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Abstract

Next generation sequencing (NGS) technologies have facilitated the identification of
disease causing mutations, which has significantly improved patient’s diagnosis and
treatment. Since its emergence, NGS has been used in many applications like genome
sequencing, DNA resequencing, transcriptome sequencing and epigenomics, to unfold
the various layers of genome biology. Because of this broad spectrum of applications
and recent decrement in cost, usage of NGS has become a routine approach to address
many research as well as medical questions. It is producing huge amounts of data, which
necessitate highly efficient and accurate computational analysis as well as data

management.

This thesis addresses some of the challenges of NGS data analysis, mainly for targeted
DNA sequencing data. It describes the various steps required for data analysis including
their significance and potential negative effects on consecutive downstream analysis
and so on the final variant lists. In order to make the analysis more accurate and
efficient, an extensive testing of different bioinformatics tools and algorithms was
preformed and a fully automated data analysis workflow was developed. This workflow
is implemented and optimized on high performance computing (HPC) systems. | describe
different design principles and parallelization strategies that enable proper exploitation
of HPC resources to achieve high throughput of data analysis. Besides correcting for
known sequencing errors by using existing tools, this work is also aimed at the detection
of a new class of systematic sequencing errors called recurrent systematic sequencing
errors. | present an approach for the exploration of this class of errors and describe the
probable causes and patterns behind them. This includes some known and novel
patterns observed during this work. Furthermore, | provide a tool to filter the false
variants due to these errors from any variant list. Overall, the work performed during
this thesis has been already used (and will be used in future as well), to provide accurate
and efficient data analysis, which enables exploration of the genetic background of

various diseases.






Zusammenfassung

Die Next-Generation-Sequencing-(NGS)-Technologien haben die Identifizierung
krankheitsverursachender Mutationen erleichtert, wodurch die Diagnose und
Behandlung von Patienten deutlich verbessert wurde. Seit seiner Einflihrung wird NGS in
vielen Anwendungsbereichen, wie Genom-Sequenzierung, DNA-Resequenzierung,
Transkriptom-Sequenzierung und Epigenomik, eingesetzt, um die verschiedenen Ebenen
der Biologie des Genoms zu entschlisseln. Aufgrund dieses breiten
Anwendungsspektrums und der aktuellen Kostensenkung ist die Verwendung von NGS
zu einem Routineverfahren zur Bearbeitung vieler forschungsbezogener und
medizinischer Fragestellungen geworden. Dadurch werden groRRe Datenmengen erzeugt,
die hoch effiziente und exakte computergestiitzte Analysen sowie ein entsprechendes

Datenmanagement notwendig machen.

Diese Dissertation widmet sich einigen der mit der NGS-Datenanalyse verbundenen
Herausforderungen, vor allem in Bezug auf die gezielte DNA-Sequenzierung
ausgewahlter genomischer Bereiche (,,targeted sequencing” genannt). Sie beschreibt die
verschiedenen fir die Datenanalyse erforderlichen Schritte, ihre Bedeutung und
potentiellen negativen Effekte auf anschlieBende Folgeanalysen und damit auf die
finalen Variantenlisten. Um die Analyse exakter und effizienter zu machen, wurden
umfassende Tests verschiedener bioinformatischer Tools und Algorithmen durchgefiihrt
und ein vollautomatischer Analyse-Workflow entwickelt. Dieser Workflow ist auf
Hochleistungsrechensystemen (HPC Systemen) implementiert und fiir diese optimiert
worden. Ich beschreibe verschiedene Entwurfsprinzipien und Parallelisierungsstrategien,
um eine gute Nutzung der Ressourcen eines HPC-Systems und hohen Durchsatz in der
Datenanalyse zu erreichen. Neben der Korrektur bekannter Sequenzierungsfehler durch
vorhandene Tools, widmet sich diese Arbeit auch der Detektion einer neuen Klasse
systematischer Sequenzierungsfehler, ,wiederkehrende systematische Fehler” genannt.
Ich prasentiere ein neues Verfahren, um diese Fehlerklasse zu untersuchen und

beschreibe die ihr wahrscheinlich zugrundeliegenden Ursachen und Muster. Dabei



beobachtete ich einige bekannte und neue Muster. Weiterhin stelle ich ein Tool zur
Verfiigung, um von diesen Fehlern verursachte falsche Varianten aus beliebigen
Variantenlisten zu filtern. Die wahrend dieser Doktorarbeit durchgefiihrten und hier
prasentierten Arbeiten wurden bereits (und werden weiterhin) verwendet, um exakte
und effiziente Datenanalyse durchzufiihren, die die Erforschung des genetischen

Hintergrundes verschiedenster Krankheiten ermaoglicht.
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Chapter 1
Introduction

Exploration of the causal gene variants underlying human diseases is one of the major
interests of medical sciences. Recent advances in DNA sequencing technologies have
enabled characterization of genomic landscapes of many diseases at significantly lower
cost and in less time. The early identification of disease causing mutations has
significantly improved patient’s diagnosis and treatment/therapy. Nowadays, DNA
sequencing has become a routine work to address many research as well as medical

guestions in order to improve disease management.

The field of DNA sequencing has a very rich and diverse history (Rabbani, Mahdieh,
Hosomichi, Nakaoka, & Inoue, 2012). The story of sequencing began, when Sanger’s
studies of insulin first demonstrated that proteins are composed of linear polypeptides
formed by joining amino acid residues (Hutchison, 2007; Sanger & Tuppy, 1951; Sanger,
1949). Shortly afterwards, the double-helical structure of DNA was proposed (Crick &
Watson, 1953), which raised the very significant question about DNA decoding (DNA to
protein). However, due to the complexity of DNA, it took approximately 12 years to

sequence the first gene (Holley et al., 1965).

In 1977, the first method for DNA sequencing through chain termination was developed
(Sanger, Nicklen, & Coulson, 1977). This method was quite slow and laborious which
prompted it's automation (L. M. Smith et al., 1986). Automated Sanger sequencing
became the core technology of the Human Genome Project (HGP), funded in 1990, and
produced the first human genome draft sequences (Lander et al.,, 2001; Venter et al.,
2001). The HGP took 13 years to finish and was quite expensive which led to the
development of cheaper and faster next generation sequencing (NGS) technologies

(Mardis, 2008).
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NGS technologies, also known as high-throughput sequencing technologies, parallelize
the sequencing process and produce millions of sequences simultaneously at relatively
low cost. Taking advantage of these technologies, the 1000 Genomes Project could
describe the genomes of 1,092 individuals from 14 populations. Aim of the project was
to provide a catalogue of human genomic variation that was achieved by using a
combination of low-coverage whole-genome and exome sequencing only in four years
(Abecasis et al., 2012; The 1000 Genomes Project Consortium, 2010). After its
emergence, NGS has been used in many applications to unfold the various layers of
genetics and genome biology. In a research setting, it has been used for de novo
genome sequencing, DNA resequencing, transcriptome sequencing and epigenomics.
Now, it has also become an asset of clinical diagnostic laboratories for patient care

(Coonrod, Margraf, & Voelkerding, 2012).

Since the advent of NGS, there have been lots of improvements in the sequencing
technologies like accuracy, read length and throughput. Moreover, the sequencing costs
are also rapidly decreasing. Today NGS techniques are easily accessible and have
become a preferred method in most of the research and diagnostics centres resulting in
huge amount of sequencing data. The actual challenges are for the bioinformatics
community to manage and analyse these data accurately and efficiently. In this work, |
will address some of these issues that are relevant for targeted DNA sequencing. In the
following sections, first | will provide an overview of NGS technologies. Then, | will
provide an overview of targeted DNA sequencing methods and their applications in
research and diagnostics. At last, | will briefly mention some data analysis terminologies
followed by a description of the challenges of NGS data analysis and an overview of the

thesis structure.

1.1 NGS technologies

There are many different platforms for massively parallel DNA sequencing: Roche/454,

lllumina®, lon Torrent?, PacBio RS* and Oxford Nanopores. The first three: lllumina, 454

! http://454.com/applications/index.asp This and other subsequent URLs are accessed on 26 August 2015.
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and lon Torrent belong to the second generation sequencing technologies and are the
most commonly used platforms in research and clinical labs today. The basic sequencing
method of all of these platforms is sequencing by synthesis (SBS) (Hyman, 1988;
Turcatti, Romieu, Fedurco, & Tairi, 2008). In SBS methods, sequencing starts with a
primer attached to the single stranded template DNA and proceeds with incorporation
of a nucleotide base using a DNA polymerase. Every incorporated nucleotide is detected
and the further extension, by means of the DNA polymerase, finally results in a
complementary sequence to the template DNA (Berglund, Kiialainen, & Syvanen, 2011).
Although using the same SBS technology, these three platforms differ in the clonal
amplification and nucleotide base detection process. Both 454 and lon torrent use
emulsion PCR amplification, whereas Illumina uses bridge amplification for the clonal
amplification process (Margulies et al., 2005; Quail et al., 2012; Williams et al., 2006).
During the nucleotide base detection process, Illlumina detects fluorescent signals
emitted from nucleotide incorporation, whereas changes in pH and emission of light are
detected by lon torrent and 454 respectively (Mardis, 2008, 2013). Details of these
technologies can be found in (Mardis, 2008, 2013; Metzker, 2010).

PacBio and Nanopore use recent sequencing technology known as third generation
sequencing (Schadt, Turner, & Kasarskis, 2010). Both sequencing platforms perform
single molecule sequencing in which sequencing is performed on single DNA molecule
using single DNA polymerase without prior cloning or amplification step used in SBS
methods. These techniques allow for more accurate sequencing in repetitive or low
complexity regions (cf. Chapter 2) and are able to generate very long reads than the SBS
technologies. However, currently these technologies are as matured as the second
generation (e.g. lllumina) technologies, having high raw read error rates and low

throughput. Moreover, there is a need to develop new sophisticated data analysis

? http://www.illumina.com/systems/sequencing-platform-comparison.html

3 http://www.lifetechnologies.com/de/de/home/life-science/sequencing/next-generation-

sequencing.html

4 http://www.pacbh.com/products-and-services/pacbio-systems/

> https://www.nanoporetech.com/
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algorithms, as these technologies posses different error profiles and different aspects of
information in the generated sequencing data (Schadt et al., 2010). In our institute, we
mainly use the Illumina sequencing technology and this work is also based on Illumina
generated sequencing data. Thus, in the following section we provide a brief description

of lllumina sequencing technology.

1.1.1 lllumina

lllumina is a widely used platform for DNA Sequencing, which uses clonal array
formation and reversible terminator technology® (Bentley et al., 2008). Every DNA
sequencing starts with library preparation (cf. Figure 1.1a) that includes DNA
fragmentation, enzymatic trimming, fragment adenylation and adapter ligation (Mardis,
2013). After library construction, lllumina sequencing starts with cluster generation (the
clonal amplification step) on the flow cell surface that includes binding of adapter
ligated DNA templates to the oligos on the flowcell followed by repeated bridge
amplifications (initiated by polymerases). This procedure results in clusters of co-
localized clonal copies of each fragment (cf. Figure 1.1b). After that, each cluster is
supplied with a polymerase and four fluorescently labelled nucleotide bases. Reversible
terminator sequencing (cf. Figure 1.1c) starts with incorporation of all four bases in each
cycle, but only adds one base per cycle at each cluster due to the blocking group
attached at the 3’-OH position of the ribose sugar of the nucleotide base, which
prevents incorporation of an additional base (Mardis, 2013). The incorporated
nucleotide emits a fluorescent signal, which is detected and reported by image sensors.
Repetition of these cycles generates a sequence read from each cluster and thus yields
millions of DNA sequences at the end. lllumina SBS technology supports both single-read
and paired-end libraries. As the names suggest, single-read sequencing allows
sequencing in one direction, whereas the paired-end approach performs sequencing
from both ends of the DNA fragment. Nowadays, paired-end sequencing is mainly used
as it provides better alignment across repetitive regions and also detects

rearrangements such as insertions, deletions, and inversions.

® http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
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Figure 1.1 Overview of lllumina sequencing (figure from (Mardis, 2013)).

The Illumina platforms can be used for many different sequencing applications, such as
whole-genome sequencing, de novo sequencing, candidate region targeted
resequencing, DNA sequencing, RNA sequencing, and ChIP-Seq’. In order to support all
of the mentioned applications adequately, lllumina provides four series of sequencers:
MiSeq, NextSeq, HiSeq, and HiSegX, that vary in throughput, runtime, and cost. The
selection of sequencer usually determined on the basis of the project’s requirements. At
our institute, we use mainly HiSeq for exome sequencing and MiSeq for gene panel

sequencing (or other target enrichment sequencing).

7 http://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html
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1.2 NGS applications

Next-generation sequencing has already many applications and it is still expanding. So
far, it has been used in whole genome sequencing (WGS), targeted DNA sequencing
(whole exome sequencing, gene panel sequencing, amplicon sequencing), transcriptome
profiling (RNA-Seq), DNA-protein interactions (ChIP-Seq), etc. This thesis is focused on

targeted DNA sequencing, thus only these applications will be described here.

1.2.1 Target enrichment methods

Though the sequencing cost has decreased significantly over the years and the goal of
sequencing a whole genome for 1000 dollar is also achieved (at least partially®), still
WGS is not routine work for most of the medium sized sequencing centres. Besides of
high costs for obtaining approximately 30-fold coverage (i.e. sequencing each genomic
position at least 30 times) of a human genome (generates approx. 90 Gb data in total), it
needs a lot of computational resources to process and store this huge amount of data
(Mamanova et al., 2010). Moreover, the whole genome contains both coding and non-
coding part and due to the lack of annotations for the non-coding part, it is hard to
interpret WGS data. Therefore, targeted enrichment methods are cost-effective
alternates, allowing sequencing of selected genomic regions. There are mainly three
different approaches to capture target regions: hybridization based, polymerase chain
reaction (PCR) based and Molecular Inversion Probe (MIP). However, due to high cost
and some coverage issues of MIP (Mamanova et al., 2010), hybridization or PCR based
approaches are the commonly used methods for targeted DNA sequencing. | will
describe these methods briefly here, a detailed comparison between them can be found

in (Bodi et al., 2013; Kiialainen et al., 2011; Mamanova et al., 2010; Mertes et al., 2011).

PCR based capture

Polymerase chain reaction (PCR) based capturing of a genomic region of interest is a

very traditional approach, which has already been used for Sanger sequencing. It has

¥t needs a specific setup of sequencers (HiSeq X Ten: http://www.illumina.com/systems/hiseq-x-

sequencing-system.html), which is very costly and out of the reach of medium sized sequencing centers.
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also become ideal for the NGS applications that require to capture smaller targets
approximately 10-100 kb in size (e.g. Gene panel sequencing). In brief, this approach
starts with a target-specific primer design followed by a PCR reaction. This reaction can
be a simple multiplex PCR (e.g. lon AmpliSeq™ panels from Life Technologies, GeneRead
DNAseq Gene Panels from Qiagen etc.), a micro-droplet PCR (RainDance), or array-based

PCR (Access Array™ from Fluidigm) (Altmuller, Budde, & Niirnberg, 2014).

Hybridization based capture

These methods are faster and less costly than PCR based methods and used for the
larger target size around 500 KB up to 65 MB (whole exome sequencing). They follow
the basic principle of hybridization where baits (probes designed to match the target
regions for sequencing) hybridize with a DNA library and pull down only fragments from
the regions of interest. There are two different ways to execute this procedure: Micro-
array based capture and solution based capture. In the first method, hybridization
occurs on a micro-array chip where probes fixed to the chip surface hybridize to
fragmented genomic DNA and immobilize complementary target sequences. On the
contrary, solution based methods (Gnirke et al., 2009) use an excess of biotinylated DNA
or RNA complementary probes (mobile probes in solution) to hybridize fragmented
DNA. Then, streptavidin labelled magnetic beads are used to purify the target regions
(Bodi et al., 2013). The solution based methods require less amount of DNA, and
produce more uniform and specific sequences than the array-based method (Mamanova
et al., 2010). Moreover, they do not need additional hardware (hybridization station)
like the array-based methods. There are lots of commercial kits available based on this
approach like SureSelect (Agilent), TruSeq (lllumina), SeqCap (NimbleGen), etc.
(Altmller et al., 2014).

1.2.2 Whole exome sequencing (WES)

The ultimate goal of medical research is the identification of disease causing mutations
to find therapeutic treatments or cures. It is known that the majority of the disease-
causing mutations are located in coding and functional regions of the genome (Botstein

& Risch, 2003; Ng et al.,, 2009; Majewski, Schwartzentruber, Lalonde, Montpetit, &
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Jabado, 2011). Hence, sequencing of the complete coding regions (known as exome) has
the potential to uncover causal mutations of genetic disorders (mostly monogenic), as
well as predisposing variants in common diseases and cancers (Rabbani, Tekin, &
Mahdieh, 2014). Additionally, the exome constitutes only about 1% of the human
genome. Therefore, it suffices to sequence approximately 64 MB, making exome

sequencing a cost and time effective alternative for WGS (Ng et al., 2010).

Overview of exome sequencing

In general, the sequencing process can be grouped into 3 stages: library preparation,
sequencing and imaging, and data analysis (Metzker, 2010). Library preparation is the
construction of the DNA templates required for DNA sequencing (Roe, 2004). It starts
with DNA isolation and fragmentation (cf. Figure 1.2-A and 1-B), followed by end- repair
and adapter ligation (cf. Figure 1.2-C) (Salomon & Ordoukhanian, 2015; Van Dijk,
Jaszczyszyn, & Thermes, 2014). Then, the library enrichment for exons (discard the
noncoding part) is performed by using target enrichment methods (mostly hybridization
based approaches (cf. Section “Hybridization based capture”)). Thereafter, PCR
amplification is usually performed to produce a sufficient amount of DNA template. As
the final product, library preparation generates the template molecules for amplification
on the flow cell surface (cf. Figure 1.2-D). After clonal amplification of the DNA
templates into clusters of identical molecules, sequencing starts on the flow cell with a
series of cycles. In each cycle, a complementary nucleotide labelled with one of four
coloured fluorescent dyes is added to each cluster of identical molecules (cf. Figure 1.2-
E). After identification of the fluorescent indicator of each cluster (by using a laser and
camera coupled to a microscope), the fluorescent indicator is removed, and the cycle is
repeated. Repetition of these cycles generates a sequence read of desired length
(usually 75 to 150 bp). During data analysis, sequence reads are aligned to a reference
DNA sequence followed by a genotype call for each position by using different
bioinformatics tools (cf. Figure 1.2-F) (Biesecker & Green, 2014). The nucleotide
detection procedure described above is for lllumina sequencing. Other technologies like
lon Torrent or 454 can perform exome sequencing. Their sequencing procedures differ

mainly in clonal amplification and nucleotide detection (cf. Section 1.1).
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Green, 2014).
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Applications of WES

It is already reported in many studies (Botstein & Risch, 2003; Ng et al., 2009) that the
exome covers most of the functional variants including nonsense/missense mutations,
small insertions/deletions, mutations that affect splicing and regulatory mutations
(Rabbani et al.,, 2012). Hence, WES is a promising method to discover a significant
number of disease causing variants and has been used in different areas of research as
well as diagnostics (cf. Figure 1.3). In research settings, WES has the following main
applications (Majewski, Schwartzentruber, Lalonde, Montpetit, & Jabado, 2011):

1. Characterization of monogenic disorders: WES is widely used to detect mutations
causing monogenic inherited disorders. (Rabbani et al., 2012) presented a list of
mendelian disease’ genes identified (between 2010-2012) by exome sequencing
and the numbers (102 studies) are significant enough to make WES a success
story.

2. ldentification of de novo mutations: De novo mutations are the extreme and
more deleterious form of rare genetic variations (Veltman & Brunner, 2012). The
case—parent trios sequencing is the most frequently used approach to detect this
type of mutations (Chesi et al., 2013; Fromer et al., 2014; Vissers et al., 2010).

3. Uncovering the layers of complex disorders: After the success of WES for
monogenic disorders, it also became an approach to identify causative variants in
heterogeneous, complex diseases (Coonrod et al., 2012; Kiezun et al., 2013).
(Jiang, Tan, Tan, & Yu, 2013) reviewed the application of NGS in neurology and
presented recent usage (studies from 2011-2013) of WES to identify rare variants
in epilepsy, alzheimer, myotrophic lateral sclerosis, parkinson, spino cerebellar
ataxias, and multiple sclerosis. Besides numerous applications in neurological
disorders, WES is a helpful techniqgue in some common complex disorders
like®asthma (DeWan et al., 2012), diabetes (Shim et al., 2015; Synofzik et al.,
2014), obesity (Paz-Filho et al., 2014; Thaker et al., 2015), etc. Moreover, it is also

° Good explanation of mendelian disorders: http://www.nature.com/scitable/topicpage/mendelian-

genetics-patterns-of-inheritance-and-single-966
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useful in cancer to find germline or somatic mutations (Ku et al., 2013; Ning et

al., 2014; Pleasance et al., 2010).
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Figure 1.3 Applications of WES and its impact on human health improvement. This figure provides an
overview of exome sequencing usage in research and diagnostic settings. The overall aim of both
researchers and clinicians is to explore diseases for better disease management, which can lead to
personalized medicine for better cure/treatment. This figure is a modified version of the figure in (Rabbani

et al., 2014).
Recently, clinicians also started using WES to establish diagnoses for rare, clinically
unrecognizable disorders which might have a genetic background (Biesecker & Green,

2014; Coonrod et al., 2012; Need et al.,, 2012). As mentioned above, WES can find
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causative variants, which facilitates understanding of the genetic mechanisms of these
diseases. This can lead to gene-specific treatments or therapies like gene inclusion or
replacement (Aiuti et al., 2009; Cavazzana-Calvo et al., 2010; Ott et al., 2006). WES can
be also useful in prenatal diagnosis (PND), pre-implementation genetic diagnosis (PGD),
prognosis of preclinical individuals, new-born screening procedures and treatment
(Rabbani et al., 2014). It can also help in cancer by identifying driver mutations and
genetic events leading to metastasis. This knowledge can be developed into treatments
that prevent tumour recurrence or avoid therapeutic resistance (Majewski et al., 2011).
Altogether, WES can significantly contribute to personalized medicine and could

improve human health by providing better disease management.

Limitations of WES
Besides, the enormous benefits of exome sequencing, there are a few drawbacks
(Biesecker, Shianna, & Mullikin, 2011; Directors, 2012; Rabbani et al., 2014). Due to the
target design and enrichment procedures, WES

1. is weak in structural variation detection.

2. does not cover certain sets of exons or provides less coverage for some exons, so

that causal variants may be missed in some diseases.
3. can miss mutations in repetitive or GC rich regions and in genes with

corresponding pseudogenes.

1.2.3 Gene panel sequencing

Gene panel sequencing is another type of targeted sequencing where genomic regions
from a set of genes associated with a certain disease are targeted rather than the
complete exome®'. There is prior knowledge about many diseases like their patho-
mechanism or responsible genes, hence, sequencing of only those genes is sufficient and
more cost and time effective than WES. Gene panel sequencing can use both
hybridization based and PCR based target enrichment methods. It provides higher

coverage (almost 100% of the target regions are usually covered sufficiently to call

1 Sequencing overview is almost the same as in WES except for a possibly different target capture.
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variants), specificity, and uniformity than WES, which are essential for confident variant
detection, especially for low-frequency variants (e.g., mutations only present in a small
subset of cells in a tumour sample). Therefore, gene panel sequencing is gaining
popularity both in research and diagnostic settings (Altmdiller et al., 2014; Glockle et al.,
2013; Lynch et al.,, 2012; Rehm, 2013; Sie et al., 2014; Sikkema-Raddatz et al., 2013;
Wooderchak-Donahue et al., 2012).

Due to its high accuracy, medical centres are making different gene panels for diagnostic
purpose. In this context, a brief overview of applications of gene panels and a list of
clinically available disease-targeted tests has been reported by (Rehm, 2013). Moreover,
(Sikkema-Raddatz et al.,, 2013) claims that targeted sequencing can replace Sanger
sequencing in clinical diagnostics. They compared results from a panel of 48 genes
associated with hereditary cardiomyopathies with Sanger sequencing and achieved
approximately 100% reproducibility. This study concludes that this panel can be used as
a stand-alone diagnostic test. In another study (Consugar et al.,, 2014), gene panel
sequencing was used for genetic diagnostic testing of patients with inherited eye
disorders. They designed a genetic eye disease (GEDi) test in this study with high

sensitivity and specificity (97.9 and 100% respectively).

In cancer research and diagnosis, gene panel sequencing (or amplicon sequencing) has
also been used for many studies to uncover somatic and germline mutations (Dahl et al.,
2007; De Leeneer et al., 2011; Harismendy et al., 2011; Meldrum, Doyle, & Tothill,
2011). (Laduca et al., 2014) used four hereditary cancer panels (breast panel, ovarian
panel, colon panel, and cancer panel) for diagnosis of hereditary cancer predisposition
(Laduca et al., 2014). There are also many commercially available standard cancer panels
or other gene panel like lllumina TruSight*?, lllumina TruSeq, Amplicon Cancer Panel®™ or
lon AmpliSeq Cancer Hotspot Panel v2** which can be used routinely in both research

and clinical settings (Tsongalis et al., 2014). A brief list of standard and customized gene

12 http://www.illumina.com/products/trusight-panels.html

13 http://www.illumina.com/products/truseq_amplicon_cancer_panel.html

14 https://www.lifetechnologies.com/order/catalog/product/4475346
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panels can be found in (Altmdller et al., 2014). Moreover, the most recent development
in this direction is the “Mendeliome”, which is a set of approximately 3000 Mendelian

genes known to cause human diseases (Alkuraya, 2014).

1.3 Basic terminologies in data analysis

This section contains definitions of the few terms that are required to understand the
content of following sections. Some other terminologies will be defined during their

usage throughout the other chapters.

It is a text-based file format®®, containing sequence reads and the quality score of

every base of the read.

It is a raw sequence (string of the letters A,C,G,T,N) generated from a sequencing

machine.

In paired-end sequencing, the insert size is the length of the sequenced DNA
fragment. It can be computed from the alignment as the length of read1 plus the length

of read2 plus the distance between them.

It is alignment (or mapping) of reads from a sequenced DNA on the
reference genome sequence, to identify the differences or regions of similarity between
both sequences. In general, there are two basic types of alignment:

¢ Global alignment: This is the alignment between entire sequences of
approximately equal size. The Needleman—Wunsch algorithm (Needleman &
Wunsch, 1970) is the general algorithm for this type of alignment. By using
dynamic programming®®, it breaks the sequences into different parts and tries to
align them. Then the algorithm searches for an optimal alignment of the

complete sequence based on all sub-alignments.

b http://en.wikipedia.org/wiki/FASTQ_format

'® http://en.wikipedia.org/wiki/Dynamic_programming
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* Local alignment: As the name suggests, local alignment tries to find the most
similar part/section between two sequences instead of mapping the entire
sequences. The basic algorithm for this purpose is the Smith-Waterman
algorithm (T. F. Smith & Waterman, 1981), which is another significant

application of dynamic programming.

SAM stands for Sequence Alignment Format®’ and BAM is its compressed
(encoded) format. SAM is a tab-delimited format (generated after alignment) containing
all necessary information related to the alignment of sequencing reads on the reference
sequence, e.g. mapping position, mapping quality, sequence reads and their base quality

scores etc.

It is a tab-delimited text file format to store sequencing
variants with a certain set of information (Danecek et al., 2011) (e.g. position in genome,

type of variant, variant supporting evidences etc.).

It can be described in two different ways: read coverage and sample
coverage. A read coverage (also called read depth) is the number of reads aligning at a
specific genomic location. Sample coverage is the average read coverage across all
genomic locations targeted during a sequencing experiment. Sample coverage can be
represented by values like 10x, 20x, 30x, which means the average read depth is 10, 20,

30, respectively.

It is also known as a phred score (Q) as it is calculated by the
Phred algorithm (Ewing & Green, 1998; Ewing, Hillier, Wendl, & Green, 1998). It
represents the probability that a base is miscalled. If P is the estimated error probability
for a base-call, then the phred score is calculated as follow:

Q = _10 10g10 P

7 https://samtools.github.io/hts-specs/SAMv1.pdf
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It is a phred score which represents the probability that a
read is misaligned on the reference (H. Li, Ruan, & Durbin, 2008). If P is the estimated
error probability for a misalignment, then the mapping quality can be calculated as
follow:

MQ = _10 loglo P

It is also a phred score like MQ and Q and describes the
probability of a called base being an alternate allele. If P is the posterior probability
P(g|D) of the called genotype g given the observation D, then Qual can be calculated as
(H. Li et al., 2008):

Qual = —101log,,(1 — P)

For all the quality scores (Q, MQ, Qual), a high phred score means that the examined site

has low error probabilities and vice-versa.

In general, specificity estimates the fraction of correctly
identified negatives (e.g. wrong outcome), whereas sensitivity estimates the fraction of
correctly identified positives (e.g. true outcome)®. In this thesis, these terms will be
used in two different contexts: variant calling and alignment. Definition of these terms in
the context of alignment can be found in Chapter 2 (where these terms have been used
for the first time). In the variant calling context, specificity and sensitivity, also known as
true negative rate and true positive rate, are measures of the accuracy and the ability to
detect a variant of a variant caller, respectively, and can be calculated as follows:

Sensitivity or true positive rate (TPR)= TPs/(TPs + FNs)

Specificity or true negative rate (TNR)= TNs/(TNs + FPs)

False positive rate (FPR) = 1- Specificity
True positives (TPs): These are the real variants, also called by the variant caller.
False positives (FPs): These are variants that are called by the variant caller but are not
the real variants.

False negatives (FNs): These are real variants that are not called by the variant caller.

18 https://en.wikipedia.org/wiki/Sensitivity and_specificity
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True negatives (TNs): These are variants that are not real, and also not called by the

variant caller.

1.4 Challenges in NGS data analysis

The rapid fall in sequencing cost expanded the usage of NGS techniques, which resulted
in huge amounts of data. Now it’s turn for the Bioinformatics community to make sense
of these data. There are many challenges, which need to be addressed carefully. They
can be categorized mainly in two parts: Efficient data processing and accuracy of results.

The challenges belonging to each category are briefly described below.

1.4.1 Efficient data processing

NGS technologies are high-throughput in nature that means they produce huge amounts
of sequencing data in a relatively short time. The amount of data can be categorized in
two different sections: first data produced by a single sequencing run for a sample and
secondly data produced by a study containing certain set of samples. In both of these
categories, the amount of data generated is increasing rapidly. Thus, the data processing
and management is a major challenge and should be able to address all requirements

for different applications.

In order to obtain relevant findings from the raw data, it needs to go through various
stages like data cleaning, sequence alignment, variant calling, etc. There are plenty of
algorithms for these individual tasks but in order to run them fast, they need to be
stitched together in the correct order. This workflow can be very complex and needs
enough resources or high performance computing (HPC) for smooth operation.
Moreover, it should be automated to reduce the manual efforts and chances of manual

errors during data analysis operations.
Nowadays, almost every automated NGS workflow uses HPC clusters. Here, the power

of multiple CPUs can be used in a massively parallel way to finish tasks that would take a

couple of days on a single CPU in a couple of hours. For example, the MegaSeq
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(Puckelwartz et al., 2014) and HugeSeq (Lam et al., 2012) workflows use HPC for whole
genome sequencing data analysis. These workflows utilize the MapReduce™ approach
to speed up the data analysis. In the MapReduce approach, first data is split into chunks
and then processed in parallel followed by merging of the results. We also use the
MapReduce approach to speed up our exome workflow. Existing automated workflows
can be Linux-based frameworks implemented on HPC systems via bash?® scripts like
NGSANE (Buske, French, Smith, Clark, & Bauer, 2014) or our exome workflow.
Additionally, they can be available in form of a web-interface like WEP (Antonio et al.,
2013) or a VirtualBox and Cloud Service like SIMPLEX (Fischer et al., 2012), enabling
users with little bioinformatics knowledge to analyse their data on remote HPC systems.
All of these above-mentioned examples show the necessity of workflow implementation
on HPC systems to speed up NGS data analysis and also provide some details of the HPC
implementation and parallelization strategies. However, besides the speed of a
workflow, its stability, robustness and maintainability are also important concerns. An
automated workflow should be fast, stable and robust as well as easy to maintain. The
automation of the workflow and its implementation (with consideration of the above
mentioned principles) on HPC comes with many challenges, which will be described in

Chapter 3.

1.4.2 Accuracy of results

Downstream analysis of sequencing data can be significantly affected by the accuracy of
results. Error propagation during data processing may lead to false positives (FPs) and
misleading findings. On the other hand, badly selected strategies/tools can lead to false
negatives, which means loss of true variants. These undetected variants might be the
causative ones or can lead to uncover additional layers of some diseases, thus, this
problem is more severe than FPs. Therefore, to find a proper balance between accuracy
and sensitivity of results is another significant challenge for data analysis, which will be

described in Chapter 2.

% https://www.usenix.org/legacy/event/osdi04/tech/dean.html

20 http://tiswww.case.edu/php/chet/bash/bashtop.html
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Although, there are different alignment algorithms accompanied with post alignment
improvements and different variant callers with reasonable accuracy. However, getting
a variant list containing only true variants is still a challenge and false positive calls (FPs)
remain a problem. Some of the FPs are due to the limitations of current tools, however,
random sequencing errors and sequencing biases are other major contributors.
Sequencing biases can be categorized in three main classes coverage bias, batch effects
and systematic errors (Taub, Corrada Bravo, & lIrizarry, 2010; Yang, Chockalingam, &

Aluru, 2013).

Coverage bias

Coverage bias means non-uniform coverage throughout the sequenced genomic
locations. Genomic locations containing low-complexity regions®* like GC-rich sequences
are the major source of coverage bias, that is non-uniform coverage or even no
coverage in these regions (Sims, Sudbery, llott, Heger, & Ponting, 2014). (Dohm, Lottaz,
Borodina, & Himmelbauer, 2008) first studied the effect of the unbalanced GC content
of a genome (known as GC bias) on read coverage and found lower read coverage in GC
or AT rich regions. Soon after, Kozarewa and colleagues showed that amplification
artefacts introduced during the library preparation are the major source of the
heterogeneous distribution of the read coverage (Kozarewa et al., 2009). After that, the
GC bias effect has been studied many times in different contexts with similar
observations (Aird et al., 2011; Chen, Liu, Yu, Chiang, & Hwang, 2013; Chilamakuri et al.,
2014; Clark et al., 2011; Lan et al., 2015). During the library preparation, the PCR step
yields lower amplification of regions with high GC or high AT content which results in
lower sequencing coverage (Clark et al., 2011). Moreover, the GC bias reduces the
efficiency of capture probe hybridization that also leads to lower read coverage
(Chilamakuri et al., 2014). This reduced read coverage might result in many false positive
(FPs) or false negative (FNs) variant calls (cf. Chapter 2). For example, low coverage at a

certain region can be detected as a copy number variant (e.g. deletion) although it is just

> DNA regions having biased nucleotide composition and enriched with simple sequence repeats.

37



Introduction

because of the GC effect. Similarly, some true variant might be missed or filtered out

due to the minimum coverage threshold filter used during variant calling.

Because of the prevalent knowledge about the effect of GC bias, there are many ways to
avoid or correct this effect. It can be avoided either during the library preparation (Aird
et al., 2011; Kozarewa et al., 2009; Oyola et al., 2012) or compensated during the
downstream analysis of sequencing data. (Benjamini & Speed, 2012; Cheung, Down,
Latorre, & Ahringer, 2011) provided the “GCcorrect” tool and BEAD algorithm,
respectively, that perform different normalization techniques for GC bias correction.
Moreover, most of the copy number calling tools based on the depth of coverage
approach (Medvedev, Stanciu, & Brudno, 2009) perform read depth normalization to
correct for the GC bias (Alkan et al., 2009; Fromer et al., 2012; Krumm et al., 2012;
Plagnol et al., 2012).

Batch effect

“Batch effects are sub-groups of measurements that have qualitatively different
behaviour across conditions and are unrelated to the biological or scientific variables in
a study” (Leek et al., 2010). Thus, the different batches of a sequencing experiment can
have errors that are due to the technical or manual variability. For example, usage of
different lots of reagents, chips or instruments can introduce variability between
different batches of sequencing experiments. Moreover, the individual experience of
different technicians handling the samples during the library preparation and
sequencing process can also result in batch effects. Batch effects can easily lead to some
false discoveries or conclusions. Leek and colleagues has summarized the consequences
of batch effects and also demonstrated the presence of batch effects in sequencing data
from the 1000 genomes project (Leek et al., 2010). Moreover, they also provided
solutions to avoid batch effects. Careful study design and some statistical solutions
(exploratory statistical analysis) can easily eliminate the consequences of batch effects

(Leek et al., 2010).
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Systematic error

Systematic error is the error introduced by the sequencing platform that follows some
systematic patterns instead of a random distribution. Systematic errors can be classified
as position specific and sequence specific (Meacham et al., 2011). Position specific error
is the class of errors where the error (i.e. mismatch) occurs mostly at certain genomic
positions or in certain regions of the reads (e.g. base calling errors towards the 3’ end).
In contrast, the sequence specific error is surrounded (upstream or downstream of the
error position) by a certain sequence motif (consecutive nucleotide bases of a certain

length).

As lllumina sequencing is the most widely used technology, lots of studies have been
performed to understand errors generated from these sequencers. It has been observed
that lllumina generates more substitution errors than Indel errors (Dohm et al., 2008).
Dohm et al. observed that most of the subsititution errors are either persent at the ends
of reads (esp. at the 3’ end) or in the GC-rich regions. They found that the nulceotide
base A is substituted by C and C is substituted by G more often then the other types of
base susbtituion. (Kircher, Stenzel, & Kelso, 2009) studied these base calling errors and
found that these errors are more frequent during the first and the last cycles. They
observed that the base calling errors are more frequent in the later cycles due to the
effects of crosstalk, declining intensities, pre-phasing and phasing, and accumulation of
the “T” nucleotide. (Metzker, 2010) reviewed different NGS techonlogies and also
reported that the lagging-strand dephasing is the main cause of this type of sustitution
errors in Illumina data. Dephasing means loss of synchronicity of growing primers for
any given cycle during clonal amplification process (Metzker, 2010). In another word,
when the blocking effect of the 3’-OH group (which allows the next nucleotide base
incorporation) (cf. Chapter 1) does not work (or still works in the next cycle), some
copies of the DNA template lose synchronization with the other copies of DNA template
belonging to the same cluster (e.g. incorporation lags one base behind the rest of
cluster). It can be referred in two ways: lagging strand dephasing and leading strand
dephasing. The lagging strand dephasing refers to the incomple extension of a template

ensemble becuase of lagging behind compared to the rest of the cluster as mentioned
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above. In contrast, leading-strand dephasing is the incorporation of more than one
nucleotide in a given cycle (Metzker, 2010). Based on the available knoweldege, lots of
improvement has been performed like improvements in the sequencing chemistry and
the base calling algorithms. Moreover, recent alignment and variant calling algorithms
are also aware of this type of error. Moreover, some standard filtering strategies are
also able to filter FPs generated by these errors. However, there is still lots to explore in
this class of error as many systematic errors are hard to detect or not detected so far.

Thus, Chapter 4 is dedicated to the exploration of systematic errors.

1.5 Thesis organization

As mentioned above, NGS data analysis comes with certain challenges. This thesis is
aimed to address some of these challenges to enhance the efficiency and accuracy of
DNA sequencing data analysis. The work presented in thesis is my own work except

Chapter 3, which is joint work of Dr. Susanne Motameny and myself.

In Chapter 1, | have provided an overview of NGS technologies, targeted DNA
sequencing methods and their applications. | have briefly mentioned some data analysis

terminologies followed by a description of the main challenges of NGS data analysis.

Chapter 2 provides an overview of the data analysis steps of targeted sequencing as
implemented in our data analysis workflow. It contains details of essential steps
(including their significance) required to generate a variant list from raw sequencing
data. It also describes the possible adverse effects of each step (if used inappropriately)
and highlights the limitations of the applied algorithms. Moreover, it demonstrates the
importance of the selection of appropriate tools and associated parameter settings in
terms of both accuracy and efficiency. Furthermore, it provides an overview of filtering
and benchmarking strategies applied in our data analysis workflow to achieve a good

balance between accuracy and sensitivity of the results.

In Chapter 3, details of our in-house developed automated data analysis workflow are

provided. The aim was to avoid manual repetition of all of the data analysis steps as
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mentioned in Chapter 2 and thus to save time for downstream analyses of data and its
validation. Fast and efficient automated data processing requires a large amount of
computational resources that necessitates its implementation on high performance
computing (HPC) clusters. However, HPC comes with some challenges and requires
certain workflow design principals as parallelization strategies and some other tricks.
This chapter provides details of these design principals and strategies, which gave our

workflow speed, stability and robustness while keeping it easy to maintain.

Chapter 4 is dedicated to an important but hard to detect class of sequencing errors:
Systematic Sequencing Errors (SSEs), which can easily damage the accuracy of the
results. The chapter presents a novel approach to explore SSEs. During the error
exploration, reproducible error behaviour in different datasets has been observed which
led to a newly coined class of errors: “Recurrent Systematic Errors (RSEs)”. The
characteristics of RSEs and some of the known and novel patterns behind this type of
error are described in this chapter. Moreover, an RSE filtering tool “FilterRSEs” has been
developed, which can filter FPs (due to RSE) from a given variant list (VCF file). It uses
the detected RSE location and associated annotations to provide different filtering

options.

Chapter 5 concludes the thesis with a discussion of the findings and an outlook on

current and future developments.

1.5.1 Relevant publications

The following publications related to this thesis have been published:

* leveraging the Power of High Performance Computing for Next Generation
Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome
Workflow. Amit Kawalia, Susanne Motameny, Stephan Wonczak, Holger Thiele,
... Ulrich Lang, Viktor Achter, Peter Nirnberg. PLOS ONE (2015)

* Rare variants in y-aminobutyric acid type A receptor genes in rolandic epilepsy

and related syndromes. Reinthaler EM, Dejanovic B, Lal D, Semtner M,
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...Kawalia A...EuroEPINOMICS Consortium, Nirnberg P, Lerche H, ....Neubauer
BA, Zimprich F. Annals of Neurology (2015)

Homozygous and compound-heterozygous mutations in TGDS cause Catel-
Manzke syndrome. Ehmke N, Caliebe A, Koenig R, Kant SG, .., Kawalia
A...NUrnberg P, Siebert R, Manzke H, Mundlos S. American Journal of Human
Genetics (2014)

Mutations in STX1B, encoding a presynaptic protein, cause fever-associated
epilepsy syndromes. Schubert J, Siekierska A, Langlois M, May P, ..Kawalia
A..Nirnberg P, Crawford AD, Esguerra CV, Weber YG, Lerche H. Nature
Genetics (2014)

DEPDC5 mutations in genetic focal epilepsies of childhood. Lal D, Reinthaler EM,
Schubert J, ...Kawalia A...Nlirnberg P, Sander T, Weber Y, Zimprich F, Neubauer
BA. Annals of Neurology (2014)



Chapter 2
Accurate DNA sequencing data analysis:
hurdles and solutions

Almost every day, sequencers produce huge amounts of DNA sequencing data
containing millions of sequencing reads. Raw data coming out from these machines
contain only sequencing reads and their quality scores. Each sequencing read is just a
series of four letters (A, T, G, C) representing the four nucleotides (adenine, thymine,
guanine, cytosine, respectively) and does not provide any significant information in its
original state. To make sense of these raw sequencing data, they need to go through
various bioinformatics analyses. Conversion of a raw sequencing file (fastq file) into a
variant list (VCF file) requires certain data processing steps (Van der Auwera et al., 2013)
that can be mainly categorized into 4 different sections: pre-processing, alignment,

variant calling, and functional annotation.

All of these analysis steps are interconnected, build on each other, and usually involve
running some tool or script. Thus, every analysis step can affect its consecutive analysis
in an adverse manner if not used appropriately. For example, discarding bad quality data
during the quality control step can improve the specificity of results. However, this can
lead to loss of data and hence lower sensitivity of results. Similarly, selection of wrong
tools/algorithms with their default (or inappropriate) parameter settings can also lead to
bad specificity or sensitivity. Both of these situations are harmful for the final results and
can mislead variant discovery. Less specific results contain lots of false positives, which
make detection of true variants complicated. On the contrary, less sensitive results can
lead to the absence of some true variants in the final variant list. Thus, finding a proper

balance between specificity and sensitivity of results is very important.

This chapter aims to address these issues in order to achieve a good balance between
sensitivity and specificity of the results (cf. Section 1.3). It provides a description of the

main steps of DNA sequencing data analysis, their significance and the possible adverse
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effects. It contains details of pre-processing of raw data, alignment, variant calling,
filtering, and evaluations of variant calls. The variant calling step can be categorized in
four different parts: Single nucleotide polymorphism (SNP), insertion & deletions
(Indels), copy number variants (CNV) and structural variants (SV) calling. | will provide
details of only SNP and Indels calling, as | tested and implemented this part of the
variant calling. In CNV calling, SV calling, and functional annotation of variants, | have
only contributed in the HPC (High Performance Computing) implementation; thus, this
part of our workflow will not be described here. In the following, each of these steps are
described in separate sections containing the significance of the particular analysis,
followed by a brief introduction (or comparison) of relevant tools executing this analysis
and their limitations (if exists). Thereafter, details of the selected tool or my own
solution (e.g. self-developed scripts) and the reasons behind the selected solution are
provided. At last, | provide some insights (both known and learned during testing) into

the adverse effects of analysis steps (if used inadequately).

| have tested different tools belonging to all of the above-mentioned data analysis
categories in terms of their efficiency and accuracy. A good tool for the data analysis
workflow should be fast and resource-efficient (e.g. use a small number of cores and a
small amount of memory) (cf. Chapter 3). Moreover, it should generate a balanced
result in terms of specificity and sensitivity (cf. Section 1.3). Thus, | have performed
extensive testing of different tools and their parameter settings and selected the
relatively best tool with its optimum performance. At last, we evaluated the results
generated from our data analysis workflow in order to confirm that our selection of
tools, parameters and filtering strategies are satisfactory. All of the testing is performed
on human sequencing data and all observations or suggestions in this entire chapter are
for human sequencing data analysis (especially for exome sequencing experiments with

Illumina sequencing technology).
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2.1 Pre-processing of raw data

This is the first and a very significant step for any kind of data analysis. Raw sequencing
data from sequencers is not always having good quality and can have some fallacious
characteristics. Thus, before any analysis steps, a quality check of the data should be
performed to distinguish between a bad and a good quality sample?’. For example, a
good quality sample should have base quality scores greater than 20 for all bases at each
position in the read, should have less GC bias and no adapter contamination etc. The
detailed information about these quality checks and their significance can be found in
Appendix. The quality control (QC) can be performed by the FastQC tool**, PRINSEQ**
(Schmieder & Edwards, 2011) or any other similar tool. | tested both FastQC and
PRINSEQ and found that they are quite similar and efficient enough to perform some
basic quality checks (cf. Appendix). However, | selected the FastQC tool for QC, as it is a
well tested and adapted tool by the bioinformatics community (Kircher, 2011; Mutarelli
et al., 2014; Pabinger et al., 2013). A widely used tool is more likely to be bug free than

the less popular tool.

If a sample reported as a bad quality sample by QC reports, then it should be either
discarded or should undergo certain processing steps to improve the quality. For
example, if a sample is showing bad quality scores towards the end of the reads then
trimming of these bases can improve the overall base quality scores. Thus, | perform
following QC steps either by default or based on the QC report generated from the
quality checks. The decision of performing these steps can vary from one data to

another.

%> Good quality sample:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good _sequence short_fastgc.html (This and

subsequent URLs are accessed on 28 June 2015)

23 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

** http://prinseq.sourceforge.net/index.html
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2.1.1 Adaptor trimming

Adaptors are short oligonucleotide (oligo) sequences required to link the end of a DNA
fragment to the surface of the sequencing platform (cf. Section 1.1.1). If the fragment
size is smaller than the read length, the sequencing reaction will continue into the
adaptor resulting in the presence of a partial or complete adaptor sequence inside a
read (Kircher, Heyn, & Kelso, 2011). These adaptor sequences are not a part of the
reference genome sequence and might damage alignment accuracy by inserting lots of
mismatches during their mapping on the reference sequence. Therefore, the detection

and removal of these sequences can also enhance the accuracy of results.

| tested FASTX-Toolkit® and Cutadapt tool (Martin, 2011) for adaptor trimming. Both
tools are widely used tools, but | preferred Cutadapt due to its flexibility and additional
functionality. Cutadapt performs gapped alignment of single or multiple adaptors on
only 3’ or 5’ end or both end of the read sequence. It allows selecting the mapping error
rate and length of overlap and will remove the best matching adaptor. It can either trim
few bases or can discard the entire read when the read length becomes too short after
trimming. Overall, it is a very flexible tool, which performs good adaptor matching and
trimming with its default parameter setting on our exome data. In contrast, the FASTA/Q
Clipper method of the FASTX-Toolkit for adapter trimming performs only basic adapter

clipping and does not have all of the functionality (or flexibility) provided by Cutadapt.

A faulty adapter trimming can be a reason of loss of information or false positives, if the
appropriate parameter selection is not performed. As mentioned above, the default
parameter setting works well on our exome data, but an optimum combination of
parameters can vary from one data to another. There are two critical parameters in
Cutadapt: minimum overlap and error rate. If a low value of minimum overlap and a
high error rate are used during adaptor matching, then the tool can perform partial
mapping of the adaptor sequence on the reads. These partial matches are considered as

adaptor matches that trigger adapter trimming. Thus, the tool will trim a portion of a

%* http://hannonlab.cshl.edu/fastx_toolkit/
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read that actually not having adaptor contamination and this way lead to a loss of

sequencing reads.

2.1.2 Quality based trimming

Raw sequencing reads can have low quality bases at one or both ends (Dohm et al,,
2008). As explained in Chapter 1, nucleotide bases are identified one by one from the
cluster of identical molecules through various sequencing cycles. During these
repetitions (cycles), error propagation or accumulation can happened due to various
causes, such as, air bubbles, spot-specific signal noise, malfunctioning of laser or lens
(Del Fabbro, Scalabrin, Morgante, & Giorgi, 2013). This can lead to quality deterioration
towards the ends of a read. Thus, low base quality scores can be found at the ends that
indicate less confident base calling meaning that the called base can be wrong. Figure
2.1 shows the effect of quality trimming on one of the in-house sequenced exome
sequencing datasets. It contains large amounts of bad quality bases (< 20 base quality
score) at the end of reads (cf. Figure 2.1 (A)). However, quality trimming removes all bad
quality bases, which improved the overall quality of the data (all bases in reads now
have a base quality score > 30) (cf. Figure 2.1 (B)). If the quality trimming is not
performed on this kind of data, then mapping of these wrong bases on the reference
sequence can easily disrupt the alignment accuracy (resulting in bad mapping quality)
and contribute to false positives in variant calling (Del Fabbro et al., 2013). Therefore,
trimming or soft clipping (masking) of these bases from both ends (5’ and 3’ end) of a
read (or at-least 3’ end) is required. If a read is having high number of bad quality bases,

then the entire read should be discarded.

For the quality trimming, | first tested some standard quality trimming tools like FASTX-
Toolkit, seqtk?®. The FASTX-Toolkit quality trimmer works well on the data but performs
trimming only on the 3’ end of reads ignoring the 5" end. Another tool, seqtk is able to
perform trimming on both ends. However, both tools do not provide a direct parameter

to discard reads that have bad quality bases beyond the given or desired proportion.

% https://github.com/lh3/seqtk
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Furthermore, they are not able to keep pairing information if one read of a pair is
discarded completely. Thus, to overcome these issues, | wrote a perl script to trim bad
guality bases from both ends of a read. The trimming approach is partially based on

n28

BWA's soft-clipping method?’ as implemented in the “TrimBWAstyle”?® script. It screens

the base quality scores from the end of a read and trims the low quality part (bases
below the cutoff value). The script checks for a low quality base (score less than a given
guality threshold) among the last or first five bases at the 3’ and 5’ end, respectively.

This base position is the starting position for the trimming action (start base).
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Figure 2.1 Effect of quality trimming on our in-house data. A) Base quality score across all bases before
trimming. B) Base quality score across all bases after trimming (Y-axis: base quality score, X-axis: position

of base along read).

27 https://github.com/lh3/bwa/blob/master/bwasegio.c

%8 http://wiki.bioinformatics.ucdavis.edu/index.php/TrimBWAstyle.pl
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The script computes the difference between the quality score of the start base and the
given quality threshold. Then it moves to the next base in downstream or upstream
direction from the start base (for 5’ and 3’ end, respectively); computes the difference
to the given quality threshold (as mentioned above) and adds this new difference value
to the prior value. It continues this procedure till the final value of the sum of the
differences drops to zero (<= zero). Bases up to the position where the score drops to
zero are trimmed. As it considers the quality score of neighbouring bases, it can allow
for a few good quality bases during the trimming action (depending on the score’s
range) and continue to hunt for preceding/following bad quality bases. Thus, this
strategy is better than the basic hard trimming, which lacks the above-mentioned
feature and only trims a continuous stretch of bad quality bases. The quality trimming
script also discards the entire read if the read length (after trimming) becomes shorter
than a given threshold or the percentage of bad quality bases in a read is more than a
given threshold. Moreover, it keeps the pairing information when a read is completely
discarded during trimming. The pseudo code of trimming script can be found in the

Appendix.

In general, quality trimming is beneficial for bad quality data, but it can have some
adverse effects. Discarding a significant amount of bases or the entire read could
decrease the read coverage, which might affect the sensitivity or specificity of results.
There are a few examples to illustrate the above-mentioned effect:

1. If the majority of reads from a sample have intermediate (10-20) or low base
guality scores (< 10) and a high quality score (usually 10 or 15) threshold is used
for trimming, then most of the data will be discarded that leads to less sensitive
results.

2. If the data is having low read coverage and trimming decreases it further, then it
can be dangerous for variant calling and could introduce many false positives or

false negatives due to lack of supporting evidence.

Overall, the decision to do quality trimming and adapter trimming (including selection of

appropriate thresholds or parameters) should be based on the data that needs to be
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analyse or should be driven from its QC reports. Generalization (or default application)
of this approach can hurt downstream analysis steps and produce less reliable results

(MacManes, 2013).

2.2 Sequence alignment

Sequence alignment/mapping is the comparison between sequenced DNA and the
reference genome sequence to identify the differences or regions of similarity. Thus, the
alignment of reads to the reference sequence is the backbone of the entire data
analysis. An alignment algorithm tries to find an optimal alignment for an individual read
on the reference. For this purpose, it searches the reference genome for locations
where the read can be mapped (possibly with gaps or mismatches), assigns an alignment
score to each of these mappings and then selects the one with the highest score as the
optimal alignment. Whether or not a read can be mapped depends on the number of
allowed mismatches and gaps that are usually supplied by parameters and tune the
alignment algorithm’s sensitivity and specificity. The sensitivity and specificity of
alignment algorithm can directly affect the number of false positive or false negative
variant calls, respectively. If the alignment is too specific, i.e. allowing few or no
mismatches/gaps during sequence mapping, then it is possible that many reads won’t
map to the reference that decreases the read coverage on many sites. Due to the lower
coverage, a variant from such a site will not be called, even though it might be a real one

(cf. Figure 2.4).

On the other hand, if the alignment is too sensitive, i.e. allowing more mismatches/gaps
during the mapping, then it will result in lots of randomly mapped reads and can
produce many false positives (cf. Figure 2.4). Besides the allowed error rate, other data
characteristics like read length, sequencing platform, type of experiment etc., are also
important factors to consider. All of these factors are interconnected to each other, for
example, read length and error rate depend on the sequencing platform whose
selection depends on the aim of study. Long reads with a low error rate are the best-
case scenario having high probability for unambiguous mapping to the reference

genome sequence. Therefore, we need to consider the above-mentioned factors
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carefully, in order to get an adequate balance between sensitivity and specificity. There
is a trade-off between the two effects that means if we go for high sensitivity then

specificity will decrease and vice-versa.

Recent alignment algorithms (H. Li & Homer, 2010) (based on the above mentioned
concepts) are much more complex than the basic algorithms (cf. Section 1.3) and align
millions of sequence reads to the reference sequence in more efficient manners. The
Burrows-Wheeler Transform (BWT) (Burrows & D. J. Wheeler, 1994) is a widely used
algorithm for this purpose and implemented by almost all popular alignment tools, e.g.
BWA (H. Li & Durbin, 2009), Bowtie (Langmead, Trapnell, Pop, & Salzberg, 2009), SOAP2
(R. Li et al., 2009). BWT is a fast and memory efficient algorithm that performs index-

based sub-string searching by using a reversible permutation of characters.

| used BWA for the alignment of reads to the human reference genome (GRCh37%°). This
reference sequence is taken from 1000 genome project®, but | replaced the original
mitochondrial DNA sequence with NCBI’'s mitochondrion reference sequence
(NC_012920*'). BWA is one of the accurate and widely used aligner for DNA sequencing
reads. It has been used in many studies and has also been compared with other popular
alignment tools like Bowtie and Novoalign®? (Giannoulatou, Park, Humphreys, & Ho,
2014; Hatem, Bozdag, & Catalylrek, 2011). (Highnam et al.,, 2015) developed a
benchmarking platform (GCAT*?), where different data analysis algorithms can be
compared on real biological data. GCAT benchmarking also suggests that the BWA-MEM
algorithm is one of the best alignment algorithms similar in terms of correctly aligned

reads to Novoalign (the best alighment algorithm so far, but only commercially available

%% http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

* http://www.1000genomes.org/category/reference

3 http://www.ncbi.nlm.nih.gov/nuccore/NC_012920.1

32 http://www.novocraft.com/products/novoalign/

* http://www.bioplanet.com/gcat
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with full functionality) (cf. Figure 2.2). BWA can perform both paired-end (PE) and single-
end (SE) alignment by 3 different algorithms>*:

1. BWA-backtrack (H. Li & Durbin, 2009): performs gapped global alignment and is
mainly used for lllumina PE and SE reads (< 100 bp).

2. BWA-SW (H. Li & Durbin, 2010): performs Smith-Waterman alignment and is
typically used for 454/Sanger single-end reads (up to 1 MB). It can also perform
sensitive alignment of paired-end reads (> 100 bp).

3. BWA-MEM (H. Li, 2013): This is the latest algorithm (similar to BWA-SW) that
searches for maximal exact matches (MEMs). It is more accurate and faster than
the other two algorithms and can replace them for alignment of reads between

70bp to 1Mbp.

@ Bowtie2 Bwa @ Bwa_MEM-noSplit @ Novoalign3

1.6%
1.0%

0.10%

0.010%

0.0010%

Incorrect Reads % (log scale)

0.0%
0% 20% 40% 60% 80% 100%

Correct Reads %

Figure 2.2 GCAT comparison of 4 different alighment algorithms. It shows the percentage of correctly and
incorrectly mapped reads (on X and Y axis respectively) on simulated paired-end 100-bp Illumina reads.

This figure is taken from (Highnam et al., 2015).

| performed extensive testing of BWA parameters to get the best possible alignment.
Initially, BWA offered only two different algorithms: backtrack and SW (see above). As

most of our data (esp. from Illlumina exome sequencing) contain reads less than 100bp, |

** Before using these algorithms, one first needs to construct the FM-index for the reference genome by

using BWA'’s index function.
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selected BWA-backtrack for alignment. | also used BWA-SW for alignment of sequencing
data generated from lon torrent and 454 sequencing technologies (as they generate
longer reads > 100bp). However, as mentioned above, | mainly used lllumina data and
performed major testing and analysis with these data only. | tested some of the relevant
parameters of the BWA-backtrack to see their effects on alignment like maximum edit
distance (n), maximum edit distance in the seed (k), seed length (), etc. (cf. Appendix). |
found that the default parameter settings work well for most of these parameters.
However, | observed significant differences in the sensitivity and specificity of the
alignment when changing the maximum edit distance (n) parameter®>. This parameter
regulates the number of allowed mismatches during alignment of reads. Thus, higher
value means more sensitive alignment and vice-versa. Recently, BWA started to perform
better alignment by using the new MEM algorithm compared to the alignments
generated by backtrack algorithm. BWA-MEM allows moderate error rates during
alignment and provides a good trade-off between sensitivity and specificity of
alignment. It is also recommended by the BWA developer to replace the old backtrack
algorithm by MEM on the reads having read length greater than 70bp. | compared the
generated alignments on our control sample NA12878 (cf. Section 2.4.2) from both
algorithms in the following contexts: alignment statistics and evaluation of variants

called from the generated alignments.

Alignment statistics

There are a few basic alignment statistics like total number of aligned reads, high quality
aligned reads or bases etc. that can provide an overview of an alignment algorithm’s
sensitivity or specificity. In general, a higher percentage of aligned reads means that the
alignment is more sensitive. Table 2.1 shows alignment statistics computed from
alignments generated by BWA-MEM (with default parameters) and BWA’s backtrack
algorithm (BWA-aln) with default parameters as well as with n=7 (remaining parameters
are at default values). | used the Picard tool to compute these alignment statistics (cf.

Section 2.2.2). As shown in the table, BWA-MEM performs better in every aspect of the

3 http://bio-bwa.sourceforge.net/bwa.shtml
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read alignment. It aligned more reads with a higher percentage of high quality (HQ)
aligned reads and bases than the BWA-aln algorithm (at both default and n=7). This
means BWA-MEM performs read alignment with higher sensitivity and specificity (with
less noise reads containing only of A bases and/or N bases® entirely) than the BWA-aln
algorithm. Moreover, BWA-MEM is faster than BWA-aln and takes approximately 4
hours less compared to BWA-aln at n=7. As mentioned above, BWA-MEM works better
with reads having a read length greater than 70bp. Thus, BWA-aln algorithm is required
for the alignment of short reads (< 70bp read length). This algorithm is more sensitive at
n=7, as it aligns more reads with a bit higher percentage of high quality (HQ) aligned

reads and bases, than at default parameters.

BWA'’s Total % % Reads % HQ Noise % HQ Approx.
algorithms Reads Aligned aligned Aligned Reads Aligned Time
Reads in pair Reads Bases taken>’
aln 92078710 0.968 0.995 0.937 487 0.938 3,0
(default n)
aln (n=7) 92078710 0.974 0.995 0.938 469 0.938 5,30
MEM 92078710 0.988 0.995 0.940 0 0.942 1,10

Table 2.1 Comparison between BWA'’s alignment algorithms in context to reads alignment.

BWA’s Raw Variants  Recal Ti/Tv Ti/Tv TPR FPR TPR FPR
algo-  variants After SNPs ratio ratio Recal’® Recal After After

rithms Hard Recal After SNPs SNPs Hard Hard

Filtering SNPs Hard Filtering  Filtering
Filtering
aln 588102 517099 38156 2.74 2.85 0.995 0.029 0.986 0.007
(n=7)

MEM 730044 670800 37592 2.81 2.87 0.995 0.017 0.986 0.004

Table 2.2 Comparison between BWA’s alighnment algorithms in context to called variants.

*® https://broadinstitute.github.io/picard/picard-metric-definitions.htmI#AlignmentSummaryMetrics

*’ The format of time is in hours, minutes. All algorithms ran with 4 cores and 8 gb RAM.

*% Filtered SNPs by VQSR
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Variant list evaluation

The performance of alignment algorithms can also be evaluated by the sensitivity and
specificity of variant lists (cf. Section 2.4). To do this, | generated variant lists with
GATK'’s Unified Genotyper variant caller (cf. Section 2.3), using reads (100 bp or longer)
aligned by both BWA-MEM and BWA-aln algorithms followed by the same post
alignment improvements (cf. Section 2.2.1). Table 2.2 shows the number of called
variants with their evaluation. The variant list generated from the aligned reads by BWA-
MEM shows the higher Ti/Tv ratio, lower FPR with the same TPR after both types of
filtering (Hard and VQSR) (cf. Section 2.3.1). This clearly indicates that BWA-MEM is a

better algorithm than the BWA-aln for reads greater than 70 bp in length.

Effect of alignment sensitivity and specificity at variant sites

Besides the evaluation of sensitivity and specificity of called variants, | observed some
significant effect on a few variants at different levels of alignment sensitivity. Figure 2.3
shows the difference between the alignment of reads at position chr 2: 97820417
(highlighted with vertical dotted bars) by BWA-aln (shown in the right part of the figure)
and BWA-MEM (shown in the left part of the figure). BWA-aln (at n=7) is having high
sensitivity thus it aligned a few more reads (18 reads more than BWA-MEM), which
provided strong support for the alternate allele “G” at this position with 34% frequency
compared to 16% frequency in aligned reads by BWA-MEM (frequencies of alternate
allele and reference allele are shown in white boxes). Due to the high alternate allele
frequency this variation can easily be called as a SNP, although it is a FP (validated by
GIAB benchmarking (cf. Section 2.4.2)). Moreover, the sensitive alignment by BWA-aln
also increased the frequency of nearby alternate alleles depicted in the coloured bar in
the coverage track (shown in grey colour at top of the both figures), which results in
more FPs from these sites (also reported as FPs by GIAB benchmarking). However, due
to the moderate sensitivity of BWA-MEM, fewer mismatches are allowed during the

mapping of reads that resulted in a less noisy alignment, and thus, less FPs at this site.
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Figure 2.3 Difference between the alignments produced by BWA-MEM and BWA-aln at n=7.
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Figure 2.4 Difference between the alignments produced by BWA-aln at n=0.04, n=7 and n=10.
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Similarly, Figure 2.4 shows the adverse effect of sensitive alignment on the real deletion
of 11bp in one of the old test exome datasets (sequenced in-house). Part (a) of the
figure shows an alignment performed by BWA-aln at default value of n (n=0.04), part (b)
at n=7 and part (c) shows a more sensitive alignment at n=10. At default n, the BWA-aln
performs more specific alignment, thus we can observe a lower number of aligned reads
in the coverage track (shorter grey coloured bars) compared to the other diagrams. Due
to the lower number of the supporting reads (only 10 reads), this variant can be skipped
or filtered by variant callers. In the other alignments n=7 (part b) and n=10 (part c), more
mismatches are allowed during the alignment that result in a few more supporting reads
for this deletion. However, due to the increased sensitivity at n=10, a few extra reads

with a one base deletion and lots of mismatches can be observed.

After observing the effect of sensitivity and specificity of the alignment algorithm, |
decided to rather perform sensitive alignment instead of a too specific one, as false
positives can be filtered at any stage after the alignment. However, lost data due to
specific alignment cannot be retrieved later on. As most of the recent lllumina
sequencing reads are longer than 70bp, | have not tested the effects of BWA-MEM on
sequencing reads < 70 bp and simply follow the BWA developer’s recommendation to
use BWA-MEM for reads longer than 70 bp. | use BWA-backtrack in sensitive mode (n=7)
only for Illumina sequencing reads < 70 bp, whereas BWA-MEM is used for reads having
read length => 70 bp. | also use the same combination for the alignment of sequencing
reads generated from lon-torrent sequencers. These reads are usually having unequal
read length, thus, | split the data into two parts: reads having length < 70 bp and reads
having length > 70 bp. After data splitting, | perform alignment similar to lllumina reads
(as mentioned above). Hence, the selection of algorithm and parameter tuning should
also be based on characteristics of the targeted data like read length, sequencing

platform etc.
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Even with the proper selection of the parameters, alignment algorithms are not able to

perform accurate mapping in certain genomic regions, especially in the following

genomic regions:

Low complexity regions (LCRs): LCRs are the regions that are highly enriched with
one or combination of a few nucleotide bases (Radoé-Trilla & Alba, 2012), for
example, simple repeats (micro-satellites), poly-purine/poly-pyrimidine
stretches, or regions of extremely high AT or GC content®. In these regions,
alignment algorithms produce mappings with many mismatches or fail to map a
read on the reference sequence, using sensitive or strict alignment, respectively.
Moreover, due to the sequence similarity in repetitive regions, they can map a
read at multiple positions or at the wrong position (Treangen & Salzberg, 2012).
For example, reads belonging to gene A can map on gene B having high sequence
similarity to gene A or can map on both genes. This might lead to either loss of a
true variant or many FPs (SNPs, Indels). Indel errors are very prominent in these
LCR regions and also cannot be ignored by modern variant callers which perform
realignment before variant calling (H. Li, 2014) (cf. Section 2.3).

Highly divergent regions (HDRs): HDRs are regions where sequences are having
less than 99.5% identity in the human genome (e.g. GC rich regions, highly
recombining subtelomeric regions) (Kuruppumullage Don, Ananda, Chiaromonte,
& Makova, 2013). These regions are hard to sequence by short read NGS
techniques and also cannot be mapped accurately by alignment algorithms.
These regions sometimes resemble to some structural variants*® (SVs) associated
with segmental duplications and are also problematic for SV detection.

Regions belonging to paralogous genes: Paralogous genes are duplicated genes
within a species (usually genes belonging to a gene family). They can have slightly
different functional roles or can be pseudogenes (functionally inactive genes). In
this case the aligner can map reads to multiple positions (to a gene as well as to
its paralogous gene(s)) or can produce a wrong mapping (mapping on the

paralogous gene(s) only). Therefore, these genes contain many FPs and appear

9 http://www.repeatmasker.org/webrepeatmaskerhelp.html#lowcomp

% http://grantome.com/grant/NIH/F32-GM097807-01
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frequently during variant discovery experiments (Arthur, Cheung, & Reichardt,

2015; Meldrum et al., 2011).

2.2.1 Post processing of aligned reads

Quality control and good alignment (with optimum settings) are not sufficient to get an
accurate alignment of the reads. There are still some errors or mapping artefacts
present in the data that can be addressed or filtered only after alignment (Liu et al.,
2012; Nielsen, Paul, Albrechtsen, & Song, 2011). Thus, to avoid these errors additional
post processing of aligned reads is required. This post processing is suggested by the
GATK best practice guideline®® (Van der Auwera et al., 2013) and has become a standard
procedure or default step in the majority of the data analysis workflows (D’Antonio et
al., 2013; Lam et al., 2012). | also tested it and found it useful for exome sequencing
data. The following sections contain three steps (cf. Figure 3.1) of the post processing of

the aligned reads and their improvements.

Duplicate marking (removal)

PCR amplification during library construction can result in duplicate reads, which might
lead to FPs during variant calling. A variant at some site can be called by a variant calling
algorithm due to the high read depth (number of supporting reads) that is actually only
generated by an accumulation of duplicates. Additionally, many duplicates of a read
with wrong Indels (aligned due to the in-accurate read mapping) can mask the correct

Indels during Indel realignment (cf. Section “Local Indel realignment”).

| used the Picard tool** to remove duplicates. Picard is widely used tool and has many
functionalities like duplicate removal/marking, BAM to fastq conversion, BAM/SAM file
merging, computation of alignment and enrichment statistics etc. Its MarkDuplicates
algorithm compares 5 coordinates and mapping orientations of each read pair and

marks all pairs as duplicates for which these parameters are identical. It keeps one read

* https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq

* http://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates
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pair®® among all duplicates based on the highest sum of base qualities, where the pair
should have all bases with quality (Q) >= 15. Duplicate removal should be performed on
the entire BAM file (not on BAM files split e.g. by chromosome), to find inter-
chromosomal duplicates. In some experiments, due to their chemistry (e.g. in the PCR
based target selection approach), most of the reads can be detected as PCR duplicates
by the MarkDuplicates tool. However, these reads are not duplicates and discarding
them might lead to significant loss of data. Therefore, an on/off switch for triggering

duplicate removal based on the type of data is used in our data analysis workflow.

Local Indel realignment

Alignment algorithms can fail to map some Indels correctly at some position and can
produce different alignments for different reads. Some reads can have one or a few
mismatches at that position instead of one complete Indel, and some reads can map
without Indels. These misalignments can result in FPs or loss of some Indels during
variant calling. Thus, Indel realignment is an essential step to correct misalignments by
performing multiple sequence alignment (MSA) on suspicious positions. Figure 2.5
shows some alighment inaccuracies and their correction by local Indel realignment at a
certain position of our in-house data. Part (a) of the figure shows the raw alignment
(before realignment). It is showing a deletion (and some mismatches) with very few
supporting reads (highlighted in the green coloured circle shape) that might lead a
variant caller to skip this deletion. In part (b), we can see the improved alignment after
Indel realignment and a sufficient increment in the number of supporting reads to
detect the deletion (without mismatches) present at this site. The Indel realignment
method is a part of the Genome Analysis Tool Kit** (GATK) (DePristo et al., 2011;
McKenna et al., 2010). It is a two-step process: at first, it checks for suspicious intervals
(esp. near Indels) in the alignment and then performs local realignment (MSA) over
those intervals. The detailed information of this two-step process can be found in

Appendix.

* http://broadinstitute.github.io/picard/fag.html

* https://www.broadinstitute.org/gatk/guide/topic?name=methods
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a.) Before Indel realignment b.) After Indel realignment

Figure 2.5 Improvement in the alignments after Indel realignment process.

Base quality score recalibration (BQSR)

BQSR is also a part of GATK, which adjusts under or over estimated base quality scores,
resulting from systematic biases during sequencing or due to the inaccurate estimation
by the sequencer’s basecalling software. It assigns new quality scores by calculating the
probability of a mismatch on the reference sequence. For example, if the original quality
score of a base is 25 (good enough for variant calling), but if this base is actually
observed to be a mismatch on the reference at a 1 in 100 rate, then it should have 20 as
a quality score value. Thus, an overestimated quality score provides false confidence in
the base call and can lead to FPs. Moreover, it is known that the base calling errors are
higher towards the end of the reads (means in lower cycles) than at the beginning of the
reads. It has also been observed that the mismatches are associated with sequence
context, the dinucleotide AC is usually having lower quality than TG** (Dohm et al., 2008;
Nakamura et al., 2011). BQSR is addressing these errors by correcting bases quality score
based on the analysis of four different covariates: read group, quality score, machine
cycle and di-nucleotide, from the given data. The details of BQSR method can be found

in Appendix.

** http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bgsr
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2.2.2 Alignment & enrichment statistics

After post alignment improvement, it is good to assess the overall sample quality in
terms of coverage and alignment quality. Both, specificity and sensitivity of variant
detection can be lowered by bad quality data. Thus, alignment and enrichment statistics
can help to decide whether a certain sample is good enough for variant calling or not.
For example, a sample should have at least 20X read coverage with good mapping
quality (> 20 or > 30) throughout the sample. Moreover, a high percentage of aligned
reads, uniform quality distribution by cycle, small deviation in the insert sizes are other
useful parameters to judge a sample and its alignment quality. | used the Picard tool to
compute alignment and enrichment statistics. It generates a summary of alignment*®
parameters, e.g. total number of aligned and unaligned reads, read length and insert
size distribution, mapping quality distribution, quality by machine cycle, etc. It also
summarizes the sample coverage®’ by giving coverage values at 2X, 10X, 20X, 30X and

the proportion of on/off target reads.

2.3 SNP/Indel calling

Apart from the alignment accuracy, accurate SNP/Indel calling is also necessary to find
some true causal variants in the sequencing data. There are lots of different variant
calling algorithms that claim to find variants from sequencing data (Bao et al., 2014;
Pabinger et al., 2013). However, it has been reported that there is low concordance
between the results from different variant callers (O’Rawe et al., 2013; Yi et al., 2014).
Therefore, | also tested 4 different variant callers: Platypus (PP) (Rimmer et al., 2014),
Samtools (H. Li et al., 2009) mpileup (MP), GATK’s Unified Genotyper (UG) and
Haplotype Caller (HC) (DePristo et al., 2011; McKenna et al., 2010).

Variant lists were generated from BWA-MEM alignments of the in-house sequenced
control sample NA12878 (cf. Section 2.4.2) followed by post-processing. Default or

suggested parameters have been used for all variant callers (with base quality score>10).

*® https://broadinstitute.github.io/picard/picard-metric-definitions.htmI#AlignmentSummaryMetrics

* https://broadinstitute.github.io/picard/picard-metric-definitions.htmI#HsMetrics

62



SNP/Indel calling

Figure 2.6 shows the number of variants in sample NA12878 called by Samtools mpileup,
GATK’s HC and Platypus. As can be seen in the figure, HC is more sensitive and calls a
larger number of variants than the other tools. On the other hand, mpileup focuses on
accuracy and calls much less variants than the other callers. Among our four variant
callers, GATK’s UG and Samtools’ mpileup use a Bayesian approach (H. Li, 2011) to call
SNPs and Indels and treat each position independently. These alignment-based
approaches provide sensitive variant calling but also produce many FPs. The algorithms
rely on alignment accuracy, which is not good in low complexity regions (LCRs) and in
highly divergent regions (cf. Section 2.2). Although misalignment near Indels can be
corrected by local realignment (cf. Section 2.2.1), still these algorithms can produce
errors around Indels and larger (complex) variants (Rimmer et al., 2014). On the
contrary, PP and HC are the most recent and sophisticated haplotype-based callers. Both
tools perform local denovo assembly (by building a De Bruijn-like graph) in order to find
the correct haplotype, which is used for SNP/Indels identification, and try to compensate
for the above-mentioned drawbacks. However, these methods can perform badly in
repetitive regions due to the loss of contiguity information during the segmentation of
reads into consecutive k-mers, which is required for graph construction (Rimmer et al.,
2014; Zerbino et al., 2008). Thus, the integration of callers from these two different
algorithms is better than the usage of a single algorithm to achieve highly accurate and

sensitive variant calls.

Table 2.3 shows the performance of different variant callers and the integrated
approach (the combined results from different callers) in the context of sensitivity and
specificity of variant lists generated for control sample NA12878 (cf. Section 2.4).
Mpileup’s VCF file is excluded from this comparison due to some compatibility issues. In
this comparison, a significant difference between numbers of raw variant calls can be
observed which result in little overlap between these callers (cf. Figure 2.6). Unified
Genotyper (UG) calls approximately two times more variants than Haplotype Caller (HC)
and Platypus (PP). These three callers showed good sensitivity (TPR > 99%) with
reasonable specificity (FDR < 0.02). However, the combined results from these three

callers, where a variant should be called by at least 2 callers (minN2), showed better

63



Accurate DNA sequencing data analysis: hurdles and solutions

results in terms of specificity (lower FDR and better PPV) with almost identical
sensitivity. The Ti/TV ratio of the combined variant calls is also higher than the calls from

an individual variant caller.

@BWA-MEM_Platypus @ BWA-MEM_HC @ BWA-MEM_Mpileup

25849
220298

Figure 2.6 Overlap between raw variant lists of control sample NA12878 generated from 3 different
variant callers. Number of variant calls generated by Samtools mpileup, GATK haplotype caller (HC) and

Platypus are shown in green, orange, and blue colour, respectively.

Variant Raw Shared Match Non- FDR TPR FPR PPV  Ti/Tv

Callers Variants Raw Match
Variants
UG 718794 23721 23327 394 0.0166 0.995 0.0168 0.983 2.812
HC 443366 23524 23286 238 0.0101 0.994 0.0102 0.989 2.851
PP 283755 23602 23275 327 0.0138 0.993 0.0140 0.986 2.818

Combined 303722 23412 23275 137 0.0058 0.993 0.0058 0.994 2.872
(minN2)
Combined 735351 23885 23341 544  0.0227 0.996 0.0232 0.977 2.78
(minN1)

Table 2.3 Comparison of variants callers’ performance to the integrated approach.

Similar observation can be made in Figure 2.7, which shows that the results from
integration of variant callers are more accurate. The figure shows the Qual score
threshold used in the comparison of variant list with NIST list. The variants generated

from the combined method are having high confidence variants with Qual score greater
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than 30, compared to the individual callers where many variants are having Qual score
between 7-30 range. Therefore, | decided to use a set of variant callers (Platypus,
Samtools, GATK’s UG and HC) to perform SNP/Indel calling and combine their results. A
recent comparison also reports the same finding that the integration of multiple callers
is better than any single variant caller to get variants of high confidence and sensitivity

(Bao et al., 2014).
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Figure 2.7 Variant Qual score thresholds used during the comparison of individual callers and the

integration approach. X-axis shows number of selected thresholds and Y-axis shows the Qual score.

2.3.1Filtering strategies

Continuous development of algorithms has already improved variant calling up to a
significant level and further improvements are still going on. Although the current
algorithms are rather accurate they still produce a lot of FPs, due to their moderate filter
settings (to balance between specificity and sensitivity) or due to sequencing artefacts
(e.g. systematic bias, alignment bias or some random errors etc.). In order to filter these
FPs, additional efforts are required. Filtering strategies can vary from filtering based on
some fixed values (hard filtering) to filtering based on models trained from variants of
each data set individually (VQSR, Variant Quality Score Recalibration). Moreover, it can
be based on prior knowledge about the disease or the design of the study (e.g. based on
pedigree, trios etc.) or based on functional effects of the called variants on the
phenotype. In general, hard filtering and/or VQSR can be applied on most of the exome

data with some care (cf. next paragraph).
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VQSR is a Gaussian mixture model*®, which categorizes a variant list into reliable and
unreliable variant calls. It takes the overlap between a variant loci list from the
HapMap3/0Omni 2.5M SNP chip array (the truth/training resource sets) and the given
variant list. Then, it learns the distribution of some SNP annotation values present in this
list (e.g. QD, SB, HaplotypeScore, MQ, MQRankSum, ReadPosRankSum etc.) (cf. next
paragraph). Based on the learned values, it splits the variant list into reliable and
unreliable variant clusters (cf. Figure 2.8 (a)). These clusters are further used to compute
the log odds ratio (known as VQSLOD) of being a true variant versus being a false call
according to their distribution®®. Higher or positive VQSLOD score (VQSLOD > 3) means
that the variant call is more reliable and so this score can be used to filter FPs. However,
the precise threshold should be selected according to data characteristics. In one of our
data sets, we found that at higher thresholds there is a chance of missing true variants.

Thus, we use a lower threshold to avoid such false negatives (VQSLOD > -8).

VQSR allows partition of the variant calls into quality tranches (cf. Figure 2.8 (b)). These
quality tranches provide different thresholds that can be used to select a desired
sensitivity or specificity relative to the truth set. There are four default values of
tranches (90, 99, 99.9, 100), but these thresholds can be customized according to the
filtering requirement. From 90 till 100 tranche, each tranche incorporates true positive
calls as well as some false positives depending on the used threshold for tranche
categorization. For example, tranche 100 means 100% sensitivity (i.e. the filtered list will
contain 100% of known variable sites found in the truth set) but it can have many FPs.
On the contrary, the 90% tranche is more accurate (less FPs than 100% tranche) but can
miss some of the true variants. Thus, if the aim is to get a most comprehensive list then
the highest tranche should be selected. The selection of a tranche should be based on
the objective of the study or the filtering requirements. Moreover, tranche
categorization also comes with Ti/Tv ratios (cf. Section 2.4.1) on novel variants in the list

(cf. Figure 2.8 (b)), which can also be used for tranche selection. For example, lowering

8 http://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model

* http://gatkforums.broadinstitute.org/discussion/39/variant-quality-score-recalibration-vgsr
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the tranche value to a certain extent is safe as long as the Ti/Tv value is in a proper

range (for exomes, the Ti/Tv should be around 2.8) (cf. Section 2.4.1).
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Figure 2.8 a) VQSR clustering based on 2 Annotations: ReadPosRankSum and MQRanksum. The upper left
part shows the distribution of variants based on the scores of annotations varying from bad quality to
good quality of variant (i.e. lod score range -4 to 4) (red colour to green colour respectively). Thus, the
variants belonging to the green cluster have higher confidence than the variants having annotation values
in the red part of figure (the higher the score the more reliable is the variant). Similarly, the other parts of
the figure (upper right, bottom left) are also showing two different clusters and demonstrate which
portion of the positive (reliable) and negative (unreliable) variants and portion of the should be filtered or
kept after training, respectively. The figure at the bottom of right side is depicting the proportion of novel
and known variants in the variant list. This figure can be used to judge VQSR, for example, if we observe
distinct clusters of reliable and unreliable variants then that mean the variants are categorized properly
(or up to certain extent). b) VQSR’s four-default tranches and their correlation with sensitivity and Ti/Tv
ratio. The upper part shows VQSR’s four-default tranches and the lower part shows the correlation
between VQSR’s tranche sensitivity and the Ti/Tv ratio. Both figures (a & b) show that the gain in
sensitivity of the variant list causes a significant drop in specificity (as well as Ti/Tv ratio) of the variant list
and vice-versa. These diagrams are generated to for our control sample NA12878 and able to shows the

performance of implemented VQSR filtering in our workflow.
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VQSLOD is a reliable score for FPs filtering, but it requires a well trained model. Weak

models can result in bad classification of the variants in a given call set, which could

affect variant filtering and lead to many FPs or FNs. Thus, | tested VQSR and observed

that the default parameter settings are not sufficient for training a good model (at least

for our exome sequencing data). After several trial and error processes during testing

(cf. Appendix) (including some recommendations from GATK), | found that the following

facts should be considered during/before VQSR:
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1. VQSR should be performed only on variants inside the target regions: Variants

beyond the target regions may have bad quality (e.g. poor coverage, low
mapping quality/accuracy etc.) and can damage or badly influence the model
training. Thus, | performed VQSR only on variants belonging to the targeted
regions of the sequenced experiment.

VQSR should have enough calls in the given variant list: As this is the learning
procedure, it needs a sufficient amount of data (thousands of variant sites). Less
data can result in a bad model, thus, in the case of less variant sites, more
samples should be coupled with the sample of interest. | used 32 samples with
multi-sample calling to generate a variant list with lots of variant calls. | used this
list as a reference variant list with every sample of interest to have sufficient
data for VQSR.

Model training parameters provided by the tool should be selected carefully:
The default parameter setting might not be good for every data set, so the
selection of parameters should be based on data characteristics (e.g. type of
study, sequencing platform etc.) and the amount of data available for training.
For example, with few variant sites, lowering the number of Gaussians (“-mG”
parameter) can be helpful for training the model. | used - mG=6 for the VQSR

training to achieve good performance on our data (default value is 8).
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We also use a combination of some hard thresholds° to filter both SNPs and Indels as
suggested by the GATK’s best practice guideline®!, when the VQSLOD score is not
available (e.g. Off-target variants). A combination (or individual application) of the
following filters can discard a significant amount of the FPs caused the coverage bias,
strand bias and alignment artefacts (or poor alignment):

1. Quality by Depth (QD): It is a normalized value of the variant quality score (Qual)
by with respect to read depth. As Qual is calculated from the read depth, thus,
the highly covered variants can have an over estimated Qual score. Therefore,
normalization of Qual with respect to coverage provides a more realistic
representation of the variant confidence. Low QD scores are indicative of false
positive SNPs (or artefacts)

2. Fisher Strand (FS) score: Fisher strand score is a probability score from Fischer’s
Exact test to detect the strand bias. Strand bias means that a variant is only
present in reads from one strand. Paired-end (or Single end) exome sequencing
produces reads from both strands (forward or reverse), so a true variant should
be present on reads from both strands. A higher FS score suggests that the SNP is
mainly (most probably) supported by only reads from one strand, a typical
signature of FPs.

3. Mapping quality (MQ): It is a Root Mean Square of the mapping quality of the
reads and should be high for confident SNPs. Low value MQ signifies that the
alignment accuracy at this position is not good and the aligned reads might be
result of wrong alignment with some mismatches. Thus, the called variant can be
just a mismatch due to bad alignment and should be discarded.

4. Mapping quality rank-sum test (MQRankSum): This score can be used to filter
only heterozygous calls as this test performs the Mann-Whitney Rank Sum Test™
for mapping qualities of the reads with reference bases vs. reads with the
alternate allele. If the MQ of reads supporting the alternative allele is less than

the MQ of reads supporting the reference allele, then these reads can be

*% http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set

> https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq

32 https://en.wikipedia.org/wiki/Mann—-Whitney U_test
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misaligned, which might introduce mismatches. These mismatches can easily be
called as variants, which most probably are FPs.

5. ReadPosRankSum: Bases at the ends of the reads have a high probability of error,
thus, a variant called from the end parts of reads can be a FP (cf. Section 2.1.2).
The ReadPosRankSum test (i.e. Mann-Whitney Rank Sum Test) evidence of the
positional bias, which reports the distance of alternate allele from the ends of

the reads and should be used to avoid FPs at the read ends.

We use the following thresholds to filter false positives (for both SNPs and Indels):
* ForSNPs: QD < 2.0, FS > 60, MQRankSum < -12.5, ReadPosRankSum < -8.0.
* Forlndels: QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0

The above-mentioned filters work best on lllumina data and should be used carefully for
other technologies (cf. Section 2.4.2). The effect of these filters on variant list can be
observed by evaluation of the sensitivity and specificity of the variant list (after filtering)
(cf. Section 2.4). On good quality data these filters should not be harmful, but
generalization of these filters (application on any data) might lead to some FNs. All of
these filters and some other sample specific filtering strategies (as mentioned above)

are implemented in our web-browser Varbank®? (https://varbank.ccg.uni-koeln.de/). In

Varbank, the user can apply different combinations of filters and his/her disease related

knowledge to obtain a shorter list of interesting candidates.

>* Developed by Dr. Holger Thiele
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2.4 Evaluation of the variant list

After filtering or along the filtering process, we evaluated our results (variant list) to
check the effect of the filters on the variant list as well as the sensitivity and specificity

of our data analysis workflow by the following criteria:

2.4.1Ti/Tv ratio

The Ti/Tv is the ratio of transition mutations, Ti, (between purines (A <-> G), or between
pyrimidines (C <-> T)) to transversion mutations, Tv, (between purines and pyrimidines
(A <->Tor C<->@G)) (Q. Liu et al., 2012). In general, transitions are more frequent than
the tranversions (due to methylation of C in CpG islands), thus, this ratio can indicate
how much your variant list deviates from general expectations. (DePristo et al., 2011)
states that this ratio should be 0.5 for FPs and a good quality variant list for an exome
should have a Ti/Tv ratio around 2.8. Therefore, this ratio can be used to evaluate the
effect of different filters or their combination on the raw variant list (cf. Figure 2.8). For
example, after filtering FPs, the ratio should increase and tend to reach the expected
value, but if it is decreasing then the filter might not be good for this type of data. The
Ti/Tv ratio can be calculated by vcftools (Danecek et al., 2011) or GATK’s VariantEval
method>*. Both tools provide many other different filtering or variant evaluation
methods (e.g. mis-sense/non-sense ratio, heterozygous/homozygous ratio, etc.). Besides
these tools, we use our SQL server to compute such kind of information from the variant

list.

54

https://www.broadinstitute.org/gatk/gatkdocs/org broadinstitute gatk tools_walkers_varianteval Varia

ntEval.php
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2.4.2 Benchmarking of variant lists with the GIAB dataset

The Genome in a Bottle (GIAB) (hosted by NIST"®) consortium generated a highly
confident list of SNPs, Indels and homozygous reference genotype calls for the
HapMap®>’/1000 Genomes>® CEU female genome NA12878°° by integration of data
sequenced with different sequencing technologies and processed by different sets of
data analysis tools/algorithms (Zook et al., 2014). This multi-resources data integration
avoids almost all types of biases (sequencing bias, platform bias, alignment or variant
calling bias, etc.), and provides a highly accurate list that can be used to compare in-

house generated variant lists.

We performed exome sequencing for NA12878 and processed the sequencing data with
our exome pipeline to check the sensitivity and specificity of the variant list compared to
the list from GIAB. Different variant callers can report the variant in different notations;
for example, one MNP (multi-nucleotide polymorphism) can be called as an MNP or as
two or more different variants (SNPs) with different locations. Therefore, we first
perform normalization of our variants by using the vcfallelicprimitives method of the
vcflib tool®®, which (by default) splits MNPs into multiple SNPs. This tool also normalizes
the GIAB list, thus it makes variant coordinates in both lists comparable. In order to
compare lists, we used the VCF comparator function of the USeq tool®* (Nix, Courdy, &
Boucher, 2008). It compares the variants (both Indels and SNPs within the shared region,
i.e. the target regions of the test sample) present in both variant lists and reports the

number of matches and non-matches, false discovery rate (FDR), true positive rate

>® https://sites.stanford.edu/abms/giab

*® http://www.nist.gov

>’ http://hapmap.ncbi.nim.nih.gov

>8 http://www.1000genomes.org

>9 https://catalog.coriell.org/0/Sections/Search/Sample _Detail.aspx?Ref=NA12878&Product=DNA

% https://github.com/ekg/vcflib#tvcfallelicprimitives

®® http://useq.sourceforge.net/cmdLnMenus.htmI#VCFComparator
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(TPR), false positive rate (FPR) and positive prediction value (PPV)®? at different quality

thresholds (QUAL).

FDR=non-match/(match+non-match)

TPR=match/total shared variants in Control list (i.e. GIAB list)

FPR=non-match/total shared variants in Control list

PPV=match/(match+non-match)

Callers QUAL Match Non- FDR TPR FPR PPV Ti/Tv
Match
" none 23327 394 0.016609 0.995349 0.016811 0.9833903 2.81
o
Z
O v
> S 37.77 23269 245 0.010419 0.992874 0.010454 0.9895807
&
© none 24338 107 0.004377 0.986222 0.004335 0.9956228 2.87
=) '?u S
T % 38.77 24322 103 0.004216 0.985574 0.004173 0.9957830
wv
none 23286 238 0.010117 0.993599 0.010155 0.9898826 2.85
v
Z
O v
T g 37.77 23250 150 0.006410 0.992063 0.006400 0.9935897
o
< none 24429 53 0.002164 0.989910 0.002147 0.9978351 2.88
£ 2
2 5 3
:‘E L 37.73 24416 52 0.002125 0.989383 0.002107 0.9978748
2
wv

Table 2.4 Benchmarking results of different variant lists of control sample NA12878 with GIAB dataset.

Besides measuring the accuracy and sensitivity of a variant list, this benchmarking can

be used to compare variant callers or to monitor filtering strategies with respect to the

achieved TPR and/or FPR. Thus, we compared the 4 different following variant lists with

the GIAB list:

* UG HardFilt SNP/Indels: Both SNPs and Indels called by Unified Genotyper (UG)

and filtered by hard filters suggested by GATK’s best practice guideline.

* UG RecalSNPS: SNPs called by UG and recalibrated by VQSR.

62 https://en.wikipedia.org/wiki/Positive_and negative predictive values
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* HC HardFilt SNP/Indels: Both SNPs and Indels called by Haplotype Caller (HC) and
filtered by hard filters suggested by GATK's best practice guideline.
* HC RecalSNPS: SNPs called by HC and recalibrated by VQSR.

Moreover, we compared results with and without quality filtering (QUAL~= 38 and QUAL
= none, respectively), to see the effect on sensitivity and specificity of variant lists. Table
2.4 shows the benchmarking results of the above-mentioned variant lists generated for
the in-house control sample NA12878 with the GIAB dataset. With all different lists, we
have achieved the expected Ti/Tv ratio, which is around 2.8 for exome sequencing data.
Moreover, we achieved good sensitivity (varying from 99% till 99.78 %) and specificity

(varying 98% till 99.78 %) for all four variant lists.

In general, the QUAL filter shows little improvement in specificity but can decrease
sensitivity (in fractions). This is expected, as QUAL is the confidence of a variant call and
can filter out some low confident variants. However, sometimes a true variant also can
have low confidence due to certain sequencing biases and artefacts like coverage bias,
paralogous alignments etc. Without QUAL filtering, both variant callers are showing
similar performance. At QUAL > 37, HC gives better results in both aspects (TPR and
FPR). The variant list from HC at this threshold shows improvement in specificity without
compromising sensitivity. This indicates that the QUAL score is more reliable or accurate
from HC, which is expected, as it does not only rely on alignments. It performs local
realignments (assembly), which can avoid some alignments errors (cf. Section 2.3).
Moreover, the numbers in the table clearly show that HC is better than UG in terms of
both sensitivity and specificity. After the applications of both of the filtering strategies
VQSR and hard filters, the variant list generated by HC is better and has slightly high
Ti/Tv ratio than the variant list generated by UG. Overall, this benchmarking suggests
that the HC is the better option compared to UG (if only one variant caller has to be

selected), which is also recommended by the GATK’s best practice guidelines.
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2.5 Chapter summary

In this chapter,

® | presented the data analysis steps required to convert raw fastq files into a list
of significant variants. First, quality control of the raw data should be performed
and then the alignment of reads to the reference sequence followed by
SNP/Indel calling. At last, proper filtering strategies and evaluations of variant

calls should be applied.

® | presented the effect of quality trimming. By removing some bad quality bases
during quality trimming, we can improve the overall sample quality and the

alignment accuracy.

® | presented testing of BWA’s different algorithms and showed, how sensitive
alignment is helpful to align more reads but it can be devastating and might

results in many FPs.

®* | have also presented that the post processing of the aligned reads is necessary

to avoid alignment artefacts or some systematic errors to control the FDR.

® | have also described two widely used approaches for variant calling: Bayesian
Model and Haplotype based approaches. Usage of a single approach is not
enough, thus, the variant calling should be done using both approaches to get a
better trade-off between specificity and sensitivity.

* | mentioned some variant filtering and evaluation strategies. Different filtering
can be applied to the raw variant list in order to filter false positives. Moreover,
the effects of filters on variant list can be monitored by different evaluation

strategies.
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Chapter 3
Leveraging the power of high
performance computing

“There are lots of diseases to uncover and DNA sequencing has become less expensive
and more promising - so let’s do the sequencing”. These thoughts are very common
nowadays, resulting in generation of huge amounts of data. Analysis of these data
requires a series of analysis actions before relevant mutations can be found like data
cleaning, sequence alignment, variant calling, etc. All of these actions are
interconnected, build on each other, and usually involve running some tool or script.
Hence, analysing sequencing data can require a significant amount of time and lots of
manual work in the daily routine. In order to reduce the manual efforts and chances of
manual errors during data analysis operations, automation of data processing is
necessary. Moreover, analysis of large data sets like whole exome and whole genome
sequencing data requires more storage and compute power for fast and efficient data
processing than conventional desktop computers or servers usually provide. Thus, the
implementation of automated next generation sequencing (NGS) data analysis

workflows on high performance computing (HPC) clusters has become very essential.

HPC systems utilize the power of a large number of processors (cf. Section 3.2) to speed
up the task which makes their architecture more complex and less stable As they are
built up of different components, the failure of a single component (e.g. parallel file
system or job scheduler) can destabilize the system as a whole. Moreover, if the HPC
system is a multi-user environment or a shared cluster, the probability of failure
increases. As it is hard to monitor and control each user’s activity on the system, any
single wrong operation can cause system instabilities. These instabilities can originate
from an individual workflow and can affect other’s operations or vice versa. Therefore, a
workflow’s stability, robustness and maintainability are as important as speed and

should be considered carefully during the implementation of an automated workflow.
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In this chapter, we will provide details of our dedicated solutions, applied during the
development of our NGS data analysis workflow implementation on an HPC system.
These solutions enable us to achieve high throughput in significantly less amount of time
than the conventional ways. Moreover, they enhance stability, robustness as well as
easy maintainability of our workflow. At first, we will provide an overview of our exome
analysis workflow followed by a few details about our HPC system. Later on, details of
the design principles applied during its implementation on the HPC system will be
described. These design principles contributed significantly to making an automated
(little manual intervention or debugging) and stable workflow for the HPC environment.
The work in this chapter is the joint work of me and Dr. Susanne Motameny, which was
published recently (Kawalia et al., 2015). All of the supporting information files (S1 to S6)

mentioned in this chapter are available with the online version of this paper®.

3.1 Exome analysis workflow

Our exome analysis workflow is a collection of open source third party tools and self-
developed software that are stitched together into a pipeline via bash scripts. It is
divided into several modules that combine analysis steps with the same purpose (cf.
Figure 3.1). For a complete analysis, a single start of the workflow can run all modules. In
addition, these modules can be started individually or in any combination for specific
analyses. This workflow is fully automated where some modules run in a sequential
manner and some run in parallel. It contains several checkpoints and waiting points
between the modules (depicted as diamonds in Figure 3.1). If there is a failure at any
checkpoint, the analysis is aborted. In this case, the workflow waits for other running

modules (parallel ones) to finish and then exits with an error message.

In general, we perform a full analysis for every sample individually which runs in
following steps (cf. Figure 3.1): The first module of workflow prepares fastq files by using

in-house developed scripts. This includes merging of all available fastq files for the

63http://journaIs.plos.org/pIosone/article?’id=10.1371/journaI.pone.0126321ihlsec036 (This and the

subsequent URLs have been accessed on 25 August 2015)
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sample (in-house script), quality check by FastQC (Andrews S, 2010), quality trimming
(in-house script) and adapter trimming (Martin, 2011) (cf. Figure 3.1, (1)). The second
and third modules take the prepared fastq files and start the alignment pipeline (cf.
Figure 3.1, (2)) and structural variant calling pipeline (cf. Figure 3.1, (3)), respectively.
Both pipelines first split the fastqg files into smaller chunks and align these chunks (to
speed-up the process) to the reference genome. For structural variant calling, a strict
alignment allowing only perfect matches is performed using mrsFast (Hach et al., 2010)
and then structural variants are detected based on discordant mate pair signatures by
VariationHunter (Hormozdiari, Alkan, Eichler, & Sahinalp, 2009). The alighment pipeline
performs sensitive alignment by using BWA (H. Li & Durbin, 2009, 2010), which can
allow gaps or mismatches during the alignment. After the alignment, all chunks of BAM
files are merged by samtools (H. Li et al., 2009) and PCR duplicates are removed by using
Picard®®. After that, post-alignment improvements, like, Indel realignment and base
quality score recalibration (BQSR) are performed by using GATK (DePristo et al., 2011;
McKenna et al., 2010). To speed up the variant calling and some other processes, the
BAM file is split into 25 BAM files by samtools (one for each chromosome and the
mitochondrion). To get a comprehensive variant list, both SNP/Indel and copynumber
calling is performed by a set of four different tools. Samtools mpileup, GATK
UnifiedGenotyper and GATK HaplotypeCaller, and Platypus (Rimmer et al., 2014) (cf.
Figure 3.1, (6)) are used for SNP/Indel calling. Copynumber variants are called by
CoNIFER (Krumm et al., 2012), XHMM (Fromer et al., 2012), cn.nops (Klambauer et al.,
2012), and ExomeDepth (Plagnol et al., 2012) (cf. Figure 3.1, (4)). Furthermore, to get an
overview of sample quality, an in-house developed script is used to compute statistics
about exon coverage throughout the genome (cf. Figure 3.1, (5)) and Picard is used to
compute some other statistics (e.g. about the alignment and enrichment) (cf. Figure 3.1,
(7)). In order to distinguish between good and bad quality SNPs, variant quality score
recalibration (VQSR) is performed. As VQSR needs some annotations that are only
produced by GATK’s caller, it is only performed on variant lists generated by GATK (cf.
Figure 3.1, (8)).

o4 http://broadinstitute.github.io/picard/
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1 Merge Fastq, Quality Control (FastQC) & Adapter Trimming (cutadapt)
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| 3 SV (mrsFast + VariationHunter)
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v

CNV (cn.mops, ExomeDepth,

4 —_—
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8
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12 Transfer, Cleanup *VQSR: Variant Quality Score Recalibration

Figure 3.1 Automated workflow for exome sequencing data analysis. The workflow has one starting and
ending point showed in orange colour. Green colour boxes are the modules or tasks of the workflow
executed by the master script or sub-pipeline (highlighted by blue colour boxes). Red colour diamonds are
control points that check for completion of previous tasks to make a decision about the next task’s

execution.

Regions of homozygosity (ROH) are detected using Allegro (Gudbjartsson, Jonasson,
Frigge, & Kong, 2000) Figure 3.1, (9)). For detection of denovo mutations, we use
deNovoGear (Ramu et al., 2013), which runs on exome data from the affected child of a
trio or the affected twin of a sibling pair or the tumour of a tumour-normal pair. After
that, the results produced by all above mentioned analysis steps are collected and
combined into one table (self-written script®®, Figure 3.1, (10)). This script screens
several databases (dbSNP (Sherry et al., 2001), 1000 Genomes Project (Abecasis et al.,
2012), Exome Aggregation Consortium (ExAC)®®, dbVAR and DGVa (Lappalainen et al.,

® This script is written by Dr. Holger Thiele

&6 http://exac.broadinstitute.org
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2013), GERP (Davydov et al., 2010), ENSEMBL (Flicek et al., 2014), and the commercial
HGMD professional database (Stenson et al., 2014) to annotate known variants in the
combined variant list. For functional annotation of variants, POLYPHEN (Adzhubei et al.,
2010), SIFT (Kumar, Henikoff, & Ng, 2009), and in-house developed algorithms are used.
Additionally, splice site analysis, based on the framework described in (Yeo, Burge,
Liebert, Yeo, & Burge, 2004), is performed. At last, the annotated variant list, sample
statistics, fastq files and BAM files are transferred to our storage server and the

intermediate results are deleted (self-written scripts, Figure 3.1, (12)).

3.2 HPC system

The workflow is implemented on the HPC clusters CHEOPS and SuGl of the Regional
Computing Center Cologne (RRZK). These are two main clusters of the University of
Cologne, serving the computational demands of many researchers from different
scientific fields. CHEOPS is the larger compute cluster with a peak performance of 100
Teraflop/s and linpack performance of 85.0 Teraflop/s. It has 841 nodes with 9712 cores
and 35.5 TB RAM in total for computation, and provides 500 TB Lustre parallel file
system for storage. On the other hand, SuGl is smaller and has 32 compute nodes with
256 cores and 1 TB RAM in total. It provides 5 TB Panasas parallel file storage and can

achieve a peak performance of 2 Teraflop/s. Both clusters run a Linux operating system.

Due to their complex architecture (cf. Figure 3.2) HPC systems are more susceptible to
system instabilities than ordinary hardware. This implies certain working rules for both
of HPC clusters. Any computation should not be directly run on the login nodes (or
frontend nodes). Frontend nodes can be either used to submit a job that contains all
computation or used for login and data transfer to (or from) the parallel file system.
Each job can be submitted via SLURM (Jette & Grondona, 2003) or TORQUE/Maui batch
system on CHEOPS or SUGI, respectively. Every job submission contains a request for
appropriate computational resources, like number of cores, required memory, and
runtime etc. Based on the requested resources, the batch system’s scheduler assigns an

appropriate compute node to the submitted job.
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Compute Nodes

[ Frontend ] [

)

Job Submission

Local Filesystem F Parallel Filesystem %

Figure 3.2 Overview of HPC architecture.

3.3 Technical components of workflow

3.3.1 Workflow overview

We considered all HPC working rules during the development of our exome workflow. It
is a collection of BASH scripts that are mainly divided into one masterscript and several
jobscripts. The masterscript executes all tasks of the workflow by submission of the job
scripts and also monitors their execution (cf. Figure 3.5). It processes each sample
individually and gets all information related to the sample form a configuration file in
XML (Extensible Markup Language®’) format, which is generated from our LIMS
(Laboratory Information Management System®®) database. The LIMS keeps track of all
samples and their processing in the wet-lab and contains all necessary information
relevant to the analysis. The masterscript provides the required information (according
to task) to all job scripts, which then do the actual computation. The masterscript also
prepares the results (produced by the job scripts) for transfer to our storage server from
where they are further uploaded to an Oracle database (cf. Figure 3.3). Researchers can
fetch information from this database via an in-house developed webinterface called

“varbank” (https://varbank.ccg.uni-koeln.de), which provides access and download

7 http://www.w3.0rg/TR/2006/REC-xmI-20060816/

68 https://en.wikipedia.org/wiki/Laboratory information_management_system
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options for the fastg-, BAM-, and VCF files as well as annotated variant tables and

coverage statistics.

Sequencers
d Fastq files Variant lists Oracle Database
3 — Queries
CCG exome pipeline
LIMS XML configuration files Varbank

Figure 3.3 Infrastructure surrounding the exome workflow.

3.3.2 Workflow interaction with HPC systems

As mentioned above, the workflow is designed to run on both HPC systems: CHEOPS and
SuGl. This is beneficial in two different ways: first to increase the throughput when data
analysis is running on both systems in parallel. Additionally, one system can serve as a
backup system in case of the failure of the other. For example, CHEOPS is a lager cluster
and more complex which makes it more prone to system instabilities. Thus, during
downtime of CHEOPS or maintenance periods, SuGl can be used for data analysis. In
order to run the workflow on both systems, 3 different directories are shared between
these systems: XML stack, Data and Results directory (cf. Figure 3.4). All of these
directories are located in the Panasas file system of SuGl and mounted on CHEOPS. The
XML stack contains XML configuration files of new samples, which need to be analysed.
The data directory contains the required fastq files for analysis and the results directory
stores the results for each analysis step like BAM files from alignment or VCF files from
variant calling etc. Every system has its own scripts directory and status directory in the
local file system, which contains all analysis scripts (including master scripts) and status
messages generated by the workflow, respectively (see next paragraph). Each system
has its own scratch directory mounted in its parallel file system (Lustre for CHEOPS and
Panasas for SuGl). These scratch directories store temporary results (or intermediate
results) and status messages generated from different analysis steps executed on the

respective HPC system (see next paragraph).
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Figure 3.4 Overview of workflow interaction with both CHEOPS and SUGI HPC systems.

The workflow execution works in the same way for both HPC systems. The cron deamon
on the frontend node of both systems checks the presence of new samples in the XML
stack directory. When a sample is available in the stack directory for processing, then
the respective cron deamon starts an instance of the masterscript on the respective
system (cf. Figure 3.5). The cron deamon of both systems takes turns to check stack
directory and if number of running samples are less than the set limit (e.g. < 20 samples
can run in parallel on Cheops) of the respective system then it starts the masterscript for
the new sample. The general flow of job submission from the masterscript is shown in
Figure 3.5. The masterscript submits the job (compute job) for an analysis task to the
compute nodes and waits for its completion. The Compute job gets the required data
from the data directory and puts intermediate files (generated during computation) to
the scratch directory. After completion of a task, the results are stored in the results
directory. The status messages for a task (i.e. successful completion or an error), are
stored in the status directory of scratch (where other compute jobs can pick them up)
and in the status directory of the local file system (where the masterscript can access
them). The masterscript checks these messages and reacts accordingly: either it
resubmits the job (in case of failure) or submits the next compute job. This whole
process of job submission and monitoring goes on till the complete analysis is finished.
The cronjob starts multiple instances of the masterscript with some delay when more

than one sample is available in the XML stack.
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Figure 3.5 Overview of workflow implementation at HPC.

3.3.3 The masterscript

As implied by its name, the masterscript is the main script of the workflow that
organizes the data analysis tasks on the HPC clusters. It submits jobscripts (which
perform the actual computation) on the clusters and monitors their progress. It
processes a single data set (e.g. an exome sample) at once, but several instances can be
started simultaneously to achieve high throughput. When more than one sample is
available for processing, the cron deamon on the frontend node starts multiple

instances of masterscript in parallel (cf. Figure 3.5).

The masterscript has a modular structure that means it puts all tools that perform
similar tasks into one module. When a complete exome analysis has to run then the
masterscript executes all modules as shown in (cf. Figure 3.1). However, execution of a
single module, due to its failure or reanalysis, can be selected by a command line option
of the masterscript (Supporting Information S5%°), which saves a significant amount of

time in these cases. Moreover, when some specific analysis is required then the

® This supporting information file and other files (S1 to S6) are available with online version of our paper

(Kawalia et al., 2015): http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036
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masterscript can be started with only the desired modules. For example, we skip the SV
module for samples having single reads, as it requires paired-end information for SV

detection.

3.3.4 Jobscripts

The jobscripts are bash scripts that contain the commands to execute some tool or some
script for a specific analysis task. Moreover, they can perform some data management
like preparing data for analysis or merging results etc. To monitor the completion of any
task, every jobscript writes a status message based on its exit status. This status
message is transferred to the local file system on the frontend node and used by the
masterscript to monitor completion or failure of that task. The masterscript checks the
status message at checkpoints and in case of failure it aborts the workflow with an error
report. If the batch system aborts the job due to too small walltime or memory requests,
then this status message will not be written. Therefore, this strategy can distinguish

between job abortion/failure errors and execution errors.

3.3.5 Job submission

The job submission function is the main function in the masterscript. It encapsulates job
submission and also monitors the status of the job and checks its successful completion
or failure (cf. Figure 3.6). If job submission fails due to the unavailability of the batch
system at first attempt, then it tries resubmission for two more times, after that it
reports an error for an unsuccessful job submission. After successful submission, it waits
for the completion of job. In the case of job failure (if the resource limit was exceeded),
it increases the requested resources (runtime and memory) and re-submits the job
automatically. If this job fails again then an error is reported by this function. It also
supports both batch systems: SLURM and TORQUE/Maui running on CHEOPS and SUGI,
respectively. The masterscript submits a job with a general job submission syntax that is
further translated (by the job submission function) into job submission commands of the
used batch system. The code of the job submission function can be found in the

Supporting Information S1%.
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Figure 3.6 Flow chart of the job submission function.

There are two different modes of job submission: sequential or parallel. In the
sequential manner, a job is submitted by calling the submission function directly from
the masterscript, causing the masterscript to wait until it is finished before proceeding
with the next job submission. This manner of sequential job submission is utilized when
jobs depend on each other. On the other hand, some jobs that do not depend to each
other, they can be submitted in parallel. In this case, a child process started by the
masterscript in background that calls the job submission function. For example, the
masterscript performs a sequential job submission for fastq preparation and quality
control tasks as this is the first task and all other tasks depend on its outcome. After the
completion of this job, the alignment jobs for SNP/Indel calling and SV detection are

submitted in parallel via sub-processes, as they are not depending on each other.

3.3.6 Job monitoring

According to the different tasks and their dependencies, the masterscript contains some
checkpoints and waits for the completion of submitted jobs and child process at every
checkpoint. It stores all job ids assigned by the batch system and all process ids of
started child processes. The submit function keeps track of jobs via their job-ids and

after job completion, it checks the status message returned from a job (i.e. error or
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finished). The masterscript stores these status messages from the submit function at the
local file system and waits for all computations corresponding to a specific checkpoint to
finish. As soon as all computations are finished, masterscript checks the stored job
status messages and list of process ids. In case of errors or failures, it aborts the
workflow with an error message reporting the failed modules. If the checkpoint reports
successful completion, then the masterscript performs the next round of job
submissions for the remaining tasks. In the case of any interruption or abortion of the
workflow, the masterscript cancels all submitted jobs and kills all child processes by
using a cleanup function. This cleaning is triggered by the “trap” statement and
executed whenever the masterscript exits. This function also cancels jobs submitted by
child processes. This strategy ensures a clean exit and frees already allocated resources.

Details about this function can be found in the supplementary file S3%.

3.4 Design principles of workflow

In order to develop an efficient workflow, we focused on the following four design
principles:
1. Speed: Optimum usage of HPC systems to speed up data analysis.
2. Stability: Appropriate handling of the HPC environment to prevent system
instabilities.
3. Robustness: Automatic detection and correction of some processing errors

4. Maintainability: Easy to maintain and expand.

3.4.1 Speed

Parallelization by jobarrays

Parallelization is one of the most frequently used approaches for exploitation of the
compute power of clusters. In our workflow, we apply “parallelization by chunks”, which
is splitting of large data into small chunks followed by a parallel processing of every
chunk individually. Mapping of reads is an independent process for every read, thus, we
split the fastq file into several chunks and perform the alignment process on each chunk

by using BWA and mrsFast. Although, BWA provides multi-threading to achieve more
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speed, however, we cannot rely only on threading due to limited resources of our
smaller cluster SuGl. It has only 8 core nodes, so BWA can only use a maximum of 8
threads. Besides workflow compatibility to both the smaller and bigger cluster, using a
combination of threading (with fewer cores) and parallelization by chunks works best for
us (esp. in terms of resource usage optimization). We also use this strategy for other
tasks like Indel realignment by GATK, SV calling by VariationHunter and denovo variant
calling by deNovoGear. For these applications, we split the BAM file by chromosome
(similar to (Lam et al., 2012; Puckelwartz et al., 2014)) and run the analysis for each

chromosome in parallel.

We are using jobarrays to perform parallelization by chunks. A jobarray is a collection of
jobs (executing the same task for different data chunks) submitted at once and can be
tracked by a single jobid, which simplifies the job submission and monitoring. It can be
used for tasks where the same computation has to be run for different input files. The
size of a job array and runtime is directly proportional to number of chunks and size of
chunks. In order to take optimum advantage of jobarrays, selection of a moderate array
size and runtime is required. If too many jobs are submitted via a job array (means too
many chunks of data), then a single task can finish very fast, but some jobs have to wait
in the queue. On the contrary, if few jobs are submitted (means big chunks of data),
then processing time will be longer and little gain in speed would be achieved by
parallelization. Therefore, we implement jobarrays in a way that a single job should run
at least one hour and all jobs (or tasks executed by jobs) should be finished in similar
time. As the completion of a jobarray depends on the completion of all jobs it contains
and if one task is running longer than other tasks, then the jobarray has to wait and
parallelization power would not be exploited properly. Therefore, when defining the
data chunks on a per-chromosome basis, we distribute the 24 chromosomes across 14
tasks of a jobarray as mentioned below:

¢ chr1to 7:each chrin asingle task

¢ chr8to 17: combined two chromosomes per task

¢ chr 18,19 and 20 processed in one task

e chr21,22,XandY processed in one task
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After some trial and error, we found that this strategy works satisfactorily for our
workflow. However, the chromosome size is not the only influential factor for run time
of the individual array task. Other factors like coverage or mutation load can change
runtime significantly. Thus, getting the optimum combination of chromosomes is almost

impossible and it can vary in different data sets.

Parallelization by threads

Parallelization can also be done by multi-threading, where a process brakes into multiple
threads that run on different cores simultaneously to reduce the overall completion
time. BWA, GATK and Picard come with multi-threading options and we utilize this to
speed-up their runtime. In general, the number of threads should be inversely
proportional to the runtime of the process, but not all tools follow this principle. We
measured the walltime of BWA and GATK with different numbers of threads (on a
compute node with 4 Nehalem EX Octo-Core Processors, Xeon X7560, 2.27GHz). BWA
shows a significant decrement in walltime with higher number of threads. However,
GATK haplotype caller’s walltime does not decrease significantly beyond 4 threads (cf.
Figure 3.7). We are still investigating the reason behind this behaviour but believe that
this is due to the Java implementation of GATK. We have observed that Java applications
produce an overhead of I/O operations that limit their acceleration capacity on the HPC
system. Moreover, GATK VariantRecalibrator method generates many intermediate
output files (so called vcf stubs), when it runs with more than one thread. For an exome
analysis, the number of these files can easily reach up to 100000 and can exceed the
maximum number of files quota of file systems (most of the file system have this quota).
This limits the number of parallel analyses and reduces the throughput of the workflow.
To avoid this scenario, we run GATK VariantRecalibrator with one thread, which still runs

fast without producing intermediate files.
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Figure 3.7 Performance of multi-threading with BWA-MEM and GATK HaplotypeCaller. Left-side
histograms show the decrement in walltime usage of both tools with more threads. Whereas, histograms

on the right side show the CPU-time with different number of threads.

Scalability

Scalability is an important measure of the efficiency of an application when it is used on
large data with HPC. It can be categorized into strong and weak scalability. Strong
scalability measures how the runtime of an application changes with the number of
cores for a fixed problem size (BWA and GATK HaplotypeCaller shows strong scalability
(cf. Section “Parallelization by threads"). Weak scalability measures how the runtime
varies when a fixed amount of work is directed to a single core but more cores are used
due to a larger problem size. We use “parallelization by chunks” for BWA and mrsFast,
and these modules scale almost perfectly in the context of weak scalability. This is

because when splitting of data into chunks of equal size the processing time is equalized
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for every chunk, thus, the larger problem can be processed on multiple cores in
comparable time to the processing of smaller problem size on a single core. Therefore,
these parts of the workflow take almost the same amount of time for data sets of
different sizes (not including queuing time). However, assessing the scalability of the

entire workflow is difficult as most of the parts of workflow use a fixed number of cores.

Resource usage optimization

Optimum usage of computational resources, i.e. number of cores and random access
memory (RAM) is the key to exploit the power of HPC systems to achieve the desired
performance. In our case, a single analysis should be fast enough and high throughput
can be achieved by running several analyses in parallel. With this objective, we
performed several trial and error steps, as there are no fix rules for resource
optimization to achieve a satisfactory performance. However, there are three main

points that need to be considered to optimize the resource requests:

Selection of job size

In general, based on their resources requirements, jobs can be categorized into two
main categories: large jobs and small jobs. Large jobs use a high number of cores and
much RAM while the small jobs need only few cores and little memory. In practice, large
jobs have longer queuing time and can waste the allocated memory (i.e. granted
exclusively to that job), if it is not completely used by the running task. Moreover, if
there are many jobs requesting more memory than they actually require, then the
cluster becomes partly idle while jobs have to wait in the queue. Therefore, assessment
of the required memory and number of cores is very important and resources should be

requested as close as to actually required resources.

Balanced memory usage for jobarray tasks

A jobarray is a collection of jobs, either executing the same analysis task for different
data chunks or can perform different analysis tasks in different jobs. The resources
requested during job submission are valid for every job of a jobarray. However, some

jobs in a job array can behave differently and use more memory than the other jobs
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(either due to different analysis task or due to the different chunk of the data). In this
scenario, a jobarray should be submitted first with a low memory request and later on,
the failed jobs could be resubmitted with higher memory requests. This strategy
prevents unnecessary blocking of resources, thus more analyses can run in parallel with

less job queuing time.

Resource requests based on cluster architecture

The computing cluster architecture is also another important criterion for resource
selection. In order to exploit the optimum capacity of the compute nodes, the number
of requested cores should preferably be a divisor of the number of cores available on
the nodes. For example, we run jobs with 1, 2, or 4 cores in workflow so we can fill 8,12,
and 32 core nodes of our cluster CHEOPS properly. On the other hand, if we submit a job
with 5 cores, then we would end up with 3 or 2 cores (depending on node type) that
cannot be used for another job of the workflow. Besides the number of cores, a similar
logic should be applied during memory (RAM) selection and it should be fragmented
according to the RAM of a node. For example, our cluster has 24 or 48 GB RAM for the
majority of nodes and a few nodes are having 96 or 512 GB RAM. Thus, theoretically, a
24 GB node can be filled with 8 jobs requiring 3 GB RAM each or 6 jobs requiring 4 GB
RAM each. However, not the full nominal amount of memory is really available to the
jobs. Therefore, a small reduction in the memory requested is required to fill a node
completely. In our implementation, we are requesting 5 % less memory for each job. For
example, we submit a nominal 4 GB job with a 3.8 GB RAM request and only 7.6 GB RAM

request for a nominal 8 GB job.

With our current parallelization strategy, we fit 173 hours average CPU time into an
average runtime of 21 hours per exome. In comparison to an exome analysis on a single
core computer, we are able to speed it up more than 8-fold by using the HPC systems.
This is not a very high gain in speed but it can be increased by trading with the
workflow’s throughput. We optimized our workflow for high throughput rather than the
speed, as it fits better to our requirements. By starting an exome analysis every 30

minutes, we can analyse 290 exomes per week, which is sufficient for our current
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sequencing capacities as well as for the processing of external data. Moreover, it should
be noted that the total load of the HPC cluster also hinders both speed and throughput,
which is not completely controlled by us. Nevertheless, if required in the future, the

workflow can be further parallelized and more analyses can be run in parallel.

3.4.2 Stability

The stability of the HPC environment is also another important design principle for the
workflow development. On multi-user HPC systems, a certain etiquette should be
followed to avoid system instabilities and to maintain the smooth operation for other
users. We included the following measures that contribute to the stability of the cluster

and our workflow:

No computation on frontend node

The frontend node of our clusters, which usually has less computational power, is mainly
for login, data transfer and job submission. Running computations on the frontend node
can increase the load to a level that causes the system to be unresponsive or even fail.
Therefore, our masterscript only does organizational work on the front node and

submits jobscripts for all computations.

Controlled accesses to the parallel file system

If the parallel file system is not responding due to any reason then it should not be
accessed by the workflow. Otherwise a build-up of queries to the parallel file system can
occur that can hinder the debugging process initiated by system administrators.
Therefore, we are using a lockfile mechanism (Supporting Information S2%°) that
prevents the automatic execution of file system accesses during its unresponsive state.
Before every access to the parallel file system (for example, file listing (by °Is’) or
directory creation (by ‘'mkdir’), the masterscript sets a lockfile and removes it after the
file system access finished. If the file system is hanging (i.e. the access command does
not return), then the masterscript does not delete this lock file and it stays in the local
filesystem on the frontend node. On the contrary, if the parallel file system is responding

then these lock files are deleted within a few seconds (less than 5 seconds). At every
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new start, the masterscript checks for the existence of the lock file. If the lockfile is
present and persists for 25 seconds, then the masterscript exits. This strategy provides

an automatic shut-down of our workflow, when the file system is not responding.

Shut-down switch

In case of cluster maintenance or downtimes, a workflow termination is required. This
can be activated by the HPC administrators via the workflow’s shut-down switch. It is
implemented as a semaphore file in the local file system of the frontend node

). Moreover, it can also be activated during system

(Supporting Information S6
instability caused by workflow. If the shut-down switch is activated (i.e. if the
semaphore file is present in the local filesystem), then the masterscript exits right at the

beginning or if the workflow is already running, then it exists at dedicated exit points.

Delayed start of multiple runs

Our workflow processes new data in 30 minutes intervals. This delayed start is
controlled by the cron deamon, which starts one instance of the masterscript every 30
minutes. This strategy prevents overloading of the scheduler due to too many
simultaneous job submissions. It also prevents creation of too many lock files by the
masterscript when accessing the parallel file system. Moreover, it makes the workflow
more efficient, with respect to the throughput, by balancing resource usage of the
workflow. The workflow contains small jobs and large jobs with lower and higher
resource requirements respectively. Thus, this delayed start avoids simultaneous

submission of large jobs and prevents a subsequent increase of queuing time.

No access to remote servers

To process a sample, the workflow requires some sample related information that is
stored in the LIMS. Accessing remote servers (via ssh) to query the LIMS from the
masterscript can get stuck in non-returning ssh commands. Thus, we do not access
remote servers from the masterscript and perform LIMS querying on a separate server.
After querying, all sample-related information is stored in an XML configuration file that

is uploaded to the cluster together with the sequence data. Moreover, the transfer of
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the results to the Oracle database and varbank webserver, are also organized in the
similar way. The masterscript writes a transfer XML file that contains the location of the
result files. Then, a script running on another server performs the data transfer via scp
by using the information present in the transfer XML file. We also do not access remote
servers via job scripts because the outgoing network connections of the compute nodes
are reserved for the exchange of software license information only on our HPC clusters.
Moreover, access to remote servers can slow the computation and should be generally

avoided in HPC workflows.

Automatic deletion of results

Every run of a sample generates a huge amount of data including input data, results and
temporary files. Temporary files are generated from one process and are usually
required as input data for subsequent processes and can occupy a great amount of
space. Thus, these temporary files are automatically deleted after successful completion
of the analysis. However, in case of workflow failure these files remain stored for
debugging purposes. Similarly, the largest part of the results i.e. BAM files and input
fastq files are transferred to the database and webserver after successful completion of
workflow. To make sure that the transfer is completed successfully, we compare md5
checksums’® of the original and the transferred files. As soon as the transfer completes,
BAM files and fastq files are deleted from the cluster. The remaining part of the results,
i.e. VCF files, statistics files, and variant tables are stored in a dedicated results directory

on cluster.

3.4.3 Robustness

An automated workflow should run without manual intervention as long as possible. It
should not stop if a single job fails and should be able to run all other modules that do
not depend on the failed job. Moreover, it should be able to cope with errors that
occurred during the execution in order to produce the most complete result. We applied

the following strategies in the implementation to make our workflow robust.

0 http://tools.ietf.org/html/rfc1321
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Dynamic job submission

Two frequent reasons of workflow failure are the overload of the scheduler and job
abortions due to lack of resources. If the scheduler is already having a significant load
and lots of jobs are submitted simultaneously, then the scheduler can reject all or some
job submissions. In general, these situations are resolved after a short time. Thus, to
cope with this type of failure, the masterscript retries a failed job submission twice after
waiting a few minutes. When the job is aborted due to more required computational
resources (memory or runtime) than requested at submission time, the masterscript
detects these jobs and resubmits them. This tracking of aborted jobs is managed via
status messages written by the jobscripts after their completion. After a job submission,
the masterscript (or the child process in case of several jobs started in parallel) checks
the status of the job by querying the batch system’s queue (cf. Supplement S1,
wait_for_job function). These queries are only performed in every two minutes to avoid
overloading the scheduler. As soon as the job disappears from the queue, the
masterscript (or child process) checks the generated status messages. If the status
messages are missing it means that the job did not finish regularly and was aborted by
the scheduler. In this case, the masterscript (or child process) automatically resubmits
the aborted job with increased memory and runtime requests. Similarly, jobs with an
error status message are also resubmitted. If the job fails again after resubmission, the
masterscript throws an error message and at this point manual intervention is required

(cf. Figure 3.6).

Clean exit

The masterscript keeps track of all submitted jobs and running child processes. If the
workflow is terminated at some point during the analysis (e.g. by a kill command), the
masterscript automatically kills all child processes and deletes all submitted jobs. It also
writes the appropriate status messages (Supporting Information $3%) in the logfile. It is
extremely important to ensure such a clean exit. Otherwise, jobs run unsupervised and
can potentially overwrite results when the workflow is restarted for the same sample
again. Moreover, status messages (written in the logfile and status table) reporting the

interruption are useful for debugging purposes.
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3.4.4 Maintainability

Modularity

The masterscript is constructed from different modules for different kinds of analysis
(alignment, SNP/Indel calling, CNV calling, SV calling, enrichment performance,
functional annotation). All modules can be run separately or in any combination, which
gives flexibility to the workflow. Thus, the workflow can be used for different types of
data analysis like data generated from genome, exome or other targeted experiments.
For example, in case of a whole genome sequencing data set, execution of alignment,
SNP/Indel calling, SV calling, and functional annotation modules is required; CNV
detection and the enrichment performance have to be skipped as these modules are

suited for target enriched data only.

Logfile and status table

The masterscript writes all job submission calls and jobids for every analysed sample in a
logfile. These stored jobids can be used to identify stdout/stderr output of the jobs that
contains detailed error messages of executed tasks. Thus, this logfile facilitates the
debugging of failed runs. The masterscript also writes the status (Running, Error,
Finished) of every module to an sqlite table that is accessible via a webinterface
(Supporting Information $4%°). This table provides an easy monitoring of the workflow,
thus, the administrators can see at a glance, which samples generated errors and react

accordingly.

Configuration file

The workflow is configured for each sample with the help of an XML configuration file.
This file contains sample specific information fetched from the LIMS, as well as all input
and output paths for processing. Thus, the directory structure on the cluster for data
input or output can easily be changed without changing the masterscript. In this case

only the script that writes the XML files has to be updated.
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3.5 Chapter summary

In this chapter,

We provided an overview of our exome analysis workflow, which contains
information of all required analysis steps.

We described our HPC system and gave an overview of the implementation of
our workflow and its components.

We highlighted the significance of the essential components of workflow, like the
masterscript, jobscripts, job submission and job monitoring function.

We described the four main design principle of our workflow: speed, stability,
robustness and maintainability, which makes the workflow more stable and
robust as well as more efficient in terms of both speed and high-throughput.

We used parallelization by jobarrays (including parallelization by chunks) and
parallelization by threads to speed up our workflow.

We performed resource optimization to exploit the power of the computing
cluster.

We provided certain measures that contribute to the stability of the cluster and
our workflow, like controlled accesses to the parallel filesystem, no computation
on the frontend node, no access to remote servers, etc.

We mentioned some strategies that contribute to the workflow’s robustness like
dynamic job submission and clean exit.

We presented our strategies to maintain the workflow in an efficient manner via

modularity and the logfile.
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Chapter 4
Detection of systematic sequencing
errors

Continuous development of bioinformatics tools and automated pipelines has enabled
the bioinformatics community to handle sequencing data in a fast and efficient manner.
There are different alignment algorithms varying from sensitive to strict mapping of
reads to the reference accompanied with post alignment improvements and different
variant callers with reasonable accuracy. However, getting a variant list containing only
true variants is still a challenge and false positive calls (FPs) remain a problem. Some of
the FPs are due to the limitations of current tools. Moreover, errors occurred during

sequencing (systematic or random errors) also produce a significant amount of FPs.

Some of the FPs generated by sequencing errors can be easily detected and filtered out.
For example, errors at the ends of the reads can be avoided by trimming of these bases
or by discarding bad quality reads (i.e. reads containing many low confident basecalls)
(cf. Chapter 2). Modern alignment algorithms are also aware of this type of error and
can avoid misalignments due to bad quality bases (by their clipping or trimming). GATK’s
base quality score recalibration (BQSR) tries to correct some errors that occur during the
calculation of base quality scores based on statistics computed over sequencing lane,
machine cycle and di-nucleotide context. Moreover, Indel realignment by GATK can also
avoid the calling of false substitutions near Indels (introduced by wrong alignments of
Indels on the reference sequence) (cf. Chapter 2). Besides the handling of some
systematic errors, there are many alogrithms that perform correction of random base
calling errors. These algorithms can correct the wrongly called base on some reads by
utilizing the other reads that have the correct base. This correction is performed either
by using shared k-mers among the reads or by performing mutiple sequence alignment
of the reads mapped to a certain position. Yang and colleagues have reviewed these two
approaches and provided a comparision of tools belonging to each category (Yang et al.,

2013).
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However, there is still much to explore in this class of error as many systematic errors
are hard to detect or not yet detected. There are not many studies on error detection or
correction methods for sequence specific and other types of systematic errors.
Nakamura and colleagues reported first that dephasing can be induced by the presence
of some specific sequence patterns (Nakamura et al., 2011). They reported that inverted
repeats and GGC sequences are the two major sequence patterns that trigger sequence-
specific errors (SSEs). After that, a few more studies have been conducted, in which the
authors tried to discover some more SSEs or developed systematic error detection
methods (Allhoff et al., 2013; Meacham et al., 2011; Ross et al., 2013; Zook, Samarov,
McDaniel, Sen, & Salit, 2012).

This chapter aims to explore the different types of systematic errors. First, | will provide
an overview of the published systematic error detection methods. Thereafter, | will
present the drawbacks or limitations of these methods, which is the motivation behind
this work: a newly developed approach to detect systematic errors in lllumina
sequencing data. | will also present the comparisons of different data-sets generated
with different target enrichment techniques, which is used for further classification and
exploration of the detected systematic errors. Finally, | will present a new class of errors
“RSE” and its characteristics. Moreover, | will provide details of the newly developed

tool “FilterRSEs” that filters out RSEs from any variant list.

4.1 Systematic errors

4.1.1 Previous work

After the detection of certain biases and position specific errors by Dohm and colleagues
in lllumina data (Dohm et al., 2008), Nakamura and colleagues found another class of
errors (Nakamura et al., 2011). They observed that some mismatches occur in specific
regions either near certain sequences or induced by some sequence patterns, and
named these errors sequence-specific errors (SSEs). Moreover, they found that these
mismatches are present mainly on one strand of reads (either forward or reverse) and

accompanied by other mismatches downstream of the error. Based on their
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observations, they formulated the following two criteria that have to be met by an error
to be called an SSE: a) At least 30% of reads in the same direction should carry these
mismatchtes. b) Four other errors should be present within 40 bases downstream, but
not within 40 bases upstream. After the analysis of selected SSEs, they found that the
majority of SSEs are either present near GGC base triplets (or GCC for reverse strand
SSEs) or inverted repeats. They also found that most of these mismatches are similar to
the first or second preceding reference base and suggested that SSE associated
mismatches originate due to dephasing. Moreover, they postulated that inverted
repeats trigger folding of DNA single strand templates and so inhibit the base elongation
process during sequencing in both directions (5’ or 3’) which causes an SSE. On the other
hand, the GGC motif affects the preference of the DNA polymerase (like disabling of
blocking effect which leads to dephasing) during the base elongation process and this is

the most likely cause of the GGC-associated SSEs.

In another study, Meacham and colleagues (Meacham et al., 2011) also focused on
systematic errors (in general) by using overlapping paired end reads from a methyl-Seq
experiment. They selected this data because this experiment produces high average
coverage and overlapping paired end reads provides two base calls for each location
(irrelevant to strand directionality). Both characteristics of data helped them to avoid
random errors and to distinguish between basecalling errors and true heterozygosity
calls (Meacham et al., 2011). They defined systematic error as a “statistically unlikely
accumulation of errors at specific genome (or transcriptome) locations”. They observed
that systematic errors are present in approximately 1 in 1000 base pairs and are
reproducible across different experiments. They confirmed the pattern observed by
(Nakamura et al.,, 2011), that systematic base calling errors are present only in one
sequencing direction (either forward or reverse). They observed that the bases
preceding the error contain information about the presence of the error and the base
quality scores of error locations are lower than those at their neighbouring sites. They

also found that most of the errors occurred at GGT motifs where base T is having the
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71
"> that uses

substitution error. Moreover, they provided a classifier called “SysCal
logistic regression based classification to distinguish heterozygous sites from systematic
errors. Here, the training of the logistic regression model is based on the characteristics

of systematic errors observed during their study.

In the first study of SSE, Nakamura and colleagues provided some insights into this type
of error, but did not provide any framework for detecting SSEs (Nakamura et al., 2011).
Moreover, the method used by Meacham and colleagues is not distinguishing between
SSEs and other types of systematic error (Meacham et al., 2011). Thus, Allhoff and
colleagues developed a statistical method to detect only SSEs and referred to SSE as CSE
(Context-Specific Error) (and error-inducing sequence motifs as contexts) (Allhoff et al.,
2013). As it is already mentioned in the previous studies that the SSEs are present only
on one strand (known as strand bias positions), they used this fact to distinguish
between true SNPs and CSE. They screened the genomic positions with strand bias and
associated base calling errors with sequence contexts at these positions. By using these

”’2) that can identify

positions, they developed a statistical method (“discovering-cse
context-specific sequencing errors (CSEs) including the associated sequence context.
Moreover, they provided a list of error-prone genomic positions in BED format’®, which

can be used to filter false positives due to CSEs.

4.1.2 Motivation

The idea of this work originated when we saw lots of variants shared across a significant
number of different human DNA sequencing data sets (around 500 exome sequencing
samples). These are not common variants present in the population, which implies that
these shared variants are false positives caused by some sort of systematic errors. We
refer to these errors as “Recurrent Systematic Errors (RSEs)”. These RSEs are called as

variants by samtools and GATK’s unified genotyper and some of them also fulfil the

! http://bio.math.berkeley.edu/SysCall/ (This and subsequent URLs in this chapter are accessed on 16 July

2015)

7% https://bitbucket.org/tobiasmarschall/discovering-cse

73 https://genome.ucsc.edu/FAQ/FAQformat.html#formatl
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standard SNPs/Indels good quality call thresholds suggested by GATK’s best practice
guidelines (cf. Chapter 2). For example, the SNP (which is systematic error) shown in
Figure 4.1 (highlighted with vertical bar in black colour) was detected in the control
sample (NA12878) by two different pipelines (BWA-aln+GATK Unified genotyper and
BWA-MEM+GATK Haplotype caller) (cf. Chapter 2). Moreover, it is supported by reads
aligned in both forward and reverse direction with good mapping quality and not
filtered out by all standard filtering criterias for FPs. Therefore, the detection of this type

of error is very essential to reduce the number of false positives.

As mentioned above, previous works explained some systematic errors on sample level
(errors in an individual sample) and associated causes, but not RSEs. They also
mentioned that there are many more systematic errors than explained in their studies.
Moreover, these studies mainly focused on the base calling errors (i.e. a mismatch or
SNP), but do not provide any information about the effect of systematic errors on Indels.
Besides the errors originating from the sequencing process, certain genomic regions, like
LCR regions, can also cause systematic errors. It is known that both sequencing and
mapping of LCR regions are difficult or not accurate, which can lead to lots of
mismatches (Treangen & Salzberg, 2012). These facts motivated us to explore RSEs in
human sequencing data to find both platform-specific as well as genome-specific

systematic errors.

Besides the exploration of these errors, we also felt the need to develop a new
systematic error detection approach due to some drawbacks of the previous methods.
Nakamura and colleagues presented an approach to detect sequence specific errors
(SSEs), but, their SSE position detection criteria are very specific (Nakamura et al., 2011).
It captures certain SSEs only due to the following limitations of their selection criteria
(cf. Section 4.1.1). a.) The first selection criteria can only capture SSEs above 30x
coverage (for one strand), but a mismatch caused by SSE below this threshold can easily
be called as a SNP (depending on datasets, sometimes 10x coverage is enough to call a
confident SNP). b.) The second criteria only yields a region of consecutive mismatches

which can be due to bad quality bases. These mismachtes can be filtered out by quality
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trimming in good quality data (with good read coverage and basecalling quality) or by
variant callers (with or without FPs filtering strategies) (cf. Chapter 2). Moreover, they

did not provide any algorithm/tool for the detection of SSEs.
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Figure 4.1 Alignment visualization of two systematic errors in a control sample (NA12878). This figure is
generated by IGV”* (Robinson et al., 2011) in which horizontal bars are representing aligned reads at chrl
(location: 201178924 and 201178926) on both forward (red colour) and reverse (blue colour) reference
strand. Nucleotide bases G and A shown in the figure depict mismatching bases (or systematic errors),

which are supported by both forward and reverse strand reads.

Although the other two studies (Allhoff et al., 2013; Meacham et al., 2011) provided
tools for systematic error detetion, they also focused only on one certain type of errors.
Both methods consider errors that are present only on one strand but systematic errors
can be present on both strands (cf. Figure 4.1). Thus, slection based on a strand bias
criterion can miss many errors and most of these strand bias errors can be easily filtered
by current variant calling tools (Samtools, Platypus, GATK) (cf. Chapter2). Moreover,
SysCall uses a specific training dataset containing certain error charatetristics, and is not

having good accuracy for other types of errors e.g. run-specific errors. The other tool

” https://www.broadinstitute.org/igv/
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“discovering-cse” also deals with only one class of errors i.e. CSE/SSE on strand bias
locations. The top ten reported sequence motifs from this study are containing “GGC”
motif, which is already reported cause for few SSEs. However, there are many other
detected SSEs by both of the studies (Allhoff et al., 2013; Nakamura et al., 2011), which

are not yet explained and many other undetected SSEs which need to be detected.

4.1.3 Method

As mentioned above, | want to explore RSEs which | define them as mismatches (both
SNP and Indels) present at the same genomic location throughout many data sets
(sequenced from the same sequencing technology). This definition is based on the
assumption that if there is a mismatch to the reference genome sequence at the same
location in multiple datasets then either this is a common variant present in the
population or it is occurring due to the same systematic error during the DNA
sequencing of these datasets. | assume that the RSEs can be explained by the presence
of some motifs upstream or downstream of the mismatch position. This assumption is
based on the following facts derived from previous studies (cf. Sections 4.1.1, 4.1.2):

* Sequence motifs in the DNA template influence the sequencing process, which

leads to base calling errors.
* Sequence motifs in the reference genome cause faulty read mapping, which

leads to mismatches in the alignment.

Therefore, | decided to screen all sequence motifs of a certain length throughout the
human exome sequencing data (sequenced on lllumina Hi-Seq sequencer), which is
aligned to the human reference genome sequence (GRCh37) (cf. Chapter 2). The
screening of sequence motifs throughout the complete target region of the exome
enables the comparative analysis of thier occurrence near RSEs as well as in the other
part of the genome. This way we can distingush between a true association and a

random co-ocurrence of sequence motifs near RSEs.

| refer to these sequence motifs as “kmers” and categorize them in the following two

classes:
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* Observed kmer: A string of consecutive bases of length k in the read sequence of
a sample.
* Expected kmer: A string of consecutive bases of length k constructed from the

reference genome sequence.

Similarly, their counts can be categorized in the following two classes:
* Observed kmer count: number of occurrences throughout all the aligned
sequencing reads on the reference genome sequence.
* Expected kmer count: number of times this reference kmer is sequenced. The
expected kmer count is computed from the reference sequence based on the
coverage of each reference base (i.e. number of aligned reads at that reference

base position) (cf. Section “Expected kmer count computation”).

The idea behind these classes is that | should see equal observed and expected counts
for all kmers from the sequenced regions which mapped perfectly to the reference
sequence (without any mismatches). In other words, the ratio of obeserved against
expected count (I call it OEratio) should be equal to 1 in the perfectly mapped regions.
Kmers with an OEratio < 1 have an observed kmer count which is less than their
expected kmer count, which means that they are frequently deviating from the
reference sequence in the sequenced sample. The reason for this can either be a true
variant or a sequencing error within the kmer. On the contrary, an OEratio > 1 means
that the observed count is higher than the expected count, which can be caused by a
mixture of effects that cannot be differentiated easily. For example, both systematic and
random sequencing errors in multiple expected kmers can produce the same observed
kmer in the reads increasing the observed count and so the OEratio. Therefore, kmers
with low OEratios are better suited as markers for systematic sequencing errors than

those with high OEratios.

In the following sections, | will describe how expected and observed kmer counts are
computed and the application of the OEratio to detect systematic errors. The work is

divided into 4 main sections (cf. Figure 4.2). At first | aligned the read sequences of a
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sample to the reference genome sequence. The aligned data from each sample is then
used to construct the kmers and to compute both expected and observed kmer counts.
After that, | use these counts to compute the OEratio. At last, | use the generated list of
kmers and their OEratios to detect systematic errors. | narrow down the detected
systematic erros by a series of filters including RSEs and validate them. Each step is

described below in detail.

Read alighment & post processing

As the kmer construction is based on the alignment of the reads to the reference
sequence, | first need to perform read mapping. For this purpose | use our alignment
pipeline (cf. Chapter 3), which uses backtrack and MEM algorithm of BWA for the
alignment and performs post processing of aligned reads for further improvements (cf.
Chapter 2). | extracted only aligned reads on the target regions (as defined by the exome
enrichment kits) including 100 bp flanking regions both upstream and downstream of
the targets. This avoids a lot of random false positives due to little coverage or wrong
read mapping in the off-target regions. | also removed duplicate reads as they can
provide false evidence about a variant (cf. Chapter 2). Moreover, | removed unmapped
reads to avoid an unnecessary overhead (in terms of file size and computation time).
After all of the above-mentioned steps, | got aligned reads in a BAM format, which is a
compressed format of SAM (Sequence Alignment Format) (cf. Chapter 2). | further split
these BAM files into 48 BAM files, two for each chromosome (excluding the
mitochondrion) generating separate BAM files for reads mapped on the forward and the
reverse reference strand, respectively. The kmer construction process is computationally
very expensive and was performed on the created chunks of BAM files, which sped-up

the entire process (kmer generation and their counts) more than 4 fold.
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Read alignment & post processing

I Kmer construction !
Observed kmer construction Expected kmer construction
Conversion of bam files into sam Computation of reference base
format coverage
Construction of kmer by walking Construction of kmer by walking
through each read through each reference base
Counting of overall occurrence of Corrections for read starting or ending
kmer to compute its count effect to compute count of kmer

1 .| OEratio computation & kmer list | |
generation

!

Systematic error detection

Restriction of kmer list only for
20x coverage and RSE locations

!

Validation of kmer list by using
control sample NA12878

!

Comparison of filtered list with
other datasets

!

Exploration and categorization of
Systematic error

Figure 4.2 The four main components of the systematic error detection workflow.

Observed kmer construction

In order to parse the aligned read sequences, | converted BAM format into SAM format
and also removed the reads containing ‘N’. As these ‘N’ bases are randomly mapped by
the aligner on any of the four references bases (A, T, G, C), the kmers containing ‘N’
would not be very informative. To construct all kmers that are present in the reads, |
screen all reads from their starting till end position. | perform a separate screening for
reads mapped on forward and reverse strands. The observed (OBS) kmer is the string of

consecutive bases from ith till jth [j=i + (k -1)] position in the read.

The construction of the first kmer starts from the first base (i=1) and ends with the base
at 9th position (j=9), if the kmer length (k) is equal to 9. Similarly, the second kmer
generation starts from the second base of the read (i=2) and ends at 10th base (j=10).
This process continues till the end of the read, generating all kmers that are contained in

the read (cf. Figure 4.3).
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Second Kmer

E AGCAGAA , GATATAAAATGAGGCTTTGAATTTGAATATAATAATTCTGACTT

hird Kmer Last Kmer
First Kmer (L=9)

Figure 4.3 Observed kmer construction from a sequence read.

| perform this kmer generation on all reads in a sample and count the occurrence of
each kmer throughout all reads. For reads from the reverse strand, | have to take the
reverse complement of kmers. This is because reverse strand reads are stored in SAM
format as the reverse complement of the actually sequenced read. At last, | generate a
list of these observed kmers and their respective counts in the underlying sample. All of
the above-mentioned process is implemented in a Perl”® script and its pseudocode can

be found in Appendix.

Expected kmer construction

To construct the expected kmers, | first computed the coverage of each reference base
(i.e. number of aligned reads at that reference base position) within the target regions
including 100 bp flanking regions both upstream and downstream. | used the Samtools
mpileup function with the —D parameter, which generates a pileup format’® of aligned
reads containing the coverage of each reference base. | generated the pileup of all bases
including bases with zero base quality score (Q) (default Q=13) and extracted only those
bases having coverage greater than 10. Figure 4.4 shows the pileup format of aligned
reads. It is a tab-delimited format where the first column is the chromosome name, the
second column is the location, and the third column is the reference base. The number
of reads covering the reference base position (i.e. base coverage) is shown in the 4"
column followed by read bases (5th column) and base qualities (6th column). The read
base column contains alignment details, where dot (.) (cf. Figure 4.4 (A) or comma (,) (cf.

Figure 4.4 (B)) represents a match to the forward and reverse strand respectively. A

7> https://en.wikipedia.org/wiki/Perl

’® http://samtools.sourceforge.net/pileup.shtml

111



Detection of systematic sequencing errors

mismatch is shown as one of the bases from ‘ACGTN’ or ‘acgtn’ on forward and reverse
strand, respectively. Insertions between the current reference position and the next
reference position are shown by "\+[0-9]+[ACGTNacgtn]+' pattern. Similarly, the pattern
*-[0-9]+[ACGTNacgtn]+' shows a deletion of base pairs in the read compared to the
reference sequence. For example, in the Figure 4.4 (A) we can see a deletion of CT bases
after the current base denoted by -2CT and stars (*) in the next two positions show
these bases are deleted. The start of the read is denoted by ‘~’, followed by an ASCII
character which encodes the mapping quality as ASCIl value -33 (e.g. *g. in the 4™ line in
(cf. Figure 4.4 (A)). The end of the read is denoted by ‘S’ (e.g. .S’). The understanding of
the pileup format is necessary; as the information stored in the above mentioned

symbols is used in the expected kmer counts calculation.

1 1323137 G 50 S 2 A]. @FCG8FFF@FF;?7FDB
A) DFHAHG#EDFH. F ; BHFFDGGBDGDF GEFE&F=

1 1323138 T 48 e [ C.. si3<yiii;i21l:;;:

T3 75.i*;5 5 0i30039:0:%99

1 1323139 G A8 e >CG?7B@C<AG68>@=<F

EFEEE?@EF)F3AEEFEEFD=FDEGEFE%FB

1 1323140 C 4D e Ag. DAB?GEGBDG>>AD@AE

EFFFFEBEE(DCAEDDFEFC>D; DFDGD%ED:

1 1323141 G A9 e e @=<(AAA<AA78<A;=?

@72@7=0: =>#;<7@==77@=9@; 70=0=$77:

1 1323142 C 0 e s Ag. 36555555555555555

555555455#555555555555555555$554 !

1 1323143 C 51 .-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2

CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2

CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CT.-2CTAg.-2CT 4222222222222222222

2222122#222222222222222222$222! !

1 1323144 C 51 1,?7:AAA?7A> ; >AA9@

@a@=775<@#@;=AC=07A;<?;@@=78.@77>6

1 1323145 T 51 3k 3k 3k 3k 3k 3k 3k % b 3k 3k ok 3k 3k k ke ok % 3k 3k 3k ke b ok 3k 3k 3k ok 3k 3k k kK % b 3k K Kk ok 3k 3k K ke b ok ok ok Kk k- l )').AAA77A>;>AA9@
B) éEBBEBDESgégg@DAg 43 !)J)!)))!)))!)))7)))7}))7}))7})!7})!7})!7}/\!7 ACEDDEDEEDDEDEEEDEEEE:EDC

: <

l 69185 T 43 999999999999 9999999999999999999999993399393) ?>????W<?W?@@?

70@777707)77>>>==>

1 69186 G 45 :$)n)1n))n))ny1)n))n):n)n:)an”n”/\!1/\!: ?CEDDEDEEDDEEEEED

EEEECEDEDDDCDABED-EC?ADA>D; <

Figure 4.4 Pileup format of aligned reads. Part (A) and part (B) show the pileup of aligned reads on the

forward strand and on the reverse strand, respectively.

Expected kmers are constructed in a similar manner as described for observed kmers.
These kmers are also strings of consecutive bases from i till jth positions in the
reference genome sequence. Instead of walking through the read sequence (start to
end), here, the program walks from top to bottom of the pileup of aligned reads and

construct the kmer from the consecutive reference bases (3rd column). For example, if
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the starting position is “1323137” (first line of the Figure 4.4 (A)), then the first kmer of
length 7 is generated by using reference bases till position “1323143” and the kmer is
“GTGCGCC”. Similarly, the second kmer is from position “1323138” till “1323144"” (kmer:
“TGCGCCC”), and so on.

With my approach | want to capture systematic sequencing errors that occur in the
context of certain sequence motifs (cf. Section 4.1.3). | assume that such motifs can be
present either upstream or downstream of the error position. Therefore, | construct the
expected kmers according to two different models:

* Prefix model (PM): Prefix model captures the motif sequences upstream of a
mismatch position. For example, if k=9 (9mer=TATCTCGCG), then the first 8
bases (in green colour) are the motif sequence and the last reference base (9th
base) (in red colour) is the base of interest, which carries an error (mismatch in
read sequence compared to reference).

¢ Suffix model (SM): Suffix model captures the motif sequences downstream of a
mismatch position. For example, if k=9 (9mer=TATCTCGCG), then the first
reference base (in red colour) carries the mismatch (or error) and the remaining

8 bases (in green colour) are the motif sequence.

The computation of the expected kmer counts is different and much more complicated
than the computation for the observed kmers. The count (Count) of the expected (EXP)
kmer (for both PM and SM) is the number of times this kmer was sequenced in the
underlying sample, which is the number of reads covering this kmer completely in the
alignment. It can be computed as, the average of coverage values (Cov) of each base (B)
present in the kmer of length (k) minus over-counts (OC) of reads starting and ending
within the kmer (cf. Figure 4.4). Specifically, the over-counts that have to be subtracted
are:

1. Over-counts due to reads either starting (*. or #,) or ending (.S or ,S5) at any

middle position of the kmer (e.g. for k=5, at positions 2 to 4 (k-1)) (OCmid).
2. Over-counts due to reads ending at the first position of the kmer (at position 1)

(OCstart).
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3. Over-counts due to reads starting at the last position of the kmer (at position k)
(OCend).

Thus, the exact count of a kmer is calculated by the following formula:
J
Count(EXP kmer) = (2 Cov(B) — (OCmid + OCstart + 0Cend)> /k;
i

where i and j are the start and end positions of the expected kmer in the reference

sequence.

While OCstart and OCend are simply the number of reads ending at the first position
and starting at the last position of the kmer, respectively, the computation of OCmid is
more complicated. If a read starts at any of the middle positions, then it contributes to
the coverage values of all following bases. Similarly, when a read is ending at middle
position, then its count is already included in the coverage value of the previous bases.
Thus, | need not only to subtract the number of reads starting or ending at a middle
position, but also their contributions to the coverage values of the following or previous

bases, respectively. Therefore, the OCmid correction term is calculated as:

k—1
0Cmid = (2 0Cs(D) * (k — 1+ 1) + 0Ce(l) * l);
=2

where OCs(l) and OCe(l) are the number of reads starting and ending at middle base | of
the kmer. During the kmer construction, | also capture and store its genomic location on
the reference sequence, which | am using later in systematic error detection (cf. Section
“Systematic error detection”). The kmer location is the location of the last base in the
kmer string (base of interest) for PM, whereas, it is the position of the first base (base of
interest) for SM. The expected kmer construction and their counts computation are

implemented in Perl scripts. Their pseudocode can be found in Appendix.

OEratio computation

After the generation of the kmers, | first merged the kmers and their counts (Count)
from both forward and reverse strand. If the kmer is present in both strands, then |
added both counts and report this kmer with this total count in the merged kmer list.

The kmers that occur only on one strand are reported as they are (with their count) in
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the merged kmer list. | applied this merging for both observed (OBS) and expected (EXP)
kmer lists. Thereafter, | computed the OEratio for each kmer based on the following
formula:
OEratio = Count(OBS kmer)/Count(EXP kmer)

If a kmer is present in both the OBS and EXP kmer list, then simply the above mentioned
formula is used to calculate OEratio. Whereas, if a kmer is exclusively present in only
one of the lists , then | simply use zero as the count of the absent kmer to compute the
OEratio. For example, if a kmer is not in the OBS kmer list, then its OEratio will be zero.

In the other case (absence of the kmer in EXP kmer list), the OEratio is infinity.

Systematic error detection

| used the above mentioned kmer approach to explore systematic errors in human
exome data. For this purpose, | selected a set of 10 samples from an epilepsy study
randomly from our in-house data set. Additionally, | included a control sample NA12878
for validation purpose (cf. Section “Validation of kmer list”). The paired-end exome
sequencing of these samples were performed on the CCG’s lllumina HiSeq sequencer
and NimbleGen SeqCap EZ Human Exome Library v2.0 (V2_IN) kit was used for target
enrichment. All of these samples were analysed by our exome analysis workflow (cf.
Chapter 3) where read mapping is performed by BWA-aln algorithm (with n=7) followed
by post alignment improvements and variant calling by both mpileup and GATK'’s unified
genotyper (UG) (cf. Chapter 2). This data set is having a mixture of both male and female

samples with more than 90% of the target region covered at 20X or higher.

| constructed both observed and expected kmers and computed the OEratios for all 11
samples (as described above). | selected the kmer length as 9 (k=9) for systematic error
detection. The reasons behind this selection are:
a) Previous studies only focused on sequence motifs of length 4 and were not able
to detect/explain all systematic errors (cf. Section 4.1.2).
b) (Allhoff et al., 2013) already reported that longer motifs are more specific and
able to detect more SSEs than the shorter motifs. They used 8 as motif length for

their study.
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c) After comparing kmers of lengths 4 to 10, | also found that a higher motif length
is more specific as it avoids the additive effect of normal kmers. Here, a normal
kmer means a kmer having no mismatch at the position of interest, thus, not
representing any error. At low kmer length, the number of possible kmers
formed by the 4 nucleotide bases is very small. For example, at k=4 we get
4* = 256 different kmers, on the other hand, at k=9 the number of possible
kmers is 4° = 262144. Thus, at the lower kmer lengths we can have a large
number of normal kmers that dominate the OEratio computation, which makes it
difficult to detect error-containing kmers. | did not go beyond k=9, as it increases
the computational cost. Moreover, the combinations of kmers generated from
both prefix and suffix model are containing 17 bases (having base of interest in
the middle), 8 bases upstream and downstream of the error position. Thus, |
assume that 9mers (or 17mers in the combination) are enough to capture the

systematic errors.

The generated kmer lists contain 6 columns: the expected kmer (which is the motif of
interest), expected and observed kmer counts, OEratio, kmer locations on the reference
genome and read strand information (whether the kmer is constructed from reads
mapped to the forward or reverse strand or both strands). To exclude badly covered
kmer genome-wide, due to coverage bias or misalignments, | filtered out kmers having
less than 20 expected counts. After this initial preparation, | performed the following

steps to explore RSEs.

Extraction of kmers having RSEs

In order to focus only on RSEs, first | extracted only those kmers that are having RSEs
variants (either SNP or Indel) at the last or the first base of the kmer from PM and SM,
respectively. | considered all variants called in a sample as RSEs if they are also present
in more than 300 samples among 511 epilepsy samples of our in-house data set.
However, | make sure that these labelled variants are not common variants shared

among different human populations (are only shared in our in-house data set). As in-
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house data set (called InhouseDB’’), we have variant calls of 511 epilepsy patient
samples also generated by our exome analysis workflow. We integrated variant calls
(called DBall”’) provided by the 1000 genomes project (phase 3’%) and the ExAC”®
consortium. Moreover, we annotated these integrated calls with rsids®® from DBSNP®!
database. The 1000 genome consortium (Abecasis et al., 2012) provided lists of variants
called by genome sequencing of 2504 individuals from 26 populations. The ExAC
consortium preformed exome sequencing of 60,706 unrelated individuals and provided
an integrated list of called variants. Both variant lists contain population specific
information, like total number of alternate alleles in called genotypes (AC), total number
of alleles in called genotypes (AN) or allelic frequency (AF) in different populations. |
computed minor allele frequencies (MAF®?) (i.e. AC divided by AN) of variants present in
DBall. If a variant is present in both variant lists, then | computed MAF by using AC and
AN values from ExAC list, as it is containing variants from more than 60,000 individuals. |

considered a variant as a common variant if it has MAF > 0.30 (30%).

To extract kmers having RSEs only, first | took the overlap between variants in
InhouseDB and DBall, and filtered out the common variants among these overlapping
variants. Then, | selected only those variants (i.e. RSE locations) that are shared among
at least 300 samples of InhouseDB. To narrow down this list, | further extracted only
those RSE locations that are shared by at least 7 samples among the 10 selected
samples. | compared these RSEs locations with the kmer locations and kept only those
kmers whose last or first base are at the location of an RSE (for PM and SM,
respectively). | performed this filtering on all selected 11 samples and this way prepared

lists of kmers associated with RSE locations for each sample.

”7 Both InhouseDB and DBall construction is performed by Dr. Holger Thiele

78 http://www.1000genomes.org

7% http://exac.broadinstitute.org

# http://www.ncbi.nlm.nih.gov/SNP/get_html.cgi?whichHtml=how_to_submit#REFSNP

81 http://www.ncbi.nlm.nih.gov/SNP/

# http://hapmap.ncbi.nim.nih.gov/hapmart.html.en
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Alignment or random artefacts filtering

To filter some alignment artefacts, | generated two different lists of kmers associated
with RSE locations for each sample by using aligned reads by BWA-aln and BWA-MEM
algorithms. As | am using BWA-aln with increased sensitivity (n=7), it can produce many
FPs. On the other hand, BWA-MEM has well balanced sensitivity and specificity (cf.
Chapter 2). Therefore, | am taking only those kmers that are present in both kmer lists,
those constructed from the BWA-aln alignment and those from the BWA-MEM
alignment, to filter out possible alignment artefacts produced by the BWA-aln algorithm.
Thereafter, | merged the filtered kmer lists from all 11 samples and retained only those
kmers common to at least 7 of the 11 samples. This excludes random errors occurring in
an individual sample or sample specific systematic errors and focuses the resulting kmer

list to mainly RSEs.

Validation of kmer list

As explained in Chapter 2, sample NA12878 can be used as a control sample to validate
lists of variants. Thus, | compared the variant locations (which is RSE location) in the
kmer list that are shared by the NA12878 sample with NIST’s variant list to validate that
these variants are only FPs. At first, | compared variant calls (called by UG) of this sample
with the NIST list as recommended to get lists of true variants (or highly confident
variants) (cf. Chapter 2). Then, | checked how many variants from this list are present in
the kmer list and marked them with a keyword. | also used validated calls® for this
sample provided by the Broad institute®, as an additional annotation. Moreover, |
compared variant calls in the list with variant calls for the same sample but called by a
different data-analysis pipeline, where | performed read mapping by BWA-MEM
(followed by GATK’s post alignment improvement) and variant calling by GATK
haplotype caller. | also marked those locations, which are not present in the variant list
generated by the new pipeline (as these can be artefacts produced by variant calling).

Furthermore, | annotated the RSE locations with their presence in DBall and reported

8 http://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/working/20130806_broad _nal12878 truth_set

84 http://gatkforums.broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-or-

benchmarking-purposes)
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MAF for matched entries. All of the above mentioned comparisons are enough to
validate whether the locations in our list are FPs in all data sets or can appear as true
variants in any individual like NA12878 or another from some population analyzed in the
1000 genome project. At last, | compared our kmer list, with kmers generated by the

tool “discovering-cse”®’

(they have also provided a list of FP location) (cf. Section 4.1.1).
Comparison with other datasets
The detected RSEs can simply be some artefacts introduced during library preparation
with a certain enrichment kit or can be technology (lllumina) specific artefacts or
sequencing centre specific artefacts (batch effect). Thus, in order to figure out the
nature of these errors, | compared this kmer list with the following different paired-end
exome sequencing (sequenced on Illumina Hiseq) datasets, in which at least 90% of the
target region is covered at 20X or greater:
* V3_IN: Set of 11 samples sequenced in-house by using the NimbleGen SeqCap EZ
Human Exome Library v3.0 target enrichment kit.
* SS5_EX: Set of 11 samples sequenced in another sequencing centre by using the
Agilent SureSelect Human All Exon v5 target enrichment kit.
* V2_EX: Set of 11 samples sequenced in another sequencing centre by using the

NimbleGen SeqCap EZ Human Exome Library v2.0 target enrichment kit.

To make these datasets comparable, all of these samples are analysed by the same data
analysis pipeline. Kmers (k=9) construction and OEratio generation are also performed in
the same way as described above. Extraction of kmers at RSE locations is also performed
in the same way, except the final list of FPs used here is only variants that are not
common and shared by at least 300 samples in InhouseDB (not requiring the additional
sharing of the variants between 7 of 10 samples) (cf. Section “Extraction of kmers having
RSEs”). Thereafter, the kmer lists from all 11 samples of each data set are filtered from

alignment artefacts and merged into one list to avoid random errors. At last, these 3

® https://bitbucket.org/tobiasmarschall/discovering-cse
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different kmer lists are compared with our final kmer list from V2_IN and kmers are

marked according to their presence or absence in all of these datasets.

Filtering to get strong RSEs

To focus on strong RSEs (i.e. hard to detect or filter out by standard filters), | applied
best practice filters®® (cf. Chapter 2) to filter out some easily detected FPs and focused
only on the remaining variant locations. In order to narrow down the screening further, |
used the OEratio. | computed the average of OEratio for all kmers throughout the 11
samples of the V2_IN data set and focused on only those kmers present either on
forward or reverse or both strands that have an average OEratio less than 1. As
explained above (cf. Section 4.1.3), a kmer with a low OEratio is more likely to be
associated to a systematic sequencing error than one with a high OEratio, which is why |

focus our investigation on this class of kmers.

4.2 Results

Table 4.1 shows the statistics of the generated 9mers from our dataset of interest
(V2_IN) where | selected 10 epilepsy samples and 1 control sample (column 1), which
were sequenced in-house (exome sequencing) on an lllumina HiSeq and enriched by
NimbleGen v2.0. Approximately 6 million (column 2) 9mers (a few might be identical to
each other, but appears at different chromosomal location) from different
chromosomes (1-22, X, Y) are constructed by both Prefix model (PM) and Suffix model
(SM) from the target regions (+100bp flanking regions) of the sequenced samples. At the
raw level (all generated 9mers without any filtering), these numbers are the same for
both PM and SM model, as they represent the same kmer but with different RSE
location. The filtering based on coverage (column 3), where | filtered out 9mers having
less than 20x read coverage, filtered out approximately 6% of data. The extraction of
9mers at RSE locations according to InhouseDB shortened the 9mers list drastically
(column 4). Furthermore, the alignment artefact filter (column 5) also filtered out a few

alignment errors (approx. 5% of RSE containing 9mers).

¥ http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set
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Sample Number of 9mers
(Dataset: Raw After Filter Only on RSE  After Aln artefact
V2_IN) > 20x locations filtering

NA12878 6107687 5790795 3740 3492
S1 6112969 5799549 4129 3969
S2 6066480 5729634 3383 3199
S3 6159831 5823955 3589 3408
S4 6086135 5782131 3797 3606
S5 6058726 5786777 3967 3799
S6 6172392 5819470 3841 3636
S7 6199838 5832016 3709 3562
S8 6058524 5724690 3665 3503
S9 6190481 5825560 3798 3643
S10 6071964 5691843 3681 3513

Table 4.1 Statistics of generated 9mers from V2_IN.

Category

Number of 9mers

(Overlapping 9mers of V2_IN with other datasets)

Raw Overlap

After Avg. OE

< 1onraw list

After BestPrac.

Filt. on raw list

After OEFilt on

BestPracFilt. list

PM SM PM SM PM SM PM SM
With all datasets 1649 1697 242 239 1461 1513 211 211
With V2_EX 1069 1059 187 178 820 813 127 118
& V3_IN)
With V3_IN 75 97 5 6 71 86 5 6
& SS5_EX
With V2_EX 67 81 5 2 65 79 5 2
& SS5_EX)
With V3_IN 112 91 14 11 96 78 9 8
With V2_EX 45 38 3 3 41 35 3 3
With SS5_EX 17 9 1 2 16 9 1 2
No Overlap 28 31 3 3 26 28 3 3
Total 3062 3103 460 444 2596 2641 364 353

Table 4.2 Overlap between the test dataset and the 3 other datasets.
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As mentioned in the method section, | extracted only 9mers that are shared by at least 7
of the 11 samples considered to filter out some random errors (or sample specific
errors). This step further reduced the 9mer list by approx. 15% (cf. Table 4.1).
Thereafter, | compared this list with those produced from the 3 other datasets (V2_EX,
SS5_EX, V3_IN) to assess the reproducibility and nature of these errors (cf. Table 4.2).
The comparison of the V2_IN list with the lists from the other datasets shows that
approximately 94% of RSEs are reproducible (in at least three datasets, sum of the first
four categories). Only 1% of the RSE associated 9mers (category: No Overlap) are not
present in any other dataset. The remaining 5% RSE associated 9mers in V2_IN are only
shared by one other dataset (e.g. V2_IN with V3_IN), which is still a sign of
reproducibility. This high level of reproducibility across different data sets supports our
hypothesis that the majority of RSEs in the V2_IN list are indeed systematic errors. 54%
of these systematic errors are shared by all datasets irrelevant to enrichment kit and
sequencing centre. Thus, these errors are most likely induced by the lllumina sequencing
process or due to standard library preparation protocols (used in a similar way in most
of the sequencing centres). | refer to this error type as class 1: Platform dependent
errors. Besides this class, | also detected another class of error (approx. 35% of the
total), which occurred due to the combination of Illumina sequencing with NimbleGen
SeqCap EZ Human Exome Library kit (both V2 and V3) only. | refer to this error type as
class 2: Target enrichment dependent errors. | also compared my 9mer list with the
9mer list generated by the tool “discovering-cse”®” on the control sample. | found only
1% overlap between these two lists, which is expected as “discovering-cse” only focuses
on strand biased positions and detects systematic errors at the sample level. In contrast,
my 9mer list contains shared errors across different datasets and is not restricted to
strand biased positions. The systematic errors in both of my classes are shared variants
among 300 from 511 samples in the InhouseDB data set (but these are not common
variants having MAF < 30 %). Moreover, | filtered the 9mer list with the GATK best
practice filters for SNPs and Indels (cf. Chapter2) and found that only 11% of these

8 https://bitbucket.org/tobiasmarschall/discovering-cse
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systematic errors can be detected or filtered out by the best practice filters (which

include a filter for strand bias).

The RSEs reported in the two error classes can be used to filter or mark systematic
errors in any other variant list. However, | found that some of these errors are true
variants in the NIST/Broad truth set list (cf. Table 4.3 & Table 4.4) or present in DBall.
This is not surprising as some rare variants or sample/disease specific variants can be
true even at systematic error prone regions. Moreover, | also observed that Haplotype
caller (HC) did not call some of these errors (especially errors in regions of paralogous
alignment (cf. Chapter 2) (cf. Table 4.3 & Table 4.4). The new generations of variant
callers like Haplotype caller or Platypus, don’t rely on the alignment entirely but perform
local reassembly of haplotypes®® containing mismatches on the reference, thus, they can
avoid some of the systematic errors (but not all) due to paralogous alignment. However,
they can also miss some true variants in these regions because of this behaviour (cf.
Chapter 2). Therefore, in RSE lists (cf. Appendix) | have provided some additional
annotations showing whether a variant is present in NIST or DBall list or whether it is
called by HC etc. This can help users to decide (based on the aim of the study) that up to

which extent they should filter systematic errors in their variant lists.

FilterRSEs tool

To filter RSE locations (FPs due to RSEs) from any variant list (in the VCF format), |
developed a script (named: “FilterRSEs”) in the Perl programming language®. It
compares the variant locations in the given VCF file and the RSE list, and performs
relevant action in two different modes: annotation and filter. In annotation mode, it just
annotates the variant with RSE associated annotations (if the variant location is present
in RSE list): PA, NIST, DBALL, 17mer. It appends the INFO field of the VCF file®® with all of
these annotations and their respective values. For example, if an RSE location is called

by other pipeline | used (BWA-MEM and GATK HC), then “PA=Yes” will be appended to

8 http://ghr.nlm.nih.gov/glossary=haplotype

8 https://en.wikipedia.org/wiki/Perl

% http://samtools.github.io/hts-specs/VCFv4.2.pdf
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the INFO field of that variant, otherwise “PA=NQO” (if the RSE is not called by the other
pipeline). Similarly, NIST and DBALL also contain two values “Yes” or “NO”, depending
on the presence of the RSE location in the NIST list and in DBall (cf. Section “Validation
of kmer list”). Along with the “Yes” value, the DBALL field also contains the rsid and MAF
value of the RSE location. The annotation “17mer” contains the string of 17 bases
around the RSE location (8 bases upstream, reference base at the RSE location, 8 bases
downstream). The description of these annotations will also be added to the header of
the VCF file. Therefore, the annotation mode provides some flexibility to user, who can
consider the RSE annotations presented in the VCF file when deciding about a variant.
For example, if the study focuses on the common variants (present in different human
populations), then MAF values in DBALL field can be helpful in order to decide whether a

certain variant should be considered as an RSE or a common variant.

In “Filter” mode, the tool filters out the FPs due to RSEs from the given VCF file and
produces two different VCF files: one is free from RSEs and the other contains only the
filtered FPs due to RSEs. This mode provides different filtering options using different
combinations of annotations like P, C_MAF, C, N etc., which also offer lots of flexibility to
user. For example, the default option of tool filters out all RSE locations from the VCF file
irrelevant to the associated annotations, whereas the “C_MAF” option offers filtering of
RSE locations based on a given MAF value. Overall, these different filtering options can
provide “safe” filtering, even in the filter mode. Details of all of these filters as well as

the pseudocode of “FilterRSEs” can be found in the Appendix.

Exploration of systematic error

| further investigated the detected RSEs to explore their characteristics (cf. Table 4.3 &
Table 4.4). | observed that the majority (74-77% in class 1 and 64-67% in class 2) of RSEs
are mapped at only (or mainly) one strand (either forward or reverse) of the reference
sequence. However, most of these are not detected by the standard strand bias filter
used in GATK’s best practice filtering strategies. | also found that some of the errors are
mapped on both strands (23-26% in class 1 and 33-36% in class 2) as well, which

supports our assumption that the investigation around only strand biased (i.e.
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supported by only one strand) errors (as performed in previous studies) is not enough to
explore all systematic errors (cf. Section 4.1.2). Moreover, | found that a significant
portion of total errors, approximately 27% in class 1 and 35% in class 2, are pipeline
artefacts and can be avoided by using the recent sophisticated tools/algorithms (like

Haplotype variant caller) (cf. above paragraph).

In order to see the distribution of these errors throughout the genome, | calculated the
number of RSEs per chromosome in class 1. The distribution of RSEs captured by the
Prefix model (PM) (cf. Figure 4.5) and Suffix model (SM) (cf. Figure 4.6) is almost
identical as both models are capturing the same errors with upstream and downstream
9mers to the error position, respectively. However, SM captured a few more RSEs (not a

significant difference) than PM due to the differences in the 9mer construction

procedure.
In All Dataset Prefix Model (PM) Suffix Model (SM)
FPs In Not called FPs In Not called
NIST By HC NIST By HC
At both strand 357 53 126 324 48 112
At only one strand 1031 260 264 1134 290 281
Total FPs 1388 313 390 1458 338 393

Table 4.3 Overview of systematic errors in class 1: Platform dependent (shared by all datasets).

In only Nimblgen Prefix Model (PM) Suffix Model (SM)

datasets

FPs In NIST Not called FPs In NIST  Not called

By HC By HC
At both strand 300 6 123 278 5 113
At only one strand 551 84 172 583 75 192
Total FPs 851 90 295 861 80 305

Table 4.4 Overview of systematic errors in class 2: Target enrichment dependent (shared by only Nimblgen

Kits).
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The RSE distribution of class 1 errors showed that a few chromosomes (CHR) are having
a significantly higher number of errors than the others. Thus, | focused on only these
chromosomes: 1,2,6,7,11,17 to investigate the cause of the high error load. | observed
that these chromosomes are containing some genes, which are having a major portion
of errors. For example, approximately 55% of the total errors on chromosome 11
(mainly SNPs) are on the MUC6/2 genes (notation means MUC6 and MUC2), with the
majority of them in MUC6. The ANKRD36 gene is having 47% of total errors on
chromosome 2, the MAP2K3 gene (on chromosome 17) is having around 44% and the
CDK11A/B genes (mainly in CDK11A) (on chromosome 1) are having around 19% of the

total errors on that chromosome.

Chromosomal distribution of FPs (PM)
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Figure 4.5 Distribution of errors throughout the genome captured by Prefix model (PM). In the figure, X-
axis shows the chromosome name, whereas the Y-axis shows the number of errors. The red line shows

errors present on the forward strand, whereas the green line shows errors on the reverse strand.
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Figure 4.6 Distribution of errors throughout the genome captured by Suffix model (SM).
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After the investigation of all of these genes (having a high number of RSE), | found that
these are having many paralogous genes or similar genes as computed by Similarity
Matrix of Proteins (SIMAP) (based on their proteins alignments) (Rattei et al., 2006,
2010) or contain highly polymorphic repetitive regions or LCR regions (cf. Chapter 2).
These facts are the main cause of misalighnments by alignment algorithms in these
regions that result in lots of mismatches. Alignment algorithms can find multiple
mapping hits in these regions. In other words, they can align reads that belong to one
gene to one of its paralogous genes due to high sequence similarity (cf. Chapter 2).
Figure 4.7 shows the IGV** (Robinson et al., 2011) visualization of aligned reads (aligned
by both BWA-MEM and backtrack algorithm) on the reference sequence at the MUC6
gene. The grey colour (wavy) part below the coordinate axis in both diagrams is the
coverage track, which shows the read coverage at every genomic position. It is coloured
in grey when only the reference allele is present in the reads while the presence of
alternative alleles at a position is marked in green, blue, orange, and red colour for A, C,
G, and T, respectively. Both diagrams show lots of coloured bars in the coverage track,
which depicts lots of mismatches in the visible region. It is known that the MUC6 gene is
highly polymorphic having short tandem repeats (STRs) containing G and T nucleotides
(e.g. GGT, GCT, GT, etc.) (cf. Figure 4.8). Moreover, it is having many paralogous genes
like MUC2, OTOGL, OTOG, ZAN etc.®’" These two facts are the main cause of
misalignments by both alignment algorithms, which result in a lot of mismatches in the

MUCG6 gene. However, | found that Haplotype caller can avoid very few of these errors.

| fetched the information of paralogous genes of highly mutated genes (cf. Table 4.5)
from gene cards® (Belinky et al., 2015) and found that some of these genes are either
belonging to one gene family or are paralogous to each other or are having other highly
mutated genes as similar genes (based on the protein sequence alignment: SIMAP
(Rattei et al., 2010). For example, CDK11A/B, CLCNKA/B and MUC6/2 belong to the same
gene family and are paralogous to each other. PRIM2 gene contains 38% of RSE in

chromosome (CHR) 6, but no paralogs for this gene cards. However, its cryptic paralogs,

1 https://www.broadinstitute.org/igv/

% http://www.genecards.org/cgi-bin/carddisp.pl?gene=MUC6#paralogs
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contain only exons 6-14 of the original transcript, are mentioned in study (Genovese et

al., 2013). They also found that these paralogs are the cause many FPs (SNPs and CNVs).
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Figure 4.7 Alignment visualization by IGV in the MUC6 gene region. Upper diagram shows alignment by

BWA-backtrack (aln) algorithm, lower diagram shows alignment by BWA-MEM algorithm.
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Figure 4.8 Alignment visualization by IGV at location 11: 1016963 of MUC6 gene. Surrounding this position
(highlighted by vertical line in black colour) there are lots of STRs (repeats of GGT, GCT, GT, etc.)

highlighted with ovals in green colour.
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Frequent RSE % RSE CHR Paralogous genes”

gene

CDK11B 3% 1 CDK12, CDK13, CDK10, CDK11A, CDKS9,

CDK11A 16% 1 CDK12, CDK13, CDK10, CDK11B, CDK9

CLCNKB 5% 1 CLCN7, CLCN2, CLCN3, CLCN, CLCN1, CLCN4, CLCNS,
CLCNKA

PDE4DIP 10%° 1 CDK, RAP2

ANKRD36 47% 2 POTEJ, ANKRD18A, ANKRD30BL, POTEC, ANKRD20A,
POTEF, ANKRD7, ANKRD62, ANKRD30A, ANKRD36C, etc.

ANKRD36B 3% 2 SIMAP similar gene to ANKRD36

SEC22B 4% 1 SEC22A

PRIM2 38% 6 No paralogs are available in Gene cards, but its cryptic
paralogs are mentioned in study (Genovese et al., 2013)

DUSP22 6% 6 DUSP26, DUSP1, DUSP21, DUSP13, STYX, DUSP18,
DUSP27, DUSP19, DUPD1, DUSP28, DUSP3

MUC12 5% 7 MucC17

TRBV7-3 7% 7 TRBV2, TRBV24-1, TRBV3-1, TRBV, TRBV6-8, TRBV4-1,
TRBV2-1, TRBV23-1, TRBV10-2, TRBV28, TRBV7-1, etc.

PRSS1 26% 7 KLK12, KLK14, KLK11, KLK4, PRSS37, KLK13, PRSSS,
PRSS3, KLK1, KLK, KLK6, KLK7, KLK1, KLK2, KLK10, etc.

MUC6 42% 11 OTOGL, OTOG, ZAN, TECTA, VWF, BMPER

MUC2 13% 11 OTOGL, OTOG, MUCe6, ZAN, TECTA, VWF, BMPER

ORA4C3 7% 11 OR4A, OR4C46, OR4B1, ORA4C11, OR4S2, OR4A47,
OR4C13, OR4C16, OR4X1, OR4S1, OR4A1, ORAC], etc.

OR9G1 5% 11 OR9G4 and SIMAP similar gene OR4C3

USP6 7% 17 USP4, USP43, USP1, USP11, USP19, USP32, USP16,
USP31, USP4,

CCDC144NL 5% 17 CCDC144A CCDC1448B

MAP2K3 44% 17 MAP2K7, MAP2K2, MAP2K6, MAP2K4, MAP2K, MAP2K1

KCNJ12 10% 17 KCNJ3, KCNJ, KCNJ4, KCNJ14, KCNJ1, KCNJ1, KCNJ16,

KCNJ10, KCNJ9, KCNJ8, KCNJ2, KCNJ6, KCNJ11

Table 4.5 List of genes having high RSEs and their paralogous genes.

% Information taken from Gene cards database: http://www.genecards.org/

** This gene is also observed in class 2 (not analyzed in detail) with a significant level of FPs.
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Moreover, | found that a few of these paralogous genes are located on the same
chromosomes. | also compared my list of genes with the list of genes provided in the
study conducted by (Fuentes Fajardo et al., 2012). In their study, they analysed exome-
sequencing data from 118 individuals in 29 families and reported lists of genes having
FPs (heterozygous calls). | found that the MUC2/6/16, MAP2K3, PDE4DIP and USP6
genes are common in both lists. Overall, the high sequence similarity to other genes or
presence of highly polymorphic repeats (like in the MUC6/16 genes), make these genes
more prone to misalignments, which produce the high number of FP variant calls in

these genes.

Investigation of strong RSEs

In order to find patterns associated to RSEs, | further investigated class 1 (RSEs shared by
all datasets) in detail. | filtered the list with OEratio < 1 (filtered-out approximately 85%
of list) followed by best practice filter that reduced the 9mers list by up to 87% (cf. Table
4.2). In this filtered list, there were no RSEs from highly mutated genes except for some
in the MUCG6 gene. In total, this list contains only 134 RSEs (with 211 associated 9mers)

and 20% RSEs (or 33% 9mers) of these are due to the misalignments in the MUC6 gene.

For the further exploration, | removed 9mers belonging to the MUC6 gene regions. |
investigated whether the remaining RSEs are sequence specific errors (SSEs). For this
purpose, | examined the remaining 9mers (I will refer to them as “SSE-associated
9mers”) to find out if the remaining 9mers share some small sequence motifs or
whether any nucleotide (or combination of nucleotides) is highly frequent throughout
the list. | used the online tool Weblogo™ to generate sequence logos, i.e. “graphical
representations of the patterns within a multiple sequence alignment” (Crooks, 2004)
(Schneider & Stephens, 1990). | generated sequence logos (with frequency plots
options) for 9mers generated by both prefix and suffix model (cf. Figure 4.9). However, |
found that these logos are not very informative and the only fact | observed is that the

error mainly occurred at reference base ‘T’ (tallest base at last and first position of PM

% http://weblogo.berkeley.edu/logo.cgi
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and SM respectively), which has been also observed by (Meacham et al., 2011) where
they found the GGT motif upstream of the error position (with T reference base at the
error site). Additionally, the presence of the GGC motif up to 10 bases upstream of the
error base (cf. Figure 4.9) can be anticipated in some 9mers, which are responsible for
some systematic errors and were first observed by (Nakamura et al., 2011). However,
the logo for the SM model shows that some 9mers might also have GGC motifs present
in 10 bases downstream as well. To confirm the presence of GGC or GGT, | screened the
9mer list (excluding MUC6 9mers) for their presence and found that approximately 10%
and 11% of the error sites are having GGC and GGT upstream of the error position,
respectively (cf. Table 4.6). In contrast, 9% and 18% error sites have a GGC or GGT motif
downstream, respectively. (Nakamura et al., 2011) proposed that GGC motifs can be a
cause of dephasing, which can induce base calling errors. They found that the wrongly
called base (mismatch) at the error site is either the first or the second preceding
reference base. | also observed such dephasing patterns due to the GGC motif in the
upstream of one of the RSE in our list, where the mismatch ‘T’ is the second preceding

reference base (cf. Figure 4.10).

PM:Forward strand SM: Forward strand

T A T CCACT
CT C TCAT'C|:'CC
AAATATTA AA ATT T Aé

Figure 4.9 Sequence logos (from Weblogo tool) for 9mers at forward reference strand. The top row
contains the most frequent nucleotide at each position (at X-axis, range 1-9 represents first base till last
base of the 9mer) and the length of each character is directly proportional to its frequency (the tallest

character is having the highest frequency at the respective position).
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74 bp
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ATTGCAATGCAGAGAAACCCTGGGTTGGCCTGCGTCTGATAGACTGGAGAGACCCTT

ALG1L2

Figure 4.10 Alignment visualization of a systematic error by IGV. The wrong base T is highlighted with
vertical lines in black colour at chr 3: 129800938.

3mer Occurrence (%) 3mer Occurrence (%)
(Upstream) (Downstream)

CTG 19.87 CTC 17.73
ACC 19.21 GGT 17.73
cCcT 17.89 TCC 17.09
CCA 16.56 TGG 16.46
GCA 15.24 CGG 16.46
TGC 14.57 TCA 15.19
GCC 13.91 CAC 15.19
GAC 13.91 cCcT 15.19
GTG 13.91 GTC 13.93
TGG 13.91 TTC 13.93
GGC 9.94 GGC 8.8
GGT 11.26

Table 4.6 List of top 10 common motifs of length 3 (including known motifs occurrences) in RSEs

associated 9mers in both upstream and downstream.

To find some other common or highly frequent sequence motifs, | considered all shorter

kmers of lengths 2 to 8 contained in our list of 9mers. | found a few intersting 3mers like
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“CCT”, which appreared either in upstream or downstream of the error positions (18%
and 15% of total 9mers in upstream (151 9mers) and downstream (158 9mers)
respectively) (cf. Table 4.6). In the context of 2mers, | found approximately 46% and 48%
of 9mers are having “CT” and “CC”, respectively, upstream of the error positions. 44%
and 40% of 9mers are having “CT” and “CC”, respectively, downstream of the error
positions. The higher ocurrence of the “CT” motif is also observed in the 3mer “CTG”
upstream and “CTC” downsteam. Both motifs showed the highest occurrence among all
top 10 motifs (cf. Table 4.6) with approximately 20% and 18 % for “CTG” and “CTC”,
respectively. Furthermore, the reference base “T” is found to be the most error affected
nucleotide. Approximately, 34% of 9mers (among 211) are having “T” (“A” at reverse
strand) as the reference base at the error position, which can be also observed from the
logos (cf. Figure 4.9) and was also concluded in the study by (Meacham et al., 2011)
(“stronger tendency of error at A or T than at C or G”). Moreover, approximately at 20%
of the error postions, “T” is having “C” as an error base (i.e. T>C sustitution) and 15%
show an A>G substitution on the forward strand. At the reverse strand, | found 18% of
postions with A>G and 17% with T>C substitutions. Among 211 RSE associated 9mers,
only 5 are having Indels which is expected as Illumina sequencing has a higher
substitution error rate than Indel error rate. As known, | also found all Indel errors in

STRs which is due to the alignment inacurracy in repetitive regions (cf. Chapter 2).

Secondary structure analysis

| also performed secondary structure analysis on sequence motifs in the SSE-associated
9mers list. At first, | combined the 9mers from both PM and SM to construct 17mers,
which contains the surrounding sequence sequence motifs in both upstream and
downstream direction of the error position, which is the 9th base of the 17mer. This
merging further reduced the list to 120 (was arround 150) 17mers. The idea behind the
secondary structure analysis is based on the observation found in study (Nakamura et
al., 2011), where they observed that a few sequence specific errors can be triggered by
inverted repeats which might cause dephasing during sequencing (cf. Section 4.1.1).

Thus, the aim of this analysis is to find some 17mers having high probabilty to fold or

133



Detection of systematic sequencing errors

form some sort of secondary structure like a hairpin loop, which might be triggering

associated RSEs.

CHR Location 17mer MFEstruct MFE PairProb EnsbIFE
14 106361561  AGGCCTGGCGGTAGGTT  .((((((....))))  -47  ((((...)0N} -5,16
11 1093158 ACCACCACTACGGTGAC UG- 4,9 L((((..)))- -4,91
8 124664873  GAGGCACATATTGCCAC  ..((((.....)))).. 4,8 L((((...)))- -4,91
8 124664873  GTGGCAATATGTGCCTC ) 4,6 L((((...)))- -4,78
12 2791130 GCACGTTCCGATGTGTG  ((((((...)M)- 44 ((((((....nMN)- -4,57
21 11049395 GCGCCTAGTAATAGGGT  ((.((((....)))))  -3.8  L.((((...00}H -4,32
6 31922360  CGGGATCGAGACCGAGA  (((........ ... -3,8 (o ... -3,84
21 34915324 AATTGGCCCGTGCGCCT () -3,6 (G R -3,65
9 130932398 CTTTGACTGTTGTCATT (N -3,5 () -3,63
130932398  AATGACAACAGTCAAAG  ..((((....)))... 2,9 L(((G-))- -3,04
142168662  CAGTGGACGCTGGAGTC  ((((....))))..... 2,7 (o) -2,85
2 97820434 CTGTGCAAAACGGTCCA  ((((.....)))).... 2 N ((()) ) -2,16
10 65225244 GGGGCGCTGACTCTCTT (e )).... 1,3 ((fene D) -2,13
12 9573224 AACCACACCGCACAGGT ... (((....0) -1,9 L. (((.....0) 2,1
17 21319523  CCTGGAGACGGACGACT  .(((....))...... -1,9 ((0)) e -2
6 31922360 TCTCGGTCTCGATCCCG (o ) -1,3 ({1}, -1,79
14 106361561  AACCTACCGCCAGGCCT ()] -1,4 A D) -1,78
12 9573224 ACCTGTGCGGTGTGGTT () -1,4 ([ -1,75
21 42843962 GTTCATCCACTGAGAGC  ((((.((....)))) -4 ((((LL---0M -1,73
8 27101204  ATGTGTTAAGGGGCGTA  ((((........ N)). -1,1 (({em)))E -1,63
3 129147418  GGGTATCAGATAAACCG ([P N). 1200 ({{eee h). -1,63
142168662  GACTCCAGCGTCCACTG (o)) -1,4 (o)) -1,55
3 129147418  CGGTTTATCTGATACCC N((— ). -1,1 N((— ) -1,52
21 11058227 CTGAAAGGTGTCGGCTC  ((((......)))... -1,2 ((({-.--- 1)) -1,51
6 112508769  ACTGATGCACTGCGGTT  ((((........ M). 1,1 {((eeene ))}. -1,46

Table 4.7 List of top 25 17mers according to the nucleotide pairing probabilities (highest to lowest).

| used the RNAfold method of the ViennaRNA Package 2.0 (Lorenz et al., 2011) to predict
the secondary structures of single stranded DNA sequences in 17mers. In brief, | used
RNAfold with partition function and MEA algorithms (“RNAfold --MEA —p”) * to
compute the minimum free energy (mfe) structure, partition function, pair probabilities
and the maximum expected accuracy (MEA) structure. The detailed information of this
alogorithm and usage of ViennaRNA Package can be found in (Hofacker, 2009; Lorenz et
al., 2011). Table 4.7 shows the list of 17mers having high nucleotide pairing probabilities.
The 4™ (“MFEstruct”) and 5t (“MFE”) column of table (“MFEstruct”) shows the

% https://www.tbi.univie.ac.at/RNA/RNAfold.1.html
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predicted mfe structure of the 17mer in bracket notation and its free energy in kcal/mol.
The bracket notation depicts a pairing of two bases i and j by a pair of matching
parentheses, whereas unpaired positions are depicted by dots. The pictorial
representation of the bracket notation of the mfe structure for the first and last 17mer
from the table is shown in Figure 4.11. The 6" (“PairProb”) and 7 (“EnsbIFE”) column
contain the bracket notation of the pair probabilities and the ensemble free energy in
kcal/mol. In this context, the parentheses show the positions having high probability to
pair and dots show mostly unpaired positions, whereas curly brackets and commas show
positions with low pairing probabilities. Higher negative value of free energy mean more

stable structures.

Figure 4.11 MFE secondary structure of first (left) and last (right) 17mer from the list of top 25 17mers.

Based on the computed mfe and the pairing probabilities of 17mers, | found that 25
(approx. 21%) among 120 SSE-associated 17mers could form some sort of secondary
structure (cf. Table 4.7). So far the role of the detected 17mers in the origination of
these SSEs is not clear, however, they can function in a similar way as inverted repeats
explained by Nakamura and colleagues (Nakamura et al., 2011). These sequencing
motifs are a part of the DNA template used during sequencing. If these motifs form a
loop during sequencing, then the base elongation process (cf. Section 1.1.1) will be
hampered for a certain time, which might cause dephasing. As explained previously,

dephasing is known to trigger systematic errors.
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4.3 Chapter summary

In this chapter,
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| presented a new approach to search for sequence motifs surrounding
sequencing error sites. | screened 9mers in both upstream and downstream
direction of the error position (in total 17mers).

| restricted the 9mer list to the RSE locations by selecting only those variants that
are shared (but are not common variants in the population) between at least 300
from 511 exome sequencing samples of our in-house dataset. | also validated this
list with available resources for the control sample NA12878 (like confident
variant calls provided by NIST).

| compared errors in our list with 3 different datasets to investigate the nature of
these systematic errors. | found that most of these are reproducible which
supports our assumption that these are systematic errors.

| constructed two classes of errors: Platform dependent errors and Target
enrichment dependent errors. | prepared the lists of RSEs for these two classes.
These lists are having all-important annotations (like location, MAF, etc.) and can
be used to filter or mark systematic errors in any other variant lists. Moreover, |
presented a tool “FilterRSEs” to mark or filter out RSEs from any variant list.

| found that most of the errors are due to a few genes having paralogous genes
or having highly polymorphic repeats. | have provided lists of these genes, which
can also be used to mark/filter the variants in these genes.

| screened only those RSE having OEratio < 1, for short common sequence motifs
(3mer or 2mer) and found the presence of all known motifs near the error sites
like GGC and GGT. Moreover, | also observed that the reference base “T” is
having errors most of the times as already observed in previous studies.
However, | observed the presence of a few sequence motifs of length 2 or 3 in
either upstream or downstream of the error site, which is not reported so far.

| found 25 sequence motifs that might trigger RSEs. These motifs have high
probabilities to form some sort of secondary structure (like a loop), thus, can

hamper the sequencing process for a while and result in a systematic error.



Chapter 5
Conclusion and outlook

5.1 Discussion and conclusion

Next generation sequencing (NGS) techniques are now well established and have been
successfully used in many applications for both fundamental research and diagnostics
purposes (e.g. whole exome or genome sequencing, gene panel sequencing,
transcriptomics etc.) (Rabbani et al., 2014). Due to the rapid decrement in the costs, it is
accessible to almost all research or diagnostic laboratories. A simple keyword search for
“Next generation sequencing” in pubmed®’ results in approximately 10,000 entries with
approximately 6000 entries since the last two years. However, the huge amount of data
generated by NGS techniques requires an efficient and accurate bioinformatics analysis

to make it meaningful.

In this work, | addressed different challenges associated with NGS data analysis. |
categorized these challenges into two main categories: Efficient data processing and
accuracy of analysis. We developed an automated data analysis workflow (Kawalia et al.,
2015) for targeted DNA sequencing experiments (exome sequencing, gene panel
sequencing, amplicon sequencing). During the development of our workflow, |
performed extensive testing of bioinformatics tools required for analysis, both in terms
of their efficiency on HPC cluster and the accuracy of analysis. Besides the open-source
tools, | also developed some in-house tools for certain parts of the analysis workflow. In
addition, | developed a few strategies for the efficient implementation of our workflow
on the HPC cluster. To enhance the accuracy of the results, | explored systematic errors,

which are usually undetected by state-of-the-art algorithms.

Analysis of sequencing data can be judged by two criteria: its specificity and sensitivity

(cf. Chapter 2). A variant list, which represents the final result of analysis, should be

% http://www.ncbi.nIm.nih.gov/pubmed This and other subsequent URLs are accessed on 22 July 15.
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highly specific (contain few false positive variants (FPs)) and highly sensitive i.e. should
not miss any causative or true variant (no false negatives (FNs)). However, there is a
trade-off between these two factors causing highly specific variant lists to miss some
variants while highly sensitive variant lists can contain lots of FPs. Thus, a well-balanced
adjustment of specificity and sensitivity is very important and still a challenge for the
bioinformatics community. As far as | know, there is no analysis workflow, which can
achieve 100% specificity and sensitivity. In chapter 2, | addressed these issues with
detailed information about the individual analysis steps and the factors that can damage
results in terms of both specificity and sensitivity. Raw sequencing data require a series
of data analysis steps for quality control, sequence alignment, variant calling and variant
filtering/validation. All steps are interconnected and each can have a bad or good effect
on the consecutive step. For example, wrong base trimming (both bad quality bases and
adapter bases), can discard a significant amount of the sequenced bases which might
lead to misalignments or uncovered regions of the reference sequence and can cause
false negatives. On the contrary, avoiding the quality control steps (especially on low
quality data) can lead to FPs due to wrong alignments or alignments with many

mismatches of bad quality bases or reads.

The alignment of the reads to the reference sequence has a significant impact on the
specificity and sensitivity of the variant list. A specific alignment (zero or few mismatches
allowed during alignment) can reduce FPs but can increase FNs. On the other hand, a
sensitive alignment (allowing many mismatches during alignment) can increase FPs but
lowers the risk of FNs. BWA-MEM, as one of the current alignment algorithms, performs
read mapping with a good balance between both sensitivity and specificity. It tries to
find an optimal alignment (maximum exact match extended by some mismatches) of a
read sequence on the reference DNA sequence. However, it is not possible to align all
reads accurately on the reference genome, especially reads having the typical read
lengths between 100 to 200 bp generated from short read sequencing technologies (like
Illumina). There are several reasons behind this, like sequencing errors, low complexity
regions (LCRs) or highly divergent regions (HDRs) (less than 99.5% identity in the human

genome) (cf. Chapter 2), paralogous genes and the incompleteness or errors in the
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human reference genome (Fuentes Fajardo et al., 2012; Sims et al., 2014; Treangen &
Salzberg, 2012). Every cause mentioned above leads to alignment errors followed by

variant calling errors that result either in FPs or FNs.

In addition, other sources that lead to FPs or FNs include sequencing errors like PCR
errors, base-calling errors towards ends of reads (esp. 3’ end), substitution errors near
Indels etc. Some of these errors can be corrected by post alignment improvements like
Duplicates removal, BQSR, Indel Realignment. | implemented these corrections in our
data analysis workflow (cf. Chapter 3) and they are described in detail in Chapter 2.
Moreover, a certain sets of FPs can also result from the limitations of a variant calling
algorithm, either the implemented approach or the default parameter settings. Thus, to
overcome the limitations of a single variant caller, | used four different variant callers:
Samtools’'mpileup, Platypus, GATK’s Unified Genotyper and Haplotype Caller. These
callers belong to two different categories of variant calling algorithms: nucleotide based
and haplotype based variant detection. The nucleotide based algorithms use a Bayesian
approach (H. Li, 2011) to call SNPs and Indels and treat each position independently
(used by Samtools and Unified Genotyper). This approach relies on the alignment
accuracy and can produce many FPs but provides sensitive variant calling. On the
contrary, the Platypus and Haplotype Caller are the most recent and sophisticated
haplotype-based callers, which can avoid some alighment artefacts (e.g. due to
paralogous alignment). They do not rely only on the alighment but perform local denovo
assembly (by building a De Bruijn-like graph) in order to find the correct haplotype,
which is used for SNP/Indel identification. However, they are also not able to find the
optimal alignment in LCRs (H. Li, 2014; Rimmer et al., 2014). Moreover, due to the
different algorithms and parameter settings, the overlap between the variant calls from
these tools is not very high. Overall, | found that the integration of the variant callers
using different algorithms is better than using a single variant calling algorithm to
achieve highly accurate and sensitive variant calls. This fact is also reported by many
data analysis and tool comparison studies (Bao et al., 2014; H. Li, 2014; Trubetskoy et al.,
2014).
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After performing quality control on raw data, alignment and post alignment
improvements followed by sophisticated variant calling, the final variant list still contains
lots of FPs. Thus, FPs filtering and variant evaluation also plays an important role in the
analysis and can drastically change the variant list. The principle of trade-off between
sensitivity and specificity also applies here. Stringent filtering can reduce the number of
FPs but can also increase the number of FNs. Therefore, | apply standard filters like
VQSR and GATK best practice filters (like MQ, Qual, DP, Fisher strand) (cf. Chapter 2) for
every exome sequencing data set by default. | also apply specialized filters for different
data types. For example, sequencing data from lon torrent sequencers contain more
Indel errors (due to homopolymer errors during sequencing) compared to Illumina
sequencing data. Thus, | filter Indels called in homopolymer regions to avoid Indel
errors. Recent variant callers, like Haplotype Caller and Platypus, provide lots of other
useful annotation like %GC content, variant called in homopolymer or LCRs, string of the
bases surrounding the variant, allelic frequency (heterozygous or homozygous),
genotype quality score, etc. It is known that some systematic errors are surrounded by
certain sequence motifs like inverted repeats, GGC or GGT (Meacham et al., 2011;
Nakamura et al., 2011). Moreover, coverage bias has been observed mainly in GC rich
regions and Indels error mainly in LCR regions (Sims et al., 2014). Thus, all of these
annotations can also be used, either as a combination of two or more annotations or
individually, to filter out some specific artefacts. Many studies have shown the effects of
other filters than the standard best practice filters in false positive reductions (Fang et
al., 2014; Hwang et al., 2014; H. Li, 2014; Reumers et al., 2011). At last, variants can be
filtered or prioritized based on the prior knowledge about the disease or design of the
study (e.g. based on pedigree, trios etc.) or based on the predicted functional effects of
the called variant on the phenotype and the variant frequency from publicly available
data like 1000 Genome project, DBSNP, ExAC etc. (cf. Chapter 3). We have implemented

most of these filters in our exome analysis pipeline Varbank (https://varbank.ccg.uni-

koeln.de/) and are continuously exploring effects of other filters. Varbank provides
access to the variant list with different filtering options, which facilitates variant

prioritization or candidate variants list creation.
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The variant filtering is a very critical step as it can filter FPs but can also produce FNs.
Sometimes a standard filter can have a devastating effect on certain types of data. For
example, | filtered out a true variant by using the QD < 2 filter (filters variants below the
mentioned score) in one of our highly covered old gene panel sequencing data
(sequenced in 2010 on an Illumina sequencer). | found that at the down-sampled read
coverage of 250 reads this variant is not filtered by the QD filter, but at high coverage (>
500 reads) this variant disappeared from the final variant list. | assume that this is
because of many low quality reads in the called region whose accumulation is
decreasing the QD score as it is a normalized value of the variant quality score with
respect to read depth. Thus, the evaluation of filtering effects is very important.
Recently, the Genome in a Bottle Consortium (GAIB)* (hosted by NIST*®) has provided
highly confident SNP, Indel and homozygous reference genotype calls for the genome of
the public NA12878 sample'® (one of the samples of the 1000 Genome project) (Zook et
al., 2014). They have used different sequencing technologies like Illumina, lon torrent,
454, complete genomics to sequence the genome of this sample and used different data
analysis pipelines to call the genotypes. This integration avoids the systematic errors
from a single platform, alighment or pipeline artefacts and provides a highly accurate
variant list. These data has been used in many studies for validation of their variant calls
(Hwang et al., 2014; Kelly et al., 2015; Linderman et al., 2014). We also performed
exome sequencing of this individual and used this variant list to benchmark our pipeline
and the generated variant list in terms of specificity and sensitivity. The transition versus
transversion ratio (Ti/Tv) is another criterion to evaluate a variant list or the effect of a
filter. As the transitions are more frequent than the transversions (due to methylation of
C in CpG islands), this ratio can indicate how much your variant list deviates from
general expectations. The Ti/TV ratio should be 0.5 for FPs and a good quality variant list
for an exome should have a Ti/Tv ratio around 2.8 (DePristo et al., 2011). Thus, after
filtering of FPs, this ratio should increase and tend to reach the expected value, but if it

is decreasing then the filter might not be good for this type of data and should not be

% https://sites.stanford.edu/abms/giab

% http://www.nist.gov

190 https://catalog.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA12878&Product=DNA
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applied. Overall, the selection of data analysis tools, their parameter settings and
filtering strategies have significant impact on the final results and require extensive
testing and evaluation. Moreover, a data analysis pipeline should be configured based

on data characteristics like read length, coverage, sequencing platform, aim of study etc.

As mentioned above, the recent data analysis tools or pipelines (including our data
analysis workflow) are capable of detecting and filtering most of the known errors.
However, certain systematic errors due to sequencing bias or alignment artefacts (like
paralogous alignment) are hard to detect by existing tools. These errors appear
systematically throughout multiple sequencing experiments from the same sequencing
platform and analysed by the same analysis pipeline. We coined these errors as
“Recurrent Systematic Errors” (RSEs). In Chapter 4, | presented a new approach to
detect these errors. | screened 9mers (sequence motifs of 9 consecutive nucleotide
bases) in 11 exome sequencing samples sequenced in-house and counted their observed
and expected occurrences. Furthermore, | computed OEratios for the screened 9mers
(i.e. Expected 9mer counts/Observed 9mer counts). In order to focus on systematic
errors only, | restricted the 9mer list to those occurring at RSE sites. These RSE sites
were derived from shared (but not common variants in the population) variants in 511
exome sequencing samples of our in-house dataset. | also validated this list with the
confident variant calls for sample NA12878 provided by NIST and the variant calls for the
same sample but called by a different analysis pipeline. | compared the shared 9mers
throughout the 11 samples at RSE locations with those from 3 other datasets to validate
the reproducibility of these systematic errors. From this list, | formed two different
classes of systematic errors: Platform dependent errors (shared by all datasets
sequenced irrespective of target enrichment kit) and target enrichment dependent
errors (shared by only those datasets sequenced using the same target enrichment kit). |
prepared the lists of systematic errors for these two classes. These lists are having all
important annotations (like location, strand, MAF, called by NIST or other pipeline etc.)
(cf. Chapter 4) and can be used to filter or mark the systematic errors in any other

variant list. For this purpose, | developed a tool “FilterRSEs”, which can just mark or filter
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out RSEs from any variant list. It is a very flexible tool and provides different filtering

options to customize the filtering.

| further analysed the platform dependent errors to explore the characteristics of RSEs. |
found that a wrong read alignment in LCRs and regions belonging to paralogous genes is
the major cause of RSEs. | observed a high error load in some chromosomes
(1,2,6,7,11,17) compared to others. These chromosomes contain some genes containing
the majority of errors, for example, approximately 42% and 44% of the total variants
(mainly SNPs) were found in the MUC6 gene on chromosome 11 and in the MAP2K3
gene on chromosome 17. | found that all of these genes having high RSEs either belong
to one gene family, are paralogous to each other, or have a high sequence similarity
(based on the protein sequence alignment) with other genes. Moreover, in the vicinity
of error sites, presence of LCRs or highly polymorphic repeats in certain genes (like in

the MUC6 or MUC16 genes) is observed.

LCRs, like short tandem repeats (microsatellites) are present throughout the human
genome (approximately 50% of the human genome is filled with repetitive sequence)
(Treangen & Salzberg, 2012). Thus, a read from a repetitive region can map at multiple
positions with many optimal alignments to the reference genome with or without
mismatches. In this case, the aligner picks the mapping with the highest alignment score
or, in case of equal scores, picks one randomly which can lead to either a FP or a FN. If
two reads map at the same location, for example, one with a mismatch of one base and
another with a deletion of a few bases, then the first read gets a higher alignment score
(by standard scoring functions) and a FP SNP can be reported if the true variant is the
deletion present in the second read (Treangen & Salzberg, 2012). Similar situations can
arise in regions that belong to one of the genes from a family of paralogous genes where

a read can have multiple mappings due to the sequence homology of the genes.

Nevertheless, many false positives in these regions can be avoided by filtering of

variants belonging to LCR regions which has been successfully used in many studies (H.

Li, 2014; Lucas Lledd & Céceres, 2013; Reumers et al., 2011). Similarly, lists of the most
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notorious paralogous genes and significantly mutated genes (SMGs) (containing variants
most of the time irrelevant to sequencing experiments) can be used to filter out the
variants belonging to these genes (Dees et al.,, 2012; Fuentes Fajardo et al., 2012;
Watson, Takahashi, Futreal, & Chin, 2013). | also compiled a list of genes having a high
number of RSEs (in Chapter 4), which can also be used to filter-out or mark the variants
belonging to these genes. However, these filtering strategies should be opted based on
the aim of study/experiment, as they can lead to the loss of true variants (FNs). The FNs
might be more devastating than the FPs (esp. in diagnostics settings) as these variants

can be the main contributor to a genetic disease.

| expanded our analysis further to focus only on a particular type of systematic error:
Sequence-specific errors (SSEs). | filtered platform-dependent errors for OEratio < 1 and
performed screening for common motifs (of different lengths: 2 to 8mers) among RSE
associated 9mers. | found that the significant portion of errors is surrounded by a few
motifs (3mers) either in upstream or downstream direction. This detected motif is so far
not reported in association with systematic errors like known the “GGC” and “GGT”
motifs (Meacham et al., 2011; Nakamura et al., 2011). However, | have not analysed its
effect on systematic errors or the probable reasons behind its presence near error sites.
| combined the 9mers both upstream and downstream direction of the error position to
construct 17mers (the 9th base is error position) and performed secondary structure
analyses on these 17mers. | found that 25 SSE-associated 17mers could form some sort
of secondary structure. So far the role of these 17mers in the origination of the SSEs is
not clear. However, it has already been hypothesized that the inverted repeats could
cause dephasing (cf. Chapter 4), which is one of the causes of systematic errors. These
inverted repeats could form loops during the sequencing process and inhibit the base
elongation process for some time, which results in dephasing (Nakamura et al., 2011).
Similarly, the constructed 17mers can be a part of the DNA template used during
sequencing. If these motifs form a loop during sequencing, then the base elongation
process (cf. Section 1.1.1) will be hampered for certain time, which might cause

dephasing.
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In addition to the accuracy, efficiency of the data analysis workflow is also an important
aspect. Analysis of sequencing data requires a series of actions until the identification of
a relevant mutation is possible (e.g. data cleaning, sequence alignment, variant calling,
etc.). This requires a significant amount of time and lots of manual work. Thus, to
manage and process huge amounts of sequencing data generated by the NGS
sequencers at the CCG with little manual efforts (and manual errors), an automated data
analysis pipeline is required. Furthermore, the workflow should be fast and should
provide an easy access to the analysis results. So that, it can allow the researchers or
clinician to analyse data and assess the results in a short time, which can speed-up

research or diagnostics around diseases.

We have developed a fast and fully automated workflow for NGS data analysis (cf.
Chapter 3). It is implemented and optimized on HPC systems and able to process 290
exomes per week on the current IT-infrastructure. This throughput is achieved by
different parallelization strategies that enable proper exploitation of HPC resources. We
used the MapReduce®* approach in which large data is split into chunks and processed
in parallel. In this approach, the number of chunks needs to be selected carefully when
splitting the data, as it is directly proportional to the number of the parallel processes. In
case of many chunks, too many processes run in parallel, which leads to longer waiting
time in the queue when resources are not available. On the contrary, if chunks are bigin
size, then completion of a single task takes a long time and less gain in speed is achieved
by parallelization. Similarly, the number of threads should be selected carefully. Some
tools do not show significant improvement in speed beyond a certain number of
threads. In that case using more threads blocks some resources, which can be better
used for another parallel task. Besides threads or number of processes, appropriate
memory required by the tools should be used for optimum exploitation of the
computational resources. The HPC systems are complex and can be destabilized easily
by a wrong action of any user when they are multi-users or shared clusters. Thus, we

have used some design principles and special measures to make our workflow more

101 https://www.usenix.org/legacy/event/osdi04/tech/dean.html
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stable, robust, and easy to maintain so it can run smoothly on the HPC infrastructure.
The workflow is organized as a collection of modules depending on the analysis task.
These modules can run individually or in combination, thus, the workflow can be used to
analyse various types of NGS (DNA) sequencing (both single-read and paired-end) data
like whole exome or genome as well as any target enriched data. We mainly analyse
human sequence data but the workflow can handle any organism with a known
reference genome. The results from the workflow can be downloaded or analysed via
the varbank web interface. The user can browse through the variant lists, can apply
different filtering strategies (to make candidate gene lists) and can also crosscheck the
variant by viewing the alignments. Since its launch in October 2012, we have analysed
around 6000 exomes and uncovered the genetic background of various diseases (Ehmke

et al., 2014; Lal et al., 2014; Schubert et al., 2014).

5.2 Outlook

A decade after their emergence, NGS technologies are still evolving at rapid pace. The
introduction of HiSeq X Ten also broke the 1000 dollar genome barrier for whole
genome sequencing. This increased the accessibility of whole genome sequencing,
which produces approximately 8-10 times more data than exome sequencing. | expect
that it will pose new data processing and storage challenges in future. We will adapt our
data analysis workflow accordingly. In this context, we will examine the advantages of
Big Data solutions for NGS data analysis. Nowadays, a lot of developments is going on to
build some dedicated hardware for fast and efficient execution of some typical tasks in
NGS data analysis. Moreover, cloud-computing strategies are also becoming popular for
NGS data analysis. We will continuously investigate these developments to make our
workflow fit for future requirements. With the performance growth of NGS
technologies, bioinformatics development efforts for better data analysis are also
growing. Recently, many new sophisticated algorithms have been released for either
alignment of reads or for variant calling. | expect many more new tools and algorithms in
the future and will constantly evaluate these tools for inclusion in our data analysis

workflow.
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As NGS technologies are now moving into clinical research or diagnostics, the accuracy
of data analysis is a very critical aspect. Recently, gene panel sequencing has become
more popular in these settings, as it is highly specific (with high coverage) and provides
better accuracy than whole exome and genome sequencing at lower cost. However, this
is a very specific approach and not suitable for all research and diagnostic applications.
Exome and genome sequencing offer a broad range of applications, but they are more
prone to sequencing errors like systematic errors. | will expand my systematic error
detection approach and try machine-learning algorithms for better classification or
detection of sequencing errors. | will expand analysis on our newly detected 3mers and
other 17mers (forming secondary structure), to find out its role in the generation of
systematic errors. Moreover, | will perform statistical tests like Fisher’s exact test to
validate that their occurrence is not by chance. Furthermore, | will investigate existing or
new strategies to filter or avoid FPs and will also develop some new ones to provide

more accurate results.

| believe that the new developments in the sequencing field can address existing
problems and can improve the accuracy of data analysis. For example, third generation
technologies (or single molecule sequencing), like PacBio RS and Oxford Nanopore
MinIlON, provide much longer reads without errors due to dephasing or PCR
amplification. These techniques allow for more accurate sequencing in repetitive or low
complexity regions. This can solve the problem of misalignments in these regions, which
is the major cause of SNP or Indel errors. Moreover, they can improve structural variant
detection, which is currently having certain limitations like coverage bias, poor break
point detection etc., due to the short read technologies. Recently, many studies have
used these technologies to explore repetitive regions or to detect structural variants
(McFarland et al., 2015; Pendleton et al., 2015; Ritz et al., 2014). These long reads can
also be used for de novo assembly to build better consensus sequences which can avoid
FPs due to errors or incompleteness of the human reference genome. However, to date
these technologies are not as matured as second generation (e.g. lllumina) technologies.
They have high raw read error rates and achieve only low throughput. Moreover, there

is a need to develop new sophisticated data analysis algorithms, as these technologies
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are having different error profiles and different kinds of information in the generated
sequencing data (Schadt et al., 2010). Further, the genome reference consortium
continuously improves the reference genome sequence. The most recent build of the
human reference genome (GRCh38) has less gaps and errors than the previous one
(GRCh37), which also will increase the accuracy of variant detection. To give a résumé,
lots of improvements in different directions are going on to make sequencing

technologies and data analysis more reliable and manageable.
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Appendix

Quality control (QC) checks

| performed the following quality checks on our in-house sequenced test data using
FastQC tool (cf. Section 2.1):
1. Per base quality score: reports the distribution of base quality scores of all bases
at each position in the read (cf. Figure A.1 a).
2. Per sequence quality score: reports the distribution of mean quality score for a
subset of the reads (cf. Figure A.3 a).
3. Per base sequence content: shows the percentage of A, T, G, C at each position in
the sequence reads (cf. Figure A.2 b).
4. Per base N content: shows the percentage of N at each position in the sequence
reads (cf. Figure A.2 a).
5. Adapter content: reports the presence of an adapter sequence in the reads (can
also be judged by percentage of overrepresented sequences) (cf. Figure A.1 b).
6. GC distribution: gives an idea of the GC bias in a sample (i.e. GC-poor or GC- rich

sequences) (cf. Figure A.3 b).
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Figure A.1 a) Per base quality score distribution b) Adapter content distribution.
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The QC reports containing the above mentioned quality checks were generated for one

of the in-house sequenced test samples. All of these quality parameters have certain

thresholds to distinguish between a bad and a good quality sample'®. For a good quality

102

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (This and subsequent URLs are accessed

on 28 June 2015).
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sample, the majority of both quality scores (bullet points 1&2) should be greater than
20. All four nucleotides (A, T,G,C) should have a uniform distribution throughout the read
and the N content should be small. Sometimes the first or last 5-10 bases from a read
can show a non-uniform distribution of nucleotides (noise), which could be due to the
presence of some random primers. As these can cause ambiguous calls or wrong calls, it

is better to trim these bases'®

. There should not be a high GC bias in the sample
because it can lead to non-uniform sample coverage or even genomic regions with no
coverage (Chen et al., 2013; Dohm et al., 2008). An adapter contamination can lead to
misalignments of reads, thus adapter trimming is also required in such situations (cf.
Section 2.1.1). Based on these parameters, the sample quality can be judged. If a sample
fails to pass all of these quality checks, then it should be either discarded or should

undergo certain processing steps to improve the quality.

BWA algorithms and parameters testing

| also tested the effect of the following parameters:
1. -lIseed length (default value: Infinite).

2. -k maximum edit distance in the seed (default value: 2).
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Figure A.4 Differences in alignment at default BWA parameters and at K=30 and L=50.

1% Bad quality sample:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastgc.html
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The upper part of figure A.4, shows the alignment at k=30 and [=50, whereas the lower

part shows alignment at default parameters

194 Both of the alignments at this position

are almost identical. | also compared alignments at other positions, but did not find any

significant differences. Moreover, the alignment statistics at k=30 and |1=50 are identical

to the default values (cf. Table A.1).

BWA-aln Total % Aligned % Reads % HQ Aligned Noise % HQ Aligned
Reads Reads aligned in pair Reads Reads Bases (Q>20)
default 175704592 0.988 0.993 0.923 292 0.881
k=30 & I=50 175704592 0.988 0.993 0.923 292 0.881

Table A.1 Alignment statistics for BWA-aln at default and at k=30,[=50.

Indel realignment

The Indel realignment method is a part of the Genome Analysis Tool Kit'® (GATK)

(DePristo et al., 2011; McKenna et al., 2010). It is a two-step process:

1. Check for suspicious intervals (esp. near Indels) in the alignment by using GATK’s

RealignerTargetCreator. It considers all Indel sites as suspicious which are not
present in the known Indels list from Mills Divine (Mills et al., 2006), 1000
Genome (Abecasis et al., 2012) and the dbSNP dataset (Sherry et al., 2001).

Perform local realignment (MSA) over those intervals by using GATK's
IndelRealigner. This procedure needs sufficient coverage (> 10x) to realign reads
correctly. For low coverage data, multi-sample realignment should be
performed. In this case, aligned reads from badly covered samples from a single
study (or similar studies) are merged resulting in sufficient coverage for

realignment of the reads.

104

http://bio-bwa.sourceforge.net/bwa.shtml

105

https://www.broadinstitute.org/gatk/guide/topic?’name=methods
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Base quality score recalibration (BQSR)

BQSR corrects the bases quality scores based on the analysis of the following covariates:

1. Read Group: Different lanes may have different error profiles. Thus the reads
originating from different lanes are assigned to different read groups.

2. Quality Score: This is the base quality score assigned by the sequencer’s base
calling algorithm.

3. Machine Cycle: It reports the machine cycle (which corresponds to the position
of the base in the read) that produced the analysed base. This information can
be used to calibrate base qualities according to systematic errors due to their
position in the read.

4. Di-nucleotide: This is the set of 2bp strings where the two bases represent the
previous base and current base. It is used to identify sequencing errors

dependent on a two-nucleotides context.

GATK’s BaseRecalibrator'® method performs BQSR by walking through all the reads in
BAM file and constructing bins based on the above-mentioned covariates. For example,
a bin contains all bases belonging to a certain read group, having the assigned quality
score X produced by Y machine cycle and having Z nucleotide as the pervious nucleotide
in dinucleotide context (cf. Figure A.5) (first 4 columns of row 6 in the table show the
parameters defining different bins). Then, for each bin, it counts the number of bases
within the bin and how frequent these bases mismatch the reference base in the
alignment (excluding loci present in dbSNP). These calculations are stored in a table (cf.
Figure A1.2), and used to calculate the empirical probability of error (i.e. p(error) = num
mismatches/num observations) as well as new (empirical) quality scores*®®. Figure A.6
shows the improvements in base quality scores of our test sample. The figure at the left
side shows the deviation of the reported quality scores (x-axis) from the empirical
(observed) quality scores (y-axis) with high root-mean square error (RMSE). However,
after BQSR corrections, base quality scores are almost identical to the empirical ones

and the RMSE value dropped significantly (cf. right part of figure).

1% http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bgsr
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1 #Counted Sites 1126132062

2 #Counted Bases 9797098402

3 #Skipped Sites 23107537

4 #Fraction Skipped 1/49 bp

5 ReadGroup QualityScore  Cycle Dinuc nObservations nMismatches Qempirical
6 |HWI-ST0764:140:C16KNACXX 2 -35 AA 4146

7 |HWI-ST0764:140:C16KNACXX 2 -35 AC 1428

8 HWI-ST0764:140:CI6KNACXX 2 -35 AG 1402

Figure A.5 An example of the BQSR computed table of covariates calculations. First half of the machine

cycles are denoted by positive (+) sign, whereas, last cycles are denoted by negative (-) sign.
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Figure A.6 Improvement in the base quality scores (of in-house sample) after the BQSR.

Variant quality score recalibration (VQSR)

40

50

As described in section 2.3.1, the performance of VQSR can be judged by clustering plots

of any combination of the two annotations used during VQSR training. Moreover, the

tranche plots provide a means for evaluation of the recalibrated variant list in context to

both sensitivity and specificity. | tested the performance of VQSR with the following

different combination of parameters:

* At default parameters: VQSR does not even run and throws the error: “Clustering

with this few variants and these annotations is unsafe”.

¢ At different values of -mG (maxGaussians) parameters.

* With a reference variant set (cf. Section 2.3.1) as additional training data along

with a smaller value of mG than the default value (default=8).

After testing these combinations, | found that VQSR with a reference variant set and at —

mG=6 works well for most of the data (cf. Figure 2.8).
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Figure A.7 VQSR clustering based on 2 annotations: ReadPosRankSum and MQRanksum. The left part of
the figure shows clustering without usage of the reference variant set during VQSR but with mG 6
parameter. Whereas, the right part shows clustering with usage of the reference variants set but with

default value of mG (mG=8).
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Figure A.8 VQSR’s four-default tranches and their correlation with sensitivity and Ti/Tv ratio. The left part
of figure shows tranches plots generated by VQSR with mG 6 parameter only. Whereas, the right part

shows tranches plots generated by VQSR with usage of reference variant but with default value of mG.
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Figure A.7 shows VQSR clustering for the control sample NA12878 based on
ReadPosRankSum and MQRanksum annotations. These clusters do not show significant
differences between VQSR at only mG 6 and VQSR with only the reference variant set
(default mG), except the plot at the right is a bit denser than the first one as it is having
more number of variants due to reference variant set. However, the tranche plots (cf.
Figure A.8) clearly shows that the usage of a reference variant set is necessary to get a
more specific and sensitive variant list. The recalibrated variant list generated from
VQSR using the reference set is having a Ti/Tv ratio close to the standard value of 2.8 for
the exome sequencing data. On the contrary, the other list generated without using the
reference set has lots of FPs, thus a lower value of the Ti/Tv ratio. Overall, VQSR
performance is dependent on the training data, thus the additional training data as

provided by the reference variant set is required to perform a reliable variant clustering.

Annotations and filters used by FilterRSE

List of Annotations

The following annotations will be appended (by the FilterRSE tool in Annotation mode)
to the info field of given VCF file. A description of each of these annotations is added to
the VCF header as follows:

1. ##INFO=<ID=NotPA (P), Number=., Type="String", Description="Position is not a
pipeline Artefact. "Value: Yes, if variant is called by other pipeline, otherwise
Value: NO)">.

2. ##HINFO=<ID=NIST (N), Number=., Type="String", Description="Present in the
NIST list. Value: Yes, if the RSE location is shared by the control sample NA12878
and present in highly confident variants list (for this sample) provided by GAIB
(NIST), otherwise Value: NO">.

3. ##INFO=<ID=BROAD, Number=., Type="String", Description="Present in the
Broad list. Value: Yes, if the RSE location is shared by the control sample
NA12878 and present in the validated variants list (for this sample) provided by

Broad institute, otherwise Value: NO">.
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4. ##INFO=<ID=17MER, Number=., Type="String", Description="String of

5.

17consecutive bases around the RSE positions (8 bases upstream, reference base
at RSE location, 8 bases downstream">.

##INFO=<ID=CV, Number=., Type="String", Description="Presence of the RSE
location in the integrated variant list of common variants (CV) constructed by
using 1000 genomes and EXAC VCF files. Value: NO or Yes followed by rsid
(DBSNP id) and minor allele frequency (MAF) computed by EXAC if the variant is
present in both datasets (1000 genomes and EXAC), otherwise MAF from an

individual dataset">.

List of Filters

The following filters can be applied by the FilterRSE tool (in “Filter” mode) either

individually or in combination. A description of each of these filters is added to the VCF

header as follows:

1.

2.

3.

4,

##INFO=<ID=N, Number=., Type="String", Description="Filter out those RSE
locations which are not present in the NIST list">

##INFO=<ID=P, Number=., Type="String", Description="Filter out those RSE
locations which are pipeline artefact (PA) (not called by other pipeline)">
##INFO=<ID=C, Number=., Type="String", Description="Filter out those RSE
locations which are not in the common variant list (100G+EXAC)">
##INFO=<ID=C_MAF, Number=., Type="String", Description="Filter out those RSE
locations which are not in the common variant list (100G+EXAC) only if they have

less MAF then the given threshold".
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Pseudocode for quality trimming script

The following pseudocode provides the description of the implementation of quality

trimming algorithm in Perl programming language. The theoretical description about

this algorithm is provided in the section 2.1.1 of Chapter 2.

Input:

Hit#H

TrimBases (F, Q, L, B, S)

F=Fastq file

Q=Base quality score threshold for trimming (default = 10)

L=minimum length of a read to retain after trimming (default = 30)

B=maximum percentage of bad quality bases in read in order to keep it (default = 20)
S=file for statistics output (trimmed reads and trimmed bases counts)

0= Output: Fastq file after trimming action

While read each line in the file F

Store read sequence and corresponding quality score string in r and q respectively

Screen first 5 bases from 3‘ end of read and select base having quality score < Q as start

base (at position SB) for trimming action

Diff = 0 ### Initialize Diff (i.e. difference between quality score of certain base and Q)
Pos = SB & MaxPos = Pos
MinPos =0 #### Starting base of read
while (Pos>0 and Diff>=0) ### screen each base from 3’ end
Diffcurr = QPos- Q ### QPos denotes the quality score of base at position
Pos
if (Diff >0)
Diff = Diff + Diffcurr
MaxPos = Pos  ## Position of current base
end
Pos-- ## move to next base
done
MaxPos = MaxPos -1 ## last base of trimmed read
Screen first 5 bases from 5‘ end of read and select base having quality score < Q as start base
(at position SB) for trimming action
Pos=SB & MinPos=Pos ## starting base of read
while (Pos< MaxPos and Diff>=0) ### screen each base from 5’ end
Diffcurr = Quality score of current base - Q

if (Diff >0)
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Diff = Diff + Diffcurr
MinPos = Pos  ## Position of current base
end
Pos++4+ ### move to next base
done
MinPos = MinPos+1 ## first base of trimmed read
if (MaxPos-MinPos < L)

Discard entire read

else
Trim bases from MinPos til MaxPos
Count LQbases (bases having less quality score than Q)
if (LQbases >B/100*length(q))
Discard entire read
end
end

Count trimmed and discarded bases and reads
print trimmed read and respective quality score in file O
done

print trimmed and discarded read and bases counts statistics in file S

Pseudocode for expected & observed kmer generation script

The following pseudocode provides the description of the implementation of both the
expected and observed kmer generation scripts written in Perl. The theoretical
description of the observed and expected kmer generation is provided in the section
4.1.3 of Chapter 4. Few terminologies like OCmid, OCstart, OCend used in pseudocode
and formula using these values for coverage correction are also described in the section

4.1.3 of Chapter 4.
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ExpectedKmerGen(A, S, k, 0)

Input:

A=Base coverage file from one strand (generated by mpileup)

S=strand of aligned reads

k=desired length of kmer

0=Output directory to store outfile containing expected kmer and their counts
Hit#

While read each line in the file A
Cov=0 ##will be the sum of coverage values of each base in kmer
Store the reference base in array @bases (as starting base of the kmer)
Get coverage value of this base and subtract Overcounts (OCstart)

Add the corrected coverage value to Cov

for (i from 1 to k-2) ### Get middle bases of kmer
Get reference base from ith line and append in array @bases
Get coverage value of this base and subtract Overcounts (OCmid)
Add the corrected coverage value to Cov

Done

Get the last reference base of kmer (k-1)w line after the starting base and append to array
@bases

Get coverage value of this base and subtract Overcounts (OCend)

Store genomic location of last base as kmer position (Pos)

Concatenate bases in array @bases and store in kmer

kmer coverage (kmerCov)=Cov/k

print kmer, kmerCov, and Pos to kmer-file ### generated kmer is stored in a tab separated
file

done

## Add coverage value of from multiple occurrences of each generated kmer in kmer-file
for each generated kmer
if read strand S is "reverse”
kmer = Reverse complement of generated kmer
count = Sum of the coverage value from multiple occurrences of kmer
print kmer and its count to output file in directory O

done
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ObserevedKmerGen(A, S, k, 0)

Input:

A=SAM file having aligned reads from one strand

S=strand of aligned reads

k=desired length of kmer

0=Output directory to store outfile containing observed kmer and their counts
Hit#

While read each line in the file A

Extract read sequence from line

Split read sequence by each base and store each base in array @bases

for each base i in @bases (i from 1 to length(@bases)-(k+1))

kmer =1 ### Initialize kmer with base i

for each base j in @bases (j from i to i+k-1)
kmer = kmer.j ### Concatenate base j to kmer
done
print kmer to kmer-file ### generated kmer is stored in a file
done
done
count number of occurrences of each generated kmer in kmer-file
for each generated kmer
if read strand S is "reverse”
kmer = Reverse complement of generated kmer
print kmer and its count to output file in directory O

done

Pseudocode for FilterRSEs tool

The following pseudocode provides the description of the implementation of the
FilterRSEs tool written in Perl. This tool uses the above mentioned filters or annotations
(cf. Section “Annotations and filters used by FilterRSE”) to filter out the RSE locations
from a given VCF file or to append RSE-associated annotation respectively. The
theoretical description of the filter and annotation mode of this tool is provided in

section 4.2 of Chapter 4.
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FilterRSEs (V, M, O, F, A)

Input:
V=Given VCF file for RSEs filtering
M=Mode of script (,Filter” or ,Annotation*)
O0=Output directory to store output files (RSEfiltered, onlyRSElocs or RSEannotated)
F=Single filter name or comma separated list of filters (if Filter mode is selected).
A=MAF value (if DBALL_MAF filter is used)

Hit#

R=List of RSEs
print all annotations or information about the filters (depending on mode) into the Info field of VCF
header
While read each line in the file V
Store all variant locations (VarLoc) in a Hash %VCF
done
While read each line in the file R
Store all RSE locations (RSELoc) in a Hash %RSE
done
for each VarLoc in %VCF
if (VarLoc exists in %RSE & Mode eq "Annotate")
Append the info field of VarLoc with RSE annoataions
print this appended line into VCF.RSEannotated file in directory O
end
if (VarLoc exists in %RSE & Mode is "Filter")
Checks for the list of given filters and store in an array @Filter
for Filter i in @ Filter
if (FilterValue eq “NO”) ### the checked value of filter can change
according to filter depending of RSE annotations value
FilterOut VarLocs according to given filters
print Filtered VarLocs and used filter in additional column in
VCF.RSElocs_withFilter file in directory O
else
print unfiltered VarLocs in VCF. RSEfiltered file in directory O
end
done
else print unfiltered VarLocs in VCF. RSEfiltered file in directory O

end
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List of RSEs belonging to error class 1

The following table contains list of RSEs (class 1) that resulted from systematic error
detection approach presented in Chapter 4. It consists information on chromosomal
location (column: “Chr” and “Location”) of RSEs and surrounding 9mer or 17mer

(column: “Kmer”) along with their orientation (column: “Strand”).

Location Strand Kmer INNIST  InBroad InHC InDBall(rsid_MAF) MotifLoc* Chr  Location Strand  Kmer InNIST InBroad  InHC  InDBall(rsid_MAF)
248813547 Rev  TTCTCTGTCATCTCGGG ~ NO NO Yes Yes_rs201161767_0.184000625586487 UbD 10 135439305 Rev TTATTGACGAGTAAATT NO NO Yes NO
248801633 Rev  AGATGTGGTTCCTCCCA  NO NO Yes Yes_rs74901534_0.015 UbD 10 135439305  For AATTTACTCGTCAATAA NO NO Yes NO
248801633  For TGGGAGGAACCACATCT NO NO Yes Yes_rs74901534_0.015 UbD 10 135439287 For GAGTGCTAAGATCTCAA NO NO Yes NO
248801611 Rev  TCAGGGTGG NO NO Yes NO Ub 10 135439220 For CCATCTCAG NO NO Yes NO
248801611  For  CACAGTCGCCACCCTGA NO NO Yes NO UbD 10 135438929 Rev CACCGTCAATTCGAAAA NO NO Yes Yes_rs201901202_0.215164525905614
248801610 Rev  CAGGGTGGC NO NO Yes Yes_rs150878651_0.00547913266495687 Ub 10 135438929 For TTTTCGAATTGACGGTG NO NO Yes Yes_rs201901202_0.215164525905614
248801610  For  TCACAGTCGCCACCCTG  NO NO Yes Yes_rs150878651_0.00547913266495687 UbD 10 135350490  For GATGGGTGG NO NO Yes NO
248801602  For TTCCTGATCACAGTCGC  NO NO Yes Yes_rs370874670_0.00149476831091181 UbD 10 135105932  For CAGCATGCACACTCCGT NO NO NO NO
248801592 Rev  GCTAGCAGG NO NO Yes Yes_rs78622116_0.0206923995224831 bD 10 135103301 For CCCAAGTCC NO Yes_TP NO NO
248801592  For  CCTGCTAGCCCTTCCTG ~ NO NO Yes Yes_rs78622116_0.0206923995224831 UbD 10 135084232  For GCGGTCTCAGCTCACCT  Yes Yes_TP  Yes NO
248801566  For TCTGATACT NO NO Yes Yes_rs74154510_0.0368394308943089 bD 10 135077121 For CGTCAGCCC NO NO Yes NO
248458689  For ATGAGGGAAAGTTGGCT NO NO Yes Yes_NA_0.000147972773009766 UbD 10 134902396  For CACGCTTCC Yes Yes_TP  Yes NO
248458676  For  CAGCATCATGTCCATGA  NO NO Yes Yes_NA_0.000192980340127849 UbD 10 124329672 Rev AAGCTGCGAGGTGGAAA  NO Yes TP Yes NO
248112762 Rev  ATGGTGGCACTCAAAAA  Yes NO Yes NO UbD 10 124329672 For TTTCCACCTCGCAGCTT NO Yes_TP  Yes NO
248112762  For TTTTTGAGTGCCACCAT  Yes NO Yes NO UbD 10 123970021 Rev ATCGGCTTGTCTTCATC NO Yes_FP  NO Yes_rs201905665_0.0119893589883751
247978541  Rev  CACCTTCTC Yes Yes_TP Yes NO Ub 10 123970021  For GATGAAGACAAGCCGAT ~ NO Yes_FP NO Yes_rs201905665_0.0119893589883751
247978541  For AGGATAAGGAGAAGGTG Yes Yes_TP Yes NO UbD 10 120933134  For AAAAAAAAAAAAAAAAA  Yes NO Yes NO
236723177 Rev  TCTGAGTGCCTTCAGCT  Yes Yes_TP Yes NO UbD 10 120922017 Rev TCCAGTGCATGCTGGTG Yes NO Yes Yes_rs12413842_0.279552715654952
236702209  For CATGAAACC NO Yes_TP Yes NO bD 10 113921450 For GGAGCAGGCAAGCCACA NO Yes NO Yes_rs199856746_0.0325124081171075
235856901 Rev  TGGTCTTGCACCAAATG  Yes NO Yes Yes_rs3754232_0.247603833865815 UbD 10 113921449  For GGAGCAGGCAAGCCACA NO NO NO NO
231064578  For CTACCTCAC Yes NO Yes NO bD 10 113921447  For GGAGCAGGCAAGCCACA  NO NO NO NO
230820763  For GAAGTCTCACATTAGAC  Yes NO Yes Yes_rs397701344_0.233027156549521 UbD 10 112266822 Rev GTGGGTCGCGCAGGCCT  NO Yes_TP  Yes NO
Rev CTTTGGG NO NO Yes NO UbD 10 112266822  For AGGCCTGCGCGACCCAC ~ NO Yes_TP  Yes NO
228461408  For GCCCTGAAGGGAGCGGG Yes NO Yes NO UbD 10 108432828 Rev AGCTCAGGGTGAACGCC  NO NO NO Yes_rs11193010_0.295527156549521
228430947 Rev  TGGCACTGGCCCCTGCC NO NO Yes Yes_NA_0.00854445109382273 UbD 10 105799550  For ACACACACGCACACGCA  NO NO Yes Yes_rs11191904_0.277156549520767
227222515 Rev  TTGGCTGTTTGTCTGTC  Yes Yes_TP Yes NO UbD 10 105363565 Rev ACTGGCTTGTCTGCACT NO NO Yes Yes_NA_0.23893907806347
227210888  For TTATTATTAATGTGACC Yes NO Yes Yes_rs11578479_0.286142172523962 UbD 10 102265056  For CTTCACAAACACACACA NO NO Yes NO
227172903  For GGGATGTCGGGAGCTGA Yes Yes_TP Yes Yes_rs2297415_0.269568690095847 UbD 10 95405665 For ATGAACCTATGTGTAAT Yes Yes_TP  Yes NO
224318151  For  TGATTTTTGTTCTTTTT NO Yes_TP Yes NO UbD 10 77818594  Rev GGGTGTAAGCACTGCCA  Yes NO Yes Yes_rs7924288_0.260583067092652
219383848  For GTATTCTACTTTTAAGT NO Yes_TP Yes NO UbD 10 75620757 Rev CTTCAGCAAATCATCAC Yes NO Yes Yes_rs2664282_0.284944089456869
213062017 Rev  CAACAACAAATAAAACC NO NO Yes NO UbD 10 75559662  For GAGACTCTATCTCAAAA NO Yes_TP  Yes NO
212209367 Rev  CAGAATTGGAGTCGGCC Yes NO Yes Yes_rs397844077_0.259584664536741 UbD 10 73571581 Rev GGCTCCGGT Yes NO Yes NO
209785011 Rev  AGGGTACACGGAGCTCC Yes NO Yes NO UbD 10 73115941 Rev AGGAAGACAGTGGCCGT  Yes Yes_TP  Yes NO
206766857  For  TGTGTGTGC NO NO NO  Yes_rs28629842_0.281749201277955 ub 10 73115941 For ACGGCCACTGTCTTCCT Yes Yes_TP  Yes NO
206580084 Rev  ACCTTTAAGTGTAGGGA NO NO Yes NO UbD 10 71391719 Rev TCTTCCCCAGCTCTCTG Yes NO Yes NO
206575141 Rev  TCAATAAGTGGAATGTG NO NO Yes NO UbD 10 65225244 For GGGGCGCTGACTCTCTT  Yes Yes_TP  Yes NO
206567100 Rev  ATAGTATCGGGGAATGT ~ NO NO Yes NO UbD 10 62551889 Rev CAGGAAATTAAAAATTT Yes Yes_TP  Yes NO
205308914 Rev  GCGGCAGGCGGGATGGG NO NO NO  Yes_rs116078922_0.0092151836933968  UbD 10 62551889 For AAATTTTTAATTTCCTG Yes Yes_TP  Yes NO
205275206  For  GGCTTGAGAGTTGTGCT  Yes NO Yes NO UbD 10 61802374  For TAGTGAAAAATATAAGT Yes NO Yes NO
205063949  For AAGGGCTACACAAAGCA Yes Yes_TP Yes Yes_rs3738154_0.285543130990415 UbD 10 51623004  For CTTGTAAATGCCAGCAA NO NO Yes NO
204413297 Rev  CTTTCTCCGAAACAGGC Yes Yes_TP Yes NO UbD 10 51620499 Rev CGCCTTCAG NO NO Yes NO
202731986 Rev  GATGATGAGGAAGTGGA NO Yes_TP Yes NO UbD 10 46999189 For ATGGGCGGCAGTGACCT ~ NO NO Yes NO
201179984  Rev  TCAGAACCC NO NO NO  Yes_NA_0.0802245563201738 bD 10 33093858 For ACACACACA NO NO Yes NO
201179984  For GGGTTCTGA NO NO NO  Yes_NA_0.0802245563201738 Ub 10 29783908 Rev ACCAGATATGCAGTTAG NO Yes_FP  Yes Yes_rs78773460_0.177077479629109
201178926  Rev  TAACCTGCCTTATTCAC ~ NO NO Yes Yes_rs6702960_0.1689453125 UbD 10 29783908  For CTAACTGCATATCTGGT NO Yes_FP  Yes Yes_rs78773460_0.177077479629109
201178926  For GTGAATAAGGCAGGTTA  NO NO Yes Yes_rs6702960_0.1689453125 UbD 10 17032559 Rev TTTCCATGTGCTGTTGC Yes Yes_TP NO Yes_NA_1.65612268556855e-05
201178924 Rev  ACCTGCCTTATTCACTG NO NO Yes Yes_rs6678538_0.135758998435055 UbD 10 13541724  For TTAGAAATAGAACAGTA Yes Yes_TP  Yes NO
201178924  For CAGTGAATAAGGCAGGT NO NO Yes Yes_rs6678538_0.135758998435055 UbD 10 11356093 For GTTTTCCTTTTTTCAGT Yes Yes_TP  Yes NO
201178904  For  GGGTTCTGAAGAAATGG NO NO Yes Yes_rs201227267_0.136434349719975 UbD 10 5926079 Rev TTGAGGTATTGAATTTT NO Yes_TP  Yes NO
201178904 Rev  CCATTTCTTCAGAACCC  NO NO Yes Yes_rs201227267_0.136434349719975 UbD 10 5682855 Rev TGTGTTCCATTGCAGGT Yes NO Yes NO
181706552  For TTCCTTTGGCAAGGGCC  Yes NO Yes Yes_rs2280866_0.275359424920128 UbD 10 1061625 For CGCTGAGCACTGAGCCT ~ NO NO NO NO
179783095  For  GGTGGCCGCGAGCCACT NO NO NO  Yes_rs202244671_0.0230830196156132  UbD 1 133800773  For CGCAGAGT Yes NO Yes NO
173921301 Rev  TTTTTTITTGTTTTITIT NO NO NO  Yes_rs199928760_0.066831343488404 UbD 11 130064747 Rev ACACACACATGCACACA NO NO Yes NO
173921292 Rev,For TTTTTTTTC NO NO NO  Yes_NA_0.0531843724913032 Ub 1 124747333 Rev TTCAGGACA NO NO NO Yes_rs10790713_0.236022364217252
173921292 Rev  CTTTCTCCA NO NO NO  Yes_NA_0.0531843724913032 bD 1 119548052  Rev CCCACCCACACTTCCCT Yes NO Yes Yes_rs10892429_0.204672523961661
170993444 For TATATGGGGTGTGTGTG ~ NO NO Yes NO UbD 11 119205735  For ATTTTCCTTCCAAATTA NO Yes_TP  Yes Yes_rs12797083_0.295127795527157
169580972 Rev  TTGCTCTCTGTGTGGCT  Yes NO Yes NO UbD 1 116703671 Rev TACAGGGGCAGCCCTGG  NO NO Yes Yes_rs4225_0.291333865814697
169272451 Rev  CTATTGCCTTTTTGATT Yes Yes_TP Yes NO UbD 11 113848184  For CCACCTGCTCCGACCTT Yes Yes_TP  Yes NO
165376228 Rev  CTACAGAGAGTGGCCAG NO NO NO  Yes_rs111545739_0.180311501597444 UbD 11 103086399  For ACTGTGTGTGTAAAATT NO NO Yes NO
161594525 Rev  TGTTGGCACTTGTCAAA NO NO Yes NO UbD 1 94704092 For TTTTAGAATAGCATGGT Yes Yes_TP  Yes NO
160990875 Rev  GTGTCGGGAGCCTGATC NO NO NO NO UbD 11 93494878 Rev AATTATTTCTTTTTCTA NO NO NO NO
160990875  For GATCAGGCT NO NO NO NO Ub 1 71740378 Rev CAAACCATGTTGCTTCT Yes Yes_TP  Yes NO
160090681  For CTCTCCCTTCCTCCCTC NO Yes_TP Yes NO UbD 11 71714526 Rev ATGCTGACCTCACCTGG Yes Yes_TP  Yes NO
157062364  For GCTAACCCA Yes Yes_TP Yes Yes_rs1176536_0.208067092651757 bD 11 71714526 For CCAGGTGAGGTCAGCAT  Yes Yes_TP  Yes NO
156565049  For CACCTAAAAGTTTCCTC  Yes Yes_TP Yes NO UbD 1 71640096 For TGAGGGGGCGAGCCGTG  NO NO NO Yes_rs376190587_0.00250391236306729
156532250  For  GATCTTTCTCCGAGGCA  Yes NO Yes NO UbD 1 71640090  For CTGCGGTGAGGGGGCGA NO Yes_FP  NO Yes_rs201521523_0.00108837614279495
155785578  Rev  TGAATGTTAGTTGGTAA NO Yes_TP Yes NO UbD 11 70544937 Rev CAGCCTCATGTGCTGTG Yes NO Yes Yes_rs7117514_0.296924920127796
155785578  For  TTACCAACTAACATTCA  NO Yes_TP Yes NO UbD 1 70507605  For AGGCGTATACACACACA NO NO Yes NO
155733257 Rev  TCTGAGCCAGAAGAAGA NO Yes_FP NO Yes_rs607834_0.060207336523126 UbD 11 68566651 For TACGGAAAAATTTCATC NO NO Yes Yes_rs61887064_8.28129917021382e-06
155733257  For TCTTCTTCTGGCTCAGA  NO Yes_FP NO Yes_rs607834_0.060207336523126 UbD 11 68566650 For ATACGGAAAAATTTCAT NO NO NO Yes_rs61887063_5.20616409829238e-05
154227239 For  TAAAGCTGCATCAGTGC NO NO Yes NO UbD 1 68566649  For TACGGAAAAATTTCATC NO NO NO NO
153636472  For ACTACTACTAGTAAATA NO NO NO  Yes_rs372540759_0.220740023486269 UbD 11 68566648 For CATACGGAAAAATTTCA NO NO NO Yes_rs61887062_0.00099866844207723
153636471  For ACTACTACTAGTAAATA NO NO NO NO UbD 11 67262289 For GCGAGTGGGCGAGGGGG NO NO Yes Yes_rs7932071_0.0106792499689557
152681680 Rev  CCCAGAGCTGGAGCCAC Yes Yes_TP Yes NO UbD 1 67223920  Rev GGCTCCCTGACTGACTG ~ NO Yes_ TP Yes NO
152681680  For GTGGCTCCAGCTCTGGG  Yes Yes_TP Yes NO UbD 11 66109779 Rev GTTCAGCATCCTGCTGC NO NO Yes NO
152195728  For  TTTTTTTIIT NO Yes Yes Yes_rs561299511_0.211165481308319 bD 1 65631879  For ACAGGGTCCCGGCACCA  Yes NO Yes NO
152195728  Rev  AAAAAAAAA NO Yes Yes Yes_rs561299511_0.211165481308319 Ub 11 65629932 Rev CAGGGTCGAGCACTCCC  Yes Yes_ TP Yes NO
152195728 Rev  ATGCCTAAA NO Yes_TP Yes Yes_rs561299511_0.211165481308319 bD 11 65629932 For GGGAGTGCTCGACCCTG  Yes Yes_TP  Yes NO
151789609  For  TGTGTGTGCGCGCGCGC NO NO Yes NO UbD 1 64606910  For TGGCCCGCCTTGTATCC Yes Yes_TP  Yes NO
151700189 Rev  CAGACTCTGGGAGAATC Yes NO Yes NO UbD 11 64603844 For CTCACCCAC NO NO Yes Yes_rs71471960_0.282947284345048
151634803  Rev  TATTTAATCTATCTTCC Yes NO Yes Yes_rs11808761_0.269968051118211 UbD 11 61725599 For CTACCACATCCTCCTCC NO NO Yes NO
151212399  For CGGGCCTCCTAACTCTA  Yes Yes_TP Yes NO UbD 11 57137538 Rev CCATGCCCCTTGCTCAG Yes Yes_TP  Yes NO
145507826  Rev  TCCTTACGA NO NO Yes Yes_rs872786_0.288738019169329 bD 11 56468835 Rev GAAATACACAACACTCC NO NO Yes NO
145282093 Rev  TGATCACCCACTGTTAA  NO NO Yes NO UbD 11 56468817 Rev TCTAAGGTCGTCTTTGT NO NO Yes NO
145281247  For TAGCCTTTTGTAAAATG  NO NO Yes NO UbD 11 56468198 Rev CCAGCAGGTAGCACTCA  NO Yes_FP  Yes NO
145273520 Rev  GAGCCAGACACCATGAT NO NO Yes NO UbD 11 56468198 For TGAGTGCTACCTGCTGG NO Yes_FP  Yes NO
145115602  For  GTTAGCCTCAAAATAAA  NO NO Yes NO UbD 1 56468047  Rev ATTTCCAGTGAAAAAAT NO NO Yes NO
145112313 For CTTTTAATTTCCTACCT NO NO Yes NO UbD 11 56468047 For ATTTTTTCACTGGAAAT NO NO Yes NO
145112285  For TGAGCCACCGTGCCTGG  NO NO NO NO UbD 11 56468020 Rev GTGGAGGCAGGAGTCAT  NO Yes_TP  Yes NO
145109809 Rev  GAAAAGGAAGCAGAAGC NO NO Yes NO UbD 1 56468020  For ATGACTCCTGCCTCCAC NO Yes_ TP Yes NO
145109456 For CAGAGATTCTGCTTTAA  NO NO Yes NO UbD 11 56467810 For TTCATGACAGTAATGCA NO NO Yes NO
145103844  For ATAATATGGTGCTTCTC NO NO Yes NO UbD 11 56467787 For CTTATGTAACATAATTC NO NO Yes NO
145021024  For  CATAGTGAGAGAGTGAG NO NO Yes NO UbD 1 56143559  Rev TGCCATTAGGAAGCTAT NO NO Yes NO
145020936  For AGCTACTCAGGAGGCTG NO NO Yes NO UbD 11 56143559 For ATAGCTTCCTAATGGCA NO NO Yes NO
144994861 Rev  ATGTCGCCGTAGCCCCA  NO NO Yes NO UbD 1 48373833 Rev CATGTACTCTTTTCCGT NO NO Yes NO
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144946876
144923535
144922523
144922523
144922109
144922109
144919094
144919008
144917827
144916676
144916676
144916493
144916486
144892149
144892149
144892089
144886409
144877390
144877366
144874088
144873818
144873794
144866509
144864454
144854380
144828404
120381687
120381686
118501941
118501941
117487710
111970431
111772328
111436857
110716511
110211835

Rev  GTCAAAAGG
For GAATAAAGAGAAGAACT
CAGGGAACGTGAGGTAA
For TTACCTCACGTTCCCTG
Rev  TTTATTTTTAGTCTTTG
For CAAAGACTAAAAATAAA
Rev  CACCCTCTGCTCCTCTT
TTAAAAAGGTAATATGT
For TCCAGAGCAACAGCTTT
Rev  CCTCCAGTGGCTGAAAG
For CTTTCAGCCACTGGAGG
For GTCCTCCCAATCTGAAG
For  GGTCACAGTCCTCCCAA
Rev  AACTGAAACGCACCACA
For TGTGGTGCGTTTCAGTT
For CCAAGCAGGTCCTCCGC
Rev  TTCTCATTTAAAACTGC
Rev  CAGCTTGGG
Rev  CTTAGAGATGTTCTCAT
Rev  ACATAAGGCCAGGATTC
For ‘GAAGAAAAATCAAACAG
For CTAACAGTCCAAACCTC
For TAAGGAGCGAGTGAAGT
Rev  AGCATGCTCTTCCCACC
Rev  ACCAGGAGC
Rev  TTTTTTTTT
For TTATATGGAGCACCTAG
For ATTATATGGAGCACCTA
Rev  TAATCAAGACCAGCCAT
For ATGGCTGGT
Rev  TCACCTGATGGCTGGAT
Rev  GTGTGTGTA
For AAAAAAAAG
For CCCTGTACTCGTGCAAA
For GGCGCTGCCGACGTGCT
For TCTCCTCTTTGCCCTTG

89449483
89449483
89449434
89449434
87045902
87045902
87045896
87045896
85331808
66731886
62594677
62061245
62061245
60228310
57221553
57221553
55614036
53153432
53153432
50956212
50956212
47153855
47014821
47014821
43786721
43393245
37319270
36282417
34286189
34286189
33478920
33478920
33478900
33478900
33476404
33476404
33476396
33476396
33476387
33476387
33476385
33476385
32658062
32044641
31478638
31406286
29320169
29320169
27995605
27995605
27995593
27995593
27995589
27995589
27995566
27995565
27995565
27995545
27995545

Rev  CACCTCCGCGGCTCCAG
Rev  CCAGGAAAGCTCTTCAT
For  ATGAAGAGCTTTCCTGG
Rev  CTCTTGAAA
For AAATACTGTTTCAAGAG
Rev  GGAGTAGGTGTAGGATC
For ‘GATCCTACACCTACTCC
Rev  GGAGTAGGTGTAGGATC
For ‘GATCCTACACCTACTCC
Rev  TGTTCACTTCTCCACAA
Rev  GAGACATACTTTTGAGA
Rev  GACGCTCAATCTTTTTT
TTTTTTTIC

Rev  GAAAAAAAA
Rev  CAAATGACAAGTCTTTA
Rev  TTATCTTTCAAAAGAAA
For  TTTCTTTTGAAAGATAA
For AATAAACATAAAGATAG
Rev  GCTACACAAAGAACAGC
For GCTGTTCTTTGTGTAGC
Rev  GTTGTATTT
For  TCAGTATCAAATACAAC
For  TCACACAGC
Rev  AAAAAAAAG
For GAAAAAAGA
Rev  AAAAAAAAA
For  TGCGTGCGGGTGAGTAT
For  TCCGTCCGCAAGCCACT
For AAAAAAAAA
For  TTTTTTTTT
Rev  GTGTGCTGT
Rev  ACTCAAACCACCCCACT
For AGTGGGGTGGTTTGAGT
Rev  AGAGTACTACAGGAAAC
For GTTTCCTGTAGTACTCT
Rev  AGACTGCAACACTGCTC
For  GAGCAGTGTTGCAGTCT
Rev  ACACTGCTCATCACCCC
For GGGGTGATGAGCAGTGT
Rev  ATCACCCCGCGGCGTGA
For  TCACGCCGCGGGGTGAT
Rev  CACCCCGCGGCGTGATC
For GATCACGCCGCGGGGTG
Rev  CTCCTCCCACCCCCACC
For CAGTTATAGTTTAATTT
For  GGAAAAAAAGAGAGAGA
Rev  GIGTGTGTATGTGTGTG
For  AAAAAAAAG
Rev  GAAAAAAGA
Rev  AGGTAAGGGTGCAGGTA
For  TACCTGCACCCTTACCT
Rev  AGGTAAGGATGCGGGTA
For  TACCCGCATCCTTACCT
Rev  AAGGATGCGGGTAAGGA
For  TCCTTACCCGCATCCTT
For  CCTTACCCGCATCCTTA
For  TCCTTACCCGCATCCTT
Rev  AAGGATGCGGGTAAGGA
TCCTTACCT

Rev  AGGTAAGGA
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Yes_TP
Yes_TP
Yes_TP
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

NO

NO bD

NO UbD
Yes_rs2455994_0.291196094385679 UbD
Yes_rs2455994_0.291196094385679 UbD
NO UbD
NO UbD
NO UbD
Yes_rs11296953_0.295079561758184 UbD
Yes_rs375854543_0.295409035409035 UbD
Yes_rs1698683_0.294959405151234 UbD
Yes_rs1698683_0.294959405151234 UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO bD

NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO bD

NO bD

NO UbD
NO UbD
Yes_NA_0.291746083023744 UbD
Yes_NA_0.291746083023744 Ub

NO UbD
NO Ub

Yes_NA_2.63047138047138e-05 Ub

NO UbD
Yes_rs12747833_0.25379392971246 UbD
NO UbD
NO UbD

Yes_rs74100106_0.245906267645398 UbD
Yes_rs74100106_0.245906267645398 UbD
Yes_rs2893084_0.283000495715601 Ub

Yes_rs2893084_0.283000495715601 UbD
Yes_87045902_rs1932809_0.001746053918UbD
Yes_87045902_rs1932809_0.001746053918UbD

NO UbD
NO UbD
NO UbD
Yes_rs6588193_0.274161341853035 UbD
Yes_rs2481665_0.186501597444089 UbD
Ub
NO bD
NO UbD
NO UbD
NO UbD
NO UbD
Yes_rs443751_0.293063875504623 UbD
Yes_rs443751_0.293063875504623 UbD
NO Ub
NO UbD
Yes_rs11211340_0.272164536741214 bD
Yes_NA_2.63047138047138e-05 ub
Yes_NA_2.63047138047138e-05 bD
NO Ub
NO UbD
Yes_NA_0.0483945165148588 UbD
NO Ub
Yes_rs3843294_0.103686594202899 bD
Yes_rs3843294_0.103686594202899 Ub

Yes_rs111261425_0.130386740331492 UbD
Yes_rs111261425_0.130386740331492 UbD
Yes_rs113711467_0.00964100173171706 UbD
Yes_rs113711467_0.00964100173171706 UbD
Yes_rs76230073_0.171189160603242 UbD
Yes_rs76230073_0.171189160603242 UbD
Yes_rs79824855_0.175618413961009 UbD
Yes_rs79824855_0.175618413961009 UbD
Yes_rs201842558_0.209405622333483 UbD
Yes_rs201842558_0.209405622333483 UbD

Yes_rs76881767_0.216441804269029 UbD
Yes_rs76881767_0.216441804269029 UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO Ub

NO bD

NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO UbD
NO bD

NO Ub

48373833
48373815
48373815
48367469
48366971
48347539
48347140
48347140
48346961
48346961
48346551
48346551
48346547
48346547
48346541
48346535
48346523
48346513
45937968
34982146
34188981
26718732
26718732
22239663
18524208
18267373
17131918
10831340
10823582
6567895
6567895
6499215
5618298
5269586
5269583
1651613
1093569
1093452
1093452
1093412
1093412
1093411
1093411
1093354
1093354
1093158
1093158
1093136
1093136
1093135
1093135
1092807
1092807
1092804
1092804
1092492
1092459
1092459
1092457

1017186

ACGGAAAAGAGTACATG
CTATTTGTTCATTATAG
CTATAATGAACAAATAG
CTATGACCACTATGTGG
ATTTTTGAGGGTGTAGA
CAAAAATAA
ACATACGTATTGGTGCA
TGCACCAATACGTATGT
GGTAGTATTGTGCAGGG
CCCTGCACAATACTACC
CTGAGAATGCAGGTGCA
TGCACCTGCATTCTCAG
GAATGCAGG
ATACTGCACCTGCATTC
TAGGCAATACTGCACCT
TCTTTATAGGCAATACT
TGTTTCTCCTTGTCTTT
CTATTACTTATGTTTCT
TAGTCTGTG
AAGACTGAATAAGCTCT
TTAACTCTGGTTCACCA
TGTGGCTTG
TGAAGGCACAAGCCACA
ACACACACA
TATGTCAAGCTTAACTT
AACTTCTCCACAAGGAG
ACGGCAGGTACACTTTA
CAAAAAAAA
AAATATTAC
AGTAGGGCAGCCTCCTC
GAGGAGGCTGCCCTACT
AATGCCCAAATTTCCAC
ATGTCTCTA
GGGCAGTGAGCTCAGTG
CATGGGCAGTGAGCTCA
TGTAAGCCTTACTGCTG
ACCACCACAACTACGGT
GTGGGTGTCGGGGTTGG
CCAACCCCGACACCCAC
TGGGTGTCGTGGTTGGG
CCCAACCACGACACCCA
TGGGTGTCGTGGTTGGG
CCCAACCACGACACCCA
GGTGGTGGAGATGGGTG
CACCCATCTCCACCACC
GTCACCGTAGTGGTGGT
ACCACCACTACGGTGAC
TGGGTGTCGTGGTTGGG
CCCAACCACGACACCCA
TGGGTGTCTGGTTGGGG
CCCCAACCCGACACCCA
GTGGTGGTG
CACCACCAC
GTGGTGGTG
CACCACCAC
GGGCTGGGGGTGGTGGT
GTGGTGGTGGTTGGAGG
CACCACCAC
GGTGGTGGTTGGAGGGC
CACCACCAC
GGGCTGGGGGTGGTGGT
AGGGTGGTCGTGCTGGT
ATGGCCACATCTGCCTC
GAGGCAGATGTGGCCAT
ACCACTCAGCGCCAACA
TGTTGGCGCTGAGTGGT
CCAACAGGTACCATTCC
GGAATGGTACCTGTTGG
CCAAGCCCACAGCTCAT
ATGAGCTGTGGGCTTGG
CAAGCCCACAGCTCATT
AATGAGCTGTGGGCTTG
CAGCACAAACAAAACAC
GTGTTTTGTTTGTGCTG
ACTTCTACTACCACGAT
ATCGTGGTAGTAGAAGT
CTAGTACACGCACCAGA
TCTGGTGCGTGTACTAG
CACGCACCAGAACCCCT
AGGGGTTCTGGTGCGTG
CATCCTTCAAGACCACC
GGTGGTCTTGAAGGATG
CACAGATGGCCACTTCT
AGAAGTGGCCATCTGTG
CACACAGCGCCAACAAT
ATTGTTGGCGCTGTGTG
CAGCGCCAACAATGACG
CGTCATTGTTGGCGCTG
TGCTGAAGCCACCTCAA
TTGAGGTGGCTTCAGCA
CCTTCCAGACCACCACT
AGTGGTGGTCTGGAAGG
ACTCACACGGTCATCAT
ATGATGACCGTGTGAGT
CCACTCAATGCCAACAG

CTGTTGGCATTGAGTGG
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Yes_FP
Yes_FP
Yes_FP
Yes_FP
Yes_FP
NO
NO
NO
Yes_FP
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NO
NO
Yes_TP
Yes_TP
NO
NO
Yes_TP

Yes_FP
Yes_TP

Yes_FP
Yes_FP
NO
NO
NO
NO
NO
NO
NO
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NO UbD

NO UbD
NO UbD
NO UbD
NO ubD
NO bD

NO UbD
NO UbD
NO UbD
NO UbD

Yes_rs77470587_0.243449801619951 UbD
Yes_rs77470587_0.243449801619951 UbD
Yes_rs79042268_0.232394493587308 Ub

Yes_rs79042268_0.232394493587308 UbD
Yes_rs75498992_0.222422008450957 UbD
Yes_rs76964780_0.198116104327722 UbD
Yes_rs72911451_0.248489074848907 UbD
Yes_rs78206553_0.268059367693402 ubD

NO bD
NO UbD
Yes_rs7120870_0.212659744408946 UbD

Yes_rs72883299_0.256771275091886 Ub
Yes_rs72883299_0.256771275091886 UbD

NO bD
Yes_rs2658552_0.270966453674121 UbD
NO UbD
NO UbD
Yes_rs72430557_0.277005712336943 bD
Yes_rs71034786_0.29174319951019 bD
NO UbD
NO UbD
Yes_rs2303493_0.294329073482428 UbD

NO bD

Yes_rs62755960_8.31020326757192e-06 UbD
Yes_rs5009539_0.000191644308164048 UbD
Yes_rs76143925_0.132516417438088 UbD
Yes_rs72842460_0.0584891234647068  UbD
Yes_rs34136803_0.298812175204157 UbD
Yes_rs34136803_0.298812175204157 UbD

Yes_rs113330607_0.2575 UbD
Yes_rs113330607_0.2575 UbD
NO UbD
NO UbD
Yes_rs56290335_0.00385811355522285 UbD

Yes_rs56290335_0.00385811355522285 UbD
Yes_rs202045556_0.172145328719723  UbD
Yes_rs202045556_0.172145328719723  UbD
Yes_rs374924328_0.00923295454545455 UbD
Yes_rs374924328_0.00923295454545455 UbD
Yes_rs374924328_0.00923295454545455 UbD
Yes_rs56080332_0.00662251655629139 UbD

Yes_NA_0.000203334688897926 Ub
Yes_NA_0.000203334688897926 bD
NO Ub
NO bD

Yes_rs111844333_0.00719564371839751 UbD
Yes_rs374506032_0.000996346728661574UbD
Yes_rs374506032_0.000996346728661574bD

Yes_rs145610697_5.2565180824222e-05 UbD
Yes_rs374506032_0.000996346728661574bD

Yes_rs79619079_0.000854052002277472 UbD
NO UbD
Yes_rs7396380_0.191608986035216 UbD
Yes_rs7396380_0.191608986035216 UbD
Yes_rs76741048_0.142628009553863 UbD
Yes_rs76741048_0.142628009553863 UbD
Yes_rs7396697_0.241086881273797 UbD
Yes_rs7396697_0.241086881273797 UbD
Yes_rs79680044_0.241363580323018 UbD
Yes_rs79680044_0.241363580323018 UbD

NO UbD
NO UbD
NO UbD
NO UbD

Yes_rs12418172_0.196287462407964 UbD
Yes_rs12418172_0.196287462407964 UbD
Yes_rs12807084_0.282015140837065 UbD
Yes_rs12807084_0.282015140837065 UbD
Yes_rs71454075_0.29656933953128 UbD
Yes_rs71454075_0.29656933953128 UbD
Yes_rs10751676_0.267247185605696 UbD
Yes_rs10751676_0.267247185605696 UbD
Yes_rs79644784_0.112084203760244 UbD
Yes_rs79644784_0.112084203760244 UbD
Yes_rs76800954_0.0271230019598324  UbD
Yes_rs76800954_0.0271230019598324  UbD
Yes_rs77940304_0.0263719300679895  UbD
Yes_rs77940304_0.0263719300679895  UbD
Yes_rs112886536_0.000108158477128642UbD
Yes_rs112886536_0.000108158477128642UbD

NO UbD
NO UbD
NO UbD

Yes_rs74579726_0.0257486313567707  UbD
Yes_rs74579726_0.0257486313567707  UbD
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27995530 For CCTTACCCG
24671485 Rev  AGGTGTGGAGGGGGCAC
24671482 Rev  TGTGGAGGGGGCACAGG
24106510 Rev  ATGATACTA
22310411 Rev  ACAAGGTCTGGTCTTGG
19447752 Rev  GTTCTGGACAAGCCACA
19447752 For TGTGGCTTGTCCAGAAC
19208145 For GTGAGCAGGTGAACGTC
16916702 Rev  TGCCTTGAA
16383581 Rev  CCCAGGATG
16382827 For CGCCCCTCTTCCTGGCT
16376238 For AAGGCATTCCCCCCAAG
16376237 For  AAAAGGCATTCCCCCCA
16376236 For CAAAAGGCATTCCCCCC
16376235 For CCAAAAGGCATTCCCCC
16376233 For GTCCAAAAGGCATTCCC
16376231 For AAAAGGCATTCCCCCCA
16376230 For GAGTCCAAAAGGCATTC
16375063 Rev  AGGGAGCTGCAAAGACT
16375063 For AGTCTTTGCAGCTCCCT
16373199 Rev  GATCTGAGAAGGTTTTG
16359051 Rev  CGGGGGCTGCGTGTGTC
15873410 Rev  GAAAAGAAA
15873410 For AAAAAAAAG
15873408 Rev  GAAAAGAAA
15873408 Rev  AAAAAAAAG
15873405 Rev  GAAAAGAAA
15438825 For  TGTGTGTGT
13183966 Rev  CCGTAGAAC
13183532 Rev  GGACTATGGCTTTCAAC
13183532 For GTTGAAAGCCATAGTCC
13183248 Rev  AGGAACAGAGCAAACAA
13183248 For TTGTTTGCTCTGTTCCT
13183237 Rev  AAACAAGAGGTAGAGGT
13183237 For ACCTCTACCTCTTGTTT
13182899 For  CTGAAGATACTAAGGGA
12908243 Rev  GCAGTCAGTTTCTCCCC
12908236 Rev  GTTTCTCCCCGTAGAAC
12907802 Rev  GGACTATGGCTTTCAAC
12907802 For GTTGAAAGCCATAGTCC
12907282 Rev  GACAGCACCAATGGCCA
12907282 For TGGCCATTGGTGCTGTC
12907212 For AGACAAGCTCCTAGGTA
12907199 For AAAATTTGTTGTTAGAC
12907169 For CTGAAGATACTAAGGGA
11917620 For AATACATTAAAAAAATG
11133956 Rev  AAAAAAAAA
11133956 For AAGTCTCTT
9009214 For GGTGCCTCCGTGGGTCC
3418565 Rev  ACCAGGAGC
3395973 For  CCCCACCACCCCCATCT
1853615 For ATTGGAATCTGGCAGAG
1844046 Rev  GTTATTCTC
1684347 For GACCTAGCCCTCCTCCT
1670570 Rev  GATGGGAGACCGGGGGT
1654038 For GGAAGTACA
1651003 Rev  TTCAGCTTCGTTCCTAT
1650996 Rev  TCGTTCCTATCTGAATC
1650967 Rev  GGGTTGAAAAAACCTCA
1650960 Rev  AAAAACCTCATAATAGC
1650942 Rev  TGATGCTTTTCCGCACT
1650940 Rev  ATGCTTTTCCGCACTTT
1650939 Rev  TGCTTTTCCGCACTTTC
1650657 For TTCAGCTACAGTTTGCT
1650642 For TGACACCATTATGCTTT
1650641 For GTGACACCATTATGCTT
1650640 For TGTGACACCATTATGCT
1648058 Rev  CTGGTTTTG
1648054 Rev  CAGGCTGGTTTTGAACT
1648053 Rev  AGGCTGGTTTTGAACTC
1648018 Rev  CCCGCCTCGGCCTCCCA
1648002 Rev  AAAGTGCTGGGATTACA
1647990 Rev  TTACAGGCGTAAGCCAC
1647983 Rev  CGTAAGCCACCGTGCCC
1647971 Rev  TGCCCGGCCTCGTGAAA
1647730 For  GCTGTGACAGGACACAC
1647729 For TGCTGTGACAGGACACA
1647726 For CATTGCTGTGACAGGAC
1647725 For TCATTGCTGTGACAGGA
1647722 For TCTTCATTGCTGTGACA
1647689 For CTGCAACAAATGTGACT
1581926 Rev  TCCTGTAACTATCTCTC
1581926 For GAGAGATAGTTACAGGA
1581759 Rev  GAGGCATACGGTGATCC
1581759 For GGATCACCGTATGCCTC
1574076 Rev  TCCACCCCCGGCCCAGT
1574019 Rev  CGTGCCTGTGGACGCAG
900285 For  TTGTGGTGCAGCCCCTC
889158 For TGGGCCACGAACCTTGA
884091 Rev  GCAGCCAGG
242121959  For ACCTGCTCGCCATCTTC
240098010  For CGGCCTTCT

For  CCTCTGCCCGGCCTTCT
238261112  For  CCTGCTTGGCAATGTGC
234590974  Rev  TAATTTTCGGTCATTAA
234590974  For TTAATGACCGAAAATTA
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ATCCCTACCTTACCACA
TGTGGTAAGGTAGGGAT
CCCCAAACACACCAGTA
TACTGGTGTGTTTGGGG
AGTACAGGCACCAGAAC
GTTCTGGTGCCTGTACT
ACCACCTCGGCCAGCAG
CTGCTGGCCGAGGTGGT
TCATCATCACTACCCAC
GTGGGTAGTGATGATGA
CACACAGCCCCACCAAT
ATTGGTGGGGCTGTGTG
CAGCCCCACCAATGACA
TGTCATTGGTGGGGCTG
CCAATGACAGTGACCAC
GTGGTCACTGTCATTGG
CAATGACAGTGACCACC
GGTGGTCACTGTCATTG
AATGACAGTGACCACCA
TGGTGGTCACTGTCATT
CCAGCCAAACCCACAGC
GCTGTGGGTTTGGCTGG
CTCATTCAGCACAGCTA
TAGCTGTGCTGAATGAG
AGCACAGCTACAGCCTC
GAGGCTGTAGCTGTGCT
CACAGCTACAGCCTCTT
AAGAGGCTGTAGCTGTG
CAGCTACAGCCTCTTCT
AGAAGAGGCTGTAGCTG
CAGCCTCTTCTTCCTTC
GAAGGAAGAAGAGGCTG
GCCTCTTCTTCCTTCAT
ATGAAGGAAGAAGAGGC
CTACAAGTATTTCCGGG
ACTCATTTTCAAAGTGA
TCACTTTGAAAATGAGT
CCATCTATACAGGACTT
AAGTCCTGTATAGATGG
ATATGCACC
ATGCTGTCTTTGATATT
ACCGCGTTGCAGGGCCT
ATCAACCTC
TGATGTGTACTTTTATT
ACATAACATATTCCTAC
TAGGTATTATATAGATG
AGTCTGTGGTCTGGGGA
TTTTTTTTIGTCTTTTAG
TTTTTTGTCTTTTAGAC
TAATGACAATAGCTGAG
TGTGTGTGT
TGTGTGTGT
TGGGGGGGGACATTTTC
TTCATCTTACTTCAGTT
AAGAGAAAGAAAAAGGA
CAGATCACAACTCCATA
TATGGAGTTGTGATCTG

GTGGCAGGCGGGGTTCT
GGCTGGGGTGGCCTCAC
GGTGGAAGTAAGCCAGT
GGGACACCAATTCCTGC
AAAAAAAAAGGCAAAGT
ACTTTGCCTTTTTTTTT
GCTGGAGGCTTTGGCAC
GTGCCAAAGCCTCCAGC
GGAGGCTTTGGCACTGG
CCAGTGCCAAAGCCTCC
ATTTTGTTTTTTCAGAG
CAGCAGGCGCAGGAACT
AGTTCCTGCGCCTGCTG
CAGCAGGCGCAGGCTCA
TGAGCCTGCGCCTGCTG
GCGCAGGCTCAGGGGAT
ATCCCCTGAGCCTGCGC
GCAGGCTCAGGGGATCC
GGATCCCCTGAGCCTGC
GCTCAGGGGATCCCTCT
AGAGGGATCCCCTGAGC
CACATTCACAACCGGAT
GCACATTCACAACCGGA
CTGAGTGTAAGTTTCCC
TGGGCACAGAAGCTATG
TGCTTGTTGGATCCCCA
ATCATTCCTTTTTTTGT
AAAGGAGGTAACTCTTT
AAAGAGTTACCTCCTTT
CCACAAGGGGACAAGTC
GACTTGTCCCCTTGTGG
CAAGTCCCGAAGTCCCC
GGGGACTTCGGGACTTG
CCAGGAAAACCACAAGG
CCTTGTGGTTTTCCTGG
CAAGTCCCG
CGGGACTTG
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Yes_rs114271589_0.000276344878408254UbD
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Yes_rs144970699_0.00173778721760958
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Yes_rs202083397_0.0207294990083642
Yes_NA_0.0434024274223773
Yes_NA_0.0434024274223773
Yes_rs112485268_0.011360829834527
Yes_rs112485268_0.011360829834527
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234590527
233408220
233408220
232087474
231943505
231943505
225422600
211456637
211456637
211421452
206630073
187490389
171850207
171850201
171508490
170425523
162876828
162876828
160964059
160964057
160086653
158283710
158152046
157425502
157425502
130899804
130899804
130737578
128939598
128872595
128394877
128394877
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97820392
97820349
97820332
97818283
97818264
97818262
97818262
97818261
97818261
97818236
97818236
97818197
97818197
97818192
97818188
97818169
97818161
97818146
97818114
97817564
97817563
97817545
97817511
97817469
97817450
97817449
97749417
85571228
85571228
74649921
74649921
74649916
74649916
71776345
62063093
61456624

For TCTTCCACTTACTATAT

ev  TGCCCCCCCTCAGGCCT
or AGGCCTGAGGGGGGGCA
For TGAAGTTGATAAAGTTT
Rev,For AAAAAAAAG

Rev  GAAAAAGAT

Rev  TTTTTTTTGTCTCTTCT
Rev  AGGGAGGGTGTTGTCCA
For TGGACAACACCCTCCCT
For ACAAATCATCAAAATGA
For GTGCAATAACACACACA
Rev  ACACACACCCACACACA
For  AAGAAAAAG

o=

Rev  GAAAAAAAA
For GCTGTTGGAGTCATGGC
For AAGCTGTTGGAGTCATG
For  ATCGCTGCCACTCCTGC
For AAGGTAATT
For GAATTCAGAAAAAAAAA
For AAAAAAAAG
Rev  GAAAAGAAA
Rev  AGGCAAGCATGGGCGTC
For GACGCCCATGCTTGCCT
For  GCAGGGGCGCAGAGAGC
For  GGAGCAGCC
For GCATAATCCGAGGTAAT
Rev  ACAGGGGACGGGGGGGT
For ACCCCCCCGTCCCCTGT
Rev  AATGCCAAAGGAAGGTG
Rev  GATCAAAACAAAAAAGG
For CCTTTTTTG
Rev  TATAAGACATATCTGAG
For TCAGCCTGCAAAGGGGT
For TAATATTTGTGACTTGA
Rev  TAAAAGAAGTAAGAATC
Rev  ATCAGAAGG
Rev  CAGAAGGCTATGAACAT
Rev  ATTAATATGTCATGTAT
Rev  TATGTCATGTATATATC
For  GTACTTTCCTGTGTTAG
For AAGTACTTTCCTGTGTT
For GTTAAGAGGATCACATT
For GTCCTTTCTTTTGACAT
For CACGGTAAACATATTTT
TCCTTTTGCTTTGTAGT
For AGTCAATTATGTGTTCC
For TCATATTTACCTGTAGT
Rev  TACTCTACCTCAGATTC
Rev  CTGTGCAAAACGGTCCA
For TGGACCGTTTTGCACAG
Rev  TGCAAAACGGTCCAGTA
For TACTGGACCGTTTTGCA
Rev  GCAAAACGGTCCAGTAG
For CTACTGGACCGTTTTGC
Rev  GTAGGTAGAGACACCTA
For  TAGGTGTCTCTACCTAC
For ATTTTTGTAATATCTTT
For  TAGACTGACGGTTTTTG
For GAGGGGACCTGCATGTA
Rev  AAAAATCTCTGAAATCA
Rev  CCTGTCAACAGCCTCTT
Rev  TGTCAACAGCCTCTTCA
For TGAAGAGGC
Rev  GTCAACAGCCTCTTCAA
For  TTGAAGAGG
Rev  AGCACTATTAAAGAAAA
For TTTTCTTTAATAGTGCT
Rev  CAATAGAAC
For TCTATAGTGTTCTATTG
For AGTATTCTATAGTGTTC
For TTTTAGTATTCTATAGT
For  CCACTGTGCTCTTTTAT
For GGAACAAGCCACTGTGC
For GTAGCTGGGATTATAGG
For TCTCAAGTGATACTTCT
For GTATTATCCTATTTTAA
For GTATTATCCTATTTTAA
For GATCATGTAGTAATGGT
For ATGAGTGATTTCAACGT
For CTGTAGATTAGTAAATG
For ACCATCACCCCATGTGA
AACCATCACCCCATGTG
For CACACCTGCCACTGGGC
Rev  GTGGCAGGC
For TCAGCTCCGCCTGCCAC
For,Rev TTTTTTTTCAAAAAAAA
For  ccCGTCCCCC
For cceTecccc
For,Rev TTTTTTTTCAAAAAAAA
For CCTCGGGCCACATCTGT
For AAAGCTGTAAAAAAAAA
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11461580
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11461553
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11338613
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11174327
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9583221
9582244
9581948
9580395
9580203
9580203
9578197
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9577992
9574480
9574480
9573309
9573307
9573304
9573287
9573224
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9572871
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111109618
111109576
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50100637
46108853
46108853
43491778
26153950
26128128
25671080
25671080
25671062
25671062

CCCAAGGTCCCCCACCT
AGGTGGGGGACCTTGGG
CAAGGAGGAAACCAGTC
GACTGGTTTCCTCCTTG
CCCAAGGTACCCCACCT
AGGTGGGGTACCTTGGG
CCCACCTCCTCCAGGAA
TTCCTGGAGGAGGTGGG
AGCCAGAAAGACCACCC
GGGTGGTCTTTCTGGCT
AGAAAGACCACCCCCAC
GTGGGGGTGGTCTTTCT
AGGTAAAGCATTTGGTG
ACTTAAAGA
CTCCATGGTAAAGGATC
GATCCTTTACCATGGAG

TGCGGCAAGTGAGGTAC
GTACCTCACTTGCCGCA
AGATTCATGAGAGGGGC
GCCCCTCTCATGAATCT
TTGGAATCTTAGGACAC
GTGTCCTAAGATTCCAA
CAGAGCAAACTTGTACT
AGTACAAGTTTGCTCTG
AACTTGTACTCCTGCTT
AAGCAGGAGTACAAGTT
CCTGCTTTGCCAAACTG
CAGTTTGGCAAAGCAGG
GCCAAACTGTTGCAATC
GATTGCAACAGTTTGGC
TGATTATGGGAAGTAGG
CCTACTTCCCATAATCA
AGCAGTTCCTAGATGAG
CTCATCTAGGAACTGCT
ATACACCATTTATAGCT
TAAATATTT
CTTTATAAA
ATACACCATTTATAGCT
CCCAAAGTGGCAGCAAA
TTTGCTGCC
ACAGCAACGGCAGGGGA
AGCACCATCGACCCAAG
TGGTGCTGCCCTATCAG
CGACACCAC
CCTTAGCCCTCGGCTGC
GCTGGCCACGGCCCCAG
CCTCAGAGGGCCCAGAG
TCCACATTCCACATCCA
TGGATGTGGAATGTGGA
TGTGCAGCTCTTGCAGC
GCTGCAAGAGCTGCACA
AAAGAATCCTTTCATGC
AGGTGTCTAACTTCCGG
CCGGAAGTTAGACACCT
CATGGGGGCTCCCTCCC
ATGGGGGCCCCTCCCTC
GGGGCTCCCCCTCCCTC
ATGGGGGCTCCCTCCCT
ACCTGTGCGGTGTGGTT
AACCACACCGCACAGGT
CAGCCAGACGGCCCAGC
TCTGGGAAATGTCCTCT
CACCAGGTGGAGCAGGT
TCCCCCCACTTTTTTTT
GTCAAAGGAAAGCAAAG
GAGTTTGAGCTGAGTCG
TGTGTGTGTGAGAGAGA
TGTGTGTGTGAGAGAGA
CAGAGGCTGGGGATCTG
GCCTTACTTCTCCTCTC
GCACGTTCCGATGTGTG
TGCCCCTATTATTTCCA
TACTAGGTAAACGTACT
GTGGCTGGTCCCATGAC
GTCATGGGACCAGCCAC
GTGGGGCTGATGCCCTG
GTGGGGCTGATGCCCTG
GTTTATTAAATTATTGC
ATTACACTGGAACATAG
\TTTTTTTC

TTTTTTTICTTTTTCTA
AACAAAATTATTAAACA
CACACACAC
CCGAGCCGCGCCGATGC
TGATAAATATTTCTCAA
TAGAAACCAACAGCAGA
TCTGCTGTTGGTTTCTA
TTTTTTTTICTCTTIGTA
GCAGGCTTG
TTTTGAGTGCTCAATTA
ATCTCATCTACAGCTTT
AAAGCTGTAGATGAGAT
TGTGCATCTTCATGCCT
AGGCATGAAGATGCACA
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Yes_rs12308381_0.215901732232475
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Yes_rs59021567_0.0188633809600257
Yes_rs59021567_0.0188633809600257
Yes_rs12303607_0.199891852919971
Yes_rs12303607_0.199891852919971
Yes_rs59189129_0.282818880614941
Yes_rs59189129_0.282818880614941
Yes_rs11054244_0.000131285282919785
Yes_rs11054244_0.000131285282919785
Yes_rs11054243_6.45911380958533e-05
Yes_rs11054243_6.45911380958533e-05
NO
Yes_rs201460452_0.207429709784036
Yes_rs202034865_0.252492389649924
Yes_rs202034865_0.252492389649924
Yes_rs199894662_0.0129403070859676
Yes_rs199894662_0.0129403070859676
Yes_rs201730548_0.0128598784997359
Yes_rs201730548_0.0128598784997359
NO

NO
Yes_rs112900131_0.00762564707424153
Yes_rs112900131_0.00762564707424153
Yes_rs76455106_0.0586554593930132
Yes_rs76455106_0.0586554593930132
Yes_rs74992161_0.0606151288445553
Yes_rs74992161_0.0606151288445553
Yes_rs76970958_0.0838959272170734
Yes_rs76970958_0.0838959272170734
Yes_rs74772077_0.0977704459108178
Yes_rs74772077_0.0977704459108178
Yes_rs72475481_0.211818535825545
Yes_rs72475481_0.211818535825545
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NO

NO

NO

NO

Yes_NA_2.83527076835838e-05

NO
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Yes_rs113084521_0.00139776357827476
Yes_rs200954527_0.0398414802696528
Yes_rs200954527_0.0398414802696528
Yes_rs9515216_0.00710357470210816
Yes_rs9521780_0.00207373271889401
NO

NO

NO
Yes_rs371232979_0.00483745475457528
NO

NO

NO
Yes_rs371713260_0.25227716330514
NO

NO

NO
Yes_rs201822155_0.0423402879411865
Yes_rs7331675_0.0818690095846645
Yes_rs76241879_0.111983284391236
Yes_rs76241879_0.111983284391236
Yes_rs78534836_0.0663115968877362
Yes_rs78534836_0.0663115968877362
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61456611 Rev  CAAAAAAAA

61456611 For AAAAAAAAC

58362161 Rev  AAAAAAAAG

58362161 For  GCATTGAAA

39536669 For  GAAAAAAAA

39536669 Rev  TTTTTTTTCTTTTTTAG
38963046 For AAGAAAAAG

33623387 For CTCACAGAATAATATCC
33586479 For,Rev TTTTTTTTCAAAAAAAA
32961691 For ATTAGGTACACCTGCAA
31572482 For TCCTATATGGGGTCAGC
27324340 Rev  GATGCCCCCGGGCCCAG
15491994 For TCTGCATGCACACACAC
15378822 Rev  CTCACTATTCTTTTTTT
8822912 For AAAAAAAAAAAAAACCC
1642537 For GAATAAAATGCTATACC
1133188 For CACACACAC

1079130 For  AGCAGGAGGCGTGCGTC
905736 Rev  CGGGAGGATCTGAAACA
905442 Rev  CGGGAGGATCTGAAACA
242732 For ACAACAATAACAACAAC
197544211 Rev  ACACACACA
196674972 Rev  CTGGGGCAGCCCTCACA
196674972 For  TGTGAGGGCTGCCCCAG
195515387  For AGGGGTGGTGTGACCTG
195511959  For GAAGTGTCGGTGACAGG
195510614  For TGGTGACAG
195510613  For  CTGGTGACA
195510611  For GGCTGGTGA
195507827  For GGCTGGTGA
195506775  For GAAGTGTCGGTGACAGG
195506245 For  AGGAAGGGCTGGTGACA
195456708 Rev  CTTCCAAGCGCGGTAGC
195451880 Rev  GGCTTCCCTGGGATCAC
195451880  For GTGATCCCAGGGAAGCC
195426490 Rev  GGCTGACTTATTGAAAA
195426207 For  TGTCCTGGAACCCTGGG
194373832 Rev  ACACAACCAAGTTTGGA
189712089 Rev  TTTTTTCCCGTCTGTTT
186953808 Rev  GATGTCCTGCAGTATGT
186953808  For ACATACTGCAGGACATC
186386664 For  AAAAAAAAA
185906246 Rev  CACACACAC
183756837 Rev  CAAGGCTGACTGAGAGC
183756836 Rev  AAGGCTGACTGAGAGCC
182810144  For  GAAAATACTGACACAGT
179481971  Rev  ACACACACAGTCTCTCA
179469995  For CCTCAGACAAAGTTGAT
154018690 For  TTAAGTACGTACAGATT
153839959 Rev  CGCTGCGAGGAGCGTCC
142215178  For ATGATGACA
136287541  For GTGGCAGGT
133901733  For  AAAAATTAAGCTATTCC
129147418 Rev  CGGTTTATCTGATACCC
129147418  For GGGTATCAGATAAACCG
128859202 Rev  CGTAAGTAAGTTTGTGA
128859202  For TCACAAACTTACTTACG
123066 For  CCACTT(

122821671 Rev  CTCCACCATTGCTGAGA
122821671  For TCTCAGCAATGGTGGAG
121195302 Rev  ACACACACA
121195302  For  AGGTAAATA
116163634 Rev  ACACACACA
116163634  For GAGATCAGA
113557787  For AGGTAAGCCGCGGGCCT
113524266 Rev  CAGCTCTACGAGCCATA
112301458  For GGTTTTCCCTTTAAAAA
108355575 Rev  AAAAAAAAAGGACAAAA
108355575  For TTTIGTCCTTTITITTIIT
108211869  For AAGAAGAAAAGGAAGGA
108135606  Rev  TTTTTTTTT

108135606  For TATTTTTTAAAAAAAAA
108102586 Rev  ATTTTTATA

101399910  For AAAAAAAAA
101399910  Rev  TTTTTTTTIT

100064902  For  TCTGTCCTCAGGTCCTG
100064829  For CTCCGCTGA

98518160 For AAAAAAAAA

75790860 Rev  AGGTAGCTGTGCACTTC
75790860 For  GAAGTGCACAGCTACCT
75790838 For GGTCCTGCCACTCCTCC
75790814 For ACAGGGTCCTCTGAGCA
75790811 For TGTACAGGGTCCTCTGA
75790810 For  TGTACAGGGTCCTCTGA
75790797 For  CAGCATCACGTCCCTGT
75680133 Rev  AGCCCTGGCTCTGCAAA
75679820 For CATTGCAGGTGTGCAGC
73440108 Rev  TTTTTTTTT

73440108 For  TGAACATGAAAAAAAAA
62518392 For TGTGTGTGT

57582718 For GGCGGAGGAAAAAAACA
57488279 Rev  AAAAAAAAAAAGATCTA
57438710 Rev  TGTGGCTTG

56591278 Rev  CTTACCCCTGCTTACCC
56591278 For GGGTAAGCAGGGGTAAG
53220473 Rev  GAAAGCATG
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Yes_rs11678320_0.294329073482428
Yes_rs11678320_0.294329073482428
Yes_rs369443408_0.0814145974416855
Yes_rs369443408_0.0814145974416855
NO

NO
Yes_rs77418198_0.172530795898798
Yes_rs17497801_0.291134185303514
NO
Yes_rs11893427_8.36446774103608e-05

NO

NO

NO

NO

NO
Yes_rs11891241_0.101102941176471
Yes_rs62103942_0.0446957640605424
NO
Yes_rs367618377_0.220143240823635
NO

NO
Yes_rs13065584_0.00913176515586154
Yes_rs369770584_0.280307510348906

NO

Yes_NA_0.00252525252525253
Yes_rs373469782_0.177501055297594
Yes_rs79609066_0.00314465408805031
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NO
NO
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NO

Yes_rs850312_0.2909912109375
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NO
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Yes_rs3732652_0.243809904153355
NO

NO
Yes_rs549823681_0.194688498402556
Yes_rs9829505_0.235423322683706
Yes_rs3796391_0.178314696485623
Yes_rs3796391_0.178314696485623
NO

NO

NO
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NO

NO

NO

NO

NO

NO

Yes_NA_0.184776047325848

NO

Yes_NA_0.205806156659555
Yes_NA_0.205806156659555

NO
Yes_rs529118404_0.00479233226837061
Yes_rs529118404_0.00479233226837061
Yes_rs7426463_0.211550950525446
NO

NO
Yes_rs2289506_0.229432907348243
Yes_rs2289505_0.230031948881789
NO
Yes_rs73117241_0.0148767356191556
Yes_rs73117241_0.0148767356191556
Yes_rs113991634_0.0295826326249809
Yes_rs200578600_0.0720533111203665
Yes_NA_0.0729240345169048

NO

Yes_NA_0.000674114021571649

NO

NO

NO

NO

NO

NO

NO

Yes_rs201687411_0.2325

NO

NO

NO

UbD

UbD
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Ub
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25671027
25671027
25670907
25670907
25670877
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21442945
20279731
107178748
107131394
107131394
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106361561
106361561
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106330320
106330319
106329452
106329452
106329451
106329451
105418166
105412541
105412541
105258892
104167564
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103440282
102551795
95566105
95566068
94582130
77941865
75016482
70924507
70924507
66082573
52509483
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51492135
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50298153
24910973
24910973
24795231
24795231
22999202
22957488
93616283
91544558
90328774
90195765
84257351
75664570
75651022
65114505
65114504
45454720
45445499
45250755
43170690
41810439
41224280
40282701
35230934
35230934
33200798
33200793
33200791
20588458
89973777
89753031
89703519
89703424
89178474
88779952
88776499
88776499
87436764
85814899
85814899
84808969
84132628
84132628
81892043
81892041
81201774
81201440
77401684
74443733
74443401
71418447
71418423
71007657
70732483

AAATCCTTTGGATTTTC
GAAAATCCAAAGGATTT
AACATTGGGGAACTCTT
AAGAGTTCCCCAATGTT
AAGTTCAGCTTCTCGTT
AACGAGAAGCTGAACTT
CCCCCCAAA
TATATTAAGTGTGAAGT
TCTGCAGAAGTGGGGAG
AGTGAACACGAGTGAGA
TCTCACTCGTGTTCACT
TTCCCCCAACGTTCCTG
AGGCCTGGCGGTAGGTT
AACCTACCGCCAGGCCT
CAGGTGAGCTGGAGGCC
GCAGGTGAGCTGGAGGC

CGTCCATGTAGTAGTAG
TACTACTACATGGACGT
ACGTCCATGTAGTAGTA
GTCAGTGGTCTTGAGGT
AGATAGATGTCAAGGGC
GCCCTTGACATCTATCT
ACTACCCCCATCTCTCC
CAGTCCCATCCTGGAGC
GCTCCAGGA
CCATCATCGGCATGAAC
TGAATGTATTAAGTCAA
CACACACACAAACTTAC
CACACACACAAACTTAC
GCAGTTGTGGCTGTGCC
AGGAAAGTT
CTCTGACATCCTGGAGG
TCCAGGAGTGCACGGTC
GACCGTGCACTCCTGGA
TTGGTACTACTTTTGTG
CTGGGGCCAGGAACTCC
GGAGTTCCTGGCCCCAG
GTCTCGCTGGCCTTGTT
ACCAAGTTGTCCTAAGA
AAAAAAAAA
AAGAGGTAATCGGCAGC
GCTGCCGAT
TCATATGGTGGAGAAGG
CCTTCTCCACCATATGA
ATGAGGGAGATAGCTGC
GCTGAATCGTACCTGAG
TTTICTTCTTTTTTTCT
AAAAAAAAGAAAAGTAC
TCAAGGCTGTTAGGGAC
AAGAGGACAAGGCAGAA
GGCAGAGAGGATGTGTG
TITITTTIT
CACCATCCCCACATGCT
GGGGTGGCAGCCTGCCA
GGGTGGCAGCCTGCCAC
CACCACCCA
CTGGCCAGGGTCCTCGA
GATTAGCTGGATTTGGC
ATATGTATACACACACA
CCACACACCTTATGTAT
CCAGGAGAGCTAGGGGA
AGGTTTGTATAATCTCC
TTTCTGGTATCTTCTTT
AAAGAAGATACCAGAAA
TTGGTTTTGTTTTCTAT
TTTGTTTTCTATTTTGA
TGTTTTCTATTTTGATA
CTGGCCATGACTGCAGT
AGCTGGGAACTGGGAGG
TAAGGAGAGGAAGCCCG
TCCAGCCACGAAGGATG
GTCCCACGTGAGGAGAT
CATCTTCCTACCGAGTG
ACCATCCGAGGCCGCAG
AGGCCAGGCTGCCTGTG
CACAGGCAGCCTGGCCT
TGGTAACATCCCTTTTT
TGGTAGCCTATTTCTTT
AAAGAAATAGGCTACCA
TCACGTGACTCCCCGAC
CAAATTTCTCTCTGCTG
CAGCAGAGAGAAATTTG
TTTTTTTTTCCCCCCTG
TTTTTTTTTCCCCCCTG
TGTCCCTTGAATGACAC
GGGGGGGGA
GTTGTTGAAAACCAACC
AGCTGTTAACCCAGGAA
AGCAGCACTCCCAGGGT
TGTGTGTGT
TGTGTGTGTTGTGTGTG
TGATGAGCGCCAAGACC
TCACACAGGGTGTGCCC
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NO
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Yes_rs61744010_0.184105431309904
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Yes_rs2303232_0.189496805111821
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NO
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NO
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53220473
52878746
52877649
52877647
52584431
51471302
50230913
49725948
48602523
46700271
46700271
46501284
45677637
45677637
37512646
31663515
30842346
30842342
30842342
190878485
190878463
186444704
183650026
183601595
183601594
183601593
183601590
151161470
145040962
142640462
140811111
140811111
140811096
140811096
129869520
95206252
90756550
88759690
83036182
85710824
84234190
69181899
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57176966
57176966
57176965
57176965
57176964
57176964
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7066052
7064003
6698500
4425422
4239539
2502299
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180046426
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177679447
177676986
176895817
176895817
176858049
175923431
175915835
175528527
175528527
175387139
172659511
160763821
153709043
150518358
149006518
148586451
139931629
139931629
139931628
139931628
137503739
133537479
131322666
118513246
108679870
96237114
86667856
70357189
54706325
54579211
54579211
43294357
41070840
41069734
36301362
36217764
35763916

For CATGCTTTCCCCCCTCA
For GTTAAAACAAGTTTGGT
For  GGGCTACAGGTGAGCTT
For AGGGCTACAGGTGAGCT
For GAAGGAATCTTACCTGC
For AAAAAAAAGAAAGAAAG
Rev  GTGGCTGGT

For  TGGCTCCCCGACTTTTT
For  CCCCGCTGGCAGCCCCC
Rev  TTTTTTTIT

For AAAAAAAAA

Rev  CCGTAGGAGGAGTGTTC
Rev  GCTCCTTGCAGGACAAG
For  CTTGTCCTGCAAGGAGC
Rev  TTTCCACCACAGCAGTA
For GTTTTATAGTTTTAAGT
For CACACAGAAAGAGAGAG
For CACACAGACAGAAAGAG
For,Rev CACACACAC

For TTAATTCAGTCTAAACA
For  TTTTTAAATCAGGGAGG
Rev  ATAAGTTAGTGAGGTTT
For AAAAAAAAA

Rev  CCcccccecc

Rev  CCcccccecc

Rev  Cccccceec

Rev  ccccecece

For TTCCTAACAAATAAAGG
Rev  ATTCTTGTGCCCTTTCT
For AATTCCCTCCCTTTCTT
Rev  CAGCAGCAGCAGCAGCA
For  TGCTGCTGCTGCTGCTG
For  TGCTGCTGCTGCTGCTG
Rev  CAGCAGCAGCAGCAGCA

GAAAAGAAA
Rev  GTCATATAGATAAATAT
For TCACCTACCTACACATA
For AATACAACTCAGTGAGA
For  GCTGCCGCCAAGCCGTG
For ACACACACCCCCCAAAC
For AAAAAAAAA
For AAACAAACAATTATTCC
Rev  CACACACACACATAATT
Rev  AGGGGGGGG
For AAAAAAAAA
For AAAAAAAAA
Rev  AGGGGGGGG
Rev  AGGGGGGGG
For AAAAAAAAA
For AAAAAAAAA
Rev  AGTAAATAG
For CAGCTGGACCCCCCACC
For TGACAGCAA
Rev  GTGCCCCCTGTCTCTCC
For  AAAAACCACTCCAGATA
For AGCCTATAACATTAGCA
For CACAGGGCTCAGGAGCA
Rev  GTGGCGGGG
Rev  GATGGGTAGCGAAGGGA
For AGGACACCCGGAGGGAA
For TGCACACGCACACACAC
Rev  CCTCGCCGCCTTCTCCA
For  TGGAGAAGGCGGCGAGG
Rev  TCTGCTCCGGGGCAAGG
For AGTCTAAGGGTTGATCT
For GAACTGTACTTTAGAGG
Rev  CTATGAGGTTCAGACCA
For TGGTCTGAACCTCATAG
Rev  TGTTTTCTGTAGGGGAC
For  TTCTCCCCCCGAGAGTC

TITTTTTT
For GAAGTGGGGTTTGCAGT
Rev  TCCCCACCTGCCAGGAC
For GGGCCCTTCAGTGGCAG
For CAGTGTCAGGTGGGAGC
Rev  TCTGAGGCTGTGATGGA
For  TCCATCACAGCCTCAGA
Rev  CTGAGGCTGTGATGGAG
For CTCCATCACAGCCTCAG
Rev  TGTGGCTTC
For TAAGCACCTGAACACTA
Rev  GGGTATGTG
Rev  AAACTAAAAGTCTTTCT
For ATTATTCTA
For TCCCCAAGCCTTGTTTC
For TGAATTTGAAAAAAAAA
Rev  TTTTTTTTGTGGGGGGG
For TCTGACATTTTATTCTT
Rev  GTGGCAGGTGAAACAGG
For CCTGTTTCACCTGCCAC
Rev  TTCTACTTTTACTTATA
For TGACGCGCCACTCCCAG
For AATATATACGAAATGTT
For  TTCTTCCTG
For AAAACAAGTAAATTATT
Rev  AGGTACAATTTTCTACA
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CACATCAGTTCTTCTTC
ATGGTTCCCGGAGAAGC
GTTTCTTCTGGGTGGAG
GAACACGTGGCTGCACA
CCGATACGCGAGCCACT
AGTGGCTCG
AGCCTCAGTAACAACGG
TCTTCCAATATGTTTTA
TAAAACATATTGGAAGA
GGCATGACAAGAGCTGG
ATGCACCCC
ACTGATCGGCAAGCGAC
GACAGGCAAAGCCCTGG
ACCCGGGCTGCAATTGC
GGCTGCAATTGCGTTCG
CGAACGCAA
GCAGGACAGATTGATCA
TTGCAGGACAGATTGAT
GGCTTCTGTGTCGATGA
ATCACTGGGCTTCTGTG
TTTTTTTTICTTTTIGAG
AAAAAAAAA
CCCAGGCTGGCCCCCAG
CCTGGGATTTCCACTTC
ATGATTGAATGGATGGA
ACCCATTGCCCCCCCCC
TAGAGCATTTCTAAGCG
AGAAATGGACTGTCAGG
GGGATCATTATAACCCG
CCCCTGCCAGATTGCAC
TGTGGATGTGGCTGGAG
CTCCAGCCACATCCACA
AGCCCCAGGCCAGGCCC
AGCAAGTTCTCTCACCA
GGCAGATGCCCCGGGAG
AAGTTCTTTGAACCACT
GCCCGCCGCTGTACCGT
ACGGTACAGCGGCGGGC
TCATGCTCATGGCCGAG
AACCTGTGTATCTGCCA
ACCCAGCTG
GCCCCCCCGCCGCTGCT
ACTGGCCCGGCCCCAAC
ACGGAGCCCATGGAACC
CCCCCCGTG
GTGGCTGGTGGGTGCCA
CCCAAGGTTCCGGGATT
AAAAAAAAA
CTAGGCATTTTTGCGCC
CATTTTTGCGCCCACAT
TAGTATGACAAAAAACA
TGTTTTTTGTCATACTA
TTGGACAGT
CACACACACCCATGCTA
GGCCAATCCGTGTGTGC
TAAATTTTCTGTCAGTA
TGACGCCCTCGGCTCCC
AGTACCTAA
AACTATGATTAGGTACT
GTCTGTGAGATAAACTA
TTAGGGCATGAGTTTGT
ACAAACTCATGCCCTAA
CTTCTTCTGTCTTAGAG
CTCTAAGACAGAAGAAG
TGGCGCACGTGGCTGAG
CTCAGCCACGTGCGCCA
TCCCCCCCGCCCCCAGG
TCCCCCCCGCCCCCAGG
GGAGCCTGCGGGCTGGG
CTGGAGAAC
CAGTCCTCGTTCTCCAG
CCACTCTGCTGTCAGAC
CTGGGGCGACAGCAGGT
AGAGCAGCTCAGCCCTT
AAGGGCTGAGCTGCTCT
GGGGTGGCC
CGCAGCCGGAGCCGCAG
GCCATGGTGACCAGCCA
CCATGGTGACCAGCCAG
ACGGGGGTCGGGGTCTG
AGATGGGCACTTGGGCC
AGGTGGGAGGCACCTGC
GATGCCTGACCCACTCC
GGAGTGGGTCAGGCATC
TGCCTGACCCACTCCGC
GCGGAGTGGGTCAGGCA
CCTGACCCACTCCGCGC
GCGCGGAGTGGGTCAGG
GAGTTGGCGCTGGGCAG
CTGCCCAGCGCCAACTC
AGTCGTCCGTCTCCAGG
CCTGGAGACGGACGACT
GTCCGTCTCCAGGTCCT
AGGACCTGGAGACGGAC
AAGAGCGGGCTGGCCTC
GAGGCCAGCCCGCTCTT
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‘GAGATGACCCATCTGGC
CACACGTGCACACACAC
AGTGTCTCG
CAAACCCAGTGCAGCTC
GAGCTGCACTGGGTTTG
CGTGCACACGTAAGTGG
GAGCCTGGCAGGCCCTG
TGTTGCTGTTGCTGCTG
CAGCAGCAACAGCAACA
TGTTGCTGTTGCTGCTG
CAGCAGCAACAGCAACA
GCCGGAAAT
CTCCTCCCCACACACTG
CAGTGTGTGGGGAGGAG
GGGTCATTACCCCTGCA
GGGGGTCATTACCCCTG
GGGGGTCATTCCCCCTG
GGGAGGAGAAGGCAGTG
AGCCGCGCCCACTGACT
CATCCAAAGGGCAAGGC
GCCTTGCCCTTTGGATG
TCACCTGATGCCTTTAA
GCTGGACAAAAAGGTTA
TAACCTTTTTGTCCAGC
TCTAAATCCTCAATTGC
GCAATTGAGGATTTAGA
GATTATTTACACACACA
AATCAGGTAAAAAAAAT
AAGACTTAAAACAAAAT
TATCATAGGTTTCTGTA
TGTGTGGGTGCTTGATC
CTGAACTACTGTGGACA
AACATTTACTTCTGAAT
AGTATGAACGAATTCAT
AGGGCCATGTTACACAG
GCTGCTGCT
ACTGATGCACTGCGGTT
AACCGCAGTGCATCAGT
AAAAAAAACAAAACTAC
TTTTTITIGTTITICCC
TTTTTITIGTTTTICCC
TITTTTTTG
TCTGTTTTCTTTTAATT
GAACTCTTTGTTTTTTT
CAGTTAAAGAAAAAAAA
TTTGTTAAGTACATACC
TGTTCCAGCTTTACTTA
TAAGTAAAGCTGGAACA
CATAAAAAATACTTATC
GGGAAGGTTGAGGCTGC
GGAAGGTTGAGGCTGCA
TCACAATTACACAACAG
ACAGAGTGCAACACTTT
AGTGCAACACTTTTTCA
AGAATGCAAACAGCTAG
TGATTAAGCGTTAGAAT
GTCTGGTCGTTCAATAA
ATGCTGTAAGTTACTTA
GGCCAACAGCTGTGAGC
TGACAAGTAATACACAG
GACAAGTAATACACAGC
AAAACCGAGAGATCTGT
TTATTTACTCACAACTT
AAGTTGTGAGTAAATAA
TAGTACAATACCACACT
AGTGTGGTATTGTACTA
TAATAAGCCGTTAGACA
AAGAGGAATGCAGTTGC
ATTTAGATAAAAAGAGG
CATAAGCTA
GACATAAGCTACAAACT
ACTAGGTCTTGACAGGA
AAAAAGCCACAACATTG
AAGCCACAACATTGTTT
GAAAATATTGCTTTGCA
AATGCTGAATTTATTCT
ATCTGCCCATGAATGCT
TTACAGGGTACCTGATA
TGAATTAGCAACCATAA
TCCAATTAAATTGAATT
AATAAAGCAGCACTTTC
TAATAAAGCAGCACTTT
CAGATAAGCGTCATCTG
GTGAAATAATATTCTAT
TTGAATAATGGAATGAA
TAATTGAAGCGGTTTCA
AATTGAAGCGGTTTCAC
CTCCCTATTTGCCCTTC
CAGGTTTTT
GAAGACTTAGGATTTCT
ATCATTTTGATATTCTT
ATGATGAGA
ACACACACA
AACAATTTGCTTGGCCT
AGGCCAAGCAAATTGTT
/ACCCACCAACCCATCAA
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TCAATCTCATGCAAGAT
ATCTTGCATGAGATTGA

GTGATGGGCGACACCAG
CTGGTGTCGCCCATCAC
CCAGAAAGATGCGGTCC
‘GGACCGCATCTTTCTGG
GAAAGATGCGGTCCAGG
CCTGGACCGCATCTTTC
GCAGGAGCCGCCCTGCC
GCTGTCGTCTCTGTTGC
GTCTCTGTT
GCCCCCTCGGTTCCTCC
CTGCCCCCGCAGATGGG
GGGGAAGAGTGGCCACC
GTTGGGGAAGAGTGGCC
‘GAGCCACAGATGCCATC
CCTGCTGCTAGGCCTGG
CTTCTTCCCTGGGTGCA
‘GAAGCCCTAGACAGTCC
‘GAAGAAGCCCTAGACAG
‘GCCAAGTCATCTGGGGG
TTATTTGCCAAAGGAAT
TTTGGGGATTGGGAGGC
GGGTTGGGCCTTCTAAG
CCCCACTACAGCAGGAA
CACTACAGCAGGAAACG
ACAGAGGGTATGGCCGG
GTCTTGGGCGAGGGAGG
CCCTGGTGCAACCTGCC
CCCTGGTCTGACCCTTG
CGTCACAACCTATCACC
TCACCTCTCGGAGCCAC
TCGGAGCCACAGTTGCT
TAGGGAGACGTCCACCC
CTGTGCAGCGGGAGCGG
GAGGGTGCGTAGCCTGT
AGGCTGGGATGAGAGGG
CACCATCAATAGGCAGG
ACCATCAATAGGCAGGC
CAGGCTCCATGCCTGCT
‘GACCCCCCGCCAGCCCA
AGGCAGTGCAGGTGGTG
GAGAGGGGGCTGGGGCT
CGGAGAGGGGGCTGGGG
CACACGTCGGAGAGGGG
AAACAGCCAAGAGACGGG
GCCAAGAGACGGGGGAG
CTGCATCATGCAAGGAC
GTCCTTGCATGATGCAG
CTGCATCATGCAAGGAC
GTCCTTGCATGATGCAG
CTAGCCTCG
CGAGGCTAGGCTTTTTG
CCTAGCCTCGGTACTGA
TCAGTACCGAGGCTAGG
CTGAGGGTCACACAGCA
CGAGGCTCT
CCTCCCCCCAAAGTGGC
TCCCCCCAAAGTGGCCC
CCAAAGTGGCCCTGCAG
CAAAGTGGCCCTGCAGG
GGCCTGGCG
CGTCCCCACGCCAGGCC
GCGCCTCCGGGGCAGGA
GGCCGGAGAAGGCGCCT
AGGTGGCCGGAGAAGGC
TGAGAGGAGGTGGCCGG
ATGAGGCCGTGCCCAGC
ACTTCTCAC
CAGCCGTCACCTGGCTG
GACAGGACGAGGTAAAG
GGACGAGGTAAAGCAGG
TCCTTCCATTGAGCCCT
AGGGCTCAATGGAAGGA
GCCTTTCCTAGTGGAGC
ATTCCCTTCATTTTTTT
AGAGTATTGTCATCTGC
CTGCATGAGCAAAGGGT
ACCCTTTGCTCATGCAG
GTTCATCACCACATCTT
AAGATGTGGTGATGAAC
TCATGTGTCTAATGTTG
CAACATTAGACACATGA
TTGTAAGGTAAACATTC
GAATGTTTACCTTACAA
CTTGGCCCCGCCCTACA
GAACCAAGGAAAGATAT
CCTAGCCCCCAGGTGGG
GGCTGGACCGACAGGAG
AGAATTAATGTGGGATG
CATCCCACATTAATTCT
AGAGAAAAAGGCAGAAA
GTCACTGAAATTTCCAC
TITTITTTT
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NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs9893916_0.0181709265175719
NO

NO

NO

NO

NO
Yes_rs59259996_0.00419329073482428
NO
Yes_rs57761454_0.0023961661341853
Yes_rs72838547_0.00858626198083067
NO
Yes_rs67280439_0.000199680511182109
NO

NO

NO

Yes_NA_0.000938086303939962

NO

NO

NO

NO

NO

NO
Yes_rs74869330_0.122158098691104
Yes_rs74869330_0.122158098691104
NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs376150010_0.0291533546325879
NO

NO

NO
Yes_rs35701021_0.00619009584664537
Yes_rs35701021_0.00619009584664537
NO

NO

NO

NO
Yes_rs34956489_0.000599041533546326
Yes_rs8072533_0.000199680511182109
Yes_rs4986015_0.0483226837060703
Yes_rs8071865_0.000199680511182109
NO
Yes_rs8072386_0.000599041533546326
Yes_rs8072386_0.000599041533546326
NO
Yes_rs114103783_0.151664551400957
Yes_rs73298040_0.0849113375591752
Yes_rs76135364_0.0476850724176051
Yes_rs76135364_0.0476850724176051
Yes_rs78365129_0.026876285425454
Yes_rs78365129_0.026876285425454
Yes_rs62066974_0.0111197912338148
Yes_rs62066974_0.0111197912338148
Yes_rs4605228_0.054382927398646
Yes_rs4605228_0.054382927398646
Yes_rs2386412_0.121642631212137
NO
Yes_rs11657074_0.281749201277955
NO

NO

NO

NO

Yes_rs3826444_0.29452875399361
Yes_rs5010940_0.00439297124600639
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43014298 For  TTGATGGGTTGGTGGGT Yes
41774685 Rev  TACGGCTCGCCCAGGAC NO
41754573 For GAACACTCCTCGCTGCT  Yes
41196104 For  TCTGACTCCTCCTGAGA  Yes
39866805 Rev  ACCCATTGTTTTTTGCC  Yes
32916540 For CAGAGACTTCTACCCTA  Yes
31922368 Rev  ATCGGGAGCGGGATCGA NO
31922368 For  TCGATCCCGCTCCCGAT ~ NO
31922365 Rev  GGGAGCGGGATCGAGAC NO
31922365 For GTCTCGATCCCGCTCCC  NO
31922363 Rev  GAGCGGGATCGAGACCG NO
31922363 For CGGTCTCGATCCCGCTC  NO
31922360 Rev  CGGGATCGAGACCGAGA NO
31922360 For  TCTCGGTCTCGATCCCG  NO
31922356 Rev  ATCGAGACCGAGACCGA NO
31922356 For  TCGGTCTCGGTCTCGAT ~NO
24547650 Rev  CCCATCACAGGACCTGC NO
10887251 For GGGCTCTTTCGGCAGCG  Yes
6589192 Rev  CTCTCCCCTCCCACCCC  NO
6318921 Rev  TTTTTTTTCTGAAGGAC NO
3264526 Rev  TGTGGGAAGAGTGGAGC Yes
3264526 For GCTCCACTCTTCCCACA  Yes
350940 Rev  TTAAACTCTATGTTGCT NO
348051 For GGGCGATGAACCCGGAG NO
335268 Rev  CAGCAAGGGTCCCGTGA NO
335251 Rev  GCTCTGACAACTTCACA NO
157691523  Rev  GTCATGTAATTGAAATT  Yes
157370645 For  TCCCATTCGGAGGAGGA NO
157367205 Rev  CTCTCTCTCATTATTAC NO
156759597  For GTGATATATTATAGTAA Yes
152513769 Rev  TTGTATTTCCATTACAG NO
151971052 Rev  ATTTGTTTTACTTGTGA  NO
151971043 Rev  CTTGTGATATACAGAGA NO
151970672 For GATTTTAAAGATTATGT ~ NO
151962068  For  GCACCTAGTAATAGGGT NO
151552663  For  ACACACACA NO
151552231  For  ACACACACA NO

For  CACCCA Yes
143095256  Rev  CATTCTGCTCTCCAGCC  NO

For  GGTTC CAG NO
143088526  For CACCCTGATTGGGCATG  NO
142498708  For GCCCCATTACCTCTTCC ~ NO
142498707  For  AGCCCCATTACCTCTTC ~ NO
142498706  For  TAGCCCCATTACCTCTT NO
142480126 Rev  GGGCTGAAGCCAAGCTC NO
142479841  For GGAAGCAAACGCAGGCT NO
142479819  For  TGTTAAGGA NO
142479787  For GAGCTCCCTCCCTTGCC  NO
142460503 Rev  TCAGCCCCACCACCTTT  NO
142460495 Rev  ACCACCTTTTGAGTTCA NO
142460494 Rev  CCACCTTTTGAGTTCAA NO
142460482  Rev  TTCAAATCCTTTTCCCT NO
142460461 Rev  GGGCCTAGGTATCAGTG NO
142460461  For CACTGATACCTAGGCCC  NO
142460238 Rev  ATGTGGGTCAGGCCAGA NO
142460238  For  TCTGGCCTGACCCACAT  NO
142460226  For  ATTGTCTCCTTCTCTGG NO
142460216  For  ATCCAAGATTATTGTCT NO
142460212  For  TTCCATCCAAGATTATT NO
142460203  For  TTTCCATCC NO
142460201  For GTTTTCCAT NO
142460200  For  TTTCCATCC NO
142458338 For GAAAGCAATCACAGGCT NO
142458337  For  AGAAAGCAATCACAGGC NO
142458331  For  ATTAGCAGAAAGCAATC NO
142458316  For  TGTTAAGGATTTCTAAT ~ NO
142458304  For CCTCACTGTGCTTGTTA ~ NO
142458284  For GAGCTCCCTCCCTTGCC  NO
142458277  For GGTGGCAGAGCTCCCTC  NO
142458270  For CACCAGGGGTGGCAGAG NO
142247571 Rev  GCCCTGACTCTGTCATG ~ NO
142247571 For CATGACAGAGTCAGGGC NO
142247567 Rev  TGACTCTGTCATGGGCA NO
142247567  For TGCCCATGACAGAGTCA  NO
142247554 Rev  GGCACCAGGCTCCTCTG NO
142247554 For CAGAGGAGCCTGGTGCC NO
142247541 Rev  TCTGCTGGGCAGCCCTG NO
142247541 For CAGGGCTGCCCAGCAGA NO
142247540 Rev  CTGCTGGGCAGCCCTGT NO
142247540  For  ACAGGGCTGCCCAGCAG NO
142247539 Rev  TGCTGGGCAGCCCTGTG NO
142247539 For CACAGGGCTGCCCAGCA NO
142247530 Rev  GCCCTGTGCCTCCTGGG NO
142247530  For CCCAGGAGGCACAGGGC NO
142247347 Rev  AGGGAAAATATGTAGAG NO
142247347 For CTCTACATATTTTCCCT NO
142168662 Rev  CAGTGGACGCTGGAGTC NO
142168662  For  GACTCCAGCGTCCACTG NO
142139271  For  CTATGCCATGCTGTGGC ~ NO
142131957 Rev  AGGAAAATCAAGGCCCA NO
142131747 Rev  AGGACCTCCAGGCTGTC NO
142131747  For GACAGCCTGGAGGTCCT NO
142131746 Rev  GGACCTCCAGGCTGTCC NO
142131746 For GGACAGCCTGGAGGTCC NO
142099571 Rev  GACAAATCGGGGCTGCC NO
142099571 For GGCAGCCCCGATTTGTC  NO
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NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
Yes_FP
Yes_FP
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

Yes

NO
Yes_rs201585090_0.270616093152589
NO

NO

NO

NO

Yes_NA_0.000881560847073412
Yes_NA_0.000881560847073412
Yes_NA_0.00156739811912226
Yes_NA_0.00156739811912226
Yes_NA_0.00209200949675009
Yes_NA_0.00209200949675009
Yes_NA_0.00228345698044128
Yes_NA_0.00228345698044128
Yes_NA_0.0036465416986971
Yes_NA_0.0036465416986971
Yes_rs34829630_0.287739616613419
NO

NO
Yes_rs202215504_0.246373112939005
NO

NO

NO

NO

NO

NO
Yes_rs56112490_0.237819488817891
Yes_rs736940_0.289536741214057
NO

NO

NO

NO

NO

NO

NO

NO_151552663

NO

NO
Yes_rs35251323_0.167332268370607
Yes_rs372030742_0.0153925265683922
Yes_rs1131885_0.279725739112725
NO
Yes_rs371096403_2.90587859239241e-05
NO

NO

NO

NO

NO_142479787

NO

NO_142460495
Yes_rs564920652_0.000199680511182109
NO

NO

NO

Yes_NA_0.0178694522509147
Yes_NA_0.0178694522509147

NO
Yes_rs549425727_0.000798722044728434

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs376050671_0.106876383612561
Yes_rs376050671_0.106876383612561
Yes_rs372792593_0.0816339455351488
Yes_rs372792593_0.0816339455351488
Yes_rs10265119_0.0958900638535086
Yes_rs10265119_0.0958900638535086
NO

NO

Yes_NA_0.0139873248237079
Yes_NA_0.0139873248237079
Yes_NA_0.0139827025481577
Yes_NA_0.0139827025481577
Yes_NA_0.0091016484991677
Yes_NA_0.0091016484991677

NO

NO

NO

NO

NO

NO
Yes_rs368257836_0.214513788098694
Yes_rs368257836_0.214513788098694
Yes_NA_0.20873820754717
Yes_NA_0.20873820754717
Yes_NA_0.118193939393939
Yes_NA_0.118193939393939
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10258155
10258155
10258155
10258153
10258153
10258153
10258153
8387438
7124751
7124750
5424129
5421005
5036383
5036210
5036210
5036152
5036148
5036138
5036122
5036110
5036106
4686340
4686340
4458314
4350373
2597723
2597723
77096644
77096644
61231143
61226740
54354076

28666526
28666526
9859134

3277466

58600105
55903158
54724794
54257190
53651845
52920006
50764079
50764017
50496281
49894027
49207255
46327209
45157113
45024879
41387656
41387656
41382653
41382612
41382607
41381868
40901647
40901647
40368498
38135444
35506729
35506729
34986776
34986767
34922865
33700445
33695830
33490442
33490429
33444456
33444453
21299774
20844340
19750822
19035354
18897526
17887563
17516400
17366110
16593189
16339886
16186815
12577723
11230650
10091280
10091267
9006418

9002612

AAAAAAAAA
AACAACCCA
TGGGTTGTT

TITTTTTTT
AAAAAAAAA
ACAACCCAG
CTGGGTTGT
ACAAATGGATAAGTAAC
TCAGGAACT
TCAGGAACT
CCCTGAGACCTGCCCCA
TGCCCAGCTCCTTCATT
TGCCACCCGCCCTCTGA
TCCCGCCGAATTTTCTG
CAGAAAATTCGGCGGGA
TCCATGGGCGGCTCTGG
AGCATCCATGGGCGGCT
CCCAAGACTCAGCATCC
CACCAGGGCTCCAGAGC
CCAGTTGGGTCCCACCA
CCTTCCAGTTGGGTCCC
CCGCAAGAAATTTCACC
GGTGAAATTTCTTGCGG
GGATGCCAGGGTGCGCG
TGACCACCACCCCCCGT
TCCCCGCTGCGTCCCTG
CAGGGACGCAGCGGGGA
GTCCTTCGCGAGCCATG
CATGGCTCG

AAATCTTTCTTTTCAGG
GAAACTTTATGCTAAAA
AACATTTTAGAGTTCTG
AAATCACATTCCACATG
ACATAAACAATAAAACC
GGTTTTATTGTTTATGT
ACAGCCCAAAGCAGGAG
TATTTCACAGAAGTACT
GCTCGCGAGCCCCAGCC
TGTGATCATGAGTCCAT
GGACAGAGA
GGGCCAATACATGCATC
TTCAAACTTGTTTTCCC
TTGCCATACAGTTTGTA
CACACACACTTGCACAC
TCATGCACGCACACACA
GGGCTCCCTCCTGGTCT
ACACCATTTCCTGCTTC
TCAAAGAATGGGCCAGC
‘GCCCCGCAAGCCACCCT
CCCGCGTACCCCAGGCC
CACACACACGCACACAC
TCCATCAGTTCAGTGAG
CTCACTGAA
GGGCACACTAGTTCCCC
AATCCCCCGACCCTCCT
CCCGACCCTCCTCATCA
CCTCCTCCCTGGGAGAG
GGGGCAGGT
CGGCTGGGA
GACCCCTTTCATCTGGC
AAAAAAACAAAGACAGC
GCCAAGTCC
TCTCCAGCGGACTTGGC
TGGCAAAACTAAAATTT

GGTCGGGGGTACAGACA
TGCCGCCCCTGTGGGCC
GAGCAGGACCAGCTGGG
TGTGGCTGGCTGTGAGC
AGCAATGCACTAATTTA
CTTAGCAATGCACTAAT
TTAGTTCATAACCTTTT
CTGGTTCTTCTCCTAAA
CTGGGAAACGAGGGGAT
CTGTCCCGGCCTCCACC
CAGGCTGGCTCATCCTA
ACACCAGGCGGAGACAT
GCCAGACTCTAAAGGGG
AAAAAAACA

CCTGTCTCAACAAAACA
CTCCGTCCA
ACGTGACCC
AACTGAGTTTATATCCC
AAACAAACA
TCTCTCTCACACACACA
ACTCAGAATCTCTCTCT
CTCCCTCCCCAACAGCT
AGCTGTTGGGGAGGGAG
CCCTCCCCAACAGCTCA
TGAGCTGTTGGGGAGGG
TGGATGCTGTCTGCACC
GGTGCAGACAGCATCCA
CTGACCCCAAAAGCCCT
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NO
NO
NO

Yes_rs5010940_0.00439297124600639
Yes_rs5010940_0.00439297124600639
Yes_rs5010940_0.00439297124600639
Yes_rs398100417_0.00439297124600639
Yes_rs398100417_0.00439297124600639
Yes_rs398100417_0.00439297124600639
Yes_rs398100417_0.00439297124600639

NO

NO

Yes_rs12946467_0.20926517571885
NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs373747529_0.0419329073482428
NO

NO
Yes_rs201591038_0.0408331955695156
Yes_rs201591038_0.0408331955695156
NO

NO

NO

NO

NO

Yes_rs3744923_0.297523961661342

NO
NO

NO

Yes_NA_0.130726763348715

NO

NO

NO

NO

NO

NO
Yes_rs551937796_0.000287092328892972!
NO

NO

NO

NO

NO

NO

Yes_rs10425176_0.299210232637995
Yes_rs10425176_0.299210232637995

NO
Yes_rs2316208_3.4870543108708%e-05
Yes_rs139072168_0.000854383358098068l

Yes_NA_0.000133500208594076
Yes_NA_0.000133500208594076

NO

NO
Yes_rs2290647_0.289850249584027
Yes_rs2290647_0.289850249584027
Yes_rs35570240_0.262779552715655
Yes_rs35126035_0.263977635782748
NO
Yes_rs2303093_0.284944089456869
Yes_rs11666900_0.218051118210863
Yes_NA_0.175475280873477

NO
Yes_rs2944021_0.183905750798722
NO

NO

NO
Yes_rs45458192_0.239416932907348
Yes_rs2301659_0.297523961661342
NO
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NO

NO

NO

NO

NO

NO

NO
Yes_rs58569966_0.00303297672879674
NO
Yes_9006418_rs201532862_0.1522801963
Yes_9006418_rs201532862_0.1522801963!
Yes_rs77248019_0.224375620157494
Yes_rs77248019_0.224375620157494
NO

NO

NO
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142099385
142099379
142099369
142099358
142099354
142099351
142099350
142012957
141952110
141760293
141740077
141635538
141635534
138356732
138356664
134221826
134221826
128119648
127670327
127670327
124499002
120450678
111423074
107577456
103838120
102412901
102412901
100613112
100613107
100612869
100612842
100612839
100416332
100374265

73771749
72738762
65552230
45697295
45697295
45123937
36447349
30811183
21941861
18067479
14517650
7491873
4172109
2296722
1528947
1528946
1528945
1132016
1132016
940258
143922788
133041177
129021000
124664873
124664873
117778911
117778909
101721899
101721899
101721870
101721870
101721727
101721727
101721451
101721451
101721442
101721442
101718932
97257982
95718131
92082753
86126827
86126827
86114525
52733076
52733076
28186607
27101204
27101204
24339896

18729817
17796382

TTTAGGGTCTCTAGGAG  NO
CCTCTGTTTAGGGTCTC ~ NO
CAAAGAGAGGCCTCTGT NO
AAAGTGAGGAGCAAAGA NO
TGAGGAGCA NO
AAGTGAGGA NO
AAAGTGAGG NO
CCAGGGCCA Yes
TTGAGAGCCGATGTTGG NO
GACACATCACCTAAGTG  NO
ACTAAAAACTACTCCTC  Yes
CACTCCCCCAAGTTTCT ~ NO
CACTCCCCCAAGTTTCT ~ NO
CTCAGTTGCTGTGTTCA  NO
AGTGGTGAG Yes
TTCTCCTGTGTGAGGTA  NO
TACCTCACACAGGAGAA NO
TTACTTTTATTGTCAGC NO
ACGGCCTGGCCAGCCTC NO
GAGGCTGGCCAGGCCGT NO
TTCCTACTATACATCAC NO
GTGTGTGTGAATCTGTG ~ NO
TTTTTTTTC NO
TTTCCCCAA NO
CTTTTACAACACAATCC  Yes
CTTAGCACATACCTACT NO
AGTAGGTATGTGCTAAG  NO
TGAGGTCACAGCACGGG NO
TCACAGCACGGGTCTCC NO
CTGACGAGGGAAGACGG NO
TGGGAAGCTTTCATTTC  NO
TCCTGGGAAGCTTTCAT  NO
AAAAAAAAATTTTTTTT  Yes
AGGGGAGGGAAGGGAAG NO
AACAAAAAGAAAAAAGA NO
ATAGAAGATGAAAAACC  Yes
GGTTTTTCATCTTCTAT Yes
GGCCTCGGTGTGGCGGT  Yes
AGCCTGGGCGACAGAGT NO
TGTGGCTTG NO
AGCCTGCTGGAGCTGGA NO
GTGCGTTCGTGTGTGTG NO
GGGGCTAGG Yes
AGGTGGGCCCTAGCCCC  Yes
GGGGCTGATGAGAGATC NO
AAGCTACTTCTCCAGTG  NO
GGAGGGGGCGAGCCGTT NO
TAAAAAAATCTTTCTTA  NO
CCATTAGAGTCTGTGCT ~ NO
TAATATTTACACACACA NO
AGTCTGTAAGGCAATTG  NO
TCTCCCAAGGTGCTGGG  Yes
CGCTGGTGTTCGGGCCT  Yes
GCTCCCCATCCCGGGCC  NO
TGCTCCCCATCCCGGGC  NO
CTGCTCCCCATCCCGGG  NO
CGTGACCTCGAGCCACT NO
AGTGGCTCG NO
ACCTTTGCCCCTAGGAG  NO
ACCAAAGCGTGCAGAAA NO
GAAGGAAGG NO
ACAATGCTAAGCATGTG  Yes
GAGGCACATATTGCCAC  Yes
GTGGCAATATGTGCCTC  Yes
GGAGTCCGCGAGCCGTA NO
GGAGTCCGCGAGCCGTA NO
CCCCAGAAGAAGCCACT NO
AGTGGCTTCTTCTGGGG NO
GAAATGAACGGTAGAAT NO
ATTCTACCGTTCATTTC NO
CTACCAGCCAGCACCTC  NO
GAGGTGCTGGCTGGTAG NO
CCCTGCAGACTCAGAAC NO
GTTCTGAGTCTGCAGGG NO
CTCAGAACCGTGCTGCA NO
TGCAGCACGGTTCTGAG NO
ATTGCGAACTCCTGCAG  NO
TAACTTATTTTAAAGTC NO
TITTTITTT NO
GCCACGCGC Yes
AAACCAGTTGATGAAGC  Yes
GCTTCATCAACTGGTTT  Yes
GAAGAAAAAAGGTTTCA Yes
GACAGTGAAGAGGATGA NO
TCATCCTCTTCACTGTC NO
AGCAGCCCTCCGAGAAT NO
ATGTGTTAAGGGGCGTA  Yes
TACGCCCCTTAACACAT  Yes
GTTTTTTTTCTGTTAAT NO
GGCTGGTGATCATTGTC  Yes
GACAATGATCACCAGCC  Yes
AAAAAAGAGAAAAAAGA NO
TAATTGTACTTTCTCAG Yes
CAACAAAACGCTCCCTG  Yes
CAGGGAGCGTTTTGTTG  Yes
TTGGGGGGTTTGTAGAT Yes
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NO
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NO
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NO

NO
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Yes_rs199736734_0.00322018487649644
Yes_NA_0.000278736679602907
Yes_rs3802226_0.28594249201278
NO

NO

NO

NO
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UbD
UbD
UbD
UbD
UbD

UbD
UbD
Ub

UbD
UbD

UbD
UbD
UbD

Yes_117778911_NA_0.00736870310825295UbD

NO
Yes_rs142985461_0.245508452944295
Yes_rs142985461_0.245508452944295
Yes_rs146609644_0.217824438072334
Yes_rs146609644_0.217824438072334
Yes_rs139094790_0.105632898622499
Yes_rs139094790_0.105632898622499
Yes_NA_0.000122838050314465
Yes_NA_0.000122838050314465
Yes_NA_0.000344409092400039
Yes_NA_0.000344409092400039
Yes_rs62513920_0.255470109757397
Yes_rs871798_0.236421725239617
Yes_NA_0.0255563707507948

NO

NO

NO

NO
Yes_rs77409139_0.28971028971029
Yes_rs77409139_0.28971028971029
Yes_rs2645721_0.223841853035144
NO

NO

NO
Yes_rs9644063_0.058804096465147
Yes_rs9644063_0.058804096465147
NO
Yes_rs3779670_0.203274760383387
NO

NO

NO

UbD
UbD
UbD

9002612
9002454
9002454
9001833
9001833
8999560
8999560
8999538
8999538
8999474
8999474
8999386
8999386
8999383
8999383
8999311
8999305
8321328
8154990
8154990
7619647
6836844
6471567
6471170
5787215
5787215
5787214
5787214
4960583
4513143
4513143
4511581
4511581
4511578
4511578
4511575
4511575
4511491
4511491
4453324
2341059
968345
48562083
45808688
43743534
43743522
33637606
29589675
29589675
26094689
26062036
26062021
26061960
26061922
26061922
26061909
26061909
26061884
26061884
26061880
26061880
26061877
26061877
26061859
18429539
16729654
4880132
4768475
3657803
47419780
46930992
46086757
46086718
46086718
46020473
43897241
42852320
42843962
42842713
42824874
42809206
41506058
40646230
38469017
37728892
34915324
30414724
26973663
11058404
11058227
11058227
11058043
11058025
11058008
11049763
11049503

AGGGCTTTTGGGGTCAG
GCTGGACAG
AATAGAGGCTGTCCAGC
TGGACCCATGAGTGAGT
ACTCACTCATGGGTCCA
CCAGGCCCAAGAAGGAT
ATCCTTCTTGGGCCTGG
AGCCACCAAAGTGGATG
CATCCACTTTGGTGGCT
GAGCAGCTATACTGGGA
TCCCAGTATAGCTGCTC
ATGGTGAGTAGTTGTGA
TCACAACTACTCACCAT
GTGAGTAGTTGTGATGT
ACATCACAACTACTCAC
ATAGCCAGGCAGGGAGC
CATTCAATAGCCAGGCA
CCAAGCAGG
CCCCAGGAG
CCGCTGCCCTCCTGGGG
GGACGGGACCCGAGGTG
AGAGATGGACACACACA
GCAGGCTTCGAAGTGCT
GCCCTAACCGGTCTCAA
CCTCCCACC
TGGGAGATGGTGGGAGG
CTCCCACCA
GTGGGAGATGGTGGGAG
GTGAGACTGTCCCCACA
GGGTGACTGGTGCCATG
CATGGCACCAGTCACCC
ACCAAGGATGCTGTGTG
CACACAGCATCCTTGGT
AAGGATGCTGTGTGCAG
CTGCACACAGCATCCTT

ACAACCTGTGTCCACCT
CTGGTGCACCCGAGGAC
CAACAGAGCAAGACTCT
GGCATGCAACCTCTTTG
AAAAAAAAA
ACACACGCGCACACACA
ACACACGCGCACACACA
TTATTCAGTTTTGAGAA
AAAAAAAAA
TITTTTTTT
TTTAGATGTTTTCCTAG
GGAGGATGTAGCGGATA
TACCTTCCGAAGTTTGT
GCCGACTGAGGCGCAGA
AGGCAGTGACTTTGCTG
CAGCAAAGT
GCTGGGCACCCGCAGTG
CACTGCGGGTGCCCAGC
CCCAAGTGGAGATCCCC
GGGGATCTCCACTTGGG
AGTGGAGATCCCCACTT
AAGTGGGGATCTCCACT
GGAGATCCCCACTTCGT
ACGAAGTGGGGATCTCC
ACGTGGAGGAGGAGGAA
TGGGCAAAA
AAATTATCTTACACTGC
GCCTTCTGCGCTCAATG
AAGGTGCCTTTGGACCC
TCCACACATTTTCTTGC
CTCACGGGT
CCCCACACACCACACAC
CTGCTGCGCGCCCAGCC
GCCCAGCTCCTGCCAGG
CCTGGCAGGAGCTGGGC
TCACTCACTCACTCACT
CACACCCTC
TGCCGGTGCTTTCACAG
GTTCATCCACTGAGAGC
GAGACATAGGTGATACC
GAGCAAGAC
TGGCCTGAT
TGTCCAGAT
CAGAGAGCGAGAGAGAG
TATACCTGAAAAACAGA
TTGATTTTA
AATTGGCCCGTGCGCCT
CCACAGGGCAGGGAGGA
AAAAGACATATATGTAT
TGTACAGAGTTTTTTAT
GAGCCGACACCTTTCAG
CTGAAAGGTGTCGGCTC
GATTTTAAAGATTATGT
TCTGGCAATGATCCCTC
TTCCCTCCGCAACAATC
ACCTCTTTCTGATTAGA
GTTACTCCATTAAAACG

NO
NO
NO
Yes_TP
Yes_TP

Yes_TP

Yes_TP
NO
NO
NO
NO
NO
Yes_TP
Yes_TP

Yes_TP
NO
NO
NO
NO
NO
NO
NO
NO

NO
Yes_rs372480224_0.0341042528207485
Yes_rs372480224_0.0341042528207485
NO

NO
Yes_rs77501519_8.01853171774768e-05
Yes_rs77501519_8.01853171774768e-05
Yes_rs78334969_0.000166054885509526
Yes_rs78334969_0.000166054885509526
Yes_rs199946350_0.0366018739821062
Yes_rs199946350_0.0366018739821062
Yes_rs77049866_0.0632257578042528
Yes_rs77049866_0.0632257578042528
Yes_rs79909361_0.060441952865618
Yes_rs79909361_0.060441952865618
Yes_rs11673197_0.240814696485623
NO

NO
Yes_rs35002391_0.295864132923399
Yes_rs35002391_0.295864132923399
Yes_rs599328_0.020751378558054

NO

Yes_rs8105247_0.220447284345048
Yes_rs11882213_0.254992012779553

NO

NO
Yes_rs28420751_0.040650406504065
Yes_rs28420751_0.040650406504065

NO

NO

NO

UbD
UbD

Yes_4511581_rs75029810_0.21791410766UbD
Yes_4511581_rs75029810_0.21791410766UbD

Yes_rs62115186_0.225828262339419
Yes_rs62115186_0.225828262339419
Yes_rs62115185_0.25306404506102
Yes_rs62115185_0.25306404506102
Yes_rs10423324_0.00416571559004793
Yes_rs10423324_0.00416571559004793

NO

NO

NO
Yes_rs6066225_0.273961661341853
Yes_rs11700135_0.257787539936102
NO

NO
Yes_rs74625909_0.134384984025559
Yes_rs74625909_0.134384984025559
NO
Yes_rs77424811_0.24294471431876
Yes_rs79451834_0.261458568525627
Yes_rs144572655_0.299793127226756
Yes_rs75066699_0.136006016429481
Yes_rs75066699_0.136006016429481
Yes_rs116264914_0.110130425005622
Yes_rs116264914_0.110130425005622
Yes_rs78196071_0.0967535923363491
Yes_rs78196071_0.0967535923363491
Yes_rs80023315_0.103899721448468
Yes_rs80023315_0.103899721448468
Yes_rs74473084_0.102631006740596
Yes_rs74473084_0.102631006740596
Yes_rs74752031_0.164775826333588
NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs734056_0.284544728434505
Yes_rs458213_0.225239616613419
NO
Yes_rs467798_0.275359424920128
Yes_rs468646_0.232228434504792
Yes_rs403892_0.291333865814697
NO

NO

NO

NO
Yes_rs2254872_0.29452875399361
NO

NO

NO

NO

NO

NO

NO

NO

NO
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UbD
UbD
UbD



17796382
17732084
13356818
13356818
11666218
11400944
11400680
10467637
10467637
10467636
10467636
7752127
3855369
2965122
2071261
140777432
139944689
139916471
139639568
139639563
139639560
139639556
138518015
138518015
137982220
137982220
137715150
136135237
136135237
136135137
136133380
134497450
132891113
132862830
132636031
132636031
131904617
131761659
131353567
130932396
130932396
125772742
125772740
115969433
115934022
115567015
111637331
97080944
115969433
115934022
115567015
111637331
97080944
97080944
96425363
96425363
96392182
96392182
78790153
35101383
35101383
33798073
33797783
33797764
33797760
33797752
33797745
33797733
33386510
33386510
33386465
33386465
33386430
33386400
33386399
33386387
33386378
33385852
33385828
33385784
33385771
33385750
33385750
33385740
33385740
33385712
33385712
33385709
33385709
33385667
12708910
6424124
6424124
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For ATCTACAAACCCCCCAA
Rev  CCCTAAGGCGGGGGGAG
Rev  TAGTACAAAATGAGTTC
For GAACTCATTTTGTACTA
For TGCCCCAGTCCCACTCC
Rev  GGAAGGCACTTTTGCTA
For TGTGCAGAGGATCTGAG
Rev  GTTAGAGGAAACTAAAA
For TTTTAGTTTCCTCTAAC
Rev  TTAGAGGAAACTAAAAC
For GTTTTAGTTTCCTCTAA
For GCACCCAATACCAGTTC
For GTTGGGGGAAAAAACGG
For TIGTTTCTC

Rev  TTTGCTTTCTTGTGTTA
Rev  CCCAGTGAGGGGACTGC
For CCCGCCTGTCCCTACCC
Rev  TCTGAGCCATTCCCCCA
For TGGGCCCCGAGTGGCCC
For CAACGTGGGCCCCGAGT
For TCCCAACGTGGGCCCCG

For GACAGGAGCGAGCCAGT
For TGTGTGTGT
ACACACACATACAAACT
For TGTGGCTGATAGGGCCA
Rev  CTGCAGCATGTCTCGTT
For AACGAGACATGCTGCAG
For CCCACATGCTTCTGTCC
For  GAGAGAACGGGGAAGCA
Rev  GGAAGAATGGGGGGAGG
Rev  CAGCCGACCCGATTCAC
For ATTTCCCAAATGGGTCC
Rev  GAGGCCACTGGCTCACC
For GGTGAGCCAGTGGCCTC
For TGTGCGTTTGTGTGTGT
Rev  GGAAGCCCTGCCTGGCT
For  CATCTCCTG
Rev  CTTTGACTGTTGTCATT
For AATGACAACAGTCAAAG
For TTCAGTTCGCCTGCCAC
For TTCAGTTCGCCTGCCAC
For GAAAAAGTAGCTTAACT
Rev  TCACCTGGTTCCTGAGG
For TCCAGTATGTTTTCATT
Rev  TTTTCTGGGGGTAGGGA
For GGCAGGAGAAGGTGATG
For ‘GAAAAAGTAGCTTAACT
Rev  TCACCTGGTTCCTGAGG
For TCCAGTATGTTTTCATT
Rev  TTTTCTGGGGGTAGGGA
For GGCAGGAGAAGGTGATG
Rev  CATCACCTTCTCCTGCC
Rev  CACCTCTGCTCACACTC
For GAGTGTGAGCAGAGGTG
Rev  CTGCGAAGCTCTAGGGA
For TCCCTAGAGCTTCGCAG
ATTCCATTTCATTCCAT
Rev  CCTCAGGGTGCTCCAGT
For ACTGGAGCACCCTGAGG
Rev  CCACCAAAGCTCAGAGT
For GGGTGCCCAGGCTGTGG
For ACCCTGGGGAAGGTGGG
For GAGGACCCTGGGGAAGG
For GTGAGCTTGAGGACCCT
For ATGAGCAGTGAGCTTGA
For  ATCCATGAG
Rev  TGACCTTTGCTAACTGT
For ACAGTTAGCAAAGGTCA
Rev  TTCCGGTCTATGTGCTG
For  CAGCACATAGACCGGAA
For GTGGCAGCCGCCAGGAA
For GGATACTCACTGTAGAA
For AGGATACTCACTGTAGA
For GGACACCCGGGCAGGAT
For ‘GCCAGAGGCGGACACCC
Rev  GGCTGACCGGGATGCTC
Rev  GTCTCTTCGCCATCACG
Rev  GGAACAGAGGCGCTGGT
Rev  TGGTGATAGGCATCCTC
Rev  TCATCATCGGGGTGTCC
For GGACACCCC
Rev  GGTGTCCCTTGGCATGA
For TCATGCCAAGGGACACC
Rev  GCCATCAACCCGTCCCG
For CGGGACGGGTTGATGGC
Rev  ATCAACCCGTCCCGGGA
For  TCCCGGGACGGGTTGAT
For  TTGCCCCAACCAGCAAT
For AATTTCATCTGTCCACT
Rev  TCTCCTGCC
For GGCAGGAGA

*UbD=Upstream motif + Error base + Downstream
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Yes_TP
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NO
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NO
NO
Yes_TP
Yes_TP
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NO
NO
Yes_TP
Yes_TP
NO
NO
NO
Yes_TP
Yes_TP
NO

NO
Yes_TP
Yes_TP
NO

Yes_TP
NO
NO
NO
NO

Yes_TP
Yes_TP
Yes_FP
NO
NO
NO
NO
NO
NO
Yes_FP
Yes_FP
Yes_FP
Yes_FP
UNKNO
NO
NO
NO
NO
NO
NO
NO
Yes_FP
NO
NO
NO
NO
NO
NO
NO
NO
NO

NO
NO

NO
Yes_rs2517294_0.000399361022364217
NO

NO

NO
Yes_rs2245232_0.297124600638978
Yes_rs2245250_0.299321086261981

NO

NO
Yes_rs4840500_0.164703401743042
Yes_rs4840500_0.164703401743042

NO

NO

NO

NO

NO
Yes_rs7869777_0.00811280086217219
NO

NO

NO

NO

NO
Yes_rs202181415_0.286497569516437
Yes_rs202181415_0.286497569516437
Yes_NA_3.57513138607844e-05
Yes_NA_3.57513138607844e-05

NO

NO

NO

NO

NO
Yes_rs7023385_0.275159744408946
NO

NO

NO

NO

NO
Yes_rs2302813_0.261781150159744
NO

NO

NO

Yes_NA_0.0376834944504117
Yes_NA_0.0376834944504117

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO
Yes_rs3750359_0.198282747603834
Yes_rs3750359_0.198282747603834
Yes_rs10992812_0.25
Yes_rs10992812_0.25
Yes_rs4281168_0.208964084298011

NO

NO

Yes_NA_0.296949062610541
Yes_rs371972822_0.118172335716285
NO

NO

NO

NO

NO

NO

NO
Yes_rs74668961_0.0650218452839887
Yes_rs74668961_0.0650218452839887
Yes_rs74589499_0.0305036984853822
Yes_NA_0.0652044847350033
Yes_NA_0.0645921094351588
Yes_rs77429065_0.0887950713715999
Yes_rs74462413_0.0942603367344071
Yes_rs202183465_0.266219388826325
Yes_rs73478963_0.292133772962789
NO
Yes_rs117663392_0.0450752985978882
Yes_rs114484742_0.0594989561586639
Yes_rs114484742_0.0594989561586639
Yes_rs201773300_0.0515655315447916
Yes_rs201773300_0.0515655315447916
Yes_rs115575789_0.0425457744725353
Yes_rs115575789_0.0425457744725353
Yes_rs116294914_0.0382788233144528
Yes_rs116294914_0.0382788233144528
Yes_rs79779983_0.243176233105143
Yes_rs2733834_0.265575079872204
NO

NO

11049503
11049404
11049404
11049395
11049395
10973798
10973798
10973787
10973787
10935116
51015210
46765181
45724029
45724029
45723980
45723980
44177972
43213631
42575528
42575523
42526571

39636928
31018817
31013549
31011906
31010556
31010242
30822920
25750814
25747933
24579157
24579157
24300683
24300683
24300660
24300660
24300634
24300634
24176959
23962744
23962744
22899363
22730534
21344032
21344019
21344018
22899363
22730534
21344032
21344019
21344018
21344002
21332394
21064356
19163577
19109753
18898874
18084001
147919063
118603773
118603773
118603747
118603747
118603742
118603742
107400223
82764040
71495388
71495388
69749852
69478801
52891818
52891739
52891738
52891736
52891732
52891584
52891565
52891542
52891523
52891513
52891512
35821055
23689636
23689636
15262814
15262813
1317599

Rev

The remaining columns contain some additional

CGTTTTAATGGAGTAAC
TTAAGAGGGACCCTATT
AATAGGGTCCCTCTTAA
ACCCTATTA
GCGCCTAGTAATAGGGT
GTCTGACTATATTCTTT
AAAGAATAT
TTCTTTTGACATCCTCT
AGAGGATGTCAAAAGAA
GAATCTCCACTAGAAGA
CCTCTCCCGTCTAGCTC
GAGAGAAGACATTGATC
CCAGCCCATACCTTGGT
ACCAAGGTATGGGCTGG
TGTTCTGCCGCCGGCCA
TGGCCGGCGGCAGAACA
AATGTCATATGAGTCCT
TGAATAACAAAAAAAAA
AAAGAAAAGAAAAAAAA
AAAGAAAAGAAAAGAAA
TGGTGGGGCATCCTCAG
TGTTTGCTGGTGGTGGG
GTGGGCATATTGGGGCA
TGTGTGTGTGCGCATCT
ACCTGTGGCCAGGTGGC

CTTCTGTGA
TTTTGGCTGCTGTGTCC
GGTATGGAGGTCATCAG
AAAAGAGCGTGTTGGAA
GGAGTGTCCACAGGGAC
CATGGCCCTGGCCCATC
TGTGGCTTGGCTGCACC
TCATGGATCCTGAGTAG
CTACTCAGGATCCATGA
GCAGTAGGCCGGGGCCA
TGGCCCCGGCCTACTGC
GGGGCAGAGAGTGGGTC
GACCCACTCTCTGCCCC
TTGGGGCCCCTCATTGG
CCAATGAGGGGCCCCAA
CTCAGGGCAAGAGGCTC
TGAGAAACAAACTTGCT
AGCAAGTTTGTTTCTCA
CATGTATTCTTCTTTTT
GCACCCATTAATGTCTG
CCACCTGCGCCCTGGCT
GGCTCCCCGTGCCCCTC
GCTCCCCGTGCCCCTCA
CATGTATTCTTCTTTTT
GCACCCATTAATGTCTG
CCACCTGCGCCCTGGCT
GGCTCCCCGTGCCCCTC
GCTCCCCGTGCCCCTCA
ACCTCCTCTACCTGCGC
ATGCCTAACAGTGTCCA
TCAGCCAGTCCACAGGA
CTGGAATCGTGAGACAA
TCCGGCCTTCCAGCCGC
GGGGCAGAG
AGTGGGTTATGAGCCGA
ATTAGGTCAGTTAAGTT
GCGAAGTTAAGAGCCTG
CAGGCTCTTAACTTCGC
GTATCTGATGACATTGG
CCAATGTCATCAGATAC
TGATGACATTGGCCAGG
CCTGGCCAATGTCATCA
GTGGCAGGT
AGGTTCGAAGGCTTGCA
ATGGGTAAGAAGTTTTA
TAAAACTTCTTACCCAT
TTGGATTATAGAAAGAC
ACAGGCGACGAGCCATG
ACAGAGGTCTAACTGAA
GTGTCCTTTGCCTACCT

TTGCCTACCTTTAATGT
GTTTATTTCGATATTTT
TTTGGAGAAAGCTGCAA
GAACAAAAAATGTGCAA
AAATATTTGGGAATAAA
CAATAGTACCAAATATT
TCAATAGTACCAAATAT
GATGAGCATTCTGGGCT
TAAGAAAATAAAATACA
TGTATTTTATTTTCTTA

GTGTGTGTATGTGTATG
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NO

NO
Yes_rs140515_0.00399361022364217
Yes_NA_0.000277882210634716

NO

NO
Yes_rs13053749_0.0166484716157205
Yes_rs13053749_0.0166484716157205
NO
Yes_rs28362469_0.290934504792332
NO

NO

Yes_NA_1.52452968259292e-05

NO

NO

NO
Yes_rs2301957_0.288138977635783
Yes_rs740235_0.287939297124601
Yes_rs5749135_0.288538338658147
Yes_rs5997703_0.288538338658147

Yes_rs5749134_0.288538338658147
NO

NO

NO
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Yes_rs140193_0.149444373483203
Yes_rs140193_0.149444373483203
Yes_rs74718778_0.138717195257878
Yes_rs74718778_0.138717195257878
Yes_rs56104230_0.207301925295005
Yes_rs56104230_0.207301925295005
NO

NO

NO

NO

Yes_NA_0.277231638418079

NO
Yes_rs7410545_0.00136217287212086
Yes rs12162762 0.000463177396943029
NO

Yes_NA_0.277231638418079

NO
Yes_rs7410545_0.00136217287212086
Yes_rs12162762_0.000463177396943029
Yes_rs7410444_0.150414937759336
NO

NO

NO
Yes_rs11550628_0.280899506505159
NO

NO

Yes_rs148920941_0.191180343906385
Yes_rs148920941_0.191180343906385
Yes_rs141428607_0.16845486170909
Yes_rs141428607_0.16845486170909
Yes_rs148294496_0.171104150352388
Yes_rs148294496_0.171104150352388
Yes_rs199981380_0.21503608812304
NO

NO

NO

NO
Yes_rs202027224_0.0137229086489771
NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

Yes_NA_0.0712582781456954
Yes_NA_0.0712582781456954

NO

UbD
UbD
UbD
Ub

UbD

Ub

UbD
UbD
UbD
UbD
UbD
UbD

UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
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UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
UbD
ubD
UbD
UbD
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UbD
UbD
UbD
UbD
UbD
UbD
UbD

annotation for the reported RSE:

present in the NIST list (“InNIST”), in the Broad list (“InBroad”), and in the DBall

(“InDBall(rsid_MAF)”) along with rsid and MAF. Moreover, column “InHC” shows that

this RSE is called by another pipeline where HaplotypeCaller (HC) is used for variant

calling (cf. Chapter 4). The last column (“MotifLoc”) shows three different positional
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forms of 17mer (or 9mer): UbD=Upstream motif + Error base + Downstream motif, Ub=
Upstream motif + Error base, and bD= Error base + Downstream motif. Furthermore,
this table has two different parts, the left part with above-mentioned columns contain
information about a RSE that belong to one chromosomal location, whereas, right part

contains the information about another RSE on different chromosomal location.

Supplementary material

Supporting information files (1 to S6)

These files (mentioned in Chapter 3) are available along with online version of the
published paper (Kawalia et al., 2015).

URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036

(Accessed on: 21 October 2015)
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