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Abbreviations 
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RNA    ribonucleic acid 
Rnase   ribonuclease 
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                                                                                                                     1. Introduction 
__________________________________________________ 
 
1.1  Small GTPases of the Rho family 
 
Small GTPases of the Rho family emerged in the early 1990s as key regulators of remodeling 

of the actin cytoskeleton. Based on their effects on actin organization and other processes in 

mammalian fibroblasts Rho GTPases were grouped in three subfamilies: Rho, Rac and Cdc42. 

Rac proteins elicit the formation of lamellipodia and membrane ruffles, Rho members 

coordinate stress fibre and adhesion plaque formation, and Cdc42 stimulates the formation of 

filopods (Figure 1). Over the years evidence has accumulated to show that Rho GTPases are 

involved in most actin-regulated processes such as membrane trafficking (including 

phagocytosis, pinocytosis and exocytosis), motility, adhesion and morphogenesis (Kaibuchi et 

al, 1999). The regulatory roles of Rho GTPases, however, are not restricted to the actin 

cytoskeleton. They have been shown to be also involved in the regulation of cellular processes 
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as diverse as microtubule organization, cytokinesis, gene expression, cell cycle progression, 

apoptosis and tumorigenesis (Van Aelst and D'Souza-Schorey, 1997). 

 
The small GTPases act as molecular switches, cycling between an active GTP-bound state and 

an inactive GDP-bound state, a process that is regulated by GEFs (guanine nucleotide 

exchange factors) and GAPs (GTPase-activating proteins) (Figure 2). GEFs catalyze the 

conversion to the GTP-bound state and GAPs accelerate the intrinsic rate of hydrolysis of 

bound GTP to GDP. Additionally, GDIs (GDP-dissociation inhibitors) have been described 

that capture Rho in both GTP and GDP-bound states and allow it to cycle between cytosol and 

membranes. In its active state Rho GTPases interact with a multitude of effectors that relay 

upstream signals to cytoskeletal components, eliciting rearrangements of the actin 

cytoskeleton (Hall, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Signaling from Ras to Rac and relationships among Rho-GTPases. Activation 
of Rho-GTPases by growth factors (G.F.) can be achieved by pathways requiring the 
activation of PI3-K, either directly through binding of its regulatory subunit, p85, to the 
activated receptor, or indirectly through activation of Ras and formation of a Ras-GTP�p110 
complex. The phosphoinositides generated by PI3-K are thought to regulate the activity 
and/or the localization of Rac-specific GEFs (Vav, Sos-1 and Tiam-1). Linear cascades 
coordinate the activity of the Rho GTPases Cdc42, Rac and Rho leading to actin remodeling 
and other phenotypes. From Scita, 2000. 
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 Rho GTPases are ubiquitously expressed across the eukaryotes. In mammals the Rho family 

currently consists of about 20 proteins, most of them still poorly characterized, that can be 

grouped into distinct subfamilies. In plants, Rho related proteins are involved in diverse 

signaling pathways like tip growth, pathogen defense, secondary wall formation and meristem 

signaling (Valster et al., 2000). In yeast Rho proteins are involved in cell wall synthesis, 

control of cell polarity and budding (Arellano et al., 1999; Pruyne and Bretscher, 2000).  

Like Ras proteins and G protein γ subunits, Rho GTPases are synthesized as cytosolic proteins 

but have the capacity to associate with membranes by virtue of a series of post translational 

modifications of a COOH-terminal CAAX motif: prenylation of the cysteine residue, AAX 

tripeptide proteolysis, and carboxy methylation (Clarke, 1992). It is known that the CAAX 

motif is not the only factor that is responsible for the membrane anchoring of small GTPases. 

The CAAX motif alone targets the protein specifically to the endomembranes like ER, Golgi 

and to the perinuclear region (Edwin Choy, 1999) where they are proteolyzed and methylated. 

Rho GTPases require a second signal for transport from the endomembranes to the plasma 

membrane. This signal consists of either one or two cysteines upstream of the CAAX motif in 

the hyper variable region that are modified by palmitic acid or a polybasic region adjacent to 

the CAAX motif (Hancock et al., 1991). These two types of second signals engage distinct 

pathways to the plasma membrane. The function of the secondary membrane targeting motif 

has remained largely unexplored (Michaelson et al., 2001). Any alterations in these two target 

sequences cause the mislocalisation of the protein (Hancock et al., 1991). 

 

1.2 Regulators and effectors of small GTPases 
 

The exchange between GTP and GDP in Rho GTPases is regulated by numerous cellular 

proteins (Kjoller L, 1999; Van Aelst and D'Souza-Schorey, 1997). Rho GEFs stimulate the 

exchange of GDP by GTP, thus activating the Rho GTPase. Most of the Rho GEFs contain a 

Db1-homology (DH) domain responsible for exchange  activity and a pleckstrin homology 

(PH) domain (Cherfils J, 1999). The PH domain is thought to mediate membrane localization 

through the lipid binding, but in addition the structural and  biochemical evidence suggests 

that it might also affect the activity of the DH domain (Bishop, 2000). In mammalian cells, at 

least 60 GEFs display activity on Rac, either in vitro or in vivo (Van Aelst and D'Souza-

Schorey, 1997; Gregory, 2002; Schmith, 2002). The explanation for this large number 
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includes cell-and/or tissue-specific expression or the need for Rac to be activated by different 

upstream pathways. 

 

About 20 GAPs have been identified to date which increase the intrinsic rate of GTP 

hydrolysis of the Rho GTPases, thereby converting the Rho protein from the active GTP 

bound form to its inactive GDP-bound form (Lamarche, 1994). In mammalian cells, these are 

nonspecific in that they have GAP activity towards more than one member of the Rho family, 

though they are inactive towards Ras or members of other families of small GTPases. The role 

of GAP as an upstream negative regulator is evident in studies done both in vitro and in vivo. 

The fact that GAPs and GEFs have a variety of domains that are involved in protein-protein 

interactions that are not necessary for their activity implies that they do at least interact with 

other proteins, and whether this is part of their function as negative regulator or part of some 

effector-like role is not yet clear (Bishop, 2000).  

 

GDIs (GDP-dissociation inhibitors) constitute an additional regulatory element. Rho-specific 

GDIs apparently display three distinct biochemical activities. First, they are able to block the 

dissociation of GDP from the Rho GTPase, locking the protein in its inactive GDP-bound 

state and inhibiting activation by GEFs (Fukumoto et al., 1990). Second, GDIs are capable of 

binding to the activated, GTP-bound state of Rho proteins, inhibiting their GTPase activity 

(Hart et al., 1992) and preventing interaction with their effectors (Pozo et al., 2002). Finally, 

GDIs stimulate the release of Rho GTPases from cellular membranes, significantly 

contributing to the subcellular localization of particular Rho GTPases (Michaelson et al., 

2001). For this activity, the Rho GTPase needs to be post-translationally modified by the 

incorporation of an isoprenyl moiety at its C-terminus (Hori et al., 1991). Furthermore, GDIs 

participate in a number of interactions resulting in the formation of multiprotein complexes. 

Among the proteins that have been reported to interact with GDIs are a lipid kinase complex 

(Tolias et al., 1998), members of the ezrin/radixin/moesin family (Takahashi et al., 1997), 

components of the NADPH oxidase complex (Abo et al., 1991) and the multidomain protein 

Vav (Groysman et al., 2000). 

 

With the involvement of Rho GTPases in a wide variety of cellular processes, it is not 

surprising that so many cellular targets or effectors are identified. To date 30 or so potential 

effectors of Rho, Rac and Cdc42 have been identified (Bishop, 2000). These proteins interact 

specifically with the GTP-bound form of GTPases. In mammalian cells the list of effectors 
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includes WASP (Wiskott-Aldrich syndrome protein), PAK (p21 activated kinase), MRCK 

(myosin regulatory chain kinase), IQGAP, Par-6, ROK (Rho-associated kinase), Dia 

(members of the formin homology family) and several more (Bishop, 2000). Some of these 

effectors (WASP, PAK) share a short region known as PBD (p21-binding domain) or CRIB 

(Cdc and Rac interactive binding) domain that undergoes a conformational change upon 

binding of the activated Rho GTPase and in turn allows the effector to establish further 

interactions (Hoffman et al., 2000).  

 

WASP/Scar proteins are present in all eukaryotes. WASP/Scar proteins share a central 

proline-rich region and a C-terminal region composed of one or two WASP-homology 2 

(WH2) domains that bind actin monomers and one acidic region that interacts with Arp2/3. 

The proline-rich region binds the G-actin-binding protein profilin as well as SH3 domains 

from a variety of proteins. WASP and Scar differ in the N-terminal region, which in WASP 

contains an Ena/VASP homology 1 (EVH1) domain that binds poly-proline helices, and a 

PBD that interacts with Cdc42. WASP exists in an autoinhibited state where the PBD blocks 

the C-terminal region. Upon binding of activated Cdc42 and PIP2 the C-terminal region of 

WASP is exposed and binding of the Arp2/3 complex and activation of actin nucleation are 

enabled (Higgs and Pollard, 2001). Although lacking a PBD, in mammals WAVE (the Scar 

homologue) is regulated by Rac. It has been recently found that WAVE forms a 

multimolecular complex that keeps it inactive. Binding of activated Rac releaves the complex 

and exposes the C-terminal region of WAVE for activation of actin nucleation (Eden et al., 

2002).  

 

Other potential regulators known for Rho GTPases are PI3 kinases, which also regulate the 

actin cytoskeleton. PI3 kinases have been implicated in many cellular responses downstream 

of tyrosine kinases such as chemotaxis and phagocytosis, two processes that are mainly driven 

by the actin cytoskeleton (Vanhaesebroeck, 1999). It is not clear whether these enzymes act as 

upstream effectors or as downstream regulators. 

 
1.3 Dictyostelium discoideum as a model organism 

 

Dictyostelium discoideum has emerged as a widely employed model to investigate basic 

questions of molecular and cell biology, especially those related to the structure and 

regulation of the cytoskeleton, vesicle trafficking pathways, cell-cell adhesion and 

development (Kessin, 2001). In many respects these functions in Dictyostelium are similar to 
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those described in mammalian cells. From an evolutionary point of view the lower eukaryote 

Dictyostelium is located before the branching of metazoa and fungi but after the divergence of 

plants (Baldauf and Doolittle, 1997). Dictyostelium exhibits a particular life cycle. Free-living 

amoebas feed on bacteria and multiply by equal mitotic division; upon exhaustion of the food 

source a developmental program is triggered in which more than 100,000 cells aggregate by 

chemotaxis to form a multicellular structure. Differentiation and sorting out of spore and stalk 

cells takes place in the multicellular structure, giving rise to a mature fruiting body, a process 

that  requires the integrity of the cytoskeleton. 

 

Despite their apparent simplicity, Dictyostelium amoebas are equipped with a complex actin 

cytoskeleton that endows the cells with motile behaviour comparable to that of leukocytes 

(Noegel and Schleicher, 2000). Apart from that, Dictyostelium is amenable to a variety of 

biochemical, molecular biology and cell biology techniques. In particular the ease of 

cultivation facilitates the isolation of proteins associated with the actin network; furthermore, 

the genome can be easily manipulated by means of recombinant DNA techniques. Since the 

organism is haploid, mutants can be immediately obtained by homologous recombination, and 

mutated genes can be introduced with either integrating or autonomously replicating plasmids. 

Regulatable expression systems have also been developed for use in Dictyostelium (Blaauw et 

al., 2000). More important, the ongoing Dictyostelium genome and cDNA sequencing 

projects offer a unique opportunity to exploit the advantages of Dictyostelium to characterize 

the signal transduction pathways regulated by Rho GTPases. The Dictyostelium genome 

consists of ~34 Mb carried on 6 chromosomes, plus a multicopy ~90 kb extrachromosomal 

element that harbours the rRNA genes. The genome of Dictyostelium harbours 10,000 to 

12,000 genes as estimated from the complete sequence of Chromosome 2 and many of the 

known genes show a high degree of sequence similarity to homologues in vertebrate species 

(Glöckner et al., 2002). This information is complemented by sequencing of vegetative, 

developmental and sexual cDNA libraries, which has yielded a number of non-redundant 

ESTs (Morio et al., 1998).  

 

1.4 Signaling through Rho GTPases in Dictyostelium discoideum 
  

In Dictyostelium the Rho family consists of 15 members (Rivero et al., 2001). The first seven 

Rho-related genes (rac1a, rac1b, rac1c and racA to racD) were identified by Bush et al. 

(1993) using degenerated oligodeoxynucleotide probes corresponding to conserved domains 
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of the GTPases to screen a cDNA library. RacE was identified as the gene disrupted in a 

cytokinesis mutant generated by REMI (restriction enzyme mediated integration) (Larochelle 

et al., 1996). RacF1 was isolated using a PCR approach with degenerated primers 

corresponding to two highly conserved GTP-binding sites (Rivero et al., 1999). Finally, 

bioinformatics tools were used to establish the complete repertoire of Rho-related proteins in 

Dictyostelium and to investigate the genomic organization of their respective genes. In 

addition to the 15 genes encoding Rho GTPases (rac1a/b/c, racA to racE, racF1/F2, racG to 

racJ and racL), the Dictyostelium genome harbours one presudogene (ΨracK) (Rivero et al., 

2001). With few exceptions (RacA, RacD and RacE), Dictyostelium Rho proteins are around 

200 residues long, which is in the range of almost all small GTPases. RacD and RacE possess 

serine-rich insertions of different lengths close to the C-terminal membrane association 

domain, and RacA belongs to the novel subfamily of RhoBTB proteins (Ramos et al., 2002). 

The Rho insert, an insertion of usually 13 residues with high sequence variability, is a 

signature characteristic of Rho GTPases and determines in part the specificity of functions of 

Rho against GTPases of other families. All Dictyostelium Rac proteins present a Rho insert 

rich in charged residues, although shorter than 13 amino acids in some of them (RacA, RacE, 

RacH and RacJ) (Rivero et al., 2001). 

 

All the Rho-related GTPases described in Dictyostelium have being designated as Rac, 

although only Rac1a/1b/1c, RacF1/F2 and more loosely RacB and the GTPase domain of 

RacA  can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related 

proteins belongs to any of the well-defined subfamilies such as Rac, Cdc42, Rho or Rop, and 

two of them, RacI and RacJ, count among the most divergent Rho family members. 

Therefore, Dictyostelium, like animals, has representants of the Rac subfamily, but lacks Rho 

and Cdc42 proteins (Rivero et al., 1999). 

 

1.4.1  Regulators and effectors of Rho GTPases in Dictyostelium discoideum 

 

Substantial progress has been made during the last years in the identification and 

characterization of effectors and/or regulators that connect activation of Rho GTPases with 

the final cytoskeletal targets in Dictyostelium. Myosin M is an unconventional myosin in 

which the motor domain and neck regions are followed by a tail harbouring a RhoGEF 

domain (Schwarz, 1999; Oishi, 2000). A myosin molecule with a RhoGEF domain has not 

been identified thus far in other organisms, but in mammals a myosin with a RhoGAP domain 
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has been described. The DH domain of the Myosin M displays exchange activity for Rac1a/b 

as well as human Rac1.  

 

 
Figure 2. Regulation of Rho family proteins and their biological responses in 
Dictyostelium. Most Rho proteins are active when bound to GTP, and inactive when bound to 
GDP. Activation is catalysed by exchange factors (GEFs) and inactivation by GTPase-
activating proteins (GAPs). Several Rho family proteins also bind to guanine-nucleotide-
dissociation inhibitors (GDIs) in the cytoplasm, and are inactive in this complex. When bound 
to GTP, Rho proteins interact with target proteins to induce downstream responses. Point 
mutations that result in constitutively active or dominant negative forms of the GTPase are 
indicated. 
 

Darlin, a Dictyostelium armadillo-like protein related to the mammalian GEF SmgGDS, was 

identified using an affinity purification approach with recombinant RacE (Vithalani, 1998). 

Darlin is a 88 kDa protein that contains 11 copies of a peptide repeat related to that found in 

armadillo/β-catenin. Darlin binds to RacE and RacC as well as human Cdc42 and TC4Ran. In 

mammals SmgGDS displays mitogenic and transforming activities and regulates antiapoptotic 

cell survival signaling through regulation of Ras and probably also Rho signaling (Takakura 

et al., 2000). Like SmgGDS, darlin might also be involved in the regulation of multiple 

signaling pathways in Dictyostelium. 

 

In Dictyostelium a RhoGAP homologue, DdRacGAP1, has been reported (Chung et al., 

2000). The RhoGAP domain of this protein is situated at the N-terminus and is followed by an 

Src-homology 3 (SH3) domain, a central region harbouring polyproline stretches and a C-

terminal part consisting of a PH domain sandwiched by two DH domains. In vitro, the 

RhoGAP domain is active on Rac1a, RacC, RacE and RabD as well as on human RhoA and 

Rac1, but not on human N-Ras. The C-terminal region (DH/PH/DH) displays exchange 
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activity for Rac1a, but not for RacC, RacE, RasG or RabD (Ludbrook et al., 1997; Knetsch et 

al., 2001). 

 
 
Two RhoGDI homologues have been identified in Dictyostelium (Rivero et al., 2002; Imai, 

2002). RhoGDI1 shares 51-58% similarity to RhoGDIs from diverse species, whereas 

RhoGDI2 is more divergent (40-44% similarity). Interestingly, RhoGDI2 lacks the N-terminal 

regulatory arm characteristic for RhoGDI proteins that is responsible for most of the 

interactions with the GTPase. Both are cytosolic proteins and do not relocalize upon 

reorganization of the actin cytoskeleton, as described for most RhoGDIs. RhoGDI1 interacts 

with Rac1a/b/c, RacB, RacC and RacE as well as human Rac1, Cdc42 and RhoA and yeast 

Cdc42, but does not interact with RasG. Cells lacking RhoGDI1 displayed multiple defects 

that are compatible with a central role in the regulation of signal transduction cascades 

mediated by Rho GTPases. 

 

Two members of the PAK family of Ste20 group kinases have been characterized thus far in 

Dictyostelium, MIHCK (myosin I heavy chain kinase) and PAKa (Chung and Firtel, 1999; 

Roche and Côté, 2001). In PAK kinases the catalytic domain is placed at the C-terminus and 

is preceded by a regulatory domain that harbours a PBD. In the currently accepted model 

inactive PAK exists in a folded conformation in which an autoinhibitory domain that overlaps 

with the PBD inhibits the kinase domain. This interaction is disrupted upon binding of 

activated Rac or Cdc42, bringing about an open conformation that exposes multiple 

phosphorylation sites. Subsequent autophosphorylation of these sites leads to maximal kinase 

activity through prevention of interaction of the catalytic and the regulatory domains. MIHCK 

null cells grow and develop normally, and do not show alterations in pinocytosis or 

phagocytosis (Roche and Côté, 2001). PAKa appears to be involved in the regulation of 

pathways that promote both actin and myosin II assembly, as deduced from studies carried out 

in knockout and overexpressor cells (Chung and Firtel, 1999). 

 

Interestingly, Scar, a protein related to WASP, has been identified in Dictyostelium and shown 

to play an important role in regulating the actin cytoskeleton (Bear et al., 1998). Results 

obtained from the analysis of Scar null cells are consistent with a positive role of this protein 

in regulating actin polymerization (Bear et al., 1998; Seastone et al., 2001). Mutant cells had a 

markedly reduced F-actin content. Pinocytosis and phagocytosis rates were reduced and 

exocytosis was delayed. Interestingly, in Scar null cells endolysosomes were not coated by F-
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actin, suggesting that Scar is necessary for induction of actin polymerization around 

endolysosomes and consequently for trafficking along the endosomal pathway. 

 

1.4.2 Functions regulated by Rho GTPases in Dictyostelium  

 

Although only few of the Dictyostelium Rho GTPases have been studied to some extent, the 

results of the studies published to date give an idea of the repertoire of cellular processes 

regulated by Rho GTPases in this organism. Alterations in morphology, actin content and 

motility have been described in some mutants. Overexpression of constitutively active Rac1 

led to a marked up-regulation in the assembly of F-actin. On the contrary, cells 

overexpressing dominant negative Rac1 showed a less striking decrease of the F-actin levels 

(Chung et al., 2000; Palmieri et al., 2000). Dumontier et al. (2000) and Chung et al. (2000) 

reported prominent F-actin enriched crown-like projections in cells overexpressing activated 

Rac1. Overexpression of RacC induced the formation of irregular F-actin-rich structures 

termed petalopodia at the dorsal surface of the cell (Seastone et al., 1998). Cells expressing 

constitutively active or dominant negative Rac1b display an inefficient F-actin polymerization 

response to cAMP and an altered chemotactic response (Chung et al., 2000).  

 
A role of Rho GTPases in endocytosis and in cytokinesis has also been reported. RacF1 

localizes to early phagosomes, macropinosomes, and transient cell-to-cell contacts, but 

inactivation of the racF1 gene does not impair endocytosis and other actin-dependent 

processes, probably due to the presence of a closely related RacF2 (Rivero et al., 1999). By 

contrast, activated Rac1 and RacB inhibited both phagocytosis and pinocytosis (Dumontier et 

al., 2000; Palmieri et al., 2000; D. Knecht, pers. commun.) and RacC stimulated phagocytosis 

but impaired pinocytosis (Seastone et al., 1998). RacE was the first Rho GTPase shown to be 

essential for cytokinesis as demonstrated in RacE null cells (Larochelle et al., 1996). 

Subsequent studies have shown that the three Rac1 isoforms, RacB and RacC are also 

implicated in the regulation of cytokinesis (Dumontier et al., 2000; Palmieri et al., 2000; 

Rivero et al., 2002; D. Knecht, pers. commun.). 

 

1.5  Aim of the work 

 

The main goal of this work is to better understand the role of signal transduction cascades 

involving Rho GTPases in cytoskeleton-dependent processes. The role of proteins of the Rho, 

Rac and Cdc42 subfamilies in actin organization and other processes in mammalian cells has 
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been widely studied. However, many other Rho GTPases remain largely uncharacterized. The 

presence of multiple rac genes in Dictyostelium, some of them (rac1a/b/c, racF1/F2) as very 

closely related isoforms, presents a challenge for the elucidation of their function, because of 

potential functional redundancy.  

 

In this work we have undertaken the systematic analysis of two constitutively expressed Rho 

GTPases: RacG and RacH. To accomplish this, we have generated strains that overexpress 

the GTPase in either a non-mutated form or as mutagenized gain-of-function variants. Gain-

of-function mutants are generated by replacements of specific amino acid residues that lock 

the GTPase either in the inactive form (dominant negative mutant, usually T17N), or in the 

active form (constitutively active mutant, usually G12V or Q61L). First, the phenotype of 

these overexpression mutants has been studied, with emphasis on  processes like endocytosis, 

F-actin polymerization, motility and chemotaxis. Second, to study the subcellular distribution 

of the Rho GTPase, in particular in situations where a rearragement of the actin cytoskeleton 

takes place (pinocytosis, phagocytosis, locomotion) we have made use of green fluorescent 

protein (GFP) fusions and video microscopy and confocal microscopy techniques that 

allowed studies both in vivo as well as in fixed preparations. Finally, to study the 

requirements for the subcellular localization of the GTPase and how localization determines 

the function of the protein, we have generated chimeric constructs in which the C-terminal 

region of RacG and RacH have been exchanged, and parameters like endocytosis, motility 

and chemotaxis have been analyzed. 
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1. Materials 
 

1.1. Laboratory materials 

 
Cellophane sheet, Dry ease Novex 
Centrifuge tubes, 15 ml,  Greiner 
Coverslips (glass), Ø12 mm, Ø18 mm, Ø55 mm Assistent 
Corex tube, 15 ml, 50 ml Corex 
Cryo tube, 1 ml Nunc 
Electroporation cuvette, 2 mm electrode gap Bio-Rad 
Gel-drying frames Novex 
Hybridisation bag Life Technologies 
Microcentrifuge tube, 1.5 ml, 2.2 ml Sarstedt 
Micropipette, 1-20 µl, 10-200 µl, 100-1,000 µl Gilson 
Micropipette tips Greiner 
Multi-channel pipette Finnigan 
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Needles (sterile), 18G�27G Terumo, Microlance 
Nitrocellulose membrane, BA85 Schleicher and Schuell 
Nitrocellulose-round filter, BA85, Ø82 mm Schleicher and Schuell 
Nylon membrane Biodyne B Pall 
Parafilm American Nat Can 
Pasteur pipette, 145 mm, 230 mm  Volac 
PCR soft tubes, 0.2 ml Biozym 
Petri dish (35 mm, 60 mm, 100 mm) Falcon 
Petri dish (90 mm) Greiner 
Plastic cuvette, semi-micro Greiner 
Plastic pipettes (sterile), 1 ml, 2 ml, 5 ml, 10 ml, 25 ml Greiner 
Quartz cuvette Infrasil  Hellma 
Quartz cuvette, semi-micro Perkin Elmer 
Saran wrap Dow 
Scalpels (disposable), Nr. 10, 11, 15, 21 Feather 
Slides, 76 x 26 mm Menzel 
Syringes (sterile), 1 ml, 5 ml, 10 ml, 20 ml Amefa, Omnifix 
Syringe filters (Acrodisc), 0.2 µm, 0.45 µm Gelman Sciences 
Tissue culture flasks, 25 cm2 , 75 cm2 , 175 cm2 Nunc 
Tissue culture dishes, 6 wells, 24 wells, 96 wells Nunc 
Whatman 3MM filter paper Whatman 
X-ray film, X-omat AR-5, 18 x 24 mm, 535 x 43 mm Kodak 
 
1.2. Instruments and equipments 
  
Centrifuges (microcentrifuges): 
        Centrifuge 5417 C Eppendorf 
        Centrifuge Sigma B Braun  
        Cold centrifuge Biofuge fresco Heraeus Instruments 
Centrifuges (table-top, cooling, low speed): 
        Centrifuge CS-6R Beckman 
        Centrifuge RT7 Sorvall 
        Centrifuge Allegra 21R Beckman 
Centrifuges (cooling, high speed): 
        Beckman Avanti J25 Beckman 
        Sorvall RC 5C plus Sorvall 
Centrifuge-rotors: 
        JA-10 Beckman 
        JA-25.50 Beckman 
        SLA-1500 Sorvall 
        SLA-3000 Sorvall 
        SS-34 Sorvall 
Dounce homogeniser, 10 ml B. Braun 
Electrophoresis power supply, Power-pac-200, -300 Bio-Rad 
Electroporation unit Gene-Pulser  Bio-Rad 
Fluorimeter                                                                                               PTI 
Freezer (-80 °C) Nunc 
Freezer (-20 °C) Siemens, Liebherr 
Gel-documentation unit MWG-Biotech 
Heating block DIGI-Block JR  NeoLab 
Heating block, Dry-Block DB x 20 Techne 
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Hybridization oven Hybaid 
Ice machine  Ziegra 
Incubators: 
         CO2-incubator, BBD 6220, BB 6220 Heraeus 
         CO2-incubator WTC Binder Biotran 
         Incubator, microbiological Heraeus 
         Incubator with shaker Lab-Therm  Kuehner 
Laminar flow, Hera Safe (HS 12) Heraeus 
Magnetic stirrer, MR 3001 K Heidolph 
Microcontroller                                                                                        Luigs and Newmann  
Microscopes: 
         Light microscope, CH30 Olympus 
         Light microscope, DMIL Leica 
         Light microscope, CK2 Olympus 
         Fluorescence microscope, DMR Leica 
         Fluorescence microscope, 1X70 Olympus 
         Confocal laser scanning microscope, DM/IRBE Leica 
         Stereomicroscope, SZ4045TR Olympus 
Oven, conventional Heraeus 
PCR machine, PCR-DNA Engine PTC-200 MJ Research 
pH-Meter Knick 
Refrigerator Liebherr 
Semi-dry blot apparatus, Trans-Blot SD Bio-Rad 
Shakers GFL Kuehner 
Sonicator, Ultra turrax T25 basic IKA Labortechnik 
Speed-vac concentrator, DNA 110 Savant 
Spectrophotometer, Ultraspec 2000, UV/visible Pharmacia Biotech 
Ultracentrifuges: 
          Optima TLX                                                                                  Beckman 
          Optima L-70K Beckman 
Ultracentrifuge-rotors: 
          TLA 45 Beckman 
          TLA 100.3 Beckman 
          SW 41 Beckman 
UV-crosslinker UVC 500  Hoefer 
UV- transilluminator TFS-35 M  Faust 
Vortex, REAX top Heidolph 
Video cameras 
          JAI CV-M10 CCD Camera Stemmer Imaging                 
          SensiCam PCO Imaging 
Waterbath GFL 
X-ray-film developing machine, FPM-100A Fujifilm 
 
1.3  Kits 
 
Nucleobond AX Macherey-Nagel 
NucleoSpin Extract 2 in 1                                                                        Macherey-Nagel 
Nucleotrap                                                                                                Macherey-Nagel 
Original TA Cloning Invitrogen 
pGEM-T Easy Promega 
Qiagen Midi- and Maxi-prep Qiagen 
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Stratagene Prime It II                                                                               Stratagene 
 
1.4. Enzymes, antibodies, substrates, inhibitors and antibiotics 
 
Enzymes used in the molecular biology experiments: 
 
Calf Intestinal Alkaline Phosphatase (CIAP)             Roche 
Deoxyribonuclease I (DNase I)                                                                Roche 
Klenow fragment (DNA polymerase)                                                      Roche 
Lysozyme                                                                                                 Sigma 
Proteinase K                                                                                             Sigma 
Restriction endonucleases                                                                        Amersham 
                                                                                                                  New England Biolabs 
Reverse transcriptase, Superscript II                                                        Life Technologies 
Ribonuclease H (RNase H)                                                                      Roche 
Ribonuclease A (RNase A)                                                                      Sigma 
S1-nuclease                                                                                              Amersham 
T4 DNA ligase                                                                                         Roche 
Taq-polymerase                                                                                       Roche 
 
Primary antibodies: 
 
Mouse anti-actin monoclonal antibody Act 1-7                                       (Simpson et al., 1984) 
Mouse anti-GFP monoclonal antibody K3-184-2                                    unpublished 
Mouse anti-interaptin monoclonal antibody 260-60-10                           (Rivero, 1998) 
Mouse anti-PDI monoclonal antibody 221-135-1                                    (Monnat et al., 1997) 
Mouse anti-comitin monoclonal antibody 190-340-2                              (Weiner et al., 1993) 
Mouse anti-CsA monoclonal antibody 33-294-17                                   (Bertholdt et al., 1985) 
Goat anti-GST antibody  Amersham 
 
Secondary antibodies: 
 
Goat anti-mouse IgG, peroxidase conjugated Sigma 
Goat anti-rabbit IgG, peroxidase conjugated Sigma 
Mouse anti-goat IgG, peroxidase conjugated Sigma 
 
Inhibitors: 
 
Diethylpyrocarbonate (DEPC)  Sigma 
Leupeptin    Sigma 
Pepstatin    Sigma 
Phenylmethylsulphonyl fluoride (PMSF)        Sigma 
LY294002    Sigma 
 
Antibiotics: 
 
Ampicillin    Gruenenthal 
Blasticidin S    ICN Biomedicals 
Chloramphenicol    Sigma 
Dihydrostreptomycinsulfate    Sigma 
Geneticin (G418)    Life Technologies 
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Kanamycin    Sigma, Biochrom 
Tetracyclin    Sigma 
 
1.5 Chemicals and reagents 
 
 
Most of the chemicals and reagents were obtained either from Sigma, Fluka, Difco, Merck, 

Roche, Roth or Serva. Those chemicals or reagents that were obtained from companies other 

than those mentioned here are listed below: 

 
Acetic acid (98-100%)   Riedel-de-Haen 
Acrylamide (Protogel: 30:0,8 AA/Bis-AA)   National Diagnostics 
Agar-Agar (BRC-RG)   Biomatic 
Agarose (Electrophoresis Grade)   Life Technologies 
Chloroform   Riedel-de-Haen 
Dimethylformamide   Riedel-de-Haen 
Ethanol   Riedel-de-Haen 
Glycerine   Riedel-de-Haen 
Glycine   Riedel-de-Haen 
Isopropyl-D-thiogalactopyranoside (IPTG)   Loewe Biochemica 
Methanol   Riedel-de-Haen 
Morpholino propane sulphonic acid (MOPS)   Gerbu 
N- [2-Hydroxyethyl] piperazine-N�-2- 
-ethanesulfonic acid (HEPES)   Biomol 
Sodium hydroxide   Riedel-de-Haen 
 
1.6. Media and buffers 
 
 
All media and buffers were prepared with deionised water filtered through an ion-exchange 

unit (Membra Pure). The media and buffers were sterilized by autoclaving at 120ºC and 

antibiotics were added to the media after cooling to approx. 50ºC. For making agar plates, a 

semi-automatic plate-pouring machine (Technomat) was used. 

 

1.6.1. Media and buffers for Dictyostelium culture 
 
 
AX2-medium, pH 6.7: (Claviez et al., 1982) 
 
 7.15 g yeast extract 
 14.3 g peptone (proteose) 
 18.0 g maltose 
 0.486 g KH2PO4 
 0.616 g Na2HPO2.2H2O 
 add H2O to make 1 litre 
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Phosphate agar plates, pH 6.0: 
 
 9 g agar 
 add Soerensen phosphate buffer, pH 6.0 to make  
                                                                  1 litre 
 
Salt solution: (Bonner, 1947) 
 
 10 mM NaCl 
 10 mM KCl 
 2.7 mM CaCl2 
 
 
SM agar plates, pH 6.5: (Sussman, 1951) 
 
 9 g agar 
 10 g peptone 
 10 g glucose 
 1 g yeast extract 
 1 g MgSO4.7 H2O 
 2.2 g KH2PO4 
 1 g K2HPO4  
                                                                   add H2O to make 1 litre 
 
 
Soerensen phosphate buffer, pH 6.0: (Malchow, 1972) 
 
 2 mM Na2HPO4 
 14.6 mM KH2PO4 
 
1.6.2. Media for E. coli culture 
 
 
LB medium, pH 7.4: (Sambrook et al., 1989) 
 
 10 g bacto-tryptone 
 5 g yeast extract 
 10 g NaCl 
 adjust to pH 7.4 with 1 N NaOH 
 add H2O to make 1 litre   
 
 
For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then 

autoclaved. For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin or 

chloramphenicol was added to the autoclaved medium after cooling it to approximately 50ºC. 

For blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution 

(2% in dimethylformamide) was spread per 90 mm plate and the plate was incubated at 37ºC 

for at least 30 min before using. 
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SOC medium, pH 7.0: (Sambrook et al., 1989) 
 
 20 g bacto-tryptone 
 5 g yeast extract 
 10 mM NaCl 
 2.5 mM KCl 
 dissolve in 900 ml deionised H2O 
 adjust to pH 7.0 with 1 N NaOH 
 
 The medium was autoclaved, cooled to approx. 50ºC  
 and then the following solutions, which were 
 separately sterilized by filtration (glucose) or 
 autoclaving, were added: 
 10 mM MgCl2.6 H2O 
 10 mM MgSO4.7 H2O 
 20 mM glucose 
 add H2O to make 1 litre 
 
1.6.3. Buffers and other solutions 
 
The buffers and solutions that were commonly used during the course of this study are 

mentioned below.  

 
10x NCP-Puffer, pH 8.0: 12.1 g Tris/HCl 
 87.0 g NaCl 
 5.0 ml Tween 20 
 2.0 g sodium azide 
                                                         add H2O to make 1 litre 

 
PBG, pH 7.4: 0.5 % bovine serum albumin 
 0.1 % gelatin (cold-water fish skin) 
 in 1x PBS, pH 7.4 
 
1x PBS, pH 7.4: 8.0 g NaCl 
 0.2 g KH2PO4 
 1.15 g Na2HPO4 
 0.2 g KCl 
 dissolve in 900 ml deionised H2O 
 adjust to pH 7.4 
 add H2O to make 1 litre, autoclave 
 
 
1.2 M Phosphate buffer, pH 6.8: 1.2 M Na2HPO4, pH 9.1 was mixed with 1.2 M 
 NaH2PO4, pH 4.02 at the ratio of 2:1. 
 
 
20x SSC, pH 7.0 :                           3 M NaCl 
 0.3 M sodium citrate 
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TE buffer, pH 8.0: 10 mM Tris/HCl, pH 8.0 
 1 mM EDTA, pH 8.0 
 
10x TAE buffer, pH 8.3: 27.22 g Tris 
 13.6 g sodium acetate 
 3.72 g EDTA 
 add H2O to make 1 litre 

 

MES buffer, pH 6.5:                      20 mM 2-[N-morpholino]ethane sulphonic acid, pH 6.5 
                                                        1 mM EDTA 
                                                        250 mM sucrose  
 
1.7  Biological materials 
 
Bacterial strains: 
 E. coli BL21 (DE) (Studier, 1986) 
 E. coli DH5                         (Hanahan, 1983) 
 E. coli M15(pREP4)           Qiagen 
 E. coli MC1061 (Wertman, 1986) 
 E. coli Y1088 (Young, 1983) 
 E. coli XL1 blue (Bullock et al., 1987) 
 Klebsiella aerogenes (Williams and Newell, 1976) 
 
Dictyostelium discoideum strain: 
 
 
AX2-214 An axenically growing derivative of wild strain, NC-4         
 (Raper, 1935). Commonly referred to as AX2. 
 
 
 
2. Cell biological methods 
 
2.1. Growth of Dictyostelium 
 
 
2.1.1. Growth in liquid nutrient medium (Claviez et al., 1982) 
 

Dictyostelium discoideum AX2 and the derived transformants were grown in liquid AX2 

medium containing dihydrostreptomycin (40 µg/ml) and other appropriate selective 

antibiotics (depending upon mutant) at 21°C either in a shaking-suspension in Erlenmeyer 

flasks with shaking at 160 rpm or on petri dishes. For all the cell biological works, cultures 

were harvested at a density of 3-5 x 106 cells/ml. 
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2.1.2. Growth on SM agar plates 

 

In general, Dictyostelium cells were plated onto SM agar plates overlaid with Klebsiella 

aerogenes and incubated at 21 ºC for 3-4 days until Dictyostelium plaques appeared on the 

bacterial lawns. To obtain single clones of Dictyostelium, 50-200 cells were suspended in 100 

µl Soerensen phosphate buffer and plated onto Klebsiella-overlaid SM agar plates. Single 

plaques obtained after incubation at 21ºC for 3-4 days were picked up with sterile tooth-picks, 

transferred either to new Klebsiella-overlaid SM agar plates or to separate petri dishes with 

AX2 medium supplemented with dihydrostreptomycin (40 µg/ml) and ampicillin (50µg/ml) 

(to eliminate the bacteria) and any other appropriate selective antibiotic (depending upon 

mutant). 

 
2.2. Developoment of Dictyostelium 
 
Development in Dictyostelium is induced by starvation. Cells grown to a density of 2-3 x 106 

cells/ml were pelleted by centrifugation at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min at 

4ºC and were washed two times in an equal volume of cold Soerensen phosphate buffer in 

order to remove all the nutrients present in the culture medium. For development in 

suspension culture, the cells were resuspended in Soerensen phosphate buffer at a density of 1 

x 107 cells/ml and were shaken at 160 rpm and 21ºC for desired time periods. For 

development on nitrocellulose filters, 0.5 x 108 cells were deposited on nitrocellulose filters 

(Millipore type HA, Millipore) and allowed to develop at 21°C as described (Newell et al., 

1969). 

 
2.3. Preservation of Dictyostelium 
 
Dictyostelium cells were allowed to grow in AX2 medium to a density of 4-5 x 106 cells/ml. 9 

ml of the densely grown culture were collected in a 15 ml Falcon tube on ice and 

supplemented with 1 ml horse serum and 1 ml DMSO. The contents were mixed by gentle 

pipetting, and aliquoted in cryotubes (1 ml). The aliquots were incubated on ice for 60 min, 

followed by incubation at �20ºC for at least 2 hr. Finally, the aliquots were transferred to �80 

ºC for long term storage.  

 

For reviving the frozen Dictyostelium cells, an aliquot was taken out from �80ºC and thawed 

immediately at 37ºC in a waterbath. In order to remove DMSO, the cells were transferred to a 

Falcon tube containing 30 ml AX2 medium and centrifuged at 2,000 rpm (Sorvall RT7 
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centrifuge) for 2 min at 4ºC. The cell pellet was resuspended in 250 µl of AX2 medium and 

the cell suspension was plated onto SM agar plates overlaid with Klebsiella. The plates were 

incubated at 21ºC until plaques of Dictyostelium cells started to appear. 

 
2.4. Transformation of Dictyostelium cells by electroporation 
 
 
The electroporation method for transformation of Dictyostelium cells described by de Hostos. 

(1993) was followed with little modifications. Dictyostelium discoideum cells were grown 

axenically in suspension culture to a density of 2-3 x 106 cells/ml.  The cell suspension was 

incubated on ice for 20 min and centrifuged at 2,000 rpm (Sorvall RT7 centrifuge) for 2 min 

at 4ºC to collect the cells. The cells were then washed with an equal volume of ice-cold 

Soerensen phosphate buffer followed by an equal volume of ice-cold electroporation-buffer. 

After washings, the cells were resuspended in electroporation-buffer at a density of 1 x 108 

cells/ml. For electroporation, 20-25 µg of the plasmid DNA was added to 500 µl of the cell 

suspension and the cell-DNA mixture was transferred to a pre-chilled electroporation cuvette 

(2 mm electrode gap, Bio-Rad). Electroporation was performed with an electroporation unit 

(Gene Pulser, Bio-Rad) set at 0.9 kV and 3 µF without the pulse controller. After 

electroporation, the cells were immediately spread onto a 100-mm petri dish and were allowed 

to sit for 10 min at 21ºC. Thereafter, 1 ml of healing-solution was added dropwise onto the 

cells and the petri dish was incubated at 21ºC on a shaking platform at 50 rpm for 15 min. 10 

ml of AX2 medium was added into the petri dish and the cells were allowed to recover 

overnight. The next day, the medium was replaced by the selection medium containing 

appropriate antibiotic. To select for stable transformants, selection medium was replaced 

every 24-48 hr until the control plate (containing cells electroporated without any DNA) was 

clear of live cells. 

 

Electroporation-buffer:                                           0.1 M Potassium phosphate buffer 
 
100 ml 0.1 M potassium phosphate buffer                 170 ml 0.1 M KH2PO4 
17.12 g sucrose                                                           30 ml 0.1 M K2HPO4 
add distilled H2O to make 1 litre                                adjust to pH 6.1 
autoclave 
 
Healing-solution: 
 
150 µl 0.1 MgCl2 
150 µl 0.1 CaCl2 
10 ml electroporation-buffer 
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2.5. Endocytosis and exocytosis assays 
 
 
Fluid-phase endocytosis assays were performed according to the methods of Aubry et al. 

(1994). Fluid-phase efflux assays were performed as described using TRITC-dextran 

(Buczynski, 1997). Briefly, Dictyostelium cells were grown to <5 x 106 cell/ml. The cells were 

centrifuged and resuspended at 5 x 106/ml in fresh axenic medium at 21°C and incubated for 

15 min on a shaker to allow cells to recuperate. Then TRITC-dextran was added to a final 

concentration of 2 mg/ml. Samples were withdrawn at different time intervals and the cells 

were pelleted after incubating for 3 min with 100 µl of trypan blue (2 mg/ml) to remove non-

specifically bound marker. The pellet was resuspended in phosphate buffer and the 

fluorescence was measured using a fluorimeter (544 nm excitation/ 574 nm emission).  

 

For fluid-phase exocytosis assays, cells were pulsed with TRITC-dextran (2 mg/ml) for 2 

hours, washed and resuspended in fresh axenic medium. Fluorescence from the marker 

remaining in the cells was measured at different time intervals as explained above. 

 

Phagocytosis was performed according to Maniak et al. (1995). Briefly Dictyostelium cells 

were grown to <5 x106/ml over 5 generations in axenic medium. Cells were centrifuged and 

resuspended at 2 x 106/ml in fresh axenic medium at 21°C. TRITC-labelled yeast cells 

prepared according to Materials and Method 5.4 were added in a 5 fold excess (109 yeast 

cells/ml stock). Cells were incubated on a rotary shaker at 160 rpm. Samples were taken at 

different intervals and the fluorescence of non internalized yeasts was quenched by incubating 

for 3 min with 100 µl trypan blue (2 mg/ml). Cells were centrifuged again, resuspended in 

phosphate buffer and the fluorescence was measured using a fluorimeter (544 nm excitation/ 

574 nm emission).   

                                       

3. Molecular biological methods  

 
3.1. Purification of plasmid DNA 
 
In general, for small cultures (1 ml) of E. coli transformants, the alkaline lysis method of 

Holmes and Quigley (1981) was used to extract plasmid DNA. This method is good for 

screening a large number of clones simultaneously for the desired recombinant plasmid. 

Briefly, single transformants were picked up from the culture plate and were grown overnight 

in 1 ml of LB media containing suitable antibiotic. Next day, the overnight grown E. coli cells 
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were pelleted by centrifugation at 6,000 rpm in a microcentrifuge for 3-5 min. The pellet was 

then resuspended completely in 250 µl STET/lysozyme buffer and the suspension was 

incubated at  room temperature for 10 min to lyse the bacterial cells. The bacterial lysate was 

boiled at 100ºC for 1 min and was then centrifuged in an eppendorf centrifuge at maximum 

speed for 15 min at room temperature. The plasmid DNA present in the supernatant was 

precipitated by adding an equal volume of isopropanol and incubating at room temperature for 

10 min. The precipitated DNA was pelleted in the eppendorf centrifuge at 12,000 rpm for 15 

min and the DNA pellet was washed with 70% ethanol, dried in a speed-vac concentrator and 

finally resuspended in 40 µl TE, pH 8.0 containing RNase A at 1 µg/ml. 

 

STET/lysozyme buffer, pH 8.0: 

50 mM Tris/HCl, pH 8.0 

50 mM EDTA 

0.5% Triton-X-100 

8.0% Sucrose 

Add lysozyme at 1 mg/ml at the time of use 

 

Alternatively, for pure plasmid preparations in small and large scales (for sequencing, PCR or 

transformations), kits provided either by Macherey-Nagel (Nucleobond AX kit for small scale 

plasmid preparations) or by Qiagen (Qiagen Midi- and Maxi-Prep kit for large scale plasmid 

preparations) were used. These kits follow basically the same approach: first overnight culture 

of bacteria containing the plasmid is pelleted and the cells are lysed by alkaline lysis. The 

freed plasmid DNA is then adsorbed on a silica matrix, washed with ethanol, and then eluted 

with TE, pH 8.0. This method avoids the requirement of caesium chloride or phenol-

chloroform steps during purification. 

 

3.2. Digestion with restriction enzymes 
 
All restriction enzymes were obtained from NEB, Amersham or Life Technologies and the 

digestions were performed in the buffer systems and temperature conditions as recommended 

by the manufacturers. The plasmid DNA was digested for 1-2 hr. 

  

3.3. Generation of blunt ends in linearised plasmid DNA 
 
For many cloning experiments, it was necessary to convert the 5� or 3� extensions generated 

by restriction endonucleases into blunt ends. Repair of 5� extensions was carried out by the 
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polymerase activity of the Klenow fragment, whereas repair of 3� extensions was carried out 

by the 3� to 5� exonuclease activity of the Klenow fragment. 

 
 
Reaction-mix for 5� extensions:                                 Reaction-mix for 3� extensions: 
1-4 µg linearised DNA                                               1-4 µg linearised DNA 
5 µl 10x High salt buffer                                            5 µl 10x High salt buffer 
1 µl 50x dNTP-mix (each 4 mM)                               2 U Klenow fragment 
2 U Klenow fragment                                                 add H2O to make 50 µl 
add H2O to make 50 µl 
 
 
10x High salt buffer: 
500 mM Tris/HCl, pH 7.5 
1 M NaCl 
100 mM MgCl2 
10 mM DTT 
 
 
The reaction was carried out at 37ºC for 25-30 min. After incubation, the reaction was 

immediately stopped by heat-inactivating the enzyme at 75 ºC for 10 min or by adding 1µl 0.5 

M EDTA. This was followed by phenol/chloroform extraction and precipitation of DNA with 

2 vol. ethanol. 

 

3.4. Dephosphorylation of DNA fragments 
 
To avoid self-ligation of the vector having blunt ends or that has been digested with a single 

restriction enzyme, 5� ends of the linearised plasmids were dephosphorylated by calf-

intestinal akaline phosphatase (CIAP). Briefly, in a 50 µl reaction volume, 1-5 µg of the 

linearised vector-DNA was incubated with 1 U calf-intestinal alkaline phosphatase in CIAP-

buffer (provided by the manufacturer) at 37ºC for 30 min. The reaction was stopped by heat-

inactivating the enzyme at 65ºC for 10 min. The dephosphorylated DNA was extracted once 

with phenol-chloroform and precipitated with 2 vol. ethanol and 1/10 vol. 2 M sodium 

acetate, pH 5.2. 

 

3.5. Setting up of ligation reactions 
 
A DNA fragment and the appropriate linearised plasmid were mixed in approximately 

equimolar amounts. T4 DNA ligase and ATP were added as indicated below and the ligation 

reaction was left overnight at 10-12ºC. 
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Ligation reaction                                                               5x Ligation buffer 

Linearised vector DNA (200-400ng)                                Supplied with the enzyme 
DNA fragment                                                                  by manufacturers 
4 µl 5x ligation buffer                                                                                 
1µ 0.1 M ATP 
1.5 U T4 Ligase 
and water to make up to 20 µl. 
 
3.5.1  Generation of point mutations by PCR-based site directed mutagenesis 

 
Dictyostelium RacG and RacH sequences carrying G12V (constitutively active) or T17N 

(dominant negative) mutations were generated from wild type cDNA by PCR-based site 

directed mutagenesis. In a first round of PCR mismatched forward primers were used that 

introduced the point mutations. The product of this step was used as a template for a second 

round of PCR using forward overlapping primers spanning the start codon in order to 

complete the sequence of the cDNA. PCR products were cloned into the pGEM-Teasy vector 

and verified by sequencing. 

 

3.5.2 Generation of chimeric constructs of RacG and RacH 

 

The chimeric PCR products were generated by three steps of PCR. In the first step, N-

terminal fragments of RacG (coding for amino acids 1-168) and RacH (coding for amino 

acids 1-163) as well as C-terminal fragments of RacG (coding for amino acids 167-201) and 

RacH (coding for amino acids 164-200) were amplified. The oligonucleotide primers were 

designed to allow an overlap of 15 bases between the N-terminal RacH fragment and the C-

terminal RacG fragment, and vice versa. Finally the full-legth chimeric cDNAs were 

amplified using a RacG forward primer and a RacH reverse primer to obtain RacG chimera 

and a RacH forward primer and a RacG reverse primer to obtain RacH chimera. PCR products 

were cloned into the pGEM-T easy vector and verified by sequencing. 

 
3.6 DNA agarose gel electrophoresis 
 
Agarose gel electrophoresis was performed according to the method described by Sambrook 

et al. (1989) to resolve and purify the DNA fragments. Electrophoresis was typically 

performed with 0.7% (w/v) agarose gels in 1x TAE buffer submerged in a horizontal 

electrophoresis tank containing 1x TAE buffer at 1-5 V/cm. Only for resolving fragments less 

than 1,000 bp, 1% (w/v) agarose gels in 1x TAE buffer were used. DNA-size marker was 
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always loaded along with the DNA samples in order to estimate the size of the resolved DNA 

fragments in the samples. The gel was run until the bromophenol blue dye present in the 

DNA-loading buffer had migrated the appropriate distance through the gel. The gel was 

examined under UV light at 302 nm and was photographed using a gel-documentation system 

(MWG-Biotech) 

 

DNA-size marker: 
 
1 kb DNA Ladder (Life Technologies):              12,216; 11,198; 10,180; 9,162; 8,144; 7,126; 
                                                                                6,108; 5,090; 4,072; 3,054; 2,036; 1,636; 1,018; 
                                                                                506; 396; 344; 298; 220; 201; 154; 134; 75 bp 
 
 
3.7 Recovery of DNA fragments from agarose gel 
 
DNA fragments from restriction enzyme digests or from PCR reactions were separated by 

agarose gel electrophoresis and the gel piece containing the desired DNA fragment was 

carefully and quickly excised while observing the ethidium bromide stained gel under a UV 

transilluminator. The DNA fragment was then purified from the excised gel piece using the 

Macherey-Nagel gel elution kit (NucleoSpin Extract 2 in 1), following the method described 

by the manufacturers. 

 
3.8 Transformation of E. coli 
 
 
3.8.1 Transformation of E. coli cells by the CaCl2 method 
 
Preparation of CaCl2-competent E. coli cells: 

 

An overnight grown culture of E.coli (0.5 ml) was inoculated into 50 ml LB medium and 

incubated at 37ºC, with shaking 250 rpm until an OD600 of 0.4-0.6 was obtained. The bacteria 

were then pelleted at 4ºC for 10 min at 4,000 rpm (Beckman Avanti J25, rotor JA-25.50) and 

the bacterial pellet was resuspended in 20 ml of ice-cold 0.1 M CaCl2 and incubated on ice for 

15 min. The bacterial cells were again pelleted and resuspended in 2 ml of ice-cold 0.1 M 

CaCl2/20% glycerol and then aliquoted 200 µl/tube. The aliquots were then quickly frozen in 

a dry ice/ethanol bath and immediately stored at �80ºC. 
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Transformation of CaCl2-competent E. coli cells: 
 
Plasmid DNA (~50-100 ng of a ligase reaction or ~10 ng of a supercoiled plasmid) was mixed 

with 100-200 µl of CaCl2 -competent E.coli cells and incubated on ice for 30 min. The cells 

were then heat-shocked at 42ºC for 45 s and immediately transferred to ice for 2 minutes. The 

cells were then mixed with 1 ml of pre-warmed (at 37ºC) SOC medium and incubated at 37ºC 

with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the transformation mix, or an 

appropriate dilution, was plated onto selection plates and the transformants were allowed to 

grow overnight at 37ºC. 

 
3.8.2 Transformation of E. coli cells by electroporation 
 
 
Preparation of electroporation-competent E. coli cells 
 
An overnight grown culture of E. coli (5 ml) was inoculated into 1,000 ml of LB medium and 

incubated at 37ºC with shaking at 250 rpm until an OD600 of 0.4-0.6 was obtained. The culture 

was then incubated on ice for 15-20 min. Thereafter, the culture was transferred to pre-chilled 

500-ml centrifuge bottles (Beckman) and the cells were pelleted by centrifugation at 4,200 

rpm (Beckman Avanti J25, rotor JA-10) for 20 min at 4ºC. The bacterial pellet was washed 

twice with an equal volume of ice-cold water and the cells were resuspended in 40 ml of ice-

cold 10% glycerol, transferred to a pre-chilled 50-ml centrifuge tube and centrifuged at 4,200 

rpm (Beckman Avanti J25, rotor JA-25.50) for 10 min at 4ºC. Finally, the cells were 

resuspended in an equal volume of 10% chilled glycerol and aliquoted (50-100 µl) in 1.5-ml 

eppendorf tubes that have been placed in a dry ice/ethanol bath. The frozen aliquots were 

immediately transferred to �80ºC for long-term storage. 

 
Transformation of electroporation-competent E. coli cells 
 
Plasmid DNA (~20 ng dissolved in 5-10 µl ddH2O) was mixed with 50-100 µl 

electroporation-competent E. coli cells. The transformation mix was transferred to a 2 mm 

BioRad electroporation cuvette (pre-chilled) and the cuvette was incubated on ice for 10 min. 

The DNA was then electroporated into competent E. coli cells using an electroporation unit 

(Gene Pulser, Bio-rad ) set at 2.5 KV, 25 µF, 200Ω. Immediatly after electroporation, 1 ml of 

pre-warmed (37ºC) SOC medium was added onto the transformed cells and the cells were 

incubated at 37ºC with shaking at ~150 rpm for 45 min. Finally, 100-200 µl of the 

transformation mix, or an appropriate dilution, was plated onto selection plates and the 

transformants were allowed to grow overnight at 37ºC. 
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3.9 Glycerol stock of bacterial cultures 
 
Glycerol stocks of all the bacterial strains/transformants were prepared for long-term storage. 

The culture was grown overnight in LB medium with or without the selective antibiotic  

(depending upon the bacterial transformation). 850µl of overnight culture was added to 150 µl 

of sterile glycerol in a 1.5 ml microcentrifuge tube, mixed well by vortexing and the tube was 

frozen on dry ice and stored at �80°C. 

 

3.10 Construction of vectors 

 
3.10.1 Vectors for expression of RacG and RacH as GFP-fusion proteins 
 
Vectors were constructed that allowed expression of GFP-RacG and GFP-RacH in 

Dictyostelium cells under the control of the actin-15 promoter and the actin-8 terminator. 

EcoRI fragments on cDNA encoding either RacG or RacH were subcloned in-frame at the 

EcoRI site located at the C-terminus of the coding region of the green fluorescent protein 

(GFP) in the pDEX-RH expression vector (Westphal et al., 1997). The resulting vectors were 

introduced into AX2 cells by electroporation.  

 

For overexpression of mutated variants V12 and N17 of RacG and RacH a tetracycline-

controlled inducible system was used (Blaauw et al., 2000). Fusions to GFP were prepared in 

pBluescript (Stratagene, La Jolla, CA), excised with XhoI and NotI, blunt ended and cloned 

into the blunt-ended BglII site of the MB38 plasmid that confers blasticidin resistance. The 

vectors carrying GFP-RacG-V12 or GFP-RacH-V12 and GFP-RacG-N17 or GFP-RacH-V12 

were introduced into AX2 cells that already carried the MB35 vector which confers G418-

resistance (gift of Dr. T. Soldati). All vectors were introduced into cells by electroporation. 

After selection for growth in the presence of G418 or G418 and blasticidin (mutated forms), 

GFP-expressing transformants were confirmed by visual inspection under a fluorescence 

microscope. Tetracycline was used at a 10 mg/ml concentration to repress expression of 

mutated forms of RacG and RacH.  

 

3.10.2 Vectors for expression of RacG and RacH as GST-fusion proteins 
 
 
For expression of RacG and RacH as a GST-fusion protein, the pGEX-2T (Amersham 

Pharmacia) vector was used. The C-terminal part of either RacG (amino acids 101-201) or 



2. Materials and Methods2. Materials and Methods2. Materials and Methods2. Materials and Methods    
___________________________________________________________________________             

31

RacH (amino acids 101-200) was amplified by PCR. Both PCR products were subcloned as 

BamHI fragments in a BamHI restricted pGEX-2T vector. The obtained pGEX-RacG and 

pGEX-RacH expression vectors were transformed into E. coli XL1 blue cells for expression 

of GST-RacG and GST-RacH fusion protein. The recombinantly expressed GST-fusion 

proteins were purified using affinity chromatography with glutathione agarose beads (see 

section 4.6.2). 

 

3.10.3 Vectors for expression of RacG and RacH as His-tag fusion proteins 

 

For expression of RacG and RacH as a His-tag fusion protein, PCR-amplified cDNA 

fragments encoding either RacG or RacH were cloned into the BamHI site of the bacterial 

protein expression vector pQE30 (Qiagen GmbH, Germany). This vector was transformed 

into E. coli strain M15 (pREP4). The recombinantly expressed His-tagged protein was 

purified using affinity chromatography with Ni2+-NTA agarose beads (see section 4.6.3). 

 

3.11  DNA sequencing 
 
Sequence of the PCR-amplified products or plasmid DNA was performed at the sequencing 

facility of the Centre for Molecular Medicine, University of Cologne, Cologne by the 

modified dideoxy nucleotide termination method using a Perkin Elmer ABI prism 377  DNA 

sequencer. 

 
3.12  Computer analyses 
 
Sequencing analysis, homology searches, structural predictions and multiple alignment of 

protein sequences were performed using the University of Wisconsin GCG software package 

(Devereux et al., 1984) and Expasy Tools software, accessible on the world-wide web. 

 

4. Biochemical methods 

 
4.1 Preparation of total protein from Dictyostelium 
 
1 x 107 to 5 x 108 Dictyostelium cells either vegetative or at different stages of development 

were washed once in Soerensen phosphate buffer. Total protein was prepared by lysing the 

pellet of cells in 500 µl 1x SDS sample buffer. Equal amounts of protein (equivalent to 2 x 

105 to 1 x 107 cells/lane) were loaded onto discontinuous SDS-polyacrylamide gels.  
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4.2 Subcellular fractionation. 
 

Dictyostelium cells were collected by centrifugation (1000 x g for 5 min) and resuspended in 

MES buffer supplemented with a protease inhibitor mixture (50 µg/ml leupeptin, 10 µg/ml 

pepstatin A, 2 mM benzamidine, 1 mM  PMSF). Cells were lysed on ice using a sonicator, 

and light microscopy was performed to ensure that at least 95% of the cells were broken. 

Membranes and supernatants were separated by centrifugation (100,000 x g for 30 min), and 

the samples were resuspended in SDS sample buffer (Laemmli, 1970). The membranous 

fraction was centrifuged to equilibrium on 30-50% (wt/vol) sucrose gradients atop 84% 

(w/vol) cushions. After centrifugation 1ml samples were collected from the top and analysed. 

 

For fractionation after TritonX-100 solublisation cells were lysed in MES buffer 

supplemented with protease inhibitors in the presence of Triton X-100. Triton X-100-soluble 

and insoluble fractions were separated by centrifugation at 100,000 x g for 30 min and 

extracted in 2x SDS sample buffer. 

 
4.3. SDS-polyacrylamide gel electrophoresis 
 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the discontinuous 

buffer system of (Laemmli, 1970). Discontinuous polyacrylamide gels (10-15% resolving gel, 

5% stacking gel) were prepared using glass plates of 10 cm x 7.5 cm dimensions and spacers 

of 0.5 mm thickness. A 12-well comb was generally used for formation of the wells in the 

stacking gel. The composition of 12 resolving and 12 stacking gels is given in the table below. 

 

______________________________________________________________________________ 
Components                                                 Resolving gel                                           Stacking gel 
                                                                      10 %      12 %    15 %                                     5% 
______________________________________________________________________________ 
Acrylamide/Bisacrylamide (30:0.8) [ml]:     19.7       23.6     30                                         4.08 
1.5 M Tris/HCl, pH 8.8 [ml]:                        16          16        16                                         - 
0.5 M Tris/HCl, pH 6.8 [ml]:                         -            -          -                                            2.4 
10 % SDS [µl]:                                              590        590      590                                       240 
TEMED [µl]:                                                 23          23        23                                         20 
10 % APS [µl]:                                              240        240      240                                       360 
Deionised H2O [ml]:                                     23.5       19.6     13.2                                      17.16 
 
 

Samples were mixed with suitable volumes of SDS sample buffer, denatured by heating at 

95ºC for 5 min and loaded into the wells in the stacking gel. A molecular weight marker, 
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which was run simultaneously on the same gel in an adjacent well, was used as a standard to 

establish the apparent molecular weights of proteins resolved on SDS-polyacrylamide gels. 

The molecular weight markers were prepared according to manufacturer�s specifications. 

After loading the samples onto the gel, electrophoresis was performed in 1x gel-running 

buffer at a constant voltage of 100-150 V until the bromophenol blue dye front had reached 

the bottom edge of the gel or had just run out of the gel. After the electrophoresis, the resolved 

proteins in the gel were either observed by Coomassie blue staining or transferred onto a 

nitrocellulose membrane. 

 

2x SDS-sample buffer:    Molecular weight markers:  
 
100 (mM) Tris/HCl, pH 6.8    94, 67, 43, 30, 20.1, 14.4 kD 
4 (% v/v) SDS 
20 (% v/v) glycerine 
0.2 (% v/v) bromophenol blue 
4 (% v/v) β-mercaptoethanol 
 

 

4.3.1. Coomassie blue staining of SDS-polyacrylamide gels 
 
After electrophoresis, the resolved proteins were visualised by staining the gel with  

Coomassie blue staining solution at room temperature with gentle agitation for at least 30 

min. The staining solution was replaced by destaining solution. The gel was destained at room 

temperature with gentle agitation. For best results, the destaining solution was replaced 

several times until protein bands were clearly visible. 

 
Coomassie blue staining solution:                                         Destaining solution: 
 
  0.1% Coomassie blue R250                                                   7% acetic acid 
  50% ethanol                                                                           20% ethanol 
  10% acetic acid 
  filter the solution before use 
 

4.4 Western blotting using the semi-dry method 
 
 
The proteins resolved by SDS-PAGE were electrophoretically transferred from the gel to a 

nitrocellulose membrane by the method described by Towbin et al. (1979) with little 

modifications. The transfer was performed using Towbin�s buffer in a semi-dry blot apparatus 

(Bio-Rad) at a constant voltage of 10 V for 35-45 min. The instructions provided along with 

the semi-dry apparatus were followed in order to set up the transfer. 
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Transfer buffer: 
 
39 mM glycine, 
48 mM Tris/HCl, pH 8.3  
and 20% methanol 
 
 
4.5 Immunodetection of membrane-bound proteins 
 
The Western blot was immersed in blocking buffer and the blocking was performed with 

gentle agitation either overnight at room temperature or for 2-3 hr at room temperature with 

several changes of 1x PBS. After blocking, the blot was incubated at room temperature with 

gentle agitation with either commercially available primary antibodies at a proper dilution (in 

1x PBS) or hybridoma supernatant for 1-2 h. After incubation with primary antibody, the blot 

was washed 5-6 times with 1x PBS at room temperature for 5 min each with repeated 

agitation. Following washings, the blot was incubated for 1 hr at room temperature with a 

proper dilution (in 1x PBS) of horse radish peroxidase-conjugated secondary antibody 

directed against the primary antibody. After incubation with secondary  antibody, the blot was 

washed as described above. After washings, enhanced chemi-luminescence (ECL) detection 

system was used. For this, the blot was incubated in ECL-detection-solution for 1-2 min and 

then wrapped in saran wrap after removing the excess ECL-detection solution. A X-ray film 

was exposed to the wrapped membrane for 1-30 min and the film was developed to observe 

the immunolabelled protein. 

 
ECL-detection solution:      Blocking buffer : 
 
 
2 ml 1 M Tris/HCl, pH 8.0      5% milk powder in 1x  
200 µl 250 mM 3-aminonaphthylhydrazide in DMSO  PBS 
89 µl 90 mM p-Coumaric acid in DMSO 
18 ml deionised H2O 
6.1 µl 30% H2O2 (added just before using) 

 

4.6 Expression and purification of GST and His-tagged RacG and RacH fusion proteins 
 
 
Cells of the E. coli strain XL1 blue were transformed with expression vectors pGEX-RacG 

and pGEX-RacH for expression of truncated RacG and RacH as glutathione S-transferase 

(GST) fusion proteins. Cells of the E. coli strain M15 were transformed with expression 



2. Materials and Methods2. Materials and Methods2. Materials and Methods2. Materials and Methods    
___________________________________________________________________________             

35

vectors pQE30-RacG and pQE30-RacH for expression of truncated RacG and RacH as His-

tagged fusion proteins (see sections, 3.10.2 and 3.10.3). 

 

4.6.1 Small-scale protein expression 

 
Small-scale expression of fusion proteins was performed to check and standardise the 

efficiency of expression of various recombinant clones as well as to standardise the conditions 

of expression before proceeding for the large-scale expression and purification. Single 

colonies (5-10) of recombinant cells were picked and grown overnight in 10 ml of LB 

medium containing ampicillin (100 µg/ml) at 37ºC and 250 rpm. 5 ml of the overnight grown 

culture were inoculated into 45 ml of fresh LB medium containing ampicillin (100 µg/ml). 

The culture was then allowed to grow at 37ºC till an OD600 of 0.5-0.6 was obtained. Now the 

induction of expression was initiated by adding IPTG. In order to standardise the conditions 

of maximum expression of the fusion protein, induction was performed with varying 

concentrations of IPTG (0.1 mM, 0.5 mM and 1.0 mM final concentration) at two different 

temperature conditions (30ºC and 37ºC). Samples of 1 ml were withdrawn at different hours 

of induction (0 hr, 1 hr, 2 hr, 3 hr, 4 hr and 5 hr), the cells were pelleted and resuspended in 

100 µl of 1x SDS sample buffer. The samples were denatured by heating at 95ºC for 5 min 

and 10 µl of each sample were resolved on a 12% SDS-polyacrylamide gel. Expression of the 

GST-RacG and RacH fusion proteins were analysed by Coomassie staining of the SDS-

polyacrylamide gel as well as by Western blotting using commercially available anti-GST 

antibody. 

 
 

4.6.2 Purification of GST-fusion proteins  

 

After standardising the expression conditions to get more soluble protein in the lysate, large-

scale expression was performed in 1litre cultures. The cells were pelleted after induction and 

stored at -20ºC. Next day the pellet was thawed and resuspended in 10 ml of cold buffer A 

which contains proteinase inhibitors and 1 mg/ml of lysozyme. The cells were disrupted by 

sonication and the pellet and supernatant were separated by centrifugation at 10,000 x g for 

20�30 min at 4°C. The supernatant was mixed with 1ml of Glutathione Sepharose 4B slurry 

and mixed gently by shaking (200 rpm on a rotary shaker) at 4°C for 2 hours. After washing 

the beads for 4 times with  buffer B, the bound protein was eluted from the beads using buffer 

C. 4 eluates of 1ml each were collected.  
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Buffer A :    Buffer B :    Buffer C :       
                                                                                                                 
25 mM Tris-HCl pH 7.5 25 mM Tris-HCl pH 7.5 100 mM Tris-HCl pH 8.0 
0.5 mM  EDTA   0.5 mM  EDTA  100 mM  NaCl 
1 mM DTT    1 mM DTT   20 mM reduced glutathione      
10 % sucrose 
               

4.6.3 Purification of His-tagged proteins 

 

After standardising the expression conditions to get more soluble protein in the lysate, large-

scale expression was performed in 1litre cultures. The cells were pelleted after induction and 

stored at -20ºC. Next day the pellet was thawed and resuspended in 10 ml of lysis buffer 

containing 10 mM imidazole (to minimize binding of untagged, contaminating proteins and 

increase purity with fewer wash steps), proteinase inhibitors and 1 mg/ml of lysozyme. The 

cells were disrupted by sonication and the pellet and supernatant were separated by 

centrifugation at 10,000 x g for 20�30 min at 4°C. The supernatant was mixed with 1 ml of 

the Ni-NTA slurry and mixed gently by shaking (200 rpm on a rotary shaker) at 4°C for 2 

hours.  The beads were washed three times with 10 ml wash buffer. The bound protein was 

eluted in aliquots of 1 ml elution buffer.  

 
  Lysis buffer:            Wash buffer:             Elution buffer : 

 
50 mM NaH2PO4                 50 mM NaH2PO4   50 mM NaH2PO4                                           
300 mM NaCl                      300 mM NaCl     300 mM NaCl                       
10 mM imidazole                 20 mM imidazole  250 mM imidazole                                            
Adjust pH to 8.0           Adjust pH to 8.0   Adjust pH to 8.0 
using NaOH            using NaOH    using NaOH 
                       
 
 
4.7 Actin polymerisation assay 
 

Chemoattractant-induced F-actin formation in aggregation competent cells was quantitated as 

described Hall et al. (1988). Briefly, cells were resuspended at 2 x 107 cells/ml in Soerensen 

buffer and starved for 6 to 8 hours. 1 ml of cell suspension was transferred to a well of a 24-

well plate on a shaker and stimulated with 1 µM cAMP (10 µl of 0.1mM stock) and 50 µl 

samples were taken at various time points and transferred immediately to tubes containing 

450 µl of stop solution.  
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Stop solution: 

20 mM potassium phosphate 
3.7% formaldehyde 
0.1% Triton X-100 
0.25 µM TRITC-phalloidin  
10 mM Pipes 
5 mM EGTA 
2 mM MgCl2  
pH 6.8 

 

Formaldehyde fixes  the cells instantaneously while TRITC-phalloidin binds to F-actin. After 

staining for 1 hour, samples were centrifuged for 5 minutes at 15,000 x g. Pellets were 

extracted with 1 ml methanol for 16 hours and fluorescence (540/565 nm) was read in a  

fluorimeter. The effect of PI 3-kinase inhibitor LY294002  was studied adding the inhibitor at 

the final concentration of 30 µM, 30 minutes before cAMP stimulation.  

 

To determine the total F-actin content in unstimulated cells, cells were resuspended at 2 x 107 

cells/ml in fresh axenic medium and 50 µl samples were taken into tubes containing 450 µl of 

stop solution containing TRITC-phalloidin. 50 µl samples of the cell suspension were 

withdrawn for estimation of the total protein content. Fluorescence was measured as described 

above and values were normalised to the protein content of the sample. By taking the value of 

AX2 as standard, the relative F-actin content was calculated.   

 

4.8 Video imaging and chemotaxis assay 

 

Vegetative cells were resuspended at 1 x 107 cells/ml in Soerensen phosphate buffer and 

starved for 6 to 8 hours. 25-30 µl of cell suspension were diluted in 3 ml of Sorensen buffer 

and mixed well by pipetting (25-30 times, with occasional vortexing). This is important to 

dissociate cells from aggregates. 1.5 ml of the diluted cells were then transferred onto a 5 cm 

glass coverslip with a plastic ring placed on an Olympus IX70 inverse microscope equipped 

with a 10x UplanFl 0.3 objective. Cells were stimulated with a glass capillary micropipette 

(Eppendorf Femtotip) filled with 0.1 mM cAMP (Gerisch and Keller, 1981) which was 

attached to a microcontroller. Time-lapse image series were captured and stored on a 

computer hard drive at 30 seconds intervals with a JAI CV-M10 CCD camera and a 

Imagenation PX610 frame grabber (Imagenation Corp., Beaverton, OR) controlled through 

Optimas software (Optimas Corp., Bothell, Washington). The DIAS software (Soltech, 

Oakdale, IA) was used to trace individual cells along image series and calculate the cell 
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motility parameters (Soll et al., 2001). For processing images, Corel Draw version 8, Corel 

Photopaint and Adobe Photoshop were used. 

 

5  Immunological methods 

 
5.1 Generation of polyclonal antibodies 
 
5.1.1 Immunisation of rabbits 
 
 
For generating polyclonal antisera against RacG and RacH, rabbits were immunised with His-

tagged RacG or RacH. The recombinantly expressed His-tagged proteins were purified using 

affinity chromatography with Ni2+-NTA agarose beads, and 100 µg of protein were used to 

immunise two female white New Zealand rabbits for each protein (Pineda Antikörper-Service, 

Berlin, Germany), followed by two boosts of 100 µg each at two week intervals. 

 

5.1.2 Affinity purification of IgG 

  
IgGs were purified from the serum by affinity chromatography using protein-A Sepharose 

beads. Briefly, 1 ml of serum was diluted with 1 ml of wash/binding buffer and mixed with 

protein-A Sepharose beads which were pre-equilibrated with wash/binding buffer. The beads 

were mixed gently by shaking (200 rpm on a rotary shaker) at 4°C for 2 hours. After washing 

the beads with wash/binding buffer for 3 times, the bound IgGs were eluted using elution 

buffer. 1 ml aliquots of the eluates were collected in tubes containing 100 µl of 1 M Tris-HCl 

pH 9.0 to neutralise the pH. These IgG preparations were used for Western blot analyses.  

 

Wash/Binding buffer:   Elution buffer : 

 
20 mM NaH2PO4   100 mM Glycine-HCl     
150 mM NaCl                                     pH to 3.0     
10 mM imidazole                     
Adjust pH to 7.4              
  
 
5.2 Indirect immunofluorescence of Dictyostelium cells 
 
5.2.1 Preparation of Dictyostelium cells 
 
Dictyostelium cells were grown in shaking culture to a density of 2-4 x 106 cells/ml. The 

desired amount of cells was collected in a centrifuge tube, cells were then resuspended in 
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fresh axenic medium and grown overnight on glass coverslips in axenic medium. 

Alternatively, cells from the shaking culture were allowed to attach to the coverslips for 20 

min. Thereafter, cells attached onto the coverslip were fixed immediately by one of the 

fixation techniques described below.  

 

5.2.2 Methanol fixation 
 
After the cells had attached to the coverslip, the supernatant was aspirated and the coverslip 

was dipped instantaneously into pre-chilled (-20ºC) methanol in a petri dish and incubated at 

�20ºC for 10 min. The coverslip was then taken out from methanol and placed on a parafilm 

covered glass plate resting in a humid box with the cell-surface facing upwards. This was 

followed by 2 washings with 500 µl of PBG for 15 min each and immunolabelling as 

described in section 5.2.4. 

 

PBG, pH 7.4: 
 
0.5 % bovine serum albumin 
0.1 % gelatin (cold-water fish skin) 
in 1x PBS, pH 7.4 
 

5.2.3  Picric acid-paraformaldehyde fixation 
 
 
After the cells had attached to the glass coverslips the supernatant was gently aspirated from 

the edge of the coverslip and 200 µl of freshly prepared picric acid-paraformaldehyde solution 

was directly added. The coverslip was incubated at room temperature for 30 min. After 

incubation, the picric acid-paraformaldehyde solution was aspirated, the coverslip was picked 

up with a fine forceps and swirled in 10 mM PIPES buffer, pH 6.0, followed by blotting off 

the excess solution with a tissue paper. Now the coverslip was swirled in PBS/glycine and 

placed on a parafilm-covered glass plate resting in a humid chamber. The coverslip was then 

washed with 500 µl PBS/glycine for 5 min to block free reactive groups followed by post-

fixation with 500 µl 70% ethanol for 10 min. This was followed by 2 washings with 500 µl of 

PBG for 15 min each. After washings, the cells were immunolabelled as described in section 

6.2.4. 

 
Picric acid-paraformaldehyde solution: 
 
0.4 g paraformaldehyde was dissolved in 5 ml ddH2O by stirring at 40°C and adding 3-4 

drops of 2M NaOH. After dissolving, the volume was adjusted to 7 ml with ddH2O. To this 
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paraformaldehyde solution, 10 ml of 20 mM PIPES buffer, pH 6.0, and 3 ml of saturated 

picric acid was added and the pH was finally adjusted to 6.5.  

 

PBS/glycine:      20 mM PIPES buffer, pH 6.0: 
 
500 ml PBS      0.605 g PIPES 
3.75 g glycine                                                  in 100 ml distilled H2O 
filter sterilized                                                 adjust to pH 6.0 
store at �20ºC                                                  filter sterilized 
 
 
5.2.4 Immunolabelling of fixed cells 
 
 
Coverslips containing the fixed cells were incubated with 200 µl of the desired dilution (in 

PBG) of primary antibody for 1-2 hr in a humid box at room temperature. After incubation, 

the excess unattached antibody was removed by washing the coverslip 6 times with PBG for 5 

min each. Now the coverslip was incubated for 1 hr with 200 µl of a proper dilution (in PBG) 

of Cy3-conjugated secondary antibody. Following this incubation, two washings with PBG 

for 5 min each followed by three washings with PBS for 5 min each were performed. After 

washings, the coverslip was mounted onto a glass slide (see sections, 5.2.5). 

 
5.2.5 Mounting of coverslips 
 
 
After immunolabelling of the fixed cells, the coverslip was swirled once in deionised water 

and the extra water was soaked off on a soft tissue paper. Now a drop of gelvatol was placed 

to the middle of a clean glass slide and the coverslip was mounted (with the cell-surface 

facing downwards) onto the drop of gelvatol, taking care not to trap any air-bubble between 

the coverslip and the glass slide. Mounted slides were then stored overnight in the dark at 4ºC. 

Thereafter, the mounted slides were observed under a fluorescence microscope or confocal 

laser scanning microscope. 

 
Gelvatol: 
 

2.4 g of polyvinyl alcohol (Mw 30,000-70,000; Sigma) was added to 6 g of glycerol in a 50 

ml centrifuge tube and mixed by stirring. To the mixture, 6 ml of distilled water was added 

and the mixture was incubated at room temperature. After several hours of incubation at room  

temperature, 12 ml of 0.2 M Tris/HCl, pH 8.5, was added and the mixture was heated to 50°C 

for 10 min with occasional mixing to completely dissolve polyvinyl alcohol. The solution was 
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centrifuged at 5,100 rpm for 15 min. After centrifugation, 2.5% of diazabicyclo octane 

(DABCO), an anti-oxidant agent, was added to reduce the bleaching of the fluorescence. The 

solution was aliquoted in 1.5 ml microcentrifuge tubes and stored at �20°C. 

 
5.3 DAPI and phalloidin staining of fixed cells 
 
 
DAPI staining of Dictyostelium nuclei and phalloidin staining of Dictyostelium F-actin were 

performed simultaneously. Staining of F-actin with phalloidin demarcated the cell-boundary, 

which facilitated determining the number of DAPI stained nuclei within a particular cell. Cells 

were harvested and the coverslips coated with cells were prepared as explained in Materials 

and Methods (5.2.1). Cells were then fixed by the picric acid-paraformaldehyde fixation 

method as discussed in section 5.2.3. After fixation and usual washings, coverslips were 

incubated for 30 min with 200 µl of PBG containing DAPI (1:1,000 dilution of 0.1 mg/ml 

stock) and TRITC-phalloidin (1:200 dilution of 0.1 mg/ml stock). Thereafter, the coverslip 

was washed twice with 200 µl of PBG for 5 min each, followed by three washings with 400 µl 

of PBS for 5 min each. After washings, the coverslips were mounted onto the glass slides (see 

Materials and Methods, 5.2.5) for observation under a fluorescence microscope or confocal 

laser scanning microscope. 

 

5.4 Immunolabelling of GFP-RacG expressing Dictyostelium cells fixed during   

       phagocytosis 
 

 

To correlate the localization of RacG with the organization of the actin cytoskeleton during 

the process of phagocytosis, GFP- RacG expressing cells were fixed during phagocytosis and 

immunolabelled with anti-actin monoclonal antibody (Act 1-7). Briefly, cells were prepared 

as explained in sections 5.2.1. After the cells had adhered to the glass coverslip, the Soerensen 

phosphate buffer on the coverslip was replaced with 400 µl of a suspension containing heat-

killed yeast cells diluted 1:10 in Soerensen phosphate buffer. Cells were incubated with yeast 

for 20 min. Thereafter, the buffer on the coverslips was carefully aspirated and the cells were 

immediately fixed by the methanol fixation method (see sections, 5.2.2). After fixation and 

usual washings, either the coverslip was directly mounted onto a glass slide or the cells were 

first immunolabelled with anti-actin monoclonal antibody (Act 1-7) as described in section 

5.2.3, before mounting onto a glass slide.  
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Preparation of heat-killed yeast cells: 
 
Five grams of dry yeast Saccharomyces cerevisae (Sigma) were suspended in 50 ml of PBS in 

a 100 ml Erlenmeyer flask and incubated for 30 min in a boiling waterbath with stirring. After 

boiling, the yeast cells were washed five times with PBS, followed by two washings with 

Soerensen phosphate buffer. The yeast cells were then finally resuspended in Soerensen 

phosphate buffer at a concentration of 1 x 109 yeast cells/ml. Aliquots of 1 ml and 20 ml were  

made and stored at �20ºC. 

 

TRITC-labelling of heat-killed yeast cells : 

 
 
For labelling, the pellet of 2 x 1010 heat-killed yeast cells were resuspended in 20 ml of 50 

mM Na2HPO4, pH 9.2, containing 2 mg of TRITC (Sigma) and incubated for 30 min at 37°C 

on a rotary shaker. After washing twice with 50 mM Na2HPO4, pH 9.2, and four times with 

Soerensen phosphate buffer, aliquots of 1 x109 yeast cells/ml were frozen at �20°C. 

 

6.  Microscopy 
 
Visual inspection of Dictyostelium cells expressing RacG or RacH was performed using an 

inverted fluorescence microscope (Olympus IX70). Confocal images of immunolabelled 

specimens were obtained with confocal laser scanning microscope TCS-SP (Leica) equipped 

with a 63x PL Fluotar 1.32 oil immersion objective. A 488-nm argon-ion laser for excitation 

of GFP fluorescence and a 568-nm krypton-ion laser for excitation of Cy3 or TRITC 

fluorescence were used. For simultaneous acquisition of GFP and Cy3 fluorescence, the green 

and red contributions to the emission signal were acquired separately using the appropriate 

wavelength settings for each photomultiplier. The images from green and red channels were 

independently attributed with colour codes and then superimposed using the accompanying 

software.  

 
6.1  Live cell imaging of Dictyostelium cells expressing GFP-RacG and GFP-RacH  
 
To record the distribution of GFP-RacG and GFP-RacH in living cells, cells were grown to a 

density of 2-3 x 106 cells/ml, washed in Soerensen phosphate buffer and resuspended at a 

density of 1 x 107 cells/ml. The cells were then starved for about 1 hr with shaking. Starvation 



2. Materials and Methods2. Materials and Methods2. Materials and Methods2. Materials and Methods    
___________________________________________________________________________             

43

facilitated observation as it allowed the cells to digest endocytosed nutrient medium, which is 

autofluorescent. For observation, cells were initially diluted in Soerensen phosphate buffer at 

1 x 106 cells/ml and then 500 µl of the cell suspension were transferred onto a 18 mm glass 

coverslip glued to a plastic rim of the same size. Cells were allowed to adhere to the glass 

coverslip for 10-15 min and confocal images were obtained and processed as described above.  

 

6.2 Live cell imaging of GFP-RacG during phagocytosis 
 
 
For analysis of dynamics of GFP-RacG during phagocytosis, coverslips containing GFP-

RacG expressing cells were prepared as described above. After the cells had adhered to the 

glass coverslips, 5-10 µl of the heat-killed, TRITC-labelled yeast cell suspension (1 x 109 

yeast cells/ml) were carefully added from one edge of the coverslip. Immediately after the 

yeast cells had settled (in 2-5 min), confocal images were obtained as explained above.  

 

6.3 Microscopy of fixed preparations 
 
To visualize the actin and DAPI staining in the fixed preparations, an Olympus IX70 inverse 

microscope equipped with a 40X LCPlanFI 0.6 and a 10X UplanFI 0.3 objective was used. 

Images were captured either with a JAI CV-M10 CCD video camera or a SensiCam cooled 

CCD video camera.    

 

6.4 Microscopy of agar plates 
 

To determine development of Dictyostelium on phosphate agar plates or on SM-agar plates 

with Klebsiella lawns, an Olympus SZ-4045TR stereo microscope was used. Images were 

captured with a JAI CV-M10 CCD video camera and were processed as described in section 

4.8.  
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                                                                                                                               3. Results 
__________________________________________________ 
 
 
1. Expression of RacG and RacH during development  
 
 
1.1  Generation of specific polyclonal antibodies against RacG and RacH    
           
Polyclonal antisera were generated against RacG and RacH  by using recombinant histidine- 

tagged proteins (Materials and Methods 3.10.1 and 4.6). The antibodies were able to 

recognize both the endogenous 25 kDa and the GFP-tagged respective protein in Western blot 

analysis (Figure 6). RacH antiserum was specific for the C-terminal part of the protein, 

because it did not recognize a RacH chimeric construct carrying the C-terminal part of RacG 

(see section 5.1). Both antisera recognized additional proteins in Western blot analysis. In 

particular, RacH antiserum recognized a prominent 45 kD protein that probably corresponds 

to actin. After checking the titre of each antiserum for the respective protein, a 1:2,000 
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dilution was used during the course of the studies. The antibodies proved not useful in 

immunofluorescence studies. 

 

1.2  Expression of RacG and RacH during development 
 
Dictyostelium cells grow vegetatively as unicellular amoebae when nutrients are available. 

Depletion of nutrients triggers a 24 hr developmental programme leading to the formation of a 

multicellular fruiting body. This transition from growth phase to the developmental phase is a 

consequence of stage specific expression that involves activation of certain genes and 

repression of others. RacG and RacH transcripts are present throughout the developmental 

cycle of Dictyostelium (Rivero et al., 2001).  To determine whether the pattern of gene 

expression correlates with the pattern of protein accumulation during the development, 

protein samples taken at different stages were analyzed by Western blot analysis with 

polyclonal antisera specific for each protein. Western blot analysis revealed that both RacG 

and RacH accumulate almost constitutively throughtout the developmental cycle of 

Dictyostelium (Figure 3). 

   

                  
Figure. 3 Expression of RacG and RacH through the developmental cycle of 
Dictyostelium. Cells were allowed to develop on nitrocellulose filters. Samples were collected 
at the times indicated and total cell homogenates were resolved in 12% polyacrylamide gels 
and blotted onto nitrocellulose membranes. Blots were incubated with polyclonal antisera 
specific for RacG or RacH (1:2,000 dilution) and with mAb Act1-7 specific for actin as a 
control for loading. The developmental stages corresponding to the times indicated are 
depicted below. 
 
2.  Overexpression of RacG, RacH and mutated variants as GFP fusion   
    proteins 
 
To investigate the function of RacG and RacH in vivo, we have generated stably transformed 

cell lines that overexpress the wild-type (WT) and two mutated variants of each protein fused 
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to a GFP tag. Mutation of Gly-12 to valine (V12) renders the Rac protein constitutively 

active, whereas mutation of Thr-17 to asparagine (N17) results in a dominant negative 

protein. Because the carboxyl-terminus of Rho-related proteins contains structural elements 

responsible for membrane association (Hancock et al., 1991), a fusion of GFP at the amino-

terminal end of the GTPase was chosen. It is well established that fusion of GFP or an epitope 

tag at the amino terminus does not disturb the function of Rac proteins, as has been shown for 

diverse other Dictyostelium Rac proteins (Larochelle et al., 1997; Seastone et al., 1998;  

Rivero et al., 1999; Dumontier et al., 2000). Overexpression of RacG-WT and RacH-WT was 

achieved using a constitutive expression system under the control of the actin-15 promoter 

(Westphal et al., 1997). For overexpression of constitutively active and dominant negative 

variants we used a tetracycline-controlled inducible system recently adapted for Dictyostelium 

(Blaauw et al., 2000).  

 

2.1 Characterisation of the tetracycline-controlled inducible system 

 

In the tetracycline inducible system, the control elements for expression are in two plasmid 

vectors. One vector, MB35, is an integrated plasmid encoding a chimeric tetracycline-

controlled transcription activator (tTAs*). The second component, MB38, is an extra-

chromosomal plasmid harbouring an inducible promotor. This promotor contains a 

tetracycline�responsive element, which is the binding site for tTAs*. Tetracycline prevents 

tTAs* from binding to the tetracycline responsive element, making the promotor virtually 

silent (Blaauw et al., 2000). In the absence of tetracycline, tTAs* binds to its target sequence 

and strongly induces the gene expression.  

 

We studied the kinetics of induction and repression of the expression of mutated variants 

(V12 and N17)  of RacG and RacH using Western blot analysis. Figure 4 shows the results 

obtained with RacG-V12. Identical results were obtained with cells expressing RacG-N17, 

RacH-V12 and RacH-N17 (not shown). Cells harbouring the MB38-RacG-V12 plasmid were 

cultured in the presence of tetracycline (10 mg/ml). After washing to remove tetracycline, the 

cells were resuspended in fresh medium. Samples were withdrawn every 3 hours and lysates 

were prepared for Western blot analysis. RacG-V12 became detectable 6 hours after complete 

removal of tetracycline from the medium and reached maximum levels approximately after 12 

hours (Figure 4A). Upon addition of tetracycline (10 mg/ml) to a culture induced for 24 

hours, levels of RacG-V12 decreased progressively and the protein became undetectable after 
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8 hours (Figure 4B). No fusion protein was detectable in the presence of tetracycline, 

indicating that the expression system is tightly controlled. According to these results, all 

experiments involving the tetracycline-controlled system were performed after an overnight 

induction period of at least 15 hours. 

 

      
Figure 4. Kinetics of induction and repression of GFP-RacG-V12 expression with a 
tetracycline-controlled inducible system. GFP-RacG-V12 was expressed in AX2 cells 
harbouring the MB35 vector, which encodes a tetracycline-controlled transcriptional activator 
protein. Kinetics of induction (A) was determined after complete removal of tetracycline. 
Maximum expression was achieved after 12 hours of induction. NI, non-induced. Kinetics of 
repression (B) was determined after addition of tetracycline (10 mg/ml) to a culture induced 
for 24 hours. GFP-RacG-V12 becomes undetectable after 8 hours of repression. The samples 
were taken at the time points indicated and total cell homogenates of 4 x 105 cells were 
resolved in 12% polyacrylamide gels and blotted onto nitrocellulose membranes. Blots were 
incubated with anti-GFP mAb K3-184-2. 
 

 

2.2  AX2 and MB35 cells behave similarly 

 

To investgate whether integration of the MB35 vector resulted in alterations in the phenotype 

of the parent strain AX2, we compared the behaviour of the strain carrying the MB35 vector 

(MB35 strain) and AX2 in diverse processes. Our data revealed that both strains develop 

similarly both on K. aerogenes and on phosphate agar plates (not shown). Growth, 

phagocytosis, pinocytosis and exocytosis rates were similar (Figure 5). Actin polymerization 

upon cAMP stimulation of aggregation-competent cells and the total F-actin content were 

comparable in both strains. The distribution of the number of nuclei was also comparable in 

both strains (not shown). All these experiments show that the presence of the MB35 vector 
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does not impair any of the processes tested. Since both strains behave similar, we used AX2 

as a control during all our studies. 

 

   

Figure 5. Comparison of AX2 and MB35 cells. The MB35 strain is a derivative of AX2 
carrying the integrating vector MB35. (A) Growth under normal conditions in axenic 
medium. Cells were counted at the indicated time points until the cultures reached saturation. 
(B) Phagocytosis of TRITC-labelled yeast cells. Dictyostelium cells were resuspended at 2 × 
106 cells/ml in fresh axenic medium and challenged with fivefold excess fluorescent yeast 
cells. Fluorescence from internalized yeasts was measured at the designated time points. (C) 
Fluid-phase endocytosis of TRITC-dextran. Cells were resuspended in fresh axenic medium 
at 5 × 106 cells/ml in the presence of 2 mg/ml TRITC-dextran. Fluorescence from the 
internalized marker was measured at selected time points. (D) Fluid-phase exocytosis of 
TRITC-dextran. Cells were pulsed with TRITC-dextran (2 mg/ml) for 2 hours, washed, and 
resuspended in fresh axenic medium. Fluorescence from the marker remaining in the cells 
was measured. Data are presented as relative fluorescence, AX2 being considered 100%. All 
values are the average of at least three independent experiments. For the sake of clarity, error 
bars are not shown.  
 

2.3 Levels of overexpression of GFP fusion proteins 

 

We analysed the level of overexpression of GFP-RacG and GFP-RacH against the level of the 

respective endogeneous protein using Western blot with the polyclonal antibodies specific for 
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RacG and RacH. Each antiserum recognized a protein of approximately 25 kDa in total 

homogenates of AX2 cells that corresponds to the endogenous GTPase. In cells 

overexpressing GFP fussions of WT or mutated forms of RacG and RacH, each antiserum 

recognized an additional protein of approximately 50 kDa that corresponds to the predicted 

size of GFP-RacG and GFP-RacH (Figure 6). This was confirmed with a monoclonal 

antibody against GFP (data not shown). Levels of GFP-RacG were 2 to 3-fold higher than the 

amount of  endogenous RacG. Levels GFP-RacH appeared much higher (at least 5-fold) than 

the endogenous RacH. 

 

 

Figure 6. Western blot analysis of AX2 and strains overexpressing GFP fusions of wild-
type (WT), constitutively active (V12) and dominant negative (N17) forms of RacG and 
RacH. Total cell homogenates of 4 × 105 cells were resolved in 12% polyacrylamide gels and 
blotted onto nitrocellulose membranes. Blots were incubated with polyclonal antisera specific 
for RacG or RacH (1:2,000 dilution of each antisera) .  
 

We also observed that in all cases fluorescence levels varied broadly from cell to cell (Figure 

7), a common phenomenon probably related to the actin-15 promoter used to drive the 

expression of the GFP fusion both in the constitutive and in the inducible expression systems 

(Westphal et al., 1997). We observed that fluorescent levels were still high at the aggregation 

stage (after 6 hours starvation) but became undetectable at latter stages. This precluded further 

studies on the function of RacG and RacH during the development. 
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3.  Subcellular localisation of RacG  and RacH 
 

Observations of GFP-RacG live cells with confocal microscopy revealed the presence of the 

protein in the plasma membrane. By contrast, observations of GFP-RacH live cells did not 

reveal a clear localization of the protein at the plasma membrane, but a diffuse staining all 

over the cell. However, after fixation most of the RacH, probably the cytosolic fraction, was 

washed off. This allowed the observation of the GFP fusion protein associated to internal 

membrane compartments, rather than to the plasma membrane (Figure 7). 

 

              

Figure 7. Expression and subcellular localization of RacG and RacH as GFP fusion proteins 
in Dictyostelium. Cells overexpressing GFP-RacG-WT or GFP-RacH-WT were grown 
overnight on coverslips in axenic medium and fixed with picric acid/paraformaldehyde. 
Confocal sections were taken using a confocal laser scanning microscope. Bar, 10 µm. 
 

The subcellular localization of WT and mutant forms of RacG and RacH was further studied 

by differential centrifugation of lysates of strains overexpressing GFP fusion proteins 

followed by Western blot analysis of the resultant cytosolic and particulate fractions. GFP-

RacG and GFP-RacH were detected using a monoclonal antibody against GFP (Figure 8A). 

For RacG-WT and RacG-V12 approximately two thirds of the fusion protein were present in 

the membrane fraction, whereas one third was cytosolic. For RacG-N17 almost equal amounts 

were present in the cytosolic and particulate fraction. This indicates that membrane 

association is in part dependent of cycling between the GDP and the GTP-bound state. In the 

case of RacH, the protein was predominantly cytosolic and 40% was membrane associated. 

 

To test whether RacG and RacH associate with the F-actin cytoskeleton, cells were lysed in 

the presence of Triton X-100 and the presence of RacG and RacH in the Triton-insoluble F-
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actin pellet was investigated by Western blot analysis using a monoclonal antibody against 

GFP (Figure 8B). A significant amount of RacG and RacH was found associated to the F-

actin pellet irrespective of the mutant assayed. RacG and RacH associated to a similar extent 

with the Triton-insoluble actin pellet. 

 

      
Figure 8. Subcellular distribution of RacG and RacH. (A) Fractionation of Dictyostelium 
cells overexpressing GFP fusions of wild-type (WT), constitutively active (V12) and 
dominant negative (N17) forms of RacG and RacH. Cells were lysed by sonication and 
cytosolic (S) and particulate (P) fractions were separated by ultracentrifugation. (B) 
Association of RacG and RacH with the Triton-insoluble F-actin cytoskeleton pellet. Triton-
soluble (S) and Triton-insoluble F-actin cytoskeleton (P) were separated by 
ultracentrifugation as described in Materials and Methods. Samples were resolved in 12% 
polyacrylamide gels and blotted onto nitrocellulose membranes. Blots were incubated with 
anti-GFP mAb K3-184-2.  
 
 
3.1  RacH localises to internal membranes 

 

The pattern of localization of GFP-RacH in fixed cells resembled the nuclear envelope and 

Golgi apparatus. Some fluorescence was apparent inside the nucleus (Figure 7). To confirm 

this diverse localization of RacH in different membranous compartments, we stained GFP-

RacH-overexpressing cells with antibodies against various marker proteins. We used 

antibodies against the nuclear envelope and ER marker interaptin, the Golgi marker comitin, 

the ER marker protein disulfide isomerase (PDI), a marker for the contractile vacuole system 

(VatA, a subunit of the vacuolar proton pump ATPase) and a marker for a postlysosomal 

compartment (vacuolin). GFP-RacH clearly colocalized with interaptin and comitin, and to a 

great extent also with PDI. Colocalization with VatA was apparent at some instances, but was 

not marked. Finally, GFP-RacH appeared not to colocalize with vacuolin (Figure 9).  
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Figure 9 (opposite page). RacH associates with intracellular membrane compartments. 
RacH associates particularly with the nuclear envelope and the Golgi apparatus. Cells 
expressing GFP-RacH were fixed in cold methanol and were incubated with antibodies that 
recognize specific membrane compartments. The markers used were the nuclear envelope and 
ER marker interaptin (mAb 260-60-10), the Golgi marker comitin (mAb 190-340-2), the ER 
marker protein disulfide isomerase (PDI, mAb 221-135-1), a marker for the contractile 
vacuole system (vatA, mAb 221-35-2) and a marker for a postlysosomal compartment 
(vacuolin, mAb 221-1-1). Bar, 10 µm. 
________________________________________________________ 
4.   Characterisation of RacG and RacH-overexpressing mutants 

4.1  Overexpression of RacG promotes the formation of filopods  
 
 
Alterations in Rho GTPases or their regulators reportedly result in changes in the actin 

distribution in Dictyostelium. We examined cell morphology in both living and fixed 

vegetative cells which are overexpressing GFP-RacG and its mutated variants.  

 

 
Figure 10. Morphology of cells overexpressing GFP-tagged RacG forms. Confocal 
sections of living Dictyostelium cells expressing GFP fusions of wild-type, constitutively 
active (V12) and dominant negative (N17) forms of RacG were obtained. All strains show a 
predominant cortical localization of the fusion protein. Cells overexpressing RacG-WT and 
RacG-V12 form numerous long filopods. Bar, 10 µm. 
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Cells overexpressing RacG-WT and RacG-V12 displayed abundant long filopods with 

occasional branching (Figure 10). By contrast, cells overexpressing the dominant negative 

form of RacG were morphologically indistinguishable from AX2. 

 

Subcellular localization of actin relative to the GFP-tagged GTPase was determined using 

confocal microscopy on fixed specimens labeled with an actin-specific monoclonal antibody 

(Figure 11). As described above for living cells, GFP-RacG-WT was observed predominantly 

at the plasma membrane, where accumulation was not uniform. RacG and actin overlapped 

only partially at the plasma membrane, and actin localization below the plasma membrane 

was clearly apparent. Similar results were obtained in cells overexpressing the constitutively 

active and the dominant negative forms of RacG (not shown), indicating that, at least in fixed 

preparations, the levels of actin polymerization do not correlate spatially with the activation 

state of RacG. 

 

We did not notice changes in the morphology and actin distribution in cells overexpressing 

GFP-RacH in any of its variants except GFP-RacH-WT, that are of moderately smaller size 

(not shown). 

 

 

 

Figure 11. F-actin organization of cells overexpressing GFP-tagged RacG. Confocal 
section through a cell expressing GFP-tagged RacG-WT to show distribution of the GTPase 
(green) relative to actin (red). The right panel shows the overlay of both pictures. RacG 
displays a discontinuous localization at the cell cortex, where it colocalizes partially with 
actin. Cells were grown overnight on coverslips in axenic medium, fixed with picric 
acid/paraformaldehyde and stained with actin-specific mAb Act 1-7 followed by Cy3-labeled 
anti-mouse IgG. Bar, 10 µm. 
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4.2  Growth in axenic medium  

 

Since cell growth is a result of the interplay between a variety of cellular processes involving 

rearrangements of the actin cytoskeleton, growth rates of RacG and RacH overexpressing 

cells were determined and compared with that of wild-type AX2 cells. Growth curves were 

determined under standard conditions (shaking at 160 rpm and 21°C) with starting cell 

densities of 5 x 105 cells/ml. Wild-type AX2 cells attained maximum cell densities of 11 x 106 

cells/ml. Under these conditions, no significant difference was observed in the growth 

patterns of AX2 and  cells overexpressing RacG-WT (Figure 12) or the mutated variants 

RacG-V12 or RacG-N17 (not shown).                                                                                                                 

                                                                                                                             

            
Figure 12. Growth of AX2 and strains overexpressing GFP-tagged RacG-WT and RacH-
WT in axenic medium. Cultures were inoculated with 5 x 105 cells/ml and grown at 21ºC 
with shaking at 160 rpm. Cells were counted at indicated time points. Growth is impaired in 
the RacH cells but not in RacG cells. Data plotted here are the average of  three independent 
experiments.  
 
By contrast, RacH-WT-overexpressing cells had a severe growth defect. They were able to 

grow to a density slightly over 2 x 106 cells/ml (Figure 12). Interestingly, growth of the strains 

overexpressing mutated variants of RacH was normal (data not shown). This indicates that 

overexpression of a RacH, but not RacG, that is capable of undergoing cycling between the 

activated and inactive states interferes with growth. 
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4.3 Endocytosis and exocytosis 
 
 
Remodeling of the actin cytoskeleton during phagocytosis has been shown to be regulated by 

Rho GTPases (Chimini and Chavrier., 2000; Ellis and Mellor., 2000). We examined the 

ability of AX2 and RacG mutant cells to internalise fluorescently labeled yeast particles. 

RacG-WT and RacG-V12 overexpressor strains internalized yeast particles at a rate that was 

1.5-fold faster than control AX2 cells, whereas cells overexpressing the dominant negative 

form RacG-N17 internalized yeast particles at a rate similar to control AX2 cells (Figure 13A, 

left panel). All mutants grew on SM agar plates with Klebsiella aerogenes at a rate similar to 

AX2 (not shown).We also studied the role of PI 3-kinases in this process with the aid of the 

specific inhibitor LY294002. Here, we treated the cells with the inhibitor at a concentration of 

30 µM for 30 min before challenging the cells with TRITC-labelled yeast cells. We did not 

observe any difference in the rate of yeast particle uptake in the presence of the inhibitor (data 

not shown), indicating that there is no direct involvement of these enzymes in the RacG-

mediated stimulation of phagocytosis. 

 

Rather surprisingly cells overexpressing RacH-WT showed a severe defect in the rate of 

internalization of yeast particles  (Figure 13A, right panel) whereas cells overexpressing 

either RacH-V12 or RacH-N17 did not differ significantly from AX2. All mutants grew on 

SM agar plates with Klebsiella aerogenes at a rate similar to AX2 (not shown). 

 

We found that cells of all three RacG mutant strains were able to internalize and release the 

fluid phase marker TRITC-dextran at the same rate of AX2 cells (Figure 13B,C), supporting 

the notion that pinocytosis and phagocytosis are independently regulated in Dictyostelium. By 

contrast, RacH mutant strains had a defect in internalization of the fluid phase marker TRITC 

-dextran. Cells overexpressing RacH-V12 and RacH-N17 were able to internalize fluid phase 

marker TRITC-dextran to lesser extent than the control AX2 cells but cells overexpressing 

RacH-WT were severely impaired (Figure 13B,C right panel). Rates of exocytosis were 

comparable to AX2 in all the three mutants of RacH.  

 

4.4  Redistribution of GFP-RacG during particle uptake 

 

Particle uptake in Dictyostelium, as in other cells, involves rearrangements of the actin 

cytoskeleton. 
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Figure 13. Phagocytosis, fluid-phase uptake and exocytosis of cells overexpressing RacG 
and RacH.  (A) Phagocytosis of TRITC-labeled yeast cells (B) Fluid-phase endocytosis of 
TRITC-dextran. (C) Fluid-phase exocytosis of TRITC-dextran. Experiments were performed 
as in the legend of Figure 5. All values are the average of at least three independent 
experiments. For the sake of clarity, error bars are not shown.  
 

We studied the distribution of GFP-RacG-WT during phagocytosis of TRITC-labeled yeast 

cells using confocal laser-scanning microscopy. Figure 14 documents the dynamics of GFP-
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RacG localization during the complete process of uptake and internalization of a yeast 

particle. At the beginning of the sequence a cell already filled with 5 yeast particles is 

engulfing a new particle; 15 seconds later surface protrusions formed around the yeast cell 

were about to fuse, producing an early phagosome. Accumulation of GFP-RacG around the 

yeast particle was evident during the uptake process. Thereafter (50 seconds) GFP-RacG had 

almost completely dissociated from the phagosome, suggestive of a relocalization of the 

GTPase upon maturation of the phagosome, similar to what has already been described for 

RacF1 (Rivero et al., 1999).                             

 
  Figure 14. Localization of GFP-RacG during phagocytosis of yeast cells. Time series     

showing the dynamics of GFP-RacG redistribution upon uptake of a yeast cell.  Dictyostelium 
cells expressing wild-type GFP-RacG were allowed to sit on glass coverslips and were 
challenged with TRITC-labeled yeast cells. Images were taken with a confocal laser-scanning 
microscope. Images from GFP and TRITC channels were independently attributed with color 
codes (green and red respectively) and superimposed. RacG detaches from the phagosome 
shortly after internalization of the yeast particle. Bar, 10 µm. 

 
The time of residence of GFP-RacG around a phagosome, calculated from completion of 

phagosome closure to completion of detachment from the phagosome, was less than 1 minute, 

similar to values reported for RacF1 (Rivero et al., 1999) and actin (Rivero et al., 2002). 

During the early phases of the engulfment process accumulation of RacG was highest at the 

rim of the phagosome  and lowest around the yeast particle (Figure 15A).  
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To investigate the localization of GFP-RacG with respect to actin during phagocytosis, 

Dictyostelium cells expressing GFP-RacG fusion protein were incubated with heat-killed      

yeast cells for 20 min on a glass coverslip and immunolabelled with an anti-actin monoclonal 

antibody. Confocal images of immunolabelled cells show that GFP-RacG is enriched at the 

rim of the nascent phagosome. The fluorescence pattern of the GFP- RacG fusion protein at 

the phagocytic cups as well as the cell cortex coincides with actin staining, as can be 

appreciated in the overlay images (Figure 15B).  By contrast, the intensity of the 

accumulation of GFP-RacG around the yeast particle was comparatively low, whereas actin 

accumulation remained high. 

 
Figure 15. Distribution of GFP-RacG during the process of phagocytosis. (A) RacG 
accumulates at the rim of the nascent phagosome. Images were obtained as in Figure 14 with 
the difference that the signal corresponding to GFP-RacG was attributed a glow-over look-up 
table to better appreciate intensity differences. Pixels with maximum intensity appear blue.  
(B) Colocalization of RacG with actin at the phagosome. Confocal section of a cell expressing 
wild-type GFP-RacG during uptake of an unlabeled yeast particle. GFP-RacG expressing 
cells were allowed to sit on glass coverslips, incubated for 20 minutes with heat-killed yeast 
cells and fixed and stained as in Figure 11. From left to right images correspond to GFP-RacG 
(green), actin (red), overlay and phase contrast. Note accumulation of GFP-RacG at the rim of 
the phagocytic cup. Bar, 5 µm. 
 

4.5  Cytokinesis of overexpression mutants 

 

Rho GTPases are reportedly involved in the regulation of cytokinesis (Larochelle et al., 1996; 

Dumontier et al., 2000;). We analysed the cells grown under shaking conditions after staining 

with the DNA binding dye DAPI (Materials and Methods 5.3). After staining, the number of 
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nuclei per cell of cells overexpressing RacG, RacH and their mutated variants were 

quantitated and compared with that of the AX2 cells. 

 

 
Figure 16. Quantitation of nuclei of AX2, RacG and RacH cells. (A) Fluorescence images 
after DAPI staining of the nuclei of the cells grown in shaking culture. Cells were allowed to 
sit for 20 min on coverslips and were fixed with picric acid/paraformaldehyde. For staining 
the nuclei, cells were stained with DNA binding dye DAPI. Arrows indicate multinucleated 
cells. Scale bar 25µm. (B) Histograms illustrating quantitation of nuclei of the AX2 and 
mutant cells grown in shaking suspension. For all the strains, nuclei of 250-300 cells were 
counted. Wild-type AX2 and RacG cells are mainly mononucleated or binucleated, whereas 
many RacH cells show 3 or more nuclei. Scale bar 25µm. 
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Observation of the DAPI labelled cells under the fluorescence microscope revealed that all 

RacG-overexpressing cells were like control AX2 cells, having one or two nuclei, suggesting 

that cytokinesis is normal in these cells.  

 
 
Quantitation of the number of nuclei per cell in the RacH-WT cells grown under shaking 

conditions revealed the presence of abundant multinucleate cells suggesting that cytokinesis is 

defective in RacH-overexpressing cells. This defect was more severe in RacH-V12 and RacH-

N17, where 25% of the cells showed 3 nuclei and  35% of the cells showed 4 and more nuclei 

(Figure 16). By contrast, the distribution of nuclei in RacH-overexpressing strains grown on 

coverslips for two days did not differ from that of AX2, most of them being mono or 

binucleated (not shown). This indicates that the cytokinesis defect of RacH-overexpressing 

strains is contitional.  

 

 
4.6  Role of RacG and RacH in the regulation of actin polymerization 

 

Aggregation competent cells move actively toward a cAMP gradient. Stimulation with cAMP 

elicits fast and highly transient changes in the F-actin content that correlate with changes in 

cell behaviour (Hall et al., 1988). Rho-regulated signaling pathways have been shown to be 

involved in this process (Chung et al., 2000; Knetsch et al., 2001; Rivero et al., 2002). It was 

therefore of our interest to investigate to which extent overexpression of wild-type or mutated 

forms of RacG and RacH alters actin polymerization and the motile behaviour of aggregation 

competent cells. Stimulation of AX2 cells with cAMP resulted in a rapid and transient 1.9-

fold increase in the amount of F-actin followed immediately by a second much lower peak 

that lasted until approximately 60 seconds. Cells overexpressing RacG-WT or RacG-V12 

showed a lower increase in the first F-actin peak (1.3 and 1.2-fold, respectively), whereas the  

the second peak was abolished. Cells overexpressing the dominant negative form of RacG 

displayed a completely abolished actin polymerization response (Figure 17A, left panel). 

Treatment of AX2 cells with the PI 3-kinase inhibitor LY294002 for 30 minutes prior to 

cAMP stimulation resulted in a lower increase (1.3-fold) in the first F-actin peak. This peak 

was not further decreased in cells overexpressing RacG-WT or RacG-V12 after treatment 

with the inhibitor (Figure 17B, left panel). In case of  RacH and its mutated variants, the 

response was similar to that of  control AX2 cells when stimulated with cAMP except that the 

second F-actin peak was abolished. 
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Figure 17. Actin polymerization response and F-actin content of Dictyostelium cells 
overexpressing GFP-tagged RacG and RacH forms. (A) F-actin polymerization responses 
upon cAMP stimulation of aggregation competent cells. The relative F-actin content was 
determined by TRITC-phalloidin staining of cells fixed at the indicated time points after 
stimulation with 1 µM cAMP. The amount of F-actin was normalized relative to the F-actin 
level of unstimulated wild-type cells. (B) F-actin polymerization responses upon cAMP 
stimulation in the presence of the PI 3-kinase inhibitor LY294002. Cells were treated with 
LY294002 (30 µM) for 30 minutes before stimulating with 1µM cAMP. Samples were 
processed as in A. Each data point represents the average of at least three independent 
measurements. (C) F-actin content of vegetative cells as determined by TRITC-phalloidin 
staining of fixed cells. Fluorescence values were normalized against total protein content and 
expressed relative to AX2. Values are the average ± standard deviation. of two experiments, 
each performed in triplicate. 
 

Treatment with the PI 3-kinase inhibitor LY294002 for 30 minutes prior to cAMP stimulation 

resulted in a lower increase (1.3 to 1.4-fold) in the first F-actin peak for RacH and RacH-V12 
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cells, whereas in RacH-N17 cells the inhibitor did not alter the F-actin polymerization 

response.  

 

The basal F-actin content of vegetative cells was determined by TRITC-phalloidin staining of 

fixed cells. It was found to be decreased to a variable extent in all three RacG mutants relative 

to AX2 (Figure 17C, left panel). This result was confirmed by Western blot analysis of 

TritonX-100 insoluble pellets with an actin-specific monoclonal antibody (not shown). In all 

the three RacH mutants the F-actin content was similar to that of control AX2 cells (Figure 

17C, right panel). 

 

4.7  Cell motility and chemotaxis of overexpression mutants 

 

To test whether the changes in the actin cytoskeleton described above alter chemoattractant-

induced cell migration, we used a chemotaxis assay combined with time-lapse video 

microscopy. Aggregation competent cells were allowed to migrate toward a micropipette 

filled with 0.1 mM cAMP and time-lapse image series were taken and used to generate 

migration paths and calculate cell motility parameters (Figure 18 and Table 1). In the absence 

of cAMP AX2 and all three RacG and RacH mutant strains exhibited a similar rate of 

locomotion (4 - 6 µm/min). Parameters like persistence, directionality and directional change 

were indicative of random movement with frequent turns. 

 

In the presence of cAMP, AX2 and RacG-WT behaved similarly, except for a moderately but 

significantly lower speed of RacG-WT cells (9.88 vs. 12.12 µm/min) (Figure 18 and Table 1). 

AX2 and RacG-WT cells became polarized, formed streams and migrated toward the tip of 

the micropipette, as indicated by higher persistence (4.33 and 3.30 µm/min×deg) and 

directionality values (around 0.8) and lower average angle of directional change (around 20°). 

By contrast, RacG-V12 and N17 cells failed to respond to cAMP, displaying a motile 

behaviour similar to the one observed in the absence of cAMP, with reduced speed and 

frequent changes of direction. 

 

All the RacH strains became polarized, formed streams and migrated toward the tip of the 

micropipette, although RacH-WT and RacH-N17 cells displayed a moderatly but significantly 

lower speed (8.04 and 9.57 respectively vs. 12.12 µm/min) and persistence (2.72 and 3.67 



3. Results3. Results3. Results3. Results    
___________________________________________________________________________ 

64

respectively vs 4.33 µm/min×deg) than AX2. The behaviour of RacH-V12 did not differ 

significantly from that of AX2 (Figure 19 and Table 1). 

 

 
 
 
Figure 18. Chemotactic movement of cells overexpressing GFP-tagged RacG forms to a 
micropipette containing cAMP. Cells were starved for 6 hours, allowed to sit on a glass 
coverslip and stimulated with a micropipette filled with 0.1 mM cAMP. Images of 
chemotaxing cells were captured every 30 seconds. Cell movement was analyzed with the 
DIAS software. Wild-type cells and cells overexpressing RacG-WT are well polarized, 
migrate fast and orientate properly toward the tip of the micropipette. In cells overexpressing 
RacG-V12 and RacG-N17 migration is severely impaired. 
 
 



3. Results3. Results3. Results3. Results    
___________________________________________________________________________ 

65

 
 
 
 

 
 
 
Figure 19. Chemotactic movement of cells overexpressing GFP-tagged RacH forms.  
Analyses were performed as in Figure 18. RacH strains behaved almost like AX2  
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 AX2 RacG-WT RacG-V12 RacG-N17 RacH-WT RacH-V12 RacH-N17 
Buffer        

Speed (µm/min) 5.74 ± 3.76 4.26 ± 2.67 5.50 ± 2.86 4.24 ± 2.8 4.38 ± 1.96 4.74 ± 2.21  6.44 ± 4.26  

Persistence (µm/min×deg) 1.85 ± 1.72 1.50 ± 1.49 2.13 ± 1.55 1.46 ± 1.65 1.02 ± 0.59  1.71 ± 1.26 2.22 ± 1.86  

Directionality 0.43 ± 0.28 0.36 ± 0.26 0.48 ± 0.28 0.39 ± 0.28 0.29 ± 0.17 0.53 ± 0.29  0.43 ± 0.25 

Directional change (deg) 43.30 ± 19.90 48.40 ± 15.95 39.60 ± 15.13 43.60 ± 13.21 53.11 ± 11.03 40.78 ± 23.27  53.62 ± 17.89  

cAMP gradient        

Speed (µm/min) 12.12 ± 3.26 9.88 ± 2.98* 5.58 ± 4.04* 4,12 ± 1.35* 8.04 ± 2.51* 11.55 ± 2.78 9.57 ± 2.37* 

Persistence (µm/min×deg) 4.33 ± 2.18 3.30 ± 1.34 1.99 ± 2.47* 1.13 ± 0.45* 2.72 ± 1.26* 3.67 ± 1.17 3.26 ± 1.30* 

Directionality 0.82 ± 0.11 0.75 ± 0.18 0.38 ± 0.29* 0.40 ± 0.24* 0.76 ± 0.16 0.72 ± 0.18 0.81 ± 0.09 

Directional change (deg) 19.78 ± 8.57 24.10 ± 14.65 52.05 ± 14.27* 40.00 ± 12.57* 25.46 ± 13.02 22.50 ± 12.50 20.55 ± 8.22 

 
 
Table 1. Analysis of cell motility of RacG and RacH-overexpressing mutants. Time-lapse image series were captured and stored on a 
computer hard drive at 30 seconds intervals. The DIAS software was used to trace individual cells along image series and calculate motility 
parameters. Objects whose speed was <2 µm/min were excluded from the analysis. Persistence is an estimation of movement in the direction of 
the path. Directionality is calculated as the net path length divided by the total path length, and gives 1.0 for a straight path. Directional change 
represents the average change of angle between frames in the direction of movement. Values are mean ± standard deviation of 40 to 90 cells from 
at least three independent experiments. * P<0.05 relative to AX2 in the same condition (ANOVA) 
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5  Characterisation of chimeric mutants of RacG and RacH 
 
5.1  Analysis of the C-terminal region of RacG and RacH  
 
Rho proteins characteristically end with a CAAX motif, a signal for attachment of a lipid 

moiety (geranylgeranyl or farnesyl) immediately preceded by a polybasic domain rich in 

lysine residues. This C-terminal region contributes to the association of Rho proteins with the 

plasma membrane, as has been described for GFP fusions of Rac1a/b/c (Dumontier et al., 

2000), RacC, RacE (Larochelle et al., 1997) and RacF1 (Rivero et al., 1999). RacH associates 

with inner membranes rather than the plasma membrane. We analysed the C-terminal 

sequence of RacH in comparison with other known GTPases (RacG and Rac1a) in 

Dictyostelium which are present in the plasma membrane. Surprisingly, RacH has many acidic 

amino acids in its C-terminal part rather than only basic amino acids (Figure 20). 
 

 
 
 
Figure 20.  The C-terminal amino acid sequence of Rac1a, RacG and RacH. Basic amino 
acids are marked in green, acidic amino acids are in red and the CAAX motif cysteine is in 
blue. The red line indicates the region that is exchanged in the chimeric mutants of RacG and 
RacH 
 
To test the hypothesis that these acidic amino acids are responsible for the differential 

localisation of RacH and RacG, we made chimeric cDNA constructs by interchanging  C-

terminal parts of RacH and RacG using a PCR approach as described in Materials and 

Methods (3.5.2). In addition, to exclude that regions other than the isoprenylated C-terminus 

are involved in the localization of RacH, we made a mutant in which the cysteine 197 of the 

CAAX motif was mutated to serine (RacH/C197S). 

 
5.2 Subcellular localization of RacG and RacH chimeric mutants 
 
 

We analysed GFP-RacG-chimera, GFP-RacH-chimera and GFP-RacH/C197S mutants for the 

localization of the fusion proteins in paraformaldehyde/picric acid fixed preparations. We 

noticed that RacH-chimera was present  in the plasma membrane and Golgi apparatus, but it 
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was displaced from the nuclear envelope. An enrichment at the plasma membrane was evident 

in cells expressing low levels of the fusion protein. 

 

 
             
Figure 21. Subcellular distribution of cells overexpressing GFP-tagged RacG and RacH 
chimeras. (A) Confocal section through cells expressing GFP-tagged RacG-chimera and 
RacH-chimera to show distribution of the GTPase. Bar, 10 µm. Cells were grown overnight 
on coverslips in axenic medium and fixed with picric acid/paraformaldehyde. (B) 
Fractionation of Dictyostelium cells overexpressing GFP fusions of RacG-chimera, RacH-
chimera and RacH/C197S. Cells were lysed by sonication and cytosolic (S) and particulate (P) 
fractions were separated by ultracentrifugation. Samples were resolved in 12% 
polyacrylamide gels and blotted onto nitrocellulose membranes. Blots were incubated with 
anti-GFP mAb K3-184-2. (C) Sucrose gradient fractionation of membrane pellets (including 
nuclei). Samples were centrifuged to equilibrium on 30-50% (wt/vol) sucrose gradients atop 
84% (wt/vol) cushions. After centrifugation, 1ml fractions were collected from the top and 
analysed. Samples were resolved in 12% polyacrylamide gels and blotted onto nitrocellulose 
membranes. Blots were incubated with anti-GFP mAb K3-184-2. PDI (ER marker) was 
detected with mAb 221-135-1 and comitin (Golgi marker) was detected with mAb 190-68-1. 
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Surprisingly, RacG-chimera distributed homogeneously throughtout the cell including the 

nucleus, but was not enriched at any particular structure (Figure 21A).  This is in contrast to 

RacG-WT which is localized predominantly in the plasma membrane (Figure 7). 

 

To confirm the above observations, we performed differential centrifugation of Dictyostelium 

lysates of cells expressing RacG-chimera, RacH-chimera and RacH/C197S followed by 

Western blot analysis of the resultant cytosolic and particulate fractions. The GFP fusion 

proteins were detected using a monoclonal antibody against GFP (Figure 21B). It is apparent 

that still most of the RacH-chimera is present in the cytosolic fraction. In the case of  RacG-

chimera, the protein is present equally in both in membrane and in cytosol, compared to 60% 

of the RacG-WT present in the membrane fraction (Figure 8A). As expected, the mutation in 

the prenylation motif RacH/C197S, caused it to distribute completely in the cytosol.  

 
To support the above observations, we separated the membrane fraction of cells expressing 

the chimeric constructs and the corresponding wild-type forms by centrifugation on sucrose 

gradients as described in Materials and Methods (4.2). After centrifugation for 18hr, 1 ml 

fractions of each gradient were collected. GFP fusion proteins were detected by Western blot 

analysis using a monoclonal antibody against GFP (Figure 21C). We also probed with 

antibodies raised against the marker proteins comitin (a marker of Golgi apparatus) and 

protein disulphide isomerase (a marker of the endoplasmic reticulum). Fractionation results 

revealed  that RacH is distributed in all the inner membrane compartments as it was observed 

in fixed preparations (Figure 9). RacG is present predominantly in the lower density fraction 

that corresponds to plasma membrane. RacH-chimera is also predominantly present in the 

lower density fraction that corresponds plasma membrane as well as in higher density 

fractions. RacG-chimera was not detected in the lower density fraction that corresponds to 

plasma membrane but is present in the inner membrane fractions except highest density 

fraction that contains nuclear envelope. Therefore it appears these chimeric GTPases are 

mislocalised and our interest is to investigate how this mislocalisation affects diverse actin-

dependent processes like endocytosis, actin polymerization, motility and chemotaxis.  

 

5.3  Growth of GFP-RacG and GFP-RacH chimeric mutants in axenic medium  

 

Growth rates of RacG and RacH chimeric mutants were determined and compared with that 

of wild-type AX2 cells. The growth patterns of AX2 as well as RacG and RacH chimeric 

mutants were investigated at 160 rpm and 21°C with starting cell densities of 5 x 105 cells/ml 
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(Figure 22). RacH-chimera-expressing cells were able to grow similar to control AX2 cells. 

This is in contrast to RacH-WT cells which are impaired for growth in axenic medium. On the 

contrary, growth of RacG-chimera cells was impaired, and cultures reach densities of around 

5 x 105 cells/ml, about half of the density reached by AX2 cells. 

 

                
 
Figure 22. Growth of wild-type AX2 and GFP-tagged RacG and RacH chimeric mutants 
in axenic medium. Cultures were inoculated at 5 x 105 cells/ml and grown at 21ºC with 
shaking at 160 rpm. Cells were counted at the indicated time points. Growth is impaired in the 
RacG-chimera cells but not in RacH-chimera cells. The data are the average of three 
independent experiments.  
 
 
5.4  Cytokinesis of GFP-RacG and GFP-RacH chimeric mutants 

 

We analysed cells grown under shaking conditions or on a solid substrate after staining with 

the DNA-binding dye DAPI (Materials and Methods, 5.3). RacH-chimera cells grown in 

suspension had more multinucleate cells than the control AX2: 25% of the RacH-chimera 

cells showed 3 nuclei and  35% of the cells showed 4 and more nuclei (Figure 23A and B). 

This defect was more severe when RacH-chimera cells were allowed to grow on substrate. In 

this case we noticed  many gigantic cells having 20 or even more nuclei. RacG-chimera and 

RacH/C197S-expressing cells also showed a similar behaviour like AX2 cells, having in most 

cases one or two nuclei, both in suspension and on a solid substrate. We noticed that RacH-
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chimera-expressing cells displayed abundant actin-rich filopods both on shaking and in 

suspension culture. Apart from this, we did not notice alterations in the pattern of actin 

distribution in any of the mutants (Figure 23).  

 

  

 
Figure 23. Quantitation of nuclei in cells overexpressing RacG-chimera, RacH-chimera 
and RacH/C197S. (A) Fluorescence images after DAPI staining of the nuclei of the AX2 and 
mutant cells grown in suspension or for RacH-chimera, both in suspension (a) and on 
coverslip (b). Cells were allowed to sit for 20 min on coverslips or were grown on coverslips 
for two days. Cells were fixed with picric acid/paraformaldehyde and stained with actin-
specific mAb Act 1-7 followed by Cy3-labeled anti-mouse IgG. Nuclei were stained with the 
DNA binding dye DAPI. Bar, 25 µm. (B) Histograms illustrating quantitation of nuclei of the 
AX2 and mutant cells grown in shaking suspension. For all strains, nuclei of 250-300 cells 
were counted. Wild-type AX2, RacG-chimera and RacH/C197S cells are mainly 
mononucleated or binucleated, whereas many RacH-chimera cells show 3 or more nuclei.  
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5.5  Endocytosis and exocytosis of GFP-RacG and GFP-RacH chimeric mutants 

 

We examined the ability of AX2, chimeric mutants and RacH/C197S cells to internalise 

fluorescently labeled yeast particles. Cells expressing RacH-chimera were able to internalise 

fluorescently labeled yeast particles at 30-40% lesser rate than AX2 cells whereas RacG-

chimera cells showed a severe defect (Figure 24A), specially when compared to RacG-WT 

cells which are able to internalise fluorescently labeled yeast particles at a rate 1.5-fold higher 

than AX2 (Figure 13A).  

 

 
Figure 24. Phagocytosis, fluid-phase uptake and exocytosis of cells overexpressing RacG 
and RacH chimeric mutants. All the experiments were performed as explained in the legend 
of Figure 13. 
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On the other hand the completely mislocalised mutant RacH/C197S behaved like the control 

AX2 cells. These results are in contrast with the results obtained with the overexpressors of 

the corresponding non-mutated GTPases (Figure 13A) and demonstrate that proper 

localization is important for the small GTPases to execute their cellular functions. 

 
In addition we found that cells of all three mutants were able to internalize and release the 

fluid phase marker TRITC-dextran at the same rate of AX2 cells (Figure 24B, C). 

 
5.6  Actin polymerization in RacG and RacH chimeric mutants 
 
 

 
Figure 25. Actin polymerization response of Dictyostelium cells overexpressing GFP-
tagged RacG and RacH chimeras. (A) F-actin polymerization responses upon cAMP 
stimulation of aggregation competent cells. (B) F-actin polymerization responses upon cAMP 
stimulation in the presence of the PI 3-kinase inhibitor LY294002. (C) F-actin content of 
vegetative cells as determined by TRITC-phalloidin staining of fixed cells. All the 
experiments were performed as explained in the legend of Figure 18. Each data point 
represents the average of at least three independent measurements. For the sake of clarity, 
error bars are not shown in A, where standard deviations fell between 1% and 16% of the 
average values. 
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Since RacG regulates the actin cytoskeleton in aggregation competent cells upon stimulation 

with cAMP, we investigated the role of the chimeric mutants in this process. Cells 

overexpressing RacG-chimera behaved like RacG-WT, showing a lower increase in the first 

F-actin peak (1.3-fold increase). Surprisingy, RacH-chimera also behaved like RacG-chimera, 

in clear contrast with the response of RacH-WT (Figure 25A; see also Figure 17A). This 

difference in the F-actin polymerization response supports our hypothesis that the protein 

should be localized properly to exert its function and it also supports the view that the C-

terminus plays an  important role in determining the subcellular localization of the GTPases. 

 

We also studied the effect of PI 3-kinase inhibitor LY294002 in these chimeric mutants. 

Treatment of AX2 cells with the inhibitor for 30 minutes prior to cAMP stimulation resulted 

in a lower increase (1.3-fold) in the first F-actin peak. This peak was not further decreased in 

cells overexpressing any of the chimeric constructs after treatment with the inhibitor (Figure 

25B).  

 

The basal F-actin content of vegetative cells was determined by TRITC-phalloidin staining of 

fixed cells. The total F-actin content was similar in AX2 cells and RacH-chimera-expressing 

cells (Figure 25C). RacG-chimera-expressing cells had 25% more total F-actin compared to 

control AX2 cells.  

 

 
 
Figure 26. Chemotactic movement of AX2 cells and of cells overexpressing GFP-tagged 
RacG and RacH chimeras to a micropipette containing cAMP. Cells were starved for 6 
hours, allowed to sit on a glass coverslip and stimulated with a micropipette filled with 0.1 
mM cAMP. Experiments were performed as indicated in the legend of Figure 18. Wild-type 
cells and cells overexpressing RacG-chimera are well polarized, migrate fast and orientate 
properly toward the tip of the micropipette. Cells overexpressing RacH-chimera did not 
migrate towards the source of cAMP. 
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5.7  Motility and chemotaxis behaviour of RacG and RacH chimeras 
 
To test whether the changes in the actin polymesization response described above alter 

chemoattractant-induced cell migration, we used a chemotaxis assay combined with time-

lapse video microscopy (Figure 26 and Table 2). In the presence of cAMP, AX2 and RacG-

chimera behaved similarly, except for a moderately but significantly lower speed (9.40 vs. 

12.12 µm/min) and persistence (3.23 vs. 4.33 µm/min×deg). RacG-chimera cells, like AX2 

cells became polarized, formed streams and migrated toward the tip of  the micropipette, as 

indicated by high directionality values (around 0.8) and lower average angle of directional 

change (20-25°). RacH-chimera cells did not exhibit motility, irrespective of the presence or 

absence of cAMP. 

 

 AX2 RacG-chimera 
Buffer   
Speed (µm/min) 5.74 ± 3.76 5.47 ± 2.37 
Persistence (µm/min×deg) 1.85 ± 1.72 1.59 ± 0.93 
Directionality 0.43 ± 0.28 0.56 ± 0.23 
Directional change (deg) 43.30 ± 19.90 35.43 ± 16.34 
cAMP   
Speed (µm/min) 12.12 ± 3.26 9.40 ± 2.84* 
Persistence (µm/min×deg) 4.33 ± 2.18 3.23 ± 1.28* 
Directionality 0.82 ± 0.11 0.72 ± 0.21 
Directional change (deg) 19.78 ± 8.57 25.31 ± 13.07 

 
Table 2. Analysis of cell motility of RacG chimeric mutants. The analysis was performed 
as explained in Table 1. RacH-chimera cells did not exhibit motility and have been excluded 
from the table. * P<0.05 relative to AX2 in the same condition (ANOVA). 
 
 

 
Figure 27. Morphology of fully developed fruiting bodies of AX2 cells and of cells 
overexpressing GFP-tagged RacG and RacH chimeric forms. Cells were plated on nutrient 
agar in the presence of K. aerogenes and allowed to develop at 21°C. AX2 (A) and cells 
overexpressing RacG-chimera (B) produce fruiting bodies. Cells overexpressing RacH-
chimera (C) did not aggregate. Bar, 1 mm.  
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5.8  Defects in multicellular development of RacH-chimeric mutant 

Upon starvation Dictyostelium cells undergo a developmental cycle in which single amoebae 

aggregate to form a multicellular fruiting body. This involves differentiation into spore-cells 

and stalk-cells and requires the sequential expression of developmentally regulated genes. 

Since RacH-chimera cells had a severe defect in motiliy and chemotaxis, we decided to 

extend our studies on the developmental process to the RacG-chimera and RacH-chimera 

cells. The developmental pattern of the wild type and mutant cells was examined on 

phosphate buffered agar as well as on bacterial lawn on agar plates. We observed that RacH-

chimera cells did not develop either on phosphate agar or on bacterial lawn, whereas RacG-

chimera cells developed normally like control AX2 cells (Figure 27).  

 

 
Figure 28. Accumulation of the adhesion protein Contact site A in AX2 and RacH-
chimera cells upon starvation. Cells were washed and resuspended in Soerensen phosphate 
buffer at a density of 1 x 107 cells/ml and were shaken at 160 rpm and 21ºC. Samples were 
collected at the times indicated, total cell homogenates were resolved in 10% polyacrylamide 
gels and blotted onto nitrocellulose membranes. Blots were incubated with a monoclonal 
antibody (33-294-17) raised against Contact site A. The loading control corresponds to a non-
specific band recognized by the same antibody. 
 
 
We were interested to know whether the expression of  RacH-chimera impaired the regulation 

of genes that are expressed during the process of aggregation. For this we chose the adhesion 

protein Contact site A (CsA), which accumulates during the aggregation of Dictyostelium 

cells (Faix, 1990). For this, we did a time course experiment where we allowed the  RacH-

chimera cells to aggregate in suspension under starvation conditions. Western blot analysis 

revealed that CsA accumulates when Dictyostelium cells start aggregating (6 hours). Cells 

expressing RacH-chimera did not show accumulation of CsA even after 12 hours (Figure 28). 

This shows that overexpression of RacH-chimera silences the genes that are expressed during 

the aggregation stage. 
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                                                                                                                    4 . Discussion 
___________________________________________________________________________ 

 

1.1  Expression of RacG and RacH proteins throughout development 

 

One prominent feature of the Dictyostelium life cycle is the transition from single-cell 

amoebas to a multicellular fruiting body consisting of at least two differentiated cell types. 

This transition is triggered by starvation of the cells and involves coordinated transcription of 

certain genes and differentiation and sorting out of cell populations. We have used Western 

blot analysis to study the accumulation of the RacG and RacH proteins during synchronised 

development on nitrocellulose filters. RacG and RacH accumulate almost constitutively 

throughout the developmental cycle of Dictyostelium, closely correlating expression at the 

transcript level (Rivero et al., 2001). Rac genes display diverse patterns of developmental 

regulation. A previous report had shown complex patterns of developmental regulation for 

rac1a/1b/1c, racB, racC and racD (Bush et al., 1993). Genes like racA and racI are very 

weakly expressed at all stages and display maximum levels after 12 hr of starvation, 
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corresponding to the first finger stage. Two genes, racJ and racL are expressed at low levels 

and exclusively after 12 hours of starvation, when culmination and maturation of the fruiting 

body take place. Finally racE, racF1 and racF2 are present at relatively high levels 

throughout the developmental cycle (Rivero et al., 1999, 2001). This sugests that particular 

Rac proteins play distinct roles at different stages of development. The data putting Rac 

proteins in relation to the development are scarce. Cells deficient in Rac1b, RacE or RacF1 

developed normally (Larochelle et al., 1996; Rivero et al., 1999; Palmieri et al., 2000). 

Overexpression of wild type or dominant negative Rac1 did not elicit alterations and only 

overexpression of activated Rac1 resulted in a delayed development and formation of small 

fruiting bodies (Dumontier et al., 2000; Palmieri et al., 2000). We would expect that racG and 

racH, being expressed constitutively, regulate diverse functions throughout the entire 

developmental cycle. This could not be addressed during our studies because the levels of the 

GFP fusion proteins vanish during the later stages of the development and strains are no 

longer overexpressors. Because overexpression of Rac1 mutants in the studies mentioned 

above was driven by the same promoter as the one used in our study, those results are 

questionable. We plan to address this question using overexpression driven by promoters that 

become induced at later stages of development. 

 

1.2 Regulation of actin polymerization by RacG and RacH  

 

Rho GTPases are key regulators of processes requiring actin remodeling in eukaryotic cells.  

Many actin-binding proteins as well as signaling molecules, among them Rho GTPases, are 

redistributed to the Triton X-100 insoluble pellet in response to a diversity of stimuli. In 

osteoclasts, for example, attachment induces translocation of RhoA (Lakkakorpi et al., 1997), 

and adhesion on fibrinogen induces an increase in the levels of Rac3 in the Triton X-100 

insoluble pellet (Haataja et al., 2002). This correlates with in vivo observations, where 

activation of Rac, monitored by FRET, is restricted to sites of actin polymerization like ruffles 

and leading edges (Kraynov et al., 2000). A fraction of the GFP-tagged RacG and RacH were 

recovered in the Triton X-100 insoluble pellet. In immunofluorescence studies with fixed 

cells, RacG displays a discontinuous localization at the cell cortex, where it colocalizes 

partially with actin. By contrast, RacC was found not to associate with the F-actin 

cytoskeleton (Seastone et al., 1998), supporting the idea that these GTPases have different 

roles in Dictyostelium. This situation is similar to the one described in platelets, where 

association of Cdc42 with the F-actin cytoskeleton increases upon activation of the PAR-1 
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receptor whereas Rac remains in the Triton X-100 soluble fraction irrespective of its 

activation state (Azim et al., 2000). Association of Rho GTPases with actin is most likely 

indirect, through binding to GEFs or effectors and formation of signaling complexes, as has 

been described in mammalian cells (Van Aelst and D'Souza-Schorey, 1997). The first 

indication that Rho GTPases regulate actin polymerization in Dictyostelium was provided by 

(Zigmond et al., 1997). These authors could demonstrate that GTPγS-activated human Cdc42 

was able to induce actin polymerization in a cell lysate. Subsequent studies have established a 

role for some Dictyostelium Rac proteins in the reorganization of the actin cytoskeleton. In 

unstimulated Dictyostelium cells activated Rac1, Cdc42 and RacB induce an increase in the 

amount of Triton X-100-insoluble actin (Chung et al., 2000; Palmieri et al., 2000; Lee and 

Knecht, 2001) whereas in cells expressing activated RacG and RacH, this parameter is 

unaltered. Although this is apparently contradictory with a positive role of RacG in actin 

polymerization, it has been observed that overexpression of activated Rho GTPases usually 

results in diverse cellular responses that do not necessarily reflect their physiological spectrum 

of biological functions (Symons and Settleman, 2000). Factors like subcellular localization 

and interaction with different sets of effectors and regulators have to be taken into account. 

For example, Rac1 isoforms, Cdc42 and RacB, but not RacG or RacH, interact with RhoGDI, 

an important regulator of the distribution and activity of Rho GTPases (Rivero et al., 2002). 

Actin polymerization is not altered in RacH-overexpressing cells. Since RacH localizes to the 

inner membranes, it does not contribute to the polymerization of cortical actin. We propose 

that it might be involved in actin polymerization arround vesicles, directly contributing to 

transport processes (Discussion 1.4 ) (Ridley, 2001). 

 

1.3  Overexpression of RacG induces the formation of filopods 

 

Overexpression of RacG induces the formation of abundant actin-driven long filopods, an 

effect characteristic of Cdc42 in mammalian cells (Hall, 1998). Dictyostelium makes many 

filopodia, which are similar in size, shape and molecular composition to those of mammalian 

cells. Interestingly, expression of activated human Cdc42 in Dictyostelium does not induce the 

same phenotype as RacG, but rather the formation of wrinkles along with numerous short 

filopods at the center of the cell (Lee and Knecht, 2001). Therefore it appears that Cdc42 is 

not necessary for the formation of filopods. While overexpression of Rac1 isoforms and RacG 

elicit a similar phenotype, overexpression of RacC induces the formation of irregular F-actin-

rich structures termed petalopodia at the dorsal surface of the cell (Seastone et al., 1998), and 
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overexpression of activated RacB induces detachment and formation of cylindrical and 

spherical protrusions (D. Knecht, unpublished data). This indicates that RacG and Rac1 might 

be sharing downstream signaling pathways different from the ones regulated by RacC and 

RacB. However, RacG and Rac1 seem to have different mechanisms of action: whereas RacG 

has to be in its activated form to induce the formation of filopods, Rac1 requires cycling 

between the GDP-bound and the GTP-bound forms (Dumontier et al., 2000). Likewise, in 

mammalian cells two Rho GTPases, Cdc42 and Rif, regulate the formation of filopods 

through distinct pathways (Ellis and Mellor, 2000). Many of the Dictyostelium Racs might 

therefore perform the same functions as the Rho and Cdc42 proteins from animal and fungal 

cells.  

 

1.4  Involvement of RacG and RacH in endocytosis 

 

The participation of Rho GTPases in the regulation of phagocytosis and pinocytosis in 

mammalian cells is well established (Chimini and Chavrier, 2000; Ellis and Mellor, 2000). 

Expression of GFP-RacG fusion protein in Dictyostelium has permitted the visualization in 

living cells of RacG dynamics, which in part matches that of actin. Our morphological and 

functional data point to an involvement of RacG in phagocytosis. In Dictyostelium 

phagocytosis of yeast particles proceeds by protrusion of pseudopod-like membrane 

extensions that spread around the particle with a zipper mechanism. RacG specifically 

accumulates at the rim of the nascent phagosome, accompanying membrane extension, and 

begins to detach soon after the membrane contacts the yeast particle. This process is 

concomitant with actin accumulation and is suggestive of a causal relationship between RacG 

activation and actin polymerization. The participation of Rho GTPases in the regulation of 

phagocytosis in mammalian cells is well established. In macrophages Rho, Rac and Cdc42 

accumulate with actin at nascent phagosomes (Caron and Hall, 1998), recruitment of activated 

Rac1 to the plasma membrane induces uptake of latex particles by a mammalian cell line 

(Castellano et al., 2000) and in leukocytes expression of dominant negative forms of Rac1 or 

Cdc42 partially inhibit accumulation of F-actin rich phagocytic cups (Cox et al., 1997). By 

contrast, overexpression of RacG-N17 does not have an inhibitory effect on phagocytosis, and 

a similar result was obtained in cells that overexpress dominant negative Rac1 isoforms 

(Dumontier et al., 2000). A possible explanation is that in Dictyostelium other Rac proteins 

might over rule an inhibitory effect. Rac and Cdc42 are required for the accumulation of 

WASP and the Arp2/3 complex at the nascent phagosome, promoting actin polymerization 
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necessary for progression of phagocytosis  (May et al., 2000). In mammalian cells two 

different mechanisms of phagocytosis have been defined, each controlled by distinct Rho 

GTPases: phagocytosis through the immunoglobulin receptor (FcR) is mediated by Cdc42 and 

Rac, whereas phagocytosis through the complement receptor is mediated by Rho (Caron and 

Hall, 1998). Phagocytosis in Dictyostelium is morphologically closer to FcR-mediated 

phagocytosis, but contrary to mammalian cells, in Dictyostelium PI 3-kinases are not involved 

in phagocytosis (Rupper and Cardelli., 2001). Our results further support this view, and along 

with results from studies on other Rho GTPases stress the notion that phagocytosis and 

pinocytosis are regulated through distinct mechanisms (Rupper and Cardelli, 2001). Thus, 

whereas RacG (either WT or constitutively active) stimulates phagocytosis but has no effect 

on pinocytosis, activated Rac1 and RacB inhibit both (Dumontier et al., 2000; Palmieri et al., 

2000) and RacC stimulates phagocytosis but impairs pinocytosis (Seastone et al., 1998). 

 

Overexpression of RacH impaired pinocytosis and phagocytosis. Interestingly, overexpression 

of the non mutated form had a greater impact than overexpression of the active or inactive 

locked forms, indicating that cycling between the active and the inactive states is important 

for RacH to act.  Furthermore, the effects of overexpression of RacG and RacH on endocytic 

processes are quite different. This, together with the differential subcellular localization of 

both GTPases, indicates that each Rho protein is acting at a different step of endocytosis: 

RacG, which localizes at the plasma membrane, would be involved in the initial phases, 

whereas RacH, which is localized at inner membranes, would be involved in progression of 

the endosomes (Murphy et al., 1996; Ridley, 2001). 

 

1.5  Control of cell motiliy and chemotaxis 

 

Dictyostelium amoebas are equipped with a complex actin cytoskeleton that endows the cells 

with chemotactic and motile behaviour comparable to that of leukocytes. The role of Rho 

GTPases in the establishment of cell polarity and migration toward a chemoattractant source 

has been widely studied (Chung et al., 2000). Activation of GTPases transmit signals to the 

actin cytoskeleton through a set of specific effector proteins (Van Aelst and D'Souza-Schorey, 

1997). Overexpression of constitutively active, and more so, dominant negative RacG resulted 

in impaired F-actin polymerization and chemotactic response to cAMP. Likewise, in 

chemotaxis assays with cAMP cells overexpressing activated Rac1b were able to polarize but 

chemotaxed inefficiently because of random turns, frequent lateral pseudopods and low speed. 
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Cells overexpressing dominant negative Rac1b did not polarize and did not migrate toward 

the chemoattractant source (Chung et al., 2000), and in macrophages both mutants of either 

Rho or Rac inhibit chemotaxis (Allen et al., 1998). This inhibitory effect of the same 

biological function by opposite mutants has been interpreted in different ways (Symons and 

Settleman, 2000), but the fact that motility and chemotaxis parameters of RacG-WT cells are 

only moderately disturbed in spite of an F-actin polymerization response comparable to that 

of RacG-V12 cells supports the idea that GTP-hydrolysis is a necessary step in the chain of 

events linking sensing of a chemoattractant gradient with the establishment of cell polarity 

and migration in the direction of the stimulus. Recent data indicates that Rac1 isoforms are 

probably not the only Rho GTPases involved in the regulation of cell polarity in 

Dictyostelium. Cells overexpressing activated RacC and RacE also displayed a reduced F-

actin polymerization response to cAMP (Rivero et al., 2002). The behaviour of these and 

other mutant strains in a chemotaxis assay needs to be analyzed in order to substantiate this 

claim. 

 

Contrary to RacG, RacH apparently does not regulate the F-actin polymerization response to 

cAMP and the chemotactic response. This again might be related to the subcellular 

localization of RacH (Discussion 1.8).  

 

 

1.6  Role of  RacG and RacH in cytokinesis 

 

Rho GTPases have been shown to be essential for cytokinesis in diverse eukaryotic 

organisms. In cytokinesis, the orchestrated activities of the actin-rich cell cortex in 

conjunction with the microtubule-based spindles and asters guarantee that newly duplicated 

nuclei segregate properly into daughter cells. This process is impaired in cells overexpressing 

RacH but not RacG. Alterations in cytokinesis have been described in other mutants of Rho 

GTPases in Dictyostelium. RacE was the first Rho GTPase shown to be essential for 

cytokinesis (Larochelle et al., 1997). Subsequent studies have shown that the three Rac1 

isoforms, RacB and RacC are also implicated in the regulation of cytokinesis. Overexpression 

of Rac1 isoforms, either dominant-negative or constitutively active, or overexpression of 

constitutively active RacB, RacC and RacE result in a less pronounced cytokinesis defect than 

in RacE-null cells that, at least for Rac1 and RacC, like in the case of RacH, is apparent only 

when cells grow in suspension (Dumontier et al., 2000; Palmieri et al., 2000; Rivero et al., 
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2002). The nature of this conditional defect is not clear, but it could be put in relation with the 

different pathways of cell-cycle-coupled cytokinesis described in Dictyostelium, the adhesion 

independent cytokinesis A and the adhesion dependent cytokinesis B (Nagasaki et al., 2002). 

Cytokinesis A takes place by active contraction of the cleavage furrow, and is actin and 

myosin II-dependent, whereas in cytokinesis B the cleavage furrow contracts passively with 

the help of traction forces generated along the periphery. Rac1, RacC and RacE are 

predominantly plasma membrane associated, and could easily participate in the regulation of 

actin assembly at the cleavage furrow. RacH, on the contrary, is localized in internal 

membranes. It remains therefore to be established through which mechanism RacH regulates 

cell division. 

 

1.7  Subcellular localization of RacG and RacH  

 

We have used a GFP tag to study the localization of RacG and RacH in vivo. Like Ras 

proteins and γ subunits of heterotrimeric G proteins, Rho GTPases are synthesised as 

cytosolic proteins but have the capacity to associate with membranes by virtue of a series of 

posttranslational modifications of the C-terminal CAAX prenylation motif (Clarke, 1992). 

RacG displays a predominant plasma membrane localization, as has also been described for 

other Dictyostelium Rho GTPases, like Rac1a/1b/1c (Dumontier et al., 2000), RacC 

(Larochelle et al., 1997), RacE (Larochelle et al., 1996) and RacF1 (Rivero et al., 1999). 

Surprisingly, RacH was apparently localized in the inner membranes even though RacH has a 

prenylation motif. It is known that the CAAX motif is not the only factor that is responsible 

for the plasma membrane anchoring of small GTPases. The CAAX motif alone targets the 

protein specifically to the endomembranes like ER, Golgi and to the perinuclear region 

(Edwin Choy, 1999) where they are proteolyzed and methylated. Ras proteins require a 

second signal for transport from the endomembrane to the plasma membrane. For N-ras and 

H-ras, this signal consists of one or two cysteines upstream of the CAAX motif in the 

hypervariable region that are modified by palmitic acid. In the case of K-ras, the second signal 

is a polybasic region adjacent to the CAAX motif (Hancock et al., 1991). Mammalian RhoB 

is belived to be palmitoylated (Adamson, 1992) and other members of Rho family have 

polybasic regions upstream to the CAAX motifs that drive the protein to the plasma 

membrane.  
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The requirement for engaging transport pathways to the plasma membrane other than that 

offered by binding cytosolic RhoGDI is not established (Michaelson et al., 2001). A role for 

RhoGDI in the localization of RacG or RacH, however, can be excluded, because neither of 

both proteins interacts with RhoGDI (Rivero et al., 2002) In this study we analysed the 

importance of the CAAX motif and the second signal for the targetting of the GTPase. To 

investigate the importance of CAAX motif, we analysed a mutant of RacH which has a 

mutation at its CAAX motif residue cysteine 197 to serine. The localization of this construct 

was purely cytosolic, which is similar to what has been described in a an equivalent RhoA 

mutant (Patricia  A. Solski, 2002). This shows that the CAAX motif is necessary to localize 

the RacH to membranes. RacG possesses both signals, a CAAX motif and a hypervariable 

polybasic region. This makes the protein to localise in the plasma membrane. By contrast 

RacH localised at inner membrane compartments. In RacH the polybasic amino acid stretch 

has numerous acidic amino acid residues that may lower the neat positive charge of this 

region, impairing interaction of RacH with the plasma membrane. This hypothesis could be 

addressed by making chimeric constructs of both RacG and RacH by exchanging the C-

terminal region. We observed that the RacH chimeric construct, although still present at 

endomembranes (but no longer at the nuclear envelope), could be detected to a large extent at 

the plasma membrane. By contrast, the RacG chimeric construct was not targeted to the 

plasma membrane, but remained at endomembranes, although not clearly at the nuclear 

envelope or Golgi apparatus. This is in line with the results obtained with human Cdc42 and 

TC10 (a Cdc42-related GTPase). Cdc42 is localised to the nuclear envelop, ER, Golgi and to 

a very less extent to the plasma membrane (Michaelson et al., 2001). TC10 possesses both 

signals for plasma membrane localization, whereas Cdc42 has some acidic amino acids at its 

hypervariable region. A chimeric construct in which the C-terminal 20 amino acids were 

replaced by the homologous region of pCdc42hs localised in endomembranes, similar to 

Cdc42 (Michaelson et al., 2001). This confirms that plasma membrane localization signal of 

RacG is in the second hypervariable region. However, other requirements are responsible for 

enrichment of RacH, but not RacG-chimera, at particular membrane compartments. 

 

The chimeric constructs described in this work offer a good opportunity to investigate to 

which extent the targeting of the GTPase to a particular region or compartment determines its 

biological functions. Targetting of RacH to the plasma membrane had a profound effect on 

the F-actin polymerization response and chemotactic behaviour of the cell, indicating that 

RacH is able to interact with effectors and/or regulatory elements of other Rho GTPases, but 
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is prevented of doing so by retaining the protein at inner membrane compartments. 

Conversely, accumulation of RacG-chimera at internal membranes impairs phagocytosis, 

rather than stimulate it, as overexpression of the plasma membrane targetted RacG does. 

Taken together all these observations indicate that proper localization of the protein is 

necessary for the Rho GTPase to elicit its functions. 
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                                                                                                                            5. Summary 
__________________________________________________ 

 
Rho GTPases act as molecular switches, cycling between an active GTP-bound state and an 

inactive GDP-bound state. Rho GTPases regulate a broad diversity of processes that include 

most actin-dependent processes such as membrane trafficking (including phagocytosis, 

pinocytosis and exocytosis), motility, adhesion and morphogenesis. The regulatory roles of 

Rho GTPases, however, are not restricted to the actin cytoskeleton but extend also to 

microtubule organization, cytokinesis, gene expression, cell cycle progression, apoptosis and 

tumorigenesis. In the present study, we report the characterization of two Rho-related proteins 

RacG and RacH, from Dictyostelium discoideum. Both proteins are expressed constitutively 

through the developmental cycle of Dictyostelium both at the transcript as well as the protein 

level.  

 

To investigate the role of these two GTPases in cytoskeleton-dependent processes, we used 

overexpressed green fluorescent protein (GFP)-tagged versions of RacG and RacH. This 
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included the non-mutated (wild type, WT) as well as constitutively active (V12) and dominant 

negative (N17) forms of both GTPases. We studied the subcellular distribution of these GFP 

fusion proteins using confocal laser scanning microscopy. GFP-RacG accumulates at the cell 

cortex where it partially colocalizes with filamentous actin. GFP-RacH associates with inner 

membranous compartments like the nuclear envelope, the Golgi apparatus and the 

endoplasmic reticulum. RacG enriches at the rim of the early phagosome, where it colocalizes 

with actin. RacG appears to regulate actin polymerization at the cell periphery, as indicated by 

alterations in morphology (abundant filopods), total F-actin content, F-actin polymerization 

response upon stimulation with cAMP and chemotactic response observed in the 

overexpressors. A participation of RacG and RacH in endocytosis was supported by 

quantitative studies. A role of RacG in the regulation of cytokinesis was ruled out. By 

contrast, cells overexpressing RacH-WT and its mutated variants showed a moderate 

cytokinesis defect that was obvious only when cells grew in suspension.  

 

We investigated the requirements for the differential subcellular localization of RacG and 

RacH. Mutation of the prenylation motif CAAX cysteine residue to serine (RacH/C197S) 

makes the protein purely cytosolic, showing that the CAAX motif is essential for association 

to inner membranes. Analysis of C-terminal part of RacH revealed the presence of numerous 

acidic residues in the polybasic stretch that usually acts as a second signal for targeting to the 

plasma membrane. Results with chimeric constructs where the C-terminal part of RacG and 

RacH were exchanged indicate that the polybasic stretch close to the prenylation motif is 

important for targeting, but is not the only determinant of the subcellular localization. To 

address how the exchange of the C-terminal region, and therefore the subcellular localization 

of the GTPase, has an impact on cellular functions, we studied processes like endocytosis, 

actin polymerization, motility and chemotaxis in cells overexpressing the chimeric mutants. 

Our results indicate that proper localization is important for the protein to elicit their 

biological functions. 

 

We conclude that RacG and RacH are key regulators of important cellular processes 

dependent on rearrangements of the actin cytoskeleton. While they share roles between them 

as well as with other Rho GTPases, they also regulate specific processes. Specificity is given 

in part by the subcellular localization of the GTPase, as indicated by the results with the 

chimeric mutants. 
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                                                                              5. Zusammenfassung 
__________________________________________________ 

 

 
Rho GTPasen sind Enzyme, die an GTP gebunden einen aktiven Zustand, an GDP gebunden 

einen inaktiven Zustand annehmen können und somit als �molekulare Schalter� dienen. Rho 

GTPasen regulieren eine Vielzahl von biologischen Prozessen, insbesondere Aktin abhängige 

Prozesse wie Membrantransport (Phagozytose, Pinozytose und Exozytose), Motilität, Zell-

Adhäsion und Morphogenese. Die regulatorische Wirkung der Rho GTPasen beschränkt sich 

nicht nur auf das Aktin Zytoskelett, sondern ist auch in die Organisation der Mikrotubuli, die 

Zytokinese, die Genexpression, die Weiterführung des Zell-Zyklus, die Apoptose und die 

Tumorigenese involviert. Die vorliegende Arbeit beschäftigt sich mit zwei Rho verwandten 

Proteinen, RacG und RacH, aus Dictyostelium discoideum. Beide Proteine werden 

konstitutiv, auf Transkriptions- und Proteinebene, während des gesamten 

Entwicklungszyklus von Dictyostelium exprimiert.  
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Um die Rolle der beiden GTPasen in zytoskelettabhängigen Prozessen zu untersuchen, 

wurden beide als GFP-Fusionsproteine überexprimiert, sowie die konstitutiv aktiven (V12) 

und dominant-negativen (N17) Formen der beiden GTPasen. Die subzelluläre Verteilung 

dieser Proteine wurde mit Hilfe eines konfokalen Lasermikroskops untersucht. GFP-RacG 

akkumuliert am Zellkortex, wo es teilweise mit F-Aktin kolokalisiert ist. GFP-RacH ist mit 

inneren Membranen wie der Kernmembran, dem Golgiapparat und dem Endoplasmatischen 

Reticulum assoziiert. RacG befindet sich angereichert am Rand von frühen Phagosomen, wo 

es mit Aktin kolokalisiert ist. RacG scheint die Aktin Polymerisation an der Zellperipherie zu 

regulieren wie Änderungen der Zellmorphologie (Zunahme von Filopodien), totale F-Aktin 

Menge, F-Aktin Polymerisation nach cAMP Stimulation und chemotaktische Antwort 

zeigen. Eine Rolle von RacG und RacH bei dem Prozess der Endozytose wurde durch 

weitere quantitative Experimente unterstützt. Eine Rolle bei der Regulation der Zytokinese 

durch RacG konnte ausgeschlossen werden. Im Gegensatz dazu zeigten Zellen, die RacH-

WT oder seine mutierten Varianten überexprimierten, einen leichten Defekt in der 

Zytokinese, der nur sichtbar war, wenn die Zellen in Suspension wuchsen. 

 

Des weiteren haben wir die Voraussetzungen für die unterschiedliche subzelluläre 

Lokalisation von RacG und RacH untersucht. Mutationen des Prenylierungs-Motivs CAAX 

von Cystein zu Serin (RacHC197S) führen zu einer ausschließlich zytosolischen Verteilung 

des Proteins, was deutlich macht, dass das CAAX Motiv essentiell für die Assoziation an die 

inneren Membranen ist Die Untersuchung des C-terminalen Teils von RacH zeigt eine Reihe 

von sauren Aminosäuren in dem überwiegend basischen Aminosäurenstrang, der 

normalerweise als zweites Signal für die Assoziation an die Plasmamembran dient. 

Experimente mit Protein-Chimären, bei denen die C-terminalen Teile von RacG und RacH 

ausgetauscht wurden, zeigen, dass der überwiegend basische Aminosäurenstrang in der Nähe 

des Prenylierungmotivs wichtig für die Hinführung an Membranen, aber nicht ausreichend 

für die endgültige subzelluläre Lokalisation ist. . Um den Einfluss des Austauschs des C-

terminalen Teils, d.h. die subzelluläre Verteilung der GTPasen, auf zelluläre Funktionen zu 

untersuchen, wurden Endozytose, Aktin Polymerisation, Motilität und Chemotaxis in Zellen, 

die Chimärenproteine überexprimieren, untersucht. Diese Ergebnisse zeigen, dass eine 

genaue Lokalisation eines Proteins wichtig für die Gewinnung seiner biologischen Funktion 

ist. 
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Unsere Resultate zeigen, dass RacG und RacH Schlüsselfaktoren in der Regulation von 

wichtigen zellulären Prozessen, die insbesondere der Umordnung des Aktin Cytoskeletts 

dienen, sind. Sie teilen diese Fähigkeit untereinander wie auch mit anderen Rho GTPasen, 

regulieren aber spezifische Prozesse. Die Spezifität ist teilweise durch die subzelluläre 

Lokalisation der GTPasen gegeben, wie die Ergebnisse der Protein-Chimären zeigen. 
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