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Abstract

The aim of this thesis is to extend some methods of change-point analysis, where clas-
sically, measurements in time are examined for structural breaks, to random �eld data
which is observed over a grid of points in multidimensional space. The thesis is concerned
with the a posteriori detection and estimation of changes in the marginal distribution of
such random �eld data.
In particular, the focus lies on constructing nonparametric asymptotic procedures

which take the possible stochastic dependence into account. In order to avoid having
to restrict the results to speci�c distributional assumptions, the tests and estimators
considered here use a nonparametric approach where the inference is justi�ed by the
asymptotic behavior of the considered procedures (i.e. their behavior as the sample size
goes towards in�nity). This behavior can often be derived from functional central limit
theorems which make it possible to write the limit variables of the statistics as functionals
of Wiener processes, independent of the distribution of the original data.
A large part of this thesis is concerned with constructing viable asymptotic tests for

an epidemic change. For a change in the mean, an asymptotic test is derived under the
assumption of a functional central limit theorem. The asymptotic critical values of the
test are estimated using the special form of the limit of the statistic. Estimators for the
long-run variance, which in�uences the asymptotic distribution, are discussed. These
need to be consistent under the null hypothesis, while staying stochastically bounded
under the alternative hypothesis. A special focus there lies on taking a possible change
in the mean into account. For a general change in the marginal distribution of the
random �eld under mixing assumptions, the dependent wild bootstrap is introduced to
construct an asymptotic test. This is achieved by constructing a test for a change in the
mean of Hilbert space valued random �elds and translating the change in the marginal
distribution of a vector-valued random �eld into this setting.
Under the assumption that a change has taken place, one is interested in determining

the location of the change-set. For a change in the mean over a rectangular index set,
consistent estimators for the edge points of the rectangle are presented and the rate of
convergence is derived. Finally, for changes in the mean over more general sets, the
consistency and rate of convergence of an argmax-type estimator of the change-set are
obtained under the assumption of maximal inequalities. The latter general results are
illustrated by examples for classes of sets which ful�ll the assumptions.

Zusammenfassung

Ziel dieser Arbeit ist die Übertragung und Erweiterung von Methoden der Change-Point
Analyse, bei der klassischerweise Beobachtungen in der Zeit auf Strukturbrüche unter-
sucht werden, auf die Anwendung auf Zufallsfelder, bei denen Beobachtungen auf Gitter-
punkten im Raum gemacht werden. Die Arbeit beschäftigt sich mit a posteriori Proble-
men, bei denen ein gegebener Datensatz auf Strukturbrüche in der Randverteilung des
Zufallsfeldes getestet und die Change-Menge gegebenenfalls geschätzt wird.
Der besondere Fokus liegt dabei auf der Konstruktion nichtparametrischer asymptoti-

scher Verfahren, die auf stochastisch abhängige Daten anwendbar sind. Um Verteilungs-
annahmen an die Daten zu vermeiden, werden dabei nichtparametrische Tests und Schät-
zer betrachtet, deren Funktionsweise auf ihrem asymptotischen Verhalten (für wachsende
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Beobachtungszahlen) beruht. Diese Asymptotik kann oft anhand von funktionalen Zen-
tralen Grenzwertsätzen hergeleitet werden, anhand derer die Grenzvariablen unabhängig
von der ursprünglichen Verteilung der Daten als Funktionale von Wiener Prozessen ge-
schrieben werden können.
Ein groÿer Teil dieser Arbeit dreht sich um die Konstruktion praktisch anwendbarer

asymptotischer Tests für epidemische Strukturbrüche. Für einen Strukturbruch im Er-
wartungswert wird ein asymptotischer Test unter der Annahme eines funktionalen Zen-
tralen Grenzwertsatzes hergeleitet, dessen kritische Werte anhand der speziellen Form
der Grenzvariable hergeleitet werden. Des Weiteren werden Schätzer für die asymptoti-
sche Varianz, welche die asymptotische Verteilung der Teststatistik beein�usst und da-
her unter der Nullhypothese konsistent geschätzt werden sollte, untersucht. Dabei liegt
der Fokus auf der Berücksichtigung möglicher Strukturbrüche im Erwartungswert, unter
denen der Schätzer weiterhin stochastisch beschränkt bleiben sollte. Für einen allgemei-
nen Strukturbruch in der Randverteilung unter Mixing-Annahmen wird ein Bootstrap-
Verfahren vorgestellt, anhand dessen ein asymptotischer Test konstruiert wird. Letzteres
wird erreicht, indem zunächst ein Test für einen Strukturbruch im Erwartungswert von
Hilbertraum-wertigen Zufallsfeldern konstruiert und dann das Problem eines Struktur-
bruchs in der Randverteilung mehrdimensionaler Zufallsfelder in diese Art Fragestellung
übersetzt wird.
Liegt ein Strukturbruch vor, so ist man daran interessiert, die Change-Menge zu schät-

zen. Für einen Strukturbruch im Erwartungswert über einer rechteckigen Indexmenge
werden konsistente Schätzer für die Eckpunkte des Rechtecks vorgestellt und die Konver-
genzrate bestimmt. Schlieÿlich werden die Konsistenz und Konvergenzrate eines argmax-
Schätzers für Strukturbrüche im Erwartungswert über allgemeineren Change-Mengen mit
Hilfe von Maximalungleichungen bestimmt. Diese allgemeinen Resultate werden durch
Beispiele für Klassen von Mengen, für die die Annahmen erfüllt sind, ergänzt.
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Chapter 1

Introduction

1 Change-point problems for spatial data

In the following, we give a short introduction into the change-point problems discussed
here in the context of spatial data. Since the further chapters contained in this thesis
give detailed explanations and citations, we will keep the present introduction general.
Given a data set of observations, a common problem for statisticians is to determine

whether all the observations have the same underlying stochastic structure or whether
there is a subset of the data where the structure di�ers. In the latter case, one is
additionally interested in knowing which subset presents a change. Since this type of
problem was originally discussed for one-parameter processes where the subsets over
which changes might take place can be characterized by their edge points (so-called
change-points), we refer to this type of problem as change-point problems or change-
set problems when we want to stress the spatial nature of the data considered here.
Applications of this type of statistical problem arise in various scienti�c �elds such as
image analysis, medicine, meteorology, forestry or geology.
While in the classical change-point literature the observations are commonly assumed

to be measurements in time, the current work focuses on data that are observed over a
grid of points in space. Such data arise, for instance, when one measures the color at
each pixel of an image or in neuroimaging applications when measurements are taken at
di�erent locations of the brain.
A lot of research has been done for spatio-temporal data, where spatial data are ob-

served at certain moments in time and the question arises if there has been a change-point
(in time) where the structure has changed (cf. e.g. Majumdar et al. (2005), Aston and
Kirch (2012b) and Gromenko et al. (2016)). In this setting, one can compare measure-
ments taken at di�erent points in time, where each measurement is a spatial process, and
detect changes for asymptotically in�nitely many such time points. Such problems arise
whenever one takes measurements of a spatial phenomenon evolving over time, such as
fMRI (functional magnetic resonance imaging) data, which is simultaneously measured
at di�erent locations of the brain and could be used to detect changes in the activation
of brain regions over time. Alternatively, such data is of interest in motion detection
problems. In contrast, the data considered here is measured at points in multidimen-
sional space where we do not di�erentiate between time and space and consider samples
whose size growth in every direction. In this setting, there is no direction which is a pri-
ori distinguished as the direction of interest for a change and therefore the change-point
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CHAPTER 1 INTRODUCTION

problem becomes a change-set problem, where one is interested in testing for general
subsets of the data with a changed stochastic structure. Furthermore, � unlike, for
instance, in problems when two given images are to be tested for dissimilarities � we do
not assume that we have a template for the spatial data with respect to which changes
can be measured. Instead, changes within a single realization of a spatial process are
discussed.
Applications for this kind of problem include statistical image processing and detection

of edges in noisy images, where one is, for instance, interested in detecting speci�c objects
in the image or in distinguishing between foreground and background of the image. For
land use related data obtained by remote sensing, one might test for the presence of
di�erent land uses and subsequently estimate the location of the di�erent sub-regions.
Since it has a straightforward generalization to multidimensional parameters, the epi-

demic change problem plays an important role in this thesis. For time series, an epidemic
change occurs if there are two change-points such that the stochastic structure changes
after the �rst and reverts back to its original state after the second change-point. An
early application of these stochastic considerations in medicine motivates the termin-
ology: the period of time between the change-points represents an epidemic, during
which incidence of a disease is structurally more likely, and this epidemic is preceded and
followed by periods of normalcy, i.e. (relative) health. For multiparameter processes,
this translates into a changed structure on a rectangular subset of the data (often also
called a block), and the term epidemic change is retained due to the similarity of this
problem to its one-dimensional parameter counterpart. For a d-dimensional rectangle
(k1,m1] × · · · × (kd,md] (d ∈ N), we call the points (k1, . . . , kd) and (m1, . . . ,md) the
edge points of the rectangle and also refer to them as change-points. Changes of this form
are of interest e.g. in the detection of vehicles or buildings in aerial images or generally
in object detection problems whenever the object to be detected has a rectangular shape.
The extension of change-point methods to spatial data has received a lot of attention in

the literature. Hahubia and Mnatsakanov (1996) discuss the asymptotic behavior of test
statistics and estimators based on general set-indexed models which in particular include
the partial sum processes for change-point problems in time or space. Khmaladze et al.
(2006a) (cf. also Khmaladze et al. (2006b)) consider change-set estimators for changes
in the conditional marginal distribution of a sequence of i.i.d. observations (Xi, Yi)
(i = 1, 2, . . . ) that each consist of a location Xi in space and a mark Yi, where the
distribution of Yi conditioned on Xi takes on di�erent values depending on whether or
not the location Xi is within a change-set. In contrast, we use a deterministic design
and the data considered here are random �elds, i.e. observations are assumed to lie
on a discrete grid in space with rectangular mesh. This type of model was used e.g.
by Carlstein and Krishnamoorthy (1992) and Ferger (2004) for the estimation of the
change-set and Xie (1996) for corresponding testing problems.
A lot of the literature focuses on stochastically independent observations. However,

this assumption is too restrictive for many applications where spatial autocorrelation is
an unavoidable feature of the problem. For instance, as noted in Gri�th and Layne
(1999), spatial dependence is introduced into yield data by external in�uences such as
rainfall or slope position. One main aim of the present work is therefore to derive a
theory that is applicable to weakly dependent data. There are various ways to de�ne
weak dependence conditions (cf. e.g. the monographs by Dedecker et al. (2007) and
Bulinski and Shashkin (2007)). In contrast to works such as Brodsky and Darkhovsky

2



1 CHANGE-POINT PROBLEMS FOR SPATIAL DATA

(1993) and Puri and Ruymgaart (1994), we aim to avoid as much as possible restricting
the analysis to a speci�c type of dependence. Instead, we use functional central limit
theorems or moment assumptions for the partial sums, giving examples for types of
dependence under which these assumptions are ful�lled. An exception to this approach
is the paper Bucchia and Wendler (2015), where all the results were derived under mixing
assumptions.
The change-point problem discussed here is an a posteriori change problem. Unlike

in the sequential change problem where observations are continuously gathered and the
new observations are tested for changes with respect to the old ones, in a posteriori
analysis one considers a given �nite data set and examines it for changes in the stochastic
structure.
There are several approaches to modeling a change in the stochastic structure of the

data. For a general change in the marginal distribution, one is usually interested in the
distribution function of the observations. More speci�c changes in the stochastic structure
are commonly modeled by using parameters of interest for the distribution (e.g. the mean
or variance of the random variables or the correlation between them) and investigating
these for changes � often under the additional assumption that the other parameters
of the distribution remain constant. Under the assumption that the observations belong
to a speci�c parametric family of distributions, specialized approaches for testing for
changes in the parameters of the distribution can be used. This type of approach for
spatial data was e.g. discussed in MacNeill and Jandhyala (1993), who used a Bayes-type
derivation method for changes in the parameter of a one-parameter exponential family
of distributions, and Ivano� and Merzbach (2010) and Jaru²ková and Piterbarg (2011),
who considered changes in the intensity of Poisson processes.
This thesis follows a nonparametric approach where the observations are not assumed

to belong to a speci�c family of distributions or follow speci�c parametric data generation
models such as (spatial) autoregression. The validity of the presented tests and estimators
is based on their asymptotic behavior for sample sizes going to in�nity.
The main focus of this work lies on changes in the mean where all other parameters of

the distribution are una�ected by the change. As described in Brodsky and Darkhovsky
(1993), changes in the mean are of particular interest to statisticians because oftentimes
changes in other parameters of the marginal distributions can be translated into changes
in the mean, thus making the methods developed for changes in the mean applicable
to other types of change. Changes in the mean have received widespread attention in
the change-point literature as can be seen e.g. from the monographs by Brodsky and
Darkhovsky (1993) and Csörg® and Horváth (1997) or the more recent overview article
by Aue and Horváth (2013). For the change in the mean problem, the observations are
usually modeled as the sum of a deterministic mean function and a centered stochastic
process. One advantage of this model is that the break from stationarity can thus be
restricted to the deterministic part, making it possible to assume (weak) stationarity for
the stochastic part of the process. Furthermore, having a single underlying stochastic
process simpli�es the speci�cation of the stochastic dependence between the observations,
since it is una�ected by the change. This type of model re�ects the interpretation of the
data as being the sum of a signal (the mean function) and additional error terms that
introduce noise. Such noise terms might be used to account for measurement errors or
inaccuracies. For example, one might be trying to reconstruct an image based on a grainy
version of the image.

3



CHAPTER 1 INTRODUCTION

If additional information on the underlying structure of the signal is known, a popular
model for the mean function is to view it as a linear combination of known functions
(which might even be nondeterministic) with unknown coe�cients. Then, a change in
the mean can be viewed as a special case of a change in the coe�cients of such a linear
regression.
After having described the general topic of this thesis, we now discuss the challenges

involved in the testing and the estimation problem separately.

Tests for changes in spatial data. In this thesis, we follow a global approach where
we do not try do classify every single observation as changed or not changed but rather
test the whole data for the presence of a change over an unknown subset of the data. For
this, asymptotic tests are derived to distinguish between the null hypothesis of station-
arity and epidemic change alternatives.
The basic idea behind the change-point tests considered is the same for multiparameter

processes as for time series data. Only, instead of using points in time where there might
be a change to divide the data into subsets, one has to specify a class of candidate
sets that each divide the (multidimensional) index set into a possible change-set and its
complement. For the epidemic change problem, these candidate sets are rectangles with
sides parallel to the coordinate axes.
We consider the following testing problem for changes in the mean. Given nd (n ∈ N)

observations on a d-dimensional regular grid of side length n, we want to test the null hy-
pothesis that the observations correspond to a random �eld with constant (but unknown)
mean µ against the epidemic alternative that there exists an unknown subrectangle of
the grid where the mean is µ+ δ (for an unknown δ). For real-valued observations, one
can then di�erentiate between tests for positive change heights δ or two-sided tests that
make no restriction on the sign of the change. In this thesis, the latter type of tests are
considered. We use CUSUM (cumulative sum) procedures that are based on the partial
sums of the observations over rectangular subsets of the data. Statistics of CUSUM-type
are widely popular in change-point tests for time series (cf. e.g Csörg® and Horváth
(1997) or Aue and Horváth (2013)). For changes in the mean, they correspond to the
following heuristic: A common approach for testing for changes in a parameter is to �rst
divide the data into two subsets. Assuming for a moment that the parameter is constant
on each of these subsets, one can then estimate it on each subset separately and use the
di�erence of the estimators as a measure of the presence and size of the change. Since
the true change-set is unknown, this procedure is used on all candidates for the change-
set and the resulting test statistics are aggregated by taking the maximum of all the
statistics for the corresponding two-sample problems. Additionally, weighting functions
can be used to facilitate the detection of changes over particularly small or large subsets.
However, depending on the weighting function, obtaining meaningful asymptotic results
might make it necessary to trim the statistic, i.e. only consider change-sets of a certain
size. The latter is the case for the statistic discussed in Bucchia (2014), whose speci�c
form was motivated by a pseudo log-likelihood approach where the data are assumed to
be normally distributed for the derivation of the statistic (cf. Bucchia (2012)).
Since the distribution of the statistic for �nite sample sizes is unknown and depends

on the speci�c distribution of the data, we use asymptotic tests which are based on the
asymptotic distribution (for n → ∞) of the statistic under the null hypothesis. For the
CUSUM-type test statistics considered in this thesis, this can be achieved by writing
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1 CHANGE-POINT PROBLEMS FOR SPATIAL DATA

the test statistic as a (continuous) functional of the partial sum process of the data. In
analogy to the time series case, where the partial sum process {Sn(t)}t∈[0,1] is the process

of (rescaled) sums Sn(t) = 1√
n

∑bntc
i=1 Xi (for observations X1, . . . , Xn), we consider (res-

caled) sums over indices {1, . . . , bnt1c}×· · ·×{1, . . . , bntdc} for (t1, . . . , td) ∈ [0, 1]d. The
resulting partial sum process has sample paths in the multiparameter Skorohod space
D[0, 1]d. Under various dependence assumptions on the random �eld, a lot of research
has been done on functional central limit theorems (cf. e.g. Bucchia (2014) and the
references contained therein) which yield the weak convergence of this type of process to
a Brownian sheet.
Using the continuous mapping theorem, we can then derive the weak limit of the

statistic. Its distribution is independent of the (unknown) distribution of the original
data (up to nuisance parameters that need to be estimated). An asymptotic test of level
α is constructed by taking the limit of the test statistic under the null hypothesis and
rejecting the null if the (1− α)-quantile of the limit distribution is exceeded. If the test
considered has asymptotic power one, we call it consistent. Consistency of the test can
e.g. be proven by showing that the test statistic diverges to in�nity under the alternative.
Then, any choice of critical value will eventually be exceeded.
The general procedure described above can in principle be applied not only to real- or

vector-valued observations, but more generally to observations with values in a Hilbert
space. Such observations are, for instance, of interest whenever the observations made
on the spatial grid are functions themselves, as is e.g. the case in some brain imaging or
spatial physics problems.
Another application of the Hilbert space framework consists of changes in the mar-

ginal distribution of vector-valued observations: For this type of problem, the empirical
distribution function replaces the partial sums as a natural indicator of a change. Using
the fact that the empirical distribution function can be viewed as a random element of
a suitable Hilbert space, the change in distribution problem for vector-valued random
�elds can be translated into a change in the mean problem in the chosen Hilbert space.
A lot of change-point tests were originally constructed for i.i.d. observations. When one

introduces dependence, certain modi�cations are necessary to take the autocorrelations
into account. In the approach described above, when one assumes that the dependence
is such that the functional central limit theorem is still ful�lled, the main change is in the
asymptotic variance of the partial sums (the so-called long-run variance), which needs to
be estimated. Where in the independent case correcting for the variance of the partial
sums boils down to estimating the variance of a single random variable, one now needs
to estimate the sum of autocovariances. The idea is to use an estimator of the long-run
variance as a rescaling factor in the statistic. If this estimator is consistent under the
null, the limit variable will then be independent of the long-run variance. Many of the
long-run variance estimators discussed in the literature focus on processes with constant
(or at least continuous) mean functions. However, since by de�nition the mean has an
abrupt jump under the alternative, these procedures might not be consistent (or at least
stochastically bounded) under the alternative, which could in turn have a negative e�ect
on the power of the resulting change-point test. One approach to deal with this problem
is described in Bucchia and Heuser (2015).
Unfortunately, in most cases, the limit variable has a distribution whose quantiles

are not theoretically known, even after eliminating the long-run variance as a nuisance
parameter, and the problem of determining � or at least approximating � the (1− α)-
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CHAPTER 1 INTRODUCTION

quantile of the limit distribution remains. Most such limit distributions have not been
tabulated yet, so one needs to develop new approaches for the approximation. One pos-
sibility would be to use a Monte-Carlo simulation of the limit variable to estimate its
quantiles. However, due to the large number of sets over which the supremum is taken
in the limit, this quickly becomes computationally intensive. Another possibility is to
extend already existing approximation techniques for the time series case to multipara-
meter processes, as was done, for instance, in Xie (1996), who adapted a method by
Eastwood (1993) to obtain approximations for the limiting distribution by considering
the distribution of a suitable chi-square random variable.
In the present work, two approaches to derive critical values are presented. The method

employed in Bucchia (2014) was introduced by Jaru²ková. Jaru²ková (2011) developed
an approximation method for the limit distribution of statistics arising from change-
point tests for multiple change-points. It is based on the fact that the limit variable she
considered is a maximum of a normalized multiparameter Gaussian random �eld and
thus the methodology by Piterbarg (1996) for the approximation of its tail probabilities
can be used for this context. Jaru²ková and Piterbarg (2011) then applied this procedure
to test for epidemic changes in i.i.d. random �elds.
This method is, however, not easily applicable to Hilbert space valued processes. Addi-

tionally, the estimation of the long-run variance in this case is much more involved than
for real- or vector-valued observations. Following the approach discussed in Sharipov
et al. (2016), a nonparametric resampling method is introduced to solve both these prob-
lems. For this, a variant of the dependent wild bootstrap by Shao (2010) is introduced for
random �elds. The idea is to replicate the asymptotic behavior of the partial sum process
by using a weighted version of the process where the weights are random variables which
are independent of the original data but ful�ll certain dependence assumptions. One can
then consider a bootstrapped change-point statistic which is based on the bootstrapped
partial sum process. For given observations, the (conditional) empirical quantiles of the
bootstrapped statistic can be obtained from Monte-Carlo simulations. Then, if one can
show that the original statistic and the bootstrapped statistic jointly converge to the
same distribution, the (conditional) quantiles of the bootstrapped statistic converge to
the quantiles of the limit process. Thus, the empirical quantiles can be used as critical
values for the test.
While a lot of publications derive results for Hilbert space valued observations by

projecting the statistics onto �nite-dimensional subspaces, the approach described above
has the added advantage that no such projection is necessary.

Change-set estimation. When a change in the stochastic structure of the data has
been detected, a further question is the location of the change. As described above,
for spatial data, this location is given as a subset of the index set, the change-set. In
this thesis, estimation procedures both for epidemic changes � where the change-set
can be characterized by its edge points and the change-set estimation thus becomes a
change-point estimation � and more general change-sets are considered.
We discuss change-set estimators for abrupt changes in the mean function of either real-

or vector-valued random �elds. The mean function is modeled as a step function with
one value inside the change-set and a di�erent value outside of it. Using an analogous ap-
proach as for the detection of changes, we consider maxima of set-indexed CUSUM-type
statistics that correspond to weighted di�erences of sample means over chosen candidate
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1 CHANGE-POINT PROBLEMS FOR SPATIAL DATA

sets. Then, maximizers of the CUSUM-statistic are chosen as change-set estimators. For
the special case of epidemic changes, we estimate the edge points directly by treating the
CUSUM-type statistic not as a set-indexed functional but as a function of the edge points
de�ning the rectangle. As a special case, this procedure reduces to an estimator of the
form considered in Aston and Kirch (2012a) when one limits oneself to one-parameter
processes.
Argmax estimators of this form were also considered in Müller and Song (1994), who

derived convergence rates for the estimator for unions of rectangles as change-sets and
independent observations, and Brodsky and Darkhovsky (1993), who proved the consist-
ency of the estimator for parametric families of change-sets under mixing conditions.
Since choosing whether to label a subset or its complement the change-set is essentially

arbitrary in most cases, a lot of research has focused on the so-called change-boundary
problem, where one estimates the change-set's boundary, rather than the set itself. This
is in direct analogy to the time series case, where the change-points, which characterize
the boundaries of sets without structural breaks, are estimated. For spatial data, one
needs to specify how the index set is to be segmented into subsets with di�erent stochastic
properties based on change-boundaries. In the present work, this is achieved by consider-
ing classes of subsets of the index set as candidate sets and de�ning the change-boundary
to be the common topological boundary of a candidate set and its complement.
The estimation of change-sets or -boundaries has applications in image analysis. As-

suming a signal plus noise model for the image, where the observed data is the sum of a
noise process and a regression function, reconstructing the image amounts to estimating
the regression function. The change-boundaries correspond to curves or edges in the
image where the regression function has discontinuities. Since a lot of regression estim-
ators (as described e.g. in El Machkouri (2007)) assume the continuity of the regression
function, a �rst step in the reconstruction of the image is to segment the index set into
subsets where the regression function is continuous.
By contrast, an application where there is a distinction between the change-set and

its complement is the related problem of threshold estimation, where one assumes that
the mean function µ(·) has a constant value τ on a subset S of the index set and is
strictly greater than τ on the complement of S. Mallik (2013) considered such problems
for convex sets S in two dimensions and derived estimators based on minimizing the
p-values of corresponding testing problems for µ(x) = τ against µ(x) > τ at each index
point x. He noted that this problem is closely related to level-set estimation, since the
estimation of the complement Sc = {x : µ(x) > τ} of S could also be viewed as the
estimation of a level-set for the level τ .
In keeping with the global approach used for the testing problem, we do not investig-

ate the probability of misclassi�cation for a single grid point but measure the distance
between the change-set and its estimator using the symmetric di�erence of sets, which
gives a measure of the number of misclassi�ed points. For the change-boundary estim-
ation considered here, the minimum of the distances to a speci�ed change-set and its
complement is used. Alternatively, for the special case of the estimation of the edge
points of rectangular change-sets, we use the distance between the true and the estim-
ated change-points as a measure for the accuracy of the estimation procedure. Using such
distance measures, the consistency (i.e. stochastic convergence to zero of the distance
between the estimator and the true value) and rate of convergence of the estimation are
discussed for sample sizes going to in�nity.
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In order to clarify how the present work �ts into the general framework described above
and give a more detailed account of the content of this thesis, we now give brief summaries
of the material contained in each chapter of this thesis.

2 Chapter summaries

The thesis consists of three articles, two of which are already published while the third
is under review, and two chapters of additional (unpublished) material, one containing
additional results related to the ones from the articles, the other a discussion of the entire
project. The �rst article gives both testing and estimation procedures for epidemic
changes in real-valued random �elds, the second discusses in detail the estimation of
a nuisance parameter that arises in the testing problem and the third focuses on the
testing problem for epidemic changes for Hilbert space valued observations, introducing
a bootstrap method to derive asymptotic critical values. A further chapter contains
additional material on the estimation of change-sets when the assumption that the change
takes place over a rectangle is relaxed. Following this, a �nal chapter discusses the results
obtained throughout these four chapters. As the chapters 2 to 5 are each essentially self-
contained, the numbering of equations, theorems etc. starts anew in each chapter. The
chapters 2, 3 and 4 correspond to Bucchia (2014), Bucchia and Heuser (2015) and Bucchia
and Wendler (2015), respectively, and the bibliographic references and chapter names are
used interchangeably.

Testing for epidemic changes in the mean of a multiparameter

stochastic process

By Béatrice Bucchia

The article discusses the epidemic change in the mean problem for real-valued random
�elds and treats both the associated testing and estimation problems.
The asymptotic behavior of CUSUM-type statistics can be inferred from the behavior

of the partial sum process. Therefore, the article employs a slightly more general model
for the data, which encompasses both partial sums and set-indexed Lévy processes. All
the asymptotic results are derived under the assumption of an invariance principle for
which several examples are given. For the testing problem, a trimmed maximum type test
statistic is presented. Given the assumption that an invariance principle is ful�lled, its
limit distribution under the null hypothesis of no change is derived. For practical use of
the statistic, an approach by Jaru²ková and Piterbarg (2011) is employed to approximate
the tail behavior of the limit distribution. The methodology for this approach was intro-
duced by Piterbarg (1996) and has since been used e.g. by Jaru²ková (2011), Jaru²ková
and Piterbarg (2011), Jaru²ková (2015) for change-point tests in various settings. It
takes advantage of the fact that the limit variable is the maximum of a homogeneous
Gaussian �eld over a compact set.
A proof of consistency of the test under alternatives that do not vanish too fast is

given.
In order to construct a test, the unknown long-run variance, which plays a role in the

asymptotic distribution, needs to be estimated. After �rst describing the asymptotics
under the assumption that a �tting estimator is available, a kernel-type estimator for the
long-run variance is discussed.
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As seen in the proof of consistency, under the epidemic alternative, the test statistic
becomes asymptotically large at the change rectangle. Therefore, for constant change
heights, a natural approach to construct a change-point estimator is to take the maximizer
of the test statistic. For such an argmax-type estimator, the consistency is shown.
The theoretical results are complemented by a short simulation study that investigates

the �nite sample behavior of the test and estimators for both independent observations
and weakly dependent moving average observations. The simulation results show that the
estimator works well, with increasing accuracy for larger change-sets. The constructed
test is (empirically) conservative under the null and has high power against the alternative
hypothesis, even though the long-run variance is underestimated under the null and often
overestimated under the alternative.
Although the article is based on results presented in Bucchia (2012), it extends the

work presented therein in several ways. A di�erent approach to modeling the process,
which directly focuses on the partial sum process, was chosen. For this, several examples
of processes that ful�ll the main assumption were added. The derivation of asymptotic
critical values using the method of Jaru²ková and Piterbarg (2011) and the discussion of
change-point estimators, which where restricted to the one- and two-dimensional cases
in Bucchia (2012), have been expanded to general dimensions d. The change-point es-
timation procedure for multiparameter processes was further extended from the case of
positive changes to general change heights. Finally, the section on the estimation of the
long-run variance and the simulation study are new.

Long-run variance estimation for spatial data under change-point

alternatives

By Béatrice Bucchia and Christoph Heuser

As seen in Bucchia (2014), a common problem when constructing asymptotic change-
point tests is the estimation of nuisance parameters which need to be determined in
order to obtain the quantiles of the limiting random variable. Since the critical values
are derived under the null hypothesis, most of the literature focuses on estimators which
are consistent under the assumption of mean functions without discontinuities.
In contrast, this article is concerned with the estimation of the long-run variance

(matrix) of a weakly dependent random �eld, with a special focus on the estimators'
behavior under the alternative of mean functions with jumps. This is of particular
interest because these estimators are often used as normalizing factors in change-point
tests and therefore the overestimation of the long-run variance might lead to tests with
less power against change in the mean alternatives.
The mean functions considered correspond to a single change in mean model: They

take on two values, one inside a change-set and one for all indices outside of the change-
set. The change-sets considered are �nite unions of rectangles.
The classical kernel-type estimation of the long-run variance uses the weighted sum

of estimators of the autocovariances of the process. In this setting, the arithmetic mean
over the observations is used as an estimator of the mean function. Since, by assumption,
the mean does not stay constant under the alternative, a natural idea is to replace
the arithmetic mean � which is based on a constant mean assumption � by a mean
estimator that re�ects this. Therefore, this paper introduces a variation of the classical
kernel-type long-run variance estimator with a di�erent mean-function estimator, which
uses a change-set estimator as an approximation of the unknown change-set.
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Throughout the paper, the asymptotics for the classical long-run variance estimator as
well as the modi�ed estimator are developed in parallel. As anticipated, both estimators
are consistent for constant mean functions, but while the classical estimator diverges
for non-vanishing change heights, the modi�ed estimator allows bandwidth choices that
make it consistent under both constant means and changes in the mean. The error rate
for the latter depends on the convergence rate of the change-set estimation.
The paper �rst discusses the long-run variance estimation under the assumption that

an unspeci�ed change-set estimator, which converges to the true change-set with a given
rate, is available and then gives an example for such an estimator for rectangular change-
sets. A convergence rate for the estimator is derived.
In the paper's �nal section, a simulation study gives a comparison of the empirical

behavior of the long-run variance estimators with and without the modi�cation of the
mean function estimator. The simulations show that while the behavior of both es-
timators depends strongly on the choice of bandwidth, the newly introduced estimator
exhibits the expected robustness with respect to changes. It leads to change-point tests
with higher false rejection rates under the null hypothesis but also higher empirical power
under epidemic alternatives. Finally, the methods are applied to a brain tumor detection
problem.

Change-point detection and bootstrap for Hilbert space valued random

fields

By Béatrice Bucchia and Martin Wendler

The aim of the article is twofold: The epidemic change in the mean problem for mul-
tiparameter processes with values in a Hilbert space is discussed, and a variant of the
dependent wild bootstrap by Shao (2010) is introduced and its consistency is proven.
In contrast to the rest of this thesis, we do not assume an invariance principle and

derive results under general weak dependence assumptions, but assume speci�c ρ- and
α-mixing conditions and show that all the results hold under these. To this end, a
functional central limit theorem for Hilbert space valued random �elds under mixing
conditions is proven.
Using the functional central limit theorem, the limit variable of a CUSUM-type test

statistic for the change in the mean problem is derived. To make the test applicable
without having to estimate the long-run variance operator, the dependent wild bootstrap
is adapted to this context. Since the bootstrapped version of the test statistic should not
be sensitive to changes in the mean but rather retain its behavior under the alternative,
both the sample mean and an estimator for the mean function which takes possible
epidemic changes into account are discussed for the bootstrapped process. The validity
of the bootstrap is shown by deriving the joint weak convergence of the partial sum and
the bootstrapped partial sum process to Wiener processes which are independent copies
of each other. Thus, the continuous mapping theorem yields the joint weak convergence
of the test statistic and the bootstrapped test statistic. Since the bootstrapped statistic
therefore mimics the behavior of the original statistic, asymptotic critical values can be
derived by Monte-Carlo approximation of the quantiles of the bootstrapped statistic.
While the problem of changes in the mean of functional data is of independent interest,

the paper is also concerned with an application of the derived theory to testing for a
change in the marginal distributions of a vector-valued random �eld. A test statistic
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based on the empirical distribution function is presented, whose convergence can be
shown by using the Hilbert space theory previously described.
Finally, the results of a small simulation study are discussed, which shows that although

the procedures considered show the typical over-rejection of bootstrap tests under the
null hypothesis, they have good empirical power against epidemic changes in the mean
or in the skewness of a random �eld.

Additional Material: Change-Set Estimation

For most of the thesis, the change-set estimation is restricted to rectangular sets. This
chapter aims to relax that assumption.
Given a data set on a multidimensional grid, the problem of change-set estimation for

Rp-valued multiparameter processes is studied. Under the assumption that there is a
change in the mean on a subset of the data, an estimator for this change-set is presented
and results for its consistency and rate of convergence for general classes of sets and
weakly dependent observations are obtained. As seen in Bucchia and Heuser (2015), the
rate of convergence � as a measure of the number of misclassi�ed data points � is of
interest, in particular, for plug-in estimators of the mean function.
As a measure of stochastic dependence, moment inequalities for partial sums are as-

sumed. The change-set estimator is a maximizer of a set-indexed process based on
weighted di�erences of sample means over points inside and outside of candidate sets.
Since the data is observed on a grid, the aim is to estimate the grid points contained in
the change-set. Therefore, the number of misclassi�ed grid points is used as a measure
of the distance between the estimator and the true set. In parallel to the change-set
estimation, the related problem of the estimation of the change-boundary is studied.
After introducing the model and main assumptions, the main results concerning the

consistency and convergence rates for general classes of sets are presented. For these,
maximal inequalities are assumed and, for the change-set estimation, identi�ability as-
sumptions are used. The latter are necessary for change-set estimation to ensure that the
change-set and not its complement is estimated. The results are therefore supplemented
by several remarks giving examples of classes of sets and stochastic processes that ful-
�ll the assumptions. In an additional section, the results are applied to speci�c classes
of sets. As a byproduct, some maximal inequalities, and in particular an exponential
inequality under mixing assumptions, are derived.
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Chapter 2

Testing for epidemic changes in the

mean of a multiparameter stochastic

process

Béatrice Bucchia

University of Cologne

Abstract

In this paper, multiparameter stochastic processes {Zn(x)}x∈[0,n]d , n ∈ N, are tested for
the occurrence of a block (k0,m0] = (k0,1,m0,1] × · · · × (k0,d,m0,d] ⊂ [0, n]d where the
mean of the process changes. This is modeled in the form

Zn(x) = λ((0,x])µn + σY (x) + λ((0,x] ∩ (k0,m0])δn,

where 0 = (0, . . . , 0)′, λ(A) denotes the Lebesgue measure of a set A ⊂ Rd, and µn, δn ∈ R
as well as 0 < σ < ∞ are unknown parameters. The stochastic process {Yn(t) =
Y (bntc) : t ∈ [0, 1]d} is assumed to ful�ll a weak invariance principle. Under the null
hypothesis, an approximation for the tail behavior of the limit variable of a trimmed
maximum-type test statistic is given. Then, the (weak) consistency of the test under the
alternative is proven. The corresponding estimation problem for the points k0 and m0

is also considered and consistent estimators are given for local alternatives δn = δ n−d/2

with δ > 0.
Keywords: change point detection, trimmed maximum-type test statistic, maxima

of Gaussian �elds, invariance principle, change point estimation
AMS subject classi�cation: 62H15, 62E20, 62M99, 60G60, 62H12, 60F17

1 Introduction

This paper deals with the problem of detecting epidemic changes over a block. Assuming
that we have observed values {Xj : j ∈ {1, . . . , n}d} of a random �eld (where d ∈ N is �xed
and small relative to n), we may ask whether these observations all have the same mean

12



2 THE MODEL

µn, or whether there is a block (k0,m0] = (k0,1,m0,1]× · · · × (k0,d,m0,d] over which the
mean has changed to a value µn+δn. Such a change point problem is the straightforward
generalization to the multiparameter case of a one-dimensional change point problem
with two change-points 0 < k0 < m0 < n. Levin and Kline (1985) coined the term epi-
demic change for the latter in their paper about the connection between chromosomal
abnormalities and the number of spontaneous abortions. In this medical context, the
term epidemic change corresponds to a period of normal behavior, followed by a sudden
change in patient numbers and �nally by the return to normalcy. The epidemic change
problem for processes with one-dimensional parameter space and independent observa-
tions has been the subject of several research papers, for example by Yao (1993), Antoch
and Hu²ková (1996), Ra£kauskas and Suquet (2004) and Jaru²ková (2011), who studied
several test statistics, and Hu²ková (1995), who considered estimators for the change
points (cf. also Csörg® and Horváth (1997) and Brodsky and Darkhovsky (1993)). The
change-point problem considered here, namely a change in the mean over a block in
the index-space of a random �eld, was also studied by Jaru²ková and Piterbarg (2011)
and Zemlys (2008). In both of these publications, the asymptotic distributions of the
considered test statistics are determined by the fact that the random variables are inde-
pendent and therefore the associated partial sum processes converge weakly to a Wiener
process. Thus, the process of interest for the statistical analysis is not the original ran-
dom �eld, but rather the associated partial sum process Zn(x) = n−d/2

∑
1≤j≤bxcXj. If

we denote the Lebesgue measure by λ, a change over the block (k,m] then corresponds
to a change λ((k,m]∩ (0, bxc])δn. Due to this fact, we have chosen a model that includes
the partial sum process as an example and replaced the independence assumption by
the weaker assumption that an invariance principle be ful�lled. The statistic we use for
change detection was inspired by the trimmed pseudo log-likelihood statistic employed
by Jaru²ková and Piterbarg (2011) and adapted to our model. This approach di�ers
from the one in Zemlys (2008), where a di�erent weight function was used instead of a
trimmed maximum. Examples of the problem of detecting inhomogeneity arise in image
analysis and in textile fabric quality control (e.g. Zhang and Bresee, 1995). In particular,
the search for an inhomogeneity in the shape of a rectangle might be of interest in the
context of rectangular shape object detection problems. For instance, �nding rectangular
objects in an image is a step in the detection of buildings or vehicles from aerial imagery
(Vinson et al., 2001; Vinson and Cohen, 2002; Moon et al., 2002), license plate detection
(Kim et al., 2002; Huang et al., 2008) and in the detection of �laments in cryoelectron
microscopy images (Zhu et al., 2001).
The structure of this paper is as follows: First, we introduce a few notations and

describe the model we chose. Then, in the third section, we treat the change detection
problem by studying the behavior of a test statistic under the null and the alternative
hypotheses. Finally, using a similar approach to the one in Aston and Kirch (2012a),
we give consistent estimators for the boundary points of the changed block under the
alternative. A �nal section is devoted to a small simulation study in order to give some
idea of the �nite sample behavior of the suggested procedures.

2 The model

First, we introduce some notations that will be used throughout this paper. We consider
the vector space Rd (d ∈ N) equipped with the usual partial order. For x,y ∈ Rd, we
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CHAPTER 2 TESTING FOR EPIDEMIC CHANGES IN THE MEAN OF A
MULTIPARAMETER STOCHASTIC PROCESS

write x∨y = (max{x1, y1}, . . . ,max{xd, yd})′ and x∧y = (min{x1, y1}, . . . ,min{xd, yd})′
as well as bxc = (bx1c, . . . , bxdc)′ for the integer part of x, |x| = (|x1|, . . . , |xd|)′ and
[x] = x1 · · ·xd. Furthermore, for any integer k ∈ N0, we denote (k, . . . , k)′ ∈ Nd0 by k. For
a set A ⊂ Rd, a vector x ∈ Rd and a number y ∈ R, the sets A+x and yA are de�ned as

A+ x = {a + x : a ∈ A}

and
yA = {ya : a ∈ A}.

A block in Rd is a set of the form

(x,y] = {z : xi < zi ≤ yi, i = 1, . . . , d}

for x,y ∈ Rd ((x,y] = ∅, if xi ≥ yi for some i ∈ {1, . . . , d}). A block in Zd is the
intersection of a block in Rd and the set Zd. We denote the Lebesgue measure on Rd by
λ. Note that for x ∈ Rd+, [x] is the Lebesgue measure of the block (0,x] ⊂ Rd. For a
function f : D → R, D ⊆ Rd, we de�ne the increment of f over a block (s, t] ⊂ D as

f(s, t] =


∑

ε∈{0,1}d
(−1)d−

∑d
i=1 εif(s + ε(t− s)), s < t

0, s ≮ t.

For instance, in the case d = 2 and s < t, the increment is

f(s, t] = f(t1, t2)− f(t1, s2)− f(s1, t2) + f(s1, s2).

We write ∑
k<j≤m

xj =


∑

j∈(k,m]∩Zd
xj, k <m∑

j∈∅
xj = 0, k ≮m.

We will use the notations X(t) and Xt synonymously. For each n ∈ N, we consider a
stochastic process {Zn(x)}x∈[0,n]d of the form

Zn(x) = λ((0,x])µn + σY (x) + λ((k0,m0] ∩ (0,x])δn, x ∈ [0, n]d, (1)

where the constants µn, δn ∈ R and 0 < σ < ∞ are unknown and there are (also
unknown) points k0,m0 ∈ [0, n]d ∩ Zd, k0 < m0, such that the mean changes over
the block (k0,m0]. {Y (x)}x∈Rd+ is a centered stochastic process that de�nes a process

{Yn(t) = Y (bntc) : t ∈ [0, 1]d} with sample paths in D[0, 1]d. Furthermore, we assume
that Y (x) = 0 for x ∈ Rd+ with xi = 0 for some i ∈ {1, . . . , d} and {Yn(t)}t∈[0,1]d ful�lls
a weak invariance principle:

{Yn(t)}t∈[0,1]d
D[0,1]d−→ {W (t)}t∈[0,1]d , n→∞, (2)

where {W (t)}t∈[0,1]d is a d-parameter standard Wiener process, i.e. a zero mean Gaus-

sian process with covariance function E[W (s)W (t)] = [s ∧ t], and
D[0,1]d−→ denotes weak

convergence in the space D[0, 1]d (cf. Bickel and Wichura (1971)). In the following, we
will always assume that (2) is satis�ed.
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2 THE MODEL

Example 2.1. Let {Xk}k∈Zd be a stochastic process that satis�es

Xk = ek + an + bnI(k0,m0](k),

where an, bn ∈ R and {ek}k∈Zd is a centered, weakly stationary process with �nite long-
run variance

0 < σ2 =
∑
k∈Zd

Cov(e0, ek) <∞

that satis�es the functional central limit theorem 1

nd/2σ

∑
1≤k≤bntc

ek


t∈[0,1]d

D[0,1]d−→ {W (t)}t∈[0,1]d , n→∞. (3)

This covers a large class of processes, e.g. i.i.d. (cf. Wichura (1969), Corollary 1), (posit-
ively and negatively) associated and (BL,θ)-dependent (cf. Bulinski and Shashkin (2007),
Theorem 5.1.5), as well as martingale-di�erence (cf. Poghosyan and R÷lly (1998), The-
orem 3) random �elds ful�ll this assumption under certain conditions. De�ne

Zn(x) = n−d/2
∑

1≤k≤bxc

Xk

and
Y (x) = σ−1 (Zn(x)− λ((0,x])µn − λ((k0,m0] ∩ (0,x])δn) ,

where µn = an n
−d/2 and δn = bn n

−d/2. Then Zn has the form (1) and Yn(t) =
σ−1n−d/2

∑
1≤k≤bntc εk, t ∈ [0, 1]d, ful�lls (2).

Example 2.2. We now consider a special case of Example 2.1. Let {ξj}j∈Zd be a centered,
stationary random �eld such that E[|ξj|q] <∞ for some q > 2d and

0 < ρ2 =
∑
k∈Zd

Cov(ξ0, ξk) <∞.

We assume further that the {ξk}k∈Zd ful�ll the functional central limit theorem (3) with
σ = ρ. For k ∈ Zd and real numbers {a(j)}j∈Zd that ful�ll the assumption

∞∑
i1=0

· · ·
∞∑
id=0

∞∑
k1=i1+1

· · ·
∞∑

kd=id+1

|a(k1, . . . , kd)| <∞,

we de�ne

ek =
∞∑
j1=0

· · ·
∞∑
jd=0

a(j1, . . . , jd)ξ(k1 − j1, . . . , kd − jd).

Then Ko et al. (2008) showed that {ek}k∈Zd satis�es (3) with

σ = ρ ·
∞∑
i1=0

· · ·
∞∑
id=0

a(i1, . . . , id).

In the case when the {ξj}j∈Zd are i.i.d., this result was proven by Marinucci and Poghosyan
(2001) without the assumption that the {ξj}j∈Zd ful�ll the invariance principle themselves.
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CHAPTER 2 TESTING FOR EPIDEMIC CHANGES IN THE MEAN OF A
MULTIPARAMETER STOCHASTIC PROCESS

Example 2.3. (cf. Kabluchko and Spodarev (2009))
Let {ξ(t)}t≥0 be a Lévy-process. Consider a set-indexed process {Z(B) : B ∈ Bd} that
ful�lls

(i) Z(B) has the same distribution as ξ(λ(B)) for every B ∈ Bd.

(ii) Z(B1), . . . , Z(Bk) are independent with Z(∪ki=1Bi) =
∑k

i=1 Z(Bi) for disjoint sets
B1, . . . , Bk ∈ Bd.

We call this a Lévy noise. The corresponding Lévy sheet is the random �eld {Zx : x ∈ Rd+}
with Zx = Z([0,x]).

Theorem 2.1. Let {Z(B) : B ∈ Bd} be a Lévy noise with some 0 < σ2 <∞, such that

E[Z(B)] = 0 and varZ(B) = σ2λ(B),

for each B ∈ Bd. Then the corresponding Lévy sheet ful�lls the following invariance
principle: {

1

σnd/2
Z(bntc)

}
t∈[0,1]d

D[0,1]d−→ {W (t)}t∈[0,1]d , n→∞

Proof. First, we observe that, in view of ξ(0) = 0 a.s., one has Z(x) = 0 a.s. for x ∈ Rd+
with xi = 0 for some i ∈ {1, . . . , d}. Then the assertion follows from the functional central
limit theorem for i.i.d. random �elds once we observe that due to (ii),

Z(bntc) =
∑

1≤k≤bntc

Z((k− 1,k]) a.s.

Obviously, assumptions (i) and (ii) together with the moment assumptions on Z yield
that the random variables Z((k− 1,k]) are i.i.d. and centered with variance σ2.

3 Testing for epidemic changes in the mean

We assume that we have nd observations {Zn(k) : k ∈ {1, . . . , n}d} and we want to test
the null hypothesis

H0 : (k0,m0] = ∅ (no change in the mean)

against the alternative

Hα,β :∃ k0,m0 ∈ [0, n]d ∩ Zd, k0 <m0, bαndc ≤ [m0 − k0] ≤ b(1− β)ndc,
and δn 6= 0 (change over the block (k0,m0]),

for 0 < α < 1− β < 1. To do that, we use the following test statistic:

Tn(α, β) = σ̂−1
n max

k,m∈[0,n]∩Zd, k<m

bαndc≤[m−k]≤b(1−β)ndc

∣∣∣Zn (k,m]− [m−k]
nd

Zn(n)
∣∣∣√

[m−k]
nd

(
1− [m−k]

nd

)
= σ̂−1

n sup
0≤s<t≤1

bαndc≤[bntc−bnsc]≤b(1−β)ndc

∣∣∣Zn (bnsc, bntc]− [bntc−bnsc]
nd

Zn(n)
∣∣∣√

[bntc−bnsc]
nd

(
1− [bntc−bnsc]

nd

) ,
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3 TESTING FOR EPIDEMIC CHANGES IN THE MEAN

where we assume that σ̂n is a consistent estimator for σ under the null hypothesis (i.e.
σ̂n − σ = oP (1), n → ∞) and bounded in probability under the alternative (cf. Section
3.3 for a discussion of possible estimators). This corresponds to the following heuristic:
Since Zn(x) = 0 for x ∈ [0, n]d with xi = 0 for some i ∈ {1, . . . , d}, Zn(n) is the increment
of Zn on (0,n]. Let us assume for a moment that the points k0 and m0 are known. Then
the term ∣∣∣Zn (k0,m0]− [m0−k0]

nd
Zn(n)

∣∣∣√
[m0−k0]

nd

(
1− [m0−k0]

nd

)
is a weighted comparison of the increments of Zn over the block (k0,m0], on which the
change takes place, and over (0,n]. Since we usually do not know the points k0 and m0,
it is then natural to maximize over all possible blocks. However, due to the law of the
iterated logarithm for the Wiener process at the origin, we have to restrict the sizes of the
considered blocks. Since such a trimmed statistic cannot in general be expected to detect
changes over blocks that do not ful�ll the restriction bαndc ≤ [m − k] ≤ b(1 − β)ndc,
we have restricted the considered alternative accordingly. First, we observe that the test
statistic is independent of µn, because it holds for x,y ∈ Rd+, x < y, that∑

ε∈{0,1}d
(−1)d−

∑d
i=1 εiλ((0,x + ε(y − x)]) = [y − x].

Therefore, we will assume without loss of generality that µn = 0.

3.1 Limit behavior under the null hypothesis

To de�ne a test that has a given asymptotic level, we need to determine the asymptotic
behavior of our test statistic under the null hypothesis. We do this in two steps, by �rst
determining its limit variable and then �nding an approximation for the tail behavior of
the limit distribution.

Theorem 3.1. Let σ̂n be a (weakly) consistent estimator for σ under H0. Then under
H0 it holds that for n→∞

Tn(α, β)
D−→ sup

0≤s<t≤1
α≤[t−s]≤1−β

|W (s, t]− [t− s]W (1)|√
[t− s](1− [t− s])

. (4)

Proof. The proof is based on the invariance principle (2) and the following fact: Let S be
a metric space and let f : D[0, 1]d → S be a map which is continuous with respect to the
uniform metric on D[0, 1]d. Then f is continuous with respect to the Skorohod metric
(cf. Bickel and Wichura (1971)) at each point x ∈ C[0, 1]d ⊂ D[0, 1]d. Using P (W ∈
C[0, 1]d) = 1 and the fact that f(Yn) are random variables for all the considered maps,
we can therefore use the continuous mapping theorem for functions that are continuous
with respect to the uniform metric. First, we de�ne the sets

An = {(s, t) ∈ [0, 1]2d : s < t, bαndc ≤ [bntc − bnsc] ≤ b(1− β)ndc}

and
A = {(s, t) ∈ [0, 1]2d : s < t, α ≤ [t− s] ≤ 1− β}.
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Then the test statistic has the form

Tn(α, β) =
σ

σ̂n
sup

(s,t)∈An

∣∣∣Yn(s, t]− [bntc−bnsc]
nd

Yn(1)
∣∣∣√

[bntc−bnsc]
nd

(
1− [bntc−bnsc]

nd

)
=

σ

σ̂n
sup

(s,t)∈An

|Yn(s, t]− [t− s]Yn(1)|√
[t− s] (1− [t− s])

+ oP (1), n→∞,

where we have used the fact that σ/σ̂n
P→ 1 and the invariance principle (2) in combina-

tion with the continuous mapping theorem. For ε < min{α, β} and

hε(s, t) =

{
ε(1− ε), |[t− s]| < ε or |[t− s]| > 1− ε
|[t− s]|(1− |[t− s]|), ε ≤ |[t− s]| ≤ 1− ε,

we de�ne the random �eld

Xn(s, t) =
|Yn(s, t]− λ((s, t])Yn(1)|√

hε(s, t)
, (s, t) ∈ [0, 1]2d,

and obtain

sup
(s,t)∈An

|Yn(s, t]− [t− s]Yn(1)|√
[t− s] (1− [t− s])

= sup
(s,t)∈An

Xn(s, t)

for large n. Using the invariance principle (2) and the continuous mapping theorem, we
�nd that for n→∞:

{Xn(s, t)}(s,t)∈[0,1]2d
D[0,1]2d−→ {X(s, t)}(s,t)∈[0,1]2d =

{
|W (s,t]−λ((s,t])W (1)|√

hε(s,t)

}
(s,t)∈[0,1]2d

Another application of the continuous mapping theorem results in

sup
(s,t)∈K

Xn(s, t)
D−→ sup

(s,t)∈K
X(s, t) (5)

for any subset K ⊂ [0, 1]2d. Now, we can consider the sets

A±ϑ = {(s, t) ∈ [0, 1]2d : s < t, α± ϑ ≤ [t− s] ≤ 1− β ∓ ϑ}

for su�ciently small ϑ > 0. The fact that

sup
(s,t)∈A+ϑ

Xn(s, t) ≤ sup
(s,t)∈An

Xn(s, t) ≤ sup
(s,t)∈A−ϑ

Xn(s, t)

for large n ∈ N, together with (5) and

sup
(s,t)∈A±ϑ

X(s, t)
D−→ sup

(s,t)∈A
X(s, t), ϑ→ 0,

imply the proposition.
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3 TESTING FOR EPIDEMIC CHANGES IN THE MEAN

In order to derive asymptotic critical values for the test, we approximate the tail
behavior of the limit distribution. This is made easier by the fact that the limit variable
is the supremum of a Gaussian �eld over a compact set. We de�ne

Cd(α, β) =

1−β∫
α

1

4dξ2
d(1− ξd)2d

1∫
ξd

· · ·
1∫

ξ2

(1− ξ1)(ξ1 − ξ2) · · · (ξd−1 − ξd)
ξ2

1 · · · ξ2
d−1

dξ1 · · · dξd−1dξd

and consider a random �eld {X(s, t)}(s,t)∈D of the form

X(s, t) =
W (s, t]− [t− s]W (1)√

[t− s](1− [t− s])
,

where
D = {(x,y) ∈ [0, 1]2d : x < y, α ≤ [y − x] ≤ 1− β}.

In particular, this yields

Cd(α, β) =



1
4

(
log (1−β)(1−α)

βα + 1
α −

1
1−β

)
, d = 1

1−β∫
α

−2(1−ξ)−(1+ξ) log ξ
16ξ2(1−ξ)4 dξ, d = 2

1−β∫
α

3(1+ξ) log ξ−6ξ−1/2(ξ−1) log2 ξ+6
64ξ2(1−ξ)6 dξ, d = 3.

(6)

We write ak ∼ bk for two sequences (ak)k∈N and (bk)k∈N if limk→∞ ak/bk = 1. The
following theorem is a direct consequence of Theorem 7.1 of Piterbarg (1996) (cf. also
Jaru²ková (2011), Theorem A.1).

Theorem 3.2. Let φ(u) be the density of the standard normal distribution. For u→∞
it holds that:

P

(
sup

(s,t)∈D
X(s, t) > u

)
∼ Cd(α, β)u4d−1φ(u) (7)

Proof. We give only an abbreviated version of the proof, for a fuller version in the case
d ∈ {1, 2}, readers are referred to Bucchia (2012). Since the proof is analogous, we
treat the general case here. Following the proofs of Theorems 1 and 2 in Jaru²ková and
Piterbarg (2011), we �rst note that simple calculations show that the correlation function
of X has the following representation for (s, t), (̃s, t̃) ∈ D with ‖(s, t)− (̃s, t̃)‖ → 0 :

Cov(X(s, t), X (̃s, t̃))

=1−
d∑
i=1

ci(t− s)|s̃i − si| −
2d∑

i=d+1

ci(t− s)|t̃i − ti|+ o(‖s̃− s‖1 + ‖t̃− t‖1),

where ‖x‖1 =
∑d

i=1 |xi| for x ∈ Rd and ch(t− s) are the functions

ci(t− s) = cd+i(t− s) =

∏
j 6=i

(tj − sj)

2[t− s](1− [t− s])
, i = 1, . . . , d.
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Furthermore, D is a compact set and the covariance Cov(X(s, t), X(s̃, t̃)) of X is strictly
less than 1 for (s, t), (s̃, t̃) ∈ D, (s, t) 6= (s̃, t̃) (cf. Bucchia (2012), Lemma 54).
Using Theorem 7.1 of Piterbarg (1996) (cf. also Theorem A.1 of Jaru²ková (2011)),

we obtain

P

(
sup

(s,t)∈D
X(s, t) > u

)
∼
∫
D

Hd(s, t) d(s, t)u4d−1φ(u),

where Hd has the form

Hd(s, t) =

2d∏
i=1

ci(t− s) =
1

4d[t− s]2(1− [t− s])2d
.

Now, the proposition follows from the fact that using the transformations x = t− s and
ξ = (x1, x1x2, x1x2x3, . . . , [x]) yields∫

D

Hd(s, t) d(s, t)

=

∫
[0,1]d

I{α≤[x]≤1−β}(x)
[1− x]

4d[x]2(1− [x])2d
dx

=

∫
[0,1]d

I{α≤[x]≤1−β}(x)
1

4d[x]2(1− [x])2d

(1− x1)(x1 − x1x2) · · · (
∏
j 6=d

xj − [x])

x1 · x1x2 · · ·
∏
j 6=d

xj
dx

=

1−β∫
α

1

4dξ2
d(1− ξd)2d

1∫
ξd

· · ·
1∫

ξ2

(1− ξ1)(ξ1 − ξ2) · · · (ξd−1 − ξd)
ξ2

1 · · · ξ2
d−1

dξ1 · · · dξd−1dξd

=Cd(α, β).

This result can be used to obtain an approximation for the tail behavior of the right
hand side of (4):

Corollary 3.1. With the same notations as in Theorem 3.2, it holds for u→∞ that

P

(
sup

(s,t)∈D
|X(s, t)| > u

)
∼ 2 Cd(α, β)u4d−1φ(u).

Proof. The main idea of the proof (suggested by Z. Kabluchko in a private communica-
tion) is to consider a random �eld X? of the form

X?(s, t) =

{
X(s, t), (s, t) ∈ D(1)

−X(s− 2, t− 2), (s, t) ∈ D(2),

where D(1) = D and D(2) = D + 2 are copies of D. Then

sup
(s,t)∈D

|X(s, t)| = sup
(s,t)∈D(1)∪D(2)

X?(s, t)
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3 TESTING FOR EPIDEMIC CHANGES IN THE MEAN

and it stands to reason that the local behavior of the correlation function of X? is the
same as the local behavior of the correlation function of X. Unfortunately, Theorem 7.1
of Piterbarg (1996) can only be applied to random �elds whose correlation function is
strictly smaller than one on the domain over which the supremum is taken. This is not
the case here, because the covariances of X? are the covariances of X times plus or minus
one and e.g. Cov(X(0, 1/2), X(1/2, 1)) = −1 for d = 1. This di�culty can be avoided
by considering the restricted random �eld {X?(s, t) : (s, t) ∈ D(1)

δ ∪D
(2)
δ }, where

D
(1)
δ = Dδ = {(x,y) ∈ R2d

+ : δ ≤ x < y ≤ 1− δ, α ≤ [y − x] ≤ 1− β},

and D(2)
δ = D

(1)
δ + 2 for 0 < δ < 1/2, and

X?(s, t) =

{
X(s, t), (s, t) ∈ D(1)

δ

−X(s− 2, t− 2), (s, t) ∈ D(2)
δ .

Then it can be shown (cf. Bucchia (2012), Lemma 54) that

Cov(X?(s, t), X?(̃s, t̃)) < 1

for all (s, t) 6= (s̃, t̃) in D(1)
δ ∪D

(2)
δ . Because the correlation function of X? behaves locally

like the correlation function of X, Theorem 7.1 of Piterbarg (1996) can be used as in the
proof of Theorem 3.2 to obtain

P

 sup
(s,t)∈D(1)

δ ∪D
(2)
δ

X?(s, t) > u

 ∼ u4d−1φ(u)

∫
D

(1)
δ ∪D

(2)
δ

Hd(s, t) d(s, t).

Since due to symmetry, ∫
D

(2)
δ

Hd(s, t) d(s, t) =

∫
D

(1)
δ

Hd(s, t) d(s, t),

this implies

P

(
sup

(x,y)∈Dδ
|X(s, t)| > u

)
∼ 2 u4d−1φ(u)

∫
Dδ

Hd(s, t) d(s, t). (8)

For δ → 0, we obtain ∫
Dδ

Hd(s, t) d(s, t)
δ→0−→

∫
D
Hd(s, t) d(s, t) (9)

as a simple consequence of Lebesgue's theorem. For u ∈ R de�ne C(u) = φ(u)u4d−1,

a(u) = P

(
sup

(s,t)∈D
|X(s, t)| > u

)
and b(u) = 2 C(u)

∫
D
Hd(s, t) d(s, t).

Then the proposition can be written in the form

lim
u→∞

a(u)

b(u)

!
= 1.

21
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Using (7), (8) and (9), it can be shown that

1 ≤ lim inf
u→∞

a(u)

b(u)
≤ lim sup

u→∞

a(u)

b(u)
≤ 1

and therefore this proposition holds.

3.2 Behavior under the alternative

Now, we focus on the behavior of the test statistic under the alternative.

Theorem 3.3. If |δn|nd → ∞ for n → ∞ and σ̂n = OP (1), σ̂n > 0, it holds under the
alternative Hα,β that

Tn(α, β)
P−−−→

n→∞
∞.

Proof. Let (k0,m0] be the block over which the change takes place. Due to our restriction
for the sizes of the blocks, we have

α− 1 ≤ α− 1

nd
≤ bαn

dc
nd

≤ [m0 − k0]

nd
≤ 1− β.

This implies that there is a C > 0 such that

Tn(α, β) ≥ σ̂−1
n√

(1− β)(2− α)

∣∣∣∣Zn(k0,m0]− [m0 − k0]

nd
Zn(n)

∣∣∣∣
≥ Cσ̂−1

n

∣∣∣∣Zn(k0,m0]− [m0 − k0]

nd
Zn(n)

∣∣∣∣
Moreover,

Zn(k0,m0]− [m0 − k0]

nd
Zn(n)

=σ

(
Y (k0,m0]− [m0 − k0]

nd
Y (n)

)
− δn

[m0 − k0]2

nd

+ δn

=[m0−k0]︷ ︸︸ ︷∑
ε∈{0,1}d

(−1)d−
∑d
i=1 εiλ((k0,m0] ∩ (0,k0 + ε(m0 − k0)])

=ndδn
[m0 − k0]

nd

(
1− [m0 − k0]

nd

)
+ σ

(
Y (k0,m0]− [m0 − k0]

nd
Y (n)

)
,

and thus,

Tn(α, β) ≥ C
{
nd|δn|σ̂−1

n

(
α− 1

nd

)
β − σσ̂−1

n

∣∣∣∣Y (k0,m0]− [m0 − k0]

nd
Y (n)

∣∣∣∣} .
The assumed invariance principle for Y implies∣∣∣∣Y (k0,m0]− [m0 − k0]

nd
Y (n)

∣∣∣∣
≤ sup

0≤s<t≤1

∣∣∣∣Y (bnsc, bntc]− [bntc − bnsc]
nd

Y (bn1c)
∣∣∣∣ = OP (1), n→∞,

and �nally the assumptions nd|δn| → ∞ and σ̂n = OP (1) yield the weak consistency of
the test.
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3.3 Long-run variance estimators

In the test statistics presented above, we have used an unspeci�ed estimator for σ2 in
order to show that the main requirements for such an estimator are consistency under
the null and stochastic boundedness under the alternative hypothesis. The problem of
how to obtain such an estimator in the general model (1), possibly also taking into ac-
count the form of the speci�c alternative, is highly complex and requires further research
which is beyond the scope of this paper. At present, in order to give some idea of pos-
sible estimators, we restrict ourselves to an example for an estimator that ful�lls our
requirements in the partial sum case (Example 2.1) with absolutely summable covari-
ance function. In this case, we have observations of the form Xj = ej + an + bnI(k0,m0](j)
and the parameter σ2 is the long-run variance

∑
k∈Zd

Cov(e0, ek). Therefore, we can ap-

ply generalizations of well-known kernel-based variance estimators from the time series
literature to our model. To match our general approach, we consider a nonparametric
estimator. In order to shorten notation, we write r(j) = Cov(e0, ej) and de�ne

r̂X(j) =
1

nd

∑
k∈Nj

(Xk − X̄n)(Xk+j − X̄n),

with X̄n = n−d
∑

1≤k≤n
Xk and Nj = {k ∈ Zd : 1 ≤ k,k + j ≤ n}. We consider estimators

of the form
σ̂2
n =

∑
j∈Bq−1

ωq,j r̂X(j),

where q = q(n) ∈ [1, n] is an integer with q = q(n) → ∞ and lim
n→∞

q/n = 0, Bq =

{−q, . . . , q}d and ωq,j is a bounded weight function that ful�lls ωq,j → 1 for q → ∞.
Analogously, we de�ne

σ̃2
n =

∑
j∈Bq−1

ωq,j r̃e(j) with r̃e(j) =
1

nd

∑
k∈Nj

ekek+j.

If we assume additional moment and homogeneity conditions on ek (cf. Lavancier (2008),
hypothesis H0), a careful reading of the proof of Lemma 1 in Lavancier (2008) shows
that his proof that σ̂2 converges stochastically to σ2 remains valid if we replace |j| by
j and consider di�erent weight functions (e.g. �at-top kernels as suggested by Politis
and Romano (1996)). This more general case is therefore discussed here. As in the time
series case (cf. Berkes et al. (2006), Proposition D.1), in order to prove consistency under
the null hypothesis and stochastic boundedness under the alternative it then su�ces to
show that the di�erence σ̂2

n− σ̃2
n converges to 0 in probability under the null and remains

bounded under the alternative:

Lemma 3.1. For q = q(n)→∞ with lim
n→∞

q/n = 0 and

b2nq
d = O(1) (10)

it holds that
σ̂2
n − σ̃2

n = oP (1), n→∞,
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if bn = 0 and
σ̂2
n − σ̃2

n = OP (1)

if bn satis�es (10) with bnnd/2 →∞.

Proof. Let C > 0 be a constant whose value may change from line to line and write
R = (k0,m0]. It holds that

Xk − X̄n = ek − ēn + bn

(
IR(k)− λ(R)

nd

)
, with ēn = n−d

∑
1≤k≤n

ek,

so that we can assume without loss of generality that an = 0. Note that #Nj = [n− |j|]
and #Bq−1 = (#{−q + 1, . . . , 0, 1, . . . , q − 1})d ≤ 2dqd. We �nd that

r̂X(j)− r̃e(j)

=
1

nd

∑
k∈Nj

{(
ek − ēn + bn

(
IR(k)− λ(R)

nd

))(
ek+j − ēn + bn

(
IR(k + j)− λ(R)

nd

))}
− 1

nd

∑
k∈Nj

ekek+j

=
1

nd

∑
k∈Nj

{
ē2
n − ēn[ek+j + ek]− ēnbn

[
IR(k) + IR(k + j)− 2

λ(R)

nd

]

+bn

[
ek

(
IR(k + j)− λ(R)

nd

)
+ ek+j

(
IR(k)− λ(R)

nd

)]
+b2n

(
IR(k)− λ(R)

nd

)(
IR(k + j)− λ(R)

nd

)}
=

[n− |j|]
nd

ē2
n −

1

nd
ēn
∑
k∈Nj

(ek + ek+j)

+ ēnbn

− 1

nd

∑
k∈Nj

(IR(k) + IR(k + j)) + 2
[n− |j|]
nd

λ(R)

nd


+ bn

1

nd

∑
k∈Nj

ek

(
IR(k + j)− λ(R)

nd

)
+
∑
k∈Nj

ek+j

(
IR(k)− λ(R)

nd

)
+ b2n

1

nd

∑
k∈Nj

(
IR(k)− λ(R)

nd

)(
IR(k + j)− λ(R)

nd

)

24
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and thus∑
j∈Bq−1

E|r̂X(j)− r̃e(j)|

≤
∑

j∈Bq−1

E
∣∣∣∣ [n− |j|]nd

ē2
n

∣∣∣∣+ E

∣∣∣∣∣∣n−dēn
∑
k∈Nj

(ek + ek+j)

∣∣∣∣∣∣


+ |bn|

≤4#Bq−1︷ ︸︸ ︷∑
j∈Bq−1

 1

nd

∑
k∈Nj

(IR(k) + IR(k + j)) + 2
[n− |j|]
nd

λ(R)

nd

︸ ︷︷ ︸
≤4

E|ēn|

+ |bn|n−d
∑

j∈Bq−1

E
∣∣∣∣∣∣
∑
k∈Nj

ek

(
IR(k + j)− λ(R)

nd

)∣∣∣∣∣∣+ E

∣∣∣∣∣∣
∑
k∈Nj

ek+j

(
IR(k)− λ(R)

nd

)∣∣∣∣∣∣


+ b2n
∑

j∈Bq−1

1

nd


∣∣∣∣∣∣
∑
k∈Nj

(
IR(k)− λ(R)

nd

)(
IR(k + j)− λ(R)

nd

)∣∣∣∣∣∣
︸ ︷︷ ︸

≤4︸ ︷︷ ︸
≤4#Bq−1

≤
∑

j∈Bq−1

E
∣∣∣∣ [n− |j|]nd

ē2
n

∣∣∣∣+ E

∣∣∣∣∣∣ēnn−d
∑
k∈Nj

ek

∣∣∣∣∣∣+ E

∣∣∣∣∣∣ēnn−d
∑
k∈Nj

ek+j

∣∣∣∣∣∣


+ C|bn|qdE|ēn|+ Cb2nq
d

+ |bn|
∑

j∈Bq−1

E
∣∣∣∣∣∣n−d

∑
k∈Nj

ek

(
IR(k + j)− λ(R)

nd

)∣∣∣∣∣∣+ E

∣∣∣∣∣∣n−d
∑
k∈Nj

ek+j

(
IR(k)− λ(R)

nd

)∣∣∣∣∣∣


1The Cauchy-Schwarz inequality and the absolute summability of the covariance function
imply

Eē2
n = n−2d

∑
1≤k,l≤n

Cov(ek, el)

≤ n−d
∑

−n≤k≤n
|r(k)|

≤ n−d
∑
k∈Zd

|r(k)| ≤ Cn−d

and analogously

E

∣∣∣∣∣∣n−d
∑
k∈Nj

ek

(
IR(k + j)− λ(R)

nd

)∣∣∣∣∣∣ ≤
√

2n−2d
∑

k,l∈Nj

|r(k− l)| ≤ n−d/2C

as well as

E

∣∣∣∣∣∣n−d
∑
k∈Nj

ek+j

(
IR(k)− λ(R)

nd

)∣∣∣∣∣∣ ≤ Cn−d/2.
1In comparison to the published article, the present passage has been slightly modi�ed.

25



CHAPTER 2 TESTING FOR EPIDEMIC CHANGES IN THE MEAN OF A
MULTIPARAMETER STOCHASTIC PROCESS

Finally, an analogous argument yields

E

∣∣∣∣∣∣n−dēn
∑
k∈Nj

ek

∣∣∣∣∣∣+ E

∣∣∣∣∣∣n−dēn
∑
k∈Nj

ek+j

∣∣∣∣∣∣ ≤ Cn−d.
In conclusion, we have obtained

∑
j∈Bq−1

E|r̂X(j)− r̃e(j)| ≤ O(qdn−d) +O(|bn|qdn−d/2 + qdb2n) =

{
o(1), under H0

O(1), under Hα,β

since in conjunction with bnnd/2 →∞, (10) implies |bn|qdn−d/2 = o(1).

Remark 3.1. Using

Xk = nd/2
∑

ε∈{0,1}d
(−1)

∑d
j=1 εjZn(k− ε), k ≥ 1,

we can view Zn from (1) as the partial sum process of the random �eld Xk = an + ek +
I(k0,m0]bn with an = nd/2µn, bn = nd/2δn and

ek = nd/2
∑

ε∈{0,1}d
(−1)

∑d
j=1 εjσY (k− ε), k ≥ 1,

where the latter ful�lls the functional central limit theorem.

4 Estimation of the change-points

In this section, we consider the alternative

HA(ϑ,γ) : ∃ 0 < ϑ < γ < 1 : k0 = bnϑc, m0 = bnγc,

and the �change� δn is assumed to be a constant multiple of n−d/2, i.e.

δn = δ n−d/2, δ 6= 0. (11)

Our aim is to estimate the points ϑ and γ. Using a similar approach to the one employed
by Aston and Kirch (2012a), the estimators we consider are points where the maximum
of a slightly modi�ed version of our test statistic is reached. To do so, we de�ne

arg max
B

Z = {a ∈ B : Z(a) = max
b∈B

Z(b)}

for functions Z : A → R (A ⊆ [0, 1]d, d ∈ N) in D[0, 1]d and compact subsets B ⊆ A.
Furthermore, let

Kd = {(s, t) ∈ [0, 1]2d : 0 ≤ s ≤ t ≤ 1}

and

Gn,d(s, t) =
1

nd/2

(
Zn(bnsc, bntc]− [bntc − bnsc]

nd
Zn(n)

)
IKd(s, t).

Then arg max
Kd
|Gn,d| 6= ∅, and arbitrary points (ϑ̂n, γ̂n) in arg max

Kd
|Gn,d| give consistent

estimators for (ϑ,γ):
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Theorem 4.1. Under HA(ϑ,γ), with δn as in (11), it holds that

(ϑ̂n − ϑ, γ̂n − γ) = oP (1), n→∞.

Before we give the proof of Theorem 4.1, we introduce two useful lemmas.

Lemma 4.1. (cf. Bucchia (2012), Lemma 66) Let K be a compact subset of Rd and f :
K → R a continuous function with a unique maximizer x0 ∈ K (i.e. {x0} = arg max

K
f).

Moreover, let fn : K → R, n = 1, 2, . . . , be functions with

max
x∈K
|fn(x)− f(x)| n→∞−→ 0

and (not necessarily unique) maximizers x̂n (i.e. fn(x̂n) = max
x∈K

fn(x)). Then it holds

that
x̂n

n→∞−→ x0.

Lemma 4.2. De�ne

R = {R ⊆ [0, 1]d : R = (a,b], a,b ∈ [0, 1]d}.

Then R is closed under intersection and R1 ( R2 implies λ(R1) < λ(R2) for all R1, R2 ∈
R. For A ∈ R with 0 < λ(A) < 1, de�ne a function F : R → R by setting

F (B) = λ(A ∩B)− λ(A)λ(B), B ∈ R.

Then F (B) is maximal for B = A, with F (A) > 0 and F (B) < F (A) for all B 6= A.
Assume further that Ac = [0, 1]d \A /∈ R. Then A uniquely maximizes |F |.

Proof. First, note that F (A) = λ(A)(1 − λ(A)). Therefore, F (A) > 0 and it su�ces to
show that

F (B) < λ(A)(1− λ(A))

for all B 6= A. Let B ∈ R, B 6= A. If λ(A) = λ(B), neither A ( B nor A ) B can hold,
and therefore λ(A ∩B) < λ(A). It follows that

F (B) = λ(A ∩B)− λ(A)2 < F (A).

If λ(A) < λ(B), the fact that λ(A ∩B) ≤ λ(A) implies

F (B) = λ(A ∩B)− λ(A)λ(B) < λ(A ∩B)− λ(A)2 ≤ F (A).

Finally, if λ(B) < λ(A), we obtain

F (B) = λ(A ∩B)− λ(A)λ(B) ≤ λ(B)(1− λ(A)) < F (A).

Now, we additionally assume that Ac /∈ R. It su�ces to show that F (B) > −F (A) for
all B 6= A. Note that F (A) = λ(A)λ(Ac). By our assumption, if A ∩ B = ∅, we have
B ⊂ Ac and λ(B) < λ(Ac). It follows that

F (B) = −λ(B)λ(A) > −λ(Ac)λ(A) = −F (A).
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If A ∩B 6= ∅ and therefore λ(A ∩B) > 0, we obtain

F (B) = λ(A ∩B)− λ(A)λ(B)

= λ(A ∩B)− λ(A){λ(A ∩B) + λ(B ∩Ac)}
= λ(A ∩B)(1− λ(A))︸ ︷︷ ︸

>0

−λ(A)λ(B ∩Ac)︸ ︷︷ ︸
≤λ(Ac)

> −F (A),

which completes the proof.

We can now address the proof of Theorem 4.1.

Proof. We can again assume without loss of generality that µn = 0. Using the same
approach as in Aston and Kirch (2012a), we �rst show that

sup
0≤s≤t≤1

|Gn,d(s, t)− δf(s, t)| = oP (1), (12)

for some continuous function f : [0, 1]2d → R such that (ϑ,γ) is the unique maximizer
of |f |. De�ne f : [0, 1]2d → R,

f(s, t) = λ((ϑ,γ] ∩ (s, t])− λ((ϑ,γ])λ((s, t]).

For 0 ≤ s ≤ t ≤ 1, it holds that

1

nd/2

(
Zn(bnsc, bntc]− [bntc − bnsc]

nd
Zn(n)

)
=σ

1

nd/2

(
Yn(bnsc, bntc]− [bntc − bnsc]

nd
Yn(n)

)

+ δ

 1

nd

∑
ε∈{0,1}d

(−1)d−
∑d
i=1 εiλ((bnϑc, bnγc] ∩ (0, bnsc+ ε(bntc − bnsc)])

− [bntc − bnsc]
nd

[bnγc − bnϑc]
nd

)

=σ
1

nd/2

(
Yn(bnsc, bntc]− [bntc − bnsc]

nd
Yn(n)

)
+ δ

(
λ((bnϑc, bnγc] ∩ (bnsc, bntc])

nd
− [bntc − bnsc]

nd
[bnγc − bnϑc]

nd

)
.

De�ne

fn(s, t) =
λ((bnϑc, bnγc] ∩ (bnsc, bntc])

nd
− [bntc − bnsc]

nd
[bnγc − bnϑc]

nd

= λ
((
bnϑc
n , bnγcn

]
∩
(
bnsc
n , bntcn

])
− λ

((
bnϑc
n , bnγcn

])
λ
((
bnsc
n , bntcn

])
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and fn(s, t) = 0 for (s, t) /∈ Kd. Then

sup
0≤s≤t≤1

∣∣∣∣ 1

nd/2

(
Zn(bnsc, bntc]− [bntc − bnsc]

nd
Zn(n)

)
− δf(s, t)

∣∣∣∣
≤σ 1

nd/2

(2)
=OP (1)︷ ︸︸ ︷

sup
0≤s≤t≤1

∣∣∣∣Yn(bnsc, bntc]− [bntc − bnsc]
nd

Yn(n)

∣∣∣∣
+ |δ| sup

0≤s≤t≤1
|fn(s, t)− f(s, t)|

=oP (1) + |δ| sup
0≤s≤t≤1

|fn(s, t)− f(s, t)| .

Now, (12) follows if f(s, t) = lim
n→∞

fn(s, t) uniformly. To see that this is the case, we

de�ne a function h : [0, 1]4d → R+ by setting

h(a,b, s, t) = λ((a,b] ∩ (s, t])− λ((a,b])λ((s, t]).

Then f(s, t) = h(ϑ,γ, s, t) and

fn(s, t) = h

(
bnϑc
n

,
bnγc
n

,
bnsc
n

,
bntc
n

)
.

Note that h has the form

h(a,b, s, t) = λ(×di=1((ai, bi] ∩ (si, ti]))− λ(×di=1(ai, bi])λ(×di=1(si, ti])

=
d∏
i=1

λ((ai, bi] ∩ (si, ti])−
d∏
i=1

(bi − ai)+
d∏
i=1

(ti − si)+

=
d∏
i=1

(ti ∧ bi − ai ∨ si)+ − [(b− a)+] [(t− s)+]

= [(t ∧ b− a ∨ s)+]− [(b− a)+] [(t− s)+],

where (x)+ = x∨0, hence h is uniformly continuous on the compact set [0, 1]4d. Therefore,
fn converges to f uniformly and |f(·, ·)| = |h(ϑ,γ, ·, ·)| is also continuous. Lemma 4.2
shows that (ϑ,γ) is the unique point at which |f | attains its maximum (since
0 < ϑ < γ < 1, (ϑ,γ]c cannot be a rectangle in [0, 1]d). Since δ 6= 0, this is also the
case for |δ||f(·, ·)|. Now, the proposition follows if we can show that each subsequence
of (ϑ̂n, γ̂n)n∈N has a further subsequence that converges to (ϑ,γ) almost surely. Let
(ϑ̂n′ , γ̂n′) be a subsequence of (ϑ̂n, γ̂n)n∈N. Our previous arguments together with the
triangle inequality show that

hn,d = sup
(x,y)∈Kd

{||Gn,d(x,y)| − |δ||f(x,y)||} = oP (1), n→∞.

Therefore, there is a subsequence (n′′) ⊂ (n′), such that hn′′,d converges almost surely to
0. Let Ω0, P (Ω0) = 1, be the set on which hn′′,d converges to 0. Then Lemma 4.1 implies

(ϑ̂n′′(ω), γ̂n′′(ω))
n′′→∞−→ (ϑ,γ)

for each ω ∈ Ω0. Since P (Ω0) = 1, this concludes the proof.
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5 Some simulations

In this last section, we present some simulation results in order to illustrate the �nite
sample behavior of the presented procedures. For d = 1, 2, 3, we have generated nd obser-
vations of two random �elds {X(1)

k }k∈Zd and {X(2)
k }k∈Zd which correspond to Example

2.1 in the i.i.d. case and Example 2.2: X(i)
k = I(k0,m0](k)δ + e

(i)
k , where {e(1)

k } are i.i.d.
N(0, 1)-distributed and {e(2)

k } is the MA-�eld e
(2)
k =

∑∞
j1=0 · · ·

∑∞
jd=0 4−j1 · · · 4−jdξk−j

with i.i.d. N(0, 1) distributed noise {ξk}. The MA-�eld is simulated using the equivalent
autoregressive presentation of e(2)

k (cf. Tjøstheim (1978)). The corresponding true values
for the parameter σ are

σ1 = 1

and

σ2 =

∞∑
j1=0

· · ·
∞∑
jd=0

4−j1 · · · 4−jd =

(
1

1− 0.25

)d
= 1.333, 1.778, 2.370 (d = 1, 2, 3).

We use the variance estimator of Subsection 3.3 with Bartlett weights

ωq,j =
d∏
i=1

(
1− |ji|

q

)+

and q =
√
n. We use α = 0.01, β = 0.01 and a 5% signi�cance level. The corresponding

critical values 4.167 (d = 1), 5.971 (d = 2) and 7.095 (d = 3) were computed using
Corollary 3.1 and (6). Under the alternative, we consider changes with di�erent change
height δ and over increasingly sized rectangles (k0,m0], with k0 = bnθc, m0 = bnγc,
where the values for θ and γ can be found in table 2.2. The accuracy of the estimated
change-points k̂0, m̂0 is measured with the Jaccard similarity (Rajaraman and Ullman,
2012, Sec. 3.1.1, p. 54)

J((k0,m0], (k̂0, m̂0]) =
λ((k0,m0] ∩ (k̂0, m̂0])

λ((k0,m0] ∪ (k̂0, m̂0])
.

The Jaccard similarity is the ratio of the size of the intersection to the size of the union
of the two rectangles and as such varies between 0 and 1, where 1 represents complete
accuracy. Since the considered statistics only depend on bnθc and bnγc, we compare
k̂0 = bnθ̂c and m̂0 = bnγ̂c with k0 and m0 instead of considering θ̂ and γ̂ directly.
Increasing sample sizes nd with n = 100, 500, 1000 (d = 1), n = 50, 100, 150 (d = 2)

and n = 10, 20, 30 (d = 3) were used. All simulated values were obtained from 1000
repetitions.

5.1 Discussion

Under H0, the test is conservative for both known and unknown asymptotic variance,
staying below the 5% nominal signi�cance level even though the variance estimations
with the chosen bandwidth q =

√
n are smaller than the theoretical values. As expected,

under the alternative the test and change-point estimator improve with increasing sample
or change size. The test works better for large rectangles over which the change takes
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Table 2.1: Empirical size of the test

known σ unknown σ

nd d i.i.d. MA σ̂1 i.i.d. σ̂2 MA
100 1 0.003 0.001 0.9239 0.036 1.2141 0.007
500 1 0.015 0.012 0.9740 0.019 1.2700 0.012
1000 1 0.026 0.011 0.9783 0.018 1.2955 0.009
2500 2 0 0 0.9876 0 1.6034 0
10000 2 0.001 0 0.9935 0.001 1.6628 0
22500 2 0.006 0.001 0.9984 0.001 1.6822 0
1000 3 0 0 0.9890 0 1.6436 0
8000 3 0 0 0.9984 0 1.8367 0
27000 3 0 0 0.9983 0 1.9504 0

Table 2.2: Change points

Block parameters d = 1 d = 2 d = 3

θ1 0.2 (0.2,0.2) (0.2,0.2,0.2)
θ2 0.4 (0.4,0.4) (0.4,0.4,0.4)
θ3 0.1 (0.1,0.1) (0.1,0.1,0.1)
γ1 0.25 (0.4,0.6) (0.3,0.5,0.7)
γ2 0.8 (0.8,0.8) (0.8,0.8,0.8)
γ3 0.9 (0.9,0.9) (0.9,0.9,0.9)

place. For su�ciently many observations and known asymptotic variance, almost all
changes are detected even for small rectangles. The power of the test with unknown
variance is slightly worse due to the overestimation of the variance, but nevertheless
shows a strong improvement for increasing sample sizes. The estimator is more sensitive
to the size of the changed rectangle than the test, with low accuracy for small rectangles
and improving with increasing rectangle size. In general, the procedures work better for
the i.i.d. than the moving average random �eld, but they work well in both cases.
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Table 2.3: Empirical power of the test, θ1,γ1, known σ

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.027 0.512 0.978 0.005 0.134 0.661
500 1 0.745 1 1 0.277 0.999 1
1000 1 0.996 1 1 0.834 1 1
2500 2 1 1 1 0.977 1 1
10000 2 1 1 1 1 1 1
22500 2 1 1 1 1 1 1
1000 3 0 0.725 1 0 0 0
8000 3 1 1 1 0.001 0.995 1
27000 3 1 1 1 0.926 1 1

Table 2.4: Empirical power of the test, θ2,γ2, known σ

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.784 1 1 0.340 0.998 1
500 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1
2500 2 1 1 1 1 1 1
10000 2 1 1 1 1 1 1
22500 2 1 1 1 1 1 1
1000 3 0.768 1 1 0 0.228 1
8000 3 1 1 1 0.999 1 1
27000 3 1 1 1 1 1 1

Table 2.5: Empirical power of the test, θ3,γ3, known σ

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.480 1 1 0.120 0.958 1
500 1 1 1 1 0.998 1 1
1000 1 1 1 1 1 1 1
2500 2 1 1 1 1 1 1
10000 2 1 1 1 1 1 1
22500 2 1 1 1 1 1 1
1000 3 1 1 1 0.274 1 1
8000 3 1 1 1 1 1 1
27000 3 1 1 1 1 1 1
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Table 2.6: Empirical power of the test, unknown σ, i.i.d., θ1,γ1

δ = 1 δ = 2 δ = 3

nd d σ̂1 power σ̂1 power σ̂1 power
100 1 1.0284 0.018 1.2632 0.055 1.5828 0.203
500 1 1.2749 0.109 1.9360 0.94 2.7056 1
1000 1 1.4508 0.813 2.3584 1 3.3654 1
2500 2 1.8115 1 3.2043 1 4.6828 1
10000 2 2.5333 1 4.7694 1 7.0691 1
22500 2 3.0563 1 5.8664 1 8.7302 1
1000 3 1.0224 0 1.1192 0.385 1.2652 0.998
8000 3 1.1278 1 1.4474 1 1.8617 1
27000 3 1.2805 1 1.8913 1 2.6094 1

Table 2.7: Empirical power of the test, unknown σ, i.i.d., θ2,γ2

δ = 1 δ = 2 δ = 3

nd d σ̂1 power σ̂1 power σ̂1 power
100 1 1.6991 0 2.9922 0 4.3664 0
500 1 2.4216 0.508 4.5400 1 6.7212 1
1000 1 2.8297 1 5.4047 1 8.0346 1
2500 2 2.4033 1 4.4892 1 6.6408 1
10000 2 3.4209 1 6.6264 1 9.8794 1
22500 2 4.1499 1 8.1162 1 12.1222 1
1000 3 1.2869 0.028 1.9199 1 2.6588 1
8000 3 1.7715 1 3.0961 1 4.5098 1
27000 3 2.3683 1 4.4113 1 6.5227 1

Table 2.8: Empirical power of the test, unknown σ, i.i.d., θ3,γ3

δ = 1 δ = 2 δ = 3

nd d σ̂1 power σ̂1 power σ̂1 power
100 1 1.3953 0.001 2.2672 0 3.2344 0
500 1 1.9741 0.528 3.5838 1 5.2704 1
1000 1 2.3183 1 4.3215 1 6.3912 1
2500 2 2.6572 1 5.0345 1 7.4717 1
10000 2 4.0223 1 7.8611 1 11.7403 1
22500 2 5.0070 1 9.8662 1 14.7581 1
1000 3 1.7399 1 3.0311 1 4.4110 1
8000 3 2.7731 1 5.2755 1 7.8369 1
27000 3 3.9913 1 7.7956 1 11.6411 1
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Table 2.9: Empirical power of the test, unknown σ, MA, θ1,γ1

δ = 1 δ = 2 δ = 3

nd d σ̂2 power σ̂2 power σ̂2 power
100 1 1.2786 0.005 1.4752 0.021 1.7573 0.085
500 1 1.5117 0.023 2.0975 0.591 2.8224 0.992
1000 1 1.6814 0.332 2.5062 1 3.4705 1
2500 2 2.2069 0.716 3.4420 1 4.8482 1
10000 2 2.8645 1 4.9547 1 7.1966 1
22500 2 3.3375 1 6.0152 1 8.8291 1
1000 3 1.6626 0 1.7224 0.001 1.8191 0.161
8000 3 1.9098 0.074 2.1137 1 2.4157 1
27000 3 2.1061 0.992 2.5220 1 3.0951 1

Table 2.10: Empirical power of the test, unknown σ, MA, θ2,γ2

δ = 1 δ = 2 δ = 3

nd d σ̂2 power σ̂2 power σ̂2 power
100 1 1.8521 0 3.0788 0 4.4257 0
500 1 2.5641 0.11 4.6238 0.99 6.78265 1
1000 1 2.9557 1 5.4733 1 8.0821 1
2500 2 2.7078 0.995 4.6558 1 6.7524 1
10000 2 3.6745 1 6.7630 1 9.9731 1
22500 2 4.3640 1 8.2275 1 12.1969 1
1000 3 1.8321 0 2.3144 0.165 2.9516 0.984
8000 3 2.3535 1 3.4656 1 4.7739 1
27000 3 2.8980 1 4.7152 1 6.7311 1

Table 2.11: Empirical power of the test, unknown σ, MA, θ3,γ3

δ = 1 δ = 2 δ = 3

nd d σ̂2 power σ̂2 power σ̂2 power
100 1 1.5923 0 2.3974 0 3.3304 0
500 1 2.1380 0.134 3.6791 0.993 5.3378 1
1000 1 2.4703 0.995 4.4064 1 6.4502 1
2500 2 2.9383 1 5.1865 1 7.5739 1
10000 2 4.2389 1 7.9751 1 11.8178 1
22500 2 5.1947 1 9.9662 1 14.8275 1
1000 3 2.1715 0.642 3.2921 1 4.5907 1
8000 3 3.1748 1 5.4988 1 7.9901 1
27000 3 4.3284 1 7.9740 1 11.7617 1
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Table 2.12: Jaccard similarity for the change point estimator, θ1,γ1

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.073 0.149 0.253 0.071 0.118 0.204
500 1 0.178 0.388 0.543 0.121 0.286 0.428
1000 1 0.275 0.509 0.655 0.192 0.401 0.557
2500 2 0.536 0.792 0.905 0.381 0.614 0.765
10000 2 0.769 0.936 0.979 0.589 0.835 0.933
22500 2 0.875 0.976 0.993 0.718 0.921 0.974
1000 3 0.028 0.043 0.065 0.022 0.026 0.034
8000 3 0.055 0.110 0.171 0.029 0.051 0.079
27000 3 0.093 0.203 0.327 0.045 0.088 0.136

Table 2.13: Jaccard similarity for the change point estimator, θ2,γ2

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.867 0.968 0.989 0.811 0.949 0.984
500 1 0.969 0.993 0.998 0.946 0.988 0.997
1000 1 0.982 0.996 0.999 0.973 0.994 0.998
2500 2 0.880 0.980 0.998 0.735 0.933 0.982
10000 2 0.971 0.998 1.000 0.912 0.989 0.999
22500 2 0.988 1.000 1.000 0.960 0.996 1.000
1000 3 0.285 0.464 0.635 0.186 0.299 0.401
8000 3 0.548 0.839 0.952 0.320 0.546 0.739
27000 3 0.775 0.963 0.995 0.463 0.779 0.922

Table 2.14: Jaccard similarity for the change point estimator, θ3,γ3

i.i.d. MA

nd d δ = 1 δ = 2 δ = 3 δ = 1 δ = 2 δ = 3

100 1 0.809 0.938 0.972 0.747 0.907 0.956
500 1 0.945 0.985 0.994 0.909 0.975 0.990
1000 1 0.971 0.992 0.997 0.952 0.988 0.995
2500 2 0.999 1.000 1.000 0.994 1.000 1.000
10000 2 1.000 1.000 1.000 1.000 1.000 1.000
22500 2 1.000 1.000 1.000 1.000 1.000 1.000
1000 3 1.000 1.000 1.000 0.991 1.000 1.000
8000 3 1.000 1.000 1.000 1.000 1.000 1.000
27000 3 1.000 1.000 1.000 1.000 1.000 1.000
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Chapter 3

Long-run variance estimation for

spatial data under change-point

alternatives

Béatrice Bucchia and Christoph Heuser

University of Cologne

Abstract

In this paper, we consider the problem of estimating the long-run variance (matrix) of
an Rp-valued multiparameter stochastic process {Xk}k∈{1,...,n}d , (n, p, d ∈ N, p, d �xed)
whose mean-function has an abrupt jump. We consider processes of the form

Xk = Yk + µ+ ICn(k)∆,

where IC is the indicator function for a set C, the change-set Cn ⊂ [1, n]d is a �nite
union of rectangles and µ,∆ ∈ Rp are unknown parameters. The stochastic process
{Yk : k ∈ Zd} is assumed to ful�ll a weak invariance principle. Due to the non-
constant mean, kernel-type long-run variance estimators using the arithmetic mean of
the observations as a mean estimator have an unbounded error for changes ∆ that do
not vanish for n→∞. To reduce this e�ect, we use a mean estimator which is based on
an estimation of the set Cn. In the case where Cn = (bnθ0

1c, bnθ0
2c] is a rectangle, we

introduce an estimator Ĉn = (bnθ̂1c, bnθ̂2c] and study its convergence rate.
Keywords: long-run variance estimation, change-point estimation, change-point de-

tection, random �elds
AMS subject classi�cation: 62H15, 62E20, 62M99, 60G60, 62H12

1 Introduction

In this paper, we present and analyze a kernel-type long-run variance matrix (LRV in
the following) estimator for a multivariate random �eld under the assumption of a non-
constant mean. Such an estimator is needed e.g. in change-point analysis when one is
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interested in testing whether a given data-set is stationary or whether there is a jump
in the mean, dividing the data into two sets with (di�erent) constant means. In this
case, the magnitude of the di�erence between the arithmetic means over suitable subsets
of the data can be used as an indicator of the likelihood of a non-constant mean. The
resulting tests are often based on the asymptotic behavior of the test statistic under the
null hypothesis. For tests based on the partial sums of observations under suitable weak
dependence conditions, a functional central limit theorem can be used to determine the
distributional limit of the test statistic as a function of a multiparameter Brownian mo-
tion, and appropriate normalization can be used to standardize the limit process, leaving
the LRV Σ as the only nuisance parameter. In order to construct asymptotic tests it
is therefore important to estimate Σ consistently under the null hypothesis, so that the
unknown LRV Σ may be replaced by its estimator for su�ciently large sample sizes.
This has already been widely investigated for processes with constant mean functions,
amongst others by Newey and West (1987) and Andrews (1991) for multivariate time
series and later by Politis and Romano (1996), Robinson (2007) and Lavancier (2008)
for univariate random �elds. Most of the publications on the subject focus on the (null
hypothesis) case of constant means to derive consistency of the LRV estimators. How-
ever, since the estimator for Σ is often used as a scaling factor in change-point tests, it
is also important to have an estimator which remains stable and bounded with respect
to a change under the alternative. Otherwise, error in the estimation of Σ might lead to
tests which display lower power for bigger changes. For example Vogelsang (1999) and
Crainiceanu and Vogelsang (2001) investigate the problem of nonmonotonic power under
data-dependent bandwidth choices for a test of mean shift in a univariate time series,
noting that this might even lead to tests with no power against �obvious� changes, which
could be detected with the naked eye. They conclude that this is due to the fact that the
LRV estimator is constructed under the (misspeci�ed) model of a stable mean. Indeed,
under alternatives with abrupt changes in the mean, the arithmetic mean displays a bias
which causes associated kernel-type LRV estimators to diverge for growing bandwidths.
In order to avoid this e�ect � or at least attenuate it �, we consider LRV estimators
that use a mean estimator which is more adapted to the change alternative. Depending
on the accuracy of the change-set estimation, it is then possible to obtain a consistent
estimator. This method has been well studied in the time series literature. For instance,
Juhl and Xiao (2009) present an LRV estimator for a univariate time series which remains
consistent and bounded under both the null and alternative hypotheses, where the mean
function ful�lls a Lipschitz condition under the alternative, and Antoch et al. (1997),
Kejriwal (2009) and Hu²ková and Kirch (2010) investigate an At-Most-One-Change loc-
ation model. The aim of this paper is to extend this methodology to the random �eld case.

This paper is organized as follows: In Section 2, we present notations, the model and
the main assumptions on the considered process. In Section 3, we study the behavior
of an LRV estimator constructed without taking the change into account and compare
it to a modi�cation which makes use of estimators for the magnitude and location of
the change. Section 4 gives an example of a change-set estimator with the associated
estimation rate. Finally, Section 5 contains a small simulation study in order to give an
impression of the �nite sample behavior of the estimators and associated change-point
tests, both for simulated data and a real data-set. Technical proofs are relegated to the
appendix.
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2 Model and main assumptions

The following notations will be used throughout this paper. Let Rd (d ∈ N) be the vector
space of real vectors equipped with the usual partial order. For x,y ∈ Rd, we write
x∨y = (max{x1, y1}, . . . ,max{xd, yd})T and x∧y = (min{x1, y1}, . . . ,min{xd, yd})T as
well as bxc = (bx1c, . . . , bxdc)T for the integer part of x, |x| = (|x1|, . . . , |xd|)T and [x] =
x1 · · ·xd. We use the notations x(i) or xi for the i-th entry of a vector and analogously
for matrices. The notation ‖ · ‖ is used to denote the maximum norm ‖x‖ = max

i=1,...,d
|xi|.

Furthermore, for any integer k ∈ N0, we denote (k, . . . , k)′ ∈ Nd0 by k. A rectangle in Rd
is a set of the form

(x,y] = {z = (z1, . . . , zd)
T : xi < zi ≤ yi, i = 1, . . . , d}

for x,y ∈ Rd ((x,y] = ∅, if xi ≥ yi for some i ∈ {1, . . . , d}). A rectangle in Zd is the
intersection of a rectangle in Rd and the set Zd. We denote the Lebesgue measure on
Rd by λ. Note that for the union of two disjoint rectangles (k1,m1] and (k2,m2] with
endpoints ki,mi ∈ Zd it holds that

λ((k1,m1] ∪ (k2,m2]) = #((k1,m1] ∩ Zd) + #((k2,m2] ∩ Zd),

where #A denotes the cardinality of a �nite set A. Therefore, we do not always explicitly
distinguish between the notations and take λ(C) to mean either the Lebesgue measure
of a set in Rd or (for �nite sets) its cardinality. To simplify notation we write λ(k,m] =
λ((k,m]) for any rectangle (k,m]. We denote the symmetric di�erence of two sets A
and B by A4B. For a function f : D → R, D ⊆ Rd, the increment of f over a rectangle
(s, t] ⊂ D takes the form

f(s, t] =


∑

ε∈{0,1}d
(−1)d−

∑d
i=1 εif(s + ε(t− s)), s < t

0, s ≮ t.

Unless stated otherwise, we will always denote the complement of a set R ⊆ (0,n] by
Rc = (0,n] \ R and take sums of the form

∑
k∈R to mean the summation over all

k ∈ R ∩ Zd. The data-generating process considered here is an Rp-valued random �eld
{Xk} with

Xk = Yk + µ+ Ik∈Cn ∆ = Yk + µ(k), k ∈ [1, n]d ∩ Zd, (1)

with a shift ∆ that ful�lls ∆T∆ > 0, a subset Cn ⊂ [1, n]d and the mean function
µ(k) = EXk = µ + Ik∈Cn∆. All the parameters are considered unknown. Since the
mean deviates from its value µ on Cn, we call this the change-set. In particular, we have
Cn = (0, k0

2] (d = 1) and Cn =
(
k0

1,k
0
2

]
(d ≥ 1) in mind. For such rectangles Cn the

resulting change-set problem is the straightforward generalization to the multiparameter
case of a one-dimensional change-point problem with two change-points 0 < k0 < m0 < n.
This type of problem is known in the change-point literature as an epidemic change-point.
A more detailed description of the epidemic change-point problem and its multiparameter
version, as well as some references to further research, can be found in Bucchia (2014).
In order to allow slightly more general change-sets for the LRV estimation, we consider
the following case:
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Assumption (C). Cn is the �nite union of disjoint rectangles, i.e.

Cn ∈ An = {A ⊆ (0,n] : ∃N ≤ mn, i = 1, . . . , N,ki,mi ∈ Zd : A =

N∑
i=1

(ki,mi]},

where m = mn is known. Additionally, n−dλ(Cn)
n→∞−−−→ a for some a ∈ (0, 1) and

0 < λ(Cn) < nd for all n ∈ N.

Models of the form (1) are used in image segmentation and reconstruction problems.
The observations fall into two segments, each with di�erent statistical characteristics
(in this case, di�erent means), and the task is to �nd the segments and estimate the
distributions on the di�erent segments. This, as well as the related problem of edge
detection, where the focus lies on detecting the boundary of the change-set, are well-
known problems in image analysis (see e.g. Korostelev and Tsybakov (1993), Müller
and Song (1994), Müller and Song (1996), Ferger (2004), Mallik (2013) and many more).
However, while a lot of di�erent models for the change-set Cn and the type of change have
been considered, most of the literature deals with independent observations, whereas the
model considered here allows (weak) dependence between the observations.

Remark 2.1. Assumption (C) is ful�lled e.g. if

Cn =
N∑
i=1

(bnsic, bntic]

is created by scaling of a template set C0 =
∑N

i=1(si, ti] ⊂ (0,1] with 0 < λ(C0) < 1.
For instance, in the particular cases mentioned above, this would be C0 = (0,θ0

2] with
Cn = (0, bnθ0

2c] or C0 = (θ0
1,θ

0
2] (0 < θ0

1 < θ0
2 < 1) with Cn = (bnθ0

1c, bnθ0
2c]. To

simplify notations, we will write θ0 = (θ0
1,θ

0
2) and assume 0 ≤ θ0

1 < θ0
2 < 1 instead of

distinguishing between these two particular change-sets.

In order to derive asymptotic results, we make the following assumption about the
process {Yk}k∈Zd , which we will always require in the remainder of this paper.

Assumption (Y1). {Yk}k∈Zd is an Rp-valued, centered, weakly stationary random �eld
with autocovariance function Γ(k) = Cov(Y0, Yk), for which∑

k∈Zd
|Γij(k)| <∞ for all i, j ∈ {1, . . . , p},

and
Σ :=

∑
k∈Zd

Γ(k)

is positive-de�nite. Furthermore, we assume that Y ful�lls a weak invariance principle,
i.e. Σ−1/2 1

nd/2

∑
1≤k≤bntc

Yk


t∈[0,1]d

Dp[0,1]d−→ {W (t)}t∈[0,1]d , (2)

where W is a p-dimensional vector of independent Brownian sheets and
Dp[0,1]d−→ denotes

weak convergence in the multivariate Skorohod space Dp[0, 1]d.
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Remark 2.2. 1. Note that it follows from Assumption (Y1) that∥∥∥∥∥∑
k∈M

Yk

∥∥∥∥∥ = OP (nd/2) for any M ⊆ (0,n]

and

max
0≤k<m≤n

n−d/2

∥∥∥∥∥∥
∑

k<j≤m
Yj

∥∥∥∥∥∥ = sup
0≤s<t≤1

n−d/2

∥∥∥∥∥∥
∑

bnsc<j≤bntc

Yj

∥∥∥∥∥∥ = OP (1),

which implies

max
A∈An

n−d/2

∥∥∥∥∥∥
∑
j∈A

Yj

∥∥∥∥∥∥ = OP (m),

with An as in Assumption (C).

2. Instead of Assumption (Y1), one could assume a central limit theorem for set-
indexed processes (cf. e.g. Bass and Pyke (1985), Alexander and Pyke (1986))
to obtain better rates. However, since our main focus will later be on change-sets
with m = 1, it su�ces for our purpose to assume the more classical version of the
invariance principle. Examples of real-valued processes that ful�ll this assumption
can e.g. be found in Truquet (2008) and Bucchia (2014).

3. In order to avoid unnecessary complications in the notation, we only consider ob-
servations on an equal-sided index-set {1, . . . , n}d. This could easily be adapted to
more general sets {1, . . . , n1} × · · · × {1, . . . , nd}.

3 Long-run variance estimators

A commonly used estimation method for the LRV consists of summing up estimators for
the sample covariances, using a kernel-function to obtain lag-dependent weights. Denot-
ing the arithmetic mean over all observations by Xn, the classical LRV estimator applied
to a random �eld has the form

Σ̂n =
∑

j∈Bq−1

ωq,j Γ̂X(j), (3)

where q = q(n) ∈ {1, . . . , n} is a bandwidth parameter, Bq = {−q, . . . , q}d, ωq,j are
weighting functions and

Γ̂X(j) =
1

nd

∑
k∈Nj

(Xk −Xn)(Xk+j −Xn)T

is an estimator of the covariance matrix with Nj = {k ∈ Nd : 1 ≤ k,k + j ≤ n}. This
choice of covariance estimator is consistent under the assumption that there is no change
in the mean, in which case Xn is a consistent estimator for the mean. However, it fails
to take changes in the mean into account. To address this problem, we consider more
general LRV estimators

Σ̃n =
∑

j∈Bq−1

ωq,j Γ̃X(j) (4)
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with
Γ̃X(j) =

1

nd

∑
k∈Nj

(Xk − µ̃(k))(Xk+j − µ̃(k + j))T ,

where µ̃(·) is an estimator of the mean function µ(·) = µ + ICn(·)∆. In order to study
the e�ect of the mean estimation, we will compare the estimation results obtained using
µ̄ ≡ Xn with the result when using a more complex mean estimator which explicitly
takes a possible change into account.
We do not use a speci�c weighting function but merely assume the following restric-

tions:

Assumption (W). There is a constant c > 0 such that 0 ≤ ωq,j ≤ c for all q ∈ N, j ∈ Zd
and ωq,j = 0 for j with maxi |ji| ≥ q. ωq,j = ω(j/q), where ω is a symmetric function
that is continuous at zero with ω(0) = 1.

Remark 3.1. Our results also hold for dimension-dependent bandwidths q = (q1, . . . , qd)
summed over sets Bq = {−q1 + 1, . . . , q1 − 1} × · · · × {−qd + 1, . . . , qd − 1}, but in
order to avoid the associated technicalities, we limit the exposition to the simpler case of
one-dimensional q.

A natural approach to the estimation of the mean under a change alternative is to use
an estimator of the change-set Cn (cf. e.g. Antoch et al. (1997), Kejriwal (2009) and
Hu²ková and Kirch (2010)) and estimate the di�erent mean levels as arithmetic means
over �tting subsets. The estimation of Cn will be the subject of Section 4. For now, we
derive results under the assumption that we have a change-set estimator Ĉn which ful�lls
the following assumption:

Assumption (Ĉ). Ĉn ∈ An and there are constants 0 < α < 1 − β < 1 such that
αnd ≤ λ(Ĉn) ≤ (1− β)nd for all n ∈ N.

Assuming we have such an estimator Ĉn, the following lemma quanti�es the resulting
estimation error for µ̃.

Lemma 3.1. Let Assumptions (C) and (Y1) be ful�lled and let Ĉn be an estimator of
the change-set Cn ful�lling Assumption (Ĉ) with

λ(Ĉn 4 Cn) = OP (nd−δ) (5)

for some δ > 0. Then the estimator

µ̃(k) =


1

λ(Ĉn)

∑
j∈Ĉn

Xj, k ∈ Ĉn

1
λ(Ĉcn)

∑
j/∈Ĉn

Xj, k /∈ Ĉn

ful�lls

max
k∈(Cn∩Ĉn)∪(Ccn∩Ĉcn)

‖µ(k)− µ̃(k)‖ = OP (mn−d/2) +OP (n−δ‖∆‖)

and
max

k∈{1,...,n}d
‖µ̃(k)− µ(k)‖ = OP (‖∆‖) +OP (mn−d/2).
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Proof. The assumption for the accuracy of the change-point estimator immediately im-
plies λ(Ĉn ∩ Ccn) = OP (nd−δ) and therefore it holds for k ∈ Cn ∩ Ĉn that

µ̃(k)− µ(k) =
1

λ(Ĉn)

∑
j∈Ĉn

(Xj − µ−∆)

=
nd/2

λ(Ĉn)

n−d/2 ∑
j∈Ĉn

Yj − n−d/2λ(Ĉn ∩ Ccn)∆


=OP (mn−d/2) +OP (n−δ‖∆‖),

where we have used

n−d/2

∥∥∥∥∥∥
∑
j∈Ĉn

Yj

∥∥∥∥∥∥ ≤ max
A∈An

n−d/2

∥∥∥∥∥∥
∑
j∈A

Yj

∥∥∥∥∥∥ = OP (m)

and ndλ(Ĉn)−1 = OP (1). For any k ∈ Ccn ∩ Ĉcn, the relation

µ̃(k)− µ(k) =
1

λ(Ĉcn)

∑
j∈Ĉcn

(Xj − µ) = OP (mn−d/2) +OP (n−δ‖∆‖)

follows analogously. Finally, the above results imply

max
k∈{1,...,n}d

‖µ̃(k)− µ(k)‖ ≤ max
k∈Cn4Ĉn

‖µ(k)− µ̃(k)‖+OP (n−δ‖∆‖) +OP (mn−d/2),

where

max
k∈Cn4Ĉn

‖µ(k)− µ̃(k)‖

≤‖∆‖+

∥∥∥∥∥∥ 1

λ(Ĉcn)

∑
j∈Ĉcn

(Xj − µ)

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

λ(Ĉn)

∑
j∈Ĉn

(Xj − µ−∆)

∥∥∥∥∥∥
=‖∆‖+OP (n−δ‖∆‖) +OP (mn−d/2).

Remark 3.2. 1. If there is no change in the mean, i.e. ∆ = 0, Assumptions (Ĉ) and
(Y1) imply max

k∈{1,...,n}d
‖µ̃(k)− µ(k)‖ = OP (mn−d/2).

2. Under Assumption (C) with m = 1, estimators Ĉn =
(
k̂1, k̂2

]
=
(
bnθ̂1c, bnθ̂2c

]
ful�ll (5) if θ̂ = (θ̂1, θ̂2) satis�es nδ(θ̂ − θ0) = OP (1).

In the following, we consider the LRV estimator Σ̃n with mean estimator µ̃ as de�ned
in Lemma 3.1. In order to analyze the asymptotic behavior of the LRV estimators 3 and
4, we use the decompositions

Σ̂n = ΣY,n + R̂n

and
Σ̃n = ΣY,n + R̃n,
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where
ΣY,n =

∑
j∈Bq−1

ωq,j Γ̃Y (j)

and
ΓY (j) =

1

nd

∑
k∈Nj

YkY
T
k+j.

Now, ΣY,n is the well known consistent LRV estimator for centered random �elds (cf.
Lemma 3.2) and R̂n and R̃n are noise terms. In order to prove consistency for ΣY,n, we
need the following additional assumptions:

Assumption (Y2). {Yk}k∈Zd is fourth order stationary with summable cumulants, i.e.
for all a, b, c, d ∈ {1, . . . , p}

E[Y
(a)
k Y

(b)
k+lY

(c)
k+mY

(d)
k+n] = E[Y

(a)
0 Y

(b)
l Y

(c)
m Y

(d)
n ]

and
sup
i∈Zd

∑
(j,k)∈Z2d

|ca,b(i, j,k)| <∞,

where

ca,b(i, j,k) = E[Y
(a)
0 Y

(b)
i Y

(a)
j Y

(b)
k ]− Γa,b(i)Γa,b(k− j)− Γa,a(j)Γb,b(k− i)− Γa,b(k)Γa,b(j− i)

represent the fourth order cumulants of the components of {Yk}k∈Zd .

Remark 3.3. Proofs of the consistency of the empirical LRV for a centered process
{Yk}k∈Zd often involve the asymptotic variance of the estimator. It is therefore natural
to require assumptions on the fourth moments of {Yk}k∈Zd . Like similar conditions in
this context (cf. e.g. Andrews (1991)), this assumption is a typical condition to prove the
consistency of LRV estimators (cf. e.g. Giraitis et al. (2003), Lavancier (2008)). It is
ful�lled e.g. for Gaussian random �elds, linear �elds with absolutely summable coe�cients
and some α-mixing random �elds (cf. Guyon (1995), Lemmas 4.6.2 and 4.6.3).

Lemma 3.2 (cf. Lavancier (2008)). For q = q(n) → ∞ with lim
n→∞

q/n = 0, it holds

under Assumptions (W), (Y1) and (Y2) that

ΣY,n
P→ Σ for n→∞.

Proof. The convergence follows from componentwise convergence of the matrices, a proof
of which can be found in Lavancier (2008). (Although it is stated for the Bartlett-kernel

ωq,j =
∏d
i=1

(
1− |ji|q

)
, it can easily be seen that Lavancier (2008)'s proof can be applied

to any kernel satisfying Assumption (W).)

Remark 3.4. As remarked by Giraitis et al. (2003), Lemma 3.2 also holds if we replace
the assumptions q = o(n) and Assumption (Y2) by q = o(n1−α), where 0 ≤ α < 1 with

sup
h∈Zd

∑
r,s∈[−N,N]

|ca,b(h, r, s)| ≤ DNαd

for all N ∈ N and a, b ∈ {1, . . . , p} and some D > 0.
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Theorem 3.1. Suppose Assumption (W) as well as the assumptions of Lemma 3.1 are
ful�lled and q = q(n)→∞ with lim

n→∞
q/n = 0. Then it holds that

R̂n = OP (n−d/2qd‖∆‖+ qd‖∆‖2)

and
R̃n = OP (mn−d/2qd‖∆‖+ n−δqd‖∆‖2 +m2(q/n)d).

Remark 3.5. 1. Since q →∞ is a necessary assumption for the consistency of ΣY,n,
the rate for R̂n only leads to a consistent LRV estimator for ∆ = ∆n → 0 (n→∞).
The estimator Σ̃n has no such restriction and can therefore be used for constant
change magnitudes ∆ (as is e.g. assumed in Section 4).

2. If we additionally assume that Cn = (bnθ0
1c, bnθ0

2c] and Ĉn = (bnθ̂1c, bnθ̂2c] are
rectangles, the rate can be improved to

R̃n = OP (n−d/2qd‖∆‖) +OP (n−(δ+1)qd+1‖∆‖2).

3. If m = O(1) and there is no change, i.e. ∆ = 0, straightforward calculations imply
that Ti = OP (n−d), i = 1, 2, 3 (see below), for both mean estimators µ̄. Therefore,
the estimators Σ̂n and Σ̃n are consistent under the assumptions of Lemma 3.2, as
long as αnd ≤ λ(Ĉn) ≤ (1− β)nd for some parameters 0 < α < 1− β < 1.

Proof of Theorem 3.1. Let µ̄ be either Xn or the estimator µ̃ of Lemma 3.1. It holds
that

1

nd

∑
k∈Nj

(Xk − µ̄(k))(Xk+j − µ̄(k + j))T

=ΓY (j) +
1

nd

∑
k∈Nj

(µ(k)− µ̄(k))Y T
k+j +

1

nd

∑
k∈Nj

Yk(µ(k + j)− µ̄(k + j))T

+
1

nd

∑
k∈Nj

(µ(k)− µ̄(k))(µ(k + j)− µ̄(k + j))T

=ΓY (j) + T1 + T2 + T3.

For µ̄ ≡ Xn = Y n + µ+ n−dλ(Cn)∆, we obtain for any a, b ∈ {1, . . . , p}, using Remark
2.2,

|T (a,b)
1 | =

∣∣∣∣∣∣ 1

nd

∑
k∈Nj

(µ(a) + Ik∈Cn∆(a) − Y (a)
n − µ(a) − n−dλ(Cn)∆(a))Y

(b)
k+j

∣∣∣∣∣∣
≤ |Y (a)

n |

∣∣∣∣∣∣ 1

nd

∑
k∈Nj

Y
(b)
k+j

∣∣∣∣∣∣+ |∆(a)|

∣∣∣∣∣∣ 1

nd

∑
k∈Nj∩Cn

Y
(b)
k+j

∣∣∣∣∣∣+ |∆(a)|

∣∣∣∣∣∣ 1

nd

∑
k∈Nj

Y
(b)
k+j

∣∣∣∣∣∣ λ(Cn)

nd

= OP (|∆(a)|n−d/2)
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and T2 = OP (‖∆‖n−d/2) analogously. Furthermore,

T3 =
1

nd

∑
k∈Nj

(µ(k)−Xn)(µ(k + j)−Xn)T

=
1

nd

∑
k∈Nj

(
ICn(k)− n−dλ(Cn)

)(
ICn(k + j)− n−dλ(Cn)

)
∆∆T + n−dλ(Nj)Y nY

T
n

− Y n
1

nd

∑
k∈Nj

(
ICn(k + j)− n−dλ(Cn)

)
∆T − n−d

∑
k∈Nj

(
ICn(k)− n−dλ(Cn)

)
∆Y

T
n

=O(‖∆‖2) +OP (n−d/2‖∆‖)

implies

R̂n =
∑
j∈Bq

ωq,j(T1 + T2 + T3) = OP (n−d/2qd‖∆‖) +OP (qd‖∆‖2).

When µ̄ = µ̃ from Lemma 3.1, we write Y (Ĉn) = λ(Ĉn)−1
∑

i∈Ĉn Yi and Y (Ĉcn) =

λ(Ĉcn)−1
∑

i∈Ĉcn
Yi and, using Y (Ĉn) = OP (mn−d/2), Y (Ĉcn) = OP (mn−d/2), we obtain

for any a, b ∈ {1, . . . , p}

|T (a,b)
1 | =

∣∣∣∣∣∣ 1

nd

∑
k∈Nj

(µ(a) + Ik∈Cn∆(a) − µ̃(a)(k))Y
(b)
k+j

∣∣∣∣∣∣
=

∣∣∣∣∣∣−Y (Ĉn)(a) 1

nd

∑
k∈Nj∩Ĉn

Y
(b)
k+j − Y (Ĉcn)(a) 1

nd

∑
k∈Nj∩Ĉcn

Y
(b)
k+j

+∆(a) 1

nd

∑
k∈Nj∩Cn

Y
(b)
k+j −

λ(Cn ∩ Ĉn)

λ(Ĉn)
∆(a) 1

nd

∑
k∈Nj∩Ĉn

Y
(b)
k+j

−λ(Cn ∩ Ĉcn)

λ(Ĉcn)
∆(a) 1

nd

∑
k∈Nj∩Ĉcn

Y
(b)
k+j

∣∣∣∣∣∣
= OP (|∆(a)|mn−d/2 +m2n−d)

and T2 = OP (‖∆‖mn−d/2 +m2n−d) analogously. Next, Lemma 3.1 implies∑
k∈Nj

(µ(k)(a) − µ̃(k)(a))2

=
∑

k∈Nj∩Cn∩Ĉn

(µ(k)(a) − µ̃(k)(a))2 +
∑

k∈Nj∩Ccn∩Ĉcn

(µ(k)(a) − µ̃(k)(a))2

+
∑

k∈Nj∩(Cn4Ĉn)

(µ(k)(a) − µ̃(k)(a))2

≤(λ(Cn ∩ Ĉn) + λ(Ccn ∩ Ĉcn))(OP (m2n−d) +OP (n−2δ‖∆‖2))

+ λ(Nj ∩ (Cn 4 Ĉn))(OP (‖∆‖2) +OP (m2n−d))

=OP (m2) +OP (nd−δ‖∆‖2)
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and thus

|T (a,b)
3 | =

∣∣∣∣∣∣
1

nd

∑
k∈Nj

(µ(k)(a) − µ̃(k)(a))(µ(k + j)(b) − µ̃(k + j)(b))

∣∣∣∣∣∣
≤

 1

nd

∑
k∈Nj

(µ(k)(a) − µ̃(k)(a))2 ·
1

nd

∑
k∈Nj

(µ(k + j)(b) − µ̃(k + j)(b))2

1/2

= OP (m2n−d) +OP (n−δ‖∆‖2).

Finally, we obtain

R̃n =
∑
j∈Bq

ωq,j(T1 + T2 + T3) = OP (mn−d/2qd‖∆‖+ n−δqd‖∆‖2 +m2(q/n)d).

Remark 3.6. We have restricted our presentation to the case where the mean changes but
the variance of the process stays constant. Note that if Cn is a rectangle (i.e. m = 1),
similar arguments can be used to obtain an LRV estimator with the same rate for the
model Xk = σkYk + µ+ ∆ICn(k) with

EY 2
k = 1 and σk =

{
σ, k /∈ Cn
σ∗, k ∈ Cn

.

4 Change-point estimation

We now focus on the special case of change-sets Cn = (bnθ0
1c, bnθ0

2c] (cf. Remark 2.1). In
this case, the problem of estimating Cn can be reduced to �nding estimators of (θ0

1,θ
0
2).

In the following, we consider estimators of the form

(θ̂1, θ̂2) ∈ arg max{Qn(s, t) : 0 ≤ s < t ≤ 1}

for (θ0
1,θ

0
2) with 0 ≤ θ0

1 < θ
0
2 ≤ 1 and

Qn(s, t) =

 ∑
bnsc<i≤bntc

(
Xi −Xn

)T  ∑
bnsc<i≤bntc

(
Xi −Xn

) .

This corresponds to the change-point estimator proposed by Aston and Kirch (2012a)
for d = 1. Since Qn(s, t) only depends on (k1,k2) = (bnsc, bntc), we can equivalently
consider � writing Qn(s, t) = Qn(bnsc, bntc) in a slight abuse of notation � (k̂1, k̂2) ∈
arg max{Qn(k1,k2) : 0 ≤ k1 < k2 ≤ n} = arg max{Qn(k1,k2) − Qn(k0

1,k
0
2)} and

θ̂i = n−1 · k̂i (i = 1, 2). For notational convenience, we will denote the vectors (k1,k2)
and (k0

1,k
0
2) by k and k0 respectively and analogously for θ0 and θ̂. In addition, we will

denote the rectangles (k1,k2] and (k0
1,k

0
2] by Rk and Rk0 respectively.

Remark 4.1. If we additionally assume that for some α ∈ (0, 1) it holds that
α ≤ [θ0

2 − θ0
1] ≤ 1− α, we can restrict the estimators to

(θ̂1, θ̂2) ∈ arg max{Qn(s, t) : 0 ≤ s < t ≤ 1, α ≤ [t− s] ≤ 1− α}
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and

(k̂1, k̂2) ∈ arg max{Qn(k1,k2) : 0 ≤ k1 < k2 ≤ n, bα̃ndc ≤ [k2 − k1] ≤ b(1− α̃)ndc}

for some 0 < α̃ ≤ α. Therefore, we can always assume w.l.o.g. that there are
0 < α < 1− β < 1 with αnd ≤ λ((k̂1, k̂2]) ≤ (1− β)nd.

For this section we do not need to assume the existence of �nite fourth moments. In
fact, we can replace Assumption (Y2) by the weaker

Assumption (Y 2?). There is an r > 2 such that for all l = 1, . . . , p

E

∣∣∣∣∣∣
∑

j∈(k,m]

Y
(l)
j

∣∣∣∣∣∣
r

≤ c̃λ(k,m]r/2

for all k ≤ m and a constant c̃ > 0 that may depend on the dimension d and on l but
not on k or m.

Remark 4.2. 1. It can easily be seen that Assumption (Y2) implies (Y 2?) with r = 4.
Assumption (Y 2?) implies tightness in Dp[0, 1]d and is therefore often used together
with the convergence of the �nite-dimensional distributions to prove the functional
central limit theorem (2) (cf. e.g. Bickel and Wichura (1971), Billingsley (1999),
Truquet (2008)).

2. Since for any two rectangles (k1,m1], (k2,m2] the set (k1,m1] \ (k2,m2] is the
union of a �nite number of rectangles, Assumption (Y 2?) implies

E

∣∣∣∣∣∣
∑

j∈(k1,m1]\(k2,m2]

Y
(l)
j

∣∣∣∣∣∣
r

≤ c̃λ((k1,m1] \ (k2,m2])r/2.

Theorem 4.1. Assume the change-set has the form Cn = (bnθ0
1c, bnθ0

2c] with
0 < θ0

1 < θ0
2 < 1 and 0 < [θ0

2 − θ0
1] < 1. Under the Assumptions (Y1) and (Y 2?), it

holds for a constant change size ∆ 6= 0 that

n‖θ̂ − θ0‖ = OP (1).

Proof. The following proof is inspired by the proof by Aston and Kirch (2012a) and
follows roughly the same lines. Nevertheless, we provide a fairly detailed proof below
since the techniques required by our framework di�er notably from those used by Aston
and Kirch (2012a). W.l.o.g. let µ = 0. Consider

Qn(k1,k2)−Qn(k0
1,k

0
2)

=

 ∑
k1<i≤k2

(
Xi −Xn

)
−

∑
k0

1<i≤k0
2

(
Xi −Xn

)T

·

 ∑
k1<i≤k2

(
Xi −Xn

)
+

∑
k0

1<i≤k0
2

(
Xi −Xn

)
=
(
A

(1)
k1,k2

+ ∆B
(1)
k1,k2

)T (
A

(2)
k1,k2

+ ∆B
(2)
k1,k2

)
,
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where

A
(1)
k1,k2

=
∑

i∈Rk\Rk0

Yi −
∑

j∈Rk0\Rk

Yj −
λ(Rk\Rk0)− λ(Rk0\Rk)

nd

∑
1≤i≤n

Yi,

B
(1)
k1,k2

= −λ(Rk0\Rk)− (λ(Rk\Rk0)− λ(Rk0\Rk))
λ(Rk0)

nd
,

A
(2)
k1,k2

=
∑
i∈Rk

Yi +
∑

i∈Rk0

Yi −
λ(Rk) + λ(Rk0)

nd

∑
1≤i≤n

Yi,

B
(2)
k1,k2

= λ(Rk ∩Rk0) + λ(Rk0)− (λ(Rk) + λ(Rk0))
λ(Rk0)

nd
.

We de�ne Ln,k1,k2 = B
(1)
k1,k2

B
(2)
k1,k2

. Using

αn(N) =

min{N1/2−1/r,
(∑∞

i=N
1
ir/2

)−1/r
}, d = 1

n(d−1)(1/2−1/r), d > 1

and combining the results from Lemma A2 yields

P
(
n‖θ̂ − θ0‖ ≥ N + 1

)
≤ P

(
‖k̂− k0‖ ≥ N

)
= P

 max
k1<k2

‖k−k0‖≥N

(Qn(k1,k2)−Qn(k0
1,k

0
2)) ≥ max

k1<k2
‖k−k0‖<N

(Qn(k1,k2)−Qn(k0
1,k

0
2))


≤ P

 max
k1<k2

‖k−k0‖≥N

(Qn(k1,k2)−Qn(k0
1,k

0
2)) ≥ 0


≤ P

 max
k1<k2

‖k−k0‖≥N

Ln,k1,k2

A(1)T
k1,k2

A
(2)
k1,k2

Ln,k1,k2

+
A

(1)T
k1,k2

B
(1)
k1,k2

∆ + ∆T
A

(2)
k1,k2

B
(2)
k1,k2

+ ∆T∆

 ≥ 0


≤ P

 max
k1<k2

‖k−k0‖≥N

Ln,k1,k2

(
OP (n−d/2) + α−1

n (N)OP (1) + ∆T∆
)
≥ 0


≤ P

(
OP (n−d/2) + α−1

n (N)OP (1) + ∆T∆ ≤ 0
)
,

where the last inequality follows from Ln,k1,k2 ≤ −C < 0. Since ∆T∆ > 0 and

αn(N)
n,N→∞−→ ∞, this probability becomes arbitrarily small for large N (d = 1) and

n (d > 1).

Although we do not explicitly mention this in the proof, our arguments can also be used
to treat the case Cn = (0, bnθ0

2c], and we have therefore implicitly proved the following
corollary:

Corollary 4.1. If Cn = (0, bnθ0
2c], 0 < θ0

2 < 1, it holds under the assumptions of
Theorem 4.1 that

n‖θ̂2 − θ0
2‖ = OP (1),
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with θ̂2 = k̂2/n, k̂2 ∈ arg max{Qn(k2)} = arg max{Qn(k2)−Qn(k0
2)}, where k0

2 = bnθ0
2c

and

Qn(k2) =

 ∑
0<i≤k2

(
Xi −Xn

)T  ∑
0<i≤k2

(
Xi −Xn

) .

5 Finite sample results by simulations

5.1 Considered model

In this section we compare, by simulations, the �nite sample behavior of the long-run
variance estimator Σ̃n introduced in (4), where the estimator of the mean function is
presented in Lemma 3.1, with the classical long-run variance estimator Σ̂n, where the
mean function is estimated by the sample mean. To do so, we consider the real-valued
random �eld

Xk = Yk + ∆I(bnθ0
1c,bnθ0

2c](k), k ∈ {1, . . . , n}d,

for d = 1, 2, 3 and

Yk =

∞∑
j1=0

. . .

∞∑
jd=0

aj1 . . . ajdεk−j (6)

with i.i.d. N(0, 1)-distributed innovations εk and a ∈ {−0.5, 0.5}. We consider ∆ =
0, 0.5, 1, . . . , 4 as well as di�erent sample sizes n1, n2, n3 for each d (cf. Table 3.1).
Note that {Yk}k∈Zd ful�lls Assumptions (Y1) and (Y2), since the coe�cients are abso-

lutely summable (cf. Marinucci and Poghosyan (2001) and Remark 3.3). The MA-�eld
{Yk}k∈Zd is simulated using its equivalent autoregressive representation (cf. Tjøstheim
(1978)). We use the estimator presented in Section 4 to estimate the change-points
(θ0

1,θ
0
2). Since the choice of kernel function is not the subject of this paper, we use the

Bartlett-kernel ωq,j =
∏d
i=1(1 − |ji|/q) (or, where applicable, ωq,j =

∏d
i=1(1 − |ji|/qi))

for both LRV estimators as an example.
In order to investigate the e�ect of the volume (Vol) of the change-set on the estimation,

we consider three di�erent change-point settings, where Cn is small, medium sized and
large (cf. Table 3.2).
All simulated values were obtained using 1000 repetitions.

5.2 Accuracy of the long-run variance estimation

To distinguish between the e�ect of the variance and the covariance in the estimation, we
start by investigating the behavior of the variance estimators Γ̂X(0) and Γ̃X(0). Since
the behavior is similar for the di�erent cases we only give a detailed analysis for Example
2, d = 2 and a = 0.5. First, we observe in Figure 3.1 that both Γ̂X(0) and Γ̃X(0)

Table 3.1: Sample sizes

d = 1 d = 2 d = 3

n1 250 30 10
n2 500 50 20
n3 1000 70 30
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5 FINITE SAMPLE RESULTS BY SIMULATIONS

Example 1 Example 2 Example 3

d = 1
(0.2, 0.4]
Vol= 0.2

(0.3, 0.9]
Vol= 0.6

(0.1, 0.9]
Vol= 0.8

d = 2

((
0.2
0.3

)
,

(
0.6
0.55

)]
Vol= 0.1

((
0.1
0.1

)
,

(
0.9
0.85

)]
Vol= 0.6

((
0.05
0.1

)
,

(
0.95
1.0

)]
Vol= 0.81

d = 3

0.1
0.2
0.3

 ,

0.7
0.7
0.7


Vol= 0.12

0.1
0.1
0.0

 ,

 0.9
0.85
0.7


Vol= 0.442

0.05
0.05
0.05

 ,

0.95
0.95
0.95


Vol= 0.729

Table 3.2: Values of (θ0
1,θ

0
2] and corresponding volumes for the di�erent examples.

estimate the variance (1− a2)−d of the random �eld {Xk}k∈Zd quite well for ∆ = 0. The
classical estimator approximates the variance better than Γ̃X(0) for ∆ = 0 but increases
fast for growing ∆. By contrast, Γ̃X(0) underestimates the variance for small n and ∆,
but the estimation gains precision when either n or ∆ increases.
Now, we investigate the behavior of the LRV estimators Σ̂n and Σ̃n. It is well known

that the accuracy of kernel-type estimators often depends on the choice of bandwidth.
In order to give an impression of the estimators' behavior independently of the chosen
bandwidth, we considered bandwidths between 1 and 20 for d = 1, 2 and between 1 and 6
for d = 3 and plotted the minimal and maximal relative mean square error for each case.
Since the estimates behave similarly in Examples 1 and 3, the �gures presented here
omit Example 1. Figures 3.2 and 3.3 show that under both choices of a the estimator
Σ̃n stays stable for growing values of ∆. For both a, the worst approximation for Σ̃n

is obtained with the bandwidth q = 1. Indeed, it is to be expected that estimating the
LRV using an estimator of the variance � especially since, as seen in Figure 3.1, the
variance already tends to be underestimated � leads to stronger underestimation and
thus to greater errors. Since the relative di�erence between the LRV and the variance is
1− 3−d for a = 0.5 and 1− 3d for a = −0.5, the relative error when estimating the LRV
using q = 1 is much greater for a = −0.5 than for a = 0.5 and both errors increase for
higher dimensions d.
In comparison, the behavior of Σ̂n depends on the choice of a and ∆. For a = −0.5,

the relative mean square error strongly increases for larger ∆ and q, as can be seen
by the fact that the worst case in Figure 3.2 is often reached for the biggest possible
bandwidth, while the optimal q decreases for growing ∆. An exception to this is for
small ∆, where the worst error is attained when using small bandwidths. This is likely
due to the tendency of the classical Bartlett estimator to overestimate the LRV, which
is worsened by growing bandwidths. In general, the relative mean square errors are
worse than the corresponding errors for Σ̃n. For a = 0.5, the covariance part of the
LRV is positive and Figure 3.3 shows that the overestimation of the variance by the
classical Bartlett estimator (cf. Figure 3.1) can balance the underestimation of the LRV.
Hence, even for some ∆ > 0, the estimator Σ̂n is a little better than Σ̃n for decreasing
q. However, a wrong choice of q has a considerable negative e�ect on the mean square
error of Σ̂n, whereas the di�erence between the best and worst cases for Σ̃n stays small.
The di�erent examples illustrate that the choice of q has more in�uence on the error if
the change-set Cn and Ccn have similar volumes.

51



CHAPTER 3 LONG-RUN VARIANCE ESTIMATION FOR SPATIAL DATA
UNDER CHANGE-POINT ALTERNATIVES

Values for ∆ = 0, 1, 2 in black, gray and light gray, respectively.

(a) n1 = 30
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(c) n3 = 70
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Figure 3.1: Multihistogram of the relative error (Γ̃X(0)−Γ(0))/Γ(0) on the left and (Γ̂X(0)−Γ(0))/Γ(0) on the
right. This shows Example 2 for d = 2 and a = 0.5.
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5 FINITE SAMPLE RESULTS BY SIMULATIONS

(a) d = 1, Example 2 (left), Example 3 (right)
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(b) d = 2, Example 2 (left), Example 3 (right)
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(c) d = 3, Example 2 (left), Example 3 (right)
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Figure 3.2: Best- and worst-case behavior of the LRV estimators for each ∆ and n for a = −0.5 and the cor-
responding bandwidths q such that the relative mean square error is either minimal or maximal. Within each
window, the values of q correspond to: the optimal case for Σ̃n (rows 1�3), the optimal case for Σ̂n (rows 4�6),

the worst case for Σ̃n (rows 7�9), the worst case for Σ̂n (rows 10�12). The plots marked with � correspond to
n1, the ◦ to n2 and 4 is for n3. Solid lines correspond to the best and dashed lines to the worst case, the lighter
shades are used for Σ̂n and the darker shades for Σ̃n.
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(a) d = 1, Example 2 (left), Example 3 (right)
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(b) d = 2, Example 2 (left), Example 3 (right)
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(c) d = 3, Example 2 (left), Example 3 (right)
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Figure 3.3: Best- and worst-case behavior of the LRV estimators for each ∆ and n for a = 0.5 and the corresponding
bandwidths q such that the relative mean square error is either minimal or maximal. Within each window, the
values of q correspond to: the optimal case for Σ̃n (rows 1�3), the optimal case for Σ̂n (rows 4�6), the worst case

for Σ̃n (rows 7�9), the worst case for Σ̂n (rows 10�12). The plots marked with � correspond to n1, the ◦ to n2

and 4 is for n3. Solid lines correspond to the best and dashed lines to the worst case, the lighter shades are used
for Σ̂n and the darker shades for Σ̃n.
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5 FINITE SAMPLE RESULTS BY SIMULATIONS

5.3 Application to change-point tests

As an illustration of the e�ect of the LRV estimator on change-point detection, in this
subsection, we study the behavior of the change-point test presented in Bucchia (2014)
for a change in the mean over a rectangle Cn (where the null hypothesis is a constant
unknown mean µ). Since this type of result is well-known in the one-dimensional case
(d = 1), we focus on d = 2, 3. The tests are based on the two change-point test statistics

T̂n = Σ̂
− 1

2
n Tn and T̃n = Σ̃

− 1
2

n Tn, where

Tn := n−d/2 max
0≤k1<k2≤n

b0.01ndc≤[k2−k1]≤b0.99ndc

∣∣∣∣∣ ∑
k1<j≤k2

(
Xj −Xn

)∣∣∣∣∣√
[k2−k1]
nd

(
1− [k2−k1]

nd

) .
The null hypothesis is rejected if the test statistic exceeds a critical value c?(α) for a
given level α. We consider a 5% signi�cance level and use the critical values

c?(0.05) =


4.167, d = 1

5.971, d = 2

7.095, d = 3

obtained in Bucchia (2014). We denote the test based on T̂n by Φ̂ and the test based
on T̃n by Φ̃. For both choices of a and the di�erent examples, the empirical power
of Φ̃ is almost always higher than the empirical power of Φ̂ for a �xed bandwidth q.
Unfortunately, the test using T̃n also often leads to a higher false rejection probability
under the null hypothesis, and for some q, it seems that the given level α cannot be
held (for the �nite sample sizes considered here). For example, the probability of false
rejection is highest for the largest q (q = 20) if a = −0.5, and for q = 1, if a = 0.5, with a
rejection rate of over 60% in the latter case. To give an impression of the empirical power
and size of the test without these extremes, Figure 3.4 shows results for the change-point
setting 2 for d = 2 restricted to bandwidths which lead to a smaller empirical size than
0.2 for both tests. For each ∆ and n, Figure 3.4 shows the best and worst possible
empirical size and power of both tests and the corresponding q under the aforementioned
restriction. We see that for ∆ ≥ 1 and under the allowed bandwidths, the worst empirical
power of Φ̃ is only slightly worse than the best power of Φ̂. For a = −0.5, the best and
the worst chosen q is the same for ∆ ≥ 1. In summary, the simulations show that
Φ̃ has high empirical power under di�erent q, whereas the empirical size of the test is
sensitive to the choice of bandwidth. By contrast, the empirical size of Φ̂ is a little more
stable under di�erent bandwidths, but the empirical power of Φ̂ is more sensitive. For
a = −0.5, the best empirical power is reached for q = 1, where the LRV is estimated by
the variance. However, as mentioned before, most of the corresponding tests would not
hold the signi�cance level.
The problem of selecting an optimal bandwidth is beyond the scope of this paper, but

in order to illustrate the behavior of the tests if we avoid the problem of underestimating
the LRV under the null hypothesis for values of q which are too small or too large, we also
consider a data-dependent bandwidth choice qn, which uses all the covariances above a
certain (�xed) size. Since the decrease in the correlations may depend on the direction,
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Figure 3.4: Best and worst empirical size and power of Φ̂ and Φ̃ and the corresponding bandwidths q, for a = 0.5
on the left and a = −0.5 on the right side, both for Example 2 and d = 2. Within each window, the values of q
correspond to: the optimal case for Φ̃ (rows 1�3), the optimal case for Φ̂ (rows 4�6), the worst case for Φ̃ (rows

7�9), the worst case for Φ̂ (rows 10�12). The plots marked with � correspond to n1, the ◦ to n2 and 4 is for n3.

Solid lines correspond to the best and dashed lines to the worst case, the lighter shades are used for Φ̂ and the
darker shades for Φ̃. The dotted line shows the theoretical signi�cance level 0.05.

we now use a vector of bandwidths qn,i (i = 1, . . . , d) (cf. Remark 3.1) such that

qn,i = inf{q ∈ N : |Γ̄X(vq)/Γ̄X(0)| < δ},

where δ = 0.05, Γ̄X is either the covariance estimator Γ̂X or Γ̃X and vq are vectors with
i-th entry q and null otherwise. Figures 3.5a and 3.5b show the behavior of the above
procedure and the average of the calculated bandwidths of each of the 1000 simulation
runs. We again leave out Example 1 and, since the results were qualitatively the same, we
also omit the cases d = 1, 2. For a = −0.5, the empirical size of Φ̃ is a little over the given
level of 0.05 for n1, but for growing sample size n the test becomes more conservative,
whereas for a = 0.5 the empirical size increases for growing sample size, leading to a
rejection rate that is above the given level for d = 1. The power of Φ̃ is quite good
and monotonic in the magnitude of change ∆ and the sample size n. By contrast, the
empirical size and power of Φ̂ is always lower than the empirical size of Φ̃, leading to a
better adherence to the signi�cance level but also nonmonotonic power for growing ∆.
For a = 0.5 and n1 the test Φ̂ nearly never detects the changes. This is also due to the
bandwidth selection heuristic: For Φ̂, growing magnitudes of the mean change lead to
higher estimates of the covariances and thus to the selection of bigger q, which worsens
the nonmonotonic power problem. In contrast, the calculated bandwidths for Φ̃ stay
stable for di�erent values of ∆.

5.4 An application to brain tumor detection

In this subsection, we apply the statistics from Section 5.3 to an MRT image of a brain
with a possible tumor.1 As can be seen in Figure 3.6, there is an obvious inhomogeneity
in the upper left corner of the picture and therefore the aim of this section is to test if our

1The picture we used is an excerpt from a picture which was published on a website by the Neuroonko-
logische Arbeitsgemeinschaft (NOA) (2012).
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(a) Results for a = −0.5
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(b) Results for a = 0.5
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Figure 3.5: Empirical size and power of the tests (d = 3, Example 2 (left), Example 3 (right)) for each ∆ and n
and the data-driven bandwidth choice q (in each case three lines corresponding to the di�erent ni in ascending

order). The plots marked with � correspond to n1, the ◦ to n2 and 4 is for n3. The light shade is used for Φ̂
and the dark color for Φ̃, the dotted line shows the theoretical signi�cance level.
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Figure 3.6: Original data (left) and an example of data with added noise (right). The estimated change-set is
marked by a white rectangle.
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Figure 3.7: LRV-estimation and test results (for a 5% signi�cance level) for 1000 realizations of the noisy data.

From left to right, the �gures show the average of the estimated values Σ̂n and Σ̃n respectively, the calculated
average values of the test statistics T̂n and T̃n, and the empirical power of the tests. Lighter shades are used for
values corresponding to Σ̂n, values corresponding to Σ̃n are in darker tones. The plots marked with ◦ correspond
to the results for the original data set, the solid lines correspond to the data with added noise. Additionally, the
middle �gure contains a dotted horizontal line corresponding to the critical value c = 5.971 for the asymptotic
tests.

statistics con�rm this observation. In order to further test the robustness of our procedure
with respect to random errors in the data (as might result from imprecise measuring), we
apply the statistics not only to the original picture but also to a version with added noise.
To be precise, we consider observations xk (k ∈ {1, . . . , 135}×{1, . . . , 146}) corresponding
to an image and add noise {Yk + ε̃k}, where {Yk} is an MA random �eld as de�ned in (6)
with a = 0.9, and {ε̃k} is an independent random �eld consisting of independentN(0, 90)-
distributed random variables. We use the change-point estimator from Section 4 and the
tests Φ and Φ̃ described in Section 5.3, each with bandwidths q ranging from 2 to 50. The
statistics are applied to the original data {xk} and to 1000 realizations of {xk +Yk + ε̃k},
respectively. As can be seen in Figure 3.6, although the observations do not perfectly
match the model (there are potentially several di�erent segments and the change-set is
not a rectangle), the statistics nevertheless produce an acceptable rectangular estimate
of the change-set. Figure 3.7 con�rms the empirical results from Section 5.3 for this
real data example: Although both tests reject the homogeneity hypothesis, the LRV-
estimator Σ̃n leads to smaller average values than the estimator Σ̂n, and therefore the
corresponding test statistic has bigger values, resulting in better empirical power.
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5.5 Conclusion

Our simulations con�rm the theoretical qualities of Σ̃n. The estimator is generally much
more stable under alternatives than the corresponding classical Bartlett estimator, lead-
ing to change-point tests with monotonic power function. However, while the heuristic
bandwidth choice considered here yields acceptable results for su�ciently large samples,
the problem of �nding an optimal bandwidth, which would guarantee adherence to the
signi�cance level, is still open.

Appendix: Some technical lemmas

Lemma A1. For 0 ≤ k1 ≤ k2 ≤ n and 0 ≤ k0
1 < k0

2 ≤ n with k0(i)
2 − k0(i)

1 ≥ cn for all
i ∈ {1, . . . , d} and some c > 0, it holds that

λ(Rk \Rk0) + λ(Rk0 \Rk) ≥ Cnd−1‖k− k0‖

for some C > 0 which may depend on d but not on n.

Proof. W.l.o.g. we assume ‖k− k0‖ > 0. Note that

λ(Rk \Rk0) + λ(Rk0 \Rk)

= λ(Rk) + λ(Rk0)− 2λ(Rk0 ∩Rk).

Since λ(Rk0) ≥ cnd ≥ cnd−1‖k − k0‖, we can assume w.l.o.g. that Rk ∩ Rk0 6= ∅. We
prove the lemma by induction. For d = 1 it holds that

λ(k1, k2] + λ(k0
1, k

0
2]− 2λ((k1, k2] ∩ (k0

1, k
0
2])

= k2 − k2 ∧ k0
2 + k0

2 − k2 ∧ k0
2 − (k1 − k1 ∨ k0

1)− (k0
1 − k1 ∨ k0

1)

= |k2 − k0
2|+ |k1 − k0

1| ≥ ‖k− k0‖.

Assuming the assertion holds for d, we consider the case d+ 1. For any vector x ∈ Zd+1,
we denote by x′ the vector (x1, . . . , xd). W.l.o.g. we assume ‖k′ − k0′‖ = ‖k − k0‖.
Writing A = (k

0(d+1)
2 − k0(d+1)

1 )−1(k
(d+1)
2 − k(d+1)

1 ) and noting that(
k

0(d+1)
2 ∧ k(d+1)

2 − k0(d+1)
1 ∨ k(d+1)

1

)
+

k
0(d+1)
2 − k0(d+1)

1

≤ A ∧ 1,

we obtain

λ(Rk) + λ(Rk0)− 2λ(Rk0 ∩Rk)

≥
(
k

0(d+1)
2 − k0(d+1)

1

)(
Aλ(k′1,k

′
2] + λ(k0′

1 ,k
0′
2 ]− 2(A ∧ 1)λ((k0′

1 ,k
0′
2 ] ∩ (k′1,k

′
2])
)

≥
(
k

0(d+1)
2 − k0(d+1)

1

)(
(A ∧ 1)

(
λ(k′1,k

′
2] + λ(k0′

1 ,k
0′
2 ]− 2λ((k0′

1 ,k
0′
2 ] ∩ (k′1,k

′
2])
))

+ (1− (A ∧ 1))λ(Rk0)

Ind.hyp.
≥ (k

0(d+1)
2 − k0(d+1)

1 )︸ ︷︷ ︸
≥cn

(A ∧ 1)Cnd−1‖k− k0‖+ (1− (A ∧ 1))λ(Rk0)︸ ︷︷ ︸
≥cnd+1

≥((cC) ∧ c) · nd
(
n(1− (A ∧ 1)) + (A ∧ 1)‖k− k0‖

)
=((cC) ∧ c) · nd

(
‖k− k0‖+ (n− ‖k− k0‖)(1− (A ∧ 1))

)
≥((cC) ∧ c) · nd‖k− k0‖.
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Lemma A2. Under the assumptions of Theorem 4.1 and using the notations from its
proof, it holds that

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(1)T
k1,k2

A
(2)
k1,k2

Ln,k1,k2

∣∣∣∣∣∣ = OP (n−d/2)

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(1)T
k1,k2

B
(1)
k1,k2

∆

∣∣∣∣∣∣ = OP (n−d/2) + αn(N)−1OP (1)

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣∆T
A

(2)
k1,k2

B
(2)
k1,k2

∣∣∣∣∣∣ = OP (n−d/2).

Furthermore, there is a constant C such that

Ln,k1,k2 ≤ −C < 0

for all k1 < k2, ‖k− k0‖ ≥ N .

Proof. We use c or C to denote positive constants which are independent of n or N and
whose values may change from line to line. First, we derive an upper bound for B(2)

k1,k2
:

max
k1<k2

‖k−k0‖≥N

B
(2)
k1,k2

nd
≤ max

k1<k2
‖k−k0‖≥N

(
λ

((
k1

n
,
k2

n

]
∩
(
k0

1

n
,
k0

2

n

])
+ λ

(
k0

1

n
,
k0

2

n

])

+ max
k1<k2

‖k−k0‖≥N

{
λ

(
k1

n
,
k2

n

]
+ λ

(
k0

1

n
,
k0

2

n

]}
λ

(
k0

1

n
,
k0

2

n

]
≤4.

Now we show that
B

(2)
k1,k2

nd
≥ c > 0 for all k1 < k2, ‖k− k0‖ ≥ N .

B
(2)
k1,k2

nd
=
λ(Rk0)

nd

(
1− λ(Rk ∪Rk0)

nd

)
+
λ(Rk ∩Rk0)

nd

(
1− λ(Rk0)

nd

)
1. Case: ∀i = 1, . . . , d : (k

0(i)
1 , k

0(i)
2 ] ⊂ (k

(i)
1 , k

(i)
2 ]

We obtain
λ(Rk ∩Rk0)

nd

(
1− λ(Rk0)

nd

)
=
λ(Rk0)

nd

(
1− λ(Rk0)

nd

)
≥ c

and therefore λ(Rk∪Rk0 )

nd
≤ 1 implies

B
(2)
k1,k2

nd
≥ c > 0.

2. Case: ∃i ∈ {1, . . . , d} : (k
0(i)
1 , k

0(i)
2 ] 6⊂ (k

(i)
1 , k

(i)
2 ]

Then either (0, k
0(i)
1 ] ∩ (k

(i)
1 , k

(i)
2 ] = ∅ or (k

0(i)
2 , 1] ∩ (k

(i)
1 , k

(i)
2 ] = ∅ and it follows that

either (k
(i)
1 , k

(i)
2 ] ∪ (k

0(i)
1 , k

0(i)
2 ] ⊂ (0, k

0(i)
2 ] or (k

(i)
1 , k

(i)
2 ] ∪ (k

0(i)
1 , k

0(i)
2 ] ⊂ (k

0(i)
1 , n]. Since

ε1n < k
0(i)
j < ε2n for some 0 < ε1, ε2 < 1 and j = 1, 2, there exists an ε < 1 such that

λ(Rk ∪Rk0) ≤ λ((k
(i)
1 , k

(i)
2 ] ∪ (k

0(i)
1 , k

0(i)
2 ])

∏
j 6=i

λ((k
(j)
1 , k

(j)
2 ] ∪ (k

0(j)
1 , k

0(j)
2 ]) ≤ εnnd−1
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and therefore

B
(2)
k1,k2

nd
≥ λ(Rk0)

nd
(1− ε) +

≥0︷ ︸︸ ︷
λ(Rk ∩Rk0)

nd

(
1− λ(Rk0)

nd

)
≥ c.

Consider now B
(1)
k1,k2

. Similarly to B(2)
k1,k2

, we want to give lower and upper bounds. To
do that, we start with a few preliminary considerations. In order to deal with more general
cases, we de�ne for any k1 < k2 corresponding vectors a ∈ Zd with a(i) ∈ {k(i)

1 , k
(i)
2 } for

i = 1, . . . , d, as well as

Ma := (0,a] \ (0,a0]

M0
a := (0,a0] \ (0,a]

f(a) := max{λ(Ma), λ(M0
a)} and

Tk1,k2 := max{f(a) : a(i) ∈ {k(i)
1 , k

(i)
2 }, i = 1, . . . , d}.

Now, we show for ‖a − a0‖ ≥ 1 that f(a) ∼ nd−1‖a − a0‖ and therefore Tk1,k2 ∼
nd−1‖k − k0‖ for ‖k − k0‖ ≥ N . Here, the notation xn ∼ yn means that there are
constants 0 < c,C such that cyn < xn < ynC for all n ∈ N. We start with a few
preliminary observations:
1. Note that f(a) has the form

f(a) = max

{
d∏
i=1

a(i),

d∏
i=1

a0(i)

}
−

d∏
i=1

a(i) ∧ a0(i).

First, we show by induction that there exists a c > 0 such that f(a) ≤ cnd−1‖a− a0‖.
d = 1: f(a) = a(1) ∨ a0(1) − a(1) ∧ a0(1) = |a(1) − a0(1)| = ‖a− a0‖ ≤ cnd−1‖a− a0‖.
d− 1→ d: Choose j ∈ {1, . . . , d} with |a(j) − a0(j)| = ‖a− a0‖. Then it holds that

f(a) = max

{
d∏
i=1

a(i),

d∏
i=1

a0(i)

}
−

d∏
i=1

a(i) ∧ a0(i)

≤

max

∏
i 6=j

a(i),
∏
i 6=j

a0(i)

−∏
i 6=j

a(i) ∧ a0(i)

 · ≤n︷ ︸︸ ︷
a(j) ∨ a0(j)

+
∏
i 6=j

a(i) ∧ a0(i)
(
a(j) ∨ a0(j) − a(j) ∧ a0(j)

)
︸ ︷︷ ︸

=‖a−a0‖

Ind.hyp.
≤ cnd−1‖a− a0‖.

2. Since f(a) ≥ 1/2
(
λ(Ma) + λ(M0

a)
)
, Lemma A1 implies that there also exists a c > 0

such that f(a) ≥ cnd−1‖a− a0‖.
3. It holds that max{λ(Rk \Rk0), λ(Rk0 \Rk)} ≤ cnd−1‖k− k0‖:
d = 1: It holds that

λ((k1, k2] \ (k0
1, k

0
2]) = k2 − k1 − (k2 ∧ k0

2 − k1 ∨ k0
1)+

≤ 2‖k− k0‖.
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and λ((k0
1, k

0
2] \ (k1, k2]) ≤ 2‖k− k0‖ analogously.

d− 1 → d: Let v′ = (v1, . . . , vd−1)T for a d-dimensional vector v = (v1, . . . , vd)
T . Since

λ(k′1,k
′
2] ≤ nd−1 and λ(k

(d)
1 ,k

(d)
2 ] ≤ n, we obtain

λ(Rk \Rk0) ≤ λ((k′1,k
′
2] \ (k0

1
′
,k0

2
′
])λ(k

(d)
1 , k

(d)
2 ]

+ λ((k
(d)
1 , k

(d)
2 ] \ (k

0(d)
1 , k

0(d)
2 ])λ(k′1,k

′
2]

Ind.hyp.
≤ cnd−1‖k− k0‖

and λ((k0
1,k

0
2] \ (k1,k2]) ≤ cnd−1‖k − k0‖ analogously. Combining our observations

yields:

max
k1<k2

‖k−k0‖≥N

−B(1)
k1,k2

Tk1,k2

= max
k1<k2

‖k−k0‖≥N

λ(Rk\Rk0)
λ(Rk0 )

nd
+ λ(Rk0\Rk)

(
1− λ(Rk0 )

nd

)
Tk1,k2

2.+3.
≤ 2 max

k1<k2
‖k−k0‖≥N

c1n
d−1‖k− k0‖

c2nd−1‖k− k0‖
≤ c

for some c1, c2 > 0. For any k1 < k2, ‖k−k0‖ ≥ N , observation 1 and Lemma A1 imply

−B(1)
k1,k2

Tk1,k2

≥ c.

Finally, we obtain for k1 < k2 and ‖k− k0‖ ≥ N

|Ln,k1,k2 |
ndTk1,k2

≥ c > 0

and

max
k1<k2

‖k−k0‖≥N

Ln,k1,k2 = − min
k1<k2

‖k−k0‖≥N

−B(1)
k1,k2

B
(2)
k1,k2

≤ − min
k1<k2

‖k−k0‖≥N

Cnd−1‖k− k0‖nd ≤ −c < 0.

Now, we consider the A(i)�terms:
First, we observe with maxk1<k2 |

∑
i∈Rk

Y
(l)
i | = OP (nd/2) that for all l ∈ {1, . . . , p}

max
k1<k2

‖k−k0‖≥N

|A(l)(2)
k1,k2
|

nd
≤ max

k1<k2
‖k−k0‖≥N

1

nd

∣∣∣∣∣∣
∑
i∈Rk

Y
(l)
i

∣∣∣∣∣∣+ max
k1<k2

‖k−k0‖≥N

1

nd

∣∣∣∣∣∣
∑

i∈Rk0

Y
(l)
i

∣∣∣∣∣∣
+ max

k1<k2
‖k−k0‖≥N

∣∣∣∣λ(Rk)

nd
+
λ(Rk0)

nd

∣∣∣∣ 1

nd

∣∣∣∣∣∣
∑

1≤i≤n
Y

(l)
i

∣∣∣∣∣∣ = OP (n−d/2).
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Now, we show

max
k1<k2

‖k−k0‖≥N

|A(l)(1)
k1,k2
|

Tk1,k2

= OP (n−d/2) + α−1
n (N)OP (1)

with αn(N) = min{N1/2−1/r,
(∑∞

i=N
1
ir/2

)−1/r
}I{d=1} + n(d−1)(1/2−1/r)I{d>1}. Using 2.

and 3., we obtain

max
k1<k2

‖k−k0‖≥N

λ(Rk\Rk0)− λ(Rk0\Rk)

Tk1,k2

= O(1)

and therefore

max
k1<k2

‖k−k0‖≥N

|A(l)(1)
k1,k2
|

Tk1,k2

≤ max
k1<k2

‖k−k0‖≥N

∣∣∣∑i∈Rk
Y

(l)
i −

∑
i∈Rk0

Y
(l)
i

∣∣∣
Tk1,k2

+OP (n−d/2)

and

max
k1<k2

‖k−k0‖≥N

∣∣∣∑i∈Rk
Y

(l)
i −

∑
i∈Rk0

Y
(l)
i

∣∣∣
Tk1,k2

= max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∑ε∈{0,1}d(−1)d−
∑d
i=1 εi

( ∑
i≤k1+ε(k2−k1)

Y
(l)
i −

∑
i≤k0

1+ε(k0
2−k0

1)

Y
(l)
i

)∣∣∣∣∣
Tk1,k2

≤
∑

ε∈{0,1}d
max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣ 1

Tk1,k2

∑
i∈(0,k1+ε(k2−k1)]\(0,k0

1+ε(k0
2−k0

1)]

Y
(l)
i

∣∣∣∣∣∣
+

∑
ε∈{0,1}d

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣ 1

Tk1,k2

∑
i∈(0,k0

1+ε(k0
2−k0

1)]\(0,k1+ε(k2−k1)]

Y
(l)
i

∣∣∣∣∣∣
= T1 + T2.

Since both terms can be treated very similarly, we only show the estimation for T1. We
use the notation Ma de�ned above for the set over which the summation takes place,
where a(i) ∈ {k(i)

1 , k
(i)
2 } for all i = 1, . . . , d. Per assumption, we have

E

∣∣∣∣∣∣
∑
i∈Ma

Y
(l)
i

∣∣∣∣∣∣
r ≤ c̃λ(Ma)r/2.

For d = 1, Tk1,k2 = ‖k− k0‖ and αn = α is independent of n. Therefore, the Markov
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inequality implies for a ∈ {k1, k2} that

P

 max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣ 1

Tk1,k2

∑
i∈(0,a]\(0,a0]

Y
(l)
i

∣∣∣∣∣∣ ≥ Cα−1(N)


≤
(
C

2

)−r
αr(N)E

 max
1≤a−a0≤N

∣∣∣∣∣∣ 1

N

a∑
i=a0+1

Y
(l)
i

∣∣∣∣∣∣
r

+

(
C

2

)−r
αr(N)E

 max
a−a0≥N

∣∣∣∣∣∣ 1

a− a0

a∑
i=a0+1

Y
(l)
i

∣∣∣∣∣∣
r

≤
(
C

2

)−r
αr(N)

N∑
l=1

1

N r/2
+

(
C

2

)−r
αr(N)

∞∑
i=N

1

ir/2
≤ c.

And for d ≥ 2:

P

 max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣ 1

Tk1,k2

∑
i∈Ma

Y
(l)
i

∣∣∣∣∣∣ ≥ Cα−1
n (N)


≤ P

 max
0≤a≤n

‖a−a0‖≥1

∣∣∣∣∣∣ 1

f(a)

∑
i∈Ma

Y
(l)
i

∣∣∣∣∣∣ ≥ Cα−1
n (N)


It follows with Markov's inequality and

#{a : 0 ≤ a ≤ n, ‖a− a0‖ = h} ≤ chd−1 ≤ cnd−1, h ≤ n,

that

P

 max
0≤a≤n

‖a−a0‖≥1

∣∣∣∣∣∣ 1

f(a)

∑
i∈Ma

Y
(l)
i

∣∣∣∣∣∣ ≥ Cα−1
n (N)


≤ C−rαrn(N)

∑
0≤a≤n

‖a−a0‖≥1

c̃
1

f(a)r/2
≤ C−r c̃αrn(N)

n∑
h=1

∑
0≤a≤n

‖a−a0‖=h

1

f(a)r/2

≤ C−rcαrn(N)
n∑
h=1

∑
0≤a≤n

‖a−a0‖=h

1

(nd−1‖a− a0‖)r/2

≤ C−rcαrn(N)n−(d−1)(r/2−1)
n∑
h=1

1

hr/2
≤ C−rc,

which implies the stated convergence order. This implies the lemma:

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(1)T
k1,k2

A
(2)
k1,k2

Ln,k1,k2

∣∣∣∣∣∣
≤ max

k1<k2
‖k−k0‖≥N

∣∣∣∣ndTk1,k2

Ln,k1,k2

∣∣∣∣ max
l=1,...,p

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(l)(1)
k1,k2

Tk1,k2

∣∣∣∣∣∣ max
l=1,...,p

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(l)(2)
k1,k2

nd

∣∣∣∣∣∣
= OP (n−d/2)(OP (n−d/2) + αn(N)−1OP (1)) = OP (n−d/2),
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max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(1)T
k1,k2

B
(1)
k1,k2

∆

∣∣∣∣∣∣ ≤ max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣ Tk1,k2

B
(1)
k1,k2

∣∣∣∣∣∣ max
l=1,...,p

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∣A
(l)(1)
k1,k2

Tk1,k2

∣∣∣∣∣∣ ‖∆‖
= OP (n−d/2) + αn(N)−1OP (1)

and

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣∆T
A

(2)
k1,k2

B
(2)
k1,k2

∣∣∣∣∣ ≤ max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣ nd

B
(2)
k1,k2

∣∣∣∣∣ ‖∆‖ max
l=1,...,p

max
k1<k2

‖k−k0‖≥N

∣∣∣∣∣A
(l)(2)
k1,k2

nd

∣∣∣∣∣ = OP (n−d/2).
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Chapter 4

Change-point detection and

bootstrap for Hilbert space valued

random �elds
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Abstract

The problem of testing for the presence of epidemic changes in random �elds is invest-
igated. In order to be able to deal with general changes in the marginal distribution, a
Cramér-von-Mises-type test is introduced which is based on Hilbert space theory. A func-
tional central limit theorem for ρ-mixing Hilbert space valued random �elds is proven. In
order to avoid the estimation of the long-run variance and obtain critical values, Shao's
dependent wild bootstrap method is adapted to this context. For this, a joint functional
central limit theorem for the original and the bootstrap sample is shown. Finally, the
theoretic results are supplemented by a short simulation study.
Keywords: change-point detection, dependent wild bootstrap, FCLT for Hilbert

space valued r.v., random �elds
AMS subject classi�cation: 62H15, 62E20, 62M99, 60G60, 62H12

1 Introduction

1.1 Change-point tests for random �elds

The focus of this paper lies on the problem of epidemic change in the mean for Hilbert
space valued random �elds. Given a data set of observations, a classical problem in
change-point analysis consists of testing whether all the observations have the same
stochastic structure (i.e. marginal distribution) or whether there is a subset (the change-
set) of the data where the structure is di�erent. For data corresponding to a time series,
the split into di�erent data subsets can be characterized by the points in time (the change-
points) at which there is a structural break. In the epidemic change model, there are
two possible change-points (the start and end of an �epidemic�) and the structure of the
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data changes after the �rst change-point but reverts back to its original state after the
second change-point. Extended to random �elds, this becomes the problem of testing for
rectangular change-sets. Epidemic changes are of interest not only in medicine (cf. e.g.
Levin and Kline (1985)) but also e.g. in signal detection and textile fabric quality control
(cf. e.g. Zhang and Bresee (1995)). The epidemic change-point problem was introduced
by Levin and Kline (1985) and has since been the subject of numerous publications (see
e.g. Csörg® and Horváth (1997), Ra£kauskas and Suquet (2004), Jaru²ková (2011), Aston
and Kirch (2012a) and the publications listed therein). For random �elds with a change in
the mean, a nonparametric approach for this type of problem was considered in Jaru²ková
and Piterbarg (2011) and Zemlys (2008) for i.i.d. observations and in Bucchia (2014) and
Bucchia and Heuser (2015) for weakly dependent data. The test statistics considered in
these publications are a special type of scan statistic, variants of which could - under the
assumption that the distributions of the observations belong to a parametric family - also
be used to test for changes in other parameters of a distribution (cf. e.g. Jaru²ková and
Piterbarg (2011), Loader (1991), Siegmund and Yakir (2000)). For the nonparametric
problem of a change in the distributions without any prior information on the family of
distributions, however, a test based on the empirical distribution function Fn with

Fn(t) =
1

n

n∑
i=1

1{Xi≤t}

might be more useful. Equipped with the appropriate norm, one can regard these as
sums of Hilbert space valued random variables, where the true distribution function of
Xi is the expected value (in the Hilbert space) of 1{Xi≤·}. Therefore, the change in
distribution problem can be translated into a change in mean problem for Hilbert space
valued random variables.
The analysis of functional data over a spatial region is of independent interest. As a

special case of spatio-temporal data, where measurements over time are taken at di�erent
locations in space, functional data may arise for instance in brain imaging or in space
physics (cf. Gromenko and Kokoszka (2012)).
For weakly dependent time series of functional data, the epidemic change model was

investigated by Aston and Kirch (2012a), who constructed test statistics based on pro-
jections on the principal components. By contrast, we aim to apply the approach used by
Sharipov et al. (2016), who take the full functional structure into account. To the best
of our knowledge, there are no results on asymptotic change-point tests for the speci�c
setting considered here.
A popular approach for the construction of asymptotic tests for change in mean prob-

lems are so-called CUSUM-type tests, where the mean is estimated using cumulative
sums of the observations. This leads to test statistics that can be written as functionals
of the partial sum process of the data. Thus, under weak dependence, the main tool for
the proof of the weak convergence of such CUSUM-type test statistics is a functional
central limit theorem (FCLT). The continuous mapping theorem can then be applied to
obtain the limit distribution. Therefore, one aim of this paper is to give an FCLT for
Hilbert space valued random �elds which can then be used for change-point tests.
Although the central limit theorem is known for multivariate and even Hilbert space

valued weakly dependent random �elds (cf. Bulinski (2004), Tone (2010, 2011)), most
of the literature on FCLTs for random �elds has focused on real-valued �elds. For this
setting, numerous results have been given not only for independent observations (cf.
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Wichura (1969)) but also for weakly dependent �elds. For instance, the monographs
by Bulinski and Shashkin (2007) and Lin and Lu (1996) give examples of FCLTs under
conditions related to association and mixing conditions respectively. For mixing random
�elds, Deo (1975, 1976) proved FCLTs under ϕ-mixing conditions and Kim and Seok
(1995) extended the ideas of Deo's proofs to obtain FCLTs for ρ-mixing random �elds.
For i.i.d. Hilbert space valued random �elds, Zemlys (2008) introduced a Hölderian
FCLT. The FCLT presented here can be viewed as an extension of the approach by Deo
(1975) �rst to vector-valued �elds and then to Hilbert space valued �elds.
After describing the bootstrap method considered here (section 1.2), we introduce the

notations used throughout this article (section 1.3). We then present our main results in
section 2. To illustrate our theoretical �ndings, our third section reports some simulation
results. Proofs of our main results are relegated to section 4.

1.2 Bootstrap for Hilbert space valued processes

Nonparametric resampling methods like bootstrap are especially useful when dealing with
stochastic processes, as the asymptotic distribution typically depends on a parameter
function, which is hard to estimate. The bootstrap of the empirical distribution function
has been well studied, starting with Bickel and Freedman (1981) in the independent case.
This was extended to time series data by Naik-Nimbalkar and Rajarshi (1994), Peligrad
(1998) and Radulovi¢ (2009) using block bootstrap methods adjusted for dependence. For
an overview of the block bootstrap methods, see the book by Lahiri (2003). Shao (2010)
introduced a di�erent resampling method for time series: the dependent wild bootstrap,
which generalizes Wu's (1986) wild bootstrap. Recently, Doukhan et al. (2015) extended
the dependent wild bootstrap to empirical distribution functions and were able to show
its validity. As seen above, the empirical distribution function can be interpreted as a
function of Hilbert space valued random variables.
For more general Hilbert spaces, the bootstrap has been investigated by Politis and

Romano (1994) and Dehling et al. (2015).
For the application to change-point detection, one needs a sequential bootstrap to

mimic the behavior of the partial sum process. The consistency of the sequential mul-
tiplier bootstrap for the empirical distribution function under independence was shown
by Gombay and Horváth (1999) and by Holmes et al. (2013) for the sequential empir-
ical process indexed by functions. For dependent data, Inoue (2001) proposed a block
multiplier bootstrap for the sequential empirical distribution function. Sharipov et al.
(2016) studied block bootstrap for the partial sum process of Hilbert space valued random
variables.
While there is a broad range of results for di�erent bootstrap methods in the time

series setting, much less work has been done for random �elds, although ideas for this
can be traced back thirty years to Hall (1985). Politis and Romano (1993) studied block
bootstrap for partial sums, Zhu and Lahiri (2007) for the empirical distribution function.
We are not aware of any bootstrap methods for Hilbert space valued random �elds or of
sequential bootstrap methods for the partial sums process of random �elds (even in the
real valued case).
The second aim of the paper is thus to give a sequential bootstrap method for Hilbert

space valued random �elds. We propose a generalization of the dependent wild bootstrap
to random �elds: Let (Xk)k∈Zd be a random �eld and X̄n = 1

nd

∑
1≤i≤nXi. Furthermore,

let (Vn(i))1≤i≤n be a real valued random �eld, independent of (Xk)k∈Zd , with
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E[Vn(i)] = 0, Var[Vn(i)] = 1 and a dependence structure to be speci�ed later. The partial
sum process (Sn(t))t∈[0,1]d with

Sn(t) = n−d/2
∑

1≤i≤bntc

(Xi − µ)

will be bootstrapped by

S?n(t) = n−d/2
∑

1≤i≤bntc

Vn(i) (Xi − µ̂(i)) , (1)

where µ̂(·) is an estimator for the mean function.
If the bootstrapped partial sum process mimics the behavior of the original partial sum

process, by the continuous mapping theorem, the same holds for the bootstrap version of
our test statistic. The classical choice proposed by Shao (2010) for the mean estimator
is µ̂ ≡ X̄n. However, under the alternative (presence of a change), the bootstrap with
this choice of estimator might not be close to the distribution under the null hypothesis
(no change). Therefore, we propose a di�erent variant of our bootstrap. Let Ĉn be an
estimator of the change-set such that ε1n

d ≤ #Ĉn ≤ (1− ε2)nd for some
0 < ε1 < 1− ε2 < 1 and all n ∈ N. De�ne

µ̃(k) =


1

#Ĉn

∑
i∈Ĉn Xi if k ∈ Ĉn,

1
#Ĉcn

∑
i/∈Ĉn Xi if k /∈ Ĉn.

In the following, we will consider bootstrapped versions of (Sn(t))t∈[0,1]d with either of
these two mean estimators, i.e. µ̂ will denote either X̄n or µ̃(·). We will not specify the
change-set estimator Ĉn, but assume that it is a subblock of (0,n] which ful�lls the size
restriction above (cf. Bucchia and Heuser (2015) for some example for Rp-valued random
�elds).

1.3 Notations

Before introducing the main results, we will now cover some notations and conventions
that will be used throughout this paper. Rd denotes the vector space of real vectors,
equipped with the usual partial order, and Zd and Nd denote the subsets of integer and
positive integer vectors, respectively. For an integer k ∈ Z, we denote (k, . . . , k)t ∈ Zd
by k, and write general vectors (x1, . . . , xd)

t ∈ Rd as x. For x ∈ Rd, we use the following
notations: bxc = (bx1c, . . . , bxdc)t is the integer part of x, |x| = (|x1|, . . . , |xd|) and
[x] = x1 · · ·xd. For a set S ∈ Rd and a number n ∈ N, we write

S 	 S = {x ∈ Rd : ∃s, t ∈ S, x = s− t},

#S = card(S) if S is �nite, and nS := {nx : x ∈ S}, where nx = (nx1, . . . , nxd)
t.

A block in Rd is a set of the form (x,y] = {z : xi < zi ≤ yi, i = 1, . . . , d} for x,y ∈ Rd
((x,y] = ∅, if xi ≥ yi for some i ∈ {1, . . . , d}). A block in Zd is the intersection of a
block in Rd and the set Zd. In particular, for a block B = (s, t] ⊆ [0, 1]d and n ∈ N,
we denote the associated block nB ∩ Zd = (bnsc, bntc] ∩ Zd by Bn. Writing λ for the
Lebesgue measure on Rd, it then holds that λ((bnsc, bntc]) = #Bn.
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Denoting the supremum norm on Rd by ‖ · ‖∞, we de�ne the distance

dist(S,Q) = inf{‖x− y‖∞ : x ∈ S,y ∈ Q}

between two sets S and Q.
Given observations (Xj)1≤j≤n (n ∈ N), a real-valued random �eld (Vn(i))1≤i≤n will

be called a dependent multiplier �eld with bandwidth q = qn if it is a Gaussian random
�eld, independent of (Xj)1≤j≤n , with E[Vn(i)] = 0, Var[Vn(i)] = 1 and

Cov (Vn(i), Vn(j)) = ω((i− j)/q)

for a symmetric bounded function ω that is continuous at zero with ω(0) = 1 and∑
−n≤j≤n

|ω(j/q)| = O(qd).

We consider a separable (real) Hilbert space H with inner product 〈·, ·〉 and associated
norm ‖x‖ =

√
| 〈x, x〉 |. (Since Rk with the inner product 〈x, y〉 = xty is also a Hilbert

space, we will also denote the usual l2-norm in Rk by ‖ · ‖.) Unless stated otherwise, the
spaces considered are always seen as measurable spaces with their Borel σ-algebra. Let
L(H,H) be the space of bounded (with respect to the operator norm
‖S‖ = sup{‖S(h)‖ : h ∈ H, ‖h‖ ≤ 1}) linear operators from H to H. S(H) denotes the
set of all self-adjoint positive nuclear operators in L(H,H). The notation {ek}k∈N is used
for complete orthonormal systems in H. The trace of a nuclear operator S ∈ S(H) is
tr(S) =

∑∞
i=1 〈Sei, ei〉, and ‖S − S′‖tr = tr(S − S′) de�nes a metric on S(H). Consider

the span Hk of the �rst k ei. Then the orthogonal projections on Hk are Pk : H → Hk,
h 7→

∑k
i=1 〈h, ei〉 ei, and the corresponding complementary operators are Ak : H → H,

h 7→ h−
∑k

i=1 〈h, ei〉 ei =
∑∞

i=k+1 〈h, ei〉 ei. For any H-valued random variable, we write
X(k) = PkX and Xk =< X, ek >.
In analogy to the case H = R, we will consider stochastic processes in the space

DH([0, 1]d) = {x : [0, 1]d → H|x has quadrant limits and is cont. from above}

endowed with the metric

dS(x, y) = inf
λ∈Λ
{max{ sup

t∈[0,1]d
‖x(t)− y(λ(t))‖, sup

t∈[0,1]d
‖t− λ(t)‖}},

where

Λ = {λ : [0, 1]d → [0, 1]d : λ(t1, . . . , td) = (λ1(t1), . . . , λd(td)), λp : [0, 1]→ [0, 1]

cont., strict. increasing and λp(0) = 0, λp(1) = 1 for all p = 1, . . . , d}

(cf. e.g. Neuhaus (1969) for DR([0, 1]d)). Let CH([0, 1]d) be the subset of functions in
DH([0, 1]d) that are continuous with respect to the supremum-norm
‖x‖∞ = sup{‖x(t)‖ : t ∈ [0, 1]d}.
It can be seen that the proofs which Neuhaus (1969) provides for DR([0, 1]d) can be

extended to our present setting with only minor changes. In particular, (DH([0, 1]d), dS)
is separable and (topologically) complete and the Borel σ-algebra coincides with the σ-
algebra generated by the coordinate mappings (for dense subsets of [0, 1]d). The relation
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between dS and the supremum norm on DH([0, 1]d) is the same as in DR([0, 1]d), and
(CH([0, 1]d), ‖ · ‖∞) is a separable Banach space with CH([0, 1]d) ⊆ DH([0, 1]d).
If (Xt)t∈[0,1]d is a stochastic process with values in DH([0, 1]d), then the increment

X(B) of X around a block B =
∏d
i=1(si, ti] is given by

X(B) =
∑
ε1=0,1

· · ·
∑
εd=0,1

(−1)d−
∑d
i=1 εiX(s1 + ε1(t1 − s1), . . . , sd + εd(td − sd)),

where we use the notations X(t) and Xt synonymously. For ease of notation, we will
often write this as

X(B) =
∑

ε∈{0,1}d
(−1)d−

∑d
j=1 εjX(s + ε(t− s)).

Since Xt = X((0, t]) a.s. for a process which vanishes at zero (i.e. Xs = 0 a.s. for any
s ∈ [0, 1]d with min si = 0), we often denote X((0, t]) and X(n(0, t]) by X(t) and Xn(t)
respectively. For k,m ∈ Zd and {xj}j∈Zd , we write

∑
k<j≤m

xj =


∑

j∈(k,m]∩Zd
xj, k <m∑

j∈∅
xj = 0, k ≮m.

We will now de�ne the Hilbert space valued analogue of the Brownian sheet (or Chentsov
process):

De�nition 1.1. An H-valued stochastic process X = (Xt)t∈[0,1]d is a Brownian sheet in
H with covariance operator S ∈ S(H) i�

1. P (X ∈ CH([0, 1]d)) = 1,

2. Xt = 0 a.s. if ti = 0 for any i ∈ {1, . . . , d} and

3. for pairwise disjoint blocks B1, . . . , Bm in [0, 1]d, the increments X(B1), . . . , X(Bm)
are independent Gaussian random elements in H with mean zero and covariance
operators λ(Bi)S, where S ∈ S(H) does not depend on Bi.

Remark 1.1. • In order to see that the independence and Gaussian distribution of
the increments over pairwise disjoint blocks yields a Gaussian process, one can
proceed analogously to the one-dimensional case and write any linear combination
of Xti = X((0, ti]) for points ti ∈ [0, 1]d (i = 1, . . . , l) as a linear combination of
increments over pairwise disjoint blocks whose union is ∪li=1(0, ti].

• If X = (Xt)t∈[0,1]d is a Brownian sheet in H with covariance operator S ∈ S(H),
then (〈X(t), h〉)t∈[0,1]d is a Brownian sheet with covariance 〈Sh, h〉 in R for any
h ∈ H.

For a σ-algebra A, we de�ne Lp(A, H) as the set of all A-measurable H-valued random
elements X with ‖X‖p = (E [‖X‖p])1/p <∞.
As a measure of dependence, we use the following mixing conditions: For two σ-

algebras A and B, we can de�ne the usual strong mixing coe�cients

α(A,B) = sup {|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B}
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as well as the ρ-mixing coe�cients

ρR(A,B) = sup

{
|Cov(X,Y )|√
var(X)var(Y )

: X ∈ L2(A,R), Y ∈ L2(B,R), var(X), var(Y ) > 0

}
,

which lead to the following types of mixing coe�cients for random �elds. Let AS =
σ(Xk : k ∈ S) and de�ne

ρR(r) = sup{ρR(AS ,AQ) : S,Q ⊆ Zd, ∃i ∈ {1, . . . , d} ∃A,B ⊂ Z, dist(A,B) ≥ r :

∀j ∈ S,k ∈ Q : ji ∈ A, ki ∈ B}
(2)

and
ρ∗R(r) = sup{ρR(AS ,AQ) : S,Q ⊆ Zd, dist(S,Q) ≥ r}.

As usual, we say that a random �eld is ρR-mixing (ρ∗R-mixing), if limr→∞ ρR(r) = 0
(limr→∞ ρ

∗
R(r) = 0).

Finally, we use an α-mixing coe�cient where the cardinality of the index sets is re-
stricted: For k,m ∈ N, de�ne

αk,m(r) = sup{α(AS ,AQ) : S,Q ⊆ Zd, dist(S,Q) ≥ r, #S ≤ k,#Q ≤ m}.

2 Main results

2.1 Change-point problem for random �elds

We now present our FCLT for Hilbert space valued ρR-mixing random �elds. For real-
valued ρ-mixing random �elds, Kim and Seok (1995) used an approach proposed by
Ibragimov (1975) to prove the FCLT under an additional assumption on the growth of
the variance of the partial sums. Here, we have used a ρ-mixing condition that is stronger
than the one in Kim and Seok (1995) (we allow interlaced index sets in (2)) and, since it
is unclear how the growth condition would translate to the Hilbert space context, we use
assumption 2 (see below) on the α-mixing coe�cients instead, which implies condition
(2.6) in Corollary 2.3 of Kim and Seok (1995). However, although our assumptions are
therefore stronger for real-valued �elds, the following result is applicable not only to this
special case but to general separable Hilbert spaces. As a byproduct of our proof, we
extend a result from Deo (1975) to multivariate ρR-mixing random �elds.

Theorem 2.1. Let {Xj}j∈Zd be a strictly stationary H-valued random �eld with EX1 =
µ. Assume that {Xj}j∈Zd is ρR-mixing and that the following conditions hold for some
δ > 0:

1. E‖X1‖2+δ <∞

2.
∑

m≥1m
d−1α1,1(m)δ/(2+δ) <∞

Then  1

nd/2

∑
1≤j≤bntc

(Xj − µ)


t∈[0,1]d

⇒ {W (t)}t∈[0,1]d ,
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where {W (t)}t∈[0,1]d is a Brownian sheet in H and W (1) has the covariance operator
S ∈ S(H), de�ned by

〈Sx, y〉 =
∑
k∈Zd

E[
〈
X0 − µ, x

〉
〈Xk − µ, y〉], for x, y ∈ H. (3)

Furthermore, the series in (3) converges absolutely.

This can be used for the following change-point problem: Given observations {Xj}j∈{1,...,n}d
with values in H, we want to test the null-hypothesis

H : EXj = µ ∀ k ∈ {1, . . . , n}d

against the epidemic change alternative

HA : ∃ 1 ≤ k0 <m0 ≤ n : EXk =

{
µ, k ∈ {1, . . . , n}d \ (k0,m0]

µ+ δ, k ∈ (k0,m0],

where µ, δ ∈ H and k0,m0 are unknown. CUSUM-type asymptotic tests for the epidemic
change in the mean problem have been investigated e.g. by Yao (1993), Csörg® and
Horváth (1997), Ra£kauskas and Suquet (2004) and Jaru²ková (2011) for real-valued
time series. These were extended to i.i.d. random �elds by Zemlys (2008) - who used
an approach similar to Ra£kauskas and Suquet (2004) - and Jaru²ková and Piterbarg
(2011). For weakly dependent random �elds, Bucchia (2014) gave an extension of some
results from Jaru²ková and Piterbarg (2011). The epidemic change problem for weakly
dependent time series of functional observations was treated by Aston and Kirch (2012a),
who constructed asymptotic tests based on the principal components of the data.
Consider the test statistic

Tn = max
0≤k<m≤n

1

nd/2

∥∥∥∥∥∥
∑

k<j≤m
Xj −

[m− k]

nd

∑
1≤j≤n

Xj

∥∥∥∥∥∥ .
Analogously to the univariate case, since both the maximum function and the Hilbert
space norm are continuous, Theorem 2.1 together with the continuous mapping theorem
can be used to obtain the limit distribution of these statistics under H:

Corollary 2.1. Under the assumptions of Theorem 2.1, it holds that

Tn ⇒ sup
0≤s<t≤1

‖W (s, t]− [t− s]W (1)‖ = T,

where {W (t)}t∈[0,1]d is the H-valued Brownian sheet de�ned in Theorem 2.1.

For Rp-valued observations {Xj}j∈{1,...,n}d , this result can be used to obtain a test for
the change in distribution problem of testing

H : F (t) = P (Xi ≤ t) ∀ i ∈ {1, . . . , n}d, t ∈ Rp

against the alternative

HA : ∃ 1 ≤ k0 <m0 ≤ n : P (Xk ≤ t) =

{
F (t), k ∈ {1, . . . , n}d \ (k0,m0]

G(t), k ∈ (k0,m0],
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where the distribution functions F and G, F 6= G, are unknown. Our goal is to write this
as a change in mean problem for a suited Hilbert space. Common test statistics depend
on the empirical distribution functions as estimators for the unknown parameters F and
G. These are sums over the indicator functions 1{Xj≤t}, t ∈ R

p. For some nonnegative,
bounded weight function w : Rp → R with

∫
Rp w(t)dt <∞, the latter can be interpreted

as random elements of the Hilbert space L2(Rp, w) of measurable functions f : Rp → R,
with ‖f‖ <∞ for the norm induced by the inner product

〈f, g〉 =

∫
Rp
f(t)g(t)w(t)dt.

If F is the distribution function of Xj, it can be seen that for any h ∈ L2(Rp, w),

E
[〈
1{Xj≤·}, h

〉]
= E

[∫
Rp
1{Xj≤t}h(t)w(t)dt

]
=

∫
Rp
F (t)h(t)w(t)dt = 〈F, h〉

by Fubini's theorem. Therefore, F is the expected value of 1{Xj≤·} in L
2(Rp, w) and we

obtain a Cramér-von Mises type test for the change in distribution problem by translating
Corollary 2.1 for this special case:

Corollary 2.2. Let {Xj}j∈Zd be an Rp-valued stationary random �eld with marginal
distribution function F , which is ρR-mixing with α-mixing coe�cients that satisfy∑

m≥1

md−1α1,1(m)δ/(2+δ) <∞

for some δ > 0. The change-point statistic

Tn,w = max
0≤k<m≤n

1

nd

∫
Rp

 ∑
k<j≤m

1{Xj≤x} −
[m− k]

nd

∑
1≤j≤n

1{Xj≤x}

2

w(x)dx

then satis�es
Tn,w ⇒ sup

0≤s<t≤1
‖W (s, t]− [t− s]W (1)‖2 = Tw,

where {W (t)}t∈[0,1]d is a Brownian sheet in L2(Rp, w) and W (1) has the covariance
operator S ∈ S(L2(Rp, w)) de�ned by

〈Sx, y〉 =
∑
k∈Zd

E

[∫
Rp

(
1{X0≤t} − F (t)

)
x(t)w(t)dt

∫
Rp

(
1{Xk≤t} − F (t)

)
y(t)w(t)dt

]
,

for x, y ∈ L2(Rp, w).

Note that since x 7→ 1{x≤·} is a measurable bijection, the mixing properties of {Xj}j∈Zd
are preserved. Due to the non-negativity and integrability of w, the moment condition
of Theorem 2.1 is satis�ed.
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2.2 Dependent wild bootstrap for change-point detection

We formulate our theorem on the consistency of the bootstrap version of the partial sum
process for Hilbert space valued random �elds.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and assume additionally that∑
m≥1

md−1α2,2(m)δ/(2+δ) <∞ (4)

and E‖X1‖4+2δ < ∞. Furthermore, let (Vn,1(i))1≤i≤n, . . . , (Vn,K(i))1≤i≤n (K ∈ N) be
independent copies of the same dependent multiplier �eld. 1 Lastly, let the bandwidth
q = qn ful�ll qn →∞ and qn = o(

√
n). Then(

Sn, S
?
n,1, . . . , S

?
n,K

)
⇒ (W,W ?

1 , . . . ,W
?
K) in DH([0, 1]d)K+1

where S?n,1, . . . , S
?
n,K are bootstrapped partial sum processes de�ned as in (1) andW ?

1 , . . . ,W
?
K

are independent copies of the Hilbert space valued Brownian sheet W from Theorem 2.1.

Remark 2.1. The additional assumption (4) is used to obtain the convergence of long-
run variance estimators over sets B ⊆ (0, 1]d which are either blocks or �nite unions of
disjoint blocks. Consider estimators of the form

Σ̂n(B) =
∑

h∈Bn	Bn

ω (h/q)
1

nd

∑
a:a,a+h∈Bn

(X
(k)
a − µ̂(k)(a))(X

(k)
a+h − µ̂

(k)(a + h))t.

As shown in Bucchia and Heuser (2015), these estimators can be written as kernel-type

long-run variance estimators Σ̂Y,n(B) for the centered process Y (k) = {X(k)
j − µ(k)}j∈Zd ,

plus an error term which converges to 0 in probability (cf. Bucchia and Heuser (2015),

Theorem 3.1). The classical proof of Σ̂Y,n(B)
P−→ λ(B)Σ (cf. e.g. Lavancier (2008)),

where Σ is the long-run variance matrix of X(k), works by showing E
[
Σ̂Y,n(B)

]
−→

λ(B)Σ and E

[(
Σ̂Y,n(B)− E

[
Σ̂Y,n(B)

])2
]
→ 0. Only a slight modi�cation of the proof

in Lavancier (2008) (who considered B = (0, 1]d and slightly less general kernel-functions
ω) is needed to obtain the convergence of the mean. For the second part, we concentrate
on the case k = 1 to simplify notation, but the cases k ≥ 2 work the same way. Note that
by assumption (4) (cf. Guyon (1995), p. 110), there exists a C > 0 such that

E

 1

nd

∑
a:a,a+h∈Bn

(
Y

(1)
a Y

(1)
a+h − E

[
Y

(1)
a Y

(1)
a+h

])2
=

1

n2d

∑
a,a′:a,a′,a+h,a′+h∈Bn

Cov(Y
(1)
a Y

(1)
a+h, Y

(1)
a′ Y

(1)
a′+h)

≤ 1

nd

∑
l∈Zd

∣∣∣Cov(Y
(1)
0 Y

(1)
h , Y

(1)
l Y

(1)
l+h)

∣∣∣ ≤ C 1

nd

1Note that the restriction on ω is weaker than the restriction ω(j/q) = 0 for j with maxi |ji| ≥ q used in
Bucchia and Heuser (2015), but since the proofs remain essentially una�ected, all results from that
paper are still applicable.
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and therefore

E

[(
Σ̂Y,n(B)− E

[
Σ̂Y,n(B)

])2
]

≤

 ∑
h∈Bn	Bn

|ω (h/q)|

∥∥∥∥∥∥ 1

nd

∑
a:a,a+h∈Bn

(
Y

(1)
a Y

(1)
a+h − E

[
Y

(1)
a Y

(1)
a+h

])∥∥∥∥∥∥
2

2

≤C 1

nd

 ∑
−n≤j≤n

|ω(j/q)|

2

≤ C q
2d

nd
−→ 0.

Alternatively, in order to use the proof presented e.g. in Lavancier (2008) for bandwidths
q = o(n), one could replace assumption (4) by stronger mixing and integrability conditions
(cf. e.g. Guyon (1995), Lemma 4.6.2) in order to obtain the summability of the fourth-
order cumulants (cf. Assumption (Y2) in Bucchia and Heuser (2015)).

Write T ?n,1, . . . , T
?
n,K and T ?n,w,1, . . . , T

?
n,w,K for the bootstrapped analogues of the above

change-point statistics, where Xj and 1{Xj≤·} are replaced by Vn,l(j) (Xj − µ̂(j)) and

Vn,l(j)
(
1{Xj≤·} − µ̂(j)

)
respectively (l = 1, . . . ,K). As a direct consequence of Theorem

2.2, we obtain the same limit distributions as for the original statistics:

Corollary 2.3. (a) Let the assumptions of Theorem 2.2 hold. Then it holds that

(Tn, T
?
n,1, . . . , T

?
n,K)⇒ (T, T ?1 , . . . , T

?
K),

where T ?1 , . . . , T
?
K are independent copies of T .

(b) Let {Xj}j∈Zd be an Rp-valued stationary random �eld that ful�lls the assumptions
of Corollary 2.2 and (4). Let (Vn,1(j))1≤j≤n,. . . ,(Vn,K(j))1≤j≤n be as in Theorem
2.2. Then it holds that

(Tn,w, T
?
n,w,1, . . . , T

?
n,w,K)⇒ (Tw, T

?
w,1, . . . , T

?
w,K),

where T ?w,1, . . . , T
?
w,K are independent copies of Tw.

Using this corollary, we can obtain critical values for the test statistic Tn (and ana-
logously for Tn,w) in the following way: Simulate the K conditionally independent
copies T ?n,1, . . . , T

?
n,K . For a given signi�cance level α ∈ (0, 1), calculate the (1 − α)

sample quantile q?n,K(1 − α) of T ?n,1, . . . , T
?
n,K and reject the hypothesis of stationar-

ity if Tn ≥ q?n,K(1 − α). Then Lemma F.1 in Bücher and Kojadinovic (2014) yields
limK→∞ limn→∞ P (Tn ≥ q?n,K(1− α)) = α.

3 Simulation study

To illustrate the �nite sample behavior of the Cramér-von Mises type change-point test
(using Tn,w) with dependent wild bootstrap, we present the results of a small simulation
study. We use the distribution function of the N(100, 1000)-distribution as a weight
function w to de�ne the Hilbert space L2(R, w). As a data generating process, we use
an autoregressive process

Yk = aYk1−1,k2 + aYk1,k2−1 − a2Yk1−1,k2−1 + εk1,k2 , k ∈ {1, . . . , n}2
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Example 1 Example 2 Example 3((
0.2
0.3

)
,

(
0.6
0.55

)]
Vol= 0.1

((
0.1
0.1

)
,

(
0.9
0.85

)]
Vol= 0.6

((
0.05
0.1

)
,

(
0.95
1.0

)]
Vol= 0.81

Table 4.1: Values of (θ,γ] and corresponding volumes for the di�erent examples.

for dimension d = 2, where the parameter a, which re�ects the dependence structure
of the process, takes the values a = 0.2, 0.5 and the innovations {εk}k∈Zd are i.i.d.
N(0, (1− a2)d)-distributed. Applying the results in Doukhan (1994), Section 2.1.1, it
can be seen that this process ful�lls the mixing assumptions of Theorems 2.1 and 2.2.
We use sample sizes n = 30, 40, 50. We consider two types of changes in distribution,
changes in the mean and changes in the skewness of the process, each over a change-set
of the form C = (θ,γ] (0 < θ < γ < 1). For the change in mean, we consider

X
(1)
k = Yk + ∆1Cn(k), k ∈ {1, . . . , n}d,

with ∆ = 0, 0.5, 1. For the change in skewness, we use the same approach as in Sharipov
et al. (2016) and simulate a second data generating process {Y ′k}k∈{1,...,n}d which is
independent of {Yk}k∈{1,...,n}d , using the same scheme as for {Yk}k∈{1,...,n}d . We de�ne

X
(2)
k =

{
Y 2
k + Y

′2
k , k /∈ Cn

4− (Y 2
k + Y

′2
k ), k ∈ Cn.

In order to investigate the e�ect of the volume (Vol) of the change block on the test, we
consider three di�erent change-point settings, where C = (θ,γ] is small, medium-sized
and large (cf. Table 4.1). We compare two bootstrap methods:

• Discretely sampled Ornstein-Uhlenbeck sheets (autoregressive wild bootstrap (AR))

Vn(k) = aVn(k1 − 1, k2) + aVn(k1, k2 − 1)− a2Vn(k1 − 1, k2 − 1) + εn,k1,k2 ,

with a = exp(−1/q(n)) and i.i.d. N(0, (1−a2)d)-distributed innovations εn,k. This

corresponds to the exponential weight function ωq(n),j =
∏d
i=1 exp

(
− |ji|q(n)

)
.

• Moving average random �elds (MA): Let {εj}j∈Zd be a random �eld of i.i.d.
N(0, 1)-distributed r.v. For a = (q(n) + 1)−d/2 (i.e. a = |Bq(n)/2|−1/2, with

Bq(n)/2 := {− q(n)
2 , . . . , q(n)

2 }
d), we consider the process de�ned by

Vn(k) = a
∑

j∈Bq(n)/2

εk−j.

This corresponds to the Bartlett-type weight function ωq(n),j =
∏d
i=1

(
1− |ji|

q(n)+1

)+
.

For both methods, we consider bandwidths q = 2, 6, 10 and use the mean estimators
µ̂ = Fn and

µ̂(k) = F̃n(k) =


1

#Ĉn

∑
i∈Ĉn 1{Xi≤·} if k ∈ Ĉn,

1
#Ĉcn

∑
i/∈Ĉn 1{Xi≤·} if k /∈ Ĉn
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(cf. section 1.2). The change-set estimator Ĉn = (k̂, m̂] used for F̃n is obtained by taking
the maximizing values for the test statistic Tn,w as estimators k̂ and m̂. The empirical
size and power of the tests are estimated using N = 500 repetitions, for each of which
J = 500 wild bootstrap-iterations are used to derive the critical values. The nominal size
was chosen as α = 0.05, 0.1.
Table 4.2 shows the empirical size of the tests. Unsurprisingly, for both choices of a the
empirical size depends strongly on the bandwidth q, which is a measure of the dependence
of the bootstrap process. The greater q, the greater the dependence in the bootstrap
sample and the smaller the empirical size of the test. For µ̂ = Fn and a = 0.2, the
nominal size is always held for q = 10 and can be adequately held for q = 6, whereas
the empirical size for a = 0.5 tends to be greater than the nominal one even for q = 10.
For µ̂ = F̃n, the empirical size is much larger than the nominal one for all choices of a
and q. The over-rejection under the null hypothesis seems to be typical for bootstrap
methods (cf. Doukhan et al. (2015)). Conversely, under the alternative, the empirical
power decreases with rising bandwidth q, but the e�ect is more pronounced for µ̂ = Fn
than for µ̂ = F̃n (cf. e.g. Tables 4.3 and 4.4). This e�ect is however less important
than the choice of change-set for the power of the test: Where both the change in mean
and the change in skewness are well detected for medium-sized and large change-sets
(Examples 2 and 3), the empirical power for small change-sets (Example 1) can be very
small for q = 6, 10 (cf. Tables 4.3, 4.5, 4.7, 4.9, 4.11 and 4.13). Again, the tests based
on F̃n have a higher empirical power than the tests based on Fn and retain their good
detection properties even for small change-sets (cf. Tables 4.4, 4.6, 4.8, 4.10, 4.12 and
4.14). The tests perform better under weaker dependence in the observations, but for
medium-sized and large change-sets the empirical power is good for both choices of a
and ∆ = 0.5 and excellent for ∆ = 1. Except for small change-sets and µ̂ = Fn (cf.
e.g. Table 4.13), the change in skewness is well detected by all procedures (cf. Tables
4.11-4.14). Rising numbers n of observations improve the empirical power of the tests.
The di�erent choices of the random variables (Vn(i))1≤i≤n (AR or MA) do not seem to
in�uence the power of the test strongly, with only slightly better empirical power under
MA for µ̂ = Fn (cf. e.g. Tables 4.5 and 4.7).

3.1 Conclusion

In conclusion, the simulations show that the proposed tests display the typical over-
rejection property of bootstrap tests but have good empirical power against changes
in the distribution. The latter is strongly in�uenced by the size of the set on which
there is a change. While the two considered bootstrap procedures (MA and AR) show
comparable results, the choice of the bandwidth has a signi�cant e�ect, with smaller
bandwidths leading to higher rejection rates. In comparison to µ̂ = Fn, the estimator
µ̂ = F̃n has worse adherence to the nominal level under the null hypothesis but also
better power against changes in mean or in the skewness. This might be due to the fact
that F̃n is a more accurate estimator for the mean under the alternative but performs
slightly worse under the null hypothesis.
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Table 4.2: Hypothesis (stationarity)

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

µ̂ = Fn

AR

α = 0.05
a = 0.2 0.18 0.01 0.00 0.19 0.04 0.00 0.17 0.04 0.01
a = 0.5 0.58 0.08 0.00 0.65 0.14 0.03 0.67 0.15 0.04

α = 0.1
a = 0.2 0.28 0.08 0.02 0.30 0.13 0.06 0.28 0.12 0.07
a = 0.5 0.71 0.24 0.07 0.76 0.30 0.13 0.76 0.31 0.16

MA

α = 0.05
a = 0.2 0.15 0.03 0.01 0.17 0.07 0.03 0.15 0.05 0.02
a = 0.5 0.58 0.15 0.03 0.63 0.20 0.07 0.66 0.19 0.06

α = 0.1
a = 0.2 0.28 0.12 0.03 0.28 0.15 0.09 0.26 0.13 0.09
a = 0.5 0.71 0.29 0.13 0.76 0.34 0.18 0.77 0.33 0.19

µ̂ = F̃n

AR

α = 0.05
a = 0.2 0.26 0.18 0.13 0.24 0.17 0.14 0.20 0.13 0.13
a = 0.5 0.68 0.40 0.31 0.71 0.38 0.29 0.71 0.35 0.26

α = 0.1
a = 0.2 0.36 0.29 0.27 0.35 0.28 0.25 0.34 0.22 0.21
a = 0.5 0.80 0.54 0.47 0.82 0.53 0.46 0.81 0.49 0.42

MA

α = 0.05
a = 0.2 0.23 0.18 0.13 0.21 0.16 0.14 0.18 0.12 0.11
a = 0.5 0.66 0.40 0.30 0.71 0.38 0.26 0.70 0.32 0.24

α = 0.1
a = 0.2 0.32 0.26 0.25 0.33 0.24 0.23 0.29 0.19 0.18
a = 0.5 0.77 0.51 0.44 0.79 0.49 0.41 0.80 0.46 0.38

Table 4.3: Change in Mean, µ̂ = Fn, a=0.2, ∆ = 0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.43 0.03 0.00 0.66 0.20 0.03 0.83 0.34 0.05
Ex. 2 1.00 0.92 0.37 1.00 1.00 0.97 1.00 1.00 1.00
Ex. 3 0.81 0.38 0.07 0.97 0.85 0.57 1.00 0.99 0.93

α = 0.1
Ex. 1 0.57 0.21 0.04 0.78 0.43 0.19 0.91 0.61 0.30
Ex. 2 1.00 0.99 0.91 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.90 0.66 0.42 0.99 0.94 0.87 1.00 1.00 0.99

MA

α = 0.05
Ex. 1 0.43 0.12 0.01 0.65 0.33 0.10 0.85 0.50 0.18
Ex. 2 0.99 0.97 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.81 0.54 0.27 0.96 0.88 0.80 1.00 1.00 0.98

α = 0.1
Ex. 1 0.56 0.28 0.10 0.79 0.51 0.29 0.91 0.72 0.45
Ex. 2 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.88 0.74 0.56 0.99 0.94 0.90 1.00 1.00 1.00
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Table 4.4: Change in Mean, µ̂ = F̃n, a=0.2, ∆ = 0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.56 0.38 0.32 0.75 0.59 0.52 0.89 0.73 0.64
Ex. 2 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.88 0.75 0.66 0.98 0.94 0.91 1.00 1.00 0.99

α = 0.1
Ex. 1 0.70 0.54 0.50 0.85 0.73 0.70 0.94 0.83 0.79
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.93 0.87 0.82 0.99 0.97 0.96 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.52 0.40 0.32 0.73 0.57 0.52 0.87 0.75 0.65
Ex. 2 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.86 0.77 0.69 0.97 0.94 0.91 1.00 1.00 1.00

α = 0.1
Ex. 1 0.67 0.53 0.47 0.82 0.71 0.66 0.93 0.83 0.79
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.92 0.86 0.82 0.99 0.98 0.96 1.00 1.00 1.00

Table 4.5: Change in Mean, µ̂ = Fn, a=0.5, ∆ = 0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.70 0.12 0.00 0.79 0.24 0.05 0.84 0.32 0.09
Ex. 2 0.95 0.53 0.09 0.98 0.83 0.54 1.00 0.96 0.88
Ex. 3 0.80 0.25 0.03 0.90 0.46 0.19 0.96 0.68 0.44

α = 0.1
Ex. 1 0.82 0.30 0.09 0.88 0.45 0.22 0.91 0.48 0.30
Ex. 2 0.98 0.73 0.49 0.99 0.91 0.83 1.00 0.98 0.95
Ex. 3 0.89 0.48 0.24 0.96 0.67 0.48 0.98 0.82 0.67

MA

α = 0.05
Ex. 1 0.69 0.20 0.04 0.80 0.34 0.11 0.85 0.40 0.17
Ex. 2 0.94 0.63 0.37 0.98 0.86 0.71 1.00 0.97 0.93
Ex. 3 0.80 0.36 0.14 0.91 0.57 0.35 0.97 0.74 0.56

α = 0.1
Ex. 1 0.79 0.35 0.16 0.87 0.52 0.28 0.91 0.53 0.36
Ex. 2 0.97 0.77 0.60 0.99 0.92 0.86 1.00 0.98 0.96
Ex. 3 0.88 0.54 0.33 0.95 0.69 0.55 0.98 0.84 0.72

Table 4.6: Change in Mean, µ̂ = F̃n, a=0.5, ∆ = 0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.79 0.46 0.38 0.84 0.57 0.47 0.87 0.56 0.46
Ex. 2 0.97 0.82 0.74 0.98 0.93 0.89 1.00 0.99 0.97
Ex. 3 0.86 0.58 0.48 0.93 0.70 0.61 0.98 0.83 0.74

α = 0.1
Ex. 1 0.86 0.63 0.53 0.91 0.70 0.61 0.93 0.70 0.62
Ex. 2 0.99 0.91 0.86 1.00 0.96 0.94 1.00 0.99 0.99
Ex. 3 0.92 0.71 0.64 0.96 0.81 0.74 0.98 0.89 0.83

MA

α = 0.05
Ex. 1 0.77 0.47 0.36 0.84 0.55 0.45 0.87 0.54 0.45
Ex. 2 0.97 0.82 0.74 0.98 0.93 0.89 1.00 0.98 0.97
Ex. 3 0.84 0.58 0.47 0.93 0.69 0.61 0.97 0.81 0.72

α = 0.1
Ex. 1 0.85 0.61 0.51 0.90 0.68 0.60 0.94 0.68 0.59
Ex. 2 0.98 0.90 0.85 1.00 0.96 0.94 1.00 0.99 0.99
Ex. 3 0.91 0.71 0.61 0.96 0.79 0.73 0.98 0.88 0.83
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Table 4.7: Change in Mean, µ̂ = Fn, a=0.2, ∆ = 1

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.90 0.04 0.00 1.00 0.32 0.01 1.00 0.81 0.02
Ex. 2 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.97 0.39 0.03 1.00 0.87 0.23 1.00 1.00 0.54
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.92 0.20 0.01 1.00 0.80 0.10 1.00 1.00 0.39
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.97 0.58 0.13 1.00 0.98 0.59 1.00 1.00 0.97
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.8: Change in Mean, µ̂ = F̃n, a=0.2, ∆ = 1

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.97 0.87 0.72 1.00 0.99 0.95 1.00 1.00 1.00
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.99 0.95 0.91 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.97 0.87 0.73 1.00 1.00 0.97 1.00 1.00 1.00
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.99 0.94 0.90 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.9: Change in Mean, µ̂ = Fn, a=0.5, ∆ = 1

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.86 0.15 0.00 0.97 0.39 0.04 0.99 0.59 0.10
Ex. 2 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.76 0.26 1.00 0.98 0.86 1.00 1.00 1.00

α = 0.1
Ex. 1 0.93 0.43 0.11 0.99 0.66 0.30 1.00 0.83 0.46
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.92 0.75 1.00 1.00 0.98 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.86 0.30 0.04 0.97 0.59 0.16 0.99 0.77 0.33
Ex. 2 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.88 0.59 1.00 0.99 0.95 1.00 1.00 1.00

α = 0.1
Ex. 1 0.93 0.53 0.23 0.99 0.75 0.48 0.99 0.90 0.65
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.95 0.85 1.00 1.00 0.99 1.00 1.00 1.00
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Table 4.10: Change in Mean, µ̂ = F̃n, a=0.5, ∆ = 1

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.93 0.67 0.56 0.98 0.83 0.73 0.99 0.92 0.83
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.95 0.88 1.00 1.00 0.98 1.00 1.00 1.00

α = 0.1
Ex. 1 0.96 0.80 0.73 1.00 0.92 0.87 1.00 0.98 0.91
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.92 0.66 0.53 0.98 0.83 0.73 0.99 0.93 0.82
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.95 0.89 1.00 1.00 0.99 1.00 1.00 1.00

α = 0.1
Ex. 1 0.96 0.80 0.70 0.99 0.92 0.84 1.00 0.98 0.93
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.11: Change in Skewness, µ̂ = Fn, a=0.2

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.28 0.01 0.00 0.80 0.15 0.00 0.99 0.56 0.02
Ex. 2 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.91 0.37 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.49 0.15 0.02 0.93 0.55 0.11 1.00 0.94 0.36
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.99 0.92 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.31 0.07 0.00 0.82 0.41 0.04 0.99 0.89 0.23
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.98 0.83 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.51 0.23 0.07 0.93 0.73 0.31 1.00 0.98 0.80
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.12: Change in Skewness, µ̂ = F̃n, a=0.2

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.45 0.35 0.28 0.88 0.80 0.69 0.99 0.98 0.93
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.62 0.54 0.50 0.95 0.91 0.87 1.00 0.99 0.99
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.43 0.36 0.28 0.88 0.82 0.74 0.99 0.98 0.96
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.1
Ex. 1 0.60 0.54 0.47 0.95 0.92 0.88 1.00 0.99 0.99
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.13: Change in Skewness, µ̂ = Fn, a=0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.38 0.03 0.00 0.68 0.15 0.00 0.85 0.32 0.05
Ex. 2 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.89 0.50 0.11 1.00 0.96 0.82 1.00 1.00 1.00

α = 0.1
Ex. 1 0.53 0.16 0.04 0.82 0.38 0.13 0.95 0.64 0.27
Ex. 2 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.96 0.78 0.55 1.00 1.00 0.97 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.36 0.09 0.01 0.67 0.26 0.06 0.83 0.52 0.18
Ex. 2 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.88 0.63 0.37 1.00 0.98 0.93 1.00 1.00 1.00

α = 0.1
Ex. 1 0.51 0.22 0.07 0.81 0.49 0.22 0.93 0.72 0.44
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.96 0.83 0.67 1.00 1.00 0.99 1.00 1.00 1.00

Table 4.14: Change in Skewness, µ̂ = F̃n, a=0.5

n = 30 n = 40 n = 50

q=2 q=6 q=10 q=2 q=6 q=10 q=2 q=6 q=10

AR

α = 0.05
Ex. 1 0.50 0.30 0.23 0.76 0.54 0.41 0.89 0.72 0.64
Ex. 2 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.92 0.78 0.67 1.00 0.99 0.96 1.00 1.00 1.00

α = 0.1
Ex. 1 0.65 0.46 0.39 0.87 0.73 0.65 0.96 0.84 0.79
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.97 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00

MA

α = 0.05
Ex. 1 0.45 0.30 0.24 0.73 0.54 0.44 0.87 0.72 0.64
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.92 0.79 0.70 1.00 1.00 0.97 1.00 1.00 1.00

α = 0.1
Ex. 1 0.61 0.45 0.36 0.85 0.70 0.65 0.95 0.84 0.77
Ex. 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ex. 3 0.96 0.88 0.84 1.00 1.00 1.00 1.00 1.00 1.00
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4 Proofs

4.1 Preliminary results

Lemma 4.1. Let {Xk}k∈Nd be an H-valued centered random �eld with lim
τ→∞

ρR(τ) < 1.

Then for any r ≥ 2, there exists a positive constant Bd,r depending only on r, d and ρR(·)
such that for any �nite set S ⊂ Nd,

E

∥∥∥∥∥∑
k∈S

Xk

∥∥∥∥∥
r

≤ Bd,r

∑
k∈S

E‖Xk‖r +

(∑
k∈S

E‖Xk‖2
)r/2 . (5)

If sup
k∈Nd

E‖Xk‖r <∞, this implies

E

∥∥∥∥∥∑
k∈S

Xk

∥∥∥∥∥
r

≤ Bd,r

(
sup
k∈Nd

E‖Xk‖r + ( sup
k∈Nd

E‖Xk‖2)r/2

)
(#S)r/2 =: C(d, r,X)(#S)r/2.

(6)
We say a block W in Zd belongs standardly to a block U and denote this by W / U
whenever W ⊂ U and the minimal vertices of W and U (in the sense of the lexicographic
order) coincide. If (6) holds for r > 2 and blocks S in Zd, U is any block in Zd, and

M(U) = max
W/U

∥∥∥∥∥∥
∑
j∈W

Xj

∥∥∥∥∥∥ ,
then (6) implies

E (M(U)r) ≤ C̃C(d, r,X)(#U)r/2 (7)

with C̃ =
(

5
2

)d
(1− 2(1− r

2
)/r)−dr.

Remark 4.1. For H-valued processes, an alternative de�nition of ρ-mixing is given by
the coe�cients

ρH(A,B) = sup
{
|E(〈X,Y 〉)−〈EX,EY 〉|

‖X‖2‖Y ‖2 : X ∈ L2(A, H), Y ∈ L2(B, H), ‖X‖2, ‖Y ‖2 > 0
}
.

Analogously to the real-valued case, one can then de�ne ρH(r) and ρ∗H(r) for random
�elds. As shown in Bradley and Bryc (1985), Theorem 4.2, the coe�cients ρH and ρR
coincide and therefore ρH(·) = ρR(·) and ρ∗H(·) = ρ∗R(·).

Proof. For ρ∗R = ρ∗H instead of ρR = ρH , (5) is Theorem 2 of Zhang (1998). Since the
two de�nitions of mixing coincide for d = 1, we can use Theorem 2 of Zhang (1998)
for the one-dimensional case and obtain (5) by induction over d (cf. Bradley (2007),
Volume III, p.234). For any j ∈ N, de�ne sets S(j) = {k ∈ S : k1 = j}, T (j) = {k ∈
Nd : k1 = j} and Yj =

∑
k∈S(j)

Xk if S(j) 6= ∅ and Yj = 0 otherwise. Then {Yj}j∈N

satis�es ρR,Y (τ) ≤ ρR,X(τ). The random �eld ζ(j) = {Xk : k ∈ T (j)} can be viewed
as a (d − 1)-parameter �eld with ρR,ζ(j)(τ) ≤ ρR,X(τ) since T (j) ∼= Nd−1. Now, with
N(S) = {j ∈ N : S(j) 6= ∅}, it holds that

E

∥∥∥∥∥∑
k∈S

Xk

∥∥∥∥∥
r

= E

∥∥∥∥∥∥
∑

j∈N(S)

Yj

∥∥∥∥∥∥
r
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≤ B1,r

 ∑
j∈N(S)

E‖Yj‖r +

 ∑
j∈N(S)

E‖Yj‖2
r/2


= B1,r

∑
j∈N(S)

E

∥∥∥∥∥∥
∑

k∈S(j)

ζ
(j)
k

∥∥∥∥∥∥
r

+B1,r

 ∑
j∈N(S)

E

∥∥∥∥∥∥
∑

k∈S(j)

ζ
(j)
k

∥∥∥∥∥∥
2r/2

I.H.
≤ B1,r

∑
j∈N(S)

Bd−1,r

 ∑
k∈S(j)

E
∥∥∥ζ(j)

k

∥∥∥r +

 ∑
k∈S(j)

E
∥∥∥ζ(j)

k

∥∥∥2

r/2


+B1,r

 ∑
j∈N(S)

Bd−1,2

 ∑
k∈S(j)

E
∥∥∥ζ(j)

k

∥∥∥2
+

 ∑
k∈S(j)

E
∥∥∥ζ(j)

k

∥∥∥2

2/2


r/2

= B1,rBd−1,r

∑
k∈S

E‖Xk‖r +
∑

j∈N(S)

 ∑
k∈S(j)

E‖Xk‖2
r/2


+ 2r/2B1,rB

r/2
d−1,2

(∑
k∈S

E‖Xk‖2
)r/2

≤ (B1,rBd−1,r + 2r/2B
r/2
d−1,2B1,r)

∑
k∈S

E‖Xk‖r +

(∑
k∈S

E‖Xk‖2
)r/2

where the inequality (
∑m

k=1 ak)
q ≥

∑m
k=1 a

q
k (A2902 in Bradley (2007), Volume III) is

used to obtain the last inequality.
(6) is a trivial consequence of (5). If (6) holds for some r > 2, (7) follows from

Corollary 1 in Móricz (1983) (cf. also Bulinski and Shashkin (2007), Theorem 2.1.2).
(The Corollary can be applied in any normed space without changing the proof.)

Following an approach that is similar in spirit to Davidson (2002) (cf. Theorems 29.6
and 29.18), we aim to reduce the multivariate functional central limit theorem to the
corresponding results for the univariate case. For real-valued processes, Deo (1975) gave
a version for random �elds of Theorems 19.1 and 19.2 of Billingsley (1968), which use a
characterization of Brownian motion to obtain a general functional central limit theorem
(cf. Lemmas 2 and 3 in Deo (1975)). We extend this result to multivariate random �elds
by taking advantage of the fact that Gaussian random vectors can be characterized by
their behavior under projections.

Lemma 4.2. Let Σ be a symmetric positive semide�nite matrix and Sn = {Sn(t)}t∈[0,1]d

a sequence of stochastic processes with sample paths in DRk([0, 1]d), such that

(i) ESn(t)→ 0 and CovSn(t)→ [t]Σ as n→∞, for each t ∈ [0, 1]d,

(ii) the set {‖Sn(t)‖2}n is uniformly integrable for each t,

(iii) if B1, B2, . . . , Bp is a collection of strongly separated blocks, then the increments
Sn(B1), Sn(B2), . . . , Sn(Bp) are asymptotically independent in the sense that if
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H1, H2, . . . ,Hp are arbitrary Borel sets in Rk, then the di�erence

P (Sn(B1) ∈ H1, . . . , Sn(Bp) ∈ Hp)−
p∏
i=1

P (Sn(Bi) ∈ Hi)

goes to zero as n→∞ and,

(iv) for each ε > 0, η > 0, we can �nd a δ > 0 such that

P (wk(Sn, δ) > ε) < η

for all su�ciently large n, where we de�ne the modulus of continuity

wk(x; δ) := sup{‖x(t)− x(s)‖ : ‖t− s‖ ≤ δ},

for x ∈ DRk([0, 1]d) and 0 < δ < 1.

Then Sn converges weakly in DRk([0, 1]d) to the k-dimensional Brownian sheet on [0, 1]d

with covariance matrix Σ.

Proof. Consider λ ∈ Rk and de�ne {Sλn (t)}t∈[0,1]d by S
λ
n (t) = λtSn(t). First, note that

for any x ∈ DRk([0, 1]d), t ∈ [0, 1]d and λ ∈ Rk, it holds that if tn
ρ−→ t (cf. notations

in Neuhaus (1969)), then x(t + 0ρ) = limn→∞ x(tn) exists, and since y 7→ λty is a
continuous map, it follows that

lim
n→∞

λtx(tn) = λt lim
n→∞

x(tn) = λtx(t + 0ρ)

also exists. Therefore, if x ∈ DRk([0, 1]d), then λtx ∈ DR([0, 1]d) and if x ∈ CRk([0, 1]d),
then λtx ∈ CR([0, 1]d). Furthermore, since DRk([0, 1]d) → DR([0, 1]d), x 7→ λtx, is a
continuous map, Sλn are random elements in DR([0, 1]d). Assumptions (i)− (iii) imply:

(i) ESλn (t) = λtESn(t) → 0, Cov(λtSn(t)) = λtCov(Sn(t))λ → [t]λtΣλ for any
t ∈ [0, 1]d

(ii) {|Sλn (t)|2}n≥1 is uniformly integrable for each t, since due to the Cauchy-Schwarz
inequality

∣∣λtSn(t)
∣∣2 ≤ ‖λ‖2‖Sn(t)‖2.

(iii) For arbitrary linear Borel sets H1, . . . ,Hp, the sets f−1
λ (H1), . . . , f−1

λ (Hp) where fλ
is the continuous map fλ : Rk → R, x 7→ λtx, lie in B(Rk). Therefore, for any
collection of strongly separated blocks B1, . . . , Bp,

P (Sλn (B1) ∈ H1, . . . , S
λ
n (Bp) ∈ Hp)−

p∏
i=1

P (Sλn (Bi) ∈ Hi)

=P (Sn(B1) ∈ f−1
λ (H1), . . . , Sn(Bp) ∈ f−1

λ (Hp))−
p∏
i=1

P (Sn(Bi) ∈ f−1
λ (Hi))

goes to zero as n→∞ by assumption (iii).
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(iv) Since by the Cauchy-Schwarz inequality

|λt(Sn(t)− Sn(s))| ≤ ‖λ‖‖Sn(t)− Sn(s)‖,

it trivially holds that:

∀ε > 0, η > 0 ∃δ > 0 : P (ω1(Sλn , δ) > ε‖λ‖) ≤ P (ωk(Sn, δ) > ε) < η

Therefore, if λtΣλ > 0, (λtΣλ)−1/2Sλn ful�lls the conditions of Lemma 3 in Deo (1975)
and thus converges to a standardized Brownian sheet (λtΣλ)−1/2Wλ in DR([0, 1]d). By
continuous mapping, this implies Sλn ⇒ Wλ in DR([0, 1]d). If λtΣλ = 0, the processes
Sλn ≡ 0 and Wλ ≡ 0 are both degenerated and therefore Sλn ⇒Wλ holds trivially.
In particular, every coordinate process Sin = Sein (where ei ∈ Rk is the vector with one
in position i and zero elsewhere (i ∈ {1, . . . , k})) is tight in DR([0, 1]d) and thus for any
ε > 0, we can �nd Mε ∈ (0,∞) such that

P (‖Sn‖∞ > Mε) ≤
k∑
i=1

P (‖Sin‖∞ > Mε) ≤ ε ∀n ∈ N.

Therefore, assumption (iv) implies that Sn is tight in DRk([0, 1]d). Now, consider a
convergent subsequence Sn′ , say Sn′ ⇒ W . Then the continuity of the mappings
DRk([0, 1]d)→ DR([0, 1]d), x 7→ λtx, for any λ ∈ Rk implies Sλn′ = λtSn′ ⇒ λtW = Wλ,
where Wλ is a Brownian sheet in DR([0, 1]d) with covariance λtΣλ ≥ 0. In order to
show that Sn converges in DRk([0, 1]d), it su�ces to show that W (and therefore any
limit of a convergent subsequence) is indeed the Brownian sheet in H = Rk. Denote the
coordinate processes by W i = W ei . Since this holds for all the coordinate processes, W
is a.s. continuous and W (t) = 0 a.s. for any t ∈ [0, 1]d with [t] = 0.
The incrementsW (B) ofW have a Gaussian distribution with mean zero and covariance
λ(B)Σ in Rk, since W (B) = (W 1(B), . . . ,W k(B))t and

∑k
i=1 λiW

i(B) = Wλ(B) is a
centered Gaussian random variable with variance λ(B)λtΣλ for any λ ∈ Rk. In par-
ticular, the distribution of W (B) is absolutely continuous, so that for any collection of
strongly separated blocks B1,. . . ,Bp and any y1, . . . , yp ∈ Rk, we have

P (Sn′(Bj) ≤ yj)→ P (W (Bj) ≤ yj) (j = 1, . . . , p)

and therefore

P (W (B1) ≤ y1, . . . ,W (Bp) ≤ yp)
= lim
n′→∞

P (Sn′(B1) ≤ y1, . . . , Sn′(Bp) ≤ yp)

= lim
n′→∞

P (Sn′(B1) ≤ y1, . . . , Sn′(Bp) ≤ yp)−
p∏
j=1

P (Sn′(Bj) ≤ yj)


+

p∏
j=1

lim
n′→∞

P (Sn′(Bj) ≤ yj)

(iii)
=

p∏
j=1

P (W (Bj) ≤ yj).
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(We have used the fact that since W ∈ CRk([0, 1]d) a.s., the projection maps πt1,...,tl

are PW -a.s. continuous and therefore Sn′ ⇒ W implies the convergence of the �nite
dimensional distributions. Since for a block B = (s, t],

Sn′(B) =
∑

ε∈{0,1}d
(−1)d−

∑d
j=1 εjSn′(s + ε(t− s)),

this implies the weak convergence of the increments.)
Note that due to the a.s. continuity of W , this also yields the independence of the
increments over any (not necessarily strongly separated) collection of pairwise disjoint
blocks.

Lemma 4.3. Let {Xj}j∈Zd be an Rk-valued ρR-mixing, weakly stationary centered ran-
dom �eld, {Sn(t)}t∈[0,1]d a process in DRk([0, 1]d) with

Sn(t) = n−d/2
∑

1≤j≤bntc

Xj

and Σ(n, t) = Cov (Sn(t)). If

(i) sup
j∈Zd

E‖Xj‖2+δ <∞ for some δ > 0 and

(ii)
∑

m≥1m
d−1α1,1(m)δ/(2+δ) <∞,

then Σ(n, t)→ [t]Σ for any t ∈ [0, 1]d and a positive semide�nite matrix Σ = (σi,j)1≤i,j≤k
with σi,j =

∑
v∈Zd γi,j(v), where γi,j(v) = Cov(Xi

0, X
j
v), and the series converges abso-

lutely. Furthermore, {Sn(t)}t∈[0,1]d converges in DRk([0, 1]d) to a k-dimensional Brownian
sheet with covariance matrix Σ.

Proof. As remarked by Guyon (1995) (p. 109 f.), for any i, j ∈ {1, . . . , k} the covariance
inequality (cf. Doukhan (1994), Theorem 3)

|γi,j(v)| = |Cov(Xi
0, X

j
v)| ≤ 10α1,1(‖v‖∞)δ/(2+δ)‖X0‖22+δ

together with assumptions (i) and (ii) implies
∑

v∈Zd |γi,j(v)| <∞. Using this and the
dominated convergence theorem, we obtain∑

−bntc≤v≤bntc

γi,j(v) =
∑

n≤v≤n
I{|v|≤bntc}γi,j(v)

n→∞−→ σi,j

for any t ∈ [0, 1]d. Furthermore,

Σ(n, t)(i,j) = n−dCov

 ∑
1≤m≤bntc

Xi
m,

∑
1≤m′≤bntc

Xj
m′


= n−d

∑
−bntc<v<bntc

γi,j(v)

d∏
l=1

(bntlc − |vl|)

= n−d
d∏
i=1

bntic
∑

−bntc<v<bntc

γi,j(v)

+
d∑

h=1

(
d

h

)
(−1)h

∑
−bntc<v<bntc,

v 6=0

γi,j(v)
∑

I⊆{1,...,d},
|I|=h

∏
l∈Ic

bntlc
n

∏
l∈I

|vl|
n
,
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where analogous arguments to the proof of Lemma 3 in Berkes and Morrow (1981) can
be used to show that the last sum goes to zero. Therefore, Σ(n, t)(i,j) n→∞−→ [t]σi,j . Now,
it remains to show that the matrix Σ is positive semide�nite. For any vector u ∈ Rk,
applying the statement just proven to the real-valued random �eld {utXm}m∈Zd yields:

utΣu = lim
n→∞

n−dE

 ∑
1≤m≤bntc

utXm

2

≥ 0

Therefore, Σ is positive semide�nite and symmetric.
We show that Lemma 4.2 can be applied to obtain the stated convergence. First, note
that condition (i) of Lemma 4.2 is ful�lled, since {Xj}j∈Zd is centered and Σ(n, t)

n→∞−→
[t]Σ.
The assumptions imply the moment inequality (6) from Lemma 4.1. Therefore, condition
(ii) follows from

sup
n≥1

E‖Sn(t)‖2+δ ≤ [t]1+δ/2C(r, d,X) ≤ C(r, d,X) <∞

for any t.
For strongly separated blocks B1 = (s1, t1], . . . , Bq = (sq, tq], there is an i ∈ {1, . . . , d}
such that 0 ≤ si1 ≤ ti1 < si2 ≤ ti2 < · · · < siq ≤ tiq ≤ 1 (after reordering the blocks if
necessary), i.e. min

j=1,...,q−1
(sij+1 − tij) > 0, and therefore min

j=1,...,q−1
(bnsij+1c − bntijc) → ∞

for n→∞. Then

P

 q⋂
j=1

{Sn(Bj) ∈ Hj}

− q∏
j=1

P (Sn(Bj) ∈ Hj)

=P


q−1⋂
j=1

{Sn(Bj) ∈ Hj}

 ∩ {Sn(Bq) ∈ Hq}


− P

q−1⋂
j=1

{Sn(Bj) ∈ Hj}

P (Sn(Bq) ∈ Hq)

+ P (Sn(Bq) ∈ Hq)

P


q−2⋂
j=1

{Sn(Bj) ∈ Hj}

 ∩ {Sn(Bq−1) ∈ Hq−1}


−P

q−2⋂
j=1

{Sn(Bj) ∈ Hj}

P (Sn(Bq−1) ∈ Hq−1)


+P (Sn(Bq) ∈ Hq)P (Sn(Bq−1) ∈ Hq−1)

[
P
({⋂q−3

j=1{Sn(Bj) ∈ Hj}
}
∩ {Sn(Bq−2) ∈ Hq−2}

)
−P (Sn(B1) ∈ H1, . . . , Sn(Bq−3) ∈ Hq−3)P (Sn(Bq−2) ∈ Hq−2)

]

+ · · ·+
q∏
j=1

P (Sn(Bj) ∈ Hj)−
q∏
j=1

P (Sn(Bj) ∈ Hj)

≤q ρR( min
j=1,...,q−1

(bnsij+1c − bntijc))
n→∞−→ 0
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Finally, using (the proof of) Theorem 5.1.3 in Bulinski and Shashkin (2007), we will now
show that condition (iv) of the Lemma is implied by (6). As noted in Lemma 4.1, (6)
together with assumption (i) imply (7) for any block U . Analogously to the proof of
condition (ii), this implies the uniform integrability of {(#Un)−1M(Un)2}n≥1 for any
sequence of blocks Un growing to in�nity. The proof of Theorem 5.1.3 in Bulinski and
Shashkin (2007) therefore shows (iv).

The following corollary of Theorem 4.2 in Billingsley (1968) is an adaptation of Lemma
4.1 in Chen and White (1998) to multiparameter processes.

Lemma 4.4. Let {Xn : n ≥ 1} be a sequence of DH([0, 1]d)-random elements and for
any k ∈ N, let X(k) be a Brownian sheet in Hk with EX(k)(1) = 0 and CovX(k)(1) = Sk.
Suppose the following conditions hold:

(a) For each k ≥ 1, PkXn ⇒ X(k) in DHk([0, 1]d) as n→∞;

(b) X(k) ⇒ X in DH([0, 1]d) as k →∞;

(c) lim supn→∞E
(

supt∈[0,1]d ‖Xn(t)− PkXn(t)‖r
)
→ 0 as k →∞ for some r ≥ 2.

Then Xn ⇒ X in DH([0, 1]d), where X is a Brownian sheet in H with EX(1) = 0 and
CovX(1) = S for S = limk→∞ S

k.

Now, we give some preliminary results needed for the proof of Theorem 2.2. In the
next two lemmas, we will establish a Rosenthal inequality for the bootstrapped partial
sum process.

Lemma 4.5. Let X,Y be random variables taking values in a Hilbert space H1, X is
F-measurable and Y is G-measurable. Let V be a random variable which is independent
of σ(F ,G) and takes values in a Hilbert space H2. Furthermore, let g, h : H1 ×H2 → H
be measurable functions with

E
[
g(X,V )

∣∣V ] = E
[
h(Y, V )

∣∣V ] = 0 a.s.

If ρ = ρR(F ,G) < 1, then for any p > 1 such that E[‖g(X,V )‖p] <∞ and E[‖h(Y, V )‖p] <
∞, there exists a constant Cρ,p such that

E
[∥∥g(X,V )

∥∥p] ≤ Cρ,pE [∥∥g(X,V ) + h(Y, V )
∥∥p] .

Proof. We will make use of the conditional expectations

E
[∥∥g(X,V )

∥∥p∣∣V = v
]

= E[‖g(X, v)‖p] and E
[∥∥h(Y, V )

∥∥p∣∣V = v
]

= E[‖h(Y, v)‖p].

g(X, v) and h(Y, v) are H-valued random variables which are F- and G-measurable,
respectively. So we can apply Theorem 1 of Zhang (1998) to the conditional expectations
and obtain

E
[∥∥g(X,V )

∥∥p∣∣V = v
]
≤ Cρ,pE

[∥∥g(X,V ) + h(Y, V )
∥∥p∣∣V = v

]
and consequently

E
[∥∥g(X,V )

∥∥p] = E
[
E
[∥∥g(X,V )

∥∥p∣∣V ]]
≤ E

[
Cρ,pE

[∥∥g(X,V ) + h(Y, V )
∥∥p∣∣V ]]

= Cρ,pE
[∥∥g(X,V ) + h(Y, V )

∥∥p] .
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Lemma 4.6. Under the assumptions of Theorem 2.2, for any r there exists a constant
Bd,r such that for any �nite subset S ⊂ Nd and i ∈ {1, . . . ,K}

E
∥∥∥ ∑
k∈S(n)

(Xk − µ)Vn,i(k)
∥∥∥r

≤Bd,r

 ∑
k∈S(n)

E ‖(Xk − µ)‖r E ‖Vn,i(k)‖r +
( ∑

k∈S(n)

E ‖(Xk − µ)‖2E ‖Vn,i(k)‖2
)r/2 ,

where S(n) = S ∩ {1, . . . , n}. For any block U ⊆ {1, . . . , n}d and

M?(U) = max
W/U

∥∥∥∥∥∥
∑
j∈W

(Xj − µ)Vn,i(j)

∥∥∥∥∥∥ ,
it then holds that

E (M?(U)r) ≤ Cr(#U)r/2

for r ∈ (2, 2 + δ] and some Cr > 0 that may depend on r but not on U or n.

Proof. This inequality follows in the same way as Theorem 2 of Zhang (1998) and Lemma
4.1 above, using Lemma 4.5 instead of Theorem 1 of Zhang (1998).

4.2 Proofs of the main results

Proof of Theorem 2.1. We assume without loss of generality that µ = 0 and proceed as
in the proof of Theorem 1 in Sharipov et al. (2016) by showing the three conditions of
Lemma 4.4. First, note that for any h ∈ H \ {0}, the random �eld {Yj}j∈Zd with Yj =
〈Xj, h〉 is centered, stationary and ρR-mixing with ρR,Y (x) ≤ ρR,X(x) and α1,1,Y (x) ≤
α1,1,X(x), since any Yj is a measurable transform of Xj. Furthermore,

E|Yj|2+δ ≤ ‖h‖2+δE‖Xj‖2+δ

ensures that {Yj}j∈Zd has �nite (2 + δ)-moments. Now, Lemma 4.3 implies 1

nd/2

∑
1≤j≤bntc

Yj


t∈[0,1]d

⇒ {Wh(t)}t∈[0,1]d , in DR([0, 1]d),

where {Wh(t)}t∈[0,1]d is a Brownian sheet in R with covariance

σ2(h) =
∑
j∈Zd

EY0Yj =
∑
j∈Zd

E
(〈
X0, h

〉
〈Xj, h〉

)
,

and the series converges absolutely. De�ne the covariance operator S as in (3), then
〈Sh, h〉 = σ2(h) holds for all h ∈ H \ {0}, and S is positive, linear and self-adjoint. Then
S ∈ S(H), because for any complete orthonormal system {ei}i∈N in H, we obtain

∞∑
i=1

| 〈Sei, ei〉 | =
∞∑
i=1

〈Sei, ei〉 =

∞∑
i=1

lim
n→∞

n−dE

 ∑
1≤j≤n

〈Xj, ei〉

2
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and Theorem 28.10 of Bradley (2007) (Volume III, p. 154) implies

n−dE

 ∑
1≤j≤n

〈Xj, ei〉

2

≤ Cn−d
∑

1≤j≤n
E(〈Xj, ei〉2) ≤ CE(

〈
X0, ei

〉2
)

with a single constant C for all n and i. Therefore,

∞∑
i=1

| 〈Sei, ei〉 | ≤ C
∞∑
i=1

E(
〈
X0, ei

〉2
) = CE‖X0‖2 <∞.

De�ne Sn(t) = n−d/2
∑

1≤k≤bntc
Xk and consider a Brownian sheet {W (t)}t∈[0,1]d in H

whose covariance operator is de�ned as in (3). Then {W (k)(t)}t∈[0,1]d = {PkW (t)}t∈[0,1]d

is a Brownian sheet in Hk with covariance operator Sk = PkSPk. In particular, the
covariance operator can be identi�ed with the k × k nonnegative de�nite covariance
matrix Σ = (γi,j)1≤i,j≤k with γi,j =

∑
v∈Zd E

(〈
X0, ei

〉
〈Xv, ej〉

)
.

For each k ≥ 1, the convergence

{PkSn(t)}t∈[0,1]d ⇒ {W
(k)(t)}t∈[0,1]d , in DHk([0, 1]d),

is equivalent to the functional central limit theorem for the k-dimensional random �eld
X̃

(k)
j = (〈Xj, e1〉 , . . . , 〈Xj, ek〉)t. Since {X̃

(k)
j }j∈Zd ful�lls the assumptions of the Lemma,

Lemma 4.3 yields 1

nd/2

∑
1≤j≤bntc

X̃
(k)
j


t∈[0,1]d

⇒ {W̃ (k)(t)}t∈[0,1]d , in DRk([0, 1]d),

where {W̃ (k)(t)}t∈[0,1]d is a Brownian sheet in Rk with covariance matrix Σ, i.e. condition
(a) of Lemma 4.4 is satis�ed.
Let {W (t)}t∈[0,1]d be a Brownian sheet in H with CovW (1) = S, where S is as de�ned
in (3). For every ei, {〈W (t), ei〉}t∈[0,1]d is a Brownian sheet in R, and therefore Cairoli's
strong inequality (Corollary 2.3.1 in Chapter 7 of Khoshnevisan (2002)) for submartingale
random �elds in R yields

E

(
sup

t∈[0,1]d

∥∥∥W (t)−W (k)(t)
∥∥∥2
)

= E

(
sup

t∈[0,1]d

∞∑
i=k+1

〈W (t), ei〉2
)

≤
∞∑

i=k+1

E

(
sup

t∈[0,1]d
〈W (t), ei〉2

)

≤ 4d
∞∑

i=k+1

E
(
〈W (1), ei〉2

)
= 4d

∞∑
i=k+1

〈Sei, ei〉
k→∞−→ 0,

which implies sup
t∈[0,1]d

‖W (t)−W (k)(t)‖2 → 0 in probability and therefore W (k) ⇒ W in

DH([0, 1]d).
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Finally, using (5) for r = 2 + δ > 2, we show condition (c). We note that due to the
Hilbert space property,

‖Ak(X1)‖ =

∥∥∥∥∥X1 −
k∑
i=1

〈
X1, ei

〉
ei

∥∥∥∥∥ k→∞−→ 0 a.s.

Using ‖Ak(X1)‖r ≤ ‖X1‖r and the dominated convergence theorem, this implies

max{E‖Ak(X1)‖r, E‖Ak(X1)‖2} k→∞−→ 0.

We can therefore apply Lemma 4.1 to {Ak(Xj)}j∈Zd and obtain

E

(
sup

t∈[0,1]d
‖Sn(t)− PkSn(t)‖r

)

=n−rd/2E

 max
1≤l≤n

∥∥∥∥∥∥
∑

1≤j≤l
Ak(Xj)

∥∥∥∥∥∥
r

≤C̃Bd,r
(
E‖Ak(X1)‖r + (E‖Ak(X1)‖2)r/2

)
k→∞−→ 0,

and therefore (c) in Lemma 4.4.

Proof of Theorem 2.2. We will use Lemma 4.4. For k ∈ N, we start by establishing the
tightness of S?(k)

n,1 , . . . , S
?(k)
n,K . Since S(k)

n is also tight (cf. the proof of Theorem 2.1), the

tightness of (S
(k)
n , S

?(k)
n,1 , . . . , S

?(k)
n,K ) will then follow immediately.

Note that for any j ∈ {1, . . . ,K}

S
?(k)
n,j (t) =

1

nd/2

∑
1≤i≤bntc

(
X

(k)
i − µ(k)

)
Vn,j(i)−

1

nd/2

∑
1≤i≤bntc

(
µ̂(k)(i)− µ(k)

)
Vn,j(i).

Using Lemma 4.6, we obtain that the �rst summand is stochastically bounded and ful�lls
the tightness condition (iv) of Lemma 4.2 (cf. the proof of Theorem 2.1). Since by
assumption the change-set estimator Ĉn is a subblock of (0,n], we can bound the second
summand by ∥∥∥∥∥∥ 1

nd/2

∑
1≤i≤bntc

(
µ̂(k)(i)− µ(k)

)
Vn,j(i)

∥∥∥∥∥∥
≤nd/2 max

1≤i≤n

∥∥∥µ̂(k)(i)− µ(k)
∥∥∥ 1

nd

∑
1≤i≤bntc

|Vn,j(i)|

≤C max
1≤l<m≤n

∥∥∥∥∥∥ 1

nd/2

∑
l≤i≤m

(
X

(k)
i − µ(k)

)∥∥∥∥∥∥ 1

nd

∑
1≤i≤bntc

|Vn,j(i)|

for some C > 0. By Lemma 4.1, the �rst factor is stochastically bounded. For the second
factor, note that due to the Gaussian distribution of Vn,j(i), for any block S and r ≥ 2,

E
∣∣∣∑
k∈S
|Vn,j(k)|

∣∣∣r ≤ Cr (#S)r (8)
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holds for some constant Cr > 0. Therefore, the second summand is stochastically
bounded. Writing

Yn(·) =
1

nd/2

∑
1≤i≤bn·c

(
µ̂(k)(i)− µ(k)

)
Vn,j(i) and Wn(·) = n−d

∑
1≤i≤bn·c

|Vn,j(i)|,

the modulus of continuity of the second summand can be bounded in the following way:

P (ωkYn(δ) ≥ ε)

≤
d∑

h=1

P

(
sup

t∈[0,1]d: th≤1−δ,γ∈(0,δ)

‖Yn(t1, . . . , th−1, th + γ, th+1, . . . , td)− Yn(t)‖ ≥ εd−1

)

=
d∑

h=1

P

 sup
t∈[0,1]d: th≤1−δ,γ∈(0,δ)

1

nd/2

∥∥∥∥∥∥∥
∑

1≤i≤bntc
bnthc<ih≤bn(th+γ)c

(µ̂(k)(i)− µ(k))Vn,j(i)

∥∥∥∥∥∥∥ ≥ εd−1



≤
d∑

h=1

P

 max
1≤i≤n

nd/2‖µ̂(k)(i)− µ(k)‖ · sup
t∈[0,1]d: th≤1−δ,γ∈(0,δ)

1

nd

∑
1≤i≤bntc

bnthc<ih≤bn(th+γ)c

|Vn,j(i)| ≥ εd−1


≤dP ( max

1≤i≤n
nd/2‖µ̂(k)(i)− µ(k)‖ > C)

+
d∑

h=1

P

(
sup

t∈[0,1]d: th≤1−δ,γ∈(0,δ)

|Wn(t1, . . . , th−1, th + γ, th+1, . . . , td)−Wn(t)| ≥ εd−1C−1

)
.

The �rst summand goes to 0 uniformly in n for C →∞. For the second summand, de�ne

Am(h, δ) = (0, 1]× · · · × ((m− 1)δ,mδ ∧ 1]× · · · × (0, 1]

for m = 1, . . . , p with p = p(δ) = bδ−1c+ 1 and

Um,n = {bntc : t ∈ Am(h, δ)}.

Then, #Um,n ≤ ndδ, and therefore,

P

(
sup

t∈[0,1]d: th≤1−δ,γ∈(0,δ)

|Wn(t1, . . . , th−1, th + γ, th+1, . . . , td)−Wn(t)| ≥ εd−1C−1

)

≤
p∑

m=1

P

(
sup

s,t∈Am(h,δ), sr=tr (r 6=h)
|Wn(t)−Wn(s)| ≥ ε

2
d−1C−1

)

≤
p∑

m=1

P

(
sup

V /Um,n

n−d
∑
i∈V
|Vn,j(i)| ≥

ε

4
d−1C−1

)

≤
p∑

m=1

P

n−d ∑
i∈Um,n

|Vn,j(i)| ≥
ε

4
d−1C−1


≤

p∑
m=1

n−dr4rdrCrε−rCr(#Um,n)r

≤4rdrCrε−rCr(1 + δ−1)δ · δr−1 δ→0−→ 0.
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Thus, condition (iv) of Lemma 4.2 is ful�lled for the second summand as well. Therefore,
the sum S

?(k)
n,j is stochastically bounded with a modulus of continuity that ful�lls the

tightness condition, and therefore it is tight.
Next, we establish the �nite dimensional convergence. Note that due to the tight-

ness of the process, it su�ces to show that for any subsequence, there exists a further
subsequence such that the �nite dimensional distributions converge to the right limit dis-
tribution. To do this, we �rst show the following result: For any subsequence (nm)m∈N,
there is another subsequence (nm)m∈M with M ⊂ N, such that for all k, l ∈ N and
all disjoint blocks B1, . . . , Bl with corners in ([0, 1] ∩ Q)d, the weak convergence of the
conditional (on Xi, i ≤ nm) distribution of the random vectors

W?
m,j :=

(
S
?(k)
nm,j

(B1), S
?(k)
nm,j

(B2), . . . , S
?(k)
nm,j

(Bl)
)t
, j = 1, . . . ,K

to W?
j := (W

?(k)
j (B1),W

?(k)
j (B2), . . . ,W

?(k)
j (Bl))

t, j = 1, . . . ,K, holds almost surely for
(nm)m∈M .
By the following argument, the almost sure weak convergence yields the weak convergence
of the joint distribution. De�ne the random vectors

Wm :=
(
S(k)
nm(B1), S(k)

nm(B2), . . . , S(k)
nm(Bl)

)t
andW := (W (k)(B1),W (k)(B2), . . . ,W (k)(Bl))

t. Note that by assumption,W,W?
1, . . . ,W

?
K

are stochastically independent. It holds for any Borel sets A0, A1, . . . , AK ⊂ H l
k that∣∣P (Wm ∈ A0,W

?
m,1 ∈ A1, . . . ,W

?
m,K ∈ AK

)
− P (W ∈ A0,W

?
1 ∈ A1, . . . ,W

?
K ∈ AK)

∣∣
=
∣∣E [P (Wm ∈ A0,W

?
m,1 ∈ A1, . . . ,W

?
m,K ∈ AK

∣∣Xi, i ≤ nm

)]
−P (W ∈ A0,W

?
1 ∈ A1, . . . ,W

?
K ∈ AK)|

≤E
[
1{Wm∈A0}

∣∣P (W?
m,1 ∈ A1, . . . ,W

?
m,K ∈ AK

∣∣Xi, i ≤ nm

)
− P (W?

1 ∈ A1, . . . ,W
?
K ∈ AK)

∣∣]
+ |P (Wm ∈ A0)P (W?

1 ∈ A1, . . . ,W
?
K ∈ AK)− P (W ∈ A0)P (W?

1 ∈ A1, . . . ,W
?
K ∈ AK)|

≤E
[∣∣P (W?

m,1 ∈ A1, . . . ,W
?
m,K ∈ AK

∣∣Xi, i ≤ nm

)
− P (W?

1 ∈ A1, . . . ,W
?
K ∈ AK)

∣∣]
+ |P (Wm ∈ A0)− P (W ∈ A0)|
→ 0,

as almost sure convergence implies convergence in L1 for bounded random variables and
as the last summand converges to 0 by Theorem 2.1. To show the conditional weak con-
vergence of (W?

m,1, . . . ,W
?
m,K), note that conditional on Xi, i ≤ nm, W?

m,1, . . . ,W
?
m,K

are stochastically independent and have a Gaussian distribution with mean 0, so it suf-
�ces to show the convergence of the conditional covariance operators. For j ∈ {1, . . . ,K}
and l1, l2 ∈ {1, . . . , l}, the covariance operators are given by

Cov?(S
?(k)
n,j (Bl1), S

?(k)
n,j (Bl1))

=E
[
S
?(k)
n,j (Bl1)S

?(k)
n,j (Bl2)t|Xi, i ≤ n

]
=

1

nd

∑
a∈Bl1,n

∑
b∈Bl2,n

(X
(k)
a − µ̂(k)(a))(X

(k)
b − µ̂(k)(b))tE [Vn,j(a)Vn,j(b)]

=
∑

h∈Bl2,n	Bl1,n

ω

(
h

q(n)

)
1

nd

∑
a:a∈Bl1,n,a+h∈Bl2,n

(X
(k)
a − µ̂(k)(a))(X

(k)
a+h − µ̂

(k)(a + h))t.
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For l1 = l2, this is the covariance estimator proposed by Bucchia and Heuser (2015). As
seen in Remark 2.1, under the assumptions of Theorem 2.2 this estimator converges in
probability to λ(Bl1)Σ, where Σ is the long-run variance matrix. Write var?(S

?(k)
n,j (Bl1)) =

Cov?(S
?(k)
n,j (Bl1), S

?(k)
n,j (Bl1)). For l1 6= l2, it holds that

var?
(
S
?(k)
n,j (Bl1 ∪Bl2)

)
P−→ λ(Bl1 ∪Bl2)Σ = (λ(Bl1) + λ(Bl2))Σ (cf. Remark 2.1),

and thus

Cov?(S
?(k)
n,j (Bl1), S

?(k)
n,j (Bl2))

=
1

2

(
var?

(
S
?(k)
n,j (Bl1) + S

?(k)
n,j (Bl2)

)
− var?(S

?(k)
n,j (Bl1))− var?(S

?(k)
n,j (Bl2))

)
=

1

2

(
var?

(
S
?(k)
n,j (Bl1 ∪Bl2)

)
− var?(S

?(k)
n,j (Bl1))− var?(S

?(k)
n,j (Bl2))

)
P−→ 0.

Therefore, for any subsequence (nm)m∈N, there exists a further subsequence (nm)m∈M
such that the estimator converges almost surely. Since we only consider countably many
blocks Bi, by a diagonal sequence argument we can choose a single subsequence (nm)m∈M
so that the almost sure convergence holds for all k ∈ N and all blocks with edges in
(Q ∩ [0, 1])d.
As the process (S

(k)
nm , S

?(k)
nm,1

, . . . , S
?(k)
nm,K

) is right-continuous, the convergence of all �nite
dimensional distributions follows from the convergence for all disjoint B1, . . . , Bl with
corners in ([0, 1] ∩Q)d (see the remark after Theorem 3 in Bickel and Wichura (1971)).
Together with the tightness of (S

(k)
n , S

?(k)
n,1 , . . . , S

?(k)
n,K ), condition (a) of Lemma 4.4 follows:

for every k, the process (S
(k)
n , S

?(k)
n,1 , . . . , S

?(k)
n,K ) converges to (W (k),W

?(k)
1 , . . . ,W

?(k)
K ).

From the proof of Theorem 2.1, we already know that W (k) ⇒ W as k → ∞.
W

?(k)
1 , . . . ,W

?(k)
K and W ?

1 , . . . ,W
?(k)
K are independent copies of W (k) respectively W ,

so condition (b) is obvious.
For condition (c), note that for r = 2 + δ

E

[
sup

s,t∈[0,1]d

∥∥∥(Sn(s), S?n,1(t), . . . , S?n,K(t))− (S(k)
n (s), S

?(k)
n,1 (t), . . . , S

?(k)
n,K (t))

∥∥∥r]

≤2r−1E

[
sup

s∈[0,1]d

∥∥∥Sn(s)− S(k)
n (s)

∥∥∥r]+ 2K(r−1)
K∑
j=1

E

[
sup

t∈[0,1]d

∥∥∥S?n,j(t)− S?(k)
n,j (t)

∥∥∥r]

≤2r−1E

[
sup

s∈[0,1]d

∥∥∥Sn(s)− S(k)
n (s)

∥∥∥r]

+2(K+1)(r−1)
K∑
j=1

E

 sup
t∈[0,1]d

∥∥∥∥∥∥ 1

nd/2

∑
1≤i≤bntc

Vn,j(i) (Ak(Xi)−Ak(µ))

∥∥∥∥∥∥
r

+2(K+1)(r−1)
K∑
j=1

E

 sup
t∈[0,1]d

∥∥∥∥∥∥ 1

nd/2

∑
1≤i≤bntc

Vn,j(i) (Ak(µ̂(i))−Ak(µ))

∥∥∥∥∥∥
r .

By the same reasoning as in the proof of Theorem 2.1, the �rst two terms converge to 0
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for k →∞ by Lemma 4.1 and 4.6 respectively. For the third term, consider

E

 sup
t∈[0,1]d

∥∥∥∥∥∥ 1

nd/2

∑
1≤i≤bntc

Vn,j(i) (Ak(µ̂(i))−Ak(µ))

∥∥∥∥∥∥
r

≤E
[
nrd/2 max

1≤i≤n
‖Ak(µ̂(i)− µ)‖r

]
· E

∣∣∣∣∣∣ 1

nd

∑
1≤i≤n

|Vn,j(i)|

∣∣∣∣∣∣
r

≤CE

 max
1≤l<m≤n

∥∥∥∥∥∥ 1

nd/2

∑
l≤i≤m

Ak (Xi − µ)

∥∥∥∥∥∥
r · E

∣∣∣∣∣∣ 1

nd

∑
1≤i≤n

|Vn,j(i)|

∣∣∣∣∣∣
r .

Since the �rst factor goes to 0 (cf. the proof of Theorem 2.1) and the second factor
remains bounded (cf. (8)), the proof of condition (c) is �nished.

97



Chapter 5

Additional material: Change-set

estimation

1 Introduction

1.1 Change-set estimation

Given observations at the nodes of a d-dimensional (d ∈ N �xed) grid in [0, 1]d with
rectangular mesh, we study the problem of dividing these observations into two subsets
such that all the observations in one subset have the same distribution but the distribu-
tions di�er for each subset. Applications of this type of model can be found in image
analysis, where the observations are divided into a fore- and a background and the aim is
to �rst �nd the corresponding segments of the grid and then estimate the distribution on
each segment, thus reconstructing the image. Further applications lie in forestry, medi-
cine, geology or meteorology, as discussed e.g. in Carlstein and Krishnamoorthy (1992).
Here, we restrict ourselves to changes in the mean, where the mean in both segments is
unknown and constant.
Since this type of problem can be interpreted as a multidimensional change-point

problem � and indeed the nonparametric estimators employed in this chapter are gen-
eralizations of estimators used in classical change-point analysis � we call one of the
two segments the change-set and focus on its estimation. A closely related problem is
the boundary estimation problem, where instead of estimating the change-set, one aims
to estimate the common boundary of the two segments. It stands to reason that the
methods employed for one problem might also be used for the other, and we will there-
fore develop the theory for the boundary estimation problem alongside the theory for the
change-set estimation.
While there are a lot of results for change-set and change-boundary estimation prob-

lems (see Korostelev and Tsybakov (1993), Müller and Song (1994), Carlstein et al.
(1994), Khmaladze et al. (2006b), Mallik (2013) to name a few), most of the published
works focus on independent observations. Articles like Carlstein and Krishnamoorthy
(1992) and Ferger (2004) can thus draw on a more sophisticated theory (e.g. exponential
inequalities) that is not available under the more general weak dependence assumptions
considered here.
As a measure of the quality of the estimation, we count the total number of grid nodes

that have been misclassi�ed. This is in contrast to the local methods employed by e.g.
Qiu (2005) and Garlipp and Müller (2007), which thrive to give a pixelwise reconstruction
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of the mean function and yield statements about the probability of misclassi�cation of
a single pixel but not of the total number of misclassi�ed pixels. Letting the number of
grid points go to in�nity, we derive asymptotic results, namely conditions under which
the estimated set converges in probability to the true change-set and the rate at which
it does so.
From a technical point of view, as seen in Bucchia and Heuser (2015), the question

of convergence rates for the total number of misclassi�ed nodes is of interest when the
change-set estimator is used to estimate the mean-function of the process: There, con-
vergence for the mean-function estimator was derived by assuming that a change-set
estimator with a given quality of approximation had been given. As an example for such
an estimator, Bucchia and Heuser (2015) considered the case of rectangular change-sets.
Here, we aim to obtain estimators for more general types of change-set, improving the
result by Bucchia and Heuser (2015) along the way (cf. section 3.1). In contrast to Buc-
chia and Heuser (2015), in the current setting, we try to keep to the discrete framework
as much as possible, i.e. we do not seek to estimate an abstract set θ ⊆ [0, 1]d but rather
the grid points contained therein. This is reasonable, since the information given in the
model pertains to the grid points rather than the whole set [0, 1]d, making it infeasible
to expect a change-set estimator to have greater accuracy. In keeping with the rest of
this thesis, we derive general results under relatively general assumptions and then give
examples for the applications of these results.
The structure of the remainder of this chapter is as follows: First, we introduce the

model considered and the assumptions which will be needed throughout the chapter. In
section 2, the main results are presented, namely the consistency of the estimation and
some general results on the rate of convergence. Since the latter reduces the problem of
deriving convergence rates to obtaining a maximal inequality, we then give an example
where such an inequality is ful�lled under mixing conditions. Finally, in section 3 we
give examples for classes of change-sets where the main results can be applied to obtain
the consistency and rates of convergence for the estimation. The proofs of both the main
results and some auxiliary maximal inequalities are relegated to section 4.

Notations: Before we describe the model, we want to introduce some notations. We
use the same notational conventions for vectors as in the rest of this thesis: Nd and Rd
(d ∈ N) are the spaces of d-dimensional integer and real vectors, respectively, equipped
with the usual partial order. We write vectors in Rd as x = (x1, . . . , xd). All operations
on vectors x,y ∈ Rd are meant componentwise: bxc := (bx1c, . . . , bxdc), where bxic is
the integer part of xi, 1

x := x−1 := (x−1
1 , . . . , x−1

d ) and x · y := (x1y1, . . . , xdyd). For
n ∈ N and x ∈ Rd, we write n = (n, . . . , n) and [x] :=

∏d
i=1 xi. For a set T ⊆ Rd and a

vector x ∈ Rd, we write xT := {xt : t ∈ T}.
IA is the indicator function and λ(A) is the Lebesgue-measure of a set A ⊆ Rd. In

analogy to the one-dimensional case, we write

{1, . . . ,N} := {1, . . . , N1} × · · · × {1, . . . , Nd}

for N = (N1, . . . , Nd) ∈ Nd and

(x,y] := (x1, y1]× · · · × (xd, yd]

for x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ Rd with x ≤ y.
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‖ · ‖2 denotes the euclidean and ‖ · ‖∞ denotes the supremum norm. With this, we
de�ne the distance measure ρ(x,y) := ‖x − y‖∞ between two points and the distance
ρ(A,B) := inf{ρ(x,y) : x ∈ A,y ∈ B} between two sets A and B. Finally, ρ(x, A) :=
ρ({x}, A), and for δ > 0, A(δ) := {x : ρ(x, ∂A) < δ} is the δ-annulus around the
topological boundary ∂A of A. For a random variable X, ‖X‖p denotes the usual Lp-
norm (p ∈ [1,∞]).

1.2 Model and main assumptions

We consider a sequence of grids (In)n∈N in [0, 1]d (d ∈ N �xed) with

I = In =

{
κi,n =

(
i1
N1

, . . . ,
id
Nd

)
: 1 ≤ ij ≤ Nj

}
⊂ [0, 1]d,

where Ni = Ni(n) ∈ N (i = 1, . . . , d) and card(In) =
∏d
j=1Nj(n) → ∞ for n → ∞.

Assuming that [0, 1]d = θ ∪ θc for a measurable set θ, for each n ∈ N we consider
Rp-valued (p ∈ N �xed) observations Xi = Xi,n on the grid In with

Xi,n = aIθ(κi,n) + bIθc(κi,n) + Yi,n, i ∈ {1, . . . ,N},

where {Yi,n}κi,n∈I is a square integrable centered process, a = an, b = bn ∈ Rp are
unknown with a 6= b. The unknown set θ is the focus of the following estimation methods.
We divide [0, 1]d into subrectangles

Ci,n :=
(
N−1(i− 1),N−1i

]
such that each grid-point κi,n is included in exactly one set Ci,n and the volume of each
set is λ(Ci,n) =

∏d
j=1N

−1
j = card(In)−1 and write the projection of a set T ⊂ [0, 1]d on

the Ci,n as TI =
⋃

κi,n∈T
Ci,n. Writing

|T | = card{T ∩ I},

this ensures that |T | = |I|λ(TI). We identify θ with its projection on the grid θ = θI .

Remark 1.1.

• In the following, we will consider the asymptotics for |In| → ∞ as n → ∞, i.e. a
sequence of grids with maxi=1,...,dNi →∞ and corresponding sequences of random
�elds {Xi,n}κi,n∈In and {Yi,n}κi,n∈In. The assumption |In| → ∞ is su�cient for
the general results presented here. However, it is sometimes necessary to make the
stronger assumption mini=1,...,dNi → ∞. For instance, this is the case when we
want to switch from our general viewpoint of essentially equating subsets of [0, 1]d

with the grid nodes they contain to a continuous framework. In this setting, we
view the projection of a set onto the grid as an approximation of that set which
should become asymptotically �ner (cf. Example 3.1).

• Since we consider observations on a sequence of grids, it is natural to model the
stochastic part of the process as a sequence of random �elds {Yi,n}κi,n∈In on the
grids. However, an important special case which we keep in mind throughout this
chapter is the following: Assume there is a centered random �eld {Yk}k∈Zd such
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that Yi,n = Yi for all n ∈ N, i ∈ {1, . . . ,N}. This model makes the uniform (in n)
behavior of the random �eld � which is needed e.g. in Assumptions (Y) and (Y(r))
� more explicit and is the setting in which a lot of weak dependence concepts which
allow the inference of our assumptions are de�ned (cf. Remark 1.7).

In order to estimate θ, we choose a class T = Tn ⊆ P([0, 1]d) of candidate sets for θ such
that each set T ∈ T is anchored on the grid, i.e. TI = T . Setting X̄n = |In|−1

∑
κi,n∈In

Xi,n,

we use the statistic

Dn(T ) =
1

|In|
∑
κi,n∈T

(Xi,n − X̄n)

=
1

|In|

 ∑
κi,n∈T

Xi,n −
|T |
|In|

 ∑
κi,n∈T

Xi,n +
∑

κi,n∈T c
Xi,n


=

1

|In|


(

1− |T |
|In|

) ∑
κi,n∈T

Xi,n −
|T |
|In|

∑
κi,n∈T c

Xi,n


=

1

|In|

 |T c||In| ∑
κi,n∈T

Xi,n −
|T |
|In|

∑
κi,n∈T c

Xi,n


=
|T |
|In|
|T c|
|In|

 1

|T |
∑
κi,n∈T

Xi,n −
1

|T c|
∑

κi,n∈T c
Xi,n

 ,

for T ∈ T . (Here and in the rest of this chapter,
∑

κi,n∈T is the sum over all κi,n ∈ In
with κi,n ∈ T . If there are no such grid points, the sum is assumed to be zero.) Then

θ̂n = arg max
T∈TI

‖Dn(T )‖2

is our estimator for θ. Observing that

∆n(T ) = EDn(T ) =
1

|In|
∑
κi,n∈T

(
aIθ(κi,n) + b(1− Iθ(κi,n))− |θ|

|In|
a−

(
1− |θ|
|In|

)
b

)

=
1

|In|
∑
κi,n∈T

(
Iθ(κi,n)− |θ|

|In|

)
(a− b)

=δn(T )(a− b),

with
δn(T ) = |In|−2 {|T c||T ∩ θ| − |T ||T c ∩ θ|} ,

we further de�ne ρn(T ) = |δn(T )| and Bn(T ) = Dn(T ) − ∆n(T ). We assume for the
rest of this chapter that σ = σI = |In|−1 min{|θ|, |θc|} > 0, that is, that θ does not
correspond to a trivial partition. As a distance measure on the grid, we de�ne

dn(T1, T2) = |In|−1|T14T2|

where 4 denotes the symmetric di�erence of two sets. Using dn as a measure for the
distance between our estimator and the true set θ corresponds to a global approach where
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we count the total number of misclassi�ed grid points. Since there is a-priori nothing in
the model that distinguishes θ over θc, we also consider the question of estimating their
common boundary ∂θ. For this,

∂n(T, θ) = min{dn(T, θ), dn(T c, θ)}

is the relevant grid-based distance measure.
With this notation, we obtain the following lemma, which gives a relation between δn

and ρn and the distance between sets:

Lemma 1.1. For any T ⊆ [0, 1]d it holds that

σIdn(T, θ) ≤ δn(θ)− δn(T ) < dn(θ, T )

and
σI∂n(T, θ) ≤ ρn(θ)− ρn(T ) < ∂n(θ, T ).

Remark 1.2. In particular, if dn(T, θ) ≤ 1/2 for some T ⊆ [0, 1]d, we obtain

σIdn(T, θ) ≤ ρn(θ)− ρn(T ) < dn(θ, T ),

since dn(T, θ) ≤ 1− dn(T, θ) = dn(T c, θ) in this case.

Proof. The proof of the �rst assertion can be found in Ferger (2004) (Lemma A.1) (or
also in Carlstein and Krishnamoorthy (1992)). The second assertion follows trivially
from the �rst, since

ρn(θ)− ρn(T ) = min{δn(θ)− δn(T ), δn(θ)− δn(T c)}

for any T ⊆ [0, 1]d.

Remark 1.3. As mentioned in the introduction, the results of this chapter were at least
in part motivated by the need to have convergence rates of change-set estimators that could
be used for the long-run variance estimation described in Bucchia and Heuser (2015). To
do that, note that the general framework in Bucchia and Heuser (2015) can be viewed
as a special case of the uniform grid model (where N1 = · · · = Nd = n), with a single
process {Yk}k∈Zd such that Yi = Yi,n for i ∈ {1, . . . , n}d. Since the long-run variance
estimation was intended as part of a test for epidemic changes, Bucchia and Heuser
(2015) assumed change-sets that are �nite unions of m (m ∈ N) rectangles with integer-
valued edges. Because, for such sets, λ(Cn) = |n−1Cn|, the (continuous) distance measure
λ(Ĉn4Cn) used in Bucchia and Heuser (2015) is equivalent to the (discrete) distance
measure considered here, and all the results can be rewritten with | · | instead of λ(·). For
the sake of simplicity, and since this assumption is needed to construct asymptotic tests,
a functional central limit theorem was assumed in Bucchia and Heuser (2015). However,
a careful reading of the proofs shows that what is actually used are the implied maximal
inequalities (cf. Remark 2.2 in Bucchia and Heuser (2015))

max
A∈An

∥∥∥∥∥∑
i∈A

Yi

∥∥∥∥∥ = OP (nd/2m)
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and

max
A∈An

∥∥∥∥∥∥
∑

i∈A∩Nj

Yi

∥∥∥∥∥∥ = OP (nd/2m),

where the latter follows from the fact that the sets Nj = {k ∈ Nd : 1 ≤ k,k + j ≤ n} are
rectangles, and the same inequalities hold if we consider Ac instead of A. Since the speci�c
form of the change-set was not needed otherwise, the results could be extended to any
class An of sets such that maximal inequalities like the above are ful�lled. In particular,
such maximal inequalities are derived in Section 3 (for the considered examples, maximal
inequalities of type (11) can be derived analogously for sets of the form A∩Nj or Ac∩Nj,
since Nj is a rectangle).

As mentioned above, the constants a, b as well as the number of grid points in the
change-set depend on the underlying grid I. As we will see in the following results, the
change is easier to detect and estimate for large values of ‖a − b‖2 = ‖an − bn‖2 and
σI , whereas change sizes that vanish asymptotically make stronger assumptions on the
stochastic process necessary (cf. assumptions (7), (14) and (15) in Theorem 2.1 and
Theorems 2.2 and 2.3). An important special case of size restrictions is the following:

Assumption (C). For all n ∈ N, it holds that ‖an − bn‖2 ≥ ∆ > 0 for some ∆ > 0,
which is independent of n. Analogously, it holds for the change-set that

σI = |In|−1 min{|θ|, |θc|} ≥ σ̃ > 0

for all n ∈ N and some constant σ̃ > 0, which is independent of n.

We need some assumption on the best possible approximation of θ using candidate
sets:

Assumption (T ∗1). For any n ∈ N, there is an element T ∗ ∈ T such that
T ∗ ∈ arg min

T∈T
∂n(T, θ) and

∂n(T ∗, θ) <
1

6
σI |In|−1αn,

for some rate αn = o(|In|).

And analogously with dn:

Assumption (T ∗2). For any n ∈ N, there is an element T ∗ ∈ T such that
T ∗ ∈ arg min

T∈T
dn(T, θ) and

dn(T ∗, θ) <
1

6
σI |In|−1αn,

for some rate αn = o(|In|).

Finally, we introduce some assumptions on the underlying stochastic process:

Assumption (Y). For some K > 0, it holds for any M ⊆ [0, 1]d and n ∈ N that

E

∥∥∥∥∥∥
∑

κi,n∈M
Yi,n

∥∥∥∥∥∥
2

2

≤ K|M |. (1)
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Remark 1.4. Assumption (Y) is ful�lled e.g. if the autocovariances are absolutely sum-
mable, in the sense that

lim sup
n→∞

max
κi,n∈In

∑
κj,n∈In

|Cov(Y
(k)
i,n , Y

(l)
j,n )| <∞, k, l ∈ {1, . . . , p}. (2)

(Here, k = l ∈ {1, . . . , p} would su�ce to imply Assumption (Y).)

Remark 1.5. In the special case described in Remark 1.1, if {Yk}k∈Zd is weakly station-
ary, condition (2) is equivalent to∑

k∈Zd
|Cov(Y

(i)
0 , Y

(j)
k )| <∞, i, j ∈ {1, . . . , p}. (3)

Remark 1.6. The properties (2) or (3) are often of use as part of central limit theorems
and have therefore been proven under various weak dependence assumptions. Examples
for this include (BL, θ)-dependence (cf. Bulinski and Shashkin (2007), Lemma 3.1.9 and
Remark 3.1.10, in conjunction with Lemma 8 in Newman (1984)), mixing (cf. Guyon
(1995), p. 110; Remark 2.3 and the proof of Lemma 2.2) and physical dependence (cf.
El Machkouri et al. (2013), Proposition 2).

Although Assumption (Y) is su�cient for the general results below, in applications we
will often need the following stronger assumption, in which, for each n ∈ N, S = Sn ⊆
P([0, 1]d) is a set of subsets of [0, 1]d which are anchored on the pixels. (We will specify
S as needed separately in each application.)

Assumption (Y(r)). There are r ≥ 2 and Kr > 0, so that for all n ∈ N, it holds that
E‖Yi,n‖r2 <∞ for all κi,n ∈ In and

E

∥∥∥∥∥∥
∑
κi,n∈S

Yi,n

∥∥∥∥∥∥
r

2

≤ Kr|S|r/2, (4)

for all S ∈ Sn.

Remark 1.7.

• For a set T ⊂ [0, 1]d which is anchored on the pixels, i.e. T = TI , it holds that

NT =
⋃

κi,n∈T
NCi,n =

⋃
κi,n∈T

(i− 1, i] ∈ B(Rd)

and
Z(NT ) =

∑
i∈Zd

λ(NT ∩ (i− 1, i])Yi,n =
∑
κi,n∈T

Yi,n

as well as λ(NT ) = |In|λ(T ) = |T |. Therefore, the smoothed partial sum process is
in this case identical to the unsmoothed process. Assumption (Y) is then equivalent
to

E

∥∥∥∥∥∥
∑
i∈Zd

λ(NT ∩ (i− 1, i])Yi,n

∥∥∥∥∥∥
2

2

≤ Kλ(NT ) (5)

and analogously for Assumption (Y(r)).
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• For r = 2, Assumption (Y(r)) is implied by Assumption (Y). For r > 2, it is
commonly used to prove the tightness in proofs of functional central limit theor-
ems and can, for instance, be inferred from corresponding Rosenthal-inequalities.
Let Yi,n = Yi for a centered real-valued random �eld {Yk}k∈Zd (cf. Remark 1.1).
Then Assumption (Y(r)) is ful�lled e.g. for mixing random �elds (cf. Lin and Lu
(1996), Lemma 6.2.3 (for 2 < r ≤ 3) or Zhang (1998), Theorem 2 and Bucchia
and Wendler (2015), Lemma 4.1 for ρ-mixing; Lin and Lu (1996), Lemma 6.3.1
(for 2 < r ≤ 3) for nonuniform ϕ-mixing; Fazekas et al. (2000), Theorem 1, for
(nonuniform) α-mixing), under physical dependence assumptions (cf. El Machkouri
et al. (2013), Proposition 1) or positively or negatively associated (cf. Bulinski and
Shashkin (2007), Theorems 2.3.1 and 2.3.3 in conjunction with Vronski (1998)
and Christo�des and Vaggelatou (2004)) random �elds. In the special case of rect-
angular sets S, Assumption (Y(r)) is also ful�lled under (BL, θ)-dependence (cf.
Bulinski and Shashkin (2006), Theorem 1.1).

2 Main results

To make this section easier to read, all proofs are relegated to Subsection 4.2 below.

2.1 Consistency

Theorem 2.1. Let Assumption (T ∗1) be ful�lled and let (ξn)n∈N be a sequence such that

max
T∈T
‖Bn(T )‖2 = oP (ξn). (6)

Assume further that for all ε > 0 there is some constant α > 0 and a null sequence
(βn)n∈N such that {T ∈ T : ∂n(T, θ) < βn} 6= ∅ for all n ∈ N and

lim inf
n→∞

ξ−1
n ‖a− b‖2(σIε− βn) ≥ α. (7)

Then θ̂n is a consistent estimator for the change-boundary, i.e.

∂n(θ̂n, θ) = oP (1).

If Assumption (T ∗2) and

lim inf
n→∞

ξ−1
n ‖a− b‖2

{
max

T∈T ,dn(T,θ)<βn
ρn(T )− max

T∈T ,dn(T,θ)≥ε
ρn(T )

}
≥ α, (8)

hold instead of Assumption (T ∗1) and (7), then θ̂n is a consistent estimator for the
change-set, i.e.

dn(θ̂n, θ) = oP (1).

Remark 2.1.

1. As shown in the proof of Theorem 2.1,

lim inf
n→∞

ξ−1
n

{
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2

}
≥ α
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is implied by Lemma 1.1. An analogous argument for dn needs an additional iden-
ti�ability assumption on the candidate sets, which essentially guarantees that the
estimated set is θ and not θc. (Since δn(T ) = −δn(T c), the function ρn(·) = |δn(·)|
is invariant with respect to taking the complement of a set.) The following assump-
tion, combined with (7), yields (8):

Assumption (I).
lim inf
n→∞

min
T∈T

dn(T c, θ) > 0

Under Assumption (I), Lemma 1.1 implies (8) for any sequence βn = o(1) such
that {T ∈ T : dn(T, θ) < βn} 6= ∅ and (7) is ful�lled. (cf. 4.2 for a proof)

2. Since dn(T, θ) = 1− dn(T c, θ), Assumption (I) is equivalent to

lim sup
n→∞

max
T∈T

dn(T, θ) < 1.

3. Assume T is the projection of a class of measurable sets A ⊆ P([0, 1]d) onto the
grid:

T = AI = {T ⊆ [0, 1]d| ∃A ∈ A : T = AI},

where A ful�lls the following conditions:

sup
A∈A
|dn(A, θ)− λ(A4θ)| n→∞−→ 0

and

sup
A∈A

λ(A4θ) < 1 (or equivalently inf
A∈A

λ(Ac4θ) > 0)

(9)

Then Assumption (I) is ful�lled. (cf. 4.2 for a proof)

4. The argumentation described in 3. is based on the idea of approximating �xed sets
A using the grid. Naturally, for (9) to be ful�lled, one needs the grid to become �ner
asymptotically. This often translates to requiring mini=1,...,dNi → ∞ as n → ∞.
For example, the �rst part of (9) is ful�lled if

sup
A∈A

λ(A(δ))→ 0 as δ → 0, (10)

mini=1,...,dNi(n)→∞ as n→∞ and θ ∈ A. Then, ∂(A4θ) ⊆ ∂A ∪ ∂θ and thus

(A4θ)(δ) ⊆ A(δ) ∪ θ(δ), for any A ∈ A and δ > 0,

implies

sup
A∈A
|dn(A, θ)− λ(A4θ)| = sup

A∈A
|λ((A4θ)I)− λ(A4θ)|

≤ sup
A∈A

λ

(
(A4θ)

(
( min
i=1,...,d

Ni)
−1

))
≤2 sup

A∈A
λ

(
A

(
( min
i=1,...,d

Ni)
−1

))
n→∞−→ 0.
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As pointed out in Mallik (2013), one instance in which assumption (10) is ful�lled
concerns the case of nonempty, closed convex sets A ⊆ [0, 1]d, since for these sets
there is a constant c > 0 (cf. Dudley (1984), pp. 62�63) such that

λ(A(δ)) ≤ λ(Aδ \Aδ) ≤ cδ, for any 0 < δ ≤ 1,

where Aδ = {x : ρ(x, A) < δ} and Aδ = {x : ρ(x, Ac) ≥ δ}.

5. Alternatively, since lim sup
n→∞

dn(T ?, θ) = 0 and dn(T, θ) ≤ dn(T ?, θ) + dn(T ?, T ) for

any T ∈ T , Assumption (I) is also ful�lled if

lim sup
n→∞

max
T1,T2∈T

dn(T1, T2) < 1

(i.e. the sets in T do not �span� the whole set [0, 1]d). If T = TI is the projec-
tion of a compact family A of sets onto the grid I = In, this can be achieved if
the boundaries of sets in A are su�ciently smooth (such that the �rst part of (9)
holds) and λ(A14A2) < 1 for any A1, A2 ∈ A.

Concerning the assumption (6) on the stochastic process, note that

max
T∈T
‖Bn(T )‖2 = max

T∈T

1

|In|

∥∥∥∥∥∥
∑
κi,n∈T

(Yi,n − Ȳn)

∥∥∥∥∥∥
2

≤ max
T∈T

1

|In|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n

∥∥∥∥∥∥
2

+
∥∥Ȳn∥∥2

,

where Ȳn = |In|−1
∑

κi,n∈In
Yi,n. Therefore proving (6) reduces to showing

∥∥Ȳn∥∥2
= oP (ξn),

which is ful�lled e.g. for ξ−1
n = o(|In|1/2) under Assumption (Y), and proving

max
T∈T

1

|In|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n

∥∥∥∥∥∥
2

= oP (ξn) (11)

or, equivalently

max
T∈T

1

|In|

∣∣∣∣∣∣
∑
κi,n∈T

Y
(l)
i

∣∣∣∣∣∣ = oP (ξn), for all l = 1, . . . , p. (12)

The equation (6) can therefore be seen as a type of uniform law of large numbers. For
ξn ≡ 1, it is ful�lled e.g. in the following cases:

Lemma 2.1. Assume that T has a su�ciently smooth boundary, i.e. it holds for rn(δ) =
max
T∈T
|In|−1|T (δ)| = max

T∈T
λ(T (δ)I) that

lim
δ→0

lim sup
n→∞

rn(δ) = 0. (13)

Then the sequence of real-valued, centered random �elds {Yi,n}κi,n∈In ful�lls (6) with
ξn ≡ 1 if Assumption (Y) holds for {Yi,n}κi,n∈In and {|Yi,n| − νi,n}κi,n∈In, where νi,n =
E|Yi,n| with ν = lim sup

n→∞
max
κi,n∈In

νi,n ∈ (0,∞).
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Remark 2.2. • For instance, the assumption on the smoothness of the boundary is
ful�lled if T is the projection of a class of sets A on the grid (i.e.

T = {T ⊆ [0, 1]d| ∃A ∈ A : AI = T})

for a sequence of grids In with minl=1,...,dNl → ∞. Then, if (10) holds, the
assumption (13) is satis�ed, because

T (δ) = {x : ρ(x, ∂T ) < δ}
⊆ {x : ρ(x, ∂A) < δ + ρ(∂A, ∂T )}
⊆ {x : ρ(x, ∂A) < δ + ( min

l=1,...,d
Nl)
−1}

for A ∈ A with T = AI , and thus

T (δ)I =
⋃

κi,n∈T (δ)

Ci,n ⊆
⋃

κi,n∈A(δ+(minl=1,...,dNl)−1)

Ci,n ⊆ A
(
δ + 2( min

l=1,...,d
Nl)
−1

)
.

Therefore,

lim
δ→0

lim sup
n→∞

max
T∈T

λ(T (δ)I) ≤ lim
δ→0

lim sup
n→∞

sup
A∈A

λ

(
A

(
δ +

2

minl=1,...,dNl

))
= 0.

• Under suitable integrability assumptions, the assumptions of Lemma 2.1 on the
stochastic processes are ful�lled for any weak dependence concept that implies (3)
(or (2)) and is such that the dependence assumptions on {Yi,n}κi,n∈I are inherited
by the absolute value process. Remark 1.6 gives examples of situations in which
(3) (or (2)) is ful�lled, namely under some (BL, θ)-dependence, mixing or physical
dependence assumptions, and each of these dependence notions is inherited by the
absolute value process.

Finally, in order to facilitate the application of the results of this section (cf. Section
3), the following corollary gives su�cient conditions for the consistency:

Corollary 2.1. Let Assumption (T ∗1) be ful�lled and let (ξn)n∈N be a sequence which
ful�lls ξ−1

n = o(|In|1/2), lim inf
n→∞

ξ−1
n ‖a− b‖2σI > 0 and

max
T∈T

1

|In|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n

∥∥∥∥∥∥
2

= oP (ξn).

Then θ̂n is consistent with respect to ∂n. If, additionally, Assumption (I) is ful�lled and
Assumption (T ∗2) holds instead of Assumption (T ∗1), then θ̂n is consistent with respect
to dn.

2.2 Rate of convergence

Theorem 2.2. Let Assumptions (Y) and (T ∗2) be ful�lled and let

|In|1/2σ2
I‖a− b‖2

n→∞−→ ∞. (14)
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Assume further that T and αn are such that

lim inf
n→∞

σI‖a− b‖22αn > 0 (15)

and

∀η > 0∀ε > 0∃n0 ∈ N∃α > 0∀n ≥ n0 :

P

 max
T∈T :|T4θ|≥ααn

1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

> εσI‖a− b‖2

 ≤ η (16)

Then if θ̂n is consistent with respect to dn (i.e. dn(θ̂n, θ) = oP (1)) it converges with the
following rate:

dn(θ̂n, θ) = OP (|In|−1αn).

Here, the consistency is needed to have the identi�ability. If we do not estimate θ, but
∂θ, we do not need this restriction:

Theorem 2.3. Let Assumptions (Y) and (T ∗1) as well as (14) be ful�lled. For any
T ∈ T , choose T̄ ∈ {T, T c} such that dn(T̄ , θ) ≤ dn(T̄ c, θ). Assume further that T and
αn are such that (15) is satis�ed and

∀η > 0∀ε > 0∃n0 ∈ N∃α > 0∀n ≥ n0 :

P

 max
T∈T :|T̄4θ|≥ααn

1

|T̄4θ|

∥∥∥∥∥∥
∑
κi,n∈T̄

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

> εσI‖a− b‖2

 ≤ η (17)

Then θ̂n converges with respect to ∂n at the rate

∂n(θ̂n, θ) = OP (|In|−1αn).

Theorems 2.2 and 2.3 reduce the question of �nding a rate of convergence to proving
a maximal inequality. In the next section, we will consider some examples where such
maximal inequalities hold for special classes of T . However, in order to give some idea
of how to prove such inequalities for general classes of sets, we �nish this section with
an example of (16) under mixing conditions on Y . A straightforward method to prove
such a maximal inequality (which is employed e.g. in Carlstein and Krishnamoorthy
(1992)) is to �rst prove an exponential inequality for the set-indexed partial sums and to
then ensure that the number of sets over which the maximum is taken is not �too large�.
In the special case when the grid is uniform (cf. Subsection 4.1) and the observations
ful�ll some mixing conditions, the following lemma gives an example for (16) using an
exponential inequality. (Trivially, the same arguments could be used to obtain (17).)
For simplicity, we restrict ourselves to non-vanishing changes as speci�ed by Assumption
(C).

Lemma 2.2. Consider a uniform grid In with N1 = · · · = Nd = n. Let Assumptions
(C) and (T ∗2) be ful�lled for αn = nη (η > 0) and let card(T ) = o(exp(µnξ)) for some
µ > 0 and 0 < ξ < 1

2η. Assume further that {‖Yi,n‖r2}κi,n∈In,n∈N is uniformly integrable
for

r >
d

η
with r ≥ max

{
2,

1

1− η−d
ξ−dδ

}
for δ ∈ (0, 1) such that ξ − dδ < η − d. If {Yi,n}κi,n∈In is either
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• α-mixing with α(x) = O

(
e
−2 log

(
(2x)

dδ
1−δ

)
(2x)

dδ
1−δ
)
, or

• nonuniform ϕ-mixing with ϕ(x) = O(x−γ) with γ > max{ d
1−δ ,

r
r−1(d− 1)},

then (16) holds.

Remark 2.3. As seen in the proof of the Lemma, the speci�c size of the mixing coe�-
cients is irrelevant as long as they ful�ll

pdnθqn

(
n

2pn

)
=

p
d
nα

1/(1+pdn)
(

n
2pn

)
, under α-mixing

2−dndϕ
(

n
2pn

)
, under ϕ-mixing

= O(1),

and are such that (2) is satis�ed. For instance, the latter is the case if

∞∑
h=0

hd−1α(h)
r−2
r <∞,

respectively
∑∞

h=0 h
d−1ϕ(h)

r−1
r <∞.

3 Examples

In order to illustrate the applicability of the main results, the following section contains
examples of classes of sets for which the assumptions of the theorems are explicitly
veri�ed.

3.1 Example 1: Rectangles

Assume the candidate sets T as well as θ are rectangles, i.e. θ = (θ0
1,θ

0
2] for

0 < θ0
1 < θ

0
2 < 1 and θI = N−1(bNθ0

1c, bNθ0
2c] = N−1(k0

1,k
0
2], and

T = AI = {N−1(k1,k2] : 0 ≤ k1 < k2 ≤ N}

is the projection of A = {(s, t] : 0 ≤ s ≤ t ≤ 1} onto the grid. Assume additionally that
the In are such that n→∞ implies min

i=1,...,d
Ni →∞.

Note that in this model, Assumptions (T ∗1) and (T ∗2) are satis�ed for any αn, since
θI ∈ T .

Consistency: Let Assumption (Y(r)) be ful�lled for S = T . Then (6) is satis�ed for

ξ−1
n =

o
(
|In|1/2

(∏d
i=1 log(Ni)

)−1
)
, for r = 2

o(|In|1/2), for r > 2.

If |In|1/2
(∏d

i=1 log(Ni)
)−1
‖a−b‖2σI →∞ (or, correspondingly, |In|1/2‖a−b‖2σI →∞

for r > 2), Corollary 2.1 implies consistency under both ∂n and dn.
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Proof. For ξ−1
n = o(|In|1/2), we know that (6) is ful�lled if (11) holds. The maximal

inequality (11) follows from Assumption (Y(r)) and Corollaries 1 and 3 in Móricz (1983)
(although Móricz (1983) considers real-valued random variables, his proofs can easily be
extended to Rp-valued observations, and indeed to observations in any normed space,
since they rely on the triangle inequality rather than a speci�c property of R):

max
0≤k<m≤N

∥∥∥∥∥∥
∑

κi,n∈N−1(k,m]

Yi,n

∥∥∥∥∥∥
2

=

{
OP

(
|In|1/2

∏d
i=1 log(Ni)

)
, r = 2

OP (|In|1/2), r > 2

To apply Corollary 2.1, note that Assumptions (T ∗1) and (T ∗2) are satis�ed for any αn,
and that the assumptions on ‖a − b‖2σI make it possible to choose ξn = ‖a − b‖2σI .
Assumption (I) is ful�lled as a special case of the general result in Remark 2.1: Since
on the compact set {(s, t) : 0 ≤ s ≤ t ≤ 1}, the function (s, t) 7→ λ((s, t]4(θ0

1,θ
0
2]) is

continuous,

sup
A∈A
|dn(A, θ)− λ(A4θ)|

= sup
0≤s≤t≤1

∣∣λ (N−1
(
(bNsc, bNtc]4

(
bNθ0

1c, bNθ0
2c
]))
− λ(A4θ)

∣∣ −→ 0

for min
i=1,...,d

Ni →∞, and

sup
A∈A

λ(A4θ) = sup
0≤s≤t≤1

λ((s, t]4(θ0
1,θ

0
2]) < 1,

because λ((s, t]4(θ0
1,θ

0
2]) < 1 for any 0 ≤ s ≤ t ≤ 1. Finally, θ ∈ A per assumption.

Rate of convergence: Let Assumptions (C) and (Y(r)) with r > 2 and S = T
be ful�lled. Then we obtain (16) with a rate αn = α independent of n by using a
result analogous to Bucchia and Heuser (2015). Theorem 2.2 therefore yields dn(θ̂n, θ) =
OP (|In|−1). Due to ∂n(θ̂n, θ) ≤ dn(θ̂n, θ), this implies the same rate for ∂n. (Since in
this case the consistency with respect to dn requires no additional assumptions and (T ∗1)
and (T ∗2) are ful�lled by assumption, using Theorem 2.2 instead of Theorem 2.3 is no
restriction.)

Remark 3.1. Note that in contrast to Bucchia and Heuser (2015), we do not measure the
symmetric di�erence of the sets directly, but rather the number of misclassi�ed grid nodes.
This allows us to derive an improved convergence rate, since in this setting, the perfect
estimation of the change-rectangle (i.e. its anchoring on the pixels) is possible. Because
the mean-function and long-run variance estimators in Bucchia and Heuser (2015) do not
depend on the actual change-set estimator but only on the grid points contained within
it, the convergence rate derived here can be used for the results in Bucchia and Heuser
(2015).

Proof. For T ∈ T , write T = N−1(k1,k2] = N−1Rk and θI = N−1(k0
1,k

0
2] = N−1Rk0 .

Then we observe the following:

1. |T4θ| = λ(Rk \Rk0) + λ(Rk0 \Rk)

2. |T4θ| > 0⇒ ‖k− k0‖∞ > 0 and therefore also ‖k− k0‖∞ ≥ 1
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3. Analogously to Bucchia and Heuser (2015), Lemma A.1, it can be proven by in-
duction that

|T4θ| ≥ C
d∏
l=1

Nl

∥∥∥∥k− k0

N

∥∥∥∥
∞

for some C > 0 that may depend on d but is independent of n and T .

Now, the inequality follows analogously to the proof of Lemma A.2 in Bucchia and Heuser
(2015) on the pages 125/126, where we replace Tk1,k2 by |T4θ|:

max
T∈T ,|T4θ|≥α

∥∥∥∑κi,n∈T Yi,n −
∑

κi,n∈θ Yi,n

∥∥∥
2

|T4θ|

= max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∑i∈Rk
Yi,n −

∑
i∈Rk0

Yi,n

∥∥∥
2

λ(Rk4Rk0)

= max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∥∥∑ε∈{0,1}d(−1)d−
∑d
l=1 εl

( ∑
i≤k1+ε(k2−k1)

Yi,n −
∑

i≤k0
1+ε(k0

2−k0
1)

Yi,n

)∥∥∥∥∥
2

λ(Rk4Rk0)

≤
∑

ε∈{0,1}d
max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∥∥∥ 1

λ(Rk4Rk0)

∑
i∈(0,k1+ε(k2−k1)]\(0,k0

1+ε(k0
2−k0

1)]

Yi,n

∥∥∥∥∥∥
2

+
∑

ε∈{0,1}d
max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∥∥∥ 1

λ(Rk4Rk0)

∑
i∈(0,k0

1+ε(k0
2−k0

1)]\(0,k1+ε(k2−k1)]

Yi,n

∥∥∥∥∥∥
2

= T1 + T2

We show the convergence for the term T1, the proof for T2 is analogous and is therefore
omitted. We adopt the notation Ma = (0,a] \ (0,a0] for

a ∈ Ik1,k2 = {a ∈ Zd : a(l) ∈ {k(l)
1 , k

(l)
2 }, l = 1, . . . , d},

(cf. Bucchia and Heuser (2015)) and note that

λ(Rk4Rk0) ≥ C
d∏
l=1

Nl

∥∥∥∥k− k0

N

∥∥∥∥
∞
≥ C

d∏
l=1

Nl

∥∥∥∥a− a0

N

∥∥∥∥
∞
.

Then an analogous proof to Bucchia and Heuser (2015), p. 123, yields

λ(Ma) ≤ c
d∏
l=1

Nl

∥∥∥∥a− a0

N

∥∥∥∥
∞
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for some c > 0. For d = 1, we obtain

P

 max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∥∥∥ 1

λ(Rk4Rk0)

∑
i∈(0,a]\(0,a0]

Yi,n

∥∥∥∥∥∥
2

≥ ε


≤
(ε

2

)−r
E

 max
1≤a−a0≤bαc

∣∣∣∣∣∣ 1α
a∑

i=a0+1

Y
(l)
i,n

∣∣∣∣∣∣
r

+
(ε

2

)−r
E

 max
a−a0≥α

∣∣∣∣∣∣ 1

a− a0

a∑
i=a0+1

Y
(l)
i,n

∣∣∣∣∣∣
r

≤ Kr

(ε
2

)−r bαc∑
l=1

1

αr/2
+
(ε

2

)−r ∞∑
i=bαc+1

1

ir/2


≤ Kr

(ε
2

)−rα1−r/2 +

∞∑
i=bαc+1

1

ir/2

 α→∞−→ 0,

where ε > 0 is some constant and we have used (4) and the fact that |T4θ| ≥ |a− a0|.
For d ≥ 2, we �rst observe that for l ∈ {1, . . . , d} and h ∈ {1, . . . , max

j=1...,d
Nj}

#{a : 0 ≤ a ≤ N, ‖N−1(a− a0)‖∞ = N−1
l

∣∣∣a(l) − a0(l)
∣∣∣ = N−1

l h} ≤ C̃
∏
j 6=l

Nj ,

for some constant C̃ > 0. Now, Markov's inequality and (4) yield

P

 max
k1<k2

λ(Rk4Rk0 )≥α

∥∥∥∥∥∥ 1

λ(Rk4Rk0)

∑
i∈Ma

Yi,n

∥∥∥∥∥∥
2

≥ ε


≤ P

 max
0≤a≤N

‖a−a0‖∞≥1

∥∥∥∥∥∥ 1

C
∏d
l=1Nl

∥∥∥a−a0

N

∥∥∥
∞

∑
i∈Ma

Yi,n

∥∥∥∥∥∥
2

≥ ε


≤ ε−r

∑
0≤a≤N

‖a−a0‖∞≥1

c̃
1(∏d

l=1Nl

∥∥∥a−a0

N

∥∥∥
∞

)r/2
≤ c̃ε−r

d∑
l=1

∑
0≤a≤N

‖N−1(a−a0)‖∞=N−1
l
|a(l)−a0(l)|>0

1(∏
j 6=lNj

∣∣a(l) − a0(l)
∣∣)r/2

= c̃ε−r
d∑
l=1

Nl∑
h=1

∑
0≤a≤N

‖N−1(a−a0)‖∞=N−1
l
|a(l)−a0(l)|=hN−1

l

∏
j 6=l

Nj

−r/2 h−r/2

≤ ε−r c̃C̃
d∑
l=1

∏
j 6=l

Nj

1−r/2
Nl∑
h=1

1

hr/2
→ 0,
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for minl=1,...,dNl →∞, ε > 0 and some constant c̃ > 0. Therefore, (16) is satis�ed.
For the rate of convergence, note that Assumption (C) implies (14) and (15), and that

the previous paragraph shows the consistency under dn.

3.2 Example 2: Unions of aggregated pixels

In order to consider change-sets with less form constraints, we introduce sets that result
from arbitrary unions of �aggregated pixels�, which serve as a coarser partition of (0, 1]d

than the Ci,n. This corresponds to the approach by Müller and Song (1994), who derived
rates of convergence for change-boundaries of this form for i.i.d. real-valued observations.
Such a choice of model has the added advantage that it lends itself to iterative algorithms
for easier computation of the estimators (cf. Müller and Song (1994)).
Choose M = M(n) ∈ Nd, M ≤ N, and divide [0, 1]d into sets C(m)

j,n = M−1 (j− 1, j],

where m = mn =
∏d
i=1Mi and M is chosen in such a way that the C(m)

j,n are anchored

on the pixels (i.e. C(m)
j,n,I = C

(m)
j,n ). Then (C

(m)
j,n )1≤j≤M forms a partition of (0, 1]d into

subrectangles of equal size with

λ(C
(m)
j,n ) = |In|−1|C(m)

j,n | =
1

m
, j ≤M.

De�ne a similar �anchoring mapping� on rectangles of aggregated pixels by setting

φ(m)
n (F ) =

⋃
FI∩C

(m)
j,n 6=∅

C
(m)
j,n

for F ∈ B([0, 1]d). Denote the collection of aggregated pixels by

Cn = {C(m)
j,n : 1 ≤ j ≤M}

and the collection of (nonempty) sets anchored on the aggregated pixels by

An = {A ⊆ [0, 1]d : φ(m)
n (A) = A 6= ∅}.

Let T ⊆ An.

Consistency: Let Assumption (Y(r)) be ful�lled for S = Cn. Then (6) is satis�ed for

ξ−1
n = o(|In|1/2m

−( 1
r

+ 1
2)

n ). Under Assumption (T ∗1), Corollary 2.1 implies consistency

under ∂n if |In|1/2m
−( 1

r
+ 1

2)
n ‖a − b‖2σI → ∞, i.e. mn = o

((
|In|σ2

I‖a− b‖22
) r
r+2

)
. If

Assumption (T ∗2) instead of (T ∗1) is satis�ed and, additionally, Assumption (I) holds,
we also have consistency under dn in this setting. Assumption (I) is, for instance, satis�ed
if T is the projection of a set A ⊆ P([0, 1]d) onto the aggregated pixels

T = φ(m)
n (A) = {T ⊆ [0, 1]d| ∃A ∈ A : T = φ(m)

n (A)},

where A ful�lls the following conditions:

(i) A has a su�ciently smooth boundary, i.e.

sup
A∈A
|dn(A, θ)− λ(A4θ)| n→∞−→ 0

114



3 EXAMPLES

and sup
A∈A
|In|−1|PI(m)(A)| n→∞−→ 0, where

PI(m)(A) =
⋃

j:C
(m)
j,n
∩AI 6=∅

C
(m)
j,n
∩AcI 6=∅

C
(m)
j,n

denotes the perimeter of a set A ∈ A.

(ii) θ ∈ A

(iii) sup
A∈A

λ(A4θ) < 1 (or equivalently inf
A∈A

λ(Ac4θ) > 0)

Remark 3.2. • The notion of the perimeter of a set was introduced by Carlstein and
Krishnamoorthy (1992). Unlike our current setting, Carlstein and Krishnamoorthy
(1992) use the Lebesgue measure of the di�erence of sets as a measure for the
distance of their estimator to the true change-boundary. Since their estimator is
by necessity anchored on the pixels, they need assumptions on the smoothness of
the perimeter to ensure that the estimator could in theory be asymptotically close
to the true change-set at a su�cient rate. They note that this kind of assumption
is ful�lled, for instance, for two-dimensional boundaries that can be expressed as
recti�able curves (cf. Carlstein and Krishnamoorthy (1992), Theorem 3).

• Noting that

PI(m)(A) ⊆ A
(

1

mini=1,...,dNi
+

1

mini=1,...,dMi

)
,

we observe that the assumption (i) is ful�lled e.g. if θ ∈ A and (10) hold, and

min
i=1,...,d

Ni(n)→∞ as well as min
i=1,...,d

Mi(n)→∞

as n→∞ (cf. also Remark 2.1).

Proof. For (6), it is su�cient to show (11). The latter is a simple consequence of Lemma
4.3:

max
A∈An

1

|In|

∥∥∥∥∥∥
∑
κi,n∈A

Yi,n

∥∥∥∥∥∥
2

≤ mn

|In|
max
C∈Cn

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

≤ mn

|In|
OP

(
|In|1/2m

1
r
− 1

2
n

)
= OP

(
|In|−1/2m

1
r

+ 1
2

n

)
To apply Corollary 2.1, we again use the fact that the assumptions on ‖a− b‖2σI make
it possible to choose ξn = ‖a − b‖2σI . For the proof of Assumption (I) under the
assumptions above, note that for any set A ∈ A,

dn(φ(m)
n (A), θ) ≤ dn(φ(m)

n (A), A) + dn(A, θ) = |In|−1|PI(m)(A)|+ dn(A, θ),
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and therefore (i) implies

sup
A∈A
|dn(φ(m)

n (A), θ)− λ(A4θ)| n→∞−→ 0.

For T = φ
(m)
n (A), we use max

T∈T
dn(T, θ) = sup

A∈A
dn(φ

(m)
n (A), θ) to obtain

lim sup
n→∞

max
T∈T

dn(T, θ)

= lim sup
n→∞

sup
A∈A

(λ(A4θ) + (dn(φ(m)
n (A), θ)− λ(A4θ)))

≤ sup
A∈A

λ(A4θ) + lim sup
n→∞

sup
A∈A
|dn(φ(m)

n (A), θ)− λ(A4θ)|

= sup
A∈A

λ(A4θ) < 1.

Rate of convergence: Let Assumptions (T ∗2) and (Y(r)) be ful�lled and suppose

(15) holds. Then (16) is ful�lled for mn = o
((
|In|σ2

I‖a− b‖22
) r
r+2

)
. Replacing Assump-

tion ((T ∗2)) by ((T ∗1)), we obtain (17) analogously. For this choice of mn, if (14), (15)
and Assumption (T ∗1) hold, Theorem 2.3 yields the convergence rate αn|In|−1 for ∂n. If
Assumption (I) is also satis�ed and we replace (T ∗1) by (T ∗2), Theorem 2.2 yields the
same rate of convergence for dn.

Proof. We show (16), noting that (17) can be proven the same way, since T ∈ An implies
T̄ ∈ An. We di�erentiate between two cases for the change-set and use the special
structure of the sets in An:
Case 1: θI = φ

(m)
n (θ)

Since T \ θI , θI \ T, T4θI ∈ An for any T ∈ T ,

max
T∈T :|T4θ|≥ααn

1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≤2 max
A∈An

1

|A|

∥∥∥∥∥∥
∑
κi,n∈A

Yi,n

∥∥∥∥∥∥
2

= OP
(
|In|−1/2m

1
r

+ 1
2

n

)
,

by Lemma 4.3. Therefore, (16) is ful�lled for mn = o
((
|In|σ2

I‖a− b‖22
) r
r+2

)
.
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Case 2: θI 6= φ
(m)
n (θ), but T ? ful�lls Assumption (T ∗2)

Since T ? ∈ An, it holds that T \ T ?, T ? \ T, T4T ? ∈ An for any T ∈ T , and therefore,

max
T∈T :|T4θ|≥ααn

1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≤ max
T∈T :|T4θ|≥ααn

|T4T ?|
|T4θ|

1

|T4T ?|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑

κi,n∈T ?
Yi,n

∥∥∥∥∥∥
2

+ max
T∈T :|T4θ|≥ααn

1

|T4θ|

∥∥∥∥∥∥
∑

κi,n∈T ?
Yi,n −

∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≤2 max
T∈T :|T4T ?|≥(α−1/6σI)αn

1

|T4T ?|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑

κi,n∈T ?
Yi,n

∥∥∥∥∥∥
2

+
1

ααn


∥∥∥∥∥∥

∑
κi,n∈θ\T ?

Yi,n

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

κi,n∈T ?\θ

Yi,n

∥∥∥∥∥∥
2

 ,

where we have used |T4T ?| ≤ |T4θ| + |θ4T ?| ≤ 2|T4θ| and, by Assumption (T ∗2),
|T4T ?| ≥ |T4θ| − |θ4T ?| ≥ αn(α − 1/6σI), for T ∈ T with |T4θ| ≥ ααn. By
Assumptions (Y) and (T ∗2), the second summand vanishes for α→∞:

P

 1

ααn


∥∥∥∥∥∥

∑
κi,n∈θ\T ?

Yi,n

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

κi,n∈T ?\θ

Yi,n

∥∥∥∥∥∥
2

 > εσI‖a− b‖2


≤ 1

ε2α2α2
n

σ−2
I ‖a− b‖

−2
2 |In|dn(T ?, θ)

≤ 1

ε2

1

6

(
σI‖a− b‖22αn

)−1 1

α2

α→∞−→ 0,

for any ε > 0 and n large enough, since lim infn→∞ σI‖a−b‖22αn > 0. The �rst summand
can be treated analogously to case 1.
For the rate of convergence, note that Assumption (I) and the choice of mn yield the

consistency for dn.

3.3 Example 3: Nested sets

We now consider the special case when T is the disjoint union of �nitely many classes
of nested sets. Nested sets are of interest for instance if one considers parametric classes
of sets that are de�ned by a location parameter and a scaling parameter such that for
a �xed location, sets with di�erent scaling are nested (e.g. circles, ellipses,. . . ). To be
precise, we consider the model in Corollary 2.4 of Ferger (2004), i.e.:

∃M > 0, (vn)n∈N ⊆ N ∀n ∈ N : vn ≤M and T =

vn∑
j=1

T (j)
n ,

where each of the disjoint sub-classes T (j)
n , 1 ≤ j ≤ vn, is ordered.
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Consistency: Let Assumption (Y(r)) with S = T be ful�lled. Then (6) is satis�ed
with ξ−1

n = o(|In|1/2 log−1(|In|)) for r = 2 and ξ−1
n = o(|In|1/2) for r > 2. Under

Assumption (T ∗1), Corollary 2.1 implies consistency under ∂n if

|In|1/2 log−1(|In|)‖a− b‖2σI →∞, for r = 2,

|In|1/2‖a− b‖2σI →∞, for r > 2.

If Assumptions (T ∗2) and (I) are ful�lled, too, the consistency also holds under dn. For
Assumption (I), this is the case e.g. if lim inf

n→∞
σI > σ̃ for some σ̃ > 0 and θI ⊆ T or

T ⊆ θI holds for all T ∈ T and n.

Proof. Since (vn)n∈N is bounded, we can assume w.l.o.g. that vn ≡ v = 1 for the proof
of (6). Then we can assume w.l.o.g., that T = T (1)

n = {T1,n, . . . , Tm,n} for some m ∈ N,
with

∅ = T0,n ⊆ T1,n ( T2,n ( · · · ( Tm,n ⊆ Tm+1,n = [0, 1]d,

and 0 < |T1,n| < |T2,n| < · · · < |Tm,n| ≤ |In|. For ξ−1
n = o(|In|1/2), we know that (6) is

ful�lled i� (11) holds. An application of Lemma 4.4 yields

max
T∈T

1

|In|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n

∥∥∥∥∥∥
2

=

{
OP (|In|−1/2 log(|In|)), r = 2

OP (|In|−1/2), r > 2
.

The applicability of Corollary 2.1 is arrived at the same way as in the previous subsec-
tions.
Assumption (I) follows from the following observation: For any set T ∈ T , it holds

that

dn(T c, θ) = |In|−1 (|T c ∩ θc|+ |T ∩ θ|)

=

{
|In|−1 (|T c|+ |θ|) , if θI ⊆ T
|In|−1 (|θc|+ |T |) , if T ⊆ θI

≥ |In|−1 min{|θ|, |θc|} = σI ≥ σ̃.

Rate of convergence: Suppose Assumption (Y(r)) is ful�lled with r > 2 and S =
{T \ θ : T ∈ T } ∪ {θ \ T : T ∈ T }. If |In|1/2σ2

I‖a − b‖∞ → ∞, (16) and (17) hold for
any αn such that lim infn→∞ σ

2
I‖a− b‖22αn > 0. Under Assumption (T ∗1), Theorem 2.3

then yields the rate of convergence αn|In|−1 for such αn and ∂n. If Assumptions (T ∗2)
and (I) are ful�lled, the same rates hold for dn by Theorem 2.2.

Proof. It su�ces to show (16) (the proof of (17) works analogously). We can again
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assume w.l.o.g. that vn ≡ v = 1 and T = T (1)
n = {T1,n, . . . , Tm,n} as above. It holds that

max
T∈T ,|T4θ|≥ααn

∥∥∥∑κi,n∈T Yi,n −
∑

κi,n∈θ Yi,n

∥∥∥
2

|T4θ|

≤ max
T∈T ,|T4θ|≥ααn

∥∥∥∑κi,n∈T\θ Yi,n

∥∥∥
2

|T4θ|
+ max
T∈T ,|T4θ|≥ααn

∥∥∥∑κi,n∈θ\T Yi,n

∥∥∥
2

|T4θ|

≤ max
T∈T ,|T\θ|≥ααn

∥∥∥∑κi,n∈T\θ Yi,n

∥∥∥
2

|T \ θ|
+ max
T∈T ,|T\θ|<ααn

∥∥∥∑κi,n∈T\θ Yi,n

∥∥∥
2

|T4θ|

+ max
T∈T ,|θ\T |≥ααn

∥∥∥∑κi,n∈θ\T Yi,n

∥∥∥
2

|θ \ T |
+ max
T∈T ,|θ\T |<ααn

∥∥∥∑κi,n∈θ\T Yi,n

∥∥∥
2

|T4θ|
.

Due to the ordering of the Tj,n, we obtain

θ \ Tj+1,n ⊆ θ \ Tj,n and Tj,n \ θ ⊆ Tj+1,n \ θ

for each j = 1, . . . ,m−1. Let Jk = θ\Tm−k,n. We can assume w.l.o.g. that |Jk| < |Jk+1|
and therefore Assumption (Y(r)) yields

P

 max
T∈T

|θ\T |≥ααn

1

|θ \ T |

∥∥∥∥∥∥
∑

κi,n∈θ\T

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2


=P

 max
0≤k<m
|Jk|≥ααn

1

|Jk|

∥∥∥∥∥∥
∑

κi,n∈Jk

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2


≤ 1

εrσrI‖a− b‖r2

∑
0≤k<m
|Jk|≥ααn

E
∥∥∥∑κi,n∈Jk Yi,n

∥∥∥r
2

|Jk|r

≤ Kr

εrσrI‖a− b‖r2

∑
0≤k<m
|Jk|≥ααn

|Jk|−r/2

=Krε
−rσ−rI ‖a− b‖

−r
2 α−r/2α−r/2n

∑
0≤k<m
|Jk|≥ααn

(
|Jk|
ααn

)−r/2

≤Krε
−rσ−rI ‖a− b‖

−r
2 α−r/2α−r/2n

∑
0≤k<m
|Jk|≥ααn

⌊
|Jk|
ααn

⌋−r/2

≤Krε
−r (σ2

I‖a− b‖22αn
)−r/2

α−r/2
∞∑
k=1

k−r/2,

which becomes arbitrarily small for large α and n. Furthermore, since |Jk| < |Jk+1|,

119



CHAPTER 5 ADDITIONAL MATERIAL: CHANGE-SET ESTIMATION

there are at most bααnc+ 1 sets with |θ \ Tk,n| < ααn and therefore Lemma 4.4 yields

P

 max
T∈T

|θ\T |<ααn

1

ααn

∥∥∥∥∥∥
∑

κi,n∈θ\T

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2


=P

 max
0≤k<m
|Jk|<ααn

1

ααn

∥∥∥∥∥∥
∑

κi,n∈Jk

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2


≤ α−rα−rn
εrσrI‖a− b‖r2

E

 max
0≤k<m
|Jk|<ααn

∥∥∥∥∥∥
∑

κi,n∈Jk

Yi,n

∥∥∥∥∥∥
r

2


≤K∗r ε−rσ−rI ‖a− b‖

−r
2 α−r/2α−r/2n

=K∗r ε
−rα−r/2

(
αnσ

2
I‖a− b‖22

)−r/2
,

which also becomes arbitrarily small for large α and n. The same arguments with J̃k =
Tk,n \ θ and w.l.o.g. |J̃k| < |J̃k+1|, yield

P

 max
T∈T

|T\θ|≥ααn

1

|T \ θ|

∥∥∥∥∥∥
∑

κi,n∈T\θ

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2

 = O
((
σ2
I‖a− b‖22αn

)−r/2
α−r/2

)
and

P

 max
T∈T

|T\θ|<ααn

1

ααn

∥∥∥∥∥∥
∑

κi,n∈T\θ

Yi,n

∥∥∥∥∥∥
2

≥ εσI‖a− b‖2

 = O
((
σ2
I‖a− b‖22αn

)−r/2
α−r/2

)
,

and therefore (16). Due to |T c4θ| = |T4θc|,

max
T∈T :|T̄4θ|≥ααn

1

|T̄4θ|

∥∥∥∥∥∥
∑
κi,n∈T̄

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≤ max
T∈T :|T4θ|≥ααn

1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

+ max
T∈T :|T4θc|≥ααn

1

|T4θc|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑

κi,n∈θc
Yi,n

∥∥∥∥∥∥
2

,

and therefore the same argumentation can be used to obtain (17).
In order to apply Theorems 2.2 and 2.3, note that |In|1/2σ2

I‖a − b‖∞ → ∞ and the
assumption on αn yield (14) and (15), and, in combination with Assumptions (T ∗2) and
(I), the consistency under dn.
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4 Proofs

4.1 Preliminary results - some maximal inequalities

An exponential inequality under mixing assumptions

In this subsection, we derive a truncation result and an exponential inequality for a set-
indexed partial sum process under mixing conditions. For simplicity, we consider the
special case of uniform grids

I = In =

{
κi,n =

(
i1
n
, . . . ,

id
n

)
: 1 ≤ ij ≤ n

}
for n ∈ N.
We �rst give a truncation result which will be used in the proof of Lemma 2.2 to

obtain a bounded random �eld. For bounded random variables under mixing conditions,
we then present a Bernstein type inequality by adapting the methods of proof employed
in Lin and Lu (1996) (cf. proof of Theorem 6.2.3, p. 165 f.) and Valenzuela-Domínguez
and Franke (2005) to our setting.
As a way to show the tightness of a smoothed version of the partial sum process em-

ployed here, Lin and Lu (1996) prove a truncation result and an exponential inequality
for stationary real-valued random �elds under nonuniform ϕ-mixing. As it is part of
the proof of a functional central limit theorem, they only consider weights bn = nd/2.
Valenzuela-Domínguez and Franke (2005) prove an exponential inequality for bounded,
stationary, real-valued random �elds under α-mixing conditions and the associated par-
tial sums over rectangles. In both cases, the proof of the exponential inequality hinges
on the fact that measurable transforms of the random variables inherit the mixing prop-
erties, which allows us to apply a covariance inequality to the exponential of the (trun-
cated) process. Here, we aim to combine the two approaches by Lin and Lu (1996) and
Valenzuela-Domínguez and Franke (2005) in order to give an extension of both of these
results to multivariate random �elds indexed on the grid with general weights bn and
the corresponding partial sums over general subsets of [0, 1]d. Since the truncation result
employed by Lin and Lu (1996) requires strict stationarity, we adapt the proof by Goldie
and Greenwood (1986) to our setting.
Given a sequence of Rp-valued random �elds {Yi,n}κi,n∈In and a family of sets A ⊂
B([0, 1]d) (whose properties will be speci�ed later), we consider set-indexed processes

Zn(A) =
1

bn

∑
κi,n∈A

(Yi,n − EYi,n),

Zn(A, u, v) =
∑
κi,n∈A

(ηi,n(u, v)− Eηi,n(u, v))

and
Un(A, u, v) =

∑
κi,n∈A

‖ηi,n(u, v)‖2,

where 0 ≤ u < v ≤ ∞, (bn)n∈N is a sequence of positive numbers and

ηi,n(u, v) = b−1
n Yi,n I(u ≤ f−1

n ‖Yi,n‖2 < v)
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for some sequence (fn)n∈N with fn →∞. Then it holds that

Zn(A) = Zn(A, 0, a) + Zn(A, a,∞)

and
‖Zn(A, a,∞)‖2 ≤ Un([0, 1]d, a,∞) + EUn([0, 1]d, a,∞)

for any a ∈ (0,∞) and A ∈ B([0, 1]d).

Lemma 4.1. For some r ≥ 2, let {‖Yi,n‖r2}κi,n∈In,n∈N be uniformly integrable, i.e. let

h(x) = sup
n∈N

max
κi,n∈In

E
[
‖Yi,n‖r2I{‖Yi,n‖2≥x}

]
x→∞−→ 0.

Assume further that ndb−1
n f1−r

n = O(1). Then EUn([0, 1]d, a,∞)→ 0 for any �xed a > 0
and n → ∞ and therefore Zn(A) = Zn(A, 0, a) + oP (1) for any set A ∈ B([0, 1]d) and
even

max
A∈A
‖Zn(A)‖2 = max

A∈A
‖Zn(A, 0, a)‖2 + oP (1).

Proof. The following is essentially the proof of Theorem 1.1 in Goldie and Greenwood
(1986), extended to general weights and adapted to the current setting. We give it here
for ease of reading. For any �xed a > 0 and large n,

EUn([0, 1]d, a,∞) =
∑

κi,n∈In

E‖ηi,n(a,∞)‖2

=
∑

κi,n∈In

E‖b−1
n Yi,nI{a≤f−1

n ‖Yi,n‖2<∞}‖2

=
∑

κi,n∈In

b−1
n E

[
‖Yi,n‖2I{afn≤‖Yi,n‖2<∞}

]
=

∑
κi,n∈In

b−1
n E

[
‖Yi,n‖r2‖Yi,n‖1−r2 I{afn≤‖Yi,n‖2<∞}

]
≤

∑
κi,n∈In

b−1
n f1−r

n a1−r E
[
‖Yi,n‖r2I{afn≤‖Yi,n‖2<∞}

]
︸ ︷︷ ︸

≤h(afn)

≤ ndb−1
n f1−r

n a1−rh(afn) = O(1)a1−rh(afn)
n→∞−→ 0

By the Markov inequality and the nonnegativity of Un([0, 1]d, a,∞), this also yields

Un([0, 1]d, a,∞)
P−→ 0.

Remark 4.1. The assumptions on the sequences (bn)n∈N and (fn)n∈N are satis�ed e.g.

for bn = nη (0 < η < d) and fn = n
d−η
r−1 . Then b−1

n f1−r
n = n−d, fn →∞ and fn = bn · gn

with gn = n−
rη−d
r−1

n→∞−→ 0, if r > d/η.

De�nition 4.1. For two sets I, J ⊆ [0, 1]d, de�ne

distn(I, J) = inf{n‖κi,n − κj,n‖∞ : κi,n ∈ I, κj,n ∈ J}.
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A sequence of random �elds {ηj,n}κj,n∈In (n ∈ N) is said to be α-mixing if there is a
function α(·), which is independent of n with α(x)→ 0 as x→∞, and

sup
A∈σ(ηj,n: κj,n∈I)
B∈σ(ηj,n: κj,n∈J)

|P (A ∩B)− P (A)P (B)| ≤ α(distn(I, J)),

for all n ∈ N and I, J ⊆ [0, 1]d.
{ηj,n}κj,n∈In is said to be nonuniform ϕ-mixing, if there exists a nonnegative function
ϕ(·), which is independent of n with ϕ(x)→ 0 as x→∞, and

sup
A∈σ(ηj,n: κj,n∈I)

B∈σ(ηj,n: κj,n∈J),P (B)>0

|P (A|B)− P (A)| ≤ |I| · ϕ(distn(I, J))

for all n ∈ N and I, J ⊆ [0, 1]d.

Now, we derive a Bernstein type inequality under either α- or nonuniform ϕ-mixing.
Since an exponential inequality for the euclidean norm of a multivariate process can be
inferred from corresponding inequalities for the coordinate processes (cf. the proof of
Lemma 2.2), we only consider real-valued processes here.

Lemma 4.2. Let {ηj,n}κj,n∈In, n ∈ N, be a real-valued, centered random �eld with |ηj,n| ≤
C1,n and

E
[
Sn(A)2

]
≤ C2,n|A|,

for any A ⊆ [0, 1]d, where Sn(A) =
∑

κj,n∈A ηj,n. Assume that {ηj,n}κj,n∈In is either
α-mixing or nonuniform ϕ-mixing. Let pn ∈ N with pn < n. Then it holds for any
A ⊆ [0, 1]d and ε > 0 that

P (|Sn(A)| ≥ ε) ≤ 2 exp(−βnε) exp
(

22dβ2
nC2,ne|A|+ (pdn − 1)θqn (mn)

√
e
)
,

where mn = n
2pn

, 0 < βn <
1

2d+1C1,nmdne
, qn = 1 + 1/pdn and

θq(x) =

{
10α1−1/q (x) , under α-mixing

2xdϕ (x) , under ϕ-mixing

for q > 1, x > 0.

Proof. The following proof is a mixture of the proofs of Theorem 6.2.3 in Lin and Lu
(1996) and Theorem 3.1 in Valenzuela-Domínguez and Franke (2005), adapted to the
current setting. The idea of subdividing the index set in the manner considered here
stems from Lin and Lu (1996) (who adapted it from Goldie and Greenwood (1986)) and
the covariance inequality as well as the general idea for iteration under α-mixing was
taken from Valenzuela-Domínguez and Franke (2005). The present proof combines both
approaches and extends them to not necessarily stationary sequences of random �elds
and � in the case of the result by Valenzuela-Domínguez and Franke (2005) � general
classes of sets.
Divide Id = [0, 1]d in the following two ways: First, we divide it into pdn subrectangles

Cl,pn = (p−1
n (l − 1), p−1

n l], l ∈ Jpn := {1, . . . , pn}d, and secondly into the subrectangles
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Cj,2pn , j ∈ J2pn . Then each of the subrectangles Cl,pn contains 2d subrectangles Cj,2pn .
Denoting the ith subrectangle Cj,2pn in Cl,pn by In,l,i, i = 1, . . . , 2d, we obtain

In,i =
⋃

l∈Jpn

In,l,i, i = 1, . . . , 2d.

Note that we do not need to assume that these subrectangles are anchored on the pixels.

We observe that this partition yields |In,l,i| ≤
(

n
2pn

)d
= md

n and

distn(In,l,i, In,l′,i) = n inf{‖κj,n − κj′,n‖∞ : κj,n ∈ In,l,i, κj′,n ∈ In,l′,i} ≥ mn

for i ∈ {1, . . . , 2d} and l, l′ ∈ Jpn . For each i ∈ {1, . . . , 2d}, we order the pdn subrectangles
In,lu,i for lu ∈ Jpn , u = 1, . . . , pdn. It holds that

Sn(A) =

2d∑
i=1

pdn∑
u=1

Sn(A ∩ In,lu,i) =

2d∑
i=1

T (i, pdn).

In order to prove an exponential inequality for Sn(A), we need only prove a corresponding
inequality for each of the T (i, pdn), since

E
(
eβSn(A)

)
= E

(
eβ
∑2d

i=1 T (i,pdn)

)

= E

 2d∏
i=1

eβT (i,pdn)


≤ 2−d

2d∑
i=1

E
(
eδT (i,pdn)

)
by the inequality of arithmetic and geometric means, for β > 0 and δ = 2dβ. For r ≤ pdn
and S(i, u) := Sn(A ∩ In,lu,i) (u = 1, . . . , pdn), it holds that

T (i, r) =
r∑

u=1

S(i, u) = T (i, r − 1) + S(i, r)

and therefore

E
[
eδT (i,r)

]
≤
∣∣∣E [eδT (i,r−1)eδS(i,r)

]
− E

[
eδT (i,r−1)

]
E
[
eδS(i,r)

]∣∣∣
+ E

[
eδT (i,r−1)

]
E
[
eδS(i,r)

]
.

De�ne J(i, r − 1) = In,l1,i ∪ · · · ∪ In,lr−1,i. Since T (i, r − 1) is σ(ηj,n : κj,n ∈ J(i, r − 1))-
measurable, S(i, r) is σ(ηj,n : κj,n ∈ In,lr,i)-measurable and distn(J(i, r−1), In,lr,i) ≥ mn,
the rest of the proof hinges on the following covariance inequality for either α- or ϕ-mixing
random variables (cf. Doukhan (1994), Theorem 3, p. 9f.):∣∣∣E [eδT (i,r−1)eδS(i,r)

]
− E

[
eδT (i,r−1)

]
E
[
eδS(i,r)

]∣∣∣
≤θq(mn)‖eδS(i,r)‖∞‖eδT (i,r−1)‖q,
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with q = 1 + 1/r, where, in the ϕ-mixing case, we have used that |A ∩ In,lr,i| ≤ md
n.

(For ϕ-mixing observations, q = 1 could be chosen in the inequality. However, in order
to unify the proof for the two mixing assumptions, q > 1 is discussed here. The only
di�erence this makes for the result is that qj = 1, j = 0, . . . , r, for q = 1 and therefore e
could be replaced by 1 in the following.)
Note that for any 1 ≤ u ≤ pdn,

|S(i, u)| ≤
∑

κj,n∈In,lu,i

|ηj,n| ≤ C1,n|In,lu,i| ≤ C1,nm
d
n

and therefore choosing 0 < β = βn ≤ 1
2d+1C1,nmdne

yields |δS(i, u)| ≤ 1
2e for δ = δn = 2dβn,

and thus
‖eδDS(i,u)‖∞ ≤

√
e (18)

for any 0 ≤ D ≤ e. Therefore,

E
[
eδDS(i,r)

]
≤ 1 + δDE[S(i, r)] + δ2D2E[S(i, r)2]

= 1 + δ2D2E[S(i, r)2]

≤ eδ2D2E[S(i,r)2] ≤ eδ2D2C2,n|A∩In,lr,i|

and, due to q ≥ 1,

E
[
eδT (i,r)

]
≤θq(mn)‖eδS(i,r)‖∞‖eδT (i,r−1)‖q + E

[
eδT (i,r−1)

]
eδ

2C2,n|A∩In,lr,i|

≤
(
θq(mn)‖eδS(i,r)‖∞ + eδ

2C2,n|A∩In,lr,i|
)
‖eδT (i,r−1)‖q.

Using the fact that 1 ≤ qj ≤
(
1 + 1

r

)r ≤ e (j = 0, . . . , r) for q = 1 + 1/r, we analogously
obtain

‖eδT (i,r−1)‖q

=
(
E
[
eδqT (i,r−1)

])1/q

≤
(
θq(mn)‖eδqS(i,r−1)‖∞ + eδ

2q2C2,n|A∩In,lr−1,i
|
)1/q (

‖eδqT (i,r−2)‖q
)1/q

=
(
θq(mn)‖eδqS(i,r−1)‖∞ + eδ

2q2C2,n|A∩In,lr−1,i
|
)1/q
‖eδT (i,r−2)‖q2

and iterating yields

‖eδT (i,r−j)‖qj ≤
(
θq(mn)‖eδqjS(i,r−j)‖∞ + e

δ2q2jC2,n|A∩In,lr−j ,i|
)1/qj

‖eδT (i,r−j−1)‖qj+1
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for j = 0, . . . , r − 2. Using this and (18), we obtain

E
[
eδT (i,r)

]
≤
r−2∏
j=0

(
θq(mn)

√
e+ e

δ2q2jC2,n|A∩In,lr−j ,i|
)1/qj

‖eδT (i,1)‖qr−1

≤


r−2∏
j=0

e
δ2qjC2,n|A∩In,lr−j ,i|

(
1 + θq(mn)

√
e
)1/qj ‖eδT (i,1)‖qr−1

=
r−2∏
j=0

exp

(
δ2qjC2,n|A ∩ In,lr−j ,i|+

1

qj
ln
(
1 + θq(mn)

√
e
))
‖eδT (i,1)‖qr−1

≤
r−2∏
j=0

exp
(
δ2qjC2,n|A ∩ In,lr−j ,i|+ θq(mn)

√
e
)
‖eδT (i,1)‖qr−1

≤


r−2∏
j=0

exp
(
δ2eC2,n|A ∩ In,lr−j ,i|

) e(r−1)θq(mn)
√
e‖eδT (i,1)‖qr−1 .

Finally, by the same arguments as above,

‖eδT (i,1)‖qr−1 ≤ ‖eδT (i,1)‖e

=
(
E
[
eδeS(i,1)

])1/e

≤
(
eδ

2e2E[S(i,1)2]
)1/e

≤
(
eδ

2e2C2,n|A∩In,l1,i|
)1/e

= eδ
2eC2,n|A∩In,l1,i|

For r = pdn and q = qn = 1 + 1
pdn
, this yields

E
[
eδT (i,pdn)

]
≤ exp

δ2eC2,n

pdn∑
j=1

|A ∩ In,lj ,i|

 e(pdn−1)θqn (mn)
√
e

≤ exp
(
δ2eC2,n|A ∩ In,i|

)
e(pdn−1)θqn (mn)

√
e.

Since {−ηj,n}κj,n∈In has the same mixing coe�cients as {ηj,n}κj,n∈In , combining the
results and using the Markov inequality yields the statement of the lemma:

P (|Sn(A)| ≥ ε) ≤ P (Sn(A) ≥ ε) + P (−Sn(A) ≥ ε)

≤ P
(
eβnSn(A) ≥ eβnε

)
+ P

(
eβn(−Sn(A)) ≥ eβnε

)
≤ exp(−βnε)2−d

2d∑
i=1

(
E
[
eδT (i,pdn)

]
+ E

[
eδ(−T (i,pdn))

])
≤ 2 exp(−βnε) exp

(
22dβ2

neC2,n|A|+ (pdn − 1)θqn(mn)
√
e
)
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A maximal inequality for aggregated pixels

Consider the model of Subsection 3.2.

Lemma 4.3. It holds that

max
A∈An

1

|A|

∥∥∥∥∥∥
∑
κi,n∈A

Yi,n

∥∥∥∥∥∥
2

≤ max
C∈Cn

1

|C|

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

=
mn

|In|
max
C∈Cn

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

.

If additionally Assumption (Y(r)) is satis�ed for S = Cn, it holds that

max
C∈Cn

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

= OP
(
|In|1/2m

1
r
− 1

2
n

)
.

Proof. For any A ∈ An, C ∈ Cn, it holds that

card({C ∈ Cn : C ⊆ A}) ≤ |A|
|C|

=
mn|A|
|In|

and therefore

max
A∈An

1

|A|

∥∥∥∥∥∥
∑
κi,n∈A

Yi,n

∥∥∥∥∥∥
2

≤ max
A∈An

card({C ∈ Cn : C ⊆ A})
|A|

max
C∈Cn,C⊂A

|In|
mn|C|

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

≤max
C∈Cn

1

|C|

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

Under Assumption (Y(r)), the Markov inequality yields

P

max
C∈Cn

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

≥ ε

 ≤ mn max
C∈Cn

P

∥∥∥∥∥∥
∑

κi,n∈C
Yi,n

∥∥∥∥∥∥
2

≥ ε


≤ Krmn max

C∈Cn
|C|r/2ε−r

= Kr

(
m

1
r
− 1

2
n |In|1/2

)r
ε−r.

A maximal inequality for nested sets

Consider nested sets T1 ⊆ · · · ⊆ Tm that are anchored on the grid In with
0 < b1 = |T1| < · · · < |Tm| = bm. Then we obtain the following maximal inequalities:
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Lemma 4.4. Suppose that Assumption (Y(r)) is satis�ed for S = T . Then

E

 max
1≤j≤m

∥∥∥∥∥∥
∑

κi,n∈Tj

Yi,n

∥∥∥∥∥∥
r

2

 ≤ {K∗r bm log(bm)2, r = 2,

K∗r b
r/2
m , r > 2,

where K∗r = 3Kr for r = 2 and K∗r = 5
2(1− 2(1−r/2)/r)−rKr for r > 2.

Proof. Choose a numbering of the bm grid points in Tm such that the �rst 1 to b1 points
lie in T1, the points b1 + 1 to b2 lie in T2 \ T1, and so on. De�ne {ψj,n}j=1,...,bm by

ψj,n =

0, j /∈ {b1, . . . , bm},∑
κi,n∈Tk\Tk−1

Yi,n, j = bk (∃k ∈ {1, . . . ,m}) ,

where T0 = ∅. Then {ψj,n}j=1,...,bm satis�es

l∑
j=1

ψj,n =


0, l < b1∑
κi,n∈Tk

Yi,n, bk ≤ l < bk+1 (∃k ∈ {1, . . . ,m− 1})∑
κi,n∈Tm

Yi,n, l = bm

and therefore

E

∥∥∥∥∥∥
l∑

j=1

ψj,n

∥∥∥∥∥∥
r

2

≤ Krl
r/2, for all l = 1, . . . , bm.

Theorem and Corollary 1 in Móricz (1982) (which are applicable to Rp-valued random
variables as can be easily seen from their proof) imply

E

 max
1≤j≤m

∥∥∥∥∥∥
∑

κi,n∈Tj

Yi,n

∥∥∥∥∥∥
r

2

 = E

 max
1≤l≤bm

∥∥∥∥∥∥
l∑

j=1

ψj,n

∥∥∥∥∥∥
r

2

 ≤ {K?
r bm log(bm)2, r = 2

K?
r b
r/2
m , r > 2

4.2 Proofs of the main results

Proof of Theorem 2.1. The following proof follows the classical idea (cf. e.g. van der
Vaart and Wellner (1996) or Kosorok (2010)) of dividing the process into a stochastic and
a purely deterministic part and then showing that the stochastic part becomes asymp-
totically negligible and the deterministic part has a (well separated) maximum at the
true change-set. However, unlike in most classical proofs, the latter is proven without
using a �xed (pseudo-)metric on B([0, 1]d) (which would correspond to a limit for the
grid dependent metric employed here) or explicitly deriving the limit function of the
deterministic part and using continuity assumptions on the limit. Let ε > 0 be arbitrary.
It holds that

P
(
∂n(θ̂n, θ) ≥ ε

)
≤P

(
∂n(θ̂n, θ) ≥ ε, max

T∈T
‖Bn(T )‖2 < ξξn

)
+ P

(
max
T∈T
‖Bn(T )‖2 ≥ ξξn

)
=P

(
∂n(θ̂n, θ) ≥ ε, max

T∈T
‖Bn(T )‖2 < ξξn

)
+ o(1)
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for any ξ > 0, and if we consider ξ < α/4 and n large enough that βn < ε

P

(
∂n(θ̂n, θ) ≥ ε, max

T∈T
‖Bn(T )‖2 < ξξn

)

≤P


≤max
T∈T

‖Bn(T )‖2+ max
T∈T ,∂n(T,θ)≥ε

‖∆n(T )‖2︷ ︸︸ ︷
max

T∈T ,∂n(T,θ)≥ε
‖Dn(T )‖2 ≥

≥ max
T∈T ,∂n(T,θ)<βn

‖∆n(T )‖2−max
T∈T

‖Bn(T )‖2︷ ︸︸ ︷
max

T∈T ,∂n(T,θ)<ε
‖Dn(T )‖2 ,

max
T∈T
‖Bn(T )‖2 < ξξn

)
≤P

(
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2 ≤ 2 max

T∈T
‖Bn(T )‖2,

max
T∈T
‖Bn(T )‖2 < ξξn

)
≤P

(
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2 ≤ 2ξξn

)
≤P

(
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2 ≤

α

2
ξn

)
.

Since

max
T∈T ,∂n(T,θ)<βn

ρn(T )− max
T∈T ,∂n(T,θ)≥ε

ρn(T )

= min
T∈T ,

∂n(T,θ)≥ε

max
T̃∈T ,

∂n(T̃ ,θ)<βn

(
ρn(T̃ )− ρn(T )

)
,

Lemma 1.1 yields

ρn(T̃ )− ρn(T ) =

≥σI∂n(T,θ)︷ ︸︸ ︷
ρn(θ)− ρn(T )−(

<∂n(T̃ ,θ)︷ ︸︸ ︷
ρn(θ)− ρn(T̃ ))

≥ σI∂n(T, θ)− ∂n(T̃ , θ)

≥ σIε− βn.

Therefore, (7) implies

lim inf
n→∞

ξ−1
n

{
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2

}
≥ lim inf

n→∞
ξ−1
n ‖a− b‖2 (σIε− βn)

>α

(19)

and thus there is some n0 ∈ N so that for any n ≥ n0,

max
T∈T ,∂n(T,θ)<βn

‖∆n(T )‖2 − max
T∈T ,∂n(T,θ)≥ε

‖∆n(T )‖2 ≥ ξnα

and �nally

P

(
max

T∈T ,∂n(T,θ)<βn
‖∆n(T )‖2 − max

T∈T ,∂n(T,θ)≥ε
‖∆n(T )‖2 ≤ ξnα/2

)
n→∞−→ 0.
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The convergence of dn(θ̂n, θ) can be proven analogously by replacing ∂n by dn in the
proof and directly using (8) instead of (19).

Proof of Remark 2.1. Proof of 1: By Assumption (I) and (7), we can choose n0 ∈ N
such that for all n ≥ n0

min
T∈T

dn(T c, θ) > ε and ξ−1
n ‖a− b‖2 (σIε− βn) > α

for some ε > 0 and α > 0. As seen in the proof of Theorem 2.1,

max
T∈T ,dn(T,θ)<βn

ρn(T )− max
T∈T ,dn(T,θ)≥ε

ρn(T )

≥ min
T∈T ,

dn(T,θ)≥ε

max
T̃∈T ,

dn(T̃ ,θ)<βn

(
σI∂n(T, θ)− ∂n(T̃ , θ)

)
≥σI min

T∈T ,dn(T,θ)≥ε
min{dn(T, θ), dn(T c, θ)} − βn

≥σI min

{
min
T∈T

dn(T c, θ), ε

}
− βn

=σIε− βn.

Therefore,

ξ−1
n ‖a− b‖2

{
max

T∈T ,dn(T,θ)<βn
ρn(T )− max

T∈T ,dn(T,θ)≥ε
ρn(T )

}
≥ξ−1

n ‖a− b‖2 (σIε− βn)

>α

for any n ≥ n0.
Proof of 3: Using dn(A, θ) = dn(AI , θI), it holds that

lim sup
n→∞

max
T∈T

dn(T, θ)

= lim sup
n→∞

sup
A∈A

(λ(A4θ) + (dn(A, θ)− λ(A4θ)))

≤ sup
A∈A

λ(A4θ) + lim sup
n→∞

sup
A∈A
|dn(A, θ)− λ(A4θ)|

= sup
A∈A

λ(A4θ) < 1

Proof of Lemma 2.1. The proof is analogous to the proof of Theorem 1.1 in Bass and
Pyke (1984), with convergence in probability instead of almost surely. We include it here
for ease of reading. For any A ⊆ [0, 1]d, we write

Sn(A) =
∑
κi,n∈A

Yi,n and S̃n(A) =
∑
κi,n∈A

(|Yi,n| − νi,n).

First, note that due to Assumption (Y),

|In|−1Sn((0,x]) =
|(0,x]|
|In|

1

|(0,x]|
Sn((0,x])

P−→ 0 (n→∞)
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for any x ∈ (0, 1]d, since |(0,x]| =
∏d
l=1bNlxlc → ∞ for max

l=1,...,d
Nl →∞ and x > 0. If a

set T can be obtained by a �nite number of unions and di�erences of rectangles (0,x],
linearity implies

|In|−1Sn(T )
P−→ 0 and analogously |In|−1S̃n(T )

P−→ 0. (20)

Fix an integer m and set Dj,m = m−1(j− 1, j], j ∈ {1, . . . ,m}d, and for any T ⊆ [0, 1]d,
let

R−m(T ) =
⋃

Dj,m⊆T
Dj,m and R+

m(T ) =
⋃

Dj,m∩T 6=∅

Dj,m.

The furthest any point of R+
m(T )\R−m(T ) can be from the boundary of T is the diameter

of a cube with sides with a length of 1/m. Hence,

|In|−1 max
T∈T
|T \R−m(T )| ≤ |In|−1 max

T∈T
|R+

m(T ) \R−m(T )| ≤ rn(1/m)

Set R−m = {R−m(T ) : T ⊆ [0, 1]d} and R4m = {R+
m(T ) \ R−m(T ) : T ⊆ [0, 1]d}. For �xed

m, these sets are �nite and each set in R4m or R−m can be obtained by a �nite number of
unions and di�erences of rectangles. Therefore,

max
B∈R4m

||In|−1S̃n(B)| = oP (1) and max
B∈R−m

||In|−1Sn(B)| = oP (1)

for n→∞ and any m ∈ N, by (20). Note that for �xed m,

max
T∈T
||In|−1Sn(T )− |In|−1Sn(R−m(T ))|

≤max
T∈T

|In|−1S̃n(R+
m(T ) \R−m(T )) + |In|−1

∑
κi,n∈R+

m(T )\R−m(T )

νi,n


≤ max
B∈R4m

||In|−1S̃n(B)|+ max
κi,n∈In

νi,n|In|−1 max
T∈T
|R+

m(T ) \R−m(T )|

≤ max
B∈R4m

||In|−1S̃n(B)|+ νrn(1/m).

Therefore, we obtain

max
T∈T
||In|−1Sn(T )|

≤max
T∈T
||In|−1Sn(T )− |In|−1Sn(R−m(T ))|+ max

T∈T
||In|−1Sn(R−m(T ))|

≤ max
B∈R4m

||In|−1S̃n(B)|+ max
B∈R−m

||In|−1Sn(B)|+ νrn(1/m).

Finally, it follows for any ε > 0 and m ∈ N that

lim sup
n→∞

P

(
max
T∈T
||In|−1Sn(T )| ≥ ε

)
≤ lim sup

n→∞
P

(
max
B∈R4m

||In|−1S̃n(B)| ≥ 1

3
ε

)
+ lim sup

n→∞
P

(
max
B∈R−m

||In|−1Sn(B)| ≥ 1

3
ε

)
+ lim sup

n→∞
P

(
νrn(1/m) ≥ 1

3
ε

)
= lim sup

n→∞
I{rn(1/m)≥1/3εν−1}.
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Since the left-hand side is independent of m and the right-hand side goes to zero for
m→∞ by (13), this proves the Lemma.

Proof of Corollary 2.1. Under Assumption (T ∗1) (or, correspondingly, (T ∗2) for dn),
βn = 1

6σIαn|In|
−1 can be chosen. With this choice of βn, lim inf

n→∞
ξ−1
n ‖a − b‖2σI > 0

implies (7), since the fact that αn = o(|In|) yields

lim inf
n→∞

ξ−1
n ‖a− b‖2(σIε− βn) = lim inf

n→∞
ξ−1
n ‖a− b‖2σI

(
ε− 1

6
αn|In|−1

)
> 0

for any ε > 0. Therefore, the result follows from Theorem 2.1 and the additional com-
ments in Subsection 2.1.

Proof of Theorem 2.2. The following proof is inspired by the proof of Theorem 2.1 in
Ferger (2004), modi�ed to �t the current setting, where, in particular, no stochastic
independence is assumed and the change-set itself is estimated, instead of its boundary.
Focusing on the more general problem of a change in distribution, Ferger (2004) was
able to employ an exponential inequality by Dümbgen (1991) to obtain bounds for error
probabilities of the form P (∂(θ̂n, θ) > ε), ε > 0. While the current proof follows the
general idea of Ferger (2004), it di�ers heavily in its execution, since no such inequality
is available under our assumptions and our statistic is based on the partial sums instead
of empirical measures.
Per de�nition of the estimator and Assumption (T ∗2), it holds for any α > 1/6σI that

{|In|dn(θ̂n, θ) ≥ ααn} ⊆ { max
T∈T :|T4θ|≥ααn

‖Dn(T )‖2 ≥ max
T∈T :|T4θ|<ααn

‖Dn(T )‖2}

⊆ { max
T∈T :|T4θ|≥ααn

(‖Dn(T )‖2 − ‖Dn(T ∗)‖2) ≥ 0}.

Observe that for any T ∈ T

‖Dn(T )‖2 − ‖Dn(T ∗)‖2 = ‖Dn(T )‖2 − ‖Dn(θ)‖2 + ‖Dn(θ)‖2 − ‖Dn(T ∗)‖2

and

Dn(T )

=Bn(T ) + δn(T )(a− b)

=Bn(T )−Bn(θ) +
δn(θ)

δn(θ)
Bn(θ)− δn(T )

δn(θ)
Bn(θ) +

δn(T )

δn(θ)
Dn(θ)− δn(T )

δn(θ)
δn(θ)(a− b)

+ δn(T )(a− b)

=Bn(T )−Bn(θ) +
δn(θ)− δn(T )

δn(θ)
Bn(θ) +

δn(T )

δn(θ)
Dn(θ).

Therefore,

‖Dn(T )‖2 ≤ ‖Bn(T )−Bn(θ)‖2 +
|δn(θ)− δn(T )|

δn(θ)
‖Bn(θ)‖2 +

ρn(T )

δn(θ)
‖Dn(θ)‖2.
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If dn(T, θ) ≤ 1/2, Lemma 1.1 (cf. also Remark 1.2) and δn(θ) = ρn(θ) imply

‖Dn(T )‖2 − ‖Dn(θ)‖2

≤‖Bn(T )−Bn(θ)‖2 +
|δn(θ)− δn(T )|

δn(θ)
‖Bn(θ)‖2 −

δn(θ)− ρn(T )

δn(θ)
‖Dn(θ)‖2

≤‖Bn(T )−Bn(θ)‖2 +
dn(T, θ)

δn(θ)
‖Bn(θ)‖2 −

σIdn(T, θ)

δn(θ)
‖Dn(θ)‖2

=‖Bn(T )−Bn(θ)‖2 −
{
σI‖Dn(θ)‖2 − ‖Bn(θ)‖2

δn(θ)

}
dn(T, θ)

≤‖Bn(T )−Bn(θ)‖2 − Ldn(T, θ)

on the complement of the set

E =

{
σI‖Dn(θ)‖2 − ‖Bn(θ)‖2

δn(θ)
≤ L

}
with L = σI/2‖a− b‖2. Furthermore,

‖Dn(θ)‖2 − ‖Dn(T ∗)‖2 ≤ ‖Dn(θ)−Dn(T ∗)‖2
= ‖Bn(θ)−Bn(T ∗) + (δn(θ)− δn(T ∗))(a− b)‖2
≤ ‖Bn(θ)−Bn(T ∗)‖2 + |δn(θ)− δn(T ∗)|‖a− b‖2
≤ ‖Bn(θ)−Bn(T ∗)‖2 + dn(θ, T ∗)‖a− b‖2.

Finally, we obtain

P (|In|dn(θ̂n, θ) ≥ ααn)

≤P
(
|In|dn(θ̂n, θ) ≥ ααn, dn(θ̂n, θ) ≤ 1/2, Ec

)
+ P (E) + P (dn(θ̂n, θ) > 1/2).

Consistency of the estimator implies

P (dn(θ̂n, θ) > 1/2)
n→∞−→ 0. (21)

It holds that

E =

{
σI‖Dn(θ)‖2 − ‖Bn(θ)‖2

δn(θ)
≤ L

}

⊆

‖Bn(θ)‖2 ≥ σI ‖Dn(θ)‖2︸ ︷︷ ︸
≥δn(θ)‖a−b‖2−‖Bn(θ)‖2

−δn(θ)L


⊆
{
‖Bn(θ)‖2 ≥

δn(θ)

1 + σI
(σI‖a− b‖2 − L)

}
⊆
{
‖Bn(θ)‖2 ≥

σI/2

1 + σI
σI/2‖a− b‖2 =

1

4

σ2
I

1 + σI
‖a− b‖2

}
,

since L = σI/2‖a− b‖2 and δn(θ) ≥ σI/2. Moreover,

Bn(θ) =
1

|In|
∑
κi,n∈θ

(Yi,n − Ȳn)

=
1

|In|
∑
κi,n∈θ

Yi,n −
|θ|
|In|

1

|In|
∑

κi,n∈In

Yi,n,
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which is OP (|In|−1/2) under Assumption (Y). Therefore, since

|In|1/2

4

σ2
I

1 + σI
‖a− b‖2

n→∞−→ ∞ by (14),

we obtain P (E)
n→∞−→ 0. Due to the arguments above,

P
(
|In|dn(θ̂n, θ) ≥ ααn, dn(θ̂n, θ) ≤ 1/2, Ec

)
≤P
(
∃T ∈ T , |T4θ| ≥ ααn :

0 ≤ ‖Bn(T )−Bn(θ)‖2 − Ldn(T, θ) + ‖Bn(θ)−Bn(T ∗)‖2 + dn(θ, T ∗)‖a− b‖2
)

≤P
(
∃T ∈ T , |T4θ| ≥ ααn : L ≤ |In|

|T4θ|
‖Bn(T )−Bn(θ)‖2

+
|In|
|T4θ|

‖Bn(θ)−Bn(T ∗)‖2 + |In|α−1α−1
n dn(θ, T ∗)‖a− b‖2

)
≤P

(
max

T∈T :|T4θ|≥ααn

|In|‖Bn(T )−Bn(θ)‖2
|T4θ|

≥ 1/3L

)
+ P

(
max

T∈T :|T4θ|≥ααn

|In|‖Bn(θ)−Bn(T ∗)‖2
|T4θ|

≥ 1/3L

)
+ P (|In|α−1α−1

n dn(θ, T ∗)‖a− b‖2 ≥ 1/3L)

=:P (A1) + P (A2) + P (A3).

First, note that it follows from ‖a−b‖2 6= 0 and Assumption (T ∗2) on the approximation
quality of the candidate sets T that

A3 =
{
|In|α−1α−1

n dn(θ, T ∗)‖a− b‖2 ≥ 1/6σI‖a− b‖2
}

⊆
{
dn(θ, T ∗) ≥ 1/6|In|−1σIααn

}
= ∅

for any α > 1. For T ∈ T with |T4θ| ≥ ααn, it holds that

Bn(T )−Bn(θ)

=
1

|In|

 ∑
κi,n∈T

Yi,n −
|T |
|In|

∑
κi,n∈In

Yi,n

− 1

|In|

 ∑
κi,n∈θ

Yi,n −
|θ|
|In|

∑
κi,n∈In

Yi,n


=

1

|In|

 ∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

+
1

|In|

(
|θ|
|In|
− |T |
|In|

) ∑
κi,n∈In

Yi,n

And therefore,

|In|
|T4θ|

‖Bn(T )−Bn(θ)‖2

≤

∥∥∥∥∥∥ 1

|T4θ|

 ∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

+
||θ| − |T ||
|T4θ|

∥∥∥∥∥∥ 1

|In|
∑

κi,n∈In

Yi,n

∥∥∥∥∥∥
2

≤ 1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

+OP
(
|In|−1/2

)
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by Assumption (Y). Thus, it can easily be seen that under Assumption (14), P (A1)→ 0
for α → ∞ and n → ∞ if (16) holds. Since |T4θ| = |In|dn(T, θ) ≥ |In|dn(T ∗, θ) =
|T ∗4θ| per de�nition of T ∗, analogous calculations imply

|In|
|T4θ|

‖Bn(T ∗)−Bn(θ)‖2

≤ 1

|T4θ|

∥∥∥∥∥∥
∑

κi,n∈T ∗
Yi,n −

∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

+OP
(
|In|−1/2

)
and therefore

P (A2) =P

(
max

T∈T :|T4θ|≥ααn

|In|‖Bn(θ)−Bn(T ∗)‖2
|T4θ|

≥ 1/3L

)

≤P

 1

ααn

∥∥∥∥∥∥
∑

κi,n∈T ∗
Yi,n −

∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≥ 1/6L


+ P

 1

|In|

∥∥∥∥∥∥
∑

κi,n∈In

Yi,n

∥∥∥∥∥∥
2

≥ 1/6L

 .

Now, Assumptions (Y) and |θ| ≥ |In|σI yield

P

 1

|θ|

∥∥∥∥∥∥
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≥ 1/36L

 ≤ cK|θ|−1σ−2
I ‖a− b‖

−2
2 ≤ cKσI

(
|In|1/2σ2

I‖a− b‖2
)−2

for some c > 0. Furthermore, it follows from Assumption (T ∗2) that

P

 1

ααn

∥∥∥∥∥∥
∑

κi,n∈T ∗
Yi,n −

∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

≥ 1/12L


≤242

L2

1

α2α2
n

E
∥∥∥∥∥∥

∑
κi,n∈T ∗\θ

Yi,n

∥∥∥∥∥∥
2

2

+ E

∥∥∥∥∥∥
∑

κi,n∈θ\T ∗
Yi,n

∥∥∥∥∥∥
2

2


≤576

K

L2

1

α2α2
n

|T ∗ \ θ|+ |θ \ T ∗|︸ ︷︷ ︸
=|T ∗4θ|≤1/6σIαn


≤ 384K

σI‖a− b‖22αn
1

α2
.

Therefore, under Assumptions (14) and (15), P (A2) → 0, for α → ∞ and n → ∞.
Moreover, using an analogous argumentation, it can easily be seen that under these
assumptions, P (A1)→ 0 for α→∞ and n→∞ if (16) holds.

Proof of Theorem 2.3. Note that

‖Dn(T )‖2 = ‖Dn(T c)‖2 = ‖Dn(T̄ )‖2
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and therefore

{|In|∂n(θ̂n, θ) ≥ ααn} ⊆ { max
T∈T :|T̄4θ|≥ααn

‖Dn(T̄ )‖2 ≥ max
T∈T :|T̄4θ|<ααn

‖Dn(T̄ )‖2}

⊆ { max
T∈T :|T̄4θ|≥ααn

(
‖Dn(T̄ )‖2 − ‖Dn(T̄ ∗)‖2

)
≥ 0}.

The remainder of the proof is identical to the proof of Theorem 2.2, where we simply
replace T and T ∗ by T̄ and T̄ ∗ and dn by ∂n and note that since dn(T̄ , θ) = ∂n(T̄ , θ) ≤ 1/2
for all T ∈ T , the additional assumption of consistency is unnecessary.

Proof of Lemma 2.2. We want to use the truncation result and exponential inequality of
Subsection 4.1. First, note that the integrability assumption and either of the mixing
assumptions imply (2), since there are constants c1, c2 > 0 (cf. Doukhan (1994)) such
that∣∣∣Cov(Y

(k)
i,n , Y

(l)
j,n )
∣∣∣

≤

c1α (distn({κi,n}, {κj,n})(r−2)/r
(
E|Y (k)

i,n |
rE|Y (l)

j,n |
r
)1/r

, for α-mixing

c2ϕ (distn({κi,n}, {κj,n})(r−1)/r
(
E|Y (k)

i,n |
r/(r−1)

)(r−1)/r (
E|Y (l)

j,n |
r
)1/r

, for ϕ-mixing

≤

{
c1α(‖i− j‖∞)(r−2)/rD1, for α-mixing

c2ϕ(‖i− j‖∞)(r−1)/rD2, for ϕ-mixing

for any k, l ∈ {1, . . . , p}, n ∈ N and κi,n, κj,n ∈ In, where

D1 = max
k,l∈{1,...,p}

sup
n∈N

max
κi,n,κj,n∈In

(
E|Y (k)

i,n |
rE|Y (l)

j,n |
r
)1/r

<∞

and

D2 = max
k,l∈{1,...,p}

sup
n∈N

max
κi,n,κj,n∈In

(
E|Y (k)

i,n |
r/(r−1)

)(r−1)/r (
E|Y (l)

j,n |
r
)1/r

<∞.

Therefore,

max
κi,n∈In

∑
κj,n∈In

∣∣∣Cov(Y
(k)
i,n , Y

(l)
j,n )
∣∣∣

≤c1D1 max
1≤i≤n

∑
1≤j≤n

α(‖i− j‖∞)(r−2)/r

=c1D1 max
1≤i≤n

n∑
h=0

∑
1≤j≤n,
‖i−j‖∞=h

α(h)(r−2)/r

≤2c1D1

∞∑
h=0

hd−1α(h)(r−2)/r <∞

under α-mixing with the assumed rate and analogously

max
κi,n∈In

∑
κj,n∈In

∣∣∣Cov(Y
(k)
i,n , Y

(l)
j,n )
∣∣∣ ≤ 2c2D2

∞∑
h=0

hd−1ϕ(h)(r−1)/r <∞
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under ϕ-mixing (since γ > r
r−1(d−1)). For bn = ααn = αnη, f(n) = αn

d−η
r−1 = bngn with

gn = n−
rη−d
r−1 , we consider the processes Zn(·), Zn(·, u, v) and Un(·, u, v) (0 ≤ u < v ≤ ∞)

as in Lemma 4.1. For any a > 0, we obtain

P

 max
T∈T :|T4θ|≥bn

1

|T4θ|

∥∥∥∥∥∥
∑
κi,n∈T

Yi,n −
∑
κi,n∈θ

Yi,n

∥∥∥∥∥∥
2

> εσI‖a− b‖2


=P

(
max

T∈T :|T4θ|≥bn

bn
|T4θ|

‖Zn(T )− Zn(θ)‖2 > εσI‖a− b‖2
)

≤P
(

max
T∈T :|T4θ|≥bn

bn
|T4θ|

‖Zn(T, 0, a)− Zn(θ, 0, a)‖2 >
1

2
εσI‖a− b‖2

)
+P

(
max

T∈T :|T4θ|≥bn

bn
|T4θ|

(Un([0, 1]d, a,∞) + EUn([0, 1]d, a,∞)) >
1

2
εσI‖a− b‖2

)
By Assumption (C) and Lemma 4.1,

P

(
max

T∈T :|T4θ|≥bn

bn
|T4θ|

(Un([0, 1]d, a,∞) + EUn([0, 1]d, a,∞)) >
1

2
εσI‖a− b‖2

)
n→∞−→ 0.

Since

P

(
max

T∈T :|T4θ|≥bn

bn
|T4θ|

‖Zn(T, 0, a)− Zn(θ, 0, a)‖2 >
1

2
εσI‖a− b‖2

)
≤#T max

T∈T :|T4θ|≥bn
P

(
bn
|T4θ|

‖Zn(T, 0, a)− Zn(θ, 0, a)‖2 >
1

2
εσI‖a− b‖2

)
,

we now consider a �xed T ∈ T with |T4θ| ≥ bn. Because of Assumption (C) and the
equivalence of the norms ‖ ·‖2 and ‖ ·‖∞, there is a constant c > 0 (which is independent
of T and n) such that

P

(
bn
|T4θ|

‖Zn(T, 0, a)− Zn(θ, 0, a)‖2 >
1

2
εσI‖a− b‖2

)
≤P

(
bn
|T4θ|

‖Zn(T \ θ, 0, a)‖2 >
1

4
εσI‖a− b‖2

)
+ P

(
bn
|T4θ|

‖Zn(θ \ T, 0, a)‖2 >
1

4
εσI‖a− b‖2

)
≤p
{

max
l=1,...,p

P
(

bn
|T4θ|

∣∣∣Z(l)
n (T \ θ, 0, a)

∣∣∣ > c
)

+ max
l=1,...,p

P
(

bn
|T4θ|

∣∣∣Z(l)
n (θ \ T, 0, a)

∣∣∣ > c
)}

.

It therefore su�ces to consider the coordinate processes. Let l ∈ {1, . . . , p} and set
Sn(A) = bn

|T4θ|Z
(l)
n (A, 0, a) =

∑
κj,n∈A

η̃j,n for A ⊆ [0, 1]d, with

η̃j,n =
bn
|T4θ|

(η
(l)
j,n(0, a)− Eη(l)

j,n(0, a)).

Note that the process {bnηj,n(0, a)}κj,n∈In inherits the mixing and integrability properties
of the original random �eld and therefore satis�es (2), which implies Assumption (Y).
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Hence, it holds that

|η̃j,n| ≤
2abn
|T4θ|

gn =: C1,n and E
[
Sn(A)2

]
≤

=:C2,n︷ ︸︸ ︷
K

1

|T4θ|2
|A|,

for some K > 0 which is independent of A or n. By Lemma 4.2,

P

(
bn
|T4θ|

∣∣∣Z(l)
n (T \ θ, 0, a)

∣∣∣ > c

)
≤2 exp(−βnc) exp

(
22dβ2

nC2,ne|T \ θ|+ (pdn − 1)θqn (mn)
√
e
)
,

and analogously

P

(
bn
|T4θ|

∣∣∣Z(l)
n (θ \ T, 0, a)

∣∣∣ > c

)
≤2 exp(−βnc) exp

(
22dβ2

nC2,ne|θ \ T |+ (pdn − 1)θqn (mn)
√
e
)
,

with pn = nδ, mn = n
2pn

, qn = 1 + 1/pdn, 0 < βn <
1

2d+1C1,nmdne
. It holds that

C1,nm
d
n =

2a

|T4θ|
bngn

nd

2dpdn
≤ 21−dan−

rη−d
r−1

+d−dδ

and therefore a small enough a > 0 can be chosen so that

1

2d+1C1,nmd
ne
≥ 1

4ea
n
rη−d
r−1
−d+dδ ≥ µ

c
nξ,

since

ξ ≤ rη − d
r − 1

− d+ dδ ⇔ r ≥ ξ − dδ
ξ − dδ − η + d

=
1

1− η−d
ξ−dδ

for ξ − dδ < η − d. Choose βn = µ
cn

ξ. It then holds that

β2
nC2,n max{|T \ θ|, |θ \ T |} ≤ K

(µ
c

)2 1

|T4θ|
n2ξ ≤ K

(µ
c

)2 1

α
n2ξ−η n→∞−→ 0

Finally, note that either of the two mixing conditions imply pdnθqn(mn) = O(1), since

pdnα
1/(1+pdn)(mn) = O

(
nδde

−2 log(nδd) ndδ

ndδ+1

)
= O(1),

and
pdnm

d
nϕ(mn) = O(nd−γ(1−δ)) = O(1).

Therefore, there is a C > 0 such that

P

(
bn
|T4θ|

∣∣∣Z(l)
n (θ \ T, 0, a)

∣∣∣ > c

)
≤2 exp(−µnξ) exp

(
22deK

(µ
c

)2 1

α
n2ξ−η + (pdn − 1)θqn (mn)

√
e

)
≤C exp(−µnξ)
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and

P

(
bn
|T4θ|

∣∣∣Z(l)
n (T \ θ, 0, a)

∣∣∣ > c

)
≤2 exp(−µnξ) exp

(
22deK

(µ
c

)2 1

α
n2ξ−η + (pdn − 1)θqn (mn)

√
e

)
≤C exp(−µnξ).
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Chapter 6

Discussion

In this �nal chapter, the results of the thesis are discussed. In particular, we mention
how they extend the already existing theory and discuss some possible combinations and
extensions.
The main aim of this thesis was to extend results from change-point analysis to spatial

data on a grid. Unlike articles such as Puri and Ruymgaart (1994), the results are
not restricted to the case of two-parameter processes but give a uni�ed treatment of
random �elds over d-dimensional space (d ∈ N). While the theory of spatial change-point
problems is well developed for independent observations, relatively few of the results have
been extended to the dependent case. Additionally, a lot of results place restrictions on
the distribution or assume a parametric form for the process (cf. e.g. Sharpnack and
Arias-Castro (2014)). The main focus of the present work was therefore to present results
in a nonparametric framework that would be applicable to a broad range of random �elds
under simple assumptions that are ful�lled for various dependence concepts.
For the problem of detecting epidemic changes in the mean of real-valued random

�elds, Bucchia (2014) presents an asymptotic change-point test that is consistent under
the alternative, with no restriction on the sign of the change. For this, the approach
described by Jaru²ková and Piterbarg (2011) is extended to weakly dependent data and
general d-parameter processes. To make the results applicable to general kinds of weak
dependence � including, as a special case, independence �, the inference in Bucchia
(2014) is based on a weak invariance principle. As shown by the examples in the paper,
one can then draw on a large number of such limit results from the literature. This
approach has the further advantage that, aside from square integrability, no restrictions
on the distribution of the random variables are necessary. In addition to showing how the
continuous mapping theorem can be used to prove the weak convergence of change-point
statistics for random �elds, the critical values for the test for general dimension d are
obtained.
The statistic used in Bucchia (2014) is a kind of scan statistic, where the size of the

change-set is assumed to be unknown. Therefore, the results can also be viewed as a
generalization of results by Sharpnack and Arias-Castro (2014), who tested for epidemic
changes in a signal plus Gaussian white noise model and derived extreme value results
for scan statistics under the null hypothesis of constant mean zero.
The procedure for the derivation of the weak limit of the statistic could in principle

be used for any test statistic that allows an approximation by a continuous functional
of the partial sum process, and thus, in particular, for some statistics with di�erent
weight functions for which trimming can be avoided. However, one might then need to

140



resort to a di�erent tail approximation since the theorem by Piterbarg (1996) that was
used in Bucchia (2014) only covers �elds with constant variance. In Bucchia (2014), it
was applicable due to the fact that the speci�c weighting function used asymptotically
corresponds to the variance of the Gaussian �eld. It would be interesting to look into
how the tail approximations for nonhomogeneous Gaussian �elds that were obtained e.g.
by Piterbarg (1996) (section 8) might be applicable to this setting.
While Jaru²ková and Piterbarg (2011) focus on the asymptotics under the null hypo-

thesis and assume a known variance, the consistency of the presented test in Bucchia
(2014) was proven not only for constant change heights, but also for changes that might
vanish asymptotically. Instead of assuming that the long-run variance is given, the results
were derived under the assumption that a long-run variance estimator is available which
is consistent under the null hypothesis and stochastically bounded under the alternative
hypothesis. For this, a kernel-type estimator was discussed, which is consistent under
the null (as was proven by Lavancier (2008)). It was noted that this estimator remains
stochastically bounded under the alternative for bandwidth qn and change heights bn
such that b2nq

d
n = O(1) (cf. Chapter 2, Lemma 3.1). Since one needs qn → ∞ for the

consistency under the null, this means that only changes that vanish asymptotically are
allowed. As seen in the proof of consistency (cf. Chapter 2, Theorem 3.3), however, for

the test to be consistent, it su�ces that nd/2|bn|σ̂−1
n

P−→ ∞, where σ̂n is the long-run
variance estimator. Therefore, the assumption of stochastic boundedness for the long-
run variance estimator σ̂n under the alternative could be relaxed while still retaining
consistency.
However, too large values of the estimator might impact the power of the test negat-

ively for �nite sample sizes. To address this problem, Bucchia and Heuser (2015) extend
a method previously employed in the change-point analysis of time series to the random
�eld case. In passing, the consistency (under the null) of the classical long-run variance
estimator, which had previously been investigated for univariate random �elds, is exten-
ded to multivariate random �elds. The paper presents error bounds for the kernel-type
estimation with general weight function under the assumption that the mean of the ran-
dom �eld takes on two values, one inside a change-set and one on the complement of the
change-set. Although a data based heuristic for the choice of the bandwidth is presented,
the optimal bandwidth choice remains an open problem.
Aside from its application as a scaling factor in test statistics for epidemic changes,

the long-run variance estimator is also important for the bootstrap method developed
in Bucchia and Wendler (2015). There, the residuals of the random �eld are weighted
by a random �eld whose covariance structure can be described by a kernel function. As
a result, the conditional covariances of the bootstrapped partial sums take the form of
long-run variance estimators (cf. the proof of Theorem 2.2 in Chapter 4). Therefore,
the joint weak convergence of the �nite dimensional distributions of the original and the
bootstrapped partial sum processes hinges on the consistency of the long-run variance
estimation.
While the results presented in Bucchia (2014) treat real-valued random �elds, an ana-

logous argumentation might be used to generalize the results to multivariate observations.
For the long-run variance estimation and the estimation of the change-points, this was
explicitly done in Bucchia and Heuser (2015). Under the assumption of a multivariate
functional central limit theorem, the same argumentation could in principle be employed
to derive the limit distribution of a change-point statistic as presented in Jaru²ková and
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Piterbarg (2011). After elimination of the long-run variance matrix in the limit, the limit
distribution would be identical to the i.i.d. case and therefore the results by Jaru²ková
and Piterbarg (2011) would yield critical values.
In Bucchia and Wendler (2015), the treatment of the epidemic change testing problem

is extended to Hilbert space valued observations. In particular, the special case of mul-
tivariate data is included. For the latter, not only changes in the mean but also more
generally testing procedures for changes in the marginal distribution are included in the
analysis.
To avoid the estimation of the long-run variance operator and make the test applicable

in practice, a sequential bootstrap method is introduced which mimics the asymptotic
behavior of the partial sum process. To our knowledge, no comparable results � either
for the epidemic change problem for Hilbert space valued random �elds or the sequential
bootstrap in this setting � exist. The bootstrap method we introduced is a variant of
the dependent wild bootstrap method by Shao (2010). Aside from its easy computability,
this method has the added advantage that, unlike the block bootstrap methods described
e.g. in Lahiri (2003), no partition of the data into blocks is necessary. Such a partition
requires the treatment of incomplete blocks and therefore leads to edge e�ects which
increase in importance for growing dimension d.
In contrast to works such as Aston and Kirch (2012a), the analysis is not based on

projections onto �nite dimensional subspaces. This makes it possible to stay in the fully
functional framework, avoiding the problems related to choosing suitable subspaces onto
which to project the data (cf. e.g. Aston and Kirch (2012b) or Torgovitski (2015)). In
particular, a functional central limit theorem for Hilbert space valued random �elds is
proven and the validity of the sequential bootstrap method is shown by proving the joint
weak convergence of the original and the bootstrapped partial sum processes.
As a byproduct which is of independent interest, both a functional central limit theorem

under mixing assumptions for multivariate random �elds and a general characterization
of such limit behavior was obtained. The latter is an extension to multivariate random
�elds of the functional central limit theorem derived by Deo (1975) (cf. Lemma 3 in
Deo (1975)), which is based on a characterization of Brownian sheets and gives general
conditions for the convergence which do not presuppose speci�c dependence assumptions.
In contrast to the general approach of this thesis, the results in Bucchia and Wendler

(2015) are derived under speci�c mixing assumptions. This is due in part to the nature of
the results but also to the scarcity of functional central limit theorems for Hilbert space
valued or even multivariate random �elds in the literature. It might therefore also be of
independent interest to research possible generalizations to other types of dependence of
the functional central limit theorems presented. From a technical viewpoint, the main
ingredients necessary for the application to other types of dependence are the fact that
the dependence is inherited by �nite dimensional projections, the absolute summability
of the (projected) autocovariance functions and the Rosenthal-type inequality for both
the partial sums and the bootstrapped partial sums. For multivariate random �elds, the
general multivariate functional central limit theorem (Chapter 4, Lemma 4.2) might be
used to obtain further results under di�erent weak dependence conditions.
Although the theoretical analysis in Bucchia and Wendler (2015) focuses on the be-

havior of the statistics under the null hypothesis, both the sample mean and the mean
estimator suggested by Bucchia and Heuser (2015) were considered for the bootstrap,
since the critical values supplied by the empirical quantiles of the bootstrapped stat-
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istic are meant to be robust with respect to epidemic changes in the mean. As in the
real-valued case, the simulations show that the changed mean estimation leads to tests
with higher power under the alternative but also a higher false rejection rate under the
null hypothesis. However, tests with either mean estimator do not always adhere to the
nominal level and display good power against the alternatives considered. As it then
turns out that the test has an over-rejection problem which is compounded by the use of
a less than optimal mean estimator under the null, the test with the sample mean as an
estimator for the mean function might therefore be preferable in this setting.
A large part of this thesis is concerned with rectangular change-sets. Rectangular sets

or their unions are in a sense a natural �t for points on a grid with rectangular mesh.
From a technical point of view, rectangular change-sets have several advantages. First,
partial sums over any rectangle whose sides are parallel to the coordinate axes can be
written as sums and di�erences of partial sums over rectangles whose lower edge is zero.
This is not only useful for practical applications, where the form of the partial sums can
be exploited for more e�cient computation of the statistics, but also for the derivation of
limit theorems. For the latter, sums over rectangles can be viewed as the increments of
vector-indexed processes for which a well developed theory of weak convergence (cf. e.g.
Neuhaus (1969) and Bickel and Wichura (1971)) and functional central limit theorems
for various dependence concepts are available. In this context, note that the maximal
inequalities by Móricz (1983) � which have been heavily applied in this thesis � are
not only powerful tools to derive the tightness of such processes based on relatively weak
assumptions on the moments of the partial sums, but are also more generally of use to
bound the stochastic part of CUSUM statistics. Finally, the derivation of critical values
for the test in Bucchia (2014) takes advantage of the fact that rectangular change-sets
are uniquely de�ned by R2d-valued parameters in such a way that their volume and
the volume of the symmetric di�erence of two such sets are continuously di�erentiable
functions of the parameters. This makes it possible to view the limit of the test statistic
as the maximum of a multiparameter Gaussian process and to give approximations of the
local behavior of the covariance function of the limit process using a Taylor expansion.
The testing procedures described in this thesis could in principle be extended to more

general classes of sets. For instance, Xie (1996) derives the weak convergence of his
statistic for convex subsets of the unit cube and Brodsky and Darkhovsky (1993) present
a functional central limit result for their change-set estimator that could be used for a
corresponding testing procedure (cf. Theorem 6.1.2 in Brodsky and Darkhovsky (1993)).
Hahubia and Mnatsakanov (1996) use a very general framework where, in particular,
weak convergence in a generalization of the Skorohod space to set-indexed functions (cf.
also Bass and Pyke (1985)) is used to obtain the limit of statistics for the change-set
problem.
However, this more general approach creates both theoretical and computational dif-

�culties. From a theoretical viewpoint, fewer functional central limit theorems for set-
indexed partial sums are available, most of which concern smoothed partial sums. Part
of the reason for this is the lack of a handy maximal inequality like in the rectangle case,
which makes stronger dependence assumptions on the random �eld necessary to show the
tightness of the process. For instance, Lin and Lu (1996) use an exponential inequality
for truncated partial sums together with Bass's technique to obtain the tightness under
mixing assumptions. It is unclear for which (if any) type of weak dependence the results
by Hahubia and Mnatsakanov (1996) hold true.
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The functional central limit theorems in Bucchia and Wendler (2015) were based on an
extension of the weak convergence theory for multiparameter processes to Hilbert space
valued processes. For more general classes of sets, both the lack of maximal inequalities
and the general lack of theoretical background on which to build would need to be
compensated for. For instance, the proof of Theorem 2.1 in Chapter 4 uses an inequality
for multiparameter martingales. A thorough review of martingale inequalities of this
type in the literature would be required to determine whether they have been � or
could realistically be � applied to di�erent classes of sets (for the concept of set-indexed
martingales, cf. the monograph by Ivano� and Merzbach (2000) and further works by
these authors).
A further di�culty when extending the results to general classes of sets is the greatly

increased computational complexity, which, in particular, complicates the identi�cation
of appropriate critical values. For instance, the examples cited above use a functional
central limit theorem for set-indexed processes to obtain a functional of the set-indexed
Brownian motion as a limit variable. However, since the quantiles of the limit are not
tabulated, one would then be faced with the problem of �nding appropriate critical
values. None of the examples above give results on the computation of critical values
for change-sets other than rectangles. For large classes of candidate sets, a Monte-Carlo
approach to estimating the limit distribution is computationally intensive.
While there are results such as the approximation of tail probabilities in Piterbarg

(1996) or Chan and Lai (2006) for random �elds, much less is known about general
set-indexed processes. A possible step towards extending the method by Jaru²ková and
Piterbarg (2011) might be to consider other classes of sets that can be uniquely char-
acterized by vector-valued parameters, such as circles or ellipses. As mentioned above,
one would then have to deal with the problem of characterizing the local behavior of the
resulting Gaussian process, leading to an analysis that is considerably more involved.
Since the derivation of critical values from the bootstrap in Bucchia and Wendler

(2015) is essentially based on a Monte-Carlo simulation, the computational complexity
would greatly increase for larger classes of change-sets.
In Bucchia and Heuser (2015), the assumption of rectangular change-sets was slightly

relaxed to include �nite unions of rectangles. As mentioned in Chapter 5, the proofs in
Bucchia and Heuser (2015) can be generalized to other classes of change-sets, provided
that suitable maximal inequalities are ful�lled (see Chapter 5, Remark 1.3). Additionally,
this requires suitable change-set estimators for which rates of convergence are known. As
a measure for the accuracy of the change-set estimation in this general context, it is not
the Lebesgue measure of the symmetric di�erence (which was considered in Bucchia and
Heuser (2015)) but rather the number of misclassi�ed grid points that is of interest.
In order to obtain such estimators for more general change-sets, Chapter 5 contains

additional material which discusses change-set estimation for weakly dependent mul-
tivariate observations with a change in the mean.
In Chapter 5, the observations are given on a grid with rectangular mesh where the

scaling can be varied separately for each dimension. The aim was to stay in the discrete
setting, which corresponds to the knowledge one actually has from the observations.
This has the additional bene�t that better rates can be derived since one is not trying
to estimate a theoretically �xed change-set (i.e. one which is independent of the grid),
which, naturally, can only be done up to a certain accuracy due to the coarseness of the
grid.

144



In passing, Chapter 5 also extends the result obtained by Bucchia and Heuser (2015)
for rectangular change-sets. For the special case of change-sets of this form, the change-
set estimation can be reduced to the estimation of the edge points of the rectangle. This
was done in Bucchia (2014) and Bucchia and Heuser (2015), where �rst the consistency
for real-valued random �elds and then a rate of convergence for the change-point estim-
ation for multivariate random �elds was derived. However, as mentioned above, for the
application to long-run variance estimation, the quantity of interest is not the distance
between the estimated and the true edge points or the Lebesgue measure of the sym-
metric di�erence of the sets, but the number of misclassi�ed grid points. In Chapter 5,
rectangular change-sets are directly estimated without a special focus on the estimation
of the edge points. With respect to the discrete metric used, a higher rate of convergence
than the one proven in Bucchia and Heuser (2015) is then derived.
The change-set and the related change-boundary estimation problem are considered in

parallel. Additional identi�ability assumptions required for the change-set estimation are
discussed, including examples on conditions that can be used to verify these assumptions.
Using a CUSUM-type statistic that is a set-indexed analogue of the change-point estim-
ator employed before, general results are derived, which reduce the proofs of consistency
and the rate of convergence to the availability of suitable maximal inequalities under
relatively weak assumptions. Mainly, it is assumed that the class of candidate sets is rich
enough and that the underlying stochastic process ful�lls some moment inequality for
partial sums. The analysis is made more generally applicable by explicitly considering
the case of change heights and change-set sizes that depend on the number of grid points
and allowing these to vanish asymptotically.
The applicability of the results is demonstrated by considering the case of rectangular

sets, sets that can be approximated by unions of speci�c rectangular subsets and nested
sets as examples. For each of these examples, the assumptions of the theorems are veri�ed
and resulting rates are given.
As a byproduct, maximal inequalities for these classes of sets are derived. Additionally,

an exponential inequality is proven that combines and extends corresponding inequalities
by Lin and Lu (1996) and Valenzuela-Domínguez and Franke (2005).
Such estimation problems have received a lot of attention in the literature � not least

because aside from �classical� change-set problems, many questions of image analysis such
as edge detection or the reconstruction of a multidimensional regression function from a
noisy image can be framed in this context. For instance, for independent observations,
Korostelev and Tsybakov (1993) obtained optimal rates of convergence for estimators of
change-sets whose boundary is de�ned by a polynomial. Puri and Ruymgaart (1994)
consider estimators for change curves that can be viewed as the graph of a su�ciently
smooth monotonically nonincreasing function on [0, 1]. More recently, Khmaladze et al.
(2006b) considered change-set estimators for changes in the conditional distribution of
marks given locations in space. Alternative approaches to the estimation problem are,
for instance, described by Wang (1998), who constructed estimators based on wavelets
for change curves in an image. However, most of the results contain strong restrictions
on the dependence structure of the observations (namely independence) or on the shape
of the change-set. Neither of these restrictions are needed for the general discussion of
the consistency or rate of convergence in Chapter 5 of this thesis. For the discrete setting
considered, related results for the more general framework of a change in the marginal
distribution were derived by Ferger (2004) for independent observations, whose proof of
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CHAPTER 6 DISCUSSION

bounds for the error probability was the starting point of the analysis in Chapter 5.
The global viewpoint chosen here, where we do not try to classify single grid points

but rather search for speci�c types of candidate sets, is based on the assumption that a
priori information about the type of change-set is known, which allows the statistician
to choose a suitable class of candidate sets. As noted in Carlstein and Krishnamoorthy
(1994) (and seen in the proofs of Chapter 5), this involves the challenge of choosing a
class of sets that is rich enough to contain a candidate that is close to the true set while
also being small enough to make the derivation of maximal inequalities possible and keep
the computation of the estimator feasible.
The examples discussed in Chapter 5 are just a few among the many types of change-

set that could be considered. For instance, in Lemma 2.2 of Chapter 5, an exponential
inequality was used to derive a maximal inequality for classes of sets whose cardinality
ful�lls certain restrictions. Using the model by Khmaladze et al. (2006b) for the candidate
sets, where it is assumed that the change-set is part of a class of sets for which a δ-net
(δ = δn) is available, one could prove corresponding rates of convergence. In contrast to
the approach presented in Chapter 5, where the maximal inequality is obtained by taking
the number of candidate sets times an exponential bound for each set, Khmaladze et al.
(2006b) use the concept of local covering numbers to obtain tighter bounds. It would be
interesting to see how their approach could be applied to the setting of Chapter 5.
In closing, we will now mention some further avenues for research. As mentioned above,

the computational di�culties involved in both the testing and the estimation problem
increase in parallel to the richness of the class of candidate sets and the size of the grid.
This makes the derivation of algorithms that not only allow the e�cient computation of
the statistics, but also remain theoretically tractable, of high interest. To illustrate pos-
sible strategies, we now present some existing works in this direction. For the detection
of multiple change-points in the mean of a series of independent random variables, Ant-
och and Jaru²ková (2013) developed a computation approach for the test statistic based
on dynamic programming. Mallik (2013) modi�ed an algorithm by Hartigan (1987) to
e�ciently deal with the computation of minima over closed convex subsets of [0, 1]2 (cf.
Mallik (2013), Section 5.1.1). These algorithms have in common that they exploit the
speci�c form of the test statistic. For instance, the algorithm described by Mallik (2013)
relies on the fact that the statistic to be minimized is both nonnegative and additive
with respect to the sets. For algorithms that are meant to be applicable to more general
classes of sets, it might therefore be of interest to deliberately develop test statistics
which recursive algorithms can be applied to. For epidemic changes, Sharpnack and
Arias-Castro (2014) use a test whose critical values are adapted to the dimensions of the
considered rectangle. Since this is computationally intensive, they suggest restricting the
scan to an ε-covering of the class of rectangles, thereby reducing the number of sets that
are considered. Similarly, for the estimation of change-sets that belong to more general
classes of sets, Khmaladze et al. (2006b) consider estimators that involve maximization
over a covering of the class. It might more generally be of interest to study the behavior
of statistics that use not the original class of sets but an approximation thereof. Fi-
nally, another approach consists of modeling the change-set in a way that lends itself to
easier (recursive) computation. This idea was used e.g. by Müller and Song (1994), who
considered change-sets that could be built from unions of rectangular sets and used this
property to develop a recursive algorithm for the computation of the resulting change-set
estimators.

146



Bibliography

K.S. Alexander and R. Pyke. A uniform central limit theorem for set-indexed partial-sum
processes with �nite variance. Ann. Prob., 14(2):582�597, 1986.

D.W.K. Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix
estimation. Econometrica, 59(3):817�858, 1991.

J. Antoch and M. Hu²ková. Tests and estimators for epidemic alternatives. Tatra Mt.
Math. Publ., 7:311�329, 1996.

J. Antoch and D. Jaru²ková. Testing for multiple change points. Comput. Stat., 28(5):
2161�2183, 2013.

J. Antoch, M. Hu²ková, and Z. Prá²ková. E�ect of dependence on statistics for determ-
ination of change. J. Stat. Plan. Infer., 60(2):291�310, 1997.

J.A.D. Aston and C. Kirch. Detecting and estimating changes in dependent functional
data. J. Multivar. Anal., 109:204�220, 2012a.

J.A.D. Aston and C. Kirch. Evaluating stationarity via change-point alternatives with
applications to fMRI data. Ann. Appl. Stat., 6(4):1906�1948, 2012b.

A. Aue and L. Horváth. Structural breaks in time series. J. Time Ser. Anal., 34(1):1�16,
2013.

R.F. Bass and R. Pyke. A strong law of large numbers for partial-sum processes indexed
by sets. Ann. Prob., 12(1):268�271, 1984.

R.F. Bass and R. Pyke. The space D(A) and weak convergence for set-indexed processes.
Ann. Prob., 13(3):860�884, 1985.

I. Berkes and G.J. Morrow. Strong invariance principles for mixing random �elds. Z.
Wahrscheinlichkeitstheorie verw. Gebiete, 57(1):15�37, 1981.

I. Berkes, L. Horváth, P. Kokoszka, and Q.-M. Shao. On discriminating between long-
range dependence and changes in mean. Ann. Statist., 34(3):1140�1165, 2006.

P.J. Bickel and D.A. Freedman. Some asymptotic theory for the bootstrap. Ann. Statist.,
9(6):1196�1217, 1981.

P.J. Bickel and M.J. Wichura. Convergence criteria for multiparameter stochastic pro-
cesses and some applications. Ann. Math. Statist., 42(5):1656�1670, 1971.



P. Billingsley. Convergence of Probability Measures. Wiley Ser. Probab. Math. Statist.
Wiley, New York, 1968.

P. Billingsley. Convergence of Probability Measures. Wiley Ser. Probab. Statist. Probab.
Statist. Wiley, New York, 2nd edition, 1999.

R.C. Bradley. Introduction to Strong Mixing Conditions. Kendrick Press, Heber City,
Utah, 2007.

R.C. Bradley and W. Bryc. Multilinear forms and measures of dependence between
random variables. J. Multivar. Anal., 16(3):335�367, 1985.

B.E. Brodsky and B.S. Darkhovsky. Nonparametric Methods in Change-Point Problems,
volume 243 of Math. Appl. Kluwer, Dordrecht, 1993.

B. Bucchia. Statistische Analyse epidemischer Strukturbrüche in Zufallsfeldern auf
der Basis eines schwachen Invarianzprinzips. Master's thesis, University of Co-
logne, 2012. http://www.mi.uni-koeln.de/~bbucchia/mthesis.pdf[Online; ac-
cessed 23.03.2016].

B. Bucchia. Testing for epidemic changes in the mean of a multiparameter stochastic
process. J. Stat. Plan. Infer., 150:124�141, 2014.

B. Bucchia and C. Heuser. Long-run variance estimation for spatial data under change-
point alternatives. J. Stat. Plann. Infer., 165:104�126, 2015.

B. Bucchia and M. Wendler. Change-point detection and bootstrap for Hilbert space
valued random �elds. arXiv preprint arXiv:1511.02609, 2015.

A. Bücher and I. Kojadinovic. Supplement to �A dependent multiplier bootstrap for
the sequential empirical copula process under strong mixing.�. 2014. doi: 10.3150/
14-BEJ682SUPP.

A. Bulinski. Statistical version of the central limit theorem for vector-valued random
�elds. Math. Notes, 76(4):455�464, 2004.

A. Bulinski and A. Shashkin. Strong invariance principle for dependent random �elds.
Lect. Notes - Monogr. Ser., 48:128�143, 2006.

A. Bulinski and A. Shashkin. Limit Theorems for Associated Random Fields and Related
Systems, volume 10 of Adv. Ser. Stat. Sci. Appl. Probab. World Scienti�c, New Jersey,
2007.

E. Carlstein and C. Krishnamoorthy. Boundary estimation. J. Am. Stat. Assoc., 87(418):
430�438, 1992.

E. Carlstein and C. Krishnamoorthy. Practical considerations in boundary estimation:
Model-robustness, e�cient computation, and bootstrapping. In E. Carlstein, H.G.
Müller, and D. Siegmund, editors, Change-Point Problems, volume 23 of Lect. Notes -
Monogr. Ser., pages 276�283. IMS, Hayward, Calif., 1994.

E. Carlstein, H.G. Müller, and D. Siegmund, editors. Change-Point Problems, volume 23
of Lect. Notes - Monogr. Ser. IMS, Hayward, Calif., 1994.

http://www.mi.uni-koeln.de/~bbucchia/mthesis.pdf


H.P. Chan and T.L. Lai. Maxima of asymptotically Gaussian random �elds and mod-
erate deviation approximations to boundary crossing probabilities of sums of random
variables with multidimensional indices. Ann. Prob., 34(1):80�121, 2006.

X. Chen and H. White. Central limit and functional central limit theorems for Hilbert-
valued dependent heterogeneous arrays with applications. Econometric Theory, 14(2):
260�284, 1998.

T.C. Christo�des and E. Vaggelatou. A connection between supermodular ordering and
positive/negative association. J. Multivar. Anal., 88(1):138�151, 2004.

C.M. Crainiceanu and T.J. Vogelsang. Spectral density bandwidth choice: source of
nonmonotonic power for tests of a mean shift in a time series. Unpublished manuscript,
Department of Economics, Cornell University, 2001.

M. Csörg® and L. Horváth. Limit Theorems in Change-Point Analysis. Wiley, Chichester,
1997.

J. Davidson. Stochastic Limit Theory: An Introduction for Econometricians. Oxford
University Press, Oxford, 2002.

J. Dedecker, P. Doukhan, G. Lang, L.R.J. Rafael, S. Louhichi, and C. Prieur. Weak De-
pendence: With Examples and Applications, volume 190 of Lect. Notes Stat. Springer,
New York, 2007.

H. Dehling, O.S. Sharipov, and M. Wendler. Bootstrap for dependent Hilbert space-
valued random variables with application to von Mises statistics. J. Multivar. Anal.,
133:200�215, 2015.

C.M. Deo. A functional central limit theorem for stationary random �elds. Ann. Probab.,
3(4):708�715, 1975.

C.M. Deo. A note on φ-mixing random �elds. Theory Prob. Appl., 21(4):867�870, 1976.

P. Doukhan. Mixing: Properties and Examples. Springer, New York, 1994.

P. Doukhan, G. Lang, A. Leucht, and M.H. Neumann. Dependent wild bootstrap for the
empirical process. J. Time Ser. Anal., 36(3):290�314, 2015.

R.M. Dudley. A course on empirical processes. In École d'été de Probabilités de Saint-
Flour XII�1982, volume 1097 of Lect. Notes Math., pages 1�142. Springer, Berlin,
1984.

L. Dümbgen. The asymptotic behavior of some nonparametric change-point estimators.
Ann. Statist., 19(3):1471�1495, 1991.

V.R. Eastwood. Some nonparametric methods for changepoint problems. Can. J. Stat.,
21(2):209�222, 1993.

M. El Machkouri. Nonparametric regression estimation for random �elds in a �xed-
design. Stat. Inference Stoch. Process., 10(1):29�47, 2007.

M. El Machkouri, D. Voln�y, and W.B. Wu. A central limit theorem for stationary random
�elds. Stochastic Process. Appl., 123(1):1�14, 2013.



I. Fazekas, A.G. Kukush, and T. Tómács. On the Rosenthal inequality for mixing �elds.
Ukrainian Mathematical Journal, 52(2):305�318, 2000.

D. Ferger. Boundary estimation based on set-indexed empirical processes. J. Nonpara-
metr. Statist., 16(1-2):245�260, 2004.

T. Garlipp and C.H. Müller. Robust jump detection in regression surface. Sankhy	a: The
Indian Journal of Statistics, 69(1):55�86, 2007.

L. Giraitis, P. Kokoszka, R. Leipus, and G. Teyssière. Rescaled variance and related tests
for long memory in volatility and levels. J. Econometrics, 112(2):265�294, 2003.

C.M. Goldie and P.E. Greenwood. Variance of set-indexed sums of mixing random vari-
ables and weak convergence of set-indexed processes. Ann. Prob., 14(3):817�839, 1986.

E. Gombay and L. Horváth. Change-points and bootstrap. Environmetrics, 10(6):725�
736, 1999.

D.A. Gri�th and L.J. Layne. A Casebook for Spatial Statistical Data Analysis: A Com-
pilation of Analyses of Di�erent Thematic Data Sets. Oxford University Press, New
York, 1999.

O. Gromenko and P. Kokoszka. Testing the equality of mean functions of ionospheric
critical frequency curves. J. R. Stat. Soc. Ser. C. Appl. Stat., 61(5):715�731, 2012.

O. Gromenko, P. Kokoszka, and M. Reimherr. Detection of change in the spatiotemporal
mean function. J. R. Stat. Soc. Ser. B Stat. Methodol., 2016.

X. Guyon. Random Fields on a Network: Modeling, Statistics, and Applications. Prob-
ability and its Applications. Springer Science & Business Media, New York, 1995.

T.S. Hahubia and R. Mnatsakanov. On the mode-change problem for random measures.
Georgian Mathematical Journal, 3(4):343�362, 1996.

P. Hall. Resampling a coverage pattern. Stochastic Process. Appl., 20(2):231�246, 1985.

J.A. Hartigan. Estimation of a convex density contour in two dimensions. J. Am. Stat.
Assoc., 82(397):267�270, 1987.

M. Holmes, I. Kojadinovic, and J.-F. Quessy. Nonparametric tests for change-point
detection à la Gombay and Horváth. J. Multivar. Anal., 115:16�32, 2013.

H. Huang, M. Gu, and H. Chao. An e�cient method of license plate location in natural-
scene image. In Fifth International Conference on Fuzzy Systems and Knowledge Dis-
covery (FSKD '08), volume 4, pages 15�19, Washington, DC, USA, 2008.

M. Hu²ková. Estimators for epidemic alternatives. Comment. Math. Univ. Carolinae, 36
(2):279�292, 1995.

M. Hu²ková and C. Kirch. A note on studentized con�dence intervals for the change-
point. Computation. Stat., 25(2):269�289, 2010.

I.A. Ibragimov. A note on the central limit theorems for dependent random variables.
Theory Probab. Appl., 20(1):135�141, 1975.



A. Inoue. Testing for distributional change in time series. Econometric Theory, 17(1):
156�187, 2001.

B.G. Ivano� and E. Merzbach. Set-Indexed Martingales, volume 85 of Monogr. Statist.
Appl. Probab. Chapman & Hall / CRC, Boca Raton, 2000.

B.G. Ivano� and E. Merzbach. Optimal detection of a change-set in a spatial Poisson
process. Ann. Appl. Probab., 20(2):640�659, 2010.

D. Jaru²ková. Detecting non-simultaneous changes in means of vectors. TEST, 24(4):
681�700, 2015.

D. Jaru²ková. Detection of transient change in mean � a linear behavior inside epidemic
interval. Kybernetika, 47(6):866�879, 2011.

D. Jaru²ková and V.I. Piterbarg. Log-likelihood ratio test for detecting transient change.
Statist. Probab. Lett., 81(5):552�559, 2011.

T. Juhl and Z. Xiao. Tests for changing mean with monotonic power. J. Econometrics,
148(1):14�24, 2009.

Z. Kabluchko and E. Spodarev. Scan statistics of Lévy noises and marked empirical
processes. Adv. Appl. Probab., 41(1):13�37, 2009.

M. Kejriwal. Tests for a mean shift with good size and monotonic power. Econ. Lett.,
102(2):78�82, 2009.

E. Khmaladze, R. Mnatsakanov, and N. Toronjadze. The change-set problem for Vapnik-
�ervonenkis classes. Math. Methods Statist., 15(2):224�231, 2006a.

E. Khmaladze, R. Mnatsakanov, and N. Toronjadze. The change set problem and local
covering numbers. Math. Methods Statist., 15(3):289�309, 2006b.

D. Khoshnevisan. Multiparameter Processes: An Introduction to Random Fields. Springer
Science & Business Media, New York, 2002.

K.I. Kim, K. Jung, and J.H. Kim. Color texture-based object detection: an application to
license plate localization. In S.-W. Lee and A. Verri, editors, Pattern Recognition with
Support Vector Machines, volume 2388 of Lect. Notes Comput. Sci., pages 293�309.
Springer, 2002.

T.S. Kim and E.Y. Seok. The invariance principle for ρ-mixing random �elds. J. Korean
Math. Soc., 32(2):321�328, 1995.

M. Ko, H.C. Kim, and T. Kim. On functional central limit theorems for linear random
�elds with dependent innovations. ANZIAM J., 49(4):533�541, 2008.

A.P. Korostelev and A.B. Tsybakov. Minimax Theory of Image Reconstruction, volume 82
of Lect. Notes Stat. Springer, New York, 1993.

M.R. Kosorok. Introduction to Empirical Processes and Semiparametric Inference.
Springer Ser. Statist. Springer, New York, 2010.



S.N. Lahiri. Resampling Methods for Dependent Data. Springer Science & Business
Media, New York, 2003.

F. Lavancier. The V/S test of long-range dependence in random �elds. Electron. J.
Statist., 2:1373�1390, 2008.

B. Levin and J. Kline. The cusum test of homogeneity with an application to spontaneous
abortion epidemiology. Stat. Med., 4(4):469�488, 1985.

Z. Lin and C. Lu. Limit Theory for Mixing Dependent Random Variables, volume 378 of
Math. Appl. Kluwer, Dordrecht, 1996.

C.R. Loader. Large-deviation approximations to the distribution of scan statistics. Adv.
in Appl. Probab., 23(4):751�771, 1991.

J.B. MacNeill and V.K. Jandhyala. Change-point methods for spatial data. In G.P.
Patil and C.R. Rao, editors, Multivariate Environmental Statistics, volume 6 of North-
Holland Series in Statistics and Probability, chapter 14, pages 289�306. Elsevier Science
Publishers, Amsterdam, North-Holland, 1993.

A. Majumdar, A.E. Gelfand, and S. Banerjee. Spatio-temporal change-point modeling.
J. Stat. Plan. Infer., 130(1):149�166, 2005.

A. Mallik. Topics on threshold estimation, multistage methods and random �elds. PhD
thesis, University of Michigan, 2013.

D. Marinucci and S. Poghosyan. Asymptotics for linear random �elds. Statist. Probab.
Lett., 51(2):131�141, 2001.

H. Moon, R. Chellappa, and A. Rosenfeld. Performance analysis of a simple vehicle
detection algorithm. Image Vision Comput., 20(1):1�13, 2002.

F. Móricz. A general moment inequality for the maximum of partial sums of single series.
Acta Sci. Math., 44:67�75, 1982.

F. Móricz. A general moment inequality for the maximum of the rectangular partial
sums of multiple series. Acta Math. Hungar., 41(3�4):337�346, 1983.

H.G. Müller and K.-S. Song. Cube splitting in multidimensional edge estimation.
In E. Carlstein, H.G. Müller, and D. Siegmund, editors, Change-Point Problems,
volume 23 of Lect. Notes - Monogr. Ser., pages 210�223. IMS, Hayward, Calif., 1994.

H.G. Müller and K.-S. Song. A set-indexed process in a two-region image. Stochastic
Process. Appl., 62(1):87�101, 1996.

U.V. Naik-Nimbalkar and M.B. Rajarshi. Validity of blockwise bootstrap for empirical
processes with stationary observations. Ann. Statist., 22(2):980�994, 1994.

G. Neuhaus. Zur Theorie der Konvergenz stochastischer Prozesse mit mehrdimen-
sionalem Zeitparameter. PhD thesis, Westfälische Wilhelms-Universität zu Münster,
1969.



Neuroonkologische Arbeitsgemeinschaft (NOA). Onko-Internetportal - Dia-
gnose von Hirntumoren, 2012. http://www.krebsgesellschaft.de/

onko-internetportal/basis-informationen-krebs/krebsarten/hirntumor/

diagnose-von-hirntumoren.html [online, accessed 23.03.2016].

W.K. Newey and K.D. West. A simple, positive semi-de�nite, heteroskedasticity and
autocorrelationconsistent covariance matrix. Econometrica, 55:703�708, 1987.

C.M. Newman. Asymptotic independence and limit theorems for positively and negat-
ively dependent random variables. Lect. Notes - Monogr. Ser., 5:127�140, 1984.

M. Peligrad. On the blockwise bootstrap for empirical processes for stationary sequences.
Ann. Probab., 26(2):877�901, 1998.

V.I. Piterbarg. Asymptotic Methods in the Theory of Gaussian Processes and Fields,
volume 148 of Transl. Math. Monogr. Amer. Math. Soc., Providence, 1996.

S. Poghosyan and S. R÷lly. Invariance principle for martingale-di�erence random �elds.
Statist. Probab. Lett., 38(3):235�245, 1998.

D.N. Politis and J.P. Romano. Nonparametric resampling for homogeneous strong mixing
random �elds. J. Multivar. Anal., 47(2):301�328, 1993.

D.N. Politis and J.P. Romano. Limit theorems for weakly dependent Hilbert space valued
random variables with applications to the stationary bootstrap. Statist. Sinica, 4(2):
461�476, 1994.

D.N. Politis and J.P. Romano. On �at-top kernel spectral density estimators for homo-
geneous random �elds. J. Stat. Plann. Infer., 51(1):41�53, 1996.

M.L. Puri and F.H. Ruymgaart. Change curves in the presence of dependent noise.
In E. Carlstein, H.G. Müller, and D. Siegmund, editors, Change-Point Problems,
volume 23 of Lect. Notes - Monogr. Ser., pages 242�254. IMS, Hayward, Calif., 1994.

P. Qiu. Image Processing and Jump Regression Analysis. Wiley Ser. Probab. Statist.
John Wiley & Sons, Hoboken, N.J., 2005.

D. Radulovi¢. Another look at the disjoint blocks bootstrap. TEST, 18(1):195�212, 2009.

A. Rajaraman and J.D. Ullman. Mining of Massive Datasets. Camb. Univ. Press, Cam-
bridge, 2012.

A. Ra£kauskas and C. Suquet. Hölder norm test statistics for epidemic change. J. Stat.
Plann. Infer., 126(2):495�520, 2004.

P.M. Robinson. Nonparametric spectrum estimation for spatial data. J. Stat. Plan.
Infer., 137(3):1024�1034, 2007.

X. Shao. The dependent wild bootstrap. J. Amer. Statist. Assoc., 105(489):218�235,
2010.

O.S. Sharipov, J. Tewes, and M. Wendler. Sequential block bootstrap in a Hilbert space
with application to change point analysis. Canad. J. Statist., 44(3):300�322, 2016.

http://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/krebsarten/hirntumor/diagnose-von-hirntumoren.html
http://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/krebsarten/hirntumor/diagnose-von-hirntumoren.html
http://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/krebsarten/hirntumor/diagnose-von-hirntumoren.html


J. Sharpnack and E. Arias-Castro. Exact asymptotics for the scan statistic and fast
alternatives. arXiv preprint arXiv:1409.7127, 2014.

D. Siegmund and B. Yakir. Tail probabilities for the null distribution of scanning stat-
istics. Bernoulli, 6(2):191�213, 2000.

D. Tjøstheim. Statistical spatial series modelling. Adv. Appl. Probab., 10(1):130�154,
1978.

C. Tone. A central limit theorem for multivariate strongly mixing random �elds. Probab.
Math. Statist., 30(2):215�222, 2010.

C. Tone. Central limit theorems for Hilbert-space valued random �elds satisfying a strong
mixing condition. ALEA Lat. Am. J. Probab. Math. Stat., 8:77�94, 2011.

L. Torgovitski. Detecting changes in Hilbert space data based on �repeated� and change-
aligned principal components. arXiv preprint arXiv:1509.07409, 2015.

L. Truquet. Propriétés théoriques et applications en statistique et en simulation de proces-
sus et de champs aléatoires stationnaires. PhD thesis, Université Panthéon-Sorbonne-
Paris I, 2008.

E. Valenzuela-Domínguez and J. Franke. A Bernstein inequality for strongly mixing
spatial random processes. Technical report, DFG-Schwerpunktprogramm 1114, Math-
ematical methods for time series analysis and digital image processing ; Preprint 76,
ISBN 3-88722-650-X, 2005.

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes.
Springer Ser. Statist. Springer, New York, 1996.

S. Vinson and L.D. Cohen. Multiple rectangle model for buildings segmentation and 3D
scene reconstruction. In Proc. of ICPR Int. Conf. on Pattern Recognition, volume 3,
pages 623�626, Québec, Canada, 2002.

S. Vinson, L.D. Cohen, and F. Perlant. Extraction of rectangular buildings in aerial
images. In SCIA '01, pages 431�438, Bergen, Norway, 2001.

T.J. Vogelsang. Sources of nonmonotonic power when testing for a shift in mean of a
dynamic time series. J. Econometrics, 88(2):283�299, 1999.

M.A. Vronski. Some limit theorems for associated random �elds. PhD thesis, Moscow
State University, 1998.

Y. Wang. Change curve estimation via wavelets. J. Am. Stat. Assoc., 93(441):163�172,
1998.

M.J. Wichura. Inequalities with applications to the weak convergence of random processes
with multi-dimensional time parameters. Ann. Statist., 40(2):681�687, 1969.

C.F.J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis.
Ann. Statist., 14(4):1261�1295, 1986.

L. Xie. Detection and Estimation of Boundaries in Spatial Data. PhD thesis, University
of Western Ontario, 1996.



Q. Yao. Tests for change-points with epidemic alternatives. Biometrika, 80(1):171�191,
1993.

V. Zemlys. Invariance principle for multiparameter summation processes and applica-
tions. PhD thesis, Vilnius University, 2008.

L. Zhang. Rosenthal type inequalities for B-valued strong mixing random �elds and their
applications. Sci. China Ser. A, 41(7):736�745, 1998.

Y.F. Zhang and R.R. Bresee. Fabric defect detection and classi�cation using image
analysis. Text. Res. J., 65(1):1�9, 1995.

J. Zhu and S.N. Lahiri. Bootstrapping the empirical distribution function of a spatial
process. Stat. Inference Stoch. Process., 10(2):107�145, 2007.

Y. Zhu, B. Carragher, D.J. Kriegman, R.A. Milligan, and C.S. Potter. Automated
identi�cation of �laments in cryoelectron microscopy images. J. Struct. Biol., 135(3):
302�312, 2001.



Erklärung zum Eigenanteil

Der Artikel �Testing for epdimic changes in the mean of a multiparameter process� ist in
enger Zusammenarbeit mit Christoph Heuser entstanden. Dabei wurden sowohl die En-
twicklung der mathematischen Theorie als auch die Durchführung von Simulationsstudien
gemeinsam gemacht. Die so verö�entlichte Endfassung habe ich verfasst. Der Eigenanteil
liegt daher bei ca. 55%.

Zur Zusammenarbeit mit Prof. Dr. Wendler am Artikel �Change-point detection and
bootstrap for Hilbert space valued random �elds� ist anzumerken, dass Prof. Dr. Wendler
für die Beschreibung und Herleitung der Resultate zum Bootstrap-Verfahren zuständig
war und daher den entsprechenden Teil der Einleitung sowie den Beweis von Theorem 2.2
(sowie die dazu benötigten Hilfsresultate Lemma 4.5 und Lemma 4.6) beigetragen hat.
Alle übrigen Resultate, Erläuterungen etc. stammen von mir und wurden von Prof. Dr.
Wendler lediglich noch einmal gegengelesen. Die mathematischen Resultate, die nicht
von mir hergeleitet wurden, wurden von mir überarbeitet und um weitere Anmerkungen
ergänzt. Die Simulationsstudie wurde vollständig von mir, lediglich unter Rücksprache
mit Prof. Dr. Wendler, durchgeführt. Der Eigenanteil bei der Herleitung und Formu-
lierung der Resultate als Artikel liegt daher bei ca. 75%.



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit -
einschlieÿlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch
nicht verö�entlicht worden ist, sowie, dass ich eine solche Verö�entlichung vor Abschluss
des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotion-
sordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Professor i. R.
Dr. Steinebach betreut worden.

Köln, den

(Béatrice Bucchia)

Teilpublikationen

Testing for epidemic changes in the mean of a multiparameter stochastic process, Journal
of Statistical Planning and Inference 150 (2014), 124-141.
doi: 10.1016/j.jspi.2014.03.001
Long-run variance estimation for spatial data under change-point alternatives, Journal
of Statistical Planning and Inference 165 (2015), 104-126 (mit C. Heuser).
doi: 10.1016/j.jspi.2015.04.005
Change-point detection and bootstrap for Hilbert space valued random �elds, Journal of
Multivariate Analysis. eingereicht (unter Revision). (mit M. Wendler)


	Contents
	Introduction
	Change-point problems for spatial data
	Chapter summaries

	Testing for epidemic changes in the mean of a multiparameter stochastic process
	Introduction
	The model
	Testing for epidemic changes in the mean
	Limit behavior under the null hypothesis
	Behavior under the alternative
	Long-run variance estimators

	Estimation of the change-points
	Some simulations
	Discussion


	Long-run variance estimation for spatial data under change-point alternatives
	Introduction
	Model and main assumptions
	Long-run variance estimators
	Change-point estimation
	Finite sample results by simulations
	Considered model
	Accuracy of the long-run variance estimation
	Application to change-point tests
	An application to brain tumor detection
	Conclusion

	Appendix: Some technical lemmas

	Change-point detection and bootstrap for Hilbert space valued random fields
	Introduction
	Change-point tests for random fields
	Bootstrap for Hilbert space valued processes
	Notations

	Main results
	Change-point problem for random fields
	Dependent wild bootstrap for change-point detection

	Simulation study
	Conclusion

	Proofs
	Preliminary results
	Proofs of the main results


	Additional material: Change-set estimation
	Introduction
	Change-set estimation
	Model and main assumptions

	Main results
	Consistency
	Rate of convergence

	Examples
	Example 1: Rectangles
	Example 2: Unions of aggregated pixels
	Example 3: Nested sets

	Proofs
	Preliminary results - some maximal inequalities
	Proofs of the main results


	Discussion
	Bibliography

