
Send Orders of Reprints at reprints@benthamscience.net 

414 Current Organic Chemistry, 2013, 17, 414-429  

Ruthenium Nanoparticles in Ionic Liquids – A Saga 

Paul S. Campbell*
a
, Martin H.G. Prechtl*

b
, Catherine C. Santini*

c
 and Paul-Henri Haumesser

d 

a
Anorganische Chemie III – Materialchemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätstraße 150, 

44801 Bochum, Germany  

b
Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, 50939 Köln, Germany  

c
Université de Lyon, Institut de Chimie de Lyon, C2P2, UMR 5265 CNRS - ESCPE Lyon, 43 bd du 11 Novembre 1918, 69626 

Villeurbanne Cedex, France  

d
CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France 

Abstract: Ionic liquids (ILs) are excellent media for the generation and stabilisation of metallic nanoparticles (NPs). Their ionic charac-

ter coupled with 3-D structural pre-organisation in the liquid state, serves to direct the growth of transition metal NPs generated in situ, 

and to subsequently protect and stabilise them. Until now, many different NPs have been successfully synthesised within these media, 

however much attention has been paid to Ru-NPs. These have been prepared with small sizes and narrow size distributions by reduction 

of organometallic compounds with molecular hydrogen as well as decomposition of transition-metal complexes in the zero-valent state. 

These stable Ru-NPs immobilised in the ILs have proven to be efficient green catalysts for several reactions in multiphase conditions, in-

cluding important energy-related processes such as biomass refinement. Furthermore, they present potential novel materials for use in the 

production of smarter electronic devices. In this review, the synthesis, stabilisation and size-control of Ru-NPs via various methods in 

different ILs is discussed, followed by their varied application in catalysis and potential in new fields. 
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1. INTRODUCTION 

Interest in metal nanoparticles (NPs) over the last decade has 

increased dramatically, as reflected by the ever-growing number of 

publications. Progress in their comprehension is central due to their 

great potential in the development of new and innovative materials. 

Catalysis is the traditional application of NPs, but they also find 

application in diverse fields such as photochemistry, electronics, 

optics or magnetism. In catalysis, improvement is constantly being 

made in the efficiency and selectivity of reactions and recovery and 

recyclability of the catalytic materials [1-7]. 

Nanoparticles are generally defined as particles exhibiting at 

least one dimension below 100 nm, although of particular interest 

are those exhibiting dimensions less than 10 nm. This leads not 

only to a high surface-to-volume ratio but also to unique physico-

chemical properties between the bulk and molecular states, which 

vary greatly with small changes in size. For instance, the catalytic 

properties of NPs are largely determined by the energy of the sur-

face atoms, in turn controlled by the number of neighbouring at-

oms, dictated by their size, as well as the presence and nature of 

ligands or supports [1, 8, 9].  

To prepare NP catalysts via bottom-up chemical methods, a 

metal precursor and reducing agent or technique are required. For  
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instance, the metal precursor can be a salt or organometallic com-

plex, which can be reduced by applying H2 pressure, heating or 

addition of a reducing agent such as NaBH4 to result in bare zero-

valent metal atoms. These atoms will subsequently meet and nucle-

ate to form NPs, which must be somehow stabilised to prevent coa-

lescence towards the thermodynamically stable bulk. Besides the 

polymers and oxide- supports that used to be employed as standard, 

innovative stabilisers, media, and supports have appeared, such as 

dendrimers, carbon nanotubes, membranes, specific ligands surfac-

tants, and ionic liquids [10-12]. 

Soluble noble metal nanoparticles are now considered as an un-

avoidable family of catalysts, often described as “semi-hetero-

geneous catalysts”, lying at the frontier between homogeneous and 

heterogeneous chemistry. To prevent aggregation, NPs must be 

stabilised by the use of water-soluble polymers, quaternary ammo-

nium salts, surfactants or polyoxoanions, which provide electronic 

and/or steric protection [3, 4, 10]. In this context, ionic liquids 

(ILs), defined as low temperature molten salts, have emerged as one 

of the most important and most investigated classes of stabilising 

agent in the synthesis of metal NPs [13, 14]. 

ILs are salts that exhibit low melting points (below 100 °C), 

many of which are liquid at room temperature. This is because they 

consist of large asymmetric organic cations weakly coordinated to 

an anion, which can be either organic or inorganic. The main cation 

and anion families to be discussed are given in Scheme 1 with their 

names and abbreviations. Thanks to their interesting physico-

chemical properties (negligible vapour pressure, low flammability, 

large liquidus range, wide electrochemical window etc.), ILs have 

found themselves at the forefront of modern chemical research, 

often dubbed as “green solvents” or “designer solvents”. The latter 

is due to their facile adaptability, as with countless anion-cation 

 1875-5348/13 $58.00+.00 © 2013 Bentham Science Publishers 



Ruthenium Nanoparticles in Ionic Liquids – A Saga Current Organic Chemistry, 2013, Vol. 17, No. 4    415 

 

combinations possible, small and simple modifications may be 

applied to alter the properties of an IL and tailor it to a specific task 

[15-18]. Their aptness as media for nanochemistry has been as-

cribed both to their ionic nature and to their 3-D organisation on the 

nanoscale. Indeed, much attention has particularly been paid to ILs 

based on N-alkylimidazolium, found by molecular dynamics simu-

lations and coarse-grain modelling to exhibit nano-structuration in 

the liquid state [19, 20]. This may provide an “entropic driver” for 

the formation of nanostructures [21], while the formation of ionic 

double-layers provides a possible explanation for their subsequent 

stabilization [3]. 

NPs of many catalytically active transition metals have been re-

ported in ILs [13, 14]. However, ruthenium NPs and ILs seem to 

have formed a particularly fruitful partnership, with unmatched 

small sizes (down to 0.9 nm reported), narrow size distributions 

(down to ± 0.2 nm) and precise size control. As one of the catalyti-

cally active noble metals, ruthenium has been widely studied in 

both homogeneous catalysis, the most well known example being 

olefin metathesis [22, 23], and in heterogeneous, for example the 

partial hydrogenation of benzene to cyclohexene (Asahi process) 

[24], phenol hydrogenation [25], or in the synthesis of ammonia 

from N2 (Haber-Bosch process) [26, 27]. More recently, interest 

has also been devoted towards Ru-NPs, even though it is claimed 

by Galetti et al. that their preparation is more difficult and therefore 

less-investigated than other noble metals such as Pt or Pd [25]. 

Herein, our aim is to provide a review on the synthesis of ruthenium 

nanoparticles in ionic liquids and the potential of such systems in 

catalysis, from traditional hydrogenations, to more topical energy-

related applications such as Fischer-Tropsch-Synthesis and biomass 

refinement. 

2. SYNTHESIS AND CHARACTERISATION OF RU-NPS IN 

IONIC LIQUIDS 

The study of Ru-NPs and their use in catalysis is not a new 

concept and dates back to the 1980s [28-31]. Grafting of catalyti-

cally active metal complexes onto oxide supports, a technique 

commonly referred to as “surface organometallic chemistry”, was 

becoming a popular area of interest due to the prospect of combin-

ing the advantages of heterogeneous and homogeneous catalysis 

(i.e. obtaining recoverable, reusable catalysts with high activity and 

selectivity), as well as obtaining new and novel catalysts [32]. This 

method involves firstly impregnation of the support with a solution 

(aqueous or organic) of metal precursor, followed by elimination of 

the solvent and finally thermal treatment, generally under H2 or 

vacuum. However, for late transition metals such as ruthenium, 

after thermal treatment, these surface complexes, e.g. Ru3(CO)12, 

tend to decompose and agglomerate, forming small oxide-supported 

Ru-NPs (1-2 nm on SiO2, measured by TEM) [28-31]. Nonetheless, 

these supported Ru-NPs were found to display interesting catalytic 

behaviour, for example in the hydrogenolysis and homologation of 

olefins [33, 34], and thus this approach has since been extended to 

many other supports such as mesoporous silica [35], alumina [36] 

and mesoporous polymers [37]. 

More recently, colloidal solutions of Ru-NPs have also received 

a considerable amount of attention. The synthesis of such colloids 

generally occurs via the same step-wise procedure (Scheme 2): 
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Scheme 1. Structures, names and abbreviations of ionic liquid cations and anions discussed herein. 

 

Scheme 2. The step-wise generation of ruthenium nanoparticle colloidal solutions. 
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Firstly, a precursor is chosen, either a salt or organometallic com-

plex of ruthenium, and dispersed in a suitable solvent, in the pres-

ence of a stabilising agent. In the second step, the precursor is re-

duced and/or decomposed under the given reaction conditions to 

give atomic zero-valent ruthenium. As coordinatively unsaturated 

species, these bare ruthenium atoms will agglomerate to form parti-

cles, a process known as Ostwald ripening. A stabilising agent is 

therefore necessary to limit the growth of these particles to the 

nanoscale. 

Several variations of this procedure exist. For example, the so-

called polyol synthesis involves firstly suspending the metal precur-

sor in a polyol such as ethylene glycol, before bringing the resulting 

mixture to reflux and awaiting the precipitation of the metallic 

moieties. The reduction occurs via the simultaneous oxidation of 

alcohols to aldehydes as shown in Scheme 3. The resulting metal 

NPs can be filtered and dried in air. The polyol method has been 

used in the presence of various stabilisers such as dodecane-thiol as 

a capping agent [38], or supports such as polyvinylpyrrolidone 

(PVP) [39-42] and -alumina [26]. 

Zero-valent organometallic precursors are generally easily de-

composed under H2 atmosphere rapidly producing NPs. The or-

ganic by-products can be easily removed without further interaction 

with the surface of the resulting NPs. For this reason, Chaudret and 

co-workers have thoroughly developed the synthesis of Ru-NPs in 

organic solvents, usually tetrahydrofuran, from the decomposition 

of the organometallic precursor cyclooctadiene cyclooctatriene 

ruthenium, Ru(COD)(COT). In this work it has been thoroughly 

proven that the size, shape and nature of the Ru-NPs produced 

could be controlled by varying the support and/or capping agent 

[43-47]. 

From an environmentally-friendly point of view, aqueous cata-

lytic processes are a highly interesting concept. Motivated by this, 

Roucoux and coworkers have undertaken much work on the aque-

ous synthesis of Ru-NPs from reduction of RuCl3 with NaBH4 in 

the presence of cyclodextrins, which stabilise the resulting NPs by 

formation of inclusion complexes. The cyclodextrins, which are 

water-soluble, may also modify the surface of the Ru-NPs for spe-

cific reactivity [48-50]. Water-soluble Ru-NPs have also been 

achieved using similar experimental conditions but with less com-

plicated ligands such as ethylenediamine [51, 52], sodium acetate 

[53], or even polymers such as poly(4-vinylpyridine) [54]. 

As previously mentioned, all of the above routes to obtain Ru-

NPs require the presence of additional stabilising agents in the form 

of either capping ligands, polymers or supports. In contrast, when 

using ionic liquids as the reaction medium, the synthesis of metallic 

NPs can take place with size-control in the absence of stabilising 

additives. The number of publications in this field is increasing 

exponentially, and these have recently been comprehensively re-

viewed [13]. Due to their specific solvation properties and 3-D 

structural organisation in the liquid state, ionic liquids are “su-

pramolecular fluids” that can be used as “entropic drivers” for the 

spontaneous, well-defined and extended ordering of nanoscale 

structures. 

Ru-NPs were first generated in ionic liquids during an investi-

gation of the catalytic hydrogenation behaviour of RuO2 in these 

media [55, 56]. Heavy metals such as mercury as well as molecules 

such as CS2 bind strongly and irreversibly to noble metals, therefore 

blocking active catalytic sites. Hg and CS2 poisoning tests can 

therefore be used to confirm or eliminate the participation of het-

erogeneous catalysts in a catalytic system. Addition of Hg or CS2 to 

the RuO2/IL system saw an immediate cease in catalytic activity, 

thus confirming that the catalytically active species was in fact 

colloidal Ru(0)NP species formed in situ. The presence of Ru-NPs 

was confirmed by means of both transition electron microscopy, 

(TEM) and powder X-ray diffraction (XRD). XRD reflections were 

seen corresponding to hcp Ru(0) and a small amount of RuO2, al-

though this was attributed to a small amount of surface reoxidation 

on separation from the ionic liquid, necessary for the measurement. 

Indeed, the ionic liquid seems to provide a protection for the parti-

cles against oxidation. Thanks to the negligible vapour pressure of 

ionic liquids, analytical techniques requiring high vacuum may be 

performed in situ. Therefore TEM was performed in situ immedi-

ately after catalysis, and removal of the volatiles. Small roughly 

spherical particles were observed with average diameters 

2.5 ± 0.4 nm in [C4C1Im][PF6] and [C4C1Im][OTf] and 

2.0 ± 0.2 nm in [C4C1Im][BF4]. This was a first indication that 

small Ru-NPs with a very narrow size distribution could be gener-

ated under mild conditions (75 °C, 4 bars H2) in ionic liquids, with 

the ionic liquids stabilising them against both coalescence and oxi-

dation. 

Inspired by Chaudret’s work in organic solvents, Dupont and 

co-workers embarked upon the generation of Ru-NPs in ILs by the 

decomposition of the organometallic precursor Ru(COD)(COT), for 

eventual use in biphasic catalysis [57]. Here a suspension of the 

precursor in various ILs ([C4C1Im][BF4], [C4C1Im][OTf] and 

[C4C1Im][PF6]) was exposed to molecular H2 (4 bars) at 75 °C for 

18 h, resulting in each case in the formation of a black suspension. 

Ru-NPs could be isolated as a black powder by centrifugation for 

characterisation. XRD performed indicated the presence of pure 

phase hexagonal close packed ruthenium. The broad peaks ob-

served could be explained by the small crystallite size. Indeed, re-

ducing crystallite size to the nanoscale causes diffraction peak 

broadening as described by the Scherrer equation (Equation (1)), 

where  is the nanoparticle size,  is the line broadening and K is 

the shape factor. This equation could be applied to estimate a NP 

size of roughly 2.5 nm, in good agreement with the value obtained 

from TEM results (2.6 ± 0.4 nm). 

(1) =
K

cos
 

X-ray photo-electron spectroscopy (XPS) was also carried out, 

to give information on the elements present and oxidation states 

thereof. It was found that oxidised ruthenium and oxygen peaks 

were present, however disappeared after Ar
+
-sputtering, indicating 

only surface oxidation, probably due to exposure to air after separa-

tion from the ionic liquids. 
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Scheme 3. Ruthenium nanoparticles produced via the polyol synthesis. 
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Following on from this, Santini and co-workers undertook a 

systematic study of the synthesis of Ru-NPs from Ru(COD)(COT) 

under various conditions, particularly in imidazolium ILs based on 

the bis(trifluoromethylsulfonyl)imide (NTf2

-
) ion, rendering highly 

interesting results [58]. Firstly, it was uncovered that, unlike in 

traditional solvents [59], decreasing the temperature of decomposi-

tion (hence decreasing rate of nucleation) leads to smaller NPs. 

Furthermore, it was seen that stirring during the decomposition has 

a negative impact on the size distribution. Ru-NPs were produced 

from a Ru(COD)(COT) suspension in [C4C1Im][NTf2] under 4 bars 

H2, at 25 °C while stirring and at 0 °C, with and without stirring. 

When stirred at 25 °C, NPs of 2.4 ± 0.3 nm (determined by TEM) 

were generated, whereas at 0 °C, the size was reduced to 

0.9 ± 0.4 nm. Furthermore at 0 °C without stirring during the de-

composition, NPs of a similar size but narrower size distribution 

(1.1 ± 0.2 nm) were obtained. These findings were later utilised to 

produce Ru-NPs of distinct and controlled sizes in the same ionic 

liquid for catalytic tests, by simply varying the decomposition tem-

perature of Ru(COD)(COT). Under 4 bars of molecular H2, without 

stirring, Ru-NPs were produced of sizes (determined from TEM 

images, Fig. 1) 2.3 ± 0.3 nm, 2.9 ± 0.4 nm and 3.1 ± 0.7 nm at 

25 °C, 50 °C and 75 °C, respectively, further corroborating the idea 

of size control with temperature [60]. Shown in insets in Fig. 1, 

high resolution electron microscopy, HREM, revealed the hcp crys-

talline nature of these Ru-NPs formed through elucidation of the 

crystal planes. Furthermore, these NPs were found by means of 

XPS to be of pure zero-valent ruthenium: The low 3p3/2 binding 

energy observed in each case, 460.3 eV, and doublet separation of 

22.2 eV correspond closely to metallic zero-valent ruthenium. It 

should be noted that XPS performed in situ in the ionic liquid, re-

sulted in no Ru binding energies being observed, as only electrons 

from the top 10 nm of the material may be detected using this tech-

nique [60]. 

 

Fig. (1). Transition electron micrograph of Ru-NPs and high-resolution electron micrograph examples showing crystallinity for Ru-NPs produced in 

[C4C1Im][NTf2] at 0 °C (top left), 25 °C (top right), 50 °C (bottom left) and 75 °C (bottom right). [60] (Copyright Elsevier 2010). 
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In addition to size-control by varying conditions, modulating 

the nature of the ionic liquid plays an important role. For example, 

Santini and coworkers also found that when synthesising Ru-NPs 

under the same conditions from Ru(COD)(COT) (0 °C, 4 bars H2, 

no stirring), in imidazolium ionic liquids of varying side alkyl chain 

length, the size of Ru-NP produced could be tuned [21]. This result 

could be explained by considering the molecular structure of the 

ionic liquid. Indeed, ILs are not homogeneous media but present a 

certain degree of self organisation on the molecular level. It has 

been found by molecular dynamics simulations [19] and coarse-

grain modeling [20] that alkyl imidazolium ionic liquids consist of 

rigid ionic channels, built from the hydrogen-bonded network of 

anions and cation head-groups, and segregated lipophilic domains, 

the size of which depending ultimately on the length of the alkyl 

chains. These findings have also been demonstrated experimentally 

by X-ray diffraction studies [61]. Of course, an organometallic 

precursor would dissolve preferentially within these lipophilic do-

mains. After decomposition, the size of the resulting Ru-NPs is 

dictated by the number of available nuclides in the non-polar do-

main, which is in turn related to its size and hence the length of the 

alkyl chain. This explains why a trend was observed correlating Ru-

NP size with alkyl chain length. Indeed, as can be seen in Figure 2 

for n = 4, 6, and 8, Ru-NP size matches almost perfectly the previ-

ously measured non-polar domain sizes, while for n = 10, an inter-

connection of non-polar domains leads to Ru-NP superstructures. 

When short alkyl chains are employed (n = 2) a purely polar do-

main is obtained and the size control is lost [21]. 

The IL structure can also be used to explain how reaction con-

ditions affect the size of resulting Ru-NPs. At low temperature, 

diffusion of the precursor and nuclides between these domains is 

limited, hence the growth of NPs is restricted. Stirring disrupts the 

organisation through mechanical forces and increases the diffusion 

of the precursor and nuclides in solution. The resulting size distri-

butions are therefore broader and the resulting NPs are agglomer-

ated [58]. 

In addition, it has been shown that the ionic liquid structure 

may play a role in the subsequent stabilisation of the Ru-NPs. In-

deed, Ru-NPs produced in imidazolium ILs under these conditions 

render suspensions stable for months under inert atmosphere with-

out any agglomeration, coalescence or sintering of particles ob-

served. Following the synthesis of Ru-NPs under D2 in ILs bearing 

unsaturated functionalities (butenyl, benzyl) on the alkyl side chain, 

a strong proximity between the Ru-NP surface and this group was 

brought to light; 
2
H NMR revealed preferential incorporation of D 

into these groups via H-D exchange catalysed by the metal surface, 

rather than the expected H-D exchange at the more acidic positions 

on the imidazolium ring. A significant amount of hydrogenation 

was also noted, elucidated through the evolution of high field shifts 

corresponding to deuterium-bearing aliphatic butenyl or 

methylenecyclohexyl groups [63]. 

While the confinement in non-polar domains may provide an 

explanation for the non-agglomeration of the NPs whilst in the 

suspension, it cannot account for the lack of coalescence noted 

when the IL structure is disrupted by the addition of a co-solvent. It 

was found, through H-D exchange and ethylene hydrogenation in 

the absence of additional H2, that Ru-NPs prepared from the de-

composition of Ru(COD)(COT) under H2 in imidazolium ILs are in 

fact covered by surface hydrides [63], a result which was previously 

similarly demonstrated for Ru-NPs in both organic solvents [64], 

and supported on silica [65, 66]. The idea of NP stabilisation in ILs 

by a combination of surface hydrides and confinement in non-polar 

domains of the IL is similar to that previously reported in organic 

media (see Fig. 3), and in stark contrast to the often described 

“electrosteric stabilisation” model in ionic liquids, whereby the 

electropositive NP surface is surrounded by a double-layer of ani-

ons and cations forming a protective shell through electrostatic and 

DVLO type forces [67-72]. 

 

Fig. (2). Correlation between the length of the imidazolium alkyl chain and the Ru-NP size. Adapted from [62] 
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Another organometallic precursor, namely bis(2-

methylallyl)(
4
-1,5-cyclooctadiene)ruthenium (Ru(COD)(MA)2) 

has been investigated as an alternative due to its commercial avail-

ability and lower cost [74, 75]. Unlike in Ru(COD)(COT), in 

Ru(COD)(MA)2 ruthenium exists in the 2+ oxidation state, hence 

must be reduced in order to obtain zero-valent metallic Ru-NPs. 

Nonetheless, it was found that Ru-NPs could still be obtained under 

mild conditions (25-90°C, 4 bars H2) after dispersion of this precur-

sor in various imidazolium ILs [74]. This study confirmed the pre-

viously discussed temperature dependence of the resulting Ru-NP 

size as well as highlighting the importance of the IL anion. Indeed, 

it was shown that when using BF4

-
 as the counter ion, the Ru-NPs 

could be removed from the suspension via addition of a solvent and 

centrifugation, whereas when NTf2

-
 was used the colloidal suspen-

sion could not be separated [74]. Similarly, Leitner’s group used 

Ru(COD)(MA)2 to produce Ru-NPs in a range of imidazolium ILs. 

Although harsher conditions were employed (60 °C, 60 bars H2), 

similar size particles were obtained, indicating that H2 pressure 

plays only a minor role [76]. 

In contrast to Ru(COD)(COT), reduction of Ru(COD)(MA)2 in 

the ILs was also seen to lead to the evolution of small amounts of 

odorous by-products, found by mass spectrometry to be small ni-

trogen containing organics from the fragmentation of the imida-

zolium ring. This reactivity is promoted by the presence of 

Ru(COD)(MA)2 but not the resulting Ru-NPs. More interestingly, 

in certain ILs, particularly [C6C1C1Im][NTf2], this precursor is 

slowly reduced to form zero-valent Ru-NPs, confirmed by TEM 

and HRTEM, without the introduction of H2 gas. The proposed 

mechanism of this involves a nucleophilic attack by the NTf2 ion on 

the allyl ligand, followed by reductive elimination leading to Ru(0) 

atoms, subsequently forming NPs, Scheme 4. This comprises the 

first report of ILs also being responsible for promoting the genera-

tion of Ru-NPs as well as their stabilization [75]. 

An interesting recent study conducted by Luska et al. found a 

correlation between Ru-NP stability and ionicity of the IL used. 

Here, when Ru(COD)(MA)2 was reduced in various phosphonium 

ILs, of varying alkyl chain lengths, as well as imidazolium ILs, the 

size distribution and tendency to agglomerate was discovered to 

increase with increasing calculated ionicity. In other words, greater 

association between cation and anion leads to more stable Ru-NPs, 

an affirmation which corroborates the role of IL structuration in Ru-

NP stability [77]. 

As another alternative precursor, Zhu and coworkers [78] found 

that the dinuclear ionic sandwich complex, [CpRuCp*RuCp*][PF6] 

could be dispersed in ILs with the aid of ethylene glycol as a co-

solvent, and reduced to give Ru-NPs under a H2 atmosphere at 

180 °C. Both [C4C1Im][PF6] and [P6,6,6,14][DBS] (P6,6,6,14 = 

tri(hexyl)tetradecylphosphonium, DBS = dodecylbenzenesulpho-

nate) could be used, the latter eliminating the possibility of HF 

production or N-heterocyclic carbene formation. The ethylene gly-

col could easily separated by decantation and drying leaving a clean 

Ru-NP/IL suspension stable for months [78, 79]. 

Other methods for the generation of Ru-NPs in ILs exist. 

Janiak’s group have been particularly interested in the thermally 

assisted or photolytic decomposition of metal carbonyls including 

trinuclear ruthenium carbonyl (Ru3(CO)12) in the IL [C4C1Im] [BF4] 

[80-83]. In thermally assisted syntheses, a mixture of the precursor 

in IL was heated to 250 °C for several hours, leading to small 

monodisperse Ru-NPs, 1.6 ± 0.4 nm analysed by TEM. In photo-

 

Fig. (3). A stabilisation model for Ru-NPs in MeOH/THF solution and analogous proposal in the IL [C4C1Im][NTf2]. Inside circle represents non-polar do-

mains and outside represents polar or ionic media. COA= cyclooctane. Adapted from [73]. 

 

Scheme 4. Generation of Ru-NPs promoted by the NTf2 anion, without the addition of H2. 

Ru

argon, 50 °C
[C6C1C1Im][NTf2]

- COD
Ru

L

L

Ru-NPsNTf2

NTf2



420    Current Organic Chemistry, 2013, Vol. 17, No. 4 Campbell et al. 

 

lytic decomposition, the mixture was exposed to 1000 W broad UV 

radiation for 15 minutes. The particles obtained by this method 

were found to be of a larger size, 2.0 ± 0.5 nm, as explained by the 

more rapid and less controlled reaction. In this study, dynamic light 

scattering (DLS) was also used to estimate particle size. This 

method rendered sizes slightly larger than those estimated by TEM, 

explained by the fact that DLS is used to calculate the size of an 

object moving through a solution, which may include the particle 

and surrounding protective shell of molecules [80]. As well as con-

ventional heating, microwave heating has been found to be a useful 

alternative. Ionic liquids containing large ions presenting high po-

larisability are particularly susceptible to MW radiation and reach 

high heating rates. Indeed, at a power of only 10 W in a laboratory 

microwave the suspension reached the 250 °C required in less than 

1 minute, presenting a clear advantage over the conventional heat-

ing route, and leading to Ru-NPs of an almost identical size and 

size distribution [81]. 

Despite the intrinsic ability of ILs to stabilise Ru-NPs synthe-

sised in situ, under catalytic conditions, i.e. elevated temperature 

and stirring, Ru-NPs tend to diffuse through solution to slowly ag-

glomerate and coalesce. It may therefore be advantageous to intro-

duce additional stabilising agents as an added barrier to agglomera-

tion and catalyst deactivation. For example, Janiak’s group has 

produced Ru-NPs supported on chemically derived graphene 

(CDG) by simply introducing this into [C4C1Im][BF4] to obtain 

stable dispersion of single graphene sheets, before carrying out the 

MW-assisted decomposition of Ru(CO)13 previously described, 

(Fig. 4). The resulting material could be separated from the IL by 

centrifugation and TEM measurements found small-size supported 

Ru-NPs with narrow size distribution [84]. Furthermore, Jiang et al. 

found the IL 1,1,3,3-tetramethylguanadinium (TMG) lactate could 

be used to immobilise NPs in mesoporous silica (SBA-15). Here, 

the precursor used was RuCl3, which was reduced under H2 at 

150 °C in the presence of both the IL and SBA support to give Ru-

NPs sized between 2 and 5 nm [85]. 

The addition of ligands is yet another possibility to better the 

stability of the resulting Ru-NPs. For this reason, hexadecylamine 

(HDA) and octylamine (OA) were used in combination with imida-

zolium ILs, to produce Ru-NPs from Ru(COD)(COT) [86]. Alky-

lamines are labile ligands often used as capping agents in the syn-

thesis of Ru-NPs in organic solvents. The presence of the ligand 

enhanced the size control of the Ru-NPs formed, both with respect 

to those synthesised in amine/THF mixtures and those synthesised 

in ILs without ligands under the same conditions. Regardless of the 

temperature or IL employed, sizes measured by TEM fell in the 

range 1.1-1.3 nm with very narrow size distributions. A combina-

tion of 
13

C and DOSY (Diffusional Order SpectroscopY) NMR 

measurements of the colloidal solution with OA reported the ab-

sence of NMR signal for the -carbon plus a low diffusion coeffi-

cient for OA, proving the coordination of the amine to the surface 

of the Ru-NPs [86]. Furthermore, it was suggested by 
13

C spectra 

that addition of different quantities of amine leads to different 

coordination modes at the surface. At low amine concentration the 

amine alkyl chain lies close to the surface of the Ru-NP while at 

higher amine concentration, the alkyl chain points away from the 

surface, as illustrated in (Fig. 5). Interestingly, when amine is added 

after the synthesis of Ru-NPs, it causes flocculation of the Ru-NPs, 

probably due to the strong OA-OA affinity [87]. 

Additional stabilisation may even come from the IL itself; ILs 

are intrinsically highly adaptable species, which can be tailored to a 

specific task. For example, an imidazolium IL bearing a nitrile-

functionalised alkyl chain [(C3CN)C1Im][NTf2] has already been 

employed in the synthesis of Ru-NPs from Ru(COD)(MA)2 under 

H2, rendering small and stable Ru-NPs of 2.2 ± 0.5 nm [88]. Such 

additional stabilisers may affect not only the stability of the Ru-NPs 

but also their catalytic properties, as will be discussed in the follow-

ing section. 

3. RUTHENIUM NANOPARTICLES AS RECYCLABLE 

CATALYSTS IN IONIC LIQUIDS 

Ruthenium nanoparticles (Ru-NPs) dispersed in ionic liquids 

(ILs) are suitable systems for running both typical homogeneous 

and heterogeneous catalysis. This includes; hydrogenation of C-C 

and carbon hetero-atom multiple bonds and arenes [55-57, 60, 74, 

75, 81, 82, 84, 88-95]. dehydrogenation in transfer-hydrogenation 

processes [95], nitro-group reduction [96], hydrodeoxygenation [97],  

 

Fig. (4). The synthesis of single-sheet graphene supported Ru-NPs in the IL [C4C1Im][BF4], and TEM image of material obtained. Image adapted from [84] 

(Copyright Elsevier 2011). 
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Fig. (5). Schematic illustration of the coordination of OA to Ru-NPs and the association OA-OA, where r represents the molar ratio, OA:Ru. 

Table 1. Glossary of Ru-NPs synthesised in ionic liquids 

Precursor Conditions Stirred Ionic Liquid Additive Size obtained (nm) Ref. 

Ru(COD)(COT) 75 °C, H2 (4 bar) Yes [C4C1Im][BF4] 

[C4C1Im][PF6] 

[C4C1Im][OTf] 

 2.6 ± 0.4 (in 57 nm superstructures) [57] 

Ru(COD)(COT) 0 °C, H2 (4 bar) 

 

0 °C, H2 (4 bar) 

25 °C, H2 (4 bar) 

Yes 

 

No 

Yes 

[C4C1Im][NTf2] 

 

[C4C1Im][NTf2] 

[C4C1Im][NTf2] 

 0.9 ± 0.4 (agglomerated in 2-3 nm 

clusters ) 

1.1 ± 0.2 

2.4 ± 0.3 

[58] 

Ru(COD)(COT) 25 °C, H2 (4 bar) 

50 °C, H2 (4 bar) 

75 °C, H2 (4 bar) 

No 

No 

No 

[C4C1Im][NTf2] 

[C4C1Im][NTf2] 

[C4C1Im][NTf2] 

 2.3 ± 0.3 

2.9 ± 0.4 

3.1 ± 0.7 

[60] 

Ru(COD)(COT) 0 °C, H2 (4 bar) 

 

No [C2C1Im][NTf2] 

[C4C1Im][NTf2] 

[C6C1Im][NTf2] 

[C8C1Im][NTf2] 

[C10C1Im][NTf2] 

[C4C1C1Im][NTf2] 

C4C4Im NTf2 

 2.3 ± 0.6 

1.1 ± 0.2 

1.9 ± 0.6 

2.3 ± 0.8 

100–150 sponges 

1.8 ± 0.5 

2.0 ± 0.6 

[21] 

Ru(COD)(COT) 30 °C, H2 (4 bar) 

 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

[C4C1Im][NTf2] 

[C4C1Im][NTf2] 

[C4C1Im][NTf2] 

[C6C1Im][NTf2] 

[C8C1Im][NTf2] 

[C10C1Im][NTf2] 

HDA 

OA 

OA 

OA 

OA 

OA 

1.3 ± 0.4 

1.2 ± 0.4 

1.1 ± 0.3 

1.2 ± 0.3 

1.2 ± 0.3 

1.3 ± 0.4 

[86] 

Ru(COD)(MA)2 50 °C, H2 (4 bar) Yes [C4C1Im][NTf2] 

[C4C1Im][BF4] 

[C10C1Im][NTf2] 

[C10C1Im][BF4] 

[(C3CN)C1Im] 

[NTf2] 

 2.1 ± 0.5 

2.9 ± 0.5 

2.7 ± 0.5 

2.1 ± 0.5 

2.2 ± 0.5 

[74, 88] 

Ru(COD)(MA)2 50 °C, Ar Yes [C6C1C1Im][NTf2]  2.2 ± 0.5 [75] 

Ru(COD)(MA)2 60 °C, H2 (60 bar) Yes [C2C1C1Im][NTf2] 

[C12C1Im][NTf2] 

[C2C1Im][NTf2] 

[C2C1Im][Br] 

 

[C2C1Im][AcO] 

[C4C1Im][BF4] 

 agglomerates 

2.7 ± 0.2 

2.4 ± 0.2 

2.5 ± 0.5 + agglomerates 

2.3 ± 0.2 

2.0 ± 0.2 

[76] 



422    Current Organic Chemistry, 2013, Vol. 17, No. 4 Campbell et al. 

 

Table 1. contd…. 

Precursor Conditions Stirred Ionic Liquid Additive Size obtained (nm)  

Ru(COD)(MA)2 50 °C, H2 (4 bar) Yes [C4C1Im][NTf2] 

[C4C1C1Im][NTf2] 

[P4,4,4,1][NTf2] 

[P4,4,4,8][NTf2] 

[P4,4,4,14][NTf2] 

[P4,4,4,14][OTf] 

[P4,4,4,14][PF6] 

[P4,4,4,14][Cl] 

 1.7 ± 0.3 

1.9 ± 0.4 

2.2 ± 0.5 

1.9 ± 0.4 

1.6 ± 0.3 

1.4 ± 0.3 

2.2 ± 1.8 

5.0 ± 1.3 

[77] 

[CpRuCp*RuCp*] [PF6] 
 

180 °C, H2 atmosphere Yes [P6,6,6,14][DBS]  

[C4C1Im][PF6] 

Ethylene 

Glycol  

~2.5 [78, 79] 

RuO2 75 °C, H2 (4 bar) Yes [C4C1Im][PF6] 

[C4C1Im][OTf] 

[C4C1Im][BF4] 

 2.5 ± 0.4 

 

2.0 ± 0.4 

[55, 56, 

89] 

RuCl3 150 °C, H2 (1 bar) Yes [TMG][lactate] SBA-15 2-5 [85] 

Ru3(CO)12 200 °C  

1000W UV 

Microwave
 

Yes [C4C1Im][BF4]  1.6 ± 0.4 

2.0 ± 0.5 

1.6 ± 0.3 

[80-83] 

COD = cyclooctadiene, COT = cyclooctatriene, MA = 2-methylallyl, Cp = cyclopentadienyl, Cp* = pentamethylcyclopentadienyl, C1, C2, C4, etc. = methyl, ethyl, butyl etc., Im = 

imidazolium, P6,6,6,14 = tri(hexyl)tetradecylphosphonium, TMG = 1,1,3,3-tetramethylguanadinium, OTf = trifluoromethylsulfonate, NTf2 = bis(trifluoromethylsulfonyl)imide, AcO = 

acetate, DBS = dodecylbenzenesulfonate, HDA = hexadecylamine, OA = octylamine.   
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Scheme 5. Hydrogenation of multiple bonds with Ru-NPs in ILs (Refer-

ences see Table 2). 

 

C-O bond cleavage [92, 98], hydrogenolysis [99], amminolysis 

[88], isotope exchange [79], C-H activation [100], as well as many 

energy-related applications (Fischer-Tropsch Synthesis) [101], 

Direct Methanol Fuel Cells (DMFC) [102, 103] and in general for 

biomass conversion [76, 78, 92, 97-99]. Ru-NPs usually act typi-

cally in heterogeneous reactions as solid state catalyst [90]. As dis-

cussed in the previous section, the ILs act as stabilising agents for 

the small-sized and mono-dispersed Ru-NPs to prevent agglomera-

tion to bulk metal [74, 75, 88]. Moreover, the IL forms a protective 

layer to avoid oxidation of the sensitive and highly catalytic active 

metal surface [90]. The main advantage of these multiphase sys-

tems, with the Ru-NPs immobilised in the IL, is that they are easily 

recyclable by simple phase separation of the molecular organic 

phase containing the substrates and product, from the ionic catalytic 

solution [104]. Usually the catalytic phase does not show signifi-

cant loss in activity. However, general limitations for metal 

nanoparticle catalysis are (I) metal leaching during phase separation 

[105, 106], (II) extraction of organic molecules into the IL-layer 

and vice-versa [107], and (III) slow mass transfer in the multiphase 

system due the relatively high viscosity, hence low hydrogen gas 

solubility [108]. 

3.1. Hydrogenation Reactions 

Ruthenium NPs in ILs are highly active and recyclable catalysts 

for reduction reactions with hydrogen in multiphase systems, where 

several multiple bonds and functional groups are reactive in pres-

ence of gaseous hydrogen or under transfer-hydrogenation condi-

tions (Scheme 5, Table 2, References see Table 2).  

As previously discussed, ILs provide the opportunity to pre-

cisely control the size of Ru-NPs produced in situ, and thus this fact 

was used to investigate the effect of small changes in size of Ru-

NPs on the activity and selectivity in the hydrogenation of cyclo-

hexadiene [60]. In this study it was shown that with large size parti-

cles (3 nm) hydrogenation activity was increased, whereas smaller 

Ru-NPs (1 nm) favoured partially hydrogenated products. These 

findings could be attributed to the possible coordination modes of 

the substrate on different size Ru-NPs as shown in (Fig. 6). On 

smaller Ru-NPs, there exist no large open facets for the favoured 

planar coordination of the substrate and as such the reaction pro-

ceeds slower and rapid consecutive hydrogenation of both unsatura-

tions is unlikely. Due their immiscibility in the IL phase, the hydro-

genated products were separated, contributing to the high selectivity 

observed.  

Some examples for catalyst-recycling in batch reactions show 

the promising potential for their recyclability without significant 

loss of catalyst activity (Table 2: Entry A) [55-57, 81]. It is impor-

Ref. 
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tant to note that the stability of NPs is superior in ILs in comparison 

to NPs under solventless conditions. As previously mentioned, 

certain hydrocarbons can be extracted with ILs and vice versa 

[107]. Therefore, the protective IL-layer can be withdrawn from the 

NPs-surface, which may provoke the particle growth process lead-

ing to bulk metal accompanied by decreasing activity, due to the 

lack of available catalytic surface. Moreover, the selectivity can be 

influenced by the choice of IL. For example, nitriles are converted 

into imines whereas arene moieties remain stable in presence of 

nitrile-functionalised IL (Table 2: Entry: E) [88]. In the absence of 

nitriles, arenes are converted into the corresponding cycloalkanes 

(Table 2: Entry B) [74]. Also observed, the reduction of functional 

groups like ketones or nitro moieties results with high selectivity in 

the formation of the corresponding alcohols and anilines. (Table 2: 

Entry D and F) [95, 96]. Another example for selective hydrogena-

tion is the highly interesting conversion of benzene to cyclohexene 

in the presence of Ru-NPs in [C4C1Im][PF6] (Table 2: Entry C, Fig. 

7) [57, 93]. Moreover, Ru-NPs in ILs are suitable for the hydro-

genation of biomass-derived organic molecules based on 5-

hydroxymethylfurfural (HMF) and furfural, which can be obtained 

in turn from hexoses and pentoses (Scheme 6) [76]. 

 

Fig. (7). Cyclohexene selectivity in the hydrogenation of benzene by Ru-

NPs in [C4C1Im][PF6] [57]  (Copyright Wiley Interscience 2004). 

3.2. Hydrogenolysis, Hydrodeoxygenation, Fragmentation and 

Amminolysis 

In recent years, Ru-NPs in ILs have been evaluated as catalytic 

systems for bond forming and bond cleavage reactions, in particular 

 

Fig. (6). Molecular models to illustrate the possible coordination of cyco-

hexadiene on Ru-NPs of 1 nm (left) and 3 nm (right) [60] (Copyright El-

sevier 2010). 

O
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Scheme 6. Hydrogenation of biomass-derived 4-(2-furyl)-3-butene-2-one with Ru nanoparticles. 

 

Table 2. Selected examples for double and triple bond hydrogenation with recyclable Ru-NPs in ILs: Alkenes, arenes, ketones, nitriles and nitroben-

zenes (Entries A-F refer to Scheme 5; Entry G refer Scheme 6) 

Entry IL Educt/[M] 

(mol/mol) 

Educt Product Conv. [%] t [h] /    

T [°C] 

Runs Ref. 

A [C4C1Im][BF4] 

[C4C1Im][PF6] 

[C4C1Im][OTf] 

500,  

667  

1108 

Olefin Alkane 100 0.6/ 75; 

0.7 / 75 

2-4 / 90 

8 ;  

17;  

7 

[55-57, 

81] 

B [C10C1Im] 

[NTf2] 

200 Arene Cyclohexane 96 18 / 75 n. d.  [74] 

C [C4C1Im][PF6] 

[C4Py][DCA] 

1500 Benzene 

Benzene 

Cyclohexene 

Cyclohexene 

2 (34)
a
 

83 (30)
 a
 

1.2 / 75 

2 / 100 

n. d. 

n. d. 

[57, 93] 

D Choline hydroxide 12 Ketone alcohol 95 6 / 85 5 [95] 

E [C3CNC1Im] 

[NTf2] 

137 Nitrile Imine 70 18 / 90 3 [88] 

F [C4C1Im][BF4] 1428 (7140)
b 

Nitro-benzenes anilines >99 4 / 70 5 [96] 

G [C12C1Im] 

[NTf2] 

100 4-(2-furyl)-3-

butene-2-one 

4-(2-furyl)-3-

butane-2-ol 

>99 (~70) 6 /120 5 [76] 

Im: imidazolium, Py: Pyridinium, C1,C4, C10 etc.: methyl, butyl, decyl etc., C3CN: butyronitrile, BF4: tetrafluoroborate, PF6: hexafluorophosphate, OTf = triflate, NTf2 = 

bis(trifluoromethylsulfonyl)imide, DCA = dicyanamide; 
a
Selectivity for cyclohexene; 

b
 total ratio over five runs. 
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for the conversion of biomass derived substrates. Examples of these 

include alcohols (glycerol), acetals (cellulose, cellobiose) and phe-

nols, all of which it is desirable to further refine by hydrogenolysis, 

and/or hydrodeoxygenation (Scheme 7; Entries A-D) [78, 92, 97-

99]. Ru-NPs/IL catalyst-systems show some promising potential for 

recycling in batch experiments with high conversions (>80%) and 

selectivities (>80%) at least for the conversion of glycerol into 1,2-

propanediol in subsequent runs (Table 3: Entry A). For example, 

Jiang and Han et al. presented the hydrogenolysis of glycerol to 

1,2-propanediol and ethylene glycol catalysed by Ru/Cu bimetallic 

nanocatalysts [99]. These were immobilised on bentonite particles – 

a composite-clay mainly consisting of 60% SiO2, 20% Al2O3, 4% 

MgO and 5% Na2O – which were covered with the ionic liquid 

tetramethylguanidinium lactate ([TMG][lactate]). RuCl3 and 

Cu(NO3)2 were subsequently reduced in an aqueous solution of 

NaBH4. The hydrogenolysis of glycerol proceeded under 100 bars 

hydrogen, 230 °C within 10-18 h, resulting in a liquid product mix-

ture of mainly 1,2-propanediol (86 %) and ethylene glycol (9 %). 

The catalyst could be recycled 5 times without any loss of activity 

or selectivity. Moreover, the same reaction over nanoscale Ru/C or 

Ru/TiO2 catalysts impregnated with choline (2-hydroxy-N,N,N-

trimethylethanammonium) chloride can be performed with great 

success. At 100°C and with only 20 bars H2 pressure, about 30% of 

glycerol could be converted into 1,2-propanediol and ethylene gly-

col [109]. 

Dyson and Kou et al. presented the first successful conversion 

of cellobiose to smaller alcohols and monomeric sugars by hydroly-

sis and hydrogenation with the help of ruthenium nanoparticles (2.4 

nm) [98]. Since, Maguire and co-workers have showed a chemical 

degradation of cellulose to hexitols (C6-sugars) as products. They 

used Ru nanoparticles in 1-(4 -(4 -(2 -boronobenzyl)piperazinyl)-

2 -butenyl)-3-n-butylimidazolium chloride ([BBPBBIm][Cl]). The 

reaction takes place in presence of water with well dispersed 

nanoparticles under hydrogen. The major product was sorbitol with 

mannitol as the side-product. These polyalcohols are suitable for 

biofuel synthesis and display a possible pathway for biotransforma-

tion of cellulose to useful fine organic chemicals. 

Another very interesting raw material for biofuel production is 

lignin. Alongside cellulose, lignin is one of the major components 

of wood and wood-like biomass and can be obtained by recycling 

waste materials from the wood-working industry. Up to now lignin, 

as a biopolymer consisting of several aromatic compounds, has to 

be depolymerised and hydrogenated, in order to synthesise the cor-

responding alcohols. Dyson and co-workers have presented a 

nanoparticle-based methodology to convert phenols into the corre-

sponding cyclohexanes as a model reaction for the refinement of 

depolymerised lignin derivatives (Scheme 8) [97]. By use of acidic 

ionic liquids [C4C1Im][NTf2] or [C4C1Im][BF4] with in situ synthe-

sised Ru-NPs, they were capable of hydrogenating phenol to cyclo-

hexane with high conversions (77%) and good selectivity (98%). 

The reaction proceeds at 110-130°C in 4 h with hydrogen pressure 

of 40 bars. 

The complete elimination of functional groups is often an unde-

sirable side-reaction in organic synthesis, but on the other hand it is 

a possibility to for the recycling of environmental harmful com-

pounds such as phenols. In biomass refinement, this process, known 

as hydrodeoxygenation, is very important as hydrocarbons contain-

ing less than 5 wt % oxygen are needed for fuel applications. For 

biomass feeds, oxygen content can be as high as 50%. Some of the 

O-containing compounds in the feed readily polymerise and cause 

thus poor fuel stability and performance during combustion [110]. 
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Scheme 7. Examples for defunctionalisation reactions in ILs promoted by Ru-NPs. (For references please refer the corresponding entries in Table 3) 
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In addition, C-O bond cleavage reactions seem also suitable for the 

fragmentation of sugar-based biomass like cellulose or cellobiose, 

thus sugar monomers and bio-alcohol can be derived from renew-

able resources (Table 3: Entry C-D) [78, 92, 98]. 

3.3. Isotope-Exchange with Ru-NPs in ILs 

Isotope exchange processes are methods for the analysis and 

characterisation of catalysts and are also of synthetic value. For 

example in the case of hydrogen isotopes, deuterated (D, 
2
H) and 

tritiated (T, 
3
H) compounds are used for NMR spectroscopy, as 

well as in pharmaceutical/medical research, e.g. for the investiga-

tion of metabolic processes of pharmaceutical products. Moreover, 

deuterated polymers have been tested in organic light emitting di-

odes (OLEDs) and are used in optical communication systems. 

Another clinical research example of the use of certain isotopes is 

in Boron neutron capture therapy (BNCT) where a 
10

B-enriched 

boron compound is irradiated with low-energy neutrons yielding -

particles and 
7
Li nuclei [79]. BNCT has been focused for example 

on treatment of cerebral metastases of melanoma, and more re-

cently, head, neck, and liver tumors [79]. Therefore, isotope-

labelling as well as enrichment of isotopes is highly interesting for 

academic research as well as for application in industry and medi-

cine. The ruthenium catalysed isotope exchange of boron atoms in 

decaborane is remarkable because several bonds are selectively 

broken and formed with a nanoscale catalyst without altering the 

nido-structure of the decaborane. Highly enriched 
10

B-decaborane 

(90% 
10

B and 97% conversion) can be obtained by repeated treat-

ment (six times) of decaborane with 
10

B2H6 in presence of Ru-NPs 

(decaborane:Ru ratio = 20:1) in trihexyltetradecylphosphonium 

dodecylbenzenesulfonate ILs ([P6,6,6,14][DBS]), where the catalyst 

was recycled three times in batch experiments without significant 

loss in activity (Fig. 8) [79]. 

3.4. Application of Ru-NPs in ILs for Energy related Catalysis 
Systems 

In the past few decades, there has been increasing interest in the 

development of clean power sources based on hydrogen, water-

splitting or direct methanol fuel cells (DMFCs) and also for the 

synthetic fuel production in gas-to-liquid processes (GtL) such as 

Fischer-Tropsch-Synthesis. For the latter process, Ru-NPs protected 

with ILs have been successfully applied, and recyclability of the 

catalyst was achieved (Table 4: Entry 1) [101]. The product mixture 

included alkanes, olefins and oxygenated compounds in a range 

from C5/C7 to C30 with selectivity as shown in (Fig. 9). Another 

field of application in the area of energy research involving Ru-NPs 

in ILs is their use as oxidation catalysts in fuel cells (Table 4: Entry 

2) [102, 103]. Here, the IL does not only take on the function of 

solvent and catalyst stabiliser, but also act as electrolyte. 

Table 3. Examples for Defunctionalisation with Ru-NPs in ILs: hydrogenolysis, hydrodeoxygenation, cellulose/cellobiose fragmentation and ammi-

nolysis 

 
Reaction 

Educt/[M] 

(mol/mol) 
IL Educt Product Conv. [%] Runs Ref. 

A
 

Hydrogenolysis 166
a 

[TMG][Lactate]-BEN glycerol 1,2-propanediol 100 5 [99] 

B Hydro-deoxygenation 300 [C4C1Im][BF4] Phenol Cyclohexane 77 (97)
b 

n. d. [97] 

C Cellobiose fragmentation 10 [C2C1Im][NTf2] /H2O 

[C2C1Im][NTf2]/ 

[C4SO3C4Im] [NTf2].HSO4 

cellobiose Sorbitol 

 

isosorbid 

 >99 (94)
b 

>99 (95)
b 

n. d. [92] 

[92] 

D Cellulose fragmentation 146 

555
c 

[C4C1Im][Cl]  

[BBPBBIm][Cl] / 

[C4C1Im][Cl] 

cellulose 

cellulose 

sorbitol 

sorbitol 

15 

94 

n. d. 

n. d. 

[98] 

[78] 

E Amminolysis 137 [C3CNC1Im] 

[NTf2]; 

[C4C1Im][NTf2] 

Nitrile imine 70 3 [88] 

TMG = 1,1,3,3-tetramethylguanidinium; BEN = bentonite; C4SO3C4Im = 1-(4-Butylsulfonic acid)-3-(n-butyl)-imidazolium; BBPBBIm = 1-(4 -(4 -(2 -boronobenzyl)piperazinyl)-

2 -butenyl)-3-n-butylimidazolium; 
a
 bimetallic Ru-Cu catalyst; 

b
 selectivity; 

c 
based on glucose-units in cellulose. 

OH O OH

cat., H2, IL H+, IL cat., H2, IL

 

Scheme 8. Hydrodeoxygenation of phenols to cyclic alkanes with Ru nanoparticles in Brønsted acid-IL. 

 

Fig. (8). Catalytic 
10

B-
11

B Isotope Exchange [79]  (Copyright American Chemical Society 2007) 
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Fig. (9). Hydrocarbon selectivities for 2.0-nm-diameter ruthenium nano-

clusters [101]  (Copyright Wiley Interscience 2008). 

3.5. Conclusion on Application in Catalysis 

Ru-NPs dispersed in ILs are recyclable catalysts for reactions in 

multiphase systems. The selectivity of these materials shows that 

they are suitable as multi-site catalysts. The Ru-NP/IL-systems 

often exhibit promising catalytic properties and long-term stability.  

In particular, the use of functionalised ILs shows that the stability 

and activity can be optimised with coordinating groups.  

4. FURTHER AND FUTURE APPLICATIONS 

Ruthenium nanoparticles from ionic liquids are not only prov-

ing to be versatile catalysts, but are also being developed for nu-

merous other innovative applications. For example, a novel non-

enzyme sensor for glucose detection in serum and urine samples 

and alcohol detection in blood has been developed with high poten-

tial for application. These are based on Ru-NPs or platinum and 

platinum–ruthenium nanoparticles, supported on multi-walled car-

bon nanotubes (MWNTs) in the presence of ILs [111, 112]. 

Another example is in novel electronic systems. Integrated cir-

cuits (ICs) are omnipresent in our everyday life (cell phones, cam-

eras, computers, tablets, automotive, etc.) These objects need to 

become smarter and smarter, with increased miniaturization. For 

decades, this evolution was sustained by constant down-scaling of 

the circuitry, which is referred to as “Moore’s law”, in spite of in-

creasingly complex technological challenges. However, the microe-

lectronics industry is now progressing into a size range in which 

quantum effects are significant, and will soon reach the ultimate, 

physical limits of this approach. Other strategies are being explored 

to pursue device miniaturization. Among them, a promising ap-

proach consists in stacking several chips on top of each other to 

increase the complexity of the device without compromising its 

compactness [113-115]. In this architecture, a major challenge is 

the deposition of thin and continuous metallic layers in Through 

Silicon Vias (TSVs), the vertical holes interconnecting neighbour-

ing levels. Indeed, the PVD-based processes currently used for this 

purpose suffer from limited step coverage, causing weaknesses, and 

even discontinuities in the metallic films on the features sidewalls. 

Hence, a more conformal deposition technique is desired. Moreo-

ver, this alternative solution should produce the liners with reduced 

cost. Recently, results on the formation of metallic films by anneal-

ing of silica supported Cu NPs [116] and Ag [117] have been re-

ported. ILs are ideal media to synthesise such metallic NPs, as they 

act in the process both as solvent and stabiliser [13]. Furthermore, 

their relatively high thermal stability and low volatility are com-

patible with annealing conditions needed to achieve sintering of 

NPs and film formation. Thus, the full process flow including NPs 

synthesis, application on a substrate and film formation by thermal 

treatment could be conducted in the same medium, enabling sim-

pler and shorter process, with reduced cost and limited oxidation of 

the metal. In this perspective, the use of suspensions of metallic 

NPs in ILs could be a real breakthrough for the fabrication of TSVs 

[118]. 

Suspensions of Ru-NPs in ILs could find other applications in 

microelectronics processes or devices incorporating NPs. In addi-

tion to their ease of use, these suspensions would lead to superior 

results, due to the narrow size distribution of NPs. This size control 

could even be further enhanced by synthesising bimetallic nanopar-

ticles, as was shown in the case of the Ru-Cu system [119], such 

metallic NPs would be able to catalyse in-situ the synthesis of car-

bon nanotubes with controlled diameter and structure, envisioned as 

possible candidates to replace Cu interconnects [120]. 

They could also be used to form more reliable flash memory 

cells. In these devices, information is stored as an electric charge in 

a solid floating gate. In conventional cells, this information can be 

lost by charge leakage from this floating gate. Therefore, discrete 

floating gates are more reliable, since the cell remains functional 

even if one metallic particle loses its charge. Si NPs are already 

used for this purpose. However, metallic NPs such as Ru-NPs could 

store a larger quantity of charge, improving device performance 

[121]. 

5. CONCLUSION 

As highly adaptable, charge-bearing, nano-structured liquids, 

ionic liquids present themselves as ideal media for the investigation 

of nanochemistry. They have been shown over the course of the last 

decade to be excellent media for the generation of metallic nanopar-

ticles of small size and narrow size distributions. The ionic liquids 

offer a stabilisation to the NPs generated in situ, in such a way that 

no additional capping agents are required and the “ligand-free” NP 

surface is unhindered for catalysis. What’s more, their tuneable 

miscibility properties may be utilised to drive the selectivity of a 

reaction, or to perform biphasic catalysis in order to limit catalyst 

leaching and separate more easily the products. 

Herein we bring together in-depth studies performed on ruthe-

nium nanoparticles in ionic liquids. The size of Ru-NPs can be 

highly controlled, by varying the adaptable IL or the experimental 

Table 4. Examples for energy and environment related systems with Ru-NPs in ILs: Fischer-Tropsch Synthesis, Fuel Cells, Hydrogen Generation / 

Storage 

No Reaction NPs IL Educt Product 
Conv. 

[%] 
Runs Ref. 

1 Fischer-Tropsch Ru [C4C1Im][BF4] H2/CO (2:1) C5-C30 75 n.d. [101] 

2 Oxidation (DMFC) Pt/Ru [C4C1Im][BF4] methanol Energy / CO2 100 3 [102, 

103] 
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conditions, and this has been shown to be crucial in catalysis. Even 

the nature of the ionic liquid used may eventually lead to a different 

selectivity in certain reactions. Ru-NPs in ILs have shown to be 

versatile catalyst systems in reactions ranging from simple hydro-

genations to energy related applications such as Fischer-Tropsch 

syntheses and biomass refinement. 

Furthermore, these Ru-NPs-IL systems have been put to use in 

novel applications in diverse fields such as medical analysis where 

they can be used as glucose or alcohol detectors or microelectron-

ics, where patents have been submitted for their use in the produc-

tion of smarter devices. 

It seems that this field, although already well developed, has 

much potential for yet further innovation. For example, by simply 

exploring the many other available ionic liquids could open the way 

to new and improved catalytic properties or smart materials. 
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