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ABSTRACT 

In order to meet the global food demand in a sustainable way, agricultural crop production must 

diminish its environmental footprint. Increasing cropping efficiency based on site-specific management 

practices can help to reduce the use of resources by utilizing the right management at the right place 

and at the right time. For an operational success, accurate data about the crop’s status is needed. 

Today, a great variety of remote sensing systems exist, which enables to capture spectral or 3D 

information. Within the last few years, unmanned aerial vehicles (UAVs) have been widely adapted as 

flexible remote sensing platforms. In combination with appropriate sensors they become powerful 

sensing systems. Recently lightweight hyperspectral snapshot cameras have been developed that can 

be carried by UAVs and allow spectral information to be captured as two dimensional images.  

This thesis develops a new approach to capture information about agricultural crops by utilizing 

advances in the field of robotics, sensor technology, computer vision and photogrammetry: 

Hyperspectral digital surface models (HS DSMs) generated with UAV snapshot cameras are a 

representation of a surface in 3D space linked with hyperspectral information emitted and reflected 

by the objects covered by that surface. The overall research aim of this thesis is to evaluate if HS DSMs 

are suited for supporting a site-specific crop management. Based on six research studies, three 

research objectives are discussed for this evaluation.  

The first three studies focus on methodological aspects in the context of the generation of HS DSMs. 

First, the method to generate HS DSMs from UAV snapshot camera data is introduced, which is based 

on the computer vision technique Structure from Motion. Additionally, a method is introduced to trace 

the properties of each individual pixel within an HS DSM. Based on this method, the angular properties 

of the spectral data within HS DSMs are investigated and differences to data from field spectroscopy 

are highlighted. Additionally, a method to investigate the anisotropy of canopies based on an UAV 

goniometer is introduced. Using this technique the anisotropy of a wheat canopy is characterized. The 

other three studies focus on potential applications of HS DSMs, but use data that is not captured by 

hyperspectral snapshot cameras. HS DSMs contain spectral and 3D spatial information. To investigate 

the potential of a combination of spectral data and plant height for the estimation of biomass of barley, 

an RGB camera flown on an UAV and a terrestrial laser scanner were used to derive plant height. This 

data was combined with vegetation indices derived from hyperspectral data acquired by a field-

spectrometer. In both studies, plant height was found to be the best predictor for dry green biomass, 

while a combination of spectral and plant height data could slightly increase the prediction of fresh 

biomass. The last study introduces a new method to use large multi-temporal spectral libraries to 

improve the prediction of biomass of rice within individual and across multiple growth stages. The 

results show that the optimal spectral bands for the prediction differ between the growth stages. Most 
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data within this thesis was acquired at a plant experimental-plot experiment in Klein-Altendorf, 

Germany, with six different barley varieties and two different fertilizer treatments in the growing 

seasons of 2013 and 2014. In total, 22 measurement campaigns were carried out in the context of this 

thesis. These campaigns also include four flights with the hyperspectral snapshot camera Cubert UHD 

185-Firefly (UHD).  

To address the overall research aim of this thesis, firstly the influences of environmental effects, the 

sensing system and data processing of the spectral data within HS DSMs are discussed. Secondly, the 

comparability of HS DSMs to data from other remote sensing methods is investigated and thirdly their 

potential to support site-specific crop management is evaluated. The results show that angular effects 

resulting from the measurement geometry of the system in combination with the surface anisotropy 

exert a major influence on the spectral data. Within the data acquired by the UHD, angular effects 

were approximated to account for a variation of up to 25%. Furthermore, the current measurement 

protocol was found to be prone to errors during the calibration procedure and cannot compensate for 

varying illumination conditions. Additionally, the comparison of the hyperspectral snapshot camera 

and field-spectrometry data revealed discrepancies due to the different reflectance quantities 

measured by the two systems. Similarly, the 3D data was also found to be influenced by the 

measurement conditions. Parameters such as image overlap and camera configuration influenced the 

generation of 3D information. A comparison with data from a terrestrial laser scanning system revealed 

that the different measurement techniques also influenced the retrieved 3D information. In addition, 

the different processing workflows had an impact on the estimation of the plant height.  

Despite these challenges, great potential of HS DSMs acquired with hyperspectral snapshot cameras 

was found for practical applications. The combination of UAVs and the UHD allowed data to be 

captured at a high spatial, spectral and temporal resolution. The spatial resolution allowed detection 

of small-scale heterogeneities within the plant population. Additionally, with the spectral and 3D 

information contained in HS DSMs, plant parameters such as chlorophyll, biomass and plant height 

could be estimated within individual, and across different growing stages. The techniques developed 

in this thesis therefore offer a significant contribution towards increasing cropping efficiency through 

the support of site-specific management. 
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ZUSAMMENFASSUNG 

Für eine dauerhafte und nachhaltige Deckung des Nahrungsmittelbedarfs der Welt muss der 

ökologische Fußabdruck der Landwirtschaft verkleinert werden. In diesem Zusammenhang kann ein 

teilschlagspezifisches Management der Ackerfläche, welches Bewirtschaftungsmaßnahmen an die 

aktuelle Beschaffenheit des Feldes anpasst, helfen, den Einsatz von Ressourcen zu reduzieren. Dafür 

werden Informationen über den aktuellen Zustand der Pflanzen benötigt. Verschiedene 

Fernerkundungssensoren können Informationen über die spektrale Reflexion oder die 3D Geometrie 

von Objekten erfassen. Außerdem werden seit einigen Jahren zunehmend unbemannte Luftfahrzeuge 

(engl.: Unmanned aerial vehicles, UAVs) als Fernerkundungsplattformen eingesetzt. In Kombination 

mit entsprechenden Sensoren stellen diese leistungsfähige Fernerkundungssysteme dar. Ein Beispiel 

für diese Sensoren sind neuartige leichtgewichtige hyperspektrale Snapshotkameras, welche von UAVs 

transportiert werden können und Spektralinformationen als zweidimensionales Bild erfassen.  

Diese Dissertation stellt einen neuen Ansatz vor, der aktuelle Entwicklungen aus den Bereichen der 

Robotik, Sensortechnologie, visuellen Bildverarbeitung und Photogrammmetrie kombiniert, um 

Informationen über Agrarfrüchte zu erfassen: Hyperspektrale digitale Höhenmodelle (engl.: 

Hyperspectral digital surface models, HS DSMs) sind eine dreidimensionale Repräsentation einer 

Oberfläche, die mit Informationen über ihre spektralen Reflexions- und Emissionseigenschaften 

verknüpft ist. Grundlage dieser HS DSMs ist die Datenerfassung mit Hilfe von UAVs und 

hyperspektralen Snapshotkameras. Das Ziel dieser Dissertation ist eine Bewertung, ob HS DSMs ein 

teilschlagspezifisches Management unterstützen können. Grundlage für diese Bewertung sind drei 

Diskussionspunkte, welche auf Basis von sechs Forschungsstudien erörtert werden.  

Die ersten drei Studien beschäftigen sich mit methodischen Aspekten im Zusammenhang mit der 

Generierung von HS DSMs. Darin wird zuerst die Methodik zur Erfassung von HS DSMs vorgestellt, 

welche auf dem Structure from Motion Verfahren aus der visuellen Bildverarbeitung beruht. Weiterhin 

wird eine Methodik eingeführt, die es erlaubt, Eigenschaften von einzelnen Pixels innerhalb des HS 

DSMs nachzuvollziehen. Basierend auf dieser Methode werden die speziellen Eigenschaften der 

spektralen Informationen innerhalb des HS DSMs untersucht und Unterschiede zu 

Feldspektrometerdaten herausgestellt. Zusätzlich werden die Daten eines UAV Goniometers 

hinsichtlich der angularen Reflexionseigenschaften eines Weizenbestandes analysiert. Die weiteren 

drei Studien betrachten das Potential der in HS DSMs enthaltenen Spektral- und 3D-Daten, verwenden 

jedoch Daten anderer Sensorsysteme. Der Fokus der Studien liegt auf einer Abschätzung des Potentials 

für die Erfassung von Biomasse. Dazu wird mit Hilfe von einem UAV-getragenen RGB Kamerasystem 

und einem terrestrischen Laserscanner die Pflanzenhöhe eines Gerstenbestandes abgeleitet und 

jeweils mit Spektraldaten eines Feldspektrometers kombiniert. Die Untersuchungen zeigen, dass die 
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besten Schätzungen des Trockengewichtes der Biomasse allein mit Hilfe der Pflanzenhöhe erzielt 

werden können. Die Schätzungen des Feuchtgewichts der Biomasse können jedoch durch die 

Kombination mit Vegetationsindizes, abgeleitet aus den Spektraldaten, leicht verbessert werden. Die 

letzte Studie führt eine Methode ein, wie mit Hilfe von multi-temporalen Spektralbibliotheken und an 

die Wachstumsperiode angepassten Vegetationsindizes die Schätzung von Biomasse in Reis verbessert 

werden kann. Mit Ausnahme dieser letzten Studie wurden die verwendeten Daten in einem 

Züchtungsexperiment auf dem Campus Klein-Altendorf in der Nähe von Bonn während den 

Wachstumsperioden 2013 und 2014 erfasst. Insgesamt werden in dieser Dissertation Daten von 22 

Messkampagnen verwendet. Darin eingeschlossen sind vier Flüge mit der hyperspektralen 

Snapshotkamera Cubert UHD 185-Firefly (UHD).  

Bei der abschließenden Bewertung des Potentials von HS DSMs werden drei Aspekte betrachtet: 

Erstens wird der Einfluss der natürlichen Bedingungen, des Sensorsystems und des Messprotokolls 

sowie der Datenverarbeitung auf die Spektralinformation innerhalb von HS DSMs diskutiert. Zweites 

wird die Vergleichbarkeit von HS DSMs mit Daten von anderen Fernerkundungssystemen untersucht. 

Drittens wird das Potential der HS DSMs für ein teilschlagspezifisches Management abgeschätzt. Dabei 

zeigt sich, dass winkelabhängige Effekte, hervorgerufen durch die Messgeometrie und die angularen 

Reflexionseigenschaften des Pflanzenbestandes, das erfasste spektrale Signal in einer Größenordnung 

von bis zu 25% beeinflussen. Darüber hinaus ist das in den Studien verwendete Messprotokoll anfällig 

für Fehler während der Kalibrierung. Außerdem können Beleuchtungsunterschiede während den 

Messungen nicht korrigiert werden. Zusätzlich zeigt der Vergleich von Daten der UHD mit denen eines 

Feldspektrometers, dass die unterschiedlichen Sichtbereiche der Sensoren einen Einfluss auf die 

Ergebnisse haben. Die 3D Daten werden durch Aufnahmefaktoren wie zum Bespiel Bildüberlappung 

und die Bildauflösung beeinflusst. Durch einen Vergleich der durch Structure from Motion erhaltenen 

Daten mit denen eines terrestrischen Laserscanners werden zusätzlich systematische Unterschiede 

aufgrund der unterschiedlichen Messprinzipien herausgestellt. Daneben haben auch die 

unterschiedlichen Datenverarbeitungsverfahren einen Einfluss auf die Ableitung der Pflanzenhöhe.  

Auch wenn, wie oben beschrieben, noch Forschungsbedarf besteht, haben HS DSMs, generiert mit 

hyperspektralen Snapshotkameras, ein großes Potential für die praktische Anwendung. Die 

Kombination aus UAV und UHD erlaubt es, Daten in einer hohen räumlichen, spektralen und zeitlichen 

Auflösung zu erfassen. Die räumliche Auflösung erlaubt es kleinflächige Heterogenität innerhalb eines 

Bestandes zu erkennen. Die in HS DSMs enthaltenen spektralen und 3D Informationen können genutzt 

werden, um Pflanzenparameter wie Chlorophyllgehalt, Biomasse und Pflanzenhöhe für einzelne 

Termine und über die Wachstumsperiode hinweg abzuleiten und so Aussagen über den Zustand der 

Pflanzen zu treffen. Daher sind die Erkenntnisse dieser Dissertation ein wichtiger Beitrag auf dem Weg 

zu einem reduzierten Einsatz von Ressourcen innerhalb der Nahrungsmittelproduktion.  
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Figure 3.5 Histogram of the dark current values for the entire image cube between 466 (band 5) and 
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Figure 3.8 Comparison of spectra derived from the UHD (solid), an ASD (dashed) and their difference 
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spectrum of the adjacent meadow grass is shown in light green. ................................................ 51 

Figure 3.9 Pixel distance in x (A) and y (B) direction from the image center of the original images. An 
absolute value of 25 correspond to pixels at the image edge, 1 to pixels closest to the image center. 
Radiometric precision (C) of the spectral information at 466 nm (band 5) and image overlap (D) of 
the scene. The dots represent the image capturing positions. ..................................................... 52 

Figure 3.10 Map of the crop surface height. The spectrally measured non-invasive plot parts are marked 
in black with their plot number. Green points represent the ground control points while red ones 
represent the extraction points for the interpolation of the bare surface (left). Scatterplot of the 
averaged crop surface height for 26 plots compared to the manual ruler measurements of the 
marked 26 experimental plots (right). ......................................................................................... 53 

Figure 3.11 3D visualization of the HS DSM with the BGI2 calculated from the hyperspectral data 
clipped to the extent of the experimental plots. The spectral sample areas are marked with black 
rectangles (left). The scatterplot shows the averaged BGI2 values per plot and the invasive 
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Figure 4.1 RGB orthomosaic of the field experiment at 70 days after seeding. The black squares 
represent the non-destructive measurement parts while the white squares represent the 
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Figure 4.2 Schematic drawing of the concept of the specific field of view (SFOV) of an area of interest 
(AOI) within a hyperspectral digital surface model generated from snapshot cameras. Each pixel 
within an image is recorded with different angular properties. The same surface area may be 
captured by several pixels with different angular properties (as denoted by the zenith reflectance 
angles  𝜃𝑟 𝑎𝑛𝑑  𝜃𝑟′ for one pixel. For clarity, the azimuth angles are omitted). The SFOV describes 
the pixels and their angular properties which are used to characterize an AOI (excerpt top right). 
Additionally, the field of views (FOVs) of two images and an instantaneous field of view (IFOV) of 
one pixel is shown. ..................................................................................................................... 75 

Figure 4.3 Plant height extraction from the hyperspectral digital surface model (HS DSM). A digital 
terrain model (DTM) is created and subtracted from the digital surface model. The result is a 
canopy height model (CHM). ...................................................................................................... 77 

Figure 4.4 Ratio of the reflectance retrieved from the HS DSM and the FS3 averaged over all plots for 
DAS 56, 70 and 84 (solid line) with standard deviation (ribbon). Additionally, the ratio of plot 52 
(upper black dotted line) and plot 20 (lower black dotted line) at DAS 56 is shown. .................... 78 

Figure 4.5 RGB image of plot 20 and 52 at DAS 56. The black frame marks the area measured within 
the HS DSM. The blue circles exemplary show six measurement positions of the FS3 within one 
plot. ............................................................................................................................................ 79 

Figure 4.6 Comparison of the 25° FOV of the FS3 (gray) and 20° of the UHD (orange) and their footprint 
from the same height (left and center). For plot 4 at DAS 70 the specific field of view (SFOV) within 
the hyperspectral digital surface is shown (right). The plot is characterizedi' by spectral information 
from two images (image A and B). The colors indicate how many pixels are taken from a particular 
position within the images. Additionally, the resulting along track SFOV is shown in light blue (left).
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Figure 4.7 Relative difference between blending mode ‘average’ and ‘disabled’ of spectral data at 
670 nm (left), and pixel position as distance from the image center in the original images in the y- 
(center) and x-direction (right). ................................................................................................... 82 

Figure 4.8 Measurements of a Zenith Light reference panel under clear sky conditions (reference), with 
a person behind the panel in the principle plane (person pp.), person perpendicular to the principle 
plane (person), with a UAV above the panel held by a person within the principle plane (UAV pp.) 
and a UAV held from a person perpendicular to the principle plane (UAV). Additionally, a 
measurement under cloudy conditions with a UAV held by a person within the principle plane 
relative to a measurement under cloudy conditions without obstacles (cloudy pp.). ................... 84 

Figure 4.9 Maps of the red-edge inflection point (REIP) derived from the hyperspectral digital surface 
model of DAS 56, 70, 84 and 96. Please note that the data for DAS 56 is biased by the calibration 
under cloudy conditions (c.f. section 3.1.4). ................................................................................ 86 

Figure 4.10 Evolution of the canopy surface model for DAS 70: A) Map of image overlap, B) digital 
surface model (DSM), C) digital terrain model (DTM) interpolated from the DTM extraction points, 
and D) canopy height model resulting from the substraction of DTM from the DSM. The DSM and 
DTM show the ‘bowl-effect’ outside the covered ground control points. .................................... 88 

Figure 4.11 Canopy height models of DAS 56, 70, 84 and 96. For DAS 70 to 96 some areas were excluded 
due to missing data. Remotely measured parts of the plots are marked with the number of the 
plot. Additionally, digital terrain model (DTM) extraction and ground control points are indicated.
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Figure 4.12 Scatterplot of the ruler and HS DSM derived plant heights for the individual four 
measurement dates (red, yellow, blue, azure), and DAS 70 without plot 46 – 54 (green) and all 
dates together (pink). The one to one line is shown in gray. ........................................................ 92 

file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387211
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387211
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387211
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387212
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387212
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387212
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387213
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387218
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387218
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387218
file:///C:/Users/aasen/Dropbox/work/projekte/2015%20Dissertation/Dissertation%20Aasen_160507.docx%23_Toc450387218


XIV 

Figure 5.1 Graphical user interface of the mAngle software with input fields for the desired waypoint 
pattern. By setting radius, number of desired waypoints as well as starting angle and other 
parameters, a distinct goniometric flight pattern can be generated. A draft of the waypoint pattern 
is visualized in the right box of the program window. ............................................................... 104 

Figure 5.2 Wheat (Triticum aestivum) at the study site Merzenhausen, Germany, at the time of the 
multiangular flights, 18 June 2013. Ears were fully developed but still green. ........................... 105 

Figure 5.3 Example Red-Green-Blue (RGB) images with tilt angles of 20°, 66° and 90°. These images 
were acquired at the Merzenhausen site at approximately 13:30 following a multiangular flight 
path identical to the spectrometer flights. The Field-Of-View (FOV) of the RGB camera is 73.7° × 
53.1° (compared to the 12° FOV of the airborne spectrometer) and allows observing multiangular 
effects within a single image–the bright hotspot with the shadow of the unmanned aerial vehicle 
in the center, located in the lower left corner of the 90° image is an example........................... 106 

Figure 5.4 Reflectance of wheat at 480 nm measured at all 25 waypoints shown as a circular graph, or 
polar plot. Each “slice” represents a heading while each ring represents a sensor tilt angle. Spectral 
reflectance magnitude is color coded from low values of light blue, to high values in bright red. The 
angular position of the sun is depicted by the sun-symbol. In this figure no interpolation between 
waypoints is performed. ........................................................................................................... 108 

Figure 5.5 Camera orientation: Heading (azimuth) of the spectral measurements expressed in angular 
degrees from north. To assume a view angle of 0°, the UAV will hover north of the centeroid and 
aim the spectrometer at 180°. Tilt: 0° = horizontal and 90° = nadir view. .................................. 109 

Figure 5.6 The spectrometer of the unmanned aerial vehicle goniometer was triggered three times at 
each waypoint. This figure shows the overall variation of the three spectra measured at each 
waypoint as average for the MERZ1 dataset. ............................................................................ 110 

Figure 5.7 To present the angular influence at different waypoints on the full spectrum the normalized 
nadir anisotropy factor (ANIF) of 66° tilt for all headings at MERZ1 from 400 to 823 nm is plotted 
as example. By using the ANIF notation spectral deviation of single waypoints is referred to the 
nadir waypoint and thus can be relatively compared. A waypoint with the same spectrum as nadir 
would remain at an ANIF of 1 throughout all wavelengths. The legend on the right represents the 
color of each ANIF curve and depicts their respective heading angle. The azimuth position of the 
sun (155°) is visualized by the sun symbol. ................................................................................ 111 

Figure 5.8 Top: Absolute values for the NDVI, TCARI and REIP compared to the nadir value (center of 
the polar plot) for all waypoints of MERZ1. The range of values is chosen with nadir as center value, 
respectively, for each plot. Figure 5.5 details the angular arrangement depicted here. Bottom: 
Relative differences for NDVI and TCARI compared to the nadir value. ..................................... 113 

Figure 5.9 Reflection of MERZ1 and MERZ2 for 5 wavelengths of interest. The color legend of reflection 
for each horizontal pair was scaled to the occurring reflectance wavelength range. Figure 5.5 
details the angular arrangement depicted here. Waypoint (20°, 225°) is missing in MERZ2 and 
coded in this graphic in grey. .................................................................................................... 114 

Figure 5.10 Comparison of modeled angular reflectance Soil-Canopy-Observation of Photosynthesis 
and the Energy balance (SCOPE) with the unmanned aerial vehicle (UAV) measured values for 
MERZ1. Shown are two exemplary wavelengths, which are scaled to the present range of values.
 ................................................................................................................................................. 115 

Figure 6.1 Instrumental set-up: (A) terrestrial laser scanner Riegl LMS-Z420i; (B) tractor with hydraulic 
platform; (C) ranging pole with reflective cylinder. ................................................................... 131 

Figure 6.2 Workflow for the calibration and validation of the biomass regression models and distinction 
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Figure 6.3 Maps of four plots from the last six and five campaigns of 2013 and 2014, respectively. One 
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Figure 6.7 Scatterplot for one validation data set for the pre-anthesis (green) and for the whole 
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the derived prediction model for tillering, stem elongation and heading (left). The corresponding 
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Figure 9.1 The same plot extracted from different positions within six images (IC1 - IC6) seen at 670 nm 
(A), 798 nm (B) and as NDVI (C). The across-track pixel position is cropped at pixel 35. Additionally, 
the average relative change in reflectance at the two wavelengths and the NDVI along the average 
along-track position of the images is shown (D). The along-track pixel positions are almost parallel 
to the solar principal plane and pixels at lower pixel positions have a more acute angle to the sun. 
Since the sun’s elevation is about 60°, the hotspot is at a zenith angle of about 30°. The along-track 
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 INTRODUCTION 

Global agriculture faces enormous challenges. The world’s population is growing and large parts of it 

are changing their diet to an increased consumption of high-protein and energy-dense food such as 

meat (Pingali, 2007). At the same time, there are approximately 870 million people worldwide who are 

undernourished (FAO, 2012). Thus, global crop production will need to be doubled by 2050 (Tilman et 

al., 2011). While early agricultural revolutions involved the expansion of agricultural land (Pretty and 

Bharucha, 2014), continuing such expansions is a threat to biodiversity (Balmford et al., 2005). 

Moreover, much of the remaining reserves of cultivable cropland is under valuable forests or in 

protected areas (Ramankutty et al., 2002). Besides, most of the increase in total yield of major crops 

such as maize, rice and wheat in the past 40 years has been driven by an intensification of agricultural 

production within the green revolution (Foley et al., 2011; Pingali, 2012). Along with the introduction 

of high yield seeds, this development is largely based on an increasing use of chemical fertilizers and 

pesticides, mechanization and irrigation. As an example, the global nitrogen fertilizer use increased by 

about 600% since 1960 (Matson, 1997) and in 2005, agricultural production accounted for 10 – 12% of 

the total anthropogenic greenhouse gas emissions (Burney et al., 2010). Besides, over the last 50 years 

more than 40% of the increase in food production has come from irrigated areas, which have doubled 

in size (FAO and OAA, 2011) and are the primary users of diverted water in some regions of the world 

(Fereres and Soriano, 2006). Overall, agricultural systems are concurrently degrading land, water, 

biodiversity and climate. In light of the planet’s limited resources and increasing global population, a 

turn is needed towards more sustainable growth in agricultural production while simultaneously 

diminishing its environmental footprint (Foley et al., 2011).  

 Remote sensing in support for site-specific crop management 

One approach towards more sustainable crop production is increasing the cropping efficiency (Foley 

et al., 2011). This can be accomplished by dividing agricultural areas into management zones that 

receive customized management inputs based on crop requirements as they vary in the field, such that 

resources are used in the right place at the right time. Such practices are called site-specific crop 

management (Pinter et al., 2003; Whelan and Taylor, 2013) and are part of precision agriculture (Mulla, 

2013). With current agricultural machinery, such as the Leeb GS (HORSCH Maschinen GmbH, 2016), 

crop treatments can be applied with a spatial precision of about 0.25 m. At the same time farmers can 

control their machinery in near real time with farm information systems such as the Operation Center 

(John Deere GmbH & Co. KG, 2016). However, the operational success of variable applications of 

fertilizer or other management actions requires accurate data to produce maps of crop growth, weeds, 

insect infestations, nutrient and water deficiencies and other crop and soil conditions (Moran et al., 

1997). But also the timeliness of that information is important. Phenomena such as plant diseases are 
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highly dynamic and require short revisit times (Voss et al., 2010). For other applications such as the 

monitoring of phenology, crop vigor or yield a revisit time of 5 to 10 days can be determined as 

appropriate on a local to sub-national scale (Justice and Becker-Reshef, 2007). 

Spectral (Yao et al., 2012) and other remote sensing techniques (Lee et al., 2010) can provide timely 

and accurate information (Atzberger, 2013) about important parameters for agricultural applications 

(Clevers and Jongschaap, 2003). Satellites cover wide areas and as the spatial and spectral resolution 

of satellite imagery has improved, their suitability for precision agricultural applications has increased 

(Mulla, 2013). However, for optical satellites, cloud cover compromises the necessary revisit times. A 

study by Claverie et al. (2012) on the estimation of biomass from Formosat-2 data reported that for 

the study area in southwest France no cloud-free images could be obtained from February 11 to June 

19 in 2008, which is the major growing period of several crops in central Europe (Munzert and Frahm, 

2005). Radar systems could circumvent this problem but are not yet operational for systematic crop 

monitoring purposes (Nelson et al., 2014). Satellite systems are also lagging behind in comparison with 

the spatial precision of current agricultural machinery. Presently, systems such as Sentinel-2 provide 

free spectral data in a spatial resolution of up to 10 m (ESA, 2016). Commercial systems such as 

WorldView-3 provide spectral information with a spatial resolution of about 1.3 m (DigitalGlobe, 2016), 

but their usability is limited by the costs and availability of a scene. Additionally, the spectral resolution 

of most satellite systems is too coarse compared to a suggested bandwidth of less than 10 nm for an 

adequate mapping of agricultural crops (Thenkabail et al., 2012). Current operational airborne systems, 

such as the Airborne Prism EXperiment (APEX), provide data in a high spectral resolution and a spatial 

resolution of 1 – 2 m at their typical flying altitude (Schaepman et al., 2015). However, long turnaround 

times combined with the high volume of data processing and high operational costs, due to the lack of 

cost-effective products from private companies, have limited the use of airborne sensors to research 

activities (Berni et al., 2009).  

Overall, it can be concluded that the demand for timely information (revisit time of 5 – 10 days) in very 

high spatial (~ 0.25 m) and spectral resolution (< 10 nm) in support of more sustainable crop production 

through efficient site-specific crop management cannot be met by current remote sensing solutions. 

However, due to recent technical innovations, remote sensing is in transition and this may be about to 

change.  

 Diversification in remote sensing 

Remote sensing is “the acquisition of physical data of an object without touch or contact”. Since this 

definition was posed by Lintz and Simonett (1976), the field has undergone several phases of transition. 

After an era where aerial photography was mostly used in military applications, Evelyn Pruitt coined 
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the term ‘remote sensing’ in the 1960s in an appreciation of the many forms of imagery that was 

collected (Campbell and Wynne, 2011; Jones and Vaughan, 2010). By the 1990s, satellites designed to 

acquire global coverage to monitor changes in the world’s ecosystem were launched (Mather et al., 

1992). But until the first decade of the 21st century, remote sensing was the work of specialists who 

produced specialized data products for other specialists. With the introduction of tools like Google 

Earth, geospatial data became available for a wider public audience (Campbell and Wynne, 2011). Still, 

this data was mostly generated using specialized instruments attached to platforms such as airplanes 

or satellites, and provided by a few specialists or specialized organizations. Due to the combination of 

developments in the fields of robotics, sensor technology, photogrammetry and computer vision, the 

way how remote sensing data is created is in transition.  

The first important development is coming from advancements in the field of robotics. Unmanned 

Aerial Vehicles (UAVs), also known as ‘Unmanned Aerial Systems’ or ‘Remotely-Piloted Aerial Systems’, 

have infiltrated the field of remote sensing as a new sensing platform (Figure 1.1). While in 2004 the 

Congress of the International Society for Photogrammetry and Remote Sensing had only three UAV 

related papers, the last congress in 2012 held already nine sessions with a total of around 50 papers 

on UAV and remote sensing related papers (Colomina and Molina, 2014). Journals such as Remote 

Sensing (MDPI RS) or Photogrammetric Engineering and Remote Sensing (PE & RS) have published and 

announced issues specifically for or with major contributions on remote sensing with UAVs – of which 

two were also specifically related to vegetation and agricultural crops. This might result from the 

potential of M-class UAVs with a takeoff weight of less than 5 kg (for a classification of UAVs please 

refer to Eisenbeiß (2009). In the course of this thesis the term UAV will implicitly refer to UAVs of the 

M-class). These UAVs are rather low-cost platforms and operationally flexible (Berni et al., 2009), which 

makes them suitable for a number of applications including precision farming (for a comprehensive 

overview please refer to Colomina and Molina, 2014; Pajares, 2015; Salamí et al., 2014). Additionally, 

they can fly slowly at low altitudes and are able to acquire spatial information in high resolution 

(Pajares, 2015). Together with specialized sensors, they are becoming powerful sensing systems.  
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Figure 1.1 Number of publications on remote sensing in combination with UAV1 or SfM and computer 
vision2 in the Web of Science. 

The second important development currently taking place is in the field of sensor technologies. Remote 

sensing systems are becoming available for a broader range of use and to a wider audience. Active 

systems such as laser scanners can be used to create dense point clouds with millions of points in a 

very short time (Vosselman and Maas, 2011). Airborne laser scanning systems have been applied since 

the 1970s (Lillesand et al., 2008). Within the last 20 years also ground based systems were introduced. 

These have been rapidly developed to achieve higher ranges and measurement rates and more and 

more systems appear on the market. Additionally, recently these systems are accompanied by low cost 

and light weight systems, which are potentially accessible to more users (Large and Heritage, 2009; 

Tilly, 2015) and are suitable for new applications (e.g. on UAVs, see Wallace et al., 2012).  

Passive systems such as spectral radiometers measure the intensity of radiometric radiation within a 

defined spectral range (Jones and Vaughan, 2010). Since Goetz (1975) described the first portable 

radiometer to be applied in the field, spectral sensing systems have continued to shrink in size and 

weight. With the development of sensors like the Mini-MCA (TETRACAM Inc, 2015) and the Headwall 

Micro-Hyperspec (Headwall Photonics Inc, 2015) these systems are now suitable for mounting on UAVs 

(Berni et al., 2009; Kelcey and Lucieer, 2012; Zarco-Tejada et al., 2012). Within the last three years, a 

great variety of spectral sensing systems for UAVs have become available and have been applied to 

remote sensing. These systems can be distinguished by the spatial dimensionality of the data they 

record. While whisk- and pushbroom systems record individual pixels or image lines, hyperspectral 

snapshot cameras (HSCs) record hyperspectral data in two spatial dimensions within a single 

integration period (Hagen et al., 2012). This brings a significant advantage: similar to common RGB 

cameras, their 2D images contain information about the shape and position of the objects within their 

                                                             
1 Web of Science search on “TS=("remote sensing") and TS=("UAV*" or "UAS*" or "RPAS*" or "Remotely-Piloted Aerial 

System*" or "Unmanned Aerial System*" or "Unmanned Aerial Vehicle*")”, 2016-04-18 
2 Web of Science search on “TS=("computer vision" or "SfM" or "structure from motion") and TS=("remote sensing")”, 2016-

04-18 
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field of view (FOV). Recently, these systems have been miniaturized and systems such as the UHD-185 

Firefly (UHD; Cubert GmbH, 2016) can now be flown onboard UAVs.  

The third important development comes from the coalescence of the fields of photogrammetry and 

computer vision. With photogrammetric algorithms overlapping 2D images can be aligned and the 3D 

geometry of an object can be reconstructed by using the mathematical model of central projection 

imaging (Luhmann et al., 2014). Particularly important for UAV remote sensing was the development 

of the Structure from Motion (SfM) technique within the field of computer vision and its combination 

with digital photogrammetry (Colomina and Molina, 2014; Eltner and Schneider, 2015). Advances of 

the latter in image matching (Gruen, 2012), orientation (Remondino et al., 2012) and the process of 

dense 3D point cloud generation allow the reconstruction of surfaces in very high resolution (Haala, 

2013). Several implementations of these algorithms exist, some of them with the ability to exploit 

today’s computing powers through parallel processing on multi-core central processing and graphical 

processing units (Remondino et al., 2014). These developments have fundamentally changed the 

photogrammetric recording process. Together with software tools with simple interfaces, they allow 

even non-experts to apply these methods (Luhmann et al., 2014). Consequently, these methods are 

increasingly used by the remote sensing community (Figure 1.1). 

In summary, the combination of these developments have opened up the way for a new phase in 

remote sensing, where more and more sensors become available and a wide range of users have the 

ability to collect and generate data based on their specific needs. This diversification of sensing systems 

and methods also opens up new opportunities for precision agriculture applications. However, spectral 

remote sensing of vegetation is not a trivial task, as will be seen in the next section.  

 Complexity of spectral remote sensing of vegetation  

Natural factors such as atmospheric and illumination conditions (Damm et al., 2015; Ishihara et al., 

2015; Rasmussen et al., 2016) and topographic effects (Richter and Schläpfer, 2002) influence the 

remote sensing signal. Additionally, natural properties of the surface such as its anisotropy may affect 

the signal (Schläpfer et al., 2015; Weyermann et al., 2014). In remote sensing, errors associated with 

data acquisition, processing, analysis, conversion, and final product presentation can have a significant 

impact on the confidence of the decisions made using the data, since they accumulate during the 

processing steps (Lunetta et al., 1991). Therefore, assessing the quality of the data and accuracy of its 

analysis is crucial to understanding the reliability of the information. 
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The literature on the assessment of the accuracy of data analysis techniques is comprehensive3. 

Although subject to discussion (Foody, 2002; Pontius and Millones, 2011), the assessment of the 

quality of classifications of remotely sensed data has been well established for decades (e.g. Congalton, 

1991). Additionally, many articles have been published on assessing the accuracy of quantitative 

retrieval methods to estimate specific plant parameters such as pigment content (Ustin et al., 2009), 

biomass, leaf area index (LAI; Hansen and Schjoerring, 2003) and other plant traits (Homolová et al., 

2013). Increasingly, state-of-the-art machine learning methods such as Gaussian Processes are being 

used in remote sensing applications and provide uncertainty measures inherently (Verrelst et al., 

2012).  

In comparison, the literature on the assessment of the quality of the data acquisition and processing 

of raw data from remote sensing sensors is rather limited4 and often sensor-specific, although 

undertaken in great detail by the involved researchers. During the acquisition process the sensing 

system, as well as the applied measurement protocol, influence the data. Thus, comprehensive 

calibration and validation procedures are continuously carried out to characterize the performance of 

established satellite (e.g. EO-1 Hyperion: Datt et al., 2003) and airborne (e.g. AVIRIS: Green et al., 1998; 

APEX: Schaepman et al., 2015) sensing systems. These procedures are complex, as seen in Schaepman 

et al. (2015), where the results of 10 individual validation studies are summarized to fully describe the 

specifications and corresponding performances for just the APEX sensor. This effort is needed since 

most users expect the data to be in standardized reflectance quantities. But standardization of spectral 

remote sensing data is a very difficult task due to the existence of different types of reflectance 

quantities (c.f. Subsection 2.1.2) and the interaction of the sensing system with the properties of the 

surface and the environment. For vegetated surfaces, the latter is mostly driven by the anisotropy of 

the canopy and its interaction with the incident irradiance field and the viewing direction of the sensing 

system described by the framework of the bidirectional reflection distribution function (BRDF) of a 

surface (Nicodemus et al., 1977; Schaepman-Strub et al., 2006). It highly influences imaging 

spectroscopy data and needs to be regarded for all measurements (Schläpfer et al., 2015; Weyermann 

et al., 2014). BRDF effects are a major source of uncertainty (Richter and Schläpfer, 2002) and only a 

small scientific community explicitly addresses the issue for space, airborne and ground-based 

observations5. This is particularly interesting, since almost all remote sensing textbooks address the 

issue (Campbell and Wynne, 2011; Jensen, 2007; Jones and Vaughan, 2010), but it has not yet been 

‘solved’, even for well-developed sensing systems such as Landsat (Nagol et al., 2015).  

                                                             
3 Web of Science search on “TS = (hyperspectral and (retrieval or classification) and accuracy)” yields 1489 matches, 2016-

04-18 
4 Web of Science search on “TS = (hyperspectral and sensor and (calibration or "data acquisition"))” yields 244 matches, 

2016-04-18 
5 Web of Science search on “TS = ("*directional effect*" or "brdf") and TS= ("correction" and "reflectance") not 

TS=("atmospheric correction")” yields 69 matches, 2016-04-18 
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The minor interest in issues related to data collection, calibration and standardization may be due to 

two reasons: first, according to information theory, data on higher processing levels is more meaningful 

and has a higher number of potential users (Rowley, 2007). Second, as outlined in Section 1.2, until 

recently only a few air- and spaceborne imaging spectroscopy systems collected the data for almost 

the whole scientific community and the associated mission team was responsible for the data quality. 

However, with the diversification in remote sensing, individuals, research teams or companies can start 

to collect their own imaging spectroscopy data. While this drastically improves the flexibility of the 

process of data collection, the burden of data quality assurance is also on individual users of these 

sensing systems. Thus, knowledge is needed on how to calibrate hyperspectral sensors so that they 

provide reliable data, and how this could be accomplished by ‘normal’ researchers who do not have 

access to advanced calibration facilities.  

The diversification in remote sensing emphasizes the importance of more than just data quality 

concerns. The advent of new sensors with different sensing techniques, their application in a variety 

of settings, and data processing done by different users with different processing workflows, raises the 

issue of comparability. As an example within the domain of field-spectroscopy, studies found 

differences due to the technical design (Mac Arthur et al., 2012) and the specifications of instruments 

(Julitta et al., 2016) as well as due to different operation and sampling modes (Anderson et al., 2011; 

Mac Arthur and Robinson, 2015). Results from different scales, such as ground and UAV observations, 

and different types of sensors, such as imaging and non-imaging sensors, may also differ (Bareth et al., 

2015a; von Bueren et al., 2015). Such considerations are specifically important for sensor systems that 

are also suitable for UAVs, since their biggest advantage is also a challenge: the miniaturization of 

sensors is usually a compromise between size, weight, specifications and cost. Thus, such systems tend 

to produce data with reduced radiometric, spectral and geometrical quality in comparison to systems 

on manned aircrafts (Zarco-Tejada et al., 2014).  

But comparative studies on the retrieval of 3D data in forest environments have also disclosed 

differences between different sensing techniques, such as airborne laser scanning and SfM (Dandois 

and Ellis, 2013; Lisein et al., 2013; White et al., 2015), and between different processing tools and 

illumination conditions for SfM (Dandois et al., 2015). For cereal canopies, a study by Grenzdörffer 

(2014) confirmed the influence of the processing tools, but other sources of influences have not been 

investigated yet. These results demonstrate that the findings of one campaign are hard to extend to 

other campaigns if the comparability of the sensing system and sensing circumstances have not been 

investigated and thus, systematic differences have not been identified. Therefore, besides an 

assessment of the data quality of a data product, information about its comparability is also important. 

Thus, both issues will be addressed in the course of this thesis.  
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 Research objectives and outline 

Enabled by the current diversification in remote sensing, this thesis explores new approaches to 

address the demand for timely information in high spatial and spectral resolution to support site-

specific crop management. The focus is placed on hyperspectral digital surface models (HS DSMs) – a 

representation of the surface in 3D space linked with hyperspectral information emitted and reflected 

by the objects covered by this surface (Aasen et al., 2015, Chapter 3) –, which are developed within 

this thesis. Their generation is based on data acquired by novel lightweight HSCs carried by UAVs and 

data processing based on SfM. The overall aim is to evaluate whether HS DSMs of crops are suitable to 

support a site-specific crop management. This evaluation is based on the discussion of three research 

objectives, which are motivated by the complexity of the remote sensing of vegetation (Section 1.3), a 

diversification of sensing systems and processing workflows (Section 1.2) and the demands of site-

specific crop management (Section 1.1). The concept of this thesis is that each research objective 

supports the discussion of the next research objective until the overall research aim is reached (Figure 

1.2).  

 

Figure 1.2 The concept of this thesis. The three research objectives (RO) are motivated by the 
introductory chapters and discussed based on the research studies. The discussion of subsequent RO is 
supported by the insights from the previous research objective (RS denotes remote sensing).  

The discussion of the research objectives is based on the six research studies (Chapters 3 to 6) within 

this thesis. The first three studies focus on rather methodological aspects in the context of 

hyperspectral measurements with UAVs: Aasen et al. (2015, Chapter 3) introduces the method to 

generate HS DSMs with HSCs and to trace the properties of individual pixels. Aasen and Bolten (in 

review, Chapter 4) uses this method and investigates the special properties of the spectral data within 

HS DSMs. Burkart et al. (2015, Chapter 5) investigates the influence of different viewing geometries 

within spectral data acquired from UAVs. The other three studies focus on potentials of HS DSMs for 

precision agriculture applications, but use data which is not captured by HSCs: Tilly et al. (2015, Chapter 

6) and Bendig et al. (2015, Chapter 7) combine spectral and plant height (PH) data acquired with 

terrestrial laser scanning (TLS) and an RGB camera system to estimate the biomass of barley. Aasen et 

al. (2014, Chapter 8) introduce a new method to use large multi-temporal spectral libraries to improve 
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the prediction of the biomass of rice. Chapter 2 complements the content of the research studies to 

provide the necessary background for the discussion of the three research objectives (Chapter 9), 

which are described in the following. 

 Influences on the spectral information 

The first research objective is motivated by the complexity of spectral remote sensing of vegetation 

(Section 1.3). The process of gathering information about plant particles (plant compounds such as 

pigments or cells) is complex. At each step of the remote sensing process (c.f. Campbell and Wynne, 

2011), from the creation of a signal by these particles to its representation within a data product, the 

information is prone to many sources of influence. Already the data acquisition is influenced by 

environmental conditions and their interaction with the sensing system. But the transformation of the 

signal to digital data within the sensing system and its conversion into information during the data 

processing also influences how the particle is represented within the pixels of the final data product. 

This transformation of the signal to information will be called ‘the path of information from particle to 

pixel’ and is outlined in Figure 1.3. In this context it should be noted that processes such as scattering 

within the plant also influence its absorption, reflectance and transmittance (Kumar et al., 2003). 

However, the influences of these processes are beyond the scope of this thesis.  

 

Figure 1.3 The path of information from particle to pixel: The information about a particle within an 
environment is modified at different stages. Its acquisition is influenced by environmental conditions 
and their interaction with the sensing systems. The transformation within the sensing system of the 
signal of a particle to data and its conversion into information during the data processing also 
influences how the particle is represented within the pixels of the final data product.  
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As Section 1.3 highlighted, information about the data quality as well as knowledge about the 

appropriate methods to derive the data is important. Thus, the first research objective of this thesis 

evaluates and discusses the spectral data quality derived from HSCs and the introduced method to 

derive HS DSMs. In order to be able to assess the quality of remotely sensed data, it is necessary to 

appreciate the errors that may enter at all stages of the process (Jones and Vaughan, 2010). Thus, in 

Section 9.1 the path from particle to pixel is traced to investigate and discuss the following potential 

sources of influence during the generation of HS DSMs:  

Subsection 9.1.1 Interactions with the environment  

Subsection 9.1.2 Sensing system and measurement protocol 

Subsection 9.1.3 Data processing 

These aspects are investigated and discussed in as follows: in Burkart et al. (2015, Chapter 5) a novel 

approach is used to investigate the interaction of the environmental illumination conditions with a 

cereal crop canopy and the sensing system. The impact of angular effects (i.e. the interaction of the 

measurement geometry of a sensing system and the anisotropy of a surface) on the hyperspectral 

signal and vegetation parameter retrieval by means of vegetation indices (VIs) are quantified for a 

wheat canopy at two different times of the day with an UAV goniometer. In Aasen et al. (2015, Chapter 

3), a novel method is developed to trace these angular effects in imaging spectroscopy data captured 

by HSCs. Based on these two chapters, the potential influence of angular effects on imaging 

spectroscopy data from HSCs is approximated and discussed in Subsection 9.1.1. Additionally, other 

environmental sources of influence are identified.  

Right before the start of this thesis in April 2013, a prototype of the HSC system “UHD 185-Firefly” 

arrived at our research group. In Aasen et al. (2015, Chapter 3) this HSC system is characterized and a 

radiometric calibration procedure is developed. In Subsection 9.1.2, the results of this characterization 

are used to estimate and discuss the influences resulting from the technical aspects of the sensing 

system on the level of individual pixels. This discussion is complemented by results of Aasen and Bolten 

(in review, Chapter 4) where the calibration protocol is investigated. Aasen and Bolten (in review, 

Chapter 4) also investigates the special data properties within the spectral data of HS DSMs. 

Additionally, the influence of different processing schemes on the final data product are investigated. 

The results of these investigations are set in context to potentially desired data products and discussed 

in Subsection 9.1.3.  

Overall, this first research objective is focused on the spectral data derived by HSCs. For each source 

of influence, the influenced data entity level (pixel, image, scene) is identified and, where possible, the 

magnitude of the impact is approximated. Thus, the results of this first research objective are a 

characterization and evaluation of the spectral data within the HS DSMs. Not only does this provide 
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the necessary information to assess the quality of the data, but it is also the basis for an appropriate 

interpretation of the results of subsequent analysis procedures. Additionally, it provides the necessary 

background to compare the spectral data contained in HS DSMs with the data from other sensing 

systems, which is part of the discussion in the second research objective.  

 Comparability of hyperspectral digital surface models 

The second research objective is motivated by the advent of new sensing systems and an increasing 

variability of data processing workflows (Section 1.2) and the challenges associated with this 

development (Section 1.3). It discusses the comparability of the HS DSMs to remotely sensed data of 

other instruments and destructive in-field measurements. Information about the comparability of a 

new method is important to investigate systematic differences, which must be regarded if results from 

different studies are compared. Additionally, this can lead to insights into the suitability of a new 

method to substitute or complement an established method. With the ongoing diversification in 

remote sensing and the appearance of new sensing systems, the need for such information becomes 

increasingly important as can be seen also within this thesis. In total, five different sensors with 

different processing workflows were used in the studies to gather information about crop canopies. 

The data and insights gained in these studies provide the basis to discuss the comparability of HS DSMs 

in Section 9.2 with regard to:  

Subsection 9.2.1 Spectral data from other sensing systems 

Subsection 9.2.2 DSMs derived from SfM, with different tools and different settings, and TLS  

Subsection 9.2.3 Different canopy height estimations 

Subsection 9.2.4 Destructive in-field measurements 

These aspects are discussed as follows: in Subsection 9.2.1 the results of Aasen and Bolten (in review, 

Chapter 4) are generalized in a discussion on the comparability of the spectral data within HS DSMs to 

other types of spectral data. Additionally, the established data processing workflow introduced in 

Aasen et al. (2015, Chapter 3) is reviewed with regards to its ability to produce data comparable to 

data products of established sensing platforms. Here aspects of the first research objective are picked 

up and differences in the measurement geometry and data processing of pushbroom and snapshot 

systems will be examined. Lastly, the comparability of uncalibrated RGB data, as used in Bendig et al. 

(2015, Chapter 7), to the spectral data used in Aasen et al. (2015, Chapter 3) and Aasen and Bolten (in 

review, Chapter 4), is discussed.  

In Subsection 9.2.2 and 9.2.3 investigate the comparability of DSMs. Within this thesis, DSMs are 

derived from 3D point clouds generated by SfM applied to images from an HSC (Aasen et al., 2015, 

Chapter 3; Aasen and Bolten, in review, Chapter 4) and an RGB camera (Bendig et al., 2015, Chapter 
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7). These two cameras not only differ by the type of information they record, but also by their images’ 

specifications. Additionally, TLS is used to derive DSMs (Tilly et al., 2015, Chapter 6). This raises the 

question of whether the DSMs derived by these different approaches are comparable. This can only be 

answered by understanding how the DSMs are generated. Therefore this research objective starts with 

investigating systematic differences within the point clouds of these approaches. Similar to in the first 

research objective, the path of particle to pixel is followed but now for the 3D data. As a first step, the 

influence of different image capturing conditions (such as the flight pattern, image specifications and 

illumination conditions) and different implementations of the SfM method on the derived point cloud 

is discussed based on observations made during this thesis and supplemented by important aspects 

from the literature. As a second step, the differences between SfM and TLS and their implications on 

the derived point clouds, and consequently on the DSMs, are discussed. In a third step, the extent to 

which the height of the canopy represented in the DSMs and manual ruler measurements can be 

compared is examined.  

As a last aspect Subsection 9.2.4 discusses the comparability of HS DSMs to destructive in-field 

measurements. In the studies Aasen et al. (2015, Chapter 3), Aasen and Bolten (in review, Chapter 4), 

Tilly et al. (2015 Chapter 6) and Bendig et al. (2015, Chapter 7), spatially resolved remote sensing data 

is compared to destructive in-field measurements of plant parameters. To evaluate the issues of 

comparability between these two types of measurements, the outcomes of the studies are evaluated 

with regards to the spatial heterogeneity within the experimental plots. Insights into the spectral data 

retrieval of the previous chapters are also related to the issue.  

 Potentials of hyperspectral digital surfaces models 

After the data quality and the comparability of the HS DSMs has been discussed, this last research 

objective evaluates the potentials of the HS DSMs acquired with UAV HSCs to support decision making 

in precision agriculture. The discussion in Section 9.3 is based on the requirements that have to be met 

by remote sensing approaches for site-specific crop management (Section 1.1). Additionally, the results 

of Chapter 4 and 6 to 8 are picked up and related to the HS DSMs generated with the UHD. In particular, 

the evaluation is based on a discussion on:  

Subsection 9.3.1 Crop parameter estimation 

Subsection 9.3.2 Site-specific crop management 

Subsection 9.3.3 HSC systems 

Within this thesis different studies investigate the potential of HS DSMs for the retrieval the three plant 

parameters PH, biomass and chlorophyll based on data from other sensors. Bendig et al. (2015; 

Chapter 7) and Tilly et al. (2015, Chapter 6) investigate the retrieval of PH and biomass across several 
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growth stages using SfM and TLS, respectively. Aasen et al. (2014, Chapter 8) investigates if the same 

spectral information can be used to estimate biomass in different growth stages. Aasen and Bolten (in 

review, Chapter 4) investigate the retrieval of chlorophyll and compare the results from spectral data 

captured by the UHD with spectral data captured by a field-spectrometer. Based on the results of these 

studies and the investigation of the comparability of the different systems in the second research 

objective, the generality of the obtained results and the potential of the data within HS DSMs is 

discussed in Subsection 9.3.1. In some cases, the results are complemented by additional analysis 

carried out with the tool HyperCor, introduced in Aasen et al. (2014, Chapter 8). HyperCor investigates 

a dataset for the best combination of two variables to predict a plant parameter based on different 

formulas. For example, it derives the best two bands from a hyperspectral dataset to be used with an 

NDVI-type VI to predict biomass. Although developed for spectral data, PH can be included into the 

analysis as an additional variable by considering it as an additional band. To exemplify the potentials 

of HS DSMs derived by HSCs, the discussion uses the data acquired with the UHD in 2014.  

The insights of Subsection 9.3.1 also help to discuss the potentials of HS DSMs of crops acquired with 

UAV snapshot cameras for site-specific crop management. After it is evaluated if the approach meets 

the demands defined in Section 1.1, Subsection 9.3.2 discusses how the three plant parameters can 

support fertilization and stress protection. In a last step, the potentials of HS DSMs acquired with UAV 

snapshot cameras are set in context to existing approaches in precision agriculture. The chapter is 

completed with Subsection 9.3.3, which highlights the potentials of HSC systems to further support the 

development of sensing systems for precision agriculture and other applications. Here the focus is 

widened in an anticipation of current developments and an outlook towards new ways to explore the 

data derived by HSCs is given.  
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 BACKGROUND 

For a site-specific management it is important to know about the current status of the crop. 

Conventionally, management decisions are made on the basis of crop walking or a limited number of 

observations. By measuring the leaf nitrogen or water content, a farmer can adapt the management 

to the needs of the plants (Jones and Vaughan, 2010). Plant parameters such as PH and chlorophyll can 

indicate biotic and abiotic stresses (Mahlein, 2016; Samarah et al., 2009; Zarco-Tejada et al., 2012). 

Besides, biomass has a connection to yield (Boukerrou and Rasmusson, 1990; Kren et al., 2014). In 

recent years, efforts have been undertaken to derive plant parameters by using remote sensing 

techniques in support of a site-specific crop management (Pinter et al., 2003). These parameters 

directly or indirectly relate to important variables for precision agricultural applications as exemplarily 

shown for the Normalized Differenced Vegetation Index (NDVI) in Figure 2.1.  

 

Figure 2.1 Schematical drawing of the relationship of the NDVI with different plant parameters. Solid 
arrows indicate a more direct functional relationship while dotted lines indicate a more indirect 
relationship (adapted from Jones and Vaughan, 2010).  

The situation is complicated by the phenology of the plants. The growing stage influences the chemical 

compounds of the plants as well as their geometrical structure (Nobel, 2005). This in turn is also 

influencing the remote sensing signal. Therefore growth stage specific models need to be developed 

(Gnyp et al., 2014b; Küster et al., 2014; Li et al., 2010). Within this thesis, spectral and 3D remote 

sensing techniques are applied to estimate the plant parameters PH, chlorophyll and biomass. The 

basic principles of these sensing techniques are well understood and can be found in almost every 

remote sensing textbook (e.g. Campbell and Wynne, 2011; Jones and Vaughan, 2010). Thus, in this 

section only the information about the sensing principles and theory is summarized that is necessary 

for the understanding of this thesis. This also includes the introduction of snapshot imaging 

spectroscopy, which cannot yet be found in textbooks because of its novelty. Additionally, the 

specifications of the sensing systems used in this thesis are outlined. The methodical introduction is 
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followed by a summary on the growth of spring barley, since most of the research studies were carried 

out in this species. The last sections of this chapter present the CROP.SENSe.net study site at Campus 

Klein-Altendorf. 

 Spectral remote sensing of vegetation 

When incident sunlight hits a canopy it interacts with its components, such as leafs or stems, and may 

be reflected, transmitted or absorbed. The proportion by which the light is reflected or transmitted 

depends on the biophysical and biochemical compounds within the plant and the wavelength of the 

incident light, since different compounds absorb light in different wavelengths. A comprehensive 

overview of these absorption bands can be found in Kumar et al. (2003). A fraction of the absorbed 

light energy is used to drive electron transport and photosynthetic carbon assimilation. Besides, a small 

fraction (1 – 2%) of the energy is emitted at a longer wavelength as chlorophyll fluorescence (Jones 

and Vaughan, 2010). Although fluorescence is of minor relevance for this thesis, it should be noted 

that this signal also is part of the spectral signature received by a sensing system, which motivated the 

inclusion of ‘emitted’ into the definition of HS DSMs. Besides of the compounds within the plant, also 

the canopy structure influences the signature that is received by a sensor. 

 Angular effects 

Vegetated surfaces appear different when viewed from different directions. This results from the 

scattering behavior of vegetation and its interaction with the irradiance field and the view angle of the 

sensor during the measurement, also known as the measurement geometry (Jones and Vaughan, 

2010). In the following, this interaction will be referred to as ‘angular effects’. Reflection from a surface 

varies from specular reflectance, where surface irregularities are small in relation to the incident 

radiation wavelength, to perfectly diffuse Lambertian scattering, where the light is scattered uniformly 

over the hemisphere. Typically, plant canopies show an anisotropic asymmetric scattering behavior 

with a maximum apparent reflectance in the opposite direction of the incident light. Since this area 

appears brightest in aerial images it is called the hotspot (Jones and Vaughan, 2010). Figure 2.2 A, B 

and C schematically show the different scattering behaviors. Additionally an RGB image of a winter 

wheat field with the hotspot feature to the bottom left is shown. In the center of the hotspot the 

shadow of the UAV from which the image was taken is visible.  
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Figure 2.2 Specular (A), Lambertian (B), asymmetrical scattering of a canopy (C; adapted from Jones 
and Vaughan, 2010) and hotspot within an RGB image of a winter wheat field (D; Burkart et al., 2015, 
Chapter 5). 

The asymmetric scattering behavior of vegetation is caused by structural properties such as the leaf 

angle distribution. Also the illumination play an important role. The proportion of shadow seen at a 

specific spot within an image depends on the sun’s position relative to the surface and the observer 

position. Such structural and optical properties of the surface, including multiple scattering, mutual 

shadowing, transmission, reflectance and absorption, influence the apparent reflectance perceived by 

a sensor (Gatebe, 2003; Jones and Vaughan, 2010). The anisotropy of a surface can be quantified by 

multi-angular measurements. In this thesis, the angular setting under which a measurement is carried 

out is called the measurement geometry and implicitly defines the angular properties of that 

measurement (which is pixel specific in the case of imaging devices). It comprises the viewing geometry 

of a sensing system relative to the surface and its relation to the sun’s position and the irradiance field. 

 Reflectance quantities 

The irradiance field describes the composition of the direct incident radiation from the sun and the 

diffuse radiation scattered by the atmosphere onto a specific point in space. The BRDF is the theoretical 

framework to express the angular dependencies of the scattering of this radiation by a surface. It 

describes the reflectance of a target as a function of illumination geometry and viewing geometry 

(measurement geometry), and hence carries information about the anisotropy of the surface (Gatebe, 

2003). A variety of measurable quantities and inconsistent use of nomenclature in association with 

BRDF are present throughout the remote sensing community. In an effort to improve the ambiguous 

usage of reflectance terms, Schaepmen-Strub et al. (2006) suggested a standardized terminology of 

reflectance products based on the work of Nicodemus et al. (1977). In the following, the important 

aspects for this thesis in the context of BRDF are summarized. The nomenclature used is illustrated in 

Figure 2.3.  
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Figure 2.3 Illustration of beam geometries within the concept of directional reflectance measurements. 
𝜃 and 𝜙 denotes the zenith and azimuth angles, respectively, for the incident (i) and reflected (r) 
radiance (Suomalainen et al., 2009). 

The BRDF is described by the zenith and azimuth angle of the infinitesimally small solid angle of the 

incident and reflected radiance. Each beam of incident light from one direction of the hemisphere is 

scattered into another direction of the hemisphere (Eq. 2.1). This relation describes the intrinsic 

reflectance properties of a surface and facilitates the derivation of many other relevant quantities (e.g. 

conical and hemispherical reflectance factors) by integrating over the corresponding finite solid angles. 

It should be noted that the BRDF is generally wavelength dependent (Schaepman-Strub et al., 2006). 

However, for reasons of clarity the spectral dependence is omitted throughout this section.  

 
𝐵𝑅𝐷𝐹 = 𝑓(𝜃𝑖 , 𝜙𝑖; 𝜃𝑟, 𝜙𝑟) =

𝑑𝐿𝑟(𝜃𝑟 , 𝜙𝑟; 𝜃𝑖 , 𝜙𝑖)

𝑑𝐸𝑖(𝜃𝑖 , 𝜙𝑖)
[𝑠𝑟−1] 

(Eq. 2.1) 

𝜃𝑖  and 𝜙𝑖  
𝜃𝑟  and 𝜙𝑟 
𝑑𝐸𝑖 and 𝑑𝐿𝑟  

incident radiance zenith and azimuth angles 
reflected radiance zenith and azimuth angles 
incident and reflected directional spectral radiance for 
infinitesimally small view and incident angels in steradiant (sr). 
 

 

When reflectance properties of a surface are measured, the reflected radiance is usually compared to 

a reference. The result is the bidirectional reflectance factor (BRF), which is the ratio of the radiance 

reflected by a surface in a given direction to a standard surface, often Lambertian (lossless and diffuse), 

in the same beam geometry (Nicodemus et al., 1977; Schaepman-Strub et al., 2006). Since the 

reflectance of a Lambertian surface is view-angle independent its notation can be omitted (Eq. 2.2; 

Schaepman-Strub et al., 2006).  

 
𝐵𝑅𝐹 = 𝑅(𝜃𝑖 , 𝜙𝑖 , 𝜔𝑖; 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟) =

𝑑Φ𝑟(𝜃𝑖 , 𝜙𝑖 , 𝜔𝑖; 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟)

𝑑Φ𝑟
𝑖𝑑(𝜃𝑖 , 𝜙𝑖)

 
(Eq. 2.2) 

𝜃𝑖  and 𝜙𝑖  
𝜃𝑟  and 𝜙𝑟 
𝑑Φ𝑟 and 𝑑Φ𝑟

𝑖𝑑 
𝜔𝑖  , 𝜔𝑟 ≈ 0  

incident radiance zenith and azimuth angles 
reflected radiance zenith and azimuth angles 
radiant flux [W] of the target and Lambertian reference 
incident and reflected radiance cone is infinitesimal small 
 

 

The concept of BRF assumes one light source that radiates from a specific direction. However, under 

field conditions light is also received indirectly from the hemisphere in addition to the directed 
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irradiance from the sun. To normalize for variances in the ratio of diffuse and direct irradiation, the 

direct and diffuse incident radiation is integrated over the whole hemisphere. The resulting quantity is 

the hemispherical-directional reflectance factor (HDRF; Eq. 2.3).  

 𝐻𝐷𝑅𝐹 = 𝑅(𝜃𝑖 , 𝜙𝑖 , 2𝜋; 𝜃𝑟, 𝜙𝑟 , 𝜔𝑟) (Eq. 2.3) 

𝜃𝑖  and 𝜙𝑖  
𝜃𝑟  and 𝜙𝑟 
𝑑Φ𝑟 and 𝑑Φ𝑟

𝑖𝑑 
𝜔𝑖 = 2𝜋 
𝜔𝑟 ≈ 0 

incident radiance zenith and azimuth angles 
reflected radiance zenith and azimuth angles 
radiant flux [W] of the target and ideal Lambertian reference 
incident radiance cone of hemispherical extent 
reflected radiance cone is infinitesimal small 
 

 

BRDF, BRF and HDRF all have in common that they assume an infinitesimally small solid view angle. 

However, these do not exist (Schaepman-Strub et al., 2006). Thus in reality the measured quantity can 

most precisely be described as hemispherical-conical reflectance factor (HCRF) and the reflection is 

integrated over a solid angle around the reflected zenith and azimuth angle (Eq. 2.4).  

 𝐻𝐶𝑅𝐹 = 𝑅(𝜃𝑖 , 𝜙𝑖 , 2𝜋; 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟) (Eq. 2.4) 

𝜃𝑖  and 𝜙𝑖  
𝜃𝑟  and 𝜙𝑟 
𝜔𝑖 = 2𝜋 
𝜔𝑟 ≡ 𝐼𝐹𝑂𝑉 

incident radiance zenith and azimuth angles 
reflected radiance zenith and azimuth angles 
incident radiation cone of hemispherical extent 
reflected radiance cone corresponding to an instantaneous field of 
view (c.f. Section 2.1.3) of a sensor 
 

 

A different normalization concept is used by the anisotropy factor (ANIF). The ANIF describes the 

anisotropy of a target in comparison to its nadir reflectance (Sandmeier et al., 1999). Similar to the 

HDRF and HCRF it is a function of hemispherical illumination conditions, viewing angle and solid cone. 

Also it is wavelength dependent. However, instead of the normalization by a Lambertian surface, the 

nadir reflectance of the same target is used (Eq. 2.4).  

 
𝐴𝑁𝐼𝐹 = 𝑓(𝜃𝑖 , 𝜙𝑖 , 2𝜋; 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟) =

𝑑Φ𝑟(𝜃𝑖 , 𝜙𝑖 , 2𝜋; 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟)

𝑑Φ𝑛𝑎𝑑𝑖𝑟(𝜃𝑖 , 𝜙𝑖 , 2𝜋; 0, 𝜙− , 𝜔𝑟 )
 

(Eq. 2.5) 

𝜃𝑖  and 𝜙𝑖  
𝜃𝑟  and 𝜙𝑟 
𝜙− 

 
2𝜋 
𝜔𝑟 ≡ 𝐼𝐹𝑂𝑉 

incident radiance zenith and azimuth angles 
reflected radiance zenith and azimuth angles.  
Since the reference measurement is acquired from nadir, the zenith 
angle of the measurement is zero and the azimuth is arbitrary 
incident radiation cone of hemispherical extent 
solid angle resulting from a non-infinitesimally small instantaneous 
field of view (IFOV) 
 

 

Within Burkart et al. 2015 (Chapter 5) a simplified version of Eq. 2.5 is presented which assumes that 

the incident zenith and azimuth angles stay the same during each measurement campaign. Also, the 

solid angle is not regarded since it stays the same for all measurements. Besides, in the following the 
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measured reflectance factors will be denoted as reflectance as long as a differentiation is not required 

for the understanding.  

 Principles of spectroscopy  

Generally, optical sensing systems can record the optical signature of a canopy in discrete bands. This 

information is called spectral when the radiometric response of these bands is known and the bands 

have been spectrally characterized by a center wavelength and a bandwidth, described by the full 

width at half maximum (FWHM). Technically the FWHM defines the spectral resolution of a sensor, 

since it defines the narrowest spectral interval that can be resolved. The spacing of the center 

wavelength is called sampling interval (Campbell and Wynne, 2011). Sometimes this information is 

resampled to a regular spacing and then stated as spectral resolution of a sensor or a data product. 

Spectral sensors can be differentiated by the number and spacing of the bands they record. If many 

continuous bands are recorded, a sensor is called hyperspectral (HS; Goetz, 2009; Goetz et al., 1985), 

else they are called multispectral. Most consumer-grade RGB cameras record information in three 

uncharacterized bands within the red, green and blue range. All these sensors transform the incoming 

light into an electrical signal recorded as digital numbers (DNs). The precision of this transformation is 

given by the radiometric resolution. It refers to the number of intensity levels (expressed in DN) that 

can be resolved by the sensor and is usually denoted as the bit depth (e.g. 256 for 8-bit, 4096 for 12-

bit). To derive the spectral signature of an object, these DNs are transformed to physically traceable 

units by radiometric calibration. The result is a measure of the radiation reflected or emitted from an 

objects as a function of the wavelength as spectral radiance (= the radiant flux density emanating from 

the surface; W m-2 sr-1 nm-1) or reflectance. Depending on the technical design of a sensor, it may record 

the signal in different spectral domains (Jones and Vaughan, 2010). In this thesis, it will be 

differentiated between the visible (VIS; 450 – 700 nm), near infrared (NIR; 700 – 1300 nm) and short 

wave infrared (SWIR; 1300 – 2500 nm). Additionally, the VIS can be divided into the blue (400 – 

500 nm), green (500 – 600 nm) and red (600 – 700 nm). Nevertheless, these borders should only be 

considered as reference points.  

In principle the process of spectral-radiometric (spectral) measurements can be divided in non-imaging 

and imaging spectroscopy. Non-imaging spectroscopy can be described as a method to characterize 

the spectral radiometric properties of a surface within the FOV of a spectrometer as a spectrally 

resolved but spatially integrated signal. Consequently, every measurement creates one spectral 

signature (Campbell and Wynne, 2011; Jones and Vaughan, 2010). Commonly, ground-based spectral 

measurements are carried out with field-spectrometers to study “the interrelationships between the 

spectral characteristics of objects and their biophysical attributes in the field environment“ to “act as 

a bridge between laboratory […] and field situations” and “provide a tool for the development, 
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refinement and testing of models relation biophysical attributes to remotely-sensed data” (Milton, 

1987). Although this description is more than two and a half decades old, it is still a very appropriate 

description of the use of field-spectrometers today. Field-spectrometers have been mounted on 

moveable platforms to cover large areas and static structures, like flux towers, for continuous 

measurements (Milton et al., 2009). At the same time, more customized non-imaging spectrometers 

have been developed that have a higher spectral resolution (e.g. to measure fluorescence: Cogliati et 

al., 2015) or are more lightweight so that they can be carried by new platforms (e.g. UAVs: Burkart et 

al., 2014). Additionally, non-imaging spectrometers have been used in field-goniometers to 

characterize the anisotropy of vegetated (Sandmeier et al., 1999) and non-vegetated surfaces 

(Suomalainen et al., 2009). Within this thesis, non-imaging spectroscopy are mostly used as ground 

validation (Aasen et al., 2015, Chapter 3; Aasen and Bolten, in review Chapter 4) and for proximal 

sensing of vegetation properties (Aasen et al., 2014, Chapter 8; Bendig et al., 2015, Chapter 7; Tilly et 

al., 2015, Chapter 6). Additionally, angular reflectance properties of vegetation are estimated with an 

UAV-goniometer, based on a lightweight spectrometer (Burkart et al., 2015, Chapter 5).  

Imaging spectroscopy generates a representation of the spectral properties of a surface in two spatial 

dimensions. Most imaging systems scan the surface point- (whiskbroom) or line-wise (pushbroom). In 

both cases, a 2D representation of the surface is built up while the sensor is moving across the surface 

(or an object is moved by the sensor, e.g. on a conveyer belt). During that process the light reflected 

or emitted towards the instantaneous field of view (IFOV) of a detector element is recorded. The 

projected area on the ground of the IFOV is called the ground IFOV (GIFOV). The combined IFOV of all 

detector elements of a sensor is called its FOV and defines the footprint on the ground which is covered 

by the sensor. For non-imaging devices the IFOV equals the FOV (it has to be noted that the footprint 

of different bands might differ slightly as shown by Mac Arthur et al., 2012. However, for simplicity this 

will be neglected during the course of this thesis.). Within the GIFOV different parts may contribute 

differently to the value recorded by the detector, which is described by the point spread function. The 

spacing between the centers of the GIFOVs is called ground sampling distance (GSD). The width that is 

covered by one scan-line of an imaging line-scanner, usually perpendicular to the longitudinal axis of 

the plane or along track direction, is commonly called swath (Figure 2.4, left). Every measurement 

within this swath has its own IFOV and is looking into a slightly different direction. The direction of the 

surface normal is called nadir (Jones and Vaughan, 2010). The solid angle (mentioned in the context of 

reflectance quantities described in Subsection 2.1.2) is defined by the IFOV of a detector. Thus, from a 

strict physical point of view, field-spectrometers as well as most common satellite and airborne 

systems measure HCRFs. While the former typically have a FOV of approx. 25°, when no fore optic is 

used, the IFOV of space-based instruments (e.g. WorldView-3, Sentinel-2) correspond to a much 

smaller cone. Thus, data products of the latter are often referred to as HDRF and BRF under the 
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assumption that the HDRF is constant over the full cone angle of the IFOV (Schaepman-Strub et al., 

2006). Besides, since every IFOV of an imaging spectrometer is pointing in a slightly different direction, 

each measurement by a detector element has slightly different angular properties. Additionally, also 

the ground sampling distance towards the edges of the swath relatively increases because of the view-

angle effect (Figure 2.4, right).  

 

Figure 2.4 Schematic drawing of the field of view (FOV), instantaneous field of view (IFOV), ground 
instantaneous field of view (GIFOV) and ground sampling distance (GSD) with point spread function of 
an airborne line scanner (left). Towards the edges of the swath, the ground sampling distance increases 
as a function of the oblique viewing angle and increased path length through the atmosphere. At the 
same time, the viewing geometry of every pixel changes slightly with every pixel (right; adapted from 
Jones and Vaughan, 2010). 

Commonly information by imaging spectrometers is geometrically corrected and reprojected to a 

regular grid during post-processing in a way that it can be represented as pixels within a raster dataset 

(Jones and Vaughan, 2010). However, this process is prone to problems since it has to be defined how 

the irregular spaced spectral information from individual measurements of the sensing system is 

assigned to the pixels. The complexity of this problem has led Fisher (1997) to call “the pixel: a snare 

and a delusion”. While a comprehensive and interesting discussion of the topic can be found in 

Cracknell (1998), this topic will become important within Aasen and Bolten (in review, Chapter 4), 

where it is discussed how to assign a spectral signature to a specific pixel seen in overlapping images. 

Additionally, it should be noted that an ambiguous use of the term “spatial resolution” is found within 

the literature. In this thesis, the spatial resolution of a sensor refers to the pixels of its image, while the 

spatial resolution of a data product (e.g. a remote sensing scene) refers to the spacing of the pixels in 

the units of its global reference system (also referred to as the ground sampling distance).  
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Imaging systems have been developed by different agencies and research facilities around the world 

and applied to manned aircrafts. Within Europe, the two most prominent ones are APEX (Itten et al., 

2008; Schaepman et al., 2015) and the novel HyPlant specified to measure sun-induced fluorescence 

(Rascher et al., 2015). But miniaturized hyperspectral pushbroom scanners have also been mounted 

on UAVs (Lucieer et al., 2014; Zarco-Tejada et al., 2012). Regardless of the carrier platform or the size 

of the sensor, scanning devices need a movement of the sensor relative to the surface and precise 

orientation and positioning information for every measurement to compose an image cube of the 2D 

scene. Recently, hyperspectral snapshot cameras were introduced for remote sensing applications, 

which record data in a different way.  

 Snapshot imaging spectroscopy 

Hyperspectral snapshot cameras (HSCs) record spectral information in two spatial dimensions within a 

single exposure and therefore without any scanning process (Hagen et al., 2012). In contrast to whisk- 

or pushbroom spectrometers, snapshot cameras (also called central perspective imagers) capture the 

whole of a scene at one instant of time from the viewpoint of the camera lens (Jones and Vaughan, 

2010). Consequently in case of spectral snapshot cameras the full image cube is recorded within one 

integration of the sensor (Figure 2.5).  

 

Figure 2.5 Proportions of the image cube collected during a single detector integration period for 
scanning (a) and snapshot (b) devices (Hagen et al., 2012). X and y denote the spatial dimensions, while 
λ denotes the spectral dimension.  

Different advantages of snapshot systems have been stated in the non-remote sensing literature. Due 

to the elimination of the scanning process, snapshot systems do not require moving elements and are 

therefore more rugged. At the same time, they can record dynamic events of two dimensional scenes 

(Descour and Dereniak, 1995). Additionally, snapshot systems have an advantage in light collection 

compared to scanning devices. Hagen et al. (2012) identifies this as the “snapshot advantage”. For 

remote sensing, on one hand the spatial two dimensionality of the data at first brings additional 
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complexity. While objects at the center of the scene are viewed with a nadir geometry, those towards 

the edge are viewed obliquely. In comparison to whisk- and pushbroom systems this complicates the 

interpretation of the data with regard to angular effects (c.f. Subsection 2.1.1), since more dimensions 

have to be regarded (Jones and Vaughan, 2010). On the other hand, the movement of the sensing 

system can be used to create multiple overlapping image cubes (Figure 2.6).  

 

Figure 2.6 Different principles of data acquisition. Line-scanning devices record individual image-lines 
along one spatial dimension. Movement of the sensing system is needed to create a 2D scene (A). 
Snapshot cameras record image cubes with two spatial dimensions with every exposure. Thus, 
movement generates overlapping image cubes (B).  

Taxonomy wise, snapshot cameras are a special case of image-frame cameras. Image-frame cameras 

such as Fabry–Pérot interferometers (e.g. Honkavaara et al., 2013), also record spectral information in 

two spatial dimensions. However, since only individual bands or band packages are recorded, the 

generation of an image cube requires a scanning process through the spectral dimension. The 

elimination of any scanning process with snapshot cameras has the benefit to omit the spatial co-

registration process of the spectral data, which simplifies the remote sensing process. Thus, the data 

can also be considered as hyperspectral images. Nevertheless, to capture larger areas the relative 

orientation and position of these images need to be reconstructed and potential spatial distortions 

need to be corrected. Fortunately, recent developments in computer vision and photogrammetry 

provide a solution for this and even more, can use the spatial information within these images to 

reconstruct the 3D geometry of the scene.  

 3D remote sensing 

Non-contact methods to derive 3D information about a surface include methods such as X-ray, SAR, 

photogrammetry and laser scanning (Remondino and El-Hakim, 2006). These techniques generate a 

set of points with 3D coordinates (x, y, z) to describe a surface. This information is commonly referred 
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to as 3D surface points or a 3D point cloud. From this information a digital surface model (DSM) can be 

created with triangular mesh generation. The resulting DSM may have a reduced dimensionality where 

only one z-value is assigned to every (x, y)-coordinate within a grid spacing (Eq. 2.6). Such surfaces are 

known as 2.5D surfaces (Luhmann et al., 2014).  

𝑓(𝑥, 𝑦) = 𝑧 (Eq. 2.6) 

In remote sensing such 2.5D surfaces are commonly found describing a digital elevation model. It is 

defined as a file or database containing elevation points over a contiguous area. Digital elevation 

models can further be divided into DSMs, which contain the elevation information of all features in the 

landscape, and digital terrain models (DTMs), which contain the information about the bare soil surface 

without features in the landscape such as vegetation (Jensen, 2007). New applications and 

technologies led to modifications of this terminology for specific purposes. Terminologies such as 

canopy height models (Dandois and Ellis, 2013; Lisein et al., 2013), crop surface models (Bendig et al., 

2014; Geipel et al., 2014; Tilly et al., 2014) or canopy height (Friedli et al., 2016; Nakai et al., 2010) have 

been used to specifying the height of vegetation. Additionally, the PH has been used to denote the 

difference between a DTM and a DSM on vegetated surfaces (Bendig et al., 2014; Tilly et al., 2014). In 

this thesis, the latter is adapted (c.f. Subsection 4.2.6.1). Additionally, a DSM will denote the 2.5D 

height information assigned to a raster grid cell (pixel) based on the 3D information of the point cloud 

in the corresponding area. In this thesis, a photogrammetric approach and TLS are used to derive 3D 

information about the barley canopy. Both techniques will be introduced in the following.  

 Structure from Motion 

The term ‘Structure from Motion’ originates from visual motion perception and describes “how the 3D 

structure and motion of objects can be inferred from a 2D transformation of their projected images” 

(Ullman, 1979). During the last decade, advances in computer vision and photogrammetry have 

allowed a new way to exploit this procedure – and in combination with flying platforms such as UAVs 

– to gather 3D information of a landscape. The combination of advances in image and dense matching 

algorithms allow to reconstruct the 3D topography of a scene in very-high resolution from multiple 

images captured by an UAV. Although SfM technically only refers to the image matching technique, 

the entire process of image and dense matching is commonly referred to as SfM. This nomenclature 

will also be used in this thesis. Image matching calculates the relative position of a series of images by 

identifying identical object features (points, patterns, edges) in the overlap of the images and 

reconstruction their 3D topology (Luhmann et al., 2014). Various approaches have been developed to 

identify corresponding features, among them the Scale Invariant Feature Transform operator (SIFT; 

Lowe, 2004). After these features have been identified, a bundle adjustment is carried out to merge 
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the individual images to a global model. Bundle adjustment is the process of refining a visual 

reconstruction to produce jointly optimal 3D structure and viewing parameter (camera pose and/or 

calibration) estimates (Triggs et al., 2000). During that process the orientation and position of the 

images and the 3D coordinates of the identified points are calculated. Different software tools can be 

used to carry out the bundle adjustment, e.g. Bundler (Snavely, 2016; Snavely et al., 2008). Optionally, 

the connection to a global coordinate system can be established by providing a set of reference points 

such as the georeferenced ground control points (GCPs) used in this thesis. The result of this process 

is a representation of the surface as a point cloud (Luhmann et al., 2014). Generally, the density of the 

point cloud after the bundle adjustment is quite sparse (Harwin and Lucieer, 2012). To increase the 

point density, dense matching techniques are used that use the output of a bundle adjustment to 

densify the sparse point cloud. The process is very computationally intensive and algorithms have been 

developed to exploit parallel computing and graphics processing units (Remondino et al., 2014). Among 

these dense matching algorithms, semi-global matching represents a computational efficient method. 

However, in comparison to multi-view techniques it only uses stereo pairs of images and the depth 

maps are fused (Hirschmuller, 2008; Luhmann et al., 2014). As a result a dense 3D point cloud is created 

that corresponds to the ground sampling of the original images (Haala, 2013). Within the SfM process, 

the image matching is the most problematic step since its success in matching directly depends on the 

shape and form of the objects in the scene (Luhmann et al., 2014). Thus, a sufficient image overlap 

(Szeliski, 2011) and sufficient scene texture is required (Remondino and El-Hakim, 2006). In case of 

aerial photography an overlap of 60% side and 80% forward overlap is suggested (Agisoft LLC, 2016).  

In this thesis, the SfM software Photoscan was used. Only vague information about the algorithms 

within the software are known. In a forum post by an Agisoft employee, it was disclosed that the 

feature matching is based on a similar approach as SIFT and the solving of the image orientation 

parameters has “many things in common with Bundler” (Semyonov, 2011). Besides, Remondino et al. 

(2014) state that the implemented image-matching algorithm seems to be a method similar to stereo 

semi-global matching. Since SfM can be used with almost every camera, it is increasingly adapted by 

the remote sensing community (Figure 1.1). Examples from the remote sensing of vegetation are the 

estimation of PH in forest (Dandois and Ellis, 2013, 2010; White et al., 2015) and agricultural crops 

(Bareth et al., 2015b; Bendig et al., 2014, 2013; Geipel et al., 2014).  

 Terrestrial laser scanning 

Light detection and ranging (LiDAR) is an active remote sensing technique. LiDAR systems send out very 

short pulses of a very narrow beam of coherent light and record the time delay until the signal returns 

from a reflective object. Since the beam is traveling with the speed of light, the distance to the object 

can be calculated. Depending on the beam width and the structure of the object, one pulse may be 
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reflected multiple times on its path. LiDAR systems can be divided into discrete return and full-

waveform LiDAR systems, depending on how the return signal is recorded. Discrete LiDAR systems 

record a certain number of returned pulses, while full-waveform LiDARs record the full shape of the 

intensity of the returning pulse as a function of time after emission. Along with the received signal 

reflected from an object the angle of each pulse is stored. Together with the position and orientation 

of the LiDAR system this information can be used to derive a 3D point cloud for each return of the 

beam (i.e. the discretized points of waveform). Thus advanced LiDAR systems, which penetrate through 

vegetation and record multiple returns, allow the mapping of multiple layers of the canopy and ground 

at the same time (Jones and Vaughan, 2010). LiDAR systems have been deployed on several platforms 

and applied to a multitude applications. A comprehensive review of crop monitoring approaches can 

be found in Tilly et al. (2015, Chapter 6). 

TLS are static LiDAR systems equipped with a scanning mechanism such as a rotation mirror and thus 

sweep along a surface and create a (vertical) profile. Additionally, the system is rotated around the axis 

of its mounting tripod to capture the second (horizontal) dimension (Petrie and Toth, 2009; Tilly, 2015). 

Within this thesis, the TLS system Riegl LMS-Z420i was used. The sensor operates with a near-infrared 

laser beam, has a beam divergence of 0.25 mrad, and a measurement rate of up to 11,000 points/sec. 

In addition, its field of view is up to 80° in the vertical and 360° in the horizontal direction (RIEGL GmbH, 

2010). The position of the scanner was tracked by the RTK-DGPS system HiPer Pro (TOPCON, 2004). By 

establishing a reference station the relative position of the entire TLS setup used in this study was 

determined to be approximately 0.01 m (Tilly et al., 2015, Chapter 6).  

 Sensing systems used in this study 

Different sensors have been used in this study to derive RGB, spectral and 3D information. A detailed 

description of these systems can be found in the following sections: Subsection 3.2.2 introduces the 

UAV snapshot camera system UHD, Section 5.2 introduces the UAV-Goniometer (UAV-STS), Subsection 

6.2.1.1 introduces the TLS system, Subsection 7.2.3 introduces the RGB camera GX1 and the FS3 field-

spectrometer is introduced in Subsection 8.2.2. A summary of the technical details relevant for this 

thesis can be found in Table 2.1. In the overall discussion, these sensing systems are compared to the 

airborne sensing system APEX (Schaepman et al., 2015). Thus, also the technical details of this sensing 

systems can be found in Table 2.1. Besides, a detailed description of the M-class rotary-wing UAV MK-

OktoXL which was used as the carrier platform for the UHD and GX1 can be found in Subsection 3.2.1. 

The UAV used for the UAV-STS can be found in Section 5.2.  
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Table 2.1 Summary of the spectral and RGB sensing systems used in this study with relevant technical details such as the field of view (FOV) and instantaneous 
field of view (IFOV), typical above ground altitude (AGA), ground sampling distance (GSD) at typical above ground altitude, coverage (per time or scene) and 
full width half maximum (FWHM). Additionally, the specifications of the Airborne Prism EXperiment (APEX) are shown. 

sensor AGA GSD3 spatial 
resolution 

coverage number of bands (range) FOV IFOV sensor type FWHM detailed 
information 

UHD 30 m HS: 0.2 m 
gray: 0.01 

m 

50 x 50 px 
1000 x 990 px 

12 m x 12 m  
(1500 m²  

in 14 min)2 

95  
(466 nm - 850 nm)1 

20° x 
20° 

0.4° snapshot 5 (at 466 nm) - 
25.6 (at 850 

nm) 

Subsection 3.2.2 

UAV-
STS 

16 m 9 - 30 m² 
depending  

on tilt 

1 - 256  
(338 nm - 823 nm) 

12° - non-
imaging 

3 nm Section 5.2 

FS3 1 m 0.15 m² 1 36 plots x 6 
samples in 1 - 

2h4 

VNIR: 650  
(350 nm - 1000 nm) 

25° - non-
imaging 

3 (at 700 nm) Subsection 8.2.2 

SWIR1 and SWIR 2: 800 
(1000-2500) 

10 (at 1400 
nm) 

GX1 50 m 0.01 m 4608 × 3464 
px 

41.5 m x 31.2 
m 

(>1500 m²  
in 5 min)² 

3 RGB (non-spectral) 55.8° 
× 

38.9° 

0.012° RGB 
snapshot 

- Subsection 7.2.3 

APEX 60 - 
7620 

m 

1-2 m 1000 px - VNIR: 114  
(372 nm -1015 nm) 

28.1° 0.028° Pushbroom 6 nm (at 760 
nm) 

Schaepman et al. 
(2015) 

SWIR: 198  
(940 nm - 2540 nm) 

 

1 Recommended bands by Aasen et al. (2015) 
2 In 2014 configuration. Depends on the flight pattern and flight speed 
3 For non-imaging devices the footprint size is given 
4 Depends on the stability of the illumination conditions
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 Plant growth of barley 

In most areas, spring barley is cultivated to produce high-quality malting barley. After being sown in 

late March or early April, the growing period is about 110 to 130 days. Several nomenclatures exits to 

describe the current growth stage of the plants. In this thesis, the BBCH-scale (Meier, 2001) is used. It 

divides the growth into several growth stages denoted with two digit numbers from 0 to 99, of which 

the first denotes the principle growth stage and the second the within stage development (Figure 2.7). 

The most important growth stages for management practices, such as fertilization and plant 

protection, are within the vegetative phase from leaf development (BBCH < 10) to stem elongation 

(BBCH < 39; Munzert and Frahm, 2005).  

 

Figure 2.7 Growth of barley with BBCH-scale and typical periods of fertilization and plant protection 
(modified from Munzert and Frahm, 2005).  

During the different development stages different parts of the plant grow. Dry matter in cereals is first 

accumulated in leafs until they intercept almost 100% of the photosynthetic active radiation (PAR). 

PAR excites the electrons in the chlorophyll molecules in the chloroplasts of the plant and drives the 

process of photosynthesis (Fischer et al., 2014; Jones and Vaughan, 2010). After the tillering, biomass 

is mostly accumulated in the stem and later in the spike and grains (Figure 2.8). The exact pattern of 

the plant growth depends on the climate and soil conditions of the growing area as well as the 

management of the field.  
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Figure 2.8 Dry matter accumulation in spring wheat in connection with photosynthetically active 
radiation (PAR) and green area index (modified from Fischer et al., 2014). 

 Study site 

Most studies within in this thesis were carried out at the research station Campus Klein-Altendorf (50° 

37′51″N, E 6°59′32″) of the University of Bonn (https://www.cka.uni-bonn.de/) within the 

interdisciplinary research project CROP.SENSe.net (www.cropsense.uni-bonn.de). Due to the crop 

rotation, the experiments were placed at different fields each year. Nevertheless, the overall soil and 

climate were the same. The soil was a clayey silt luvisol. The campus-owned weather station reported 

a long-term average precipitation of 600 mm and a daily average temperature of 9.3 °C for 2014 (Figure 

2.9; Campus Klein-Altendorf, 2010).  

 

Figure 2.9 Climate diagram (long-term average 1956 - 2014) for Klein-Altendorf (Tilly, 2015). 

In total, 22 campaigns were carried out at the CROP.SENSe.net experiment in the context of this thesis 

in 2013 and 2014. In conjunction with these campaigns, manual plant height and destructive samplings 

of fresh and dry biomass, divided by plant organs, and laboratory based chlorophyll, carbon and 

nitrogen measurements were carried out (Table 2.2). Each year, 36 plots of different spring barley 
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cultivars were sampled. Half of them were treated with a farmer’s common rate of 80 kg/ha nitrogen 

(N) fertilizer and the other half with 40 kg/ha N. In 2013, one repetition of 18 cultivars (Barke, Wiebke, 

Beatrix, Eunova, Djamila, Streif, Ursa, Victoriana, Sissy, Perun, Apex, Isaria, Trumpf, Pflugs Intensiv, 

Heils Franken, Ackermanns Bavaria, Mauritia and Sebastian) per fertilizer treatment was sampled, 

while in 2014 six cultivars (Barke, Beatrix, Eunova, Trumpf, Mauritia and Sebastian) in three repetitions 

were sampled. The map of the experiment of 2014 is shown in Figure 2.10. Each plot was divided into 

a non-destructive part for the remote sensing and plant height measurements, and a destructive 

measurement part where the biomass and chlorophyll measurements were carried out. The seeding 

days were 9 April 2013 and 13 March 2014.  

Table 2.2 Summary of the campaigns carried out with the terrestrial laser scanning system (TLS), field-
spectrometer (FS3), UAV RGB and UAV UHD in the context of this thesis in 2013 and 2014. The campaign 
dates are sorted by the day after seeding (DAS). For the manual sampling dates of the plant parameters 
(PP), the average BBCH-scale is given.  

DAS 2013 2014 

 date sensor PP (BBCH) date sensor PP (BBCH) 

15    3/28/2014 TLS  

20 4/29/2013 TLS, FS3     

34 5/13/2013 TLS     

35 5/14/2013 FS3, RGB 18    

41    4/23/2014 TLS, FS3 29 

49 5/28/2013 TLS, FS3, RGB 30    

54    5/6/2014 FS3, UHD  

56    5/8/2014 TLS 31 

63 6/11/2013 RGB     

64 6/12/2013 TLS, FS3 41    

68    5/20/2014 UHD  

70    5/22/2014 TLS, FS3 49 

78 6/26/2013 TLS, FS3 57    

80 6/28/2013 RGB     

82    6/3/2014 FS3  

84    6/5/2014 TLS, UHD 56 

91 7/9/2013 FS3, RGB 68 6/12/2014 UHD  

92 7/10/2013 TLS     

96    6/17/2014 UHD 74 

97    6/18/2014 TLS, FS3  

104 7/22/2013 TLS, FS3, RGB 81    
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Figure 2.10 Map of the CROP.SENSe.net experiment at Campus Klein-Altendorf in 2014 with plot 
number (large numbers) and cultivar (small numbers). The cultivar-wise colored squares indicate the 
destructive measurement part. The destructively sampled plots are framed with a solid rectangle. 
Positions of the ground control points (GCPs) and terrestrial laser scanning positions (TLS) are shown. 
The two plot rows to the left were treated with a farmer’s common rate of 80 kg/ha nitrogen (N) 
fertilizer and the other half with 40 kg/ha N. 

Besides, for Aasen et al. (2014, Chapter 8) data from field campaigns in rice from a study site at 

Jiansanjiang (47.2°N, 132.8°E) in the Heilongjiang Province of Northeast China was used. The details 

about this experiment can be found in Subsection 8.2.1. 

 



 

32 

 GENERATING 3D HYPERSPECTRAL INFORMATION WITH 

LIGHTWEIGHT UAV SNAPSHOT CAMERAS FOR VEGETATION 

MONITORING: FROM CAMERA CALIBRATION TO QUALITY 

ASSURANCE 

HELGE AASEN 1, *, ANDREAS BURKART 2, ANDREAS BOLTEN 1, GEORG BARETH 1 

Published in: ISPRS Journal of Photogrammetry and Remote Sensing, 80, 785-796 

DOI: 10.1016/j.isprsjprs.2015.08.002 

Formatting and orthography of the manuscript is adapted to the dissertation style. 

1 University of Cologne, Department of Geoscience, Institute of Geography, GIS and RS research 

group, 50923 Cologne, Germany (helge.aasen; andreas.bolten; g.bareth@uni-koeln.de) 

2 Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich GmbH, 52428 Jülich, Germany 

(an.burkart@fz-juelich.de) 

* Corresponding author: Tel.: +49 221 470 6265; Email: helge.aasen@uni-koeln.de 

Abstract: This paper describes a novel way to derive 3D hyperspectral information from lightweight 

snapshot cameras for unmanned aerial vehicles for vegetation monitoring. The Cubert UHD 185-Firefly 

collects a full hyperspectral image cube with 125 bands from 450 to 950 nm with two spatial 

dimensions during one exposure. First we describe and apply methods to radiometrically characterize 

and calibrate snapshot cameras. Then, we introduce our processing chain to derive 3D hyperspectral 

information from the calibrated image cubes based on structure from motion. The approach includes 

a novel way for quality assurance of the data. Latter is used to assess the quality of the hyperspectral 

data for every single pixel in the final data product. The result is a hyperspectral digital surface model 

as a representation of the surface in 3D space linked with hyperspectral information emitted and 

reflected by the objects covered by the surface. We apply the approach to data from a flight campaign 

in a barley experiment with different varieties to demonstrate the feasibility for vegetation monitoring 

in the context of precision agriculture and derive chlorophyll, LAI, green biomass and plant height from 

the hyperspectral 3D data. The radiometric calibration yield good results with less than one percent 

offset in reflectance compared to an ASD FieldSpec 3 for most of the spectral range. The quality 

assurance information show that the radiometric precision is better than 0.15 percent for the derived 

data product. The plant parameters retrieved from the data product correspond to in-field 

measurements of a single date field campaign for plant height (R² = 0.7), chlorophyll (R² = 0.52), LAI (R² 
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= 0.31) and biomass (R² = 0.29). Our approach can also be applied for other image-frame cameras as 

long as the individual bands of the image cube are spatially co-registered beforehand.  

Keywords: hyperspectral digital surface model, image-frame camera, radiometric calibration, quality 

assurance information, precision agriculture  

 Introduction 

In the context of vegetation monitoring for agricultural applications up-to-date information is critical 

for in-time decision making (Atzberger, 2013). It can help optimize the inputs of fertilizers, herbicides, 

seed and fuel by doing the right management practice at the right place and the right time (Mulla, 

2013) and thus save resources within the needed intensification of agricultural production (Foley et 

al., 2011). In the last years unmanned aerial vehicles (UAVs), also known as unmanned aircraft systems 

or remotely piloted aircraft systems, are increasingly adopted as remote sensing platforms (Colomina 

and Molina, 2014). These include rotary-wing (Bendig et al., 2013; Berni et al., 2009; Honkavaara et al., 

2013; Lucieer et al., 2014; Suomalainen et al., 2014a) and fixed-wing platforms (Büttner and Röser, 

2014; Hruska et al., 2012; Zarco-Tejada et al., 2012). Compared to proximal ground-based systems UAV 

platforms can survey areas faster and without distracting the surface cover (Burkart et al., 2015). They 

can provide remote sensing data in higher temporal, spatial and spectral resolution and are more 

flexible than plane and satellite based sensors. Additionally, they are considerably cheaper, can be 

deployed where and when needed and fly below the clouds which makes them a promising tool for 

frequent observations (Berni et al., 2009). When combined with sensors they become sensing 

platforms to gather the needed up-to-date information for vegetation monitoring.  

Hyperspectral (HS) sensors have shown great potential to derive information about the biophysical 

(Aasen et al., 2014b; Erdle et al., 2011; Gnyp et al., 2013; Haboudane et al., 2004; Hansen and 

Schjoerring, 2003; Thenkabail et al., 2000) and biochemical parameters (Haboudane et al., 2002; Li et 

al., 2010; Thenkabail et al., 2011; Yu et al., 2013b) of vegetation and agricultural crops as well as to 

detect environmental stress or plant diseases (Delalieux et al., 2007; Mahlein et al., 2013; Stagakis et 

al., 2012; Yu et al., 2013a). Traditionally, HS data is acquired with field-spectrometers, airborne sensors 

or satellites (Itten et al., 2008; Milton et al., 2007; Pearlman et al., 2003). Recently, HS sensors have 

been shrinking in size and weight and have thus become feasible for use onboard of UAVs. Burkart et 

al. (2014) introduced an ultra-light weight spectrometer mounted on an UAV for field spectroscopy 

feasible of acquiring HS point measurements with adjustable angles. Several line scanners are available 

for UAVs and have been flown on fixed- and rotary-wing UAVs for vegetation studies (Büttner and 

Röser, 2014; Lucieer et al., 2014; Suomalainen et al., 2014b; Zarco-Tejada et al., 2012). Line scanners 
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record one spatial dimension and are depended on the movement of the imaging system or the object 

to generate an HS image cube with two spatial dimensions.  

Lately, a new type of HS cameras has been introduced to UAV remote sensing: HS image-frame (IF) 

cameras like the Cubert UHD 185-Firefly (http://cubert-gmbh.de/), the Rikola FPI 

(http://www.rikola.fi) or the IMEC SM5X5 (http://www2.imec.be) record HS information with two 

spatial dimension. Several nomenclatures are used for these cameras (Bareth et al., 2015a; Honkavaara 

et al., 2013). In an effort to structure these we identified two parameters by which IF cameras can be 

categorized. The first category refers to the type of spectral data the camera records. Here we divide 

into multispectral (MS) and hyperspectral (HS) cameras. Following the core definition of imaging 

spectroscopy by Goetz et al. (2009; 1985) HS cameras have to record many continues, registered 

(characterized), spectral bands. Other devices are categorized multispectral (MS) as long as their 

channels are spectrally and radiometrically characterized. In particular the spectral response curve of 

the individual channels should be quantified to make results intercomparable. Thus, MS would include 

MS IF cameras as the Mini-MCA (http://www.tetracam.com/) or the MicaSense RedEdge 

(http://www.micasense.com/) but also characterized standard or modified RGB (CIR: modified RGB 

camera with NIR filter removed) cameras capturing RAW images without automatic color balance (e.g. 

Hunt et al.(2010)). A third category are IF cameras, which have not been spectrally characterized. These 

include (modified) RGB cameras. The second parameter for the categorization refers to the way the 

images are acquired. Here, we separate IF and snapshot camera systems. If all bands are synchronously 

captured, e.g. within the same exposure and thus, the full image cube is recorded without a scanning 

process, the cameras are referred to as snapshot cameras (Hagen, 2012). On the other hand, if bands 

or band packages are recorded sequentially or unsynchronized as two dimensional IF and thus, the 

image cube needs to be created by band co-registration, these cameras are referred to as IF cameras. 

This categorization is summarized in Table 3.1. Both categories are hierarchical structured: as HS 

cameras are MS cameras, so are snapshot cameras IF cameras. Additionally, the cameras can be 

characterized by other typical parameters like spatial and spectral resolution, FWHM and spectral 

domain.  

Because IF cameras record 2D spatial information, they provide the opportunity to derive additional 

vegetation parameters like plant height from 3D data complementary to HS data. So far, mostly LiDAR 

is used to derive 3D information to monitor growth of individual trees (Jaakkola et al., 2010), forests 

(Koch, 2010) and agricultural crops (Tilly et al., 2014). For the latter Hoffmeister et al. (2010) introduced 

the concept of crop surface models to monitor crop canopy growth in 3D over time. More recently, 

structure from motion (SfM) algorithms are used to reconstruct the 3D geometry from 2D images: 

When images are collected with a sufficient overlap, SfM can calculate the relative position and 
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orientation information by matching features within the individual images (Szeliski, 2011) as long as 

the scene shows sufficient texture (Remondino and El-Hakim, 2006). Some studies demonstrate the 

feasibility of images acquired from UAV platforms with SfM to derive plant growth: Bendig et al. (2013) 

generated multi-temporal crop surface models to monitor plant growth of barley with very high 

resolution < 0.05 m from a rotary-wing UAV flying at 30 m. Zarco-Tejada et al. (2014) quantified tree 

height in orchards from a fixed-wing UAV flying at 200 m with the same resolution. 

Table 3.1 Categorization of image-frame spectral cameras by the type of spectral information captured 
and the capturing procedure with some examples. Both categories are hierarchically structured: as 
hyperspectral cameras are multispectral cameras, so are snapshot cameras image-frame cameras. 

  RGB / CIR spectral 

  
uncharacterized 

bands 

several 
characterized 

bands 
(multispectral) 

many 
characterized, 

continues bands 
(hyperspectral) 

Image-
frame 
(IF) 

bands or band packaged 
(sequentially) captured as 
two dimensional image 
frames 

 Mini-MCA, 
MicaSense 
RedEdge 

Rikola 
hyperspectral 

camera 

Snapshot 
(S) 

all bands simultaneously 
captured as two dimensional 
image frames covering the 
same area 

(modified) RGB 
cameras 

characterized 
(modified) RGB 

cameras 

UHD, SM5X5 

For the combined analysis HS and 3D information are co-register from several sources in most studies. 

These demonstrate the advantages of combining the two types of information: With the combined 

data accuracy of vegetation mapping can be increased (Alonzo et al., 2014; Hladik et al., 2013), 

estimation of biomass is improved (Clark et al., 2011) and stress is detected (Swatantran et al., 2011). 

All these studies used LiDAR to derive the structural information. Recently, also SfM is used: Bendig et 

al. (2015) combined the plant height derived from crop surface models and VIs from field-spectrometer 

data to improve the accuracy of biomass estimation in barley. Suomalainen et al. (2014b) developed a 

bundle of an HS push broom scanner and a RGB camera to map HS data simultaneously to digital 

surface models (DSM) with SfM from a rotary-wing UAV platform. However, fusion of data from 

different sensors, eventually mounted on different platforms and collected at different times, may 

become challenging (Avbelj et al., 2014). Very few studies so far have used color intensity and 3D data 

created from a single cameras system: Geipel et al. (2014) and Bareth et al. (2015b) used plant height 

and uncalibrated RGB information from UAV-borne cameras to increase grain yield prediction accuracy 

and derive spatial information of grassland ecosystems, respectively. Diaz-Varela et al. (2014) used a 

CIR to identify agricultural terraces. To collect HS and structural information with the same system 

Honkavaara et al. (2013) used a Fabry Perot interferometer-based HS IF camera on a small helicopter 
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UAV flying at 140 m to derive a DSM together with spectral information with a resolution of about 0.2 

m to estimate plant height and biomass of cereals. A different approach to collect HS and structural 

data with the same instrument was developed by Suomalainen et al. (2011) who created an active HS 

LiDAR. To the authors knowledge the latter two studies are the only ones which used a single 

instrument to monitor HS and 3D information at the same time for vegetation monitoring.  

In the context of remote sensing of vegetation the importance of spectral sensor calibration and 

characterization has to be underlined. In order to make quantitative remote sensing studies, accurate 

radiometric and spectral calibrations of HS imaging data are necessary (Gao et al., 2004) and improves 

consistency between datasets by reducing temporally a spatially variable environmental effects (Kelcey 

and Lucieer, 2012). Such metadata information support the interpretation of scientific data, in general, 

help to ensure long-term usability and provide a basis for the assessment of data quality and possibility 

of data sharing between scientists (Hueni et al., 2009). For imaging systems data quality might be pixel 

dependent. Thus, satellite systems such as MODIS (Roy et al., 2002) and airborne spectral systems as 

APEX provide per-pixel quality information directly linked to the image (Itten et al., 2008). For 

lightweight HS imaging systems such information has not yet become a standard. Additionally, multi-

sensor studies become more frequent (Atzberger, 2013). To compare results from different campaigns 

or transfer between different systems sensors should be carefully characterized and properly 

calibrated to the current environment (von Bueren et al., 2015). While comprehensive calibration 

studies exist for individual lightweight UAV IF sensors (Kelcey and Lucieer, 2012) there is still a need to 

adapt calibration procedures to new systems with different sensing techniques (Bareth et al., 2015a).  

The scope of this contribution is to introduce an innovative way to create a data product containing HS 

3D information from images captured by a novel HS snapshot camera based on available software 

without co-registration of 3D and HS information. Thus, we describe the full process including i) camera 

characterization and calibration, ii) 3D HS data product generation, iii) pixel wise quality assurance 

information. The result is a hyperspectral digital surface model as a representation of the surface in 3D 

space linked with hyperspectral information emitted and reflected by the objects covered by the 

surface accompanied by quality assurance information for every pixel. In a last step we demonstrate 

how to derive plant parameters for vegetation monitoring of agricultural crops from this data product.   
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 Materials  

 Carrier platform  

Our carrier platform MK-OktoXL (http://www.mikrokopter.de) is a rotary-wing UAV with a maximum 

payload of 2.5 kg (Figure 3.1). The total weight is less than 5 kg. Depending on the payload and the 

batteries, the flight time varies from 15 to 30 min. The altitude, speed and position is controlled during 

the flight and logged to an on-board memory card. The flight path is controlled by the autopilot Flight 

Ctrl. 2.1 following predefined waypoints configured in the MikroKopterTool. The payload is mounted 

on a gimbal. We use the MK HiSight SLR2 gimbal which compensates for pitch and roll movement 

during the flight by using the UAV’s on-board gyroscopes. The compensation allows to maintain a nadir 

orientation of the sensor. The weight of the gimbal is about 280 g.  

 

Figure 3.1 Carrier Platform (CP) MikroCopter Okto XL with Gimbal and image capturing system (ICS) 
with UHD 185-Firefly and the single board computer (SBC) Pokini Z. 

 Image capturing system 

Our image capturing system consists of the Cubert UHD 185-Firefly (UHD) HS snapshot camera and the 

small single board computer (SBC) Pokini Z (http://www.pokini.de/). The UHD simultaneously captures 

138 spectral bands with a sampling interval of 4 nm. From these bands the camera’s manufacturer 

recommends the use of 125 bands between 450 and 950 nm. The FWHM of the bands are shown in 

Figure 3.2 and increases from about 4 nm at 450 nm to about 26 nm at 850 nm.  
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Figure 3.2 Full width at half maximum (FWHM) at each sampling wavelength as given by the 
manufacturer. 

For each band a 50 by 50 pixel image with 12 bit (4096 DN) dynamic range is created. Inside the camera, 

this is done by projecting the different bands to different parts of a charged coupled device (CCD). 

Technically, the pixels on the CCD correspond to different bands and spatial pixels of the image cube. 

Nevertheless, in this contribution we use the nomenclature on the data level such that the term pixel 

will refer to the pixels within one image band and bands will refer to the spectral bands. At the same 

time as the HS image is recorded a grayscale image with a resolution of 990 by 1000 pixel is captured. 

We use a lens with a focal length of 16 mm resulting in an across track field of view (FOV) of 

approximately 20°. Since the camera’s housing is elongated with the lens looking forward a mirror is 

fixed at the front to capture nadir images (Figure 3.1). The ground resolution at 30 m flying height is 

about 21 cm for the HS pixels and 1 cm for the grayscale image. With the software of the camera the 

HS resolution may be pan-sharpened to the grayscale images resolution. Latter is not used in our study. 

The total weight of the Camera is about 470 g. and its housing is about 28 by 6.5 by 7 cm.  

The camera is controlled by a SBC. It is connected to the camera with two gigabit ethernet cables and 

runs a server application which controls the camera and receives and stores the data to the SBC’s flash 

drive. The configuration is done remotely via WiFi from a control application run on a different 

computer. Within the WiFi range a live view may be transmitted to the control application and 

measurements may be triggered manually. Additionally, a sequence of images with defined frequency 

and duration can be recorded. The performance of the SBC allows to capture HS image cubes with a 

frame rate of about 0.6 hertz. The typical integration time under cloudless conditions is 1 ms, increasing 

to about 6 ms under cloud covered conditions. The whole image capturing system together with a 

three cell lithium polymer battery weighs about 1 kg.  
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 Field study 

The field experiment was carried out at the research station Campus Klein-Altendorf (50° 37’, 51 N; 6° 

59’, 32 E) of the University of Bonn within the CROP.SENSe.net project (http://www.cropsense.uni-

bonn.de/). In total nine varieties of barley were planted and treated with two nitrogen treatments (40 

kg/ha, 80 kg/ha) in three repetitions in an experimental plot layout. Each plot had an extent of three 

by seven meters and was divided into an invasive and non-invasive sampling part. This way the plants 

in the non-invasive area could grow undisturbed. For this study samples from a single date (03rd June 

2014) were evaluated: We collected plant samples from all repetitions of six varieties in the invasive 

sampling part. Additionally, we captured the area of approximately 0.15 ha with in total 320 UHD 

images with the UHD carried by the UAV in two flights within approximately 20 min.  

 Invasive sampling 

To estimate the average height within each plot we manually measured the plan height with a ruler at 

ten random positions within the non-invasive sampling part of the plot. The measurements were 

averaged to represent the plant height per plot. To measure the chlorophyll (Chl) content we collected 

four times three stamps with a radius of 3 mm from leafs at the top layer of the canopy within the 

invasive sampling part of the plot. These were instantly frozen with liquid nitrogen inside a dryshipper 

to preserve the samples. Later the Chl content of three stamps a time were measured with the DMSO-

Method (Blanke, 1992) at the Institute of Crop Science and Resource Conservation (INRES), University 

of Bonn. The four samples for each plot were averaged. The biomass was measured by extracting all 

plants within a 20 by 20 cm square in the invasive sampling area of the plot. The roots were cut off and 

the plants were stored in a cooler and transported to the laboratory. There, the samples were cleaned 

from mud, divided by the plant organs and weighed. The LAI was measured with a leaf area meter (LI-

3100C, http://www.licor.com/).  

 Flight planning and conditions 

To define the flight path we measured eight GPS positions on the south and nine on the north side with 

a distance of two meters from the experimental plots. For the measurement the internal navigation 

grade GPS of the UAV was used. Due to an unexpected shutdown of the SBC two flights had to be 

carried out immediately consecutively. The flights was conducted during an opening in cloud cover on 

a partly cloudy day under sunny conditions. A close by weather station recorded no change in global 

radiation during the flights. The take-off time of the first flight was 12:50 PM and each flight lasted 

about 10 minutes. Before the flight ground control points (GCPs) were mounted on positions previously 
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measured with a differential GPS with a relative sub centimeter accuracy. The heading of the UAV was 

set such that the camera orientation stayed constant during the flight.  

 Methods 

In the following we give a brief introduction to the effects influencing the signal inside an IF camera, 

how to quantify them and approaches to correct them. The process is applied to our camera and the 

results are quantified in section 3.4. Additionally, we describe the generation of the HS digital surface 

model (HS DSM) and a method for quality assurance of the derived data product. The entire process is 

implemented in MATLAB (Version R2011b, www.mathworks.de). The last part of this section describes 

the extraction of the plant parameters from the HS DSM. In our calibration procedure spectral 

calibration was not included, since it the center wavelength and FWHM was delivered with the camera. 

For a detailed description of a spectral calibration procedure of HS UAV sensors one can refer to e.g. 

Lucieer et al. (2014).  

 Radiometric calibration  

The raw HS image cubes recorded by the UHD consist of a three dimensional matrix where two 

dimensions represent the spatial extent of the FOV and the third dimension represent the HS bands. 

The pixels within each band contain a DN value which is created by the CCD corresponding to the 

electronic charge present within the pixel array at time of the readout. However, these do not 

necessarily represent the real radiation reflected or emitted by the objects within the sensors FOV. 

Artifacts introduced by the cameras optical system and its electronic components influence the signal 

and have to be corrected. Then, the signal has to be transformed to registered units (e.g. reflectance 

or radiance) to make them comparable and useful for analysis purposes.  

3.3.1.1 Noise correction 

In theory, a CCD sensor proportionally transforms the incoming luminous energy of each point of a 

scene into an electrical signal (Mansouri et al., 2005). During the process of translating radiation into 

digital numbers (DN) noise is added to the signal. The noise becomes obvious when the camera is 

triggered under perfect dark conditions. Theoretically, the image DN values should be zero. Mostly, 

this is not the case due to the dark current (DC). The DC consists of a readout noise and thermal noise. 

Latter is depending on the detectors temperature and the integration time.  

Typically, the read out noise can be measured with very short integration times (Mansouri et al., 2005). 

The thermal noise influencing a measurement can be estimated by blocking the lens under the same 
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conditions (temperature and integration time) as the subsequent measurements (Mansouri et al., 

2005). For changing conditions the DC should be frequently measured during the acquisition process, 

as it is common in field-spectroscopy (Aasen et al., 2014b; Gnyp et al., 2014), or empirically modelled 

after careful assessment of its dependency on the integration time and sensor temperature (Burkart 

et al., 2014; Kuusk, 2011). Most lightweight UAV sensors do not provide the possibility to physically 

block incoming light and thus, do not allow DC measurements during the flight. Additionally, some do 

not track the sensor’s temperature during the image acquisition.  

Since latter is the case for the UHD, we implement a DC correction assuming virtually stable conditions 

after sufficient sensor heat up time. To estimate the DC we covered the lens and place the UHD into a 

closed case in a dark room laboratory. Then we measure 30 images every 10 minutes starting three 

minutes after the sensor is switched on. For each time step the 30 measurements are averaged per 

pixel for each band. Additionally, we measure the DC in the field by carefully covering the lens.  

3.3.1.2 Radiometric response 

Besides of the noise the incoming radiance is altered during its path through the optical system of a 

sensor and during transformation into an electronic signal by the CCD. The most prominent influence 

of the optical system is the vignetting effect. Vignetting is defined as a spatially dependent light 

intensity fall-off that results in a radial reduction in brightness towards the image edges. It can account 

for 30 to 40 percent of the intensity even for high-quality fixed focal length lenses (Goldman, 2010a). 

It results from different reasons which can be found in Goldman (2010b) and Kim and Pollefeys (2008).  

Vignetting may be corrected by modelling the optical pathway or by image-based techniques. We used 

the latter approach since it is both simpler and more accurate (Yu, 2004). It is based on the generation 

of per pixel per band coefficients to correct the illumination fall-off. This can be done by pointing the 

sensor at a perfect homogeneous, lambertian surface (flat-field). 

After the radiation has passed the optical system, it liberates electrons inside the photosensitive cells 

of the CCD which then create the electric signal (Mansouri et al., 2005). The precision of this signal is 

defined by the theoretical dynamic range based on the bit depth of the sensor. However, the response 

of photosensitive cells is not necessarily linear. Thus, the same amount of light may resulting in 

different readings in different wavelengths and different cells. Specifically, the quantum efficiency of 

a CCD is effected by saturation effects under high light intensities. Thus, the radiometric response 

function is not linear for the entire theoretical dynamic range of a CCD and the integration time should 

be adjusted such that the maximum intensity of the signal stays within the linear range.  
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To quantify these effects we use an integration sphere (Labsphere CSTM-USS-1200C-SL, 

http://www.labsphere.com) placed in the spectral laboratory at the IBG-2 at the research center 

Forschungszentrum Jülich GmbH, Germany. The inside of the sphere is coated with Spectraflect® to 

provide a homogenous illumination. The light intensity is measured by a silicone and an InGaAS 

detector inside the sphere. After the sensor and the integration sphere is preheated we capture 30 

images at one ms integration time, which is typical for a measurement campaign under clear sky 

conditions around noon. We then average the measurements per pixel. For each band the median 

value of all pixels is evaluated and used as a reference to generate coefficients for each pixel to equalize 

irradiance differences. Similarly, we carry out the same measurement outside under clear sky 

conditions with a Zenith LiteTM panel. Here, the sensor is mounted on a gimbal to ensure a nadir view.  

Additionally, we adjust the light intensity inside the sphere until the sensor was clearly saturating. We 

then compare the DN values of the image to the readings from the silicone light sensor inside the 

sphere and quantify the ratio of the two values. As long as the ratio stays constant the response of the 

sensor is within the linear range.  

3.3.1.3 Radiometric registration 

In general two different types of transformation can be used to calibrate DN values to physical units. 

During the flat-field acquisition in the sphere the light intensities are measured. Since the radiometric 

response curve of the sphere is known this curve can be used to transform the flat-fielded images to 

radiance. In a second step, the solar illumination at the target area at the time of the measurements 

has to be estimated to correct the signal for illumination changes. This can be done by modelling the 

atmosphere (Zarco-Tejada et al., 2012) or by (continuously) measuring the incoming radiance (Burkart 

et al., 2014). A more direct approach is the empirical line method. Here one or more well characterized 

reference targets on the ground are used. Then the spectra of these are extracted from the image data 

and correction coefficients for each band are estimated (Smith and Milton, 1999). In our case we use 

a simple one point calibration empirical line method, where only one reference target is measured 

(James Burger, 2005). Before the flight, the sensor is pointed towards a well characterized homogenous 

(near) lambertian reference target (REF) on the ground and a reference image is taken. Latter is then 

used to transform the images to reflectance. Careful assessment of the sensor-sun-REF geometry is 

critical (Schaepman-Strub et al., 2006). During the calibration the sensors view orientation should be 

the same as during the flight, the plane of the REF should be parallel to the surface and shadows on 

the REF should be avoided and stray light minimized. Additionally, the calibration should be carried out 

with the same heading as in the flight. Latter minimizes the influence of bidirectional reflectance 

effects.  
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In our case we use a 50 cm by 50 cm Zenith LiteTM panel as REF with a reflectance of approximately 96 

percent and perform the reference image acquisition as described above. To ensure a stable sensors 

view orientation the camera is mounted on the CP and the gimbal is calibrated to nadir. The whole 

system is kept about 1.5 meters above the REF during the reference acquisition.  

3.3.1.4 Quality Assurance 

Careful characterization of a sensor and robust calibration procedures are critical to generate reliable 

data. At the same time, information about the data quality needs to be embedded to the data to help 

users to evaluate their results based on the data. As mentioned in 3.3.1.1 and 3.3.1.2 the signal is 

influenced in different ways by the sensor system depending on the position of the pixel within the 

image. Thus, the image quality (e.g. radiometric resolution) differ within the image cube. Additionally, 

all pixels recorded by imaging sensors have different sun-object-sensor geometries which is related to 

bidirectional reflectance effects. Thus, we encode the pixel position of the original image into an 

additional pixel position band and append it to the image cube. With the help of this information pixel 

depending properties of the final data product can be looked up from the camera characterization and 

considered during the analysis. In our case we demonstrate the potential of the pixel position band to 

disclose the actual radiometric resolution of each individual pixel, which corresponds to the minimal 

change (or distinct levels) of intensity depicted by the dynamic range of a certain pixel under actual 

conditions (e.g. illumination conditions). 

 Hyperspectral 3D information generation 

3.3.2.1 Hyperspectral band preparation 

To process the HS images we import the image cubes in their native resolution of 50 by 50 pixels 

together with the corresponding grayscale images into a self-developed program written in MATLAB. 

The program automates the entire image processing. After the selection of the reference image the 

program calibrates the image cubes to reflectance and appends the pixel position band. For the 

spectral bands, the DC is removed by subtracting it pixel and band wise from the DN values. To 

transform these values to reflectance, each pixel value is divided by the value of the reference target 

subtracted by the corresponding DC. Then the values are multiplied by a correction factor (REFb) per 

band, which is the inverse of the reflectance of the REF, to correct for the not 100 percent reflectance 

of the REF (Eq. 3.1).  

𝐼𝐶𝑏,𝑖,𝑗 =
𝐷𝑁𝑏,𝑖,𝑗 − 𝐷𝐶𝑏,𝑖,𝑗

𝑅𝐸𝐹𝑏,𝑖,𝑗 − 𝐷𝐶𝑏,𝑖,𝑗
∗ 𝑅𝐸𝐹𝑏  (Eq. 3.1) 
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The calibrated HS bands are than appended to the grayscale image. Latter has the dimensions of 1000 

by 990 pixels due to an unidirectional optical distortion (personal correspondence, Cubert GmbH). To 

match the HS data to the gray image we resample the image cube to the gray images resolution with 

the nearest neighbor algorithm to preserve the original HS values. The resulting HS bands have blocks 

of 20 by 20 and 20 by 19 pixels with the same value. In the resulting image cube the first band then 

corresponds to the grayscale image, followed by the HS bands and the pixel position band (Figure 3.3). 

Thus, it has a resolution of 1000 by 990 by (number of bands + two). Too preserve the theoretical 12 

bit precision of the sensor but limit the file size we resample and save the image cube as 16 bit TIFF. 

Optionally, to reduce processing time and file size the processing can be limited to specific bands. For 

this study 320 image cube were generated with 19 spectral bands.  

Figure 3.3 Scheme of the image cube after pre-processing of the spectral bands and merging with the 
grayscale image and pixel position band. 

3.3.2.2 Point cloud generation 

With the SfM approach the 3D structure of a scene can be reconstructed from 2D images. Different 

photogrammetric algorithms can be used to match feature points in overlapping images to compute 

the relative camera orientation and position and derive the 3D structure of the image pixels (Szeliski, 

2011). Different software packages exist that incorporate SfM algorithms for 3D structure 

reconstruction (Harwin and Lucieer, 2012). We use Agisoft Photoscan (Version 1.0.4. 

http://www.agisoft.com/) since it showed good results in a previous study (Turner et al., 2014). The 

320 image cubes are imported and the first channel containing the grayscale image is set as master 

channel. The first step for the data processing in Photoscan is initial low quality photo alignment. It 

estimates both internal and external camera orientation parameters, including nonlinear radial 

distortions. In total nine GCPs are placed in the point cloud to georeference it. After optimizing the 
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model a dense point cloud in ultra-high resolution is processed and a mesh for the surface type height 

field is built based on the dense cloud (Figure 3.3). Surface type height field is chosen since it is 

recommended for rather planar type surfaces (Agisoft LLC, 2014). At this stage an HS dense point cloud 

is created. Although the entire 3D reconstruction process for multi tiffs is based on the master channel 

each of the points derived from grayscale image implicitly defines the position of the HS information 

contained in the other bands. The entire processing time in Photoscan on a an Intel Core i7-3740QM 

with four (eight virtual) cores at 2.7 GHz, 16 GB ram and NVIDIA NVS 5200M is about four hours.  

3.3.2.3 Hyperspectral digital surface model preparation 

Unfortunately, Photoscan does only allow the export of point clouds with “color” information of up to 

three bands. Thus, we export the spatial and spectral information separately. The created spatial 

information is exported as DSM (export DEM in the software) with the suggested pixel size of 0.93 cm 

in a geographic projection (WSG 84, UTM zone 32N). The easiest way to export the spectral information 

would be to export it as an orthophoto. However, we discovered that despite the manual states that 

the mosaic mode “does not mix image details of overlapping photos but uses most appropriate photo 

(i.e. the one where the pixel in question is located within the shortest distance from the image center)” 

(Agisoft LLC, 2014) - it does. Latter was confirmed by Agisoft (personal correspondence, Agisoft LLC, 

06.11.2014). Thus, to preserve the original spectral information, we export each orthorectified image 

cube separately with the same projection and pixel size as the DSM.  

As described in section 3.3.1.2 the signal quality generally decreases towards the image edges. Thus, it 

is beneficial to use the spectral information from the center pixels of the original images for the final 

data product. Therefore, we import the orthorectified image cubes into a mosaic dataset in ArcGIS 

(Version 10.2.2, www.arcgis.com). We fit the footprint to the pixels containing real data to exclude no 

data pixels, calculate the center points of these footprints and create Thiessen polygons based on 

these. Then, the images are mosaicked based on the Thiessen polygons. The resulting scene contains 

the spectral information closest to the center of the original image cubes. At the same time, the pixels 

still spatially correspond to the pixels of the DSM. With this spectral information and the spatial 

information we have created a representation of the surface in 3D space linked with HS information 

emitted and reflected by the objects covered by the surface in 3D space. Thus, we name the resulting 

data product hyperspectral digital surface model (HS DSM). Figure 3.4 summarizes the data pre-

processing and HS 3D information generation. The resulting data product has an extent of 7455 by 

8409 pixels.  
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Figure 3.4 Generation of the hyperspectral 3D information with image pre-processing (dark current (DC) 
removal and radiometric calibration with reference image cube (IC (REF))) and merge to the grayscale 
image (PAN)) and the pixel position band (PPB) with MATLAB. Point cloud generation and 
georeferencing with ground control points (GCPs) with PHOTOSCAN. For the individual orthorectified 
image cubes the optimal cover area is calculated with Thiessen polygons, a mosaic is created and an 
orthomosaic is exported with ArcGIS. Since the spectral information is linked to the spatial information 
while the point cloud is generated the result is a hyperspectral digital surface model (HS DSM). 

 Plant parameter extraction 

As described above the applied goal of this study is to derive plant parameters for each plot of the 

experimental fields. To extract the plant parameters from the HS DSM we use ArcGIS. From the corners 

of the plots measured with a DGPS during the field campaign we subtract a 40 cm buffer from the 

edges to exclude border effects and create plot shapes. For each plot zonal statistics are computed to 

extract the parameters described in the following. Additionally, maps can be produced in 2D (ArcGIS) 

and 2.5D (ArcScene).  

3.3.3.1 Plant height 

Plant height is a proxy for biomass estimation (Bendig et al., 2014; Tilly et al., 2014) and an important 

factor to distinguish plant cultivars, phonological stages, crop treatments and stress (Bendig et al., 

2013). Additionally, it is an important input for growth models to assess canopy structure (Pronk et al., 

2003), yield losses and potentials (Evans, 1993; Sterling et al., 2003).  
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To extract the absolute plant height the difference between the DSM and the bare soil surface has to 

be calculated. Bendig et al. (2014, 2013) created the digital terrain model (DTM) from a flight campaign 

before the growing period. In our case we use a similar approach as (Geipel et al., 2014): Since the 

paths between the experimental plots are not covered with vegetation, we extract the surface heights 

from points from an almost regular grid within the paths. From these 28 points a DTM is interpolated. 

Unfortunately, neither the path nor the GCPs on the east side of the experimental area is covered. 

Thus, for the last row no DTM can be created and Plot 1 to 13 are excluded from the height analysis. 

To extract the plant height we use the raster calculator in ArcGIS and subtract the DTM from the DSM. 

Based on the plot shapes we perform zonal statistics for each plot. We then compare these values to 

the manual ruler measurements. 

3.3.3.2 Hyperspectral vegetation indices 

In this study we use previously published VIs for the detection of Chl content, green biomass and LAI. 

To detect the Chl content we apply the Transformed Chlorophyll Absorption Reflectance Index (TCARI), 

the Optimised Soil-Adjusted Vegetation Index (OSAVI) and the ratio of both, as well as the Blue Green 

Pigment Index 2 (BGI2) which have shown good results in previous studies (Haboudane et al., 2004; 

Quemada et al., 2014; Rondeaux et al., 1996; Zarco-Tejada et al., 2005). Additionally, we use the 

modified Photochemical Reflectance Index (PRI) sensitive to plant pigments (Hernández-Clemente et 

al., 2011). As estimators for vegetation greenness and LAI we apply the Normalized Difference 

Vegetation Index (NDVI, (1974)) and the Reformed Difference Vegetation Index (RDVI) as estimators 

for the absorbed photosynthetically active radiation (Roujean and Breon, 1995). Additionally, we apply 

the Modified Chlorophyll Absorption Ratio Index 2 (MCARI2) which showed good performance in 

Haboudane et al. (2004). For some VIs the original wavelength were slightly adjusted to fit the UHD 

bands (Table 3.2). To derive the VI values per plot we calculate the VI pixel wise for the entire area and 

extract the average value with the zonal statistics on basis of the plot shapes. These values are then 

compared with the invasive samples to assess the VIs for their predictability for Chl, LAI, and green 

biomass.   
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Table 3.2 VIs used in this study and their formula. Some wavelength are slightly adjusted to align with 
the band configuration of the UHD. 

BGI2 𝑅454 𝑅550⁄  (Zarco-Tejada et al., 2005) 

NDVI (𝑅798 − 𝑅670) (𝑅798 + 𝑅670)⁄  (Rouse Jr. et al., 1974) 

RDVI (𝑅798 − 𝑅670) (√𝑅798 + 𝑅670)⁄  (Roujean and Breon, 1995) 

TCARI 3[(R702 − R670) − 0.2(R702 − R550)/(R702/R670)] (Haboudane et al., 2002) 

OSAVI (1 + 0.16) × (R798 − R670)/(R798 + R670 + 0.16) (Rondeaux et al., 1996) 

TCARI/OSAVI TCARI/OSAVI (Haboudane et al., 2002) 

MCARI2 1.5[2.5(𝑅798 − 𝑅670) − 1.3(𝑅798 − 𝑅550)]

√(2 𝑅798 + 1)2 − (6 𝑅800 − 5 √𝑅670) − 0.5

 
(Haboudane et al., 2004) 

PRI(514, 530) (R514 − R530)/(R514 + R530) (Hernández-Clemente et al., 

2011) 

 Results 

 Radiometric calibration  

3.4.1.1 Dark current 

When the sensor heats up the average DC of all bands increase from 0.52 DN at 13 min to 2.66 DN at 

63 min. Since the sensor does not provide a temperature reading the response to temperature changes 

cannot be exactly quantified. Thus, we additionally evaluated the DC measurements from four field 

campaigns. Figure 3.5 (left) shows the histogram of the DC for all pixel of all bands after 33 min heat 

up time, which corresponds to the in-field measurements. The average DC is about 1 DN. The minimum 

DC is 0.03 and the maximum DC is 2.9 DN. Figure 3.5 (right) shows the pattern of the DC at 466 nm 

(band 5). The pattern is similar for all bands.  

Figure 3.5 Histogram of the dark current values for the entire image cube between 466 (band 5) and 
926 nm (band 120) (left) and dark current of band 5 (right). 
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3.4.1.2 Flat fielding and radiometric response 

To determine the linearity of the radiometric response of the sensor we compare the readings of the 

silicone light sensors inside the sphere with the DN values measured by the sensor. Latter increase 

similar with the light intensity as long as the DN values stay below 3600 DN. For higher values the 

sensors readings do not increase linearly with the illumination change. Thus, 3600 DN is determined 

as a maximum intensity for the linear response.  

When we look at the results of the flat-field images a spherical decrease of the DN values towards the 

edges of the image is visible. Additionally, the decrease is superimposed by an undulated pattern 

(Figure 3.6, right). This pattern is visible for all bands with varying intensity. For 466 nm (band 5) these 

effects decrease the signal up to 86 percent. However, for most of the pixels the signal is decreased 

less than 50 percent. Similar results are acquired in the laboratory and the outdoor measurements, 

although the intensities vary. To compare the performance of a flat-field calibration based on the 

laboratory measurements (Aasen et al., 2014a) and the simple in-field one point empirical line method 

calibration described in section 3.3.1.3 we applied both approaches, normalized for the light intensity, 

to different in-field measurements of a calibration panel from several campaigns. While the vignetting 

effect is corrected comparably, the in-field calibrations performs better for the undulated pattern. 

Based on that result we include the in-field calibration procedure into our processing chain.  

Figure 3.6 (left) shows the minimum, median and maximum DN values from 450 to 926 nm acquired 

outside under sunny conditions around noon in June from a Zenith LiteTM panel with one ms integration 

time. The maximum DN is 3563 (678 nm, band 58). From here it decreases towards lower and higher 

wavelength. Since the maximum DN of the image cube is exploiting nearly all of the possible linear 

dynamic range of the sensor, the DN shown in Figure 3.6 (left) represent the maximum values which 

can be achieved under field conditions. Theoretically, the sensor has a 12 bit radiometric resolution 

which results in 4096 digital counts to represent the reflectance. But as stated above, this is practically 

decreased to about 3600 DN where the sensor behaves linear. Because of the sensors sensitivity and 

the suns spectrum this is further decreased band and pixel dependently as shown in Figure 3.6 (left). 

This leaves 111 DN to express 100 percent reflectance for 466 nm (band 5) in the worst case (for the 

pixel with lowest DN value). Thus, the radiometric resolution has a minimum precision of 0.9 percent 

reflectance at 466 nm (band 5). Below 466 nm (band 5) the precision drops below one percent 

reflectance. On the other side of the spectrum 866 nm (band 105) is the last band where the precision 

is above one percent reflectance for all pixels. For the best pixel in band 678 (band 58) the precision is 

above 0.03 percent.  
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Figure 3.6 Minimum (min), median and maximum (max) DN from 450 (band 1) to 926 nm (band 120) 
(left) and the intensity of 466 nm (band 5) relative to the maximum DN of the band (right) of a Zenith 
LiteTM panel on a sunny day. These values define the actual radiometric resolution for each band and 
individual pixel.  

3.4.1.3 Radiometric correction and registration 

To evaluate the results of the radiometric registration we flew at 30 m above ground level over four 

80 cm by 80 cm reference panels placed on a meadow. Each target was homogenously painted with a 

different grey hue corresponding to approximately 58, 43, 18 and 5 percent reflectance. Figure 3.7 

shows the scene at 726 nm (band 70) before and after the radiometric correction and registration with 

the in-field procedure described in section 3.3.1.3. In the un-calibrated image the vignetting effect and 

the overlying undulated pattern are visible. In the calibrated image these are not visible anymore. 

Additionally, the reference panel with 18 percent reflectance, which was hardly visible in the 

uncalibrated image, is now visible.  

 

Figure 3.7 Image with reference targets as grayscale image (left), at 726 nm before (middle) and after 
(right) the radiometric correction and registration. 

To evaluate the spectral quality of the calibration we measured the targets with an ASDI FieldSpec 3 

(http://www.asdi.com/) and resampled the spectra to the UHDs band configuration with EXELIS Envi 

(version 5.0, http://www.exelisvis.com). From the scene captured by the UHD we extracted the 

spectrum of the center pixel of each panel. The spectra and their difference are shown in Figure 3.8. 
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For 466 nm (band 5) to 806 nm (band 90) the ASD and UHD spectra differ by less than one percent. 

Only the spectra measured at the 43 percent reference panel differs up to two percent below 482 nm 

(band 9) and above 782 nm (band 85). Below 466 nm (band 5) and above 850 nm (band 100) the offset 

increases rapidly. For the panels, where the reflectance is below the reflectance of the adjacent 

meadow, the UHD tent to have lower reflectance than the ASD and vice versa.  

 

Figure 3.8 Comparison of spectra derived from the UHD (solid), an ASD (dashed) and their difference 
(dotted) for four reference panels with 5, 18, 43 and 58 percent reflectance. Additionally, a spectrum of 
the adjacent meadow grass is shown in light green.  

3.4.1.4 Quality assurance information 

As shown above the quality of the spectral information depends on both the band and pixel position. 

Thus, we integrate the x and y pixel position of the original image into an additional band. In the final 

HS DSM we can extract this information to look up the properties for each pixel from each band from 

the camera characterization. Figure 3.9 (A, B) shows the pixel position in the original images of the 

pixel. -1 and 1 represent the pixel closest to the middle, -25 and 25 the pixels at the edges of the original 

image in the x (A) and y (B) direction. Thus, yellow colors in the map symbolize pixels taken from the 

image center while green and red symbolize pixels towards the edges of the original image.  
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Figure 3.9 Pixel distance in x (A) and y (B) direction from the image center of the original images. An 
absolute value of 25 correspond to pixels at the image edge, 1 to pixels closest to the image center. 
Radiometric precision (C) of the spectral information at 466 nm (band 5) and image overlap (D) of the 
scene. The dots represent the image capturing positions.  

The pixel towards the edges of the entire scene are derived from peripheral pixels of the original 

images. Additionally, pixel values between the flight lines, respectively the image positions, are taken 

towards the edges of the original images (Figure 3.9, A, B). The lower the overlap of the images, the 

more pixels are taken from the image edges since the area which is covered by each image is increasing 

(Figure 3.9, A, B).  

To demonstrate one possible application of the pixel position information we generated a map of the 

maximal precision of the HS information for 466 nm (band 5) (Figure 3.9, C). The radiometric resolution 

is a function of the sensor, band and spatial position of the pixel. Thus, the x and y position in the 

original image defines the radiometric resolution of each pixel in the output scene: Towards the edges 

of the scene the radiometric precision decreases. For most of the scene the pixels are taken from the 

inner area of the original images and have a high pixel precision. Additionally, the pattern described in 

section 3.4.1.2 is visible (Figure 3.9, C magnification). The maximum precision within the entire scene 

is 0.13 percent reflectance. The minimum precision is 0.91 percent. Thus, results of the analysis carried 

out in regions of the latter precisions cannot be more precise than 0.91 percent reflectance. However, 

95 percent of the scene have a precision of more than 0.2 percent. For the pixels within the 
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experimental plots the minimum average precision is 0.15 and the average plot precision is 0.14 

percent (std. < 0.002 percent).  

 Hyperspectral 3D information 

3.4.2.1 Plant height 

Figure 3.10 shows a map of the crop surface height (left) and a scatterplot of the average height of 26 

plots compared to the manual ruler measurements (right). The alignment of both measurements is R² 

= 0.7. The UHD measurements constantly underestimate the plant height by about 0.19 m (std. 0.03 

m). Only the height of plot 52 shows a significant higher offset with 0.3 m. Plot 19 and 23 show the 

smallest difference with less than 0.15 m.  

Figure 3.10 Map of the crop surface height. The spectrally measured non-invasive plot parts are marked 
in black with their plot number. Green points represent the ground control points while red ones 
represent the extraction points for the interpolation of the bare surface (left). Scatterplot of the 
averaged crop surface height for 26 plots compared to the manual ruler measurements of the marked 
26 experimental plots (right). 

3.4.2.2 Hyperspectral vegetation indices 

Table 3.3 shows the relationship of the VIs with the Chl, LAI and green biomass derived from the HS 

DSM. For Chl the BGI2 and PRI show the best results with an R² = 0.51 and 0.44, respectively. For LAI 

the RDVI performs best with R² = 0.32. Only the RDVI supplies significant results. For green biomass 
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the RDVI shows the best results, too. For Chl all VIs have a relative RMSE of about 10 to 13 percent of 

the average Chl value. For LAI and green biomass the relative RMSE is up to 24 and 22 percent, 

respectively. 

Table 3.3 Coefficients of determination (R²) and absolute and relative root mean square error (RMSE) 
of vegetation indices with chlorophyll, Leaf Area Index (LAI) and green biomass (green BM). 

 Chlorophyll LAI Green BM 
 R² RMSE (%) R² RMSE (%) R² RMSE (%) 

BGI2 0.51 5.35 (10) 0.09 293.17 (23) 0.10 22.28 (21) 
MCARI2 0.34 5.83 (11) 0.02 304.01 (24) 0.01 23.38 (22) 
TCARI/OSAVI 0.26 6.16 (12) 0.02 303.42 (24) 0.04 23.08 (22) 
RDVI 0.20 6.39 (12) 0.32 254.11 (20) 0.29 19.76 (19) 
PRI(514, 530) 0.44 5.35 (10) 0.17 280.46 (22) 0.18 21.23 (20) 
NDVI(798, 670) 0.12 6.73 (13) 0.11 289.59 (23) 0.18 21.33 (20) 
param. mean  53.24   1266.38   106.73 

 
Figure 3.11 shows a visualization of HS DSM with the BGI2 values shown for the area of the 

experimental plots and a scatterplot of the averaged BGI2 values per plot and the invasive measured 

chl values. The paths between the plots and the bare soil in the north can be identified. Different plots 

can be distinguished by their BGI2 value. Besides of the differences between the cultivars very low 

BGI2 values to the very east edge of the scene can be seen.  

 

Figure 3.11 3D visualization of the HS DSM with the BGI2 calculated from the hyperspectral data clipped 
to the extent of the experimental plots. The spectral sample areas are marked with black rectangles 
(left). The scatterplot shows the averaged BGI2 values per plot and the invasive measured chlorophyll 
values for the 36 plots (right). 
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 Discussion 

In this paper we describe a way to derive HS 3D information from images captured by a novel HS 

snapshot camera based on available software. It can also be used for data from IF cameras if the bands 

have been previously spatially co-registered to image cube with bands of the same spatial extend. 

Snapshot (and IF) cameras provide two key advantages for remote sensing applications compared to 

traditional line scanners: With current photogrammetric algorithms the relative position and 

orientation of images can be determined without any other information. To georeference the resulting 

scenes only a few GCPs are needed. This saves payload onboard the UAV compared to line scanning 

devices, which need very precise orientation and positioning information to orthorectify the individual 

image lines, and thus, increases flight time. Moreover, the complex process of data stream 

synchronization from GPS, IMU and image lines can be omitted. The second advantage is that IF 

cameras capture 2D spatial information. Thus, individual image bands can be used for the 

reconstruction of 3D information with SfM algorithms. Thereby, considering the limitations of SfM 

mentioned in Remondino and El-Hakim (2006), multispectral or HS image frame and snapshot cameras 

allow to capture spectral and structural information at the same time. This significantly reduces the 

complexity and costs compared to approaches were multiple sensor systems are used. The procedure 

introduced in this study allows to capture both 3D and HS information at the same time, with the same 

sensor, through the same lens and thus, without co-registration. Although not demonstrated here, this 

data can now be used for combined data analysis approaches as has been shown in other studies 

(Alonzo et al., 2014; Bendig et al.,2015; Clark et al., 2011; Hladik et al., 2013; Swatantran et al., 2011).  

 Radiometric calibration and quality assurance information 

Before a new camera system can be used, it should be carefully characterized to ensure the validity of 

resulting data products. We describe the important radiometric calibration steps for IF cameras and 

apply them to assess the UHD for HS remote sensing applications: The camera has a very low average 

DC of less than one DN per band. The highest DC for a single pixel is below three DN under operational 

conditions. Ideally, the DC of a sensor should be modeled as a function of sensor temperature and 

integration time. Unfortunately, this is not possible with the current version of the UHD, since 

temperature information is not available. Thus, we had to estimate it with an empirical approach of 

unknown precision. Future sensor systems should provide temperature readings for a better 

estimation. Nevertheless, since the overall maximum DC is very low (for most of the bands below one 

percent of the minimal intensity) it has minor influences on the final data product.  

On the contrary the flat-field analysis revealed a strong influence of the optical system on the images. 

Especially the undulated pattern caused significant challenges. With the help of the manufacturer a 
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coating on a beam splitter could be identified as the reason for the pattern. Additionally, the lab 

calibration failed because the mechanically stability of the camera was not strong enough. Thus, the 

optical path was slightly altered when the camera was mounted differently. In future versions of the 

camera this effect will be significantly reduced (personal correspondence, Cubert GmbH). The now 

chosen approach of in-field calibration compensated the undulated pattern well and showed very good 

results with less than one percent offset compared to ASD measurements of reference targets. 

However, compared to a lab calibration approach, it complicates the in-field measurement procedure 

and is more exposed to errors. Besides, the method cannot adapt for illumination changes during the 

flight. Especially for remote sensing applications in areas where constant illumination conditions 

cannot be guaranteed ground or UAV based measurements of the suns irradiance (Burkart et al., 2014; 

Hakala et al., 2013) or based on radiometric block adjustment (Honkavaara et al., 2013) should become 

a standard to increase the flexibility of spectral measurements. For very precise measurements 

spectrally resolved irradiance measurement techniques for onboard use of UAVs should be developed.  

Even with very well calibrated sensors (Hyper-) spectral remote sensing of plants is challenging: plants 

have relatively low reflection in the VIS compared to the NIR. At the same time already small changes 

in reflectance may point out important changes in the plants status. Additionally, the suns irradiance 

is not homogenous throughout the spectrum. Combined with the efficiency fall-off of detector towards 

its sensitivity borders and, for imaging sensors the decreased intensity towards the edges of the image 

(-lines), the precision of the spectral information for a certain pixel within a certain band might be 

strongly limited. We think that regardless of the size of the sensor or the carrier platform quality 

information should be included in every data product. Thus, we developed a method to trace the pixel 

position from the original image which was used to derive the spectral information of the final data. 

This information together with the characterization of the sensor provides good quality assurance 

information for every pixel in the final data product. With this information we showed that the 

radiometric precision was very good for most of the area mapped in this study. As expected the 

precision decreases between image positions and towards the edges of the entire scene. This can be 

explained by the decrease of signal intensity towards the edges of the original images. Still, with the 

quality information we can assure that the precision in most of the area of interest is sufficient for 

quantitative analysis. Only to the very east of the scene the precision decreases (Figure 3.9). Here the 

pixels are taken from the edges of the original images since center pixels are not available. Additionally, 

Figure 3.11 shows that the BRI2 values decrease strongly in the same area. This could result from the 

different sun-object-sensor geometries of pixels from different positions of the original images, leading 

to BRDF effects which have been shown to have significant influences on HS data collected by UAVs 

(Burkart et al., 2015). As for every analysis we recommend that the data quality information of a data 
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product should be carefully assessed if it is sufficient for the desired purpose. Thus, it should 

accompany the data. For the current version of the camera we recommend to limit the use from 466 

to 850 nm (band 5 to 100) because of the radiometric resolution and spectral quality. Additionally, the 

integration time should be set to limit the maximum DN value to less than 3600.  

During the development of the described methodology we discovered that Photoscan is interpolating 

the color information although it is stated otherwise in the manual (section 3.3.2.3). This introduces a 

non-traceable modification of the spectral data and makes the pixel position information unusable. 

Thus, we had to develop the described rather laborious workaround of mosaicking the individual image 

cubes in ArcGIS. Studies, which use interpolated color or spectral information need to investigate the 

influence on the data quality since the impact on the results might depend on several factors as image 

overlap, spatial resolution and the purpose of the study.  

 Hyperspectral 3D information 

With the SfM approach 3D information can be derived from 2D images. The main advance of this 

method compared to laser scanning approaches is the considerable lower cost for the equipment 

(Remondino and El-Hakim, 2006). However, since the technique is not able to penetrate through 

vegetation it is not suited to generate structural information below the canopy but well suited for 

canopy monitoring (Dandois and Ellis, 2010; Harwin and Lucieer, 2012). Thus, we use a similar approach 

as Bendig et al. (2013) used to create crop surface models from the derived 3D information. However, 

since we additionally have HS information linked to every pixel of the DSM and the methodology is not 

limited to crops we name the data product HS DSM referring to a digital surface model as a 

representation of the elevation of the earth’s surface and its covering objects linked with hyperspectral 

information. Since all data is captured through the same lens, at the same time, during the same 

exposure and of the same area no co-registration is needed. Nevertheless, since the spatial resolution 

of the HS bands is lower than the gray image’s we scale it with a nearest neighbor interpolation. Due 

to the unidirectional optical distortion, and the resulting slightly non-quadratic shape of the gray 

image, the merging introduces a spatial uncertainty of one percent in one direction. We think that for 

UAV studies with a spatial resolution as the present, this is acceptable. However, for studies which 

require more precise spatial allocation it should be further evaluated.  

From the created data product we derive several important plant parameters for vegetation 

monitoring applications. The correlation of the height derived from the SfM approach with manually 

measured plant heights show good results and is comparable to other studies (Bendig et al., 2013). The 

almost constant offset of 0.19 m might be explained by different factors: Before this study several 

other sampling campaigns were carried out within the same experimental plots. Thus, the soil on the 
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paths between the plots was significantly compressed and lower than the soil below the actual plots. 

Unfortunately, at time of the data analysis the absolute lowering was not ascertainable any more. 

Additionally, the manual ruler measurements might not be the best ground truth since it is prone to 

many errors in itself. As also mentioned in other studies (Geipel et al., 2014) ideally the results should 

be validated with perfectly co-registered high resolution laser scanning data. However, such data is 

currently not available for this measurement campaign. Besides, it has to be noted that the algorithms 

used in Photoscan are not publically known. Thus, it is not entirely clear how very complex surfaces 

like plants (e.g. with single high rising stems and ears) are handled.  

With the additional spectral information we derive biochemical and biophysical plant parameters. The 

BGI2 and PRI archive the best results for Chl with correlations comparable to other studies (Quemada 

et al., 2014; Yu et al., 2013a). For the biophysical parameters LAI and green biomass the RDVI, which is 

related to the absorbed photosynthetically active radiation, performs best. In many previous studies 

the NDVI has shown good results for LAI and biomass. However, most studies were carried out over 

more than one sampling date. In this study only a single measurement date was evaluated. Thus, 

temporal effects which usually expand the feature space – and often improve the correlations (Aasen 

et al., 2014b; Gnyp et al., 2014) - did not influence the results. For precision agriculture applications, 

where in-time information is critical, this effect should be further investigated. Reliable HS UAV data 

provides a great opportunity to support that. Additionally, it has to be noted that although VIs are still 

very common in vegetation studies, they may disregard the full potential of HS data as shown in 

comparative studies with other statistical approaches (Atzberger et al., 2010; Yu et al., 2013b).  

Besides, the invasive sampled plant parameters have been measured from the plants leafs. 

Unfortunately, the spatial resolution of the UHD is too coarse to sample HS signatures on the leaf level 

when flown on an UAV. By sampling signatures on the canopy level all organs of the plants, possibly 

background signals from the soil, the canopy structure, multi-scatter and shadow effects influence the 

spectra. Latter could be addressed by including canopy structural elements into the analysis but goes 

beyond this study. Additionally, it could be addressed by higher resolution data which allows sampling 

on the leaf level. However, when working with multispectral or HS sensor systems onboard of UAVs 

we face the challenge of spectral resolution versus spatial resolution versus coverage: Because of the 

size and weight limitations a trade-off between spectral and spatial resolution of a sensor has to be 

made. When applying the sensor the latter can be compensated by adapting the flight plan to the 

desired ground resolution – but this comes with a decrease in coverage because of the limited flight 

time. Thus, future studies should investigate the resolution needed for specific applications. Besides, 

the sensor technology is evolving fast. We are confided that the spatial resolution of the HS information 

of current HS image frame and snapshot cameras will further increase. Thus, besides of technical 
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developments for sensor systems and carrier platforms, advances in data management and automated 

processing will be needed to make use of the increasing volume of data.  

 Conclusion 

In this study we introduced a novel way to derive 3D hyperspectral information from a lightweight UAV 

snapshot camera for vegetation monitoring. Since the camera captures all information through the 

same lens at the same time with the same spatial extend no spatial co-registration is needed. The 

derived data product combines the 3D surface with hyperspectral information emitted and reflected 

by the objects covered by the surface and is thus named hyperspectral digital surface model. It has a 

spatial resolution of approximately 1 cm for the spatial and 21 cm for the hyperspectral information. 

The radiometric characterization of the camera demonstrates the feasibility for vegetation monitoring: 

The hyperspectral information has a sufficient accuracy (> one percent reflectance) from 466 to 850 

nm compared to an ASD field-spec 3.The radiometric precision of the spectral data in the area of 

interest is evaluated based on quality assurance information included in the created data product and 

is better than 0.13 percent reflectance. The derived plant parameters from a single date (3rd June 2014) 

field campaign in barley show significant correlations with invasive measurements of the plant height 

(R² = 0.7), chlorophyll (BGI2, PRI: R² = 0.51, 0.44), LAI (RDVI: R² = 0.32), biomass (RDVI: R² = 0.29).  
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Abstract: In order to reduce the unsustainable use of resources in agricultural areas while keeping up 

with global demand for food, timely and high-resolution remote sensing data is needed. In this context, 

unmanned aerial vehicles (UAVs) with specialized sensors become powerful sensing systems. This 

study evaluates novel high-resolution hyperspectral digital surface models (HS DSMs) derived from 

UAV snapshot cameras for the multi-temporal acquisition of crops growth on canopy scale. HS DSMs 

are a representation of the surface in 3D space linked with hyperspectral information emitted and 

reflected by the objects covered by the surface.  

To investigate their potential for multi-temporal monitoring of agricultural crops, four field campaigns 

were carried out under different illumination conditions at a barley experiment with different cultivars 

and nitrogen fertilizer treatments during the 2014 growing season. Chlorophyll was estimated from 

the spectral HS DSM data by means of vegetation indices. In the heading and development of fruit 

stage and across several growth stages, good agreements were found with destructive laboratory 

measurements (R² = 0.50 – 0.64). At the same time, significantly different correlations were found with 

estimations from field-spectrometer measurements.  

Thus, the special properties of the hyperspectral information within HS DSMs are investigated with an 

emphasis on the theoretical description and quantitative approximation of systematic differences 

resulting from the different measurement extents, directional reflectance effects and data processing 

schemes of imaging and non-imaging data. In this context, the concept of a specific field of view is 

introduced as a composition of pixels used to characterize a specific area of interest within a scene. 

Additionally, the impact of the illumination conditions during the radiometric in-field calibration is 

estimated.  
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The different measurement extent and angular properties accounted for up to 33% of the difference 

between the spectral imaging and non-imaging measurements. The results of the different processing 

schemes for the spectral imaging data differed by up to 29%. The radiometric calibration of the spectral 

data showed a significant impact of up to 14%, depending on the calibration procedure and 

illumination conditions.  

Besides challenges in the multi-temporal retrieval of the 3D information in conjunction with image 

overlap, ground control point placement and spatial coverage are highlighted. The comparison of the 

3D information with manually measured plant heights showed good correspondence for most of the 

individual dates and across several growth stages (R² = 0.45, 0.70 – 0.98). 

Keywords: specific field of view, unmanned aerial vehicle (UAV), precision agriculture, BRDF, angular 

properties, field-spectroscopy, imaging spectroscopy, low-altitude remote sensing, radiometric 

calibration, mosaicking, plant height, chlorophyll, canopy scale 

 Introduction 

In recent decades, the vegetated environment has changed its appearance. Today, croplands and 

pastures cover about 40% of the land surface (Foley, 2005). Since the human population and its food 

consumption is increasing, agricultural production needs to be roughly doubled by 2050 (Ray et al., 

2013). However, extending agricultural areas has far-reaching effects on the ecosystem (Foley, 2005) 

and much of the remaining land is unsuitable for agricultural production (Ellis et al., 2010). Thus, 

agricultural production needs to intensify while reducing the unsustainable use of resources (Foley et 

al., 2011).  

One approach is to use in-time knowledge to optimize management decisions about where, when and 

how much action to take (Mulla, 2013). In this context, remote sensing can provide timely and accurate 

information about vegetation status and stress (Atzberger, 2013). An additional approach is to breed 

cultivars which show strong resilience against biotic and abiotic stresses and maximize yield per unit 

of resource use (Araus and Cairns, 2014; Rascher et al., 2011). Both approaches benefit from high 

spatial resolution data to identify plant traits in the field. The timeliness and precision required in these 

agricultural applications make them an ideal field to evaluate remote sensing techniques for frequent 

high-resolution environmental monitoring approaches.  

In recent years, unmanned aerial vehicles (UAVs) have become an increasingly used platform for 

photogrammetry and remote sensing (Colomina and Molina, 2014; Pajares, 2015). Particularly when 

combined with specialized sensors, they become powerful sensing systems for gathering up-to-date 

information about vegetation. Their low flying altitude allows them to capture data in very high spatial 
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resolution. The advent of small and lightweight sensors has boosted this development as 

demonstrated by several studies: metrics from dense point clouds have been used to estimate tree 

height and biomass (Dandois and Ellis, 2010; Jaakkola et al., 2010; Puliti et al., 2015; Zarco-Tejada et 

al., 2014) or pruning (Wallace et al., 2014) in forest environments but also to monitor microtopography 

of Antarctic moss beds (Lucieer et al., 2014b). For precision agriculture applications, crop growth has 

been monitored with high-resolution canopy height models to estimate crop biomass (Bendig et al., 

2014) and yield (Geipel et al., 2014). High-resolution spectral data has been used to detect biotic 

(Calderón et al., 2013; Näsi et al., 2015) and abiotic stress (Malenovský et al., 2015; Zarco-Tejada et al., 

2012), chlorophyll content (Berni et al., 2009; Elarab et al., 2015), biomass (Honkavaara et al., 2013) 

and nitrogen uptake (Quemada et al., 2014). However, until recently spectral and 3D spatial data 

needed to be acquired separately.  

Lightweight hyperspectral (HS) snapshot cameras have overcome this limitation. They distinguish 

themselves from other spectral sensors by recording a two-dimensional hyperspectral image cube 

within a single exposure and thus without any scanning process. With recent photogrammetric 

algorithms based on structure from motion (SfM) the 3D geometry of a scene can be reconstructed 

from 2D images as long as the scene shows sufficient texture and the images are recorded with a 

sufficient overlap (Remondino and El-Hakim, 2006; Szeliski, 2011). Aasen et al. (2015) adapted this 

technique for hyperspectral snapshot cameras and introduced a method to derive hyperspectral digital 

surface models (HS DSMs), a representation of the surface in 3D space linked with HS information 

emitted and reflected by the objects covered by this surface. With this method, HS and 3D information 

can now be derived at the same time with only one camera system. This allows new analysis 

approaches which combine spatial and spectral data (Marshall and Thenkabail, 2015; Tilly et al., 2015).  

Although HS imaging data is becoming more and more common, non-imaging devices such as field-

spectrometers are still widely used at ground level (Milton et al., 2009). They have a long history in 

crop characterization (Mulla, 2013; Thenkabail et al., 2012). To name just a few examples, HS data can 

help estimate biophysical plant parameters such as biomass (Aasen et al., 2014; Gnyp et al., 2013; 

Hansen and Schjoerring, 2003; Marshall and Thenkabail, 2015), LAI (Haboudane et al., 2004), and 

biochemical parameters such as chlorophyll (Gitelson and Merzlyak, 1994; Haboudane et al., 2002; Yu 

et al., 2014).  

However, vegetated areas are anisotropic surfaces. Thus, differences in the field of view (FOV), sensor 

to canopy distance and viewing geometry have an influence on the apparent reflectance derived by a 

sensor (Zhao et al., 2015). Additionally, the interaction between the sun’s position and sensor 

orientation introduces directional effects which influence the reflectance perceived by a sensor 
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(Burkart et al., 2015; Schaepman-Strub et al., 2006; Verrelst et al., 2008). Therefore the question arises 

of how non-imaging ground observations compare to imaging data. Only a few studies have included 

such a comparison for vegetated areas (Bareth et al., 2015; von Bueren et al., 2015). However, the 

appearance of crop canopies become increasingly complex with smaller pixel sizes (Damm et al., 

2015).This becomes even more important with the recent advent of low-flying sensing systems capable 

of collecting very high-resolution data. Moreover, low flying altitudes require wider FOVs to cover the 

same area. Therefore, the variety of viewing geometries within a scene also increases.  

So far, no study has evaluated HS DSM containing 3D and HS information derived from a single sensor 

for frequent crop monitoring. Moreover, multi-temporal studies that investigate and explain 

differences of these novel data products with ground-based measurement approaches do not exist. 

However, with the tremendous potential and increasing use of novel snapshot cameras onboard UAVs, 

both topics are highly relevant for the field of remote sensing. Thus in this study high-resolution HS 

DSMs derived from UAV snapshot cameras are evaluated as an innovative approach to monitor 

agricultural crops in comparison with established in-field observations. Within the multi-temporal 

setting of this study, significant differences become apparent. For the spectral data, the common 

theory for imaging spectroscopy is advanced by the specific field of view (SFOV) to describe important 

data properties of HS DSMs. In comparison to field-spectrometer measurements, the influence of the 

different measurement extents and angular properties within the data are discussed. Additionally, the 

influence of two different processing schemes and the radiometric calibration are investigated. The 

influence of the differences on biochemical parameter retrieval is demonstrated by estimating 

chlorophyll by means of vegetation indices (VIs). For the 3D data, challenges in conjunction with image 

overlap, ground control point placement and spatial coverage and their implications for multi-temporal 

parameter retrieval are investigated. As an example, plant height data is estimated from the 3D data.  

 Materials and methods 

 Field experiment 

The field campaigns were carried out on a barley experiment at the University of Bonn’s research 

station, Campus Klein-Altendorf (50°37,51’ N; 6°59,32’ E), within the CROP.SENSe.net project 

(www.cropsense.uni-bonn.de/) in 2014. In total, nine varieties of barley were cultivated with two 

nitrogen treatments (40 kg/ha, 80 kg/ha) three times. In this study, six different varieties in 32 plots 

were considered. The size of each experimental plot was 3 x 7 m. Each plot was divided into two parts: 

in one part, destructive measurements of biomass and chlorophyll were carried out. In the remaining 

part, non-destructive remote sensing measurements were taken. To exclude border effects and tractor 

tracks a 0.8 m distance to the plot border was kept. The plots were separated by paths of bare soil for 
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management purposes. Within these paths ground control points (GCPs) were placed as references 

and measured with a differential GPS (TOPCON Hiper Pro, www.topcon.eu) with a precision of 

approximately 1 cm. Figure 4.1 shows the layout of the field experiment.  

 Field-spectrometer data collection and processing  

The FieldSpec3 (FS3; ASD Inc., www.asdi.com) is a field-spectrometer with a spectral range of 350 to 

2500 nm with a FWHM of 3 nm (VNIR) to 10 nm (SWIR). The spectra are resampled to 1 nm resolution 

by the software of the manufacturer. Each measurement spatially integrates one spectrum for the 

entire FOV. The FS3 was used without a fore optic resulting in a FOV of 25°. Measurements with the 

FS3 were taken with a common measurement procedure including regular optimization and calibration 

with a white reference to adapt for illumination changes. For details, please refer to Tilly et al. (2015). 

Within each plot at six random positions, 10 measurements were taken. After the detector offset was 

corrected (Aasen et al., 2014) the measurements were averaged so that each plot was represented by 

one spectrum.  

Figure 4.1 RGB orthomosaic of the field experiment at 70 days after seeding. The black squares 
represent the non-destructive measurement parts while the white squares represent the destructive 
sampling parts. Unmarked plots were not measured by the ground-based measurements.  

 



Multi-temporal monitoring of agricultural crops with high-resolution 3D hyperspectral digital surface models in 
comparison with ground observations 

71 

 Hyperspectral digital surface generation 

4.2.3.1 UAV sensing system 

The UHD 185-Firefly (UHD; Cubert GmbH, www.cubert-gmbh.de) is a hyperspectral snapshot camera 

that records 138 spectral bands from 450 to 950 nm with a spatial resolution of 50 x 50 pixels within 

one integration. In total, 2500 spectra per band are recorded at the same time. The FWHM ranges from 

approximately 5 to 25 nm. Additionally, a grayscale image with 1000 x 990 pixels is recorded 

simultaneously to the hyperspectral image. The FOV of the camera is 20° across and along track. At 

30 m above ground flying altitude, this results in a spatial ground resolution of the hyperspectral 

information of approximately 20 cm and 1 cm for the grayscale image. The instantaneous field of view 

(IFOV) for every pixel is approximately 0.4°. The camera is mounted on a gimbal (MK HiSight SLR2, 

www.mikrokopter.de), which compensates for pitch and roll movement and therefore ensures a nadir 

orientation of the camera. A single board computer controls the camera and records the data. The 

camera and single board computer are carried on a multirotor UAV (MK OktoXL 2, 

www.mikrokopter.de). For details on the image capturing system and the UAV please refer to Aasen 

et al. (2015).  

4.2.3.2 Hyperspectral snapshot camera data processing 

Before each flight, a reference image was taken by placing the camera and UAV above a white 

calibration panel (Zenith Lite). After dark current correction, this image was used to convert the raw 

digital numbers of each image taken during the flight to reflectance. This spectral information was 

merged with the high-resolution grayscale image into an image cube and information about the pixel 

position within the image was appended as introduced by Aasen et al. (2015). The individual image 

cubes were loaded into Photoscan (Professional Edition, version 1.1.6, www.agisoft.com) and 

processed with the typical workflow: after initial photo alignment, the scene was georeferenced by all 

GCPs visible in the scene and a dense point cloud (ultra-high) was created. At this stage, an HS dense 

point cloud was created. Thus, in contrast with traditional approaches, the HS and 3D information is 

linked inherently throughout the processing and no further post-processing is needed. The 

hyperspectral and 3D spatial was exported with a spatial resolution of 5 cm. The resulting HS DSM 

contained a representation of the 3D surface linked with hyperspectral information emitted and 

reflected by the objects covered by the surface (Aasen et al., 2015). Different blending modes exist in 

Photoscan, two of which are compared later (section 2.5.3.). For most of this study the blending mode 

‘disabled’ was used. In total 294, 198, 353 and 335 images were processed for the campaigns at 56, 70, 
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84 and 96 days after seeding (DAS), respectively. The measurement parameters and conditions are 

summarized in Table 4.1.  

Table 4.1 Summary of the dates with corresponding days after seeding (DAS), parameters and 
environmental conditions during the UHD campaigns. Additionally, the date of the field-spectrometer 
(FS3) measurements and plant parameter (PP) extraction are shown. 

UHD FS3 PP DAS growth 
stage 

UHD 
weather 

take off 
time 

image 
count 

sun 
elevation 

sun 
azimuth 

6-
May 

6-
May 

8-
May 

56 stem 
elongation 

cloudy 10:30 294 40.62 117.1 

20-
May 

22-
May 

22-
May 

70 booting sunny 13:30 198 59.35 180.42 

5-
Jun 

2-
Jun 

5-
Jun 

84 heading sunny 12:50 353 60.56 160.57 

12-
Jun 

18-
Jun 

17-
Jun 

96 development 
of fruit 

sunny 12:30 335 59.97 150.41 

 

 Spectral data properties of hyperspectral digital surface models  

The spectral data within HS DSMs have special properties. Compared to non-imaging sensors, the 

spatial extent and the angular properties of the measurements to characterize an area of interest (AOI) 

differ. Additionally, the data is influenced by the data processing workflow and the conditions during 

the radiometric calibration. To highlight the characteristics of hyperspectral data within HS DSMs, the 

overlying pattern of the difference with the ground-based field-spectrometer observations were 

evaluated per date and across the dates. For all plots of DAS 56 to 84, the measurements were 

averaged per date, and then compared by calculating the ratio of the field-spectrometer and HS DSM 

measurements. Additionally, the standard deviation of the differences between the HS DSM and field-

spectrometer derived measurements was calculated for each date. DAS 96 was excluded, since the 

measurements were taken five days apart. In the following sections, the theoretical background for 

the discussion of the HS data properties is described and the comparison with ground-based field-

spectrometer measurements is outlined.  

4.2.4.1 Measurement extent 

Imaging systems offer the opportunity to capture several hundreds to thousands of spectra of an AOI. 

Traditional measurement protocols designed for field-spectrometers use only a few measurements to 

characterize an AOI. Thus, the data processing schemes for both types of measurements differ. Field-
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spectrometer measurements are usually taken at distinct places within an AOI. In this study, 

measurements were taken at six positions within each plot and then averaged to one spectrum. Since 

it was intended to estimate vegetation parameters, the measurements were taken at vegetated areas 

within the non-destructive measurement part of the plot. For the imaging data, the spectrum of each 

pixel within this part of the plot was extracted from the HS DSM and averaged to a spectrum.  

4.2.4.2 Specific field of view  

Vegetated areas are anisotropic surfaces. Depending on vegetation properties like leaf angle, leaf area 

and canopy structure and their interaction with the incident irradiance and illumination regime, light 

is heterogeneously reflected to the hemisphere. Most vegetated surfaces show a distinct backscatter 

in the direction of the incident light called the ‘hotspot’ and a decreased scattering with increasing 

distance to the incident angle. Thus, the apparent reflectance perceived by a sensing system is 

dependent on its position and orientation (Qi et al., 1995; Schaepman-Strub et al., 2006; Zhao et al., 

2015). For imaging spectroscopy data this becomes even more complex, since the geometric sun-

surface-sensor properties are unique for every pixel and depend on the IFOV of that specific pixel.  

The conceptual framework used to describe these effects is the bidirectional reflectance distribution 

function. It describes the scattering of a parallel beam of incident light from one direction of the 

hemisphere to another and is expressed as the ratio of infinitesimal small quantities (Nicodemus et al., 

1977). In remote sensing, the reflectance of a surface is commonly expressed as the ratio of the flux 

received within the conical (I)FOV of a sensor from the sampled surface and a lossless and Lambertian 

reference surface in the same beam geometry under natural illumination conditions. Thus, these 

measurements are precisely referred to as hemispherical conical reflectance factors (HCRF; 

Schaepman-Strub et al., 2006). This is particularly true for field-spectrometers with a rather wide FOV. 

The pixels of imaging spectrometers have rather small IFOV, which also results in a rather small 

measurement cone for each pixel. Therefore their measurements can be considered as an 

approximation of directional measurements (Schläpfer et al., 2015) and the resulting quantities as 

hemispherical directional reflectance factors (HDRF). Equation 4.1 gives the formula for the reflectance 

factor with 𝜃 as the zenith and 𝜙 as the azimuth angle of the incident (𝑖) radiation over the hemisphere 

(2𝜋) and reflected (𝑟) radiation and the solid angle of the IFOV (𝜔𝑟), which for the HDRF case is set 

(close) to 0. For simplicity, the reflectance factors measured in this study are referred to as reflectance.  

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒  𝑓𝑎𝑐𝑡𝑜𝑟: 𝑅(𝜃𝑖 , 𝜙𝑖 , 2𝜋, 𝜃𝑟 , 𝜙𝑟 , 𝜔𝑟) (Eq. 4.1) 

𝐻𝐷𝑅𝐹: 𝜔𝑟 ≈ 0  
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HS DSM are derived from multiple images. Within each of these images, each pixel contains a HDRF 

measurement with unique angular properties (Figure 4.2). Within an individual image, the angular 

properties can be calculated as long as the IFOV, the image orientation and position and the surface 

geometry are known. Within the HS DSM, the images are composed depending on the orientation and 

position of the individual images defined by the flight trajectory and the capturing position. Depending 

on the position of an AOI, its area within the HS DSM might be covered by several pixels eventually 

captured by different images. Thus, a spectrum to characterize this AOI is also composed from multiple 

pixels and their composition of angular properties. In the following, the composition of pixels and their 

angular properties within a scene used to characterize a specific AOI is called the specific FOV (SFOV). 

Figure 4.2 illustrates this concept. The area within the HS DSM is covered by two images. Within these 

images, each pixel has its own angular properties. Moreover, the same area might be covered by pixels 

from different images with different angular properties. Depending on the composition of the spectral 

information within the HS DSM, an AOI is characterized by the SFOV composed of pixels from several 

images.  

With the pixel-tracing technique introduced by Aasen et al. (2015), the pixel position within an image 

can be traced to the composed HS DSM. This technique can be exploited to comprehend the SFOV of 

an AOI by extracting the position information of the pixels. Within this study, this information is 

exemplified by being plotted as a two dimensional histogram showing the distribution of pixel position 

within the SFOV of plot 4 at DAS 70. The difference between HS DSM derived data and non-imaging 

data is highlighted by comparing the SFOV with the FOV of the field-spectrometer.  
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Figure 4.2 Schematic drawing of the concept of the specific field of view (SFOV) of an area of interest 
(AOI) within a hyperspectral digital surface model generated from snapshot cameras. Each pixel within 
an image is recorded with different angular properties. The same surface area may be captured by 
several pixels with different angular properties (as denoted by the zenith reflectance angles  𝜃𝑟  𝑎𝑛𝑑  𝜃𝑟

′  
for one pixel. For clarity, the azimuth angles are omitted). The SFOV describes the pixels and their 
angular properties which are used to characterize an AOI (excerpt top right). Additionally, the field of 
views (FOVs) of two images and an instantaneous field of view (IFOV) of one pixel is shown.  

4.2.4.3 Processing mode 

The HS DSM is generated from multiple overlapping images. Agisoft Photoscan has different processing 

modes for the spectral information. These include ‘mosaicking’, ‘averaging’ and since version 1.1.3., a 

blending mode ‘disabled’ (Agisoft LLC, 2015, 2014). The first two modes influence the spectral 

information by applying a (weighted) average for the calculation of the pixels’ spectral information in 

the composed scene. In blending mode ‘disabled’, the spectral information is taken from the image 

whose center is closest to the pixel in the composed scene. Thus, the spectra are not modified and 

each pixel has the original spectral information. To investigate the influence of the processing mode 

the HS DSM is processed in blending mode ‘average’ and ‘disabled’ and the resulting hyperspectral 

information is compared pixel-wise by calculating the ratio of both data products.  
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4.2.4.4 Radiometric calibration 

Due to a mechanical instability of our camera prototype and several maintenances during the year 

2014, the camera could not be radiometrically calibrated in a general manner. Additionally, the camera 

has no irradiance sensor. Thus, a calibration procedure similar to field-spectrometer measurements 

was applied: before each flight the UHD was pointed towards a reference panel to measure the 

incoming irradiance. Then this measurement was used to transform the DN values to reflectance. 

However, this type of calibration is prone to errors. At DAS 56 a significant offset in reflectance was 

noticed compared to the other dates, which could not be explained by the plant growth. Since the sky 

was clouded on this date, the influence of the illumination conditions during the calibration was 

investigated.  

To investigate the influence, the FS3 was mounted on a tripod 50 cm above a Zenith Lite calibration 

panel and the reflected radiation was measured. The UAV was then placed right above the downwards-

facing fiber of the FS3 in a similar position as it would be during the in-field calibration and another 

measurement was taken. The difference represents the influence of the UAV on the radiation reflected 

from the panel. Accordingly, a sensing system mounted below the UAV will also perceive the influenced 

radiation instead of the real radiation. Consequently, a reference image taken under these conditions 

would influence all measurements.  

To estimate the influence of the illumination conditions, the measurements were carried out under 

clear sky and cloudy conditions. In both cases, no direct shadow was cast on the reference panel. 

Additionally, under the clear sky conditions measurements were taken with the person holding the 

UAV in and perpendicular to the principle planeof the sun.  

 Multi-temporal chlorophyll retrieval 

To evaluate the prediction of important plant parameters from HS DSMs, canopy chlorophyll was 

estimated with the widely used VIs TCARI/OSAVI (Haboudane et al., 2002), PRI (Gamon et al., 1992), 

REIP (Guyot and Baret, 1988) and ND705 (Gitelson and Merzlyak, 1994). For each date maps of the VIs 

were created. To compare the results to the destructively measured chlorophyll values, all pixels from 

the non-destructive part of the plot were averaged and a linear regression model was established for 

each individual date. Additionally, multi-date models were established for DAS 70 – 96 and 84 – 96. 

The results were compared to the FS3 measurements with the original FS3 data, since a convolution 

to the UHDs band configuration only showed very minor influence. Only plots which were entirely 

covered by the HS DSM were considered in the analysis.  
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 Multi-temporal canopy height monitoring 

4.2.6.1 Canopy height model generation 

The height in the HS DSM represents the absolute height above the ellipsoid. The difference between 

the DSM and the digital terrain model (DTM), which is the height of the bare soil surface, represents 

the crop height. To calculate this height a DTM was generated from the non-vegetated paths between 

the experimental plots for each date: DTM extraction points were placed every 3 m and the height of 

a circle with a radius of 0.2 m around the points was averaged to minimize small scale differences of 

the bare soil. Based on these values a DTM was interpolated. From the DSM the generated DTM was 

subtracted. The result represents the average height of the plants within a pixel. This height will be 

referred to as canopy or crop height model (CHM). For each plot the average height of the CHM was 

extracted from the non-destructive measurement part of the plot with a margin of 0.8 m to the plot 

border to exclude influences of tractor tracks and border effects (Figure 4.3).  

 

Figure 4.3 Plant height extraction from the hyperspectral digital surface model (HS DSM). A digital 
terrain model (DTM) is created and subtracted from the digital surface model. The result is a canopy 
height model (CHM).  

Besides the image overlap, the number and placement of GCPs influences the quality of a surface 

derived from SfM (Harwin and Lucieer, 2012; Mesas-Carrascosa et al., 2015). DSM from SfM are prone 

to the ‘bowl effect’ which occurs when the area mapped exceeds the area surrounded by GCPs 

(Ouédraogo et al., 2014). In our dataset, only the HS DSMs of the first date covered the entire extent 

of the experimental area. For DAS 70 and DAS 84, the GCPs were missing on the east side of the covered 

area. To counteract the ‘bowl effect’, the DTMs were generated individually for each date. Also, plots 

that were not entirely covered by the generated DTM were excluded. For DAS 70, the most western 

row was excluded from the analysis as an additional case (DAS 70b), since this area had low image 

overlap in the HS DSM.  
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4.2.6.2 Plant height evaluation 

The plant height derived from the HS DSM was compared to ruler measured plant heights. Within each 

plot, the height of ten individual plants was measured and the median was calculated. From the HS 

DSM the average height per plot was calculated. These estimates where compared for each date and 

across all dates. 

 Results and Discussion 

 Spectral data properties of HS DSMs 

Figure 4.4 shows the ratio of the reflectance extracted from the HS DSM and the FS3 as an average of 

all plots for DAS 56, 70 and 84 and its standard deviation. Overall, the apparent reflectance of the UHD 

measurements is higher than for the FS3. For DAS 70 and 84 the ratio is within the same magnitude, 

while DAS 56 shows an overall higher ratio. All dates show a similar wavelength dependent pattern: in 

the blue (466 nm) the ratio is at 1.80, 1.37 and 1.55 for DAS 56, 70 and 84, respectively. Towards the 

green (550 nm) the ratio decreases to 1.39, 1.10 and 1.05. Towards the red (670 nm) the ratio increases 

to 1.89, 1.29 and 1.33. In the NIR (798 nm) the ratio decreases again to 1.28, 1.03 and 0.92. The 

standard deviation decreases from DAS 56 to DAS 84.  

Three reasons could be identified for these differences: the different measurement extent of the 

imaging and non-imaging device, the angular properties of the pixels within the measured area and 

the illumination conditions during the calibration. Additionally, the different spectral data processing 

schemes for the HS DSM data have an impact on the final data product. These aspects and their 

Figure 4.4 Ratio of the reflectance retrieved from the HS DSM and the FS3 averaged over all plots for 
DAS 56, 70 and 84 (solid line) with standard deviation (ribbon). Additionally, the ratio of plot 52 (upper 
black dotted line) and plot 20 (lower black dotted line) at DAS 56 is shown. 
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implications for the difference between the HS DSM and field-spectrometer are discussed in the 

following.  

4.3.1.1 Measurement extent 

Figure 4.4 shows the ratio of the highest difference (plot 52) and the lowest difference (plot 20) of the 

imaging and non-imaging data of DAS 56. These two plots are shown in Figure 4.5. The measurement 

extent of the UHD is framed in black. Additionally, six exemplary measurement positions of the FS3 

and their extent are shown for plot 52.  

Within plot 52 several patches of bare soil are visible. On the other hand, plot 20 shows an almost 

homogenous growth and almost closed canopy. Since the spectral information is extracted from the 

entire measurement area within the HS DSM, it contains more soil areas than the FS3 spectra for plot 

52. In plot 20, this is not the case due to the homogeneous growth within the plot. The comparison of 

the ratio functions for plot 20 and 52 reveal that the HS DSM spectrum of plot 52 is significantly more 

increased in comparison to the FS3 spectrum. In particular, in the VIS, a very high difference can be 

seen (Figure 4.4). This is explained by the higher reflectance of soil compared to vegetation in the VIS 

and lower reflectance in the NIR which influences the HS DSM derived data more than the FS3 

measurements. For the averaged spectra, the standard deviation of the difference between the HS 

DSM and FS3 observations at DAS 56 is higher compared to the other dates. At the later dates, the 

canopy was closed and the heterogeneity within the plots was reduced. Thus, the standard deviation 

decreased for DAS 70 and 84.  

Figure 4.5 RGB image of plot 20 and 52 at DAS 56. The black frame marks the area measured within 
the HS DSM. The blue circles exemplary show six measurement positions of the FS3 within one plot.  
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4.3.1.2 Specific field of view 

The ratios between the FS3 and HS DSM derived measurements show a wavelength dependent pattern 

(Figure 4.4). Both devices have a similar FOV. The FS3 has a circular FOV of approximately 25° while 

the UHD has rectangular FOV of about 20°. Thus, applied from the same height both instruments cover 

a similar area. Additionally, if all pixels of the UHD would be averaged, the integration of solid angles 

of the IFOVs would compose a SFOV similar to the FS3 and therefore the angular properties of the 

resulting spectra would be similar too. When the UHD is applied on a UAV, the footprint increases with 

increasing flying altitude. Additionally, the spectrum for a specific area is extracted from the HS DSM, 

which is composed of multiple images (c.f. section 4.2.4.2). Thus, the angular properties of the SFOV 

characterize an AOI change too.  

Figure 4.6 shows the theoretical across track FOV of the UHD (orange) and FS3 (gray). The FS3 averages 

the spectral signature of all objects within its circular 25° FOV almost equally by its design (Mac Arthur 

et al., 2012). The FOV of the UHD is composed by the individual IFOVs of every pixel. During the 

processing of the HS DSM only pixels from a few location are used to compose the scene. Moreover, 

the placement of the AOI within the scene defines the SFOV and consequently, also the pixels which 

are used to spectrally characterize the area. Figure 4.6 (right) shows the number of pixels from each 

pixel position within the SFOV, which was used to generate the spectrum of plot 4 at DAS 70 from the 

HS DSM. The purple sections in Figure 4.6 (left) show the resulting section of the along track FOV of 

the UHD which was used for the area of plot 4. Evidently, just a very small part of the entire FOV is 

used. As a result the angular properties of the spectrum derived from the FS3 and the HS DSM differ 

Figure 4.6 Comparison of the 25° FOV of the FS3 (gray) and 20° of the UHD (orange) and their footprint 
from the same height (left and center). For plot 4 at DAS 70 the specific field of view (SFOV) within the 
hyperspectral digital surface model is shown (right). The plot is characterized by spectral information 
from two images (image A and B). The colors indicate how many pixels are taken from a particular 
position within the images. Additionally, the resulting along-track SFOV is shown in light blue (left). 
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strongly. In Figure 4.4 it is apparent that the ratio of the HS DSM and FS3 derived spectra is wavelength 

dependent. The different viewing geometries and their interaction with the sun position, plant 

structure and the resulting visible features (e.g. soil and green vegetation) have a strong wavelength 

dependent influence on the apparent spectrum (Burkart et al., 2015; Schaepman-Strub et al., 2006; 

Verrelst et al., 2008; Zhao et al., 2015). Additionally, they can be very pronounced for certain geometric 

settings (Küster et al., 2014) and are stronger in the VIS than in the NIR (Burkart et al., 2015; Küster et 

al., 2014). Due to the integrated FOV of the FS3 some of these effects are averaged. On the contrary, 

the very narrow SFOV used to derive the spectra from the HS DSM (SFOV) does not average over a 

wide variety of geometric settings. Mostly, the geometry of the spectral information in the HS DSM is 

closer to nadir than the integrated information of the FS3 (Figure 4.6, left). Depending on the sun’s 

position and the structural properties of the canopy, this can result in higher or lower apparent 

reflectance. In this study, most plots have higher apparent reflectance in the HS DSM measurement 

than in the FS3 measurement. This can be explained since the spectral information within the HS DSM 

is measured closer to the principle plane and the ‘hotspot’ of the vegetation in comparison to the 

information integrated over the wide FOV of the FS3. Additionally, the different angular settings 

become apparent in the shape of the ratio between the measurements of the two instruments, which 

are similar to anisotropy factors measured in another studies over wheat (Burkart et al., 2015).  

These differences must be kept in mind when data from different sensors are compared. This needs to 

be considered especially for low-flying imaging systems, since the variety of angular properties within 

an AOI is considerably increased compared to high-flying platforms. It has also been shown that angular 

effects influence the retrieval of vegetation properties (Burkart et al., 2015; Verrelst et al., 2008). In 

general, it can be assumed that an integration over a wider FOV or SFOV is more robust against angular 

effects (Zhao et al., 2015). On the other hand, well-defined angular properties offer the opportunity to 

derive additional information about the surface (Schaepman, 2007). In particular, when snapshot 

cameras capture overlapping images to derive HS DSMs, the same area is measured from multiple 

positions. Thus, snapshot cameras provide an optimal tool for the derivation of multi-angular 

properties (Aasen, in review; Hakala et al., 2010; Honkavaara et al., 2014; Koukal et al., 2014). Future 

studies should exploit this opportunity. At the same time, the gained understanding should be used to 

further develop and adapt existing methods for the correction of angular effects (e.g. Schlapfer et al., 

2015). This is especially important, since high-resolution data increase the apparent heterogeneity of 

a surface (Damm et al., 2015). In the future, the high-resolution 3D information contained in HS DSMs 

could support the correction.  
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4.3.1.3 Processing mode 

The spectral data of an HS DSM is composed depending on the processing mode, which is chosen within 

the photogrammetric software. In the blending mode ‘average’, all available information from all 

overlapping images is averaged to one spectral signature per pixel. Consequently, pixels with different 

angular properties are averaged to produce the pixels in the HS DSM. On the contrary, in the blending 

mode ‘disabled’ only the information from one image is taken per pixel in the HS DSM. Figure 4.7 (right) 

shows the relative difference of the reflectance at 670 nm at a part of the scene at DAS 70 between 

the processing with blending mode ‘average’ and ‘disabled’. Ratios above 1 represent values, where 

the averaged reflectance is lower than the one in disabled mode. Additionally, the pixel position as a 

distance in x- and y-directing from the image center in the original images is shown (Figure 4.7 center 

and right).  

 

Figure 4.7 Relative difference between blending mode ‘average’ and ‘disabled’ of spectral data at 
670 nm (left), and pixel position as distance from the image center in the original images in the y- 
(center) and x-direction (right).  

In the entire scene the ratios for individual pixels range from 0.74 to 1.29, while for the shown part the 

ratios range from 0.85 to 1.15. Within the shown part different patterns can be identified. Within area 

B an edge of the ratios can be seen in the west-east direction. To the north of this edge the averaged 

scene shows higher reflectance than the unmodified spectra. Below the edge it is vice versa. These 

edges align with the transition from one image to another in the y-direction. To the right in area B, a 

difference in reflectance can be seen at the north-south aligned transition of the images. Here, the 

pixels on both sides of the transition originate from different pixel positions in the y-direction. Also, 

area A contains an image transition in the north-south direction, but the apparent reflectance is hardly 

influenced. The pixel positions show that the position in the y-direction is similar for the images on 

both sides of the transition.  
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Although differences are clearly visible between the processing modes, their interpretation is not trivial 

since angular effects, the structure of the canopy, and the image composition interact. During the flight 

at DAS 70, the sun had an elevation of approximately 59° and an azimuth angle of 180°. Therefore 

pixels with a lower pixel position value in the y-direction were captured with a more acute sun angle, 

closer to the reflection hotspot, resulting in higher reflectance than pixels with a higher pixel position 

value. On the other hand, the images were approximately aligned with the solar principle plane in the 

along track direction. Thus, the x-pixel position did not strongly influence the apparent reflectance. 

These observations align with the theory (Schaepman-Strub et al., 2006), models (Küster et al., 2014) 

and other measurements of angular effects of vegetation (Burkart et al., 2015).  

Both methods have their advantages and drawbacks. While averaging spectral information derived 

from multiple images and thus with multiple angular properties might approximate an HCRF 

measurement similar to field-spectrometer measurements, it introduces additional uncertainty as long 

as it is not possible to trace which parts of which images were overlapping, respectively averaged. 

Although an approximately uniform flying speed and an along track image overlap of about four images 

can be assumed (c.f. Figure 4.10 A), it is not guaranteed that similar parts overlapped for all areas of 

the scene. Additionally, the across track overlap varied significantly. However, without blending 

stronger angular effects are apparent in the composed scene and might influence the results of 

retrieval methods. At the same time, they can be traced and included into the analysis.  

These results demonstrate the significant impact of the processing mode and viewing geometries on 

the final data product. Currently, illumination differences resulting from different viewing geometries 

within an image mosaic are often ignored (Koukal et al., 2014). However, in an applied scenario the 

UAV trajectory might differ from flight to flight due to wind or other navigational uncertainties. 

Environmental effects such as the position of the sun might also vary between observations. Thus, in 

future pixel wise information about the angular properties, the signal quality and the environmental 

conditions during the acquisition should be incorporated as a standard in the metadata for scientific 

grade remote sensing data independent from the sensing system.  

4.3.1.4 Radiometric calibration conditions 

The reflectance at DAS 56 within the HS DSM showed an overall increase in reflectance compared to 

the field-spectrometer measurements. This difference could not solely be explained by the 

combination of the different measurement extents and the angular properties. Figure 4.8 shows the 

reflection of the reference panel under clouded and clear sky conditions when the UAV is held above 

the panel from a person standing within and perpendicular to the principle plane of the sun.  



Multi-temporal monitoring of agricultural crops with high-resolution 3D hyperspectral digital surface models in 
comparison with ground observations 

84 

 

Figure 4.8 Measurements of a Zenith Light reference panel under clear sky conditions (reference), with 
a person behind the panel in the principle plane (person pp.), person perpendicular to the principle plane 
(person), with a UAV above the panel held by a person within the principle plane (UAV pp.) and a UAV 
held from a person perpendicular to the principle plane (UAV). Additionally, a measurement under 
cloudy conditions with a UAV held by a person within the principle plane relative to a measurement 
under cloudy conditions without obstacles (cloudy pp.). 

The largest difference was introduced by the cloud cover. Under cloudy conditions, the reflectance of 

the panel was reduced by about 14% reflectance. Depending on the cloud cover and the distance of 

the panel to the UAV, this value changed (not shown here). Clouds change the illumination regime 

from a mostly directed illumination under sunny to diffuse illumination conditions, where light is 

irradiated approximately homogeneously from the whole hemisphere. When a UAV and a person 

holding the UAV cover large parts of the hemisphere, the illumination of the panel is significantly 

reduced.  

The second largest influence was introduced by the position of the person who is holding the UAV. 

When the person holding the UAV was standing within the principle plane the reflection in the VIS was 

decreased by up to 4% (at 466 nm). In the NIR, the reflectance was increased by 8.5%. When the person 

was standing perpendicular to the principle plane, the influence was significantly reduced in the NIR 

to an increase of only 1.9% compared to the case without obstacles. In the VIS it was slightly reduced 

to 3.4%. The presence of the UAV only changed the influence slightly. When the person was standing 

in the principle plane, the UAV even reduced the difference to the pure reflectance of the reference 

panel. Similar to the clouded case, the decrease in the VIS can be attributed to the covering of the 

hemisphere. Since the hemisphere mostly scatters blue light under clear sky conditions, the decrease 

was most pronounced in this region. As the UAV increased the covered area, the influence was 

increased. In the NIR, the person and the UAV were scattering light back on the panel. Thus at about 

670 nm the reflectance increased. The slight difference of about 1% in the NIR between the case with 

and without the UAV is most likely explained due to slight differences in the distance to the panel. 
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Similar results were found by Kimes et al. (1983), who reported errors from 2 to 18% in field-

spectrometer measurements depending on the distance and position of a person close to a reference 

and the color of the clothing worn by the operator.  

These results have a great implication for the data quality. Since the measurement of the reference 

panel is used to transform all image cubes to reflectance, errors will propagate into every 

measurement. Worse, this error cannot be quantified afterwards. Therefore data calibrated with this 

approach cannot be directly compared to data captured under different illumination conditions. 

Although this is particularly true for UAVs or other bulky sensing systems, this might also affect other 

sensing systems like field-spectrometers, which are calibrated in the same way. Thus, this calibration 

method should be avoided in the future. For UAVs, robust methods based on laboratory calibrations, 

characterized ground targets (Lucieer et al., 2014a), and the ability to adapt to changing illumination 

conditions are necessary to derive more robust scientific grade data. This is particularly important 

when multi-temporal surveys under different illumination conditions are carried out. However, sensing 

systems are needed which can record the incident radiation.  

 Multi-temporal chlorophyll retrieval 

Figure 4.9 shows maps of the REIP for DAS 56 to 96 calculated from the HS DSM. At DAS 56, very low 

REIP values are visible. This can be attributed to the cloud-influenced calibration at that date (c.f. 

section 2.5.4). The wavelength independent relative overestimation of the reflectance due to the 

calibration absolutely increases the reflectance in higher wavelengths more than in lower wavelengths. 

Thus, the slope between the red and NIR increases and the REIP decreases. Still, as for all dates, 

differences between different cultivars and fertilizer levels and within plots can be seen. For DAS 70 to 

96, the differences between the cultivars become more pronounced. Additionally, in some plots the 

positions of the destructive measurements from the previous dates can be identified (e.g. plot 9). As 

was already seen in Figure 4.5, the sparse growth around plot 52 can be identified which indicates 

heterogeneity not introduced by the cultivar but by the management or soil conditions. In DAS 96, the 

lodging of some plots is visible, similar to within canopy surface models. In DAS 84, the influence of the 

transition of the images of two flight lines can be seen in the second row from the west, while most 

other transitions are not as obvious. Here, the images are shifted for about half an image in the y-

direction. Thus, the different angular properties become visible (c.f. section 4.3.1.2 and 4.3.1.3) and 

influence the VI.  
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Figure 4.9 Maps of the red-edge inflection point (REIP) derived from the hyperspectral digital surface 
model of DAS 56, 70, 84 and 96. Please note that the data for DAS 56 is biased by the calibration under 
cloudy conditions (c.f. section 3.1.4).  
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In Table 4.2 the coefficient of determination for the estimation of chlorophyll with different VIs from 

the data of the HS DSM and the FS3 is shown. For DAS 56 and 70, low R² were found for both the UHD 

and the FS3 data. Besides the biased calibration of the UHD, this could be caused by the different 

illumination conditions at DAS 56, which also affects the retrieval of biophysical properties (Bartlett et 

al., 1998; Damm et al., 2015). For DAS 84, R² of about 0.50 were achieved with MCARI/ OSAVI for both 

the HS DSM and FS3 data. In DAS 96 and the combined data of DAS 70 – 96 and 84 – 96, the ND705 

and REIP from the HS DSM data yielded R² between 0.50 and 0.64. The R² values were comparable to 

other studies for single and multi-temporal studies using VIs (Quemada et al., 2014; Yu et al., 2014).  

The results from the FS3 and UHD data differed significantly in most cases. Apart from DAS 56, this can 

be attributed to the different properties resulting from the different measurement extents and angular 

properties of the spectral data produced by the two approaches (c.f. section 4.3.1). The results show 

that retrieval techniques as VIs are also influenced by these differences. While the angular sensitivity 

of VIs have been shown in other studies (Burkart et al., 2015; Verrelst et al., 2008), the influence of a 

composition of the angular properties has not been explicitly investigated. Interestingly, in most cases 

the VIs calculated with the HS DSM data performed better than the VIs calculated from the FS3 data. 

Originally, the REIP and MCARI/OSAVI were developed from modeled data. Although not clearly stated 

in the original papers (Guyot and Baret, 1988; Haboudane et al., 2002), the VIs might have been 

developed for a more directional nadir looking narrow FOV case. Thus, the angular properties present 

in HS DSMs might be better suited for parameter retrieval with those VIs. On the other hand, PRI550 

was developed from the data of a spectrometer with a FOV of 15° (Gamon et al., 1992) and in most 

cases showed better performance for FS3 data. These results suggest that results obtained in one study 

cannot be transferred to other sensing systems per se. Consequently, more research is needed on the 

sensitivity of vegetation parameter retrieval techniques from data with different angular properties.  

Table 4.2 Coefficients of determination (R²) of different vegetation indices for the prediction of 
chlorophyll for the individual dates and across the DAS 70 – 96 and 84 – 96 from the HS DSM and FS3 
data. 

DAS   56 70 84 96 70 - 96 84 - 96 

MCARI / 
OSAVI 

HS DSM 0.07 0.08 0.50 0.37 0.48 0.57 

FS3 0.03 0.28 0.49 0.22 0.35 0.42 

ND705 HS DSM 0.04 0.01 0.39 0.60 0.50 0.60 

FS3 0.06 0.12 0.16 0.36 0.39 0.42 

PRI550 HS DSM 0.30 0.12 0.11 0.14 0.05 0.23 

FS3 0.10 0.34 0.30 0.31 0.24 0.38 

REIP HS DSM 0.18 0.13 0.44 0.60 0.55 0.64 

FS3 0.13 0.27 0.25 0.49 0.49 0.51 
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 Multi-temporal canopy height monitoring 

4.3.3.1 Canopy height model generation 

Figure 4.10 shows the evolution of the CSM for DAS 70. Figure 4.10 A) indicates the image overlap of 

the image cubes captured by the UHD. The dots represent the image centers. Most of the area between 

the north-south orientated flight lines is well covered by multiple images. The parts at the north and 

the east side, where the flying speed of the UAV was lower, are very well covered. To the west and the 

east side the coverage decreases to only a few images. The images of the two most western flight lines 

only slightly overlap. Figure 4.10 B) shows the DSM created from the images. To the northeast corner 

of the scene, where the DSM is outside of the GCPs, the elevation decreases towards the edge of the 

scene. The same effect can also be seen at the center-west side of the scene. This tilting in a model 

derived from SfM has been referred to as the ‘bowl-effect’ and can also be seen in DTM extracted from 

the bare soil in Figure 4.10 C). Since the bare soil to the east side of the scene was not covered by the 

images, the DTM only extends to the second row from the east. Figure 4.10 D) shows the CHM created 

from the subtraction of the DTM from the DSM. The decrease towards the northeast corner of the 

scene is not visible in the CHM. Although not shown here, some small areas between the DTM 

extraction points showed negative values in the CHM mainly where the tractor tracks crossed the 

paths. 

 

Figure 4.10 Evolution of the canopy surface model for DAS 70: A) Map of image overlap, B) digital 
surface model (DSM), C) digital terrain model (DTM) interpolated from the DTM extraction points, and 
D) canopy height model resulting from the substraction of DTM from the DSM. The DSM and DTM show 
the ‘bowl-effect’ outside the covered ground control points. 



Multi-temporal monitoring of agricultural crops with high-resolution 3D hyperspectral digital surface models in 
comparison with ground observations 

89 

In other studies the DTM was created by surveying the area before the emergence of the plants (Bendig 

et al., 2014; Tilly et al., 2014). Due to the appearing ‘bowl-effect’ in some DSMs this approach was not 

feasible in our case. The ‘bowl-effect’ seems to result from the low image overlap in some of the scenes 

and the missing out of some GCPs, since other studies with a similar setting and more image overlap 

did not report this effect (Bendig et al., 2015, 2014; Geipel et al., 2014). This is also supported by the 

recommendations of the software manufacturer of 60% across and 80% along track overlap (Agisoft 

LLC, 2016). Currently, HS snapshot systems onboard UAVs still face the challenge of spectral resolution 

versus spatial resolution versus coverage (Aasen et al., 2015). The image acquisition of the image 

capturing system is rather slow (0.6 FPS), the field of view is small (20°) and the hyperspectral spatial 

resolution is low (50 x 50 px). Additionally, the weight of the image capturing system limits the flight 

time to under 30 minutes. Thus, to ensure the desired ground resolution of less than 20 cm for the 

hyperspectral information, an above-ground flying altitude of 30 m was chosen and the optimal 

overlap recommendations were violated to cover the whole AOI within the flight time. Although the 

‘bowl-effect’ could be compensated for in most parts of the scenes, in the future the across track 

overlap should be increased and the GCPs should be properly covered to stabilize the 3D information 

within the HS DSM. This would allow a direct comparison of HS DSMs from different dates.  

Figure 4.11 shows the CHM derived from the HS DSM for four dates. Similar to DAS 70, at DAS 84 and 

DAS 96 the bare soil to the east and west of the plots respectively was also not covered by the images. 

The color scheme of the maps indicates the plant height for every pixel of the plot. These maps reveal 

different plant heights for the different cultivars. Differences within the plots are also visible (e.g. DAS 

84, plot 52). At DAS 96, four plots have experienced lodging and can be clearly distinguished from the 

other plots. As well, tractor tracks between and right next to the plot borders are visible. The overall 

growing pattern indicates strong growth until DAS 84 and only minor differences between DAS 84 and 

96, apart from the logged plots. These results demonstrate the feasibility of HS DSMs for high-

resolution mapping for agricultural purposes. Additionally, the high spatial resolution of the data allows 

observations of plot heterogeneity and crop damages from tractor tracks or lodging. 



Multi-temporal monitoring of agricultural crops with high-resolution 3D hyperspectral digital surface models in 
comparison with ground observations 

90 

 

Figure 4.11 Canopy height models of DAS 56, 70, 84 and 96. For DAS 70 to 96 some areas were excluded 
due to missing data. Remotely measured parts of the plots are marked with the number of the plot. 
Additionally, digital terrain model (DTM) extraction and ground control points are indicated.  
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4.3.3.2 Plant height evaluation 

The plant height derived from the HS DSM was compared to ruler measured plant heights. Figure 4.12 

shows the scatterplot for the individual dates and all dates together. Similar to Figure 4.11 an increase 

in plant height is visible until DAS 84. The relationships between the ruler measurements and the HS 

DSM derived plant heights are quantified in Table 4.3.  

Table 4.3 Quantitative comparison of the ruler measured and the HS DSM derived plant heights. 

DAS 56 70 70b 84 96 56 - 84 all 

R² 0.83 0.35 0.70 0.81 0.45 0.98 0.96 

RMSE (m) 0.06 0.12 0.08 0.09 0.17 0.12 0.20 

RMSE (%) 16 20 13 11 22 20 32 

slope 0.66 0.48 0.89 0.89 0.97 0.71 0.75 

mean 
difference 

0.11 0.15 0.25 0.26 0.19 0.16 0.17 

DAS 56, 84 and the multi-date sets achieve R² > 0.8. DAS 70 and 96 achieve lower relations. When plots 

41 – 54 are excluded from the DAS 70 dataset (DAS 70b) the R² increases to 0.7 and the relative RMSE 

decreases to 12 %. Overall, the RMSE is between 11 and 22% for the single dates and at 32% for all 

dates together. The slope of the regression line is between 0.66 for DAS 56 and 0.97 for DAS 96. For all 

dates the HS DSM derived plant height is lower than the ruler measured plant height. The mean 

difference varies from 0.11 m for DAS 56 to 0.26 m for DAS 84. The quality of the spatial information 

in the HS DSM also influences the retrieval of the plant height. This can be seen in the significantly 

increased R² and the slope of the regression when the most western row at DAS 70 is excluded. As 

mentioned above, the image coverage and especially the across track image overlap in this part of the 

scene was very limited so that the CHM bended downwards at the bare soil path to the west side of 

the model and upwards in the area of the plot. Thus, these plots showed a higher plant height in the 

CHM relative to the other plots for the date (Figure 4.12, brown dots).  

With the ruler, the heights of individual plants within the plot are measured. On the contrary, the very 

high resolution point cloud from which the HS DSM is derived does not only represent the highest parts 

of plants but also reflects heterogeneity in conjunction with the canopy structure. Thus it approximates 

an average canopy height lower than the ruler derived plant heights. This is also supported by a study 

by Tilly et al. (2015), where a maximum point filter was used to derive the plant height and a similar 

offset could not be observed. The slope, close to 1 in most cases, demonstrates the feasibility to 

estimate the plant height both for individual dates and across several growth stages. However, the 

best data processing scheme to derive a specific parameter needs further investigation. The latter 

might also depend on the application, since for some applications the maximum plant height might be 
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interesting (e.g. stem growth rate), while for others an average canopy height might be beneficial (e.g. 

biomass estimation).  

 

Figure 4.12 Scatterplot of the ruler and HS DSM derived plant heights for the individual four 
measurement dates (red, yellow, blue, azure), and DAS 70 without plot 46 – 54 (green) and all dates 
together (pink). The one to one line is shown in gray.  

 Conclusion 

Low-flying sensing systems can carry out surveys efficiently without disrupting the surface. Unmanned 

aerial vehicle (UAV)-based hyperspectral snapshot cameras allow the capture of spectral and spatial 

information at the same time. Within this study, this information was processed to high-resolution 

hyperspectral digital surface models (HS DSMs) and evaluated for the multi-temporal monitoring of 

agricultural crops. HS DSMs are a representation of the surface in 3D space linked with hyperspectral 

information emitted and reflected by the object covered by the surface. The high resolution of the data 

allows the detection of small-scale variability and impacts on the canopy such as lodging or tractor 

tracks. Additionally, biophysical and biochemical plant properties could be extracted. Canopy height 

was well estimated for most individual and across multiple dates (R² = 0.45, 0.70 – 0.98). Image overlap, 

coverage and ground control point distribution were identified as critical factors for the quality of the 

canopy height. The hyperspectral data used to estimate canopy chlorophyll by means of vegetation 

indices. Chlorophyll could be well estimated for the individual growth stages heading and fruit 

development and across the growth stages booting to fruit development (R² = 0.50 – 0.64). However, 

ground-based non-imaging spectral measurements differed from the measurements derived from the 

HS DSMs. To fully comprehend these differences, the special data properties of HS DSMs were 

determined.  
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HS DSMs are generated from many individual images. Each pixel within the HS DSM has its own angular 

properties with regards to the sensor orientation and the sun’s position during the acquisition of each 

individual image, and the geometry of the sensed surface. This influences the data retrieved from HS 

DSMs. To comprehend this potential issue, the common theory of imaging spectroscopy was extended 

by the concept of a specific field of view, which describes the composition of pixels and their angular 

properties within a scene used to characterize a specific area of interest. Depending on this 

composition, the measured apparent reflectance might differ. In comparison to non-imaging ground 

based observations, this resulted in significant differences due to different measurement extents and 

angular settings of the measurements. Overall, the visible part of the spectrum was more influenced 

than the near infrared. The different spatial measurement extent and the angular properties accounted 

for up to 33% increase in reflectance in the red region. In the NIR, only small differences were present. 

These differences were also reflected in the results for the retrieval of chlorophyll which differed 

considerably between the imaging and non-imaging data. This questions if models for vegetation 

parameter retrieval can per se be transferred in-between different sensors. Additionally, different 

processing schemes for the spectral data within the HS DSM were evaluated and revealed significant 

differences. Un-modified spectral information differed by up to 29% in comparison with a processing 

scheme where all available information was averaged for each pixel. 

These results highlight the need and opportunity for further research on the understanding of angular 

effects and its influence on retrieval techniques. In particular, it is likely that similar observations can 

be made for other imaging devices. Low-flying sensing systems are especially prone to angular effects, 

since, in comparison with high-flying platforms, wider field of views are needed to cover the same area 

and thus the variety of viewing geometries increases.  

Additionally, cloud cover was found to influence the applied radiometric calibration procedure. One 

flight was carried out under cloudy conditions and showed considerable difference to the ground based 

observations, which could not be explained by the different measurement extents and angular 

properties of the measurements. An approach to quantify the difference showed a wavelength-

independent underestimation of the irradiance of approximately 15%. Additionally, the UAV and the 

position during the calibration introduced additional errors. Thus, the applied pre-flight radiometric 

calibration should not be used under cloudy conditions and should in general be substituted by more 

robust methods.  

Overall this study demonstrates the feasibility of monitoring agricultural crops with HS DSMs derived 

from UAV snapshot cameras. They allow the frequent observation of complementary hyperspectral 

and 3D information at the same time in high resolution. While the angular properties within the 



Multi-temporal monitoring of agricultural crops with high-resolution 3D hyperspectral digital surface models in 
comparison with ground observations 

94 

spectral data still need to be better understood, their tracing also offer a great potential for new 

methods of analysis.  
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Abstract: In this study we present a hyperspectral flying goniometer system, based on a rotary-wing 

unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an active gimbal. We show 

that this approach may be used to collect multiangular hyperspectral data over vegetated 

environments. The pointing and positioning accuracy are assessed using structure from motion and 

vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to 

investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular 

effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–

735 nm. Our analysis highlights the necessity to consider angular effects in optical sensors when 

observing vegetation. We compare the measurements of the UAV goniometer to the angular modules 

of the SCOPE radiative transfer model. Model and measurements are in high accordance (r2 = 0.88) in 

the infrared region at angles close to nadir; in contrast the comparison show discrepancies at low tilt 
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angles (r2 = 0.25). This study demonstrates that the UAV goniometer is a promising approach for the 

fast and flexible assessment of angular effects. 

Keywords: hyperspectral; UAV; vegetation; BRDF; goniometer; vegetation indices 

 Introduction 

Spectral radiometers (spectrometers) reach beyond the capabilities of human vision and enable 

scientists to retrieve diverse information from reflected light. Field-spectroscopic measurements have 

a long history (Milton, 1987) and are nowadays a common investigative tool in various research areas. 

Moreover, spectral vegetation analysis from air- or spaceborne platforms is a mature technology, and 

is commonly used for the accurate derivation of land cover classes (Tian, 2004). Hyperspectral 

measurements, which consist of continuous narrow spectral bands, help to retrieve information about 

the biophysical and biochemical components of vegetation (Aasen et al., 2014; Gnyp et al., 2013; Yu et 

al., 2013) and may be used to discriminate healthy or stressed plants (Mahlein et al., 2013; Penuelas 

et al., 1997). 

With their synoptic view, airborne and spaceborne imaging sensors typically capture a large swath. 

Discrete image elements (pixels) located in the geometric center of an image are commonly acquired 

from a nadir view angle, whereas pixels at image edges are recorded from oblique angles. Off-nadir 

view geometry depends on the field of view (FOV) specifications and measurement methodology and 

varies among sensor systems; MODIS, for example is imaging ±55° off nadir (Barnes et al., 1998). 

The bidirectional reflectance distribution function (BRDF) is the conceptual framework that explains 

changes in reflectance that result from view angle changes dependent on surface property and 

illumination (Nicodemus, 1965; Schaepman-Strub et al., 2006). BRDF influence is not desirable in a 

nadir image, as it impacts reflectance values recorded by the sensor and complicates the compositing 

of multiple images or flight lines. However, angular or off-nadir imaging can complement nadir image 

data by integrating additional spectral information. In forest environments, for example, an oblique 

view will—depending on the stand density—detect less reflectance from tree crowns and more from 

tree trunks (Fassnacht and Koch, 2012; Schlerf and Atzberger, 2012). Lack of knowledge in effects 

created from different sun-sensor geometries throughout the vegetation season have for instance led 

to incorrect greening estimates from satellite data in the Amazon rainforest, as recently shown by 

Morton et al., (2014). 

The need for BRDF correction, along with an interest in angular characteristics, has led to the 

development of various goniometric measurement approaches. These are able to exploit a center 
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point from multiple view angles. The most common approach utilizes a semi-automated goniometer 

equipped with a point spectrometer with a radius of one meter or larger (Bourgeois et al., 2006; 

Buchhorn et al., 2013; Peltoniemi et al., 2005). On larger scales the POLDER and MISR instruments and 

the orbiting sensor Chris/Proba are capable of retrieving spectral data of the same area from different 

angles during one or multiple overpasses (Barnsley et al., 2004; Deschamps et al., 1994). On a smaller 

scale Comar et al (2012) used a conoscope to assess the BRDF of wheat at leaf surface level. This 

technique allows characterizing the reflectance of small leaf structures, such as veins. Such 

multiangular measurements are necessary to accumulate knowledge regarding vegetation cover BRDF 

characteristics. The fundamental goal of these research efforts is to develop a model capable of 

predicting the BRDF of a known vegetation cover type as well as the other way round, to derive 

knowledge about unidentified vegetation cover from multiangular measurements. Various models 

have been introduced in the past to estimate BRDF on a mathematical or empirical basis (Andrieu et 

al., 1997; Qin and Goel, 1995), or to compute the aggregate energy balance of a vegetation canopy 

including radiative transfer, as done in the SCOPE (Soil-Canopy-Observation of Photosynthesis and the 

Energy balance) model (Tol et al., 2009). 

Using these methods, an effective theoretical understanding of the BDRF was developed for flat and 

accessible land cover like snow or soil (Nolin and Liang, 2000). The small size of common goniometers 

along with their small FOV made the BRDF characterization of other important land cover types 

(including forest or agriculture) difficult (Deering et al., 1999) or impossible. Forest and agriculture land 

covers are of particular significant scientific and economic interest, and alternative analytic approaches 

are necessary to allow BRDF measurements on larger scales and within inaccessible areas. 

Some recent studies have investigated UAVs as a novel platform for goniometric measurements. 

Burkhart et al. (2010) performed a survey over ice fields using a fixed-wing UAV equipped with an on-

board spectrometer. Principally due to maneuvering and incident wind, the flight patterns of this 

platform introduced banking levels of up to ±30°, causing the spectrometer to collect multiangular 

hyperspectral measurements of numerous points that were overflown. A more defined method was 

presented by Hakala et al. (2010) and Honkavaara et al. (2014), who deployed a rotary-wing UAV 

equipped with a stabilized gimbal mounting RGB and multispectral camera, respectively. Utilizing 

specific flight patterns, multiangular information could be derived in the bands of the given camera. 

To fully understand the BRDF effects of vegetation, we suggest that an optimized dataset providing a 

comprehensive understanding of multiple agricultural sites would consist of frequent multiangular 

hyperspectral measurements acquired at a number of different locations throughout a complete 

vegetation phenological cycle. Only airborne platforms can fulfill these requirements without 
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disturbing crop growth by physically stepping through the field or casting shadows within the sensor 

FOV. With their recent development and improving utility and stability, UAVs can be employed as 

platforms for multi-angular remote data collection. 

The main focus of this study is to introduce a way of collecting multiangular hyperspectral data over 

almost every kind of terrain and scale with a flying spectrometer. The approach combines the benefits 

of goniometers equipped with a high-resolution spectrometer and the flexibility of UAV platforms. We 

then demonstrate the acquisition and analysis of a datasets to explore BRDF effects over wheat. The 

angular dependency of reflectance as measured with the UAV goniometer was also compared to the 

reflectance modeled by SCOPE. 

 Material and Methods 

The Falcon-8 octocopter UAV (Ascending Technology, Krailing, Germany) was used in this study. This 

platform was chosen due to its accurate flight controls and inherent stability. A hyperspectral 

measurement system was integrated on the UAV (Burkart et al., 2014). This instrument was recently 

developed at the interdisciplinary Research Center Jülich (Forschungszentrum Jülich GmbH) and is 

based on the STS-VIS spectrometer (Ocean Optics Inc. Dunedin, USA). The FOV of this spectrometer is 

approximately 12°; spectral resolution was at a full width at half maximum (FWHM) of 3 nm, with 256 

spectral bands (4 pixel spectrally binned) within the range of 338 to 823 nm. 

The Falcon-8 was originally designed as a camera platform for photographers and video production. It 

is equipped with a camera mount whose angle can be set during flight within 1° increments. The 

vertical angle (tilt) is defined by the camera mount, while the horizontal angle (heading) is determined 

by UAV orientation. The position and navigation is done by combining the GPS information from a 

navigation grade GPS (Ublox LEA 6T) and the information of the orientation information of the sensors 

onboard the UAV. Wind gusts during the flight are counteracted by an active system, which stabilizes 

the camera by pitch and roll. The spectrometer is also equipped with a RGB camera, which feeds a live 

video stream to the operator to facilitate operation and allow proper aiming of the system. 

Airborne hyperspectral target reflectance measurements were performed with the UAV spectrometer 

wirelessly synchronized with a second spectrometer on the ground. Latter measured a white reference 

(Spectralon®) to adapt to changing illumination. A thorough calibration of the hyperspectral system 

was performed following the procedure described by Burkart et al. (2014). This process included dark 

current correction (Kuusk, 2011), spectral shift, dual spectrometer cross-calibration and additional 

quality checks using the SpecCal tool (Busetto et al., 2011). Our approach allows to compute the ratio 

of light reflected by the target surface to the hemispherical illumination (diffuse-, ambient-, and direct-
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sunlight) as reflected by the white reference and is termed a hemispherical/conical reflectance factor. 

The actual BRDF is thus only approximated by this approach. Schaepman-Strub et al. (2006) provide a 

comprehensive BRDF description and nomenclature. 

 Flight Pattern 

Grenzdörffer and Niemeyer (2011) demonstrated that a distinct hemispherical flight pattern is 

necessary to enable goniometric measurements using an UAV-based airborne RGB camera. The flight 

pattern accurately defines the position of the UAV as well as the aiming of the camera. The flight path 

of the UAV is selected to follow waypoints (WP) in a hemisphere and the angle and heading of the 

spectrometer is set to continuously point towards the center of the hemisphere. In this manner the 

center of the hemisphere is measured from different viewing angles. 

To quickly compute such flight patterns for UAVs, we developed the software mAngle. It was written 

in the platform independent open source language “Processing” and is freely available as source code 

and compiled versions (mAngle, 2015). mAngle calculates the desired WP around a given center GPS 

coordinate. Placement of the WP are optimized for speed, as the UAV can quickly change horizontal 

position but requires more time to climb vertically to a different altitude. Flight pattern parameters 

including number of WP, initial angle, and hemisphere diameter can be set as desired (Figure 5.1). A 

designated flight pattern can be exported as a *.kml file to Google Earth (Google Inc., Mountain View, 

CA, USA) for visualization. The flight pattern can also be exported as a *.csv file, the format used by the 

Falcon-8 flight planning software (AscTec Autopilot Control V1.68). Such a hemispheric flight pattern is 

also useful to acquire pictures around a center object of interest for 3D reconstruction. 

Figure 5.1 Graphical user interface of the mAngle software with input fields for the desired waypoint 
pattern. By setting radius, number of desired waypoints as well as starting angle and other parameters, 
a distinct goniometric flight pattern can be generated. A draft of the waypoint pattern is visualized in 
the right box of the program window. 
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 Accuracy of the unmanned aerial vehicle Goniometer 

To assess the positioning and pointing accuracy of the UAV goniometer the spectrometer was replaced 

by a high resolution RGB camera (NEX 5n, Sony, 16 mm lens) mounted on a similar active stabilized 

gimbal. In this configuration the UAV was flown following the same waypoint pattern as was used for 

a multi-angular spectrometer flight. In operation, the airborne spectrometer is triggered three times 

at each WP. The RGB camera also acquired three digital images at each WP (84 in total). Eleven ground 

control points (GCPs) were distributed within the covered area and registered using a differential GPS 

(Topcon HiPer Pro, Topcon). 3D reconstruction software (Agisoft Photoscan, version 1.0.4) was used to 

structure the spatial arrangement of the scene and georeference it with the GCPs. This rendering was 

calculated with a resolution of 3.53 mm/pixel and an average error of 1.46 pixels. The camera position 

and view angles for each individual image were exported and served as an estimator for the spatial 

accuracy of the UAV under operational conditions.  

 Field Campaign 

Two multiangular flights (referred to as MERZ1, MERZ2) were conducted over farmland (Lat 50.93039, 

Lon 6.2968965) on 18 June 2013 during the ESA-HyFlex campaign in Merzenhausen, Germany. The two 

flights were performed under cloud-free moderate wind (1.6–5.5 m/s) conditions with an interval of 

two hours—one hour before and one hour after solar noon (Table 5.1). At the time of the study, the 

field contained mature wheat, with fully developed but still green (Figure 5.2). The centroid of the 

hemispherical waypoint pattern was located within the field in an area of uniform cover, avoiding farm 

equipment tracks and trails. The center point was defined using aerial imagery, in order to avoid 

disturbing measurements by walking into the area of interest. The two datasets produced in this 

campaign are freely available via SPECCHIO (Hueni et al., 2009) at the Server of the University of Zuerich 

Figure 5.2 Wheat (Triticum aestivum) at the study site Merzenhausen, Germany, at the time of the 
multiangular flights, 18 June 2013. Ears were fully developed but still green. 
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under the campaign name “Merzen”. For these flights a hemisphere with a radius of 16 m was 

specified. The spectrometer has a FOV of 12°. The areal coverage of each measurement is a function 

of sensor tilt angle, encompassing here 9 m2 at nadir up to 30 m2 with 20° tilt. WPs around the 

hemisphere were set to cover vertical tilt angles of 90° (nadir), 66°, 43° and 20°, at 8 equally distributed 

heading angles, potentially producing a total of 28 WPs. However, nadir measurements were only 

acquired at four different headings, which were then merged into a single WP, leading to a total of 25 

WPs included in the analysis. 

Table 5.1 Local time and duration with the corresponding sun angle parameters for the two 
hyperspectral flights performed over wheat field in Merzenhausen, Germany. 

Flight Start Time Duration Sun Azimuth Sun Elevation 

MERZ1 12:43 09 min 155° 61° 
MERZ2 14:47 11 min 213° 59° 

In the following individual WPs will be identified as WP (tilt degree, heading degree). The spectrometer 

was activated three times at each WP to allow averaging and assessment of response variance. MERZ1 

required a flight time of nine minutes, and MERZ2 required eleven minutes to consecutively measure 

the WP pattern. An additional UAV flight was conducted over the target using an RGB camera (NEX 5n, 

Sony Corporation, Minato, Japan, 16 mm lens) to image each WPs (Figure 5.3). 

 Data Preprocessing 

Each spectrum captured from the UAV was transformed to reflectance using the reference spectra 

simultaneously measured by the ground spectrometer. Then, for each WP, the mean, standard 

deviation and coefficient of variation were calculated from the three measured spectra. All further 

analyses were based on the mean spectra. To analyze the data with regard to the tilt and heading 

angle, averaged values were calculated depending on the parameter of interest. Additionally, to 

Figure 5.3 Example Red-Green-Blue (RGB) images with tilt angles of 20°, 66° and 90°. These images 
were acquired at the Merzenhausen site at approximately 13:30 following a multiangular flight path 
identical to the spectrometer flights. The Field-Of-View (FOV) of the RGB camera is 73.7° × 53.1° 
(compared to the 12° FOV of the airborne spectrometer) and allows observing multiangular effects 
within a single image–the bright hotspot with the shadow of the unmanned aerial vehicle in the center, 
located in the lower left corner of the 90° image is an example. 
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analyze relative changes in reflectance, spectra from all measurement positions were normalized using 

the nadir spectra response values (Sandmeier et al., 1999). The resulting normalized nadir anisotropy 

factor (ANIFband) produces a coefficient for each band, which individually adjusts (increases or 

decreases) reflectance factor values for each spectral band in relation to those recorded at nadir 

(Eq. 5.1). Thus, an ANIF factor of one describes an identical reflectance as recorded for a given band at 

nadir, while values above or below one describe higher or lower reflectance than the nadir value. 

𝐴𝑁𝐼𝐹𝑏𝑎𝑛𝑑 =
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑡𝑖𝑙𝑡, ℎ𝑒𝑎𝑑𝑖𝑛𝑔)𝑏𝑎𝑛𝑑

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑁𝐴𝐷𝐼𝑅)𝑏𝑎𝑛𝑑
 (Eq. 5.1) 

 Vegetation Indices 

Broadband vegetation indices (VIs) have an extensive history in remote sensing. Together with their 

hyperspectral counterparts they are still widely used in vegetation studies (Lucieer et al., 2014; 

Quemada et al., 2014). VIs commonly ratio near-infrared (NIR) and red band reflectance values in order 

to compensate for influences of different illumination conditions or background materials. To 

investigate the effect of the BRDF we examined three common VIs (Table 5.2) and calculated their 

values for all WPs. The Normalized Difference Vegetation Index (NDVI) uses two wavelengths in the 

red and NIR domain and has been widely used in a diverse range of applications. In our study we used 

the NDVI as proposed by Blackburn (1998). As a second index we used the Transformed Chlorophyll 

Absorption in Reflectance Index (TCARI) developed by Haboudane et al. (2002). TCARI was developed 

to predict chlorophyll absorption and uses wavelengths in the green, red and NIR spectral regions. The 

last index used in this study is the Red Edge Inflection Point (REIP). Originally introduced by Guyot and 

Baret (1988) it characterizes the inflection in the spectral red edge by calculatingthe wavelength with 

maximum slope. It has been used to quantify leaf chlorophyll content (Lichtenthaler et al., 1996). 

Table 5.2 Vegetation indices used in this study and their underlying formulas. 

 

 Data Visualization 

Several different visualizations or graphics were used in this study to focus on specific features under 

investigation. An effective method for assessing multiangular measurements includes the use of a 

Index Formula Reference 

NDVI (R800 − R680)/(R800 + R680) Blackburn (1998) 

TCARI 3 ((R700–R760)–0.2(R700–R550) × (R700/R670)) Haboudane et al. (2002) 

REIP 700 + 40 × (((R667 + R782)/2)–R702)/(R738–R702)) Guyot and Baret (1988) 
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segmented circular display known as a “polar plot”. The polar plot shown here in Figure 5.4 represents 

the UAV headings and sensor tilt angles within a circular matrix and illustrates the intensity of the 

measurement values by applying a color to each segment. To provide a useful overview of the dataset 

of this study and to include as well a comparison of the reflectance in the spectral domain, multiple 

plots are necessary. 

 Radiative transfer model comparison 

To compare the multiangular UAV measurements to modeled data, the SCOPE radiative transfer model 

was tested. The model generates the spectrum of outgoing radiation in the viewing direction as a 

function of vegetation structure (Tol et al., 2009). SCOPE input parameters were derived through 

comparison of the MERZ1 nadir spectrum with a lookup table of SCOPE spectra generated using a 

permutation of input parameters that were expected from wheat at the present phenological state. 

The resulting best-fit parameters are shown in Table 5.3. 

Table 5.3 Soil-Canopy-Observation of Photosynthesis and the Energy balance model (SCOPE) input 
parameters: Leaf Area Index (LAI), Leaf Inclination (LIDFa), Chorophyll A/B (Cab) content in µg/cm2, Leaf 
Thickness Parameter (N), Leaf water equivalent layer (Cw) in cm, Dry matter content (Cdm) in g/cm2, 
Senescent material fraction (Cs), Variation in leaf inclination (LIDFb). Default values were used for all 
other SCOPE input parameters. 

Fitted Parameters  Constant Parameters 

LAI LIDFa Cab N  Cw Cdm Cs LIDFb 
3.5 −0.35 95 1.5  0.004 0.005 0.15 −0.15 

Figure 5.4 Reflectance of wheat at 480 nm measured at all 25 waypoints shown as a circular graph, or 
polar plot. Each “slice” represents a heading while each ring represents a sensor tilt angle. Spectral 
reflectance magnitude is color coded from low values of light blue, to high values in bright red. The 
angular position of the sun is depicted by the sun-symbol. In this figure no interpolation between 
waypoints is performed. 
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Using the input parameters above, the angular module of SCOPE was run to estimate the reflectance 

spectra at identical angles as those measured with the UAV goniometer. Sun azimuth and zenith angles 

were set to match the values present at the time of the MERZ1 measurements. 

 Results 

In this section we first present the results of the accuracy assessment of the UAV goniometer. We then 

summarize the results of the analysis of the MERZ1 dataset and the influence of the BRDF on the full 

hyperspectral data as well as on the vegetation indices. Then the BRDF effects of MERZ1 are compared 

to the MERZ2 dataset. Finally, we compare the data derived from the UAV goniometer with results of 

the SCOPE radiative transfer model. 

 Accuracy Assessment of the UAV Goniometer 

Table 5.4 shows the deviation of the UAVs actual position from the planned position. Definitions of 

altitude and position in X and Y dimensions are commonly accepted. However, to describe the 

functions of vehicle and sensor heading and tilt angle, several different definitions exist. Figure 5.5 

shows how heading and tilt angles were used in this study with the UAV and its spectrometer system. 

The average deviation in heading and tilt may differ slightly from the actual UAV spectrometer pointing 

error, as a small error may have been introduced during the process of replacing the spectrometer with 

the RGB camera in the gimbal mount using a tripod screw. 

Figure 5.5 Camera orientation: Heading (azimuth) of the spectral measurements expressed in angular 
degrees from north. To assume a view angle of 0°, the UAV will hover north of the centeroid and aim 
the spectrometer at 180°. Tilt: 0° = horizontal and 90° = nadir view. 
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Table 5.4 Accuracy of the unmanned aerial vehicle (UAV) heading and spatial positioning calculated by 
structure from motion using 75 high-resolution images. Nine images were unusable due to motion 
induced “blur” and excluded from processing. Heading and tilt columns represent the deviation of the 
cameras actual pointing direction to the programmed angle. Altitude, X- and Y-position describe the 
deviation of the UAVs position as calculated from the differential-GPS ground-referenced structure from 
motion approach compared to the programmed waypoints. 

Movements of the airborne platform cause slight variations in the footprint of the spectrometer and 

introduce minor differences in the individual measurements at each waypoint. Figure 5.6 shows the 

average coefficient of variation (CV) of the spectral measurements acquired at all WP during the MERZ1 

flight. CV values within the blue and red regions of the spectrum are between 5% and 6%; in the green 

portion the value is approximately 4%. The CV in the NIR is less than 1.5%. 

 Full Spectrum Analysis 

In Figure 5.7 the ANIF for the MERZ1 dataset is shown for a tilt of 66°. All spectral measurements 

acquired at headings between 90° and 225° exceed nadir values, with the largest increases seen in 

measurements taken within the blue spectral region. When heading parameters are examined, the 

180° heading shows an increase of approximately 95% (the highest). The 90° measurement shows the 

lowest increase at approximately 25%. Deviation for these headings show a gradual decrease until the  

Deviation of: Heading (°) Camera Tilt (°) Altitude (m) Position X (m) Position Y (m) 

Average 0.11 6.07 0.03 −1.15 −2.22 
SD 8.67 1.22 0.70 0.68 0.82 
Max 26.20 9.74 1.44 0.67 −0.39 
Min −17.99 3.68 −1.09 −2.79 −4.60 

Figure 5.6 The spectrometer of the unmanned aerial vehicle goniometer was triggered three times at 
each waypoint. This figure shows the overall variation of the three spectra measured at each waypoint 
as average for the MERZ1 dataset. 
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Table 5.5 Normalized nadir anisotropy factor (ANIF) values for five characteristic wavelengths in the 
blue (480 nm), green (550 nm), red (680 nm) spectral bands; red-edge-inflection-point (REIP) (733 nm) 
and near-infrared (NIR) (780 nm) for 20°, 43° and 66° tilt, as well as all headings together with their 
average values. Values greater than 1 (blue bar) represent spectral reflectance measurements greater 
than nadir; values below 1 (red bar) represent measurements less than nadir. The suns azimuth was 
155° and elevation 66°. 

 

 

red edge position where values for 135°, 180° and 225° headings drop to range between 25% and 30%. 

For all these WP, the deviation decreases in the green spectral region. At headings of 0°, 45°, 270° and 

Figure 5.7 To present the angular influence at different waypoints on the full spectrum the normalized 
nadir anisotropy factor (ANIF) of 66° tilt for all headings at MERZ1 from 400 to 823 nm is plotted as 
example. By using the ANIF notation spectral deviation of single waypoints is referred to the nadir 
waypoint and thus can be relatively compared. A waypoint with the same spectrum as nadir would 
remain at an ANIF of 1 throughout all wavelengths. The legend on the right represents the color of each 
ANIF curve and depicts their respective heading angle. The azimuth position of the sun (155°) is 
visualized by the sun symbol. 
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315° reflectance measurements are 10% to 30% lower than nadir within the blue spectra. Until the red 

edge spectral region is reached, reflectance values decrease from 20% to 40% below the nadir 

measurement. In the red edge region the reflectance increases to approximately 10% above that of the 

nadir measurement. 

This shape of the ANIF which was observed for the 66° sensor tilt angle can also be found for the other 

tilt angles used in the overflights. Table 5.5 shows the ANIF for five regions of the spectrum for all 

investigated tilt and heading angles. For all wavelengths the ANIF decreases with increase of the tilt 

angle. Only for most of the VIS region with heading from 180° to 270° the ANIF is smaller in the 43° tilt 

than in the 66°. On average the reflectance of the 135° and 180° show the highest increase from nadir 

with 191% and 181%, respectively. Lower reflectance values than in nadir are seen in the VIS spectral 

region with headings of 0°, 45°, 270° and 315°. At 0° and 315° even the average of all tilt reflection 

values is lower than in nadir. 

 Vegetation Indices 

NDVI values range from 0.83 (WP 20°, 135°) to 0.95 (WP 43°, 0°), compared to the nadir value of 0.89. 

Values decrease for each tilt angle as the 135° heading is approached and generally increase toward 

the 0° heading, with an increase seen only at the WP (43°, 270°). On average, the 43° tilt yields the 

highest NDVI value with 0.92 (within a range of 0.86–0.95) while the 20° and 66° tilt parameters show 

an average NDVI of 0.9 (0.83–0.94, and 0.86–0.94, respectively). Relative differences from nadir NDVI 

range between −6.5% and 6.2%. The relative mean absolute difference is 3.3 percent. The 90° and the 

225° headings show the smallest differences from the nadir NDVI. Aside from the 135° and 180° 

headings, all WPs return higher NDVI values when compared with the nadir position. The tilt angle has 

only a minor influence on the relative difference (Figure 5.8). TCARI values vary with UAV heading, 

ranging from 0.04 (WP 66°, 315°) to 0.116 (WP 20°, 135°), against a nadir value of 0.046. This pattern 

is opposite as observed for NDVI. Vehicle heading values vary systematically, increasing (for all tilt 

angles) towards 135° and decreasing as the 0° heading is approached. As seen for the NDVI, WP (43°, 

270°) poses an exception with a lower TCARI value. 

Sensor tilt parameter variability can be briefly summarized. The 20° tilt setting shows the highest mean 

TCARI value of 0.078 (within a range of 0.06–0.116); the 43° setting yields a mean TCARI value of 0.062 

(with a range of 0.046–0.090) and the 66° tilt shows mean TCARI of 0.053 (range 0.038–0.074). In 

relative terms, the differences from the nadir TCARI range from −16.8% to 153.2%. The relative mean 

absolute difference is 40%. Most WPs greatly surpass the nadir TCARI value; at a sensor tilt of 20° no 

TCARI value is smaller than the nadir value at 43° only a single value is smaller and at tilt = 66° four 

values are smaller than the nadir value. The tilt parameter is shown to have a significant influence on 
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the relative difference. From 20° to 60° the relative mean absolute difference decreases from 69% to 

25% (Figure 5.8 bottom). 

The Red Edge Inflection Point (REIP) was also analyzed in this study (Figure 5.8). For nadir spectral 

measurements the REIP is approximately 733 nm. WP (20°, 135°) shows the lowest REIP (approximately 

729 nm) while WP (66°, 0°) shows the highest REIP (735 nm). The average REIP value was slightly lower 

than the nadir value with 732.5 nm. At all WPs, measurements acquired at a heading of 135° show the 

lowest values; these increase towards the 0° heading. All the WPs measured with a sensor tilt angle of 

20° surpass the nadir REIP. Measurements acquired at tilts of 43° and 66° produced two, respectively, 4 

values that are smaller than the nadir value. The overall mean absolute difference was less than 0.2%, 

decreasing from approximately 0.3% at 20° tilt to 0.15% at 66° tilt. 

 Diurnal Variations of angular effects 

Ideal clear weather conditions were present over the Merzenhausen study area throughout 18 June 

2013. Sequencing a pair of overflights enabled us to compare these two datasets and analyze how the  

Figure 5.8 Top: Absolute values for the NDVI, TCARI and REIP compared to the nadir value (center of 
the polar plot) for all waypoints of MERZ1. The range of values is chosen with nadir as center value, 
respectively, for each plot. Figure 5.5 details the angular arrangement depicted here. Bottom: Relative 
differences for NDVI and TCARI compared to the nadir value. 
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Figure 5.9 Reflection of MERZ1 and MERZ2 for 5 wavelengths of interest. The color legend of reflection 
for each horizontal pair was scaled to the occurring reflectance wavelength range. Figure 5.5 details 
the angular arrangement depicted here. Waypoint (20°, 225°) is missing in MERZ2 and coded in this 
graphic in grey. 
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change in sun illumination affects multiangular sensor response (Figure 5.9). Nadir measurements 

remained consistent during the day. However, significant changes in target response (including hotspot 

and backscattering features) were observed at lower sensor tilt angles, dependent on sun position 

(Table 5.1). These features show distinct spectral differences within the five different wavelengths 

(Figure 5.7 and Table 5.5). The hotspot feature is clearly visible and is characterized by higher spectral 

reflectance values within the shorter blue and green wavelengths. These spectral differences are less 

apparent in the infrared wavelengths. 

Figure 5.9 shows the angular distribution of reflectance in five selected wavelengths of interest: 480 nm 

(blue), 550 nm (green), 680 nm (red), 733 nm (Red-REIP) and 780 nm (NIR). All bands show the directional 

effect of increased reflectance values as heading angles approach 180°, and decreased reflectance with 

the opposite orientation. This effect is most pronounced in the shorter spectral wavelengths (up to 680 

nm) and is less characteristic in the NIR region. Angular distribution differs in MERZ1 and MERZ2. Elevated 

reflectance values cluster between 135° and 180° headings in the MERZ1 dataset, while in MERZ2 this 

phenomena is oriented to heading angles between 180° and 225°. 

 Flying goniometer vs. radiative transfer model  

Results of the comparison between the scope model and the flying spectrometer measurements are 

shown in Figure 5.10 for exemplary wavelengths of 550 nm and 780 nm. Correlation of angular 

measurements with modeled data show clear differences in wavelengths and tilt angles. To test this  

Figure 5.10 Comparison of modeled angular reflectance Soil-Canopy-Observation of Photosynthesis and 
the Energy balance (SCOPE) with the unmanned aerial vehicle (UAV) measured values for MERZ1. 
Shown are two exemplary wavelengths, which are scaled to the present range of values. 
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Table 5.6 Correlation of modeled data with measured data for different tilt angles. 

Tilt 20° 43° 66° 

Correlation (R2) 0.2504 0.7484 0.8819 

hypothesis, ANIF values were calculated for both datasets. Our comparison included sensor tilt angles 

of 66°, 43° and 20° and wavelengths at 480 nm, 570 nm, 680 nm and 750 nm. Correlation statistics (r2) 

were calculated for the linear regression of UAV-ANIF against SCOPE-ANIF. While SCOPE produces 

results similar to UAV measurements at high tilt angles, r2 is low at the 20° angle (Table 5.6). In the 

spectral domain the maximum UAV reflectance/SCOPE model r2 was found in the NIR (750 nm); the 

lowest correlation value was derived for the 680 nm spectral wavelength (Table 5.7). 

Table 5.7 Correlation of modeled data with measured data for all tilt angles at specific wavelengths. 

Wavelength 480 nm 570 nm 680 nm 750 nm 

Correlation (r2) 0.4298 0.5685 0.3605 0.815 

 Discussion 

In this study, a new goniometer approach for large-scale measurement of BRDF is presented and an 

initial hyperspectral dataset is analyzed. By deploying the spectrometer on a rotary-wing UAV there is 

no longer a need to mount the instrument on large ground-based positioning structures. The large FOV 

has the advantage of averaging out small variations, which are part of the canopies variability. As the 

device is flying, surfaces can be investigated with desired measurement patterns even over areas 

inaccessible by land and without disturbing the eventual surface cover like vegetation. Until now these 

areas had to be approached using satellites or by modeling (Gastellu-Etchegorry et al., 1999). In remote 

sensing applications, where goniometers cannot be deployed, angular effects are currently minimized 

or correction approaches are applied: field-spectrometer measurements are carried out around the 

same time (noon) and from nadir view (Aasen et al., 2014). Thus the sun-object-sensor geometry is 

almost stable. For UAV-, air- and spaceborne systems a number of correction methods have been 

developed. These include the use of image statistic based methods for flat terrain (Kennedy et al., 

1997) and physical or semi-empirical models such as for the processing of MODIS data (Wanner et al., 

1997). Lately, a more generic BRDF correction method was introduced, which builds on a surface cover 

characterization (Schläpfer et al., 2015). Since physical and empirical models are based on the current 

knowledge and BRDF effects depend on many factors, the flying goniometer could help to evaluate 

and eventually improve the correction methods. 

We assessed the pointing accuracy of the UAV system and found it to be of acceptable accuracy for a 

GPS-aided flying system, although it is still not as precise as ground-based instrumentation (Peltoniemi 

et al., 2014; Sandmeier et al., 1999). Parameters of altitude, X/Y position and sensor tilt angle are highly 
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accurate within the navigation grade GPS specifications. Additionally, the remounting of the RGB 

camera described in Section 5.2.2 might have introduced an artificial error. The relative position as 

described by the low standard deviation demonstrates the precision of the system (Table 5.4). 

However, the vehicle heading parameters are less accurate. Relative heading inaccuracies may be 

ascribed to the Falcon-8 flight control system, which does not make use of a magnetic compass. If 

operated in an environment with a strong magnetic field, a compass system could produce serious 

errors in vehicle position and heading readings and cause catastrophic UAV failures. However, in the 

case of the UAV goniometer, the accuracy would improve through the use of a compass system for 

heading correction. 

Additional sources of error in the platform/sensor system are found in gimbal calibration in the tilt axis 

and during the process of physically mounting the spectrometer on the gimbal. Inconsistencies in 

either or both of these procedures will lead to pointing offsets. The system could also be improved by 

deploying the spectrometer and a RGB camera in tandem, triggering both simultaneously. Camera and 

spectrometer could be aligned and calibrated in the laboratory to determine the spectrometer field of 

view in the camera image. The camera imagery could then be utilized to accurately calculate the 

position and pointing of the UAV using the structure from motion approach used in this study to 

evaluate the pointing accuracy (Section 5.2.2). 

The UAV system in combination with the “mAngle” software enables users to plan, setup and perform 

a multiangular flight around a center point of interest efficiently and quickly (in less than 30 min, 10 

min for the measurement flight itself). In addition, the UAV and spectrometer system is deployed in a 

single, easily portable package, making it highly mobile. Since the completion of this study, the system 

has been deployed at a number of other sites in Europe and New Zealand. The large radius and thus 

big footprint of the UAV ensures a good averaging over the fine structure of the vegetation (e.g., leaves, 

shaded areas, stems). This was assessed by calculating standard deviation of multiple spectra at the 

same waypoint (Figure 5.6) and shows good agreement of consecutive spectra taken at the same WP. 

If smaller footprints are desired the flying radius can be reduced or the spectrometer can be equipped 

with a fore optic with a narrower FOV. 

The results of the multiangular reflectance measurements acquired in this study are consistent with 

previous measurements characterizing common angular reflectance distribution over vegetation 

(Strub et al., 2002). The common hotspot feature is clearly visible in the data and changes over time 

with sun angle. High levels of reflectance were found at the rather low tilt angle of 20° in the heading 

of the hotspot. As the tilt angle is lower than the hotspot feature, these high levels might be introduced 

by a viewing angle, whereas only the very top of the canopy is seen by the sensor (Figure 5.9). Along 
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with the results of our accuracy assessment of UAV imagery pointing and of the spectral domain 

response, we are confident that we have utilized a novel platform-sensor combination to acquire a 

valid and valuable hyperspectral dataset. 

The complete spectrum analysis emphasizes that BRDF effects are both wavelength and angle 

dependent. Around the hot spot the measured reflection is higher than in nadir, in both in the VIS and 

NIR part of the spectrum. For WPs towards the dark spot the reflectance is lower in most parts of the 

VIS and higher in the NIR. Overall, lower sensor tilt angles increase reflectance compared with the nadir 

position. While the NDVI reduces angular effects quite efficiently, these effects were a significant factor 

in TCARI. This distinction can be ascribed primarily to the differing formula structures of the two VIs. 

For the NDVI, the reflectance in the NIR dominates the nominator of the formula. Thus the differences 

due to the observation angle influence the index nominator and denominator in similar ways and the 

entire ratio only slightly changes. The TCARI formula does not provide such normalization. The 

reflection factors at the wavelength of the first part of the term (R700–R760) are differently influenced 

by the angle (Figure 5.8) and introduce strong fluctuations to the VI. Minor influences are introduced 

by the second term. The first part (R700–R550) of the second term is not strongly influenced, since 

both reflection factors of the wavelengths are affected similarly by the angle. However, the second 

component of TCARI again uses the R700 and R760 band ratio. This increases the variations in the 

second term of the formula caused by the differing observation angles. In combination, these factors 

produce the significant differences (up to 150 percent), which are seen in the TCARI values. Differing 

observation angles cause only minor fluctuations in REIP values. As seen with NDVI, formula deviation 

normalizes most of the variation in REIP values. However, it must be emphasized that, as for most VIs, 

the practical dynamic range of the REIP is narrower than what is theoretically possible. Thus even the 

small observation angle variances suggested by the REIPs results could lead to errors in interpreting 

this index if BRDF effects are disregarded. Other studies have been carried out for other VIs or 

vegetation cover (Epiphanio and Huete, 1995; Kuusk, 1991; Leblanc et al., 1997; Verrelst et al., 2008) 

support the angular dependency found in this study. 

Radiative transfer models show significant potential as tools for correcting angular influences 

introduced by solar effects or imaging sensors. They are based on existing theory of radiative transfer 

and plant physiology (Tol et al., 2009). So far, real world multiangular data for various vegetation covers 

are rare and thus, a rigorous validation of the model is challenging. With the approach described in this 

study datasets for the validation and improvement of those methods may be generated. However, it 

has to be taken into account that SCOPE does not account for certain sensor variables such as FOV and 

FWHM. Due to the footprint of the spectrometer, light reflected at different angles by the canopy is 



Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based 
Goniometer 

119 

collected by the sensor. Thus, this might be one source for the increasing discrepancies towards low 

tilt angles observed in this study. Following studies could minimize this effect by using spectrometer 

fore optics with narrower FOV. A careful investigation on the difference between modeled and 

measured spectra go beyond the scope of this study but should be investigated in the future. 

Based on this study, we strongly encourage the extensive compilation of multiangular datasets for 

various vegetation cover types and environments. A more sophisticated knowledge base regarding 

vegetation angular effects could also enable researchers to derive accurate complementary 

information through the use of angular measurements that capture vegetation features not typically 

visible from a nadir perspective (Schlerf and Atzberger, 2012). Additionally, these results could help to 

understand influences of BRDF effects in imaging spectroscopy. Typically, current hyperspectral 

(image-frame and push broom) imaging systems as well as RGB systems have a FOV of up to 50° 

(Lucieer et al., 2014). Thus, pixels captured towards the edges of the image have tilt angles of about 

66°. As shown here, angular effects have a significant contribution to these observation angles and 

need to be taken into account during analysis. To improve the correction of these effects consecutive 

studies should examine tilt angles found in the FOV of common UAV and airborne sensors. This is 

foreseen within a number of parallel research activities that are ongoing and focused on improving 

models and collecting spectral databases. These include COST Action ES0903 EUROSPEC, COST Action 

ES1309 OPTIMISE, and the SPECCHIO online spectral database (Hueni et al., 2009). These projects could 

also serve as a basis for enhanced training of models leading to highly accurate correction methods. 

 Conclusions 

This study presents a novel hyperspectral (338 to 823 nm) goniometer system based on an unmanned 

aerial vehicle (UAV) and specifically developed software. The approach allows measurements over 

inaccessible areas and without disturbing the surface cover. Using the system in an exemplary field 

experiment, we test the positioning and spectral accuracy (VIS < 6% CV, NIR < 1.5% CV) While a larger 

footprint can be analyzed, this UAV system does not provide the same absolute pointing accuracy as 

common ground based goniometers. With the presented field data we highlight the influence of 

angular effects on the spectrum (0.6 to 3 fold relative difference) and vegetation indices (up to more 

than 1.5 fold relative difference) and thus the necessity for correction of angular effects in remote 

sensing data. Radiative transfer models like SCOPE represent an opportunity for angular corrections, 

but differ especially for low tilt angles from the UAV goniometer data. The fast and flexible UAV 

goniometer contributes a technique to assess angular effects over any given land cover with low 

efforts. Based on this assessment of relevant reflection parameters a new way of UAV-driven plant 
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parameter retrieval by the inclusion of oblique angels could be developed. Finally, we hope to 

contribute additional understanding to the broad and complex topic of BRDF in vegetation. 
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Abstract: Plant biomass is an important parameter for crop management and yield estimation. 

However, since biomass cannot be determined non-destructively, other plant parameters are used for 

estimations. In this study, plant height and hyperspectral data were used for barley biomass 

estimations with bivariate and multivariate models. During three consecutive growing seasons a 

terrestrial laser scanner was used to establish crop surface models for a pixel-wise calculation of plant 

height and manual measurements of plant height confirmed the results (R2 up to 0.98). Hyperspectral 

reflectance measurements were conducted with a field-spectrometer and used for calculating six 

vegetation indices (VIs), which have been found to be related to biomass and LAI: GnyLi, NDVI, NRI, 

RDVI, REIP, and RGBVI. Furthermore, biomass samples were destructively taken on almost the same 

dates. Linear and exponential biomass regression models (BRMs) were established for evaluating plant 

height and VIs as estimators of fresh and dry biomass. Each BRM was established for the whole 

observed period and pre-anthesis, which is important for management decisions. Bivariate BRMs 

supported plant height as a strong estimator (R2 up to 0.85), whereas BRMs based on individual VIs 

showed varying performances (R2: 0.07 - 0.87). Fused approaches, where plant height and one VI were 

used for establishing multivariate BRMs, yielded improvements in some cases (R2 up to 0.89). Overall, 

this study reveals the potential of remotely sensed plant parameters for estimations of barley biomass. 

Moreover, it is a first step towards the fusion of 3D spatial and spectral measurements for improving 

non-destructive biomass estimations. 

Keywords: terrestrial laser scanning; spectrometer; plant height; hyperspectral vegetation indices; 

biomass; precision agriculture; plot level; multi-temporal 
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 Introduction 

Over the past several decades remote sensing has increased in importance for precision agriculture 

(Atzberger, 2013; Liaghat and Balasundram, 2010; Mulla, 2012). Since the world population is expected 

to increase by more than one third until 2050 a main goal is shrinking the gap between potential and 

current yield (UNFPA, 2010; van Wart et al., 2013). Field management strategies in precision 

agriculture that aim to maximize yield must involve a reasonable use of natural resources and have to 

take spatial and temporal variabilities into account (Oliver, 2013), as agricultural production is 

influenced by the physical landscape, climatic variables, and agricultural management practices 

(Atzberger, 2013). Studies reveal that grain yield is correlated with total biomass (Boukerrou and 

Rasmusson, 1990; Fischer, 1993). A quantitative measure is the harvest index, which expresses yield 

vs. total biomass (Price and Munns, 2010). Moreover, adequate crop condition in early growing stages 

could buffer the yield against environmental stresses, such as droughts, during later stages (Bidinger et 

al., 1977). In-season, the nitrogen nutrition index, the ratio between actual and critical nitrogen (N) 

content, is widely used as a measure of the plant status (Greenwood et al., 1991). The critical value is 

defined by a crop-specific N dilution curve, showing the relation between N concentration and 

biomass. Hence, an exact in-season acquisition of biomass is important in precision agriculture.  

Since plant biomass cannot be determined non-destructively, other plant parameters are used as 

estimators. Therefore, remote sensing measurements enable an objective and accurate acquisition in 

a high temporal frequency (Atzberger, 2013). A review of remote sensing methods for assessing 

biomass is given by Ahamed et al. (2011). At the field level, ground-based methods are commonly used 

to achieve sufficiently high resolutions and over the last several decades, several studies investigated 

the relationship between spectral reflectance measurements and crop characteristics. For extracting 

information, various vegetation indices (VIs) were developed from the reflectance in determined 

wavelengths. Two band VIs like the normalized difference vegetation index (NDVI) were traditionally 

used with multispectral broad band systems to estimate biomass or biomass-related parameters, like 

LAI. Such VIs have been adapted to narrow band hyperspectral data and other band combinations 

(Aasen et al., 2014; Marshall and Thenkabail, 2015; Thenkabail et al., 2013, 2000). Additionally, other 

VIs with more than two bands, such as the GnyLi, have been developed for the same purpose (Gnyp et 

al., 2014b).  

Moreover, active sensors based on light detection and ranging (LiDAR) have been increasingly used in 

vegetation studies since the 1980s (Lee et al., 2010). Indeed, a main benefit of LiDAR is the very high 

resolution, which enables the acquisition of complex canopies (Danson et al., 2009). In agricultural 

applications, for example, ground-based LiDAR methods, also known as terrestrial laser scanning (TLS), 
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reveal potential for assessing plant height (Zhang and Grift, 2012), leaf area index (Gebbers et al., 

2011), crop density (Hosoi and Omasa, 2012, 2009; Saeys et al., 2009), or post-harvest growth (Koenig 

et al., 2015). Furthermore, the potential for estimating biomass with TLS is supported through studies 

on small grain cereals (Ehlert et al., 2009, 2008; Lumme et al., 2008), sagebrush (Olsoy et al., 2014), 

and paddy rice (Tilly et al., 2015, 2014b). The 3D architecture of single plants was modeled under 

laboratory conditions (Paulus et al., 2014a, 2014b), however the transferability of those laboratory 

results to field conditions has not yet been shown.  

Generally, the accuracy of estimations is a major issue, with the accuracy being limited when 

calculations are based on one estimator. Whilst biomass estimations based on VIs are affected by 

saturation effects (Blackburn, 1998; Reddersen et al., 2014; Thenkabail et al., 2000), plant height may 

reach limitations when differences in plant height are low. Consequently, the fusion of multiple 

parameters should be examined to enhance estimations. So far, studies on the fusion of spectral and 

non-spectral information have been applied for characterization of forest ecosystems (Torabzadeh et 

al., 2014) and modeling of corn yield (Geipel et al., 2014). As both studies applied airborne methods, 

the spatial resolution was low. A ground-based multi-sensor approach for predicting biomass of 

grassland based on measurements of plant height, leaf area index (LAI), and spectral reflectance 

showed that combining multiple sensors can improve the estimation (Reddersen et al., 2014). 

However, in that study, spectral data were not well suited. Recently, the potential of the combined use 

of spectral and non-spectral ground-based measurements for estimating biomass was demonstrated 

for rice, maize, cotton, and alfalfa (Marshall and Thenkabail, 2015). 

The overall aim of this study was to compare the potential of plant height (PH), VIs, and a fusion of PH 

and VIs for estimations of above ground fresh and dry barley biomass. More specifically, this study 

compares the potential of 3D spatial and spectral information for different time frames during the 

growing season and investigates if a fusion of both can improve the estimation. Therefore, a spring 

barley experiment was monitored during three growing seasons in various campaigns with a TLS 

system and a field-spectrometer. PH was derived from the TLS data and VIs from the hyperspectral 

data. Four major working tasks were carried out: (I) conduct extensive multi-annual field 

measurements during the growing seasons, (II) derive bivariate biomass regression models (BRMs) 

from 3D spatial and spectral measurements for biomass estimations, (III) fuse the 3D spatial and 

spectral data in multivariate BRMs to estimate biomass based on this extensive data set, and (IV) 

evaluate the robustness of the BRMs with a cross-validation.  
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 Methods 

 Field measurements 

In three growing seasons (2012, 2013, and 2014), field experiments were carried out at the Campus 

Klein-Altendorf (50°37′51″N, E 6°59′32″) belonging to the Faculty of Agriculture at the University of 

Bonn, Germany. Due to crop rotation, the locations of the fields were slightly different between the 

years. However, soil and climatic conditions were similar with the surface of the soil being flat with a 

clayey silt luvisol and well suited for crop cultivation (Uni Bonn, 2010a). According to the campus’ own 

weather records, the long-term average yearly precipitation was about 600 mm with a daily average 

temperature of 9.3 °C (Uni Bonn, 2010b).  

Each year, the field consisted of 36 small-scale plots (3 × 7 m) where different cultivars of barley were 

cultivated with two levels of N fertilization. For half of the plots, a farmer’s common rate of 80 kg/ha 

N fertilizer was applied, for the other half a reduced rate of 40 kg/ha. In 2012 and 2013 each 

fertilization scheme was carried out once for 18 cultivars of spring barley (Barke, Wiebke, Beatrix, 

Eunova, Djamila, Streif, Ursa, Victoriana, Sissy, Perun, Apex, Isaria, Trumpf, Pflugs Intensiv, Heils 

Franken, Ackermanns Bavaria, Mauritia and Sebastian). In 2014, the set-up for the experiment was 

changed in that each fertilization scheme was repeated three times for six selected cultivars (Barke, 

Beatrix, Eunova, Trumpf, Mauritia and Sebastian). The experiments were carried out within the 

interdisciplinary research network CROP.SENSe.net (www.cropsense.uni-bonn.de). The research focus 

of this project was non-destructive sensor-based methods for detecting crop status such as nutrients, 

stress, and quality. 

In this study, 3D spatial measurements from a TLS system, spectral measurements from a field-

spectrometer, and manual reference measurements were used. Due to the weather conditions the 

time of seeding changed and therefore so did the start of the growing season. The seeding dates were 

21 March 2012, 9 April 2013, and 13 March 2014. In Table 6.1, all dates of TLS and spectrometer 

campaigns are listed as day after seeding (DAS) and a universal scale, known as the BBCH scale, was 

used to describe phenological stages and steps in the plant development, encoded in a decimal code 

(Lancashire et al., 1991; Meier, 2001). 
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Table 6.1. Dates of the terrestrial laser scanning (TLS) and spectrometer (S) campaigns listed as day 
after seeding (DAS). Averaged codes for the developmental steps are given for the dates of manual 
plant parameter measurements (BBCH). For some dates BBCH codes were not determined (N/A). 
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15     TLS  45       75 TLS      

16       46       76       
17       47       77       

18       48       78   TLS/ 
S 

57   

19       49   TLS/S 30   79       

20   TLS/ 
S 

N/A   50 TLS/ 
S 

     80       

21       51       81       

22       52       82     S  
23       53       83  N/A     

24       54  30   S  84 S    TLS 56 

25       55       85       
26       56     TLS 31 86 TLS      

27       57       87       
28       58 TLS      88       
29       59       89       
30       60       90       

31       61       91   S 68   
32       62       92   TLS    

33       63       93       

34   TLS    64   TLS/S 41   94       
35   S 18   65       95       

36       66       96      74 
37       67       97     TLS/S  

38       68       98       
39       69       99       

40       70 S 49   TLS/S 49 100       
41     TLS/ 

S 
29 71       101       

42       72       102       

43  N/A     73       103       

44       74       104   TLS/ 
S 

81   

The acronym BBCH is derived from the funding organizations: Biologische Bundesanstalt (German 

Federal Biological Research Centre for Agriculture and Forestry), Bundessortenamt (German Federal 

Office of Plant Varieties), and Chemical industry. The first number of the two-digit code represents the 

principal growth stage (Table 6.2) and the second subdivides further in short developmental steps. 

Through determining the BBCH codes during the growing seasons, the annual comparability was 

ensured. For each plot, the BBCH developmental step was determined as a mean of three plants. In 

Table 6.1, BBCH codes are given for the dates where plant parameters were manually measured. The 

codes are averaged per campaign, as the values were almost similar for all cultivars. Although the plant 

development varied among the years it can be seen that the BBCH codes indicate a comparable 

development. 
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Table 6.2. Principal growth stages of the BBCH scale. 

Principal 
Growth Stagea Stage Description 

Time Frames Regarded 
for Biomass Estimation 

0 Germination     
1 Leaf development     

2 Tillering  
Pre-
anthesis 

 

Whole 
observed 
period 

3 Stem elongation   
4 Booting   
5 Inflorescence emergence, heading   

6 Flowering, anthesis    
7 Development of fruit    

8 Ripening     
9 Senescence     
a first number of the two-digit code. 

As reference measurements, the heights of ten plants were measured for each plot and averaged in 

the post-processing. Moreover, in a defined sampling area of each plot, the above ground biomass of 

a 0.2 × 0.2 m area was destructively taken each time. The sampling area was neglected for the remote 

sensing measurements. In the laboratory, plants were cleaned and fresh weights were measured. After 

drying the samples for 120 h at 70 °C, dry biomass was weighted and extrapolated across the plot 

(g/m²).  

Furthermore, a digital terrain model (DTM) is required as a common reference surface for calculating 

plant height from the TLS data. In 2014, the bare ground of the field was scanned after seeding but 

before any vegetation was visible (Table 6.1: DAS 15). For technical reasons, it was not possible to 

acquire such data in 2012 and 2013, however, the ground was identifiable in the point cloud of the first 

campaigns due to the low and less dense vegetation. 

6.2.1.1 Terrestrial laser scanning 

The TLS configuration and setup was almost equal in all years. Thus for each campaign, the time-of-

flight scanner Riegl LMS-Z420i was used (Figure 6.1 A) (Riegl LMS GmbH, 2010). The sensor operates 

with a near-infrared laser beam, has a beam divergence of 0.25 mrad, and a measurement rate of up 

to 11,000 points/sec. In addition its field of view is up to 80° in the vertical and 360° in the horizontal 

direction and this study used resolutions between 0.034° and 0.046°. The digital camera Nikon D200 

was mounted on the laser scanner and the TLS point clouds were colorized from the images captured. 

Furthermore the sensor should be as high as possible above ground, resulting in a steep angle between 

scanner and investigated area enabling the best possible coverage of the crop surface and a 

homogenous penetration of the vegetation. Accordingly the scanner was mounted on the hydraulic 

platform of a tractor, raising the sensor to approximately 4 m above ground (Figure 6.1 B). In order to 
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lower shadowing effects and to attain an almost uniform spatial coverage, the field was scanned from 

its four corners. The coordinates of all scan positions and an additional target were required for the 

georeferencing and co-registration of the positions in the post-processing. Highly reflective cylinders 

arranged on ranging poles were used as targets (Figure 6.1 C). These reflective cylinders can be easily 

detected by the scanner meaning their exact position in relation to the scan position can be measured 

(Hoffmeister et al., 2010). The coordinates of the scan positions and ranging poles were measured with 

the highly accurate RTK-DGPS system Topcon HiPer Pro (Topcon Positioning Systems, 2006). By 

establishing an own reference station each year, the precise merging of all data sets per year was 

ensured with the relative accuracy of this system being approximately 1 cm. 

6.2.1.2 Field-spectrometer measurements 

The ASD FieldSpec3 was used for measuring the reflectance several times during the growing seasons 

(all dates are listed in Table 6.1 above). This spectrometer measures the incoming light from 350 to 

2500 nm with a sampling interval of 1.4 nm in the VNIR (350 - 1000 nm) and 2 nm in the SWIR 

(1001 - 2500 nm). These measurements are resampled to spectra with 1 nm resolution by the 

manufacturer’s software. At each position, ten measurements were taken and instantly averaged by 

the software, from 1 m above the canopy with a pistol grip, which was mounted on a cantilever to 

avoid shadows obscuring the sampling area. Additionally, a water level was used to ensure nadir view 

and no fore optic was used, resulting in a field of view of 25° and thus, a footprint area on the canopy 

with a radius of approximately 22 cm was achieved. Before the measurements, the spectrometer 

warmed up for at least 30 min and every 10 min or after illumination change, the spectrometer was 

optimized and calibrated with a spectralon calibration panel (polytetrafluoroethylene reference 

Figure 6.1 Instrumental set-up: (A) terrestrial laser scanner Riegl LMS-Z420i; (B) tractor with hydraulic 
platform; (C) ranging pole with reflective cylinder. 
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panel). Six positions were measured within each plot and for each position, the detector offset was 

corrected (Aasen et al., 2014). Then the six spectra were averaged, resulting in one spectrum per field 

plot, which was used in the further analysis.  

 Post-processing 

6.2.2.1 TLS data 

In the scanner software RiSCAN Pro, the DGPS data and the scans of all campaigns were imported into 

one project file per year. Based on the coordinates of the scan positions and reflectors, a direct 

georeferencing method was applied for the registration of all scan positions. However, a further 

adjustment was required due to small alignment errors between the point clouds. Based on the 

iterative closest point (ICP) algorithm (Besl and McKay, 1992), the Multi Station Adjustment in RiSCAN 

Pro allows the position and orientation of each scan position to be modified in multiple iterations and 

thus the best fitting result for all of them to be acquired. After optimizing the alignment with the ICP 

algorithm, the error, measured as standard deviation between used point-pairs, was 0.04 m on average 

for each campaign. 

The point clouds were then merged to one dataset per campaign, and the area of interest was 

extracted. As reflections on insects or small particles in the air produced noise those points were 

manually removed. In addition a filtering scheme for selecting maximum points was used for 

determining the crop surface and in the same way, a filtering scheme for selecting minimum points 

was applied to extract ground points from the data sets of each first campaign. Finally, the data sets 

with XYZ coordinates of each point were exported. 

The spatial analyses and visualization of the data were carried out in Esri ArcGIS Desktop 10.2.1. All 

point clouds were interpolated using the inverse distance weighting (IDW) algorithm, resulting in a 

raster with a consistent spatial resolution of 1 cm. IDW is an exact, deterministic algorithm that retains 

measured values at their sample location. The accuracy of measurements with a high density is 

maintained as all values are kept at their discrete location and not moved to fit the interpolation better 

(Johnston et al., 2001). As introduced by Hoffmeister et al. (2010), the created raster data sets are 

referred to as crop surface models (CSMs). Similarly, a digital terrain model (DTM) was generated from 

the ground points and by subtracting the DTM from a CSM, plant heights were calculated pixel-wise. 

Moreover, by calculating the difference between two CSMs, plant growth was spatially measured. 

Hereinafter, growth is defined as temporal difference in height (for a detailed description of the CSMs 

creation and the calculation of plant heights see Tilly et al. (2014b)). The raster data sets with pixel-

wise stored plant heights and growth were visualized as maps of plant height and growth, respectively. 
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Then the plant heights were averaged plot-wise, allowing a common spatial base with the other 

measurements to be attained. It should be noted that previously, each plot was clipped with an inner 

buffer of 0.5 m to prevent border effects. 

6.2.2.2 Spectral data 

For this study, established VIs were used to extract information from the hyperspectral data, measured 

with the field-spectrometer. From the widespread of known hyper- and multispectral VIs for deriving 

different vegetation properties, six VIs were selected from the literature which have been found to be 

related to biomass and LAI. The selection was based on two criteria: Firstly, to make this study 

comparable to other studies VIs were selected which have been widely used in literature. Secondly, VIs 

with different spectral domains were used to examine if this would influence the prediction power of 

the fused models.  

The NDVI was originally created for broad band satellite remote sensing (Rouse et al., 1974) and has 

been widely used in the literature. It has been adapted to hyperspectral narrow bands and was 

specified for sensors such as GreenSeekerTM and Crop CircleTM (Gnyp et al., 2014b). Several articles 

reported relationships between the NDVI and biomass or LAI. However, NDVI has been shown to 

saturate in cases of dense and multi-layered canopy (Thenkabail et al., 2000) and to have a non-linear 

relationship with biophysical parameters such as green LAI (Haboudane et al., 2004).  

On this basis, Roujean and Breon (1995) developed the renormalized difference vegetation index 

(RDVI) for estimating the fraction of photosynthetically active radiation absorbed by vegetation, 

independent of a priori knowledge of the vegetation cover (Roujean and Breon, 1995). The RDVI 

showed strong relationships to LAI for different crops below an LAI of 5 (Broge and Leblanc, 2001; 

Haboudane et al., 2004). In dense crop canopies with an LAI above five, RDVI tended to overestimate 

the LAI (Haboudane et al., 2004). Simulations with the radiative transfer models PROSPECT and SAIL 

indicated that the RDVI is less affected by canopy structure, biochemistry, and soil background when 

estimating the LAI (Broge and Leblanc, 2001).  

The red edge inflection point (REIP) was introduced by Guyot and Baret (1988). The REIP characterizes 

the inflection in the spectral red edge by calculating the wavelength with maximum slope. A variation 

of the inflection is mainly related to leaf chlorophyll content, leaf area index, and leaf inclination angle. 

Furthermore, soil reflectance and sun position have a limited effect (Guyot et al., 1992).  

GnyLi is a four-band VI for estimating biomass in the NIR and SWIR domain (Gnyp et al., 2014b). This 

VI was developed for winter wheat and showed good performance on different scales from plot to 

regional level and across several growth stages (Gnyp et al., 2014b). The GnyLi considers the two 
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reflectance maxima and minima between 800 and 1300 nm. While the high reflectance is caused by 

the plants intercellular structure, the absorption at the minima is caused by cellulose, starch lignin, and 

water. These components contribute substantially to dry and fresh biomass and combining the two 

products helps to avoid saturation problems—this is a major advantage of this VI.  

Similar to the GnyLi, the normalized reflectance index (NRI) was also developed for estimating biomass 

in winter wheat. The NRI was empirically developed by combining the shape of the NDVI and the best 

two band combination for biomass estimation with EO-1 Hyperion satellite data (Koppe et al., 2010).  

The red green blue vegetation index (RGBVI) was developed for estimating biomass based on bands 

available in a standard digital camera (Bendig et al., 2015). In this study, the RGB data was simulated 

from hyperspectral data where green, red, and blue values were calculated as the mean of the 

reflectance from 530 to 560 nm, 645 to 765 nm, and 465 to 495 nm, respectively. Thus, in contrast to 

other studies (Bareth et al., 2015; Bendig et al., 2015; Geipel et al., 2014), the RGBVI was derived from 

radiometrically and spectrally calibrated data.  

The six VIs used in this study can be categorized by the wavelength domains that are used in their 

formula. The NDVI, RDVI, and REIP use wavelengths in the visible and near-infrared domain 

(VISNIR VIs), the GnyLi and NRI use wavelengths in the near-infrared domain (NIR VIs), while the RGBVI 

uses wavelengths in the visible domain (VIS VI). The formulas of the VIs used in this study are given in 

Table 6.3 (Bendig et al., 2015; Gnyp et al., 2014a; Guyot and Baret, 1988; Koppe et al., 2010; Roujean 

and Breon, 1995; Rouse et al., 1974). 

Table 6.3. Vegetation indices (VIs) used in this study. 

Wave-
length 
Domains 

VIs Formula References 

NIR 
GnyLi 

(𝑅900 × 𝑅1050 − 𝑅955 × 𝑅1220)

(𝑅900 × 𝑅1050 + 𝑅955 × 𝑅1220)
 (Gnyp et al., 2014a) 

NRI (𝑅874 − 𝑅1225)/(𝑅874 + 𝑅1225) (Koppe et al., 2010) 

VISNIR 

NDVI (𝑅798 − 𝑅670) (𝑅798 + 𝑅670)⁄  (Rouse et al., 1974) 

RDVI (𝑅798 − 𝑅670) (√𝑅798 + 𝑅670)⁄  (Roujean and Breon, 1995) 

REIP 700 + 40 ∗
(

𝑅670 + 𝑅780
2

) − 𝑅700

𝑅740 − 𝑅700
 (Guyot and Baret, 1988) 

VIS RGBVI 
(𝑅𝑔𝑟𝑒𝑒𝑛

2 − 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑)

(𝑅𝑔𝑟𝑒𝑒𝑛
2 + 𝑅𝑏𝑙𝑢𝑒 × 𝑅𝑟𝑒𝑑)

 (Bendig et al., 2015) 
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 Biomass regression models 

The main aim of this study was to establish biomass regression models (BRMs) and compare the 

potential of PH, VIs, and a fusion of PH and VIs for estimating barley biomass. The workflow for the 

BRM calibration and validation and the distinction of considered cases are shown in Figure 6.2. All 

calculations were performed in the R software environment (R Development Core Team, 2015). The 

measurements from 2012 were excluded because the spectral data set was inconsistent, since due to 

unsuitable weather, no spectral data or only data for less than half of the plots could be acquired 

corresponding to the second and fourth TLS campaign, respectively (Table 6.1). Furthermore, as 

mentioned above, the number of cultivars was reduced in 2014 so as a result only these six cultivars 

were used from the 2013 data set to ensure comparability.  

The reduced data set was split into four subsets to obtain independent values for calibration and 

validation. The first subset contained the plot-wise averaged measurements of plant height, calculated 

VIs and destructively taken biomass from 2013 (n = 48). Each other subset contained the same 

measurements of one repetition from 2014 (each n = 60). Thus, each subset contained the 

Figure 6.2 Workflow for the calibration and validation of the biomass regression models and distinction 
of cases for each model. 
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measurements of each cultivar from one plot with low and one with high N fertilizer level for the given 

campaign dates. A cross-validation was performed using these data sets: For each run, one subset was 

excluded from the BRM calibration and used for validating the resulting BRM. 

First, bivariate BRMs for fresh and dry biomass were developed based on the CSM-derived PH or one 

of the six VIs. Linear and exponential BRMs were established since no trend regarding their usability 

for biomass estimations based on PH was clearly identifiable in earlier studies (Tilly et al., 2015). 

However, the biomass accumulation during the vegetative phase is exponential and other studies have 

shown that it is best estimated with exponential models (Aasen et al., 2014; Thenkabail et al., 2000). 

For the exponential BRMs, the fresh and dry biomass values were natural log-transformed. Each BRM 

was calculated for two time frames, the whole observed period from tillering (BBCH stage 2) till the 

end of fruit development (BBCH stage 7) and the pre-anthesis period (till BBCH stage 6) (Table 6.2). 

The latter period is important as, for example, adequate crop conditions could buffer the grain yield 

against later environmental stress (Bidinger et al., 1977). Thus, campaign numbers 3 to 6 and 2 to 6 

were considered for 2013 and 2014, respectively, whereas each final campaign was excluded for the 

pre-anthesis BRMs. Considering the four possible subset combinations, overall 224 bivariate BRMs 

were established. Second, multivariate BRMs were established based on PH fused with each VI. Since 

they were also established as linear and exponential BRMs for fresh and dry biomass for both time 

frames, the four possible subset combinations led to 192 multivariate BRMs in total.  

The calibration was evaluated by calculating the coefficient of determination (R2) for PH or VI vs. 

measured biomass and the standard error of the estimate (SEE) (Hair et al., 2010). For the validation, 

besides the R2 (estimated vs. measured biomass), the root mean square error (RMSE), and Willmott’s 

index of agreement (d) (Willmott and Wicks, 1980; Willmott, 1981) were determined. For each case, 

the results from the four runs were averaged. Finally, the robustness of the BRMs was evaluated by 

calculating the ratio between the R2 values of BRM calibration and validation. 

 Results 

 Acquired plant parameters 

The TLS-derived point clouds were used to establish CSMs and spatially calculate plant height. Results 

of the pixel-wise calculation were visualized in maps of plant height for each plot. As an example for 

this, maps of four plots and corresponding mean heights are shown in Figure 6.3 for the barley cultivar 

Trumpf. In the first campaign of 2013, plants were too small to obtain reasonable results. Thus, maps 

are presented for the last six and five campaigns of 2013 and 2014, respectively. One plot of each N 

fertilizer level is shown for both years. For the temporal development, an increase in plant height is 
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observable until anthesis (BBCH stage 6) and afterwards, the development of ears begins and plant 

heights decrease due to the associated sinking of heads. Within all plots, the detailed representation 

of plant height is visible, which enables spatial differences in plant height to be detected. As a result, 

the exact calculation of mean heights can be assumed. A comparison of the plot-wise averaged values 

does not show that the fertilization rate directly influenced plant height.  

Figure 6.3 Maps of four plots from the last six and five campaigns of 2013 and 2014, respectively. One 

plot of each N fertilizer level of the barley cultivar Trumpf is shown for each year (: Plot mean height). 
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The plot-wise averaged plant heights were used for statistical analysis and a comparison with the 

manual measurements. The linear regressions between all mean CSM-derived and manual measured 

plant heights for each of the three years is illustrated below in Figure 6.4. High coefficients of 

determination (R2) confirm the TLS-derived results. The R2 across all years is 0.92, yearly separated 

values are also given in Figure 6.4. Moreover, a varying scattering between the years is indicated. The 

scattering is the lowest in the 2014 data set, which is presumably caused by the reduced number of 

cultivars in 2014 and associated with more similar plant heights. Table A 6.1 in the Appendix gives the 

mean, minimum, and maximum values of all plot-wise averaged values as well as the standard 

deviation per campaign of the CSM-derived and manual measured plant heights. Clearly observable 

lodging occurred in some plots between the second and third or fourth and fifth campaign in 2012 and 

2013, respectively (for more details see Tilly et al. (2014a). Those plots were neglected for the analysis 

and thus reduced the number of samples for the affected campaigns. As already stated for the 

visualized plots (Figure 6.3), an increase in plant height is detectable during pre-anthesis and a slight 

decrease is detectable afterwards. In addition, the difference between the mean values of both 

measurement methods is lower than 10% for almost all campaigns.  

The field-spectrometer measurements were used for calculating the six VIs (GnyLi, NDVI, NRI, RDVI, 

REIP, and RGBVI). As the spectral measurements from 2012 were not usable for a linkage with the TLS 

data, only the data sets from 2013 to 2014 were used. Moreover, from the data set of 2013 only 

measurements of the cultivars selected in 2014 were considered and the data sets of plant height and 

Figure 6.4 Regression of the mean CSM-derived and manual measured plant heights (2012: n = 131; 
2013: n = 196; 2014: n = 180). 
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biomass were accordingly adapted to ensure comparability. For each campaign, the values for both N 

fertilizer levels were averaged. Table 6.4 shows the statistics for the reduced data sets of the nine 

regarded campaigns. Additionally, the yearly mean biomass values were calculated for the pre-anthesis 

and whole observed period, as reference for the later evaluation of the biomass estimation. 

Table 6.4. Statistics for the plot-wise averaged CSM-derived plant heights and destructively taken 
biomass for the reduced data sets of 2013 and 2014 (n: number of samples; : mean value; min: 
minimum; max: maximum; SD: standard deviation). 

    CSM-derived plant height 
(m) 

Fresh biomass (g/m²) Dry biomass (g/m²) 

 n  min max SD  min max SD  min max SD 

2013 
           

3 12 0.22 0.01 0.39 0.13 1282.92 491.00 2172.50 473.20 168.31 52.00 272.00 56.59 
4 12 0.47 0.24 0.71 0.17 2891.54 1560.25 4465.50 806.12 415.31 205.00 725.00 146.02 
5 12 0.78 0.58 0.99 0.13 5070.42 2668.75 7730.00 1561.62 883.38 434.50 1429.25 328.93 
6 12 0.78 0.65 0.93 0.07 4631.73 2986.25 7655.75 1193.95 1258.88 886.75 1687.50 219.92 

 Mean pre-anthesis period 3081.63 1573.33 4789.33 946.98 489.00 230.50 808.75 177.18 
 Mean whole observed period 3469.15 1926.56 5505.94 1008.72 681.47 394.56 1028.44 187.86 

2014 
           

2 36 0.17 0.12 0.25 0.03 656.28 266.25 1116.50 202.07 89.01 33.00 155.25 27.66 
3 36 0.41 0.34 0.52 0.04 2227.08 1226.75 3236.50 531.72 289.83 165.75 417.75 66.03 

4 36 0.63 0.53 0.70 0.04 2825.48 1643.75 4162.00 603.19 465.49 276.62 706.65 97.89 
5 36 0.81 0.69 0.99 0.05 3185.13 2106.50 5433.25 687.74 777.23 486.35 1271.35 156.02 
6 36 0.78 0.66 0.99 0.05 3569.34 1994.75 6044.00 898.59 1166.38 652.60 1876.35 276.46 

 Mean pre-anthesis period  2223.49 1310.81 3487.06 506.18 405.39 240.43 637.75 86.90 
  Mean whole observed period 2492.66 1447.60 3998.45 584.66 557.59 322.86 885.47 124.81 

          

 Biomass estimation 

The barley biomass was estimated by establishing 224 bivariate and 192 multivariate biomass 

regression models (BRMs) based on plant height (PH) and vegetation indices (VIs). Table 6.5 shows the 

statistical parameters for the BRM calibration. The table is vertically divided into bivariate or 

multivariate BRMs and the regarded time frames. Horizontally it distinguishes between dry or fresh 

biomass and linear or exponential BRMs. However, the results of the linear and exponential BRMs 

cannot be directly compared due to the log-transformation of biomass for the latter ones. Since the 

biomass accumulation during the vegetative phase is exponential and other studies have shown that 

it is best estimated with exponential BRMs (Aasen et al., 2014; Thenkabail et al., 2000) only the 

exponential BRMs are regarded in the following. For each model the coefficient of determination (R2) 

and the standard error of the estimate (SEE) are given as mean values of the four possible subset 

combinations. 

Each established BRM was validated with the remaining fourth subsets. Table 6.6 shows the R2, root 

mean square error (RMSE), and Willmott’s index of agreement (d) for the model validation as mean 
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values of the four subset combinations. The subdivision of the table is equivalent to that of Table 6.5. 

The results of the bivariate BRMs are regarded in the following subsection; the fusion of both plant 

parameters to multivariate BRMs is examined in the last subsection of this chapter. As the results of 

the calibration and validation show a similar tendency, only the values of the validation are stated. 

However, to evaluate the robustness of the BRMs, an overall comparison of differences between 

calibration and validation is given at the end of this chapter.  

Table 6.5. Statistics for the model calibration as mean values of the four subset combinations (R2: 
coefficient of determination; SEE: standard error of the estimate). 

  Bivariate BRMs Multivariate BRMs 

   Whole period Pre-anthesis  Whole period Pre-anthesis 

  Estimator R2 SEE 
a R2 SEE 

a Estimatorb R2 SEE 
a R2 SEE 

a 

D
ry

 b
io

m
as

s 

Li
n

ea
r 

PH 0.65 10.03 0.76 5.73      
GnyLi 0.52 11.75 0.68 6.67 GnyLi 0.65 34.63 0.77 25.41 
NDVI 0.07 16.38 0.34 9.56 NDVI 0.69 21.49 0.76 20.73 
NRI 0.54 11.58 0.70 6.40 NRI 0.65 35.04 0.77 24.86 

RDVI 0.13 15.87 0.39 9.21 RDVI 0.69 19.18 0.76 21.40 
REIP 0.12 15.92 0.58 7.60 REIP 0.73 1933.86 0.76 258.29 

RGBVI 0.05 16.55 0.26 10.10 RGBVI 0.68 22.28 0.76 23.23 

Ex
p

o
n

en
ti

al
 

PH 0.84 0.37 0.84 0.34      
GnyLi 0.80 0.42 0.85 0.32 GnyLi 0.86 2.43 0.88 2.14 
NDVI 0.30 0.77 0.61 0.53 NDVI 0.85 2.84 0.88 3.99 
NRI 0.81 0.40 0.87 0.30 NRI 0.87 2.29 0.89 1.96 

RDVI 0.41 0.71 0.68 0.48 RDVI 0.85 2.52 0.88 2.84 
REIP 0.37 0.73 0.77 0.40 REIP 0.84 30.37 0.86 48.49 

RGBVI 0.23 0.81 0.48 0.60 RGBVI 0.85 2.51 0.87 2.73 

  Estimator R2 SEE 
a R2 SEE 

a Estimatorb R2 SEE 
a R2 SEE 

a 

Fr
e

sh
 b

io
m

as
s Li

n
e

ar
 

PH 0.59 901.99 0.60 843.32      

GnyLi 0.58 913.81 0.62 829.48 GnyLi 0.62 3295.30 0.64 2968.91 
NDVI 0.25 1222.39 0.42 1022.79 NDVI 0.60 4561.69 0.63 5008.60 
NRI 0.59 909.94 0.62 821.35 NRI 0.62 3056.34 0.64 2718.09 

RDVI 0.35 1143.49 0.50 945.26 RDVI 0.61 3813.94 0.64 3955.80 
REIP 0.30 1180.82 0.55 894.62 REIP 0.60 14599.87 0.63 59169.39 

RGBVI 0.22 1243.84 0.37 1066.53 RGBVI 0.61 4007.93 0.64 3881.46 

Ex
p

o
n

en
ti

al
 

PH 0.70 0.37 0.68 0.39 PH     

GnyLi 0.76 0.33 0.76 0.34 GnyLi 0.77 1.87 0.77 1.77 
NDVI 0.46 0.50 0.65 0.41 NDVI 0.77 3.74 0.79 4.30 
NRI 0.77 0.33 0.77 0.33 NRI 0.77 1.67 0.77 1.56 

RDVI 0.59 0.43 0.74 0.35 RDVI 0.79 2.69 0.82 2.89 
REIP 0.47 0.49 0.71 0.37 REIP 0.72 22.27 0.74 73.05 

RGBVI 0.38 0.53 0.55 0.47 RGBVI 0.77 2.58 0.78 2.68 
a The SEE for exponential models is calculated from natural log-transformed biomass values; b each fused with PH. 
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Table 6.6. Statistics for the model validation as mean values of the four subset combinations (R2: 
coefficient of determination; RMSE: root mean square error (g/m²); d: Willmott’s index of agreement). 

  Bivariate BRMs Multivariate BRMs 

    
Whole period Pre-anthesis  Whole period Pre-anthesis 

  Estimator R2 RMSEa d R2 RMSEa d Estimatorb R2 RMSEa d R2 RMSEa d 

D
ry

 b
io

m
a

ss
 

Li
n

ea
r 

PH 0.66 257.57 0.88 0.80 147.75 0.92        

GnyLi 0.54 299.67 0.81 0.72 173.31 0.88 GnyLi 0.65 262.19 0.88 0.79 148.20 0.92 

NDVI 0.07 412.70 0.33 0.38 244.47 0.64 NDVI 0.71 250.35 0.89 0.80 148.32 0.92 

NRI 0.55 295.41 0.82 0.74 166.41 0.89 NRI 0.66 261.77 0.88 0.80 147.67 0.92 

RDVI 0.13 400.36 0.44 0.41 233.53 0.71 RDVI 0.72 247.16 0.89 0.80 148.27 0.92 

REIP 0.15 404.95 0.46 0.68 197.50 0.83 REIP 0.73 228.46 0.91 0.80 147.88 0.92 
RGBVI 0.04 416.42 0.26 0.28 254.41 0.58 RGBVI 0.70 261.30 0.88 0.80 149.33 0.92 

Ex
p

o
n

en
ti

al
 

PH 0.85 0.39 0.95 0.85 0.36 0.95        

GnyLi 0.80 0.42 0.94 0.86 0.33 0.95 GnyLi 0.87 0.36 0.96 0.89 0.31 0.96 

NDVI 0.29 0.77 0.63 0.59 0.54 0.81 NDVI 0.85 0.38 0.95 0.87 0.30 0.96 

NRI 0.81 0.40 0.94 0.87 0.31 0.96 NRI 0.87 0.36 0.96 0.89 0.29 0.96 

RDVI 0.40 0.71 0.73 0.66 0.48 0.87 RDVI 0.85 0.38 0.95 0.88 0.30 0.96 

REIP 0.40 0.75 0.72 0.82 0.43 0.90 REIP 0.85 0.39 0.95 0.89 0.34 0.95 
RGBVI 0.22 0.82 0.55 0.48 0.62 0.75 RGBVI 0.85 0.38 0.95 0.86 0.31 0.96 

  

Estimator R2 RMSEa d R2 RMSEa d Estimatorb R2 RMSEa d R2 RMSEa d 

Fr
es

h
 b

io
m

as
s 

Li
n

ea
r 

PH 0.67 963.45 0.84 0.70 892.55 0.85        

GnyLi 0.65 970.70 0.83 0.72 886.24 0.84 GnyLi 0.69 939.84 0.85 0.74 861.73 0.86 

NDVI 0.27 1254.02 0.58 0.51 1053.83 0.70 NDVI 0.67 952.58 0.84 0.73 862.84 0.85 

NRI 0.65 962.49 0.83 0.72 873.75 0.85 NRI 0.69 938.46 0.85 0.74 857.99 0.86 

RDVI 0.38 1175.32 0.67 0.59 964.42 0.77 RDVI 0.68 943.96 0.85 0.74 841.36 0.86 

REIP 0.41 1244.11 0.66 0.77 951.74 0.81 REIP 0.67 966.67 0.84 0.77 908.74 0.84 
RGBVI 0.21 1260.32 0.53 0.41 1066.26 0.67 RGBVI 0.66 948.90 0.85 0.71 852.97 0.86 

Ex
p

o
n

en
ti

al
 

PH 0.73 0.40 0.89 0.71 0.42 0.88        

GnyLi 0.78 0.35 0.92 0.79 0.36 0.91 GnyLi 0.79 0.34 0.92 0.80 0.36 0.92 

NDVI 0.44 0.51 0.73 0.64 0.42 0.83 NDVI 0.78 0.34 0.92 0.79 0.34 0.92 

NRI 0.77 0.34 0.92 0.79 0.35 0.92 NRI 0.79 0.34 0.92 0.79 0.35 0.92 

RDVI 0.57 0.44 0.82 0.73 0.36 0.89 RDVI 0.80 0.33 0.93 0.83 0.31 0.93 

REIP 0.54 0.53 0.77 0.82 0.42 0.87 REIP 0.77 0.39 0.90 0.82 0.40 0.88 

RGBVI 0.36 0.54 0.68 0.53 0.47 0.78 RGBVI 0.76 0.34 0.92 0.76 0.34 0.92 
a The RMSE for exponential models is calculated from natural log-transformed biomass values; b each fused with PH. 

6.3.2.1 Bivariate models 

All cases show moderate to good results for bivariate BRMs based on PH. For each time frame, PH 

shows the same and similar relationship with dry and fresh biomass, respectively (Table 6.6). 

Scatterplots of measured vs. estimated biomass for selected examples are shown in the last subsection 

in comparison with multivariate BRMs. 

Most VIs lead to better results for pre-anthesis than for the whole observed period. For dry biomass, 

the RGBVI performs worst for both time frames (Table 6.6, top left quarter). The largest difference 

between the whole observed period and the pre-anthesis can be found for the NDVI (R2 = 0.29 vs. 

0.59), while the NIR VIs as the GnyLi perform more consistently (R2 = 0.80 vs. 0.86). Both, the NRI and 

the GnyLi also reveal best results for pre-anthesis (R2 = 0.87, 0.86) and for the whole observed period 
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(R2 = 0.81, 0.80). In pre-anthesis, the relative difference between the NIR VIs and VISNIR VIs is smaller. 

Figure 6.5 shows scatterplots of measured vs. estimated dry biomass of one validation dataset for 

selected VIs and as expected from the high R2 values, the estimated biomass from the GnyLi BRM 

corresponds well with the measured biomass (close to the 1:1 line). In pre-anthesis, the same applies 

the REIP whereas the NDVI and RGBVI saturate at about 185 g/m². For the whole observed period, 

biomass estimated by the BRM of REIP, NDVI and RGBVI does not align well with what was measured. 

The scatterplots reveal that the dynamic range of the models does not cover the range of the measured 

biomass values.  

Better results are also obtained for pre-anthesis of fresh biomass than for the whole observed period, 

although the differences are smaller than for dry biomass. The NIR VIs perform most consistently for 

both periods and have the highest R2 values for the whole observed period. However, particularly for 

the whole observed period, the relative difference between the NIR VIs and the VIS and VISNIR VIs is 

smaller than for dry biomass and in pre-anthesis, the relative difference between the NIR VIs and other 

VIs is further reduced. Additionally, the REIP (R2 = 0.82) yields better results than the NIR VIs (each 

R2 = 0.79). Again, the RGBVI performs worst.Figure 6.6 shows scatterplots of measured vs. estimated 

fresh biomass of one validation dataset for selected VIs. As expected from the high R2 values, biomass 

Figure 6.5 Scatterplots of measured vs. estimated dry biomass for one validation data set for NDVI, 
RGBVI, REIP, and GnyLi (exponential model). Pre-anthesis: crosses and solid green line; whole observed 
period: circles and dashed black line; 1:1 line: light grey. 
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estimated from the GnyLi BRM corresponds well with the measured values (close to the 1:1 line). In 

pre-anthesis, the same applies for the REIP, whereas the NDVI and RGBVI saturate at about 1,375 g/m². 

As for dry biomass, the BRMs based on the REIP and particularly the NDVI and RGBVI show a poor 

relationship between estimated and measured fresh biomass. Overall, most VISNIR VIs and the RGBVI 

yield better results for fresh biomass than for dry biomass. The NIR VIs perform best and most 

consistently (Table 6.6, bottom left quarter).  

6.3.2.2 Multivariate models 

For dry biomass, PH is the best individual estimator across the whole observed period (R2 = 0.85) and 

a slight improvement is only achieved when fused with one of the NIR VIs in a multivariate BRM (both 

R2 = 0.87). In pre-anthesis, PH and the NIR VIs perform similarly to the bivariate BRMs (R2 = 0.85, 0.86, 

0.87) and when PH is fused with the NIR VIs or the REIP, the predictability slightly increases (R2 = 0.89).  

For fresh biomass across the whole observed period, PH (R2 = 0.73) yields comparable results to the 

NIR VIs (both R2 = 0.77) although the fusion of PH with NIR VIs slightly improves the estimation (both 

R2 = 0.79). Only the multivariate BRM from PH and RDVI is very slightly better (R2 = 0.80). In 

Figure 6.6 Scatterplots of measured vs. estimated fresh biomass for one validation data set for NDVI, 
RGBVI, REIP, and GnyLi (exponential model). Pre-anthesis: crosses and solid green line; whole observed 
period: circles and dashed black line; 1:1 line: light grey. 
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pre-anthesis, REIP, GnyLi, NRI, and RDVI explain up to 11% more variation (R2 = 0.82, 0.79, 0.79, 0.73) 

then PH (R2 = 0.71). When PH is fused with any VI, the predictability is improved compared to most 

individual estimators and even the RGBVI in combination with PH improves the estimation of dry and 

fresh biomass for pre-anthesis yielding an R2 of 0.71 and 0.76, respectively. In the fused analysis, the 

RGBVI performs only slightly weaker than the other VIs. Nevertheless, only the RDVI fused with PH 

slightly increases the predictability (R2 = 0.83) compared to the bivariate BRM based on the RDVI. 

Figure 6.7 shows the scatterplots of measured vs. estimated values of one validation dataset from the 

bivariate BRM of PH and the multivariate BRM of PH and GnyLi for dry biomass in pre-anthesis and 

fresh biomass across the whole observed period. The model fit is only slightly improved by fusing PH 

with the VI. 

The robustness of the models was evaluated by calculating the ratio between the R2 values of model 

calibration and validation for each BRM (Appendix Table A 6.2). Since the R2 of calibration was divided 

through the R2 of validation, values above 1 indicate better results from the calibration and below 1 

indicate better results from the validation. Consequently, values close to 1 show a robust performance. 

Figure 6.7 Scatterplot for one validation data set for the pre-anthesis (green) and for the whole 
observed period (black) of the bivariate BRM of PH (circles and solid regression line) and multivariate 
BRM of PH and GnyLi (crosses and dashed regression line) for dry biomass (top) and fresh biomass 
(bottom) (all exponential models); 1:1 line: light grey. 
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For the bivariate BRMs, PH and almost all VIs are supported as robust estimators by ratios close to 1 

for all cases. The weakest ratios are attained for the REIP, in particular for fresh biomass with linear 

BRMs (0.73, 0.71). For the multivariate BRMs, good ratios are found for all cases. Only the linear BRMs 

for fresh biomass show slightly weaker values for the pre-anthesis period. 

 Discussion 

The overall aim of this study was to evaluate whether the fusion of PH and VIs can improve the 

predictability of dry and fresh barley biomass compared to each parameter as individual estimator. For 

this work, the use of TLS to derive PH was verified and bivariate BRMs based on PH or one of six VIs as 

well as multivariate BRMs based on the fusion of PH with each VI were established. Extensive fieldwork 

over three years supported the practical application of the presented methods for monitoring crop 

development on plot level. The same instruments were used for all measurements whereby variations 

through different sensors could be excluded. However, the design of the field experiment and the 

measurement program was slightly modified and optimized over the years. Hence, only a part of the 

acquired data was used for the final model generation in order to ensure the comparability between 

the data sets. In the following, first the retrieval of PH from TLS data is discussed before the different 

BRMs are examined.  

 TLS-derived plant height 

The presented study verified the reliability of the laser scanner Riegl LMS-Z420i for capturing crop 

surfaces. In comparison with past studies (Hoffmeister et al., 2010; Tilly et al., 2015), the scanning 

angle to the field was optimized through the elevated position on the hydraulic platform. However, 

uncertainties still remain about the influence of the scanning angle and the fixed position of the 

scanner during the measurements. As maintained by Ehlert and Heisig (2013)—the scanning angle can 

cause overestimations in the height of reflection points and should be considered in the calculation of 

heights. In this study, the crop surface was determined from the merged and cleaned point clouds of 

four scan positions, filtered with a scheme for selecting maximum points. Overestimations should 

therefore be precluded. 

For the practical implementation of CSM-derived plant height measurements, further aspects have to 

be considered. Usually, the factors time and cost have a major influence on choosing a system. As 

shown by Hämmerle and Höfle (2014) the appropriate point density for generating a CSM varies 

depending on the application. In further studies, cost-efficient systems, such as the Velodyne HDL-64E 

(Velodyne, 2014), should be considered to investigate their potential for capturing crop surfaces in an 

adequate resolution. In the distant future, low-cost stationary systems might get permanently 
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established for monitoring plant growth on field level. Moreover, recent developments have brought 

up new laser scanning platforms that might accelerate the field measurement process and optimize 

the scanning angle. First, ground-based mobile laser scanning (MLS) systems (Kukko et al., 2012) should 

be taken into account for increasing the homogeneous distribution in the point cloud and thus 

enhancing a uniform field coverage. Second, unmanned aerial vehicles (UAVs), such as the recently 

introduced Riegl RiCOPTER (Riegl LMS GmbH, 2015), should be examined as a potential platform of a 

lightweight airborne laser scanning (ALS) systems. Promising results have already been achieved for 

measuring tree heights (Jaakkola et al., 2010) or detecting pruning of individual stems (Wallace et al., 

2014) with UAV-based laser scanning. However, as examined in a comparative study for TLS and 

common plane-based ALS, the scanning angle and possible resolution influence the results (Luscombe 

et al., 2014) and thus have also to be taken into account for studies on UAV-based scanning systems.  

In this study, TLS measurements were used to derive 3D information of points. As shown in other 

studies, captured intensity values could be used for qualitative analyses of the points, such as detecting 

single plants (Hoffmeister et al., 2012; Höfle, 2014). Whilst such analyses were not an object of this 

study they should be considered for further investigations. Moreover, full-waveform analysis, 

commonly known from ALS, can simplify the distinction between laser returns on canopy and ground 

returns in TLS data (Elseberg et al., 2011; Pirotti et al., 2013). The scanner used in this study however 

is not capable of capturing the full waveform. 

The maps of plant height demonstrate the potential of the present approach for deriving plant height 

information on plot level in a very high resolution. The methodology of spatial plant height mapping 

can be scaled to field level, as long as the maximum range of the scanner is regarded and the point 

density is above the required minimum. As shown by Hämmerle and Höfle (2014), the coverage of the 

field and attained mean heights are influenced by the point density. The approach of pixel-wise 

calculating plant height from TLS-derived CSMs has already shown good results at the field level for 

monitoring a maize field, about 80 m by 160 m in size (Tilly et al., 2014c) and a sugar beet field, about 

300 m by 500 m in size (Hoffmeister et al., 2010) captured from four and eight scan positions, 

respectively. Further studies are necessary for determining crop- or case-specific minimum values for 

the point density. In this context, the used sensor and its maximum range influence the required 

number of scan positions. 

Nevertheless, for this study, high coefficients of determination between averaged CSM-derived and 

manual measured plant heights validate the TLS measurements. For the absolute values, differences 

between the measurement methods have to be considered. Whereas for the manual measurement 

the heights of ten plants were averaged per plot, the CSM captured the entire crop surface. 

Consequently, differences in the mean heights occurred, which make precision analysis between TLS 
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data and manual measurements infeasible. The precision of TLS measurements for agricultural 

applications is presumed from other studies (Höfle, 2014; Lumme et al., 2008). It is important to note 

that a key advantage of the TLS data is that while plants for the manual measurements are subjectively 

selected, CSMs enable an objective assessment of spatially continuous plant height.  

 Biomass estimation from plant height 

Generally, PH performed well for the estimation of biomass in the pre-anthesis and the whole observed 

period. For dry biomass, PH was the best predictor for the whole observed period and similar good 

predictor as the best performing VIs for the pre-anthesis. However, PH performed far better for dry 

biomass than for fresh biomass, although these values are only distinguished by the water content of 

the sample. Thus, a possible explanation is the fact that the water content is not only influenced by the 

changing plant phenology across the growing season, but also by varying weather conditions. 

Moreover, during each day the available soil water and transpiration conditions vary. Hence, the 

amount of fresh biomass might vary more between the campaigns while the dry biomass is less 

influenced. Since PH is hardly affected by the water content of the plants, the varying water content in 

the fresh biomass adds noise to the BRM based on PH which results in lower R2 values. 

 Biomass estimation from vegetation indices 

All VIs in this study have previously shown a relationship with biomass and LAI. Since the VIs use 

different bands within the spectral range, they were subdivided into three categories VIS VIs (RGBVI), 

VISNIR VIs (NDVI, RDVI, REIP), and NIR VIs (NRI, GnyLi). The VIs showed varying performances for the 

estimation of dry and fresh biomass, also depending on the regarded time frame of the growing season. 

Generally, the VIs within a category showed a similar behavior.  

The saturation problem of the NDVI type VISNIR VIs was confirmed: Typically, crops reach 100% canopy 

cover around mid-vegetative phase. However, most crops continue to accumulate biomass and LAI 

afterwards. At a LAI of about 2.5 - 3, the absorbed amount of red light reaches a peak while the NIR 

scattering by leaves continues to increase. Thus, the ratio of NDVI type VISNIR VIs will only show slight 

changes (Thenkabail et al., 2000). In this study, the sensitivity thresholds were about 185 g/m² and 

1,375 g/m² for dry and fresh biomass, respectively. Additionally, after heading the canopy de-greens 

due to flowering and fruit development (after BBCH 5, Table 6.2) This leads to an increased reflectance 

in the red part of the spectrum and thus, decreases values of the VISNIR VIs, while the biomass does 

not decrease. Herein, this discrepancy resulted in an inadequate model parameterization for the BRMs 

of the VISNIR VIs and poorer results for the whole observed period than for pre-anthesis.  
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A similar behavior was observable for the RGBVI. The inferior results might be explained by the fact 

that this VI does not take the reflectance in the NIR region into account, where most of the absorption 

features for biomass-related plant compounds are situated (Kumar et al., 2001). These results align 

well with the ones presented by Bendig et al. (2015), where low correlations were found for the RGBVI 

with biomass after booting stage (BBCH 4, Table 6.2). 

In pre-anthesis, relationships of the RGBVI with dry and fresh biomass were similar. These results 

suggest that the RGBVI is mostly related with vegetation cover and not directly with biomass. 

In contrast, NIRVIs, such as GnyLi and NRI, use bands only in the NIR and are thus not affected by the 

absorption in the red part of the spectrum, which could explain the overall more consistent and better 

performance of the NIR VIs, particularly after anthesis. A later saturation of these VIs aligns well with 

other studies (Gnyp et al., 2014a; Koppe et al., 2010). Similarly, the REIP did not show any saturation 

effects in the pre-anthesis and yielded very good results for dry and fresh biomass. These findings can 

be explained by the major influence of the NIR bands that are not normalized as they are in the NDVI 

type VIs. Thus, the REIP saturated later than the VISNIR and VIS VIs. Nevertheless, across the whole 

observed period, the performance of the REIP also decreased due to saturation. The importance of the 

NIR domain for biomass estimation aligns with other studies (Aasen et al., 2014; Gnyp et al., 2014a; 

Koppe et al., 2010; Marshall and Thenkabail, 2015) and should be further investigated. Similar to PH, 

the NIR VIs performed better for dry than for fresh biomass while the VISNIR VIs generally performed 

better with fresh biomass. This suggests that the VISNIR VIs respond more to the canopy water content 

and the related reflectance change in the NIR shoulder rather than directly to the biomass.  

Overall, the results show that the NIR VIs perform best in the prediction of fresh and dry biomass. 

Moreover, the results indicate that the VIS and VISNIR VIs might not be directly related to biomass. 

However, no rigorous sensitivity analysis was carried out in this study but, as indicated by the results, 

such analyses should be carried out in the future. 

In general, hyperspectral field measurements have been shown to be useful in earlier studies to 

estimate biomass (Aasen et al., 2014; Gnyp et al., 2014b; Marshall and Thenkabail, 2015; Thenkabail 

et al., 2013). However, VIs are prone to errors by illumination changes (Damm et al., 2015) and 

multiangular reflection effects (Burkart et al., 2015). So far, the influence of these effects on the 

estimation of plant parameters have not been comprehensively investigated and should be examined 

for evaluating the potential of VIs for plant parameter estimations. Moreover, ground-based 

spectrometer measurements are laborious and time-consuming. Automated platforms are under 

development in different fields of remote sensing to overcome this difficulty but they have not yet 

become standard. Kicherer et al. (2015) developed a robotic platform for phenotyping grapevine based 
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on automatic image acquisition. Results of a mobile multi-sensor phenotyping platform for 

phenotyping of winter wheat are presented by Kipp et al. (2014). Moreover, hyperspectral UAV-based 

systems showed promise (Aasen et al., 2015; Bareth et al., 2015; Honkavaara et al., 2013; Quemada et 

al., 2014; Suomalainen et al., 2014). Unfortunately, the promising NIR domain is currently not well 

covered by UAV sensing systems.  

 Biomass estimation with fused models 

Leaves make up a major part of the biomass, and VIs related to biomass are often also responsive to 

LAI (Thenkabail et al., 2002, 2000). Thus, it was assumed that the spectral information would 

complement the PH information by adding information about the canopy density and cover.  

As described above, PH and VIs showed varying performances in the estimation of fresh and dry 

biomass and for pre-anthesis or the whole observed period. For dry biomass in pre-anthesis, the 

NIR VIs performed slightly better than PH. Here, the fusion with all VIs improved the predictability, 

whereby the NIR and VISNIR VIs yielded the best results. This can be explained by the sensitivity of the 

VIs to the vegetation cover in early growth stages. For the whole observed period, PH clearly 

outperformed the VIs in the multivariate BRMs and only the fusion with the NIR VIs increased the 

predictability slightly compared to PH alone. For the VIS and VISNIR VIs, the above described saturation 

effects might have counteracted the positive effect of the vegetation cover estimation in the early 

growth stages. Additionally, for pre-anthesis and across the whole observed period, the multivariate 

BRMs performed similarly regardless which VI was used. This indicates that most of the prediction 

power can be accounted to PH. 

For fresh biomass across the whole observed period, the NIR VIs performed best, followed by PH. 

Although the VISNIR VIs did not perform well in the bivariate BRMs, they could improve the results 

when fused with PH. As described above, VISNIR VIs respond to the water content. Thus, they might 

have complement the PH information for the estimation of fresh biomass. Still, only a slight 

improvement was achieved with the fused models compared to the NIR VIs alone and overall, the 

results of multivariate BRMs with different VIs differed only slightly.  

In pre-anthesis, only the NDVI and RGBVI performed poorer than PH while the REIP performed best for 

the fresh biomass. In combination with PH, the results of the NDVI and RDVI were improved the most, 

while the latter one also achieved the best results of all fused models. For the NIR VIs and REIP none 

or only very minor improvements were achieved and as for the whole observed period, the water was 

important because it influences the reflectance in the NIR. Additionally, the VIs correspond to 

vegetation cover in the early growth stages. Thus, in pre-anthesis already the VIs performed well and 
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PH only rarely contributed to the prediction power. Only the RGBVI, NDVI, and RDVI might have carried 

complementary information to the PH.  

In this study, the NIR VIs showed the overall best performance of the VIs and seemed to carry similar 

information as PH. Overall, PH and NIR VIs showed the best potential for biomass estimation as 

individual and fused estimators. This aligns with a recent study by Marshall and Thenkabail (2015), in 

which they have shown the importance of PH and the NIR domain for fresh biomass estimations. The 

VISNIR VIs seemed to be influenced by the water content and their performance strongly depended 

on the regarded time frame of the growing season. Although, no comprehensive sensitivity analysis 

was carried out, these findings align well with other studies (Gnyp et al., 2014a, 2013). Further studies 

are needed to investigate the influence of the growing stage on the estimation, and whether 

estimators, which have been found as suitable in across growth stage estimations, are suitable for 

estimation at individual growth stages. Such in-season estimations are particularly important for 

applications in precision agriculture. Additionally, in this study VIs known for estimating biomass from 

hyperspectral data were used. Thus, the full potential of the fusion of 3D spatial and spectral data may 

not have been explored. Future studies should investigate whether other parts of the spectral range 

complement PH information better.  

Overall, this study demonstrated the strength of bivariate BRMs based on PH and NIR VIs for estimating 

biomass, with only slight improvements achievable through multivariate models. In contrast, the weak 

performances of the VIS and VISNIR VIs as individual estimators were compensated through the fusion 

with PH. However, statements have to be limited, since the models indicated that PH contributed the 

most to the prediction power. In this context, it has to be noted that neither linear nor exponential 

models reflected the relation between estimators and biomass perfectly and thus more complex 

functions have to be considered, which might take the benefits of VIs, like sensitivity to water content, 

better in to account. 

For practical applications the benefit of the fused models might be outweighed by the expenses to 

deploy two different systems. Referring to this, limitations through the attainable spatial and temporal 

resolution of each system have to be regarded. As already mentioned, TLS measurements can be scaled 

up to larger fields, as long as a sufficiently point density can be achieved, which has to be determined 

crop- and case-specific in further studies. Apart from that, laser scanning appeared as powerful tool 

for the non-destructive and objective assessment of spatially resolved plant height data. Statements 

about the accuracy of the measured plant heights are hardly possible due to the already mentioned 

different spatial resolution of the plant height measurements, however the averaged difference of 

0.05 m between TLS-derived and manual measured plant heights corroborate the results (Table A 6.1). 

A main benefit of the field-spectrometer measurements is the high credibility of the acquired spectral 
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data, based on a large number of former studies, however the dependence on solar radiation and the 

small numbers of measurements per regarded spatial area, herein per plot, are the main 

disadvantages. Consequently, systems are required which are capable to assess larger areas in less 

time with the same accuracy of the results. Ideally, spatial and spectral information should be acquired 

directly through one sensor. For example, recently developed sensing systems and techniques allow to 

create hyperspectral point clouds (Vauhkonen et al., 2013) and hyperspectral digital surface models 

(Aasen et al., 2015) with only one sensor and thus, derive 3D spatial and hyperspectral information at 

the same time. Thus, it can be expected that 3D hyperspectral information will become increasingly 

available and combined analysis approaches should be further developed. 

 Conclusion and outlook 

Continuously conducting a field experiment with different barley cultivars and the related TLS, field-

spectrometer, and manual measurements enabled the acquisition of an extensive data set. High R2 

values up to 0.89, between TLS-derived and manual measured plant heights verified the applicability 

of the presented approach for a pixel-wise calculation of plant height (PH) from high resolution crop 

surface models (CSMs). Six established vegetation indices (VIs) were used to extract information from 

the hyperspectral data. Based on PH and VIs, bivariate and multivariate biomass regression models 

(BRMs) were established, with varying performances. Whereas PH was supported as strong estimator 

in the bivariate models (R2 up to 0.85), VIs showed highly different results (R2: 0.07 - 0.87). The 

multivariate models yielded improvements in some cases (R2 up to 0.89), however in most cases PH 

had the greatest contribution to the prediction power. 

Different models appeared best suitable for dry or fresh biomass estimations, also depending on the 

regarded time frame of the growing season, but in all cases exponential models performed better than 

the linear ones: For dry biomass, the bivariate BRM with PH showed the best results for the whole 

observed period (R2 = 0.85), whereas for the pre-anthesis the REIP and the near-infrared (NIR) VIs GnyLi 

and NRI showed slightly better results than PH (R2 = 0.86, 0.87). Multivariate BRMs from PH and one 

VI slightly improved the R2 values compared to the bivariate BRMs in some cases. For fresh biomass, 

the bivariate BRMs of the NIR VIs showed the best results for the whole observed period (both R2 

= 0.77). For pre-anthesis, the REIP (R2 = 0.82) showed slightly better results that the NIR VIs (both 

R2 = 0.79). The multivariate BRM could slightly improve the results in some cases. Additionally, it can 

be noted that also weakly performing VIs, such as the NDVI or RGBVI, improved the estimations slightly 

when fused with PH in the multivariate BRMs, both for fresh and dry biomass. These results suggest 

that specific models should be chosen for specific applications, and a fusion of PH and VIs does not 
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always substantially improve the results. Additionally, when PH and VIs are fused, the choice of the VI 

does not seem critical in all cases. 

Altogether, it should be noted that the presented results are a first step towards the fusion of remotely 

sensed 3D spatial and spectral data for a precise and non-destructive estimation of crop biomass. Other 

ways of data fusion may further increase the prediction power. Further studies are also necessary to 

investigate differences between the years, cultivars, and fertilizer treatments. Moreover, as already 

mentioned, in-season biomass estimations are important for precision agriculture. Therefore models 

should be established based on data sets from only one campaign to investigate the potential for timely 

monitoring and in-season estimations. Accurate and rapidly ascertainable estimations in a high spatial 

resolution during the growing season could support spatially resolved nitrogen nutrition index 

calculations. Thereby in-field variations can be considered for optimizing fertilizer application and 

shrinking the gap between potential and current yield. The fusion of 3D spatial and spectral data might 

improve such calculations as weaknesses and limitations of one estimator might be compensated 

through the other one. 

With regard to the application in the field, the usability of new platforms should be further 

investigated. UAV-based lightweight ALS systems reveal potential for vegetation mapping. 

Futhermore, new technologies like hyperspectral snapshot camera systems which enable the 

derivation of 3D spatial and hyperspectral information at the same time carry great potential for 

agricultural applications. Combined with estimation models based on structural and spectral and 

information, such approaches can become a powerful tool for applications in precision agriculture and 

biomass monitoring. 
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 Appendix 

Table A 6.1. Statistics for the plot-wise averaged CSM-derived and manual measured plant heights 
(n: number of samples; : mean value; min: minimum; max: maximum; SD: standard deviation). 

        CSM-derived plant height (m) Manual measured plant height 
(m) 

 BBCH N 
level 

n  min max SD  min max SD 

2012           

1 N/A 40 18 0.15 0.06 0.22 0.04 0.20 0.15 0.25 0.03 
  80 18 0.18 0.14 0.24 0.03 0.20 0.15 0.26 0.03 
2 30 40 18 0.21 0.13 0.28 0.04 0.35 0.28 0.42 0.05 
  80 18 0.27 0.20 0.35 0.04 0.35 0.30 0.42 0.04 
3 49 40 16 0.58 0.47 0.72 0.08 0.63 0.52 0.80 0.09 
  80 15 0.64 0.48 0.80 0.11 0.66 0.54 0.79 0.08 
4 N/A 40 14 0.73 0.61 0.81 0.06 0.86 0.74 0.96 0.06 
  80 14 0.81 0.71 0.92 0.06 0.89 0.80 1.00 0.06 

2013           

2 18 40 18 0.21 0.05 0.37 0.09 0.19 0.14 0.25 0.03 
  80 18 0.11 -0.07 0.25 0.08 0.20 0.16 0.27 0.03 
3 30 40 18 0.33 0.15 0.51 0.11 0.29 0.19 0.56 0.09 
  80 18 0.25 0.01 0.40 0.11 0.28 0.17 0.45 0.08 
4 41 40 18 0.57 0.33 0.83 0.17 0.52 0.39 0.70 0.09 
  80 18 0.56 0.24 0.79 0.18 0.57 0.31 0.81 0.13 
5 57 40 16 0.84 0.64 1.11 0.13 0.77 0.66 0.95 0.07 
  80 16 0.79 0.58 1.04 0.12 0.81 0.54 0.94 0.11 
6 68 40 14 0.78 0.65 0.97 0.09 0.77 0.66 0.84 0.05 
  80 14 0.77 0.66 0.90 0.08 0.83 0.76 1.00 0.06 
7 81 40 14 0.75 0.62 0.96 0.10 0.72 0.65 0.82 0.06 
  80 14 0.72 0.62 0.83 0.07 0.79 0.67 0.89 0.07 

2014           

2 29 40 18 0.16 0.12 0.24 0.03 0.19 0.12 0.30 0.04 
  80 18 0.18 0.15 0.25 0.03 0.18 0.13 0.27 0.04 
3 31 40 18 0.41 0.36 0.51 0.04 0.38 0.31 0.52 0.05 
  80 18 0.42 0.34 0.52 0.05 0.36 0.27 0.45 0.05 
4 49 40 18 0.63 0.53 0.70 0.04 0.59 0.53 0.65 0.03 
  80 18 0.63 0.57 0.70 0.04 0.57 0.51 0.64 0.04 
5 56 40 18 0.80 0.69 0.87 0.04 0.78 0.68 0.85 0.04 
  80 18 0.81 0.75 0.93 0.04 0.78 0.72 0.89 0.04 
6 74 40 18 0.76 0.66 0.84 0.04 0.77 0.68 0.83 0.03 
   80 18 0.79 0.73 0.85 0.03 0.75 0.71 0.82 0.03 
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Table A 6.2. Ratio between model calibration and validation (R2
cal: coefficient of determination from 

calibration; R2
val: coefficient of determination from validation). 

   Bivariate BRMs Multivariate BRMs 

   

  
Whole 
period 

Pre-
anthesis 

  
Whole 
period 

Pre-
anthesis 

   Estimator R2
cal / R2

val R2
cal / R2

val Estimatora R2
cal / R2

val R2
cal / R2

val 

D
ry

 b
io

m
as

s 

Li
n

ea
r 

PH 0.98 0.95    
GnyLi 0.96 0.94 GnyLi 1.00 0.97 
NDVI 1.00 0.89 NDVI 0.97 0.95 
NRI 0.98 0.95 NRI 0.98 0.96 

RDVI 1.00 0.95 RDVI 0.96 0.95 
REIP 0.80 0.85 REIP 1.00 0.95 

RGBVI 1.25 0.93 RGBVI 0.97 0.95 

Ex
p

o
n

e
n

ti
al

 

PH 0.99 0.99    
GnyLi 1.00 0.99 GnyLi 0.99 0.99 
NDVI 1.03 1.03 NDVI 1.00 1.01 
NRI 1.00 1.00 NRI 1.00 1.00 

RDVI 1.03 1.03 RDVI 1.00 1.00 
REIP 0.93 0.94 REIP 0.99 0.97 

RGBVI 1.05 1.00 RGBVI 1.00 1.01 

  

Estimator R2
cal / R2

val R2
cal / R2

val Estimatora R2
cal / R2

val R2
cal / R2

val 

Fr
es

h
 b

io
m

as
s 

Li
n

ea
r 

PH 0.88 0.86    
GnyLi 0.89 0.86 GnyLi 0.90 0.86 
NDVI 0.93 0.82 NDVI 0.90 0.86 
NRI 0.91 0.86 NRI 0.90 0.86 

RDVI 0.92 0.85 RDVI 0.90 0.86 
REIP 0.73 0.71 REIP 0.90 0.82 

RGBVI 1.05 0.90 RGBVI 0.92 0.90 

Ex
p

o
n

en
ti

al
 

PH 0.96 0.96    
GnyLi 0.99 0.96 GnyLi 0.97 0.96 
NDVI 1.05 1.02 NDVI 0.99 1.00 
NRI 1.00 0.97 NRI 0.97 0.97 

RDVI 1.04 1.01 RDVI 0.99 0.99 
REIP 0.87 0.87 REIP 0.94 0.90 

RGBVI 1.06 1.04 RGBVI 1.01 1.03 
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Abstract: In this study we combined selected vegetation indices (VIs) and plant height information to 

estimate biomass in a spring barley experiment. The VIs were calculated from ground-based 

hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In 

addition, the plant height information was obtained from UAV-based multi-temporal crop surface 

models (CSMs). The test site is a spring barley experiment comprising 18 cultivars and two nitrogen 

treatments located in Western Germany. We calculated five VIs from hyperspectral data. The 

normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation 

(R²=0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation 

index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the 

RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction 

prior to heading stage. A robust estimate for biomass was obtained from the plant height models 

(R²=0.80-0.82). In a cross validation test, we compared plant height, selected VIs and their combination 

with plant height information. Combining VIs and plant height information by using multiple linear 

regression or multiple non-linear regression models performed better than the VIs alone. The visible 

band GRVI and the newly developed RGBVI are promising but need further investigation. However, the 

relationship between plant height and biomass produced the most robust results. In summary, the 
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results indicate that plant height is competitive with VIs for biomass estimation in spring barley. 

Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is 

that the visible band VIs work for early growing stages only.  

Keywords: point cloud; structure from motion; green red vegetation index; GnyLi; SAVI; NDVI 

 Introduction 

It is a well-known fact that biomass estimation is crucial for yield prediction of crops (Oerke et al., 

2010). Crop parameters, like biomass, are frequently used to assess crop health status, nutrient supply 

and effects of agricultural management practices (Adamchuk et al., 2010). For management 

optimization, the nitrogen nutrition index (NNI) plays a key role (Chen et al., 2010; Tremblay et al., 

2011). Biomass is needed for calculating the NNI (Lemaire and Gastal, 1997). A well-established method 

for biomass estimation is the calculation of vegetation indices (VIs) in the near infrared region (NIR) (Qi 

et al., 1994; Rouse et al., 1974), here defined as the range between 700 and 1300 nm (Kumar et al., 

2001). Field-spectroradiometers are commonly used for the collection of hyperspectral reflectance 

data that are used for such calculations (Clevers and Jongschaap, 2001; Kumar et al., 2001; Royo and 

Villegas, 2011).  

An alternative possibility is to model biomass using plant height information. Lumme et al. (2008) and 

Tilly et al. (2014) demonstrated the suitability of the method in wheat, oat, barley and paddy rice. Plant 

height information is most useful when it is available at high spatial and temporal resolution. The 

method of multi-temporal crop surface models (CSMs) derived from 3D point clouds delivers the 

desired centimeter resolution (Bendig et al., 2013; Tilly et al., 2014). The method was studied for 

different crops by Hoffmeister et al. (2013, 2010) for sugar beet, Tilly et al. (2014) for paddy rice and 

Bendig et al. (2014, 2013) for spring barley. For small fields of a few hectares, suitable data collection 

platforms can be ground-based like terrestrial laser scanners (Hoffmeister et al., 2013; Kraus, 2004; 

Tilly et al., 2014) or airborne like unmanned aerial vehicles (UAVs) (Bendig et al., 2014, 2013). Through 

the availability of high resolution consumer digital cameras, red green blue (RGB) aerial imaging with 

cm-resolution can easily be obtained using UAVs (d’Oleire-Oltmanns et al., 2012; Lucieer et al., 2014; 

Neitzel and Klonowski, 2012). At the same time, the emergence of structure from motion (SfM)-based 

software (Dandois and Ellis, 2010; Verhoeven, 2011) has enabled efficient creation of 3D point clouds 

and super high detail orthophotos.  

Visible band VIs (VIRGB) may be calculated from the orthophotos as demonstrated by Hunt et al. (2014; 

2005). Motohka et al. (2010) used RGB-imagery obtained from a tower. These are some of the rare 

examples for small-scale field trials. Near infrared VIs (VINIR) are more widely used because of the 
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characteristic difference between red and NIR reflection in green vegetation (Bannari et al., 1995). In 

addition, smaller, but significant spectral differences in the visible bands exist, which are caused by 

biochemical plant constituents such as chlorophyll (Hatfield et al., 2008; Roberts et al., 2011).  

Collecting RGB-imagery by UAV is simple, cost-effective and VIRGB can easily be calculated from the 

imagery. Consequently, the goal of this study is to investigate if UAV-based VIRGB can compete with 

VINIR for biomass estimation. Crop monitoring by UAV-based RGB imagery enables obtaining the VIRGB 

and the plant height information from the same dataset suggesting to combine both parameters to 

improve biomass estimation. According to Koppe et al. (2013), a combination of hyperspectral satellite 

imagery and radar can improve the model quality of biomass prediction. The objective of this study is 

to build up on this approach of combining the two parameters plant height and vegetation indices for 

biomass estimation by developing suitable regression models for UAV-based non-calibrated RGB 

imagery and ground-based hyperspectral reflectance data. We investigate the combination of VINIR and 

VIRGB with CSM-based plant height information.  

 Materials and Methods 

 Test Site 

The study site is based at the Campus Klein-Altendorf agricultural research station (50°37’N, 6°59’E, 

altitude 186 m), located 40 km south of Cologne, Germany. In 2013, 18 spring barley (hordeum vulgare) 

cultivars were planted, of which 10 were new cultivars and eight were old cultivars (Figure 7.1, Bendig 

et al., 2014). They were treated with two levels of nitrogen fertilizer (40 and 80 kg N/ha). The 

experiment was organized in 36 small 3×7 m plots with a randomised order of the cultivars. Seedlings 

were planted with 300 plants/m² and a row spacing of 0.104 m. In addition, the plots are divided into 

a 3×5 m measuring area for plant height (PH) and reflectance measurements, and a 3×2 m sampling 

area for destructive biomass sampling. Biomass samples were taken frequently from April to July in 36 

of the plots. For the UAV image collection, ground control points (GCPs) were evenly distributed across 

the field (Figure 7.1). The positions were taken using a HiPer® Pro Topcon DGPS (Topcon Corporation, 

Tokyo, Japan) with 0.01 m horizontal and vertical precision. Later, the GCPs were identified in the 

images and used for georeferencing. 

 Biomass Sampling and BBCH Measurements 

A destructive sample of 0.2×0.2 m above ground biomass was taken in the sampling area for each date 

(Figure 7.1). The sampling dates were within one day before or after the UAV campaigns and the field-

spectroradiometer measurements. For the fresh biomass, the samples were cleaned, the roots were 

clipped and stem, leaves and ears were weighed. In a next step, the samples were dried at 70°C for 
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120 h and dry biomass was weighed again for each plant. The weights were extrapolated to kg/m² for 

analysis. Plant growth stages were determined according to the 10 principal growth stages and 10 

secondary growth stages of the “Biologische Bundesanstalt, Bundessortenamt und CHemische 

Industrie” (BBCH) scale (Lancashire et al., 1991) along with PH measurements. Three plant 

representatives for the crop stand were chosen for each plot. 

Figure 7.1 Test site: spring barley experiment at Campus Klein-Altendorf agricultural research station 
in 2013 (Bendig et al., 2014) with ground control points (GCPs) used for crop surface model (CSM) 
generation. 

 UAV-based Data Collection 

The UAV used in this study was a multi-rotor MK-Oktokopter by HiSystems GmBH (Bendig et al., 2013). 

It is equipped with an RGB-sensor, a 16 Megapixel Panasonic Lumix GX1 (F1.7 aspheric (ASPH) fixed 20 

mm lens) digital camera that is attached to the UAV on a gimbal. The gimbal compensates for the UAV 

movement (pitch and roll) during the flight and guarantees close to nadir image collection (Bendig et 

al., 2014). To trigger the sensor, we used the UAV's remote control. An autopilot was used for waypoint 

navigation to achieve the desired coverage of the AOI. On 30 April 2013, a bare ground ground model 

was recorded in a flight. Data from six flights (15 May, 28 May, 14 June, 25 June, 08 July and 23 July) 

were used for the plant height derived from the CSM (PHCSM). Images were captured at 2 frames per 

second (fps) at 50 m above ground level (AGL). Camera settings were adjusted to lighting conditions 

and set to a fixed exposure for each flight, thus the settings changed between acquisition dates. The 

shutter speed varied from 1/400 s to 1/3200 s and the aperture was set to f/2.0 or f/2.8. Identical 

camera settings were used on three dates with shutter speed 1/1000 s and aperture f/2.0. The images 

were recorded during homogeneous and stable radiation conditions.  
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 Field-spectroradiometer Measurements 

Barley canopy reflectance was sensed with an ASD FieldSpec3 spectroradiometer (Analytical Spectral 

Devices, Inc., Boulder, CO, USA). The FieldSpec3 is a passive field device that is dependent on solar or 

artificial illumination. The spectroradiometer acquired the reflectance in the wavelength domain of 

350-2500 nm with three detectors, one for the visible near infrared (VNIR: 350-1000 nm) and two for 

shortwave-infrared (SWIR1: 1001-1830 nm, SWIR2: 1831-2500 nm). The FieldSpec3 has a 1.4 nm 

sampling interval in the VNIR and 2 nm sampling interval in the SWIR. Within the manufacturer’s 

software the bands were resampled to a resolution of 1 nm. For continuous measurements of the same 

footprint, the spectroradiometer's fibre probe was fixed on an orthogonal frame with a 1 m sensor-

canopy distance (Laudien and Bareth, 2006), and the same field of view of 25° was used. Hence, the 

acquisition geometry is described by sensor-canopy distance and field of view, resulting in a 0.155 m² 

sample area with a 44 cm diameter at the barley canopy surface. 

Reflectance measurements were taken between 11 a.m. and 2 p.m. local mean time under solar 

illumination at the study site. Calibration measurements were carried out with a Spectralon 

(polytetrafluoroethylene (PTFE)) reference panel (white colour) and a dark current at least every 10-

15 minutes, depending on illumination changes. In the ASD RS3 software, twenty sample counts were 

set for a calibration and ten sample counts for the reflectance measurements at each scanning position 

of the barley canopy. Within one experimental plot, six scanning positions with representative plant 

growth were selected randomly and the six reflectance measurements were averaged to one value.  

 Plant Height Generation from CSM 

In a first step, the collected images were mosaiced in the structure from motion (SfM)-based software 

Agisoft PhotoScan Professional (Verhoeven, 2011). For georeferencing the mosaic, the GCP positions 

were imported, manually placed on one image and automatically projected to the remaining images 

(Lucieer et al., 2014). Additionally, the positions were checked and adjusted manually. The software 

uses matching features in the images to perform a bundle adjustment and generates a point cloud 

(Sona et al., 2014). Finally, a digital surface model in *TIF image format is exported, which contains the 

crop surface model (CSM) information at a 0.01 m resolution. In addition, orthophotos are generated 

using the software's 'mosaicing blending mode'. In this mode, the software uses the pixel value of the 

most appropriate photo, in the case of overlapping photos, to calculate the orthophoto (Agisoft LLC, 

2014). The orthophoto is then exported in *TIF image format at 0.01 m resolution for the VIRGB 

calculations. For the derivation of the PHCSM, we used the workflow in Esri ArcGIS® 10.2.1 described in 

Bendig et al. (2013). An area of interest (AOI) is defined by the outline of the measuring area of the 

plots, which is buffered by a 0.3 m inside buffer to exclude the plot boundaries and the sampling area. 
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To get information of the PH, each CSM (for each date) was subtracted from a bare ground model 

(Bendig et al., 2014). In a last step, the mean PHCSM for each plot was averaged for each date.  

 Vegetation Indices 

7.2.6.1 Near Infrared Vegetation Indices 

In this study we examined the correlation of different near infrared vegetation indices (VINIR), which 

are reported to be well correlated with biomass or leaf area index (LAI) (Thenkabail et al., 2000). These 

are the normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), 

modified SAVI (MSAVI) and optimized SAVI (OSAVI) (Table 7.1). The NDVI (Rouse et al., 1974) is the 

most popular VI (Pettorelli, 2013), but its applicability is limited by atmospheric influences, soil 

reflectance in the spectra and saturation with the occurrence of high biomass values in later growth 

stages (Carlson and Ripley, 1997; Haboudane, 2004). The SAVI (Huete, 1988), MSAVI (Qi et al., 1994) 

and OSAVI (Rondeaux et al., 1996) are based on the NDVI but include correction factors for the soil 

reflectance in the spectra. In addition, we calculated the GnyLi (Gnyp et al., 2014) that is based on the 

normalised ratio index (NRI) equation (Thenkabail et al., 2000). The GnyLi exploits the difference of 

two reflectance and absorption features around 900 and 1200 nm. The reflectance peak at 900 nm is 

caused by the intercellular plant structure, while the reflection minimum between 970 and 1200 nm is 

affected by plant moisture, cellulose, starch and lignin (Curran, 1989; Pu et al., 2003). In contrast to 

NDVI, SAVI, MSAVI and OSAVI, the GnyLi is calculated from narrow bands in the NIR domain only. 

Table 7.1 Near infrared vegetation indices (VINIR) used in this study where R = reflectance (%), RR = red 
(630-690 nm), Ri = reflectance in a narrow band e.g. R1220 = 1220 nm, L = constant (Huete, 1988). 

VI Name Formula References 

NDVI 
Normalized Difference 

Vegetation Index 

𝑅900 − 𝑅680

𝑅900 + 𝑅680
 

(Peñuelas et al., 
1993; Rouse et al., 
1974) 

SAVI 
Soil Adjusted Vegetation 

Index 
(1 + 𝐿)𝑥

𝑅800 − 𝑅670

𝑅800 + 𝑅670 + 𝐿
 (Huete, 1988) 

MSAVI Modified SAVI 0.5 (2R800+1-√(2xR800+1)2-8(R800-R670)) (Qi et al., 1994) 

OSAVI 
Optimized Soil-Adjusted 

Vegetation Index 
(1 + 0.16)𝑥

𝑅800 − 𝑅670

𝑅800 + 𝑅670 + 0.16
 

(Rondeaux et al., 
1996) 

GnyLi 
Named by the 

developers Gnyp and Li 

𝑅900𝑥𝑅1050 − 𝑅955𝑥𝑅1220

𝑅900𝑥𝑅1050 + 𝑅955𝑥𝑅1220
 (Gnyp et al., 2014) 
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7.2.6.2 Visible Band Vegetation Indices 

Three VIRGB were calculated from the orthophotos (Table 7.2) based on the NDVI equation (Motohka 

et al., 2010; Tucker, 1979). The green red vegetation index (GRVI) (Tucker, 1979) is used as a phenology 

indicator and has potential for biomass estimation (Hunt Jr. et al., 2005). It exploits the high reflectance 

of plants in the green (around 540 nm) and the absorption in the red and blue part of the visible 

spectrum (400-700 nm) through plant chlorophylls (Gao, 2006; Gitelson et al., 2002; Motohka et al., 

2010). Squaring the band reflectance values helps to amplify the differences between red, green and 

blue reflectance. Based on these assumptions, we developed two new VIs. The modified GRVI (MGRVI) 

is defined as the normalized difference of the squared green reflectance and the squared red 

reflectance. To capture reflectance differences due to chlorophyll a-absorption (420, 490 and 660 nm) 

and chlorophyll b-absorption (435, 643 nm) (Kumar et al., 2001), we further introduced the new red 

green blue vegetation index (RGBVI). The RGBVI is defined as the normalized difference of the squared 

green reflectance and the product of blue×red reflectance (Table 7.2). 

Table 7.2 Visible band vegetation indices (VIRGB) used in this study where R = reflectance (%), RR = red, 
RG = green, RB = blue. Red, Green and Blue are the DN values in the respective channels extracted from 
the orthophotos. 

VI Name Formula References 

GRVI Green Red Vegetation Index 
𝑅𝐺 − 𝑅𝑅

𝑅𝐺 + 𝑅𝑅
 (Tucker, 1979) 

MGRVI Modified Green Red Vegetation Index 
(𝑅𝐺)² − (𝑅𝑅)²

(𝑅𝐺)2 + (𝑅𝑅)²
 introduced here 

RGBVI Red Green Blue Vegetation Index 
(𝑅𝐺 )² − (𝑅𝐵 ∗ 𝑅𝑅)

(𝑅𝐺)2 + (𝑅𝐵 ∗ 𝑅𝑅)
 introduced here 

To calculate the VIRGB we processed the above mentioned orthophotos in Esri ArcGIS® 10.2.1 by using 

the program’s ModelBuilder. We extracted the digital numbers (DN) for each band (red, green and 

blue) by converting the *.TIF files to float files (*.FLT; Figure 7.2). The equations in Table 7.2 served as 

input to the raster calculator that was used to calculate the VIRGB. To obtain the mean for each plot, we 

used the command ‘zonal statistics as table’. We repeated the process for each VIRGB and each 

orthophoto by employing an iterator.  
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Figure 7.2 Workflow for VIRGB calculation. (AOI = old and new cultivars in Figure 7.1) 

 Statistical Analyses 

The statistical analyses were executed in Microsoft® Excel® 2013 and IBM® SPSS® Statistics 22.0.0.0. 

Depending on the growth stages, we calculated a simple linear regression or exponential regression 

(Hansen and Schjoerring, 2003) for dry biomass and the VIs and PHCSM (Table 7.3). To investigate the 

influence of combing VIs and PHCSM we computed a multiple linear regression (MLR). Previous studies 

have shown that the relationships between the biomass and VIs or PH are often non-linear (Thenkabail 

et al., 2000). Therefore, a multiple non-linear regression (MNLR) model was employed to estimate the 

biomass. The non-linear model is a quadratic regression model (Berthold and Hand, 2006) using two 

variables and it takes the form of the Eq. 7.1, where y is the biomass, and xPH and xVI are the PHCSM and 

VI values, respectively. The model coefficients (𝛽0,…, 𝛽5) were determined for the non-linear 

regression model based on the calibration dataset. All processes of the non-linear model were 

implemented in the SPSS software package.  

𝑦 =  𝛽0 + 𝛽1𝑥𝑃𝐻 + 𝛽2𝑥𝑉𝐼 + 𝛽3𝑥𝑃𝐻𝑥𝑉𝐼 + 𝛽4𝑥𝑃𝐻
2 + 𝛽5𝑥𝑉𝐼

2 (Eq. 7.1) 

 Results 

 Plant Height and Biomass Samples 

On each flight date between 200 and 800 photos of the field were taken, resulting in a point density 

between 2653 and 3452 (pts./m²) and a mean of >9 images covering the same part of the AOI. To cover 

the AOI, we undertook two consecutive flights with an average 5 min flight time per flight on each date 

around 9 am local mean time (2 pm on 14 July). Lighting conditions were homogeneous for all flights 

except 25 June. On 25 June, the lighting conditions changed between flight one and flight two. We 

excluded images from the second flight to maintain radiation homogeneity. From 25 June onwards, 

lodging occurred in the plots with cultivars 10, 11, 12 and 14 (Figure 7.1, details in Bendig et al. (2014)), 

resulting in lower PH and reflection changes in the affected plots. The average measured PHCSM varies 

between 0.14 to 1.00 m with a standard error (SE) of 0.25 m. The biomass samples of plots 7 and 46 
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on 08 July were identified as erroneous and therefore excluded from further analysis. The averaged 

dry biomass ranges from 0.03 to 2.70 kg/m² with a SE of 0.68 kg/m². 

 Biomass Modelling 

7.3.2.1 Model Development 

Biomass modelling was carried out from 15 May until 08 July 2013 (‘all data’). On 23 July, the ripening 

crop substantially yellowed (BBCH Stages 77-89) and was thus unsuitable for biomass estimation from 

VIs. The results presented below are divided into ‘all data’ (n = 178) and ‘pre heading’ (n = 108), with 

‘pre heading’ covering 15 May until 16 June 2013, due to significantly changing performance of the 

VIRGB with the beginning of the heading stage. The general relationship between dry biomass and the 

VIs or the PHCSM has an exponential trend in the ‘all data’ class and a linear trend in the ‘pre heading’ 

class. 

The coefficients of determination (R²) for the exponential regression (ER) and linear regression (LR) 

between the PHCSM and dry biomass and VIs and dry biomass are presented in Table 7.3. We classified 

R² in high (> 0.7), medium (0.5 <R²< 0.7) and low (<0.5) correlation. In the ER ‘all data’ class, high 

correlations were found between PHCSM (R² = 0.85) and the GnyLi (R² = 0.83). All other combinations 

yielded medium correlations (SAVI, MSAVI and OSAVI, R² = 0.54-0.6) or low correlations (NDVI, GRVI, 

MGRVI, RGBVI, R² = 0.12-0.41). In the LR of ‘pre heading’ growth stages we found a high correlation 

between dry biomass and PHCSM (R² = 0.85) and GnyLi (R² = 0.71). All other relationships were medium 

(SAVI, MSAVI, GRVI, MGRVI, R² = 0.51-0.62) or low (NDVI, RGBVI, R² = 0.39-0.47). 

Table 7.3 Coefficient of determination (R²) and root mean square error (RMSE) for regression between 
dry biomass and either CSM derived plant height (PHCSM) or near infrared (VINIR) or visible band (VIRGB) 
vegetation indices where n = number of samples; ER = exponential regression and LR = linear regression. 

VI/PHCSM 
versus 
dry biomass 

exponential regression (ER) linear regression (LR) 
all data 
n = 178 

pre heading 
n = 108 

all data 
n = 178 

pre heading 
n = 108 

 R² RMSE 
(kg/m²) 

R² RMSE 
(kg/m²) 

R² RMSE 
(kg/m²) 

R² RMSE 
(kg/m²) 

PHCSM 0.85 0.324 0.81 0.112 0.65 0.311 0.85 0.083 

V
I N

IR
 

GnyLi 0.83 0.350 0.76 0.119 0.62 0.326 0.71 0.113 
NDVI 0.40 0.515 0.61 0.162 0.16 0.484 0.39 0.164 
SAVI 0.59 0.468 0.70 0.144 0.30 0.441 0.51 0.147 
MSAVI 0.60 0.466 0.70 0.144 0.32 0.437 0.52 0.146 
OSAVI 0.54 0.481 0.68 0.148 0.25 0.457 0.47 0.153 

V
I R

G
B
 GRVI 0.13 0.596 0.79 0.117 0.00 0.528 0.62 0.130 

MGRVI 0.13 0.596 0.79 0.117 0.00 0.528 0.61 0.131 
RGBVI 0.41 0.439 0.67 0.156 0.33 0.434 0.47 0.153 
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7.3.2.2 Model Application 

Based on the results from Table 7.3, PHCSM, GnyLi, MSAVI, GRVI and RGBVI were selected for model 

application. The dataset was divided into a calibration and validation dataset. The validation dataset 

consisted of the randomly selected cultivars 1, 6, 13 and 18 (two old and two new cultivars), while the 

remaining cultivars served for the calibration. We developed exponential regression and multiple non-

linear regression (MNLR) models for the ‘all data’ class and linear regression and multiple linear 

regression (MLR) models for the ‘pre-heading’ class. The calibration models (Table 7.4) were then 

applied to the validation datasets and evaluated by the relation between observed and predicted 

biomass (Figure 7.3 and 7.4). 

Table 7.4 Cross-validation relationships between observed and predicted biomass (kg/m²) for selected 
vegetation indices, PHCSM respectively and combinations of both; ER = exponential regression; MLR = 
multiple linear regression, LR = linear regression; MNLR = multiple non-linear regression; n = number 
of samples; SE = standard error; R² = coefficient of determination; RMSE = root mean square error; RE 
= relative error. 

observed versus 
predicted biomass 

regression model n SE 
(kg/m²) 

R² RMSE 
(kg/m²) 

RE 
(%) 

A
ll 

da
ta

 

E
R

 

PHCSM BIOM = 0.070×exp(PHCSM×4.155) 40 0.56 0.80 0.24 44.61 
GnyLi BIOM = 0.025×exp(GnyLi×11.757) 40 0.52 0.65 0.30 56.45 
MSAVI BIOM = 0.001×exp(MSAVI×6.436) 40 0.40 0.22 0.46 86.84 
GRVI BIOM = 0.187×exp(GRVI×5.594) 40 0.39 0.00 0.53 99.87 
RGBVI BIOM = 0.062×exp(RGBVI×3.553) 40 0.47 0.59 0.32 61.18 

M
N

LR
 

GnyLi+PHCSM BIOM = 0.073+(1.206×PHCSM)+(-2.678×GnyLi) 
+(-11.109×(PHCSM×GnyLi)) 

+(2.743×PHCSM²)+(21.811×GnyLi²) 

40 0.59 0.74 0.26 48.86 

MSAVI+PHCSM BIOM = 1.321+(4.243×PHCSM)+(-3.910×MSAVI)  
+(-4.403×(PHCSM× MSAVI)) 

+(2.050×PHCSM²)+(2.865×MSAVI²) 

40 0.60 0.77 0.25 47.87 

GRVI+PHCSM BIOM = 0.052+(3.146×PHCSM)+(-2.229×GRVI) 
+(-3.172×(PHCSM×GRVI)) 

+(-1.200× PHCSM²)+(1.439×GRVI²) 

40 0.58 0.74 0.26 49.10 

RGBVI+PHCSM BIOM = 0.404+(1.664×PHCSM)+(-2.332×RGBVI) 
+(0.275×(PHCSM×RGBVI)) 

+(-0.285× PHCSM²)+(2.508×RGBVI²) 

40 0.61 0.84 0.21 40.69 

P
re

 h
ea

di
n

g LR
 

PHCSM BIOM=1.009×PH+0.018 24 0.22 0.81 0.09 45.01 
GnyLi BIOM=2.651×GnyLi-0.196 24 0.24 0.74 0.10 51.30 
MSAVI BIOM=1.074×MSAVI-0.651 24 0.23 0.72 0.11 55.34 
GRVI BIOM=2.240×GRVI-0.032 24 0.24 0.76 0.10 54.22 
RGBVI BIOM=0.878×RGBVI-0.140 24 0.23 0.64 0.10 53.21 

M
LR

 

GnyLi+PHCSM BIOM =0.909×PHCSM+0.324×GnyLi-0.014 24 0.22 0.82 0.09 44.43 
MSAVI+PHCSM BIOM =1.139×PHCSM-0.220×MSAVI+0.174 24 0.22 0.78 0.09 44.24 
GRVI+PHCSM BIOM =1.077×PHCSM-0.206×GRVI+0.029 24 0.22 0.79 0.09 45.01 
RGBVI+PHCSM BIOM =1.111×PHCSM-0.158×RGBVI+0.067 24 0.22 0.78 0.09 45.79 
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In the ‘all data’ class (Figure 7.3), the PHCSM model had a high fit with R² = 0.80 and a low relative error 

(RE) of 44.61%. Comparably high fits were found for the MNLR model combinations of GnyLi+PHCSM (R² 

= 0.74, RE = 48.86%) and MSAVI+PHCSM (R² = 0.77, RE = 47.86%) and RGBVI+PHCSM (R² = 0.84, RE = 

40.69%). The R² in the ‘pre heading’ dataset (Figure 7.4) were all above 0.64 with RE under 55.34%. 

The highest fit occurred for the GnyLi+PHCSM MLR model (R² = 0.82, RE = 44.43%).  

 

Figure 7.3 ‘All data’ class cross-validation scatter plots for observed dry biomass versus predicted 
biomass derived from validation datasets listed in Table 7.4; p < 0.0001 for all R2. 
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Figure 7.4 ‘Pre-heading’ class cross-validation scatter plots for observed dry biomass versus predicted 
biomass derived from validation datasets listed in Table 7.4; p < 0.0001 for all R². 

 Discussion 

The primary aim of this study is to evaluate UAV-based RGB imaging and two of its products: the plant 

height (PH) and VIRGB. Both are available at cm-resolution derived from imagery acquired by a low flying 

multi-rotor UAV. We compared the performance in biomass estimation of PH, VIRGB, high spectral 

resolution VINIR from point measurements, and the combination of the VIs with PH. It appears from the 
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results in Table 7.3 and Table 7.4 that CSM-derived plant height (PHCSM) and GnyLi are the most robust 

parameters for biomass estimation in spring barley, while PHCSM performs slightly better than GnyLi. In 

addition, combinations of PHCSM with VIRGB or VINIR
 performed better than the VIs alone. In early growth 

stages, only the combination of GnyLi+PHCSM (R² = 0.82) yielded a slightly higher R² than the PHCSM (R² 

= 0.81). Although, the RGBVI+PHCSM produces a higher R² than the PHCSM across all growth stages, this 

result should be regarded with caution. The performances of the VIRGB vary significantly between model 

development and model application due to a small calibration and validation set. Thus, strong 

relationships in model applications might be produced randomly. Generally, the statistically more 

complex MLR and MNLR produce robust results, but a more significant improvement was expected. 

Positive examples for combining remotely sensed information from different sources are found in the 

literature (Koppe et al., 2013; Liu et al., 2006). Most studies comparable to this one either investigate 

the relationship between PH and biomass (Ehlert et al., 2008; Lumme et al., 2008) or the relationship 

between VIs and biomass (Hunt Jr. et al., 2005; Motohka et al., 2010; Tucker, 1979). Geipel et al. (2014) 

investigated yield prediction from UAV-based CSMs and VIRGB for early growth stages in maize. They 

found a slightly higher correlation (up to R² = 0.74) between yield and PHCSM in combination with one 

of three tested VIRGB. 

Of the VINIR investigated here, the GnyLi clearly outperformed the NDVI-based indices. This result is 

consistent with a multi-scale study for winter wheat, where the GnyLi outperformed 14 other indices 

(Gnyp et al., 2014). The NDVI-based indices perform lower, due to the well-known saturation effect. 

Similar results are reported by (Baret and Guyot, 1991; Gnyp et al., 2014; Haboudane, 2004; Mutanga 

and Skidmore, 2004). According to the statistics, the GRVI and MGRVI showed no correlation and the 

RGBVI produced a low correlation to the biomass after the booting stage (14 June 2013). Nevertheless, 

high positive correlations were found until booting stage, which is important for fertilizer management 

to improve crop yield. Management recommendations show that spring barley is commonly fertilized 

after seeding and at the tillering stage (Munzert and Frahm, 2006). Additionally, Chang et al. (2005) 

state that the booting stage is best suited for yield prediction using canopy reflectance. Similarly, 

studies in different crops and grasses by Motohka et al. (2010), Hunt et al. (2005) and Tucker (1979) 

demonstrate that the applicability of VIRGB is limited to certain growth stages. 

Generally, there are noteworthy constraints in the VIRGB generation method. We collected images with 

fixed exposure under homogeneous radiation conditions. We then calculated the VIRGB from an image 

mosaic. Minor changes in radiation can cause varying RGBVI values. As a result, there is no radiometric 

correction for changes in lighting conditions between single photos. Changing light incidence 

introduces bidirectional reflectance distribution function (BRDF) effects, even in close to nadir imaging 
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(Grenzdörffer and Niemeyer, 2011). Capturing the whole AOI in one image can partly eliminate the 

problem. Furthermore, no calibration between the images was possible because no object of known 

reflectance was present, like e.g. calibration panels or colored tarpaulins. Moreover, no investigation 

was made of the exact wavelengths covered by the red, green and blue bands of the digital camera. 

On the one hand, a calibration of digital numbers (DN) in the images with a monochromatic light source 

is highly recommended (Hunt Jr. et al., 2005). On the other hand, a comparison of RGBVI values 

calculated from the field-spectroradiometer and the UAV-based data yielded an R² of 0.9 for the early 

growth stages. Ultimately, multi-year studies are required to evaluate and improve the method for 

obtaining VIRGB from UAV-based RGB imagery. 

Practically speaking, the data collection for hyperspectral reflectance data with a field-

spectroradiometer is more complex and time-consuming than the data collection with an UAV-system. 

A field-spectroradiometer produces point data, while UAV-based imaging has the advantage of 

capturing infield variability faster and with a dense spatial coverage. Moreover, a field-

spectroradiometer is a sensitive and expensive instrument that requires significant expertise. A 

spectroradiometer’s main advantage is the high spectral resolution of calibrated spectra. On the other 

hand an out-of-the-box UAV-system can be operated by a larger user group at a low cost. Moreover, 

with an 800€ sensor plant height can be measured and biomass can be estimated almost as good as 

with VINIR from the spectroradiometer. 

 Conclusions and Outlook 

In this study, we examined the suitability of plant height and vegetation indices in the visible and near 

infrared region in their suitability for biomass prediction in a spring barley experiment. The statistical 

analysis showed that the GnyLi near infrared index is a suitable indicator for biomass as well as 

unmanned aerial vehicle-derived plant height from crop surface models. Secondly, there is potential 

for biomass estimation by combining plant height and visible band vegetation indices like Green Red 

Vegetation Index (GRVI), newly developed Modified Green Red Vegetation Index (MGRVI), and Red 

Green Blue Vegetation Index (RGBVI). We found that the visible band indices showed a better ability 

to model biomass in early growth stages in comparison to late growth stages. Contrary to expectation, 

the combination of vegetation indices and plant height did not significantly improve the model 

performance.  

Using an unmanned aerial vehicle with a non-calibrated optical camera to calculate visible band 

vegetation indices and plant height is a unique way to estimate biomass on small agricultural research 
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fields. It is a simple and timely alternative to cost-intensive and complex ground-based reflectance 

measurements.  

Future studies should examine these simple and cost effective method for multiple year datasets to 

improve robustness and applicability. In addition, new hyperspectral full frame cameras for unmanned 

aerial vehicles are a promising development for research in near infrared vegetation indices by 

combining high spectral and spatial resolution, opening up new possibilities in crop monitoring. 

Acknowledgments 

The authors acknowledge the funding of the CROP.SENSe.net project in the context of the Ziel  

2-Programm North Rhine-Westphalia (NRW) 2007–2013 “Regionale Wettbewerbsfähigkeit und 

Beschäftigung (Europäischer Fonds für regionale Entwicklung (EFRE))” by the Ministry for Innovation, 

Science and Research (Ministerium für Innovation, Wissenschaft und Forschung (MIWF)) of the state 

North Rhine-Westphalia (NRW) and European Union Funds for regional development (EFRE)  

(005-1103-0018).  

  



Combining UAV-based plant height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for 
Biomass Monitoring in Barley 

177 

 References 

Adamchuk, V.I., Ferguson, R.B., Hergert, G.W., 2010. Soil Heterogeneity and Crop Growth, in: Oerke, 
E.-C., Gerhards, R., Menz, G., Sikora, R.A. (Eds.), Precision Crop Protection - the Challenge and 
Use of Heterogeneity. Springer, Dordrecht, Netherlands, pp. 3–16. 

Agisoft LLC, 2014. Agisoft PhotoScan [WWW Document]. Agisoft PhotoScan. URL 
http://www.agisoft.com (accessed 10.9.14). 

Bannari, A., Morin, D., Bonn, F., Huete, A.R., 1995. A review of vegetation indices. Remote Sensing 
Reviews 13, 95–120. doi:10.1080/02757259509532298 

Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. 
Remote Sensing of Environment 35, 161–173. doi:10.1016/0034-4257(91)90009-U 

Bendig, J., Bolten, A., Bareth, G., 2013. UAV-based Imaging for Multi-Temporal, very high Resolution 
Crop Surface Models to monitor Crop Growth Variability. Photogrammetrie - Fernerkundung - 
Geoinformation 6, 551–562. doi:10.1127/1432-8364/2013/0200 

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., Bareth, G., 2014. Estimating Biomass of 
Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote 
Sensing 6, 10395–10412. doi:10.3390/rs61110395 

Berthold, M.R., Hand, D., 2006. Intelligent Data Analysis, 2nd ed. Springer, Berlin, Germany. 

Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf 
area index. Remote Sensing of Environment 62, 241–252. doi:10.1016/S0034-4257(97)00104-
1 

Chang, K.-W., Shen, Y., Lo, J.-C., 2005. Predicting Rice Yield Using Canopy Reflectance Measured at 
Booting Stage. Agronomy Journal 97, 872. doi:10.2134/agronj2004.0162 

Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P., Li, B., 2010. New spectral indicator 
assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of 
Environment 114, 1987–1997. doi:10.1016/j.rse.2010.04.006 

Clevers, J.P.G.W., Jongschaap, R., 2001. Imaging Spectrometry For Agricultural Applications, in: Meer, 
F.D. van der, Jong, S.M.D. (Eds.), Imaging Spectrometry, Remote Sensing and Digital Image 
Processing. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 157–199. 

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30, 271–278. 
doi:10.1016/0034-4257(89)90069-2 

Dandois, J.P., Ellis, E.C., 2010. Remote Sensing of Vegetation Structure Using Computer Vision. Remote 
Sensing 2, 1157–1176. doi:10.3390/rs2041157 

d’Oleire-Oltmanns, S., Marzolff, I., Peter, K., Ries, J., 2012. Unmanned Aerial Vehicle (UAV) for 
Monitoring Soil Erosion in Morocco. Remote Sensing 4, 3390–3416. doi:10.3390/rs4113390 

Ehlert, D., Horn, H.-J., Adamek, R., 2008. Measuring crop biomass density by laser triangulation. 
Computers and Electronics in Agriculture 61, 117–125. doi:10.1016/j.compag.2007.09.013 

Gao, J., 2006. Canopy chlorophyll estimation with hyperspectral remote sensing (dissertation). Kansas 
State University, Manhattan, Kansas, US. 



Combining UAV-based plant height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for 
Biomass Monitoring in Barley 

178 

Geipel, J., Link, J., Claupein, W., 2014. Combined Spectral and Spatial Modeling of Corn Yield Based on 
Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote 
Sensing 6, 10335–10355. doi:10.3390/rs61110335 

Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002. Novel algorithms for remote estimation of 
vegetation fraction. Remote Sensing of Environment 80, 76–87. doi:10.1016/s0034-
4257(01)00289-9 

Gnyp, M.L., Bareth, G., Li, F., Lenz-Wiedemann, V.I.S., Koppe, W., Miao, Y., Hennig, S.D., Jia, L., Laudien, 
R., Chen, X., Zhang, F., 2014. Development and implementation of a multiscale biomass model 
using hyperspectral vegetation indices for winter wheat in the North China Plain. International 
Journal of Applied Earth Observation and Geoinformation 33, 232–242. 
doi:10.1016/j.jag.2014.05.006 

Grenzdörffer, G.J., Niemeyer, F., 2011. UAV based BRDF-measurements of agricultural surfaces with 
PFIFFIKUS. International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences XXXVIII-1/C22, 229–234. 

Haboudane, D., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI 
of crop canopies: Modeling and validation in the context of precision agriculture. Remote 
Sensing of Environment 90, 337–352. doi:10.1016/j.rse.2003.12.013 

Hansen, P.M., Schjoerring, J.K., 2003. Reflectance measurement of canopy biomass and nitrogen status 
in wheat crops using normalized difference vegetation indices and partial least squares 
regression. Remote Sensing of Environment 86, 542–553. doi:10.1016/S0034-4257(03)00131-
7 

Hatfield, J.L., Gitelson, A.A., Schepers, J.S., Walthall, C.L., 2008. Application of Spectral Remote Sensing 
for Agronomic Decisions. Agronomy Journal 100, S117–S131. doi:10.2134/agronj2006.0370c 

Hoffmeister, D., Bolten, A., Curdt, C., Waldhoff, G., Bareth, G., 2010. High-resolution Crop Surface 
Models (CSM) and Crop Volume Models (CVM) on field level by terrestrial laser scanning, in: 
Guo, H., Wang, C. (Eds.), SPIE Proceedings of the Sixth International Symposium on Digital 
Earth: Models, Algorithms, and Virtual Reality. Presented at the Sixth International Symposium 
on Digital Earth: Models, Algorithms, and Virtual Reality, Beijing, China, p. 78400E–78400E–6. 
doi:10.1117/12.872315 

Hoffmeister, D., Waldhoff, G., Curdt, C., Tilly, N., Bendig, J., Bareth, G., 2013. Spatial variability 
detection of crop height in a single field by terrestrial laser scanning, in: Stafford, J.V. (Ed.), 
Precision Agriculture ’13. Presented at the 9th European Conference on Precision Agriculture, 
Wageningen Academic Publishers, Lleida, Spain, pp. 267–274. 

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25, 295–
309. doi:10.1016/0034-4257(88)90106-X 

Hunt, E., Daughtry, C., Mirsky, S., Hively, W., 2014. Remote Sensing With Simulated Unmanned Aircraft 
Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing. doi:10.1109/JSTARS.2014.2317876 

Hunt Jr., E.R., Cavigelli, M., Daughtry, C.S.T., McMurtrey III, J.E., Walthall, C.L., 2005. Evaluation of 
Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen 
Status. Precision Agriculture 6, 359–378. doi:10.1007/s11119-005-2324-5 

Koppe, W., Gnyp, M.L., Hütt, C., Yao, Y., Miao, Y., Chen, X., Bareth, G., 2013. Rice monitoring with multi-
temporal and dual-polarimetric TerraSAR-X data. International Journal of Applied Earth 
Observation and Geoinformation 21, 568–576. doi:10.1016/j.jag.2012.07.016 



Combining UAV-based plant height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for 
Biomass Monitoring in Barley 

179 

Kraus, K., 2004. Photogrammetrie: Geometrische Informationen aus Photographien und 
Laserscanneraufnahmen, 7th ed. Walter de Gruyter, Berlin, Germany. 

Kumar, L., Schmidt, K., Dury, S., Skidmore, A., 2001. Imaging Spectrometry and Vegetation Science, in: 
Meer, F.D. van der, Jong, S.M.D. (Eds.), Imaging Spectrometry, Remote Sensing and Digital 
Image Processing. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 111–155. 

Lancashire, P.D., Bleiholder, H., Boom, T.V.D., Langelüddeke, P., Stauss, R., Weber, E., Witzenberger, 
A., 1991. A uniform decimal code for growth stages of crops and weeds. Annals of Applied 
Biology 119, 561–601. doi:10.1111/j.1744-7348.1991.tb04895.x 

Laudien, R., Bareth, G., 2006. Multitemporal Hyperspectral Data Analysis for Regional Detection of 
Plant Diseases by using a Tractor- and an Airborne-based Spectrometer. Photogrammetrie - 
Fernerkundung - Geoinformation 3, 217–227. 

Lemaire, G., Gastal, F., 1997. N Uptake and Distribution in Plant Canopies, in: Lemaire, D.G. (Ed.), 
Diagnosis of the Nitrogen Status in Crops. Springer, Berlin, Germany, pp. 3–43. 

Liu, L., Wang, J., Bao, Y., Huang, W., Ma, Z., Zhao, C., 2006. Predicting winter wheat condition, grain 
yield and protein content using multi‐temporal EnviSat‐ASAR and Landsat TM satellite images. 
International Journal of Remote Sensing 27, 737–753. doi:10.1080/01431160500296867 

Lucieer, A., Turner, D., King, D.H., Robinson, S.A., 2014. Using an Unmanned Aerial Vehicle (UAV) to 
capture micro-topography of Antarctic moss beds. International Journal of Applied Earth 
Observation and Geoinformation 27, 53–62. doi:10.1016/j.jag.2013.05.011 

Lumme, J., Karjalainen, M., Kaartinen, H., Kukko, A., Hyyppä, J., Hyyppä, H., Jaakkola, A., Kleemola, J., 
2008. Terrestrial laser scanning of agricultural crops. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences 37, 563–566. 

Motohka, T., Nasahara, K.N., Oguma, H., Tsuchida, S., 2010. Applicability of Green-Red Vegetation 
Index for Remote Sensing of Vegetation Phenology. Remote Sensing 2, 2369–2387. 
doi:10.3390/rs2102369 

Munzert, M., Frahm, J., 2006. Pflanzliche Erzeugung: Grundlagen des Acker- und Pflanzenbaus und der 
Guten fachlichen Praxis, Grundlagen der Verfahrenstechnik, Produktions- und 
Verfahrenstechnik für Kulturpflanzen, Dauergrünland, Sonderkulturen, Nachwachsende 
Rohstoffe, Ökologischer Landbau, Naturschutz und Landschaftspflege, 12th ed. BLV, Munich, 
Germany. 

Mutanga, O., Skidmore, A.K., 2004. Narrow band vegetation indices overcome the saturation problem 
in biomass estimation. International Journal of Remote Sensing 25, 3999–4014. 
doi:10.1080/01431160310001654923 

Neitzel, F., Klonowski, J., 2012. Use of point cloud with a low-cost UAV system for 3D mapping, in: 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Science. Presented at the 2011 ISPRS Zurich 2011 Workshop, 14-16 September 2011, Zurich, 
Switzerland, Zurich, pp. 39–44. 

Oerke, E.-C., Gerhards, R., Menz, G., Sikora, R.A. (Eds.), 2010. Precision Crop Protection - the Challenge 
and Use of Heterogeneity. Springer, Dordrecht, Netherlands. 

Peñuelas, J., Gamon, J.A., Griffin, K.L., Field, C.B., 1993. Assessing community type, plant biomass, 
pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral 
reflectance. Remote Sensing of Environment 46, 110–118. doi:10.1016/0034-4257(93)90088-
F 



Combining UAV-based plant height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for 
Biomass Monitoring in Barley 

180 

Pettorelli, N., 2013. The Normalized Difference Vegetation Index. Oxford University Press, Oxford, UK. 

Pu, R., Ge, S., Kelly, N.M., Gong, P., 2003. Spectral absorption features as indicators of water status in 
coast live oak (Quercus agrifolia) leaves. International Journal of Remote Sensing 24, 1799–
1810. doi:10.1080/01431160210155965 

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation 
index. Remote Sensing of Environment 48, 119–126. doi:10.1016/0034-4257(94)90134-1 

Roberts, D., Roth, K., Perroy, R., 2011. Hyperspectral Vegetation Indices, in: Thenkabail, P.S., Huete, A. 
(Eds.), Hyperspectral Remote Sensing of Vegetation. CRC Press, Boca Raton, FL, US, pp. 309–
328. 

Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation indices. Remote 
Sensing of Environment 55, 95–107. doi:10.1016/0034-4257(95)00186-7 

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring Vegetation Systems in the Great 
Plains with Erts. NASA Special Publication 351, 309. 

Royo, C., Villegas, D., 2011. Field Measurements of Canopy Spectra for Biomass Assessment of Small-
Grain Cereals, in: Matovic, M.D. (Ed.), Biomass - Detection, Production and Usage. InTech, 
Rijeka, Croatia, pp. 27–52. 

Sona, G., Pinto, L., Pagliari, D., Passoni, D., Gini, R., 2014. Experimental analysis of different software 
packages for orientation and digital surface modelling from UAV images. Earth Sci Inform 7, 
97–107. doi:10.1007/s12145-013-0142-2 

Thenkabail, P.S., Smith, R.B., De Pauw, E., 2000. Hyperspectral vegetation indices and their 
relationships with agricultural crop characteristics. Remote sensing of Environment 71, 158–
182. doi:10.1016/S0034-4257(99)00067-X 

Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz-Wiedemann, V.I.S., Miao, Y., Bareth, G., 2014. 
Multitemporal crop surface models: accurate plant height measurement and biomass 
estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing 8, 
083671–083671. doi:10.1117/1.JRS.8.083671 

Tremblay, N., Fallon, E., Ziadi, N., 2011. Sensing of crop nitrogen status: Opportunities, tools, 
limitations, and supporting information requirements. HortTechnology 21, 274–281. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. 
Remote Sensing of Environment 8, 127–150. doi:10.1016/0034-4257(79)90013-0 

Verhoeven, G., 2011. Taking computer vision aloft - archaeological three-dimensional reconstructions 
from aerial photographs with photoscan. Archaeological Prospection 18, 67–73. 
doi:10.1002/arp.399 

 



 

181 

 AUTOMATED HYPERSPECTRAL VEGETATION INDEX RETRIEVAL FROM 

MULTIPLE CORRELATION MATRICES WITH HYPERCOR  

HELGE AASEN 1, *, MARTIN LEON GNYP1, YUXIN MIAO, Y. 2, GEORG BARETH 1 

Published in: Photogrammetric Engineering & Remote Sensing, 80 (8), 785–796. 

DOI: 10.14358/PERS.80.8.785 

Formatting and orthography of the manuscript is adapted to the dissertation style. 

1 Institute of Geography (GIS & Remote Sensing Group), University of Cologne, 50923 

Cologne, Germany  

2 College of Resources and Environmental Science, China Agricultural University, 100193 

Beijing, China 

* Corresponding author: Tel.: +49 221 470 6265; Email: helge.aasen@uni-koeln.de 

Abstract: Hyperspectral vegetation indices and optimized hyperspectral narrow bands have shown 

high potential for characterizing, classifying, monitoring, and modeling of vegetation and agricultural 

crops. Correlation matrices from hyperspectral vegetation indices and plant growth parameters help 

select important wavelength domains and identify redundant bands to overcome the Hughes 

phenomenon. We introduce HyperCor as a tool for automated pre-processing of narrowband 

hyperspectral data and computation of correlation matrices. Furthermore, we propose a multi-

correlation matrix strategy which combines multiple correlation matrices and uses more information 

not only from each matrix but also from different datasets. We applied this method to a large multi-

temporal spectral library to derive vegetation indices for rice biomass detection in the tillering, stem 

elongation, and heading stages. The models were calibrated with data from three consecutive years 

and validated using independent data from two different years. The validation results revealed that 

the multi-correlation matrix strategy could improve the model performance. 

Keywords: multi-correlation matrix strategy, data mining, data processing, model development, 

spectral library, biomass, rice, software development 

 Introduction 

Plants have a decisive role in the ecosystems of the earth as they cover more than two-thirds of the 

land surface and are able to produce organic compounds through photosynthesis (Jensen, 2007). Due 

to the increasing demand for energy and food with limited or even diminishing agricultural areas, the 

productivity of existing arable land must be enhanced (Thenkabail et al., 2012). This may be 

accomplished by implementing more efficient management methods supported by remote sensing 

(Moran et al., 1997; Mariotto et al., 2013). 
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Hyperspectral sensors monitor agricultural crops by collecting continuous narrow band spectral 

reflectance. With the resulting hyperspectral narrow bands (HNBs), dynamic changes in the 

biophysiology and biochemical compounds of plants can be detected (Gitelson, 2011; Thenkabail et 

al., 2011; Zhu et al., 2011). Additionally, hyperspectral close range sensors such as field-spectrometers, 

which provide high spectral resolution, represent a valuable data source for calibration and simulation 

of potential upcoming sensors (Milton et al., 2009; Roberts et al., 2011). 

However, from the huge amount of data collected by hyperspectral sensors optimized HNBs have to 

be selected to characterize, differentiate, and model vegetation (Thenkabail et al., 2000; Galvao et al., 

2011; Thenkabail et al., 2011). In the past, researchers have investigated the best suited hyperspectral 

vegetation indices (HVIs) for various agricultural plants monitoring. Biophysical parameters such as 

biomass (Hansen and Schjoerring, 2003; Koppe et al., 2010; Gnyp et al., 2013), and LAI (Shibayma and 

Akiyama, 1989; Haboudane et al., 2004), as well as biochemical parameters such as nitrogen (Hansen 

and Schjoerring, 2003; Stroppiana et al., 2009; Li et al., 2010; Yu et al., 2013), and chlorophyll (Gitelson 

et al., 1996; Miao et al., 2009), and plant stress (Mahlein et al., 2013) were examined. Nevertheless, 

there is still a demand for systematic analysis of the HVIs. Huete et al. (1994) and Running et al. (1994) 

defined the requirements of vegetation indices which also count for HVIs. Thus, further research has 

to address the robustness of already proposed and future HVIs with respect to influences of different 

climatic conditions (annual and regional), soils, management practices, or plant varieties as well as how 

specific vegetation indices perform on different plant parameters. The first step to address these 

research questions is the establishment of comprehensive spectral libraries, which cover a wide variety 

of different experiments (Laudien et al., 2006; Rao et al., 2007; Chauhan and Mohan, 2013). On the 

other hand, standardized analysis procedures have to be applied to extract the information from those 

databases and identify redundant data to overcome the Hughes phenomenon (or the curse of high 

dimensionality, see Bajwa and Kulkarni, 2011) resulted from advances in technology and its application. 

In this study, we introduce HyperCor as a software tool to carry out standard procedures of 

hyperspectral data analysis, namely the computation of correlation and redundancy matrices 

introduced by Thenkabail et al. (2000; 2004a; 2004b), to identify optimal HNBs and HVIs. HyperCor 

automates the data pre-processing, redundant bands detection, and correlation matrices (CMs) 

computation between hyperspectral data and desired plant parameters based on different vegetation 

index types. In addition, the tool also calculates descriptive statistics of the input data and generates 

supplements for the interpretation of the output CMs. The whole process is controlled by a Graphical 

User Interface (GUI). Thus, it may support researchers in the development and evaluation of optimized 

HNBs and HVIs for crop sensing, and in the identification of redundant data in hyperspectral datasets 

to overcome the curse of dimensionality.  
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As a new and innovative approach, we propose the multi-correlation matrix strategy (MCMS) which is 

based on the correlation matrices computed by HyperCor for hyperspectral data mining. The MCMS 

combines the information contained in multiple CMs from different datasets to identify important 

HNBs or spectral domains. In this study we applied the MCMS to a large multi-temporal dataset from 

a spectral library of rice in order to develop HVIs for the non-destructive monitoring and modeling of 

rice biomass in different growth stages. 

 Study site and data 

 Study site and experiment design 

The study site, Jiansanjiang (47.2°N, 132.8°N E), is located in the Sanjiang Plain, which is an alluvial plain 

of the three rivers, Heilong, Songhua, and Wusuli River and covers approximately 108,900 km². During 

the past decades, the Plain has been converted from a marsh ecosystem to a rice crop system and 

became a granary in the Heilongjiang Province of Northeast China. The area is characterized by the 

warm-temperature sub-humid continental East Asian monsoon climate controlled by the thermal low-

pressure area at the Tibetan Plateau, which defines clear seasonal changes between a cold, sunny, and 

dry winter and a temperate, cloudy, and wet summer. 

Field experiments were conducted from 2007 to 2009 and from 2011 to 2012. The experiments had 

seven nitrogen rates in 2007 and five rates in 2008-2009 and 2011-2012 (0-160 kg N ha-1) using a 

randomized block design with three or four replications and the two cultivars Kongyu131 and 

Longjing21. More detailed information about the experiment design can be found in Cao et al. (2013), 

Gnyp et al. (2013) and Yu et al. (2013). Spatio-temporal changes in the weather conditions affected 

rice plant growth and its growing season, which started approximately in mid-May and ended late 

September of each year. The rice growing period received more precipitation and insolation in 2007 

and 2008 than in 2009, 2011, and 2012. The warmest growing season was in 2007 and the coldest in 

2009, coincided with higher precipitation during the monsoon time in 2009. 

 Hyperspectral data collection 

Spectral reflectance was measured using three non-imaging passive devices in 2007-2009 and 2011-

2012: QualitySpec® (350-1800 nm) and FieldSpec3® (350-2500 nm) by ASD (Analytical Spectral Devices, 

Inc., Boulder, CO, USA) and HandySpec® (305-1705 nm) (tec5, Oberursel, Germany). The devices differ 

in their spectral ranges and sensor configurations and were used in different years (Table 8.1). They 

were carried with a 25° field of view and a senor canopy distance of 0.3 m (2007-2009) and 1 m (2011, 

2012) in the paddy fields. Spectral measurements were taken from 9 a.m. to 2 p.m. local mean time 

(solar noon at 11 a.m.) under cloudless conditions. Calibration measurements were taken with a white 
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barium sulfate (BaSO4) reference panel for the ASD devices and with a grey reference panel shipped 

with the tec5 device. Twenty sample counts were collected and averaged for the optimization standard 

and ten for each scanning position at the rice canopy. For each plot, six scans were performed randomly 

and averaged to represent each individual experimental plot. 

 Destructive plant parameter samples  

Destructive above ground biomass samples were collected after taking the spectral reflectance 

measurements. Three (heading stage) to five (tillering and stem elongation stage) hills with the 

representative number of tillers per plot were harvested in the field. The samples were rinsed with 

water and the roots were cut. They were oven-dried at 105 °C for 30 minutes and then dried at 70 °C 

to constant weight. 

Table 8.1 Overview of the three spectrometers and their configurations. 

 QualitySpec FieldSpec3* HandySpec Field 

Producer ASD ASD tec5 

Spectral domain 350-1800 nm 350-2500 nm * 305-1705 nm 

    

Sensor VNIR VNIR VNIR MMS1 NIR 

Domain 350-1000 nm 350-1000 nm 305-950 nm 

Spectral resolution 3 nm (at 700 nm) 3 nm (at 700 nm) 10 nm 

Sampling interval 1.4 nm 1.4 nm 3.3 nm 

    

Sensor SWIR SWIR1 SWIR1 PGS NIR 1.7 

Domain 1000-1800 nm 350-1800 nm 950-1705 nm 

Spectral resolution 10 nm (at 1400 nm) 10 nm (at 1400 nm) 5 nm 

Sampling interval 2 nm 2 nm 1.5 nm 

    

Sensor offset 1000 nm 1000 nm, 1800 nm 950-1000 nm 

Field campaign 2007, 2009, 2011, 

2012 

2008, 2009 2011 

* SWIR2 was not used in this study; used domain at 350-1705 nm 

 Methods 

 Spectral library 

In at total five years (2007 to 2009, 2011, 2012) nearly 16,500 raw rice spectra were collected from 

two experimental sites and on farmers’ fields. The data was incorporated into a multi-temporal spectral 

library. In addition, the metadata containing information about the year, growth stage, site, cultivar, 

fertilizer input, and measured plant biomass was linked to the spectral information. For this study we 

selected the data which was consistently available for all five years. From the around 1,900 available 

mean spectra from the experimental sites, totally 319 mean spectra were used. In particular, we used 

the data from one site were data was available for all five years and selected those with the four main 
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fertilizer rates, namely N1=0 kg N ha-1, N2=65-75 kg N ha-1, N3=95-105 kg N ha-1, and N4=120-150 kg 

N ha-1 (n=1,360). We then focused our analysis on the tillering (t), stem elongation (se) and heading 

(h) phenological growth stages for the cultivar Kongyu131 (n=319). To take the annual variability into 

account, data collected from the first three years (2007 to 2009) were utilized as the calibration dataset 

(n=238) and measurements from the last two years (2011 and 2012) were used as validation dataset 

(n=81). Detailed information of the sample sizes by growth stages and years for the calibration and 

validation datasets along with the corresponding biomass statistics are given in Table 8.2.  

For all years and both the calibration and validation dataset the mean biomass increased with the 

growth stages, where in 2008 the highest gain was observed. Also, the standard deviation (std) 

increased with the growth stages whereas the coefficient of variation (cv) decreased. However, for the 

complete calibration dataset in the stem elongation a very high cv of 75% was observed. 

Table 8.2 Descriptive statistics of the biomass with number of samples (#), mean, standard deviation 
(std) and coefficient of variation (cv) separated by year and stages tillering (t), stem elongation (se) and 
heading (h). 

 

 Vegetation indices 

Different types of vegetation indices link two or more bands together through a mathematical formula. 

The types differ by the structure of the formula. In HyperCor we implemented three types of vegetation 

indices: The Difference Vegetation Index, the Ratio Vegetation Index, and the Normalized Difference 

Vegetation Index. These were introduced by Tucker (1979), Jordan (1969), and Rouse et al. (1974) four 

decades ago for satellite remote sensing. Lately, they also have been used with HNBs. In this 

publication, we use the abbreviations to refer to vegetation index types and thus use DI (Difference 

Index), RI (Ratio Index) and NDI (Normalized Difference Index) to emphasize their structural properties 

and prevent confusion with already published vegetation indices. Eq. 8.1 to Eq. 8.3 show the formulas 

used in HyperCor together with their domain and co-domain. Each vegetation index consists of the 

specific type (e.g. DI, RI, NDI) and two reflectance values from the bands i and j (Ri, Rj).  
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 𝐷𝐼(𝑖,𝑗)(𝑅𝑖 , 𝑅𝑗) = 𝑅𝑖 − 𝑅𝑗;  [0, 1] × [0, 1] ↦ [−1, 1] (Eq. 8.1) 

 
𝑅𝐼𝑖,𝑗(𝑅𝑖 , 𝑅𝑗) =

𝑅𝑖

𝑅𝑗
 ;  [0, 1] × [0, 1] ↦ [0, ∝] 

(Eq. 8.2) 

 
𝑁𝐷𝐼(𝑖,𝑗)(𝑅𝑖 , 𝑅𝑗) =

𝑅𝑖 − 𝑅𝑗

𝑅𝑖 + 𝑅𝑗
 ;  [0, 1] × [0, 1] ↦ [−1, 1] 

(Eq. 8.3) 

 HyperCor 

To perform comprehensive hyperspectral data analysis, the Java program HyperCor was developed. It 

automates several pre-processing steps such as device detection and detector offset correction as well 

as the process of computing correlation matrices (CMs) from hyperspectral data and any given plant 

parameter. In addition, descriptive statistics for the input dataset are calculated and supplements of 

the output CMs are generated to support their analysis. Each functional feature can be controlled and 

adjusted through a GUI as shown in Figure 8.1. For the analysis the data has to be prepared in comma 

separated values (csv-files) containing header information for each spectrum, the target feature (e.g. 

the investigated plant parameters), and the hyperspectral data organized in columns, where the first 

column represents the spectral wavelength. One or more datasets can then be loaded from the file 

system via the GUI for (pre-) processing. In the following, the functional features of HyperCor are 

presented. However, due to the object-oriented implementation, the program further provides a 

framework to incorporate extra analysis methods. In addition, the HyperCor.Viewer was implemented 

to systematically review visualized correlation matrices (Figure 8.3). 

 

Figure 8.1 Graphical user interface of HyperCor (left) with band exclusion table (right). 

8.3.3.1 Data pre-processing 

HyperCor provides two pre-preprocessing steps for hyperspectral data. The first feature is to limit the 

wavelengths to the range of interest by identifying the device that was used to collect the spectra in a 

given dataset. This is done by matching the file name and the header information of each spectrum 

with an initialization file provided with the program. This file contains the name of several devices 

together with their minimum and maximum wavelengths as well as the particular wavelength, where 

the transition from one detector for a spectral range to another (e.g. VIS to SWIR1) takes place. 
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Information on other devices may be manually added to the initialization file. In case the device cannot 

be identified automatically, the user can manually assign a sensor to a loaded dataset through the GUI. 

After this has been done, the user may choose if the data analysis should be limited to the wavelength 

according to the device’s specifications and to the combined range by all devices in the case of several 

sensors being used. In addition, the user can specify the wavelengths to be excluded (e.g. water 

absorption bands as in Figure 8.2) from the analysis through a menu in the GUI. This list can be saved 

and reloaded for later use.  

The second pre-processing function is to eliminate the detector offset at the transition wavelengths 

from one detector to another. The offset occurs in measurements of hyperspectral data due to 

environmental interferences or insufficient sensor calibration (ASD Inc. 1999) and results in strong 

influences on the calculated HVIs (Figure 8.2). To correct the detector offset, for each input spectral 

reflectance curve, HyperCor computes the difference between the two reflectances next to the 

particular transition wavelength and then subtracts the difference from the reflectance values beyond 

the transition wavelength (linear correction). After pre-processing, the dataset may be exported as a 

csv-file. 

Figure 8.2 Spectral reflectance curves before (top) and after the pre-processing (bottom) with resulting 
correlogram for biomass. 
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8.3.3.2 Identifying substantial and redundant bands 

Optionally, HyperCor provides two functions which may help analyze hyperspectral data and focus on 

relevant parts of the spectrum. First, descriptive statistics, including the mean, standard deviation, and 

coefficient of variation, of an (pre-processed) input dataset are calculated which help pointing out 

important parts of the spectrum (Bajwa and Kulkarni, 2011; Mahlein et al., 2013). The results are saved 

as a csv-file. Second, redundancy matrices (lambda – lambda plots) are calculated to identify redundant 

bands in the dataset. This methodology was introduced by Thenkabail et al. (2004a; 2004b) for 

hyperspectral data analysis and consists of calculating the correlations between all wavelength pairs 

of the dataset. The calculated value represents the degree of redundancy between the two 

wavelengths. With this method, bands over a certain threshold of redundancy can be excluded from 

further analysis. Thus, this method helps determine the most useful HNBs (Thenkabail et al. 2004a; 

2004b; 2013). 

8.3.3.3 Calculation of the correlation matrices and identification of potential hyperspectral 

vegetation indices 

Correlation matrices (and correlograms as their visual representation) represent a standard procedure 

to derive optimal band combinations for HVIs (Thenkabail et al., 2011; 2013). Every cell(i,j) of a 

correlation matrix (CM) denotes the correlation of a given VI type based on two reflectance bands of 

the input hyperspectral reflectance data (Ri,Rj) and the target feature (e.g. plant parameter). Since 

each axis of a CM represents one wavelength, which is used to compute a HVI(i,j) for a given VI type, 

the entire matrix represents the correlations of all possible band combinations for a given VI type. The 

main functional feature of HyperCor is the automated calculation of the correlation matrices and 

supplementary summaries of these to support the analysis. The latter consists of best band 

combination lists and histograms of the used wavelength. So far, the vegetation index types RI, DI, and 

NDI are implemented for the computation in HyperCor. The implementation of the NDI and DI takes 

their symmetries into account, which reduces the processing time by 50%. To calculate the correlation 

between the HVI and a given plant parameter the Pearson correlation coefficient is used and squared 

to the coefficient of determination. Given the object-oriented implementation of HyperCor, other 

types of vegetation indices and correlation coefficients may easily be incorporated into the program. 

Via the GUI the user may choose which type of vegetation index to use for the calculation (Figure 8.1). 

Additionally, the user may define a minimum threshold and a level of significance (p-value) to be met 

by the correlations that will be considered for further analysis. After the calculation, the correlation 

matrices are saved as csv files. Meanwhile, a designated number of band combinations with the best 



Automated hyperspectral vegetation index retrieval from multiple correlation matrices with HyperCor 

189 

correlations may be exported into a separate file along with a histogram, which summarizes the bands 

used for the best correlations. This information may be used for further analysis. 

 

Figure 8.3 Data processing and analysis with HyperCor. 

 Multi-correlation matrix strategy 

To identify potential bands to be used for a HVI, we developed the multi-correlation matrices strategy 

(MCMS). A band combination or domain, which may look insignificant in one single CM computed with 

one method (e.g. VI type) or from one dataset (categorized by growth stages, years, plant parameters, 

species, sites), may show its information content when combined with other CMs. Thus, the 

information content of several CMs is connected with the multi-correlation matrix strategy function 

(fMCMS). This function consists of calculating the average, difference, variance, and other 

mathematical functions and is carried out cell wise. Cells with desired features can be selected from 

the resulting matrix and the coordinates (respectively band combination) can be either used directly 

(e.g. as HVI) or for further processing (Figure 8.4).  

 

Figure 8.4 Scheme of the multi-correlation matrix strategy with input correlation matrix CM1, CM2 … 
CMn and the resulting matrix f(CM1,CM2 … CMn) after applying a function. 

In the case of the rice study described above, the goal was to develop HVIs that serve as best predictors 

for rice biomass at different growth stages. The datasets from the spectral library from the years 2007 



Automated hyperspectral vegetation index retrieval from multiple correlation matrices with HyperCor 

190 

– 2009 were used as calibration data. The detector offset was corrected and the water absorption 

bands from 1330 – 1480 nm were excluded for each year and each growth stage. In addition, the 

spectral range was restricted to 350 – 1705 nm since this range was available for all datasets. Based on 

this data, HyperCor computed the CMs. Neither a minimum r² nor a significance level was taken into 

account and the NDI was specified as the VI type. In total, nine CMs (three years 2007 - 2009 by three 

growth stages) were computed for the MCMS approach. Since our goal was to obtain a HVI which 

performed consistently throughout the years, an average function was applied as fMCMS. The 

procedure was carried out in MATLAB (MathWorks R2011b). The CMs for each growth stage were 

imported and stacked to multi-dimensional arrays. These 1,355 (spectral range i) by 1,355 (spectral 

range j) by 3 (three years per growth stage) values were averaged using the mean function of MATLAB. 

The band combinations of the highest value in the mean correlation matrix were extracted and the 

mean correlograms were visualized to identify areas with high mean correlation values (Figure 8.5). 

The resulting band combinations for each of the three growth stages were used to develop a linear 

prediction model with the combined datasets from 2007 to 2009 for a given growth stage. This step 

was carried out in Microsoft Excel. 

At the same time, we used HyperCor to apply a direct approach. Specifically, we computed CMs for 

combined datasets from 2007 to 2009 data for each of the three growth stages and identified the best 

band combinations. Again, the band combinations were used to develop a linear prediction model in 

Microsoft Excel. Thus, the direct approach used all the available measurements of one growth stage to 

derive the best band combination from the CM and to develop the model. The MCMS used the band 

combination with the highest mean r² from the data, separated by year from one grow stage, to 

develop the model together with all available data for the growth stage from the calibration dataset. 

For each growth stage, the linear models derived from the MCMS method and from the direct 

approach were then validated using the combined data from 2011 and 2012, separated by growth 

stage. 

 Results 

The results from both approaches are summarized in Table 8.3. Comparing the best results of the 

MCMS approach to those of the direct approach, we found that the identified wavelengths differed for 

all stages with the biggest difference discovered in the tillering stage. However, all identified band 

combinations were located in the VIS or NIR region.  
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Table 8.3 Summary of the results of MCMS and direct approach with the correlation of calibration and 
validation. 

Stage VI MCMS r² Calibration r² Validation r² 
Validation 

RMSE (t/ha) 

Tillering MCMS(757,746) 0.4 0.51 0.85 0.22 

NDI(436,488)  0.65 0.23 0.46 

Stem elongation MCMS(411,420) 0.25 0.2 0.67 1.51 

NDI(360,380)  0.88 0.16 0.88 

Heading MCMS(786,769) 0.31 0.47 0.60 1.21 

NDI(800,770)  0.5 0.37 1.40 

The results in the averaged correlation matrices illustrate that for none of the growth stages the mean 

r² of the years 2007 to 2009 was greater than 0.4 (Figure 8.5). For the calibration dataset the MCMS 

approach achieved poor (r² = 0.2) to moderate (r² = 0.51) results. In all cases, better correlations 

occurred with the direct approach. 

The biggest difference was achieved in the stem elongation (r² = 0.88) while it was smaller for the other 

two growth stages. The smallest difference was found in the heading. Figure 8.5 shows the models 

derived from the calibration dataset.  

In the validation dataset the MCMS approach achieved good (stem elongation, heading r² = 0.67, 0.60) 

to very good results (tillering r² = 0.85). The direct approach showed poor performance for the 

validation dataset. The highest coefficient of determination was attained in heading (r² = 0.37). In all 

growth stages, higher correlations were reached by the MCMS approach than by the direct approach, 

with the biggest relative difference in the stem elongation (Table 8.3). However, in the latter both 

models were inversely related to the observed biomass (Figure 8.6), which will be discussed later. In 

the tillering and heading the MCMS showed a lower RMSE than the direct approach, for the stem 

elongation the opposite was the case. 
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Figure 8.5 Plot of biomass against the NDI for the MCMS (dashed) and standard approach (dotted) and 
the derived prediction model for tillering, stem elongation and heading (left). The corresponding 
correlograms of the mean coefficient of determination (R²) for the years 2007 to 2009 for tillering, stem 
elongation and heading (right). 
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Figure 8.6 Plot of the predicted and observed biomass from the MCMS (dashed) and direct approach 
(dotted) for the validation dataset for tillering, stem elongation and heading. 

 Discussion 

 HyperCor 

Correlation matrices are commonly used for the development of hyperspectral vegetation indices for 

different plants and plant parameters (Mutanga and Skidmore, 2004; Stroppiana et al., 2009; Koppe et 

al., 2010; Thenkabail et al., 2011;Yu et al., 2013). Additionally, redundant matrix have been proven 

useful to identify redundant bands (Thenkabail et al., 2004a; 2004b). Together, they help overcome 

the Hughes phenomenon through narrowing down the number of bands which has to be used for the 

analysis and plays a major role in identifying the most important bands for current and future 

hyperspectral sensors (Mariotto et al., 2013; Thenkabail et al., 2013). Supplements such as histograms 

support this process (e.g. Mutanga and Skidmore, 2004; Mariotto et al., 2013). So far, different 

commercial software packages such as Statistical Analysis System SAS (e.g. Thenkabail et al., 2000) or 
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MATLAB (e.g. Yu et al., 2013) have been used to compute CMs. These packages require licensing fees. 

Most of all, they are not designed for the derivation of HVIs and thus extra efforts are needed to 

implement an automated processing chain with a high level of customization of the outputs. 

In contrast, HyperCor is implemented with Java and thus is free. Besides, it provides the entire 

processing chain for computing CMs out of hyperspectral data. With the GUI, researchers without a 

programming background can use it conveniently to solve research questions using correlation 

matrices. In addition, it provides a framework to implement further features. One of those might be 

the implementation of another detector offset correction. As shown in Figure 8.2, the offset 

significantly influences the results and thus is essential for a reliable analysis of the entire spectrum. 

Although linear correction has been recommended by a manufacturer of spectrometers (Kirchler, 

personal correspondence, 2012), it might not be the best option from a physical-technical perspective 

due to the effects of dark current increasing and detector sensitivity decreasing towards the edges of 

the specified spectral range of the detectors (ASD Inc., 1999). Further research is needed to address 

this uncertainty. With the introduced features, HyperCor provides a well suited tool to compute CMs, 

which gives the opportunity to apply standard procedures to and develop new ways of deriving 

optimized HNBs and HVIs such as the MCMS from hyperspectral data. 

 Multi-correlation matrix strategy 

So far, CMs have been mostly used as direct sources for the retrieval of best band combinations for a 

given parameter (e.g. Thenkabail et al., 2000; Hansen and Schjoerring, 2004; Stroppiana et al., 2009; 

Gnyp et al., 2013; Mariotto et al., 2013). In this paper, we propose a strategy to use more information 

contained in each correlation matrix by linking multiple CMs (e.g. computed from different VI types 

and datasets). The results of more than one CM have been used before to establish vegetation indices 

(Stroppiana et al., 2009; Zhu et al., 2011). However, the MCMS applies a mathematical function 

(fMCMS) on every cell of the CMs and thus use the complete information contained in the CMs. For 

biomass prediction, we chose to develop different prediction models for each growth stage since 

background signals from soil and water may influence the rice reflectance at the early growth stages 

(Van Niel and McVicar, 2004).  

Plant growth is greatly influenced by climate conditions and thus may differ annually. In the present 

dataset, the growth of biomass differed from one year to another. Especially at the stem elongation 

stage, the biomass differed by more than quadruple from 2007 to 2009. Also the growth patterns 

differed. The lowest biomass was observed in 2009 in all stages. Compared with 2008, the biomass of 

2007 was more than doubled in the stem elongation, but a lower biomass amount was found in the 

heading stage. In all years, the coefficient of variation decreased from the tillering to heading (Table 
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8.2). These differences may have affected the spectra measured from the plants (Hatfield and Prueger, 

2010; Gnyp et al., 2014). This assumption is supported by the low maximum mean correlations of CMs 

of the growth (r² = 0.4, 0.25, 0.31, respectively). Thus, results from one year may not be transferred to 

another year, which has also been reported from other researchers (e.g. Li et al., 2010). 

The different results for the calibration datasets of the direct and the MCMS approach may be 

explained by a combination of the described heterogeneity in growth and biomass, and the asymmetric 

sample size of the calibration dataset. Since the direct approach used all the available measurements 

for one growth stage from the calibration dataset, each sample was weighted the same for the 

computation of the CM and respectively, for the identification of the best band combination. Thus, the 

developed prediction model is fitted specifically for the calibration dataset. With the MCMS, first the 

CMs are computed separately by year and growth stage, and then averaged across the years. Thus, in 

contrast to the direct approach, the resulting CMs (respectively the years) are weighted the same and 

the resulting best band combinations are not biased by (and thereby not fitted to) the different sample 

sizes. Hence, the direct method outperformed the MCMS models for the calibration dataset. 

However, in the independent validation datasets for the growth stages in 2011 and 2012 the models 

derived from the MCMS perform better with higher r² and manly lower RMSE. This might indicate that 

the MCMS is more robust against asymmetric datasets and annual changes due to the reasons 

described above. In particular, the MCMS improved the r² by 62% and reduced the RMSE by more than 

50% in the tillering. In the heading stage, it improved the r² by 23% and reduced the RMSE by over 

10%. In the stem elongation, the r² was also improved. However, for both the direct approach and the 

MCMS, observed and predicted biomass were correlated inversely (Figure 8.6). This might be due to 

the very high coefficient of variation (75%) of the calibration dataset for this growth stage and the 

different annual growth patterns mentioned above which both methods did not seem to model well. 

These results underline the need of independent calibration and validation datasets as well as the 

careful assessment of good correlations. Comparing the results of our study to others, the identified 

red edge bands and NIR bands at the tillering stage conform to Hansen and Schjoerring (2003)’s 

findings. For the stem elongation stage, several researchers reported the need of the SWIR domain for 

rice biomass estimation. Especially, bands around 1200, 1480, and 1650 nm were suggested 

(Shibayama and Akiyama, 1989; Huang et al., 2004). In our case, both bands were situated in the blue 

domain. This may result from the limitation to only one study site. This assumption is supported by the 

results of Gnyp et al. (2013), in which the present calibration dataset was pooled with another site’s 

dataset and optimal SWIR bands were identified. With this extended dataset, best bands from the NIR 

domain were also selected by Gnyp et al. (2013) for the heading, which aligns with our findings for this 

stage. 
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 Conclusion and outlook 

In this study, we presented HyperCor as a tool for automated pre-processing of hyperspectral data and 

computation of correlation matrices. In addition, we proposed the multi-correlation matrix strategy to 

use the full information contained in multiple correlation matrices and applied it to a multi-temporal 

dataset for rice biomass prediction. The results confirm the challenges of transferring findings between 

years. However, with the multi-correlation matrix approach the results in an independent validation 

datasets could be improved for the tillering and heading stage. Further research has to address the 

robustness of the new method by using different datasets collected at diverse sites and years, other 

plant parameters, and different multi-correlation matrix strategy functions. Besides, HyperCor could 

be incorporated into a website in the future and thus serves as a standardized and open resource for 

researchers to develop new and evaluate existing optimized hyperspectral narrow bands and 

hyperspectral vegetation indices. 
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 OVERALL DISCUSSION 

Chapter 1 set the stage for the three research objectives to evaluate whether HS DSMs of crops are 

suitable to support a site-specific crop management. These research objectives are to investigate the 

influences on the spectral information along the path from particle to pixel, the comparability of HS 

DSMs to data from other sensing systems and the potentials of HS DSMs acquired with UAV snapshot 

cameras. In the following sections, these research objectives are discussed in consideration of the 

insights gained in the research studies in Chapter 3 to 8. At the end of the discussion, an overall 

conclusion is drawn.  

 Influences on the spectral information along the path from particle to pixel 

Along the path from particle to pixel, the information may be influenced and modified by interactions 

with the environment, by the sensing system and measurement protocol, and by the data processing 

(Figure 1.3). In the following subsections, sources of influences will be identified and their possible 

impact discussed.  

 Interactions with the environment 

The environmental illumination conditions and their interaction with the canopy anisotropy affect the 

apparent reflectance. The results in Burkart et al. (2015, Chapter 5) demonstrated that differences in 

the measurement geometry had a strong wavelength-dependent influence on the apparent spectrum. 

Moreover, these differences could only be compensated by some VIs and only to a certain degree. 

However, it must be noted that the tilt angles (66°, 43°, 20°) investigated in Burkart et al. (2015, 

Chapter 5) correspond to very large zenith angles (25°, 47°, 70°). Common airborne imaging 

spectroscopy line-scanning systems have a FOV of about 30° (HyPlant: 32.2°, Rascher et al., 2015; APEX: 

28.1°, Schaepman et al., 2015). Therefore the resulting zenith angle of the outermost pixel is about 

15°. More relevant are the results for UAV sensing systems. Due to their lower flying altitude, these 

systems usually have a wider FOV to increase the area covered during an overpass (Aasen and Bolten, 

in review, Chapter 4). Common UAV hyperspectral linescanners have FOVs of about 50° (Lucieer et al., 

2014; Zarco-Tejada et al., 2012). Similarly, RGB cameras such as the Panasonic Lumix GX1 used in 

Bendig et al. (2014, Chapter 7) have FOVs of 55.8° x 38.9°. Thus, the angular effects retrieved with a 

tilt angle of 66° (corresponds to a 24° zenith angle) can be regarded as approximations for these 

sensors. At this angle, the apparent reflection towards the solar position might almost be doubled in 

comparison to nadir (1.93 ANIF at 481 nm), while it might be reduced by approximately one third (ANIF 

0.63 at 681 nm) on the sun-averted side, depending on the wavelength (Figure 5.7). Consequently, the 

VIs are also significantly influenced at this angle (Table 5.5 and Figure 5.8). As previously discussed in 

Aasen and Bolten (in review, Chapter 4) and Burkart et al. (2015, Chapter 5), these results align well 
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with other studies. Nevertheless, these measurements can only be seen as a rough approximation of 

directional effects, since the UAV goniometer measurements represent conical measurements (HCRF) 

relative to nadir (ANIF) in contrast to HDRFs measured by imaging instruments (c.f. Subsection 2.1.2).  

Relevant in the context of HSCs is the question of how the results from Burkart et al. (2015, Chapter 5) 

can be interpreted with regards to the data of the UHD. The camera has a FOV of only 20°, which 

potentially reduces BRDF effects. Nevertheless, Aasen and Bolten (in review, Chapter 4) identified 

angular effects within HS DSMs generated from the HSC data. While this will be subject of discussion 

in the context of the influence of the data processing (Subsection 9.1.3), the influence of the different 

angular properties of the pixels within an image were not addressed in Aasen and Bolten (in review, 

Chapter 4). To get an impression of the effects within one image, Figure 9.1 shows the area of one plot 

(plot 35 at DAS 70 in 2014), extracted from several images and visualized corresponding to its position 

within the image (pixel position). The procedure is based on a novel way to generate a multi-angular 

pixel database from HSC data (Aasen, 2016). Each image corresponds to a different image-capturing 

positions (IC1 – IC6). From the corresponding image cubes the 670 and 798 nm band is shown in Figure 

9.1 (A and B). As introduced in Aasen et al. (2015, Chapter 3), the pixel position denotes its position 

within the image. The flight was carried out such that the along-track pixel position was almost parallel 

to the solar principal plane. Therefore this axis corresponds to changes in the zenith angle, and pixels 

at lower pixel positions have a more acute angle to the sun (closer to the hotspot at a zenith angle of 

30°). Besides of some within-plot heterogeneity, an overall trend can be seen in both wavelengths: 

with increasing along-track pixel position, the reflectance decreases in both wavelengths (Figure 9.1, 

A and B). Burkart et al. (2015, Chapter 5) found that the relative change in the RED and NIR is different. 

This can also be seen in the HSC data when the average reflectance per plot is normalized by the 

average of all ICs. Figure 9.1 (D) shows the averaged reflectance per plot for 670 nm (RED) and 798 nm 

(NIR) relative to the mean value of all images. For IC2 to 4, the reflectance in both wavelengths has the 

same relative change. In the other ICs, the apparent reflectance at 670 nm deviates more from the 

mean value than at 798 nm, which indicates the higher angular sensitivity at 670 nm. The maximum 

relative deviation from the mean value is about 25% at 670 nm and about 15% at 798 nm (Figure 9.1, 

D). Commonly, VIs as the NDVI are among other things used to normalize for angular effects resulting 

from the measurement geometry (Huete et al., 1994; Jensen, 2007). In Figure 9.1 (D) the NDVI for the 

six capturing positions is shown. Besides of IC2 to 4 the VI is not able to normalize for the different 

viewing geometries. These findings align with other studies, which found that VIs are sensitive to view-

angle differences, while the sensitivity is VI (Verrelst et al., 2008) and surface cover dependent 

(Weyermann et al., 2014). Thus, future studies should investigate how other VIs are affected by 

different viewing geometries in HSC images.  
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Figure 9.1 The same plot extracted from different positions within six images (IC1 - IC6) seen at 670 nm 
(A), 798 nm (B) and as NDVI (C). The across-track pixel position is cropped at pixel 35. Additionally, the 
average relative change in reflectance at the two wavelengths and the NDVI along the average along-
track position of the images is shown (D). The along-track pixel positions are almost parallel to the solar 
principal plane and pixels at lower pixel positions have a more acute angle to the sun. Since the sun’s 
elevation is about 60°, the hotspot is at a zenith angle of about 30°. The along-track pixel position 
corresponds to the zenith angle of 10° towards the sun (pixel position 0) and 10° towards the sun 
averted side (pixel position 50).  

Two important conclusions can be drawn from these results: first, although Burkart et al. (2015, 

Chapter 5) used a non-imaging spectrometer, the results are also relevant for HSCs since they basically 

align with those shown in this chapter. Second, the position within the image of an HSC influences the 

retrieved reflectance values, and VIs such as the NDVI cannot generally compensate for this influence. 

Thus, it can be concluded that the measurement geometry influences the data and that the variety of 

different viewing geometries of the pixels within an image might be sufficient to have an impact on the 

parameter retrieval, despite the small FOV of the UHD. Furthermore the results from Figure 9.1 were 

derived on a plot scale. For individual pixels, these differences are likely to be more pronounced. These 

results align with Rasmussen et al. (2016), who found that the impact of angular variations on VIs 

derived by RGB and CIR imagery were even greater than the experimental treatments.  

It should be noted, however, that while these effects are related to the viewing geometry of the sensing 

system, they result from the vegetation structure and the illumination conditions and thus, may vary 

with the growth stage (Rasmussen et al., 2016), management (e.g. row distance; c.f. Zhao et al. (2015)) 
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and the sun’s path. Thus the influence of these angular effects should not be interpreted as errors of 

the sensing system. Rather, they are meant to estimate the magnitude by which the data might be 

misinterpreted when the measurement geometry is neglected. Besides, it should be noted that angular 

effects are not specific for HSC and is common for all optical remote sensing systems (e.g. Nagol et al., 

2015; Rasmussen et al., 2016; Schläpfer et al., 2015; Weyermann et al., 2014). In the future, the novel 

pixel-tracing method developed in Aasen et al. (2015, Chapter 3) could commonly be used to trace 

angular properties for every pixel and thus help to address BRDF effects appropriately. Moreover, 

multi-angular measurements with HSCs could be used to derive information about the surface 

anisotropy and thus provide an additional source of information.  

Also other environmental conditions introduce uncertainty into HSC measurements. Although not 

regarded within this thesis and hardly appreciated in the literature in conjunction with spectral 

measurements, wind might interrupt the structure of a canopy. Lord et al. (1985) demonstrated that 

gusts of wind can cause differences of up to 60% in the BRF of barley in red wavelengths. Even if the 

wind was only strong enough to cause the leaves to flutter, variations of up to 12% in BRF were 

reported. Due to the high resolution of data captured by HSCs, it is likely that wind gusts as shown in 

Figure 9.2 would have an influence on the data. More research is needed on how this might affect the 

generated spectral data. Additionally, the signal is influenced by its path through the atmosphere. 

Therefore data from high altitude and spaceborne sensing systems are commonly corrected for 

atmospheric influences (Campbell and Wynne, 2011; Datt et al., 2003; Richter and Schläpfer, 2002). 

This is usually not the case for low-altitude UAV sensing systems under the assumption of negligible 

effects due to the small atmospheric layer between the surface and the sensor. Nevertheless, the 

atmosphere is thickest close to the surface and might also have an influence on data from low-altitude 

sensing systems. Thus, the influences of the atmosphere should be investigated in future studies. 

   

Figure 9.2 Two images taken within seconds of each other at the experimental field at Campus Klein-
Altendorf on 5 June 2014. The impact of wind gusts on the canopy is apparent.  
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 Sensing system and measurement protocol 

After its path through the atmosphere, the signal is digitized by the HSC system and then translated 

into physical traceable quantities during initial post-processing. During that process, the signal is 

influenced by the technical properties of the camera and the measurement protocol, which defines 

the data calibration procedure.  

The relevant technical properties of the UHD were characterized by quantifying the radiometric 

response function and sensor noise. The radiometric response function was found to be linear until 

3500 DN. But at the same time, a strong decrease of the maximum DN towards the edges of the image 

due to the vignetting effect was found. Moreover, also an undulated pattern influenced the signal 

(Aasen et al., 2015, Chapter 3). Although the spatial variability can be corrected for by a flat fielding 

procedure, it still affects the radiometric resolution and thus influences the data quality. During the 

application of the sensor, no pixel should be illuminated beyond its linear range to prevent additional 

uncertainty. Therefore the brightest pixel defines the maximum integration time and implicitly sets the 

maximum value for all other pixels—even if they might be illuminated well below the linear range limit. 

However, the maximum possible value of a pixel also sets the radiometric resolution (the range by 

which a signal can be resolved). The impact of this effect is barely investigated in the remote sensing 

literature. Rao et al. (2007, 2006) found that a reduced radiometric resolution did not strongly 

influence the retrieval of LAI of crops or land cover mapping of agricultural areas. Still, a low 

radiometric resolution decreases the signal to noise ratio and might hinder the analysis of parameters 

with small response signals such as chlorophyll. Aasen et al. (2015, Chapter 3) thus suggested to limit 

the used spectral of the UHD to range from 466 nm to 866 nm, since the minimum radiometric 

resolution in this range stayed above 1% reflectance for all pixels under in-field illumination conditions. 

As a result, the maximum error can be estimated by 0.5% to account for potential rounding errors. 

Nevertheless, for most pixels and bands the error is significantly smaller.  

The sensor noise is generally a function of the CCD temperature. Since the UHD has no temperature 

sensor, it was impossible to model the noise of the camera and thus, it was measured multiple times 

under in-field conditions. The average noise of 30 measurements ranged from 0.03 to 2.9 DN (Aasen 

et al., 2015, Chapter 3), which is less than 0.1% of the linear dynamic range (3500 DN) of the camera. 

The highest noise value ever measured with the UHD was 19 DN (unpublished data), but can be 

regarded as a strong outlier. Since even this value is below 1% of the signal, 1% can be considered a 

generous approximation of the influence introduced by the sensor noise. However, it should be noted 

that for individual pixels with a very poor radiometric resolution, the error might increase due to the 

poor signal to noise ratio. Comparable characterization and calibration studies of frame-based cameras 

systems are sparse. Except for the undulated pattern, a study by Kelcey and Lucieer (2012) found 
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similar results for a multispectral camera system. Additionally, it can be assumed that similar results 

are also obtained for other systems since the vignetting effect result from the design of optical imaging 

systems. Due to the increasing appearance and variety of different spectral sensing systems—many of 

them manually manufactured—it is strongly argued that every camera system is characterized before 

use. Additionally, the results need to be provided as metadata to enable users to assess the quality of 

the data.  

In this thesis, the measurement protocol for the HSC included an initial post-processing step to 

translate the DN values (after the noise removal) to reflectance by comparing the in-flight 

measurements to a measurement of a white reference panel before the flight (Aasen et al., 2015, 

Chapter 3). This method turned out to be suboptimal, since it was prone to external factors and 

introduced wavelength dependent influences of up to 14% under cloudy conditions and 8.5% under 

sunny conditions depending on the cloud cover and the distance and position of the UAV operator to 

the calibration panel. With the best practice scenario (no clouds, operator perpendicular to the solar 

principal plane), the influence was reduced to 3.4% under clear sky conditions (Figure 4.8). 

Nevertheless, Aasen et al. (2015, Chapter 3) demonstrated that good results can be acquired with the 

described radiometric calibration: in an overflight over several reference panels with 5% to 60% 

reflectance, the relative difference per panel was less than 1% in the range of 466 to 846 nm compared 

to FS3 measurements (Figure 3.8). Still, since these influences by the current way of radiometric 

calibration cannot be retraced after the calibration measurement is performed, an uncertainty is 

introduced that compromises the reliability of the measurements to a certain degree. Based on the 

results presented in Aasen et al. (2015, Chapter 3), the influence introduced by the radiometric 

calibration procedure is optimistically estimated at 1% of the magnitude of the signal. However it is 

strongly advised to respect the best practice case as described in Aasen and Bolten (in review, Chapter 

4). Alternatively, to mitigate the described influence on the radiometric calibration to a certain degree, 

future studies could apply an empirical line calibration (c.f. Smith and Milton, 1999) and extract the 

calibration parameters from calibration targets of images captured during the flight similar to Lucieer 

et al. (2014). Moreover, the measurement protocol should be changed from a static radiometric 

calibration to an adaptive calibration procedure, which allows for adaptation to heterogeneous 

illumination conditions. Imaging spectroscopy is usually carried out during sunny clear sky conditions 

under the assumption that the atmospheric conditions during the acquisition are spatially 

homogeneous. However, constant clear sky conditions are rare—at least in central Europe. 

Additionally, slight variations during a measurement campaign may not be apparent but may influence 

the retrieval of biophysical parameters such as chlorophyll (Damm et al., 2015). One of the benefits of 

UAVs stated in the literature is the ability to fly below clouds to capture data (e.g. Honkavaara et al., 

2013; Puliti et al., 2015; van der Wal et al., 2013). At the same time, a study by Hakala et al. (2013) 
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stated an influence on spectral UAV measurements of more than 100% due to “fluctuating levels of 

cloudiness”. Although approaches towards adaptive radiometric calibration procedures based on 

cross-calibration between image blocks (Honkavaara et al., 2012) or constant irradiance 

measurements (Burkart et al., 2014; Hakala et al., 2013) exist, they are based on custom-built software 

and hardware and are thus not generally applicable. Still, as long as such approaches are not commonly 

available the advantage provided by the ability of UAVs to fly below clouds is annulled. Thus, robust 

approaches capable of adapting to varying irradiance are strongly needed and should become a 

standard for spectral UAV sensing systems. Not only would this greatly increase the flexibility of their 

application by nullifying the need for stable illumination conditions, but also decrease the potential 

uncertainty with other calibration procedures. To highlight the importance of this topic for the further 

development of the field, the estimate of more than 100% by Hakala et al. (2013) is adapted as an 

estimate of the potential influence on the data quality by non-adaptive sensing systems applied under 

poor illumination conditions.  

 Data processing 

After the initial post-processing, the individual images are composed to the HS DSM. The processing 

scheme defines how this composition is carried out. Since every pixel in the final scene is seen from 

multiple images, the spectral data is majorly influenced by the selected blending mode. It defines 

whether the spectral information assigned to a pixel is taken from one image or multiple images (Aasen 

and Bolten, in review, Chapter 4). If a standardized data product needs to be generated, the result 

might be influenced in an unwanted manner by the processing scheme. When only one image per pixel 

is taken into account, an HDRF data product is generated. However, each pixel within the final scene 

has its own angular properties defined by the measurement geometry of the individual pixel and the 

illumination geometry during the acquisition of the corresponding image (Aasen and Bolten, in review, 

Chapter 4). With the method developed in Aasen et al. (2015, Chapter 3) these properties can be 

traced. Additionally, some sophisticated techniques for BRDF correction exist for airborne data 

(Schläpfer et al., 2015; Weyermann et al., 2014). These were developed for imaging spectroscopy data 

with a resolution of less than 1 m and depend on a rather coarse statistical characterization of the 

surface. Therefore, it is questionable how well these perform for high-resolution data from HSC 

systems. Thus, if a data product in a specific HDRF geometry (e.g. nadir HDRF) is desired, so far the 

influence of the BRDF effects assessed in Subsection 9.1.1 cannot be corrected in HS DSMs. 

Nevertheless, since only the most nadir parts of the images are used (due to the mosaicking), it is likely 

that the influence is significantly smaller than the 25% which were accounted for at image scale. It has 

to be noted that these considerations assume that the gimbal sufficiently stabilizes the camera in a 

nadir viewing geometry. However, with the current setup this cannot be guaranteed. Although the 
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camera is mounted with the help of a level, an exemplary evaluation of the pitch and roll angles of the 

images showed that the gimbal was slightly off nadir (average offset 3.0° and 1.7° of pitch and roll, 

respectively). The stabilization by the gimbal itself was quite robust (standard deviation of the offset 

1.1° and 1.6° for pitch and roll, respectively). For an estimation of the angular properties of each pixel, 

the real orientation of each individual image should be used.  

When multiple images are taken into account for a pixel within a scene, pixel values with different 

angular properties are averaged and the resulting quantities can be regarded as an approximation of 

HCRF measurements. Thus, the resulting data could be described as an HCRF data product (Aasen and 

Bolten, in review, Chapter 4). The angular properties of a pixels in this data product are a composition 

of the angular properties of the pixels which were averaged from the individual images. Although it 

can be assumed that multiple images overlap, the exact composition depends on the flight trajectory 

and capturing position of the sensing system. Additionally, the angular properties of the averaged 

pixels cannot be traced with the method developed in Aasen et al. (2015, Chapter 3). In the worst-case 

scenario, a part of a scene is only covered by one image and the value of a pixel close to the edge of 

that image is assigned to a pixel in the scene. In this case the approximated offset due to the position 

within an image of about 25% (at 670 nm, c.f. Subsection 9.1.1) can be seen as a good approximation 

of the maximum offset within an HCRF data product. If more reliable HCRF approximations are needed, 

the spectra of an entire HSC image could be averaged: as seen in Aasen and Bolten (in review, Chapter 

4), the angular properties of point measurements by a field-spectrometer and the entire FOV of an HSC 

are similar. Thus, such measurements would be similar to the point measurements of the flying 

goniometer introduced in Burkart et al. (2015, Chapter 5). 

 Conclusion on the spectral data quality 

Motivated by the complexity of spectral remote sensing of vegetation, this chapter examined the path 

from particle to pixel for potential sources of influence and their potential impact was discussed. Table 

9.1 summarizes the results. Two sources of influence stand out, namely those related angular effects 

(due to surface anisotropy and measurement geometry) and the varying irradiance, which cannot be 

compensated for with the current measurement protocol.  

Overall, the radiometric calibration procedure within the field protocol has to be acknowledged as the 

current Achilles’ heel for the reliability of the HSC data. Although good results can be acquired (Aasen 

et al., 2015, Chapter 3), they might be strongly biased (Aasen and Bolten, in review, Chapter 4). 

Moreover, this bias is hardly traceable, which violates the reliability of the data. Besides, this 

calibration procedure impedes the use of HSC in unstable illumination conditions and therefore 

strongly limits the flexibility of HSC sensing systems. In the future, HSC systems should commonly 
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measure the incident irradiance to avoid possibly biased in-field calibration procedures and exploit the 

full potential of cloud independent hyperspectral remote sensing.  

However, drawing conclusions about influences related to angular effects is considerably more 

complex, and must take into account several different factors. In contrast to the influences from the 

measurement protocol or the sensing system, angular effects are not errors per se. They complicate 

the interpretation of hyperspectral data but are property of the surface. For standardized data 

products (e.g. in a homogeneous viewing geometry), angular effects need to be reliably normalized. A 

necessary prerequisite is the precise estimation of an irradiance field per pixel, which is currently 

hindered by the lack of high-resolution DSMs (Damm et al., 2015). Incorporating high-resolution 

information to characterize the structural properties of the surface is seen as the way forward 

(Weyermann et al., 2014). HSCs can provide 3D and spectral information at the same time. Thus, their 

data is potentially suited to address this issue. On the other hand, surface BRDF information holds great 

potential to not only retrieve structural information about crop canopies with spectral data (Casa and 

Jones, 2005), but also about biochemical parameters, as a very recent study has shown (He et al., 

2016). In the future, this potential should be exploited. Since HSC sensing systems capture multiple 

overlapping images during an overflight, they are an optimal tool for multi-angular data retrieval. First 

attempts in this direction have already been undertaken with non-hyperspectral cameras (Hakala et 

al., 2010; Koukal and Atzberger, 2012).  

Compared to the influences of the measurement protocol and surface anisotropy, the technical aspects 

of the sensor only have a minor impact on the data quality. The sensor noise and response function 

influence the data by less than 1.5%. Under optimal conditions, the overall calibration procedure 

influences the data less than 2.5%. Professional calibration facilities are able to radiometrically 

calibrate imaging spectrometers to levels of 3% relative to national standards (Gege et al., 2009). The 

procedures to evaluate the data quality within this thesis must be described as rather rough compared 

to for example the calibration facility of APEX at the Deutsches Zentrum für Luft und Raumfahrt e.V. 

(DLR) in Oberpfaffenhofen. Still, in comparison the magnitude of the influences introduced by the 

technical aspects of the camera seem satisfactory. However, this only applies as long as the 

uncertainties introduced by the measurement protocol are disregarded (c.f. above).  

Overall, these results highlight the need for specific metadata for all data entity levels. Previously, 

Heuvelink et al. (1989) argued that methods are needed to trace errors on a pixel specific level in raster 

GIS data. Due to the complexity of data products such as HS DSMs, this has become even more 

important. To properly interpret the data under consideration of different influences along the path of 

particle to pixel, information about the data quality (e.g. noise or radiometric resolution) and the 

measurement geometry needs to be made available for each pixel. For each image, information about 
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the calibration procedure has to be recorded in addition to the information about the position and 

orientation during the image acquisition. On a scene level, precise information about the data 

processing procedure needs to be recorded. For a reliable data product, the information from all levels 

should be provided for each pixel within the final scene, to provide the user with metadata not only on 

a generic but also on a more detailed level, as requested by Hunter et al. (2009). While efforts have 

been undertaken to provide pixel-wise quality information for airborne (e.g. Itten et al., 2008) and 

spaceborne (e.g. Roy et al., 2002) missions, so far this has been missing for UAV data. The pixel-wise 

quality assurance approach introduced in Aasen et al. (2015, Chapter 3) provides the prerequisite to 

generate the necessary metadata to transform the data within the pixels into information about the 

particles.  

 



Influences on the spectral information along the path from particle to pixel 

 

Table 9.1 Sources of influence along the path from particle to pixel with an approximated potential impact on the information relative to the signal.  

Source of influence  Data 
entity 
level 

Relative potential impact Comment Reference 

Environment      

Angular effects due 
to surface 
anisotropy 

image 25% Wavelength dependent Burkart et al. (2015, Chapter 
5), refined in Subsection 9.1.1 

Sensing system and measurement protocol 

Noise pixel << 1% Increased for individual pixels with low radiometric 
resolution 

Aasen et al. (2015, Chapter 3) 
and Subsection 9.1.2 

Radiometric 
response 

pixel < 0.5% Significantly smaller for most pixels and spectral bands Aasen et al. (2015, Chapter 3) 
and Subsection 9.1.2 

Radiometric 
calibration 

image 1% Additionally, a constant offset might be introduced by 
the calibration procedure in the magnitude of 14% 
under cloudy conditions and 3.4% under sunny 
conditions 

Aasen et al. (2015, Chapter 3) 
and Aasen and Bolten (in 
review, Chapter 4) 

Varying incident 
irradiance  

scene > 100% During poor illumination conditions with fluctuating 
levels of cloudiness for calibration procedures without 
the possibility to adapt for illumination changes 

Hakala et al. (2013) 

Data processing     

Scene composition scene < 25% in HDRF data 
product (blending mode 

‘disabled’) 

For the hemispherical-directional reflectance factor 
(HDRF) data product, influences are introduced by not-
corrected surface anisotropy 

Aasen and Bolten (in review, 
Chapter 4), refined in 
Subsection 9.1.3 

  < 25% for HCRF data 
product (blending mode 

‘average’) 

For hemispherical-conical reflectance factor (HCRF) 
data product, influences are introduced by insufficient 
view-angle coverage 
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 Comparability of hyperspectral digital surface models to data from other 

sensing systems 

In the following section, the comparability of data contained in HS DSMs derived with HSCs will be 

discussed. The first subsection highlights the comparability of spectral data to data from other sensing 

systems. In the subsequent subsections, the comparability of the 3D data with regards to different SfM 

software tools and TLS data and their processing schemes will be discussed.  

 Spectral data  

In this thesis, different imaging and non-imaging devices were used to record spectral and RGB data. 

Besides the obvious differences resulting from their properties (e.g. spectral and spatial resolution) 

listed in Table 2.1, the data produced by the different sensing systems also differs in other ways.  

The first aspect is the type of spectral data, which is generated by the sensing systems. As described in 

Subsection 2.1.2, different reflectance quantities exist. From its definition, HDRF measurements can 

be carried out by instruments with an infinitesimal small measurement cone (Schaepman-Strub et al., 

2006). However, measurements from devices with very small IFOVs can be described as HDRF due to 

their high degree of directionality (Schläpfer et al., 2015). Table 2.1 summarizes the properties of the 

different sensors used in this study. The imaging devices UHD and GX1 have IFOVs well below 1°. Thus, 

their measurements can be described as HDRF. The non-imaging devices FS3 (deployed as field-

spectrometer in several studies within this thesis) and UAV-STS (deployed in Burkart et al., 2015, 

Chapter 5) have an FOV (= IFOV) of well above 10° and represent HCRF measurements. In Bareth et al. 

(2015a), significant differences were found between FS3 and UHD measurements, which were 

suspected to result from calibration issues. In Aasen and Bolten (in review, Chapter 4) these differences 

were further investigated. Although the radiometric calibration was found to potentially impact the 

data, the systematic differences between imaging and non-imaging devices were found to play a 

significant role. Specifically, the different angular properties of the data, in combination with different 

data processing schemes accounted for a relative increase of up to 55% in reflectance (DAS 84 at 466 

nm) depending on the wavelength between the FS3 and UHD data (Figure 4.4). These results question 

whether results obtained by measurements with different geometries and from HDRF and HCRF 

measurements can generally be transferred and compared with each other. Literature that explicitly 

compares imaging and non-imaging (HDRF and HCRF, respectively) measurements is rare. Von Bueren 

et al. (2015) deployed the multispectral imaging camera Mini-MCA (TETRACAM Inc, 2015) and the non-

imaging UAV-STS over grassland and compared it to ground-based ASD HandHeld2 (ASD Inc., 2014) 

measurements. In von Bueren et al. (2015), Figure 4 shows the results for a grazed pasture and a non-

grazed pasture with dense vegetation and no soil visible. To compare the reflectance, a 0.3 by 0.3 m 
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area approximately matching the ASD measurement position was extracted and averaged in the 

Mini-MCA imagery. In the grazed case, the ASD had a lower reflection in the VIS and a higher reflection 

in the NIR. In the non-grazed case, the reflection in the VIS was comparable for both devices, while in 

the NIR the Mini-MCA derived lower reflection values. Although these results were not explicitly 

discussed in the article, this is similar to what was found in Aasen and Bolten (in review, Chapter 4): in 

denser vegetation, differences between imaging and non-imaging devices are less pronounced than in 

sparse vegetation (Figure 4.4 in conjunction with Figure 4.5). In general, it is more likely that beams 

from the soil surface reach the sensor in a viewing geometry close to nadir (Figure 9.3). However, in 

dense vegetation, (almost) no beams from the soil reach the sensor and the influence of the beam 

geometry decreases (Figure 9.3, B). In contrast, in sparse vegetation beams in a close-to-nadir 

geometry are likely to contain a soil signature (Figure 9.3, A). Since the imaging data within the HS 

DSMs is composed of pixels with a viewing geometry close to nadir (SFOV, c.f. Figure 4.6), their spectra 

contain more soil signature than the integrated measurement of the non-imaging device (Figure 9.3). 

Generally, it should be concluded that even if HDRF and HCRF measurements (e.g. derived from an HS 

DSM and the FS3) are used to characterize the same area, they do not necessarily capture the same 

objects. Consequently, both types of measurements are not directly comparable. These results are of 

particular interest, since they potentially have great impact on the comparability of near-ground, air- 

and spaceborne observations but have not yet been systematically discussed in a similar manner as in 

Aasen and Bolten (in review, Chapter 4).  

 

Figure 9.3 Field of view of the FS3 (gray), UHD (yellow) and of multiple pixels within an HS DSM used to 
characterize an area (SFOV (light blue), c.f. Figure 4.6) with sparse vegetation (A) and dense vegetation 
(B). Towards a nadir viewing geometry beams from the soil are more likely to reach the sensor. The 
spectral data within the HS DSM is composed by pixels with a close-to-nadir viewing geometry captured 
from multiple positions. 

Common air- and spaceborne hyperspectral pushbroom imaging systems also record HDRF data. While 

APEX has an IFOV of about 0.028° (Schaepman et al., 2015), every Hyperion pixel has an IFOV of 0.0024° 

(Pearlman et al., 2000). Although the IFOVs of the UHD are more than one magnitude larger (0.4°), the 

measured reflectance quantity is more comparable to the satellite and airborne system than the HCRF 

of the FS3 with a FOV (=IFOV) of 25°. Still, also the sensing principles and data processing schemes of 

pushbroom and HSC systems result in different angular properties within the data product. Pushbroom 
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scanners record individual lines of hyperspectral data, which are aligned with the help of precise 

information on the position and orientation of the sensing system. Therefore, all pixels from the same 

position within an image line, and consequently at that position in the final scene (or flight strip), have 

the same angular properties (under the assumption that the sensor is geometrically stabilized and the 

surface geometry is constant). On the contrary, HSCs record hyperspectral data in two spatial 

dimensions (c.f. Subsection 2.1.4) where each pixel has its own angular properties. These are 

composed to a final scene based on a mosaicking process (c.f. Aasen et al., 2015, Chapter 3). As a result, 

the angular properties not only differ in the across-track direction (as for the pushbroom systems) but 

also in the along-track direction (Aasen and Bolten, in review, Chapter 4), even if only one flight line is 

regarded. Figure 9.4 visualizes these considerations. The maps show the pixel positions of scenes 

generated from a pushbroom camera (micro-Hyperspec NIR: Headwall Photonics Inc, 2015) and an HSC 

(UHD) together with the generated hyperspectral scenes. The shift of the across-track pixel position of 

both devices results from the roll movement and the non-linear flight of the sensing system. 

Additionally the different pixel positions in along-track direction are visible in the HSC data.  

 

Figure 9.4 Properties of single flight lines of the pushbroom camera micro-Hyperspec NIR (MHS) flown 
at the University of Tasmania after preliminary orthorectification (03/20/2014 unpublished data, left) 
and the HSC UHD flown at the Campus Klein-Altendorf (2014 DAS 70, right). For the MHS, digital 
numbers (DN) at 1025 nm and the across-track pixel position (pix pos) are shown. For the UHD, the 
reflectance (refl) at 544 nm and the corresponding across-track and along-track pixel positions are 
shown. Within the UHD data, some processing artifacts due to the exclusion of the other flight lines are 
visible.  
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This is particularly important with regards to angular effects, since they are most pronounced in the 

solar principal plane (Küster et al., 2014). Thus, pushbroom systems are mostly flown in parallel to the 

solar principal plane to reduce complexity. For HSC systems, such an approach is not possible because 

of the two dimensionality of the images and the way the data is processed. Thus, the influence of the 

differing measurement geometries is visible in scenes composed by HSC data (Figure 4.7 and Figure 

4.9, second row of plots to the left at DAS 84). In future, higher frame rates together with principle 

plane parallel flight patterns could help to minimize the influence of multiple view angles. 

Nevertheless, to fully compare data from different devices, algorithms are needed which can correct 

or transform reflectance factors derived from different devices, IFOVs and measurement geometries.  

Besides the different data processing approaches of pushbroom and HSC systems, the sophistication 

of the processing scheme can also be compared. As an example, the APEX data processing scheme 

consists of four stages transforming the raw DN to radiance, to HCRF, and to a desired data product. 

During that process, customized modules can be applied to minimize the impact of atmospheric and 

topographic effects if the user wishes to obtain uniform geo-locatable bottom-of-atmosphere 

reflectance values (Richter and Schläpfer, 2002; Schaepman et al., 2015; Schläpfer and Richter, 2002). 

Additionally, APEX data can be normalized to nadir-viewing geometry by applying a Li-Ross BRDF 

correction based on land cover classification (Weyermann et al., 2014). This processing scheme 

demonstrates that after more than six years in operation, APEX is a mature sensing system that 

produces scientific-grade data. In comparison, the data processing scheme to generate HS DSMs from 

the UHD data is much simpler. As described earlier, the raw DNs are directly transformed to reflectance 

with a rather simplistic approach prone to errors (Subsection 9.1.2). Currently, no modules are ready 

to be applied to correct HSC data for radiometric correction of atmospheric, topographic or BRDF 

effects. A promising approach towards the correction of illumination conditions within image-frame 

camera data has been described by Honkavaara et al. (2013) and is based on irradiance measurements 

and radiometric block adjustment. Still, the approach has not yet been made available for other 

systems. An adaption of modules from airborne missions should be possible from a theoretical point 

of view, but will remain a task for forthcoming research. Thus, it has to be concluded that the data 

processing schemes of HSC sensing systems are not yet on a comparable level to the highly 

standardized data products as e.g. of the APEX. Still, the outcome of this thesis, in particular the pixel-

tracing method developed in Aasen et al. (2015, Chapter 3), provides the necessary basis for further 

development and standardization of HSC data.  

Besides HSCs, consumer-grade RGB and CIR cameras are also used for vegetation monitoring. Similar 

to HSCs, they allow for the generation of 3D information linked to the color information of the RGB 

bands. Recently, some studies have used the color data of uncalibrated RGB and CIR cameras 
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(sometimes incorrectly referred to as spectral data) to derive information about the vegetation (Bareth 

et al., 2015b; Bendig et al., 2015; Dandois and Ellis, 2013; Geipel et al., 2014; Rasmussen et al., 2016). 

However, this must be viewed critically as long as no spectral and radiometrical calibration and 

referencing is applied: most consumer-grade cameras do not come with a sufficient description of the 

radiometric response and spectral band properties. This prohibits the comparison or transfer of results 

achieved by these sensors to other sensors, particularly when images are not captured in RAW mode 

but compressed to JPEGs. Even worse, if onboard image correction algorithms such as automatic white 

balancing (color correction) are not disabled, images are tuned to ‘look nice’ and their color 

information is altered based on image statistics (c.f. Zapryanov et al., 2012). However, this makes the 

color information unusable for quantitative remote sensing approaches, since the same area might 

appear different depending on the image capturing conditions. Besides, if the signal is not transformed 

to physically traceable units (and if no reference object is placed within the images) scenes captured 

under different illumination conditions (e.g. during different campaigns) cannot be compared. 

Additionally, most RGB cameras have a wide FOV. Although widely disregarded in studies of RGB data, 

it should be mentioned that a wider FOV increases the BRDF effects within the images (c.f. Subsection 

9.1.1). Thus, great caution needs to be taken when using the color information of consumer-grade 

cameras. Overall, it can be concluded that orthophotos from uncalibrated RGB and the spectral data 

within HS DSMs are not comparable from a theoretical point of view. However, when RGB cameras are 

radiometrically and spectrally calibrated, they might provide spectral information comparable to a 

multispectral camera with three bands in the VIS. This aspect will be considered in Subsection 9.3.1 

from a practical point of view.  

 Digital surface model 

In this thesis, different devices were used to reconstruct the 3D surface of a canopy as DSMs. The 3D 

data within the HS DSMs is derived by SfM implemented in the commercially available software 

Photoscan (Aasen et al., 2015, Chapter 3). The quality of the reconstruction depends on several 

aspects. Furthermore different implementations of SfM exist. In addition to SfM, LiDAR can also be 

used to derive 3D information (e.g. Tilly et al., 2015, Chapter 6). However, it is based on fundamentally 

different principles (c.f. Subsection 2.2.1 and 2.2.2). In this subsection, these aspects are discussed in 

the context of the comparability of the 3D data within HS DSM.  

SfM can reconstruct the 3D geometry of a surface from 2D images, as long as the images meet the 

necessary requirements (c.f. Subsection 2.2.1). A variety of 3D reconstruction tools exist with different 

implementations of the feature detection, bundle block adjustment and the dense point cloud 

reconstruction (Eltner and Schneider, 2015; Remondino et al., 2014). In this thesis, Photoscan was used 

for the reconstruction process since it has been shown to be suitable for agricultural monitoring in 
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other studies (Bendig et al., 2014, 2013; Turner et al., 2014). Additionally, preliminary trials with the 

UHD data and another software package (Pix4D, 2016) were unsuccessful. Nevertheless, studies have 

shown that significant differences exist between different software packages (Eltner and Schneider, 

2015; Gómez-Gutiérrez et al., 2014; Remondino et al., 2014). Grenzdörffer (2014) specifically 

compared different software packages for the reconstruction of the canopy height of winter wheat in 

an experimental plot layout similar to the experiments in this thesis. He found significant differences, 

which were attributed to the different algorithms used for the reconstruction and filtering of the 3D 

point cloud. Figure 9.5 demonstrates these differences. Additionally, Aasen and Bolten (in review, 

Chapter 4) found Photoscan to be prone to the ‘bowl-effect’, with suboptimal GCP coverage. In 

Ouédraogo et al. (2014) the same effect was found with Photoscan, however a different tool did not 

show the effect using the same data. Nevertheless, since software suites such as Photoscan use 

proprietary algorithms and limit the parameters which can be controlled by the user–sometimes 

rendering these software packages a ‘black-box’ (Remondino et al., 2014)–it is difficult to understand 

these differences. Additionally these are likely to change due to the ongoing rapid development in the 

field. In this thesis, Photoscan seems to reconstruct the plot edges significantly better than the 

(supposedly older) version of Photoscan used in Grenzdörffer (2014). Thus, with every new version of 

a software or after settings are changed the results should be scrutinized before a workflow is 

operationally used. As an example, Aasen et al. (2015, Chapter 3) found that Photoscan processed the 

spectral data differently than stated in the manual.  

 

Figure 9.5 Transects through point clouds of winter wheat plots derived with the software packages 
Pix4D, Sure and Photoscan (Grenzdörffer, 2014).  

In addition to the systematic differences introduced by the 3D reconstruction algorithm, factors like 

the flight pattern, image overlap, ground sampling distance, GCP placement and illumination 

conditions (and the resulting image contrast) also influence the 3D reconstruction (Dandois et al., 2015; 

Gerke and Przybilla, 2016; Grenzdörffer, 2014; Remondino and El-Hakim, 2006). In theory SfM can 

generate point clouds with a resolution similar to the ground sampling distance of the input images 



Comparability of hyperspectral digital surface models to data from other sensing systems 

217 

(c.f. Subsection 2.2.1; Haala, 2013). With the common above ground altitude of the UHD and GX1 of 

30 and 50 m, respectively, images with a ground sampling distance of 0.01 m were captured. However, 

in an applied setting, parameters such as the flight trajectory and the illumination conditions may vary 

for each measurement campaign. Figure 9.6 (top) shows the point density within a 0.1 m x 0.1 m area 

relative to x-y space of a point cloud derived from a flight with the UHD and the GX1 for the same date. 

In the UHD point cloud (Figure 9.6, top center), the dependence of the density on the image overlap is 

visible. Due to wind, the second and third flight lines to the west largely align, which produces a great 

overlap of images (c.f. Figure 4.10) and a high point density. The low image overlap to the east of the 

scene leads to a lower point density. In the point cloud of the GX1 such a pattern is not clearly apparent. 

Additionally, the point cloud is generally denser (Figure 9.6, bottom). Due to the larger FOV of the GX1, 

the image overlap is higher compared to the UHD, despite the flight pattern being less dense. 

Interestingly, the plots of the two fast-growing varieties Eunova and Isaria (c.f. Figure 2.10) can be 

distinguished from the other plots by their low point densities in the GX1 point cloud but not in the 

UHD data. At the date of the flights, these varieties were ahead in growth and thus had an increased 

roughness of the canopy compared to the other varieties.  

Figure 9.6 The maps at the top show the density within 0.1 m by 0.1 m cells of point clouds derived by 
a terrestrial laser scanning system (TLS), the UHD flown at 30 m and the GX1 camera flown at 50 m. 
The different flying altitudes in combination with the camera specifications result in ground resolution 
of approximately 0.01 m for both systems. All measurement were carried out around DAS 70 in 2014. 
The color represents the point density per square decimeter (a histogram equalizer is applied to the 
color scheme to emphasize the different patterns). Additionally, the scan and image capturing positions 
are shown in light green and light blue, respectively. The histogram at the bottom shows the distribution 
of densities for the three point clouds. It has to be noted that the TLS point cloud was filtered with a 
maximum point filter. Thus, the absolute point density values cannot be compared.  
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The differences of the point clouds derived from the two camera systems might result from the 

different approaches in how the image overlap is created. While the GX1 images overlap mainly 

because of the wide FOV, the UHD overlap is created by a high frame rate. However, with a shallower 

angle, beams are more unlikely to penetrate the vegetation (similar to oblique TLS, c.f. Figure 9.7). 

Additionally, during the reconstruction, point matching starts to rapidly decrease when view-angles 

exceed 20° (Lowe, 2004). These results suggest that it is not just the overlap, but also the area and its 

viewing geometry that is influencing the 3D reconstruction. These results highlight the complexity and 

need for further investigations on the robustness and comparability of 3D data derived from SfM. In 

the future, such effects and their impact on plant parameter retrieval need to be evaluated.  

LiDAR and SfM are fundamentally different techniques for deriving 3D information of a scene. While 

the former is an active sensing technique, the latter is a passive technique and relies on the illumination 

of the scene from other sources. Thus, features need to be visible to produce stable keypoints for the 

SfM approach (visible in the sense of contrast, c.f. Lowe, 2004), while fully un-illuminated features can 

be detected by LiDAR, as long as they are not obscured by other features. In the case of complex 

structures such as vegetation, these differences play a major role. Several studies have investigated 

the differences of airborne LiDAR- and SfM-based approaches in the reconstruction of forest canopies 

(Dandois et al., 2015; Dandois and Ellis, 2013, 2010; Lisein et al., 2013). Generally, SfM performed 

nearly as well as LiDAR in relatively homogeneous canopies (Dandois and Ellis, 2010). At the same time, 

overstory occlusion limited the observation of the lower canopy (Dandois and Ellis, 2013), which led to 

differences in the reconstruction depending on the density of stands (Lisein et al., 2013). Generally, 

point density and canopy penetration relates to image overlap (Dandois et al., 2015). Still, SfM was 

described as being not suited to deriving a DTM below forest canopies, due to its inability to deeply 

penetrate the canopy in comparison to LiDAR. While it is likely that these results are also of significance 

for crop canopies, the latter have a different structure than forests. However, studies comparing LiDAR 

to SfM approaches for dense cereal crops are still missing.  

For TLS systems as used in (Tilly et al., 2015, Chapter 6) the situation is different. Figure 9.6 (left) shows 

a map of the point density for a TLS scene for the CROP.SENSe.net experiment together with three out 

of the four scan positions used to generate the 3D model of the canopy (the fourth scan position is to 

the south-west outside of the map excerpt). Towards the scan position, the point density strongly 

increases. This results from the scanning principle of the laser scanner, which sends and receives 

angular evenly spaced beams. Thus, the sampling distance on a surface decreases (the distance 

between points increase) with distance to the scanner. Additionally, the entry angle into the canopy 

decreases with the distance from the scanner, which decreases the ability of the laser to penetrate the 

canopy and increases the chance of the beams of being obscured before hitting deeper canopy layers 
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or lower plants. This obscuration effect is visible in Figure 9.6 (left), where the density within the plot 

is increased in higher areas compared to lower parts within the same plot. This effect can also be seen 

at the plot edges. Since they represent a vertical plane behind a patch of bare soil, they are hit by more 

beams than the other canopy and have a high point density per ground area. But the point density of 

these planes also decreases with an increasing distance to the scan position. This is mostly caused by 

the increased obscuration from the plot in front due to the shallower beam angle – similar to what 

happens at the vegetation layers within the plot. Although the plot edges also show a higher point 

density within the SfM-derived point clouds, the point density is similar for all edges. Most likely this 

results from the steeper view angle of the cameras. Figure 9.7 schematically visualizes these 

considerations. These differences may also influence the derivation of DSMs and canopy heights, which 

will be discussed in the next chapter. Finally, it should be mentioned that, besides of the already 

mentioned systematic differences, also unpredictable environmental effects such as wind (e.g. Figure 

9.2) may influence the generation of the point cloud. Future studies should investigate the impact of 

such influences.  

Figure 9.7 Schematic drawing of canopy height estimation with terrestrial laser scanning (blue), 
Structure from Motion (green) and manual ruler measurements (red) with the resulting average height 
(left). The shaded part of the canopy (gray background) can barely be captured by image-based 
approaches. 

 Canopy height 

Measuring the plant height in the field is a difficult task. Already its definition is challenging. Heady 

(1957) defines the plant height as “the perpendicular distance from the soil at its base to the highest 

point reached with all parts in their natural position”. He reports three measurement methods that 

have been applied: ruler measurements alongside the plant in its natural position, ruler measurements 

of the plant stretched to its full length (eliminating the natural position), and ocular measurements 

that average the plant height based on the ‘mind’s-eye’. For an individual plant, the first described 



Comparability of hyperspectral digital surface models to data from other sensing systems 

220 

measurement method aligns well with the Heady’s definition of the PH. However, for canopies both a 

definition and the choice of an appropriate method become more difficult. Manual measurements are 

only suited to derive a few discrete measurements within an area to characterize the height. However, 

a canopy might be highly heterogeneous. Thus the question arises: which plant and which part of the 

plant to measure, since its inflorescence might stand out from the canopy, for example. And how, then, 

should these measurements be translated into the canopy height of dense cereal for a certain area? 

For forests different definitions exist, which estimate the canopy height using different metrics derived 

from the maximum heights of the individual trees within a stand (Nakai et al., 2010). For cereals, a 

definition besides that for a maximum canopy height could not be found in the literature. The manual 

ruler measurements of all datasets within this thesis followed a similar approach as that for forests 

considering 10 discrete PH measurements at randomly selected spots within a plot. However, this 

results in a canopy height which is calculated from maxima within the canopy, since most of the leaf 

surface is below the measured plant height (Figure 9.7, red).  

Although remotely sensed data mostly consist of discrete measurements, very high-resolution 

methods generate quasi continuous data. UAV sensing systems and TLS capture the surface from a 

close-to-nadir and oblique angle, respectively. Thus, in contrast to the manual measurements, TLS and 

SfM not only capture the highest points within the canopy but also the height of the other elements 

within the canopy (c.f. Subsection 9.2.2). Additionally, due to the three-dimensionality of the data, 

several points at different heights might be captured for the same 2D coordinate (e.g. along a stem). 

During the generation of a DSM, the dimensionality of the 3D point cloud is reduced to what is often 

referred to as 2.5D, where one height value is assigned to a cell in x-y space (c.f. Section 2.2). This 

assignment is based on a specific rule such as averaging. Depending on the applied rule, the resulting 

value represents a canopy height different from that of the manual measurements. These 

considerations are visualized in Figure 9.7. The schematic drawing on the right shows the points in the 

canopy which are resolved by the different techniques. When these points are averaged to derive the 

height for the cell, they result in different heights (Figure 9.7, left). Additionally, as discussed in 

Subsection 9.2.2, the density of a point cloud both for SfM and TLS is variable throughout a scene or 

for different campaigns and might influence the derived height. Crommelinck and Höfle (2016) found 

that very low point densities (8 points per 0.01 m²) result in a slight underestimation of the crop height. 

But overall, the estimated plant height appears to be quite robust against reduced densities. 

Additionally, no trend was found between the measurement error and the distance (of up to 150 m) 

to a TLS system when a similar workflow as in Tilly et al. (2015, Chapter 6) was used. However, it is 

likely that the necessary point density to achieve the required accuracy is related to the crop type and 

growth stage (Hämmerle and Höfle, 2014).  
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In addition to the quality of the acquired data, the algorithms used to process the point cloud also 

influence the result. In this thesis, the dense point cloud build within the SfM workflow was carried out 

in the depth-filtering mode ‘aggressive’. This mode is recommended for aerial data processing (Agisoft 

LLC, 2016). However, it may classify small features (such as ears) as outliers, which are deleted and 

thus cannot be regarded later on. This may have increased the underestimation of the canopy height 

of the SfM approach in comparison to the manual measurements (c.f. Table 4.3). The TLS approach in 

Tilly et al. (2015, Chapter 6) showed a smaller offset. This might result from two reasons: as mentioned 

above, lower parts of the canopy are shaded by higher parts due to the oblique scan angle of the TLS. 

Additionally, the workflow for the TLS data included a maximum-point filter, which selected the 

maximum points within a given area before the canopy height model was generated (Tilly et al., 2015, 

Chapter 6). This results in a relative increase of high points and thus, in an increased estimate of the 

canopy height more similar to the manual measurements. These results are also comparable to those 

in Grenzdörffer (2014), where the maximum heights extracted from a SfM point cloud better matched 

the manual measured heights compared to the averaged heights. 

As already seen in Subsection 9.2.2, the canopy structure may influence the derived data. During plant 

growth, the canopy structure changes. Aasen and Bolten (in review, Chapter 4) investigated the 

difference between the manual and SfM derived plot heights for four different growth stages. The SfM 

approach generated lower canopy height compared to the manual estimation and the difference 

continued to increase until the heading stage. For the development of fruit stage, the difference then 

decreased (Table 4.3). This aligns with the apparent heterogeneity within the canopy. Figure 9.8 shows 

oblique pictures from the booting, heading and development of fruit stage. In the booting stage, the 

non-erected leaves form a (more or less) closed canopy layer (Figure 9.8, top). In the heading, the 

inflorescences have emerged and stand out from the canopy (Figure 9.8, center). During the 

development of fruit stage, the weight of the grains cause the ears to bend and homogenize the canopy 

(Figure 9.8, bottom).  

Overall, these results show that different quantities can and have been derived from the 3D data. 

Further research is needed to evaluate appropriate measurement procedure and processing workflow 

for desired quantities such as maximum or average canopy height. Additionally, these results 

underscore the challenges in the comparability between different methods that interact with the 

canopy structure. More studies are necessary to investigate these differences and establish a basis of 

comparison. In addition to technical solutions, consistent definitions to describe the 3D properties of 

dense cereal canopies are needed. In the studies within this thesis, the estimated height parameter 

was referred to as ‘plant height’ of the canopy. As outlined above, this referred to an average of the 

maxima of the plants within the canopy for the manual measurements and for the TLS estimation (with 
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the maximum filter). For the SfM method, this referred to an average of all points derived from the 

canopy. A proper definition of different metrics along with a deeper understanding of the techniques 

used would not only reduce the ambiguity of derived values, but would also allow for the development 

of more sophisticated metrics to estimate additional canopy parameters such as canopy density.  

 

Figure 9.8 Oblique images (facing north) of the CROP.SENSe.net experiment at booting (top), heading 
(center) and development of fruit stage (bottom). Images are captured from a crop monitoring station 
(for details please refer to Brocks et al., in review).  



Comparability of hyperspectral digital surface models to data from other sensing systems 

223 

 Destructive measurements 

Although this thesis is written in the context of precision agriculture, the CROP.SENSe.net field 

experiment was designed as a field-phenotyping experiment. The purpose of plant phenotyping is to 

produce a description of the plant’s anatomical, ontological, physiological and biochemical properties 

(Guo and Zhu, 2014). Thus, from a technical point of view sensing methods for plant phenotyping and 

precision agriculture try to measure similar things. Traditionally, plot experiments are used to detect 

differences between different cultivars or treatments (Kling et al., 2004). Thus, sampling is carried out 

to determine differences among the plots. Since destructive measurements are both labor-intensive 

and expensive, only a few measurements are taken to characterize a plot. Such sampling is based on 

the assumption that the plants within a plot grow homogeneously. In case of the CROP.SENSe.net 

experiment, a 0.2 m by 0.2 m square of biomass was harvested at a random position within the 

destructive measurement part of a plot (c.f. Figure 2.10). Chlorophyll was measured from the top 

leaves of three plants and then averaged. These measurements were compared with spatially resolved 

spectral and PH data. Thus, data on different scales (leaf and canopy) and of different types (discrete 

manual and quasi continuous remote sensing measurements) were compared. To facilitate this 

comparison, the spatial dimension of the remote sensing data was reduced to one value per plot by 

means of the average (Aasen and Bolten, in review, Chapter 4; Bendig et al., 2015, Chapter 7; Tilly et 

al., 2015, Chapter 6). Figure 6.3 and Figure 4.9 show maps of the PH (from which the biomass was 

estimated) and the red edge inflection point (REIP; from which chlorophyll was estimated), 

respectively. These maps illustrate the heterogeneity within the plots and highlight the challenge of 

comparing an average value derived from spatially resolved remote sensing data with a destructive 

measurement at just one spot within the plot. While the latter might not represent the plot, the former 

is prone to the influences of the measurement techniques (c.f. Section 9.1 and Subsection 9.2.3). The 

issue of in-plot heterogeneity could (partly) be addressed by georeferencing the positions of the 

destructive measurements and establishing models based on only these points. On the other hand, if 

this position is affected by, for instance, vermin or small-scale soil variability and therefore does not 

represent the typical observable characteristics or physiological properties (phenotype) of a certain 

genotype under a specific treatment, the comparability of the results over time or with other trials 

might not be guaranteed based on the destructive sample. But georeferenced samples would decrease 

the uncertainty of remote sensing-based prediction models. These models could then be used to 

provide spatially resolved estimates for a certain parameter. To get estimates for a certain variety 

within a plot or an area within a field, zonal statistics (descriptive statistics to describe the pixel values 

within a certain area) could be calculated based on these pixel-wise estimates. This would lead to an 

increased sample size, since each could be regarded as a sample. Additionally, descriptive statistics 

such as the variance could be used to reflect parameters such as the growth heterogeneity. Finally, the 
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parameters derived from the remote sensing data could then be used to compare the different plant 

varieties.  

For spectral measurements, additional considerations with regards to their comparability are needed. 

The apparent spectral reflectance is affected by many different factors as previously discussed (c.f. 

Section 9.1). Additionally, retrieval algorithms to estimate plant properties such as VIs may have been 

developed for a different scale (e.g. leaf scale) or sensor configuration than those to which they are 

applied (Aasen and Bolten, in review, Chapter 4). Besides, although the high spatial resolution of the 

data increases the apparent heterogeneity of the canopy it is still to coarse to comprehend individual 

plant organs and thus the interaction if the vegetation structure with the illumination. Due to these 

uncertainties, comparing this data to destructive ground validation measurements is difficult. The next 

generation of HSC systems with significantly increased spatial resolution have already been introduced 

to the market (e.g. UHD 258-Butterfly: Cubert GmbH, 2015). These may allow the segmentation of 

different parts of the canopy. Additionally, data products that incorporate 3D and spectral data, such 

as HS DSMs, may help to increase the traceability of the signal within the canopy and therefore increase 

the comparability between different types of measurements and should therefore be further 

investigated.  

 Conclusions on the comparability of hyperspectral digital surface models 

Motivated by the diversification in remote sensing, this chapter discussed the comparability of the 

spectra and 3D data contained in HS DSMs derived with HSCs with data and data products from other 

devices and to destructive in-field measurements. In the following, the major issues are concluded and 

then summarized in Table 9.2 at the end of the section.  

Three main aspects compromise the comparability of the spectral data. Different sensors produce 

different reflectance quantities (HDRF vs HCRF). These cannot be compared per se, since they are 

subject to different influences from differing angular properties, and subsequently angular effects, and 

may represent the objects within a scene differently (e.g. different soil - vegetation composition). 

Different measurement approaches (such as pushbroom and snapshot) also result in comparability 

issues. Since HS DSMs are composed by a multitude of images, the resulting data product is more 

complex to interpret. Furthermore, due to the two-dimensionality of the images, angular effects also 

appear in two dimensions in the resulting scene. At the same time, the processing workflow for HSCs 

is not as advanced as that of established pushbroom sensing systems. Sophisticated processing 

modules that could lead to a high degree of standardization within data products of HSCs are not yet 

available. The comparability of the color data within RGB DSMs, generated from uncalibrated 

consumer-grade RGB cameras, to HS DSMs is also questionable from a theoretical point of view. 

Therefore, the limitations of these approaches’ comparability and reproducibility must be considered. 
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Several of the comparability issues for spectral data have a close relation to the influences discussed 

in Section 9.1. Specifically, influences related to measurement geometry play a significant role and 

underscore the need for research to better understand and handle these factors.  

Four aspects compromise the comparability of the 3D data. These can be divided into issues related to 

the SfM workflow and its different implementations, differences between the sensing techniques 

LiDAR and SfM, and considerations on how a point cloud is transformed into canopy height. The major 

problem with SfM is its reliance on the features within the images and therefore on the objects which 

are to be measured. Although the objects stay constant, their representation as image features may 

vary due to changing illumination or camera specifications. Additionally, different implementations of 

SfM may result in different representations of the surface. Since the algorithms are complex and some 

software packages are ‘black-boxes’, these differences are hard to comprehend. As a result, 

comprehensive metadata about the software version and the chosen parameters should be stated in 

every study which uses SfM. Furthermore, data derived by different sensing techniques and different 

post-processing procedures has to be compared with care. Different measurement geometries and 

differences in the interaction with the canopy structure influence the visibility of features of a canopy 

and thus, its representation in the data product. Additionally, the workflow used to transform the point 

cloud into a DSM may strongly influence the derived canopy height. Further studies that investigate 

these differences and establish workflows which are appropriate for a desired parameter, such as 

canopy height, are needed. Together, with appropriate definitions of structural canopy properties and 

metadata that increase the transparency of a data product, the comparability of DSMs would be 

improved. Additionally, metrics for other structural parameters then canopy height should be 

developed which explore more of the potential information within the point clouds.  

One of the major comparability issues is the correlation of the spatially resolved remote sensing data 

with destructive measurements at plot level. The sampling scheme of the destructive plant parameters 

was intended to investigate for differences between varieties and treatments. However, the remote 

sensing data revealed strong heterogeneities within the plots. This compromised the comparability of 

the data, since the position of the destructive sampling was not tracked. Ground observations should 

therefore be georeferenced in future studies, and match the sampling of a sensing system to reduce 

the uncertainty in the plant parameter estimation. Additionally, zonal statistics could improve the 

interpretability of the results and increase the benefits provided by remote sensing methods for 

agricultural applications.  
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Table 9.2 Summary of the issues related to the comparability of the data contained in HS DSMs to data 
from other sensing systems and destructive in-field measurements. 

Comparability 
issue 

Resulting limitation Main reference 

Spectral 

Measurement 
geometry and 
reflectance 
quantities 

 Different angular properties in the data product 

 Differing representation of objects within the data 

(Aasen and Bolten, in 
review, Chapter 4) 

Data collection 
and processing 
workflows  

 HSC data is more complex and affected by angular 
effects in 2D 

 HSC data processing modules are not yet able to 
generate standardized data 

(Aasen and Bolten, in 
review, Chapter 4) 

Subsection 9.2.1 

Calibration of 
the RGB data 

 Uncalibrated data (e.g. in RGB DSMs) are not 
quantitatively comparable 

Subsection 9.2.1 

3D 

SfM approaches  Different SfM tools derive different results 

 Differences are hard to comprehend since they 
may change with the software version and some 
software packages are a ‘black-box’ 

Grenzdörffer (2014), 
Remondino et al. 
(2014) 

Flight pattern 
and condition, 
sensor 
specification 

 Flight pattern, image overlap, GCP position and 
image contrast might change between campaigns 
and influence the reconstruction 

 Image resolution and FOV influence the 
reconstruction  

Aasen and Bolten (in 
review, Chapter 4), 
Subsection 9.2.2, 
Dandois et al. (2015) 

Different 
sensing 
techniques 

 In contrast to LiDAR, SfM is barely able to 
penetrate vegetation 

 Oblique TLS is more affected by obscuration than 
UAV SfM 

Dandois et al. (2015) 
 
Subsection 9.2.2 

Canopy height 
derivation 

 Point cloud quality and processing algorithms 
influence the derived height 

 Derivation depends on the canopy structure 

Subsection 9.2.3 

Destructive measurements 

Data types  Spatially resolved remote sensing data is compared 
to discrete values for each plot 

 Spectral retrieval algorithms may have been 
developed for different levels  

Subsection 9.2.4, 
Aasen and Bolten (in 
review, Chapter 4) 

 

  



Potentials of hyperspectral digital surface models acquired with UAV snapshot cameras 

227 

 Potentials of hyperspectral digital surface models acquired with UAV snapshot 

cameras 

In the following, the potential of HS DSMs acquired with UAV snapshot cameras in support of site-

specific crop management are discussed. During the discussion of the comparability of the data 

acquired with the different sensing systems, considerable differences were found (Section9.2). Thus, 

the first subsection within this research objective addresses the generality and transferability of the 

results of Chapter 6 to 8 to HS DSMs generated from HSCs.  

 For crop parameter estimation 

In Tilly et al. (2015, Chapter 6) and Bendig et al. (2015, Chapter 7) VIs and RGB data were combined 

with PH to estimate biomass. The theoretical consideration to combine both types of information was 

that biomass would be a function of canopy volume (area x PH) and its density. It was assumed that 

the spectral response of the canopy could provide information about the density due its connection 

with e.g. the LAI (Broge and Leblanc, 2001; Haboudane et al., 2004). Both studies found PH to be the 

best predictor for dry biomass and to provide very good results for fresh biomass. A combination of PH 

and any VI or RGB information could barely increase the prediction. This might be explained by the 

known saturation of many VISNIR VIs at a certain LAI (for an in-depth discussion on the VIs please refer 

to Subsection 6.4.2). Although LAI was explicitly not considered, Tilly et al. (2015, Chapter 6) found that 

the VISNIR VIs saturated at approximately 150 g/m² dry biomass (Figure 6.5). This value was exceeded 

between the campaigns of DAS 49 and 64 in 2013 and DAS 41 and 56 in 2014. Similar observations 

could be made for the RGB indices GRVI and RGBVI, which saturated after DAS 39 (Figure 7.3). Overall, 

the two studies comprised data from DAS 25 to 89 (Bendig et al., 2015, Chapter 7) and DAS 34 to 97 

(Tilly et al., 2015, Chapter 6), which greatly exceeded the unsaturated range of the RGB and VISNIR VIs. 

This limited the ability of the VIs to provide additional information. Future studies should investigate 

earlier growth stages where the VIs are still unsaturated. Additionally, most of the biomass gain after 

the tillering stage (DAS 49 and 54 in 2013 and 2014, respectively) happened in the stem (Figure 9.9). 

This also explains the very good performance of the PH, which can be assumed to be associated with 

stem growth. Beyond the two studies in this thesis, not many studies exist which investigate the 

potential of spectral and 3D information for crop monitoring. In alignment with the results of this 

thesis, Thenkabail and Marshall (2015) found that a combination of spectral and PH information could 

improve the prediction of fresh biomass for a variety of crops, while PH was the most important 

predictor. Aside from crops, a study by Schaefer et al. (2016) indicated that a combination of LiDAR 

and NDVI information was beneficial for pastures biomass estimation. In forest applications, the fusion 

of LiDAR and spectral information is already widely used e.g. for the classification of tree species 
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(Dalponte et al., 2012). As recently shown by Bareth et al. (2015b), similar approaches (with RGB data) 

can also be used to classify different plant communities, resulting from different nutrient availability, 

in grasslands. Such approaches should be further explored. Overall it can be concluded that biomass 

of cereals across several growing stages can be well predicted due to the good relationships with PH 

(Bendig, 2015; Ehlert et al., 2008; Tilly, 2015). Nevertheless, for precision agriculture applications 

estimations at a specific date are also needed. However, a model which is calibrated for a longer phase 

of the growing period might have variable success in predicting the biomass at a certain stage (Tilly, 

2016).  

 

Figure 9.9 Ratio of the leaf and stem dry biomass of barley at different days after seeding (DAS) with 
standard deviation. Generated from data of the CROP.SENSe.net experiment in 2013. No stem was 
developed for dates prior to DAS 49.  

To investigate the potential of the HS DSMs acquired with the UHD, PH was correlated with biomass 

for all available dates. Additionally, HyperCor was used to investigate an optimized combination of 

spectral bands and PH for the same reason. The optimization was based on the NDVI formula (c.f. Eq. 

8.3). Table 9.3 shows the result. Only for DAS 70, PH was part of the optimized combination. At all 

dates besides of DAS 70, a combination of two spectral bands related best to fresh and dry biomass. 

Still, only low coefficients of determination (R² < 0.5) were found. In comparison, other studies with 

similar approaches found better results (Aasen et al., 2014, Chapter 8; Gnyp et al., 2014b; Marshall and 

Thenkabail, 2015). A major reason might be the sampling scheme of the biomass. As discussed in 

Subsection 9.2.4, the remote sensing observations suggested a high in-plot variability, which could not 

be captured by the destructive measurements. While such differences might be lost in the overall trend 

within a season, they considerably affect the results for single dates, due to the smaller range of 

biomass values. Additionally, different varieties have a different growth and a different structure 

(Munzert and Frahm, 2005). Biomass estimation with PH is based on an empirical relationship with the 

growing pattern of the plants. However, if the biomass accumulation pattern within a dataset differs 

because of the differences in growth of the varieties (e.g. different leaf count), this correlation is 
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weakened. Further studies need to investigate the transferability of models between different 

varieties. Besides, also the lack of the UHD to provide usable bands above 900 nm may have lowered 

the results since several studies found the NIR and SWIR domain to be important for the biomass 

estimation (Gnyp et al., 2014a; Koppe et al., 2010; Marshall and Thenkabail, 2015; Thenkabail et al., 

2013; Tilly et al., 2015, Chapter 6). Finally, it is likely that the analysis approaches applied in this thesis 

are not optimally suited to combine spectral and PH data. A major issue is the different scaling and 

magnitude of the variables. While the reflection (0 to 100% reflection) and VIs (e.g. NDVI [-1,1], c.f. 

Aasen et al., 2014, Chapter 8, Eq. 8.3) have a normalized range, plant height has not. Additionally, the 

biomass gain throughout the growing season is neither linearly related with the plant height nor the 

spectral information (Tilly et al., 2015, Chapter 6). Thus, it is likely that simple linear and exponential 

regression models cannot fully exploit the potential of a combination of PH and spectral data. Thus in 

future, non-linear regression models potentially based on machine learning techniques should be 

applied to combine spectral and spatial information. Techniques such as random forest regression 

(Breiman, 2001) have a great potential for this purpose, since they can deal with the redundancy of 

hyperspectral bands, handle non-linear relations and variables of different types (Feilhauer et al., 2015; 

Shi and Horvath, 2006).  

Table 9.3 Coefficient of determination (R²) of the plant height (PH) and the optimized combination of 
spectral and PH data for the estimation of fresh and dry biomass at different days after seeding (DAS).  

DAS   56 70 84 96 

fresh biomass PH 0.19 0.33** 0.01 0.05 

spectral and PH data 0.45 0.29 0.36 0.24 

dry biomass PH 0.23 0.43** 0.09 0.00 

spectral and PH data 0.42 0.23* 0.26 0.16 

* For the dry biomass at DAS 70, the algorithm included PH into the best combination 
** For DAS 70 only plots of the 70b case were regarded for the PH due to issues with the digital 
surface model (c.f. Aasen and Bolten, in review, Chapter 4) 

In Aasen and Bolten (in review, Chapter 4) chlorophyll was retrieved from HS DSMs based on published 

VIs. Although the results were variable for different dates, they were in the magnitude of results of 

other publications. The variable performance might be explained by variations in canopy structure (c.f. 

Figure 9.8) and the resulting angular effects (Subsection 9.1.1). Yu et al. (2014) supports these 

considerations and found that the optimal bands to estimate chlorophyll varies with the growth stage. 

Other studies report similar observations for other plant parameters (Aasen et al., 2014, Chapter 8; 

Gnyp et al., 2014b; Li et al., 2010). Besides, the applied VIs were developed for devices with a FOV 

different to the UHDs IFOVs (c.f. Subsection 4.3.2). Additionally, also the bandwidth configuration can 

influence the results of plant parameter retrieval (Hansen and Schjoerring, 2003; Li et al., 2014; 

Thenkabail et al., 2013, 2000). To validate if the growth stage and band configuration had an influence 

on the retrieval, HyperCor was used to derive optimized VIs based on the data acquired by the UHD. 
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To compare the results to the published VIs, the same date combinations as in Aasen and Bolten (in 

review, Chapter 4) were evaluated. With the growth stage and sensor specific band combinations the 

results could be considerably improved in comparison to the results achieved with the standard VIs 

(Table 9.4). Investigation of the correlation matrices revealed that the optimal bands differed from the 

wavelength of the VIs used in Aasen and Bolten (in review, Chapter 4). The upper triangular part of 

Figure 9.10 exemplary shows the correlations of chlorophyll with all band combinations for DAS 70. 

The best R² are found with combinations of bands around 500 nm and 600 nm. Similar observations 

can be found for all dates except DAS 56.  

 

Figure 9.10 The upper triangular matrix shows the coefficient of determination (R²) of all UHD band 
combinations with chlorophyll for DAS 70. The lower triangular matrix shows the difference of the result 
with spectral information of FS3 resampled to the UHD bands (rUHD) and the UHD data (rUHD - UHD). 

In Subsection 4.2.1 the comparability with regard to different data products (HDRF vs HCRF) was 

discussed. To estimate this effect on the retrieval of the best bands, HyperCor was also used with data 

from the FS3 resampled to the UHDs band configuration (rUHD). The results can also be seen in Table 

9.4. The comparison reveals that the correlations achieved with the UHD (HCRF) and rUHD (HDRF) data 

are similar. However, in every case the optimal band combination considerably differs. A further 

investigation based on the correlation matrices shows that not only individual band combinations 

differ but different patterns are obtained in large parts of the spectrum. The lower triangular part of 

Figure 9.10 exemplary shows this for DAS 70.  
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Table 9.4 Coefficients of determination (R²) of different vegetation indices (VIs) with chlorophyll at 
different days after seeding (DAS) and for the same combinations of datasets as in Aasen and Bolten 
(in review, Chapter 4). UHD denotes the results of an optimized combination of UHD bands (denoted 
with its center wavelength in nm), rUHD for FS3 data resampled to UHD bands, VI for the best 
performing published VIs used in Aasen and Bolten (in review, Chapter 4, Table 4.2) and VIS for the 
spectral data resampled to the RGB bands in WorldView-3 configuration.  

 UHD rUHD VI VIS  UHD rUHD VI VIS  UHD rUHD VI VIS 

DAS 56  70  84 

band 1 594 494 
P

R
I5

5
0

 
B  614 462 

R
EI

P
 B  706 502 

M
C

A
R

I 
/O

SA
V

I B 

band 2 470 482 R  474 450 G  490 490 G 

R² 0.48 0.52 0.30 0.25  0.44 0.50 0.13 0.45  0.72 0.64 0.50 0.53 

DAS 96  70-96  84-96 

band 1 694 498 

R
EI

P
 B  586 774 

R
EI

P
 B  602 702 

R
EI

P
 B 

band 2 478 482 R  486 746 G  490 474 G 

R² 0.61 0.60 0.60 0.36  0.6 0.51 0.55 0.41  0.66 0.69 0.64 0.64 

Additionally, the examination of the correlation matrices also revealed promising band combinations 

for the retrieval of chlorophyll in the visible range of the spectrum. This region is covered by RGB 

cameras. Subsection 9.2.1 discussed the differences between spectral and RGB data and remarked 

issues due to uncertainties resulting from the missing reference to physically traceable units. Also in 

Bendig et al. (2015, Chapter 7) it was concluded that this might be a major source of uncertainty and 

Rasmussen et al. (2016) confirmed these considerations with regard to illumination conditions. 

However, some RGB cameras can record RAW data, which allows to radiometrically calibrate these 

cameras. Encouraged by the correlation matrices, the spectral information was resampled to the RGB 

bands of WorldView-3 (DigitalGlobe, 2016) and HyperCor generated optimized VIS VIs based on these 

three bands. As shown in Table 9.4, in many cases these VIS VIs correlated well (R² > 0.5) with 

chlorophyll. In particular for DAS 70, 84, and the combined dataset of DAS 84 and 96 these VIS VIs 

showed similar results as the hyperspectral data. These results have a high significance for practical 

applications. While several studies have shown the potentials of uncalibrated RGB data in combination 

with PH to estimate yield and biomass information (Bareth et al., 2015b; Bendig et al., 2015; Dandois 

and Ellis, 2013; Geipel et al., 2014) these results disclose the potential of calibrated VIS VIs for the 

estimation of chlorophyll. Since RGB cameras are considerably cheaper than hyperspectral sensors the 

potential of these systems should be further investigated. Still, it has to be noted that the results 

retrieved with the UHD data in this chapter are not cross-validated and thus, need to be handled with 

care. Overall, the discussion underlines the need to investigate sensor and growth stage specific 

retrieval approaches for spectral data. Besides of experimental studies, like in this thesis, this could 

also be addressed with modelling approaches. 3D canopy models, such as HySimCaR (Küster et al., 

2014), can generate spectral data of virtual canopies for different growth stages. Such data could be 
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combined with End-to-End simulators (e.g. Vicent et al., 2016) to also comprehend how a sensing 

system and the subsequent image processing influences the results. Such an approach could help to 

understand the influence of sensing systems and different growth stages on the retrieved plant 

parameters.  

Also PH can be derived with HSCs. While the difference between different sensing techniques have 

been discussed in Subsection 9.2.2, it can be concluded that PH can be derived quite reliably for 

individual dates and across different growth stages (Aasen and Bolten, in review, Chapter 4; Bendig et 

al., 2015, Chapter 7; Tilly et al., 2015, Chapter 6). Still, a DTM is necessary to calculate the PH as the 

difference between the DTM and the DSM. In most cases this DTM was generated with data acquired 

from the bare soil surface before the growing period. But sometimes, this might not be possible due 

to undersown crops or weeds, or because the sensing system is not available. The latter was the case 

in Aasen and Bolten (in review, Chapter 4). Problems with the sensor at the beginning of the growing 

season prevented the generation of a DTM. Thus similar to Geipel et al. (2014), patches of bare soil 

between the vegetated areas were used to interpolate a surface. However, this approach is rather not 

generic, since generally it cannot be assumed that patches of bare soil exist and the terrain is flat. 

Additionally, the soil might settle during the growing period. In airborne laser scanning it is common 

to generate a DTM based on the lowest points within a certain area (e.g. Wallace et al., 2012). For SfM 

such an approach might be compromised because of the reduced canopy penetration of the method 

(c.f. Subsection 9.2.2). Dandois and Ellis (2013) found that in case of forests SfM showed a large 

deviation from LiDAR DTMs under foliated trees. It is likely that similar problems occur in cereals due 

to the density of the canopy. Nevertheless, this should be investigated in future. Generally, future 

approaches should aim at exploiting the full potential of the 3D point cloud.  

 For site-specific crop management  

Section 1.1 outlined the demand for timely information (revisit time of 5 – 10 days) in very-high spatial 

(~ 0.25 m and 0.01 m for the spectral and 3D data, respectively) and spectral resolution (< 10 nm) to 

support site-specific crop management. From its technical specifications the UHD is capable of 

acquiring information with the necessary spectral resolution (4 nm). Nevertheless, it has to be noted 

that this only specifics the spectral sampling of the camera. The FWHM is considerably higher (Figure 

3.2). Additionally, results from one sensors might not be transferable to other sensors, even if the data 

is properly resampled (c.f. Subsection 9.3.1). Also, the impact of angular effects should be kept in mind 

for the application of spectral imaging sensors (c.f. Subsection 9.1.1). Thus, the retrieval of every 

parameter should be evaluated in a configuration that is matching a prospected application as close as 

possible. The spatial resolution within the HS DSMs complies with the precision of current agricultural 

machinery (< 0.25 m). However, it has to be noted that the flying altitude and the flying speed might 
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have to be increased to cover larger areas in real applications due to the limited flight time. But since 

the spatial resolution is linearly related to the flying altitude, this will come with a decreased resolution 

and it should be evaluated if it is still sufficient for a prospected application. The revisit time of UAV-

based sensing systems is in theory limitless. Nevertheless, the spectral data acquisition is still limited 

by varying illumination conditions (c.f. Subsection 9.1.2). As long as this issue is not solved, spectral 

remote sensing with UAVs lose a large part of its advance to satellite systems. Still, PH information can 

be acquired quite independent from the illumination conditions (c.f. Subsection 9.2.3). Thus, the 

potential of the presented approach to meet the required revisit time depends on the parameter which 

needs to be acquired.  

If farmers are asked about their reasons for applying new technologies, their answers mostly relate to 

an increase in yield and financial benefits (Stafford, 2007; and personal correspondence to farmers 

during the CROP.SENSe.net project). While yield is related to minimizing crop failures, e.g. due to pests, 

and optimized nutrient and water supply (Munzert and Frahm, 2005), the financial benefit is related 

to maximizing the yield and minimizing the input. Biotic stresses by plant diseases can be detected by 

changes in reflectance as early as four days after inoculation (Wahabzada et al., 2015) and can be 

uncovered by chlorophyll related VIs (Yu et al., 2013). Similar, chlorophyll related indices can also point 

out abiotic stresses such as water stress (Zarco-Tejada et al., 2012). The decent correlations (R² > 0.48) 

for the retrieval of chlorophyll with the UHD data at DAS 56, 84 and 96 (c.f. Table 9.4) suggest a 

potential for precision agriculture applications. Additionally, Mahlein et al. (2013) found that the most 

relevant wavelengths to detect diseased leafs were in the range of 450 to 950 nm, which is mostly 

covered by the UHD. Still, further studies are needed to evaluate the potentials for stress detection in 

in-field applications. Also PH can be an indicator for water stress (Samarah et al., 2009). Good 

correlations (R² > 0.7) were found for the UHD data for most growth stages and across different growth 

stages (Table 4.3). Due to the high reliability of remotely sensed PH, its potential for stress detection 

or fertilization should be further investigated. Since (in spring barley) fertilizer is commonly applied 

after seeding and at tillering stage, and plant protection and weed management is mostly carried out 

before stem elongation is completed (Figure 2.7), such studies should focus on the early growth stages 

including stem elongation. For these early growth stages also an advance can be expected in 

combination with spectral data, since PH increases majorly after tillering. To estimate yield, biomass 

can be used (Boukerrou and Rasmusson, 1990). Grain yield can be well estimated with dry green 

biomass until BBCH 75, while the best results are found at BBCH 25 and 39 (Kren et al., 2014). In this 

thesis, the biomass estimation in individual dates did not achieve satisfactory results. Nevertheless, 

the multi-date models predicted biomass very well (Tilly et al., 2015, Chapter 6, Table 6.6). Such 

approaches could be used to estimate the yield prior to harvest. Table 9.5 summarizes the results for 
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the retrieval of plant parameters (Subsection 9.3.1) and names potential applications in precision 

agriculture as outlined above. 

Table 9.5 Quality of the retrieval (o: 0.48 < R² < 0.7) of different plant parameters from HS DSMs 
acquired with the UHD and potential applications in precision agriculture.  

 Time frame  

Parameter Single date Growing season Reference 

Plant height + + Aasen and Bolten (in review, 
Chapter 4) 

Chlorophyll o o Subsection 3.3.1 

Biomass - + Subsection 3.3.1, Bendig et al. 
(2015, Chapter 7) and Tilly et 
al. (2015, Chapter 6) 

Potential 
application 

Stress detection, 
fertilization 

Yield estimation  

Already today, several optical sensing systems are commercially available to acquire information about 

the vegetation as the tractor drives along the field. Mostly, they are based on a few spectral bands and 

come with a calibration file for specific parameters and specific crops. The information gathered by 

these sensors can directly be used to control the output of crop treatments or stored for a later use 

(Whelan and Taylor, 2013). Compared to such solutions, UAV-based approaches have the potential to 

gather information prior to a startup of the machinery. Thus, a field only needs to be entered when 

necessary (e.g. after a stress is detected) and thus, soil compression is prevented and emissions and 

operating costs are reduced. Compared to satellite systems, UAV-based systems can overcome 

limitations due to cloud cover to a certain degree and eliminate issues of limited scene availability due 

to e.g. competing bookings. On the other hand, harsh winds and rain may prevent UAVs from flying 

(Eisenbeiß, 2009). Besides, stationary (Brocks et al., in review; Crommelinck and Höfle, 2016) and multi-

stationary approaches (Tilly, 2015) are in current development or have been applied for precision 

agriculture applications. While both approaches can provide spatial information in very-high spatial 

and temporal resolution, they suffer from a limited flexibility. While mobile approaches, such as mobile 

laser scanning, can mitigate this disadvantage to a certain degree (Tilly, 2015), these platforms still 

might need to enter the agricultural area due to their operational range. Since UAVs are flying 

platforms, they overcome this issue and can cover large areas without disturbing the surface. Still, 

although the use of UAVs makes the presented approach quite flexible, it also brings disadvantages. 

Different countries have different and sometimes ambiguous legislations (Colomina and Molina, 2014). 

For example prohibits German legislation flights above 100 m and limits the flight radius to the line-of-

sight of a pilot. Additionally, flight times of multi-rotor UAVs are still limited (< 25 min with the sensing 

system used in this thesis). Thus, remote sensing with UAVs always face the challenge of maximizing 

the coverage while retaining a suitable spatial resolution. In particular, this applies for spectral sensing 
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systems since spectral and spatial resolution competes during the design of a sensor (Aasen et al., 

2015, Chapter 3). Still, in 2015 the sensing system used in this thesis was upgraded to permit a higher 

frame rate which allows the system to fly at 10 m/s, while still meeting the required image overlap. 

Thus a flight at 100 m above ground altitude could acquire the data to generate an HS DSM of 

approximately 20 ha with a spatial resolution of the spectral data of 0.7 m. With an average operated 

agricultural area per farm of 56 ha in Germany in 2010 (Statistische Ämter des Bundes und der Länder, 

2011), an entire farm could be covered within about three flights. This relation changes, when farms 

approach the sizes of 175.6 ha, the average for the United States of America in 2012 (NASS, 2014). To 

cope with such farm sizes, satellite and UAV data could be combined as suggested by Gevaert et al. 

(2015). Besides, although an UAV was used to carry the HSC in this thesis, the method of generating 

HS DSMs is independent from the platform. Thus, it could also be applied to data captured from other 

carrier platforms such as small aircrafts.  

Still, the biggest advantage of the approach presented in this thesis is that an HS DSM contains spectral 

and 3D information. As seen in Table 9.5, both types of information can complement each other for 

different applications. Besides of the method introduced in this thesis, almost no other remote sensing 

system is able to derive spectral and 3D spatial information at the same time with the same sensor. 

Although first attempts have been undertaken to exploit the radiometric information of LiDAR systems 

(Höfle, 2014; Junttila et al., 2015), these systems only acquire spectral information within a few bands 

and are not yet feasible to be frequently applied. As shown in Aasen and Bolten (in review, Chapter 4), 

HS DSMs can be used for the frequent multi-temporal acquisition of information of crops. 

Nevertheless, in the end it is likely that the profitability of a system decides if it is applied by a farmer. 

The sensing system used in this thesis cost around 60,000 €, while the UHD alone cost about 50,000 €. 

Such a system has to compete with spectral sensors such as the N-Sensor ALS (YARA, 2016), which cost 

about 39,700 € (dlz agrarmagazin, 2012) and high-resolution multispectral images e.g. from 

WordView-3 (DigitalGlobe, 2016), which cost around 3,100 € for 100 km² (e-geos, 2016). Besides, RGB 

cameras, which allow to derive PH with SfM cost a couple of 100 € and systems as the Phantom 4 even 

come as a package of UAV and RGB camera for about 1,500 € (DJI, 2016). While a calculation on the 

profitability of the different systems will be left for business economists, it is apparent that an HSC 

system such as the UHD is quite pricy. Additionally, this thesis also demonstrated that the data retrieval 

from HSCs is a quite complex process and data processing procedures are still of limited maturity 

(Subsection 9.1.3). Thus, on one hand it can be concluded that HS DSMs acquired with UAV snapshot 

cameras have a great potential to support site-specific crop management due to the combination of 

spectral and 3D information, the high resolution of the data and the potentially high revisit time. On 

the other hand, due to the complexity and costs it has to be concluded that camera systems such as 

the UHD are not yet suited for an application in precision agriculture. Nevertheless, recently more and 
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more low-cost systems have appeared on the market that are easy to use and acquire multispectral 

(e.g. SEQUOIA camera: Parrot SA, 2016) or even thermal data (FLIR XT camera: FLIR Systems Inc., 2016). 

This development will continue and the industry will be able to build sensing systems tailored for 

specific applications. HSC can support this development. 

 Prospects for hyperspectral snapshot cameras 

This thesis demonstrated that the optimal variables (spectral band or PH) to predict a parameter may 

vary with growth stage and sensing system (Aasen et al., 2014, Chapter 8; Aasen and Bolten, in review, 

Chapter 4; Subsection 9.3.1). On the other hand, already some variables might be sufficient for an 

accurate prediction of a plant parameter (Thenkabail et al., 2004). The challenge, however, is to select 

suitable variables for a particular application at a particular time. As long as the entire path from 

particle to pixel cannot be simulated by a model, potential applications have to be validated with real 

sensing systems. HSCs provide a promising tool for this. Their data allows to identify the optimal 

hyperspectral information for a certain application. Moreover, since HSCs record HDRF like reflection 

quantities, results are also suited to be transferred to other imaging spectroscopy sensors such as 

satellites and support current and future satellite missions, e.g. by delivering data for calibration and 

validation activities. Last but not least, due to the simultaneous acquisition of spectral and 3D data, 

interactions of vegetation structure, illumination and the spectral signal can be investigated. This 

interaction has already caused misinterpretation of spectral data in the past (Knyazikhin et al., 2013; 

Morton et al., 2014) and should certainly be avoided in applications that can significantly threaten the 

environment, such as inappropriate use of fertilizer and pesticides (Skinner et al., 1997; van der Werf, 

1996). HSCs offer a unique tool to further understand such effects and address one major source of 

uncertainty, and probably also information, in spectral remote sensing, namely angular effects 

(Subsection 9.1.4). Additionally, with the second generation of HSCs such as the newly announced UHD 

258 – Butterfly X2 (Cubert GmbH, 2015), spectral data can be acquired with an 800 times higher spatial 

resolution compared to the camera used in this thesis. With these sensors hyperspectral point clouds 

can be generated that are suited for entirely new approaches in remote sensing. Overall, HSCs such as 

the UHD are likely to stay a tool for research due to their complexity and high costs. However, the 

outcome of studies like this thesis can identify challenges and potentials for a particular application 

and help to develop new, potentially more robust ways to exploit the data, for example for precision 

agricultural applications.  
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 CONCLUSION 

In this thesis, hyperspectral digital surface models (HS DSMs) acquired with UAV snapshot cameras 

were introduced and evaluated with regard to the quality of the contained spectral and spatial 

information. This also included an assessment of the comparability of the HS DSMs to data products 

from other sensing systems. Additionally, the potential of HS DSMs acquired with the hyperspectral 

snapshot camera (HSC) UHD-185 Firefly to support a site-specific crop management was discussed.  

In many respects, HS DSMs have great potential. UAVs in combination with snapshot cameras allow to 

capture data in high spatial, spectral and temporal resolution. The spatial resolution allows estimation 

of canopy properties in more detail than with other spectral sensing systems. For site-specific crop 

management this enables the detection of small-scale heterogeneities. At the same time, data can be 

acquired with short revisit times due to the flexibility of UAVs. This is important as it enables rapid 

response to highly dynamic phenomena such as plant diseases. Additionally, with the spectral and 3D 

spatial information contained in HS DSMs, plant parameters such as chlorophyll, biomass and plant 

height, which relate to important crop traits, can be estimated within individual and across different 

growing stages.  

However, the complexity of the remote sensing of vegetation is also apparent when working with HSCs. 

The spectral data captured by HSCs is influenced by angular effects. Currently, the different 

measurement geometries of the pixel within the HS DSMs cannot be compensated for and thus, the 

surface anisotropy affects the data. While this is not an error per se, it complicates the data 

interpretation. Additionally, HSCs measure hemispherical-directional reflectance factors while non-

imaging devices such as field-spectrometers measure hemispherical-conical reflectance factors. The 

results of this thesis suggest that different measurement geometries and reflectance quantities 

influence the retrieval of plant parameters and a comparability of data derived with different devices 

might be hindered. Still, the method developed in this thesis to trace the properties of the individual 

pixel from an image into the HS DSM provides the necessary basis to approach these effects. 

Additionally, methods to reliably adapt for varying irradiance conditions are needed to utilize the 

benefit of UAVs to fly below clouds. Besides, several aspects influence the generation of the 3D data. 

Parameters such as image overlap and camera configuration have an impact on the 3D reconstruction 

with Structure from Motion. Additionally, different sensing techniques are able to ‘see’ different parts 

of the canopy. Together with the lack of proper definitions for parameters such as canopy height, the 

comparability of DSMs derived under different conditions or with different sensing systems is limited. 

Coupled with the diversification of sensing systems and processing workflows, efforts towards an 

increased comparability of different methods and standardized metrics are urgently needed.  
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Besides these challenges, new approaches could be facilitated using the data within the HS DSMs. The 

high resolution allows combination of the spectral and 3D spatial information of many pixels to 

characterize an area. This potentially allows to derive information about the variability of an area in 

addition to average values. Additionally, the exploration of the potential to combine spectral and 3D 

information is still in its infancy. Beyond new ways to estimate plant parameters such as biomass, the 

combination of spectral information with information about the vegetation structure could help 

comprehend and corrected for effects introduced by different measurement geometries. At the same 

time, HS DSMs are generated from overlapping images. Consequently, multi-angular measurements of 

the surface are commonly captured with every acquisition and also this information could be exploited 

to derive additional information about the canopy.  

Overall, the insights of this thesis provide the foundation for further exploration of the spectral and 3D 

information within HS DSMs acquired by UAV snapshot cameras; although several challenges must be 

addressed as outlined above. Despite this, the new and exciting technologies within the diversification 

of remote sensing have the potential to revolutionize the way data about the environment is acquired 

and thus, support decisions on how resources are used. However, in the end humans will define how 

these decisions are made.  
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