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IV. Aim of the thesis 

IV.I Summary 

The human body is densely populated by microbes, and the interplay between microbiome 

and host physiology is important for health. During ageing, the composition of the microbiome 

changes and recent research in killifish and mice suggests that the intestinal microbiome might 

play a causal role in the determination of organismal lifespan. Dietary restriction (DR) and 

reduced activity of the insulin/IGF1 (IIS) and mTOR network increase lifespan and improve 

health in mice. However, whether changes in the microbiome induced by these longevity 

interventions contribute to the positive effects on survival is currently unknown. Ageing also 

negatively affects the adaptive immune system, but how longevity interventions affect the 

ageing adaptive immune system and whether amelioration of immune function contributes to 

the improved health of these animals is still not well understood. In my PhD thesis, I used a 

systems biology approach to address: (I) How does the intestinal microbiome and metabolome 

change in response to longevity interventions in mice. (II) Does DR affect the adaptive immune 

system during ageing in mice and is this associated with the increase in longevity upon DR. 

(I) In the first study, I performed a systematic longitudinal analysis of age-related changes in 

the faecal microbiome and metabolome of mice under DR. Furthermore, in order to identify 

changes in the microbiome that are common between longevity interventions, I analysed the 

microbiome of mice with reduced IIS and mTOR signalling. I show that DR mitigates age-

related changes in microbiome community structure, including the decline in alpha diversity, 

increase in beta diversity, and loss of equilibrium between Firmicutes and Bacteroidetes phyla. 

Furthermore, by studying the faecal microbiome and metabolome of late-life DR switches that 

either increase or not increase lifespan, I identified an age-dependent memory of AL feeding 

in the microbiome associated with lifespan. Finally, I identified bacteria that were shared 

between DR, reduced mTOR and IIS signalling, suggesting that these bacteria may contribute 

to the health benefits observed in these long-lived mouse models. 

(II) In the second study, I analysed how DR affects the adaptive immune system during ageing. 

Therefore, I performed B cell receptor sequencing on spleen and intestine of mice during 

ageing and in response to DR to assess changes in the systemic and intestine-specific 

immune repertoire, respectively. Furthermore, as mice lose their responsiveness in lifespan 

to DR between 16 and 20 months of age, we also measured changes in the B cell repertoire 

in response to both diet switches, to identify changes in the B cell receptor repertoire that 

correlate with the longevity response. Interestingly, neither diet nor age had a strong influence 
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on the B cell receptor repertoire of the intestine. In contrast, in the spleen, DR delayed the 

age-associated decline of within-individual spleen repertoire diversity and the increase in 

clonal expansions. Thus, DR-mediated longevity is characterised by the preservation of a 

more diverse spleen repertoire, which is less prone to clonal expansions. Importantly, I show 

that reduced within-individual diversity and increased clonal expansions are associated with 

increased pathology in these mice, suggesting that changes in B cell repertoire dynamics 

contribute to the health benefits of chronic DR treatment. This is further supported by the 

finding that mice that started DR at 16 months have spleen repertoire diversity and clonal 

expansion rates indistinguishable from chronic DR mice, whereas the switch to DR at 20 

months was associated with milder effects, suggesting that the responsiveness of the adaptive 

immune system declines in mice between 16 and 20 months of age, which might contribute to 

the loss in lifespan extension of the late-life DR switch. 
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IV.II Zusammenfassung 

Der menschliche Körper ist dicht mit Mikroorganismen besiedelt. Das Zusammenspiel von 

Mikrobiom und Wirtsphysiologie ist wichtig für die Gesundheit. Während des Alterns verändert 

sich die Zusammensetzung des Mikrobioms. Aktuelle Forschungen an Kili-Fischen und 

Mäusen deuten darauf hin, dass das Darmmikrobiom eine kausale Rolle bei der Bestimmung 

der Lebensspanne spielt. "Dietary Restriction" (DR) und eine verringerte Aktivität des 

Insulin/IGF1- (IIS) und mTOR-Netzwerks verlängern die Lebenszeit und verbessern die 

Gesundheit von Mäusen. Ob Veränderungen im Mikrobiom hierbei eine kausal Rolle spielen 

ist derzeit jedoch unbekannt. Der Alterungsprozess wirkt sich auch negativ auf das adaptive 

Immunsystem aus. Wie lebenszeitverlängernde Eingriffe das Immunsystem beeinflussen und 

ob die Verbesserung der Immunfunktion zur verbesserten Gesundheit dieser Tiere beiträgt, 

ist noch nicht gut verstanden. In meiner Dissertation habe ich einen systembiologischen 

Ansatz verwendet, um folgende Fragen zu klären: (I) Wie verändern sich das Darmmikrobiom 

und das Metabolom von langlebigen Mäusen mit dem Alter? (II) Beeinflusst DR das adaptive 

Immunsystem von Mäusen während des Alterns? Gibt es einen Zusammenhang zwischen 

den Veränderungen im Immunsystem und der Langlebigkeit der DR Tiere? 

(I) In der ersten Studie habe ich systematisch die altersbedingten Veränderungen im fäkalen 

Mikrobiom und Metabolom von langlebigen DR Mäusen gemessen. Meine Ergebnisse zeigen, 

dass die DR Behandlung einen großen Einfluss auf die Zusammensetzung des Mikrobioms 

hat und altersbedingte Veränderungen in der Zusammensetzung des Mikrobioms positive 

beeinflusst inklusive der Abnahme von Alpha-Diversität, Zunahme von Beta-Diversität und 

dem Gleichgewicht zwischen Firmicuten und Bacteroidetes. Durch die Untersuchung des 

fäkalen Mikrobioms nach Diätwechseln spät im Leben, die entweder das Leben der Tiere 

verlängern oder nicht, konnte ich Bakterien identifizieren deren Häufigkeit im Mikrobiom mit 

Langlebigkeit korreliert. Um dies weiter zu untersuchen, habe ich das Darmmikrobiom von 

Mäusen mit verringerter Aktivität im IIS- und mTOR Netzwerk analysiert. Auf diese Weise 

habe ich Bakterien identifiziert, die zwischen den verschiedenen Eingriffen zur 

Lebenszeitverlängerung geteilt sind. Meine Ergebnisse deuten darauf hin, dass diese 

Bakterien eine wichtige Rolle in der Langlebigkeit und verbesserten Gesundheit dieser Tiere 

spielen.  

(II) In der zweiten Studie habe ich untersucht, wie DR das adaptive Immunsystem während 

des Alterns beeinflusst. Dazu habe ich das B-Zell-Rezeptor Repertoire in der Milz und im Darm 

von DR- und Kontrollmäusen während des Alterns sequenziert, um Veränderungen im 

systemischen bzw. darmspezifischen Immunrepertoire zu analysieren. Mäuse verlieren 

zwischen dem 16. und 20. Lebensmonat die Eigenschaft positiv auf die DR Behandlung zu 
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reagieren. Deshalb habe ich zusätzlich die Veränderungen im B-Zell-Repertoire nach 

Diätwechseln im Alter von 16 bzw. 20 Monaten gemessen, um Veränderungen im B-Zell-

Rezeptor-Repertoire zu ermitteln, die mit der Langlebigkeit korrelieren. Interessanterweise 

hatten weder die Ernährung noch das Alter einen starken Einfluss auf das B-Zell-Rezeptor-

Repertoire des Darms. Im Gegensatz dazu, hatte die DR Behandlung einen stärkeren Einfluss 

auf das B-Zell-Rezeptor-Repertoire der Milz und verlangsamte die altersbedingte Abnahme 

der B-Zell Diversität und die Zunahme der klonaler Expansion einzelner B-Zellklone. Die 

geringere Diversität innerhalb eines Individuums und eine verstärkte klonale Expansion der 

B-Zell-Rezeptoren war mit einem erhöhten Pathologiebefund in diesen Mäusen korreliert. 

Dies deutet darauf hin, dass Veränderungen in der Dynamik des B-Zell-Repertoires zu den 

positiven Effekten der DR Behandlung auf Lebenszeit und Gesundheit beitragen. Dies wird 

auch durch die Feststellung gestützt, dass Mäuse, die mit 16 Monaten auf DR umgestellt 

wurden, eine Diversität des Milzrepertoires und klonale Expansionsraten aufweisen, die sich 

nicht von denen chronischer DR-Mäuse unterscheiden, während die Umstellung auf DR mit 

20 Monaten mit milderen Auswirkungen verbunden war. 
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1. Methods 

1.1 Mice 

Mice were kept in the Comparative Biology facility (Mouse House) at the Max Planck Institute 

for Biology of Ageing. Animals were housed in groups of 5 females in individually ventilated 

cages (GM500 Mouse IVC Green Line, Tecniplast) under specific- pathogen-free conditions 

with constant temperature (21°C), 50–60% humidity and a 12-hour light–dark cycle. For 

environmental enrichment, mice had constant access to nesting material and chew sticks. All 

protocols involving animals were carried out in accordance with the recommendations and 

guidelines of the Federation of the European Laboratory Animal Science Association, with all 

protocols approved by the Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-

Westfalen, Germany (reference no. AZ: 84-02.04.2015.A437). 

1.1.1 Mouse husbandry and DR treatment 

The effect of DR on the mice and their microbiome, was studied on female F1 hybrid wild type 

mice (C3B6F1). Four treatment groups, including AL, DR and mice switched from AL to DR at 

16 (AL_DR16M) and 20 months (AL_DR20M) of age, respectively, were used for lifespan 

analysis and longitudinal faecal collection (n = 220 mice), and tissue collection (n = 220 mice) 

(Drews et al. 2021). The DR treatment was started at 3 months of age to avoid developmental 

effects. Food consumption of the AL group was measured weekly, and DR animals received 

60% of the food amount consumed by AL-fed animals, i.e. food intake was reduced by 40%. 

While AL animals had constant access to food, DR animals were fed once per day in the 

morning. All animals were checked daily for their well-being and any deaths. Animals were fed 

a commercially available rodent chow (ssniff R/M-H autoclavable, ssniff, Spezialdiäten, 

Germany) and were provided with sterile-filtered water ad libitum. Chow was enriched with 

essential vitamins and minerals, ensuring that DR animals were adequately supplied with all 

required nutrients, despite their lower food intake. 

Tissues were collected and snap-frozen using liquid nitrogen at 5, 16, 20, 24 and 28 months 

of age. Faecal samples were collected from 12 months onwards, every 2-3 months until death. 

Tissues and faecal samples were provided by Dr Sebastian Grönke and Dr Lisa Drews. 

1.1.2 Irs1-/- and Rapamycin-treated mice 

To study the effect of reduced insulin/IGF-1 signalling and reduced TOR signalling on the 

microbiome, faecal samples were collected from long-lived Irs1-/- mutant mice (Selman et al. 
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2008) and wild-type mice treated with Rapamycin (Juricic et al. 2022). Faecal samples were 

provided by Dr Maarouf Baghdadi and Dr Sebastian Grönke, respectively. 

Homozygous Irs1-/- mutant mice were generated in the C3B6F1 background. Female Irs1-/- and 

wild type control mice were fed standard chow ad libitum. Faecal samples were collected at 

6, 20 and 28 months of age. 

Female wild-type C3B6F1 mice were fed Rapamycin food (14 mg of drug per kg of food 

encapsulated in Eudragit S100, Evonik) from 3 months of age onwards. Control animals 

received food with Eudragit S100 only. Rapamycin treatment was administered continuously 

(Rapamycin-continuous) until the age of 12 months. In addition, mice were fed from 3-6 

months of age with rapamycin and were then switched back to control food (Rapamycin-

memory). Faecal samples were collected at 6 and 12 months of age. 
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1.2 Biochemistry and molecular-biology methods 

1.2.1 Microbiome metabolomics and sequencing 

1.2.1.1 Metabolites extraction and DNA pellet separation 

A pilot study performed by Jens Seidel tested metabolites extracted from a range of faecal 

weights (3 to 70 mg) on the mass spectrometer. The study identified 40 mg as the maximum 

weight of faecal pellets for extraction to avoid metabolite saturation, and established the 

protocol. Faecal samples were weighed and adjusted to a weight between 5 to 40 mg. For 

pellet homogenization, two 7 mm diameter stainless steel beads were added to the sample in 

2 ml tubes. Samples were homogenised by bead beating in a Tissue Lyzer (Qiagen) for 30 

seconds at a frequency of 25 Herz/s. 

Per batch, 24 samples were processed in parallel. Metabolite extraction buffer was prepared 

fresh for each batch including 31.25 ml of methanol (VWR Chemicals), 12.5 ml of chloroform 

(VWR Chemicals), 6.25 ml of water (VWR Chemicals), 1.5 μl of each internal standard lipid 

(Lyso PC-C26H52NO7P, PC-C41H73D7NO8P, TG-C51H89D7O6) (Sigma-Aldrich) and 12.5 μl of the 

mix of internal standards amino acids (13C15N Leu, 13C15N Iso, 13C15N Phe) (Cambridge 

Isotope Laboratories). 800 μl of metabolite extraction buffer was added per faecal sample, and 

mixed by vortexing. Metal beads were removed using magnetic sticks. Another 800 μl of 

metabolite extraction buffer was added to samples with a weight between 20 and 40 mg. 

Samples were incubated for 45 min shaking at 1400 rpm at 4 °C. Samples were briefly 

vortexed and a volume corresponding to 5 mg of sample was transferred to a new 2 ml tube 

as backup. Samples were centrifuged at 4 °C for 15 min at 20.000 g. 600 μl of supernatant 

were transferred into a new 2 ml tube, and 300 μl of chloroform (VWR Chemicals) and 300 μl 

of mass-spec grade water (VWR Chemicals) were added. Samples were briefly vorted and 

subsequently incubated at 4 °C for 15 min shaking at 1400 rpm. Samples were then 

centrifuged at 4 °C for 15 minutes at 10.000 g. 500 μl of the upper phase, corresponding to 

polar metabolites, and 250 μl of the lower phase, corresponding to non-polar metabolites, 

respectively, were collected. Non-polar metabolites were stored at -20 °C, and polar 

metabolites were dried in the speed vac for 5 h. Finally, the dried polar metabolites were also 

stored at -20 °C. 

1.2.1.2 Metabolomics 

Metabolomics measurements were done by the mass-spectrometry facility of the Max Planck 

Institute for Biology of Ageing (Cologne, Germany). Per treatment group, faecal samples of 10 

female mice were used. Based on their survival time, the 5 longest lived animals, and the 5 
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animals with a lifespan closest to the median lifespan were chosen for the analysis, to test 

whether the faecal metabolome of long-lived animals differed from that of normal lived animals 

within the treatment groups. In total 438 samples were measured. 

To create a reference standard, metabolites extracted from 5 AL, 5 DR, 5 AL_DR16M and 5 

AL_DR20M 26-month-old mice were pooled. Non-polar metabolites were pooled, mixed and 

split again in 20 tubes. Polar metabolites were resuspended in 500 μl of mass-spec grade 

water, pooled, mixed, split in 20 tubes and dried in the speed vac for 5 h. In addition, negative 

controls consisting of metabolite extraction buffer, and reference food metabolites extracted 

from rodent chow (ssniff R/M-H autoclavable, ssniff, Spezialdiäten, Germany) were also 

measured. 

Finally, polar and non-polar metabolites from all time points of 10 mice from AL, chronic and 

midlife/late-onset DR groups (5 longest lived and 5 centred at the age-of-death distribution; 

total of 438 samples), as well as 38 pooled reference standards, 23 blanks and 4 food pellets 

were run on the mass spectrometer by the Metabolomics facility at the MPI-AGE. Untargeted 

metabolomics assays were performed in order to obtain polar neutral (BZ-polar, amino acids), 

and non-polar (lipids) metabolites. 

1.2.1.3 DNA extraction 

DNA extractions were performed in batches of randomly assigned 81 samples. 2 spoonfuls 

(43 mm) of Zirconium beads (Carl Roth) were added per dried faecal pellet. DNA extraction 

buffer was prepared by mixing 27 ml of 20% SDS and 540 mg of lysozyme (Sigma-Aldrich). 

Subsequently, the buffer was incubated at 38 °C for 20 minutes and shaking at 100 rpm in 

order to correctly dissolve the lysozyme. 300 μl of DNA extraction buffer was added to each 

sample. Samples were homogenised by bead-beating twice for 3 minutes at 30 Hz using a 

Tissue Lyzer (Qiagen). Afterwards, samples were centrifuged at 15 °C for 6 min at 4.000 g. 

80 μl of supernatant was then transferred to a 96 well plate (Biozym). Another 80 μl of 

supernatant was transferred to a backup plate. Plates were stored at -20 °C. 

To extract DNA, 2 μl RNAse A solution (Qiagen) was added to each sample and plates were 

incubated at 37 °C for 30 minutes. 10 μl of Proteinase K (ThermoFisher Scientific) and 10 μl 

20% SDS were added. After mixing, plates were incubated at 56 °C for 1 h. 40 μl IRS solution 

(Qiagen) was added and plates were mixed and incubated at 4 °C for 5 min. Plates were 

centrifuged for 5 min at 2000 g. 100 μl of the supernatant was transferred into a new 96 well 

plate. DNA was purified using CleanNGS beads (CleanNA) at 1x concentration. 100 μl beads 

were added to the sample and were thoroughly mixed. Samples were incubated at RT for 5 

min to allow binding of DNA to the beads. Plates were then put on a magnetic rack 
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(ThermoFisher Scientific) and incubated for 5 min to bind the beads to the magnet. 

Supernatant was removed and samples were washed twice with 200 μl of freshly prepared 

80% ethanol. After the last wash, additional ethanol was removed by pipetting using a P10 

pipette. Samples were dried for 5 min at RT. DNA was eluted in 20 μl nuclease-free for 5 min 

at RT. DNA was stored at -20 °C until library preparation. 

1.2.1.4 16S rRNA library preparation 

Purified DNA was diluted in water to 5 ng/μl. The genomic region of the 16S rRNA was 

amplified in two successive rounds of PCR. In the first PCR round the V4 region of the 16S 

gene was amplified using 515F-806R V4 primers (Appendix 4.1). The PCR reaction mix 

contained 10 μl of DNA, 12 μl of 2x Kapa Hifi HotStart polymerase (Roche) and 3 μl 10 μM 

primer mix of 515F-806R V4 primers (Appendix 4.1). PCR reaction conditions were: 98 °C for 

3 min, followed by 21 cycles of: 98 °C for 30 s, 61 °C for 30 s and 72 °C for 30 s. A final 

extension at 72 °C for 5 min was added. Also, several controls were included to control for: 

DNA extraction buffer, food microbiome DNA, and PCR reactions. To generate them, libraries 

were prepared from the controls from previous steps of the DNA extraction protocol, and also 

from the PCR reaction mixes. 

PCR products were purified using 1x CleanPCR beads and 80% ethanol in order to remove 

contaminants including remaining primers, salts and dNTPs. PCR products were eluted in 30 

μl nuclease-free water. To add sample barcodes, a second PCR was performed. Therefore, 5 

μl of purified PCR products were mixed with 2.5 μl of i5-i7 Illumina barcodes and 12.5 μl of 2x 

Kapa Hifi HotStart Polymerase. The reaction volume was brought to a total of 25 μl using 

nuclease-free water, and the resulting mix was incubated at: 98 °C for 3 min, followed by 7 

cycles of: 98 °C for 30 s, 61 °C for 30 s and 72 °C for 30 s, finishing with a last extension at 

72 °C for 5 min. PCR-2 products were then purified using 1x CleanPCR beads in order to 

remove contaminants, and eluted in 30 μl with water. Total DNA concentration of each sample 

was quantified using PicoGreen assay (ThermoFisher Scientific) and adjusted to 1 ng/μl by 

adding water. Size distribution of DNA fragments was measured on a random subset of 

samples from each plate on a TapeStation 4200 (Agilent, D1000 tape) including all negative 

controls. 2 μl from each library were pooled, re-purified using 0.8x CleanPCR beads to remove 

smaller unspecific amplifications. 

Finally, faecal V4-16S rRNA libraries consisting of: longitudinal faecal collections of 220 mice 

from AL, chronic and DR switch groups (total of 2118 samples); 50 cross-sectional-diet cecal 

collections (5 biological replicates per condition: 5 months AL and DR; 16 months AL; 20 

months AL, DR and AL_DR16M; and 24 months AL, DR, AL_DR16M and AL_DR20M); 60 
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cross-sectional Irs1-/- mice (10 biological replicates of wild type and Irs1-/- at 6, 20 and 28 

months); and 50 cross-sectional Rapa mice (10 biological replicates per condition: 6 months 

control and Rapamycin; and 12 months control, Rapamycin-Memory and Rapamycin-

Continuous). As well as 170 blanks and 8 control food pellets, were sequenced in 3 successive 

runs using 250x2 paired-end sequencing on an Illumina HiSeq 2500 at Admera Health, US. 

1.2.1.5 Shotgun metagenomics library preparation 

Purified DNA from 24-month-old AL, DR, AL_DR16M and AL_DR20M mice (3 per diet group), 

was diluted in water to 8 ng/μl. Libraries were prepared following the Illumina DNA Library 

Prep workflow. First, a tagmentation reaction was performed on the faecal DNA. In this 

reaction, Illumina patented transposons fragmentate the genomic DNA into ~350 nt long 

fragments and add Illumina adapters to the terminals. Therefore, 30 μl of DNA was mixed with 

10 μl of Bead-Linked Transposons and 10 μl of Tagmentation Buffer. After 15 min incubation 

at 55 °C, the tagmentation reaction was stopped by adding 10 μl of Tagment Stop Buffer and 

incubation on ice for 5 min. Next, the mix was kept at 37 °C for 15 min, and then placed on a 

magnetic stand for ~3 min. After discarding the supernatant, the adapter-tagged DNA bound 

to the beads was cleaned twice using Tagment Wash Buffer (Illumina). 

Supernatant was removed and a PCR master-mix composed of 20 μl Enhanced PCR 

polymerase and 20 μl of nuclease water was added. In each individual sample, a unique 

combination of Nextera CD i5-i7 barcodes (10 μl total volume) was added. This resulting mix 

was incubated at 68 °C for 3 min and 98 °C for another 3 min to denature DNA. Subsequently, 

amplification was done using 5 cycles at 98 °C for 45 s, 62 °C for 30 s, and 68 °C for 2 min, 

followed by a last extension step at 68 °C for 1 min. 

To purify the amplified products, samples were first centrifuged at 280 g for 1 min. 45 μl of the 

supernatant was transferred to a new plate and diluted with 40 μl nuclease-free water. 45 μl 

of Sample Purification Beads (Illumina) were added, and the solution was incubated at RT for 

5 min. After 5 more minutes in the magnetic stand, 125 μl of the supernatant was transferred 

to a new plate and 15 more μl of Sample Purification Beads were added. Solutions were mixed 

and incubated at RT for 5 min. Two rounds of bead clean-up with 80% ethanol were performed. 

Ethanol was removed and beads were air-dried for 5 min. To elute the DNA library, beads 

were resuspended in 32 μl of Resuspension Buffer. Total concentration of each sample was 

quantified using Qubit and TapeStation 4200 (Agilent, D1000 tape), which also showed the 

distribution of DNA fragment size. 2 μl of each sample, diluted at 2 ng/μl were pooled. As 

negative control, an extra library preparation with no DNA was performed and sequenced. 
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Finally, faecal shotgun metagenomics libraries of 3 biological replicates of 24-month-old AL, 

DR, AL_DR16M and AL_DR20M, and negative controls, were sequenced at 250x2 paired-

end sequencing on an Illumina HiSeq 2500 at Admera Health, USA. 

1.2.2 B-cell receptor repertoire sequencing 

1.2.2.1 RNA extraction from spleen and ileum 

Spleen and ileum samples were homogenised in 1 mL TRIzol (Life Technologies) using a 

FastPrep-24 (MP Biomedicals) and the following programme: 6 times bead-beating at 4 m/s 

for 30 sec. Homogenised samples were incubated at RT for 5 min. 200 μl of chloroform (0.2 

ml of chloroform per 1 ml of TRIzol) was added and mixed by vortexing. Samples were 

incubated at RT for 10 min and subsequently centrifuged at 4 °C and 12000 g for 15 min. The 

aqueous upper phase was collected and transferred to a new RNAse free tube. 500 μl of 

isopropanol, 50 μl of 3.0 M NaOAc and 1.5 μl of glycogen (ThermoFisher Scientific) were 

added and tubes were shaken by hand. Samples were incubated at -80 °C for 30 to 45 min to 

precipitate RNA and then centrifuged at 4 °C and 12.000 g for 10 min. The RNA pellet was 

washed twice with 1 ml of ice-cold 70% ethanol, air-dried for 5-10 min and then resuspended 

in 30 μl RNAse free water (ddH2O DMPC). As negative control, an extra RNA extraction 

without sample RNA was performed. 

1.2.2.2 DNAse Treatment 

To remove potential DNA contamination from the RNA sample, 3 μl of 10x TURBO DNAse 

Buffer and 1 μl of DNAse (ThermoFisher Scientific) was added to 30 μl RNA. Samples were 

incubated at 37 °C for 30 min. Then another 1 μl of DNAse was added and samples were 

incubated for another 30 min. 3 μl of DNAse Inactivation Buffer were added. Samples were 

incubated at room temperature for 5 min and were mixed occasionally. Finally, samples were 

centrifuged at 10000 g for 1.5 min, and the supernatant including the DNA-free RNA was 

transferred to a new tube. 

1.2.2.3 RNA quantification with Qubit (Invitrogen) and TapeStation 

To quantify RNA content, the Qubit® RNA BR Assay kit (ThermoFisher Scientific) was used. 

Therefore, a master mix containing 199 μl of Qubit® RNA BR buffer and 1µl of Qubit® RNA 

BR reagent was prepared. 199 μl of the master mix and 1 μl of RNA were added to qubit tubes. 

For the standard, 190 μl of master mix and 10 μl of Qubit broad range standard was added. 

The content of each qubit tube was quantified independently in a Qubit 4 Fluorometer 

(ThermoFisher Scientific). 
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To evaluate RNA quality, a random subset of 30 samples was run on a TapeStation 4200. 

Therefore, 1 μl of RNA was mixed with 5 μl of RNA Sample Buffer and denatured at 72 °C for 

3 min. Samples were incubated on ice for 2 min and then run using a D5000 Screen Tape. All 

samples had a RIN value above 7 as recommended for BCR-Seq (Turchaninova et al. 2016). 

1.2.2.4 Reverse transcription and template switch 

Reverse transcription of RNA was performed using SMARTScribe Reverse Transcriptase 

(Clontech), according to Turchainova et al. (Turchaninova et al. 2016). 600 ng of RNA were 

mixed with 2 μl 10 μM isotype-specific primer mix including: IgM, IgD, IgG, IgA and IgE 

(Appendix 4.2). Samples were incubated for 2 min at 70 °C to denature RNA, and 3 min at 42 

°C to anneal isotype-specific primers. The mixture was then combined with 12 μl of reverse-

transcription master-mix: 4 μl 5x First-strand buffer (Clontech) + 2 μl 20 mM DTT + 2 μl 10 μM 

5’-Template switch adaptor (Appendix 4.3) + 2 μl 10 mM dNTP solution + 2 μl 10x 

SMARTScribe Reverse Transcriptase (Clontech). The reaction was incubated at 42 °C for 1 

h and then mixed with 1 μl of uracil DNA glycosylase (New England Biolabs), and incubated 

for 40 min at 37 °C to digest the template-switch adapter. Finally, the reaction product was 

purified using MinElute PCR Purification columns (Qiagen) and eluted in a volume of 10 μl. 

1.2.2.5 Library preparation for BCR-Seq 

To generate libraries for B cell receptor sequencing (BCR-Seq), three successive rounds of 

PCR were performed. To decide on the amount of cDNA input and sequencing depth per 

tissue, a pilot study was performed, identifying 1 μl of Spleen or 5 μl of Ileum cDNA, and a 

target of 5 million reads for Spleen and 3 million reads for Ileum, to obtain a minimum coverage 

of 5 reads per unique molecular identifier (UMI). In the first reaction, double stranded cDNA 

was made generated using the following reaction mix: 1 μl of Spleen or 5 μl of Ileum cDNA + 

12.5 μl of 2x Kapa HiFi HotStart polymerase (Roche) + 1 μl 10 μM 5’- template switch primer 

(Appendix 4.4) + 1 μl 10 μM 3’-nested immunoglobulin isotype primer mix (Appendix 4.4) + 

nuclease-free water to 25µl. The reaction was incubated at 95 °C for 1.5 min, followed by 18 

cycles of 95 °C for 10 s, 60 °C for 20 s and 72 °C for 40 s, followed by a last extension at 72 

°C for 4 min. PCR products were purified using 0.8x Agencourt AMPure XP beads (Beckman 

Coulter) and eluted with 30 μl water. The second PCR adds internal sample barcodes and 

Illumina sequencing adapters, and further amplifies the library. Therefore, 1 μl of purified PCR 

product was mixed with: 2 μl 10 μM primer mix (5’ and 3’ primers with sample barcodes) 

(Appendix 4.5), 12.5 μl of 2x Kapa HiFi HotStart polymerase (Roche) and 9.5 μl nuclease-free 

water. Reaction conditions were: 1 x 95 °C for 1 min 30 s; 13 x: 95 °C for 10 s, 60 °C for 20 s 

and 72 °C for 40 s, followed by a last extension at 72 °C for 4 min. PCR products were purified 
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using 0.8x Agencourt AMPure XP beads (Beckman Coulter) in order to remove contaminants 

as well as nonspecific amplifications with nucleotide length below ~400 nt. Samples were 

eluted in 20 μl water. Size distribution of amplified DNA fragments was measured using a 

TapeStation 4200 (Agilent, D1000 tape). Samples tagged with different internal barcodes were 

then pooled in equal concentrations in groups of 10 samples, in a total of 10 libraries. As 

negative control, an extra library preparation with no DNA was performed and sequenced. 

Finally, spleen and ileum BCR repertoire libraries of a total of 50 mice (5 mice per biological 

condition: 5-month AL and DR; 16 months AL; 20 months AL, DR and ALDR16M; and 24 

months AL, DR, ALDR16M and ALDR20M mice) were sent to the sequencing core facility of 

the Max Planck Institute for Molecular Genetics (Berlin, Germany). There, ligation of Illumina 

adaptors (including i5 and i7 indices), library pooling and asymmetric 400+100-nt paired-end 

sequencing on an Illumina NovaSeq 6000 were performed. 
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1.3 Computational and biostatistical methods 

Data processing and analysis were performed on the MPI-AGE High Performance Computing 

(HPC) cluster, using the Simple Linux Utility for Resource Management (SLURM) for parallel 

distribution of jobs. All Python (v.3.7.3) scripts were run on a stable Conda virtual environment 

and R (v.4.0.2) scripts on a singularity container. Tracking of scripts and versions was 

implemented on git and backed up on github repositories (https://github.com/carolinamonzo). 

1.3.1 Morbidity Index 

Repository: https://github.com/carolinamonzo/CM_BCRseq  

After mouse dissections, gross pathological findings were recorded. As a summary metric of 

the health state of the mice, a morbidity index was designed and calculated for this thesis, 

based on (Ikeno et al. 2009; Treuting et al. 2008; Bokov et al. 2011a). The morbidity index 

was based on the combination of tumour and non-tumour pathologies. For each mouse, a 

score of 0 to 2 was assigned to describe tumoral state: 0 indicated no tumours detected, 1 

indicated only 1 organ affected by tumours, and 2 indicated 2 or more organs affected by 

tumours; representing metastatic cancer. Non-tumour pathologies were analysed as 

presence/absence (0/1) of pathologies per organ. The morbidity index was calculated as:

       !"#$%&%'()%*&+,-.-*+"/012%1)&+3#++-4-56*"*7*+"/012'%8)/1'9"0"3(organ) 

The algorithm classified the presence of a non-neoplastic pathology equally as bad as having 

one organ affected by tumours, while the weight of metastasis in the model was doubled. A 

high morbidity index indicated a high degree of sickness at death, while a lower index 

represented health. 

1.3.2 Microbiome 16S rRNA-Sequencing 

Repositories:  

https://github.com/carolinamonzo/CM_16S_longitudinal  

https://github.com/carolinamonzo/CM_16S_cross-sectional  

https://github.com/carolinamonzo/CM_16S_IRS  

https://github.com/carolinamonzo/CM_16S_Rapa  

1.3.2.1 Microbiome 16S rRNA-Sequencing data preprocessing 

Unless otherwise specified, data processing was performed using dada2 R-package (v.1.18) 

(Callahan et al. 2016). The formatted reference Silva database was obtained from the dada2 
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repository (https://zenodo.org/record/4587955). The pipeline was fully wrapped and 

automatized, running with different numbers of runs, samples and reads, for re-use in different 

projects. 

1.3.2.1.1 Demultiplexing and data cleaning 

After sequencing, samples were demultiplexed using the bcl2fastq Illumina tool. By 

demultiplexing, raw image files generated by the Illumina sequencer were sorted into 

sequenced reads, separated into files corresponding to independent samples. Next, reads 

were split according to their respective sequencing lanes using AWK programming language, 

as they might have different sequencing error profiles to correct. Reads where no primer was 

identified were discarded, and cutadapt (v.3.4) (M. Martin 2011) was used to remove 

amplification primers. 

1.3.2.1.2 Filtering, consensus read-building and error correction 

For each individual run and lane, forward (R1) and reverse (R2) read files were processed 

together. The dada2 R-package (v.1.18) (Callahan et al. 2016) was used for data processing. 

Reads were filtered by a minimum quality threshold of 25 Phred. Next, the dada2 “learnErrors” 

function was used, which calculates the parametric error model from the data through a 

machine learning algorithm estimating error rates, and inferring sample composition until they 

converge into a consistent solution. Next, the function “dada” was applied in order to use the 

estimated error models for error correction and sample inference. Paired R1 and R2 reads 

were merged and chimeric merges were removed. We used procrustes analysis (vegan R-

package v.2.4-2) (Paliy and Shankar 2016; Peres-Neto and Jackson 2001) to confirm that the 

calculated count tables had comparable information. Finally, tables from all sequencing lanes 

were merged into a single count table. 

Samples that were sequenced twice were only merged when the smaller duplicate, i.e the 

sample with less reads, had at least 30% of the number of reads than the larger duplicate. 

Otherwise, only the samples with the higher read counts were considered for downstream 

analyses. 

1.3.2.1.3 Quality control and bacteria annotation 

A minimum of 1500 reads was established as the lower cut-off to remove experimental noise, 

based on read distribution in water controls and blanks. Consistently, samples with less than 

1500 reads were removed from the longitudinal dataset. Amplicon Sequence Variants (ASVs) 

were defined as high resolution clusters of sequencing reads differing by single-nucleotide 

differences over the sequenced V4 region of the 16S rRNA gene. ASVs present in less than 
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3 samples or with less than 5 reads in total were removed from the analysis. In the cross-

sectional datasets, the filtering criteria was less conservative as fewer samples were studied; 

samples with less than 1500 reads and ASVs present in less than 2 samples or with fewer 

than 4 reads were removed.  

After normalising using z-score, the taxonomy of the cleaned and normalised count tables was 

annotated using dada2 with the Silva database (v.123), using a Native Bayesian classifier of 

the Ribosomal Database Project (Q. Wang et al. 2007). Number of reads after each 

processing step of the dada2 pipeline were recorded for quality control and processing 

comparisons. No significant differences between lanes or sequencing runs with regards to the 

number of reads lost during the processing of the dada2 pipeline were found. Statistical 

analysis of procrustes (vegan R-package v.2.4-2) spatial correlation of sequencing runs and 

lanes was used to confirm the adequate merging of data (Paliy and Shankar 2016; Peres-

Neto and Jackson 2001). FastQC analysis (quality control of raw fastq files) was run before 

and after read quality filtering to ensure adequate data. Coefficients of variation and Pearson 

correlation between biological replicates, as well as Principal Coordinates analysis (PCoA) 

(scipy Python-library v.1.6.2, seaborn Python-library v.0.10.1) were used to confirm correct 

grouping. 

1.3.2.2 Analysis of microbiome 16S rRNA-Sequencing data 

The annotated table and metadata information of the samples were stored together in a 

phyloseq (v.1.34) (McMurdie and Holmes 2013) object for downstream analysis. A maximum 

likelihood phylogenetic tree of sequence relationships was built using neighbour joining 

according to the calculated distance between sequences. Linear models were calculated to 

identify bacteria increasing or decreasing through age. 

1.3.2.2.1 Intra-individual bacteria diversity (alpha) 

The Phyloseq function “estimate_richness” was used to calculate alpha diversity metrics 

(witin-individual variability). Where “Observed” corresponds to Richness, or overall number of 

different bacteria in the samples; “Shannon” to a diversity metric taking into account not only 

number of species but also their distribution in the population; and “Simpson” to a metric of 

population evenness, where more dominant bacteria have a higher impact in the calculation. 

Alpha diversity through age was visualised using Lowess-adjusted line plots. One-way 

ANOVA and Student’s t-tests were used to compare between diets within-time points. Linear 

regression was used to study changes with age (scipy Python-library v.1.6.2) and generalised 

linear mixed effects (GLME) models to compare alpha diversity through age between diets 
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(correcting for mouse contribution by including it as a covariate in the model:    

  α ~ month*diet + (1|Mouse); lme4 R-package v.1.1-23). 

1.3.2.2.2 Inter-individual bacteria diversity (beta) 

Beta diversity (between-individual variability), evaluates the distance between pairs of 

samples. Here, we calculated 3 metrics. First, the phyloseq function “distance” was used to 

calculate unweighted UniFraq (Lozupone et al. 2007), which only considers the presence or 

absence of taxa, and divides the number of shared bacteria species between 2 samples by 

the total number of bacteria. Second, weighted UniFraq was calculated, taking into account 

the relative abundance of each type of bacteria in the distance metric (Lozupone et al. 2007). 

Third, Bray-Curtis dissimilarity (Bray, Roger Bray, and Curtis 1957) was calculated by taking 

the sum of the minimum relative abundance of common species between 2 samples divided 

by the total number of bacteria between both samples. 

Beta diversity through age was visualised using Lowess-adjusted line plots. For evaluation of 

individual time points, PCoA was plotted (scipy Python-library v.1.6.2, seaborn Python-library 

v.0.10.1). Analysis of similarities (ANOSIM) was calculated to evaluate the significance of 

biological replicates clustering, and permutational ANOVA (PERMANOVA) to compare 

between biological groups within each time point (vegan R-package v.2.4-2). Linear 

regression was used to study changes with age (scipy Python-library v.1.6.2), and GLME 

models to compare patterns through age between diets (correcting for mouse contribution by 

including it as a covariate in the model:                

    β ~ month*diet + (1|Mouse); lme4 R-package v.1.1-23). 

To evaluate the impact of repeated measurements on beta diversity in the longitudinal study, 

compositional tensor factorization was used to deconvolute microbiome dynamics (gemelli 

Python-library v.1.0). The tensor was built as a 3-dimensional object, where the axes are 

mouse, bacteria and time (Martino et al. 2021). The tensors corresponding to each beta 

diversity distance metric were visualised using PCoA (seaborn Python-library v.0.10.1), and 

ANOSIM was used to validate the impact of repeated-measurements from each mouse (vegan 

R-package v.2.4-2). 

1.3.2.2.3 Random forest-based classifier of AL and DR bacteria throughout age 

The repeated-measurements per mouse in the longitudinal study required a multivariate 

analysis taking into account both linear and non-linear relationships between bacteria. For this 

analysis, bacteria present in less than 5% of the samples were excluded. To identify bacterial 

signatures specific for DR and AL treatment with age, we used a random forest-based 

approach. Random Forest (Ho, n.d.) is a machine learning algorithm that works by generating 
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N random datasets with replacement, i.e. 1 sample being in 1 random dataset does not 

exclude it from being also in another dataset. A decision tree is independently trained for each 

dataset, and a new set of random datasets is generated. Next, the process is repeated. This 

means that there is bootstrap aggregating “bagging” of the variables (M classifiers are trained 

independently), and “bootstrapping” with replacement of the samples (in each iteration, a 

classifier depending on the previous step results is generated). The forest was built as: diet ~ 

asv_table*months + (1|months) + (1|Mouse), with the aim of predicting “diet” (either AL or DR) 

using the asv_table information, and its interaction with the “months” of age at faecal 

collection. With added covariates “months”, as we expect a common signature between mice 

of the same age, and “Mouse” since we have repetitive measurements per individual. The 

Random Forest classifier, computed using “sklearn.ensemble.RandomForestClassifier” 

function from scikit-learn Python-library (v.1.0.2), was trained on 70% of all mice (83 mice, 702 

samples), and tested on the remaining 30% of mice. Further, as quality control, out-of-bag 

estimates of error rate (probability that any given prediction is not correct within the test data), 

accuracy (true positives), Receiver Operating Characteristic curves (relationship between 

false positive rate and true positive rate), and 10-Fold Cross validation score (it calculates a 

Random Forest Classifier model 10 times, where in each case 90% of the samples are train 

data, and the 10% test data is different in each classifier trained) were calculated. Once the 

Forests were trained and passed quality controls, “permutation_importance” function from eli5 

Python-library (v.0.11) was used to calculate the importance of each bacteria to explain the 

separation between AL and DR. Importance was calculated by taking out the value of the 

bacteria, substituting it by a random value, training the model again and using it to evaluate if 

there is still relevance in the classification from the out-of-bag calculation. Finally, the trained 

Forest on AL and DR samples was run on AL_DR16M and AL_DR20M to obtain the accuracy 

of classification into DR (on the ages after the diet switch had occurred). The Random Forest 

classifier was further validated using 16S rRNA sequencing data from chapter 3 and data from 

AL and DR mice from an independent project provided by Lisonia Gkioni. 

1.3.2.2.4 Elastic net regression to predict a microbiome-based ageing clock 

To evaluate the age-specific microbiome, log2 transformed and z-scored centred bacterial 

abundance table from the longitudinal study was used. An Elastic Net (Zou and Hastie 2005) 

is a machine learning method that combines the penalties of Ridge regression and Lasso 

regression. Where Ridge regression shrinks the regression coefficients so variables with minor 

contribution to predict the outcome have their coefficients close to zero, Lasso regression 

assigns exact zero to minor contributors. The Elastic Net was trained with 70% of AL mice, 

using ''months'' as the dependent variable, using the ''sklearn.linear_model.ElasticNet'' 
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function from scikit-learn Python-library (v.1.0.2). First, Ridge and Lasso penalties (alpha and 

L1_ratio) were calculated using an iterative model fitting with Cross validation to find the best 

penalty fit on the training dataset by running the function ''sklearn.linear_model.ElasticNetCV''. 

Next, the Elastic Net model was built on AL samples (months ~ asv_table), and tested on the 

remaining 30% of AL mice. As quality controls, accuracy percentage (true positives), Mean 

Absolute Error (sum of absolute variance from the model compared to random), and 5-Fold 

Cross validation score (calculating the Elastic Net regressor 5 times, where in each case 80% 

of samples are train data, and the 20% test data is different in each Elastic Net trained) were 

calculated. Inspection of the AL-Aging Clock generated using the Elastic Net revealed that the 

age of young samples was overestimated, and the age of old samples was under-estimated. 

Therefore, an Ordinary Least Squares regression was fit on top of the predictions from the 

Elastic Net, thus including a linear correction on the age prediction from the Elastic Net (scikit-

learn Python-library v.1.0.2). Finally, the Elastic Net picked 107 bacteria as relevant for the AL 

ageing clock (coefficients of importance different than 0), and eliminated the other 2484 

bacteria. Once the AL-Ageing Clock passed accuracy quality controls, it was used to predict 

age in all samples from DR, AL_DR16M and AL_DR20M mice. 

1.3.2.2.5 Generalised Linear Mixed Effects Models for bacteria comparison in the 

longitudinal analysis 

Diet specific bacteria identified by the Random Forest Classifier were further compared 

through age and between diets using GLME models (lme4 R-package v.1.1-23):                     

ASV ~ months*diet + (1|Mouse). Bacteria that differed through age between AL and DR were 

overlapped with those different between DR and AL_DR16M or AL_DR20M to identify switch-

resistant bacteria. DR-specific bacteria were defined as those where their abundance levels 

were not recapitulated by either AL_DR16M nor AL_DR20M. Bacteria that changed upon 

AL_DR16M but not upon AL_DR20M, were considered of interest for a possible association 

with the differences in longevity between AL_DR16M and AL_DR20M. Bacteria of interest 

were visualised as Kronas plots and networks (Ondov, Bergman, and Phillippy 2015) in order 

to account for relative abundance of bacteria and overlaps of Phylum, Family etc. 

1.3.2.2.6 Principal response curves in the longitudinal study 

To further study time-dependent diet effects on the faecal microbiome, Principal Response 

Curves (PRCs) were calculated on the longitudinal 16S-Seq data (vegan R-package v.2.4-2) 

(Paliy and Shankar 2016). PRCs are a special case of Redundancy Analysis. They take into 

account interaction between bacteria and calculate how much of the variation in one set of 

variables can be explained by the variation in another set of variables. PRC were calculated 
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including AL as controls, therefore the abundance of each bacteria was modelled as 

(AL_ASV_mean_abundance + effect_of_diet_at_the_time + error) ~ (diet*month + (1|month)). 

The weights of the response variables represent the resemblance of the bacteria abundance 

to that of controls, and dose-time coefficients represent the effect size of diet at a time t, 

relative to AL at the same time t. Thus, also the estimated diet effect between time points can 

be compared. To obtain significance values of the effect of diet in each bacteria and identify 

the period of time where differences are significant, 500 Monte Carlo permutations were run 

and p-values for each pairwise diet comparison were obtained for each time point (vegan R-

package v.2.4-2) (Vendrig, Hemerik, and ter Braak 2017). 

1.3.2.2.7 Differential abundance of bacteria 

Differences in microbiome abundance between diets at each time point were evaluated using 

DESeq2 (R-package v.4.2) (Love, Huber, and Anders 2014) with count data as input. The 

mvabund R-package (v.4.2.1) (Y. Wang et al. 2012) was used to evaluate bacterial 

distributions and the adequacy of using a statistical method based on a negative binomial 

distribution for differential abundance analysis. Bacteria of interest identified by DESeq2 were 

visualised using logFC heatmaps (seaborn Python-library v.0.10.1), and Venn diagrams to 

indicate overlaps between treatments. 

1.3.2.2.8 Repeated Measures Correlation of sets of bacteria of interest in the longitudinal 

analysis 

Repeated measures correlation is a 3-dimensional correlation unit that takes into account time, 

mouse and bacteria. We calculated repeated measures correlation on bacteria of interest from 

the longitudinal dataset using the time points after the diet switch, and the rmcorr R-package 

(v.0.4.6) (Bakdash and Marusich 2017). The output of repeated correlations are co-inertia 

tables of bacteria of interest, including positive and negative co-inertia values. Bacteria 

networks of co-inertia were visualised using Cytoscape (v.3.9.1) (P. Shannon et al. 2003). 

1.3.2.2.9 Cox regression of bacteria of interest in the longitudinal study 

Association of bacteria of interest with longevity was calculated using univariate Cox 

regressions. For each ASV of interest, DR, AL_DR16M and AL_DR20M mice were split into 

two groups: one where the relative ASV abundance was above the mean, and a second group 

with abundance below the mean. Kaplan-meier curves and Cox proportional hazards were 

calculated using the lifelines python library (v.0.27.1). Longevity associated bacteria were 

defined as those where significant lifespan differences were identified according to bacteria 

abundance. 
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1.3.3 Whole microbiome shotgun metagenomic sequencing 

Repository: https://github.com/carolinamonzo/CM_ShotgunMetagenomics  

1.3.3.1 Microbiome shotgun metagenomics data preprocessing 

Samples were demultiplexed to separate reads according to samples using the bcl2fastq 

Illumina tool. Both sequencing lanes were concatenated to have only one forward (R1) and 

one reverse (R2) file per sample using bash scripting, as libraries were equally split between 

the two lanes for sequencing. Trimommatic (v.0.39) (Bolger, Lohse, and Usadel 2014) tool 

was used to remove Nextera adaptors, and to quality-trim reads using a minimum Phred score 

of 25 as threshold. A reference fasta file (Bolger, Lohse, and Usadel 2014) with all known 

Nextera adaptor sequences was used to recognize primer sequences and remove them from 

the sequencing reads. Only reads with at least 36 nt were used to avoid reads that only consist 

of primers or adapters. Kraken2 (v.2.1.2) (Wood, Lu, and Langmead 2019), a taxonomic 

classification system based on exact k-mer matches, was used for taxonomy assignment 

using the “Mouse Gastrointestinal Bacterial Catalogue” database (Beresford-Jones et al. 

2022). To estimate species abundance, Bracken (v.2.5) (Lu et al. 2017) was used, and tables 

of bacterial relative abundances were generated. Finally, z-score was applied to normalise the 

dataset. 

1.3.3.1.1 Quality control and spatial correlation with 16S-Seq data 

Quality control of reads before and after quality trimming was performed using FastQC and 

MultiQC (v.1.11) to facilitate sample comparison (Ewels et al. 2016). Number of reads was 

compared between samples to identify possible mistakes in the PCR reactions, and the 

percentage of classified reads per sample was evaluated. The relationship of biological 

replicates was evaluated using Pearson correlation (scikit-learn Python-library v.1.0.2). Mantel 

test was used to test for correlation in β-diversity between 16S rRNA sequencing and shotgun 

metagenomics samples (skbio Python-library v.0.5.6). PCA visualisation (factoextra R-

package v.1.0.7.999; seaborn Python-library v.0.10.1), and procrustes analysis (vegan R-

package v.2.4-2) were used to evaluate the spatial correlation in sample distribution between 

the 2 datasets (Paliy and Shankar 2016; Peres-Neto and Jackson 2001). 

1.3.3.2 Downstream analysis of microbiome shotgun metagenomics data 

The mvabund R-package (v.4.2.1) (Y. Wang et al. 2012) was used to analyse the distribution 

of bacterial species in samples. Having a bacterial distribution fitting a negative binomial curve, 

differences in abundances of microbiome species between diets were evaluated using 
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DESeq2 (v.4.2) (Love, Huber, and Anders 2014; Durazzi et al. 2021). ANOSIM was calculated 

to corroborate clustering according to diet, mouse and age (vegan R-package v.2.4-2). 

Repeated measures correlation taking into account time, mouse and bacteria, was calculated 

for DR-specific and microbiome memory of AL feeding bacteria using the rmcorr R-package 

(v.0.4.6) (Bakdash and Marusich 2017). Bacteria networks of co-inertia were visualised using 

Cytoscape (v.3.9.1) (P. Shannon et al. 2003). 

1.3.4 Faecal metabolomics 

Repository: https://github.com/carolinamonzo/CM_Metabolomics  

1.3.4.1 Filtering and normalisation of faecal metabolomics data  

Of the 438 samples used for the metabolomics analysis, 3 samples were removed because 

of low metabolite content i.e. the total area under the curve (AUC) of these 3 samples was 

10% below the median AUC. To decrease noise in the data set, metabolites in which the 

average of all samples was not two times higher than the blank average, were excluded. 

Metabolite measurements were normalised to faecal pellet weight. The dilution factor 0.75 

was multiplied in samples where we used 800 μl of metabolite extraction buffer, and 0.375 

when 1600 μl were used. Since there was a slight batch effect according to sample-run-order, 

a similar approach to the “internal reference standard” normalisation described in (Plubell et 

al. 2017) was applied to the metabolomics datasets. This normalisation calculates the 

geometric average of each overlapping window of 2 pooled standards, and averages all 

pooled standards to calculate correction factors per metabolite, for each set of samples within 

each window. Samples were then multiplied by the corresponding correction factors. Finally, 

z-score values were calculated from the log2-AUC of each metabolite per sample. Data were 

visualised using PCA (factoextra R-package v.1.0.7.999; seaborn Python-library v.0.10.1). 

1.3.4.2 Analysis of faecal metabolomics data 

Two data sets were independently analysed including (1) untargeted polar and (2) untargeted 

non-polar metabolites. Linear models were calculated to identify metabolites increasing or 

decreasing through age for each independent diet group. 

1.3.4.2.1 Differential abundance analysis of faecal metabolomics data 

Changes in metabolite abundances throughout age and between diets were evaluated for 

each metabolite using GLME models (lme4 R-package v.1.1-23):      

metabolite ~ diet*months + (1|Mouse) + (1|Num_Thawed). Mouse identity and number of 

thawing times were included as covariates in order to control for these effects in the analysis. 
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Bonferroni multiple testing correction was applied. ANOSIM (skbio Python-library v.0.5.6) on 

Bray-curtis distances between samples (skbio Python-library v.0.5.6) was used to validate 

clustering according to age and diet. Temporal metabolite trends were evaluated using PRCs 

(vegan R-package v.2.4-2). Furthermore, the mvabund R-package (v.4.2.1) (Y. Wang et al. 

2012) was used to evaluate metabolite distribution per sample, and test whether the negative-

binomial approach was the adequate method for differential abundance analysis. Metabolite 

abundance differences between diets at each individual time point were evaluated using 

DESeq2 (v.4.2) (Love, Huber, and Anders 2014). Data were visualised using log2FC 

heatmaps (seaborn Python-library v.0.10.1), and Venn diagrams to indicate overlaps between 

treatment groups or ages. 

1.3.5 BCR-Sequencing 

Repository: https://github.com/carolinamonzo/CM_BCRseq  

1.3.5.1 BCR-Sequencing data preprocessing 

Unless otherwise specified, data preprocessing was performed using the pRESTO (v.0.7) 

(Heiden et al. 2014) and Change-O (v.1.2) (Gupta et al. 2015) tools from the Immcantantion 

framework. Reference mouse Igh sequences were obtained from the International 

ImMunoGeneTics information (IMGT) database (Giudicelli, Chaume, and Lefranc 2005). 

1.3.5.1.1 Demultiplexing of internal barcodes 

Ten forward and 10 reverse FastQ files were generated by Illumina sequencing, each of them 

containing 10 internally-barcoded samples. To separate sequencing reads into those 

corresponding to individual mice of origin, demultiplexing was performed using internal 

barcodes included during the PCR-2 (Appendix 4.5). Sequencing reads with an average Phred 

score below 25 were excluded from the analysis. Internal barcodes are unique combinations 

of 8 nucleotides per sample. Therefore, to avoid read assignment to incorrect mice, minimal 

mismatch tolerance (--maxerror 0.1) was allowed. Internal barcode sequences and the 5’ 

invariant part of the template-switch adapter were masked in the reads. Barcode information 

was stored in the identifier information of each read of the FastQ files, in the section “PRIMER”. 

Demultiplexing of sample reads using the annotated barcode was then performed in order to 

obtain a set of R1 and R2 paired FastQ files for each individual mouse sample. The information 

about the FastQ file of origin (R1 or R2) was then added to the read headers of each sample 

FastQ files. 
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1.3.5.1.2 UMI extraction, consensus-read building and pair merging 

In order to generate consensus reads representative of each original RNA molecule, reads 

identified with the forward M1S primer (Appendix 4.5), corresponding to the 5’ sequence of 

the template-switch adapter, underwent a second round of masking using the 3’ invariant part 

of the template-switch adapter sequence (CTTGGGG, stored in “presto_TSA.fa”). Next, the 

16 nucleotides corresponding to the read’s unique molecular identifier (UMI), were extracted 

and recorded in each read’s header. As the match sequence for this second round of masking 

is shorter and more error-prone than the primer sequences used in the first round, an 

increased mismatch tolerance (--maxerror 0.5) was permitted, increasing the number of reads 

with successfully-extracted UMIs. 

To span the whole 700 nt of the IghV-IghD-IghJ region of interest, sequencing was performed 

in an un-stranded manner. Therefore, reads from both 5’ and 3’ directions were stored in both 

the R1 and R2 original FastQ files. After internal-barcodes demultiplexing, 5’ reads were 

originally stored in both <R1_S#_R1> and <R2_S#_R1> files. To correct this and have all 5’-

forward reads in one file (files ending in <S#_R1.fastq>) and all 3’-reverse reads in a second 

file (files ending in <S#_R2.fastq>), the files were concatenated using base shell scripting. 

Sequence identifier duplicates were removed using seqkit (v.2.2) (Shen et al. 2016), as these 

duplicates correspond to PCR primer-dimers. 

Next, in order to generate a single consensus sequence for each UMI-cluster annotation, 5’ 

and 3’ reads were synchronised (i.e. sorted according to read identifier to have paired reads 

in the same order), discarding reads that did not have a mate (due to differential processing 

of the 5’ and 3’ files), and copying the UMI annotations to the 3’ reads. Followed by consensus-

reads generation as a result of grouping and collapsing reads based on UMI sequences. 

Reads with a mismatch rate from the consensus of more than 10% were discarded from the 

dataset (--maxerror 0.1). No gap-correction was used in order to avoid bias in collapse of 

reads with different lengths. This same consensus-read-generation step was also performed 

on the 3’ reads. The resulting FastQ file contained a single consensus sequence for each UMI-

cluster annotation, labelled with total number of reads contributing to that consensus 

sequence, and primers contributing to the consensus. 

Files were synchronised and annotations unified between mate-reads i.e. mate-reads where 

one read of the pair failed a quality control were discarded. Consensus-read-pairs were 

assembled de novo into a contiguous sequence using pRESTO (v.0.7) (Heiden et al. 2014). 

Where this was not possible, consensus reads were aligned with BLASTN (Camacho et al. 

2009; Altschul et al. 1990) to a reference of IghV sequences (imgt_mouse_ig_v.fasta) to 
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generate a merged sequence. When BLASTN was used, N characters were included to 

separate pairs that aligned in a non-overlapping manner on the same VH segment. Finally, 

the information about the number of reads contributing to the 5’ and 3’ consensus sequence 

were copied to the new merged sequence (specified by --1f and --2f). Sequence pairs for 

which both alignment approaches failed were discarded. 

1.3.5.1.3 Annotation of Igh isotypes 

Antibody isotypes were annotated according to the isotype-specific sequence present in the 

1st PCR 3’ primer. Assembled reads were aligned to the primer sequences (stored in 

“presto_PCR1_ISOTYPES.fasta”) and isotype identifiers were recorded in each read header. 

Due to the nature of asymmetric sequencing, each original RNA sequence was sequenced at 

least twice (once 400+100 and a second time in reverse 100+400 nt) in order to be assembled 

into a full-length ~650 nt read. Therefore, no singletons were removed. 

1.3.5.1.4 V(D)J annotation and discovery of novel IghV alleles 

To annotate each read with its germline IghV-IghD-IghJ alleles and identify relevant sequence 

structures such as the CDR3 hypervariable sequence. IMGT reference sequences were built 

into a database using modified helper scripts from the Immcantantion portal (Gupta et al. 

2017). The resulting BLAST-formatted database was queried using IgBLAST (Ye et al. 2013). 

Following annotation of IghV, IghD and IghJ alleles, the IgBLAST results were formatted into 

a standardised data-table in adaptive immune receptor repertoire (AIRR) format (Vander 

Heiden et al. 2018). 

IgBLAST classified sequences as productive (full IghV-IghD-IghJ rearrangement) or 

unproductive (rearrangement lacking an IghJ allele). Unproductive sequences were filtered 

out. Sequences not correctly mapped to immunoglobulin heavy chains (the pattern “IGHV” 

was not found in column “v_call” using regular expressions), were removed. 

IghV-IghD-IghJ allele assignment was done by matching sequences against reference alleles 

from the IMGT reference database (Giudicelli, Chaume, and Lefranc 2005). However, current 

databases are incomplete due to the high diversity of the BCR repertoire. The R-package 

TIgGER (v.1) (Gadala-Maria et al. 2015) was used to identify mouse-specific IghV genotypes 

and alleles that would improve the IghV gene annotations. For each IghV gene allele, the 

function “findNovelAlleles” evaluates sequences assigned to each allele, and calculates the 

mutation frequency at each position as a function of sequence-wide mutation counts. High 

mutation frequency in specific nucleotide positions, even when the sequence-wide mutation 

count was low, distinguished polymorphisms from somatic hypermutations. To avoid calling 
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novel alleles from clonally-related sequences, newly identified alleles are classified as such 

only when found in sequences with different IghJ genes and CDR3 lengths. Function 

“inferGenotypeBayesian” improved IghV gene calls by analysing the posterior probabilities of 

possible allele distributions, considering four different simulated alleles per IghV gene 

(corresponding to a known gene that would have undergone duplication and further 

mutations). Best allele fit was identified through comparison of the posterior probabilities of 

the four possible models, and calculation of a Bayes factor, which reflects the confidence of 

the genotyping call for each model. 

Subject-specific genotyping and novel allele information was included into AIRR databases 

and Fasta files, reducing the number of ambiguous and erroneous gene calls. Log files 

containing information of novel alleles and genotyping statistics were generated, and all novel 

allele calls were manually examined. 

1.3.5.1.5 Clonotype and germline inference 

Accurate identification of clonal relationships is crucial for repertoire analysis. An appropriate 

distance threshold for clonotype assignment is required to classify sequences as clonally-

related (belong to the same clone) or not clonally related (belong to independent clones). 

Distance thresholds were calculated using either hierarchical clustering when distance 

distributions were bimodal, or spectral clustering when unimodal. Hierarchical clustering was 

performed using R-package SHazaM (v.1.1) (Gupta et al. 2017). Sequences were classified 

into groups sharing the same IghV and IghJ gene assignments and CDR3 lengths. Nearest 

neighbour distances between sequences in each group were calculated using Hamming 

distances as the underlying somatic hypermutation (SHM) model in the “distToNearest” 

function. The threshold was calculated as the value that separates the two modes of the 

smoothed distances distribution. Distance threshold for samples with unclear distributions was 

calculated using R-package SCOPer (v.1.1) (Nouri and Kleinstein 2018). This method is based 

on spectral clustering. It uses an adaptive unsupervised threshold to adapt the required level 

of similarity among sequences in the same group (same IghV and IghJ gene assignments and 

CDR3 length). All calculated thresholds and distance distribution histograms were plotted and 

manually checked. 

Clonotype inference, i.e. definition of sequences clonally-related, was performed using 

Change-O (v.1.2). Sequences were grouped according to shared IghV and IghJ genes, as 

well as CDR3 length. Pairwise Hamming distances (--model ham) were calculated between 

CDR3 sequences in each group. Previously inferred distance thresholds were included in 

parameter --dist for each sample. Each clonotype was annotated with its unique ID. 
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Full-length germline sequences were assembled using alignment information (-d) and 

reference IgBLAST database (-r). Argument --clone was used to assign the same germline to 

all sequences of the same clone. To facilitate downstream analysis, information of sample_id 

and biogroup (age and diet) were added to the AIRR databases. AIRR databases from each 

tissue were merged for downstream analysis. 

1.3.5.1.6 Quality control of BCR-Sequencing datasets 

Quality control of reads was performed using FastQC (Andrews, 2010) on merged raw 

sequencing fastq files. Number of reads was compared between samples to identify possible 

failed sequences. Validation of novel allele calls and selected distance thresholds was 

performed manually. Biological replicates relationship was evaluated using Pearson 

correlation (scipy Python-library v.1.6.2). Rarefaction curves were assessed to compare depth 

of sequencing between samples (vegan R-package v.2.4-2). 

1.3.5.2 Analysis of BCR repertoires 

1.3.5.2.1 Clonal diversity: Hill Diversity 

Clonal diversity of BCR repertoires were analysed using Hill Diversity (Hill 1973). Therefore, 

Hill Diversity was quantified using the “alphaDiversity” function from the R-package Alakazam 

(v.1.1) (Gupta et al. 2017). To overcome sequencing depth variations between samples, input 

sequences were uniformly resampled and clone size distribution and diversity were calculated 

(Chao et al. 2014). Diversity was calculated over a range of diversity orders (q): q = 0 

represents Richness, q = 1 Shannon index, and q = 2 Simpson index. These metrics are not 

only relevant individually, but also in combination, as they represent relationships of richness, 

divergence and evenness of the clonal populations, respectively. 

Richness indicates the total number of different clones in the dataset. Shannon index, also 

known as entropy, is the weighted geometric mean of the proportional abundances of different 

clones (C. E. Shannon 1948). The more even the clonal population structure is, the larger is 

the Shannon index. Simpson index is the weighted arithmetic mean of the proportional 

abundances of different clones. In this case, the index measures the probability that two BCRs 

taken at random from the dataset belong to the same clone (Simpson 1949). Thus, the more 

even the population is, the larger is the Simpson index. 

1.3.5.2.2 Repertoire Dissimilarity Index 

To quantify the average variation between BCR repertoires when comparing samples and diet 

groups, the repertoire dissimilarity index (RDI) was calculated using the RDI (v.1) R-package 
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(Bolen et al. 2017). RDI is a non-parametric method used to quantify differences in IghV, IghD 

and IghJ gene usage and compare between BCR repertoires. To overcome sequencing depth 

variations between samples, it uses bootstrapped sub-sampling and data simulation. 

1.3.5.2.3 Clonal abundance and expansions 

Clonal abundance of BCR repertoires was evaluated using the “estimateAbundance” function 

from the R-package Alakazam (v.1.1) (Gupta et al. 2015). This function uses resampling 

strategies to correct for variations in sequencing depth and inference of complete clonal 

abundance distributions (Chao et al. 2015). Clone size was calculated as the number of unique 

sequences assigned to a clonal ID. To obtain relative frequencies of clones, clone size was 

divided by the total number of unique sequences. Clonal frequencies were ranked in 

descending order. 200 iterations of bootstrap were used to obtain confidence intervals. To 

evaluate the degree of clonal expansion, the sum of frequencies of the 20 most frequent clones 

were compared (P20). 

1.3.5.2.4 Somatic hypermutation and mutational status 

SHM frequencies were calculated using the R-package Shazam (v.1.1) (Gupta et al. 2015). 

The “observedMutations” function was used to calculate total mutation count and mutation 

frequency of non-synonymous (amino acid-changing) and synonymous mutations. Mutational 

status of IghV-IghD-IghJ segments was classified as SHM+ (mutated, post antigen exposure), 

for those segments with > 1% mutations, and SHM- (not-mutated, pre antigen exposure) when 

the number of mutations in the segment was < 1% according to (C. Wang et al. 2014). 

1.3.5.2.5 Relative abundance of BCR isotypes 

The number of RNA molecules (merged BCR assemblies according to UMI), per BCR isotype 

were extracted from the AIRR database. Relative abundances of isotypes per sample were 

calculated as the number of molecules corresponding to each isotype, divided by the total 

amount of sequenced molecules. 

1.3.5.2.6 Analysis of naïve and class switched BCRs 

To study differences in naïve and class switched BCRs, clones were classified into 3 groups: 

IgM-IgD-, clones where all isotypes have switched and are therefore post-antigenic; 

IgM+IgD+SHM-, clones where SHM has not yet added variability to the V(D)J segment are 

naïve; and IgM+IgD+SHM+, clones that underwent SHM after being exposed to antigens. 

Frequency of clones corresponding to each group were calculated. 
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1.3.5.2.7 IghV and IghJ gene usage 

IghV and IghJ gene usage frequencies per sample and isotype were calculated using the 

“countGenes” function of the R-package Alakazam (v.1.1) (Gupta et al. 2015). IghV and IghJ 

gene usage were compared between diet groups and throughout age and visualised using 

heatmaps, clustering by means of euclidean distance of genes or allele frequency profiles 

(seaborn Python-library v.0.10.1). 

1.3.5.2.8 CDR3 length analysis 

Length of the CDR3 hypervariable region was extracted from the AIRR database for each 

RNA molecule. Centre and deviation of CDR3-length, gaussian distributions, as well as 

variability between biological replicates, were calculated to evaluate differences throughout 

age and between diet groups. To compare variability between CDR3 length distributions, 

CDR3 length distributions of samples were fit into Kolmogorov Smirnov curves. The number 

of significant differences between biological replicates was compared between biological 

groups (scipy Python-library v.1.6.2). 

1.3.5.2.9 Statistical analysis of the BCR dataset 

Linear regression was used to test for age-related changes. Two-way ANOVA was used to 

test for significant differences between AL and DR through age. Linear regression and two-

way ANOVA were calculated using the statsmodels (v.0.12) and scipy (v.1.6.2) Python-

libraries (Seabold and Perktold 2010; Virtanen et al. 2020). Kruskall-Wallis with Mann-Whitney 

U-test for pairwise comparisons were calculated to evaluate differences between diet groups 

per time point using the scipy Python-library. For CDR3 length distribution variability, linear 

regression, 2-way ANOVA and Fisher’s tests were used to compare the proportion of 

significantly different biological replicates by age and diet. The relationship between each BCR 

metric of both spleen and ileum, and the morbidity index (algorithm), was calculated using 

linear regression and spearman correlation (scipy Python-library v.1.6.2). Plots were 

generated using Seaborn (v.0.10.1). 
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2. The effect of dietary restriction on the microbiome in 

mice 
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2.1 Introduction 

The human body is populated by trillions of microbes that play an important role in many 

physiological functions. Especially the microbial communities in the digestive tract have been 

associated with organismal health (Bana and Cabreiro 2019; Ghosh, Shanahan, and O’Toole 

2022). Importantly, with age the composition of the gut microbiome changes. While the 

composition of the microbiome is relatively stable during mid-life, during old age, the 

microbiome becomes less diverse and more different between individuals (Maynard and 

Weinkove 2018; Nagpal et al. 2018). Moreover, perturbations of microbiome homeostasis 

have been associated with frailty, immune diseases, colon cancer and other morbidities 

(Sekirov et al. 2010; Zapata and Quagliarello 2015). In addition, correlation studies have 

shown that both microbiome composition and degree of dissimilarity predict survival in old 

humans (Galkin et al. 2020; Wilmanski et al. 2021a). Furthermore, faecal transfer experiments 

in killifish and mice indicate a causal role of the microbiota in the determination of longevity 

(Bradshaw et al. 2022; Bárcena et al. 2019). Thus, changes in microbiota composition might 

contribute to interventions that target the ageing process. 

Reduced activity of nutrient sensing pathways by dietary, genetic or pharmacological 

interventions improves health and extends longevity in mice and potentially humans (Green 

et al. 2021; Tyshkovskiy et al. 2019; Fontana, Partridge, and Longo 2010). The evolutionarily 

conserved insulin/IGF1 (IIS) and mTOR pathways are the two most important signalling 

networks that have been implicated in extension of lifespan. Treating mice with the drug 
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rapamycin, an inhibitor of mTORC1, extends lifespan. Furthermore, mice that are lacking the 

Irs1 gene, a key component of the insulin/IGF1 pathway, directly downstream of the 

insulin/IGF receptor, are long-lived and healthier at old age (Juricic et al. 2022; Richard A. 

Miller et al. 2014; Selman et al. 2008; Baghdadi, 2022). Positive effects on health and longevity 

can also be achieved by directly manipulating food uptake. Dietary restriction (DR), which 

refers to reducing food intake without malnutrition, is a robust way to extend lifespan in mice 

and improve health in humans (Fontana and Partridge 2015; Green, Lamming, and Fontana 

2022). The specific mechanisms mediating the beneficial effects of DR are only partially 

understood. Recent work from our lab showed that in mice, DR is only effective in extending 

lifespan when introduced relative early in life, but not at old age (24 months) (Hahn et al., 

2019). Mice that were switched from ad libitum (AL) feeding to DR at the age of 24 months, 

did not benefit in their survival from the DR treatment and many genes, especially in the white 

adipose tissue (WAT), did not change in expression in response to the DR switch, indicating 

a memory of prior AL feeding in the fat tissue of these animals (Hahn et al., 2019). More recent 

work from our lab showed that mice lose their ability to respond with lifespan extension to DR 

between the age of 16 and 20 months (Drews et al. 2021). While the underlying molecular 

mechanisms are currently unclear, comparing molecular responses between the early and 

late switch might reveal factors involved in DR mediated longevity. DR has been shown to 

directly affect the composition of the gut microbiome (Kok et al. 2018; Fabbiano et al. 2018; 

C. Zhang et al. 2013; Bartley et al. 2017; Duszka et al. 2018). This includes the attenuation of 

age-related changes in relative abundance of bacteria, maintenance of low dissimilarity 

through age, metabolic improvements and increased abundance of Bacteroidetes (C. Zhang 

et al. 2013; Bartley et al. 2017; Duszka et al. 2018; Fabbiano et al. 2018; Kok et al. 2018). In 

addition, it has been shown that the microbiome of mice that were switched from AL to DR at 

20 months of age, showed a shift towards a “younger state” (Zeng et al. 2019). However, as 

this study did not include an earlier switch nor did it measure the lifespan of these animals, a 

direct correlation of bacteria associated with longevity was not possible. 

The microbiome influences ageing and metabolism indirectly, through production of 

metabolites during digestive processes (Bana and Cabreiro 2019; Krautkramer, Fan, and 

Bäckhed 2021). DR triggers distinct structural and functional changes in the intestinal 

microbiome, and thereby affects microbiome-produced metabolites that can affect the health 

of the host (David et al. 2014; Maynard and Weinkove 2018; Kok et al. 2018; von 

Schwartzenberg et al. 2021). For example, DR-induced production of short-chain fatty acids 

(SCFA) via carbon fermentation have been correlated with increased health (Dalile et al. 2019; 

Frampton et al. 2020; Morrison and Preston 2016). However, only few studies have evaluated 

how ageing or DR affect the microbiome-produced metabolome. Age-associated reduction in 
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acetate SCFA in AL mice, and increased bile acids in old AL mice compared to DR were found 

using a targeted metabolomics (van der Lugt et al. 2018). However, the microbiome-produced 

metabolome of AL, DR, or mice under late-onset DR, and the different metabolite profiles 

associated with DR-mediated longevity are currently unexplored. 

To address how ageing and DR affect the faecal microbiome, and to identify bacteria and 

metabolites associated with longevity, we extracted DNA and metabolites from a longitudinal 

collection of faecal samples from a lifespan cohort of AL and DR mice. In addition, we collected 

faecal samples from animals that were switched from AL to DR at 16 and 20 months of age. 

We performed 16S rRNA sequencing and metabolomics analysis on these samples. Our 

results show that the DR microbiome not only maintains “young-like” bacterial community 

structure with age, but also induces an independent ageing profile that is distinct compared to 

AL. We also show that the ability of the microbiome and the faecal metabolome to adapt after 

switching diets to DR is high, but progressively decreases as the age of DR onset increases. 

This finding suggests that there is an age-dependent microbiome and faecal metabolomic 

memory of AL feeding impeding full adaptation to DR-like patterns. Finally, we identify bacteria 

associated with longevity, not only during DR, but also in mice with reduced IIS and mTOR 

signalling.  
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2.2 Results 

2.2.1 A longitudinal high-resolution analysis of the ageing murine microbiome 

Age-dependent perturbations of microbiome homeostasis are correlated with impaired health 

(Zapata and Quagliarello 2015; Langille et al. 2014; Bana and Cabreiro 2019). One of the 

contributing factors to the health and longevity benefits linked to DR, could be the preservation 

of microbiome homeostasis with age. To investigate the effects of ageing and DR on the 

microbiome we studied female wild type C3B6F1 hybrid mice fed AL or DR (Fig 2.1). DR mice 

received 40% less food than AL fed animals (Drews et al. 2021). DNA was extracted from 

faecal samples collected longitudinally from 12 months of age, every 2 months until death (AL 

n = 70, DR n = 50, AL_DR16M n = 50, AL_DR20M = 50; Fig 2.1). The V4 region of the 16S 

rRNA gene was sequenced in 2118 faecal samples. Amplicon sequence variants (ASVs), 

were defined as high resolution clusters of sequencing reads that differ by single-nucleotide 

differences over the sequenced V4 region of the 16S rRNA gene (Callahan, McMurdie, and 

Holmes 2017). Bacteria taxonomy on ASVs was assigned using the Silva reference database 

(Quast et al. 2013). 

 

Figure 2.1: Scheme of the experimental design and lifespan of studied diet groups, adapted from 

(Drews et al. 2021). Black dotted lines correspond to age of start of bi-monthly faecal collections and 
solid lines to age of DR onset. n = 70 AL mice and n = 50 mice for DR, AL_DR16M and AL_DR20M 

treatments. 

 

To evaluate age-dependent changes in the microbiome, we calculated Shannon entropy, i.e. 

within-individual variability (alpha diversity) represented by the number of different ASVs and 

the distribution of relative abundance of ASVs in the microbiome population (C. E. Shannon 

1948). In line with previous studies in mice and humans (Nagpal et al. 2018; Maynard and 

Weinkove 2018), alpha diversity significantly declined with age in AL mice (Fig 2.2A).  
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To further understand the different microbiome characteristics that may be associated with 

differences in lifespan between AL mice (Drews et al. 2021) (Fig 2.1), we examined intra-

individual dissimilarity (beta diversity). Beta diversity quantifies bacterial community distances 

between mice, and has been previously shown to have an opposite trajectory to alpha diversity 

(Nagpal et al. 2018). With increasing age individuals become more distinct from one another 

as a result of proliferation of different bacteria in different individuals. We calculated beta 

diversity using the Bray Curtis dissimilarity index, whereby the compositional dissimilarity 

between two samples is represented by the number of common ASVs divided by the sum of 

specific ASVs of each compared sample (Bray, Roger Bray, and Curtis 1957). Beta diversity 

of AL mice increased with age (Fig 2.2B), consistent with previous research. (Wilmanski et al. 

2021b; Nagpal et al. 2018). Thus, while at young age, the microbiomes of mice were more 

similar to each other, at old age microbiome populations became more different between 

individuals. 

 

Figure 2.2: A) Lowess-corrected Shannon diversity of the microbiome. Significant differences 
through age (linear regression): AL p-value = 2.2x10-4. Significant longitudinal differences through 

age between diets (GLME): DR vs AL adjusted p-value = 0.0016; AL_DR16M vs AL adjusted p-value 

= 0.003; AL_DR20M vs AL adjusted p-value = 0.004; AL_DR20M vs DR adjusted p-value = 0.0001. 

Significant difference between slope of changes during 6 months post-switch (GLME): AL_DR16M 

vs AL_DR20M p-value = 0.002. B) Lowess-corrected Bray-Curtis diversity of the microbiome. 

Significant differences through age (linear regression): AL p-value = 5.2x10-146. Significant clustering 

of samples (ANOSIM): diet p-value = 0.01; age p-value = 0.002, mouse p-value = 0.001. Significant 

differences through age between diets (2-way ANOVA): DR vs AL adjusted p-value = 2.0x10-16; 
AL_DR16M vs DR adjusted p-value = 4.1x10-15; AL_DR16M vs AL adjusted p-value = 4.5x10-6; 

AL_DR20M vs DR adjusted p-value = 2.9x10-15; AL_DR20M vs AL adjusted p-value = 0.0045. 

Significant difference between slope of changes during 8 months post-switch (linear regression): 

AL_DR16M vs AL_DR20M p-value = 0.013. Not significant p-values in Supplementary File 1. 
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To study how bacterial abundance changes with age and to identify ASVs most affected by 

ageing, linear regressions were run on the longitudinal bacteria abundances of AL mice. In 

general, bacterial abundances decreased with age, consistent with previous findings (Badal 

et al. 2020; van der Lugt et al. 2018; Flemer et al. 2017). Abundance of 156 ASVs decreased 

with age, and only 77 ASVs showed increased abundance at older age (Fig 2.3). Bacteroides 

and Firmicutes were the phyla most affected by ageing, consistent with previous findings 

(Wilmanski et al. 2021b; Badal et al. 2020; Elderman et al. 2017; Flemer et al. 2017; van der 

Lugt et al. 2018). 

 

Figure 2.3: Heatmap depicting ageing microbiome trends of AL mice. 

 

2.2.2 DR age-related changes in the faecal microbiome 

To evaluate whether DR ameliorates the observed age-associated decrease in alpha diversity 

and increase in beta diversity, we studied longitudinal 16S rRNA sequencing of DR-fed mice. 

First, to test for any batch effects affecting the microbiome composition, the beta diversity 

distance matrix was evaluated using analysis of similarities (ANOSIM). ANOSIM compares 

distances between samples of the same group of interest, versus distances from a random 

subset of samples. Significant grouping of samples was found according to diet, age and 

mouse (Fig 2.5C). Next, including individual mice as covariates in the model, AL and DR were 

longitudinally compared using generalised linear mixed effects (GLME) models. As previously 

reported (C. Zhang et al. 2013; Kok et al. 2018; Duszka et al. 2018), both alpha and beta 

diversity of DR mice were significantly different compared to AL (Fig 2.2A-B). More specifically, 

DR mice displayed significantly lower alpha diversity earlier in life (12 to 22 months of age) 
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(Sup File 1; Fig 2.2A). However, as a result of the alpha diversity remaining stable during 

ageing, DR was characterised by higher diversity compared to AL at old age (Sup File 1; Fig 

2.2A). Similarly, beta diversity of DR mice did not significantly change with age, but was 

significantly lower than AL across all studied timepoints (Fig 2.2B). In summary, while alpha 

diversity decreased and beta diversity increased with age in AL mice, this was not the case in 

DR animals. Thus, the microbiome community structure of DR mice seems to be more stable 

during ageing. 

To study ageing trends in bacterial abundance of DR mice and identify ASVs most affected 

by age, linear regressions were run on the longitudinal bacteria abundances of DR mice. 

Contrary to the observed downregulation of ageing bacteria in AL mice, DR mice were 

characterised by an overall upregulation of bacterial abundances (234 ASVs increasing with 

age), while only few bacteria were downregulated with age (84 ASVs; Fig 2.4). Nevertheless, 

there was no significant difference between the number of common upregulated (25; 8.7%) 

and downregulated (30; 13.9%) bacteria between AL and DR (chi squared p-value = 0.56). 

 

Figure 2.4: Heatmap depicting ageing bacterial trends of DR mice. 

 

2.2.3 DR specific changes of the faecal microbiome 

To study whether the DR microbiome represents a “younger” AL-like microbiome or if it has 

an independent profile, two machine learning models were built; one model to classify samples 

as either AL or DR, and a second model to predict biological age of AL mice. First, to identify 
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which ASVs are most relevant in drawing a distinction between AL and DR, a Random Forest 

classifier was modelled using 70% of AL and DR mice. The model classified the remaining 

30% of mice as fed AL or DR with an accuracy of 98.17%, and an out of bag estimate of error 

rate of 1.57% (Fig 2.5A). Out of 2591 studied ASVs, 571 (19.3%) were identified as being 

relevant to distinguish between AL and DR, i.e. bacterial markers of DR. Second, to study the 

characteristics of the ageing microbiome, an age predictor of AL samples was modelled using 

an Elastic Net. To avoid predicting biological age confounded by diet-specific bacteria, 70% 

of AL mice only, were used to build the ageing model. Testing of the remaining 30% of AL 

mice on the model reported high accuracy (95%) and low mean absolute error (0.163) (Fig 

2.5B). Tenfold cross-validation of the Elastic Net AL-age-predictor, showed that the best model 

to predict biological age was based on 107 (4.1%) ASVs. However, when DR samples were 

run in the AL-age-predictor, the age-assignment was random (Fig 2.5B). Therefore, the DR 

microbiome does not seem to represent a “younger-like” state of AL microbiome; it 

encompasses a rather distinct microbiome in itself. 

Next, to evaluate the impact of repeated measurements of the microbiome throughout age, 

AL and DR diets, compositional tensor factorization was used to deconvolute microbiome 

dynamics (Martino et al. 2021). The tensors corresponding to each Bray-curtis beta diversity 

were visualised using principal coordinates analysis (PCoA), revealing that the first coordinate, 

explaining 77.3% of the variation, separated the samples according to diet, while the second 

coordinate, explaining 22.6% of the variation separated the samples according to age (Fig 

2.5C). These results were consistent with our observations that the Random Forest classifier 

found a higher percentage of bacteria differentiating between AL and DR, than the Elastic net 

AL-age-predictor in predicting age (Fig 2.5A-B). Thus, these results suggest that DR has a 

stronger impact on the microbiome than age. 

 

Figure 2.5: A) Random Forest classifier receiver operating characteristic curve. B) Elastic net AL-

age-predictor, predicted age (y-axis) versus chronological age (x-axis). C) PCoA of compositional 

tensor factorization of Bray Curtis beta diversity. 
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In order to validate the machine learning models to predict dietary regime and age, we 

performed 16S rRNA sequencing on mice from an independent (cross-sectional) ageing 

cohort: 20 AL mice and 15 DR (aged 5, 16, 20 and 24 months; Chapter 3). 5 months old AL 

and DR animals were included to address the effect of DR on the microbiome at young age. 

The Random Forest model correctly classified 33 (94.2%) samples as AL or DR mice. Only 2 

5-month-old DR mice were erroneously classified as AL (out of five DR 5-month-old; 40%). 

Further, when evaluated using the previously built AL-age-predictor, the age of AL mice 

between 16 and 24 months of age, was also accurately predicted (Fig 2.5B). These findings 

indicate that at 5 months of age, 2 months after starting DR, the DR microbiome is still not as 

different from AL as in older animals. 

To identify the bacterial taxa that are differentially abundant between AL and DR longitudinally, 

we used GLME. 213 ASVs were identified as longitudinally different between AL and DR. The 

213 ASVs identified by GLME were also found as important to differentiate between AL and 

DR in the Random Forest classifier (Fig 2.6). Similar to previous reports in ageing studies 

performed on AL and DR mice; while most bacteria with significantly higher abundance in AL 

mice pertained to the phylum Firmicutes (~95%), DR mice had differentially higher 

abundances of Firmicutes (~58%) and of Bacteroidetes (~38%) (Ke et al. 2021; J. Xu et al. 

2016; C. Zhang et al. 2013; Kok et al. 2018; Duszka et al. 2018). 
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Figure 2.6: Heatmap of 213 longitudinally differently abundant bacteria between AL and DR. Log2FC 

of bacteria abundance was calculated using DESeq2 for each individual time point. Differential 

abundance adjusted p-values for each time point in Supplementary file 1. 

 

2.2.4 The ability of the microbiome to adapt to a DR-like pattern is high but 

declines with age 

Initiating DR at 16 months of age (AL_DR16M) is sufficient to extend lifespan in mice almost 

to the same degree as chronic lifelong DR. In contrast, onset of DR at 20 months of age 

(AL_DR20M) does not significantly extend lifespan (Drews et al. 2021). In order to address 

whether this age-dependent response in lifespan to DR is also reflected in changes of the 

microbiome, we performed 16S rRNA sequencing on longitudinally collected faecal samples 

from AL_DR16M and AL_DR20M mice past their respective switch.  

First, to evaluate differences between diets in the distribution of relative abundance of ASVs 

in the microbiome population, alpha diversity was studied. In both AL_DR16M and AL_DR20M 

mice, there was a two-phase response to the switch to DR diet. After onset of DR, there was 

an acute decrease in alpha diversity, followed by increased alpha diversity in the long-term 

(Fig 2.2A). To evaluate the short-term effect of the diet-switches (i.e. how fast the microbiome 

population structure from each group of mice adapted to DR-like alpha diversity), windows 

were defined as the faecal collections spanning the last time point before diet switch 

(baseline), and 6 months after start of DR diet (age 14 months to 22 were evaluated for 

AL_DR16M, and 18 to 26 for AL_DR20M). After overlapping the windows corresponding to 

AL_DR16M and AL_DR20M, and comparing their slopes using linear regression, we found 

significantly different slopes (speeds) of alpha diversity response to introduction of DR diet 

between AL_DR16M and AL_DR20M. Interestingly, the speed of alpha diversity decrease was 

higher in AL_DR16M mice (Fig 2.2A), suggesting that with younger age, changing diets had 

a stronger acute effect on the microbiome population structure. Furthermore, evaluation of the 

long-terms effects of AL_DR16M and AL_DR20M on the alpha diversity, in a longitudinal 

manner, revealed similar responses to the diet switch. AL_DR16M mice became significantly 

higher than AL, but were not significantly different from DR (Fig 2.2A). On the other hand, 

alpha diversity of AL_DR20M mice significantly increased compared to AL, but did not 

significantly recapitulate the DR-like structure (Fig 2.2A). Therefore, with younger age, 

changing diets had a stronger acute effect on the microbiome population structure, and 

AL_DR16M mice recapitulated the DR-like microbiome community structure in the long-term. 
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Next, to investigate the differences in microbiome community dynamics between samples, we 

quantified distances between bacterial communities of these mice. After onset of DR, there 

was also a two-phase effect on beta diversity. Short-term effects generated a steeper slope of 

beta diversity change (higher speed) in AL_DR16M when compared to AL_DR20M in the 6 

months window after starting of DR (Fig 2.2B). The steeper slopes of alpha and beta diversity 

after starting the DR diet in AL_DR16M mice highlight the acute response of the young 

microbiome to the new diet. Furthermore, evaluation of the long-term effects on Bray Curtis 

beta diversity, revealed that AL_DR20M mice did not fully recapitulate the DR intra-individual 

variability (Fig 2.2B). However, they significantly reduced their intra-individual variability 

compared to AL (Fig 2.2B), rather remaining in between AL and DR. Taken together, switching 

to DR diet at both 16 and 20 months of age reverts the age-related decline in alpha and 

increase in beta diversity, but to a larger extent when DR is started at 16 months of age. 

We next asked whether the acute changes in the microbiome structure of late-life DR switch 

animals occurred via changes in the relative abundance of pre-existing bacteria, or through 

gain or loss of bacteria. Therefore, we calculated two more beta diversity metrics that use a 

phylogenetic tree of relationship among taxa as central information: unweighted UniFraq, 

which only considers the presence or absence of taxa, and weighted UniFraq, which accounts 

for the relative abundance of taxa and their phylogenetic distance (Lozupone et al. 2013). In 

both DR switch groups the same pattern emerged on the first time point measured after 

starting DR, i.e. 18 and 22 for AL_DR16M and AL_DR20M, respectively. There was significant 

grouping by diet in unweighted UniFraq (Fig 2.7A), but not in weighted UniFraq (Fig 2.7B). 

This suggests that the microbiome of both AL_DR16M and AL_DR20M responds to the diet 

switch through an acute remodelling of the microbiome structure, where the effects of gain/loss 

of taxa (unweighted Unifraq) occur later than the changes in relative abundance of taxa 

(Weighted UniFraq). Thus, changes in the abundance of pre-existing bacteria primarily govern 

the acute response of the microbiome to DR initiation. 

 

Figure 2.7: Principal coordinate analysis of A) Unweighted UniFraq after the start of DR. Significant 
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clustering of samples (ANOSIM): diet (AL_DR16M vs DR vs AL p-value = 0.001; AL_DR20M vs DR 

vs AL p-value = 0.001). B) Weighted UniFraq after the start of DR. 

 

In order to test whether the microbiome populations after onset of DR at 16 or 20 months of 

age recapture the DR-like microbiome (Fig 2.5A), we evaluated AL_DR16M and AL_DR20M 

microbiomes in two ways. First, the faecal samples from AL_DR16M and AL_DR20M were 

classified using the Random Forest classifier to predict diet treatment (Fig 2.5A). Before 

switching to DR, faecal samples from AL_DR16M and AL_DR20M were correctly classified 

as AL (accuracy of 100%) (Fig 2.8A). However, after the start of DR, while the AL_DR16M 

was classified as DR with an accuracy above 90% in all time points, the AL_DR20M was 

classified as DR with lower accuracy, reaching as low as 65% (Fig 2.8A). Second, we used 

principal response curves (PRC) (Fuentes et al. 2014; Vendrig, Hemerik, and ter Braak 2017) 

to evaluate the longitudinal temporal trends of ASVs after DR onset. PRCs use redundancy 

analysis (RDA) allowing for temporal trends and interaction between explanatory variables in 

the control group to be corrected for, facilitating the estimation of the effects from the diet 

groups. Immediately after the start of DR in both AL_DR16M and AL_DR20M, there was a 

significant divergence from AL microbiome (Sup File 1; Fig 2.8B). However, while the 

AL_DR16M group fully recapitulated the microbiome pattern of DR mice, the microbiome of 

AL_DR20M only partially adapted to the DR-like state (Fig 2.8C). Interestingly, the microbiome 

of the most long-lived AL mouse (sole survivor from 34 months of age until death at 38 

months), also converged to a DR-like microbiome, and was indistinguishable from that of DR 

mice in the last time points (Sup File 1; Fig 2.8C). In summary, the ability of the microbiome 

to adapt to DR-like patterns after diet switch is high, but progressively decreases the later DR 

is initiated. 

 

Figure 2.8: A) Prediction accuracy of Random Forest classifier as AL (before dotted line) and DR 

(after dotted line). B) Principal response curve of microbiome compared to AL. C) Principal response 

curve of microbiome compared to DR. Green and yellow shaded areas correspond to time between 
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faecal collections before and after onset of DR. Adjusted p-values for Monte Carlo permutations 

between diets of PRC in Supplementary File 1. 

 

2.2.5 DR switch-resistant ASVs - Candidates for a microbiome memory of AL 

feeding 

To identify bacteria that correlate with the response in longevity, “DR-specific” bacteria, ASVs 

identified as significantly different from DR in AL, AL_DR16M and AL_DR20M mice using both 

PRCs and GLME models were analysed. Of the 213 ASVs that were longitudinally different 

between AL and DR (Fig 2.5), 70 (33%) were longitudinally different between AL_DR16M and 

DR (Fig 2.9A), and 67 (31%) were different between AL_DR20M and DR (Fig 2.9B), indicating 

there are “switch resistant” bacteria that do not recapitulate the levels of DR after diet switch. 

The amount of “switch-resistant” bacteria was not significantly different between AL_DR16M 

and AL_DR20M (chi squared p-value = 0.3). Interestingly, of the bacteria differentially 

abundant between the switched groups and DR, only 32 (15%) were different between 

AL_DR16M vs DR, and also between AL vs DR (Fig 2.9A). And 44 (21%) were different 

between AL_DR20M vs DR, and also between AL vs DR (Fig 2.9B). These findings were 

similar to the results obtained from the random forest classifier and PRCs, where we observed 

that the ability of the microbiome to recapitulate the DR-like pattern was slightly higher in 

AL_DR16M than in AL_DR20M (Fig 2.8A-C). Notably, there were 14 “DR-specific” ASVs that 

did not adapt to DR-like abundances after changing diets at either 16 or 20 months of age (Fig 

2.9A-C; Sup Fig 2.1A). To further understand their interactions as a community, a co-inertia 

network of the 14 “DR-specific” bacteria was generated by calculating repeated measures 

correlation between bacteria, to include the longitudinal aspect of the dataset in the model (Fig 

2.9C). The most connected bacteria, all highly abundant in DR mice, were 

Christensenellaceae, Lachnospiraceae, and Ruminococcaceae, producers of short-chain fatty 

acids (SCFA). These “DR-specific” bacteria are candidates for a microbiome memory of AL 

feeding. Bacteria under a microbiome memory of AL feeding, could be associated with the 

decreased health span and slightly reduced maximum lifespan reported in AL_DR16M and 

AL_DR20M when compared to DR (Drews et al. 2021). 
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Figure 2.9: Venn diagrams depicting the overlap of longitudinally differentially abundant bacteria 
genus comparing DR to A) AL_DR16M and B) AL_DR20M. C) Repeated measures co-inertia 

network of ASVs of microbiome memory of AL feeding; DR-specific bacteria. Adjusted p-values for 

longitudinally different bacteria between DR vs AL, DR vs AL_DR16M, and DR vs AL_DR20M in 

Supplementary File 1. 

 

2.2.6 Identification of bacteria associated with DR-mediated longevity 

Having identified bacteria involved in a microbiome memory of AL feeding, we sought to 

identify bacteria that could be associated with the improved longevity reported in AL_DR16M 

when compared to AL_DR20M mice (Drews et al. 2021) (Fig 2.1). ASVs possibly associated 

with DR-mediated longevity, were defined as those that recapitulated DR relative abundances 

in AL_DR16M mice, but not in AL_DR20M (Fig 2.9A-B). 30 DR-mediated longevity ASVs were 

identified (Fig 2.10A; Sup Fig 2.1B). Including the longitudinal aspect of the dataset in the 

model, we calculated repeated measures correlation between possible DR-mediated longevity 

bacteria, and evaluated the co-inertia relationships as a network (Fig 2.10A). The network 

differentiated two groups of ASVs negatively correlated with each other: one where abundance 

was high in AL mice, and another where abundance was high in DR mice (Fig 2.10A; Sup Fig 

2.1B). The latter was also characterised by being more densely connected, suggesting tighter 

community structure interaction through age in the ASVs highly abundant in DR mice. 

Furthermore, the ASVs more abundant in AL were mostly Firmicutes such as 

Lachnospiraceae. While ASVs adapted to DR abundances in AL_DR16M mice, that had 

higher abundance through age in DR mice compared to AL, encompassed not only Firmicutes, 

but 30% of them were Bacteroidetes, including Rikenellaceae, Muribaculaceae and 

Lactobacillaceae genuses (Sup Fig 2.1B). Therefore, these bacteria may also be a 

contributing factor to both, the improved health and longevity reported in mice fed DR starting 

at 16 months of age (Drews et al. 2021). 

To further study the association of AL_DR16M bacteria that adapted to DR-like abundances, 

with the DR-mediated longevity, we studied the relationship between faecal samples of DR, 
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AL_DR16M and AL_DR20M at 24 months (after both AL_DR16M and AL_DR20M have 

reached similar bacterial profiles as DR; Fig 2.8C), and age at death. We iteratively studied 

each of the 30 ASVs by separating mice into two groups based on their ASV abundance (i.e. 

above or below the mean of abundance), and we assessed the prognostic value of these ASV 

biomarkers by calculating univariate Cox regressions. Given that the 30 bacteria in study had 

significantly different abundance between AL and DR, (2.9A-B; Sup Fig 2.1B), AL samples 

were not evaluated in this model. Two out of 30 ASVs evaluated were significantly associated 

with longevity in our mouse cohort at adjusted p-value < 0.05 (ASV17 Muribaculaceae and 

ASV224 Clostridiales) (Fig 2.10B-C). Therefore, these results not only indicate there are 

multiple microbiome bacteria associated with ageing patterns, but also identify possible 

biomarkers of DR-mediated longevity in mice. 

 

Figure 2.10: A) Repeated measures co-inertia network of the 30 ASVs adapting to DR-like 

abundances in AL_DR16M but not in AL_DR20M. Black arrowheads point to ASVs significantly 

associated with longevity by Cox univariate regression. B) Kaplan-Meier curve demonstrating the 

association between overall survival and abundance of Muribaculaceae (Cox regression adjusted p-
value = 0.01) and C) Clostridiales (Cox regression adjusted p-value = 0.006). Adjusted p-values for 

longitudinally different bacteria between DR vs AL, DR vs AL_DR16M, and DR vs AL_DR20M in 

Supplementary File 1. 
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2.2.7 Identification of bacteria species associated with a microbiome memory of 

AL feeding or DR-mediated longevity 

 
16S rRNA sequencing only allows to identify bacteria on the genus level, while information 

about bacteria species and strains cannot be retrieved. In order to better characterise DR 

associated microbiome changes also on the species level, we performed shotgun 

metagenomics using 24-month-old mice of each diet group (AL, DR, AL_DR16M and 

AL_DR20M). The 24 months time point represents the time after both AL_DR16M and 

AL_DR20M have reached similar microbiome composition as DR (Fig 2.8C). Superimposition 

of the 16S rRNA sequencing and shotgun metagenomics datasets confirmed that they 

represented the same variance between samples (procrustes with 999 permutations, p-value 

= 0.001), and ANOSIM corroborated significant clustering according to diets in the shotgun 

metagenomics dataset (p-value = 0.007). 

Here, we reported “DR-specific” bacteria genera associated with a microbiome memory of AL 

feeding (Fig 2.9C). To investigate the bacteria species under a microbiome memory of AL 

feeding, species significantly different from DR by means of DESeq2 were analysed. Of the 

288 bacteria species significantly different between DR and AL (Fig 2.11A-B), 21 (7.3%) were 

significantly different between AL_DR16M and DR (Fig 2.11A), and 24 (8.3%) were different 

between AL_DR20M and DR (Fig 2.11B). The proportion of these “switch-resistant” species 

was different between AL_DR16M and AL_DR20M (chi squared p-value = 0.005). 7 (2.4%) 

bacteria different between AL_DR16M and DR were different between DR and AL (Fig 2.11A), 

while in the case of AL_DR20M mice, there were 13 (4.5%) species (Fig 2.11B). Furthermore, 

there were 2 “DR-specific” bacteria species that did not adapt to DR-like abundances after 

late-onset DR regimen: Lachnospiraceae sp000403845 and Anaeroplasmataceae UMGS268 

had significantly higher abundance in DR compared to all other treatment groups (Sup Fig 

2.2A). Taken together, high abundance of Lachnospiraceae sp000403845 and 

Anaeroplasmataceae UMGS268 specific of chronic DR mice may contribute to the improved 

health and lifespan of these mice compared to AL_DR16M and AL_DR20M mice (Drews et 

al. 2021). 

Next, we sought to identify bacteria species associated with DR-mediated longevity. Eleven 

DR-mediated longevity species were identified (Fig 2.11A-B; Sup Fig 2.2B). Four 

Lachnospiraceae (TF01-11-MCGC-nov-622, 14-2-MCGC-nov-380, UBA7182-MCGC-nov-

266 and Eubacterium-J-MCGC-nov-279) and Erysipetaloclostridiaceae CHKCI006-MCGC-

nov-506, had significantly higher abundance in AL and AL_DR20M compared to DR and 

AL_DR16M mice (Sup Fig 2.2B). While Prevotellamassilia sp002933955 and five Clostridia 
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(Oscillospirae P3106-MCGC-nov-344, UBA3700-MCGC-nov-147, UBA3700-MCGC-nov-146, 

CAG-552-MCGC-nov-154, and Borkfalkiaceae-MCGC-nov-237) were significantly enriched in 

DR and AL_DR16M (Sup Fig 2.2B). The abundance and interaction of these 11 bacteria 

species might be associated with DR-mediated longevity, and the improved longevity of 

AL_DR16 mice compared to AL_DR20M and AL. 

 

Figure 2.11: Venn diagrams depicting the overlap of differentially abundant bacteria species at 24 

months of age comparing DR to A) AL_DR16M and B) AL_DR20M. Adjusted p-values for differential 

abundance analysis in Supplementary File 1. 

 

2.2.8 A longitudinal high-resolution analysis of the ageing murine faecal 

metabolome 

The microbiome influences ageing and metabolism indirectly, through production of 

metabolites during digestive processes (Bana and Cabreiro 2019; Krautkramer, Fan, and 

Bäckhed 2021). To investigate the faecal metabolomic response to the observed age- and 

DR-related changes in the microbiome composition, we explored faecal metabolites extracted 

from the same faecal pellet used for microbiome analysis. Additionally, to study different 

metabolome characteristics that may be associated with differences in lifespan within 

treatment groups, 438 samples were run on a mass spectrometer, corresponding to all studied 

time points of a subset of mice with age at death in the median (centre-lived) or maximum 

lifespan (long-lived) of their diet group (n = 10 for AL, DR, AL_DR16M and AL_DR20M; Fig 

2.12). To cover as many metabolites as possible, we generated two datasets: untargeted polar 

(4295 detected), and untargeted non-polar (2161 detected) metabolites, that enable unbiased 

profiling of the faecal metabolome, representing polar (amino acids, nucleic acids, small 

organic acids etc.) and non-polar (lipids), respectively. However, it is challenging to connect 

metabolites from untargeted data generation to specific pathways, as most are unknown and 

remain unannotated. 
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Figure 2.12: Density distribution of mice deaths. Grey areas represent median and maximum 

lifespan. n = 5 mice per grey area. 

  

To study ageing trends in metabolites abundance and identify those metabolites most affected 

by age, linear regressions were run on the longitudinal metabolites of AL mice. 450 (10.5%) 

untargeted polar metabolites increased with age, and 235 decreased (5.5%; Fig 2.13A). 

Untargeted non-polar metabolites distinguished 375 (17.3%) metabolites increasing with age, 

and 77 decreasing (3.6%; Fig 2.13B). There was no significant difference between 

upregulation or downregulation of metabolites with age in polar metabolites (chi squared p-

value = 0.3), but there was a significant age-associated upregulation in non-polar metabolites 

(chi squared p-value = 0.005). Next, to assess whether DR mice had similar metabolite ageing 

patterns as AL mice, linear regressions were run on the longitudinal metabolites of DR mice. 

There was no significant difference in age-related up- or downregulation of polar metabolites 

in DR mice (chi squared p-value = 0.07); 1077 (25%) polar metabolites increased with age, 

and 604 decreased (14%; Fig 2.13C). However, there was a significant upregulation of non-

polar metabolites with age (chi squared p-value = 10-5); 1060 (49%) untargeted non-polar 

metabolites increased with age, and 298 decreased (13.8%; Fig 2.13D). Nevertheless, there 

was a significantly higher amount of common upregulated polar and non-polar metabolites 

between AL and DR (12.9% and 3.2%, respectively) than common downregulated (1.3% and 

1.2%, respectively) (chi squared p-value < 10-5 for both polar and non-polar metabolites). 

Therefore, similar to the results from AL mice, DR mice underwent a general upregulation of 

faecal metabolites with age. 

To evaluate differences in ageing trends of long- and centre-lived mice, linear regressions 

were calculated and proportion of affected metabolites were compared. Long-lived mice had 

more metabolites affected by age than centre-lived animals (chi squared p-value < 10-5 for 

both polar and non-polar metabolites; Sup Fig 2.3A). Interestingly, a group of metabolites 
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affected by age only appeared due to the high abundance during the latest timepoints, 

affecting specially the non-polar metabolites (Fig 2.13A-D; Sup Fig 2.3B). This could be a 

result of the bias of selection in the mice, as we studied centre-lived and long-lived mice of 

each treatment (Fig 2.12). Thus, ageing trends of metabolites from centre-lived and long-lived 

mice were evaluated. There was a general upregulation of polar and non-polar faecal 

metabolites with age in both AL and DR mice (chi squared p-value < 10-5 in all cases; Sup Fig 

2.3A-C). Furthermore, there was an upregulation of metabolites during the latest timepoints 

only in the long-lived mice (chi squared p-value < 10-5; Sup Fig 2.3B-C), suggesting the faecal 

metabolome of centre-lived and long-lived mice right before death was different. 

To evaluate whether different longitudinal faecal metabolome characteristics are associated 

with differences in lifespan within treatment groups, longitudinal metabolite abundances of 

mice with median or maximum lifespan were compared (Sup Fig 2.3B-C). Thirteen (0.3%) 

unannotated polar metabolites differentiated median-lived and long-lived AL_DR16M mice, 

and 9 (0.2%) unannotated polar metabolites AL_DR20M mice (Sup File 1). Furthermore, 

differences in non-polar metabolite abundances between median-lived and long-lived mice 

were only evident by 56 (2.6%) unannotated metabolites in DR, and 14 (0.6%) in AL_DR16M 

mice (Sup File 1). However, AL mice had no significant metabolites differentiating longevity. 

These few different metabolites identified by means of longitudinal analysis of metabolites 

between the ages of 12 months and the age of death of centre-lived mice within each treatment 

group (22 months for AL and 34 for DR) (Sup Fig 2.3B-C), indicate there are only few 

differences between centre-lived and long-lived mice during their early lives. The observed 

metabolic signal suggested longevity within late-onset DR groups was affected by amino 

acids, while the longest-lived treatments (DR and AL_DR16M) had a longevity signal involving 

lipids. 

To evaluate the differences between DR and AL ageing metabolites, longitudinal age-

dependent trajectories of faecal metabolites were evaluated. GLME models to study 

longitudinal changes of metabolites were calculated, and differential abundance analysis of 

metabolites in each time point was performed (Fig 2.13E-F). Compared to AL, there was high 

upregulation of DR metabolites in both metabolite fractions (Fig 2.13E-F). However, DR mice 

had higher abundances of spermidine and putrescine, while ageing effects in AL mice involved 

upregulation of bile acids and glycine deoxycholic acid, thus suggesting different ageing 

patterns depending on diet. 
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Figure 2.13: Heatmaps depicting ageing metabolites trends of AL mice in A) untargeted polar, and 

B) untargeted non-polar. Heatmaps of ageing trends of DR mice in C) untargeted polar, and D) 
untargeted non-polar metabolites. Heatmaps of longitudinally differentially abundant metabolites 

between AL and DR for E) untargeted polar, and F) untargeted non-polar. P-values of linear 
regressions through age, GLME to compare longitudinal changes between AL and DR, and per time 

point differential abundance analysis of metabolites in Supplementary File 1. 

 

2.2.9 The ability of the faecal metabolome to diverge from AL is high but 

decreases with older age of DR onset 

To study the effects of late-onset DR on the faecal metabolome composition and structure, we 

studied the faecal metabolome of AL_DR16M and AL_DR20M mice in comparison to AL and 

DR controls. First, ANOSIM on the distance matrix quantifying dissimilarity between samples 

for each metabolomics dataset (Bray-Curtis), revealed significant clustering according to 

mouse, age and diet (Fig 2.14A-B). Further, for both polar and non-polar metabolites, DR and 

AL were the most distant clusters of samples, while the AL_DR16M and AL_DR20M samples 

grouped closer to DR and AL, respectively (Fig 2.14A-B). To study the faecal metabolome 
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response to DR onset in a longitudinal manner, PRCs were calculated and temporal trends 

evaluated (Fig 2.14C-D). For both polar and non-polar metabolites, PRCs of DR mice were 

significantly different from AL (Fig 2.14C-D). However, there was a significant divergence from 

AL faecal metabolites in both polar and non-polar fractions immediately after the start of DR 

in both AL_DR16M and AL_DR20M (Fig 2.14C-D). In AL_DR16M mice, this divergence from 

AL lasted for ~10 months in both polar and non-polar metabolites (Fig 2.14C-D), and ~6 

months in AL_DR20M mice; after this time, the metabolome profiles reverted back to those of 

AL mice (Fig 2.14C-D). Given that our data set contained centre-lived and long-lived mice of 

each treatment (Fig 2.12), we next evaluated whether the observed convergence into AL-like 

faecal metabolome of AL_DR16M and AL_DR20M mice at ~26 months might be explained by 

a bias between the two longevity cohorts, i.e. because all centre-lived AL mice were dead 

before 26 months. PRCs for centre-lived and long-lived mice were calculated independently. 

While there was no convergence in the centre-lived mice, a similar pattern of convergence 

was observed in the long-lived mice (Sup Fig 2.4A-B). Thus, long-lived AL_DR16M and 

AL_DR20M mice had more similar faecal metabolome profiles to long-lived AL than to DR. 

Surprisingly, this pattern did not occur in the microbiome (Sup Fig 2.4C). Not only was there 

a faecal metabolomic memory of the previous AL feeding, but also the response to late-onset 

DR was not different from the metabolome of AL mice with maximum lifespan. 

To further assess the different metabolic responses to age of DR onset, PRCs including DR 

mice as reference baseline were calculated (Fig 2.14E-F; Sup Fig 2.4A-B). Corroborating the 

observations from sample comparisons to AL mice, AL_DR16M and AL_DR20M mice adapted 

to DR-like levels for similar periods of time in the untargeted polar and non-polar datasets (~8 

and ~4 months respectively) (Fig 2.14E-F; Sup Fig 2.4A-B). Thus, switching to DR at 16 

months had a longer lasting impact on the faecal metabolome than starting DR at a later time 

point. However, at 26 months of age they had converged into AL-like profiles, until switching 

back into DR-like faecal metabolomes at ~34 months of age, when the only the 3 longest-lived 

AL_DR16M and AL_DR20M mice, and the longest-lived AL mouse remained alive (Fig 2.14E-

F; Sup Fig 2.4A-B). These results suggest that the longest-lived mice between diet groups 

have the most similar faecal metabolomic profiles at the end of their lives. 

Taken together, although the longitudinal faecal metabolomic profiles diverged from AL for a 

longer period when 16-month-old mice were switched to DR, the faecal metabolome of DR 

mice was not fully recapitulated in the long-term by onset to DR at 16 or 20 months. There 

was a faecal metabolomic memory of AL feeding impeding full adaptation to DR-like patterns, 

and metabolites diverging differently from AL between AL_DR16M and AL_DR20M mice could 

also be associated with differences in the lifespan of these mice 
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Figure 2.14: A) PCoA of Bray-Curtis distances between samples for polar untargeted metabolites. 

Significant clustering of samples (ANOSIM): mouse p-value = 0.001; age p-value = 0.001; diet p-

value = 0.001. B) PCoA of Bray-Curtis distances between samples for non-polar untargeted faecal 

metabolites. Significant clustering of samples (ANOSIM): mouse p-value = 0.001; age p-value = 
0.001; diet p-value = 0.001. C) PRCs of faecal metabolomes compared to AL for polar untargeted 

metabolites. D) PRCs of faecal metabolomes compared to AL for non-polar untargeted faecal 

metabolites. E) PRCs of faecal metabolomes compared to DR for polar untargeted metabolites. F) 
PRCs of faecal metabolomes compared to DR for non-polar untargeted faecal metabolites. Minimum 

of 3 reference mice for PRC calculations. Adjusted p-values for per-time point Monte Carlo 

permutations between diets of PRCs in Supplementary File 1. 

 

2.2.10 DR switch-resistant faecal metabolites - Candidates for a metabolomic 

memory of AL feeding 

To investigate the faecal metabolites under a microbiome memory of AL feeding on 

AL_DR16M and AL_DR20M, GLME models were used to longitudinally compare metabolites 

between diets. First, untargeted polar metabolomics found 1551 metabolites longitudinally 

different between AL and DR (Sup File 1; Fig 2.15A). Of those, 289 (25.1%) were different 

between AL_DR16M and DR, and 993 (86.3%) were different between AL_DR20M and DR 

(Sup File 1; Fig 2.15A). Second, untargeted non-polar metabolomics found 919 metabolites 

longitudinally different between AL and DR (Sup File 1; Fig 2.15B). Of those, 402 (43.9%) 

were different between AL_DR16M and DR, and 671 (73.1%) were different between 
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AL_DR20M and DR (Sup File 1; Fig 2.15B). There was a significantly lower proportion of polar 

and non-polar metabolites affected by DR onset at 16 months than onset at 20 months (chi 

squared p-value < 10-5). Therefore, there were microbial metabolites under a memory of AL 

feeding that was stronger the longer mice were originally fed AL i.e. higher memory in 

AL_DR20M than in AL_DR16M mice. The untargeted polar metabolomics dataset 

encompassed the strongest difference in AL memory between AL_DR16M and AL_DR20M, 

while the untargeted non-polar metabolites (lipids) were the most switch-resistant of the 

studied metabolite fractions. 

 

Figure 2.15: Venn diagrams depicting the overlap of longitudinally differentially abundant metabolites 

comparing DR to AL_DR16M and AL_DR20M. A) Untargeted polar metabolites. B) Untargeted non-

polar metabolites. Adjusted p-values of longitudinal GLME analysis of metabolites between diets in 

Supplementary File 1. 

 

To unravel the “DR-specific” functional profiles, and those associated with DR-mediated 

longevity, the 100 annotated polar metabolites were evaluated using GLME models. We 

identified 16 switch-resistant metabolites in AL_DR20M mice (Fig 2.16A-B), encompassing 

the 7 switch-resistant metabolites found in AL_DR16M mice (Fig 2.16A and Sup Fig 2.5A): S-

adenosyl methionine, histamine, tryptamine, N2-acetylornithine, adenine, alpha-aminobutyric-

acid and glycine-deoxycholic-acid. Network analysis of the co-inertia interactions of these 

metabolites revealed a highly connected network where metabolites abundantly found in DR 

were negatively correlated to those abundantly present in AL mice (Fig 2.16A). These “DR-

specific” faecal metabolites representing a microbiome memory of AL feeding, could be 

associated with the reduced health and lifespan of mice starting DR late in life (Drews et al. 

2021). 

To identify faecal metabolites that could be associated with the improved longevity reported 

in AL_DR16M when compared to AL_DR20M (Drews et al. 2021; Fig 2.1), metabolites that 

recapitulated DR-like relative abundances in AL_DR16M mice, but were switch-resistant in 

AL_DR20M mice were extracted (Fig 2.16B). Nine polar metabolites recapitulating DR levels 
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in AL_DR16M were identified (Fig 2.16B and Sup Fig 2.5B): gamma-glutamyl-L-putrescine, 

tryptophane, alanine-glycine, arginine, N-acetylspermidine, tyrosine, lysine, histidine and 

aspartic acid. Thus, these 9 metabolites possibly associated with DR-mediated longevity, may 

be involved in the improved survival response of AL_DR16M mice. 

Taken together, although there is a strong faecal metabolomic memory of AL feeding impeding 

full adaptation to the DR-like metabolome, there was an acute response to onset of DR in both 

AL_DR16M and AL_DR20M mice. Nevertheless, similar to the pattern observed in the 

microbiome sequencing data, the metabolomic memory of AL feeding was evidently stronger 

in AL_DR20M than in AL_DR16M. Therefore, the faecal metabolome is also a factor that may 

be involved in the differences in longevity between mice switched to DR diet at 16 and 20 

months of age. 

 

Figure 2.16: A) Repeated measures co-inertia network of the 7 annotated polar metabolites 
classified as faecal metabolome memory; DR specific metabolites. B) Repeated measures co-inertia 

network of the 9 annotated polar metabolites adapting to DR-like abundances in AL_DR16M but not 

in AL_DR20M. Edges represent repeated measures correlation cutoff adjusted p-value < 0.05. 

  

2.2.11 Shared microbiome changes upon DR and reduced IIS and TOR 

signalling  

The gut microbiome influences health and longevity (Bana and Cabreiro 2019; Ghosh, 

Shanahan, and O’Toole 2022). To gain further insights into this relationship, we performed 

16S rRNA sequencing on faecal pellets of mice with reduced IIS and reduced TOR signalling, 

two nutrient pathways involved in the regulation of lifespan. To study reduced IIS, we used 

mice that carry a null mutation in the insulin receptor substrate 1 (Irs1-/-) gene, which are long 
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lived and healthier at old age (Selman et al. 2008). Reduced TOR signalling was studied using 

mice fed with the TORC1 inhibitor Rapamycin. These mice are long-lived when fed 

continuously with Rapamycin (Fok et al. 2014). Interestingly, transient Rapamycin treatment 

during mid-life was also sufficient to extend lifespan in mice (Bitto et al. 2016). Furthermore, 

short Rapamycin treatment during early life has a long-lasting effect on gut health (Juricic et 

al., 2022), suggesting a memory effect of Rapamycin treatment on health and lifespan. In 

order to address how reduced IIS and TOR signalling affect the murine microbiome, we 

performed 16S rRNA sequencing on faecal samples of: Irs1-/- and wild type control females at 

6, 20 and 24-months of age (Baghdadi, 2022); mice treated continuously with Rapamycin from 

3 months of age (Rapamycin-continuous), mice treated with Rapamycin only between 3 and 

6 months of age (Rapamycin-memory) and control wild type at 6 and 12-months of age (Juricic 

et al. 2022). Analysis of α- and β-diversity revealed no significant global differences in inter- 

or intra-individual variability between Irs1-/- mutant or Rapamycin treated mice compared to 

their respective controls at young or old age (Fig 2.17A-D). Thus, these longevity interventions 

only caused minor changes in the overall composition of the faecal microbiome. Consistently, 

Fisher’s test did not find significant alterations in the microbiome composition of Irs1-/- mice 

and only 0.6 % (3/464) of ASVs showed significant changes in abundance (Fig 2.18A). 

However, both the Rapamycin-continuous and the Rapamycin-memory treatment induced 

significant changes in microbiome composition with 2.16 % (10/464) of ASVs in Rapamycin-

continuous, and 2.58 % (12/464) of ASVs in Rapamycin-memory mice showing significant 

changes in abundance compared to their respective controls (Fig 2.18A). Although the overall 

number of differentially regulated ASVs was low, we next addressed whether reduced TOR 

and IIS signalling affect similar ASVs, which might indicate a role for these bacteria in 

longevity. Furthermore, we also include ASVs regulated in response to DR in this analysis. As 

we only included 10 biological replicates in the analysis of Irs1-/- and Rapamycin treated 

animals, we used a random subset of 10 AL and 10 DR mice at 12 and 20 months of age for 

this comparison (Fig 2.18A). Overall, there was a significantly higher amount of bacteria 

genera differentially regulated in response to DR than in Irs1-/-, Rapamycin-continuous or 

Rapamycin-memory treated animals (Fig 2.18A), suggesting that diet has a bigger influence 

on the microbiome than the genetic and pharmacological longevity interventions, consistent 

with recent findings (Maynard and Weinkove 2018). Interestingly, we identified 5 bacteria 

genera that showed differential abundance in both the Rapamycin-continuous and 

Rapamycin-memory faecal microbiomes, suggesting a memory in the faecal microbiome of 

previous Rapamycin treatment (Fig 2.18A-C). Importantly, all 5 bacteria were lowly abundant 

in WT control mice, and their relative abundance changed dramatically under anti-ageing 

interventions (log2FC>7x; Fig 2.18B-C). Three of these ASVs also showed differential 

abundance upon DR treatment and include the butyrate producing bacteria: Lachnospiraceae 
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UCG-001, Ruminiclostridium 5, and Lachnoclostridium (Fig 2.18B). Lachnospiraceae UCG-

001 and Ruminiclostridium 5 are anti-inflammatory bacteria that have been associated with 

modulation of circadian rhythm (Abbring et al. 2021; Thompson et al. 2021; Kim et al. 2021). 

Lachnospiraceae UCG-001 was highly enriched (log2FC>20x) in the faecal microbiome of 

both Rapamycin-continuous and Rapamycin-memory animals and slightly enriched in DR 

animals (Fig 2.18B). In contrast, Ruminiclostridium 5 was highly enriched in the faecal 

microbiome of Rapamycin-continuous animals, less enriched in Rapamycin-memory animals 

and depleted in DR animals (Fig 2.18C). Thus, only abundance of Lachnospiraceae UCG-001 

was positively correlated with lifespan extension in both DR and Rapamycin treated animals. 

High abundance of Lachnoclostridium has been associated with poor health in mice with 

adenoma, obesity, inflammation and old age (Liang et al. 2020; Y. Zhang et al. 2020). 

Consistent with the improved health of Rapamycin animals, abundance of Lachnoclostridium 

was strongly depleted in the faecal microbiome of Rapamycin-continuous and Rapamycin-

memory animals and slightly depleted in DR animals (Fig 2.18D). Interestingly, the other two 

bacteria shared between the faecal microbiomes of the Rapamycin-continuous and 

Rapamycin-memory groups, were also identified as differentially abundant genera in Irs1-/- 

and DR animals (Fig 2.18A and 2.18C).  

 

 
 

Figure 2.17: A) Shannon and B) Bray-Curtis diversity of the faecal microbiome of Irs1-/- mutant mice. 

C) Shannon and D) Bray-Curtis diversity of the faecal microbiome of Rapamycin treated mice. P-

values of linear regression through age, 2-way ANOVA to compare conditions through time, and 
Mann-Whitney between conditions in each time point, in Supplementary File 1. 

 

These 2 bacteria genera include Lachnospiraceae NK4A136, which has been associated with 

butyrate production (Stadlbauer et al. 2020), and Muribaculaceae, which has been associated 

with extended lifespan in previous studies (Smith et al. 2019; Shenghua et al. 2020). 

Muribaculaceae, was also identified in the current work as significantly associated with DR-

mediated longevity by means of Cox regression (Fig 2.10B). However, while Lachnospiraceae 
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NK4A136 was highly enriched in the faecal microbiome of all tested longevity interventions, 

Muribaculaceae was enriched in Irs1-/-, Rapamycin-memory and DR mice, but depleted in 

Rapamycin-continuous mice. In summary, abundances of Lachnospiraceae NK4A136 and 

Lachnospiraceae UCG-001 were positively correlated with longevity, while the abundance of 

Lachnoclostridium was negatively-correlated with longevity. Muribaculaceae and 

Ruminiclostridium 5 showed a more complex response, and their abundances were not strictly 

correlated with longevity in the different treatments. Thus, the nutrient associated anti-ageing 

interventions investigated here share a common set of differentially regulated ASVs in their 

faecal microbiome, which suggests that these bacteria might contribute to improved health at 

old age and longevity. 

 

Figure 2.18: A) Venn diagram depicting the overlap of differentially regulated ASVs in the faecal 

microbiome of DR, Irs1-/-, Rapamycin-continuous and Rapamycin-memory treated animals. Fisher’s 

test for alteration of microbiome composition by: DR p-value = 1.0x10-5; Rapamycin-continuous p-

value = 0.0019; Rapamycin-memory p-value = 0.0005; Irs1-/- p-value = 0.25. Hypergeometric test to 

compare proportion of differentially abundant bacteria compared to DR vs AL: Rapamycin-continuous 

vs Control p-value = 5.9x10-8; Rapamycin-memory vs control p-value = 3.6x10-7; Irs1-/- vs WT p-value 
= 1.4x10-4. B) Bacteria genera differentially abundant between Rapamycin-treated mice compared 

to control-fed, and DR vs AL. C) Bacteria genera differentially abundant between all anti-ageing 

interventions compared to their respective controls. Adjusted p-values for differentially abundant 

bacteria between all comparisons in Supplementary file 1. 
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2.3 Discussion 

Lifelong DR is a robust strategy that can lengthen the lifespan of different model organisms 

and delay age-related health decline (Green, Lamming, and Fontana 2022; Fontana and 

Partridge 2015). Here, we examined the longitudinal consequences of ageing and DR in the 

microbiome. In accordance with earlier cross-sectional studies on DR and caloric restricted 

mice, we demonstrate that DR mitigates age-related changes in the microbiome community 

structure, including: decline in alpha diversity, increase in beta diversity, and loss of equilibrium 

between Firmicutes and Bacteroidetes phyla (Bartley et al. 2017; Duszka et al. 2018; Fabbiano 

et al. 2018; Kok et al. 2018; C. Zhang et al. 2013; Badal et al. 2020). Further, we find that DR 

affects the microbiome more than age and that it is not a “younger-like” condition of the AL 

microbiome but rather a distinct microbiome in itself. 

Despite the many benefits of a lifelong DR regimen, it is impractical to apply lifelong DR in 

humans. DR should be initiated later in life to promote adherence and translational application 

(Flatt and Partridge 2018). Therefore, several studies have examined various impacts of 

initiating DR in mice later in life (Hahn et al. 2019; Zeng et al. 2019; Weindruch et al. 1986; 

Dhahbi et al. 2004; Drews et al. 2021). In relation to the microbiome, a prior study of late-onset 

DR found that two months of DR in mice, started at month 20, rejuvenated the ageing-induced 

structural imbalance of the gut microbiota (Zeng et al. 2019). However, Zeng et al. evaluated 

only seven AL mice switched to DR at ages 20 to 22, and did not evaluate lifespan, only the 

microbiomes of young and 22–24-month-old mice. Therefore, Zeng et al., could not evaluate 

the long-term impact of late-onset DR on the microbiome, nor identify bacteria linked to 

variation in longevity depending on the age of DR onset. Additionally, Drews et al. reported 

that onset of DR as late as 16 months of age is sufficient to recapitulate the lengthened 

longevity of mice receiving lifelong DR feeding. Conversely, beginning DR at age 20 months 

does not recapitulate the extended DR lifespan (Drews et al. 2021). Thus, here we 

investigated the microbiome consequences of starting DR at 16 and 20 months, with a large 

cohort of control and diet-switched groups. We report acute responses of the microbiome 

community structure to late-onset of DR, led by changes in relative abundance of taxa, and 

followed by gain/loss of taxa. Remarkably, consistent with DR lifespan recapitulation only 

when DR is started as late as 16 months of age (Drews et al. 2021), we found that the DR 

alpha diversity trajectories with age - that is, stable alpha diversity with age as opposed to the 

loss we observed in AL mice - could only be recapitulated when DR was initiated in 16-month-

old mice. Further, we demonstrated that the microbiome has a high capacity to adjust to a DR-

like pattern after switching diets, but that capacity gradually declined as the age of DR onset 

increased. The robustness of this result is supported by consistent results from the analysis 
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of ASVs using a Random Forest classifier, PRCs and the abundance of longitudinally different 

bacteria with age. 

We identified 14 “DR-specific” ASVs that did not adapt to DR abundance after switching diets 

at either 16 or 20 months of age, suggesting these bacteria were regulated by a microbiome 

memory of AL feeding and could be associated with the better health of chronic DR mice 

(Drews et al. 2021). Evaluation of these 14 ASVs revealed a high degree of network 

connectivity of Christensenellaceae, Lachnospiraceae, and Ruminococcaceae. These three 

SCFA-producing bacteria were highly abundant in DR and have been previously associated 

with improved health (Vacca et al. 2020; Stadlbauer et al. 2020; Ishiguro, Haskey, and 

Campbell 2018; Waters and Ley 2019). SCFA, especially the primary products: acetate, 

propionate and butyrate, are produced by the microbiome through carbon fermentation. They 

are key regulators in metabolism, immune system and gut-brain signalling pathways (Dalile et 

al. 2019; Frampton et al. 2020; Morrison and Preston 2016). Of note, Christensenellaceae 

have not only been found in high abundance in caloric restricted mice and healthy humans, 

but also in human centenarians (Zeng et al. 2019; Waters and Ley 2019; Kong et al. 2016). 

Furthermore, our analysis allowed us to identify bacteria genera adapting to DR abundance 

when DR onset occurred at 16 months but not at 20 months of age, which may be related to 

the difference in lifespan and health span between AL_DR16M and AL_DR20M mice (Drews 

et al. 2021). The majority of these bacteria genera were: Lachnospiraceae, Rikenellaceae, 

Muribaculaceae, Clostridiales, Ruminococcaceae, and Lactobacillaceae. These bacteria 

ferment fibres to produce SCFA, and have been previously associated with protection from 

liver disease, cardiovascular disease, hypertension, gut inflammation, and longevity (Sung et 

al. 2019; Dziarski et al. 2016; Shenghua et al. 2020; Smith et al. 2019). A significant finding 

was the identification of two ASVs from the Muribaculaceae and Clostridiales genera as 

potential biomarkers of DR-mediated longevity in mice. Notably, Muribaculaceae has been 

previously associated with extended lifespan in mice treated with pharmacological anti-ageing 

interventions (Smith et al. 2019; Shenghua et al. 2020). 

In addition, we generated a shotgun metagenomics dataset and identified bacteria species of 

interest. Two “DR-specific” bacteria species were found: Lachnospiraceae sp000403845 and 

Anaeroplasmataceae UMGS268, highly abundant in DR. The Lachnospiraceae genera, also 

identified in this study as “DR-specific” by 16S rRNA sequencing, has been previously 

correlated with both improved and worsened health (Vacca et al. 2020; Stadlbauer et al. 2020; 

Ishiguro, Haskey, and Campbell 2018). While high Anaeroplasma genera was reported in high 

abundance in young-sedentary and old-active mice compared to old-sedentary mice, as well 

as in low abundance in humans with hypercholesterolemia (Anhê et al. 2022; Granado-
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Serrano et al. 2019). Furthermore, 11 bacteria species differentiating the adaptation to DR 

abundance between AL_DR16M and AL_DR20M mice were identified. There was high 

abundances of Lachnospiraceae and Erysipetaloclostridiaceae in AL and AL_DR20M mice; 

and high abundance of Clostridia and Prevotellamassilia in DR and AL_DR16M mice. 

Lacnospiraceae and Clostridia have controversial roles, as high abundance of these bacteria 

have been reported in both health and disease in humans and mice (Vacca et al. 2020; Stoeva 

et al. 2021; Uzal et al. 2018). However, little is known about Erysipetaloclostridiaceae, they 

are SCFA producing bacteria enriched in ducks fed total dietary fibre (Hao et al. 2022). 

Interestingly, Prevotellamassilia found in high abundance in the longer-lived treatments, is an 

anti-inflammatory bacterium that undergoes an age-dependent decline in both humans and 

primates (Sang et al. 2022). As microbiome-produced SCFA play a major role regulating 

metabolism and inflammation in mice and humans (Morrison and Preston 2016; Dziarski et al. 

2016; Sung et al. 2019; Smith et al. 2019), and a previous study reported an uncoupling of 

health span from lifespan by means of improvement in metabolic health (glucose/insulin 

tolerance, respiratory exchange ratio, body weight etc.) irrespective of the age of DR onset 

(Drews et al. 2021). To elucidate the relationship between microbiome and prolonged 

longevity in AL_DR16M mice, future studies should investigate the response of the innate and 

adaptive immune system to DR onset at 16 and 20 months of age. 

To investigate the metabolomic response dependent on longevity-associated microbiome 

composition, previous studies have performed targeted metabolomics and compared mice to 

naked mole rats, and wild type mice to genetic models of progeria as model organisms of 

longevity (Viltard et al. 2019; Bárcena et al. 2019). Here, we generated a unique untargeted 

faecal metabolomics dataset, wherein polar and non-polar metabolites were extracted 

together with the DNA used for microbiome analysis. We evaluated the effects of ageing in a 

longitudinal manner, comparing the polar and non-polar faecal metabolomes of centre-lived 

and long-lived mice within each treatment group. Surprisingly the faecal metabolome of 

centre- and long-lived AL mice was not significantly different during their early lives, but 

developed a different pattern during the latest stages of life in the long-lived mice. However, 

AL mice have the smallest variance in lifespan of the studied groups (Drews et al. 2021), and 

therefore it is possible their faecal metabolomes may not have a long enough time to strongly 

diverge. A previous study using targeted metabolomics in colonic luminal content of 6 to 8 AL 

and DR mice at 6 and 28 months of age, reported a reduced abundance of bile acids in old 

DR mice compared to AL (Kok et al. 2018). Here, we analysed the longitudinal effects of 

ageing and DR in the faecal metabolome. We show that there is a general upregulation of 

metabolites with age in both polar and non-polar metabolites of AL and DR mice, and different 

ageing patterns depending on diet. Compared to AL, there was higher upregulation of DR 
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metabolites in both metabolite fractions. The metabolic pathways that were enriched under AL 

and DR were different; similar to the reports by Kok et al., while AL induced higher upregulation 

of bile acids and glycine deoxycholic acid, DR was associated with stronger upregulation of 

spermidine and putrescine metabolites. 

Several studies have evaluated different effects of initiating DR in mice later in life (Hahn et 

al. 2019; Zeng et al. 2019; Weindruch et al. 1986; Dhahbi et al. 2004; Drews et al. 2021), but 

to date, none evaluated the effect of late-onset DR on the faecal metabolome. Here, we 

performed polar and non-polar untargeted metabolomics in faecal samples from mice starting 

DR at 16 and 20 months of age. We revealed that switching to DR late in life generated a 

metabolic divergence from AL that only lasted temporarily. Nonetheless, this divergence lasted 

longer when mice were switched to DR at 16 months of age compared to the 20-month DR 

switch. Thus, differences in the specific metabolites responding to DR onset at 16 and 20 

months, may be contributing factors to the lifespan differences observed in these mice (Drews 

et al. 2021). Furthermore, although there was a significantly higher amount of switch-resistant 

faecal metabolites when DR was introduced later in life, the untargeted polar metabolomics 

dataset encompassed the strongest difference in metabolome memory between AL_DR16M 

and AL_DR20M. 

As reported in the microbiome, we identified “DR-specific” changes in abundance of 7 faecal 

metabolites. Interestingly, a previous study on longevity using mice and naked mole rats, 

associated glycine-deoxycholic-acid and adenosylmethionine with longevity (Viltard et al. 

2019). Tryptamine, has also been reported to be involved in mice health in a study of 

inflammatory bowel syndrome (Bhattarai et al. 2020). And glycine-deoxycholic-acid, and bile 

acid metabolism have also been associated with longevity in yeast, progeroid mice and naked 

mole rats (Goldberg et al. 2010; Bárcena et al. 2018; Viltard et al. 2019). Similarly, we identified 

metabolites adapting to DR abundance only after diet switch at 16 months of age. The high 

abundance of N-acetylspermidine, known to induce autophagy (Morselli et al. 2011; Pietrocola 

et al. 2015), and found in DR and AL_DR16M mice, is one example of metabolite associated 

to longevity here and in previous studies in mice and naked mole rats (Viltard et al. 2019; 

Eisenberg et al. 2016). Furthermore, abundant literature has not only shown that spermidine 

supplementation promotes health and longevity in mice (Eisenberg et al. 2016; Madeo et al. 

2018), but also that it is increased in mice under caloric restriction (Madeo et al. 2019). Hence, 

the autophagic flux could be one of the factors contributing to lifespan differences between 

AL_DR16M and AL_DR20M. In addition, we observed that the most “switch-resistant” 

metabolites belong to the lipid fraction, by comparing the relative abundance of metabolites 

adapting to DR after diet-switch late in life. A previous study on colon gene expression of 28-

month-old AL and DR mice, highlighted the high expression of lipid metabolism genes upon 
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DR (Kok et al. 2018). And another study on mice fed AL, DR, and switched to DR starting at 

24 months of age, reported that the lipidome and transcriptome of the WAT are also affected 

by a nutritional memory effect of AL feeding (Hahn et al. 2019). As the DR microbiome causally 

contributes to metabolic reprogramming in WAT (C. Zhang et al. 2013; Fabbiano et al. 2018), 

these results seem to implicate the WAT as one of the contributing factors to the differences 

in lifespan resulting from DR initiation at different timepoints. To evaluate this hypothesis and 

further elucidate the mechanisms of the optimal period for lifespan extension, future studies 

should evaluate the molecular response of the WAT to onset of DR at 16 and 20 months. 

In this study we analysed the changes in the faecal microbiome of long-lived mice with reduced 

IIS and mTOR signalling. We show that overall, the composition of the faecal microbiome is 

only mildly affected in these mice. In contrast, DR had a stronger impact on the faecal 

microbiome, consistent with previous findings that suggest that dietary interventions affect the 

microbiome more than genetic or pharmacological interventions (Maynard and Weinkove 

2018). Interestingly, we were able to identify changes in bacterial abundance shared between 

the three longevity interventions, which might indicate that these bacteria contribute to the 

improved health and longevity of animals with reduced nutrient signalling. Finally, we identified 

changes in bacterial abundances that persisted in mice even if the Rapamycin treatment 

ceased 6 months ago, suggesting a microbiome memory of prior Rapamycin feeding.  

 

Reduced IIS and mTOR signalling extends lifespan in animals as diverse as flies and mice. In 

Drosophila, the microbiome affects host physiology by regulating both the IIS and the mTOR 

network (Shin et al. 2011; Grönke et al. 2010), suggesting a cross talk between the microbiome 

and organismal IIS/mTOR signalling. In this context it might be surprising, that the faecal 

microbiome composition of long-lived Irs1-/- mice was not significantly altered. Noteworthy, in 

contrast to DR and Rapamycin mice, that were maintained in separate cages to their 

respective controls, Irs1-/- mutant mice were housed together in the same cages as the control 

animals. Mice are coprophagic (Bogatyrev, Rolando, and Ismagilov 2020), and therefore the 

microbiome was probably continuously transferred between Irs1-/- and WT mice, which might 

explain why we observed the smallest changes in microbiome composition in the Irs1-/- mice. 

Nevertheless, we observed 3 bacteria genera that were previously associated with health and 

longevity (Stadlbauer et al. 2020; Smith et al. 2019; Shenghua et al. 2020), as significantly 

different in abundance between Irs1-/- and WT mice (Fig 2.18A). Thus, it is possible that these 

bacteria contribute to the improved health of Irs1-/- mice at older age.  

 

We found that continuous Rapamycin treatment had a significant effect on the composition of 

the faecal microbiome in line with a previous report (Bitto et al. 2016). The most prominent 
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change in the study by Bitto et al, was a striking increase in the abundance of Candidatus 

arthromitus in mice under late-onset Rapamycin treatment (Bitto et al. 2016). Consistent with 

this finding, levels of Candidatus arthromitus were also increased in mice that were 

continuously fed with Rapamycin in our study, indicating that this is a robust response which 

is not dependent on specific housing conditions or differences in mouse strains. However, the 

abundance of Candidatus arthromitus was not significantly changed in DR or Irs1-/- mice, 

suggesting that this change is specific to Rapamycin feeding. Furthermore, abundance of 

Candidatus arthromitus was also not changed in Rapamycin-memory animals that were fed 

with Rapamycin for a brief period early in life and were then kept on control food for 6 months. 

Early life Rapamycin treatment has been shown to have a lasting beneficial effect on gut health 

in mice (Juricic et al. 2022). Thus, the finding that Candidatus arthromitus is not differentially 

abundant in Rapamycin-memory mice suggests that it is not causal for the improved gut health 

of these mice. However, we detected increased abundance of Lachnospiraceae UCG-001, 

Ruminiclostridium 5 and Lachnospiraceae NK4A136; and decreased abundance of 

Lachnoclostridium, both in continuously treated and in Rapamycin-memory mice, suggesting 

that these Rapamycin-induced changes in the microbiome are stable for at least 6 months 

after drug withdrawal (Fig 2.18A-B). Mice with Paneth cell alteration and consequently reduced 

secretion of antimicrobial peptides (AMP) into the small intestine, have been shown to have 

low abundance of Lachnospiraceae UCG-001 and Ruminiclostridium 5 (Chen et al. 2017). 

Chronic Rapamycin treatment has been shown to directly affect Paneth cell function (Y. Zhou 

et al. 2015) and Rapamycin-memory animals showed a change in Paneth cell architecture 

(Juricic et al. 2022), which might indicate changes in AMP secretion. Thus, the observed 

persistent changes in the faecal microbiome might be caused by long-lasting changes in 

Paneth cell physiology. DR also affects mTOR signalling in Paneth cells (Yilmaz et al. 2012) 

and affects lifespan, consistent with the high abundance of Lachnospiraceae UCG-001 in the 

faecal microbiome of DR and AL_DR16M animals but not in AL_DR20M or AL mice (Fig 2.10A 

and 2.18B). In summary, we identified bacterial changes that are persistent for 6 months after 

Rapamycin withdrawal, indicating a Rapamycin induced memory of the faecal microbiome. 

 

We identified two bacteria genera, Lachnospiraceae NK4A136 and Muribaculaceae, that 

showed a significant change in abundance in all three longevity interventions. While late-onset 

DR did not affect the abundance of Lachnospiraceae NK4A136, Muribaculaceae was 

increased in DR and AL_DR16M mice but not in AL or AL_DR20M, and was associated with 

DR-mediated longevity (Fig 2.10A-B). Further, Lachnospiraceae NK4A136 and 

Muribaculaceae have both been previously associated with health in mice (Smith et al. 2019; 

Shenghua et al. 2020; Stadlbauer et al. 2020), and Muribaculaceae has been linked to lifespan 

extension (Shenghua et al. 2020; Smith et al. 2019). Lachnospiraceae NK4A136 showed 
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increased abundance upon reduced IIS, mTOR signalling and in response to DR, making it a 

good microbial biomarker for longevity. In contrast, Muribaculaceae levels were only strongly 

increased in Irs1-/- mutants and slightly in DR and Rapamycin-memory animals, but depleted 

in long-lived animals treated chronically with Rapamycin. Thus, if Muribaculaceae levels are 

contributing to health and lifespan improvements, then this effect is context specific. In 

summary, the comparison of the microbiomes of mice under different anti-ageing interventions 

revealed that these interventions share commonality in their microbiome responses. Future 

studies involving microbial transfers of these bacteria will be required to prove a causal role 

for them in health and longevity. 

 
Taken together, this study demonstrates that ageing is associated with pronounced changes 

in the population structure of the faecal microbiome and metabolome. DR not only delays the 

age-associated changes in microbial community structure, but also induces specific ageing 

patterns, most evidenced by the high abundance of Bacteroidetes in old age. Our results 

provide direct evidence that there is an age-dependent microbiome and faecal metabolomic 

memory of AL feeding associated with lifespan. Next to identifying a group of bacterial and 

metabolomic biomarkers that may be contributing factors to DR-mediated longevity, we also 

find common bacterial biomarkers of longevity between pharmacological (Rapamycin), 

genetic (Irs1-/-) and dietary (DR) anti-ageing interventions. Future investigation on the causal 

implication of these bacterial biomarkers in longevity and DR can greatly expand our 

understanding of the mechanisms of attenuating ageing and pave the way to anti-ageing 

interventions that recapitulate the full benefits of DR.  
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2.4 Supplementary figures 

 

Supplementary Figure 2.1: Heatmaps of Log2 fold change abundances of ASVs, comparing DR vs 

AL, DR vs AL_DR16M, and DR vs AL_DR20M. A) Subset of DR-specific bacteria. B) Subset of 

bacteria associated with DR-mediated longevity. Adjusted p-values of differential abundances in 

Supplementary File 1. 
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Supplementary Figure 2.2: Adjusted p-values and relative abundance for A) DR-specific bacteria 

species and B) DR-mediated longevity associated bacteria species. Adjusted p-values for differential 

abundance between all comparisons in Supplementary file 1 
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Supplementary Figure 2.3: A) Tables of number of faecal metabolites significantly affected by 

ageing trends. B) Heatmap of abundance of faecal metabolomes of long-lived and centre-lived AL 

mice through age. C) Heatmap of abundance of faecal metabolomes of long-lived and centre-lived 
DR mice through age. 
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Supplementary Figure 2.4: A) PRCs of polar faecal metabolites of long-lived and centre-lived mice 

compared to AL and DR. B) PRCs of non-polar faecal metabolites of long-lived and centre-lived mice 

compared to AL and DR. C) PRCs of microbiomes of long-lived and centre-lived mice compared to 

AL and DR. Minimum of 3 reference mice for PRC calculations. Adjusted p-values for per-time point 

Monte Carlo permutations between diets of PRCs in Supplementary File 1. 

 

 

Supplementary Figure 2.5: Log2FC between DR and AL abundances of A) 7 annotated faecal polar 

metabolites classified as “memory”; DR specific metabolites. B) 9 annotated faecal polar metabolites 

adapting to DR in AL_DR16M but not in AL_DR20M. 
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3. The effect of dietary restriction on the B-cell receptor 

repertoire in mice 
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3.1 Introduction 

Ageing is characterised by a decline in organismal function leading to increased vulnerability 

to death and development of pathological conditions. These include a profound functional 

dysregulation of the adaptive immune system (López-Otín et al. 2013; R. A. Miller 1996; 

Walford 1982), which responds to pathogens by mounting a precise and long-lasting immune 

memory. In humans and mice, there is a displacement of naïve B cells by antigen-experienced 

(memory) B cells, resulting in loss of B cell receptor (BCR) repertoire diversity and antigen-

specificity (Oh, Lee, and Shin 2019; Dunn-Walters 2016; Weiskopf, Weinberger, and Grubeck-

Loebenstein 2009; Dunn-Walters, Banerjee, and Mehr 2003; C. Wang et al. 2014; Hoehn et 

al. 2019). Age-related immune decline is linked to impaired protection against pathogens and 

decreased vaccination response, ultimately placing infectious diseases among the leading 

causes of morbidity and mortality in aged individuals (Wick et al. 2000; Nikolich-Zugich 2005; 

Ademokun, Wu, and Dunn-Walters 2010; Weiskopf, Weinberger, and Grubeck-Loebenstein 

2009).  

Morbidity, mortality and impaired functionality in old age can be ameliorated by genetic, 

environmental and pharmacological interventions (Green et al. 2021; Tyshkovskiy et al. 2019; 

Fontana, Partridge, and Longo 2010). Dietary Restriction (DR), reduced nutrient intake without 

malnutrition, is one of the most effective interventions to extend life span and health span in 

various animal species, including yeast, worms, fruit flies, rodents and non-human primates 

(Colman et al. 2014; Fontana and Partridge 2015). In humans, short-term DR lowers risk 

factors for metabolic syndrome and cardiovascular disease (Kraus et al. 2019; Barquissau et 
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al. 2018), and other age-related pathologies (Fontana and Partridge 2015; Omodei and 

Fontana 2011; Ikeno et al. 2006). Furthermore, DR can attenuate or reverse some of the age-

associated changes in the adaptive immune system in rodents, providing greater resistance 

to pathogens (R. A. Miller 1996; Messaoudi et al. 2006; Shushimita et al. 2014). DR delays T 

cell senescence in non-human primates by preserving the naïve T cell pool and T cell receptor 

repertoire diversity (Messaoudi et al. 2006) and preserves the population of naïve T cells and 

immature NK cells in aged mice (White et al. 2016). Further, DR increases B cell maturation 

through a decline in the total B cell population and an increased recirculation of mature B cells 

in male mice. However, the effect of DR on the BCR repertoire diversity is currently 

unexplored. 

BCRs consist of two heavy chains (IgH), and two light chains (IgL). The heavy chains, which 

are sufficient to identify B cell clonal relationships (J. Q. Zhou and Kleinstein 2019), have a 

variable domain encompassed by a combination of IghV, IghD, and IghJ genes, and a 

constant domain (IghC). After antigen identification by the variable domain, IghC regions 

undergo class-switch recombination, where IghC isotypes μ (IgM) and δ (IgD) are substituted 

by either γ, ε, or α heavy chains, giving rise to IgG, IgE and IgA isotypes with different effector 

functions, including opsonization and neutralisation of antigens (Schroeder and Cavacini 

2010; Z. Xu et al. 2012). BCR sequencing can inform on the characteristics of the 

hypervariable loci responsible for antigen-identification and shed light on the different effector 

functions, by analysing the constant domains coding for immunoglobulin isotypes (Stavnezer, 

Guikema, and Schrader 2008; Turchaninova et al. 2016; Cook 2000). Indeed, poor health and 

frailty in mice and humans is associated with the age-dependent decline in BCR diversity, 

increased clonal expansions, and impaired negative selection of autoreactive B cells and 

positive selection of high affinity B cells (V. Martin et al. 2015; Gibson et al. 2009; Booth and 

Toapanta 2021). 

Initiation of DR at older ages can improve subsequent health, avoiding the need for long-term 

DR feeding, potentially of translational relevance to humans (Flatt and Partridge 2018; 

Redman et al. 2018; Tang et al. 2021). It has been previously shown that DR onset at 16 

months of age was sufficient to recapitulate the chronic DR lifespan extension in mice (Drews 

et al. 2021). However, initiating DR at 20-month-old mice did not extend lifespan (Drews et al. 

2021). Several pathological parameters were improved in both groups, and it remains unclear 

what factors might explain the refractoriness of lifespan to DR initiated at 20 months. 

Here, we investigated whether DR delays age-related changes in the BCR that have been 

reported in mice, and whether it can do so when initiated later in life. We generated a BCR 

sequence dataset from ad libitum fed (AL) and DR mice, and from mice switched from AL to 



85 
 

DR diet at 16 and 20 months of age. To assess systemic immune responses we analysed the 

spleen, as the major secondary lymphoid organ. To evaluate the relationship between the host 

and the microbiome directly at mucosal organs, we analysed the ileum. We found that DR 

delayed the age-associated decline of BCR repertoire diversity in the spleen. Further, the BCR 

profile of DR mice inversely correlated with morbidity, suggesting that BCR repertoire is 

associated with increased systemic health. The ileum BCR repertoire underwent only limited 

changes with age and DR treatment, mainly displaying a higher capacity for antigen binding 

under chronic DR. Mice subjected to DR starting at 16 months had spleen BCR diversity and 

clonal expansion rates indistinguishable from those with chronic DR, while mice switched at 

20 months of age showed BCR diversity and clonal expansion levels that remained in between 

the chronic AL and DR, suggesting that these immunological traits contribute to the response 

of lifespan to DR.  
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3.2 Results 

To investigate how ageing and DR affect BCR repertoire, we sequenced the variable (IghV, 

IghD, IghJ) region of the BCR (Fig 3.1A) of wild type, female C3B6F1 hybrid mice fed AL or 

DR (Fig 3.1B). DR feeding was implemented by supplying 40% of the ad libitum (AL) food 

intake (Drews et al. 2021). To address whether any protection of the BCR repertoire can be 

achieved by DR implemented later in life, we included mice where DR was initiated at 16 

(AL_DR16M) or 20 months of age (AL_DR20M) (Fig 3.1B). Total RNA was isolated from the 

spleen and ileum to capture the systemic or gut-specific profiles, respectively, of five mice per 

treatment at 5, 20 and 24 months of age (Fig 3.1B). Since sequencing protocols do not 

preserve Heavy:Light chain pairing, we limited our analysis to BCR-heavy chains, as they are 

sufficient to identify clonal relationships with high confidence (J. Q. Zhou and Kleinstein 2019). 

BCR clones from the same naïve B cell ancestor were defined by sequences sharing the same 

IghV and IghJ gene, and having the same CDR3 length (Khan et al. 2016; Greiff et al. 2017; 

Koohy et al. 2018). BCR isotypes were identified by a template-switch adapter in the 5’ of the 

IghV variable domain, and isotype-specific primers binding to the IghC effector domain (Fig 

3.1A) (Turchaninova et al. 2016). 

 

Figure 3.1: A) Schematic of IgH heavy chain gene arrangement of B-cell receptors and location of 

BCR isotype-specific primers. Asterisks indicate the region modified by somatic hypermutations. B) 
Scheme for DR switch and measurement of lifespans, adapted from (Drews et al. 2021). Black circles 

indicate time points when spleen and ileum samples were taken. n= 5 mice per treatment. 
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3.2.1 DR slows the age-associated decline of BCR repertoire diversity in the 

spleen 

We first analysed data from the spleen. Abundances of BCR isotypes were quantified, and the 

majority of BCRs corresponded to IgM (~61%), a few to IgG (~23%), fewer to IgA (~13%), and 

yet fewer to IgD and IgE (~3%) (Fig 3.2A) (Le Gallou et al. 2018). No age-dependent 

differences in relative abundances of IgM, IgA and IgE were detected in AL mice, but there 

was a significant decline in IgD abundance with age (Fig 3.2A), in line with previous studies in 

elderly humans (Colonna-Romano et al. 2006). Although the function of IgD is largely 

unknown, it may be involved in immune self-tolerance (Gutzeit, Chen, and Cerutti 2018; 

Nguyen 2022), and its decline with age may be associated with increased auto-reactivity. IgD 

abundance was higher in DR than in AL mice at 5 months and also declined with age, although 

it remained higher than in AL mice and declined at a slower rate (Fig 3.2A). Therefore, DR not 

only ameliorated the age-related decline in IgD abundance, but also maintained higher levels 

of IgD throughout life compared to AL animals, indicating a tighter regulation of immune 

tolerance under DR. 

High BCR within-individual diversity is associated with improved antigen recognition capacity 

and vaccination response (Dunn-Walters 2016; Ademokun et al. 2011; de Bourcy et al. 2017). 

Thus, we hypothesised that DR mice would have higher BCR diversity. To measure this, we 

calculated Hill diversity spectra (Miho et al. 2018; Hill 1973). Clonal richness, i.e. the total 

number of different BCR clones, was stable in AL mice up to the age of 20 months, and then 

rapidly declined by 24 months of age (Fig 3.2B). Unexpectedly, DR mice underwent a 

progressive decline in clonal richness with age (Fig 3.2B), displaying significantly lower 

richness of B cell clones than AL mice at 20 months of age (Fig 3.2B). However, analysis of 

the clonal richness of each isotype identified a significantly higher richness of IgE in DR mice 

at 24 months of age (Sup Fig 3.1A). Therefore, contrary to our hypothesis, DR mice were 

generally characterised by lower within-mouse richness BCR diversity. 

The diversity of the BCR repertoire is not only defined by the number (richness) of clones, but 

also the relative frequency of the subdivisions of the clonal population. We therefore 

determined whether DR mice had higher antigen-recognition capacity at old age as reflected 

by evenness in the size of each B cell clone. To assess both clonal richness and population 

structure, we evaluated Shannon and Simpson diversity metrics. Shannon diversity is a 

measure of both clonal richness and population structure, mostly affected by rare clones, while 

Simpson diversity measures the distribution of the clonal population structure, mostly affected 

by large clones. AL mice displayed an age-related decline in both Shannon and Simpson 
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indices (Fig 3.2C, 3.2D), mainly due to a decline in IgM, IgG and IgE isotypes (Sup Fig 3.1B-

C). The rare B cell clones of AL mice thus became less abundant with age, and the clonal 

population structure less uniform. DR mice also experienced an age-dependent decline in 

Shannon diversity, but to a lesser extent than AL mice (Fig 3.2C). Thus, at 24 months of age, 

DR mice had higher Shannon diversity than AL mice (Fig 3.2C), suggesting that DR slows the 

age-related change in the clonal population structure. In contrast to AL mice, Simpson diversity 

in DR mice was maintained until 20 months of age, with a rapid decline only at 24 months (Fig 

3.2D). Therefore, the strongest changes in clonal population structure of DR mice occurred 

between 20 and 24 months. Similarly, the most striking differences in diversity between AL 

and DR mice also appeared between 20 and 24 months of age, with DR retaining a more 

uniform clonal population structure, as indicated by the Shannon diversity. DR mice exhibited 

a significantly reduced Shannon and Simpson diversity with age in IgM (Sup Fig 3.1B-C), and 

a less profound loss of IgG Shannon and Simpson diversity with age (Sup Fig 3.1B-C). The 

ageing BCR repertoire thus showed loss of rare clones, and DR attenuated this change by 

maintaining a more uniform distribution of large clones. 



89 
 

 



90 
 

Figure 3.2: DR slows the age-associated decline of BCR repertoire in the spleen. A) Relative 

abundance of antibody isotypes in the spleen. Significant differences through age (linear regression): 

IgD (AL p-value = 0.03; DR p-value = 0.002). Significant differences through age and diet (2-way 

ANOVA): IgD (DR vs AL p-value = 0.03). Significant differences at 5 months of age (Mann-Whitney 
U test): IgD (DR vs AL p-value = 0.036). Significant differences at 24 months of age (Mann-Whitney 

U test): IgD (AL_DR16M vs AL p-value = 0.036). B) Richness within-individual diversity. Significant 

differences through age (linear regression): p-value AL = 0.002; p-value DR = 0.000001. Significant 

differences at 20 months of age (Mann-Whithey U test): DR vs AL p-value = 0.001. Significant 

differences at 24 months of age (Mann-Whitney U test): AL_DR16M vs AL p-value = 0.0003. C) 
Shannon within-individual diversity. Significant differences through age (linear regression): AL p-

value = 0.000001; DR p-value = 0.0002. Significant differences through age and diet (2-way ANOVA): 

DR vs AL p-value = 0.008. Significant differences at 24 months of age (Mann-Whitney U test): DR vs 
AL p-value = 0.004; AL_DR16M vs AL p-value = 0.008. D) Simpson within-individual diversity. 

Significant differences through age (linear regression): AL p-value = 0.0000003; DR p-value = 0.03. 

Significant differences between 20 and 24 months of age (Mann-Whitney U test): DR p-value = 0.036. 

E) Clonal expansion. Significant differences through age (linear regression): AL p-value = 0.00002; 

DR p-value = 0.02. Significant differences through age and diet (2-way ANOVA): DR vs AL p-value 

= 0.01. Significant differences at 24 months of age (Mann-Whitney U test): AL_DR16M vs AL p-value 

= 0.002. Significant differences between 20 and 24 months of age (Mann-Whitney U test): DR p-

value = 0.036. F) Inter-individual dissimilarity. Significant differences through age (linear regression): 
AL p-value = 1.0x10-17; DR p-value = 1.0x10-7. Significant differences through age and diet (2-way 

ANOVA): DR vs AL p-value = 0.00007. Significant differences at 24 months of age (Mann-Whitney 

U test): DR vs AL p-value = 0.002, AL vs AL_DR16M p-value = 2.0x10-4, DR vs AL_DR20M p-value 

= 0.033, and AL_DR16M vs AL_DR20M p-value = 0.005. G) Frequency of synonymous SHM. H) 
Frequency of non-synonymous SHM. I) Gaussian-fitted CDR3 length distribution per mouse in study. 

Significant differences in proportion of different CDR3 length distributions at 24 months of age 

(Fisher’s test): DR vs AL p-value = 0.048; AL_DR16M vs AL p-value = 0.011. B-H) Lines correspond 
to mean, and shaded area to 95% confidence intervals. J) Relative amount of clones according to 

their class-switch status. Significant differences through age (linear regression): Post-antigenic (AL 

p-value = 0.034). Non-significant p-values in Supplementary File 2. 

  

3.2.2 DR attenuates clonal expansions with age in the spleen 

To determine whether the age-dependent decrease in within-individual antibody diversity was 

due to a B cell population skewed towards clonally expanded cells, we calculated clonal 

expansion as the percentage of the BCR repertoire taken up by the 20 most common clones 

(P20) (Fig 3.2E). In line with previous work (Gibson et al. 2009; Oh, Lee, and Shin 2019), 

clonal expansions increased progressively with age in AL mice (Fig 3.2E). This expansion was 



91 
 

most evident in the primary and long-term antigen response isotypes IgM and IgG (Sup Fig 

3.1D), suggesting a possible attenuation of memory immune response (Schroeder and 

Cavacini 2010). Clonal expansions also increased with age in DR mice (Fig 3.2E), but to a 

significantly lesser extent than in AL animals (Fig 3.2E). At 24 months of age, only ~60% of 

the total clonal population was occupied by expanded clones in DR mice, while in AL mice it 

reached ~80% (Fig 3.2E). Further, DR mice maintained a stable rate of clonal expansions in 

IgM and IgG, only increasing at 24 months of age in IgM (Sup Fig 3.1D). The age-dependent 

decrease in within-individual diversity was thus associated with a B cell population skewed 

towards clonally expanded B cells, an effect that was attenuated by DR. 

Differences in clonal composition of B cells between individuals are accentuated by the 

proliferation of different clones in different individuals (Gibson et al. 2009; Weksler and Szabo 

2000; Oh, Lee, and Shin 2019; de Bourcy et al. 2017). We therefore hypothesised that there 

would be higher inter-individual dissimilarity at old than at young age. To quantify dissimilarity, 

we used the repertoire dissimilarity index (RDI) (Bolen et al. 2017), which calculates 

differences in IghV, IghD and IghJ gene usage and performs pairwise comparisons between 

BCR repertoires. Consistent with previous reports in mice and humans (de Bourcy et al. 2017; 

Gibson et al. 2009; Oh, Lee, and Shin 2019), there was a progressive increase in RDI with 

age in AL mice (Fig 3.2F). A lesser ageing-associated increase in inter-individual dissimilarity 

also occurred in DR mice (Fig 3.2F). Isotype-specific analysis revealed that RDI increased 

with age in all isotypes in AL mice (Sup Fig 3.1E) and in DR mice except for IgA (Fig 3.1E). 

However, the slope of increasing RDI was significantly reduced under DR in all isotypes except 

IgE (Sup Fig 3.1E). 

IghV and IghJ gene usage are largely implicated in the ability of the BCR to bind to antigens, 

thereby affecting susceptibility to various diseases (Raposo et al. 2014). To determine whether 

the enhanced antigen recognition capacity of DR mice is further facilitated by selection of 

different IghV or IghJ genes than AL, we evaluated IghV and IghJ usage. In concordance with 

previous studies (Muggen et al. 2019; Wu et al. 2010; V. Martin et al. 2015), the most 

commonly used IghV gene in AL mice was IghV1 (Sup Fig 3.2A). In humans, use of the IghV1 

gene family is reduced with age (Ghraichy et al. 2021), and AL mice also showed an age-

related decline in the usage of IghV1, IghV3, IghV4, IghV7, and IghV11 (Sup Fig 3.2A) 

(Ghraichy et al. 2021). IghV1 was the most commonly used IghV gene in DR mice, which 

showed a decline in usage of IghV4, IghV6, IghV7 and IghV11 with age (Sup Fig 3.2A). 

However, DR treatment led to a significant increase in the usage of IghV3, and IghV15 

compared to AL (Sup Fig 3.2A). There were no differences between AL and DR mice in IghJ 

gene use (Sup Fig 3.2B). DR thus led to changes in IghV gene use that may have contributed 

to the age-related differences in clonal diversity between AL and DR spleen B cells. 
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3.2.3 DR maintains the somatic hypermutation rate and CDR3 length distribution 

at old age in the spleen 

Clonal diversity is important for efficient antigen recognition (Dunn-Walters 2015), we thus 

studied whether antigen recognition capacity is affected by ageing and DR. We evaluated the 

somatic hypermutation (SHM) rate, which is the mechanism for affinity maturation of the BCR 

repertoire in response to antigen exposure, leading to clonal diversity (Dunn-Walters 2016; 

Schroeder and Cavacini 2010). The rate of synonymous substitutions indicates neutral 

evolution, providing a baseline for the nucleotide alteration capacity of the BCR sequence. 

Non-synonymous substitutions, on the other hand, accumulate during affinity maturation and 

become fixed under positive selection (Nielsen and Yang 1998). We quantified the frequency 

of synonymous and non-synonymous mutations in the BCR repertoire. Consistent with 

previous work (Dunn-Walters 2015), we did not detect any differences in synonymous or non-

synonymous SHM rate with age in AL mice (Fig 3.2G-H). Similarly, as previously reported 

(Hoehn et al. 2019), we did not find age-associated differences for the relative rate of amino 

acid changing substitutions versus synonymous substitutions or dN/dS ratio (Nielsen and 

Yang 1998) (Sup Fig 3.2C). We found large dN/dS ratio values (>1), indicating strong positive 

selection, across all time points in the splenic BCR repertoire of all groups (Sup Fig 3.2C). In 

contrast, after examining synonymous and non-synonymous SHM rates for each individual 

isotype, we uncovered an age-associated reduction in IgM synonymous SHM frequency in AL 

mice (Sup Fig 3.1F), an age-associated increase in IgG synonymous SHM frequency in both 

AL and DR mice (Sup Fig 3.1F), and an age-associated increase in IgA synonymous and non-

synonymous SHMs in DR mice (Sup Fig 3.1F-G). Only the synonymous and non-synonymous 

SHM rate in IgA was significantly different between AL and DR through age (Sup Fig 3.1F-G), 

indicating that DR increases the affinity maturation of the IgA repertoire. Taken together, our 

results point towards a more stable and efficient SHM mechanism under DR treatment, 

indicating maintained antigen-recognition capacity; where IgA isotype associated with 

secondary B cell response is predominantly increased. 

The length of the hypervariable CDR3 portion of the IgH locus offers valuable insights on 

antigen binding, selection and preservation of intact immune responses (Schroeder and 

Cavacini 2010). Increased CDR3 length has been causally associated with autoimmune 

disorders and old age (Mikocziova, Greiff, and Sollid 2021; C. Wang et al. 2014). We therefore 

determined whether CDR3 length differs with age and under DR. We found no changes in 

CDR3 length or standard deviation with age in AL or DR mice (Sup Fig 3.2D). By comparing 

gaussian distributions, AL mice had an increased proportion of skewed distributions at 24 

months of age when compared to DR (Fig 3.2I) and there was higher biological variance 
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between AL mice, than between DR mice. Similarly, there was a higher proportion of skewed 

CDR3 regions in 24-month-old AL mice, for both IgG and IgA isotypes, as opposed to the 

normal distributions of DR mice (Sup Fig 3.1H). Thus, our results suggest that DR mice are 

less prone to a compromised immune function in old age compared to AL. 

Class-switch recombination is the mechanism of diversification by which variable regions of 

heavy chains are juxtaposed to different constant chains, in order to generate different 

isotypes and confer different effector functions (Schroeder and Cavacini 2010; Booth and 

Toapanta 2021). To evaluate the effect of DR on class-switch recombination, clones with only 

IgM+IgD+SHM- segments were classified as naïve, IgM+IgD+SHM+ as antigen-stimulated, 

and those with IgM-IgD- where all isotypes had been class-switched, as post-antigenic(C. 

Wang et al. 2014). Very few post-antigenic BCR clones were found throughout age (Fig 3.2J), 

which is not surprising given that the spleen is a secondary lymphoid organ, and the mice are 

not expected to have substantial encounters with potentially challenging/pathogenic antigens 

based on their housing conditions. The majority of the B cell population consisted of naïve and 

antigen-stimulated BCR clones (Fig 3.2J). There was a significant loss in the post-antigenic 

BCR pool in AL mice with age (Fig 3.2J). Conversely, DR mice displayed no differences in 

naïve, antigen-exposed or post-antigenic clones with age or compared to AL (Fig 3.2J). Thus, 

these results suggest that ageing might impair the class-switch recombination capacity, while 

DR did not influence this process. 

3.2.4 Midlife onset of DR has more positive effects on the BCR repertoire of the 

spleen than late-life onset DR 

DR onset at 16 months of age (AL_DR16M) leads to a lifespan extension similar to the one 

observed under a chronic DR diet (Drews et al. 2021) (Fig 3.1B). In contrast, initiating DR at 

20 months of age (AL_DR20M) does not lead to lifespan extension, indicating that the critical 

period of responsiveness to DR treatment lies between 16 and 20 months of age in mice 

(Drews et al. 2021) (Fig 3.1B). To address whether switching to DR later in life is sufficient to 

“rejuvenate” the BCR repertoire and recapitulate the immunological characteristics under 

chronic DR, the midlife (AL_DR16M) and late-onset (AL_DR20M) DR groups were evaluated 

(Fig 3.1B). To explore whether there are potential functionality alterations between BCR 

isotypes in AL_DR16M and AL_DR20M groups in comparison to chronic AL and DR groups, 

we determined the relative abundances of antibody isotypes. IgD abundance in AL_DR16M 

was significantly higher compared to AL at 24 months of age, recapitulating the DR-specific 

levels of IgD abundance (Fig 3.2A). In contrast, AL_DR20M mice remained unresponsive to 

the introduction of the new diet (Fig 3.2A). Therefore, switching to DR as late as 16 months 
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recapitulated the DR-specific IgD abundance, indicating improved regulation of immune self-

tolerance (Gutzeit, Chen, and Cerutti 2018; Nguyen 2022). 

Next, we investigated whether DR onset at 16 or 20 months of age recapitulated the increased 

BCR within-individual diversity of DR mice. Computation of Hill diversity spectra identified 

significantly higher richness and Shannon diversity in AL_DR16M compared to AL in 24-

month-old mice (Fig 3.2B-C). The AL_DR16M group had comparable diversity levels to DR, 

exhibiting a less dramatic loss in Shannon diversity in old age compared to AL (Fig 3.2C). 

Conversely, the AL_DR20M Shannon diversity remained in-between AL and DR (Fig 3.2C). 

Surprisingly, we found a profound increase of IgM and IgE richness in AL_DR16M when 

compared to DR at 20 months of age (Sup Fig 3.1A). IgD Shannon diversity was also 

significantly higher in AL_DR16M compared to DR mice at 20 months (Sup Fig 3.1B). In 

addition, IgM and IgE Shannon and Simpson diversity and IgA Simpson diversity were 

elevated in AL_DR16M when compared to AL at 24 months of age, indicating an acute primary 

response (Sup Fig 3.1B-C). Further, AL_DR20M mice displayed a spike in IgE Shannon 

diversity compared to AL at 24 months (Sup Fig 3.1B). In contrast, IgG Shannon and Simpson 

diversity in AL_DR20M were consistent with AL, but significantly lower than DR (Sup Fig 3.1B-

C). Therefore, DR onset at 16 and 20 months of age mitigated the age-associated decline in 

BCR within-individual diversity. Although starting DR at 20 months of age did not fully 

recapitulate the “younger-like” DR diversity, AL_DR16M mice recapitulated the DR diversity 

via an acute spike in diversity of primary (IgM) and hypersensibility (IgE) isotypes. 

The relative frequency of expanded clones within the antibody repertoire increases with age 

(Oh, Lee, and Shin 2019; Gibson et al. 2009) and we found that DR reduced the age-

dependent clonal expansion rate compared to AL mice (Fig 3.2E). Therefore, we examined 

whether DR onset at 16 or 20 months of age can reduce the BCR repertoire clonal expansions 

in old age. There was lower clonal expansion in AL_DR16M compared to AL at 24 months of 

age (Fig 3.2E). However, AL_DR20M mice remained in-between the AL and DR levels (Fig 

3.2E). Thus, DR onset at 16 months of age can reduce the portion of the BCR population 

occupied by expanded clones. 

RDI increased with age at a slower rate in DR compared to AL (Fig 3.2F). Thus, we evaluated 

whether AL_DR16M mice or AL_DR20M have lower RDI compared to AL. There was a clear 

separation in two groups: AL and AL_DR20M mice had significantly higher inter-individual 

dissimilarity than DR and AL_DR16M (Fig 3.2F). This recapitulation of the lower repertoire 

divergence in DR by AL_DR16M, was already present 4 months after the start of DR, at 

20months (Fig 3.2F). Moreover, AL_DR16M mice experienced a reduction in IgE RDI when 

compared to AL and DR at 20 months of age (Sup Fig 3.1E), which stabilised to levels similar 
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to AL and DR 4 months later. At 24 months, RDI of IgA and IgM was lower in AL_DR16M than 

in AL and DR (Sup Fig 3.1E). Similarly, 24-month-old AL_DR20M mice had reduced IgA and 

IgM RDI compared to AL (Sup Fig 3.1E). Thus, the effects of DR onset on the repertoire RDI 

highlighted an initial loss in inter-individual dissimilarity, mainly affecting AL_DR16M mice, 

consistent with the spike in diversity of IgE, IgA and IgM. 

DR affected the different diversification and affinity maturation steps of the BCR development 

(Fig 3.2E-F, 3.2I, Sup Fig 3.2A). Thus, we evaluated repertoire characteristics of AL_DR16M 

and AL_DR20M mice. IghV and IghJ gene usage in AL_DR16M mice was comparable to DR 

(Sup Fig 3.2A, 3.2B). In line with the findings in DR mice, there were no changes in SHM or 

class-switch recombination in AL_DR16M or AL_DR20M mice (Fig 3.2G, 3.2H, 3.2J). At 24 

months of age, AL_DR16M but not AL_DR20M mice underwent a DR-like reduction in the 

proportion of different CDR3-length-distributions, which was significantly different from AL (Fig 

3.2I). However, the age-dependent skewing of IgA CDR3-length-distribution observed in AL 

mice was reduced in AL_DR20M mice (Sup Fig 3.1H). On the whole, starting DR as late as 

16 months of age reverted the general shift in the CDR3-length-distribution observed during 

ageing. 

In summary, similar to the lifespan reports (Drews et al. 2021) (Fig 3.1B), DR initiation as late 

as 16 months of age recapitulated the main effects of chronic DR on the BCR dynamics: within-

individual diversity, inter-individual dissimilarity, and clonal expansion rate. More specifically, 

AL_DR16M displayed a profound acute response to DR initiation, generating a spike in IgM 

and IgE richness, and IgD Shannon diversity at 20-months. While AL_DR16M recapitulated 

DR-specific levels by 24-months of age, the AL_DR20M group displayed only a partial 

response, increasing IgE Shannon diversity and reducing the age-dependent skewing of the 

IgA CDR3-length-distribution. 

3.2.5 Effects of DR and ageing on the intestinal BCR repertoire 

DR modulates the composition of the gut microbiome in mice and humans (von 

Schwartzenberg et al. 2021; C. Zhang et al. 2013). As mucosal B-cells in the gut are in direct 

contact with the gut microbiome (Belkaid and Hand 2014; Lindner et al. 2015, 2012; 

Macpherson et al. 2018), we asked whether DR-induced changes in the microbiome also 

affect the gut mucosal BCR repertoire. Within the small intestine, the highest accumulation of 

B-cells is found in the Peyer’s patches in the ileum (Donaldson, Shih, and Mabbott 2021). 

Thus, we measured BCR repertoire dynamics in the ileum dependent on age and DR. 

Consistent with previous studies (Macpherson et al. 2018; Lindner et al. 2012, 2015), IgA was 

the predominant isotype in the ileum, accounting for up to 98% of all immunoglobulin isotypes 
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in young animals (Fig 3.3A). IgM, IgG, IgD, and IgE only accounted for 0.39, 0.33, 0.16 and 

0.17% in young mice, respectively (Fig 3.3A). In 20-month-old AL mice, the relative 

frequencies of IgM and IgG were significantly increased compared to 5-month-old mice, while 

there was a reduction in IgA (Fig 3.3A). Therefore, in line with previous reports (Macpherson 

et al. 2018), we observed that in old age, there was an increase in IgM and IgG isotypes at 

the expense of IgA, which could be important for maintaining homeostasis with the intestinal 

microbiome. 

Next, we investigated whether ageing or DR affected the BCR within-individual diversity in the 

ileum. Hill diversity spectra analysis of the BCR repertoire revealed an increased richness in 

DR mice compared to AL at 20 months of age, which was significantly lower than AL in 24-

month-old mice (Fig 3.3B). In addition, there was significantly higher IgG richness in DR 

compared to AL in 24-month-old mice (Sup Fig 3.3A). However, no changes in Shannon or 

Simpson diversity were detected (Fig 3.3C-D, Sup Fig 3.3B-C). Similarly, the degree of clonal 

expansion was not significantly changed by age or DR diet (Fig 3.3E, Sup Fig 3.3D). Thus, 

although we did not observe strong ageing-associated effects on BCR within-individual 

diversity in the ileum (Fig 3.3B-D), DR mildly increased the diversity of IgG small rare clones 

(Fig 3.3B). Even in an IgA-dominated organ, IgG has been indirectly implicated in mucosal 

inflammation and commensal regulation (Castro-Dopico and Clatworthy 2019). Therefore, 

increased IgG diversity could have implications for enhanced protection against 

enteropathogens and intestinal inflammation under DR.  

To study the effect of age and evaluate whether DR generates a less dissimilar BCR repertoire 

between individuals, we examined the changes in the ileum RDI. RDI was stable with age in 

both AL and DR mice (Fig 3.3F). However, there was a significant age-associated decline in 

the IgM RDI of AL mice, that was mitigated by DR (Sup Fig 3.3E). In addition, RDI of IgD and 

IgG increased with age in AL mice but decreased in DR mice (Sup Fig 3.3E). Therefore, DR 

generates a more diverse and less dissimilar ileal BCR repertoire between individuals, with 

higher chance to bind to known and novel antigens. 

Previous studies have shown an age-associated decline in B cell selection processes in the 

gut, paired with declining SHM rate (Dunn-Walters 2015; McKean et al. 2008). We evaluated 

whether DR has an effect on class-switch recombination and SHM. As previously reported in 

humans (Banerjee et al. 2002), the young gut BCR consisted primarily of post-antigenic clones 

(~73%), some antigen-stimulated clones (~25%) and very few naïve ones (~2%) (Fig 3.3J). 

There were no differences in the proportions of BCR clones in each class-switch 

recombination stage with age or under DR (Fig 3.3J). Consistent with previous work (Lindner 

et al. 2015), the ratio between dN/dS was positive (>1) at all time points indicating positive 
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selection through age (Sup Fig 3.4C). In contrast, DR mice had significantly higher non-

synonymous SHM compared to AL at 24 months of age (Fig 3.3H). Further, we found an age-

associated decline in synonymous and non-synonymous SHM in IgM (Sup Fig 3.3F-G). In 

addition, IgA non-synonymous SHM declined with age in AL (Sup Fig 3.3G), and synonymous 

IgA SHM increased with age in DR mice (Sup Fig 3.3F). Finally, CDR3 length and variability 

were also not affected by age or DR (Fig 3.3I, Sup Fig 3.3H). Taken together, DR diversifies 

the ileal BCR repertoire and increases its affinity maturation by means of SHM of IgM and IgA 

isotypes. 

In summary, age and DR have only minor effects on BCR composition in the ileum. However, 

SHM rates declined with age in AL mice, and this decline was mitigated by DR. As a peripheral 

organ, the ileum has more direct exposure to microbial antigens, which induce antibody 

maturation via SHM and class-switch recombination (Zhao and Elson 2018). Our data imply 

that DR improves antibody maturation in the ileum through an increased SHM at old age. 
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Figure 3.3: DR and ageing have only small effects on the intestinal BCR repertoire A) Relative 

abundance of antibody isotypes in the ileum. Significant differences through age (linear regression): 

IgG (AL p-value = 0.03). Significant differences between 5 and 20 months of age (Mann-Whitney U 

test): IgM (AL p-value = 0.036), IgG (AL p-value = 0.036), IgA (AL p-value = 0.024). B) Richness 
within-individual diversity. Significant differences at 20 months of age (Mann-Whitney U test): DR vs 

AL p-value = 0.002; AL_DR16M vs DR p-value = 7.3x10-5. Significant differences at 24 months of 

age (Mann-Whitney U test): DR vs AL p-value = 0.01; AL_DR16M vs DR p-value = 0.008. C) Shannon 

within-individual diversity. D) Simpson within-individual diversity. E) Clonal expansion. F) Inter-

individual dissimilarity. Significant differences through age and diet (2-way ANOVA): DR vs AL p-

value = 0.01. Significant differences at 20 months of age (Mann-Whitney U test): AL_DR16M vs AL 

p-value = 0.04; AL_DR16M vs DR p-value = 0.009. G) Frequency of synonymous SHM. H) Frequency 

of non-synonymous SHM. Significant differences through age and diet (2-way ANOVA): DR vs AL p-
value = 0.04. Significant differences at 24 months of age (Mann-Whitney U test): DR vs AL p-value 

= 0.043; AL_DR16M vs DR p-value = 0.043; AL_DR20M vs DR p-value = 0.043. I) Gaussian-fitted 

CDR3 length distribution per mouse in study. B-H) Lines correspond to mean, and shaded area to 

95% confidence intervals. J) Relative amount of clones according to their class-switch status. Non-

significant p-values in Supplementary File 2. 

  

3.2.6 Late-onset DR has no effect on the intestinal BCR repertoire 

To address whether the ileum BCR repertoire in the AL_DR16M and AL_DR20M groups 

recapitulates the slightly improved BCR diversification under chronic DR, we first evaluated 

the relative abundances of isotypes. No differences in isotype abundances were detected in 

AL_DR16M or AL_DR20M (Fig 3.3A). By calculating Hill diversity spectra, we found a 

significantly lower richness in AL_DR16M and AL compared to DR in 20-month-old mice (Fig 

3.3B). However, at 24 months of age, AL_DR16M and AL mice exhibited a significantly higher 

richness than DR (Fig 3.3B), suggesting that the presence of rare clones remained unaffected 

in AL_DR16M mice. On the other hand, AL_DR20M mice represented an in-between state, 

with no distinction from either AL or DR (Fig 3.3B). Thus, we did not observe a recapitulation 

of the DR-like diversification in mice switched to DR late in life. However, we detected an acute 

response to DR initiation in AL_DR16M through an elevated total number of distinct BCR 

clones. 

We next questioned whether this acute increase in the AL_DR16M diversity translated into 

other characteristics of the ileal BCR repertoire. No changes in clonal expansion were 

observed as a response to late DR onset (Fig 3.3E). However, RDI was significantly higher in 

AL_DR16M 20-month-old mice when compared to AL (Fig 3.3F). Yet, at 24 months of age, 

AL_DR16M mice had significantly lower dissimilarity than DR mice (Fig 3.3F), indicating a 
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strong loss of inter-individual dissimilarity in AL_DR16M mice. We found an acute spike in 

inter-individual dissimilarity of AL_DR16M at 20 months of age in IgA, IgD and IgG, when 

compared to AL and DR (Sup Fig 3.3E). We further detected a significantly lower IgA, IgM and 

IgE RDI in AL_DR16M at 24 months compared to AL and DR (Sup Fig 3.3E). These changes 

in AL_DR16M suggest that the gut BCR repertoire is somewhat responsive to DR initiation at 

16 months of age. On the other hand, the IgM RDI of AL_DR20M mice was lower than AL 

(Sup Fig 3.3E), whereas IgE RDI was lower compared to DR (Sup Fig 3.3E). RDI of 

AL_DR20M was lower in IgA, and higher in IgG than both AL and DR (Sup Fig 3.3E). Thus, 

the isotype inter-individual dissimilarity as a response to the introduction of DR diet was highly 

dependent on the age of DR onset. 

To examine whether DR initiation at 16 and 20 months of age recaptured the SHM rate 

preservation under chronic DR treatment, we evaluated SHM rates in AL_DR16M and 

AL_DR20M mice. Surprisingly, non-synonymous SHM in 24-month-old mice was significantly 

lower in AL_DR16M, AL_DR20M and AL compared to DR (Fig 3.3G, 3.3H). This was 

consistent with SHM findings in IgA (Sup Fig 3.3G), indicating that late-onset of DR did not 

impact affinity maturation. Finally, CDR3-length-distribution variability of IgD at 20 months was 

higher in AL_DR16M and AL compared to DR (Sup Fig 3.3H), and significantly decreased in 

AL_DR16M when compared to both AL and DR at 24 months in IgM (Sup Fig 3.3H). 

Taken together, AL_DR16M and AL_DR20M did not recapitulate the DR-like BCR 

dissimilarity, or SHM rate in the ileum. This refractoriness of response to DR initiation was in 

line with previous studies in mice and killifish, where diet changes or antibiotics exposure had 

a minor impact on the gut BCR repertoire (Lindner et al. 2015; Bradshaw et al. 2022). 

AL_DR16M and AL_DR20M mice manifested little to no effect on the ileum BCR repertoire; 

they maintained a repertoire similar to chronic AL, even after dietary switch. 

3.2.7 The ageing microbiome responds to late-onset DR 

The gut microbiome undergoes significant changes with age (Badal et al. 2020) (Chapter 2), 

primarily reflected in a marked age-dependent decline in within-individual diversity. This 

decline is accompanied by loss of beneficial bacteria and extensive occupation by commensal 

and pathogenic bacteria (Nagpal et al. 2018; van der Lugt et al. 2018). Caloric restriction 

maintains a high abundance of bacteria considered to be beneficial for colonic health (Kok et 

al. 2018). Having observed mild differences between AL and DR in the ageing ileum BCR 

repertoire, we questioned whether the microbiome composition was as stable as the ileum 

BCR repertoire, given the direct contact between ileum and microbiome (Belkaid and Hand 

2014; Lindner et al. 2015, 2012; Macpherson et al. 2018). To address this question, we 
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performed V4-16S rRNA amplicon sequencing of caecal contents. Consistent with our findings 

in the ileum BCR repertoire (Fig 3.3B-D), we found no difference in microbial within-individual 

diversity with age or between AL and DR. In contrast, inter-individual dissimilarity in the 

microbiome, measured using the Unweighted UniFraq diversity index, was significantly higher 

in AL when compared to DR at 20 and 24 months of age (Fig 3.4). 

Given that the microbiome inter-individual dissimilarity increased with age to a larger extent in 

AL than in DR mice, we next asked whether the caecal microbiome would respond to DR 

switch at 16 and 20 months of age by converging towards a DR-like microbiome. As opposed 

to the mild response of the gut BCR repertoire in AL_DR16M and AL_DR20M (Fig 3.3), the 

gut microbiome of AL_DR16M diverged from the microbiome of AL mice already at 20 months 

of age (Fig 3.4). These differences persisted up to 24 months, where the inter-individual 

variability of AL_DR16M and AL_DR20M mice was significantly different from AL (Fig 3.4). 

Therefore, contrary to the ileum BCR repertoire, the caecal microbiome rapidly responded to 

the switch from AL to DR, even when initiated at 20 months of age. 

 

Figure 3.4: The ageing microbiome responds to late-onset DR. Bray Curtis Principal coordinates 

analysis; inter-individual dissimilarity. Significant differences at 20 months of age (Mann-Whitney U-

test) DR vs AL p-value = 0.009; AL_DR16M vs DR p-value = 0.01. Significant changes at 24 months 

of age (Mann-Whitney U-test) DR vs AL p-value = 0.01; AL_DR16M vs AL p-value = 0.009; 

AL_DR20M vs AL p-value = 0.01. 

  

3.2.8 DR-related BCR metrics are associated with healthier phenotypes 

Finally, to characterise the observed BCR repertoire dynamics patterns and understand how 

they are reflected in host health, we tested the correlation between morbidity and BCR metrics, 

in both the spleen and ileum (Fig 3.5A-B). The ‘macromorbidity index’ developed in the present 

work was adapted from (Ikeno et al. 2009; Bokov et al. 2011b; Treuting et al. 2008) to 

encompass the collected macro-pathology of these mice, previously described in detail by 

Drews et al. 2021. For each mouse, the morbidity index was calculated as the sum of non-
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neoplastic pathologies burden, and neoplasia grade. A degree of 1 was assigned to each non-

neoplastic pathological finding at dissection, while neoplasia were graded as 0 (absence of 

tumours), 1 (1 organ affected by tumours), or 2 (2 or more organs affected by tumours, 

representing metastatic cancer). Different models of morbidity index calculation were tested, 

yielding similar associations to BCR metrics in all cases (Sup Fig 3.5A-B). 

Of all the metrics obtained from the spleen BCR repertoire, clonal expansion (P20), inter-

individual dissimilarity (RDI_uniqueness) and mean CDR3 length (cdr3_mu) were positively 

associated with the macromorbidity index. Shannon and Simpson diversity metrics displayed 

a negative association (Fig 3.5A), indicating that higher within-individual diversity is associated 

with healthier mice. Further, we asked which isotypes showed strongest correlation with 

morbidity, and found that IgM and IgG underpin the strongest association between morbidity 

and BCR characteristics (Fig 3.5C). With respect to the ileal BCR repertoire metrics, only 

Simpson diversity was negatively associated with morbidity; high Simpson values were found 

in healthier mice (Fig 3.5B, Sup Fig 3.5C). 

Having found lower clonal expansion and RDI in DR mice, paired with increased Shannon and 

Simpson diversity (Fig 3.2C-F), our findings suggest that DR might delay the systemic 

functional decline of the BCR repertoire with age, and be associated younger and healthier 

BCR repertoire. Similarly, decreased clonal expansion and RDI, and increased Shannon 

diversity in AL_DR16M mice, might suggest that initiating DR as late as 16 months could 

rejuvenate the BCR repertoire and be associated with lower morbidity. 
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Figure 3.5: DR-associated BCR metrics are associated with healthier phenotypes. 
Percentage of variance explained in ‘macromorbidity index’ by A) general BCR spleen 

metrics, B) general BCR ileum metrics, C) isotype-specific BCR spleen metrics. Coloured 

bars are spearman p-value < 0.05. Red metrics are Bonferroni corrected p-value < 0.05. 
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3.3 Discussion 

Establishing and maintaining a tight and life-long regulation of immune responses is vital for 

host homeostasis. The profound impairment of immune function with ageing is well 

documented (Wick et al. 2000; Nikolich-Zugich 2005; Ademokun, Wu, and Dunn-Walters 

2010; Weiskopf, Weinberger, and Grubeck-Loebenstein 2009), and thereby strategies that 

can ameliorate the age-associated immune dysregulation may be holding a great promise to 

delay ageing. We asked whether the most powerful anti-ageing intervention known to date 

(dietary restriction, or DR) has an impact on immune homeostasis, or whether it exerts its 

function independently from the immune system. Furthermore, DR can beneficially impact host 

health- and lifespan when started as late as 16 months of age (Drews et al. 2021). To 

investigate how the B cell receptor (BCR) repertoire changes with age, under chronic DR, and 

under midlife- and late-life onset of DR diet in the mouse spleen and ileum, we performed BCR 

sequencing. In addition, we test whether the critical temporal window within which DR 

beneficially impacts host health- and lifespan is consistent with a remodelling of the BCR 

repertoire dependent on age of DR onset. To our knowledge, this is the first study to use BCR 

sequencing to explore the mouse B cell clonal population dynamics with age in response to 

anti-ageing interventions. Our dataset allowed us to not only investigate the general 

characteristics of the BCR repertoire in the spleen and ileum, but also the corresponding 

changes on BCR isotypes. Here, we show for the first time that DR mitigates the ageing of the 

BCR repertoire in both spleen and ileum. Further, we report a recapitulation of the splenic DR-

like BCR repertoire in mice where DR was started at 16 months of age, but not at 20 months. 

In the current work, we also provide associations of BCR repertoire characteristics to a novel 

macromorbidity index. We report an association of AL-like BCR repertoire characteristics with 

high morbidity, and DR-like characteristics with improved health. 

The ageing BCR repertoire in the spleen of AL-fed mice followed the classically described 

pattern in both mice and humans: decreased within-individual diversity, coupled with increased 

clonal expansion rate and inter-individual dissimilarity (Fig 3.2B-F) (de Bourcy et al. 2017; 

Gibson et al. 2009; Weksler and Szabo 2000; Nagpal et al. 2018; Booth and Toapanta 2021). 

On the other hand, although ageing in chronic DR mice was also accompanied by a decline 

in within-individual BCR variability, increased clonal expansions and inter-individual 

dissimilarity, these effects were mitigated compared to AL (Fig 3.2C, 3.2E, 3.2F). Importantly, 

low within-individual diversity, high clonal expansions and high inter-individual dissimilarity 

correlated with high macromorbidity index. Thereby, the DR-mediated mitigation of the age-

associated BCR repertoire dysregulation might, at least partly, contribute to the beneficial 

effects of DR on mouse health (Fig 3.5A). Furthermore, there is growing evidence that 



105 
 

maintenance of a high BCR diversity translates to enhanced ability to generate robust antibody 

responses to novel antigens and possibly an enhanced vaccination response at old age 

(Dunn-Walters 2015; Okawa, Nagai, and Hase 2020). In fact, loss of BCR repertoire diversity 

in older individuals has been associated with poor vaccination response against 

pneumococcus and influenza (Ademokun et al. 2011; Tas et al. 2016; de Bourcy et al. 2017). 

Thus, the observed age-associated decline in within-individual diversity and post-antigenic 

BCR clones in AL mice (Fig 3.2C, 3.1J), suggests a decrease in high-affinity class-switched 

isotypes, and might also contribute to the impaired vaccination response in old age (Oh, Lee, 

and Shin 2019). The amelioration of the ageing splenic BCR dysregulation by DR indicates 

that DR maintains a healthier, younger-like BCR repertoire. However, a limitation of the current 

study is the lack of information on the B cell subsets (i.e. marginal, follicular, B-1, etc) 

encompassing the sequenced cell pool. Future studies performing fluorescence-activated cell 

sorting should not only investigate the B cell types involved in the DR response, but also 

causally address whether DR improves vaccination outcomes due to “enrichment” of the BCR 

repertoire. 

Genome variation in the BCR loci is instrumental for mounting adequate immune responses 

and IghV and IghJ gene usage have been shown to be largely implicated, thereby affecting 

susceptibility to various diseases (Raposo et al. 2014). Results from a study in splenocytes 

showed an age-related increase in IghV2, IghV11, IghJ1, as well as reduction in IghJ2 gene 

usage (Holodick et al. 2016). Here, we found a more pronounced decline in IghV-gene usage 

with age in AL compared to DR, especially in IghV4 (Sup Fig 3.2A-B). Although very little is 

known about the functional relevance of these changes in ageing, differential IghV gene usage 

has been implicated in age-related diseases, such as rheumatoid arthritis and multiple 

sclerosis, in both mice and humans (Vencovský et al. 2002; Raposo et al. 2014; Walter et al. 

1991). Further, a growing body of evidence is indicative of a role of IghV gene usage in 

polyreactivity, especially in HIV and influenza virus antibody responses; polyreactivity is 

defined as the ability of an antibody molecule or of a BCR to bind to multiple distinct antigenic 

targets (Dimitrov et al. 2013). While polyreactivity is thought to dramatically increase with age 

in mice (Gunti and Notkins 2015), the decline in usage of some IghV genes, including the 

IghV4 observed in this study, would be indicative of a reduced polyreactivity in our AL mice 

with age that was attenuated by DR (Sup Fig 3.2A). Increased polyreactivity has beneficial 

effects, including the diversification of immune repertoires and clearance of defective apoptotic 

cells, preventing inflammatory responses (Dimitrov et al. 2013). Therefore, we speculate that 

compared to AL, DR treatment might help retain some levels of polyreactivity and its 

corresponding benefits for longer periods of time. 
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During B cell development in the bone marrow, there is preferential removal of B cells 

expressing BCRs with long CDR3s (Wardemann et al. 2003). Studies in human peripheral 

blood have associated long CDR3 length with old age and increased autoreactivity, suggesting 

that there is a selection against BCRs with long CDR3s in the aged immune system (C. Wang 

et al. 2014). Similarly, in this study long CDR3s correlated with high macromorbidity index (Fig 

3.5A). Although the mean CDR3 length was not different between AL and DR (Sup Fig 3.2D), 

there was increased skewing of CDR3 length production in AL mice, generating BCRs of a 

smaller length range than both DR and AL_DR16M mice (Fig 3.2I). Even though long CDR3s 

were found in mice with high macromorbidity, we did not observe a significant reduction under 

DR anti-ageing intervention. Future studies including higher numbers of mice should evaluate 

CDR3 lengths and determine whether DR maintains selection against BCRs with long CDR3s, 

to protect from the ageing-associated increased autoreactivity. 

Our results highlight the importance of global splenic BCR repertoire dynamic metrics, such 

as within-individual variability, inter-individual dissimilarity, clonal expansions and CDR3 

length distribution (Fig 3.2C, 3.2E-F) in enhanced health under DR (Fig 3.5A). Moreover, we 

also uncover intriguing ageing- and DR-associated changes in immunoglobulin isotypes, 

which have been thus far unexplored in the context of anti-ageing interventions. With respect 

to ageing-associated changes, we found that IgM, known for their role in the primary immune 

response as poly-reactive antibodies involved in opsonization of antigens (Schroeder and 

Cavacini 2010), underwent a decline in within-individual diversity with age in both AL and DR 

(Sup Fig 3.1B-C). Similarly, IgG, which is involved in long-term protection and neutralisation 

of toxins and viruses (Schroeder and Cavacini 2010), showed a decline in within-individual 

diversity with age in AL (Sup Fig 3.1B-C). In line with these results, previous studies have 

shown an association between age-related decline in IgM and IgG levels and BCR repertoire 

diversity, with impaired vaccination response (Ademokun et al. 2011; Jiang et al. 2013; Shi et 

al. 2005). In addition, we found that the low within-individual diversity of both IgM and IgG 

isotypes was inversely associated with morbidity (Fig 3.5C), suggesting that preservation of 

IgM and IgG diversity is one of the features of a ‘younger’, healthier BCR repertoire. Further, 

regarding DR-associated changes, we observed an amelioration of the ageing-associated 

increase in IgM clonal expansion rate (Sup Fig 3.1D). Although the implications of this change 

are unknown, we speculate that DR might offer a tighter regulation of the primary immune 

response, and thereby the maintenance of IgM clonal expansion rate might be a contributor 

to DR-mediated beneficial effects. This is corroborated by the fact that high IgM clonal 

expansion was associated with morbidity (Fig 3.5C). Collectively, although the repertoire 

trajectories described in this work strictly reflect non-pathogen exposure conditions, as any 

type of infection is highly unlikely in the current cohort of mice, our results highlight the potential 
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involvement of IgM and IgG in DR-associated healthspan and lifespan benefits. Nevertheless, 

in light of the macromorbidity-associated isotype-specific observations, future studies where 

isotypes are evaluated in the context of healthy ageing are necessary to more 

comprehensively reveal the implications of these changes on adaptive immune function and 

DR-associated beneficial effects. 

Here, we demonstrate that DR and AL_DR16M mice have “healthier” repertoires than AL and 

AL_DR20M (Fig 3.5A), especially affecting the splenic within-individual variability, and clonal 

expansion (Fig 3.2C, 3.2E). The improvement of the immune health in DR and AL_DR16M 

mice, is the first reported molecular phenotype consistent with the recapitulation of the lifespan 

extension under DR by AL_DR16M mice (Drews et al. 2021). These findings indicate that the 

enhanced splenic B cell adaptive immune system of DR mice can be recapitulated in an age-

dependent manner, by switching to a DR feeding regime as late as 16 months of age. More 

specifically, AL_DR16M displayed an increased IgM, IgE and IgA Shannon and Simpson 

within-individual diversity, recapitulating DR levels (Sup Fig 3.1B-C). IgM spike under 

AL_DR16M could be indicative of a greater hematopoietic stem cells (HSC) capacity. A 

previous study on HSCs on chronic and midlife-onset DR mice, showed that chronic DR 

feeding reduced the loss of repopulating capacity of HSCs observed with age in AL. 

Furthermore, the onset of DR at 15 months of age improved the hematopoietic regeneration 

of ageing HSCs (Tao et al. 2020). Thus, an improved regeneration of HSCs would be likely to 

facilitate the AL_DR16M BCR repertoire responsiveness under dietary switch. Future studies 

on bone marrow HSCs on midlife- and late-onset DR are necessary to evaluate a possible 

causal association of an age-of-onset-dependent start of DR with BCR repertoire 

responsiveness. 

Noteworthy, we found that AL_DR16M respond to DR initiation through an increase in IgE 

diversity in spleen (Sup Fig 3.1B-C). Although elevated IgE levels are primarily implicated in 

allergic reactions (Gould and Sutton 2008; Saunders et al. 2019; Schroeder and Cavacini 

2010), it is highly unlikely that food or other allergens are contributing to the increased IgE 

diversity levels after DR onset at 16 months, given the housing conditions and the unchanged 

chow food composition of our mice. Interestingly, high IgE levels have been previously 

documented in germ-free or antibiotic-treated mice that are typically characterised by low 

microbiome diversity, suggesting a regulatory role of the microbiome in controlling systemic 

IgE levels (Cahenzli et al. 2013). Similarly, a previous study evaluating the longitudinal 

microbiome characteristics of 50 AL, DR, AL_DR16M and AL_DR20M mice, reported an initial 

decline in within-individual microbial diversity of AL_DR16M mice before recapitulating 

diversity levels similar to DR by 18 months of age (Chapter 2). Therefore, the spike in IgE in 

the AL_DR16M mice might reflect this acute loss of microbial within-individual diversity after 
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DR onset. Nonetheless, future studies are necessary to confirm and comprehensively assess 

the changes and potential contributors in IgE responses in the context of dietary switches. 

Despite the importance of the gut B cells, and the increasing number of studies examining 

mucosal antibodies and their interaction with the microbiome (Lindner et al. 2015, 2012; 

Macpherson et al. 2018; Belkaid and Hand 2014), to the best of our knowledge, the effect of 

anti-ageing interventions on the gut BCR repertoire are yet to be reported. Here, we show that 

the ileum BCR repertoire undergoes very few changes with age and under chronic or late 

onset DR. On the contrary, the microbiome was found to rapidly respond to the switch to DR, 

even when DR was initiated at 20 months of age (Fig 3.4). In line with other studies where 

short-term antibiotics, microbiome transfers, or introduction of new diets did not result in 

changes in the ileum B cell compartment (Bradshaw et al. 2022; Lindner et al. 2015), the 

switch to DR diet, independently of age-of-onset, did not strongly affect the gut BCR repertoire 

(Fig 3.3). Nonetheless, the SHM mechanism was found to be highly influenced by both age 

and diet in the ileum, which is not surprising given the constant microbial antigenic exposure 

in this organ (Zhao and Elson 2018). More specifically, a declining ageing SHM capacity was 

observed in AL mice (Fig 3.3G-H), affecting predominantly the IgA isotype (Sup Fig 3.3F-G). 

Previous analysis of IgA repertoire in human colon and mouse small intestine revealed that 

neither antibiotic treatment nor diet modulate the IgA clonal composition (Lindner et al. 2015). 

It was postulated that, to maintain homeostasis through the interaction of the host and its 

microbiome, the IgA repertoire undergoes diversification of existing memory B cells, instead 

of generating new B cell clones (Lindner et al. 2015). Elevated SHM in Peyer patches is critical 

for the generation of a diverse repertoire that can undergo affinity maturation and selection at 

a later phase (Macpherson et al. 2018). Therefore, the decline in IgA SHM with age we 

observed under AL feeding may be associated with impaired diversification and affinity 

maturation capacity, which might ultimately lead to disruption of host-microbiome symbiosis 

and compromised mucosal defence (Wei et al. 2011; Lindner et al. 2015). On the contrary, 

DR buffered the age-associated SHM decline observed in the AL mice ileum (Fig 3.3G-H, Sup 

Fig 3.3F-G), indicating that DR feeding might offer an advantage in preserving diverse 

mucosal immune responses and gut homeostasis for extended periods. 

In conclusion, in this study we not only show mitigation of the age-associated decline in within-

individual diversity of the BCR repertoire in the spleen and ileum of mice under DR, correlating 

with improved mouse health, but also provide the first evidence that the splenic BCR repertoire 

responds to a mid/late-life start of DR in an age-dependent manner. Our findings highlight the 

immune responsiveness of the mice where DR was initiated at 16 months of age as one of 

the contributing factors to extended lifespan.  
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3.4 Supplementary figures 
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Supplementary figure 3.1: Spleen isotype-specific BCR repertoire metrics. A) Richness within-

individual diversity. Significant differences at 20 months of age (Mann-Whitney U test): IgM 

(AL_DR16M vs DR p-value = 0.04), IgE (AL_DR16M vs DR p-value = 0.04). Significant differences 

at 24 months of age (Mann-Whitney U test): IgE (DR vs AL p-value = 0.005). B) Shannon within-
individual diversity. Significant differences through age (linear regression): IgM (AL p-value = 

0.00091; DR p-value = 0.001), IgG (AL p-value = 0.0004), IgE (AL p-value = 0.003). Significant 

differences through age and diet (2-way ANOVA): IgG (DR vs AL p-value = 0.02). Significant 

differences at 20 months of age (Mann-Whitney U test): IgD (AL_DR16M vs DR p-value = 0.02). 

Significant differences at 24 months of age (Mann-Whitney U test): IgM (AL_DR16M vs DR p-value 

= 0.04), IgG (AL_DR20M vs DR p-value = 0.01), IgE (AL_DR16M vs DR p-value = 0.002; AL_DR20M 

vs AL p-value = 0.02). C) Simpson within-individual diversity. Significant differences through age 

(linear regression): IgM (AL p-value = 0.000003; DR p-value = 0.0007), IgG (AL p-value = 0.0001), 
IgE (AL p-value = 0.01). Significant differences through age and diet (2-way ANOVA): IgG (DR vs AL 

p-value = 0.04). Significant differences at 24 months of age (Mann-Whitney U test): IgM (AL_DR16M 

vs AL p-value = 0.02), IgG (AL_DR20M vs DR p-value = 0.02), IgA (AL_DR16M vs AL p-value = 

0.03), IgE (AL_DR16M vs AL p-value = 0.04). D) Clonal expansion. Significant differences through 

age (linear regression): IgM (AL p-value = 0.000003), IgG (AL p-value = 0.002). E) Inter-individual 

dissimilarity. Significant differences through age (linear regression): IgM (AL p-value = 2.8x10-4; DR 

p-value = 1.1x10-16), IgG (AL p-value = 0.00001; DR p-value = 1.1x10-10), IgA (AL p-value = 

0.00004), IgD (AL p-value = 1.5x10-17; DR p-value = 0.006), IgE (AL p-value = 0.045; DR p-value = 
0.005). Significant differences through age and diet (2-way ANOVA): IgM (DR vs AL p-value = 2.0x10-

8), IgG (DR vs AL p-value = 0.00001), IgA (DR vs AL p-value = 0.0008), IgD (DR vs AL p-value = 

0.000004). Significant differences at 20 months of age (Mann-Whitney U test): IgE (AL_DR16M vs 

AL p-value = 0.011; AL_DR16M vs DR p-value = 0.00005). Significant differences at 24 months of 

age (Mann-Whitney U test): IgM (AL_DR16M vs AL p-value = 1.0x10-6; AL_DR16M vs DR p-value = 

0.005; AL_DR20M vs AL p-value = 0.035), IgA (AL_DR16M vs AL p-value = 1.0x10-6; AL_DR16M vs 

DR p-value = 0.0005; AL_DR20M vs AL p-value = 0.049). F) Frequency of synonymous SHM. 
Significant differences through age (linear regression): IgM (AL p-value = 0.009), IgG (AL p-value = 

0.044; DR p-value = 0.038), IgA (DR p-value = 0.014). Significant differences through age and diet 

(2-way ANOVA): IgA (DR vs AL p-value = 0.036). G) Frequency of non-synonymous SHM. Significant 

differences through age (linear regression): IgA (DR p-value = 0.012). Significant differences through 

age and diet (2-way ANOVA): IgA (DR vs AL p-value = 0.018). H) CDR3-length distribution Significant 

differences in CDR3-length distribution variability at 24 months of age (Kolmogorov-Smirnov): IgG 

(AL vs DR p-value = 0.0061), IgA (AL vs DR p-value = 0.015; AL_DR20M vs AL p-value = 0.024). A-
G) Blue represents AL, red DR, green AL_DR16M, and yellow AL_DR20M. Lines correspond to 
mean, and shaded area to 95% confidence intervals. 
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Supplementary figure 3.2: A) Mean relative IghV gene usage in the spleen BCR. Significant 

changes through age (linear regression): IghV1 (AL p-value = 0.03), IghV3 (AL p-value = 8.2x10-5), 

IghV4 (AL p-value = 0.001; DR p-value = 0.001), IghV6 (DR p-value = 0.02), IghV7 (AL p-value = 

0.02; DR p-value = 0.02), and IghV11 (AL p-value = 0.049; DR p-value = 0.03). Significant changes 

through age and diet (2-way ANOVA): IghV3 (DR vs AL p-value = 0.01), IghV15 (DR vs AL p-value 
= 0.02). B) Mean relative IghJ gene usage in the spleen BCR. A-B) Darker blue corresponds to higher 

gene usage, and white to lower. C) Ratio of non-synonymous to synonymous mutations in spleen. 

D) CDR3 length gaussian distribution in the spleen. 
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Supplementary figure 3.3: Ileum isotype-specific BCR repertoire metrics. A) Richness within-

individual diversity. Significant differences at 24 months of age (Mann-Whitney U test): IgG (p-value 

DR vs AL = 0.01). B) Shannon within-individual diversity. C) Simpson within-individual diversity. D) 
Clonal expansion E) Inter-individual dissimilarity. Significant differences through age (linear 
regression): IgM (AL p-value = 1.5x10-9), IgG (AL p-value = 4.6x10-11; DR p-value = 2.9x10-6), IgD 

(AL p-value = 0.0003; DR p-value = 0.003). Significant differences through age and diet (2-way 

ANOVA): IgM (DR vs AL p-value = 0.00045), IgG (DR vs AL p-value = 9.4x10-19), IgD (DR vs AL p-

value = 0.000006). Significant differences at 20 months of age (Mann-Whitney U test): IgA 

(AL_DR16M vs AL p-value = 2.0x10-5; AL_DR16M vs DR p-value = 5.1x10-17), IgD (AL_DR16M vs 

AL p-value = 6.7x10-4; AL_DR16M vs DR p-value = 0.007), IgG (AL_DR16M vs AL p-value = 0.01; 

AL_DR16M vs DR p-value = 0.00002). Significant differences at 24 months of age (Mann-Whitney U 

test): IgA (AL_DR16M vs AL p-value = 4.1x10-6; AL_DR16M vs DR p-value = 2.4x10-8; AL_DR20M 
vs AL p-value = 3.12x10-8; AL_DR20M vs DR p-value = 2.2x10-5), IgM (AL_DR16M vs AL p-value = 

0.00018; AL_DR16M vs DR p-value = 6.6x10-7; AL_DR20M vs AL p-value = 0.00015), IgE 

(AL_DR16M vs AL p-value = 7.7x10-5; AL_DR16M vs DR p-value = 0.00013; AL_DR20M vs AL p-

value = 0.015), IgG (AL_DR20M vs AL p-value = 0.003; AL_DR20M vs DR p-value = 4.3x10-7). F) 
Frequency of synonymous SHM. Significant differences through age (linear regression): IgM (AL p-

value = 0.0006), IgA (AL p-value = 0.04). G) Frequency of non-synonymous SHM. Significant 

differences through age (linear regression): IgM (AL p-value = 0.02), IgA (AL p-value = 0.04). 

Significant differences at 24 months of age (Mann-Whitney U test): IgA (DR vs AL p-value = 0.024; 
AL_DR16M vs DR p-value = 0.024; AL_DR20M vs DR p-value = 0.024). H) CDR3-length distribution. 

Significant differences at 20 months of age (Kolmogorov-Smirnov): IgD (DR vs AL p-value = 0.036; 

AL_DR16M vs DR p-value = 0.036). Significant differences at 24 months of age (Kolmogorov-

Smirnov): IgM (DR vs AL p-value = 0.015; AL_DR16M vs DR p-value = 0.015). A-G) Blue represents 

AL, red DR, green AL_DR16M, and yellow AL_DR20M. Lines correspond to mean, and shaded area 

to 95% confidence intervals. 
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Supplementary figure 3.4: A) Mean relative IghV gene usage in the ileum BCR. B) Mean relative 

IghJ gene usage in the ileum BCR. A-B) Darker blue corresponds to higher gene usage, and white 
to lower. C) Ratio of non-synonymous to synonymous mutations in ileum. D) CDR3 length gaussian 

distribution in the ileum. 
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Supplementary figure 3.5: Percentage of variance explained by variation of ‘macromorbidity index’ 

where the total number of pathologies detected per individual was divided by 3, thus making the 

accumulation of pathologies equal to the value of presence of cancer for A) general BCR spleen 
metrics, and B) general BCR ileum metrics. C) Percentage of variance explained by standard 

‘macromorbidity index’ for isotype-specific BCR ileum metrics. Coloured bars are spearman p-value 

< 0.05. 
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4. Appendix: Primers and oligonucleotides 

4.1 PCR primers for 16S-Sequencing 

Name Sequence Source 

V4-515F ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGCMGCCGCGGTAA (Caporaso et al. 2011) 

V4-806R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACNVGGGTWTCTAAT (Caporaso et al. 2011) 

 

4.2 Reverse-transcription isotype-specific primers for BCR-

Sequencing 

Name Sequence Source 

mIGG12_r1 KKACAGTCACTGAGCTGCT (Turchaninova et al. 2016) 

mIGG3_r1 GTACAGTCACCAAGCTGCT (Turchaninova et al. 2016) 

mIGA_r1 CCAGGTCACATTCATCGTG (Turchaninova et al. 2016) 

mIGM_r1 CTGGATGACTTCAGTGTTGT (Turchaninova et al. 2016) 

mIGD_r1 GCCATTTCTCATTTCAGAGG (Turchaninova et al. 2016) 

mIGE_r1 GTTCACAGTGCTCATGTTC (Turchaninova et al. 2016) 

 

4.3 Template-switch oligos for reverse transcription for BCR-

Sequencing 

Name Sequence Source 

SmartNNNa AAGCAGUGGTAUCAACGCAGAGUNNNNUNNNNUNNNNUCTTrGrGrGrG (Turchaninova et al. 2016) 
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4.4 Primers for first PCR amplification for BCR-Sequencing 

Name Sequence Source 

M1SS AAGCAGTGGTATCAACGCA (Turchaninova et al. 2016) 

mIGG12_r2 ATTGGGCAGCCCTGATTAGTGGATAGACMGATG (Turchaninova et al. 2016) 

mIGG3_r2 ATTGGGCAGCCCTGATTAAGGGATAGACAGATG (Turchaninova et al. 2016) 

mIGA_r2 ATTGGGCAGCCCTGATTTCAGTGGGTAGATGGTG (Turchaninova et al. 2016) 

mIGM_r2 ATTGGGCAGCCCTGATTGGGGGAAGACATTTGG (Turchaninova et al. 2016) 

mIGD_r2 ATTGGGCAGCCCTGATTCTCTGAGAGGAGGAAC (Turchaninova et al. 2016) 

mIGE_r2 ATTGGGCAGCCCTGATTAAGGGGTAGAGCTGAG (Turchaninova et al. 2016) 

 

4.5 Primers for second PCR amplification for BCR-Sequencing 

Name Sequence Source 

M1S (N)4–6(XXXXX)CAGTGGTATCAACGCAGAG (Turchaninova et al. 2016) 

Z (N)4-6(XXXXX)ATTGGGCAGCCCTGATT (Turchaninova et al. 2016) 
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