time ¢0. Because of the
symmetry properties there exists another trajectory starting at (0, —5") at time ¢t = 0
which evolves in G and reaches I, at (0,b;) tangentially after time ¢0. If 3% € I, we
can get closed trajectories with sliding motion. Lemma 4.2 provides
Qo
s+ —bye sin(wt?)

— b
w

such that s* can be interpreted as a strictly increasing function of by > 0. Note that ¢?
does not depend on by. There holds

t

o

—bwe 2
57T=0 & by=———=:05,
2 sin(wt?) 2
it
—2bjwe 2
st=b & b —_170—63
sin(wt?)

with b3 as in Proposition 5.16.

1.,2. The conditions (L1+) and (L2+) of Theorems 4.12 and 4.13 are fulfilled. These
proofs provide
=ty = b

Thus, we get the existence of a closed trajectory of type II for 0 < b, < b§ and
the existence of a homolicinic trajectory with sliding motion in G, and G_ to
(0,0) for by = b5, respectively. We determine the Poincaré-map of the closed
trajectory in G, the determination of the Poincaré-map of the closed trajectory
in G_ is analogous, as composition of discrete-time maps II* and II° in G, and
I, respectively. The condition 0 < by < b§ is equivalent to the condition —b; <
5t < 0. Assume that there exists a closed trajectory v with sliding motion which
starts at (0,5%) € I, evolves in G, reaches (0, —b;) tangentially after finite time
t? and reaches, moving along I, for finite time 7%, again (0, 5%), see Figure 5.5(a).
Let (27 (t),y"(t)) be the solution corresponding to v in G, for t € [0,%%] and
(0,%°(t)) be the solution in I, for ¢ € [0, 7], see Figure 5.5(a). Using this, we get
the Poincaré-map II := I1° o I with

It (sh) =

For the first derivative of II there holds
I (s) = I (IT* (s)) - TT*'(s)
and therefore, at the fixed point 5

Eq(t: 2,
I (5%) = %™ lim ———27—~_ i 21‘”) —
-0 21(t; —35, w)
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(a) by > 0 and 0 < by < b (b) by > 0 and b§ < by < b9

Figure 5.5.: Closed trajectories with sliding motion

with Z; as in Proposition B.1 and fy as in (2.7). Hence, the closed trajectory of
type II is unstable.

. If b < by < b9, which is equivalent to 0 < s7 < by, we determine the Poincaré-

map II as a composition of discrete-time maps II*, II-, II° and II° in G, G_
and I, respectively, see section 2.3. Assume that there exists a closed trajectory
v with sliding motion which starts at (0,5") € I, evolve in G, reaches (0, —b;)
tangentially after finite time ¢ and moves along I, for finite time 7°. Then ~
leaves, because of the symmetry properties, I, at (0, —5%), evolves for time #% in
G_, reaches (0,b;) tangentially and reaches again (0, 5") moving along I, for time
79, see Figure 5.5(b). Let (z7(t),y™(t)) be the solution corresponding to v in G
for t € [0,%%] and (0,%°(¢)) be the first part of the solution in I, for ¢ € [0,7°],
see Figure 5.5(b). Analogously, let (z~(¢),y (¢)) be the solution corresponding to
v in G_ for t € [0,#] and (0,%°(t)) be the second part of the solution in I, for
t € [0,7°]. Using this, we get the Poincaré-map II := 1 o [T~ o II° o IT* with

H+(‘+) yr (1) = ~by,
(=b1) = y°(7°) = =5,
(-5 )—y (t2) = bu,
() = §°(r") = 5%
Note that, because of the symmetry properties, there hold
I = —idg o II* 0 —idp,
[1° = —idg o I1° 0 —idg
and therefore, we get for the Poincaré-map IT = (—idg o I1° o IT7)2. For the first
derivative of II there holds
I'(s) = I (IT (—T°(IT* (s)))) - T (=T1°(IT* (s))) - TI% (T (s)) - T ()
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and therefore, at the fixed point 5

IT'(5%) = €207 lim !
( ) t—] Hl(ta % w)

with =; as in Proposition B.1 and §; as in (2.7). Hence, the closed trajectory of
type II is unstable.

4. If by > by, we have 5t > by and thus, (0,5") is no longer in I,. On the other hand,
the only trajectory processing in G which can reach I; starts at (0,5%). This
provides the non-existence of closed trajectories with sliding motion.

If by < 0 Lemma 3.5 provides the non-existence of closed trajectories with sliding
motion.

5.6.4. Description of the occurring bifurcation phenomena

Figure 5.3 can also be seen as a 2-dimensional bifurcation diagram. All the lines in
Figure 5.3, except b9, consist of bifurcation points. We distinguish between five different
types of bifurcations.

1. Pitchfork-like bifurcation of equilibria on {(bi,by) € R?: by = 0}. For by < 0, the
trivial solution (0, 0) is a unique equilibrium of system (5.2) and it is a stable node
if by < 0 and an unstable node if b; > 0. Passing from {(by,by) € R? : by < 0}
o {(b1,b) € R?: by > 0} two foci branch from (0, —b;) and (0,b;), and (0,0)
itself becomes a saddle point. For b, = 0, the sliding motion interval I, consists of
equilibria.

2. Hopf-like bifurcation of periodic solutions without sliding motion on {(by,by) € R? :
by =0, by < 0}. When we cross the half-line
{(b1,b) € R?* : b = 0,0y < 0} from {(by,b2) € R? : b < 0,by < 0} to
{(b1,b) € R®* : b > 0, by < 0}, the asymptotically stable equilibrium (0, 0)
becomes unstable and a stable periodic solution without sliding motion bifurcates
from (0, 0) surrounding the sliding motion interval I.

3. Double Hopf-like bifurcation of periodic solutions with sliding motion on {(by,bs) €
R?: b, >0, by = 0}. When we cross the half-line {(by,by) € R*: b, > 0, by = 0}
from {(bl,bQ) € IR,Q : bl > 0, bg < 0} to {(bl,bz) € IR? : bl > 0, b2 > 0} an
unstable periodic solution with sliding motion, which lies in G_, branches from
(0,b1). Because of the symmetry properties of system (5.2) a second unstable
periodic solution with sliding motion, which lies in G, branches simultaneously
from (0, —by).

4. Double homoclinic bifurcation from periodic solutions with sliding motion on bS.
For b; > 0 and 0 < by < b5(b1) there are two small unstable periodic solutions with
sliding motion in G, and G_ surrounding the equilibria (z{,ys) and (zg, vy ),
respectively. Crossing the half-line {(by,b) € R? : by > 0, by = b5(b1)} from
{(bl,bg) eR?: by > 0, 0< by < bg(bl)} to {(bl,bg) ceR?: by > 0, b;(bl) < by <
b3(b1)} both small periodic solutions become simultaneously homoclinic to (0, 0)
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and disappear. At the same time an unstable big periodic solution with sliding
motion surrounding the three equilibria (z,yg), (0,0) and (z;,y, ) bifurcates
from the double homoclinic trajectory. This periodic solution exists for b5(by) <
by < bg(bl) and b; > 0.

5. Fold bifurcation of periodic solutions without sliding motion on bs. For b > 0 and
b3(b1) < by < bh(by) there are two big periodic solutions without sliding motion
surrounding the three equilibria (zg,yg), (0,0), (zy,¥,) and the sliding motion
interval I;. The inner one is unstable and the outer one is stable. Crossing the
half-line {(bl,bg) ceR?: by > 0, by = bg(bl)} from {(bl,bz) e R?: by > O, bg(bl) <
by < b5(b1)} to {(b1,b2) € R? : by > 0, bh(b1) < by} these two big periodic
orbits collide and disappear. Note that the map II, which provides the existence
of periodic solutions without sliding motion, see proof of Theorem 5.13, undergoes
a fold bifurcation of fixed points at by = b%(b;) for any b; > 0, since II'(s*) = 1
and IT"(s*) # 0, where s* is the unique fixed point of II, provided by = b(b;) and
by >0.

The half-line {(by, by) € R?: by > 0, by = b3(b1)} does not contain any bifurcation point.
If by = b3(b1) and by > 0, for the first derivative of II there holds lim,_,,, IT'(s) = +oc,
see proof of Theorem 5.14.

Remark 5.19 (Comparison with the smooth case).

We compare now the bifurcation diagram of the PWL focus-case with three dif-
ferent smooth focus-cases. First, we consider an example which can be found in
[Guckenheimer & Holmes, 1983, pp. 873-376]. The nonlinearity is approrimated by a
polynomial of degree 3. The smooth Liénard-system (1.2) is given by F(zx) = %x?’ — loT
and g(x) = x3 — pyx with parameters 1, po € R. Note that the system is Zio—symmetric.
This system provides locally all bifurcation phenomena in dependency on p1 and s as
the PWL system (5.2) is dependent on by and by. The bifurcation sets in the smooth
case are locally separated by straight lines as in the PWL case. In the smooth case, there
s one more bifurcation line, in notation of the PWL case, between the lines by = 0 and
by = b5 for by > 0. Considering the smooth case, in notation of the PWL case for a
fized by > 0, a stable node becomes a saddle point and two stable foci appear at by = 0.
When by increases the two small periodic solutions surrounding the foci are formed on
a different bifurcation line. These two bifurcation lines coincide in the PWL case. A
bifurcation analysis of equation

T=y
Y=+ pox + pzy — z° — z’y
with three parameters py, o, s € R is given in [Khibnik et al.,1998].

Second, we consider an example, given in [Giannakopoulos & Oster,1997] or
[Kooij & Giannakopoulos,2000], where the nonlinearity is a transcendental function.
They consider a planar system modelling neural activity of the form

U = —ur + ¢ f(ur) — Qua + E
Uy = —us + g1 f(u1) + €2

82



5.7. Thecase: 6 =1,p=0

with q11,¢01,€2,Q, E € R and f(uy) := m a sigmoid function. The authors
provide bifurcation phenomena with regard to the parameters E and Q). The system
can be transformed to a Liénard-system with F(z) = 2z — a(f(x + w1) — f(u1)) and
g(x) =2 — (a—0)(f(x + 1) — f(@1)), where (t1,us2) is an equilibrium of the original
system, a := q11 and b := QQqo1. For this system, the authors locally find with the aid of
numerical computations the same bifurcation phenomena as in the PWL case.

5.7. Thecase: 6 =1, p=0

In this section we consider the case of system (5.2) in which the determinant of A is

zero, which means we assume § = 1 and p = 0. In this case there are no equilibria in
Gy.

5.7.1. Main results

We first state our main results on existence, number and stability of closed trajectories
in dependence on the parameters b; and bs, see Figure 5.6.

Theorem 5.20.

1. If by > 0 and by < 0, there exists exactly one closed trajectory which is asymptoti-
cally stable and surrounds the sliding motion interval I, = {0} X [—by, by].

2. If by > 0 and by = 0, there exist exactly two heteroclinic trajectories connecting
the equilibria (0, —by) and (0,by) forming a heteroclinic cycle. The sliding motion
interval I, lies inside the interior of the heteroclinic cycle.

In all other cases there are no closed, heteroclinic or homoclinic trajectories.

5.7.2. Proof of Theorem 5.20

Note that we get 1. from Corollary 3.17. Nevertheless, we determine this periodic
solution to verify its disappearance in a heteroclinic cycle.

Existence of closed trajectories

1. From Lemma 5.5 we know that in this case there exist no closed trajectories of type
I1. Therefore, we only consider closed trajectories of type I. In this case we cannot
use equations (5.4) and (5.5), because A is singular and therefore, the solution ¢
of system (5.2) has another representation. From appendix D.4 we get that

. bg(t* —1 + e_t*)

N et —1

has a solution s, € M™ if and only if b, < 0 and under this assumption for

all t* > 0. If by < 0, then sy is a strictly increasing function of ¢* > 0 with

limg 04 So(t*) = —by and limy«_, So(t*) = co. There holds

bz(t*e_t* -1+ e‘t*)
e " —1

— by (s0)

S0

83 = H+(S()) = bgt* + S0 = — bl.
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5. Results for the piecewise-linear system with Zo—symmetry

\ by

Figure 5.6.: The dependence of equilibria and closed trajectories on the parameters b;
and by with 6 =1 and p = 0. For notation see Figure A.1.
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5.7. Thecase: 6 =1,p=0

Due to the symmetry properties we have sj = —sg in the case of an existing closed
trajectory, which is equivalent to

bo(t*e ¥ +t* —2+2e 1)
et —1

with t* > 0 and by, < 0. This implies

" 2[)1(67# — 1)
by = B(t") := tre " 4t — 24 2e

with t* > 0. [ is a continuously differentiable function of ¢* > 0 and satisfies
li ) =—
R AU = o0

lim B(t%)

t*—oc

0.

For the first derivative of 5 there holds

B(t) = 20, (=2t*e " —e 2 4+ 1)
(tre ¥ +t* — 2+ 2et")2°

B is positive for all ¢ > 0. Consequently, [ is strictly increasing.

We have proved the existence of exactly one closed trajectory, provided b; > 0 and
by < 0.

2. As shown in 1. there holds by = limy o 52(t*) = 0. From equation (s0) we get

th_lgo so(t*) = —by.
This means that if b; > 0 and by, = 0, the trajectories, which start at the equilibria
(0, —by) and (0, b;), form a heteroclinic cycle.

Stability of closed trajectories

Assume b; > 0, by < 0 and so € M T is a fixed point of IT := II~ o II*. This means, that
the solution starting at (S(L) is periodic. From Lemmas 4.2 and 4.3 we get for the half
Poincaré-maps

H+ : ] — bl,OO[ — ]b2 - bla _bl[a
I : ]—OO,bl[ — ]bl,—bg+b1[.

The periodic solution is asymptotically stable if the first derivative of II at the fixed
point s satisfies |II'(so)| < 1 and unstable if |II'(sg)| > 1. From Lemma 5.7 we know
that II is strictly increasing and concave. Furthermore, we know that Il has exactly one
nontrivial fixed point sy € | — by, 00[. Since II(s) is defined for s — oo, the monotony
and concavity of IT provide 0 < IT'(s9) < 1 and thus, the closed trajectory corresponding
to the fixed point sj is asymptotically stable.
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5. Results for the piecewise-linear system with Zo—symmetry

5.7.3. Description of the occurring bifurcation phenomena

Figure 5.2 can also be seen as a 2-dimensional bifurcation diagram. We distinguish
between two different types of bifurcations.

86

1. Hopf-like bifurcation of periodic solutions without sliding motion on { (b1, b,) € R? :

by =0, by < 0}. When we cross the half-line

{(bl,bQ) € R? : by = 0, by < 0} from {(bl,bg) € R? : by < 0, by < 0} to
{(b1,b2) € R? : b > 0,by < 0} the asymptotically stable equilibrium (0, 0)
becomes unstable and a stable periodic solution bifurcates from (0, 0) surrounding
the sliding motion interval .

. Heteroclinic cycle bifurcation from a periodic solution without sliding motion on

{(b1,b) € R?* : b > 0,by = 0}. For by > 0 and by < 0 there is a unique
asymptotically stable periodic solution surounding the equilibrium (0,0) and the
sliding motion interval I,. Crossing the half-line {(b1,bs) € R? : b; > 0, by = 0}
the periodic solution becomes a heteroclinic cycle consisting of two heteroclinic
trajectories connecting the two equilibria (0, —b;) and (0, b;) and disappears.



6. Conclusion and prospect

In this thesis, we have considered a planar piecewise-smooth system of Liénard-type
with a line of discontinuity, i.e.

y— (@) ,ifx >0
(G)=17, 2% (6.1)
Y y=F @) <o

—9~ (@) ) ’

where F*(x), g% (x) and F~(z), g~ (z) have been smooth functions for x > 0 and z <0,
respectively. In chapter 2, we defined the terms solution, sliding motion, singular points,
closed trajectories and bifurcation of piecewise-smooth systems.

Chapter 3 dealt with the piecewise-smooth system (6.1). We determined the sliding
motion interval, characterised all singular points in it and analysed the corresponding
initial value problem in terms of existence and uniqueness. Afterwards, we considered
the piecewise-smooth system concerning the existence of closed trajectories. We could
find necessary conditions for the existence of closed trajectories without sliding mo-
tion assuming additional conditions for the functions F'* and g*. If we also assumed
Z.s—symmetry for system (6.2), we could prove the unique existence of a closed trajec-
tory without sliding motion. This led to a Hopf-like bifurcation of a periodic solution
without sliding motion. All these results were global. We could finally prove a Hopf-like
bifurcation of a periodic solution with sliding motion. However, this result was only
local.

One main tool for detecting closed trajectories in piecewise-smooth systems was the de-
termination of appropriate discrete-time maps. We could define a Poincaré-map as the
composition of these maps. The fixed points of the Poincaré-map corresponded to closed
trajectories. For piecewise-smooth systems it was in general not possible to analytically
determine these discrete-time maps. But that was possible for piecewise-linear systems.
Therefore, in chapter 4 we considered the piecewise-linear system

by

c): ATQ) + () Sifa>0

y A+ () Lifz<o

(6.2)

with
ay; 1 + + 3t g+
A* = ;G115 051,07, 05 € R.
aa1
For this system we could analytically determine the discrete-time maps. We got stronger
necessary conditions for the existence of closed trajectories than for the piecewise-smooth
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6. Conclusion and prospect

system (6.1). Moreover, we proved the existence of at most two closed trajectories with-
out sliding motion. We finally presented a global result on a Hopf-like bifurcation of a
periodic solution with sliding motion and showed that this periodic solution disappeared
in a homoclinic solution to an equilibrium of the sliding motion interval. However, the
solutions of the piecewise-linear system (6.2) depended on the eigenvalues of A* and
therefore, we had to differentiate between 144 different cases. Assuming Z,—symmetry
in system (6.2) we could reduce the 144 different cases to only 5 using a special normal
form. In chapter 5 we transformed system (6.2) with Z,—symmetry to an equivalent

system ‘
(Zj) = Ay <z> + sgn(z)b, (6.3)

_ (%1 (b
Ap5 = (_p 0) s b= <l)2)’ p, bl,bz € ]R, 0 € {0,1}

For the 5 different cases, dependent on p and §, we provided complete dynamical
analyses including bifurcation diagrams. All these results were global and analytical.

where

Altogether we found seven different bifurcation phenomena in piecewise-smooth
systems, which are listed in the following:

Bifurcations in piecewise-smooth systems

Consider the planar piecewise-smooth system (Z) = f(z,y,p) with f: R? x R — R?
smooth on the domains G := {(z,9)" € R? : z > 0} and G_ := {(z,y)" € R? : z < 0}
and discontinuous on the line M := {(z,y)" € R* : z = 0}. u € R is a parameter and
I, denotes the sliding motion interval.

1. Pitchfork-like bifurcation of equilibria
For u < po an equilibrium (0, o) € I is the unique equilibrium and it is unstable
(stable). Passing through p = o two unstable (stable) equilibria branch from
the boundary points of the sliding motion interval and (0, ) itself becomes stable
(unstable). The two new equilibria lie in G4 and G _, respectively.

Y Y

_—
\“

stable unstable

Figure 6.1.: Sketch of the Pitchfork-like bifurcation of equilibria, where py = 0 and
Y =10
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For the definition of pitchfork bifurcation for smooth systems see for example
[Guckenheimer & Holmes,1983, pp. 145-150].

2. Fold bifurcation of periodic solutions without sliding motion
For p < pg there exist two periodic solutions without sliding motion, one of them
is unstable and the other one is stable. When u passes through p = po these
two periodic solutions collide and disappear for p > py. The bifurcation diagram
coincides with the one for smooth systems. For the definition of fold bifurcation
for smooth systems see for example [Guckenheimer & Holmes, 1983, pp. 156-157].

3. Hopf-like bifurcation of periodic solutions without sliding motion
For p < po there exists an equilibrium (0,yy) € I and it is unstable (stable).
When p passes through p = pg the equilibrium (0, y9) becomes stable (unstable)
and an unstable (stable) periodic solution without sliding motion bifurcates from

(0, y())

The bifurcation diagram looks similar to the bifurcation diagram of a Hopf bi-
furcation for smooth systems, see for example [Guckenheimer & Holmes, 1983, pp.
150-156]. The difference is that in this case the closed trajectory surrounds the
sliding motion interval. Consequently, its amplitude does not converge to zero as

= fho-

_—
\’”‘ ) '

stable unstable

Figure 6.2.: Sketch of the Hopf-like bifurcation of a closed trajectory without sliding
motion, where py =0 and yo =0

4. Heteroclinic cycle bifurcation from a periodic solution without sliding
motion
For i1 < pg there is a unique asymptotically stable periodic solution without sliding
motion surrounding an unstable equilibrium (0,yy) € Is and the sliding motion
interval I;. Passing through p = pg the periodic solution becomes a heteroclinic
cycle consisting of two heteroclinic trajectories connecting two equilibria (0, y;)
and (0, y2), especially the boundary points of I, and it disappears for p > pq.
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6. Conclusion and prospect

T\ y1 ()

1

/ y2()
/o

Figure 6.3.: Sketch of the heteroclinic cycle bifurcation of a closed trajectory without

sliding motion, where pg = 0 and yy =0

For the definition of heteroclinic cycle bifurcation for smooth systems see for ex-
ample [Guckenheimer & Holmes,1983, pp. 290-295|.

. Hopf-like bifurcation of periodic solutions with sliding motion

When p passes through 1 = o an unstable (stable) periodic solution with sliding
motion in G bifurcates when a stable (unstable) focus (z,y5) occurs on M. As
i increases, the focus moves into G1 and it is surrounded by the periodic solution
with sliding motion.

y Y

unstable stable

Figure 6.4.: Sketch of the Hopf-like bifurcation of a periodic solution with sliding motion,
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where py =0

For the definition of Hopf bifurcation for smooth systems see for example
[Guckenheimer & Holmes,1983, pp. 150-156].

. Homoclinic bifurcation from a periodic solution with sliding motion

For u < po there exists an unstable (stable) periodic solution with sliding motion in
G- surrounding a stable (unstable) focus (zF,y3) in G+. When p passes through
i = po the periodic solution becomes homoclinic to a saddle point (0,y,) € I; and
disappears for pu > pyg.



Yo

Yo

unstable stable

Figure 6.5.: Sketch of the homoclinic bifurcation from a periodic solution with sliding
motion at p = g

For the definition of homoclinic bifurcation for smooth systems see for example
[Guckenheimer & Holmes, 1983, pp. 290-295].

7. Double homoclinic bifurcation from periodic solutions with sliding mo-
tion
For p < o there exist two unstable (stable) periodic solutions with sliding motion
surrounding a stable (unstable) focus (zi,y5) in G, and G_, respectively. When
i passes through p = pg both periodic solutions become simultaneously homo-
clinic to a saddle point (0,yy) € I, i.e. we obtain a eight-figure-configuration.
For ;1 > 19 an unstable (stable) periodic solution in G, U G_ with sliding motion
bifurcates from the double homoclinic trajectory surrounding the three equilibria.

Yy

T

-0\ —

PR Yo (1)

7N -7 ! |
A i \
e 1 ! \
P 1 1 \
/I:/Y \ | I 1
//// \ [ \ | ! |
~ N [ I 1
_ . A ! |
== A 1 |
~ [N T T

\ . AN o
\ [N | 1
\\\\\ Iy 1 \ | |
A 1 vl I
S | Vol |
S (I 1
ey \ .
N /

S\ N

ol Yo ()

Figure 6.6.: Sketch of the double homoclinic bifurcation from a periodic solution with
sliding motion, where yy =0

For the definition of double homoclinic bifurcation for smooth systems see for
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6. Conclusion and prospect

example [Guckenheimer & Holmes, 1983, pp. 290-295].

Although these bifurcation behaviour patterns are similar to their smooth counterparts,
there is no general theory connecting the dynamical behaviour of piecewise-smooth
systems with that of the corresponding smooth systems. This is still an open mathe-
matical problem.

The piecewise-linear-case with Z,—symmetry has been completely analysed in this the-
sis. Further research could be done for the non-symmetric piecewise-linear systems. In
a first step, one could try to reduce the 144 different cases to a manageable number
of different cases. Moreover, one may determine a general concept for analysing the
remaining cases as for the symmetric case.

In chapter 3 we proved the unique existence of a closed trajectory without sliding motion
assuming Zy—symmetry. The proof was a modification of the proof for smooth Liénard-
systems. This was possible because the proof used the smoothness of the system only
in one half-plane. There has been done a lot of research into smooth Liénard-systems
during the last decades. There are also proofs for non-symmetric systems, which use
the smoothness only in one half-plane. These proofs are very technical, but nevertheless
transferable to piecewise-smooth systems with a line of discontinuity. Further research
will be done on this field.
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A. Notation for the simplified
bifurcation diagrams

stable equilibrium
unstable equilibrium (no saddle point)

saddle point

sliding motion interval I

sliding motion interval I, consists of stable but not asymptotically stable equilibria

sliding motion interval I, consists of unstable equilibria

stable closed trajectory

double saddle point connection

heteroclinic cycle to equilibria

unstable trajectory

semi-stable closed trajectory

Figure A.1.: Notation for the simplified bifurcation diagrams
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A. Notation for the simplified bifurcation diagrams
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B. The auxiliary functions
=,1=1,..8

Proposition B.1 (Properties of =;).

Defining the function =y :]0, %’r[ — R is dependent on the parametersn € R and w > 0
by

Ei(t;n,w) == —e ™ (nsin(wt) + wcos(wt)) + w
there holds, see Figure B.1:

1. Ifn >0,
2. If n <0,

E1(t;n,w) > 0 for all t €]0, 2.
E1 has a unique zero t§ € |Z, %[ for all w > 0.

Ei(t;m, w)

SYENE

Figure B.1.: The function =; for n >0, n=0and n <0

Proof. There holds

21(05m,w) =0,
(Cimw) = (e ¥+ 1w >0,

(1]

9 >0 ,ifn>0

T 27

B mw)=(1—e Swi=0 ,ifg=0
<0 ,ifp<0

and for the derivative with respect to ¢ we get

0=, _ _ >0 ,ifte]o, =]
—(t;n,w) = e ™ (n? + w?) sin(wt ’ W
ot L) O +wsin(wt) y Jifte]T, 2

w? w
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B. The auxiliary functions E;, i=1,..., 8

From this we get the assertions. O

Proposition B.2 (Properties of E).
Defining the function 25 : 10,00 — R is dependent on the parametersn € R and w > 0
by
Za(t;m, w) 1= €™ (nsinh(wt) — wcosh(wt)) + w

there holds

>0 i —w?>0

E(tnw){=0 ,ifn* —w?=0
<0 ,ifn?—w?<O.

Proposition B.3 (Properties of E3).

Defining the function Z3 :]0, 00[ — R is dependent on the parametersn € R and w > 0
with w? —n? #0 by

_ wsinh(nt) — nsinh(wt)

E3(t;myw) = o 1P
there holds
<0 ,ifn>0
Esmw) =0 ,ifn=0
>0 ,ifn<O.

Proposition B.4 (Properties of Z,).
Defining the function Z4 : 10, %“[ — R is dependent on the parametersn € R and w > 0
by

E4(t;m,w) := wsinh(nt) — nsin(wt)

there holds

>0 ,in>0
Eatsmw)4=0 ,ifn=0
<0 ,ifn<.

Proposition B.5 (Properties of =j).
Defining the function Es : |0, 00 — R is dependent on the parameter n # 0 by

Es(t;n) i=nt —1+e

there holds
Es(t;m) > 0.

Proposition B.6 (Properties of Zg).
Defining the function Zg : 0, 00 — R is dependent of the parameter n € R by

E6(t;m) == nt — sinh(n?)
there holds

<0 ,ifn>0
Be(t;m) (=0 ,ifn=0
>0 ,ifn<0.
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Proposition B.7 (Properties of =7).
Defining the function Z7 : 10,00 — R is dependent on the parameter a # 0 by

Er(t;a) = at +1 — e

it holds
Eq(t;a) < 0.

Proposition B.8 (Properties of Eg).
Defining the function Zg : |0, 00[ — R is dependent on the parameter a € R by

Sg(t;a) = at(l1+e ) —2(1 —e™™)

there holds

>0 ,ifa>0
Es(t;a)<=0 ,ifa=0
<0 ,ifa<.
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C. The transition matrix et

Proposition C.1.
Let

. [on 1
A= (o 0)

be a real 2 X 2—matriz with a;; # 0. Then the transition matriz a(t) = e fort € R
depends on the eigenvalues of A. Defining n := %% and w := %\/ |}, + 4ag | there holds
for the transition matriz:

1. a%l + 4aq; > 0:

alt) = €" (ay; sinh(wt) + 2w cosh(wt) 2 sinh(wt)
2w 2a9; sinh(wt) —ay1 sinh(wt) + 2w cosh(wt)
det(a(t)) = e*™
2. a%l —+ 40,21 < 0:
alt) = e" (ay sin(wt) + 2w cos(wt) 2 sin(wt)
T 2w 2a9 sin(wt) —ay1 sin(wt) + 2w cos(wt)

det(a(t)) = e*™

3. a%l + 4&21 =0:

€nt a1t + 2 2t
a(t) N 7 ( 2&21t —ant +2
det(a(t)) = e*™

Proof.

1. a%l + 40,21 > 0
A has two real eigenvalues A1 := % + 14/a}; + 4az. Determining the corre-

sponding eigenvectors we get the transition matrix.

2. a?l + 4&21 <0:
A has two conjugate complex eigenvalues Ay 5 := 4 + 24/ —a?; — 4ay;. Determin-
ing the corresponding eigenvectors we get the transition matrix.

3. a%l + 4(1,21 =0:
A has one eigenvalue \; := % of multiplicity 2. Determining the corresponding

eigenvector and a generalised eigenvector we get the transition matrix.
O
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D. Determination of the discrete-time
map I+

In this part of the appendix we determine the discrete-time map II™ and consider their
properties as function of sy, see Lemmas 4.2 and 4.3. We omit the determination of
the discrete-time map II~ because it is analogous to the one of IIT. We only have to
exchange + and — and replace so > —b by s§ < —b; . The solution of the initial value
problem corresponding to system (4.1) depends on the eigenvalues of A*. Therefore, we
differentiate between four different cases.

D.1. The case a};’ +4a}; > 0, af; # 0 (saddle point or
node)

Using n™ and w™ as defined in Lemma 4.2 and the definition of the transition matrix
at(t$) of Proposition C.1 we get

"5 sinh(wt )

wT

ady(tg) =

#0
for all t§ > 0.

B8 " sinh () — " cosh w8 + we 174)
as; sinh(wtty)

_ b Sy(tint,wh)

~ sinh(wtty) ad;

Sp =

— b (D.1)

with
Ea(t;n, w) = €™ (nsinh(wt) — wcosh(wt)) + w
as in Proposition B.2. Note that af; = w*? — 7>, Because of the necessary condition

so > —b{, equation (D.1) can only have a solution #; > 0 if b5 < 0. So that is why we
assume by < 0 in the following. For the derivative of sy with respect to t§ we get

by w™
ag, sinh®(w+tg)
Bt Sh—atw)

sinh?(wtt) gy

dso
dts

(—e™" (n* sinh(wttd) + wt cosh(wttl)) + w)

(tg) =

> 0.
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D. Determination of the discrete-time map IT*

This means that sy as function of ¢§ is strictly increasing and therefore invertible,

Sp = Eil(tg) ~ tg = E(So),

as well as tJ as function of sy. By considering the limits of sy we get the domain M

_pt
i =~
+
. Z(t—wh)—bf it Wt >0
lim sy = < % .
=00 00 ,if T +wt <0.

Consequently, there holds

M+_{] byt —wt) = bl it Wt >0

] bf,oo[ Jif gt +wt <0
and we get
+ )
I (sy) = ) = i > ST
2 sinh(wtty) ag; v

which is defined for all t§ > 0, sp € M and b < 0. IIT is as function of sy smooth and
therefore we can determine its derivatives.

It
d a0 Byt w?)
T (s0) = —ITT(71(tF)) = 2 = <0,
( 0) dSO ( (0)) %(tg—) = (to,_77+,w+)
at’
d ’ dt+ (80)
T (s0) = ——T7(S7H(H) = gy
dso it (t5)
<0 ,ifnt >0
2a§“13 S (T : 77+
= — Ss(tgsn",wT) =0 ,ifnt =0
b (0 77 y W ) .
- >0 ,ifn+<0
>0

with
w smh(nt) nsinh(wt)
Es(tyn,w) = —
n
as in Proposition B.3. Consequently, IT* is strictly decreasing, concave if n* > 0, convex
if n* < 0 and a straight line with slope —1 if n* = 0. For the limits of II" we get

lim I*(sp) = lim IIT(X7'(t])) = —bf

so——bf+ t&—0+
lim TT* lim (S (1 —00 Af 7T —w >0
1m S = 11m =
50—00 (0) td —o0 ( (0)) gn +w+)—b+ ,ifn+—w+<0.
D3
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D.2. The case af;” + 4al, < 0, af; # 0 (focus)

D.2. The case af;” +4aj; <0, aj; # 0 (focus)

Using n* and w™ as defined in Lemma 4.2 and the definition of the transition matrix
at(ty) of Proposition C.1 we get

e sin(wtty)

wt

afy(ty) = =0

if tf = . Note that the solution ¢(t) is Z—+—periodic with respect to tf. Because we
are looking for the minimal ¢, we only consider the interval |0, 25[. If ¢ = Z, equation
#1(t) = 0 has a solution for all sy > —b; if and only if by = 0. Therefore, in this case
there holds M =] — bf,00[. Assume now bj # 0 and ¢§ €0, %[ U]|Z%, 2[. Then
there holds

bt sin(wttl) — wt cos(wtd) +whe Tl

50 = — b
T sin(wtty) !
bye™h Si(tg—mtet)
= + + + - bl (D.Q)
sin(wtty) ay

with
Ei(t;n,w) == —e " (nsin(wt) + w cos(wt)) + w

as in Proposition B.1. For the derivative of sy with respect to t we get

dsy biw™ — )
dt—+(t3—) = m(—e o (7’]+ sm(wJ’t(J{) + w+ COS(UJ+t3—)) + w+)
0 21 0
byw™

=2~ @@= t+' + w+ .
ag, sin?(wtty) (to; ™, ™)

In case of by < 0 and ¢§ €]0, Z[, we have that sy as function of ¢j is strictly increasing
and therefore invertible,

So =: E_l(taL) &t =Y(sp),

as well as tJ as function of sy. By considering the limits of sy we get the domain M+

lim sy = —b]
t—0+
. + +
: by . ntsin(wtt) —wtcos(wh) +whe™
lim So = — lim - m — b = o0.
ty A Ay b= — sin(w*t)

Consequently, there holds M+ =] — b;, 00| in case of bj < 0.

In case of b > 0 we have to differentiate between the cases n* > 0, n* = 0 and n* < 0.
Then the equilibrium (x{,y,) exists and is an unstable focus (center, stable focus) if
nt>0(nt=0,n"<0).

1. nt > 0: As shown in case 2 of the proof of Theorem 4.12, there exists a tra-
jectory which starts at (0, —b;) and reaches M again after finite time ¢, where

¢Y is the unique zero of Z;(¢; —n*,w™) in |5, 22[, see Proposition B.1. There
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holds (’jtioﬂ(tj) < 0 which means that sy as function of ¢§ is strictly decreasing and

therefore invertible,
So = Eil(tg) ~ tg = 2(80),

as well as t§ as function of sy. By considering the limits of sy we get the domain
M+

lim So = —b1+
t—t9—
by +sin(wtt) — wt cos(wtt) +wre
lim soz—i lim n (W) - (W) + —bf:oo.
ty gy t— 2+ sin(wt)
Consequently, there holds M =] — b, o0 .

n™ = 0: In this case we have

dS()

biwt?
dt—+(t§) = 2 (1 —cos(wttf)) <0
0

a2, sin?(wt)

for all ¢ € ]2, 2%[. This means that sy as function of ¢ is striclty decreasing
and therefore invertible,

so=2"1(ty) & t§=3(s0),

as well as t§ as function of sy. By considering the limits of sy we get the domain
M+

by w™ 1 — cos(w™t)

lim sg=“*— lim ——— 72 — b/ =0
to T4 ‘ ay to%+ sin(wti) !
bfw™ 1 — cos(wtt
lim sp= 2o lim Locos@t) e pe
ty 2% Uy 22— sin(wTt)
Consequently, there holds M =] — b]", o0 .

nt < 0: As shown in case 1 of the proof of Theorem 4.12, there exists a trajectory
which reaches (0, —b]") tangentially. This trajectory starts at (0,5") with

+ 77]+t0 : +40
. _er 1 sin(w tl)_b+

where ¢} is the unique zero of Z;(¢; 7", w™) in %, 2%[, see Proposition B.1, and
moreover the time the trajectory needs from (0,5%) to (0, —b;). All trajectories
starting at a point (0, so) with s; € | — b, 5%] reach the stable focus (zg,y)
without intersecting M again. Therefore, sy > 51 is a necessary condition for the

existence of TT*. For tf €], #[ there holds %2 (#f) < 0. This means that so as
0

function of 7 is strictly decreasing and therefore invertible,

so=2"'(ty) & t§=3(s0),



D.2. The case af;” + 4al, < 0, af; # 0 (focus)

as well as t§ as function of sy. By considering the limits of s, we get the domain

M+
lim Sp = §+
e
: _pt
_ by . ntsin(w't) —wtcos(w®) +whe ™t |
lim so=—- lim - — b =00
t— Tt Az 1=+ sin(wtt)

Consequently, there holds M = |57 oo .

We get for
bpe S oy + et
[T*(s0) = go(t}) = { Fomarg 1 (037 -w7) b1 if05 70
+

s +T(
—eoT 59— (1+eo® )b ,if by = 0.

IT* is as function of sy smooth and therefore we can determine its derivatives.

! d 1 (il—:(so)
I+ (s0) = — T (271(t)) = o
@50 ()
_Eiltg=ntet) if bt £ 0
AR e
—ewt ,if b =
dirt’
d ! dt+ (80)
T (s) =— M (271 (td)) = —2>——
ds VT ()
20 % sind(wHet) — )
0 if b =0

<0 ,ifpT>0andbj #0
=0 ,ifptT=00rbd; =0
>0 ,ifnt <0andbf #0

with

E4(t;n, w) := wsinh(nt) — nsin(wt)
as in Proposition B.4. Consequently, II* is strictly decreasing, concave if n* > 0, convex
if ™ < 0 and a straight line with slope —1 if ™ = 0, provided b5 # 0. In case of b = 0,
IT* is a straight line with slope —e o+ .
We consider now the limits of II* in the different cases.
The cases by < 0 and b3 > 0, n* = 0:

lim H+(So) = —bi—

So—)—bf-}—

lim II7(sy) = —c0
S0—>00
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D. Determination of the discrete-time map IT*

The case by > 0 and n* # 0:
lim f(sp) = lim OH(S7'(¢)))

so——b+ td—t9—

{£n+ sin(t ) 2wt sinh(rt ) _ o pt gt
. b

ad sin(wtt?)

—b; ,if gt <0
lim II7(sg) = lim MOT(Z7Yt])) = -0

$0—>00 t3‘_>L —

D.3. The case af;° + 4a}; =0, a}; # 0 # af; (node)

Using " as defined in Lemma 4.2 and the definition of the transition matrix a*(¢{) of
Proposition C.1 we get

afy(t) = €TI0t #0
for all t§ > 0.

"

b -
80=a+2t+(77+t3’—1+e o) — b
2110

bt _
g ealin) b (D:3)
Q919

with
Ss(t;n) i=nt —1+e™

as in Proposition B.5. Because of the necessary condition sy > —b}, equation (D.3) can
only have a solution t§ > 0 if b5 < 0. So that is why we assume b; < 0 in the following.
For the derivative of sy with respect to t§ we get

dso

b;e—nﬂf{ 4+ gt
— _ _ nt
dty Tl m 1A

(tg) =
Gg1lg
bie "t
T i
This means that sq as function of ¢J is strictly increasing and therefore invertible,
Sp = Eil(tg) ~ tg = E(So),
as well as tJ as function of so. By considering the limits of sy we get the domain M
li = —bf
bt .
{—n%r—bf ,ifnt >0

lim s¢ =
R P Jif gt < 0.

t—00
Consequently, there holds

= JI- v = bl >0
] — b7, 00 ,ifnt <0
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D.4. The case aj; = 0,af, #0

and we get
by _
IT*(s0) = ¢o(ty) = —ﬁ%(tg; —n") —b{.

21°%0

IT* is as function of sy smooth and therefore we can determine its derivatives.

o d . o+ —‘f}}f (s0)
IT — I (X = -0
(SO) dSO ( ( 0 )) 3:£ (tbf_)

=— <0,
e Z5(ts —nT)
dann+’
d ' dt+ (80)
I+ (s0) = 11" (=71(1)) ’
dso (1)
B —2t° =ttty 4 <0 Jif gt >0
T pe g =35 ), VT S0 it <0

>0

with
E6(t;m) == nt — sinh(nt)

as in Proposition B.6. Consequently, IT" is strictly decreasing, concave if n™ > 0 and
convex if nt < 0. For the limits of ITI" we get

lim [If(sg) = lim ITN(S7'(¢))) = —bf

so——bf+ t&—0+
—00 ,ifnt >0
lim T¥(s0) = lim TS ) =4 o,
5000 td—o0 —F by ,ifn™ <O0.

D.4. The case aj; = 0,a]; #0

The solution of (;) = At (Z) (Z+) with initial value ( 2(0 )) = ( ) with sq > —b] is given
by

+ b bf +s bit
1 —etnt)(—22, 21750y __ 22t
o= (17w )
b;t + So
and we have
bJr aiits +1— ettits N
aqq eau T 1
ZfL +
= tg; b D4
afl(eall 1) (0 011) 1 ( )

with
Sr(t;a) :=at +1— e
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D. Determination of the discrete-time map IT*

as in Proposition B.7. Because of the necessary condition sy > —b;, equation (D.4) can
only have a solution ¢§ > 0if b3 < 0. So that is why we assume b5 < 0 in the following.
For the derivative of sy with respect to t§ we get

+ aftt
dso, .\ byetto 4ot —ahit
—d+(t0)— ot 2(1—a11t0 —€ o)
to (6 11to — 1)
b;ea-li_ltg_

= =.(tF: —af;) > 0.
(eaﬁtf{ “)2 7( 0 11)

This means that sy as function of ¢§ is strictly increasing and therefore invertible,
so=N7"'(t) & tF =3(s0),

as well as tJ as function of sy. By considering the limits of sy we get the domain M

lim sy = —bf
t—0+
b+ + . +
. __ - b 9 lf 0,11 > O
lim sy = oy
t—00

00 ,if af; < 0.

Consequently, there holds

e [Ion B u et >0
]—bii—,OO[ aifaii_1<0

and we get
b eaits

- Er(td; —afy) — b7
aﬁ(eaﬁtg—l) 7(tg; —a3) 1

% (s0) = a(ty) =

IT" is as function of sy smooth and therefore we can determine its derivatives.

I (s0) = -1 (57 (1)) a0
So) = — 0 = P
dso L (1)
_ E7(150 ;) 0
E7(1§(J)ra a’1+1) ’
dt’
d ! dtt (80)
T*(s0) = ——IY(S71(t])) = oy
dso ’ a(t0)
- afy (1 — eaﬁtj):’; Se(td; al) <0 ,ifaf;>0
b et E(t5 s —afy) “ S0 Lifaf, <0
<0

with
Ss(t;a) = at(l +e ™) —2(1 —e )
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D.4. The case aj; = 0,af, #0

as in Proposition B.8. Consequently, IT* is strictly decreasing, concave if af; > 0 and
convex if af; < 0. For the limits of IIT we get

lim II%(sq) = lim ITT(X7(tf)) = —b)

so——bi+ td =0+
—00 if af, >0
lim I (sp) = Iim TS G)) =9 o 0 o 4
$0—00 00 ——2 -} if af; < 0.
0 a5, 1 ) 11
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Zusammenfassung

Wir betrachten planare stiickweise-glatte Systeme in Liénard-Form, die auf der y—Achse
unstetig sind. Solche Systeme sind gegeben durch

_Ft
, y=F@) s e s 0
. - _ F*
Y y=F @) psa<o,

—9~(2)
wobei F*(z),g"(x) und F~(x),g (x) jeweils glatte Funktionen fiir x > 0 und z < 0
sind. Unser Hauptziel ist die analytische Untersuchung von System (1) in Hinblick auf
globales dynamisches Verhalten und Verzweigungsphénomene. System (1) beinhaltet
zwei verschiedene interessante Komponenten, ”stiickweise Glattheit” und ”Liénard-
Form”, die die Untersuchung motivieren.

Stiickweise-glatte Systeme spielen eine wichtige Rolle bei der Modellierung von vielen
Anwendungen aus den Bereichen der Kontrolltheorie, der Mechanik oder der Inge-
nieurwissenschaften. Beispiele aus der Mechanik sind Phianomene, die durch trockene
Reibung hervorgerufen werden, wie Gerauschentwicklung bei Radern von Ziigen, qui-
etschende Autobremsen oder Klappern von Maschinenteilen, siehe [Bishop et al.,1995],
[Kunze & Kuepper,1997] oder [Rudolph & Popp,2001]. Anwendungen aus dem
Bereich der Elektrotechnik sind elektronische Schaltkreise, siehe [Stoker,1950] oder
[Andronov et al.,1966]. Des weiteren haben stiickweise-glatte Systeme eine lange
Tradition in der Kontrolltheorie, in der Riickkopplung eine der meist verwendeten
Kontrolltechniken ist, siehe [Fliigge-Lotz,1947], [Lefschetz,1965], [Andronov et al.,1966],
[Sontag,1990] oder [Utkin,1992]. Beispiele hierfiir sind Temperatur-Regler oder automa-
tische Kurs-Regler von Flugzeugen oder Wassertorpedos, siehe [Popow,1958]. Unstetige
Systeme sind insbesondere deshalb von grofiler Bedeutung, da sogenanntes Sliding
Motion auftreten kann, d.h. Losungen, die innerhalb der Unstetigkeit verlaufen. Sliding
Motion wird beispielsweise zur Kontrolle von elektrischen Motoren benutzt wird, siehe
[Utkin,1992]. Es hat sich gezeigt, dass stiickweise-glatte Systeme vielfaltige dynamische
Verhaltensweisen und Verzweigungsphanomene hervorrufen.

Eine Motivation fiir die Untersuchung planarer Systeme in Hinblick periodischer
Losungen ist Hilbert’s 16. Problem, also die Frage nach der maximalen Anzahl
periodischer Losungen in einem planaren System mit polynomialer Nichtlinearitat in
Abhéngigkeit des Grades n der Polynome, siehe [Hilbert,1902]. Dieses Problem ist bis
heute nicht einmal fiir den einfachsten Fall n = 2 gelost, siehe [Ilyashenko,2002]. Glatte
Systeme in Liénard-Form wurden, seitdem Liénard sie 1928 erstmalig untersucht hat,
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weiterhin sehr intensiv untersucht, siehe [Liénard,1928] oder [Levinson & Smith, 1942].
Die Resultate sind jedoch meist lokal, und numerische Methoden sind notwendig
um die Analyse zu vervollstdndigen, siehe [Giannakopoulos & Oster,1997] oder
[Khibnik et al.,1998]. Aus diesem Grund verwenden wir einen anderen Ansatz mit Hilfe
stiickweise-glatter Nichtlinearitaten, um analytisch globales Verhalten zu bekommen.

Waéhrend der letzten Jahrzehnte ist die Verzweigungstheorie und die Theorie der
Dynamischen Systeme fiir glatte Systeme intensiv weiterentwickelt worden, siehe z.B.
[Guckenheimer & Holmes,1983], [Arrowsmith & Place,1990] oder [Kuznetsov,1998].
Diese Theorie benotigt jedoch meistens die Glattheit des Systems, so dass sie auf
stiickweise-glatte Systeme nicht anwendbar ist. Ublicherweise werden stiickweise-glatte
Systeme zu Differentialinklusionen erweitert, d.h. die rechte Seite wird durch eine
mengenwertige Funktion ersetzt, siche [Aubin & Cellina,1984] oder [Filippov,1988]. Die
existierende Theorie zu Differentialinklusionen liefert bisher nur einige Grundlagen,
sieche [Aubin & Cellina,1984], [Filippov,1988|, [Deimling,1992], [Clarke,1998] oder
[Kunze,2000]. Deshalb sind neue Konzepte notwendig.

Zur Untersuchung von System (1) definieren wir zunéchst die Begriffe Losung, Sliding
Motion, singuldre Punkte, geschlossene Trajektorie und Verzweigung fiir stiickweise-
glatte Systeme. Wir analysieren System (1) soweit das analytisch mdoglich ist. Wir bes-
timmen das Sliding Motion Interval, charakterisieren alle singudren Punkte, die darin
enthalten sind, und untersuchen das entsprechende Anfangswertproblem in Hinblick
auf Existenz und Eindeutigkeit in Abhéngigkeit von Parametern. Ferner betrachten
wir System (1) beziiglich der Existenz von geschlossenen Trajektorien. Unter gewis-
sen Voraussetzungen an die Funktionen F* und g% beweisen wir die Nicht-Existenz
von geschlossenen Trajektorien sowohl mit als auch ohne Sliding Motion. Wenn wir
zusatzlich Zs—Symmetrie in System (1) voraussetzen, konnen wir die eindeutige Exis-
tenz einer asymptotisch stabilen periodischen Losung ohne Sliding Motion nachweisen.
Dies fiihrt zu einer Hopf-ahnlichen Verzweigung einer periodischen Losung ohne Sliding
Motion. Alle diese Ergebnisse sind global. Schliefilich finden wir eine Hopf-dhnliche
Verzweigung einer periodischen Losung mit Sliding Motion. Dies ist jedoch nur ein
lokales Ergebnis.

Ein wichtiges Hilfsmittel fiir die Berechnung geschlossener Trajektorien sind Punkttrans-
formationen. Eine geschlossene Trajektorie entspricht einem Fixpunkt der Poincaré-
Abbildung. Die Poincaré-Abbildung kann als Komposition der Punkttransformationen
in den einzelnen Gebieten der Glattheit bestimmt werden. Im Falle von System (1)
konnen wir diese Punkttransformationen im Allgemeinen nicht analytisch berechnen.
Wenn wir aber statt des stiickweise-glatten Systems (1) ein stiickweise-lineares System
betrachten, so konnen wir diese Punkttransformationen analytisch berechnen. Dieses
stiickweise-lineare System ist gegeben durch

(3;) At (z) + (Zi) , falls z > 0
bi) , falls z < 0,
2
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wobei
+ a1i1 1 + + 3t pE
AT = (ag:l ), ayy, a5, 07,05 € R.

Wir berechnen die Punkttransformationen fiir System (2) und erhalten mit deren Hilfe
stiarkere Aussagen iiber Existenz und Nicht-Existenz von geschlossenen Trajektorien als
fiir System (1). Auflerdem kénnen wir zeigen, dass die Punkttransformationen in diesem
Fall streng monoton und entweder konkav, konvex oder eine Gerade sind. Als Konse-
quenz daraus erhalten wir die Existenz von maximal zwei geschlossenen Trajektorien
ohne Sliding Motion. Schliellich kénnen wir die Hopf-adhnliche Verzweigung von periodis-
chen Losungen mit Sliding Motion global nachweisen und zeigen, dass diese periodischen
Losungen zu homoklinen Losungen mit Sliding Motion werden und dann verschwinden.
Allerdings sind die Punkttransformationen abhéngig von den Eigenwerten der Matrizen
A% und aus diesem Grunde miissen wir 144 verschiedene Félle betrachten. Wenn wir
aber annehmen, dass System (2) Zs—symmetrisch ist, konnen wir das entsprechende
System zu einem &quivalenten System in einer speziellen Normalform transformieren
und dadurch die Anzahl der Falle drastisch reduzieren. Dieses System in Normalform

ist gegeben durch
T T
] =A + sgn(x)b, 3
(y) ps (y) gn(z) (3)

-0 1 b
Ap5 = (_p 0> ) b= (b;>> b, b11b2 € Ra (S € {0’1}

In System (3) brauchen wir nur zwischen fiinf verschiedenen Féllen in Abhéngigkeit von
p und ¢ zu unterscheiden. Fiir diese fiinf verschiedenen Fille liefern wir vollstindige
dynamische Analysen, inklusive Verzweigungsdiagrammen. Diese Ergebnisse sind alle
analytisch und global und wir finden sieben unterschiedliche Verzweigungsphinomene,
die in dieser Form bei glatten Systemen nicht auftreten.

wobei
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Abstract

We consider planar piecewise-smooth systems of Liénard-type with a line of discontinuity.
These systems arise from many applications in control theory, mechanics or engineering.
We analyse such a system in terms of dynamical and bifurcation behaviour. For this we
determine all equilibria, periodic, heteroclinic and homoclinic solutions in dependency
on parameters. Our main goal is the analytical determination of global behaviour. This
is in particular possible if the system is piecewise-linear. When we additionally assume
that the system is Zs—symmetric we obtain a complete characterisation. As one result
we detect bifurcation phenomena which do not exist in this form for smooth systems.
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Kurzzusammenfassung

Wir betrachten planare stiickweise-glatte Systeme in Liénard-Form, die unstetig auf
einer Geraden sind. Diese Systeme finden sich in vielen Anwendungen im Bereich
der Kontrolltheorie, Mechanik oder Ingenieurwissenschaften wieder. Wir analysieren
solch ein System in Hinblick auf dynamisches Verhalten und Verzweigungsphanomene.
Dazu bestimmen wir alle Gleichgewichtszustidnde, periodische, heterokline und homok-
line Losungen in Abhangigkeit von Parametern. Unser Hauptziel ist die analytische
Bestimmung von globalem Verhalten. Dies ist insbesondere dann moglich, wenn das
System stickweise-linear ist. Wenn wir zusatzlich Z,—Symmetrie voraussetzen, konnen
wir das System vollstandig charakterisieren. Dabei finden wir Verzweigungsphanomene,
die bei glatten Systemen in dieser Form nicht existieren.
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