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Chapter 1

Introduction

I think game theory creates ideas

that are important in solving and

approaching conflict in general.

Robert Aumann, Nobel Laureate

This dissertation consists of three essays in the field of Microeconomic Theory.

In each chapter, I use a game-theoretic model to study strategic behavior in a

complex economic situation. In each of these situations, there is a conflict of interest

between the agents and their actions are interdependent. The theoretical findings in

Chapters 2 and 4 are supported by empirical analyses based on observational data

and a laboratory experiment. In Chapter 2, I examine the role of game preparation

and experience in games commonly played by professional players, in which the

opponent’s prior behavior is observable. Chapter 3 deals with the strategic behavior

of firms who make job offers to previously interviewed workers in the labor market.

Chapter 4 analyzes a repeated adviser-consumer relationship in which the adviser

can receive a bonus if the consumer takes certain actions.

The following paragraphs briefly summarize each chapter. Chapter 2 is titled

“Game Preparation and Experience” and is single authored.1 In this paper, I

model game preparation and experience in games where players can observe

their opponent’s past plays. In these situations, players face a tradeoff between

specialization and unpredictability. On the one hand, they can choose the same

action every time they play the game. This gives them a high experience level in

this action but has the disadvantage of being very predictable. On the other hand,

1This chapter contains the current version of the working paper Gramb (2022).
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players can choose to mix uniformly between all actions. This makes it harder for

their opponent to prepare since these players are highly unpredictable. However,

they also have less experience in each action they play. To model experience

evolution, the stage game is infinitely repeated and one player’s experience changes

after each instance depending on the action taken in the stage game. This makes

the overall game a dynamic game. The probability of winning a stage game after

choosing a particular option increases with the player’s experience in that option

and decreases with the opponent’s preparation time for that option. I find that

both specialization and unpredictability are Nash equilibria of the stage game. To

reduce this multiplicity of Nash equilibria, I apply methods from evolutionary game

theory to the dynamic game. These methods are used to derive dynamic stability

properties of the two Nash equilibrium behaviors specialization and unpredictability.

The result is that specialization is always dynamically stable while unpredictability

is sometimes not. This finding is also supported empirically by studying the opening

choices of professional chess players which differ significantly from uniform mixing.

The statification technique introduced to study dynamic games using evolutionary

game theory methods can be applied to a large class of dynamic games. In this

sense, the paper also contributes to the theory of dynamic games in general.

Chapter 3 is titled“Congestion and Market Thickness in Decentralized Matching

Markets” and is joint work with Julian Teichgräber.2 In this paper, we study

congested decentralized matching markets and the impact of market thickness

on market outcomes. The main application are labor markets, where many firms

interview a similar set of workers and strategically make a job offer to one of

these workers. We derive equilibrium strategies for each firm conditional on its

rank among all firms and overall market thickness. We find that it is often not

optimal for many firms to make an offer to the best observed worker, as the

probability of acceptance may be low. In addition, we study how market outcomes

change as market thickness increases. All firms and good workers lose when the

market becomes thicker, while only low-skill workers benefit. In a similar vein,

all firms and good workers would support a centralization of the market with an

accompanying assortative matching, while only low-skill workers are in favor of

the congested market structures in a decentralized labor market. Since market

2This chapter contains the current version of the working paper Gramb and Teichgräber
(2023). Both authors developed the idea and the model together and derived most results together.
Marius Gramb worked on the results about market thickness and finished the final draft of the
paper.
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thickness can be designed by different policy measures, our results have policy

implications. By implementing a thicker or less thick market, policy makers can

make different market participants better or worse off, depending on their policy

goals. Moreover, our result on the support of a centralized market explains the

formation of clearinghouses that reduce congestion problems in thick matching

markets.

Chapter 4 is titled “Anonymous or personal? A simple model of repeated

personalized advice” and is joint work with Christoph Schottmüller.3 In this paper,

we study an adviser-consumer relationship in which the adviser receives a bonus if

the consumer takes certain actions. In such situations, the adviser faces a strategic

tradeoff: On the one hand, he wants to receive the highest possible bonus in every

period. On the other hand, the adviser also wants to generate fitting advice, since

the consumer might fire him if he gives too much bad advice. This would stop all

future bonus payments. To study this strategic tradeoff, we introduce learning into

the model. This means that the expert gets to know the consumer better whenever

he gives advice that meets the consumer’s needs. This leads to a better signal

quality in future periods and could incentivize the expert to give good advice even

if it means not receiving a bonus. In the resulting dynamic game, we analyze two

different types of equilibria. In Markov equilibria, the adviser exploits the consumer

in the sense that the consumer does not benefit from the expert’s learning. In

m-equilibria, the welfare generated by the learning opportunity is shared between

consumer and expert. Complementary to our theoretical results, we conducted a

laboratory experiment to see which equilibrium properties more closely resemble

real-world behavior. We find that the learning opportunity provides an incentive for

experts to give better advice. This explains why many people prefer personalized

advice over anonymization. In the context of online advice, it justifies that many

people use a personalized rather than an anonymized version of their preferred

search engine.

3This chapter contains the current version of the working paper Gramb and Schottmüller
(2022a). Christoph Schottmüller developed the idea and the model of the paper. Both authors
derived several theoretical results. Marius Gramb programmed, conducted and evaluated the
laboratory experiment. Both authors finished the final draft together.
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Chapter 2

Game Preparation and

Experience∗

2.1 Introduction

In many situations, we anticipate playing a game against an opponent and we

can also observe how she has previously decided in this kind of game. We are

then faced with the problem of how to use our preparation time to prepare for

various alternatives that are likely to occur. For example, consider a professor who

is designing a final exam. A student will usually be able to see the most recent

exams for that course and can infer the lecturer’s preferences for what topics should

be asked or emphasized. The lecturer, in turn, is well aware of these givens and

might weigh the cost of designing entirely new assignments against the benefit of

surprising the student in the exam. In other words, the lecturer faces a tradeoff

between specialization and unpredictability: Specialization in one topic makes it

easier to design new exercises based on a high level of experience but it comes

at the cost of predictability. However, in order to be unpredictable, the professor

has to use exercises from different topics which makes it more time-consuming

to create the exam. Another example of this tradeoff is sports teams facing each

other in a major competition and preparing for the opponent’s preferred plays. A

prominent instance of this is the Super Bowl, the annual finale of the American

Football League. Each year, many resources are expended by the two opposing

teams to analyze the opponents’ offensive as well as defensive plays and determine

∗I am grateful to Christoph Schottmüller, Yiqiu Chen, Markus Möller, Lennart Struth and
numerous seminar and conference participants for valuable comments and suggestions. The
remaining errors are my own.
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which strategies offer the highest probability of victory. Some more economical

applications of our framework include defending against terrorism1 or choosing the

agendas of political parties in an election campaign2.

Finally, the same applies to chess opening preparation at the professional

level. All the games of a professional chess player are publicly available and their

opponents can see which openings they prefer to play and what their secondary

weapons might be. This implies that also in this case, each professional must weigh

the benefit of surprising the opponent by playing an opening different from his

usual repertoire against the disutility from playing an opening in which he has

significantly less experience.

In this paper, we model these situations as a dynamic two-player game where

one player decides between different options while she is endowed with an experience

vector reflecting the proportions with which she played these options in the past.

The other player simultaneously decides how to allocate his preparation time

among the alternatives, knowing his opponent’s experience vector. We allow this

experience vector to change over time based on the strategies chosen by the first

player. The payoff of each player can be interpreted as their probability of winning

the game, which naturally depends on both the first player’s experience in the

chosen option and the preparation time the second player used to prepare for that

option.

In the framework described above, we are interested in answering several

questions. The most obvious question is how to use one’s preparation time most

efficiently to prepare optimally for the opponent. Another one relates to a more

meta-game theoretic standpoint: How broad should one’s repertoire of plays be in

order to make it difficult for the opponent to prepare and still retain a sufficiently

high probability of winning? The underlying assumption in these situations is

always that past plays also reflect the experience one has in playing those options

and that more experience results in a higher probability of winning once the option

in question is played. Note that a crucial assumption to make this framework

relevant is that the opponents are of approximately equal strength. If one adversary

is significantly better than the other, the role of preparation might become less

pronounced.

1Terrorists strike in places where security measures are low, but these measures are allocated
based on an assessment of dangers.

2Different parties may have more experience or credibility in certain areas, but they must
also tailor their agenda to the expected agendas of the opposing parties.
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To study the above questions, we will step away from standard game theory

and mainly adopt an evolutionary game theory (EGT) approach. While the Nash

equilibrium is a useful tool to detect statically stable strategy combinations in a

game, it does not predict which of these states is going to be reached in case of

multiplicity. With EGT methods, however, it is possible to distinguish between

different equilibria by evaluating their dynamic stability. In other words, when

society is close to a statically stable state, these methods assess whether it will

converge to this state or move away from it. In this way, we can address the issue

of multiple Nash equilibria in our model.3 An intuitive justification for the use

of an evolutionary approach might be that good preparation strategies as well as

successful plays are passed from one coach to the next or from father to son while

the worse strategies will become extinct quickly.4

The main finding of this paper is that focusing on specialization is more stable

than focusing on unpredictability. Specifically, we show that being a predictable

expert who always employs the same strategy is a stable outcome, while mixing

uniformly between different alternatives is sometimes not. Intuitively, this is due

to different incentives to change behavior in situations that are close to perfect

specialization or uniform mixing. If a player’s playing behavior has been close

to uniform mixing for several rounds, then her opponent’s optimal preparation

behavior will also be close to uniform mixing. In this case, however, the player

has an incentive to focus exclusively on one of the alternatives if this leads to a

rapid increase in her experience in that strategy. In this way, she intends to take

advantage of her opponents who are still preparing for both options equally. On the

other hand, if the same player’s playing behavior is close to perfect specialization,

she has no incentive to play the less preferred option more often, since this leads

to a lower probability of winning the game due to her limited experience in that

option.

The rest of this paper is organized as follows: Section 2.2 discusses related

literature. Section 2.3 presents the model of the paper and the analysis is performed

in Section 2.4. Standard definitions and results from evolutionary game theory that

are needed for the analysis are reviewed in Appendix B. Two natural extensions

3Equilibrium refinements such as perfect equilibrium or proper equilibrium are not able to
eliminate this multiplicity of Nash equilibria.

4Concretely, a coach could pass on information about which kinds of plays worked well for
the team and also if they were more successful with a certain preparation behavior against their
opponents. Likewise, the father will pass on important life advice from his experience to his son
and discourage certain approaches that did not work for him.
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are studied in Section 2.5. Section 2.6 compares the results with the preparation

behavior of professional chess players. Section 2.7 concludes.

2.2 Related Literature

The game studied in this paper resembles the well-known Colonel Blotto game

introduced by Borel (1921). The main difference is that in our setting, there is

only one “battlefield” which is chosen by player A, while player B hopes to have

placed a large portion of his resources on the battlefield that is eventually chosen.

Golman and Page (2009) generalize the Colonel Blotto game to a class of General

Blotto games and find that under certain conditions, resources are allocated equally

across all fronts in equilibrium. While this behavior is mirrored by player B in

some stable states of our game, there is still a key difference in that only one

battlefield is ultimately chosen and both players know player A’s preferences over

battlefields through her experience vector. In Hernández and Zanette (2013), the

Colonel Blotto game with two types of players is analyzed within an evolutionary

game theory framework and it is simulated which equilibria are reached depending

on the starting conditions of the population. While we adopt a similar approach,

the game we study changes continuously due to the possible change in player A’s

experience after each instance of the game.

Strategically, the game we study is also similar to the Matching Pennies game

since player A attempts to mismatch player B’s preparation while player B tries to

match player A’s action in his preparation. The dynamics of a repeated Matching

Pennies game were studied by Becker et al. (2007) using different learning dynamics

than we use in this paper. They find that there is no asymptotically stable state,

but rather that play evolves in orbits around the unique equilibrium point. In our

setting, the existence of asymptotically stable states is due to the experience vector

of player A, which makes the game dynamic and guarantees that past and present

plays can be consistent in certain situations such that we can expect convergence

to one of the steady states of the system.

In this paper, we find that the dynamic game we study admits stable steady

states that might not be expected in the underlying static game. The relationship

between steady states of a dynamical system and the Nash equilibrium or other

equilibrium concepts was studied also by Samuelson (1988), Mukhopadhyay and

Chakraborty (2020), Juul et al. (2013) and Cheng and Yu (2018).
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Gong et al. (2018) are probably closest to our paper methodologically since

they study evolutionary dynamics of a dynamic game in general, for a particular

form of environmental feedback that captures how the game changes depending on

the population shares choosing different strategies. However, the class of dynamic

games that can be captured by our approach is broader and Gong et al. also put

more restrictions on the evolution rules of their game dynamics in order to obtain

general results for games within this class. The technique we propose in Section

2.4.2 can be seen as a novel solution concept for dynamic games. Existing solution

concepts for dynamic games are reviewed in Van Long (2010).

Since we mention the defense against terrorism as one possible application of

our framework, this paper is also related to Cardoso and Diniz (2009), which studies

this as well as protection against various other hazards from a game theoretical

perspective. In Section 2.6, we study how professional chess players’ opening choices

are consistent with our game theoretical predictions. In the context of serves in

tennis and penalty shoot-outs in soccer, a similar analysis is conducted in Walker

and Wooders (2001), Anderson et al. (2021) and Palacios-Huerta (2003). Last but

not least, evolutionary dynamics can also be interpreted as learning dynamics. An

extensive treatment of learning in games can be found in Fudenberg and Levine

(1998).

2.3 The Model

We consider a dynamic two-player game5 with infinitely many periods. In the stage

game, player A (she) can choose between the two options 1 and 2 or play a mix

between the two. Let sti denote the probability that player A plays option i in stage

t and write st = (st1, s
t
2). We assume each player’s payoff in stage t depends on a

state variable we call the experience vector αt = (αt1, α
t
2) of player A, where αti

denotes the relative experience player A has in playing option i at stage t, with

αti ≥ 0 and αt1 + αt2 = 1. A player’s payoff in the dynamic game is the sum of

5Note that this is different from a dynamic game with (in)complete information - a term
sometimes used for extensive-form games. Also, (in)finitely repeated games are dynamic games,
but not vice versa. The difference is that stage game payoffs in a dynamic game can depend both
on the players’ actions and on a state variable that changes over time. A description of dynamic
games can be found in Van Long (2010).
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discounted stage game payoffs. The experience in future periods changes depending

on today’s play in the following way:

αt+1 =
(
καt1 + (1− κ)st1, κα

t
2 + (1− κ)st2

)
, (2.1)

where κ is an exogenously given parameter that reflects the relevance of experience

to the specific stage game. We assume that κ is in [0, 1), since κ = 1 would imply

that there is no effect of recent plays on the experience vector and κ = 0 represents

the extreme case in which the play in the last instance of the game completely

determines the updated experience vector. This parameter κ is specific to the

game in question. For instance, experience in certain playing options may be more

important in the game of chess than in shooting a penalty in a soccer match.

Player B (he) can observe his opponent’s experience vector and his strategy

is given by a preparation vector pt = (pt1, p
t
2) with pt1 + pt2 = 1, indicating what

fraction of time pti is spent preparing for option i at stage t. The payoffs of the stage

game - omitting the time index t - are assumed to depend linearly on experience

and preparation time in the following way6:

uA(s1, p1) =
2∑
i=1

si

(
1

2
+
αi − pi

2

)
= s1

(
1

2
+
α1 − p1

2

)
+ (1− s1)

p1 + α2

2
(2.2)

for player A and uB(s1, p1) = 1− uA(s1, p1) for player B. In this way, each stage

game can naturally be interpreted as a zero-sum game (by subtracting 1
2

from each

entry in the payoff matrix). In the above version, the payoff corresponds to the

probability of winning the stage game. If player A chooses a pure strategy (si = 1

for i ∈ {1, 2}), this payoff increases with experience αi and decreases the more

preparation time pi player B spends on the chosen option. Note that the constant

term of 1
2

can be interpreted as the baseline probability of winning, reflecting the

assumption that the players are of equal skill level. In Section 2.5.1, we will consider

cases where the players’ skill levels may differ to some extent. The normal form of

the above game is shown in Table 2.1.

The following example illustrates the strategic tradeoff that player A faces.

6We denote payoffs depending on s1 and p1 only, since s2 = 1− s1 and p2 = 1− p1.
7We deviate from the usual notation of strategies denoted by s1, s2, . . . , since we are interested

in the change in the probability that a particular option is played. Therefore, we denote pure
strategies by the probabilities that the first option is played or prepared (e.g. s1 = 0 or s1 = 1)
instead of s1, s2 and p1, p2.
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Player B

p1 = 1 p1 = 0

Player A
s1 = 1 (α1

2
, 1− α1

2
) (1+α1

2
, 1−α1

2
)

s1 = 0 (1+α2

2
, 1−α2

2
) (α2

2
, 1− α2

2
)

Table 2.1: Stage Game7

Example 1. Consider a setting in which α = (0.8, 0.2) and both players use pure

strategies (surely playing one option and only preparing for one option, respectively).

We note that uA(0, 0) = 0.1, uA(0, 1) = 0.6, uA(1, 1) = 0.4 and uA(1, 0) = 0.9.

Hence, player A always prefers to meet player B unprepared over meeting him

prepared (e.g., uA(0, 1) > uA(1, 1)), but fixing her opponent’s level of preparation

for the chosen option, she always prefers to play option 1 over option 2. More

concretely, if for some reason player B can anticipate player A’s chosen option and

puts all of his preparation time into preparing for that option, then player A would

always prefer to play option 1 because she has significantly more experience in that

option. This captures the intuition that experience has some value for player A,

but the effect of surprising the opponent is also valuable.

At this point, let us discuss how to interpret this model and how it relates to

real-world interactions between professional players of a specific underlying game.

First, the two-player game in our model is not symmetric. In reality, both players

would have some prior experience and both players would prepare simultaneously

for the opponent. This means that, on the one hand, they decide which option

to choose based on their own experience. On the other hand, they also allocate

time shares to prepare for certain options based on their opponent’s experience.

The asymmetric game in our model allows us to disentangle these two strategic

considerations.

Second, the model should be interpreted as a reduced form of a very complex

game played in reality. This is also the reason why we use the term option instead

of action: One option can be interpreted as a particular way of playing the game,

which could subsume several different but similar actions or sequences of actions in

the real-world game. For example, in the design of an exam task, an option might

correspond to the choice of a particular topic and the student’s success in this task

will depend (in expectation) on how much preparation time was put into studying

that specific topic. Similarly, a chess player might choose a particular first move in

a chess game, after which the game quickly ramifies. However, both her experience

10



with and her opponent’s preparation time for positions related to that specific first

move are relevant in determining her probability of winning the game.

We conclude this section by discussing why it seems more appropriate to

model relative experience than absolute experience levels. First, the strategic

considerations of both players should be driven by the comparative experience

advantage player A has in one option over the other. The absolute number of

games played with each alternative is less relevant for these considerations. The

second reason is that equal skill among players cannot be modeled using absolute

experience but can be modeled with relative experience. The technical problem

with absolute experience levels is that experience can tend to infinity for an infinite

number of periods while player B’s preparation time is always a number in the

compact set [0, 1]. Note, however, that uneven skill between players can also be

modeled with relative experience, as we will show in Section 2.5.1.

2.4 Analysis

In this section, we will analyze the game presented in Section 2.3. To do so, we first

compute the Nash equilibria of one independent stage game for a given experience

vector α in Section 2.4.1. In Section 2.4.2, we introduce a novel approach that

allows us to study the dynamic game (where α adapts in the course of the game)

with standard evolutionary game theory tools. These tools as well as several central

definitions are reviewed in Appendix B.

2.4.1 The static one-shot game

Before considering player A’s experience evolution in the dynamic game, it is useful

to examine the static one-shot game, where the experience vector is exogenously

given.

Proposition 1. For a given experience vector α = (α1, α2) with α1 ∈ (0, 1), the

unique Nash equilibrium in mixed strategies of the stage game is given by s = (1
2
, 1

2
)

and p = α. For α1 ∈ {0, 1}, s = (1
2
, 1

2
) and p = α is still a Nash equilibrium and

there is an additional Nash equilibrium in pure strategies given by s = p = α.

Proof. See Appendix A.

This result gives two insights. First, when player A has experience in both

options, we see that uniform mixing between these two options is her unique Nash

11



equilibrium strategy. In this Nash equilibrium, player B will prepare according to

the experience vector by player A (p = α), preparing more for the option in which

A has more experience. Second, when player A is already perfectly specialized in

one option (α1 = 0 or α1 = 1), both s = (1
2
, 1

2
) and s = α are Nash equilibrium

strategies of player A. Hence, she might go for specialization or unpredictability in

this scenario. Let us assume for the moment that player A has experience in both

options already and consider the dynamic game where α is allowed to adjust based

on past play. In this game, unique Nash equilibrium behavior by both players at

every stage would lead to a balanced experience structure (α = (1
2
, 1

2
)) in the long

run, due to A’s uniform mixing. This seems to suggest that all players in society

should favor unpredictability over specialization unless they have been perfectly

specialized to start with (and even then, they might go for uniform mixing instead

of continuing to specialize in their favorite option). In the next subsection as well

as in Section 2.5, we will see that the opposite is true: Among the two equilibrium

behaviors specialization and unpredictability, specialization can be seen as more

evolutionarily stable than unpredictability.

2.4.2 An evolutionary approach

In this section, we study whether either of the two Nash equilibria identified in

Section 2.4.1 – specialization and unpredictability – is a more reasonable prediction

of aggregate behavior in a society. To do so, let us first recall a microfoundation of

Nash equilibrium given by Nash himself in his dissertation:

We shall now take up the “mass-action” interpretation of equilibrium

points. [...] It is unnecessary to assume that the participants have

full knowledge of the total structure of the game, or the ability and

inclination to go through any complex reasoning processes. But the

participants are supposed to accumulate empirical information on the

relative advantages of the various pure strategies at their disposal.

To be more detailed, we assume that there is a population (in the sense

of statistics) of participants for each position of the game. Let us also

assume that the ”average playing” of the game involves n participants

selected at random from the n populations, and that there is a stable

average frequency with which each pure strategy is employed by the

”average member” of the appropriate population. Nash (1950)
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This ”mass-action” interpretation can be modeled with population games. The

underlying idea is that a continuum of individuals plays a particular game infinitely

often and individuals revise their strategies based on their success in the game.

Hence, it is explicitely modeled how and why a population reaches a particular

equilibrium point. In this sense, one Nash equilibrium may have better properties in

terms of dynamic stability than another. This is precisely what we will investigate

in this section. To this end, we use evolutionary game theory and assess the dynamic

stability of specialization and unpredictability using replicator dynamics. It should

be noted that already von Neumann and Morgenstern (1944, 44) stated ”most

emphatically that [their] theory is thoroughly static. A dynamic theory would

unquestionably be more complete and therefore preferable.” The evolutionary

framework also seems well grounded practically in the examples given in Section

2.1: These professionals typically play the same game very often over the course of

their careers and it is natural to assume that over time, through trial and error,

they get a good feel for which strategies work and which do not.

A potential limitation of the evolutionary approach is that players are not

forward-looking. Concretely, this means that they do not consider the impact of

their decisions on future experience vectors. However, it is questionable whether

forward-looking behavior is strategically desirable in our model. This is because it

is not clear why player A should prefer a specific experience vector over another in

a future stage game. The opposing player B can always keep player A indifferent

between her two options by choosing preparation shares equal to A’s experience

vector α. Moreover, forward-looking behavior implies that player A values some

later stage games more than earlier ones and modeling this fact would make the

model less tractable. All in all, the evolutionary approach appears suitable to study

the dynamic stability of the two Nash equilibria specialization and unpredictability.

Note that the two-player game we study is dynamic as the stage game changes

in every instance (due to the adaptation of player A’s experience). The standard

tools of evolutionary game theory assume a static stage game matrix and thus

cannot capture our experience dynamics. This is why we introduce a novel approach,

which we call statification, that allows us to transform our dynamic game into a

repeated game with a static stage game and analyze it using the standard tools of

evolutionary game theory. Specifically, we will use the eigenvalue technique to assess

the (dynamic) stability of certain population states. The idea of our transformation

is simple: We introduce a virtual third player whose strategies reflect the experience

13



vector of player A and who thus determines the dynamics of the game with his

strategy choice. In this way, the dynamic two-player game is transformed to an

infinitely repeated three-player game. More concretely, virtual player C has two

options 1 and 2 available to him and his choice determines the payoff matrix for

players A and B:

• If player C chooses option 1, the payoff-matrix is

Player B

p1 = 1 p1 = 0

Player A
s1 = 1 (1

2
, 1

2
) (1, 0)

s1 = 0 (1
2
, 1

2
) (0, 1)

• If player C chooses option 2, this yields the payoff-matrix

Player B

p1 = 1 p1 = 0

Player A
s1 = 1 (0, 1) (1

2
, 1

2
)

s1 = 0 (1, 0) (1
2
, 1

2
)

If we now assume that player C chooses option 1 with probability α1 and option

2 with probability α2 = 1 − α1, then the expected payoffs of players A and B

conditional on their chosen strategies are given by the matrix in Table 2.1. Player

C, on the other hand, does not receive a payoff himself, but rather adjusts his

behavior according to the strategy chosen by player A. Concretely, we assume a

continuous version of (2.1) in the sense that the time derivative of α1 is given by

α̇1 = (s1 − α1)(1− κ). This describes the evolution of virtual player C’s strategy.

Note that these deterministic dynamics still imply that player A influences her

future experience vectors through her behavior. However, this influence is now

endogenized through virtual player C and therefore the stage game that is played

by players A, B and C is the same in every period. Using this, we can study a

dynamical system in continuous time t, which is more convenient than discrete

time as the stability properties of certain states can be derived from the differential

equations defining this system. We denote a state in this system at time t by
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xt = (αt1, s
t
1, p

t
1) ∈ [0, 1]3. The dynamical system is ẋ = V (x), where V : R3 → R3 is

given by8

V1(x) = α̇1 = (s1 − α1)(1− κ) (2.3)

V2(x) = ṡ1 = s1(1− s1)(α1 − p1) (2.4)

V3(x) = ṗ1 = p1(1− p1)(s1 −
1

2
). (2.5)

In the above system, equations (2.4) and (2.5) represent the replicator dynamics

of s1 and p1, the calculation of which can be found in Appendix A. Equation

(2.3) describes the dynamics of the experience vector in our model. However, since

these are different from the replicator dynamics and the associated growth-rate

function is not Lipschitz continuous, we cannot apply Theorem 4 or Proposition 2

from Appendix B. Nevertheless, it is useful to keep them in mind as benchmark

results. The following results identify the steady states of the system and assess

their stability properties.

Lemma 1. The steady states of the dynamical system are (0, 0, 0), (0, 0, 1),

(1
2
, 1

2
, 1

2
), (1, 1, 0) and (1, 1, 1).

Proof. The steady states of the dynamical system are exactly the values of x for

which V (x) = 0 holds. Since κ < 1, we see that s1 and α1 will always be equal

in a steady state and solving V2(x) = 0 and V3(x) = 0 yields the five points

mentioned.

Theorem 1. The points (1, 1, 1) and (0, 0, 0) are asymptotically stable steady states

of the system. The point (1
2
, 1

2
, 1

2
) is an asymptotically stable steady state for κ > 3

4

and a saddle point for κ < 3
4
. The other steady states (0, 0, 1) and (1, 1, 0) are

saddle points.

Proof. See Appendix A.

Interestingly, we find that the point (1
2
, 1

2
, 1

2
) is not always asymptotically stable.

In particular, it is only a saddle point when the role of experience κ is too small.

The reason for this is the following: When κ is small, it is easier to build up a

good experience level in an option quickly by playing it once or a few consecutive

times. This way, player A has no interest in playing both options with equal share

8For simplicity, we omit the time index t from now on. After all, we are not interested in
specific time periods, but in the change in overall strategies and experience over time.
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again after playing one option several times in a row. For instance, suppose that

κ = 0.6 and the population is in state (1
2
, 1

2
, 1

2
). Now, if player A plays option 1

in three consecutive (discrete) instances of the game, this already results in an

experience vector of α = (0.892, 0.108). In this way, player A has a high incentive

to continue playing option 1, since her experience in this option is significantly

higher than her experience in the alternative option 2. However, if κ is higher,

player A is more bound by her experience structure, since focusing on one option

for a few consecutive rounds does not change the experience vector very much. For

example, suppose that κ = 0.95 and the population is back in state (1
2
, 1

2
, 1

2
). In

this case, playing option 1 three times in a row leads to an experience vector of

α ≈ (0.571, 0.429) for player A. The experience difference between the two options

is much smaller than before. This explains intuitively why players do not have

much incentive to move away from the point (1
2
, 1

2
, 1

2
) when κ is high. Note that

being a predictable specialist (only playing one option in every instance of the

game) is always asymptotically stable, regardless of the value of κ. This might seem

counter-intuitive at first glance, since in practice people are sometimes criticized for

using the same game strategy over and over again. Moreover, we saw in Proposition

1 that s = (1
2
, 1

2
) is the unique Nash equilibrium strategy for player A even for

values of α1 close to 1. One way to interpret the finding in Theorem 1 is that

evolution will favor specialization and expertise over unpredictability in these kinds

of repeated games where experience and the opponent’s preparation time influence

the player’s probability of success.

2.4.3 The statification technique

We end this section with some remarks on the statification technique and what

types of dynamic games can be transformed with it. To simplify the exposition, we

assume a population game with two populations, where each population can choose

from two different actions. Extending this to more populations or more actions is

straightforward. Such a game is generally given by two payoff matrices UA = (aij)

and UB = (bij), which capture the payoffs of population 1 and population 2,

respectively. From these two matrices, we can construct a matrix C = (cij) whose

entries cij = (aij, bij) are tuples consisting of the payoffs of the two populations.
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Now, if we let a virtual player choose between two such matrices C1 and C2, the

resulting set of possible payoff matrices is given by

{αC1 + (1− α)C2 = C2 + α(C1 − C2)|α ∈ [0, 1]}.

This class of two-population games is exactly the class that Gong et al. (2018) can

capture with their environmental feedback framework. This means that the class of

dynamic games that can be transformed into static games using the statification

technique is broader, since we could allow the virtual player to choose from multiple

options or construct more evolved types of dynamics by introducing multiple virtual

players (in this case, the payoff matrices would depend on the combination of virtual

players’ choices and all polynomial dependencies would be possible). Moreover,

the evolution rules for the parameters determining the dynamics can be given

by any differentiable function and need not be replicator dynamics (which is the

assumption in Gong et al. (2018)).

2.5 Extensions

In this section, we consider two natural ways of extending our model from Section

2.3. First, in Section 2.5.1, we relax the assumption that both players have the

same playing strength. Then, in Section 2.5.2, we consider a model in which the

number of options both players can choose or prepare for is increased from two to

three.

2.5.1 Uneven Skill Distributions

A natural way to extend the analysis of Section 2.4 is to admit different baseline

probabilities of winning reflecting potential skill differences between the two players.

The baseline probability of winning denotes a player’s winning probability when

player B’s preparation vector equals player A’s experience vector. The assumption

in Section 2.3 was that it is 1
2

for both players. In order to analyse uneven skill

distributions, we denote the players’ skill levels by qA and qB. We define the baseline

probability of player i winning as qi
qA+qB

. This probability is then converted to the

actual probability of winning the game by taking into account the experience as

well as the choice of player A and the preparation vector of player B in exactly the

same way as in (2.2). The only thing to note here is that the resulting numbers
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may be less than 0 or greater than 1 in case the skill difference is substantial and

the stronger player anticipated the weaker player’s action. In this case, we will

correct the numbers to 0 or 1, respectively, in order to be able to interpret the

payoff as the winning probability of the game.9

Before proceeding, a comment on the difference between a player’s skill level

and her experience vector is in order. On the one hand, the skill level is meant to

measure the player’s general ability to play the game in question. Her experience

vector, on the other hand, provides information about how often she has played

various options in the past. Imagine a highly skilled player has an experience level

of only 0.1 in some option and chooses that option against a less skilled player. If

the skill difference is large enough, this can still result in the more skilled player

defeating the less skilled player, especially if this option has not been prepared much

by the weaker player. Thus, the experience vector measures the extent to which

a player with a given skill level plays one option relatively better than another

option. The skill level, however, measures overall playing strength compared to

other players.

Without loss of generality, we will normalize the skill level of the stronger player

to 1 such that the skill level of the weaker player is a number qi ∈ [0, 1). Specifically,

we can write down the payoff matrices of the stage game for a given experience

vector α in both cases where either player A or player B is the stronger player:

i) Player A is the stronger player. In this case, let qA = 1 and qB ∈ [0, 1) be the

skill level of player B. For a given experience vector α, the game matrix is

given in Table 2.2.

p1 = 1 p1 = 0

s1 = 1 ( 1
1+qB

− 1
2

+ α1

2
, qB

1+qB
+ 1

2
− α1

2
) (min{1, 1

1+qB
+ α1

2
},max{0, qB

1+qB
− α1

2
})

s1 = 0 (min{1, 1
1+qB

+ 1−α1

2
},max{0, qB

1+qB
− 1−α1

2
}) ( 1

1+qB
− α1

2
, qB

1+qB
+ α1

2
)

Table 2.2: Player A is the stronger player

ii) Player B is the stronger player. In this case, let qB = 1 and qA ∈ [0, 1) be

the skill level of player A. For a given experience vector α, the game matrix

is given in Table 2.3.

9Of course, winning probabilities of exactly 0 or 1 are not realistic. On the other hand, they
should be reasonably close to these numbers when a more skilled player meets a significantly less
skilled player who is unprepared for the chosen option.
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p1 = 1 p1 = 0

s1 = 1 (max{0, qA
1+qA

+ α1−1
2
},min{1, 1

1+qA
+ 1−α1

2
}) ( qA

1+qA
+ α1

2
, 1

1+qA
− α1

2
)

s1 = 0 ( qA
1+qA

+ 1−α1

2
, 1

1+qA
+ α1−1

2
) (max{0, qA

1+qA
− α1

2
},min{1, 1

1+qA
+ α1

2
})

Table 2.3: Player B is the stronger player

After determining the values of the maxima and minima as a function of certain

parameter regions, it is possible to extend the stability analysis from Section 2.4

to this case of uneven skill distributions. It turns out that the results from Section

2.4 are largely robust to this change:

Theorem 2. In the case of uneven skill distributions (qA 6= qB), let us assume

that the skill level of the stronger player is normalized to 1 and the skill level of the

weaker player i is given by qi ∈ [0, 1). The stability properties of the steady states

of the dynamical system are as follows:

• The points (0, 0, 0) and (1, 1, 1) are always asymptotically stable.

• The points (0, 0, 1) and (1, 1, 0) are always saddle points when player B is

the stronger player. When player A is the stronger player, they are saddle

points for κ >
1−qB−4q2

B

1−q2
B

and they are asymptotically stable for κ <
1−qB−4q2

B

1−q2
B

.

• The stability of the point (1
2
, 1

2
, 1

2
) depends on the skill difference between the

players: If qi >
1
3
, it is asymptotically stable for κ > 3

4
and a saddle point for

κ < 3
4
. If qi <

1
3
, it is asymptotically stable for κ >

21q2
i+58qi+21

8(7qi+3)(qi+1)
and a saddle

point for κ <
21q2

i+58qi+21

8(7qi+3)(qi+1)
.

Proof. See Appendix A.

Comparing these results with Theorem 1, two interesting findings emerge.

First, we see that the condition for (1
2
, 1

2
, 1

2
) to be stable is strengthened when the

skill difference between players increases. This seems intuitive: If player A is a

lot stronger than player B, she might not care much about building up a high

experience level in the option she plays, as long as playing that option (more often)

comes as a surprise to player B. By surprising player B, we simply mean that

player A tries to mismatch the preparation vector of player B. She could do so

by playing an option that she has less experience in as player B might be less

prepared for that option. In this case, she can rely on the large skill difference to

outplay her opponent. This justifies that the point (1
2
, 1

2
, 1

2
) may not be stable even

for higher values of κ if the skill difference is sufficiently large.
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Figure 2.1: Plots of the critical threshold values for κ

The second result, which seems surprising at first glance, is that the points

(0, 0, 1) and (1, 1, 0) can actually be stable when player A is the stronger player. To

understand this finding, suppose that the population is close to the state (0, 0, 1)

at (ε, ε, 1− ε̃), with ε, ε̃ positive but close to zero. This means that player A plays

option 2 almost exclusively, which is also captured by her experience vector. Player

B, on the other hand, prepares almost exclusively for option 1. The fact that the

point (0, 0, 1) is asymptotically stable means that for some small values of ε and ε̃,

the state will move even closer to (0, 0, 1) starting from (ε, ε, 1− ε̃). The intuition

for this is the following: Player B finds that he is significantly weaker than player

A, perhaps even to the extent that he would certainly lose the game even if he

prepared a bit more for option 2 and that option was eventually played. However,

he also observes that player A might play option 1 in a tiny fraction of the cases

and that she has little experience with this option. This means that preparing

almost exclusively for this option can make up for the large skill difference and give

player B a relatively high probability of winning the game in this particular case.

The prospect of this event occuring motivates player B to increase his preparation

share for option 1. Similarly, player A realizes that she is almost surely winning

if she chooses option 2, which motivates her to play that option even more. This

causes the population to move toward the state (0, 0, 1) when κ is low relative to

the skill difference between the players. The plots of the exact critical values for κ

are shown in Figure 2.1.
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2.5.2 Three different options

In this section, we study the effect of adding a third option to the choice set of

players A and B. As a consequence, the experience vector of player A takes the

form α = (α1, α2, 1 − α1 − α2), with αi ≥ 0 for i = 1, 2 and α1 + α2 ≤ 1. A

population state in this system is given by a vector x = (α1, α2, s1, s2, p1, p2) ∈ R6,

since the shares of choosing option 3 or preparing for option 3 can be given by

s3 = 1− s1 − s2 and p3 = 1− p1 − p2, respectively. The game matrix for a stage

game with given experience vector α is shown in Table 2.4.

Player B

p1 = 1 p2 = 1 1− p1 − p2 = 1

Player A
s1 = 1 (α1

2
, 1− α1

2
) (1+α1

2
, 1−α1

2
) (1+α1

2
, 1−α1

2
)

s2 = 1 (1+α2

2
, 1−α2

2
) (α2

2
, 1− α2

2
) (1+α2

2
, 1−α2

2
)

1− s1 − s2 = 1 (2−α1−α2

2
, α1+α2

2
) (2−α1−α2

2
, α1+α2

2
) (1−α1−α2

2
, 1+α1+α2

2
)

Table 2.4: Stage Game with 3 options

In the following, we will use this game matrix and the associated selection

dynamics to derive the steady states of the dynamical system with three options

as well as their stability properties.

Lemma 2. The steady states of the dynamical system with three options can

be classified into five different categories i) through v). Within each category, an

exemplary steady state or set of steady states is given, and the remaining steady

states within that category differ only by relabeling the different options.

i) Uniform mixing between all options: (1
3
, 1

3
, 1

3
, 1

3
, 1

3
, 1

3
)

ii) Uniform mixing between two options with completely inconsistent10 prepara-

tion, e.g. (1
2
, 1

2
, 1

2
, 1

2
, 0, 0)

iii) Uniform mixing between two options with consistent preparation, e.g. (1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
)

iv) Perfect specialization with completely inconsistent preparation, e.g. (1, 0, 1, 0, 0, p2),

p2 ∈ [0, 1]

v) Perfect specialization with consistent preparation, e.g. (1, 0, 1, 0, 1, 0)

Proof. See Appendix A.

10By completely inconsistent preparation, we mean that player B prepares exclusively for
options in which player A has zero experience. Consistent preparation refers to the case p = α.
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Theorem 3. Among the steady states presented in Lemma 2, only the ones as-

sociated to perfect specialization with consistent preparation (Category v)) are

asymptotically stable steady states. The steady states in categories i) through iv)

are all saddle points.

Proof. See Appendix A.

This result might seem surprising, especially when compared to Theorem 1.

Even though uniform mixing between two options with consistent preparation

by player B was an asymptotically stable steady state for high values of κ when

there were only two alternatives, this state is reduced to a saddle point once the

possibility of choosing a third alternative occurs. Uniform mixing between all three

different alternatives (with consistent preparation) is not stable for any value of

κ, either. The reason for this is the following: In a state close to uniform mixing

between all three options, Player A has an incentive to play the least expected

option a few times in a row to exploit the newly created gap between built-up

experience in that option and the preparation time player B has spent on that

option (based on his low expectations). Since player B will quickly adjust his

expectations, player A could subsequently switch to another option using the same

logic as before. This happens either continuously or until the experience in one

option is so high that the state converges to perfect specialization (which is the

only asymptotically stable state here). Simulations show that the system converges

to one of the corner states corresponding to perfect specialization, even when the

initial state is close to uniform mixing. An example of this can be seen in Figure

2.2.

The intuition for the instability of uniform mixing between two out of three

options is similar: The presence of the third option, which player B does not

expect, allows player A to increase her use of that option to her advantage for a

few successive instances of the game. This leads to her playing profile approaching

a mixture of all three options, or even a specialization in the third option.

A final point to notice is that perfect specialization in one option (with consistent

preparation) continues to be an asymptotically stable state. This seems intuitive:

Even with two options, none of the players wanted to shift attention from the

frequently played or prepared option to the rarer one. Adding a third, rarely used

option does not change this decision, since the incentives to choose this new option

are the same as for the rare option that was already available before.
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Figure 2.2: Simulation with κ = 0.95 and initial values s1 = p1 = α1 = 0.35,
s2 = p2 = α2 = 0.31

2.6 Comparison to Empirical Data: Opening Choices

of Professional Chess Players

In this section, we provide empirical evidence to support our theoretical results.

To this end, we consider the opening choices of world-class professional chess

players. The game of chess is well suited for these kinds of considerations as players’

preparations can be explicitly observed in the game. Before a game, players usually

prepare for a long time by checking their opponent’s games and considering their

own opening moves. If a chess player plays a certain move in the opening, you can

be reasonably sure that this was already intended before the game (this typically

holds for at least the first 5 to 10 or even 15 moves). Since all the moves are written

down and games are stored in large databases, it is easy to study the top players’

opening repertoires and determine how often they choose which opening variation.

In the following, we focus on the eight players who participated in the 2020

Candidates Tournament (which ended in 2021 due to the pandemic). The Candi-
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Figure 2.3: Lorenz curve of top chess players’ opening repertoires with Black after
1. e2-e4

dates Tournament is the second most important individual tournament in chess

because its winner becomes the challenger to the reigning World Champion. For

this reason, the players who qualify for this tournament are usually among the

best in the world (excluding the World Champion himself). We look at the games

played by these eight players in the two years leading up to this tournament (i.e.,

2018 and 2019). In those games, we examine their replies with the black pieces to

the most common move 1. e2-e411. The reason for doing this is the following: After

1. e2-e4, the opening system is in most cases pinned down by Black’s reply on the

first move and transitions to other openings are unlikely to occur later in the game.

This is not the case with the other three main opening moves 1. d2-d4, 1. c2-c4

and 1. Ng1-f3, and there are many possible transitions where different initial moves

eventually lead to the same position later on. This makes it difficult to analyze

whether a player has played a different opening or only chosen a different path to

reach the same opening and use his knowledge as well as his home preparation

11This means that White starts by moving the pawn in front of the king two squares forward.
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for this opening. The games included in the analysis were all played with classical

time control (one game usually lasts between four and six hours and players play

only one such game per day). Games with shorter time controls were excluded

from the data set because the preparation times for these formats are much shorter

and sometimes even non-existent (as many games against different opponents are

played in one day with only short breaks in between). The total number of games

remaining for each of these players over this two-year period ranges from 19 to 47

games. The exact procedure of data collection is described in Appendix C.

To get a first idea of whether players prefer to be an expert in one opening

line by always sticking to it, or whether they prefer to mix between different

openings to keep their opponents guessing, we use the Lorenz curve measuring the

concentration of openings in their repertoire. If a player uses n different openings

against 1. e2-e4, the curve plots the points (i/n, s(i)), for i ∈ {0, . . . , n}, where

s(i) is the share of games in the least used i openings of that player. Thus, if a

player were to mix uniformly between several openings, the Lorenz curve would be

equal to the 45-degree line. The more concentrated his repertoire is, the closer the

curve is to the x-axis. The Lorenz curves for our sample of eight players and their

games is depicted in Figure 2.3. Only one of these eight players played one reply

exclusively. For this player, the point (99/100, 0) was added to the Lorenz curve

because otherwise it would give the impression that he mixed uniformly.12

Player χ2 statistic df
Kirill Alekseenko (15.31)∗∗∗ 2
Fabiano Caruana (30.01)∗∗∗ 2

Anish Giri (14.73)∗∗ 3
Alexander Grischuk (8.91)∗∗ 1

Wang Hao (22.49)∗∗∗ 3
Ding Liren (28.49)∗∗∗ 1

Ian Nepomniachtchi (24.14)∗∗∗ 3
Maxime Vachier-Lagrave - -
** significant at the 1% level
*** significant at the 0.1% level

Table 2.5: Test for discrete uniform distribu-
tion of the black repertoires

12Of course, mixing uniformly and playing the same option exclusively are the same thing
when there is only one option to choose from. However, we want to emphasize that this repertoire
choice is highly concentrated, which is not visible in the graph without the added point.
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We see that no one among these 8 players mixes uniformly. They tend to have

one main weapon that they like to use, and beyond that they may have one or two

secondary weapons that they use from time to time to surprise their opponents. To

test whether this finding is significant, we perform a χ2 test with the null hypothesis

that each player mixes uniformly between all the openings he played in his games

and that the openings chosen in each game are statistically independent. That is,

we assume that the opening choices follow a discrete uniform distribution on all

openings chosen with positive share in the games.13 The findings are summarized

in Table 2.5. We see that all the players’ opening repertoires differ significantly

from uniform mixing while one player uses the same opening in every single game

(Maxime Vachier-Lagrave, therefore no χ2 test was performed for him). Although

further tests could be conducted to study the difference in preparation against

equally strong or significantly weaker opponents, these results seem to indicate that

the goal of strong players is to be an expert in mainly one style of play. In other

words, professional chess players tend to favor specialization over unpredictability.

This is in line with the observation from Section 2.4 that states (0, 0, 0) and (1, 1, 1)

are always asymptotically stable.

2.7 Conclusion

In this paper, we used tools known from evolutionary game theory to study the

question of how to prepare for a game and how diverse one’s repertoire of plays in

such a game should be. We find that having a narrow repertoire and taking the

same action exclusively whenever you play the game is always stable, even though

this goes along with being predictable. Uniform mixing is player A’s equilibrium

behavior in the unique interior Nash equilibrium in an associated static game.

However, this behavior is not always dynamically stable. Looking at empirical data

of professional chess players’ opening choices seems to suggest that they do not

believe in uniform mixing being an optimal strategy, either.

The inclusion of a virtual player to model a dynamic two-player game as

a repeated three-player game with static stage game was immensely helpful as

concepts known from evolutionary game theory could easily be applied. This might

be a fruitful new technique to analyze dynamic games in economics and other

13Note that we could also assume that each player mixes between all the options chosen by
the whole set of players. In this case, the results would be even more significant.
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fields in cases where adaptive learning mechanisms are used to determine stable

outcomes in a society.
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Appendix

A Proofs

Proof of Proposition 1. The following table shows the payoffs of the stage game

when both players only choose pure strategies.

Player B

p1 = 1 p1 = 0

Player A
s1 = 1

(
α1

2
, 1− α1

2

) (
1+α1

2
, 1−α1

2

)
s1 = 0

(
1+α2

2
, 1−α2

2

) (
α2

2
, 1− α2

2

)
For α1 ∈ (0, 1), no Nash equilibria in pure strategies exist since player A’s

unique best response to p1 = i is s1 = 1− i and player B’s unique best response

to s1 = j is p1 = j, for i, j ∈ {0, 1}. For α1 ∈ {0, 1}, the unique Nash equilibrium

in pure strategies is given by p = s = α. To find a mixed strategy equilibrium

for any α ∈ [0, 1], we first determine a strategy p of player B that makes player

A indifferent between her two pure strategies s1 = 1 and s1 = 0. Likewise, we

determine the strategy s of player A that makes player B indifferent between his

two pure strategies.

uA(1, p1)
!

= uA(0, p1)⇔1

2
+
α1 − p1

2
=

1

2
+
α2 − p2

2

⇔α1 − p1 = α2 − p2 ⇔ α1 = p1

uB(s1, 1)
!

= uB(s1, 0)⇔1

2
+

1

2
(α1 − 1 + 2s1(1− α1)) =

1

2
+

1

2
(1− 2s1)α1

⇔2s1 − 1 = 0⇔ s1 =
1

2

As s2 = 1− s1 and α2 = 1− α1, this yields s = (1
2
, 1

2
) and p = α. This completes

the proof.

Derivation of formulas (2.4) and (2.5) - Computation of the replicator dynamics.
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Using the payoffs given in Table 2.1, we compute the replicator dynamics for s1

and p1:

ṡ1 =s1(uA(1, p1)− uA(s1, p1)) = s1

(
p1
α1

2
+ (1− p1)

1 + α1

2

− s1p1
α1

2
− s1(1− p1)

1 + α1

2
− (1− s1)p1

1 + α2

2
− (1− s1)(1− p1)

α2

2

)
=s1(1− s1)

(
p1
α1

2
+ (1− p1)

1 + α1

2
− p1(1− α1

2
)− (1− p1)

1− α1

2

)
=s1(1− s1) (−p1 + α1) = s1(1− s1) (α1 − p1)

ṗ1 =p1(uB(s1, 1)− uB(s1, p1)) = p1

(
s1(1− α1

2
) + (1− s1)

1− α2

2
− p1s1(1− α1

2
)

− p1(1− s1)
1− α2

2
− (1− p1)s1

1− α1

2
− (1− p1)(1− s1)(1− α2

2
)

)
=p1(1− p1)

(
s1(1− α1

2
) + (1− s1)

α1

2
− s1

1− α1

2
− (1− s1)

1 + α1

2

)
=p1(1− p1)(s1 −

1

2
)

Proof of Theorem 1. We are using the eigenvalue technique as explained in Fried-

man and Sinervo (2016). To assess the stability of a steady state x∗, we mul-

tiply the projection matrix P0 = 1
3


2 −1 −1

−1 2 −1

−1 −1 2

 by the Jacobian matrix

J(x∗) = ((∂Vi(x)
∂xj

))
∣∣
x=x∗

. The resulting matrix has at least one eigenvalue of zero

and the remaining two eigenvalues are ordered by their real parts. The state x∗

will then be

• (locally) asymptotically stable if the largest real part is negative,

• completely unstable if the smallest real part is positive

• a saddle point if one real part is negative and one is positive. If the largest

real part is also zero, the stability of that state can not be assessed with this

method.
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The Jacobian matrix of a general state x = (α1, s1, p1) is given by

J(x) =


κ− 1 1− κ 0

s1(1− s1) α1 − p1 − 2s1(α1 − p1) −s1(1− s1)

0 p1(1− p1) (s1 − 1
2
)(1− 2p1)

 .

Plugging in, we compute that J((0, 0, 0)) = J((1, 1, 1)) =


κ− 1 1− κ 0

0 0 0

0 0 −1
2

 .

Consequently, we get that P0J((0, 0, 0)) = P0J((1, 1, 1)) =


2κ−2

3
−2κ+2

3
1
6

−κ+1
3

κ−1
3

1
6

−κ+1
3

κ−1
3

−1
3

 .

The eigenvalues of this matrix are given by λ1 = 0, λ2 = −1
3

and

λ3 = κ − 1 < 0 (as κ is assumed to be smaller than 1). Hence, the two non-

zero eigenvalues have a negative real part, which makes the states (0, 0, 0) and

(1, 1, 1) asymptotically stable steady states. For the two states (0, 0, 1) and (1, 1, 0),

we get J((0, 0, 1)) = J((1, 1, 0)) =


κ− 1 1− κ 0

0 −1 0

0 0 1
2

 and P0J((0, 0, 1)) =

P0J((1, 1, 0)) =


2κ−2

3
−2κ+3

3
−1
6

−κ+1
3

κ−3
3

−1
6

−κ+1
3

κ
3

1
3

 . Since we are only interested in the signs

of the real parts of the eigenvalues of this matrix, we can multiply it by 6 to get

rid of the fractions and compute the eigenvalues of the resulting matrix. In other

words, we solve the characteristic equation associated to that matrix:

∣∣∣∣∣∣∣∣


4κ− 4− λ −4κ+ 6 −1

−2κ+ 2 2κ− 6− λ −1

−2κ+ 2 2κ 2− λ


∣∣∣∣∣∣∣∣

!
= 0

⇔(4κ− 4− λ) [(2κ− 6− λ)(2− λ) + 2κ] + (4κ− 6) [(−2κ+ 2)(2− λ)− 2κ+ 2]

− [(−2κ+ 2)2κ− (−2κ+ 2)(2κ− 6)] = 0

⇔− λ3 − 8λ2 + 2κλ2 + 8λ− 2λκ = 0

⇒λ = 0 ∨ λ2 + 8λ− 2κλ− 8 + 2κ = 0

⇒λ = 0 ∨ λ = κ− 4±
√

(4− κ)2 + 8− 2κ
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Now, since κ ∈ [0, 1), the square root is larger than 4−κ which gives us exactly one

positive and one negative (real) eigenvalue. Hence, the points (0,0,1) and (1,1,0)

are saddle points of the dynamical system. Lastly, we want to assess the stability

properties of the point (1
2
, 1

2
, 1

2
). For this, we note that

J((1
2
, 1

2
, 1

2
)) =


κ− 1 1− κ 0

1
4

0 −1
4

0 1
4

0

 and P0J((1
2
, 1

2
, 1

2
)) =


8κ−9

12
−8κ+7

12
1
12

−2κ+3
6

4κ−5
12

−1
6

−4κ+3
12

2κ−1
6

1
12

.

Again, we can multiply this matrix by 12 and determine the eigenvalues of the

resulting matrix:∣∣∣∣∣∣∣∣


8κ− 9− λ −8κ+ 7 1

−4κ+ 6 4κ− 5− λ −2

−4κ+ 3 4κ− 2 1− λ


∣∣∣∣∣∣∣∣

!
= 0

⇔(8κ− 9− λ) [(4κ− 5− λ)(1− λ) + 8κ− 4] + (8κ− 7) [(−4κ+ 6)(1− λ)− 8κ+ 6]

+ [(−4κ+ 6)(4κ− 2)− (−4κ+ 3)(4κ− 5− λ)] = 0

⇔− λ3 + λ2(12κ− 13) + λ(18− 24κ) = 0

⇔λ = 0 ∨ −λ2 + λ(12κ− 13) + 18− 24κ = 0︸ ︷︷ ︸
(I)

(I)⇔λ2 + λ(13− 12κ) + 24κ− 18 = 0

⇒λ = 6κ− 6.5±
√

36κ2 − 102κ+ 60.25

This implies that for 36κ2 − 102κ+ 60.25 < 0, the two non-zero eigenvalues are

complex conjugates with real part 6κ− 6.5 < 0. So in this case, the state will be

asymptotically stable. In the other case, the state might be a saddle point if the real

parts of the eigenvalues have different signs. The equation 36κ2−102κ+60.25 = 0 is

satisfied for κ = 51
36
±
√

1
3
. Since the term is negative for κ = 1, it is negative for all

κ ∈
(

51

36
−
√

1

3︸ ︷︷ ︸
≈0.84

, 1

)
. For κ ≤ 51

36
−
√

1
3
, the two non-zero eigenvalues are real and one

is negative for sure. So it remains to check when 6κ−6.5+
√

36κ2 − 102κ+ 60.25 < 0

holds (in which case the state will be asymptotically stable as well).
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6κ− 6.5 +
√

36κ2 − 102κ+ 60.25 = 0

⇔36κ2 − 78κ+ 42.25 = 36κ2 − 102κ+ 60.25

⇔24κ = 18⇔ κ =
3

4

This shows that for κ > 3
4
, both non-zero eigenvalues are negative (or have negative

real parts) and the state (1
2
, 1

2
, 1

2
) is asymptotically stable. For κ < 3

4
on the other

hand, the two eigenvalues have different signs and the state (1
2
, 1

2
, 1

2
) is a saddle

point.

Proof of Theorem 2. As in the proof of Theorem 1, our goal is to find the stationary

points of the dynamical system and assess their stability properties afterwards. For

this, it first makes sense to think about when the maxima and minima will attain

which values depending on the relation of α and q. In the case of player A being

the stronger player, we observe that

min{1, 1

1 + qB
+
α1

2
} = 1⇔ max{0, qB

1 + qB
− α1

2
} = 0

⇔α1 ≥
2qB

1 + qB
=: q̃, as well as

min{1, 1

1 + qB
+

1− α1

2
} = 1⇔ max{0, qB

1 + qB
− 1− α1

2
} = 0

⇔α1 ≤ 1− q̃.

Similarly, in the case of player B being the stronger player, we get the relations

max{0, qA
1 + qA

− α1

2
} = 0⇔ min{1, 1

1 + qA
+
α1

2
} = 1

⇔α1 ≥
2qA

1 + qA
=: q̂ and

max{0, qA
1 + qA

+
α1 − 1

2
} = 0⇔ min{1, 1

1 + qA
+

1− α1

2
} = 1

⇔α1 ≤ 1− q̂.

Furthermore, it is important to note that q̃ = 1− q̃ ⇔ qB = 1
3
, hence q̃ < 1− q̃ for

qB <
1
3

and 1− q̃ < q̃ for qB >
1
3
. Likewise, q̂ < 1− q̂ for qA <

1
3

and 1− q̂ < q̂ for

qA >
1
3
. All in all, we will in the following distinguish between the two subcases

1. Player A is the stronger player and 2. Player B is the stronger player. Within
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these cases, we will make further distinctions based on qi and the relation of α1 to

q̂ and q̃. Before we start with this, we observe that for a general payoff matrix of

the form

Player B

p1 = 1 p2 = 1

Player A
s1 = 1 (a11, b11) (a12, b12)

s2 = 1 (a21, b21) (a22, b22)

the replicator equation for s1 reduces to

ṡ1 =s1 (uA(1, p1)− uA(s1, p1))

=s1 (p1a11 + (1− p1)a12 − (s1p1a11 + s1(1− p1)a12 + (1− s1)p1a21 + (1− s1)(1− p1)a22)

=s1(1− s1) (p1a11 + (1− p1)a12 − p1a21 − (1− p1)a22) .

Likewise, we get ṗ1 = p1(1−p1) (s1b11 + (1− s1)b21 − s1b12 − (1− s1)b22) . Con-

sidering these formulas and recalling that α̇1 = (s1 − α1)(1− κ), we see that the

points (0, 0, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 1) will be stationary points of the dynam-

ical system in all cases. In the following case distinction, we will thus be interested

in finding additional interior stationary points (satisfying the necessary condition

s1 = α1). Subsequently, we will study the stability properties of the stationary

points we found.

Case 1. i): Player A is stronger, qB <
1
3
, α1 ∈ [0, q̃)

In this case, the normal form game for a given experience vector α satisfying

α1 ∈ [0, q̃) is given by

p1 = 1 p1 = 0

s1 = 1 ( 1
1+qB

− 1
2

+ α1

2
, qB

1+qB
+ 1

2
− α1

2
) ( 1

1+qB
+ α1

2
, qB

1+qB
− α1

2
)

s1 = 0 (1, 0) ( 1
1+qB

− α1

2
, qB

1+qB
+ α1

2
)

This results in the following replicator equations:

ṡ1 = s1(1− s1)

(
p1(

1

1 + qB
− 3

2
− α1

2
) + α1

)
(6)

ṗ1 = p1(1− p1)

(
s1(

1

2
+

qB
1 + qB

+
α1

2
)− qB

1 + qB
− α1

2

)
(7)
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Setting α1 = s1 in (7) to find a potential interior steady state, we find that the big

bracket is only zero for

s1 = α1 = − qB
1 + qB

+

√
3q2
B + 2qB

1 + qB

This term is zero for qB = 0 and it is larger than q̃ for qB ∈ (0, 1
3
). Hence, the

non-zero solution is not consistent with this case of α1 ∈ [0, q̃) and ṗ1 = 0 only

holds for p1 ∈ {0, 1}. However, plugging in those values for p1 in (6) shows that

the big bracket is zero only for α1 = 0 and p1 = 0 whereas it is always negative for

p1 = 1. Hence, there are no interior steady states in this case and we only have to

assess the stability of the points (0, 0, 0) and (0, 0, 1). The Jacobian matrix of the

point (α1, s1, p1) = (0, 0, 0) is given by

J((0, 0, 0)) =


κ− 1 1− κ 0

0 0 0

0 0 − qB
1+qB

 , yielding

P0J((0, 0, 0)) =
1

3


2κ− 2 2− 2κ qB

1+qB

1− κ κ− 1 qB
1+qB

1− κ κ− 1 − 2qB
1+qB

 .

Since we are only interested in the signs of the real parts of the eigenvalues of this

matrix, we multiply it by 3 and solve the corresponding characteristic equation of

the resulting matrix. This gives us the following solutions:

λ1 = 0 ∧ λ2,3 =
3κ− 3− 2qB

1+qB

2
±

√√√√(3κ− 3− 2qB
1+qB

2

)2

− 6qB − 6κqB
1 + qB

Now, as κ ∈ [0, 1), we see that
3κ−3− 2qB

1+qB

2
< 0 and 6qB−6κqB

1+qB
> 0. Consequently,

we do not have to compute when the term under the root is positive or negative:

When it is positive, the root will have an absolute value which is smaller than the

absolute value of
3κ−3− 2qB

1+qB

2
. When it is negative, the real parts of both eigenvalues

λ2 and λ3 are given by
3κ−3− 2qB

1+qB

2
. In total, both non-zero eigenvalues have negative

real parts and the point (0, 0, 0) is an asymptotically stable state of the dynamical
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system. For the state (0, 0, 1), we first compute the matrix P0J((0, 0, 1)). This

yields

P0J((0, 0, 1)) =
1

3


2κ− 2 7

2
− 2κ− 1

1+qB

−qB
1+qB

1− κ κ− 4 + 2
1+qB

−qB
1+qB

1− κ κ+ 1
2
− 1

1+qB

2qB
1+qB

 .

We can multiply this matrix by 3 and compute the eigenvalues of the resulting

matrix (remember that we are only interested in the sign of the real parts of the

eigenvalues). This leads to the eigenvalues λ1 = 0 and

λ2,3 =
3κ− 4

2
±

√(
3κ− 4

2

)2

+
3(κ+ qB − 1− (κ− 4)q2

B)

2(qB + 1)2
.

The real parts of the two non-zero eigenvalues are negative if and only if κ <
1−qB−4q2

B

1−q2
B

, making the point (0, 0, 1) stable in exactly this case.

Case 1. ii): Player A is stronger, qB <
1
3
, α1 ∈ [q̃, 1− q̃]

In this case, the game looks like

p1 = 1 p1 = 0

s1 = 1 ( 1
1+qB

− 1
2

+ α1

2
, qB

1+qB
+ 1

2
− α1

2
) (1, 0)

s1 = 0 (1, 0) ( 1
1+qB

− α1

2
, qB

1+qB
+ α1

2
)

and we get

ṡ1 = s1(1− s1)

(
p1(

2

1 + qB
− 5

2
) + 1− 1

1 + qB
+
α1

2

)
(8)

ṗ1 = p1(1− p1)

(
s1(

2qB
1 + qB

+
1

2
)− qB

1 + qB
− α1

2

)
. (9)

The unique interior solution (meaning that both p1 and s1 are not in {0, 1}) of

this system is (α1, s1, p1) = (1
2
, 1

2
, 1

2
). Hence, we only need to check the stability

properties of this point. Performing the usual computations yields

P0J((
1

2
,
1

2
,
1

2
)) =

1

3


2κ− 2 15

8
− 2κ− qB

2+2qB

5
8
− 1

2+2qB
11
8
− κ κ− 9

8
− qB

2+2qB

1
1+qB

− 10
8

5
8
− κ κ− 3

4
+ qB

1+qB

5
8
− 1

2+2qB

 .

The non-zero eigenvalues of the product of 3 and this matrix are given by

λ2,3 = 3κ−3
2
±
√(

3κ−3
2

)2
+

3(21q2
B+58qB+21)

64(qB+1)2 − 3κ(7qB+3)
8(qB+1)

. These two values both have

negative real parts (meaning that (1
2
, 1

2
, 1

2
) is stable) if and only if κ >

21q2
B+58qB+21

8(7qB+3)(qB+1)
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holds.

Case 1. iii): Player A is stronger, qB <
1
3
, α1 ∈ (1− q̃, 1]

The game is symmetric with respect to the two options, so this is equal to case 1.

i).

Case 1. iv): Player A is stronger, qB >
1
3
, α1 ∈ [0, 1− q̃] In this case, the game looks

exactly like the one in case 1. i). This is logical since in both cases, α1 < q̃ and

α1 < 1− q̃ hold and only the order of q̃ and 1− q̃ is reversed. Consequently, the

replicator equations and the steady states are the same, as well as the stability prop-

erties of these steady states (since those properties are derived from the replicator

equations as well via the Jacobian matrix and the eigenvalues of its product with

a projection matrix, and nothing in the computations hinged on the assumption

qB <
1
3
).

Case 1. v): Player A is stronger, qB >
1
3
, α1 ∈ (1− q̃, q̃)

In this case, the normal form game for a given experience vector α satisfying

α1 ∈ (1− q̃, q̃) is given by

p1 = 1 p1 = 0

s1 = 1 ( 1
1+qB

− 1
2

+ α1

2
, qB

1+qB
+ 1

2
− α1

2
) ( 1

1+qB
+ α1

2
, qB

1+qB
− α1

2
)

s1 = 0 ( 1
1+qB

+ 1−α1

2
, qB

1+qB
− 1−α1

2
) ( 1

1+qB
− α1

2
, qB

1+qB
+ α1

2
)

This results in the following replicator equations:

ṡ1 = s1(1− s1)(α1 − p1)

ṗ1 = p1(1− p1)(s1 −
1

2
)

We can see that these equations are exactly the same as (2.4) and (2.5). In particular,

they do not depend on the new parameter qB (which is logical, since only the

baseline probability of winning depends on qB, but this is constant for each player

among the four cells in the normal form matrix). Consequently, the only interior

steady state is given by (α1, s1, p1) = (1
2
, 1

2
, 1

2
) and the result of the stability analysis

of this point is the same as in the proof of Theorem 1: It is asymptotically stable

for κ > 3
4

and a saddle point for κ < 3
4
.

Case 1. vi): Player A is stronger, qB >
1
3
, α1 ∈ [q̃, 1]

Due to symmetry, this case is the same as 1. iv).

Case 2. i): Player B is stronger, qA <
1
3
, α1 ∈ [0, q̂)

In this case, the game looks like
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p1 = 1 p1 = 0

s1 = 1 (0, 1) ( qA
1+qA

+ α1

2
, 1

1+qA
− α1

2
)

s1 = 0 ( qA
1+qA

+ 1−α1

2
, 1

1+qA
+ α1−1

2
) ( qA

1+qA
− α1

2
, 1

1+qA
+ α1

2
)

and we get

ṡ1 =s1(1− s1)

(
p1(−1

2
− α1

2
− qA

1 + qA
) + α1

)
(10)

ṗ1 =p1(1− p1)

(
s1(1− 1

1 + qA
+
α1 + 1

2
)− 1

2

)
. (11)

Recall that in an interior solution, we will have s1 = α1 due to (2.3). Using this

and the requirement s1 ∈ [0, 1] in equation (11), we get that

s1 =
1

1 + qA
− 3

2
+

√
(

1

1 + qA
− 3

2
)2 + 1

is the unique solution candidate for an interior steady state. However, this solution

candidate is strictly larger than q̂ for qA <
1
3
, which would contradict α1 ∈ [0, q̂].

So to get ṗ1 = 0, we need p1 = 0 or p1 = 1 in (11). Turning to (10), we see that for

p1 = 0, the big bracket is zero only for α1 = 0 while for p1 = 1, the big bracket can

never be zero. Hence, there is no interior steady state in this case and we only need

to check the stability of the points (0, 0, 0) and (0, 0, 1). The corresponding points

(1, 1, 1) and (1, 1, 0) will then have the same stability properties due to symmetry.

Computing the Jacobian matrix associated to the point (0, 0, 0) yields

J((0, 0, 0)) =


κ− 1 1− κ 0

0 0 0

0 0 −1
2

 .

Since this is the same Jacobian matrix we obtained in the proof of Theorem 1, we

can conclude that the point (0, 0, 0) is an asymptotically stable state in this case

as well. The Jacobian matrix associated to the point (0, 0, 1) is given by

J((0, 0, 1)) =


κ− 1 1− κ 0

0 −1
2
− qA

1+qA
0

0 0 1
2
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and the eigenvalues of 3 ∗ P0J((0, 0, 1)) are given by λ0 = 0 and

λ2,3 =
3κ(qA + 1)− 5qA − 3

2qA + 2
±

√(
3κ(qA + 1)− 5qA − 3

2qA + 2

)2

+
3(2κ(qA − 1) + qA + 3)

4(qA + 1)
.

As 3κ(qA+1)−5qA−3
2qA+2

< 0 and 3(2κ(qA−1)+qA+3)
4(qA+1)

> 0, exactly one of the two non-zero

eigenvalues is positive and one is negative. Consequently, the state (0, 0, 1) is a

saddle point of the dynamical system.

Case 2. ii): Player B is stronger, qA <
1
3
, α1 ∈ [q̂, 1− q̂]

In this case, the game looks like

p1 = 1 p1 = 0

s1 = 1 (0, 1) ( qA
1+qA

+ α1

2
, 1

1+qA
− α1

2
)

s1 = 0 ( qA
1+qA

+ 1−α1

2
, 1

1+qA
+ α1−1

2
) (0, 1)

and we get

ṡ1 =s1(1− s1)

(
qA

1 + qA
+
α1

2
− p1(

2qA
1 + qA

+
1

2
)

)
(12)

ṗ1 =p1(1− p1)

(
s1(

5

2
− 2

1 + qA
)− qA

1 + qA
+
α1 − 1

2

)
. (13)

To find an interior steady state, we plug in α1 = s1 into (13) and obtain s1 = 1
2

as the unique solution candidate. Plugging in s1 = α1 = 1
2

into (12) yields p1 = 1
2

as well, making (1
2
, 1

2
, 1

2
) the unique interior steady state in this case. To assess its

stability, we perform the usual computations and get

P0J((
1

2
,
1

2
,
1

2
)) =

1

3


2κ− 9

4
11
8
− 2κ− 1

2+2qA

1
8

+ qA
2+2qA

9
8
− κ κ− 13

8
+ 1

2+2qA

−qA
1+qA

− 1
4

9
8
− κ κ+ 1

4
− 1

1+qA

1
8
− qA

2+2qA

 .

The non-zero eigenvalues of the product of 3 and this matrix are given by

λ2,3 =
3κ− 13

4

2
±
√(

3κ− 13
4

2

)2

+ 3(3qA+7)(5qA+1)
64(qA+1)2 + κ( 3

2(qA+1)
− 15

8
). These two values

both have negative real parts (meaning that (1
2
, 1

2
, 1

2
) is stable) if and only if

κ >
21q2

A+58qA+21

8(7qA+3)(qA+1)
holds.

Case 2. iii): Player B is stronger, qA <
1
3
, α1 ∈ (1− q̂, 1]

Due to symmetry, this case is the same as 2. i).

Case 2. iv): Player B is stronger, qA >
1
3
, α1 ∈ [0, 1− q̂]

In this case, the game looks like
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p1 = 1 p1 = 0

s1 = 1 (0, 1) ( qA
1+qA

+ α1

2
, 1

1+qA
− α1

2
)

s1 = 0 ( qA
1+qA

+ 1−α1

2
, 1

1+qA
+ α1−1

2
) ( qA

1+qA
− α1

2
, 1

1+qA
+ α1

2
)

and we get

ṡ1 =s1(1− s1)

(
p1(−1

2
− α1

2
− qA

1 + qA
) + α1

)
(14)

ṗ1 =p1(1− p1)

(
s1(1− 1

1 + qA
+
α1 + 1

2
)− 1

2

)
. (15)

Recall that in an interior solution, we will have s1 = α1 due to (2.3). Using this

and the requirement s1 ∈ [0, 1] in equation (15), we get that

s1 =
1

1 + qA
− 3

2
+

√
(

1

1 + qA
− 3

2
)2 + 1

is the unique solution candidate for an interior steady state. However, this solution

candidate is strictly larger than 1 − q̂ for qA >
1
3
, which would contradict α1 ∈

[0, 1 − q̂]. So to get ṗ1 = 0, we need p1 = 0 or p1 = 1 in (15). Turning to (14),

we see that for p1 = 0, the big bracket is zero only for α1 = 0 while for p1 = 1,

the big bracket can never be zero. Hence, there is no interior steady state in this

case and we only need to check the stability of the points (0, 0, 0) and (0, 0, 1).

The corresponding points (1, 1, 1) and (1, 1, 0) will then have the same stability

properties due to symmetry.

We can see that the matrix and the replicator equations are the same as in case

2. i). As the assumption qA <
1
3

was not needed in the stability analysis in 2. i), we

can conclude that the point (0, 0, 0) is asymptotically stable and the point (0, 0, 1)

is a saddle point, exactly as in case 2. i).

Case 2. v): Player B is stronger, qA >
1
3
, α1 ∈ (1− q̂, q̂)

In this case, the game looks like

p1 = 1 p1 = 0

s1 = 1 ( qA
1+qA

+ α1−1
2
, 1

1+qA
+ 1−α1

2
) ( qA

1+qA
+ α1

2
, 1

1+qA
− α1

2
)

s1 = 0 ( qA
1+qA

+ 1−α1

2
, 1

1+qA
+ α1−1

2
) ( qA

1+qA
− α1

2
, 1

1+qA
+ α1

2
)
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and we get

ṡ1 =s1(1− s1)(α1 − p1)

ṗ1 =p1(1− p1)(s1 −
1

2
).

Hence, the only interior steady state is (α1, s1, p1) = (1
2
, 1

2
, 1

2
) and its stability

properties are as in case 1. v).

Case 2. vi): Player B is stronger, qA >
1
3
, α1 ∈ [q̂, 1]

Due to symmetry, this case is the same as 2. iv).

Proof of Lemma 2. Using the payoffs given in Table 2.4, we can compute the

replicator equations for s1, s2, p1 and p2. The steady states of the system are exactly

those points where the growth rates of all variables are zero. Concretely, we have

to find the points (α1, α2, s1, s2, p1, p2) that simultaneously satisfy the following

conditions (16) to (21):

α̇1 =(s1 − α1)(1− κ)
!

= 0 (16)

α̇2 =(s2 − α2)(1− κ)
!

= 0 (17)

ṡ1 =s1

(
(1− s1)

2α1 + α2 − 2p1 − p2

2
− s2

2α2 + α1 − 2p2 − p1

2

)
!

= 0 (18)

ṡ2 =s2

(
(1− s2)

α1 + 2α2 − p1 − 2p2

2
− s1

2α1 + α2 − 2p1 − p2

2

)
!

= 0 (19)

ṗ1 =p1

(
(1− p1)(s1 +

s2 − 1

2
)− p2(s2 +

s1 − 1

2
)

)
!

= 0 (20)

ṗ2 =p2

(
(1− p2)(s2 +

s1 − 1

2
)− p1(s1 +

s2 − 1

2
)

)
!

= 0 (21)

The equations (16) and (17) are satisfied if and only if s1 = α1 and s2 = α2

hold. From there, one can go through all the cases where one of the remaining

equations holds and check in which cases all the other growth rates are zero as

well. For instance, the relation ṗ1 = 0 (equation (20)) holds in the following cases:

i) p1 = 0

ii) p1 = 1

iii) p1 /∈ {0, 1}, p2 = 0, s1 = 1−s2
2
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iv) p1 /∈ {0, 1}, p2 6= 0, s1 = s2 = s3 = 1
3

v) (1− p1)(s1 + s2−1
2

) = p2(s2 + s1−1
2

), all factors 6= 0

Going through each of the above cases while satisfying equations (18), (19) and

(21) as well yields the set of steady states given in Lemma 2.

Proof of Theorem 3. We apply the same technique as in the proof of Theorem

1. First, the Jacobian matrices at a steady state are calculated and this time

multiplied (from the left) by the six-dimensional projection matrix

P0 =
1

6



5 −1 −1 −1 −1 −1

−1 5 −1 −1 −1 −1

−1 −1 5 −1 −1 −1

−1 −1 −1 5 −1 −1

−1 −1 −1 −1 5 −1

−1 −1 −1 −1 −1 5


.

Thereafter, we compute the real parts of the resulting matrices’ eigenvalues. Due

to the projection, one eigenvalue will always be zero. The steady state in question

is asymptotically stable whenever the second highest real part of the eigenvalues

is negative. For the categories i), ii), iii) and v), it is sufficient to make the

computations for one representative, since all steady states in these categories only

differ by relabeling the options. For the representative of category iv), we have to

deal with all the possible values p2 ∈ [0, 1]. The Jacobian matrix J(x) for a state

x = (α1, α2, s1, s2, p1, p2) is given by
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κ−1 0 1−κ 0 0 0

0 κ−1 0 1−κ 0 0

s1(1−s1)

− s1s2
2

s1(1−s1)
2

−s1s2

(1−2s1)
2α1+α2−2p1−p2

2

−s2 2α2+α1−2p2−p1
2

−s1
2α2+α1−2p2−p1

2

−s1(1−s1)

+
s1s2

2

− s1(1−s1)
2

+s1s2

s2(1−s2)
2

−s1s2

s2(1−s2)

− s1s2
2

−s2
2α1+α2−2p1−p2

2

(1−2s2)
2α2+α1−2p2−p1

2

−s1 2α1+α2−2p1−p2
2

− s2(1−s2)
2

+s1s2

−s2(1−s2)

+
s1s2

2

0 0 p1(1−p1)− p1p2
2

p1(1−p1)
2

−p1p2

(1−2p1)(s1+
s2−1

2
)

−p2(
s1−1

2
+s2)

−p1(s2+
s1−1

2
)

0 0 p2(1−p2)
2

−p1p2 p2(1−p2)− p1p2
2

−p2(s1+
s2−1

2
)

(1−2p2)(s2+
s1−1

2
)

−p1(
s2−1

2
+s1)



.

Concretely, we get the following matrices for the representatives of the categories

i), ii), iii) and v):

P0 ∗ J(
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
) =

1

6



5κ− 31
6

5
6
− κ 29

6
− 5κ κ− 7

6
1
6

1
6

5
6
− κ 5κ− 31

6
κ− 7

6
29
6
− 5κ 1

6
1
6

11
6
− κ 5

6
− κ κ− 7

6
κ− 7

6
−5

6
1
6

5
6
− κ 11

6
− κ κ− 7

6
κ− 7

6
1
6
−5

6
5
6
− κ 5

6
− κ κ− 1

6
κ− 7

6
1
6

1
6

5
6
− κ 5

6
− κ κ− 7

6
κ− 1

6
1
6

1
6


,
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P0 ∗ J(
1

2
,
1

2
,
1

2
,
1

2
, 0, 0) =

1

6



5κ− 5 1− κ 23
4
− 5κ κ− 1

4
−1

4
−1

4

1− κ 5κ− 5 κ− 1
4

23
4
− 5κ −1

4
−1

4
7
4
− κ 1

4
− κ κ− 5

2
κ− 5

2
−1 1

2
1
4
− κ 7

4
− κ κ− 5

2
κ− 5

2
1
2
−1

1− κ 1− κ κ+ 1
2

κ− 1 5
4
−1

4

1− κ 1− κ κ− 1 κ+ 1
2
−1

4
5
4


,

P0 ∗ J(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
) =

1

6



5κ− 5 1− κ 5− 5κ κ− 1 1
4

1
4

1− κ 5κ− 5 κ− 1 5− 5κ 1
4

1
4

7
4
− κ 1

4
− κ κ− 1 κ− 1 −1

2
1

1
4
− κ 7

4
− κ κ− 1 κ− 1 1 −1

2

1− κ 1− κ κ− 1
4

κ− 7
4
−1

2
−1

2

1− κ 1− κ κ− 7
4

κ− 1
4
−1

2
−1

2


,

P0 ∗ J(1, 0, 1, 0, 1, 0) =
1

6



5κ− 5 1− κ 5− 5κ κ− 1 1
2

1
2

1− κ 5κ− 5 κ− 1 5− 5κ 1
2

1
2

1− κ 1− κ κ− 1 κ− 1 1
2

1
2

1− κ 1− κ κ− 1 κ− 1 1
2

1
2

1− κ 1− κ κ− 1 κ− 1 −5
2

1
2

1− κ 1− κ κ− 1 κ− 1 1
2
−5

2


.

These matrices all depend on the parameter κ. To show that the states in category

v) are asymptotically stable, we need to verify that the largest non-zero real part

of the associated matrix’s eigenvalues is negative for all κ < 1. Likewise, we need

to verify that the largest non-zero real part of the eigenvalues belonging to the

matrices associated to categories i) - iii) is positive for each category and all κ < 1.

Since we are only interested in the sign of the largest real part of the eigenvalues,

it is sufficient to compute the eigenvalues of each above matrix multiplied by 6

(this way, we will get rid of the factor 1
6

in all cases). To do this, we compute the

real parts of the eigenvalues of each of these matrices numerically, depending on

the parameter κ. The plots are given in Figure 4.

For categories i) and iii), we see that the largest real part of the eigenvalues is

positive and approaches zero for κ being close to 1. Calculating the eigenvalues of

the matrices 6∗P0 ∗J(1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) and 6∗P0 ∗J(1

2
, 1

2
, 1

2
, 1

2
, 0, 0) for κ = 1 confirms

these observations: The real parts of the eigenvalues of 6 ∗P0 ∗ J(1
2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
) are
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(a) Mixing between all 3 options,
consistent preparation (category i))
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(b) Mixing between 2 options, completely
inconsistent preparation (category ii))
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(c) Mixing between 2 options,
consistent preparation (category iii))
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(d) Perfect specialization on one option,
consistent preparation (category v))

Figure 4: Plots of the real parts of the eigenvalues belonging to the matrices
associated to categories i), ii), iii) and v)

0, 0, 0, 0, 0,−1, while the real parts of the eigenvalues of 6 ∗ P0 ∗ J(1
2
, 1

2
, 1

2
, 1

2
, 0, 0)

are 0, 0, 0, 0, 1
6
, 1

6
. This implies that in both cases, the largest real part of all the

eigenvalues is strictly positive for all values κ ∈ [0, 1) and the states in categories i)

and iii) are indeed saddle points. The eigenvalues of 6 ∗ P0 ∗ J(1, 0, 1, 0, 1, 0) are

0, 0, 0, 0,−2 and −3. This implies that the largest non-zero eigenvalue is negative

(for this matrix, all eigenvalues are real numbers) for all κ ∈ [0, 1) since the absolute

value of the second highest eigenvalue is decreasing and only hits zero at κ = 1.

In conclusion, the states in category v) are asymptotically stable. Lastly, as the

largest real value of the eigenvalues of the matrix associated to category ii) is

always positive, the states in this category are saddle points.
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For a general representative of category iv), the associated matrix is given by

P0J(1, 0, 1, 0, 0, p2) =
1

6



5κ− 5 1− κ 5− 5κ+
2−2p2+p2

2

2
κ− 3p2

2
+ p2

2
p2−1

2
0

1− κ 5κ− 5 κ− p2 +
p2

2

2
6− 5κ− 3p2

2
+ p2

2
p2−1

2
0

1− κ 1− κ κ− 6 + 2p2 +
p2

2

2
κ− 3 + 9p2

2
+ p2

2
p2−1

2
0

1− κ 1− κ κ− p2 +
p2

2

2
κ− 3− 9p2

2
+ p2

2
p2−1

2
0

1− κ 1− κ κ− p2 +
p2

2

2
κ− 3p2

2
+ p2

2
p2+5

2
0

1− κ 1− κ κ+
4p2−5p2

2

2
κ− 3p2

2
+ p2

2
−5p2−1

2
0


.

Our goal is again to compute the largest real part of the eigenvalues of

6 ∗ P0J(1, 0, 1, 0, 0, p2), depending on κ and p2. To achieve this, we first fix a

value of p2 and compute the maximal real part of all the eigenvalues depending on

κ. Thereafter, we take the minimal value of all these maximal real parts over all

values κ ∈ [0, 1]. This procedure is then repeated for every value p2 ∈ [0, 1]. The

result is plotted in Figure 5. The Python code used to generate Figures 4 and 5

can be found under https://github.com/mgramb/evolutionary-preparation.git.
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Figure 5: For each p2, the plotted value is the minimum over all largest real parts
of the eigenvalues for κ ∈ [0, 1].

As the real parts of these eigenvalues are strictly positive for every p2, we can

conclude that this holds for every combination of values κ ∈ [0, 1) and p2 ∈ [0, 1].

Similar to the above procedure, it is shown that the smallest real part of the
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eigenvalues is negative for all combinations of κ ∈ [0, 1) and p2 ∈ [0, 1]. This

means that the states in category iv) are always saddle points. This concludes the

proof.

B Elements of Evolutionary Game Theory

In this section, we review several definitions and results from evolutionary game

theory. A more comprehensive account of this field, with many applications in

economics, can be found in Sandholm (2010) and Friedman and Sinervo (2016).

B.1 Population games

Population games are games in which individuals from different subpopulations play

against each other. Traditionally, each individual in a subpopulation is programmed

to play a particular pure strategy in the sense that they always play that strategy in

the game. In the context of standard game theory, you can think of a normal form

game where each player represents a different subpopulation and where opposing

players are drawn randomly from each subpopulation. Let n be the number of

subpopulations or the number of players in the normal form game. Also, let Si be

the number of pure strategies available to subpopulation i ∈ {1, . . . , n}. Then we

can denote by xih the share of individuals from population i that are programmed

to use pure strategy h ∈ {1, . . . , Si}. Consequently, when a player faces another

player from subpopulation i in the game, he will expect that player to play mixed

strategy xi = (xi1, . . . , xiSi). Note that this implies that mathematically, it is not

important whether each individual is assumed to play a pure or a mixed strategy,

since the expected strategy of a random opponent from that population will still

be a mixed strategy. The reason we assume each player to play a pure strategy in

traditional evolutionary game theory is that this makes the most sense in many of

the applications in biology and animal conflict. The vector xi can be interpreted

as the state of subpopulation i since it indicates the proportion of individuals

playing each of the available pure strategies. This means that the state of the whole

population can be described by the vector x = (x1, . . . , xn), where xi is the state

of subpopulation i.

In these population games, the focus of study is on how the shares of individuals

playing a particular strategy evolve in a repeated game, depending on how that

strategy performs compared to other strategies in the population. These evolutions
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can be captured by growth rate functions (or, more concretely, by the associated

selection dynamics). In this paper, we use the standard n-population replicator

dynamics. Their definition as well as general definitions related to growth rate

functions are recalled in the next subsection, along with an explanation of why it

seems reasonable to use the replicator dynamics in our framework.

B.2 Growth rate functions and replicator dynamics

Mathematically, the change of the share of different strategies in the population over

time can be captured by growth rate functions. A growth rate function g assigns to

each population state x, player population i and pure strategy h available to a player

from population i the growth rate gih(x) of the associated population share xih. More

concretely, we assume that ẋih = gih(x)xih,∀ i ∈ {1, . . . , n}, h ∈ {1, . . . , Si}, x ∈ Θ,

where ẋih denotes the time derivative of xih and Θ is the polyhedron of mixed

strategy profiles of all subpopulations (which equals the set of all possible population

states). The following definitions are taken from Weibull (1997).

Definition 1. A regular growth-rate function is a Lipschitz continuous function

g : X → RS1+···+Sn with an open domain X ⊂ RS1+···+Sn containing Θ, such that

gi(x) · xi = 0 for all population states x ∈ Θ and player populations i ∈ {1, . . . , n}.

In this definition, gi(x) refers to the vector (gi1(x), . . . , giSi(x)) of growth rates

of the strategies in subpopulation i. The condition gi(x) · xi = 0 then makes sure

that the overall size of the subpopulation does not change and only the shares of the

different strategies are shifting. Before we go on, let us denote by ei the i-th standard

unit vector14. Moreover, we denote by Bi(x) =
{
h ∈ Si : ui(eh, x−i) > ui(x)

}
the

set of pure strategies that earn above average payoff for player position i when

the population state is x. In this notation, ui(e
h, x−i) describes the payoff of an

individual belonging to subpopulation i from playing pure strategy h when the

other subpopulations are in state x−i. Likewise, ui(x) denotes the (expected) payoff

of an individual from subpopulation i when the whole population is in state x.

Definition 2. A regular growth-rate function g is weakly payoff-positive if for all

x ∈ Θ and i ∈ {1, . . . , n} : Bi(x) 6= ∅ ⇒ gih(x) > 0 for some h ∈ Bi(x).

This means that a weakly payoff-positive growth-rate function makes sure that

for every subpopulation at least one strategy earning an above average payoff will

14This is the vector with a one at component i and with zeros everywhere else.
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strictly grow. The most famous growth-rate function is probably the one associated

to the standard n-population replicator dynamics.

Definition 3. The standard n-population replicator dynamics are the selection

dynamics given by ẋih = (ui(e
h, x−i)− ui(x))xih. They are associated to the growth-

rate function gih(x) = ui(e
h, x−i)− ui(x).

The replicator dynamics can be seen as the mathematical concretization of the

evolutionary dogma survival of the fittest. The idea is simple: Once a strategy earns

higher than average payoffs for a certain population, the share of the population

playing this strategy will increase in the next periods while strategies with a lower

than average payoff will become less popular or might even become extinct. The

intuitive explanation for this can be evolutionary: Successful individuals will be

able to feed more descendants and replicate while unsuccessful ones can not afford

replication. In our application, less successful sports teams or trainers might look

for a different profession or adapt their strategy so that the original strategy will

disappear from the population in the long run. Hence, another explanation for the

use of replicator dynamics is dynamic learning: Individuals observe what strategies

work well and which do not and they are more likely to copy successful strategies

than unsuccessful ones. It is straightforward to see that the replicator dynamics

are weakly payoff-positive dynamics. More properties of the replicator dynamics

can be found in Hofbauer and Sigmund (2003) and Sorin (2020).

B.3 Stable states in evolutionary games

In evolutionary game theory, we are interested in evolving systems of different

populations, each of which may have different strategies at its disposal. A state

in such a system can be described by a vector x ∈ RS1−1+···+Sn−1, where n is the

number of distinct subpopulations and Si is the number of pure strategies from

which the individuals of subpopulation i can choose.15 In Section 2.4.2, we study a

setting with three (sub-)populations where each population has two pure strategies

available. Consequently, a state in this system is given by a vector in R3.

When we refer to x(0) as the initial state of the system, we use x(t) to denote

the state of the system after time t. This state depends on the concrete (discrete

or continuous) dynamics of the system. In the case of continuous dynamics, the

15The dimension of the vector space is due to the fact that the shares of the members of each
subpopulation employing the different strategies must sum to 1.
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evolution of the strategy shares of each subpopulation is described by the replicator

dynamics through a differential equation. The Picard-Lindelöf theorem ensures

that the trajectory (x(t))t∈(0,∞) is indeed unique if the dynamic evolution rules

are well-behaved. To simplify the notation, we denote by ξ(t, x) the state of the

system after time t, starting from state x. A state x∗ is called a steady state if

ξ(t, x∗) = x∗ for all t ≥ 0. This means that once a system has reached a steady

state, it will never leave it. Since a state corresponds to a point in Rn, we will use

the terms steady state and stationary point interchangeably. However, whether a

system ends up in one steady state or the other depends on the stability properties

of those states.

Definition 4. A steady state x ∈ Rn is Lyapunov stable if every open neighborhood

U of x contains an open neighborhood U0 of x such that ξ(t, x0) ∈ U for all x0 ∈ U0

and t ≥ 0.

Definition 5. A steady state x ∈ Rn is (locally) asymptotically stable if it is

Lyapunov stable and there exists an open neighborhood U∗ of x such that for all

x0 ∈ U∗, limt→∞ ξ(t, x
0) = x.

Intuitively, Lyapunov stability requires that there be no push away from the

state, while asymptotic stability requires a (local) pull toward the state. Asymptot-

ically stable states are interesting because they can be a good predictor of what

state a system will eventually settle on if it gets sufficiently close to that state at a

given time.

Definition 6. A steady state that is not asymptotically stable is called unstable. An

unstable steady state that still has a lower-dimensional set of trajectories converging

to it is called a saddle point. If all trajectories diverge from an unstable steady

state, it is called a source or completely unstable.

B.4 Relations between Nash equilibrium and evolutionary

concepts

To conclude this brief overview over relevant elements of evolutionary game theory,

we state some results linking the introduced concepts to Nash equilibria.

Definition 7. A population state is called interior if and only if every strategy of

every population has a positive share in this state.

49



Theorem 4 (Weibull (1997), Theorem 5.2). If the underlying growth-rate function

g is weakly payoff-positive, then the following hold for a population state x:

i) If x is an interior state and it is stationary, then x is a Nash equilibrium of

the underlying game.

ii) If x is Lyapunov stable, then x is a Nash equilibrium of the underlying game.

Proposition 2 (Weibull (1997), Proposition 5.13). A population state x is asymp-

totically stable in the standard replicator dynamics if and only if x is a strict Nash

equilibrium16.

C Data Collection

This section describes the collection process for the chess games used in Section 2.6.

The first step was to search ChessBase’s online database for all games played by a

certain player with the black pieces in 2018 and 2019. ChessBase is a company that

produces chess software and maintains large databases of recorded chess games.

Then, the games played in a shorter time control (rapid chess or blitz) were deleted

from the data set. Finally, it was verified that the resulting set of games was

complete by comparing the games with the FIDE-rated games on each player’s

FIDE profile. FIDE is the international chess federation and provides ratings for all

chess players based on their games played in official tournaments. A player’s FIDE

profile shows the results of all the games a player has played in a given month.

Player Number of games considered
Kirill Alekseenko 36
Fabiano Caruana 47

Anish Giri 27
Alexander Grischuk 24

Wang Hao 40
Ding Liren 44

Ian Nepomniachtchi 19
Maxime Vachier-Lagrave 29

Table 6: Number of games considered per player

16A strict Nash equilibrium is a Nash equilibrium in which the strategy used by each player
constitutes the unique best response to the opposing players’ strategies.

50



The result of the comparison was that only two games played by Wang Hao

were not recorded within this two-year period (which means the result is known,

but not the moves played). Hence, these two games could not be included in the

data set and the final number of games per player is given in Table 6.
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Chapter 3

Congestion and Market Thickness

in Decentralized Matching

Markets∗

joint with Julian Teichgräber

3.1 Introduction

Decentralized matching markets suffer from congestion. This has been known for a

long time and many markets have been centralized to achieve more efficient market

outcomes. However, there are also matching markets in which a centralization is not

feasible for two possible reasons. First, it may be too difficult to elicit the complete

preference ranking from all participants. Second, participants are heterogeneous

and some may not have strong incentives to participate in a centralized matching

market. A prime example of such a market is the labor market, where different

firms operating in the same sector compete for the same (or at least a very similar)

set of workers. What are the main sources of congestion in such a labor market?

According to Roth (2018), congestion is “the accumulation of more time-consuming

activities than can easily be accomodated in the time available.” In a labor market,

these time-consuming activities include two main steps in the process. First, firms

must conduct job interviews to assess the workers’ suitability for the firm. Since

∗We are grateful to Christoph Schottmüller, Alexander Westkamp, Marek Pycia, Markus
Möller, Lennart Struth, Max R.P. Grossmann and participants of the AMES 2022 in Tokyo as
well as seminar participants in Cologne and Zurich for their valuable comments and suggestions.
The remaining errors are our own.
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time and resources are limited, firms must select who to interview among all

applicants. Second, after receiving a job offer, workers must decide whether to

accept or reject the offer, which is also time-consuming (especially if a worker

receives multiple job offers from different firms).

In these congested markets, we study the impact of market thickness on market

outcomes. In other words, we study how the problems caused by congestion change

depending on market thickness. In particular, we examine whether there is inequality

in how good and bad agents are affected when the market becomes thicker. We find

that in a labor market, all firms and good workers lose when the market becomes

thicker, while only bad workers benefit from the congested market structures in

a thick market. In practice, market thickness can be designed by regulating the

number of times per period that matches can be arranged. This was famously

achieved for the economic academic job market, which now takes place only once a

year, with many universities and junior researchers aspiring to be matched. In our

model, we simulate a change in market thickness by multiplying the number of

market participants on both sides by a natural number n.

As we are interested in two-sided matching markets in this paper, we will call the

two sides of the market firms and workers, since this is a major application of our

framework. Further applications include dating platforms1 and the housing market2

as well as college admissions. We model the congestion problem by assuming that

a firm remains unmatched whenever the worker rejects the firm’s job offer. In the

real world, after a rejection by the firm’s preferred job candidate (which can be

very time-consuming), the firm could of course make an offer to another worker

they have interviewed. However, since a lot of time may have passed, it is not

unlikely that this worker will reject the offer because she already accepted another

offer in the meantime. This happens even though she might have accepted an

earlier offer from that firm, which is exactly the congestion problem. In our model,

we limit the number of workers that each firm can observe and make an offer

to. This can be seen as a second source of congestion according to the definition

given in Roth (2018). The limitation is reasonable in real-world applications, since

interviews are costly and firms’ resources are limited. We assume that firms are

1These dating platforms can be seen as centralized to begin with, but as people make offers
independently of the platform, the same congestion problems can arise. However, the platform
might control the suggestions that different people receive and in this way indirectly control the
expected match value.

2Landlords usually have a preference for tenants with a secure and high income. In this sense,
all potential candidates can be ranked according to their suitability as new tenants.
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ranked by their quality and that each worker always accepts the offer from the

highest firm that made him an offer. In this sense, workers are not strategic in our

model. Firms, on the other hand, can be strategic in their offering decisions. We

assume that only firms can make job offers and that they can only make an offer

to a candidate they have interviewed. Both assumptions seem plausible in most

labor markets. In our model, a very good firm might always choose to make an

offer to the best worker they could find. We call this strategy the myopic strategy

because it neglects the possibility that a better firm might have made an offer

to the same worker. When there are few workers on the market, the probability

that the best-screened worker was also seen by another firm is high. Consequently,

the firm might decide to make a job offer to the second-best worker because the

probability that the offer will be accepted is expected to be higher. Contrary to

the myopic strategies, we compute the Bayesian Nash equilibrium strategies of the

firms in which they take their ranking among all firms as well as the total number

of workers into account. We compute the difference in expected match values for

these two strategies and also study the effects of a changing market thickness on

high or low quality firms or workers and equilibrium outcomes. Our result that

all firms and good workers lose when the market becomes thicker, while only bad

workers benefit from a thick market, holds whether firms use myopic or Bayesian

Nash equilibrium strategies. The market participants who lose when the market

becomes thicker are also the ones who would support centralization of the market

if it leads to assortative matching of all participants.

The rest of this paper is organized as follows. Section 3.2 discusses the related

literature. Section 3.3 introduces the model. Section 3.4 gives an example illustrating

the firm’s tradeoff in the hiring process. The market equilibria depending on firms’

behavior are studied in Sections 3.5 and 3.6. The case in which firms adopt a

myopic strategy is addressed in Section 3.5, while Section 3.6 examines the case

in which firms adopt equilibrium strategies maximizing their respective expected

match values. In Section 3.7, we discuss comparative statics to understand which

parts of both market sides benefit more from the market becoming thicker. Section

3.8 concludes.
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3.2 Related Literature

Our paper adds to the literature on congestion in matching markets (Roth and

Xing (1997), Shimer and Smith (2001), Arnosti et al. (2014), Romanyuk (2017),

Jagadeesan and Wei (2018), He and Magnac (2022)) by studying the impact of

market thickness on congestion problems. Of the above papers, Arnosti et al. (2014)

is similar to our work in terms of modeling sources of congestion: In their framework,

an applicant observed by one firm is only available with a certain probability because

he might have accepted another firm’s offer during the application process. In our

model, firms do not observe how many other offers an applicant has received either.

This means that they have to estimate how likely it is that their desired candidate

will accept their offer. Jagadeesan and Wei (2018) study the effect of signals in a

congested job market. These signals allow workers to indicate a high acceptance

probability following an offer from the firm receiving the signal. He and Magnac

(2022) analyze application costs, which are comparable to firms’ constraints on the

total number of screens in our model. Both reduce the set of workers a firm can

hire.

The role of market thickness in matching markets has been studied by Akbarpour

et al. (2020), Baccara et al. (2020) and Loertscher et al. (2022) in the context of

dynamic matching markets. In these (typically centralized) markets, the planner

must decide when to make matches depending on market thickness and how easily

the agents on the market can be matched. The market we study is not dynamic,

meaning that the total number of agents on both sides of the market does not

change over time. However, we can vary this number of agents to study the impact

of a thicker market on market outcomes. Another key difference is that in our

model we do not have a central planner, but consider a decentralized market with

strategic participants at least on one side of the market.

In our model, we find that low-quality firms using the Bayesian Nash equilibrium

strategy might make an offer to their worst-screened worker to avoid competing with

better firms for a good worker. This is similar to the prediction of segmentation in

matching markets found in Jacquet and Tan (2007). The intuitive reason for worse

firms to make an offer to worse workers is that the expected acceptance probability

of these workers is higher. A similar behavior was also reported in MacMillan and

Anderson (2019) in the context of college admissions in the U.S. They find that U.S.

colleges track potential applicants to determine who is most likely to accept an offer.
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Che and Koh (2016) and Kadam (2015) are close to our paper, since they study

the screening process in college admission and labor markets, finding that good

applicants can suffer from the institutions’ strategic behavior in the application

processes. Chade et al. (2014) also examines the college admissions problem with

a commonly known ranking of colleges. However, students are strategic in their

setting, since they impose positive application costs on students. Another aspect in

which our paper differs from Chade et al. (2014) as well as Che and Koh (2016) and

Kadam (2015) is that we put a focus on the impact of a changing market thickness

on the overall hiring process. Lee and Schwarz (2017) study the interviewing process

on the labor market (without a focus on market thickness) and its consequences

for unemployment. They find that unemployment is minimized when there is a

perfect overlap in the set of workers interviewed by different firms in the sense

that two firms either interview the same set of workers or no common workers

at all. Coles et al. (2010) present the job market for new economists which was

modified to achieve a higher market thickness. This also highlights a way in which

a thick market can be implemented in practice: Limiting the times per year that

the market is open and matches can be made.

3.3 The Model

3.3.1 Market participants and market thickness

We denote by N ≥ 2 the total number of firms and M the total number of workers

in the market. We assume that M > N holds so that there are more workers than

firms in the market. Each firm i has a quality level qi ∈ [0, 1] and each worker j

has a skill level sj ∈ [0, 1]. Firms prefer to be matched with workers with higher

skill levels and workers prefer to be matched with firms with higher quality levels.

More concretely, the utility level of matched market participants is given by the

quality or skill level of their match. Unmatched market participants receive zero

utility. Both the skill levels of the workers and the qualities of the firms are drawn

i.i.d. from the uniform distribution on [0, 1]. The quality levels of firms are public

knowledge. The skill levels of workers, however, are private information and each

firm must make efforts to screen the skill level of particular workers. Each firm

wants to fill one job position and each worker can accept at most one job offer.

We model market thickness by multiplying both numbers of market participants
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in an existing market by a natural number n ≥ 1. The parameter n measures the

market thickness and higher values of n correspond to a thicker market. An intuitive

justification for this notion of market thickness could be that n different copies of

a certain market configuration are considered whose ex ante distributions of skills

and qualities are the same, but the realizations may be different. We are interested

in how this inclusion of more market participants (holding the ratio constant)

affects market outcomes in congested markets. In reality, the emergence of thicker

markets could be policy-driven: Think of a new highway or bridge connecting two

cities or a legal restriction on the times per year that matches can be made. The

reason we want to increase both sides of the market while maintaining their ratio is

this: In these two-sided matching markets, it is rarely a disadvantage to have more

participants on the other side of the market, while it is usually a disadvantage to

have more participants on your side. Therefore, the effects of increasing only one

side of the market are less interesting than increasing both sides simultaneously,

since a positive and a negative effect interfere and the net effect is a priori unclear.

3.3.2 Screening and offering

Each firm that is on the market can screen the skills of two randomly selected

workers and will subsequently make an offer to one of these two candidates. The

limitation of two screens per firm can be seen as a reflection of the firms’ limited

resources in the hiring process. Both staff and time are scarce resources, which

makes screening potential job candidates costly. One could argue that higher quality

firms often have more resources and are able to screen more workers or receive

better applications on average due to their good reputation. However, even if some

firms are able to screen more workers, they still face the strategic uncertainty that

we study in this paper: They do not know whether a specific worker has also been

screened by a higher-quality firm and may therefore reject an offer made to her.

Screening more skilled workers on average is ceteris paribus beneficial for a firm,

but modeling this aspect would make the model much more complex. Moreoever,

it means that two different effects of higher firm quality on matching outcomes

would have to be disentangled. For this reason, the above extensions are left for

further research and are not addressed in this paper.

We assume that each worker can receive arbitrarily many offers. Each worker

then looks at all the offers and chooses the firm with the highest quality. As

mentioned earlier, all unmatched firms and workers receive zero utility. Note that
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this assumption is how we model congestion in this paper. From a conceptual point

of view, congestion in the labor market arises primarily because single workers

hold multiple job offers at the same time and accepting or rejecting these offers is

time-consuming. Consequently, firms have an incentive to make their job offers to

workers who are likely to accept the offer, since a rejection leads to a lot of time

being wasted in the hiring process. We neglect the possibility of a second round

of offers, since this would not alter the strategic considerations of the firms and

would only make the model less tractable.

3.3.3 Strategies of the firms

The matching game can have multiple outcomes depending on the players’ behavior.

Since we assume that the workers always accept the offer of the highest quality

firm, only the firms can act strategically. We will examine the market outcomes for

two different types of strategies chosen by each firm. First, we consider the myopic

strategy, in which each firm always makes an offer to the screened worker with the

highest skill level.

Second, we study the Bayesian Nash equilibrium (BNE) strategy, in which each

firm makes the job offer decision based on its own quality and market thickness, as

well as the equilibrium strategies of the better firms. If the firm has the highest

possible quality, it will always make an offer to its best screened candidate, while

if its own rank among the firms falls, it might prefer to make an offer to a

lower ranked worker among the workers it screened. Since only the decisions (and

screens) of higher quality firms affect a firm’s assignment, a firm’s Bayesian Nash

equilibrium strategy need only be optimal given the strategies of the better firms.

The explanation for this is as follows: The highest quality firm will always make

an offer to its best screened worker because it can be sure that the offer will be

accepted (by assumption, firms observe both their own quality and the quality of

all the other firms in the market). The next best firm might also make an offer

to its highest screen, and this worker will always accept the offer unless she has

also received an offer from the best firm. In this sense, it is irrelevant to a firm

what the lower quality firms’ strategies are and its strategy only needs to be a best

response to all the higher quality firms’ strategies. We assume that any firm will

always make an offer to the higher screen whenever it is indifferent between making

an offer to its first or second screen. This makes the Bayesian Nash equilibrium

unique.
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3.4 An illustrative example

In this section, we illustrate the tradeoff that lower quality firms face in the hiring

process. To do this, we assume that there are two firms and four workers on the

market. It is common knowledge that firm 1 has a higher quality than firm 2.

Consequently, every worker who receives an offer from both firms will always accept

the offer from firm 1. The skill levels of the four workers are assumed to be 0.8, 0.6,

0.4 and 0.2. Note, however, that the firms do not know these specific values, but

learn about two of these four skill levels only after the screening process. Ex ante,

firms only know that each worker’s skill is uniformly distributed and independent

of the other workers’ skill levels. Firm 1 will always make an offer to the screened

worker with the higher skill level because it can be sure that this worker will accept

the offer. The optimal behavior of firm 2 is more complex. Let E(s1|s2) denote the

expected match value of firm 2 after it makes an offer to a worker with skill level

s1, based on the information that another worker with skill level s2 is also available

in the market. This second worker skill level corresponds to the second screen of

firm 2. Let us now derive the optimal behavior of firm 2 in the two following cases:

i) Firm 2 screened the workers with skills 0.8 and 0.6

ii) Firm 2 screened the workers with skills 0.6 and 0.4

In case i), firm 2 compares the two values E(0.8|0.6) and E(0.6|0.8). For this, it

has to consider the likelihood of firm 1 making an offer to either of the two screens.

As there are six ways to screen two workers out of four, these two values can be

computed as follows:

E(0.8|0.6) = 0.8 · P(Firm 1 makes no offer to worker 0.8)

= 0.8

(
P(Firm 1 did not screen worker 0.8)

+ P(Firm 1 screened 0.8 and a better worker)

)
= 0.8

(
3

6
+

2

6
· 0.2

)
=

4

5
· 3.4

6
=

13.6

30
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E(0.6|0.8) = 0.6 · P(Firm 1 makes no offer to worker 0.6)

= 0.6

(
P(Firm 1 did not screen worker 0.6)

+ P(Firm 1 screened 0.8 and 0.6)

+ P(Firm 1 screened 0.6 and a better worker, but not 0.8)

)
= 0.6

(
3

6
+

1

6
+

2

6
· 0.4

)
=

3

5
· 4.8

6
=

14.4

30

From the above, it can be seen that firm 2 should make an offer to the lower

screen 0.6 in this case. This is mainly due to the possibility that firm 1 might have

observed the same set of workers, in which case it would make an offer to the more

skilled worker and the worker with skill 0.6 would still be available to firm 2. Of

course, this consideration becomes relevant for firm 2 only if the difference in skill

levels between the two screens is relatively small.

In case ii), firm 2 will compare the following two values.

E(0.6|0.4) = 0.6

(
3

6
+

2

6
· 0.4

)
=

3

5
· 3.8

6
=

11.4

30

E(0.4|0.6) = 0.4

(
3

6
+

1

6
+

2

6
· 0.6

)
=

2

5
· 5.2

6
=

10.4

30

This shows that in this case, firm 2 will make its offer to the higher screen,

even though the possibility that firm 1 has screened the same set of workers still

exists. The intuitive reason for this is that there are two cases in which firm 1

could have screened the worker with skill 0.6 and one of the two other workers

whose skills firm 2 does not know. In these cases, the probability that the second

screened worker has a higher skill is 0.4 (while in the case above it was only 0.2),

which would result in firm 1 not making an offer to the worker with skill 0.6. This

example illustrates that firm 2 (or any firm that is not the highest quality firm)

must weigh the benefit of a higher acceptance probability for lower-skilled workers

against the potential skill difference it foregoes by not daring to make an offer to

the higher-skilled worker.
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3.5 Myopic Strategy: Analysis

In this section, we characterize the market outcome when firms are using the

myopic strategy. In particular, we compute the expected match values both for

firms and for workers, depending on their quality or skill level.

3.5.1 Expected match value for firms

We want to compute the expected match value for a firm, depending on the number

of firms N , the number of workers M and its own quality q. We denote this expected

match value by E[v(N,M, q)].

Lemma 3. The expected match value E[v(N,M, q)] of a firm with quality q on a

market with N firms using the myopic strategy and M workers is given by

E[v(N,M, q)] =
N−1∑
f=0

(1− q)fqN−1−f
(
N − 1

f

)∫ 1

0

2s̃2

((
M
2

)
− 1− (M − 2)s̃(

M
2

) )f

ds̃.

Proof. See Appendix A.

3.5.2 Expected match value for workers

Lemma 4. The expected match value E[vw(N,M, s)] of a worker with skill level s

on a market with N firms using the myopic strategy and M workers is

E[vw(N,M, s)] =
M−1∑
k=0

sk(1− s)M−1−k
(
M − 1

k

) N∑
i=1

i

i+ 1

(
N

i

)(
k(
M
2

))i(
1− k(

M
2

))N−i

.

Proof. See Appendix A.

3.6 Strategic Targeting: Bayesian Nash Equilib-

rium Analysis

In this section, we derive firms’ BNE strategies and compute their expected match

values in equilibrium.
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3.6.1 Notation and derivation of the BNE strategy

From now on, we denote by fi the firm that has the i-th highest quality of all firms.

The workers each firm screened are identified by their skill level and we denote the

pair of screens of firm fi by S i = (si,1, si,2) ∈ [0, 1]2. Without loss of generality, we

assume that si,1 > si,2 for all i (as the probability of two different workers having

the same skill level is zero). The action set of firm fi is given by Oi = {oi1, oi2},
with oij being the action of making an offer to screen si,j. A pure strategy of firm

fi is a mapping σi : [0, 1]2 → Oi and we denote by σ−i the vector of pure strategies

of all firms but firm fi.

Definition 8. For each firm fi and each of its screens si,j, we define the acceptance

indicator Ai
j ∈ {0, 1} of screen si,j following an offer of firm fi. This random

variable3 takes the value 1 when screen si,j would accept this offer from firm fi and

0 when she would not accept it.

With the help of these random variables Ai
j, it will be possible to compute

the expected match values of each firm. We will distinguish between the ex ante

expected match value (the firm knows its quality and its ranking among all firms,

but not the screened skill levels) and the interim expected match value (the firm

knows both its quality and its screened skill levels). We denote the interim expected

match value of firm fi following action oij and given its screens S i as well as

other firms’ strategies σ−i by V i
j (S i) := si,jE(Aij|S i, σ−i). In order to compute this

expected value, we need the following definitions.

Definition 9. For a given firm fi and one of its screens si,j, we denote by Fi,j =

{fc|c < i, si,j ∈ Sc} the set of all higher quality firms who also screened si,j.

Definition 10. For a given firm fi and one of its screens si,j, we associate an

event e with a partition of Fi,j ∪ {fi} in the following way:

e = {G1
i,j, ...,Gki,j},

where the Gmi,j are subsets of Fi,j ∪ {fi} defined by equivalence classes of the equiv-

alence relation fr ∼ fl ⇔ Sr = S l. Without loss of generality, we assume that

fi ∈ G1
i,j. This means that an event e is unique up to relabeling of the sets G2

i,j , ...,Gki,j.
The number k has to satisfy k ≤ min{i,M − 1}.

3The acceptance indicator is a random variable, since the screens of the other firms are
random from firm fi’s point of view.
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Intuitively, the sets Gmi,j are a partition of the firms up to fi that have screened

worker si,j according to their respective second screens.4 Those firms that have

the same second screen (meaning the screen different from si,j) are in the same

set Gmi,j ∈ e. We refer to one such event e as a competing firms’ alternative options

partition (CFAOP). These CFAOPs will be needed in a central proof later on. The

following example illustrates how these partitions can look like.

Example 2. Let us consider the firm f5 and one of its screens, e.g. s5,1. Two (out

of many more) possible events for this firm are given by e1 = {{f1, f3, f5}, {f2, f4}}
and e2 = {{f5}, {f2, f3}}. In the event e1, all firms f1 through f5 have screened the

worker s5,1, while firms f1, f3 and f5 have even screened the same second worker.

Firms f2 and f4 have also screened s5,1 and the same second worker, but this worker

is different from the second worker screened by firms f1, f3 and f5. In the event

e2, the worker s5,1 was screened by the firms f2, f3 and f5 (and potentially lower

quality firms, which is not relevant for firm f5). The second screen of firms f2 and

f3 is the same and different from the second screen of firm f5. Note that firm f1 or

f4 could potentially also have screened s5,2, the second screen of firm f5, but they

are not in this partition set as they have not screened s5,1 in the event e2.

Definition 11. For a set M, let E(M) be the set of all partitions of M.

With the above definitions and notations, we are ready to derive the interim

expected match value of a firm. As a first step, we compute the acceptance

probability of a certain worker following an offer from firm fi, conditional on its

pair of screens S i and the vector of other firms’ strategies σ−i.

Lemma 5. E(Aij|S i, σ−i) = P(Aij = 1|S i, σ−i) =

∑
M∈P({f1,...,fi−1})

[(
2

M

)|M|(
M − 2

M

)i−1−|M| ∑
e∈E(M∪{fi})

((
1

M − 1

)|G1
i,j |−1

·
(
M − 2

M − 1

)|M|+1−|G1
i,j | |e|∏

l=2

((
1

M − l

)|Gli,j |−1(
M − l − 1

M − l

)|M|+1−
∑l
h=1 |Ghi,j |

)

·
∏

fh∈G1
i,j\{fi}

1σh(Si)6=ohj

|e|∏
l=2

(∫ si,j

0

∏
fh∈Gli,j

1σh(si,j ,s)=oh2
ds+

∫ 1

si,j

∏
fh∈Gli,j

1σh(s,si,j)=oh1
ds

))]
4Note that we are abusing notation slightly by identifying a worker with her skill level. Again,

this should not lead to any confusion, since the probability that two workers have the same skill
level is zero.
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Proof. The idea of the proof is to consider all CFAOPs for firm fi and its screen

si,j and compute the expectation conditional on each specific CFAOP. In the above

notation, one CFAOP is an element of E(M∪ fi), forM being a set of better firms

than fi (in other words, M is an element of the power set P({f1, ..., fi−1})) that

have also screened worker si,j. The proof can be found in Appendix A.

Note that the formula derived in Lemma 5 depends only on the strategies of

firms that are better than firm fi. Hence, it is possible to iteratively derive each

firm’s BNE strategy in the following way: Firm f1 will always use the myopic

strategy as its BNE strategy, since this is clearly optimal for firm f1. For i ≥ 2,

Firm fi will choose strategy σi defined by σi(S i) = oi1 if and only if

si,1 · P(Ai1 = 1|S i, σ−i)︸ ︷︷ ︸
V i1 (Si)

≥ si,2 · P(Ai2 = 1|S i, σ−i)︸ ︷︷ ︸
V i2 (Si)

,

where the strategies σj of firms fj with j < i are given by the previously calculated

BNE strategies of these firms (and the strategies of the worse firms in σ−i have

no effect on the calculation). This implies that firm fi will choose σi(S i) = oi2

whenever the inequality does not hold. Here, we assume without loss of generality

that firm fi will make an offer to its first screen whenever the expected values from

both offers are equal (which happens with probability zero). Hence, we can define

the interim expected match value of firm fi given its screens S i (and given that all

firms use BNE strategies) by V̂ i(S i) = max{V i
1 (S i), V i

2 (S i)}.

Figure 3.1: BNE strategies of firms f2 and f3 for M = 5 workers
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Figure 3.1 shows the BNE strategies for firms f2 and f3 depending on their

screens in a setting with 5 workers. In these plots, an interesting pattern can be

observed. Firm f2 will make an offer to its second screen only if both screened

skill levels are close to each other. In these situations, firm f2 is afraid of facing

firm f1 as a competitor for the highly skilled worker s2,1. This also explains why

the dark area becomes wider for higher values of s2,1: In the cases where firm f1

screened s2,1, it becomes less likely that the second screen is better than s2,1, which

in turn makes it more likely that firm f1 makes an offer to s2,1. For firm f3, we

find two areas in which the firm prefers to make an offer to its second screen. The

upper area of those exists due to similar reasons as above. When both screens are

very high and close to each other, firm f3 is afraid to face either firm f1 or firm

f2 as a competitor. This is why it makes an offer to the second screen, since the

probability that this screen did not receive another offer is higher. Interestingly, for

many other configurations close to the diagonal, firm f3 makes an offer to its first

screen. Intuitively, this is because firm f3 asks itself how the better firms would

act if they observed the same set of workers as firm f3. In this bright region close

to the diagonal, firm f1 would (as always) make an offer to its first screen, while

firm f2 makes an offer to the second screen. Consequently, both workers could be

taken by a higher firm having screened the same two workers. This leads firm f3 to

making an offer to the higher screen, since this yields a higher match value in case

the worker did not receive an offer from a better firm. Close to the upper border

of the bright area of firm f2, firm f3 also prefers to make an offer to the lower

screen. This suggests that in this parameter region, firm f3 is particularly afraid of

competition from the part of firm f2 who makes its offer to the first screen there.

By making an offer to the second screen, firm f3 can at least make sure that firm

f2 does not take its job candidate away in cases where they screened the same set

of workers.

3.6.2 Ex ante expected match value of the firms

Starting from the interim expected match value of firm fi, we can derive its ex

ante expected match value by integrating the interim expected match value over

all possible combinations of screens si,1, si,2. We denote the ex ante expected match

value of firm fi by Vi and calculate it as follows:
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Vi =

∫ 1

0

2s1

∫ s1

0

V̂ i((s1, s2))ds2ds1,

as the distribution of the maximum of two independent and uniformly distributed

random variables on [0, 1] has density 2s. In order to compare these expected values

with firms’ expected values calculated in Section 3.5, we express these values in

terms of firms’ qualities and not their overall ranking among all firms. This will

also become useful when we compare them across different market thicknesses in

Section 3.7. We denote these expected values by V(N,M, q) and compute them

with the help of Vi, for different values of i:

V(N,M, q) =
N∑
i=1

(1− q)i−1qN−i
(
N − 1

i− 1

)
Vi.

We will use this formula in Section 3.7 to study the impact of market thickness

on market outcomes in congested markets.
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Figure 3.2: Relative difference in expected match values between BNE and myopic
strategy

Figure 3.2 shows the relative difference in expected match values for a firm

using the BNE strategy instead of the myopic strategy. More concretely, Figure 3.2

plots the values V(N,M,q)−E[v(N,M,q)]
E[v(N,M,q)]

for different market configurations N,M and

different firm qualities q. It shows that the benefit of using the BNE strategy is

greater when the ratio of workers to firms is lower. This is intuitive, as it happens

more often that a better firm takes away a good worker when the total number

of workers is smaller. Another observation is that the relative advantage of the
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BNE strategy over the myopic strategy is a lot bigger for firms with lower quality

than for firms with a high quality. This is because high quality firms face less

competition from better firms and making an offer to their best screen is less often

a mistake. For low quality firms, it is more relevant to be strategic in their offering

decisions, since the potential number of competing firms is higher.

3.6.3 Ex ante expected match values of the workers

We end this section by deriving the workers’ ex ante expected match value

Vw(N,M, s) depending on the number of firms N , number of workers M and

their own skill level s. As a first step, note that the i-th highest quality firm has an

expected quality of N+1−i
N+1

as all firm qualities are drawn independently from the

uniform distribution on [0, 1]. A worker will be matched to the i-th highest quality

firm if and only if this firm made an offer to her and all higher quality firms did not

make an offer to her. As these events are independent from an ex ante perspective

(before the firms’ screens are determined), we only need to derive the ex ante

probability that the i-th highest quality firm makes an offer to a worker with skill

s. Let us denote this probability by p(i, s). Note that there are
(
M−1

1

)
= M − 1 out

of
(
M
2

)
= M(M−1)

2
cases in which the worker with skill s and one random additional

worker are screened by firm fi. The firm’s BNE strategy σi determines for which

skill values of the additional worker it will make an offer to the worker with skill s.

As M−1
M(M−1)

2

= 2
M

, the workers’ ex ante expected match value when firms are using

BNE strategies can be computed as follows:

Vw(N,M, s) =
N∑
i=1

N + 1− i
N + 1

p(i, s)
i−1∏
j=1

(1− p(j, s)),

with p(i, s) =
2

M

(∫ s

0

1{σi(s,t)=oi1}dt+

∫ 1

s

1{σi(t,s)=oi2}dt

)
.

3.7 Impact of Market Thickness: Comparative

Statics

In this section, we study how a change in market thickness affects good or bad

firms as well as good or bad workers in different ways. To do so, we assume that

the number of firms changes from N to nN while the number of workers changes

from M to nM , for a natural number n > 1. This leaves the ratio of firms to
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workers unchanged while adding more participants to both sides of the market.

We will compare how firms’ ex ante match values following the myopic or the

BNE strategy (E[v(N,M, q)] and V(N,M, q), respectively) react to these changes,

depending on a firm’s quality q. Likewise, we will conduct the same analyses for

workers and their associated match values. We will use the expected match values

and equilibrium strategies characterized in Sections 3.5 and 3.6. However, since

these terms consist of large sums and the BNE strategy of a firm depends on all

better firms’ strategies, obtaining an analytical solution to our comparative statics

questions is not feasible. This is why in this section, we will show illustrations for

specific market configurations and provide analytical results that yield an intuition

for why these findings are expected to hold more broadly. The Python code used to

generate all the figures can be found under https://github.com/mgramb/congestion-

thickness.
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Figure 3.3: Expected match values when firms are using the myopic strategy

Figure 3.3 illustrates the implications of a higher market thickness when firms
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are using the myopic strategy by showing three different market configurations.

As can be seen in Figure 3.3a, an increase in n will always decrease the expected

match value for a firm with given quality q. The reason for this is that the match

value only depends on the (potential) number of better firms who make an offer

to its first screened worker. When market thickness goes up, the probability of

higher quality firms entering the market increases as well. At the same time, the

probability that a single better firm has the same top-screened worker goes down

due to the higher number of workers. However, as the match value is zero when

there is only one better firm who makes an offer to the first screen, the negative

effect of having more potential competitors outweighs the positive effect of an

increased number of workers. The above effect is stronger for lower quality firms,

since in expectation more entering firms will have a higher quality than them.

Figure 3.3b shows a different pattern for workers. Less skilled workers benefit

from a thicker market (see Figure 3.3c). The reason is that they are more likely

to be the top-screened worker of some firm and get an offer, since there are more

firms and more potentially worse workers on the market. Highly skilled workers

are losing when the market thickness goes up (see Figure 3.3d). The main reason

for this is the following result.

Proposition 3. A worker’s probability of not being screened by any firm is in-

creasing in market thickness n for all n ≥ 1.

Proof. See Appendix A.

Proposition 3 explains why the expected match value of highly skilled workers

goes down with an increase in market thickness when firms use myopic strategies:

When these workers are screened by at least one firm, they often are the first-

screened worker and get an offer due to their high skill level. When they are not

screened by any firm, however, their match value is zero. Since the probability of

this event increases in market thickness by Proposition 3, a higher market thickness

is more disadvantageous for highly skilled workers.

When firms use BNE strategies, the impact of a thicker market is qualitatively

the same as when myopic strategies are used. The effects on market participants’

match values are illustrated in Figure 3.4.

The main reason why good workers suffer from a thicker market (see Figure

3.4d) is the same as when firms use the myopic strategy: The probability of not

being screened by any firm increases with a thicker market. For low-skill workers
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Figure 3.4: Expected match values when firms are using BNE strategies

(see Figure 3.4c), there is an additional reason for why they benefit from thicker

markets when firms use BNE strategies. As firms take their own quality into account

in their offering choice, some firms might make an offer to a low-skill worker simply

because they are afraid of too much competition for their higher screen (caused by

more better firms on average due to higher market thickness). This means that

low-skill workers sometimes receive offers that they would not have received under

myopic strategies.

We now present a limit result that justifies the trends in firms’ match values in

Figure 3.3a and Figure 3.4a.

Proposition 4. For a given firm with quality q and a given market configuration

with N firms and M workers, the probability of having no overlap in screened

workers with any better firm (meaning that the intersections of the respective sets

S i are empty) converges to the number e−4(1−q) N
M as market thickness n goes to

infinity.
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Proof. See Appendix A.

When there are many firms on the market, a single firm’s match value depends

to a large extent on the probability that is has no overlap in screened workers

with higher firms. If this is the case, both screens would accept an offer from that

firm. If, on the other hand, many better firms have at least one screen in common

with the firm, the probability of either screen accepting a job offer is very low.

Proposition 4 shows that this probability of having an empty overlap in screened

workers with any better firm converges to a non-zero number for all firm qualities

q and market configurations N,M . This number is increasing in q, which is natural

as there are in expectation fewer better firms the higher the own quality q. The

second implication of this convergence result is that firms’ expected match values

are bounded from below by the value 2
3
e−4(1−q) N

M , as 2
3

is the expected skill of the

highest of two screens drawn from a uniform distribution on [0, 1].5 This explains

why the differences in expected match values for a given firm quality q become

smaller the larger the market thickness n. The market configurations in Figures

3.3 and 3.4 are such that M = 2N , so the graph of 2
3
e−2(1−q) was added to Figures

3.3a and 3.4a.

Lastly, we study who would benefit from a centralized market and how this

depends on market thickness. With a centralization of the market, we mean the

creation of a central authority which is in charge of screening all the workers’ values

and making matches according to the preferences of all market participants. This

would result in assortative matching in the sense that the best firm is matched to

the best worker, the second-best firm is matched to the second-best worker, and so

on.6

The main results of this analysis are illustrated in Figure 3.5. In this figure,

it is assumed that firms use BNE strategies in the decentralized market. We see

that all firms and the highly skilled workers would benefit from a centralized

market while worse workers would lose. This is intuitive, since worse workers

benefit from the random screening process in a congested decentralized market.

Since screening is random, they are sometimes the best screened worker of a firm,

even though their skill level is low compared to the average in the population.

Moreover, firms are facing uncertainty about the number of better firms competing

5This implies that a firm using the myopic strategy guarantees itself an expected match value
of at least 2

3e
−4(1−q) NM in the limit n→∞.

6Such an assortative matching might be welfare-enhancing when there are complementarities
in firms’ qualities and workers’ skills.
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Figure 3.5: Assortative matching for firms and workers

for their screened workers on the decentralized market. Both of this implies that

bad workers can sometimes be matched on a decentralized congested market, but

never on a centralized market with assortative matching (where they do not belong

to the best N among M workers).

The following lemma establishes a limit result that justifies the shape of workers’

match values in Figure 3.5.

Lemma 6. In the limit as n→∞, a worker’s probability of being matched under

assortative matching in a market with nN firms and nM workers converges to 1 if

the worker skill s satisfies s > 1− N
M

and it converges to 0 for s < 1− N
M

.

Proof. See Appendix A.

Lemma 6 implies that the workers’ expected match values as a function of s in

the limit as n→∞ can be described by a function that is zero for all s < 1− N
M

and a linear function (connecting (1 − N
M
, 0) and (1, N−1

N
)) for s ≥ 1 − N

M
. A

tendency toward a function of this type (with N
M

= 1
2
) can already be seen in the

two dashed lines representing worker values under assortative matching in Figure

3.5.

3.8 Conclusion

In this paper, we have studied a labor market with heterogeneous firms and workers.

We find that it pays for (especially low-quality) firms to be strategic in the hiring

process. Specifically, it is sometimes optimal for these firms to make an offer to

a worker with a low skill level, even though they also screened another worker
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with a higher skill level. We derived the Bayesian Nash equilibrium strategies

for each firm and examined how the expected match values of firms and workers

change in response to a change in market thickness. As the market becomes thicker,

all firms and good workers lose as the problems created by congestion in the

decentralized matching market become larger. Bad workers benefit from thicker

markets because they are hired more frequently than in thinner markets. The

results have implications on policy measures, as market thickness can be regulated,

allowing policy makers to make more or less skilled people relatively better or

worse off, depending on their policy goals.

We also found that in a decentralized labor market with more workers than

vacancies, all firms and the good workers would support a centralization of the

market with a resulting assortative matching. These market participants are

typically more numerous and might have a stronger lobby (cf. Friedman and

Friedman (1980, 216–17)) than the bad workers who are in favor of decentralized

congested markets. This explains why many thick markets in various countries,

cities and institutions have been centralized over the years.
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Appendix

A Proofs

Proof of Lemma 3. Of course, the expected value depends on several factors:

• among the N firms, the number f of firms with a higher quality than q

• the number of workers M

• the skill level s̃ of the highest screened worker

We will now first compute the expected value of a match assuming that these

variables are given and subsequently take the expectation over each of the possible

realizations of these variables.

E[v(N,M, q)|s̃, f ] = s̃(1− p̃(M, s̃))f ,

where p̃(M, s̃) is the probability that a firm with higher quality (if existent) has

the same top-screened worker. This probability naturally depends on M and s̃ as

well. Since M ≥ 3 by assumption, we can compute p̃(M, s̃) as follows:

p̃(M, s̃) =
1 +

(
M−2

1

)
s̃(

M
2

) =
1 + (M − 2)s̃(

M
2

) .

This leads to E[v(N,M, q)|s̃, f ] = s̃

(
(M2 )−1−(M−2)s̃

(M2 )

)f
. We will now iteratively use

these conditional expectations to compute new conditional expectations based on

less variables.

E[v(N,M, q)|f ] =

∫ 1

0

E[v(N,M, q)|s̃, f ]ρ(s̃)ds̃, (1)

with ρ(s̃) = 2s̃ being the density of the maximum of two screens,

E[v(N,M, q)] =
N−1∑
f=0

(1− q)fqN−1−f
(
N − 1

f

)
E[v(N,M, q)|f ]. (2)
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Finally, plugging in the value given for E[v(N,M, q)|f ] in (1) into equation (2)

yields the desired result.

Proof of Lemma 4. The expected match value of a worker with skill level s, given

N and M , depends (directly or indirectly) on the following variables:

• the number i of firms that rank the worker first

• the number k of workers (among the M − 1 remaining ones) that have a

worse skill level

In the following, we will first determine the expectation assuming that both of

those values are known and then iteratively determine the expectation conditional

on less variables.

E[vw(N,M, s)|i, k] =
i

i+ 1
,

as this is the expectation for the highest of i i.i.d. random variables that are

uniformly distributed on [0, 1]. Next, we need the number P(w, k) = P(a particular

worker is the top-screened worker of a firm, given there are w other workers among

which k workers are worse than him). This probability is zero when there are three

or more workers in total (note that M ≥ 3 by assumption) and the worker is

the worst (w ≥ 2, k = 0). Furthermore, when there is at least one worse worker

(w ≥ 2, k ≥ 1), the probability is given by P(w, k) = k

(w+1
2 )

as the firm needs to

have screened him as well as one worse worker for him to be top-screened. All in

all, we obtain P(w, k) = k

(w+1
2 )

in both cases. Using this, we can iteratively take

the expectation over i and k.

E[vw(N,M, s)|k] =
N∑
i=1

i

i+ 1
P(M − 1, k)i(1− P(M − 1, k))N−i

(
N

i

)

=
N∑
i=1

i

i+ 1

(
k(
M
2

))i(
1− k(

M
2

))N−i(
N

i

)
,

E[vw(N,M, s)] =
M−1∑
k=0

sk(1− s)M−1−k
(
M − 1

k

)
E[vw(N,M, s)|k].

Putting all of the above formulas together yields the desired result.
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Proof of Lemma 5. Note that E(Aij|S i, σ−i) = P(Aij = 1|S i, σ−i). According to the

law of total probability, this value is equal to

∑
M∈P({f1,...,fi−1})

P(Fi,j =M)
∑

e∈E(M∪{fi})

P(e|Fi,j =M) · P(Aij = 1|S i, σ−i, e).

In this formula, the setsM are all the possible configurations of firms with a higher

quality than firm fi that could have screened si,j . We then calculate the probability

of every possible event conditional on each specific configuration as well as the

desired probability conditional on the event. The factors in the above formula are

further computed below.

P(Fi,j =M) =

(
M − 1(

M
2

) )|M|(M − 2

M

)i−1−|M|

=

(
2

M

)|M|(
M − 2

M

)i−1−|M|

P(e|Fi,j =M) = P(G1
i,j|Fi,j =M)Π

|e|
l=2P(Gli,j|Fi,j =M,G1

i,j, . . . ,Gl−1
i,j )

P(G1
i,j|Fi,j =M) =

(
1

M − 1

)|G1
i,j |−1(

M − 2

M − 1

)|M|+1−|G1
i,j |

P(Gli,j|Fi,j =M,G1
i,j, . . . ,Gl−1

i,j ) =

(
1

M − l

)|Gli,j |−1(
M − l − 1

M − l

)|M|+1−
∑l
h=1 |Ghi,j |

P(Aij = 1|S i, σ−i, e) =

 ∏
fh∈G1

i,j\{fi}

1σh(Si) 6=ohj

 |e|∏
l=2

(∫ si,j

0

∏
fh∈Gli,j

1σh(si,j ,s)=oh2
ds

+

∫ 1

si,j

∏
fh∈Gli,j

1σh(s,si,j)=oh1
ds

)

Putting all the above formulas together yields the desired result.7

Proof of Proposition 3. Let us denote by P (N,M) the probability that a given

worker is not screened by any firm on a market with N firms and M workers. We

compute

P (N,M) =

((
M−1

2

)(
M
2

) )N

=

(
M − 2

M

)N
=

(
1− 2

M

)N
,

which directly implies that P (nN, nM) =
(
1− 2

nM

)nN
. Even though n is supposed

7Here, we would have to be careful if we allowed M = N , because for M workers, only M − 1
partition elements are possible.
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to be a natural number, let us take the partial derivative of this term with respect

to n in order to see when it is increasing in n.

∂P (nN, nM)

∂n
> 0

⇔2 + ln

(
1− 2

nM

)
(nM − 2) > 0

As the last inequality is always satisfied for nM ≥ 3 and we have M ≥ 3 by

assumption, we conclude that P (nN, nM) is increasing in n for all n ≥ 1.

Proof of Proposition 4. We first want to derive the probability to have an empty

overlap with all better firms, for a given firm quality q, number of workers M and

number of firms N . Let us denote this probability by P(N,M, q). The second step

will be to compute limn→∞ P(Nn,Mn, q). To start with the first step, we compute

the probability to have an empty overlap in screened workers with one specific firm.

Since the screens of each firm are random, this probability only depends on the

total number of workers M and we denote it by p̃(M). The empty overlap happens

exactly when the second firm has not screened any of the two workers screened by

the first firm. Hence,

p̃(M) =

(
M−2

2

)(
M
2

) =
(M − 2)(M − 3)

M(M − 1)
.

From this, we fix a firm quality q and compute P(N,M, q) as follows:

P(N,M, q) =
N−1∑
i=0

P(i firms have quality higher than q)p̃(M)i

=
N−1∑
i=0

(1− q)iqN−1−i
(
N − 1

i

)
p̃(M)i = (q + (1− q)p̃(M))N−1

Before we compute the limit in question, it makes sense to note that

(Mn− 2)(Mn− 3) = (Mn− 2)((Mn− 1)− 2) = Mn(Mn− 1)− 2(2Mn− 1) + 4.

(3)
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lim
n→∞

P(nN, nM, q) = lim
n→∞

(q + (1− q)p̃(Mn))Nn−1

= lim
n→∞

(
q + (1− q)(Mn− 2)(Mn− 3)

(Mn− 1)Mn

)Nn
· lim
n→∞

(
q + (1− q)(Mn− 2)(Mn− 3)

(Mn− 1)Mn

)−1

= lim
n→∞

(
q + (1− q)(1− 2(2Mn− 1)

(Mn− 1)Mn
+

4

(Mn− 1)Mn
)

)Nn
(4)

= lim
n→∞

(
1 + (1− q)(−2(2Mn− 1)

(Mn− 1)Mn
+

4

(Mn− 1)Mn
)

)Nn
=

(
lim
n→∞

(
1 +

(1− q)−4
M

n

)n)N
(5)

=
(
e(1−q)−4

M

)N
= e−4(1−q) N

M

In the above calculation, (4) is due to (3) and (5) follows because −4Mn
(Mn−1)Mn

behaves asymptotically like −4
Mn

(and 2+4
(Mn−1)Mn

vanishes in the limit). This concludes

the proof.

Proof of Lemma 6. Let us consider a worker with skill s on a market with nN

firms and nM workers. Under assortative matching, this worker will be matched if

and only if he is more skilled than the nN−th highest skilled worker among the

nM − 1 remaining workers. As all the worker skills are uniformly distributed, his

skill must be higher than the n(M −N)−th order statistic of nM − 1 independent

uniformly distributed random variables. This value follows a Beta(n(M −N), nN)-

distribution (see e.g. Gentle (2009, 63)). Its mean is n(M−N)
n(M−N)+nN

= 1− nN
nM

= 1− N
M

and the variance is n(M−N)Nn
(Mn)2(Mn+1)

. This variance converges to zero as n → ∞, so

the original probability converges to 1 if s > 1− N
M

, while it converges to zero if

s < 1− N
M

. This concludes the proof.
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Chapter 4

Anonymous or personal?

A simple model of repeated

personalized advice∗

joint with Christoph Schottmüller

4.1 Introduction

In many situations, consumers ask better-informed experts to guide their choices.

This happens even in situations where experts may have preferences over consumer

choices that do not match the consumers’ preferences, and it happens even in

situations where it is difficult for the consumer to accurately articulate his exact

preferences. For example, a consumer might ask his bank’s employees for financial

advice. The bank employee typically receives a bonus if the consumer purchases a

particular investment product and often different investment products result in

different bonuses for the adviser. There is no reason to believe that the product with

the highest bonus is also the one best suited for the consumer. Similar situations

occur in other retail sectors, such as consumer electronics or even cars.

Another example is internet search. A consumer enters a search term and

relies on the search engine’s response. Since some links are sponsored, there is an

incentive for the search engine to emphasize the sponsored links more than links

that better fit the consumer’s needs but are not sponsored. A third example would

be a minister (or manager) asking a civil servant (subordinate) to draft a particular

∗We gratefully acknowledge the financial support of the Center for Social and Economic
Behavior (C-SEB) of the University of Cologne.
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legislative act or decree. Even if the civil servant has no policy preferences of his

own, he might be aware that a similar draft has already been written under a

previous government and that handing that old draft to the minister would save

him a lot of time and effort. Again, this old draft is unlikely to do exactly what the

minister wanted to accomplish. As a final example, consider a physician-patient

relationship. The patient describes his symptoms and the physician prescribes

a medication. Given the lobbying efforts of the pharmaceutical companies, it is

quite possible that the physician has a preference for a certain drug company or

pharmaceutical product.

What do these examples have in common? A consumer asks an expert to help

him make a choice, although he cannot be sure what the expert’s preferences are.

In none of the examples is there a direct payment from the consumer to the expert,

which means that the consumer has little ability to provide the expert with the

right incentives. Furthermore, the consumer’s communication of his preferences

is complicated (due to the complicated nature of the issue and the consumer’s

ignorance that leads him to seek advice in the first place) and the expert’s task

is difficult. In other words, even if the expert tried to help the consumer as best

he could, there would be some likelihood of misunderstanding and error. In a

static one-shot game, we should not expect useful advice in any of these situations:

By the one-shot nature, an expert would optimally recommend the alternative

that earns him the (highest) bonus, since the consumer has no way to punish

this behavior. Knowing this, the consumer would then not even ask for advice as

the recommendation would not be consistent with his preferences. However, the

above examples do not usually resemble a one-shot game. Consumers repeatedly

consult the same financial adviser, use the same search engine, work with the same

subordinates or visit the same physician. Repeated interaction – one could call

it “relationship building” – has two interesting features: First, it is well known in

game theory that cooperative behavior can be sustained in repeated interactions,

even if this behavior cannot be sustained in a static one-shot game. Therefore,

meaningful advice might be possible because of the repeated nature of the advice

situation. Second, the adviser could learn to interpret the consumer’s wishes. That

is, the adviser’s ability to give fitting recommendations is likely to improve over

time. This is because both the adviser and the consumer can observe how previous

recommendations have played out, such as whether the consumer was satisfied

with the product purchased (or tried to return it), whether the consumer clicked
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on the recommended link (and stayed on the website or subsequently purchased

something there), whether the draft was pushed forward or discarded or whether

the patient was cured. The success or failure of the recommendation can be used

to learn how to interpret future requests from the consumer.

It should be noted that the learning we have in mind is relationship-specific.

In particular, prior learning would be of little use to the consumer if he decides

to switch experts. Although the consumer might also learn how to express his

wishes to some extent, most of the learning seems to be on the expert’s side. This

paper therefore focuses on a setting where only the expert learns, and attempts

to answer several questions. The most basic question is whether an equilibrium

with meaningful advice is possible. The answer, unsurprisingly, is yes. The expert

will give partially useful advice in equilibrium because the consumer threatens to

end the relationship (and therefore the expert’s opportunity to collect bonuses)

if he receives bad advice for a number of periods. The key question is whether

the consumer will benefit from the expert’s learning. This is unclear because

the consumer’s outside option is not affected by the expert’s learning, i.e. the

expert could counteract his improved ability to give the right recommendation by

recommending the product for which he receives a bonus more often. It is shown

that – under certain conditions – the consumer in a certain class of simple equilibria

nevertheless benefits. The reason for this is a value effect. The more the expert

learns about the consumer, the more valuable the consumer is to the expert in the

sense that the expected discounted bonus stream from that consumer is higher.

The expert will lose more if the consumer ends the relationship and is therefore

more inclined to give good advice to avoid exactly that. This leads to a testable

prediction: The probability that a relationship will end now given that it has not

already ended is lower the longer the relationship lasts.1

The result that consumers benefit from expert learning provides a natural

explanation for a puzzle that has emerged in the literature on privacy. People do

not take even simple measures to anonymize their online activities. For example,

most users use a search engine like Google directly, rather than using an anonymized

service that redirects their search queries through another server before forwarding

them to Google (and thus anonymizing them).2 Privacy advocates emphasize that

1More precisely, the probability that the relationship will end this period is lower than it was
m periods ago, where m ∈ N is a number defined by the consumer’s equilibrium strategy.

2There are many easy-to-use services of this type, such as https://www.startpage.com or
https://www.privatesearch.io.
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the more information the search engine has about a user, the greater the potential

for exploitation (a simple exploitation method would be to display more sponsored

links). The model shows that this is not the only effect. Due to the value effect,

consumers also benefit from the search engine’s learning. Staying anonymous can

lead to lower consumer surplus in the model of this paper. This also explains why

consumers might prefer to get advice from the same person, such as having the

same financial adviser at their bank whenever they go there, or staying with the

same physician instead of switching every time they fall ill.

The rest of this paper is organized as follows: Section 4.2 discusses related

literature. Section 4.3 presents the model and the analysis is performed in Section

4.4. Section 4.5 deals with welfare and anonymization. Most proofs of our theoretical

results can be found in Appendix A. To compare our theoretical findings with

real-world behavior, we conducted a laboratory experiment. The key results from

this experiment are reported in Section 4.6. Section 4.7 discusses the results of this

paper, Section 4.8 concludes.

4.2 Related literature

The consumer-expert relationship we study can be reinterpreted as a relationship

between a principal and a noisily informed agent. In this sense, our work is naturally

related to the cheap talk literature started by Crawford and Sobel (1982) and

surveyed in Sobel (2013) and Blume et al. (2020). The fact that repeated interaction

can be beneficial despite the lack of commitment is reminiscent of the literature

on relational contracting started by Bengt Holmstrom (Holmström, 1978, 1982).

There are two notable differences. First, most of the cheap talk literature is either

static or deals with reputation concerns (Sobel, 1985; Benabou and Laroque, 1992;

Park, 2005). Reputation issues are not addressed in the context of this paper but

are addressed in Schottmüller (2019), where a similar model is used, but it does

not allow for learning by the expert. Second, and more importantly, the cheap

talk literature deals with a different misalignment of preferences. Typically, there

is a one-dimensional decision and the expert is biased in one direction, e.g. he

prefers slightly higher decisions than the decision maker. The structure here is

different because the expert simply has a preferred option that is independent

of the consumer’s optimal option. One implication of this structure is that no
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meaningful advice is possible in a static setting, whereas this is obviously not the

case in the cheap talk literature.

Li et al. (2017) analyze a repeated games setting in which the expert’s and the

principal’s preferred projects are always distinct but the principal’s project does

not always exist. Moreover, there is always a default option that yields zero for

all, and a disastrous project that yields −∞ for all. Only the expert observes the

identity of the projects, can communicate them and they are implemented if both

expert and principal put effort into the same project. Our paper differs in two ways:

First, both the expert’s and the consumer’s preferred option always exist and they

can be equal. Second, the expert is not perfectly informed about the consumer’s

preferred option, but he receives a signal whose quality may increase over time.

The setting in Lipnowski and Ramos (2020) is probably closest to ours, since

there the principal decides in each period whether to freeze the projects or delegate

the project decision to the expert. The expert observes the quality of the project

(high or low) and then decides whether to implement it or nothing, but the principal

never learns the quality of the project. They study an intertemporal delegation

rule to create incentives for the agent/expert and find that the agent represents

the principal’s interests only if dynamic incentives are provided. Our setting differs

as (i) the agent has only noisy information and (ii) the principal does not “pause”

the expert but fires him when he is dissatisfied with his advice. Furthermore, we

focus on welfare dynamics in a class of simple equilibria.

Another related strand of literature is that on consumer protection in financial

advice (Inderst and Ottaviani, 2012a,b, 2009). In these papers, the financial adviser

is not only concerned with getting his bonus but also with the suitability of his

advice. They focus on policy interventions that provide the adviser with the right

incentives or payment schemes depending on whether consumers know the adviser

is biased or not. In our framework, the expert is exclusively paid by his bonus and

only cares indirectly about the suitability of his advice as the consumer threatens

to leave him after receiving bad advice. Moreover, we model the improvement of

the signal technology over time, while Inderst and Ottaviani mostly assume an

exogenous and static signal.

An important application of our paper is search engines. Previous work on

this market has focused mainly on ad pricing and auctioning (Edelman et al.,

2007; Edelman and Schwarz, 2010; Eliaz and Spiegler, 2011) while we focus on the

strategic interaction of search engine and user. More closely related is the literature
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on privacy in the context of search engines. Computer science has provided ways to

enable fully anonymous search through encryption even when the provider has no

commitment power, see Byers et al. (2004) and Çetin et al. (2016). However, results

on the benefits of personalization in internet search are ambiguous. On the one

hand, already Spiekermann et al. (2001) argue that people value privacy protection

but are not able to take the necessary means to meet this privacy protection goal.

In the same vein, Acquisti et al. (2015) have demonstrated that people are unsure

how to protect their data and what parts of their data are used for what purpose.

They conclude that privacy protection should be regulated because näıve people

will be harmed otherwise. We add to this literature by showing that even in the

absence of näıveté it is unclear whether a user should allow personalization or not.

In fact, users benefit from personalization in a certain class of simple equilibria.

Experimental evidence shows that users value privacy to some extent (Tsai et al.,

2011; Chellappa and Sin, 2005) and that sellers can benefit more than buyers from

personalization (Hillenbrand and Hippel, 2019). On the other hand, some authors

have shown that providing some personal data can benefit consumers, see Xu et al.

(2007); Zimmer (2008).

4.3 Model

The model is a dynamic game with infinite time horizon. In each period, there are

two options, one of which the consumer (C) must choose. One of the two options

fits C’s needs and therefore gives him a payoff of 1 while the other option gives

him a payoff of 0. C’s prior is that both options are equally likely to give him a

payoff of 1.

The expert (E) receives a private and noisy signal about which option fits

C’s needs. More precisely, E’s signal leads to a posterior in which one option

has probability pk > 1/2 to fit C’s needs and the other option has probability

1− pk < 1/2 to fit C’s needs. Without loss of generality we call the option that is

more likely to fit C’s needs option 1. The precision of E’s signal, pk, is an element

of a finite set P = {p1, p2, . . . , pn} with 1/2 < p1 < p2 < · · · < pn < 1. As E learns

about C’s needs over time, precision improves in the following way: Whenever

E recommends the option fitting C’s needs, precision improves from pk to pk+1

(unless pk = pn in which case precision remains unchanged).3

3The finiteness of P simplifies the exposition, but does not affect the results. As pi cannot
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The expert’s payoffs are as follows: In every period, E has a bonus option. That

is, E receives a bonus of 1 if he recommends this option to C while he receives a

payoff of 0 otherwise. Each option has ex ante the same probability of being the

bonus option and the identity of the bonus option is private information of E.4

The timing is as follows. In each period, E privately observes his signal and

the identity of his bonus option. Then E recommends an option to C. C follows

this recommendation and period payoffs realize. Both players observe whether the

recommendation fits C’s needs or not. Then, C decides whether to end or continue

the game. If C ends the game, C receives an outside option VO in the following

period while E receives no payoffs in all future periods. If C continues, another

period of the same game begins. Both players discount future payoffs with discount

factor δ ∈ (0, 1). Needs and bonus option are assumed to be independent of each

other and across periods.

In what follows, the word hit (miss) is used to denote the event that the

recommendation fits (does not fit) the consumer’s needs in a given period.

To make the problem interesting, C’s outside option should be neither too

attractive nor too unattractive. For example, VO should be lower than the value the

consumer would receive if he had a signal of precision pn. If this was not satisfied, C

would have the dominant strategy to end the relationship immediately. The outside

option should also not be too low. More precisely, we assume that VO is higher

than the value C gets when E recommends his bonus option in each period. If this

did not hold, there would be a unique perfect Bayesian equilibrium in which C

always continues and E always recommends his bonus option. These two conditions

are stated as
1/2

1− δ
< VO <

pn

1− δ
. (4.1)

Before turning to the players’ strategies, let us discuss some modeling choices.

We assume that the recommendation itself is payoff-relevant, i.e. E receives his bonus

if he recommends the bonus option and C receives his payoff if the recommendation

fits his needs. Put differently, there is no real decision by C whether or not to

follow the recommendation. This is not unreasonable because C has uniform beliefs

increase above 1, learning must eventually flatten out in the sense that precision has to converge
to an upper bound as i becomes large. Finiteness of P relieves us of the notationally burdensome
task of taking limits in certain proofs and allows us to use backward induction right away.

4Note that more options for the expert would only make the analysis more tedious without
really adding anything to the model, since the expert will only decide between his bonus option
and the option he considers most likely to be the fitting option for the consumer.
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and therefore cannot draw any inference from the recommendation itself about the

likelihood that the recommendation fits his needs. Given that C has continued in

the previous period and thereby asked for more advice, it seems logical to follow

that advice. That is, there is no reason in the model to first ask for advice and

then not follow it. It is also in line with certain applications, e.g. a consumer

using a search engine will typically not refuse to click on a recommended link and

most patients, as long as they can afford it, will take the prescribed medication.

It is assumed that at the end of a period both C and E observe whether the

given recommendation fitted the consumer’s needs. In the examples mentioned

earlier, this last assumption is reasonable: A salesperson will observe whether the

consumer tries to return the product, the civil servant will observe whether his

draft is pushed forward and the doctor will find out whether the patient recovers.

In the search engine example, the search engine observes whether the link was

clicked and – in the case of Google – to the extent that the target website uses

GoogleAnalytics, csi.gstatic, GoogleAdSense or a GooglePlus button, Google also

receives information about the user’s subsequent behavior on the target website.

Note that the model assumes independence at several points. First, the bonus

option is independent of the consumer’s needs. This is one of the main differences to

the cheap talk literature and appears naturally in the examples of the introduction.

Second, there is some temporal independence in the sense that the consumer’s

needs and the bonus options are drawn independently in each period. One way to

interpret this is that the requests of the consumer are unrelated, e.g. searching for

an Italian restaurant in one period and for news in another period in the search

engine example or suffering from different diseases in the patient-doctor example.

In the financial advice example, the market environment and the set of available

products may change from period to period.

As argued before, E gets to know the consumer better, so the precision of E’s

signal should increase over time. Depending on the application, the precision might

increase either after each interaction or after each hit or not at all. It seems realistic

that a fitting recommendation tells more about a consumer’s preferences than a

non-fitting one. The assumption made here is that the precision increases with the

number of past hits and that this increase is deterministic and commonly known by

C and E. That is, no learning happens after misses. The special case of no learning

at all will be analyzed later as a starting point.

It is worth noting that no meaningful advice would be possible if the game
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was not infinitely repeated. Let us consider the static case. E has no incentive

to recommend anything other than his bonus option. C therefore receives no

information about which option is more likely to fit his needs. A similar situation

emerges in a finitely repeated game. The static analysis applies to the last period.

Since there is no meaningful communication in the last period, C should end the

game after the penultimate period (regardless of history). Anticipating this, E will

optimally recommend his bonus option in the penultimate period, regardless of

what his signal is. Iterating this reasoning the game unravels and no meaningful

advice is possible in any period. In the infinitely repeated game, the situation

changes because future bonuses may motivate E to give truthful advice even if his

bonus option is option 2. As there is no last period, there is no period in which

these dynamic incentives break down.

What are the strategies of the players in this game? We assume that the players

base their decision only on observed, payoff-relevant information. That is, C’s

decision depends only on the sequence of hits and misses in the previous periods.5

E has to decide in each period which option to recommend. His decision depends

on his posterior belief, his bonus action and the history of hits and misses. In

principle, his decision could also depend on the history of bonus options, but this

possibility is neglected because his current and future payoffs do not depend on

this information (neither directly nor indirectly as C’s strategy cannot condition

on this information, which C has not observed).

In the following, we employ two commonly used equilibrium notions and compare

their outcomes. Both put further restrictions on strategies. First is the Markov

equilibrium, where strategies condition only on the actions and information of the

current period and a payoff-relevant state variable. The state variable is the current

precision pk. Consequently, E’s strategy is a function sE : P × {1, 2} → [0, 1] that

assigns a probability of recommending option 1 to every pk ∈ P and the identity

of the bonus option. C’s strategy is a function sC : P × {hit,miss} → [0, 1] that

assigns a probability of continuing the game to every pk ∈ P and the success of

this period’s recommendation.

The second notion of equilibrium is (an extension of) grim trigger. C continues

as long as the recommendations are hits. He ends the game if m consecutive

recommendations are misses for some m ∈ N. E plays a best response to this

5In principle, C observes the specific recommendations but since the option labels are not
observed by him, he is unable to condition his strategy on these labels.
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strategy. Of course, it remains to be shown that C’s grim trigger strategy is a best

response to E’s best response, but this turns out to be straightforward unless VO is

too high.

4.4 Analysis

In the following, we study two classes of simple equilibria and demonstrate the

welfare implications. In Markov equilibria, consumers do not benefit from learning.

The logic is that the consumer’s outside option does not improve when the expert

learns and consequently the expert will not be willing to leave him a higher surplus.

In a grim trigger equilibrium, we show that the consumer does benefit from the

expert’s learning. However, if we extend the grim trigger concept such that the

consumer does not quit after the first bad advice but after, say, two consecutive

bad advice, the consumer may even lose out (for some parameter values) due to

the expert’s learning.

4.4.1 Markov equilibrium

Note first that there is always a babbling Markov equilibrium. In this equilibrium,

E will always recommend his bonus option and C will always stop the game.

Clearly, these are mutually best responses given assumption (4.1). Therefore, the

interesting question is not whether a Markov equilibrium exists but whether a

Markov equilibrium with some information transmission exists. Before answering

this question in general, it is useful to analyze the case without learning where the

precision of E’s signal remains constant. If C does not stop the game beforehand,

this situation occurs after n− 1 hits in our model when E’s signal has precision pn.

4.4.1.1 Model without learning

Without learning, the state never changes and therefore a Markov strategy will only

condition on this period’s information/actions. That is, a strategy for E consists of

two probabilities of recommending option 1 if (i) it is the bonus option and (ii) it

is not. Similarly, a strategy of C consists of two probabilities of continuing: one in

case of a hit and one in case of a miss.

In equilibrium, the probability of continuing is (weakly) higher in case of a hit

than in case of a miss. Otherwise, E would have an incentive to give worst possible
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advice, i.e. to always recommend option 2 if it is the bonus option (and possibly

even if it is not) which, according to (4.1), automatically implies that C is better

off ending the game.

Since the probability of continuing the game is higher in case of a hit than

in case of a miss, it is optimal for E to recommend option 1 if option 1 is the

bonus option. In this case the incentives of C and E are aligned. E’s strategy can

therefore be reduced to a probability α of recommending option 1 when option 2 is

the bonus option.

While other equilibria can exist, we will focus on the case where C continues

with probability 1 in case of a hit. Note that this provides the greatest incentive

for E to be truthful. The restriction is not problematic: It is not hard to show

that whenever a non-babbling Markov equilibrium exists, there exists a Markov

equilibrium in which C continues with probability 1 in case of a hit. Furthermore,

this is the equilibrium that Pareto dominates all other Markov equilibria. Under

this constraint, C’s strategy is simply a probability β of continuing in case the

recommendation is a miss.

Denote E’s equilibrium value, i.e. his discounted expected payoff stream at the

start of a period (even before knowing the identity of the bonus option), by Π. If

option 2 is the bonus option, E prefers recommending option 1 if

pδΠ + (1− p)βδΠ ≥ 1 + pβδΠ + (1− p)δΠ

⇔ β ≤ (2p− 1)δΠ− 1

(2p− 1)δΠ
. (4.2)

Denote C’s equilibrium value by V and note that C is willing to continue only if

V ≥ VO. Since this is independent of whether the current period’s recommendation

was a hit or a miss and since C continues for sure after a hit, C must either continue

with probability 1 even after a miss, β = 1, or C must be indifferent, V = VO. The

former cannot happen in equilibrium: (4.2) cannot hold for β = 1 and E would

therefore always recommend his bonus option. However, by (4.1), C would then
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strictly prefer not to continue. Therefore, V = VO in equilibrium and consequently

α has to be such that6

VO =
1

2
p+

1

2
(αp+ (1− α)(1− p)) + δVO

⇔ α =
2(1− δ)VO − 1

2p− 1
. (4.3)

By (4.1), α ∈ (0, 1). Hence, in an informative Markov equilibrium, E uses a

mixed strategy and E is only willing to mix if (4.2) holds with equality. Given

these equilibrium strategies one can determine the equilibrium values and obtain

conditions for the existence of a non-babbling Markov equilibrium.

Proposition 5. A non-babbling Markov equilibrium in the model without learning

exists if and only if
1− δ
δ
≤ 4p− 3

2
. (4.4)

In such an equilibrium V = VO and Π > 0 and in the Pareto optimal Markov

equilibrium α is given by (4.3) and β = 1− 1/[(2p− 1)δΠ].

Note that condition (4.4) is more likely to be satisfied the higher p and δ are.

Moreover, it implies p ≥ 0.75, so the signal quality has to be quite high in order

to guarantee the existence of a Markov equilibrium. Intuitively, this makes sense

since the expert has to be incentivized to recommend option 1 in some cases even

when it is not his bonus option. This will happen when the expert is more patient

(high δ) or is reasonably sure to produce a hit (high p) in this case, such that the

next period will be reached with higher probability.

4.4.1.2 Model with learning

Also in the model with learning, it is straightforward to see that E will always

recommend option 1 when option 1 is the bonus option. As before, we will focus

on non-babbling Markov equilibria in which C continues for sure in case of a hit.

Strategies are therefore given by sets of probabilities {αk}k∈{1,...,n} and {βk}k∈{1,...,n}.
The players’ values, i.e. their expected discounted payoff streams at the start of a

period with precision pk, are denoted by Πk and V k. It follows from the previous

subsection that such an equilibrium can only exist if (4.4) holds (for p = pn). This

6As C is indifferent, we can determine his value V = VO by writing down the expected payoff
stream if he continued for sure this period.
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condition is necessary but not sufficient for the existence of a non-babbling Markov

equilibrium and is therefore generalized below.

The first step is to show that in no period E will recommend option 1 regardless

of the identity of the bonus option while C continues regardless of whether the

recommendation is a hit or a miss. While this property is not surprising, it is also

not straightforward: After all, recommending option 1 gives E a higher chance to

move to the next highest precision and in principle it would be possible for this to

motivate him to be truthful (if Πk+1 is sufficiently larger than Πk).

Lemma 7. In Markov equilibrium αk = βk = 1 cannot hold for any k because E’s

best response to βk = 1 is αk = 0.

Lemma 8. In every Markov equilibrium V k = VO for all k ∈ {1, 2, . . . , n}.

Lemma 8 implies E’s strategy in Markov equilibrium. If the game reaches

precision pk with positive probability in a Markov equilibrium, then E has to mix

such that C is indifferent between continuing and stopping. That is,

VO =
1

2
pk +

1

2

(
αkpk + (1− αk)(1− pk)

)
+ δVO

⇔ αk =
2(1− δ)VO − 1

2pk − 1
. (4.5)

Note that αk, as given by (4.5), is in (0, 1) by assumption (4.1). Consequently, E

must be indifferent between recommending either option if the bonus option is

option 2. This indifference condition determines βk:

1 + pkβkδΠk + (1− pk)δΠk+1 = 0 + pkδΠk+1 + (1− pk)βkδΠk

⇔ βk =
(2pk − 1)δΠk+1 − 1

(2pk − 1)δΠk
. (4.6)

Note that Πn is given by the stationary equilibrium value derived in the proof

of Proposition 5. From this, Πn−1 and βn−1 can be obtained and by backward

induction all other βk and Πk can also be obtained. A non-babbling Markov

equilibrium exists if all such obtained βk are in [0, 1]. The following proposition

gives a necessary and sufficient condition for exactly this.
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Proposition 6. A non-babbling Markov equilibrium in the model with learning

exists if and only if

δn−2

1− δ
4pn − 3

4pn − 2
+

n−3∑
k=0

δk
4pk+2 − 3

4pk+2 − 2
≥ 1

δ(2p1 − 1)
. (4.7)

In this Markov equilibrium, V k = VO and

Πk =
δn−k

1− δ
4pn − 3

4pn − 2
+

n−k−1∑
j=0

δj
4pj+k − 3

4pj+k − 2
(4.8)

for k ∈ {1, 2, . . . , n}, and αk and βk are given by (4.5) and (4.6), respectively.

4.4.2 Simple grim trigger strategies and m-equilibrium

Like most repeated games, the game described here has multiple perfect Bayesian

Nash equilibria. We will now focus on a class of equilibria in which C employs

the following particularly simple strategy: C continues the relationship unless the

past m ≥ 1 recommendations were misses. After m consecutive misses, C stops the

game and consumes his outside option. Since this strategy is somewhat similar to

the grim trigger strategies taught in introductory game theory, we will call this

strategy a simple grim trigger strategy of length m or m-strategy for short. A perfect

Bayesian Nash equilibrium in which C uses an m-strategy is called m-equilibrium.

When can an m-strategy be optimal for C? First, C must have a continuation

value of at least VO after any history that contains fewer than m consecutive

misses. Second, continuing after m misses must result in a continuation value of

at most VO. The latter can be easily achieved: According to (4.1), it is optimal

to end the game if E recommends his bonus option in all subsequent periods. In

an m-equilibrium, continuing after m or more misses is clearly off the equilibrium

path. Hence, the following off path beliefs of E will make this response optimal: If

C has continued after m misses before, then E believes that C will end the game in

the next period regardless of whether there is a miss or hit in the current period.

Given this belief, it is clearly optimal to recommend the bonus option now. This

implies that it is indeed optimal for C to end the game after m (or more) misses.

These off path beliefs are not ruled out by perfect Bayesian Nash equilibrium or

normal refinements.

Based on this off path construction, the following steps suffice to construct an
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m-equilibrium. First, derive E’s best response to C’s m-strategy. Second, verify

that C’s continuation value on the equilibrium path is at least VO. This implies

that C’s strategy is optimal as ending the game earlier always yields only VO.

What is E’s best response to an m-strategy? In a given period, E is always

tempted to recommend the bonus option in order to secure a payoff of 1. The

downside of this choice is that a miss is quite likely if the posterior belief that the

bonus action fits C’s needs is low. An additional miss brings E closer to the end

of the relationship, stopping the bonus stream forever and therefore leading to a

payoff of zero for E. It is immediate that E will always recommend option 1 if

option 1 is the bonus option.

We denote the value of the expected discounted bonus stream after t consecutive

misses, when the signal strength is pk, by Πk
t . After t− 1 consecutive misses, it is

optimal for E to recommend option 1 instead of the bonus option (in case the two

are not identical) if the following relation (4.9) holds.

pkδΠk
t + (1− pk)δΠk+1

0 + 1 ≤ pkδΠk+1
0 + (1− pk)δΠk

t (4.9)

⇔ 1

δ(2pk − 1)
≤ Πk+1

0 − Πk
t

Note that in an m-equilibrium Πk
m = 0. Consequently, E – for a given k – is most

inclined to give good advice after m − 1 misses. The following lemma verifies a

more general result: Πk
t is decreasing in the number of misses t which implies

that E becomes more eager to give good advice as the number of misses increases.

Furthermore, E benefits from learning in the sense that Πk
0 is increasing in k.

Lemma 9. In every m-equilibrium, Πk
0 is increasing in k and Πk

t is decreasing in

t.

Lemma 9 has a direct implication for E’s strategy in an m-equilibrium: As Πk
t

is decreasing in t, (4.9) is more likely to be satisfied for higher t (fixing k). Thus,

for a given precision pk, E will recommend the bonus option if t is low and option

1 if t is sufficiently high (in case the two do not coincide). This result is stated as a

corollary for further reference.

Corollary 1. In every m-equilibrium, E uses a precision dependent cutoff strategy.

That is, E recommends the bonus option if the number of consecutive misses t

with signal strength pk is strictly below some threshold lk ∈ {0, 1, . . . ,m} and

recommends option 1 otherwise.
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Note that both the case lk = 0, corresponding to E always recommending option

1, and the case lk = m, corresponding to always recommending the bonus option, are

allowed. For t ≥ lk, E’s value can be written as Πk
t = 1/2+pkδΠk+1

0 +
(
1− pk

)
δΠk

t+1.

Keeping in mind that Πk
m = 0 in an m-equilibrium, backward induction gives for

t ∈ {lk, . . . ,m− 1}

Πk
t =

m−t−1∑
j=0

δj
(

1

2
(1− pk)j + pk(1− pk)jδΠk+1

0

)
. (4.10)

For t < lk, E’s value is Πk
t = 1 + δΠk+1

0 /2 + δΠk
t+1/2. Using the expression for

t ≥ lk above, iterating backwards yields for t < lk

Πk
t =

lk−t−1∑
j=0

δj

((
1

2

)j
+

(
1

2

)j+1

δΠk+1
0

)
+
m−lk−1∑
j=0

(
δ

2

)lk−t
δj
(

1

2
(1− pk)j + pk(1− pk)jδΠk+1

0

)
.

(4.11)

Using relation (4.10), we can derive the exact value of the threshold lk:

Lemma 10. The threshold lk chosen by E in an m-equilibrium is given by

lk =



0, if 1
2

+ pkδΠk+1
0 ≤ (1− δ(1− pk))(Πk+1

0 − 1
(2pk−1)δ

)

m, if Πk+1
0 < 1

(2pk−1)δ

max

0,

m− 1−
ln

1−(1−δ(1−pk))
Πk+1

0 − 1
(2pk−1)δ

1
2 +pkδΠk+1

0


ln(δ(1−pk))


 , else.

(4.12)

Note that Lemma 10 also implies that m > lk always holds in the third case,

since the logarithm in the numerator is negative (the negations of the first two

conditions ensure that the term inside the logarithm is between 0 and 1). This

justifies the following

Remark 1. If lk = m for some k in an m-equilibrium, then also li = m for all

i ∈ {1, . . . , k − 1}. This follows directly from Lemma 10 as Πk+1
0 is increasing in k

and 1
(2pk−1)δ

is decreasing in k.

It is useful to first analyze the case without (further) learning which occurs

after n− 1 hits.
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4.4.2.1 Model without learning

For k ≥ n, Πk
0 = Πn

0 since there is no more additional learning. This implies that

in an m-equilibrium, Πn
0 has to solve (4.11) with the same Πn

0 on both sides of the

equation. Furthermore, ln in this equation has to be optimal in the sense of (4.9).

The following lemma implies that there exist unique Πn
0 and ln satisfying these

optimality conditions.7

Lemma 11. E has a unique best response to C’s m-strategy in the model without

learning.

Whether an m-equilibrium exists depends on C’s outside option. If E’s best

response to C’s m-strategy, as derived in the proof of Lemma 11, leaves C with a

sufficiently high value after 0 misses, then an m-equilibrium exists.

Proposition 7. An m-equilibrium in the model without learning does not exist if

2pn − 1 <
1− δ + (δ/2)m+1

δ(1− (δ/2)m)
. (4.13)

If (4.13) does not hold, an m-equilibrium exists if and only if VO ≤ V̄O for some

V̄O satisfying (4.1).8

4.4.2.2 Model with learning

We start by deducing explicit formulas for the continuation value V k
t of the consumer

after t consecutive misses and with precision k. As V k
m = VO in an m-equilibrium,

the value for t ∈ {lk, . . . , m− 1} can be derived by backward induction. We obtain

V k
t =

m−t−1∑
j=0

(1− pk)jδjpk(1 + δV k+1
0 ) + (1− pk)m−tδm−tVO. (4.14)

7For uniqueness, we require the tie-breaking rule that E recommends option 1 if he is
indifferent. Without this tie-breaking uniqueness is (only) generic.

8Note that for m = 1, the condition (4.13) reduces to 2pn − 1 <
1− δ

2

δ ⇔ pn < 3
4 + 1−δ

2δ . This
is exactly the existence condition (4.4) for a Markov equilibrium without learning.
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Using this, we can also derive the value of V k
t for t < lk. It is given by

V k
t =

lk−t−1∑
j=0

(
δ

2

)j
1

2
(1 + δV k+1

0 )

+

(
δ

2

)lk−tm−lk−1∑
j=0

(1− pk)jδjpk(1 + δV k+1
0 ) + (1− pk)m−lkδm−lkVO

 .

(4.15)

Before we compute the expert’s expected value Π0 at the start of the game, we

introduce some notation. In an advice relationship between a consumer and an

expert, let w = (w1, . . . , wn−1) denote the vector of waiting times until the first,

second, . . . , (n− 1)−th hit, where wi denotes the number of periods in learning

level i (with precision pi) until the i−th hit occured. In an m-equilibrium, wi > m

implies that the consumer will fire the expert as he produced at least m consecutive

misses. Hence, there are two types of possible histories in an advice relationship:

First, those where the expert produced at least n − 1 hits and reached the last

precision level pn. Second, those where the expert produced at least m consecutive

misses before pn was reached. We denote these two sets of histories by

Wn = {w = (w1, . . . , wn−1) ∈ Nn−1|1 ≤ wi ≤ m ∀i ∈ {1, . . . , n− 1}} and

Wf = {w = (w1, . . . , wj∗) ∈ Nj∗for some 1 ≤ j∗ ≤ n− 1|wj∗ = m+ 1, 1 ≤ wi ≤ m ∀i < j∗}.

The set of all feasible histories in an m-equilibrium is then given byW =Wn ∪Wf .

For any w ∈ Wf , let us denote by len(w) the dimension of the vector w. This value

always corresponds to the learning level in which the expert gets fired because he

produces m consecutive misses. We can now derive Π0.

Proposition 8. In an m-equilibrium, let (lk)k=1,...,n denote the vector of switching
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strategies for the expert, depending on the precision level. The expected value Π0 of

the expert at the beginning of the game is given by the formula

Π0 =
∑
w̄∈W

P(w = w̄)E(Π0|w = w̄), with

P(w = w̄) =


∏n−1

i=1

(
1{w̄i≤li}(

1
2
)w̄i + 1{w̄i>li}(

1
2
)l
i
(1− pi)w̄i−li−1pi

)
, if w̄ ∈ Wn

(1
2
)l
len(w̄)

(1− plen(w̄))m−l
len(w̄)∗∏len(w̄)−1

i=1

(
1{w̄i≤li}(

1
2
)w̄i + 1{w̄i>li}(

1
2
)l
i
(1− pi)w̄i−li−1pi

)
, if w̄ ∈ Wf ,

E(Π0|w = w̄) =



∑n−1
k=1

(
1{w̄k≤lk}

∑w̄k−1
h=0 δh + 1{w̄k>lk}

(∑lk−1
h=0 δ

h + 1
2

∑w̄k−1
h=lk δ

h
))

δ
∑k−1
j=1 w̄j

+δ
∑n−1
j=1 w̄j

∑ln−1
g=0 ( δ

2
)g+

∑m−1
g=ln δ

g( 1
2

)g−l
n

1−
∑ln−1
g=0 ( δ

2
)g+1−

∑m−1
g=ln ( 1

2
)lnδg(1−pn)g−lnpn

, if w̄ ∈ Wn∑len(w̄)−1
k=1

(
1{w̄k≤lk}

∑w̄k−1
h=0 δh + 1{w̄k>lk}

(∑lk−1
h=0 δ

h + 1
2

∑w̄k−1
h=lk δ

h
))

δ
∑k−1
j=1 w̄j

+δ
∑len(w̄)−1
j=1 w̄j

(∑llen(w̄)−1
h=0 δh + 1

2

∑m−1
h=llen(w̄) δh

)
, if w̄ ∈ Wf .

The following result deals with the hazard rate, i.e. the probability that the

expert is fired in a given learning level, conditional on having reached that level.

More concretely, we denote by HR(k) the probability of having m consecutive

misses in an m-equilibrium after reaching precision level k. For the last precision

level k = n, HR(n) denotes the probability of being fired in this level without

having scored a hit before (since the game is infinitely repeated, the probability of

being fired in the last precision level is 1).

Proposition 9. If pk+1 ≥ 1− (1− pk)m2m−1 holds for all k in {1, . . . , n− 1}, then

HR(k) is decreasing in k in an m-equilibrium.

Example 3. To illustrate the above proposition, let us consider an m = 2 equi-

librium with an initial precision of p1 = 0.51. The subsequent precision levels that

guarantee a decreasing hazard rate are given by p2 = 0.5198, p3 ≈ 0.5388, p4 ≈
0.5746, p5 ≈ 0.6381, p6 ≈ 0.7380, p7 ≈ 0.8627, p8 ≈ 0.9623, p9 ≈ 0.9972.

Example 4. Figure 4.1 shows the precision levels that ensure a decreasing hazard

rate according to Proposition 9 for m = 2,m = 3 and m = 4.

4.5 Welfare dynamics and anonymization

In this section, we discuss the dynamics of consumer surplus. Since the consumer’s

value equals his outside option regardless of the precision level in Markov equilib-

97



0.5 0.6 0.7 0.8 0.9 1.0
Precision in level k

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on
 in

 le
ve

l k
+1

identity
m=2
m=3
m=4

Figure 4.1: Sufficient learning jumps for a decreasing hazard rate

rium, the consumer does not benefit from learning in a Markov equilibrium. This

is consistent with the argument that the expert can pocket all the benefit since the

consumer’s outside option (and therefore bargaining position) does not improve as

the expert learns. However, analysis of m-equilibria shows that this logic may be

flawed. Consider first the case of a classic grim trigger strategy, i.e. m = 1. The

follwing proposition implies that consumers benefit from learning in this class of

equilibria.

Proposition 10. In an m = 1 equilibrium, V k
0 is strictly increasing in k and lk is

weakly decreasing in k.

That is, the consumer can benefit for two reasons: simply because the expert’s

precision and therefore the advice quality improves but also because the expert’s

strategy can become more favorable over time. The intuition is that, by Lemma

9, the expert’s profits are increasing in the precision level k (as long as the game

continues). Therefore, as precision increases, he is more inclined to give good advice

in order to reap the increasing future benefits.

To further illustrate the previous result and also to shed light on the dynamics
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in m-equilibria for m > 1, we now consider the case of only two precision levels, p1

and p2. We are primarily interested in the expert’s choice of optimal thresholds

l1 and l2, since they determine the distribution of welfare between the consumer

and the expert. First, we study the 1−equilibrium in which the consumer ends

the relationship after the first miss. The following lemma shows that the expert’s

choice depends on how large δ is relative to p1 and p2.

Lemma 12. Let n = 2. If the consumer ends the game after one miss, the expert’s

advice choices l1, l2 are given by

(l1, l2) =


(1, 1), for δ < 1

2p2−1/2

(1, 0), for 1
2p2−1/2

< δ < 1
p1+p2−1/2

(0, 0), for δ > 1
p1+p2−1/2

(4.16)

The previous lemma implies that consumers benefit from learning in the m = 1

equilibrium: In equilibrium, l2 (or more generally ln for n rounds of learning) must

equal 0. Otherwise, the consumer would be better off ending the advice relationship

once the last precision level is reached, i.e. the m = 1 strategy would not be a best

response. This implies that the cutoffs lk are weakly decreasing in k in the n = 2

case and therefore advice improves in k for two reasons. First, the consumer can

benefit from a lower lk and thus a more honest advice strategy from the expert.

Second, even if l1 = l2 = 0 and therefore the expert’s advice strategy remains

constant, the consumer benefits from learning as the signal technology improves.

While consumers benefit from learning in an m = 1 equilibrium, this is not

necessarily the case in an m > 1 equilibrium. We illustrate this in the simplest

possible case, i.e. only one round of learning (n = 2) and m = 2. In this case, we

show that there are parameter values for which l1 = 0 and l2 = 1 in an m = 2

equilibrium. That is, the expert is less willing to give good advice after the signal

technology improved. In our example, this change in expert strategy affects the

consumer’s payoff more than the improvement in signal technology and therefore

the consumer’s value will be lower at the beginning of a period with improved

signal technology than at the beginning of the game.

99



Lemma 13. Let n = 2. In an m = 2 equilibrium, l1 = 0 and l2 = 1 if and only if

both

1 + δ/4

1− δ/2− δ2p2/2
> max

{
1 + δ/2

1− δ/2− δ2/4
,

(1 + δ)/2− δ2p2/2

1− p2δ − (1− p2)δ2p2

}
and

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2

≥ max

{
1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
, 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2

}
hold.

Thus, an m = 2 equilibrium with l1 = 0 and l2 = 1 exists if the two inequalities

above hold simultanenously. For δ = .98, p1 = .85 and p2 = .95 both inequalities

hold with strict inequality. Furthermore, for VO = 30, we get V 2
0 ≈ 31.33 < 31.56 ≈

V 1
0 , which proves the following result:

Proposition 11. There exists an open set of parameters such that V 1
0 > V 2

0 in an

m = 2 equilibrium.

What is the intuition behind these results? Let us first consider Proposition

10. Knowing the consumer better means that the expert is better able to keep the

consumer satisfied. The expert’s value from giving good advice is higher when the

signal is better because he is less likely to lose the consumer due to random errors.

However, the value of recommending the bonus option does not depend on the

signal technology. Thus, improvements in signal technology make it relatively more

attractive to give good advice. Technically, the better the signal technology, the

higher the continuation value of the relationship for the expert. This means that

future payoffs and a continuation of the relationship gain in importance when the

expert’s signal technology improves and he is therefore more willing to give good

advice. We call this the value effect of improved information and note that this

effect is positive for the consumer.

Proposition 11 illustrates another dynamic effect that comes into play in more

complicated equilibria. If the expert does not expect the consumer to end the

advice relationship in case of a miss, it may be optimal for the expert to gamble:

recommend the bonus option today and hope, in case of a miss, that recommending

option 1 tomorrow will prevent the consumer from ending the relationship. The

better the expert gets to know the consumer, the greater the incentive to gamble:

The improved signal means that it is more likely that he will be able to provide a

good recommendation if that is what is needed to keep the consumer tomorrow.
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Put differently, the risk of ending the relationship is lower because the expert

can be reasonably confident of providing a fitting recommendation “on the spot”

if this is needed to keep the consumer. This gambling effect is negative for the

consumer. In the example above, the gambling effect outweighs the value effect, so

the consumer’s continuation value is higher when the signal technology is worse.

Note that the gambling effect is not present in m = 1 equilibria, since in such an

equilibrium the consumer ends the advice relationship immediately after the first

miss.

We will now turn to the question of anonymization. The use of anonymized

services makes relationship-specific learning impossible. For example, an internet

search engine cannot personalize search results if the consumer uses an anonymized

version of the search engine.9 In our model, anonymization corresponds to facing

an expert who always remains at the precision level p1 due to his inability to

learn. Will the consumer benefit from anonymization? In a Markov equilibrium,

the consumer surplus is always equal to the outside option, so anonymization has

no effect. In an m = 1 equilibrium, on the other hand, anonymization harms the

consumer: such an equilibrium exists only if E always recommends option 1 and in

this case it is clear that the consumer would lose from anonymization.10 However,

the consumer can benefit from anonymization in m-equilibria with m > 1. Consider

the example above, on which Proposition 11 was based. An equilibrium with m = 2

also exists in the game where no learning is possible due to anonymization. In this

anonymization equilibrium, l = 0 and the consumer value is V 1
0 = 36.44 which is

larger than V 1
0 and V 2

0 in the equilibrium without anonymization. The intuition is

that in this example learning leads to gambling, i.e. when precision equals p2, E

is sufficiently confident that he can produce a hit on demand. Hence, he finds it

optimal to recommend the bonus option in case the last recommendation was a

hit. Without learning, the precision is too low to allow E to gamble and C benefits

from sincere advice (albeit with a lower precision). This establishes the following

result.

Proposition 12. In Markov equilibrium anonymization neither harms nor benefits

the consumer. In m = 1 equilibria the consumer always loses from anonymization

9Anonymized versions of major internet search engines are widely available, see for example
https://www.startpage.com.

10Note that the existence of an m = 1 equilibrium with anonymization implies that E will
always recommend option 1 in the m = 1 equilibrium without anonymization: this follows directly
from (4.9) and the facts that Πk

t = 0 for t > 0 in m = 1 equilibrium and Πk+1
0 is weakly larger

with learning than without.
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while in m > 1 equilibria the consumer can benefit from anonymization for certain

parameter values.

4.6 Experimental Design and Results

In this section, we present the design of our laboratory experiment and its main

results. Additional results and robustness checks can be found in Appendix C.

4.6.1 Experimental Design

The experiment was conducted between December 2021 and February 2022 at the

Cologne Laboratory for Economic Research, University of Cologne. We used the

experimental software oTree (Chen et al. (2016)) and recruited participants via

ORSEE (Greiner (2015)). The study was preregistered in the AEA RCT Registry

(Gramb and Schottmüller (2022b)), its unique identifying number is: AEARCTR-

0008682. Participants were randomly assigned to either the control group or the

treatment group. In both groups, participants first read the instructions for their

group, see Appendix B (in German), and answered a set of incentivized control

questions. Then, players were randomly assigned the role of expert or consumer.

Framing of roles was neutral in instructions and experiment. Subsequently, they

played ten supergames (seven supergames in the pilot session in December, which

was a treatment group session) of the game described in Section 4.3, each in

their assigned role. After each supergame, each participant was randomly matched

with another participant with the opposite role for the next supergame. The

discounting of payoffs in the experiment was simulated by an exogenous stopping

probability. After each round of a supergame, the game was exogenously ended

with a probability of 10%, corresponding to a value of δ = 0.9 in our model. In

the control group, experts had a constant signal strength of 0.82. That is, the

control group can be interpreted as a setting in which advice is given anonymously

and therefore learning is not possible. In the treatment group, the first precision

level was also 0.82 and precision was increased by 0.02 after each hit up to a

maximum precision of 0.9. That is, the treatment group represents a setting in

which personalized advice and incremental learning is possible. Once a consumer

decided to end the game in either group, he immediately received a payoff of 5

points (while the expert’s bonus and the consumer’s payoff in case of a hit were

both 1 point). It should be noted that in our model the outside option is paid out
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at the beginning of the next period (since it always exists). Thus, the payout of 5

points after firing the expert corresponds to an outside option of VO = 5
δ

= 50
9

= 5.5̄.

After all supergames were completed, one supergame was randomly selected for

each participant and the points earned there were paid out (with one point being

worth 1e). At the end, participants were asked incentivized questions eliciting their

risk attitude and completed a non-incentivized survey about trust attitude, age,

gender and faculty. Additionally, each participant was paid a show-up fee of 4e.

Participants’ total payments ranged from 4e to 25e. One session lasted between

29 and 56 minutes. There were seven sessions with a total of 156 participants in

the treatment group and four sessions with a total of 98 participants in the control

group. No participant attended more than one session.

4.6.2 Results

The main outcomes we are interested in are advice quality and consumer welfare

in both groups. Let us start with advice quality. We measure this as the share of

good advice given by the expert (in terms of the recommendation of option 1) in

all situations where he faced a tradeoff (bonus option was option 2). Figure 4.2

Control Treatment
0.00

0.05

0.10

0.15

0.20

0.25

Ad
vi

ce
 Q

ua
lit

y

Figure 4.2: Advice Quality in Control and Treatment group
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shows that the advice quality in the treatment group is significantly better than

in the control group. Hence, the potential increase in learning level incentivizes

the experts to give better advice to retain consumers. As can be seen in Figure

4.3, this expert behavior leads to higher average consumer welfare in the treatment

group, although the difference is not significant. A possible reason for the (only)

small increase in consumer welfare in the treatment group is that consumers tend

to distrust the expert more at higher learning levels. This can be seen in the firing

rates in the treatment group.
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Figure 4.3: Consumer Welfare in Control and Treatment group

In Figure 4.4, we see that the hazard rate11 increases overall with learning level.

Specifically, the hazard rate for precision levels p2, p3 and p4 is significantly higher

than for lower levels p0 and p1. This could also drive the effect seen in Figure 4.2,

where experts try to convince consumers not to fire them by giving them even more

good advice. Note that this behavior does not contradict our theoretical predictions:

The sufficient condition from Proposition 9 that the hazard rate decreases would

require a level p1 ≥ 0.9352 for the value p0 = 0.82. In the experiment, we set

11In this general case, the hazard rate is simply the relative frequency with which consumers
fire experts at a given learning level.
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p1 = 0.84, which is too small for the model to predict a decreasing hazard rate.

One possible reason for this increase in hazard rate could be attribution of failure:
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Figure 4.4: Hazard Rate per Learning Level in Control and Treatment group

At low learning levels, the consumer might attribute a miss to the expert’s low

signal strength. At high learning levels, it becomes increasingly likely that a miss

is due to the expert’s strategy to collect his bonus instead of giving good advice.

This is then punished by the consumer who fires such experts. Interestingly, the

hazard rate in the control group is significantly higher than the hazard rate for

the first two learning levels in the treatment group. This suggests that consumers

assume that the learning incentive has a positive effect on the relationship and do

not fire the expert to establish such a long-term relationship.

4.7 Discussion

The results in Section 4.4 and 4.5 have implications for anonymization. Activists

and experts alike recommend measures to preserve anonymity online. Although

many of these recommendations are easy to follow, such as using an anonymized

version of Google instead of Google itself, hardly any internet user follows them.
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The above analysis indicates that consumers might be right not to anonymize:

Personalized recommendations are more valuable not only from a total surplus

perspective, but also from a consumer perspective in m-equilibrium if m = 1 (and

often also if m > 1). The reason for this is simple. The more past usage data is

available, the more valuable the customer is. The expert, e.g. Google, does not

want to risk losing valuable customers. Hence, a customer enjoys better service

when the expert can use past usage data from him. This theoretical finding is also

supported by our experimental results: As we have shown in Section 4.6, experts

give better advice in the treatment group where it is possible to learn from past

interactions.

The same principle applies to other applications than Google and explains why

long-term advisers are more valuable than short-term advisers. The m-equilibrium

provides an interesting prediction for the hazard rate, i.e. the probability that a

consumer will end the relationship after a certain number of hits if he has not

already ended it. In an m-equilibrium, the hazard rate decreases over time when

the change in signal quality between two learning levels is sufficiently high.

Of course, these results are subject to some caveats. The first is that the outside

option of the consumer was held constant. If the outside option is an alternative

expert, this could change. To give an example, say there are two experts and

everyone agrees that Expert 1 is slightly more knowledgeable than Expert 2. The

outside option then corresponds to getting advice from Expert 2. If everyone uses

Expert 1, however, Expert 2 might be out of business and take up a different

job. In the long term, the outside option might therefore decline and eventually

drop below 1/(2 − 2δ). In this case, the unique equilibrium is that the expert

recommends his bonus action in each period and consumers would suffer. However,

an m-equilibrium is not sensitive to lower outside options as long as the outside

option remains above 1/(2− 2δ).

Another caveat, particularly in the context of anonymizing online activity, is

that the model does not address potential extortion arising from abuse of data

outside the advice relationship. According to the model, a customer benefits from

personalized advice and a prerequisite for such personalized advice is that data

about past interactions be stored. If this data gets into the hands of a third party,

it could be used by that third party against the consumer; think health or financial

records. Such third-party extortion is beyond the scope of this paper.

Another interesting result was given in Proposition 11 as it showed that too
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much past data can also reduce the consumer’s utility (although it is always higher

than his outside option). Consequently, whether anonymization is optimal or not is

ambiguous and depends on the particular equilibrium played as well as the model

parameters.

4.8 Conclusion

In this paper, we have studied an expert-consumer relationship in which the expert

gets to know the consumer over time and in this way can give better advice as

the relationship progresses. We have shown that this learning opportunity can

be beneficial to both the consumer and the expert by introducing m-equilibria

as a generalization of simple grim-trigger strategies. Empirical evidence from our

laboratory experiment suggests that experts do indeed give better advice when

learning is possible. However, the consumer must be aware that too much learning

on the part of the expert can be detrimental to consumer welfare. The choice of

how much and what data to disclose is therefore a difficult one.
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Appendix

A Proofs

Proof of Proposition 5. With β = 1 − 1/[(2p − 1)δΠ], it is straightforward to

determine Π:12

Π =
1

2
+ (p+ β(1− p)) δΠ =

1

2
+

(
p+ (1− p)− 1− p

(2p− 1)δΠ

)
δΠ

⇔ Π =
4p− 3

(1− δ)(4p− 2)
.

Plugging this back into (4.2) (with equality) yields

β∗ = 1− 2(1− δ)
δ(4p− 3)

.

A non-babbling Markov equilibrium exists if β∗ ∈ [0, 1] which is the case if and

only if
1− δ
δ
≤ 4p− 3

2
.

Proof of Lemma 7. Suppose βk = 1 and distinguish between the two cases of either

option 1 or option 2 being E’s bonus option (both happen with probability 1
2
). E’s

value as a function of α is then

Πk =
1

2

(
pkδΠk+1 + (1− pk)δΠk

)
(1 + α) +

1

2
+

1

2
(1− α)

(
pkδΠk + (1− pk)δΠk+1 + 1

)
=

1

2
(2− α) +

1

2
δΠk+1(2pkα + 1− α) +

1

2
δΠk(1 + α− 2pkα)

⇔ Πk =
2− α

2− δ − δα + 2pkδα
+

δ − δα + 2pkδα

2− δ − δα + 2pkδα
Πk+1.

This implies

Πk
α=0 =

2

2− δ
+

δ

2− δ
Πk+1

Πk
α=1 =

1

2(1− δ + pkδ)
+

2pkδ

2(1− δ + pkδ)
Πk+1

12As E is indifferent between recommending option 1 and recommending option 2 in case
option 2 is his bonus option, his value is as if he always recommended option 1.
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where Πk
α=1 is E’s equilibrium value in the supposed equilibrium (where E uses the

strategy αk = 1) and Πk
α=0 is a deviation value that E would obtain if he deviated

from the supposed equilibrium strategy by choosing αk = 0 (without changing his

strategy for k′ 6= k). For αk = 1 to be optimal Πk
α=1 ≥ Πk

α=0 has to hold. However,

it is now shown that Πk
α=0 > Πk

α for any α > 0. This inequality can be written as

2

2− δ
+

δ

2− δ
Πk+1 >

2− α
2− δ − δα + 2pkδα

+
δ − δα + 2pkδα

2− δ − δα + 2pkδα
Πk+1

⇔ 4− 2δ − 2δα + 4pkαδ + (2− δ−δα + 2pkαδ)δΠk+1

> 4 + αδ − 2δ − 2α + (2 + αδ − δ − 2α + 4pkα− 2pkδα)δΠk+1

⇔ −3αδ + 2α + 4αpkδ > (1− δ)(4pkα− 2α)δΠk+1.

The latter inequality is true for all α > 0 because Πk+1 is bounded from above by

1/(1− δ) (which would be E’s discounted payoff stream if he always recommended

his bonus option and C always continued) and the previous inequality holds with

1/(1− δ) in place of Πk+1:

−3αδ + 2α + 4αpkδ > (1− δ)(4pkα− 2α)
δ

1− δ
⇔ α(2− δ) > 0.

This shows that αk = 0 is the only best response to βk = 1 and therefore

Πk
α=1 < Πk

α=0. Consequently, βk = αk = 1 cannot be an equilibrium.

Proof of Lemma 8. Proposition 5 implies V n = VO. Suppose V k > VO for some k

and let k′ be the highest such k. Then αk
′

must be sufficiently high in order to

yield a higher expected payoff than (1− δ)VO to C in every period with precision

pk
′
. Now consider C’s decision problem after a miss in a period with precision pk

′
.

As V k′ > VO by the definition of k′, C strictly prefers to continue. Hence, βk
′

= 1.

However, E’s best response to βk
′
= 1 is αk

′
= 0, see the proof of Lemma 7. But

given that V k = VO for all k > k′ by the definition of k′ and given that αk
′

= 0

clearly V k′ < VO contradicting the definition of k′. Hence, V k > VO cannot happen

for any k in equilibrium. As C can always guarantee himself a payoff of VO by

ending the game, this concludes the proof.

Proof of Proposition 6. As E is mixing in a non-babbling Markov equilibrium when
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the bonus option is option 2, his value will equal the value he would get if he always

recommended option 1 (keeping C’s strategy fixed):

Πk =
1

2
+ pkδΠk+1 + (1− pk)βkδΠk.

Plugging (4.6) in for βk yields

Πk =
1

2
+ pkδΠk+1 + (1− pk)δΠk+1 − 1− pk

2pk − 1

⇔ Πk = δΠk+1 +
4pk − 3

4pk − 2
.

Recall from the proof of Proposition 5 that Πn = (4pn−3)/[(4pn−2)(1− δ)]. Using

this as a starting point for backward induction in the previous equation yields

(4.8).

Next we will show that Πk is strictly increasing in k. Let h(pk) = (4pk−3)/(4pk−
2) and note that h′ > 0 for pk ∈ (1/2, 1]. To start, we show by induction that

(1− δ)Πk ≥ h(pk). This is obviously true for k = n. Now suppose (1− δ)Πk ≥ h(pk)

is true for all k ≥ j + 1, then (1 − δ)Πj = (1 − δ)δΠj+1 + (1 − δ)h (pj) ≥
δh (pj+1)+(1−δ)h (pj) ≥ h (pj) where the first inequality is the induction hypothesis

and the second follows from the monotonicity of h. Consequently (1− δ)Πk ≥ h(pk)

for all k ∈ {1, . . . , n}. As Πk+1−Πk = (1− δ)Πk+1−h(pk) ≥ h
(
pk+1

)
−h

(
pk
)
> 0,

it follows that Πk is strictly increasing in k.

For existence of a non-babbling Markov equilibrium, a βk ∈ [0, 1] has to exist to

make E indifferent between the two recommendations in case option 2 is the bonus

option. For βk = 1, E strictly prefers to recommend option 2. As the incentives

to recommend option 1 are strictly decreasing in βk, a βk ∈ [0, 1] will exist if and

only if E prefers recommending option 1 (in case option 2 is the bonus option) for

βk = 0. That is, if

1 + (1− pk)δΠk+1 ≤ pkδΠk+1

⇔ Πk+1 ≥ 1

δ(2pk − 1)
.

This condition is most demanding for k = 1 because pk and Πk are both increasing in

k. Hence, a non-babbling Markov equilibrium exists if and only if Π2 ≥ 1/(δ(2p1−1)).

Plugging in the above derived expression for Π2, this is condition (4.7).
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Proof of Lemma 9. The first claim is proven by a simple strategy copying argument.

To show the monotonicity of Πk
0 in k let αkt be E’s best response strategy to C’s

m-strategy. More precisely, αkt is the probability with which E recommends option

1 when it is not the bonus option (after t misses when the signal precision is pk). To

show that Πk+1
0 ≥ Πk

0, we will show that E can achieve a value of Πk
0 at precision

k + 1 (after 0 misses). Note that a signal of precision pk+1 is sufficient for a signal

of precision pk. That is, E could inject noise into his signal at precision pk+1 in

order to end up with a signal of precision pk. Suppose for all k̃ ≥ k + 1 (and all

t) E injects noise into his signal such that the new signal has precision pk̃−1 and

then plays the strategy α̂k̃t = αk̃−1
t . Equivalently, E can use his improved signal

and adjust his behavior to inject some noise in this way.13 Clearly, this will yield a

value of Πk
0 (at precision k + 1 after 0 misses). Hence, Πk+1

0 has to be at least Πk
0

(and is usually higher as the described strategy is not optimal).

Next we show an intermediate result: Πk
t ≤ Πk+1

0 in every m-equilibrium. To

see this, note that E’s payoffs are bounded from above by 1/(1− δ), i.e. the value

of recommending the bonus option each period and C never stopping the game.

Put differently, per period payoffs are below 1. This implies (1− δ)Πk+1
0 ≤ 1. Now

suppose, by way of contradiction, Πk
t > Πk+1

0 . Then also Πk
t−1 > Πk+1

0 because

E can after t − 1 misses simply recommend his bonus option which would then

give him a value of 1 + δΠk
t /2 + δΠk+1

0 /2 > 1 + δΠk+1
0 ≥ Πk+1

0 where the first

inequality uses Πk
t > Πk+1

0 and the second inequality uses (1− δ)Πk+1
0 ≤ 1. Hence,

Πk
t−1 > Πk+1

0 . Iterating this argument yields Πk
0 > Πk+1

0 . However, Πk
0 > Πk+1

0

contradicts the first result of Lemma 9 shown above. Hence, Πk
t ≤ Πk+1

0 holds in

every m-equilibrium.

Πk
t ≥ Πk

t+1 is shown using the intermediate result of the previous paragraph.

Let E recommend his bonus option after t misses (at precision k). This (possibly

non-optimal strategy) yields a value of 1 + δΠk+1
0 /2 + δΠk

t+1/2 ≥ 1 + δΠk
t+1 ≥ Πk

t+1

where the first inequality uses Πk
t+1 ≤ Πk+1

0 (see previous paragraph) and the

second inequality uses Πk
t+1 ≤ 1/(1− δ). As recommending E’s bonus option after

t misses yields a value of at least Πk
t+1, the result Πk

t ≥ Πk
t+1 follows.

Proof of Lemma 10. lk is the smallest natural number t such that after t consecutive

13More precisely, let γk̃ = (pk̃ − pk̃−1)/(pk̃ − 1/2). This is chosen such that drawing from

the prior with probability γk̃ and with the counter probability from a signal technology with

precision pk̃ yields a signal of precision pk̃−1. If option 1 is the bonus option, let E recommend

option 1 with probability 1− γk̃/2 and option 2 with probability γk̃/2. If option 2 is the bonus

option, let α̂k̃t = (1− γk̃/2)αk̃−1
t + (γk̃/2)(1− αk̃−1

t ). This yields Π̂k̃
t = Πk̃−1

t .
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misses, it is optimal for the expert to recommend option 1. We can thus take

condition (4.9) and replace t− 1 by t. Then, it can be written as

Πk
t+1 ≤ Πk+1

0 − 1
(2pk−1)δ

. Hence lk is the smallest natural number t for which the

latter condition holds. More explicitely,

lk = min{t ∈ N|Πk
t+1 ≤ Πk+1

0 − 1

(2pk − 1)δ
}

= max

0,min{t ∈ N|Πk
t ≤ Πk+1

0 − 1

(2pk − 1)δ︸ ︷︷ ︸
(∗)

} − 1

 .

Using formula (4.10), we can reformulate the condition (∗) via

(∗)⇔
m−1−t∑
j=0

(δ(1− pk))j
(

1

2
+ pkδΠk+1

0

)
≤ Πk+1

0 − 1

(2pk − 1)δ

⇔
m−1−t∑
j=0

(δ(1− pk))j ≤
Πk+1

0 − 1
(2pk−1)δ

1
2

+ pkδΠk+1
0︸ ︷︷ ︸

=:P

⇔ 1− (δ(1− pk))m−t

1− δ(1− pk)
≤ P

⇔ 1− (1− δ(1− pk))P︸ ︷︷ ︸
=:A

≤ (δ(1− pk)︸ ︷︷ ︸
=:B

)m−t

Looking at this last inequality, we see that it is always satisfied if A ≤ 0 and that

it is never satisfied if P < 0 (which is equivalent to Πk+1
0 < 1

(2pk−1)δ
). These cases

correspond to lk = 0 and lk = m, respectively. In all the other cases, we can apply

the natural logarithm on both sides since they will be positive. We continue:

⇒ ln(A) ≤ (m− t) ln(B)

⇔ ln(A)

ln(B)
≥ m− t (as ln(B) < 0)

⇔ t ≥ m− ln(A)

ln(B)

This implies that lk =
⌈
m− 1− ln(A)

ln(B)

⌉
whenever the number inside the ceiling

function is larger than -1 and lk = 0 else.
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Proof of Lemma 11. Define Π̃t(Π0) (for t ∈ {0, 1, . . . ,m}) by iterating backwards

starting from Π̃m = 0 and using the following formula:

Π̃t−1(Π0) =

1/2 + pnδΠ0 + (1− pn)δΠ̃t(Π0) if Π0 − Π̃t(Π0) ≥ 1
δ(2pn−1)

1 + 1
2
δΠ0 + 1

2
δΠ̃t(Π0) else.

(17)

Note that the case distinction is done such that Π̃t is continuous (Π̃t−1(Π0) is simply

the maximum of the expression in the first and second case). Clearly, the derivative

Π̃′m−1 exists for almost all values of Π0 and is in {δ/2, pnδ}. Hence, Π̃′m−1 < δ ≤ 1.

Iterating backwards, Π̃t is continuous and its derivative exists for almost all Π0.

Furthermore, Π̃′t−1(Π0) ∈ {pnδ+ (1− pn)δΠ̃′t(Π0), δ/2 + δΠ̃′t(Π0)/2} and therefore –

given that Π̃′t < δ – we have Π̃′t−1 < δ. In particular, Π̃0(Π0) is continuous and has

a derivative (which exists almost everywhere) that is strictly positive and strictly

smaller than δ ≤ 1. The operator Π̃0 is therefore a contraction and the equation

Π̃0(Π0) = Π0 has a unique solution Π∗0 by the contraction mapping theorem.

Next we show that Π∗0 ∈ (0, 1/(1− δ)). To this purpose it is sufficient to show

Π̃0(0) > 0 and Π̃0(1/(1− δ)) < 1/(1− δ). Clearly, Π̃t−1(0) > 0 and in particular

Π̃0(0) > 0 holds. Turning to Π̃0(1/(1−δ)) < 1/(1−δ), note that Π̃m−1(1/(1−δ)) <
1/(1−δ) as both 1/2+pnδ/(1−δ) < 1/(1−δ) and 1+δ/(2(1−δ)) < 1/(1−δ) hold.

Now proceeding by backward induction Π̃t−1((1/(1− δ)) < 1/(1− δ) given that

Π̃t((1/(1− δ)) < 1/(1− δ) as both 1/2 + pnδ/(1− δ) + (1− pn)δ/(1− δ) ≤ 1/(1− δ)
and 1 + δ/(2(1− δ)) + δ/(2(1− δ)) ≤ 1/(1− δ) hold. Given that Π∗0 ∈ (0, 1/(1− δ)),
also Π̃t−1(Π∗0) ∈ (0, 1/(1− δ)) for all t ∈ {1, . . . ,m} by the same steps.

Note that E’s value when playing best response against an m-strategy has to

satisfy Πn
t = Π̃t(Π

n
0 ) for all t ∈ {0, . . . , m− 1}. As we have just shown, there exists

a unique solution to this condition and this solution is feasible, i.e. E’s value is in

(0, 1/(1− δ)). E’s best response strategy is given by the case distinctions in (17):

If Π∗0 − Π̃t(Π
∗
0) ≥ 1/(δ(2pn − 1)), then E recommends option 1 after t− 1 misses.

Otherwise, E recommends his bonus option. Finally, note that E’s best response is

a cutoff strategy as Π̃t(Π
∗
0) is decreasing in t. This can be shown as in the proof of

Lemma 9.
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Proof of Proposition 7. By (4.1), an m-equilibrium cannot exist if E always rec-

ommends his bonus option. This strategy yields a payoff after 0 misses of

Π0 =
m−1∑
j=0

(
δ

2

)j
(1 + δΠ0/2) =

(1 + δΠ0/2)(1− (δ/2)m)

1− δ/2

which can be solved for Π0 yielding

Π∗0 =
1− (δ/2)m

1− δ + (δ/2)m+1
.

Always recommending the bonus option is not E’s best response if after m − 1

misses (4.9) holds with Π∗0 in place of Πk+1
0 and zero in place of Πk

t+1, i.e. if

1− (δ/2)m

1− δ + (δ/2)m+1
≥ 1

δ(2pn − 1)
.

If the opposite of this inequality holds, then always recommending the bonus option

is E’s best response to C’s m-strategy (and this best response is unique by Lemma

11) and therefore no m-equilibrium can exist. This gives the condition in (4.13).

If (4.13) does not hold, then E’s unique best response to C’s m-strategy includes

recommending option 1 after m-1 misses. This implies that C’s value when using

his m-strategy is strictly above (1/2)/(1− δ) (given that VO satisfies (4.1)) and

therefore there exist values of VO > (1/2)/(1− δ) such that C’s value is above VO

if C plays an m-strategy and E plays his best response to this strategy.

Proof of Proposition 8. We compute E’s conditional value depending on the event

w ∈ W that occured and then sum over all possible events (making a distinction

between histories in which learning level n is reached and those in which the advice

relationship was dissolved before). More concretely, we get

Π0 =
∑
w̄∈W

P(w = w̄)E(Π0|w = w̄).

For w̄ ∈ Wn, we get

P(w = w̄) =
n−1∏
i=1

P(wi = w̄i) =
n−1∏
i=1

(
1{w̄i≤li}(

1

2
)w̄i + 1{w̄i>li}(

1

2
)l
i

(1− pi)w̄i−li−1pi
)
,

E(Π0|w = w̄) =
n−1∑
k=1

Hkδ
∑k−1
j=1 w̄j + δ

∑n−1
j=1 w̄jCn−1.
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In the above equation, Hk denotes the expert’s expected value in learning level pk

(in which he will spend w̄k periods). Moreover, Cn−1 is the expert’s continuation

value after the (n− 1)−th hit at the first period with learning level pn. Both Hk

and Cn−1 are computed below.

Hk = 1{w̄k≤lk}

w̄k−1∑
h=0

δh + 1{w̄k>lk}

lk−1∑
h=0

δh +
1

2

w̄k−1∑
h=lk

δh

 (18)

Cn−1 =
ln−1∑
g=0

(
δ

2
)g + (

δ

2
)g+1Cn−1 +

m−1∑
g=ln

(
1

2
)l
n

δg(1− pn)g−l
n

pnCn−1 + δg(
1

2
)g−l

n

(19)

⇔ Cn−1 =

∑ln−1
g=0 ( δ

2
)g +

∑m−1
g=ln δ

g(1
2
)g−l

n

1−
∑ln−1

g=0 ( δ
2
)g+1 −

∑m−1
g=ln(1

2
)lnδg(1− pn)g−lnpn

In the above computations, (18) follows since the expert will recommend his

bonus option lk times after reaching a new learning level (assuming that all these

recommendations produce misses). Only after lk misses, he will recommend option

1, which yields him 1
2

per period in expectation, since bonus option and option 1 are

drawn independently. Equation (19) reflects the fact that the experts continuation

value after n − 1 hits and after n hits (or more) is the same, since no further

learning happens after precision pn is reached.

For w̄ ∈ Wf , we get

P(w = w̄) =

len(w̄)∏
i=1

P(wi = w̄i)

= (
1

2
)l
len(w̄)

(1− plen(w̄))m−l
len(w̄)

len(w̄)−1∏
i=1

(
1{w̄i≤li}(

1

2
)w̄i + 1{w̄i>li}(

1

2
)l
i

(1− pi)w̄i−li−1pi
)
,

(20)

E(Π0|w = w̄) =

len(w̄)−1∑
k=1

Hkδ
∑k−1
j=1 w̄j + δ

∑len(w̄)−1
j=1 w̄j

llen(w̄)−1∑
h=0

δh +
1

2

m−1∑
h=llen(w̄)

δh

 .

(21)

Equation (20) follows since m consecutive misses in learning level len(w̄) only occur

if the bonus option was different from option 1 for llen(w̄) periods in a row and the

expert failed to generate good advice in the remaining m− llen(w̄) periods. Likewise,

the term in the brackets in (21) describes the expected payoff of the expert in the
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learning level in which m consecutive misses are produced. Putting all the above

formulas together yields the desired result.

Proof of Proposition 9. The probability of having m consecutive misses conditional

on reaching precision level k does of course not only depend on the precision level,

but also on the strategy lk of the expert. More concretely,

HR(k) =

(
1

2

)lk
(1− pk)m−lk .

As 1 − pk < 1
2

for all k by assumption, for (weakly) decreasing values of l (i.e.

lk+1 ≤ lk) the hazard rate HR(k) is (strictly) decreasing in k. When lk is strictly

increasing, then it cannot increase to lk+1 = m by Remark 1. Hence, we always

have m − lk+1 > 0 in this case. We now derive the sufficient condition for the

hazard rate to be (weakly) decreasing:

HR(k + 1) ≤ HR(k)⇔
(

1

2

)lk+1

(1− pk+1)m−l
k+1 ≤

(
1

2

)lk
(1− pk)m−lk

⇔
(

1

2(1− pk)

)lk+1−lk

≤
(

1− pk

1− pk+1

)m−lk+1

Since the LHS of the last inequality is increasing in lk+1 and decreasing in lk

and the RHS is decreasing in lk+1, it is sufficient to consider lk+1 = m − 1 and

lk = 0 (the extreme cases), which yields

(
1

2(1− pk)

)m−1

≤ 1− pk

1− pk+1
⇔ 1− pk+1 ≤ (1− pk)m2m−1

⇔ pk+1 ≥ 1− (1− pk)m2m−1

This concludes the proof.

Proof of Proposition 10. We will show by induction that lk = 1 implies lk−1 = 1

in an m = 1 equilibrium. However, note first that ln = 0 in an m = 1 equilibrium

as the consumer would otherwise be better off by ending the advice relationship

immediately when reaching precision level pn.

Now assume that lk = 1 for some k ∈ {2, . . . , n − 1}. This implies that the

expected payoff of the expert when choosing lk = 1, namely 1 + δΠk+1
0 /2, is greater
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or equal than his expected payoff when choosing lk = 0, namely 1/2 +pkδΠk+1
0 . Put

differently, 1+δΠk+1
0 /2 ≥ 1/2+pkδΠk+1

0 or equivalently 0 ≥ −1/2+δΠk+1
0 (pk−1/2).

As 0 < Πk
0 ≤ Πk+1

0 and 1/2 ≤ pk−1 < pk this inequality implies 0 ≥ −1/2 +

δΠk
0(pk−1−1/2) which is equivalent to saying that the expected payoff of the expert

is higher when choosing lk−1 = 1 than when choosing lk−1 = 0. Consequently,

lk = 1 implies lk−1 = 1.

Hence, in an m = 1 equilibrium lk = 1 for k ≤ k̄ and lk = 0 for k > k̄ for some

k̄ ∈ {0, . . . , n}. The result on V k
0 now readily follows as an increase in k improves

the quality of advice in two ways: (i) lk may decrease and, (ii) pk increases.

More formally, V n
0 = pn(1+δV n

0 ) ⇔ V n
0 = pn/(1−pnδ) and V k

0 = pk(1+δV k+1
0 )

for k ∈ {k̄ + 1, . . . , n − 1}. For now let k̄ ≤ n − 2, then V n
0 > V n−1

0 holds as

pn/(1 − δpn) > pn−1 (1 + δpn/(1− δpn)) ⇔ pn−1/pn < (1 − δpn)/(1 − δpn) = 1

which is true by pn−1 < pn.14 Using this as the starting point for backward

induction V k
0 = pk(1 + δV k+1

0 ) > pk−1(1 + δV k
0 ) = V k−1

0 by the induction hypothesis

V k+1
0 > V k

0 and pk > pk−1 for all k − 1 > k̄. The backward induction logic extends

to k̄ where V k̄
0 = (1 + δV k̄+1

0 )/2 < pk̄+1
(

1 + δV k̄+2
0

)
= V k̄+1

0 by 1/2 < pk̄+1 and

V k̄+1
0 < V k̄+2

0 . The backward induction argument continues further for k < k̄ as

there V k
0 = (1 + δV k+1

0 )/2 < (1 + δV k+2
0 )/2 = V k+1

0 where the inequality follows

from the induction hypothesis V k+1
0 < V k+2

0 .

Proof of Lemma 12. We are using formulas (4.10) and (4.11) to compute the

expert’s value Π2
0 for different values of l2.

i) l2 = 0

⇒Π2
0 =

1

2
+ p2δΠ2

0

⇔Π2
0 =

1

2(1− p2δ)

ii) l2 = 1

⇒Π2
0 = 1 +

1

2
δΠ2

0

⇔Π2
0 =

1

1− 1
2
δ

14Clearly, the argument below still holds true for the case k̄ = n− 1.
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This implies that l2 = 1 yields a higher expected value than l2 = 0 for the expert if

1− 1

2
δ < 2(1− p2δ)

⇔δ < 1

2p2 − 1
2

holds. The only thing that is left to check now is what the optimal choice for l1 is

in each of the two cases above.

i)

l1 = 0⇒ Π1
0 =

1

2
+ p1δΠ2

0 =
1

2
+

p1δ

2(1− p2δ)

l1 = 1⇒ Π1
0 = 1 +

δ

2
Π2

0 = 1 +
δ

4(1− p2δ)

1

2
+

p1δ

2(1− p2δ)
> 1 +

δ

4(1− p2δ)
⇔

(p1 − 1
2
)δ

2(1− p2δ)
>

1

2
⇔ δ >

1

p1 + p2 − 1
2

Hence, in the case l2 = 0, the expert will choose l1 = 0 if δ > 1
p1+p2− 1

2

and he

will choose l1 = 1 if δ < 1
p1+p2− 1

2

holds.

ii)

l1 = 0⇒ Π1
0 =

1

2
+ p1δΠ2

0 =
1

2
+

p1δ

1− 1
2
δ

l1 = 1⇒ Π1
0 = 1 +

δ

2
Π2

0 = 1 +
δ

2− δ
1

2
+

p1δ

1− 1
2
δ
> 1 +

δ

2− δ
⇔ δ >

1

2p1 − 1
2

Since the latter equation is never satisfied for l2 = 1 due to δ < 1
2p2− 1

2

<
1

2p1− 1
2

, l2 = 1 always implies l1 = 1.

This completes the proof.

Proof of Lemma 13. Solving via backward induction, we start determining l2 by

going through three different cases.

1. l2 = 0: Then Π2
1 = 1/2 +p2δΠ2

0 and Π2
0 = 1/2 +p2δΠ2

0 + (1−p2)δΠ2
1. Plugging

the first expression into the second one and solving for Π2
0 yields

Π2
0 =

(1 + δ)/2− δp2/2

1− p2δ − (1− p2)δ2p2
. (22)
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2. l2 = 1: Then Π2
1 = 1/2 + p2δΠ2

0 and Π2
0 = 1 + δΠ2

0/2 + δΠ2
1/2 which can be

solved for

Π2
0 =

1 + δ/4

1− δ/2− δ2p2/2
. (23)

3. l2 = 2: Then Π2
1 = 1 + δΠ2

0/2 and Π2
0 = 1 + δΠ2

0/2 + δΠ2
1/2 which can be

solved for

Π2
0 =

1 + δ/2

1− δ/2− δ2/4
. (24)

Therefore, l2 = 1 is the expert’s best response if and only if

1 + δ/4

1− δ/2− δ2p2/2
> max

{
1 + δ/2

1− δ/2− δ2/4
,

(1 + δ)/2− δ2p2/2

1− p2δ − (1− p2)δ2p2

}
.

Conditional on l2 = 1 being the expert’s best response in learning level 2, we will

now check under which conditions l1 = 0 is the expert’s best response in learning

level 1. Again, we have to go through three cases.

1. l1 = 0: Then Π1
1 = 1/2 +p1δΠ2

0 and Π1
0 = 1/2 +p1δΠ2

0 + (1−p1)δΠ1
1. Plugging

in yields

Π1
0 =

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2
.

2. l1 = 1: Then Π1
1 = 1/2 + p1δΠ2

0 and Π1
0 = 1 + δΠ2

0/2 + δΠ1
1/2. Plugging in

yields

Π1
0 = 1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
.

3. l1 = 2: Then Π1
1 = 1 + δΠ2

0/2 and Π1
0 = 1 + δΠ2

0/2 + δΠ1
1/2. Plugging in yields

Π1
0 = 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2
.
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Therefore, l1 = 0 will be the expert’s best response if and only if

1

2
+

(1− p1)δ

2
+
p1δ(1 + (1− p1)δ)(1 + δ/4)

1− δ/2− δ2p2/2

≥ max

{
1 + δ/4 +

(δ/2 + δ2p1/2)(1 + δ/4)

1− δ/2− δ2p2/2
, 1 + δ/2 +

(δ/2 + δ2/4)(1 + δ/4)

1− δ/2− δ2p2/2

}
.

B Experiment Instructions

B.1 Control Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie können die Teilnahme

jederzeit ohne Angabe von Gründen abbrechen.

Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfältig. Vor dem Experiment bekom-

men Sie einige Kontrollfragen gestellt und Sie können bei korrekter Beantwortung

Geld gewinnen. Konkret werden Ihnen vier Kontrollfragen gestellt. Hiervon wird

nach Ihren Antworten eine zufällig ausgewählt und wenn Ihre Antwort auf diese

Frage beim ersten Versuch richtig war, bekommen Sie eine zusätzliche Auszahlung

von 1,00e.

Im Folgenden werden Sie zufällig in Zweiergruppen eingeteilt und werden

mit Ihrem zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel können Sie

Spielpunkte erspielen. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung

ermittelt, was weiter unten erläutert wird. Zusätzlich erhalten Sie eine hiervon

unabhängige Auszahlung von 4,00e für das Erscheinen und Ihre Teilnahme am

Experiment. In dem Spiel werden Sie zufällig entweder die Rolle von Spieler A

oder von Spieler B übernehmen. Das Spiel wird nun beschrieben und danach

anhand eines Beispiels für zwei Spielrunden veranschaulicht. Dort sehen Sie auch

beispielhaft die Bildschirmanzeigen, die beiden Spielern jeweils angezeigt werden.
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Entscheidungen der Spieler

Das Spiel wird über mehrere Runden gespielt und in jeder Runde hat Spieler

A die Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der

Folge, ob eine weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier

mögliche Fälle, die alle gleich wahrscheinlich sind und vor jeder neuen Runde

zufällig bestimmt werden.

Auszahlungen der Spieler bei Wahl von
Fälle Option 1 Option 2

1. Fall A: 1 Punkt, B: 1 Punkt A: 0 Punkte, B: 0 Punkte
2. Fall A: 0 Punkte, B: 0 Punkte A: 1 Punkt, B: 1 Punkt
3. Fall A: 1 Punkt, B: 0 Punkte A: 0 Punkte, B: 1 Punkt
4. Fall A: 0 Punkte, B: 1 Punkt A: 1 Punkt, B: 0 Punkte

Abbildung 1: Übersicht über die möglichen Auszahlungen für Spieler A und B

In jedem möglichen Fall erhält also jeder Spieler eine Auszahlung von 1 von

genau einer der beiden Optionen, während die andere Option ihm eine Auszahlung

von 0 gibt. Die Option mit der höheren Auszahlung kann entweder für beide Spieler

die gleiche oder aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Fälle ein, aber keiner der Spieler

weiß mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt

für welche der Optionen er einen Punkt erhält. Darüber hinaus erhält er einen

automatisch erzeugten Hinweis darüber, welche Option Spieler B einen Punkt

einbringen könnte. Dieser Hinweis ist immer mit einer Wahrscheinlichkeit von

82% korrekt und mit einer Wahrscheinlichkeit von 18% inkorrekt.

Nach der Entscheidung von Spieler A werden beide Spieler über ihre daraus

resultierenden Auszahlungen informiert. Spieler B erfährt hierbei nur, ob er eine

Auszahlung von 1 oder 0 (Spielpunkten) erhält und nicht, was der Hinweis von

Spieler A war oder welche Auszahlung Spieler A erhalten hat. Spieler A wird

hingegen auch über die Auszahlung von Spieler B informiert. Spieler B kann also

keine der Optionen selbst wählen, sondern erhält seine Auszahlung abhängig von

der Wahl von Spieler A. Im Anschluss daran kann Spieler B entscheiden, ob er das

Spiel beenden oder für eine weitere Runde fortführen möchte.

• Spieler B wählt fortführen:

In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde

des Spiels gespielt.
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Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entschei-

dung von Spieler B das Spiel fortzuführen (sonst könnte das Spiel theoretisch

unendlich lange dauern). Beide Spieler erhalten ihre bis dahin erspielten

Spielpunkte. Beide Spieler erhalten die Nachricht, dass das Spiel exogen

beendet wurde.

• Spieler B wählt beenden:

In diesem Fall bekommt Spieler B zusätzlich 5 Spielpunkte gutgeschrieben,

Spieler A erhält keine weiteren Punkte. Das Spiel ist zu Ende und beide

Spieler werden darüber informiert, dass Spieler B das Spiel beendet hat.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

A beobachtet seine
Auszahlungsoption

und erhält
Hinweis über B’s

Auszahlungsoption

A wählt
Option
1 oder 2

B beobachtet die
eigene Auszahlung,
A beobachtet beide

Auszahlungen

B wählt
fortführen

oder beenden

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel für alle Spieler beendet ist (entweder exogen oder weil alle Spieler

B ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behält

hierbei jedoch seine Rolle als Spieler A oder Spieler B und bekommt zufällig einen

Spieler des anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt

werden 10 Spiele mit wechselnden Spielpartnern durchgeführt. Am Ende wird

zufällig eines der 10 Spiele ausgewählt und die dort erspielte Punktzahl wird nach

Beendigung des Experimentes (zusammen mit der festen Auszahlung) ausgezahlt.

Ein Spielpunkt entspricht hierbei 1,00e.

Beispiel

In dem folgenden Beispiel (siehe Abbildung 1) wählt Spieler A in der ersten

Runde Option 1 (oben links im Bild). Im Folgenden werden beide Spieler darüber

informiert, dass diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen

ist nur der Bildschirm von Spieler B, oben rechts). Spieler A kann so feststellen,

dass sein Hinweis über Spieler B in Runde 1 korrekt war, da der Hinweis Option

2 lautete und Option 1 Spieler B eine Auszahlung von 0 einbrachte. Somit hätte
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Option 2 tatsächlich in einer Auszahlung von 1 für Spieler B resultiert. Spieler B

weiß allerdings weder welchen Hinweis Spieler A erhalten hat, noch ob Spieler A

diesem Hinweis gefolgt ist.

Abbildung 2: Ein Beispiel für die ersten zwei Spielrunden

Im Beispiel entscheidet sich Spieler B für ”Spiel fortführen” und es wird eine

zweite Runde gespielt. Nun entscheidet sich Spieler A für Option 2 (Bild unten

links). Diese Wahl führt zu einer Auszahlung von 1 für Spieler B (siehe Bild unten

rechts). Spieler B kann nun wieder entscheiden, ob er das Spiel fortführen oder

beenden möchte.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei

denen Sie teilweise Geld gewinnen können (dies ist dann jeweils vor Beantwortung

der Fragen erklärt). Zuletzt geben Sie über ein Formular Ihre Auszahlungsdaten

ein, die von der Universität zur Tätigung der Zahlung benötigt werden.

B.2 Treatment Group

Freiwilligkeit des Experimentes

Die Teilnahme an diesem Experiment ist freiwillig. Sie können die Teilnahme

jederzeit ohne Angabe von Gründen abbrechen.
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Instruktionen

Bitte lesen Sie die folgenden Instruktionen sorgfältig. Vor dem Experiment bekom-

men Sie einige Kontrollfragen gestellt und Sie können bei korrekter Beantwortung

Geld gewinnen. Konkret werden Ihnen fünf Kontrollfragen gestellt. Hiervon wird

nach Ihren Antworten eine zufällig ausgewählt und wenn Ihre Antwort auf diese

Frage beim ersten Versuch richtig war, bekommen Sie eine zusätzliche Auszahlung

von 1,00e.

Im Folgenden werden Sie zufällig in Zweiergruppen eingeteilt und werden

mit Ihrem zugeteilten Spielpartner ein Spiel spielen. In diesem Spiel können Sie

Spielpunkte erspielen. Auf Basis dieser Spielpunkte wird am Ende Ihre Auszahlung

ermittelt, was weiter unten erläutert wird. Zusätzlich erhalten Sie eine hiervon

unabhängige Auszahlung von 4,00e für das Erscheinen und Ihre Teilnahme am

Experiment. In dem Spiel werden Sie zufällig entweder die Rolle von Spieler A

oder von Spieler B übernehmen. Das Spiel wird nun beschrieben und danach

anhand eines Beispiels für zwei Spielrunden veranschaulicht. Dort sehen Sie auch

beispielhaft die Bildschirmanzeigen, die beiden Spielern jeweils angezeigt werden.

Entscheidungen der Spieler

Das Spiel wird über mehrere Runden gespielt und in jeder Runde hat Spieler

A die Wahl zwischen Option 1 und Option 2 und Spieler B entscheidet in der

Folge, ob eine weitere Runde des Spiels gespielt wird. Es gibt in jeder Runde vier

mögliche Fälle, die alle gleich wahrscheinlich sind und vor jeder neuen Runde

zufällig bestimmt werden.

Auszahlungen der Spieler bei Wahl von
Fälle Option 1 Option 2

1. Fall A: 1 Punkt, B: 1 Punkt A: 0 Punkte, B: 0 Punkte
2. Fall A: 0 Punkte, B: 0 Punkte A: 1 Punkt, B: 1 Punkt
3. Fall A: 1 Punkt, B: 0 Punkte A: 0 Punkte, B: 1 Punkt
4. Fall A: 0 Punkte, B: 1 Punkt A: 1 Punkt, B: 0 Punkte

Abbildung 1: Übersicht über die möglichen Auszahlungen für Spieler A und B

In jedem möglichen Fall erhält also jeder Spieler eine Auszahlung von 1 von

genau einer der beiden Optionen, während die andere Option ihm eine Auszahlung
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von 0 gibt. Die Option mit der höheren Auszahlung kann entweder für beide Spieler

die gleiche oder aber eine unterschiedliche sein.

In jeder Spielrunde tritt genau einer der obigen Fälle ein, aber keiner der Spieler

weiß mit Sicherheit, welcher das ist. Spieler A bekommt jedoch immer angezeigt für

welche der Optionen er einen Punkt erhält. Darüber hinaus erhält er einen automa-

tisch erzeugten Hinweis darüber, welche Option Spieler B einen Punkt einbringen

könnte. Dieser Hinweis ist in der ersten Runde mit einer Wahrscheinlichkeit

von 82% korrekt und mit einer Wahrscheinlichkeit von 18% inkorrekt. Die

Wahrscheinlichkeit, mit der der Hinweis korrekt ist, nennen wir in dem Experiment

die Hinweisstärke. Sie wird immer als Dezimalzahl angegeben. Eine Hinweis-

stärke von 0,82 entspricht zum Beispiel einer Wahrscheinlichkeit von 82%, eine

Hinweisstärke von 0,84 entspricht 84%, usw.

Nach der Entscheidung von Spieler A werden beide Spieler über ihre daraus

resultierenden Auszahlungen informiert. Spieler B erfährt hierbei nur, ob er eine

Auszahlung von 1 oder 0 (Spielpunkten) erhält und nicht, was der Hinweis von

Spieler A war oder welche Auszahlung Spieler A erhalten hat. Spieler A wird

hingegen auch über die Auszahlung von Spieler B informiert. Spieler B kann also

keine der Optionen selbst wählen, sondern erhält seine Auszahlung abhängig von

der Wahl von Spieler A. Im Anschluss daran kann Spieler B entscheiden, ob er das

Spiel beenden oder für eine weitere Runde fortführen möchte.

• Spieler B wählt fortführen:

In diesem Fall wird mit einer Wahrscheinlichkeit von 90% eine weitere Runde

des Spiels gespielt. Falls Spieler B in der aktuellen Runde eine Auszahlung von

einem Spielpunkt erhalten hat, wird in den folgenden Runden der Hinweis,

den Spieler A erhält, verbessert : Die Wahrscheinlichkeit, mit der der Hinweis

korrekt ist, erhöht sich um 2% (die Hinweisstärke erhöht sich also um 0,02).

Falls Spieler B in der aktuellen Runde eine Auszahlung von null Spielpunkten

erhalten hat, bleibt die Hinweisstärke genau wie in der vorherigen Runde.

Mit einer Wahrscheinlichkeit von 10% endet das Spiel trotz der Entschei-

dung von Spieler B das Spiel fortzuführen (sonst könnte das Spiel theoretisch

unendlich lange dauern). Beide Spieler erhalten ihre bis dahin erspielten

Spielpunkte. Beide Spieler erhalten die Nachricht, dass das Spiel exogen

beendet wurde.

• Spieler B wählt beenden:
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In diesem Fall bekommt Spieler B zusätzlich 5 Spielpunkte gutgeschrieben,

Spieler A erhält keine weiteren Punkte. Das Spiel ist zu Ende und beide

Spieler werden darüber informiert, dass Spieler B das Spiel beendet hat.

Sofern das Spiel über mehrere Runden fortgeführt wird, verbessert sich der

Hinweis auch in folgenden Runden (sofern Spieler B eine Auszahlung von einem

Punkt erhält). Hierbei erhöht sich die Wahrscheinlichkeit, dass der Hinweis definitiv

korrekt ist jeweils um 2%. Die maximale Wahrscheinlichkeit ist jedoch 90%. Sollte

in einer Runde also diese Wahrscheinlichkeit erreicht sein und Spieler B erhält in

dieser Runde nochmals eine Auszahlung von 1, so bleibt die Wahrscheinlichkeit

auch in allen folgenden Runden bei 90%.

Jede Runde des Spiels kann wie folgt in einem Schaubild veranschaulicht werden:

A beobachtet seine
Auszahlungsoption

und erhält
Hinweis über B’s

Auszahlungsoption

A wählt
Option
1 oder 2

B beobachtet die
eigene Auszahlung,
A beobachtet beide

Auszahlungen

B wählt
fortführen

oder beenden

Neues Spiel mit neuem Spielpartner

Sobald ein Spiel für alle Spieler beendet ist (entweder exogen oder weil alle Spieler

B ihr Spiel beendet haben), werden die Spielpartner neu zugelost. Jeder behält

hierbei jedoch seine Rolle als Spieler A oder Spieler B und bekommt zufällig einen

Spieler des anderen Typs zugelost. Das Spiel wird erneut gestartet. Insgesamt

werden 10 Spiele mit wechselnden Spielpartnern durchgeführt. Am Ende wird

zufällig eines der 10 Spiele ausgewählt und die dort erspielte Punktzahl wird nach

Beendigung des Experimentes (zusammen mit der festen Auszahlung) ausgezahlt.

Ein Spielpunkt entspricht hierbei 1,00e.

Beispiel

In dem folgenden Beispiel (siehe Abbildung 1) wählt Spieler A in der ersten

Runde Option 1 (oben links im Bild). Im Folgenden werden beide Spieler darüber

informiert, dass diese Wahl Spieler B eine Auszahlung von 0 einbringt (zu sehen

ist nur der Bildschirm von Spieler B, oben rechts). Spieler A kann so feststellen,

dass sein Hinweis über Spieler B in Runde 1 korrekt war, da der Hinweis Option
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2 lautete und Option 1 Spieler B eine Auszahlung von 0 einbrachte. Somit hätte

Option 2 tatsächlich in einer Auszahlung von 1 für Spieler B resultiert. Spieler B

weiß allerdings weder welchen Hinweis Spieler A erhalten hat, noch ob Spieler A

diesem Hinweis gefolgt ist.

Abbildung 2: Ein Beispiel für die ersten zwei Spielrunden

Im Beispiel entscheidet sich Spieler B für ”Spiel fortführen” und es wird eine

zweite Runde gespielt. In der zweiten Runde ist die Hinweisstärke dann wiederum

0,82, da Spieler B in der ersten Runde eine Auszahlung von 0 erreicht hat. Nun

entscheidet sich Spieler A für Option 2 (Bild unten links). Diese Wahl führt zu einer

Auszahlung von 1 für Spieler B (siehe Bild unten rechts). Spieler B kann nun wieder

entscheiden, ob er das Spiel fortführen oder beenden möchte und wird darüber

informiert, dass die Hinweisstärke in der nächsten Runde 0,84 wäre. Hätte Spieler

B in der zweiten Runde eine Auszahlung von 0 erhalten, so wäre die Hinweisstärke

in der nächsten Runde weiterhin bei 0,82 geblieben. Die Hinweisstärke erhöht sich

immer nur dann, wenn Spieler B in einer Runde eine Auszahlung von 1 erhält.

Ende des Experimentes

Zum Ende des Experimentes bekommen Sie noch ein paar Fragen gestellt, bei

denen Sie teilweise Geld gewinnen können (dies ist dann jeweils vor Beantwortung
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der Fragen erklärt). Zuletzt geben Sie über ein Formular Ihre Auszahlungsdaten

ein, die von der Universität zur Tätigung der Zahlung benötigt werden.

C Additional Results and Robustness Checks

In this section, we will provide additional results and robustness checks related to

the experimental results given in Section 4.6. We will have a further look at advice

quality, welfare distribution and hazard rates in turn.

C.1 Advice Quality
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Figure 7: Robustness Checks for Advice Quality

Figure 7 shows the robustness checks for advice quality. In Figure 7a, we only

considered those experts who gave at most one incorrect answer to the check

questions. We can see that the advice quality in the treatment group is still higher,

but the difference becomes a bit less significant. The same happens when we take

out the first two supergames in each session, where players might still have been

learning the game. This is shown in Figure 7b. Lastly, we looked at advice quality
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per learning level in the treatment group. The results can be seen in Figure 7c.

It turns out that advice in the learning levels p0, p1, p2 and p4 is significantly

higher than that given in the control group. However, the average advice quality

in learning level p3 is lower than in the control group. A potential explanation for

the low advice quality in this level is the gambling effect: Experts feel that their

signal strength is sufficiently high to generate fitting advice on the spot such that

they will take their bonus and hope to appease the consumer in the next period.

It is also noteworthy that the advice quality in learning level p4 is significantly

higher than in all other learning levels as well as in the control group. This effect

cannot be explained by a better signal quality, since advice quality is measured by

the share of tradeoff-situations (bonus option = option 2), in which the adviser

decides to give useful advice instead of receiving his bonus. The signal quality only

affects how often this decision will actually translate to the intended payoff of one

to the consumer. A reason for the high advice quality in learning level p4 could

be a selection effect: The majority of advisers who reached learning level p4 in

their advice relationship probably did so because they gave good advice in the

past and they might have an intrinsic motivation to give good advice and/or value

long-lasting relationships a lot. Another explanation could be reciprocity: Advisers

reward consumers for their loyalty over the last rounds by giving better advice.

Overall, we conclude that the difference in advice quality between control group

and treatment group seems to be quite robust.

C.2 Welfare Analysis

The results of the robustness checks for consumer welfare can be seen in Figure 8.

Overall, the observation that consumer welfare does not significantly differ between

control and treatment group is very robust. When we take out the supergames with

less than three rounds (Figure 8a) or the first two supergames of each session (Figure

8c) or those consumers with two or more incorrect answers to check questions

(Figure 8b), there is no significant difference in consumer welfare between control

and treatment group. We also had a look at total welfare, the sum of consumer

and expert payoffs. As can be seen in Figure 8d, there is no significant difference

between control and treatment group, either. This also implies that expert payoffs

in control and treatment group are not significantly different from each other.
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Figure 8: Robustness Checks for Consumer Welfare

C.3 Hazard Rates

Figure 9 shows the robustness checks we performed for the hazard rates. Our

finding that hazard rates are significantly lower in learning levels p0 and p1 proves

to be robust. Both excluding consumers with two or more incorrect answers to

check questions (Figure 9a) and taking out the first two supergames of each session

(Figure 9b) leads to a shape very similar to the one in Figure 4.4.
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