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“Working hard is important. But there’s something that matters even more.
Believing in yourself.”

J. K. Rowling. Harry Potter and the Order of the Phoenix.





Zusammenfassung

Zellen haften an Oberflächen oder benachbarten Zellen über lokal aggregierte Proteinkom-
plexe, die auf transmembranen Zelladhäsionsmolekülen wie Cadherinen oder Integrinen
basieren. Diese Komplexe sorgen nicht nur für strukturelle Stabilität, sie sind auch in
zahlreiche zelluläre Prozesse involviert, die Zellentwicklung, -regulation und -migration
betreffen. Die Fähigkeit, mechanische Signale in einem mehrschrittigen Prozess wahrzuneh-
men, wird als Mechanotransduktion bezeichnet. Ihr wird eine zentrale Rolle zugeschrieben,
weil sie eine abgestimmte Reaktion und Anpassung auf Umgebungseinflüsse, wie zum
Beispiel steigende mechanische Belastung, erlaubt.

Ein Musterbeispiel für die komplexe Reaktion auf steigende Spannung ist das Adap-
torprotein Talin, welches mit seiner Kopfregion an Integrin und mit seiner Stabregion
an F-Aktin bindet. Unter Krafteinwirkung entfalten Regionen entlang der Stabregion
sukzessive, wodurch Bindungsstellen für Vinkulin geöffnet werden, die zuvor unzugänglich
waren. Vinkulinmoleküle werden somit in die Adhäsion eingezogen und verstärken die
Verbindung durch das Binden an Talin und Aktin. Während die kollektiven Auswirkun-
gen des Bindens und Reißens einzelner Verbindungen in Adhäsionsclustern bereits seit
mehr als zwei Jahrzehnten modelliert werden, werden Adaptationsmechanismen wie die
Konformationsänderungen von Talin erst seit Kurzem in theoretische Untersuchungen
miteinbezogen.

In dieser Arbeit wird ein Minimalmodell für Adhäsionscluster vorgestellt und analysiert,
um mögliche generische Mechanismen der Adhäsionsanpassung unter Krafteinwirkung
aufzudecken. Ein Adhäsionscluster besteht aus elastischen, stäbchenförmigen Molekü-
len, die zwei ebene Oberflächen, auf die eine äußere Kraft wirkt, verbinden. Moleküle
durchlaufen reversible stochastische Übergänge zwischen ausgewählten Zuständen, die
den Bindungszustand und die Konformation der Moleküle beschreiben. Zusätzlich werden
Adhäsionscluster mit fixierter und variabler Molekülzahl verglichen. Alle Übergangsraten
erfüllen die thermodynamischen Randbedingungen, sodass im Gleichgewicht, d.h. ohne
äußere Kraftanwendung, mikroskopische Reversibilität gewährleistet wird. Der gesamte
Cluster wird durch einen einschrittigen Markov-Prozess beschrieben, der analytisch und
mithilfe kinetischer Monte-Carlo-Simulationen untersucht wird.

Die Ergebnisse zeigen, dass das Entfalten von Adhäsionsmolekülen qualitativ unter-
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schiedliche Auswirkungen unter vornehmlich Zug- und Scherkräften hat. Bei reinem Zug
sind Verbindungen orthogonal zu den Oberflächengrenzen angeordnet, sodass der Entfal-
tungsübergang die Distanz erhöht, die durch den Cluster überbrückt werden kann. Die
Begrenzung durch die harten Oberflächen führt zu einer Konkurrenz zwischen gefalteter
und entfalteter Konformation. Dadurch nimmt die Clustergröße mit steigender Kraft ab
und die Wahrscheinlichkeit für eine vollständige Dissoziation des Clusters wächst. Wenn
die beiden Oberflächen nicht auseinander gezogen werden, sondern Scherkräften ausgesetzt
sind, kommt es zu einer breiten Verteilung an Dehnungen der Verbindungen. Das System
wird mit kontinuierlichen Zyklen aus Binden, Entfalten und Reißen einzelner Verbindungen
aus dem Gleichgewicht gebracht, was zu einer im Mittel konstanten Gleitgeschwindigkeit
des Systems führt. Wenn der Cluster an ein Reservoir gekoppelt ist, ziehen die nicht
im Gleichgewicht befindlichen Zustände neue Moleküle in die Adhäsion. In einer solchen
Situation nimmt die Anzahl der gebundenen Moleküle trotz steigender Kraft zu. Die
mittlere Lebensdauer des Clusters erreicht ihren höchsten Wert bei nicht verschwindenden
Kräften. Dieser Selbststabilisierungsmechanismus ist das zentrale Ergebnis der Arbeit. Sie
zeigt, dass die Anpassung an mechanische Belastung generisch mithilfe weniger Zutaten in
einem vereinfachten, aber thermodynamisch konsistentem Modell erreicht werden kann.
Mit diesem Beitrag zielt die Arbeit auf ein besseres Verständnis der zugrundeliegenden
Mechanismen in zellulären Adhäsionen oder verwandten Systemen und dient möglicherweise
als Inspiration für biomimetische Materialien.
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Abstract

Cells adhere to surfaces or neighbouring cells via locally aggregated multi-protein complexes
that are based on transmembrane cellular adhesion molecules, such as cadherins or integrins.
These complexes do not only provide structural stability, but are also involved in numerous
cellular processes concerning development, regulation and migration. The ability to sense
mechanical cues in a multi-step process is termed mechanotransduction and has been
ascribed a crucial role, because it allows a tuned response and adaptation to environmental
factors, such as increasing mechanical stress.

A paradigm for an intricate response to increased tension is the adaptor protein talin,
which binds with its head region to integrin and with its rod domain to F-actin. Under force,
domains along the talin rod successively unfold, thereby opening binding sites for vinculin
that were previously inaccessible. Vinculin molecules are thus recruited to the adhesion
and strengthen the linkage by binding both talin and actin. While the collective effects of
binding and rupture of distinct bonds in adhesion clusters have already been modeled for
more than two decades, adaptation mechanisms like the conformational changes of talin
have only recently been included in theoretical studies.

In this thesis, a minimal model for adhesion clusters is introduced and analysed to
uncover possible generic mechanism of adhesion adaptation under force. An adhesion
cluster is composed of elastic rod-like molecules that connect two planar surfaces under an
external force. Molecules undergo reversible stochastic transitions between selected states,
which describe the molecules’ binding state and conformation. Additionally, adhesion
clusters with a fixed and variable number of molecules are compared. All transition rates
fulfil the thermodynamic constraints, so that microscopic reversibility is guaranteed in
equilibrium, i.e. without external force application. The whole cluster is described by a
one-step Markov process, which is studied analytically and by means of kinetic Monte
Carlo simulations.

The results demonstrate that unfolding of adhesion molecules has qualitatively different
effects under predominantly pulling and shearing forces. In the case of pure pulling, bonds
are aligned orthogonally to the surface boundaries, so that the unfolding transition increases
the distance that can be bridged by the cluster. However, the confinement due to the
rigid surfaces leads to a competition between the folded and unfolded conformation. As a
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consequence, cluster size decreases with increasing force and the probability for complete
cluster dissociation grows. When the two surfaces are not pulled apart, but are subject
to shearing forces, a broad distribution of bond stretches results. The system is shifted
out of equilibrium with continuous cycles of bond binding, unfolding, and rupture which
lead to an on average constant sliding velocity of the system. If the cluster is coupled
to a reservoir, non-equilibrated states draw new molecules into the adhesion. In such a
situation, the number of bonds increases despite increasing forces. The average cluster
lifetime exhibits a peak at non-vanishing forces. This self-stabilization mechanism is the
central finding of the study. It demonstrates that adaptation to mechanical stress can be
achieved generically with few ingredients in a simplified, but thermodynamically consistent
model. With this contribution, the study aims at a better understanding of the underlying
mechanisms in cellular adhesions or related systems and potentially serves as an inspiration
for biomimetic materials.

iv



Contents

Page

Zusammenfassung i

Abstract iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Adhesion science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Adhesive interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Biological Adhesions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Biomimetic adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Mechanobiology of cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Mechanosensitive cell components and structures . . . . . . . . . . . 7

1.3.2 Mechanotransduction . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Biological background: Cellular adhesions 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Cell-cell contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Cell-matrix contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Adherens junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Cadherin clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Adaptor proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Mechanotransduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Focal adhesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Integrin clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Adaptor proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



2.3.3 Maturation steps and structure . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Mechanotransduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Application of external force . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Observing forces generated by the cell . . . . . . . . . . . . . . . . . 30

2.5 Modelling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Modelling single bonds . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Bond clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Open questions addressed in the thesis . . . . . . . . . . . . . . . . . . . . . 39

3 Modelling an adhesion cluster under pulling forces 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Binding and rupture model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Constant number of molecules . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Variable adhesion size . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Extended model with conformational changes . . . . . . . . . . . . . . . . . 70

3.3.1 Constant number of molecules . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Variable adhesion size . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Extended model with conformational changes and adhesion molecule recruit-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Preface to chapter 4 87

Declaration of individual contribution . . . . . . . . . . . . . . . . . . . . . . . . 87

4 A generic self-stabilization mechanism for biomolecular adhesions under
load 89

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



4.5 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

I Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II Stochastic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 102

III Adhesion model without unfolding . . . . . . . . . . . . . . . . . . . 103

IV Adhesion model with unfolding . . . . . . . . . . . . . . . . . . . . . 104

V Adhesion model with unfolding and catch bonds . . . . . . . . . . . 108

VI Adhesion model with unfolding and cross-linking . . . . . . . . . . . 110

5 Extension to two dimensions 113

5.1 Modifications to the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Binding rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.2 Restoring force balance . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Limiting cases of pure pulling and shearing . . . . . . . . . . . . . . . . . . 117

5.2.1 Pulling force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 Shearing force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Intermediate force directions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions and outlook 129

6.1 Modelling an adhesion cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Response to pulling forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Response to shearing forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Extension to arbitrary directions of force . . . . . . . . . . . . . . . . . . . . 134

6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 137

Appendix 163

A Mathematical background: Stochastic processes and applications 163

A.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.1.2 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.1.3 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

vii



A.1.4 Macroscopic equations . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.1.5 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Stochastic chemical reaction kinetics . . . . . . . . . . . . . . . . . . . . . . 169

A.2.1 Reactions and rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2.2 Chemical master equation . . . . . . . . . . . . . . . . . . . . . . . . 171

A.2.3 Gillespie algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Acknowledgements 175

Erklärung 177

CV 179

viii



Chapter 1

Introduction

1.1 Motivation

A pioneer of cell biology, Edmund B. Wilson, wrote in 1925: “Long ago it became evident
that the key to every biological problem must finally be sought in the cell; for every living
organism is, or at some point has been, a cell” [341]. Indeed, cells were identified as a
fundamental building block of life already in the 19th century. Since then, the field of cell
biology has grown steadily and it attracts not only biologists, but also researchers from
other natural sciences, such as physicists [343]. Understanding the physical principles that
underlie the complex and intertwined processes inside the cell poses a difficult task, but at
the same time a great opportunity for advances in the field and beyond. However, the cell
is not a stand-alone unit; it is embedded in a complex surrounding, for instance in a fluid,
on top of a surface or within a multicellular organism. Numerous vital processes depend
on the cell’s ability to establish contact to its environment [170, 186, 283, 335]. Among
the different structures that connect the intra- and extracellular world, cellular adhesion
molecules have been attributed great importance [60, 132, 176, 191]. They typically
assemble in clusters to connect a cell to its neighbour or the extracellular matrix. Most
importantly, these contacts provide structural stability and tissue integrity. Additionally,
they act as transmission pathways for the exchange of information. For both purposes,
adhesion clusters need to respond and adapt to diverse mechanical cues [95, 117].

Experimental advances in the last decades allow the observation of structure and me-
chanoresponse of cellular adhesions on the molecular scale. Also, theoretical models have
contributed to a better understanding of force transmission along adhesion molecules. The
progress in the field shows that mechanical stress influences numerous cellular processes
both locally within the cluster and globally – up to tissue architecture, function, and
fate [69, 131]. To allow a robust force response, it is important that cellular adhesions
are stable but also able to adapt to a changing environment. One striking finding in this
context is the ability of adhesion clusters to grow under force [15, 272]. However, the
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underlying mechanisms are not clarified yet.
The aim of this thesis is to deepen the understanding of general mechanisms in adhesion

clusters under mechanical stress. For this purpose, a minimal model for a single adhesion
cluster under force has been developed. The basic idea ties in with already existing models,
but it is modified and extended to account for physical constraints and observations in the
biological systems. One important question which accompanies the thesis concerns possible
stabilization mechanisms: what are the necessary ingredients for biological adhesion clusters
to grow or strengthen under force? Naturally, the full complexity of cellular adhesions
cannot be included in the model. Yet, generalizations allow the study of mechanisms that
are normally hidden or superimposed. Furthermore, the generic mechanism may serve as
an inspiration for related systems since adhesive structures also appear in other biological
systems, such as adhesive toes pads in animals, and in industrial products like rubber and
glues.

This introductory chapter firstly provides an overview of adhesions in general, from the
basic interactions to prominent examples. Secondly, a brief account on mechanobiology of
cells is given, including main mechanosensitive structures in cells. Mechanotransduction,
the process of turning a mechanical signal into a biochemical response, is also introduced.
The chapter closes with an outline of the main part of the thesis.

1.2 Adhesion science

The word adhesion comes from the Latin noun adhaesio (linkage). The term describes the
tendency of two, typically dissimilar materials to stick to each other. The associations with
adhesions or adhesive systems differ between fields of science. In medicine, adhesions refer
to bands of scar-like tissue that connect areas which are typically separated. They often
form after injuries, surgeries, or other irritations in the abdomen or pelvis, at the shoulder,
or between heart and sternum. Adhesions in this sense of the word can cause pain and
severe complications [51]. In natural sciences, the term is used more generally for a broad
range of mechanisms on very different length scales. These mechanisms share the common
idea of an attractive energy that causes the linkage. In most cases, the adhesion can be
disrupted again by application of energy. The strength of an adhesion is related to the
amount of energy that is required for detachment.

1.2.1 Adhesive interactions

The interaction between adhesive and adherend is located either within the adhesive,
within the adherend, or at their interface. Physical bonds are caused by Van der Waals
forces, hydrogen bonds or dipole-dipole interactions. They are typically weaker than
chemical interactions such as covalent or ionic bonds. Other linkages depend on mechanical
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interlocking as in the case of entangled fibers. In many biological applications, these and
other kinds of mechanisms are simultaneously present. Besides the type of interaction,
important parameters typically comprise the geometry of the adhesive region, its surface
area, and the material properties at the interface [222].

Adhesions can be classified as dry or wet. As the name suggests, wet adhesions typically
include a liquid film. Hence they are based on surface tension and capillary effects, whereas
dry adhesions originate from chemical bonds or Van der Waals attractions. A well-known
example for wet adhesion is the stickiness of water to substrates. Water is highly polar
and hence shows strong cohesion (an attraction between similar materials) and adhesion
to other polar substances. In capillary tubes, the competition between adhesion and
cohesion can be observed at the meniscus interface, see Fig. 1.1a. If adhesion to the
charged surface is higher than cohesion, as in the case of water in glass, a concave meniscus
forms. Alternatively, if the liquid-liquid attraction is stronger, the meniscus is convex.
The resulting capillary repulsion can for example be observed for mercury [354]. Adhesive
forces thus support spreading of liquids on substrates whereas cohesive forces tend to a
lower degree of wetting. A measure for the wettability is given by the surface angle θ [134],
see Fig. 1.1b. In equilibrium between a flat, rigid solid S, a gas G and a liquid L, Young’s
equation connects θ with the surface tensions γSG, γLG, and γSL via [354]

0 = γSG − γSL − γLG cos θ . (1.1)

The work per unit area Wa that is required to separate liquid and solid is described by the
Dupré equation

Wa = γSG + γLG − γSL . (1.2)

A large value of Wa corresponds to a strong liquid-solid bond. Combining (1.1) and (1.2)
yields the Young-Dupré equation

Wa = γLG(1 + cos θ) . (1.3)

H20 Hg

b

θ

θ>90°

θ
θ<90°

a

Figure 1.1. Capillary action and wettability. a) Demonstration of the competition between
adhesion and cohesion with liquids in capillary tubes. While in the case of water adhesion
dominates, mercury has stronger cohesion forces. b) In equilibrium, the contact angle θ
quantifies the wettability of a surface by a liquid.
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Hence, complete wetting and the strongest adhesion is achieved for θ = 0. For high values
of the contact angle, i.e. θ & 160°, wetting and adhesion is highly unfavourable. The latter
situation is known from the so-called “lotus effect” [362].

1.2.2 Biological Adhesions

Animals and plants have developed different strategies for strong, but often reversible
adhesion. A remarkable example for reversible dry adhesion is the gecko that clings to
vertical and overhanging surfaces with its toe pads. The toe pads exhibit a complex,
hierarchical structure of millimeter-sized lamellae, see Fig. 1.2a. The lamellae are made
of setae, up to 100 µm long, hair-like structures with a diameter of few micrometers [248].
Setae terminate in nanometer-sized plates called spatulae which provide the surface for
attractive Van der Waals forces. Other debated interactions include electric charges and
capillary effects [248]. Because every seta generates an adhesive force of tens of micronewton,
the toe pad supports a multiple of the gecko’s body weight. Nevertheless, geckos can lift
their toes and detach in tens of milliseconds with ease [12]. Next to the strong adhesion
and low detachment forces, several other features are remarkable about gecko adhesion.
The toe pads stick not only to dry, smooth, and clean, but also to dry, wet, and rough
surfaces. Additionally, they exhibit both active and passive self-cleaning, so that dirt is
removed from their toes while walking.

Other terrestrial animals, e.g. tree frogs, use adhesive toe pads as well, which allow
them to climb on almost all surfaces. In contrast to the gecko, the surface of tree frog toes
consists of hexagonal epidermal cells, each covered with thousands of nanopillars. The
channels between the cells are filled with fluid and contain mucous glands. The frogs adhere
via wet adhesion, i.e. by a combination of surface tension and viscous forces [21]. Many
spiders, beetles and flies exhibit legs or feet with setae or similar structures as well. Smooth
adhesive toe pads are found for example in ants, bees, grasshoppers and cockroaches [91].
The smooth surface adapts as a whole to the substrate surface, even if it is rough. Some
hairy or smooth attachment pads additionally secrete a liquid for wet adhesion [93, 120].

Under water, many adhesion strategies involve interlocking, suction, and gluing. The
abalone is a sea snail with a muscular pedal foot, which is covered with setae and fibrils [119].
An interplay of suction, Van der Waals forces, and capillary forces contribute to a strong
normal adhesion force [207]. Marine mussels generate a strong adhesive glue by means
of an external structure, the byssus, see Fig. 1.2b. The byssal threads end in a dense
plaque with different adhesive proteins, but also metal [301]. The adhesive proteins allow
a remarkably robust underwater attachment that persists even under strong sea currents.
Permanent underwater adhesions are also found in tubeworms and barnacles [119].

Similar to animals, plants have developed several mechanisms to attach to their sur-
rounding. Adhesion in plants is predominantly not reversible. The species of ivy climb other
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a b c

Figure 1.2. Examples for biological adhesion structures in animals and plants. a) Adhesive
toe pads of a tokay gecko. Photograph by David Clements, 2006, public domain [78].
b) Anatomy and byssus structures in blue mussels [301]. Copyright 2007, CC-BY-NC,
Springer Science Business Media, LLC. c) Stems of rootlets in hedera helix (common ivy).
Photograph by Beentree, Copyright 2005, CC BY-SA 3.0 [26].

plants, but also rocks and other surfaces by means of small hair-like roots, see Fig. 1.2c.
Algae are famous for their rapid and permanent attachment to other organisms and rocks.
They establish a first contact via adhesive proteins and afterwards secrete extracellular
polymeric substances for long-time adhesion [119]. Carnivorous plants use adhesive glues
to capture and trap insects. Sundew, for instance, creates droplets of a sticky mucus on
the surface of their leaves or tentacles [119].

Besides in animals and plants, adhesion also plays a major role on the level of individual
cells. Bacteria that reach the surface of a substrate experience a sum of forces, which result
from attractive Van der Waals, steric, electrostatic, and hydrophobic interactions. The
microscopic interactions are hence the same as for climbing animals or strongly attaching
mussels and plants. If the repulsive forces are not too strong, the bacterium can establish
contact to the surface via several mechanisms [29]. Frequently, bacteria employ extracellular
appendages, such as flagella, curli, or pili, with adhesive proteins for initial attachment.
Subsequently, the contact can mature and strengthen to achieve permanent adhesion. This
process typically involves a repositioning of the cell body to increase the contact area,
the production of adhesin molecules or a rearrangement of the appendages. Irreversible
attachment of bacteria to the substrate initiates colonization and biofilm formation, see
Ref. [128] for a review.

In eukaryotic cells, the adhesion between two cells or a cell and a substrate involves
non-covalent receptor-ligand bonds, which also depend on Van der Waals and electrostatic
forces like hydrogen bonds [2, 114]. Different families of integral membrane proteins are
specialized in forming the contact to adjacent cells, the extracellular matrix or other
substr¸ates. These cellular adhesions play a vital role in animals and are involved in
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numerous biological processes, such as embryonic development, cell migration and wound
healing [39, 186, 287]. As one major motivation for this thesis, they will be discussed
separately in Chapter 2.

1.2.3 Biomimetic adhesives

Both reversible and permanent biological adhesions have fascinated scientists for decades.
Observation and analysis of relevant components and their complex interplay inspire and
guide the design of new biomimetic adhesives. Natural and ecofriendly materials experience
a high demand in times of increasing environmental awareness. Furthermore the unique
and outstanding features of biological adhesions drive the attempt to replicate them. Many
applications are found in our every day life, such as glues, scotch tape and Velcro. Biological
adhesions are interesting for numerous industrial products, e.g. rubber and coatings. Close
to the original function of biological adhesions are systems for locomotion, drug delivery,
tissue engineering and wound healing.

Reversible dry adhesions in animals are often implemented via complex hierarchical
structures that end with nanometer sized objects like pillars or spatulae. Gecko toe pads
motivate the design of climbing robots and self-cleaning, re-attachable adhesives based on
arrays of nano- to micrometer-sized pillars [12, 133, 356]. For permanent adhesions, the
adhesive glue produced by mussels is a role model because of its strength and durability.
Additionally, mussel adhesion is suggested to depend on degradable proteins with low
immunogenicity, an attractive feature for biomedical use [301]. However, many components
of the mussel byssus and adhesion plaque are subject of current research and not well
known. Recently, progress has been made on mimicking robust attachment under wet
conditions, but the complex interactions at the interface are still a limiting factor [364].

Ongoing and future research will contribute to a better understanding of the intricate
interplay between substrates and biological adhesives. So far, many artificial adhesives
are motivated by large systems, like gecko and mussel adhesion. Technological progress
from the last decades allows us now to study the underlying mechanisms on the nano- and
micrometer scale. A comparison of the few examples presented here already uncovers that
there are similar key principles of reversible adhesions, and these are also found on the
cellular scale. Therefore not only the biological adhesions in animals and plants, but also
cellular linkages offer promising model systems for future bio-inspired adhesives.

1.3 Mechanobiology of cells

Cells are the structural and functional units of living organisms. Their plasma membrane
forms a protective and stabilizing border with the extracellular space. At the same time,
the membrane functions as a contact zone at which permanent exchange of material and
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information takes place. Since not only the cell but also its surrounding are highly dynamic
systems, physical forces are constantly at play during a cell’s life-cycle. These forces can
be generated and act in the intracellular space, e.g. for purposes of transport or cell
division. Alternatively, force can be transmitted across the plasma membrane inside-out
or outside-in, as in the case of cell migration. The field of mechanobiology studies the
response of cells and tissues to mechanical stimuli. There is growing evidence that most
cellular processes are either crucially depending or at least influenced by force. Therefore
research in this field is not an end in itself, but paves the way for advances in biomedicine
and bioengineering [117, 170].

It is well known from basic laws of physics that the direct response to force, typically a
deformation, depends on the mechanical properties of the deformed material. In this context,
cells are often regarded as an elastic solid or as a liquid supported by an elastic cortex [157].
This assumption is reasonable, because water makes up approx. 70% of the cellular volume
and structural stability is provided by macromolecular networks. Nevertheless, cell models
inevitably simplify the anisotropy and heterogeneous composition of cells, which lead in
general to a nonlinear mechanical response [253]. Additionally, environmental conditions
and the origin of forces vary greatly. Externally generated stresses result from physical
activity, e.g. breathing, muscle contraction and blood flow, but they are also present as
tension and compression within tissues or take effect as hydrostatic pressure. In accidents,
collisions cause large impacts.

Independently of how and where they are generated, natural cellular forces are typically
on the order of pN or nN. The related lengths range from tens of nm for molecules to
tens of µm, the typical size of an animal cell [2]. Therefore tensions are often measured in
units of pN/nm or nN/µm. Stresses and pressures are expressed in pascal or kilopascal,
since 1 pN/µm2 = 1 Pa and 1 nN/µm2 = 1 kPa. The Young’s modulus describes the ratio
of stress to strain and has the same dimension as stress. Typical stiffness values in the
mammalian cellular environment range from 100 Pa in brain tissue to 10 kPa in muscles
and reach 10 GPa in bones [92, 289]. Cancerous tissue typically exhibits a higher stiffness
than its surrounding, which favours tumor growth [141].

Mechanical stimuli can act on the cell as a whole, for instance in the case of a hydrostatic
pressure. However, there are many intricate force perception and transmission pathways
along individual molecules and structures, which allow a precisely controlled and regulated
response. In the following, the most important mechanosensitive components of eukaryotic
cells are introduced.

1.3.1 Mechanosensitive cell components and structures

Despite the complexity and great diversity within living organisms, the building blocks
for the mechanosensitive modules are largely preserved. In animal cells, two mesh works
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contribute crucially to force transmission: the intracellular cytoskeleton and the extracellular
matrix (ECM). The plasma membrane with its integral proteins and ion channels connects
these two elements.

The cytoskeleton pervades the intracellular space and provides structural stability. The
main components, filamentous actin, intermediate filaments and microtubules, are sketched
in Fig. 1.3. Among these three, actin has a key role as an active building material [17].
Monomeric actin (G-actin) is constantly assembled at the barbed end of twisted filaments
(F-actin) and is disassembled at the pointed end, leading to a treadmilling mechanism.
In branched, bundled or disordered arrangements, actin filaments form different kinds of
networks that span the cytosol. In many cell types, a thin, but dense actin network, the
actin cortex, is located below the plasma membrane and controls cell morphogenesis [75].
Migrating cells often exhibit lamellipodia at the leading edge, in which chemical energy is
used to push the membrane for spreading and migration. The lamellipodium is followed by

Figure 1.3. Main components of the cytoskeleton. Actin filaments are found close to the
plasma membrane and pervade the cytosol, thereby connecting cellular matrix adhesion
(CMA) sites with each other and with the nucleus. Microtubules are linked to the
microtubule-organizing center (MTOC) and provide platforms for intracellular transport.
Intermediate filaments connect adhesive structures at the surface with organelles. The
cytoskeleton is influenced by the extracellular matrix (ECM) properties and contacts to
neighbouring cells. Copyright 2009–2018, CC BY-NC 4.0, The National University of
Singapore [229].
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the lamellum, a contractile module with different actin structures, like bundles of stress
fibers. These contractile bundles consist of crosslinked filaments and myosin II motor
proteins and in many cases they terminate in cell-matrix adhesions. The motors slide
filamentous actin of opposing polarity against each other and thus generate forces. This
actomyosin network is the basis for cell contractility. The movement of actin from cell
edges towards the center due to myosin activity is called retrograde flow [254].

Like actin, microtubules are polar filaments that can grow and shrink. They are stiff
polymers in the shape of hollow tubes that offer tracks for motor proteins like kinesins
and dyneins [117, 170]. Additionally, microtubules are the main components of the mitotic
spindle, which is important for cell division [319]. Intermediate filaments are a diverse
group of nonpolar proteins. Vimentin, keratin and lamin connect the nucleus with other
organelles and adhesive structures and thus provide structural integrity. The protein family
of plakins connects actin filaments, microtubules and intermediate filaments to a large
network.

The second mesh work that crucially regulates force sensing and transmission is the
ECM. The ECM is the natural environment of tissues and organs in animals. Therefore
its composition and properties affect vital processes, such as cell shape, development and
migration [95]. The matrix consists of typically long polysaccharides (glycosaminoglycans),
fibrous proteins such as collagen, and various glycoproteins, e.g. laminin and fibronectin.
A crosslinked network of elastin can provide high elasticity, but in general the biochemical
and biophysical properties differ strongly within an organism [2].

Since mechanical signals need to be transmitted across cell boundaries, the plasma
membrane contains several mechanosensitive structures. Among these are transmembrane
channels and receptor proteins. The receptors are the basis of cellular adhesion sites and
connect the cytoskeletons of adjacent cells or the cytoskeleton to ECM ligands. Cellular
adhesions close an important gap in the force transmission pathway across cells and tissues.
They will be discussed in detail in chapter 2.

In summary, the different mechanosensitive components of multicellular organisms, the
cytoskeleton, the ECM, and the plasma membrane, are intricate structures with many
different components. However, they can also be considered as one large mechanically
sensitive machinery, because they are in direct contact. The contact is established by the
surface of cells at all times. Additionally, integral adhesion proteins establish a specific,
force sensitive linkage between cells and to the extracellular space. Along these pathways,
force can be transmitted repeatedly and in a regulated manner, which is a prerequisite for
the conversion of mechanical signals into a robust cellular response.
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1.3.2 Mechanotransduction

The ability to turn a mechanical signal into a biochemical response is termed mechan-
otransduction [95, 191, 259]. Mechanotransduction starts with a mechanical stimulus and
mechanosensing. Once a stress is perceived by a mechanosensitive element, it is transmitted
along its mechanical linkages in microseconds. Since it is often required to transmit forces
from or to the extracellular space or across multiple cells, mechanotransduction is often
receptor-mediated [69]. The propagating signal causes modulations, such as changes in
protein dynamics and conformation. Common examples are deformations, displacements,
unfolding, cluster rearrangement, or opening of ion channels [69, 278, 335]. These modula-
tions in turn alter binding affinities, regulate enzyme activities, or activate biochemical
signalling pathways, which feed back into the mechanosensitive system or trigger other
cellular mechanisms [335, 339]. Thereby, the fine-tuned response to mechanical signals
affects manifold processes, locally and globally.

The forces that are generated or experienced by the cell directly regulate cytoskeletal
structure and its polarization, and hence cell shape, organization, and adhesion. In many
cases, the contractile activity of the cell is an important factor for a robust mechanoresponse.
Some cells exploit the mechanical signals to collect information about their surrounding. In
a process termed rigidity sensing, cells probe their environment mechanically by pulling on
proteins or neighbouring cells [283]. Thereby, cells “measure” extracellular properties like
matrix stiffness or the density of embedded ligands, which influences a variety of processes,
e.g. cell growth, adhesion, and migration [335]. The motion of cells that is guided by
stiffness gradients is termed durotaxis [214, 256]. Durotactic motion has not only been
observed for single cells, but also for multicellular clusters [186, 313]. Furthermore, matrix
elasticity and force influence genetic responses, such as cell proliferation and differentiation
of stem cells [106]. Therefore, the proper transduction of mechanical signals is important
at all stages of life, from embryogenesis to tissue homeostasis and apoptosis [95, 117].
Accordingly, perturbation of the mechanical pathways is associated with many pathological
conditions and diseases, e.g. arthritis, osteoporosis, and deafness. Disruption or impaired
cellular force response over a longer time period can cause atherosclerosis and promote
cancer metastasis [95].

Despite progress in detecting the numerous force-dependent processes, many steps in
mechanotransduction, especially on the microscopic level, are still poorly understood. A
better understanding of cellular components and mechanisms may serve as a door-opener for
new insights on mechanically regulated processes and shed light on healthy and pathological
cell function.
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1.4 Outline of the thesis
The thesis is organized as follows: Chapter 2 provides an account of different forms of
cellular adhesions and of the current methods and models in adhesion research. It serves as
background and basis for the models discussed in Chapters 3, 4 and 5. In Chapter 3, the
one-dimensional model for a single cluster that is subject to pulling forces is introduced. The
case of an adhesion cluster under shearing forces is treated in Chapter 4. The cluster model
is generalized to arbitrary force directions in Chapter 5. Finally, Chapter 6 summarizes
the main results and concludes the thesis with an outlook. Additional information on
the mathematical background and a short introduction to the field of stochastic chemical
reaction kinetics are given in the appendix sections A.1 and A.2.
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Chapter 2

Biological background:
Cellular adhesions

The discovery of cellular adhesion molecules dates back almost half a century. The contact
areas between a cell and an underlying substrate were described first in the 1960s and
1970s [1, 84]. The transmembrane protein that acts as a surface receptor within these
“dense plaques” [1] was given the descriptive name integrin in 1986 [316]. By the end
of the 1980s, a whole family of integrins for different extracellular ligands had been
discovered [167]. The full picture of a complex adhesion protein network started to emerge
with the discovery of proteins like vinculin and talin, which assemble on the cytoplasmic site
of cell-ECM connections [40–42, 130]. At around the same time, transmembrane proteins
that establish cell-cell contacts were identified [314] and termed cadherins because of their
calcium-dependent functioning [352, 353]. When related proteins were found, the previously
discovered members got the name “classical cadherins” [45, 340]. Because they establish
the connection between the intracellular space and the cell’s environment, integrins and
cadherins are fundamental components of cellular adhesions. Other major superfamilies of
cellular adhesion molecules are selectins and the immunoglobulin (Ig) superfamily.

The study of adhesions has expanded into an interdisciplinary research field. Advances
in experimental methods, in particular single-molecule techniques, promote the progress of
knowledge about cellular adhesions. Theoretical models and simulations further provide
useful explanations and predictions, especially for cases in which in vivo or in vitro studies
are unfeasible or limited. With this in mind, this chapter starts with the current under-
standing of cellular adhesions and their functions. Special attention is given to two adhesive
structures, adherens junctions and focal adhesions, and their role in mechanotransduction.
Afterwards, the experimental methods that led to today’s picture of adhesions are briefly
presented. Finally, the focus turns to theoretical approaches that aim at the description
and explanation of adhesive structures on the level of single connections or local clusters of
bonds. The chapter closes with a discussion of the open questions addressed in this thesis.
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2.1 Overview

Broadly, cellular adhesions can be divided into two categories; those that build structural
connections between two cells or between a cell and the ECM. In both cases, it is typically
not a single molecule that constitutes an adhesion. Instead, clusters of protein bonds,
ranging from the nanometer to the micrometer scale, with potentially hundreds of different
molecules, are observed at adhesion sites. Despite their complexity, a common feature of
cellular adhesion clusters is their regular and organized structure [30, 174].

There are several benefits of cluster formation over relying on a single connective
molecule. Since biological bonds rupture eventually, multiple bonds enable long-lasting
networks with concurrent individual rupture and rebinding events. Weak binding affinities
are therefore sufficient and sometimes even favorable, because they allow a rapid assembly
and dissociation. Thereby, durable and yet flexible adhesions are established. Additionally,
mechanical cues can be distributed among several bonds. A cluster can thus fine-tune
its response via bond recruitment or dissociation and potentially withstand higher forces.
Finally, the assembly of different molecules with distinct properties within a single cluster
promotes diversity and specificity. Distribution of tasks and multiple pathways ensure
robust functioning, even when single components may be impaired. On the other side,
increased complexity requires highly regulated and coordinated mechanisms. Cellular
adhesions are therefore not simple and static functional modules, but rather comparable to
dynamic organelles.

2.1.1 Cell-cell contacts

Contacts between cells are important to maintain tissue integrity and to exchange molecules
or signals. Multiple kinds of adhesive structures connect the plasma membranes of cells for
these purposes. A few examples are shown for the case of an epithelial cell in Fig. 2.1a.
The most prominent cell-cell adhesions are based on proteins from the cadherin family.
The common motif of all cadherins is a repeating amino acid sequence: the extracellular
cadherin domain. The 18 classical cadherins in vertebrates exhibit five of these domains and
play an important role in cell-cell contacts [297]. Already at early stages of life, expression
of different cadherins regulates cell sorting and morphogenesis [193]. The first adhesive
contact is established by two cadherins that form a homophilic bond in the intercellular
space. Cadherin clustering and the recruitment of adaptor proteins in the cytoplasm lead
to large macromolecular complexes that connect the cytoskeletons of neighbouring cells.
In adherens junctions (Fig. 2.1a), cadherins bind via adaptor proteins, like catenin and
vinculin, to actin filaments. More than 160 different proteins have so far been identified as
a part of this cytoplasmic molecular network, sometimes also referred to as the cadherin
adhesome [357]. Adherens junctions appear in various kinds of tissue, e.g. the endothelium,

14



Biological background: Cellular adhesions
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Figure 2.1. Forms of cell-cell adhesions. a) Epithelial cells establish contacts to their neigh-
bours via adherens junctions, which are linked to the actin cytoskeleton, and desmosomes,
which bind intermediate filaments. Tight junctions create a barrier between the apical
and basal side. Based on a figure in [224], Copyright 2009–2018, CC BY-NC 4.0, The
National University of Singapore. b) Leukocyte rolling on endothelial cells is mediated by
selectins. They are slowed down and stopped by integrins, ICAMs and VCAMs, so that
the leukocyte can enter the neighbouring tissue. Based on a figure in [242], Copyright 2018,
CC-BY, Morikis and Simon.

epithelium, fibroblasts, muscle cells, neurons and astrocytes [191]. The multiple operation
sites indicate their exceptional importance for cells. Therefore, adherens junctions and
their functions are discussed separately in section 2.2.

Non-classical cadherins play a role in diverse tissues, e.g. in epithelial and inner
hair cells, and in brain tissue. In many cases their function is not well understood [37].
One example for adhesion structures based on non-classical cadherins are desmosomes,
see Fig. 2.1a [89]. The intracellular domains of desmoglein and desmocollin establish a
connection to keratin intermediate filaments via desmosomal plaque proteins, such as
plakoglobin and desmoplakin. Desmosomes allow a strong cell-cell coupling, which is why
they appear in cells subject to large mechanical stresses. Examples are the epidermis
and cardiac muscle tissue. In addition to strong adhesion, it is assumed that they also
influence signalling processes in embryonic development, tissue homeostasis, and wound
healing [329].

Cadherins provide the basis for several other adhesive structures. A special kind of
adherens junction appears in epithelial cells close to the apical end. In these zonula adherens,
cadherins circumscribe the whole cell and stabilize its shape [196]. Zonula adherens are
closely connected to so-called tight or occluding junctions. In most vertebrates, tight
junctions are found above zonula adherens at the apical end of epithelial cells, see Fig. 2.1a.
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They are formed by claudin, occludin, and junctional adhesion molecules [77]. The junctions
connect opposing plasma membranes tightly around the whole perimeter of each cell and
restrict the passage of liquids, ions and molecules. The tight sealing thus creates a barrier
between the basal and apical side of epithelial cells [57].

Among the superfamilies mentioned above, also selectins mediate cell-cell contacts
and they depend, like cadherins, on the extracellular calcium concentration. The three
known selectin family members E-, L-, and P-selectin are expressed in endothelial cells,
leukocytes, and platelets, where they mediate mostly transient adhesions [202]. Selectins
share a similar structure with a lectin domain on the extracellular side. In vertebrates, the
main task of selectins is to regulate leukocyte movement in the bloodstream to lymphoid
organs or inflamed tissue, see Fig. 2.1b. Selectin contacts can rapidly form and break in
order to allow leukocyte rolling on vascular surfaces. The activation of integrins slows
the process down and facilitates migration to the inflammatory tissue [231]. Therefore,
selectin-based adhesions play a major role for the immune system and the response to
inflammation. However, tumor cells can exploit the same mechanism, so that selectins are
involved in cancer metastasis as well [71].

An example for calcium independent cellular adhesion molecules in cell-cell contacts
are members of the immunoglobulin family. Proteins such as NCAM, ICAM-1, or VCAM-1
(neural, intercellular, or vascular cell adhesion protein) share an immunoglobulin domain in
their extracellular structure. They are expressed in endothelial cells, where they also take
part in leukocyte rolling and arrest by binding to leukocyte integrins, see Fig. 2.1b [231].

2.1.2 Cell-matrix contacts

Cell-matrix interactions play a similar structural role as cell-cell adhesions: they stabilize
the cellular shape and position by anchoring them to their microenvironment. Cell shape
and its control by adhesions is for instance an important factor in embryogenesis and cell
division [318, 319]. Structural stability is however only one of many functions. Cell-matrix
adhesions establish a bidirectional pathway for mechanical signals. Thereby, they allow
communication with the outer world and a response to external stimuli. The process of
cell migration combines many of these mechanisms [81]. To fulfil their function, adhesions
need to provide a strong connection, but at the same time they need to stay dynamic for
quick adaptation.

The most important examples for cell-matrix adhesions are based on integrin dimers.
Some of them are depicted in Fig. 2.2. Nascent adhesions typically form at the lamel-
lipodium, grow to focal complexes at the lamellum and later reach mature stages as focal
or fibrillar adhesions in the central and rear regions of cells, see Fig. 2.2a. As a common
motif, all of these adhesions connect the extracellular ligands to actin filaments. Their
structure, the different maturation steps and their mechanosensitive response are discussed
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Figure 2.2. Forms of cell-matrix adhesions. a) In migrating cells, nascent adhesions rapidly
form in the lamellipodium close to the leading edge. Few of them mature into focal
complexes at the interface to the lamellum. Focal adhesions are associated with stress
fibers in the central and rear regions of the cell. They can further elongate and mature into
central fibrillar adhesions (not shown). Based on a figure in [254], Copyright 2010, Nature
Publishing Group, adapted with permission. b) Podosomes and invadopodia are dynamic
protrusions, which degrade the extracellular matrix. While the term podosome refers to
normal cell types, invadopodia are characteristic for cancer cells. Based on a figure in [230],
Copyright 2009–2018, CC BY-NC 4.0, The National University of Singapore.

in section 2.3. A different example for integrin-based adhesions are hemidesmosomes that
establish a link to the keratin intermediate filament network. They are found in basal ep-
ithelial cells, where integrins bind to extracellular laminins in the basement membrane, see
Fig. 2.1a [336]. Other cell-matrix adhesions in which integrin is involved include podosomes
and invadopodia, actin-rich protrusions of the plasma membrane, see Fig. 2.2b. Podosomes
occur, when migrating cells need to cross tissue boundaries. The term invadopodia is
typically used to describe cancerous cells and tissue. One of their specific functions is the
degradation of the ECM [212, 244].

2.2 Adherens junctions

Adherens junctions connect actin bundles of neighbouring cells. They are found in various
cell types and regulate crucial functions, such as tissue integrity, remodelling and collective
cell migration. The section starts with a description of cadherin dimerization and clustering.
Afterwards, an overview of some important adaptor proteins and the mechanosensitive
features of adherens junctions are given.
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2.2.1 Cadherin clustering

Adherens junctions are mediated by classical cadherins. Their ectodomain consists of five
extracellular cadherin domains that are rigidified by three calcium ions at each domain
interspace [297]. As a result, the ectodomain has a characteristic bent shape as sketched in
Fig. 2.3a. Two opposing cadherins of neighbouring cells can interact in the intermembrane
space and form a homophilic bond. They bridge the distance between both plasma
membranes which is typically less than 40 nm [37, 191]. In the longer bond conformation,
a part of the membrane-distal extracellular domain EC1 interacts with the EC1 domain of
the binding partner, creating a “strand-swap” dimer (Fig. 2.3b). However, since the binding
pockets are symmetric, the energy difference between monomers and strand-swap dimers
is small [63]. A shorter conformation in which two cadherins interact at the last linker
region between EC1 and EC2 is called “X-dimer” (Fig. 2.3b). Via an intermediate state,
cadherins interconvert between both conformations. In single bond pulling experiments the
mean lifetime of a cadherin-cadherin dimer was found to be on the order of 10−2 s to 10−1 s,
depending on the applied force [267]. Under tension the bond lifetime of strand-swap
dimers decreases. For X-dimers however, lifetime first increases up to a pulling force of
approx. 30 pN and then decreases for higher forces. In the intermediate state, lifetime is
independent of force [219, 267]. The strength of a cell-cell connection is achieved through
local clustering of cadherin dimers. Lateral cis-interactions between cadherins of the same
cell result in a dense two-dimensional lattice, see Fig. 2.3c. Thermally induced membrane
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Figure 2.3. Cadherin dimerization and clustering. a) Classical cadherins consist of five
extracellular domains, a transmembrane anchor and a short cytoplasmic domain. The
structure is stabilized by twelve calcium ions. b) Two cadherins form a strand-swapped
dimer or a X-dimer in the intercellular space. c) Lateral clustering strengthens the
connection between both cells. Based on figures in. [225, 228], Copyright 2009–2018, CC
BY-NC 4.0, The National University of Singapore.
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fluctuations are shown to cause long-range, lateral cis-interactions and to regulate the
trans-interaction to the neighbouring cell [121]. The resulting clusters can grow to diameters
of approx. 50 nm. These nanoclusters assemble to larger, micrometer-sized complexes [348].

2.2.2 Adaptor proteins

On the intracellular site, cadherins interact with adaptor proteins to mechanically couple
the cytoskeletons of adjacent cells. The short cytoplasmic tail binds to p120-catenin and β-
catenin. It has been assumed that α-catenin binds both β-catenin and actin simultaneously
and thus establishes the connection to the cytoskeleton. In contrast to this classical
view, experiments in 2005 suggested that only free α-catenins bind F-actin, because β-
catenin inhibits this bond [94, 344]. A few years ago, protein mapping by super resolution
microscopy showed that the cadherin/catenin complex forms a layer that is connected to
the actin cytoskeleton via an approx. 30 nm wide zone of mediator proteins [30]. Among
the mediator proteins in the interface between cadherin/catenin and actin, vinculin has
been ascribed an important role for adhesion strengthening [189, 328]. Vinculin can bind
with its head domain to α- and β-catenin and with its tail domain to actin.

The question how vinculin is recruited is not conclusively answered, but both α- and
β-catenin influence the process. Under tension, α-catenin is suggested to undergo a
conformational change in which certain molecular domains unfold. The unfolding step
opens a previously buried vinculin binding site, thus triggering vinculin recruitment [345,
351]. This idea is supported by the finding of significantly lower vinculin levels in cells
without α-catenin [299]. Also cells that are lacking β-cadherin exhibit a weaker recruitment
of vinculin [268]. In a system with vinculin mutants that do not bind β-catenin, cadherin
expression is reduced and the adhesion fails [257]. Another factor that might contribute to
vinculin recruitment is tyrosine phosphorylation [24, 30].

2.2.3 Mechanotransduction

The ability of adherens junctions to withstand mechanical stress is of vital importance
for cell functioning. Together with other cadherin-based adhesions, they provide the
physical link between cells and tissues. By stabilizing the cell-cell interface, they maintain
tissue integrity and allow coordinated multi-cellular mechanisms. Yet, these adhesions
do not simply constitute passive anchors, but instead they are dynamic macromolecular
complexes. Cadherins couple actomyosin networks, so that they are involved in fundamental
morphogenetic processes, such as cell sorting and remodelling, which affect embryonic
development and cell turnover [217, 232, 259]. Adherens junctions also take part in
collective migration and epithelial-mesenchymal transitions [25, 46, 80, 324]. Furthermore,
adhesions act as signalling modules that probe their environment and adapt to the received
cues.
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In many of these functions, force plays a crucial role [191, 194, 332]. Under tension
a positive feedback loop triggers adhesion strengthening and growth [189, 328]. The
underlying mechanisms range from intrinsic properties of single adaptor proteins to the
interplay of multiple molecules, e.g. in the case of vinculin recruitment. In epithelial tissues,
remodelling processes under tension occur frequently and include cell intercalation, division,
and delamination [259]. Additionally, when cells coordinate their movement by following
leader cells with high traction forces, cell-cell junctions need to balance the tension to
maintain tissue cohesion [39, 186].

2.3 Focal adhesions

Cell-matrix adhesions mediate the interaction between cells and the extracellular space.
Hundreds of proteins aggregate into a complex network at the plasma membrane to connect
ligands of the ECM to the cytoskeleton inside the cell. The family of receptor proteins that
reach through the plasma membrane led to the name “integrin adhesome” [342, 358, 359].
These integrin-based adhesions are probably the best studied cell-matrix contacts [274].

In fact, there are many different types of integrin-based adhesions. Small and transient
structures that mostly appear at the edge of spreading or migrating cells are called nascent
adhesions or focal complexes. Under certain conditions they can mature into focal adhesions,
which form more stable and regulated micrometer-sized clusters. Focal adhesions in turn
can develop into fibrillar adhesions, more elongated structures that are located towards
the cell center.

In this section, the focus lies on focal adhesions. After an introduction of single
components such as integrin proteins and selected adaptor proteins, the different maturation
stages and the structure of focal adhesions are described. Finally, the role of cell-matrix
adhesions in the transduction of mechanical signals is discussed.

2.3.1 Integrin clustering

The integrin family of transmembrane adhesion receptors comprises 24 distinct members.
All of them consist of two, non-covalently bound subunits. One of 18 α-subunits binds
to one of eight β-subunits to form a heterodimeric protein [50]. Half of the identified
integrins contain the β1-subunit [164]. A common feature is a short cytoplasmic domain, a
single-pass transmembrane helix and a long ectodomain, where the connection to the ECM
or a substrate is established. On the extracellular side, integrins bind multiple ligands
and vice versa. For instance, α4β1- and α5β1-integrin both bind to fibronectin, but α4β1

also binds to vascular cell adhesion protein-1 (VCAM-1). Other examples for ligands are
laminin, fibrinogen, collagen, and the intercellular adhesion molecule 1 (ICAM-1) [164].
The cytoplasmic domain can be indirectly linked to the cytoskeleton via adaptor proteins
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a b c d

Figure 2.4. Steps of integrin activation. a) In the low affinity state, the α- and β-subunit
are in a bent-closed conformation. b) Activation via the adaptor proteins talin and kindlin
tilts the integrin angle and separates the subunits. c) Activation via a thermally induced
outside-in mechanism with ligand binding. d) In the high affinity state the link to actin is
established. Force transmission stabilizes the connection. [226], Copyright 2009–2018 by
The National University of Singapore, CC BY-NC 4.0

(see below).
Integrins are synthesized in the endoplasmic riticulum and transported to the cell

surface in a bent conformation, see Fig. 2.4a [330]. In this inactive conformation, the
transmembrane helices stay close and the extracellular domain extends only 11 nm from
the surface [307, 349]. The shift to an extended-open conformation is termed integrin
activation [311]. Possible intermediate states are shown in Fig. 2.4b,c. In the extended-open
state, the cytoplasmic tails are separated and extend 19 nm from the cell, see Fig. 2.4d [349].
The upright conformation is associated with the high-affinity state, because the ligand
binding site is open. In α5β1-integrin, which is ubiquitously expressed, a 5000-fold increase
in affinity has been measured [205]. Hence the process of integrin activation plays an
important role for the onset of adhesions. A requirement for successful integrin activation
is the presence of talin and kindlin [47]. In the classical inside-out scenario, talin competes
with the α-subunit for binding to the β-tail, see Fig. 2.4b. Binding of talin is regulated
by kindlin and tilts the angle of the β-transmembrane domain. This process separates
both subunits and enables ligand binding [298]. Alternatively, a thermodynamically
regulated outside-in activation has been proposed, see Fig. 2.4c. Ligand binding occurs
when integrins change from the bent-closed to the extended-open state due to thermal
equilibrium fluctuations and bind immobilized ligands [311]. Successive transmission of
force via talin stabilizes the active conformation [204, 205].

Activated integrins assemble into clusters. A simple energetic argument for clustering
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is that it reduces the tension on single molecules [283, 311]. The tension along individual
integrins is reported to lie in a range from few pN up to 40 pN [243, 338]. Clustering is
regulated by the glycocalix, which can be compressed by the cell to facilitate further integrin
activation [311]. Findings suggest that already a small number of molecules are able to
establish a cluster, as long as the ligand spacing is sufficiently small [14, 285, 294]. While
a ligand spacing of less than 60 nm is required on rigid substrates, focal adhesions grow
on soft substrates with a ligand spacing of 200 nm [56, 251]. Additionally, the availability
of cytoplasmic proteins, lateral crosslinks, and probably other factors influence successive
integrin binding [60, 298, 311].

2.3.2 Adaptor proteins

Adaptor proteins connect integrin receptors with the cytoskeleton. Together, they build
a complex macromolecular network. From the hundreds of molecules involved, a core
of 60 proteins has been identified as the “consensus adhesome” for cells connected to
fibronectin [159, 160]. The observed components can be sorted according to their typical
sequence between integrin and actin, or according to their interactions, which are often
regulated in a switch-like manner [159, 358]. Although the reported network has grown
immensely in the last decades, many mechanisms are still unknown. Here, only some of
the most important adhesion proteins are introduced. Among those, talin and vinculin
play an extraordinary role in force transduction.

Five proteins are reported to connect integrin and actin directly: α-actinin, filamin, talin,
tensin, and plectin [359]. In general, two or more proteins establish the connection. Other
integrin-associated molecules include focal adhesion kinase (FAK), paxillin and integrin-
linked-kinase (ILK), which are important for remodelling and signalling processes [149,
174]. Among the actin binding adaptor proteins are vasodilator-stimulated phosphoprotein
(VASP), zyxin and vinculin [126, 132]. In Fig. 2.5a, a small integrin-fibronectin cluster
is sketched. The different adaptor proteins connect the cluster to the actin cytoskeleton.
Myosin motors generate contractile forces. The scaffold protein actinin crosslinks the
filaments. The whole complex can be divided into functional layers. They are described in
detail in 2.3.3.

Talin

Talin is an adaptor protein that directly links integrin to actin filaments. In mammals, two
similar talin paralogues are expressed; while talin-1 is localized in diverse cell types, talin-2
is mostly found in muscle and neuronal cells [47]. Talin consists of a N-terminal, globular
head domain and a C-terminal rod with 13 domains (R1-R13), see Fig. 2.5b. Head and
tail domain are connected via a short and flexible linker.

Talin is recruited from the cytosol to the plasma membrane via RIAM (Rap1-interacting-
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Figure 2.5. Sketch of a focal adhesion. a) The adhesion cluster connects extracellular
fibronectin to the actin cytoskeleton via adaptor proteins. On the cytoplasmic side, it is
organized in three functional layers. b) Structure of the adaptor protein talin with eleven
vinculin binding sites (VBS). c) Structure of the adaptor protein vinculin, which binds
talin and actin. [227], Copyright 2009–2018 by The National University of Singapore, CC
BY-NC 4.0

adaptor-molecule) and needs to be activated before it can engage with integrins [47, 59].
Activation of talin enhances both integrin activation and actin binding. At an integrin
binding site in the talin head domain, talin interacts with the cytoplasmic tail of the integrin
β-subunit. However, a second integrin binding site is located at the talin R11 domain [140].
First experiments agree with the hypothesis that the additional integrin binding site
promotes initial contact and further integrin clustering [61, 178]. The connection to the
cytoskeleton can be established via three actin binding sites (ABS). Among these three, the
C-terminal ABS3 in R13 is suggested to be most important for coupling to the cytoskeleton
and assembling the adhesion. Subsequently, actin binding at ABS2 along R4 to R8 is
triggered, so that the linkage is strengthened [8].

A critical step in adhesion maturation and strengthening is based on the mechanical
response of talin. Under force, talin rod domains successively unfold and open previously
buried vinculin binding sites (VBS). Thereby, stretching of talin leads to vinculin bind-
ing [156, 271]. The rod domain R3 exhibits the lowest mechanical stability and unfolds
at a force of 5 pN [346, 347]. At forces around this value, rapid equilibrium unfolding
and folding is observed, accompanied by a length change of approx. 20 nm [320, 346, 347].
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Recent findings show that constant, linearly increasing, and also oscillatory signals induce
unfolding. External noise passes however without effect. The R3 domain is hence compared
to a fine-tuned frequency filter [321].

In the R3 domain, two of the eleven cryptic VBS along the talin rod are located.
Experimental results suggest that, after unfolding of R3, two vinculin bind simultaneously,
which is observed as a short contraction of 3 nm [320]. It has been shown that higher forces
up to 40 pN lead in vitro to a progressive unfolding of all talin rod domains [148, 347].
Furthermore, vinculin recruitment locks the respective domain in its unfolded state, even
after release of force [346]. Unfolding entails an increase in length, which agrees with the
finding of 100 nm to 300 nm large extension fluctuations in vivo [220]. Reported values
for the native, i.e. folded, length of talin vary between 50 nm and 80 nm [144, 220, 239,
347]. The length of wild-type talin in focal adhesions was determined as 97 nm, but with
the possibility that talin is not completely folded [213]. Considering that talin spans a
vertical distance between integrin and actin of around 30 nm only, a tilted orientation with
an angle of approx. 15° relative to the plasma membrane is assumed [174, 213].

Talin orientation is likely to depend on the tension along the integrin-talin-actin link.
During extension measurements as a response of unfolding, the tension across a single
talin molecule is reported to stay below 10 pN [347]. This agrees with a different study,
in which most talins are subject to forces from 7 pN to 10 pN and only a small fraction
experiences forces higher than 10 pN [11]. Moreover, vinculin binding has been observed in
a force range of 2 pN to 12 pN [271]. Tension along talin can vary within focal adhesions
and further depends on substrate rigidity: lower tensions are measured on soft substrates
and high tensions in regions of assembly [184, 185, 270].

In summary, several features of talin contribute to its unique role in cell-matrix adhesions.
Talin is indispensable for integrin activation and cells lacking talin are not able to form
mature adhesions [363]. Due to its long structure, it serves as a molecular ruler in the three
dimensional organization of mature focal adhesions [174, 213]. Furthermore, its position
between integrin and actin paves the way for its function as a mechanosensor.

Vinculin

The adaptor protein vinculin is enriched in both cell-cell and cell-matrix adhesions. It
consists of a head and a tail domain, connected by a linker region, see Fig. 2.5c. Vinculin
has a high number of binding partners; vinculin head binds talin, α-actenin, IpaA, and both
α- and β-catenins. The linker region offers binding sites for VASP, vinexin, ponsin, and
Arp2/3. Vinculin tail binds for instance paxillin and F-actin [366]. However, all of these
sites are masked in the closed, autoinhibited state, in which the tail is connected to both
head and linker. Because of the strong interaction with an affinity of <1 nM it is assumed
that more than one ligand is required for vinculin activation [79]. Several mechanisms for
vinculin activation have been proposed which include a combined effect of talin and other
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adhesion components, such as the phospholipid PIP2, actin, or phosphorylated paxillin [10,
55, 65, 72, 97, 255, 310]. A recent study suggests recruitment of talin-vinculin precomplexes
to adhesion sites as an important step for adhesion maturation [152]. Accordingly, the
ultimate pathways for vinculin activation are still under investigation.

In its activated state, the vinculin head binds to talin and the tail establishes a
connection to F-actin. Therefore, vinculin plays an important role in the force transmission
machinery of adhesions. The vinculin-talin connection drives integrin clustering and, as a
result, adhesion growth and stabilization [97, 165]. Furthermore, it regulates recruitment
and release of other adhesion components, such as paxillin and vinexin [53, 165]. In
particular, vinculin binding to the talin R3 domain acts as an important switch [320,
346]. At the low force of 5 pN the domain unfolds and opens two cryptic VBS. Binding
of vinculin enables a second talin-actin link at talin’s ABS2, which reinforces the link
and promotes maturation [8]. Recent experiments show that the stability of head-VBS
interactions depends on the pulling geometry, suggesting that vinculin differentiates force
directions and thus promotes maturation into a regularized shape [179]. Force transmission
requires the interaction between vinculin tail and F-actin. However, vinculin does not act
as a passive transmitter, but it regulates the organization and dynamics of F-actin [325].
In cell migration, vinculin is required for reducing retrograde flow and it promotes traction
forces that pull the cell forward [53, 280, 325]. High forces along vinculin are measured
at the leading edge of migrating cells, whereas lower forces are observed in sliding or
disassembling adhesions. At stable focal adhesions, an average tension of 2.5 pN along
vinculin is measured [145].

In summary, vinculin’s position between actin and talin is the basis for its important
role in cellular adhesions. Vinculin is already recruited to nascent adhesions where it
promotes adhesion stabilization under force. It transmits mechanical signals between the
actomyosin complex and ECM and regulates processes such as cell migration. Vinculin
depletion leads to weaker adhesions with impaired cell spreading and migration [97].

2.3.3 Maturation steps and structure

Activated integrin molecules aggregate into clusters in a hierarchical manner. The smallest
adhesive cell-matrix structures are called nascent adhesions, which are shown in Figs. 2.2a
and 2.6. They reach a consistent size of around 100 nm with a mean number of 50 inte-
grins [61]. Their formation is independent of force, substrate rigidity, and contractility, but
it involves adaptor proteins like talin, FAK, and paxillin. Additionally, actin polymerization
is required [73, 282]. Nascent adhesions appear in the lamellipodium, close to the leading
edge of migrating cells [73]. If they do not disassemble rapidly within tens of seconds or
after few minutes, nascent adhesions grow to approximately 1 µm-sized focal complexes
at the interface of lamellipodium and lamellum [254], see Fig. 2.6. In contrast to nascent
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Figure 2.6. Stages of cell-matrix adhesions. The smallest adhesive structures are nascent
adhesions. They mature to focal complexes and further to focal adhesions. Fibrillar
adhesions are the largest and most durable structures along the maturation pathway.
Values are taken from Refs. [61, 124, 126, 132, 289, 303, 333].

adhesions, focal complexes depend on myosin II activity [254]. Many focal complexes turn
over within several minutes. Only a fraction matures from nascent to focal adhesions [73].

The maturation process is accompanied by the formation of short actin bundles along
which the complex elongates [73, 249]. The actin bundles are crosslinked by myosin II
and α-catenin. Next to its role in regulating actin structure, myosin generates contractile
forces that are transmitted to the developing adhesions. The resulting tension triggers
strengthening of the molecular network in different ways. Adhesion bonds can be strength-
ened directly, whereas other molecules, e.g. talin, undergo conformational changes that
lead to further recruitment and linkage reinforcement. The actomyosin contractility can be
bypassed by an external pulling force, showing that tension per se plays a crucial role [272].
However, maturation is still observed, when myosin induced tension is reduced by 75 % or
more [249, 303, 334]. Therefore both the change in actin structure and the resulting force
transmission are likely to influence adhesion maturation.

The transition to focal adhesions is further accompanied by an accumulation of adaptor
proteins like VASP, zyxin, tensin, and vinculin. Thereby, the complex expands to a size of
several micrometer [368]. Focal adhesions exhibit a high inner structural organization with
at least three overlapping layers [174], see Fig. 2.5a. The integrin signalling layer close to
the plasma membrane contains the cytoplasmic tail of integrins and several adaptors, such
as FAK and paxillin. Talin and vinculin define the force transduction layer, because talin
spans the gap of more than 30 nm between integrin and actin. The force transduction layer
is followed by an actin-regulatory layer with VASP, zyxin, α-actinin, and actin filaments.

The regulated structure of focal adhesions may create the false impression of a static
entity. In fact, adhesions are subject to continuous changes and remodelling processes.
Integrins undergo cycles of diffusion and immobilization within single clusters [276]. Accord-
ingly, force transmission is not uniformly distributed along the cluster, but its maximum
has been localized at the tip towards the cell’s leading edge [261]. Furthermore, FRAP
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experiments show that adhesion components dissociate and associate several times during
the lifetime of a typical focal adhesion site of 20 min [211]. Talin is among the proteins
with the longest residence time in focal adhesions, whereas FAK, paxillin, vinculin, and
zyxin dissociate in tens of seconds [60, 199]. The residence time of vinculin has been shown
to increase under force [97].

Eventually, the whole adhesion disassembles, but how this process is regulated remains
poorly understood [166]. The turnover of focal adhesions occurs in central regions, or more
often at the cell rear side, which allows effective cell migration. Associated steps are loss of
traction and phosphorylation [88, 149]. Experiments also suggest that adaptor proteins are
lost prior to actin-binding molecules and integrins [159]. The protein Kank2 for instance
binds talin and thus uncouples integrin and actin [312]. This can result in an apparent
sliding motion of the focal adhesion inwards, supported by the disassembly of integrins at
the distal edge and integrin rebinding at the proximal edge [16].

Instead of disassembly at the cell rear, focal adhesions can also mature further into
fibrillar adhesions, see Fig. 2.6. Fibrillar adhesions have an elongated structure and are
located in the central regions and at the rear of cells. They specifically establish connections
between fibronectin and α5β1 and show high levels of tensin [132]. With a lifetime on the
order of hours, they belong to the most stable integrin-based adhesive structures [333].

2.3.4 Mechanotransduction

Cell-matrix adhesions are naturally positioned as force sensors and transducers. These
forces can originate from intracellular processes, such as actomyosin contractility or actin
polymerization, but they can also be applied externally, e.g. as shear stress from the blood
flow or as tensile stress within tissues. Since tension is transmitted from actin via adaptor
proteins to integrins and their ligands or vice versa, in principle every component within the
adhesion complex can shape the response to mechanical cues. This response can take effect
locally within a few seconds or minutes, but also globally and on a longer time scale of days,
as in cell proliferation and differentiation [98, 106, 304]. Furthermore, the behaviour changes
at different maturation stages. While nascent adhesions are suggested to form independent
of force, the maturation steps to focal adhesions and fibrillar adhesions are mediated by
tension [61, 249, 275]. Especially the activation of proteins like integrin, talin, or vinculin,
and integrin clustering depend on force. Focal complexes and focal adhesions grow and
strengthen under mechanical load [15, 272]. Recruitment of adaptor proteins to fibrillar
adhesions is tension-independent, so that they, unlike focal adhesions, do not disassemble
when tension is lost [15, 360]. Due to their complexity, only a few of the numerous molecular
interactions and biochemical pathways that take part in mechanosensing are presented
here; detailed reviews are given in Refs. [129, 156, 211, 312].

A common mechanism of mechanosensitivity is force-induced regulation of molecular
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interactions, specifically binding dynamics. The most commonly observed bonds are
weakened under force, resulting in a shorter lifetime. Several interactions in focal adhesions
however show a strengthening up to certain force threshold. The lifetime decreases with
force only after this initial regime. This “catch-slip” behaviour (see sec. 2.5) has been
observed for instance in integrin-ligand interactions with α5β1, αLβ2 and αVβ3, but also in
adaptor proteins linkages, such as binding of vinculin to actin [66, 68, 161, 181]. Repeated
stretching of α5β1-fibronectin bonds results in greatly prolonged lifetimes. This effect is
called cyclic mechanical reinforcement [182].

A second kind of mechanism is the recruitment of further cytoskeletal proteins to
the adhesion. In thermodynamic models, it is proposed that force shifts the chemical
potential or changes the local density of focal adhesions such, that free molecules enter
the adhesion site [31, 247, 300]. The prominent path for protein recruitment however
is paved by structural changes of proteins that open previously hidden binding sites or
shift binding affinities. A paradigm for this process is vinculin recruitment after talin
unfolding, as described above. But also other associated molecules, such as fibronectin and
filamin, deform or undergo conformational changes in response to force [99, 198]. Instead
of protein recruitment, protein stretching can also trigger phosphorylation events or whole
signalling cascades [281, 315]. Downstream signalling molecules induce for instance delayed,
orientation-specific focal adhesion disassembly, when cells experience sustained stretch
perpendicularly to their long axis [67].

The response to forces that are applied to the adhesion site does not only depend on
the number and type of cytoplasmic proteins, but also on the mechanical properties of the
extracellular environment, i.e. the ECM or a substrate. Experiments with fibroblasts and
endothelial cells show that traction force increases with substrate stiffness and spreading
area [48, 214]. This dependency enables cells to indirectly measure substrate stiffness by
mechanically probing their environment at adhesion sites, i.e. rigidity sensing [146, 240].
Rigidity sensing triggers a response that affects many processes, both at adhesion sites and
at the full cell or tissue scale [92, 261]. Stiffness regulates the adhesion structure, dynamics,
and its strength [74, 256, 331]. Furthermore, cell differentiation and proliferation are shown
to depend on stiffness, promoting soft tissue types on soft substrates and rigid tissues on
stiff substrates [105, 106]. However, response to stiffness is assumed to differ strongly with
cell types and between single or adjacent cells [350].

In summary, focal adhesion assembly and functioning are strongly coupled to transmis-
sion and transduction of mechanical signals. Numerous mechanisms like protein activation,
clustering, signalling, and sensing depend on externally or internally generated forces.
A recurrent effect is tension-induced adhesion stabilization. Even though experiments
by Riveline et al. and Balaban et al. observed this counterintuitive behaviour already
twenty years ago, the molecular mechanisms are just starting to emerge [15, 272]. A major
contribution is assigned to the adaptor proteins talin and vinculin which are recruited to
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adhesion sites, stabilize them, and regulate further protein assembly [8, 145, 165, 185, 325].
Since strengthening depends on robust force transmission, an intact connection to the actin
cytoskeleton is required. The retrograde flow generated by the actomyosin cytoskeleton
regulates focal adhesions and reciprocally, adhesions model actin structure [125]. Further
factors that influence adhesions and their stabilization are the properties of the extracellular
matrix and ligands [28, 251, 293]. Finally, downstream signalling controls and affects both
local and global dynamics [123, 305].

2.4 Experimental Methods

Experimental observations of cells and their response to mechanical cues have greatly
improved our understanding of numerous biological processes. In turn, new findings feed
back into the development of enhanced and refined experimental methods. A challenge
lies in the fact that force cannot be measured directly, because it is obtained from other
quantities, such as the deformation of a material with certain mechanical properties. These
mechanical properties differ strongly for fluid, elastic or viscoelastic materials, so that
methodology and analysis need to be carefully chosen. Cells behave in general as viscoelastic
materials, so that time-dependent effects, e.g. relaxation, creep, and hysteresis need to be
taken into account. The experimental methods for the study of cellular adhesions can be
divided into two broad categories: active methods, in which external force is applied and
passive methods, which observe the forces generated by the cell [22].

2.4.1 Application of external force

An extensively used technique with external force application is atomic force microscopy
(AFM), reviewed for example in Ref. [175]. In this method, a sample is scanned by a soft
cantilever with a sharp tip. In a distance of a few angstrom or nanometer, interactions
between tip and sample result in a deflection of the tip. The deformation can be observed
for instance with a laser. By precisely shifting the tip, the whole surface of the sample can
be mapped with nanometer resolution, which is determined by the tip curvature radius.
AFM offers high-resolution imaging of living cells, but also allows probing the sample
mechanically. For this purpose, the cantilever is pushed into the sample to apply a precise
force, which is controlled by the cantilever and tip properties. Force-distance curves record
the deflection of the cantilever during approach and withdrawal, indicating interactions
with the sample. From these curves, the Young’s modulus and the elasticity of the sample
can be inferred. Alternatively, the tip can be labelled with single molecules or whole cells
for pulling experiments. Thus, the binding strength of receptors or whole adhesions can be
measured [181, 219, 267, 304]. A detailed account of AFM in the field of cell mechanics
and adhesions is given in [96]. AFM has the advantages that quantitative measurements
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without a reference image are possible in vivo and in real time. However, scanning of a
large surface might require hours. In this time, the assumption that sample and substrate
behave like a homogeneous and well-defined system is in general inaccurate, especially for
dynamic complexes like cells and their adhesion sites. Several modifications have been
developed to overcome this drawback, see Refs. [22, 175].

There are several other methods in which pushing or pulling mechanisms are exploited
to measure surface tension or other quantities. Micropipette aspiration belongs to the
oldest techniques with a comparably simple set-up [157]. In the original procedure, pipettes
with a radius in the micrometer range are used to locally aspirate portions of the sample.
Aspiration pressure and surface tension determine the observed deformation. Due to the
large pipette size, difficulties may arise from heterogeneous aspirated material. Additionally,
the large invasion can interrupt cellular processes and morphology. Microindenters or
microplates are available to compress or push whole samples or large fractions of it. Their
large size is suited to study cells or aggregates of cells rather than intracellular components.

Tweezing methods allow probing samples contact-free with precise forces in the range
from few to hundreds of piconewton and even nanonewton. Optical tweezers employ a
focused laser beam to generate an optical trap. Close to the center, the trap behaves
like a linear elastic spring. The calibration is complex, especially for in vivo studies, but
highly localized and quantitative force measurements can be carried out. Next to the
challenging setup, the focused laser beam can cause local heating and even sample damage.
Nevertheless, optical tweezers are widely used for single molecule experiments [52, 245].
Magnetic tweezers trap magnetic particles in a gradient field generated by permanent
magnets or electromagnets. The forces are typically larger than those generated by optical
and tweezers, but also range from pico- to nanonewton. Moreover, also torques can
be applied. Magnetic tweezers are used for molecules, cell and tissues, e.g. to pull on
fibronectin coated beads that are attached to cells to study rupture kinetics [103] or to
stretch single α-catenin molecules to observe protein unfolding [345]. In a third tweezing
method, so-called acoustic tweezers, sound waves are employed to manipulate cells. Due to
their low intensity, acoustic tweezers are the most gentle option among the three tweezing
methods presented here [22].

2.4.2 Observing forces generated by the cell

Passive methods, in which internally generated forces are measured, can be further divided
into techniques with known material properties and unknown material properties [273].
A frequently used example from the first group is traction force microscopy (TFM) [291,
306]. In TFM, deformations of the cellular environment are measured that arise from
forces exerted by the cell. This basic idea makes the method very suitable for the study of
cellular adhesions, because the internally generated forces are transmitted via adhesion
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sites to the surrounding. As a substrate, traditional TFM uses soft, but linear-elastic gels
with a Young’s modulus of few Pa to hundreds of kPa in which fluorescent beads can be
inserted to visualize the elastic response [4, 125]. Surface traction stresses are calculated
from displacements via inverse Fourier transformation or other approaches, e.g finite
element methods. Fine-tuned computational algorithms facilitate and improve the force
reconstruction [151, 158, 163]. Since its first application, TFM has emerged as a versatile
and thus powerful tool for the field of mechanobiology and cell adhesion [153, 262]. In the
last decade, set-ups were developed to study cells embedded in three dimensional matrices to
mimic a more natural environment [197]. A typical challenge of TFM experiments lies in the
filtering and regulation of measurement noise. Since only linear elastic responses are desired,
only small gel deformations are permitted. Additionally, the reconstruction typically poses
an ill-conditioned mathematical problem, so that even a small noise can lead to large
errors in the traction field [22]. In related methods, cellular traction is not observed on a
continuous gel, but on microengineered platforms with deformable pillars [135, 280, 317].
Adhesion sites are restricted to grow on the array of posts, which brings advantages, like a
simpler force reconstruction, but also drawbacks, like the artificial topological confinement
and a smaller stiffness range compared to TFM on flat substrates [273].

While TFM is typically conducted in vitro, an in vivo method for the observation
of cellular forces was recently developed by Campàs et al. [49]. In the study, stabilized
biocompatible and fluorescent oil droplets coated with surface-receptor ligands were inserted
into living embryonic tissue. Anisotropic stresses within the tissue cause a deformation
of the droplet shape. The method can be employed for external force application, if the
insert responds to a magnetic field [296]. On one side the technique makes real-time and
local measurements in living cells with the option to specifically target surface receptors
possible. On the other side, the data only allows reconstructing anisotropic stresses or
stress variations, and the preparation of inserts requires special care [273, 308].

Since droplet inserts are typically on the size of cells, they are not suited to investigate
single molecules. A smaller scale is accessible via molecular pN-force sensors that are
coupled to the target. In Förster resonance energy transfer (FRET)-based experiments,
the sensor is placed between donor and acceptor of the FRET system. Since the FRET
efficiency changes with the distance between donor and acceptor, the force-extension curves
are used to quantify the forces transmitted through the target, when the force sensor
response is known. This method has been successfully used to determine the tension along
vinculin, talin, and cadherin [11, 46, 145].

While the methods mentioned above rely on known material properties of the substrates,
inserts or force sensors, there are also approaches where calibration is not necessary. In
laser ablation experiments, a focused laser beam disrupts the sample, e.g. cell patches
or tissues, partially. The subsequent recoil velocity of the surrounding cells scales with
the force of ablated structures, as in the case of cutting a previously stretched rubber
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band [369]. However, no absolute, but only relative forces are accessible. Despite its high
invasivity, laser ablation has an established role for studying tissue mechanics in vivo.

A second example for a group of methods that allows relative tension measurement is the
group of force inference techniques. Under several assumptions about the thermodynamic
and mechanical nature of the system, the balance between intracellular pressure and
cortical tension determine the cellular shape and contact points [273, 308]. Thus, angle
measurements and the comparison to a configuration in equilibrium yield information about
relative tensions. Such a procedure was used for instance by Maître et al. to investigate the
different effects of cortex tension and adhesion strength in cell-cell contact formation [217].

2.5 Modelling approaches

In natural sciences, particularly in physics, there is a strong symbiotic relationship between
experiments and theory. Experimental results are explained by theoretical models and
theoretical models inspire the design of experiments. Before experimental methods even
allowed studying the microscopic nature of cellular adhesions, researchers used theories
to try to understand the underlying behaviour. One example for the strength of models
is the concept of so-called “catch bonds”, non-covalent bonds that become longer lived
under tension. This bond type was already proposed by Dembo et al. in 1988 [90], but it
took until 2003 to observe the first catch bonds experimentally between P-selectin and its
glycoprotein ligand PSGL-1 [221].

A challenge of modelling complex systems like cellular adhesions lies in the different
time and length scales that are involved. The smallest lengths are defined by the molecular
components of the adhesion site and the distances they need to bridge, typically tens
of nanometer. However, when single bonds cluster to a macromolecular complex and
additionally couple to the intracellular networks, such as the cytoskeleton, objects on
the micrometer scale are involved. Similarly, times range from milliseconds for molecular
conformation changes to minutes for the lifetime of adhesion junctions or even hours in
the case of fibrillar adhesions.

The section starts with models that focus on the microscopic scale of single receptor-
ligand bonds. Simple adhesion models are based on clusters of these bonds and their
stochastic dynamics. They already show a rich behaviour concerning cluster size, stability,
and lifetime. Additional elements are the mechanical properties of the extra- and intracel-
lular surrounding, which further explain mechanosensitive features of cellular adhesions.

2.5.1 Modelling single bonds

The bond formed between a receptor and a ligand is typically weak with a strength on
the order of 10 kJ mol−1 [2]. It results from a superposition of local interactions, such as
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Van der Waals or electrostatic attractions, hydrogen bonds, or hydrophobic forces. Since
the interactions are distributed over many atoms in the well-defined molecular structure,
biomolecules exhibit a high specificity for binding.

Because of the weak nature of receptor-ligand interactions, thermal motion plays a
key role in bond association and dissociation. The bound state corresponds to an energy
minimum of a thermodynamic potential. In the simplest case, a single barrier separates
bound and unbound state, but in general the energy landscape can be arbitrarily complex.
For a two-state system in equilibrium, as sketched in Fig. 2.7, the probability to find the
system in the bound state, p1, is given by the Boltzmann distribution with the energy
difference ∆E∗ = E12 − E21 > 0 between unbound and bound state,

p1
1− p1

= exp
(∆E∗
kBT

)
, (2.1)

where kB is Boltzmann’s constant and T is the temperature.
The binding strength or affinity between two molecules is often expressed via the

equilibrium dissociation constant Kd. In analogy to a chemical reaction, Kd describes the
ratio of the dissociation rate koff = k∗12 and the association rate kon = k∗21. Since this ratio
is proportional to the inverse left hand side of (2.1), the relation

Kd = koff
kon

= c exp
(
−∆E∗
kBT

)
(2.2)

holds with the free ligand concentration c. Higher affinity corresponds to a lower disso-
ciation constant Kd. Reported Kd values for cadherin dimerization range from 10−5 M
to 10−4 M [192]. Integrin-ligand binding depends strongly on the conformational state of
integrin. In the case of α4β1 for example, the dissociation constant decreases from 10−6 M
in the bent-closed state to 10−10 M – 10−8 M in the extended-open state [206].

When a force acts on the bond, the energy landscape is shifted. As a result, the
binding and rupture kinetics are altered. Therefore, the dissociation constant is in general
a force-dependent quantity Kd(F ) [339]. Different models for the force dependence of the
dissociation rate koff and association rate kon have been developed in the last decades.
Under the simple assumption that force shifts the thermodynamic potential linearly by
−Fx, the new energy differences to the transition state are given by E12 − Fx12 and
E21 − Fx12 + F (x12 + x21), see Fig. 2.7.

Bond dissociation

How force modulates the thermodynamic potential was already discussed by Bell in
1978 [27] and later refined by Evans et al. [114, 116]. In Bell’s model it is assumed that
the dissociation rate koff grows exponentially with the applied force on the bond:

koff(F ) = k∗off exp
(
F

F0

)
. (2.3)
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Figure 2.7. Energy landscape of a two-state system in equilibrium and under force. The
global energy minimum at x = 0 is separated by an energy barrier from a metastable
second state at x = x12 + x21. The energy differences E12 and E21 define the transition
rates k∗12 and k∗21. Under force, the potential shifts by −Fx. The transition rates k12(F )
and k21(F ) are functions of E12 − Fx12 and E12 + Fx21, respectively.

Here, k∗off denotes the equilibrium dissociation rate at F = 0 and F0 > 0 is an intrinsic force
scale. For biological systems like cellular adhesions with binding energies of several kBT

(1kBT = 4.114 pN nm at 25 ◦C) and a nm length scale, the intrinsic forces are expected
to be on the pN scale. The exponential dependence results from the assumption that
force shifts the thermodynamic potential linearly, see Fig. 2.7. Under this premise, both
transition state theory and Kramer’s theory for the thermally assisted escape over the
energy barrier lead to the expression (2.3) [118, 183, 235]. The relation (2.3) has been
confirmed in different experiments, see e.g. Refs. [87, 215, 234, 345]. In traditional methods,
either a constant force is applied, which yields a distribution of lifetimes and thus the
dissociation rate koff(F ), or the force is linearly increased in time with a loading rate rF .
In many cases a bond with stiffness κ is pulled with a constant velocity v, so that rF = κv.
Evans and coworkers found that the bond strength, typically given by the most probable
rupture force F̂ , depends logarithmically on the force ramp [116]

F̂ = F0 ln
(
rF
F0k0

)
. (2.4)

Therefore, the loading rate is an essential parameter in experiments with non-constant
force application [87, 115, 309].

The rupture rate (2.3) describes a “slip bond”. In this model application of force
leads to a higher rupture probability, because it is more likely that the bond slips out
of the binding pocket. A characteristic feature of slip bonds is the decreasing bond
lifetime under increasing tensile force. The mean lifetime of a single bond is given by
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the inverse rupture rate k−1
off . At adhesion sites, slip bonds were found for instance in

fibronectin-integrin-talin-actin linkages and E-cadherin strand-swap dimers [171, 267].
However, some biological bonds exhibit a different and counterintuitive force response.

Their lifetime initially increases with force and reaches a maximum under tension of the
bond. Beyond this threshold, a slip regime starts and leads to shorter lifetimes with
further increasing forces. This “catch-slip”-behaviour has been observed in many adhesion
molecules [68, 104, 161, 181, 219, 221, 267]. Catch bonds were first proposed by Dembo
et al. in 1988 [90], but the underlying mechanisms are still subject of current research [211].
In structural models, a sliding and rebinding mechanism or allosteric changes of the binding
pocket are hypothesized [216, 326, 327]. This leads to multiple unbinding pathways within
the energy landscape. The unbinding kinetics of selectin-ligand bonds can be described by
a superposition of two exponentials [258]

koff(F ) = kc exp (F/Fc) + ks exp (F/Fs) , (2.5)

where the catch-bond term with Fc < 0 dominates for low forces and the slip-bond term
with Fs > 0 takes over at high forces.

Bond association

In the Bell-Evans model, bond rupture is regarded as an irreversible process. As a result,
the bond strength F̂ goes to zero or negative values for low forces or loading rates, see
(2.4). Simulations and experiments suggest however nonzero strengths at vanishing loading
rate, which are associated with rebinding events [203]. A reversible process of binding and
unbinding was already studied in the model by Dembo et al. for adhesion bonds [90]. They
argue that thermodynamic consistency requires that the ratio of binding and unbinding
rate is given by a Boltzmann factor, which contains the energy differences between the
states, see Eqs. (2.1)–(2.2). As soon as one of the rates is chosen or measured, the rate
ratio ultimately determines the remaining one. Despite this constraint, the binding rate is
assumed to be a constant in many models from the early 2000s [108, 111, 288, 292]. Under
the assumption of a harmonic potential for the ligand, which confines the bond’s mobility,
an association rate

kon ∝ exp
(
− κd2

2kBT

)
(2.6)

was derived by Erdmann et al. [109, 112]. Here, d is the distance between ligand and
receptor and κ describes the bond stiffness. This idea was adopted in later models [32,
264]. The quadratic dependence on the distance, which is related to the resulting stretch
of the bond, makes it possible to fulfil the condition for local thermal equilibrium, as in
the case of Dembo’s rate, see e.g. Refs. [32, 269]. The on-rate (2.6) naturally incorporates
that binding is only possible when receptor and ligand are in a reasonable distance to each
other, but all other membrane properties are neglected.
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Conformational changes

Proteins fold into a three dimensional, highly complex structure with a tight connection
between shape and function. Four organizational levels are distinguished, from the amino
acid sequence as the primary structure up to the arrangement of multiple subunits of
polypeptide chains in the quarternary structure. Additionally, many proteins can be
divided into different domains that are structurally connected by short, flexible chains,
like the vinculin head and tail domain [2]. The final structure corresponds to the native
conformation of the protein, which minimizes the free energy. Natural interactions with
surrounding molecules or external perturbations can cause conformational changes of
the protein. Conformational changes comprise reversible continuous shifts or transitions
between different (metastable) states. Under large stress or in the presence of specific
solvents, proteins are denatured, so that they lose structure and function. Even then,
proteins can in general refold along the reverse pathway, unless they do not get stuck in
local energy minima.

Transitions between two conformational states are often described by a two-state model.
The multidimensional energy landscape is reduced to one dimension along which the
transition occurs. In the case of unfolding events, the reaction coordinate is given by the
protein length x. The native, folded state is separated from the unfolded state by an energy
barrier, which determines the so-called transition state [169]. Application of force shifts
the energy landscape by −Fx, so that the unfolding rate can be modeled by exactly the
same formula that is used to describe bond dissociation

ku(F ) = k∗u exp (F/Fu) . (2.7)

The force scale Fu = kBT/xu > 0 is determined by the distance from the folded state to
the transition state xu. For the refolding process, the analogue expression

kf(F ) = k∗f exp (−F/Ff) (2.8)

with Ff = kBT/xf > 0 holds. This choice leads to the equilibrium constant at a constant
force F

Ku(F ) = ku(F )
kf(F ) = K∗u exp

(
F (xu + xf)

kBT

)
. (2.9)

The exponent equals the free energy difference for increasing the protein length by xu + xf .
The unfolding and refolding rates (2.7) and (2.8) have successfully been applied to data
from single molecule force spectroscopy experiments [209, 320]. Adaptations have been
suggested for force-dependent transition state distances [64, 347].

2.5.2 Bond clusters

The kinetics of a parallel cluster of receptor-ligand bonds was already described by Bell for a
constant force that is equally shared among all attached bonds [27]. This idea was extended
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by Seifert to account for linear loading [292]. In these and other cases, a deterministic
equation was used to describe the number of bonds [150]. A probabilistic approach was
applied to receptor-ligand clusters for the first time in 1990 by Cozens-Roberts et al. [82].
Due to the stochastic nature of cellular adhesions it was soon adopted by others [70, 322].
These and other early adhesion models are reviewed in Ref. [365].

The stability and lifetime of simple adhesion clusters were studied rigorously on the
basis of a one-step master equation by Erdmann et al. [108, 111]. In this model, the cluster
consists of Nt open or closed bonds with a force-dependent rupture rate and a constant
rebinding rate. The shared force promotes dissociation of the cluster, but this process
can be balanced by rebinding. In their detailed analysis with stochastic and deterministic
approaches, Erdmann et al. find a critical force fc below which a stable solution exists. The
critical force scales linearly with the cluster size Nt and with the rebinding rate. Above the
critical force value, the cluster becomes unstable. Finite lifetimes for the whole force range
are obtained only in a stochastic framework. The cluster lifetime depends on cluster size,
rebinding rate, and force [111]. The model was extended to distance-dependent binding
rates [112].

Using nanopatterned substrates and the theoretical model introduced in Refs. [108,
111] with shared force loading, Selhuber-Unkel et al. suggest two scaling regimes for cluster
stability. At slow loading rates, rupture force is independent of the loading rate, but for
fast loading, a logarithmic dependence is observed [293]. Qian et al. studied the influence
of ECM and cell elasticity under non-uniform stress distributions [263–265]. Their findings
suggest that the applied force is equally shared among bonds in the case of rigid substrates.
For soft substrates, the stress is concentrated at the adhesion edges, which decreases
cluster lifetime [264, 265]. Lifetime is additionally decreased on soft substrates because the
elastic recoil after rupture events leads to large membrane separations and thus hinders
rebinding [263]. Recently, viscoelastic properties of the cell were incorporated as well [208].
In other models, the cellular response and adhesion stability under cyclic stretching is
explained via stochastic bond clusters [86, 180].

The models discussed above assume a constant number of bonds within a single cluster.
Experiments however demonstrate that focal complexes and focal adhesions grow and
elongate in the direction of force [15, 272]. Additionally, substrate rigidity influences
adhesion size with larger clusters on rigid substrates [15, 74, 256]. A number of models
explain adhesion growth under force with thermodynamically driven aggregation of new
molecules from the surroundings into the adhesion. Nicolas et al. model the adhesion
site as a thin, elastic layer subject to a localized force [247]. The resulting deformations
lead to compression and dilatation in different areas and thus break the symmetry of the
cell. Since it is assumed that anisotropy modulates the molecule association rate, the
localized forces allow directed growth. The model was extended by Besser et al., who
added a second layer of bonds for the cytoplasmic adhesion proteins, and later by Nicolas
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et al. to account for different substrate rigidities [31, 246]. Shemesh et al. introduced a
model in which the chemical potential drives new elements into the cluster [300]. The
cluster elements are arranged as a one dimensional chain and connected to the underlying
substrate at discrete anchoring points. An imbalance of anchoring points and points of
force application energetically favours the recruitment of new elements under tension. This
universal approach describes the experimentally observed adhesion growth under force
without molecular details like the mechanosensors that are assumed in [247]. On the other
hand, the effects of substrate rigidity are not considered.

Another group of models focuses on the nucleation stage of adhesions. A common finding
is that membrane fluctuations play an important role for the initial seed. Large membrane
separations hinder receptor-ligand binding, but when the first bond is established, the
bond deforms the membrane and thus facilitates further clustering. In the model of Reister-
Gottfried et al., this mechanism is termed “neighbor effect” [269]. They observe that an
increased ligand density also promotes nucleation and that both of these local effects can be
represented by an effective binding affinity. In a different study, membrane undulations are
suggested to induce the activation of integrins from the bent-closed to the extended-open
state [162]. The energy landscape for the transition between the two conformations also
depends on the substrate rigidity. For the case of cadherin mediated adhesions, Fenz et al.
find that low membrane fluctuations promote nucleation of single clusters that grow radially,
while high fluctuations lead to dendritic adhesions. They suggest that the whole adhesion
process is sensitive to and regulated by membrane fluctuations [121]. A challenge in the
study of nascent adhesions lies in the different time scales for membrane fluctuations and
single receptor-ligand binding kinetics, which depend on the current membrane position. In
the nucleation model of Bihr et al., the dissociation and association rates are averaged over
the fast membrane fluctuations [32, 33]. Without the explicit treatment of the membrane
height, much longer simulation times can be achieved. This makes it possible to study
adhesion clusters from the nucleation stage with less than five bonds to the equilibrium
state with thousands of bonds [33].

The whole adhesion machinery as a force transmitter and transducer has been described
in a so-called “molecular clutch” model [55, 102, 126, 136]. The original model introduced
by Mitchison et al. [238] explains how the retrograde flow produced by the actomyosin
cytoskeleton generates tension and movement if the cytoskeleton is coupled to adhesion
sites. If integrin-based adhesions are not coupled via adaptor proteins to actin, the clutch
is not engaged, leading to a fast retrograde flow. A simple stochastic model introduced
by Chan et al. distinguishes two regimes on rigid and soft substrates [58]. The molecular
clutches represent linked molecules that connect the substrate and the actin cytoskeleton.
They behave as linear springs and bind and unbind stochastically. They are stretched
under force and slow down the velocity at which myosin motors contract actin filaments,
as observed experimentally [103, 104, 125]. On soft substrates, tension slowly builds up
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and leads to a low retrograde flow rate. At a certain point of stretching, a rupture cascade
leads to the dissociation of the molecular clutches. The cycle starts again as soon as new
clutches bind, so that the overall motion is described as a “load-and-fail” or “stick-and-slip”
behaviour. On very rigid substrates, tension builds up fast, so that single clutches rupture
before new ones can be formed. This motion with a high retrograde flow rate but low forces
is called “frictional slippage”. Force transmission is maximized for intermediate rigidities in
this model. The suggested biphasic relationship between rigidity and force is observed in
neurons and glioma cells [20]. More models that explain the biphasic relationship between
actin flow and traction force are given in Refs. [83, 210, 277]. However a monotonic increase
of force with rigidity has also been observed [48, 135].

Similar clutch models have been developed by Bangasser et al. and Elosegui-Artola
et al. [18, 19, 103]. Recently, the model introduced by Bangasser et al. was extended to
describe cell migration via stochastic molecular clutches [20]. Elosegui-Artola and coworkers
incorporated molecular details into the clutch mechanism [104]. They identify the unfolding
of talin as the important element in force transmission above a certain rigidity threshold.
This threshold is associated with focal adhesion reinforcement mediated by vinculin. Below
the threshold, i.e. at low rigidities, tension builds up slowly and the integrin-ligand bond
ruptures before talin is stretched sufficiently for unfolding. Above the rigidity threshold,
force is transmitted to talin which unfolds and triggers vinculin recruitment. The resulting
force-rigidity curve increases monotonically, whereas the biphasic relationship is recovered
upon talin depletion [104]. Further extensions of the model cover the effects of a viscous
substrate, and ligand density and distribution [28, 251].

2.6 Open questions addressed in the thesis
The number and variety of both experimental and theoretical studies discussed above
show that cellular adhesions are important objects of research. Their complexity and
diverse mechanoresponse pose a challenge for scientific studies. Yet, some shared features
are identified in every structure presented above. Commonly, the constituents of cellular
adhesions are single or linked molecules that are arranged in a regulated manner [174].
They undergo continuous cycles of rupture and rebinding. These events are measured as
stochastic events with certain probabilities per unit time. Additionally, adhesion molecules
can enter and leave the cluster, so that the cluster size is variable. Mechanical stress
that acts on the system has a variety of different effects [129, 311]. For instance, the
rupture rate of many bonds increases exponentially with force [171, 345]. Some adhesion
proteins, such as α-actinin or talin, undergo conformational changes, which causes vinculin
recruitment [345–347, 351]. As a consequence, the adhesion is stabilized and further
downstream signalling events are triggered [104].

In many theoretical models, simplified systems of bond clusters based on of some
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of these characteristics have been investigated. However, the mechanism of unfolding
and subsequent recruitment of adaptor proteins has only recently been included in few
theoretical studies [104, 113, 320]. Adhesion cluster reinforcement is often not considered,
or sometimes assumed a priori [103]. Moreover, the chosen transition rates do not always
respect the constraint that the process should fulfil microscopic reversibility in equilibrium.
Therefore, the objective of this thesis is to set up a minimal, thermodynamically consistent,
adhesion cluster model that incorporates the conformational change of proteins, and to
study its effects. In particular, the question arises as to what are the minimum ingredients
needed to model cluster growth or strengthening under mechanical load.

For this purpose, an idealized adhesion model with only rupture and binding is extended.
The major additions are a molecule exchange with the surrounding and an unfolding
transition which is motivated by talin in focal adhesions. The step-wise changes in the
model variants have the advantage that the effects of different extensions can be considered
separately. Thus, factors that promote cluster stabilization can be identified. Furthermore,
different geometries are considered: in a first, effectively one-dimensional model version,
adhesion clusters under pure pulling or pure shearing are analysed. Subsequently, an
extension to two dimensions allows studying the more general case of a combination of
both pulling and shearing.

By keeping the model as simple as possible, general mechanisms are observable that
might stay hidden in detailed or very specific representations of biological adhesions. With
knowledge of such mechanisms, progress can be made in understanding the mechanoresponse
of cellular adhesions, but also related systems or in the design of new materials.
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Chapter 3

Modelling an adhesion cluster
under pulling forces

In this chapter, the generic adhesion cluster model is introduced. Motivated by cellular
adhesions, the cluster consists of individual bonds that connect two regions with parallel
boundaries. For the scope of this chapter, bonds are assumed to be parallel to each other
and orthogonal to the boundaries. The cluster is pulled apart by a force that acts in
direction of the parallel molecules. Other force directions and arbitrary bond alignments
are discussed in Chapters 4 and 5. It is assumed that single molecules undergo stochastic
transitions between different states. They are bound or unbound, and they can undergo a
reversible conformational change. The set of rates that describe the probability per unit
time for each transition to occur determines the time evolution of the cluster. The system
is thus described by a stochastic process.

The chapter starts with an introduction of the geometry of the system and the behaviour
of single adhesion molecules. Afterwards, the transition rates are defined. For bound
molecules, the rates depend on the current bond stretch, which is related to the distance
between the two boundaries. Importantly, the chosen rates fulfil detailed balance in
equilibrium. Initially, a basic adhesion cluster model is analysed, in which a constant
number of bonds ruptures and rebinds. As a first variation, a molecule reservoir is added
which allows for a variable adhesion size. In the extended model, the conformational change
is introduced as a reversible, partial unfolding of a molecule. Again, constant and variable
cluster sizes are considered. Finally, it is assumed that molecules from the surrounding
can bind to unfolded adhesion molecules, so that a linked state is formed. All variants are
studied with analytical methods and stochastic simulations. The chapter closes with a
summary and comparison of the different cluster models under pulling forces.
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3.1 Introduction

In the model, a single adhesion cluster is described which bridges the gap between two
parallel, rigid surfaces. While the lower boundary is fixed in the y = 0 plane, the upper
boundary can move in y-direction. An external force F is applied on the upper boundary
in y-direction and pulls the surfaces apart. Adhesion is provided by discrete bonds which
represent single or linearly linked molecules at a cellular adhesion site, such as cadherins,
integrins or an integrin-talin complexes. In the following, cluster elements are generally
referred to as molecules, irrespective of their biological equivalent. The bonds are aligned
in parallel with the y-axis, i.e. orthogonal to the boundaries. The native molecule length is
given by `0 and for simplicity, a linear force response is assumed. Therefore, bonds behave
as elastic springs with stiffness κ. The extension due to a force, i.e. the difference of total
length and `0, is denoted by h.

In the basic model, bonds can detach from the upper boundary with a rupture rate
β−(h). In this state, denoted by a, molecules are still connected to the lower boundary, so
that they remain in the cluster. After unbinding from the upper boundary, molecules do
not experience the external force, so that they can fluctuate freely around their rest length.
The average thermal fluctuation length is given by σ =

√
kBT/κ with the Boltzmann factor

kB and the temperature T . Rebinding to the upper boundary occurs with a rate β+(h)
and changes the state from a to b. The external force is shared among all bonds b.

In an extended model, a conformational change increases the molecule rest length.
Inspired by protein unfolding, the length difference is called unfolding length and it is
denoted by ∆. Bonds with an extension h experience a reduced stretch hu = h−∆ after
unfolding. The reverse process, called refolding, shortens the molecule again. Since both
bonds b and unbound molecules a can undergo the conformational change, four rates are
required to describe it. For unbound molecules, δ+

a is the unfolding rate to go from a to
the state au. Refolding from au to a occurs with a rate δ−a . Analogously, the rates δ±b (h)
are used to describe the reversible transition between b and bu. Binding and rupture in
unfolded states occurs with rates β+

u (h) and β−u (h), respectively.
In a further extension of the model, molecule unfolding opens a previously buried

binding site. This transition is motivated by vinculin recruitment in cell-cell and cell-
matrix adhesions. Thereby, molecules from the reservoir can enter the cluster and occupy
the binding site at an unfolded molecule with a rate λ+. These linked states are denoted
by bu,l and au,l. The reverse process, in which the new molecule detaches from the unfolded
molecule, occurs with a rate λ−. For simplicity, both λ+ and λ− are chosen as constants.
While the binding site is occupied, the refolding process is hindered. This accounts for
the finding that binding of vinculin at unfolded talin domains hinders talin refolding [345].
However, the whole complex can still bind and unbind with the rates β±u (h).

Both in basic and extended models, unbound molecules in state a can detach from the
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Figure 3.1. Sketch of the model geometry, bond states and transitions. The linked states
bu,l and au,l are not shown.

lower boundary and leave the cluster with a rate γ−. New molecules are added with a
rate γ+. This allows a variable number of elements in the cluster. The molecule reservoir
outside the cluster is assumed to be much larger than the cluster itself. The addition of
new molecules is hence comparable to a zeroth order synthesis rate ∅ → a in a system of
chemical reactions, see App. A.1. A sketch of the model system is given in Fig. 3.1.

3.1.1 Rates

The transition rates that describe binding or unfolding processes of bound states b and
bu depend on the extension of the respective bond. The definitions are summarized in
Table 3.1.

The binding probability per unit time, β+(h), is symmetric around h = 0, i.e. around
the equilibrium length with zero stretch. The maximum value of the probability for binding
is given at |h| = `b, where `b is the optimal binding length. Biologically, this situation is
motivated by a binding pocket, which favors bond association at a small finite distance.
Therefore, the quantity `b is a small length with `b < σ. Besides the dependence on the
elastic energy, binding is associated with an energy change εb. This constant comprises
the binding affinity, but also entropic contributions. Similar binding rates have been used
previously for cellular adhesions models, see section 2.5. For already unfolded molecules,
the binding rate is defined analogously with an extension hu = h−∆.

The rupture rates β−(h) and β−u (h) are closely related to Bell’s rupture rate, see
section 2.5. In the symmetric version used here, both compression and stretching increases
the rupture probability per unit time. The term 2|h|`b/(2σ2) in the exponent of β−(h)
sets the intrinsic force scale to Fβ = kBT/`B. The rupture rate prefactor β−(0) =
kβ exp(−`2b/(2σ2)) is chosen such, that the ratio of binding to unbinding rate corresponds
to the Boltzmann distribution, which is connected to the energy difference between the
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transition reaction rate

binding a→ b β+(h) = kβ exp
(
−(|h| − `b)2

2σ2 + εb
kBT

)

au → bu β+
u (hu) = kβ exp

(
−(|hu| − `b)2

2σ2 + εb
kBT

)

rupture b→ a β−(h) = kβ exp
(

2|h|`b − `2
b

2σ2

)

bu → au β−(hu) = kβ exp
(

2|hu|`b − `2
b

2σ2

)

unfolding b→ bu δ+
b (h) = kδ exp

(
2∆1h−∆2

1
2σ2 − εf

kBT

)

a→ au δ+
a = kδ exp

(
− εf
kBT

)

folding bu → b δ−b (hu) = kδ exp
(
−2∆2hu −∆2

2
2σ2

)

au → a δ−a = kδ

linking bu → bu,l λ+ = const.
au → au,l λ+ = const.

unlinking bu,l → bu λ− = const.
au,l → au λ− = const.

reservoir exchange ∅ → a γ+ = const.
a→ ∅ γ− = const.

Table 3.1. Transitions and rate definitions. Bonds in the unfolded state experience a
reduced stretch hu = h−∆ compared to folded bonds with extension h. For the unfolding
and refolding rates ∆1 + ∆2 = ∆ holds.
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neighbouring states in thermal equilibrium,

β(h) = β+(h)
β−(h) = exp

(
− h2

2σ2
b

+ εb
kBT

)
= exp

(
− Eb
kBT

)
. (3.1)

The binding rates and the rate ratio β(h) are plotted for exemplary parameters in Fig. 3.2a,c.
For unfolded molecules, the rate ratio βu(h) = β+

u (h)/β−u (h) is related to the binding rate
ratio of folded molecules via βu(hu) = β(h−∆).

The transitions between native and unfolded state are modeled by thermally assisted
jumps over a single energy barrier, see section 2.5. The distances to the transition state
are denoted by ∆1 and ∆2. Their sum corresponds to the length change ∆. In the
following, equal distances ∆1 = ∆2 = ∆/2 are assumed. An energy εf > 0 accounts for the
stretch-independent amount of energy that is required for unfolding. The explicit forms of
unfolding and refolding rates are given in Table 3.1. The rate ratio for bound molecules,

δb(h) = δ+
b (h)

δ−b (h−∆)
= exp

(
2h∆−∆2

2σ2 − εf
kBT

)
= exp

(
− Ef
kBT

)
, (3.2)

yields the energy difference Ef = κ(h−∆)2 − κh2 + εf . Exemplary plots for the rates and
their ratio are shown in Fig. 3.2b,c.

The unfolding and refolding process also allows transitions between the unbound states
a and au. Since unbound molecules fluctuate around their equilibrium length, a Gaussian
extension distribution pa(h) ∼ N (0, σ2

a) can be assumed. On average, the unfolding
probability per unbound molecule in state a is given by

δ+
a =

∞∫

−∞

δ+
a (h)pa(h)dh = kδ exp

(
− εf
kBT

)
. (3.3)

The average refolding rate per unbound, unfolded molecule is obtained similarly as δ−a = kδ.
Hence, the rate ratio is given by δa = exp(−εf/kBT ). The remaining rates for the linking
transition and the exchange with the reservoir are chosen as constants and listed in
Table 3.1.

The careful choice of the extension dependent transition rates have an important
consequence. When a single molecule goes through a cycle of states, e.g. a→ b→ bu →
au → a, the product of all transition rates along this cycle equals the product of transition
rates of the reverse cyclic transitions:

1 = β+(h)δ+
b (h)β−u (h−∆)δ−a

β−(h)δ−b (h−∆)β+
u (h−∆)δ+

a
(3.4)

This thermodynamic constraint can be derived from the detailed balance conditions and it
follows from the principle of microscopic reversibility [7, 250]. If Eq. (3.4), which is also
called Kolmogorov condition [177], holds for any finite sequence of states, the corresponding
Markov chain or process is reversible, see A.1. In contrast to the detailed balance conditions,
which also imply reversibility of the underlying Markov process, Kolmogorov’s criterion
only contains the transition probabilities, not the equilibrium distribution.
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Figure 3.2. Extension dependent rates. a) Binding and rupture rate β±(h) in units of rate
prefactor kβ. b) Unfolding and refolding rate δ+

b (h) and δ−b (hu) in units of rate prefactor
kδ with hu = h − ∆. c) Rate ratios β(h) = β+(h)/β−(h), δb(h) = δ+

b (h)/δ−b (hu) and
βu(hu) = β+

u (hu)/β−u (hu). Parameter values: κ = 1 pN nm−1, εb = 1.5 kBT , `b = 1 nm,
∆ = 10 nm, εf = 0.5 kBT .

3.1.2 Units

The rate definitions directly suggest an energy and a length unit: E0 = 1 kBT and y0 = 1σ.
The thermal energy scale kBT is a convenient unit of energy in many molecular systems.
At room temperature (298 K), 1 kBT is equivalent to 4.114 pN nm. The energy unit of kBT

thus naturally involves the subcellular force and length scales pN and nm. The length
scale σ describes the average thermal fluctuations of single bonds in the clusters. It defines
the width of the binding rate and hence the range of stretches at which rebinding can be
considered to happen in thermal equilibrium. For a bond with a stiffness of κ = 1 pN nm−1,
thermal length fluctuations have an average of approx. 2 nm. Together, kBT and σ set
the force unit F0 = kBT/σ. With the values from above, we find F0 ≈ 2 pN. This force
scale agrees with experimentally observed forces generated by the cell and experienced by
adhesion proteins [11, 145, 187, 243].

There are several options for the unit of time. In a system with independent stochastic
processes, the inverse sum of all rates defines the average waiting time between two
transitions. Because many rates in this adhesion model are stretch-dependent and not
constant, the sum of rates changes with the state of the cluster and thus with time.
Alternatively, the constants kβ, kδ, γ+ and γ− qualify as rate units. Since the binding
transition is of uttermost importance for the integrity of the cluster, t0 = k−1

β is chosen
as the unit of time, if not stated otherwise. For biological processes in cellular adhesions,
typical time scales lie on the order of µs, ms or s. In the following, dimensionless quantities
will be denoted with a tilde, as in X̃ = X/X0.
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3.1.3 Simulation algorithm

The time evolution of the adhesion cluster is simulated with a kinetic Monte Carlo method,
called Gillespie algorithm. The method was originally developed for coupled chemical
reactions [137, 138]. Starting from an initial condition, the waiting time until the next
reaction and the specific reaction type are drawn iteratively from a reaction probability
density function which is an equivalent to the master equation. With this “Direct method”,
the simulation algorithm produces statistically correct trajectories of the stochastic system
under consideration. Details are given in App. A.1. For the simulation of adhesion clusters,
it is assumed that force balance is restored after each transition instantaneously. Thereby,
the waiting time between two transitions does not need to be explicitly simulated. Instead,
the simulation algorithm updates the state of the cluster and the transition probabilities
after each reaction and then directly draws the waiting time until the next reaction.
For a simple adhesion cluster with a fixed number of N = 10 molecules, in which the
only allowed transition is binding and rupture, a −−→←−− b, exemplary trajectories of the
occupation numbers nb(t) and na(t) and the corresponding bond extension h(t) are shown
in Fig. 3.3. Ensemble averages over 50 trajectories are shown in Fig. 3.4 for a ten times
longer observation time. The occupation numbers either reach a steady state with a low
average bond extension h, or the cluster dissociates and jumps between nb = 0 with h̃ = 0
and nb = 1 with h̃ = F̃ . For lifetime measurements, the simulations are stopped when the
cluster dissociates completely for the first time.
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Figure 3.3. Exemplary trajectories nb(t) (thick lines), na(t) (thin lines) and resulting
extension h(t) for a cluster with a fixed number of N = 10 molecules and no conformational
changes. a) In equilibrium, the boundary separation equals the rest length of bonds, so
that h = 0. b) For small finite forces the bond extension has positive values. c) At high
forces, the higher unbinding probability β−(h) leads to cluster dissociation. Because of
molecule rebinding the system jumps between zero bonds with h = 0 and one bond with
h̃ = F̃ .
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Figure 3.4. Ensemble average of 50 trajectories nb(t), na(t), and h(t) for a cluster with a
fixed number of N = 10 molecules and no conformational changes. a,b) In equilibrium and
at low forces, a steady state is reached with nb ≈ 8 bonds. c) At high forces, the cluster
dissociates and finally jumps between nb = 0 and nb = 1, leading to two different values of
h. Parameter values are given in Table 3.2.

3.2 Binding and rupture model

In this section, the basic adhesion cluster model is analysed. In the basic model, molecules
can only switch between states a and b, conformational changes are not included. A sketch
of the cluster and the single molecule transition diagram are shown in Fig 3.5. In this
geometry, the upper boundary height imposes the same extension on all bonds b. Under
vertical pulling, the force balance equation simply reads

F = nbκh . (3.5)

In equilibrium, i.e. at F = 0, all bonds stay at their rest length with zero stretch. To
estimate the effect of small pulling forces, a Taylor expansion of the binding and unbinding
rate for small positive stretches yields

b

ar

β-β+

γ+

γ-

ba

cluster
y

0

l0

l0+h
reservoir

F

bb aa

Figure 3.5. Basic adhesion cluster model. Molecules within the cluster can bind and
rupture. Unbound molecules are in exchange with the surrounding reservoir. a) Sketch of
a small cluster. b) Single molecule transition diagram.
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β+(h) = β+(0)
(

1 + ˜̀bh̃−
1
2
(
1− ˜̀2

b

)
h̃2
)

+O(h̃3) , (3.6)

β−(h) = β−(0)
(

1 + ˜̀bh̃+ 1
2

˜̀2
b h̃

2
)

+O(h̃3) (3.7)

with β+(0) = kβ exp
(
−˜̀2

b/2 + ε̃b
)

and β−(0) = kβ exp
(
−˜̀2

b/2
)
. (3.8)

Since ˜̀b < 1, the binding rate β+(h) decreases in second order, while the rupture rate
increases with stretch h. Thus, there will be more bond dissociation than rebinding with
increasing force. A decreasing number of bonds in state b is expected. When the number
nb decreases with force, the average bond extension h = F/(κnb), increases further and
subsequently bond rupture is promoted. At some point, the last bond ruptures; the cluster
is dissociated. For nb = 0 we define h = 0 to avoid infinitely large separations between the
boundaries and to allow rebinding if desired.

3.2.1 Constant number of molecules

In the first model variant, the rates to and from the reservoir are set to zero: γ+ = γ− = 0.
Thereby, the total number of molecules in the cluster is fixed to N = na + nb. The state
of the system is thus determined by two of the three quantities N , na and nb. The only
allowed transitions are rupture and rebinding of bonds. Similar adhesion cluster models
have been described before by the groups of Erdmann et al., Qian et al., Bihr et al. and
others, compare Refs. [32, 108, 208, 264].

Assuming fast relaxation after every transition, the time evolution of the cluster can be
described by a stochastic jump process, see App. A.1. For a fixed number of molecules N
and a constant force F , the probability to find nb ∈ [0, N ] bonds in state b evolves in time
according to the master equation

d
dtpnb

(t) = −[(N − nb)β+(nb) + nbβ
−(nb)

]
pnb

(t) + (N − nb + 1)β+(nb − 1)pnb−1(t)

+ (nb + 1)β−(nb + 1)pnb+1(t) . (3.9)

The notation for the binding and rupture rate is an abbreviated form of β±(h) =
β±(h(F, nb)) to demonstrate the dependence on nb. To obtain the correct equations
for nb = 0 and nb = N , it is sufficient to set p−1(t) = pN+1(t) = 0 in (3.9). Additionally,
1 = ∑

pnb
(t) holds at all times t.

In the following, exact solutions of the master equation are discussed. For a single
molecule, the two linear differential equations for p1(t) and p0(t) are straight forward to
solve. For a cluster with N molecules, it can be shown that the system of N + 1 differential
equations is solved by eigendecomposition of a (N + 1) × (N + 1) dimensional matrix.
The method is applied to a cluster of two molecules. In the special case of vanishing
force, the binding and rupture rates do not depend on the current state of the cluster,
i.e. β±(h(0, nb)) = β±(h = 0). The system of differential equations reduces to a single
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differential equation of the generating function of pnb
(t), denoted by G(s, t). The solution

of G(s, t) and thus pnb
(t) is given for nb = N initially bound molecules. Afterwards, the

focus lies on the long-time limit, i.e. steady state solutions of the master equation. The
steady state solution of the macroscopic equation for the first moment 〈nb〉 is compared to
the simulation results. Finally, the average lifetime of adhesion clusters is studied.

Exact solution of the master equation

For the special case of a single molecule, N = 1, the master equations are given by

d
dtp0(t) = −β+(0) p0(t) + β−(1) p1(t) , (3.10)
d
dtp1(t) = −β−(1)p1(t) + β+(0) p0(t) , (3.11)

and additionally, 1 = p0(t) + p1(t) has to hold. Again, the abbrevation β±(h(F, nb)) =
β±(nb) is used. The solution reads

p0(t) = β−(1)
β+(0) + β−(1) −K1 exp

(
−(β+(0) + β−(1))t

)
(3.12)

p1(t) = β+(0)
β+(0) + β−(1) +K1 exp

(
−
(
β+(0) + β−(1)

)
t
)

(3.13)

with a constant K1 that is determined by the initial condition p1(0) = 1 − p0(0) to
K1 = p1(0) − β+(0)/(β+(0) + β−(1)). The first terms in (3.12) and (3.13) are obtained
in the long time limit. They are called steady state solution. The exponential decay rate
towards the steady state solution is determined by the sum of the possible reaction rates.

For more than one bond, it becomes more difficult to obtain an exact solution. In
general, the system of differential equations can be written in the form [173]

d
dtp(t) = W p(t) (3.14)

with a tridiagonal (N + 1) × (N + 1) matrix W and a vector p(t) = (p0(t), . . . , pN (t)).
Stochastic processes with a master equation that is written with such a tridiagonal matrix
are called one-step processes or birth-and-death processes, see App. A.1. In this case, the
diagonal elements are given by Wk,k = −(kβ−(k) + (N − k)β+(k)). For the off-diagonal
elements we findWk−1,k = (N−k+1)β+(k−1) andWk,k+1 = kβ−(k). Because the sum of
each column adds up to zero, there exists a left eigenvector (1, . . . , 1) with eigenvalue λ = 0.
The nonnegative right eigenvector to the eigenvalue λ0 = 0 corresponds to time-independent
solutions of the system. In the long-time limit, all solutions tend to the stationary solution
or to one of the stationary solutions, if there are more than one1. For stationary solutions,

1This is for example the case when the states are decomposable into two subsets with no
transitions between them. See [173] for a detailed discussion.
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all transitions into a state k per unit time are balanced by the transitions out of state k,

N+1∑

j=1
Wk,jp

(s)
j =

N+1∑

j=1
Wj,kp

(s)
k . (3.15)

This property is called global balance. In many physically motivated systems, the stationary
solution corresponds to the equilibrium solution of the system. The system is a so-called
equilibrium system, if all individual transitions between neighbouring states are balanced,
i.e. if the stronger detailed balance condition

Wk,jp
∗
j = Wj,kp

∗
k (3.16)

holds. The Markov chain that belongs to the transition matrix is called reversible, because
the same distribution is obtained when time is reversed.

Symmetry under time-reversal is an essential feature of equilibrium physics on the
microscale. Both p(s) and p∗ are stationary distributions that correspond to a so-called
steady state of the system. When only global, but not detailed balance holds, net fluxes
are still allowed. These non-equilibrium steady states typically occur for instance in models
for active particles, molecular motors or other driven systems. Only when the detailed
balance condition holds, i.e. for the stationary distribution p∗, there are no probability
fluxes in steady state. Hence, to consistently model a system without external driving, the
detailed balance condition should be fulfilled at vanishing forces.

As a mathematical consequence of the detailed balance property, the matrix W can be
symmetrized by a similarity transformation. For the present case, the diagonal matrix D
with D1,1 = 1 and

Dk,k = N !
(k − 1)!(N − k + 1)!

k−1∏

j=1

√
β+(j − 1)
β−(j) for k > 1 (3.17)

can be used as a transformation matrix to obtain a symmetric matrix S = D−1WD. The
diagonals of S and W are identical. The off-diagonals are given by Sk−1,k = Sk,k−1 =
√

(N − k + 1)β+(k − 1) ·
√
kβ−(k). Real symmetric matrices are diagonalizable by an

orthogonal matrix Q. This property can be used to find the eigenvectors of S and therefore
also the eigenvectors v of W by means of the reverse transformation. The decomposition
reads S = QRQ>. The columns of Q are the eigenvectors of S and R is the diagonal
matrix that contains the real eigenvalues λk for 1 ≤ k ≤ N of W and S. Alternatively, the
eigenvalues can be determined from the roots of the characteristic polynomial det(S−λIN+1),
where IN+1 is the (N +1)× (N +1) identity matrix. The detailed balance condition further
ensures that W is negative semi-definite and therefore has only negative eigenvalues λi < 0
for i ≥ 1. The matrix W is negative semi-definite if for any vector x = (x1, . . . , xN+1) the
relation x>Wx ≤ 0 holds. For the proof, the vector components are written as multiples
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of the equilibrium solution, xj = (cjp∗j ),

x>Wx =
N+1∑

j=1


∑

k 6=j
xjWj,kxk − xj

∑

k 6=j
Wk,jxj


 (3.18)

=
N+1∑

j=1

∑

k 6=j
cjp
∗
j

(
Wj,kckp

∗
k −Wk,jcjp

∗
j

)
(3.19)

=
N+1∑

j=1

∑

k 6=j
cjp
∗
jWj,kp

∗
k (ck − cj) (3.20)

= −1
2

N+1∑

j=1

∑

k 6=j
p∗jWj,kp

∗
k (ck − cj)2 . (3.21)

Since only the positive entries of W appear, the quadratic form is always negative, unless
the vector x is linear dependent of p∗, so that ck = c.

Finally, the solution for the system of differential equations in Eq. (3.14) can be written
as a linear superposition of the eigenvectors v of W

p(t) =
N∑

j=0
Kjvj exp(λjt) = p∗ +

N∑

j=1
Kjvj exp(λjt) . (3.22)

Since the detailed balance ensures that the eigenvalues λj are negative for j ≥ 1, the
long-time solution is the equilibrium distribution p∗. The constants Kj are determined
from the initial condition p(0) with ∑j pj(0) = 1.

Example for N = 2
For the special case of two molecules, N = 2, the system of differential equation reads

d
dtp(t) = Wp(t)

=




−2β+(0) β−(1) 0
2β+(0) −(β−(1) + β+(1)) 2β−(2)

0 β+(1) −2β−(2)


p(t) . (3.23)

The matrix W has the eigenvalues

λ0 = 0 , λ1 = − (S + U) , λ2 = − (S − U) (3.24)

with

2S = 2β+(0) + β−(1) + β+(1) + 2β−(2) , (3.25)

U =
√
S2 − (2β+(0)(β+(1) + 2β−(0)) + 2β−(1)β−(2)) . (3.26)
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Note that both λ1 and λ2 are negative, because S > U > 0 holds. The corresponding
eigenvectors are given by

v0 = 1
β+(1)




2β−(1)β−(2)
4β+(0)β−(2)
2β+(0)β+(1)


 , (3.27)

v1 = 1
β+(1)




2β+(0) + β−(1)− (S − U)
2β−(2)− (S + U)

β+(1)


 , (3.28)

v2 = 1
β+(1)




2β+(0) + β−(1)− (S + U)
2β−(2)− (S − U)

β+(1)


 (3.29)

and with an initial condition p(0) = (0, 0, 1)>, the full solution is given by

p0(t) = 2β−(1)β−(2)
S2 − U2

[
1−

(
S

U
sinh (Ut) + cosh (Ut)

)
exp (−St)

]
, (3.30)

p1(t) = 4β+(0)β−(2)
S2 − U2

[
1−

(
S

U
sinh (Ut) + cosh (Ut)

)
exp (−St)

]

+ 2β−(2)
U

sinh (Ut) exp (−St) , (3.31)

p2(t) = 2β+(0)β+(1)
S2 − U2 + 2β−(2)(2β+(0) + β−(1))

S2 − U2

[
S

U
sinh (Ut)

+ cosh (Ut)] exp (−St)− 2β−(2)
U

sinh (Ut) exp (−St) . (3.32)

In the special case β+(0) = 0, i.e. without rebinding after the first complete dissociation of
the cluster, the exact solution simplifies to

p0(t) = 1−
(
S

U
sinh (Ut) + cosh (Ut)

)
exp (−St) , (3.33)

p1(t) = 2β−(2)
U

sinh (Ut) exp (−St) , (3.34)

p2(t) =
(
S − 2β−(2)

U
sinh (Ut) + cosh (Ut)

)
exp (−St) . (3.35)

This case is also discussed in Ref. [111].

Special case F = 0
For vanishing force, the master equation reads

d
dtpnb

(t) = −[(N − nb)β+ + nb β
−] pnb

(t)

+ (N − nb + 1)β+ pnb−1(t) + (nb + 1)β− pnb+1(t) , (3.36)
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where β+ = β+(h = 0) and β− = β−(h = 0). The generating function

G(s, t) =
∞∑

k=−∞
skpk(t) (3.37)

with pk(t) = 0 for k < 0 and k > N is used to find the probability distribution that solves
Eq. (3.36). The time derivative of the generating function is given by

d
dtG(s, t) =

∞∑

k=−∞
sk
[
−[(N − k)β+ + k β−

]
pk(t)

+(N − k + 1)β+ pk−1(t) + (k + 1)β− pk+1(t)
]
. (3.38)

Shifting the summation indices leads to a linear partial differential equation for G(s, t),
d
dtG(s, t) = β−

(
Nβ(s− 1)G(s, t)− (s− 1)(sβ + 1) d

dsG(s, t)
)
, (3.39)

where β = β+/β− = β(h = 0) The solution for a cluster with nb(t = 0) = N bonds is given
by [233]

G(s, t) =
(
sβ + 1 + (s− 1) exp(−(β+ + β−)t)

)N

(1 + β)N , (3.40)

which fulfils the normalization condition G(1, t) = 1 and the initial condition G(s, 0) = sN .
The solution for p0(t) is simply given by G(s, t)|s=0. The remaining probabilities are
calculated via partial derivatives of G(s, t) with respect to s. In summary, the solutions
are given by

pk(t) =
(
N

k

)(
β + exp(−(β+ + β−)t)

1 + β

)k (1− exp(−(β+ + β−)t)
1 + β

)N−k
. (3.41)

Thus, we find a binomial distribution with time-dependent “success” probability, i.e. the
probability to find a bound molecule, of (β + exp(−(β+ + β−)t))/(1 + β), which decays to
β/(1 + β) in the long time limit.

Steady state solution

In the limit of long times, the system reaches a steady state. Since the steady state
probability distribution fulfils d

dtp
(s)(t) = 0, a recursive formula can be derived from the

master equation (3.9). It reads for 0 < nb ≤ N

p(s)
nb

= (N − nb + 1)β+(nb − 1)
nbβ−(nb)

p
(s)
nb−1 . (3.42)

This equation corresponds to the detailed balance condition from Eq. (3.16), so that the
stationary solution is an equilibrium distribution p(s)

nb = p∗nb
. By means of the recursive

formula, all steady state probabilities p∗nb
can be expressed as a multiple of p∗0:

p∗nb
=

nb∏

k=1

(
(N − k + 1)β+(k − 1)

kβ−(k)

)
p∗0 =

(
N

nb

)
nb∏

k=1

(
β+(k − 1)
β−(k)

)
p∗0 . (3.43)
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The sum of all probabilities p∗nb
add up to one, so that p∗0 is given by

p∗0 =


1 +

N∑

j=1

(
N

j

) j∏

k=1

(
β+(k − 1)
β−(k)

)

−1

. (3.44)

For the case of no pulling force, the extension of all bonds is zero and hence, the binding
and rupture rates do not depend on the current number of bonds nb. The steady state
solution for nb = 0 simplifies to p∗0(F = 0) = (1 + β)−N . The equilibrium distribution is
given by

p∗nb
(F = 0) =

(
N

nb

)
βnb

(1 + β)N
, (3.45)

with β = β+/β− = exp(ε̃b). The result agrees with the long time limit of the exact solution
for vanishing force, compare Eq. (3.41).

For a cluster of N = 10 molecules, the steady state probabilities p∗nb
are shown as a

function of the external force F in Fig. 3.6a and the probability distribution for selected
force values is shown in Fig. 3.6b. For low forces, i.e. F̃ < 4, the steady state probabilities
are almost constant and close to the equilibrium value at F̃ = 0. The highest probabilities
are found for nb = 8 and nb = 9. At higher forces, all p∗nb

for nb ≥ 2 drop to zero. p1

reaches a maximum at F̃ ≈ 5 and slowly approaches zero for higher forces, where p∗0
converges to one. The abrupt change at F̃ ≈ 4 can be explained with the rate ratio β(h),
compare Eq. (3.1). As long as the mean stretch per bond is small, rebinding is frequent.
But when the force F and consequently the extension h increases, the rate ratio goes to
zero and thus, the cluster dissociates eventually, p∗0 → 1.

Average quantities

The first moment of the steady state probability distribution describes the average number
of bonds in steady state, 〈nb〉 = ∑

nb
nbp
∗
nb
, see Fig. 3.6c. The average number of bonds has

an almost constant plateau for F̃ < 4 at 〈nb〉 ≈ 8, shows a first steep descent to one bond
and then slowly decreases to zero. The corresponding dimensionless extension h̃ = F̃ /〈nb〉
is shown in red in Fig. 3.6c. For h̃ > 1

2 , the average stretch per bond diverges, because F
increases and 〈nb〉 goes to zero. The analytical results and the simulation averages are in
good agreement. The second moment 〈n2

b〉 = ∑
nb
n2
bp
∗
nb

is used to calculate the variance
Var(nb) = 〈n2

b〉 − 〈nb〉2. The variance exhibits a peak at F̃ ≈ 4.5, i.e. at the force value, at
which the cluster changes from many bonds to one bond on average, see Fig. 3.6d. The
variance obtained from simulations has a lower peak, possibly because of the restriction to
integers.
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Figure 3.6. Steady state quantities for a basic adhesion cluster with N = 10 molecules.
a) Steady state probabilities p∗nb

. Solid lines correspond to the analytical solution and
markers show simulation results. b) Steady state distributions p∗nb

for selected force
values. c) Mean number of bonds and the corresponding bond extension h in steady state.
d) Variance of the number of bonds. Parameter values are given in Table 3.2.

Macroscopic equations

Macroscopic equations describe the time evolution of the moments 〈nk〉(t) of the probability
distribution pn(t). They are derived from the master equation as sketched in App. A.1. For
nonlinear rates, the resulting system of differential equations is typically coupled. Still, the
approach is useful if the exact probability distribution is not accessible or if fluctuations
are small, so that moments k > 1 are negligible. In this case, the macroscopic equations
correspond to a mean field approximation. For the basic adhesion cluster model with
binding and rupture, the macroscopic equation for the first moment follows from the master
equation (3.9) as

d
dt〈nb〉 =

N∑

nb=0
nb

d
dtpnb

=
N∑

nb=0

[
(N − nb)β+(nb)− nbβ−(nb)

]
pnb

= 〈(N − nb)β+(nb)〉 − 〈nbβ−(nb)〉 , (3.46)

where the explicit t-dependence is omitted. In the case F = 0, i.e. if binding and rupture
rate do not depend on nb, the rates are constant and can be drawn out of the expected
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value. To obtain a linear differential equation in 〈nb〉, the binding and rupture rates are
written again as a function of the extension h and the extension is considered as a free
variable. Thus, 〈nb〉 is determined as a function of h in steady state. The force balance
equation (3.5) restricts the allowed values for h at a given force F and hence the solution
for 〈nb〉(h). The mean field approximation finally reads

d
dt〈nb〉(h) = (N − 〈nb〉(h))β+(h)− 〈nb〉(h)β−(h) . (3.47)

The possible steady state solutions are found at d
dt〈nb〉(h) = 0:

〈nb〉(h)
N

= β(h)
1 + β(h) , (3.48)

so that the force balance equation reads

F

N
= κhβ(h)

1 + β(h) . (3.49)

In Fig. 3.7a and b, the relations (3.48) and (3.49) are shown. As it can be seen in Fig. 3.7b,
each extension value h uniquely determines the required external force F , whereas a given
constant force has either two, one or no corresponding steady state solutions. The resulting
solutions of 〈nb〉 as a function of F are shown in Fig. 3.7c.

The force threshold, above which no steady solution exists, is given by the maximum
of (3.49). For positive stretches, the necessary condition of a vanishing first derivative is
given by

β(h) = h2

σ2 − 1 , (3.50)

which can be brought into the form y ey = x with x = β(0)/(2
√
e) and y = (h̃2 − 1)/2.
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Figure 3.7. Mean field steady state solution. a) Average fraction of bonds as a function
of the bond extension h. b) The force balance equation with the steady state solutions
〈nb〉(h) connects force and stretch. c) The resulting steady state solutions as a function of
external force F per molecules N . Parameter values are given in Table 3.2.
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Because x > 0 holds, the solution for y is given by the principal branch of the product
logarithm y = W0(x). Therefore the maximum is found at (hmax, Fmax/N) with

h̃max =
√

2W0

(
β(0)
2
√
e

)
+ 1 , F̃max

N
= h̃max − h̃−1

max . (3.51)

In Fig. 3.7 simulation averages for a cluster with N = 10 are shown with black markers.
In simulations, a force F is given and the resulting average number of bonds 〈nb〉 and
their extension h are measured. Therefore simulations firstly yield 〈nb〉(F ), as shown in
Fig. 3.7c. In simulations, only the upper branch with a high fraction 〈nb〉/N at a low
extension h is realized. For forces larger than F̃ = 4, the mean field results do not match
with the simulations, although simulations agree well with the exact solution for 〈nb〉,
compare Fig. 3.6c. The deviations coincide with the increase in the variance Var(nb),
see Fig. 3.6d. This demonstrates that the mean field approximation assumes negligible
fluctuations. Fluctuations however become important for the adhesion cluster if there are
only few bonds under large forces.

Lifetime

The lifetime of a single bond is determined by the rupture rate β−(h). The average waiting
time in the bound state is given by the inverse rate 1/β−(h), which decreases exponentially
with h and hence with force. For multiple bonds, the time until the last bond ruptures
and the whole cluster dissociates also depends strongly on the cluster size, the force and
on the rebinding rate. The dissociation rate is given by D(t) = d

dtp0(t) = β−(1)p1(t). The
average dissociation time is calculated via [173]

τ =
∞∫

0

tD(t) dt =
∞∫

0

tβ−(1)p1(t) dt . (3.52)

Here, the two limiting cases of vanishing and large forces are discussed.
For vanishing force, the exact solution for the one-step master equation (3.36) is given

in Eq. (3.41) for N initially bound molecules. However, the result does not account for
an absorbing boundary and therefore p1(t) cannot be inserted directly into the definition
of the average dissociation time (3.52). Instead, the mean first arrival time at the state
nb = 0 is required. Using the Laplace transformation of the dissociation rate L(D(t)) =
D(s) =

∫∞
0 exp(−st)D(t) dt, the relation

τ =
∞∫

0

tD(t) dt = − ∂

∂s
D(s)

∣∣
s=0 (3.53)

is found. The Laplace transform of the dissociation rate is given by D(s) = p0,N (s)/p0,0(s),
where p0,x(s) = L(p0,x(t)) denotes the Laplace transform of p0(t) with initial condition
nb(t = 0) = x [173]. The solution with N initially bound molecules is given in (3.41). The
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solution for nb(t = 0) = 0 with unrestricted boundary conditions is known from comparable
systems, see [110, 233]. Applied to the basic adhesion cluster, the probability distributions
and their Laplace transform are given by

p0,N (t) = (1− exp(−(β+ + β−)t))N
(1 + β)N , (3.54)

p0,N (s) = 1
(1 + β)N

N∑

j=0

(
N

j

)
(−1)j

s+ j(β+ + β−) , (3.55)

p0,0(t) = (1 + β exp(−(β+ + β−)t))N
(1 + β)N , (3.56)

p0,0(s) = 1
(1 + β)N

N∑

j=0

(
N

j

)
βj

s+ j(β+ + β−) . (3.57)

The average lifetime results as

τ = 1
β−(1 + β)


HN +

N∑

j=1

(
N

j

)
βj

j


 (3.58)

with the harmonic number HN . In the special case of zero force and vanishing rebinding,
i.e. β = 0, the relation simplifies to τ = HN/β

−. For small β, τ grows logarithmically with
N , because the harmonic number is bounded by ln(N + 1) ≤ HN ≤ ln(N) + 1. In general,
cluster lifetime increases both with β and the number of molecules N . The sum in the
bracket of (3.58) is a polynomial in β of order N with the upper bound (1 + β)N − 1. For
N = 2, the average cluster lifetime is given by

τ = 3/2 + 2β + β2/2
β−(1 + β) = 3 + β

2β− . (3.59)

In the limit of large forces, specifically if the initial extension h is large, so that β+(h) ≈ 0
is a reasonable approximation, all bonds rupture successively. Such a rupture cascade for
N initially bound molecules is described by the master equation

d
dtpnb

(t) = −nbβ−(nb)pnb
(t) + (nb + 1)β−(nb + 1)pnb+1(t) . (3.60)

The boundary conditions are given by
d
dtpN (t) = −Nβ−(N)pN (t) , d

dtp0(t) = β−(1)p1(t) . (3.61)

Note that the state with nb = 0 poses an absorbing boundary condition. For initially two
bound molecules, the exact solution of the master equation with an absorbing boundary
and no rebinding is given by

p2(t) = exp(−2β−(2)t) (3.62)

p1(t) = 2β−(2)
2β−(2)− β−(1)

(
exp(−β−(1)t)− exp(−2β−(2)t)

)
(3.63)

p0(t) = 1− 2β−(2)
2β−(2)− β−(1) exp(−β−(1)t) + β−(1)

2β−(2)− β−(1) exp(−2β−(2)t) , (3.64)
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where the notation β±(h(F, nb)) = β±(nb) is used. This leads to the average dissociation
time

τ = 1
β−(1) + 1

2β−(2) , (3.65)

and for N initially bound bonds, the relation generalizes to

τ =
N∑

k=1

1
kβ−(k) . (3.66)

Without rebinding, the dissociation process can be considered as the sum of independent
Poisson processes with parameters kβ−(k). Therefore the total average dissociation time
is given by the sum of the inverse rupture rates. Since β−(k) = β−(h(F, nb = k)) increases
exponentially with the force per bond, the largest contribution to the sum is given by the
rupture of the first bond. The average time until the first bond ruptures is proportional to
exp(−˜̀bF̃ /N).

In Fig. 3.8, the average first dissociation times τ are shown for clusters with different
sizes N = nb(t = 0) as a function of F/N . The double logarithmic plot in Fig. 3.8a
demonstrates the convergence towards the solution for vanishing force given in (3.58), as
indicated with dotted lines. For large forces, the average dissociation time is determined
by rupture of the first bond, which occurs with a slope −˜̀b, see Fig. 3.8b. The curves for
different cluster sizes overlap for F̃ /N > 1 (indicated with a dashed vertical line).
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Figure 3.8. Average lifetimes of adhesion clusters with size N = 2, 5, 10. a) For small forces
the lifetimes converge towards a constant value given by (3.58). b) For large forces per
molecule, the curves overlap, because rebinding can be neglected and a rupture cascade
takes place. The average dissociation time is determined by the rupture of the first bond,
which is ∝ exp(−˜̀bF̃ /N). Parameter values are given in Table 3.2.

Approximation of cluster lifetimes with a WKB-ansatz

The WKB-method, named after Wentzel, Kramers and Brillouin, is used to find approximate
solutions of linear differential equations. In physics courses, it is often introduced in the field
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of quantum mechanics, because it can be used to find a first-order approximation of wave
functions that solve Schrödinger’s equation, for instance for a particle in a potential energy
well [279]. However, WKB-methods are also applied to classical stochastic systems, mostly
to describe large deviations, extinctions or switches in populations, as reviewed in Refs. [6,
252]. The approximation makes use of a large parameter K, which is typically related to
the deterministic steady state population size [5, 367]. However, large fluctuations can
cause rare events, e.g. the extinction of the population. Such deviations have a small
probability, but are often of great importance, for example in the case of infections and
diseases or other catastrophic events [101, 172]. There are different WKB-methods that
allow a description of the trajectory, or optimal path, from the quasi-stationary solution
with large population size to the extinction point, and the mean time to extinction.

In the context of the adhesion cluster model presented here, the extinction point
corresponds to the dissociation of the cluster. Therefore the technique yields an approximate
expression for the average lifetime τ . In the following, a dissipative WKB-approximation
is used, as presented in [5], with n∗b , the deterministic steady state number of bonds, as
the large parameter. For nb � 1 and in leading order, the ansatz exp(−n∗bS) for the
quasi-stationary probability distribution transforms the problem from solutions of the
stochastic master equation to constant-energy trajectories of a Hamiltonian. However, the
approximation breaks down for small bond numbers, nb ∼ O(1), so that a second solution
is matched to the WKB-approximation in order to find the expression for the mean lifetime
τ .

For the WKB-approximation in the regime nb � 1, it is assumed that the probability
distribution function that solves the master equation with an absorbing boundary at nb = 0
is long lived and has a peak at the (strictly speaking metastable) steady state. Slowly, the
distribution decays in time and “leaks” into the absorbing state p0. The ansatz for this
approximation is given by [5]

pnb>0(t) = p∗nb
exp(−t/τ) , p0(t) = 1− exp(−t/τ) , (3.67)

where p∗nb
with nb = 1, 2, . . . is the quasi-stationary distribution for nb > 0 and the decay

rate τ−1 yields an approximation for the inverse average cluster dissociation time. When
this ansatz is inserted into the stochastic master equation (3.9), it leads to an eigenvalue
problem with λ = τ−1. Since the eigenvalue λ is exponentially small, stationary solutions
can be considered instead of solving the eigenvalue problem. For the WKB-ansatz, nb
is extended to continuous values. The rescaled variables q = nb/n

∗
b and Q = N/n∗b are

introduced, where n∗b � 1 is the number of bonds in the quasi-stationary state. One central
assumption is that the rates can be written as [5]

(N − nb)β+(F, nb) = n∗bw+1(q) + u+1(q) +O(1/n∗b) , (3.68)

nbβ
−(F, nb) = n∗bw−1(q) + u−1(q) +O(1/n∗b) , (3.69)
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and that close to the quasi-stationary state, i.e. for q ∼ O(1), w±1(q) ∼ O(1) holds. For
the chosen rupture and binding rates, this is only guaranteed for F = 0, so that in the
following only the equilibrium case with w+1(q) = (Q− q)β+, w−1(q) = qβ−, and u±1 = 0
is discussed. The absorbing boundary demands w±1(0) = 0. Additionally, it is known
from (3.48) that Q = (1 + β)/β at F = 0.

For nb � 1, the ansatz for the quasi-stationary distribution p∗(q) reads

p∗(q) = A exp(−n∗bS(q)− S1(q)) , (3.70)

where S(q) ∼ O(1) and S1(q) ∼ O(1). The ansatz is inserted into the stationary master
equation. In leading order O(n∗b), a stationary Hamilton-Jacobi equation 0 = H(q, S′(q)) =
H(q, ρ) can be identified with

H(q, p) = w+1(q) (exp (ρ)− 1) + w−1(q) (exp (−ρ)− 1) . (3.71)

The bond fraction q acts as the coordinate of an effective mechanical particle and ρ = S′(q)
is the conjugate momentum. Thus, the dynamics are given by zero-energy trajectories
of the Hamiltonian H. The trivial solution q = 0 corresponds to the extinction line.
The relaxation trajectory ρ = 0 crosses both the deterministic steady state solution
(q, p) = (q∗, 0) = (1, 0) and the extinction point (q, p) = (0, 0). The nontrivial H = 0
solution is given by

ρ0(q) = ln
(
w−1(q)
w+1(q)

)
= ln

(
q

(Q− q)β

)
= ln

(
q

1 + β − qβ

)
. (3.72)

This activation trajectory crosses the q-axis at q = 1 and reaches q = 0 asymptotically. It
describes the most probable path to extinction. Integration yields the action S(q):

S(q) =
∫ q

ρ0(ξ) dξ = q ln(q) + 1 + β − qβ
β

ln(1 + β − qβ) . (3.73)

In subleading order, the stationary master equation with ansatz (3.70) results in a
differential equation for S1(q)

0 = w+1(q)
(
S′1(q)− ρ′0(q)

2

)
exp

(
S′(q)

)
+ w−1(q)

(
−S′1(q)− ρ′0(q)

2

)
exp

(−S′(q))

− w′+1(q) exp (ρ0(q)) + w′−1(q) exp (−ρ0(q)) , (3.74)

where the activation trajectory ρa(q) = S′(q) is already inserted. This is solved for S′1(q)
and simplified to S′1(q) = −ρ′′0(q)/(2ρ′0(q)). Integration yields

S1(q) = −1
2 ln

( 1 + β

q(1 + β − βq)

)
. (3.75)

The integration constant is covered with the prefactor A in ansatz (3.70). This prefactor
is determined by normalization of the quasi-stationary probability distribution. For this
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purpose, it is assumed that p∗(q) is sharply peaked around q∗ = 1, so that it can be
approximated by a Gaussian function of the form

p∗(q) ≈ A exp(−n∗bS(q∗)− S1(q∗)− S′′(q∗)n∗b(q − q∗)2/2) (3.76)

with

S(q∗) = 0 , S1(q∗) = −1
2 ln(1 + β) , S′′(q∗) = ρ′0(q∗) = 1 + β . (3.77)

The normalization condition reads

1 =
Q∫

0

p∗(q) dq = A

√
π

2n∗b

(
Erf

(
N√

2

)
+ Erf

(
Nβ√

2

))
N�1≈ A

√
2π
n∗b

. (3.78)

Therefore the normalization constant is set to the value A =
√
n∗b/
√

2π.
The WKB-ansatz (3.70) is valid for nb � 1. For nb ∼ O(1) it breaks down, so that

another solution of the master equation is required to approximate the quasi-stationary
distribution for small bond numbers, compare [5, 6]. Here, the detailed balance con-
dition (3.42) is applied recursively until p∗1 and p∗1 = 1/(β−τ) is inserted. This leads
to

p∗nb
= 1
N

(
N

nb

)
βnb−1p∗1 = 1

Nβ−τ

(
N

nb

)
βnb−1 . (3.79)

The solution resembles a binomial distribution with success probability β/(1 + β) which is
not normalized.

To match both solutions, the binomial distribution is approximated by a Gaussian
distribution with mean n∗b and variance n∗b/(1 + β),

p∗(q) = 1
Nβ−τ

√
(1 + β)n∗b√

2π
(1 + β)N

β
exp

(
−n
∗
b(1 + β)(q − q∗)2

2

)
. (3.80)

A comparison with the Gaussian expansion for p∗(q) from the WKB-ansatz in (3.76) yields
the approximation for the average cluster dissociation time

τ = 1
Nβ−

(1 + β)N
β

. (3.81)

The results for the average cluster dissociation time at F = 0 are shown as functions
of N and β in Fig. 3.9. The exact solution from (3.58) is given with solid lines. The
WKB-approximation (3.81) (markers) agrees well with the exact solution.
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Figure 3.9. Average cluster dissociation time at F = 0 as a function of a) adhesion size N
and b) binding rate ratio β. Lines show exact results, compare Eq. (3.58) and markers
indicate the WKB-approximation, compare Eq. (3.81).

3.2.2 Variable adhesion size

In the following, the general case for γ± > 0 is considered. In this model variant, the basic
adhesion cluster with rupture and rebinding events is coupled to a reservoir of molecules.
Molecules enter the cluster in state a with a rate γ+ and leave the cluster from state a into
the reservoir with rate γ−. As a result, the total number of molecules N = nb + na is not
fixed in time. Thus, the state of the cluster depends on both nb and na and the master
equation reads

d
dtpnb,na(t) = −[na β+ (nb) + nb β

− (nb) + γ+ + naγ
−] pnb,na(t)

+ (na + 1)β+ (nb − 1) pnb−1,na+1(t) + (nb + 1)β− (nb + 1) pnb+1,na−1(t)

+ γ+pnb,na−1(t) + (na + 1)γ−pnb,na+1(t) (3.82)

The state occupation numbers nb and na are in general not limited, so that they can
cover all non-negative integers Z. Therefore the only boundary condition is pnb,na = 0
if nb < 0 or na < 0. In Fig. 3.10a, a fraction of the full transition diagram is sketched.
Apart from the states on the boundaries, i.e. states with nb = 0 or na = 0, each state has
four neighbours, see Fig. 3.10b. Because of the infinite set of states, the derivation of an
exact analytical solution is not feasible. But even if the set of states is infinite, the system
will tend towards the stationary distribution, so that many pnb,na(t) are expected to decay
quickly. In the following, the focus lies on these steady state solutions.

Steady state solution

For a first idea how the reservoir affects the system, the special and simple case of
β+(h) = β−(h) = 0 is considered. When there are no transitions between state a and b,
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Figure 3.10. Transition diagram for the basic adhesion rupture model with a reservoir
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correspond to constant bond numbers nb, while constant unbound molecule numbers na
are found on the diagonals. The reservoir rates allow jumps between different cluster sizes.
b) The state (nb, na) and its four neighbouring states (nb, na ± 1) and (nb ∓ 1, na ± 1).

the variables nb and na are independent, because the occupation number of state b is fixed
to the constant value nb(t = 0). The master equation for the unbound molecules in state a
reads

d
dtpna(t) = −[γ+ + naγ

−] pna(t) + γ+pna−1(t) + (na + 1)γ−pna+1(t) . (3.83)

The steady state solution of this process is a Poisson distribution with parameter γ = γ+/γ−:

p∗na
= γna

na!
exp(−γ) . (3.84)

Expected value and variance are given by 〈na〉 = Var(na) = γ.
With finite binding and rupture rates, the steady state solution cannot be obtained

easily from the master equation any more. The detailed balance conditions provide a simpler
access to the stationary solution. As it is shown in Fig. 3.10b, states are either connected
via binding and rupture or via the reservoir connection. The equilibrium distribution fulfils

p∗nb,na
= γ

na
p∗nb,na−1 , (3.85)

p∗nb,na
= (na + 1)β+(nb − 1)

nbβ−(nb)
p∗nb−1,na+1 . (3.86)

Iterative application and combination of these two conditions leads to

p∗nb,na
= γnb+na

nb!na!

(
nb∏

k=1

β+(k − 1)
β−(k)

)
p∗0,0 (3.87)
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for nb ≥ 1 and na ≥ 0. For nb = 0, the equilibrium probability distribution is given by
p∗0,na

/p∗0,0 = γna/na! . Since all probabilities add up to one, the remaining probability p∗0,0
can be determined to

p∗0,0 = exp(−γ)


1 +

∞∑

nb=1

γnb

nb!

(
nb∏

k=1

β+(k − 1)
β−(k)

)

−1

. (3.88)

The marginal distributions p∗nb
= ∑

na
p∗nb,na

and p∗na
= ∑

nb
p∗nb,na

follow as

p∗nb
= γnb

nb!

(
nb∏

k=1

β+(k − 1)
β−(k)

)
1 +

∞∑

nb=1

γnb

nb!

(
nb∏

k=1

β+(k − 1)
β−(k)

)

−1

, (3.89)

p∗na
= γna

na!
exp(−γ) . (3.90)

The number of bound and unbound molecules in steady state are independent stochastic
variables, because p∗nb,na

= p∗nb
p∗na

. The stationary number of unbound molecules is only
determined by the connection to the reservoir. For vanishing forces, i.e. β+(h(F = 0, nb)) =
β+ and β−(h(F = 0, nb)) = β−, the equilibrium solution simplifies to

p∗nb,na
= γnb+naβnb

nb!na!
exp(−γ(1 + β)) . (3.91)

This is the product of two Poisson distributions with parameters γ and γβ. Thus, the
expected values are given by 〈na〉 = γ and 〈nb〉 = γβ and the variances are given by
Var(na) = γ and Var(nb) = γβ. For large forces, the stretch increases and thus the binding
rate decreases while the rupture probability grows. This leads to a shift towards the left
columns in the transition diagram in Fig. 3.10, so that less bonds nb are expected in steady
state. The connection to the reservoir is independent of nb or the extension h, so that
unbound molecules stay untouched.

In Fig. 3.11, simulation results are compared to the analytical steady state solutions
derived above. Fig. 3.11a-c show exemplary histograms of the distribution p∗nb,na

at selected
force values. The marginal distributions are shown in Fig. 3.11d-g. The distribution p∗nb,na

,
which is centered around (n∗a, n∗b) = (γ, γβ) at F = 0, shifts towards lower values of nb with
increasing force. At F̃ = 3.2, the marginal distribution p∗nb

exhibits a peak at nb = 1, while
the distribution of unbound molecules does not depend on the external force, as expected.
Simulation results from adhesion clusters with rebinding (markers or orange bars) agree
well with the analytical solutions (solid lines or blue bars).

Macroscopic equations

The macroscopic equations for the average number of molecules 〈nb〉 and 〈na〉 are obtained
from the master equation as

d
dt〈nb〉(t) = −〈nb〉(t)β−(h) + 〈na〉(t)β+(h) , (3.92)
d
dt〈na〉(t) = −〈na〉(t)β+(h) + 〈nb〉(t)β−(h) + γ+ − 〈na〉(t)γ− . (3.93)
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Figure 3.11. Steady state quantities for a cluster with N∗ ≈ 10 molecules as a function
of force F . a-c) Histograms of the joint steady state distribution pnb,na at selected force
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For the derivation, it was again assumed that the rates are functions of the free parameter
h. The force balance equation F (h, nb) in Eq. (3.5) thus acts as an additional constraint
for steady state solutions. The average total number of molecules 〈N〉(t) = 〈nb〉(t)+ 〈na〉(t)
evolves in time as

d
dt〈N〉(t) = γ+ − 〈na(t)〉γ− . (3.94)

The steady state solution of the macroscopic equations is given by

〈na〉 = γ , 〈nb〉 = γ β(h) = γ exp
(
− h̃

2

2 + ε̃b

)
(3.95)

with the rate ratios γ = γ+/γ− and β(h) = β+(h)/β−(h). The fraction of bonds 〈nb〉/〈N〉
agrees with the average fraction of bonds in a cluster without the reservoir connection,
compare (3.48). In this case, however, the average number of unbound molecules is
regulated by the reservoir and therefore the total number of molecules is proportional to γ.
Note that the macroscopic steady state solution fulfils

β−(h)〈nb〉 = β+(h)〈na〉 , (3.96)

which corresponds to a macroscopic version of the detailed balance condition. In steady
state, the force balance condition reads F̃ = γ β(h) h̃ and F̃ /〈N〉 agrees with Eq. (3.49),
the force balance equation for the cluster without a reservoir connection. The maximal
value of the external force with a steady state solution is found at the positive solution
of the extremum condition F̃ ′(h̃) = 0 as h̃ = 1. At this stretch, the expected number of
bound molecules in steady state is given by

〈nb〉
(
h̃ = 1

)
= γ exp

(
−1

2 + ε̃b

)

and the externally applied force reaches F̃ = 〈nb〉(h̃ = 1) and therefore grows linearly with
the reservoir rate ratio γ.

In Fig. 3.12, the results obtained from the macroscopic equations are compared to
simulated trajectories with γ = 1.824 and ε̃b = 1.5, which leads to 〈N〉 ≈ 10 molecules
at F̃ = 0. Fig. 3.12a shows the average number of bonds in steady state as a function of
the stretch h. The force balance condition of possible steady state solutions is plotted in
Fig. 3.12b with a solid line. The simulation results show that the macroscopic solution is
only valid for small stretches per bond, so that fluctuations are small. A combination of
Fig. 3.12a and b yields the average number of bond 〈nb〉 as a function of force F in steady
state, shown in Fig. 3.12c). As in the case without a reservoir connection, the number of
bonds decreases with increasing external force.
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Figure 3.12. Mean field steady state solution for the basic adhesion cluster model with
a variable number of molecules. a) Average number of bonds as a function of the bond
extension h. b) The force balance equation with the steady state solutions 〈nb〉(h) connects
force and stretch. c) The resulting steady state solutions as a function of external force F .
Parameter values are given in Table 3.2.

Lifetimes

As a last aspect, the average cluster dissociation time is studied. For an adhesion cluster
with binding, rupture and a reservoir connection, all states with nb = 0 are end points of
possible dissociation pathways. The simulation results in Fig. 3.13 show that qualitatively,
the dependence of lifetime on force per initially bound molecule is comparable to adhesion
clusters with a constant size.

For low forces, i.e. F̃ /N < 1, the lifetime curves converge towards a lower value than for
constant cluster sizes. One reason for this effect is that the average waiting time between
two reactions at F = 0 also depends on (γ+)−1, so that more transitions happen per unit
time for larger clusters. More importantly, the variance of the number of bonds nb is
higher in the system with a reservoir connection than in a cluster with a constant size.
Therefore fluctuations are larger and the system has a higher probability to reach the state
of complete dissociation. Since the total number of molecules N decreases with external
force F , this effect is enhanced for small finite forces. Even without the time-dependent
solution for p0(t), the average dissociation time at F = 0 can be approximated with an
argumentation that is used for many first-passage time problems, such as for estimations
on protein folding and population extinction dynamics [5, 370]. The approach is also
given in Ref. [110] for the lifetime of adhesion clusters with rupture and rebinding events,
but a constant number of molecules. As in the WKB-approximation, it is assumed that
the probability distribution function that solves the master equation with an absorbing
boundary at nb = 0, is long lived and has a peak at the (strictly speaking metastable)
steady state. Slowly, the distribution decays in time and “leaks” into the absorbing state
p0. The ansatz for this approximation is then given in (3.67). When this ansatz is inserted
into the master equation and p∗nb

for nb ≥ 1 is found, the lifetime of the cluster can be
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takes place. The average dissociation time is determined by the rupture of the first bond,
which is ∝ exp(−˜̀bF̃ /N). Parameter values are given in Table 3.2.

approximated by

τ = 1
β−(1)p∗1

= 1
β−

exp (γ exp(ε̃b))
γ exp(ε̃b) , (3.97)

where the exact solution for the steady state of the non-absorbing boundary at F = 0 is
inserted for p∗1. This includes a small normalization error, because the state nb = 0, which
has a probability of exp(−γβ), is still included in this distribution. As long as the mean
number of bonds at F = 0 is much larger than one, this error is negligible. The lifetime
approximation is shown in Fig. 3.13a with dotted lines.

For large forces, the lifetime curves collapse onto one curve with a slope of −˜̀b in the
logarithmic plot, see Fig. 3.13b. In this regime, the rupture cascade dominates the possible
dissociation pathways, so that the same behaviour is obtained with and without a reservoir
connection.

3.3 Extended model with conformational changes

As an extension of the basic model, conformational changes of bound and unbound molecules
are added to the set of transitions. A sketch of the different adhesion molecule states and
the single bond transition diagram are shown in Fig. 3.14.

The distance between the two boundaries is given by `0 + h = `0 + ∆ + hu, where `0 is
the rest length of folded adhesion molecules. The stretch of folded and unfolded bonds
is given by h and hu = h−∆, respectively. Since the difference lies only in the constant
unfolding length ∆, it is sufficient to specify the value of h.
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The length difference of folded bonds in state b and unfolded bonds in state bu lead to
the force-balance condition

F = κnbh+ κnbu(h−∆) ⇔ h̃ = F̃ + nbu∆̃
nb + nbu

, (3.98)

where nb is the number of bonds b and nbu denotes the number of unfolded bonds, i.e. the
occupation of state bu. Because of the different lengths, all bonds are either stretched or
compressed, as soon as both conformations are present simultaneously. Only if nb = 0 or
nbu = 0 holds, i.e. if all bonds are either folded or unfolded, a configuration with no elastic
energy contributions is possible. To estimate the effect of the unfolding and refolding
transitions, the rates δ±b (h) are expanded for small stretches:

δ+
b (h) = δ+

b (0)
(

1 + ∆̃
2 h̃+ ∆̃2

8 h̃2
)

+O(h̃3) , (3.99)

δ−b (hu) = δ−b (0)
(

1− ∆̃
2 h̃u + ∆̃2

8 h̃2
u

)
+O(h̃3

u) (3.100)

with δ+
b (0) = kδ exp

(
−∆̃2/8− ε̃f

)
and δ−b (0) = kδ exp

(
−∆̃2/8

)
. (3.101)

Small positive stretches h of folded bonds promote unfolding, while the refolding probability
increases at negative stretches hu, i.e. when unfolded bonds are compressed. In the following
the resulting cluster behavior is analysed for a system with a constant and variable number
of adhesion molecules. For better readability, all rates are denoted as functions of the
folded bond stretch h.

3.3.1 Constant number of molecules

For the case that the reservoir rates γ± are set to zero, the total number of adhesion
molecules is constant, N = na +nau +nb +nbu . The state of the cluster at a constant force
F is therefore determined by the occupation number of three states and N . The number
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of possible configurations grows with N3, more specifically, the number of cluster states
(nb, nbu , na, nau) for in total N adhesion molecules is given by

(N+3
3
)
. The probability to

find a specific configuration with nb and nbu bound and na and nau unbound molecules is
denoted by pnb,nbu ,na,nau with nau = N − nb − nbu − na. The stochastic master equation
describes the time evolution of the probability pnb,nbu ,na,nau (t). It reads

d
dtpnb,nbu ,na,nau = −

[
nb(β−(h) + δ+

b (h)) + nbu(β−u (h) + δ−b (h))

+na(β+(h) + δ+
a ) + nau(β+

u (h) + δ−a )
]
pnb,nbu ,na,nau

+ (nb + 1)β−(h)pnb+1,nbu ,na−1,nau + (nb + 1)δ+
b (h)pnb+1,nbu−1,na,nau

+ (nbu + 1)β−u (h)pnb,nbu+1,na,nau−1 + (nbu + 1)δ−b (h)pnb−1,nbu+1,na,nau

+ (na + 1)β+(h)pnb−1,nbu ,na+1,nau + (na + 1)δ+
a pnb,nbu ,na+1,nau−1

+ (nau + 1)β+
u (h)pnb,nbu−1,na,nau+1 + (nau + 1)δ−a pnb,nbu ,na−1,nau+1 , (3.102)

where the t-dependence was omitted and the stretch depends on the external force and
the number of bound molecules, h = h(F, nb, nbu), see Eq. (3.98). For negative occupation
numbers or if the sum of molecules does not equal N , the probability is defined as zero.

Steady state solution

In the long time limit, the probability distribution approaches a constant value, the steady
state distribution. The detailed balance conditions read

p∗nb+1,nbu ,na,nau−1 = (na + 1)β+(nb, nbu)
(nb + 1)β−(nb + 1, nbu)p

∗
nb,nbu ,na+1,nau−1 , (3.103)

p∗nb,nbu+1,na,nau−1 = (nb + 1)δ+
b (nb + 1, nbu)

(nbu + 1)δ−b (nb, nbu + 1)
p∗nb+1,nbu ,na,nau−1 , (3.104)

p∗nb,nbu ,na,nau
= (nbu + 1)β−u (nb, nbu + 1)

nauβ
+
u (nb, nbu)

p∗nb,nbu+1,na,nau−1 , (3.105)

p∗nb,nbu ,na+1,nau−1 = nauδ
−
a

(na + 1)δ+
a
p∗nb,nbu ,na,nau

, (3.106)

where the rates are written as functions of the occupation numbers nb and nbu . Multiplica-
tion of these conditions yields the Kolmogorov condition

1 = β+(nb, nbu)δ+
b (nb + 1, nbu)β−u (nb, nbu + 1)δ−a

β−(nb + 1, nbu)δ−b (nb, nbu + 1)β+
u (nb, nbu)δ+

a
. (3.107)

For large clusters with nb+nbu � 1, we find h(F, nb, nbu) ≈ h(F, nb+1, nbu) ≈ h(F, nb, nbu +
1), so that Eq. (3.4) is recovered. Even at F = 0, the rates still depend on the current number
of bound molecules nb and nbu , because h̃(0, nb, nbu) = nbu∆̃/Nb, where Nb = nb + nbu .
There are two special configurations, where all elastic energy contributions vanish; nbu = 0
with h̃ = 0 and nb = 0 with h̃ = ∆̃. In equilibrium, these two cluster configurations are
energetically equivalent, as long as ε̃f = 0. For ε̃f > 0, the folded state is favoured.
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Figure 3.15. Marginal steady state probabilities p(s)
ni of adhesion clusters with binding,

rupture, unfolding and refolding with a constant number of N = 10 molecules at three
different force values. Parameter values are given in Table 3.3.

Figure 3.15 shows simulation results of the steady state marginal distributions p(s)
ni for

the four different molecular states at three different force values. As expected, the bound
folded state b is occupied most in equilibrium at F = 0. For higher forces, the unfolding
transition leads to a shift towards the state bu. For large forces, the rupture rate dominates
and thus, most molecules are in the unbound states a and au.

Macroscopic equation

The macroscopic equations for the average number of molecules 〈nb〉, 〈nbu〉, 〈na〉 and 〈nau〉
are obtained from the master equation, as explained in App. A.1. For better readability, the
explicit notation of the expected value 〈·〉 and the time dependence are omitted. Transition
rates are written as functions of the free parameter h. The mean field approximation reads

d
dtnb = −nb

(
β−(h) + δ+

b (h)
)

+ naβ
+(h) + nbuδ

−
b (h) , (3.108)

d
dtnbu = −nbu

(
β−u (h) + δ−b (h)

)
+ nauβ

+
u (h) + nbδ

+
b (h) , (3.109)

d
dtna = −na

(
β+(h) + δ+

a

)
+ nbβ

−(h) + nauδ
−
a , (3.110)

d
dtnau = −nau

(
β+

u (h) + δ−a

)
+ nbuβ

−
u (h) + naδ

+
a . (3.111)

The stationary solution can be found analytically. Inserting the Kolmogorov condition (3.4)
yields the compact form

nb(h) = β(h)na(h) , (3.112)

nbu(h) = β(h)δb(h)na(h) , (3.113)

nau(h) = β(h)δb(h)
βu(h) na(h) = δa na(h) , (3.114)
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Figure 3.16. Comparison of the possible stationary solutions of the macroscopic equations
(lines) and steady state simulation results (markers) for adhesion clusters of the extended
model with N = 10 molecules. a) Force per molecule as a function of the stretch for
∆̃ = 3.49. b) Force per molecule as a function of the stretch for different values of the
unfolding length. c) The fraction of bonds as a function of force per molecule. d) The
fraction of unbound molecules as a function of force per molecule Parameter values are
given in Table 3.3.

where the rate ratios β(u)(h) = β+
(u)(h)/β−(u)(h), δb(h) = δ+

b (h)/δ−b (h) and δa = δ+
a /δ

−
a are

used. Since the total number of molecules is fixed by N = nb(h) + nbu(h) + nau(h) + na(h),
the remaining solution for na(h) is given by

na(h) = N

(
1 + δa + β(h) + β(h)δb(h)

)−1
. (3.115)

Additionally, the force balance condition (3.98) has to hold. The resulting condition
F = F (h) restricts the possible steady state stretch values h at a constant force. For low
force values, multiple solutions exist. In simulations, only two branches of these solutions
are observed; a first solution with low stretch h and a high number of folded bonds in state
b and a second solution with h ≈ ∆ and a high number of unfolded bonds in state bu, see
Fig. 3.16a. Both branches fulfil ∂hF > 0. Above a certain force value, no solution exists.
How the relation between force per molecules F/N and possible steady state stretches
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h depends on the unfolding length ∆ is illustrated in Fig. 3.16b. At ∆̃ = 0, folded and
unfolded bonds are indistinguishable, which results in a single branch with ∂hF > 0. For
∆̃ = 0 and ε̃f = 0 the steady state solution of the basic adhesion cluster model is obtained.
For ∆̃ > 2, two local maxima are found. Their separation grows with increasing unfolding
length. In Fig. 3.16c and 3.16d the fraction of bound and unbound molecules in steady
state are shown as functions of the external force per molecule. Besides the restriction to
two branches of the solution, it can be seen that the macroscopic equations provide a valid
approximation for the average state occupation numbers for small forces. At large forces,
the steady state simulation results deviate from the possible analytical solutions, because
fluctuations become important.

Lifetimes

Complete cluster dissociation occurs, when the last bond ruptures. In the extended model,
the dissociation pathways has to reach either a state (1, 0, na, nau) or (0, 1, na, nau) with
N = 1 + na + nau . Therefore the mean lifetime can be approximated by

τ = 1
β−(1, 0)∑na

p∗1,0,na,N−1−na
+ β−u (0, 1)∑na

p∗0,1,na,N−1−na

, (3.116)

where the rupture rates are written as functions of the state occupation numbers nb and
nbu , i.e. β−(nb, nbu).

Figure 3.17 shows the simulation results for average cluster lifetime as a function of force
per molecule for clusters with size N = 10, N = 5 and N = 2. Initially, all molecules are
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Figure 3.17. Average lifetimes of adhesion clusters in the extended model and with
N = 2, 5, 10 molecules. a) For small forces, lifetimes converges towards a constant value,
which is for N > 2 lower than in the basic adhesion model (dotted lines). b) For large
forces per molecule, the curves overlap, as in the basic cluster model. The initially folded
bonds either rupture directly or first unfold and then rupture. Parameter values are given
in Table 3.3.
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in the bound, folded state b. In comparison to the basic adhesion model, the competition
between folded and unfolded length decreases the average lifetime for N = 10 and N = 5.
For large forces F/N > 1, the curves overlap, because rebinding can be neglected and a
rupture cascade dominates.

3.3.2 Variable adhesion size

In the following, a molecule reservoir is added to the extended cluster model. The reservoir
leads to an exchange of unbound, folded molecules, i.e. molecules in state a, with the
surrounding. Unbound, but unfolded molecules first need to refold before they can leave
the cluster.

The master equation that describes the time evolution of the probability to find a
configuration (nb, nbu , na, nau) is given by

d
dtpnb,nbu ,na,nau = −

[
nb(β−(h) + δ+

b (h)) + nbu(β−u (h) + δ−b (h))

+na(β+(h) + δ+
a + γ−) + nau(β+

u (h) + δ−a ) + γ+
]
pnb,nbu ,na,nau

+ (nb + 1)β−(h)pnb+1,nbu ,na−1,nau + (nb + 1)δ+
b (h)pnb+1,nbu−1,na,nau

+ (nbu + 1)β−u (h)pnb,nbu+1,na,nau−1 + (nbu + 1)δ−b (h)pnb−1,nbu+1,na,nau

+ (na + 1)β+(h)pnb−1,nbu ,na+1,nau + (na + 1)δ+
a pnb,nbu ,na+1,nau−1

+ (nau + 1)β+
u (h)pnb,nbu−1,na,nau+1 + (nau + 1)δ−a pnb,nbu ,na−1,nau+1

+ (na + 1)γ−pnb,nbu ,na+1,nau + γ+pnb,nbu ,na−1,nau , (3.117)

where the explicit t-dependence is omitted and rates are written as functions of the stretch
h = h(F, nb, nbu). As before, the focus lies in the following on the steady state quantities.

Steady state

The detailed balance conditions (3.103)-(3.106) are supplemented by

p∗nb,nbu ,na,nau
= γ

na
p∗nb,nbu ,na−1,nau

(3.118)

for the connection with the reservoir. Summation over the occupation numbers nb, nbu and
nau or na together with the detailed balance conditions lead to the marginal distributions
of unbound molecules

p∗na
= γna

na!
exp (−γ) , p∗nau

= (γδa)nau

nau ! exp (−γδa) , (3.119)

which describe Poisson distributions with parameters γ and γδa. The reservoir thus controls
the occupation of unbound states. The marginal distributions for nb and nbu cannot be
obtained similarly, because the rates β±(u)(h) and δ±b (h) depend on both occupation numbers.
Figure 3.18 shows simulation results for the steady state marginal distributions for clusters
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Figure 3.18. Marginal steady state probabilities p(s)
ni of adhesion clusters with conformational

changes and molecule exchange at three different force values. The reservoir rate ratio
γ = 1.72 leads to N ≈ 10 molecules at F = 0 in steady state. Parameter values are given
in Table 3.3.

with reservoir rate ratio γ = 1.72, which leads to an approximate cluster size of N = 10 for
F = 0. The marginal distributions are exemplarily given for three different force values.
As in the case without the reservoir, the folded state is occupied most at F = 0. For
larger forces, the unfolding transition leads to an accumulation of unfolded bonds until
the rupture process starts. As a result, the number of bound molecules decreases at large
forces. Only one molecule can rebind and rupture repeatedly, because for nb + nbu = 0, the
distance between the boundaries is set to h = 0.

Macroscopic equations

The macroscopic equations for the extended adhesion cluster model with a reservoir
connection read

d
dtnb = −nb

(
β−(h) + δ+

b (h)
)

+ naβ
+(h) + nbuδ

−
b (h) , (3.120)

d
dtnbu = −nbu

(
β−u (h) + δ−b (h)

)
+ nauβ

+
u (h) + nbδ

+
b (h) , (3.121)

d
dtna = −na

(
β+(h) + δ+

a + γ−
)

+ nbβ
−(h) + nauδ

−
a + γ+ , (3.122)

d
dtnau = −nau

(
β+

u (h) + δ−a

)
+ nbuβ

−
u (h) + naδ

+
a , (3.123)

where again the explicit notation for the expected value 〈·〉 and the time dependence are
omitted. For the stationary solution, the sum of all equations directly leads to the steady
state solution na = γ = γ+/γ−. With this, the remaining solutions

nb(h) = γβ(h) , nbu(h) = γβ(h)δb(h) , nau = γδa (3.124)
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Figure 3.19. Comparison of the possible stationary solutions of the macroscopic equations
and steady state simulation results for the extended adhesion cluster model with N ≈ 50
molecules at F = 0 by means of a reservoir rate ratio γ = 8.59. Parameter values are given
in Table 3.3.
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are found. All expected values are proportional to the number of unfolded molecules
na. The solution further corresponds to a macroscopic version of the detailed balance
conditions. The Kolmogorov condition additionally ensures nbu = γδaβu(h).

A comparison of the stationary solution of the macroscopic equations and averaged
simulation results is shown in Fig. 3.19 for a cluster with N ≈ 50 at F = 0. In simulations,
only a limited stretch regime is realized. Clusters either consist of many folded bonds b with
a low extension h, or of many unfolded bonds bu with a low extension hu, see Fig. 3.19a.
This behaviour was already observed for the extended model with a constant adhesion size.
The expected value of unbound molecules in states a and au is constant, see Fig. 3.19b.
The relation F = F (h) is shown in Fig. 3.19c with the corresponding simulation results.
Above a force of F̃ /N ≈ 0.2, the average stretch in simulations results from a single bond
that rebinds and ruptures repeatedly. The force balance condition is shown for different
values of the unfolding length ∆ in Fig. 3.19d. As in the case without the reservoir, the
observed steady state branches exhibit a positive slope, i.e. ∂hF (h) > 0. The branch with
the higher extension is determined by the unfolding length ∆. In Fig. 3.19e and f, the
number of bound and unbound molecules is shown as a function of force per molecules F/N .
The number of bonds decreases with increasing force per bond, until rupture dominates
and the unfolded, unbound state is accumulated.

Lifetime

The average lifetime τ of adhesion clusters with conformational changes and a reservoir
connection are shown in Fig. 3.20 for four different reservoir rate ratios γ. For low forces, τ
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Figure 3.20. Average lifetimes of adhesion clusters with γ = 0.365, 0.912, 1.824, 3.649,
which leads to clusters with N ≈ 2, 5, 10, 20 molecules at F = 0. a) For small forces the
lifetimes converge towards a constant value, which is similar to the value without unfolding
(dotted lines). b) For large forces per molecule, the curves overlap, as in the basic cluster
model. The initially folded bonds either rupture directly or first unfold and then rupture.
Parameter values are given in Table 3.3.
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converges towards a value that is similar to the lifetime of adhesion clusters with a variable
molecule number, but without the unfolding transition (dotted lines), compare Fig. 3.13a.
For a large force per molecule, the lifetime curves overlap because of a cascade-like rupture
process, in which bonds unbind directly or after unfolding.

3.4 Extended model with conformational changes
and adhesion molecule recruitment

As a second extension, an adhesion cluster model with conformational changes and subse-
quent recruitment of new adhesion molecules into the cluster is considered. The motivation
for this extension is based on biological adhesions in which protein binding sites are opened
after unfolding. Consequently, it is assumed in this model variant that unfolded molecules
offer new binding sites for molecules from the surrounding. In the following, the compound
of an unfolded and a recruited molecule is called linked state. In this linked state, detach-
ment and rebinding from the upper boundary is still possible, but the occupied binding site
prevents refolding. Therefore the two new states au,1 and bu,1 are introduced to account
for the unbound, linked and bound, linked state, respectively. In the sketch in Fig. 3.21a,
the different adhesion molecule states are depicted. The extended transition diagram is
shown in Fig. 3.21b. The rates for the linking and unlinking process are denoted by λ+

and λ−. For simplicity, they are chosen as constants. To study the effect of recruitment
alone, it is assumed that the new molecule does not change the force response. Therefore
the binding and rupture rates for linked molecules are given by β±u (h), i.e. by the same
rates that also describe binding and rupture of unfolded molecules.

The state of the cluster in this model is determined by the occupation numbers of the
bound states nb, nbu and nbu,1, and the unbound states na, nau and nau,1. As before, only
the bound molecules experience the force, which acts on the upper boundary and pulls the
surfaces apart. Since linked bonds have the same force response as unfolded bonds, the
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Figure 3.21. Extended adhesion cluster model with molecule unfolding and subsequent
molecule recruitment. a) Sketch of a small cluster. b) Single molecule transition diagram.
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force balance equation reads

F = κnbh+ κ(nbu + nbu,1)(h−∆) . (3.125)

The stationary solutions of the macroscopic equations are a convenient starting point to
estimate the impact of the two new states on the average steady state cluster behaviour.
The time evolution of bonds b and unbound molecules a are described by Eq. (3.120) and
(3.122), because the linking transition does not effect the folded states. The macroscopic
equations for the unfolded states are supplemented by two linking terms each. Together
with the two new equations for the linked states, the modified macroscopic equations read

d
dtnbu = −nbu

(
β−u (h) + δ−b (h) + λ+

)
+ nauβ

+
u (h) + nbδ

+
b (h) + nbu,1λ

− , (3.126)
d
dtnbu,1 = −nbu,1

(
β−u (h) + λ−

)
+ nau,1β

+
u (h) + nbuλ

+ , (3.127)
d
dtnau = −nau

(
β+

u (h) + δ−a + λ+
)

+ nbuβ
−
u (h) + naδ

+
a + nau,1λ

− , (3.128)
d
dtnau,1 = −nau,1

(
β+

u (h) + λ−
)

+ nbu,1β
−
u (h) + nauλ

+ , (3.129)

where, as before, the explicit notation for the expected value and the time dependence are
omitted. The stationary solution for the linked states is given by

nbu,1(h) = λnbu(h) , nau,1(h) = λnau(h) , (3.130)

with the linking rate ratio λ = λ+/λ−. For the remaining states, the stationary solution
agrees with the solution of the model with conformational changes and a reservoir connection,
see Eq. (3.124). Thus, the number of linked bonds is proportional to the number of unfolded
molecules.

Figure 3.22 shows the comparison of the stationary solution of the macroscopic equations
and steady state simulation results. The stationary solution for the average total number
of bonds NB(h) = nb(h) + nbu(h) + nbu,1(h) in Fig. 3.22a has two maxima at h ≈ 0 and
h ≈ ∆ = 3.49σ. The linking transition increases the number of bonds close to the second
maximum linearly. The relation between the external force and the resulting steady state
stretch, F (h), is shown in Fig. 3.22b. Again, only the second branch of solutions with
h ≈ ∆ is affected by the linking transition, because molecule recruitment only takes place
when bonds are unfolded. The combination of Fig. 3.22a and b makes it possible to show
the average number of bonds in steady state as a function of the given external force
in Fig. 3.22c. Besides increasing the average number of bonds in steady state for small
forces, the linking transition also increases the force threshold, above which bond rupture
dominates. Thus, the linking transition increases the total number of adhesion molecules,
which leads to a lower force per bond and thus allows a steady state under higher forces.
The qualitative behaviour however is similar to adhesion clusters without the linking
transition, i.e. the model with conformational changes and a reservoir connection.
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Figure 3.22. Stationary solutions of the macroscopic equations (solid lines) and steady
state simulation results (round markers) for different linking rate ratios λ = λ+/λ−. For
the steady state solution at h ≈ ∆, λ increases the number of bonds linearly. Parameter
values are given in Table 3.3.

3.5 Summary

In this chapter, models for adhesion clusters under pulling forces are introduced and
discussed. An adhesion cluster consists of discrete, elastic bonds which bridge the gap
between two rigid surfaces. While the lower surface is fixed in the plane y = 0, the upper
surface is subject to an external force. The force acts orthogonally to the surface, i.e. in
y-direction, and it is shared by all bound molecules, which thereby keep the adhesion intact.
The parallel alignment of all bonds in the direction of force reduces the degrees of freedom
to one: the distance between the two surfaces. However, the results for this geometry can
be transferred to other force directions, as long as the bonds are aligned in parallel and
the force has a positive component in y-direction. Since the upper boundary can move
freely, it will be pulled such, that the bonds realign in force direction. In this case, the
vertical component of the bond extension determines the distance between the surfaces.

Motivated by the probabilistic nature of reactions in biological systems, the time
evolution of the adhesion cluster is described by a stochastic process. A master equation
is used to describe the cluster dynamics. Analytical methods and kinetic Monte Carlo
simulations are employed to study the response of an adhesion cluster to a constant force
with a special emphasis on steady state quantities and the average cluster lifetime. The
different cluster models of this chapter differ in the choice of allowed transitions whose
rates determine the stochastic process.

In the basic adhesion model, the only transitions allowed are bond rupture and rebinding.
For low or vanishing forces, the cluster approaches a steady state configuration with many
bonds under low stretch. A complete cluster dissociation, i.e. a subsequent rupture of all
bonds, is a rare event that can be caused by large fluctuations. Under higher forces, the
rupture probability increases while the rebinding probability decreases, so that the fraction
of bound molecules decreases with force. This leads to larger fluctuations and inevitably,
to a faster dissociation of the whole cluster.
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In a first extension, a reversible unfolding transition is introduced, through which
adhesion molecules become longer. Since the parallel bonds are confined between rigid
surfaces, this transition gives rise to a competition between the native, i.e. folded, bond
state b and the longer, unfolded state bu. Folded bonds are favoured energetically at low
forces, but also configurations with many unfolded and few folded bonds are observed. At
large forces, bond rupture dominates again, so that the average fraction of bound molecules
decreases with force, as it is observed in the basic model. However, clusters with unfolded
bonds can bridge larger separations.

Both the basic model with rupture and rebinding and the extended model with confor-
mational changes are initially introduced with a constant number of adhesion molecules.
To analyse clusters with variable size, both models are also studied with an additional
transition, the connection to a molecule bath. Folded, unbound molecules are thus ex-
changeable with the surrounding. The process is controlled by two constant rates. The
addition of such a reservoir leads to a constant number of molecules in state a, to which
the reservoir is coupled. As a consequence, the average occupation numbers of all other
states are proportional to the reservoir rate ratio γ and thus to the average number of
molecules na. For a constant value of γ, clusters in the extended model are larger than
clusters with only rupture and binding, because more states are accessible. The qualitative
response to force however is similar to the case of constant cluster sizes; the increased
rupture probability reduces the average number of bonds. Moreover, also the adhesion size
N decreases with force. Therefore, fluctuations are larger in the variants with a reservoir
connection, so that the probability for complete cluster dissociation is higher.

As a second extension, an adhesion cluster model is presented, in which new bonds
are recruited to binding sites at unfolded molecules. The unfolding process opens the
previously buried binding pocket and thus gives rise to a linked state of an unfolded
bond coupled to another adhesion molecule. The molecule recruitment increases the
average bond number compared to the system with unfolding, but without linking at
otherwise identical parameter values. Therefore, the force value above which fast cluster
dissociation is observed is increased by molecule binding to unfolded domains. This effect
is a consequence of cluster growth, because bonds in the linked and unfolded state have the
same force response. Despite this higher resistance, the qualitative behaviour of the cluster
is unaltered and both the fraction and total number of bonds decreases with increasing
force.

In summary, vertical pulling destabilizes a cluster of adhesion molecules with equal
force sharing. In the basic model, bond extension increases with force, which leads to
a higher rupture probability. The unfolding transition allows bridging a larger distance,
but at the same time it causes a competition between folded and unfolded bonds within
the cluster, which can increase fluctuations and shorten lifetime. The linking mechanism
induces cluster growth, so that the average extension per bond is reduced. However, it
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does not change the steady state characteristics qualitatively. Therefore, neither the basic
nor the extended cluster models presented here are able to grow under increasing forces.
Cluster strengthening under force could however be observed, if the linked state in the
extended model with molecule recruitment at unfolded domains is able to hold more force
than single bonds.

3.6 Parameter values
The parameter values for simulations of adhesion clusters with binding and rupture are
given in Table 3.2. Values that are used for the extended cluster models, which include
conformational changes and linked state are given in Table 3.3. In all cases, the energy
unit is given by 1kBT = 4.114 pN nm, the time unit is given by the inverse binding rate
prefactor t0 = 1/kβ, and the restlength of a folded molecule is `0 = 100 nm.

The averages are taken from Nsim trajectories. After reaching the steady state, Nmeas

measurements are taken in intervals of Nwait single molecule reactions.

Unit Value for data in Fig.

3.3 3.4 3.6/3.7 3.8 3.11/3.12 3.13

κ [pN nm−1] 1 1 1 1 1 1
σ [nm] 2.03 2.03 2.03 2.03 2.03 2.03
`b [nm] 1 1 1 1 1 1
εb [kBT ] 1.5 1.5 1.5 1.5 1.5 1.5
γ+ [kβ] 0 0 0 0 1.824 0.365, 0.912,

1.824, 3.649
γ− [kβ] 0 0 0 0 1 1
Nsim 5 50 50 50 50 50
Nmeas 103 104 103 103 103 103

Nwait 0 0 10 106 10 106

Table 3.2. Parameter values for simulations of the basic adhesion cluster model with
binding and rupture.
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Unit Value for data in Fig.

3.15 3.16 3.17 3.18 3.19 3.20 3.22

κ [pN nm−1] 0.5 0.5 1 0.5 0.5 1 1
σ [nm] 2.87 2.87 2.03 2.87 2.87 2.03 2.03
`b [nm] 1 1 1 1 1 1 1
εb [kBT ] 1.5 1.5 1.5 1.5 1.5 1.5 1.5
kδ [kβ] 1 1 1 1 1 1 1
∆ [nm] 10 10 10 10 10 10 10
εf [kBT ] 0.5 0.5 0.5 0.5 0.5 0.5 0.5
γ+ [kβ] 0 0 0 1.72 8.59 0.365, 0.912 8.59

1.824, 3.649
γ− [kβ] 0 0 0 1 1 1 1
λ+ [kβ] 0 0 0 0 0 0 0.0, 0.2

0.4, 0.6
λ− [kβ] 0 0 0 0 0 0 1
Nsim 50 50 50 50 50 50 50
Nmeas 5 · 103 5 · 103 103 5 · 103 5 · 103 103 5 · 103

Nwait 102 102 106 102 102 106 102

Table 3.3. Parameter values for simulations of the extended adhesion cluster model with
binding, rupture and conformational changes.
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Preface to chapter 4

In the following chapter, the response of adhesion clusters to shearing forces is studied.
For this purpose a constant force is applied in x-direction on the upper boundary. Bonds
are aligned in x-direction as well, so that the gap between the two surfaces disappears.
The proximity of the surfaces allows molecules to bind at different stretches h. For a large
number of bonds, the set of molecules in state b and bu can be described by a continuous
distribution nb(h) and nbu(h). This modification has striking consequences for the cluster
behaviour under load.

The chapter is a manuscript under peer-review and published as a pre-print, see Ref. [36]2.
It starts with an abstract, followed by introduction, results and discussion. Afterwards,
the methods and supplementary information are given. The following declaration specifies
the authors’ contributions.
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2After approval of this thesis, the article was published, see Braeutigam, A., Simsek, A.N.,
Gompper, G. et al. Generic self-stabilization mechanism for biomolecular adhesions under load.
Nat Commun 13, 2197 (2022). https://doi.org/10.1038/s41467-022-29823-2.
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Chapter 4

A generic self-stabilization
mechanism for biomolecular
adhesions under load

4.1 Abstract

Mechanical loading generally weakens adhesive structures and eventually leads to their
rupture. However, biological systems can adapt to loads by strengthening adhesions,
which is essential for maintaining integrity of tissue and whole organisms. Inspired by
cellular focal adhesions, we suggest here a generic, molecular mechanism that allows
adhesion systems to harness applied loads for self-stabilization under non-equilibrium
conditions. The mechanism is based on conformation changes of adhesion molecules that
are dynamically exchanged with a reservoir. Tangential loading drives the occupation of
some stretched conformation states out of equilibrium, which, for thermodynamic reasons,
leads to association of further molecules with the adhesion. Self-stabilization robustly
increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond
dissociation rates do not decrease with force. The self-stabilization principle can be realized
in many ways in complex adhesion-state networks; we show how it naturally occurs in
cellular adhesions involving the adaptor proteins talin and vinculin.

4.2 Introduction

From cells to tissues, muscles and whole organisms, the adaptation of living systems to
changing mechanical loads is crucial for maintaining structural integrity [290]. Mechanical
adaptation often proceeds through global, slow feedback, e.g., in muscle growth. However,
adaptability can also be encoded in molecular properties of load-bearing structures. The
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principles underlying molecular load adaptation are often unknown, albeit of fundamental
importance.

A paradigmatic example of biological structures that adapt and stabilize under load are
focal adhesions, which are crucial for cell physiology [131, 283], cell motility [166], cancer
metastasis [44, 286], and development [106, 155]. Focal adhesions consist of transmembrane
integrins and adaptor proteins that connect the force-generating actomyosin cytoskeleton
with the extracellular matrix. Focal adhesions have been likened to a “molecular clutch” [58,
102, 125, 238, 240, 312] and their biology has been extensively studied. Local application of
centripetal forces to adherent cells induces focal adhesion growth [272] with adhesion sizes
increasing proportionally to the load [15]. Biological mechanisms for adhesion stabilization
are complex and include a mechanosensitive activation of integrins [312], catch-bond
behavior of integrins and vinculin-actin binding [161], non-linear mechanical response
of unfolded proteins, and downstream signaling, e.g., mediated by the adaptor protein
p130Cas [281, 337]. During the past years, however, the pivotal role of the adaptor protein
talin for adhesion maturation has been established [54, 143]. Talin directly transmits
forces by binding with its globular head domain to integrin, while its rod domain links to
F-actin [213]. Under stretch, conformation changes in talin occur, leading to an unfolding
of protein domains and to the exposure of cryptic binding sites for vinculin [266, 271, 347].
Vinculin, in turn, further recruits F-actin and thereby strengthens the linkage [8, 11, 223].

In spite of the considerable amount of theoretical work [31, 85, 195, 201, 210, 247,
277, 295, 300] and pioneering work combining modeling and experiment [34, 58, 104], the
interplay of stochastic reactions underlying focal-adhesion load adaptation remains vaguely
defined. Moreover, other adhesion types such as adherens junctions are also capable of a
load adaptation that is based on molecule unfolding and subsequent recruitment of further
constituent molecules [69]. To understand nature’s intricate design principles behind load
adaptation of bioadhesions, we construct thermodynamically consistent, minimal models
combining two aspects, namely an unfolding of adhesion molecules under force [104, 320]
and the dynamical exchange of molecules with a reservoir [247, 300]. Our main result
is a generic mechanism through which molecular adhesions harness mechanical load for
achieving self-stabilization in non-equilibrium states.

4.3 Results
Molecular adhesion model. We consider a generic adhesion system consisting of N
molecules that form harmonic bonds between two planar surfaces, see Fig. 4.1. The
molecule extension, i.e., the difference between actual length and rest length, is denoted
by h and the spring constant by κ. The bottom surface is fixed in space and a constant
tangential loading force F is exerted on the top, leading to a time-dependent tangential shift
s. The model is two-dimensional and forces normal to the plane are not considered. The
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Figure 4.1. Adhesion self-stabilization. a) Illustration of the basic adhesion model which
consists of unbound molecules a and bonds b that connect two parallel rigid planes. A
tangential load stretches all molecules in state b as it shifts the upper boundary by s.
Molecules can transition between states b and a with extension-dependent rupture and
binding rates given by β−(h) and β+(h). Molecules can enter or leave the adhesion cluster
with rate constants given by γ±. b) Mean number of bonds in steady state as a function
of loading force. Symbols show simulation results and lines correspond to approximate
analytical results. In the basic model, an increased load on the adhesion reduces the
number of bonds (red). In contrast, an increased load produces a growth of the number of
bonds in the generalized model (blue). c) Illustration of the generalized adhesion model
incorporating molecule unfolding and refolding with rates δ±a,b(h) as well as a molecule-
exchange with the reservoir. Mechanical load drives the system out of equilibrium, shifting
the state occupations. See also SI movies 1,2.

adhesion-molecule number N can vary and the rate constants γ± determine the molecule
exchange with a reservoir. Individual molecules undergo stochastic state transitions and
the transition rates are chosen as to fulfill detailed balance when F = 0, see Sec. 4.5.
Thereby, we avoid unphysical energy injection that can produce an apparent motor-like
behavior.

In a first, basic model, see Fig. 4.1a, molecules from the reservoir associate reversibly
with the adhesion via the state a, in which they have not yet formed a bond between the
upper and lower plane. The state featuring a bond between the two planes is denoted by b.
The bond formation rate is β+(h), which is maximal when the extension of the adhesion
molecule equals an optimal binding distance |h| = `b. For bond formation, it is assumed
that the extension h fluctuates thermally with magnitude σ =

√
kBT/κ, where kBT is the

thermal energy scale. For bond dissociation, we focus on slip-bond dynamics with rupture
rates β−(h) that increase exponentially with bond extension, see Secs. 4.5 A-B.

In a second, generalized model, see Fig. 4.1c, the molecules can undergo sudden
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conformation changes. Unfolded states are denoted with a subscript u, such that au are
the unfolded, unbound states and bu the unfolded, bound states. The overall number of
bound molecules, irrespective of their conformational state, is written as NB = ∑

Nb... and
the corresponding overall number of unbound molecules is NA = ∑

Na... . Details of the
reaction rates are given in Secs. 4.5 A-C. We assume that mechanical relaxations occur
instantaneously and viscous damping is neglected so that the sum of the forces borne by
the bonds equals the applied load F at all times. Stochastic bond dynamics are simulated
with an exact algorithm, see Supplementary II.

Self-stabilization of macromolecular adhesions. We first consider the basic
adhesion model, in which molecules do not change conformation, see Fig. 4.1a and SI movie 1.
Simulations reveal that a load F can lead to a quasi-stationary adhesive state where
perpetual rupture and binding events result in a tangential sliding of the surfaces. For these
adhesions, the mean number of bonds always decreases monotonically with F , Fig. 4.1b.
Therefore, increasing load on adhesions consisting of simple molecules promotes adhesion
failure characterized by rupture of all bonds. Next, we consider the generalized adhesion
model consisting of molecules that undergo an unfolding transition under force, see Fig. 4.1c
and SI movie 2. For simplicity, we assume here that unfolding only entails an increase
in the rest length while the elastic properties remain unchanged. Remarkably, the mean
number of bonds now initially grows with increasing load F , Fig. 4.1b, which depends
on state-network features that will be discussed below. The growth of the mean number
of bound molecules prevents early adhesion failure. This striking effect, which we call
“self-stabilization”, is the central finding of this work.

The simulation results can be corroborated with an analytical mean-field approxima-
tion [277]. The stationary distributions of molecules with extension h in the bound and
unbound states are denoted by nb(h) and na(h), respectively. For the basic adhesion model
without molecule unfolding, a drift-reaction equation is assumed where the average sliding
velocity of the adhesion v = 〈ṡ〉 stretches the molecule distributions as

∂tnb(h) + v∂hnb(h) = β+(h)na(h)− β−(h)nb(h) . (4.1)

Only solutions with ∂tnb(h) = 0 are considered. The total number of molecules in the
adhesion is obtained as N = NB +NA =

∫∞
−∞[nb(h) + na(h)]dh, where the extension of the

unbound molecules obeys a Gaussian distribution, na(h) ∝ N (0, σ2
a). Using the binding

constant kβ as time unit and the extension variance of bound molecules σ2
b as length unit,

the non-linear equations are solved by expanding the distributions for small absolute values
of ṽ = v/(kβσb). For example, nb(h) = n∗b(h) + ṽnb1(h) + 1

2 ṽ
2nb2(h) +O(ṽ3). The asterisk

(∗) here and in the following denotes equilibrium quantities calculated with F = 0. Using
the additional assumption that the optimal molecule extension for binding, `b, is much
smaller than the typical length fluctuations, ˜̀b = `b/σb � 1, we find

NB −N∗B ≈ −(2/π)1/2 ˜̀bN
∗
B ṽ

2 ∝ −F 2 . (4.2)
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Due to symmetry under reversal of the force direction, we have to leading order ṽ ∝F . For
the general case, where `b � σb does not hold, the first non-vanishing correction to the
equilibrium solution for the bonds NB can be shown to be of second order ∝ ṽ2 and strictly
negative, see Supplementary III. Thus, tension reduces the number of bonds and thereby
destabilizes simple adhesions consisting of molecules that do not undergo conformation
changes, as expected from intuition.

To support the effect of self-stabilization in the generalized model shown in Fig. 4.1c
with analytical theory, we supplement Eq. (4.1) by two additional equations for binding
and unfolding transitions (see Supplementary IV). For |ṽ| � 1, the overall number of
bound molecules, NB = Nb +Nbu , results as

NB −N∗B ≈ NB,1ṽ +NB,2 ṽ
2/2 ∝ F. (4.3)

Note that the leading contribution is linear in ṽ for self-stabilization. A numerical analysis
shows that the coefficient NB,1 is positive for ˜̀b < 1. The second-order correction ∝ v2

can be positive or negative, see Supplementary Fig. S3. Hence, analytical models confirm
the existence of a self-stabilization regime where the number of adhesion bonds initially
increases with load.

Mechanism of self-stabilization. To identify the necessary ingredients for self-
stabilization, we compare in Fig. 4.2 a simple adhesion model with fixed molecule number
(model I), a model comprising a molecule reservoir and therefore adhesions of variable size
(model II), a model with a fixed number of molecules that can unfold under force (model
III), and a model combining unfolding molecules with a molecule reservoir (model IV).
Some results from models II and IV are also shown in Fig. 4.1. For models I-III, the mean
number of bonds NB decreases with force, see Fig. 4.2b. For model II with variable system
size, even the number of molecules in the adhesion decreases with force, leading to an earlier
adhesion failure on average. Thus, neither a variable adhesion size nor molecule unfolding
alone result in self-stabilization. In model IV, which combines a variable adhesion size with
molecule unfolding, both the total number of molecules N and the number of bonds NB

initially grow with increasing load on the adhesion, Figs. 4.2a,b. The increased number
of bonds improves load sharing among the molecules. One consequence is a significant
reduction of the sliding motion of the adhesion, Fig. 4.2c. The inset in Fig. 4.2b shows that
the bound fractions of molecules, NB/N , as a function of F collapse onto a single master
curve for all models (I-IV). Hence, self-stabilization results from force-induced growth of
the adhesion and not from changes of the rupture properties of individual molecules. This
is the key difference to established catch-bond models, where individual molecules exhibit
an increase of bond lifetime within limited force regimes.

Figure 4.2d illustrates the underlying mechanism of self-stabilization. The tangential
load F causes a continuous molecular-state turnover with recurring stretch, unfolding,
and rupture of molecules along the transitions a → b → bu → au. Overall, the load
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lead to a relative motion of the two planes bounding the adhesion. Self-stabilization reduces
the motion. d) Relative deviation of the average number of unbound molecules NA from
equilibrium. Note the increased molecule accumulation in the a states for self-stabilization.
See Supplementary I for parameters.

increases the occupation of state au. Meanwhile, the state a, representing unbound, folded
molecules, is in contact with the reservoir and molecules are replenished here, which allows
a concurrent increase of overall molecule number. The recruitment of molecules from
the reservoir crucially depends on the intermediate state au not being equilibrated, see
Suppl. Figs. S6,S8. It is important to note that without the reservoir, self-stabilization
cannot occur because it requires growth of the adhesion cluster. Generically, the principle
behind self-stabilization is that molecular-state occupation statistics are driven out of
equilibrium in a way that results in further influx of molecules from a reservoir.

Self-stabilization is a robust mechanism. To be an effective mechanism, self-
stabilization must compensate load changes in non-stationary conditions and should not
depend on a fine-tuning of parameters. To investigate these aspects, we simulate step-like
load changes for different parameters. Following a load jump from F1 = 0 to F2 = F ,
adhesion clusters either dissociate quickly or reach a non-equilibrium steady state. Self-
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stabilization after a load jump depends on the strength of the molecule exchange with the
reservoir, which is controlled by the values of γ+ and γ−, Fig. 4.3a. Exemplary trajectories
for the number of bonds in the folded and unfolded states, b and bu, are shown in Fig. 4.3b.
The forces at which rupture occurs most likely in self-stabilizing adhesions are higher
than those for non-self-stabilizing adhesions and grow with increasing reservoir-exchange
rates, see Supplementary Fig. S4. The self-stabilization mechanism can thus also work
under dynamic load conditions and a strong reservoir coupling (γ± > kβ) ensures sufficient
molecule influx.

F1

F2

fo
rc

e

a b

0

100

200

nu
m

be
r o

f b
on

ds
F1 = 0 kBT/ , F2 = 444 kBT/

no reservoir
+ = 0/t0

rupture

-15000 0 15000 30000
reaction counter

0

100

200
with reservoir

+ = 1000/t0

stabilization

Nb Nbu

0 20 40 60 80
force F2 [kBT/ ]

100

103

106

lif
et

im
e 

[1
/k

]

c k = 0.1k = 1/t0

+ [1/t0]
0
0.01
1
100

0 20 40 60 80
force F2 [kBT/ ]

0

5

10

un
fo

ld
in

g 
le

ng
th

 
[

]

d i
no reservoir

+ = 0/t0

0 20 40 60 80
force F2 [kBT/ ]

0

5

10

un
fo

ld
in

g 
le

ng
th

 
[

]

ii
with reservoir

+ = 100/t0 log( k )

2

0

2

4

6

8

F

reservoir γ-

γ+

strong reservoir
connection

robust self-stabilization
increased lifetime

Response to a sudden force increase

Lifetimes of small adhesion clusters

Figure 4.3. Rupture behavior and lifetimes of adhesion clusters. a) The reservoir-exchange
rates γ± control the association of and dissociation of molecules with the adhesion. b) Ex-
emplary force-response of adhesion clusters without reservoir connection and with strong
reservoir connection. A force jump amplifies molecule unfolding. Without self-stabilization,
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γ± = 0 (i) and γ± = 100/t0 (ii). See Supplementary I for other parameter values.
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To measure adhesion lifetimes, we simulate systems consisting of few molecules. Load-
jump simulations are carried out for a reservoir-exchange rate ratio γ = 1, which leads to
adhesions with N∗ ≈ 10 molecules in equilibrium. Lifetime is measured as the time from the
force jump, F1 → F2, to the rupture of the last adhesion bond. While lifetimes of adhesions
with no reservoir coupling decrease monotonically with force, i.e., show a pure slip-bond
behavior, lifetimes of self-stabilizing adhesions exhibit a maximum at non-vanishing forces,
Fig. 4.3c. This lifetime maximum becomes more pronounced for increasing γ+ and also
depends on the rate-constant ratio kδ/kβ , see Supplementary Fig. S5. To further assess the
robustness of the adhesion-lifetime increase to parameter choices, we vary the unfolding
length ∆, which determines the width of the energy barrier between the native and the
unfolded molecule state. For adhesions without reservoir coupling, γ± = 0, the unfolding
length ∆ does not have a large impact on the adhesion lifetime, see Fig. 4.3d(i). However,
a significant increase in adhesion lifetimes is observed for a broad range of unfolding
lengths ∆ > 0 if the reservoir coupling is strong, see Fig. 4.3d(ii). Self-stabilization is less
effective for very small or very large values of ∆, where native and unfolded state become
indistinguishable or the unfolded state becomes inaccessible, respectively.

Cell-matrix adhesions. The principle of self-stabilization can be realized in a large
variety of molecular-state networks as long as they allow for unbound molecules that
are not directly exchanged with the reservoir. As a specific biological realization of the
self-stabilization mechanism, we study a model for talin unfolding and interaction with an
adaptor protein, such as vinculin, that reduces the dissociation of talin from focal adhesions,
see Fig. 4.4a. The talin rod domain contains 11 cryptic vinculin binding sites. Under load,
subdomains of the rod successively unfold. Vinculin that is recruited to the adhesion blocks
talin refolding and promotes focal adhesion growth [9, 345]. Talin unfolding typically starts
at forces around 5 pN [11, 271, 345] with the R3 domain, by which two vinculin binding
sites are exposed. In our model, we focus on this first unfolding transition. Six additional
vinculin-bound states bu, and au, are introduced as both sites in the R3 domain can be
occupied independently, see Fig. 4.4b. Rate constants for binding and unbinding of vinculin
to unfolded talin are denoted by λ± and are assumed to be the same for all transitions.
Other model parameter values are estimated according to experimental results [213, 320,
347], see Supplementary I.

In the vinculin-bound states, talin refolding is blocked. Thus, vinculin binding generates
talin states that are not in direct contact with the reservoir and can therefore be driven
out of equilibrium. Simulation results for different values of the parameter λ = λ+/λ− are
shown in Fig. 4.4c. For λ = 0, all unbound states are equilibrated with the reservoir and
no self-stabilization occurs. For λ > 1, the number of bonds increases with force, which
not only stabilizes the adhesion but also translates to a reduction of adhesion sliding, see
Fig. 4.4d. Given the high affinity with a dissociation constant in the range 10−7 − 10−8 M
of unfolded talin for vinculin, we expect the vinculin binding constant to be larger than
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unity [23, 65, 320, 339]. Moreover, we conjecture that the remaining cryptic binding sites
in talin that open at higher forces extend the demonstrated self-stabilization effect to
larger loads. In summary, the minimal adhesion model can be applied to biological systems
like the integrin adhesome, where vinculin binding at unfolded talin domains results in a
reaction network containing bond reservoirs that are populated by force application. This
leads to self-stabilization. Analytical treatment of a simplified, corresponding mean-field
model is given in Supplementary VI.
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Figure 4.4. Exemplary realization of self-stabilization in focal adhesions. a) Talin binds
with its globular head to integrin and with its rod to actin filaments. The first domain to
unfold under force is the R3 domain with two vinculin-binding sites. b) State diagram for
talin molecules. c-d) Averaged steady-state simulation results for different linking ratios
λ = λ+/λ−. See Supplementary I for parametrization. c) Vinculin recruitment produces
self-stabilization. d) The relative motion of the top plane modeling actin fibers is reduced
through vinculin-based self-stabilization.

4.4 Discussion

Our theory reveals a strikingly simple mechanism to produce a counter-intuitive load-
response of adhesions, in which tangential mechanical load can result in adhesion en-
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hancement instead of adhesion weakening and rupture. This self-stabilization relies on
molecular-conformation state-networks that are driven out of equilibrium by a mechanical
load. By shifting the state occupations, the load causes a net influx of adhesion molecules
from a surrounding reservoir. Notably, this self-stabilization does not require extra chemical
energy, but the non-equilibrium conditions produced by the load suffice.

The primary motivation for our theoretical work are experimental results on integrin-
based focal adhesions that adapt their size to the applied load in planar cell cultures.
Different focal adhesion stabilization mechanisms presumably act in parallel, including actin
polymerization, transcription regulation, integrin activation, and conformation changes
of the adaptor protein talin. Contrasting this complexity, we find that adhesion self-
stabilization emerges naturally in models that merely incorporate the unfolding transition
of talin and a mechanism preventing rapid bulk-exchange of unfolded states, e.g., vinculin
binding. Since the models respect basic physical constraints such as the detailed-balance
conditions, no energy is artificially injected in the system. Additional chemical driving,
e.g., through the Rap1-GTP–interacting adaptor molecule [142] or phosphorylation of
vinculin or paxillin [305, 359], can provide an additional layer of biological control over the
suggested adhesion-stabilization mechanism.

Mechanosensitive conformation changes of adhesion-linked proteins and subsequent
recruitment of additional molecules are recurring motifs in many fundamental adhesion
structures besides focal adhesions, for instance adherens junctions [189, 345, 351] and
hemidesmosomes [361]. Motor proteins also undergo mechanosensitive conformation
changes and can form dynamical ensembles. Therefore, we expect that the suggested
non-equilibrium mechanism for self-stabilization can help to decipher many physiological
and pathophysiological processes controlled by mechano-chemical factors, and may even
allow novel designs of bio-inspired, artificial adhesion systems.

4.5 Model and Methods

A Binding

Different states are allowed to have their own spring constants and corresponding quantities
are denoted by subscripts, e.g., κa and σa =

√
kBT/κa. The probability per unit time for

an unbound molecule to bind at an extension h is given by the function

β+(h)na(h)
Na

= kβ√
2πσb

e
− (|h|−`b)2

2σ2
b

+ εb
kBT , (4.4)

where kβ is the intrinsic binding rate constant and εb is a constant. Similar binding
rate expressions have been used previously [32]. The total binding rate is obtained by
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integration over h so that

β+ = kβ
(
1 + Erf

(
˜̀b/
√

2
))

eε̃b , (4.5)

where Erf(x) denotes the error function and the dimensionless quantities ˜̀b = `b/σb and
ε̃b = εb/(kBT ) are used. Binding of unfolded molecules via β+

u (h) is defined analogously
with the extension hu of unfolded molecules.

B Unbinding

The rupture rate β−(h) is defined by the detailed-balance condition in thermal equilib-
rium [90],

β+(h)/β−(h) = e−h
2/(2σ2

b ) + h2/(2σ2
a) + εb , (4.6)

where εb = ε̃b + ln(σa/σb) is the effective binding affinity. The rupture rate results as

β−(h) = kβe(2|h|`b − `2b)/(2σ2
b ) . (4.7)

The rupture rate of unfolded bonds, β−u (h), is defined analogously with the extension hu of
unfolded molecules.

C Unfolding and refolding

The unfolding and refolding reaction is modeled as the transition between two local energy
minima separated by a single barrier. The distance to the barrier is denoted by ∆1 for
unfolding and by ∆2 for refolding. Their sum is equal to the total unfolding length ∆. The
unfolding rates are thus defined as

δ+
a,b(h) = kδe(2∆1h−∆2

1)/(2σ2
a,b)− ε̃f , (4.8)

where ε̃f = εf/(kBT ) is a constant energy contribution for the conformation change. The
reverse rates are given by

δ−a,b(h) = kδe(−2∆2h−∆2
2)/(2σ2

a,b) . (4.9)

The ratio of unfolding to refolding rate of bonds is given by the energy change of a bond
going from extension h to h−∆ as

δ+
b (h)/δ−b (h−∆) = e(2h∆−∆2)/(2σ2

b )− ε̃f . (4.10)

For unbound molecules, the total unfolding probability per time and bond is given by
δ+
a = kδ exp (−ε̃f) . The total refolding rate is δ−a = kδ .
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Supplementary Information

I Parameters

The minimal model for self-stabilization presented in the main text is motivated by focal
cell-matrix adhesions. Model parameters were chosen accordingly. Table S1 contains all
model parameters and their numerical values employed for the simulations if not stated
otherwise in the text.

Variable Description sim. model sim. talin unit
kBT thermal energy 4.114 4.114 pN nm
κa spring constant 0.25 0.5 pN nm−1

κb spring constant 0.25 0.5 pN nm−1

σ
thermal fluctuation
length

4.057 2.868 nm

kβ rate, binding 1 1 1/t0
`b binding distance 1 1 nm
εb energy, binding 1.50 3.00 kBT

kδ rate, folding 1 100 1/t0
εf energy, folding 0.50 5.83 kBT

∆ unfolding length 10 12 nm

∆1
transition state dis-
tance, unfolding

5 7 nm

∆2
transition state dis-
tance, refolding

5 5 nm

λ+ rate, linking {0, 1, 2} {0.0, 0.5,
1.0, 2.0} 1/t0

λ− rate, unlinking 1 1 1/t0

γ+ rate, addition from
reservoir

{20.0, 14.5,
11.4}

{1., 0.996,
0.991, 0.977} 1/t0

γ−
rate, removal to reser-
voir

1 0.1 1/t0

Table S1. Model parameters and values employed for simulations.

In focal adhesions, mechanical force is transmitted along single or multiple proteins
linked in series. In the latter case, the overall spring constant κb will be dominated by the
element with the smallest spring constant. The stiffness of cellular adhesion proteins lies in
the order of pN nm−1 [180, 274]. The employed value of 0.25 pN nm−1 is similar to values
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used for previous adhesion models [112, 121, 263, 288]. The values of κa,b used for the talin
simulations were chosen to match the experimentally measured unfolding and refolding
behavior, as explained below. The thermal energy scale kBT and the spring constant κ
determine the mean thermal fluctuation length σ, which is used as a length unit.

Experimentally, turnover of talin is significantly faster than turnover of integrin [147].
The binding and unbinding rates of talin are determined by the intrinsic rate kβ, the
optimal binding distance `b, and the constant energy contribution εb. The intrinsic binding
rate constant kβ sets the time unit t0. The value of the binding distance `b agrees with
the value employed in Ref. [263] and is smaller than the fluctuation length. The strength
of individual bonds is determined by F0 = kBT/`b ≈ 4 pN, as the rupture rate depends
on force F as ∝ exp(F/F0). The constant εb can be understood as an effective affinity
parameter. Its value is chosen to be rather low to fix the adhesion cluster size at equilibrium,
which is proportional to exp(εb/kBT ), compare Refs. [32, 33].

The unfolding and refolding rates depend on kδ, εf , ∆ and ∆1,2 with ∆ = ∆1 + ∆2.
The energy contribution εf determines the ratio between folded and unfolded molecules
in equilibrium. It shifts the energy barrier between both states that are separated by the
distances ∆1 and ∆2. For the simulations of talin molecules, the unfolding and refolding
rate constants are chosen in accordance with the experimental results in Ref. [347]. For a
time unit t0 = 1 s, unfolding occurs at a rate of 0.015 s−1 at zero force. The folding and
unfolding rates intersect at a force of 5 pN, the value at which talin R3 domain unfolding
and refolding is observed [320, 345, 347].

The cross-linking by additional adaptor proteins is described by making use of two rate
constants λ±. In the general simulation model, the value of these constants lies within
the same order of magnitude as the intrinsic rate constants kδ and kβ . For integrin-based
adhesions, this reaction is realized by the association of vinculin to unfolded talin domains.
The molecular interactions of talin and vinculin are highly complex. At low forces, vinculin
binding at unfolded talin domains strengthens the adhesion [76, 156, 345]. The recruitment
of vinculin is proposed to act as a negative feedback loop that stabilizes the force acting on
the complex [320]. Additionally, the vinculin-talin interaction also depends on the direction
of forces [179]. In our model, we assume linking-rate constants with a value comparable to
the intrinsic binding rate kβ . In recent experiments addressing the association of vinculin
with the talin R3 domain, vinculin binding has been observed with a rate on the order of
10−1 s−1 when sufficient tension was applied to talin to induce unfolding [320].

The exchange of molecules with a reservoir is governed by the two rate constants γ+

and γ−. Their ratio γ is proportional to the number of molecules in the adhesion-cluster at
equilibrium, i.e., when F = 0. For comparability of the results of different models, the rate
for adding molecules was increased from γ+ to γ̃+ = γ+(1 + exp(−εf/kBT )) for the model
without unfolding, and similarly when linking is included. This choice ensures the same
number of molecules and bonds at F = 0. As described in the main text, the molecule-
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exchange with the reservoir plays a fundamental role for the self-stabilization mechanism.
A strong connection to the reservoir allows the adhesion to grow with increasing force.

The construction of molecular state models for talin in integrin-based adhesions poses a
challenge due to the large number of states and due to the fact that addition and removal
of an adhesion molecule requires several steps in vivo [176, 241]. Furthermore, several
pathways have been suggested for the recruitment of talin to integrin-based adhesions [178].
Values for the halftime of fluorescence recovery after photobleaching (FRAP) experiments
for talin in focal adhesions are on the order of seconds or tens of seconds, depending on the
cell type and substrate stiffness [199, 305]. The exchange of single molecules can therefore
be expected to occur on timescales of seconds or even faster. Hence, the values for γ± are
chosen such, that they ensure a frequent exchange of molecules with the reservoir, but still
allow to observe the processes within the cluster.

II Stochastic simulations

Molecule-state trajectories are simulated with the Gillespie algorithm [137, 138]. Its basis
is provided by the stochastic formulation of chemical kinetics where the probability that a
reaction i will happen in the infinitesimal time interval δτ is determined by the product of
the available reactants or reactant pairs Ni and a parameter µi. Assuming j ∈ [1, . . . ,m]
available reactions, the function P (i, τ) describes the probability that the reaction i is
the first one to occur after a waiting time τ in the next infinitesimal time interval. For
0 ≤ τ <∞ we have

P (i, τ) = Niµi exp


−

m∑

j=1
Njµjτ


 . (4.11)

Starting from an initial configuration, the time for the next reaction and the type of reaction
are drawn according to P (i, τ) repeatedly. Force balance is restored instantaneously after
each event.

In response to the tangential external force, adhesion clusters either reach a quasi-steady-
state or dissociate. The time- and ensemble averages are calculated for trajectories that
do not lead to complete dissociation during the simulation time. If not stated otherwise,
50 trajectories are tracked for > 106 single-bond transitions for the measurements of
steady-state quantities, during which the tangential force is held constant. To measure
adhesion lifetime, more than 200 cluster trajectories are simulated until their dissociation.
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III Adhesion model without unfolding

The following mean-field equations are used to approximate the dynamics of the stretch-
dependent state-occupation numbers in the basic adhesion model without molecule unfolding

∂

∂t
Na = −β+Na +

∞∫

−∞

β−(h)nb(h)dh− γ−Na + γ+ , (4.12)

∂

∂t
nb(h) = −v ∂

∂h
nb(h)− β−(h)nb(h) + β+(h)na(h) , (4.13)

where we omitted explicit t-dependence in our notation. Since the unbound molecules
in state a are assumed to relax quickly mechanically, their extensions obey a Gaussian
distribution. Equation (4.12) describes the mean total number of unbound molecules. The
mean number of bonds nb(h) evolves according to Eq. (4.13). The drift term in (4.13)
accounts for the average relative velocity v = 〈ṡ〉 between the adhesion planes that is due
to the tangential force F . An expansion of nb(h) as

nb(h) =
∞∑

j=0

1
j! nbj

(h) ṽj , (4.14)

with ṽ = v/(kβσb) solves the steady state conditions ∂

∂t
Na = 0 and ∂

∂t
nb(h) = 0 if

nb0(h) = n∗b(h) = γ+

γ−
β+(h)
β−(h) pa(h) , nbj

(h) = −j
n′bj−1

(h)
β−(h) for j > 0 , (4.15)

where pa(h) is a Gaussian function with zero mean and variance σ2
a and the prime denotes

the derivative with respect to the extension h. The first correction nb1(h) is an odd function,
so that its integral vanishes. The first non-vanishing correction is given by the term for
j = 2. Up to second order, the integrated steady state solution for the mean number of
bonds NB = Nb is given by

NB =
∞∫

−∞

nb(h)dh = N∗B

(
1−

√
2
π

˜̀be˜̀2
b
(
1−
√

2π ˜̀be2˜̀2
bErfc

(√
2˜̀b
))
ṽ2
)

(4.16)

with N∗B = γ+

γ−
eεb ,

where ṽ = v/(σbkβ) and ˜̀b = `b/σb have been used and Erfc(x) denotes the complementary
error function. This first correction ∝ v2 is negative since the complementary error function
for an argument x > 0 is bounded by

Erfc(
√

2`b) ≤ 2√
π

e−2˜̀2
b

√
2˜̀b +

√
2˜̀2

b + 4/π
<

e−2˜̀2
b√

2π ˜̀b
. (4.17)

The force-balance equation F =
∫∞
−∞ nb(h)κbhdh connects the external force with the

resulting mean velocity v. The lowest-order contribution (j = 0) to the force balance
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vanishes because nb0(h) is symmetric. For the first non-vanishing correction, we find

F̃ = Fσb
kBT

= N∗Be˜̀2
b/2
(
− 2˜̀b√

2π
+
(
1 + ˜̀2

b

)
e˜̀2

b/2Erfc
( ˜̀b√

2

))
ṽ . (4.18)

The bracketed term on the right hand side of Eq. (4.18) is strictly positive. The approxi-
mations for ˜̀b � 1 are given in the main text.
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Figure S2. The average steady-state behavior of basic adhesions without unfolding. Symbols:
Simulation results. Solid lines: analytical approximations using an expansion in ṽ up to
second order. Dash-dotted lines without symbols: Approximation of the expansion for
˜̀b � 1. a) The analytical approximation slightly underestimates the mean number of
bonds in steady state. b) The force-balance condition connects the external force F with
the drift v.

IV Adhesion model with unfolding

The numbers of unbound molecules obey the following approximate rate equations

∂

∂t
Na = −β+Na +

∞∫

−∞

β−(h)nb(h)dh− δ+
a Na + δ−a Nau − γ−Na + γ+ , (4.19)

∂

∂t
Nau = −β+

u Nau +
∞∫

−∞

β−u (h)nbu(h)dh− δ−a Nau + δ+
a Na . (4.20)

The distributions of molecule numbers with extension h experience a drift due to the
velocity v of the upper boundary and obey

∂

∂t
nb(h) = −v ∂

∂h
nb(h)− β−(h)nb(h) + β+(h)na(h)− δ+

b (h)nb(h)

+ δ−b (h−∆)nbu(h−∆) , (4.21)
∂

∂t
nbu(h) = −v ∂

∂h
nbu(h)− β−u (h)nbu(h) + β+

u (h)nau(h)− δ−b (h)nbu(h)

+ δ+
b (h+ ∆)nb(h+ ∆) . (4.22)
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The steady-state solution for v = 0, i.e., the equilibrium solution, is given by

N∗a = γ+

γ−
, N∗au = γ+

γ−
δ+
a

δ−a
,

n∗b(h) = γ+

γ−
β+(h)
β−(h)pa(h) , n∗bu(h) = γ+

γ−
β+

u (h)
β−u (h)

pau(h) .
(4.23)

Integration yields the total number of bonds in equilibrium as

N∗B =
∞∫

−∞

[
n∗b(h) + n∗bu(h)

]
dh = γ+

γ−
eεb
(
1 + e−ε̃f

)
. (4.24)

To investigate the case F > 0, the state distributions are expanded in powers of the average
velocity ṽ as above, see Supplementary III. The connection of the state a with the reservoir
enforces Naj = 0 for j > 0. The solutions of the above equations cannot be found with an
exact iterative formula. Instead, a numerical approach is used to find the corrections Nau,j ,
which can then be inserted back into the rate equations to solve for nbj

(h) and nbu,j
(h).

Up to first order in ṽ, the mean number of bonds remains unaffected or increases with the
velocity, as demonstrated for different unfolding steps ∆ and optimal binding lengths `b in
Fig. S3a. The first-order correction vanishes for ∆ → 0 and ∆ → ∞. The second-order
correction can be both positive or negative, Fig. S3b. Strong self-stabilization is found for
˜̀b � 1.
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Figure S3. Numerical results for the coefficients of the first- and second-order corrections
to the equilibrium solution for the number of bonds. The adhesion cluster connected to a
molecule reservoir and results for different values for the molecule unfolding length ∆ and
the binding parameter `b are shown. The first-order correction ∝ v is positive for `b < σb

and vanishes in the limits ∆→ 0 and ∆� σb. The second-order correction ∝ v2 can be
both positive and negative.
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Rupture behavior and adhesion cluster lifetimes

Application of a sudden force jump from F1 = 0 to F2 > 0 either leads to a quick dissociation
of the adhesion or the adhesion system relaxes to a non-equilibrium steady state. For large
adhesion clusters (N > 20), the lifetimes of those adhesions that reach the non-equilibrium
steady-state usually exceeds the finite simulation time. The fraction of those adhesion
clusters that rupture almost immediately, Φrupt, is shown in Fig. S4a as a function of F2

for different reservoir rates γ+. Without reservoir connection, when no self-stabilization
occurs, the fraction of ruptured adhesion clusters sharply increases at a threshold force.
Self-stabilization broadens the curves and increases the typical forces at which rupture
occurs. The numerical results are well-fitted by a shifted and scaled error function.

The fraction of ruptured adhesion clusters after sufficiently long simulation times
represents the cumulative probability distribution for cluster dissociation after a sudden
force application. Therefore, the force value F2 at which Φrupt(F2) = 0.5 corresponds to
the highest rupture probability, see Fig. S4b. The most probable rupture force increases
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Figure S4. Fraction of ruptured adhesions after a sudden load-jump from F1 = 0 to F2

for different reservoir-exchange rates γ±. The ratio γ = γ+/γ− = 20 is fixed. Systems
were simulated for 5 · 105 reaction steps after the force jump. a) The fraction of ruptured
adhesion clusters as a function of the magnitude of the force step. The strength of the
reservoir connection, determined by γ±, is varied while the ratio γ = γ+/γ− is held constant.
For comparison, the fraction of ruptured adhesion clusters in simulations without reservoir
connection is shown with black bullets. A reservoir connection implies here self-stabilization.
Due to the large system size (N∗ ≈ 176), most systems that did not rupture initially after
the load jump remained stable for the rest of the simulation time. Lines show fits to error
functions. b) Force F2 at which rupture is most likely for different reservoir rate values γ+.
Values are extracted from the fit curves in a). The black horizontal line shows the most
probable rupture force for γ+ = 0.
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Figure S5. Lifetimes of small adhesions (N∗ ≈ 10) for different values of the rate prefactors
kβ and kδ and the reservoir-exchange rates γ±. The ratio γ = γ+/γ− = 1 is fixed. a) kδ
= 0, no unfolding b) kδ = kβ c) kδ = 0.01kβ. Only the lifetime results for the adhesion
model IV, which exhibits self-stabilization, display a maximum at finite, non-vanishing
forces. The lifetime of the adhesions is substantially increased for intermediate forces if γ+

and kβ are larger than kδ, such that molecules coming from the reservoir establish new
bonds frequently.

with increasing reservoir rate γ+.
Fig. S5 shows adhesion lifetimes, defined as the time until first complete dissociation

of all bonds in an adhesion after application of a force jump. Small adhesion clusters
(N∗ ≈ 10) with different values for the reservoir rates γ± are studied. The small molecule-
numbers allow a direct measurement of the lifetimes by simulating the clusters until the
last bond dissociates. For an adhesion system without molecule unfolding, realized by
setting kδ = 0, the lifetime decreases monotonically with increasing force for any value of
γ±, see Fig. S5a. The equilibrium lifetime is largest for adhesion clusters without reservoir
connection, realized by γ± = 0. Figs S5b,c display lifetimes of adhesion models with
unfolding molecules. The lifetime of adhesions without molecule exchange with a reservoir
decrease monotonically with increasing force (black bullets). However, when the system is
coupled to a molecule reservoir, so that the self-stabilization mechanism takes effect, the
adhesion lifetime curves have a maximum at non-zero, finite forces. A substantial lifetime
increase through self-stabilization is realized when both the reservoir rates and the intrinsic
binding rate kβ are large compared to the unfolding rate kδ.

Special case: no unfolding in the unbound state a

To investigate how cyclic fluxes along the state network a − b − bu − au − a affect self-
stabilization, we set δ±a = 0. Thereby, the cycle in the single-molecule transition-diagram
is broken. Physically, this modification means that unfolding is only allowed when the
molecule is bound between both planes. It should be emphasized that this model variant
still allows the emergence of cyclic fluxes in the high-dimensional continuous state space
spanned by the extensions of the molecules.

In Fig. S6, results from the new model variant are compared with results from model IV
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defined in the main text. For δ±a = 0, the increase of the adhesion molecule number with
force is significantly stronger than for the model IV with cyclic flux. Thus, self-stabilization
is enhanced in the absence of cyclic flux, see Fig. S6a,b. The relative velocity of the
two planes bounding the adhesion is reduced accordingly, see Fig. S6c. The enhanced
self-stabilization can be attributed to a stronger accumulation of molecules in the state au,
from which molecules can only escape via state bu in this model variant. Note that the
force value at which first rupture events are observed does not increase greatly, see black,
vertical lines in Fig. S6a. A comparison with the inset in Fig. S6b shows, that the force
per bond, F/NB, is strongly reduced because of the increased number of bonds NB.

0 200 400 600
force F [kBT/ ]

150

300

450

600

750

to
ta

l n
um

be
r o

f m
ol

ec
ul

es
 N

±
a = 0

a

0 200 400 600
force F [kBT/ ]

150

300

450

600

750

nu
m

be
r o

f b
on

ds
 N

B
b

0 200 400 600
force F [kBT/ ]

0

2

4

6

8

re
la

tiv
e 

ve
lo

cit
y 

of
 b

ou
nd

ar
ie

s 
v

[k
]

c

0.0 2.8F / NB [kBT/ ]

0.70

0.82
N

B
/N

0.0 2.8F / NB [kBT/ ]
0

10

v
[k

]

a au

b bu

δ+
a

δ−
a

a au

b bu

Figure S6. Steady state results of adhesion model IV (compare Fig. 4.2) and adhesion
clusters with δ±a = 0. When unbound unfolding and refolding is inhibited, the self-
stabilization effect is more pronounced.

V Adhesion model with unfolding and catch bonds

In the models considered so far, a slip-bond behavior is assumed, i.e., the increase of
the single-bond rupture rate with the applied extension h is monotonic, see sec. IV B.
Thus, so far, single-bond lifetimes decreased when tension increased. Bonds that become
longer-lived when tension increases are called catch bonds [339]. A number of molecular
bonds in cellular adhesions have been described as catch-slip bonds [68, 181, 218, 221].
These interactions behave like a catch bond up to some force threshold while the slip-bond
behavior takes effect at higher forces. To further test the generality of the self-stabilization
mechanism, simulations of different adhesion models are performed where the bonds behave
like pure catch bonds. The binding and unbinding rate of folded bonds are changed to

β+(h)na(h)
Na

= kβ√
2πσb

exp
(
−(|h|+ `b)2

2σ2
b

+ εb
kBT

)
,

β−(h) = kβ exp
(
−2|h|`b − `2b

2σ2
b

)
.

(4.25)

The rates for unfolded bonds are defined analogously with the extension hu. Note that
the difference to the slip bond rates given in sec. IV A-B lies only in one sign in each
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exponential function. Thus, detailed balance still holds in equilibrium at F = 0. The
steady-state simulation results are shown in Fig. S7. Again, only for model IV with a
combination of unfolding and association of new molecules from the reservoir, a pronounced
increase in the number of bonds is observed for small forces, see Fig. S7b. Figure S7d shows
that the self-stabilization is caused by an accumulation of unbound molecules. Beyond
this regime, at high forces, the pure catch-bond dynamics leads to a separation of the
bond distribution into two subpopulations. Firstly, one has few, rather static molecules
that carry most of the tension. Therefore, these molecules have a large extension and long
lifetime. Secondly, a large number molecules form transient bonds with low, symmetrically
distributed extensions. As a result, the cluster stops moving, as can be seen in the
velocity-force curve in Fig. S7c for high forces.
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Figure S7. Simulation results for adhesion models in which single molecules behave like
catch bonds. a) Averaged total number of molecules N in steady state. b) Averaged
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molecules in unbound states (dark blue). The parameter values are given in I.
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VI Adhesion model with unfolding and cross-linking

We consider an extended adhesion model that also contains the effect of adaptor protein
binding. Figure S8a shows the corresponding single-molecule state-transition diagram with
linking rates λ±. Linking the load-bearing molecules with adaptor proteins to the adhesion
prevents a dissociation of the molecules from the adhesion. Thereby, the linking generates
states that are not directly connected to the molecule reservoir.

For an approximate analytical description of the system, the set of equations from IV
is extended to account for the linked states. The unbound states obey

∂

∂t
Na = −β+Na +

∞∫

−∞

β−(h)nb(h)dh− δ+
a Na + δ−a Nau − γ−Na + γ+ , (4.26)

∂

∂t
Nau = −β+

u Nau +
∞∫

−∞

β−u (h)nbu(h)dh− δ−a Nau + δ+
a Na − γ−Nau + γ+ δ

+
a

δ−a

− λ+Nau + λ−Nau,1 , (4.27)

∂

∂t
Nau,1 = −β+

u Nau,1 +
∞∫

−∞

β−u (h)nbu,1(h)dh− λ−Nau,1 + λ+Nau . (4.28)

The equations determining the evolution of the extension-dependent state distributions
read

∂

∂t
nb(h) = −v ∂

∂h
nb(h)− β−(h)nb(h) + β+(h)na(h)− δ+

b (h)nb(h)

+ δ−b (h−∆)nbu(h−∆) , (4.29)
∂

∂t
nbu(h) = −v ∂

∂h
nbu(h)− β−u (h)nbu(h) + β+

u (h)nau(h)− δ−b (h)nbu(h)

+ δ+
b (h+ ∆)nb(h+ ∆)− λ+nbu(h) + λ−nbu,1(h) , (4.30)

∂

∂t
nbu,1(h) = −v ∂

∂h
nbu,1(h)− β−u (h)nbu,1(h) + β+

u (h)nau,1(h)− λ−nbu,1(h)

+ λ+nbu(h) . (4.31)

The steady-state results for the number of molecules in state a, b, bu, au are given by
Eq. (4.23). The additional linked states fulfill

n∗bu,1(h) = λ+
λ−

n∗bu(h) , N∗au,1 = λ+
λ−

N∗au . (4.32)

As before, an expansion of the distributions for small speeds |ṽ| yields the first corrections
to the equilibrium distribution. Figure S8 shows a comparison between steady-state results
obtained in simulations and in the analytical approximation. Figure S9 shows simulation
results for a range of parameters.
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Chapter 5

Extension to two dimensions

In the two preceding Chapters 3 and 4, adhesion clusters under pure pulling and pure
shearing forces are introduced and investigated. Since force and bonds are parallel at
all times in these special cases, both systems are effectively one-dimensional. In this
chapter, the restriction of parallel bond alignment is lifted and clusters under arbitrary
force directions are considered. Thus, bonds experience a mixture of pulling and shearing
forces in a two-dimensional geometry. This is a big step towards a more realistic picture of
adhesion clusters.

The chapter starts with the required modifications to the model. Especially the binding
rate has to be adjusted carefully. Furthermore, the simulation algorithm is extended by a
numerical procedure to find the cluster configuration that fulfils the force balance condition.
In the following sections, the results are shown for clusters with conformational changes and
a variable number of molecules. For the limiting case of a force that acts orthogonally to
the connected surfaces, the system is compared to the one-dimensional model of Chapter 3.
The models are not equivalent, since the bond angle with the surfaces is not restricted
to a single value any more. The strong competition of different bond conformations is
hence relaxed. In the limiting case of pure shearing forces, the model of Chapter 4 is
recovered, because the geometry again results in a parallel alignment of all bonds and
the force vector. Therefore, pure shearing forces again show a self-stabilization regime for
low forces. Naturally, the question arises, whether the self-stabilization mechanism also
occurs in the case of intermediate force angles, in which bonds are not only sheared, but
also pulled. Therefore, intermediate force angles are applied, so that adhesion molecules
experience a superposition of pulling and shearing. As in previous chapters, steady state
configurations and average cluster lifetimes are discussed.
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5.1 Modifications to the model
The extension to two dimension requires a number of modifications to the model. Again,
the adhesion cluster connects two parallel boundaries that are subject to a constant force.
Only now, the force is represented by the vector F = (Fx, Fy). The angle between force
vector and the adhesion boundary is denoted by θ ∈ [0, π/2]. Adhesion molecules are elastic
with a linear force-stretch relationship, but cannot bend. The angle between adhesion
molecule i and the boundaries is denoted by αi, so that the force balance conditions read

Fx = κ
∑

nb,nbu

hx,i = κ
∑

nb,nbu

hi cos(αi) , Fy = κ
∑

nb,nbu

hy,i = κ
∑

nb,nbu

hi sin(αi) (5.1)

To restore force balance after every reaction, the upper boundary can be shifted in x-
and y-direction. Since the lower boundary and all bonds are fixed, the coordinates of the
upper boundary, described by the total shift s = (sx, sy), are the only degrees of freedom.
Individual molecules can rupture and rebind, and unfold and refold. Additionally, unbound,
folded molecules in state a are in exchange with a molecule reservoir. Figure 5.1 shows a
sketch of an exemplary model cluster and the allowed transitions.

The transition rates for unfolding and refolding, δ±b (h), and the constant rates, δ±a and
γ±, can be adopted from the one-dimensional models, with the bond stretch h =

√
h2
x + h2

y,
compare Tab. 3.1. This also holds for the rupture rates β−(h) and β−u (h). The binding
process, which is crucial for cluster development, however needs to be redefined.

transitions

unfolding & refolding

molecule exchange

binding & rupture

x

y

F
θsx

sy

Figure 5.1. Sketch of the twodimensional adhesion cluster model. The box shows the
different single molecule transitions.

5.1.1 Binding rate

In the models studied so far, adhesion molecules bind only parallel to the force vector,
which is either parallel or orthogonal to the boundaries. For clusters with parallel binding
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only, i.e. αi = θ, the stretch for binding is determined by the current distance between the
boundaries given by sy. For folded bonds, the only possible binding stretch is then given
by

hx = hy/ tan(θ) , hy = sy − `0 sin θ (5.2)

For unfolded bonds, the vertical stretch component is given by hu,y = hy −∆ sin θ. Once a
molecule binds, its binding point stays fixed. Therefore all shifts of the upper boundary
due to bond transitions like unbinding, unfolding or folding, will take place in direction of
the force vector. The system is therefore effectively only one-dimensional and comparable
to the model in Chapter 3 with rescaled forces and lengths.

For an actual two-dimensional system, the bond angle has to be variable. In general,
possible bond angles lie in the range α ∈ [0, π]. The angle, with which the molecule
binds, is determined by the chosen binding stretch h and the current distance sy. To
demonstrate, how the binding position is obtained from h and sy, the binding point of
adhesion molecules at the lower surface is considered to be at the origin. For an upper
boundary shift (sx, sy > 0), the binding point r = (rx, ry) along the upper surface of a
folded bond can be obtained via

rx = ry/ tan(α) = ±
√

(`0 + h)2 − s2
y , ry = sy . (5.3)

For unfolded bonds, `0 has to be replaced with `0 + ∆.
In the case sy < |`0 + h|, two values are possible for the x-coordinate of r, which lead

to two options for the bond angle, α1 < π/2 and α2 = π − α1. For sy < `0, the range of
possible binding stretches is limited by the value h ≥ hmin = sy − `0 < 0. The minimal
value hmin is the point where the bond is compressed most, which is the case for α = π/2.
The binding interval is therefore narrowed to h ∈ [hmin, |hmin|]. This choice ensures that
molecule binding occurs symmetrically around h = 0 and no energy is artificially injected.
The total binding rate in this case is therefore obtained as the integral of β+(h) as defined
in Tab. 3.1 over the possible stretch values

β+
∣∣∣
hmin

= 1
A(hmin)

|hmin|∫

hmin

β+(h)√
2πσ2

dh = kβ exp(ε̃b)
A(hmin)

(
Erf

(
`b√
2σ

)
+ Erf

( |hmin| − `b√
2σ

))
,

(5.4)

where the factor
√

2πσ2 already appeared in Chapter 4. The new normalization A(hmin)
accounts for a limited stretch range for the equilibrium distribution p∗b(h). It is given by

A(hmin) =
|hmin|∫

hmin

p∗b(h) dh
|hmin|∫

hmin

1√
2πσ2

exp
(
− h2

2σ2

)
dh = Erf

( |hmin|√
2σ

)
. (5.5)
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In the limiting case sy = 0, the threshold of binding stretches can be extended to the limit
|hmin| → ∞, which leads to A(hmin) = 1. Thus, the normalization correctly reproduces the
one-dimensional model with pure shearing forces of Chapter 4.

When hmin approaches zero, the integration interval becomes small. The normalization
constant for a small finite binding interval ε is given by

A(0) =
ε/2∫

−ε/2

1√
2πσ2

exp
(
− h2

2σ2

)
dh = Erf

(
ε/2√

2σ

)
≈ ε√

2πσ2
. (5.6)

In the last step, the error function is expanded until first order in ε. This normalization
constant is used for the case sy ≥ `0, in which folded bonds can only bind vertically at
(0, sy) with α = π/2. The total binding rate for a single binding stretch h ≥ 0 is then given
by

β+
∣∣∣
h≥0

= kβ exp(ε̃b)
2A(0)

(
Erf

(
h− `b + ε/2√

2σ

)
+ Erf

(
h− `b − ε/2√

2σ

))
(5.7)

≈ kβ exp(ε̃b) exp
(
−(h− `b)2

2σ2

)
(5.8)

so that the initially introduced binding rate of Tab. 3.1 is recovered. The binding rate
therefore also reproduces the correct values for the limiting case of parallel bonds under
pulling forces of Chapter 3.

So far, only the geometry of the system determines the binding process. It allows in
general all binding angles in the full range of [0, π]. This leads occasionally, e.g. in the case
θ = 0, to the counterintuitive result of two groups of bonds that are oriented in opposite
directions. In biological adhesions, however, clusters elongate in direction of force [15, 272].
Therefore a final modification is introduced to prevent the formation of oppositely oriented
subclusters: In the case sy < `0, i.e. if two binding angles are possible, the second angle
is only allowed, if it encloses not more than 90◦ with the force vector. Hence, at θ = 0,
binding is restricted to the angles [0, π/2], while at θ = π/2, the full range [0, π] is allowed.

5.1.2 Restoring force balance

As in the one-dimensional models, it is assumed that the system relaxes fast to the
configuration which fulfils force balance. For two dimensions, the resulting new shift
s′ = s + x with the displacement x cannot be determined analytically. Therefore a
numerical Newton-Raphson method is implemented. The algorithm starts from an initial
guess for x0 and approaches the correct solution x by means of the iteration

xj+1 = xj − J−1(xj)g(xj) , (5.9)
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where J denotes the Jacobi-matrix of the equation system

g(xj) =



F̃x −

∑
nb,nbu

h̃x,i(xj)

F̃y −
∑

nb,nbu

h̃y,i(xj)


 . (5.10)

The iteration stops, when the root of g is found within the precision goal. As a precautionary
measure, so that the iteration indeed follows the direction of the gradient towards the root,
the condition g(xj+1) · g(xj+1) < g(xj) · g(xj) has to be met. If the proposed next value,
which is obtained with Eq. 5.9, leads to an increase of the square value of g, only a fraction
0 < µ < 1 of the step is proposed,

xj+1 = xj − µ
(
J−1(xj)g(xj)

)
. (5.11)

Close to the root of g, the method converges quadratically. Rarely, but especially for
clusters with only few bonds, the Newton-Raphson method does not lead to the correct
solution, which restores force balance. In such a case, the trajectory is rejected and the
simulation starts from the beginning.

5.2 Limiting cases of pure pulling and shearing
To test the modifications, the force directions that are discussed in Chapters 3 and 4 are
analysed first. A pure pulling force is achieved by setting the angle between force vector
and the surfaces to θ = π/2. However, results are expected to differ from those presented
in Chapter 3, because adhesion bonds can bind at variable angles in the two-dimensional
model. A shearing force is realized by choosing θ = 0, which leads to a vanishing distance
sy between the two surfaces. In this case, the bonds can only align in parallel with the
surface and the force vector, so that the results of Chapter 4 are expected to be recovered.

5.2.1 Pulling force

For the case θ = π/2, Fig. 5.2 shows the marginal steady state probabilities p(s)
ni for the

four adhesion molecule states for a reservoir rate ratio γ = 1.72 and at three different force
values (orange bars). The results from the one-dimensional model under pulling forces are
given for comparison as well (blue bars), compare Fig. 3.18. While the chosen reservoir rate
ratio led to N∗ ≈ 10 molecules in steady state for the one-dimensional model, the average
number of molecules in steady state in the two-dimensional system is increased to N∗ ≈ 15.
This difference occurs, because the competition between folded and unfolded bonds is
lifted. Instead of switching between configurations with either a high number of folded or
a high number of unfolded bonds, both conformations are observed in equilibrium at the
same time. The distribution is centered around lower occupation numbers for unfolded
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Figure 5.2. Histograms of the marginal steady state probabilities p(s)
ni for the two-dimensional

adhesion cluster model at θ = π/2 and a reservoir rate ratio γ = 1.72. Results from the
one-dimensional model are shown for comparison as well, compare Fig. 3.18. Parameter
values are given in Table 5.1.

bonds than for folded bonds. The distributions of unbound molecules are comparable to
the one-dimensional model. They are determined by the reservoir rate ratio. For small,
finite forces, the majority of bonds unfolds, as in the one-dimensional case, but the effect
is shifted to higher force values because of the larger cluster size. At high forces, the high
rupture probability leads to a decreased number of bound molecules.

The steady state quantities for larger clusters at θ = 0 are shown in Fig. 5.3 and Fig. 5.4.
In Fig. 5.3, averaged simulation results for the two-dimensional model are shown as square
markers. For comparison, the steady state quantities of the one-dimensional system are
indicated with round markers and thin lines. The reservoir rate ratio γ = 8.59 leads to
N∗ ≈ 70 molecules in the cluster, compared to only N∗ ≈ 50 in the one-dimensional model.
The bound states do not switch between two different configurations, but exhibit both
folded and unfolded bonds simultaneously, see Fig. 5.3a. The average number of unbound
molecules in states a and au is comparable to the one-dimensional state and almost constant,
until progressive rupture of bonds leads to an accumulation in the unbound, unfolded
state, see Fig. 5.3b. The presence of both conformations under different angles leads to
a lower average distance between the two surfaces than in the one-dimensional case, see
Fig. 5.3c. Additionally, the larger number of molecules reduces the average stretch per
bond, so that the onset of cluster dissociation is shifted to higher force values. Figure 5.4
demonstrates the difference between the angular distributions of folded and unfolded bonds.
The boxplots show the averaged values of median, first and third quartile, and maximum
and minimum of the steady state angle distributions. While the averaged median value of
both distributions equals the force angle θ = π/2, folded bonds cover a smaller range of
angles, which furthermore decreases with increasing force. Unfolded bonds are found at
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angles between 60◦ and 120◦, and the range of binding angles decreases only slightly with
force.
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Figure 5.3. Steady state quantities as a function of force F for the two-dimensional adhesion
cluster model at θ = π/2 and a reservoir rate ratio γ = 8.59 (square markers). Results from
the one-dimensional model are indicated for comparison with round markers and thin lines,
see Fig. 3.19. a) Average occupation number of states b and bu. b) Average occupation
number of states a and au. c) Average distance between the surfaces sy, reduced by the
folded rest length `0. Parameter values are given in Table 5.1.
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5.2.2 Shearing force

To compare the two-dimensional model for θ = 0 with the one-dimensional model under
shearing forces, Fig. 4.2 is reproduced. The results are shown in Fig. 5.5, where the steady
state quantities of four different cluster models are compared. The basic adhesion cluster
with rupture and rebinding as the only allowed transitions is denoted with number I (light
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red squares). Model II is additionally coupled to a molecule reservoir and thus has a
variable total number of molecules, compare Fig. 5.5a (red circles). The models in which
the conformational change is included are indicated with blue colors. In model III, an
exchange with the surrounding is not allowed (light blue squares), unlike in model IV (blue
circles). Only model IV with both conformational changes and the reservoir connection
exhibits the self-stabilization mechanism that is also observed for the one-dimensional
horizontal system. The increased number of bonds leads to a reduced relative velocity of
the two separated boundaries. The accumulation of unbound molecules is an indicator for
the shift out of equilibrium. In fact, the steady state values of the one- and two-dimensional
system at θ = 0 coincide as expected, because in both systems, all bonds bind parallel to
the force vector.

0 200 400 600
force F [kBT/ ]

150

200

250

300

350

to
ta

l n
um

be
r o

f m
ol

ec
ul

es
 N

a

0 200 400 600
force F [kBT/ ]

120

160

200

240

nu
m

be
r o

f b
on

ds
 N

B

b

0 200 400 600
force F [kBT/ ]

0

8

16

Sp
ee

d 
of

 a
ct

in
 m

ot
io

n 
ov

er
su

bs
tra

te
 v

x
[k

]

c

0 200 400 600
force F [kBT/ ]

0.0

0.5

1.0

1.5

2.0

re
la

tiv
e 

de
vi

at
io

n 
fro

m
 e

qu
ilib

riu
m

:
un

bo
un

d 
m

ol
ec

ul
es

 (N
A

N
* A
)/N

* A

d

0.0 3.5F / NB [kBT/ ]
0.64

0.82

N
B

/N

0.0 3.5F / NB [kBT/ ]

0

16

v
[k

]

with unfolding,
with reservoir

IV

with unfolding,
no reservoir

III

no unfolding,
with reservoir

II

no unfolding,
no reservoir

I

a au

NB b bu

reservoir

NA
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with dashed lines for better visibility. Parameter values are given in Table 5.1.

5.3 Intermediate force directions
In the previous sections, the limiting cases of θ = 0◦ and θ = 90◦ are discussed and
compared to the one-dimensional systems. Here, the picture is completed by application of
forces at intermediate angles. For force angles 0◦ < θ < 90◦, bonds within the adhesion
cluster are subject to both pulling and shearing forces. The steady state results for force
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angles in steps of 10◦ are shown in Fig. 5.6. Data points are plotted until first cluster
dissociation events are observed within the simulation time. The force value at which the
first dissociation events are observed increases with decreasing force angle. Many steady
state quantities show a strong dependence on the force angle θ. The simulation results
indicate a threshold between 30◦ and 40◦ with a qualitatively different cluster behaviour
below and above this threshold.

For low force angles, i.e. θ ≤ 30◦, the number of bonds NB = nb + nbu in Fig. 5.6a
increases with force in a similar manner as in the one-dimensional horizontal system. At
force angles above the threshold, here θ ≥ 40◦, the average number of bound molecules
stays below the respective equilibrium value at F = 0. For all angles θ < 90◦, the number
of unbound molecules, NA = na + nau increases with force, see Fig. 5.6b. However, the
increase is stronger for low force angles. Within both groups, a quantitatively similar
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Figure 5.6. Steady state averages for adhesion clusters with conformational changes and a
reservoir rate ratio γ = 10 at selected force angles in the range θ ∈ [0, π/2]. Data points
are shown until first complete cluster dissociation is observed within the simulation time.
Parameter values are given in Table 5.1.
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behaviour is observed. The results from Fig. 5.6a and b are brought together in Fig. 5.6c,
which shows the total number of molecules N in the cluster.

The average elastic energy per adhesion molecule, E/N = ∑NB
j=1 κh

2/(2N), is shown
in Figure 5.6d. It is lowest for θ = 30◦, whereas the highest increase of the elastic energy
per molecule with external force is found just above the threshold, i.e. at θ = 40◦. The
strong difference coincides with a strong difference in the average separation sy between
the two boundaries, compare Fig. 5.6e. At low force angles, the cluster finds a steady
state with a small finite distance close to the value F sin θ. Binding is in many cases only
allowed with an angle α1 < π/2, so that bound molecules are aligned and stretched in the
same direction. For the group of higher force angles, the cluster separation sy is similar
to the case of pure pulling forces, i.e. close to the folded bond’s rest length `0. In this
configuration, binding is allowed at both binding angles α1 < π/2 and α2 = π−α1. Hence,
bonds are stretched in different directions, which explains the higher elastic energy per
molecule for θ = 40◦, compared to the case θ = 30◦.

For all angles θ < 90◦, a constant velocity in x-direction is observed, see Fig. 5.6f. The
approximately linear increase of vx with the external force is strongly reduced for the
group of small force angles, i.e. θ ≤ 30◦. The average velocity with which the surfaces slide
against each is highest at θ = 40◦. The observation agrees with the finding of the highest
elastic energy increase per molecule.

To further illustrate and understand the difference between low and large force angles,
averaged boxplots of the angular distributions of bound molecules at θ = 30◦ and θ = 60◦

as a function of force F are shown in Fig. 5.7. Whiskers represent the average maximal
and minimal angles of the distribution and the average median is indicated with an orange
line. At θ = 30◦ and low positive forces, the distribution of folded bonds in state b is
centered around the vertically aligned position at α = 90◦, while unfolded bonds are tilted
towards lower angles. Unfolded bonds cover a broader range of binding angles than folded
molecules. For forces F̃ ≥ 20, both distributions become narrower with an average median
between 30◦ and 45◦. The molecules in state bu cover a broader range of angles than in
state b at all presented force values. The force angle of θ = 60◦ thus leads on average to a
cluster configuration, in which bonds are oriented in different directions. Thus, all bonds
are oriented in a similar direction. For a force angle θ = 60◦, the average median of the
angular distributions for folded bonds stays close to 90◦ at all force values. The range
of observed angles narrows only moderately. The average median of the unfolded bonds’
angle drops from 90◦ at F̃ = 0 to a value between 60◦ and 75◦.

The steady state results reveal a grouping into two qualitatively different cluster
configurations: At high force angles, the separation between the boundaries is close to the
native molecule length, which enables molecule association at the second binding angle
α2. Therefore the cluster exhibits a broad distribution of bond angles. The large range of
binding angles leads to oppositely oriented bonds, so that the elastic energy per molecule
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Figure 5.7. Averaged angular distributions in steady state at a reservoir rate ratio γ = 10.
Whiskers show the averaged maximum and minimum angle, the orange line indicates the
average median value. Dashed horizontal lines indicate steps of 15◦. a,b) Boxplots for
bonds b and bu at θ = 30◦. At F̃ = 0, all bonds are aligned in parallel with an angle α = 0◦.
c,d) Boxplots for bonds b and bu at θ = 60◦. Parameter values are given in Table 5.1.

is large. The number of bonds does not exceed its equilibrium value at vanishing force,
although molecules are accumulated in the unbound states. At low force angles, i.e. under
predominantly shearing forces, the self-stabilization mechanism is observed with an increase
of bonds despite increasing force. As in the one-dimensional horizontal case this coincides
with an increase of the number of unbound unfolded molecules. They are not coupled to a
reservoir and can thus be driven out of equilibrium. With increasing force, bonds align in
the same direction. Thereby, the force is shared efficiently, so that the elastic energy per
molecule is lower than under pulling forces.

Besides the increase of bound molecules with increasing force, the self-stabilization
mechanism leads to an increased lifetime of the whole cluster in the one-dimensional model,
compare Chapter 4. To test if the average lifetime also increases in the two-dimensional
model, the time until complete cluster dissociation is measured and averaged for small
adhesions. The results are shown in Fig. 5.8. In Fig. 5.8a, the average time until complete
cluster dissociation is shown as a function of force and for different values of the unfolding
length ∆. The reservoir rate ratio γ = 1.14 leads to N∗ ≈ 10 molecules in steady state.
Cluster lifetime increases with force for the cases ∆̃ ∈ {2, 4, 6} at θ = 0◦ and θ = 30◦. In
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Fig. 5.8b, the average lifetime is shown for a large range of force angles θ for adhesion
clusters with ∆̃ ≈ 2.5. The thick dashed line indicates θ = 40◦. For angles θ < 40◦, cluster
lifetime increases under small, but increasing forces. At large forces, lifetime decreases
exponentially with force. A quantitatively similar behaviour is observed, because all bonds
rupture successively, independent of unfolding length or angle.
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Figure 5.8. Average time until complete dissociation for the two-dimensional cluster
model with unfolding and a reservoir rate ratio γ = 1.14. Clusters are initialized with
N = 10 ≈ N∗ folded bonds. a) Lifetimes for a wide range of unfolding lengths ∆̃ and
selected force angles. b) Lifetimes at ∆̃ ≈ 2.5. The thick line indicates the force angle
θ = 40◦, below which a significant increase in lifetime despite increasing force is observed.
Parameter values are given in Table 5.1.

5.4 Summary
In this chapter, the extension of the adhesion cluster model from one to two dimensions
is presented. Even if the general idea, the possible molecule transitions and assumptions
remain unchanged, some modifications are required. One important difference concerns
the binding mechanism. In contrast to the one-dimensional systems, the bonds in the
two-dimensional cluster are in general not in parallel to each other and to the force vector.
The distance between the two boundaries determines the possible range of stretches, with
which a molecule can rebind to the upper surface. The chosen binding stretch determines
the angle α1 ≤ π/2, under which the molecule binds. The alternative angle α2 = π − α1 is
chosen with a 50% chance, if it encloses less than 90◦ with the force angle. The binding
rate is defined such, that in the limiting cases θ = 0◦ and θ = 90◦, the binding rates
of the one-dimensional systems are recovered. As a second modification, the simulation
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algorithm is adjusted to account for the two-dimensional geometry. Large parts of the
algorithm can be straightforwardly transferred from the one-dimensional system. Only
the relaxation step, which is required after each stretch-dependent reaction and which
restores the force balance, is revised. Because of the individual bond stretches and angles,
a numerical method is employed to calculate the typically small shift of the upper surface
that corrects the imbalance of forces.

The analysis of simulated cluster trajectories shows that the cluster evolution depends
strongly on the angle θ between force vector and the bounding surface. For a cluster under
pure shearing force at θ = 0, all bonds can align in parallel, so that the dimensionality
is effectively reduced to one. Thus, the steady state configuration agrees with the results
from the one-dimensional horizontal system presented in Chapter 4. Bonds have a broad
range of possible binding stretches. Continuous cycles of binding, stretching, unfolding and
rupture lead to an on average constant relative velocity of the two bounding surfaces. For
force angles until θ = 30◦, the average occupation numbers of molecule states stay largely
unaltered. The separation between the two bounding surfaces stabilizes at a value that lies
closely above F sin θ for low forces. All bonds are aligned in the direction of force with a
narrow distribution of bond angles, which reduces the average stretch per bond and thus
the elastic energy per molecule. As a result, the relative motion of the two surfaces is slow.

For force angles θ ≥ 40◦, a very different picture emerges. The distance that is bridged
by the cluster stabilizes at a value close to the folded bonds’ rest length `0, so that the
distribution of folded bonds is centered around the vertical binding position at 90◦. Due
to their longer rest length, the average distribution of unfolded bonds’ angles is shifted
towards lower values with an average median of arcsin(`0/(`0 + ∆)) ≈ 65◦ at positive forces.
The large width of the distribution leads to a larger elastic energy per molecule than at low
force angles, because not all bonds are aligned in direction of force. The average number
of bonds stays below its equilibrium value, although unbound molecules are accumulated
in the cluster with increasing force. The resulting relative velocity of the two surfaces
increases stronger with force than at low force angles. In the limiting case θ = 90◦, there is
no net motion. The number of bonds decreases monotonously with force. Yet, the situation
is different from the one-dimensional model, where all bonds are aligned in parallel with
the force vector. In the two-dimensional system, the bond angles are distributed from
approximately 60◦ to 120◦. The width of the distribution decreases strongly with increasing
force for folded bonds, but only moderately for bonds in the unfolded state.

The different effects of predominantly pulling or shearing forces are also reflected in the
results on average cluster lifetime. For large force angles, i.e. θ ≥ 40◦, the average time
until the last bond ruptures decreases with force. For low force angles, i.e. θ < 40◦, the
average time until the cluster dissociates increases in a limited regime of increasing forces.
This prolonged lifetime, which is already observed in the one-dimensional horizontal system,
is a consequence of the self-stabilization mechanism. The high number of bound molecules
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reduces the rupture probability of individual bonds and thus stabilizes the whole cluster.
The increase in the average cluster lifetimes is found for large ranges of the unfolding
parameter ∆. It does not occur for ∆̃ = 0, because the unfolding and refolding rates
reduce to constants and the molecules have the same response to force. At very large
unfolding lengths, the high energy barrier between folded and unfolded state suppresses
the conformational change, so that the connection between folded, bound and unfolded,
bound states is effectively broken.

In summary, the generalization of the extended adhesion cluster model to two dimensions
demonstrates that the binding mechanism and the geometry of the cluster have a strong
influence on the response of adhesion clusters to force. The effect is observed both in
the steady state configuration and in the average time until complete cluster dissociation.
While under shearing forces, the so-called self-stabilization mechanism occurs under low
surface separations, pulling forces lead to a broad distribution of bond angles at comparably
large surface separations, but not to self-stabilization.
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5.5 Parameter values
The parameter values for the simulations of two-dimensional adhesion clusters are given
in Table 5.1. In all cases, the energy unit is given by 1kBT = 4.114 pN nm, the time unit
is given by the inverse binding rate prefactor t0 = 1/kβ, and the restlength of a folded
molecule is `0 = 100 nm.

The averages are taken from Nsim trajectories. After reaching the steady state, Nmeas

measurements are taken in intervals of Nwait single molecule reactions.

Parameter Value for data in Fig.

5.2 5.3 5.4 5.5 5.6 5.7 5.8

κ [pN nm−1] 0.5 0.5 0.5 0.25 0.25 0.25 0.25
σ [nm] 2.87 2.87 2.87 4.06 4.06 4.06 4.06
`b [nm] 1 1 1 1 1 1 1
εb [kBT ] 1.5 1.5 1.5 1.5 1.5 1.5 1.5
kδ [kβ] 1 1 1 0, 1 1 1 1
∆ [nm] 10 10 10 10 10 10 10
εf [kBT ] 0.5 0.5 0.5 0.5 0.5 0.5 0.5
γ+ [kβ] 1.72 8.59 8.59 0, 20, 32.13 10 10 1.14
γ− [kβ] 1 1 1 1 1 1 1
Nsim 50 50 50 10 40 40 50
Nmeas 5 · 103 5 · 103 5 · 103 1.5 · 104 5 · 103 5 · 103 104

Nwait 102 102 1 · 102 10 102 102 105

Table 5.1. Parameter values for simulations of the two-dimensional adhesion cluster model
with binding, rupture and conformational changes.
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Chapter 6

Conclusions and outlook

In this dissertation, a stochastic model is presented to describe the response of cellular
adhesions to pulling and shearing forces. One of the main objectives was to study the effects
of conformational changes of adhesion proteins and to find possible mechanism of cluster
growth or strengthening under mechanical load. For this purpose, an idealized model
for a single cluster of adhesion molecules is introduced. As a first extension, reversible
protein unfolding is added to the set of possible transitions that change a molecule’s state.
Carefully chosen transition rates guarantee that the stochastic process, which describes
the evolution of the cluster, satisfies microscopic reversibility in equilibrium. Steady state
configurations and the average cluster lifetime are studied analytically and by means of
kinetic Monte Carlo simulations. The results show that the unfolding step has interesting
effects in both geometries, but cluster stabilization is only observed when shearing forces
are dominant. In this case, application of force leads to an accumulation of molecules in
unfolded states and as a consequence, cluster size increases.

6.1 Modelling an adhesion cluster

The model is motivated by cellular adhesions, which are based on local aggregations of
numerous different proteins. The nanometer- to micrometer-sized assemblies connect the
cytoskeleton to neighbouring cells or the extracellular matrix. On the molecular level,
the interactions that constitute the connection to the cell’s environment are diverse and
the resulting biochemical pathways are not yet fully understood. Nevertheless, common
elements and recurrent mechanisms emerge from the underlying laws of physics and the
stochastic nature of biological processes. The interplay of individual molecular bonds
results in a regulated and cooperative collective behaviour, a fundamental basis for the
integrity of tissues and migration on surfaces. In a process called mechanotransduction,
cell-cell and cell-matrix adhesions transmit and respond to mechanical signals that are
generated by the cell or perceived as cues from the environment. As one remarkable way of
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adaptation, cell-matrix adhesions grow under increasing tension [272]. The adaptor proteins
talin and vinculin have been ascribed an important role in the process of adhesion growth
and strengthening: domains along talin unfold under force and thereby open vinculin
binding sites [347]. Vinculin molecules bind with high affinity to both talin and actin
filaments and thus strengthen the connection [8]. In cell-cell adhesions, α-actenin and
vinculin are suggested to interact similarly [345].

In the model presented here, adhesion molecules are represented by elastic ligand-
receptor bonds that connect two surfaces. They share the force that acts on the upper
surface, while the lower surface is fixed. This basic concept has been used in many idealized
theoretical models of adhesion clusters before, compare Refs. [111, 264, 292]. The molecules
in the cluster undergo stochastic transitions between different states. The transition rate
definitions are of great importance, because they determine the cluster evolution. After
each transition, force balance is restored.

In the basic version of the model, molecules are either bound (state b) or unbound (state
a). The Bell-like rupture rate β−(h) increases exponentially with the absolute stretch value
|h| of the bound molecule. The probability for binding per unit time, β+(h), depends on the
required extension of the new bond and is maximal at the distance `b to the binding point.
Its definition ensures that the ratio of binding to unbinding rate equals the Boltzmann
factor for the energy difference between bound and unbound state.

In an extended version of the model, molecules can also change between their native,
folded state and a partially unfolded conformation via the unfolding and refolding rates
δ+
a,b(h) and δ−a,b(h). It is assumed, that the two conformations are separated by a single
energy barrier. Force shifts the thermodynamic potential linearly, so that the rates depend
exponentially on the stretch. The sum of the distances to the transition state ∆1 + ∆2 = ∆
yields the length change due to unfolding. The chosen values of ∆1,2 = 5 nm are close to
the fitting parameters obtained from measurements on talin R3 domain unfolding [321].
Again, the rate ratios yield a Boltzmann relation with the energy difference of unfolded
and folded state.

The remaining rates are for simplicity chosen as constants. Importantly, the probability
for a single molecule to go through the cycle of states a→ b→ bu → au, where bu and au

denote unfolded states, equals the probability for passing the reverse cycle, when no force
acts on the cluster. Thus, symmetry of time is conserved.

The idealized model inherently includes many simplifications and cannot depict the
molecular details, nor reach the complexity of cellular adhesion clusters in vivo. As one
example, the receptor-ligand bonds behave like Hookean springs and do not bend. Also,
their lateral distribution does not influence the cluster dynamics, which is furthermore
strongly restricted due to the selection of few possible reactions. The force acts on two rigid
planes, so that force is shared equally. Although these and other simplifications may impede
the comparability to specific experimental results, they do allow us to observe generic

130



Conclusions and outlook

mechanisms that are hard to detect in detailed molecular or atomistic representations of
a crowded system like cellular adhesions. Therefore the level of abstraction is helpful to
observe and understand possible mechanically induced changes in cluster configurations.

6.2 Response to pulling forces
For an adhesion cluster with parallel bonds under pulling forces, five model variants are
studied. In the simplest case with no conformational changes and a constant number of
adhesion molecules, the master equation that describes the evolution of the probability
distribution to find nb bound molecules can be solved exactly. For vanishing force, the
probability distribution is given by a time-dependent binomial distribution. In the long
time limit, the probability to find a bound molecule is given by β(0)/(1 + β(0)). This
result agrees with previous similar models [111, 292]. With increasing force, the rupture
rate increases, while the rebinding rate decreases. Therefore, the probability to find more
than one bound molecule approaches zero and the cluster switches between a configuration
with one highly stretched bond and complete dissociation. In a mean field approximation,
the average fraction of bonds equals β(h)/(1 + β(h)), but this relation holds only for small
fluctuations and hence small forces.

If unbound adhesion molecules can enter and leave the cluster, the number of unbound
molecules is regulated by the reservoir of molecules in the surrounding and fluctuates
around the value of the transition rate ratio γ = γ+/γ−. The average number of bound
molecules is proportional to γ. For vanishing force, the equilibrium probability distribution
p∗nb,na

is given by the product of two Poisson distributions with parameters γ and γβ(0).
Yet, the average fraction of bound molecules, which is obtained from the macroscopic
equations, agrees with the cluster model without a reservoir connection. Thus, without
conformation changes, fraction and total number of bonds decrease monotonously with
increasing force, as it is expected from the Taylor expansion of binding and unbinding rate.
If unbound molecules are exchanged with the surrounding, their number stays constant,
so that the total number of molecules decreases under load. For clusters of fixed size, the
number of unbound molecules increases.

The average time until complete cluster dissociation τ is derived analytically for
vanishing force and a constant adhesion size. It can also be approximated under the
assumption that cluster dissociation occurs as a rare event due to fluctuations around a
metastable steady state. The average lifetime is reduced for clusters with γ > 0 under
low forces per molecule compared to clusters with a constant size. In all model variants,
average cluster lifetime decreases monotonously with force. For large forces per molecule,
the reservoir exchange does not affect average cluster lifetime, because all bonds rupture
successively.

In the extended model, partial unfolding increases the length of adhesion molecules
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by ∆. Again, clusters with constant and variable number of molecules are considered.
Approximate solutions for the average occupation numbers in steady state are obtained from
the system of macroscopic equations. The force balance equation imposes an additional
constraint. Simulations reveal that only some of the possible steady state solutions are
realized. For low forces, the cluster is found either close to h = 0 with a large number of
folded bonds or close to h = ∆ with a large number of unfolded bonds. A configuration with
both conformations is energetically unfavourable. Unfolding is promoted under increasing
bond extensions, so that at small positive forces, the majority of bonds is in state bu
in steady state. As a result, the distance, which is bridged by the cluster, is increased.
The general response to force is qualitatively similar to the basic adhesion model without
conformational changes: the number of bonds decreases with force. For clusters with a
constant number of molecules, this leads to an increasing number of unbound molecules.
In the model variant with a reservoir rate ratio γ > 0, the occupation number of both
folded and unfolded unbound molecules is constant in equilibrium. The number of bonds
is proportional to γ, but the same qualitative behaviour is observed as for constant cluster
sizes.

Interestingly, the conformational change increases the probability for complete cluster
dissociation at low forces for clusters with a constant number of molecules. Coupled to a
reservoir, the average lifetimes for clusters with and without the conformational change
are similar.

Lastly, the complexity of the model is increased by assuming that unfolding events open
a binding site for new adhesion molecules. In the resulting linked state, bond refolding is
blocked. As a result, the average occupation numbers of linked states grow linearly with the
occupation numbers of unfolded states. The number of bonds in the configuration around
h = ∆ increases with the linking rate ratio λ = λ+/λ−, so that the average extension per
bond is reduced. Thus, the force threshold, beyond which the rupture process dominates,
is shifted to higher values. However, the qualitative cluster behaviour does not change; the
fraction of bonds still decreases with increasing force.

6.3 Response to shearing forces
In this geometry, bonds are aligned in parallel with the direction of force, but the force
vector acts in x-direction. As a result, the separation between the two surfaces vanishes.
Therefore bonds are not restricted to one binding stretch value. Instead, all stretches
within the range of the binding rate β+(h) are realized. The master equation that was
used so far for the occupation number of bonds in state b is replaced by a master equation
for the distribution b(h), the number of bonds in state b at stretch h. The contributions
for transitions to and from other states remain unchanged, but a drift term is added to
account for stretch changes while the bond stays in state b. The total occupation number
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in steady state is obtained after integration of the stationary solution over all possible
stretch values. Unbound molecules can fluctuate freely around their rest length. Thus,
their stretches can be approximated by Gaussian distributions with zero mean and variance
σ2
a. The integration can be carried out straightforwardly in the master equation, only the

influx due to bond rupture is an unknown quantity.
For the different variants of the adhesion cluster model, steady state configuration and

average lifetimes are studied in equilibrium and under shearing forces. At vanishing force,
the steady state occupation numbers of all states are equal for clusters with and without
unfolding, and with and without a reservoir connection. Because of the distribution of
bond extensions, there are more bonds in the shearing geometry than for finite surface
separations, which were discussed before, at otherwise identical parameters. In all systems,
a constant sliding velocity v between the upper and lower surface is observed for positive
forces, F > 0. The motion results from continuous cycles of binding at mostly low stretches,
unfolding (if included), and rupture at high stretches. In equilibrium, i.e. at F = 0, there
is no net motion, because each transition has the same probability as its reverse. The
dependence of v and the fraction of bonds on the average force per bond is similar in all
model variants. However, the state occupation numbers as functions of force differ strongly.
For basic and extended model with a constant number of molecules, the numbers of bonds
nb and nb + nbu decrease with force identically. In the basic model with a connection to
the reservoir, the number of bonds and also the total number of adhesion molecules are
reduced under load. Complete cluster dissociation is therefore observed already at low
forces.

While the first three model variants show a qualitatively similar response to pulling
and shearing forces, adhesion cluster models with unfolding and a reservoir connection
behave fundamentally different under shear: the total number of molecules and the number
of bonds increases with increasing forces. This reduces the sliding velocity, stabilizes
the adhesion and enhances the average cluster lifetime. Notably, the average lifetime
peaks at non-vanishing forces. Even though all individual molecules act as slip bonds,
the cluster response resembles the rupture characteristics of a catch-slip mechanism. The
counter-intuitive response to force results from an accumulation of unfolded molecules.
Since the unbound, unfolded state is not in contact with the reservoir, the system finds
a non-equilibrium steady state, in which the cycle a → b → bu → au → a occurs more
frequently than its reverse. The effect is amplified, when the unfolding and refolding
rates of unbound molecules are set to zero. Even though the cycle in the single molecule
transition diagram is opened, the unfolded states are strongly accumulated, because rupture
dominates at high stretches, while the binding process is unaffected by force.

The discovered self-stabilization mechanism also occurs when unfolded, unbound
molecules are equilibrated by a reservoir, as long as other states that are connected
to the unfolded conformation can be shifted out of equilibrium. This is demonstrated for a
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model variant that is motivated by talin R3 domain unfolding with subsequent vinculin
binding. In this case, the linked states are accumulated and lead to an increasing number
of bonds despite increasing forces.

6.4 Extension to arbitrary directions of force
The extension of the model to two dimensions is an important step towards a more realistic
picture of adhesions. In the one-dimensional systems discussed before, all bonds are aligned
in parallel with the force direction. Even though both focal adhesions and cadherin-based
cell-cell adhesions show a well-organized structure [30, 174], the parallel alignment poses a
strong restriction. In the case of pulling forces, it leads to a competition between folded and
unfolded bonds. For a cluster under shear, the separation between the surfaces vanishes,
although typically at least a small finite distance is bridged by an adhesion [2]. Additionally,
the mechanical cues that are generated and perceived by cells are of different origins, so
that a superposition of pulling and shearing can be expected.

For the two-dimensional adhesion cluster model, only the variant with unfolding and with
a reservoir connection is considered. In this combination, the self-stabilization mechanism
is discovered under pure shearing forces. In the one-dimensional model under pulling forces,
two steady state configurations are found with either many folded or many unfolded bonds.
In simulations with force angles θ ∈ [0◦, 90◦] relative to the x-axis, a grouping into two
regimes is observed.

For high force angles, i.e. θ ≥ 40◦, the separation between the surfaces allows molecule
binding in a broad range of angles. As a consequence, the steady state separation is found
close to the folded bond’s rest length. While folded bonds are found within a small range of
binding angles around θ = 90◦, unfolded bonds exhibit a broad angular distribution. Hence,
the competition between both conformations is lifted, and folded and unfolded bonds are
present in steady state at the same time. However, under increasing load, the different
bond directions are not energetically favourable, because force cannot be shared efficiently.
The average number of bonds decreases or stays at a value close to the equilibrium case,
even though the number of unbound molecules increases. The decrease is strongest for
θ = 90◦. For force angles θ < 90◦, a constant sliding velocity in x-direction is observed.
Until θ = 40◦, the change of velocity with force increases with decreasing force angles. For
all angles 40◦ ≤ θ ≤ 90◦, average cluster lifetime decreases monotonously with force.

For low force angles, i.e. θ ≤ 30◦, the cluster behaviour resembles the one-dimensional
system under shearing forces. For small finite forces, a constant surface separation close
to the value `0 sin θ is found in steady state. The bonds are aligned approximately in
the same direction, so that they are under similar extensions. The average elastic energy
per molecule as a function of force is lowest for θ = 30◦. The sliding velocity is strongly
reduced compared to the case θ = 40◦. In this regime, the number of bonds increases with
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increasing force. Also, the number of unbound molecules grows. The self-stabilization also
affects the time until complete cluster dissociation. Under small forces, the average lifetime
is higher for 0 ≤ θ ≤ 30◦ than for larger force angles and it has its maximum at positive
forces.

In summary, the self-stabilization mechanism is not only observed under pure shearing
forces, but also up to a force angle of 30◦ with respect to the surface boundaries. Cycles
of binding, unfolding and rupture drive the system out of equilibrium and lead to an on
average constant sliding motion in direction of force. The constantly low surface separation
and accumulation of unbound adhesion molecules allow frequent rebinding, so that in total
the number of bonds grows, although more force acts on the cluster.

6.5 Outlook
Despite its simplicity, the presented adhesion cluster model shows strikingly different
reactions to external pulling and shearing forces. In particular, the model demonstrates
that a conformational change which is enhanced under load, and a variable number of
molecules suffice as ingredients for a self-stabilization mechanism, if shearing forces are
dominant. Nevertheless, the results also raise new questions and open several opportunities
for further research.

To observe new generic features or to apply the model to a concrete system, many
aspects of the model can be varied. One example that was already mentioned above
concerns the mechanical response of individual single ligand-receptor bonds. Instead of a
linear force response, a more complex polymer model could be applied. The force-extension
curve of proteins under force is often fitted to or estimated by means of a worm-like
chain interpolation formula, which includes persistence length and contour length of the
molecule [11, 43, 64]. Alternatively, it would be interesting to study adhesion clusters with
unfolding and linking with a different force response of bonds in the linked state. Since
tensions of few pN have been measured for vinculin in focal adhesions [145], it is reasonable
to assume that a linked bond, which represents the compound of talin with one or more
bound vinculin molecules, carries more force than the single bond alone.

As another modification towards a more realistic adhesion model, the rigid surfaces
could be replaced by elastic or viscoelastic media. In models similar to the basic cluster
model with a constant number of molecules under pulling forces presented here, the effects
of elastic substrates and viscoelastic cells have been studied already, compare e.g. Refs. [208,
263]. It was found that soft substrates tend to suppress rebinding while the viscoelastic
properties of the cell have an enhancing effect on rebinding. In other models, a transducer
is situated between the point of force application and the upper boundary of the cluster,
which controls how force is shared among the bonds and thus represents an effective stiffness
parameter [58, 112].
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A final example concerns the force application. In the model presented here, a constant
external force acts on the adhesion cluster. However, in many experiments, force ramps are
applied to single molecules, cells, or tissues. Morevoer, the force which acts on a cluster in
cellular adhesions is naturally not a simple constant, but changes constantly due to the
dynamics of the system. The loading rate has even been called the “master regulator” of
cell dynamics and mechanotransduction [102]. Therefore it would be useful to know, how
the results presented here change, when a force ramp is applied.
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Appendix A

Mathematical background:
Stochastic processes and
applications

This chapter starts with basic concepts from the mathematical field of stochastic processes.
Special focus lies on the class of Markov processes, which are of great importance for
various fields in natural sciences. A Markov process with a discrete state space is often
characterized by a Master equation, a differential form of the Chapman-Kolmogorov
equation. It intuitively describes the time evolution of the system using a balance of in-
and outgoing fluxes. For a continuous state space, which is a common feature of processes
including drift and diffusion, the Fokker-Planck Equation serves as a useful approximation
of the dynamics.

The second part of the chapter introduces an important application for stochastic
processes: modeling the kinetic behavior of chemical reaction systems. A stochastic
approach provides an appropriate method to represent the chemical kinetics of small or
fluctuation dominated systems, because the deterministic rate equation cannot account
for the discrete nature of the reactants. For this purpose, the system parameters, i.e.
the deterministic rate constants, need to be converted to their stochastic counterpart.
The central equation for a discrete state space is called chemical master equation. As
it often cannot be solved analytically, computational methods are frequently employed.
The Gillespie algorithm offers two rejection-free methods to generate statistically correct
samples of the system. It is used to simulate trajectories of the presented adhesion cluster
models.
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A.1 Stochastic processes

Stochasticity are elementary features of nature. A groundbreaking discovery towards this
insight was made in 1828 by Brown who observed an erratic motion of pollen particles in
liquid under a microscope [38]. The first mathematical models that could describe Brown’s
observations were developed by Thiele in 1880 and by Bachelier in 1900, but they actually
discuss a least squares method and the stock market in Paris, respectively [13, 323]. Finally,
Einstein published an explanation in 1905 which is often considered as the starting point
of stochastic modeling [100, 284]. One year later, Smoluchowski independently published
similar results [302]. Motion of the pollen is caused by frequent collisions with liquid
molecules that move in a complicated and irregular manner. Einstein treated the collisions
as probabilistic events and derived the diffusion equation for the effective behavior of the
grains. A few years after Einstein, Langevin presented an alternative model, in which
random forces are added to an otherwise deterministic equation of motion [188]. The
transport equation for diffusive motion was later developed by Fokker and generalized by
Planck [122, 260]. Since then, the mathematical field of stochastic processes has expanded
strongly and its importance for understanding experimental observations and designing
theoretical models was increasingly appreciated. In this section, a brief introduction to
some features and examples of stochastic processes is given. The topics covered here
provide a basis for the theoretical model introduced in chapter 3. The standard works of
van Kampen [173] and Gardiner [127] give a comprehensive description.

A.1.1 Definition

A stochastic process SX(t) describes the time evolution of a random variable X. A realiza-
tion of the process is a trajectory x(t). Both the state space X and the time span t can
be discrete or continuous. For discrete state space and discrete time span, the trajectory
or sample path is given by the measurement pairs (x1, t1;x2, t2; . . . ;xn, tn) that are deter-
mined by a set of joint probability distribution functions (pdf) pn(x1, t1;x2, t2; . . . ;xn, tn)
with n ∈ N. Alternatively, the system is determined by a hierarchy of conditional pdf
p1|n−1(xn, tn|xn−1, tn−1; . . . ;x1, t1). They describe the probability, that measurement n
yields (xn, tn), given that n− 1 previous measurements resulted in (x1, t1; . . . ;xn−1, tn−1).
Both sets are connected via

pn(x1, t1; . . . ;xn, tn) = p1|n−1(xn, tn|xn−1, tn−1; . . . ;x1, t1)pn−1(x1, t1; . . . ;xn−1, tn−1) .
(A.1)

A stochastic process is called stationary if the corresponding set of pdf do not change under
a time shift τ . Consequently, the moments are not effected by a time shift either.
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A.1.2 Markov processes

An important subclass for the fields of physics are so-called Markov processes. The
conditional pdf p1|n−1 of a Markov process fulfills the Markov property

p1|n−1(xn, tn|xn−1, tn−1; . . . ;x1, t1) = p1|1(xn, tn|xn−1, tn−1) (A.2)

for arbitrary n and t1 < t2 < · · · < tn. Therefore the current state (xn, tn) of a Markov
process only depends on its preceding state (xn−1, tn−1). The process has no memory of
earlier values. The whole set of pdf can be constructed from p1(x1, t1) and the transition
probability p1|1(x2, t2|x1, t1) with successive application of (A.1). For example, the function
p3(x1, t1;x2, t2;x3, t3) is obtained via

p3(x1, t1;x2, t2;x3, t3) = p1|2(x3, t3|x2, t2;x1, t1)p2(x1, t1;x2, t2)

= p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1)p1(x1, t1) . (A.3)

From this, the Chapman-Kolmogorov equation can be derived. For a continuous state
space and t1 < t2 < t3 it is given by

p1|1(x3, t3|x1, t1) =
∫
p1|1(x3, t3|x2, t2)p1|1(x2, t2|x1, t1) dx2 . (A.4)

The Chapman-Kolmogorov equation and the relation

p1(x2, t2) =
∫
p1|1(x2, t2|x1, t1)p1(x1, t1) dx1 (A.5)

need to be fulfilled by p1 and p1|1 to define a Markov process.
One famous example for a Markov process is the Wiener process. The Wiener pro-

cess is continuous in time with independent increments, i.e. the differences SX(t2) −
SX(t1), . . . , SX(tn) − SX(tn−1) are independent for all tn > tn−1 > · · · > t2 > t1. The
transition probability from (x1, t1) to (x2, t2) is given by a Gaussian distribution with mean
x2 − x1 and variance (t2 − t1)2. The initial condition is p1(x1, t1 = 0) = δ(x1). Thus, the
Wiener process is non-stationary, but as the transition probability depends only on the
time-difference t2 − t1, it is called (time-)homogeneous. The trajectories originally describe
the position of a one dimensional Brownian particle. This is the basis for a broad range of
applications from diffusion models over stochastic calculus to financial markets [168]. It is
also closely related to the random walk in discrete state space.

A Markov chain is a time-homogeneous Markov process with a discrete state space and
discrete time span. When the state space is finite with n states, the initial pdf can be
written as a vector p(t = 0) with n nonnegative entries and the transition probability as a
stochastic n× n matrix T. Since the matrix T does not depend on time, the pdf after k
timesteps can be obtained via

p(t = k) = Tkp(t = 0) . (A.6)
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Markov chains can be extended to a continuous time span. One important example for
a continuous time Markov chain is the Poisson process. The Poisson process counts the
occurrences n2 of a certain event until time t2 given that n1 < n2 events were counted at
time t1 < t2. The defining functions are

p1|1(n1 + n, t1 + τ |n1, t1) = (rτ)n

n! exp (−rτ) , (A.7)

p1(n1, t1) = (rt1)n1

n1! exp (−rt1) , (A.8)

with n = n2 − n1 and the waiting time τ = t2 − t1. The pdf p1(n1, t1) describes a Poisson
distribution with parameter rt1. Thus, the mean and variance grow linearly with time and
rate r. The rate r gives the average number of events per time. The waiting time between
two consecutive events is exponentially distributed with parameter r. A superposition of
independent Poisson processes with rates r1 and r2 results in a Poisson process with rate
r1 + r2. The Poisson process finds numerous applications where successive independent
events are modeled, e.g. particle emission, radioactive decay, arrival of customers, emails
or phone calls, occurrence of device failures or catastrophes.

A.1.3 Master equation

For many systems the master equation offers a more convenient version of the probabilistic
time evolution for time-homogeneous Markov processes. It is derived from the Chapman-
Kolmogorov equation in the limit of small time differences τ [173]. For a continuous state
space, the master equation for the pdf p(x, t) is given by

∂

∂t
p(x, t) =

∫ [
w(x|x′, t)p(x′, t)− w(x′|x, t)p(x, t)

]
dx′ (A.9)

with the transition probability per unit time to go from x1 to x2 6= x1

w(x2|x1, t1) = ∂

∂τ
p(x2, t1 + τ |x1, t1)

∣∣∣
τ=0

. (A.10)

In case of a discrete state space with n possible states the integral is replaced by a sum,
∂

∂t
pn(t) =

∑

n′

[
wnn′pn′(t)− wn′npn(t)

]
, (A.11)

and the transition probabilities are elements of a n × n matrix W. In both cases, the
master equation describes the time evolution of the probability density as the balance of
gains and losses. All fluxes into p(x, t) or pn from any other state are accounted for with a
positive sign, while all possible fluxes out of the current state are substracted.

The class of continuous time and discrete space Markov processes in which jumps
are only allowed to neighboring states are often called birth-and-death processes. These
one-step processes are described by the master equation

∂

∂t
pn(t) = −(bn + dn)pn + bn−1pn−1 + dn+1pn+1 (A.12)
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with the birth rate bn for the transition n→ n+ 1 and the death rate dn for n→ n− 1.
The transitions are illustrated in Fig. 1.1a. For constant rates bn = b and dn = d, the
processes are referred to as random walks. In the special case d = 0 with the initial
condition pn(0) = δn,0 and state space n ∈ N the Poisson process with rate b is recovered.

A special situation occurs, when the right hand side of the master equation (A.11)
vanishes, so that ṗn(t) = 0. This state, which does not change in time, is called steady or
stationary state. The solution for pn fulfills the global balance condition

∑

n′

wnn′pn′ =
∑

n′

wn′npn . (A.13)

The sum of all fluxes out of pn are balanced by the incoming fluxes. If additionally, the
detailed balance condition

wnn′pn′ = wn′npn (A.14)

for each pair n, n′ holds, fluxes vanish between all neighbouring states. In this case, the pn
describe the equilibrium distribution of the process. A stationary Markov process with an
equilibrium distribution is called reversible. Since the detailed balance condition connects
the equilibrium distribution with the transition rates of a process, it is also possible to test
for reversibility on the basis of the transition rates alone. The prerequisite is a Markov
process, continuous or discrete in time, with states n1, n2, . . . , nN and a transition matrix
with elements wij for the transition from ni to nj . The theorem called Kolmogorov’s
criterion states that a necessary and sufficient condition for this process to be reversible is,
that the product of transition probabilities in any closed loop must be equal to the product
of transition probabilities for the reversed loop [177]. In the exemplary process in Fig. 1.1b
with the loop n1 → n2 → n3 → n1, the Kolmogorov criterion reads

w1,2w2,3w3,1 = w1,3w3,2w2,1 . (A.15)

Because of its connection to the equilibrium distribution and time reversibility, detailed
balance is an important concept for physical and chemical applications.

n− 1 n n+ 1
bn−1 bn bn+1

dn−1 dn dn+1

a b
n1

n2n3

w1,2

w2,3

w3,1
w2,1

w3,2

w1,3

Figure 1.1. Examples for Markov chains. a) A Birth-and-death process with rates bn and
dn. b) A system with three states forming a closed loop.
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A.1.4 Macroscopic equations

In many cases a quantity of interest is the mean value of a variable in a stochastic process,
especially when fluctuations are assumed to be small. The time evolution of such a
macroscopic observable can be derived from the master equation of the underlying Markov
process. For simplicity, the derivation is sketched for a continuous time span and discrete
state space with pdf pn(t), starting from the definition of the first moment

〈n(t)〉 =
∑

n

npn(t) . (A.16)

When the time derivative is taken on both sides, the master equation (A.11) can be inserted:

d
dt〈n(t)〉 =

∑

n

∑

n′

n
[
wnn′pn′(t)− wn′npn(t)

]
. (A.17)

Index substitutions lead to the expression

d
dt〈n(t)〉 =

∑

n

∑

n′

(n′ − n)wn′npn(t) . (A.18)

In the case of a birth-death process with rates b(n) and d(n), the macroscopic equation is
given by

d
dt〈n(t)〉 =

∑

n

(b(n)− d(n))pn(t) = 〈b(n)〉 − 〈d(n)〉 . (A.19)

For linear rates the average can be drawn inside the functions, e.g. 〈b(n)〉 = b(〈n〉). The
mean coincides with the deterministic solution. The macroscopic equations for higher
moments, such as 〈n2(t)〉 can be derived analogously. However, for nonlinear rates, the
resulting differential equations are in general coupled. A truncation after the first or second
order leads to an approximation that is valid when fluctuations are small or negligible. In
this case the macroscopic equations are sometimes termed mean-field equations.

A.1.5 Fokker-Planck equation

The pendant of the master equation, which typically describes jump processes, is the
Fokker-Planck equation for continuous trajectories subject to drift and diffusion. It is
derived from the Chapman-Kolmogorov equation in the limit of small jumps [127, 173].
Up to the second order, the approximation is given by

∂

∂t
p(x, t) = − ∂

∂x
A(x)p(x, t) + 1

2
∂2

∂x2B(x)p(x, t) (A.20)

with B(x) ≥ 0. The first term, also called drift term, relates to the deterministic features of
the process. The second term, the diffusion term, contains information about the diffusive
motion, fluctuations or noise. The diffusion constant D is related to the coefficient B(x)
via 2D = B(x). An example for pure diffusion (A = 0) is the Wiener process.
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For a process which is neither solely a drift-diffusion nor a pure jump process, the terms
from the Fokker-Planck equation in (A.20) and the master equation (A.9) can be combined
to a more general differential equation [284].

A.2 Stochastic chemical reaction kinetics
The traditional mathematical approach to describe the kinetics of chemical reactions is a
deterministic formulation in terms of differential equations. The concentration c of each
species is modeled as a continuous function in time that evolves according to an equation
of motion. The parameters of the equation are typically called rate coefficients or rate
constants and the equation itself rate equation. Knowledge about a single point, e.g. the
initial configuration c0(t0), uniquely determines the whole trajectory c(t). A detailed
introduction to deterministic chemical reaction kinetics is given for example in [200]. For
numerous chemical reaction systems, this approach has proven most useful. It has been
adopted to other fields, such as population dynamics and systems biology.

However, the deterministic description implies that the discrete number of chemical
species, such as molecules, ions or other particles, can be neglected and replaced by a
continuous variable, the concentration. Certainly this approximation is justified and
acceptable for large particle numbers, as it is the case for many chemical applications.
Additionally, a continuous mathematical formulation typically simplifies the analysis. Yet,
the mismatch exists and the difference between actual system and its mathematical model
becomes more pronounced, the smaller the number of molecules gets. In a limiting
case, only a description with integer-valued quantities can represent the kinetic behavior
appropriately. Advances in experimental methods, such as single molecule techniques,
bring new significance to the molecular representation of chemical and biological processes.
Moreover, fluctuations are typically neglected in deterministic models. Therefore, a
stochastic description of chemical reaction kinetics is a promising approach.

Even if stochastic chemical kinetics can model a system on a molecular level, a total
knowledge of the system down to every atomistic detail is (for now) unattainable. Thus,
the basic assumption is that a probabilistic approach gives an appropriate representation
of reactants within a homogeneous environment. In some cases the deterministic behavior
emerges in observables such as the expected value. On the molecular level, thermal noise
causes random collisions that allow molecules or particles to interact.

Stochastic processes serve as a basis for the concrete modeling of this scenario: Chemical
reactions happen independently after an exponentially distributed waiting time. Conse-
quently, the number of reactions follows a Poisson process. A chemical master equation
can be derived to describe the changing number of molecules in integers. Since analytical
solutions are only accessible in few cases, numerical methods have been developed. A simple
and powerful tool was introduced by Gillespie in the 1970s. His algorithm yields trajectories
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of a well-mixed system in thermal equilibrium. Detailed information on stochastic chemical
kinetics and numerical methods is given for example in [107, 139, 190, 284]. Here, we can
only give an overview on selected topics. The focus lies on the chemical master equation,
because it is used to model bonds in adhesion clusters.

A.2.1 Reactions and rates

Traditional chemical kinetics is based on the idea that molecules undergo a change or
collide and react with a certain probability. Since random collisions of three or more
reactants are considered to have a low likelihood, the important elementary reaction
types are categorized into zero-molecular, monomolecular or bimolecular reactions. All
complicated systems or complex networks are decomposed into these elementary classes.
The zero-molecular reaction, the synthesis ∅ → A, is important for open systems with a
variable number of particles. The reverse reaction, the degradation A→ ∅, belongs to the
monomolecular reactions. Also, the transformation into a different species A → B or a
splitting up A → B + C can be modeled. Bimolecular reactions comprise all events, in
which pairs of the same or different species undergo a transition, e.g. A + B → . . . or
2A→ . . . .

The probability for the occurence of such reactions depends on different factors, such
as the amount of available reactants, the volume in which they need to come together and
the temperature of the system. While a larger volume reduces the probability per unit
time, higher temperature typically speeds up a reaction. The temperature dependence
of the collision frequency is often modeled by an Arrhenius equation which states that
the rate constant is proportional to the exponential exp(−Ea/(kBT )) with the activation
energy Ea, the Boltzmann constant kB and the temperature T . For each reaction, all these
dependencies are gathered in the reaction rate constant.

The difference in the stochastic rate constant compared to the deterministic rate constant
results from registering molecule numbers in integers, rather than molar concentrations of
a molecule species. The total number of molecules in a solution with molar concentration
c is given by the product of c, the volume V , and the number of molecules per mole, the
Avogadro constant NA ≈ 6 · 1023 mol−1. Therefore, the deterministic rate constant k0 for
the synthesis of a molecule in units of mol m−3 s−1 is related to its stochastic pendant r0 via
r0 = NAV k0. r0 is equal to the probability per unit time that this synthesis happens, the
so-called propensity. For a monomolecular reaction A→ . . . the concentration reduction
per time is given by the product of the rate constant k1 and the current concentration
of A. In this case, the stochastic rate is given by the mass-action rate r1 = k1. The
propensity that any of the nA molecules of type A undergoes this first-order reaction is
given by a = nAr1. Analogously, the conversion for a bimolecular reaction A+B → . . . is
given by r2 = k2/(NAV ). For different molecular species A and B, the propensity results
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as a = nAnBr2, because the number of pairs that may collide is nAnB. Note that for a
bimolecular reaction 2A→ . . . , the number of reactant pairs needs to be reduced, see [190].
In summary, the stochastic rate ri describes the number of reaction events per unit time
for a single reactant or reactant pair in a well-mixed environment. In order to obtain
the reaction propensity, this constant needs to be multiplied with a statistical factor hi
that encapsulates the number of reactants or reactant pairs that are available for the
corresponding reaction, ai = hiri.

A.2.2 Chemical master equation

The chemical master equation describes the time evolution of one or multiple molecular
species that undergo certain reactions in a Markov process. The state of the system is
given by the number of molecules ni ∈ N for each species i ∈ [1, . . . , k] at a time t. Let
n(t) = (n1(t), . . . , nk(t)) denote the state vector at time t. The time span is continuous,
but the state changes only when an elementary reaction rj , j ∈ [1, . . . ,m] occurs. The state
change due to rj is given by the vector vj . The probability, that one reaction rj happens in
the infinitesimal time interval [t, t+ dt) is given by the propensity aj(n) dt+O(dt), where
O(dt)/dt→ 0 for dt→ 0. Two or more reactions are assumed to happen within dt with a
negligible probability O(dt). Consequently, the probability that the system stays in its
current state n(t) during dt and no reaction occurs is given by 1−∑m

j=1 aj(n) dt+O(dt).
The conditional probability to be in state n at t+ dt, given an initial state n0 at t0 is thus
given by

p(n, t+ dt|n0, t0) =


1−

m∑

j=1
aj(n) dt


 p(n, t|n0, t0)

+
m∑

j=1
aj(n− vj) dt p(n− vj , t|n0, t0) +O(dt) . (A.21)

Subtraction of p(n, t|n0, t0), division by dt, and taking the limit dt → 0 leads to the
chemical master equation

∂

∂t
p(n, t|n0, t0) = −

m∑

j=1
aj(n)p(n, t|n0, t0) +

m∑

j=1
aj(n− vj)p(n− vj , t|n0, t0) . (A.22)

It defines a set of in general coupled differential equations that needs to be solved with
the initial condition p(n, t0|n0, t0) = δn,n0 . Analytical solutions of the chemical master
equation are often unfeasible, even for few species and a limited number of molecules. In
these cases, numerical approaches are the method of choice.

A.2.3 Gillespie algorithm

The use of random numbers in computational methods dates back to the late 1940s
when the Monte Carlo method was developed by Ulam, von Neumann, Metropolis and
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coworkers [236]. This development is closely connected to the birth of electronic computers
and the new potential and possibilities they provided [3]. Random sampling allowed to
approximate values that were not or only under high effort obtainable with deterministic
approaches. One example with many applications in statistical physics is the Metropolis-
Hastings algorithm, a sampling method that allows to simulate Markov chains with a
desired stationary distribution, even if the probability distribution itself cannot be sampled
directly [154, 237].

From the 1960s on, the Kinetic Monte Carlo (KMC) method was introduced, which
expanded the field to time-dependent and non-equilibrium processes, such as diffusion and
reaction kinetics [35, 62, 355]. Gillespie introduced two rejection-free KMC algorithms
for well-mixed systems of discrete chemical reactants [137, 138], which paved the way for
numerous applications and extensions [190]. The so-called “Direct method” and “First
reaction method” of the Gillespie algorithm belong to the exact stochastic algorithms, i.e.
they produce statistically correct trajectories of the underlying system of master equations.
A large number of these trajectories is required to approximate the solution of the master
equation, the set of probability distributions p(n, t), and to obtain statistical quantities
such as expected values and variances. For few reaction channels, the two algorithms
introduced by Gillespie are not only statistically correct, but also efficient. While traditional
algorithms proceed in time with constant, small time steps ∆t to check whether a reaction
happens or not, the Gillespie algorithm decides at once, when the next reaction happens
and which type of reaction it is going to be. Thus, both algorithms “jump” from one
reaction to the next one. They differ in their way of choosing the time and type of the
next reaction.

As every reaction is explicitly simulated, especially the stochastic nature of discrete,
small systems can be represented. However, there are certain limitations for the two exact
methods of the algorithm. The computational costs increase strongly when the number of
reaction channels or species grows, or when reaction rates often need to be recalculated.
Additionally, the precision of the method is premised on the assumption of a thermally
equilibrated and spatially homogeneous system. Adaptations and extensions, such as an
accelerated, but only approximate version of the Gillespie algorithm, broadened the scope
of its applications [139, 190].

“Direct method” and “First reaction method”

The algorithm is originally intended for a mixture of k molecular species withm independent
reaction channels. The state of the system n(t) = (X1, . . . , Xk)(t) is described by the
molecule numbers ni, i∈{1, . . . , k} at a time t. Each reaction channel rj is defined by the
change in the number of species it causes, denoted by vj and its propensity aj(n). The
fundamental hypothesis is the same that is used for the derivation of the chemical master
equation itself. It states that aj(n)dt defines the probability for one reaction j occurs in
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the infinitesimal interval [t, t + dt], given the system is in state n at time t. From this
assumption, the probability p(τ, x|n, t) can be derived [137]:

p(τ, x|n, t) = ax exp(−aτ) , (A.23)

where a = ∑m
j=1 aj . It describes the conditional probability that the next reaction will

happen after a waiting time 0 ≤ τ < ∞ and that it is a reaction with channel index
x ∈ [1, . . . ,m], given the system is at n at time t. Both exact algorithms create stochastic
trajectories by determining τ and x repeatedly.

The system is initialized by setting the number of each species at time t0. For the
“Direct method” two random numbers u1 and u2 are drawn from a uniform distribution in
[0, 1) in each step to decide when the next reaction occurs and which reaction it will be.
The waiting time for the next reaction follows an exponential distribution with parameter
a = ∑m

j=1 aj :
τ = − ln(u1)/a . (A.24)

The reaction channel index x is determined by the smallest integer that fulfills

u2 <
x∑

j=1
aj/a . (A.25)

Thus, the integer k follows the density function ak/a. The product of the exponential waiting
time distribution p(τ) = a exp(−aτ) and ak/a gives the correct conditional probability
p(τ, x|n, t).

In the “First reaction method”, m random variables uj are drawn that follow a uniform
distribution in [0, 1). They are used to create m waiting times τj = − ln(uj)/aj with
j = 1, . . . ,m, i.e. one time for each reaction channel. The channel index with the minimal
waiting time τx = min(τ1, . . . , τm) is chosen, because the corresponding reaction happens
first. The “First reaction method” also generates pairs (τ, x) according to p(τ, x|n, t), but
uses m random variables instead of two.

When the waiting time and the reaction type are calculated, time and state of the
system can be updated accordingly. The simulation is stopped, when the desired duration
time or number of reactions is reached. Both algorithm methods are summarized in Fig. 1.2.
For the adhesion cluster models presented in this thesis, the “Direct method” is used.
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Initialize t = t0, n(t0)

Calculate propensi-
ties aj and their sum a

Generate two uniformly distributed
random numbers u1, u2 in [0, 1)

Determine waiting time τ and
next reaction channel index x
according to (A.24) and (A.25)

Update time to t + τ and update
state vector n(t + τ) = n(t) + vx

Is condition for
termination fulfilled?

Terminate

Direct method

No

Yes

Initialize t = t0, n(t0)

Calculate propensi-
ties aj and their sum a

Generate m uniformly distributed
random numbers u1, . . . , um in [0, 1)

Determine all waiting times τj and
find the reaction channel index x
that fulfills τx = min(τ1, . . . , τm)

Update time to t + τx and update
state vector n(t + τx) = n(t) + vx

Is condition for
termination fulfilled?

Terminate

First reaction method

No

Yes

Figure 1.2. Flowcharts of the two exact Gillespie algorithm methods.
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