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Abstract

Jupiter’s aurora contains emission features that are associated with the Galilean moons,
Io, Europa, and Ganymede. These footprints and their associated tail are generated by
Alfvén waves that are produced by the relative movement of the moons and Jupiter’s
corotating plasma. The waves propagate along the magnetic field lines towards both
hemispheres of Jupiter and trigger wave-particle interactions. The accelerated particles
precipitate down towards Jupiter, generating auroral emissions in the process. The shape
and location of these footprints give insight about the interaction and we can draw conclu-
sions about the Jovian magnetic field, density in the magnetosphere, and even the moons
atmosphere. Therefore, studying the interaction and observations of the footprints can
help to deepen our understanding of the Jovian system. New observations with the Juno
spacecraft have provided high resolution images of the footprints. These images revealed
structures in the Io footprint tail that were not detectable by previous measurements.
In these structures, the symmetry between the poleward and equatorward part of the
footprint tail is broken and the tail spots are alternatingly displaced. This "Alternating
Alfvén Spot Street" (AASS) is can not be explained by the current models. In this work
we use the Alfvén wing model to compare the observed positions of the Io footprint and
tail spots with expectations. We show that the locations of the main emissions of the foot-
print can be used to constrain the density model along the magnetic field lines connected
Io’s orbit and the Jovian magnetosphere. The inversion provides results comparable to
values in the general literature. We further show that the location of the footprint and
tail spots are consistent with Alfvén wave that get reflected as they propagate through
the inner Jovian magnetosphere.
In the second part of this work, we use magnetohydrodynamic simulations to investigate
mechanisms that can break the symmetry and produce structures similar to the observed
AASS. To investigate, how the emission pattern in Jupiter’s ionosphere would look like,
we used the Poynting flux of the Alfvén waves near Jupiter’s surface as a proxy. We stud-
ied three different mechanisms in our simulation that could break the symmetry. First,
we conducted a study where we activated the Hall conductance in Io’s atmosphere. We
show that the Hall effect can significantly alter the morphology of the Poynting flux. Ad-
ditionally, combined with non-linear reflections that occur at the Jovian ionosphere, the
Hall effect can produce alternating patterns in the footprint tail. We conclude that the
Hall effect is a promising candidate for the reason behind the AASS. As a second mecha-

i



ii

nism, we investigated the influence of the different travel times of Alfvén waves originating
from the Jupiter facing and opposite side of Io. The Poynting flux corresponding to the
immediate vicinity of the main footprint emissions is only marginally altered. However,
the symmetry breaking effect of the travel time difference accumulates down the tail and
can therefore be a contributing factor towards generating the AASS. The third mecha-
nism includes the asymmetry of Io’s atmosphere. The inhomogenieties in the atmosphere
are mapped along the magnetic field line and break the symmetry in the Poynting flux.
However, the effects are minor for this mechanism and we rule out the asymmetries as
the reason for the AASS.
This work shows that the locations of the Io footprint and associated tail spots are con-
sistent with reflected Alfvén waves in the magnetosphere and can be used to constrain a
density model. Our study additionally provides an explanatory model for the generation
of the observed AASS. In this model the Hall effect combined with non-linear reflection
can explain the observed pattern, while travel time differences of Alfvén waves can play
a contributing role. Further observation of the Galilean footprints could confirm this
hypothesis.



Kurzzusammenfassung

Ein Teil von Jupiter’s Aurora ist auf die Galileischen Monde Io, Europa und Ganymede
zurückzuführen. Diese charakteristischen Lichter befinden sich an den Enden der Magnet-
feldlinien, die die orbitalen Positionen der Galileischen Monden mit Jupiters Atmosphäre
verbinden und werden daher Fußpunkte genannt. Die Fußpunkte und deren zugehörigen
Schweife werden durch Alfvénwellen generiert, welche wiederum durch die Relativbewe-
gung der Monde und das umgebende Plasma erzeugt werden. Die Alfvénwellen breiten
sich entlang der magnetischen Feldlinien aus und lösen Wellen-Teilchen-Wechselwirkungen
über Jupiters Atmosphäre aus. Dadurch werden Teilchen zu Jupiter hin beschleunigt und
können bei Kontakt mit atmosphärischen Partikeln Polarlichter erzeugen. Die Form und
der Ort dieser Fußpunkte werden bestimmt durch die Generierung und Ausbreitung der
Alfvénwellen. Daher können wir durch Beobachtungen Einblick in das Magnetfeld und
die Dichteverteilung in der Magnetosphäre gewinnen und sogar Rückschlüsse über die
Atmosphären der Monde schließen.
Die Juno Weltraumsonde ist seit dem Jahr 2016 im Orbit um Jupiter und konnte einige
hochauflösende Beobachtungen der Fußpunkte und deren Schweife liefern. Im Beson-
deren zeigten Beobachtungen des Schweifs des Io Fußpunkts neue Merkmale, die mit
vorherigen Beobachtungen nicht aufgedeckt werden konnten. Diese Bilder offenbarten
asymmetrische Strukturen, die einer Wirbelstraße ähneln. Punktuelle Helligkeitsmaxima
im Schweif waren von der erwarteten Spur des Schweifs versetzt, abwechselnd in Richtung
Pol und Äquator. Diese "Alternating Alvén Spot Street" (AASS) kann nicht zufrieden-
stellend von den momentanen Modellen zur Erzeugung der Fußpunkte und deren Schweif
erklärt werden.
In dieser Arbeit benutzen wir das Alfvénflügelmodell um die beobachteten Positionen
der Fußpunkte mit den erwarteten Werten abzugleichen. Wir können zeigen, dass die
Beobachtungen genutzt werden können um ein Dichtemodell des Plasmas entlang der
magnetischen Feldlinien zu rekonstruieren. Das invertierte Modell ergibt Dichtewerte die
mit der einschlägigen Literatur vergleichbar sind. Desweiteren zeigen wir, dass die Posi-
tion der Fußpunkte und der Helligkeitsmaxima im Schweif mit dem Reflektionsverhalten
von Alfvénwellen an den Dichtegradienten in der Magnetosphäre übereinstimmen.
Im zweiten Teil der Arbeit konzentrieren wir uns auf die Frage, wie die AASS erzeugt wer-
den kann. Dazu benutzen wir magnetohydrodynamische Simulationen um verschiedene
Mechanismen zu testen, die die Symmetrie im Schweif brechen kann. Um die Struktur des
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Schweifs aus den Simulation abzuleiten, benutzen wir stellvertretend den Poyntingfluss
durch eine Analyseebene nahe Jupiters Oberfläche. Wir untersuchen drei verschiedene
Mechanismen, die in Frage kommen alternierende Strukturen zu erzeugen. Als erstes
studieren wir die Hallleitfähigkeit in Ios Atmosphäre. Wir können zeigen, dass der Hall-
effekt einen großen Einfluss auf die Struktur des Poyntingflusses hat. Zusammen mit den
nichtlinearen Reflektionen der Alfvénwellen an Jupiters Ionosphäre erzeugt der Hallef-
fekt lateral versetzte Poyntingflussmaxima im Schweif des Fußpunkts. Dies führt zu dem
Schluss, dass der Halleffekt ein vielversprechender Kandidat zur Erzeugung der AASS ist.
Als zweites untersuchen wir den Einfluss der unterschiedlichen Laufzeiten der Alfvénwellen
die von unterschiedlichen Punkten in Ios Atmosphäre starten. Die längere Laufzeiten
der Wellen der von Jupiter abgewandten Zeiten führt zu einer Versetzung der polwärts
zeigenden Seite des Fußpunktschweifs, die besonders mit großem Abstand zum Fußpunkt
merklich wird. Nahe am Fußpunkt ist der Laufzeitunterschied jedoch nicht bedeutsam.
Daher schließen wir, dass die Laufzeitunterschiede zwar ein besteuernder Faktor, jedoch
nicht der alleinige Grund für die AASS sein kann. Als letztes untersuchen wir den Ein-
fluss der asymmetrischen Atmosphäre von Io. Ios ungleich verteilte Atmosphäre führt zu
Asymmetrien im Poyntingfluss. Diese sind jedoch kaum merklich und zu unbedeutend
um die beobachteten Strukturen zu erzeugen.
Diese Arbeit zeigt, dass die Position der beobachteten Fußpunkte von Io mit reflek-
tierten Alfvénwellen vereinbar sind. Zudem konnten die Fußpunkte benutzt werden,
um Rück-schlüsse auf die Plasmadichte in der inneren Magnetosphäre zu ziehen. Die
Studie liefert weiterhin ein Erklärungsmodell für die AASS. Dieses Modell beinhaltet den
Halleffekt in Ios Atmosphäre kombiniert mit nichtlinearen Reflektionen der Alfvénwellen
an Jupiters Ionosphäre. Laufzeitunterschiede könnten den Effekt verstärken. Mithilfe
weiterer Beobachtungen der Fußpunkte der Galileischen Monde könnte diese Hypothese
bestätigt werden.
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CHAPTER 1

Introduction

The electromagnetic interaction between the Galilean moon Io and Jupiter is a prime
example for moon-planet or star-planet interactions. A very striking feature of this inter-
action is the Io footprint and its tail, an auroral emission in Jupiter’s ionosphere associated
with the motion of Io around Jupiter. The main emission of the footprint is located at
the base of the field lines that map onto Io’s orbital position in Jupiter’s inner magneto-
sphere. The coupling between Io and Jupiter’s ionosphere is established by Alfvén wings
(Neubauer, 1980), a flux tube of Alfvénic perturbations that originate at Io and propa-
gate along the magnetic field lines towards Jupiter. These Alfvén waves can trigger wave
particle interactions in the vicinity of Jupiter’s ionosphere, accelerating particles towards
Jupiter’s surface in the process. The location and shape of the footprint emissions provide
insights about the interaction and can help to constrain the magnetic field (Connerney
et al., 1998) or density distribution in the magnetosphere. Additionally, it can be used as
a diagnostic to infer characteristics of the moon itself, since the conductivity distribution
of the obstacle determines the fields inside the Alfvén wing (e.g. Neubauer (1998, 1999);
Saur et al. (1999)).
The first hint of a moon-planet interaction between Io and Jupiter were radio bursts in
intervals of Io’s orbital period (Bigg, 1964). Voyager I in-situ measurements gave evidence
to a standing Alfvén wave current system (Acuna et al., 1981). The first images of the Io
footprint were in the infrared by Connerney et al. (1993), followed by ultraviolet obser-
vations by the Hubble Space Telescope (Clarke et al., 1996) and in this visible (Vasavada
et al., 1999). Since then, more observations have provided additional insights about the
position and structure of the footprint emissions. Connerney and Satoh (2000) detected
multiple footprint spots with an angular separation of 5◦ that can be explained with re-
flection of the Alfvén waves at density gradients. Observations of additional features like
the elongated tail emissions (Clarke et al., 2002) and the leading spot (Bonfond et al.,
2008) broadened the understanding of the interaction. The Juno spacecraft, which is in
orbit around Jupiter since July 2016, provided high resolution images of the footprint
of Io and the other Galilean moons, Europa and Ganymede in the infrared with the JI-
RAM (JovianInfraRedAuroralMapper) infrared camera (Mura et al., 2018; Moirano et al.,
2021). The observations showed new structures not resolvable with earth based telescopes.
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2 CHAPTER 1. INTRODUCTION

The spots in the tail of the Io footprint were alternatingly displaced towards the poles
and the equator generating a tail structure resembling a vortex street, here referred to
as Alternating Alfvén Spot Street (AASS). The broken symmetry between poleward and
equatorward side of the tail emission is a puzzling feature that can not be explained with
current models. Furthermore, the authors argued that the inter-spot separation in the
tail emissions is too small to be explained by reflections inside the torus alone as pro-
posed by Gérard et al. (2006). In this work, we will analyze whether the location of the
main footprint emission and the separation distance of the secondary spots are consistent
with reflected Alfvén waves. Additionally, the location of the main emissions of the Io
footprints will be used for an inversion to constrain the density profile along the magnetic
field lines connecting the Jovian ionosphere to Io’s orbit.
In the second part of this work, magnetohydrodynamic (MHD) simulations of the interac-
tion with the single fluid MHD code PLUTO will be conducted. The aim is to investigate
mechanisms that can break the symmetry in the Io footprint tail. For that purpose a
reference simulation with a simplified geometry is set up, where no symmetry breaking ef-
fects are included. As a proxy for the available power to accelerate particles near Jupiter’s
ionosphere, the Poynting flux through an analysis plane representing the acceleration re-
gion is used. In the next step, three different mechanisms are added separately in order
to investigate their influence on the Poynting flux. (1) The influence of the Hall effect in
Io’s atmosphere combined with non-linear reflections at the torus boundary and Jupiter’s
ionosphere is investigated. A parameter study with different ratio’s of Hall to Pedersen
conductance is conducted. The Hall effect changes the fields and breaks the symmetry
inside the Alfvén wing. (2) The effect of different travel times between the Jupiter facing
side of Io and opposite side is studied. The longer travel path of the Alfvén wave packages
originating from the anti-jovian side is expected to break the symmetry. (3) The atmo-
sphere of Io which defines the distribution of Io’s conductance is not symmetric. A more
realistic model of Io’s conductances is included in the model. Each of these mechanisms
will be discussed regarding their likelihood to cause the observed AASS and whether we
can expect similar structures at the footprints of the other Galilean moons.
In Chapter 2, the Jovian inner magnetosphere is introduced and Io’s atmosphere and
surrounding plasma environment is described. A brief overview of the Io footprint ob-
servations is provided followed by a short description of the previous MHD modelling
regarding the Io Alfvén wings by Jacobsen et al. (2007). In Chapter 3, the theory of the
MHD framework is presented, starting with the ideal MHD and the Alfvén wave with
emphasis on the reflection behaviour. In the second part of the chapter, the non-ideal
MHD concepts important for this work are discussed, in particular the Hall effect and
collision terms that are associated with Pedersen and Hall conductivity. In Chapter 4, the
concept and theoretical basics of the Alfvén wing model are explained. A semi-analytical
modelling of the Alfvén wing provides insight about the importance of the Hall effect and
non-linear reflections. Chapter 5 shows modelling studies regarding the expected position
of the Io footprint main emission and tail spots. The model incorporates the JRM09 mag-
netic field model (Connerney et al., 2018) and uses the positions of the Io footprints for an
inversion constraining the density distribution along the magnetic field lines. In the last
part of the chapter the model is used to study, whether the inter-spot distance observed
by Mura et al. (2018) coincides with reflected Alfvén waves. The MHD simulation setup
and reference simulation is shown in Chapter 6. The simulation is validated on the basis
of theoretical expectations. Chapter 7 investigates the influence of the Hall effect in the
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simulation and shows how the Poynting flux changes due to the Hall conductance in Io’s
ionosphere. It is discussed how the observed structures could form due to the Hall effect.
The effects on the simulation results of the travel time difference and the asymmetries
in Io’s atmosphere are discussed in Chapter 8. The thesis closes with a conclusion in
Chapter 9.





CHAPTER 2

Io and the Jovian Inner Magnetosphere

Io is embedded in Jupiter’s strong magnetosphere. To understand the moon-magnetosphere
interaction that generates the Io footprint, it is important to get insight about the sys-
tem the interaction is embedded in. The magnetic field strength and morphology and
the density distribution in the Jovian inner magnetosphere determine the location, shape
and multiplicity of the Io footprint emissions. Furthermore, Io’s atmosphere as a neutral
obstacle governs the intensity of the interaction. In this chapter, first, the system will be
described. Afterwards, the current model explaining the generation of the Io footprint
will be discussed with the help of footprint observations. This chapter is closed by an ex-
amination of previous modelling studies using MHD simulations by Jacobsen et al. (2007,
2010).

2.1. Jupiter’s Magnetosphere

First evidence of Jupiter’s internal magnetic field were radio signals originating from the
direction of Jupiter (Burke and Franklin, 1955), which were later correlated to Jupiter’s
rotational period (Franklin and Burke, 1958). The position of the dipole was inferred from
synchrotron radiation by Morris and Berge (1962) with a dipole tilt of ≈ 9◦ in direction
of λIII ≈ 200◦ in western longitude. Warwick (1963) later determined the direction
of the dipole and found that the radial component of the magnetic field is positive at
Jupiter’s north pole and negative at its south pole, contrary to Earth’s magnetic dipole.
Constraining higher moments of the magnetic field was first possible with the arrival of
spacecraft in Jupiter’s magnetosphere. With Pioneer 11 and Voyager 1 data as well as
the position of the Io flux tube footprint, Connerney et al. (1998) derived a multipole
magnetic field model of Jupiter’s internal field up to fourth order, called the VIP4 model
(VoyagerIoPioneer). The multipole model is applicable in the absence of currents, when
Ampères law states that the magnetic field is curl-free. Therefore, we can define a the
magnetic field as conservative B = −∇V and we can represent the magnetic potential V
by a spherical harmonic expansion (e.g. Chapman and Bartels (1940))

5
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Figure 2.1.: Left: Mauersberger/Lowes spectrum of the JRM33 model (squares) by Connerney et al.
(2021) compared to that of Earth (circles). The internal Gauss coefficients gmn and hm

n calculated with
Equation 2.1 are combined for each degree n to a value Rn representing the magnetic energy for each
degree. The spectrum of Rn is then fitted by a linear regression for all degrees n > 2. Right: Surface
magnetic field strength on the flattened ellipsoid of Jupiter (f = 1/15.4) calculated with the JRM33
model (Connerney et al., 2021). The black lines near the poles indicate the predicted positions of the
Io footprint with the measured locations as grey squares. The magnetic equator (Br = 0) is shown as
dashed line.

V = a
Nmax∑
n=1

(a
r

)n+1
n∑

m=0

Pm
n (cos(ϑ)) (gmn cos(mφ) + hm

n sin(mφ)) , (2.1)

with a = 71492 km being Jupiter’s equatorial radius, r the distance to Jupiter’s center,
colatitude ϑ and longitude φ. The associated Legendre polynomials Pm

n are of degree n
and order m. The Gauss coefficients gmn and hm

n are Schmidt semi-normalized. Since no
magnetic monopoles exist (∇ · B = 0), the minimum degree is n = 1. Here, only the
potential V for the internal field is given. The external field is not associated with the
Jovian dynamo, but is dominated by the magnetodisc (Connerney et al., 2020). With
arrival of the Juno spacecraft that orbits around Jupiter in close polar orbits, a new
multipole model was created, first up to tenth order (Connerney et al., 2018), called
JRM09 model and by now up to 18th order, called JRM33 model (Connerney et al., 2021).
The models are named as Juno Reference Model and the number refers to the number
of used Juno perijoves used for the inversion. Figure 2.1 shows the Mauersberger/Lowes
spectrum of the JRM33 model as well as the calculated magnetic field strength on the
surface of Jupiter, which is much more dynamically flattened (f = 1/15.4) than Earth
due to its fast rotation period and low density. The Lowes spectrum shows a much slower
decline of the magnetic energy Rn in higher degrees n, indicating a dynamo much closer
to the surface. The linear fit suggests a dynamo depth of 0.81RJ , which most likely marks
the edge of the convective metallic hydrogen region (Connerney et al., 2021).
Jupiter’s magnetic field on the surface is much more variable than Earth’s due to the
contribution of higher degree multipoles. A very distinct feature is the high magnetic field
strength region at about 40◦ − 60◦ co-latitude and 120◦ − 140◦ western longitude. This
features draws the Io footprint (black line) and the aurora closer to the equator. There
is no similar feature on the southern hemisphere, where the aurora is much more circular
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shaped. Another interesting feature is the so called Great Blue Spot (GBS), located at
the equator at about 90◦ longitude, where the magnetic field strength towards Jupiter, i.e.
−Br, is the highest. At the vicinity of Io, the magnetic field can well be approximated
by a dipole with a tilt of ϑD = 10.25◦ towards φD = 196.38◦ western longitude and a
dipole moment of M = 4.177 G. There, the plasma is frozen into the magnetic field and
it can assumed to be close to perfect co-rotation. Further outside towards the middle
magnetosphere, the co-rotation breaks down and the magnetic field starts to lag behind.
The corresponding currents morph the magnetic field and the Laplace equation does
not hold anymore. Therefore, the multipole magnetic field description is extended by
the current sheet (CAN) model to account for the magnetic field associated with these
currents (Connerney, 1981). At Io however, the dipole approximation is sufficient.

2.2. The Innermost Galilean Moon: Io

With its radius of RIo = 1822 km, Io is the second smallest of the Galilean moons after
Europa. It is the Galilean moon closest to Jupiter with an orbital distance of about
rIo = 4.2 · 106 km or about 5.9 Jupiter radii RJ . It’s orbital period of 42.5 h with an
orbital velocity of about vorb = 74 km/s forms a 1:2:4 Laplace resonance with Europa
and Ganymede. The corresponding Jovian synodic period is about 13 h. Therefore, the
relative velocity between Io and its surrounding plasma is about vrel = 57 km/s. Io is
tidally locked to Jupiter, roughly showing the same side towards Jupiter at all times. Peale
et al. (1979) proposed that tidal heating due to Io’s eccentricity of ϵ = 0.004 was significant
enough to induce tides that result in considerable tidal dissipation, which would melt a
major fraction of Io’s interior. Data from the Voyager I mission confirmed this prediction
and showed that Io is the volcanically most active body in the solar system. Galileo
spacecraft measurements of Io’s gravitational field suggested a differentiated interior. Io
consists of a metal core and a silicate mantle with a crustal exterior that consists of silicate
lava and SO2 frost.

2.2.1. Io’s Atmosphere

Io possesses a tenuous atmosphere that was first confirmed by the Pioneer 10 spacecraft
in 1973 (Kliore et al., 1974, 1975). It is surrounded by neutral gas from different sources.
It is assumed that the largest part of the atmosphere is from sublimation of SO2 due to
heating from sun light (Lellouch et al., 2015; Tsang et al., 2013). A less substantial part
is due to volcanic out-gassing. It is assumed that sputtering plays a negligible role for the
atmosphere of Io. Earth-based telescope observation can be used to give insight about the
day-side atmospheric column density of Io. The equatorial surface pressure at the day-
sight was concluded to be in the range of 100−1000µPa (Lellouch et al., 2007). Since the
sublimation is dependent on the insulation, the atmosphere collapses, when Io is in eclipse
(Tsang et al., 2016). Furthermore, the atmosphere is mostly confined to a band around
the equator. At the poles, the atmospheric density drops to about ≈ 2% of the equatorial
density Strobel and Wolven (2001); Feaga et al. (2009), where the vertical column density
is in the range of 1.5 ·1016 to 1.5 ·1017 cm−2 (Feaga et al., 2009; Lellouch et al., 2015). This
together with the transient and localized volcanic out-gassing makes for a inhomogeneous
and time variable atmosphere. The composition close to the surface of Io is mostly the
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sublimated SO2, which can be dissociated by electron impacts to SO and O. At the night
side and at the poles, where the volcanic plumes contribute a more considerable part to
the atmosphere, the relative contributions S2 and SO increase (Spencer et al., 2000; Moses
et al., 2002). Io’s ionosphere mostly consists of SO+

2 ions, created by mass loading, i.e. by
the impact of thermal electrons on the neutral atmospheric particles. It has been shown
that photoionization contributes only a minor part to the total ionization (Saur et al.,
1999). The main sink for ionospheric ions is recombination of SO+

2 ions to S and SO. The
temperatures of the ions upstream of Io is in the range of 20-90 eV (Kivelson et al., 2004;
Frank and Paterson, 2001) and constists mostly of sulfur and oxygen ions.

2.2.2. The Io Torus

Particles lost around Io to Jupiter’s magnetosphere form a plasma torus (e.g. Bagenal
et al. (2017)). The neutral particles form a banana shaped neutral cloud around Io which
moves with its orbital period (Mendillo et al., 2007). The neutrals then can become ionized
by charge exchange or electron impacts. The newly generated ions are then frozen into
Jupiter’s magnetic field and accelerated to co-rotation. This creates a torus of charged
particles around Io’s orbit. The trapped particles can move along the magnetic field
lines but are mostly confined by centrifugal forces to a disc approximately 6.9◦ tilted
against the rotational equatorial plane. This is about 2/3 of the way from the rotational
equator to the magnetic equator with a tilt of about 10.31◦ (Connerney et al., 2018) and
defines the region where the magnetic field lines are farthest away from the rotational
axis. The torus is often described to consist of three distinct regions defined by their
distance to Jupiter. These regions differ in density and temperature and therefore scale
height. They are called the cold torus, ribbon and warm torus (Bagenal and Sullivan,
1981; Bagenal, 1994). The cold torus likely arises from the diffusion of ions towards
Jupiter and is centered at about rCT = 5.23RJ (Thomas et al., 2004). While diffusing
inward the ions cool by radiation (Richardson et al., 1980). The peak number density of
the cold torus is about nCT = 1000 cm−3 with a low ion temperature of Ti,CT = 2− 4 eV
(Thomas et al., 2004). The thin and sharply defined ribbon is centered at rR = 5.6RJ .
It is an inward extension of the warm outer torus and was defined by the small band of
bright SII emissions (Trauger, 1984). It has a higher peak number density than the cold
torus of around nR = 3000 cm−3 and the temperature increases from Ti,CT = 2 − 4 eV
at the cold torus to about Ti,R = 70 eV near Io’s orbit at rIo = 5.9RJ (Thomas et al.,
2004). At Io’s position, the warm torus begins with a almost constant temperature of
Ti,WT = 70−100 eV (Bagenal, 1994). The number density at Io is about nWT = 2000 cm−3

and decreases outwards, reaching about nE = 20 cm−3 at Europa’s orbit. The density
distribution of the torus is shown in Figure 2.2. The main loss mechanism in the ribbon
and warm torus is the outward diffusion of the plasma through the Jovian magnetosphere
(Bagenal and Delamere, 2011), which takes about 20-80 days (Bolton et al., 2015). With
the Juno spacecraft in orbit around Jupiter, radio occultation measurements helped to
determine the location and extension of the different regions (Phipps and Withers, 2017;
Phipps et al., 2018, 2019, 2020, 2021). It has been shown that the location of the torus
is fixed within Jupiter’s rotational rest frame and does not change noticeable with time.
Yet, the peak number densities of the different region do not seem to vary with longitude,
but are not constant in time.
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Figure 2.2.: Best fit model for the density distribution of the Io torus. It consists of three distinct
regions: The cold torus at about r = 5.2RJ with the smallest scale height, the dense small region at
r = 5.6− 5.9RJ , called ribbon and the warm torus starting from r = 5.9RJ with the largest scale height.
The torus is roughly confined within the centrifugal equator, here represented by the older VIP4 model
dipole (Connerney, 1981). Figure taken from Phipps et al. (2020).

Table 2.1.: Best fit parameters of the Io torus model (Phipps et al., 2019)

Region ρmax [cm−3] rmax [RJ ] H [RJ ] Ti [eV] ⟨m⟩ [amu]
Cold Torus 1740 5.23 0.18 2.2 27.3
Ribbon 3240 5.63 0.71 31.6 25.3
Warm Torus 2430 5.89 1.13 78 24.4

The peak densities ρmax, scale heights H, radial distances of peak densities rmax, ion
temperatures Ti and average ion masses ⟨m⟩ of the three regions inferred from the radio
occultation by Phipps et al. (2019) are shown in Table 2.1.

Dougherty et al. (2017) used Voyager plasma science data by Bagenal et al. (2017) to
investigate the radial profile of the Io plasma torus and current sheet and derive an
empirical radial model. They arrive at similar values as Phipps et al. (2019) for peak
densities and ion temperatures for the warm torus region and beyond. In their work they
used the model by Delamere et al. (2005) for their ion composition of the torus region
and beyond and concluded an average ion mass of ⟨m⟩ ≈ 24 amu. Furthermore, they
presented a force balance model to determine the density profiles along the magnetic
field lines, where they included the centrifugal force, anisotropic pressure, gravitation of
Jupiter and ambipolar electric fields. This model will be used as a reference for further
modelling in this work.
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2.3. The Io Footprint

The first observation of a coupling between Io and the Jovian magnetosphere was pub-
lished by Bigg (1964), where decametric radiation radio bursts in intervals of Io’s orbital
period were observed. The absence of a permanent signal was indicative to a localized
interaction that moves with Io’s orbital period. This lead to the development of models
that can explain this moon-magnetosphere interaction. Goldreich and Lynden-Bell (1969)
developed the unipolar inductor model, where Io can be treated as a unipolar generator
and develops a current system along the magnetic field lines that connects to the Jovian
ionosphere. The current is closed by the Jovian ionosphere on one side and Io on the other
side, creating a stationary current system that moves around Jupiter with Io’s orbital pe-
riod. The decametric radio bursts were argued to originate from beam instabilities in the
current sheets. For this model to be applicable, the current system connecting Io and
Jupiter needs to build up fast enough for the currents reflected at the Jovian ionosphere
to connect back to Io, before Io moves away from the magnetic field line. In other words,
the convection time τ = 2v0 · RIo, with the plasma velocity v0 relative to Io needs to
be larger than the travel time t0 =

∫
v−1
A ds of the current carrying Alfvén waves that

propagate with the Alfvén velocity vA = B/
√
µ0ρ, with B the magnetic field strength, µ0

the free space permeability and ρ the mass density. Since it was assumed that the Jo-
vian inner magnetosphere was depleted of plasma, the Alfvén velocity was expected to be
high enough to fulfill this condition. However, in the late 1970’s, multiple measurements
indicated that there is considerable plasma density in the Jovian inner magnetosphere,
especially in the orbital distance of Io. With the arrival of the Pioneer 10 spacecraft at
Jupiter, occultation measurements indicated a ionosphere around Io. Brown and Chaf-
fee Jr (1974) and later Kupo et al. (1976) have detected a neutral Sodium cloud around
Jupiter in the vicinity of Io with earthbound telescopes. This cloud could add plasma
mass to the inner Jovian magnetosphere by ionizing processes like impact ionoization,
photoionization or charge exchange. With the Voyager 1 spacecraft passing Jupiter, re-
mote observations in the ultraviolet (Broadfoot et al., 1979) and in situ observations of
the plasma number density (Bridge et al., 1979) confirmed the Io plasma torus. Since the
Alfvén travel time t0 can no more considered to be short compared to the convection time
τ , the unipolar inductor model is not applicable anymore. For that purpose, Neubauer
(1980) developed the Alfvén wing model, which expands the linear model by Drell et al.
(1965) into the non-linear regime. In this single fluid non-linear MHD model, Alfvén
waves are generated in Io’s vicinity that propagate along their characteristics towards
Jupiter. These waves carry field aligned Alfvén currents that are generated by Pedersen
and Hall currents due to collisions in Io’s ionosphere or by pickup currents due to plasma
production processes (Goertz, 1980). The Alfvén wave travel time from Io to Jupiter is
too long for the current to close directly at Jupiter’s ionosphere and form a closed circuit
like in the unipolar inductor model. However, the Alfvén waves can trigger wave parti-
cle interaction close to Jupiter and accelerate particles that precipitate down on Jupiter,
creating auroral emissions in the process. Theoretical studies have shown that Alfvén
waves can generate parallel electric fields that create electron beams (Crary, 1997; Saur
et al., 2018). Juno observations of accelerated electrons (Szalay et al., 2018) and protons
(Szalay et al., 2020) in the wake of Io indicated broadband acceleration processes that co-
incide with acceleration processes of kinetic Alfvén waves (Damiano et al., 2019). Due to
reflections of the Alfvén wave at density gradients like the Io torus boundary or Jupiter’s
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Figure 2.3.: Sketch of the propagation of the Alfvén wing by Jacobsen et al. (2007). The characteristics
of the Alfvén wing (yellow) are tilted against the background magnetic field (red) due to the decreased
Alfvén velocity in the Io torus (blue) and get reflected. The torus is tilted against the magnetic field and
Io’s orbital plane (green) and lies in the centrifugal equator.

ionosphere, the Alfvén wing can generated multiple auroral emissions downstream of the
main emission (Neubauer, 1980; Gurnett and Goertz, 1983; Bagenal, 1983). A sketch of
the far-field interaction with the Alfvén wing and its reflections is shown in Figure 2.3.
Connerney et al. (1993) found the first evidence of auroral emission associated with Io’s
Alfvén wing in the infrared. Later observations by the Hubble Space Telescope confirmed
the auroral footprint emissions in the ultraviolet (Clarke et al., 1996) and observations
by the Galileo spacecraft confirmed the footprint at visible wavelengths (Vasavada et al.,
1999). Connerney and Satoh (2000) detected multiple secondary spots downstream of
Io’s main footprint emissions. Clarke et al. (2002) obtained the first observations of the
footprints of two of the other Galilean satellites, Europa and Ganymede. They further-
more detected elongated tail emissions downstream of the Io main emission that persists
for multiple hours. The observations by Connerney et al. (1993), Connerney and Satoh
(2000) and Clarke et al. (2002) are shown in Figure 2.4.
The footprint emission of Callisto remains elusive since it is at higher latitudes close
to or inside the auroral main emission, but might have been detected on two occasions
(Bhattacharyya et al., 2018). Gérard et al. (2006) analyzed 74 different images of the Io
footprint made by the Hubble Space Telescope in the ultraviolet. Their study concluded
that the relative position of the main footprint and the secondary spots are consistent
with reflections of Alfvén waves inside the torus and depend on the relative position
of Io inside the torus. Bonfond et al. (2008) detected a faint leading spot upstream
of the Io footprint main emission. This leading spot was only visible at the northern
or southern hemisphere when Io was at the southern or northern part of the Io torus,
respectively. Therefore, they concluded that the leading spot was created by Alfvén
waves that accelerate particles not only down towards their respective ionosphere but
also back towards Io and to the opposite ionosphere, overtaking the Alfvén wave that is
slowed by the high mass density inside the torus. Hence, these transhemispheric electron
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Europa
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Ganymede
Footprint

Io Footprint

Figure 2.4.: The first observations of the Io footprint. Connerney et al. (1993) (top) observed the first
evidence of the Io footprint in the infrared. Later observations by Clarke et al. (2002) with the Hubble
Space Telescope (center) detected tail emissions in the wake of the Io footprint and found footprints for
the other Galilean satellites Europa and Ganymede. Connerney and Satoh (2000) furthermore detected
multiple secondary spots downstream of the Io footprint in the infrared.
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beams (TEB) can generate emissions before the Alfvén wave arrives close to the Jovian
ionosphere, where it triggers wave particle interactions. This hypothesis was supported
by the detection of bidirectional electron beams with the Galileo spacecraft at Io’s vicinity
(Williams et al., 1996, 1999). Observations of the leading spot and the model are shown
in Figure 2.5.
With the Juno spacecraft in orbit around Jupiter, high resolution images of the Io footprint
were possible. The Jovian InfraRed Auroral Mapper (JIRAM) has made high resolution
infrared images of the footprints and tails of Io (Mura et al., 2018; Moirano et al., 2021)
and Europa and Ganymede (Moirano et al., 2021). These observations show substructure
in the Io footprint tail spots downstream of the main spot that are not explained by
current models. The observations by Mura et al. (2018) are shown in Figure 2.6. The
images, taken at September 1st 2017, show the Io footprint, leading spot and tail in the
infrared, produced by H+

3 emissions in the range of 3.3 to 3.6 µm. The top two images
show the Io footprint emissions near the south pole. By the time Io was at ≈ 135◦

western latitude, when it was located roughly 3.3◦ or 13RIo north of the torus center.
Therefore, we can also see a leading spot. The tail spots show alternating displacement of
secondary spots towards the equator and the pole from the track predicted by the VIP4
magnetic field model (Connerney et al., 1998). The secondary spots are separated about
350 km along the track and are about 100 km displaced perpendicular to it. The bottom
three images show the Io footprint emissions near the north pole about two hours earlier,
when Io was at ≈ 80◦ western longitude. Since by that time Io was about 3.1◦ or 12RIo

below the torus center, we can also see a leading spot here. Furthermore, we can also
see the alternating structures in the tail. We will refer to these structures as Alternating
Alfvén Spot Street (AASS). Later observations showed substructures that are fixed within
Jupiter’s rest frame, for which Moirano et al. (2021) suggested a feedback mechanism
between Jupiter’s ionosphere and the magnetosphere.
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Figure 2.5.: Top: Hubble Space Telescope observations of the faint leading spot upstream of the main
spot for the northern Io footprint (left) and southern Io footprint (right). Bottom: The TEB model.
Waves at the acceleration region at one hemisphere accelerate particles in both direction creating auroral
emissions at both hemispheres. When Io is close to one border of the plasma torus, these TEBs can
generate auroral emissions upstream of the main spot on the respective opposite hemisphere. Images
taken from Bonfond et al. (2008).
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Figure 2.6.: JIRAM observations of the Io footprint and tail by Mura et al. (2018). A and B: Io footprint
with leading spot on the south pole, A with alternating tail emissions. Images were taken when Io was at
≈ 135◦ western longitude, when Io is closer to the northern edge of the Io torus. B was taken 19 minutes
later. The blue arc in A shows the predicted track of the Io footprint tail. C, D and E: Io footprint with
leading spot and tail on the north pole. The position of Io was at ≈ 80◦ western longitude, when Io is
slightly closer to the southern edge of the torus. Each image was taken approximately 5 minutes apart.
Both observations (south and north) show alternating structures in the tail that are displaced towards
the pole and the equator.
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2.4. Previous Modelling
In this work, we will study whether the location of the spots in the AASS can be explained
by reflected Alfvén wings and explore mechanisms that can break the asymmetry and
create an alternating structure as the observed AASS. For that purpose, we will use
MHD simulations that include Io as a Alfvén wave generator and a density model that
resembles the travel time and reflections of Alfvén wave along the magnetic field lines.
To investigate location and morphology of the presumed emission features in Jupiter’s
ionosphere, we will use the available energy carried as Poynting flux by the Alfvén waves
as a proxy. A similar study has been conducted by Jacobsen et al. (2007, 2010) to assess
the importance of non-linear reflections at the torus boundary. In their study the authors
used a simplified geometry of the system with a homogeneous magnetic field in z-direction
and a density gradient along this magnetic field. The background density was constant in a
region around Io at the center of the simulation domain, resembling the dense torus. Then
in a small transition region, the density drops linear to the constant density resembling the
high latitudes before the density rapidly rises again near the edge of the simulation domain
representing the Jovian ionosphere. The density model and a sketch of the Alfvén wing
characteristics is shown in Figure 2.7. In their simulations they compared the reflection
pattern of the Alfvén wings in the case of a weak interaction with the one in the case
of a strong interaction. In a weak interaction, where the velocity and mangetic field
perturbation due to the incident Alfvén waves are negligible to the background velocity
and magnetic field, the characteristic of the reflected wave is basically unaltered allowing
for a linear reflection, where incident and reflection angle are similar as shown in the left
image in Figure 2.8. In the case of a strong interaction however, the velocity and magnetic
field perturbations are considerable. Therefore, the characteristic of the reflected wave
is distorted and the wave is reflected back into the incident Alfvén wing. This results in
a much more complicated reflection pattern where multiple Alfvén wings are superposed
and interact non-linearly. The results of this simulation is shown in the right image of
Figure 2.8. Since the interaction strength of Io is considered to be high, we can not neglect
the non-linearity of reflections and need to include the in the model and considerations
going forward as this study shows. However in the modeling in this work, we will use a
more realistic density model along the field lines and add different mechanisms to break
the symmetry between the Jupiter facing and its opposite side.
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Figure 2.7.: Left: The simulation domain with a constant background magnetic field in negative z-
direction (downwards). The density model (right) is created to resemble the density along the magnetic
field lines and allow reflections at the torus boundary and the ionosphere. The simulation is conducted
in the rest frame of Io, where the Alfvén wing and its reflections (yellow arrows) transition to a steady
state (Jacobsen et al., 2007)

Figure 2.8.: Simulation results for weak interaction (left) and strong interaction (right) by Jacobsen et al.
(2007). For the weak interaction with a velocity perturbation of about δv/v = 2% the reflection pattern
is linear and the reflected Alfvén wings follow the mostly unperturbed characteristics (black and pink
arrows). Furthermore, the increased velocity by the slow mode is well visible. For the strong interaction
the velocity perturbation is much higher at about δv/v ≈ 90%. The reflections become non-linear and
the characteristics of the Alfvén wings (black and pink arrows) are strongly distorted.





CHAPTER 3

Magnetohydrodynamic Framework

A geophysical plasma mainly consists of charged particles, ions and electrons. Therefore,
it can not be treated as a simple hydrodynamical fluid. The particles are influenced
by electrodynamic fields, which in turn are changed by the plasma. There are different
theoretical frameworks, which can be used to describe plasmas on different scales. The
most rigorous approach would be to describe each particle separately, derive the equations
of motion and solve them for all particles. This is normally not feasible. Alternatively,
one can describe the plasma by a distribution function f(r,v) in phase space and solve
the Vlasov equation or the Boltzmann equation for f . The Vlasov equation is given by

∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0, (3.1)

where F is any force acting on the particles, normally the Coulomb and Lorentz force and
∇ and ∇v are the gradient operators with respect to position r and velocity v, respectively.
If the right hand side of Equation (3.1) is not zero, but has term accounting for collisions
between particles, the equation is called Boltzmann’s equation. The different macroscopic
quantities related to the plasma can be derived as velocity moments of f . This is the case
for number the density

ns =

∫
fsd

3v, (3.2)

the bulk velocity

vs =
1

ns

∫
vfsd

3v, (3.3)

and the pressure

ps =
ms

3

∫
(v − vs)

2fsd
3v. (3.4)

Here, the subscript s defines the species (e.g. electrons or ions) and ms is the mass of the
particles. In the case where the length scales of the plasma are much larger than the ion
gyroradius

ρi =
miv⊥
qB

, (3.5)

19



20 CHAPTER 3. MAGNETOHYDRODYNAMIC FRAMEWORK

with mi the ion mass, v⊥ the speed of the particles perpendicular to the magnetic field
with strength B and q the charge of the ion and also the time scales are much longer than
the ion gyrofrequency

Ωi =
qB

mi

, (3.6)

the plasma can be described as a fluid using magnetohydrodynamics (MHD). In this work,
we use the framework of single fluid MHD to describe the plasma.

3.1. Ideal Magnetohydrodynamics
In the framework of MHD, the plasma is treated as a continuum with bulk properties
that depend on the position r in space. The most common properties describing the
plasma are the mass density ρ(r) = mn, bulk velocity v(r) and pressure p(r) or specific
internal energy ϵ(r). Furthermore, MHD connects these plasma parameters with the field
parameters from electromagnetism, namely the magnetic field B(r), electric field E(r)
and current density j(r). MHD combines macroscopic equations derived from the Vlasov
equation with Maxwell’s equations for the electromagnetic fields. This results in a set of
partial differential equation for all species, ions and electrons, called the multi-fluid MHD
equations. These can further be combined to the single fluid MHD equations. In the case
of ideal MHD, where the conductivity along the magnetic field lines is infinite and the
conductivity perpendicular is negligible, the MHD equations read

∂ρ

∂t
+∇ · (ρv) = 0 (3.7)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+

1

µ0

(∇×B)×B (3.8)

∂

∂t

(
ϵ+ ρ

v2

2
+

B2

2µ0

)
= −∇ ·

[(
ρ
v2

2
+ ϵ+ p

)
v +

E×B

µ0

]
(3.9)

∂B

∂t
= −∇× E (3.10)

E = −v ×B (3.11)

ϵ =
1

γ − 1
p (3.12)

∇ ·B = 0 (3.13)

Equations (3.7), (3.8) and (3.9) are the zeroth, first and scalar second velocity moments
of the Vlasov equation. Equation (3.7) is called the continuity equation and states that in
ideal MHD, when there are no sources or sinks, the plasma mass density is only changed
by advection. Equation (3.8) is the velocity equation and in ideal MHD is similar to
the collisionless Navier-Stokes equation in fluid dynamics. However, due to the charged
nature of the plasma, the Lorentz force FL = 1/µ0(∇ × B) × B also acts as a source of
momentum. Here, the current j = ∇ × B/µ0 is substituted by the curl of the magnetic
field using Ampère’s law neglecting displacement currents. The velocity equation can
also be rewritten as momentum equation for the momentum ρv of the plasma. Equation
(3.9) is the energy equation and states that the total energy of the plasma, consisting
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of internal energy ϵ, kinetic energy ρv2/2 and magnetic field energy B2/(2µ0) is either
changed by energy advection or by electromagnetic field transport by the Poynting flux
S = E×B/µ0. Equation (3.10) is Faraday’s law from the Maxwell equations, also referred
to as the induction equation. In ideal MHD, the plasma is frozen into the magnetic field
line and the electric field can be described as in equation (3.11). The ideal MHD induction
equation therefore reads

∂B

∂t
= ∇× (v ×B). (3.14)

The electric field can be understood as a Gallilei transformation to a reference frame with
non-zero plasma movement perpendicular to the magnetic field. In this reference frame,
the bulk velocity perpendicular to the magnetic field can in turn be described as the
E × B drift motion. Equation (3.12) relates the pressure and the internal energy. γ is
the polytropic index and depends whether the plasma is considered isothermal (γ = 1),
adiabatic (γ = 5/3) or has constant pressure (γ = 0). In the scope of this work, the
plasma is considered adiabatic, i.e. ϵ = 3/2p. The internal energy in the energy equation
(3.9) can be substituted by the pressure and we can derive an evolution equation for the
pressure:

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 (3.15)

Equation (3.13) states that the magnetic field is solenoidal and therefore magnetic monopoles
do not exist. Thus, equations (3.7), (3.8), (3.14) and (3.15) with the constraint of equation
(3.13) is a set of eight coupled scalar differential equations with eight scalar unknowns
B,v, ρ and p and forms a closed system, referred to here as ideal single fluid MHD
equations. Since the single fluid MHD equations are derived from the multi-fluid MHD
equations, we will shortly describe the combined quantities ρ, p and v in terms of the
quantities of ions with subscripts i and electrons with subscript e. The pressure is just a
combination of the partial pressures of each species p = pi + pe. The same is true for the
density ρ = ρi + ρe, which is dominated by the much heavier ions. Also the momentum
is mainly carried by the ions:

vρ = viρi + veρe, (3.16)

which means that the bulk velocity is also determined by the movement of the ions. The
current density j, which is the relative movement of ions and electrons, can be described
as

j = ne(vi − ve). (3.17)

3.1.1. Ideal MHD Waves

Using the linearized ideal MHD equations for small perturbations in velocity δv, magnetic
field δB, density ρ, and pressure p, one can derive a set of ideal MHD wave modes. These
are called the slow and fast magnetosonic modes and the Alfvén mode. The dispersion
relation for the magnetosonic modes (e.g. Baumjohann and Treumann (2012)) is given
by

ω2 =
k2

2

[
v2A + c2s ±

√
(v2A + c2s)

2 − 4v2Ac
2
s cos(θ)

2

]
, (3.18)

where ω is the wave frequency, k the wavenumber, cos θ = k||/k the angle between k and
the background magnetic field and vA and cs the Alfvén speed and magnetosonic speed,
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respectively. They are given by

vA =
B

√
µ0ρ

(3.19)

and

cs =

√
γp

ρ
. (3.20)

Equation (3.18) is both the dispersion relation for the magnetosonic slow mode and fast
mode, depending on the sign before the square root. In case of a negative sign, the
dispersion relation for the slow mode is given, in case of a positive sign, the dispersion
relation describes the fast mode. It can be seen, that for a propagation along the magnetic
field line, i.e. cos θ = 1, Equation (3.18) gives us

ω2

k2
=

1

2

(
v2A + c2s ± |v2A − c2s|

)
. (3.21)

Hence, if vA > cs, the fast mode propagates with the Alfvén speed along the magnetic
field lines. However, if cs > vA, the slow mode propagates with the Alfvén speed along
the magnetic field line. The dispersion relation for the Alfvén mode is given by

ω = vA · k = vAk cos θ. (3.22)

The group velocity ∇kω of the Alfvén mode is therefore only parallel or anti-parallel to
the magnetic field. This is an important property of the Alfvén mode. Since in the
MHD framework, it is also not dispersive (ω/k = vA cos θ = const.), it’s energy density
is conserved while propagating along the magnetic field lines. Therefore, it can have far
field interactions and can couple systems, that are very distant from each other. One
example is the moon-planet or star-planet interaction via Alfvén wings (Neubauer, 1980).
Their physics and theoretical framework is discussed in detail in Chapter 4. The phase
velocity diagram for all three modes for different angles θ is shown in Figure 3.1. The
phase velocity for any angle is shown as the distance r(θ) from the center. As discussed,
the phase velocity (anti-)parallel to the background magnetic field of either the fast mode
or the slow mode matches the Alfvén velocity. Furthermore, the fast mode is the only
mode with a potential pure perpendicular phase velocity. Like the Alfvén mode, the slow
mode mainly propagates along the magnetic field line. It perturbs the velocity δv|| parallel
to the wave vector k. This longitudinal perturbation is connected to a perturbation in
pressure

δp = γ
p

cs
δv|| (3.23)

and density
δρ =

ρ

cs
δv||. (3.24)

Contrary to the slow mode, the Alfvén wave is a non-compressional and transversal wave
in the MHD limit. It perturbs the magnetic field and the velocity δv⊥ perpendicular
to the background magnetic field. The magnetic field perturbation is connected to the
velocity perturbation by

δB = ∓√
µ0ρδv⊥. (3.25)
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Figure 3.1.: Sketch of the phase velocity of the fast magnetosonic mode (blue), the slow magnetosonic
mode (red) and the Alfvén mode (yellow) in the case of vA > cs (left) and cs > vA (right). The phase
velocity for an angle θ is given by the distance of the respective curve from the center. The phase velocity
parallel and anti-parallel to the background field, i.e. θ = 0◦, 180◦, is shown along the y-axis.

The different signs in equation (3.25) are for the different propagation directions, parallel
(minus) and anti-parallel (plus) to the magnetic field. The restoring force in the Alfvén
wave is the magnetic tension

I =
(B · ∇)B

µ0

. (3.26)

Even though the magnetic field is perturbed by the Alfvén wave, it does not change the
magnitude of the magnetic field strength and the magnetic pressure

pB =
B2

2µ0

(3.27)

remains unchanged.

3.2. Alfvén Waves in an Inhomogeneous Medium
In the Jovian magnetosphere the assumption that the background magnetic field or density
are constant does not necessarily apply. Even though the magnetic field varies slowly, the
high density gradients at the Io torus boundary and Jupiter’s ionosphere trigger reflections
and refraction of the incoming Alfvén waves. In this section, we will only cover reflection
and refraction of small amplitude waves and will only discuss linear effects.

3.2.1. Reflection and Transmission at Discontinuities

We will first look into discontinuities, where the refractive index changes on length scales
much smaller than the wavelength. The refractive index n here is the relative change in
phase velocity of the wave. If the magnetic field is assumed to be constant, the phase
velocity changes due to density gradients.

n =
vA(r)

vA,0

=

√
ρ0
ρ(r)

(3.28)
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The gradient length scale Ln = 1/|ez·∇ log(n)| of the relative change in n can be calculated
as the inverse of the relative gradient of n in direction of the wave propagation, here
denoted as x. Since the phase velocity gradient here is mainly due to the change in
density, the condition for a discontinuity reads

λ

∣∣∣∣∂ log(ρ/ρ0)∂z

∣∣∣∣ ≪ 1. (3.29)

For an exponential increasing or decreasing density, as it is the case at Jupiter’s iono-
sphere, this simplifies to λH ≪ 1, with H being the scale height. Even regarding high
frequency Alfvén waves with frequencies of multiple times the characteristic frequency
f0 = 1

τ
≈ 0.01 Hz (Deift and Goertz, 1973), the assumption of a discontinuity is well

fulfilled at Jupiter’s ionosphere, because the wave in the high latitude region of Jupiter’s
inner magnetosphere travels with velocities close to the speed of light.
For discontinuities, the reflection coefficient R and transmission coefficient T of the mag-
netic field perturbation δB and the velocity perturbation δv can be calculated as (e.g.
Wright (1987)):

R = RB,v =
n2 − n1

n2 + n1

(3.30)

Tv =
2n1

n2 + n1

(3.31)

TB =
2n2

n2 + n1

(3.32)

Because the proportionality factor between magnetic field perturbation and velocity per-
turbation is not constant (see Equation (3.25)), the transmission coefficients for magnetic
field TB and velocity Tv differ from each other, even though their respective reflection
coefficients are the same. Depending on the type of discontinuity, either the magnetic
field perturbation or the velocity perturbation changes sign. For an increase in phase
velocity, i.e. a negative density gradient, the magnetic field perturbation changes sign
δBr = ∓RδBi. In the case of a decrease in phase velocity, i.e. a positive density gradi-
ent as it is at Jupiter’s ionosphere, the velocity perturbation changes sign δvr = ±Rδvi.
This means that the Poynting flux always changes sign when reflected and the reflection
coefficient RS and transmission coefficient TS for the Poynting flux can be calculated as

RS = R2 =
(n2 − n1)

2

(n2 + n1)2
(3.33)

TS = 1−RS = TBTv =
4n2n1

(n2 + n1)2
. (3.34)

3.2.2. The WKB Approximation

The Wentzel-Kramers-Brillouin (WKB) approximation is applied in an inhomogeneous
medium, when the wavelength is much smaller than the gradient length scale, i.e. λ ≪ Ln.
In this case, the medium does not change significantly for the wave. Deift and Goertz
(1973) discussed the propagation of Alfvén waves in the inner Jovian magnetosphere under
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the aspect of the WKB approximation. To recapture their results, we will introduce the
substitutions they made in their work:

a =
δv
√
µ0ρ

B0

(3.35)

τ =
B0t√
µ0ρ0

(3.36)

β =

√
ρ

ρ0
=

vA,0

vA
. (3.37)

Here, a can be regarded as the ratio between velocity perturbation δv and alfvénic phase
velocity vA. Therefore, we can write a simplified equation for the Alfvén wave as

∂2a

∂z2
− β(z)2

∂2a

∂τ 2
= 0 (3.38)

Since the density is not homogeneous, i.e. β is not constant, this wave equation can not
generally be solved analytically. To get an approximation, they assume the solution has
the form a = a0 exp(i(ωτ + Φ(z))) with the generalized frequency ω, which leads to

−
(
∂Φ

∂z

)2

+ i
∂2Φ

∂z2
+ ω2β2 = 0 (3.39)

In the case of slowly varying medium, where we can neglect the second derivative of Φ(z),
we get the WKB solution

Φ = ±
∫

ωβdz. (3.40)

This is true, when ∂2Φ
∂z2

≪ ω2β2 or when the length scale of the relative change in phase
velocity is large against the wavelength, i.e. λ∂(log vA)

∂z
≪ 1 (cf. Equation (3.29)). In that

case the velocity perturbation can be written as

δv = δv0
vA
vA,0

exp

(
i2πf

(
t±

∫
1

vA
dx

))
, (3.41)

with f being the real frequency of the wave. This is the equation of a wave in a slowly
changing medium where no reflections occur and the wave does not lose energy. The
velocity perturbation amplitude of the wave scales with vA. Assuming the magnetic field
stays constant and with equation (3.25) to connect the magnetic field perturbation with
the velocity perturbation, we get

δv ∝ ρ−1/4 (3.42)

δB ∝ ρ1/4 (3.43)

in accordance to the findings by Wright (1987). As mentioned in the previous section, the
energy of the wave which is carried by the Poynting flux S is therefore conserved, detailed
in Appendix B.4.
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3.2.3. Reflection in Slowly Changing Media

The WKB approximation holds when the length scale of the Alfvén velocity gradient is
much larger than the wavelength. When Deift and Goertz (1973) proposed it for the
inner Jovian magnetosphere, they concluded that it holds for the whole Io flux tube
excluding only the vicinity of the Jovian ionosphere. However, when the Io plasma torus
was discovered, this had to be reevaluated. Especially near the torus boundary this
approximation does not necessarily hold anymore. But the torus boundary can also not
be described as a discontinuity with the reflection coefficient introduced as in Equation
(3.30). To understand this better, it is helpful to imagine a medium with slowly changing
refractive index n(x) = n0 + αx/x1 over a domain x ∈ [0, x1]. If we use Equation (3.30),
the reflection coefficient would be R = α/(2n0 + α). This equation only holds when the
wavelength λ > x1/α is much larger than the lengths scale associated with the change
in refractive index. The reason for this is that the reflected wave has only constructive
interference with itself, i.e. all waves reflected at a boundary in the range of 0 < x < x0

have practically the same phase. This changes for smaller wavelengths. In this case we
have to sum up all reflections at the boundary. For this let us look at a wave with wave
number k = 2π/λ with phase ϕ0 at x = 0 and regard the slowly changing refractive index
as a superposition of step functions with width δx. At each step, the wave is reflected
regarding Equation (3.30) using the reflection coefficient

δR =
δn

2n(x) + δn
, (3.44)

with δn = αδx/x1. We want to look at the superposition of all those waves before the
boundary at x0 = 0. Each reflected wave, indicated with j, has the amplitude δRj and
the phase shift

∆ϕj = ∆ϕ0 − 2

xj∫
0

k(x′)dx′. (3.45)

∆ϕ0 is either 0 or π, depending if there is a phase shift at the point of reflection, while the
second term is the phase change due to the propagation towards the point of reflection and
the propagation back to x0 = 0. From equations (3.44) and (3.45) the complex amplitude
for each reflected wave can be written as

rj = Aj δR(xj) e
i(ϕ0+∆ϕ(xj)), (3.46)

where xj is the location of reflection and Aj is the amplitude of the transmitted wave
at xj. To solve Equation (3.46) analytically, we introduce the following simplifications:
First, we say that the wave number k does not change noticeably in the domain, therefore∫
k(x′)dx′ ≈ kxj. This is connected to the second approximation, where we treat the

refractive index as constant in the denominator of equation (3.44), leading to 2n(x)+δn ≈
2n0+α =: n̄. Third, we assume that the amplitude of the incident wave does not diminish
significantly in the domain. This leads to Aj = A0 in equation (3.46) and consequently
to

rj =

(
A0

αδx

n̄x1

ei(ϕ0+∆ϕ0)

)
e−2ik0xj . (3.47)

The total reflected wave amplitude r at x0 = 0 is now a superposition of all waves rj. To
make this approach more rigorous we introduce infinitesimal step lengths δx → dx and
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integrate:

r =

(
A0

α

n̄x1

ei(ϕ0+∆ϕ0)

) x1∫
x0=0

e−2ik0xdx. (3.48)

Carrying out the integration and calculating the absolute value gives us the amplitude of
the reflected wave

Ar = ||r||

= A0
α

n̄x1

1

2k0
||e−2ik0x1 − 1||

= A0
α

n̄x1

1

2k0

√
(cos(2k0x1)− 1)2 + sin(2k0x1)2

= A0
α

n̄x1

1

k0
| sin(k0x)|

≈ A0
α

n̄x1

λ0√
8π

(3.49)

The last step is the zeroth order Taylor expansion for small wavelengths λ0 = 2π/k0 ≪ x1.
This result reveals some interesting behaviors. There are wave numbers, that have total
destructive interference, when the width of the discontinuous domain x1 is a multiple of
λ/4. Furthermore, in the limit of long wavelengths k0x1 ≪ 1, i.e. the second order Taylor
expansion for small wavenumbers, the reflected amplitude approaches

Ar = A0
α

n̄

(
1− (k0x1)

2

6

)
. (3.50)

This let us subdivide the effective reflection coefficient Reff = Ar/A0 into three wavelength
regimes as shown in Figure 3.2. At the WKB limit up to a wavelength of about λ ≈ 4x1,
Reff ∝ λ increases linearly including some local minima. After that, Reff rises with
increasing λ and asymptotically reaches the reflection coefficient R of a discontinuity.
Since in the Jovian inner magnetosphere almost all wave numbers are large compared
to the Alfvén velocity gradient, i.e. k|| ≫ |∇n|, the reflection coefficient is proportional
to the wavelength and therefore the Alfvén velocity and the relative change in refractive
index ∇n/n = ∇ log(n) (e.g. Hess et al. (2010))

Reff ∝ vA · ∇ log(n) (3.51)

In this section we saw that when we have a slowly changing medium parts of the trans-
mitted wave at a location 0 < xj < x0 undergo a phase shift, which is not negligible.
Superposition of reflected wave amplitude contributions from varying locations along the
gradient lead to a modified reflection coefficient compared to the discontinuous approach.
Hence, a continuous medium can not be decomposed into a sequence of discontinuous
segments in order to determine the resulting amplitude of the reflected wave.
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Figure 3.2.: The effective reflection coefficient Reff for different wavelengths can be divided into different
regimes. The analytical solution of Equation (3.49) is shown as solid line. For wavelengths small compared
to the length scale of the change in refraction index, also referred to as the WKB regime (1), the average
Reff grows linearly, corresponding to the last line in Equation (3.49) as shown by the red dashed line.
When the wavelengths and length scale are comparable (2), Reff grows as shown by the blue dashed line
in accordance to Equation (3.50). It asymptotically reaches the reflection coefficient R0 of a discontinuity
with the same overall change in refractive index (3).

3.3. The Hall Effect

The derivations in this section are also found in the general literature, e.g. Baumjohann
and Treumann (2012); Chen et al. (1984). From the equation for the current density
(3.17), we see that we can build the difference of the two fluid evolution equations for the
velocities of ions and electrons to derive an evolution equation for the current density j.
With the quasi neutrality condition n = ni = ne, neglecting quadratic terms in velocity,
i.e. the advection terms, and using the fact that electron mass is much smaller than the
ion mass (me/mi ≪ 1), the current density evolution equation for the single fluid MHD
reads:

me

e

∂j

∂t
= ∇pe + ne(E+ ve ×B)− ηnej, (3.52)

with the electron pressure pe and electron mass me. The last term here is due to the
collisions between ions and electrons with the resistivity η. Since they do not change
the total momentum of the plasma, this term does not appear in the single fluid velocity
equation. We now use the already mentioned fact that the velocity of the single fluid
plasma is mainly determined by the velocity of the ions v ≈ vi and the velocity of the
electrons can therefore be stated as ve = v − j/ne. This leads to the generalized Ohm’s
law of the single fluid MHD:
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E+ v ×B =
1

ne
j×B+ ηj− 1

ne
∇pe +

me

ne2
∂j

∂t
. (3.53)

When the right hand side is small against the electric field E, we can state Ohm’s law as in
equation (3.11). As can be seen, mostly the electron pressure adds to the current density.
Furthermore, the resistive term ηj due to electron-ion collisions results in a diffusion of
the magnetic field if we include it in the induction equation. The first term on the right
hand side is the Hall term. If we ignore all other terms on the right hand side, the electric
field can be written as

E = −
(
v − 1

ne
j

)
×B = −ve ×B (3.54)

This means, that only the electrons are frozen into the magnetic field. The ions however
react slower to changes in magnetic flux and their movement can therefore deviate on
small time scales. If the Hall term is included, the induction equation reads

∂B

∂t
= ∇×

(
v ×B− m

ρe
j×B

)
(3.55)

3.4. Collision and Production in MHD
In the vicinity of a planetary object, space is not only filled with plasma but also with
neutral particles. On the one hand these particles can be ionized, for example by photo-
ionization, electron impact or charge exchange. On the other hand they can act as collision
partners for the plasma particles. In this section, we will see how collision and production
arise in different terms in the MHD equations and how they can physically be understood.
Even though the production is not used in the forthcoming simulations, its implication
will be discussed and whether it can be neglected. Both, collision and production, can
be seen as source terms in the Vlasov equation (3.1). The full evolution equation for the
phase space density distribution f(r,v) then reads

∂f

∂t
+ v · ∇f +

F

m
· ∇vf =

(
∂f

∂t

)
C

+

(
∂f

∂t

)
P

. (3.56)

The velocity moments of the left hand side of (3.56) gives us the already known MHD
equations for density (3.7), velocity (3.8) and energy (3.9). Building the velocity moments
for the right hand side therefore leads to source and sink terms for those equations. First,
we need to define the two terms. Here, we use the most simple description of the collision
term. The collision cross section does not depend on the relative velocity between the
particles or the angle. The collision term reads (Schunk, 1975)(

∂f

∂t

)
C

=
ν

nn

(nfn − nnf) = ν

(
n

nn

fn − f

)
. (3.57)

In this description, ν is the collision frequency, nn is the number density of the neutral
particles n the plasma number density and f and fn the phase space density distributions
for the plasma and neutral particles, respectively. It is important to note that the collision
frequency here is an averaged ensemble value and does not reflect the true number of
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collisions a single particle experiences. The first term can be understood as the transfer
of momentum from the neutral particle to the plasma particle, whereas the second term
is the transfer of momentum from the plasma particle to the neutral collision partner.
Whether the neutral particles are considered to have pressure pn or a bulk velocity vn

depends on the nature of fn and can be calculated analogous to equations (3.2) to (3.4).
For particle production, we assume that N particles with a constant velocity v0 are
produced with frequency P/N . The unit of P is therefore [P ] = cm−3 s−1. This leads us
to a simple description of the production term(

∂f

∂t

)
P

= Pδ(v − v0) (3.58)

Here, we will only state the MHD equations with the derived source and sink terms arising
from the collision and production terms. A more detailed derivation is shown in appendix
A. These equations are in agreement with Schunk (1975), Chané et al. (2013) and Blöcker
et al. (2018). The new set of non-ideal MHD equations for density, velocity and pressure
can now be stated as:

∂ρ

∂t
+∇ · (ρv) = mP (3.59)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+

1

µ0

(∇×B)×B+ νρ(vn − v) +mP (v0 − v) (3.60)

∂p

∂t
+ v · ∇p+ γp∇ · v =

νρ

2
(vn − v)2 + ν(pn − p) +

m

2
P (v0 − v)2 (3.61)

The red terms correspond to particle collisions while the blue terms are due to particle
production. Note, that there is no pressure associated with the particle production, since
we defined the produced particles to have a defined velocity v0. We will now discuss
each term to understand the underlying physics. The production term in the continuity
equation (3.59) is simply the production of new mass. Collisions do not change the
plasma density, therefore no collision term shows up in the continuity equation. In the
velocity equation (3.60), the collisions exert a force on the plasma relative to the velocity
difference. This causes the plasma to approach the velocity of the neutral particles vn.
The production term works in a similar way. The newly generated particles have all the
same speed v0 which causes the mean velocity of the plasma to approach the velocity of
the newly generated particles. However, unlike the collision term, the production term
changes, when we consider the momentum equation instead of the velocity equation:(

∂ρv

∂t

)
P

= mPv0 (3.62)

The production term adds constant momentum to the plasma. In the rest frame of the
newly generated particles, i.e. v0 = 0, the momentum change due to the production
is zero. If the calculations are performed in the reference frame of the neutral gas, the
velocity of produced and neutral particles can sometimes be considered to be zero. Then
the sink term in the velocity equation simplifies to(

ρ
∂v

∂t

)
C,P

= −v(νρ+mP ). (3.63)
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In the pressure equation (3.61), the first term considers the kinetic energy exchange be-
tween neutral particles and plasma. In the rest frame of the neutral particles, i.e. vn = 0,
the plasma loses kinetic energy in the shape of bulk velocity as it can be seen in the
velocity equation (3.60). This energetic loss however is partly balanced by a increase in
pressure. The same mechanism takes place considering the production term in Equation
(3.61). The second source term in this equation relates the pressure exchange by collisions
between neutrals and plasma particles. Sometimes, one can assume vn = v0, when the
neutrals that get ionized do not gain or lose considerable energy in the process. If we now
neglect pressure of the neutrals and do not consider the continuity equation, collision and
production act exactly the same. We therefore can combine production and collision to
an effective collision frequency

ν∗ = ν +
P

n
. (3.64)

In this work, the simulations are carried out in the rest frame of Io and therefore vn =
v0 = 0 holds. Neglecting the production in the continuity equation, the set of differential
equations are

∂ρ

∂t
+ ·∇ · (ρv) = 0 (3.65)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+

1

µ0

(∇×B)×B− νρv (3.66)

∂p

∂t
+ v · ∇p+ γp∇ · v =

νρ

2
v2 − νp. (3.67)

3.5. Pedersen and Hall Conductance

In ideal MHD, the conductivity of the plasma along the magnetic field line is nearly
infinite, while particles can not easily move perpendicular to the magnetic field. This
changes, when we consider collisions. Here, we will explain the currents due to collisions
in the single particle picture. Afterwards, we derive the equations for the currents arising
from drift motions and show that they agree with similar considerations in the MHD
framework.
In the single particle picture, the charged particles of the plasma move along the flow
perpendicular to the magnetic field as the result of the E × B drift. At the same time,
the particle gyrates around the magnetic field line with the gyrofrequency Ω. When a
particle collides with a neutral, it changes direction and is therefore shifted depending on
the current relative velocity to the neutral particle at the time of the collision. Due to
the electric field the particle on average has a velocity in the E × B direction and the
shift is not random, but has a preferred direction. Ions are shifted parallel to the electric
field, while electrons are shifted anti-parallel to it. This displacement can be regarded as
the Pedersen current on a single particle level. Exemplarily, Figure 3.3 shows a sketch of
trajectories for an ion and an electron, each with and without collisions. As it can be seen,
the Pedersen current results from a net shift of the particles towards larger gyroradii. The
increase of the gyroradius follows from the conservation of total energy Etot = Ekin−qU of
the particle, where q is the particles charge, U is the electric potential and Ekin = 1/2mv2

is the particles kinetic energy. When the particle shifts to lower potential energy, the
kinetic energy increases. Since the displacement of electrons and ions is opposed to each
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Ion Trajectory with Collisions
Electron Trajectory with Collisions
Ion Trajectory without Collisions
Electron Trajectory without Collisions

E B

ExB

Figure 3.3.: Sketch of the particle displacement due to collisions. The blue and green lines are the
trajectories of the ion with and without collisions, respectively. The ion that experiences collisions is
shifted in the direction of the electric field and along −E×B. The red and brown lines are the trajectories
of the electron with and without collisions, respectively. The electron that collides with the neutrals is
shifted anti-parallel to the electric field and along −E × B. The locations of collisions are marked as
black diamonds.

other, both species add to the Pedersen currents in the direction of E.
The collisions also hinder the particles to move freely with their E × B drift velocity.
This can be seen in Figure 3.3 as ions and electrons don’t move as far to the right, when
collisions occur. This is the reason behind the Hall current. Since this shift is in the
same direction for ions and electrons, the Hall current can be parallel to E×B, when the
slowdown of the electrons dominates, and anti-parallel, when the slowdown of the ions
dominates.
To derive the equations of Hall and Pedersen currents, we will first calculate the drift
motion of the particles with the help of general force drift. If we have a force F acting
on a particle with mass m and charge q in a background magnetic field B, the drift v⊥
perpendicular to the magnetic field can be calculated as

v⊥ =
1

qB2
F×B. (3.68)

We consider here two forces acting on the particles. First the Coulomb force FE = qE due
to a background electric field E perpendicular to the background magnetic field. Second,
the force due to collisions FCol = −νmv, that slows the particle down with an effective
collision frequency ν, which can be regarded as the number of collisions per time that
occur multiplied with the relative change in momentum per collisions. If we insert the
forces into equation (3.68), we get
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v⊥ =
E×B

B2
− νm

qB2
v⊥ ×B. (3.69)

With the definition of the gyrofrequency Ω = ±|q|B/m, with the positive sign for ions
and negative sign for electrons, the drift velocity can be written as

v⊥ =
1

B

 νΩ

ν2 + Ω2
E︸ ︷︷ ︸

Pedersen Drift

+
Ω2

ν2 + Ω2

E×B

B︸ ︷︷ ︸
Hall Drift

 . (3.70)

The first term in Equation (3.70) is the Pedersen drift. It is parallel to E for ions and
anti-parallel for electrons. For low collision frequencies ν ≪ Ω, the drift increases linearly
with ν and reaches its maximum for ν = Ω. However, in the case of ν ≫ Ω the many
collisions hinder the particles to complete their gyromotions. This results in the particles
to stay in place and the Pedersen drift tends to zero. The second term in Equation (3.70)
is the Hall drift and points in E × B direction for both species. However, this drift is
generally slower than the E ×B drift without collisions. As for the Pedersen drift, high
collision frequencies decelerates the particles and the Hall drift motion comes to rest. We
can calculate the current density j =

∑
nsqsvs resulting from the sum of the drift motion

of all species s. Here, we assume the particles to be single charged, i.e. qi = e and qe = −e,
and use quasi neutrality ni = ne = n. The current with the gyrofrequencies Ωe = eB/me

and Ωi = eB/mi and collision frequencies νe and νi for electrons and ions, respectively,
yields

j =
ne

B

((
νiΩi

ν2
i + Ω2

i

+
νeΩe

ν2
e + Ω2

e

)
E+

(
Ω2

i

ν2
i + Ω2

i

− Ω2
e

ν2
e + Ω2

e

)
E×B

B

)
. (3.71)

As discussed previously, the Pedersen current, i.e. the first term in equation (3.71) always
points in the direction of E and the currents due to electron and ion drift add up. The
Hall current, which is represented by second term in equation (3.71), points parallel to
E × B, if the electron collisions dominate, i.e. when νe/Ωe > νi/Ωi, but anti-parallel in
the case of dominating ion collisions. If we only consider ion collisions with ν = νi and
Ω = Ωi, Equation (3.71) simplifies to

j =
ne

B

(
σPE− σH

E×B

B

)
, (3.72)

with the Pedersen conductivity

σP =
ne

B

νΩ

ν2 + Ω2
(3.73)

and the Hall conductivity

σH =
ne

B

ν2

ν2 + Ω2
. (3.74)

These findings are in agreement with similar derivations of the Hall and Pedersen con-
ductinvity (e.g. Baumjohann and Treumann (2012)). The Hall conductivity increases
with collision frequency and asymptotically reaches ΣH,max = ne/B for ν ≪ Ω. In that
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limit, the ions are practically at rest and the electrons move due to the E ×B drift un-
hindered. However, neither the electrons nor the ions have a net movement parallel to
the electric field, which results in vanishing Pedersen conductivity in that case. Since the
currents due to collisions need to be included in the simulations that are carried out in
the single fluid MHD, we need to confirm that the conductivities arising from the collision
terms are the same as the ones derived in the single particle case and reflect the physics
well. For this purpose we use the velocity equation with collision terms (3.60). In the
case of atmospheric neutral particles, we assume that there is a force balance between the
Lorentz force and the collision term (e.g. Chané et al. (2013); Blöcker et al. (2016)) and
neglect the other terms:

j×B = ρνv. (3.75)

Together with the Ohm’s law for the electric field with the Hall term

E =

(
−v +

j

ne

)
×B, (3.76)

replacing the velocity term with the help of Equation (3.75), we obtain an equation for
the current density

− mν

e
j×B+ (j×B)×B+ ρνE = 0. (3.77)

This leads to the equation of the current density

j =
ne

B

(
νΩ

ν2 + Ω2
E− ν2

ν2 + Ω2

E×B

B

)
, (3.78)

with Ω = eB/m. This is exactly the same current density as in the equation derived
with the drift motion. Thus, the collision term in the velocity equation comprises the
same physics under the stated assumption of force balance. Note that in MHD without
Hall term, the mass of a particle is not defined, but only the mass density ρ = mn. This
can be used to regulate the strength of the Hall effect in simulations by changing the
particle mass m while leaving the mass density ρ constant. Pedersen currents are present
even without including the Hall term in the induction equation. Howeverm the Pedersen
conductivity changes to the limiting case for m → 0:

σP =
νρ

B2
. (3.79)

As stated before, the collision frequency ν can be regarded as an effective frequency at
which a particle loses its entire momentum due to collisions. One could also regard it as
the reciprocal of the characteristic time scale of the plasma’s deceleration due to collisions
in the reference frame of the moving plasma

v(t) = v0e
−νt (3.80)

Here, we considered ν as a constant. It is important to understand the underlying physics
of the collision frequency. If we assume a plasma particle to transfer its entire momentum
to the neutral during the collision process, we can calculate ν using an effective cross
section σC for the collision and computing the mean free path of a particle L = 1/(nnσC),
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with nn the number density of the neutrals. The collision frequency of particle with
velocity v is therefore ν = v/L and thus

ν = nnvσC . (3.81)

If the effective cross section is constant, the collision frequency would depend on the
velocity. In this thesis, the relative velocity between ions and neutrals are considered low
enough, that the effective cross section is determined by the induced dipole polarization
and not by charge exchange, which becomes an important factor at higher velocities (Saur
et al., 1999). In that limit, the momentum transfer between ions and neutrals depends
on the time the particles are in close range to each other. Since the number of collision
increases linearly with the velocity, but the time and therefore effective cross section is
proportional to 1/v, the product of velocity and effective cross section remains unchanged.
Saur et al. (1999) state the cross section of SO2 due to induced dipole polarization

σC(v) = 2.21π

√(
αe2

32miv2

)
(3.82)

with the polarizability α = 4.28 · 10−20 m2. With that, we can calculate the product of
cross section and velocity for an ion with an average mass of 22 amu:

vσC ≈ 2 · 10−16m3

s
. (3.83)





CHAPTER 4

The Alfvén Wing Model

When a plasma flow with bulk speed v0 is perturbed by an obstacle at speeds below the
Alfvén velocity vA, i.e. the alfvénic Mach number MA = v0/vA is below 1, Alfvén waves
can travel upstream and no bow shock can form. This sub-alfvénic interaction was first
discussed by Drell et al. (1965) for a linear interaction. Later, this model was extended by
Neubauer (1980) for the fully non-linear case. Here, this model will be explained. First,
the geometry and model assumptions are stated. In a second step the governing equations
are presented. Afterwards, the currents and fields inside and outside of the Alfvén wing
are derived and the physical implications are explained. To round up the understanding of
Alfvén wings, we created a numerical model of the system using the presented equations.
In the last part, this model is used to get a better understanding of the interaction of
counter propagating Alfvén wings, e.g. in the case of non-linear reflections.

4.1. General Idea of the Alfvén Wing Model and
Geometry

Neubauer (1980) presented an analytical model of the Alfvén wings that are generated
when plasma moves relative to a conducting obstacle, in our case Io. At Io, the plasma
moves almost perpendicular to the background magnetic field so we can assume simplified
geometry of the interaction. A sketch of the interaction is shown in Figure 4.1. The
plasma is flowing in positive x direction with sub-alfvénic relative speed v0 to Io while the
background magnetic field B0 is homogeneous in negative z direction. The y coordinate
completes the right-hand cartesian coordinate system and points roughly towards Jupiter.
In this model, we consider the distance to the perturbing object to be sufficiently large
that we can neglect disturbance of fast MHD waves. If we also make the assumption
β < 1, i.e. the magnetic field pressure exceeds the thermal pressure, the characteristic
of the slow mode differs from the characteristic of the Alfvén mode and we can restrict
the analysis of a purely alfvénic interaction. Therefore, we can assume the density ρ, the
pressure p, the magnitude B0 of the magnetic field and the Alfvén characteristics

37



38 CHAPTER 4. THE ALFVÉN WING MODEL

c± = v ± B
√
µ0ρ

= v0 ±
B0√
µ0ρ

(4.1)

to be constant. Equation (4.1) is a direct result of ideal MHD in incompressible plasma,
which is well fulfilled in the case of Alfvén waves. This correlates the plasma velocity v
directly with the magnetic field strength B.
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Figure 4.1.: Sketch of the Alfvén wing. The dashed straight lines show the outlines of the Alfvèn wing
parallel to its characteristics c±. The blue lines indicate the magnetic field perturbed by the Alfvén
waves. Here the alfvènic Mach number MA = 0.3 is chosen. Inside the wing, the magnetic field is tilted
towards the characteristic, depending on interaction strength. In front of the obstacle (dashed circle) the
magnetic field lines pile up.

4.2. Current System Inside the Alfvén Wing

Here, we focus on the positive Alfvén wing (c+), where the waves propagate parallel to
the background field. The equations derived from the negative Alfvén wing are analogous.
Io’s Alfvén wings can be regarded as current tubes, where currents travel towards Io at the
Jupiter facing side, continue through Io and its ionosphere and travel towards Jupiter at
the anti-jovian side. To calculate the current, we use the ideal MHD induction equation,
Ampères law disregarding displacement currents and equation (4.1).
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∇ · E = ∇ · (B× v)

= −B · ∇ × v − v · ∇ ×B

= −B · ∇ ×
(
��c+ −

�
�
��B

√
µ0ρ

)
+

(
c+ −

�
�

��B
√
µ0ρ

)
· ∇ ×B

= c+ · ∇ ×B

= µ0c
+ · j

(4.2)

This shows, that the current j|| along the characteristic c+ can be written as

j|| = ΣA∇ · E (4.3)

with the Alfvén conductance

ΣA =
1

µ0vA
√

1 +M2
A

. (4.4)

The current can be closed by reflections of the Alvén waves at Alfvén velocity gradients,
e.g. at the Jovian ionosphere or the torus boundary. Current perpendicular to the char-
acteristic flows along the border of the Alfvén flux tube. In the absence of reflection or
absorption, this current is divergence free on its own and does therefore not contribute to
the current closure of the parallel currents. The magnetic field vortices corresponding to
the parallel currents are shown in the simplified numerical simulations of the Alfvén wing
in chapter 4.4.

4.3. Field Equations Inside the Alfvén Wing

In a strongly magnetized plasma, the conductivity parallel to the magnetic field lines is
much higher than the perpendicular conductivity. Therefore, the perpendicular electric
field is much larger than the parallel electric field. This fact has been used by Neubauer
(1998) to derive a partial differential equation for the electric potential Φ in the plane
perpendicular to the magnetic field. In this derivation the current parallel to the magnetic
field lines is closed by the perpendicular Pedersen and Hall currents, yielding ∇ · j =
0. Adding up all the contributions of the current j = σE and integrating along the
background magnetic field, i.e. the z-direction, we get

(ΣP + ΣA)∆Φ +

(
∂ΣP

∂x
− ∂ΣH

∂y

)
∂Φ

∂x
+

(
∂ΣP

∂y
+

∂ΣH

∂x

)
∂Φ

∂y
= 0, (4.5)

where y points in the direction of the background electric field E0 = E0ey = −v0 × B0

and
ΣP,H =

∫
σp,hdz (4.6)

are the Pedersen and Hall conductances, integrated along the field lines. This has been
solved analytically for some simplified radially symmetric Pedersen conductances ignoring
the Hall conductance Simon et al. (2021). However, to get a better understanding of the
fields inside the Alfvén wing in the presence of non-negligible Hall conductance, we can
look at the electric potential of a constant Pedersen ΣP and Hall ΣH conductance inside
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the radius r < R and no conductance perpendicular to the background magnetic field
outside. Saur et al. (1999) used equation (4.5) in polar coordinates

1

r

∂

∂φ

(
(ΣP + ΣA)

∂Φ

∂φ

)
+

∂

∂r

(
r(ΣP + ΣA)

∂Φ

∂r

)
+

∂ΣH

∂r

∂Φ

∂φ
− ∂ΣH

∂φ

∂Φ

∂r
= 0,

(4.7)

which simplifies to

1

r

∂2Φ

∂φ2
+

∂

∂r

(
r
∂Φ

∂r

)
= 0 (4.8)

and used continuity of the Potential Φ at r = R, the boundary condition that the electric
field needs to be uniformly in y direction at infinity and the jump condition

lim
ε→0

∣∣∣∣r(ΣP + ΣA)
∂Φ

∂r
+ ΣH

∂Φ

∂ϕ

∣∣∣∣R+ε

R−ε

= 0 (4.9)

to derive the electric Potential and field inside and outside of the Alfvén wing. Note
that for r > R, the Pedersen and Hall conductance vanishes in the jump condition,
but the Alfvén conductance is constant for the whole interaction. A derivation of the
jump condition can be found in appendix B.2. The resulting perpendicular electric field
perturbation inside the Alfvén wing has a magnitude given by

δE = E0

√
Σ2

P + Σ2
H

Σ2
H + (ΣP + 2ΣA)2

(4.10)

and its direction is tilted against the y direction with the angle

ϑp = arctan

(
2ΣHΣA

Σ2
H + ΣP (ΣP + 2ΣA)

)
. (4.11)

The interior electric field is thus

Ei = E0 − δE(cos(ϑp)ex + sin(ϑp)ey) (4.12)

The external, i.e. r > R, electric field is derived similarly and can be expressed as

Ee
x = −δE

(
R

r

)2(
sin(ϑP )− 2

sin(ϑP )x
2 + cos(ϑP )xy

r2

)
(4.13)

Ee
y = E0 − δE

(
R

r

)2(
cos(ϑP )− 2

sin(ϑP )xy + cos(ϑP )y
2

r2

)
. (4.14)

With ideal MHD E = −v × B and constant characteristic c+, the magnetic field B⊥
perpendicular to the Alfvén characteristic can be calculated. The short derivation is
shown in appendix B.1.

B⊥ = µ0ΣAe|| × E (4.15)
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Since |B| is constant, the magnetic field parallel to the characteristic can therefore easily
be calculated as

B|| = ±
√
B2

0 −B2
⊥ (4.16)

Note, that parallel (||) and perpendicular (⊥) here are in the reference frame with respect
to the Alfvén wing, which is tilted to the background magnetic field in z direction with
the Alfvén angle

tan(ϑA) = MA. (4.17)

These analytical derivations show us some important features of the Alfvén wing. Since
the characteristic in one direction does not change as it is described by equation (4.1), we
see that a change in magnetic field δB is always connected to a change in velocity δv.

δv = ∓ δB
√
µ0ρ

(4.18)

In the Alfvén wing corresponding to the waves propagating along the magnetic field line,
i.e. the southern wing in the case of Io, the change in velocity is anti-correlated with the
change in magnetic field. In the Alfvén wing with anti-parallel propagating waves, i.e. the
northern wing, the change in velocity is in the same direction as the change in magnetic
field. Not only the velocity perpendicular to the characteristic, or to the background
magnetic field for that matter, is altered, but there is also a velocity component parallel
to the characteristic, or background magnetic field, as shown by equations (4.16) and
(4.18).
The electric field inside the wing is perturbed by the change in magnetic field and plasma
flow velocity. The amplitude of the perturbation in electric field is described by equation
(4.10). In the absence of Hall conductivity, the change in electric field is opposite to the
background magnetic field and scales with

ᾱ =
δE

E0

=
ΣP

ΣP + 2ΣA

, (4.19)

which is often referred to as interaction strength (Saur et al. (2013), Southwood et al.
(1980)). Since the change in parallel magnetic field is often relatively small in the case of
a low alfvénic Mach number MA, the relative velocity perturbation is of similar value as
the electric field perturbation.

δv

v0
≈ ᾱ =

ΣP

ΣP + 2ΣA

(4.20)

Without reflections and Hall conductance, the velocity perturbation inside the Alfvén
wing perpendicular to the background magnetic field is opposite to the incoming plasma
flow. This can be seen from the equations regarding the electric field perturbation in
the case of ideal MHD, where E = −v × B holds. This is a direct consequence of the
deceleration of the particles by the obstacle. The deceleration travels as Alfvén waves
along the characteristic and is therefore opposite to the incoming plasma flow. However,
since Alfvén waves do not compress plasma or increase magnetic pressure, the flow around
the obstacle and the Alfvén wing is accelerated.



42 CHAPTER 4. THE ALFVÉN WING MODEL

0 1 2 3 4 5 6 7 8 9 10

P
 / 

A

0

0.2

0.4

0.6

0.8

1
Interaction strength

H
 = 0

P

H
 = 0.5

P

H
 = 1

P

H
 = 2

P

Figure 4.2.: Relative strengths of the perturbed electric field inside the Alfvén wing for different ratios
of Hall and Pedersen conductances according to equation (4.10).

If Hall conductance is present, the electric field inside the Alfvén wing is twisted by an
angle ϑtwist Saur et al. (1999)

ϑtwist = −Ex

Ey

=
ΣH

ΣP + 2ΣA

(4.21)

Therefore also the magnetic field and velocity flow perturbation is twisted inside the
Alfvén wing and the symmetry along the y-axis is broken. This can play an important
role especially regarding non-linear reflections, where this asymmetry is self-reinforcing.
This is discussed in more detail in chapter 4.5. Furthermore, the Hall effect increases the
overall strength of the perturbation as shown in Figure 4.2.

4.3.1. Energy Transport

Alfvén waves carry electromagnetic energy in form of the Poynting flux S, which is defined
as

S =
E×B

µ0

. (4.22)

The Poynting flux in an ideal MHD plasma moving perpendicular to the background mag-
netic field is non-negligible and has a value of S0 = −(v0 × B0) × B0/µ0 = v0B

2
0/µ0ex.

Also in the rest frame of the obstacle, the electric field perturbation outside the Alfvén
wing decreases roughly with r−2 as can be seen by equations (4.13) and (4.14) and there-
fore the total Poynting flux integrated over the plane perpendicular to the propagation
direction of the Alfvén wave is infinite. Additionally, we are interested in the energy flux
towards Jupiter in the rest frame of Jupiter. Therefore, in this work Poynting flux is
always calculated in the rest frame of the unperturbed plasma, as proposed by Saur et al.
(2013). Since the perturbation of the magnetic field δB and the electric field δE is cor-
related by equation (4.18) and E = −v ×B, the Poynting flux Sz along the propagation
direction, i.e. parallel or anti-parallel to the background magnetic field, can be written as
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Sz = ±B0

√
ρ

µ0

δv2⊥ = ±vA
δB2

⊥
µ0

(4.23)

with vA = B0√
µ0ρ

. A full derivation is shown in appendix B.4. The Poynting flux along
the propagation direction of the Alfvén waves can therefore be seen as the propagation of
magnetic energy δB2

⊥/2µ0 with the Alfvén velocity vA. As discussed in chapter 3.2 about
the change in direction of the magnetic field and the velocity perturbation at reflections,
either the magnetic or the velocity changes sign which results in the Poynting flux also
changing sign at every reflection. Therefore, the Poynting flux always has a component
parallel to the propagation direction and never anti-parallel to it.

4.4. Semi-Analytical Model

The distribution of Pedersen and Hall conductance of moons is not necessarily constant
but can be structured due to asymmetries in the ionosphere and also in general the inte-
gration of the conductivities along the magnetic field lines. Equation (4.7) has no general
analytical solution. To solve it numerically for a azimutally symmetric Pedersen and Hall
conductance, the differential equation is subdivided in a system of similar differential
equations with an equation for each ring of constant conductances with defined jump
and continuity conditions between them, similarly applied by Blöcker et al. (2016). A
full derivation of the numerical solver can be found in Appendix B.2. This simulation is
helpful to understand the equations and statements of the former chapter more clearly
and to illustrate the fields inside and outside the Alfvén wing. Starting with a constant
Pedersen conductance as in the analytical case of Saur et al. (1999), but neglecting the
Hall conductance we get the most simple case of an Alfvén wing. The results are shown
in the appendix B.3 and compared to the analytical solutions to evaluate the numerical
solutions. A more realistic model with a continuously changing Pedersen conductance is
used to show how the plasma flow velocity and the magnetic field is perturbed around the
Alfvén wing. In this model, we assume the Pedersen conductance of a radially symmetric
gas cloud with a constant density that exponentially decreases outside the sphere of radius
R = 1. The conductance is then calculated using equations (3.81), (3.73) and (4.6). The
result is an Alfvén wing with nearly constant perturbations inside corresponding to an
interaction strength of ᾱ ≈ 0.8 with a smooth transition region at the border of the wing.
The values taken for the initial conditions are shown in Table 4.1.
In the following, slides through the plane perpendicular to the background magnetic field,
i.e. the x-y-plane, are shown. The absolute velocity and stream lines of the velocity field
in this plane are shown in Figure 4.3. White color corresponds to flow with unperturbed
magnitude, while red regions show accelerated plasma and blue regions show decelerated
plasma. The flow is decelerated at the center of the Alfvén wing, caused by the slowdown
of the plasma by the obstacle. This deceleration decreases towards the border and fades
out in front of the wing (x < −1) and in the wake (x > 1). At the flanks of the wing,
the flow is accelerated, caused by the flow around the obstacle. The rapid change from
decelerated to accelerated plasma are equivalent to vortices in the perturbation of the
velocity field and therefore in the magnetic field. This can be seen in figure 4.4, where the
Poynting flux along the unperturbed magnetic field and the magnetic field perpendicular
to it is shown. The magnetic field vortices are located at the flanks of the Alfvén wing,
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Table 4.1.: Parameters for the numerical calculations of the Alfvén wing

Parameter Symbol Value [unit]

Bulk velocity v0 57000 [m/s]
Background magnetic field B0 1720 [nT]

Interaction strength ᾱ 0.8 / 0.9
Electric field strength E0 0.1 [V/m]
Alfvénic Mach number MA 0.3

Alfvén conductance ΣA 4 [S]
Maximum Pedersen conductance ΣP 30 [S]

Maximum Hall conductance ΣH 0 [S] / 30 [S]

where the Poynting flux is zero. This results in crescent-shaped current sheets towards
(y ≈ 1.5) and away from (y ≈ −1.5) the obstacle as shown in Figure 4.5. The minimum
in Poynting flux is caused by the minimum in perturbation of velocity and magnetic field
at the flanks, where the direction of the perturbation changes sign.
As a next step, Hall conductance is included. This increases the interaction strength
corresponding to Figure 4.2 to about ᾱ = 0.9. Apart from the Hall conductance, that
has now the same value as the Pedersen conductance, the parameters remain unchanged.
The Poynting flux with perpendicular magnetic field lines and velocity field is shown in
Figure 4.6. The overall structure of the Alfvén wing is twisted and rotated clockwise. The
minima in the Poynting flux are displaced mainly in x direction. The same holds for the
current maxima as shown in Figure 4.7.
The exact shape of the Poynting flux is determined by the distribution of Pedersen and
Hall conductance. However, already with radially symmetric conductances, we can see
how the symmetry with respect to the x-axis is broken and a displacement of extrema in
magnitude of current, velocity, magnetic field and Poynting flux is formed. The presence of
non-negligible Hall conductance therefore seems a viable candidate to explain the observed
alternating Alfvén spot street.



4.4. SEMI-ANALYTICAL MODEL 45

-4 -3 -2 -1 0 1 2 3 4
x

-4

-3

-2

-1

0

1

2

3

4

y

Velocity field

2

3

4

5

6

7

8

9

10

V
 [m

/s
]

104

Figure 4.3.: Velocity Magnitude inside (r < 1) and outside (r > 1) of an Alfvén wing with radially
symmetric exponentially decreasing Pedersen conductance and no Hall conductance. Red regions show
accelerated plasma, while blue regions show decelerated plasma. The blue streamlines show the flow
direction of the plasma inside the plane.
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Figure 4.4.: Poynting flux inside (r < 1) and outside (r > 1) of an Alfvén wing with radially symmetric
exponentially decreasing Pedersen conductance and no Hall conductance. The blue lines are the perpen-
dicular magnetic field lines in the plane. They are anti-parallel (parallel in the case of the c−-wing) to the
flow direction (x-direction) inside the wing and along the flow direction outside. This results in vortices
at the flanks of the wing, where the Poynting flux is zero.



46 CHAPTER 4. THE ALFVÉN WING MODEL

Figure 4.5.: Current towards (blue) and away from (red) the obstacle. The current is confined to the
region of strongly changing perturbation, maximizing at the flanks of the Alfvén wing.
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Figure 4.6.: Numeric simulations of the Alfvén wing with Hall conductance. The fields are tilted with
respect to the horizontal x axis and the symmetry is broken. Left: Poynting flux along the unperturbed
magnetic field and the magnetic field lines in the perpendicular plane. Right: Velocity magnitude and
velocity stream lines in the plane. Regions with decreased plasma flow velocity are shown in blue, while
accelerated plasma is shown in red.
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Figure 4.7.: Current towards (blue) and away from (red) the obstacle with Hall conductance. Compared
to the simulation without Hall conductance, the current sheets a rotated clockwise.

4.5. Non-linear Reflections

An important feature of the Alfvén wing, especially in the case of Io, is the interaction of
Alfvén waves with counter-propagating ones. In the linear case, the waves travel through
each other without interacting. When the perturbation of the magnetic field is not-
negligible compared to the background magnetic field, i.e. when ᾱMA ̸≪ 1, the counter-
propagating wave is affected by the perturbation of the incident wave. This results from
the Alfvén wave carrying perturbations of magnetic field δB and flow velocity δv, which
influence the velocity of the wave in both, direction and magnitude. For an Alfvén wave
traveling in the same direction, these two effects would cancel out as seen by equation
(4.1). However, a counter-propagating wave has the opposite characteristic, e.g. c−

instead of c+. This results in a change of characteristic, so that the new characteristic of
the counter propagating wave is

c∓new = c∓ ± 2
δB

√
µ0ρ

, (4.24)

where δB is the perturbation of the magnetic field by the incident wave. To get an insight
about the shape of the field distribution of the reflected wave, we need to get a three dimen-
sional model of the characteristics of the counter propagating wave. For that purpose, we
take the perturbation δA(x, y) of the Alfvén wing in the two dimensional plane (x, y) per-
pendicular to the background magnetic field as in chapter 4.4, with δA being any alfvénic
perturbation like velocity, electric field or magnetic field. Those perturbation are then
mapped along their characteristics, which is in our case constant and given by the back-
ground magnetic field and bulk velocity c+ = v0+

B0√
µ0ρ

, i.e. δA(r) = δA(r+c+δt) for any
travel time δt. This results in a three dimensional model of the incident Alfvén wing. With
this perturbation model, we can calculate the characteristic of the counter-propagating
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Figure 4.8.: The Poynting flux in the (x,z)-plane of the modelled Alfvén wing. The background magnetic
field is along the z-axis and the bulk velocity is in x direction. The c− characteristic of a counter-
propagating Alfvén wing are shown as blue lines. The c+ characteristics are parallel to the Alfvén wing.

wave with equation (4.24). We now map a reflected δAref (x, y) = ±RδA(x, y) along
those newly calculated characteristics c− for the counter-propagating wave as shown in
Figure 4.8. Depending on the reflection, either velocity or magnetic field changes sign and
the amplitude depends on the reflection coefficient R. The mapping here is done with
an explicit Runge-Kutta solver of fourth degree. For this purpose the characteristic is
written as c− = c−x ex + c−y ey + c−z ez. Furthermore, the time steps in the explicit solvers
are chosen, so that δt · c−z = ∆z = const., yielding to a mapping onto equidistant z-layers.

δA(x, y, z +∆z) = δA(x− δtc−x , y − δtc−y , z) ·
√

Snew

Sold

(4.25)

This iteratively maps along the characteristic and also conserves total Poynting flux
Stotal =

∫
Szdxdy. This is done by scaling the obtained perturbation δA(x, y, z + ∆z)

with the square root of the relative change in area, because the Poynting flux is roughly
proportional to the square of the perturbation as shown in equation (4.23). The change



4.5. NON-LINEAR REFLECTIONS 49

-0.03

-0.02

-0.01

0.01

0.02

0.03

2
-2 0 2 4 6 8 10 12 14

x [R]

Strong Interaction

0

-4
0

2

4

6

8

10

12

14

16

18

20

S
Z 

[W
/m

]
-2 0 2 4 6 8 10 12 14

x [R]

Weak Interaction

-3

-2

-1

0

1

2

3

S Z
 [W

/m
2 ]

10  -3

-4
0

2

4

6

8

10

12

14

16

18

20
z 

[R
]

Figure 4.9.: Poynting Flux and magnetic field line for a strong interaction (left) with ΣP /ΣA = 8 and
weak interaction (right) ΣP /ΣA = 0.7. The maximum Poynting flux is one magnitude lower in the case
of weak interaction and the magnetic field lines in the incident (red) and reflected (blue) Alfvén wing are
only weakly perturbed. For the strong interaction, the reflected Alfvén wing is much broader due to the
non-linear reflection.

in Alfvén speed is assumed to be negligible. The relative change in area is calculated
numerically for each area grid cell of size ∆x∆y, but can be approximated to first order
by

Snew

Sold

≈ 1 + ∆z2
∂(cx/cz)

∂x

∂(cy/cz)

∂y
(4.26)

The incident Alfvén wing is gradually reflected at z = 20 [R]. The resulting Poynting
flux in the (x,z) plane is shown in Figure 4.9 for a high interaction strength and a low
interaction strength. This difference is important, because the characteristic is fairly un-
changed for the reflected wave in the case of a low interaction strength. Therefore, the
incident and reflection angle are very similar and the reflected wing follows its charac-
teristic resembling the incident wave in shape and size. In the case of strong interaction
however, the plasma inside the incident wing is almost at halt. To keep the characteris-
tic constant, this results in strongly tilting the magnetic field towards the characteristic.
Therefore, the characteristic of the reflected wave is strongly perturbed by the incident
wing and the wave is reflected back into the incident wing. This leads to a strong change
in the shape and extend of the reflected wing. If the interaction strength is high enough,
this could result in the reflected wave to be reflected back to the obstacle, which would
result in an unipolar inductor as proposed by Goldreich and Lynden-Bell (1969). To see,
how the reflection also changes the transmitted wing (z > 20[R]), we can now see how
a new incident wing would propagate through the medium changed by the first incident
and reflected wing. The reflection changes the new c+ characteristic according to equa-
tion (4.24). The Poynting flux for the incident, transmitted and reflected wings is shown
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Figure 4.10.: Poynting Flux in for different distances z from the (x,y) plane in the case of weak interaction.
The Poynting flux of the incident wing (red) is only reduced after the reflection, but the shape is unaltered.
The reflected wing (blue) resembles the incident in shape apart from a slight stretching along the x
direction.

for different offsets z in Figure 4.10 for weak interaction and in Figure 4.11 for strong
interaction. In the case of weak interaction a linear reflection takes place.

This results in the incident, reflected and transmitted wing to be similar in shape albeit the
reflected and transmitted each carry only a part of the energy carried by the incident wing.
In the case of strong interaction however, the shape of reflected and transmitted wing is
strongly deformed. The reflected wing, as shown in blue in Figure 4.11, is elongated
as already discussed. Furthermore the upstream part of it is narrowed in y direction,
perpendicular to the flow. This can be understood, if we look at the characteristic c−

of the reflected wing in the plane z = const. perpendicular of the background magnetic
field as shown in Figure 4.13. The deviation of the characteristic for the reflected wing
δc− = c−−v0+B0/

√
µ0ρ is shown as stream lines. Those are similar to the magnetic field

perturbations shown in Figure 4.4 as described by equation (4.24). Without perturbation,
the reflected Alfvén wing would continuously propagate along the unaltered characteristic
c−, which would by itself place the reflected Alfvén at the blue dashed outline. However,
on its way its deformed by the characteristic perturbation in the plane. These are pointing
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Figure 4.11.: Poynting Flux in for different distances z from the (x,y) plane in the case of strong interac-
tion. The reflected wing (blue) is stretched and the upstream part closer to the incident wing is narrowed.
The incident wing (red, z < 20) changes shape when the reflected wing change its characteristics. This
carves out the downstream part of the incident wing and gives the transmitted wing (red, z > 20) its
horseshoe shape.

in negative x direction, moving parts of the reflected wing towards the incident wing and
stretching it. The characteristics are also pointing inwards, compressing the wing and
therefore narrowed. Since the upstream part is more affected by the perturbation, which
are stronger closer to the incident wing, this part is more stretched and narrowed.
To understand the horseshoe shape of the transmitted wing, we can similarly looked, how
the reflected wing changes the characteristics of the incident wing. This is shown in Figure
4.12. The Poynting flux of the incident and reflected wing are already deformed and do
no longer fit the circular shape as outlined by the dashed circles. The perturbation of the
characteristic δc+ = c+ − v0 − B0/

√
µ0ρ for the incident wing is shown in streamlines.

These mainly point in -x direction, similar to the δc−. Since this effect is stronger down-
stream closer to the reflected wing, the incident Alfvén wing is compressed in x direction.
Because this effect is stronger in the center and the characteristic also points slightly
outwards, the incident Alfvén wing gets continuously carved out downstream and it gets
shaped like a horseshoe.
These simplified numerical simulations give us a lot of insight about what to expect from
different aspects of the interaction. First, the Hall effect has a strong symmetry breaking
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Figure 4.12.: Poynting flux in the z = 15 R plane for the incident wing. The characteristic perturbation
δc− for the reflected wing is shown as field lines. The projected outlines of the incident (orange) and
reflected (blue) Alfvén wings are shown as dashed circles.

Figure 4.13.: Poynting flux in the z = 15 R plane for the reflected wing. The characteristic perturbation
δc+ for the incident wing is shown as field lines. The projected outlines of the incident (orange) and
reflected (blue) Alfvén wings are shown as dashed circles.
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and warping effect on the morphology of the Alfvén wing. The effect is stronger for higher
ratios of Hall to Pedersen conductance. In the case of weak interaction, incident, reflected
and transmitted Alfvén wing have similar shape and incident and reflection angle are
similar. If the interaction grows stronger, we expect the reflected Alfvén wing to get
closer to the incident wing and get stretched and narrowed. The opposite is true for the
transmitted wing, that gets compressed and slightly widened. Since the compression and
widening is not uniform but enhanced downstream near the reflected wing, the transmitted
wing is shaped like a horseshoe. Therefore, we expect Hall conductances and non-linear
reflections to have a major role in the morphology of the Poynting flux.





CHAPTER 5

Application of the Io Alfvén Wing Model

The general mechanism to produce the Galilean footprints is believed to be the propaga-
tion of Alfvén wings towards the Jovian ionosphere, where they accelerate particles via
wave particle interaction. In the MHD limit, the propagation of the Alfvén wave packages
depend only on the magnetic field B and the mass density ρ along the path. In this
chapter we will therefore discuss two questions: (1) Are the location and separation of the
Io footprint and its tail spots consistent with established magnetic field and mass density
models? (2) Can we use the footprint positions to constrain a model for the mass density?
Here, we only are interested in the mass density model, since with the JRM09 model by
Connerney et al. (2018) we already have an adequate magnetic field model for the inner
Jovian magnetosphere.

5.1. JRM09 Magnetic Field Model

As discussed in Section 2.1, Jupiter’s magnetic field at Io’s vicinity can be regarded as
a dipole of strength M = 4.177 G and a tilt of ϑD = 10.25◦ colatitude in φD = 196.38◦

western longitude. When getting close to the Jovian ionosphere, higher orders are needed
to accurately describe the magnetic field lines governing the propagation direction of
the Alfvén waves. We therefore use the JRM09 magnetic field model by Connerney
et al. (2018). For that purpose, an MPI-parallelized C code was written to calculate
the magnetic field at each position in the Jovian inner magnetosphere using the Gauss
coefficients published in the supplementary material by Connerney et al. (2021). To
validate the code, the magnetic field on the flattened surface of Jupiter was calculated as
shown in Figure 5.1 and compared to the published values, which were identical.
The magnetic field itself is not enough to determine the position of the footprint when Io is
at a specific location. However, it can be used to identify the entirety of possible footprint
positions at both hemispheres by mapping the orbital position of Io along the magnetic
field lines towards Jupiter’s surface as shown as black lines in Figure 5.1. The grey squares
show the footprint of Io’s flux tube in 5◦ longitudinal separation in Io’s orbit. The northern
footprints get closer to each other near the anomaly at 200◦ eastern longitude and are

55
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Figure 5.1.: Magnetic field strength on the flattened (f = 1/15.4) surface of Jupiter, calculated with the
JRM09 model as a function of eastern longitude and colatitude. The field lines mapping from the orbital
position of Io at L = 5.9 onto the Jovian surface are shown as black lines in both hemispheres. The grey
squares depict the mapping of Io’s orbital position in 5◦ separations in longitude.

stretched out near 0◦, where they move to higher latitudes. The footprints are more evenly
spaced at the southern hemisphere, where the magnetic field is better approximated by
a dipole. Hinton et al. (2019) used the JRM09 model to calculate the positions of the
footprints. They furthermore used a smooth torus model to calculate overall travel times,
ranging from only slightly more than two minutes, when Io is near the close edge of the
torus to about eleven minutes when Io is on the opposite side of the torus. They further
found that the total round trip travel time for an Alfvén wave package, i.e. the travel
time to one hemisphere then to the opposite hemisphere and back to Io, depends on the
position of Io. It ranges from 25 minutes to 30 minutes in their model. The variability of
this round-trip time should not depend on the density model and therefore solely results
from the JRM09 magnetic field model (Hinton et al., 2019).

5.2. Torus Density Model
To calculate the position of the Io footprint relative to the position of Io itself, we need to
account for the Alfvén wave travel times, which are not only dependent on the magnetic
field strength but also on the plasma mass density ρ along the travel path. It is therefore
necessary to consider an accurate torus density model. As a first approach, we can use
the torus density model described by Phipps et al. (2020). The density distribution for
this model is shown in Figure 5.2. The magnetic field line is mostly affected by the Io
torus region referred to as ribbon. The torus itself is tilted against the magnetic equator
plane.
With a density model, the travel times of alfvénic perturbation originating from Io to-
wards Jupiter can be calculated. Therefore, we can determine the relative position of
the longitude of Io φIo and the longitude φIFP of the corresponding footprint of the Io
flux tube. This allows us to define a leading angle ∆φ = φIo − φIFP for each position of
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Figure 5.2.: Plasma number density distribution in the inner Jovian magnetosphere calculated with the
empirical model given by Phipps et al. (2020). The z-axis is aligned with the JRM09 magnetic dipole.
The magnetic field line (black) is mainly located within the ribbon region of the torus. The minimum
density is set to nmin = 1 cm−3 in the high latitude regions. Jupiter is characterized by a high density
gradient in the ionosphere (left yellow circle) with a peak number density of nmax = 105 cm−3.

Figure 5.3.: The relative Alfvén phase velocity gradient along the Io flux tube starting at the torus center.
Jupiter’s ionosphere is excluded in this plot. Here, the relativistic Alfvén velocity is used, which results
in almost constant phase velocity close to the speed of light at higher latitudes after a travelled distance
z along the flux tube of ≈ 2RJ . The strongest relative phase velocity gradient is at z ≈ 0.9RJ .

Io. The concept is shown in Figure 5.4. The Alfvén wings projected onto the surface of
Jupiter are shown as red lines. They are reflected at the position of the highest relative
phase velocity gradient ∇(log(vA)) along the magnetic field line, which is approximately
0.9RJ from the torus center and corresponds to θ = 8.4◦ in latitude. The gradient of
relative phase velocity along the Io flux tube starting from the torus center is shown in
Figure 5.3.
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Figure 5.4.: Top: Surface magnetic field calculated with JRM09. The red lines indicate the projection of
the northern and southern Alfvén wing on the surface, once reflected at both torus boundaries, represented
as black lines. Therefore, four footprint positions are determined, two on both hemispheres indicated as
black stars for the footprint of the main Alfvén wing and as yellow stars for the reflected Alfvén wing.
The black dashed lines indicate the longitudinal positions of the northern main Alfvén wing footprint and
Io. The difference between those longitude is called the leading angle. Bottom: The northern leading
angle for the northern main Alfvén wing footprint.

5.3. Inversion of Footprint Position

In this section, we will address the second question posed at the beginning of this chapter.
That is, whether it is possible to use the footprint positions to constrain a density model
for the Io flux tube. Along the magnetic field lines, the density gradient of the torus
region is mainly determined by the force balance between centrifugal force and thermal
pressure. From these two forces, a scale height

H =

√
2kBT

3Ω2
J⟨m⟩

, (5.1)

with kB being the Boltzmann constant, can be approximated (Thomas et al., 2004; Phipps
and Withers, 2017) and depends on Jupiter’s angular velocity ΩJ and the average mass
⟨m⟩ = 24 amu. Therefore, the temperature can be inferred from the density distribution
in the torus region. As mentioned before, the position of the footprints relative to Io’s
position, i.e. the leading angle, depends on the density along the field line, in particular
inside the torus. Therefore, observations of the location of the footprints can be used as
data for an inversion of the density distribution along the Io flux tube. For that purpose,
a force balance model is introduced similar to the one by Dougherty et al. (2017) to
calculate the density along the flux tube given an ion temperature Ti.
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kBTi
∂n

∂s
− n⟨m⟩Ω2

J

1

2

∂r2⊥
∂s

+ n⟨m⟩GMJ
∂1/r

∂s
= 0 (5.2)

Here, n is the number density that depends on the position along the flux tube s. The
second term is representing the centrifugal force and scales with the change in distance r⊥
to the rotation axis. This term is small near the centrifugal equator where the density is
fairly constant. The last term stands for the gravitational force and is negligible near the
torus, but is the driving contributor at the Jovian ionosphere. This force balance model
has some simplifications. First, only one ion species with an average mass ⟨m⟩ is assumed.
Also the ion temperature is isotropic Ti,|| = Ti,⊥ and constant in this model. Furthermore,
the ambipolar electric field due to electrons is neglected. To account for the electrons,
we can add the electron pressure in the first term and substitute the ion temperature Ti

with the sum of the electron and ion temperature T ∗ = Ti+Te. Since the electron mass is
negligible, they don’t have any influence on the other terms and we use quasi-neutrality
and singly charged ions, therefore n = ni = ne. This results in a density model along the
magnetic field line that depends on the density n0 = n(z = 0) at the torus center and
the temperature T ∗. These two values span the modeling vector m = (n0, T

∗)T of the
inversion. The data vector d = (∆φ(φIo))i are the observed leading angles, taken from
the supplementary material of Bonfond et al. (2017). Those two values are connected by
the forward operator F(ρ(r, n0, T

∗)) = F(φIo,m). It calculates the leading angle ∆φ0

by mapping from Io’s position φIo to Jupiter’s flattened surface. Then the total leading
angle ∆φ = ∆φ0 +∆φt is computed by adding the angle

∆φt = ΩJ,syn

∫ Jupiter

Io

ds

vA(B(r), ρ(r, n0, T ∗))
(5.3)

to it, corresponding to the Alfvén travel time. Here, it is important to use the synodic
period ΩJ,syn, taking account of the movement of Io relative to Jupiter. The simple
addition of the travel time dependent part ∆φt to the leading angle ∆φ0 for an instant
development of an Alfvén wing along the Io flux tube is possible because the plasma is
frozen into the magnetic field. Therefore, the Alfvén wave and corresponding Alfvén wing
does not change the magnetic field line and ∆φ0 does not by itself depent on the travel
time. The cost function Φ is the L2 norm between the model responses Fi(φIo,i,m) and
the data vector di(φIo,i) weighted by a matrix W = diag(ϵi) that incorporates the errors
ϵi of each observation di.

Φ = (F− d)W2(F− d)T (5.4)

Since the model space is very small, i.e. only two parameters, the inversion algorithm to
minimize the cost function Φ was a simple hedgehog method that sweeps out the space
of possible values via trial and error method. The cost function was calculated for 991
values for n0, starting from 50 cm−3 in increments of 5 cm−3 to up to 5000 cm−3 and for
100 values of the combined temperature T ∗ starting from 2 K in 2 K intervals to up to
200 K. To characterize the result of the inversion an error weighted misfit

χ =

√√√√ 1

N

N∑
i

Fi − di
ϵi

(5.5)
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Figure 5.5.: The measurements by Bonfond et al. (2017) with error bars for the leading angle of the
footprint for the northern (blue) and southern (red) main Alfvén wing. The best fit model with a misfit
of χ = 0.57883 is shown as solid lines. The model was T ∗ = 96 eV and n0 = 1830 cm−3

is introduced. The basic concept behind the L2 norm and the corresponding cost function
and misfit are the independence of the measurements and the assumption of a normal
distributed error. Both conditions are not strictly fulfilled here, since the measurements
were interdependent and might have systematic errors. For this fairly simple inversion the
L2 norm however suffices. The best model fit with an error weighted misfit of χ = 0.58 is
shown in Figure 5.5. A χ < 1 is traditionally regarded as over-fitted. However, since we
can not regard the measurements as independent, this concept does not easily apply. The
best fit model was a temperature of T ∗ = 96 eV and a central torus number density of
1830 cm−3. The density value is slightly below other models in the literature. Phipps et al.
(2018) suggested slightly higher values for the warm torus peak density of n0 = 2430 cm−3,
similar to the value given by Dougherty et al. (2017) of n0 = 2451 cm−3. Bagenal and
Delamere (2011) had a lower maximum torus number density of n0 = 2001 cm−3 in their
model. For the temperature Dougherty et al. (2017) had a very low electron temperature
Te ≈ 5 eV at Io’s orbit with a suprathermal subpopulation of Te,hot = 35 eV, both
temperatures rapidly increasing with distance to Jupiter. For the ion temperature, the
model of Dougherty et al. (2017) provides a value of Ti = 79.3 eV at Io, while Phipps et al.
(2018) occultation measurements show a similar, albeit slightly lower value of Ti ≈ 70 eV.
Generally, the temperatures are in good agreement with the given values. The density
profile along the Io flux tube starting from the torus center is shown in Figure 5.6. The
temperature and density value result in a one way travel time from the torus center
towards Jupiter’s ionosphere of t0 = 365 s. Furthermore, the temperature results in a
scale height of about H = 0.9RJ , which is in between the values given for the scale height
of the ribbon and warm torus by Phipps et al. (2018).
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Figure 5.6.: Density distribution along the magnetic field line, starting at the torus at x = 0 with a
density of n0 = 1830 cm−3, reaching a minimum of almost 1 cm−3 at high latitudes and then increasing
towards the Jovian ionosphere.

5.4. Position of the Secondary Tail Spots
Parts of this section have been submitted to JGR-Space Physics and have been accepted
for publication. With the JRM09 magnetic field model and a density model along the
magnetic field lines, we can not only calculate the footprint of the main Alfvén wing, but
also of the reflected Aflvén wings using the position of the ionosphere and the strongest
relative Alfvén phase velocity gradient (cf. Figure 5.3) as reflection points for the Alfvén
waves. This results in a multitude of reflected Alfvén wings, each with its own footprint.
This can be used to answer the first question posed at the beginning of this chapter: Are
the location and separation of the Io footprint and its tail spots consistent with established
magnetic field and mass density models? Not included here are trans-hemispheric electron
beams that can explain the leading spot emissions and might contribute to some emission
features in the tail, albeit to a lesser extend. The observations by Mura et al. (2018)
provided positions of the main Alfvén wing spot and secondary spots for two occasions,
one at each hemisphere. Using the position of the strongest emission corresponding to the
main Alfvén wing the position of Io can be inferred. For the observation of the northern
footprint, when Io was roughly at φIo ≈ 80◦ and 3.1◦ north of the torus center, the results
are shown in Figure 5.7. The calculated positions along the tail coincide with some of the
emission maxima in the tail, referred to as tail spots. The reflection pattern corresponding
to the calculated positions of the secondary spots is shown on the right hand side of 5.7.
For the southern spots observed by Mura et al. (2018) the study yielded similar results.
Even though not every feature in the tail can be mapped with this reflection pattern, this
study shows that the separation between the main spot and tail spots can be explained
with reflections at the torus boundary and Jovian ionosphere.
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Figure 5.7.: A: JIRAM image of the northern footprint by Mura et al. (2018). The observation was
taken when Io was at φIo ≈ 80◦ western longitude. With a leading angle of ∆φ = −47◦, this results
in a main Alfvén wing footprint at ≈ 127◦ W, in agreement with the observation shown here. B:
Calculated longitudinal positions of footprints of secondary Alfvén wings for different reflection patterns.
C: Reflection patterns corresponding to the footprint positions shown in B. The travel path of the first
seven footprints on the northern Jovian ionosphere are shown.

Figure 5.8.: Left: Calculated longitudinal positions of the footprints of secondary Alfvén wings for
different reflection patterns when Io was at ≈ 135◦ W. Right: JIRAM observation of the southern Io
footprint emissions by Mura et al. (2018) with the mapped positions of the secondary footprints. The
reflection pattern of the corresponding Alfvén wing is similar to those shown in Figure 5.7



CHAPTER 6

MHD Simulation Setup

Single fluid MHD simulations are carried out in order to investigate the different mech-
anisms that could lead to the alternating structures in the Io footprint tail observed by
Mura et al. (2018) and Moirano et al. (2021). In this chapter the PLUTO code used for
these simulations is presented. Afterwards, the basic model background model with the
used parameters is introduced and the specifications of the domain, grid and the boundary
conditions are defined. On some basic simulation setups the code is validated and com-
pared to expected theoretical outcomes. The terms in the governing basic equations are
compared to each other with a scale analysis followed by a short discussion, whether the
assumptions made are justified. In the last part the reference model without symmetry
breaking effects is presented.

6.1. The PLUTO Code

PLUTO is a multiphysics numerical code developed for the treatment of astrophysical
fluids (Mignone et al., 2007). The code uses the finite volume (FV) scheme to integrate
the governing equations formulated as conservation law.

∂U

∂t
= −∇ ·T(U) + S(U) (6.1)

Here, U is the state vector of conservative quantities like density ρ, momentum ρv,
pressure p or magnetic field strength B and T(U) defines the fluxes of U, while S(U)
are the source and sink terms. The finite volume formalism has superior accuracy and
robustness when used for conservation laws (Falle, 2002). In this work, PLUTO is used
as a single fluid Hall-MHD code. It solves the following conservation laws:

∂ρ

∂t
+∇ · (ρv) = 0 (6.2)

∂ρv

∂t
+∇ ·

(
ρv ⊗ v −B⊗B+ I

(
p+

B2

2

))T

= 0 (6.3)
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∂B

∂t
+∇ · (−v ×B) = 0 (6.4)

1

2

∂(3p+ ρv2 +B2)

∂t
+∇ ·

[(
ρv2

2
+

5

2
p

)
v − (v ×B)×B

]
= 0 (6.5)

In equation (6.3), ⊗ denotes the tensorial product and I is the identity matrix. Addition-
ally to solving equations (6.2) to (6.5), the code supports different methods to keep the
divergence of the magnetic field under control. This is important, since equations (6.3),
(6.4) and (6.5) have non-zero flux terms that are proportional to ∇ ·B.

6.2. Model, Grid and Parameters
PLUTO has the potential to support irregular grids and adapted mesh refinement. How-
ever, in this work we use a simple rectangular grid with constant grid spacing ∆x = ∆y =
∆z = 0.2RIo. Values for the grid size are given in Io radii RIo. Grids with smaller cells
have been tested, but no benefits regarding accuracy or numerical robustness have been
found. The domain ranges from −20 to 100 in x-direction, −12 to 12 in y-direction and
−65 to 65 in z-direction. The domain was set up that possible reflections at the boundaries
do not influence the results significantly. This results in a total number of [601x121x651]
grid points. The total simulation time was set to 80 minutes. This on the one hand
ensures that the plasma travels through the whole domain τ = 120RIo/v0 ≈ 64 minutes,
ensuring steady state, while on the other hand preventing reflections at the x = 120
boundary to affect the simulation results significantly. We use two types of boundary
conditions: inflow and outflow. Outflow boundaries have Neumann boundary conditions
that copy the value of the boundary cells to the ghost cells. This ensures that the gradient
through the boundary of the chosen quantity vanishes, i.e. ∇boundaryU = 0. The outflow
boundary condition is used for all variables and all boundaries except at x = −20. At
that boundary, inflow conditions are applied, which is a Dirichlet boundary conditions
and sets a constant value in the ghost cells. The set values for v0, p0 and B0 are shown
in table 6.1, while the density ρ0 = ρ0(z) is not constant along the boundary and given
by the chosen background density model.
The Jovian ionosphere must be included to implement a region where the Alfvén velocity
gradient is strong to permit reflections. Also a reference region is needed where energy
fluxes can be used as a diagnostic to infer position, morphology and intensity of emission
features created by particle acceleration. However, we used a simplified geometry, where
the normally curved magnetic field lines are straightened and a homogeneous background
magnetic field in negative z-direction can be used. This allows the application of a uniform
rectangular grid and simplifies the separation of different effects from each other and from
numerical inaccuracies. The constant magnetic field strength B0 = 1720 nT is chosen to
match the values in the vicinity of Io, just as the maximum number density nI at the torus
center that were inferred from the modelling and inversion in Chapter 5. From that the
mass density ρ = n ·mi for an average ion mass of mi = 24 amu is calculated. The chosen
ion mass is the approximated average ion mass of the torus region (e.g. Dougherty et al.
(2017)). The simulation domain with the mass density model is shown in Figure 6.1. The
number density model consists of three parts and is only dependent on the z-coordinate.

n(z) = n0 + nT (z) + nI(z) (6.6)



6.2. MODEL, GRID AND PARAMETERS 65

Figure 6.1.: Background mass density model. The mass density in the Io torus center (z = 0) is ρ0(z =
0) = 7·10−17kg/m3 with a chosen ion mass of mi = 24 amu and decreases with an exponential scale height
law towards positive and negative z-direction. Near the Jovian ionosphere at z = ±60RIo, the density
increases exponentially. The background magnetic field points towards negative z-direction whereas the
incoming plasma flow in positive x-direction. Io is located at the center.

The first term on the right hand side controls the minimum number density n0 = 1.8 ·
108 m−3, which is roughly 10% of the maximum number density in the torus. The second
term shows the additional torus number density

nT = (nT,0 − n0) exp

[
− z2

H2
T

]
(6.7)

and decreases exponentially with the torus scale height HT = 25RIo ≈ 0.65RJ . This
scale height is in agreement with the findings of Phipps et al. (2018) and Dougherty et al.
(2017) for the ribbon region next to the warm torus. The central torus number density
of nT,0 = 1.8 · 109 m−3 results in a central torus Alfvén velocity of vA,0 = 181 km/s. To
account for the density increase near the Jovian ionosphere, where reflections occur, we
implemented the third term

nI(z) = nI,0 exp

[
−zI − |z|

HI

]
(6.8)

in the number density model. The position zI = 60RIo marks the beginning of Jupiter’s
ionosphere, where the density increases with the ionospheric scale height HI = 0.4RIo ≈
730 km. The base number density for the ionosphere was chosen to be nI,0 = 1011 m−3.
The chosen density model ensures that the simulated travel times for the Alfvén wave,
inside and outside the torus, are in agreement with the travel times determined by the
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Table 6.1.: Properties of the reference simulation

Property Symbol Value
Io Radius RIo 1822 km
Background Magnetic Field B0 -1720 nT ez
Inflow Plasma Bulk Velocity v0 57 km s−1ex
Convection Time τ 2RIo/v0 = 64 s
Alfvén Travel Time t0 365 s
Central Torus Plasma Number Density nT,0 1.8 · 109 m−3

Central Torus Alfvén Velocity vA,0 181 km s−1

Central Torus Alfvén Mach Number MA 0.31
Minimum Background Number Density n0 0.1nT,0 = 1.8 · 108 m−3

Background Pressure p0 29 nPa
Ion Cyclotron Frequencya ω 10 s−1

Io Neutral Gas Scale Height H 200 km
Central Io Neutral Gas Density nn 3.3 · 1012 m−3

Central Ion-Neutral Collision Frequency ν0 1.14 s−1

Io’s Pedersen Conductance ΣP 50 S
Central Torus Alfvén Conductance ΣA 4.3 S
Plasma Beta β 0.01
a For an O+ ion

inversion in Section 5.3 and similar models (e.g. Hinton et al. (2019)). The total travel
time for the Alfvén wave from the torus center to the Jovian ionosphere at zI is t0 =
t(zI) ≈ 365 s. The background plasma flow velocity is set to v0 = 57 km/s in positive
x-direction, which is the relative velocity of the co-rotating plasma to Io’s orbital motion.
This yields an alfvénic Mach number of MA = v0/vA,0 = 0.31 in the torus center. The
background thermal pressure p0 of the plasma was set to 29 nPa, which translates to a
plasma temperature of roughly 100 eV in the center of the Io plasma torus. This is in
agreement with the observed ion temperatures (Delamere et al., 2005; Dougherty et al.,
2017). The plasma around Io is not expected to have constant thermal pressure along the
field lines. However, in the case with straightened field lines, the retracting forces, such as
centrifugal forces, thermal pressure anisotropy, magnetic pressure gradients and ambipolar
electric fields, to stabilize the torus are not included in the model. A change in pressure
in our model would therefore smooth the density variations over time and the density
gradients at the torus boundary and Jupiter’s ionosphere would be unstable. Therefore a
constant background pressure is applied in all simulations. The chosen thermal pressure
leads to a low β = 0.01 and the simulation is dominated by the magnetic pressure.

6.3. Io as Neutral Gas Cloud

In this work, Io is represented as a neutral gas cloud in the center of the coordinate
system. As discussed in chapter 4, the far field interaction depends to the height integrated
Pedersen and Hall conductance, which can be characterized by a spatially dependent
collision frequency ν. This parameterization of Io however does not reflect the near field
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interactions accurately. Since this work aims at representing the far field interaction,
especially the propagation and structure of the Alfvén wings, a characterization of Io as
neutral gas is sufficient.
The neutral gas density nn(r) is constant with a value of nn,0 = 5.71015m−3 inside Io and
decreases radially with a scale height H = 200 km outside.

nn(r) = nn,0

{
1 r < RIo

exp
[
− r

H

]
r > RIo

(6.9)

The velocity cross section product of σCv = 2 · 10−16m3s−1, as discussed in chapter 3.5,
yields a collision frequency ν = σCvnn = 1.14s inside the moon. Neglecting the Hall
term, this leads to a Pedersen conductivity inside Io of σP (r < RIo) = 28µS. Hence,
the resulting Pedersen conductance, integrated over the magnetic field line through the
center of Io, is ΣP = 50 S. With an Alfvén conductance of ΣA = 4.3 S, this results in an
interaction strength of ᾱ = 0.85 and the interaction can be classified as strong, where the
non-linearity of the reflections play an important role. In our simulation Io is at rest and
the neutral particles have no bulk movement, i.e. vn = 0. Furthermore, the pressure pn
of the neutral gas is neglected. This implies the plasma pressure loss to the neutral gas,
as discussed in chapter 3.4.

6.4. Validation of the Simulation

With the basic model set up and all parameters defined, we need to validate the simulation
going forward. We will first look into the generation of the Alfvén wing using a homo-
geneous background density model with a constant number density of n = 1.8 · 109 m−3

and compare the fields inside and outside the Alfvén wing to the semi-analytical solu-
tions. Then, we will investigate the reflection behaviour of the Alfvén wing on a strong
density gradient that acts as discontinuity. The simulations including reflection will be
validated regarding analytical transmission and reflection coefficients and compared to
the semi-analytical solutions. Afterwards, simulations with a smoother density gradient
will be analyzed and compared to the simulations with the discontinuity. In a next step,
we will conduct a scale analysis, where we compare different terms of the governing equa-
tions and close with a discussion, whether we can neglect any terms going forward and if
the assumptions are justified for our simulations. In the simulation with a homogeneous
background mass density the Alfvén wing does not get reflected or refracted. Figure 6.2
shows the velocity perturbation in the plane perpendicular to the background magnetic
field B0 with the velocity stream lines in the rest frame of Io and Jupiter. In the rest
frame of Io, with a background velocity of v0 = 57000 m/s ex, the plasma flows around
the obstacle, getting accelerated at the flanks and decelerated at the center. In the rest
frame of Jupiter, where the background velocity is zero, the stream lines show vortices at
the flanks of the Alfvén wing. These vortices translate to vortices in the magnetic field
that represent the currents j|| parallel to the Alfvén wing. These velocity fields and the
magnetic counterpart resemble the fields produced by the semi-analytic simulations from
chapter 4 well.



68 CHAPTER 6. MHD SIMULATION SETUP

Figure 6.2.: Velocity perturbations in x-direction in the z = 20RIo plane perpendicular to the background
magnetic field. The streamlines are added for the velocity field in Io’s rest frame (top) and Jupiter’s rest
frame (bottom), where the background velocity is zero.

6.4.1. Reflection of Alfvén Waves

One very important part of the Io Alfvén wing is its reflection on Alfvén phase velocity gra-
dients. It is necessary to validate the simulation and theory in that regard by comparing
the simulation results to the analytical expectations. For that purpose, a simulation was
set up with a simplified density profile and lowered interaction strength to avoid non-linear
reflections. The mass density separates the domain in three regions. Inside the torus up
to a distance of z = 15RIo in z-direction from Io, the mass density is constant and has the
value ρ(|z| < 15RIo) = 24 amu·1.8 ·109 m−3. Then, over a small distance, it drops linearly
to a tenth of the value outside the torus, i.e. ρ(|z| > 15RIo + L) = 24 amu·1.8 · 108 m−3.
The size of the transition region in between L can vary and should control, whether the
density gradient can be regarded as a discontinuity for the incoming Alfvén wave. The
maximum incident wavelength parallel to the background magnetic field expected can be
calculated as

λ||,max =
2RIo

v0
vA =

2RIo

MA

≈ 6.5RIo. (6.10)

However, the incoming wave package consists of a spectrum of wavelengths. As stated
in chapter 3.2, wavelengths smaller than the characteristic length scale of the Alfvén
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Figure 6.3.: Left: The velocity perturbation in x-direction of the simulation. Io is centered at (0,0),
where the two Alfvén wings develop. When the northern Alfvén wing encounters the discontinuity at
z = 15RIo, it gets partially reflected and transmitted. Right: The velocity perturbation in x-direction
along the two profiles marked by white dots in the left plot. The red line shows the profile at z = 25RIo,
where we only see the transmitted wing. The blue line shows the profile at z = 3RIo, which is far enough
from Io to neglect the effects of other wave modes than the Alfvén wave. This profile shows both, the
incident wave at x ≈ 1RIo and the reflected wave at x ≈ 10RIo.

velocity gradient should get less reflected. Therefore, we should already see a weakening
in reflection for L ≈ λ||,max while for a small transition region L ≪ λ||,max, the density
gradient should be able to be regarded as a discontinuity. For our simulation, we used
L = 1RIo for the discontinuity and L = 4RIo for the weakened reflection. First, we
will confirm, whether the simulation with the discontinuity gives us the expected results
for the most simple case of a reflection as described in chapter 3.2. The reflection and
transmission coefficients of a discontinuity, where the mass density drops to one tenth,
can be calculated as

Rv,B =

√
10− 1√
10 + 1

= 0.52 (6.11)

Tv =
2
√
10√

10 + 1
= 1.52 (6.12)

TB =
1√

10 + 1
= 0.48 (6.13)

In the simulation, the magnetic field and velocity perturbations for the incident, reflected
and transmitted wave have been compared to each other as shown in Figures 6.3 and
6.4. To get a value for the perturbation of the fields for the three different wings, two
profiles through the domain have been analyzed. The first profile located after the density
transition region with the transmitted wing. The second profile position is chosen between
Io and the transition region with enough distance to both of them. This ensures the
avoidance of effects from other wave modes generated at Io and simplifies the distinction
of the incident from the reflected wing. Along the profiles, the maximum perturbation
has been used to characterize the perturbation strengths for the respective wing. The
ratio between those values is shown in Table 6.2 and compared to the analytical values.
The simulation matches the expected values very well.
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Figure 6.4.: Left: The magnetic field perturbation in x-direction of the simulation. Io is centered at
(0,0), where the two Alfvén wings develop. When the northern Alfvén wing encounters the discontinuity
at z = 15RIo, it gets partially reflected and transmitted. Right: The magnetic field perturbation in
x-direction along the two profiles marked by white dots in the left plot. The red line shows the profile at
z = 25RIo, where we only see the transmitted wing. The blue line shows the profile at z = 3RIo, which
is far enough from Io to neglect the effects of other wave modes than the Alfvén wave. This profile shows
both, the incident wave at x ≈ 1RIo and the reflected wave at x ≈ 10RIo.

Table 6.2.: Analytical and Numerical Reflection and Transmission Coefficients

Coefficient Analytical Value Numerical Value
Rv 0.52 0.48
Tv 1.52 1.64
RB -0.52 -0.55
TB 0.48 0.48

Next, we analyze how the reflection strength changes for a slow changing medium. For
that, we now also run a simulation with the weaker density gradient L = 4RIo. Simulations
for both density models have been run once using a normal sized gas cloud representing Io,
i.e. 1RIo, and once using a gas cloud with a radius of 0.5RIo. The velocity perturbation
results for both simulations and the comparison between all 4 cases for reflected and
transmitted waves are shown in Figures 6.5 and 6.6. For the simulations with the smaller
gas cloud (Figure 6.5), the transmission of the velocity perturbation for both, the strong
and the weak gradient, are very similar with the transmitted wave in the case of the weak
gradient being slightly larger in perturbation. The perturbation of the reflected wave for
the strong gradient is significantly larger than the one for the weak gradient. However,
this is partly due to the incident and reflected wave overlapping partially in that region.
The difference between the transmitted wave packages is much stronger in the case of a
normal sized Io, as shown in Figure 6.6. For the reflected wave, the strong gradient shows
a slightly stronger reflection coefficient.
As expected for an Alfvén velocity gradient that can not be regarded as discontinuity,
the reflection is stronger for a larger ratio λ||,max/L. Increasing the transition region
size L or reducing the size of the gas cloud, thus decreasing λ||,max, results in a larger
amplitude in the transmitted wave while decreasing the reflected amplitude. Another
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Figure 6.5.: Left: Velocity perturbation of the simulation with a smaller sized gas cloud with R =
0.5RIo. Right: The velocity perturbation along the dotted lines in the left plot. The simulation has
been conducted using a strong density gradient with L = 1RIo and a weak density gradient using
L = 4RIo. The transmitted perturbation for the weak gradient (red) is slightly larger than the transmitted
perturbation for the strong gradient (purple). Similarly, the reflected perturbation for the weak gradient
(blue) is lower than the reflected perturbation for the strong gradient (yellow).

Figure 6.6.: Left: Velocity perturbation of the simulation with a normal sized gas cloud with R =
1RIo. Right: The velocity perturbation along the dotted lines in the left plot. The simulation has been
conducted using a strong density gradient with L = 1RIo and a weak density gradient using L = 4RIo.
The transmitted perturbation for the weak gradient (red) is significantly larger than the transmitted
perturbation for the strong gradient (purple). Similarly, the reflected perturbation for the weak gradient
(blue) is slightly lower than the reflected perturbation for the strong gradient (yellow).
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Figure 6.7.: Left: Velocity perturbation of the simulation with normal sized Io and strong density gradient
(L = 1RIo). Center: The velocity perturbation along the profiles shown in the left plot. The blue curve
shows the incident wave package while the red curve shows the reflected wave package. Right: Spectrum
of the two velocity perturbation curves shown in the center. The spectrum of the reflected wave package
is scaled by the expected reflection coefficient resulting in them almost overlapping for large parallel wave
length, i.e. small parallel wave numbers kz.

way of verifying this result is looking into the spectrum of transmitted and incident wave
and compare them, identifying which wavelengths get reflected. For that purpose we look
at profiles along the magnetic field lines as shown in Figure 6.7 that cut through the
incident and reflected Alfvén wing. In a next step, we Fourier transform the obtained
velocity perturbation distributions and get a spectrum for the parallel wave number kz.
To compare the two spectra for incident and reflected wave, the spectrum of the reflected
wave is scaled by 1/Rv. If the density gradient was a perfect discontinuity for all wave
lengths in the wave package, the two curves should theoretically overlap. However, we see
that the spectrum of the reflected wave package has less energy in the high parallel wave
number, i.e. low parallel wave length range. In particular, the curves separate around
kz ≈ 0.2/RIo, which translates to a wavelength of about λ|| ≈ 0.8RIo. That is roughly
the size of the transition region L = 1RIo, which ones more confirms that the reflection
coefficient depends on the wave length and is only close to theoretically expected values
for wavelength larger than the characteristic length scale of the Alfvén velocity gradient
and drops off for lower wavelengths.
In a final step, we will look how the morphology of the transmitted and reflected Alfvén
wings change compared to the incident Alfvén wing in the case of a strong interaction. For
that purpose, a simulation was run with a strong density gradient (L = 1RIo) and a high
interaction strength of ᾱ = 0.85. The Poynting flux in z-direction through a plane located
before the reflection and after the reflection is shown in Figure 6.8. We now compare the
results to Figure 4.11 that show the slides of the purely alfvénic simulation. In both,
the MHD simulation and the semi-analytical Alfvén wing simulation, the reflected Alfvén
wing is stretched and narrowed while the transmitted Alfvén wing resembles the afore-
mentioned horseshoe shape. This indicates that the explanation for the development of
the morphology of reflected and transmitted Alfvén wing, given in Chapter 4, is plausible.

6.4.2. Force Balance and Conductivities

In this part, we first want to look into the assumptions made regarding the derivation
of Pedersen and Hall conductivity in chapter 3.5. There, we claimed that the currents
perpendicular to the magnetic field are associated with a force balance between the Lorentz
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Figure 6.8.: Poynting flux in positive z-direction for a simulation with high interaction strength below
(top) and above (bottom) the density gradient. The top plot shows the incident Alfvén wing on the left
side at x ≈ 3 − 5RIo and the reflected Alfvén wing with negative Poynting fluxes on the right side at
x ≈ 6 − 11RIo. The bottom plot shows the transmitted Alfvén wing with its changed morphology. All
Poynting fluxes are calculated in the rest frame of the unperturbed plasma flow.

force and the collision term in the momentum equation. To validate this assertion, the
advection term and the three forces, i.e. pressure gradient, Lorentz force and the collision
term, in the momentum equation have been analyzed. For that we use a simplified
simulation without a constant background density and thus without reflections. We wait
until the simulation appears to be stationary and we can neglect derivatives with respect
to time, in particular ∂v/∂t = 0. To confirm the steady state, we can calculate the sum
of all terms in the velocity equation and see if they are negligible compared to each term.
The resulting accumulated force is shown in Figure 6.9 and is proportional to ∂v/∂t. Its
maximum values are on the order of 10−14 N/m3 and therefore more than two orders of
magnitude below the Lorentz force and the collision term, both at the order of 10−12 N/m3.
This is a good indication that the fields will not change significantly any more and the
simulation can be regarded as steady state.

A slice through Io in the x-y-plane for the four terms in the velocity evolution equation in
x direction is shown in Figure 6.10. The compression of the plasma increases the pressure
inside the neutral gas cloud (r < 1RIo). This results in positive pressure gradient in x
direction in the front part of the gas cloud and negative pressure gradient in x direction
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Figure 6.9.: The x-component of the temporal change in mass density weighted velocity, i.e. ρ∂vx/∂t.
The values are below the order of 10−14 N/m3.

in the back part of the gas cloud. The deceleration of the plasma inside the gas cloud
and the acceleration around it results in the star light pattern, seen in the plot of the
advection term. The two lower plots in Figure 6.10 show the aforementioned force balance
between the Lorentz force and the collision term. The two forces inside the gas cloud are
opposite and similar in strength. Therefore, the assumptions made to derive the Pedersen
and Hall currents for a neutral gas cloud appear justified.

However, there are not only currents perpendicular to the background magnetic field
inside the gas cloud. Figure 6.11 shows the J × B force and the advection term on
the same color bar scale. As it can be seen, outside of the gas cloud those two terms
balance each other out. The associated current is needed for the plasma to return to co-
rotational velocities. While the transient currents due to collisions are locally limited to
the neutral gas cloud, the current in the wake of the obstacle decreases exponentially with
distance to Io (Vasyliūnas, 2016). Figure 6.12 also shows the advection term and Lorentz
force in x-direction, but at a distance of z = 20RIo. As it can be seen, these currents
continue along the Alfvén characteristic. The physical reason behind these currents can be
understood as follows: The perturbation of the velocity around the obstacle propagates to
the ionosphere, where the differential velocity between the neutral unperturbed particles
and the perturbed plasma creates Pedersen currents, that close around Io and Io’s Alfvén
wing. The closing currents, as seen in Figures 6.11 and 6.12, accelerates or decelerates the
plasma proportional to the difference to co-rotational velocities. Even though we do not
represent Jupiter’s ionosphere in our simulations, the boundary conditions of magnetic
field and flow velocity serve a similar function.

In a final step of the validation we turn the Hall effect in our simulation on. Here, we
are interested in the force balance in both, x- and y-direction. For that purpose, we look
at a profile along the x-axis for the collision term and the Lorentz force. Figure 6.13
shows both forces along the x-axis in the vicinity of Io for both, the x-component and the
y-component. The force balance can well be seen inside the gas cloud (|x| < 1). Outside
the gas cloud the Lorentz force is stronger and again counteracts the advection term.
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Figure 6.10.: The x-component of each of the four terms of the velocity equation in the z = 0 plane. Io is
located at (0,0) and has a radius of 1RIo. Top left: The pressure gradient in x-direction. The decelerated
plasma results in higher densities and pressure inside the neutral gas cloud. Top right: The advection
term in x-direction. The plasma returns to co-rotational speeds outside of the neutral gas cloud. Bottom
left: The Lorentz force in x-direction counteracts the plasma deceleration due to collisions inside the
neutral gas cloud in the steady state. Bottom right: The collision term in x-direction is nearly constant
inside the neutral gas cloud and vanishes rapidly outside.
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Figure 6.11.: The x-component of the advection term and the Lorentz force in the z = 0 plane. Here,
the colorbars are adjusted to show highlight the star like structures outside the neutral gas cloud, which
are similar in shape and value for both terms.



76 CHAPTER 6. MHD SIMULATION SETUP

-4

-2

0

2

4

y 
[R

Io
]

4 6 8 10

x [RIo]

V  Vx

-1

-0.5

0

0.5

1

V
 

 V
x [N

/m
3 ]

10-13

-4

-2

0

2

4

y 
[R

Io
]

4 6 8 10

x [RIo]

JxBx

-1

-0.5

0

0.5

1

Jx
B

x [N
/m

3 ]

10-13

Figure 6.12.: The x-component of the advection term and the Lorentz force in the z = 20 plane. The
terms balance each other.

Figure 6.13.: The x-components (left) and the y-components (right) of the collision term in red and the
Lorentz force in blue on the x-axis. Inside the neutral gas cloud (−1 < x < 1) the terms balance each
other.
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Figure 6.14.: Pedersen (top) and Hall conductivity (bottom) along the x-axis. The values derived from
collision frequency (red) are compared to the values computed from the simulation results (blue). The
values match each other inside the neutral gas cloud for both conductivities.

We can also look at our expected values for the Pedersen and Hall conductances derived
from the collision frequency as in equations (3.73) and (3.74) and compare them to values
from the simulation. The currents and electric fields derived from the magnetic field and
velocity can be computed into conductivities by:

σP =
jxEx + jyEy

E2
x + E2

y

(6.14)

σH =
jxEy − jyEx

E2
x + E2

y

(6.15)

We now look at the same profile as in Figure 6.13, but now comparing the two differ-
ntly derived Pedersen and Hall conductivities. The results are shown in Figre 6.14. As
expected, the values match each other almost perfectly for both conductivities, Pedersen
and Hall, inside the neutral gas cloud, where the collisions occur. However, the simulation
shows conductivities in the wake that are not associated with collisions. As mentioned,
the currents in the wake are required to accelerate the plasma back to corotational speeds.

6.5. The Reference Simulation

To investigate how different mechanisms will change the simulation results, we compare
the simulations with the mechanisms to the reference simulation, without any mechanism
turned on. When not indicated otherwise, the model used in all forthcoming simulations is
described in chapter 6.2. The velocity field perturbation is shown in Figure 6.15. The main
Alfvén wing starts at Io at the origin and propagates towards the Jovian ionosphere. The
Alfvén wave follows the characteristic that is curved due to the inhomogeneous background
mass density. Along its way it gets reflected. The gradual reflection inside the torus
between −20RIo < z < 20RIo shows no sign change in the velocity perturbation, since
the alfvénic phase velocity increases. At the Jovian ionosphere z = ±60RIo however, the
reflection results in a sign change in the velocity perturbation. This produces areas of
accelerated and decelerated plasma and a complex reflection pattern is formed.
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δVelocity Perturbation

Figure 6.15.: The perturbations of the velocity field in x-direction in the y = 0 plane. Blue colors show
decelerated plasma and red colors show accelerated plasma. The strongest perturbation is in the main
Alfvén wing that starts at Io at the origin and propagates towards the Jovian ionosphere at z = ±60RIo.
It gets reflected at different density gradients generating a complex reflection pattern. The black dashed
line indicates the position of the analysis plane that is used to analyze the Poynting flux in the acceleration
region.

The maximum deceleration of the plasma is δvmax ≈ 5 · 104 m/s, which is about 88% of
the flow velocity of the incoming plasma flow. This matches our expected value with a
theoretical interaction strength of ᾱ = 0.85.

6.5.1. Reference Poynting Flux

The Alfvén wave carries its energy in the form of Poynting flux. As discussed, the Poynting
flux at the acceleration region, indicated as dashed line in Figure 6.15, is used as a proxy
for the energy available for wave particle interaction. Even though the direction of the
Poynting flux is not associated with particle acceleration in a preferred direction, we will
display the signed Poynting flux in this region to improve the distinction of certain features
in the Poynting flux. The Poynting flux of the reference simulation is shown in Figure
6.16.
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Figure 6.16.: Poynting flux in positive z-direction through the analysis plane at z = 60RIo. Red colors
show Poynting flux towards Jupiter’s northern ionosphere while blue colors show Poynting flux away from
it. The symmetry between equatorward (y > 0) and poleward (y < 0) side is not broken in the reference
simulation.

The reference Poynting flux has a peak value of 2 mW/m2, which is about one magnitude
larger than the observed emissions by Mura et al. (2018). Furthermore, we did not include
the bend magnetic field lines that would converge towards Jupiter’s ionosphere, reducing
the area of the footprint and increasing the power density. Not accounting for any con-
version factor between Poynting flux and particle acceleration and also particle velocity
and emission brightness, the available power density is sufficient to produce the observed
emissions. However, the particle acceleration and subsequent emission generation is not
in the scope of the simulations and the absolute values of the Poynting flux will therefore
not be discussed in detail. The aim of this simulation is to investigate possible causes for
the alternating structure in the observed footprint emissions. Therefore, we are mostly
interested in the position and shape of the Poynting flux. In the Poynting flux of the
reference simulation, we can see that we have a multitude of incoming (red) and outgoing
(blue) structures of different size and intensity. However, the Poynting flux is perfectly
symmetric towards the y = 0 axis, since there is no symmetry breaking mechanism in-
cluded yet. In the forthcoming simulation we will compare the Poynting fluxes through
the same analysis plane to the one of the reference simulation.





CHAPTER 7

Influence of the Hall Effect

In this part, we will discuss the influence of the Hall effect on the simulation, in particular
on the Poynting flux through the analysis plane. As discussed in Chapter 4, the Hall
effect is a good candidate to break the symmetry of the Alfvén wing along the x-axis.
Parts of this chapter is published in Schlegel and Saur (2022).

7.1. Implementation of the Hall Effect
The Hall effect is implemented as a source term for the induction equation. The Hall term
is the only term in the set of equations used here that depends on the number density
and not on the mass density. In other words, it depends on the mass m of one particle.
It can be written as:

∂BHall

∂t
= − m

eµ0

∇×
((

∇×B

ρ

)
×B

)
(7.1)

As it can be seen, it scales linearly with the mass. To perform a parameter study for
simulations with different Hall conductances in order to investigate its effect on the simu-
lation results, we can therefore use the particle mass m to regulate the ratio between Hall
and Pedersen conductance. While the particle mass changes, the mass density ρ remains
unchanged in our simulations. However, as mentioned in Section 3.5, the Pedersen con-
ductivity is also affected on the particle mass due to its dependence on the gyrofrequency
Ω = eB/m. The Pedersen and Hall conductivities in terms of mass m, mass density ρ,
magnetic field strength B and collision frequency ν can be written as:

σP = ρe2
ν

m2ν2 + e2B2
(7.2)

σH = m
ρe

B

ν2

m2ν2 + e2B2
(7.3)

The ratio rΣ between the two conductivities is always proportional to the particle mass
m.

rΣ =
ΣH

ΣP

=
ν

Ω
= m

ν

eB
(7.4)
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Figure 7.1.: The effect of particle mass. Top: The Hall (blue) and Pedersen (red) conductance for the
reference simulation for different particle masses m used in the induction equation. Bottom: Calculated
from the Hall and Pedersen conductance, the interaction strength does not change significantly for dif-
ferent particle masses.

We can see that either by increasing the collision frequency ν or the particle mass m, we
can enhance the Hall to Pedersen conductance ratio rΣ. Since simulations with higher
collision frequencies were numerically unstable we chose to perform simulations with dif-
ferent particle masses. The change in Hall and Pedersen conductance due to the change
in particle mass is shown in the top plot in Figure 7.1. For plausible particle masses, i.e.
m = 16 amu for oxygen and m = 32 amu for sulfur, the Pedersen conductance remains
close to a value of ΣP = 50 S and with a low Hall conductance of ΣH ≤ 10 S, the Hall
to Pedersen conductance ratio is merely in the range of rΣ ≈ 0.2. However, the Hall con-
ductance at Io can be expected to be similar to or even exceed the Pedersen conductance
(Saur et al., 1999; Kivelson et al., 2004). To still perform simulations with rΣ = 1, we used
particle masses of up to mmax = 145 amu, which does not represent any specific particle.
However, this study is aimed to represent the MHD physics of the interaction for specific
values of interaction strength and Hall to Pedersen conductance ratios. We can calculate
interaction strength from the ratio of electric field perturbation δE as computed from
equation (4.10) to the background electric field E0. In the lower plot of Figure 7.1, we see
that even for higher particle masses m, the interaction strength only decreases slightly.
Therefore, the use of particle mass as a variable to control the ratio rΣ is justified and
useful.
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7.2. Non-linear Reflection with High Hall Conductance

The non-linear reflections at different density gradients produce a complex pattern of inci-
dent, reflected and transmitted and refracted wave packages. To understand the influence
of the Hall effect better, it is beneficial to not only analyze the Poynting flux through
the analysis plane, but also the other corresponding fields. In this part the plasma flow
velocity and magnetic field in the analysis plane as well as the current density through
the plane is depicted. In the following plots, we will compare the results of the simula-
tion without Hall effect, that is with a particle mass of m = 0, to a simulation with a
Hall to Pedersen conductance ratio of rΣ = 0.5, which corresponds to a particle mass of
m = 72 amu. In Figure 7.2, we see the plasma flow velocity in x-direction for both sim-
ulations. The most prominent difference is that the regions accelerated and decelerated
plasma are not only longitudinally displaced, i.e. along the x-axis, but also laterally, i.e.
along the y-axis. The reflections at Jupiter’s ionosphere change the sign in the velocity
perturbation, however not in the magnetic field perturbation since the density gradient
is positive and therefore the Alfvén velocity gradient is negative. This means we often
can regard regions with accelerated and decelerated plasma that are close to each other
as incident and reflected Alfvén wing. In the case of a strong Hall effect, the reflected
wing propagates back into the the incident Alfvén wing. Since it follows the opposite
characteristics and the incoming wing changed the velocity field and magnetic field in
y-direction considerably. However, without Hall effect, the y-component of the magnetic
field(Figure 7.4) and the flow velocity (Figure 7.3) at the symmetry plane always van-
ishes. Therefore, wave packages that travel towards Jupiter on the Jupiter facing side of
Io will always stay on that side and can not cross the x-z-plane. This changes with the
Hall effect. As it can be seen in the two figures depicting the y-component of the two
fields with activated Hall effect (bottom panels) there exist regions with non-zero values
that cross the x-z-plane. The reflected Alfvén wing uses these "Alfvén bridges" and the
incoming and reflected Alfvén wing are not only longitudinally displaced, but laterally
as well. There are specific positions, where those crossings happen, best visible in the
BY component (Figure 7.4, bottom) and to a lesser extend in the VY component (Figure
7.3, bottom). Their locations are roughly at x ≈ 35RIo, x ≈ 50RIo, x ≈ 60RIo and
x ≈ 80RIo. We therefore expect the reflected Alfvén wing to cross the x-z-plane at those
locations. This results in the velocity perturbations of a specific sign, i.e. accelerated or
decelerated plasma, to be confined to one side of the x-z-plane between those locations,
but can switch signs at those locations. Looking at the bottom plot of Figure 7.2, which
depicts the velocity perturbation in x-direction we can confirm this hypothesis. We have
continuous structures of one sign (red or blue) at each side of the x-z-plane with breaks
at x ≈ 35RIo, x ≈ 60RIo and x ≈ 80RIo. This symmetry plane crossing is a strong
candidate to produce alternating footprints that are laterally displaced.
The magnetic field component changes sign at negative density or positive Alfvén velocity
gradients. Therefore, to get a positive magnetic field perturbation in x-direction at the
northern hemisphere, either the initial southern wing that already has a positive magnetic
field perturbation or the Alfvén wing reflected at the torus boundary needs to be reflected
at the southern Jovian ionosphere. Since the travel times to the southern ionosphere and
back to northern Jovian ionosphere are at the order of 2t0 ≈ 730 s longer than the direct
travel time to the northern ionosphere, the BX component changes signs about every
2t0v0 ≈ 25RIo. This corresponds roughly to the length of regions with one sign in the
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Figure 7.2.: Velocity perturbation in x-direction for the simulations without Hall effect (top) and with
a Hall to Pedersen conductance ratio of rΣ = 0.5. The blue regions show decelerated plasma, while the
red regions correspond to accelerated plasma. The Hall effect creates laterally displaced regions.

Figure 7.3.: Velocity perturbation in y-direction for the simulations without Hall effect (top) and with
a Hall to Pedersen conductance ratio of rΣ = 0.5. The Hall effect breaks the symmetry between Jupiter
facing / equatorward side and anti-Jovian / poleward side.
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Figure 7.4.: Magnetic field perturbation in y-direction for the simulations without Hall effect (top) and
with a Hall to Pedersen conductance ratio of rΣ = 0.5. The Hall effect creates regions of BY ̸= 0 at the
x-z-plane.

BX perturbation shown in Figure 7.5. Since contrary to the velocity component, we have
larger homogeneous areas due to its different reflection behaviour, the Hall effect does not
change the B components significantly in the analysis plane.
This is also represented in the current density perpendicular to the analysis plane. Similar
to the magnetic field, the current direction changes sign at the reflections at the torus
boundary. For the initial Alfvén wing the current is always directed towards Io at the
Jupiter-facing side, that is jz(y > 0) < 0 at the northern wing and jz(y > 0) > 0 at the
southern wing. The current density in the analysis plane is shown in Figure 7.6. We can
see the lateral separation of currents towards Jupiter (red) and away from Jupiter (blue)
already in the simulation without Hall effect. The position and effective size does not
change with activated Hall effect significantly.
We have seen that the Hall effect builds Alfvén bridges in the VY and especially the BY

component that is used by the reflected Alfvén wing to cross the x-z-plane. Since the
velocity field and therefore the Poynting flux changes sign at the reflection at the Jovian
ionosphere, this creates laterally displaced regions that are separated in the velocity field.
In the next section we will see how this translates to the Poynting flux.
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Figure 7.5.: Magnetic field perturbation in x-direction for the simulations without Hall effect (top) and
with a Hall to Pedersen conductance ratio of rΣ = 0.5. The different reflection behaviour of the magnetic
field results in large regions with positive or negative BX perturbations.

Figure 7.6.: Current density in z-direction for the simulations without Hall effect (top) and with a Hall
to Pedersen conductance ratio of rΣ = 0.5. The currents are only slightly changed by the Hall effect.
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7.3. Poynting Flux with Hall Conductance

To investigate the Hall effect in more detail, we chose three different Hall to Pedersen con-
ductance ratios rΣ = 0, 0.15, 1, corresponding to a particle mass of m = 0, 22, 145 amu,
respectively. The resulting Poynting fluxes through the analysis plane are shown in Fig-
ure 7.7. The Poynting flux contains structures similar to the ones seen in the velocity
perturbation in x-direction. This can be understood if we look how the Poynting flux is
calculated. We will neglect the Hall term for the electric field for this derivation, there-
fore E = −v × B. Furthermore, the perturbation of the velocity in z-direction can be
neglected. For a more thoroug derivation of the Poynting flux, see appendix B.4. In the
rest frame of the plasma, where the background values for BX,0 = BY,0 = vX,0 = vY,0 = 0,
the Poynting flux in z-direction can be approximated by

SZ ≈ −B0

µ0

(vXBX + vYBY ) . (7.5)

Comparing Figures 7.2 and 7.3, the velocity perturbation in x-direction is about one
order of magnitude larger than the ones in y-direction. Similarly, the magnetic field
perturbation in x-direction are about twice as large as those in y-direction as seen when
comparing Figures 7.5 and 7.4. This means, that the first term in equation 7.5 is much
larger than the second. Since BX is much more homogeneous that vX , the substructures
in the Poynting flux in z-direction are mainly due to the variability of vX .
Therefore, also in the Poynting flux we see the lateral displacement of the structures,
similar to the velocity field. One interesting thing to note is the increased intensity of
the secondary structures down the tail for higher ratios rΣ. Higher Hall conductances
increase the field strength in y-direction for both, velocity field and magnetic field. This
increases the separation of incident and reflected Alfvén wing and the diminishing effect
due to negative interference is reduced. This also results in the structures begin more
separated and generally larger in latitudinal (y-) direction. This produces patterns that
resemble latitudinal displaced maxima. Depending on the strength of the Hall effect, the
displacement varies from purely longitudinally displaced (rΣ = 0) to almost perfectly lati-
tudinal displacement (rΣ = 1). Therefore, the alternating displacement in the alternating
Alfvén spot street as seen in the observations by Mura et al. (2018) and Moirano et al.
(2021) can be produced by high Hall conductances, comparable to the Pedersen conduc-
tance. In a next step, we will look into the position of the maxima. For that purpose,
the positions of the 4 most distinct pairs of maxima besides the MAW for the simulations
with rΣ = 0.15, 1 have been investigated regarding heir separation distance. The four
pairs and their separation are shown in Figure 7.8. A separation of 1RIo along the x-axis
corresponds to roughly 0.25◦ in longitude in the Jovian ionosphere, while a separation
of 1RIo along the y-axis corresponds to about 0.13◦ in latitude in the Jovian ionosphere.
The difference is due to the elongation of the footprints due to the converging magnetic
field lines, which is not implemented in the model. The longitudinal and latitudinal sep-
arations are shown in Table 7.1. While the longitudinal separation decreases for all pairs
of footprint by about 0.7◦ when increasing the Hall to Pedersen conductance ratio from
rΣ = 0.15 to rΣ = 1, the latitudinal separation increases by about 0.1◦. However, due to
the simplified geometry of the system especially the magnetic field, the values obtained
in this study are not easily comparable to the observations. Mura et al. (2018) reported a
separation of the features of ≈ 350 km, which translates to an longitudinal separation of
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Figure 7.7.: Poynting flux through the analysis plane for Hall to Pedersen conductance ratios of rΣ =
0 (top), 0.15 (center) and 1 (bottom). The color bar has been adjusted to highlight features in the tail
region. The maxima of the Poynting flux are laterally displaced and incoming and reflected Poynting
fluxes are alternatingly displaced in positive (equatorward) and negative (poleward) y direction.

≈ 0.7◦. They also reported an average latitudinal displacement of the spots of ≈ 200 km.
This corresponds to a latitudinal separation of ≈ 0.33◦. Both of these values would be
in line with some of the longitudinal separations in the simulation with the higher Hall
conductance.
The Hall effect is a promising mechanism to create alternatingly laterally displaced Poynt-
ing flux maxima in the acceleration region, that would translate to a pattern similar to
the observed alternating Alfvén spot street. Crucial for the displacement is not only a
strong Hall effect with a high Hall to Pedersen conductance ratio rΣ, but also non-linear
reflections at Jupiter’s ionosphere. This means that the interaction strength ᾱ needs to
be high enough for the reflection to be considered non-linear. Furthermore, even though
the gradual reflections at the torus boundary add complexity to the pattern and allow
closer distances between the Poynting flux maxima in the tail, they are not essential for
the development of alternating spots. Therefore, the torus is no necessary condition for
the alternating Alfvén spot street and the footprint of other moons can theoretically also
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Figure 7.8.: Poynting flux through the analysis plane for a Hall to Pedersen conductance ratio of rΣ = 0.15
(top) and rΣ = 1 (bottom). The circles indicate the four largest maxima and minima outside the
Poynting flux of the main Alfvén wing. The maxima of the incoming Alfvén waves are connected to the
corresponding minima of the reflected Alfvén wave. With higher Hall to Pedersen conductance ratios,
separations between maxima and minima shift from almost entirely longitudinal (x-direction) to more
and more latitudinal (y-direction).

Table 7.1.: Lateral and Longitudinal Separation of Maxima

X-Position of First Maximum Longitudinal Separation Latitudinal Separation
x = 17RIo(rΣ = 0.15) 8.1RIo / 2.04◦ 2.8RIo / 0.38◦

x = 46RIo(rΣ = 0.15) 4.9RIo / 1.24◦ 1.7RIo / 0.23◦

x = 66RIo(rΣ = 0.15) 5.2RIo / 1.31◦ 1.4RIo / 0.19◦

x = 78RIo(rΣ = 0.15) 4.3RIo / 1.09◦ 1.3RIo / 0.17◦

x = 17RIo(rΣ = 1) 6.2RIo / 1.57◦ 3.5RIo / 0.47◦

x = 46RIo(rΣ = 1) 2.1RIo / 0.53◦ 2.7RIo / 0.37◦

x = 66RIo(rΣ = 1) 2.5RIo / 0.63◦ 2.6RIo / 0.35◦

x = 78RIo(rΣ = 1) 0.8RIo / 0.20◦ 2.9RIo / 0.39◦
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develop alternating spots. For Europa, modelling suggests a Pedersen conductance of
ΣP,E = 30 S and a Hall conductance of ΣH,E = 10 S Saur et al. (1998) and the interac-
tion could still be strong enough to allow non-linear reflections at the Jovian ionosphere.
Even though Paranicas et al. (1998) suggest lower conductance numbers, the footprint of
Europa could also be a candidate for alternating tail spots due to the Hall effect, even
though to a lesser extent than observed at the Io footprint. For Ganymede, the interaction
is different and the main obstacle for the plasma is not the conducting ionosphere, but
Ganymede’s magnetosphere. The integrated Hall and Pedersen conductances along the
magnetic field lines are small and not considered the driver of the interaction. Therefore,
we can rule out symmetry breaking of the Ganymede footprint due to the Hall effect.



CHAPTER 8

Further Mechanisms

Even though the Hall effect seems to be a promising mechanism to break the symmetry in
the footprint tail and generate the alternating patterns observed, other mechanisms are
investigated that could produced similar results. In the first section, we are interested in
the influence of the magnetic field, that is, how the real magnetic field would change the
resulting Poynting flux pattern. The change from a homogeneous background field to the
complex Jovian magnetic field can affect the morphology and location of the footprints in
two ways. First, the magnetic field lines are not homogeneously shaped and the charac-
teristics of the Alfvén wing are therefore more complex. This on the one hand changes the
position on the footprints as already discussed in Chapter 5, stretching and compressing
the distance of secondary spots. On the other hand the shape of the footprints is affected.
The dipole field alone already stretches the footprint by almost a factor of 2, since the
magnetic field lines converge faster latitudinally than longitudinally. Second, the different
path lengths of the field lines and magnetic field strength along them change the travel
time along those field lines. Differences in travel time of Alfvén wave packages change
the relative position of Io and the corresponding footprint emissions. Implementing the
real multi-pole magnetic field of Jupiter and switching to a spherical or dipole coordinate
system with Jupiter in the center is beyond the scope of this work. Therefore, we are
interested in the effect of travel time difference on the location and shape of the secondary
spots. In the second section of this chapter, we will analyze the influence of an asym-
metric atmosphere. Due to solar insulation, leading/trailing side asymmetries and patchy
volcanic out-gassing, the ionosphere of Io and therefore its conductance is asymmetric.
Parts of this chapter have been submitted to JGR-Space Physics and have been accepted
for publication.

8.1. Travel Time Difference

The waves that are generated at Io propagate along the magnetic field lines towards
Jupiter’s ionosphere. Depending on the specific field line the wave’s travel path has a
specific total length and the wave velocity along this path varies. Waves starting from
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the anti-Jovian side generally have a longer travel path than waves starting from the
sub-Jovian side of Io as sketched in Figure 8.1. In particular, the longer travel path of
these waves result in the wave propagating through the dense torus region longer, where
the Alfvén velocity vA is much higher. Especially, the time the wave is inside this region
determines the overall travel time t of the wave towards the Jovian ionosphere

t =

Jupiter∫
Io

1

vA(ρ,B)
ds (8.1)

along the travel path segments ds. Since the travel path depends on the magnetic field
strength B and the Alfvén velocity depends on the density ρ and the magnetic field
strength B, the travel time is determined by the chosen magnetic field model and the
density model. For this purpose we used the JRM09 magnetic field model by Connerney
et al. (2018) and the torus density model by Dougherty et al. (2017). The mapping along
the field lines has been done as described in Chapter 5. The magnetic field model strongly
varies azimuthally, because on the one hand, the dipole is tilted against the ecliptic and
on the other hand, higher moments play an important role especially close to the Jovian
ionosphere. The torus model, though here not on itself azimuthally dependent, also
varies with longitude since the torus is in the centrifugal equatorial plane and therefore
tilted with respect to the ecliptic. Therefore, the position of Io varies within the torus
and the density model and hence also the Alfvén velocity along the field is different for
each longitudinal position of Io. Thus, the travel time difference strongly depends on
Io’s position, the used magnetic field model and the density model. For the used models,
Figure 8.2 shows the total travel times to the northern Jovian ionosphere for each position
of Io and the calculated travel time difference between waves starting from the anti-Jovian
and sub-Jovian side. The study yields similar results as the travel times calculated by
Hinton et al. (2019). As expected, the travel time difference is at maximum, when the
total travel time is maximal. This is when Io is closest to the southern edge of the
torus. Since the dipole is tilted towards 196.6◦ western longitude Connerney et al. (2018)
or 163.4◦ eastern longitude, the maximum is roughly at the opposing side, i.e. 343.4◦

eastern longitude. The corresponding maximum travel time difference from our model is
tmax = 3.7 s.

8.1.1. Implementation and Simulation

In Jupiter’s magnetosphere, the travel time difference is a result of curved magnetic field
lines and inhomogeneous density. To comply with the simplified geometry in our model
with the homogeneous background magnetic field, we have two options to vary the travel
time. First, we can change the travel path distance by tilting the analysis plane and
the position of the ionosphere depending on the y-coordinate. Second, we can vary the
Alfvén velocity via altering the mass density. In this work, the second method was used,
since it proved to be numerically more stable. To change the travel times according to
the modelling results, a gradient λy in density along the y-direction is implemented. The
density model is altered according to

ρ(y, z) = ρ(z)(1 + λyy) (8.2)
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Figure 8.1.: Sketch of the travel path for the Alfvén waves starting from the anti-Jovian and sub-Jovian
side of Io. Jupiter’s dipole field lines (red dashed)connect to both sides of Io with different path lengths.
The waves starting from the anti-Jovian side generally have a longer path length, especially inside the
torus (blue shaded area) resulting in a larger travel time t2 > t1. Distances and sizes are not to scale in
this sketch.

To acquire a travel time difference of δt = 3.7 s, we chose a mass density gradient of
λy = 0.01/RIo. The resulting travel times for different positions on the y-coordinate are
thus

t(y) = t0
√

1 + λyy ≈ t0

(
1 +

λy

2
y

)
. (8.3)

For the Jovian side of Io at y = −1RIo and its opposite side at y = 1RIo, this results in
a travel time difference of δt = 3.65 s. The results of the simulation with and without
travel time difference are shown in Figure 8.3. It is to be noted, that even though the
maximum travel time difference occurs, when Io is at the edge of the torus, all simulations
were run with Io at the center. We do not aim to recreate the observations but to isolate
the effects that different mechanisms have on the structure, morphology and location of
the Poynting flux and therefore on the emission pattern. Therefore, implementing the
maximum travel time difference for a simulation with Io at the torus center is sufficient.
Comparing the two simulations, we can directly see that the Poynting flux corresponding
to the MAW footprint at x ≈ 10RIo is strongly tilted since the part of the Alfvén wing
starting from the anti-Jovian side arrive later at the analysis plane. If we look at the
structures at y = ±1RIo and compare them to the simulations with no travel time differ-
ence implemented , we see a longitudinal displacement of roughly δx = 0.1RIo, which is
close to the expected value of δx = 3.7 s·57000 km/s= 0.12RIo. Since the Alfvén wing
itself is larger than the obstacle, the travel time difference has an even stronger effect to
the structures that are laterally more displaced. At the MAW, the effect however is mi-
nor, tilting the structure only slightly. With multiple reflections down the tail, the travel
time difference adds up. Generally speaking the longitudinal offset between equatorward
and poleward side is about λy of the total travel distance down the tail. Therefore, at
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Figure 8.2.: Top: Calculated travel times from the JRM09 and used density model for the sub-Jovian
side (red) and the opposite side (blue). Bottom: Even though the travel times are similar to each other,
the travel time difference depends on Io’s position, with a maximum travel time difference of δt = 3.7 s,
when Io is close to the southern edge of the torus.

higher distances from the MAW, the Poynting flux gets more and more distorted due to
this effect and asymmetries are more apparent. The observations of Mura et al. (2018)
and Moirano et al. (2021) however show alternating structures directly downstream the
MAW emission, which can not be seen in the simulations. Furthermore, even though the
simulations show strong symmetry breaking effects, the pattern is more chaotic and does
not directly show alternating structures. Therefore, we rule out the travel time difference
as main mechanism to create the observed structures. However, it can be a contributing
effect that increases the asymmetry down the tail.
To verify this hypothesis, we conducted a study with activated Hall effect and travel time
difference for the two Hall to Pedersen conductance ratios of rΣ = 0.15 and rΣ = 1. The
simulation results are shown in Figure 8.4. We can compare them now to the simula-
tions without travel time difference as shown in the previous chapter in Figure 7.7. Like
for the simulations without the Hall effect, the differences are not significant at or near
the MAW. Yet, for both Hall to Pedersen conductance ratios rΣ, the simulation near
the MAW already shows strongly laterally displaced maxima. Further downstream, the
difference due to the travel time difference become more apparent. In the case of the
intermediate Hall conductance with rΣ = 0.15, both the Hall effect and the travel time
difference attribute to the asymmetries in the Poynting flux in the tail and enhance the
development of alternating maxima. Whereas the latitudinal separation in the simulation
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Figure 8.3.: Poynting flux through the analysis plane of simulations without (top) and with (bottom)
travel time difference. The Poynting flux at the MAW is longitudinally displaced at the flanks according to
the travel time difference between Jupiter facing and opposite side. The travel time difference accumulates
down the tail, increasing the asymmetry.

with only the Hall effect is very small, e.g. at x = 40RIo, it increases when the travel
time difference is implemented. Furthermore the number of distinct extrema increases
and generally the pattern gets more chaotic in the tail. In the case with a high Hall
conductance with rΣ = 1, the lateral displacement of the Poyting flux maxima is already
well developed. The travel time difference here has only a minor effect and is not needed
for the development of the alternating Alfvén spot street.
The main driver of the travel time difference is the slow propagation of Alfvén waves
inside the plasma torus. At Europa, where the mass density is about a factor of 10 lower
Bagenal and Dols (2020), the travel time difference does not reach the same value as
for Io and therefore has a reduced effect on developing asymmetries in the tail. As for
Ganymede, which is larger in cross section but even further outside, we do not expect the
travel time difference to have a major effect on the morphology of the footprints.
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Figure 8.4.: Poynting flux through the analysis plane for simulations with a travel time difference of
δt = 3.7 s and with activated Hall effect for a Hall to Pedersen conductance ratio of rΣ = 0.15 (top)
and rΣ = 1 (bottom). Compared to the Hall-simulations without travel time difference (Figure 7.7), the
asymmetries down the tail increases.

8.2. Asymmetric Atmosphere

Until now, Io has been implemented as a neutral gas cloud with homogeneous density in
the inside and an exponential radial decrease in density outside. Since we want to match
the Pedersen and Hall conductances of the obstacle, this representation is generally not
ideal. On the one hand are the conductances increased at the border of Io, since the
integration length through the conducting ionosphere is larger. On the other hand is
Io’s ionosphere not radially symmetric but is increased at the day side due to higher
sublimation rates and decreased at the poles. Furthermore, the anti-Jovian side of the
atmosphere is denser and more extended than the sub-Jovian side Feaga et al. (2009).
Lastly, the volcanic out-gassing can create transient local atmospheric enhancements.
The new neutral gas cloud model representing Io is shown in Figure 8.5 in terms of
ratio between Pedersen and Alfvén conductance. Since the interaction strength ᾱ is a
global value representing the whole interaction, it can not be used to represent local
inhomogeneities. However, with the ratio between Pedersen and Hall conductance, we
can estimate the relative deceleration of the plasma for different areas of the Alfvén wing.
We will estimate this value as

δv

v
(x, y) =

ΣP (x, y)/ΣA

2 + ΣP (x, y)/ΣA

. (8.4)
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Figure 8.5.: The ratio of Pedersen to Alfvén conductance (ΣA = 4.3 S) of the asymmetric atmosphere
model. The neutral gas density and therefore the Pedersen conductance ΣP is enhanced at the sub-solar
point at (-0.5, -0.5) and decreased at the opposite side. Due to the lowest density and the shortest
integration path, the Pedersen conductance is lowest at the poles.

This results in a high interaction strength at the sub-solar point of δv/v ≈ 0.8, which
would be high enough to allow non-linear reflections. At the locations with the lowest
Pedersen conductance, which is at the night side and at the poles of Io, the relative
deceleration is expected only to be about δv/v ≈ 0.2. This value is fairly low and the
reflections at the sub-Jovian side (y > 0) can be treated as linear in this model. The non-
linearity of the reflections play an important role in creating the reflection pattern and
the corresponding Poynting flux morphology. We therefore would expect an asymmetry
between Jupiter-facing and the opposite side of Io, which should translate to asymmetries
in the Poynting flux through the analysis plane.

8.2.1. Simulation with an Asymmetric Atmosphere

In Figure 8.6, we see the comparison between the simulation with a radially symmetric
atmosphere and the one with an asymmetric atmosphere in the Poynting flux through the
analysis plane. The main difference here seems to be a shift of the entirety of the Poynting
flux in upstream direction and towards the anti-Jovian side. This shift is expected since
the maximum of the Pedersen conductance is not centered anymore, but similarly shifted
to the upstream anti-Jovian side. Furthermore the structures are decreased in size and
intensity which results from the overall smaller size of the region with high Pedersen
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Figure 8.6.: Poynting flux through the analysis plane for the simulation with a radially symmetric atmo-
sphere (top) and an asymmetric atmosphere as described in Figure 8.5 (bottom).

conductance. However, the morphology of the structures are generally unchanged and only
small asymmetries in the Poynting flux are visible. Even with this very strong contrast in
Pedersen to Alfvén conductance ratio in the atmospheric model, the atmospheric structure
fails to alter the Poynting flux significantly. A general higher Pedersen conductance will
not change this result, since the interaction strength gets saturated and the contrast
diminishes.
We can therefore rule out the asymmetries in Io’s atmosphere as a mechanism to create
the alternating patterns that were observed. Since even with one of the strongest contrasts
possible, the effect seems minor, we also do not expect this mechanism to be of importance
for the other Galilean moons.



CHAPTER 9

Conclusions

The recent observations of the Io footprint of Mura et al. (2018) and Moirano et al. (2021)
posed some questions on the generation of the structures in the foot print tail. The AASS
break the symmetry between the equatorwards and polewards side of the tail. The struc-
ture of the footprints can give us insight about the moon-planet interaction and can be
used as a diagnostic to infer characteristics of the moon, the magnetospheric magnetic
field and density.
In this work, we showed that the position of the footprints can be used to deduce a density
model along the magnetic field lines, giving insights about the temperature and Io torus
density. The resulting values for peak density, ion temperature and torus scale height are
in agreement with the ones given in the literature (e.g. Bagenal and Delamere (2011),
Dougherty et al. (2017) and Phipps et al. (2020)).
Furthermore, the position of secondary spots in the Io footprint tail in the observations
by Mura et al. (2018) can be explained by the reflection of Alfvén waves at the Alfvén
phase velocity gradients at the torus boundary and Jupiter’s ionosphere. Even though
not every feature in the tail can be directly connected to a specific reflection pattern, the
separation distance of the tail spots of δ ≈ 350 km is well in agreement with the findings
of this study. Therefore, it is possible that the AASS is produced by multiple reflections
of Alfvén waves, triggering wave particle interactions close to Jupiter’s ionosphere.
To investigate, which mechanisms could create the alternating structures in the Io foot-
print tail and break the symmetry between the equatorward and poleward side, we first
conducted a purely alfvénic study using the equations given by Neubauer (1980) and
Saur et al. (1998). In this study, we investigated the effects of non-linear reflections and
the Hall effect on the Poynting flux, which was used as a Proxy for the morphology and
position of the footprint emissions. It could be shown that strong density gradients, as
they are present at the Jovian ionosphere, strongly deform the Alfvén wing and change
the morphology and propagation of transmitted as well as reflected Alfvén wing similar
to the results by Jacobsen et al. (2007). In the same study, the influence of the Hall
conductance onto the shape of the Alfvén wing was analyzed. The Hall effect changes
the fields inside the Alfvén wing significantly, breaking the symmetry that was present
only considering Pedersen conductance. Combined with non-linear reflections this effect
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showed a strong alteration of the Poynting flux morphology.
To confirm this hypothesis and to investigate further possibly symmetry breaking effects,
simulations were conducted with the single fluid MHD code PLUTO. The aim of this
study was not a detailed reproduction of all features of Io’s footprint and associated tail
features including the substructures reported in Moirano et al. (2021) or the bifurcations
in Mura et al. (2018) or Szalay et al. (2018), but a basic investigation of the cause of the
alernating structures, which are fixed in Io’s rest frame. In a first step a reference simu-
lation was set up. In this simulation no symmetry breaking mechanisms were included.
The simulation was realized in a simplified geometry with a homogeneous background
field. This allowed to examine the simulation results more easily and symmetry breaking
effects can be separated from geometric effects. However, the simulation domain was set
up to agree with actual Alfvén wave travel times and allow realistic reflection patterns.
The reference simulation already showed a complex Poynting flux morphology near the
Jovian ionosphere. In a next step, symmetry breaking mechanisms were added to the
simulation. The results were compared to the reference simulation.
The first mechanism was the Hall effect. It could be shown that the Hall effect together
with strong non-linear reflections at the Jovian ionosphere can create Alfvén bridges, that
are used by the reflected Alfvén wing to cross the plane between equatorward and pole-
ward part of the Io footprint tail. This can create alternating spots as seen in the AASS.
Therefore, the Hall effect is a promising mechanism to produce the observed structures.
If that is the case, we could expect similar however weaker asymmetries in the tail of
Europa that is also expected to have a non-negligible Hall conductance.
As a second mechanism the travel time difference between Alfvén wave packages origi-
nating from the Jupiter facing side and those originating from the opposite side of Io was
investigated. This was realized by implementing a density gradient along the Jupiter-Io
axis in the simulation. The Poynting flux in the analysis plane showed only a slight de-
formation of the features near the main footprint. Down the tail however, the travel time
difference of multiple reflections accumulate and the asymmetry increases. This alone can
not explain the AASS, whose alternating character begins directly at the main emission.
Yet, it could be shown that in the case of smaller Hall conductances relative to the Ped-
ersen conductance, the travel time difference can enhance the asymmetry and can be a
contributing factor to create the AASS. This effect was assumed to be minor in the case
of the other Galilean moons.
As a third mechanism the asymmetry in Io’s ionosphere was investigated. Until now, Io
has been represented as a perfectly radially symmetric neutral gas cloud, resulting in a
rotationally symmetric Pedersen and Hall conductance. However, Io’s atmosphere and
the resulting conductances are highly asymmetric with a minimum at the poles and a
maximum at the sun facing side. The corresponding neutral gas cloud that satisfies the
expected distribution of Hall and Pedersen conductances has been implemented. The sim-
ulation resulted in negligible differences to the reference simulation, only slightly shifting
the Poynting flux respectively to the location of the maximum conductances. Therefore,
we ruled out the asymmetries in the atmosphere as the reason for the AASS.
Therefore, we conclude that the Hall effect is the most promising candidate to produce the
AASS. With further observations of the Io footprint at other orbital positions as well as
the other Galilean moons, we could test this hypothesis. If we see similar, though weaker
AASS in Europa’s tail this would support the Hall effect as a primary reason behind the
observed structures.
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Appendix

A. Vlasov Equation

A.1. Collision Term

As discussed in chapter 3.4, the Boltzmann collision can be approximated by(
∂f

∂t

)
col

=
ν

nn

(nfn − nnf) = ν

(
n

nn

fn − f

)
(A.1)

Here, nn is the density of collision partner and therefore the zero-th velocity moment
of the neutral particle distribution function fn, while n is the zero-th velocity moment
of the plasma phase space distribution function f . The prefactor ν/nn is the collision
frequency ν normalized to the density of the collision partner. From this we can calculate
the velocity moments of the collision term:(

∂ρ

∂t

)
col

=

∫ (
∂f

∂t

)
col

d3v = ν

(
n

nn

nn − n

)
= 0 (A.2)

For the momentum equation, the source term does not vanish:(
∂ρv

∂t

)
col

= m

∫
v

(
∂f

∂t

)
col

d3v = νm

(
n

nn

nn⟨vn⟩ − n⟨v⟩
)

= νρ(vn − v)

(A.3)

Now, for the Energy equation, we get the following:(
∂W

∂t

)
col

=
m

2

∫
v2

(
∂f

∂t

)
col

d3v =
νm

2

(
n

nn

nn⟨v2n⟩ − n⟨v2⟩
)

=
νρ

2

[(
v2n + 2en

)
−
(
v2 + 2e

)]
=

νρ

2

[
(v2n − v2) + 2(en − e)

]
=

νρ

2
[(vn − v)2 − 2v2 + 2vn · v] + νρ(en − e)

=
νρ

2
[(vn − v)2 + 2(vn − v) · v] + νρ(en − e)

(A.4)

For the evolution equation of the pressure this leads to :
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(
∂p

∂t

)
col

=

(
∂W

∂t

)
col

− v ·
(
∂ρv

∂t

)
col

=
νρ

2
[(vn − v)2 +(((((((

2(vn − v) · v] + νρ(en − e)−((((((((
νρv · (vn − v)

=
νρ

2
(vn − v)2 + νρ(ϵn − ϵ)

(A.5)

A.2. Production and Loss Term

The production and loss terms in the MHD equations, in particular in the continuity,
momentum (velocity) and energy(pressure) equations should actually be calculated as
velocity moments from a phase space density production and loss term fP,L = fP + fL.
This term consists of a production part

∂fP
∂t

= P (r)δ(v − v0) (A.6)

and a loss part

∂fL
∂t

= −Lf(r,v). (A.7)

Here, P (r) is a production rate, that is inhomogeneous in space (e.g. dependent on neutral
gas density) and has the unit [P ] =m−3s−1. The δ(v − v0) is the dirac delta distribution
which ensures that only particles with velocity v0 are produced. Furthermore, the loss
term is proportional to the phase space density f since there is no preferred particle
velocity for the loss term and it is also proportional to the density n(r) =

∫
fd3v. The

loss rate L is constant and has the unit [L] =s−1.

Production and Loss in the Continuity Equation

For the continuity equation, we integrate the Vlasov equation over the velocity space. The
left hand side of Equation (3.1) is the known continuity equation divided by the particle
mass

∂n

∂t
+∇ · (nv) =

∫
∂fP,L
∂t

d3v (A.8)

For the integration of the production and loss term on the right hand side, we look at
both terms separately: ∫

∂fP
∂t

d3v = P

∫
δ(v − v0)d

3v

= P

(A.9)

and ∫
∂fL
∂t

d3v = −L

∫
fd3v

= −Ln

(A.10)

It follows that the continuity equation for mass density, i.e. ρ = mn with production and
loss term is

∂ρ

∂t
+∇ · (ρvb) = m(P − Ln) (A.11)
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Here, vb represents the mean velocity of the phase space distribution function at a certain
location and is also called the bulk velocity of the plasma.

Production and Loss in the Momentum Equation

The momentum equation is the first velocity moment and therefore is received when the
Vlasov equation is multiplied by the velocity v and integrated over the velocity space.
The right hand side for the production and loss terms are∫

v
∂fP
∂t

d3v = P

∫
vδ(v − v0)d

3v

= Pv0

(A.12)

and ∫
v
∂fL
∂t

d3v = −L

∫
vfd3v

= −Lnvb,

(A.13)

respectively. Therefore, the momentum equation has the extra source (and sink) term

Pmv0 − Lρvb (A.14)

with v here representing the bulk velocity of the plasma. However, the velocity equation
has a different term for the production and loss rate:(

ρ
∂(vb)

∂t
+ ρvb · ∇v

)
P,L

=

(
∂(ρvb)

∂t
+∇ · (ρvbvb)

)
P,L

− vb

(
∂ρ

∂t
+∇ · (ρvb)

)
= Pmv0 − Lρvb − vb(Pm− Lρ)

= Pm(v0 − vb)

(A.15)

As it can be seen, the velocity changes due to the difference in velocity between the new
produced particles and the current bulk velocity v, while the loss term does not change
the velocity, but only the momentum. This is can be understood as follows. New particles,
produced by the production term with velocity v0 carry momentum in the form of mv0,
therefore changing the overall momentum, except for the special case where v0 = 0, where
no momentum is generated. The mean velocity is changed relative to current bulk velocity,
so the bulk velocity can be slowed down even though maybe momentum is generated. If
particles are lost, generally momentum is lost, since each particles carries momentum of
mv. However, since each particle, on average, has the bulk velocity, the overall velocity
of the plasma is not changed, no matter how many particles are lost due to the loss term.

Production and Loss in the Energy Equation

For the energy equation we use the second velocity moment multiplying equation (3.1)
with v2. This leads for the right hand side to∫

v2
∂fP
∂t

d3v = P

∫
v2δ(v − v0)d

3v

= Pv20

(A.16)
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and ∫
v2

∂fL
∂t

d3v = −L

∫
v2fd3v

= −L

∫
(vb + v∗)2fd3v

= −L

(∫
v2bfd

3v +

∫
v∗2fd3v

)
= −L

(
nv2b +

3p

m

)
(A.17)

for the production and loss respectively. Here p = m/3
∫
v∗2d3v is the pressure, which is

calculated by the variance in velocity, i.e. mean of squared velocity perturbation v∗. The
energy equation can have different forms, but it is sometimes defined as

∂ϵ

∂t
+∇ · (vbϵ)+ p∇ ·vb =

m

2

(∫
v2

Df

Dt
d3v − vb ·

(
2

∫
v
Df

Dt
d3v − vb ·

∫
Df

Dt
d3v

))
= 0

(A.18)
without any production terms. Here, we use the internal energy ϵ = 3/2p. To see, how
this equation changes with production and loss, we need to insert terms calculated for the
first and second velocity moment of the right hand side.

(
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2
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∫
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∂fL
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d3v
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)
=

m

2
P (v20 − 2vb · v0 + v2b )− Lϵ

=
m

2
P (vb − v0)

2 − Lϵ

(A.19)

We look at the physical meaning of this result for the loss term and production term
separately. The loss term is proportional to the internal energy just multiplied with the
loss constant L. This comes from the fact that on average each particle contributes the
same amount of internal energy to the overall budged, which results in the internal en-
ergy to be proportional to the number of particles. Removing random particles from the
plasma leads to a reduction of internal energy proportional to the product of particles
removed L and internal energy ϵ. The production of particles with velocity v0 results in
an increase in pressure proportional to the kinetic energy density in the reference frame
of the moving plasma. This is due to an increase in variance in velocity, when the newly
created particles are moving relative to the bulk velocity.
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Sometimes the energy equation is given in terms of internal energy per particle. This
would result in the left hand side being

∂

∂t

( ϵ

n

)
+ (vb · ∇)

( ϵ

n

)
=
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1

n

∂ϵ
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∂t

)
+ vb ·
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1

n
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)
=

1

n

(
∂ϵ

∂t
+∇ · (vbϵ)

)
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n
∇ · vb −

ϵ

n2

(
∂n

∂t
+ vb · ∇n

)
=

1

n

(
∂ϵ

∂t
+∇ · (vbϵ)

)
− ϵ

n2

(
∂n

∂t
+ vb · ∇n+ n∇ · vb

) (A.20)

The first term is just the left hand side for the evolution equation of the internal energy
divided by the number density n. The second term is the left hand side of the continuity
equation multiplied by ϵ/n2. If we combine them, divide it by the mass m and use the
calculated values for the production and loss terms in the evolution equation of internal
energy and continuity equation we get

∂

∂t

(
ϵ

ρ

)
+ (vb · ∇)

(
ϵ

ρ

)
= −1

ρ
p∇ · vb +

1

ρ

(m
2
P (vb − v0)

2 − Lϵ
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− ϵ

ρ2
(Pm− Lρ)

= −1

ρ
p∇ · vb +

Pm

ρ2

(
1

2
ρ(vb − v0)

2 − ϵ

)
(A.21)

The absent of the Loss term in this equation can be understood as the internal energy
per particle does not change if we remove a random particle. However, adding particles
with a certain speed can add to the mean energy per particle if the variance per particle
is increasing, meaning if

n(vb − v0)
2 >

∫
v∗2fd3v (A.22)

B. Analytical Derivations in the Alfvén Wing

B.1. Perpendicular Magnetic Field

The magnetic field perpendicular to the Alfvén characteristic can be calculated using the
definition of the characteristic z+ = v +B/

√
µ0ρ.

z+ ×B⊥ = z+ ×B

=

(
v ± B

√
µ0ρ

)
×B

= v ×B

= −E

(B.1)

e|| × E = − z+

|z+|
× (z+ ×B⊥)

=
−�����
(z+ ·B⊥)z

+ + |z+|2B⊥

|z+|
= |z+|B⊥

(B.2)
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Here perpendicular (⊥) and parallel (||) are meant with respect to the Alfvén character-
istic, which is tilted against the background magnetic field. Together with the definition
of the Alfvén conductance in Equation (4.4), this concludes to

B⊥ = µ0ΣAe|| × E (B.3)

B.2. Numerical Alfvén Wing Model

Saur et al. (1999) have shown, that the Potential Φ of the electric field E can be calculated
under the assumption that the obstacle in the plasma flow can be characterized with the
Pedersen conductance ΣP , the Hall conductance ΣH and the Alfvén conductance ΣA. In
this case we want to assume that ΣA is constant in the complete domain and ΣH and ΣP

only depend on the radial distance r. The partial differential equation to be solved is

ΣA + ΣP

r

∂2Φ

∂φ2
+

∂

∂r

[
r(ΣA + ΣP )

∂Φ

∂r

]
+

∂ΣH

∂r

∂Φ

∂φ
= 0 (B.4)

Fourier Transform

Since this differential equation is linear in Φ, we use Fourier Transform in the φ-direction
and write Φ as

Φk(r, φ) = Ωk(φ)Γk(r) (B.5)

and

Φ =
∞∑
k=0

Φk (B.6)

with the wavenumber k in φ direction. Since Φk (and therefore Ωk) needs to be 2π
periodic, k is an integer and we can write

Ωk(φ) = eikφ. (B.7)

Here, the initial phase of the potential (φ0) is in the phase of the complex factor Γk. This
leads to a set of new ordinary differential equations:

∂

∂r

[
r(ΣA + ΣP )

∂Γk

∂r

]
+

[
ik
∂ΣH

∂r
− k2ΣA + ΣP

r

]
Γk = 0 (B.8)

Piecewise Constant Conductances

If we assume ΣP and ΣH to be constant on a circular disk Ri < r < Rj, we can solve the
set of differential equations using

∂ΣP

∂r
=

∂ΣH

∂r
= 0 (B.9)

which leads to the simple ODE

r2Γ′′
k + rΓ′

k − k2Γk = 0 (B.10)
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and has the simple solution

Γk = Akr
−k +Bkr

k (B.11)

Ak and Bk being integration constants. It can be shown, that if the boundary condition
lim
r→∞

Φ only consists of certain wavenumbers k, only Φk ̸= 0. This will in detail be shown
in Section B.2. As in this case, where the boundary condition lim

r→∞
Ey = E0 is

lim
r→∞

Φ = −E0r sin(φ) (B.12)

only k = 1 has to be considered and therefore

Φ =

[
A

r
+Br

]
eiφ (B.13)

Iterative Method

As long as ΣP and ΣH are piecewise constant along r and do not depend on φ, the differ-
ential equation can be solved iteratively. We denote ΣP,n and ΣH,n as the Conductances
in the n-th shell with the outer radius of it being Rn (RN = ∞). Using the fact, that in
each shell the solution of the differential equation can be written as

Φn =

[
An

r
+Bnr

]
eiφ (B.14)

we can use boundary conditions, jump conditions and continuity to solve differential
equation. First we have the boundary condition:

lim
r→∞

Φ = −E0r sin(φ) (B.15)

which can be written as BN = iE0. Furthermore no singularities are allowed, which
means, that A1 = 0. Now at each shell boundary at Rn the continuity Φn = Φn+1 has to
be fulfilled, which can be written as

(An − An+1) +R2
n(Bn −Bn+1) = 0 (B.16)

and a jump conditon (equation (A2) in Saur et al. 1999):

αnAn + βnBn + γnAn+1 + δnBn+1 = 0 (B.17)

with

αn = (ΣP,n + ΣA)− iΣH,n (B.18)
βn = [−(ΣP,n + ΣA)− iΣH,n]R

2
n (B.19)

γn = −(ΣP,n+1 + ΣA) + iΣH,n+1 (B.20)
δn = [(ΣP,n+1 + ΣA) + iΣH,n+1]R

2
n (B.21)

This is now a linear system of 2N − 2 equations with 2N − 2 unknowns since A1 and BN

are already known. Written in Matrix form it is
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R2
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N−1 −1





B1

A2

B2

A3
...

BN−2

AN−1

BN−1

AN


=



0
0
0
0
...
0
0

−iδN−1E0

iR2
N−1E0


(B.22)

For stability reasons, it is suggested to use R2
nBn as a variable. This leads to more similar

values in the matrix for the calculation of the inverse.

Special case Saur et al. 1999

The special case of Saur et al. (1999) assumed ΣP and ΣH to be constant inside the
Alfvén wing r < R and 0 outside:

ΣP,1 = ΣP (B.23)
ΣH,1 = ΣH (B.24)
ΣP,2 = 0 (B.25)
ΣH,2 = 0 (B.26)
R1 = R (B.27)

The linear equation system (B.22) is here(
β γ
R2 −1

)(
B1

A2

)
=

(
iδE0

−iR2E0

)
(B.28)

or (
B1

A2

)
=

1

β + γR2

(
1 γ
R2 −β

)(
iδE0

−iR2E0

)
(B.29)

with

β = [−ΣP − ΣA − iΣH ]R
2 (B.30)

γ = −ΣA (B.31)
δ = ΣAR

2 (B.32)

which leads to

B1 = E0
−2ΣAΣH − 2iΣA(ΣP + 2ΣA)

(ΣP + 2ΣA)2 + Σ2
H

(B.33)

A2 = E0R
22ΣAΣH − i(ΣP (ΣP + 2ΣA) + Σ2

H)

(ΣP + 2ΣA)2 + Σ2
H

(B.34)
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This can also be written in terms of

Ep =

∣∣∣∣A2

R2

∣∣∣∣ =
√

Σ2
P + Σ2

H

(ΣP + 2ΣA)2 + Σ2
H

(B.35)

tan(ΘP ) =
ℑ(A2)

ℜ(A2)
= −Σ2

H + ΣP (ΣP + 2ΣA)

2ΣAΣH

(B.36)

as A2 = R2Epe
iΘP , which is the exact solution from Saur et al. (1999).

Electric Field

We have now the Potential Φ(r, φ) as complex potential over the whole domain. At each
disk Rn−1 < r < Rn with R0 = 0 and RN = ∞, the Potential is calculated according to
equation (B.14). Since eiφ = cos(φ) + i sin(φ) as well as x = r cos(φ) and y = r sin(φ),
we can write

ℜ(Φn) = ℜ
(
An

r2
+Bn

)
x−ℑ

(
An

r2
+Bn

)
y (B.37)

The electric field is the gradient of the potential E = −∇Φ. Taking the derivative with
respect to x and y, we receive Ex and Ey respectively, giving us

Ex = −ℜ(An)

r2

(
1− 2x2

r2

)
−ℜ(Bn)−ℑ(An)

2xy

r4
(B.38)

Ey = ℜ(An)
2xy

r4
+ ℑ(Bn) +

ℑ(An)

r2

(
1− 2y2

r2

)
(B.39)

Higher Orders in k

For higher orders of k, the iterative method can be used the same way since Ωi and Ωj

are orthogonal for i ̸= j. Therefore the differential equation (B.10) can be solved giving
us the solution for the n-th disk.

Φk =

[
Ak,n

rk
+Bk,nr

k

]
eikφ (B.40)

The solution Φk also may not have any singularities, therefore Ak,1 = 0. The continuity
equation can be written as

(Ak,n − Ak,n+1) +R2k
n (Bk,n −Bk,n+1) = 0 (B.41)

and the jump condition is therefore

αk,nAk,n + βk,nBk,n + γk,nAk,n+1 + δk,nBk,n+1 = 0 (B.42)

with
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αk,n = (ΣP,n + ΣA)− iΣH,n (B.43)
βk,n = [−(ΣP,n + ΣA)− iΣH,n]R

2k
n (B.44)

γk,n = −(ΣP,n+1 + ΣA) + iΣH,n+1 (B.45)
δk,n = [(ΣP,n+1 + ΣA) + iΣH,n+1]R

2k
n (B.46)

Similar to the previous linear equation system (B.22), the right hand side is defined
by the boundary condition for the E-Field with the corresponding wavenumber in φ
direction. If lim

r→∞
Φk = 0, the right hand side is zero. Therefore only the trivial solution

Ak,n = Bk,n = 0 for all n exists leading to Φk = 0. It can be shown, that the determinant
of the corresponding matrix in equation (B.22) is non-zero, thus no non-trivial solution
exist in this case.

Derivation of Jump Condition

To derive the jump condition (B.17) following Saur et al. (1999), we take equation (B.8)
and integrate it along a small interval at a boundary [R− ε, R + ε] and

lim
ε→0

Rn+ε∫
Rn−ε

∂

∂r

[
r(ΣA + ΣP )

∂Γk

∂r

]
+

[
ik
∂ΣH

∂r
− k2ΣA + ΣP

r

]
Γkdr = 0 (B.47)

Now since the integrated interval tends to zero, all parts of the integral vanish where the
integrated function is finite. Since Γk needs to be continuous Γk and ∂Γk

∂r
are finite. We

can rearrange above function as

lim
ε→0

∣∣∣∣r(ΣA + ΣP )
∂Γk

∂r

∣∣∣∣Rn+ε

Rn−ε

+ ik

Rn+ε∫
Rn−ε

∂

∂r
(ΣHΓk)dr −

Rn+ε∫
Rn−ε

ik
∂Γk

∂r
ΣH + k2ΣA + ΣP

r
Γkdr = 0

(B.48)
As stated above, the last integral vanishes for lim

ε→0
, so the jump condition can be written

as

lim
ε→0

∣∣∣∣r(ΣA + ΣP )
∂Γk

∂r
+ ikΣHΓk

∣∣∣∣Rn+ε

Rn−ε

= 0. (B.49)

Using (B.11) and multiplying the equation by Rk
n, this can be rewritten as:

[
k(ΣA + ΣP,n+1)(−Ak,n+1 +Bk,n+1R

2k
n ) + ikΣH,n+1(Ak,n+1 +Bk,n+1R

2k
n

]
−

[
k(ΣA + ΣP,n)(−Ak,n +Bk,nR

2k
n ) + ikΣH,n(Ak,n +Bk,nR

2k
n

]
= 0

(B.50)

which can be rewritten as equations (B.17) and (B.42).
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B.3. Validation of the Code in the Case of Constant
Conductances
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Analytical after Saur et al. 1999
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Figure B.1.: The electric field Ey in y-direction along the y-axis (top) and x-axis(bottom) in the case
of constant Pedersen conductance ΣP inside a radius of r < 1 and no conductance outside. The semi-
analytical simulation results (red) are compared to the analytical solution by Saur et al. (1999) (blue).

Figure B.2.: The electric field Ey in y-direction as calculated by the semi-analytical simulation for a
constant Pedersen conductance inside a radius of r < 1 and no conductance outside. The resulting values
and shape of the electric field are similar to the analytical results by Saur et al. (1999).

B.4. Poynting Flux

The Poynting Flux S is defined as
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S =
E×B

µ0

. (B.51)

In cartesian coordinates the three components of the Poynting flux are

µ0Sx = EyBz − EzBy (B.52a)
µ0Sy = EzBx − ExBz (B.52b)
µ0Sz = ExBy − EyBx (B.52c)

1. We first use the ideal MHD which uses

E = −v ×B (B.53)

Therefore, we can write the components as:

µ0Sx = (vxBz − vzBx)Bz − (vyBx − vxBy)By (B.54a)
µ0Sy = (vyBx − vxBy)Bx − (vzBy − vyBz)Bz (B.54b)
µ0Sz = (vzBy − vyBz)By − (vxBz − vzBx)Bx (B.54c)

or

µ0Sx = vx(B
2
z +B2

y)−Bx(vzBz + vyBy) (B.55a)
µ0Sy = vy(B

2
x +B2

z )−By(vxBx + vzBz) (B.55b)
µ0Sz = vz(B

2
x +B2

y)−Bz(vyBy + vxBx) (B.55c)

Now we assume that our background magnetic field only goes in z-direction (B0 =
B0ez). If we use the alfvénic correlation

δB⊥ = ∓δv⊥
√
ρµ0 (B.56)

which is well fulfilled in the Alfvén wing, change to the rest frame of the plasma
(v0 = 0) and neglect the perturbations in z−direction, we can simplify the Sz

equation to

µ0Sz = ±Bz
√
ρµ0(δv

2
x + δv2y) (B.57)

2. If we use equation (B.56) also for the first term in equation (B.55c) and exchange
δB2

⊥ with ρµ0δv
2
⊥ in equations (B.55c), this leads to

µ0Sz = (vzρµ0 ±Bz
√
ρµ0)δv

2
⊥ (B.58a)

= ρµ0z
±
z δv

2
⊥ (B.58b)
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Since z± is constant and √
ρµ0z

±
z = Bz,0, we can also write

Sz = ±Bz,0

√
ρ

µ0

δv2⊥ = ±vA
δB2

⊥
µ0

(B.59)

with vA = |B|√
µ0ρ

.

3. Now we look at what happens if we include the Hall effect of the form

E = −v ×B+
1

ne
j×B. (B.60)

However, we can rewrite this equation using

vH =
j

ne
(B.61)

and we get

E = −(v − vH)×B. (B.62)

Equations (B.54) to (B.59) still apply if we exchange vi with vi − vH,i.

4. Another thing we can look into are the values of δBz and δvz. For that we need the
assumption |B| = const. introduced for Alfvén wings by Neubauer (1980). With
this assumption we have

Bz = ±
√

B2
z,0 −B2

⊥ (B.63a)

= ±
√
B2

z,0 − ρµ0δv2⊥ (B.63b)

or

δBz = ±
√
B2

z,0 − ρµ0δv2⊥ ∓Bz,0 (B.64)

However, with the assumpition, that δz± = 0, it follows that

vz = δvz = ∓

√
B2

z,0 − ρµ0δv2⊥ −Bz,0

√
ρµ0

(B.65)

It is important to note, that in the equations for Sz, i.e. equations (B.54c), (B.55c)
and (B.57) the value for Bz is the total field, not only the perturbation.
If we say, that the magnetic field perturbations are small against the background
magnetic field, which is always true in case of MA ·α ≪ 1, where MA is the alfvénic
Mach number and α is the interaction strength, then we can perform a Taylor
expansion of equation (B.65) and get

δvz = ±
√
ρµ0δv

2
⊥

2Bz,0

(B.66)
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