Addressing NGS Data Challenges: Efficient High

Throughput Processing and Sequencing Error Detection

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Amit Kawalia

aus Para Bass Suila, Alwar, Rajasthan (India)

Köln, 2016

Berichterstatter: Prof. Dr. Peter Nürnberg

(Gutachter) Prof. Dr. Michael Nothnagel

Prüfungsvorsitzender: Prof. Dr. Hartmut Arndt Beisitzer: Dr. med. Holger Thiele

Tag der mündlichen Prüfung: 18/01/2016

Abstract

Next generation sequencing (NGS) technologies have facilitated the identification of disease causing mutations, which has significantly improved patient's diagnosis and treatment. Since its emergence, NGS has been used in many applications like genome sequencing, DNA resequencing, transcriptome sequencing and epigenomics, to unfold the various layers of genome biology. Because of this broad spectrum of applications and recent decrement in cost, usage of NGS has become a routine approach to address many research as well as medical questions. It is producing huge amounts of data, which necessitate highly efficient and accurate computational analysis as well as data management.

This thesis addresses some of the challenges of NGS data analysis, mainly for targeted DNA sequencing data. It describes the various steps required for data analysis including their significance and potential negative effects on consecutive downstream analysis and so on the final variant lists. In order to make the analysis more accurate and efficient, an extensive testing of different bioinformatics tools and algorithms was preformed and a fully automated data analysis workflow was developed. This workflow is implemented and optimized on high performance computing (HPC) systems. I describe different design principles and parallelization strategies that enable proper exploitation of HPC resources to achieve high throughput of data analysis. Besides correcting for known sequencing errors by using existing tools, this work is also aimed at the detection of a new class of systematic sequencing errors called recurrent systematic sequencing errors. I present an approach for the exploration of this class of errors and describe the probable causes and patterns behind them. This includes some known and novel patterns observed during this work. Furthermore, I provide a tool to filter the false variants due to these errors from any variant list. Overall, the work performed during this thesis has been already used (and will be used in future as well), to provide accurate and efficient data analysis, which enables exploration of the genetic background of various diseases.

Zusammenfassung

Die Next-Generation-Sequencing-(NGS)-Technologien haben die Identifizierung krankheitsverursachender Mutationen erleichtert, wodurch die Diagnose und Behandlung von Patienten deutlich verbessert wurde. Seit seiner Einführung wird NGS in vielen Anwendungsbereichen, wie Genom-Sequenzierung, DNA-Resequenzierung, Transkriptom-Sequenzierung und Epigenomik, eingesetzt, um die verschiedenen Ebenen entschlüsseln. der Biologie des Genoms zu Aufgrund dieses breiten Anwendungsspektrums und der aktuellen Kostensenkung ist die Verwendung von NGS zu einem Routineverfahren zur Bearbeitung vieler forschungsbezogener und medizinischer Fragestellungen geworden. Dadurch werden große Datenmengen erzeugt, die hoch effiziente und exakte computergestützte Analysen sowie ein entsprechendes Datenmanagement notwendig machen.

Diese Dissertation widmet sich einigen der mit der NGS-Datenanalyse verbundenen Herausforderungen, vor allem in Bezug auf die gezielte DNA-Sequenzierung ausgewählter genomischer Bereiche ("targeted sequencing" genannt). Sie beschreibt die verschiedenen für die Datenanalyse erforderlichen Schritte, ihre Bedeutung und potentiellen negativen Effekte auf anschließende Folgeanalysen und damit auf die finalen Variantenlisten. Um die Analyse exakter und effizienter zu machen, wurden umfassende Tests verschiedener bioinformatischer Tools und Algorithmen durchgeführt und ein vollautomatischer Analyse-Workflow entwickelt. Dieser Workflow ist auf Hochleistungsrechensystemen (HPC Systemen) implementiert und für diese optimiert worden. Ich beschreibe verschiedene Entwurfsprinzipien und Parallelisierungsstrategien, um eine gute Nutzung der Ressourcen eines HPC-Systems und hohen Durchsatz in der Datenanalyse zu erreichen. Neben der Korrektur bekannter Sequenzierungsfehler durch vorhandene Tools, widmet sich diese Arbeit auch der Detektion einer neuen Klasse systematischer Sequenzierungsfehler, "wiederkehrende systematische Fehler" genannt. Ich präsentiere ein neues Verfahren, um diese Fehlerklasse zu untersuchen und beschreibe die ihr wahrscheinlich zugrundeliegenden Ursachen und Muster. Dabei beobachtete ich einige bekannte und neue Muster. Weiterhin stelle ich ein Tool zur Verfügung, um von diesen Fehlern verursachte falsche Varianten aus beliebigen Variantenlisten zu filtern. Die während dieser Doktorarbeit durchgeführten und hier präsentierten Arbeiten wurden bereits (und werden weiterhin) verwendet, um exakte und effiziente Datenanalyse durchzuführen, die die Erforschung des genetischen Hintergrundes verschiedenster Krankheiten ermöglicht.

Acknowledgement

I am very grateful to my supervisors Peter Nuernberg and Susanne Motameny who have given me an opportunity to work in the very exciting and challenging field of Next Generation Sequencing during this thesis. Special thanks to Susanne Motameny for extensive proofreading, moral support and guidance throughout my thesis. I also want to thank Holger Thiele who involved me in some other interesting projects and also supported me during the whole period. I would also like to thank Michael Nothnagel for his guidance, suggestions and for reviewing this work. Furthermore, I would like to thank Kamel Jabbari and Wilfried Gunia for their guidance and many fruitful conversations, both scientific and non-scientific. It has been a great pleasure to work with all of them. Without their support and guidance throughout my work, this thesis would not have been accomplished.

I am also thankful to all other colleagues and my friends for their assistance and support. I am also grateful to my parents and brother who believed in me and supported me throughout my career. I cannot thank my wife enough who patiently supported and helped me during my "low days" and tolerated my craziness.

Table of Contents

Chapter 1 Introduction 19 1.1 NGS technologies 20 1.1.1 Illumina 22 1.2 NGS applications 24 1.2.1 Target enrichment methods 24 1.2.2 Whole exome sequencing (WES) 25 1.2.3 Gene panel sequencing 30 1.3 Basic terminologies in data analysis 32 1.4 Challenges in NGS data analysis 32 1.4.1 Efficient data processing 35 1.4.2 Accuracy of results 36 1.5 Thesis organization 40 1.5.1 Relevant publications 41 Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions 43 2.1 Pre-processing of raw data 45 2.1.1 Adaptor trimming 46 2.1.2 Quality based trimming 47 2.2 Sequence alignment 50 2.2.1 Post processing of aligned reads 59 2.2.2 Alignment & enrichment statistics 62 2.3 SNP/Indel calling 62 <th>List of at</th> <th>obreviations</th> <th></th>	List of at	obreviations	
1.1 NGS technologies 20 1.1.1 Illumina 22 1.2 NGS applications 24 1.2.1 Target enrichment methods 24 1.2.2 Whole exome sequencing (WES) 25 1.2.3 Gene panel sequencing (WES) 30 1.3 Basic terminologies in data analysis 32 1.4 Challenges in NGS data analysis 35 1.4.1 Efficient data processing 35 1.4.2 Accuracy of results 36 1.5 Thesis organization 40 1.5.1 Relevant publications 41 Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions 43 2.1 Pre-processing of raw data 45 2.1.1 Adaptor trimming 46 2.1.2 Quality based trimming 47 2.2 Sequence alignment 50 2.2.1 Post processing of aligned reads 59 2.2.2 Alignment & enrichment statistics 62 2.3 SNP/Indel calling 62 2.3.1 Filtering strategies	Chanton	1 Johnson Justian	10
1.1.1Illumina221.2NGS applications241.2.1Target enrichment methods241.2.2Whole exome sequencing (WES)251.2.3Gene panel sequencing (WES)301.3Basic terminologies in data analysis321.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	•		
1.2NGS applications241.2.1Target enrichment methods241.2.2Whole exome sequencing (WES)251.2.3Gene panel sequencing301.3Basic terminologies in data analysis321.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list.712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78			
1.2.1Target enrichment methods241.2.2Whole exome sequencing (WES)251.2.3Gene panel sequencing301.3Basic terminologies in data analysis321.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78			
1.2.2Whole exome sequencing (WES)251.2.3Gene panel sequencing301.3Basic terminologies in data analysis321.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	1.2		
1.2.3Gene panel sequencing301.3Basic terminologies in data analysis321.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	1.2.	1 Target enrichment methods	
1.3 Basic terminologies in data analysis 32 1.4 Challenges in NGS data analysis 35 1.4.1 Efficient data processing 35 1.4.1 Efficient data processing 35 1.4.2 Accuracy of results 36 1.5 Thesis organization 40 1.5.1 Relevant publications 41 Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions 43 2.1 Pre-processing of raw data 45 2.1.1 Adaptor trimming 46 2.1.2 Quality based trimming 47 2.2 Sequence alignment 50 2.2.1 Post processing of aligned reads 59 2.2.2 Alignment & enrichment statistics 62 2.3 SNP/Indel calling 62 2.3 SNP/Indel calling 65 2.4 Evaluation of the variant list 71 2.4.1 Ti/Tv ratio 71 2.4.2 Benchmarking of variant lists with the GIAB dataset 72 2.5 Chapter 3 Leveraging the power of high performance computing 77	1.2.	2 Whole exome sequencing (WES)	25
1.4Challenges in NGS data analysis351.4.1Efficient data processing351.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	1.2.	3 Gene panel sequencing	30
1.4.1 Efficient data processing 35 1.4.2 Accuracy of results 36 1.5 Thesis organization 40 1.5.1 Relevant publications 41 Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions 43 2.1 Pre-processing of raw data 45 2.1.1 Adaptor trimming 46 2.1.2 Quality based trimming 47 2.2 Sequence alignment 50 2.2.1 Post processing of aligned reads 59 2.2.2 Alignment & enrichment statistics 62 2.3 SNP/Indel calling 62 2.3 SNP/Indel calling 71 2.4.1 Ti/Tv ratio 71 2.4.2 Benchmarking of variant lists with the GIAB dataset 72 2.5 Chapter summary 75 Chapter 3 Leveraging the power of high performance computing 77 3.1 Exome analysis workflow 78	1.3	Basic terminologies in data analysis	32
1.4.2Accuracy of results361.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing78	1.4	Challenges in NGS data analysis	35
1.5Thesis organization401.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing78	1.4.	1 Efficient data processing	35
1.5.1Relevant publications41Chapter 2Accurate DNA sequencing data analysis: hurdles and solutions432.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing78	1.4.	2 Accuracy of results	36
Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions 43 2.1 Pre-processing of raw data 45 2.1.1 Adaptor trimming 46 2.1.2 Quality based trimming 47 2.2 Sequence alignment 50 2.2.1 Post processing of aligned reads 59 2.2.2 Alignment & enrichment statistics 62 2.3 SNP/Indel calling 62 2.3.1 Filtering strategies 65 2.4 Evaluation of the variant list 71 2.4.2 Benchmarking of variant lists with the GIAB dataset 72 2.5 Chapter summary 75 Chapter 3 Leveraging the power of high performance computing 77 3.1 Exome analysis workflow 78	1.5	Thesis organization	40
2.1Pre-processing of raw data452.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	1.5.	1 Relevant publications	41
2.1.1Adaptor trimming462.1.2Quality based trimming472.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	Chapter	2 Accurate DNA sequencing data analysis: hurdles and solutions	43
2.1.2 Quality based trimming472.2 Sequence alignment502.2.1 Post processing of aligned reads592.2.2 Alignment & enrichment statistics622.3 SNP/Indel calling622.3.1 Filtering strategies652.4 Evaluation of the variant list712.4.1 Ti/Tv ratio712.4.2 Benchmarking of variant lists with the GIAB dataset722.5 Chapter summary75Chapter 3 Leveraging the power of high performance computing773.1 Exome analysis workflow78	2.1	Pre-processing of raw data	45
2.2Sequence alignment502.2.1Post processing of aligned reads592.2.2Alignment & enrichment statistics622.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	2.1.	1 Adaptor trimming	46
2.2.1Post processing of aligned reads	2.1.	2 Quality based trimming	47
2.2.2 Alignment & enrichment statistics622.3 SNP/Indel calling622.3.1 Filtering strategies652.4 Evaluation of the variant list712.4.1 Ti/Tv ratio712.4.2 Benchmarking of variant lists with the GIAB dataset722.5 Chapter summary75Chapter 3 Leveraging the power of high performance computing773.1 Exome analysis workflow78	2.2	Sequence alignment	50
2.3SNP/Indel calling622.3.1Filtering strategies652.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	2.2.	1 Post processing of aligned reads	59
2.3.1Filtering strategies652.4Evaluation of the variant list712.4.1Ti/Tv ratio712.4.2Benchmarking of variant lists with the GIAB dataset722.5Chapter summary75Chapter 3Leveraging the power of high performance computing773.1Exome analysis workflow78	2.2.	2 Alignment & enrichment statistics	62
2.4 Evaluation of the variant list 71 2.4.1 Ti/Tv ratio 71 2.4.2 Benchmarking of variant lists with the GIAB dataset 72 2.5 Chapter summary 75 Chapter 3 Leveraging the power of high performance computing 77 3.1 Exome analysis workflow 78	2.3	SNP/Indel calling	62
2.4.1Ti/Tv ratio	2.3.	1 Filtering strategies	65
2.4.2 Benchmarking of variant lists with the GIAB dataset	2.4	Evaluation of the variant list	
2.4.2 Benchmarking of variant lists with the GIAB dataset	2.4.	1 Ti/Tv ratio	71
 2.5 Chapter summary	2.4.		
3.1 Exome analysis workflow	2.5		
3.1 Exome analysis workflow	Chapter	3 Leveraging the power of high performance computing	77
	3.1	Exome analysis workflow	
3.2 HPC system			

3.3 T	echnical components of workflow	82
3.3.1	Workflow overview	82
3.3.2	2 Workflow interaction with HPC systems	83
3.3.3	3 The masterscript	85
3.3.4	Jobscripts	86
3.3.5	Job submission	86
3.3.6	5 Job monitoring	87
3.4 D	Design principles of workflow	88
3.4.1	Speed	88
3.4.2	2 Stability	94
3.4.3	B Robustness	96
3.4.4	Maintainability	98
3.5 C	hapter summary	99
Chapter 4	4 Detection of systematic sequencing errors	101
4.1 S	ystematic errors	102
4.1.1	Previous work	102
4.1.2	2 Motivation	104
4.1.3	B Method	107
4.2 R	esults	120
4.3 C	hapter summary	136
Chapter 5	5 Conclusion and outlook	137
5.1 D	Discussion and conclusion	137
5.2 C	Dutlook	146
Bibliogra	phy	149
Appendix	(163
Erklärung	ç	

List of Figures

Figure 1.1 Overview of Illumina sequencing (figure from (Mardis, 2013)).	23
Figure 1.2 Overview of Exome Sequencing (on Illumina sequencer).	27
Figure 1.3 Applications of WES and its impact on human health improvement	29
Figure 2.1 Effect of quality trimming on our in-house data.	48
Figure 2.2 GCAT comparison of 4 different alignment algorithms	52
Figure 2.3 Difference between the alignments produced by BWA-MEM and BWA-aln at n=7	56
Figure 2.4 Difference between the alignments produced by BWA-aln at n=0.04, n=7 and n=10	56
Figure 2.5 Improvement in the alignments after Indel realignment process	61
Figure 2.6 Overlap between raw variant lists of control sample NA12878 generated from 3 different	
variant callers	64
Figure 2.7 Variant Qual score thresholds used during the comparison of individual callers and the	
integration approach	65
Figure 2.8 a) VQSR clustering based on 2 Annotations: ReadPosRankSum and MQRanksum. b) VQSR	's four-
default tranches and their correlation with sensitivity and Ti/Tv ratio	67
Figure 3.1 Automated workflow for exome sequencing data analysis.	80
Figure 3.2 Overview of HPC architecture.	82
Figure 3.3 Infrastructure surrounding the exome workflow	83
Figure 3.4 Overview of workflow interaction with both CHEOPS and SUGI HPC systems.	84
Figure 3.5 Overview of workflow implementation at HPC	85
Figure 3.6 Flow chart of the job submission function.	87
Figure 3.7 Performance of multi-threading with BWA-MEM and GATK HaplotypeCaller.	91
Figure 4.1 Alignment visualization of two systematic errors in a control sample (NA12878)	106
Figure 4.2 The four main components of the systematic error detection workflow.	110
Figure 4.3 Observed kmer construction from a sequence read.	111
Figure 4.4 Pileup format of aligned reads.	112
Figure 4.5 Distribution of errors throughout the genome captured by Prefix model (PM)	126
Figure 4.6 Distribution of errors throughout the genome captured by Suffix model (SM)	126
Figure 4.7 Alignment visualization by IGV in the MUC6 gene region.	128
Figure 4.8 Alignment visualization by IGV at location 11: 1016963 of MUC6 gene	128
Figure 4.9 Sequence logos (from Weblogo tool) for 9mers at forward reference strand	131
Figure 4.10 Alignment visualization of a systematic error by IGV	132
Figure 4.11 MFE secondary structure of first (left) and last (right) 17mer from the list of top 25 17me	ers.135

List of Tables

Table 2.1 Comparison between BWA's alignment algorithms in context to reads alignment	54
Table 2.2 Comparison between BWA's alignment algorithms in context to called variants	54
Table 2.3 Comparison of variants callers' performance to the integrated approach.	64
Table 2.4 Benchmarking results of different variant lists of control sample NA12878 with GIAB dataset.	73
Table 4.1 Statistics of generated 9mers from V2_IN	.121
Table 4.2 Overlap between the test dataset and the 3 other datasets	.121
Table 4.3 Overview of systematic errors in class 1: Platform dependent.	.125
Table 4.4 Overview of systematic errors in class 2: Target enrichment dependent.	.125
Table 4.5 List of genes having high RSEs and their paralogous genes	.129
Table 4.6 List of top 10 common motifs of length 3 (including known motifs occurrences) in RSEs	
associated 9mers in both upstream and downstream	.132
Table 4.7 List of top 25 17mers according to the nucleotide pairing probabilities (highest to lowest)	.134

List of abbreviations

Abbreviation	Term
AT	Adenine Thymine
BAM	Binary version of SAM
BP	Base pair
BQSR	Base Quality Score Recalibration
BWA	Burrows-Wheeler Alignment
CHR	Chromosome
CNV	Copy Number Variation
CPU	Central processing unit
DNA	Deoxyribonucleic acid
DP	Read depth
FDR	False Discovery Rate
FN	False negative
FP	False positive
FPR	False positive rate
GATK	Genome Analysis Tool Kit
GB	Gigabyte
GC	Guanine Cytosine
HC	Haplotype Caller
HDR	High divergent region
НРС	High Performance Computing
Indel	Insertion or deletion
LCR	Low complexity region
LIMS	Laboratory Information Management System
MAF	Minor allele frequency
MB	Megabyte
MQ	Mapping Quality
MSA	Multiple Sequence Alignment

NGS	Next Generation Sequencing
PCR	Polymerase chain reaction
PM	Prefix Model
PPV	Positive prediction value
QC	Quality Control
RAM	Random-access memory
RSE	Recurrent Systematic Error
SAM	Sequence alignment format
SM	Suffix Model
SNP	Single Nucleotide Polymorphism
SSE	Sequence Specific Error
STR	Short tandem repeats
SV	Structural Variation
ТВ	Terabyte
ТР	True positive
TPR	True positive rate
UG	Unified Genotyper
VCF	Variant Call Format
VQSR	Variant Quality Score Recalibration
WES	Whole Exome Sequencing
WGS	Whole Genome Sequencing
XML	Extensible Markup Language

Chapter 1 Introduction

Exploration of the causal gene variants underlying human diseases is one of the major interests of medical sciences. Recent advances in DNA sequencing technologies have enabled characterization of genomic landscapes of many diseases at significantly lower cost and in less time. The early identification of disease causing mutations has significantly improved patient's diagnosis and treatment/therapy. Nowadays, DNA sequencing has become a routine work to address many research as well as medical questions in order to improve disease management.

The field of DNA sequencing has a very rich and diverse history (Rabbani, Mahdieh, Hosomichi, Nakaoka, & Inoue, 2012). The story of sequencing began, when Sanger's studies of insulin first demonstrated that proteins are composed of linear polypeptides formed by joining amino acid residues (Hutchison, 2007; Sanger & Tuppy, 1951; Sanger, 1949). Shortly afterwards, the double-helical structure of DNA was proposed (Crick & Watson, 1953), which raised the very significant question about DNA decoding (DNA to protein). However, due to the complexity of DNA, it took approximately 12 years to sequence the first gene (Holley et al., 1965).

In 1977, the first method for DNA sequencing through chain termination was developed (Sanger, Nicklen, & Coulson, 1977). This method was quite slow and laborious which prompted it's automation (L. M. Smith et al., 1986). Automated Sanger sequencing became the core technology of the Human Genome Project (HGP), funded in 1990, and produced the first human genome draft sequences (Lander et al., 2001; Venter et al., 2001). The HGP took 13 years to finish and was quite expensive which led to the development of cheaper and faster next generation sequencing (NGS) technologies (Mardis, 2008).

NGS technologies, also known as high-throughput sequencing technologies, parallelize the sequencing process and produce millions of sequences simultaneously at relatively low cost. Taking advantage of these technologies, the 1000 Genomes Project could describe the genomes of 1,092 individuals from 14 populations. Aim of the project was to provide a catalogue of human genomic variation that was achieved by using a combination of low-coverage whole-genome and exome sequencing only in four years (Abecasis et al., 2012; The 1000 Genomes Project Consortium, 2010). After its emergence, NGS has been used in many applications to unfold the various layers of genetics and genome biology. In a research setting, it has been used for de novo genome sequencing, DNA resequencing, transcriptome sequencing and epigenomics. Now, it has also become an asset of clinical diagnostic laboratories for patient care (Coonrod, Margraf, & Voelkerding, 2012).

Since the advent of NGS, there have been lots of improvements in the sequencing technologies like accuracy, read length and throughput. Moreover, the sequencing costs are also rapidly decreasing. Today NGS techniques are easily accessible and have become a preferred method in most of the research and diagnostics centres resulting in huge amount of sequencing data. The actual challenges are for the bioinformatics community to manage and analyse these data accurately and efficiently. In this work, I will address some of these issues that are relevant for targeted DNA sequencing. In the following sections, first I will provide an overview of NGS technologies. Then, I will provide an overview of targeted DNA sequencing in research and diagnostics. At last, I will briefly mention some data analysis terminologies followed by a description of the challenges of NGS data analysis and an overview of the structure.

1.1 NGS technologies

There are many different platforms for massively parallel DNA sequencing: Roche/454¹, Illumina², Ion Torrent³, PacBio RS⁴ and Oxford Nanopore⁵. The first three: Illumina, 454

¹ <u>http://454.com/applications/index.asp</u> This and other subsequent URLs are accessed on 26 August 2015.

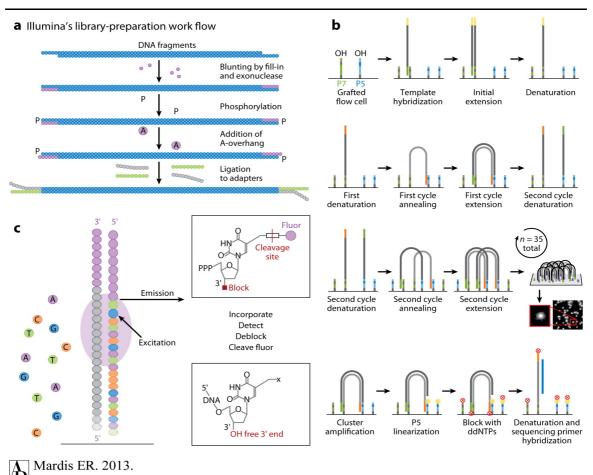
and Ion Torrent belong to the second generation sequencing technologies and are the most commonly used platforms in research and clinical labs today. The basic sequencing method of all of these platforms is sequencing by synthesis (SBS) (Hyman, 1988; Turcatti, Romieu, Fedurco, & Tairi, 2008). In SBS methods, sequencing starts with a primer attached to the single stranded template DNA and proceeds with incorporation of a nucleotide base using a DNA polymerase. Every incorporated nucleotide is detected and the further extension, by means of the DNA polymerase, finally results in a complementary sequence to the template DNA (Berglund, Kiialainen, & Syvänen, 2011). Although using the same SBS technology, these three platforms differ in the clonal amplification and nucleotide base detection process. Both 454 and Ion torrent use emulsion PCR amplification, whereas Illumina uses bridge amplification for the clonal amplification process (Margulies et al., 2005; Quail et al., 2012; Williams et al., 2006). During the nucleotide base detection process, Illumina detects fluorescent signals emitted from nucleotide incorporation, whereas changes in pH and emission of light are detected by Ion torrent and 454 respectively (Mardis, 2008, 2013). Details of these technologies can be found in (Mardis, 2008, 2013; Metzker, 2010).

PacBio and Nanopore use recent sequencing technology known as third generation sequencing (Schadt, Turner, & Kasarskis, 2010). Both sequencing platforms perform single molecule sequencing in which sequencing is performed on single DNA molecule using single DNA polymerase without prior cloning or amplification step used in SBS methods. These techniques allow for more accurate sequencing in repetitive or low complexity regions (cf. Chapter 2) and are able to generate very long reads than the SBS technologies. However, currently these technologies are as matured as the second generation (e.g. Illumina) technologies, having high raw read error rates and low throughput. Moreover, there is a need to develop new sophisticated data analysis

² <u>http://www.illumina.com/systems/sequencing-platform-comparison.html</u>

³ <u>http://www.lifetechnologies.com/de/de/home/life-science/sequencing/next-generation-</u> sequencing.html

⁴ <u>http://www.pacb.com/products-and-services/pacbio-systems/</u>


⁵ <u>https://www.nanoporetech.com/</u>

algorithms, as these technologies posses different error profiles and different aspects of information in the generated sequencing data (Schadt et al., 2010). In our institute, we mainly use the Illumina sequencing technology and this work is also based on Illumina generated sequencing data. Thus, in the following section we provide a brief description of Illumina sequencing technology.

1.1.1 Illumina

Illumina is a widely used platform for DNA Sequencing, which uses clonal array formation and reversible terminator technology⁶ (Bentley et al., 2008). Every DNA sequencing starts with library preparation (cf. Figure 1.1a) that includes DNA fragmentation, enzymatic trimming, fragment adenylation and adapter ligation (Mardis, 2013). After library construction, Illumina sequencing starts with cluster generation (the clonal amplification step) on the flow cell surface that includes binding of adapter ligated DNA templates to the oligos on the flowcell followed by repeated bridge amplifications (initiated by polymerases). This procedure results in clusters of colocalized clonal copies of each fragment (cf. Figure 1.1b). After that, each cluster is supplied with a polymerase and four fluorescently labelled nucleotide bases. Reversible terminator sequencing (cf. Figure 1.1c) starts with incorporation of all four bases in each cycle, but only adds one base per cycle at each cluster due to the blocking group attached at the 3'-OH position of the ribose sugar of the nucleotide base, which prevents incorporation of an additional base (Mardis, 2013). The incorporated nucleotide emits a fluorescent signal, which is detected and reported by image sensors. Repetition of these cycles generates a sequence read from each cluster and thus yields millions of DNA sequences at the end. Illumina SBS technology supports both single-read and paired-end libraries. As the names suggest, single-read sequencing allows sequencing in one direction, whereas the paired-end approach performs sequencing from both ends of the DNA fragment. Nowadays, paired-end sequencing is mainly used as it provides better alignment across repetitive regions and also detects rearrangements such as insertions, deletions, and inversions.

⁶ <u>http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf</u>

R Annu. Rev. Anal. Chem. 6:287–303

Figure 1.1 Overview of Illumina sequencing (figure from (Mardis, 2013)).

The Illumina platforms can be used for many different sequencing applications, such as whole-genome sequencing, de novo sequencing, candidate region targeted resequencing, DNA sequencing, RNA sequencing, and ChIP-Seq⁷. In order to support all of the mentioned applications adequately, Illumina provides four series of sequencers: MiSeq, NextSeq, HiSeq, and HiSeqX, that vary in throughput, runtime, and cost. The selection of sequencer usually determined on the basis of the project's requirements. At our institute, we use mainly HiSeq for exome sequencing and MiSeq for gene panel sequencing (or other target enrichment sequencing).

⁷ <u>http://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html</u>

1.2 NGS applications

Next-generation sequencing has already many applications and it is still expanding. So far, it has been used in whole genome sequencing (WGS), targeted DNA sequencing (whole exome sequencing, gene panel sequencing, amplicon sequencing), transcriptome profiling (RNA-Seq), DNA-protein interactions (ChIP-Seq), etc. This thesis is focused on targeted DNA sequencing, thus only these applications will be described here.

1.2.1 Target enrichment methods

Though the sequencing cost has decreased significantly over the years and the goal of sequencing a whole genome for 1000 dollar is also achieved (at least partially⁸), still WGS is not routine work for most of the medium sized sequencing centres. Besides of high costs for obtaining approximately 30-fold coverage (i.e. sequencing each genomic position at least 30 times) of a human genome (generates approx. 90 Gb data in total), it needs a lot of computational resources to process and store this huge amount of data (Mamanova et al., 2010). Moreover, the whole genome contains both coding and noncoding part and due to the lack of annotations for the non-coding part, it is hard to interpret WGS data. Therefore, targeted enrichment methods are cost-effective alternates, allowing sequencing of selected genomic regions. There are mainly three different approaches to capture target regions: hybridization based, polymerase chain reaction (PCR) based and Molecular Inversion Probe (MIP). However, due to high cost and some coverage issues of MIP (Mamanova et al., 2010), hybridization or PCR based approaches are the commonly used methods for targeted DNA sequencing. I will describe these methods briefly here, a detailed comparison between them can be found in (Bodi et al., 2013; Kiialainen et al., 2011; Mamanova et al., 2010; Mertes et al., 2011).

PCR based capture

Polymerase chain reaction (PCR) based capturing of a genomic region of interest is a very traditional approach, which has already been used for Sanger sequencing. It has

⁸ It needs a specific setup of sequencers (HiSeq X Ten: <u>http://www.illumina.com/systems/hiseq-x-sequencing-system.html</u>), which is very costly and out of the reach of medium sized sequencing centers.

also become ideal for the NGS applications that require to capture smaller targets approximately 10–100 kb in size (e.g. Gene panel sequencing). In brief, this approach starts with a target-specific primer design followed by a PCR reaction. This reaction can be a simple multiplex PCR (e.g. Ion AmpliSeq[™] panels from Life Technologies, GeneRead DNAseq Gene Panels from Qiagen etc.), a micro-droplet PCR (RainDance), or array-based PCR (Access Array[™] from Fluidigm) (Altmüller, Budde, & Nürnberg, 2014).

Hybridization based capture

These methods are faster and less costly than PCR based methods and used for the larger target size around 500 KB up to 65 MB (whole exome sequencing). They follow the basic principle of hybridization where baits (probes designed to match the target regions for sequencing) hybridize with a DNA library and pull down only fragments from the regions of interest. There are two different ways to execute this procedure: Microarray based capture and solution based capture. In the first method, hybridization occurs on a micro-array chip where probes fixed to the chip surface hybridize to fragmented genomic DNA and immobilize complementary target sequences. On the contrary, solution based methods (Gnirke et al., 2009) use an excess of biotinylated DNA or RNA complementary probes (mobile probes in solution) to hybridize fragmented DNA. Then, streptavidin labelled magnetic beads are used to purify the target regions (Bodi et al., 2013). The solution based methods require less amount of DNA, and produce more uniform and specific sequences than the array-based method (Mamanova et al., 2010). Moreover, they do not need additional hardware (hybridization station) like the array-based methods. There are lots of commercial kits available based on this approach like SureSelect (Agilent), TruSeq (Illumina), SeqCap (NimbleGen), etc. (Altmüller et al., 2014).

1.2.2 Whole exome sequencing (WES)

The ultimate goal of medical research is the identification of disease causing mutations to find therapeutic treatments or cures. It is known that the majority of the disease-causing mutations are located in coding and functional regions of the genome (Botstein & Risch, 2003; Ng et al., 2009; Majewski, Schwartzentruber, Lalonde, Montpetit, &

Jabado, 2011). Hence, sequencing of the complete coding regions (known as exome) has the potential to uncover causal mutations of genetic disorders (mostly monogenic), as well as predisposing variants in common diseases and cancers (Rabbani, Tekin, & Mahdieh, 2014). Additionally, the exome constitutes only about 1% of the human genome. Therefore, it suffices to sequence approximately 64 MB, making exome sequencing a cost and time effective alternative for WGS (Ng et al., 2010).

Overview of exome sequencing

In general, the sequencing process can be grouped into 3 stages: library preparation, sequencing and imaging, and data analysis (Metzker, 2010). Library preparation is the construction of the DNA templates required for DNA sequencing (Roe, 2004). It starts with DNA isolation and fragmentation (cf. Figure 1.2-A and 1-B), followed by end- repair and adapter ligation (cf. Figure 1.2-C) (Salomon & Ordoukhanian, 2015; Van Dijk, Jaszczyszyn, & Thermes, 2014). Then, the library enrichment for exons (discard the noncoding part) is performed by using target enrichment methods (mostly hybridization based approaches (cf. Section "Hybridization based capture")). Thereafter, PCR amplification is usually performed to produce a sufficient amount of DNA template. As the final product, library preparation generates the template molecules for amplification on the flow cell surface (cf. Figure 1.2-D). After clonal amplification of the DNA templates into clusters of identical molecules, sequencing starts on the flow cell with a series of cycles. In each cycle, a complementary nucleotide labelled with one of four coloured fluorescent dyes is added to each cluster of identical molecules (cf. Figure 1.2-E). After identification of the fluorescent indicator of each cluster (by using a laser and camera coupled to a microscope), the fluorescent indicator is removed, and the cycle is repeated. Repetition of these cycles generates a sequence read of desired length (usually 75 to 150 bp). During data analysis, sequence reads are aligned to a reference DNA sequence followed by a genotype call for each position by using different bioinformatics tools (cf. Figure 1.2-F) (Biesecker & Green, 2014). The nucleotide detection procedure described above is for Illumina sequencing. Other technologies like Ion Torrent or 454 can perform exome sequencing. Their sequencing procedures differ mainly in clonal amplification and nucleotide detection (cf. Section 1.1).

26

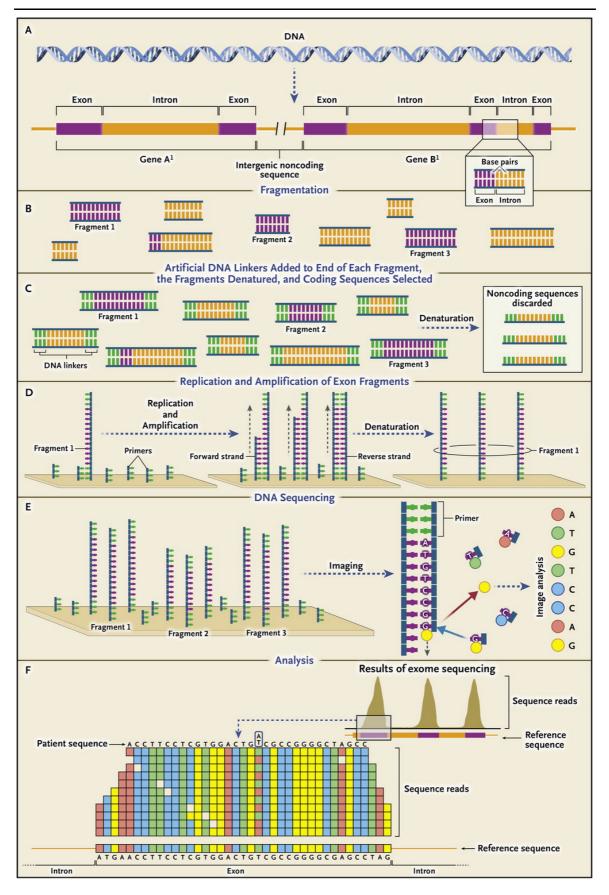


Figure 1.2 Overview of Exome Sequencing (on Illumina sequencer). This figure is taken from (Biesecker & Green, 2014).

Applications of WES

It is already reported in many studies (Botstein & Risch, 2003; Ng et al., 2009) that the exome covers most of the functional variants including nonsense/missense mutations, small insertions/deletions, mutations that affect splicing and regulatory mutations (Rabbani et al., 2012). Hence, WES is a promising method to discover a significant number of disease causing variants and has been used in different areas of research as well as diagnostics (cf. Figure 1.3). In research settings, WES has the following main applications (Majewski, Schwartzentruber, Lalonde, Montpetit, & Jabado, 2011):

- Characterization of monogenic disorders: WES is widely used to detect mutations causing monogenic inherited disorders. (Rabbani et al., 2012) presented a list of mendelian disease⁹ genes identified (between 2010-2012) by exome sequencing and the numbers (102 studies) are significant enough to make WES a success story.
- Identification of de novo mutations: De novo mutations are the extreme and more deleterious form of rare genetic variations (Veltman & Brunner, 2012). The case-parent trios sequencing is the most frequently used approach to detect this type of mutations (Chesi et al., 2013; Fromer et al., 2014; Vissers et al., 2010).
- 3. Uncovering the layers of complex disorders: After the success of WES for monogenic disorders, it also became an approach to identify causative variants in heterogeneous, complex diseases (Coonrod et al., 2012; Kiezun et al., 2013). (Jiang, Tan, Tan, & Yu, 2013) reviewed the application of NGS in neurology and presented recent usage (studies from 2011-2013) of WES to identify rare variants in epilepsy, alzheimer, myotrophic lateral sclerosis, parkinson, spino cerebellar ataxias, and multiple sclerosis. Besides numerous applications in neurological disorders, WES is a helpful technique in some common complex disorders like¹⁰asthma (DeWan et al., 2012), diabetes (Shim et al., 2015; Synofzik et al., 2014), obesity (Paz-Filho et al., 2014; Thaker et al., 2015), etc. Moreover, it is also

⁹ Good explanation of mendelian disorders: <u>http://www.nature.com/scitable/topicpage/mendelian-</u> genetics-patterns-of-inheritance-and-single-966

useful in cancer to find germline or somatic mutations (Ku et al., 2013; Ning et al., 2014; Pleasance et al., 2010).

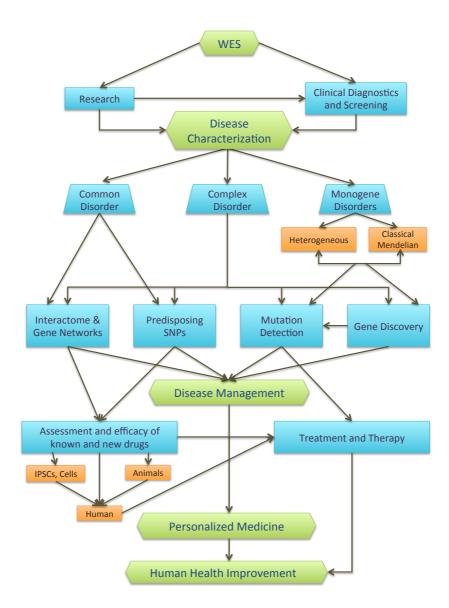


Figure 1.3 Applications of WES and its impact on human health improvement. This figure provides an overview of exome sequencing usage in research and diagnostic settings. The overall aim of both researchers and clinicians is to explore diseases for better disease management, which can lead to personalized medicine for better cure/treatment. This figure is a modified version of the figure in (Rabbani et al., 2014).

Recently, clinicians also started using WES to establish diagnoses for rare, clinically unrecognizable disorders which might have a genetic background (Biesecker & Green, 2014; Coonrod et al., 2012; Need et al., 2012). As mentioned above, WES can find

causative variants, which facilitates understanding of the genetic mechanisms of these diseases. This can lead to gene-specific treatments or therapies like gene inclusion or replacement (Aiuti et al., 2009; Cavazzana-Calvo et al., 2010; Ott et al., 2006). WES can be also useful in prenatal diagnosis (PND), pre-implementation genetic diagnosis (PGD), prognosis of preclinical individuals, new-born screening procedures and treatment (Rabbani et al., 2014). It can also help in cancer by identifying driver mutations and genetic events leading to metastasis. This knowledge can be developed into treatments that prevent tumour recurrence or avoid therapeutic resistance (Majewski et al., 2011). Altogether, WES can significantly contribute to personalized medicine and could improve human health by providing better disease management.

Limitations of WES

Besides, the enormous benefits of exome sequencing, there are a few drawbacks (Biesecker, Shianna, & Mullikin, 2011; Directors, 2012; Rabbani et al., 2014). Due to the target design and enrichment procedures, WES

- 1. is weak in structural variation detection.
- 2. does not cover certain sets of exons or provides less coverage for some exons, so that causal variants may be missed in some diseases.
- 3. can miss mutations in repetitive or GC rich regions and in genes with corresponding pseudogenes.

1.2.3 Gene panel sequencing

Gene panel sequencing is another type of targeted sequencing where genomic regions from a set of genes associated with a certain disease are targeted rather than the complete exome¹¹. There is prior knowledge about many diseases like their pathomechanism or responsible genes, hence, sequencing of only those genes is sufficient and more cost and time effective than WES. Gene panel sequencing can use both hybridization based and PCR based target enrichment methods. It provides higher coverage (almost 100% of the target regions are usually covered sufficiently to call

¹¹ Sequencing overview is almost the same as in WES except for a possibly different target capture.

variants), specificity, and uniformity than WES, which are essential for confident variant detection, especially for low-frequency variants (e.g., mutations only present in a small subset of cells in a tumour sample). Therefore, gene panel sequencing is gaining popularity both in research and diagnostic settings (Altmüller et al., 2014; Glöckle et al., 2013; Lynch et al., 2012; Rehm, 2013; Sie et al., 2014; Sikkema-Raddatz et al., 2013; Wooderchak-Donahue et al., 2012).

Due to its high accuracy, medical centres are making different gene panels for diagnostic purpose. In this context, a brief overview of applications of gene panels and a list of clinically available disease-targeted tests has been reported by (Rehm, 2013). Moreover, (Sikkema-Raddatz et al., 2013) claims that targeted sequencing can replace Sanger sequencing in clinical diagnostics. They compared results from a panel of 48 genes associated with hereditary cardiomyopathies with Sanger sequencing and achieved approximately 100% reproducibility. This study concludes that this panel can be used as a stand-alone diagnostic test. In another study (Consugar et al., 2014), gene panel sequencing was used for genetic diagnostic testing of patients with inherited eye disorders. They designed a genetic eye disease (GEDi) test in this study with high sensitivity and specificity (97.9 and 100% respectively).

In cancer research and diagnosis, gene panel sequencing (or amplicon sequencing) has also been used for many studies to uncover somatic and germline mutations (Dahl et al., 2007; De Leeneer et al., 2011; Harismendy et al., 2011; Meldrum, Doyle, & Tothill, 2011). (Laduca et al., 2014) used four hereditary cancer panels (breast panel, ovarian panel, colon panel, and cancer panel) for diagnosis of hereditary cancer predisposition (Laduca et al., 2014). There are also many commercially available standard cancer panels or other gene panel like Illumina TruSight¹², Illumina TruSeq, Amplicon Cancer Panel¹³ or Ion AmpliSeq Cancer Hotspot Panel v2¹⁴ which can be used routinely in both research and clinical settings (Tsongalis et al., 2014). A brief list of standard and customized gene

¹² <u>http://www.illumina.com/products/trusight-panels.html</u>

¹³ http://www.illumina.com/products/truseg_amplicon_cancer_panel.html

¹⁴ <u>https://www.lifetechnologies.com/order/catalog/product/4475346</u>

panels can be found in (Altmüller et al., 2014). Moreover, the most recent development in this direction is the "Mendeliome", which is a set of approximately 3000 Mendelian genes known to cause human diseases (Alkuraya, 2014).

1.3 Basic terminologies in data analysis

This section contains definitions of the few terms that are required to understand the content of following sections. Some other terminologies will be defined during their usage throughout the other chapters.

Fastq: It is a text-based file format¹⁵, containing sequence reads and the quality score of every base of the read.

Read: It is a raw sequence (string of the letters A,C,G,T,N) generated from a sequencing machine.

Insert size: In paired-end sequencing, the insert size is the length of the sequenced DNA fragment. It can be computed from the alignment as the length of read1 plus the length of read2 plus the distance between them.

Read alignment: It is alignment (or mapping) of reads from a sequenced DNA on the reference genome sequence, to identify the differences or regions of similarity between both sequences. In general, there are two basic types of alignment:

Global alignment: This is the alignment between entire sequences of approximately equal size. The Needleman–Wunsch algorithm (Needleman & Wunsch, 1970) is the general algorithm for this type of alignment. By using dynamic programming¹⁶, it breaks the sequences into different parts and tries to align them. Then the algorithm searches for an optimal alignment of the complete sequence based on all sub-alignments.

¹⁵ <u>http://en.wikipedia.org/wiki/FASTQ_format</u>

¹⁶ <u>http://en.wikipedia.org/wiki/Dynamic_programming</u>

 Local alignment: As the name suggests, local alignment tries to find the most similar part/section between two sequences instead of mapping the entire sequences. The basic algorithm for this purpose is the Smith-Waterman algorithm (T. F. Smith & Waterman, 1981), which is another significant application of dynamic programming.

SAM/BAM: SAM stands for Sequence Alignment Format¹⁷ and BAM is its compressed (encoded) format. SAM is a tab-delimited format (generated after alignment) containing all necessary information related to the alignment of sequencing reads on the reference sequence, e.g. mapping position, mapping quality, sequence reads and their base quality scores etc.

VCF (Variant Call Format): It is a tab-delimited text file format to store sequencing variants with a certain set of information (Danecek et al., 2011) (e.g. position in genome, type of variant, variant supporting evidences etc.).

Coverage: It can be described in two different ways: read coverage and sample coverage. A read coverage (also called read depth) is the number of reads aligning at a specific genomic location. Sample coverage is the average read coverage across all genomic locations targeted during a sequencing experiment. Sample coverage can be represented by values like 10x, 20x, 30x, which means the average read depth is 10, 20, 30, respectively.

Base quality score (Q): It is also known as a phred score (Q) as it is calculated by the Phred algorithm (Ewing & Green, 1998; Ewing, Hillier, Wendl, & Green, 1998). It represents the probability that a base is miscalled. If *P* is the estimated error probability for a base-call, then the phred score is calculated as follow:

$$Q = -10 \log_{10} P$$

¹⁷ https://samtools.github.io/hts-specs/SAMv1.pdf

Mapping quality score (MQ): It is a phred score which represents the probability that a read is misaligned on the reference (H. Li, Ruan, & Durbin, 2008). If *P* is the estimated error probability for a misalignment, then the mapping quality can be calculated as follow:

$$MQ = -10\log_{10}P$$

Variant quality score (Qual): It is also a phred score like MQ and Q and describes the probability of a called base being an alternate allele. If P is the posterior probability P(g|D) of the called genotype g given the observation D, then Qual can be calculated as (H. Li et al., 2008):

$$Qual = -10 \log_{10}(1 - P)$$

For all the quality scores (Q, MQ, Qual), a high phred score means that the examined site has low error probabilities and vice-versa.

Specificity and Sensitivity: In general, specificity estimates the fraction of correctly identified negatives (e.g. wrong outcome), whereas sensitivity estimates the fraction of correctly identified positives (e.g. true outcome)¹⁸. In this thesis, these terms will be used in two different contexts: variant calling and alignment. Definition of these terms in the context of alignment can be found in Chapter 2 (where these terms have been used for the first time). In the variant calling context, specificity and sensitivity, also known as true negative rate and true positive rate, are measures of the accuracy and the ability to detect a variant of a variant caller, respectively, and can be calculated as follows:

Sensitivity or true positive rate (**TPR**) = TPs/(TPs + FNs)

Specificity or true negative rate (TNR)= TNs/(TNs + FPs)

False positive rate (FPR) = 1- Specificity

True positives (TPs): These are the real variants, also called by the variant caller. *False positives (FPs):* These are variants that are called by the variant caller but are not the real variants.

False negatives (FNs): These are real variants that are not called by the variant caller.

¹⁸ <u>https://en.wikipedia.org/wiki/Sensitivity_and_specificity</u>

True negatives (TNs): These are variants that are not real, and also not called by the variant caller.

1.4 Challenges in NGS data analysis

The rapid fall in sequencing cost expanded the usage of NGS techniques, which resulted in huge amounts of data. Now it's turn for the Bioinformatics community to make sense of these data. There are many challenges, which need to be addressed carefully. They can be categorized mainly in two parts: Efficient data processing and accuracy of results. The challenges belonging to each category are briefly described below.

1.4.1 Efficient data processing

NGS technologies are high-throughput in nature that means they produce huge amounts of sequencing data in a relatively short time. The amount of data can be categorized in two different sections: first data produced by a single sequencing run for a sample and secondly data produced by a study containing certain set of samples. In both of these categories, the amount of data generated is increasing rapidly. Thus, the data processing and management is a major challenge and should be able to address all requirements for different applications.

In order to obtain relevant findings from the raw data, it needs to go through various stages like data cleaning, sequence alignment, variant calling, etc. There are plenty of algorithms for these individual tasks but in order to run them fast, they need to be stitched together in the correct order. This workflow can be very complex and needs enough resources or high performance computing (HPC) for smooth operation. Moreover, it should be automated to reduce the manual efforts and chances of manual errors during data analysis operations.

Nowadays, almost every automated NGS workflow uses HPC clusters. Here, the power of multiple CPUs can be used in a massively parallel way to finish tasks that would take a couple of days on a single CPU in a couple of hours. For example, the MegaSeq (Puckelwartz et al., 2014) and HugeSeq (Lam et al., 2012) workflows use HPC for whole genome sequencing data analysis. These workflows utilize the MapReduce¹⁹ approach to speed up the data analysis. In the MapReduce approach, first data is split into chunks and then processed in parallel followed by merging of the results. We also use the MapReduce approach to speed up our exome workflow. Existing automated workflows can be Linux-based frameworks implemented on HPC systems via bash²⁰ scripts like NGSANE (Buske, French, Smith, Clark, & Bauer, 2014) or our exome workflow. Additionally, they can be available in form of a web-interface like WEP (Antonio et al., 2013) or a VirtualBox and Cloud Service like SIMPLEX (Fischer et al., 2012), enabling users with little bioinformatics knowledge to analyse their data on remote HPC systems. All of these above-mentioned examples show the necessity of workflow implementation on HPC systems to speed up NGS data analysis and also provide some details of the HPC implementation and parallelization strategies. However, besides the speed of a workflow, its stability, robustness and maintainability are also important concerns. An automated workflow should be fast, stable and robust as well as easy to maintain. The automation of the workflow and its implementation (with consideration of the above mentioned principles) on HPC comes with many challenges, which will be described in Chapter 3.

1.4.2 Accuracy of results

Downstream analysis of sequencing data can be significantly affected by the accuracy of results. Error propagation during data processing may lead to false positives (FPs) and misleading findings. On the other hand, badly selected strategies/tools can lead to false negatives, which means loss of true variants. These undetected variants might be the causative ones or can lead to uncover additional layers of some diseases, thus, this problem is more severe than FPs. Therefore, to find a proper balance between accuracy and sensitivity of results is another significant challenge for data analysis, which will be described in Chapter 2.

¹⁹ https://www.usenix.org/legacy/event/osdi04/tech/dean.html

²⁰ http://tiswww.case.edu/php/chet/bash/bashtop.html

Although, there are different alignment algorithms accompanied with post alignment improvements and different variant callers with reasonable accuracy. However, getting a variant list containing only true variants is still a challenge and false positive calls (FPs) remain a problem. Some of the FPs are due to the limitations of current tools, however, random sequencing errors and sequencing biases are other major contributors. Sequencing biases can be categorized in three main classes coverage bias, batch effects and systematic errors (Taub, Corrada Bravo, & Irizarry, 2010; Yang, Chockalingam, & Aluru, 2013).

Coverage bias

Coverage bias means non-uniform coverage throughout the sequenced genomic locations. Genomic locations containing low-complexity regions²¹ like GC-rich sequences are the major source of coverage bias, that is non-uniform coverage or even no coverage in these regions (Sims, Sudbery, Ilott, Heger, & Ponting, 2014). (Dohm, Lottaz, Borodina, & Himmelbauer, 2008) first studied the effect of the unbalanced GC content of a genome (known as GC bias) on read coverage and found lower read coverage in GC or AT rich regions. Soon after, Kozarewa and colleagues showed that amplification artefacts introduced during the library preparation are the major source of the heterogeneous distribution of the read coverage (Kozarewa et al., 2009). After that, the GC bias effect has been studied many times in different contexts with similar observations (Aird et al., 2011; Chen, Liu, Yu, Chiang, & Hwang, 2013; Chilamakuri et al., 2014; Clark et al., 2011; Lan et al., 2015). During the library preparation, the PCR step yields lower amplification of regions with high GC or high AT content which results in lower sequencing coverage (Clark et al., 2011). Moreover, the GC bias reduces the efficiency of capture probe hybridization that also leads to lower read coverage (Chilamakuri et al., 2014). This reduced read coverage might result in many false positive (FPs) or false negative (FNs) variant calls (cf. Chapter 2). For example, low coverage at a certain region can be detected as a copy number variant (e.g. deletion) although it is just

²¹ DNA regions having biased nucleotide composition and enriched with simple sequence repeats.

because of the GC effect. Similarly, some true variant might be missed or filtered out due to the minimum coverage threshold filter used during variant calling.

Because of the prevalent knowledge about the effect of GC bias, there are many ways to avoid or correct this effect. It can be avoided either during the library preparation (Aird et al., 2011; Kozarewa et al., 2009; Oyola et al., 2012) or compensated during the downstream analysis of sequencing data. (Benjamini & Speed, 2012; Cheung, Down, Latorre, & Ahringer, 2011) provided the "GCcorrect" tool and BEAD algorithm, respectively, that perform different normalization techniques for GC bias correction. Moreover, most of the copy number calling tools based on the depth of coverage approach (Medvedev, Stanciu, & Brudno, 2009) perform read depth normalization to correct for the GC bias (Alkan et al., 2009; Fromer et al., 2012; Krumm et al., 2012; Plagnol et al., 2012).

Batch effect

"Batch effects are sub-groups of measurements that have qualitatively different behaviour across conditions and are unrelated to the biological or scientific variables in a study" (Leek et al., 2010). Thus, the different batches of a sequencing experiment can have errors that are due to the technical or manual variability. For example, usage of different lots of reagents, chips or instruments can introduce variability between different batches of sequencing experiments. Moreover, the individual experience of different technicians handling the samples during the library preparation and sequencing process can also result in batch effects. Batch effects can easily lead to some false discoveries or conclusions. Leek and colleagues has summarized the consequences of batch effects and also demonstrated the presence of batch effects in sequencing data from the 1000 genomes project (Leek et al., 2010). Moreover, they also provided solutions to avoid batch effects. Careful study design and some statistical solutions (exploratory statistical analysis) can easily eliminate the consequences of batch effects (Leek et al., 2010).

Systematic error

Systematic error is the error introduced by the sequencing platform that follows some systematic patterns instead of a random distribution. Systematic errors can be classified as position specific and sequence specific (Meacham et al., 2011). Position specific error is the class of errors where the error (i.e. mismatch) occurs mostly at certain genomic positions or in certain regions of the reads (e.g. base calling errors towards the 3' end). In contrast, the sequence specific error is surrounded (upstream or downstream of the error position) by a certain sequence motif (consecutive nucleotide bases of a certain length).

As Illumina sequencing is the most widely used technology, lots of studies have been performed to understand errors generated from these sequencers. It has been observed that Illumina generates more substitution errors than Indel errors (Dohm et al., 2008). Dohm et al. observed that most of the subsititution errors are either persent at the ends of reads (esp. at the 3' end) or in the GC-rich regions. They found that the nulceotide base A is substituted by C and C is substituted by G more often then the other types of base susbtituion. (Kircher, Stenzel, & Kelso, 2009) studied these base calling errors and found that these errors are more frequent during the first and the last cycles. They observed that the base calling errors are more frequent in the later cycles due to the effects of crosstalk, declining intensities, pre-phasing and phasing, and accumulation of the "T" nucleotide. (Metzker, 2010) reviewed different NGS techonlogies and also reported that the lagging-strand dephasing is the main cause of this type of sustitution errors in Illumina data. Dephasing means loss of synchronicity of growing primers for any given cycle during clonal amplification process (Metzker, 2010). In another word, when the blocking effect of the 3'-OH group (which allows the next nucleotide base incorporation) (cf. Chapter 1) does not work (or still works in the next cycle), some copies of the DNA template lose synchronization with the other copies of DNA template belonging to the same cluster (e.g. incorporation lags one base behind the rest of cluster). It can be referred in two ways: lagging strand dephasing and leading strand dephasing. The lagging strand dephasing refers to the incomple extension of a template ensemble becuase of lagging behind compared to the rest of the cluster as mentioned above. In contrast, leading-strand dephasing is the incorporation of more than one nucleotide in a given cycle (Metzker, 2010). Based on the available knoweldege, lots of improvement has been performed like improvements in the sequencing chemistry and the base calling algorithms. Moreover, recent alignment and variant calling algorithms are also aware of this type of error. Moreover, some standard filtering strategies are also able to filter FPs generated by these errors. However, there is still lots to explore in this class of error as many systematic errors are hard to detect or not detected so far. Thus, Chapter 4 is dedicated to the exploration of systematic errors.

1.5 Thesis organization

As mentioned above, NGS data analysis comes with certain challenges. This thesis is aimed to address some of these challenges to enhance the efficiency and accuracy of DNA sequencing data analysis. The work presented in thesis is my own work except Chapter 3, which is joint work of Dr. Susanne Motameny and myself.

In **Chapter 1**, I have provided an overview of NGS technologies, targeted DNA sequencing methods and their applications. I have briefly mentioned some data analysis terminologies followed by a description of the main challenges of NGS data analysis.

Chapter 2 provides an overview of the data analysis steps of targeted sequencing as implemented in our data analysis workflow. It contains details of essential steps (including their significance) required to generate a variant list from raw sequencing data. It also describes the possible adverse effects of each step (if used inappropriately) and highlights the limitations of the applied algorithms. Moreover, it demonstrates the importance of the selection of appropriate tools and associated parameter settings in terms of both accuracy and efficiency. Furthermore, it provides an overview of filtering and benchmarking strategies applied in our data analysis workflow to achieve a good balance between accuracy and sensitivity of the results.

In **Chapter 3**, details of our in-house developed automated data analysis workflow are provided. The aim was to avoid manual repetition of all of the data analysis steps as

mentioned in Chapter 2 and thus to save time for downstream analyses of data and its validation. Fast and efficient automated data processing requires a large amount of computational resources that necessitates its implementation on high performance computing (HPC) clusters. However, HPC comes with some challenges and requires certain workflow design principals as parallelization strategies and some other tricks. This chapter provides details of these design principals and strategies, which gave our workflow speed, stability and robustness while keeping it easy to maintain.

Chapter 4 is dedicated to an important but hard to detect class of sequencing errors: Systematic Sequencing Errors (SSEs), which can easily damage the accuracy of the results. The chapter presents a novel approach to explore SSEs. During the error exploration, reproducible error behaviour in different datasets has been observed which led to a newly coined class of errors: "Recurrent Systematic Errors (RSEs)". The characteristics of RSEs and some of the known and novel patterns behind this type of error are described in this chapter. Moreover, an RSE filtering tool "FilterRSEs" has been developed, which can filter FPs (due to RSE) from a given variant list (VCF file). It uses the detected RSE location and associated annotations to provide different filtering options.

Chapter 5 concludes the thesis with a discussion of the findings and an outlook on current and future developments.

1.5.1 Relevant publications

The following publications related to this thesis have been published:

- Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow. Amit Kawalia, Susanne Motameny, Stephan Wonczak, Holger Thiele, ... Ulrich Lang, Viktor Achter, Peter Nürnberg. PLOS ONE (2015)
- Rare variants in γ -aminobutyric acid type A receptor genes in rolandic epilepsy and related syndromes. Reinthaler EM, Dejanovic B, Lal D, Semtner M,

...Kawalia A...EuroEPINOMICS Consortium, Nürnberg P, Lerche H,Neubauer BA, Zimprich F. Annals of Neurology (2015)

- Homozygous and compound-heterozygous mutations in TGDS cause Catel-Manzke syndrome. Ehmke N, Caliebe A, Koenig R, Kant SG, ..., Kawalia A...Nürnberg P, Siebert R, Manzke H, Mundlos S. American Journal of Human Genetics (2014)
- Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Schubert J, Siekierska A, Langlois M, May P, ...Kawalia A...Nürnberg P, Crawford AD, Esguerra CV, Weber YG, Lerche H. Nature Genetics (2014)
- DEPDC5 mutations in genetic focal epilepsies of childhood. Lal D, Reinthaler EM, Schubert J, ...Kawalia A...Nürnberg P, Sander T, Weber Y, Zimprich F, Neubauer BA. Annals of Neurology (2014)

Chapter 2 Accurate DNA sequencing data analysis: hurdles and solutions

Almost every day, sequencers produce huge amounts of DNA sequencing data containing millions of sequencing reads. Raw data coming out from these machines contain only sequencing reads and their quality scores. Each sequencing read is just a series of four letters (A, T, G, C) representing the four nucleotides (adenine, thymine, guanine, cytosine, respectively) and does not provide any significant information in its original state. To make sense of these raw sequencing data, they need to go through various bioinformatics analyses. Conversion of a raw sequencing file (fastq file) into a variant list (VCF file) requires certain data processing steps (Van der Auwera et al., 2013) that can be mainly categorized into 4 different sections: pre-processing, alignment, variant calling, and functional annotation.

All of these analysis steps are interconnected, build on each other, and usually involve running some tool or script. Thus, every analysis step can affect its consecutive analysis in an adverse manner if not used appropriately. For example, discarding bad quality data during the quality control step can improve the specificity of results. However, this can lead to loss of data and hence lower sensitivity of results. Similarly, selection of wrong tools/algorithms with their default (or inappropriate) parameter settings can also lead to bad specificity or sensitivity. Both of these situations are harmful for the final results and can mislead variant discovery. Less specific results contain lots of false positives, which make detection of true variants complicated. On the contrary, less sensitive results can lead to the absence of some true variants in the final variant list. Thus, finding a proper balance between specificity and sensitivity of results is very important.

This chapter aims to address these issues in order to achieve a good balance between sensitivity and specificity of the results (cf. Section 1.3). It provides a description of the main steps of DNA sequencing data analysis, their significance and the possible adverse

effects. It contains details of pre-processing of raw data, alignment, variant calling, filtering, and evaluations of variant calls. The variant calling step can be categorized in four different parts: Single nucleotide polymorphism (SNP), insertion & deletions (Indels), copy number variants (CNV) and structural variants (SV) calling. I will provide details of only SNP and Indels calling, as I tested and implemented this part of the variant calling. In CNV calling, SV calling, and functional annotation of variants, I have only contributed in the HPC (High Performance Computing) implementation; thus, this part of our workflow will not be described here. In the following, each of these steps are described in separate sections containing the significance of the particular analysis, followed by a brief introduction (or comparison) of relevant tools executing this analysis and their limitations (if exists). Thereafter, details of the selected tool or my own solution (e.g. self-developed scripts) and the reasons behind the selected solution are provided. At last, I provide some insights (both known and learned during testing) into the adverse effects of analysis steps (if used inadequately).

I have tested different tools belonging to all of the above-mentioned data analysis categories in terms of their efficiency and accuracy. A good tool for the data analysis workflow should be fast and resource-efficient (e.g. use a small number of cores and a small amount of memory) (cf. Chapter 3). Moreover, it should generate a balanced result in terms of specificity and sensitivity (cf. Section 1.3). Thus, I have performed extensive testing of different tools and their parameter settings and selected the relatively best tool with its optimum performance. At last, we evaluated the results generated from our data analysis workflow in order to confirm that our selection of tools, parameters and filtering strategies are satisfactory. All of the testing is performed on human sequencing data analysis (especially for exome sequencing experiments with Illumina sequencing technology).

44

2.1 Pre-processing of raw data

This is the first and a very significant step for any kind of data analysis. Raw sequencing data from sequencers is not always having good quality and can have some fallacious characteristics. Thus, before any analysis steps, a quality check of the data should be performed to distinguish between a bad and a good quality sample²². For example, a good quality sample should have base quality scores greater than 20 for all bases at each position in the read, should have less GC bias and no adapter contamination etc. The detailed information about these quality checks and their significance can be found in Appendix. The quality control (QC) can be performed by the FastQC tool²³, PRINSEQ²⁴ (Schmieder & Edwards, 2011) or any other similar tool. I tested both FastQC and PRINSEQ and found that they are quite similar and efficient enough to perform some basic quality checks (cf. Appendix). However, I selected the FastQC tool for QC, as it is a well tested and adapted tool by the bioinformatics community (Kircher, 2011; Mutarelli et al., 2014; Pabinger et al., 2013). A widely used tool is more likely to be bug free than the less popular tool.

If a sample reported as a bad quality sample by QC reports, then it should be either discarded or should undergo certain processing steps to improve the quality. For example, if a sample is showing bad quality scores towards the end of the reads then trimming of these bases can improve the overall base quality scores. Thus, I perform following QC steps either by default or based on the QC report generated from the quality checks. The decision of performing these steps can vary from one data to another.

²² Good quality sample:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html (This and subsequent URLs are accessed on 28 June 2015)

²³ http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

²⁴ <u>http://prinseq.sourceforge.net/index.html</u>

2.1.1 Adaptor trimming

Adaptors are short oligonucleotide (oligo) sequences required to link the end of a DNA fragment to the surface of the sequencing platform (cf. Section 1.1.1). If the fragment size is smaller than the read length, the sequencing reaction will continue into the adaptor resulting in the presence of a partial or complete adaptor sequence inside a read (Kircher, Heyn, & Kelso, 2011). These adaptor sequences are not a part of the reference genome sequence and might damage alignment accuracy by inserting lots of mismatches during their mapping on the reference sequence. Therefore, the detection and removal of these sequences can also enhance the accuracy of results.

I tested FASTX-Toolkit²⁵ and Cutadapt tool (Martin, 2011) for adaptor trimming. Both tools are widely used tools, but I preferred Cutadapt due to its flexibility and additional functionality. Cutadapt performs gapped alignment of single or multiple adaptors on only 3' or 5' end or both end of the read sequence. It allows selecting the mapping error rate and length of overlap and will remove the best matching adaptor. It can either trim few bases or can discard the entire read when the read length becomes too short after trimming. Overall, it is a very flexible tool, which performs good adaptor matching and trimming with its default parameter setting on our exome data. In contrast, the FASTA/Q Clipper method of the FASTX-Toolkit for adapter trimming performs only basic adapter clipping and does not have all of the functionality (or flexibility) provided by Cutadapt.

A faulty adapter trimming can be a reason of loss of information or false positives, if the appropriate parameter selection is not performed. As mentioned above, the default parameter setting works well on our exome data, but an optimum combination of parameters can vary from one data to another. There are two critical parameters in Cutadapt: minimum overlap and error rate. If a low value of minimum overlap and a high error rate are used during adaptor matching, then the tool can perform partial mapping of the adaptor sequence on the reads. These partial matches are considered as adaptor matches that trigger adapter trimming. Thus, the tool will trim a portion of a

²⁵ <u>http://hannonlab.cshl.edu/fastx_toolkit/</u>

read that actually not having adaptor contamination and this way lead to a loss of sequencing reads.

2.1.2 Quality based trimming

Raw sequencing reads can have low quality bases at one or both ends (Dohm et al., 2008). As explained in Chapter 1, nucleotide bases are identified one by one from the cluster of identical molecules through various sequencing cycles. During these repetitions (cycles), error propagation or accumulation can happened due to various causes, such as, air bubbles, spot-specific signal noise, malfunctioning of laser or lens (Del Fabbro, Scalabrin, Morgante, & Giorgi, 2013). This can lead to quality deterioration towards the ends of a read. Thus, low base quality scores can be found at the ends that indicate less confident base calling meaning that the called base can be wrong. Figure 2.1 shows the effect of quality trimming on one of the in-house sequenced exome sequencing datasets. It contains large amounts of bad quality bases (< 20 base quality score) at the end of reads (cf. Figure 2.1 (A)). However, quality trimming removes all bad quality bases, which improved the overall quality of the data (all bases in reads now have a base quality score > 30) (cf. Figure 2.1 (B)). If the quality trimming is not performed on this kind of data, then mapping of these wrong bases on the reference sequence can easily disrupt the alignment accuracy (resulting in bad mapping quality) and contribute to false positives in variant calling (Del Fabbro et al., 2013). Therefore, trimming or soft clipping (masking) of these bases from both ends (5' and 3' end) of a read (or at-least 3' end) is required. If a read is having high number of bad quality bases, then the entire read should be discarded.

For the quality trimming, I first tested some standard quality trimming tools like FASTX-Toolkit, seqtk²⁶. The FASTX-Toolkit quality trimmer works well on the data but performs trimming only on the 3' end of reads ignoring the 5' end. Another tool, seqtk is able to perform trimming on both ends. However, both tools do not provide a direct parameter to discard reads that have bad quality bases beyond the given or desired proportion.

²⁶ https://github.com/lh3/seqtk

Furthermore, they are not able to keep pairing information if one read of a pair is discarded completely. Thus, to overcome these issues, I wrote a perl script to trim bad quality bases from both ends of a read. The trimming approach is partially based on BWA's soft-clipping method²⁷ as implemented in the "TrimBWAstyle"²⁸ script. It screens the base quality scores from the end of a read and trims the low quality part (bases below the cutoff value). The script checks for a low quality base (score less than a given quality threshold) among the last or first five bases at the 3' and 5' end, respectively. This base position is the starting position for the trimming action (start base).

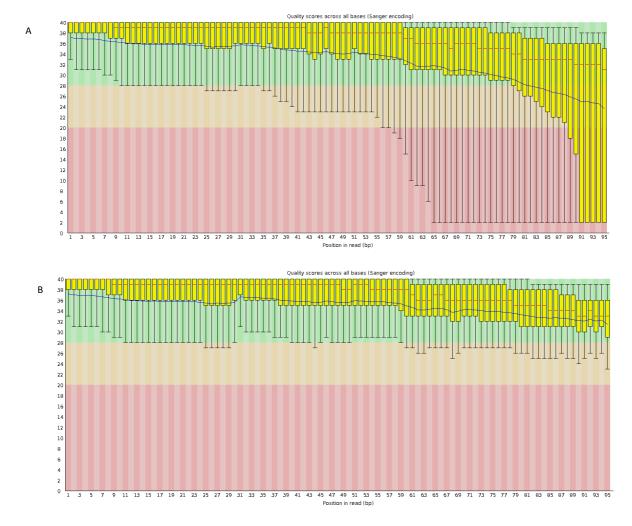


Figure 2.1 Effect of quality trimming on our in-house data. A) Base quality score across all bases before trimming. B) Base quality score across all bases after trimming (Y-axis: base quality score, X-axis: position of base along read).

²⁷ <u>https://github.com/lh3/bwa/blob/master/bwaseqio.c</u>

²⁸ <u>http://wiki.bioinformatics.ucdavis.edu/index.php/TrimBWAstyle.pl</u>

The script computes the difference between the quality score of the start base and the given quality threshold. Then it moves to the next base in downstream or upstream direction from the start base (for 5' and 3' end, respectively); computes the difference to the given quality threshold (as mentioned above) and adds this new difference value to the prior value. It continues this procedure till the final value of the sum of the differences drops to zero (<= zero). Bases up to the position where the score drops to zero are trimmed. As it considers the quality score of neighbouring bases, it can allow for a few good quality bases during the trimming action (depending on the score's range) and continue to hunt for preceding/following bad quality bases. Thus, this strategy is better than the basic hard trimming, which lacks the above-mentioned feature and only trims a continuous stretch of bad quality bases. The quality trimming script also discards the entire read if the read length (after trimming) becomes shorter than a given threshold or the percentage of bad quality bases in a read is more than a given threshold. Moreover, it keeps the pairing information when a read is completely discarded during trimming. The pseudo code of trimming script can be found in the Appendix.

In general, quality trimming is beneficial for bad quality data, but it can have some adverse effects. Discarding a significant amount of bases or the entire read could decrease the read coverage, which might affect the sensitivity or specificity of results. There are a few examples to illustrate the above-mentioned effect:

- If the majority of reads from a sample have intermediate (10-20) or low base quality scores (< 10) and a high quality score (usually 10 or 15) threshold is used for trimming, then most of the data will be discarded that leads to less sensitive results.
- If the data is having low read coverage and trimming decreases it further, then it can be dangerous for variant calling and could introduce many false positives or false negatives due to lack of supporting evidence.

Overall, the decision to do quality trimming and adapter trimming (including selection of appropriate thresholds or parameters) should be based on the data that needs to be

analyse or should be driven from its QC reports. Generalization (or default application) of this approach can hurt downstream analysis steps and produce less reliable results (MacManes, 2013).

2.2 Sequence alignment

Sequence alignment/mapping is the comparison between sequenced DNA and the reference genome sequence to identify the differences or regions of similarity. Thus, the alignment of reads to the reference sequence is the backbone of the entire data analysis. An alignment algorithm tries to find an optimal alignment for an individual read on the reference. For this purpose, it searches the reference genome for locations where the read can be mapped (possibly with gaps or mismatches), assigns an alignment score to each of these mappings and then selects the one with the highest score as the optimal alignment. Whether or not a read can be mapped depends on the number of allowed mismatches and gaps that are usually supplied by parameters and tune the alignment algorithm's sensitivity and specificity. The sensitivity and specificity of alignment algorithm can directly affect the number of false positive or false negative variant calls, respectively. If the alignment is too specific, i.e. allowing few or no mismatches/gaps during sequence mapping, then it is possible that many reads won't map to the reference that decreases the read coverage on many sites. Due to the lower coverage, a variant from such a site will not be called, even though it might be a real one (cf. Figure 2.4).

On the other hand, if the alignment is too sensitive, i.e. allowing more mismatches/gaps during the mapping, then it will result in lots of randomly mapped reads and can produce many false positives (cf. Figure 2.4). Besides the allowed error rate, other data characteristics like read length, sequencing platform, type of experiment etc., are also important factors to consider. All of these factors are interconnected to each other, for example, read length and error rate depend on the sequencing platform whose selection depends on the aim of study. Long reads with a low error rate are the bestcase scenario having high probability for unambiguous mapping to the reference genome sequence. Therefore, we need to consider the above-mentioned factors carefully, in order to get an adequate balance between sensitivity and specificity. There is a trade-off between the two effects that means if we go for high sensitivity then specificity will decrease and vice-versa.

Recent alignment algorithms (H. Li & Homer, 2010) (based on the above mentioned concepts) are much more complex than the basic algorithms (cf. Section 1.3) and align millions of sequence reads to the reference sequence in more efficient manners. The Burrows-Wheeler Transform (BWT) (Burrows & D. J. Wheeler, 1994) is a widely used algorithm for this purpose and implemented by almost all popular alignment tools, e.g. BWA (H. Li & Durbin, 2009), Bowtie (Langmead, Trapnell, Pop, & Salzberg, 2009), SOAP2 (R. Li et al., 2009). BWT is a fast and memory efficient algorithm that performs indexbased sub-string searching by using a reversible permutation of characters.

I used BWA for the alignment of reads to the human reference genome (GRCh37²⁹). This reference sequence is taken from 1000 genome project³⁰, but I replaced the original mitochondrial DNA sequence with NCBI's mitochondrion reference sequence (NC_012920³¹). BWA is one of the accurate and widely used aligner for DNA sequencing reads. It has been used in many studies and has also been compared with other popular alignment tools like Bowtie and Novoalign³² (Giannoulatou, Park, Humphreys, & Ho, 2014; Hatem, Bozdağ, & Çatalyürek, 2011). (Highnam et al., 2015) developed a benchmarking platform (GCAT³³), where different data analysis algorithms can be compared on real biological data. GCAT benchmarking also suggests that the BWA-MEM algorithm is one of the best alignment algorithms similar in terms of correctly aligned reads to Novoalign (the best alignment algorithm so far, but only commercially available

²⁹ http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

³⁰ <u>http://www.1000genomes.org/category/reference</u>

³¹ <u>http://www.ncbi.nlm.nih.gov/nuccore/NC_012920.1</u>

³² <u>http://www.novocraft.com/products/novoalign/</u>

³³ <u>http://www.bioplanet.com/gcat</u>

with full functionality) (cf. Figure 2.2). BWA can perform both paired-end (PE) and singleend (SE) alignment by 3 different algorithms³⁴:

- BWA-backtrack (H. Li & Durbin, 2009): performs gapped global alignment and is mainly used for Illumina PE and SE reads (< 100 bp).
- BWA-SW (H. Li & Durbin, 2010): performs Smith-Waterman alignment and is typically used for 454/Sanger single-end reads (up to 1 MB). It can also perform sensitive alignment of paired-end reads (> 100 bp).
- BWA-MEM (H. Li, 2013): This is the latest algorithm (similar to BWA-SW) that searches for maximal exact matches (MEMs). It is more accurate and faster than the other two algorithms and can replace them for alignment of reads between 70bp to 1Mbp.

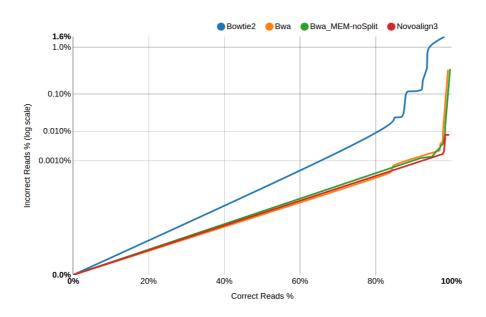


Figure 2.2 GCAT comparison of 4 different alignment algorithms. It shows the percentage of correctly and incorrectly mapped reads (on X and Y axis respectively) on simulated paired-end 100-bp Illumina reads. This figure is taken from (Highnam et al., 2015).

I performed extensive testing of BWA parameters to get the best possible alignment. Initially, BWA offered only two different algorithms: backtrack and SW (see above). As most of our data (esp. from Illumina exome sequencing) contain reads less than 100bp, I

³⁴ Before using these algorithms, one first needs to construct the FM-index for the reference genome by using BWA's index function.

selected BWA-backtrack for alignment. I also used BWA-SW for alignment of sequencing data generated from Ion torrent and 454 sequencing technologies (as they generate longer reads > 100bp). However, as mentioned above, I mainly used Illumina data and performed major testing and analysis with these data only. I tested some of the relevant parameters of the BWA-backtrack to see their effects on alignment like maximum edit distance (n), maximum edit distance in the seed (k), seed length (l), etc. (cf. Appendix). I found that the default parameter settings work well for most of these parameters. However, I observed significant differences in the sensitivity and specificity of the alignment when changing the maximum edit distance (n) parameter³⁵. This parameter regulates the number of allowed mismatches during alignment of reads. Thus, higher value means more sensitive alignment and vice-versa. Recently, BWA started to perform better alignment by using the new MEM algorithm compared to the alignments generated by backtrack algorithm. BWA-MEM allows moderate error rates during alignment and provides a good trade-off between sensitivity and specificity of alignment. It is also recommended by the BWA developer to replace the old backtrack algorithm by MEM on the reads having read length greater than 70bp. I compared the generated alignments on our control sample NA12878 (cf. Section 2.4.2) from both algorithms in the following contexts: alignment statistics and evaluation of variants called from the generated alignments.

Alignment statistics

There are a few basic alignment statistics like total number of aligned reads, high quality aligned reads or bases etc. that can provide an overview of an alignment algorithm's sensitivity or specificity. In general, a higher percentage of aligned reads means that the alignment is more sensitive. Table 2.1 shows alignment statistics computed from alignments generated by BWA-MEM (with default parameters) and BWA's backtrack algorithm (BWA-aln) with default parameters as well as with n=7 (remaining parameters are at default values). I used the Picard tool to compute these alignment statistics (cf. Section 2.2.2). As shown in the table, BWA-MEM performs better in every aspect of the

³⁵ <u>http://bio-bwa.sourceforge.net/bwa.shtml</u>

read alignment. It aligned more reads with a higher percentage of high quality (HQ) aligned reads and bases than the BWA-aln algorithm (at both default and n=7). This means BWA-MEM performs read alignment with higher sensitivity and specificity (with less noise reads containing only of A bases and/or N bases³⁶ entirely) than the BWA-aln algorithm. Moreover, BWA-MEM is faster than BWA-aln and takes approximately 4 hours less compared to BWA-aln at n=7. As mentioned above, BWA-MEM works better with reads having a read length greater than 70bp. Thus, BWA-aln algorithm is required for the alignment of short reads (< 70bp read length). This algorithm is more sensitive at n=7, as it aligns more reads with a bit higher percentage of high quality (HQ) aligned reads and bases, than at default parameters.

BWA's	BWA's Total		% Reads	% HQ	Noise	% HQ	Approx.	
algorithms	Reads	Aligned aligned		Aligned	Reads	Aligned	Time	
		Reads	in pair	Reads		Bases	taken ³⁷	
aln	92078710	0.968	0.995	0.937	487	0.938	3,0	
(default n)								
aln (n=7)	92078710	0.974	0.995	0.938	469	0.938	5,30	
MEM	92078710	0.988	0.995	0.940	0	0.942	1,10	

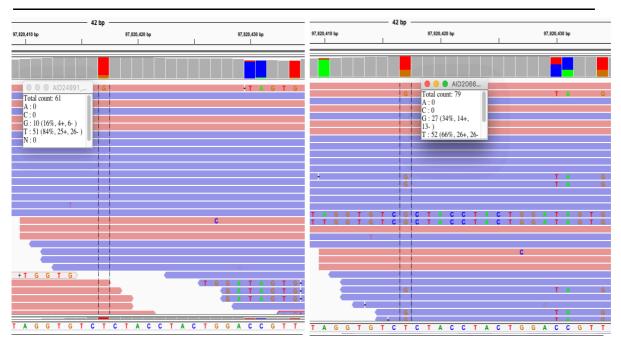
Table 2.1 Comparison between BWA's alignment algorithms in context to reads alignment.

BWA's	Raw	Variants	Recal	Ti/Tv	Ti/Tv	TPR	FPR	TPR	FPR
algo-	variants	After	SNPs	ratio	ratio	Recal ³⁸	Recal	After	After
rithms		Hard		Recal	After	SNPs	SNPs	Hard	Hard
		Filtering		SNPs	Hard			Filtering	Filtering
					Filtering				
aln	588102	517099	38156	2.74	2.85	0.995	0.029	0.986	0.007
(n=7)									
MEM	730044	670800	37592	2.81	2.87	0.995	0.017	0.986	0.004

Table 2.2 Comparison between BWA's alignment algorithms in context to called variants.

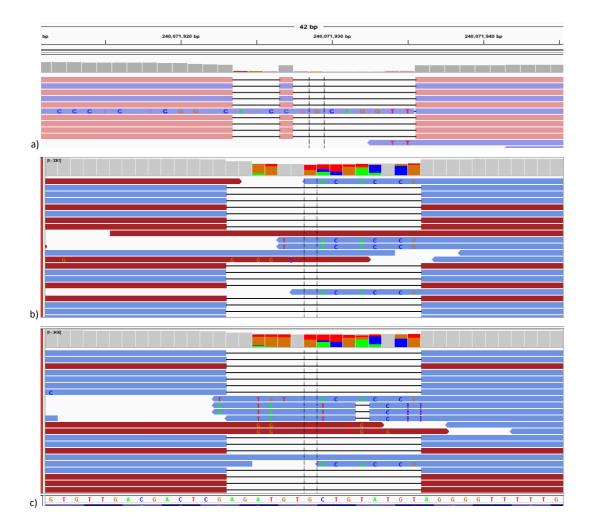
³⁶ https://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics

³⁷ The format of time is in hours, minutes. All algorithms ran with 4 cores and 8 gb RAM.


³⁸ Filtered SNPs by VQSR

Variant list evaluation

The performance of alignment algorithms can also be evaluated by the sensitivity and specificity of variant lists (cf. Section 2.4). To do this, I generated variant lists with GATK's Unified Genotyper variant caller (cf. Section 2.3), using reads (100 bp or longer) aligned by both BWA-MEM and BWA-aln algorithms followed by the same post alignment improvements (cf. Section 2.2.1). Table 2.2 shows the number of called variants with their evaluation. The variant list generated from the aligned reads by BWA-MEM shows the higher Ti/Tv ratio, lower FPR with the same TPR after both types of filtering (Hard and VQSR) (cf. Section 2.3.1). This clearly indicates that BWA-MEM is a better algorithm than the BWA-aln for reads greater than 70 bp in length.


Effect of alignment sensitivity and specificity at variant sites

Besides the evaluation of sensitivity and specificity of called variants, I observed some significant effect on a few variants at different levels of alignment sensitivity. Figure 2.3 shows the difference between the alignment of reads at position chr 2: 97820417 (highlighted with vertical dotted bars) by BWA-aln (shown in the right part of the figure) and BWA-MEM (shown in the left part of the figure). BWA-aln (at n=7) is having high sensitivity thus it aligned a few more reads (18 reads more than BWA-MEM), which provided strong support for the alternate allele "G" at this position with 34% frequency compared to 16% frequency in aligned reads by BWA-MEM (frequencies of alternate allele and reference allele are shown in white boxes). Due to the high alternate allele frequency this variation can easily be called as a SNP, although it is a FP (validated by GIAB benchmarking (cf. Section 2.4.2)). Moreover, the sensitive alignment by BWA-aln also increased the frequency of nearby alternate alleles depicted in the coloured bar in the coverage track (shown in grey colour at top of the both figures), which results in more FPs from these sites (also reported as FPs by GIAB benchmarking). However, due to the moderate sensitivity of BWA-MEM, fewer mismatches are allowed during the mapping of reads that resulted in a less noisy alignment, and thus, less FPs at this site.

Accurate DNA sequencing data analysis: hurdles and solutions

Figure 2.3 Difference between the alignments produced by BWA-MEM and BWA-aln at n=7.

Similarly, Figure 2.4 shows the adverse effect of sensitive alignment on the real deletion of 11bp in one of the old test exome datasets (sequenced in-house). Part (a) of the figure shows an alignment performed by BWA-aln at default value of n (n=0.04), part (b) at n=7 and part (c) shows a more sensitive alignment at n=10. At default n, the BWA-aln performs more specific alignment, thus we can observe a lower number of aligned reads in the coverage track (shorter grey coloured bars) compared to the other diagrams. Due to the lower number of the supporting reads (only 10 reads), this variant can be skipped or filtered by variant callers. In the other alignment sn=7 (part b) and n=10 (part c), more mismatches are allowed during the alignment that result in a few more supporting reads for this deletion. However, due to the increased sensitivity at n=10, a few extra reads with a one base deletion and lots of mismatches can be observed.

After observing the effect of sensitivity and specificity of the alignment algorithm, I decided to rather perform sensitive alignment instead of a too specific one, as false positives can be filtered at any stage after the alignment. However, lost data due to specific alignment cannot be retrieved later on. As most of the recent Illumina sequencing reads are longer than 70bp, I have not tested the effects of BWA-MEM on sequencing reads < 70 bp and simply follow the BWA developer's recommendation to use BWA-MEM for reads longer than 70 bp. I use BWA-backtrack in sensitive mode (n=7) only for Illumina sequencing reads < 70 bp, whereas BWA-MEM is used for reads having read length => 70 bp. I also use the same combination for the alignment of sequencing reads generated from lon-torrent sequencers. These reads are usually having unequal read length, thus, I split the data into two parts: reads having length < 70 bp and reads having length > 70 bp. After data splitting, I perform alignment similar to Illumina reads (as mentioned above). Hence, the selection of algorithm and parameter tuning should also be based on characteristics of the targeted data like read length, sequencing platform etc.

Even with the proper selection of the parameters, alignment algorithms are not able to perform accurate mapping in certain genomic regions, especially in the following genomic regions:

- Low complexity regions (LCRs): LCRs are the regions that are highly enriched with one or combination of a few nucleotide bases (Radó-Trilla & Albà, 2012), for (micro-satellites), poly-purine/poly-pyrimidine simple repeats example, stretches, or regions of extremely high AT or GC content³⁹. In these regions, alignment algorithms produce mappings with many mismatches or fail to map a read on the reference sequence, using sensitive or strict alignment, respectively. Moreover, due to the sequence similarity in repetitive regions, they can map a read at multiple positions or at the wrong position (Treangen & Salzberg, 2012). For example, reads belonging to gene A can map on gene B having high sequence similarity to gene A or can map on both genes. This might lead to either loss of a true variant or many FPs (SNPs, Indels). Indel errors are very prominent in these LCR regions and also cannot be ignored by modern variant callers which perform realignment before variant calling (H. Li, 2014) (cf. Section 2.3).
- Highly divergent regions (HDRs): HDRs are regions where sequences are having less than 99.5% identity in the human genome (e.g. GC rich regions, highly recombining subtelomeric regions) (Kuruppumullage Don, Ananda, Chiaromonte, & Makova, 2013). These regions are hard to sequence by short read NGS techniques and also cannot be mapped accurately by alignment algorithms. These regions sometimes resemble to some structural variants⁴⁰ (SVs) associated with segmental duplications and are also problematic for SV detection.
- Regions belonging to paralogous genes: Paralogous genes are duplicated genes within a species (usually genes belonging to a gene family). They can have slightly different functional roles or can be pseudogenes (functionally inactive genes). In this case the aligner can map reads to multiple positions (to a gene as well as to its paralogous gene(s)) or can produce a wrong mapping (mapping on the paralogous gene(s) only). Therefore, these genes contain many FPs and appear

³⁹ http://www.repeatmasker.org/webrepeatmaskerhelp.html#lowcomp

⁴⁰ http://grantome.com/grant/NIH/F32-GM097807-01

frequently during variant discovery experiments (Arthur, Cheung, & Reichardt, 2015; Meldrum et al., 2011).

2.2.1 Post processing of aligned reads

Quality control and good alignment (with optimum settings) are not sufficient to get an accurate alignment of the reads. There are still some errors or mapping artefacts present in the data that can be addressed or filtered only after alignment (Liu et al., 2012; Nielsen, Paul, Albrechtsen, & Song, 2011). Thus, to avoid these errors additional post processing of aligned reads is required. This post processing is suggested by the GATK best practice guideline⁴¹ (Van der Auwera et al., 2013) and has become a standard procedure or default step in the majority of the data analysis workflows (D'Antonio et al., 2013; Lam et al., 2012). I also tested it and found it useful for exome sequencing data. The following sections contain three steps (cf. Figure 3.1) of the post processing of the aligned reads and their improvements.

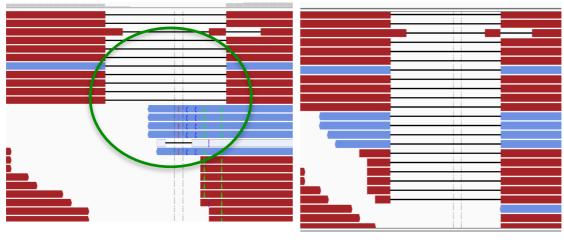
Duplicate marking (removal)

PCR amplification during library construction can result in duplicate reads, which might lead to FPs during variant calling. A variant at some site can be called by a variant calling algorithm due to the high read depth (number of supporting reads) that is actually only generated by an accumulation of duplicates. Additionally, many duplicates of a read with wrong Indels (aligned due to the in-accurate read mapping) can mask the correct Indels during Indel realignment (cf. Section "Local Indel realignment").

I used the Picard tool⁴² to remove duplicates. Picard is widely used tool and has many functionalities like duplicate removal/marking, BAM to fastq conversion, BAM/SAM file merging, computation of alignment and enrichment statistics etc. Its MarkDuplicates algorithm compares 5' coordinates and mapping orientations of each read pair and marks all pairs as duplicates for which these parameters are identical. It keeps one read

⁴¹ https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq

⁴² http://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates


pair⁴³ among all duplicates based on the highest sum of base qualities, where the pair should have all bases with quality (Q) >= 15. Duplicate removal should be performed on the entire BAM file (not on BAM files split e.g. by chromosome), to find interchromosomal duplicates. In some experiments, due to their chemistry (e.g. in the PCR based target selection approach), most of the reads can be detected as PCR duplicates by the MarkDuplicates tool. However, these reads are not duplicates and discarding them might lead to significant loss of data. Therefore, an on/off switch for triggering duplicate removal based on the type of data is used in our data analysis workflow.

Local Indel realignment

Alignment algorithms can fail to map some Indels correctly at some position and can produce different alignments for different reads. Some reads can have one or a few mismatches at that position instead of one complete Indel, and some reads can map without Indels. These misalignments can result in FPs or loss of some Indels during variant calling. Thus, Indel realignment is an essential step to correct misalignments by performing multiple sequence alignment (MSA) on suspicious positions. Figure 2.5 shows some alignment inaccuracies and their correction by local Indel realignment at a certain position of our in-house data. Part (a) of the figure shows the raw alignment (before realignment). It is showing a deletion (and some mismatches) with very few supporting reads (highlighted in the green coloured circle shape) that might lead a variant caller to skip this deletion. In part (b), we can see the improved alignment after Indel realignment and a sufficient increment in the number of supporting reads to detect the deletion (without mismatches) present at this site. The Indel realignment method is a part of the Genome Analysis Tool Kit⁴⁴ (GATK) (DePristo et al., 2011; McKenna et al., 2010). It is a two-step process: at first, it checks for suspicious intervals (esp. near Indels) in the alignment and then performs local realignment (MSA) over those intervals. The detailed information of this two-step process can be found in Appendix.

⁴³ <u>http://broadinstitute.github.io/picard/faq.html</u>

⁴⁴ https://www.broadinstitute.org/gatk/guide/topic?name=methods

a.) Before Indel realignment

b.) After Indel realignment

Figure 2.5 Improvement in the alignments after Indel realignment process.

Base quality score recalibration (BQSR)

BQSR is also a part of GATK, which adjusts under or over estimated base quality scores, resulting from systematic biases during sequencing or due to the inaccurate estimation by the sequencer's basecalling software. It assigns new quality scores by calculating the probability of a mismatch on the reference sequence. For example, if the original quality score of a base is 25 (good enough for variant calling), but if this base is actually observed to be a mismatch on the reference at a 1 in 100 rate, then it should have 20 as a quality score value. Thus, an overestimated quality score provides false confidence in the base call and can lead to FPs. Moreover, it is known that the base calling errors are higher towards the end of the reads (means in lower cycles) than at the beginning of the reads. It has also been observed that the mismatches are associated with sequence context, the dinucleotide AC is usually having lower quality than TG⁴⁵ (Dohm et al., 2008; Nakamura et al., 2011). BQSR is addressing these errors by correcting bases quality score based on the analysis of four different covariates: read group, quality score, machine cycle and di-nucleotide, from the given data. The details of BQSR method can be found in Appendix.

⁴⁵ <u>http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr</u>

2.2.2 Alignment & enrichment statistics

After post alignment improvement, it is good to assess the overall sample quality in terms of coverage and alignment quality. Both, specificity and sensitivity of variant detection can be lowered by bad quality data. Thus, alignment and enrichment statistics can help to decide whether a certain sample is good enough for variant calling or not. For example, a sample should have at least 20X read coverage with good mapping quality (> 20 or > 30) throughout the sample. Moreover, a high percentage of aligned reads, uniform quality distribution by cycle, small deviation in the insert sizes are other useful parameters to judge a sample and its alignment quality. I used the Picard tool to compute alignment and enrichment statistics. It generates a summary of alignment⁴⁶ parameters, e.g. total number of aligned and unaligned reads, read length and insert size distribution, mapping quality distribution, quality by machine cycle, etc. It also summarizes the sample coverage⁴⁷ by giving coverage values at 2X, 10X, 20X, 30X and the proportion of on/off target reads.

2.3 SNP/Indel calling

Apart from the alignment accuracy, accurate SNP/Indel calling is also necessary to find some true causal variants in the sequencing data. There are lots of different variant calling algorithms that claim to find variants from sequencing data (Bao et al., 2014; Pabinger et al., 2013). However, it has been reported that there is low concordance between the results from different variant callers (O'Rawe et al., 2013; Yi et al., 2014). Therefore, I also tested 4 different variant callers: Platypus (PP) (Rimmer et al., 2014), Samtools (H. Li et al., 2009) mpileup (MP), GATK's Unified Genotyper (UG) and Haplotype Caller (HC) (DePristo et al., 2011; McKenna et al., 2010).

Variant lists were generated from BWA-MEM alignments of the in-house sequenced control sample NA12878 (cf. Section 2.4.2) followed by post-processing. Default or suggested parameters have been used for all variant callers (with base quality score>10).

⁴⁶ <u>https://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics</u>

⁴⁷ https://broadinstitute.github.io/picard/picard-metric-definitions.html#HsMetrics

Figure 2.6 shows the number of variants in sample NA12878 called by Samtools mpileup, GATK's HC and Platypus. As can be seen in the figure, HC is more sensitive and calls a larger number of variants than the other tools. On the other hand, mpileup focuses on accuracy and calls much less variants than the other callers. Among our four variant callers, GATK's UG and Samtools' mpileup use a Bayesian approach (H. Li, 2011) to call SNPs and Indels and treat each position independently. These alignment-based approaches provide sensitive variant calling but also produce many FPs. The algorithms rely on alignment accuracy, which is not good in low complexity regions (LCRs) and in highly divergent regions (cf. Section 2.2). Although misalignment near Indels can be corrected by local realignment (cf. Section 2.2.1), still these algorithms can produce errors around Indels and larger (complex) variants (Rimmer et al., 2014). On the contrary, PP and HC are the most recent and sophisticated haplotype-based callers. Both tools perform local denovo assembly (by building a De Bruijn-like graph) in order to find the correct haplotype, which is used for SNP/Indels identification, and try to compensate for the above-mentioned drawbacks. However, these methods can perform badly in repetitive regions due to the loss of contiguity information during the segmentation of reads into consecutive k-mers, which is required for graph construction (Rimmer et al., 2014; Zerbino et al., 2008). Thus, the integration of callers from these two different algorithms is better than the usage of a single algorithm to achieve highly accurate and sensitive variant calls.

Table 2.3 shows the performance of different variant callers and the integrated approach (the combined results from different callers) in the context of sensitivity and specificity of variant lists generated for control sample NA12878 (cf. Section 2.4). Mpileup's VCF file is excluded from this comparison due to some compatibility issues. In this comparison, a significant difference between numbers of raw variant calls can be observed which result in little overlap between these callers (cf. Figure 2.6). Unified Genotyper (UG) calls approximately two times more variants than Haplotype Caller (HC) and Platypus (PP). These three callers showed good sensitivity (TPR > 99%) with reasonable specificity (FDR < 0.02). However, the combined results from these three callers, where a variant should be called by at least 2 callers (minN2), showed better

results in terms of specificity (lower FDR and better PPV) with almost identical sensitivity. The Ti/TV ratio of the combined variant calls is also higher than the calls from an individual variant caller.

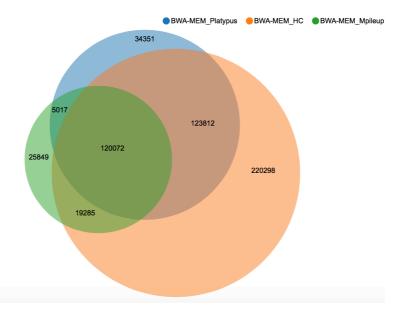


Figure 2.6 Overlap between raw variant lists of control sample NA12878 generated from 3 different variant callers. Number of variant calls generated by Samtools mpileup, GATK haplotype caller (HC) and Platypus are shown in green, orange, and blue colour, respectively.

Variant	Raw	Shared	Match	Non-	FDR	TPR	FPR	PPV	Ti/Tv
Callers	Variants	Raw		Match					
		Variants							
UG	718794	23721	23327	394	0.0166	0.995	0.0168	0.983	2.812
НС	443366	23524	23286	238	0.0101	0.994	0.0102	0.989	2.851
РР	283755	23602	23275	327	0.0138	0.993	0.0140	0.986	2.818
Combined	303722	23412	23275	137	0.0058	0.993	0.0058	0.994	2.872
(minN2)									
Combined	735351	23885	23341	544	0.0227	0.996	0.0232	0.977	2.78
(minN1)									

Table 2.3 Comparison of variants callers' performance to the integrated approach.

Similar observation can be made in Figure 2.7, which shows that the results from integration of variant callers are more accurate. The figure shows the Qual score threshold used in the comparison of variant list with NIST list. The variants generated from the combined method are having high confidence variants with Qual score greater

than 30, compared to the individual callers where many variants are having Qual score between 7-30 range. Therefore, I decided to use a set of variant callers (Platypus, Samtools, GATK's UG and HC) to perform SNP/Indel calling and combine their results. A recent comparison also reports the same finding that the integration of multiple callers is better than any single variant caller to get variants of high confidence and sensitivity (Bao et al., 2014).

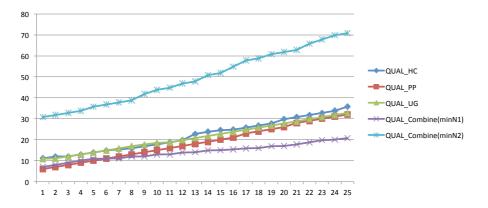


Figure 2.7 Variant Qual score thresholds used during the comparison of individual callers and the integration approach. X-axis shows number of selected thresholds and Y-axis shows the Qual score.

2.3.1 Filtering strategies

Continuous development of algorithms has already improved variant calling up to a significant level and further improvements are still going on. Although the current algorithms are rather accurate they still produce a lot of FPs, due to their moderate filter settings (to balance between specificity and sensitivity) or due to sequencing artefacts (e.g. systematic bias, alignment bias or some random errors etc.). In order to filter these FPs, additional efforts are required. Filtering strategies can vary from filtering based on some fixed values (hard filtering) to filtering based on models trained from variants of each data set individually (VQSR, Variant Quality Score Recalibration). Moreover, it can be based on prior knowledge about the disease or the design of the study (e.g. based on pedigree, trios etc.) or based on functional effects of the called variants on the phenotype. In general, hard filtering and/or VQSR can be applied on most of the exome data with some care (cf. next paragraph).

VQSR is a Gaussian mixture model⁴⁸, which categorizes a variant list into reliable and unreliable variant calls. It takes the overlap between a variant loci list from the HapMap3/Omni 2.5M SNP chip array (the truth/training resource sets) and the given variant list. Then, it learns the distribution of some SNP annotation values present in this list (e.g. QD, SB, HaplotypeScore, MQ, MQRankSum, ReadPosRankSum etc.) (cf. next paragraph). Based on the learned values, it splits the variant list into reliable and unreliable variant clusters (cf. Figure 2.8 (a)). These clusters are further used to compute the log odds ratio (known as VQSLOD) of being a true variant versus being a false call according to their distribution⁴⁹. Higher or positive VQSLOD score (VQSLOD > 3) means that the variant call is more reliable and so this score can be used to filter FPs. However, the precise threshold should be selected according to data characteristics. In one of our data sets, we found that at higher thresholds there is a chance of missing true variants. Thus, we use a lower threshold to avoid such false negatives (VQSLOD > -8).

VQSR allows partition of the variant calls into quality tranches (cf. Figure 2.8 (b)). These quality tranches provide different thresholds that can be used to select a desired sensitivity or specificity relative to the truth set. There are four default values of tranches (90, 99, 99.9, 100), but these thresholds can be customized according to the filtering requirement. From 90 till 100 tranche, each tranche incorporates true positive calls as well as some false positives depending on the used threshold for tranche categorization. For example, tranche 100 means 100% sensitivity (i.e. the filtered list will contain 100% of known variable sites found in the truth set) but it can have many FPs. On the contrary, the 90% tranche is more accurate (less FPs than 100% tranche) but can miss some of the true variants. Thus, if the aim is to get a most comprehensive list then the highest tranche should be selected. The selection of a tranche should be based on the objective of the study or the filtering requirements. Moreover, tranche categorization also comes with Ti/Tv ratios (cf. Section 2.4.1) on novel variants in the list (cf. Figure 2.8 (b)), which can also be used for tranche selection. For example, lowering

⁴⁸ http://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model

⁴⁹ http://gatkforums.broadinstitute.org/discussion/39/variant-quality-score-recalibration-vqsr

the tranche value to a certain extent is safe as long as the Ti/Tv value is in a proper range (for exomes, the Ti/Tv should be around 2.8) (cf. Section 2.4.1).

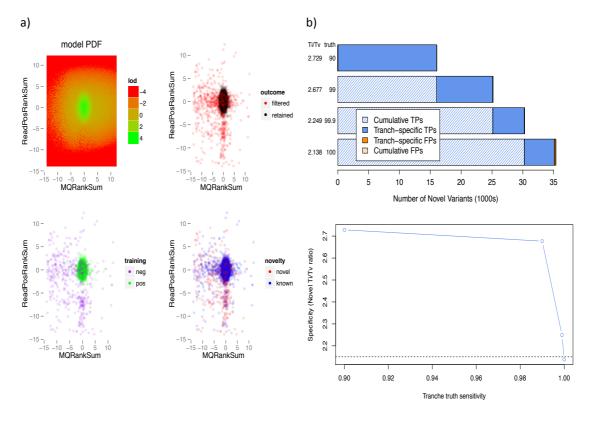


Figure 2.8 a) VQSR clustering based on 2 Annotations: ReadPosRankSum and MQRanksum. The upper left part shows the distribution of variants based on the scores of annotations varying from bad quality to good quality of variant (i.e. lod score range -4 to 4) (red colour to green colour respectively). Thus, the variants belonging to the green cluster have higher confidence than the variants having annotation values in the red part of figure (the higher the score the more reliable is the variant). Similarly, the other parts of the figure (upper right, bottom left) are also showing two different clusters and demonstrate which portion of the positive (reliable) and negative (unreliable) variants and portion of the should be filtered or kept after training, respectively. The figure at the bottom of right side is depicting the proportion of novel and known variants in the variant list. This figure can be used to judge VQSR, for example, if we observe distinct clusters of reliable and unreliable variants then that mean the variants are categorized properly (or up to certain extent). b) VQSR's four-default tranches and their correlation with sensitivity and Ti/Tv ratio. The upper part shows VQSR's four-default tranches and the lower part shows the correlation between VQSR's tranche sensitivity and the Ti/Tv ratio. Both figures (a & b) show that the gain in sensitivity of the variant list causes a significant drop in specificity (as well as Ti/Tv ratio) of the variant list and vice-versa. These diagrams are generated to for our control sample NA12878 and able to shows the performance of implemented VQSR filtering in our workflow.

VQSLOD is a reliable score for FPs filtering, but it requires a well trained model. Weak models can result in bad classification of the variants in a given call set, which could affect variant filtering and lead to many FPs or FNs. Thus, I tested VQSR and observed that the default parameter settings are not sufficient for training a good model (at least for our exome sequencing data). After several trial and error processes during testing (cf. Appendix) (including some recommendations from GATK), I found that the following facts should be considered during/before VQSR:

- VQSR should be performed only on variants inside the target regions: Variants beyond the target regions may have bad quality (e.g. poor coverage, low mapping quality/accuracy etc.) and can damage or badly influence the model training. Thus, I performed VQSR only on variants belonging to the targeted regions of the sequenced experiment.
- 2. VQSR should have enough calls in the given variant list: As this is the learning procedure, it needs a sufficient amount of data (thousands of variant sites). Less data can result in a bad model, thus, in the case of less variant sites, more samples should be coupled with the sample of interest. I used 32 samples with multi-sample calling to generate a variant list with lots of variant calls. I used this list as a reference variant list with every sample of interest to have sufficient data for VQSR.
- 3. Model training parameters provided by the tool should be selected carefully: The default parameter setting might not be good for every data set, so the selection of parameters should be based on data characteristics (e.g. type of study, sequencing platform etc.) and the amount of data available for training. For example, with few variant sites, lowering the number of Gaussians ("-mG" parameter) can be helpful for training the model. I used –mG=6 for the VQSR training to achieve good performance on our data (default value is 8).

We also use a combination of some hard thresholds⁵⁰ to filter both SNPs and Indels as suggested by the GATK's best practice guideline⁵¹, when the VQSLOD score is not available (e.g. Off-target variants). A combination (or individual application) of the following filters can discard a significant amount of the FPs caused the coverage bias, strand bias and alignment artefacts (or poor alignment):

- Quality by Depth (QD): It is a normalized value of the variant quality score (Qual) by with respect to read depth. As Qual is calculated from the read depth, thus, the highly covered variants can have an over estimated Qual score. Therefore, normalization of Qual with respect to coverage provides a more realistic representation of the variant confidence. Low QD scores are indicative of false positive SNPs (or artefacts)
- 2. Fisher Strand (FS) score: Fisher strand score is a probability score from Fischer's Exact test to detect the strand bias. Strand bias means that a variant is only present in reads from one strand. Paired-end (or Single end) exome sequencing produces reads from both strands (forward or reverse), so a true variant should be present on reads from both strands. A higher FS score suggests that the SNP is mainly (most probably) supported by only reads from one strand, a typical signature of FPs.
- 3. Mapping quality (MQ): It is a Root Mean Square of the mapping quality of the reads and should be high for confident SNPs. Low value MQ signifies that the alignment accuracy at this position is not good and the aligned reads might be result of wrong alignment with some mismatches. Thus, the called variant can be just a mismatch due to bad alignment and should be discarded.
- 4. Mapping quality rank-sum test (MQRankSum): This score can be used to filter only heterozygous calls as this test performs the Mann-Whitney Rank Sum Test⁵² for mapping qualities of the reads with reference bases vs. reads with the alternate allele. If the MQ of reads supporting the alternative allele is less than the MQ of reads supporting the reference allele, then these reads can be

⁵⁰ <u>http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set</u>

⁵¹ https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq

⁵² <u>https://en.wikipedia.org/wiki/Mann–Whitney_U_test</u>

misaligned, which might introduce mismatches. These mismatches can easily be called as variants, which most probably are FPs.

5. ReadPosRankSum: Bases at the ends of the reads have a high probability of error, thus, a variant called from the end parts of reads can be a FP (cf. Section 2.1.2). The ReadPosRankSum test (i.e. Mann-Whitney Rank Sum Test) evidence of the positional bias, which reports the distance of alternate allele from the ends of the reads and should be used to avoid FPs at the read ends.

We use the following thresholds to filter false positives (for both SNPs and Indels):

- For SNPs: QD < 2.0, FS > 60, MQRankSum < -12.5, ReadPosRankSum < -8.0.
- For Indels: QD < 2.0, FS > 200.0, ReadPosRankSum < -20.0

The above-mentioned filters work best on Illumina data and should be used carefully for other technologies (cf. Section 2.4.2). The effect of these filters on variant list can be observed by evaluation of the sensitivity and specificity of the variant list (after filtering) (cf. Section 2.4). On good quality data these filters should not be harmful, but generalization of these filters (application on any data) might lead to some FNs. All of these filters and some other sample specific filtering strategies (as mentioned above) are implemented in our web-browser Varbank⁵³ (https://varbank.ccg.uni-koeln.de/). In Varbank, the user can apply different combinations of filters and his/her disease related knowledge to obtain a shorter list of interesting candidates.

⁵³ Developed by Dr. Holger Thiele

2.4 Evaluation of the variant list

After filtering or along the filtering process, we evaluated our results (variant list) to check the effect of the filters on the variant list as well as the sensitivity and specificity of our data analysis workflow by the following criteria:

2.4.1 Ti/Tv ratio

The Ti/Tv is the ratio of transition mutations, Ti, (between purines (A <-> G), or between pyrimidines (C <-> T)) to transversion mutations, Tv, (between purines and pyrimidines (A <-> T or C <-> G)) (Q. Liu et al., 2012). In general, transitions are more frequent than the tranversions (due to methylation of C in CpG islands), thus, this ratio can indicate how much your variant list deviates from general expectations. (DePristo et al., 2011) states that this ratio should be 0.5 for FPs and a good quality variant list for an exome should have a Ti/Tv ratio around 2.8. Therefore, this ratio can be used to evaluate the effect of different filters or their combination on the raw variant list (cf. Figure 2.8). For example, after filtering FPs, the ratio should increase and tend to reach the expected value, but if it is decreasing then the filter might not be good for this type of data. The Ti/Tv ratio can be calculated by vcftools (Danecek et al., 2011) or GATK's VariantEval methods (e.g. mis-sense/non-sense ratio, heterozygous/homozygous ratio, etc.). Besides these tools, we use our SQL server to compute such kind of information from the variant list.

54

https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_varianteval_Varia ntEval.php

2.4.2 Benchmarking of variant lists with the GIAB dataset

The Genome in a Bottle (GIAB)⁵⁵ (hosted by NIST⁵⁶) consortium generated a highly confident list of SNPs, Indels and homozygous reference genotype calls for the HapMap⁵⁷/1000 Genomes⁵⁸ CEU female genome NA12878⁵⁹ by integration of data sequenced with different sequencing technologies and processed by different sets of data analysis tools/algorithms (Zook et al., 2014). This multi-resources data integration avoids almost all types of biases (sequencing bias, platform bias, alignment or variant calling bias, etc.), and provides a highly accurate list that can be used to compare inhouse generated variant lists.

We performed exome sequencing for NA12878 and processed the sequencing data with our exome pipeline to check the sensitivity and specificity of the variant list compared to the list from GIAB. Different variant callers can report the variant in different notations; for example, one MNP (multi-nucleotide polymorphism) can be called as an MNP or as two or more different variants (SNPs) with different locations. Therefore, we first perform normalization of our variants by using the vcfallelicprimitives method of the vcflib tool⁶⁰, which (by default) splits MNPs into multiple SNPs. This tool also normalizes the GIAB list, thus it makes variant coordinates in both lists comparable. In order to compare lists, we used the VCF comparator function of the USeq tool⁶¹ (Nix, Courdy, & Boucher, 2008). It compares the variants (both Indels and SNPs within the shared region, i.e. the target regions of the test sample) present in both variant lists and reports the number of matches and non-matches, false discovery rate (FDR), true positive rate

⁵⁵ https://sites.stanford.edu/abms/giab

⁵⁶ http://www.nist.gov

⁵⁷ <u>http://hapmap.ncbi.nlm.nih.gov</u>

⁵⁸ http://www.1000genomes.org

⁵⁹ https://catalog.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA12878&Product=DNA

⁶⁰ <u>https://github.com/ekg/vcflib#vcfallelicprimitives</u>

⁶¹ <u>http://useq.sourceforge.net/cmdLnMenus.html#VCFComparator</u>

(TPR), false positive rate (FPR) and positive prediction value (PPV)⁶² at different quality thresholds (QUAL).

FDR=non-match/(match+non-match)

TPR=match/total shared variants in Control list (i.e. GIAB list)

FPR=non-match/total shared variants in Control list

PPV=match/(match+non-match)

Callers		QUAL	Match	Non-	FDR	TPR	FPR	PPV	Ti/Tv	
					Match					
(0	SNPs		none	23327	394	0.016609	0.995349	0.016811	0.9833903	2.81
DU	RecalSNPs		37.77	23269	245	0.010419	0.992874	0.010454	0.9895807	
DG	HardFilt	SNPs/Indels	none	24338	107	0.004377	0.986222	0.004335	0.9956228	2.87
D	Har	SNPs/	38.77	24322	103	0.004216	0.985574	0.004173	0.9957830	
	NPs		none	23286	238	0.010117	0.993599	0.010155	0.9898826	2.85
НС	RecalSNPs		37.77	23250	150	0.006410	0.992063	0.006400	0.9935897	
	iit	labr	none	24429	53	0.002164	0.989910	0.002147	0.9978351	2.88
НС	HardFilt	SNPs/Indel	37.73	24416	52	0.002125	0.989383	0.002107	0.9978748	

Table 2.4 Benchmarking results of different variant lists of control sample NA12878 with GIAB dataset.

Besides measuring the accuracy and sensitivity of a variant list, this benchmarking can be used to compare variant callers or to monitor filtering strategies with respect to the achieved TPR and/or FPR. Thus, we compared the 4 different following variant lists with the GIAB list:

- UG HardFilt SNP/Indels: Both SNPs and Indels called by Unified Genotyper (UG) and filtered by hard filters suggested by GATK's best practice guideline.
- UG RecalSNPS: SNPs called by UG and recalibrated by VQSR.

⁶² https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values

- HC HardFilt SNP/Indels: Both SNPs and Indels called by Haplotype Caller (HC) and filtered by hard filters suggested by GATK's best practice guideline.
- HC RecalSNPS: SNPs called by HC and recalibrated by VQSR.

Moreover, we compared results with and without quality filtering (QUAL~= 38 and QUAL = none, respectively), to see the effect on sensitivity and specificity of variant lists. Table 2.4 shows the benchmarking results of the above-mentioned variant lists generated for the in-house control sample NA12878 with the GIAB dataset. With all different lists, we have achieved the expected Ti/Tv ratio, which is around 2.8 for exome sequencing data. Moreover, we achieved good sensitivity (varying from 99% till 99.78%) and specificity (varying 98% till 99.78%) for all four variant lists.

In general, the QUAL filter shows little improvement in specificity but can decrease sensitivity (in fractions). This is expected, as QUAL is the confidence of a variant call and can filter out some low confident variants. However, sometimes a true variant also can have low confidence due to certain sequencing biases and artefacts like coverage bias, paralogous alignments etc. Without QUAL filtering, both variant callers are showing similar performance. At QUAL > 37, HC gives better results in both aspects (TPR and FPR). The variant list from HC at this threshold shows improvement in specificity without compromising sensitivity. This indicates that the QUAL score is more reliable or accurate from HC, which is expected, as it does not only rely on alignments. It performs local realignments (assembly), which can avoid some alignments errors (cf. Section 2.3). Moreover, the numbers in the table clearly show that HC is better than UG in terms of both sensitivity and specificity. After the applications of both of the filtering strategies VQSR and hard filters, the variant list generated by HC is better and has slightly high Ti/Tv ratio than the variant list generated by UG. Overall, this benchmarking suggests that the HC is the better option compared to UG (if only one variant caller has to be selected), which is also recommended by the GATK's best practice guidelines.

2.5 Chapter summary

In this chapter,

- I presented the data analysis steps required to convert raw fastq files into a list of significant variants. First, quality control of the raw data should be performed and then the alignment of reads to the reference sequence followed by SNP/Indel calling. At last, proper filtering strategies and evaluations of variant calls should be applied.
- I presented the effect of quality trimming. By removing some bad quality bases during quality trimming, we can improve the overall sample quality and the alignment accuracy.
- I presented testing of BWA's different algorithms and showed, how sensitive alignment is helpful to align more reads but it can be devastating and might results in many FPs.
- I have also presented that the post processing of the aligned reads is necessary to avoid alignment artefacts or some systematic errors to control the FDR.
- I have also described two widely used approaches for variant calling: Bayesian Model and Haplotype based approaches. Usage of a single approach is not enough, thus, the variant calling should be done using both approaches to get a better trade-off between specificity and sensitivity.
- I mentioned some variant filtering and evaluation strategies. Different filtering can be applied to the raw variant list in order to filter false positives. Moreover, the effects of filters on variant list can be monitored by different evaluation strategies.

Chapter 3 Leveraging the power of high performance computing

"There are lots of diseases to uncover and DNA sequencing has become less expensive and more promising - so let's do the sequencing". These thoughts are very common nowadays, resulting in generation of huge amounts of data. Analysis of these data requires a series of analysis actions before relevant mutations can be found like data cleaning, sequence alignment, variant calling, etc. All of these actions are interconnected, build on each other, and usually involve running some tool or script. Hence, analysing sequencing data can require a significant amount of time and lots of manual work in the daily routine. In order to reduce the manual efforts and chances of manual errors during data analysis operations, automation of data processing is necessary. Moreover, analysis of large data sets like whole exome and whole genome sequencing data requires more storage and compute power for fast and efficient data processing than conventional desktop computers or servers usually provide. Thus, the implementation of automated next generation sequencing (NGS) data analysis workflows on high performance computing (HPC) clusters has become very essential.

HPC systems utilize the power of a large number of processors (cf. Section 3.2) to speed up the task which makes their architecture more complex and less stable As they are built up of different components, the failure of a single component (e.g. parallel file system or job scheduler) can destabilize the system as a whole. Moreover, if the HPC system is a multi-user environment or a shared cluster, the probability of failure increases. As it is hard to monitor and control each user's activity on the system, any single wrong operation can cause system instabilities. These instabilities can originate from an individual workflow and can affect other's operations or vice versa. Therefore, a workflow's stability, robustness and maintainability are as important as speed and should be considered carefully during the implementation of an automated workflow. In this chapter, we will provide details of our dedicated solutions, applied during the development of our NGS data analysis workflow implementation on an HPC system. These solutions enable us to achieve high throughput in significantly less amount of time than the conventional ways. Moreover, they enhance stability, robustness as well as easy maintainability of our workflow. At first, we will provide an overview of our exome analysis workflow followed by a few details about our HPC system. Later on, details of the design principles applied during its implementation on the HPC system will be described. These design principles contributed significantly to making an automated (little manual intervention or debugging) and stable workflow for the HPC environment. The work in this chapter is the joint work of me and Dr. Susanne Motameny, which was published recently (Kawalia et al., 2015). All of the supporting information files (S1 to S6) mentioned in this chapter are available with the online version of this paper⁶³.

3.1 Exome analysis workflow

Our exome analysis workflow is a collection of open source third party tools and selfdeveloped software that are stitched together into a pipeline via bash scripts. It is divided into several modules that combine analysis steps with the same purpose (cf. Figure 3.1). For a complete analysis, a single start of the workflow can run all modules. In addition, these modules can be started individually or in any combination for specific analyses. This workflow is fully automated where some modules run in a sequential manner and some run in parallel. It contains several checkpoints and waiting points between the modules (depicted as diamonds in Figure 3.1). If there is a failure at any checkpoint, the analysis is aborted. In this case, the workflow waits for other running modules (parallel ones) to finish and then exits with an error message.

In general, we perform a full analysis for every sample individually which runs in following steps (cf. Figure 3.1): The first module of workflow prepares fastq files by using in-house developed scripts. This includes merging of all available fastq files for the

⁶³<u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036</u> (This and the subsequent URLs have been accessed on 25 August 2015)

sample (in-house script), quality check by FastQC (Andrews S, 2010), quality trimming (in-house script) and adapter trimming (Martin, 2011) (cf. Figure 3.1, (1)). The second and third modules take the prepared fastq files and start the alignment pipeline (cf. Figure 3.1, (2)) and structural variant calling pipeline (cf. Figure 3.1, (3)), respectively. Both pipelines first split the fastq files into smaller chunks and align these chunks (to speed-up the process) to the reference genome. For structural variant calling, a strict alignment allowing only perfect matches is performed using mrsFast (Hach et al., 2010) and then structural variants are detected based on discordant mate pair signatures by VariationHunter (Hormozdiari, Alkan, Eichler, & Sahinalp, 2009). The alignment pipeline performs sensitive alignment by using BWA (H. Li & Durbin, 2009, 2010), which can allow gaps or mismatches during the alignment. After the alignment, all chunks of BAM files are merged by samtools (H. Li et al., 2009) and PCR duplicates are removed by using Picard⁶⁴. After that, post-alignment improvements, like, Indel realignment and base quality score recalibration (BQSR) are performed by using GATK (DePristo et al., 2011; McKenna et al., 2010). To speed up the variant calling and some other processes, the BAM file is split into 25 BAM files by samtools (one for each chromosome and the mitochondrion). To get a comprehensive variant list, both SNP/Indel and copynumber calling is performed by a set of four different tools. Samtools mpileup, GATK UnifiedGenotyper and GATK HaplotypeCaller, and Platypus (Rimmer et al., 2014) (cf. Figure 3.1, (6)) are used for SNP/Indel calling. Copynumber variants are called by CoNIFER (Krumm et al., 2012), XHMM (Fromer et al., 2012), cn.nops (Klambauer et al., 2012), and ExomeDepth (Plagnol et al., 2012) (cf. Figure 3.1, (4)). Furthermore, to get an overview of sample quality, an in-house developed script is used to compute statistics about exon coverage throughout the genome (cf. Figure 3.1, (5)) and Picard is used to compute some other statistics (e.g. about the alignment and enrichment) (cf. Figure 3.1, (7)). In order to distinguish between good and bad quality SNPs, variant quality score recalibration (VQSR) is performed. As VQSR needs some annotations that are only produced by GATK's caller, it is only performed on variant lists generated by GATK (cf. Figure 3.1, (8)).

⁶⁴ <u>http://broadinstitute.github.io/picard/</u>

Leveraging the power of high performance computing

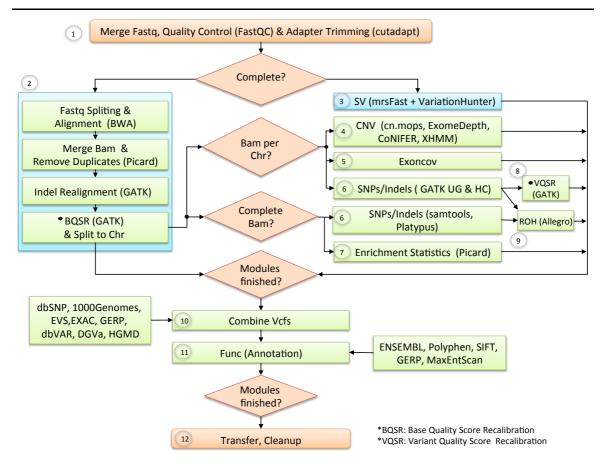


Figure 3.1 Automated workflow for exome sequencing data analysis. The workflow has one starting and ending point showed in orange colour. Green colour boxes are the modules or tasks of the workflow executed by the master script or sub-pipeline (highlighted by blue colour boxes). Red colour diamonds are control points that check for completion of previous tasks to make a decision about the next task's execution.

Regions of homozygosity (ROH) are detected using Allegro (Gudbjartsson, Jonasson, Frigge, & Kong, 2000) Figure 3.1, (9)). For detection of denovo mutations, we use deNovoGear (Ramu et al., 2013), which runs on exome data from the affected child of a trio or the affected twin of a sibling pair or the tumour of a tumour-normal pair. After that, the results produced by all above mentioned analysis steps are collected and combined into one table (self-written script⁶⁵, Figure 3.1, (10)). This script screens several databases (dbSNP (Sherry et al., 2001), 1000 Genomes Project (Abecasis et al., 2012), Exome Aggregation Consortium (ExAC)⁶⁶, dbVAR and DGVa (Lappalainen et al.,

⁶⁵ This script is written by Dr. Holger Thiele

⁶⁶ <u>http://exac.broadinstitute.org</u>

2013), GERP (Davydov et al., 2010), ENSEMBL (Flicek et al., 2014), and the commercial HGMD professional database (Stenson et al., 2014) to annotate known variants in the combined variant list. For functional annotation of variants, POLYPHEN (Adzhubei et al., 2010), SIFT (Kumar, Henikoff, & Ng, 2009), and in-house developed algorithms are used. Additionally, splice site analysis, based on the framework described in (Yeo, Burge, Liebert, Yeo, & Burge, 2004), is performed. At last, the annotated variant list, sample statistics, fastq files and BAM files are transferred to our storage server and the intermediate results are deleted (self-written scripts, Figure 3.1, (12)).

3.2 HPC system

The workflow is implemented on the HPC clusters CHEOPS and SuGI of the Regional Computing Center Cologne (RRZK). These are two main clusters of the University of Cologne, serving the computational demands of many researchers from different scientific fields. CHEOPS is the larger compute cluster with a peak performance of 100 Teraflop/s and linpack performance of 85.0 Teraflop/s. It has 841 nodes with 9712 cores and 35.5 TB RAM in total for computation, and provides 500 TB Lustre parallel file system for storage. On the other hand, SuGI is smaller and has 32 compute nodes with 256 cores and 1 TB RAM in total. It provides 5 TB Panasas parallel file storage and can achieve a peak performance of 2 Teraflop/s. Both clusters run a Linux operating system.

Due to their complex architecture (cf. Figure 3.2) HPC systems are more susceptible to system instabilities than ordinary hardware. This implies certain working rules for both of HPC clusters. Any computation should not be directly run on the login nodes (or frontend nodes). Frontend nodes can be either used to submit a job that contains all computation or used for login and data transfer to (or from) the parallel file system. Each job can be submitted via SLURM (Jette & Grondona, 2003) or TORQUE/Maui batch system on CHEOPS or SUGI, respectively. Every job submission contains a request for appropriate computational resources, like number of cores, required memory, and runtime etc. Based on the requested resources, the batch system's scheduler assigns an appropriate compute node to the submitted job.

Leveraging the power of high performance computing

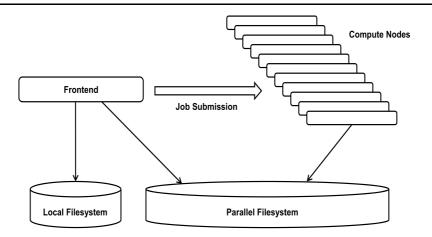


Figure 3.2 Overview of HPC architecture.

3.3 Technical components of workflow

3.3.1 Workflow overview

We considered all HPC working rules during the development of our exome workflow. It is a collection of BASH scripts that are mainly divided into one masterscript and several jobscripts. The masterscript executes all tasks of the workflow by submission of the job scripts and also monitors their execution (cf. Figure 3.5). It processes each sample individually and gets all information related to the sample form a configuration file in XML (Extensible Markup Language⁶⁷) format, which is generated from our LIMS (Laboratory Information Management System⁶⁸) database. The LIMS keeps track of all samples and their processing in the wet-lab and contains all necessary information relevant to the analysis. The masterscript provides the required information (according to task) to all job scripts, which then do the actual computation. The masterscript also prepares the results (produced by the job scripts) for transfer to our storage server from where they are further uploaded to an Oracle database (cf. Figure 3.3). Researchers can fetch information from this database via an in-house developed webinterface called "varbank" (https://varbank.ccg.uni-koeln.de), which provides access and download

⁶⁷ http://www.w3.org/TR/2006/REC-xml-20060816/

⁶⁸ https://en.wikipedia.org/wiki/Laboratory_information_management_system

options for the fastq-, BAM-, and VCF files as well as annotated variant tables and coverage statistics.

Figure 3.3 Infrastructure surrounding the exome workflow.

3.3.2 Workflow interaction with HPC systems

As mentioned above, the workflow is designed to run on both HPC systems: CHEOPS and SuGI. This is beneficial in two different ways: first to increase the throughput when data analysis is running on both systems in parallel. Additionally, one system can serve as a backup system in case of the failure of the other. For example, CHEOPS is a lager cluster and more complex which makes it more prone to system instabilities. Thus, during downtime of CHEOPS or maintenance periods, SuGI can be used for data analysis. In order to run the workflow on both systems, 3 different directories are shared between these systems: XML stack, Data and Results directory (cf. Figure 3.4). All of these directories are located in the Panasas file system of SuGI and mounted on CHEOPS. The XML stack contains XML configuration files of new samples, which need to be analysed. The data directory contains the required fastq files for analysis and the results directory stores the results for each analysis step like BAM files from alignment or VCF files from variant calling etc. Every system has its own scripts directory and status directory in the local file system, which contains all analysis scripts (including master scripts) and status messages generated by the workflow, respectively (see next paragraph). Each system has its own scratch directory mounted in its parallel file system (Lustre for CHEOPS and Panasas for SuGI). These scratch directories store temporary results (or intermediate results) and status messages generated from different analysis steps executed on the respective HPC system (see next paragraph).

Leveraging the power of high performance computing

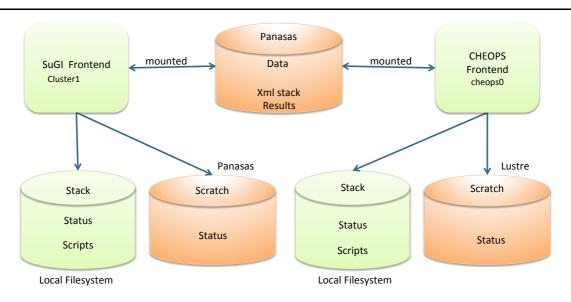


Figure 3.4 Overview of workflow interaction with both CHEOPS and SUGI HPC systems.

The workflow execution works in the same way for both HPC systems. The cron deamon on the frontend node of both systems checks the presence of new samples in the XML stack directory. When a sample is available in the stack directory for processing, then the respective cron deamon starts an instance of the masterscript on the respective system (cf. Figure 3.5). The cron deamon of both systems takes turns to check stack directory and if number of running samples are less than the set limit (e.g. < 20 samples can run in parallel on Cheops) of the respective system then it starts the masterscript for the new sample. The general flow of job submission from the masterscript is shown in Figure 3.5. The masterscript submits the job (compute job) for an analysis task to the compute nodes and waits for its completion. The Compute job gets the required data from the data directory and puts intermediate files (generated during computation) to the scratch directory. After completion of a task, the results are stored in the results directory. The status messages for a task (i.e. successful completion or an error), are stored in the status directory of scratch (where other compute jobs can pick them up) and in the status directory of the local file system (where the masterscript can access them). The masterscript checks these messages and reacts accordingly: either it resubmits the job (in case of failure) or submits the next compute job. This whole process of job submission and monitoring goes on till the complete analysis is finished. The cronjob starts multiple instances of the masterscript with some delay when more than one sample is available in the XML stack.

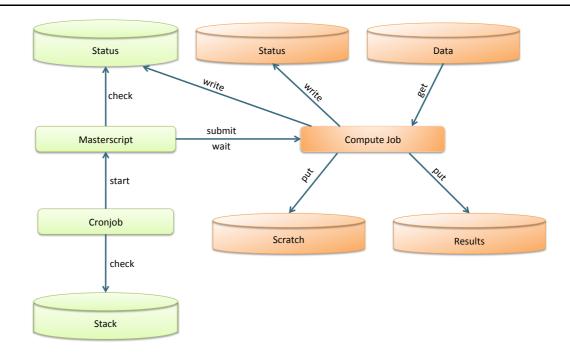


Figure 3.5 Overview of workflow implementation at HPC.

3.3.3 The masterscript

As implied by its name, the masterscript is the main script of the workflow that organizes the data analysis tasks on the HPC clusters. It submits jobscripts (which perform the actual computation) on the clusters and monitors their progress. It processes a single data set (e.g. an exome sample) at once, but several instances can be started simultaneously to achieve high throughput. When more than one sample is available for processing, the cron deamon on the frontend node starts multiple instances of masterscript in parallel (cf. Figure 3.5).

The masterscript has a modular structure that means it puts all tools that perform similar tasks into one module. When a complete exome analysis has to run then the masterscript executes all modules as shown in (cf. Figure 3.1). However, execution of a single module, due to its failure or reanalysis, can be selected by a command line option of the masterscript (Supporting Information S5⁶⁹), which saves a significant amount of time in these cases. Moreover, when some specific analysis is required then the

⁶⁹ This supporting information file and other files (S1 to S6) are available with online version of our paper (Kawalia et al., 2015): <u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036</u>

masterscript can be started with only the desired modules. For example, we skip the SV module for samples having single reads, as it requires paired-end information for SV detection.

3.3.4 Jobscripts

The jobscripts are bash scripts that contain the commands to execute some tool or some script for a specific analysis task. Moreover, they can perform some data management like preparing data for analysis or merging results etc. To monitor the completion of any task, every jobscript writes a status message based on its exit status. This status message is transferred to the local file system on the frontend node and used by the masterscript to monitor completion or failure of that task. The masterscript checks the status message at checkpoints and in case of failure it aborts the workflow with an error report. If the batch system aborts the job due to too small walltime or memory requests, then this status message will not be written. Therefore, this strategy can distinguish between job abortion/failure errors and execution errors.

3.3.5 Job submission

The job submission function is the main function in the masterscript. It encapsulates job submission and also monitors the status of the job and checks its successful completion or failure (cf. Figure 3.6). If job submission fails due to the unavailability of the batch system at first attempt, then it tries resubmission for two more times, after that it reports an error for an unsuccessful job submission. After successful submission, it waits for the completion of job. In the case of job failure (if the resource limit was exceeded), it increases the requested resources (runtime and memory) and re-submits the job automatically. If this job fails again then an error is reported by this function. It also supports both batch systems: SLURM and TORQUE/Maui running on CHEOPS and SUGI, respectively. The masterscript submits a job with a general job submission syntax that is further translated (by the job submission function) into job submission commands of the used batch system. The code of the job submission function can be found in the Supporting Information S1⁶⁹.

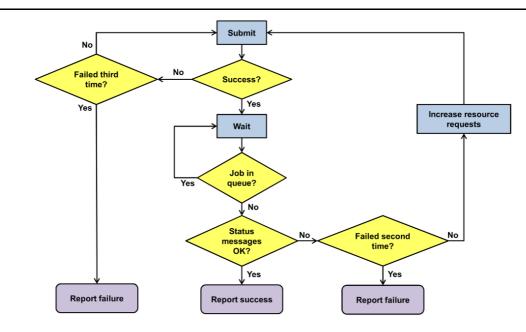


Figure 3.6 Flow chart of the job submission function.

There are two different modes of job submission: sequential or parallel. In the sequential manner, a job is submitted by calling the submission function directly from the masterscript, causing the masterscript to wait until it is finished before proceeding with the next job submission. This manner of sequential job submission is utilized when jobs depend on each other. On the other hand, some jobs that do not depend to each other, they can be submitted in parallel. In this case, a child process started by the masterscript in background that calls the job submission function. For example, the masterscript performs a sequential job submission for fastq preparation and quality control tasks as this is the first task and all other tasks depend on its outcome. After the completion of this job, the alignment jobs for SNP/Indel calling and SV detection are submitted in parallel via sub-processes, as they are not depending on each other.

3.3.6 Job monitoring

According to the different tasks and their dependencies, the masterscript contains some checkpoints and waits for the completion of submitted jobs and child process at every checkpoint. It stores all job ids assigned by the batch system and all process ids of started child processes. The submit function keeps track of jobs via their job-ids and after job completion, it checks the status message returned from a job (i.e. error or

finished). The masterscript stores these status messages from the submit function at the local file system and waits for all computations corresponding to a specific checkpoint to finish. As soon as all computations are finished, masterscript checks the stored job status messages and list of process ids. In case of errors or failures, it aborts the workflow with an error message reporting the failed modules. If the checkpoint reports successful completion, then the masterscript performs the next round of job submissions for the remaining tasks. In the case of any interruption or abortion of the workflow, the masterscript cancels all submitted jobs and kills all child processes by using a cleanup function. This cleaning is triggered by the "trap" statement and executed whenever the masterscript exits. This function also cancels jobs submitted by child processes. This strategy ensures a clean exit and frees already allocated resources. Details about this function can be found in the supplementary file S3⁶⁹.

3.4 Design principles of workflow

In order to develop an efficient workflow, we focused on the following four design principles:

- 1. Speed: Optimum usage of HPC systems to speed up data analysis.
- 2. Stability: Appropriate handling of the HPC environment to prevent system instabilities.
- 3. Robustness: Automatic detection and correction of some processing errors
- 4. Maintainability: Easy to maintain and expand.

3.4.1 Speed

Parallelization by jobarrays

Parallelization is one of the most frequently used approaches for exploitation of the compute power of clusters. In our workflow, we apply "parallelization by chunks", which is splitting of large data into small chunks followed by a parallel processing of every chunk individually. Mapping of reads is an independent process for every read, thus, we split the fastq file into several chunks and perform the alignment process on each chunk by using BWA and mrsFast. Although, BWA provides multi-threading to achieve more

speed, however, we cannot rely only on threading due to limited resources of our smaller cluster SuGI. It has only 8 core nodes, so BWA can only use a maximum of 8 threads. Besides workflow compatibility to both the smaller and bigger cluster, using a combination of threading (with fewer cores) and parallelization by chunks works best for us (esp. in terms of resource usage optimization). We also use this strategy for other tasks like Indel realignment by GATK, SV calling by VariationHunter and denovo variant calling by deNovoGear. For these applications, we split the BAM file by chromosome (similar to (Lam et al., 2012; Puckelwartz et al., 2014)) and run the analysis for each chromosome in parallel.

We are using jobarrays to perform parallelization by chunks. A jobarray is a collection of jobs (executing the same task for different data chunks) submitted at once and can be tracked by a single jobid, which simplifies the job submission and monitoring. It can be used for tasks where the same computation has to be run for different input files. The size of a job array and runtime is directly proportional to number of chunks and size of chunks. In order to take optimum advantage of jobarrays, selection of a moderate array size and runtime is required. If too many jobs are submitted via a job array (means too many chunks of data), then a single task can finish very fast, but some jobs have to wait in the queue. On the contrary, if few jobs are submitted (means big chunks of data), then processing time will be longer and little gain in speed would be achieved by parallelization. Therefore, we implement jobarrays in a way that a single job should run at least one hour and all jobs (or tasks executed by jobs) should be finished in similar time. As the completion of a jobarray depends on the completion of all jobs it contains and if one task is running longer than other tasks, then the jobarray has to wait and parallelization power would not be exploited properly. Therefore, when defining the data chunks on a per-chromosome basis, we distribute the 24 chromosomes across 14 tasks of a jobarray as mentioned below:

- chr 1 to 7: each chr in a single task
- chr 8 to 17: combined two chromosomes per task
- chr 18,19 and 20 processed in one task
- chr 21, 22, X and Y processed in one task

After some trial and error, we found that this strategy works satisfactorily for our workflow. However, the chromosome size is not the only influential factor for run time of the individual array task. Other factors like coverage or mutation load can change runtime significantly. Thus, getting the optimum combination of chromosomes is almost impossible and it can vary in different data sets.

Parallelization by threads

Parallelization can also be done by multi-threading, where a process brakes into multiple threads that run on different cores simultaneously to reduce the overall completion time. BWA, GATK and Picard come with multi-threading options and we utilize this to speed-up their runtime. In general, the number of threads should be inversely proportional to the runtime of the process, but not all tools follow this principle. We measured the walltime of BWA and GATK with different numbers of threads (on a compute node with 4 Nehalem EX Octo-Core Processors, Xeon X7560, 2.27GHz). BWA shows a significant decrement in walltime with higher number of threads. However, GATK haplotype caller's walltime does not decrease significantly beyond 4 threads (cf. Figure 3.7). We are still investigating the reason behind this behaviour but believe that this is due to the Java implementation of GATK. We have observed that Java applications produce an overhead of I/O operations that limit their acceleration capacity on the HPC system. Moreover, GATK VariantRecalibrator method generates many intermediate output files (so called vcf stubs), when it runs with more than one thread. For an exome analysis, the number of these files can easily reach up to 100000 and can exceed the maximum number of files quota of file systems (most of the file system have this quota). This limits the number of parallel analyses and reduces the throughput of the workflow. To avoid this scenario, we run GATK VariantRecalibrator with one thread, which still runs fast without producing intermediate files.

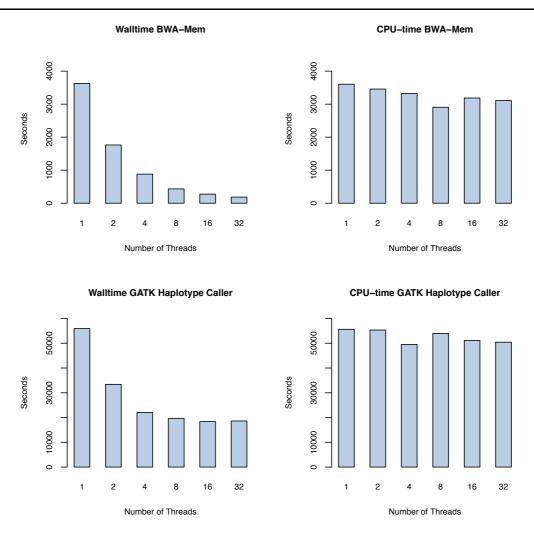


Figure 3.7 Performance of multi-threading with BWA-MEM and GATK HaplotypeCaller. Left-side histograms show the decrement in walltime usage of both tools with more threads. Whereas, histograms on the right side show the CPU-time with different number of threads.

Scalability

Scalability is an important measure of the efficiency of an application when it is used on large data with HPC. It can be categorized into strong and weak scalability. Strong scalability measures how the runtime of an application changes with the number of cores for a fixed problem size (BWA and GATK HaplotypeCaller shows strong scalability (cf. Section "Parallelization by threads"). Weak scalability measures how the runtime varies when a fixed amount of work is directed to a single core but more cores are used due to a larger problem size. We use "parallelization by chunks" for BWA and mrsFast, and these modules scale almost perfectly in the context of weak scalability. This is because when splitting of data into chunks of equal size the processing time is equalized for every chunk, thus, the larger problem can be processed on multiple cores in comparable time to the processing of smaller problem size on a single core. Therefore, these parts of the workflow take almost the same amount of time for data sets of different sizes (not including queuing time). However, assessing the scalability of the entire workflow is difficult as most of the parts of workflow use a fixed number of cores.

Resource usage optimization

Optimum usage of computational resources, i.e. number of cores and random access memory (RAM) is the key to exploit the power of HPC systems to achieve the desired performance. In our case, a single analysis should be fast enough and high throughput can be achieved by running several analyses in parallel. With this objective, we performed several trial and error steps, as there are no fix rules for resource optimization to achieve a satisfactory performance. However, there are three main points that need to be considered to optimize the resource requests:

Selection of job size

In general, based on their resources requirements, jobs can be categorized into two main categories: large jobs and small jobs. Large jobs use a high number of cores and much RAM while the small jobs need only few cores and little memory. In practice, large jobs have longer queuing time and can waste the allocated memory (i.e. granted exclusively to that job), if it is not completely used by the running task. Moreover, if there are many jobs requesting more memory than they actually require, then the cluster becomes partly idle while jobs have to wait in the queue. Therefore, assessment of the required memory and number of cores is very important and resources should be requested as close as to actually required resources.

Balanced memory usage for jobarray tasks

A jobarray is a collection of jobs, either executing the same analysis task for different data chunks or can perform different analysis tasks in different jobs. The resources requested during job submission are valid for every job of a jobarray. However, some jobs in a job array can behave differently and use more memory than the other jobs (either due to different analysis task or due to the different chunk of the data). In this scenario, a jobarray should be submitted first with a low memory request and later on, the failed jobs could be resubmitted with higher memory requests. This strategy prevents unnecessary blocking of resources, thus more analyses can run in parallel with less job queuing time.

Resource requests based on cluster architecture

The computing cluster architecture is also another important criterion for resource selection. In order to exploit the optimum capacity of the compute nodes, the number of requested cores should preferably be a divisor of the number of cores available on the nodes. For example, we run jobs with 1, 2, or 4 cores in workflow so we can fill 8,12, and 32 core nodes of our cluster CHEOPS properly. On the other hand, if we submit a job with 5 cores, then we would end up with 3 or 2 cores (depending on node type) that cannot be used for another job of the workflow. Besides the number of cores, a similar logic should be applied during memory (RAM) selection and it should be fragmented according to the RAM of a node. For example, our cluster has 24 or 48 GB RAM for the majority of nodes and a few nodes are having 96 or 512 GB RAM. Thus, theoretically, a 24 GB node can be filled with 8 jobs requiring 3 GB RAM each or 6 jobs requiring 4 GB RAM each. However, not the full nominal amount of memory is really available to the jobs. Therefore, a small reduction in the memory requested is required to fill a node completely. In our implementation, we are requesting 5 % less memory for each job. For example, we submit a nominal 4 GB job with a 3.8 GB RAM request and only 7.6 GB RAM request for a nominal 8 GB job.

With our current parallelization strategy, we fit 173 hours average CPU time into an average runtime of 21 hours per exome. In comparison to an exome analysis on a single core computer, we are able to speed it up more than 8-fold by using the HPC systems. This is not a very high gain in speed but it can be increased by trading with the workflow's throughput. We optimized our workflow for high throughput rather than the speed, as it fits better to our requirements. By starting an exome analysis every 30 minutes, we can analyse 290 exomes per week, which is sufficient for our current

sequencing capacities as well as for the processing of external data. Moreover, it should be noted that the total load of the HPC cluster also hinders both speed and throughput, which is not completely controlled by us. Nevertheless, if required in the future, the workflow can be further parallelized and more analyses can be run in parallel.

3.4.2 Stability

The stability of the HPC environment is also another important design principle for the workflow development. On multi-user HPC systems, a certain etiquette should be followed to avoid system instabilities and to maintain the smooth operation for other users. We included the following measures that contribute to the stability of the cluster and our workflow:

No computation on frontend node

The frontend node of our clusters, which usually has less computational power, is mainly for login, data transfer and job submission. Running computations on the frontend node can increase the load to a level that causes the system to be unresponsive or even fail. Therefore, our masterscript only does organizational work on the front node and submits jobscripts for all computations.

Controlled accesses to the parallel file system

If the parallel file system is not responding due to any reason then it should not be accessed by the workflow. Otherwise a build-up of queries to the parallel file system can occur that can hinder the debugging process initiated by system administrators. Therefore, we are using a lockfile mechanism (Supporting Information S2⁶⁹) that prevents the automatic execution of file system accesses during its unresponsive state. Before every access to the parallel file system (for example, file listing (by `ls`) or directory creation (by `mkdir'), the masterscript sets a lockfile and removes it after the file system access finished. If the file system is hanging (i.e. the access command does not return), then the masterscript does not delete this lock file and it stays in the local filesystem on the frontend node. On the contrary, if the parallel file system is responding then these lock files are deleted within a few seconds (less than 5 seconds). At every

new start, the masterscript checks for the existence of the lock file. If the lockfile is present and persists for 25 seconds, then the masterscript exits. This strategy provides an automatic shut-down of our workflow, when the file system is not responding.

Shut-down switch

In case of cluster maintenance or downtimes, a workflow termination is required. This can be activated by the HPC administrators via the workflow's shut-down switch. It is implemented as a semaphore file in the local file system of the frontend node (Supporting Information S6⁶⁹). Moreover, it can also be activated during system instability caused by workflow. If the shut-down switch is activated (i.e. if the semaphore file is present in the local filesystem), then the masterscript exits right at the beginning or if the workflow is already running, then it exists at dedicated exit points.

Delayed start of multiple runs

Our workflow processes new data in 30 minutes intervals. This delayed start is controlled by the cron deamon, which starts one instance of the masterscript every 30 minutes. This strategy prevents overloading of the scheduler due to too many simultaneous job submissions. It also prevents creation of too many lock files by the masterscript when accessing the parallel file system. Moreover, it makes the workflow more efficient, with respect to the throughput, by balancing resource usage of the workflow. The workflow contains small jobs and large jobs with lower and higher resource requirements respectively. Thus, this delayed start avoids simultaneous submission of large jobs and prevents a subsequent increase of queuing time.

No access to remote servers

To process a sample, the workflow requires some sample related information that is stored in the LIMS. Accessing remote servers (via ssh) to query the LIMS from the masterscript can get stuck in non-returning ssh commands. Thus, we do not access remote servers from the masterscript and perform LIMS querying on a separate server. After querying, all sample-related information is stored in an XML configuration file that is uploaded to the cluster together with the sequence data. Moreover, the transfer of the results to the Oracle database and varbank webserver, are also organized in the similar way. The masterscript writes a transfer XML file that contains the location of the result files. Then, a script running on another server performs the data transfer via scp by using the information present in the transfer XML file. We also do not access remote servers via job scripts because the outgoing network connections of the compute nodes are reserved for the exchange of software license information only on our HPC clusters. Moreover, access to remote servers can slow the computation and should be generally avoided in HPC workflows.

Automatic deletion of results

Every run of a sample generates a huge amount of data including input data, results and temporary files. Temporary files are generated from one process and are usually required as input data for subsequent processes and can occupy a great amount of space. Thus, these temporary files are automatically deleted after successful completion of the analysis. However, in case of workflow failure these files remain stored for debugging purposes. Similarly, the largest part of the results i.e. BAM files and input fastq files are transferred to the database and webserver after successful completion of workflow. To make sure that the transfer is completed successfully, we compare md5 checksums⁷⁰ of the original and the transferred files. As soon as the transfer completes, BAM files and fastq files are deleted from the cluster. The remaining part of the results, i.e. VCF files, statistics files, and variant tables are stored in a dedicated results directory on cluster.

3.4.3 Robustness

An automated workflow should run without manual intervention as long as possible. It should not stop if a single job fails and should be able to run all other modules that do not depend on the failed job. Moreover, it should be able to cope with errors that occurred during the execution in order to produce the most complete result. We applied the following strategies in the implementation to make our workflow robust.

⁷⁰ <u>http://tools.ietf.org/html/rfc1321</u>

Dynamic job submission

Two frequent reasons of workflow failure are the overload of the scheduler and job abortions due to lack of resources. If the scheduler is already having a significant load and lots of jobs are submitted simultaneously, then the scheduler can reject all or some job submissions. In general, these situations are resolved after a short time. Thus, to cope with this type of failure, the masterscript retries a failed job submission twice after waiting a few minutes. When the job is aborted due to more required computational resources (memory or runtime) than requested at submission time, the masterscript detects these jobs and resubmits them. This tracking of aborted jobs is managed via status messages written by the jobscripts after their completion. After a job submission, the masterscript (or the child process in case of several jobs started in parallel) checks the status of the job by querying the batch system's queue (cf. Supplement S1, wait_for_job function). These queries are only performed in every two minutes to avoid overloading the scheduler. As soon as the job disappears from the queue, the masterscript (or child process) checks the generated status messages. If the status messages are missing it means that the job did not finish regularly and was aborted by the scheduler. In this case, the masterscript (or child process) automatically resubmits the aborted job with increased memory and runtime requests. Similarly, jobs with an error status message are also resubmitted. If the job fails again after resubmission, the masterscript throws an error message and at this point manual intervention is required (cf. Figure 3.6).

Clean exit

The masterscript keeps track of all submitted jobs and running child processes. If the workflow is terminated at some point during the analysis (e.g. by a kill command), the masterscript automatically kills all child processes and deletes all submitted jobs. It also writes the appropriate status messages (Supporting Information S3⁶⁹) in the logfile. It is extremely important to ensure such a clean exit. Otherwise, jobs run unsupervised and can potentially overwrite results when the workflow is restarted for the same sample again. Moreover, status messages (written in the logfile and status table) reporting the interruption are useful for debugging purposes.

3.4.4 Maintainability

Modularity

The masterscript is constructed from different modules for different kinds of analysis (alignment, SNP/Indel calling, CNV calling, SV calling, enrichment performance, functional annotation). All modules can be run separately or in any combination, which gives flexibility to the workflow. Thus, the workflow can be used for different types of data analysis like data generated from genome, exome or other targeted experiments. For example, in case of a whole genome sequencing data set, execution of alignment, SNP/Indel calling, SV calling, and functional annotation modules is required; CNV detection and the enrichment performance have to be skipped as these modules are suited for target enriched data only.

Logfile and status table

The masterscript writes all job submission calls and jobids for every analysed sample in a logfile. These stored jobids can be used to identify stdout/stderr output of the jobs that contains detailed error messages of executed tasks. Thus, this logfile facilitates the debugging of failed runs. The masterscript also writes the status (Running, Error, Finished) of every module to an sqlite table that is accessible via a webinterface (Supporting Information S4⁶⁹). This table provides an easy monitoring of the workflow, thus, the administrators can see at a glance, which samples generated errors and react accordingly.

Configuration file

The workflow is configured for each sample with the help of an XML configuration file. This file contains sample specific information fetched from the LIMS, as well as all input and output paths for processing. Thus, the directory structure on the cluster for data input or output can easily be changed without changing the masterscript. In this case only the script that writes the XML files has to be updated.

3.5 Chapter summary

In this chapter,

- We provided an overview of our exome analysis workflow, which contains information of all required analysis steps.
- We described our HPC system and gave an overview of the implementation of our workflow and its components.
- We highlighted the significance of the essential components of workflow, like the masterscript, jobscripts, job submission and job monitoring function.
- We described the four main design principle of our workflow: speed, stability, robustness and maintainability, which makes the workflow more stable and robust as well as more efficient in terms of both speed and high-throughput.
- We used parallelization by jobarrays (including parallelization by chunks) and parallelization by threads to speed up our workflow.
- We performed resource optimization to exploit the power of the computing cluster.
- We provided certain measures that contribute to the stability of the cluster and our workflow, like controlled accesses to the parallel filesystem, no computation on the frontend node, no access to remote servers, etc.
- We mentioned some strategies that contribute to the workflow's robustness like dynamic job submission and clean exit.
- We presented our strategies to maintain the workflow in an efficient manner via modularity and the logfile.

Chapter 4 Detection of systematic sequencing errors

Continuous development of bioinformatics tools and automated pipelines has enabled the bioinformatics community to handle sequencing data in a fast and efficient manner. There are different alignment algorithms varying from sensitive to strict mapping of reads to the reference accompanied with post alignment improvements and different variant callers with reasonable accuracy. However, getting a variant list containing only true variants is still a challenge and false positive calls (FPs) remain a problem. Some of the FPs are due to the limitations of current tools. Moreover, errors occurred during sequencing (systematic or random errors) also produce a significant amount of FPs.

Some of the FPs generated by sequencing errors can be easily detected and filtered out. For example, errors at the ends of the reads can be avoided by trimming of these bases or by discarding bad quality reads (i.e. reads containing many low confident basecalls) (cf. Chapter 2). Modern alignment algorithms are also aware of this type of error and can avoid misalignments due to bad quality bases (by their clipping or trimming). GATK's base quality score recalibration (BQSR) tries to correct some errors that occur during the calculation of base quality scores based on statistics computed over sequencing lane, machine cycle and di-nucleotide context. Moreover, Indel realignment by GATK can also avoid the calling of false substitutions near Indels (introduced by wrong alignments of Indels on the reference sequence) (cf. Chapter 2). Besides the handling of some systematic errors, there are many alogrithms that perform correction of random base calling errors. These algorithms can correct the wrongly called base on some reads by utilizing the other reads that have the correct base. This correction is performed either by using shared k-mers among the reads or by performing mutiple sequence alignment of the reads mapped to a certain position. Yang and colleagues have reviewed these two approaches and provided a comparision of tools belonging to each category (Yang et al., 2013).

However, there is still much to explore in this class of error as many systematic errors are hard to detect or not yet detected. There are not many studies on error detection or correction methods for sequence specific and other types of systematic errors. Nakamura and colleagues reported first that dephasing can be induced by the presence of some specific sequence patterns (Nakamura et al., 2011). They reported that inverted repeats and GGC sequences are the two major sequence patterns that trigger sequencespecific errors (SSEs). After that, a few more studies have been conducted, in which the authors tried to discover some more SSEs or developed systematic error detection methods (Allhoff et al., 2013; Meacham et al., 2011; Ross et al., 2013; Zook, Samarov, McDaniel, Sen, & Salit, 2012).

This chapter aims to explore the different types of systematic errors. First, I will provide an overview of the published systematic error detection methods. Thereafter, I will present the drawbacks or limitations of these methods, which is the motivation behind this work: a newly developed approach to detect systematic errors in Illumina sequencing data. I will also present the comparisons of different data-sets generated with different target enrichment techniques, which is used for further classification and exploration of the detected systematic errors. Finally, I will present a new class of errors "RSE" and its characteristics. Moreover, I will provide details of the newly developed tool "FilterRSEs" that filters out RSEs from any variant list.

4.1 Systematic errors

4.1.1 Previous work

After the detection of certain biases and position specific errors by Dohm and colleagues in Illumina data (Dohm et al., 2008), Nakamura and colleagues found another class of errors (Nakamura et al., 2011). They observed that some mismatches occur in specific regions either near certain sequences or induced by some sequence patterns, and named these errors sequence-specific errors (SSEs). Moreover, they found that these mismatches are present mainly on one strand of reads (either forward or reverse) and accompanied by other mismatches downstream of the error. Based on their observations, they formulated the following two criteria that have to be met by an error to be called an SSE: a) At least 30% of reads in the same direction should carry these mismatchtes. b) Four other errors should be present within 40 bases downstream, but not within 40 bases upstream. After the analysis of selected SSEs, they found that the majority of SSEs are either present near GGC base triplets (or GCC for reverse strand SSEs) or inverted repeats. They also found that most of these mismatches are similar to the first or second preceding reference base and suggested that SSE associated mismatches originate due to dephasing. Moreover, they postulated that inverted repeats trigger folding of DNA single strand templates and so inhibit the base elongation process during sequencing in both directions (5' or 3') which causes an SSE. On the other hand, the GGC motif affects the preference of the DNA polymerase (like disabling of blocking effect which leads to dephasing) during the base elongation process and this is the most likely cause of the GGC-associated SSEs.

In another study, Meacham and colleagues (Meacham et al., 2011) also focused on systematic errors (in general) by using overlapping paired end reads from a methyl-Seq experiment. They selected this data because this experiment produces high average coverage and overlapping paired end reads provides two base calls for each location (irrelevant to strand directionality). Both characteristics of data helped them to avoid random errors and to distinguish between basecalling errors and true heterozygosity calls (Meacham et al., 2011). They defined systematic error as a "statistically unlikely accumulation of errors at specific genome (or transcriptome) locations". They observed that systematic errors are present in approximately 1 in 1000 base pairs and are reproducible across different experiments. They confirmed the pattern observed by (Nakamura et al., 2011), that systematic base calling errors are present only in one sequencing direction (either forward or reverse). They observed that the bases preceding the error contain information about the presence of the error and the base quality scores of error locations are lower than those at their neighbouring sites. They also found that most of the errors occurred at GGT motifs where base T is having the

substitution error. Moreover, they provided a classifier called "SysCall⁷¹" that uses logistic regression based classification to distinguish heterozygous sites from systematic errors. Here, the training of the logistic regression model is based on the characteristics of systematic errors observed during their study.

In the first study of SSE, Nakamura and colleagues provided some insights into this type of error, but did not provide any framework for detecting SSEs (Nakamura et al., 2011). Moreover, the method used by Meacham and colleagues is not distinguishing between SSEs and other types of systematic error (Meacham et al., 2011). Thus, Allhoff and colleagues developed a statistical method to detect only SSEs and referred to SSE as CSE (Context-Specific Error) (and error-inducing sequence motifs as contexts) (Allhoff et al., 2013). As it is already mentioned in the previous studies that the SSEs are present only on one strand (known as strand bias positions), they used this fact to distinguish between true SNPs and CSE. They screened the genomic positions with strand bias and associated base calling errors with sequence contexts at these positions. By using these positions, they developed a statistical method ("discovering-cse"⁷²) that can identify context-specific sequencing errors (CSEs) including the associated sequence context. Moreover, they provided a list of error-prone genomic positions in BED format⁷³, which can be used to filter false positives due to CSEs.

4.1.2 Motivation

The idea of this work originated when we saw lots of variants shared across a significant number of different human DNA sequencing data sets (around 500 exome sequencing samples). These are not common variants present in the population, which implies that these shared variants are false positives caused by some sort of systematic errors. We refer to these errors as "Recurrent Systematic Errors (RSEs)". These RSEs are called as variants by samtools and GATK's unified genotyper and some of them also fulfil the

⁷¹ <u>http://bio.math.berkeley.edu/SysCall/</u> (This and subsequent URLs in this chapter are accessed on 16 July 2015)

⁷² https://bitbucket.org/tobiasmarschall/discovering-cse

⁷³ https://genome.ucsc.edu/FAQ/FAQformat.html#format1

standard SNPs/Indels good quality call thresholds suggested by GATK's best practice guidelines (cf. Chapter 2). For example, the SNP (which is systematic error) shown in Figure 4.1 (highlighted with vertical bar in black colour) was detected in the control sample (NA12878) by two different pipelines (BWA-aln+GATK Unified genotyper and BWA-MEM+GATK Haplotype caller) (cf. Chapter 2). Moreover, it is supported by reads aligned in both forward and reverse direction with good mapping quality and not filtered out by all standard filtering criterias for FPs. Therefore, the detection of this type of error is very essential to reduce the number of false positives.

As mentioned above, previous works explained some systematic errors on sample level (errors in an individual sample) and associated causes, but not RSEs. They also mentioned that there are many more systematic errors than explained in their studies. Moreover, these studies mainly focused on the base calling errors (i.e. a mismatch or SNP), but do not provide any information about the effect of systematic errors on Indels. Besides the errors originating from the sequencing process, certain genomic regions, like LCR regions, can also cause systematic errors. It is known that both sequencing and mapping of LCR regions are difficult or not accurate, which can lead to lots of mismatches (Treangen & Salzberg, 2012). These facts motivated us to explore RSEs in human sequencing data to find both platform-specific as well as genome-specific systematic errors.

Besides the exploration of these errors, we also felt the need to develop a new systematic error detection approach due to some drawbacks of the previous methods. Nakamura and colleagues presented an approach to detect sequence specific errors (SSEs), but, their SSE position detection criteria are very specific (Nakamura et al., 2011). It captures certain SSEs only due to the following limitations of their selection criteria (cf. Section 4.1.1). a.) The first selection criteria can only capture SSEs above 30x coverage (for one strand), but a mismatch caused by SSE below this threshold can easily be called as a SNP (depending on datasets, sometimes 10x coverage is enough to call a confident SNP). b.) The second criteria only yields a region of consecutive mismatches which can be due to bad quality bases. These mismachtes can be filtered out by quality

trimming in good quality data (with good read coverage and basecalling quality) or by variant callers (with or without FPs filtering strategies) (cf. Chapter 2). Moreover, they did not provide any algorithm/tool for the detection of SSEs.

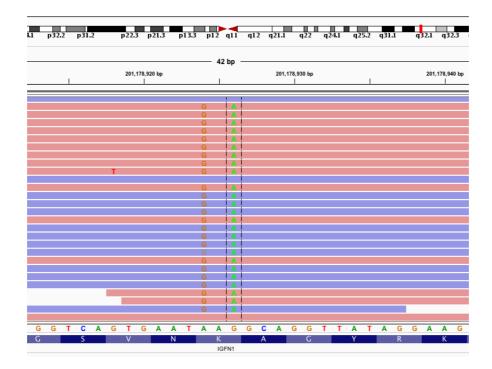


Figure 4.1 Alignment visualization of two systematic errors in a control sample (NA12878). This figure is generated by IGV⁷⁴ (Robinson et al., 2011) in which horizontal bars are representing aligned reads at chr1 (location: 201178924 and 201178926) on both forward (red colour) and reverse (blue colour) reference strand. Nucleotide bases G and A shown in the figure depict mismatching bases (or systematic errors), which are supported by both forward and reverse strand reads.

Although the other two studies (Allhoff et al., 2013; Meacham et al., 2011) provided tools for systematic error detetion, they also focused only on one certain type of errors. Both methods consider errors that are present only on one strand but systematic errors can be present on both strands (cf. Figure 4.1). Thus, slection based on a strand bias criterion can miss many errors and most of these strand bias errors can be easily filtered by current variant calling tools (Samtools, Platypus, GATK) (cf. Chapter2). Moreover, SysCall uses a specific training dataset containing certain error charatetristics, and is not having good accuracy for other types of errors e.g. run-specific errors. The other tool

⁷⁴ <u>https://www.broadinstitute.org/igv/</u>

"discovering-cse" also deals with only one class of errors i.e. CSE/SSE on strand bias locations. The top ten reported sequence motifs from this study are containing "GGC" motif, which is already reported cause for few SSEs. However, there are many other detected SSEs by both of the studies (Allhoff et al., 2013; Nakamura et al., 2011), which are not yet explained and many other undetected SSEs which need to be detected.

4.1.3 Method

As mentioned above, I want to explore RSEs which I define them as mismatches (both SNP and Indels) present at the same genomic location throughout many data sets (sequenced from the same sequencing technology). This definition is based on the assumption that if there is a mismatch to the reference genome sequence at the same location in multiple datasets then either this is a common variant present in the population or it is occurring due to the same systematic error during the DNA sequencing of these datasets. I assume that the RSEs can be explained by the presence of some motifs upstream or downstream of the mismatch position. This assumption is based on the following facts derived from previous studies (cf. Sections 4.1.1, 4.1.2):

- Sequence motifs in the DNA template influence the sequencing process, which leads to base calling errors.
- Sequence motifs in the reference genome cause faulty read mapping, which leads to mismatches in the alignment.

Therefore, I decided to screen all sequence motifs of a certain length throughout the human exome sequencing data (sequenced on Illumina Hi-Seq sequencer), which is aligned to the human reference genome sequence (GRCh37) (cf. Chapter 2). The screening of sequence motifs throughout the complete target region of the exome enables the comparative analysis of thier occurrence near RSEs as well as in the other part of the genome. This way we can distingush between a true association and a random co-ocurrence of sequence motifs near RSEs.

I refer to these sequence motifs as "kmers" and categorize them in the following two classes:

- Observed kmer: A string of consecutive bases of length k in the read sequence of a sample.
- Expected kmer: A string of consecutive bases of length k constructed from the reference genome sequence.

Similarly, their counts can be categorized in the following two classes:

- Observed kmer count: number of occurrences throughout all the aligned sequencing reads on the reference genome sequence.
- Expected kmer count: number of times this reference kmer is sequenced. The expected kmer count is computed from the reference sequence based on the coverage of each reference base (i.e. number of aligned reads at that reference base position) (cf. Section "Expected kmer count computation").

The idea behind these classes is that I should see equal observed and expected counts for all kmers from the sequenced regions which mapped perfectly to the reference sequence (without any mismatches). In other words, the ratio of obeserved against expected count (I call it OEratio) should be equal to 1 in the perfectly mapped regions. Kmers with an OEratio < 1 have an observed kmer count which is less than their expected kmer count, which means that they are frequently deviating from the reference sequence in the sequenced sample. The reason for this can either be a true variant or a sequencing error within the kmer. On the contrary, an OEratio > 1 means that the observed count is higher than the expected count, which can be caused by a mixture of effects that cannot be differentiated easily. For example, both systematic and random sequencing errors in multiple expected kmers can produce the same observed kmer in the reads increasing the observed count and so the OEratio. Therefore, kmers with low OEratios are better suited as markers for systematic sequencing errors than those with high OEratios.

In the following sections, I will describe how expected and observed kmer counts are computed and the application of the OEratio to detect systematic errors. The work is divided into 4 main sections (cf. Figure 4.2). At first I aligned the read sequences of a sample to the reference genome sequence. The aligned data from each sample is then used to construct the kmers and to compute both expected and observed kmer counts. After that, I use these counts to compute the OEratio. At last, I use the generated list of kmers and their OEratios to detect systematic errors. I narrow down the detected systematic erros by a series of filters including RSEs and validate them. Each step is described below in detail.

Read alignment & post processing

As the kmer construction is based on the alignment of the reads to the reference sequence, I first need to perform read mapping. For this purpose I use our alignment pipeline (cf. Chapter 3), which uses backtrack and MEM algorithm of BWA for the alignment and performs post processing of aligned reads for further improvements (cf. Chapter 2). I extracted only aligned reads on the target regions (as defined by the exome enrichment kits) including 100 bp flanking regions both upstream and downstream of the targets. This avoids a lot of random false positives due to little coverage or wrong read mapping in the off-target regions. I also removed duplicate reads as they can provide false evidence about a variant (cf. Chapter 2). Moreover, I removed unmapped reads to avoid an unnecessary overhead (in terms of file size and computation time). After all of the above-mentioned steps, I got aligned reads in a BAM format, which is a compressed format of SAM (Sequence Alignment Format) (cf. Chapter 2). I further split these BAM files into 48 BAM files, two for each chromosome (excluding the mitochondrion) generating separate BAM files for reads mapped on the forward and the reverse reference strand, respectively. The kmer construction process is computationally very expensive and was performed on the created chunks of BAM files, which sped-up the entire process (kmer generation and their counts) more than 4 fold.

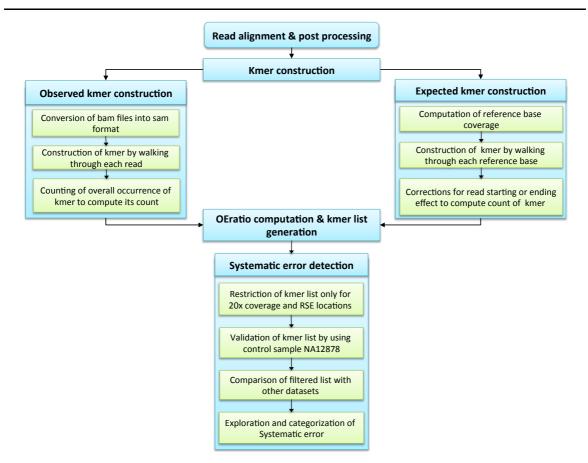


Figure 4.2 The four main components of the systematic error detection workflow.

Observed kmer construction

In order to parse the aligned read sequences, I converted BAM format into SAM format and also removed the reads containing 'N'. As these 'N' bases are randomly mapped by the aligner on any of the four references bases (A, T, G, C), the kmers containing 'N' would not be very informative. To construct all kmers that are present in the reads, I screen all reads from their starting till end position. I perform a separate screening for reads mapped on forward and reverse strands. The observed (OBS) kmer is the string of consecutive bases from ith till jth [j= i + (k -1)] position in the read.

The construction of the first kmer starts from the first base (i=1) and ends with the base at 9th position (j=9), if the kmer length (k) is equal to 9. Similarly, the second kmer generation starts from the second base of the read (i=2) and ends at 10th base (j=10). This process continues till the end of the read, generating all kmers that are contained in the read (cf. Figure 4.3).

Figure 4.3 Observed kmer construction from a sequence read.

I perform this kmer generation on all reads in a sample and count the occurrence of each kmer throughout all reads. For reads from the reverse strand, I have to take the reverse complement of kmers. This is because reverse strand reads are stored in SAM format as the reverse complement of the actually sequenced read. At last, I generate a list of these observed kmers and their respective counts in the underlying sample. All of the above-mentioned process is implemented in a Perl⁷⁵ script and its pseudocode can be found in Appendix.

Expected kmer construction

To construct the expected kmers, I first computed the coverage of each reference base (i.e. number of aligned reads at that reference base position) within the target regions including 100 bp flanking regions both upstream and downstream. I used the Samtools mpileup function with the –D parameter, which generates a pileup format⁷⁶ of aligned reads containing the coverage of each reference base. I generated the pileup of all bases including bases with zero base quality score (Q) (default Q=13) and extracted only those bases having coverage greater than 10. Figure 4.4 shows the pileup format of aligned reads. It is a tab-delimited format where the first column is the chromosome name, the second column is the location, and the third column is the reference base. The number of reads covering the reference base position (i.e. base coverage) is shown in the 4th column followed by read bases (5th column) and base qualities (6th column). The read base column contains alignment details, where dot (.) (cf. Figure 4.4 (A) or comma (,) (cf. Figure 4.4 (B)) represents a match to the forward and reverse strand respectively. A

⁷⁵ https://en.wikipedia.org/wiki/Perl

⁷⁶ <u>http://samtools.sourceforge.net/pileup.shtml</u>

mismatch is shown as one of the bases from 'ACGTN' or 'acgtn' on forward and reverse strand, respectively. Insertions between the current reference position and the next reference position are shown by `\+[0-9]+[ACGTNacgtn]+' pattern. Similarly, the pattern `-[0-9]+[ACGTNacgtn]+' shows a deletion of base pairs in the read compared to the reference sequence. For example, in the Figure 4.4 (A) we can see a deletion of CT bases after the current base denoted by -2CT and stars (*) in the next two positions show these bases are deleted. The start of the read is denoted by '^', followed by an ASCII character which encodes the mapping quality as ASCII value -33 (e.g. ^g. in the 4th line in (cf. Figure 4.4 (A)). The end of the read is denoted by '\$' (e.g. '.\$'). The understanding of the pileup format is necessary; as the information stored in the above mentioned symbols is used in the expected kmer counts calculation.

	1 1323137 G	50	.\$^].	<pre>@FCG8FFF@FF;?7FDB</pre>
A.)	DFHAHG#EDFH.F;BHFFDGG	BDGDFGEFE&F	=	
	1 1323138 T	48	C	;:;<;::;:211:;;:
	:;::75.::*;5:::;:;:3	:::;9::%99		
	1 1323139 G	48		>CG?B@C <ag68>@=<f< td=""></f<></ag68>
	EFEEE?@EF)F3AEEFEEFD=	FDEGEFE%FB		
	1 1323140 C	49	^g.	DAB?GEGBDG>>AD@AE
	EFFFFEBEE(DCAEDDFEFC>	D;DFDGD%ED:	:	
	1 1323141 G			@=<(AAA <aa78<a;=?< td=""></aa78<a;=?<>
	@?@?=@:=>#; @==??@=9</td <td>1 C C C C C C C C C C C C C C C C C C C</td> <td></td> <td></td>	1 C C C C C C C C C C C C C C C C C C C		
	1 1323142 C		^g.	;65555555555555555555555555555555555555
	555555455#55555555555555555555555555555			
	1 1323143 C		2CT2CT2CT2CT2CT2CT2CT2CT	
			T2CT2CT2CT2CT2CT2CT2CT2C	
			j	42222222222222222222222
	2222122#222222222222222			
	1 1323144 C	51	**********	!,?:AAA??A>;>AA9@
	@@@=??5<@#@;=A@=@?A;<		?>6	
	1 1323145 T	51	***************************************	!,?:AAA??A>;>AA9@
	1 69184 G	43		EEDDEDEEEDEEEE=EDC
B.)		40	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CENNENECENCECE=ENC
· · · · · · · · · · · · · · · · · · ·	DEBBEBDEB3EBB@DA9<			

Figure 4.4 Pileup format of aligned reads. Part (A) and part (B) show the pileup of aligned reads on the forward strand and on the reverse strand, respectively.

Expected kmers are constructed in a similar manner as described for observed kmers. These kmers are also strings of consecutive bases from ith till jth positions in the reference genome sequence. Instead of walking through the read sequence (start to end), here, the program walks from top to bottom of the pileup of aligned reads and construct the kmer from the consecutive reference bases (3rd column). For example, if

the starting position is "1323137" (first line of the Figure 4.4 (A)), then the first kmer of length 7 is generated by using reference bases till position "1323143" and the kmer is "GTGCGCC". Similarly, the second kmer is from position "1323138" till "1323144" (kmer: "TGCGCCC"), and so on.

With my approach I want to capture systematic sequencing errors that occur in the context of certain sequence motifs (cf. Section 4.1.3). I assume that such motifs can be present either upstream or downstream of the error position. Therefore, I construct the expected kmers according to two different models:

- Prefix model (PM): Prefix model captures the motif sequences upstream of a mismatch position. For example, if k=9 (9mer=TATCTCGCG), then the first 8 bases (in green colour) are the motif sequence and the last reference base (9th base) (in red colour) is the base of interest, which carries an error (mismatch in read sequence compared to reference).
- Suffix model (SM): Suffix model captures the motif sequences downstream of a mismatch position. For example, if k=9 (9mer=TATCTCGCG), then the first reference base (in red colour) carries the mismatch (or error) and the remaining 8 bases (in green colour) are the motif sequence.

The computation of the expected kmer counts is different and much more complicated than the computation for the observed kmers. The count (Count) of the expected (EXP) kmer (for both PM and SM) is the number of times this kmer was sequenced in the underlying sample, which is the number of reads covering this kmer completely in the alignment. It can be computed as, the average of coverage values (Cov) of each base (B) present in the kmer of length (k) minus over-counts (OC) of reads starting and ending within the kmer (cf. Figure 4.4). Specifically, the over-counts that have to be subtracted are:

- Over-counts due to reads either starting (^. or ^,) or ending (.\$ or ,\$) at any middle position of the kmer (e.g. for k=5, at positions 2 to 4 (k-1)) (OCmid).
- Over-counts due to reads ending at the first position of the kmer (at position 1) (OCstart).

 Over-counts due to reads starting at the last position of the kmer (at position k) (OCend).

Thus, the exact count of a kmer is calculated by the following formula:

$$Count(EXP \ kmer) = \left(\sum_{i}^{j} Cov(B) - (0Cmid + 0Cstart + 0Cend)\right)/k;$$

where i and j are the start and end positions of the expected kmer in the reference sequence.

While OCstart and OCend are simply the number of reads ending at the first position and starting at the last position of the kmer, respectively, the computation of OCmid is more complicated. If a read starts at any of the middle positions, then it contributes to the coverage values of all following bases. Similarly, when a read is ending at middle position, then its count is already included in the coverage value of the previous bases. Thus, I need not only to subtract the number of reads starting or ending at a middle position, but also their contributions to the coverage values of the following or previous bases, respectively. Therefore, the OCmid correction term is calculated as:

$$OCmid = \left(\sum_{l=2}^{k-1} OCs(l) * (k-l+1) + OCe(l) * l\right);$$

where OCs(I) and OCe(I) are the number of reads starting and ending at middle base I of the kmer. During the kmer construction, I also capture and store its genomic location on the reference sequence, which I am using later in systematic error detection (cf. Section "Systematic error detection"). The kmer location is the location of the last base in the kmer string (base of interest) for PM, whereas, it is the position of the first base (base of interest) for SM. The expected kmer construction and their counts computation are implemented in Perl scripts. Their pseudocode can be found in Appendix.

OEratio computation

After the generation of the kmers, I first merged the kmers and their counts (Count) from both forward and reverse strand. If the kmer is present in both strands, then I added both counts and report this kmer with this total count in the merged kmer list. The kmers that occur only on one strand are reported as they are (with their count) in

the merged kmer list. I applied this merging for both observed (OBS) and expected (EXP) kmer lists. Thereafter, I computed the OEratio for each kmer based on the following formula:

OEratio = Count(OBS kmer)/Count(EXP kmer)

If a kmer is present in both the OBS and EXP kmer list, then simply the above mentioned formula is used to calculate OEratio. Whereas, if a kmer is exclusively present in only one of the lists, then I simply use zero as the count of the absent kmer to compute the OEratio. For example, if a kmer is not in the OBS kmer list, then its OEratio will be zero. In the other case (absence of the kmer in EXP kmer list), the OEratio is infinity.

Systematic error detection

I used the above mentioned kmer approach to explore systematic errors in human exome data. For this purpose, I selected a set of 10 samples from an epilepsy study randomly from our in-house data set. Additionally, I included a control sample NA12878 for validation purpose (cf. Section "Validation of kmer list"). The paired-end exome sequencing of these samples were performed on the CCG's Illumina HiSeq sequencer and NimbleGen SeqCap EZ Human Exome Library v2.0 (V2_IN) kit was used for target enrichment. All of these samples were analysed by our exome analysis workflow (cf. Chapter 3) where read mapping is performed by BWA-aln algorithm (with n=7) followed by post alignment improvements and variant calling by both mpileup and GATK's unified genotyper (UG) (cf. Chapter 2). This data set is having a mixture of both male and female samples with more than 90% of the target region covered at 20X or higher.

I constructed both observed and expected kmers and computed the OEratios for all 11 samples (as described above). I selected the kmer length as 9 (k=9) for systematic error detection. The reasons behind this selection are:

- a) Previous studies only focused on sequence motifs of length 4 and were not able to detect/explain all systematic errors (cf. Section 4.1.2).
- b) (Allhoff et al., 2013) already reported that longer motifs are more specific and able to detect more SSEs than the shorter motifs. They used 8 as motif length for their study.

c) After comparing kmers of lengths 4 to 10, I also found that a higher motif length is more specific as it avoids the additive effect of normal kmers. Here, a normal kmer means a kmer having no mismatch at the position of interest, thus, not representing any error. At low kmer length, the number of possible kmers formed by the 4 nucleotide bases is very small. For example, at k=4 we get $4^4 = 256$ different kmers, on the other hand, at k=9 the number of possible kmers is $4^9 = 262144$. Thus, at the lower kmer lengths we can have a large number of normal kmers that dominate the OEratio computation, which makes it difficult to detect error-containing kmers. I did not go beyond k=9, as it increases the computational cost. Moreover, the combinations of kmers generated from both prefix and suffix model are containing 17 bases (having base of interest in the middle), 8 bases upstream and downstream of the error position. Thus, I assume that 9mers (or 17mers in the combination) are enough to capture the systematic errors.

The generated kmer lists contain 6 columns: the expected kmer (which is the motif of interest), expected and observed kmer counts, OEratio, kmer locations on the reference genome and read strand information (whether the kmer is constructed from reads mapped to the forward or reverse strand or both strands). To exclude badly covered kmer genome-wide, due to coverage bias or misalignments, I filtered out kmers having less than 20 expected counts. After this initial preparation, I performed the following steps to explore RSEs.

Extraction of kmers having RSEs

In order to focus only on RSEs, first I extracted only those kmers that are having RSEs variants (either SNP or Indel) at the last or the first base of the kmer from PM and SM, respectively. I considered all variants called in a sample as RSEs if they are also present in more than 300 samples among 511 epilepsy samples of our in-house data set. However, I make sure that these labelled variants are not common variants shared among different human populations (are only shared in our in-house data set). As in-

house data set (called InhouseDB⁷⁷), we have variant calls of 511 epilepsy patient samples also generated by our exome analysis workflow. We integrated variant calls (called DBall⁷⁷) provided by the 1000 genomes project (phase 3^{78}) and the ExAC⁷⁹ consortium. Moreover, we annotated these integrated calls with rsids⁸⁰ from DBSNP⁸¹ database. The 1000 genome consortium (Abecasis et al., 2012) provided lists of variants called by genome sequencing of 2504 individuals from 26 populations. The ExAC consortium preformed exome sequencing of 60,706 unrelated individuals and provided an integrated list of called variants. Both variant lists contain population specific information, like total number of alternate alleles in called genotypes (AC), total number of alleles in called genotypes (AC) or allelic frequency (AF) in different populations. I computed minor allele frequencies (MAF⁸²) (i.e. AC divided by AN) of variants present in DBall. If a variant is present in both variant lists, then I computed MAF by using AC and AN values from ExAC list, as it is containing variants from more than 60,000 individuals. I considered a variant as a common variant if it has MAF > 0.30 (30%).

To extract kmers having RSEs only, first I took the overlap between variants in InhouseDB and DBall, and filtered out the common variants among these overlapping variants. Then, I selected only those variants (i.e. RSE locations) that are shared among at least 300 samples of InhouseDB. To narrow down this list, I further extracted only those RSE locations that are shared by at least 7 samples among the 10 selected samples. I compared these RSEs locations with the kmer locations and kept only those kmers whose last or first base are at the location of an RSE (for PM and SM, respectively). I performed this filtering on all selected 11 samples and this way prepared lists of kmers associated with RSE locations for each sample.

⁷⁷ Both InhouseDB and DBall construction is performed by Dr. Holger Thiele

⁷⁸ http://www.1000genomes.org

⁷⁹ <u>http://exac.broadinstitute.org</u>

⁸⁰ <u>http://www.ncbi.nlm.nih.gov/SNP/get_html.cgi?whichHtml=how_to_submit#REFSNP</u>

⁸¹ <u>http://www.ncbi.nlm.nih.gov/SNP/</u>

⁸² http://hapmap.ncbi.nlm.nih.gov/hapmart.html.en

Alignment or random artefacts filtering

To filter some alignment artefacts, I generated two different lists of kmers associated with RSE locations for each sample by using aligned reads by BWA-aln and BWA-MEM algorithms. As I am using BWA-aln with increased sensitivity (n=7), it can produce many FPs. On the other hand, BWA-MEM has well balanced sensitivity and specificity (cf. Chapter 2). Therefore, I am taking only those kmers that are present in both kmer lists, those constructed from the BWA-aln alignment and those from the BWA-MEM alignment, to filter out possible alignment artefacts produced by the BWA-aln algorithm. Thereafter, I merged the filtered kmer lists from all 11 samples and retained only those kmers common to at least 7 of the 11 samples. This excludes random errors occurring in an individual sample or sample specific systematic errors and focuses the resulting kmer list to mainly RSEs.

Validation of kmer list

As explained in Chapter 2, sample NA12878 can be used as a control sample to validate lists of variants. Thus, I compared the variant locations (which is RSE location) in the kmer list that are shared by the NA12878 sample with NIST's variant list to validate that these variants are only FPs. At first, I compared variant calls (called by UG) of this sample with the NIST list as recommended to get lists of true variants (or highly confident variants) (cf. Chapter 2). Then, I checked how many variants from this list are present in the kmer list and marked them with a keyword. I also used validated calls⁸³ for this sample provided by the Broad institute⁸⁴, as an additional annotation. Moreover, I compared variant calls in the list with variant calls for the same sample but called by a different data-analysis pipeline, where I performed read mapping by BWA-MEM (followed by GATK's post alignment improvement) and variant calling by GATK haplotype caller. I also marked those locations, which are not present in the variant list generated by the new pipeline (as these can be artefacts produced by variant calling). Furthermore, I annotated the RSE locations with their presence in DBall and reported

 ⁸³ http://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/working/20130806_broad_na12878_truth_set
 ⁸⁴ http://gatkforums.broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-orbenchmarking-purposes)

MAF for matched entries. All of the above mentioned comparisons are enough to validate whether the locations in our list are FPs in all data sets or can appear as true variants in any individual like NA12878 or another from some population analyzed in the 1000 genome project. At last, I compared our kmer list, with kmers generated by the tool "discovering-cse"⁸⁵ (they have also provided a list of FP location) (cf. Section 4.1.1).

Comparison with other datasets

The detected RSEs can simply be some artefacts introduced during library preparation with a certain enrichment kit or can be technology (Illumina) specific artefacts or sequencing centre specific artefacts (batch effect). Thus, in order to figure out the nature of these errors, I compared this kmer list with the following different paired-end exome sequencing (sequenced on Illumina Hiseq) datasets, in which at least 90% of the target region is covered at 20X or greater:

- V3_IN: Set of 11 samples sequenced in-house by using the NimbleGen SeqCap EZ Human Exome Library v3.0 target enrichment kit.
- **SS5_EX:** Set of 11 samples sequenced in another sequencing centre by using the Agilent SureSelect Human All Exon v5 target enrichment kit.
- V2_EX: Set of 11 samples sequenced in another sequencing centre by using the NimbleGen SeqCap EZ Human Exome Library v2.0 target enrichment kit.

To make these datasets comparable, all of these samples are analysed by the same data analysis pipeline. Kmers (k=9) construction and OEratio generation are also performed in the same way as described above. Extraction of kmers at RSE locations is also performed in the same way, except the final list of FPs used here is only variants that are not common and shared by at least 300 samples in InhouseDB (not requiring the additional sharing of the variants between 7 of 10 samples) (cf. Section "Extraction of kmers having RSEs"). Thereafter, the kmer lists from all 11 samples of each data set are filtered from alignment artefacts and merged into one list to avoid random errors. At last, these 3

⁸⁵ https://bitbucket.org/tobiasmarschall/discovering-cse

different kmer lists are compared with our final kmer list from V2_IN and kmers are marked according to their presence or absence in all of these datasets.

Filtering to get strong RSEs

To focus on strong RSEs (i.e. hard to detect or filter out by standard filters), I applied best practice filters⁸⁶ (cf. Chapter 2) to filter out some easily detected FPs and focused only on the remaining variant locations. In order to narrow down the screening further, I used the OEratio. I computed the average of OEratio for all kmers throughout the 11 samples of the **V2_IN** data set and focused on only those kmers present either on forward or reverse or both strands that have an average OEratio less than 1. As explained above (cf. Section 4.1.3), a kmer with a low OEratio is more likely to be associated to a systematic sequencing error than one with a high OEratio, which is why I focus our investigation on this class of kmers.

4.2 Results

Table 4.1 shows the statistics of the generated 9mers from our dataset of interest (V2_IN) where I selected 10 epilepsy samples and 1 control sample (column 1), which were sequenced in-house (exome sequencing) on an Illumina HiSeq and enriched by NimbleGen v2.0. Approximately 6 million (column 2) 9mers (a few might be identical to each other, but appears at different chromosomal location) from different chromosomes (1-22, X, Y) are constructed by both Prefix model (PM) and Suffix model (SM) from the target regions (±100bp flanking regions) of the sequenced samples. At the raw level (all generated 9mers without any filtering), these numbers are the same for both PM and SM model, as they represent the same kmer but with different RSE location. The filtering based on coverage (column 3), where I filtered out 9mers having less than 20x read coverage, filtered out approximately 6% of data. The extraction of 9mers at RSE locations according to InhouseDB shortened the 9mers list drastically (column 4). Furthermore, the alignment artefact filter (column 5) also filtered out a few alignment errors (approx. 5% of RSE containing 9mers).

⁸⁶ <u>http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set</u>

Results

Sample	Number of 9mers							
(Dataset:	Raw	After Filter	Only on RSE	After Aln artefact filtering				
V2_IN)		> 20x	locations					
NA12878	6107687	5790795	3740	3492				
S1	6112969	5799549	4129	3969				
S2	6066480	5729634	3383	3199				
S3 61598		5823955	3589	3408				
S4 6086135		5782131	3797	3606				
S5 6058726		5786777	3967	3799				
S6	6172392	5819470	3841	3636				
S7	6199838	5832016	3709	3562				
S8	6058524	5724690	3665	3503				
S9 6190481		5825560	3798	3643				
S10	6071964	5691843	3681	3513				

Table 4.1 Statistics of generated 9mers from V2_IN.

Category	Number of 9mers (Overlapping 9mers of V2_IN with other datasets)								
	Raw Overlap		After Avg. OE		After BestPrac.		After OEFilt on		
				< 1 on raw list		Filt. on raw list		BestPracFilt. list	
	PM	SM	PM	SM	РМ	SM	РМ	SM	
With all datasets	1649	1697	242	239	1461	1513	211	211	
With V2_EX	1069	1059	187	178	820	813	127	118	
& V3_IN)									
With V3_IN	75	97	5	6	71	86	5	6	
& SS5_EX									
With V2_EX	67	81	5	2	65	79	5	2	
& SS5_EX)									
With V3_IN	112	91	14	11	96	78	9	8	
With V2_EX	45	38	3	3	41	35	3	3	
With SS5_EX	17	9	1	2	16	9	1	2	
No Overlap	28	31	3	3	26	28	3	3	
Total	3062	3103	460	444	2596	2641	364	353	

Table 4.2 Overlap between the test dataset and the 3 other datasets.

As mentioned in the method section, I extracted only 9mers that are shared by at least 7 of the 11 samples considered to filter out some random errors (or sample specific errors). This step further reduced the 9mer list by approx. 15% (cf. Table 4.1). Thereafter, I compared this list with those produced from the 3 other datasets (V2 EX, SS5 EX, V3 IN) to assess the reproducibility and nature of these errors (cf. Table 4.2). The comparison of the V2 IN list with the lists from the other datasets shows that approximately 94% of RSEs are reproducible (in at least three datasets, sum of the first four categories). Only 1% of the RSE associated 9mers (category: No Overlap) are not present in any other dataset. The remaining 5% RSE associated 9mers in V2 IN are only shared by one other dataset (e.g. V2_IN with V3_IN), which is still a sign of reproducibility. This high level of reproducibility across different data sets supports our hypothesis that the majority of RSEs in the V2 IN list are indeed systematic errors. 54% of these systematic errors are shared by all datasets irrelevant to enrichment kit and sequencing centre. Thus, these errors are most likely induced by the Illumina sequencing process or due to standard library preparation protocols (used in a similar way in most of the sequencing centres). I refer to this error type as class 1: Platform dependent errors. Besides this class, I also detected another class of error (approx. 35% of the total), which occurred due to the combination of Illumina sequencing with NimbleGen SeqCap EZ Human Exome Library kit (both V2 and V3) only. I refer to this error type as class 2: Target enrichment dependent errors. I also compared my 9mer list with the 9mer list generated by the tool "discovering-cse"⁸⁷ on the control sample. I found only 1% overlap between these two lists, which is expected as "discovering-cse" only focuses on strand biased positions and detects systematic errors at the sample level. In contrast, my 9mer list contains shared errors across different datasets and is not restricted to strand biased positions. The systematic errors in both of my classes are shared variants among 300 from 511 samples in the InhouseDB data set (but these are not common variants having MAF < 30 %). Moreover, I filtered the 9mer list with the GATK best practice filters for SNPs and Indels (cf. Chapter2) and found that only 11% of these

⁸⁷ <u>https://bitbucket.org/tobiasmarschall/discovering-cse</u>

systematic errors can be detected or filtered out by the best practice filters (which include a filter for strand bias).

The RSEs reported in the two error classes can be used to filter or mark systematic errors in any other variant list. However, I found that some of these errors are true variants in the NIST/Broad truth set list (cf. Table 4.3 & Table 4.4) or present in DBall. This is not surprising as some rare variants or sample/disease specific variants can be true even at systematic error prone regions. Moreover, I also observed that Haplotype caller (HC) did not call some of these errors (especially errors in regions of paralogous alignment (cf. Chapter 2) (cf. Table 4.3 & Table 4.4). The new generations of variant callers like Haplotype caller or Platypus, don't rely on the alignment entirely but perform local reassembly of haplotypes⁸⁸ containing mismatches on the reference, thus, they can avoid some of the systematic errors (but not all) due to paralogous alignment. However, they can also miss some true variants in these regions because of this behaviour (cf. Chapter 2). Therefore, in RSE lists (cf. Appendix) I have provided some additional annotations showing whether a variant is present in NIST or DBall list or whether it is called by HC etc. This can help users to decide (based on the aim of the study) that up to which extent they should filter systematic errors in their variant lists.

FilterRSEs tool

To filter RSE locations (FPs due to RSEs) from any variant list (in the VCF format), I developed a script (named: "FilterRSEs") in the Perl programming language⁸⁹. It compares the variant locations in the given VCF file and the RSE list, and performs relevant action in two different modes: annotation and filter. In annotation mode, it just annotates the variant with RSE associated annotations (if the variant location is present in RSE list): PA, NIST, DBALL, 17mer. It appends the INFO field of the VCF file⁹⁰ with all of these annotations and their respective values. For example, if an RSE location is called by other pipeline I used (BWA-MEM and GATK HC), then "PA=Yes" will be appended to

⁸⁸ <u>http://ghr.nlm.nih.gov/glossary=haplotype</u>

⁸⁹ <u>https://en.wikipedia.org/wiki/Perl</u>

⁹⁰ http://samtools.github.io/hts-specs/VCFv4.2.pdf

the INFO field of that variant, otherwise "PA=NO" (if the RSE is not called by the other pipeline). Similarly, NIST and DBALL also contain two values "Yes" or "NO", depending on the presence of the RSE location in the NIST list and in DBall (cf. Section "Validation of kmer list"). Along with the "Yes" value, the DBALL field also contains the rsid and MAF value of the RSE location. The annotation "17mer" contains the string of 17 bases around the RSE location (8 bases upstream, reference base at the RSE location, 8 bases downstream). The description of these annotations will also be added to the header of the VCF file. Therefore, the annotation mode provides some flexibility to user, who can consider the RSE annotations presented in the VCF file when deciding about a variant. For example, if the study focuses on the common variants (present in different human populations), then MAF values in DBALL field can be helpful in order to decide whether a certain variant should be considered as an RSE or a common variant.

In "Filter" mode, the tool filters out the FPs due to RSEs from the given VCF file and produces two different VCF files: one is free from RSEs and the other contains only the filtered FPs due to RSEs. This mode provides different filtering options using different combinations of annotations like P, C_MAF, C, N etc., which also offer lots of flexibility to user. For example, the default option of tool filters out all RSE locations from the VCF file irrelevant to the associated annotations, whereas the "C_MAF" option offers filtering of RSE locations based on a given MAF value. Overall, these different filtering options can provide "safe" filtering, even in the filter mode. Details of all of these filters as well as the pseudocode of "FilterRSEs" can be found in the Appendix.

Exploration of systematic error

I further investigated the detected RSEs to explore their characteristics (cf. Table 4.3 & Table 4.4). I observed that the majority (74-77% in class 1 and 64-67% in class 2) of RSEs are mapped at only (or mainly) one strand (either forward or reverse) of the reference sequence. However, most of these are not detected by the standard strand bias filter used in GATK's best practice filtering strategies. I also found that some of the errors are mapped on both strands (23-26% in class 1 and 33-36% in class 2) as well, which supports our assumption that the investigation around only strand biased (i.e.

supported by only one strand) errors (as performed in previous studies) is not enough to explore all systematic errors (cf. Section 4.1.2). Moreover, I found that a significant portion of total errors, approximately 27% in class 1 and 35% in class 2, are pipeline artefacts and can be avoided by using the recent sophisticated tools/algorithms (like Haplotype variant caller) (cf. above paragraph).

In order to see the distribution of these errors throughout the genome, I calculated the number of RSEs per chromosome in class 1. The distribution of RSEs captured by the Prefix model (PM) (cf. Figure 4.5) and Suffix model (SM) (cf. Figure 4.6) is almost identical as both models are capturing the same errors with upstream and downstream 9mers to the error position, respectively. However, SM captured a few more RSEs (not a significant difference) than PM due to the differences in the 9mer construction procedure.

In All Dataset	Prefix Model (del (PM)	Suffix Model (SN		lel (SM)
	FPs	In	Not called	FPs	In	Not called
		NIST	Ву НС		NIST	Ву НС
At both strand	357	53	126	324	48	112
At only one strand	1031	260	264	1134	290	281
Total FPs	1388	313	390	1458	338	393

Table 4.3 Overview of systematic errors in class 1: Platform dependent (shared by all datasets).

In only Nimblgen datasets	Pre	Prefix Model (PM)			Suffix Model (SM)		
-	FPs	In NIST	Not called	FPs	In NIST	Not called	
			Ву НС			Ву НС	
At both strand	300	6	123	278	5	113	
At only one strand	551	84	172	583	75	192	
Total FPs	851	90	295	861	80	305	

Table 4.4 Overview of systematic errors in class 2: Target enrichment dependent (shared by only Nimblgen Kits).

The RSE distribution of class 1 errors showed that a few chromosomes (CHR) are having a significantly higher number of errors than the others. Thus, I focused on only these chromosomes: 1,2,6,7,11,17 to investigate the cause of the high error load. I observed that these chromosomes are containing some genes, which are having a major portion of errors. For example, approximately 55% of the total errors on chromosome 11 (mainly SNPs) are on the MUC6/2 genes (notation means *MUC6* and *MUC2*), with the majority of them in *MUC6*. The *ANKRD36* gene is having 47% of total errors on chromosome 2, the *MAP2K3* gene (on chromosome 17) is having around 44% and the *CDK11A/B* genes (mainly in *CDK11A*) (on chromosome 1) are having around 19% of the total errors on that chromosome.

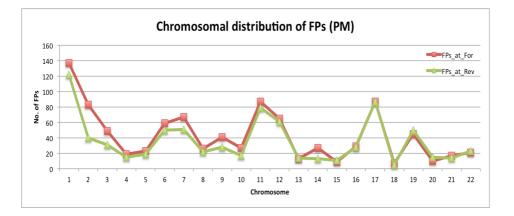


Figure 4.5 Distribution of errors throughout the genome captured by Prefix model (PM). In the figure, Xaxis shows the chromosome name, whereas the Y-axis shows the number of errors. The red line shows errors present on the forward strand, whereas the green line shows errors on the reverse strand.

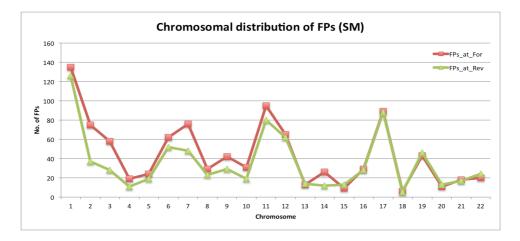


Figure 4.6 Distribution of errors throughout the genome captured by Suffix model (SM).

After the investigation of all of these genes (having a high number of RSE), I found that these are having many paralogous genes or similar genes as computed by Similarity Matrix of Proteins (SIMAP) (based on their proteins alignments) (Rattei et al., 2006, 2010) or contain highly polymorphic repetitive regions or LCR regions (cf. Chapter 2). These facts are the main cause of misalignments by alignment algorithms in these regions that result in lots of mismatches. Alignment algorithms can find multiple mapping hits in these regions. In other words, they can align reads that belong to one gene to one of its paralogous genes due to high sequence similarity (cf. Chapter 2). Figure 4.7 shows the IGV⁹¹ (Robinson et al., 2011) visualization of aligned reads (aligned by both BWA-MEM and backtrack algorithm) on the reference sequence at the MUC6 gene. The grey colour (wavy) part below the coordinate axis in both diagrams is the coverage track, which shows the read coverage at every genomic position. It is coloured in grey when only the reference allele is present in the reads while the presence of alternative alleles at a position is marked in green, blue, orange, and red colour for A, C, G, and T, respectively. Both diagrams show lots of coloured bars in the coverage track, which depicts lots of mismatches in the visible region. It is known that the MUC6 gene is highly polymorphic having short tandem repeats (STRs) containing G and T nucleotides (e.g. GGT, GCT, GT, etc.) (cf. Figure 4.8). Moreover, it is having many paralogous genes like MUC2, OTOGL, OTOG, ZAN etc. 92. These two facts are the main cause of misalignments by both alignment algorithms, which result in a lot of mismatches in the MUC6 gene. However, I found that Haplotype caller can avoid very few of these errors.

I fetched the information of paralogous genes of highly mutated genes (cf. Table 4.5) from gene cards⁹³ (Belinky et al., 2015) and found that some of these genes are either belonging to one gene family or are paralogous to each other or are having other highly mutated genes as similar genes (based on the protein sequence alignment: SIMAP (Rattei et al., 2010). For example, *CDK11A/B*, *CLCNKA/B* and *MUC6/2* belong to the same gene family and are paralogous to each other. *PRIM2* gene contains 38% of RSE in chromosome (CHR) 6, but no paralogs for this gene cards. However, its cryptic paralogs,

⁹¹ <u>https://www.broadinstitute.org/igv/</u>

⁹² http://www.genecards.org/cgi-bin/carddisp.pl?gene=MUC6#paralogs

contain only exons 6–14 of the original transcript, are mentioned in study (Genovese et al., 2013). They also found that these paralogs are the cause many FPs (SNPs and CNVs).

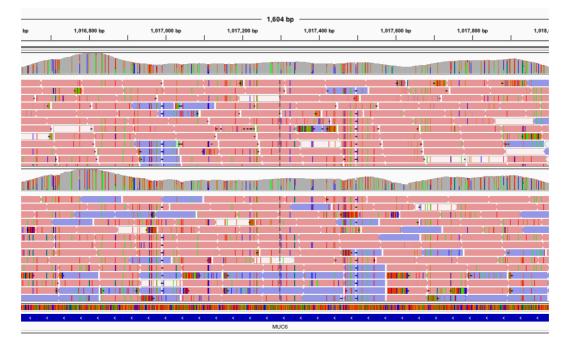


Figure 4.7 Alignment visualization by IGV in the MUC6 gene region. Upper diagram shows alignment by BWA-backtrack (aln) algorithm, lower diagram shows alignment by BWA-MEM algorithm.

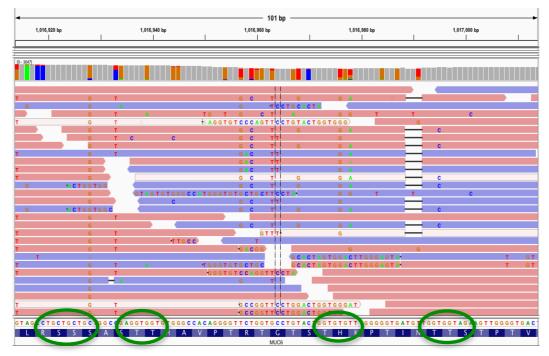


Figure 4.8 Alignment visualization by IGV at location 11: 1016963 of MUC6 gene. Surrounding this position (highlighted by vertical line in black colour) there are lots of STRs (repeats of GGT, GCT, GT, etc.) highlighted with ovals in green colour.

Frequent RSE	% RSE	CHR	Paralogous genes ⁹³
gene			
CDK11B	3%	1	CDK12, CDK13, CDK10, CDK11A, CDK9,
CDK11A	16%	1	CDK12, CDK13, CDK10, CDK11B, CDK9
CLCNKB	5%	1	CLCN7, CLCN2, CLCN3, CLCN, CLCN1, CLCN4, CLCN6,
			CLCNKA
PDE4DIP	10% ⁹⁴	1	CDK, RAP2
ANKRD36	47%	2	POTEJ, ANKRD18A, ANKRD30BL, POTEC, ANKRD20A,
			POTEF, ANKRD7, ANKRD62, ANKRD30A, ANKRD36C, etc.
ANKRD36B	3%	2	SIMAP similar gene to ANKRD36
SEC22B	4%	1	SEC22A
PRIM2	38%	6	No paralogs are available in Gene cards, but its cryptic
			paralogs are mentioned in study (Genovese et al., 2013)
DUSP22	6%	6	DUSP26, DUSP1, DUSP21, DUSP13, STYX, DUSP18,
			DUSP27, DUSP19, DUPD1, DUSP28, DUSP3
MUC12	5%	7	MUC17
TRBV7-3	7%	7	TRBV2, TRBV24-1, TRBV3-1, TRBV, TRBV6-8, TRBV4-1,
			TRBV2-1, TRBV23-1, TRBV10-2, TRBV28, TRBV7-1, etc.
PRSS1	26%	7	KLK12, KLK14, KLK11, KLK4, PRSS37, KLK13, PRSS8,
			PRSS3, KLK1, KLK, KLK6, KLK7, KLK1, KLK2, KLK10, etc.
MUC6	42%	11	OTOGL, OTOG, ZAN, TECTA, VWF, BMPER
MUC2	13%	11	OTOGL, OTOG, MUC6, ZAN, TECTA, VWF, BMPER
OR4C3	7%	11	OR4A, OR4C46, OR4B1, OR4C11, OR4S2, OR4A47,
			OR4C13, OR4C16, OR4X1, OR4S1, OR4A1, OR4C1, etc.
OR9G1	5%	11	OR9G4 and SIMAP similar gene OR4C3
USP6	7%	17	USP4, USP43, USP1, USP11, USP19, USP32, USP16,
			USP31, USP4,
CCDC144NL	5%	17	CCDC144A CCDC144B
МАР2КЗ	44%	17	MAP2K7, MAP2K2, MAP2K6, MAP2K4, MAP2K, MAP2K1
KCNJ12	10%	17	KCNJ3, KCNJ, KCNJ4, KCNJ14, KCNJ1, KCNJ1, KCNJ16,
			KCNJ10, KCNJ9, KCNJ8, KCNJ2, KCNJ6, KCNJ11

Table 4.5 List of genes having high RSEs and their paralogous genes.

⁹³ Information taken from Gene cards database: <u>http://www.genecards.org/</u>

⁹⁴ This gene is also observed in class 2 (not analyzed in detail) with a significant level of FPs.

Moreover, I found that a few of these paralogous genes are located on the same chromosomes. I also compared my list of genes with the list of genes provided in the study conducted by (Fuentes Fajardo et al., 2012). In their study, they analysed exome-sequencing data from 118 individuals in 29 families and reported lists of genes having FPs (heterozygous calls). I found that the *MUC2/6/16*, *MAP2K3*, *PDE4DIP* and *USP6* genes are common in both lists. Overall, the high sequence similarity to other genes or presence of highly polymorphic repeats (like in the *MUC6/16* genes), make these genes more prone to misalignments, which produce the high number of FP variant calls in these genes.

Investigation of strong RSEs

In order to find patterns associated to RSEs, I further investigated class 1 (RSEs shared by all datasets) in detail. I filtered the list with OEratio < 1 (filtered-out approximately 85% of list) followed by best practice filter that reduced the 9mers list by up to 87% (cf. Table 4.2). In this filtered list, there were no RSEs from highly mutated genes except for some in the *MUC6* gene. In total, this list contains only 134 RSEs (with 211 associated 9mers) and 20% RSEs (or 33% 9mers) of these are due to the misalignments in the *MUC6* gene.

For the further exploration, I removed 9mers belonging to the *MUC6* gene regions. I investigated whether the remaining RSEs are sequence specific errors (SSEs). For this purpose, I examined the remaining 9mers (I will refer to them as "SSE-associated 9mers") to find out if the remaining 9mers share some small sequence motifs or whether any nucleotide (or combination of nucleotides) is highly frequent throughout the list. I used the online tool Weblogo⁹⁵ to generate sequence logos, i.e. "graphical representations of the patterns within a multiple sequence alignment" (Crooks, 2004) (Schneider & Stephens, 1990). I generated sequence logos (with frequency plots options) for 9mers generated by both prefix and suffix model (cf. Figure 4.9). However, I found that these logos are not very informative and the only fact I observed is that the error mainly occurred at reference base 'T' (tallest base at last and first position of PM

⁹⁵ <u>http://weblogo.berkeley.edu/logo.cgi</u>

and SM respectively), which has been also observed by (Meacham et al., 2011) where they found the GGT motif upstream of the error position (with T reference base at the error site). Additionally, the presence of the GGC motif up to 10 bases upstream of the error base (cf. Figure 4.9) can be anticipated in some 9mers, which are responsible for some systematic errors and were first observed by (Nakamura et al., 2011). However, the logo for the SM model shows that some 9mers might also have GGC motifs present in 10 bases downstream as well. To confirm the presence of GGC or GGT, I screened the 9mer list (excluding MUC6 9mers) for their presence and found that approximately 10% and 11% of the error sites are having GGC and GGT upstream of the error position, respectively (cf. Table 4.6). In contrast, 9% and 18% error sites have a GGC or GGT motif downstream, respectively. (Nakamura et al., 2011) proposed that GGC motifs can be a cause of dephasing, which can induce base calling errors. They found that the wrongly called base (mismatch) at the error site is either the first or the second preceding reference base. I also observed such dephasing patterns due to the GGC motif in the upstream of one of the RSE in our list, where the mismatch 'T' is the second preceding reference base (cf. Figure 4.10).

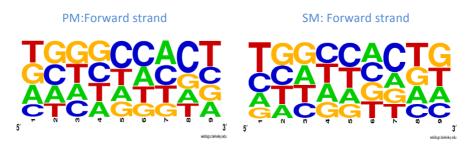


Figure 4.9 Sequence logos (from Weblogo tool) for 9mers at forward reference strand. The top row contains the most frequent nucleotide at each position (at X-axis, range 1-9 represents first base till last base of the 9mer) and the length of each character is directly proportional to its frequency (the tallest character is having the highest frequency at the respective position).

Detection of systematic sequencing errors

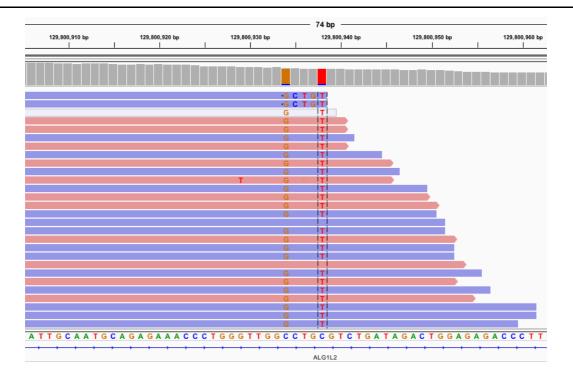


Figure 4.10 Alignment visualization of a systematic error by IGV. The wrong base T is highlighted with vertical lines in black colour at chr 3: 129800938.

3mer	Occurrence (%)	3mer	Occurrence (%)
(Upstream)		(Downstream)	
CTG	19.87	СТС	17.73
ACC	19.21	GGT	17.73
ССТ	17.89	тсс	17.09
CCA	16.56	TGG	16.46
GCA	15.24	CGG	16.46
TGC	14.57	TCA	15.19
GCC	13.91	CAC	15.19
GAC	13.91	ССТ	15.19
GTG	13.91	GTC	13.93
TGG	13.91	TTC	13.93
GGC	9.94	GGC	8.8
GGT	11.26		

Table 4.6 List of top 10 common motifs of length 3 (including known motifs occurrences) in RSEs associated 9mers in both upstream and downstream.

To find some other common or highly frequent sequence motifs, I considered all shorter kmers of lengths 2 to 8 contained in our list of 9mers. I found a few intersting 3mers like

"CCT", which appreared either in upstream or downstream of the error positions (18% and 15% of total 9mers in upstream (151 9mers) and downstream (158 9mers) respectively) (cf. Table 4.6). In the context of 2mers, I found approximately 46% and 48% of 9mers are having "CT" and "CC", respectively, upstream of the error positions. 44% and 40% of 9mers are having "CT" and "CC", respectively, downstream of the error positions. The higher ocurrence of the "CT" motif is also observed in the 3mer "CTG" upstream and "CTC" downsteam. Both motifs showed the highest occurrence among all top 10 motifs (cf. Table 4.6) with approximately 20% and 18 % for "CTG" and "CTC", respectively. Furthermore, the reference base "T" is found to be the most error affected nucleotide. Approximately, 34% of 9mers (among 211) are having "T" ("A" at reverse strand) as the reference base at the error position, which can be also observed from the logos (cf. Figure 4.9) and was also concluded in the study by (Meacham et al., 2011) ("stronger tendency of error at A or T than at C or G"). Moreover, approximately at 20% of the error postions, "T" is having "C" as an error base (i.e. T>C sustitution) and 15% show an A>G substitution on the forward strand. At the reverse strand, I found 18% of postions with A>G and 17% with T>C substitutions. Among 211 RSE associated 9mers, only 5 are having Indels which is expected as Illumina sequencing has a higher substitution error rate than Indel error rate. As known, I also found all Indel errors in STRs which is due to the alignment inacurracy in repetitive regions (cf. Chapter 2).

Secondary structure analysis

I also performed secondary structure analysis on sequence motifs in the SSE-associated 9mers list. At first, I combined the 9mers from both PM and SM to construct 17mers, which contains the surrounding sequence sequence motifs in both upstream and downstream direction of the error position, which is the 9th base of the 17mer. This merging further reduced the list to 120 (was arround 150) 17mers. The idea behind the secondary structure analysis is based on the observation found in study (Nakamura et al., 2011), where they observed that a few sequence specific errors can be triggered by inverted repeats which might cause dephasing during sequencing (cf. Section 4.1.1). Thus, the aim of this analysis is to find some 17mers having high probability to fold or form some sort of secondary structure like a hairpin loop, which might be triggering associated RSEs.

CHR	Location	17mer	MFEstruct	MFE	PairProb	EnsblFE
14	106361561	AGGCCTGGCGGTAGGTT	.((((((()))))))	-4,7	.{(((((())))))}	-5,16
11	1093158	ACCACCACTACGGTGAC	((((()))))	-4,9	((((()))))	-4,91
8	124664873	GAGGCACATATTGCCAC	((((()))))	-4,8	((((()))))	-4,91
8	124664873	GTGGCAATATGTGCCTC	((((()))))	-4,6	((((()))))	-4,78
12	2791130	GCACGTTCCGATGTGTG	((((((())))))).	-4,4	((((((())))))).	-4,57
21	11049395	GCGCCTAGTAATAGGGT	((.(((()))))))	-3,8	,{.(((()))))}}	-4,32
6	31922360	CGGGATCGAGACCGAGA	((())))	-3,8	((())))	-3,84
21	34915324	AATTGGCCCGTGCGCCT	((()))).	-3,6	((()))).	-3,65
9	130932398	CTTTGACTGTTGTCATT	((((()))))	-3,5	((((()))))	-3,63
9	130932398	AATGACAACAGTCAAAG	((((()))))	-2,9	((((()))))	-3,04
7	142168662	CAGTGGACGCTGGAGTC	((((()))))	-2,7	((((()))))	-2,85
2	97820434	CTGTGCAAAACGGTCCA	((((()))))	-2,1	((((()))))	-2,16
10	65225244	GGGGCGCTGACTCTCTT	((())))	-1,3	((({)})),	-2,13
12	9573224	AACCACACCGCACAGGT	((()))	-1,9	((()))	-2,1
17	21319523	CCTGGAGACGGACGACT	.((()))	-1,9	.((()))	-2
6	31922360	TCTCGGTCTCGATCCCG	((()))	-1,3	(({,}},	-1,79
14	106361561	AACCTACCGCCAGGCCT	((())))	-1,4	{{{,}))	-1,78
12	9573224	ACCTGTGCGGTGTGGTT	((())))	-1,4	(((}}}	-1,75
21	42843962	GTTCATCCACTGAGAGC	((((.(()))))))	-1,4	((((.{{))))))	-1,73
8	27101204	ATGTGTTAAGGGGCGTA	((((())))).	-1,1	(((((.,))))).	-1,63
3	129147418	GGGTATCAGATAAACCG	.((())).	-1,2	<i>,</i> ({{})).	-1,63
7	142168662	GACTCCAGCGTCCACTG	((())))	-1,4	((())))	-1,55
3	129147418	CGGTTTATCTGATACCC	.((())).	-1,1	.(({}))).	-1,52
21	11058227	CTGAAAGGTGTCGGCTC	((((()))))	-1,2	((({}))))	-1,51
6	112508769	ACTGATGCACTGCGGTT	((((())))).	-1,1	{(((())))}.	-1,46

Table 4.7 List of top 25 17mers according to the nucleotide pairing probabilities (highest to lowest).

I used the RNAfold method of the ViennaRNA Package 2.0 (Lorenz et al., 2011) to predict the secondary structures of single stranded DNA sequences in 17mers. In brief, I used RNAfold with partition function and MEA algorithms ("RNAfold --MEA -p") ⁹⁶ to compute the minimum free energy (mfe) structure, partition function, pair probabilities and the maximum expected accuracy (MEA) structure. The detailed information of this alogorithm and usage of ViennaRNA Package can be found in (Hofacker, 2009; Lorenz et al., 2011). Table 4.7 shows the list of 17mers having high nucleotide pairing probabilities. The 4th ("MFEstruct") and 5th ("MFE") column of table ("MFEstruct") shows the

⁹⁶ https://www.tbi.univie.ac.at/RNA/RNAfold.1.html

predicted mfe structure of the 17mer in bracket notation and its free energy in kcal/mol. The bracket notation depicts a pairing of two bases i and j by a pair of matching parentheses, whereas unpaired positions are depicted by dots. The pictorial representation of the bracket notation of the mfe structure for the first and last 17mer from the table is shown in Figure 4.11. The 6th ("PairProb") and 7th ("EnsbIFE") column contain the bracket notation of the pair probabilities and the ensemble free energy in kcal/mol. In this context, the parentheses show the positions having high probability to pair and dots show mostly unpaired positions, whereas curly brackets and commas show positions with low pairing probabilities. Higher negative value of free energy mean more stable structures.

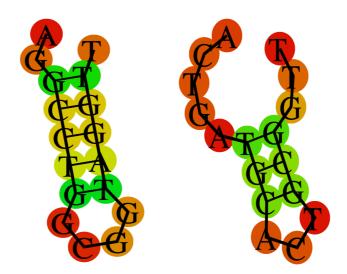


Figure 4.11 MFE secondary structure of first (left) and last (right) 17mer from the list of top 25 17mers.

Based on the computed mfe and the pairing probabilities of 17mers, I found that 25 (approx. 21%) among 120 SSE-associated 17mers could form some sort of secondary structure (cf. Table 4.7). So far the role of the detected 17mers in the origination of these SSEs is not clear, however, they can function in a similar way as inverted repeats explained by Nakamura and colleagues (Nakamura et al., 2011). These sequencing motifs are a part of the DNA template used during sequencing. If these motifs form a loop during sequencing, then the base elongation process (cf. Section 1.1.1) will be hampered for a certain time, which might cause dephasing. As explained previously, dephasing is known to trigger systematic errors.

4.3 Chapter summary

In this chapter,

- I presented a new approach to search for sequence motifs surrounding sequencing error sites. I screened 9mers in both upstream and downstream direction of the error position (in total 17mers).
- I restricted the 9mer list to the RSE locations by selecting only those variants that are shared (but are not common variants in the population) between at least 300 from 511 exome sequencing samples of our in-house dataset. I also validated this list with available resources for the control sample NA12878 (like confident variant calls provided by NIST).
- I compared errors in our list with 3 different datasets to investigate the nature of these systematic errors. I found that most of these are reproducible which supports our assumption that these are systematic errors.
- I constructed two classes of errors: Platform dependent errors and Target enrichment dependent errors. I prepared the lists of RSEs for these two classes. These lists are having all-important annotations (like location, MAF, etc.) and can be used to filter or mark systematic errors in any other variant lists. Moreover, I presented a tool "FilterRSEs" to mark or filter out RSEs from any variant list.
- I found that most of the errors are due to a few genes having paralogous genes or having highly polymorphic repeats. I have provided lists of these genes, which can also be used to mark/filter the variants in these genes.
- I screened only those RSE having OEratio < 1, for short common sequence motifs (3mer or 2mer) and found the presence of all known motifs near the error sites like GGC and GGT. Moreover, I also observed that the reference base "T" is having errors most of the times as already observed in previous studies. However, I observed the presence of a few sequence motifs of length 2 or 3 in either upstream or downstream of the error site, which is not reported so far.
- I found 25 sequence motifs that might trigger RSEs. These motifs have high probabilities to form some sort of secondary structure (like a loop), thus, can hamper the sequencing process for a while and result in a systematic error.

Chapter 5 Conclusion and outlook

5.1 Discussion and conclusion

Next generation sequencing (NGS) techniques are now well established and have been successfully used in many applications for both fundamental research and diagnostics purposes (e.g. whole exome or genome sequencing, gene panel sequencing, transcriptomics etc.) (Rabbani et al., 2014). Due to the rapid decrement in the costs, it is accessible to almost all research or diagnostic laboratories. A simple keyword search for "Next generation sequencing" in pubmed⁹⁷ results in approximately 10,000 entries with approximately 6000 entries since the last two years. However, the huge amount of data generated by NGS techniques requires an efficient and accurate bioinformatics analysis to make it meaningful.

In this work, I addressed different challenges associated with NGS data analysis. I categorized these challenges into two main categories: Efficient data processing and accuracy of analysis. We developed an automated data analysis workflow (Kawalia et al., 2015) for targeted DNA sequencing experiments (exome sequencing, gene panel sequencing, amplicon sequencing). During the development of our workflow, I performed extensive testing of bioinformatics tools required for analysis, both in terms of their efficiency on HPC cluster and the accuracy of analysis. Besides the open-source tools, I also developed some in-house tools for certain parts of the analysis workflow. In addition, I developed a few strategies for the efficient implementation of our workflow on the HPC cluster. To enhance the accuracy of the results, I explored systematic errors, which are usually undetected by state-of-the-art algorithms.

Analysis of sequencing data can be judged by two criteria: its specificity and sensitivity (cf. Chapter 2). A variant list, which represents the final result of analysis, should be

⁹⁷ <u>http://www.ncbi.nlm.nih.gov/pubmed</u> This and other subsequent URLs are accessed on 22 July 15.

highly specific (contain few false positive variants (FPs)) and highly sensitive i.e. should not miss any causative or true variant (no false negatives (FNs)). However, there is a trade-off between these two factors causing highly specific variant lists to miss some variants while highly sensitive variant lists can contain lots of FPs. Thus, a well-balanced adjustment of specificity and sensitivity is very important and still a challenge for the bioinformatics community. As far as I know, there is no analysis workflow, which can achieve 100% specificity and sensitivity. In chapter 2, I addressed these issues with detailed information about the individual analysis steps and the factors that can damage results in terms of both specificity and sensitivity. Raw sequencing data require a series of data analysis steps for quality control, sequence alignment, variant calling and variant filtering/validation. All steps are interconnected and each can have a bad or good effect on the consecutive step. For example, wrong base trimming (both bad quality bases and adapter bases), can discard a significant amount of the sequenced bases which might lead to misalignments or uncovered regions of the reference sequence and can cause false negatives. On the contrary, avoiding the quality control steps (especially on low quality data) can lead to FPs due to wrong alignments or alignments with many mismatches of bad quality bases or reads.

The alignment of the reads to the reference sequence has a significant impact on the specificity and sensitivity of the variant list. A specific alignment (zero or few mismatches allowed during alignment) can reduce FPs but can increase FNs. On the other hand, a sensitive alignment (allowing many mismatches during alignment) can increase FPs but lowers the risk of FNs. BWA-MEM, as one of the current alignment algorithms, performs read mapping with a good balance between both sensitivity and specificity. It tries to find an optimal alignment (maximum exact match extended by some mismatches) of a read sequence on the reference DNA sequence. However, it is not possible to align all reads accurately on the reference genome, especially reads having the typical read lengths between 100 to 200 bp generated from short read sequencing technologies (like Illumina). There are several reasons behind this, like sequencing errors, low complexity regions (LCRs) or highly divergent regions (HDRs) (less than 99.5% identity in the human genome) (cf. Chapter 2), paralogous genes and the incompleteness or errors in the

human reference genome (Fuentes Fajardo et al., 2012; Sims et al., 2014; Treangen & Salzberg, 2012). Every cause mentioned above leads to alignment errors followed by variant calling errors that result either in FPs or FNs.

In addition, other sources that lead to FPs or FNs include sequencing errors like PCR errors, base-calling errors towards ends of reads (esp. 3' end), substitution errors near Indels etc. Some of these errors can be corrected by post alignment improvements like Duplicates removal, BQSR, Indel Realignment. I implemented these corrections in our data analysis workflow (cf. Chapter 3) and they are described in detail in Chapter 2. Moreover, a certain sets of FPs can also result from the limitations of a variant calling algorithm, either the implemented approach or the default parameter settings. Thus, to overcome the limitations of a single variant caller, I used four different variant callers: Samtools'mpileup, Platypus, GATK's Unified Genotyper and Haplotype Caller. These callers belong to two different categories of variant calling algorithms: nucleotide based and haplotype based variant detection. The nucleotide based algorithms use a Bayesian approach (H. Li, 2011) to call SNPs and Indels and treat each position independently (used by Samtools and Unified Genotyper). This approach relies on the alignment accuracy and can produce many FPs but provides sensitive variant calling. On the contrary, the Platypus and Haplotype Caller are the most recent and sophisticated haplotype-based callers, which can avoid some alignment artefacts (e.g. due to paralogous alignment). They do not rely only on the alignment but perform local denovo assembly (by building a De Bruijn-like graph) in order to find the correct haplotype, which is used for SNP/Indel identification. However, they are also not able to find the optimal alignment in LCRs (H. Li, 2014; Rimmer et al., 2014). Moreover, due to the different algorithms and parameter settings, the overlap between the variant calls from these tools is not very high. Overall, I found that the integration of the variant callers using different algorithms is better than using a single variant calling algorithm to achieve highly accurate and sensitive variant calls. This fact is also reported by many data analysis and tool comparison studies (Bao et al., 2014; H. Li, 2014; Trubetskoy et al., 2014).

After performing quality control on raw data, alignment and post alignment improvements followed by sophisticated variant calling, the final variant list still contains lots of FPs. Thus, FPs filtering and variant evaluation also plays an important role in the analysis and can drastically change the variant list. The principle of trade-off between sensitivity and specificity also applies here. Stringent filtering can reduce the number of FPs but can also increase the number of FNs. Therefore, I apply standard filters like VQSR and GATK best practice filters (like MQ, Qual, DP, Fisher strand) (cf. Chapter 2) for every exome sequencing data set by default. I also apply specialized filters for different data types. For example, sequencing data from Ion torrent sequencers contain more Indel errors (due to homopolymer errors during sequencing) compared to Illumina sequencing data. Thus, I filter Indels called in homopolymer regions to avoid Indel errors. Recent variant callers, like Haplotype Caller and Platypus, provide lots of other useful annotation like %GC content, variant called in homopolymer or LCRs, string of the bases surrounding the variant, allelic frequency (heterozygous or homozygous), genotype quality score, etc. It is known that some systematic errors are surrounded by certain sequence motifs like inverted repeats, GGC or GGT (Meacham et al., 2011; Nakamura et al., 2011). Moreover, coverage bias has been observed mainly in GC rich regions and Indels error mainly in LCR regions (Sims et al., 2014). Thus, all of these annotations can also be used, either as a combination of two or more annotations or individually, to filter out some specific artefacts. Many studies have shown the effects of other filters than the standard best practice filters in false positive reductions (Fang et al., 2014; Hwang et al., 2014; H. Li, 2014; Reumers et al., 2011). At last, variants can be filtered or prioritized based on the prior knowledge about the disease or design of the study (e.g. based on pedigree, trios etc.) or based on the predicted functional effects of the called variant on the phenotype and the variant frequency from publicly available data like 1000 Genome project, DBSNP, ExAC etc. (cf. Chapter 3). We have implemented most of these filters in our exome analysis pipeline Varbank (https://varbank.ccg.unikoeln.de/) and are continuously exploring effects of other filters. Varbank provides access to the variant list with different filtering options, which facilitates variant prioritization or candidate variants list creation.

The variant filtering is a very critical step as it can filter FPs but can also produce FNs. Sometimes a standard filter can have a devastating effect on certain types of data. For example, I filtered out a true variant by using the QD < 2 filter (filters variants below the mentioned score) in one of our highly covered old gene panel sequencing data (sequenced in 2010 on an Illumina sequencer). I found that at the down-sampled read coverage of 250 reads this variant is not filtered by the QD filter, but at high coverage (> 500 reads) this variant disappeared from the final variant list. I assume that this is because of many low quality reads in the called region whose accumulation is decreasing the QD score as it is a normalized value of the variant quality score with respect to read depth. Thus, the evaluation of filtering effects is very important. Recently, the Genome in a Bottle Consortium (GAIB)⁹⁸ (hosted by NIST⁹⁹) has provided highly confident SNP, Indel and homozygous reference genotype calls for the genome of the public NA12878 sample¹⁰⁰ (one of the samples of the 1000 Genome project) (Zook et al., 2014). They have used different sequencing technologies like Illumina, Ion torrent, 454, complete genomics to sequence the genome of this sample and used different data analysis pipelines to call the genotypes. This integration avoids the systematic errors from a single platform, alignment or pipeline artefacts and provides a highly accurate variant list. These data has been used in many studies for validation of their variant calls (Hwang et al., 2014; Kelly et al., 2015; Linderman et al., 2014). We also performed exome sequencing of this individual and used this variant list to benchmark our pipeline and the generated variant list in terms of specificity and sensitivity. The transition versus transversion ratio (Ti/Tv) is another criterion to evaluate a variant list or the effect of a filter. As the transitions are more frequent than the transversions (due to methylation of C in CpG islands), this ratio can indicate how much your variant list deviates from general expectations. The Ti/TV ratio should be 0.5 for FPs and a good quality variant list for an exome should have a Ti/Tv ratio around 2.8 (DePristo et al., 2011). Thus, after filtering of FPs, this ratio should increase and tend to reach the expected value, but if it is decreasing then the filter might not be good for this type of data and should not be

⁹⁸ <u>https://sites.stanford.edu/abms/giab</u>

⁹⁹ http://www.nist.gov

¹⁰⁰ <u>https://catalog.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA12878&Product=DNA</u>

applied. Overall, the selection of data analysis tools, their parameter settings and filtering strategies have significant impact on the final results and require extensive testing and evaluation. Moreover, a data analysis pipeline should be configured based on data characteristics like read length, coverage, sequencing platform, aim of study etc.

As mentioned above, the recent data analysis tools or pipelines (including our data analysis workflow) are capable of detecting and filtering most of the known errors. However, certain systematic errors due to sequencing bias or alignment artefacts (like paralogous alignment) are hard to detect by existing tools. These errors appear systematically throughout multiple sequencing experiments from the same sequencing platform and analysed by the same analysis pipeline. We coined these errors as "Recurrent Systematic Errors" (RSEs). In Chapter 4, I presented a new approach to detect these errors. I screened 9mers (sequence motifs of 9 consecutive nucleotide bases) in 11 exome sequencing samples sequenced in-house and counted their observed and expected occurrences. Furthermore, I computed OEratios for the screened 9mers (i.e. Expected 9mer counts/Observed 9mer counts). In order to focus on systematic errors only, I restricted the 9mer list to those occurring at RSE sites. These RSE sites were derived from shared (but not common variants in the population) variants in 511 exome sequencing samples of our in-house dataset. I also validated this list with the confident variant calls for sample NA12878 provided by NIST and the variant calls for the same sample but called by a different analysis pipeline. I compared the shared 9mers throughout the 11 samples at RSE locations with those from 3 other datasets to validate the reproducibility of these systematic errors. From this list, I formed two different classes of systematic errors: Platform dependent errors (shared by all datasets sequenced irrespective of target enrichment kit) and target enrichment dependent errors (shared by only those datasets sequenced using the same target enrichment kit). I prepared the lists of systematic errors for these two classes. These lists are having all important annotations (like location, strand, MAF, called by NIST or other pipeline etc.) (cf. Chapter 4) and can be used to filter or mark the systematic errors in any other variant list. For this purpose, I developed a tool "FilterRSEs", which can just mark or filter out RSEs from any variant list. It is a very flexible tool and provides different filtering options to customize the filtering.

I further analysed the platform dependent errors to explore the characteristics of RSEs. I found that a wrong read alignment in LCRs and regions belonging to paralogous genes is the major cause of RSEs. I observed a high error load in some chromosomes (1,2,6,7,11,17) compared to others. These chromosomes contain some genes containing the majority of errors, for example, approximately 42% and 44% of the total variants (mainly SNPs) were found in the *MUC6* gene on chromosome 11 and in the *MAP2K3* gene on chromosome 17. I found that all of these genes having high RSEs either belong to one gene family, are paralogous to each other, or have a high sequence similarity (based on the protein sequence alignment) with other genes. Moreover, in the vicinity of error sites, presence of LCRs or highly polymorphic repeats in certain genes (like in the *MUC6* or *MUC16* genes) is observed.

LCRs, like short tandem repeats (microsatellites) are present throughout the human genome (approximately 50% of the human genome is filled with repetitive sequence) (Treangen & Salzberg, 2012). Thus, a read from a repetitive region can map at multiple positions with many optimal alignments to the reference genome with or without mismatches. In this case, the aligner picks the mapping with the highest alignment score or, in case of equal scores, picks one randomly which can lead to either a FP or a FN. If two reads map at the same location, for example, one with a mismatch of one base and another with a deletion of a few bases, then the first read gets a higher alignment score (by standard scoring functions) and a FP SNP can be reported if the true variant is the deletion present in the second read (Treangen & Salzberg, 2012). Similar situations can arise in regions that belong to one of the genes from a family of paralogous genes where a read can have multiple mappings due to the sequence homology of the genes.

Nevertheless, many false positives in these regions can be avoided by filtering of variants belonging to LCR regions which has been successfully used in many studies (H. Li, 2014; Lucas Lledó & Cáceres, 2013; Reumers et al., 2011). Similarly, lists of the most

notorious paralogous genes and significantly mutated genes (SMGs) (containing variants most of the time irrelevant to sequencing experiments) can be used to filter out the variants belonging to these genes (Dees et al., 2012; Fuentes Fajardo et al., 2012; Watson, Takahashi, Futreal, & Chin, 2013). I also compiled a list of genes having a high number of RSEs (in Chapter 4), which can also be used to filter-out or mark the variants belonging to these genes. However, these filtering strategies should be opted based on the aim of study/experiment, as they can lead to the loss of true variants (FNs). The FNs might be more devastating than the FPs (esp. in diagnostics settings) as these variants can be the main contributor to a genetic disease.

I expanded our analysis further to focus only on a particular type of systematic error: Sequence-specific errors (SSEs). I filtered platform-dependent errors for OEratio < 1 and performed screening for common motifs (of different lengths: 2 to 8mers) among RSE associated 9mers. I found that the significant portion of errors is surrounded by a few motifs (3mers) either in upstream or downstream direction. This detected motif is so far not reported in association with systematic errors like known the "GGC" and "GGT" motifs (Meacham et al., 2011; Nakamura et al., 2011). However, I have not analysed its effect on systematic errors or the probable reasons behind its presence near error sites. I combined the 9mers both upstream and downstream direction of the error position to construct 17mers (the 9th base is error position) and performed secondary structure analyses on these 17mers. I found that 25 SSE-associated 17mers could form some sort of secondary structure. So far the role of these 17mers in the origination of the SSEs is not clear. However, it has already been hypothesized that the inverted repeats could cause dephasing (cf. Chapter 4), which is one of the causes of systematic errors. These inverted repeats could form loops during the sequencing process and inhibit the base elongation process for some time, which results in dephasing (Nakamura et al., 2011). Similarly, the constructed 17mers can be a part of the DNA template used during sequencing. If these motifs form a loop during sequencing, then the base elongation process (cf. Section 1.1.1) will be hampered for certain time, which might cause dephasing.

In addition to the accuracy, efficiency of the data analysis workflow is also an important aspect. Analysis of sequencing data requires a series of actions until the identification of a relevant mutation is possible (e.g. data cleaning, sequence alignment, variant calling, etc.). This requires a significant amount of time and lots of manual work. Thus, to manage and process huge amounts of sequencing data generated by the NGS sequencers at the CCG with little manual efforts (and manual errors), an automated data analysis pipeline is required. Furthermore, the workflow should be fast and should provide an easy access to the analysis results. So that, it can allow the researchers or clinician to analyse data and assess the results in a short time, which can speed-up research or diagnostics around diseases.

We have developed a fast and fully automated workflow for NGS data analysis (cf. Chapter 3). It is implemented and optimized on HPC systems and able to process 290 exomes per week on the current IT-infrastructure. This throughput is achieved by different parallelization strategies that enable proper exploitation of HPC resources. We used the MapReduce¹⁰¹ approach in which large data is split into chunks and processed in parallel. In this approach, the number of chunks needs to be selected carefully when splitting the data, as it is directly proportional to the number of the parallel processes. In case of many chunks, too many processes run in parallel, which leads to longer waiting time in the queue when resources are not available. On the contrary, if chunks are big in size, then completion of a single task takes a long time and less gain in speed is achieved by parallelization. Similarly, the number of threads should be selected carefully. Some tools do not show significant improvement in speed beyond a certain number of threads. In that case using more threads blocks some resources, which can be better used for another parallel task. Besides threads or number of processes, appropriate memory required by the tools should be used for optimum exploitation of the computational resources. The HPC systems are complex and can be destabilized easily by a wrong action of any user when they are multi-users or shared clusters. Thus, we have used some design principles and special measures to make our workflow more

¹⁰¹ <u>https://www.usenix.org/legacy/event/osdi04/tech/dean.html</u>

stable, robust, and easy to maintain so it can run smoothly on the HPC infrastructure. The workflow is organized as a collection of modules depending on the analysis task. These modules can run individually or in combination, thus, the workflow can be used to analyse various types of NGS (DNA) sequencing (both single-read and paired-end) data like whole exome or genome as well as any target enriched data. We mainly analyse human sequence data but the workflow can handle any organism with a known reference genome. The results from the workflow can be downloaded or analysed via the varbank web interface. The user can browse through the variant lists, can apply different filtering strategies (to make candidate gene lists) and can also crosscheck the variant by viewing the alignments. Since its launch in October 2012, we have analysed around 6000 exomes and uncovered the genetic background of various diseases (Ehmke et al., 2014; Lal et al., 2014; Schubert et al., 2014).

5.2 Outlook

A decade after their emergence, NGS technologies are still evolving at rapid pace. The introduction of HiSeq X Ten also broke the 1000 dollar genome barrier for whole genome sequencing. This increased the accessibility of whole genome sequencing, which produces approximately 8-10 times more data than exome sequencing. I expect that it will pose new data processing and storage challenges in future. We will adapt our data analysis workflow accordingly. In this context, we will examine the advantages of Big Data solutions for NGS data analysis. Nowadays, a lot of developments is going on to build some dedicated hardware for fast and efficient execution of some typical tasks in NGS data analysis. Moreover, cloud-computing strategies are also becoming popular for NGS data analysis. We will continuously investigate these developments to make our workflow fit for future requirements. With the performance growth of NGS technologies, bioinformatics development efforts for better data analysis are also growing. Recently, many new sophisticated algorithms have been released for either alignment of reads or for variant calling. I expect many more new tools and algorithms in the future and will constantly evaluate these tools for inclusion in our data analysis workflow.

As NGS technologies are now moving into clinical research or diagnostics, the accuracy of data analysis is a very critical aspect. Recently, gene panel sequencing has become more popular in these settings, as it is highly specific (with high coverage) and provides better accuracy than whole exome and genome sequencing at lower cost. However, this is a very specific approach and not suitable for all research and diagnostic applications. Exome and genome sequencing offer a broad range of applications, but they are more prone to sequencing errors like systematic errors. I will expand my systematic error detection approach and try machine-learning algorithms for better classification or detection of sequencing errors. I will expand analysis on our newly detected 3mers and other 17mers (forming secondary structure), to find out its role in the generation of systematic errors. Moreover, I will perform statistical tests like Fisher's exact test to validate that their occurrence is not by chance. Furthermore, I will investigate existing or new strategies to filter or avoid FPs and will also develop some new ones to provide more accurate results.

I believe that the new developments in the sequencing field can address existing problems and can improve the accuracy of data analysis. For example, third generation technologies (or single molecule sequencing), like PacBio RS and Oxford Nanopore MinION, provide much longer reads without errors due to dephasing or PCR amplification. These techniques allow for more accurate sequencing in repetitive or low complexity regions. This can solve the problem of misalignments in these regions, which is the major cause of SNP or Indel errors. Moreover, they can improve structural variant detection, which is currently having certain limitations like coverage bias, poor break point detection etc., due to the short read technologies. Recently, many studies have used these technologies to explore repetitive regions or to detect structural variants (McFarland et al., 2015; Pendleton et al., 2015; Ritz et al., 2014). These long reads can also be used for de novo assembly to build better consensus sequences which can avoid FPs due to errors or incompleteness of the human reference genome. However, to date these technologies are not as matured as second generation (e.g. Illumina) technologies. They have high raw read error rates and achieve only low throughput. Moreover, there is a need to develop new sophisticated data analysis algorithms, as these technologies

are having different error profiles and different kinds of information in the generated sequencing data (Schadt et al., 2010). Further, the genome reference consortium continuously improves the reference genome sequence. The most recent build of the human reference genome (GRCh38) has less gaps and errors than the previous one (GRCh37), which also will increase the accuracy of variant detection. To give a résumé, lots of improvements in different directions are going on to make sequencing technologies and data analysis more reliable and manageable.

Bibliography

- Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. a, Durbin, R. M., Handsaker, R. E., ... McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. *Nature*, 491(7422), 56–65. doi:10.1038/nature11632
- Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., ... Sunyaev, S. R. (2010).
 A method and server for predicting damaging missense mutations. *Nature Methods*. doi:10.1038/nmeth0410-248
- Aird, D., Ross, M. G., Chen, W.-S., Danielsson, M., Fennell, T., Russ, C., ... Gnirke, A. (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. *Genome Biology*, 12(2), R18. doi:10.1186/gb-2011-12-2-r18
- Aiuti, A., Cattaneo, F., Galimberti, S., Benninghoff, U., Cassani, B., Callegaro, L., ... Roncarolo, M.-G. (2009). Gene therapy for immunodeficiency due to adenosine deaminase deficiency. The New England journal of medicine (Vol. 360). doi:10.1056/NEJMoa0805817
- Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., ... Eichler, E. E. (2009). Personalized copy number and segmental duplication maps using next-generation sequencing. *Nature Genetics*, 41(10), 1061–1067. doi:10.1038/ng.437
- Alkuraya, F. S. (2014). Genetics and genomic medicine in Israel. *Molecular Genetics & Genomic Medicine*, 2(2), 85–94. doi:10.1002/mgg3.73
- Allhoff, M., Schönhuth, A., Martin, M., Costa, I. G., Rahmann, S., & Marschall, T. (2013). Discovering motifs that induce sequencing errors. BMC Bioinformatics, 14 Suppl 5(Suppl 5), S1. doi:10.1186/1471-2105-14-S5-S1
- Altmüller, J., Budde, B. S., & Nürnberg, P. (2014). Enrichment of target sequences for nextgeneration sequencing applications in research and diagnostics. *Biological Chemistry*, *395*(2), 231–237. doi:10.1515/hsz-2013-0199
- Antonio, M. D., Meo, P. D. O. De, Paoletti, D., Elmi, B., Pallocca, M., Sanna, N., ... Castrignanò, T. (2013).
 WEP : a high-performance analysis pipeline for whole-exome data. *BMC Bioinformatics*, 14(Suppl 7), S11. doi:10.1186/1471-2105-14-S7-S11
- Arthur, J. W., Cheung, F. S. G., & Reichardt, J. K. V. (2015). Single Nucleotide Differences (SNDs) Continue to Contaminate the dbSNP Database With Consequences for Human Genomics and Health. *Human Mutation*, 36(2), 196–199. doi:10.1002/humu.22735
- Bao, R., Huang, L., Andrade, J., Tan, W., Kibbe, W. a, Jiang, H., & Feng, G. (2014). Review of Current Methods, Applications, and Data Management for the Bioinformatics Analysis of Whole Exome Sequencing. *Libertas Academica*, 13, 67–82. doi:10.4137/CIN.S13779.Received
- Belinky, F., Nativ, N., Stelzer, G., Zimmerman, S., Iny Stein, T., Safran, M., & Lancet, D. (2015). PathCards: multi-source consolidation of human biological pathways. *Database*, 2015, bav006–bav006. doi:10.1093/database/bav006
- Benjamini, Y., & Speed, T. P. (2012). Summarizing and correcting the GC content bias in high-throughput sequencing. *Nucleic Acids Research*, 40(10), e72. doi:10.1093/nar/gks001
- Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., ... Smith, A. J. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. *Nature*,

456(7218), 53-59. doi:10.1038/nature07517

- Berglund, E. C., Kiialainen, A., & Syvänen, A.-C. (2011). Next-generation sequencing technologies and applications for human genetic history and forensics. *Investigative Genetics*, *2*(1), 23. doi:10.1186/2041-2223-2-23
- Biesecker, L. G., & Green, R. C. (2014). Diagnostic Clinical Genome and Exome Sequencing. New England Journal of Medicine, 370, 2418–2425. doi:10.1056/NEJMra1312543
- Biesecker, L. G., Shianna, K. V, & Mullikin, J. C. (2011). Exome sequencing: the expert view. *Genome Biology*, 12(9), 128. doi:10.1186/gb-2011-12-9-128
- Bodi, K., Perera, a. G., Adams, P. S., Bintzler, D., Dewar, K., Grove, D. S., ... Zianni, M. (2013). Comparison of commercially available target enrichment methods for next-generation sequencing. *Journal of Biomolecular Techniques*, 24(2), 73–86. doi:10.7171/jbt.13-2402-002
- Botstein, D., & Risch, N. (2003). Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. *Nature Genetics*, 33 Suppl(march), 228– 237. doi:10.1038/ng1090
- Burrows, M., & D. J. Wheeler. (1994). A block-sorting lossless data compression algorithm. 124, Palo Alto, CA.
- Buske, F. A., French, H. J., Smith, M. A., Clark, S. J., & Bauer, D. C. (2014). NGSANE: a lightweight production informatics framework for high-throughput data analysis. *Bioinformatics (Oxford, England)*, 30(10), 1471–1472. doi:10.1093/bioinformatics/btu036
- Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., … Leboulch, P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. , 467 Nature 318–322 (2010). doi:10.1038/nature09328
- Chen, Y.-C., Liu, T., Yu, C.-H., Chiang, T.-Y., & Hwang, C.-C. (2013). Effects of GC bias in next-generationsequencing data on de novo genome assembly. *PloS One*, *8*(4), e62856. doi:10.1371/journal.pone.0062856
- Chesi, A., Staahl, B. T., Jovičić, A., Couthouis, J., Fasolino, M., Raphael, A. R., ... Gitler, A. D. (2013). Exome sequencing to identify de novo mutations in sporadic ALS trios. *Nature Neuroscience*, (May). doi:10.1038/nn.3412
- Cheung, M. S., Down, T. a., Latorre, I., & Ahringer, J. (2011). Systematic bias in high-throughput sequencing data and its correction by BEADS. *Nucleic Acids Research*, 39(15). doi:10.1093/nar/gkr425
- Chilamakuri, C. S. R., Lorenz, S., Madoui, M.-A., Vodák, D., Sun, J., Hovig, E., ... Meza-Zepeda, L. a. (2014). Performance comparison of four exome capture systems for deep sequencing. *BMC Genomics*, *15*, 449. doi:10.1186/1471-2164-15-449
- Clark, M. J., Chen, R., Lam, H. Y. K., Karczewski, K. J., Chen, R., Euskirchen, G., ... Snyder, M. (2011). Performance comparison of exome DNA sequencing technologies. *Nature Biotechnology*, 29(10), 908–914. doi:10.1038/nbt.1975
- Consugar, M. B., Navarro-Gomez, D., Place, E. M., Bujakowska, K. M., Sousa, M. E., Fonseca-Kelly, Z. D., ... Pierce, E. a. (2014). Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing.

Genetics in Medicine, (October). doi:10.1038/gim.2014.172

- Coonrod, E. M., Margraf, R. L., & Voelkerding, K. V. (2012). Translating exome sequencing from research to clinical diagnostics. *Clinical Chemistry and Laboratory Medicine : CCLM / FESCC, 50*(7), 1161–8. doi:10.1515/cclm-2011-0841
- Crick, F., & Watson, J. (1953). Molecular Structure of Nucleic Acids.
- Crooks, G. E. (2004). WebLogo: A Sequence Logo Generator. *Genome Research*, *14*(6), 1188–1190. doi:10.1101/gr.849004
- D'Antonio, M., D'Onorio De Meo, P., Paoletti, D., Elmi, B., Pallocca, M., Sanna, N., ... Castrignanò, T. (2013). WEP: a high-performance analysis pipeline for whole-exome data. *BMC Bioinformatics*, 14 Suppl 7(Suppl 7), S11. doi:10.1186/1471-2105-14-S7-S11
- Dahl, F., Stenberg, J., Fredriksson, S., Welch, K., Zhang, M., Nilsson, M., ... Ji, H. (2007). Multigene amplification and massively parallel sequencing for cancer mutation discovery. *Proceedings of the National Academy of Sciences of the United States of America*, 104(22), 9387–92. doi:10.1073/pnas.0702165104
- Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... Durbin, R. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158. doi:10.1093/bioinformatics/btr330
- Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., & Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++. *PLoS Computational Biology*, 6(12). doi:10.1371/journal.pcbi.1001025
- De Leeneer, K., Hellemans, J., De Schrijver, J., Baetens, M., Poppe, B., Van Criekinge, W., ... Claes, K. (2011). Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. *Human Mutation*, 32(3), 335–44. doi:10.1002/humu.21428
- Dees, N. D., Zhang, Q., Kandoth, C., Wendl, M. C., Schierding, W., Koboldt, D. C., ... Ding, L. (2012). MuSiC : Identifying mutational significance in cancer genomes MuSiC : Identifying mutational significance in cancer genomes. doi:10.1101/gr.134635.111
- Del Fabbro, C., Scalabrin, S., Morgante, M., & Giorgi, F. M. (2013). An extensive evaluation of read trimming effects on Illumina NGS data analysis. *PloS One*, 8(12), e85024. doi:10.1371/journal.pone.0085024
- DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V, Maguire, J. R., Hartl, C., ... Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics*, *43*(5), 491–498. doi:10.1038/ng.806
- DeWan, A. T., Egan, K. B., Hellenbrand, K., Sorrentino, K., Pizzoferrato, N., Walsh, K. M., & Bracken, M. B. (2012). Whole-exome sequencing of a pedigree segregating asthma. *BMC Medical Genetics*. doi:10.1186/1471-2350-13-95
- Directors, A. B. of. (2012). Points to consider in the clinical application of genomic sequencing. *Genetics in Medicine*. doi:10.1038/gim.2012.74
- Dohm, J. C., Lottaz, C., Borodina, T., & Himmelbauer, H. (2008). Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. *Nucleic Acids Research*, 36(16), e105. doi:10.1093/nar/gkn425

- Ehmke, N., Caliebe, A., Koenig, R., Kant, S. G., Stark, Z., Cormier-Daire, V., ... Mundlos, S. (2014).
 Homozygous and Compound-Heterozygous Mutations in TGDS Cause Catel-Manzke Syndrome.
 American Journal of Human Genetics, 95(6), 763–770. doi:10.1016/j.ajhg.2014.11.004
- Ewing, B., & Green, P. (1998). Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. *Genome Research*, 8(3), 186–194. doi:10.1101/gr.8.3.186
- Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Base-Calling of Automated Sequencer Traces Using Phred. I. Accuracy Assessment. *Genome Res.*, 8(3), 175–185. doi:10.1101/gr.8.3.175
- Fang, H., Wu, Y., Narzisi, G., O'Rawe, J. A., Barrón, L. T. J., Rosenbaum, J., ... Lyon, G. J. (2014). Reducing INDEL calling errors in whole genome and exome sequencing data. *Genome Medicine*, 6(10), 89. doi:10.1186/s13073-014-0089-z
- Fischer, M., Snajder, R., Pabinger, S., Dander, A., Schossig, A., Zschocke, J., ... Stocker, G. (2012). SIMPLEX: cloud-enabled pipeline for the comprehensive analysis of exome sequencing data. *PloS One*, *7*(8), e41948. doi:10.1371/journal.pone.0041948
- Flicek, P., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., ... Searle, S. M. J. (2014). Ensembl 2014. Nucleic Acids Research, 42(D1). doi:10.1093/nar/gkt1196
- Fromer, M., Moran, J. L., Chambert, K., Banks, E., Bergen, S. E., Ruderfer, D. M., ... Purcell, S. M. (2012). Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. *American Journal of Human Genetics*, 91(4), 597–607. doi:10.1016/j.ajhg.2012.08.005
- Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., ... O'Donovan, M. C. (2014). De novo mutations in schizophrenia implicate synaptic networks. *Nature*. doi:10.1038/nature12929
- Fuentes Fajardo, K. V., Adams, D., Mason, C. E., Sincan, M., Tifft, C., Toro, C., ... Markello, T. (2012). Detecting false-positive signals in exome sequencing. *Human Mutation*, 33(4), 609–613. doi:10.1002/humu.22033
- Genovese, G., Handsaker, R. E., Li, H., Altemose, N., Lindgren, A. M., Chambert, K., ... McCarroll, S. a. (2013). Using population admixture to help complete maps of the human genome. *Nature Genetics*, 45(4), 406–14, 414e1–2. doi:10.1038/ng.2565
- Giannoulatou, E., Park, S.-H., Humphreys, D. T., & Ho, J. W. (2014). Verification and validation of bioinformatics software without a gold standard: a case study of BWA and Bowtie. BMC Bioinformatics, 15(Suppl 16), S15. doi:10.1186/1471-2105-15-S16-S15
- Glöckle, N., Kohl, S., Mohr, J., Scheurenbrand, T., Sprecher, A., Weisschuh, N., ... Neidhardt, J. (2013).
 Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. *European Journal of Human Genetics : EJHG*, (November 2012), 1–6. doi:10.1038/ejhg.2013.72
- Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., Brockman, W., ... Nusbaum, C. (2009). Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing. *Nature Biotechnology*, 27(2), 182–189. doi:10.1038/nbt.1523
- Gudbjartsson, D. F., Jonasson, K., Frigge, M. L., & Kong, A. (2000, May). Allegro, a new computer program for multipoint linkage analysis. *Nature Genetics*. UNITED STATES. doi:10.1038/75514
- Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler, E. E., & Sahinalp, S. C. (2010).

mrsFAST: a cache-oblivious algorithm for short-read mapping. *Nature Methods*. doi:10.1038/nmeth0810-576

- Harismendy, O., Schwab, R. B., Bao, L., Olson, J., Rozenzhak, S., Kotsopoulos, S. K., ... Frazer, K. a. (2011).
 Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing.
 Genome Biology, 12(12), R124. doi:10.1186/gb-2011-12-12-r124
- Hatem, A., Bozdağ, D., & Çatalyürek, Ü. V. (2011). Benchmarking short sequence mapping tools. In Proceedings - 2011 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2011 (pp. 109–113). doi:10.1109/BIBM.2011.83
- Highnam, G., Wang, J. J., Kusler, D., Zook, J., Vijayan, V., Leibovich, N., & Mittelman, D. (2015). An analytical framework for optimizing variant discovery from personal genomes. *Nature Communications*, 6, 6275. doi:10.1038/ncomms7275
- Hofacker, I. L. (2009). RNA Secondary Structure Analysis Using the Vienna RNA Package. *Current Protocols in Bioinformatics*, (October). doi:10.1002/0471250953.bi1202s26
- Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., ... Zamir, A. (1965). Structure of a Ribonucleic Acid. *Science*, *147*(3664), 1462–1465. doi:10.1126/science.147.3664.1462
- Hormozdiari, F., Alkan, C., Eichler, E. E., & Sahinalp, S. C. (2009). Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. *Genome Research*, *19*(7), 1270–1278. doi:10.1101/gr.088633.108
- Hutchison, C. a. (2007). DNA sequencing: Bench to bedside and beyond. *Nucleic Acids Research*, 35(18), 6227–6237. doi:10.1093/nar/gkm688
- Hwang, K.-B., Lee, I.-H., Park, J.-H., Hambuch, T., Choe, Y., Kim, M., ... Kong, S. W. (2014). Reducing False Positive Incidental Findings with Ensemble Genotyping and Logistic Regression Based Variant
 Filtering Methods. *Human Mutation*. doi:10.1002/humu.22587
- Hyman, E. D. (1988). A new method of sequencing DNA. *Analytical Biochemistry*, 174(2), 423–436. doi:10.1016/0003-2697(88)90041-3
- Jette, M., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. In *Proc. of ClusterWorld Conference and Expo*. San Jose, California.
- Jiang, T., Tan, M., Tan, L., & Yu, J. (2013). Application of next-generation sequencing technologies in Neurology, 2(12), 1–11. doi:10.3978/j.issn.2306-9732.2013.03.02
- Kawalia, A., Motameny, S., Wonczak, S., Thiele, H., Nieroda, L., Jabbari, K., ... Nürnberg, P. (2015). Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow. *Plos One*, *10*(5), e0126321. doi:10.1371/journal.pone.0126321
- Kelly, B. J., Fitch, J. R., Hu, Y., Corsmeier, D. J., Zhong, H., Wetzel, A. N., ... White, P. (2015). Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. *Genome Biology*, 16, 1–14. doi:10.1186/s13059-014-0577-x
- Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Benjamin, M., Mclaren, P. J., ... Magnusson, P. (2013).
 Exome sequencing and the genetic basis of complex traits. *NIH Public Access*, 44(6), 623–630.
 doi:10.1038/ng.2303.Exome

- Kiialainen, A., Karlberg, O., Ahlford, A., Sigurdsson, S., Lindblad-Toh, K., & Syvänen, A. C. (2011). Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. *PLoS ONE*, 6(2). doi:10.1371/journal.pone.0016486
- Kircher, M. (2011). Understanding and improving high-throughput sequencing data production and analysis. *Doctor*, (September), 216.
- Kircher, M., Heyn, P., & Kelso, J. (2011). Addressing challenges in the production and analysis of illumina sequencing data. *BMC Genomics*, *12*(1), 382. doi:10.1186/1471-2164-12-382
- Kircher, M., Stenzel, U., & Kelso, J. (2009). Improved base calling for the Illumina Genome Analyzer using machine learning strategies. *Genome Biology*, 10(8), R83. doi:10.1186/gb-2009-10-8-r83
- Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D.-A. A., Mitterecker, A., Bodenhofer, U., & Hochreiter, S. (2012). Cn.MOPS: Mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. *Nucleic Acids Research*, 40(9), e69. doi:10.1093/nar/gks003
- Kozarewa, I., Ning, Z., Quail, M. a, Sanders, M. J., Berriman, M., Turner, D. J., & America, N. (2009). Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. *Nature Methods*, 6(4), 291–295. doi:10.1038/nmeth.1311
- Krumm, N., Sudmant, P. H., Ko, A., O'Roak, B. J., Malig, M., Coe, B. P., ... Project, S. (2012). Copy number variation detection and genotyping from exome sequence data. *Genome Research*, 22(8), 1525–32. doi:10.1101/gr.138115.112
- Ku, C. S., Cooper, D. N., E. Ziogas, D., Halkia, E., Tzaphlidou, M., & Roukos, D. H. (2013). Research and clinical applications of cancer genome sequencing. doi:10.1097/GCO.0b013e32835af17c
- Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nature Protocols*, 4(7), 1073–1081. doi:10.1038/nprot.2009.86
- Kuruppumullage Don, P., Ananda, G., Chiaromonte, F., & Makova, K. D. (2013). Segmenting the human genome based on states of neutral genetic divergence. *Proceedings of the National Academy of Sciences of the United States of America*, 110(36), 14699–704. doi:10.1073/pnas.1221792110
- Laduca, H., Stuenkel, a J., Dolinsky, J. S., Keiles, S., Tandy, S., Pesaran, T., ... Chao, E. (2014). Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. *Genetics in Medicine : Official Journal of the American College of Medical Genetics*, (April), 1–8. doi:10.1038/gim.2014.40
- Lal, D., Reinthaler, E. M., Schubert, J., Muhle, H., Riesch, E., Kluger, G., ... Neubauer, B. A. (2014). DEPDC5 mutations in genetic focal epilepsies of childhood. *Annals of Neurology*, 75(5), 788–792. doi:10.1002/ana.24127
- Lam, H. Y. K., Pan, C., Clark, M. J., Lacroute, P., Chen, R., Haraksingh, R., ... Snyder, M. (2012). Detecting and annotating genetic variations using the HugeSeq pipeline. *Nature Biotechnology*, 30(3), 226–9. doi:10.1038/nbt.2134
- Lan, J. H., Yin, Y., Reed, E. F., Moua, K., Thomas, K., & Zhang, Q. (2015). Impact of three Illumina library construction methods on GC bias and HLA genotype calling. *Human Immunology*, 76(2-3), 166–175. doi:10.1016/j.humimm.2014.12.016

- Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., ... Szustakowki, J. (2001). Initial sequencing and analysis of the human genome. *Nature*, 409(6822), 860–921. doi:10.1038/35057062
- Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biology*, *10*(3), R25. doi:10.1186/gb-2009-10-3-r25
- Lappalainen, I., Lopez, J., Skipper, L., Hefferon, T., Spalding, J. D., Garner, J., ... Church, D. M. (2013). DbVar and DGVa: Public archives for genomic structural variation. *Nucleic Acids Research*, *41*(D1). doi:10.1093/nar/gks1213
- Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., ... Irizarry, R. a. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. *Nature Reviews. Genetics*, *11*(10), 733–739. doi:10.1038/nrg2825
- Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics (Oxford, England)*, 27(21), 2987–93. doi:10.1093/bioinformatics/btr509
- Li, H. (2014). Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples. Bioinformatics (Oxford, England), 1–8. doi:10.1093/bioinformatics/btu356
- Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25(14), 1754–1760. doi:10.1093/bioinformatics/btp324
- Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*, 26(5), 589–595. doi:10.1093/bioinformatics/btp698
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. doi:10.1093/bioinformatics/btp352
- Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473–83. doi:10.1093/bib/bbq015
- Li, H., Ruan, J., & Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. *Genome Research*, *18*(11), 1851–8. doi:10.1101/gr.078212.108
- Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., & Wang, J. (2009). SOAP2: An improved ultrafast tool for short read alignment. *Bioinformatics*, 25(15), 1966–1967. doi:10.1093/bioinformatics/btp336
- Linderman, M. D., Brandt, T., Edelmann, L., Jabado, O., Kasai, Y., Kornreich, R., ... Schadt, E. E. (2014). Analytical validation of whole exome and whole genome sequencing for clinical applications. *BMC Medical Genomics*, 7(1), 20. doi:10.1186/1755-8794-7-20
- Liu, Q., Guo, Y., Li, J., Long, J., Zhang, B., & Shyr, Y. (2012). Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. *BMC Genomics*, *13 Suppl 8*(Suppl 8), S8. doi:10.1186/1471-2164-13-S8-S8
- Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA Package 2.0. *Algorithms for Molecular Biology : AMB*, *6*, 26. doi:10.1186/1748-7188-6-26

- Lucas Lledó, J. I., & Cáceres, M. (2013). On the power and the systematic biases of the detection of chromosomal inversions by paired-end genome sequencing. *PloS One*, *8*(4), e61292. doi:10.1371/journal.pone.0061292
- Lynch, A. I., Eckfeldt, J. H., Davis, B. R., Ford, C. E., Boerwinkle, E., Leiendecker-Foster, C., & Arnett, D. K. (2012). Gene panels to help identify subgroups at high and low risk of coronary heart disease among those randomized to antihypertensive treatment. *Pharmacogenetics and Genomics*, 1. doi:10.1097/FPC.0b013e3283516ff8
- MacManes, M. D. (2013). On the optimal trimming of high-throughput mRNAseq data. bioRxiv. doi:10.1101/000422
- Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., & Jabado, N. (2011). What can exome sequencing do for you? *Journal of Medical Genetics*, *48*, 580–589. doi:10.1136/jmedgenet-2011-100223
- Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., ... Turner, D. J. (2010). Target-enrichment strategies for next- generation sequencing. *Nature Methods*, 7(2), 111–118. doi:10.1038/NMETH.1419
- Mardis, E. R. (2008). Next-generation DNA sequencing methods. *Annual Review of Genomics and Human Genetics*, *9*, 387–402. doi:10.1146/annurev.genom.9.081307.164359
- Mardis, E. R. (2013). Next-generation sequencing platforms. *Annual Review of Analytical Chemistry (Palo Alto, Calif.)*, *6*, 287–303. doi:10.1146/annurev-anchem-062012-092628
- Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., ... Rothberg, J. M. (2005).
 Genome sequencing in microfabricated high-density picolitre reactors. *Nature*, 437(7057), 376–380.
 doi:10.1038/nature04726
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, *17*(1), 10. doi:10.14806/ej.17.1.200
- McFarland, K. N., Liu, J., Landrian, I., Godiska, R., Shanker, S., Yu, F., ... Ashizawa, T. (2015). SMRT Sequencing of Long Tandem Nucleotide Repeats in SCA10 Reveals Unique Insight of Repeat Expansion Structure. *PLoS ONE*, *10*(8), e0135906. doi:10.1371/journal.pone.0135906
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., ... DePristo, M. a. (2010, September). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*. doi:10.1101/gr.107524.110
- Meacham, F., Boffelli, D., Dhahbi, J., Martin, D. I., Singer, M., & Pachter, L. (2011). Identification and correction of systematic error in high-throughput sequence data. *BMC Bioinformatics*, 12(1), 451. doi:10.1186/1471-2105-12-451
- Medvedev, P., Stanciu, M., & Brudno, M. (2009). computational methods for discovering structural variation with next-generation sequencing, *6*(11), 13–20. doi:10.1038/NMEtH.1374
- Meldrum, C., Doyle, M. a, & Tothill, R. W. (2011). Next-generation sequencing for cancer diagnostics: a practical perspective. *The Clinical Biochemist. Reviews / Australian Association of Clinical Biochemists*, 32(4), 177–95.
- Mertes, F., ElSharawy, A., Sauer, S., van Helvoort, J. M. L. M., van der Zaag, P. J., Franke, A., ... Brookes, A. J. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. *Briefings in*

Functional Genomics, 10(6), 374-386. doi:10.1093/bfgp/elr033

- Metzker, M. L. (2010). Sequencing technologies the next generation. *Nature Reviews. Genetics*, 11(1), 31–46. doi:10.1038/nrg2626
- Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., & Devine, S. E. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. *Genome Research*, 16(9), 1182–90. doi:10.1101/gr.4565806
- Mutarelli, M., Marwah, V., Rispoli, R., Carrella, D., Dharmalingam, G., Oliva, G., & di Bernardo, D. (2014). A community-based resource for automatic exome variant-calling and annotation in Mendelian disorders. *BMC Genomics*, *15*(Suppl 3), S5. doi:10.1186/1471-2164-15-S3-S5
- Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa, Y., ... Kanaya, S. (2011). Sequencespecific error profile of Illumina sequencers. *Nucleic Acids Research*, 39(13), e90. doi:10.1093/nar/gkr344
- Need, A. C., Shashi, V., Hitomi, Y., Schoch, K., Shianna, K. V, McDonald, M. T., ... Goldstein, D. B. (2012). Clinical application of exome sequencing in undiagnosed genetic conditions. *Journal of Medical Genetics*, 49(6), 353–61. doi:10.1136/jmedgenet-2012-100819
- Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology*, *48*(3), 443–453. doi:10.1016/0022-2836(70)90057-4
- Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., ... Bamshad, M. J. (2010). Exome sequencing identifies the cause of a mendelian disorder. *Nature Genetics*, *42*(1), 30–35. doi:10.1038/ng.499
- Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., ... Shendure, J. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. *Nature*, *461*(7261), 272– 6. doi:10.1038/nature08250
- Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from nextgeneration sequencing data. *Nature Reviews. Genetics*, *12*(6), 443–451. doi:10.1038/nrg2986
- Ning, B., Su, Z., Mei, N., Hong, H., Deng, H., Shi, L., ... Tolleson, W. H. (2014). Toxicogenomics and Cancer Susceptibility: Advances with Next-Generation Sequencing. *Journal of Environmental Science and Health, Part C*, 32(2), 121–158. doi:10.1080/10590501.2014.907460
- Nix, D. A., Courdy, S. J., & Boucher, K. M. (2008). Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. *BMC Bioinformatics*, *9*, 523. doi:10.1186/1471-2105-9-523
- O'Rawe, J., Guangqing, S., Wang, W., Hu, J., Bodily, P., Tian, L., ... Wu, Y. (2013). Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. *Genome Medicine*, *5*(3), 28. doi:10.1186/gm432
- Ott, M. G., Schmidt, M., Schwarzwaelder, K., Stein, S., Siler, U., Koehl, U., ... Grez, M. (2006). Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature medicine (Vol. 12). doi:10.1038/nm1393
- Oyola, S. O., Otto, T. D., Gu, Y., Maslen, G., Manske, M., Campino, S., ... Quail, M. A. (2012). Optimizing illumina next-generation sequencing library preparation for extremely at-biased genomes. *BMC Genomics*. doi:10.1186/1471-2164-13-1

- Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M., ... Trajanoski, Z. (2013). A survey of tools for variant analysis of next-generation genome sequencing data. *Briefings in Bioinformatics*, 15(2), 256–78. doi:10.1093/bib/bbs086
- Paz-Filho, G., Boguszewski, M., Mastronardi, C., Patel, H., Johar, A., Chuah, A., ... Licinio, J. (2014). Whole Exome Sequencing of Extreme Morbid Obesity Patients: Translational Implications for Obesity and Related Disorders. *Genes*, 5(3), 709–725. doi:10.3390/genes5030709
- Pendleton, M., Sebra, R., Pang, A. W. C., Ummat, A., Franzen, O., Rausch, T., ... Bashir, A. (2015). Assembly and diploid architecture of an individual human genome via single-molecule technologies. *Nature Methods*, 12(8), 780–786. doi:10.1038/nmeth.3454
- Plagnol, V., Curtis, J., Epstein, M., Mok, K. Y., Stebbings, E., Grigoriadou, S., ... Nejentsev, S. (2012). A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. *Bioinformatics*, 28(21), 2747–2754. doi:10.1093/bioinformatics/bts526
- Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., ... Stratton, M. R. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. *Nature*, 463(7278), 191–196. doi:10.1038/nature08658
- Puckelwartz, M. J., Pesce, L. L., Nelakuditi, V., Dellefave-Castillo, L., Golbus, J. R., Day, S. M., ... McNally, E.
 M. (2014). Supercomputing for the parallelization of whole genome analysis. *Bioinformatics (Oxford, England)*, 30(11), 1–7. doi:10.1093/bioinformatics/btu071
- Quail, M., Smith, M. E., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., ... Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of lon torrent, pacific biosciences and illumina MiSeq sequencers. *BMC Genomics*, 13(1), 341. doi:10.1186/1471-2164-13-341
- Rabbani, B., Mahdieh, N., Hosomichi, K., Nakaoka, H., & Inoue, I. (2012). Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. *Journal of Human Genetics*, 57(10), 621–632. doi:10.1038/jhg.2012.91
- Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. *Journal of Human Genetics*, *59*(1), 5–15. doi:10.1038/jhg.2013.114
- Radó-Trilla, N., & Albà, M. M. (2012). Dissecting the role of low-complexity regions in the evolution of vertebrate proteins. *BMC Evolutionary Biology*, *12*(1), 155. doi:10.1186/1471-2148-12-155
- Ramu, A., Noordam, M. J., Schwartz, R. S., Wuster, A., Hurles, M. E., Cartwright, R. a, & Conrad, D. F. (2013). DeNovoGear: de novo indel and point mutation discovery and phasing. *Nature Methods*, *10*(10), 985–7. doi:10.1038/nmeth.2611
- Rattei, T., Arnold, R., Tischler, P., Lindner, D., Stümpflen, V., & Mewes, H. W. (2006). SIMAP: the similarity matrix of proteins. *Nucleic Acids Research*, *34*(Database issue), D252–D256. doi:10.1093/nar/gkj106
- Rattei, T., Tischler, P., Götz, S., Jehl, M.-A., Hoser, J., Arnold, R., ... Mewes, H.-W. (2010). SIMAP—a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters. *Nucleic Acids Research*, *38*(Database issue), D223–D226. doi:10.1093/nar/gkp949
- Rehm, H. L. (2013). Disease-targeted sequencing: a cornerstone in the clinic. *Nature Reviews. Genetics*, 14(April), 295–300. doi:10.1038/nrg3463
- Reumers, J., De Rijk, P., Zhao, H., Liekens, A., Smeets, D., Cleary, J., ... Del-Favero, J. (2011). Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. *Nature*

Biotechnology, 30(1), 61-68. doi:10.1038/nbt.2053

- Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., Wilkie, A. O. M., ... Lunter, G. (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. *Nature Genetics*, 46(November 2013), 1–9. doi:10.1038/ng.3036
- Ritz, A., Bashir, A., Sindi, S., Hsu, D., Hajirasouliha, I., & Raphael, B. J. (2014). Characterization of structural variants with single molecule and hybrid sequencing approaches. *Bioinformatics*, *30*(24), 3458–3466. doi:10.1093/bioinformatics/btu714
- Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. *Nature Biotechnology*, 29(1), 24–26. doi:10.1038/nbt.1754
- Roe, B. A. (2004). Shotgun library construction for DNA sequencing. *Methods in Molecular Biology (Clifton, N.J.), 255,* 171–187. doi:10.1385/1-59259-752-1:171
- Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., ... Jaffe, D. B. (2013). Characterizing and measuring bias in sequence data. *Genome Biology*, 14(5), R51. doi:10.1186/gb-2013-14-5-r51
- Ruffalo, M., Laframboise, T., & Koyutürk, M. (2011). Comparative analysis of algorithms for nextgeneration sequencing read alignment. *Bioinformatics*, 27(20), 2790–2796. doi:10.1093/bioinformatics/btr477
- Salomon, D. R., & Ordoukhanian, P. (2015). Library construction for next-generation sequencing: Overviews and challenges, *56*(2). doi:10.2144/000114133.Library
- Sanger, F. (1949). The terminal peptides of insulin. *Biochemical Journal*, *45*(5), 563–574. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1275055/
- Sanger, F., Nicklen, S., & Coulson, a R. (1977). DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences of the United States of America*, 74(12), 5463– 5467. doi:10.1073/pnas.74.12.5463
- Sanger, F., & Tuppy, H. (1951). The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. *Biochemical Journal, 49*(4), 481–490. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1197536/
- Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third-generation sequencing. *Human Molecular Genetics*, *19*(R2), 227–240. doi:10.1093/hmg/ddq416
- Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics*, 27(6), 863–864. doi:10.1093/bioinformatics/btr026
- Schneider, T. D., & Stephens, R. M. (1990). Sequence logos: a new way to display consensus sequences. *Nucleic Acids Research*, 18(20), 6097–6100.
- Schubert, J., Siekierska, A., Langlois, M., May, P., Huneau, C., Becker, F., ... Lerche, H. (2014). Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. *Nature Genetics*, 2014(November). doi:10.1038/ng.3130
- Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. *Nucleic Acids Research*, 29(1), 308–311. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC29783/

- Shim, Y. J., Kim, J. E., Hwang, S.-K., Choi, B. S., Choi, B. H., Cho, E.-M., ... Ko, C. W. (2015). Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing. *Hormone Research in Paediatrics*. doi:10.1159/000368657
- Sie, A. S., Prins, J. B., van Zelst-Stams, W. A. G., Veltman, J. A., Feenstra, I., & Hoogerbrugge, N. (2014). Patient experiences with gene panels based on exome sequencing in clinical diagnostics: High acceptance and low distress. *Clinical Genetics*. doi:10.1111/cge.12433
- Sikkema-Raddatz, B., Johansson, L. F., de Boer, E. N., Almomani, R., Boven, L. G., van den Berg, M. P., ... van Tintelen, J. P. (2013). Targeted Next-Generation Sequencing can Replace Sanger Sequencing in Clinical Diagnostics. *Human Mutation*, 1–30. doi:10.1002/humu.22332
- Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. *Nature Reviews Genetics*, *15*(2), 121–32. doi:10.1038/nrg3642
- Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., ... Hood, L. E. (1986). Fluorescence detection in automated DNA sequence analysis. *Nature*, 321(6071), 674–679. doi:10.1038/321674a0
- Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1), 195–197. doi:10.1016/0022-2836(81)90087-5
- Stenson, P. D., Mort, M., Ball, E. V., Shaw, K., Phillips, A. D., & Cooper, D. N. (2014). The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. *Human Genetics*. doi:10.1007/s00439-013-1358-4
- Synofzik, M., Haack, T. B., Kopajtich, R., Gorza, M., Rapaport, D., Greiner, M., ... Prokisch, H. (2014).
 Absence of BiP Co-chaperone DNAJC3 Causes Diabetes Mellitus and Multisystemic Neurodegeneration. *The American Journal of Human Genetics*, 95(6), 689–697. doi:10.1016/j.ajhg.2014.10.013
- Taub, M. a, Corrada Bravo, H., & Irizarry, R. a. (2010). Overcoming bias and systematic errors in next generation sequencing data. *Genome Medicine*, *2*(12), 87. doi:10.1186/gm208
- Thaker, V. V., Esteves, K. M., Towne, M. C., Brownstein, C. A., James, P. M., Crowley, L., ... Agrawal, P. B. (2015). Whole Exome Sequencing Identifies RAI1 Mutation in a Morbidly Obese Child Diagnosed with ROHHAD Syndrome. *The Journal of Clinical Endocrinology & Metabolism*, jc.2014–4215. doi:10.1210/jc.2014-4215
- The 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. *Nature*, *467*(7319), 1061–73. doi:10.1038/nature09534
- Treangen, T. J., & Salzberg, S. L. (2012). Repetitive DNA and next-generation sequencing: computational challenges and solutions. *Nature Reviews Genetics*, 13(November 2011), 36–46. doi:10.1038/nrg3164
- Trubetskoy, V., Rodriguez, A., Dave, U., Campbell, N., Crawford, E. L., Cook, E. H., ... Davis, L. K. (2014). Consensus Genotyper for Exome Sequencing (CGES): improving the quality of exome variant genotypes. *Bioinformatics (Oxford, England)*, 1–7. doi:10.1093/bioinformatics/btu591
- Tsongalis, G. J., Peterson, J. D., De Abreu, F. B., Tunkey, C. D., Gallagher, T. L., Strausbaugh, L. D., ... Amos, C. I. (2014). Routine use of the Ion Torrent AmpliSeq[™] Cancer Hotspot Panel for identification of

clinically actionable somatic mutations. *Clinical Chemistry and Laboratory Medicine*, *52*(5), 707–714. doi:10.1515/cclm-2013-0883

- Turcatti, G., Romieu, A., Fedurco, M., & Tairi, A. P. (2008). A new class of cleavable fluorescent nucleotides: Synthesis and optimization as reversible terminators for DNA sequencing by synthesis. *Nucleic Acids Research*, 36(4). doi:10.1093/nar/gkn021
- Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., ... DePristo, M. A. (2013). From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics*, *11*(SUPL.43), 11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43
- Veltman, J. a, & Brunner, H. G. (2012). De novo mutations in human genetic disease. *Nature Reviews. Genetics*, 13(8), 565–75. doi:10.1038/nrg3241
- Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., ... Zhu, X. (2001). The sequence of the human genome. *Science (New York, N.Y.)*, 291(5507), 1304–1351. doi:10.1126/science.1058040
- Vissers, L. E. L. M., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., ... Veltman, J. a. (2010). A de novo paradigm for mental retardation. *Nature Genetics*, *42*(12), 1109–12. doi:10.1038/ng.712
- Watson, I. R., Takahashi, K., Futreal, P. A., & Chin, L. (2013). Emerging patterns of somatic mutations in cancer. *Nature Reviews Genetics*, 14(10), 703–718. doi:10.1038/nrg3539
- Williams, R., Peisajovich, S. G., Miller, O. J., Magdassi, S., Tawfik, D. S., & Griffiths, A. D. (2006). Amplification of complex gene libraries by emulsion PCR. *Nature Methods*, 3(7), 545–550. doi:10.1038/nmeth896
- Wooderchak-Donahue, W. L., O'Fallon, B., Furtado, L. V, Durtschi, J. D., Plant, P., Ridge, P. G., ... Bayrak-Toydemir, P. (2012). A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective. *BMC Medical Genomics*, 5(1), 50. doi:10.1186/1755-8794-5-50
- Yadav, N. K., Shukla, P., Omer, A., Pareek, S., & Singh, R. K. (2014). Next Generation Sequencing: Potential and Application in Drug Discovery. *The Scientific World Journal*, 2014, 802437. doi:10.1155/2014/802437
- Yang, X., Chockalingam, S. P., & Aluru, S. (2013). A survey of error-correction methods for next-generation sequencing. *Briefings in Bioinformatics*, 14(1), 56–66. doi:10.1093/bib/bbs015
- Yeo, G., Burge, C. B., Liebert, M. A., Yeo, G., & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. *Journal of Computational Biology : A Journal of Computational Molecular Cell Biology*, 11(2-3), 377–394. doi:10.1089/1066527041410418
- Yi, M., Zhao, Y., Jia, L., He, M., Kebebew, E., & Stephens, R. M. (2014). Performance comparison of SNP detection tools with illumina exome sequencing data - An assessment using both family pedigree information and sample-matched SNP array data. *Nucleic Acids Research*, 42(12). doi:10.1093/nar/gku392
- Zerbino, D. R., Birney, E., Guerra, E., de Lara, J., Malizia, A., & Díaz, P. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. *Genome Research*, *18*(5), 821–829. doi:10.1101/gr.074492.107

- Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., & Salit, M. (2014). Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. *Nature Biotechnology*, *32*(3). doi:10.1038/nbt.2835
- Zook, J. M., Samarov, D., McDaniel, J., Sen, S. K., & Salit, M. (2012). Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing. *PloS One*, *7*(7), e41356. doi:10.1371/journal.pone.0041356

Appendix

Quality control (QC) checks

I performed the following quality checks on our in-house sequenced test data using FastQC tool (cf. Section 2.1):

- 1. Per base quality score: reports the distribution of base quality scores of all bases at each position in the read (cf. Figure A.1 a).
- 2. Per sequence quality score: reports the distribution of mean quality score for a subset of the reads (cf. Figure A.3 a).
- 3. Per base sequence content: shows the percentage of A, T, G, C at each position in the sequence reads (cf. Figure A.2 b).
- 4. Per base N content: shows the percentage of N at each position in the sequence reads (cf. Figure A.2 a).
- 5. Adapter content: reports the presence of an adapter sequence in the reads (can also be judged by percentage of overrepresented sequences) (cf. Figure A.1 b).
- 6. GC distribution: gives an idea of the GC bias in a sample (i.e. GC-poor or GC- rich sequences) (cf. Figure A.3 b).

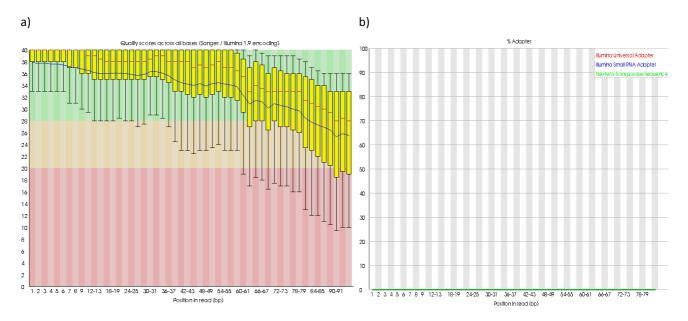
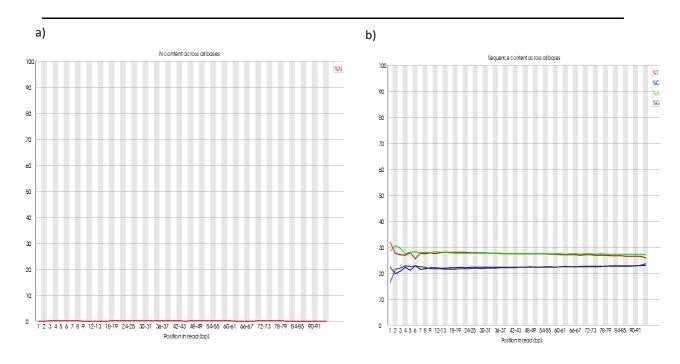



Figure A.1 a) Per base quality score distribution b) Adapter content distribution.

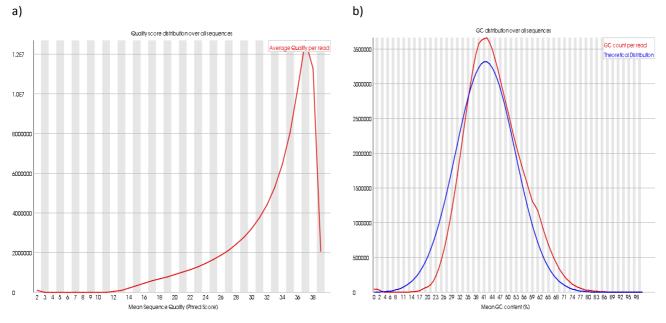
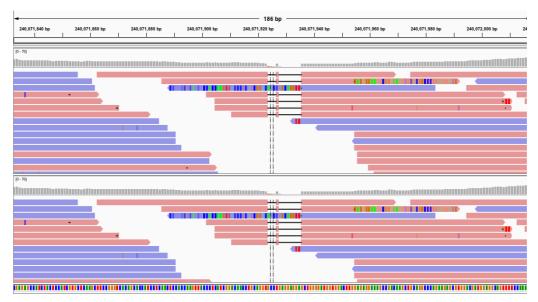


Figure A.3 a) Per sequence quality score distribution b) GC content distribution.

The QC reports containing the above mentioned quality checks were generated for one of the in-house sequenced test samples. All of these quality parameters have certain thresholds to distinguish between a bad and a good quality sample¹⁰². For a good quality


¹⁰² <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u> (This and subsequent URLs are accessed on 28 June 2015).

sample, the majority of both quality scores (bullet points 1&2) should be greater than 20. All four nucleotides (A,T,G,C) should have a uniform distribution throughout the read and the N content should be small. Sometimes the first or last 5-10 bases from a read can show a non-uniform distribution of nucleotides (noise), which could be due to the presence of some random primers. As these can cause ambiguous calls or wrong calls, it is better to trim these bases¹⁰³. There should not be a high GC bias in the sample because it can lead to non-uniform sample coverage or even genomic regions with no coverage (Chen et al., 2013; Dohm et al., 2008). An adapter contamination can lead to misalignments of reads, thus adapter trimming is also required in such situations (cf. Section 2.1.1). Based on these parameters, the sample quality can be judged. If a sample fails to pass all of these quality checks, then it should be either discarded or should undergo certain processing steps to improve the quality.

BWA algorithms and parameters testing

I also tested the effect of the following parameters:

1. -I seed length (default value: Infinite).

2. -k maximum edit distance in the seed (default value: 2).

Figure A.4 Differences in alignment at default BWA parameters and at K=30 and L=50.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

¹⁰³ Bad quality sample:

The upper part of figure A.4, shows the alignment at k=30 and l=50, whereas the lower part shows alignment at default parameters¹⁰⁴. Both of the alignments at this position are almost identical. I also compared alignments at other positions, but did not find any significant differences. Moreover, the alignment statistics at k=30 and l=50 are identical to the default values (cf. Table A.1).

BWA-aln	Total	% Aligned	% Reads	% HQ Aligned	Noise	% HQ Aligned
	Reads	Reads	aligned in pair	Reads	Reads	Bases (Q>20)
default	175704592	0.988	0.993	0.923	292	0.881
k=30 & l=50	175704592	0.988	0.993	0.923	292	0.881

Table A.1 Alignment statistics for BWA-aln at default and at k=30,I=50.

Indel realignment

The Indel realignment method is a part of the Genome Analysis Tool Kit¹⁰⁵ (GATK) (DePristo et al., 2011; McKenna et al., 2010). It is a two-step process:

- Check for suspicious intervals (esp. near Indels) in the alignment by using GATK's RealignerTargetCreator. It considers all Indel sites as suspicious which are not present in the known Indels list from Mills Divine (Mills et al., 2006), 1000 Genome (Abecasis et al., 2012) and the dbSNP dataset (Sherry et al., 2001).
- 2. Perform local realignment (MSA) over those intervals by using GATK's IndelRealigner. This procedure needs sufficient coverage (> 10x) to realign reads correctly. For low coverage data, multi-sample realignment should be performed. In this case, aligned reads from badly covered samples from a single study (or similar studies) are merged resulting in sufficient coverage for realignment of the reads.

¹⁰⁴ http://bio-bwa.sourceforge.net/bwa.shtml

¹⁰⁵ <u>https://www.broadinstitute.org/gatk/guide/topic?name=methods</u>

Base quality score recalibration (BQSR)

BQSR corrects the bases quality scores based on the analysis of the following covariates:

- 1. Read Group: Different lanes may have different error profiles. Thus the reads originating from different lanes are assigned to different read groups.
- 2. Quality Score: This is the base quality score assigned by the sequencer's base calling algorithm.
- 3. Machine Cycle: It reports the machine cycle (which corresponds to the position of the base in the read) that produced the analysed base. This information can be used to calibrate base qualities according to systematic errors due to their position in the read.
- Di-nucleotide: This is the set of 2bp strings where the two bases represent the previous base and current base. It is used to identify sequencing errors dependent on a two-nucleotides context.

GATK's BaseRecalibrator¹⁰⁶ method performs BQSR by walking through all the reads in BAM file and constructing bins based on the above-mentioned covariates. For example, a bin contains all bases belonging to a certain read group, having the assigned quality score X produced by Y machine cycle and having Z nucleotide as the pervious nucleotide in dinucleotide context (cf. Figure A.5) (first 4 columns of row 6 in the table show the parameters defining different bins). Then, for each bin, it counts the number of bases within the bin and how frequent these bases mismatch the reference base in the alignment (excluding loci present in dbSNP). These calculations are stored in a table (cf. Figure A1.2), and used to calculate the empirical probability of error (i.e. p(error) = num mismatches/num observations) as well as new (empirical) quality scores¹⁰⁶. Figure A.6 shows the improvements in base quality scores of our test sample. The figure at the left side shows the deviation of the reported quality scores (x-axis) from the empirical (observed) quality scores (y-axis) with high root-mean square error (RMSE). However, after BQSR corrections, base quality scores are almost identical to the empirical ones and the RMSE value dropped significantly (cf. right part of figure).

¹⁰⁶ <u>http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr</u>

1	# Counted Sites 1126132062						
2	# Counted Bases 9797098402						
3	# Skipped Sites 23107537						
4	# Fraction Skipped 1 / 49 bp						
5	ReadGroup	QualityScore	Cycle	Dinuc	nObservations	nMismatches	Qempirical
6	HWI-ST0764:140:C16KNACXX	2	-35	AA	28324	4146	8
7	HWI-ST0764:140:C16KNACXX	2	-35	AC	21306	1428	12
8	HWI-ST0764:140:C16KNACXX	2	-35	AG	36687	1402	14

Figure A.5 An example of the BQSR computed table of covariates calculations. First half of the machine cycles are denoted by positive (+) sign, whereas, last cycles are denoted by negative (-) sign.

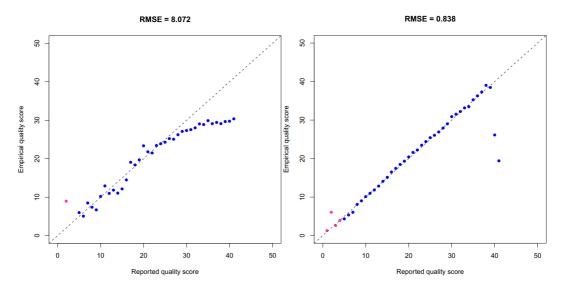


Figure A.6 Improvement in the base quality scores (of in-house sample) after the BQSR.

Variant quality score recalibration (VQSR)

As described in section 2.3.1, the performance of VQSR can be judged by clustering plots of any combination of the two annotations used during VQSR training. Moreover, the tranche plots provide a means for evaluation of the recalibrated variant list in context to both sensitivity and specificity. I tested the performance of VQSR with the following different combination of parameters:

- At default parameters: VQSR does not even run and throws the error: "Clustering with this few variants and these annotations is unsafe".
- At different values of -mG (maxGaussians) parameters.
- With a reference variant set (cf. Section 2.3.1) as additional training data along with a smaller value of mG than the default value (default=8).

After testing these combinations, I found that VQSR with a reference variant set and at – mG=6 works well for most of the data (cf. Figure 2.8).

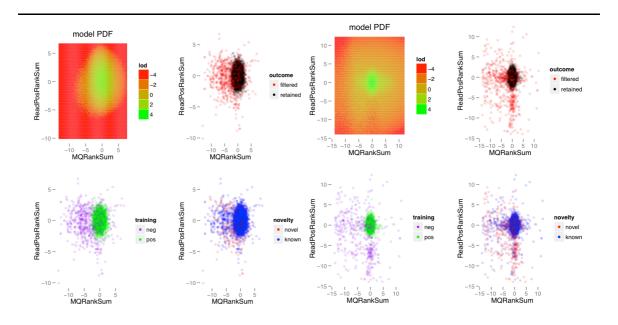


Figure A.7 VQSR clustering based on 2 annotations: ReadPosRankSum and MQRanksum. The left part of the figure shows clustering without usage of the reference variant set during VQSR but with mG 6 parameter. Whereas, the right part shows clustering with usage of the reference variants set but with default value of mG (mG=8).

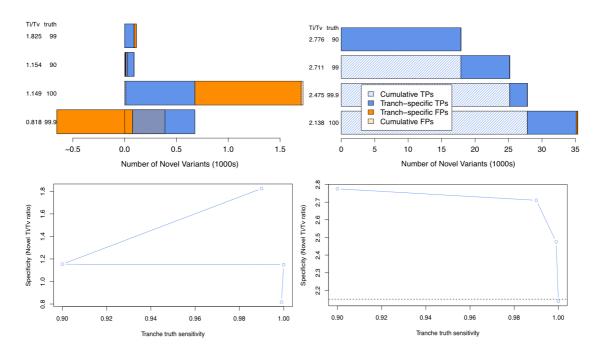


Figure A.8 VQSR's four-default tranches and their correlation with sensitivity and Ti/Tv ratio. The left part of figure shows tranches plots generated by VQSR with mG 6 parameter only. Whereas, the right part shows tranches plots generated by VQSR with usage of reference variant but with default value of mG.

Figure A.7 shows VQSR clustering for the control sample NA12878 based on ReadPosRankSum and MQRanksum annotations. These clusters do not show significant differences between VQSR at only mG 6 and VQSR with only the reference variant set (default mG), except the plot at the right is a bit denser than the first one as it is having more number of variants due to reference variant set. However, the tranche plots (cf. Figure A.8) clearly shows that the usage of a reference variant set is necessary to get a more specific and sensitive variant list. The recalibrated variant list generated from VQSR using the reference set is having a Ti/Tv ratio close to the standard value of 2.8 for the exome sequencing data. On the contrary, the other list generated without using the reference set has lots of FPs, thus a lower value of the Ti/Tv ratio. Overall, VQSR performance is dependent on the training data, thus the additional training data as provided by the reference variant set is required to perform a reliable variant clustering.

Annotations and filters used by FilterRSE

List of Annotations

The following annotations will be appended (by the FilterRSE tool in Annotation mode) to the info field of given VCF file. A description of each of these annotations is added to the VCF header as follows:

- ##INFO=<ID=NotPA (P), Number=., Type="String", Description="Position is not a pipeline Artefact. "Value: Yes, if variant is called by other pipeline, otherwise Value: NO)">.
- ###INFO=<ID=NIST (N), Number=., Type="String", Description="Present in the NIST list. Value: Yes, if the RSE location is shared by the control sample NA12878 and present in highly confident variants list (for this sample) provided by GAIB (NIST), otherwise Value: NO">.
- ##INFO=<ID=BROAD, Number=., Type="String", Description="Present in the Broad list. Value: Yes, if the RSE location is shared by the control sample NA12878 and present in the validated variants list (for this sample) provided by Broad institute, otherwise Value: NO">.

- ##INFO=<ID=17MER, Number=., Type="String", Description="String of 17consecutive bases around the RSE positions (8 bases upstream, reference base at RSE location, 8 bases downstream">.
- 5. ##INFO=<ID=CV, Number=., Type="String", Description="Presence of the RSE location in the integrated variant list of common variants (CV) constructed by using 1000 genomes and EXAC VCF files. Value: NO or Yes followed by rsid (DBSNP id) and minor allele frequency (MAF) computed by EXAC if the variant is present in both datasets (1000 genomes and EXAC), otherwise MAF from an individual dataset">>.

List of Filters

The following filters can be applied by the FilterRSE tool (in "Filter" mode) either individually or in combination. A description of each of these filters is added to the VCF header as follows:

- ##INFO=<ID=N, Number=., Type="String", Description="Filter out those RSE locations which are not present in the NIST list">
- ##INFO=<ID=P, Number=., Type="String", Description="Filter out those RSE locations which are pipeline artefact (PA) (not called by other pipeline)">
- 3. ##INFO=<ID=C, Number=., Type="String", Description="Filter out those RSE locations which are not in the common variant list (100G+EXAC)">
- ##INFO=<ID=C_MAF, Number=., Type="String", Description="Filter out those RSE locations which are not in the common variant list (100G+EXAC) only if they have less MAF then the given threshold".

Pseudocode for quality trimming script

The following pseudocode provides the description of the implementation of quality trimming algorithm in Perl programming language. The theoretical description about this algorithm is provided in the section 2.1.1 of Chapter 2.

```
TrimBases (F, Q, L, B, S)
Input:
        F=Fastq file
        Q=Base quality score threshold for trimming (default = 10)
        L=minimum length of a read to retain after trimming (default = 30)
        B=maximum percentage of bad quality bases in read in order to keep it (default = 20)
        S=file for statistics output (trimmed reads and trimmed bases counts)
        0= Output: Fastq file after trimming action
###
While read each line in the file F
        Store read sequence and corresponding quality score string in r and q respectively
        Screen first 5 bases from 3' end of read and select base having quality score < Q as start
base (at position SB) for trimming action
        Diff = 0 ### Initialize Diff (i.e. difference between quality score of certain base and Q)
        Pos = SB \& MaxPos = Pos
        MinPos = 0 #### Starting base of read
        while (Pos>0 and Diff>=0) ### screen each base from 3' end
                        Diffcurr = QPos- Q ### QPos denotes the quality score of base at position
                                                  Pos
                        if (Diff > 0)
                                 Diff = Diff + Diffcurr
                                 MaxPos = Pos ## Position of current base
                        end
                        Pos-- ## move to next base
        done
        MaxPos = MaxPos -1 ## last base of trimmed read
        Screen first 5 bases from 5' end of read and select base having quality score < Q as start base
        (at position SB) for trimming action
        Pos=SB & MinPos=Pos ## starting base of read
        while (Pos< MaxPos and Diff>=0) ### screen each base from 5' end
                        Diffcurr = Quality score of current base – Q
                        if (Diff > 0)
```

Diff = Diff + Diffcurr
MinPos = Pos ## Position of current base
end
Pos++ ### move to next base
done
MinPos = MinPos+1 ## first base of trimmed read
if (MaxPos-MinPos < L)
Discard entire read
else
Trim bases from MinPos til MaxPos
Count LQbases (bases having less quality score than Q)
if (LQbases >B/100*length(q))
Discard entire read
end
end
Count trimmed and discarded bases and reads
print trimmed read and respective quality score in file O
done
print trimmed and discarded read and bases counts statistics in file S

Pseudocode for expected & observed kmer generation script

The following pseudocode provides the description of the implementation of both the expected and observed kmer generation scripts written in Perl. The theoretical description of the observed and expected kmer generation is provided in the section 4.1.3 of Chapter 4. Few terminologies like OCmid, OCstart, OCend used in pseudocode and formula using these values for coverage correction are also described in the section 4.1.3 of Chapter 4.

```
ExpectedKmerGen(A, S, k, 0)
Input:
        A=Base coverage file from one strand (generated by mpileup)
        S=strand of aligned reads
        k=desired length of kmer
        0=Output directory to store outfile containing expected kmer and their counts
###
While read each line in the file A
        Cov=0 ##will be the sum of coverage values of each base in kmer
        Store the reference base in array @bases (as starting base of the kmer)
        Get coverage value of this base and subtract Overcounts (OCstart)
        Add the corrected coverage value to Cov
                                         ### Get middle bases of kmer
        for (i from 1 to k-2)
                Get reference base from ith line and append in array @bases
                Get coverage value of this base and subtract Overcounts (OCmid)
                Add the corrected coverage value to Cov
        Done
        Get the last reference base of kmer (k-1)th line after the starting base and append to array
        @bases
        Get coverage value of this base and subtract Overcounts (OCend)
        Store genomic location of last base as kmer position (Pos)
        Concatenate bases in array @bases and store in kmer
        kmer coverage (kmerCov)=Cov/k
        print kmer, kmerCov, and Pos to kmer-file ### generated kmer is stored in a tab separated
        file
done
## Add coverage value of from multiple occurrences of each generated kmer in kmer-file
for each generated kmer
        if read strand S is "reverse"
                kmer = Reverse complement of generated kmer
                count = Sum of the coverage value from multiple occurrences of kmer
                print kmer and its count to output file in directory 0
done
```

```
ObserevedKmerGen(A, S, k, O)
Input:
        A=SAM file having aligned reads from one strand
        S=strand of aligned reads
        k=desired length of kmer
        O=Output directory to store outfile containing observed kmer and their counts
###
While read each line in the file A
        Extract read sequence from line
        Split read sequence by each base and store each base in array @bases
        for each base i in @bases (i from 1 to length(@bases)-(k+1))
                kmer = i ### Initialize kmer with base i
                        for each base j in @bases (j from i to i+k-1)
                                kmer = kmer.j ### Concatenate base j to kmer
                        done
                print kmer to kmer-file ### generated kmer is stored in a file
        done
done
count number of occurrences of each generated kmer in kmer-file
for each generated kmer
        if read strand S is "reverse"
                kmer = Reverse complement of generated kmer
                print kmer and its count to output file in directory 0
done
```

Pseudocode for FilterRSEs tool

The following pseudocode provides the description of the implementation of the FilterRSEs tool written in Perl. This tool uses the above mentioned filters or annotations (cf. Section "Annotations and filters used by FilterRSE") to filter out the RSE locations from a given VCF file or to append RSE-associated annotation respectively. The theoretical description of the filter and annotation mode of this tool is provided in section 4.2 of Chapter 4.

FilterRSEs (V, M, O, F, A)
Input:
V=Given VCF file for RSEs filtering
M=Mode of script ("Filter" or "Annotation")
O=Output directory to store output files (RSEfiltered, onlyRSElocs or RSEannotated)
F=Single filter name or comma separated list of filters (if Filter mode is selected).
A=MAF value (if DBALL_MAF filter is used)
###
R=List of RSEs
print all annotations or information about the filters (depending on mode) into the Info field of VCF
header
While read each line in the file V
Store all variant locations (VarLoc) in a Hash %VCF
done
While read each line in the file R
Store all RSE locations (RSELoc) in a Hash %RSE
done
for each VarLoc in %VCF
if (VarLoc exists in %RSE & Mode eq "Annotate")
Append the info field of VarLoc with RSE annoataions
print this appended line into VCF.RSEannotated file in directory O
end
if (VarLoc exists in %RSE & Mode is "Filter")
Checks for the list of given filters and store in an array @Filter
for Filter i in @ Filter
if (FilterValue eq "NO") ### the checked value of filter can change
according to filter depending of RSE annotations value
FilterOut VarLocs according to given filters
print Filtered VarLocs and used filter in additional column in
VCF.RSElocs_withFilter file in directory O
else
print unfiltered VarLocs in VCF. RSEfiltered file in directory O
end
done
else print unfiltered VarLocs in VCF. RSEfiltered file in directory O
end

List of RSEs belonging to error class 1

The following table contains list of RSEs (class 1) that resulted from systematic error detection approach presented in Chapter 4. It consists information on chromosomal location (column: "Chr" and "Location") of RSEs and surrounding 9mer or 17mer (column: "Kmer") along with their orientation (column: "Strand").

Ch	r Location	Strand	Kmer	InNIST	InBroad	InHC	InDBall(rsid MAF)	MotifLoc*	Chr	Location	Strand	Kmer	InNIST	InBroad	InHC	InDBall(rsid MAF)	MotifLoc*
1	248813547	Rev	TTCTCTGTCATCTCGGG	NO	NO	Yes	Yes_rs201161767_0.184000625586487	UbD	10	135439305	Rev	TTATTGACGAGTAAATT	NO	NO	Yes	NO	UbD
1	248801633	Rev	AGATGTGGTTCCTCCCA	NO	NO	Yes	Yes_rs74901534_0.015	UbD	10	135439305	For	AATTTACTCGTCAATAA	NO	NO	Yes	NO	UbD
1	248801633	For	TGGGAGGAACCACATCT	NO	NO	Yes	Yes_rs74901534_0.015	UbD	10	135439287	For	GAGTGCTAAGATCTCAA	NO	NO	Yes	NO	UbD
1	248801611	Rev	TCAGGGTGG	NO	NO	Yes	NO	Ub	10	135439220	For	CCATCTCAG	NO	NO	Yes	NO	bD
1	248801611 248801610	For Rev	CACAGTCGCCACCCTGA CAGGGTGGC	NO NO	NO NO	Yes Yes	NO Yes_rs150878651_0.00547913266495687	UbD Ub	10 10	135438929 135438929	Rev For	CACCGTCAATTCGAAAA TTTTCGAATTGACGGTG	NO NO	NO NO	Yes Yes	Yes_rs201901202_0.215164525905614 Yes_rs201901202_0.215164525905614	UbD UbD
1	248801610	For	TCACAGTCGCCACCCTG	NO	NO	Yes	Yes_rs150878651_0.00547913266495687	UbD	10	135350490	For	GATGGGTGG	NO	NO	Yes	NO	bD
1	248801602	For	TTCCTGATCACAGTCGC	NO	NO	Yes	Yes_rs370874670_0.00149476831091181	UbD	10	135105932	For	CAGCATGCACACTCCGT	NO	NO	NO	NO	UbD
1	248801592	Rev	GCTAGCAGG	NO	NO	Yes	Yes_rs78622116_0.0206923995224831	bD	10	135103301	For	CCCAAGTCC	NO	Yes_TP	NO	NO	bD
1	248801592	For	CCTGCTAGCCCTTCCTG	NO	NO	Yes	Yes_rs78622116_0.0206923995224831	UbD	10	135084232	For	GCGGTCTCAGCTCACCT	Yes	Yes_TP	Yes	NO	UbD
1	248801566	For	TCTGATACT	NO	NO	Yes	Yes_rs74154510_0.0368394308943089	bD	10	135077121	For	CGTCAGCCC	NO	NO	Yes	NO	bD
1	248458689	For	ATGAGGGAAAGTTGGCT	NO	NO	Yes	Yes_NA_0.000147972773009766	UbD	10	134902396	For	CACGCTTCC	Yes	Yes_TP	Yes	NO	Ub
1	248458676 248112762	For Rev	CAGCATCATGTCCATGA ATGGTGGCACTCAAAAA	NO Yes	NO NO	Yes Yes	Yes_NA_0.000192980340127849 NO	UbD UbD	10 10	124329672 124329672	Rev For	AAGCTGCGAGGTGGAAA TTTCCACCTCGCAGCTT	NO NO	Yes_TP Yes_TP	Yes Yes	NO NO	UbD UbD
1	248112762	For	TTTTTGAGTGCCACCAT	Yes	NO	Yes	NO	UbD	10	124323072	Rev	ATCGGCTTGTCTTCATC	NO	Yes_FP	NO	Yes_rs201905665_0.0119893589883751	UbD
1	247978541	Rev	CACCTTCTC	Yes	Yes TP	Yes	NO	Ub	10	123970021	For	GATGAAGACAAGCCGAT	NO	Yes FP	NO	Yes_rs201905665_0.0119893589883751	UbD
1	247978541	For	AGGATAAGGAGAAGGTG	Yes	Yes_TP	Yes	NO	UbD	10	120933134	For	ААААААААААААААААА	Yes	NO	Yes	NO	UbD
1	236723177	Rev	TCTGAGTGCCTTCAGCT	Yes	Yes_TP	Yes	NO	UbD	10	120922017	Rev	TCCAGTGCATGCTGGTG	Yes	NO	Yes	Yes_rs12413842_0.279552715654952	UbD
1	236702209	For	CATGAAACC	NO	Yes_TP	Yes	NO	bD	10	113921450	For	GGAGCAGGCAAGCCACA	NO	Yes	NO	Yes_rs199856746_0.0325124081171075	UbD
1	235856901 231064578	Rev For	TGGTCTTGCACCAAATG CTACCTCAC	Yes Yes	NO NO	Yes Yes	Yes_rs3754232_0.247603833865815 NO	UbD bD	10 10	113921449 113921447	For For	GGAGCAGGCAAGCCACA GGAGCAGGCAAGCCACA	NO NO	NO NO	NO NO	NO NO	UbD UbD
1	230820763	For	GAAGTCTCACATTAGAC	Yes	NO	Yes	Yes_rs397701344_0.233027156549521	UbD	10	112266822	Rev	GTGGGTCGCGCAGGCCT	NO	Yes_TP	Yes	NO	UbD
1	230459433	Rev	GAGGGGGGGGCCTTTGGG		NO	Yes	NO	UbD	10	112266822	For	AGGCCTGCGCGACCCAC	NO	Yes_TP	Yes	NO	UbD
1	228461408	For	GCCCTGAAGGGAGCGGG	Yes	NO	Yes	NO	UbD	10	108432828	Rev	AGCTCAGGGTGAACGCC	NO	NO	NO	Yes_rs11193010_0.295527156549521	UbD
1	228430947	Rev	TGGCACTGGCCCCTGCC	NO	NO	Yes	Yes_NA_0.00854445109382273	UbD	10	105799550	For	ACACACACGCACACGCA	NO	NO	Yes	Yes_rs11191904_0.277156549520767	UbD
1	227222515	Rev	TTGGCTGTTTGTCTGTC	Yes	Yes_TP	Yes	NO	UbD	10	105363565	Rev	ACTGGCTTGTCTGCACT	NO	NO	Yes	Yes_NA_0.23893907806347	UbD
1	227210888	For	TTATTATTATTATGTGACC	Yes	NO	Yes	Yes_rs11578479_0.286142172523962	UbD	10	102265056	For	CTTCACAAACACACACA	NO	NO	Yes	NO	UbD
1	227172903 224318151	For For	GGGATGTCGGGAGCTGA TGATTTTTGTTCTTTTT	Yes NO	Yes_TP Yes_TP	Yes Yes	Yes_rs2297415_0.269568690095847	UbD UbD	10 10	95405665 77818594	For Rev	ATGAACCTATGTGTAAT GGGTGTAAGCACTGCCA	Yes Yes	Yes_TP NO	Yes Yes	NO Yes_rs7924288_0.260583067092652	UbD UbD
1	219383848	For	GTATTCTACTTTTAAGT	NO	Yes_TP	Yes	NO	UbD	10	75620757	Rev	CTTCAGCAAATCATCAC	Yes	NO	Yes	Yes_rs2664282_0.284944089456869	UbD
1	213062017	Rev	CAACAACAAATAAAACC	NO	NO_	Yes	NO	UbD	10	75559662	For	GAGACTCTATCTCAAAA	NO	Yes TP	Yes	NO	UbD
1	212209367	Rev	CAGAATTGGAGTCGGCC	Yes	NO	Yes	Yes_rs397844077_0.259584664536741	UbD	10	73571581	Rev	GGCTCCGGT	Yes	NO	Yes	NO	bD
1	209785011	Rev	AGGGTACACGGAGCTCC	Yes	NO	Yes	NO	UbD	10	73115941	Rev	AGGAAGACAGTGGCCGT	Yes	Yes_TP	Yes	NO	UbD
1	206766857	For	TGTGTGTGC	NO	NO	NO	Yes_rs28629842_0.281749201277955	Ub	10	73115941	For	ACGGCCACTGTCTTCCT	Yes	Yes_TP	Yes	NO	UbD
1	206580084	Rev	ACCTTTAAGTGTAGGGA	NO	NO	Yes	NO	UbD	10	71391719	Rev	TCTTCCCCAGCTCTCTG	Yes	NO	Yes	NO	UbD
1	206575141 206567100	Rev Rev	TCAATAAGTGGAATGTG ATAGTATCGGGGGAATGT	NO NO	NO NO	Yes Yes	NO	UbD UbD	10 10	65225244 62551889	For Rev	GGGGCGCTGACTCTCTT CAGGAAATTAAAAATTT	Yes Yes	Yes_TP Yes_TP	Yes Yes	NO NO	UbD UbD
1	205308914	Rev	GCGGCAGGCGGGGATGGG		NO	NO	Yes_rs116078922_0.0092151836933968	UbD	10	62551889	For	AAATTTTTAATTTCCTG	Yes	Yes_TP	Yes	NO	UbD
1	205275206	For	GGCTTGAGAGTTGTGCT	Yes	NO	Yes	NO	UbD	10	61802374	For	TAGTGAAAAATATAAGT	Yes	NO_	Yes	NO	UbD
1	205063949	For	AAGGGCTACACAAAGCA	Yes	Yes_TP	Yes	Yes_rs3738154_0.285543130990415	UbD	10	51623004	For	CTTGTAAATGCCAGCAA	NO	NO	Yes	NO	UbD
1	204413297	Rev	CTTTCTCCGAAACAGGC	Yes	Yes_TP	Yes	NO	UbD	10	51620499	Rev	CGCCTTCAG	NO	NO	Yes	NO	bD
1	202731986	Rev	GATGATGAGGAAGTGGA	NO	Yes_TP	Yes	NO	UbD	10	46999189	For	ATGGGCGGCAGTGACCT	NO	NO	Yes	NO	UbD
1	201179984	Rev	TCAGAACCC	NO	NO	NO	Yes_NA_0.0802245563201738	bD	10	33093858	For	ACACACACA	NO	NO	Yes	NO	bD
1	201179984	For	GGGTTCTGA	NO NO	NO	NO	Yes_NA_0.0802245563201738	Ub	10	29783908	Rev	ACCAGATATGCAGTTAG	NO	Yes_FP	Yes	Yes_rs78773460_0.177077479629109	UbD
1	201178926 201178926	Rev For	TAACCTGCCTTATTCAC GTGAATAAGGCAGGTTA	NO	NO NO	Yes Yes	Yes_rs6702960_0.1689453125 Yes_rs6702960_0.1689453125	UbD UbD	10 10	29783908 17032559	For Rev	CTAACTGCATATCTGGT	NO Yes	Yes_FP Yes_TP	Yes NO	Yes_rs78773460_0.177077479629109 Yes_NA_1.65612268556855e-05	UbD UbD
1	201178924	Rev	ACCTGCCTTATTCACTG	NO	NO	Yes	Yes_rs6678538_0.135758998435055	UbD	10	13541724	For	TTAGAAATAGAACAGTA	Yes	Yes_TP	Yes	NO	UbD
1	201178924	For	CAGTGAATAAGGCAGGT	NO	NO	Yes	Yes_rs6678538_0.135758998435055	UbD	10	11356093	For	GTTTTCCTTTTTTCAGT	Yes	Yes_TP	Yes	NO	UbD
1	201178904	For	GGGTTCTGAAGAAATGG	NO	NO	Yes	Yes_rs201227267_0.136434349719975	UbD	10	5926079	Rev	TTGAGGTATTGAATTTT	NO	Yes_TP	Yes	NO	UbD
1	201178904 181706552	Rev For	CCATTTCTTCAGAACCC TTCCTTTGGCAAGGGCC	NO	NO NO	Yes Yes	Yes_rs201227267_0.136434349719975	UbD UbD	10 10	5682855 1061625	Rev For	TGTGTTCCATTGCAGGT CGCTGAGCACTGAGCCT	Yes NO	NO NO	Yes NO	NO NO	UbD UbD
1	179783095	For	GGTGGCCGCGAGCCACT	Yes NO	NO	NO	Yes_rs2280866_0.275359424920128 Yes_rs202244671_0.0230830196156132	UbD	10	133800773	For	CCGCAGAGT	Yes	NO	Yes	NO	bD
1	173921301	Rev	TTTTTTTGTTTTTTT	NO	NO	NO	Yes_rs199928760_0.066831343488404	UbD	11	130064747	Rev	ACACACACATGCACACA	NO	NO	Yes	NO	UbD
1	173921292	Rev,Fo	or TTTTTTTTC	NO	NO	NO	Yes_NA_0.0531843724913032	Ub	11	124747333	Rev	TTCAGGACA	NO	NO	NO	Yes_rs10790713_0.236022364217252	bD
1	173921292	Rev	CTTTCTCCA	NO	NO	NO	Yes_NA_0.0531843724913032	bD	11	119548052	Rev	CCCACCCACACTTCCCT	Yes	NO	Yes	Yes_rs10892429_0.204672523961661	UbD
1	170993444	For	TATATGGGGTGTGTGTG	NO	NO	Yes	NO	UbD	11	119205735	For	ATTTTCCTTCCAAATTA	NO	Yes_TP	Yes	Yes_rs12797083_0.295127795527157	UbD
1	169580972	Rev	TTGCTCTCTGTGTGGCT	Yes	NO	Yes	NO	UbD	11	116703671	Rev	TACAGGGGCAGCCCTGG	NO	NO	Yes	Yes_rs4225_0.291333865814697	UbD
1	169272451 165376228	Rev Rev	CTATTGCCTTTTTGATT CTACAGAGAGTGGCCAG	Yes NO	Yes_TP NO	Yes NO	NO Yes_rs111545739_0.180311501597444	UbD UbD	11 11	113848184 103086399	For For	CCACCTGCTCCGACCTT ACTGTGTGTGTGTAAAATT	Yes NO	Yes_TP NO	Yes Yes	NO	UbD UbD
1	161594525	Rev	TGTTGGCACTTGTCAAA	NO	NO	Yes	NO	UbD	11	94704092	For	TTTTAGAATAGCATGGT	Yes	Yes TP	Yes	NO	UbD
1	160990875	Rev	GTGTCGGGAGCCTGATC	NO	NO	NO	NO	UbD	11	93494878	Rev	AATTATTTCTTTTTCTA	NO	NO	NO	NO	UbD
1	160990875	For	GATCAGGCT	NO	NO	NO	NO	Ub	11	71740378	Rev	CAAACCATGTTGCTTCT	Yes	Yes_TP	Yes	NO	UbD
1	160090681	For	CTCTCCCTTCCTCCCTC	NO	Yes_TP	Yes	NO	UbD	11	71714526	Rev	ATGCTGACCTCACCTGG	Yes	Yes_TP	Yes	NO	UbD
1	157062364	For	GCTAACCCA	Yes	Yes_TP	Yes	Yes_rs1176536_0.208067092651757	bD	11	71714526	For	CCAGGTGAGGTCAGCAT	Yes	Yes_TP	Yes	NO	UbD
1	156565049	For	CACCTAAAAGTTTCCTC	Yes	Yes_TP	Yes	NO	UbD	11	71640096 71640090	For	TGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	NO	NO	NO	Yes_rs376190587_0.00250391236306729	
1	156532250 155785578	For Rev	TGAATGTTAGTTGGTAA	Yes NO	NO Yes TP	Yes Yes	NO	UbD UbD	11 11	70544937	For Rev	CTGCGGTGAGGGGGGCGA CAGCCTCATGTGCTGTG	NO Yes	Yes_FP NO	NO Yes	Yes_rs201521523_0.00108837614279495 Yes_rs7117514_0.296924920127796	UbD
1	155785578	For	TTACCAACTAACATTCA	NO	Yes_TP	Yes	NO	UbD	11	70507605	For	AGGCGTATACACACACA	NO	NO	Yes	NO	UbD
1	155733257	Rev	TCTGAGCCAGAAGAAGA	NO	Yes_FP	NO	Yes_rs607834_0.060207336523126	UbD	11	68566651	For	TACGGAAAAAATTTCATC	NO	NO	Yes	Yes_rs61887064_8.28129917021382e-06	UbD
1	155733257	For	TCTTCTTCTGGCTCAGA	NO	Yes_FP	NO	Yes_rs607834_0.060207336523126	UbD	11	68566650	For	ATACGGAAAAATTTCAT	NO	NO	NO	Yes_rs61887063_5.20616409829238e-05	UbD
1	154227239	For	TAAAGCTGCATCAGTGC	NO	NO	Yes	NO	UbD	11	68566649	For	TACGGAAAAATTTCATC	NO	NO	NO	NO	UbD
1	153636472	For	ACTACTACTAGTAAATA	NO	NO	NO	Yes_rs372540759_0.220740023486269	UbD	11	68566648	For	CATACGGAAAAATTTCA	NO	NO	NO	Yes_rs61887062_0.00099866844207723	UbD
1	153636471	For	ACTACTACTAGTAAATA	NO	NO	NO	NO	UbD	11	67262289	For	GCGAGTGGGCGAGGGGG	NO	NO	Yes	Yes_rs7932071_0.0106792499689557	UbD
1	152681680	Rev	CCCAGAGCTGGAGCCAC GTGGCTCCAGCTCTGGG	Yes	Yes_TP	Yes	NO	UbD UbD	11 11	67223920	Rev	GGCTCCCTGACTGACTG GTTCAGCATCCTGCTGC	NO NO	Yes_TP NO	Yes	NO NO	UbD
1	152681680 152195728	For For	TTTTTTTT	Yes NO	Yes_TP Yes	Yes Yes	NO Yes_rs561299511_0.211165481308319	bD	11	66109779 65631879	Rev For	ACAGGGTCCCGGCACCA	Yes	NO	Yes Yes	NO	UbD
1	152195728	Rev	ΑΑΑΑΑΑΑΑ	NO	Yes	Yes	Yes_rs561299511_0.211165481308319	Ub	11	65629932	Rev	CAGGGTCGAGCACTCCC	Yes	Yes_TP	Yes	NO	UbD
1	152195728	Rev	ATGCCTAAA	NO	Yes_TP	Yes	Yes_rs561299511_0.211165481308319	bD	11	65629932	For	GGGAGTGCTCGACCCTG	Yes	Yes_TP	Yes	NO	UbD
1	151789609	For	TGTGTGTGCGCGCGCGCGC	NO	NO	Yes	NO	UbD	11	64606910	For	TGGCCCGCCTTGTATCC	Yes	Yes_TP	Yes	NO	UbD
1	151700189	Rev	CAGACTCTGGGAGAATC	Yes	NO	Yes	NO	UbD	11	64603844	For	CTCACCCAC	NO	NO	Yes	Yes_rs71471960_0.282947284345048	bD
1	151634803	Rev	TATTTAATCTATCTTCC	Yes	NO	Yes	Yes_rs11808761_0.269968051118211	UbD	11	61725599	For	CTACCACATCCTCCTCC	NO	NO	Yes	NO	UbD
1	151212399	For	CGGGCCTCCTAACTCTA	Yes NO	Yes_TP	Yes	NO	UbD	11	57137538	Rev	CCATGCCCCTTGCTCAG GAAATACACAACACTCC	Yes	Yes_TP	Yes	NO NO	UbD
1	145507826 145282093	Rev Rev	TCCTTACGA TGATCACCCACTGTTAA	NO NO	NO NO	Yes Yes	Yes_rs872786_0.288738019169329 NO	bD UbD	11 11	56468835 56468817	Rev Rev	GAAAIACACAACACICC	NO NO	NO NO	Yes Yes	NO	UbD UbD
1	145282055	For	TAGCCTTTTGTAAAATG	NO	NO	Yes	NO	UbD	11	56468198	Rev	CCAGCAGGTAGCACTCA	NO	Yes_FP	Yes	NO	UbD
1	145273520	Rev	GAGCCAGACACCATGAT	NO	NO	Yes	NO	UbD	11	56468198	For	TGAGTGCTACCTGCTGG	NO	Yes_FP	Yes	NO	UbD
1	145115602	For	GTTAGCCTCAAAATAAA	NO	NO	Yes	NO	UbD	11	56468047	Rev	ATTTCCAGTGAAAAAAT	NO	NO	Yes	NO	UbD
1	145112313	For	CTTTTAATTTCCTACCT	NO	NO	Yes	NO	UbD	11	56468047	For	ATTTTTTCACTGGAAAT	NO	NO	Yes	NO	UbD
1	145112285	For	TGAGCCACCGTGCCTGG		NO	NO	NO	UbD	11	56468020	Rev	GTGGAGGCAGGAGTCAT	NO	Yes_TP	Yes	NO	UbD
1	145109809	Rev	GAAAAGGAAGCAGAAGC	NO NO	NO NO	Yes	NO	UbD	11	56468020	For	ATGACTCCTGCCTCCAC	NO NO	Yes_TP	Yes	NO NO	UbD
1	145109456 145103844	For For	CAGAGATTCTGCTTTAA ATAATATGGTGCTTCTC	NO	NO	Yes Yes	NO	UbD UbD	11 11	56467810 56467787	For For	TTCATGACAGTAATGCA CTTATGTAACATAATTC	NO	NO NO	Yes Yes	NO	UbD UbD
1	145105844	For	CATAGTGAGAGAGAGTGAG		NO	Yes	NO	UbD	11	56143559	Rev	TGCCATTAGGAAGCTAT	NO	NO	Yes	NO	UbD
1	145020936	For	AGCTACTCAGGAGGCTG		NO	Yes	NO	UbD	11	56143559	For	ATAGCTTCCTAATGGCA	NO	NO	Yes	NO	UbD
1	144994861	Rev	ATGTCGCCGTAGCCCCA	NO	NO	Yes	NO	UbD	11	48373833	Rev	CATGTACTCTTTTCCGT	NO	NO	Yes	NO	UbD

		-															-
1	144946876	Rev	GTCAAAAGG	NO	NO	Yes	NO	bD	11	48373833	For	ACGGAAAAGAGTACATG	NO	NO	Yes	NO	UbD
1	144923535	For	GAATAAAGAGAAGAACT	NO	NO	Yes	NO	UbD	11	48373815	Rev	CTATTTGTTCATTATAG	NO	NO	Yes	NO	UbD
1	144922523 144922523	Rev For	CAGGGAACGTGAGGTAA TTACCTCACGTTCCCTG	NO NO	NO NO	NO NO	Yes_rs2455994_0.291196094385679	UbD UbD	11 11	48373815 48367469	For Rev	CTATAATGAACAAATAG CTATGACCACTATGTGG	NO NO	NO NO	Yes Yes	NO NO	UbD UbD
1	144922523	Rev	TTTATTTTTAGTCTTTG	NO	NO	Yes	Yes_rs2455994_0.291196094385679 NO	UbD	11	48367469	For	ATTTTTGAGGGTGTAGA	NO	NO	Yes	NO	UBD
1	144922109	For	CAAAGACTAAAAATAAA	NO	NO	Yes	NO	UbD	11	48347539	Rev	CAAAAATAA	NO	NO	Yes	NO	bD
1	144919094	Rev	CACCCTCTGCTCCTCTT	NO	NO	Yes	NO	UbD	11	48347140	Rev	ACATACGTATTGGTGCA	NO	Yes_FP	Yes	NO	UbD
1	144919008	Rev	TTAAAAAGGTAATATGT	NO	Yes_TP	NO	Yes_rs11296953_0.295079561758184	UbD	11	48347140	For	TGCACCAATACGTATGT	NO	Yes_FP	Yes	NO	UbD
1	144917827	For	TCCAGAGCAACAGCTTT	NO	NO	NO	Yes_rs375854543_0.295409035409035	UbD	11	48346961	Rev	GGTAGTATTGTGCAGGG	NO	Yes_FP	Yes	NO	UbD
1	144916676 144916676	Rev For	CCTCCAGTGGCTGAAAG CTTTCAGCCACTGGAGG	NO NO	NO NO	NO NO	Yes_rs1698683_0.294959405151234 Yes_rs1698683_0.294959405151234	UbD UbD	11 11	48346961 48346551	For Rev	CCCTGCACAATACTACC CTGAGAATGCAGGTGCA	NO NO	Yes_FP Yes_FP	Yes Yes	NO Yes_rs77470587_0.243449801619951	UbD UbD
1	144916493	For	GTCCTCCCAATCTGAAG	NO	NO	Yes	NO	UbD	11	48346551	For	TGCACCTGCATTCTCAG	NO	Yes_FP	Yes	Yes_rs77470587_0.243449801619951	UbD
1	144916486	For	GGTCACAGTCCTCCCAA	NO	NO	Yes	NO	UbD	11	48346547	Rev	GAATGCAGG	NO	Yes_FP	Yes	Yes_rs79042268_0.232394493587308	Ub
1	144892149	Rev	AACTGAAACGCACCACA	NO	NO	Yes	NO	UbD	11	48346547	For	ATACTGCACCTGCATTC	NO	Yes_FP	Yes	Yes_rs79042268_0.232394493587308	UbD
1	144892149	For	TGTGGTGCGTTTCAGTT	NO	NO	Yes	NO	UbD	11	48346541	For	TAGGCAATACTGCACCT	NO	Yes_FP	Yes	Yes_rs75498992_0.222422008450957	UbD
1	144892089	For	CCAAGCAGGTCCTCCGC	NO	NO	Yes	NO	UbD	11	48346535	For	TCTTTATAGGCAATACT	NO	Yes_FP	Yes	Yes_rs76964780_0.198116104327722	UbD
1	144886409 144877390	Rev Rev	TTCTCATTTAAAACTGC CAGCTTGGG	NO NO	NO NO	Yes Yes	NO NO	UbD bD	11 11	48346523 48346513	For For	TGTTTCTCCTTGTCTTT CTATTACTTATGTTTCT	NO NO	Yes_FP	Yes Yes	Yes_rs72911451_0.248489074848907	UbD UbD
1	144877366	Rev	CTTAGAGATGTTCTCAT	NO	NO	Yes	NO	UbD	11	45937968	Rev	TAGTCTGTG	Yes	Yes_FP NO	Yes	Yes_rs78206553_0.268059367693402 NO	bD
1	144874088	Rev	ACATAAGGCCAGGATTC	NO	NO	Yes	NO	UbD	11	34982146	Rev	AAGACTGAATAAGCTCT	NO	NO	Yes	NO	UbD
1	144873818	For	GAAGAAAAATCAAACAG	NO	NO	Yes	NO	UbD	11	34188981	Rev	TTAACTCTGGTTCACCA	NO	NO	NO	Yes_rs7120870_0.212659744408946	UbD
1	144873794	For	CTAACAGTCCAAACCTC	NO	NO	Yes	NO	UbD	11	26718732	Rev	TGTGGCTTG	NO	Yes_FP	NO	Yes_rs72883299_0.256771275091886	Ub
1	144866509	For	TAAGGAGCGAGTGAAGT	NO	NO	Yes	NO	UbD	11	26718732	For	TGAAGGCACAAGCCACA	NO	Yes_FP	NO	Yes_rs72883299_0.256771275091886	UbD
1	144864454 144854380	Rev Rev	AGCATGCTCTTCCCACC ACCAGGAGC	NO NO	NO NO	Yes Yes	NO NO	UbD bD	11 11	22239663 18524208	For Rev	ACACACACA TATGTCAAGCTTAACTT	NO NO	NO NO	NO NO	NO	bD UbD
1	144828404	Rev	TITITIT	NO	NO	Yes	NO	bD	11	18267373	For	AACTTCTCCACAAGGAG	NO	NO	Yes	Yes_rs2658552_0.270966453674121 NO	UbD
1	120381687	For	TTATATGGAGCACCTAG	NO	NO	Yes	NO	UbD	11	17131918	For	ACGGCAGGTACACTTTA	NO	NO	Yes	NO	UbD
1	120381686	For	ATTATATGGAGCACCTA	NO	NO	Yes	NO	UbD	11	10831340	Rev	CAAAAAAA	Yes	NO	Yes	Yes_rs72430557_0.277005712336943	bD
1	118501941	Rev	TAATCAAGACCAGCCAT	NO	NO	NO	Yes_NA_0.291746083023744	UbD	11	10823582	For	AAATATTAC	NO	NO	NO	Yes_rs71034786_0.29174319951019	bD
1	118501941	For	ATGGCTGGT	NO	NO	NO	Yes_NA_0.291746083023744	Ub	11	6567895	Rev	AGTAGGGCAGCCTCCTC	NO	Yes_TP	Yes	NO	UbD
1	117487710 111970431	Rev Rev	TCACCTGATGGCTGGAT GTGTGTGTGTA	Yes NO	Yes_TP NO	Yes Yes	NO NO	UbD Ub	11 11	6567895 6499215	For	GAGGAGGCTGCCCTACT AATGCCCAAATTTCCAC	NO NO	Yes_TP NO	Yes Yes	NO	UbD UbD
1	111970431	For	AAAAAAAAG	NO	NO	Yes	Yes_NA_2.63047138047138e-05	Ub	11	5618298	For Rev	ATGICICIAAATTICCAC	NO	NO	Yes	Yes_rs2303493_0.294329073482428 NO	bD
1	111436857	For	CCCTGTACTCGTGCAAA	Yes	NO	Yes	NO	UbD	11	5269586	For	GGGCAGTGAGCTCAGTG	NO	Yes_TP	Yes	Yes_rs62755960_8.31020326757192e-06	
1	110716511	For	GGCGCTGCCGACGTGCT	NO	NO	Yes	Yes_rs12747833_0.25379392971246	UbD	11	5269583	For	CATGGGCAGTGAGCTCA	NO	NO	NO	Yes_rs5009539_0.000191644308164048	UbD
1	110211835	For	TCTCCTCTTTGCCCTTG	Yes	NO	Yes	NO	UbD	11	1651613	For	TGTAAGCCTTACTGCTG	NO	Yes_FP	NO	Yes_rs76143925_0.132516417438088	UbD
1	100598866	Rev	CACCTCCGCGGCTCCAG	Yes	Yes_TP	Yes	NO	UbD	11	1093569	For	ACCACCACAACTACGGT	NO	Yes_TP	Yes	Yes_rs72842460_0.0584891234647068	UbD
1	89449483 89449483	Rev For	CCAGGAAAGCTCTTCAT ATGAAGAGCTTTCCTGG	NO NO	NO NO	Yes	Yes_rs74100106_0.245906267645398 Yes_rs74100106_0.245906267645398	UbD UbD	11 11	1093452 1093452	Rev	GTGGGTGTCGGGGTTGG	NO NO	NO NO	Yes Yes	Yes_rs34136803_0.298812175204157 Yes_rs34136803_0.298812175204157	UbD UbD
1	89449483	Rev	CTCTTGAAA	NO	Yes FP	Yes Yes	Yes_rs2893084_0.283000495715601	Ub	11	1093452	For Rev	TGGGTGTCGTGGTTGGG	NO	NO	Yes	Yes_rs113330607_0.2575	UbD
1	89449434	For	AAATACTGTTTCAAGAG	NO	Yes FP	Yes	Yes_rs2893084_0.283000495715601	UbD	11	1093412	For	CCCAACCACGACACCCA	NO	NO	Yes	Yes_rs113330607_0.2575	UbD
1	87045902	Rev	GGAGTAGGTGTAGGATC	NO	Yes	NO	Yes_87045902_rs1932809_0.001746053918		11	1093411	Rev	TGGGTGTCGTGGTTGGG	NO	NO	NO	NO	UbD
1	87045902	For	GATCCTACACCTACTCC	NO	Yes	NO	Yes_87045902_rs1932809_0.001746053918	8UbD	11	1093411	For	CCCAACCACGACACCCA	NO	NO	NO	NO	UbD
1	87045896	Rev	GGAGTAGGTGTAGGATC	Yes	Yes	Yes	NO	UbD	11	1093354	Rev	GGTGGTGGAGATGGGTG	NO	NO	NO	Yes_rs56290335_0.00385811355522285	UbD
1	87045896	For	GATCCTACACCTACTCC TGTTCACTTCTCCACAA	Yes	Yes	Yes	NO	UbD	11	1093354	For	CACCCATCTCCACCACC	NO	NO	NO	Yes_rs56290335_0.00385811355522285	UbD
1	85331808 66731886	Rev Rev	GAGACATACTTTTGAGA	Yes Yes	Yes_TP Yes_TP	Yes Yes	NO Yes_rs6588193_0.274161341853035	UbD UbD	11 11	1093158 1093158	Rev For	GTCACCGTAGTGGTGGT ACCACCACTACGGTGAC	NO NO	NO NO	NO NO	Yes_rs202045556_0.172145328719723 Yes_rs202045556_0.172145328719723	UbD UbD
1	62594677	Rev	GACGCTCAATCTTTTTT	Yes	NO	Yes	Yes_rs2481665_0.186501597444089	UbD	11	1093136	Rev	TGGGTGTCGTGGTTGGG	NO	NO	NO	Yes_rs374924328_0.00923295454545454545	
1	62061245	For	ттттттт	NO	NO	NO	NO	Ub	11	1093136	For	CCCAACCACGACACCCA	NO	NO	NO	Yes_rs374924328_0.009232954545454555	
1	62061245	Rev	GAAAAAAA	NO	NO	NO	NO	bD	11	1093135	Rev	TGGGTGTCTGGTTGGGG	NO	NO	NO	Yes_rs374924328_0.00923295454545455	UbD
1	60228310	Rev	CAAATGACAAGTCTTTA	Yes	Yes_TP	Yes		UbD	11	1093135	For	CCCCAACCCGACACCCA	NO	NO	NO	Yes_rs56080332_0.00662251655629139	UbD
1	57221553	Rev	TTATCTTTCAAAAGAAA	Yes	Yes_TP	Yes		UbD	11	1092807	Rev	GTGGTGGTG	NO	NO	NO	Yes_NA_0.000203334688897926	Ub
1	57221553 55614036	For For	TTTCTTTTGAAAGATAA AATAAACATAAAGATAG	Yes Yes	Yes_TP NO	Yes Yes		UbD UbD	11 11	1092807 1092804	For Rev	CACCACCAC GTGGTGGTG	NO NO	NO NO	NO NO	Yes_NA_0.000203334688897926	bD Ub
1	53153432	Rev	GCTACACAAAGAACAGC	NO	NO	NO	Yes_rs443751_0.293063875504623	UbD	11	1092804	For	CACCACCAC	NO	NO	NO	NO	hD
1	53153432	For	GCTGTTCTTTGTGTAGC	NO	NO	NO	Yes_rs443751_0.293063875504623	UbD	11	1092492	Rev	GGGCTGGGGGTGGTGGT	NO	NO	NO	Yes_rs111844333_0.00719564371839751	UbD
1	50956212	Rev	GTTGTATTT	Yes	Yes_TP	Yes	NO	Ub	11	1092459	Rev	GTGGTGGTGGTTGGAGG	NO	Yes	NO	Yes_rs374506032_0.00099634672866157	
1	50956212	For	TCAGTATCAAATACAAC	Yes	Yes_TP	Yes		UbD	11	1092459	For	CACCACCAC	NO	Yes	NO	Yes_rs374506032_0.00099634672866157	
1	47153855	For	TCACACAGC	NO	NO	NO		bD	11	1092457	Rev	GGTGGTGGTTGGAGGGC	NO	NO	NO	Yes_rs145610697_5.2565180824222e-05	
1	47014821 47014821	Rev For	AAAAAAAAG GAAAAAAAGA	Yes Yes	Yes Yes	Yes Yes		Ub bD	11 11	1092457 1092444	For Rev	CACCACCAC GGGCTGGGGGGTGGTGGT	NO NO	NO NO	NO NO	Yes_rs374506032_0.00099634672866157 Yes_rs79619079_0.000854052002277472	
1	43786721	Rev	AAAAAAAAA	NO	NO	Yes	NO	Ub	11	1092420	Rev	AGGGTGGTCGTGCTGGT	NO	NO	NO	NO	UbD
1	43393245	For	TGCGTGCGGGTGAGTAT	NO	Yes_TP	Yes		UbD	11	1018385	Rev	ATGGCCACATCTGCCTC	NO	NO	Yes	Yes_rs7396380_0.191608986035216	UbD
1	37319270	For	TCCGTCCGCAAGCCACT	NO	NO	NO	Yes_NA_0.0483945165148588	UbD	11	1018385	For	GAGGCAGATGTGGCCAT	NO	NO	Yes	Yes_rs7396380_0.191608986035216	UbD
1	36282417	For	АААААААА	NO	NO	NO		Ub	11	1018366	Rev	ACCACTCAGCGCCAACA	NO	Yes_FP	Yes	Yes_rs76741048_0.142628009553863	UbD
1	34286189	For	тттттт	NO	Yes	NO		bD	11	1018366	For	TGTTGGCGCTGAGTGGT	NO	Yes_FP	Yes	Yes_rs76741048_0.142628009553863	UbD
1	34286189 33478920	Rev Rev	GTGTGCTGT ACTCAAACCACCCCACT	NO NO	Yes_TP NO	NO Yes		Ub UbD	11 11	1018355 1018355	Rev For	CCAACAGGTACCATTCC GGAATGGTACCTGTTGG	NO NO	NO NO	Yes Yes	Yes_rs7396697_0.241086881273797	UbD UbD
1	33478920	For	AGTGGGGTGGTTTGAGT	NO	NO	Yes		UbD	11	1018263	Rev	CCAAGCCCACAGCTCAT	NO	Yes_FP	Yes	Yes_rs7396697_0.241086881273797 Yes_rs79680044_0.241363580323018	UbD
1	33478900	Rev	AGAGTACTACAGGAAAC	NO	Yes FP	Yes		UbD	11	1018263	For	ATGAGCTGTGGGGCTTGG	NO	Yes_FP	Yes	Yes_rs79680044_0.241363580323018	UbD
1	33478900	For	GTTTCCTGTAGTACTCT	NO	Yes_FP	Yes	Yes_rs113711467_0.00964100173171706	UbD	11	1018262	Rev	CAAGCCCACAGCTCATT	NO	Yes_FP	Yes	NO	UbD
1	33476404	Rev	AGACTGCAACACTGCTC	NO	NO	NO	Yes_rs76230073_0.171189160603242	UbD	11	1018262	For	AATGAGCTGTGGGGCTTG	NO	Yes_FP	Yes	NO	UbD
1	33476404	For	GAGCAGTGTTGCAGTCT	NO	NO	NO		UbD	11	1018245	Rev	CAGCACAAACAAAACAC	NO	Yes_FP	Yes	NO	UbD
1	33476396 33476396	Rev For	ACACTGCTCATCACCCC GGGGTGATGAGCAGTGT	NO NO	NO NO	NO NO		UbD UbD	11 11	1018245 1018175	For	GTGTTTTGTTTGTGCTG ACTTCTACTACCACGAT	NO NO	Yes_FP NO	Yes Yes	NO Yes_rs12418172_0.196287462407964	UbD UbD
1	33476387	Rev		NO	NO	NO		UbD	11	1018175	Rev For	ATCGTGGTAGTAGAAGT	NO	NO	Yes	Yes_rs12418172_0.196287462407964	UbD
1	33476387	For	TCACGCCGCGGGGGTGAT	NO	NO	NO		UbD	11	1018144	Rev	CTAGTACACGCACCAGA	NO	Yes_FP	Yes	Yes_rs12807084_0.282015140837065	UbD
1	33476385	Rev	CACCCCGCGGCGTGATC	NO	Yes_TP	NO	Yes_rs76881767_0.216441804269029	UbD	11	1018144	For	TCTGGTGCGTGTACTAG	NO	Yes_FP	Yes	Yes_rs12807084_0.282015140837065	UbD
1	33476385	For		NO	Yes_TP	NO		UbD	11	1018138	Rev	CACGCACCAGAACCCCT	NO	Yes_FP	Yes	Yes_rs71454075_0.29656933953128	UbD
1	32658062	Rev	CTCCTCCCACCCCACC	NO	Yes_TP	Yes		UbD	11	1018138	For	AGGGGTTCTGGTGCGTG	NO	Yes_FP	Yes	Yes_rs71454075_0.29656933953128	UbD
1	32044641 31478638	For For	CAGTTATAGTTTAATTT	NO	NO NO	NO Yes		UbD UbD	11 11	1018012 1018012	Rev For	CATCCTTCAAGACCACC	NO NO	Yes_FP	NO NO	Yes_rs10751676_0.267247185605696	UbD UbD
1	31478638 31406286	For Rev	GGAAAAAAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	NO	NO	Yes Yes		UBD	11	1018012	For Rev	CACAGATGGCCACTTCT	NO	Yes_FP NO	NO Yes	Yes_rs10751676_0.267247185605696 Yes_rs79644784_0.112084203760244	UBD
1	29320169	For	AAAAAAAAG	NO	NO	NO	NO	Ub	11	1017883	For	AGAAGTGGCCATCTGTG	NO	NO	Yes	Yes_rs79644784_0.112084203760244	UbD
1	29320169	Rev	GAAAAAAGA	NO	NO	NO		bD	11	1017797	Rev	CACACAGCGCCAACAAT	NO	NO	NO	Yes_rs76800954_0.0271230019598324	UbD
1	27995605	Rev		NO	NO	NO		UbD	11	1017797	For	ATTGTTGGCGCTGTGTG	NO	NO	NO	Yes_rs76800954_0.0271230019598324	UbD
1	27995605	For	TACCTGCACCCTTACCT	NO	NO	NO		UbD	11	1017793	Rev	CAGCGCCAACAATGACG	NO	Yes_FP	Yes	Yes_rs77940304_0.0263719300679895	UbD
1	27995593	Rev		NO NO	NO	NO		UbD	11	1017793	For	CGTCATTGTTGGCGCTG	NO	Yes_FP	Yes	Yes_rs77940304_0.0263719300679895	UbD
1	27995593 27995589	For Rev	TACCCGCATCCTTACCT		NO NO	NO NO	NO NO	UbD UbD	11 11	1017684 1017684	Rev For	TGCTGAAGCCACCTCAA TTGAGGTGGCTTCAGCA	NO NO	NO NO	NO NO	Yes_rs112886536_0.00010815847712864 Yes_rs112886536_0.00010815847712864	
1	27995589	For	TCCTTACCCGCATCCTT	NO	NO	NO		UbD	11	1017337	Rev	CCTTCCAGACCACCACT	NO	NO	Yes	NO	UbD
1	27995566	For	CCTTACCCGCATCCTTA	NO	NO	NO		UbD	11	1017337	For	AGTGGTGGTCTGGAAGG	NO	NO	Yes	NO	UbD
1	27995565	For	TCCTTACCCGCATCCTT	NO	NO	NO		UbD	11	1017239	Rev	ACTCACACGGTCATCAT	NO	NO	Yes	NO	UbD
1	27995565	Rev		NO	NO	NO		UbD	11	1017239	For	ATGATGACCGTGTGAGT	NO	NO	Yes	NO	UbD
1	27995545 27995545	For Rev	TCCTTACCT AGGTAAGGA	NO NO	NO NO	NO NO		bD Ub	11 11	1017186 1017186	Rev For	CCACTCAATGCCAACAG CTGTTGGCATTGAGTGG	NO NO	NO NO	Yes Yes	Yes_rs74579726_0.0257486313567707 Yes_rs74579726_0.0257486313567707	UbD UbD
-	2,222242	Nev								2017 100					103		

1	27995530	For	CCTTACCCG	NO	NO	NO	Yes_rs145092707_0.289536741214057	Ub	11	1017045	Rev	ATCCCTACCTTACCACA	NO	NO	Yes	Yes_rs77885750_0.161663601331231	UbD
1	24671485	Rev	AGGTGTGGAGGGGGCAC	NO	NO	NO	NO	UbD	11	1017045	For	TGTGGTAAGGTAGGGAT	NO	NO	Yes	Yes_rs77885750_0.161663601331231	UbD
1	24671482	Rev	TGTGGAGGGGGCACAGG	NO	NO	NO	NO	UbD	11	1016976	Rev	CCCCAAACACACCAGTA	NO	NO	Yes	Yes_rs78728217_0.119136928611618	UbD
1	24106510	Rev	ATGATACTA	Yes	NO	Yes	NO	bD	11	1016976	For	TACTGGTGTGTTTTGGGG	NO	NO	Yes	Yes_rs78728217_0.119136928611618	UbD
1	22310411	Rev	ACAAGGTCTGGTCTTGG	NO	NO	Yes	NO	UbD	11	1016963	Rev	AGTACAGGCACCAGAAC	NO	NO	Yes	Yes_rs76273000_0.0777383887279336	UbD
1	19447752	Rev	GTTCTGGACAAGCCACA	NO	Yes_FP	NO	Yes_rs78347051_0.296629900177527	UbD	11	1016963	For	GTTCTGGTGCCTGTACT	NO	NO	Yes	Yes_rs76273000_0.0777383887279336	UbD
1	19447752 19208145	For For	TGTGGCTTGTCCAGAAC GTGAGCAGGTGAACGTC	NO Yes	Yes_FP Yes_TP	NO	Yes_rs78347051_0.296629900177527	UbD UbD	11 11	1016933 1016933	Rev For	ACCACCTCGGCCAGCAG CTGCTGGCCGAGGTGGT	NO NO	NO NO	Yes Yes	Yes_rs199579978_0.11494528453753	UbD UbD
1	16916702	Rev	TGCCTTGAA	NO	NO	Yes Yes	NO	Ub	11	1016933	Rev	TCATCATCACTACCCAC	NO	Yes FP	Yes	Yes_rs199579978_0.11494528453753 Yes_rs144616203_0.100191754554171	UbD
1	16383581	Rev	CCCAGGATG	NO	NO	NO	NO	bD	11	1016722	For	GTGGGTAGTGATGATGA	NO	Yes_FP	Yes	Yes_rs144616203_0.100191754554171	UbD
1	16382827	For	CGCCCCTCTTCCTGGCT	NO	NO	NO	NO	UbD	11	1016618	Rev	CACACAGCCCCACCAAT	NO	NO	NO	Yes_rs151061093_0.00050525064394689	
1	16376238	For	AAGGCATTCCCCCCAAG	NO	NO	Yes	NO	UbD	11	1016618	For	ATTGGTGGGGGCTGTGTG	NO	NO	NO	Yes rs151061093 0.00050525064394689	
1	16376237	For	AAAAGGCATTCCCCCCA	NO	NO	NO	NO	UbD	11	1016614	Rev	CAGCCCCACCAATGACA	NO	Yes_FP	NO	Yes_rs148793744_0.00038306300919351	
1	16376236	For	CAAAAGGCATTCCCCCC	NO	NO	NO	NO	UbD	11	1016614	For	TGTCATTGGTGGGGGCTG	NO	Yes_FP	NO	Yes_rs148793744_0.00038306300919351	
1	16376235	For	CCAAAAGGCATTCCCCC	NO	NO	NO	NO	UbD	11	1016606	Rev	CCAATGACAGTGACCAC	NO	NO	NO	Yes_rs148905794_0.00164996333414813	
1	16376233	For	GTCCAAAAGGCATTCCC	NO	NO	NO	Yes_NA_0.000213447171824973	UbD	11	1016606	For	GTGGTCACTGTCATTGG	NO	NO	NO	Yes_rs148905794_0.00164996333414813	
1	16376231	For	AAAAGGCATTCCCCCCA	NO	NO	NO	Yes_rs45470508_0.000798722044728434	UbD	11	1016605	Rev	CAATGACAGTGACCACC	NO	NO	NO	Yes_rs147913342_0.00159659393294305	
1	16376230	For	GAGTCCAAAAGGCATTC	NO	Yes	Yes	NO	UbD	11	1016605	For	GGTGGTCACTGTCATTG	NO	NO	NO	Yes_rs147913342_0.00159659393294305	
1	16375063	Rev	AGGGAGCTGCAAAGACT	NO	Yes TP	Yes	NO	UbD	11	1016604	Rev	AATGACAGTGACCACCA	NO	NO	NO	Yes_rs148590913_0.00152597204419215	
1	16375063	For	AGTCTTTGCAGCTCCCT	NO	Yes_TP	Yes	NO	UbD	11	1016604	For	TGGTGGTCACTGTCATT	NO	NO	NO	Yes_rs148590913_0.00152597204419215	5 UbD
1	16373199	Rev	GATCTGAGAAGGTTTTG	NO	NO	NO	NO	UbD	11	1016581	Rev	CCAGCCAAACCCACAGC	NO	NO	NO	Yes_rs115593063_0.00177705977382876	6 UbD
1	16359051	Rev	CGGGGGGCTGCGTGTGTC	NO	NO	Yes	Yes_NA_3.28320966576926e-05	UbD	11	1016581	For	GCTGTGGGTTTGGCTGG	NO	NO	NO	Yes_rs115593063_0.00177705977382876	6 UbD
1	15873410	Rev	GAAAAGAAA	NO	NO	NO	Yes_NA_6.90099374309901e-05	bD	11	1016565	Rev	CTCATTCAGCACAGCTA	NO	NO	NO	Yes_rs369173915_4.99633602025182e-0	J5 UbD
1	15873410	For	AAAAAAAG	NO	NO	NO	Yes_NA_6.90099374309901e-05	Ub	11	1016565	For	TAGCTGTGCTGAATGAG	NO	NO	NO	Yes_rs369173915_4.99633602025182e-0	J5 UbD
1	15873408	Rev	GAAAAGAAA	NO	NO	NO	NO	bD	11	1016558	Rev	AGCACAGCTACAGCCTC	NO	Yes	NO	Yes_rs114928002_0.00035469378103570	
1	15873408	Rev	AAAAAAAAG	NO	NO	NO	NO	Ub	11	1016558	For	GAGGCTGTAGCTGTGCT	NO	Yes	NO	Yes_rs114928002_0.00035469378103570	
1	15873405	Rev	GAAAAGAAA	NO	NO	NO	Yes_NA_6.4648405031493e-05	bD	11	1016556	Rev	CACAGCTACAGCCTCTT	NO	NO	NO	Yes_rs114271589_0.00027634487840825	54UbD
1	15438825	For	TGTGTGTGT	NO	NO	Yes	NO	bD	11	1016556	For	AAGAGGCTGTAGCTGTG	NO	NO	NO	Yes_rs114271589_0.00027634487840825	
1	13183966	Rev	CCGTAGAAC	NO	NO	Yes	Yes_rs80025711_0.00798722044728434	bD	11	1016554	Rev	CAGCTACAGCCTCTTCT	NO	NO	NO	Yes_rs376688775_0.00025751072961373	
1	13183532	Rev	GGACTATGGCTTTCAAC	NO	NO	Yes	NO	UbD	11	1016554	For	AGAAGAGGCTGTAGCTG	NO	NO	NO	Yes_rs376688775_0.00025751072961373	
1	13183532	For	GTTGAAAGCCATAGTCC	NO	NO	Yes	NO	UbD	11	1016548	Rev	CAGCCTCTTCTTCCTTC	NO	NO	NO	Yes_rs140561174_0.00016265452179570	
1	13183248	Rev	AGGAACAGAGCAAACAA	NO	NO	Yes	NO	UbD	11	1016548	For	GAAGGAAGAAGAGGCTG	NO	NO	NO	Yes_rs140561174_0.00016265452179570	
1	13183248	For	TTGTTTGCTCTGTTCCT	NO	NO	Yes	NO	UbD	11	1016546	Rev	GCCTCTTCTTCCTTCAT	NO	NO	NO	Yes_rs145319819_0.00015923566878980	
1	13183237	Rev	AAACAAGAGGTAGAGGT	NO	NO	Yes	NO	UbD	11	1016546	For	ATGAAGGAAGAAGAGGC	NO	NO	NO	Yes_rs145319819_0.00015923566878980	
1	13183237	For	ACCTCTACCTCTTGTTT	NO	NO	Yes	NO	UbD	11	280816	For	CTACAAGTATTTCCGGG	Yes	Yes_TP	Yes	NO	UbD
1	13182899	For	CTGAAGATACTAAGGGA	NO	NO	Yes	Yes_rs28537666_0.167931309904153	UbD	11	244106	Rev	ACTCATTTTCAAAGTGA	Yes	Yes_TP	Yes	NO	UbD
1	12908243	Rev	GCAGTCAGTTTCTCCCC	NO	NO	Yes	NO	UbD	11	244106	For	TCACTTTGAAAATGAGT	Yes	Yes_TP	Yes	NO	UbD
1	12908236	Rev	GTTTCTCCCCGTAGAAC	NO	NO	Yes	NO	UbD	11	193863	Rev	CCATCTATACAGGACTT	NO	Yes_TP	Yes	NO	UbD
1	12907802	Rev	GGACTATGGCTTTCAAC	NO	Yes	Yes	NO	UbD	11	193863	For	AAGTCCTGTATAGATGG	NO	Yes_TP	Yes	NO	UbD
1	12907802	For	GTTGAAAGCCATAGTCC GACAGCACCAATGGCCA	NO	Yes	Yes	NO	UbD	12	133291679	Rev		NO	NO	Yes	NO	bD
1	12907282 12907282	Rev	TGGCCATTGGTGCTGTC	NO NO	NO	Yes	NO	UbD	12	124181820	Rev	ATGCTGTCTTTGATATT	Yes	NO	Yes	Yes_rs7979528_0.272164536741214	UbD
1	12907282	For	AGACAAGCTCCTAGGTA	NO	NO Vec ED	Yes		UbD UbD	12 12	124171658 124158450	Rev Rev	ACCGCGTTGCAGGGCCT ATCAACCTC	Yes	NO NO	Yes Yes	Yes_rs7309528_0.272164536741214	UbD bD
1	12907212	For For	AAAATTTGTTGTTAGAC	NO	Yes_FP NO	Yes Yes	Yes_rs5027838_0.296232775445029 NO	UbD	12	124158450	For	TGATGTGTACTTTTATT	Yes Yes	NO	Yes	Yes_rs7953596_0.27176517571885 Yes_rs7978447_0.271565495207668	UbD
1	12907169	For	CTGAAGATACTAAGGGA	NO	NO	Yes	NO	UbD	12	123816007	Rev	ACATAACATATTCCTAC	Yes	NO	Yes	NO	UbD
1	11917620	For	AATACATTAAAAAAAATG	NO	Yes TP	Yes	Yes rs35458601 0.293730031948882	UbD	12	122394921	For	TAGGTATTATATAGATG	Yes	NO	Yes	Yes_rs11043271_0.166333865814696	UbD
1	11133956	Rev	ΑΑΑΑΑΑΑΑ	NO	NO	NO	Yes rs10082000 0.00135554417567853	Ub	12	117718473	For	AGTCTGTGGGTCTGGGGA	Yes	NO	Yes	NO	UbD
1	11133956	For	AAGTCTCTT	NO	NO	NO	Yes_rs10082000_0.00135554417567853	bD	12	116445450	Rev	TTTTTTTTGTCTTTTAG	NO	NO	NO	Yes rs200367922 0.0553402239448751	
1	9009214	For	GGTGCCTCCGTGGGTCC	Yes	NO	Yes	Yes_rs2274326_0.270567092651757	UbD	12	116445448	Rev	TTTTTTGTCTTTTAGAC	NO	NO	NO	Yes_rs199749418_0.0497326203208556	
1	3418565	Rev	ACCAGGAGC	NO	NO	Yes	NO	bD	12	116412921	For	TAATGACAATAGCTGAG	Yes	NO	Yes	NO	UbD
1	3395973	For	CCCCACCACCCCCATCT	NO	NO	Yes	NO	UbD	12	109723079	For	TGTGTGTGT	NO	NO	NO	Yes_109723079_rs10774644_0.15429370	
1	1853615	For	ATTGGAATCTGGCAGAG	Yes	NO	Yes	NO	UbD	12	109723049	For	TGTGTGTGTGT	NO	NO	Yes	NO	Ub
1	1844046	Rev	GTTATTCTC	NO	NO	NO	Yes_rs2474460_0.296924920127796	bD	12	80762163	Rev	TGGGGGGGGGACATTTTC	Yes	NO	Yes	NO	UbD
1	1684347	For	GACCTAGCCCTCCTCCT	NO	Yes FP	NO	Yes NA 0.0270626357582879	UbD	12	66826527	Rev	TTCATCTTACTTCAGTT	Yes	NO	Yes	NO	UbD
1	1670570	Rev	GATGGGAGACCGGGGGT	NO	NO	Yes	NO	UbD	12	66522654	For	AAGAGAAAAGAAAAAGGA	NO	NO	NO	Yes_NA_0.0417669435602826	UbD
1	1654038	For	GGAAGTACA	NO	Yes_TP	Yes	Yes_rs61777494_0.218100010777023	bD	12	64712546	Rev	CAGATCACAACTCCATA	Yes	Yes_TP	Yes	NO	UbD
1	1651003	Rev	TTCAGCTTCGTTCCTAT	NO	NO	Yes	Yes_rs76941027_0.000399361022364217	UbD	12	64712546	For	TATGGAGTTGTGATCTG	Yes	Yes_TP	Yes	NO	UbD
1	1650996	Rev	TCGTTCCTATCTGAATC	NO	NO	Yes	Yes_rs74223875_0.000199680511182109	UbD	12	57703935	For	AGGGTGCAGTGGGCCCT	Yes	NO	Yes	Yes_rs7139302_0.297723642172524	UbD
1	1650967	Rev	GGGTTGAAAAAACCTCA	NO	NO	Yes	NO	UbD	12	57548168	Rev	AGAACCCCGCCTGCCAC	NO	NO	NO	Yes_rs199886321_0.128128664767968	UbD
1	1650960	Rev	AAAAACCTCATAATAGC	NO	NO	Yes	NO	UbD	12	57548168	For	GTGGCAGGCGGGGTTCT	NO	NO	NO	Yes_rs199886321_0.128128664767968	UbD
1	1650942	Rev	TGATGCTTTTCCGCACT	NO	NO	Yes	Yes_1650942_rs75972011_1.77336407164	3UbD	12	57493541	For	GGCTGGGGTGGCCTCAC	NO	NO	Yes	Yes_rs3024972_0.232859174964438	UbD
1	1650940	Rev	ATGCTTTTCCGCACTTT	NO	NO	NO	Yes_rs74345479_0.000135291368410695	UbD	12	56295544	For	GGTGGAAGTAAGCCAGT	Yes	Yes_TP	Yes	NO	UbD
1	1650939	Rev	TGCTTTTCCGCACTTTC	NO	NO	NO	Yes_rs201741924_0.00819672131147541	UbD	12	53693532	For	GGGACACCAATTCCTGC	NO	Yes_TP	Yes	Yes_NA_8.41665825000842e-06	UbD
1	1650657	For	TTCAGCTACAGTTTGCT	NO	NO	NO	NO	UbD	12	53421746	Rev	AAAAAAAAAGGCAAAGT	Yes	Yes_TP	Yes	Yes_rs77925779_0.00116689053055742	UbD
1	1650642	For	TGACACCATTATGCTTT	NO	NO	NO	NO_1650642	UbD	12	53421746	For	ACTITIGCCTTTTTTTTT	Yes	Yes_TP	Yes	Yes_rs77925779_0.00116689053055742	UbD
1	1650641	For	GTGACACCATTATGCTT	NO	NO	NO	NO	UbD	12	53207606	Rev	GCTGGAGGCTTTGGCAC	NO	NO	NO	Yes_rs79164931_0.000475031173920789	
1	1650640	For	TGTGACACCATTATGCT	NO	NO	NO	NO	UbD	12	53207606	For	GTGCCAAAGCCTCCAGC	NO	NO	NO	Yes_rs79164931_0.000475031173920789	
1	1648058	Rev	CTGGTTTTG	NO	NO	Yes	NO	bD	12	53207603	Rev	GGAGGCTTTGGCACTGG	NO	NO	NO	Yes_rs7135148_0.00067710537452391	UbD
1	1648054	Rev	CAGGCTGGTTTTGAACT	NO	NO	Yes	NO_1648054	UbD	12	53207603	For	CCAGTGCCAAAGCCTCC	NO	NO	NO	Yes_rs7135148_0.00067710537452391	UbD
1	1648053	Rev	AGGCTGGTTTTGAACTC	NO	NO	Yes	NO	UbD	12	50829263	For	ATTTTGTTTTTTCAGAG	Yes	Yes_TP	Yes	NO	UbD
1	1648018	Rev	CCCGCCTCGGCCTCCCA	NO	NO	Yes	NO	UbD	12	50745863	Rev	CAGCAGGCGCAGGAACT	NO	NO	Yes	Yes_rs12317337_0.0564566437928883	UbD
1	1648002	Rev		NO	NO	Yes	NO	UbD	12	50745863	For	AGTTCCTGCGCCTGCTG	NO	NO	Yes	Yes_rs12317337_0.0564566437928883	UbD
1	1647990	Rev	TTACAGGCGTAAGCCAC	NO	NO	Yes	NO	UbD	12	50745791	Rev	CAGCAGGCGCAGGCTCA	NO	NO	Yes	Yes_rs144970699_0.00173778721760958	
1	1647983	Rev	CGTAAGCCACCGTGCCC	NO NO	NO	Yes	NO	UbD	12	50745791	For	TGAGCCTGCGCCTGCTG	NO NO	NO	Yes	Yes_rs144970699_0.00173778721760958	
1	1647971	Rev			NO	Yes	NO	UbD	12	50745785	Rev	GCGCAGGCTCAGGGGAT		NO	Yes	Yes_NA_0.269412028725314	UbD
1	1647730	For	GCTGTGACAGGACACAC	NO NO	NO	Yes	NO_1647730	UbD UbD	12	50745785	For	ATCCCCTGAGCCTGCGC GCAGGCTCAGGGGATCC	NO NO	NO	Yes Yes	Yes_NA_0.269412028725314	UbD
1	1647729	For			NO	Yes	NO ACCEPTOS		12	50745783	Rev			NO		Yes_rs373687267_0.275175379045033	UbD
1	1647726 1647725	For For	CATTGCTGTGACAGGAC	NO NO	NO NO	Yes Yes	NO_1647726	UbD UbD	12 12	50745783 50745779	For	GGATCCCCTGAGCCTGC GCTCAGGGGATCCCTCT	NO NO	NO Voc. TR	Yes Yes	Yes_rs373687267_0.275175379045033	UbD UbD
1							Yes_rs368680882_0.00319488817891374				Rev			Yes_TP		Yes_NA_0.275592311130979 Yes NA 0.275592311130979	
1	1647722	For	TCTTCATTGCTGTGACA CTGCAACAAATGTGACT	NO	NO	Yes	NO	UbD	12	50745779	For	AGAGGGATCCCCTGAGC	NO	Yes_TP	Yes		UbD
1	1647689 1581926	For	TCCTGCAACAAAIGIGACI	NO NO	NO NO	NO Yes	NO NO	UbD UbD	12 12	32948971 32948969	For	CACATTCACAACCGGAT GCACATTCACAACCGGA	Yes	NO NO	Yes Yes	Yes_rs61927769_0.249400958466454 Yes_rs71447623_0.249400958466454	UbD UbD
1	1581926 1581926	Rev For	GAGAGATAGTTACAGGA	NO	NO	Yes	NO	UbD	12	32948969 31298250	For For	CTGAGTGTAAGTTTCCC	Yes NO	NO	Yes Yes	Yes_rs71447623_0.249400958466454 NO	UBD
1	1581926	Rev	GAGGCATACGGTGATCC	NO	NO	Yes	NO	UbD	12	31145010	Rev	TGGGCACAGAAGCTATG	NO	Yes TP	Yes	NO	UBD
1	1581759	For	GAGGCATACGGTGATCC	NO	NO	Yes	NO	UbD	12	27849795	Rev	TGCTTGTTGGATCCCCA	NO	Yes_TP	Yes	NO	UBD
1	1574076	Rev	TCCACCCCCGGCCCAGT	NO	NO	Yes	NO	UbD	12	27849795	For	ATCATTCCTTTTTTTGT	NO	NO	Yes	NO	UBD
1	1574076	Rev			NO	Yes	NO Yes_rs9442412_0.21685303514377	UbD	12	26834804	Rev	AAAGGAGGTAACTCTTT	Yes	Yes_TP	Yes	NO	UBD
1	900285	For	TTGTGGTGCAGCCCCTC	NO	NO	Yes	Yes_rs9442412_0.21685303514377	UbD	12	26834804	Rev For	AAAGAGTTACCTCCTTT	Yes		Yes	NO	UBD
1	889158	For	TGGGCCACGAACCTTGA	Yes	Yes_TP	Yes	NO	UbD	12	11506785	Rev	CCACAAGGGGGGGGGACAAGTC	NO	Yes_TP NO	NO	Yes_rs201935302_0.0166045031480975	
1	884091	Rev	GCAGCCAGG	NO	NO	Yes	NO	bD	12	11506785	For	GACTIGICCCCTIGIGG	NO	NO	NO	Yes_rs201935302_0.0166045031480975	
2	242121959	For	ACCTGCTCGCCATCTTC	Yes	NO	Yes	Yes_rs34186191_0.253394568690096	UbD	12	11506774	Rev	CAAGTCCCGAAGTCCCC	NO	NO	NO	Yes_rs202083397_0.0207294990083642	
2	240098010	For	CGGCCTTCT	NO	NO	NO	Yes_rs573094758_0.262779552715655	Ub	12	11506774	For	GGGGACTTCGGGACTTG	NO	NO	NO	Yes rs202083397 0.0207294990083642	
2	240098010	For	CCTCTGCCCGGCCTTCT	NO	NO	NO	Yes_rs138604304_0.262779552715655	UbD	12	11506749	Rev	CCAGGAAAAACCACAAGG	NO	NO	Yes	Yes_NA_0.0434024274223773	UbD
2	238261112	For	CCTGCTTGGCAATGTGC	Yes	NO	Yes	NO	UbD	12	11506749	For	CCTTGTGGTTTTCCTGG	NO	NO	Yes	Yes_NA_0.0434024274223773	UbD
2	234590974	Rev	TAATTTTCGGTCATTAA	NO	Yes_TP	Yes	NO	UbD	12	11506591	Rev	CAAGTCCCG	NO	NO	NO	Yes_rs112485268_0.011360829834527	Ub
2	234590974	For	TTAATGACCGAAAATTA	NO	Yes_TP	Yes	NO	UbD	12	11506591	For	CGGGACTTG	NO	NO	NO	Yes_rs112485268_0.011360829834527	bD
					-												

																		-
2		234590527	For	TCTTCCACTTACTATAT	Yes	NO	Yes	Yes_rs7586110_0.297723642172524	UbD	12	11461706	Rev	CCCAAGGTCCCCCACCT	NO	Yes_FP	Yes	Yes_rs12308381_0.215901732232475	UbD
2		233408220	Rev	TGCCCCCCCTCAGGCCT	NO		Yes		UbD	12	11461706	For	AGGTGGGGGGACCTTGGG	NO	Yes_FP	Yes	Yes_rs12308381_0.215901732232475	UbD
2		233408220 232087474	For	AGGCCTGAGGGGGGGGCA TGAAGTTGATAAAGTTT			Yes		UbD UbD	12 12	11461596	Rev	CAAGGAGGAAACCAGTC GACTGGTTTCCTCCTTG	NO NO	NO NO	NO NO	Yes_rs59021567_0.0188633809600257 Yes_rs59021567_0.0188633809600257	UbD UbD
2		232087474 231943505	For Rev For	AAAAAAAAAG	Yes NO	Yes_TP NO	Yes NO	NO	Ub	12	11461596 11461580	For Rev	CCCAAGGTACCCCACCT	NO	NO	NO	Yes_rs12303607_0.199891852919971	UBD
2		231943505	Rev	GAAAAAGAT	NO	NO	NO	NO	bD	12	11461580	For	AGGTGGGGGTACCTTGGG	NO	NO	NO	Yes_rs12303607_0.199891852919971	UbD
2		225422600	Rev	TTTTTTTGTCTCTTCT	NO	NO	NO		UbD	12	11461570	Rev	CCCACCTCCTCCAGGAA	NO	NO	NO	Yes_rs59189129_0.282818880614941	UbD
2		211456637	Rev	AGGGAGGGTGTTGTCCA	NO	Yes_TP	Yes	NO	UbD	12	11461570	For	TTCCTGGAGGAGGTGGG	NO	NO	NO	Yes_rs59189129_0.282818880614941	UbD
2		211456637	For	TGGACAACACCCTCCCT	NO	Yes_TP	Yes		UbD	12	11461553	Rev	AGCCAGAAAGACCACCC	NO	NO	NO	Yes_rs11054244_0.000131285282919785	
2		211421452	For	ACAAATCATCAAAATGA	NO	Yes_TP	Yes	NO	UbD	12	11461553	For	GGGTGGTCTTTCTGGCT	NO	NO	NO	Yes_rs11054244_0.000131285282919785	
2		206630073 187490389	For Rev	GTGCAATAACACACACA ACACACACCCACACACA	NO NO	NO NO	Yes Yes	NO	UbD UbD	12 12	11461549 11461549	Rev For	AGAAAGACCACCCCCAC GTGGGGGGTGGTCTTTCT	NO NO	NO NO	NO NO	Yes_rs11054243_6.45911380958533e-05	
2		171850207	For	AAGAAAAAG	NO		NO	Yes_rs5836987_0.170527156549521 NO	Ub	12	11338613	For	AGGTAAAGCATTTGGTG	NO	Yes TP	Yes	Yes_rs11054243_6.45911380958533e-05 NO	UbD
2		171850201	For	AAAAAAAAG	NO	NO	NO		Ub	12	11244470	Rev	ACTTAAAGA	NO	NO	NO	Yes_rs201460452_0.207429709784036	bD
2		171508490	For	CTTTGATCAAAAAAAAT	NO	NO	Yes	NO	UbD	12	11244190	Rev	CTCCATGGTAAAGGATC	NO	NO	NO	Yes_rs202034865_0.252492389649924	UbD
2		170425523	For	AAAAAAAA	NO	NO	Yes	NO	Ub	12	11244190	For	GATCCTTTACCATGGAG	NO	NO	NO	Yes_rs202034865_0.252492389649924	UbD
2		162876828	For	TTTTTTTG	NO	Yes	NO	Yes_rs61406317_0.051092245574076	Ub	12	11183052	Rev	CAGTTTTGCGGCAAGTG	NO	NO	Yes	Yes_rs199894662_0.0129403070859676	
2		162876828	Rev	GAAAAAAA	NO	Yes	NO		bD	12	11183052	For	CACTTGCCGCAAAACTG	NO	NO	Yes	Yes_rs199894662_0.0129403070859676	UbD
2		160964059 160964057	For For	GCTGTTGGAGTCATGGC AAGCTGTTGGAGTCATG	NO NO	NO NO	NO NO		UbD	12 12	11183046 11183046	Rev For	TGCGGCAAGTGAGGTAC GTACCTCACTTGCCGCA	NO NO	NO NO	Yes Yes	Yes_rs201730548_0.0128598784997359	UbD UbD
2		160086653	For	ATCGCTGCCACTCCTGC	Yes		Yes	Yes_rs13009231_0.264976038338658 NO	UbD	12	11183046	Rev	AGATTCATGAGAGGGGC	NO	NO	Yes	Yes_rs201730548_0.0128598784997359 NO	UbD
2		158283710	For	AAGGTAATT	Yes	NO_	Yes	NO	bD	12	11182998	For	GCCCCTCTCATGAATCT	NO	NO	Yes	NO	UbD
2		158152046	For	GAATTCAGAAAAAAAAA	NO	NO	Yes	NO	UbD	12	11174416	Rev	TTGGAATCTTAGGACAC	NO	Yes_TP	Yes	Yes_rs112900131_0.00762564707424153	3 UbD
2		157425502	For	AAAAAAAAG	NO	NO	NO	Yes_rs200733092_0.258985623003195	Ub	12	11174416	For	GTGTCCTAAGATTCCAA	NO	Yes_TP	Yes	Yes_rs112900131_0.00762564707424153	
2		157425502	Rev	GAAAAGAAA	NO	NO	NO		bD	12	11174397	Rev	CAGAGCAAACTTGTACT	NO	Yes_FP	Yes	Yes_rs76455106_0.0586554593930132	UbD
2		130899804	Rev		NO		Yes		UbD	12	11174397	For	AGTACAAGTTTGCTCTG	NO	Yes_FP	Yes	Yes_rs76455106_0.0586554593930132	UbD
2		130899804 130737578	For For	GACGCCCATGCTTGCCT GCAGGGGGCGCAGAGAGC	NO	Yes_TP NO	Yes Yes	Yes_rs138331089_0.214447250386341 NO	UbD UbD	12 12	11174390 11174390	Rev For	AACTTGTACTCCTGCTT AAGCAGGAGTACAAGTT	NO NO	Yes_FP Yes FP	Yes Yes	Yes_rs74992161_0.0606151288445553 Yes_rs74992161_0.0606151288445553	UbD UbD
2		128939598	For	GGAGCAGCC	Yes	NO	Yes	Yes rs13000972 0.254193290734824	bD	12	11174390	Rev	CCTGCTTTGCCAAACTG	NO	NO	Yes	Yes rs76970958 0.0838959272170734	UbD
2		128872595	For	GCATAATCCGAGGTAAT	Yes	NO	Yes		UbD	12	11174380	For	CAGTTTGGCAAAGCAGG	NO	NO	Yes	Yes_rs76970958_0.0838959272170734	UbD
2		128394877	Rev	ACAGGGGACGGGGGGG			Yes		UbD	12	11174372	Rev	GCCAAACTGTTGCAATC	NO	NO	Yes	Yes_rs74772077_0.0977704459108178	UbD
2		128394877	For	ACCCCCCCGTCCCCTGT	NO	Yes_TP	Yes		UbD	12	11174372	For	GATTGCAACAGTTTGGC	NO	NO	Yes	Yes_rs74772077_0.0977704459108178	UbD
2		121036385	Rev	AATGCCAAAGGAAGGTG	Yes		Yes	NO	UbD	12	11174327	Rev	TGATTATGGGAAGTAGG	NO	NO	Yes	Yes_rs72475481_0.211818535825545	UbD
2		119748152	Rev	GATCAAAAAAAAAAAGG	NO	NO	Yes		UbD	12	11174327	For	CCTACTTCCCATAATCA	NO	NO	Yes	Yes_rs72475481_0.211818535825545	UbD
2		119748152 118753148	For	CCTTTTTTG TATAAGACATATCTGAG	NO Yes	NO NO	Yes	Yes_rs199736481_0.172068076328004 NO	Ub UbD	12	11035274 11035274	Rev	AGCAGTTCCTAGATGAG	NO	NO NO	NO NO	Yes_rs28607516_0.299252741954923 Yes_rs28607516_0.299252741954923	UbD
2		98205924	Rev For	TCAGCCTGCAAAGGGGT	NO	NO	Yes Yes		UbD	12 12	1055274	For Rev	CTCATCTAGGAACTGCT ATACACCATTTATAGCT	NO NO	NO	Yes	NO	UbD UbD
2		98196849	For	TAATATTTGTGACTTGA	NO	NO	Yes		UbD	12	10586961	For	TAAATATTT	NO	NO	Yes	NO	bD
2		97833583	Rev	TAAAAGAAGTAAGAATC	NO	NO	Yes	NO	UbD	12	10586956	For	CTTTATAAA	NO	NO	Yes	NO	bD
2		97833569	Rev	ATCAGAAGG	NO	NO	Yes	NO	Ub	12	10573211	Rev	ATACACCATTTATAGCT	NO	NO	Yes	NO	UbD
2		97833567	Rev	CAGAAGGCTATGAACAT	NO	NO	Yes	NO	UbD	12	10573094	Rev	CCCAAAGTGGCAGCAAA	NO	Yes_TP	Yes	NO	UbD
2		97833399	Rev	ATTAATATGTCATGTAT	NO	NO	NO		UbD	12	10573094	For	TTTGCTGCC	NO	Yes_TP	Yes	NO	Ub
2		97833394	Rev	TATGTCATGTATATATC	NO NO	NO NO	Yes	Yes_rs1636143_0.158119151960204	UbD	12 12	9590505	For	ACAGCAACGGCAGGGGA	NO	NO	Yes	NO	UbD
2		97833217 97833215	For For	GTACTTTCCTGTGTTAG	NO	NO	Yes Yes	NO NO	UbD UbD	12	9590464 9583324	For Rev	TGGTGCTGCCCTATCAG	NO NO	NO NO	Yes NO	NO NO	UbD UbD
2		97833193	For	GTTAAGAGGATCACATT	NO	NO	Yes	NO	UbD	12	9583221	Rev	CGACACCAC	NO	NO	Yes	NO	Ub
2		97833159	For	GTCCTTTCTTTTGACAT	NO	NO	Yes	NO	UbD	12	9582244	Rev	CCTTAGCCCTCGGCTGC	NO	NO	Yes	NO	UbD
2		97830053	For	CACGGTAAACATATTTT	NO	NO	Yes	Yes_rs112213180_0.241864139020537	UbD	12	9581948	For	GCTGGCCACGGCCCCAG	NO	NO	NO	NO	UbD
2	2	97830012	For	TCCTTTTGCTTTGTAGT	NO	NO	Yes	Yes_rs200393754_0.179917229361795	UbD	12	9580395	Rev	CCTCAGAGGGCCCAGAG	NO	NO	Yes	NO	UbD
2		97829998	For	AGTCAATTATGTGTTCC	NO	NO	Yes		UbD	12	9580203	Rev	TCCACATTCCACATCCA	NO	NO	Yes	NO	UbD
2		97829984	For	TCATATTTACCTGTAGT	NO	NO	Yes		UbD	12	9580203	For	TGGATGTGGAATGTGGA	NO	NO	Yes	NO	UbD
2		97820478 97820434	Rev Rev	TACTCTACCTCAGATTC CTGTGCAAAACGGTCCA	NO NO	NO NO	NO NO		UbD UbD	12 12	9578197 9578197	Rev For	TGTGCAGCTCTTGCAGC GCTGCAAGAGCTGCACA	NO NO	NO NO	Yes Yes	NO NO	UbD UbD
2		97820434	For	TGGACCGTTTTGCACAG	NO	NO	NO		UbD	12	9577992	For	AAAGAATCCTTTCATGC	NO	NO	NO	NO	UbD
2		97820431	Rev	TGCAAAACGGTCCAGTA	NO	NO	NO		UbD	12	9574480	Rev	AGGTGTCTAACTTCCGG	NO	NO	Yes	NO	UbD
2		97820431	For	TACTGGACCGTTTTGCA	NO	NO	NO		UbD	12	9574480	For	CCGGAAGTTAGACACCT	NO	NO	Yes	NO	UbD
2		97820430	Rev	GCAAAACGGTCCAGTAG	NO	NO	NO		UbD	12	9573309	Rev	CATGGGGGGCTCCCTCCC	NO	NO	NO	NO	UbD
2		97820430	For	CTACTGGACCGTTTTGC	NO	NO	NO	Yes_NA_0.045689312673818	UbD	12	9573307	Rev	ATGGGGGCCCCTCCCTC	NO	NO	NO	NO	UbD
2		97820417 97820417	Rev	GTAGGTAGAGACACCTA	NO NO	_	NO		UbD UbD	12	9573304 9573287	Rev	GGGGCTCCCCCTCCCTC ATGGGGGGCTCCCTCCCT	NO NO	NO NO	NO	NO NO	UbD UbD
2		97820417	For For	TAGGTGTCTCTACCTAC	NO	Yes_FP NO	NO NO		UbD	12 12	9573287	Rev Rev	ACCTGTGCGGTGTGGTT	NO	NO	Yes Yes	NO	UbD
2		97820349	For	TAGACTGACGGTTTTTG	NO		NO		UbD	12	9573224	For	AACCACACCGCACAGGT	NO	NO	Yes	NO	UbD
2		97820332	For	GAGGGGACCTGCATGTA	NO	NO	NO	NO	UbD	12	9573130	For	CAGCCAGACGGCCCAGC	NO	NO	NO	NO	UbD
2		97818283	Rev	AAAAATCTCTGAAATCA	NO	NO	Yes	Yes_rs112336445_0.0268336314847943	UbD	12	9572871	Rev	TCTGGGAAATGTCCTCT	NO	NO	Yes	NO	UbD
2		97818264	Rev	CCTGTCAACAGCCTCTT	NO	Yes	Yes	NO	UbD	12	9572819	Rev	CACCAGGTGGAGCAGGT	NO	NO	NO	NO	UbD
2		97818262	Rev	TGTCAACAGCCTCTTCA	NO	NO	NO		UbD	12	8693245	For	TCCCCCCACTTTTTTT	NO	NO	Yes	NO	UbD
2		97818262 97818261	For Rev	TGAAGAGGC GTCAACAGCCTCTTCAA	NO NO	NO NO	NO NO		Ub UbD	12 12	8203273 7362204	Rev For	GTCAAAGGAAAGCAAAG GAGTTTGAGCTGAGTCG	Yes NO	NO NO	Yes Yes	Yes_rs17801353_0.218250798722045 NO	UbD UbD
2		97818261	For	TTGAAGAGG	NO	NO	NO	NO	Ub	12	7290391	For	TGTGTGTGTGTGAGAGAGA	NO	NO	NO	NO	UbD
2		97818236	Rev	AGCACTATTAAAGAAAA	NO	NO	Yes		UbD	12	7290389	For	TGTGTGTGTGTGAGAGAGA	NO	NO	NO	NO	UbD
2		97818236	For	TTTTCTTTAATAGTGCT	NO	NO	Yes	Yes_rs112647905_0.0329607519369999	UbD	12	6928586	Rev	CAGAGGCTGGGGATCTG	Yes	Yes_TP	Yes	NO	UbD
2		97818197	Rev	CAATAGAAC	NO	NO	Yes	Yes_rs200340181_0.000538599640933573		12	6161963	Rev	GCCTTACTTCTCCTCTC	Yes	Yes_TP	Yes	Yes_NA_2.83527076835838e-05	UbD
2		97818197	For	TCTATAGTGTTCTATTG	NO	NO	Yes	Yes_rs200340181_0.000538599640933573		12	2791130	For	GCACGTTCCGATGTGTG	NO	Yes_TP	Yes	NO	UbD
2		97818192 97818188	For For	AGTATTCTATAGTGTTC TTTTAGTATTCTATAGT	NO NO	NO NO	Yes Yes		UbD	12 12	2016550 1041996	For For	TGCCCCTATTATTTCCA TACTAGGTAAACGTACT	Yes NO	NO NO	Yes NO	NO Yes_rs113084521_0.00139776357827476	UbD
2		97818169	For	CCACTGTGCTCTTTTAT	NO	NO	Yes		UbD	12	113333878	Rev	GTGGCTGGTCCCATGAC	NO	NO	NO	Yes_rs200954527_0.0398414802696528	
2		97818161	For	GGAACAAGCCACTGTGC	NO	NO	Yes	NO	UbD	13	113333878	For	GTCATGGGACCAGCCAC	NO	NO	NO	Yes rs200954527 0.0398414802696528	UbD
2		97818146	For	GTAGCTGGGATTATAGG	NO	NO	Yes	NO	UbD	13	111109618	For	GTGGGGCTGATGCCCTG	NO	NO	NO	Yes_rs9515216_0.00710357470210816	UbD
2	1	97818114	For	TCTCAAGTGATACTTCT	NO	NO	NO	NO	UbD	13	111109576	For	GTGGGGCTGATGCCCTG	NO	NO	NO	Yes_rs9521780_0.00207373271889401	UbD
2		97817564	For	GTATTATCCTATTTTAA	NO	NO	Yes		UbD	13	99112754	Rev	GTTTATTAAATTATTGC	Yes	NO	Yes	NO	UbD
2		97817563	For	GTATTATCCTATTTTAA	NO	NO	Yes		UbD	13	95858704	For	ATTACACTGGAACATAG	Yes	NO	Yes	NO	UbD
2		97817545 97817511	For For	GATCATGTAGTAATGGT ATGAGTGATTTCAACGT	NO NO	NO NO	Yes Yes	NO NO	UbD UbD	13 13	95715148 77644862	Rev Rev	ATTTTTTC	NO NO	NO NO	Yes NO	NO Yes_rs371232979_0.00483745475457528	Ub 8 UbD
2		97817511 97817469	For For	CTGTAGATTAGTAAATG	NO	NO	Yes Yes		UbD	13	75915215	Rev For	AACAAAATTATTAAACA	Yes	NO Yes_TP	Yes	Yes_rs3/12329/9_0.00483/454/545/528 NO	UBD
2		97817459	For	ACCATCACCCCATGTGA	NO	NO	Yes		UbD	13	52707751	For	CACACACAC	NO	NO	Yes	NO	bD
2		97817449	For	AACCATCACCCCATGTG	NO	NO	Yes		UbD	13	52585591	Rev	CCGAGCCGCGCCGATGC	Yes	Yes_TP	Yes	NO	UbD
2		97749417	For	CACACCTGCCACTGGGC	NO	NO	Yes		UbD	13	50100637	Rev	TGATAAATATTTCTCAA	NO	NO	NO	Yes_rs371713260_0.25227716330514	UbD
2		85571228	Rev	GTGGCAGGC	NO	NO	NO		Ub	13	46108853	Rev	TAGAAACCAACAGCAGA	Yes	Yes_TP	Yes	NO	UbD
2		85571228	For	TCAGCTCCGCCTGCCAC	NO	NO	NO		UbD	13	46108853	For	TCTGCTGTTGGTTTCTA	Yes	Yes_TP	Yes	NO	UbD
2		74649921 74649921	For,Rev For	CCGTCCCCC	NO NO	NO NO	NO NO		UbD Ub	13 13	43491778 26153950	Rev For	GCAGGCTTG	NO NO	Yes NO	NO NO	NO Yes_rs201822155_0.0423402879411865	UbD Ub
2		74649921 74649916	For	CCGTCCCCC	NO	NO	NO		Ub	13	26153950	Rev	TTTTGAGTGCTCAATTA	Yes	NO	Yes	Yes_rs201822155_0.0423402879411865 Yes_rs7331675_0.0818690095846645	UbD
2		74649916			NO	NO	NO		UbD	13	25671080	Rev	ATCTCATCTACAGCTTT	NO	NO	NO	Yes_rs76241879_0.111983284391236	UbD
2		71776345	For	CCTCGGGCCACATCTGT	Yes	NO	Yes	NO	UbD	13	25671080	For	AAAGCTGTAGATGAGAT	NO	NO	NO	Yes_rs76241879_0.111983284391236	UbD
2		62063093	For	AAAGCTGTAAAAAAAAA	NO	NO	Yes		UbD	13	25671062	Rev	TGTGCATCTTCATGCCT	NO	NO	NO	Yes_rs78534836_0.0663115968877362	UbD
2	2	61456624	For	АААААААААААААААА	NO	NO	NO	NO	UbD	13	25671062	For	AGGCATGAAGATGCACA	NO	NO	NO	Yes_rs78534836_0.0663115968877362	UbD

2	61456611	Rev	CAAAAAAA	NO	NO	NO	NO	bD	13	25671027	Rev	AAATCCTTTGGATTTTC	NO	Yes_FP	NO	Yes_rs78826513_0.00198957528322673	UbD
2	61456611	For	AAAAAAAAC	NO	NO	NO	NO	Ub	13	25671027	For	GAAAATCCAAAGGATTT	NO	Yes_FP	NO	Yes_rs78826513_0.00198957528322673	UbD
2	58362161 58362161	Rev	AAAAAAAAG	NO	NO	Yes	Yes_rs11678320_0.294329073482428 Yes_rs11678320_0.294329073482428	Ub	13	25670907	Rev	AACATTGGGGAACTCTT	NO	NO	NO	Yes_rs76264750_0.000392208131781932	
2	39536669	For For	GCATTGAAA GAAAAAAAA	NO NO	NO NO	Yes NO	Yes_rs1678320_0.294329073482428 Yes_rs369443408_0.0814145974416855	bD bD	13 13	25670907 25670877	For Rev	AAGAGTTCCCCAATGTT AAGTTCAGCTTCTCGTT	NO NO	NO Yes FP	NO NO	Yes_rs76264750_0.000392208131781932 Yes_rs112107735_0.00130524873146139	
2	39536669	Rev	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	NO	NO	NO	Yes_rs369443408_0.0814145974416855	UbD	13	25670877	For	AACGAGAAGCTGAACTT	NO	Yes_FP	NO	Yes_rs112107735_0.00130524873146139	
2	38963046	For	AAGAAAAAG	NO	NO	NO	NO	Ub	13	21442945	Rev	CCCCCCAAA	Yes	NO	Yes	Yes_rs9509410_0.262979233226837	bD
2	33623387	For	CTCACAGAATAATATCC	Yes	Yes_TP	Yes	NO	UbD	13	20279731	For	TATATTAAGTGTGAAGT	NO	NO	NO	NO	UbD
2	33586479		V TTTTTTTCAAAAAAAA	NO	NO	NO	Yes_rs77418198_0.172530795898798	UbD	14	107178748	For	TCTGCAGAAGTGGGGAG	NO	NO	Yes	NO	UbD
2	32961691	For	ATTAGGTACACCTGCAA	NO	NO	NO	Yes_rs17497801_0.291134185303514	UbD	14	107131394	Rev	AGTGAACACGAGTGAGA	NO	NO	Yes	NO	UbD
2	31572482 27324340	For Rev	TCCTATATGGGGTCAGC	Yes NO	NO NO	Yes NO	NO Yes_rs11893427_8.36446774103608e-05	UbD UbD	14 14	107131394 107130977	For For	TCTCACTCGTGTTCACT	NO NO	NO NO	Yes Yes	NO	UbD UbD
2	15491994	For	TCTGCATGCACACACAC	NO	NO	Yes	NO	UbD	14	106361561	Rev	AGGCCTGGCGGTAGGTT	NO	NO	Yes	NO	UbD
2	15378822	Rev	CTCACTATTCTTTTTT	NO	Yes TP	Yes	NO	UbD	14	106361561	For	AACCTACCGCCAGGCCT	NO	NO	Yes	NO	UbD
2	8822912	For	АААААААААААААААА	NO	NO	Yes	NO	UbD	14	106359328	For	CAGGTGAGCTGGAGGCC	NO	NO	NO	Yes_rs2983757_0.231829073482428	UbD
2	1642537	For	GAATAAAATGCTATACC	Yes	NO	Yes	NO	UbD	14	106359327	For	GCAGGTGAGCTGGAGGC	NO	NO	NO	Yes_rs3021114_0.232228434504792	UbD
2	1133188	For	CACACACAC	NO	NO	NO	NO	bD	14	106330320	For	CCCCCAGGATGCTCCGG	NO	NO	Yes	NO	UbD
2	1079130	For	AGCAGGAGGCGTGCGTC		NO	Yes	NO	UbD	14	106330319	For	CCCCCAGGATGCTCCGG	NO	NO	Yes	NO	UbD
2	905736 905442	Rev Rev	CGGGAGGATCTGAAACA CGGGAGGATCTGAAACA	NO NO	NO NO	NO NO	Yes_rs11891241_0.101102941176471	UbD UbD	14 14	106329452 106329452	Rev For	CTACTACTACATGGACG CGTCCATGTAGTAGTAG	NO NO	NO NO	NO NO	Yes_rs2338627_0.0194026040336993	UbD UbD
2	242732	For	ACAACAATAACAACAACAACA	Yes	NO	Yes	Yes_rs62103942_0.0446957640605424 NO	UbD	14	106329452	Rev	TACTACTACATGGACGT	NO	NO	NO	Yes_rs2338627_0.0194026040336993 Yes_rs2338628_0.0380165289256198	UbD
3	197544211	Rev	ACACACACA	NO	NO	NO	Yes_rs367618377_0.220143240823635	bD	14	106329451	For	ACGTCCATGTAGTAGTA	NO	NO	NO	Yes_rs2338628_0.0380165289256198	UbD
3	196674972	Rev	CTGGGGCAGCCCTCACA	Yes	Yes_TP	Yes	NO	UbD	14	105418166	For	GTCAGTGGTCTTGAGGT	NO	NO	Yes	Yes_rs78116894_0.129344251724805	UbD
3	196674972	For	TGTGAGGGCTGCCCCAG	Yes	Yes_TP	Yes	NO	UbD	14	105412541	Rev	AGATAGATGTCAAGGGC	NO	NO	Yes	NO	UbD
3	195515387	For	AGGGGTGGTGTGACCTG	NO	NO	NO	Yes_rs13065584_0.00913176515586154	UbD	14	105412541	For	GCCCTTGACATCTATCT	NO	NO	Yes	NO	UbD
3	195511959	For	GAAGTGTCGGTGACAGG	NO	NO	NO	Yes_rs369770584_0.280307510348906	UbD	14	105258892	For	ACTACCCCCATCTCTCC	Yes	Yes_TP	Yes	NO	UbD
3	195510614 195510613	For	TGGTGACAG	NO NO	NO NO	NO NO	NO NO	bD bD	14 14	104167564 104167564	Rev For	CAGTCCCATCCTGGAGC GCTCCAGGA	Yes	Yes_TP	Yes	Yes_rs861536_0.298923679060665	UbD Ub
3	195510615	For For	GGCTGGTGA	NO	NO	NO	Yes NA 0.00252525252525253	bD	14	104107304	For	CCATCATCGGCATGAAC	Yes Yes	Yes_TP NO	Yes Yes	Yes_rs861536_0.298923679060665 NO	UbD
3	195507827	For	GGCTGGTGA	NO	NO	Yes	Yes rs373469782 0.177501055297594	bD	14	102551795	Rev	TGAATGTATTAAGTCAA	NO	Yes TP	Yes	NO	UbD
3	195506775	For	GAAGTGTCGGTGACAGG	NO	NO	NO	Yes_rs79609066_0.00314465408805031	UbD	14	95566105	For	CACACACACAAACTTAC	NO	NO	Yes	Yes_rs368080354_0.112291968162084	UbD
3	195506245	For	AGGAAGGGCTGGTGACA	NO	NO	NO	Yes_rs150394536_0.000304460344040189	UbD	14	95566068	For	CACACACACAAACTTAC	NO	NO	NO	NO	UbD
3	195456708	Rev	CTTCCAAGCGCGGTAGC	NO	NO	Yes	NO	UbD	14	94582130	For	GCAGTTGTGGCTGTGCC	NO	Yes_TP	Yes	NO	UbD
3	195451880	Rev	GGCTTCCCTGGGATCAC	NO	NO	Yes	NO	UbD	14	77941865	For	AGGAAAGTT	Yes	Yes_TP	Yes	NO	bD
3	195451880 195426490	For Rev	GTGATCCCAGGGAAGCC	NO NO	NO NO	Yes Yes	NO NO	UbD UbD	14 14	75016482 70924507	For Rev	CTCTGACATCCTGGAGG TCCAGGAGTGCACGGTC	NO NO	NO NO	Yes Yes	NO Yes rs3751524 0.29379264192211	UbD UbD
3	195426207	For	TGTCCTGGAACCCTGGG	NO	NO	NO	NO	UbD	14	70924507	For	GACCGTGCACTCCTGGA	NO	NO	Yes	Yes_rs3751524_0.29379264192211	UbD
3	194373832	Rev	ACACAACCAAGTTTGGA	Yes	Yes TP	Yes	NO	UbD	14	66082573	For	TTGGTACTACTTTTGTG	NO	NO	NO	Yes_rs8012278_0.254992012779553	UbD
3	189712089	Rev	TTTTTTCCCGTCTGTTT	Yes	Yes_TP	Yes	NO	UbD	14	52509483	Rev	CTGGGGCCAGGAACTCC	Yes	Yes_TP	Yes	NO	UbD
3	186953808	Rev	GATGTCCTGCAGTATGT	NO	NO	NO	Yes_rs850312_0.2909912109375	UbD	14	52509483	For	GGAGTTCCTGGCCCCAG	Yes	Yes_TP	Yes	NO	UbD
3	186953808	For	ACATACTGCAGGACATC	NO	NO	NO	Yes_rs850312_0.2909912109375	UbD	14	51492135	Rev	GTCTCGCTGGCCTTGTT	Yes	NO	Yes	NO	UbD
3	186386664	For	AAAAAAAA	NO	NO	Yes	NO	bD	14	51208236	For	ACCAAGTTGTCCTAAGA	Yes	NO	Yes	NO	UbD
3	185906246 183756837	Rev Rev	CACACACAC CAAGGCTGACTGAGAGC	NO NO	NO NO	NO Yes	NO NO	Ub UbD	14 14	50298153 24910973	Rev Rev	AAAAAAAAA AAGAGGTAATCGGCAGC	Yes NO	NO Yes TP	Yes Yes	NO NO	Ub UbD
3	183756836	Rev	AAGGCTGACTGAGAGCC	NO	Yes TP	Yes	NO	UbD	14	24910973	For	GCTGCCGAT	NO	Yes_TP	Yes	NO	Ub
3	182810144	For	GAAAATACTGACACAGT	Yes	NO	Yes	NO	UbD	14	24795231	Rev	TCATATGGTGGAGAAGG	Yes	NO	Yes	NO	UbD
3	179481971	Rev	ACACACACAGTCTCTCA	NO	NO	Yes	NO	UbD	14	24795231	For	CCTTCTCCACCATATGA	Yes	NO	Yes	NO	UbD
3	179469995	For	CCTCAGACAAAGTTGAT	Yes	NO	Yes	Yes_rs2239639_0.262579872204473	UbD	14	22999202	For	ATGAGGGAGATAGCTGC	Yes	NO	Yes	NO	UbD
3	154018690	For	TTAAGTACGTACAGATT	Yes	NO	Yes	Yes_rs3732652_0.243809904153355	UbD	14	22957488	For	GCTGAATCGTACCTGAG	Yes	NO	Yes	Yes_rs1483971_0.270367412140575	UbD
3	153839959	Rev	CGCTGCGAGGAGCGTCC	Yes	Yes_TP	Yes	NO	UbD	15	93616283	Rev	титспсинитст	Yes	Yes_TP	Yes	NO	UbD
3	142215178 136287541	For For	ATGATGACA GTGGCAGGT	NO NO	Yes_TP NO	NO NO	NO Yes_rs549823681_0.194688498402556	bD Ub	15 15	91544558 90328774	For Rev	AAAAAAAAAGAAAAGTAC TCAAGGCTGTTAGGGAC	NO Yes	NO Yes TP	NO Yes	NO NO	UbD UbD
3	133901733	For	AAAAATTAAGCTATTCC	NO	NO	NO	Yes rs9829505 0.235423322683706	UbD	15	90195765	For	AAGAGGACAAGGCAGAA	Yes	NO	Yes	Yes_rs11630003_0.0115814696485623	UbD
3	129147418	Rev	CGGTTTATCTGATACCC	NO	NO	NO	Yes_rs3796391_0.178314696485623	UbD	15	84257351	For	GGCAGAGAGGATGTGTG	Yes	NO	Yes	Yes_rs7182482_0.192292332268371	UbD
3	129147418	For	GGGTATCAGATAAACCG	NO	NO	NO	Yes_rs3796391_0.178314696485623	UbD	15	75664570	Rev	TTTTTTTT	Yes	Yes_TP	Yes	NO	bD
3	128859202	Rev	CGTAAGTAAGTTTGTGA	NO	Yes_TP	Yes	NO	UbD	15	75651022	For	CACCATCCCCACATGCT	Yes	Yes_TP	Yes	NO	UbD
3	128859202	For	TCACAAACTTACTTACG	NO	Yes_TP	Yes	NO	UbD	15	65114505	Rev	GGGGTGGCAGCCTGCCA	NO	NO	NO	Yes_NA_0.0203073332036569	UbD
3	123066555 122821671	For Rev	CCACTTGAAAGGAAGTG CTCCACCATTGCTGAGA	Yes Yes	NO Yes TP	Yes	NO NO	UbD UbD	15 15	65114504 45454720	Rev Rev	GGGTGGCAGCCTGCCAC CACCACCCA	NO NO	NO NO	NO Yes	Yes_NA_0.0321244477172312	UbD bD
3	122821671	For	TCTCAGCAATGGTGGAG	Yes	Yes TP	Yes Yes	NO	UbD	15	45445499	For	CTGGCCAGGGTCCTCGA	Yes	NO	Yes	Yes_rs1706811_0.244808306709265 Yes_rs1648304_0.24241214057508	UbD
3	121195302	Rev	ACACACACA	NO	NO_	Yes	NO	bD	15	45250755	Rev	GATTAGCTGGATTTGGC	NO	NO	Yes	NO	UbD
3	121195302	For	AGGTAAATA	NO	NO	Yes	NO	Ub	15	43170690	For	ATATGTATACACACACA	NO	NO	Yes	NO	UbD
3	116163634	Rev	ACACACACA	NO	NO	Yes	NO	bD	15	41810439	Rev	CCACACACCTTATGTAT	Yes	NO	Yes	Yes_rs932959_0.299321086261981	UbD
3	116163634	For	GAGATCAGA	NO	NO	Yes	NO	Ub	15	41224280	For	CCAGGAGAGCTAGGGGA	Yes	NO	Yes	Yes_rs3212279_0.157547923322684	UbD
3	113557787	For	AGGTAAGCCGCGGGCCT	Yes	Yes_TP	Yes	NO	UbD	15	40282701	Rev	AGGTTTGTATAATCTCC	NO	NO	NO	Yes_rs2307104_0.268570287539936	UbD
3 3	113524266 112301458	Rev For	CAGCTCTACGAGCCATA	NO NO	NO NO	Yes Yes	Yes_NA_0.184776047325848 NO	UbD UbD	15 15	35230934 35230934	Rev For	TTTCTGGTATCTTCTTT AAAGAAGATACCAGAAA	NO NO	Yes_TP Yes_TP	Yes Yes	NO	UbD UbD
3	108355575	Rev	AAAAAAAAAAGGACAAAA	NO	NO	Yes	Yes NA 0.205806156659555	UbD	15	33200798	Rev	TTGGTTTTGTTTTCTAT	NO	NO	NO	Yes NA 0.0508373205741627	UbD
3	108355575	For	тттысстттттт	NO	NO	Yes	Yes_NA_0.205806156659555	UbD	15	33200793	Rev	TTTGTTTTCTATTTTGA	NO	NO	NO	Yes_NA_0.00916104146576664	UbD
3	108211869	For	AAGAAGAAAAGGAAGGA	Yes	NO	Yes	NO	UbD	15	33200791	Rev	TGTTTTCTATTTTGATA	NO	NO	NO	Yes_NA_0.00686116236162362	UbD
3	108135606	Rev	TTTTTTT	NO	NO	Yes	Yes_rs529118404_0.00479233226837061	Ub	15	20588458	For	CTGGCCATGACTGCAGT	NO	NO	NO	NO	UbD
3	108135606	For	ΤΑΤΤΤΤΤΤΑΑΑΑΑΑΑΑΑ	NO	NO	Yes	Yes_rs529118404_0.00479233226837061	UbD	16	89973777	Rev	AGCTGGGAACTGGGAGG	NO	NO	Yes	NO	UbD
3	108102586 101399910	Rev For	ΑΤΤΤΤΤΑΤΑ ΑΑΑΑΑΑΑΑΑ	NO NO	NO NO	NO Yes	Yes_rs7426463_0.211550950525446 NO	bD bD	16 16	89753031 89703519	For For	TAAGGAGAGGAAGCCCG	Yes NO	Yes_TP NO	Yes NO	Yes_rs397891_0.195287539936102 NO	UbD UbD
3	101399910	Rev	TTTTTTTT	NO	NO	Yes	NO	Ub	16	89703519	Rev	TCCAGCCACGAAGGATG GTCCCACGTGAGGAGAT	NO	NO	NO	NO Yes_rs445537_0.258386581469649	UBD
3	100064902	For	TCTGTCCTCAGGTCCTG	Yes	NO	Yes	Yes_rs2289506_0.229432907348243	UbD	16	89178474	For	CATCTTCCTACCGAGTG	NO	Yes TP	NO	Yes_rs9921293_0.0540639573617588	UbD
3	100064829	For	CTCCGCTGA	NO	NO	NO	Yes_rs2289505_0.230031948881789	bD	16	88779952	Rev	ACCATCCGAGGCCGCAG	Yes	NO	Yes	NO	UbD
3	98518160	For	AAAAAAAA	NO	NO	Yes	NO	bD	16	88776499	Rev	AGGCCAGGCTGCCTGTG	NO	NO	NO	Yes_rs61744010_0.184105431309904	UbD
3	75790860	Rev	AGGTAGCTGTGCACTTC	NO	NO	Yes	Yes_rs73117241_0.0148767356191556	UbD	16	88776499	For	CACAGGCAGCCTGGCCT	NO	NO	NO	Yes_rs61744010_0.184105431309904	UbD
3	75790860	For	GAAGTGCACAGCTACCT	NO	NO	Yes	Yes_rs73117241_0.0148767356191556	UbD	16	87436764	Rev	TGGTAACATCCCTTTTT	NO	NO	Yes	NO	UbD
3	75790838 75790814	For For	GGTCCTGCCACTCCTCC	NO NO	NO NO	Yes Yes	Yes_rs113991634_0.0295826326249809 Yes_rs200578600_0.0720533111203665	UbD UbD	16 16	85814899 85814899	Rev For	TGGTAGCCTATTTCTTT AAAGAAATAGGCTACCA	Yes	Yes_TP	Yes Yes	NO	UbD UbD
3	75790814 75790811	For	TGTACAGGGTCCTCTGAGCA	NO	NO	Yes	Yes_rs200578600_0.0720533111203665 Yes_NA_0.0729240345169048	UBD	16 16	85814899 84808969	For Rev	TCACGTGACTCCCCGAC	Yes Yes	Yes_TP NO	Yes	NO Yes_rs2303232_0.189496805111821	UBD
3	75790810	For	TGTACAGGGTCCTCTGA	NO	NO	Yes	NO	UbD	16	84132628	Rev	CAAATTTCTCTCTCTGCTG	Yes	Yes_TP	Yes	NO	UbD
3	75790797	For	CAGCATCACGTCCCTGT	NO	NO	Yes	Yes_NA_0.000674114021571649	UbD	16	84132628	For	CAGCAGAGAGAGAAATTTG	Yes	Yes_TP	Yes	NO	UbD
3	75680133	Rev	AGCCCTGGCTCTGCAAA	NO	NO	Yes	NO	UbD	16	81892043	Rev	TTTTTTTTCCCCCCTG	Yes	NO	Yes	Yes_rs559329422_0.00119808306709265	
3	75679820	For	CATTGCAGGTGTGCAGC	NO	NO	Yes	NO	UbD	16	81892041	Rev	TTTTTTTTCCCCCCTG	NO	NO	NO	Yes_rs559329422_0.00119808306709265	
3	73440108	Rev		NO	NO	Yes	NO	Ub	16	81201774	Rev	TGTCCCTTGAATGACAC	NO	NO	NO	Yes_rs34172014_0.280950479233227	UbD
3 3	73440108 62518392	For For	TGAACATGAAAAAAAA TGTGTGTGT	NO NO	NO NO	Yes Yes	NO NO	UbD bD	16 16	81201440 77401684	For Rev	GGGGGGGGGA GTTGTTGAAAACCAACC	NO Yes	NO NO	Yes Yes	NO Yes_rs2434895_0.284544728434505	bD UbD
3	57582718	For	GGCGGAGGAAAAAAAAA		NO	Yes	NO	UbD	16	7401684	Rev	AGCTGTTAACCCAGGAA	ves NO	NO	Yes	Yes_rs2434895_0.284544728434505 Yes_rs2549216_0.0283448865254962	UbD
3	57488279	Rev	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NO	NO	Yes	NO	UbD	16	74443401	For	AGCAGCACTCCCAGGGT	NO	NO	Yes	Yes_rs62055231_0.0641193927633832	UbD
3	57438710	Rev	TGTGGCTTG	NO	NO	NO	Yes_rs201687411_0.2325	Ub	16	71418447	Rev	TGTGTGTGT	NO	NO	NO	NO	Ub
3	56591278	Rev	CTTACCCCTGCTTACCC	NO	NO	Yes	NO	UbD	16	71418423	Rev	TGTGTGTGTGTGTGTGTG	NO	NO	NO	NO	UbD
3	56591278	For	GGGTAAGCAGGGGTAAG		NO	Yes	NO	UbD	16	71007657	For	TGATGAGCGCCAAGACC	NO	NO	Yes	NO	UbD
3	53220473	Rev	GAAAGCATG	NO	NO	NO	NO	bD	16	70732483	For	TCACACAGGGTGTGCCC	Yes	NO	Yes	Yes_rs7201952_0.273761980830671	UbD

		-															-
3	53220473	For	CATGCTTTCCCCCCTCA	NO	NO	NO	NO	UbD	16	70187550	Rev	CACATCAGTTCTTCTTC	NO	NO	Yes	NO	UbD
3	52878746	For	GTTAAAACAAGTTTGGT	Yes	NO	Yes	NO	UbD	16	70177648	Rev	ATGGTTCCCGGAGAAGC	NO	NO	Yes	NO	UbD
3	52877649	For	GGGCTACAGGTGAGCTT	Yes	NO	Yes	NO	UbD	16	70164248	For	GTTTCTTCTGGGTGGAG	NO	NO	NO	NO	UbD
3	52877647 52584431	For For	GAAGGAATCTTACCTGC	Yes NO	NO NO	Yes NO	Yes_rs55829187_0.00559105431309904 NO	UbD UbD	16 16	69951847 67970188	Rev Rev	GAACACGTGGCTGCACA CCGATACGCGAGCCACT	Yes NO	NO UNKNOW	Yes	NO Yes NA 0.00123780551767544	UbD UbD
3	51471302	For	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		NO	Yes	NO	UbD	16	67970188	For	AGTGGCTCG	NO	UNKNOW		Yes_NA_0.00123780551767544	Ub
3	50230913	Rev	GTGGCTGGT	NO	NO	NO	Yes_rs201243059_0.202618345760361	Ub	16	57071113	For	AGCCTCAGTAACAACGG	Yes	Yes_TP	Yes	NO	UbD
3	49725948	For	TGGCTCCCCGACTTTTT	NO	NO	Yes	NO	UbD	16	56601720	Rev	TCTTCCAATATGTTTTA	Yes	Yes_TP	Yes	NO	UbD
3	48602523	For	CCCCGCTGGCAGCCCCC	Yes	Yes_TP	Yes	NO	UbD	16	56601720	For	TAAAACATATTGGAAGA	Yes	Yes_TP	Yes	NO	UbD
3	46700271	Rev		NO	NO	Yes	NO	Ub	16	55857396	For	GGCATGACAAGAGCTGG	NO	NO	Yes	NO	UbD
3	46700271 46501284	For Rev	AAAAAAAAA CCGTAGGAGGAGTGTTC	NO Yes	NO Yes TP	Yes Yes	NO NO	bD UbD	16 16	33965627 33965582	Rev Rev	ATGCACCCC ACTGATCGGCAAGCGAC	NO NO	NO NO	NO Yes	Yes_NA_0.0278174687623507 Yes_rs199951204_0.23672396479414	bD UbD
3	45501284	Rev	GCTCCTTGCAGGACAAG	NO	NO	NO	NO	UbD	16	33965560	Rev	GACAGGCAAGCCAC	NO	NO	Yes	Yes_rs75603223_0.222564631144955	UbD
3	45677637	For	CTTGTCCTGCAAGGAGC	NO	NO	NO	NO	UbD	16	33965538	Rev	ACCCGGGCTGCAATTGC	NO	NO	Yes	Yes rs146300192 0.110999522711002	UbD
3	37512646	Rev	TTTCCACCACAGCAGTA	NO	NO	NO	NO	UbD	16	33965533	Rev	GGCTGCAATTGCGTTCG	NO	NO	Yes	Yes_rs78817399_0.118027210884354	UbD
3	31663515	For	GTTTTATAGTTTTAAGT	Yes	NO	Yes	NO	UbD	16	33965533	For	CGAACGCAA	NO	NO	Yes	Yes_rs78817399_0.118027210884354	Ub
3	30842346	For		NO	NO	Yes	Yes_rs111777308_0.00623791754709347	UbD	16	33965507	For	GCAGGACAGATTGATCA	NO	NO	Yes	Yes_rs74614199_0.0208877519770856	UbD
3	30842342	For	CACACAGACAGAAAGAG	NO	NO	NO	NO	UbD	16	33965505	For	TTGCAGGACAGATTGAT	NO	NO	Yes	Yes_rs375920374_0.0954734004931853	UbD
3 4	30842342 190878485	For,Ke	TTAATTCAGTCTAAACA	NO NO	NO NO	NO Yes	NO	Ub UbD	16 16	33965456 33965449	For For	ATCACTGGGCTTCTGTG	NO NO	NO NO	Yes Yes	NO NO	UbD UbD
4	190878463	For	TTTTTAAATCAGGGAGG	NO	NO	Yes	NO	UbD	16	31388640	Rev	TTTTTTTTTTTTTTGAG	NO	NO	Yes	Yes_rs11574643_0.140375399361022	UbD
4	186444704	Rev	ATAAGTTAGTGAGGTTT	NO	NO	Yes	NO	UbD	16	31151521	For	ААААААААА	Yes	NO	Yes	NO	bD
4	183650026	For	АААААААА	NO	NO	Yes	NO	bD	16	24357998	For	CCCAGGCTGGCCCCCAG	Yes	NO	Yes	NO	UbD
4	183601595	Rev	CCCCCCCCC	NO	NO	NO	NO	Ub	16	22128052	For	CCTGGGATTTCCACTTC	NO	Yes_TP	Yes	NO	UbD
4	183601594	Rev	CCCCCCCCC	NO	NO	NO	NO	Ub	16	19455318	For	ATGATTGAATGGATGGA	NO	NO	Yes	NO	UbD
4	183601593	Rev	000000000000000000000000000000000000000	NO	NO	NO	NO	Ub	16	16253283	For	ACCCATTGCCCCCCCC	NO	NO	Yes	NO	UbD
4	183601590 151161470	Rev For	CCCCCCCCC TTCCTAACAAATAAAGG	NO NO	NO NO	Yes Yes	[Yes_rs34738241_0.00159744408945687	Ub UbD	16 16	15120411 8992868	For For	TAGAGCATTTCTAAGCG AGAAATGGACTGTCAGG	NO Yes	NO NO	Yes Yes	NO NO	UbD UbD
4	145040962	Rev	ATTCTTGTGCCCTTTCT	NO	NO	Yes	Yes_rs11931842_0.167132587859425 Yes_NA_8.21611673458657e-06	UbD	16	3078616	For	GGGATCATTATAACCCG	Yes	NO	Yes	NO	UbD
4	142640462	For	AATTCCCTCCCTTTCTT	NO	NO	Yes	NO	UbD	16	1907701	For	CCCCTGCCAGATTGCAC	NO	Yes TP	Yes	NO	UbD
4	140811111	Rev	CAGCAGCAGCAGCAGCA	NO	NO	NO	Yes_rs62344937_0.00261629990681672	UbD	16	1306971	Rev	TGTGGATGTGGCTGGAG	NO	Yes_TP	Yes	NO	UbD
4	140811111	For	TGCTGCTGCTGCTGCTG	NO	NO	NO	Yes_rs62344937_0.00261629990681672	UbD	16	1306971	For	CTCCAGCCACATCCACA	NO	Yes_TP	Yes	NO	UbD
4	140811096	For	TGCTGCTGCTGCTGCTG	NO	NO	NO	Yes_rs79090010_0.251597444089457	UbD	16	1279732	Rev	AGCCCCAGGCCAGGCCC	NO	Yes_TP	Yes	Yes_rs201836020_0.280053137134682	UbD
4	140811096	Rev	CAGCAGCAGCAGCAGCA	NO	NO	NO	Yes_rs79090010_0.251597444089457	UbD	16	539093	Rev	AGCAAGTTCTCTCACCA	NO	NO	Yes	Yes_rs74390230_0.159944089456869	UbD
4	129869520 95206252	For Rev	GAAAAGAAA GTCATATAGATAAATAT	NO Yes	NO Yes TP	NO Yes	NO NO	bD UbD	16 17	456291 79577127	For For	GGCAGATGCCCCGGGAG	NO NO	NO NO	Yes NO	NO Yes_rs8077038_0.23961661341853	UbD UbD
4	90756550	For	TCACCTACCTACACATA	NO	NO	NO	NO	UbD	17	78081526	Rev	GCCCGCCGCTGTACCGT	Yes	Yes TP	Yes	NO	UbD
4	88759690	For	AATACAACTCAGTGAGA	Yes	NO	Yes	NO	UbD	17	78081526	For	ACGGTACAGCGGCGGGC	Yes	Yes_TP	Yes	NO	UbD
4	88036182	For	GCTGCCGCCAAGCCGTG	NO	Yes_FP	NO	Yes_rs201122599_0.0386490474052216	UbD	17	76491127	Rev	TCATGCTCATGGCCGAG	Yes	Yes_TP	Yes	NO	UbD
4	85710824	For	ACACACACCCCCCAAAC	NO	NO	Yes	NO	UbD	17	74017594	Rev	AACCTGTGTATCTGCCA	NO	NO	NO	Yes_rs193119748_0.0313133934047271	UbD
4	84234190	For	AAAAAAAA	NO	NO	Yes	NO	Ub	17	74017573	Rev	ACCCAGCTG	NO	NO	NO	Yes_rs78569674_0.122151469591109	Ub
4	69181899	For	AAACAAACAATTATTCC	NO	NO	Yes	NO	UbD	17	73258085	Rev	GCCCCCCCGCCGCTGCT	Yes	NO	Yes	Yes_rs10539706_0.0527101096224117	UbD
4	62775483	Rev	CACACACACACATAATT	NO	NO	NO	Yes_rs12648576_0.106351550960118	UbD	17	72959000	For	ACTGGCCCGGCCCCAAC	Yes	NO	Yes	Yes_rs7503218_0.255191693290735	UbD
4	57176966 57176966	Rev For	AGGGGGGGG AAAAAAAAA	NO NO	NO NO	Yes Yes	NO NO	bD Ub	17 17	72889676 72888541	Rev For	ACGGAGCCCATGGAACC CCCCCCGTG	NO Yes	Yes_FP NO	Yes Yes	NO NO	UbD bD
4	57176965	For	АЛААААААА	NO	NO	NO	NO	Ub	17	71468192	For	GTGGCTGGTGGGTGCCA	NO	NO	NO	NO	UbD
4	57176965	Rev	AGGGGGGGG	NO	NO	NO	NO	bD	17	66425995	For	CCCAAGGTTCCGGGATT	Yes	NO	Yes	NO	UbD
4	57176964	Rev	AGGGGGGGG	NO	NO	Yes	NO	bD	17	63014254	For	AAAAAAAA	NO	NO	NO	NO	Ub
4	57176964	For	AAAAAAAA	NO	NO	Yes	NO	Ub	17	58288545	Rev	CTAGGCATTTTTGCGCC	NO	NO	NO	NO	UbD
4	54280705	For	AAAAAAAA	NO	NO	Yes	NO	bD	17	58288540	Rev	CATTTTTGCGCCCACAT	NO	NO	NO	NO	UbD
4	7066052	Rev	AGTAAATAG	Yes	NO	Yes	NO	bD	17	56569842	Rev	TAGTATGACAAAAAACA	Yes	Yes_TP	Yes	NO	UbD
4	7064003 6698500	For	CAGCTGGACCCCCCACC TGACAGCAA	NO Yes	NO NO	Yes	NO	UbD	17	56569842 51902492	For	TGTTTTTTGTCATACTA TTGGACAGT	Yes NO	Yes_TP	Yes	NO NO	UbD bD
4	4425422	For Rev	GTGCCCCCTGTCTCTCC	NO	NO	Yes Yes	NO	bD UbD	17 17	48157827	Rev Rev	CACACACACCCATGCTA	Yes	Yes_TP NO	Yes Yes	NO	UbD
4	4239539	For	AAAAACCACTCCAGATA	NO	NO	Yes	Yes_rs62286914_0.112890355417529	UbD	17	48148413	Rev	GGCCAATCCGTGTGTGC	Yes	NO	Yes	Yes_rs2301628_0.166533546325879	UbD
4	2502299	For	AGCCTATAACATTAGCA	Yes	NO	Yes	NO	UbD	17	47010795	Rev	TAAATTTTCTGTCAGTA	NO	NO	NO	NO	UbD
4	343795	For	CACAGGGCTCAGGAGCA	Yes	NO	Yes	NO	UbD	17	46673723	For	TGACGCCCTCGGCTCCC	NO	Yes_TP	Yes	NO	UbD
5	180046426	Rev	GTGGCGGGG	NO	NO	Yes	Yes_NA_0.000281531531531532	bD	17	45234657	Rev	AGTACCTAA	NO	NO	NO	Yes_rs78108688_0.0453615950292973	Ub
5 5	177679654 177679447	Rev For		Yes	NO NO	Yes Yes	Yes_rs2033200_0.298123003194888	UbD UbD	17 17	45234657 45234645	For For	AACTATGATTAGGTACT	NO NO	NO	NO NO	Yes_rs78108688_0.0453615950292973	UbD
5	177676986	For	AGGACACCCGGAGGGAA TGCACACGCACACACAC	NO	NO	Yes	Yes_rs1549612_0.295926517571885 Yes_rs5873601_0.104832268370607	UbD	17	45234645	Rev	GTCTGTGAGATAAACTA TTAGGGCATGAGTTTGT	NO	Yes_FP NO	Yes	Yes_rs75990396_0.0278173179093406 NO	UbD UbD
5	176895817	Rev	CCTCGCCGCCTTCTCCA	Yes	Yes TP	Yes	NO	UbD	17	45214604	For	ACAAACTCATGCCCTAA	NO	NO	Yes	NO	UbD
5	176895817	For	TGGAGAAGGCGGCGAGG	Yes	Yes_TP	Yes	NO	UbD	17	43333785	Rev	CTTCTTCTGTCTTAGAG	NO	NO	NO	NO	UbD
5	176858049	Rev	TCTGCTCCGGGGCAAGG	NO	NO	NO	Yes_rs867755_0.288738019169329	UbD	17	43333785	For	CTCTAAGACAGAAGAAG	NO	NO	NO	NO	UbD
5	175923431	For	AGTCTAAGGGTTGATCT	Yes	NO	Yes	NO	UbD	17	41960633	Rev	TGGCGCACGTGGCTGAG	Yes	Yes_TP	Yes	NO	UbD
5	175915835	For	GAACTGTACTTTAGAGG	Yes	NO	Yes	NO	UbD	17	41960633	For	CTCAGCCACGTGCGCCA	Yes	Yes_TP	Yes	NO	UbD
5	175528527 175528527	Rev For	CTATGAGGTTCAGACCA TGGTCTGAACCTCATAG	NO NO	NO NO	Yes Yes	Yes_rs116633144_0.272416077738516 Yes_rs116633144_0.272416077738516	UbD UbD	17 17	41121210 41121209	Rev Rev	TCCCCCCCGCCCCAGG TCCCCCCCGCCCCAGG	NO NO	Yes NO	NO NO	NO NO	UbD UbD
5	175387139	Rev	TGTTTTCTGTAGGGGGAC	NO	NO	NO	Yes_NA_2.68039026482256e-05	UBD	17	39742898	Rev	GGAGCCTGCGGGCTGGG	NO	NO	NO	NO	UBD
5	172659511	For	TTCTCCCCCCGAGAGTC	NO	NO	NO	Yes_rs703752_0.255591054313099	UbD	17	39619093	Rev	CTGGAGAAC	Yes	Yes_TP	Yes	NO	Ub
5	160763821	Rev	тттттт	NO	NO	NO	Yes_NA_0.00605577111360917	Ub	17	39619093	For	CAGTCCTCGTTCTCCAG	Yes	Yes_TP	Yes	NO	UbD
5	153709043	For		NO	NO	Yes	NO	UbD	17	39340843	Rev	CCACTCTGCTGTCAGAC	NO	NO	NO	Yes_rs2320229_0.108966376089664	UbD
5	150518358	Rev	TCCCCACCTGCCAGGAC	Yes	Yes_TP	Yes	NO	UbD	17	39254142	For	CTGGGGCGACAGCAGGT	NO	NO	NO	Yes_rs375280428_0.00623700623700624	
5	149006518 148586451	For	GGGCCCTTCAGTGGCAG	Yes	NO	Yes	Yes_rs66982663_0.2935303514377	UbD	17	38153714	Rev	AGAGCAGCTCAGCCCTT	Yes	Yes_TP	Yes	NO	UbD
5	148586451 139931629	For Rev	CAGTGTCAGGTGGGAGC TCTGAGGCTGTGATGGA	Yes Yes	NO Yes TP	Yes Yes	NO Yes rs5871740 0.262013729977117	UbD UbD	17 17	38153714 37829570	For Rev	AAGGGCTGAGCTGCTCT GGGGTGGCC	Yes Yes	Yes_TP NO	Yes Yes	NO NO	UbD bD
5	139931629	For	TCCATCACAGCCTCAGA	Yes	Yes TP	Yes	Yes rs5871740 0.262013729977117	UbD	17	36734706	For	CGCAGCCGGAGCCGCAG	NO	NO	Yes	NO	UbD
5	139931628	Rev	CTGAGGCTGTGATGGAG	Yes	Yes_TP	Yes	Yes_NA_1.96436639361974e-05	UbD	17	36070592	Rev	GCCATGGTGACCAGCCA	NO	NO	NO	Yes_NA_0.000138127906441365	UbD
5	139931628	For	CTCCATCACAGCCTCAG	Yes	Yes_TP	Yes	Yes_NA_1.96436639361974e-05	UbD	17	36070591	Rev	CCATGGTGACCAGCCAG	NO	NO	NO	Yes_NA_0.00202336848104873	UbD
5	137503739	Rev	TGTGGCTTC	NO	NO	NO	Yes_rs201078605_0.267831596157776	Ub	17	34951327	For		Yes	NO	Yes	Yes_rs2285639_0.275958466453674	UbD
5	133537479	For	TAAGCACCTGAACACTA	Yes	NO		NO	UbD	17	34867415	Rev		NO	NO	Yes	NO	UbD
5	131322666	Rev	GGGTATGTG	Yes	NO	Yes	NO	bD	17	31323728	For		NO	NO	Yes	NO	UbD
5 5	118513246 108679870	Rev For	AAACTAAAAGTCTTTCT ATTATTCTA	Yes Yes	NO Yes_TP	Yes Yes	NO	UbD bD	17 17	26708304 26708304	Rev For		NO NO	Yes Yes	NO NO	Yes_rs71373647_0.08333333333333333 Yes_rs71373647_0.083333333333333333	UbD UbD
5	108679870 96237114	For For	TCCCCAAGCCTTGTTTC	Yes Yes	NO	Yes	NO	UbD	17	26708304	For Rev	TGCCTGACCCACTCCGC	NO	Yes_TP	Yes	Yes_rs71373646_9.07951842234288e-06	
5	86667856	For		NO	NO	Yes	NO	UbD	17	26708302	For		NO	Yes_TP	Yes	Yes_rs71373646_9.07951842234288e-06	
5	70357189	Rev	TTTTTTTGTGGGGGGG	NO	NO	NO	NO	UbD	17	26708300	Rev	CCTGACCCACTCCGCGC	NO	Yes_FP	NO	Yes_rs71373645_0.0769230769230769	UbD
5	54706325	For	TCTGACATTTTATTCTT	NO	Yes_TP	Yes	NO	UbD	17	26708300	For		NO	Yes_FP	NO	Yes_rs71373645_0.0769230769230769	UbD
5	54579211	Rev		NO	NO	Yes	Yes_NA_0.0270407792396598	UbD	17	21319767	Rev		NO	NO	Yes	Yes_rs1612176_0.253943956503555	UbD
5 5	54579211	For	CCTGTTTCACCTGCCAC	NO	NO	Yes	Yes_NA_0.0270407792396598	UbD	17	21319767	For	CTGCCCAGCGCCAACTC	NO	NO	Yes	Yes_rs1612176_0.253943956503555	UbD
5	43294357 41070840	Rev For	TTCTACTTTTACTTATA TGACGCGCCACTCCCAG	Yes Yes	NO NO	Yes Yes	NO Yes rs1423391 0.281948881789137	UbD UbD	17 17	21319523 21319523	Rev For	AGTCGTCCGTCTCCAGG CCTGGAGACGGACGACT	NO NO	NO NO	Yes Yes	Yes_rs77987694_0.298576883026727 Yes_rs77987694_0.298576883026727	UbD UbD
5	41069734	For	AATATATACGAAATGTT	Yes	NO	Yes	Yes_rs10512757_0.193690095846645	UbD	17	21319525	Rev	GTCCGTCTCCAGGTCCT	NO	NO	Yes	Yes_rs78113532_0.289852512585004	UbD
5	36301362	For	TTCTTCCTG	Yes	NO	Yes	Yes_rs10941287_0.251996805111821	bD	17	21319519	For		NO	NO	Yes	Yes_rs78113532_0.289852512585004	UbD
5	36217764	For		Yes	NO	Yes	NO	UbD	17	21319488	Rev	AAGAGCGGGGCTGGCCTC	NO	NO	Yes	Yes_rs77176173_0.166103653658103	UbD
5	35763916	Rev	AGGTACAATTTTCTACA	Yes	NO	Yes	NO	UbD	17	21319488	For	GAGGCCAGCCCGCTCTT	NO	NO	Yes	Yes_rs77176173_0.166103653658103	UbD

5	34863220	Rev	GAGATGACCCATCTGGC	Yes	NO	Yes	Yes_rs3846632_0.191892971246006	UbD	17	21319470	Rev	TCAATCTCATGCAAGAT	NO	NO	Yes	Yes_NA_0.176899415017514	UbD
5	13885023	For	CACACGTGCACACACAC	NO	NO	Yes	NO	UbD	17	21319470	For	ATCTTGCATGAGATTGA	NO	NO	Yes	Yes_NA_0.176899415017514	UbD
5	1337982 1225687	For Rev	AGTGTCTCG CAAACCCAGTGCAGCTC	NO NO	NO Yes TP	NO Yes	Yes_NA_0.078436018957346 NO	Ub UbD	17 17	21319465 21319465	Rev For	CTCATGCAAGATGGTGA	NO NO	NO NO	Yes Yes	Yes_NA_0.183828376794609 Yes_NA_0.183828376794609	UbD UbD
5	1225687	For	GAGCTGCACTGGGTTTG	NO	Yes TP	Yes	NO	UbD	17	21319465	Rev	GTGATGGGCGACACCAG	NO	NO	Yes	Yes_rs73313929_0.189061693815877	UbD
5	834075	Rev	CGTGCACACGTAAGTGG	NO	NO	Yes	NO	UbD	17	21319452	For	CTGGTGTCGCCCATCAC	NO	NO	Yes	Yes_rs73313929_0.189061693815877	UbD
5	174240	Rev	GAGCCTGGCAGGCCCTG	NO	NO	Yes	NO	UbD	17	21319439	Rev	CCAGAAAGATGCGGTCC	NO	Yes_FP	Yes	Yes_rs76684759_0.197978702425557	UbD
6	170871040	Rev	TGTTGCTGTTGCTGCTG	NO	NO	NO	Yes_rs55736770_0.00836804522463552	UbD	17	21319439	For	GGACCGCATCTTTCTGG	NO	Yes_FP	Yes	Yes_rs76684759_0.197978702425557	UbD
6	170871040	For	CAGCAGCAACAGCAACA	NO	NO	NO	Yes_rs55736770_0.00836804522463552	UbD	17	21319436	Rev	GAAAGATGCGGTCCAGG	NO	NO	Yes	Yes_rs77270326_0.18116224648986	UbD
6 6	170871037 170871037	Rev For	TGTTGCTGTTGCTGCTG CAGCAGCAACAGCAACA	NO NO	NO NO	NO NO	NO	UbD UbD	17 17	21319436 21318603	For For	CCTGGACCGCATCTTTC	NO NO	NO Yos TD	Yes Yes	Yes_rs77270326_0.18116224648986 NO	UbD UbD
6	168476571	Rev	GCCGGAAAT	NO	NO	NO	NO	bD	17	21318603	For	GCTGTCGTCTCTGTTGC	NO	Yes_TP NO	Yes	NO	UBD
6	168377010	Rev	CTCCTCCCCACACACTG	NO	NO	NO	Yes_rs9364374_0.0455223880597015	UbD	17	21318586	For	GICICIGIT	NO	NO	Yes	NO	bD
6	168377010	For	CAGTGTGTGGGGGAGGAG	NO	NO	NO	Yes_rs9364374_0.0455223880597015	UbD	17	21217660	Rev	GCCCCCTCGGTTCCTCC	NO	Yes TP	Yes	NO	UbD
6	168376953	For	GGGTCATTACCCCTGCA	NO	NO	NO	Yes_rs2516607_0.245276292335116	UbD	17	21217596	Rev	CTGCCCCCGCAGATGGG	NO	Yes_TP	Yes	Yes_rs2363373_0.000199680511182109	UbD
6	168376951	For	GGGGGTCATTACCCCTG	NO	NO	NO	Yes_rs34562778_0.0277569392348087	UbD	17	21217400	For	GGGGAAGAGTGGCCACC	NO	NO	Yes	Yes_rs1622401_0.00259584664536741	UbD
6	168376908	For	GGGGGTCATTCCCCCTG	NO	NO	NO	Yes_rs2516605_0.00964868876793666	UbD	17	21217397	For	GTTGGGGAAGAGTGGCC	NO	NO	Yes	Yes_rs1657685_0.00259584664536741	UbD
6	168376892	For	GGGAGGAGAAGGCAGTG		NO	NO	Yes_rs9355147_0.00667388167388167	UbD	17	21217290	For	GAGCCACAGATGCCATC	NO	NO	Yes	NO	UbD
6	167786961 167786750	Rev Rev	AGCCGCGCCCACTGACT CATCCAAAGGGCAAGGC	NO	NO NO	Yes Yes	NO Yes_rs143094588_0.192375214459562	UbD UbD	17 17	21216710 21216686	For For	CCTGCTGCTAGGCCTGG CTTCTTCCCTGGGTGCA	NO NO	NO NO	Yes Yes	NO	UbD UbD
6	167786750	For	GCCTTGCCCTTTGGATG	NO	NO	Yes	Yes rs143094588 0.192375214459562	UbD	17	21216664	For	GAAGCCCTAGACAGTCC	NO	NO	Yes	NO	UbD
6	154567666	For	TCACCTGATGCCTTTAA	NO	NO	NO	Yes_rs9479798_0.283945686900958	UbD	17	21216661	For	GAAGAAGCCCTAGACAG	NO	NO	Yes	NO	UbD
6	152489037	Rev	GCTGGACAAAAAGGTTA	NO	NO	NO	Yes_rs997389_0.290716519062976	UbD	17	21215700	Rev	GCCAAGTCATCTGGGGG	NO	NO	Yes	NO	UbD
6	152489037	For	TAACCTTTTTGTCCAGC	NO	NO	NO	Yes_rs997389_0.290716519062976	UbD	17	21215682	Rev	TTATTTGCCAAAGGAAT	NO	NO	Yes	NO	UbD
6	151674116	Rev	TCTAAATCCTCAATTGC	NO	Yes_TP	Yes	NO	UbD	17	21208292	For	TTTGGGGATTGGGAGGC	NO	NO	Yes	NO	UbD
6 6	151674116 147635318	For For	GCAATTGAGGATTTAGA GATTATTTACACACACA	NO NO	Yes_TP NO	Yes Yes	NO	UbD UbD	17 17	21208203 21207992	For Rev	GGGTTGGGCCTTCTAAG CCCCACTACAGCAGGAA	NO NO	NO NO	Yes NO	NO	UbD UbD
6	136582194	For	AATCAGGTAAAAAAAAA	NO	NO	Yes	NO	UbD	17	21207992	Rev	CACTACAGCAGGAAACG	NO	NO	Yes	Yes_rs9893916_0.0181709265175719	UbD
6	136582113	For	AAGACTTAAAACAAAAT	NO	NO	Yes	NO	UbD	17	21207945	Rev	ACAGAGGGGTATGGCCGG	NO	NO	Yes	NO	UbD
6	128030957	For	TATCATAGGTTTCTGTA	NO	Yes_TP	Yes	Yes_rs490008_0.159744408945687	UbD	17	21207649	For	GTCTTGGGCGAGGGAGG	NO	NO	Yes	NO	UbD
6	125139473	For	TGTGTGGGTGCTTGATC	NO	NO	Yes	NO	UbD	17	21207602	For	CCCTGGTGCAACCTGCC	NO	NO	Yes	NO	UbD
6	123539684	For	CTGAACTACTGTGGACA	Yes	Yes_TP	Yes	NO	UbD	17	21207582	For	CCCTGGTCTGACCCTTG	NO	NO	Yes	NO	UbD
6	123038887	For	AACATTTACTTCTGAAT	Yes	Yes_TP	Yes	NO	UbD	17	21206654	Rev	CGTCACAACCTATCACC	NO	NO	Yes	NO	UbD
6	121560155 119627976	For	AGTATGAACGAATTCAT	Yes	NO	Yes	Yes_rs12191616_0.260183706070288	UbD	17	21206642	Rev	TCACCTCTCGGAGCCAC	NO	NO	Yes	Yes_rs59259996_0.00419329073482428	UbD
6 6	11962/9/6	For For	AGGGCCATGTTACACAG GCTGCTGCT	Yes NO	NO NO	Yes Yes	Yes_rs6915559_0.292332268370607 NO	UbD bD	17 17	21206635 21206616	Rev Rev	TCGGAGCCACAGTTGCT TAGGGAGACGTCCACCC	NO NO	NO NO	Yes Yes	NO Yes_rs57761454_0.0023961661341853	UbD UbD
6	112508769	Rev	ACTGATGCACTGCGGTT	Yes	Yes TP	Yes	NO	UbD	17	21206385	For	CTGTGCAGCGGGAGCGG	NO	NO	Yes	Yes_rs72838547_0.00858626198083067	UbD
6	112508769	For	AACCGCAGTGCATCAGT	Yes	Yes_TP	Yes	NO	UbD	17	21206372	For	GAGGGTGCGTAGCCTGT	NO	NO	Yes	NO	UbD
6	109850199	For	ААААААААААААААА	NO	NO	NO	Yes_rs577355457_0.231803826862344	UbD	17	21206360	For	AGGCTGGGATGAGAGGG	NO	NO	Yes	Yes_rs67280439_0.000199680511182109	UbD
6	108243123	Rev	TTTTTTTGTTTTTCCC	NO	NO	NO	Yes_rs2064201_0.0894568690095847	UbD	17	21205655	Rev	CACCATCAATAGGCAGG	NO	NO	Yes	NO	UbD
6	108243122	Rev	TTTTTTTGTTTTTCCC	NO	NO	NO	Yes_rs2064201_0.0894568690095847	UbD	17	21205654	Rev	ACCATCAATAGGCAGGC	NO	NO	Yes	NO	UbD
6	108197874	Rev	TITITIG	NO	Yes	NO	NO	Ub	17	21205642	Rev	CAGGCTCCATGCCTGCT	NO	NO	Yes	NO	UbD
6	107372242 105300262	For Rev	GAACTCTTTGTTTTTTT	NO NO	NO Yes TP	NO Yes	NO NO	UbD UbD	17 17	21205592	Rev For	GACCCCCCGCCAGCCCA	NO NO	NO NO	Yes Yes	Yes_NA_0.000938086303939962 NO	UbD UbD
6	84290137	For	CAGTTAAAGAAAAAAAA	NO	NO	NO	Yes NA 0.00298730395817774	UbD	17	21205350	For	GAGAGGGGGGCTGGGGCT	NO	NO	Yes	NO	UbD
6	79595167	Rev	TTTGTTAAGTACATACC	Yes	Yes_TP	Yes	NO	UbD	17	21205360	For	CGGAGAGGGGGGCTGGGG	NO	NO	Yes	NO	UbD
6	70778378	Rev	TGTTCCAGCTTTACTTA	NO	NO	NO	NO	UbD	17	21205352	For	CACACGTCGGAGAGGGG	NO	NO	Yes	NO	UbD
6	70778378	For	TAAGTAAAGCTGGAACA	NO	NO	NO	NO	UbD	17	21204441	Rev	AACAGCCAAGAGACGGG	NO	NO	Yes	NO	UbD
6	64708907	For	CATAAAAAATACTTATC	Yes	NO	Yes	Yes_rs66502009_0.269768370607029	UbD	17	21204437	Rev	GCCAAGAGACGGGGGGAG	NO	NO	Yes	NO	UbD
6	57512826 57512825	Rev	GGGAAGGTTGAGGCTGC		NO NO	Yes	NO NO	UbD UbD	17 17	21204318 21204318	Rev For	CTGCATCATGCAAGGAC GTCCTTGCATGATGCAG	NO NO	NO	Yes	Yes_rs74869330_0.122158098691104	UbD UbD
6 6	57512825	Rev Rev	GGAAGGTTGAGGCTGCA TCACAATTACACAACAG	NO	NO	Yes Yes	NO	UBD	17	21204318	Rev	CTGCATCATGCAGGAC	NO	NO NO	Yes Yes	Yes_rs74869330_0.122158098691104 NO	UbD
6	57512779	Rev	ACAGAGTGCAACACTTT	NO	NO	Yes	NO	UbD	17	21204315	For	GTCCTTGCATGATGCAG	NO	NO	Yes	NO	UbD
6	57512775	Rev	AGTGCAACACTTTTTCA	NO	NO	Yes	NO	UbD	17	21204074	Rev	CTAGCCTCG	NO	NO	Yes	NO	bD
6	57512352	For	AGAATGCAAACAGCTAG	NO	NO	Yes	NO	UbD	17	21204074	For	CGAGGCTAGGCTTTTTG	NO	NO	Yes	NO	UbD
6	57512340	For	TGATTAAGCGTTAGAAT	NO	NO	Yes	NO	UbD	17	21204067	Rev	CCTAGCCTCGGTACTGA	NO	NO	Yes	NO	UbD
6	57499188	Rev	GTCTGGTCGTTCAATAA	NO	NO	Yes	NO	UBD	17	21204067	For	TCAGTACCGAGGCTAGG	NO	NO	Yes	NO	UbD
6	57499171	Rev	ATGCTGTAAGTTACTTA	NO	NO	Yes	NO	UbD	17 17	21203711	For	CTGAGGGTCACACAGCA	NO	NO	Yes	NO	UbD
6 6	57498894 57472534	For Rev	GGCCAACAGCTGTGAGC TGACAAGTAATACACAG	NO NO	NO NO	Yes Yes	NO NO	UbD UbD	17	21202370 21202318	Rev Rev	CGAGGCTCT CCTCCCCCCAAAGTGGC	NO NO	NO NO	Yes Yes	NO Yes_rs376150010_0.0291533546325879	bD UbD
6	57472533	Rev	GACAAGTAATACACAGC	NO	NO	Yes	NO	UbD	17	21202318	Rev	TCCCCCCAAAGTGGCCC	NO	NO	Yes	NO	UbD
6	57472495	Rev	AAAACCGAGAGATCTGT	NO	NO	Yes	NO	UbD	17	21202311	Rev	CCAAAGTGGCCCTGCAG	NO	NO	Yes	NO	UbD
6	57472315	Rev	TTATTTACTCACAACTT	NO	NO	Yes	NO	UbD	17	21202310	Rev	CAAAGTGGCCCTGCAGG	NO	NO	Yes	NO	UbD
6	57472315	For	AAGTTGTGAGTAAATAA	NO	NO	Yes	NO	UbD	17	21202102	Rev	GGCCTGGCG	NO	NO	Yes	Yes_rs35701021_0.00619009584664537	Ub
6	57472299	Rev	TAGTACAATACCACACT	NO	NO	Yes	NO	UbD	17	21202102	For	CGTCCCCACGCCAGGCC	NO	NO	Yes	Yes_rs35701021_0.00619009584664537	UbD
6	57472299 57472255	For	AGTGTGGTATTGTACTA	NO NO	NO	Yes	NO NO	UbD	17 17	21202078	For	GCGCCTCCGGGGCAGGA	NO NO	NO NO	Yes	NO NO	UbD
6 6	57472255	For For	TAATAAGCCGTTAGACA		NO NO	Yes Yes	NO	UbD UbD	17	21202067 21202063	For For	GGCCGGAGAAGGCGCCT AGGTGGCCGGAGAAGGC	NO	NO	Yes Yes	NO	UbD UbD
6	57472201	For	ATTTAGATAAAAAGAGG	NO	NO	Yes	NO	UbD	17	21202005	For	TGAGAGGAGGTGGCCGG	NO	NO	Yes	NO	UbD
6	57467323	Rev	CATAAGCTA	NO	NO	Yes	NO	bD	17	21202015	For	ATGAGGCCGTGCCCAGC	NO	NO	Yes	Yes_rs34956489_0.000599041533546326	5 UbD
6	57467317	Rev	GACATAAGCTACAAACT	NO	NO	Yes	NO	UbD	17	21201981	For	ACTTCTCAC	NO	NO	Yes	Yes_rs8072533_0.000199680511182109	bD
6	57467303	Rev	ACTAGGTCTTGACAGGA	NO	NO	Yes	NO	UbD	17	21201934	Rev	CAGCCGTCACCTGGCTG	NO	NO	Yes	Yes_rs4986015_0.0483226837060703	UbD
6	57467282	Rev	AAAAAGCCACAACATTG	NO	NO	Yes	NO	UbD	17	21201894	Rev	GACAGGACGAGGTAAAG	NO	NO	Yes	Yes_rs8071865_0.000199680511182109	UbD
6 6	57467279 57466987	Rev For	AAGCCACAACATTGTTT GAAAATATTGCTTTGCA	NO NO	NO NO	Yes Yes	NO NO	UbD UbD	17 17	21201890 21201851	Rev Rev	GGACGAGGTAAAGCAGG TCCTTCCATTGAGCCCT	NO NO	NO NO	Yes Yes	NO Yes_rs8072386_0.000599041533546326	UbD UbD
6	57466969	For	AATGCTGAATTTATTCT	NO	NO	Yes	NO	UbD	17	21201851 21201851	For	AGGGCTCAATGGAAGGA	NO	NO	Yes	Yes_rs8072386_0.000599041533546326	
6	57466958	For	ATCTGCCCATGAATGCT	NO	NO	Yes	NO	UbD	17	20908081	For	GCCTTTCCTAGTGGAGC	NO	NO	NO	NO	UbD
6	57398081	For	TTACAGGGTACCTGATA	NO	NO	Yes	NO	UbD	17	20768850	Rev	ATTCCCTTCATTTTTT	NO	NO	Yes	Yes_rs114103783_0.151664551400957	UbD
6	57398058	For	TGAATTAGCAACCATAA	NO	NO	Yes	NO	UbD	17	20768816	Rev	AGAGTATTGTCATCTGC	NO	NO	NO	Yes_rs73298040_0.0849113375591752	UbD
6	57398047	For	TCCAATTAAATTGAATT	NO	NO	Yes	NO	UbD	17	20768803	Rev	CTGCATGAGCAAAGGGT	NO	Yes_FP	NO	Yes_rs76135364_0.0476850724176051	UbD
6	57398009	For	AATAAAGCAGCACTTTC	NO	NO	Yes	NO	UbD	17	20768803	For	ACCCTTTGCTCATGCAG	NO	Yes_FP	NO	Yes_rs76135364_0.0476850724176051	UbD
6 6	57398008 57397982	For For	TAATAAAGCAGCACTTT CAGATAAGCGTCATCTG	NO NO	NO NO	Yes Yes	NO NO	UbD UbD	17 17	20768788 20768788	Rev For	GTTCATCACCACATCTT AAGATGTGGTGATGAAC	NO NO	Yes_FP Yes_FP	NO NO	Yes_rs78365129_0.026876285425454 Yes_rs78365129_0.026876285425454	UbD UbD
6	57397982	For Rev	GTGAAATAATATTCTAT	NO	NO	Yes	NO	UBD	17	20768788	For Rev	TCATGTGTGTGTGATGAAC	NO	Yes_FP NO	NO	Yes_rs62066974_0.0111197912338148	UbD
6	57372480	Rev	TTGAATAATGGAATGAA	NO	NO	Yes	NO	UbD	17	20768744	For	CAACATTAGACACATGA	NO	NO	NO	Yes_rs62066974_0.0111197912338148	UbD
6	57372437	Rev	TAATTGAAGCGGTTTCA	NO	NO	Yes	NO	UbD	17	20768730	Rev	TTGTAAGGTAAACATTC	NO	NO	NO	Yes_rs4605228_0.054382927398646	UbD
6	57372436	Rev	AATTGAAGCGGTTTCAC	NO	NO	Yes	NO	UbD	17	20768730	For	GAATGTTTACCTTACAA	NO	NO	NO	Yes_rs4605228_0.054382927398646	UbD
6	57372199	For	CTCCCTATTTGCCCTTC	NO	NO	Yes	NO	UbD	17	18541296	Rev	CTTGGCCCCGCCCTACA	NO	NO	Yes	Yes_rs2386412_0.121642631212137	UbD
6	57372126	For	CAGGTTTTT	NO	NO	Yes	NO	bD	17	18395647	For	GAACCAAGGAAAGATAT	NO	NO	Yes	NO	UbD
6 6	57246773	For	GAAGACTTAGGATTTCT	NO NO	NO	Yes	NO	UbD UbD	17 17	17770355	Rev	CCTAGCCCCCAGGTGGG	Yes NO	NO NO	Yes NO	Yes_rs11657074_0.281749201277955 NO	UbD UbD
6	57246708 57244893	For Rev	ATCATTTTGATATTCTT ATGATGAGA	NO	NO NO	Yes Yes	Yes_rs6913779_0.00319488817891374	bD	17	15639142 14095639	Rev Rev	GGCTGGACCGACAGGAG AGAATTAATGTGGGATG	NO	NO	Yes	NO	UbD
6	52847273	For	ACACACACA	NO	NO	Yes	NO	bD	17	14095639	For	CATCCCACATTAATTCT	NO	NO	Yes	NO	UbD
6	47649573	Rev	AACAATTTGCTTGGCCT	Yes	Yes_TP		NO	UbD	17	13977813	Rev	AGAGAAAAAGGCAGAAA	Yes	Yes_TP	Yes	NO	UbD
6	47649573	For	AGGCCAAGCAAATTGTT	Yes	Yes_TP		NO	UbD	17	10357281	Rev	GTCACTGAAATTTCCAC	NO	NO	NO	Yes_rs3826444_0.29452875399361	UbD
6	43014298	Rev	ACCCACCAACCCATCAA	Yes	Yes_TP	Yes	NO	UbD	17	10258155	For		NO	NO	Yes	Yes_rs5010940_0.00439297124600639	bD

																		-
6	430	014298	For	TTGATGGGTTGGTGGGT	Yes	Yes_TP	Yes	NO	UbD	17	10258155	Rev	AAAAAAAA	NO	NO	Yes	Yes_rs5010940_0.00439297124600639	Ub
6			Rev	TACGGCTCGCCCAGGAC	NO	Yes_FP	NO		UbD	17	10258155	Rev	AACAACCCA	NO	NO	Yes		bD
6			For	GAACACTCCTCGCTGCT	Yes	Yes_TP	Yes		UbD	17	10258155	For	TGGGTTGTT	NO	NO	Yes		Ub
6			For	TCTGACTCCTCCTGAGA	Yes	Yes_TP	Yes		UbD	17	10258153	For		NO	NO	Yes	Yes_rs398100417_0.00439297124600639	
6			Rev	ACCCATTGTTTTTTGCC	Yes	NO	Yes		UbD	17	10258153	Rev	AAAAAAAA	NO	NO	Yes	Yes_rs398100417_0.00439297124600639	
6			For	CAGAGACTTCTACCCTA	Yes	Yes_TP	Yes		UbD	17	10258153	Rev	ACAACCCAG	NO	NO	Yes	Yes_rs398100417_0.00439297124600639	
6			Rev For	ATCGGGAGCGGGATCGA TCGATCCCGCTCCCGAT	NO NO	NO NO	NO NO		UbD UbD	17 17	10258153 8387438	For For	CTGGGTTGT	NO Yes	NO	Yes	Yes_rs398100417_0.00439297124600639 NO	UbD
6			Rev	GGGAGCGGGGATCGAGAC		NO	NO		UbD	17	7124751	For	ACAAATGGATAAGTAAC TCAGGAACT	NO	Yes_TP NO	Yes NO	NO	bD
6			For	GTCTCGATCCCGCTCCC	NO	NO	NO	Yes NA 0.00156739811912226	UbD	17	7124750	For	TCAGGAACT	Yes	NO	Yes	NO	bD
6			Rev	GAGCGGGGATCGAGACCG	NO	NO	NO	Yes NA 0.00209200949675009	UbD	17	5424129	For	CCCTGAGACCTGCCCCA	NO	NO	NO	Yes rs12946467 0.20926517571885	UbD
6			For	CGGTCTCGATCCCGCTC	NO	NO	NO	Yes NA 0.00209200949675009	UbD	17	5421005	For	TGCCCAGCTCCTTCATT	NO	NO	NO	NO	UbD
6			Rev	CGGGATCGAGACCGAGA	NO	NO	NO		UbD	17	5036383	Rev	TGCCACCCGCCCTCTGA	NO	NO	Yes	NO	UbD
6			For	TCTCGGTCTCGATCCCG	NO	NO	NO		UbD	17	5036210	Rev	TCCCGCCGAATTTTCTG	NO	NO	Yes	NO	UbD
6	319	922356	Rev	ATCGAGACCGAGACCGA	NO	Yes_FP	NO		UbD	17	5036210	For	CAGAAAATTCGGCGGGA	NO	NO	Yes	NO	UbD
6	319	922356	For	TCGGTCTCGGTCTCGAT	NO	Yes_FP	NO	Yes_NA_0.0036465416986971	UbD	17	5036152	For	TCCATGGGCGGCTCTGG	NO	NO	Yes	NO	UbD
6	245		Rev	CCCATCACAGGACCTGC	NO	NO	NO	Yes_rs34829630_0.287739616613419	UbD	17	5036148	For	AGCATCCATGGGCGGCT	NO	NO	Yes	NO	UbD
6	108	887251	For	GGGCTCTTTCGGCAGCG	Yes	Yes_TP	Yes	NO	UbD	17	5036138	For	CCCAAGACTCAGCATCC	NO	NO	NO	NO	UbD
6	658	89192	Rev	CTCTCCCCTCCCACCCC	NO	NO	Yes	NO	UbD	17	5036122	For	CACCAGGGCTCCAGAGC	NO	NO	NO	NO	UbD
6	631	18921	Rev	TTTTTTTTTCTGAAGGAC	NO	Yes_FP	Yes	Yes_rs202215504_0.246373112939005	UbD	17	5036110	For	CCAGTTGGGTCCCACCA	NO	NO	NO	NO	UbD
6	326	64526	Rev	TGTGGGAAGAGTGGAGC	Yes	Yes_TP	Yes	NO	UbD	17	5036106	For	CCTTCCAGTTGGGTCCC	NO	NO	NO	NO	UbD
6	326	64526	For	GCTCCACTCTTCCCACA	Yes	Yes_TP	Yes	NO	UbD	17	4686340	Rev	CCGCAAGAAATTTCACC	NO	NO	Yes	NO	UbD
6	350	0940	Rev	TTAAACTCTATGTTGCT	NO	NO	Yes	NO	UbD	17	4686340	For	GGTGAAATTTCTTGCGG	NO	NO	Yes	NO	UbD
6	348	8051	For	GGGCGATGAACCCGGAG	NO	Yes_TP	Yes		UbD	17	4458314	Rev	GGATGCCAGGGTGCGCG	Yes	NO	Yes	NO	UbD
6	335		Rev		NO	NO	Yes		UbD	17	4350373	Rev	TGACCACCACCCCCGT	Yes	NO	Yes		UbD
6	335		Rev	GCTCTGACAACTTCACA	NO	NO	Yes		UbD	17	2597723	Rev	TCCCCGCTGCGTCCCTG	NO	NO	Yes	NO	UbD
7			Rev	GTCATGTAATTGAAATT	Yes	NO	Yes	Yes_rs56112490_0.237819488817891	UbD	17	2597723	For	CAGGGACGCAGCGGGGA	NO	NO	Yes	NO	UbD
7			For	TCCCATTCGGAGGAGGA	NO	NO	Yes		UbD	18	77096644	Rev	GTCCTTCGCGAGCCATG	NO	Yes_FP	NO		UbD
7			Rev	CTCTCTCTCATTATTAC	NO	NO	Yes		UbD	18	77096644	For	CATGGCTCG	NO	Yes_FP	NO	Yes_rs201591038_0.0408331955695156	Ub
7			For	GTGATATATTATAGTAA	Yes	NO	Yes		UbD	18	61231143	For	AAAAAAAAAAAATTATC	Yes	NO	Yes	NO	UbD
7			Rev	TTGTATTTCCATTACAG	NO	NO	NO	NO	UbD	18	61226740	For	CAAAACACGCATCTTTT	Yes	NO	Yes	NO	UbD
7			Rev	ATTTGTTTTACTTGTGA	NO	NO	Yes	NO	UbD	18	54354076	For	AAATCTTTCTTTTCAGG	Yes	Yes_TP	Yes	NO	UbD
7			Rev	CTTGTGATATACAGAGA GATTTTAAAGATTATGT	NO	NO	Yes		UbD	18	33848663	Rev	GAAACTTTATGCTAAAA	Yes	Yes_TP	Yes	NO	UbD
7			For		NO	NO	Yes		UbD	18	32886528	For	AACATTTTAGAGTTCTG	Yes	NO	Yes	NO	UbD
7			For	GCACCTAGTAATAGGGT	NO NO	NO NO	Yes	NO NO 151552663	UbD bD	18	32650341	Rev	AAATCACATTCCACATG	Yes	NO	Yes	Yes_rs3744923_0.297523961661342 NO	UbD UbD
7			For For	ACACACACA	NO	NO	NO NO	NO_151552663	bD	18 18	28666526 28666526	Rev For	ACATAAACAATAAAACC GGTTTTATTGTTTATGT	Yes Yes	Yes_TP Yes_TP	Yes Yes	NO	UbD
7						NO			UbD				ACAGCCCAAAGCAGGAG				NO	UbD
7			For Rev	CACCCAGGAGGAGAGGG CATTCTGCTCTCCAGCC	NO	NO	Yes NO		UbD	18 18	9859134 3277466	For Rev	TATTTCACAGAAGTACT	Yes NO	NO NO	Yes Yes	NO	UbD
7			For	GGTTGGGGGGGGGGGGGGGGG		NO	NO		UbD	18	58600105	Rev	GCTCGCGAGCCCCAGCC	NO	NO	NO	Yes_NA_0.130726763348715	UBD
7			For	CACCCTGATTGGGCATG	NO	NO	NO	Yes_rs1131885_0.279725739112725	UbD	19	55903158	Rev	TGTGATCATGAGTCCAT	Yes	Yes TP	Yes	NO	UbD
7			For	GCCCCATTACCTCTTCC	NO	Yes TP	Yes	NO	UbD	19	54724794	Rev	GGACAGAGA	NO	NO	Yes	NO	bD
,			For	AGCCCCATTACCTCTTC	NO	NO	NO		UbD	19	54257190	For	GGGCCAATACATGCATC	Yes	NO	Yes	NO	UbD
7			For	TAGCCCCATTACCTCTT	NO	NO	NO		UbD	19	53651845	For	TTCAAACTTGTTTTCCC	Yes	NO	Yes	NO	UbD
7			Rev		NO	NO	Yes		UbD	19	52920006	Rev	TTGCCATACAGTTTGTA	Yes	Yes TP	Yes	NO	UbD
7			For		NO	NO	Yes		UbD	19	50764079	Rev	CACACACACTTGCACAC	NO	NO_	Yes	NO	UbD
7			For	TGTTAAGGA	NO	NO	Yes	NO	Ub	19	50764017	Rev	TCATGCACGCACACACA	NO	NO	Yes	Yes_rs551937796_0.000287092328892972	
7			For	GAGCTCCCTCCCTTGCC	NO	NO	NO	NO_142479787	UbD	19	50496281	Rev	GGGCTCCCTCCTGGTCT	Yes	NO	Yes	NO	UbD
7			Rev	TCAGCCCCACCACCTTT	NO	NO	Yes	NO	UbD	19	49894027	For	ACACCATTTCCTGCTTC	Yes	NO	Yes	NO	UbD
7			Rev	ACCACCTTTTGAGTTCA	NO	NO	NO		UbD	19	49207255	Rev	TCAAAGAATGGGCCAGC	Yes	Yes_TP	Yes	NO	UbD
7			Rev	CCACCTTTTGAGTTCAA	NO	NO	Yes	Yes_rs564920652_0.000199680511182109		19	46327209	Rev	GCCCCGCAAGCCACCCT	Yes	NO	Yes	NO	UbD
7			Rev	TTCAAATCCTTTTCCCT	NO	NO	Yes	NO	UbD	19	45157113	For	CCCGCGTACCCCAGGCC	Yes	NO	Yes	NO	UbD
7			Rev	GGGCCTAGGTATCAGTG	NO	NO	Yes	NO	UbD	19	45024879	Rev	CACACACACGCACACAC	NO	NO	Yes	NO	UbD
7			For	CACTGATACCTAGGCCC	NO	NO	Yes	NO	UbD	19	41387656	Rev	TCCATCAGTTCAGTGAG	NO	NO	Yes	Yes_rs10425176_0.299210232637995	UbD
7			Rev	ATGTGGGTCAGGCCAGA	NO	NO	Yes		UbD	19	41387656	For	CTCACTGAA	NO	NO	Yes	Yes_rs10425176_0.299210232637995	Ub
7			For	TCTGGCCTGACCCACAT	NO	NO	Yes		UbD	19	41382653	Rev	GGGCACACTAGTTCCCC	NO	NO	Yes	NO	UbD
7	142	2460226	For	ATTGTCTCCTTCTCTGG	NO	NO	Yes	NO	UbD	19	41382612	Rev	AATCCCCCGACCCTCCT	NO	NO	Yes	Yes_rs2316208_3.48705431087089e-05	UbD
7	142	2460216	For	ATCCAAGATTATTGTCT	NO	NO	Yes	Yes_rs549425727_0.000798722044728434	UbD	19	41382607	Rev	CCCGACCCTCCTCATCA	NO	NO	Yes	Yes_rs139072168_0.00085438335809806	8UbD
7	142	2460212	For	TTCCATCCAAGATTATT	NO	NO	Yes	NO	UbD	19	41381868	Rev	CCTCCTCCCTGGGAGAG	NO	NO	Yes	NO	UbD
7	142	2460203	For	TTTCCATCC	NO	NO	Yes	NO	bD	19	40901647	Rev	GGGGCAGGT	NO	NO	NO	Yes_NA_0.000133500208594076	Ub
7	142	2460201	For	GTTTTCCAT	NO	NO	Yes	NO	bD	19	40901647	For	CGGCTGGGA	NO	NO	NO	Yes_NA_0.000133500208594076	Ub
7	142	2460200	For	TTTCCATCC	NO	NO	Yes	NO	bD	19	40368498	Rev	GACCCCTTTCATCTGGC	NO	NO	Yes	NO	UbD
7			For	GAAAGCAATCACAGGCT	NO	NO	Yes		UbD	19	38135444	For	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Yes	NO	NO	NO	UbD
7	142	2458337	For	AGAAAGCAATCACAGGC	NO	NO	Yes		UbD	19	35506729	Rev	GCCAAGTCC	NO	NO	NO	Yes_rs2290647_0.289850249584027	Ub
7			For	ATTAGCAGAAAGCAATC	NO	NO	Yes		UbD	19	35506729	For	TCTCCAGCGGACTTGGC	NO	NO	NO	Yes_rs2290647_0.289850249584027	UbD
7			For	TGTTAAGGATTTCTAAT	NO	NO	Yes		UbD	19	34986776	Rev	TGGCAAAACTAAAATTT	Yes	NO	Yes	Yes_rs35570240_0.262779552715655	UbD
7			For	CCTCACTGTGCTTGTTA	NO	NO	Yes		UbD	19	34986767	Rev	TAAAATTTTGATAAGGT	Yes	NO	Yes	Yes_rs35126035_0.263977635782748	UbD
7			For	GAGCTCCCTCCCTTGCC	NO	NO	NO		UbD	19	34922865	Rev	CCCTTATACAACTTTGC	Yes	Yes_TP	Yes	NO	UbD
7			For	GGTGGCAGAGCTCCCTC	NO	NO	NO	NO	UbD	19	33700445	Rev	GGTCGGGGGGTACAGACA	Yes	NO	Yes	Yes_rs2303093_0.284944089456869	UbD
7			For		NO NO	NO NO	NO	NO	UbD	19 19	33695830	Rev	TGCCGCCCCTGTGGGCC	Yes NO	NO	Yes	Yes_rs11666900_0.218051118210863	UbD
7			Rev For	GCCCTGACTCTGTCATG CATGACAGAGTCAGGGC	NO	NO	Yes Yes		UbD UbD	19 19	33490442 33490429	For For	GAGCAGGACCAGCTGGG	NO	NO NO	Yes Yes	Yes_NA_0.175475280873477 NO	UbD UbD
, ,			Rev	TGACTCTGTCATGGGCA	NO	NO	Yes		UbD	19	33490429	For	AGCAATGCACTAATTTA	NO	NO	Yes	NU Yes_rs2944021_0.183905750798722	UbD
,			For	TGCCCATGACAGAGTCA	NO	NO	Yes	Yes_rs372792593_0.0816339455351488 Yes_rs372792593_0.0816339455351488	UbD	19	33444455	For	CTTAGCAATGCACTAATTA	NO	NO	Yes Yes	Yes_rs2944021_0.183905750798722 NO	UbD
, ,			Rev	GGCACCAGGCTCCTCTG	NO	NO	Yes		UbD	19	21299774	Rev	TTAGTTCATAACCTTTT	NO	Yes TP	Yes	NO	UbD
7			For	CAGAGGAGCCTGGTGCC		NO	Yes		UbD	19	20844340	Rev	CTGGTTCTTCTCCTAAA	Yes	NO	Yes	NO	UbD
7			Rev	TCTGCTGGGCAGCCCTG	NO	NO	Yes		UbD	19	19750822	For	CTGGGAAACGAGGGGAT	NO	NO	NO	Yes_rs45458192_0.239416932907348	UbD
, 7			For	CAGGGCTGCCCAGCAGA		NO	Yes		UbD	19	19730822	For	CTGTCCCGGCCTCCACC	NO	NO	NO	Yes_rs2301659_0.297523961661342	UbD
7			Rev	CTGCTGGGCAGCCCTGT		NO	Yes		UbD	19	19035354	Rev	CAGGCTGGCTCATCCTA	Yes	NO	Yes	NO	UbD
7			For	ACAGGGCTGCCCAGCAG		NO	Yes		UbD	19	17887563	Rev	ACACCAGGCGGAGACAT	Yes	NO	Yes	Yes_rs13345379_0.290535143769968	UbD
7				TGCTGGGCAGCCCTGTG		NO	NO		UbD	19	17516400	Rev	GCCAGACTCTAAAGGGG	Yes	Yes_TP	Yes	NO	UbD
7			For	CACAGGGCTGCCCAGCA		NO	NO		UbD	19	17366110	For	AAAAAAACA	NO	NO	Yes	NO	Ub
7			Rev	GCCCTGTGCCTCCTGGG		NO	Yes		UbD	19	16593189	For	CCTGTCTCAACAAAACA	Yes	NO	Yes	NO	UbD
			For	CCCAGGAGGCACAGGGC		NO	Yes		UbD	19	16339886	Rev	CTCCGTCCA	NO	NO	Yes	NO	bD
7			Rev		NO	Yes FP	Yes		UbD	19	16186815	For	ACGTGACCC	Yes	Yes_TP	Yes	NO	Ub
7	142		For	CTCTACATATTTTCCCT	NO	Yes_FP	Yes		UbD	19	12577723	Rev	AACTGAGTTTATATCCC	NO	NO	Yes		UbD
					NO	NO	Yes		UbD	19	11230650	For	AAACAAACA	NO	NO	Yes		bD
7	142		Rev				Yes		UbD	19	10091280	For	TCTCTCTCACACACACA	NO	NO	NO		UbD
7	142 142	2168662	Rev For	GACTCCAGCGTCCACTG	NO	NO												
7 7 7	142 142 142	2168662 2168662			NO NO	NO NO	Yes	NO	UbD	19	10091267	For	ACTCAGAATCTCTCTCT	NO	NO	Yes	NO	UbD
7 7 7 7	142 142 142 142	2168662 2168662 2139271	For		NO				UbD UbD	19 19	10091267 9006418	For Rev	ACTCAGAATCTCTCTCT CTCCCTCCCCAACAGCT	NO NO	NO NO	Yes NO		
7 7 7 7 7	142 142 142 142 142	2168662 2168662 2139271 2131957	For For	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA	NO	NO	Yes	NO									NO Yes_9006418_rs201532862_0.1522801963 Yes_9006418_rs201532862_0.1522801963	i3UbD
7 7 7 7 7 7	142 142 142 142 142 142	2168662 2168662 2139271 2131957 2131747	For For Rev	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA	NO NO NO	NO NO	Yes Yes	NO Yes_rs368257836_0.214513788098694	UbD	19	9006418	Rev	CTCCCTCCCCAACAGCT	NO	NO	NO	Yes_9006418_rs201532862_0.1522801963 Yes_9006418_rs201532862_0.1522801963	i3UbD
7 7 7 7 7 7 7	142 142 142 142 142 142 142	2168662 2168662 2139271 2131957 2131747 2131747	For For Rev Rev	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA AGGACCTCCAGGCTGTC GACAGCCTGGAGGTCCT GGACCTCCAGGCTGTCC	NO NO NO NO	NO NO NO	Yes Yes Yes	NO Yes_rs368257836_0.214513788098694 Yes_rs368257836_0.214513788098694	UbD UbD	19 19	9006418 9006418	Rev For	CTCCCTCCCCAACAGCT AGCTGTTGGGGAGGGAG	NO NO	NO NO	NO NO	Yes_9006418_rs201532862_0.1522801963 Yes_9006418_rs201532862_0.1522801963 Yes_rs77248019_0.224375620157494	i3UbD i3UbD
7 7 7 7 7 7 7 7	142 142 142 142 142 142 142 142	2168662 2168662 2139271 2131957 2131747 2131747 2131746	For For Rev Rev For	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA AGGACCTCCAGGCTGTC GACAGCCTGGAGGTCCT	NO NO NO NO	NO NO NO NO NO	Yes Yes Yes Yes Yes	NO Yes_rs368257836_0.214513788098694 Yes_rs368257836_0.214513788098694 Yes_NA_0.20873820754717 Yes_NA_0.20873820754717	UbD UbD UbD UbD UbD	19 19 19 19 19	9006418 9006418 9006416 9006416 9002636	Rev For Rev	CTCCCTCCCCAACAGCT AGCTGTTGGGGAGGGAG CCCTCCCCAACAGCTCA	NO NO NO	NO NO NO NO	NO NO NO NO	Yes_9006418_rs201532862_0.152280196 Yes_9006418_rs201532862_0.152280196 Yes_rs77248019_0.224375620157494 Yes_rs77248019_0.224375620157494 NO	i3UbD i3UbD UbD UbD UbD
7 7 7 7 7 7 7 7 7 7 7	142 142 142 142 142 142 142 142 142 142	2168662 2139271 2131957 2131747 2131747 2131746 2131746 2131746 2099571	For For Rev Rev For Rev For Rev	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA AGGACCTCCAGGCGTGTC GACAGCCTGGAGGTCCT GGACCAGCCTGGAGGTCC GGACAGCCTGGAGGTCC GACAAATCGGGGCTGCC	NO NO NO NO NO	NO NO NO NO NO NO	Yes Yes Yes Yes Yes NO	NO Yes_rs368257836_0.214513788098694 Yes_rs368257836_0.214513788098694 Yes_NA_0.20873820754717 Yes_NA_0.20873820754717 Yes_NA_0.118193939393939	UbD UbD UbD UbD UbD UbD	19 19 19 19 19 19	9006418 9006418 9006416 9006416 9002636 9002636	Rev For Rev For Rev For	CTCCCTCCCCAACAGCT AGCTGTTGGGGAGGGAG CCCTCCCCAACAGCTCA TGAGCTGTTGGGGAGGG TGGATGCTGTCTGCACC GGTGCAGACAGCATCCA	NO NO NO NO NO	NO NO NO NO NO	NO NO NO NO NO	Yes_9006418_rs201532862_0.1522801963 Yes_9006418_rs201532862_0.1522801963 Yes_rs77248019_0.224375620157494 Yes_rs77248019_0.224375620157494 NO	i3UbD i3UbD UbD UbD UbD UbD
7 7 7 7 7 7 7 7 7	142 142 142 142 142 142 142 142 142 142	2168662 2139271 2131957 2131747 2131747 2131746 2131746 2131746 2099571	For For Rev Rev For Rev For	CTATGCCATGCTGTGGC AGGAAAATCAAGGCCCA AGGACCTCCAGGCTGTC GACAGCCTGGAGGTCCT GGACCTCCAGGCTGTCC GGACAGCCTGGAGGTCC	NO NO NO NO NO	NO NO NO NO NO	Yes Yes Yes Yes Yes	NO Yes_rs368257836_0.214513788098694 Yes_rs368257836_0.214513788098694 Yes_NA_0.20873820754717 Yes_NA_0.20873820754717 Yes_NA_0.118193939393939	UbD UbD UbD UbD UbD	19 19 19 19 19	9006418 9006418 9006416 9006416 9002636	Rev For Rev For Rev	CTCCCTCCCCAACAGCT AGCTGTTGGGGAGGGAG CCCTCCCCAACAGCTCA TGAGCTGTTGGGGAGGG TGGATGCTGTCTGCACC	NO NO NO NO	NO NO NO NO	NO NO NO NO	Yes_9006418_rs201532862_0.152280196 Yes_9006418_rs201532862_0.152280196 Yes_rs77248019_0.224375620157494 Yes_rs77248019_0.224375620157494 NO	i3UbD i3UbD UbD UbD UbD

	-																
7	142099385	For	TTTAGGGTCTCTAGGAG	NO	NO	NO	NO	UbD	19	9002612	For	AGGGCTTTTGGGGTCAG	NO	NO	Yes	NO	UbD
7	142099379	For	CCTCTGTTTAGGGTCTC	NO	NO	NO	NO	UbD	19	9002454	Rev	GCTGGACAG	NO	NO	Yes	Yes_rs372480224_0.0341042528207485	i Ub
7	142099369	For	CAAAGAGAGGCCTCTGT	NO	NO	NO	NO	UbD	19	9002454	For	AATAGAGGCTGTCCAGC	NO	NO	Yes	Yes_rs372480224_0.0341042528207485	6 UbD
7	142099358	For	AAAGTGAGGAGCAAAGA	NO	NO	NO	NO	UbD	19	9001833	Rev	TGGACCCATGAGTGAGT	NO	Yes_TP	Yes	NO	UbD
7	142099354	For	TGAGGAGCA	NO	NO	NO	NO	bD	19	9001833	For	ACTCACTCATGGGTCCA	NO	Yes_TP	Yes	NO	UbD
7	142099351	For		NO	NO	NO	NO	bD	19	8999560	Rev	CCAGGCCCAAGAAGGAT	NO	NO	NO	Yes_rs77501519_8.01853171774768e-05	
7	142099350	For		NO	NO	NO	NO	bD	19	8999560	For	ATCCTTCTTGGGCCTGG	NO	NO	NO	Yes_rs77501519_8.01853171774768e-05	
7	142012957	For	CCAGGGCCA	Yes	NO	Yes	Yes_rs2003790_0.206669329073482	bD	19	8999538	Rev	AGCCACCAAAGTGGATG	NO	NO	Yes	Yes_rs78334969_0.000166054885509526	
7	141952110	Rev		NO	NO	NO	Yes_rs1052406_0.286703170970906	UbD	19	8999538	For	CATCCACTTTGGTGGCT	NO	NO	Yes	Yes_rs78334969_0.000166054885509526	
7	141760293	Rev		NO	NO	Yes	NO	UbD	19	8999474	Rev	GAGCAGCTATACTGGGA	NO	NO	NO	Yes_rs199946350_0.0366018739821062	
7	141740077	Rev		Yes	NO	Yes	Yes_rs2960753_0.279952076677316	UbD	19	8999474	For	TCCCAGTATAGCTGCTC	NO	NO	NO	Yes_rs199946350_0.0366018739821062	
7	141635538	For		NO	NO	Yes	NO	UbD	19	8999386	Rev	ATGGTGAGTAGTTGTGA	NO	NO	Yes	Yes_rs77049866_0.0632257578042528	UbD
7	141635534	For	CACTCCCCCAAGTTTCT	NO	NO	NO	NO	UbD	19	8999386	For	TCACAACTACTCACCAT	NO	NO	Yes	Yes_rs77049866_0.0632257578042528	UbD
7	138356732	For		NO	NO	NO	NO	UbD	19	8999383	Rev	GTGAGTAGTTGTGATGT	NO	NO	Yes	Yes_rs79909361_0.060441952865618	UbD
7	138356664	For	AGTGGTGAG	Yes	NO	Yes	NO	bD	19	8999383	For	ACATCACAACTACTCAC	NO	NO	Yes	Yes_rs79909361_0.060441952865618	UbD
7	134221826	Rev		NO	NO	Yes	Yes_rs28545160_0.105862908837857	UbD	19	8999311	For	ATAGCCAGGCAGGGAGC	NO	NO	Yes	Yes_rs11673197_0.240814696485623	UbD
7	134221826	For		NO	NO	Yes	Yes_rs28545160_0.105862908837857	UbD	19	8999305	For	CATTCAATAGCCAGGCA	NO	NO	NO	NO	UbD
7	128119648	Rev		NO	NO	Yes	NO	UbD	19	8321328	For	CCAAGCAGG	NO	NO	Yes	NO	bD
	127670327	Rev		NO	NO	NO	Yes_NA_0.0407994553588796	UbD	19	8154990	Rev	CCCCAGGAG	NO	NO	NO	Yes_rs35002391_0.295864132923399	Ub
7	127670327	For		NO NO	NO	NO	Yes_NA_0.0407994553588796	UbD	19	8154990	For	CCGCTGCCCTCCTGGGG	NO	NO	NO	Yes_rs35002391_0.295864132923399	UbD
7	124499002 120450678	For Rev		NO	Yes_TP NO	Yes Yes	NO NO	UbD UbD	19 19	7619647 6836844	Rev For	GGACGGGGACCCGAGGTG AGAGATGGACACACACA	Yes NO	Yes_TP NO	Yes	Yes_rs599328_0.020751378558054 NO	UbD UbD
			TTTTTTTC	NO			NO	Ub		6471567					Yes		
	111423074 107577456	Rev For	TTTCCCCAA	NO	NO NO	NO		bD	19 19	64711567	Rev For	GCAGGCTTCGAAGTGCT GCCCTAACCGGTCTCAA	Yes Yes	NO NO	Yes	Yes_rs8105247_0.220447284345048 Yes_rs11882213_0.254992012779553	UbD UbD
						Yes	Yes_rs56285692_0.265974440894569								Yes	NO	
7	103838120 102412901	For		Yes NO	NO NO	Yes NO	Yes_rs13238183_0.278154952076677	UbD UbD	19	5787215 5787215	Rev	CCTCCCACC TGGGAGATGGTGGGAGG	NO NO	NO NO	Yes	NO	Ub UbD
7	102412901	Rev For		NO	NO	NO	Yes_rs2539288_0.285879725370171	UbD	19 19	5787215	For Rev	CTCCCACCA	NO	NO	Yes NO	Yes rs28420751 0.040650406504065	Ub
7	102412901	Rev		NO	NO	Yes	Yes_rs2539288_0.285879725370171 NO	UbD	19	5787214	For	GTGGGAGATGGTGGGAG	NO	NO	NO	Yes_rs28420751_0.040650406504065	UbD
7	100613112	Rev		NO	NO	Yes	NO	UbD	19	4960583	For	GTGAGACTGTCCCCACA	NO	NO	NO	NO	UbD
7	100612869	For		NO	NO	Yes	Yes_rs74554402_0.296468979236603	UbD	19	4500585	Rev	GGGTGACTGGTGCCATG	Yes	NO	Yes	NO	UbD
7	100612842	For		NO	NO	Yes	NO	UbD	19	4513143	For	CATGGCACCAGTCACCC	Yes	NO	Yes	NO	UbD
7	100612839	For		NO	NO	Yes	NO	UbD	19	4511581	Rev	ACCAAGGATGCTGTGTG	NO	NO	Yes	Yes_4511581_rs75029810_0.2179141076	
7	100416332	Rev		Yes	NO	Yes	Yes_rs314364_0.234424920127796	UbD	19	4511581	For	CACACAGCATCCTTGGT	NO	NO	Yes	Yes_4511581_rs75029810_0.2179141076	
,	100374265	Rev	AGGGGAGGGAAGGGAAG		NO	Yes	NO	UbD	19	4511578	Rev	AAGGATGCTGTGTGCAG	NO	NO	Yes	Yes_rs62115186_0.225828262339419	UbD
,	99507346	Rev		NO	NO	NO	NO	UbD	19	4511578	For	CTGCACACAGCATCCTT	NO	NO	Yes	Yes rs62115186 0.225828262339419	UbD
7	82581488	Rev		Yes	Yes_TP	Yes	NO	UbD	19	4511575	Rev	GATGCTGTGTGTGCAGTGG	NO	NO	Yes	Yes_rs62115185_0.25306404506102	UbD
7	82581488	For		Yes	Yes TP	Yes	NO	UbD	19	4511575	For	CCACTGCACACAGCATC	NO	NO	Yes	Yes_rs62115185_0.25306404506102	UbD
7	75614863	For		Yes	Yes TP	Yes	NO	UbD	19	4511491	Rev	CTGACCGGTACCAAGGA	NO	NO	NO	Yes_rs10423324_0.00416571559004793	
7	74524986	Rev	00001000101000001	NO	NO	Yes	NO	UbD	19	4511491	For	TCCTTGGTACCGGTCAG	NO	NO	NO	Yes_rs10423324_0.00416571559004793	
7	73771749	Rev	TGTGGCTTG	NO	Yes_FP	NO	Yes rs75980392 0.147382654046745	Ub	19	4453324	For	ACAACCTGTGTCCACCT	Yes	NO	Yes	NO	UbD
7	72738762	Rev		NO	NO	Yes	NO	UbD	19	2341059	Rev	CTGGTGCACCCGAGGAC	Yes	Yes TP	Yes	NO	UbD
7	65552230	For		NO	NO	Yes	NO	UbD	19	968345	For	CAACAGAGCAAGACTCT	Yes	NO	Yes	NO	UbD
7	45697295	Rev		Yes	Yes_TP	Yes	NO	Ub	20	48562083	Rev	GGCATGCAACCTCTTTG	NO	NO	Yes	NO	UbD
7	45697295	For		Yes	Yes TP	Yes	NO	UbD	20	45808688	Rev	AAAAAAAAA	Yes	Yes	Yes	Yes rs6066225 0.273961661341853	Ub
7	45123937	For		NO	NO	NO	Yes_rs112035890_0.00255399883245768	UbD	20	43743534	For	ACACACGCGCACACACA	NO	NO	Yes	Yes rs11700135 0.257787539936102	UbD
7	36447349	For		NO	Yes TP	Yes	NO	UbD	20	43743522	For	ACACACGCGCACACACA	NO	NO	NO	NO	UbD
7	30811183	Rev		NO	NO	NO	Yes rs371170994 0.111033052321691	UbD	20	33637606	For	TTATTCAGTTTTGAGAA	Yes	Yes TP	Yes	NO	UbD
7	21941861	For		NO	NO	Yes	NO	UbD	20	29589675	Rev	AAAAAAAA	NO	NO	Yes	Yes_rs74625909_0.134384984025559	Ub
7	18067479	Rev		NO	Yes TP	Yes	NO	UbD	20	29589675	For	ππππ	NO	NO	Yes	Yes_rs74625909_0.134384984025559	bD
7	14517650	For	TAATATTTACACACACA	NO	NO	Yes	Yes_rs397806961_0.298921725239617	UbD	20	26094689	Rev	TTTAGATGTTTTCCTAG	NO	NO	Yes	NO	UbD
7	7491873	For	AGTCTGTAAGGCAATTG	NO	NO	Yes	NO	UbD	20	26062036	Rev	GGAGGATGTAGCGGATA	NO	NO	Yes	Yes_rs77424811_0.24294471431876	UbD
7	4172109	Rev		Yes	NO	Yes	Yes_rs13224986_0.244808306709265	UbD	20	26062021	Rev	TACCTTCCGAAGTTTGT	NO	NO	Yes	Yes_rs79451834_0.261458568525627	UbD
7	2296722	Rev	CGCTGGTGTTCGGGCCT	Yes	NO	Yes	Yes_rs3815313_0.218051118210863	UbD	20	26061960	Rev	GCCGACTGAGGCGCAGA	NO	NO	Yes	Yes_rs144572655_0.299793127226756	UbD
7	1528947	For		NO	Yes	Yes	NO 1528947	UbD	20	26061922	Rev	AGGCAGTGACTTTGCTG	NO	NO	Yes	Yes_rs75066699_0.136006016429481	UbD
7	1528946	For	TGCTCCCCATCCCGGGC	NO	NO	NO	NO	UbD	20	26061922	For	CAGCAAAGT	NO	NO	Yes	Yes_rs75066699_0.136006016429481	Ub
7	1528945	For	CTGCTCCCCATCCCGGG	NO	NO	NO	NO	UbD	20	26061909	Rev	GCTGGGCACCCGCAGTG	NO	NO	NO	Yes_rs116264914_0.110130425005622	UbD
7	1132016	Rev	CGTGACCTCGAGCCACT	NO	Yes FP	NO	Yes_rs199736734_0.00322018487649644	UbD	20	26061909	For	CACTGCGGGTGCCCAGC	NO	NO	NO	Yes_rs116264914_0.110130425005622	UbD
7	1132016	For	AGTGGCTCG	NO	Yes FP	NO	Yes_rs199736734_0.00322018487649644	Ub	20	26061884	Rev	CCCAAGTGGAGATCCCC	NO	NO	NO	Yes_rs78196071_0.0967535923363491	UbD
7	940258	Rev	ACCTTTGCCCCTAGGAG	NO	NO	Yes	Yes_NA_0.000278736679602907	UbD	20	26061884	For	GGGGATCTCCACTTGGG	NO	NO	NO	Yes_rs78196071_0.0967535923363491	UbD
8	143922788	Rev	ACCAAAGCGTGCAGAAA	NO	NO	NO	Yes_rs3802226_0.28594249201278	UbD	20	26061880	Rev	AGTGGAGATCCCCACTT	NO	NO	Yes	Yes_rs80023315_0.103899721448468	UbD
8	133041177	For	GAAGGAAGG	NO	NO	NO	NO	bD	20	26061880	For	AAGTGGGGATCTCCACT	NO	NO	Yes	Yes_rs80023315_0.103899721448468	UbD
8	129021000	For	ACAATGCTAAGCATGTG	Yes	NO	NO	NO	UbD	20	26061877	Rev	GGAGATCCCCACTTCGT	NO	NO	Yes	Yes_rs74473084_0.102631006740596	UbD
8	124664873	Rev	GAGGCACATATTGCCAC	Yes	Yes_TP	Yes	NO	UbD	20	26061877	For	ACGAAGTGGGGGATCTCC	NO	NO	Yes	Yes_rs74473084_0.102631006740596	UbD
8	124664873	For	GTGGCAATATGTGCCTC	Yes	Yes_TP	Yes	NO	UbD	20	26061859	For	ACGTGGAGGAGGAGGAA	NO	NO	Yes	Yes_rs74752031_0.164775826333588	UbD
8	117778911	For	GGAGTCCGCGAGCCGTA	NO	NO	NO	Yes_117778911_NA_0.0073687031082529	5UbD	20	18429539	For	TGGGCAAAA	NO	NO	NO	NO	bD
8	117778909	For	GGAGTCCGCGAGCCGTA	NO	NO	NO	NO	UbD	20	16729654	Rev	AAATTATCTTACACTGC	Yes	Yes_TP	Yes	NO	UbD
8	101721899	Rev		NO	NO	NO	Yes_rs142985461_0.245508452944295	UbD	20	4880132	For	GCCTTCTGCGCTCAATG	Yes	Yes_TP	Yes	NO	UbD
8	101721899	For		NO	NO	NO	Yes_rs142985461_0.245508452944295	UbD	20	4768475	Rev	AAGGTGCCTTTGGACCC	Yes	Yes_TP	Yes	NO	UbD
8	101721870	Rev		NO	NO	NO	Yes_rs146609644_0.217824438072334	UbD	20	3657803	Rev	TCCACACATTTTCTTGC	Yes	Yes_TP	Yes	NO	UbD
8	101721870	For	ATTCTACCGTTCATTTC	NO	NO	NO	Yes_rs146609644_0.217824438072334	UbD	21	47419780	Rev	CTCACGGGT	NO	NO	Yes	NO	bD
8	101721727	Rev		NO	Yes_FP	NO	Yes_rs139094790_0.105632898622499	UbD	21	46930992	For	CCCCACACACCACACAC	NO	Yes_TP	Yes	NO	UbD
8	101721727	For		NO	Yes_FP	NO	Yes_rs139094790_0.105632898622499	UbD	21	46086757	Rev	CTGCTGCGCGCCCAGCC	NO	NO	Yes	NO	UbD
8	101721451	Rev		NO	NO	NO	Yes_NA_0.000122838050314465	UbD	21	46086718	Rev	GCCCAGCTCCTGCCAGG	NO	Yes_TP	Yes	NO	UbD
8	101721451	For		NO	NO	NO	Yes_NA_0.000122838050314465	UbD	21	46086718	For	CCTGGCAGGAGCTGGGC	NO	Yes_TP	Yes	NO	UbD
8	101721442	Rev		NO	NO	NO	Yes_NA_0.000344409092400039	UbD	21	46020473	For	TCACTCACTCACTCACT	NO	NO	Yes	NO	UbD
8	101721442	For		NO	NO	NO	Yes_NA_0.000344409092400039	UbD	21	43897241	For	CACACCCTC	NO	NO	NO	NO	bD
8	101718932	For		NO	NO	NO	Yes_rs62513920_0.255470109757397	UbD	21	42852320	For	TGCCGGTGCTTTCACAG	NO	NO	Yes	Yes_rs734056_0.284544728434505	UbD
8	97257982	For		NO	NO	Yes	Yes_rs871798_0.236421725239617	UbD	21	42843962	Rev	GTTCATCCACTGAGAGC	NO	NO	Yes	Yes_rs458213_0.225239616613419	UbD
8	95718131	For	TTTTTTTT	NO	NO	NO	Yes_NA_0.0255563707507948	bD	21	42842713	Rev	GAGACATAGGTGATACC	NO	Yes_TP	Yes	NO	UbD
8	92082753	Rev	GCCACGCGC	Yes	NO	Yes	NO	bD	21	42824874	Rev	GAGCAAGAC	NO	NO	Yes	Yes_rs467798_0.275359424920128	bD
8	86126827	Rev		Yes	Yes_TP		NO	UbD	21	42809206	Rev	TGGCCTGAT	NO	NO	Yes	Yes_rs468646_0.232228434504792	bD
8	86126827	For		Yes	Yes_TP		NO	UbD	21	41506058	Rev	TGTCCAGAT	Yes	NO	Yes	Yes_rs403892_0.291333865814697	bD
8	86114525	Rev	GAAGAAAAAAGGTTTCA		Yes_TP		NO	UbD	21	40646230	For	CAGAGAGCGAGAGAGAG	NO	NO	Yes	NO	UbD
8	52733076	Rev	GACAGTGAAGAGGATGA		NO	NO	Yes_rs77409139_0.28971028971029	UbD	21	38469017	Rev	TATACCTGAAAAACAGA	Yes	NO	Yes	NO	UbD
8	52733076	For		NO	NO	NO	Yes_rs77409139_0.28971028971029	UbD	21	37728892	For	TTGATTTTA	Yes	Yes_TP	Yes	NO	bD
8	28186607	For	AGCAGCCCTCCGAGAAT		Yes_TP		Yes_rs2645721_0.223841853035144	UbD	21	34915324	For	AATTGGCCCGTGCGCCT	Yes	Yes_TP	Yes	NO	UbD
8	27101204	Rev	ATGTGTTAAGGGGCGTA		Yes_TP		NO	UbD	21	30414724	For	CCACAGGGCAGGGAGGA	NO	NO	NO	Yes_rs2254872_0.29452875399361	UbD
8	27101204	For		Yes	Yes_TP		NO	UbD	21	26973663	For	AAAAGACATATATGTAT	Yes	Yes_TP	Yes	NO	UbD
8	24339896	Rev		NO	NO	Yes	NO	UbD	21	11058404	Rev	TGTACAGAGTTTTTTAT	NO	NO	Yes	NO	UbD
8	22974450	Rev		Yes	Yes_TP		Yes_rs9644063_0.058804096465147	UbD	21	11058227	Rev	GAGCCGACACCTTTCAG	NO	NO	Yes	NO	UbD
8	22974450	For	GACAATGATCACCAGCC		Yes_TP	NO	Yes_rs9644063_0.058804096465147	UbD	21	11058227	For	CTGAAAGGTGTCGGCTC	NO	NO	Yes	NO	UbD
8	21931182	For	AAAAAAGAGAAAAAAGA		NO	NO	NO	UbD	21	11058043	For	GATTTTAAAGATTATGT	NO	NO	Yes	NO	UbD
8	20022694	Rev		Yes	NO NO	Yes	Yes_rs3779670_0.203274760383387	UbD	21	11058025	For	TCTGGCAATGATCCCTC	NO	NO	Yes	NO	UbD
8	18729817 18729817	Rev		Yes	Yes_TP		NO	UbD UbD	21	11058008 11049763	For	TTCCCTCCGCAACAATC	NO NO	NO NO	Yes	NO NO	UbD
8 8	18729817 17796382	For Rev		Yes Yes	Yes_TP		NO	UBD UbD	21 21	11049763 11049503	Rev Rev	ACCTCTTTCTGATTAGA GTTACTCCATTAAAACG	NO NO	NO NO	Yes Yes	NO NO	UbD UbD
		INCV	GGGGGGTTTGTAGAI	100	Yes_TP	162		500	44	11042202	INGV.	STINCTOCAL IMMANUU	110		162		000

		-															
8	17796382	For	ATCTACAAACCCCCCAA	Yes	Yes_TP	Yes	NO	UbD	21	11049503	For	CGTTTTAATGGAGTAAC	NO	NO	Yes	NO	UbD
8	17732084	Rev	CCCTAAGGCGGGGGGGAG		NO	Yes	Yes_rs2517294_0.000399361022364217	UbD	21	11049404	Rev	TTAAGAGGGACCCTATT	NO	NO	Yes	NO	UbD
8	13356818 13356818	Rev For	TAGTACAAAATGAGTTC GAACTCATTTTGTACTA	Yes Yes	Yes_TP Yes_TP	Yes Yes	NO NO	UbD UbD	21 21	11049404 11049395	For Rev	AATAGGGTCCCTCTTAA ACCCTATTA	NO NO	NO NO	Yes Yes	NO NO	UbD Ub
8	11666218	For	TGCCCCAGTCCCACTCC	NO	NO	Yes	NO	UbD	21	11049395	For	GCGCCTAGTAATAGGGT	NO	NO	Yes	NO	UbD
8	11400944	Rev	GGAAGGCACTTTTGCTA	NO	NO	Yes	Yes_rs2245232_0.297124600638978	UbD	21	10973798	Rev	GTCTGACTATATTCTTT	NO	NO	Yes	NO	UbD
8	11400680	For	TGTGCAGAGGATCTGAG	NO	NO	Yes	Yes_rs2245250_0.299321086261981	UbD	21	10973798	For	AAAGAATAT	NO	NO	Yes	NO	Ub
8	10467637	Rev	GTTAGAGGAAACTAAAA	NO NO	Yes	Yes	NO NO	UbD UbD	21 21	10973787	Rev	TTCTTTTGACATCCTCT AGAGGATGTCAAAAGAA	NO NO	NO NO	Yes	NO NO	UbD UbD
8	10467637 10467636	For Rev	TTTTAGTTTCCTCTAAC TTAGAGGAAACTAAAAC	NO	Yes Yes FP	Yes NO	Yes rs4840500 0.164703401743042	UbD	21	10973787 10935116	For Rev	GAATCTCCACTAGAAGAA	NO	NO	Yes Yes	NO	UbD
8	10467636	For	GTTTTAGTTTCCTCTAA	NO	Yes_FP	NO	Yes_rs4840500_0.164703401743042	UbD	22	51015210	For	CCTCTCCCGTCTAGCTC	Yes	NO	Yes	Yes_rs140515_0.00399361022364217	UbD
8	7752127	For	GCACCCAATACCAGTTC	NO	NO	NO	NO	UbD	22	46765181	Rev	GAGAGAAGACATTGATC	Yes	Yes_TP	Yes	Yes_NA_0.000277882210634716	UbD
8	3855369	For	GTTGGGGGAAAAAACGG		NO	Yes	NO	UbD	22	45724029	Rev	CCAGCCCATACCTTGGT	NO	NO	NO	NO	UbD
8	2965122 2071261	For Rev	TTGTTTCTC	Yes Yes	NO Yes TP	Yes Yes	NO	bD UbD	22 22	45724029 45723980	For Rev	ACCAAGGTATGGGCTGG TGTTCTGCCGCCGGCCA	NO NO	NO NO	NO NO	NO	UbD UbD
9	140777432	Rev	CCCAGTGAGGGGGACTGC		NO	Yes	NO	UbD	22	45723980	For	TGGCCGGCGGCAGAACA	NO	NO	NO	Yes_rs13053749_0.0166484716157205 Yes_rs13053749_0.0166484716157205	UbD
9	139944689	For	CCCGCCTGTCCCTACCC	NO	NO	NO	Yes_rs7869777_0.00811280086217219	UbD	22	44177972	For	AATGTCATATGAGTCCT	Yes	NO	Yes	NO	UbD
9	139916471	Rev	TCTGAGCCATTCCCCCA	Yes	Yes_TP	Yes	NO	UbD	22	43213631	For	TGAATAACAAAAAAAAA	Yes	NO	Yes	Yes_rs28362469_0.290934504792332	UbD
9	139639568	For	TGGGCCCCGAGTGGCCC	NO	NO	NO	NO	UbD	22	42575528	For	AAAGAAAAGAAAAAAAA	NO	NO	NO	NO	UbD
9	139639563 139639560	For For	CAACGTGGGCCCCGAGT TCCCAACGTGGGCCCCG	NO NO	NO NO	NO NO	NO	UbD UbD	22 22	42575523 42526571	For For	AAAGAAAAGAAAAGAAA TGGTGGGGGCATCCTCAG	NO NO	NO NO	NO Yes	NO Yes_NA_1.52452968259292e-05	UbD UbD
9	139639556	For	CAGCTCCCAACGTGGGC	NO	NO	NO	NO	UbD	22	42526561	For	TGTTTGCTGGTGGTGGG	NO	NO	Yes	NO	UbD
9	138518015	Rev	ACTGGCTCGCTCCTGTC	NO	NO	Yes	Yes_rs202181415_0.286497569516437	UbD	22	42159072	For	GTGGGCATATTGGGGCA	Yes	NO	Yes	NO	UbD
9	138518015	For	GACAGGAGCGAGCCAGT	NO	NO	Yes	Yes_rs202181415_0.286497569516437	UbD	22	39636928	Rev	TGTGTGTGTGCGCATCT	NO	NO	Yes	NO	UbD
9	137982220	For	TGTGTGTGT	NO	NO	Yes	Yes_NA_3.57513138607844e-05	bD	22	31018817	For	ACCTGTGGCCAGGTGGC	NO	NO	Yes	Yes_rs2301957_0.288138977635783	UbD
9 9	137982220 137715150	Rev	ACACACACATACAAACT	NO	NO NO	Yes	Yes_NA_3.57513138607844e-05 NO	UbD UbD	22	31013549	Rev	CTTCTGTGA	Yes NO	NO	Yes	Yes_rs740235_0.287939297124601	bD UbD
9	136135237	For Rev	TGTGGCTGATAGGGCCA CTGCAGCATGTCTCGTT	Yes Yes	Yes TP	Yes Yes	NO	UbD	22 22	31011906 31010556	Rev Rev	TTTTGGCTGCTGTGTCC GGTATGGAGGTCATCAG	Yes	NO NO	Yes Yes	Yes_rs5749135_0.288538338658147 Yes_rs5997703_0.288538338658147	UbD
9	136135237	For	AACGAGACATGCTGCAG	Yes	Yes_TP	Yes	NO	UbD	22	31010242	For	AAAAGAGCGTGTTGGAA	Yes	NO	Yes	Yes_rs5749134_0.288538338658147	UbD
9	136135137	For	CCCACATGCTTCTGTCC	Yes	NO	Yes	NO	UbD	22	30822920	Rev	GGAGTGTCCACAGGGAC	Yes	NO	Yes	NO	UbD
9	136133380	For	GAGAGAACGGGGAAGC		NO	Yes	NO	UbD	22	25750814	Rev	CATGGCCCTGGCCCATC	NO	NO	Yes	NO	UbD
9 9	134497450	Rev	GGAAGAATGGGGGGGAGG		NO NO	Yes	Yes_rs7023385_0.275159744408946 NO	UbD UbD	22 22	25747933	Rev	TGTGGCTTGGCTGCACC	NO NO	NO NO	NO NO	NO NO	UbD
9	132891113 132862830	Rev For	ATTTCCCAAATGGGTCC	Yes Yes	NO	Yes Yes	NO	UbD	22	24579157 24579157	Rev For	TCATGGATCCTGAGTAG CTACTCAGGATCCATGA	NO	NO	NO	NO	UbD UbD
9	132636031	Rev	GAGGCCACTGGCTCACC	Yes	Yes_TP	Yes	NO	UbD	22	24300683	Rev	GCAGTAGGCCGGGGGCCA	NO	NO	Yes	Yes_rs140193_0.149444373483203	UbD
9	132636031	For	GGTGAGCCAGTGGCCTC	Yes	Yes_TP	Yes	NO	UbD	22	24300683	For	TGGCCCCGGCCTACTGC	NO	NO	Yes	Yes_rs140193_0.149444373483203	UbD
9	131904617	For	TGTGCGTTTGTGTGTGTGT	NO	NO	Yes	NO	UbD	22	24300660	For	GGGGCAGAGAGTGGGTC	NO	NO	Yes	Yes_rs74718778_0.138717195257878	UbD
9	131761659	Rev	GGAAGCCCTGCCTGGCT	NO	NO	Yes	Yes_rs2302813_0.261781150159744	UbD	22	24300660	Rev	GACCCACTCTCTGCCCC	NO	NO	Yes	Yes_rs74718778_0.138717195257878	UbD
9	131353567 130932396	For Rev	CATCTCCTG	NO Yes	NO Yes TP	Yes Yes	NO NO	bD UbD	22 22	24300634 24300634	Rev For	TTGGGGCCCCTCATTGG CCAATGAGGGGCCCCAA	NO NO	Yes_TP Yes_TP	Yes Yes	Yes_rs56104230_0.207301925295005 Yes_rs56104230_0.207301925295005	UbD UbD
9	130932396	For	AATGACAACAGTCAAAG	Yes	Yes TP	Yes	NO	UbD	22	24176959	For	CTCAGGGCAAGAGGCTC	NO	Yes TP	Yes	NO	UbD
9	125772742	For	TTCAGTTCGCCTGCCAC	NO	NO	NO	Yes_NA_0.0376834944504117	UbD	22	23962744	Rev	TGAGAAACAAACTTGCT	NO	NO	Yes	NO	UbD
9	125772740	For	TTCAGTTCGCCTGCCAC	NO	NO	NO	Yes_NA_0.0376834944504117	UbD	22	23962744	For	AGCAAGTTTGTTTCTCA	NO	NO	Yes	NO	UbD
9	115969433	For	GAAAAAGTAGCTTAACT	Yes	NO	Yes	NO	UbD	22	22899363	Rev	CATGTATTCTTCTTTT	NO	NO	NO	NO	UbD
9	115934022 115567015	Rev For	TCACCTGGTTCCTGAGG	Yes Yes	Yes_TP Yes_TP	Yes Yes	NO NO	UbD UbD	22 22	22730534 21344032	For Rev	GCACCCATTAATGTCTG	NO NO	NO NO	NO NO	Yes_NA_0.277231638418079 NO	UbD UbD
9	111637331	Rev	TTTTCTGGGGGTAGGGA	NO	NO	Yes	NO	UbD	22	21344019	Rev	GGCTCCCCGTGCCCCTC	NO	NO	NO	Yes rs7410545 0.00136217287212086	UbD
9	97080944	For	GGCAGGAGAAGGTGATG	NO	Yes	Yes	NO	UbD	22	21344018	Rev	GCTCCCCGTGCCCCTCA	NO	NO	NO	Yes_rs12162762_0.00046317739694302	9 UbD
9	115969433	For	GAAAAAGTAGCTTAACT	Yes	NO	Yes	NO	UbD	22	22899363	Rev	CATGTATTCTTCTTTTT	NO	NO	NO	NO	UbD
9	115934022	Rev	TCACCTGGTTCCTGAGG	Yes	Yes_TP	Yes	NO	UbD	22	22730534	For	GCACCCATTAATGTCTG	NO	NO	NO	Yes_NA_0.277231638418079	UbD
9	115567015 111637331	For Rev	TCCAGTATGTTTTCATT TTTTCTGGGGGGTAGGGA	Yes NO	Yes_TP NO	Yes Yes	NO NO	UbD UbD	22 22	21344032 21344019	Rev Rev	CCACCTGCGCCCTGGCT GGCTCCCCGTGCCCCTC	NO NO	NO NO	NO NO	NO Yes_rs7410545_0.00136217287212086	UbD UbD
9	97080944	For	GGCAGGAGAAGGTGATG		Yes	Yes	NO	UbD	22	21344018	Rev	GCTCCCCGTGCCCCTCA	NO	NO	NO	Yes_rs12162762_0.000463177396943029	
9	97080944	Rev	CATCACCTTCTCCTGCC	NO	Yes_TP	Yes	NO	UbD	22	21344002	Rev	ACCTCCTCTACCTGCGC	NO	NO	NO	Yes_rs7410444_0.150414937759336	UbD
9	96425363	Rev	CACCTCTGCTCACACTC	Yes	NO	Yes	Yes_rs3750359_0.198282747603834	UbD	22	21332394	Rev	ATGCCTAACAGTGTCCA	NO	NO	Yes	NO	UbD
9 9	96425363	For Rev	GAGTGTGAGCAGAGGTG		NO NO	Yes Yes	Yes_rs3750359_0.198282747603834	UbD UbD	22 22	21064356 19163577	Rev For	TCAGCCAGTCCACAGGA	NO NO	NO NO	Yes Yes	NO	UbD UbD
9	96392182 96392182	For	CTGCGAAGCTCTAGGGA TCCCTAGAGCTTCGCAG	Yes Yes	NO	Yes	Yes_rs10992812_0.25 Yes rs10992812 0.25	UbD	22	19103577	Rev	CTGGAATCGTGAGACAA TCCGGCCTTCCAGCCGC	NO	NO	Yes	NO Yes_rs11550628_0.280899506505159	UbD
9	78790153	Rev	ATTCCATTTCATTCCAT	NO	NO	NO	Yes_rs4281168_0.208964084298011	UbD	22	18898874	For	GGGGCAGAG	NO	NO	NO	NO	Ub
9	35101383	Rev	CCTCAGGGTGCTCCAGT	Yes	Yes_TP	Yes	NO	UbD	22	18084001	Rev	AGTGGGTTATGAGCCGA	NO	NO	Yes	NO	UbD
9	35101383	For	ACTGGAGCACCCTGAGG	Yes	Yes_TP	Yes	NO	UbD	x	147919063	For	ATTAGGTCAGTTAAGTT	NO	NO	Yes	NO	UbD
9	33798073 33797783	Rev	CCACCAAAGCTCAGAGT GGGTGCCCAGGCTGTGG	NO NO	Yes_FP NO	Yes Yes	Yes_NA_0.296949062610541	UbD UbD	x x	118603773 118603773	Rev For	GCGAAGTTAAGAGCCTG CAGGCTCTTAACTTCGC	NO NO	NO NO	Yes	Yes_rs148920941_0.191180343906385 Yes_rs148920941_0.191180343906385	UbD UbD
9	33797764	For For	ACCCTGGGGAAGGTGGG		NO	Yes	Yes_rs371972822_0.118172335716285 NO	UbD	x	118603747	For Rev	GTATCTGATGACATTGG	NO	NO Yes_FP	Yes Yes	Yes_rs148920941_0.191180343906385 Yes_rs141428607_0.16845486170909	UbD
9	33797760	For	GAGGACCCTGGGGAAGG		NO	Yes	NO	UbD	x	118603747	For	CCAATGTCATCAGATAC	NO	Yes_FP	Yes	Yes_rs141428607_0.16845486170909	UbD
9	33797752	For	GTGAGCTTGAGGACCCT		NO	Yes	NO	UbD	x	118603742	Rev	TGATGACATTGGCCAGG	NO	Yes_FP	Yes	Yes_rs148294496_0.171104150352388	UbD
9	33797745	For	ATGAGCAGTGAGCTTGA	NO	NO	Yes	NO NO	UbD	x	118603742	For	CCTGGCCAATGTCATCA	NO	Yes_FP	Yes	Yes_rs148294496_0.171104150352388	UbD
9	33797733 33386510	For Rev	ATCCATGAG TGACCTTTGCTAACTGT	NO NO	NO Yes FP	Yes Yes	NO NO	bD UbD	x x	107400223 82764040	For For	GTGGCAGGT AGGTTCGAAGGCTTGCA	NO Yes	NO Yes_TP	Yes Yes	Yes_rs199981380_0.21503608812304 NO	Ub UbD
9	33386510	For	ACAGTTAGCAAAGGTCA	NO	Yes_FP	Yes	NO	UbD	x	71495388	Rev	ATGGGTAAGAAGTTTTA	Yes	Yes_TP	Yes	NO	UbD
9	33386465	Rev	TTCCGGTCTATGTGCTG	NO	Yes_FP	Yes	Yes_rs74668961_0.0650218452839887	UbD	x	71495388	For	TAAAACTTCTTACCCAT	Yes	Yes_TP	Yes	NO	UbD
9	33386465	For	CAGCACATAGACCGGAA	NO	Yes_FP	Yes	Yes_rs74668961_0.0650218452839887	UbD	x	69749852	Rev	TTGGATTATAGAAAGAC	Yes	Yes_TP	Yes	NO	UbD
9 9	33386430	For	GTGGCAGCCGCCAGGAA	NO	UNKNO NO		Yes_rs74589499_0.0305036984853822 Yes_NA_0.0652044847350033	UbD UbD	x	69478801 52891818	For	ACAGGCGACGAGCCATG	NO NO	Yes_FP NO	NO	Yes_rs202027224_0.0137229086489771 NO	UbD UbD
a a	33386400 33386399	For For	GGATACTCACTGTAGAA AGGATACTCACTGTAGA	NO	NO	Yes Yes	Yes_NA_0.0652044847350033 Yes_NA_0.0645921094351588	UBD	x x	52891818 52891739	Rev Rev	ACAGAGGTCTAACTGAA GTGTCCTTTGCCTACCT	NO NO	NO NO	Yes Yes	NO NO	UBD
9	33386387	For	GGACACCCGGGCAGGAT		NO	Yes	Yes_rs77429065_0.0887950713715999	UbD	x	52891738	Rev	TGTCCTTTGCCTACCTT	NO	NO	Yes	NO	UbD
9	33386378	For	GCCAGAGGCGGACACCC	NO	NO	Yes	Yes_rs74462413_0.0942603367344071	UbD	x	52891736	Rev	TCCTTTGCCTACCTTTA	NO	NO	Yes	NO	UbD
9	33385852	Rev	GGCTGACCGGGATGCTC		NO	Yes	Yes_rs202183465_0.266219388826325	UbD	x	52891732	Rev	TTGCCTACCTTTAATGT	NO	NO	Yes	NO	UbD
9	33385828	Rev	GTCTCTTCGCCATCACG	NO	NO	Yes	Yes_rs73478963_0.292133772962789 NO	UbD	x	52891584	For	GTTTATTTCGATATTTT	NO	Yes_TP	Yes	NO	UbD
9	33385784 33385771	Rev Rev	GGAACAGAGGCGCTGGT TGGTGATAGGCATCCTC	NO	NO Yes_FP	NO NO	NO Yes_rs117663392_0.0450752985978882	UbD UbD	x x	52891565 52891542	For For	TTTGGAGAAAGCTGCAA GAACAAAAAATGTGCAA	NO NO	NO NO	Yes Yes	NO NO	UbD UbD
9	33385750	Rev	TCATCATCGGGGGTGTCC	NO	NO	NO	Yes_rs114484742_0.0594989561586639	UbD	â	52891542	For	AAATATTTGGGAATAAA	NO	Yes_TP	Yes	NO	UbD
9	33385750	For	GGACACCCC	NO	NO	NO	Yes_rs114484742_0.0594989561586639	Ub	x	52891513	For	CAATAGTACCAAATATT	NO	Yes	Yes	NO	UbD
9	33385740	Rev	GGTGTCCCTTGGCATGA	NO	NO	NO	Yes_rs201773300_0.0515655315447916	UbD	x	52891512	For	TCAATAGTACCAAATAT	NO	Yes_TP	Yes	NO	UbD
9	33385740	For	TCATGCCAAGGGACACC	NO	NO	NO	Yes_rs201773300_0.0515655315447916	UbD	x	35821055	Rev	GATGAGCATTCTGGGCT	Yes	Yes_TP	Yes	NO	UbD
9 9	33385712 33385712	Rev For	GCCATCAACCCGTCCCG CGGGACGGGTTGATGGC	NO NO	NO NO	NO NO	Yes_rs115575789_0.0425457744725353 Yes rs115575789 0.0425457744725353	UbD UbD	x x	23689636 23689636	Rev For	TAAGAAAATAAAATACA TGTATTTTATTTTCTTA	NO NO	Yes_TP Yes_TP	Yes Yes	NO NO	UbD UbD
5	33385709	Rev	ATCAACCCGTCCCGGGA	NO	NO	NO	Yes_rs116294914_0.0382788233144528	UbD	x	15262814	Rev	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	NO	NO	Yes	Yes_NA_0.0712582781456954	UbD
9		For	TCCCGGGACGGGTTGAT	NO	NO	NO	Yes_rs116294914_0.0382788233144528	UbD	x	15262813	Rev	TTTTTTTAAAAAAAAG	NO	NO	Yes	Yes_NA_0.0712582781456954	UbD
9	33385709											GIGIGIGIGIAIGIGIAIG			10		
9	33385667	For	TTGCCCCAACCAGCAAT	NO	NO	Yes	Yes_rs79779983_0.243176233105143	UbD	х	1317599	Rev	GIGIGIGIGIAIGIGIAIG	NO	NO	NO	NO	UbD
9 9 9	33385667 12708910	For	AATTTCATCTGTCCACT	Yes	NO	Yes	Yes_rs2733834_0.265575079872204	UbD	x	1317599	ĸev	GIGIGIGIAIGIGIAIG	NO	NO	NU	NU	UBD
9	33385667								x	1317599	Rev	GIGIGIGIAIGIGIAIG	NO	NU	NU	NO	UBD

*UbD=Upstream motif + Error base + Downstream

The remaining columns contain some additional annotation for the reported RSE: present in the NIST list ("InNIST"), in the Broad list ("InBroad"), and in the DBall ("InDBall(rsid_MAF)") along with rsid and MAF. Moreover, column "InHC" shows that this RSE is called by another pipeline where HaplotypeCaller (HC) is used for variant calling (cf. Chapter 4). The last column ("MotifLoc") shows three different positional

forms of 17mer (or 9mer): UbD=Upstream motif + Error base + Downstream motif, Ub= Upstream motif + Error base, and bD= Error base + Downstream motif. Furthermore, this table has two different parts, the left part with above-mentioned columns contain information about a RSE that belong to one chromosomal location, whereas, right part contains the information about another RSE on different chromosomal location.

Supplementary material

Supporting information files (S1 to S6)

These files (mentioned in Chapter 3) are available along with online version of the published paper (Kawalia et al., 2015).

URL: <u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036</u> (Accessed on: 21 October 2015)

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeiteinschließlich Tabellen und Abbildungen-, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Herrn Prof. Dr. Peter Nürnberg betreut worden.

Köln, den 17.10.2016

Amit Kawalia