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Abstract	

Next	 generation	 sequencing	 (NGS)	 technologies	 have	 facilitated	 the	 identification	 of	

disease	 causing	 mutations,	 which	 has	 significantly	 improved	 patient’s	 diagnosis	 and	

treatment.	Since	 its	emergence,	NGS	has	been	used	 in	many	applications	 like	genome	

sequencing,	 DNA	 resequencing,	 transcriptome	 sequencing	 and	 epigenomics,	 to	 unfold	

the	 various	 layers	 of	 genome	biology.	 Because	 of	 this	 broad	 spectrum	of	 applications	

and	recent	decrement	in	cost,	usage	of	NGS	has	become	a	routine	approach	to	address	

many	research	as	well	as	medical	questions.	It	is	producing	huge	amounts	of	data,	which	

necessitate	 highly	 efficient	 and	 accurate	 computational	 analysis	 as	 well	 as	 data	

management.		

	

This	thesis	addresses	some	of	the	challenges	of	NGS	data	analysis,	mainly	 for	targeted	

DNA	sequencing	data.	It	describes	the	various	steps	required	for	data	analysis	including	

their	 significance	 and	 potential	 negative	 effects	 on	 consecutive	 downstream	 analysis	

and	 so	 on	 the	 final	 variant	 lists.	 In	 order	 to	 make	 the	 analysis	 more	 accurate	 and	

efficient,	 an	 extensive	 testing	 of	 different	 bioinformatics	 tools	 and	 algorithms	 was	

preformed	and	a	fully	automated	data	analysis	workflow	was	developed.	This	workflow	

is	implemented	and	optimized	on	high	performance	computing	(HPC)	systems.	I	describe	

different	design	principles	and	parallelization	strategies	that	enable	proper	exploitation	

of	 HPC	 resources	 to	 achieve	 high	 throughput	 of	 data	 analysis.	 Besides	 correcting	 for	

known	sequencing	errors	by	using	existing	tools,	this	work	is	also	aimed	at	the	detection	

of	a	new	class	of	 systematic	 sequencing	errors	 called	 recurrent	 systematic	 sequencing	

errors.	I	present	an	approach	for	the	exploration	of	this	class	of	errors	and	describe	the	

probable	 causes	 and	 patterns	 behind	 them.	 This	 includes	 some	 known	 and	 novel	

patterns	 observed	 during	 this	 work.	 Furthermore,	 I	 provide	 a	 tool	 to	 filter	 the	 false	

variants	due	 to	 these	errors	 from	any	variant	 list.	Overall,	 the	work	performed	during	

this	thesis	has	been	already	used	(and	will	be	used	in	future	as	well),	to	provide	accurate	

and	 efficient	 data	 analysis,	 which	 enables	 exploration	 of	 the	 genetic	 background	 of	

various	diseases.	





Zusammenfassung	

Die	 Next-Generation-Sequencing-(NGS)-Technologien	 haben	 die	 Identifizierung	

krankheitsverursachender	 Mutationen	 erleichtert,	 wodurch	 die	 Diagnose	 und	

Behandlung	von	Patienten	deutlich	verbessert	wurde.	Seit	seiner	Einführung	wird	NGS	in	

vielen	 Anwendungsbereichen,	 wie	 Genom-Sequenzierung,	 DNA-Resequenzierung,	

Transkriptom-Sequenzierung	und	Epigenomik,	eingesetzt,	um	die	verschiedenen	Ebenen	

der	 Biologie	 des	 Genoms	 zu	 entschlüsseln.	 Aufgrund	 dieses	 breiten	

Anwendungsspektrums	und	der	aktuellen	Kostensenkung	 ist	die	Verwendung	von	NGS	

zu	 einem	 Routineverfahren	 zur	 Bearbeitung	 vieler	 forschungsbezogener	 und	

medizinischer	Fragestellungen	geworden.	Dadurch	werden	große	Datenmengen	erzeugt,	

die	 hoch	effiziente	und	exakte	 computergestützte	Analysen	 sowie	 ein	 entsprechendes	

Datenmanagement	notwendig	machen.	

	

Diese	 Dissertation	 widmet	 sich	 einigen	 der	 mit	 der	 NGS-Datenanalyse	 verbundenen	

Herausforderungen,	 vor	 allem	 in	 Bezug	 auf	 die	 gezielte	 DNA-Sequenzierung	

ausgewählter	genomischer	Bereiche	(„targeted	sequencing“	genannt).	Sie	beschreibt	die	

verschiedenen	 für	 die	 Datenanalyse	 erforderlichen	 Schritte,	 ihre	 Bedeutung	 und	

potentiellen	 negativen	 Effekte	 auf	 anschließende	 Folgeanalysen	 und	 damit	 auf	 die	

finalen	 Variantenlisten.	 Um	 die	 Analyse	 exakter	 und	 effizienter	 zu	 machen,	 wurden	

umfassende	Tests	verschiedener	bioinformatischer	Tools	und	Algorithmen	durchgeführt	

und	 ein	 vollautomatischer	 Analyse-Workflow	 entwickelt.	 Dieser	 Workflow	 ist	 auf	

Hochleistungsrechensystemen	 (HPC	 Systemen)	 implementiert	 und	 für	 diese	 optimiert	

worden.	Ich	beschreibe	verschiedene	Entwurfsprinzipien	und	Parallelisierungsstrategien,	

um	eine	gute	Nutzung	der	Ressourcen	eines	HPC-Systems	und	hohen	Durchsatz	 in	der	

Datenanalyse	zu	erreichen.	Neben	der	Korrektur	bekannter	Sequenzierungsfehler	durch	

vorhandene	 Tools,	 widmet	 sich	 diese	 Arbeit	 auch	 der	 Detektion	 einer	 neuen	 Klasse	

systematischer	Sequenzierungsfehler,		„wiederkehrende	systematische	Fehler“	genannt.	

Ich	 präsentiere	 ein	 neues	 Verfahren,	 um	 diese	 Fehlerklasse	 zu	 untersuchen	 und	

beschreibe	 die	 ihr	 wahrscheinlich	 zugrundeliegenden	 Ursachen	 und	 Muster.	 Dabei	



beobachtete	 ich	 einige	 bekannte	 und	 neue	Muster.	 Weiterhin	 stelle	 ich	 ein	 Tool	 zur	

Verfügung,	 um	 von	 diesen	 Fehlern	 verursachte	 falsche	 Varianten	 aus	 beliebigen	

Variantenlisten	 zu	 filtern.	 Die	 während	 dieser	 Doktorarbeit	 durchgeführten	 und	 hier	

präsentierten	Arbeiten	wurden	bereits	 (und	werden	weiterhin)	 verwendet,	 um	exakte	

und	 effiziente	 Datenanalyse	 durchzuführen,	 die	 die	 Erforschung	 des	 genetischen	

Hintergrundes	verschiedenster	Krankheiten	ermöglicht.	
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Chapter	1 	
Introduction	
	

Exploration	of	the	causal	gene	variants	underlying	human	diseases	 is	one	of	the	major	

interests	 of	 medical	 sciences.	 Recent	 advances	 in	 DNA	 sequencing	 technologies	 have	

enabled	characterization	of	genomic	landscapes	of	many	diseases	at	significantly	lower	

cost	 and	 in	 less	 time.	 The	 early	 identification	 of	 disease	 causing	 mutations	 has	

significantly	 improved	 patient’s	 diagnosis	 and	 treatment/therapy.	 Nowadays,	 DNA	

sequencing	 has	 become	 a	 routine	work	 to	 address	many	 research	 as	well	 as	medical	

questions	in	order	to	improve	disease	management.		

	

The	 field	 of	 DNA	 sequencing	 has	 a	 very	 rich	 and	 diverse	 history	 (Rabbani,	 Mahdieh,	

Hosomichi,	 Nakaoka,	 &	 Inoue,	 2012).	 The	 story	 of	 sequencing	 began,	 when	 Sanger’s	

studies	of	insulin	first	demonstrated	that	proteins	are	composed	of	linear	polypeptides	

formed	by	joining	amino	acid	residues	(Hutchison,	2007;	Sanger	&	Tuppy,	1951;	Sanger,	

1949).	 Shortly	 afterwards,	 the	 double-helical	 structure	 of	 DNA	was	 proposed	 (Crick	&	

Watson,	1953),	which	raised	the	very	significant	question	about	DNA	decoding	(DNA	to	

protein).	 However,	 due	 to	 the	 complexity	 of	 DNA,	 it	 took	 approximately	 12	 years	 to	

sequence	the	first	gene	(Holley	et	al.,	1965).		

	

In	1977,	the	first	method	for	DNA	sequencing	through	chain	termination	was	developed	

(Sanger,	 Nicklen,	 &	 Coulson,	 1977).	 This	method	was	 quite	 slow	 and	 laborious	which	

prompted	 it’s	 automation	 (L.	 M.	 Smith	 et	 al.,	 1986).	 Automated	 Sanger	 sequencing	

became	the	core	technology	of	the	Human	Genome	Project	(HGP),	funded	in	1990,	and	

produced	 the	 first	 human	genome	draft	 sequences	 (Lander	et	 al.,	 2001;	Venter	 et	 al.,	

2001).	 The	 HGP	 took	 13	 years	 to	 finish	 and	 was	 quite	 expensive	 which	 led	 to	 the	

development	 of	 cheaper	 and	 faster	 next	 generation	 sequencing	 (NGS)	 technologies	

(Mardis,	2008).		
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NGS	 technologies,	 also	 known	as	high-throughput	 sequencing	 technologies,	 parallelize	

the	sequencing	process	and	produce	millions	of	sequences	simultaneously	at	relatively	

low	 cost.	 Taking	 advantage	 of	 these	 technologies,	 the	 1000	 Genomes	 Project	 could	

describe	the	genomes	of	1,092	individuals	from	14	populations.	Aim	of	the	project	was	

to	 provide	 a	 catalogue	 of	 human	 genomic	 variation	 that	 was	 achieved	 by	 using	 a	

combination	of	 low-coverage	whole-genome	and	exome	sequencing	only	 in	 four	years	

(Abecasis	 et	 al.,	 2012;	 The	 1000	 Genomes	 Project	 Consortium,	 2010).	 After	 its	

emergence,	 NGS	 has	 been	 used	 in	 many	 applications	 to	 unfold	 the	 various	 layers	 of	

genetics	 and	 genome	 biology.	 In	 a	 research	 setting,	 it	 has	 been	 used	 for	 de	 novo	

genome	 sequencing,	 DNA	 resequencing,	 transcriptome	 sequencing	 and	 epigenomics.	

Now,	 it	 has	 also	 become	 an	 asset	 of	 clinical	 diagnostic	 laboratories	 for	 patient	 care	

(Coonrod,	Margraf,	&	Voelkerding,	2012).			

	

Since	 the	 advent	 of	 NGS,	 there	 have	 been	 lots	 of	 improvements	 in	 the	 sequencing	

technologies	like	accuracy,	read	length	and	throughput.	Moreover,	the	sequencing	costs	

are	 also	 rapidly	 decreasing.	 Today	 NGS	 techniques	 are	 easily	 accessible	 and	 have	

become	a	preferred	method	in	most	of	the	research	and	diagnostics	centres	resulting	in	

huge	 amount	 of	 sequencing	 data.	 The	 actual	 challenges	 are	 for	 the	 bioinformatics	

community	to	manage	and	analyse	these	data	accurately	and	efficiently.	In	this	work,	I	

will	address	some	of	these	issues	that	are	relevant	for	targeted	DNA	sequencing.	In	the	

following	 sections,	 first	 I	 will	 provide	 an	 overview	 of	 NGS	 technologies.	 Then,	 I	 will	

provide	 an	 overview	 of	 targeted	 DNA	 sequencing	 methods	 and	 their	 applications	 in	

research	and	diagnostics.	At	last,	I	will	briefly	mention	some	data	analysis	terminologies	

followed	by	a	description	of	the	challenges	of	NGS	data	analysis	and	an	overview	of	the	

thesis	structure.			

		

1.1 NGS	technologies	
There	are	many	different	platforms	for	massively	parallel	DNA	sequencing:	Roche/4541,	

Illumina2,	Ion	Torrent3,	PacBio	RS4	and	Oxford	Nanopore5.	The	first	three:	Illumina,	454	

																																																								
1	http://454.com/applications/index.asp	This	and	other	subsequent	URLs	are	accessed	on	26	August	2015.	
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and	 Ion	Torrent	belong	to	the	second	generation	sequencing	technologies	and	are	the	

most	commonly	used	platforms	in	research	and	clinical	labs	today.	The	basic	sequencing	

method	 of	 all	 of	 these	 platforms	 is	 sequencing	 by	 synthesis	 (SBS)	 (Hyman,	 1988;	

Turcatti,	 Romieu,	 Fedurco,	 &	 Tairi,	 2008).	 In	 SBS	 methods,	 sequencing	 starts	 with	 a	

primer	attached	to	the	single	stranded	template	DNA	and	proceeds	with	incorporation	

of	a	nucleotide	base	using	a	DNA	polymerase.	Every	incorporated	nucleotide	is	detected	

and	 the	 further	 extension,	 by	 means	 of	 the	 DNA	 polymerase,	 finally	 results	 in	 a	

complementary	sequence	to	the	template	DNA	(Berglund,	Kiialainen,	&	Syvänen,	2011).	

Although	 using	 the	 same	 SBS	 technology,	 these	 three	 platforms	 differ	 in	 the	 clonal	

amplification	 and	 nucleotide	 base	 detection	 process.	 Both	 454	 and	 Ion	 torrent	 use	

emulsion	 PCR	 amplification,	 whereas	 Illumina	 uses	 bridge	 amplification	 for	 the	 clonal	

amplification	process	 (Margulies	et	al.,	 2005;	Quail	 et	al.,	 2012;	Williams	et	al.,	 2006).	

During	 the	 nucleotide	 base	 detection	 process,	 Illumina	 detects	 fluorescent	 signals	

emitted	from	nucleotide	incorporation,	whereas	changes	in	pH	and	emission	of	light	are	

detected	 by	 Ion	 torrent	 and	 454	 respectively	 (Mardis,	 2008,	 2013).	 Details	 of	 these	

technologies	can	be	found	in	(Mardis,	2008,	2013;	Metzker,	2010).		

	

PacBio	 and	 Nanopore	 use	 recent	 sequencing	 technology	 known	 as	 third	 generation	

sequencing	 (Schadt,	 Turner,	 &	 Kasarskis,	 2010).	 Both	 sequencing	 platforms	 perform	

single	molecule	sequencing	 in	which	sequencing	 is	performed	on	single	DNA	molecule	

using	 single	 DNA	 polymerase	 without	 prior	 cloning	 or	 amplification	 step	 used	 in	 SBS	

methods.	 These	 techniques	 allow	 for	 more	 accurate	 sequencing	 in	 repetitive	 or	 low	

complexity	regions	(cf.	Chapter	2)	and	are	able	to	generate	very	long	reads	than	the	SBS	

technologies.	 However,	 currently	 these	 technologies	 are	 as	 matured	 as	 the	 second	

generation	 (e.g.	 Illumina)	 technologies,	 having	 high	 raw	 read	 error	 rates	 and	 low	

throughput.	 Moreover,	 there	 is	 a	 need	 to	 develop	 new	 sophisticated	 data	 analysis	

																																																																																																																																																																					
2	http://www.illumina.com/systems/sequencing-platform-comparison.html		
3	http://www.lifetechnologies.com/de/de/home/life-science/sequencing/next-generation-

sequencing.html		
4	http://www.pacb.com/products-and-services/pacbio-systems/		
5	https://www.nanoporetech.com/		
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algorithms,	as	these	technologies	posses	different	error	profiles	and	different	aspects	of	

information	in	the	generated	sequencing	data	(Schadt	et	al.,	2010).	In	our	institute,	we	

mainly	use	the	 Illumina	sequencing	technology	and	this	work	 is	also	based	on	 Illumina	

generated	sequencing	data.	Thus,	in	the	following	section	we	provide	a	brief	description	

of	Illumina	sequencing	technology.	

	 	

1.1.1 Illumina	

Illumina	 is	 a	 widely	 used	 platform	 for	 DNA	 Sequencing,	 which	 uses	 clonal	 array	

formation	 and	 reversible	 terminator	 technology6	(Bentley	 et	 al.,	 2008).	 Every	 DNA	

sequencing	 starts	 with	 library	 preparation	 (cf.	 Figure	 1.1a)	 that	 includes	 DNA	

fragmentation,	enzymatic	trimming,	fragment	adenylation	and	adapter	ligation	(Mardis,	

2013).	After	library	construction,	Illumina	sequencing	starts	with	cluster	generation	(the	

clonal	 amplification	 step)	 on	 the	 flow	 cell	 surface	 that	 includes	 binding	 of	 adapter	

ligated	 DNA	 templates	 to	 the	 oligos	 on	 the	 flowcell	 followed	 by	 repeated	 bridge	

amplifications	 (initiated	 by	 polymerases).	 This	 procedure	 results	 in	 clusters	 of	 co-

localized	 clonal	 copies	 of	 each	 fragment	 (cf.	 Figure	 1.1b).	 After	 that,	 each	 cluster	 is	

supplied	with	a	polymerase	and	four	fluorescently	labelled	nucleotide	bases.	Reversible	

terminator	sequencing	(cf.	Figure	1.1c)	starts	with	incorporation	of	all	four	bases	in	each	

cycle,	 but	 only	 adds	 one	 base	 per	 cycle	 at	 each	 cluster	 due	 to	 the	 blocking	 group	

attached	 at	 the	 3’-OH	 position	 of	 the	 ribose	 sugar	 of	 the	 nucleotide	 base,	 which	

prevents	 incorporation	 of	 an	 additional	 base	 (Mardis,	 2013).	 The	 incorporated	

nucleotide	emits	a	fluorescent	signal,	which	is	detected	and	reported	by	image	sensors.	

Repetition	of	these	cycles	generates	a	sequence	read	from	each	cluster	and	thus	yields	

millions	of	DNA	sequences	at	the	end.	Illumina	SBS	technology	supports	both	single-read	

and	 paired-end	 libraries.	 As	 the	 names	 suggest,	 single-read	 sequencing	 allows	

sequencing	 in	 one	 direction,	 whereas	 the	 paired-end	 approach	 performs	 sequencing	

from	both	ends	of	the	DNA	fragment.	Nowadays,	paired-end	sequencing	is	mainly	used	

as	 it	 provides	 better	 alignment	 across	 repetitive	 regions	 and	 also	 detects	

rearrangements	such	as	insertions,	deletions,	and	inversions.	

																																																								
6	http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf			
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Figure	1.1	Overview	of	Illumina	sequencing	(figure	from	(Mardis,	2013)).	

	

The	Illumina	platforms	can	be	used	for	many	different	sequencing	applications,	such	as	

whole-genome	 sequencing,	 de	 novo	 sequencing,	 candidate	 region	 targeted	

resequencing,	DNA	sequencing,	RNA	sequencing,	and	ChIP-Seq7.	In	order	to	support	all	

of	the	mentioned	applications	adequately,	 Illumina	provides	four	series	of	sequencers:	

MiSeq,	 NextSeq,	 HiSeq,	 and	 HiSeqX,	 that	 vary	 in	 throughput,	 runtime,	 and	 cost.	 The	

selection	of	sequencer	usually	determined	on	the	basis	of	the	project’s	requirements.	At	

our	 institute,	 we	 use	 mainly	 HiSeq	 for	 exome	 sequencing	 and	MiSeq	 for	 gene	 panel	

sequencing	(or	other	target	enrichment	sequencing).	

	

																																																								
7	http://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html		
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1.2 NGS	applications	
Next-generation	sequencing	has	already	many	applications	and	 it	 is	 still	expanding.	So	

far,	 it	 has	 been	 used	 in	 whole	 genome	 sequencing	 (WGS),	 targeted	 DNA	 sequencing	

(whole	exome	sequencing,	gene	panel	sequencing,	amplicon	sequencing),	transcriptome	

profiling	 (RNA-Seq),	DNA-protein	 interactions	 (ChIP-Seq),	 etc.	 This	 thesis	 is	 focused	on	

targeted	DNA	sequencing,	thus	only	these	applications	will	be	described	here.		

	

1.2.1 Target	enrichment	methods		

Though	the	sequencing	cost	has	decreased	significantly	over	the	years	and	the	goal	of	

sequencing	 a	 whole	 genome	 for	 1000	 dollar	 is	 also	 achieved	 (at	 least	 partially8),	 still	

WGS	is	not	routine	work	for	most	of	the	medium	sized	sequencing	centres.	Besides	of	

high	costs	 for	obtaining	approximately	30-fold	coverage	(i.e.	sequencing	each	genomic	

position	at	least	30	times)	of	a	human	genome	(generates	approx.	90	Gb	data	in	total),	it	

needs	a	 lot	of	computational	resources	to	process	and	store	this	huge	amount	of	data	

(Mamanova	et	al.,	2010).	Moreover,	the	whole	genome	contains	both	coding	and	non-

coding	 part	 and	 due	 to	 the	 lack	 of	 annotations	 for	 the	 non-coding	 part,	 it	 is	 hard	 to	

interpret	 WGS	 data.	 Therefore,	 targeted	 enrichment	 methods	 are	 cost-effective	

alternates,	 allowing	 sequencing	 of	 selected	 genomic	 regions.	 There	 are	 mainly	 three	

different	 approaches	 to	 capture	 target	 regions:	 hybridization	based,	 polymerase	 chain	

reaction	 (PCR)	based	and	Molecular	 Inversion	Probe	 (MIP).	However,	due	 to	high	cost	

and	some	coverage	issues	of	MIP	(Mamanova	et	al.,	2010),	hybridization	or	PCR	based	

approaches	 are	 the	 commonly	 used	 methods	 for	 targeted	 DNA	 sequencing.	 I	 will	

describe	these	methods	briefly	here,	a	detailed	comparison	between	them	can	be	found	

in	(Bodi	et	al.,	2013;	Kiialainen	et	al.,	2011;	Mamanova	et	al.,	2010;	Mertes	et	al.,	2011).	

	

PCR	based	capture	

Polymerase	 chain	 reaction	 (PCR)	 based	 capturing	 of	 a	 genomic	 region	 of	 interest	 is	 a	

very	 traditional	 approach,	which	 has	 already	 been	 used	 for	 Sanger	 sequencing.	 It	 has	
																																																								
8	It	needs	a	specific	setup	of	sequencers	(HiSeq	X	Ten:	http://www.illumina.com/systems/hiseq-x-

sequencing-system.html),	which	is	very	costly	and	out	of	the	reach	of	medium	sized	sequencing	centers.			
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also	 become	 ideal	 for	 the	 NGS	 applications	 that	 require	 to	 capture	 smaller	 targets	

approximately	 10–100	 kb	 in	 size	 (e.g.	Gene	 panel	 sequencing).	 In	 brief,	 this	 approach	

starts	with	a	target-specific	primer	design	followed	by	a	PCR	reaction.	This	reaction	can	

be	a	simple	multiplex	PCR	(e.g.	Ion	AmpliSeq™	panels	from	Life	Technologies,	GeneRead	

DNAseq	Gene	Panels	from	Qiagen	etc.),	a	micro-droplet	PCR	(RainDance),	or	array-based	

PCR	(Access	Array™	from	Fluidigm)	(Altmüller,	Budde,	&	Nürnberg,	2014).	

	

Hybridization	based	capture	

These	methods	 are	 faster	 and	 less	 costly	 than	 PCR	 based	methods	 and	 used	 for	 the	

larger	 target	 size	around	500	KB	up	 to	65	MB	 (whole	exome	sequencing).	They	 follow	

the	 basic	 principle	 of	 hybridization	where	 baits	 (probes	 designed	 to	match	 the	 target	

regions	for	sequencing)	hybridize	with	a	DNA	library	and	pull	down	only	fragments	from	

the	regions	of	interest.	There	are	two	different	ways	to	execute	this	procedure:	Micro-

array	 based	 capture	 and	 solution	 based	 capture.	 In	 the	 first	 method,	 hybridization	

occurs	 on	 a	 micro-array	 chip	 where	 probes	 fixed	 to	 the	 chip	 surface	 hybridize	 to	

fragmented	 genomic	 DNA	 and	 immobilize	 complementary	 target	 sequences.	 On	 the	

contrary,	solution	based	methods	(Gnirke	et	al.,	2009)	use	an	excess	of	biotinylated	DNA	

or	 RNA	 complementary	 probes	 (mobile	 probes	 in	 solution)	 to	 hybridize	 fragmented	

DNA.	Then,	 streptavidin	 labelled	magnetic	beads	are	used	 to	purify	 the	 target	 regions	

(Bodi	 et	 al.,	 2013).	 The	 solution	 based	 methods	 require	 less	 amount	 of	 DNA,	 and	

produce	more	uniform	and	specific	sequences	than	the	array-based	method	(Mamanova	

et	 al.,	 2010).	Moreover,	 they	 do	 not	 need	 additional	 hardware	 (hybridization	 station)	

like	the	array-based	methods.	There	are	lots	of	commercial	kits	available	based	on	this	

approach	 like	 SureSelect	 (Agilent),	 TruSeq	 (Illumina),	 SeqCap	 (NimbleGen),	 etc.	

(Altmüller	et	al.,	2014).	

	

1.2.2 Whole	exome	sequencing	(WES)	

The	ultimate	goal	of	medical	research	is	the	identification	of	disease	causing	mutations	

to	 find	 therapeutic	 treatments	 or	 cures.	 It	 is	 known	 that	 the	majority	 of	 the	 disease-

causing	mutations	are	located	in	coding	and	functional	regions	of	the	genome	(Botstein	

&	 Risch,	 2003;	 Ng	 et	 al.,	 2009;	 Majewski,	 Schwartzentruber,	 Lalonde,	 Montpetit,	 &	
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Jabado,	2011).	Hence,	sequencing	of	the	complete	coding	regions	(known	as	exome)	has	

the	potential	 to	uncover	causal	mutations	of	genetic	disorders	 (mostly	monogenic),	as	

well	 as	 predisposing	 variants	 in	 common	 diseases	 and	 cancers	 (Rabbani,	 Tekin,	 &	

Mahdieh,	 2014).	 Additionally,	 the	 exome	 constitutes	 only	 about	 1%	 of	 the	 human	

genome.	 Therefore,	 it	 suffices	 to	 sequence	 approximately	 64	 MB,	 making	 exome	

sequencing	a	cost	and	time	effective	alternative	for	WGS	(Ng	et	al.,	2010).		

	

Overview	of	exome	sequencing	

In	 general,	 the	 sequencing	 process	 can	 be	 grouped	 into	 3	 stages:	 library	 preparation,	

sequencing	 and	 imaging,	 and	data	 analysis	 (Metzker,	 2010).	 Library	preparation	 is	 the	

construction	of	 the	DNA	 templates	 required	 for	DNA	 sequencing	 (Roe,	2004).	 It	 starts	

with	DNA	isolation	and	fragmentation	(cf.	Figure	1.2-A	and	1-B),	followed	by	end-	repair	

and	 adapter	 ligation	 (cf.	 Figure	 1.2-C)	 (Salomon	 &	 Ordoukhanian,	 2015;	 Van	 Dijk,	

Jaszczyszyn,	 &	 Thermes,	 2014).	 Then,	 the	 library	 enrichment	 for	 exons	 (discard	 the	

noncoding	part)	is	performed	by	using	target	enrichment	methods	(mostly	hybridization	

based	 approaches	 (cf.	 Section	 “Hybridization	 based	 capture”)).	 Thereafter,	 PCR	

amplification	is	usually	performed	to	produce	a	sufficient	amount	of	DNA	template.	As	

the	final	product,	library	preparation	generates	the	template	molecules	for	amplification	

on	 the	 flow	 cell	 surface	 (cf.	 Figure	 1.2-D).	 After	 clonal	 amplification	 of	 the	 DNA	

templates	into	clusters	of	identical	molecules,	sequencing	starts	on	the	flow	cell	with	a	

series	 of	 cycles.	 In	 each	 cycle,	 a	 complementary	 nucleotide	 labelled	with	 one	 of	 four	

coloured	fluorescent	dyes	is	added	to	each	cluster	of	identical	molecules	(cf.	Figure	1.2-

E).	After	identification	of	the	fluorescent	indicator	of	each	cluster	(by	using	a	laser	and	

camera	coupled	to	a	microscope),	the	fluorescent	indicator	is	removed,	and	the	cycle	is	

repeated.	 Repetition	 of	 these	 cycles	 generates	 a	 sequence	 read	 of	 desired	 length	

(usually	75	to	150	bp).	During	data	analysis,	sequence	reads	are	aligned	to	a	reference	

DNA	 sequence	 followed	 by	 a	 genotype	 call	 for	 each	 position	 by	 using	 different	

bioinformatics	 tools	 (cf.	 Figure	 1.2-F)	 (Biesecker	 &	 Green,	 2014).	 The	 nucleotide	

detection	procedure	described	above	is	for	Illumina	sequencing.	Other	technologies	like	

Ion	Torrent	or	454	can	perform	exome	sequencing.	Their	sequencing	procedures	differ	

mainly	in	clonal	amplification	and	nucleotide	detection	(cf.	Section	1.1).	
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Figure	1.2	Overview	of	Exome	Sequencing	(on	Illumina	sequencer).	This	figure	is	taken	from	(Biesecker	&	

Green,	2014).	
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Applications	of	WES	

It	 is	already	reported	in	many	studies	(Botstein	&	Risch,	2003;	Ng	et	al.,	2009)	that	the	

exome	covers	most	of	 the	 functional	 variants	 including	nonsense/missense	mutations,	

small	 insertions/deletions,	 mutations	 that	 affect	 splicing	 and	 regulatory	 mutations	

(Rabbani	 et	 al.,	 2012).	 Hence,	 WES	 is	 a	 promising	 method	 to	 discover	 a	 significant	

number	of	disease	causing	variants	and	has	been	used	in	different	areas	of	research	as	

well	 as	 diagnostics	 (cf.	 Figure	 1.3).	 In	 research	 settings,	 WES	 has	 the	 following	 main	

applications	(Majewski,	Schwartzentruber,	Lalonde,	Montpetit,	&	Jabado,	2011):	

1. Characterization	of	monogenic	disorders:	WES	is	widely	used	to	detect	mutations	

causing	monogenic	inherited	disorders.	(Rabbani	et	al.,	2012)	presented	a	list	of	

mendelian	disease9	genes	identified	(between	2010-2012)	by	exome	sequencing	

and	 the	 numbers	 (102	 studies)	 are	 significant	 enough	 to	make	WES	 a	 success	

story.		

2. Identification	 of	 de	 novo	 mutations:	 De	 novo	 mutations	 are	 the	 extreme	 and	

more	deleterious	form	of	rare	genetic	variations	(Veltman	&	Brunner,	2012).	The	

case–parent	trios	sequencing	is	the	most	frequently	used	approach	to	detect	this	

type	of	mutations	(Chesi	et	al.,	2013;	Fromer	et	al.,	2014;	Vissers	et	al.,	2010).	

3. Uncovering	 the	 layers	 of	 complex	 disorders:	 After	 the	 success	 of	 WES	 for	

monogenic	disorders,	it	also	became	an	approach	to	identify	causative	variants	in	

heterogeneous,	 complex	 diseases	 (Coonrod	 et	 al.,	 2012;	 Kiezun	 et	 al.,	 2013).	

(Jiang,	Tan,	Tan,	&	Yu,	2013)	reviewed	the	application	of	NGS	 in	neurology	and	

presented	recent	usage	(studies	from	2011-2013)	of	WES	to	identify	rare	variants	

in	 epilepsy,	 alzheimer,	myotrophic	 lateral	 sclerosis,	 parkinson,	 spino	 cerebellar	

ataxias,	 and	 multiple	 sclerosis.	 Besides	 numerous	 applications	 in	 neurological	

disorders,	 WES	 is	 a	 helpful	 technique	 in	 some	 common	 complex	 disorders	

like10asthma	 (DeWan	 et	 al.,	 2012),	 diabetes	 (Shim	 et	 al.,	 2015;	 Synofzik	 et	 al.,	

2014),	obesity	(Paz-Filho	et	al.,	2014;	Thaker	et	al.,	2015),	etc.	Moreover,	it	is	also	

																																																								
9	Good	explanation	of	mendelian	disorders:	http://www.nature.com/scitable/topicpage/mendelian-

genetics-patterns-of-inheritance-and-single-966		
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useful	 in	cancer	to	 find	germline	or	somatic	mutations	 (Ku	et	al.,	2013;	Ning	et	

al.,	2014;	Pleasance	et	al.,	2010).	

	

	

Figure	 1.3	 Applications	 of	WES	 and	 its	 impact	 on	 human	 health	 improvement.	 This	 figure	 provides	 an	

overview	 of	 exome	 sequencing	 usage	 in	 research	 and	 diagnostic	 settings.	 The	 overall	 aim	 of	 both	

researchers	 and	 clinicians	 is	 to	 explore	 diseases	 for	 better	 disease	 management,	 which	 can	 lead	 to	

personalized	medicine	for	better	cure/treatment.	This	figure	is	a	modified	version	of	the	figure	in	(Rabbani	

et	al.,	2014).	

	

Recently,	 clinicians	 also	 started	 using	 WES	 to	 establish	 diagnoses	 for	 rare,	 clinically	

unrecognizable	disorders	which	might	have	a	 genetic	background	 (Biesecker	&	Green,	

2014;	 Coonrod	 et	 al.,	 2012;	 Need	 et	 al.,	 2012).	 As	 mentioned	 above,	 WES	 can	 find	
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causative	variants,	which	facilitates	understanding	of	 the	genetic	mechanisms	of	 these	

diseases.	 This	 can	 lead	 to	 gene-specific	 treatments	 or	 therapies	 like	 gene	 inclusion	 or	

replacement	(Aiuti	et	al.,	2009;	Cavazzana-Calvo	et	al.,	2010;	Ott	et	al.,	2006).	WES	can	

be	also	useful	in	prenatal	diagnosis	(PND),	pre-implementation	genetic	diagnosis	(PGD),	

prognosis	 of	 preclinical	 individuals,	 new-born	 screening	 procedures	 and	 treatment	

(Rabbani	 et	 al.,	 2014).	 It	 can	 also	 help	 in	 cancer	 by	 identifying	 driver	 mutations	 and	

genetic	events	leading	to	metastasis.	This	knowledge	can	be	developed	into	treatments	

that	prevent	tumour	recurrence	or	avoid	therapeutic	resistance	(Majewski	et	al.,	2011).	

Altogether,	 WES	 can	 significantly	 contribute	 to	 personalized	 medicine	 and	 could	

improve	human	health	by	providing	better	disease	management.	

	

Limitations	of	WES	

Besides,	 the	 enormous	 benefits	 of	 exome	 sequencing,	 there	 are	 a	 few	 drawbacks	

(Biesecker,	Shianna,	&	Mullikin,	2011;	Directors,	2012;	Rabbani	et	al.,	2014).	Due	to	the	

target	design	and	enrichment	procedures,	WES	

1. is	weak	in	structural	variation	detection.		

2. does	not	cover	certain	sets	of	exons	or	provides	less	coverage	for	some	exons,	so	

that	causal	variants	may	be	missed	in	some	diseases.	

3. can	 miss	 mutations	 in	 repetitive	 or	 GC	 rich	 regions	 and	 in	 genes	 with	

corresponding	pseudogenes.	

	

1.2.3 Gene	panel	sequencing	
Gene	panel	sequencing	is	another	type	of	targeted	sequencing	where	genomic	regions	

from	 a	 set	 of	 genes	 associated	 with	 a	 certain	 disease	 are	 targeted	 rather	 than	 the	

complete	 exome11.	 There	 is	 prior	 knowledge	 about	 many	 diseases	 like	 their	 patho-

mechanism	or	responsible	genes,	hence,	sequencing	of	only	those	genes	is	sufficient	and	

more	 cost	 and	 time	 effective	 than	 WES.	 Gene	 panel	 sequencing	 can	 use	 both	

hybridization	 based	 and	 PCR	 based	 target	 enrichment	 methods.	 It	 provides	 higher	

coverage	 (almost	 100%	 of	 the	 target	 regions	 are	 usually	 covered	 sufficiently	 to	 call	

																																																								
11	Sequencing	overview	is	almost	the	same	as	in	WES	except	for	a	possibly	different	target	capture.	
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variants),	specificity,	and	uniformity	than	WES,	which	are	essential	for	confident	variant	

detection,	especially	for	low-frequency	variants	(e.g.,	mutations	only	present	in	a	small	

subset	 of	 cells	 in	 a	 tumour	 sample).	 Therefore,	 gene	 panel	 sequencing	 is	 gaining	

popularity	both	in	research	and	diagnostic	settings	(Altmüller	et	al.,	2014;	Glöckle	et	al.,	

2013;	 Lynch	 et	 al.,	 2012;	 Rehm,	 2013;	 Sie	 et	 al.,	 2014;	 Sikkema-Raddatz	 et	 al.,	 2013;	

Wooderchak-Donahue	et	al.,	2012).		

	

Due	to	its	high	accuracy,	medical	centres	are	making	different	gene	panels	for	diagnostic	

purpose.	 In	 this	 context,	 a	 brief	 overview	 of	 applications	 of	 gene	 panels	 and	 a	 list	 of	

clinically	available	disease-targeted	tests	has	been	reported	by	(Rehm,	2013).	Moreover,	

(Sikkema-Raddatz	 et	 al.,	 2013)	 claims	 that	 targeted	 sequencing	 can	 replace	 Sanger	

sequencing	 in	 clinical	 diagnostics.	 They	 compared	 results	 from	 a	 panel	 of	 48	 genes	

associated	 with	 hereditary	 cardiomyopathies	 with	 Sanger	 sequencing	 and	 achieved	

approximately	100%	reproducibility.	This	study	concludes	that	this	panel	can	be	used	as	

a	 stand-alone	 diagnostic	 test.	 In	 another	 study	 (Consugar	 et	 al.,	 2014),	 gene	 panel	

sequencing	 was	 used	 for	 genetic	 diagnostic	 testing	 of	 patients	 with	 inherited	 eye	

disorders.	 They	 designed	 a	 genetic	 eye	 disease	 (GEDi)	 test	 in	 this	 study	 with	 high	

sensitivity	and	specificity	(97.9	and	100%	respectively).		

	

In	cancer	research	and	diagnosis,	gene	panel	sequencing	(or	amplicon	sequencing)	has	

also	been	used	for	many	studies	to	uncover	somatic	and	germline	mutations	(Dahl	et	al.,	

2007;	 De	 Leeneer	 et	 al.,	 2011;	 Harismendy	 et	 al.,	 2011;	 Meldrum,	 Doyle,	 &	 Tothill,	

2011).	 (Laduca	 et	 al.,	 2014)	 used	 four	 hereditary	 cancer	 panels	 (breast	 panel,	 ovarian	

panel,	colon	panel,	and	cancer	panel)	 for	diagnosis	of	hereditary	cancer	predisposition	

(Laduca	et	al.,	2014).	There	are	also	many	commercially	available	standard	cancer	panels	

or	other	gene	panel	like	Illumina	TruSight12,	Illumina	TruSeq,	Amplicon	Cancer	Panel13	or	

Ion	AmpliSeq	Cancer	Hotspot	Panel	 v214	which	 can	be	used	 routinely	 in	both	 research	

and	clinical	settings	(Tsongalis	et	al.,	2014).	A	brief	list	of	standard	and	customized	gene	

																																																								
12	http://www.illumina.com/products/trusight-panels.html		
13	http://www.illumina.com/products/truseq_amplicon_cancer_panel.html		
14	https://www.lifetechnologies.com/order/catalog/product/4475346		
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panels	can	be	found	in	(Altmüller	et	al.,	2014).	Moreover,	the	most	recent	development	

in	this	direction	 is	the	“Mendeliome”,	which	 is	a	set	of	approximately	3000	Mendelian	

genes	known	to	cause	human	diseases	(Alkuraya,	2014).	

	

1.3 Basic	terminologies	in	data	analysis	
This	section	contains	definitions	of	 the	 few	terms	that	are	 required	 to	understand	the	

content	 of	 following	 sections.	 Some	 other	 terminologies	 will	 be	 defined	 during	 their	

usage	throughout	the	other	chapters.		

	

Fastq:	It	is	a	text-based	file	format15,	containing	sequence	reads	and	the	quality	score	of	

every	base	of	the	read.	

	

Read:		It	is	a	raw	sequence	(string	of	the	letters	A,C,G,T,N)	generated	from	a	sequencing	

machine.	

	

Insert	size:	In	paired-end	sequencing,	the	insert	size	is	the	length	of	the	sequenced	DNA	

fragment.	It	can	be	computed	from	the	alignment	as	the	length	of	read1	plus	the	length	

of	read2	plus	the	distance	between	them.	

	

Read	 alignment:	 It	 is	 alignment	 (or	mapping)	 of	 reads	 from	a	 sequenced	DNA	on	 the	

reference	genome	sequence,	to	identify	the	differences	or	regions	of	similarity	between	

both	sequences.	In	general,	there	are	two	basic	types	of	alignment:		

• Global	 alignment:	 This	 is	 the	 alignment	 between	 entire	 sequences	 of	

approximately	 equal	 size.	 The	 Needleman–Wunsch	 algorithm	 (Needleman	 &	

Wunsch,	 1970)	 is	 the	 general	 algorithm	 for	 this	 type	 of	 alignment.	 By	 using	

dynamic	programming16,	it	breaks	the	sequences	into	different	parts	and	tries	to	

align	 them.	 Then	 the	 algorithm	 searches	 for	 an	 optimal	 alignment	 of	 the	

complete	sequence	based	on	all	sub-alignments.		

																																																								
15	http://en.wikipedia.org/wiki/FASTQ_format				
16	http://en.wikipedia.org/wiki/Dynamic_programming			
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• Local	 alignment:	 As	 the	 name	 suggests,	 local	 alignment	 tries	 to	 find	 the	most	

similar	 part/section	 between	 two	 sequences	 instead	 of	 mapping	 the	 entire	

sequences.	 The	 basic	 algorithm	 for	 this	 purpose	 is	 the	 Smith-Waterman	

algorithm	 (T.	 F.	 Smith	 &	 Waterman,	 1981),	 which	 is	 another	 significant	

application	of	dynamic	programming.		

	

SAM/BAM:	 SAM	 stands	 for	 Sequence	Alignment	 Format17	and	 BAM	 is	 its	 compressed	

(encoded)	format.	SAM	is	a	tab-delimited	format	(generated	after	alignment)	containing	

all	necessary	information	related	to	the	alignment	of	sequencing	reads	on	the	reference	

sequence,	e.g.	mapping	position,	mapping	quality,	sequence	reads	and	their	base	quality	

scores	etc.	

	

VCF	 (Variant	 Call	 Format):	 It	 is	 a	 tab-delimited	 text	 file	 format	 to	 store	 sequencing	

variants	with	a	certain	set	of	information	(Danecek	et	al.,	2011)	(e.g.	position	in	genome,	

type	of	variant,	variant	supporting	evidences	etc.).	

	

Coverage:	 It	 can	 be	 described	 in	 two	 different	 ways:	 read	 coverage	 and	 sample	

coverage.	A	read	coverage	(also	called	read	depth)	is	the	number	of	reads	aligning	at	a	

specific	 genomic	 location.	 Sample	 coverage	 is	 the	 average	 read	 coverage	 across	 all	

genomic	 locations	 targeted	 during	 a	 sequencing	 experiment.	 Sample	 coverage	 can	 be	

represented	by	values	like	10x,	20x,	30x,	which	means	the	average	read	depth	is	10,	20,	

30,	respectively.	

	

Base	 quality	 score	 (Q):	 It	 is	also	known	as	a	phred	score	 (Q)	as	 it	 is	 calculated	by	 the	

Phred	 algorithm	 (Ewing	 &	 Green,	 1998;	 Ewing,	 Hillier,	 Wendl,	 &	 Green,	 1998).	 It	

represents	the	probability	that	a	base	is	miscalled.	If	P	is	the	estimated	error	probability	

for	a	base-call,	then	the	phred	score	is	calculated	as	follow:	

𝑄 = −10 log!" 𝑃	

	

																																																								
17	https://samtools.github.io/hts-specs/SAMv1.pdf		
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Mapping	quality	score	(MQ):	It	is	a	phred	score	which	represents	the	probability	that	a	

read	 is	misaligned	on	the	reference	(H.	Li,	Ruan,	&	Durbin,	2008).	 If	P	 is	the	estimated	

error	 probability	 for	 a	 misalignment,	 then	 the	 mapping	 quality	 can	 be	 calculated	 as	

follow:		

𝑀𝑄 = −10 log!" 𝑃	

	

Variant	quality	 score	 (Qual):	 It	 is	also	a	phred	score	 like	MQ	and	Q	and	describes	the	

probability	 of	 a	 called	 base	 being	 an	 alternate	 allele.	 If	 P	 is	 the	 posterior	 probability	

P(g|D)	of	the	called	genotype	g	given	the	observation	D,	then	Qual		can	be	calculated	as	

(H.	Li	et	al.,	2008):	

𝑄𝑢𝑎𝑙 = −10 log!"(1− 𝑃)	

	

For	all	the	quality	scores	(Q,	MQ,	Qual),	a	high	phred	score	means	that	the	examined	site	

has	low	error	probabilities	and	vice-versa.		

	

Specificity	 and	 Sensitivity:	 In	 general,	 specificity	 estimates	 the	 fraction	 of	 correctly	

identified	negatives	(e.g.	wrong	outcome),	whereas	sensitivity	estimates	the	fraction	of	

correctly	 identified	 positives	 (e.g.	 true	 outcome)18.	 In	 this	 thesis,	 these	 terms	 will	 be	

used	in	two	different	contexts:	variant	calling	and	alignment.	Definition	of	these	terms	in	

the	context	of	alignment	can	be	found	in	Chapter	2	(where	these	terms	have	been	used	

for	the	first	time).	In	the	variant	calling	context,	specificity	and	sensitivity,	also	known	as	

true	negative	rate	and	true	positive	rate,	are	measures	of	the	accuracy	and	the	ability	to	

detect	a	variant	of	a	variant	caller,	respectively,	and	can	be	calculated	as	follows:	

Sensitivity	or	true	positive	rate	(TPR)=	TPs (TPs+ FNs)	

Specificity	or	true	negative	rate	(TNR)=	TNs (TNs+ FPs)	

False	positive	rate	(FPR)	=	1-	Specificity	

True	positives	(TPs):		These	are	the	real	variants,	also	called	by	the	variant	caller.		

False	positives	(FPs):	These	are	variants	that	are	called	by	the	variant	caller	but	are	not	

the	real	variants.		

False	negatives	(FNs):	These	are	real	variants	that	are	not	called	by	the	variant	caller.	
																																																								
18	https://en.wikipedia.org/wiki/Sensitivity_and_specificity		
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True	 negatives	 (TNs):	 These	 are	 variants	 that	 are	 not	 real,	 and	 also	 not	 called	 by	 the	

variant	caller.		

	

1.4 Challenges	in	NGS	data	analysis		
The	rapid	fall	in	sequencing	cost	expanded	the	usage	of	NGS	techniques,	which	resulted	

in	huge	amounts	of	data.	Now	it’s	turn	for	the	Bioinformatics	community	to	make	sense	

of	 these	data.	There	are	many	challenges,	which	need	to	be	addressed	carefully.	They	

can	be	categorized	mainly	in	two	parts:	Efficient	data	processing	and	accuracy	of	results.	

The	challenges	belonging	to	each	category	are	briefly	described	below.	

	

1.4.1 Efficient	data	processing	
NGS	technologies	are	high-throughput	in	nature	that	means	they	produce	huge	amounts	

of	sequencing	data	in	a	relatively	short	time.	The	amount	of	data	can	be	categorized	in	

two	different	sections:	first	data	produced	by	a	single	sequencing	run	for	a	sample	and	

secondly	data	produced	by	a	study	containing	certain	set	of	 samples.	 In	both	of	 these	

categories,	the	amount	of	data	generated	is	increasing	rapidly.	Thus,	the	data	processing	

and	management	 is	a	major	challenge	and	should	be	able	 to	address	all	 requirements	

for	different	applications.		

	

In	order	 to	obtain	 relevant	 findings	 from	the	 raw	data,	 it	needs	 to	go	 through	various	

stages	 like	data	 cleaning,	 sequence	alignment,	 variant	 calling,	 etc.	 There	are	plenty	of	

algorithms	 for	 these	 individual	 tasks	 but	 in	 order	 to	 run	 them	 fast,	 they	 need	 to	 be	

stitched	 together	 in	 the	 correct	 order.	 This	workflow	 can	 be	 very	 complex	 and	 needs	

enough	 resources	 or	 high	 performance	 computing	 (HPC)	 for	 smooth	 operation.	

Moreover,	it	should	be	automated	to	reduce	the	manual	efforts	and	chances	of	manual	

errors	during	data	analysis	operations.		

	

Nowadays,	almost	every	automated	NGS	workflow	uses	HPC	clusters.	Here,	the	power	

of	multiple	CPUs	can	be	used	in	a	massively	parallel	way	to	finish	tasks	that	would	take	a	

couple	 of	 days	 on	 a	 single	 CPU	 in	 a	 couple	 of	 hours.	 For	 example,	 the	 MegaSeq	
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(Puckelwartz	et	al.,	2014)	and	HugeSeq	(Lam	et	al.,	2012)	workflows	use	HPC	for	whole	

genome	 sequencing	 data	 analysis.	 These	workflows	 utilize	 the	MapReduce19	approach	

to	speed	up	the	data	analysis.	In	the	MapReduce	approach,	first	data	is	split	into	chunks	

and	 then	 processed	 in	 parallel	 followed	 by	 merging	 of	 the	 results.	 We	 also	 use	 the	

MapReduce	approach	to	speed	up	our	exome	workflow.	Existing	automated	workflows	

can	 be	 Linux-based	 frameworks	 implemented	 on	 HPC	 systems	 via	 bash20	scripts	 like	

NGSANE	 (Buske,	 French,	 Smith,	 Clark,	 &	 Bauer,	 2014)	 or	 our	 exome	 workflow.	

Additionally,	 they	can	be	available	 in	 form	of	a	web-interface	 like	WEP	(Antonio	et	al.,	

2013)	 or	 a	 VirtualBox	 and	 Cloud	 Service	 like	 SIMPLEX	 (Fischer	 et	 al.,	 2012),	 enabling	

users	with	little	bioinformatics	knowledge	to	analyse	their	data	on	remote	HPC	systems.	

All	of	these	above-mentioned	examples	show	the	necessity	of	workflow	implementation	

on	HPC	systems	to	speed	up	NGS	data	analysis	and	also	provide	some	details	of	the	HPC	

implementation	 and	 parallelization	 strategies.	 However,	 besides	 the	 speed	 of	 a	

workflow,	 its	 stability,	 robustness	and	maintainability	 are	also	 important	 concerns.	An	

automated	workflow	should	be	fast,	stable	and	robust	as	well	as	easy	to	maintain.	The	

automation	 of	 the	workflow	 and	 its	 implementation	 (with	 consideration	 of	 the	 above	

mentioned	principles)	on	HPC	comes	with	many	challenges,	which	will	be	described	 in	

Chapter	3.	

	

1.4.2 Accuracy	of	results	
Downstream	analysis	of	sequencing	data	can	be	significantly	affected	by	the	accuracy	of	

results.	Error	propagation	during	data	processing	may	 lead	 to	 false	positives	 (FPs)	and	

misleading	findings.	On	the	other	hand,	badly	selected	strategies/tools	can	lead	to	false	

negatives,	which	means	 loss	of	 true	 variants.	 These	undetected	 variants	might	be	 the	

causative	 ones	 or	 can	 lead	 to	 uncover	 additional	 layers	 of	 some	 diseases,	 thus,	 this	

problem	is	more	severe	than	FPs.	Therefore,	to	find	a	proper	balance	between	accuracy	

and	sensitivity	of	results	is	another	significant	challenge	for	data	analysis,	which	will	be	

described	in	Chapter	2.	

																																																								
19	https://www.usenix.org/legacy/event/osdi04/tech/dean.html		
20	http://tiswww.case.edu/php/chet/bash/bashtop.html			
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Although,	 there	 are	 different	 alignment	 algorithms	 accompanied	 with	 post	 alignment	

improvements	and	different	variant	callers	with	reasonable	accuracy.	However,	getting	

a	variant	list	containing	only	true	variants	is	still	a	challenge	and	false	positive	calls	(FPs)	

remain	a	problem.	Some	of	the	FPs	are	due	to	the	limitations	of	current	tools,	however,	

random	 sequencing	 errors	 and	 sequencing	 biases	 are	 other	 major	 contributors.	

Sequencing	biases	can	be	categorized	in	three	main	classes	coverage	bias,	batch	effects	

and	 systematic	 errors	 (Taub,	 Corrada	 Bravo,	 &	 Irizarry,	 2010;	 Yang,	 Chockalingam,	 &	

Aluru,	2013).		

	

Coverage	bias		

Coverage	 bias	 means	 non-uniform	 coverage	 throughout	 the	 sequenced	 genomic	

locations.	Genomic	locations	containing	low-complexity	regions21	like	GC-rich	sequences	

are	 the	 major	 source	 of	 coverage	 bias,	 that	 is	 non-uniform	 coverage	 or	 even	 no	

coverage	in	these	regions	(Sims,	Sudbery,	Ilott,	Heger,	&	Ponting,	2014).	(Dohm,	Lottaz,	

Borodina,	&	Himmelbauer,	2008)	first	studied	the	effect	of	the	unbalanced	GC	content	

of	a	genome	(known	as	GC	bias)	on	read	coverage	and	found	lower	read	coverage	in	GC	

or	 AT	 rich	 regions.	 Soon	 after,	 Kozarewa	 and	 colleagues	 showed	 that	 amplification	

artefacts	 introduced	 during	 the	 library	 preparation	 are	 the	 major	 source	 of	 the	

heterogeneous	distribution	of	the	read	coverage	(Kozarewa	et	al.,	2009).	After	that,	the	

GC	 bias	 effect	 has	 been	 studied	 many	 times	 in	 different	 contexts	 with	 similar	

observations	(Aird	et	al.,	2011;	Chen,	Liu,	Yu,	Chiang,	&	Hwang,	2013;	Chilamakuri	et	al.,	

2014;	Clark	et	al.,	2011;	Lan	et	al.,	2015).	During	the	 library	preparation,	 the	PCR	step	

yields	 lower	amplification	of	 regions	with	high	GC	or	high	AT	 content	which	 results	 in	

lower	 sequencing	 coverage	 (Clark	 et	 al.,	 2011).	 Moreover,	 the	 GC	 bias	 reduces	 the	

efficiency	 of	 capture	 probe	 hybridization	 that	 also	 leads	 to	 lower	 read	 coverage	

(Chilamakuri	et	al.,	2014).	This	reduced	read	coverage	might	result	in	many	false	positive	

(FPs)	or	false	negative	(FNs)	variant	calls	(cf.	Chapter	2).	For	example,	low	coverage	at	a	

certain	region	can	be	detected	as	a	copy	number	variant	(e.g.	deletion)	although	it	is	just	

																																																								
21	DNA	regions	having	biased	nucleotide	composition	and	enriched	with	simple	sequence	repeats.	
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because	of	 the	GC	effect.	 Similarly,	 some	 true	 variant	might	be	missed	or	 filtered	out	

due	to	the	minimum	coverage	threshold	filter	used	during	variant	calling.						

	

Because	of	the	prevalent	knowledge	about	the	effect	of	GC	bias,	there	are	many	ways	to	

avoid	or	correct	this	effect.	It	can	be	avoided	either	during	the	library	preparation	(Aird	

et	 al.,	 2011;	 Kozarewa	 et	 al.,	 2009;	 Oyola	 et	 al.,	 2012)	 or	 compensated	 during	 the	

downstream	 analysis	 of	 sequencing	 data.	 (Benjamini	 &	 Speed,	 2012;	 Cheung,	 Down,	

Latorre,	 &	 Ahringer,	 2011)	 provided	 the	 “GCcorrect”	 tool	 and	 BEAD	 algorithm,	

respectively,	 that	 perform	 different	 normalization	 techniques	 for	 GC	 bias	 correction.	

Moreover,	 most	 of	 the	 copy	 number	 calling	 tools	 based	 on	 the	 depth	 of	 coverage	

approach	 (Medvedev,	 Stanciu,	 &	 Brudno,	 2009)	 perform	 read	 depth	 normalization	 to	

correct	 for	 the	 GC	 bias	 (Alkan	 et	 al.,	 2009;	 Fromer	 et	 al.,	 2012;	 Krumm	 et	 al.,	 2012;	

Plagnol	et	al.,	2012).		

	

Batch	effect		

“Batch	 effects	 are	 sub-groups	 of	 measurements	 that	 have	 qualitatively	 different	

behaviour	across	conditions	and	are	unrelated	to	the	biological	or	scientific	variables	in	

a	study”	(Leek	et	al.,	2010).	Thus,	the	different	batches	of	a	sequencing	experiment	can	

have	errors	 that	 are	due	 to	 the	 technical	or	manual	 variability.	 For	example,	usage	of	

different	 lots	 of	 reagents,	 chips	 or	 instruments	 can	 introduce	 variability	 between	

different	 batches	 of	 sequencing	 experiments.	 Moreover,	 the	 individual	 experience	 of	

different	 technicians	 handling	 the	 samples	 during	 the	 library	 preparation	 and	

sequencing	process	can	also	result	in	batch	effects.	Batch	effects	can	easily	lead	to	some	

false	discoveries	or	conclusions.	Leek	and	colleagues	has	summarized	the	consequences	

of	batch	effects	and	also	demonstrated	the	presence	of	batch	effects	in	sequencing	data	

from	 the	 1000	 genomes	 project	 (Leek	 et	 al.,	 2010).	 Moreover,	 they	 also	 provided	

solutions	 to	 avoid	 batch	 effects.	 Careful	 study	 design	 and	 some	 statistical	 solutions	

(exploratory	statistical	analysis)	can	easily	eliminate	the	consequences	of	batch	effects	

(Leek	et	al.,	2010).		
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Systematic	error		

Systematic	error	 is	the	error	 introduced	by	the	sequencing	platform	that	follows	some	

systematic	patterns	instead	of	a	random	distribution.	Systematic	errors	can	be	classified	

as	position	specific	and	sequence	specific	(Meacham	et	al.,	2011).	Position	specific	error	

is	 the	class	of	errors	where	the	error	 (i.e.	mismatch)	occurs	mostly	at	certain	genomic	

positions	or	in	certain	regions	of	the	reads	(e.g.	base	calling	errors	towards	the	3’	end).	

In	contrast,	the	sequence	specific	error	is	surrounded	(upstream	or	downstream	of	the	

error	position)	by	a	 certain	 sequence	motif	 (consecutive	nucleotide	bases	of	 a	 certain	

length).		

	

As	 Illumina	 sequencing	 is	 the	most	widely	 used	 technology,	 lots	 of	 studies	 have	been	

performed	to	understand	errors	generated	from	these	sequencers.	It	has	been	observed	

that	 Illumina	generates	more	substitution	errors	than	 Indel	errors	 (Dohm	et	al.,	2008).	

Dohm	et	al.	observed	that	most	of	the	subsititution	errors	are	either	persent	at	the	ends	

of	 reads	 (esp.	at	 the	3’	end)	or	 in	 the	GC-rich	 regions.	They	 found	 that	 the	nulceotide	

base	A	is	substituted	by	C	and	C	is	substituted	by	G	more	often	then	the	other	types	of	

base	susbtituion.	(Kircher,	Stenzel,	&	Kelso,	2009)	studied	these	base	calling	errors	and	

found	 that	 these	 errors	 are	 more	 frequent	 during	 the	 first	 and	 the	 last	 cycles.	 They	

observed	 that	 the	base	calling	errors	are	more	 frequent	 in	 the	 later	 cycles	due	 to	 the	

effects	of	crosstalk,	declining	intensities,	pre-phasing	and	phasing,	and	accumulation	of	

the	 “T”	 nucleotide.	 (Metzker,	 2010)	 reviewed	 different	 NGS	 techonlogies	 and	 also	

reported	that	the	lagging-strand	dephasing	is	the	main	cause	of	this	type	of	sustitution	

errors	 in	 Illumina	 data.	 Dephasing	means	 loss	 of	 synchronicity	 of	 growing	 primers	 for	

any	 given	 cycle	 during	 clonal	 amplification	 process	 (Metzker,	 2010).	 In	 another	word,	

when	 the	 blocking	 effect	 of	 the	 3’-OH	 group	 (which	 allows	 the	 next	 nucleotide	 base	

incorporation)	 (cf.	 Chapter	 1)	 does	 not	 work	 (or	 still	 works	 in	 the	 next	 cycle),	 some	

copies	of	the	DNA	template	lose	synchronization	with	the	other	copies	of	DNA	template	

belonging	 to	 the	 same	 cluster	 (e.g.	 incorporation	 lags	 one	 base	 behind	 the	 rest	 of	

cluster).	 It	 can	be	 referred	 in	 two	ways:	 lagging	 strand	dephasing	 and	 leading	 	 strand	

dephasing.	The	lagging	strand	dephasing	refers	to	the	incomple	extension	of	a	template	

ensemble	becuase	of	 lagging	behind	compared	to	the	rest	of	the	cluster	as	mentioned	
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above.	 In	 contrast,	 leading-strand	 dephasing	 is	 the	 incorporation	 of	 more	 than	 one	

nucleotide	in	a	given	cycle	(Metzker,	2010).	Based	on	the	available	knoweldege,	lots	of	

improvement	has	been	performed	like	 improvements	 in	the	sequencing	chemistry	and	

the	base	calling	algorithms.	Moreover,	 recent	alignment	and	variant	calling	algorithms	

are	 also	 aware	 of	 this	 type	 of	 error.	Moreover,	 some	 standard	 filtering	 strategies	 are	

also	able	to	filter	FPs	generated	by	these	errors.	However,	there	is	still	lots	to	explore	in	

this	class	of	error	as	many	systematic	errors	are	hard	to	detect	or	not	detected	so	far.	

Thus,	Chapter	4	is	dedicated	to	the	exploration	of	systematic	errors.	

	

1.5 Thesis	organization	
As	mentioned	 above,	 NGS	 data	 analysis	 comes	 with	 certain	 challenges.	 This	 thesis	 is	

aimed	 to	address	 some	of	 these	 challenges	 to	enhance	 the	efficiency	and	accuracy	of	

DNA	 sequencing	 data	 analysis.	 The	 work	 presented	 in	 thesis	 is	 my	 own	 work	 except	

Chapter	3,	which	is	joint	work	of	Dr.	Susanne	Motameny	and	myself.			

	

In	 Chapter	 1,	 I	 have	 provided	 an	 overview	 of	 NGS	 technologies,	 targeted	 DNA	

sequencing	methods	and	their	applications.	I	have	briefly	mentioned	some	data	analysis	

terminologies	followed	by	a	description	of	the	main	challenges	of	NGS	data	analysis.	

	

Chapter	 2	 provides	 an	 overview	 of	 the	 data	 analysis	 steps	 of	 targeted	 sequencing	 as	

implemented	 in	 our	 data	 analysis	 workflow.	 It	 contains	 details	 of	 essential	 steps	

(including	 their	 significance)	 required	 to	 generate	 a	 variant	 list	 from	 raw	 sequencing	

data.	It	also	describes	the	possible	adverse	effects	of	each	step	(if	used	inappropriately)	

and	highlights	the	limitations	of	the	applied	algorithms.	Moreover,	it	demonstrates	the	

importance	of	 the	 selection	of	 appropriate	 tools	 and	associated	parameter	 settings	 in	

terms	of	both	accuracy	and	efficiency.	Furthermore,	it	provides	an	overview	of	filtering	

and	benchmarking	 strategies	 applied	 in	 our	 data	 analysis	workflow	 to	 achieve	 a	 good	

balance	between	accuracy	and	sensitivity	of	the	results.	

	

In	Chapter	3,	details	of	our	 in-house	developed	automated	data	analysis	workflow	are	

provided.	 The	 aim	was	 to	 avoid	manual	 repetition	 of	 all	 of	 the	 data	 analysis	 steps	 as	
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mentioned	in	Chapter	2	and	thus	to	save	time	for	downstream	analyses	of	data	and	its	

validation.	 Fast	 and	 efficient	 automated	 data	 processing	 requires	 a	 large	 amount	 of	

computational	 resources	 that	 necessitates	 its	 implementation	 on	 high	 performance	

computing	 (HPC)	 clusters.	 However,	 HPC	 comes	 with	 some	 challenges	 and	 requires	

certain	 workflow	 design	 principals	 as	 parallelization	 strategies	 and	 some	 other	 tricks.	

This	 chapter	provides	details	of	 these	design	principals	and	strategies,	which	gave	our	

workflow	speed,	stability	and	robustness	while	keeping	it	easy	to	maintain.	

	

Chapter	 4	 is	dedicated	 to	an	 important	but	hard	 to	detect	 class	of	 sequencing	errors:	

Systematic	 Sequencing	 Errors	 (SSEs),	 which	 can	 easily	 damage	 the	 accuracy	 of	 the	

results.	 The	 chapter	 presents	 a	 novel	 approach	 to	 explore	 SSEs.	 During	 the	 error	

exploration,	reproducible	error	behaviour	in	different	datasets	has	been	observed	which	

led	 to	 a	 newly	 coined	 class	 of	 errors:	 “Recurrent	 Systematic	 Errors	 (RSEs)”.	 The	

characteristics	of	RSEs	and	some	of	 the	known	and	novel	patterns	behind	 this	 type	of	

error	are	described	in	this	chapter.	Moreover,	an	RSE	filtering	tool	“FilterRSEs”	has	been	

developed,	which	can	filter	FPs	 (due	to	RSE)	 from	a	given	variant	 list	 (VCF	file).	 It	uses	

the	 detected	 RSE	 location	 and	 associated	 annotations	 to	 provide	 different	 filtering	

options.		

	

Chapter	 5	 concludes	 the	 thesis	 with	 a	 discussion	 of	 the	 findings	 and	 an	 outlook	 on	

current	and	future	developments.		

	

1.5.1 Relevant	publications	
The	following	publications	related	to	this	thesis	have	been	published:						

• Leveraging	 the	 Power	 of	 High	 Performance	 Computing	 for	 Next	 Generation	

Sequencing	 Data	 Analysis:	 Tricks	 and	 Twists	 from	 a	 High	 Throughput	 Exome	

Workflow.	Amit	Kawalia,	Susanne	Motameny,	Stephan	Wonczak,	Holger	Thiele,	

…	Ulrich	Lang,	Viktor	Achter,	Peter	Nürnberg.	PLOS	ONE	(2015)	

• Rare	variants	in	γ-aminobutyric	acid	type	A	receptor	genes	in	rolandic	epilepsy	

and	 related	 syndromes.	 Reinthaler	 EM,	 Dejanovic	 B,	 Lal	 D,	 Semtner	 M,	
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…Kawalia	 A…EuroEPINOMICS	Consortium,	Nürnberg	 P,	 Lerche	H,	….Neubauer	

BA,	Zimprich	F.	Annals	of	Neurology	(2015)	

• Homozygous	 and	 compound-heterozygous	 mutations	 in	 TGDS	 cause	 Catel-

Manzke	 syndrome.	 Ehmke	 N,	 Caliebe	 A,	 Koenig	 R,	 Kant	 SG,	 …,	 Kawalia	

A…Nürnberg	 P,	 Siebert	 R,	Manzke	H,	Mundlos	 S.	American	 Journal	 of	Human	

Genetics	(2014)	

• Mutations	 in	 STX1B,	 encoding	 a	 presynaptic	 protein,	 cause	 fever-associated	

epilepsy	 syndromes.	 Schubert	 J,	 Siekierska	 A,	 Langlois	 M,	 May	 P,	 …Kawalia	

A…Nürnberg	 P,	 Crawford	 AD,	 Esguerra	 CV,	 Weber	 YG,	 Lerche	 H.	 Nature	

Genetics	(2014)	

• DEPDC5	mutations	in	genetic	focal	epilepsies	of	childhood.	Lal	D,	Reinthaler	EM,	

Schubert	J,	…Kawalia	A…Nürnberg	P,	Sander	T,	Weber	Y,	Zimprich	F,	Neubauer	

BA.	Annals	of	Neurology	(2014)	

	

	

	



Chapter	2 	
Accurate	DNA	sequencing	data	analysis:	
hurdles	and	solutions		
	

Almost	 every	 day,	 sequencers	 produce	 huge	 amounts	 of	 DNA	 sequencing	 data	

containing	 millions	 of	 sequencing	 reads.	 Raw	 data	 coming	 out	 from	 these	 machines	

contain	only	 sequencing	 reads	and	 their	quality	 scores.	Each	 sequencing	 read	 is	 just	a	

series	of	 four	 letters	 (A,	 T,	G,	 C)	 representing	 the	 four	nucleotides	 (adenine,	 thymine,	

guanine,	cytosine,	 respectively)	and	does	not	provide	any	significant	 information	 in	 its	

original	 state.	 To	make	 sense	of	 these	 raw	 sequencing	data,	 they	need	 to	 go	 through	

various	 bioinformatics	 analyses.	 Conversion	of	 a	 raw	 sequencing	 file	 (fastq	 file)	 into	 a	

variant	list	(VCF	file)	requires	certain	data	processing	steps	(Van	der	Auwera	et	al.,	2013)	

that	 can	 be	 mainly	 categorized	 into	 4	 different	 sections:	 pre-processing,	 alignment,	

variant	calling,	and	functional	annotation.			

	

All	of	these	analysis	steps	are	 interconnected,	build	on	each	other,	and	usually	 involve	

running	some	tool	or	script.	Thus,	every	analysis	step	can	affect	its	consecutive	analysis	

in	an	adverse	manner	if	not	used	appropriately.	For	example,	discarding	bad	quality	data	

during	the	quality	control	step	can	improve	the	specificity	of	results.	However,	this	can	

lead	to	loss	of	data	and	hence	lower	sensitivity	of	results.	Similarly,	selection	of	wrong	

tools/algorithms	with	their	default	(or	inappropriate)	parameter	settings	can	also	lead	to	

bad	specificity	or	sensitivity.	Both	of	these	situations	are	harmful	for	the	final	results	and	

can	mislead	variant	discovery.	Less	specific	results	contain	lots	of	false	positives,	which	

make	detection	of	true	variants	complicated.	On	the	contrary,	less	sensitive	results	can	

lead	to	the	absence	of	some	true	variants	in	the	final	variant	list.	Thus,	finding	a	proper	

balance	between	specificity	and	sensitivity	of	results	is	very	important.							

	

This	chapter	aims	to	address	these	 issues	 in	order	to	achieve	a	good	balance	between	

sensitivity	and	specificity	of	the	results	(cf.	Section	1.3).	It	provides	a	description	of	the	

main	steps	of	DNA	sequencing	data	analysis,	their	significance	and	the	possible	adverse	
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effects.	 It	 contains	 details	 of	 pre-processing	 of	 raw	 data,	 alignment,	 variant	 calling,	

filtering,	and	evaluations	of	variant	calls.	The	variant	calling	step	can	be	categorized	 in	

four	 different	 parts:	 Single	 nucleotide	 polymorphism	 (SNP),	 insertion	 &	 deletions	

(Indels),	 copy	number	variants	 (CNV)	and	 structural	 variants	 (SV)	 calling.	 I	will	 provide	

details	 of	 only	 SNP	 and	 Indels	 calling,	 as	 I	 tested	 and	 implemented	 this	 part	 of	 the	

variant	 calling.	 In	CNV	 calling,	 SV	 calling,	 and	 functional	 annotation	of	 variants,	 I	 have	

only	contributed	 in	 the	HPC	(High	Performance	Computing)	 implementation;	 thus,	 this	

part	of	our	workflow	will	not	be	described	here.	In	the	following,	each	of	these	steps	are	

described	 in	 separate	 sections	 containing	 the	 significance	 of	 the	 particular	 analysis,	

followed	by	a	brief	introduction	(or	comparison)	of	relevant	tools	executing	this	analysis	

and	 their	 limitations	 (if	 exists).	 Thereafter,	 details	 of	 the	 selected	 tool	 or	 my	 own	

solution	 (e.g.	 self-developed	 scripts)	 and	 the	 reasons	behind	 the	 selected	 solution	are	

provided.	At	 last,	 I	provide	some	insights	(both	known	and	learned	during	testing)	 into	

the	adverse	effects	of	analysis	steps	(if	used	inadequately).	

	

I	 have	 tested	 different	 tools	 belonging	 to	 all	 of	 the	 above-mentioned	 data	 analysis	

categories	 in	 terms	of	 their	 efficiency	 and	 accuracy.	 A	 good	 tool	 for	 the	data	 analysis	

workflow	should	be	fast	and	resource-efficient	(e.g.	use	a	small	number	of	cores	and	a	

small	 amount	 of	 memory)	 (cf.	 Chapter	 3).	 Moreover,	 it	 should	 generate	 a	 balanced	

result	 in	 terms	 of	 specificity	 and	 sensitivity	 (cf.	 Section	 1.3).	 Thus,	 I	 have	 performed	

extensive	 testing	 of	 different	 tools	 and	 their	 parameter	 settings	 and	 selected	 the	

relatively	 best	 tool	 with	 its	 optimum	 performance.	 At	 last,	 we	 evaluated	 the	 results	

generated	 from	 our	 data	 analysis	 workflow	 in	 order	 to	 confirm	 that	 our	 selection	 of	

tools,	parameters	and	filtering	strategies	are	satisfactory.	All	of	the	testing	is	performed	

on	human	sequencing	data	and	all	observations	or	suggestions	in	this	entire	chapter	are	

for	human	sequencing	data	analysis	(especially	for	exome	sequencing	experiments	with	

Illumina	sequencing	technology).		
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2.1 Pre-processing	of	raw	data	
This	is	the	first	and	a	very	significant	step	for	any	kind	of	data	analysis.	Raw	sequencing	

data	 from	sequencers	 is	not	always	having	good	quality	and	can	have	 some	 fallacious	

characteristics.	 Thus,	 before	 any	 analysis	 steps,	 a	 quality	 check	 of	 the	 data	 should	 be	

performed	 to	 distinguish	 between	 a	 bad	 and	 a	 good	quality	 sample22.	 For	 example,	 a	

good	quality	sample	should	have	base	quality	scores	greater	than	20	for	all	bases	at	each	

position	 in	 the	 read,	 should	have	 less	GC	bias	 and	no	adapter	 contamination	etc.	 The	

detailed	 information	about	 these	quality	checks	and	 their	 significance	can	be	 found	 in	

Appendix.	 The	quality	 control	 (QC)	 can	be	performed	by	 the	FastQC	 tool23,	 PRINSEQ24	

(Schmieder	 &	 Edwards,	 2011)	 or	 any	 other	 similar	 tool.	 I	 tested	 both	 FastQC	 and	

PRINSEQ	and	 found	 that	 they	 are	quite	 similar	 and	efficient	 enough	 to	perform	 some	

basic	quality	checks	(cf.	Appendix).	However,	I	selected	the	FastQC	tool	for	QC,	as	it	is	a	

well	tested	and	adapted	tool	by	the	bioinformatics	community	(Kircher,	2011;	Mutarelli	

et	al.,	2014;	Pabinger	et	al.,	2013).	A	widely	used	tool	is	more	likely	to	be	bug	free	than	

the	less	popular	tool.		

	

If	 a	 sample	 reported	 as	 a	 bad	 quality	 sample	 by	QC	 reports,	 then	 it	 should	 be	 either	

discarded	 or	 should	 undergo	 certain	 processing	 steps	 to	 improve	 the	 quality.	 For	

example,	 if	a	 sample	 is	 showing	bad	quality	 scores	 towards	 the	end	of	 the	 reads	 then	

trimming	 of	 these	 bases	 can	 improve	 the	 overall	 base	 quality	 scores.	 Thus,	 I	 perform	

following	 QC	 steps	 either	 by	 default	 or	 based	 on	 the	 QC	 report	 generated	 from	 the	

quality	 checks.	 The	 decision	 of	 performing	 these	 steps	 can	 vary	 from	 one	 data	 to	

another.	

	

																																																								
22	Good	quality	sample:	

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html	(This	and	

subsequent	URLs	are	accessed	on	28	June	2015)	
23	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/				
24	http://prinseq.sourceforge.net/index.html		
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2.1.1 Adaptor	trimming	

Adaptors	are	short	oligonucleotide	(oligo)	sequences	required	to	link	the	end	of	a	DNA	

fragment	 to	 the	surface	of	 the	sequencing	platform	(cf.	Section	1.1.1).	 If	 the	 fragment	

size	 is	 smaller	 than	 the	 read	 length,	 the	 sequencing	 reaction	 will	 continue	 into	 the	

adaptor	 resulting	 in	 the	 presence	 of	 a	 partial	 or	 complete	 adaptor	 sequence	 inside	 a	

read	 (Kircher,	 Heyn,	 &	 Kelso,	 2011).	 These	 adaptor	 sequences	 are	 not	 a	 part	 of	 the	

reference	genome	sequence	and	might	damage	alignment	accuracy	by	inserting	lots	of	

mismatches	during	their	mapping	on	the	reference	sequence.	Therefore,	the	detection	

and	removal	of	these	sequences	can	also	enhance	the	accuracy	of	results.		

	

I	 tested	 FASTX-Toolkit25	and	 Cutadapt	 tool	 (Martin,	 2011)	 for	 adaptor	 trimming.	 Both	

tools	are	widely	used	tools,	but	I	preferred	Cutadapt	due	to	its	flexibility	and	additional	

functionality.	 Cutadapt	 performs	 gapped	 alignment	 of	 single	 or	 multiple	 adaptors	 on	

only	3’	or	5’	end	or	both	end	of	the	read	sequence.	It	allows	selecting	the	mapping	error	

rate	and	length	of	overlap	and	will	remove	the	best	matching	adaptor.	It	can	either	trim	

few	bases	or	can	discard	the	entire	read	when	the	read	length	becomes	too	short	after	

trimming.	Overall,	 it	 is	a	very	flexible	tool,	which	performs	good	adaptor	matching	and	

trimming	with	its	default	parameter	setting	on	our	exome	data.	In	contrast,	the	FASTA/Q	

Clipper	method	of	the	FASTX-Toolkit	for	adapter	trimming	performs	only	basic	adapter	

clipping	and	does	not	have	all	of	the	functionality	(or	flexibility)	provided	by	Cutadapt.			

	

A	faulty	adapter	trimming	can	be	a	reason	of	loss	of	information	or	false	positives,	if	the	

appropriate	 parameter	 selection	 is	 not	 performed.	 As	 mentioned	 above,	 the	 default	

parameter	 setting	 works	 well	 on	 our	 exome	 data,	 but	 an	 optimum	 combination	 of	

parameters	 can	 vary	 from	 one	 data	 to	 another.	 There	 are	 two	 critical	 parameters	 in	

Cutadapt:	minimum	overlap	 and	 error	 rate.	 If	 a	 low	 value	 of	minimum	overlap	 and	 a	

high	 error	 rate	 are	 used	 during	 adaptor	 matching,	 then	 the	 tool	 can	 perform	 partial	

mapping	of	the	adaptor	sequence	on	the	reads.	These	partial	matches	are	considered	as	

adaptor	matches	 that	 trigger	adapter	 trimming.	Thus,	 the	 tool	will	 trim	a	portion	of	a	

																																																								
25	http://hannonlab.cshl.edu/fastx_toolkit/	
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read	 that	 actually	 not	 having	 adaptor	 contamination	 and	 this	 way	 lead	 to	 a	 loss	 of	

sequencing	reads.		

	

2.1.2 Quality	based	trimming		

Raw	 sequencing	 reads	 can	 have	 low	 quality	 bases	 at	 one	 or	 both	 ends	 (Dohm	 et	 al.,	

2008).	As	explained	 in	Chapter	1,	nucleotide	bases	are	 identified	one	by	one	 from	the	

cluster	 of	 identical	 molecules	 through	 various	 sequencing	 cycles.	 During	 these	

repetitions	 (cycles),	 error	 propagation	 or	 accumulation	 can	 happened	 due	 to	 various	

causes,	 such	 as,	 air	 bubbles,	 spot-specific	 signal	 noise,	malfunctioning	 of	 laser	 or	 lens	

(Del	Fabbro,	Scalabrin,	Morgante,	&	Giorgi,	2013).	This	can	lead	to	quality	deterioration	

towards	the	ends	of	a	read.	Thus,	low	base	quality	scores	can	be	found	at	the	ends	that	

indicate	 less	confident	base	calling	meaning	 that	 the	called	base	can	be	wrong.	Figure	

2.1	 shows	 the	 effect	 of	 quality	 trimming	 on	 one	 of	 the	 in-house	 sequenced	 exome	

sequencing	datasets.	 It	contains	 large	amounts	of	bad	quality	bases	 (<	20	base	quality	

score)	at	the	end	of	reads	(cf.	Figure	2.1	(A)).	However,	quality	trimming	removes	all	bad	

quality	 bases,	which	 improved	 the	 overall	 quality	 of	 the	 data	 (all	 bases	 in	 reads	 now	

have	 a	 base	 quality	 score	 >	 30)	 (cf.	 Figure	 2.1	 (B)).	 If	 the	 quality	 trimming	 is	 not	

performed	on	 this	 kind	of	data,	 then	mapping	of	 these	wrong	bases	on	 the	 reference	

sequence	 can	easily	disrupt	 the	alignment	 accuracy	 (resulting	 in	bad	mapping	quality)	

and	contribute	 to	 false	positives	 in	variant	calling	 (Del	Fabbro	et	al.,	2013).	Therefore,	

trimming	or	soft	clipping	(masking)	of	these	bases	from	both	ends	(5’	and	3’	end)	of	a	

read	(or	at-least	3’	end)	is	required.	If	a	read	is	having	high	number	of	bad	quality	bases,	

then	the	entire	read	should	be	discarded.	

	

For	the	quality	trimming,	I	first	tested	some	standard	quality	trimming	tools	like	FASTX-

Toolkit,	seqtk26.	The	FASTX-Toolkit	quality	trimmer	works	well	on	the	data	but	performs	

trimming	only	on	the	3’	end	of	reads	ignoring	the	5’	end.	Another	tool,	seqtk	is	able	to	

perform	trimming	on	both	ends.	However,	both	tools	do	not	provide	a	direct	parameter	

to	 discard	 reads	 that	 have	 bad	 quality	 bases	 beyond	 the	 given	 or	 desired	 proportion.	

																																																								
26	https://github.com/lh3/seqtk		
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Furthermore,	 they	 are	 not	 able	 to	 keep	 pairing	 information	 if	 one	 read	 of	 a	 pair	 is	

discarded	completely.	Thus,	to	overcome	these	issues,	I	wrote	a	perl	script	to	trim	bad	

quality	 bases	 from	 both	 ends	 of	 a	 read.	 The	 trimming	 approach	 is	 partially	 based	 on	

BWA’s	soft-clipping	method27	as	implemented	in	the	“TrimBWAstyle”28	script.	It	screens	

the	 base	 quality	 scores	 from	 the	 end	 of	 a	 read	 and	 trims	 the	 low	 quality	 part	 (bases	

below	the	cutoff	value).	The	script	checks	for	a	low	quality	base	(score	less	than	a	given	

quality	 threshold)	among	 the	 last	or	 first	 five	bases	at	 the	3’	 and	5’	end,	 respectively.	

This	base	position	is	the	starting	position	for	the	trimming	action	(start	base).		

	

	

Figure	2.1	Effect	of	quality	 trimming	on	our	 in-house	data.	A)	Base	quality	score	across	all	bases	before	

trimming.	B)	Base	quality	score	across	all	bases	after	trimming	(Y-axis:	base	quality	score,	X-axis:	position	

of	base	along	read).		

																																																								
27	https://github.com/lh3/bwa/blob/master/bwaseqio.c		
28	http://wiki.bioinformatics.ucdavis.edu/index.php/TrimBWAstyle.pl		

A	

B	
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The	script	computes	the	difference	between	the	quality	score	of	the	start	base	and	the	

given	 quality	 threshold.	 Then	 it	 moves	 to	 the	 next	 base	 in	 downstream	 or	 upstream	

direction	from	the	start	base	(for	5’	and	3’	end,	respectively);	computes	the	difference	

to	the	given	quality	threshold	(as	mentioned	above)	and	adds	this	new	difference	value	

to	 the	 prior	 value.	 It	 continues	 this	 procedure	 till	 the	 final	 value	 of	 the	 sum	 of	 the	

differences	drops	to	zero	(<=	zero).	Bases	up	to	the	position	where	the	score	drops	to	

zero	are	trimmed.	As	 it	considers	 the	quality	score	of	neighbouring	bases,	 it	can	allow	

for	 a	 few	 good	 quality	 bases	 during	 the	 trimming	 action	 (depending	 on	 the	 score’s	

range)	 and	 continue	 to	 hunt	 for	 preceding/following	 bad	 quality	 bases.	 Thus,	 this	

strategy	 is	 better	 than	 the	 basic	 hard	 trimming,	 which	 lacks	 the	 above-mentioned	

feature	and	only	trims	a	continuous	stretch	of	bad	quality	bases.	The	quality	trimming	

script	also	discards	the	entire	read	if	the	read	length	(after	trimming)	becomes	shorter	

than	a	given	threshold	or	the	percentage	of	bad	quality	bases	in	a	read	is	more	than	a	

given	threshold.	Moreover,	 it	keeps	the	pairing	 information	when	a	read	 is	completely	

discarded	 during	 trimming.	 The	 pseudo	 code	 of	 trimming	 script	 can	 be	 found	 in	 the	

Appendix.		

	

In	 general,	 quality	 trimming	 is	 beneficial	 for	 bad	 quality	 data,	 but	 it	 can	 have	 some	

adverse	 effects.	 Discarding	 a	 significant	 amount	 of	 bases	 or	 the	 entire	 read	 could	

decrease	 the	 read	coverage,	which	might	affect	 the	sensitivity	or	 specificity	of	 results.	

There	are	a	few	examples	to	illustrate	the	above-mentioned	effect:		

1. If	 the	majority	 of	 reads	 from	 a	 sample	 have	 intermediate	 (10-20)	 or	 low	 base	

quality	scores	(<	10)	and	a	high	quality	score	(usually	10	or	15)	threshold	is	used	

for	trimming,	then	most	of	the	data	will	be	discarded	that	leads	to	less	sensitive	

results.	

2. If	the	data	is	having	low	read	coverage	and	trimming	decreases	it	further,	then	it	

can	be	dangerous	for	variant	calling	and	could	introduce	many	false	positives	or	

false	negatives	due	to	lack	of	supporting	evidence.	

	

Overall,	the	decision	to	do	quality	trimming	and	adapter	trimming	(including	selection	of	

appropriate	 thresholds	 or	 parameters)	 should	 be	 based	 on	 the	 data	 that	 needs	 to	 be	



	

Accurate	DNA	sequencing	data	analysis:	hurdles	and	solutions	

	50	

analyse	or	should	be	driven	from	its	QC	reports.	Generalization	(or	default	application)	

of	 this	 approach	 can	hurt	downstream	analysis	 steps	and	produce	 less	 reliable	 results	

(MacManes,	2013).		

	

2.2 Sequence	alignment		
Sequence	 alignment/mapping	 is	 the	 comparison	 between	 sequenced	 DNA	 and	 the	

reference	genome	sequence	to	identify	the	differences	or	regions	of	similarity.	Thus,	the	

alignment	 of	 reads	 to	 the	 reference	 sequence	 is	 the	 backbone	 of	 the	 entire	 data	

analysis.	An	alignment	algorithm	tries	to	find	an	optimal	alignment	for	an	individual	read	

on	 the	 reference.	 For	 this	 purpose,	 it	 searches	 the	 reference	 genome	 for	 locations	

where	the	read	can	be	mapped	(possibly	with	gaps	or	mismatches),	assigns	an	alignment	

score	to	each	of	these	mappings	and	then	selects	the	one	with	the	highest	score	as	the	

optimal	alignment.	Whether	or	not	a	 read	can	be	mapped	depends	on	 the	number	of	

allowed	 mismatches	 and	 gaps	 that	 are	 usually	 supplied	 by	 parameters	 and	 tune	 the	

alignment	 algorithm’s	 sensitivity	 and	 specificity.	 The	 sensitivity	 and	 specificity	 of	

alignment	 algorithm	 can	 directly	 affect	 the	 number	 of	 false	 positive	 or	 false	 negative	

variant	 calls,	 respectively.	 If	 the	 alignment	 is	 too	 specific,	 i.e.	 allowing	 few	 or	 no	

mismatches/gaps	during	 sequence	mapping,	 then	 it	 is	possible	 that	many	 reads	won’t	

map	to	the	reference	that	decreases	the	read	coverage	on	many	sites.	Due	to	the	lower	

coverage,	a	variant	from	such	a	site	will	not	be	called,	even	though	it	might	be	a	real	one	

(cf.	Figure	2.4).	

	

On	the	other	hand,	if	the	alignment	is	too	sensitive,	i.e.	allowing	more	mismatches/gaps	

during	 the	 mapping,	 then	 it	 will	 result	 in	 lots	 of	 randomly	 mapped	 reads	 and	 can	

produce	many	false	positives	(cf.	Figure	2.4).	Besides	the	allowed	error	rate,	other	data	

characteristics	 like	 read	 length,	 sequencing	platform,	 type	of	experiment	etc.,	are	also	

important	factors	to	consider.	All	of	these	factors	are	interconnected	to	each	other,	for	

example,	 read	 length	 and	 error	 rate	 depend	 on	 the	 sequencing	 platform	 whose	

selection	depends	on	 the	aim	of	 study.	Long	reads	with	a	 low	error	 rate	are	 the	best-

case	 scenario	 having	 high	 probability	 for	 unambiguous	 mapping	 to	 the	 reference	

genome	 sequence.	 Therefore,	 we	 need	 to	 consider	 the	 above-mentioned	 factors	
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carefully,	in	order	to	get	an	adequate	balance	between	sensitivity	and	specificity.	There	

is	 a	 trade-off	 between	 the	 two	 effects	 that	 means	 if	 we	 go	 for	 high	 sensitivity	 then	

specificity	will	decrease	and	vice-versa.			

	

Recent	 alignment	 algorithms	 (H.	 Li	 &	 Homer,	 2010)	 (based	 on	 the	 above	 mentioned	

concepts)	are	much	more	complex	than	the	basic	algorithms	(cf.	Section	1.3)	and	align	

millions	 of	 sequence	 reads	 to	 the	 reference	 sequence	 in	more	 efficient	manners.	 The	

Burrows-Wheeler	 Transform	 (BWT)	 (Burrows	&	 D.	 J.	Wheeler,	 1994)	 is	 a	 widely	 used	

algorithm	for	this	purpose	and	implemented	by	almost	all	popular	alignment	tools,	e.g.	

BWA	(H.	Li	&	Durbin,	2009),	Bowtie	(Langmead,	Trapnell,	Pop,	&	Salzberg,	2009),	SOAP2	

(R.	 Li	et	al.,	2009).	BWT	 is	a	 fast	and	memory	efficient	algorithm	that	performs	 index-

based	sub-string	searching	by	using	a	reversible	permutation	of	characters.		

	

I	used	BWA	for	the	alignment	of	reads	to	the	human	reference	genome	(GRCh3729).	This	

reference	 sequence	 is	 taken	 from	 1000	 genome	 project30,	 but	 I	 replaced	 the	 original	

mitochondrial	 DNA	 sequence	 with	 NCBI’s	 mitochondrion	 reference	 sequence	

(NC_01292031).	BWA	is	one	of	the	accurate	and	widely	used	aligner	for	DNA	sequencing	

reads.	It	has	been	used	in	many	studies	and	has	also	been	compared	with	other	popular	

alignment	 tools	 like	 Bowtie	 and	 Novoalign32	(Giannoulatou,	 Park,	 Humphreys,	 &	 Ho,	

2014;	 Hatem,	 Bozdaǧ,	 &	 Çatalyürek,	 2011).	 (Highnam	 et	 al.,	 2015)	 developed	 a	

benchmarking	 platform	 (GCAT33 ),	 where	 different	 data	 analysis	 algorithms	 can	 be	

compared	on	real	biological	data.	GCAT	benchmarking	also	suggests	that	the	BWA-MEM	

algorithm	 is	one	of	 the	best	alignment	algorithms	similar	 in	 terms	of	 correctly	aligned	

reads	to	Novoalign	(the	best	alignment	algorithm	so	far,	but	only	commercially	available	

																																																								
29	http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/			
30	http://www.1000genomes.org/category/reference		
31	http://www.ncbi.nlm.nih.gov/nuccore/NC_012920.1		
32	http://www.novocraft.com/products/novoalign/		
33	http://www.bioplanet.com/gcat		
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with	full	functionality)	(cf.	Figure	2.2).	BWA	can	perform	both	paired-end	(PE)	and	single-

end	(SE)	alignment	by	3	different	algorithms34:		

1. BWA-backtrack	(H.	Li	&	Durbin,	2009):	performs	gapped	global	alignment	and	is	

mainly	used	for	Illumina	PE	and	SE	reads	(<	100	bp).	

2. BWA-SW	 (H.	 Li	 &	 Durbin,	 2010):	 performs	 Smith-Waterman	 alignment	 and	 is	

typically	used	for	454/Sanger	single-end	reads	(up	to	1	MB).	It	can	also	perform	

sensitive	alignment	of	paired-end	reads	(>	100	bp).	

3. BWA-MEM	 (H.	 Li,	 2013):	 This	 is	 the	 latest	 algorithm	 (similar	 to	 BWA-SW)	 that	

searches	for	maximal	exact	matches	(MEMs).	It	is	more	accurate	and	faster	than	

the	other	two	algorithms	and	can	replace	them	for	alignment	of	reads	between	

70bp	to	1Mbp.	

	

	

Figure	2.2	GCAT	comparison	of	4	different	alignment	algorithms.	It	shows	the	percentage	of	correctly	and	

incorrectly	mapped	reads	 (on	X	and	Y	axis	 respectively)	on	simulated	paired-end	100-bp	 Illumina	 reads.	

This	figure	is	taken	from	(Highnam	et	al.,	2015).	

	

I	 performed	 extensive	 testing	 of	 BWA	parameters	 to	 get	 the	 best	 possible	 alignment.	

Initially,	BWA	offered	only	two	different	algorithms:	backtrack	and	SW	(see	above).	As	

most	of	our	data	(esp.	from	Illumina	exome	sequencing)	contain	reads	less	than	100bp,	I	

																																																								
34	Before	using	these	algorithms,	one	first	needs	to	construct	the	FM-index	for	the	reference	genome	by	

using	BWA’s	index	function.	

 
 
Supplementary Figure 2.Alignment accuracy for short read mapping algorithms 
A ROC-like curve that shows incorrect alignmentsas a function of correct alignments, 
sorted by mapping quality score,for simulated 250bp paired end Illumina reads. 
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selected	BWA-backtrack	for	alignment.	I	also	used	BWA-SW	for	alignment	of	sequencing	

data	 generated	 from	 Ion	 torrent	 and	 454	 sequencing	 technologies	 (as	 they	 generate	

longer	reads	>	100bp).	However,	as	mentioned	above,	 I	mainly	used	Illumina	data	and	

performed	major	testing	and	analysis	with	these	data	only.	I	tested	some	of	the	relevant	

parameters	of	the	BWA-backtrack	to	see	their	effects	on	alignment	 like	maximum	edit	

distance	(n),	maximum	edit	distance	in	the	seed	(k),	seed	length	(l),	etc.	(cf.	Appendix).	I	

found	 that	 the	 default	 parameter	 settings	 work	 well	 for	 most	 of	 these	 parameters.	

However,	 I	 observed	 significant	 differences	 in	 the	 sensitivity	 and	 specificity	 of	 the	

alignment	when	changing	 the	maximum	edit	distance	 (n)	parameter35.	This	parameter	

regulates	 the	 number	 of	 allowed	mismatches	 during	 alignment	 of	 reads.	 Thus,	 higher	

value	means	more	sensitive	alignment	and	vice-versa.	Recently,	BWA	started	to	perform	

better	 alignment	 by	 using	 the	 new	 MEM	 algorithm	 compared	 to	 the	 alignments	

generated	 by	 backtrack	 algorithm.	 BWA-MEM	 allows	 moderate	 error	 rates	 during	

alignment	 and	 provides	 a	 good	 trade-off	 between	 sensitivity	 and	 specificity	 of	

alignment.	 It	 is	also	recommended	by	the	BWA	developer	to	replace	the	old	backtrack	

algorithm	by	MEM	on	the	reads	having	read	length	greater	than	70bp.	I	compared	the	

generated	 alignments	 on	 our	 control	 sample	 NA12878	 (cf.	 Section	 2.4.2)	 from	 both	

algorithms	 in	 the	 following	 contexts:	 alignment	 statistics	 and	 evaluation	 of	 variants	

called	from	the	generated	alignments.	

	

Alignment	statistics	

There	are	a	few	basic	alignment	statistics	like	total	number	of	aligned	reads,	high	quality	

aligned	 reads	 or	 bases	 etc.	 that	 can	 provide	 an	 overview	 of	 an	 alignment	 algorithm’s	

sensitivity	or	specificity.	In	general,	a	higher	percentage	of	aligned	reads	means	that	the	

alignment	 is	 more	 sensitive.	 Table	 2.1	 shows	 alignment	 statistics	 computed	 from	

alignments	 generated	 by	 BWA-MEM	 (with	 default	 parameters)	 and	 BWA’s	 backtrack	

algorithm	(BWA-aln)	with	default	parameters	as	well	as	with	n=7	(remaining	parameters	

are	at	default	values).	 I	used	the	Picard	tool	 to	compute	these	alignment	statistics	 (cf.	

Section	2.2.2).	As	shown	in	the	table,	BWA-MEM	performs	better	in	every	aspect	of	the	

																																																								
35	http://bio-bwa.sourceforge.net/bwa.shtml		
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read	 alignment.	 It	 aligned	more	 reads	 with	 a	 higher	 percentage	 of	 high	 quality	 (HQ)	

aligned	 reads	 and	 bases	 than	 the	 BWA-aln	 algorithm	 (at	 both	 default	 and	 n=7).	 This	

means	BWA-MEM	performs	read	alignment	with	higher	sensitivity	and	specificity	(with	

less	noise	reads	containing	only	of	A	bases	and/or	N	bases36	entirely)	than	the	BWA-aln	

algorithm.	 Moreover,	 BWA-MEM	 is	 faster	 than	 BWA-aln	 and	 takes	 approximately	 4	

hours	less	compared	to	BWA-aln	at	n=7.	As	mentioned	above,	BWA-MEM	works	better	

with	reads	having	a	read	length	greater	than	70bp.	Thus,	BWA-aln	algorithm	is	required	

for	the	alignment	of	short	reads	(<	70bp	read	length).	This	algorithm	is	more	sensitive	at	

n=7,	 as	 it	 aligns	more	 reads	with	 a	 bit	 higher	 percentage	of	 high	quality	 (HQ)	 aligned	

reads	and	bases,	than	at	default	parameters.	

	

BWA’s	

algorithms	

Total	

Reads	

%	

Aligned	

Reads	

%	Reads	

aligned	

in	pair	

%	HQ	

Aligned	

Reads	

Noise	

Reads	

%	HQ	

Aligned	

Bases		

Approx.	

Time	

taken37	

aln	

(default	n)	

92078710	 0.968	 0.995	 0.937	 487	 0.938	 3,0	

aln	(n=7)	 92078710	 0.974	 0.995	 0.938	 469	 0.938	 5,30	

MEM	 92078710	 0.988	 0.995	 0.940	 0	 0.942	 1,10	

Table	2.1	Comparison	between	BWA’s	alignment	algorithms	in	context	to	reads	alignment.	

	

BWA’s	

algo-

rithms	

Raw	

variants	

Variants	

After	

Hard	

Filtering	

	

Recal	

SNPs	

	

Ti/Tv	

ratio	

Recal	

SNPs	

Ti/Tv	

ratio	

After	

Hard	

Filtering	

TPR	

Recal38	

SNPs	

FPR	

Recal	

SNPs	

TPR	

After	

Hard	

Filtering	

FPR	

After	

Hard	

Filtering	

aln	

(n=7)	

588102	 517099	 38156	 2.74	 2.85	 0.995	 0.029	

	

0.986	 0.007	

MEM	 730044	 670800	 37592	 2.81	 2.87	 0.995	 0.017	 0.986	 0.004	

Table	2.2	Comparison	between	BWA’s	alignment	algorithms	in	context	to	called	variants.	

	
																																																								
36	https://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics		
37	The	format	of	time	is	in	hours,	minutes.	All	algorithms	ran	with	4	cores	and	8	gb	RAM.	
38	Filtered	SNPs	by	VQSR	
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Variant	list	evaluation	

The	performance	of	alignment	algorithms	can	also	be	evaluated	by	 the	sensitivity	and	

specificity	 of	 variant	 lists	 (cf.	 Section	 2.4).	 To	 do	 this,	 I	 generated	 variant	 lists	 with	

GATK’s	Unified	Genotyper	variant	caller	(cf.	Section	2.3),	using	reads	(100	bp	or	longer)	

aligned	 by	 both	 BWA-MEM	 and	 BWA-aln	 algorithms	 followed	 by	 the	 same	 post	

alignment	 improvements	 (cf.	 Section	 2.2.1).	 Table	 2.2	 shows	 the	 number	 of	 called	

variants	with	their	evaluation.	The	variant	list	generated	from	the	aligned	reads	by	BWA-

MEM	 shows	 the	 higher	 Ti/Tv	 ratio,	 lower	 FPR	with	 the	 same	 TPR	 after	 both	 types	 of	

filtering	 (Hard	and	VQSR)	 (cf.	 Section	2.3.1).	 This	 clearly	 indicates	 that	BWA-MEM	 is	 a	

better	algorithm	than	the	BWA-aln	for	reads	greater	than	70	bp	in	length.		

	

Effect	of	alignment	sensitivity	and	specificity	at	variant	sites	

Besides	 the	evaluation	of	 sensitivity	and	specificity	of	called	variants,	 I	observed	some	

significant	effect	on	a	few	variants	at	different	levels	of	alignment	sensitivity.	Figure	2.3	

shows	 the	 difference	 between	 the	 alignment	 of	 reads	 at	 position	 chr	 2:	 97820417	

(highlighted	with	vertical	dotted	bars)	by	BWA-aln	(shown	in	the	right	part	of	the	figure)	

and	BWA-MEM	 (shown	 in	 the	 left	part	of	 the	 figure).	BWA-aln	 (at	n=7)	 is	 having	high	

sensitivity	 thus	 it	 aligned	 a	 few	more	 reads	 (18	 reads	 more	 than	 BWA-MEM),	 which	

provided	strong	support	for	the	alternate	allele	“G”	at	this	position	with	34%	frequency	

compared	 to	 16%	 frequency	 in	 aligned	 reads	 by	 BWA-MEM	 (frequencies	 of	 alternate	

allele	and	 reference	allele	are	 shown	 in	white	boxes).	Due	 to	 the	high	alternate	allele	

frequency	 this	variation	can	easily	be	called	as	a	SNP,	although	 it	 is	a	FP	 (validated	by	

GIAB	benchmarking	 (cf.	Section	2.4.2)).	Moreover,	 the	sensitive	alignment	by	BWA-aln	

also	increased	the	frequency	of	nearby	alternate	alleles	depicted	in	the	coloured	bar	in	

the	 coverage	 track	 (shown	 in	 grey	 colour	 at	 top	 of	 the	 both	 figures),	which	 results	 in	

more	FPs	from	these	sites	(also	reported	as	FPs	by	GIAB	benchmarking).	However,	due	

to	 the	 moderate	 sensitivity	 of	 BWA-MEM,	 fewer	 mismatches	 are	 allowed	 during	 the	

mapping	of	reads	that	resulted	in	a	less	noisy	alignment,	and	thus,	less	FPs	at	this	site.		
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Figure	2.3	Difference	between	the	alignments	produced	by	BWA-MEM	and	BWA-aln	at	n=7.	

	
	

a)	 	

b)	 	

c)	 	
	

Figure	2.4	Difference	between	the	alignments	produced	by	BWA-aln	at	n=0.04,	n=7	and	n=10.	
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Similarly,	Figure	2.4	shows	the	adverse	effect	of	sensitive	alignment	on	the	real	deletion	

of	 11bp	 in	 one	 of	 the	 old	 test	 exome	 datasets	 (sequenced	 in-house).	 Part	 (a)	 of	 the	

figure	shows	an	alignment	performed	by	BWA-aln	at	default	value	of	n	(n=0.04),	part	(b)	

at	n=7	and	part	(c)	shows	a	more	sensitive	alignment	at	n=10.	At	default	n,	the	BWA-aln	

performs	more	specific	alignment,	thus	we	can	observe	a	lower	number	of	aligned	reads	

in	the	coverage	track	(shorter	grey	coloured	bars)	compared	to	the	other	diagrams.	Due	

to	the	lower	number	of	the	supporting	reads	(only	10	reads),	this	variant	can	be	skipped	

or	filtered	by	variant	callers.	In	the	other	alignments	n=7	(part	b)	and	n=10	(part	c),	more	

mismatches	are	allowed	during	the	alignment	that	result	in	a	few	more	supporting	reads	

for	 this	deletion.	However,	due	 to	 the	 increased	sensitivity	at	n=10,	a	 few	extra	 reads	

with	a	one	base	deletion	and	lots	of	mismatches	can	be	observed.		

	

After	 observing	 the	 effect	 of	 sensitivity	 and	 specificity	 of	 the	 alignment	 algorithm,	 I	

decided	 to	 rather	 perform	 sensitive	 alignment	 instead	 of	 a	 too	 specific	 one,	 as	 false	

positives	 can	 be	 filtered	 at	 any	 stage	 after	 the	 alignment.	 However,	 lost	 data	 due	 to	

specific	 alignment	 cannot	 be	 retrieved	 later	 on.	 As	 most	 of	 the	 recent	 Illumina	

sequencing	reads	are	 longer	than	70bp,	 I	have	not	tested	the	effects	of	BWA-MEM	on	

sequencing	 reads	<	70	bp	and	simply	 follow	the	BWA	developer’s	 recommendation	 to	

use	BWA-MEM	for	reads	longer	than	70	bp.	I	use	BWA-backtrack	in	sensitive	mode	(n=7)	

only	for	Illumina	sequencing	reads	<	70	bp,	whereas	BWA-MEM	is	used	for	reads	having	

read	length	=>	70	bp.	I	also	use	the	same	combination	for	the	alignment	of	sequencing	

reads	 generated	 from	 Ion-torrent	 sequencers.	 These	 reads	 are	usually	having	unequal	

read	length,	thus,	I	split	the	data	into	two	parts:	reads	having	length	<	70	bp	and	reads	

having	length	>	70	bp.	After	data	splitting,	I	perform	alignment	similar	to	Illumina	reads	

(as	mentioned	above).	Hence,	 the	selection	of	algorithm	and	parameter	 tuning	should	

also	 be	 based	 on	 characteristics	 of	 the	 targeted	 data	 like	 read	 length,	 sequencing	

platform	etc.		
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Even	with	the	proper	selection	of	the	parameters,	alignment	algorithms	are	not	able	to	

perform	 accurate	 mapping	 in	 certain	 genomic	 regions,	 especially	 in	 the	 following	

genomic	regions:		

• Low	complexity	regions	(LCRs):	LCRs	are	the	regions	that	are	highly	enriched	with	

one	 or	 combination	 of	 a	 few	 nucleotide	 bases	 (Radó-Trilla	 &	 Albà,	 2012),	 for	

example,	 simple	 repeats	 (micro-satellites),	 poly-purine/poly-pyrimidine	

stretches,	 or	 regions	 of	 extremely	 high	 AT	 or	 GC	 content39.	 In	 these	 regions,	

alignment	algorithms	produce	mappings	with	many	mismatches	or	fail	to	map	a	

read	on	the	reference	sequence,	using	sensitive	or	strict	alignment,	respectively.	

Moreover,	due	to	 the	sequence	similarity	 in	 repetitive	 regions,	 they	can	map	a	

read	at	multiple	positions	or	at	the	wrong	position	(Treangen	&	Salzberg,	2012).	

For	example,	reads	belonging	to	gene	A	can	map	on	gene	B	having	high	sequence	

similarity	to	gene	A	or	can	map	on	both	genes.	This	might	lead	to	either	loss	of	a	

true	variant	or	many	FPs	(SNPs,	Indels).	Indel	errors	are	very	prominent	in	these	

LCR	regions	and	also	cannot	be	ignored	by	modern	variant	callers	which	perform	

realignment	before	variant	calling	(H.	Li,	2014)	(cf.	Section	2.3).							

• Highly	divergent	 regions	 (HDRs):	HDRs	are	regions	where	sequences	are	having	

less	 than	 99.5%	 identity	 in	 the	 human	 genome	 (e.g.	 GC	 rich	 regions,	 highly	

recombining	subtelomeric	regions)	(Kuruppumullage	Don,	Ananda,	Chiaromonte,	

&	 Makova,	 2013).	 These	 regions	 are	 hard	 to	 sequence	 by	 short	 read	 NGS	

techniques	 and	 also	 cannot	 be	 mapped	 accurately	 by	 alignment	 algorithms.	

These	regions	sometimes	resemble	to	some	structural	variants40	(SVs)	associated	

with	segmental	duplications	and	are	also	problematic	for	SV	detection.			

• Regions	belonging	 to	paralogous	genes:	Paralogous	genes	are	duplicated	genes	

within	a	species	(usually	genes	belonging	to	a	gene	family).	They	can	have	slightly	

different	functional	roles	or	can	be	pseudogenes	(functionally	inactive	genes).	In	

this	case	the	aligner	can	map	reads	to	multiple	positions	(to	a	gene	as	well	as	to	

its	 paralogous	 gene(s))	 or	 can	 produce	 a	 wrong	 mapping	 (mapping	 on	 the	

paralogous	gene(s)	only).	Therefore,	 these	genes	contain	many	FPs	and	appear	
																																																								
39	http://www.repeatmasker.org/webrepeatmaskerhelp.html#lowcomp		
40	http://grantome.com/grant/NIH/F32-GM097807-01		
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frequently	 during	 variant	 discovery	 experiments	 (Arthur,	 Cheung,	 &	 Reichardt,	

2015;	Meldrum	et	al.,	2011).		

	

2.2.1 Post	processing	of	aligned	reads		
Quality	control	and	good	alignment	(with	optimum	settings)	are	not	sufficient	to	get	an	

accurate	 alignment	 of	 the	 reads.	 There	 are	 still	 some	 errors	 or	 mapping	 artefacts	

present	 in	 the	 data	 that	 can	 be	 addressed	 or	 filtered	 only	 after	 alignment	 (Liu	 et	 al.,	

2012;	Nielsen,	Paul,	Albrechtsen,	&	Song,	2011).	Thus,	 to	avoid	these	errors	additional	

post	 processing	 of	 aligned	 reads	 is	 required.	 This	 post	 processing	 is	 suggested	 by	 the	

GATK	best	practice	guideline41	(Van	der	Auwera	et	al.,	2013)	and	has	become	a	standard	

procedure	or	default	step	 in	the	majority	of	 the	data	analysis	workflows	(D’Antonio	et	

al.,	 2013;	 Lam	et	 al.,	 2012).	 I	 also	 tested	 it	 and	 found	 it	 useful	 for	 exome	 sequencing	

data.	The	following	sections	contain	three	steps	(cf.	Figure	3.1)	of	the	post	processing	of	

the	aligned	reads	and	their	improvements.		

	

Duplicate	marking	(removal)	

PCR	amplification	during	library	construction	can	result	in	duplicate	reads,	which	might	

lead	to	FPs	during	variant	calling.	A	variant	at	some	site	can	be	called	by	a	variant	calling	

algorithm	due	to	the	high	read	depth	(number	of	supporting	reads)	that	is	actually	only	

generated	 by	 an	 accumulation	 of	 duplicates.	 Additionally,	 many	 duplicates	 of	 a	 read	

with	wrong	 Indels	 (aligned	due	to	the	 in-accurate	read	mapping)	can	mask	the	correct	

Indels	during	Indel	realignment	(cf.	Section	“Local	Indel	realignment”).		

	

I	used	the	Picard	tool42	to	remove	duplicates.	Picard	 is	widely	used	tool	and	has	many	

functionalities	like	duplicate	removal/marking,	BAM	to	fastq	conversion,	BAM/SAM	file	

merging,	 computation	 of	 alignment	 and	 enrichment	 statistics	 etc.	 Its	 MarkDuplicates	

algorithm	 compares	 5’	 coordinates	 and	 mapping	 orientations	 of	 each	 read	 pair	 and	

marks	all	pairs	as	duplicates	for	which	these	parameters	are	identical.	It	keeps	one	read	

																																																								
41	https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq		
42	http://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates		
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pair43	among	all	duplicates	based	on	the	highest	sum	of	base	qualities,	where	the	pair	

should	have	all	bases	with	quality	(Q)	>=	15.	Duplicate	removal	should	be	performed	on	

the	 entire	 BAM	 file	 (not	 on	 BAM	 files	 split	 e.g.	 by	 chromosome),	 to	 find	 inter-

chromosomal	duplicates.	 In	some	experiments,	due	to	 their	chemistry	 (e.g.	 in	 the	PCR	

based	target	selection	approach),	most	of	the	reads	can	be	detected	as	PCR	duplicates	

by	 the	 MarkDuplicates	 tool.	 However,	 these	 reads	 are	 not	 duplicates	 and	 discarding	

them	might	 lead	 to	 significant	 loss	 of	 data.	 Therefore,	 an	 on/off	 switch	 for	 triggering	

duplicate	removal	based	on	the	type	of	data	is	used	in	our	data	analysis	workflow.		

	

Local	Indel	realignment		

Alignment	 algorithms	 can	 fail	 to	map	 some	 Indels	 correctly	 at	 some	position	 and	 can	

produce	 different	 alignments	 for	 different	 reads.	 Some	 reads	 can	 have	 one	 or	 a	 few	

mismatches	 at	 that	 position	 instead	 of	 one	 complete	 Indel,	 and	 some	 reads	 can	map	

without	 Indels.	 These	 misalignments	 can	 result	 in	 FPs	 or	 loss	 of	 some	 Indels	 during	

variant	calling.	Thus,	Indel	realignment	is	an	essential	step	to	correct	misalignments	by	

performing	 multiple	 sequence	 alignment	 (MSA)	 on	 suspicious	 positions.	 Figure	 2.5	

shows	some	alignment	inaccuracies	and	their	correction	by	local	Indel	realignment	at	a	

certain	 position	 of	 our	 in-house	 data.	 Part	 (a)	 of	 the	 figure	 shows	 the	 raw	 alignment	

(before	 realignment).	 It	 is	 showing	 a	 deletion	 (and	 some	mismatches)	 with	 very	 few	

supporting	 reads	 (highlighted	 in	 the	 green	 coloured	 circle	 shape)	 that	 might	 lead	 a	

variant	caller	to	skip	this	deletion.	In	part	(b),	we	can	see	the	improved	alignment	after	

Indel	 realignment	 and	 a	 sufficient	 increment	 in	 the	 number	 of	 supporting	 reads	 to	

detect	 the	 deletion	 (without	 mismatches)	 present	 at	 this	 site.	 The	 Indel	 realignment	

method	 is	 a	 part	 of	 the	 Genome	 Analysis	 Tool	 Kit44	(GATK)	 (DePristo	 et	 al.,	 2011;	

McKenna	et	al.,	2010).	It	is	a	two-step	process:	at	first,	it	checks	for	suspicious	intervals	

(esp.	 near	 Indels)	 in	 the	 alignment	 and	 then	 performs	 local	 realignment	 (MSA)	 over	

those	 intervals.	 The	 detailed	 information	 of	 this	 two-step	 process	 can	 be	 found	 in	

Appendix.	

																																																								
43	http://broadinstitute.github.io/picard/faq.html		
44	https://www.broadinstitute.org/gatk/guide/topic?name=methods		
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a.)	Before	Indel	realignment		 	 	 	 							b.)	After	Indel	realignment		

Figure	2.5	Improvement	in	the	alignments	after	Indel	realignment	process.	

	

Base	quality	score	recalibration	(BQSR)	

BQSR	is	also	a	part	of	GATK,	which	adjusts	under	or	over	estimated	base	quality	scores,	

resulting	from	systematic	biases	during	sequencing	or	due	to	the	inaccurate	estimation	

by	the	sequencer’s	basecalling	software.	It	assigns	new	quality	scores	by	calculating	the	

probability	of	a	mismatch	on	the	reference	sequence.	For	example,	if	the	original	quality	

score	 of	 a	 base	 is	 25	 (good	 enough	 for	 variant	 calling),	 but	 if	 this	 base	 is	 actually	

observed	to	be	a	mismatch	on	the	reference	at	a	1	in	100	rate,	then	it	should	have	20	as	

a	quality	score	value.	Thus,	an	overestimated	quality	score	provides	false	confidence	in	

the	base	call	and	can	lead	to	FPs.	Moreover,	it	is	known	that	the	base	calling	errors	are	

higher	towards	the	end	of	the	reads	(means	in	lower	cycles)	than	at	the	beginning	of	the	

reads.	 It	 has	 also	 been	 observed	 that	 the	 mismatches	 are	 associated	 with	 sequence	

context,	the	dinucleotide	AC	is	usually	having	lower	quality	than	TG45	(Dohm	et	al.,	2008;	

Nakamura	et	al.,	2011).	BQSR	is	addressing	these	errors	by	correcting	bases	quality	score	

based	 on	 the	 analysis	 of	 four	 different	 covariates:	 read	 group,	 quality	 score,	machine	

cycle	and	di-nucleotide,	from	the	given	data.	The	details	of	BQSR	method	can	be	found	

in	Appendix.	

	

																																																								
45	http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr		
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2.2.2 Alignment	&	enrichment	statistics	

After	 post	 alignment	 improvement,	 it	 is	 good	 to	 assess	 the	 overall	 sample	 quality	 in	

terms	 of	 coverage	 and	 alignment	 quality.	 Both,	 specificity	 and	 sensitivity	 of	 variant	

detection	can	be	lowered	by	bad	quality	data.	Thus,	alignment	and	enrichment	statistics	

can	help	to	decide	whether	a	certain	sample	 is	good	enough	for	variant	calling	or	not.	

For	 example,	 a	 sample	 should	 have	 at	 least	 20X	 read	 coverage	 with	 good	 mapping	

quality	 (>	20	or	>	30)	 throughout	 the	sample.	Moreover,	a	high	percentage	of	aligned	

reads,	uniform	quality	distribution	by	cycle,	small	deviation	in	the	insert	sizes	are	other	

useful	parameters	to	judge	a	sample	and	its	alignment	quality.	I	used	the	Picard	tool	to	

compute	 alignment	 and	 enrichment	 statistics.	 It	 generates	 a	 summary	 of	 alignment46	

parameters,	 e.g.	 total	 number	 of	 aligned	 and	 unaligned	 reads,	 read	 length	 and	 insert	

size	 distribution,	 mapping	 quality	 distribution,	 quality	 by	 machine	 cycle,	 etc.	 It	 also	

summarizes	 the	sample	coverage47	by	giving	coverage	values	at	2X,	10X,	20X,	30X	and	

the	proportion	of	on/off	target	reads.		

	

2.3 	SNP/Indel	calling	
Apart	from	the	alignment	accuracy,	accurate	SNP/Indel	calling	 is	also	necessary	to	find	

some	 true	 causal	 variants	 in	 the	 sequencing	 data.	 There	 are	 lots	 of	 different	 variant	

calling	 algorithms	 that	 claim	 to	 find	 variants	 from	 sequencing	 data	 (Bao	 et	 al.,	 2014;	

Pabinger	 et	 al.,	 2013).	 However,	 it	 has	 been	 reported	 that	 there	 is	 low	 concordance	

between	the	results	from	different	variant	callers	(O’Rawe	et	al.,	2013;	Yi	et	al.,	2014).	

Therefore,	 I	also	 tested	4	different	variant	callers:	Platypus	 (PP)	 (Rimmer	et	al.,	2014),	

Samtools	 (H.	 Li	 et	 al.,	 2009)	 mpileup	 (MP),	 GATK’s	 Unified	 Genotyper	 (UG)	 and	

Haplotype	Caller	(HC)	(DePristo	et	al.,	2011;	McKenna	et	al.,	2010).		

	

Variant	 lists	 were	 generated	 from	 BWA-MEM	 alignments	 of	 the	 in-house	 sequenced	

control	 sample	 NA12878	 (cf.	 Section	 2.4.2)	 followed	 by	 post-processing.	 Default	 or	

suggested	parameters	have	been	used	for	all	variant	callers	(with	base	quality	score>10).	

																																																								
46	https://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics		
47	https://broadinstitute.github.io/picard/picard-metric-definitions.html#HsMetrics		
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Figure	2.6	shows	the	number	of	variants	in	sample	NA12878	called	by	Samtools	mpileup,	

GATK’s	HC	and	Platypus.	As	can	be	seen	 in	the	 figure,	HC	 is	more	sensitive	and	calls	a	

larger	number	of	variants	than	the	other	tools.	On	the	other	hand,	mpileup	focuses	on	

accuracy	 and	 calls	 much	 less	 variants	 than	 the	 other	 callers.	 Among	 our	 four	 variant	

callers,	GATK’s	UG	and	Samtools’	mpileup	use	a	Bayesian	approach	(H.	Li,	2011)	to	call	

SNPs	 and	 Indels	 and	 treat	 each	 position	 independently.	 These	 alignment-based	

approaches	provide	sensitive	variant	calling	but	also	produce	many	FPs.	The	algorithms	

rely	on	alignment	accuracy,	which	 is	not	good	 in	 low	complexity	 regions	 (LCRs)	and	 in	

highly	 divergent	 regions	 (cf.	 Section	 2.2).	 Although	 misalignment	 near	 Indels	 can	 be	

corrected	 by	 local	 realignment	 (cf.	 Section	 2.2.1),	 still	 these	 algorithms	 can	 produce	

errors	 around	 Indels	 and	 larger	 (complex)	 variants	 (Rimmer	 et	 al.,	 2014).	 On	 the	

contrary,	PP	and	HC	are	the	most	recent	and	sophisticated	haplotype-based	callers.	Both	

tools	perform	local	denovo	assembly	(by	building	a	De	Bruijn-like	graph)	in	order	to	find	

the	correct	haplotype,	which	is	used	for	SNP/Indels	identification,	and	try	to	compensate	

for	 the	 above-mentioned	 drawbacks.	 However,	 these	 methods	 can	 perform	 badly	 in	

repetitive	regions	due	to	the	loss	of	contiguity	 information	during	the	segmentation	of	

reads	into	consecutive	k-mers,	which	is	required	for	graph	construction	(Rimmer	et	al.,	

2014;	 Zerbino	 et	 al.,	 2008).	 Thus,	 the	 integration	 of	 callers	 from	 these	 two	 different	

algorithms	is	better	than	the	usage	of	a	single	algorithm	to	achieve	highly	accurate	and	

sensitive	variant	calls.	

	

Table	 2.3	 shows	 the	 performance	 of	 different	 variant	 callers	 and	 the	 integrated	

approach	(the	combined	results	from	different	callers)	 in	the	context	of	sensitivity	and	

specificity	 of	 variant	 lists	 generated	 for	 control	 sample	 NA12878	 (cf.	 Section	 2.4).	

Mpileup’s	VCF	file	is	excluded	from	this	comparison	due	to	some	compatibility	issues.	In	

this	 comparison,	 a	 significant	difference	between	numbers	of	 raw	variant	 calls	 can	be	

observed	 which	 result	 in	 little	 overlap	 between	 these	 callers	 (cf.	 Figure	 2.6).	 Unified	

Genotyper	(UG)	calls	approximately	two	times	more	variants	than	Haplotype	Caller	(HC)	

and	 Platypus	 (PP).	 These	 three	 callers	 showed	 good	 sensitivity	 (TPR	 >	 99%)	 with	

reasonable	 specificity	 (FDR	 <	 0.02).	 However,	 the	 combined	 results	 from	 these	 three	

callers,	where	 a	 variant	 should	 be	 called	 by	 at	 least	 2	 callers	 (minN2),	 showed	 better	
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results	 in	 terms	 of	 specificity	 (lower	 FDR	 and	 better	 PPV)	 with	 almost	 identical	

sensitivity.	The	Ti/TV	ratio	of	the	combined	variant	calls	is	also	higher	than	the	calls	from	

an	individual	variant	caller.		

	

Figure	 2.6	 Overlap	 between	 raw	 variant	 lists	 of	 control	 sample	 NA12878	 generated	 from	 3	 different	

variant	callers.	Number	of	variant	calls	generated	by	Samtools	mpileup,	GATK	haplotype	caller	 (HC)	and	

Platypus	are	shown	in	green,	orange,	and	blue	colour,	respectively.		

	

Variant	

Callers	

Raw	

Variants	

Shared	

Raw	

Variants	

Match	 Non-

Match	

FDR	 TPR	 FPR	 PPV	 Ti/Tv	

UG	 718794	 23721	 23327	 394	 0.0166	 0.995	 0.0168	 0.983	 2.812	

HC	 443366	 23524	 23286	 238	 0.0101	 0.994	 0.0102	 0.989	 2.851	

PP	 283755	 23602	 23275	 327	 0.0138	 0.993	 0.0140	 0.986	 2.818	

Combined	

(minN2)	

303722	 23412	 23275	 137	 0.0058	 0.993	 0.0058	 0.994	 2.872	

Combined	

(minN1)	

735351	 23885	 23341	 544	 0.0227	 0.996	 0.0232	 0.977	 2.78	

Table	2.3	Comparison	of	variants	callers’	performance	to	the	integrated	approach.		

	

	Similar	 observation	 can	 be	 made	 in	 Figure	 2.7,	 which	 shows	 that	 the	 results	 from	

integration	 of	 variant	 callers	 are	 more	 accurate.	 The	 figure	 shows	 the	 Qual	 score	

threshold	used	 in	 the	 comparison	of	 variant	 list	with	NIST	 list.	 The	variants	 generated	

from	the	combined	method	are	having	high	confidence	variants	with	Qual	score	greater	
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than	30,	compared	to	the	individual	callers	where	many	variants	are	having	Qual	score	

between	 7-30	 range.	 Therefore,	 I	 decided	 to	 use	 a	 set	 of	 variant	 callers	 (Platypus,	

Samtools,	GATK’s	UG	and	HC)	to	perform	SNP/Indel	calling	and	combine	their	results.	A	

recent	comparison	also	reports	the	same	finding	that	the	integration	of	multiple	callers	

is	better	than	any	single	variant	caller	to	get	variants	of	high	confidence	and	sensitivity	

(Bao	et	al.,	2014).		

	

	

Figure	 2.7	 Variant	 Qual	 score	 thresholds	 used	 during	 the	 comparison	 of	 individual	 callers	 and	 the	

integration	approach.	X-axis	shows	number	of	selected	thresholds	and	Y-axis	shows	the	Qual	score.		

	

2.3.1 Filtering	strategies		
Continuous	 development	 of	 algorithms	 has	 already	 improved	 variant	 calling	 up	 to	 a	

significant	 level	 and	 further	 improvements	 are	 still	 going	 on.	 Although	 the	 current	

algorithms	are	rather	accurate	they	still	produce	a	lot	of	FPs,	due	to	their	moderate	filter	

settings	 (to	balance	between	specificity	and	sensitivity)	or	due	to	sequencing	artefacts	

(e.g.	systematic	bias,	alignment	bias	or	some	random	errors	etc.).	In	order	to	filter	these	

FPs,	additional	efforts	are	required.	Filtering	strategies	can	vary	from	filtering	based	on	

some	fixed	values	 (hard	filtering)	 to	 filtering	based	on	models	trained	from	variants	of	

each	data	set	individually	(VQSR,	Variant	Quality	Score	Recalibration).	Moreover,	it	can	

be	based	on	prior	knowledge	about	the	disease	or	the	design	of	the	study	(e.g.	based	on	

pedigree,	 trios	 etc.)	 or	 based	 on	 functional	 effects	 of	 the	 called	 variants	 on	 the	

phenotype.	In	general,	hard	filtering	and/or	VQSR	can	be	applied	on	most	of	the	exome	

data	with	some	care	(cf.	next	paragraph).			
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VQSR	 is	 a	Gaussian	mixture	model48,	which	 categorizes	 a	 variant	 list	 into	 reliable	 and	

unreliable	 variant	 calls.	 It	 takes	 the	 overlap	 between	 a	 variant	 loci	 list	 from	 the	

HapMap3/Omni	 2.5M	 SNP	 chip	 array	 (the	 truth/training	 resource	 sets)	 and	 the	 given	

variant	list.	Then,	it	learns	the	distribution	of	some	SNP	annotation	values	present	in	this	

list	 (e.g.	 QD,	 SB,	 HaplotypeScore,	 MQ,	 MQRankSum,	 ReadPosRankSum	 etc.)	 (cf.	 next	

paragraph).	 Based	 on	 the	 learned	 values,	 it	 splits	 the	 variant	 list	 into	 reliable	 and	

unreliable	variant	clusters	(cf.	Figure	2.8	(a)).	These	clusters	are	further	used	to	compute	

the	 log	odds	 ratio	 (known	as	VQSLOD)	of	being	a	 true	variant	versus	being	a	 false	call	

according	to	their	distribution49.	Higher	or	positive	VQSLOD	score	(VQSLOD	>	3)	means	

that	the	variant	call	is	more	reliable	and	so	this	score	can	be	used	to	filter	FPs.	However,	

the	precise	threshold	should	be	selected	according	to	data	characteristics.	In	one	of	our	

data	sets,	we	found	that	at	higher	thresholds	there	is	a	chance	of	missing	true	variants.	

Thus,	we	use	a	lower	threshold	to	avoid	such	false	negatives	(VQSLOD	>	-8).		
	

VQSR	allows	partition	of	the	variant	calls	into	quality	tranches	(cf.	Figure	2.8	(b)).	These	

quality	 tranches	 provide	 different	 thresholds	 that	 can	 be	 used	 to	 select	 a	 desired	

sensitivity	 or	 specificity	 relative	 to	 the	 truth	 set.	 There	 are	 four	 default	 values	 of	

tranches	 (90,	99,	99.9,	100),	but	 these	 thresholds	 can	be	customized	according	 to	 the	

filtering	requirement.	From	90	till	100	tranche,	each	tranche	incorporates	true	positive	

calls	 as	 well	 as	 some	 false	 positives	 depending	 on	 the	 used	 threshold	 for	 tranche	

categorization.	For	example,	tranche	100	means	100%	sensitivity	(i.e.	the	filtered	list	will	

contain	100%	of	known	variable	sites	found	in	the	truth	set)	but	it	can	have	many	FPs.	

On	the	contrary,	the	90%	tranche	is	more	accurate	(less	FPs	than	100%	tranche)	but	can	

miss	some	of	the	true	variants.	Thus,	if	the	aim	is	to	get	a	most	comprehensive	list	then	

the	highest	tranche	should	be	selected.	The	selection	of	a	tranche	should	be	based	on	

the	 objective	 of	 the	 study	 or	 the	 filtering	 requirements.	 Moreover,	 tranche	

categorization	also	comes	with	Ti/Tv	ratios	(cf.	Section	2.4.1)	on	novel	variants	in	the	list	

(cf.	Figure	2.8	(b)),	which	can	also	be	used	for	tranche	selection.	For	example,	lowering	

																																																								
48	http://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model	
49	http://gatkforums.broadinstitute.org/discussion/39/variant-quality-score-recalibration-vqsr		
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the	 tranche	 value	 to	 a	 certain	 extent	 is	 safe	 as	 long	 as	 the	 Ti/Tv	 value	 is	 in	 a	 proper	

range	(for	exomes,	the	Ti/Tv	should	be	around	2.8)	(cf.	Section	2.4.1).		

	

a)	

	

b)		

	

	

Figure	2.8	a)	VQSR	clustering	based	on	2	Annotations:	ReadPosRankSum	and	MQRanksum.	The	upper	left	

part	 shows	 the	 distribution	 of	 variants	 based	 on	 the	 scores	 of	 annotations	 varying	 from	bad	 quality	 to	

good	quality	of	variant	 (i.e.	 lod	 score	 range	 -4	 to	4)	 (red	colour	 to	green	colour	 respectively).	Thus,	 the	

variants	belonging	to	the	green	cluster	have	higher	confidence	than	the	variants	having	annotation	values	

in	the	red	part	of	figure	(the	higher	the	score	the	more	reliable	is	the	variant).	Similarly,	the	other	parts	of	

the	 figure	 (upper	 right,	 bottom	 left)	 are	 also	 showing	 two	 different	 clusters	 and	 demonstrate	 which	

portion	of	the	positive	(reliable)	and	negative	(unreliable)	variants	and	portion	of	the	should	be	filtered	or	

kept	after	training,	respectively.	The	figure	at	the	bottom	of	right	side	is	depicting	the	proportion	of	novel	

and	known	variants	in	the	variant	list.	This	figure	can	be	used	to	judge	VQSR,	for	example,	if	we	observe	

distinct	clusters	of	 reliable	and	unreliable	variants	 then	that	mean	the	variants	are	categorized	properly	

(or	up	to	certain	extent).	b)	VQSR’s	four-default	tranches	and	their	correlation	with	sensitivity	and	Ti/Tv	

ratio.	 The	 upper	 part	 shows	 VQSR’s	 four-default	 tranches	 and	 the	 lower	 part	 shows	 the	 correlation	

between	 VQSR’s	 tranche	 sensitivity	 and	 the	 Ti/Tv	 ratio.	 Both	 figures	 (a	 &	 b)	 show	 that	 the	 gain	 in	

sensitivity	of	the	variant	list	causes	a	significant	drop	in	specificity	(as	well	as	Ti/Tv	ratio)	of	the	variant	list	

and	vice-versa.	These	diagrams	are	generated	to	for	our	control	sample	NA12878	and	able	to	shows	the	

performance	of	implemented	VQSR	filtering	in	our	workflow.		
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VQSLOD	 is	a	reliable	score	for	FPs	 filtering,	but	 it	 requires	a	well	 trained	model.	Weak	

models	 can	 result	 in	 bad	 classification	 of	 the	 variants	 in	 a	 given	 call	 set,	which	 could	

affect	variant	 filtering	and	 lead	to	many	FPs	or	FNs.	Thus,	 I	 tested	VQSR	and	observed	

that	the	default	parameter	settings	are	not	sufficient	for	training	a	good	model	(at	least	

for	our	exome	 sequencing	data).	After	 several	 trial	 and	error	processes	during	 testing	

(cf.	Appendix)	(including	some	recommendations	from	GATK),	I	found	that	the	following	

facts	should	be	considered	during/before	VQSR:	

1. VQSR	should	be	performed	only	on	variants	 inside	 the	 target	 regions:	Variants	

beyond	 the	 target	 regions	 may	 have	 bad	 quality	 (e.g.	 poor	 coverage,	 low	

mapping	 quality/accuracy	 etc.)	 and	 can	 damage	 or	 badly	 influence	 the	model	

training.	 Thus,	 I	 performed	 VQSR	 only	 on	 variants	 belonging	 to	 the	 targeted	

regions	of	the	sequenced	experiment.		

2. VQSR	 should	have	enough	calls	 in	 the	given	variant	 list:	As	 this	 is	 the	 learning	

procedure,	it	needs	a	sufficient	amount	of	data	(thousands	of	variant	sites).	Less	

data	 can	 result	 in	 a	 bad	 model,	 thus,	 in	 the	 case	 of	 less	 variant	 sites,	 more	

samples	should	be	coupled	with	the	sample	of	interest.	I	used	32	samples	with	

multi-sample	calling	to	generate	a	variant	list	with	lots	of	variant	calls.	I	used	this	

list	 as	 a	 reference	 variant	 list	with	 every	 sample	 of	 interest	 to	 have	 sufficient	

data	for	VQSR.	

3. Model	 training	 parameters	 provided	 by	 the	 tool	 should	 be	 selected	 carefully:	

The	 default	 parameter	 setting	 might	 not	 be	 good	 for	 every	 data	 set,	 so	 the	

selection	 of	 parameters	 should	 be	 based	 on	 data	 characteristics	 (e.g.	 type	 of	

study,	sequencing	platform	etc.)	and	the	amount	of	data	available	 for	training.	

For	example,	with	 few	variant	 sites,	 lowering	 the	number	of	Gaussians	 (“-mG”	

parameter)	 can	be	helpful	 for	 training	 the	model.	 I	 used	–mG=6	 for	 the	VQSR	

training	to	achieve	good	performance	on	our	data	(default	value	is	8).			
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We	also	use	a	combination	of	some	hard	thresholds50	to	filter	both	SNPs	and	Indels	as	

suggested	 by	 the	 GATK’s	 best	 practice	 guideline51,	 when	 the	 VQSLOD	 score	 is	 not	

available	 (e.g.	 Off-target	 variants).	 A	 combination	 (or	 individual	 application)	 of	 the	

following	 filters	 can	discard	a	 significant	 amount	of	 the	FPs	 caused	 the	 coverage	bias,	

strand	bias	and	alignment	artefacts	(or	poor	alignment):		

1. Quality	by	Depth	(QD):	It	is	a	normalized	value	of	the	variant	quality	score	(Qual)	

by	with	respect	to	read	depth.	As	Qual	 is	calculated	from	the	read	depth,	thus,	

the	highly	 covered	 variants	 can	have	an	over	 estimated	Qual	 score.	 Therefore,	

normalization	 of	 Qual	 with	 respect	 to	 coverage	 provides	 a	 more	 realistic	

representation	of	 the	variant	 confidence.	 Low	QD	scores	are	 indicative	of	 false	

positive	SNPs	(or	artefacts)		

2. Fisher	Strand	(FS)	score:	Fisher	strand	score	is	a	probability	score	from	Fischer’s	

Exact	 test	 to	 detect	 the	 strand	 bias.	 Strand	 bias	 means	 that	 a	 variant	 is	 only	

present	in	reads	from	one	strand.	Paired-end	(or	Single	end)	exome	sequencing	

produces	reads	from	both	strands	(forward	or	reverse),	so	a	true	variant	should	

be	present	on	reads	from	both	strands.	A	higher	FS	score	suggests	that	the	SNP	is	

mainly	 (most	 probably)	 supported	 by	 only	 reads	 from	 one	 strand,	 a	 typical	

signature	of	FPs.			

3. Mapping	quality	 (MQ):	 It	 is	 a	Root	Mean	Square	of	 the	mapping	quality	of	 the	

reads	 and	 should	 be	 high	 for	 confident	 SNPs.	 Low	 value	MQ	 signifies	 that	 the	

alignment	accuracy	at	 this	position	 is	not	good	and	 the	aligned	 reads	might	be	

result	of	wrong	alignment	with	some	mismatches.	Thus,	the	called	variant	can	be	

just	a	mismatch	due	to	bad	alignment	and	should	be	discarded.		

4. Mapping	 quality	 rank-sum	 test	 (MQRankSum):	 This	 score	 can	 be	 used	 to	 filter	

only	heterozygous	calls	as	this	test	performs	the	Mann-Whitney	Rank	Sum	Test52	

for	 mapping	 qualities	 of	 the	 reads	 with	 reference	 bases	 vs.	 reads	 with	 the	

alternate	allele.	 If	 the	MQ	of	reads	supporting	the	alternative	allele	 is	 less	than	

the	 MQ	 of	 reads	 supporting	 the	 reference	 allele,	 then	 these	 reads	 can	 be	

																																																								
50	http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set		
51	https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq		
52	https://en.wikipedia.org/wiki/Mann–Whitney_U_test		
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misaligned,	which	might	introduce	mismatches.	These	mismatches	can	easily	be	

called	as	variants,	which	most	probably	are	FPs.		

5. ReadPosRankSum:	Bases	at	the	ends	of	the	reads	have	a	high	probability	of	error,	

thus,	a	variant	called	from	the	end	parts	of	reads	can	be	a	FP	(cf.	Section	2.1.2).	

The	ReadPosRankSum	 test	 (i.e.	Mann-Whitney	Rank	Sum	Test)	evidence	of	 the	

positional	 bias,	which	 reports	 the	distance	of	 alternate	 allele	 from	 the	ends	of	

the	reads	and	should	be	used	to	avoid	FPs	at	the	read	ends.	

	

We	use	the	following	thresholds	to	filter	false	positives	(for	both	SNPs	and	Indels):		

• For	SNPs:	QD	<	2.0,	FS	>	60,	MQRankSum	<	-12.5,	ReadPosRankSum	<	-8.0.	

• For	Indels:	QD	<	2.0,	FS	>	200.0,	ReadPosRankSum	<	-20.0	

	

The	above-mentioned	filters	work	best	on	Illumina	data	and	should	be	used	carefully	for	

other	 technologies	 (cf.	 Section	 2.4.2).	 The	 effect	 of	 these	 filters	 on	 variant	 list	 can	be	

observed	by	evaluation	of	the	sensitivity	and	specificity	of	the	variant	list	(after	filtering)	

(cf.	 Section	 2.4).	 On	 good	 quality	 data	 these	 filters	 should	 not	 be	 harmful,	 but	

generalization	of	 these	 filters	 (application	on	any	data)	might	 lead	 to	some	FNs.	All	of	

these	 filters	 and	 some	 other	 sample	 specific	 filtering	 strategies	 (as	mentioned	 above)	

are	 implemented	 in	our	web-browser	Varbank53	(https://varbank.ccg.uni-koeln.de/).	 In	

Varbank,	the	user	can	apply	different	combinations	of	filters	and	his/her	disease	related	

knowledge	to	obtain	a	shorter	list	of	interesting	candidates.	

	

	

	

	

	

																																																								
53	Developed	by	Dr.	Holger	Thiele	
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2.4 Evaluation	of	the	variant	list	
After	 filtering	 or	 along	 the	 filtering	 process,	 we	 evaluated	 our	 results	 (variant	 list)	 to	

check	the	effect	of	the	filters	on	the	variant	list	as	well	as	the	sensitivity	and	specificity	

of	our	data	analysis	workflow	by	the	following	criteria:		

	

2.4.1 Ti/Tv	ratio		
The	Ti/Tv	is	the	ratio	of	transition	mutations,	Ti,	(between	purines	(A	<->	G),	or	between	

pyrimidines	(C	<->	T))	to	transversion	mutations,	Tv,	(between	purines	and	pyrimidines	

(A	<->	T	or	C	<->	G))	(Q.	Liu	et	al.,	2012).	In	general,	transitions	are	more	frequent	than	

the	 tranversions	 (due	 to	methylation	of	C	 in	CpG	 islands),	 thus,	 this	 ratio	 can	 indicate	

how	much	your	 variant	 list	deviates	 from	general	 expectations.	 (DePristo	et	 al.,	 2011)	

states	that	this	ratio	should	be	0.5	for	FPs	and	a	good	quality	variant	list	for	an	exome	

should	have	a	Ti/Tv	ratio	around	2.8.	Therefore,	this	ratio	can	be	used	to	evaluate	the	

effect	of	different	filters	or	their	combination	on	the	raw	variant	list	(cf.	Figure	2.8).	For	

example,	 after	 filtering	 FPs,	 the	 ratio	 should	 increase	 and	 tend	 to	 reach	 the	 expected	

value,	but	if	it	is	decreasing	then	the	filter	might	not	be	good	for	this	type	of	data.	The	

Ti/Tv	 ratio	 can	 be	 calculated	 by	 vcftools	 (Danecek	 et	 al.,	 2011)	 or	 GATK’s	 VariantEval	

method54 .	 Both	 tools	 provide	 many	 other	 different	 filtering	 or	 variant	 evaluation	

methods	(e.g.	mis-sense/non-sense	ratio,	heterozygous/homozygous	ratio,	etc.).	Besides	

these	tools,	we	use	our	SQL	server	to	compute	such	kind	of	information	from	the	variant	

list.		

	

	

	

																																																								
54	

https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_varianteval_Varia

ntEval.php		
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2.4.2 Benchmarking	of	variant	lists	with	the	GIAB	dataset		

The	 Genome	 in	 a	 Bottle	 (GIAB)55	(hosted	 by	 NIST56)	 consortium	 generated	 a	 highly	

confident	 list	 of	 SNPs,	 Indels	 and	 homozygous	 reference	 genotype	 calls	 for	 the	

HapMap57/1000	 Genomes58 	CEU	 female	 genome	 NA1287859 	by	 integration	 of	 data	

sequenced	with	 different	 sequencing	 technologies	 and	 processed	 by	 different	 sets	 of	

data	analysis	tools/algorithms	(Zook	et	al.,	2014).	This	multi-resources	data	 integration	

avoids	 almost	 all	 types	of	 biases	 (sequencing	bias,	 platform	bias,	 alignment	or	 variant	

calling	 bias,	 etc.),	 and	provides	 a	 highly	 accurate	 list	 that	 can	be	used	 to	 compare	 in-

house	generated	variant	lists.				

	

We	performed	exome	sequencing	for	NA12878	and	processed	the	sequencing	data	with	

our	exome	pipeline	to	check	the	sensitivity	and	specificity	of	the	variant	list	compared	to	

the	list	from	GIAB.	Different	variant	callers	can	report	the	variant	in	different	notations;	

for	example,	one	MNP	(multi-nucleotide	polymorphism)	can	be	called	as	an	MNP	or	as	

two	 or	 more	 different	 variants	 (SNPs)	 with	 different	 locations.	 Therefore,	 we	 first	

perform	 normalization	 of	 our	 variants	 by	 using	 the	 vcfallelicprimitives	method	 of	 the	

vcflib	tool60,	which	(by	default)	splits	MNPs	into	multiple	SNPs.	This	tool	also	normalizes	

the	 GIAB	 list,	 thus	 it	 makes	 variant	 coordinates	 in	 both	 lists	 comparable.	 In	 order	 to	

compare	lists,	we	used	the	VCF	comparator	function	of	the	USeq	tool61	(Nix,	Courdy,	&	

Boucher,	2008).	It	compares	the	variants	(both	Indels	and	SNPs	within	the	shared	region,	

i.e.	 the	 target	 regions	of	 the	 test	 sample)	present	 in	both	variant	 lists	and	 reports	 the	

number	 of	 matches	 and	 non-matches,	 false	 discovery	 rate	 (FDR),	 true	 positive	 rate	

																																																								
55	https://sites.stanford.edu/abms/giab		
56	http://www.nist.gov		
57	http://hapmap.ncbi.nlm.nih.gov		
58	http://www.1000genomes.org		
59	https://catalog.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA12878&Product=DNA		
60	https://github.com/ekg/vcflib#vcfallelicprimitives		
61	http://useq.sourceforge.net/cmdLnMenus.html#VCFComparator		
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(TPR),	 false	positive	rate	(FPR)	and	positive	prediction	value	(PPV)62	at	different	quality	

thresholds	(QUAL).		

FDR=non-match/(match+non-match)		

TPR=match/total	shared	variants	in	Control	list	(i.e.	GIAB	list)	

FPR=non-match/total	shared	variants	in	Control	list	

PPV=match/(match+non-match)	

	

Callers	 QUAL	 Match	 Non-

Match	

FDR	 TPR	 FPR	 PPV	 Ti/Tv	

U
G
	

Re
ca
lS
N
Ps
	 none	 23327	 394	 0.016609	 0.995349	 0.016811	 0.9833903	 2.81	

37.77	 23269	 245	 0.010419	 0.992874	 0.010454	 0.9895807	

U
G
	

H
ar
dF
ilt
	

SN
Ps
/I
nd

el
s	 none	 24338	 107	 0.004377	 0.986222	 0.004335	 0.9956228	 2.87	

38.77	 24322	 103	 0.004216	 0.985574	 0.004173	 0.9957830	

H
C	

Re
ca
lS
N
Ps
	 none	 23286	 238	 0.010117	 0.993599	 0.010155	 0.9898826	 2.85	

37.77	 23250	 150	 0.006410	 0.992063	 0.006400	 0.9935897	

H
C	

H
ar
dF
ilt
	

SN
Ps
/I
nd

el

s	

none	 24429	 53	 0.002164	 0.989910	 0.002147	 0.9978351	 2.88	

37.73	 24416	 52	 0.002125	 0.989383	 0.002107	 0.9978748	

Table	2.4	Benchmarking	results	of	different	variant	lists	of	control	sample	NA12878	with	GIAB	dataset.	

	

Besides	measuring	 the	accuracy	and	sensitivity	of	a	variant	 list,	 this	benchmarking	can	

be	used	to	compare	variant	callers	or	to	monitor	filtering	strategies	with	respect	to	the	

achieved	TPR	and/or	FPR.	Thus,	we	compared	the	4	different	following	variant	lists	with	

the	GIAB	list:	

• UG	HardFilt	SNP/Indels:	Both	SNPs	and	Indels	called	by	Unified	Genotyper	(UG)	

and	filtered	by	hard	filters	suggested	by	GATK’s	best	practice	guideline.		

• UG	RecalSNPS:	SNPs	called	by	UG	and	recalibrated	by	VQSR.		

																																																								
62	https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values	
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• HC	HardFilt	SNP/Indels:	Both	SNPs	and	Indels	called	by	Haplotype	Caller	(HC)	and	

filtered	by	hard	filters	suggested	by	GATK’s	best	practice	guideline.	

• HC	RecalSNPS:	SNPs	called	by	HC	and	recalibrated	by	VQSR.		

	

Moreover,	we	compared	results	with	and	without	quality	filtering	(QUAL~=	38	and	QUAL	

=	none,	respectively),	to	see	the	effect	on	sensitivity	and	specificity	of	variant	lists.	Table	

2.4	shows	the	benchmarking	results	of	the	above-mentioned	variant	lists	generated	for	

the	in-house	control	sample	NA12878	with	the	GIAB	dataset.	With	all	different	lists,	we	

have	achieved	the	expected	Ti/Tv	ratio,	which	is	around	2.8	for	exome	sequencing	data.	

Moreover,	we	achieved	good	sensitivity	 (varying	 from	99%	till	99.78	%)	and	specificity	

(varying	98%	till	99.78	%)	for	all	four	variant	lists.		

	

In	 general,	 the	 QUAL	 filter	 shows	 little	 improvement	 in	 specificity	 but	 can	 decrease	

sensitivity	(in	fractions).	This	is	expected,	as	QUAL	is	the	confidence	of	a	variant	call	and	

can	filter	out	some	low	confident	variants.	However,	sometimes	a	true	variant	also	can	

have	low	confidence	due	to	certain	sequencing	biases	and	artefacts	 like	coverage	bias,	

paralogous	 alignments	 etc.	 Without	 QUAL	 filtering,	 both	 variant	 callers	 are	 showing	

similar	 performance.	 At	 QUAL	 >	 37,	 HC	 gives	 better	 results	 in	 both	 aspects	 (TPR	 and	

FPR).	The	variant	list	from	HC	at	this	threshold	shows	improvement	in	specificity	without	

compromising	sensitivity.	This	indicates	that	the	QUAL	score	is	more	reliable	or	accurate	

from	HC,	which	 is	 expected,	 as	 it	 does	 not	 only	 rely	 on	 alignments.	 It	 performs	 local	

realignments	 (assembly),	 which	 can	 avoid	 some	 alignments	 errors	 (cf.	 Section	 2.3).	

Moreover,	the	numbers	in	the	table	clearly	show	that	HC	is	better	than	UG	in	terms	of	

both	sensitivity	and	specificity.	After	 the	applications	of	both	of	 the	filtering	strategies	

VQSR	 and	 hard	 filters,	 the	 variant	 list	 generated	 by	HC	 is	 better	 and	 has	 slightly	 high	

Ti/Tv	 ratio	 than	 the	 variant	 list	 generated	by	UG.	Overall,	 this	 benchmarking	 suggests	

that	 the	HC	 is	 the	better	 option	 compared	 to	UG	 (if	 only	 one	 variant	 caller	 has	 to	be	

selected),	which	is	also	recommended	by	the	GATK’s	best	practice	guidelines.	
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2.5 Chapter	summary	
In	this	chapter,	

• I	presented	the	data	analysis	steps	required	to	convert	raw	fastq	files	into	a	list	

of	significant	variants.	First,	quality	control	of	the	raw	data	should	be	performed	

and	 then	 the	 alignment	 of	 reads	 to	 the	 reference	 sequence	 followed	 by	

SNP/Indel	 calling.	 At	 last,	 proper	 filtering	 strategies	 and	 evaluations	 of	 variant	

calls	should	be	applied.	

• I	presented	the	effect	of	quality	trimming.	By	removing	some	bad	quality	bases	

during	 quality	 trimming,	 we	 can	 improve	 the	 overall	 sample	 quality	 and	 the	

alignment	accuracy.	

• I	 presented	 testing	 of	 BWA’s	 different	 algorithms	 and	 showed,	 how	 sensitive	

alignment	 is	 helpful	 to	 align	more	 reads	 but	 it	 can	 be	 devastating	 and	might	

results	in	many	FPs.		

• I	have	also	presented	that	the	post	processing	of	the	aligned	reads	is	necessary	

to	avoid	alignment	artefacts	or	some	systematic	errors	to	control	the	FDR.	

• I	have	also	described	 two	widely	used	approaches	 for	variant	 calling:	Bayesian	

Model	 and	 Haplotype	 based	 approaches.	 Usage	 of	 a	 single	 approach	 is	 not	

enough,	thus,	the	variant	calling	should	be	done	using	both	approaches	to	get	a	

better	trade-off	between	specificity	and	sensitivity.			

• I	mentioned	 some	variant	 filtering	and	evaluation	 strategies.	Different	 filtering	

can	be	applied	to	the	raw	variant	list	in	order	to	filter	false	positives.	Moreover,	

the	 effects	 of	 filters	 on	 variant	 list	 can	 be	 monitored	 by	 different	 evaluation	

strategies.





	

Chapter	3 	
Leveraging	the	power	of	high	
performance	computing		
	

“There	are	lots	of	diseases	to	uncover	and	DNA	sequencing	has	become	less	expensive	

and	more	 promising	 -	 so	 let’s	 do	 the	 sequencing”.	 These	 thoughts	 are	 very	 common	

nowadays,	 resulting	 in	 generation	 of	 huge	 amounts	 of	 data.	 Analysis	 of	 these	 data	

requires	 a	 series	 of	 analysis	 actions	 before	 relevant	mutations	 can	 be	 found	 like	 data	

cleaning,	 sequence	 alignment,	 variant	 calling,	 etc.	 All	 of	 these	 actions	 are	

interconnected,	 build	 on	 each	 other,	 and	 usually	 involve	 running	 some	 tool	 or	 script.	

Hence,	analysing	sequencing	data	can	 require	a	significant	amount	of	 time	and	 lots	of	

manual	work	in	the	daily	routine.	In	order	to	reduce	the	manual	efforts	and	chances	of	

manual	 errors	 during	 data	 analysis	 operations,	 automation	 of	 data	 processing	 is	

necessary.	Moreover,	analysis	of	 large	data	 sets	 like	whole	exome	and	whole	genome	

sequencing	data	requires	more	storage	and	compute	power	 for	 fast	and	efficient	data	

processing	 than	 conventional	desktop	 computers	or	 servers	usually	provide.	 Thus,	 the	

implementation	 of	 automated	 next	 generation	 sequencing	 (NGS)	 data	 analysis	

workflows	on	high	performance	computing	(HPC)	clusters	has	become	very	essential.		

	

HPC	systems	utilize	the	power	of	a	large	number	of	processors	(cf.	Section	3.2)	to	speed	

up	 the	 task	which	makes	 their	 architecture	more	 complex	and	 less	 stable	As	 they	are	

built	 up	 of	 different	 components,	 the	 failure	 of	 a	 single	 component	 (e.g.	 parallel	 file	

system	or	 job	 scheduler)	 can	destabilize	 the	 system	as	a	whole.	Moreover,	 if	 the	HPC	

system	 is	 a	 multi-user	 environment	 or	 a	 shared	 cluster,	 the	 probability	 of	 failure	

increases.	As	 it	 is	hard	 to	monitor	 and	 control	 each	user’s	 activity	on	 the	 system,	any	

single	wrong	operation	 can	 cause	 system	 instabilities.	 These	 instabilities	 can	originate	

from	an	individual	workflow	and	can	affect	other’s	operations	or	vice	versa.	Therefore,	a	

workflow’s	 stability,	 robustness	 and	 maintainability	 are	 as	 important	 as	 speed	 and	

should	be	considered	carefully	during	the	implementation	of	an	automated	workflow.	

	



	

Leveraging	the	power	of	high	performance	computing	

	78	

In	 this	 chapter,	we	will	 provide	 details	 of	 our	 dedicated	 solutions,	 applied	 during	 the	

development	 of	 our	 NGS	 data	 analysis	 workflow	 implementation	 on	 an	 HPC	 system.	

These	solutions	enable	us	to	achieve	high	throughput	in	significantly	less	amount	of	time	

than	 the	 conventional	 ways.	 Moreover,	 they	 enhance	 stability,	 robustness	 as	 well	 as	

easy	maintainability	of	our	workflow.	At	first,	we	will	provide	an	overview	of	our	exome	

analysis	workflow	followed	by	a	few	details	about	our	HPC	system.	Later	on,	details	of	

the	 design	 principles	 applied	 during	 its	 implementation	 on	 the	 HPC	 system	 will	 be	

described.	 These	 design	 principles	 contributed	 significantly	 to	 making	 an	 automated	

(little	manual	intervention	or	debugging)	and	stable	workflow	for	the	HPC	environment.	

The	work	in	this	chapter	is	the	joint	work	of	me	and	Dr.	Susanne	Motameny,	which	was	

published	recently	(Kawalia	et	al.,	2015).	All	of	the	supporting	information	files	(S1	to	S6)	

mentioned	in	this	chapter	are	available	with	the	online	version	of	this	paper63.		

 

3.1 Exome	analysis	workflow		
Our	exome	analysis	workflow	 is	a	 collection	of	open	source	 third	party	 tools	and	 self-

developed	 software	 that	 are	 stitched	 together	 into	 a	 pipeline	 via	 bash	 scripts.	 It	 is	

divided	 into	 several	modules	 that	 combine	 analysis	 steps	 with	 the	 same	 purpose	 (cf.	

Figure	3.1).	For	a	complete	analysis,	a	single	start	of	the	workflow	can	run	all	modules.	In	

addition,	 these	modules	 can	 be	 started	 individually	 or	 in	 any	 combination	 for	 specific	

analyses.	 This	 workflow	 is	 fully	 automated	 where	 some	 modules	 run	 in	 a	 sequential	

manner	 and	 some	 run	 in	 parallel.	 It	 contains	 several	 checkpoints	 and	 waiting	 points	

between	 the	modules	 (depicted	as	diamonds	 in	Figure	3.1).	 If	 there	 is	a	 failure	at	any	

checkpoint,	 the	analysis	 is	 aborted.	 In	 this	 case,	 the	workflow	waits	 for	other	 running	

modules	(parallel	ones)	to	finish	and	then	exits	with	an	error	message.	

	

In	 general,	 we	 perform	 a	 full	 analysis	 for	 every	 sample	 individually	 which	 runs	 in	

following	steps	(cf.	Figure	3.1):	The	first	module	of	workflow	prepares	fastq	files	by	using	

in-house	 developed	 scripts.	 This	 includes	 merging	 of	 all	 available	 fastq	 files	 for	 the	

																																																								
63http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036	(This	and	the	

subsequent	URLs	have	been	accessed	on	25	August	2015)	
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sample	 (in-house	 script),	 quality	 check	by	 FastQC	 (Andrews	 S,	 2010),	 quality	 trimming	

(in-house	 script)	 and	adapter	 trimming	 (Martin,	 2011)	 (cf.	 Figure	3.1,	 (1)).	 The	 second	

and	 third	modules	 take	 the	 prepared	 fastq	 files	 and	 start	 the	 alignment	 pipeline	 (cf.	

Figure	 3.1,	 (2))	 and	 structural	 variant	 calling	 pipeline	 (cf.	 Figure	 3.1,	 (3)),	 respectively.	

Both	pipelines	 first	 split	 the	 fastq	 files	 into	 smaller	 chunks	 and	 align	 these	 chunks	 (to	

speed-up	 the	 process)	 to	 the	 reference	 genome.	 For	 structural	 variant	 calling,	 a	 strict	

alignment	allowing	only	perfect	matches	is	performed	using	mrsFast	(Hach	et	al.,	2010)	

and	then	structural	variants	are	detected	based	on	discordant	mate	pair	signatures	by	

VariationHunter	(Hormozdiari,	Alkan,	Eichler,	&	Sahinalp,	2009).	The	alignment	pipeline	

performs	 sensitive	 alignment	 by	 using	 BWA	 (H.	 Li	 &	 Durbin,	 2009,	 2010),	 which	 can	

allow	gaps	or	mismatches	during	the	alignment.	After	the	alignment,	all	chunks	of	BAM	

files	are	merged	by	samtools	(H.	Li	et	al.,	2009)	and	PCR	duplicates	are	removed	by	using	

Picard64.	 After	 that,	 post-alignment	 improvements,	 like,	 Indel	 realignment	 and	 base	

quality	 score	 recalibration	 (BQSR)	are	performed	by	using	GATK	 (DePristo	et	al.,	2011;	

McKenna	et	al.,	 2010).	To	 speed	up	 the	variant	 calling	and	 some	other	processes,	 the	

BAM	 file	 is	 split	 into	 25	 BAM	 files	 by	 samtools	 (one	 for	 each	 chromosome	 and	 the	

mitochondrion).	 To	 get	 a	 comprehensive	 variant	 list,	 both	 SNP/Indel	 and	 copynumber	

calling	 is	 performed	 by	 a	 set	 of	 four	 different	 tools.	 Samtools	 mpileup,	 GATK	

UnifiedGenotyper	 and	 GATK	 HaplotypeCaller,	 and	 Platypus	 (Rimmer	 et	 al.,	 2014)	 (cf.	

Figure	 3.1,	 (6))	 are	 used	 for	 SNP/Indel	 calling.	 Copynumber	 variants	 are	 called	 by	

CoNIFER	(Krumm	et	al.,	2012),	XHMM	(Fromer	et	al.,	2012),	cn.nops	(Klambauer	et	al.,	

2012),	and	ExomeDepth	(Plagnol	et	al.,	2012)	(cf.	Figure	3.1,	(4)).	Furthermore,	to	get	an	

overview	of	sample	quality,	an	 in-house	developed	script	 is	used	to	compute	statistics	

about	exon	coverage	throughout	the	genome	(cf.	Figure	3.1,	 (5))	and	Picard	 is	used	to	

compute	some	other	statistics	(e.g.	about	the	alignment	and	enrichment)	(cf.	Figure	3.1,	

(7)).	 In	 order	 to	distinguish	between	 good	 and	bad	quality	 SNPs,	 variant	 quality	 score	

recalibration	 (VQSR)	 is	 performed.	 As	 VQSR	 needs	 some	 annotations	 that	 are	 only	

produced	by	GATK’s	caller,	 it	 is	only	performed	on	variant	 lists	generated	by	GATK	(cf.	

Figure	3.1,	(8)).	

																																																								
64	http://broadinstitute.github.io/picard/		
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Figure	3.1	Automated	workflow	for	exome	sequencing	data	analysis.	The	workflow	has	one	starting	and	

ending	 point	 showed	 in	 orange	 colour.	 Green	 colour	 boxes	 are	 the	modules	 or	 tasks	 of	 the	 workflow	

executed	by	the	master	script	or	sub-pipeline	(highlighted	by	blue	colour	boxes).	Red	colour	diamonds	are	

control	 points	 that	 check	 for	 completion	 of	 previous	 tasks	 to	 make	 a	 decision	 about	 the	 next	 task’s	

execution.				

	

Regions	 of	 homozygosity	 (ROH)	 are	 detected	 using	 Allegro	 (Gudbjartsson,	 Jonasson,	

Frigge,	 &	 Kong,	 2000)	 Figure	 3.1,	 (9)).	 For	 detection	 of	 denovo	 mutations,	 we use	

deNovoGear	(Ramu	et	al.,	2013),	which	runs	on	exome	data	from	the	affected	child	of	a	

trio	or	the	affected	twin	of	a	sibling	pair	or	the	tumour	of	a	tumour-normal	pair.	After	

that,	 the	 results	 produced	 by	 all	 above	 mentioned	 analysis	 steps	 are	 collected	 and	

combined	 into	 one	 table	 (self-written	 script65,	 Figure	 3.1,	 (10)).	 This	 script	 screens	

several	databases	 (dbSNP	(Sherry	et	al.,	2001),	1000	Genomes	Project	 (Abecasis	et	al.,	

2012),	 Exome	Aggregation	 Consortium	 (ExAC)66,	 dbVAR	 and	DGVa	 (Lappalainen	 et	 al.,	

																																																								
65	This	script	is	written	by	Dr.	Holger	Thiele	
66	http://exac.broadinstitute.org		

Merge	Fastq,	Quality	Control	(FastQC)	&	Adapter	Trimming	(cutadapt)		

Exoncov	

					CNV		(cn.mops,	ExomeDepth,	
CoNIFER,	XHMM)	

	
				SV	(mrsFast	+	VariaJonHunter)	

	Fastq	SpliJng	&	
Alignment		(BWA)	

				Enrichment	StaJsJcs		(Picard)	

				SNPs/Indels	(samtools,	
Platypus)	

Complete?	

Bam	per	
Chr?	

Complete	
Bam?	

Merge	Bam		&	
Remove	Duplicates	(Picard)	

Indel	Realignment	(GATK)			
	

BQSR	(GATK)		
&	Split	to	Chr		

	

Modules	
finished?	

Combine	Vcfs		

Modules	
finished?	

Transfer,	Cleanup	

VQSR	
(GATK)	

Func	(AnnotaJon)	

dbSNP,	1000Genomes,	
EVS,EXAC,	GERP,	

dbVAR,	DGVa,	HGMD	
ENSEMBL,	Polyphen,	SIFT,	

GERP,	MaxEntScan	

ROH	(Allegro)	

*BQSR:	Base	Quality	Score	RecalibraJon	
*VQSR:	Variant	Quality	Score		RecalibraJon	

							SNPs/Indels	(	GATK	UG	&	HC)	

1	

2	

3	

4	

5	

6	

6	

7	

8	

9	

10	

11	

12	



	 	

	 	 HPC	system	

	 81	

2013),	GERP	(Davydov	et	al.,	2010),	ENSEMBL	(Flicek	et	al.,	2014),	and	the	commercial	

HGMD	professional	database	 (Stenson	et	al.,	2014)	 to	annotate	known	variants	 in	 the	

combined	variant	list.	For	functional	annotation	of	variants,	POLYPHEN	(Adzhubei	et	al.,	

2010),	SIFT	(Kumar,	Henikoff,	&	Ng,	2009),	and	in-house	developed	algorithms	are	used.	

Additionally,	 splice	 site	 analysis,	 based	 on	 the	 framework	 described	 in	 (Yeo,	 Burge,	

Liebert,	 Yeo,	&	Burge,	 2004),	 is	 performed.	 At	 last,	 the	 annotated	 variant	 list,	 sample	

statistics,	 fastq	 files	 and	 BAM	 files	 are	 transferred	 to	 our	 storage	 server	 and	 the	

intermediate	results	are	deleted	(self-written	scripts,	Figure	3.1,	(12)).	

 

3.2 HPC	system	
The	 workflow	 is	 implemented	 on	 the	 HPC	 clusters	 CHEOPS	 and	 SuGI	 of	 the	 Regional	

Computing	 Center	 Cologne	 (RRZK).	 These	 are	 two	 main	 clusters	 of	 the	 University	 of	

Cologne,	 serving	 the	 computational	 demands	 of	 many	 researchers	 from	 different	

scientific	 fields.	CHEOPS	 is	 the	 larger	compute	cluster	with	a	peak	performance	of	100	

Teraflop/s	and	linpack	performance	of	85.0	Teraflop/s.	It	has	841	nodes	with	9712	cores	

and	 35.5	 TB	 RAM	 in	 total	 for	 computation,	 and	 provides	 500	 TB	 Lustre	 parallel	 file	

system	for	storage.	On	the	other	hand,	SuGI	is	smaller	and	has	32	compute	nodes	with	

256	cores	and	1	TB	RAM	in	total.	 It	provides	5	TB	Panasas	parallel	file	storage	and	can	

achieve	a	peak	performance	of	2	Teraflop/s.	Both	clusters	run	a	Linux	operating	system.		

	

Due	to	their	complex	architecture	(cf.	Figure	3.2)	HPC	systems	are	more	susceptible	to	

system	instabilities	than	ordinary	hardware.	This	 implies	certain	working	rules	for	both	

of	 HPC	 clusters.	 Any	 computation	 should	 not	 be	 directly	 run	 on	 the	 login	 nodes	 (or	

frontend	nodes).	 Frontend	nodes	 can	be	 either	 used	 to	 submit	 a	 job	 that	 contains	 all	

computation	 or	 used	 for	 login	 and	 data	 transfer	 to	 (or	 from)	 the	 parallel	 file	 system.	

Each	job	can	be	submitted	via	SLURM	(Jette	&	Grondona,	2003)	or	TORQUE/Maui	batch	

system	on	 CHEOPS	 or	 SUGI,	 respectively.	 Every	 job	 submission	 contains	 a	 request	 for	

appropriate	 computational	 resources,	 like	 number	 of	 cores,	 required	 memory,	 and	

runtime	etc.	Based	on	the	requested	resources,	the	batch	system’s	scheduler	assigns	an	

appropriate	compute	node	to	the	submitted	job.	
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Figure	3.2 Overview	of	HPC	architecture.	

	

3.3 Technical	components	of	workflow	
	

3.3.1 Workflow	overview		

We	considered	all	HPC	working	rules	during	the	development	of	our	exome	workflow.	It	

is	a	collection	of	BASH	scripts	that	are	mainly	divided	into	one	masterscript	and	several	

jobscripts.	The	masterscript	executes	all	tasks	of	the	workflow	by	submission	of	the	job	

scripts	 and	 also	 monitors	 their	 execution	 (cf.	 Figure	 3.5).	 It	 processes	 each	 sample	

individually	 and	gets	 all	 information	 related	 to	 the	 sample	 form	a	 configuration	 file	 in	

XML	 (Extensible	 Markup	 Language 67 )	 format,	 which	 is	 generated	 from	 our	 LIMS	

(Laboratory	 Information	Management	 System68)	database.	 The	 LIMS	keeps	 track	of	 all	

samples	 and	 their	 processing	 in	 the	 wet-lab	 and	 contains	 all	 necessary	 information	

relevant	to	the	analysis.	The	masterscript	provides	the	required	information	(according	

to	task)	to	all	 job	scripts,	which	then	do	the	actual	computation.	The	masterscript	also	

prepares	the	results	(produced	by	the	job	scripts)	for	transfer	to	our	storage	server	from	

where	they	are	further	uploaded	to	an	Oracle	database	(cf.	Figure	3.3).	Researchers	can	

fetch	 information	 from	 this	 database	 via	 an	 in-house	 developed	 webinterface	 called	

“varbank”	 (https://varbank.ccg.uni-koeln.de),	 which	 provides	 access	 and	 download	

																																																								
67	http://www.w3.org/TR/2006/REC-xml-20060816/		
68	https://en.wikipedia.org/wiki/Laboratory_information_management_system		
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options	 for	 the	 fastq-,	 BAM-,	 and	 VCF	 files	 as	 well	 as	 annotated	 variant	 tables	 and	

coverage	statistics.	

	

 

Figure	3.3 Infrastructure	surrounding	the	exome	workflow.	

	

3.3.2 Workflow	interaction	with	HPC	systems	

As	mentioned	above,	the	workflow	is	designed	to	run	on	both	HPC	systems:	CHEOPS	and	

SuGI.	This	is	beneficial	in	two	different	ways:	first	to	increase	the	throughput	when	data	

analysis	 is	running	on	both	systems	in	parallel.	Additionally,	one	system	can	serve	as	a	

backup	system	in	case	of	the	failure	of	the	other.	For	example,	CHEOPS	is	a	lager	cluster	

and	 more	 complex	 which	 makes	 it	 more	 prone	 to	 system	 instabilities.	 Thus,	 during	

downtime	 of	 CHEOPS	 or	maintenance	 periods,	 SuGI	 can	 be	 used	 for	 data	 analysis.	 In	

order	to	run	the	workflow	on	both	systems,	3	different	directories	are	shared	between	

these	 systems:	 XML	 stack,	 Data	 and	 Results	 directory	 (cf.	 Figure	 3.4).	 All	 of	 these	

directories	are	located	in	the	Panasas	file	system	of	SuGI	and	mounted	on	CHEOPS.	The	

XML	stack	contains	XML	configuration	files	of	new	samples,	which	need	to	be	analysed.	

The	data	directory	contains	the	required	fastq	files	for	analysis	and	the	results	directory	

stores	the	results	for	each	analysis	step	like	BAM	files	from	alignment	or	VCF	files	from	

variant	calling	etc.	Every	system	has	its	own	scripts	directory	and	status	directory	in	the	

local	file	system,	which	contains	all	analysis	scripts	(including	master	scripts)	and	status	

messages	 generated	 by	 the	workflow,	 respectively	 (see	 next	 paragraph).	 Each	 system	

has	its	own	scratch	directory	mounted	in	its	parallel	file	system	(Lustre	for	CHEOPS	and	

Panasas	 for	 SuGI).	 These	 scratch	 directories	 store	 temporary	 results	 (or	 intermediate	

results)	 and	 status	messages	 generated	 from	different	 analysis	 steps	 executed	 on	 the	

respective	HPC	system	(see	next	paragraph).		
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Figure	3.4	Overview	of	workflow	interaction	with	both	CHEOPS	and	SUGI	HPC	systems. 

 

The	workflow	execution	works	in	the	same	way	for	both	HPC	systems.	The	cron	deamon	

on	the	frontend	node	of	both	systems	checks	the	presence	of	new	samples	in	the	XML	

stack	directory.	When	a	 sample	 is	 available	 in	 the	 stack	directory	 for	processing,	 then	

the	 respective	 cron	 deamon	 starts	 an	 instance	 of	 the	masterscript	 on	 the	 respective	

system	 (cf.	 Figure	 3.5).	 The	 cron	 deamon	 of	 both	 systems	 takes	 turns	 to	 check	 stack	

directory	and	if	number	of	running	samples	are	less	than	the	set	limit	(e.g.	<	20	samples	

can	run	in	parallel	on	Cheops)	of	the	respective	system	then	it	starts	the	masterscript	for	

the	new	sample.	The	general	flow	of	 job	submission	from	the	masterscript	 is	shown	in	

Figure	3.5.	 The	masterscript	 submits	 the	 job	 (compute	 job)	 for	an	analysis	 task	 to	 the	

compute	nodes	and	waits	 for	 its	 completion.	The	Compute	 job	gets	 the	 required	data	

from	the	data	directory	and	puts	 intermediate	files	(generated	during	computation)	to	

the	 scratch	 directory.	 After	 completion	 of	 a	 task,	 the	 results	 are	 stored	 in	 the	 results	

directory.	 The	 status	messages	 for	 a	 task	 (i.e.	 successful	 completion	 or	 an	 error),	 are	

stored	 in	the	status	directory	of	scratch	(where	other	compute	 jobs	can	pick	them	up)	

and	 in	 the	 status	directory	of	 the	 local	 file	 system	 (where	 the	masterscript	 can	access	

them).	 The	 masterscript	 checks	 these	 messages	 and	 reacts	 accordingly:	 either	 it	

resubmits	 the	 job	 (in	 case	 of	 failure)	 or	 submits	 the	 next	 compute	 job.	 This	 whole	

process	of	job	submission	and	monitoring	goes	on	till	the	complete	analysis	is	finished.	

The	cronjob	 starts	multiple	 instances	of	 the	masterscript	with	 some	delay	when	more	

than	one	sample	is	available	in	the	XML	stack.	
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Figure	3.5	Overview	of	workflow	implementation	at	HPC.	

 

3.3.3 The	masterscript	

As	 implied	 by	 its	 name,	 the	 masterscript	 is	 the	 main	 script	 of	 the	 workflow	 that	

organizes	 the	 data	 analysis	 tasks	 on	 the	 HPC	 clusters.	 It	 submits	 jobscripts	 (which	

perform	 the	 actual	 computation)	 on	 the	 clusters	 and	 monitors	 their	 progress.	 It	

processes	a	single	data	set	(e.g.	an	exome	sample)	at	once,	but	several	instances	can	be	

started	 simultaneously	 to	 achieve	 high	 throughput.	 When	 more	 than	 one	 sample	 is	

available	 for	 processing,	 the	 cron	 deamon	 on	 the	 frontend	 node	 starts	 multiple	

instances	of	masterscript	in	parallel	(cf.	Figure	3.5).	

	

The	 masterscript	 has	 a	 modular	 structure	 that	 means	 it	 puts	 all	 tools	 that	 perform	

similar	 tasks	 into	 one	module.	When	 a	 complete	 exome	 analysis	 has	 to	 run	 then	 the	

masterscript	executes	all	modules	as	shown	in	(cf.	Figure	3.1).	However,	execution	of	a	

single	module,	due	to	its	failure	or	reanalysis,	can	be	selected	by	a	command	line	option	

of	 the	masterscript	 (Supporting	 Information	S569),	which	saves	a	 significant	amount	of	

time	 in	 these	 cases.	 Moreover,	 when	 some	 specific	 analysis	 is	 required	 then	 the	

																																																								
69	This	supporting	information	file	and	other	files	(S1	to	S6)	are	available	with	online	version	of	our	paper	

(Kawalia	et	al.,	2015):	http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036			
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masterscript	can	be	started	with	only	the	desired	modules.	For	example,	we	skip	the	SV	

module	 for	 samples	 having	 single	 reads,	 as	 it	 requires	 paired-end	 information	 for	 SV	

detection.	

 

3.3.4 Jobscripts	
The	jobscripts	are	bash	scripts	that	contain	the	commands	to	execute	some	tool	or	some	

script	for	a	specific	analysis	task.	Moreover,	they	can	perform	some	data	management	

like	preparing	data	for	analysis	or	merging	results	etc.	To	monitor	the	completion	of	any	

task,	 every	 jobscript	 writes	 a	 status	 message	 based	 on	 its	 exit	 status.	 This	 status	

message	 is	 transferred	 to	 the	 local	 file	 system	on	 the	 frontend	node	and	used	by	 the	

masterscript	to	monitor	completion	or	failure	of	that	task.	The	masterscript	checks	the	

status	message	at	checkpoints	and	in	case	of	failure	it	aborts	the	workflow	with	an	error	

report.	If	the	batch	system	aborts	the	job	due	to	too	small	walltime	or	memory	requests,	

then	 this	 status	 message	 will	 not	 be	 written.	 Therefore,	 this	 strategy	 can	 distinguish	

between	job	abortion/failure	errors	and	execution	errors.		

  

3.3.5 Job	submission	

The	job	submission	function	is	the	main	function	in	the	masterscript.	It	encapsulates	job	

submission	and	also	monitors	the	status	of	the	job	and	checks	its	successful	completion	

or	 failure	 (cf.	 Figure	 3.6).	 If	 job	 submission	 fails	 due	 to	 the	unavailability	 of	 the	batch	

system	 at	 first	 attempt,	 then	 it	 tries	 resubmission	 for	 two	 more	 times,	 after	 that	 it	

reports	an	error	for	an	unsuccessful	job	submission.	After	successful	submission,	it	waits	

for	the	completion	of	job.	In	the	case	of	job	failure	(if	the	resource	limit	was	exceeded),	

it	 increases	 the	 requested	 resources	 (runtime	 and	 memory)	 and	 re-submits	 the	 job	

automatically.	 If	 this	 job	 fails	 again	 then	 an	 error	 is	 reported	 by	 this	 function.	 It	 also	

supports	both	batch	systems:	SLURM	and	TORQUE/Maui	running	on	CHEOPS	and	SUGI,	

respectively.	The	masterscript	submits	a	job	with	a	general	job	submission	syntax	that	is	

further	translated	(by	the	job	submission	function)	into	job	submission	commands	of	the	

used	 batch	 system.	 The	 code	 of	 the	 job	 submission	 function	 can	 be	 found	 in	 the	

Supporting	Information	S169.	
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Figure	3.6	Flow	chart	of	the	job	submission	function.	

	

There	 are	 two	 different	 modes	 of	 job	 submission:	 sequential	 or	 parallel.	 In	 the	

sequential	manner,	a	 job	 is	 submitted	by	calling	 the	submission	 function	directly	 from	

the	masterscript,	causing	the	masterscript	to	wait	until	 it	 is	finished	before	proceeding	

with	the	next	job	submission.	This	manner	of	sequential	job	submission	is	utilized	when	

jobs	depend	on	each	other.	On	the	other	hand,	some	jobs	that	do	not	depend	to	each	

other, they	 can	 be	 submitted	 in	 parallel.	 In	 this	 case,	 a	 child	 process	 started	 by	 the	

masterscript	 in	 background	 that	 calls	 the	 job	 submission	 function.	 For	 example,	 the	

masterscript	 performs	 a	 sequential	 job	 submission	 for	 fastq	 preparation	 and	 quality	

control	tasks	as	this	is	the	first	task	and	all	other	tasks	depend	on	its	outcome.	After	the	

completion	 of	 this	 job,	 the	 alignment	 jobs	 for	 SNP/Indel	 calling	 and	 SV	 detection	 are	

submitted	in	parallel	via	sub-processes,	as	they	are	not	depending	on	each	other.		

 

3.3.6 Job	monitoring	

According	to	the	different	tasks	and	their	dependencies,	the	masterscript	contains	some	

checkpoints	and	waits	for	the	completion	of	submitted	jobs	and	child	process	at	every	

checkpoint.	 It	 stores	 all	 job	 ids	 assigned	 by	 the	 batch	 system	 and	 all	 process	 ids	 of	

started	 child	 processes.	 The	 submit	 function	 keeps	 track	 of	 jobs	 via	 their	 job-ids	 and	

after	 job	 completion,	 it	 checks	 the	 status	message	 returned	 from	 a	 job	 (i.e.	 error	 or	
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finished).	The	masterscript	stores	these	status	messages	from	the	submit	function	at	the	

local	file	system	and	waits	for	all	computations	corresponding	to	a	specific	checkpoint	to	

finish.	 As	 soon	 as	 all	 computations	 are	 finished,	 masterscript	 checks	 the	 stored	 job	

status	 messages	 and	 list	 of	 process	 ids.	 In	 case	 of	 errors	 or	 failures,	 it	 aborts	 the	

workflow	with	an	error	message	reporting	the	failed	modules.	If	the	checkpoint	reports	

successful	 completion,	 then	 the	 masterscript	 performs	 the	 next	 round	 of	 job	

submissions	for	the	remaining	tasks.	 In	the	case	of	any	 interruption	or	abortion	of	the	

workflow,	 the	 masterscript	 cancels	 all	 submitted	 jobs	 and	 kills	 all	 child	 processes	 by	

using	 a	 cleanup	 function.	 This	 cleaning	 is	 triggered	 by	 the	 “trap”	 statement	 and	

executed	whenever	the	masterscript	exits.	This	function	also	cancels	jobs	submitted	by	

child	processes.	This	strategy	ensures	a	clean	exit	and	frees	already	allocated	resources.	

Details	about	this	function	can	be	found	in	the	supplementary	file	S369.				

 

3.4 Design	principles	of	workflow	
In	 order	 to	 develop	 an	 efficient	 workflow,	 we	 focused	 on	 the	 following	 four	 design	

principles:		

1. Speed:	Optimum	usage	of	HPC	systems	to	speed	up	data	analysis.	

2. Stability:	 Appropriate	 handling	 of	 the	 HPC	 environment	 to	 prevent	 system	

instabilities.	

3. Robustness:	Automatic	detection	and	correction	of	some	processing	errors	

4. Maintainability:	Easy	to	maintain	and	expand.		

 

3.4.1 Speed		
Parallelization	by	jobarrays	

Parallelization	 is	 one	 of	 the	 most	 frequently	 used	 approaches	 for	 exploitation	 of	 the	

compute	power	of	clusters.	In	our	workflow,	we	apply	“parallelization	by	chunks”,	which	

is	 splitting	 of	 large	 data	 into	 small	 chunks	 followed	 by	 a	 parallel	 processing	 of	 every	

chunk	individually.	Mapping	of	reads	is	an	independent	process	for	every	read,	thus,	we	

split	the	fastq	file	into	several	chunks	and	perform	the	alignment	process	on	each	chunk	

by	 using	 BWA	 and	mrsFast.	 Although,	 BWA	provides	multi-threading	 to	 achieve	more	
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speed,	 however,	 we	 cannot	 rely	 only	 on	 threading	 due	 to	 limited	 resources	 of	 our	

smaller	 cluster	 SuGI.	 It	 has	 only	 8	 core	 nodes,	 so	 BWA	 can	 only	 use	 a	maximum	of	 8	

threads.	Besides	workflow	compatibility	to	both	the	smaller	and	bigger	cluster,	using	a	

combination	of	threading	(with	fewer	cores)	and	parallelization	by	chunks	works	best	for	

us	 (esp.	 in	 terms	of	 resource	 usage	optimization).	We	 also	 use	 this	 strategy	 for	 other	

tasks	like	Indel	realignment	by	GATK,	SV	calling	by	VariationHunter	and	denovo	variant	

calling	 by	 deNovoGear.	 For	 these	 applications,	 we	 split	 the	 BAM	 file	 by	 chromosome	

(similar	 to	 (Lam	 et	 al.,	 2012;	 Puckelwartz	 et	 al.,	 2014))	 and	 run	 the	 analysis	 for	 each	

chromosome	in	parallel.		

	

We	are	using	jobarrays	to	perform	parallelization	by	chunks.	A	jobarray	is	a	collection	of	

jobs	(executing	the	same	task	for	different	data	chunks)	submitted	at	once	and	can	be	

tracked	by	a	single	jobid,	which	simplifies	the	job	submission	and	monitoring.	It	can	be	

used	for	tasks	where	the	same	computation	has	to	be	run	for	different	input	files.	The	

size	of	a	job	array	and	runtime	is	directly	proportional	to	number	of	chunks	and	size	of	

chunks.	In	order	to	take	optimum	advantage	of	jobarrays,	selection	of	a	moderate	array	

size	and	runtime	is	required.	If	too	many	jobs	are	submitted	via	a	job	array	(means	too	

many	chunks	of	data),	then	a	single	task	can	finish	very	fast,	but	some	jobs	have	to	wait	

in	 the	 queue.	On	 the	 contrary,	 if	 few	 jobs	 are	 submitted	 (means	 big	 chunks	 of	 data),	

then	 processing	 time	 will	 be	 longer	 and	 little	 gain	 in	 speed	 would	 be	 achieved	 by	

parallelization.	Therefore,	we	implement	jobarrays	in	a	way	that	a	single	job	should	run	

at	 least	one	hour	and	all	 jobs	 (or	 tasks	executed	by	 jobs)	 should	be	 finished	 in	 similar	

time.	As	the	completion	of	a	jobarray	depends	on	the	completion	of	all	jobs	it	contains	

and	 if	 one	 task	 is	 running	 longer	 than	 other	 tasks,	 then	 the	 jobarray	 has	 to	wait	 and	

parallelization	 power	 would	 not	 be	 exploited	 properly.	 Therefore,	 when	 defining	 the	

data	chunks	on	a	per-chromosome	basis,	we	distribute	the	24	chromosomes	across	14	

tasks	of	a	jobarray	as	mentioned	below:	

• chr	1	to	7:	each	chr	in	a	single	task	

• chr	8	to	17:	combined	two	chromosomes	per	task		

• chr	18,19	and	20	processed	in	one	task	

• chr	21,	22,	X	and	Y	processed	in	one	task	
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After	 some	 trial	 and	 error,	 we	 found	 that	 this	 strategy	 works	 satisfactorily	 for	 our	

workflow.	However,	the	chromosome	size	is	not	the	only	influential	factor	for	run	time	

of	 the	 individual	 array	 task.	 Other	 factors	 like	 coverage	 or	mutation	 load	 can	 change	

runtime	significantly.	Thus,	getting	the	optimum	combination	of	chromosomes	is	almost	

impossible	and	it	can	vary	in	different	data	sets.	

 

Parallelization	by	threads	

Parallelization	can	also	be	done	by	multi-threading,	where	a	process	brakes	into	multiple	

threads	 that	 run	 on	 different	 cores	 simultaneously	 to	 reduce	 the	 overall	 completion	

time.	BWA,	GATK	and	Picard	 come	with	multi-threading	options	and	we	utilize	 this	 to	

speed-up	 their	 runtime.	 In	 general,	 the	 number	 of	 threads	 should	 be	 inversely	

proportional	 to	 the	 runtime	of	 the	 process,	 but	 not	 all	 tools	 follow	 this	 principle.	We	

measured	 the	 walltime	 of	 BWA	 and	 GATK	 with	 different	 numbers	 of	 threads	 (on	 a	

compute	node	with	4	Nehalem	EX	Octo-Core	Processors,	Xeon	X7560,	2.27GHz).	BWA	

shows	 a	 significant	 decrement	 in	 walltime	 with	 higher	 number	 of	 threads.	 However,	

GATK	haplotype	caller’s	walltime	does	not	decrease	significantly	beyond	4	 threads	 (cf.	

Figure	3.7).	We	are	still	 investigating	the	reason	behind	this	behaviour	but	believe	that	

this	is	due	to	the	Java	implementation	of	GATK.	We	have	observed	that	Java	applications	

produce	an	overhead	of	I/O	operations	that	limit	their	acceleration	capacity	on	the	HPC	

system.	 Moreover,	 GATK VariantRecalibrator	 method	 generates	 many	 intermediate	

output	files	(so	called	vcf	stubs),	when	it	runs	with	more	than	one	thread.	For	an	exome	

analysis,	 the	number	of	 these	 files	 can	easily	 reach	up	 to	100000	and	 can	exceed	 the	

maximum	number	of	files	quota	of	file	systems	(most	of	the	file	system	have	this	quota).	

This	limits	the	number	of	parallel	analyses	and	reduces	the	throughput	of	the	workflow.	

To	avoid	this	scenario,	we	run	GATK	VariantRecalibrator	with	one	thread,	which	still	runs	

fast	without	producing	intermediate	files.	
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Figure	 3.7	 Performance	 of	 multi-threading	 with	 BWA-MEM	 and	 GATK	 HaplotypeCaller.	 Left-side	

histograms	show	the	decrement	in	walltime	usage	of	both	tools	with	more	threads.	Whereas,	histograms	

on	the	right	side	show	the	CPU-time	with	different	number	of	threads.	

	

Scalability	

Scalability	is	an	important	measure	of	the	efficiency	of	an	application	when	it	is	used	on	

large	 data	 with	 HPC.	 It	 can	 be	 categorized	 into	 strong	 and	 weak	 scalability.	 Strong	

scalability	 measures	 how	 the	 runtime	 of	 an	 application	 changes	 with	 the	 number	 of	

cores	for	a	fixed	problem	size	(BWA	and	GATK	HaplotypeCaller	shows	strong	scalability	

(cf.	 Section	 “Parallelization	 by	 threads").	Weak	 scalability	 measures	 how	 the	 runtime	

varies	when	a	fixed	amount	of	work	is	directed	to	a	single	core	but	more	cores	are	used	

due	to	a	larger	problem	size.	We	use	“parallelization	by	chunks”	for	BWA	and	mrsFast,	

and	 these	 modules	 scale	 almost	 perfectly	 in	 the	 context	 of	 weak	 scalability.	 This	 is	

because	when	splitting	of	data	into	chunks	of	equal	size	the	processing	time	is	equalized	
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for	 every	 chunk,	 thus,	 the	 larger	 problem	 can	 be	 processed	 on	 multiple	 cores	 in	

comparable	time	to	the	processing	of	smaller	problem	size	on	a	single	core.	Therefore,	

these	 parts	 of	 the	 workflow	 take	 almost	 the	 same	 amount	 of	 time	 for	 data	 sets	 of	

different	 sizes	 (not	 including	 queuing	 time).	 However,	 assessing	 the	 scalability	 of	 the	

entire	workflow	is	difficult	as	most	of	the	parts	of	workflow	use	a	fixed	number	of	cores.	

 

Resource	usage	optimization	

Optimum	usage	 of	 computational	 resources,	 i.e.	 number	 of	 cores	 and	 random	 access	

memory	 (RAM)	 is	 the	key	 to	exploit	 the	power	of	HPC	systems	 to	achieve	 the	desired	

performance.	 In	our	case,	a	single	analysis	should	be	fast	enough	and	high	throughput	

can	 be	 achieved	 by	 running	 several	 analyses	 in	 parallel.	 With	 this	 objective,	 we	

performed	 several	 trial	 and	 error	 steps,	 as	 there	 are	 no	 fix	 rules	 for	 resource	

optimization	 to	 achieve	 a	 satisfactory	 performance.	 However,	 there	 are	 three	 main	

points	that	need	to	be	considered	to	optimize	the	resource	requests:	

	

Selection	of	job	size		

In	 general,	 based	 on	 their	 resources	 requirements,	 jobs	 can	 be	 categorized	 into	 two	

main	categories:	 large	 jobs	and	small	 jobs.	Large	 jobs	use	a	high	number	of	cores	and	

much	RAM	while	the	small	jobs	need	only	few	cores	and	little	memory.	In	practice,	large	

jobs	 have	 longer	 queuing	 time	 and	 can	 waste	 the	 allocated	 memory	 (i.e.	 granted	

exclusively	 to	 that	 job),	 if	 it	 is	 not	 completely	 used	 by	 the	 running	 task.	Moreover,	 if	

there	 are	 many	 jobs	 requesting	 more	 memory	 than	 they	 actually	 require,	 then	 the	

cluster	becomes	partly	idle	while	jobs	have	to	wait	in	the	queue.	Therefore,	assessment	

of	the	required	memory	and	number	of	cores	is	very	important	and	resources	should	be	

requested	as	close	as	to	actually	required	resources.	

	

Balanced	memory	usage	for	jobarray	tasks	

A	 jobarray	 is	 a	 collection	of	 jobs,	 either	executing	 the	 same	analysis	 task	 for	different	

data	 chunks	 or	 can	 perform	 different	 analysis	 tasks	 in	 different	 jobs.	 The	 resources	

requested	during	 job	 submission	are	valid	 for	every	 job	of	a	 jobarray.	However,	 some	

jobs	 in	 a	 job	 array	 can	 behave	 differently	 and	 use	more	memory	 than	 the	 other	 jobs	
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(either	due	to	different	analysis	task	or	due	to	the	different	chunk	of	the	data).	 In	this	

scenario,	a	jobarray	should	be	submitted	first	with	a	low	memory	request	and	later	on,	

the	 failed	 jobs	 could	 be	 resubmitted	 with	 higher	 memory	 requests.	 This	 strategy	

prevents	unnecessary	blocking	of	resources,	thus	more	analyses	can	run	in	parallel	with	

less	job	queuing	time.	

	

Resource	requests	based	on	cluster	architecture	

The	 computing	 cluster	 architecture	 is	 also	 another	 important	 criterion	 for	 resource	

selection.	In	order	to	exploit	the	optimum	capacity	of	the	compute	nodes,	the	number	

of	 requested	cores	 should	preferably	be	a	divisor	of	 the	number	of	 cores	available	on	

the	nodes.	For	example,	we	run	jobs	with	1,	2,	or	4	cores	in	workflow	so	we	can	fill	8,12,	

and	32	core	nodes	of	our	cluster	CHEOPS	properly.	On	the	other	hand,	if	we	submit	a	job	

with	5	cores,	 then	we	would	end	up	with	3	or	2	cores	 (depending	on	node	 type)	 that	

cannot	be	used	for	another	job	of	the	workflow.	Besides	the	number	of	cores,	a	similar	

logic	 should	 be	 applied	 during	memory	 (RAM)	 selection	 and	 it	 should	 be	 fragmented	

according	to	the	RAM	of	a	node.	For	example,	our	cluster	has	24	or	48	GB	RAM	for	the	

majority	of	nodes	and	a	few	nodes	are	having	96	or	512	GB	RAM.	Thus,	theoretically,	a	

24	GB	node	can	be	filled	with	8	jobs	requiring	3	GB	RAM	each	or	6	jobs	requiring	4	GB	

RAM	each.	However,	not	 the	 full	nominal	amount	of	memory	 is	 really	available	to	the	

jobs.	 Therefore,	 a	 small	 reduction	 in	 the	memory	 requested	 is	 required	 to	 fill	 a	 node	

completely.	In	our	implementation,	we	are	requesting	5	%	less	memory	for	each	job.	For	

example,	we	submit	a	nominal	4	GB	job	with	a	3.8	GB	RAM	request	and	only	7.6	GB	RAM	

request	for	a	nominal	8	GB	job.	

 

With	 our	 current	 parallelization	 strategy,	 we	 fit	 173	 hours	 average	 CPU	 time	 into	 an	

average	runtime	of	21	hours	per	exome.	In	comparison	to	an	exome	analysis	on	a	single	

core	computer,	we	are	able	to	speed	it	up	more	than	8-fold	by	using	the	HPC	systems.	

This	 is	 not	 a	 very	 high	 gain	 in	 speed	 but	 it	 can	 be	 increased	 by	 trading	 with	 the	

workflow’s	throughput.	We	optimized	our	workflow	for	high	throughput	rather	than	the	

speed,	 as	 it	 fits	 better	 to	 our	 requirements.	 By	 starting	 an	 exome	 analysis	 every	 30	

minutes,	 we	 can	 analyse	 290	 exomes	 per	 week,	 which	 is	 sufficient	 for	 our	 current	
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sequencing	capacities	as	well	as	for	the	processing	of	external	data.	Moreover,	it	should	

be	noted	that	the	total	load	of	the	HPC	cluster	also	hinders	both	speed	and	throughput,	

which	 is	 not	 completely	 controlled	 by	 us.	 Nevertheless,	 if	 required	 in	 the	 future,	 the	

workflow	can	be	further	parallelized	and	more	analyses	can	be	run	in	parallel.		

 

3.4.2 Stability	
The	stability	of	the	HPC	environment	is	also	another	important	design	principle	for	the	

workflow	 development.	 On	 multi-user	 HPC	 systems,	 a	 certain	 etiquette	 should	 be	

followed	 to	avoid	 system	 instabilities	and	 to	maintain	 the	 smooth	operation	 for	other	

users.	We	included	the	following	measures	that	contribute	to	the	stability	of	the	cluster	

and	our	workflow:					

	

No	computation	on	frontend	node	

The	frontend	node	of	our	clusters,	which	usually	has	less	computational	power,	is	mainly	

for	login,	data	transfer	and	job	submission.	Running	computations	on	the	frontend	node	

can	increase	the	load	to	a	level	that	causes	the	system	to	be	unresponsive	or	even	fail.	

Therefore,	 our	 masterscript	 only	 does	 organizational	 work	 on	 the	 front	 node	 and	

submits	jobscripts	for	all	computations.	

	

Controlled	accesses	to	the	parallel	file	system	

If	 the	 parallel	 file	 system	 is	 not	 responding	 due	 to	 any	 reason	 then	 it	 should	 not	 be	

accessed	by	the	workflow.	Otherwise	a	build-up	of	queries	to	the	parallel	file	system	can	

occur	 that	 can	 hinder	 the	 debugging	 process	 initiated	 by	 system	 administrators.	

Therefore,	 we	 are	 using	 a	 lockfile	 mechanism	 (Supporting	 Information	 S269)	 that	

prevents	the	automatic	execution	of	file	system	accesses	during	its	unresponsive	state.	

Before	 every	 access	 to	 the	 parallel	 file	 system	 (for	 example,	 file	 listing	 (by	 `ls`)	 or	

directory	creation	(by	`mkdir’),	the	masterscript	sets	a	lockfile	and	removes	it	after	the	

file	system	access	finished.	 If	 the	file	system	is	hanging	(i.e.	 the	access	command	does	

not	return),	then	the	masterscript	does	not	delete	this	lock	file	and	it	stays	in	the	local	

filesystem	on	the	frontend	node.	On	the	contrary,	if	the	parallel	file	system	is	responding	

then	 these	 lock	 files	 are	deleted	within	 a	 few	 seconds	 (less	 than	5	 seconds).	At	 every	
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new	 start,	 the	masterscript	 checks	 for	 the	 existence	 of	 the	 lock	 file.	 If	 the	 lockfile	 is	

present	and	persists	for	25	seconds,	then	the	masterscript	exits.	This	strategy	provides	

an	automatic	shut-down	of	our	workflow,	when	the	file	system	is	not	responding.	

	

Shut-down	switch	

In	case	of	cluster	maintenance	or	downtimes,	a	workflow	termination	 is	required.	This	

can	be	activated	by	 the	HPC	administrators	 via	 the	workflow’s	 shut-down	 switch.	 It	 is	

implemented	 as	 a	 semaphore	 file	 in	 the	 local	 file	 system	 of	 the	 frontend	 node	

(Supporting	 Information	 S669).	 Moreover,	 it	 can	 also	 be	 activated	 during	 system	

instability	 caused	 by	 workflow.	 If	 the	 shut-down	 switch	 is	 activated	 (i.e.	 if	 the	

semaphore	file	is	present	in	the	local	filesystem),	then	the	masterscript	exits	right	at	the	

beginning	or	if	the	workflow	is	already	running,	then	it	exists	at	dedicated	exit	points.	

	

Delayed	start	of	multiple	runs	

Our	 workflow	 processes	 new	 data	 in	 30	 minutes	 intervals.	 This	 delayed	 start	 is	

controlled	by	the	cron	deamon,	which	starts	one	instance	of	the	masterscript	every	30	

minutes.	 This	 strategy	 prevents	 overloading	 of	 the	 scheduler	 due	 to	 too	 many	

simultaneous	 job	 submissions.	 It	 also	 prevents	 creation	 of	 too	many	 lock	 files	 by	 the	

masterscript	when	accessing	the	parallel	 file	system.	Moreover,	 it	makes	the	workflow	

more	 efficient,	 with	 respect	 to	 the	 throughput,	 by	 balancing	 resource	 usage	 of	 the	

workflow.	 The	 workflow	 contains	 small	 jobs	 and	 large	 jobs	 with	 lower	 and	 higher	

resource	 requirements	 respectively.	 Thus,	 this	 delayed	 start	 avoids	 simultaneous	

submission	of	large	jobs	and	prevents	a	subsequent	increase	of	queuing	time.	

	

No	access	to	remote	servers	

To	 process	 a	 sample,	 the	workflow	 requires	 some	 sample	 related	 information	 that	 is	

stored	 in	 the	 LIMS.	 Accessing	 remote	 servers	 (via	 ssh)	 to	 query	 the	 LIMS	 from	 the	

masterscript	 can	 get	 stuck	 in	 non-returning	 ssh	 commands.	 Thus,	 we	 do	 not	 access	

remote	servers	from	the	masterscript	and	perform	LIMS	querying	on	a	separate	server.	

After	querying,	all	sample-related	information	is	stored	in	an	XML	configuration	file	that	

is	uploaded	to	 the	cluster	 together	with	 the	sequence	data.	Moreover,	 the	 transfer	of	
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the	 results	 to	 the	 Oracle	 database	 and	 varbank	 webserver,	 are	 also	 organized	 in	 the	

similar	way.	The	masterscript	writes	a	transfer	XML	file	that	contains	the	location	of	the	

result	files.	Then,	a	script	running	on	another	server	performs	the	data	transfer	via	scp	

by	using	the	information	present	in	the	transfer	XML	file.	We	also	do	not	access	remote	

servers	via	job	scripts	because	the	outgoing	network	connections	of	the	compute	nodes	

are	reserved	for	the	exchange	of	software	license	information	only	on	our	HPC	clusters.	

Moreover,	access	to	remote	servers	can	slow	the	computation	and	should	be	generally	

avoided	in	HPC	workflows.		

 

Automatic	deletion	of	results	

Every	run	of	a	sample	generates	a	huge	amount	of	data	including	input	data,	results	and	

temporary	 files.	 Temporary	 files	 are	 generated	 from	 one	 process	 and	 are	 usually	

required	 as	 input	 data	 for	 subsequent	 processes	 and	 can	 occupy	 a	 great	 amount	 of	

space.	Thus,	these	temporary	files	are	automatically	deleted	after	successful	completion	

of	 the	 analysis.	 However,	 in	 case	 of	 workflow	 failure	 these	 files	 remain	 stored	 for	

debugging	 purposes.	 Similarly,	 the	 largest	 part	 of	 the	 results	 i.e.	 BAM	 files	 and	 input	

fastq	files	are	transferred	to	the	database	and	webserver	after	successful	completion	of	

workflow.	To	make	 sure	 that	 the	 transfer	 is	 completed	 successfully,	we	compare	md5	

checksums70	of	the	original	and	the	transferred	files.	As	soon	as	the	transfer	completes,	

BAM	files	and	fastq	files	are	deleted	from	the	cluster.	The	remaining	part	of	the	results,	

i.e.	VCF	files,	statistics	files,	and	variant	tables	are	stored	in	a	dedicated	results	directory	

on	cluster.	

	

3.4.3 Robustness	
An	automated	workflow	should	run	without	manual	intervention	as	long	as	possible.	It	

should	not	stop	if	a	single	job	fails	and	should	be	able	to	run	all	other	modules	that	do	

not	 depend	 on	 the	 failed	 job.	 Moreover,	 it	 should	 be	 able	 to	 cope	 with	 errors	 that	

occurred	during	the	execution	in	order	to	produce	the	most	complete	result.	We	applied	

the	following	strategies	in	the	implementation	to	make	our	workflow	robust.		

																																																								
70	http://tools.ietf.org/html/rfc1321		
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Dynamic	job	submission	

Two	 frequent	 reasons	 of	 workflow	 failure	 are	 the	 overload	 of	 the	 scheduler	 and	 job	

abortions	due	to	 lack	of	 resources.	 If	 the	scheduler	 is	already	having	a	significant	 load	

and	lots	of	jobs	are	submitted	simultaneously,	then	the	scheduler	can	reject	all	or	some	

job	 submissions.	 In	 general,	 these	 situations	 are	 resolved	 after	 a	 short	 time.	 Thus,	 to	

cope	with	this	type	of	failure,	the	masterscript	retries	a	failed	job	submission	twice	after	

waiting	 a	 few	minutes.	When	 the	 job	 is	 aborted	due	 to	more	 required	 computational	

resources	 (memory	 or	 runtime)	 than	 requested	 at	 submission	 time,	 the	 masterscript	

detects	 these	 jobs	 and	 resubmits	 them.	 This	 tracking	 of	 aborted	 jobs	 is	managed	 via	

status	messages	written	by	the	jobscripts	after	their	completion.	After	a	job	submission,	

the	masterscript	(or	the	child	process	 in	case	of	several	 jobs	started	 in	parallel)	checks	

the	 status	 of	 the	 job	 by	 querying	 the	 batch	 system’s	 queue	 (cf.	 Supplement	 S1,	

wait_for_job	function).	These	queries	are	only	performed	in	every	two	minutes	to	avoid	

overloading	 the	 scheduler.	 As	 soon	 as	 the	 job	 disappears	 from	 the	 queue,	 the	

masterscript	 (or	 child	 process)	 checks	 the	 generated	 status	 messages.	 If	 the	 status	

messages	are	missing	it	means	that	the	job	did	not	finish	regularly	and	was	aborted	by	

the	scheduler.	 In	 this	 case,	 the	masterscript	 (or	child	process)	automatically	 resubmits	

the	 aborted	 job	with	 increased	memory	 and	 runtime	 requests.	 Similarly,	 jobs	with	 an	

error	status	message	are	also	resubmitted.	If	the	job	fails	again	after	resubmission,	the	

masterscript	throws	an	error	message	and	at	this	point	manual	intervention	is	required	

(cf.	Figure	3.6).	

	

Clean	exit	

The	masterscript	 keeps	 track	 of	 all	 submitted	 jobs	 and	 running	 child	 processes.	 If	 the	

workflow	is	terminated	at	some	point	during	the	analysis	(e.g.	by	a	kill	command),	the	

masterscript	automatically	kills	all	child	processes	and	deletes	all	submitted	jobs.	It	also	

writes	the	appropriate	status	messages	(Supporting	Information	S369)	in	the	logfile.	It	is	

extremely	important	to	ensure	such	a	clean	exit.	Otherwise,	jobs	run	unsupervised	and	

can	potentially	overwrite	 results	when	 the	workflow	 is	 restarted	 for	 the	 same	 sample	

again.	Moreover,	status	messages	(written	in	the	logfile	and	status	table)	reporting	the	

interruption	are	useful	for	debugging	purposes.	
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3.4.4 Maintainability	

Modularity	

The	masterscript	 is	 constructed	 from	 different	modules	 for	 different	 kinds	 of	 analysis	

(alignment,	 SNP/Indel	 calling,	 CNV	 calling,	 SV	 calling,	 enrichment	 performance,	

functional	annotation).	All	modules	can	be	run	separately	or	in	any	combination,	which	

gives	 flexibility	 to	the	workflow.	Thus,	 the	workflow	can	be	used	for	different	types	of	

data	analysis	 like	data	generated	from	genome,	exome	or	other	targeted	experiments.	

For	example,	 in	case	of	a	whole	genome	sequencing	data	set,	execution	of	alignment,	

SNP/Indel	 calling,	 SV	 calling,	 and	 functional	 annotation	 modules	 is	 required;	 CNV	

detection	 and	 the	 enrichment	 performance	 have	 to	 be	 skipped	 as	 these	modules	 are	

suited	for	target	enriched	data	only.		

 

Logfile	and	status	table	

The	masterscript	writes	all	job	submission	calls	and	jobids	for	every	analysed	sample	in	a	

logfile.	These	stored	jobids	can	be	used	to	identify	stdout/stderr	output	of	the	jobs	that	

contains	 detailed	 error	 messages	 of	 executed	 tasks.	 Thus,	 this	 logfile	 facilitates	 the	

debugging	 of	 failed	 runs.	 The	 masterscript	 also	 writes	 the	 status	 (Running,	 Error,	

Finished)	 of	 every	 module	 to	 an	 sqlite	 table	 that	 is	 accessible	 via	 a	 webinterface	

(Supporting	 Information	S469).	This	table	provides	an	easy	monitoring	of	the	workflow,	

thus,	the	administrators	can	see	at	a	glance,	which	samples	generated	errors	and	react	

accordingly.	

	

Configuration	file	

The	workflow	is	configured	for	each	sample	with	the	help	of	an	XML	configuration	file.	

This	file	contains	sample	specific	information	fetched	from	the	LIMS,	as	well	as	all	input	

and	output	 paths	 for	 processing.	 Thus,	 the	 directory	 structure	 on	 the	 cluster	 for	 data	

input	or	output	 can	easily	be	 changed	without	 changing	 the	masterscript.	 In	 this	 case	

only	the	script	that	writes	the	XML	files	has	to	be	updated.	
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3.5 Chapter	summary	
In	this	chapter,			

• We	 provided	 an	 overview	 of	 our	 exome	 analysis	 workflow,	 which	 contains	

information	of	all	required	analysis	steps.	

• We	described	our	HPC	 system	and	gave	an	overview	of	 the	 implementation	of	

our	workflow	and	its	components.	

• We	highlighted	the	significance	of	the	essential	components	of	workflow,	like	the	

masterscript,	jobscripts,	job	submission	and	job	monitoring	function.	

• We	described	 the	 four	main	 design	 principle	 of	 our	workflow:	 speed,	 stability,	

robustness	 and	 maintainability,	 which	 makes	 the	 workflow	 more	 stable	 and	

robust	as	well	as	more	efficient	in	terms	of	both	speed	and	high-throughput.		

• We	 used	 parallelization	 by	 jobarrays	 (including	 parallelization	 by	 chunks)	 and	

parallelization	by	threads	to	speed	up	our	workflow.	

• We	 performed	 resource	 optimization	 to	 exploit	 the	 power	 of	 the	 computing	

cluster.	

• We	provided	certain	measures	that	contribute	to	the	stability	of	the	cluster	and	

our	workflow,	like	controlled	accesses	to	the	parallel	filesystem,	no	computation	

on	the	frontend	node,	no	access	to	remote	servers,	etc.		

• We	mentioned	some	strategies	that	contribute	to	the	workflow’s	robustness	like	

dynamic	job	submission	and	clean	exit.	

• We	presented	our	strategies	to	maintain	the	workflow	in	an	efficient	manner	via	

modularity	and	the	logfile.		



	



	

Chapter	4 	 	
Detection	of	systematic	sequencing	
errors		
	

Continuous	development	of	bioinformatics	 tools	and	automated	pipelines	has	enabled	

the	bioinformatics	community	to	handle	sequencing	data	in	a	fast	and	efficient	manner.	

There	 are	 different	 alignment	 algorithms	 varying	 from	 sensitive	 to	 strict	 mapping	 of	

reads	 to	 the	 reference	 accompanied	with	post	 alignment	 improvements	 and	different	

variant	callers	with	reasonable	accuracy.	However,	getting	a	variant	list	containing	only	

true	variants	is	still	a	challenge	and	false	positive	calls	(FPs)	remain	a	problem.	Some	of	

the	 FPs	 are	 due	 to	 the	 limitations	 of	 current	 tools.	Moreover,	 errors	 occurred	 during	

sequencing	(systematic	or	random	errors)	also	produce	a	significant	amount	of	FPs.		

	

Some	of	the	FPs	generated	by	sequencing	errors	can	be	easily	detected	and	filtered	out.	

For	example,	errors	at	the	ends	of	the	reads	can	be	avoided	by	trimming	of	these	bases	

or	by	discarding	bad	quality	 reads	 (i.e.	 reads	containing	many	 low	confident	basecalls)	

(cf.	Chapter	2).	Modern	alignment	algorithms	are	also	aware	of	 this	 type	of	error	and	

can	avoid	misalignments	due	to	bad	quality	bases	(by	their	clipping	or	trimming).	GATK’s	

base	quality	score	recalibration	(BQSR)	tries	to	correct	some	errors	that	occur	during	the	

calculation	 of	 base	 quality	 scores	 based	 on	 statistics	 computed	 over	 sequencing	 lane,	

machine	cycle	and	di-nucleotide	context.	Moreover,	Indel	realignment	by	GATK	can	also	

avoid	 the	calling	of	 false	 substitutions	near	 Indels	 (introduced	by	wrong	alignments	of	

Indels	 on	 the	 reference	 sequence)	 (cf.	 Chapter	 2).	 Besides	 the	 handling	 of	 some	

systematic	errors,	 there	are	many	alogrithms	 that	perform	correction	of	 random	base	

calling	errors.	These	algorithms	can	correct	 the	wrongly	called	base	on	some	reads	by	

utilizing	the	other	reads	that	have	the	correct	base.	This	correction	is	performed	either	

by	using	shared	k-mers	among	the	reads	or	by	performing	mutiple	sequence	alignment	

of	the	reads	mapped	to	a	certain	position.	Yang	and	colleagues	have	reviewed	these	two	

approaches	and	provided	a	comparision	of	tools	belonging	to	each	category	(Yang	et	al.,	

2013).		
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However,	there	 is	still	much	to	explore	 in	this	class	of	error	as	many	systematic	errors	

are	hard	to	detect	or	not	yet	detected.	There	are	not	many	studies	on	error	detection	or	

correction	 methods	 for	 sequence	 specific	 and	 other	 types	 of	 systematic	 errors.	

Nakamura	and	colleagues	reported	first	that	dephasing	can	be	induced	by	the	presence	

of	some	specific	sequence	patterns	(Nakamura	et	al.,	2011).	They	reported	that	inverted	

repeats	and	GGC	sequences	are	the	two	major	sequence	patterns	that	trigger	sequence-

specific	errors	(SSEs).	After	that,	a	few	more	studies	have	been	conducted,	in	which	the	

authors	 tried	 to	 discover	 some	 more	 SSEs	 or	 developed	 systematic	 error	 detection	

methods	 (Allhoff	et	al.,	2013;	Meacham	et	al.,	2011;	Ross	et	al.,	2013;	Zook,	Samarov,	

McDaniel,	Sen,	&	Salit,	2012).			

	

This	chapter	aims	to	explore	the	different	types	of	systematic	errors.	First,	I	will	provide	

an	 overview	 of	 the	 published	 systematic	 error	 detection	 methods.	 Thereafter,	 I	 will	

present	the	drawbacks	or	limitations	of	these	methods,	which	is	the	motivation	behind	

this	 work:	 a	 newly	 developed	 approach	 to	 detect	 systematic	 errors	 in	 Illumina	

sequencing	 data.	 I	 will	 also	 present	 the	 comparisons	 of	 different	 data-sets	 generated	

with	different	target	enrichment	techniques,	which	is	used	for	further	classification	and	

exploration	of	the	detected	systematic	errors.	Finally,	I	will	present	a	new	class	of	errors	

“RSE”	 and	 its	 characteristics.	Moreover,	 I	 will	 provide	 details	 of	 the	 newly	 developed	

tool	“FilterRSEs”	that	filters	out	RSEs	from	any	variant	list.		

	

4.1 Systematic	errors		

4.1.1 Previous	work	
After	the	detection	of	certain	biases	and	position	specific	errors	by	Dohm	and	colleagues	

in	 Illumina	data	 (Dohm	et	al.,	 2008),	Nakamura	and	colleagues	 found	another	 class	of	

errors	 (Nakamura	et	al.,	2011).	They	observed	 that	some	mismatches	occur	 in	specific	

regions	 either	 near	 certain	 sequences	 or	 induced	 by	 some	 sequence	 patterns,	 and	

named	 these	 errors	 sequence-specific	 errors	 (SSEs).	Moreover,	 they	 found	 that	 these	

mismatches	are	present	mainly	on	one	strand	of	reads	(either	forward	or	reverse)	and	

accompanied	 by	 other	 mismatches	 downstream	 of	 the	 error.	 Based	 on	 their	
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observations,	they	formulated	the	following	two	criteria	that	have	to	be	met	by	an	error	

to	be	called	an	SSE:	a)	At	 least	30%	of	 reads	 in	 the	 same	direction	 should	carry	 these	

mismatchtes.	b)	Four	other	errors	should	be	present	within	40	bases	downstream,	but	

not	within	40	bases	upstream.	After	 the	analysis	of	selected	SSEs,	 they	 found	that	 the	

majority	 of	 SSEs	 are	 either	 present	 near	GGC	base	 triplets	 (or	GCC	 for	 reverse	 strand	

SSEs)	or	inverted	repeats.	They	also	found	that	most	of	these	mismatches	are	similar	to	

the	 first	 or	 second	 preceding	 reference	 base	 and	 suggested	 that	 SSE	 associated	

mismatches	 originate	 due	 to	 dephasing.	 Moreover,	 they	 postulated	 that	 inverted	

repeats	trigger	folding	of	DNA	single	strand	templates	and	so	inhibit	the	base	elongation	

process	during	sequencing	in	both	directions	(5’	or	3’)	which	causes	an	SSE.	On	the	other	

hand,	 the	 GGC	motif	 affects	 the	 preference	 of	 the	 DNA	 polymerase	 (like	 disabling	 of	

blocking	effect	which	leads	to	dephasing)	during	the	base	elongation	process	and	this	is	

the	most	likely	cause	of	the	GGC-associated	SSEs.			

	

In	 another	 study,	 Meacham	 and	 colleagues	 (Meacham	 et	 al.,	 2011)	 also	 focused	 on	

systematic	errors	(in	general)	by	using	overlapping	paired	end	reads	from	a	methyl-Seq	

experiment.	 They	 selected	 this	 data	 because	 this	 experiment	 produces	 high	 average	

coverage	 and	 overlapping	 paired	 end	 reads	 provides	 two	 base	 calls	 for	 each	 location	

(irrelevant	 to	 strand	 directionality).	 Both	 characteristics	 of	 data	 helped	 them	 to	 avoid	

random	 errors	 and	 to	 distinguish	 between	 basecalling	 errors	 and	 true	 heterozygosity	

calls	 (Meacham	 et	 al.,	 2011).	 They	 defined	 systematic	 error	 as	 a	 “statistically	 unlikely	

accumulation	of	errors	at	specific	genome	(or	transcriptome)	locations”.	They	observed	

that	 systematic	 errors	 are	 present	 in	 approximately	 1	 in	 1000	 base	 pairs	 and	 are	

reproducible	 across	 different	 experiments.	 They	 confirmed	 the	 pattern	 observed	 by	

(Nakamura	 et	 al.,	 2011),	 that	 systematic	 base	 calling	 errors	 are	 present	 only	 in	 one	

sequencing	 direction	 (either	 forward	 or	 reverse).	 They	 observed	 that	 the	 bases	

preceding	the	error	contain	 information	about	 the	presence	of	 the	error	and	the	base	

quality	scores	of	error	 locations	are	 lower	than	those	at	their	neighbouring	sites.	They	

also	 found	that	most	of	 the	errors	occurred	at	GGT	motifs	where	base	T	 is	having	 the	
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substitution	 error.	 Moreover,	 they	 provided	 a	 classifier	 called	 “SysCall71”	 that	 uses	

logistic	regression	based	classification	to	distinguish	heterozygous	sites	from	systematic	

errors.	Here,	the	training	of	the	logistic	regression	model	is	based	on	the	characteristics	

of	systematic	errors	observed	during	their	study.	

	

In	the	first	study	of	SSE,	Nakamura	and	colleagues	provided	some	insights	into	this	type	

of	error,	but	did	not	provide	any	framework	for	detecting	SSEs	(Nakamura	et	al.,	2011).	

Moreover,	the	method	used	by	Meacham	and	colleagues	is	not	distinguishing	between	

SSEs	 and	 other	 types	 of	 systematic	 error	 (Meacham	 et	 al.,	 2011).	 Thus,	 Allhoff	 and	

colleagues	developed	a	statistical	method	to	detect	only	SSEs	and	referred	to	SSE	as	CSE	

(Context-Specific	Error)	(and	error-inducing	sequence	motifs	as	contexts)	(Allhoff	et	al.,	

2013).	As	it	is	already	mentioned	in	the	previous	studies	that	the	SSEs	are	present	only	

on	 one	 strand	 (known	 as	 strand	 bias	 positions),	 they	 used	 this	 fact	 to	 distinguish	

between	true	SNPs	and	CSE.	They	screened	the	genomic	positions	with	strand	bias	and	

associated	base	calling	errors	with	sequence	contexts	at	these	positions.	By	using	these	

positions,	 they	 developed	 a	 statistical	 method	 (“discovering-cse”72)	 that	 can	 identify	

context-specific	 sequencing	 errors	 (CSEs)	 including	 the	 associated	 sequence	 context.	

Moreover,	they	provided	a	list	of	error-prone	genomic	positions	in	BED	format73,	which	

can	be	used	to	filter	false	positives	due	to	CSEs.	

	

4.1.2 Motivation	

The	idea	of	this	work	originated	when	we	saw	lots	of	variants	shared	across	a	significant	

number	of	different	human	DNA	sequencing	data	sets	 (around	500	exome	sequencing	

samples).	These	are	not	common	variants	present	in	the	population,	which	implies	that	

these	shared	variants	are	false	positives	caused	by	some	sort	of	systematic	errors.	We	

refer	 to	 these	errors	as	“Recurrent	Systematic	Errors	 (RSEs)”.	These	RSEs	are	called	as	

variants	 by	 samtools	 and	 GATK’s	 unified	 genotyper	 and	 some	 of	 them	 also	 fulfil	 the	
																																																								
71	http://bio.math.berkeley.edu/SysCall/	(This	and	subsequent	URLs	in	this	chapter	are	accessed	on	16	July	

2015)	
72	https://bitbucket.org/tobiasmarschall/discovering-cse		
73	https://genome.ucsc.edu/FAQ/FAQformat.html#format1		
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standard	 SNPs/Indels	 good	 quality	 call	 thresholds	 suggested	 by	 GATK’s	 best	 practice	

guidelines	 (cf.	 Chapter	 2).	 For	 example,	 the	 SNP	 (which	 is	 systematic	 error)	 shown	 in	

Figure	 4.1	 (highlighted	 with	 vertical	 bar	 in	 black	 colour)	 was	 detected	 in	 the	 control	

sample	 (NA12878)	 by	 two	 different	 pipelines	 (BWA-aln+GATK	 Unified	 genotyper	 and	

BWA-MEM+GATK	Haplotype	caller)	 (cf.	Chapter	2).	Moreover,	 it	 is	 supported	by	 reads	

aligned	 in	 both	 forward	 and	 reverse	 direction	 with	 good	 mapping	 quality	 and	 not	

filtered	out	by	all	standard	filtering	criterias	for	FPs.	Therefore,	the	detection	of	this	type	

of	error	is	very	essential	to	reduce	the	number	of	false	positives.			

	

As	mentioned	above,	previous	works	explained	some	systematic	errors	on	sample	level	

(errors	 in	 an	 individual	 sample)	 and	 associated	 causes,	 but	 not	 RSEs.	 They	 also	

mentioned	that	there	are	many	more	systematic	errors	than	explained	in	their	studies.	

Moreover,	 these	 studies	mainly	 focused	on	 the	base	 calling	errors	 (i.e.	 a	mismatch	or	

SNP),	but	do	not	provide	any	information	about	the	effect	of	systematic	errors	on	Indels.	

Besides	the	errors	originating	from	the	sequencing	process,	certain	genomic	regions,	like	

LCR	 regions,	 can	 also	 cause	 systematic	 errors.	 It	 is	 known	 that	 both	 sequencing	 and	

mapping	 of	 LCR	 regions	 are	 difficult	 or	 not	 accurate,	 which	 can	 lead	 to	 lots	 of	

mismatches	 (Treangen	&	Salzberg,	 2012).	 These	 facts	motivated	us	 to	explore	RSEs	 in	

human	 sequencing	 data	 to	 find	 both	 platform-specific	 as	 well	 as	 genome-specific	

systematic	errors.		

	

Besides	 the	 exploration	 of	 these	 errors,	 we	 also	 felt	 the	 need	 to	 develop	 a	 new	

systematic	error	detection	approach	due	to	some	drawbacks	of	the	previous	methods.	

Nakamura	 and	 colleagues	 presented	 an	 approach	 to	 detect	 sequence	 specific	 errors	

(SSEs),	but,	their	SSE	position	detection	criteria	are	very	specific	(Nakamura	et	al.,	2011).	

It	 captures	 certain	SSEs	only	due	 to	 the	 following	 limitations	of	 their	 selection	 criteria	

(cf.	 Section	 4.1.1).	 a.)	 The	 first	 selection	 criteria	 can	 only	 capture	 SSEs	 above	 30x	

coverage	(for	one	strand),	but	a	mismatch	caused	by	SSE	below	this	threshold	can	easily	

be	called	as	a	SNP	(depending	on	datasets,	sometimes	10x	coverage	is	enough	to	call	a	

confident	SNP).	b.)	The	second	criteria	only	yields	a	 region	of	consecutive	mismatches	

which	can	be	due	to	bad	quality	bases.	These	mismachtes	can	be	filtered	out	by	quality	
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trimming	 in	good	quality	data	 (with	good	read	coverage	and	basecalling	quality)	or	by	

variant	callers	 (with	or	without	FPs	 filtering	strategies)	 (cf.	Chapter	2).	Moreover,	 they	

did	not	provide	any	algorithm/tool	for	the	detection	of	SSEs.		

	

	

Figure	4.1	Alignment	visualization	of	 two	systematic	errors	 in	a	control	sample	 (NA12878).	This	 figure	 is	

generated	by	IGV74	(Robinson	et	al.,	2011)	in	which	horizontal	bars	are	representing	aligned	reads	at	chr1	

(location:	201178924	and	201178926)	on	both	 forward	 (red	colour)	and	 reverse	 (blue	colour)	 reference	

strand.	Nucleotide	 bases	G	 and	A	 shown	 in	 the	 figure	 depict	mismatching	bases	 (or	 systematic	 errors),	

which	are	supported	by	both	forward	and	reverse	strand	reads.			

	

Although	 the	 other	 two	 studies	 (Allhoff	 et	 al.,	 2013;	Meacham	 et	 al.,	 2011)	 provided	

tools	for	systematic	error	detetion,	they	also	focused	only	on	one	certain	type	of	errors.	

Both	methods	consider	errors	that	are	present	only	on	one	strand	but	systematic	errors	

can	 be	 present	 on	 both	 strands	 (cf.	 Figure	 4.1).	 Thus,	 slection	 based	 on	 a	 strand	 bias	

criterion	can	miss	many	errors	and	most	of	these	strand	bias	errors	can	be	easily	filtered	

by	 current	 variant	 calling	 tools	 (Samtools,	 Platypus,	 GATK)	 (cf.	 Chapter2).	 Moreover,	

SysCall	uses	a	specific	training	dataset	containing	certain	error	charatetristics,	and	is	not	

having	 good	 accuracy	 for	 other	 types	of	 errors	 e.g.	 run-specific	 errors.	 The	other	 tool	

																																																								
74	https://www.broadinstitute.org/igv/		
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“discovering-cse”	 also	 deals	 with	 only	 one	 class	 of	 errors	 i.e.	 CSE/SSE	 on	 strand	 bias	

locations.	The	top	ten	reported	sequence	motifs	 from	this	study	are	containing	“GGC”	

motif,	 which	 is	 already	 reported	 cause	 for	 few	 SSEs.	 However,	 there	 are	many	 other	

detected	SSEs	by	both	of	the	studies	(Allhoff	et	al.,	2013;	Nakamura	et	al.,	2011),	which	

are	not	yet	explained	and	many	other	undetected	SSEs	which	need	to	be	detected.		

	

4.1.3 Method	

As	mentioned	above,	 I	want	to	explore	RSEs	which	 I	define	them	as	mismatches	(both	

SNP	 and	 Indels)	 present	 at	 the	 same	 genomic	 location	 throughout	 many	 data	 sets	

(sequenced	 from	 the	 same	 sequencing	 technology).	 This	 definition	 is	 based	 on	 the	

assumption	that	if	there	is	a	mismatch	to	the	reference	genome	sequence	at	the	same	

location	 in	 multiple	 datasets	 then	 either	 this	 is	 a	 common	 variant	 present	 in	 the	

population	 or	 it	 is	 occurring	 due	 to	 the	 same	 systematic	 error	 during	 the	 DNA	

sequencing	of	these	datasets.	I	assume	that	the	RSEs	can	be	explained	by	the	presence	

of	some	motifs	upstream	or	downstream	of	the	mismatch	position.	This	assumption	 is	

based	on	the	following	facts	derived	from	previous	studies	(cf.	Sections	4.1.1,	4.1.2):	

• Sequence	motifs	 in	 the	DNA	 template	 influence	 the	 sequencing	process,	which	

leads	to	base	calling	errors.	

• Sequence	 motifs	 in	 the	 reference	 genome	 cause	 faulty	 read	 mapping,	 which	

leads	to	mismatches	in	the	alignment.	

	

Therefore,	 I	 decided	 to	 screen	 all	 sequence	motifs	 of	 a	 certain	 length	 throughout	 the	

human	 exome	 sequencing	 data	 (sequenced	 on	 Illumina	 Hi-Seq	 sequencer),	 which	 is	

aligned	 to	 the	 human	 reference	 genome	 sequence	 (GRCh37)	 (cf.	 Chapter	 2).	 The	

screening	 of	 sequence	 motifs	 throughout	 the	 complete	 target	 region	 of	 the	 exome	

enables	the	comparative	analysis	of	 thier	occurrence	near	RSEs	as	well	as	 in	the	other	

part	 of	 the	 genome.	 This	 way	 we	 can	 distingush	 between	 a	 true	 association	 and	 a	

random	co-ocurrence	of	sequence	motifs	near	RSEs.	

	

I	 refer	 to	 these	 sequence	motifs	as	 “kmers”	and	categorize	 them	 in	 the	 following	 two	

classes:		
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• Observed	kmer:	A	string	of	consecutive	bases	of	length	k	in	the	read	sequence	of	

a	sample.	

• Expected	kmer:	A	 string	of	 consecutive	bases	of	 length	k	 constructed	 from	 the	

reference	genome	sequence.	

	

Similarly,	their	counts	can	be	categorized	in	the	following	two	classes:	

• Observed	kmer	count:	number	of	occurrences	throughout	all	the	aligned	

sequencing	reads	on	the	reference	genome	sequence.	

• Expected	 kmer	 count:	 number	 of	 times	 this	 reference	 kmer	 is	 sequenced.	 The	

expected	 kmer	 count	 is	 computed	 from	 the	 reference	 sequence	 based	 on	 the	

coverage	of	each	reference	base	(i.e.	number	of	aligned	reads	at	that	reference	

base	position)	(cf.	Section	“Expected	kmer	count	computation”).	

	

The	idea	behind	these	classes	is	that	I	should	see	equal	observed	and	expected	counts	

for	 all	 kmers	 from	 the	 sequenced	 regions	 which	 mapped	 perfectly	 to	 the	 reference	

sequence	 (without	 any	 mismatches).	 In	 other	 words,	 the	 ratio	 of	 obeserved	 against	

expected	count	(I	call	it	OEratio)	should	be	equal	to	1	in	the	perfectly	mapped	regions.	

Kmers	 with	 an	 OEratio	 <	 1	 have	 an	 observed	 kmer	 count	 which	 is	 less	 than	 their	

expected	 kmer	 count,	 which	 means	 that	 they	 are	 frequently	 deviating	 from	 the	

reference	sequence	 in	 the	sequenced	sample.	The	reason	for	 this	can	either	be	a	 true	

variant	or	a	sequencing	error	within	 the	kmer.	On	the	contrary,	an	OEratio	>	1	means	

that	 the	observed	count	 is	higher	 than	 the	expected	count,	which	can	be	caused	by	a	

mixture	of	effects	that	cannot	be	differentiated	easily.	For	example,	both	systematic	and	

random	sequencing	errors	in	multiple	expected	kmers	can	produce	the	same	observed	

kmer	 in	the	reads	 increasing	the	observed	count	and	so	the	OEratio.	Therefore,	kmers	

with	 low	OEratios	 are	 better	 suited	 as	markers	 for	 systematic	 sequencing	 errors	 than	

those	with	high	OEratios.		

	

In	 the	 following	 sections,	 I	will	 describe	how	expected	 and	observed	 kmer	 counts	 are	

computed	and	 the	 application	of	 the	OEratio	 to	detect	 systematic	 errors.	 The	work	 is	

divided	 into	4	main	 sections	 (cf.	 Figure	4.2).	At	 first	 I	 aligned	 the	 read	 sequences	of	a	
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sample	to	the	reference	genome	sequence.	The	aligned	data	from	each	sample	is	then	

used	to	construct	the	kmers	and	to	compute	both	expected	and	observed	kmer	counts.	

After	that,	I	use	these	counts	to	compute	the	OEratio.	At	last,	I	use	the	generated	list	of	

kmers	 and	 their	 OEratios	 to	 detect	 systematic	 errors.	 I	 narrow	 down	 the	 detected	

systematic	 erros	 by	 a	 series	 of	 filters	 including	 RSEs	 and	 validate	 them.	 Each	 step	 is	

described	below	in	detail.	

	

Read	alignment	&	post	processing	

As	 the	 kmer	 construction	 is	 based	 on	 the	 alignment	 of	 the	 reads	 to	 the	 reference	

sequence,	 I	 first	need	 to	perform	 read	mapping.	 For	 this	purpose	 I	 use	our	 alignment	

pipeline	 (cf.	 Chapter	 3),	 which	 uses	 backtrack	 and	 MEM	 algorithm	 of	 BWA	 for	 the	

alignment	and	performs	post	processing	of	aligned	reads	for	further	improvements	(cf.	

Chapter	2).	I	extracted	only	aligned	reads	on	the	target	regions	(as	defined	by	the	exome	

enrichment	 kits)	 including	100	bp	 flanking	 regions	both	upstream	and	downstream	of	

the	targets.	This	avoids	a	 lot	of	 random	false	positives	due	to	 little	coverage	or	wrong	

read	 mapping	 in	 the	 off-target	 regions.	 I	 also	 removed	 duplicate	 reads	 as	 they	 can	

provide	false	evidence	about	a	variant	(cf.	Chapter	2).	Moreover,	I	removed	unmapped	

reads	 to	 avoid	 an	 unnecessary	 overhead	 (in	 terms	of	 file	 size	 and	 computation	 time).	

After	all	of	the	above-mentioned	steps,	I	got	aligned	reads	in	a	BAM	format,	which	is	a	

compressed	format	of	SAM	(Sequence	Alignment	Format)	(cf.	Chapter	2).	I	further	split	

these	 BAM	 files	 into	 48	 BAM	 files,	 two	 for	 each	 chromosome	 (excluding	 the	

mitochondrion)	generating	separate	BAM	files	for	reads	mapped	on	the	forward	and	the	

reverse	reference	strand,	respectively.	The	kmer	construction	process	is	computationally	

very	expensive	and	was	performed	on	the	created	chunks	of	BAM	files,	which	sped-up	

the	entire	process	(kmer	generation	and	their	counts)	more	than	4	fold.				
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Figure	4.2	The	four	main	components	of	the	systematic	error	detection	workflow.	

	

Observed	kmer	construction	

In	order	to	parse	the	aligned	read	sequences,	I	converted	BAM	format	into	SAM	format	

and	also	removed	the	reads	containing	‘N’.	As	these	‘N’	bases	are	randomly	mapped	by	

the	 aligner	 on	 any	 of	 the	 four	 references	 bases	 (A,	 T,	 G,	 C),	 the	 kmers	 containing	 ‘N’	

would	not	be	very	 informative.	 To	 construct	 all	 kmers	 that	 are	present	 in	 the	 reads,	 I	

screen	all	reads	from	their	starting	till	end	position.	 I	perform	a	separate	screening	for	

reads	mapped	on	forward	and	reverse	strands.	The	observed	(OBS)	kmer	is	the	string	of	

consecutive	bases	from	ith	till	jth	[j=	i	+	(k	-1)]	position	in	the	read.		

	

The	construction	of	the	first	kmer	starts	from	the	first	base	(i=1)	and	ends	with	the	base	

at	 9th	 position	 (j=9),	 if	 the	 kmer	 length	 (k)	 is	 equal	 to	 9.	 Similarly,	 the	 second	 kmer	

generation	starts	from	the	second	base	of	the	read	(i=2)	and	ends	at	10th	base	(j=10).	

This	process	continues	till	the	end	of	the	read,	generating	all	kmers	that	are	contained	in	

the	read	(cf.	Figure	4.3).		

Read'alignment'&'post'processing'
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ConstrucNon&of&kmer&by&walking&
through&each&read&

CounNng&of&overall&occurrence&of&
kmer&to&compute&its&count&

OEra*o'computa*on'&'kmer'list'
genera*on'

Kmer'construc*on''

Systema*c'error'detec*on'

RestricNon&of&kmer&list&only&for&
20x&coverage&and&RSE&locaNons&&

Comparison&of&filtered&list&with&
other&datasets&&

ExploraNon&and&categorizaNon&of&&
SystemaNc&error&

ValidaNon&of&kmer&list&by&using&
control&sample&NA12878&

``'

Expected'kmer'construc*on'

ComputaNon&of&reference&base&
coverage&

ConstrucNon&of&&kmer&by&walking&
through&each&reference&base&

CorrecNons&for&read&starNng&or&ending&
effect&to&compute&count&of&&kmer&&



	 	

	 	 Systematic	errors	

	 111	

	

Figure	4.3	Observed	kmer	construction	from	a	sequence	read.		

	

I	 perform	 this	 kmer	 generation	 on	 all	 reads	 in	 a	 sample	 and	 count	 the	 occurrence	 of	

each	kmer	 throughout	all	 reads.	For	 reads	 from	the	 reverse	strand,	 I	have	 to	 take	 the	

reverse	complement	of	kmers.	This	 is	because	reverse	strand	reads	are	stored	 in	SAM	

format	as	the	reverse	complement	of	the	actually	sequenced	read.	At	last,	I	generate	a	

list	of	these	observed	kmers	and	their	respective	counts	in	the	underlying	sample.	All	of	

the	above-mentioned	process	 is	 implemented	in	a	Perl75	script	and	its	pseudocode	can	

be	found	in	Appendix.	

	

Expected	kmer	construction	

To	construct	the	expected	kmers,	I	first	computed	the	coverage	of	each	reference	base	

(i.e.	number	of	aligned	reads	at	that	reference	base	position)	within	the	target	regions	

including	100	bp	flanking	regions	both	upstream	and	downstream.	I	used	the	Samtools	

mpileup	function	with	the	–D	parameter,	which	generates	a	pileup	format76	of	aligned	

reads	containing	the	coverage	of	each	reference	base.	I	generated	the	pileup	of	all	bases	

including	bases	with	zero	base	quality	score	(Q)	(default	Q=13)	and	extracted	only	those	

bases	having	 coverage	greater	 than	10.	 Figure	4.4	 shows	 the	pileup	 format	of	 aligned	

reads.	It	is	a	tab-delimited	format	where	the	first	column	is	the	chromosome	name,	the	

second	column	is	the	location,	and	the	third	column	is	the	reference	base.	The	number	

of	 reads	 covering	 the	 reference	 base	 position	 (i.e.	 base	 coverage)	 is	 shown	 in	 the	 4th	

column	 followed	by	 read	bases	 (5th	 column)	and	base	qualities	 (6th	 column).	 The	 read	

base	column	contains	alignment	details,	where	dot	(.)	(cf.	Figure	4.4	(A)	or	comma	(,)	(cf.	

Figure	 4.4	 (B))	 represents	 a	match	 to	 the	 forward	 and	 reverse	 strand	 respectively.	 A	

																																																								
75	https://en.wikipedia.org/wiki/Perl		
76	http://samtools.sourceforge.net/pileup.shtml		

GAGCAGAATGATATAAAATGAGGCTTTGAATTTGAATATAATAATTCTGACTT

Second3Kmer

Last3KmerThird3Kmer
First3Kmer (L=9)
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mismatch	is	shown	as	one	of	the	bases	from	‘ACGTN’	or	‘acgtn’	on	forward	and	reverse	

strand,	 respectively.	 Insertions	 between	 the	 current	 reference	 position	 and	 the	 next	

reference	position	are	shown	by	`\+[0-9]+[ACGTNacgtn]+'	pattern.	Similarly,	the	pattern	

`-[0-9]+[ACGTNacgtn]+'	 shows	 a	 deletion	 of	 base	 pairs	 in	 the	 read	 compared	 to	 the	

reference	sequence.	For	example,	in	the	Figure	4.4	(A)	we	can	see	a	deletion	of	CT	bases	

after	 the	 current	 base	 denoted	 by	 -2CT	 and	 stars	 (*)	 in	 the	 next	 two	 positions	 show	

these	bases	are	deleted.	 The	 start	of	 the	 read	 is	denoted	by	 ‘^’,	 followed	by	an	ASCII	

character	which	encodes	the	mapping	quality	as	ASCII	value	-33	(e.g.	^g.	in	the	4th	line	in	

(cf.	Figure	4.4	(A)).	The	end	of	the	read	is	denoted	by	‘$’	(e.g.	‘.$’).	The	understanding	of	

the	 pileup	 format	 is	 necessary;	 as	 the	 information	 stored	 in	 the	 above	 mentioned	

symbols	is	used	in	the	expected	kmer	counts	calculation.		

	

	
	

	

	

Figure	4.4	Pileup	 format	of	aligned	reads.	Part	 (A)	and	part	 (B)	 show	the	pileup	of	aligned	reads	on	 the	

forward	strand	and	on	the	reverse	strand,	respectively.	

	

Expected	kmers	are	constructed	 in	a	 similar	manner	as	described	 for	observed	kmers.	

These	 kmers	 are	 also	 strings	 of	 consecutive	 bases	 from	 ith	 till	 jth	 positions	 in	 the	

reference	 genome	 sequence.	 Instead	 of	 walking	 through	 the	 read	 sequence	 (start	 to	

end),	here,	 the	program	walks	 from	 top	 to	bottom	of	 the	pileup	of	 aligned	 reads	and	

construct	the	kmer	from	the	consecutive	reference	bases	 (3rd	column).	For	example,	 if	

B.)	

	

A.)	
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the	starting	position	is	“1323137”	(first	line	of	the	Figure	4.4	(A)),	then	the	first	kmer	of	

length	7	 is	generated	by	using	reference	bases	till	position	“1323143”	and	the	kmer	 is	

“GTGCGCC”.	Similarly,	the	second	kmer	is	from	position	“1323138”	till	“1323144”	(kmer:	

“TGCGCCC”),	and	so	on.	

	

With	 my	 approach	 I	 want	 to	 capture	 systematic	 sequencing	 errors	 that	 occur	 in	 the	

context	of	certain	sequence	motifs	(cf.	Section	4.1.3).	I	assume	that	such	motifs	can	be	

present	either	upstream	or	downstream	of	the	error	position.	Therefore,	I	construct	the	

expected	kmers	according	to	two	different	models:		

• Prefix	 model	 (PM):	 Prefix	 model	 captures	 the	 motif	 sequences	 upstream	 of	 a	

mismatch	 position.	 For	 example,	 if	 k=9	 (9mer=TATCTCGCG),	 then	 the	 first	 8	

bases	 (in	green	colour)	are	the	motif	sequence	and	the	 last	 reference	base	 (9th	

base)	(in	red	colour)	is	the	base	of	interest,	which	carries	an	error	(mismatch	in	

read	sequence	compared	to	reference).		

• Suffix	model	(SM):	Suffix	model	captures	the	motif	sequences	downstream	of	a	

mismatch	 position.	 For	 example,	 if	 k=9	 (9mer=TATCTCGCG),	 then	 the	 first	

reference	base	(in	red	colour)	carries	the	mismatch	(or	error)	and	the	remaining	

8	bases	(in	green	colour)	are	the	motif	sequence.	

	

The	computation	of	the	expected	kmer	counts	is	different	and	much	more	complicated	

than	the	computation	for	the	observed	kmers.	The	count	(Count)	of	the	expected	(EXP)	

kmer	 (for	 both	 PM	 and	 SM)	 is	 the	 number	 of	 times	 this	 kmer	was	 sequenced	 in	 the	

underlying	sample,	which	 is	 the	number	of	 reads	covering	this	kmer	completely	 in	 the	

alignment.	It	can	be	computed	as,	the	average	of	coverage	values	(Cov)	of	each	base	(B)	

present	 in	 the	kmer	of	 length	 (k)	minus	over-counts	 (OC)	of	 reads	starting	and	ending	

within	the	kmer	(cf.	Figure	4.4).	Specifically,	the	over-counts	that	have	to	be	subtracted	

are:	

1. Over-counts	 due	 to	 reads	 either	 starting	 (^.	 or	 ^,)	 or	 ending	 (.$	 or	 ,$)	 at	 any	

middle	position	of	the	kmer	(e.g.	for	k=5,	at	positions	2	to	4	(k-1))	(OCmid).		

2. Over-counts	due	to	reads	ending	at	the	first	position	of	the	kmer	(at	position	1)	

(OCstart).	
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3. Over-counts	due	to	reads	starting	at	the	last	position	of	the	kmer	(at	position	k)	

(OCend).	

Thus,	the	exact	count	of	a	kmer	is	calculated	by	the	following	formula:	

𝐶𝑜𝑢𝑛𝑡 𝐸𝑋𝑃 𝑘𝑚𝑒𝑟 =  𝐶𝑜𝑣(𝐵)
!

!
− OCmid+ OCstart+ OCend /𝑘;	

where	 i	 and	 j	 are	 the	 start	 and	 end	 positions	 of	 the	 expected	 kmer	 in	 the	 reference	

sequence.	

	

While	OCstart	 and	OCend	are	 simply	 the	number	of	 reads	ending	 at	 the	 first	 position	

and	starting	at	the	last	position	of	the	kmer,	respectively,	the	computation	of	OCmid	is	

more	complicated.	If	a	read	starts	at	any	of	the	middle	positions,	then	it	contributes	to	

the	 coverage	 values	 of	 all	 following	 bases.	 Similarly,	when	 a	 read	 is	 ending	 at	middle	

position,	then	its	count	is	already	included	in	the	coverage	value	of	the	previous	bases.	

Thus,	 I	 need	not	 only	 to	 subtract	 the	 number	 of	 reads	 starting	 or	 ending	 at	 a	middle	

position,	but	also	their	contributions	to	the	coverage	values	of	the	following	or	previous	

bases,	respectively.	Therefore,	the	OCmid	correction	term	is	calculated	as:	

𝑂𝐶𝑚𝑖𝑑 =  𝑂𝐶𝑠 𝑙 ∗
!!!

!!!

𝑘 − 𝑙 + 1 +  𝑂𝐶𝑒 𝑙 ∗ 𝑙 ;	

where	OCs(l)	and	OCe(l)	are	the	number	of	reads	starting	and	ending	at	middle	base	l	of	

the	kmer.	During	the	kmer	construction,	I	also	capture	and	store	its	genomic	location	on	

the	reference	sequence,	which	I	am	using	later	in	systematic	error	detection	(cf.	Section	

“Systematic	error	detection”).	The	kmer	 location	 is	 the	 location	of	 the	 last	base	 in	 the	

kmer	string	(base	of	interest)	for	PM,	whereas,	it	is	the	position	of	the	first	base	(base	of	

interest)	 for	 SM.	 The	 expected	 kmer	 construction	 and	 their	 counts	 computation	 are	

implemented	in	Perl	scripts.	Their	pseudocode	can	be	found	in	Appendix.	

	

OEratio	computation	

After	 the	 generation	 of	 the	 kmers,	 I	 first	merged	 the	 kmers	 and	 their	 counts	 (Count)	

from	 both	 forward	 and	 reverse	 strand.	 If	 the	 kmer	 is	 present	 in	 both	 strands,	 then	 I	

added	both	counts	and	report	 this	kmer	with	this	 total	count	 in	 the	merged	kmer	 list.	

The	kmers	that	occur	only	on	one	strand	are	reported	as	they	are	(with	their	count)	in	
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the	merged	kmer	list.	I	applied	this	merging	for	both	observed	(OBS)	and	expected	(EXP)	

kmer	 lists.	 Thereafter,	 I	 computed	 the	 OEratio	 for	 each	 kmer	 based	 on	 the	 following	

formula:		

𝑂𝐸𝑟𝑎𝑡𝑖𝑜 = 𝐶𝑜𝑢𝑛𝑡(𝑂𝐵𝑆 𝑘𝑚𝑒𝑟)/𝐶𝑜𝑢𝑛𝑡(𝐸𝑋𝑃 𝑘𝑚𝑒𝑟)	

If	a	kmer	is	present	in	both	the	OBS	and	EXP	kmer	list,	then	simply	the	above	mentioned	

formula	 is	 used	 to	 calculate	OEratio.	Whereas,	 if	 a	 kmer	 is	 exclusively	 present	 in	only	

one	of	the	lists	,	then	I	simply	use	zero	as	the	count	of	the	absent	kmer	to	compute	the	

OEratio.	For	example,	if	a	kmer	is	not	in	the	OBS	kmer	list,	then	its	OEratio	will	be	zero.	

In	the	other	case	(absence	of	the	kmer	in	EXP	kmer	list),	the	OEratio	is	infinity.	

	

Systematic	error	detection		

I	 used	 the	 above	 mentioned	 kmer	 approach	 to	 explore	 systematic	 errors	 in	 human	

exome	 data.	 For	 this	 purpose,	 I	 selected	 a	 set	 of	 10	 samples	 from	 an	 epilepsy	 study	

randomly	from	our	in-house	data	set.	Additionally,	I	included	a	control	sample	NA12878	

for	 validation	 purpose	 (cf.	 Section	 “Validation	 of	 kmer	 list”).	 The	 paired-end	 exome	

sequencing	 of	 these	 samples	were	 performed	 on	 the	 CCG’s	 Illumina	HiSeq	 sequencer	

and	NimbleGen	SeqCap	EZ	Human	Exome	Library	 v2.0	 (V2_IN)	 kit	was	used	 for	 target	

enrichment.	 All	 of	 these	 samples	 were	 analysed	 by	 our	 exome	 analysis	 workflow	 (cf.	

Chapter	3)	where	read	mapping	is	performed	by	BWA-aln	algorithm	(with	n=7)	followed	

by	post	alignment	improvements	and	variant	calling	by	both	mpileup	and	GATK’s	unified	

genotyper	(UG)	(cf.	Chapter	2).	This	data	set	is	having	a	mixture	of	both	male	and	female	

samples	with	more	than	90%	of	the	target	region	covered	at	20X	or	higher.	

	

I	constructed	both	observed	and	expected	kmers	and	computed	the	OEratios	for	all	11	

samples	(as	described	above).	I	selected	the	kmer	length	as	9	(k=9)	for	systematic	error	

detection.	The	reasons	behind	this	selection	are:		

a) Previous	studies	only	focused	on	sequence	motifs	of	length	4	and	were	not	able	

to	detect/explain	all	systematic	errors	(cf.	Section	4.1.2).		

b) (Allhoff	 et	 al.,	 2013)	 already	 reported	 that	 longer	motifs	 are	more	 specific	 and	

able	to	detect	more	SSEs	than	the	shorter	motifs.	They	used	8	as	motif	length	for	

their	study.	
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c) After	comparing	kmers	of	lengths	4	to	10,	I	also	found	that	a	higher	motif	length	

is	more	specific	as	it	avoids	the	additive	effect	of	normal	kmers.	Here,	a	normal	

kmer	means	 a	 kmer	 having	 no	mismatch	 at	 the	 position	 of	 interest,	 thus,	 not	

representing	 any	 error.	 At	 low	 kmer	 length,	 the	 number	 of	 possible	 kmers	

formed	 by	 the	 4	 nucleotide	 bases	 is	 very	 small.	 For	 example,	 at	 k=4	 we	 get	

4! = 256	different	 kmers,	 on	 the	 other	 hand,	 at	 k=9	 the	 number	 of	 possible	

kmers	 is	4! = 262144.	 Thus,	 at	 the	 lower	 kmer	 lengths	 we	 can	 have	 a	 large	

number	of	normal	kmers	that	dominate	the	OEratio	computation,	which	makes	it	

difficult	to	detect	error-containing	kmers.	I	did	not	go	beyond	k=9,	as	it	increases	

the	 computational	 cost.	Moreover,	 the	 combinations	 of	 kmers	 generated	 from	

both	prefix	and	suffix	model	are	containing	17	bases	(having	base	of	 interest	 in	

the	middle),	 8	 bases	 upstream	 and	 downstream	 of	 the	 error	 position.	 Thus,	 I	

assume	 that	 9mers	 (or	 17mers	 in	 the	 combination)	 are	 enough	 to	 capture	 the	

systematic	errors.		

	

The	generated	kmer	 lists	contain	6	columns:	 the	expected	kmer	 (which	 is	 the	motif	of	

interest),	expected	and	observed	kmer	counts,	OEratio,	kmer	locations	on	the	reference	

genome	 and	 read	 strand	 information	 (whether	 the	 kmer	 is	 constructed	 from	 reads	

mapped	 to	 the	 forward	 or	 reverse	 strand	 or	 both	 strands).	 To	 exclude	 badly	 covered	

kmer	genome-wide,	due	to	coverage	bias	or	misalignments,	I	filtered	out	kmers	having	

less	 than	 20	 expected	 counts.	 After	 this	 initial	 preparation,	 I	 performed	 the	 following	

steps	to	explore	RSEs.	

	

Extraction	of	kmers	having	RSEs		

In	order	 to	 focus	only	on	RSEs,	 first	 I	extracted	only	 those	kmers	 that	are	having	RSEs	

variants	(either	SNP	or	Indel)	at	the	last	or	the	first	base	of	the	kmer	from	PM	and	SM,	

respectively.	I	considered	all	variants	called	in	a	sample	as	RSEs	if	they	are	also	present	

in	 more	 than	 300	 samples	 among	 511	 epilepsy	 samples	 of	 our	 in-house	 data	 set.	

However,	 I	 make	 sure	 that	 these	 labelled	 variants	 are	 not	 common	 variants	 shared	

among	different	 human	populations	 (are	only	 shared	 in	 our	 in-house	data	 set).	 As	 in-
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house	 data	 set	 (called	 InhouseDB77),	 we	 have	 variant	 calls	 of	 511	 epilepsy	 patient	

samples	 also	 generated	 by	 our	 exome	 analysis	 workflow.	We	 integrated	 variant	 calls	

(called	 DBall77)	 provided	 by	 the	 1000	 genomes	 project	 (phase	 378)	 and	 the	 ExAC79	

consortium.	Moreover,	we	 annotated	 these	 integrated	 calls	with	 rsids80	from	DBSNP81	

database.	The	1000	genome	consortium	(Abecasis	et	al.,	2012)	provided	lists	of	variants	

called	 by	 genome	 sequencing	 of	 2504	 individuals	 from	 26	 populations.	 The	 ExAC	

consortium	preformed	exome	sequencing	of	60,706	unrelated	individuals	and	provided	

an	 integrated	 list	 of	 called	 variants.	 Both	 variant	 lists	 contain	 population	 specific	

information,	like	total	number	of	alternate	alleles	in	called	genotypes	(AC),	total	number	

of	 alleles	 in	 called	 genotypes	 (AN)	 or	 allelic	 frequency	 (AF)	 in	 different	 populations.	 I	

computed	minor	allele	frequencies	(MAF82)	(i.e.	AC	divided	by	AN)	of	variants	present	in	

DBall.	If	a	variant	is	present	in	both	variant	lists,	then	I	computed	MAF	by	using	AC	and	

AN	values	from	ExAC	list,	as	it	is	containing	variants	from	more	than	60,000	individuals.	I	

considered	a	variant	as	a	common	variant	if	it	has	MAF	>	0.30	(30%).		

	

To	 extract	 kmers	 having	 RSEs	 only,	 first	 I	 took	 the	 overlap	 between	 variants	 in	

InhouseDB	and	DBall,	 and	 filtered	out	 the	 common	variants	 among	 these	overlapping	

variants.	Then,	I	selected	only	those	variants	(i.e.	RSE	locations)	that	are	shared	among	

at	 least	 300	 samples	 of	 InhouseDB.	 To	 narrow	down	 this	 list,	 I	 further	 extracted	 only	

those	 RSE	 locations	 that	 are	 shared	 by	 at	 least	 7	 samples	 among	 the	 10	 selected	

samples.	 I	compared	these	RSEs	 locations	with	the	kmer	 locations	and	kept	only	those	

kmers	 whose	 last	 or	 first	 base	 are	 at	 the	 location	 of	 an	 RSE	 (for	 PM	 and	 SM,	

respectively).	I	performed	this	filtering	on	all	selected	11	samples	and	this	way	prepared	

lists	of	kmers	associated	with	RSE	locations	for	each	sample.		

	

																																																								
77	Both	InhouseDB	and	DBall	construction	is	performed	by	Dr.	Holger	Thiele	
78	http://www.1000genomes.org		
79	http://exac.broadinstitute.org		
80	http://www.ncbi.nlm.nih.gov/SNP/get_html.cgi?whichHtml=how_to_submit#REFSNP		
81	http://www.ncbi.nlm.nih.gov/SNP/		
82	http://hapmap.ncbi.nlm.nih.gov/hapmart.html.en		
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Alignment	or	random	artefacts	filtering		

To	 filter	 some	alignment	 artefacts,	 I	 generated	 two	different	 lists	 of	 kmers	 associated	

with	RSE	 locations	 for	each	sample	by	using	aligned	reads	by	BWA-aln	and	BWA-MEM	

algorithms.	As	I	am	using	BWA-aln	with	increased	sensitivity	(n=7),	it	can	produce	many	

FPs.	 On	 the	 other	 hand,	 BWA-MEM	 has	 well	 balanced	 sensitivity	 and	 specificity	 (cf.	

Chapter	2).	Therefore,	I	am	taking	only	those	kmers	that	are	present	in	both	kmer	lists,	

those	 constructed	 from	 the	 BWA-aln	 alignment	 and	 those	 from	 the	 BWA-MEM	

alignment,	to	filter	out	possible	alignment	artefacts	produced	by	the	BWA-aln	algorithm.	

Thereafter,	I	merged	the	filtered	kmer	lists	from	all	11	samples	and	retained	only	those	

kmers	common	to	at	least	7	of	the	11	samples.	This	excludes	random	errors	occurring	in	

an	individual	sample	or	sample	specific	systematic	errors	and	focuses	the	resulting	kmer	

list	to	mainly	RSEs.			

	

Validation	of	kmer	list		

As	explained	in	Chapter	2,	sample	NA12878	can	be	used	as	a	control	sample	to	validate	

lists	 of	 variants.	 Thus,	 I	 compared	 the	 variant	 locations	 (which	 is	 RSE	 location)	 in	 the	

kmer	list	that	are	shared	by	the	NA12878	sample	with	NIST’s	variant	list	to	validate	that	

these	variants	are	only	FPs.	At	first,	I	compared	variant	calls	(called	by	UG)	of	this	sample	

with	 the	 NIST	 list	 as	 recommended	 to	 get	 lists	 of	 true	 variants	 (or	 highly	 confident	

variants)	(cf.	Chapter	2).	Then,	I	checked	how	many	variants	from	this	list	are	present	in	

the	 kmer	 list	 and	 marked	 them	 with	 a	 keyword.	 I	 also	 used	 validated	 calls83	for	 this	

sample	 provided	 by	 the	 Broad	 institute84,	 as	 an	 additional	 annotation.	 Moreover,	 I	

compared	variant	calls	in	the	list	with	variant	calls	for	the	same	sample	but	called	by	a	

different	 data-analysis	 pipeline,	 where	 I	 performed	 read	 mapping	 by	 BWA-MEM	

(followed	 by	 GATK’s	 post	 alignment	 improvement)	 and	 variant	 calling	 by	 GATK	

haplotype	caller.	I	also	marked	those	locations,	which	are	not	present	in	the	variant	list	

generated	by	the	new	pipeline	 (as	 these	can	be	artefacts	produced	by	variant	calling).	

Furthermore,	 I	 annotated	 the	RSE	 locations	with	 their	 presence	 in	DBall	 and	 reported	

																																																								
83	http://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/working/20130806_broad_na12878_truth_set		
84	http://gatkforums.broadinstitute.org/discussion/1292/which-datasets-should-i-use-for-reviewing-or-

benchmarking-purposes)	
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MAF	 for	 matched	 entries.	 All	 of	 the	 above	 mentioned	 comparisons	 are	 enough	 to	

validate	whether	the	 locations	 in	our	 list	are	FPs	 in	all	data	sets	or	can	appear	as	 true	

variants	in	any	individual	like	NA12878	or	another	from	some	population	analyzed	in	the	

1000	genome	project.	At	 last,	 I	 compared	our	 kmer	 list,	with	 kmers	 generated	by	 the	

tool	“discovering-cse”85	(they	have	also	provided	a	list	of	FP	location)	(cf.	Section	4.1.1).	

	

Comparison	with	other	datasets	

The	detected	RSEs	can	simply	be	some	artefacts	 introduced	during	 library	preparation	

with	 a	 certain	 enrichment	 kit	 or	 can	 be	 technology	 (Illumina)	 specific	 artefacts	 or	

sequencing	 centre	 specific	 artefacts	 (batch	 effect).	 Thus,	 in	 order	 to	 figure	 out	 the	

nature	of	these	errors,	I	compared	this	kmer	list	with	the	following	different	paired-end	

exome	sequencing	(sequenced	on	Illumina	Hiseq)	datasets,	in	which	at	least	90%	of	the	

target	region	is	covered	at	20X	or	greater:			

• V3_IN:	Set	of	11	samples	sequenced	in-house	by	using	the	NimbleGen	SeqCap	EZ	

Human	Exome	Library	v3.0	target	enrichment	kit.	

• SS5_EX:	Set	of	11	samples	sequenced	in	another	sequencing	centre	by	using	the	

Agilent	SureSelect	Human	All	Exon	v5	target	enrichment	kit.	

• V2_EX:	Set	of	11	samples	sequenced	in	another	sequencing	centre	by	using	the	

NimbleGen	SeqCap	EZ	Human	Exome	Library	v2.0	target	enrichment	kit.	

	

To	make	these	datasets	comparable,	all	of	these	samples	are	analysed	by	the	same	data	

analysis	pipeline.	Kmers	(k=9)	construction	and	OEratio	generation	are	also	performed	in	

the	same	way	as	described	above.	Extraction	of	kmers	at	RSE	locations	is	also	performed	

in	 the	 same	 way,	 except	 the	 final	 list	 of	 FPs	 used	 here	 is	 only	 variants	 that	 are	 not	

common	and	shared	by	at	least	300	samples	in	InhouseDB	(not	requiring	the	additional	

sharing	of	the	variants	between	7	of	10	samples)	(cf.	Section	“Extraction	of	kmers	having	

RSEs”).	Thereafter,	the	kmer	lists	from	all	11	samples	of	each	data	set	are	filtered	from	

alignment	 artefacts	 and	merged	 into	 one	 list	 to	 avoid	 random	errors.	 At	 last,	 these	 3	

																																																								
85	https://bitbucket.org/tobiasmarschall/discovering-cse		
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different	 kmer	 lists	 are	 compared	with	 our	 final	 kmer	 list	 from	V2_IN	 and	 kmers	 are	

marked	according	to	their	presence	or	absence	in	all	of	these	datasets.		

	

Filtering	to	get	strong	RSEs	

To	 focus	on	 strong	RSEs	 (i.e.	hard	 to	detect	or	 filter	out	by	 standard	 filters),	 I	 applied	

best	practice	filters86	(cf.	Chapter	2)	to	filter	out	some	easily	detected	FPs	and	focused	

only	on	the	remaining	variant	locations.	In	order	to	narrow	down	the	screening	further,	I	

used	 the	OEratio.	 I	 computed	 the	 average	of	OEratio	 for	 all	 kmers	 throughout	 the	11	

samples	 of	 the	 V2_IN	 data	 set	 and	 focused	 on	 only	 those	 kmers	 present	 either	 on	

forward	 or	 reverse	 or	 both	 strands	 that	 have	 an	 average	 OEratio	 less	 than	 1.	 As	

explained	 above	 (cf.	 Section	 4.1.3),	 a	 kmer	 with	 a	 low	 OEratio	 is	 more	 likely	 to	 be	

associated	to	a	systematic	sequencing	error	than	one	with	a	high	OEratio,	which	is	why	I	

focus	our	investigation	on	this	class	of	kmers.	

	

4.2 Results	
Table	 4.1	 shows	 the	 statistics	 of	 the	 generated	 9mers	 from	 our	 dataset	 of	 interest	

(V2_IN)	where	 I	 selected	10	epilepsy	 samples	and	1	control	 sample	 (column	1),	which	

were	 sequenced	 in-house	 (exome	 sequencing)	 on	 an	 Illumina	 HiSeq	 and	 enriched	 by	

NimbleGen	v2.0.	Approximately	6	million	(column	2)	9mers	(a	few	might	be	identical	to	

each	 other,	 but	 appears	 at	 different	 chromosomal	 location)	 from	 different	

chromosomes	(1-22,	X,	Y)	are	constructed	by	both	Prefix	model	(PM)	and	Suffix	model	

(SM)	from	the	target	regions	(±100bp	flanking	regions)	of	the	sequenced	samples.	At	the	

raw	 level	 (all	 generated	9mers	without	any	 filtering),	 these	numbers	are	 the	 same	 for	

both	 PM	 and	 SM	 model,	 as	 they	 represent	 the	 same	 kmer	 but	 with	 different	 RSE	

location.	The	filtering	based	on	coverage	(column	3),	where	I	filtered	out	9mers	having	

less	 than	 20x	 read	 coverage,	 filtered	out	 approximately	 6%	of	 data.	 The	 extraction	 of	

9mers	 at	 RSE	 locations	 according	 to	 InhouseDB	 shortened	 the	 9mers	 list	 drastically	

(column	4).	Furthermore,	the	alignment	artefact	filter	(column	5)	also	filtered	out	a	few	

alignment	errors	(approx.	5%	of	RSE	containing	9mers).	

																																																								
86	http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set		
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Sample	 Number	of	9mers	

(Dataset:	

V2_IN)	
Raw	 After	Filter	

>	20x	

Only	on	RSE	

locations	

After	Aln	artefact	

filtering	

NA12878	 6107687	 5790795	 3740	 3492	

S1	 6112969	 5799549	 4129	 3969	

S2	 6066480	 5729634	 3383	 3199	

S3	 6159831	 5823955	 3589	 3408	

S4	 6086135	 5782131	 3797	 3606	

S5	 6058726	 5786777	 3967	 3799	

S6	 6172392	 5819470	 3841	 3636	

S7	 6199838	 5832016	 3709	 3562	

S8	 6058524	 5724690	 3665	 3503	

S9	 6190481	 5825560	 3798	 3643	

S10	 6071964	 5691843	 3681	 3513	

Table	4.1	Statistics	of	generated	9mers	from	V2_IN.	 	

	

Category	 Number	of	9mers	

(Overlapping	9mers	of	V2_IN	with	other	datasets)	

	 Raw	Overlap	 After	Avg.	OE	

<	1	on	raw	list	

After	BestPrac.	

Filt.	on	raw	list	

After	OEFilt	on	

BestPracFilt.	list	

	 PM	 SM	 PM	 SM	 PM	 SM	 PM	 SM	

With	all	datasets	 1649	 1697	 242	 239	 1461	 1513	 211	 211	

With	V2_EX	

&	V3_IN)	

1069	 1059	 187	 178	 820	 813	 127	 118	

With	V3_IN	

&	SS5_EX	

75	 97	 5	 6	 71	 86	 5	 6	

With	V2_EX	

&	SS5_EX)	

67	 81	 5	 2	 65	 79	 5	 2	

With	V3_IN	 112	 91	 14	 11	 96	 78	 9	 8	

With	V2_EX	 45	 38	 3	 3	 41	 35	 3	 3	

With	SS5_EX	 17	 9	 1	 2	 16	 9	 1	 2	

No	Overlap	 28	 31	 3	 3	 26	 28	 3	 3	

Total	 3062	 3103	 460	 444	 2596	 2641	 364	 353	

Table	4.2	Overlap	between	the	test	dataset	and	the	3	other	datasets.	
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As	mentioned	in	the	method	section,	I	extracted	only	9mers	that	are	shared	by	at	least	7	

of	 the	 11	 samples	 considered	 to	 filter	 out	 some	 random	 errors	 (or	 sample	 specific	

errors).	 This	 step	 further	 reduced	 the	 9mer	 list	 by	 approx.	 15%	 (cf.	 Table	 4.1).	

Thereafter,	I	compared	this	list	with	those	produced	from	the	3	other	datasets	(V2_EX,	

SS5_EX,	V3_IN)	 to	assess	 the	 reproducibility	and	nature	of	 these	errors	 (cf.	Table	4.2).	

The	 comparison	 of	 the	 V2_IN	 list	 with	 the	 lists	 from	 the	 other	 datasets	 shows	 that	

approximately	94%	of	RSEs	are	reproducible	(in	at	least	three	datasets,	sum	of	the	first	

four	 categories).	Only	1%	of	 the	RSE	associated	9mers	 (category:	No	Overlap)	 are	not	

present	in	any	other	dataset.	The	remaining	5%	RSE	associated	9mers	in	V2_IN	are	only	

shared	 by	 one	 other	 dataset	 (e.g.	 V2_IN	 with	 V3_IN),	 which	 is	 still	 a	 sign	 of	

reproducibility.	This	high	level	of	reproducibility	across	different	data	sets	supports	our	

hypothesis	that	the	majority	of	RSEs	in	the	V2_IN	list	are	indeed	systematic	errors.	54%	

of	 these	 systematic	 errors	 are	 shared	 by	 all	 datasets	 irrelevant	 to	 enrichment	 kit	 and	

sequencing	centre.	Thus,	these	errors	are	most	likely	induced	by	the	Illumina	sequencing	

process	or	due	to	standard	library	preparation	protocols	(used	in	a	similar	way	in	most	

of	 the	 sequencing	 centres).	 I	 refer	 to	 this	 error	 type	 as	 class	 1:	 Platform	 dependent	

errors.	 Besides	 this	 class,	 I	 also	 detected	 another	 class	 of	 error	 (approx.	 35%	 of	 the	

total),	which	occurred	due	to	 the	combination	of	 Illumina	sequencing	with	NimbleGen	

SeqCap	EZ	Human	Exome	Library	kit	(both	V2	and	V3)	only.	I	refer	to	this	error	type	as	

class	 2:	 Target	 enrichment	 dependent	 errors.	 I	 also	 compared	my	 9mer	 list	 with	 the	

9mer	 list	generated	by	the	tool	“discovering-cse”87	on	the	control	sample.	 I	 found	only	

1%	overlap	between	these	two	lists,	which	is	expected	as	“discovering-cse”	only	focuses	

on	strand	biased	positions	and	detects	systematic	errors	at	the	sample	level.	In	contrast,	

my	 9mer	 list	 contains	 shared	 errors	 across	 different	 datasets	 and	 is	 not	 restricted	 to	

strand	biased	positions.	The	systematic	errors	in	both	of	my	classes	are	shared	variants	

among	 300	 from	 511	 samples	 in	 the	 InhouseDB	 data	 set	 (but	 these	 are	 not	 common	

variants	 having	 MAF	 <	 30	 %).	 Moreover,	 I	 filtered	 the	 9mer	 list	 with	 the	 GATK	 best	

practice	 filters	 for	 SNPs	 and	 Indels	 (cf.	 Chapter2)	 and	 found	 that	 only	 11%	 of	 these	

																																																								
87	https://bitbucket.org/tobiasmarschall/discovering-cse		
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systematic	 errors	 can	 be	 detected	 or	 filtered	 out	 by	 the	 best	 practice	 filters	 (which	

include	a	filter	for	strand	bias).	

	

The	 RSEs	 reported	 in	 the	 two	 error	 classes	 can	 be	 used	 to	 filter	 or	 mark	 systematic	

errors	 in	 any	 other	 variant	 list.	 However,	 I	 found	 that	 some	 of	 these	 errors	 are	 true	

variants	 in	 the	NIST/Broad	truth	set	 list	 (cf.	Table	4.3	&	Table	4.4)	or	present	 in	DBall.	

This	 is	 not	 surprising	 as	 some	 rare	 variants	or	 sample/disease	 specific	 variants	 can	be	

true	even	at	systematic	error	prone	regions.	Moreover,	 I	also	observed	that	Haplotype	

caller	 (HC)	did	not	call	 some	of	 these	errors	 (especially	errors	 in	regions	of	paralogous	

alignment	 (cf.	 Chapter	 2)	 (cf.	 Table	 4.3	 &	 Table	 4.4).	 The	 new	 generations	 of	 variant	

callers	like	Haplotype	caller	or	Platypus,	don’t	rely	on	the	alignment	entirely	but	perform	

local	reassembly	of	haplotypes88	containing	mismatches	on	the	reference,	thus,	they	can	

avoid	some	of	the	systematic	errors	(but	not	all)	due	to	paralogous	alignment.	However,	

they	 can	 also	miss	 some	 true	 variants	 in	 these	 regions	 because	 of	 this	 behaviour	 (cf.	

Chapter	 2).	 Therefore,	 in	 RSE	 lists	 (cf.	 Appendix)	 I	 have	 provided	 some	 additional	

annotations	 showing	whether	a	variant	 is	present	 in	NIST	or	DBall	 list	or	whether	 it	 is	

called	by	HC	etc.	This	can	help	users	to	decide	(based	on	the	aim	of	the	study)	that	up	to	

which	extent	they	should	filter	systematic	errors	in	their	variant	lists.		

	

FilterRSEs	tool		

To	 filter	 RSE	 locations	 (FPs	 due	 to	 RSEs)	 from	 any	 variant	 list	 (in	 the	 VCF	 format),	 I	

developed	 a	 script	 (named:	 “FilterRSEs”)	 in	 the	 Perl	 programming	 language 89 .	 It	

compares	 the	 variant	 locations	 in	 the	 given	 VCF	 file	 and	 the	 RSE	 list,	 and	 performs	

relevant	action	in	two	different	modes:	annotation	and	filter.	In	annotation	mode,	it	just	

annotates	the	variant	with	RSE	associated	annotations	(if	the	variant	location	is	present	

in	RSE	list):	PA,	NIST,	DBALL,	17mer.	It	appends	the	INFO	field	of	the	VCF	file90	with	all	of	

these	annotations	and	their	respective	values.	For	example,	 if	an	RSE	 location	 is	called	

by	other	pipeline	I	used	(BWA-MEM	and	GATK	HC),	then	“PA=Yes”	will	be	appended	to	
																																																								
88	http://ghr.nlm.nih.gov/glossary=haplotype		
89	https://en.wikipedia.org/wiki/Perl		
90	http://samtools.github.io/hts-specs/VCFv4.2.pdf		
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the	INFO	field	of	that	variant,	otherwise	“PA=NO”	(if	the	RSE	is	not	called	by	the	other	

pipeline).	Similarly,	NIST	and	DBALL	also	contain	 two	values	“Yes”	or	“NO”,	depending	

on	the	presence	of	the	RSE	location	in	the	NIST	list	and	in	DBall	(cf.	Section	“Validation	

of	kmer	list”).	Along	with	the	“Yes”	value,	the	DBALL	field	also	contains	the	rsid	and	MAF	

value	 of	 the	 RSE	 location.	 The	 annotation	 “17mer”	 contains	 the	 string	 of	 17	 bases	

around	the	RSE	location	(8	bases	upstream,	reference	base	at	the	RSE	location,	8	bases	

downstream).	The	description	of	these	annotations	will	also	be	added	to	the	header	of	

the	VCF	file.	Therefore,	the	annotation	mode	provides	some	flexibility	to	user,	who	can	

consider	the	RSE	annotations	presented	 in	the	VCF	file	when	deciding	about	a	variant.	

For	example,	 if	the	study	focuses	on	the	common	variants	(present	in	different	human	

populations),	then	MAF	values	in	DBALL	field	can	be	helpful	in	order	to	decide	whether	a	

certain	variant	should	be	considered	as	an	RSE	or	a	common	variant.	

	

In	 “Filter”	mode,	 the	 tool	 filters	 out	 the	 FPs	 due	 to	 RSEs	 from	 the	 given	VCF	 file	 and	

produces	two	different	VCF	files:	one	is	free	from	RSEs	and	the	other	contains	only	the	

filtered	 FPs	due	 to	RSEs.	 This	mode	provides	different	 filtering	options	using	different	

combinations	of	annotations	like	P,	C_MAF,	C,	N	etc.,	which	also	offer	lots	of	flexibility	to	

user.	For	example,	the	default	option	of	tool	filters	out	all	RSE	locations	from	the	VCF	file	

irrelevant	to	the	associated	annotations,	whereas	the	“C_MAF”	option	offers	filtering	of	

RSE	locations	based	on	a	given	MAF	value.	Overall,	these	different	filtering	options	can	

provide	“safe”	filtering,	even	 in	the	filter	mode.	Details	of	all	of	these	filters	as	well	as	

the	pseudocode	of	“FilterRSEs”	can	be	found	in	the	Appendix.	

	

Exploration	of	systematic	error	

I	further	investigated	the	detected	RSEs	to	explore	their	characteristics	(cf.	Table	4.3	&	

Table	4.4).	I	observed	that	the	majority	(74-77%	in	class	1	and	64-67%	in	class	2)	of	RSEs	

are	mapped	at	only	(or	mainly)	one	strand	(either	forward	or	reverse)	of	the	reference	

sequence.	However,	most	of	 these	are	not	detected	by	 the	 standard	 strand	bias	 filter	

used	in	GATK’s	best	practice	filtering	strategies.	I	also	found	that	some	of	the	errors	are	

mapped	 on	 both	 strands	 (23-26%	 in	 class	 1	 and	 33-36%	 in	 class	 2)	 as	 well,	 which	

supports	 our	 assumption	 that	 the	 investigation	 around	 only	 strand	 biased	 (i.e.	
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supported	by	only	one	strand)	errors	(as	performed	in	previous	studies)	is	not	enough	to	

explore	 all	 systematic	 errors	 (cf.	 Section	 4.1.2).	 Moreover,	 I	 found	 that	 a	 significant	

portion	 of	 total	 errors,	 approximately	 27%	 in	 class	 1	 and	 35%	 in	 class	 2,	 are	 pipeline	

artefacts	 and	 can	 be	 avoided	 by	 using	 the	 recent	 sophisticated	 tools/algorithms	 (like	

Haplotype	variant	caller)	(cf.	above	paragraph).			

	

In	order	to	see	the	distribution	of	these	errors	throughout	the	genome,	I	calculated	the	

number	 of	 RSEs	 per	 chromosome	 in	 class	 1.	 The	 distribution	 of	 RSEs	 captured	 by	 the	

Prefix	 model	 (PM)	 (cf.	 Figure	 4.5)	 and	 Suffix	 model	 (SM)	 (cf.	 Figure	 4.6)	 is	 almost	

identical	as	both	models	are	capturing	the	same	errors	with	upstream	and	downstream	

9mers	to	the	error	position,	respectively.	However,	SM	captured	a	few	more	RSEs	(not	a	

significant	 difference)	 than	 PM	 due	 to	 the	 differences	 in	 the	 9mer	 construction	

procedure.		

	

In	All	Dataset	 Prefix	Model	(PM)	 Suffix	Model	(SM)	

	 FPs	 In	

NIST	

Not	called	

By	HC	

FPs	 In	

NIST	

Not	called	

By	HC	

At	both	strand	 357	 53	 126	 324	 48	 112	

At	only	one	strand	 1031	 260	 264	 1134	 290	 281	

Total	FPs	 1388	 313	 390	 1458	 338	 393	

Table	4.3	Overview	of	systematic	errors	in	class	1:	Platform	dependent	(shared	by	all	datasets).	

	

In	only	Nimblgen	

datasets	

Prefix	Model	(PM)	 Suffix	Model	(SM)	

	 FPs	 In	NIST	 Not	called	

By	HC	

FPs	 In	NIST	 Not	called	

By	HC	

At	both	strand	 300	 6	 123	 278	 5	 113	

At	only	one	strand	 551	 84	 172	 583	 75	 192	

Total	FPs	 851	 90	 295	 861	 80	 305	

Table	4.4	Overview	of	systematic	errors	in	class	2:	Target	enrichment	dependent	(shared	by	only	Nimblgen	

Kits).	
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The	RSE	distribution	of	class	1	errors	showed	that	a	few	chromosomes	(CHR)	are	having	

a	 significantly	higher	number	of	 errors	 than	 the	others.	 Thus,	 I	 focused	on	only	 these	

chromosomes:	1,2,6,7,11,17	to	 investigate	the	cause	of	the	high	error	 load.	 I	observed	

that	these	chromosomes	are	containing	some	genes,	which	are	having	a	major	portion	

of	 errors.	 For	 example,	 approximately	 55%	 of	 the	 total	 errors	 on	 chromosome	 11	

(mainly	SNPs)	are	on	 the	MUC6/2	genes	 (notation	means	MUC6	 and	MUC2),	with	 the	

majority	 of	 them	 in	 MUC6.	 The	 ANKRD36	 gene	 is	 having	 47%	 of	 total	 errors	 on	

chromosome	2,	 the	MAP2K3	gene	 (on	chromosome	17)	 is	having	around	44%	and	the	

CDK11A/B	genes	(mainly	in	CDK11A)	(on	chromosome	1)	are	having	around	19%	of	the	

total	errors	on	that	chromosome.	

	

	

Figure	4.5	Distribution	of	errors	throughout	the	genome	captured	by	Prefix	model	(PM).	In	the	figure,	X-

axis	 shows	 the	chromosome	name,	whereas	 the	Y-axis	 shows	 the	number	of	errors.	The	 red	 line	shows	

errors	present	on	the	forward	strand,	whereas	the	green	line	shows	errors	on	the	reverse	strand.	

	

	

Figure	4.6	Distribution	of	errors	throughout	the	genome	captured	by	Suffix	model	(SM).		
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After	the	investigation	of	all	of	these	genes	(having	a	high	number	of	RSE),	I	found	that	

these	 are	 having	 many	 paralogous	 genes	 or	 similar	 genes	 as	 computed	 by	 Similarity	

Matrix	 of	 Proteins	 (SIMAP)	 (based	 on	 their	 proteins	 alignments)	 (Rattei	 et	 al.,	 2006,	

2010)	 or	 contain	 highly	 polymorphic	 repetitive	 regions	 or	 LCR	 regions	 (cf.	 Chapter	 2).	

These	 facts	 are	 the	 main	 cause	 of	 misalignments	 by	 alignment	 algorithms	 in	 these	

regions	 that	 result	 in	 lots	 of	 mismatches.	 Alignment	 algorithms	 can	 find	 multiple	

mapping	hits	 in	these	regions.	 In	other	words,	they	can	align	reads	that	belong	to	one	

gene	 to	 one	 of	 its	 paralogous	 genes	 due	 to	 high	 sequence	 similarity	 (cf.	 Chapter	 2).	

Figure	4.7	shows	the	IGV91	(Robinson	et	al.,	2011)	visualization	of	aligned	reads	(aligned	

by	both	BWA-MEM	and	backtrack	algorithm)	on	 the	 reference	sequence	at	 the	MUC6	

gene.	 The	 grey	 colour	 (wavy)	 part	 below	 the	 coordinate	 axis	 in	 both	 diagrams	 is	 the	

coverage	track,	which	shows	the	read	coverage	at	every	genomic	position.	It	is	coloured	

in	 grey	 when	 only	 the	 reference	 allele	 is	 present	 in	 the	 reads	 while	 the	 presence	 of	

alternative	alleles	at	a	position	is	marked	in	green,	blue,	orange,	and	red	colour	for	A,	C,	

G,	and	T,	respectively.	Both	diagrams	show	lots	of	coloured	bars	in	the	coverage	track,	

which	depicts	lots	of	mismatches	in	the	visible	region.	It	is	known	that	the	MUC6	gene	is	

highly	polymorphic	having	short	tandem	repeats	(STRs)	containing	G	and	T	nucleotides	

(e.g.	GGT,	GCT,	GT,	etc.)	(cf.	Figure	4.8).	Moreover,	 it	 is	having	many	paralogous	genes	

like	 MUC2,	 OTOGL,	 OTOG,	 ZAN	 etc. 92 .	 These	 two	 facts	 are	 the	 main	 cause	 of	

misalignments	by	both	alignment	algorithms,	which	result	in	a	lot	of	mismatches	in	the	

MUC6	gene.	However,	I	found	that	Haplotype	caller	can	avoid	very	few	of	these	errors.	

	

I	 fetched	 the	 information	of	 paralogous	 genes	of	 highly	mutated	 genes	 (cf.	 Table	 4.5)	

from	gene	cards93	(Belinky	et	al.,	2015)	and	found	that	some	of	these	genes	are	either	

belonging	to	one	gene	family	or	are	paralogous	to	each	other	or	are	having	other	highly	

mutated	 genes	 as	 similar	 genes	 (based	 on	 the	 protein	 sequence	 alignment:	 SIMAP	

(Rattei	et	al.,	2010).	For	example,	CDK11A/B,	CLCNKA/B	and	MUC6/2	belong	to	the	same	

gene	 family	 and	 are	 paralogous	 to	 each	 other.	 PRIM2	 gene	 contains	 38%	 of	 RSE	 in	

chromosome	(CHR)	6,	but	no	paralogs	for	this	gene	cards.	However,	its	cryptic	paralogs,	
																																																								
91	https://www.broadinstitute.org/igv/		
92	http://www.genecards.org/cgi-bin/carddisp.pl?gene=MUC6#paralogs				
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contain	only	exons	6–14	of	the	original	transcript,	are	mentioned	in	study	(Genovese	et	

al.,	2013).	They	also	found	that	these	paralogs	are	the	cause	many	FPs	(SNPs	and	CNVs).		

	

Figure	4.7	Alignment	visualization	by	 IGV	 in	 the	MUC6	gene	region.	Upper	diagram	shows	alignment	by	

BWA-backtrack	(aln)	algorithm,	lower	diagram	shows	alignment	by	BWA-MEM	algorithm.		

	

Figure	4.8	Alignment	visualization	by	IGV	at	location	11:	1016963	of	MUC6	gene.	Surrounding	this	position	

(highlighted	 by	 vertical	 line	 in	 black	 colour)	 there	 are	 lots	 of	 STRs	 (repeats	 of	 GGT,	 GCT,	 GT,	 etc.)	

highlighted	with	ovals	in	green	colour.		
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Table	4.5	List	of	genes	having	high	RSEs	and	their	paralogous	genes.		

																																																								
93	Information	taken	from	Gene	cards	database:	http://www.genecards.org/		
94	This	gene	is	also	observed	in	class	2	(not	analyzed	in	detail)	with	a	significant	level	of	FPs.	

Frequent	RSE	

gene	

%	RSE	 CHR	 Paralogous	genes93	

CDK11B	 3%	 1	 CDK12,	CDK13,	CDK10,	CDK11A,	CDK9,	

CDK11A	 16%	 1	 CDK12,	CDK13,	CDK10,	CDK11B,	CDK9	

CLCNKB	 5%	 1	 CLCN7,	 CLCN2,	 CLCN3,	 CLCN,	 CLCN1,	 CLCN4,	 CLCN6,	

CLCNKA	

PDE4DIP	 10%94	 1	 CDK,	RAP2	

ANKRD36	 47%	 2	 POTEJ,	 ANKRD18A,	 ANKRD30BL,	 POTEC,	 ANKRD20A,	

POTEF,	ANKRD7,	ANKRD62,	ANKRD30A,	ANKRD36C,	etc.	

ANKRD36B	 3%	 2	 SIMAP	similar	gene	to	ANKRD36	

SEC22B	 4%	 1	 SEC22A	

PRIM2	 38%	 6	 No	 paralogs	 are	 available	 in	 Gene	 cards,	 but	 its	 cryptic	

paralogs	are	mentioned	in	study	(Genovese	et	al.,	2013)	

DUSP22	 6%	 6	 DUSP26,	 DUSP1,	 DUSP21,	 DUSP13,	 STYX,	 DUSP18,	

DUSP27,	DUSP19,	DUPD1,	DUSP28,	DUSP3	

MUC12	 5%	 7	 MUC17	

TRBV7-3	

	

7%	 7	 TRBV2,	 TRBV24-1,	 TRBV3-1,	 TRBV,	 TRBV6-8,	 TRBV4-1,	

TRBV2-1,	TRBV23-1,	TRBV10-2,	TRBV28,	TRBV7-1,	etc.	

PRSS1	

	

26%	 7	 KLK12,	 KLK14,	 KLK11,	 KLK4,	 PRSS37,	 KLK13,	 PRSS8,	

PRSS3,	KLK1,	KLK,	KLK6,	KLK7,	KLK1,	KLK2,	KLK10,	etc.	

MUC6	 42%	 11	 OTOGL,	OTOG,	ZAN,	TECTA,	VWF,	BMPER	

MUC2	 13%	 11	 OTOGL,	OTOG,	MUC6,	ZAN,	TECTA,	VWF,	BMPER	

OR4C3	

	

7%	 11	 OR4A,	 OR4C46,	 OR4B1,	 OR4C11,	 OR4S2,	 OR4A47,	

OR4C13,	OR4C16,	OR4X1,	OR4S1,	OR4A1,	OR4C1,	etc.	

OR9G1	 5%	 11	 OR9G4	and	SIMAP	similar	gene	OR4C3	
USP6	

	

7%	 17	 USP4,	 USP43,	 USP1,	 USP11,	 USP19,	 USP32,	 USP16,	

USP31,	USP4,	

CCDC144NL	 5%	 17	 CCDC144A	CCDC144B	

MAP2K3	 44%	 17	 MAP2K7,	MAP2K2,	MAP2K6,	MAP2K4,	MAP2K,	MAP2K1	

KCNJ12	

	

10%	 17	 KCNJ3,	 KCNJ,	 KCNJ4,	 KCNJ14,	 KCNJ1,	 KCNJ1,	 KCNJ16,	

KCNJ10,	KCNJ9,	KCNJ8,	KCNJ2,	KCNJ6,	KCNJ11	
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Moreover,	 I	 found	 that	 a	 few	 of	 these	 paralogous	 genes	 are	 located	 on	 the	 same	

chromosomes.	 I	 also	 compared	my	 list	of	 genes	with	 the	 list	of	 genes	provided	 in	 the	

study	conducted	by	(Fuentes	Fajardo	et	al.,	2012).	In	their	study,	they	analysed	exome-

sequencing	data	 from	118	 individuals	 in	29	 families	and	reported	 lists	of	genes	having	

FPs	 (heterozygous	 calls).	 I	 found	 that	 the	MUC2/6/16,	MAP2K3,	 PDE4DIP	 and	 USP6	

genes	are	common	in	both	lists.	Overall,	the	high	sequence	similarity	to	other	genes	or	

presence	of	highly	polymorphic	repeats	(like	in	the	MUC6/16	genes),	make	these	genes	

more	 prone	 to	 misalignments,	 which	 produce	 the	 high	 number	 of	 FP	 variant	 calls	 in	

these	genes.				

	

Investigation	of	strong	RSEs	

In	order	to	find	patterns	associated	to	RSEs,	I	further	investigated	class	1	(RSEs	shared	by	

all	datasets)	in	detail.	I	filtered	the	list	with	OEratio	<	1	(filtered-out	approximately	85%	

of	list)	followed	by	best	practice	filter	that	reduced	the	9mers	list	by	up	to	87%	(cf.	Table	

4.2).	In	this	filtered	list,	there	were	no	RSEs	from	highly	mutated	genes	except	for	some	

in	the	MUC6	gene.	In	total,	this	list	contains	only	134	RSEs	(with	211	associated	9mers)	

and	20%	RSEs	(or	33%	9mers)	of	these	are	due	to	the	misalignments	in	the	MUC6	gene.	

	

For	 the	 further	 exploration,	 I	 removed	 9mers	 belonging	 to	 the	MUC6	 gene	 regions.	 I	

investigated	whether	 the	 remaining	 RSEs	 are	 sequence	 specific	 errors	 (SSEs).	 For	 this	

purpose,	 I	 examined	 the	 remaining	 9mers	 (I	 will	 refer	 to	 them	 as	 “SSE-associated	

9mers”)	 to	 find	 out	 if	 the	 remaining	 9mers	 share	 some	 small	 sequence	 motifs	 or	

whether	any	nucleotide	 (or	 combination	of	nucleotides)	 is	highly	 frequent	 throughout	

the	 list.	 I	 used	 the	 online	 tool	 Weblogo95	to	 generate	 sequence	 logos,	 i.e.	 “graphical	

representations	of	 the	patterns	within	 a	multiple	 sequence	 alignment”	 (Crooks,	 2004)	

(Schneider	 &	 Stephens,	 1990).	 I	 generated	 sequence	 logos	 (with	 frequency	 plots	

options)	for	9mers	generated	by	both	prefix	and	suffix	model	(cf.	Figure	4.9).	However,	I	

found	that	these	logos	are	not	very	informative	and	the	only	fact	I	observed	is	that	the	

error	mainly	occurred	at	reference	base	‘T’	(tallest	base	at	last	and	first	position	of	PM	

																																																								
95	http://weblogo.berkeley.edu/logo.cgi		
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and	SM	respectively),	which	has	been	also	observed	by	 (Meacham	et	al.,	2011)	where	

they	found	the	GGT	motif	upstream	of	the	error	position	(with	T	reference	base	at	the	

error	site).	Additionally,	the	presence	of	the	GGC	motif	up	to	10	bases	upstream	of	the	

error	base	(cf.	Figure	4.9)	can	be	anticipated	in	some	9mers,	which	are	responsible	for	

some	systematic	errors	and	were	 first	observed	by	 (Nakamura	et	al.,	 2011).	However,	

the	logo	for	the	SM	model	shows	that	some	9mers	might	also	have	GGC	motifs	present	

in	10	bases	downstream	as	well.	To	confirm	the	presence	of	GGC	or	GGT,	I	screened	the	

9mer	list	(excluding	MUC6	9mers)	for	their	presence	and	found	that	approximately	10%	

and	 11%	 of	 the	 error	 sites	 are	 having	 GGC	 and	 GGT	 upstream	 of	 the	 error	 position,	

respectively	(cf.	Table	4.6).	In	contrast,	9%	and	18%	error	sites	have	a	GGC	or	GGT	motif	

downstream,	respectively.	 (Nakamura	et	al.,	2011)	proposed	that	GGC	motifs	can	be	a	

cause	of	dephasing,	which	can	 induce	base	calling	errors.	They	found	that	the	wrongly	

called	 base	 (mismatch)	 at	 the	 error	 site	 is	 either	 the	 first	 or	 the	 second	 preceding	

reference	 base.	 I	 also	 observed	 such	 dephasing	 patterns	 due	 to	 the	GGC	motif	 in	 the	

upstream	of	one	of	the	RSE	in	our	list,	where	the	mismatch	‘T’	is	the	second	preceding	

reference	base	(cf.	Figure	4.10).	

	

PM:Forward	strand		 	 	 SM:	Forward	strand	

			 	

Figure	 4.9	 Sequence	 logos	 (from	 Weblogo	 tool)	 for	 9mers	 at	 forward	 reference	 strand.	 The	 top	 row	

contains	the	most	frequent	nucleotide	at	each	position	(at	X-axis,	range	1-9	represents	first	base	till	 last	

base	of	 the	9mer)	 and	 the	 length	of	 each	 character	 is	 directly	proportional	 to	 its	 frequency	 (the	 tallest	

character	is	having	the	highest	frequency	at	the	respective	position).			
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Figure	 4.10	 Alignment	 visualization	 of	 a	 systematic	 error	 by	 IGV.	 The	wrong	 base	 T	 is	 highlighted	with	

vertical	lines	in	black	colour	at	chr	3:	129800938.		

	

3mer	

(Upstream)	

Occurrence	(%)	 3mer	

(Downstream)	

Occurrence	(%)	

CTG	 19.87	 CTC	 17.73	

ACC	 19.21	 GGT	 17.73	

CCT	 17.89	 TCC	 17.09	

CCA	 16.56	 TGG	 16.46	

GCA	 15.24	 CGG	 16.46	

TGC	 14.57	 TCA	 15.19	

GCC	 13.91	 CAC	 15.19	

GAC	 13.91	 CCT	 15.19	

GTG	 13.91	 GTC	 13.93	

TGG	 13.91	 TTC	 13.93	

GGC	 9.94	 GGC	 8.8	

GGT	 11.26	 	 	

Table	 4.6	 List	 of	 top	 10	 common	 motifs	 of	 length	 3	 (including	 known	 motifs	 occurrences)	 in	 RSEs	

associated	9mers	in	both	upstream	and	downstream.		

	

To	find	some	other	common	or	highly	frequent	sequence	motifs,	I	considered	all	shorter	

kmers	of	lengths	2	to	8	contained	in	our	list	of	9mers.	I	found	a	few	intersting	3mers	like	
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“CCT”,	which	appreared	either	 in	upstream	or	downstream	of	the	error	positions	(18%	

and	 15%	 of	 total	 9mers	 in	 upstream	 (151	 9mers)	 and	 downstream	 (158	 9mers)	

respectively)	(cf.	Table	4.6).	In	the	context	of	2mers,	I	found	approximately	46%	and	48%	

of	9mers	are	having	“CT”	and	“CC”,	 respectively,	upstream	of	 the	error	positions.	44%	

and	 40%	 of	 9mers	 are	 having	 “CT”	 and	 “CC”,	 respectively,	 downstream	 of	 the	 error	

positions.	 The	higher	ocurrence	of	 the	 “CT”	motif	 is	 also	observed	 in	 the	3mer	 “CTG”	

upstream	and	“CTC”	downsteam.	Both	motifs	showed	the	highest	occurrence	among	all	

top	 10	motifs	 (cf.	 Table	 4.6)	with	 approximately	 20%	 and	 18	%	 for	 “CTG”	 and	 “CTC”,	

respectively.	Furthermore,	the	reference	base	“T”	is	found	to	be	the	most	error	affected	

nucleotide.	 Approximately,	 34%	of	 9mers	 (among	 211)	 are	 having	 “T”	 (“A”	 at	 reverse	

strand)	as	the	reference	base	at	the	error	position,	which	can	be	also	observed	from	the	

logos	 (cf.	 Figure	 4.9)	 and	was	 also	 concluded	 in	 the	 study	 by	 (Meacham	 et	 al.,	 2011)	

(“stronger	tendency	of	error	at	A	or	T	than	at	C	or	G”).	Moreover,	approximately	at	20%	

of	 the	error	postions,	 “T”	 is	having	“C”	as	an	error	base	 (i.e.	T>C	sustitution)	and	15%	

show	an	A>G	substitution	on	the	forward	strand.	At	the	reverse	strand,	I	found	18%	of	

postions	with	A>G	and	17%	with	T>C	substitutions.	Among	211	RSE	associated	9mers,	

only	 5	 are	 having	 Indels	 which	 is	 expected	 as	 Illumina	 sequencing	 has	 a	 higher	

substitution	error	 rate	 than	 Indel	error	 rate.	As	 known,	 I	 also	 found	all	 Indel	 errors	 in	

STRs	which	is	due	to	the	alignment	inacurracy	in	repetitive	regions	(cf.	Chapter	2).	

	

Secondary	structure	analysis	

I	also	performed	secondary	structure	analysis	on	sequence	motifs	in	the	SSE-associated	

9mers	 list.	At	 first,	 I	 combined	 the	9mers	 from	both	PM	and	SM	to	construct	17mers,	

which	 contains	 the	 surrounding	 sequence	 sequence	 motifs	 in	 both	 upstream	 and	

downstream	direction	 of	 the	 error	 position,	which	 is	 the	 9th	 base	 of	 the	 17mer.	 This	

merging	further	reduced	the	list	to	120	(was	arround	150)	17mers.	The	idea	behind	the	

secondary	structure	analysis	 is	based	on	 the	observation	 found	 in	study	 (Nakamura	et	

al.,	2011),	where	they	observed	that	a	few	sequence	specific	errors	can	be	triggered	by	

inverted	 repeats	 which	 might	 cause	 dephasing	 during	 sequencing	 (cf.	 Section	 4.1.1).	

Thus,	 the	aim	of	 this	analysis	 is	 to	 find	some	17mers	having	high	probabilty	 to	 fold	or	
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form	 some	 sort	 of	 secondary	 structure	 like	 a	 hairpin	 loop,	 which	might	 be	 triggering	

associated	RSEs.		

	

CHR	 Location	 17mer	 MFEstruct	 MFE	 PairProb	 EnsblFE	
14	 106361561	 AGGCCTGGCGGTAGGTT	 .((((((....))))))	 -4,7	 .{(((((....)))))}	 -5,16	
11	 1093158	 ACCACCACTACGGTGAC	 ..((((.....))))..	 -4,9	 ..((((.....))))..	 -4,91	
8	 124664873	 GAGGCACATATTGCCAC	 ..((((.....))))..	 -4,8	 ..((((.....))))..	 -4,91	
8	 124664873	 GTGGCAATATGTGCCTC	 ..((((.....))))..	 -4,6	 ..((((.....))))..	 -4,78	
12	 2791130	 GCACGTTCCGATGTGTG	 ((((((....)))))).	 -4,4	 ((((((....)))))).	 -4,57	
21	 11049395	 GCGCCTAGTAATAGGGT	 ((.((((....))))))	 -3,8	 ,{.((((....))))}}	 -4,32	
6	 31922360	 CGGGATCGAGACCGAGA	 (((........)))...	 -3,8	 (((........)))...	 -3,84	
21	 34915324	 AATTGGCCCGTGCGCCT	 ....(((......))).	 -3,6	 ....(((......))).	 -3,65	
9	 130932398	 CTTTGACTGTTGTCATT	 ...((((....))))..	 -3,5	 ...((((....))))..	 -3,63	
9	 130932398	 AATGACAACAGTCAAAG	 ..((((....))))...	 -2,9	 ..((((....))))...	 -3,04	
7	 142168662	 CAGTGGACGCTGGAGTC	 ((((....)))).....	 -2,7	 ((((....)))).....	 -2,85	
2	 97820434	 CTGTGCAAAACGGTCCA	 ((((.....))))....	 -2,1	 ((((.....))))....	 -2,16	
10	 65225244	 GGGGCGCTGACTCTCTT	 (((.......)))....	 -1,3	 ((({......)})},..	 -2,13	
12	 9573224	 AACCACACCGCACAGGT	 ......(((.....)))	 -1,9	 ......(((.....)))	 -2,1	
17	 21319523	 CCTGGAGACGGACGACT	 .(((....)))......	 -1,9	 .(((....)))......	 -2	
6	 31922360	 TCTCGGTCTCGATCCCG	 ...(((........)))	 -1,3	 ...(({....,...}},	 -1,79	
14	 106361561	 AACCTACCGCCAGGCCT	 ..(((......)))...	 -1,4	 ..{{{..,...}))...	 -1,78	
12	 9573224	 ACCTGTGCGGTGTGGTT	 (((.....)))......	 -1,4	 (((.....}}}......	 -1,75	
21	 42843962	 GTTCATCCACTGAGAGC	 ((((.((....))))))	 -1,4	 ((((.{{....))))))	 -1,73	
8	 27101204	 ATGTGTTAAGGGGCGTA	 ((((........)))).	 -1,1	 ((((.,......)))).	 -1,63	
3	 129147418	 GGGTATCAGATAAACCG	 .(((.........))).	 -1,2	 ,({{.........})).	 -1,63	
7	 142168662	 GACTCCAGCGTCCACTG	 (((......))).....	 -1,4	 (((......))).....	 -1,55	
3	 129147418	 CGGTTTATCTGATACCC	 .(((.........))).	 -1,1	 .(({.........})).	 -1,52	
21	 11058227	 CTGAAAGGTGTCGGCTC	 ((((......))))...	 -1,2	 ((({......})))...	 -1,51	
6	 112508769	 ACTGATGCACTGCGGTT	 ((((........)))).	 -1,1	 {(((........)))}.	 -1,46	

Table	4.7	List	of	top	25	17mers	according	to	the	nucleotide	pairing	probabilities	(highest	to	lowest).	

	

I	used	the	RNAfold	method	of	the	ViennaRNA	Package	2.0	(Lorenz	et	al.,	2011)	to	predict	

the	secondary	structures	of	 single	 stranded	DNA	sequences	 in	17mers.	 In	brief,	 I	used	

RNAfold	 with	 partition	 function	 and	 MEA	 algorithms	 (“RNAfold	 --MEA	 –p”)	 96 	to	

compute	the	minimum	free	energy	(mfe)	structure,	partition	function,	pair	probabilities	

and	the	maximum	expected	accuracy	(MEA)	structure.	The	detailed	information	of	this	

alogorithm	and	usage	of	ViennaRNA	Package	can	be	found	in	(Hofacker,	2009;	Lorenz	et	

al.,	2011).	Table	4.7	shows	the	list	of	17mers	having	high	nucleotide	pairing	probabilities.	

The	 4th	 (“MFEstruct”)	 and	 5th	 (“MFE”)	 column	 of	 table	 (“MFEstruct”)	 shows	 the	
																																																								
96	https://www.tbi.univie.ac.at/RNA/RNAfold.1.html		
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predicted	mfe	structure	of	the	17mer	in	bracket	notation	and	its	free	energy	in	kcal/mol.	

The	 bracket	 notation	 depicts	 a	 pairing	 of	 two	 bases	 i	 and	 j	 by	 a	 pair	 of	 matching	

parentheses,	 whereas	 unpaired	 positions	 are	 depicted	 by	 dots.	 The	 pictorial	

representation	of	the	bracket	notation	of	the	mfe	structure	for	the	first	and	last	17mer	

from	the	table	 is	shown	in	Figure	4.11.	The	6th	(“PairProb”)	and	7th	(“EnsblFE”)	column	

contain	 the	bracket	notation	of	 the	pair	probabilities	and	the	ensemble	 free	energy	 in	

kcal/mol.	In	this	context,	the	parentheses	show	the	positions	having	high	probability	to	

pair	and	dots	show	mostly	unpaired	positions,	whereas	curly	brackets	and	commas	show	

positions	with	low	pairing	probabilities.	Higher	negative	value	of	free	energy	mean	more	

stable	structures.		

	

	 	

Figure	4.11	MFE	secondary	structure	of	first	(left)	and	last	(right)	17mer	from	the	list	of	top	25	17mers.	

	

Based	 on	 the	 computed	mfe	 and	 the	 pairing	 probabilities	 of	 17mers,	 I	 found	 that	 25	

(approx.	 21%)	 among	 120	 SSE-associated	 17mers	 could	 form	 some	 sort	 of	 secondary	

structure	 (cf.	 Table	 4.7).	 So	 far	 the	 role	 of	 the	 detected	 17mers	 in	 the	 origination	 of	

these	SSEs	is	not	clear,	however,	they	can	function	in	a	similar	way	as	inverted	repeats	

explained	 by	 Nakamura	 and	 colleagues	 (Nakamura	 et	 al.,	 2011).	 These	 sequencing	

motifs	are	a	part	of	 the	DNA	template	used	during	sequencing.	 If	 these	motifs	 form	a	

loop	 during	 sequencing,	 then	 the	 base	 elongation	 process	 (cf.	 Section	 1.1.1)	 will	 be	

hampered	 for	 a	 certain	 time,	 which	 might	 cause	 dephasing.	 As	 explained	 previously,	

dephasing	is	known	to	trigger	systematic	errors.	
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4.3 	 Chapter	summary	
In	this	chapter,		

• I	 presented	 a	 new	 approach	 to	 search	 for	 sequence	 motifs	 surrounding	

sequencing	 error	 sites.	 I	 screened	 9mers	 in	 both	 upstream	 and	 downstream	

direction	of	the	error	position	(in	total	17mers).	

• I	restricted	the	9mer	list	to	the	RSE	locations	by	selecting	only	those	variants	that	

are	shared	(but	are	not	common	variants	in	the	population)	between	at	least	300	

from	511	exome	sequencing	samples	of	our	in-house	dataset.	I	also	validated	this	

list	 with	 available	 resources	 for	 the	 control	 sample	 NA12878	 (like	 confident	

variant	calls	provided	by	NIST).		

• I	compared	errors	in	our	list	with	3	different	datasets	to	investigate	the	nature	of	

these	 systematic	 errors.	 I	 found	 that	 most	 of	 these	 are	 reproducible	 which	

supports	our	assumption	that	these	are	systematic	errors.	

• I	 constructed	 two	 classes	 of	 errors:	 Platform	 dependent	 errors	 and	 Target	

enrichment	dependent	errors.	I	prepared	the	lists	of	RSEs	for	these	two	classes.	

These	lists	are	having	all-important	annotations	(like	location,	MAF,	etc.)	and	can	

be	used	to	filter	or	mark	systematic	errors	in	any	other	variant	lists.	Moreover,	I	

presented	a	tool	“FilterRSEs”	to	mark	or	filter	out	RSEs	from	any	variant	list.	

• I	found	that	most	of	the	errors	are	due	to	a	few	genes	having	paralogous	genes	

or	having	highly	polymorphic	repeats.	I	have	provided	lists	of	these	genes,	which	

can	also	be	used	to	mark/filter	the	variants	in	these	genes.		

• I	screened	only	those	RSE	having	OEratio	<	1,	for	short	common	sequence	motifs	

(3mer	or	2mer)	and	found	the	presence	of	all	known	motifs	near	the	error	sites	

like	 GGC	 and	 GGT.	 Moreover,	 I	 also	 observed	 that	 the	 reference	 base	 “T”	 is	

having	 errors	 most	 of	 the	 times	 as	 already	 observed	 in	 previous	 studies.	

However,	 I	observed	the	presence	of	a	few	sequence	motifs	of	 length	2	or	3	 in	

either	upstream	or	downstream	of	the	error	site,	which	is	not	reported	so	far.	

• I	 found	 25	 sequence	 motifs	 that	 might	 trigger	 RSEs.	 These	 motifs	 have	 high	

probabilities	 to	 form	 some	 sort	 of	 secondary	 structure	 (like	 a	 loop),	 thus,	 can	

hamper	the	sequencing	process	for	a	while	and	result	in	a	systematic	error.	



	

Chapter	5 	
Conclusion	and	outlook	
	

5.1 Discussion	and	conclusion	
Next	generation	sequencing	(NGS)	techniques	are	now	well	established	and	have	been	

successfully	 used	 in	many	 applications	 for	 both	 fundamental	 research	 and	diagnostics	

purposes	 (e.g.	 whole	 exome	 or	 genome	 sequencing,	 gene	 panel	 sequencing,	

transcriptomics	etc.)	(Rabbani	et	al.,	2014).	Due	to	the	rapid	decrement	in	the	costs,	it	is	

accessible	to	almost	all	research	or	diagnostic	laboratories.	A	simple	keyword	search	for	

“Next	generation	sequencing”	in	pubmed97	results	in	approximately	10,000	entries	with	

approximately	6000	entries	since	the	last	two	years.	However,	the	huge	amount	of	data	

generated	by	NGS	techniques	requires	an	efficient	and	accurate	bioinformatics	analysis	

to	make	it	meaningful.		

	

In	 this	 work,	 I	 addressed	 different	 challenges	 associated	 with	 NGS	 data	 analysis.	 I	

categorized	 these	 challenges	 into	 two	 main	 categories:	 Efficient	 data	 processing	 and	

accuracy	of	analysis.	We	developed	an	automated	data	analysis	workflow	(Kawalia	et	al.,	

2015)	 for	 targeted	 DNA	 sequencing	 experiments	 (exome	 sequencing,	 gene	 panel	

sequencing,	 amplicon	 sequencing).	 During	 the	 development	 of	 our	 workflow,	 I	

performed	extensive	testing	of	bioinformatics	tools	required	for	analysis,	both	in	terms	

of	their	efficiency	on	HPC	cluster	and	the	accuracy	of	analysis.	Besides	the	open-source	

tools,	I	also	developed	some	in-house	tools	for	certain	parts	of	the	analysis	workflow.	In	

addition,	I	developed	a	few	strategies	for	the	efficient	implementation	of	our	workflow	

on	the	HPC	cluster.	To	enhance	the	accuracy	of	the	results,	I	explored	systematic	errors,	

which	are	usually	undetected	by	state-of-the-art	algorithms.		

	

Analysis	of	sequencing	data	can	be	judged	by	two	criteria:	 its	specificity	and	sensitivity	

(cf.	 Chapter	 2).	 A	 variant	 list,	 which	 represents	 the	 final	 result	 of	 analysis,	 should	 be	

																																																								
97	http://www.ncbi.nlm.nih.gov/pubmed	This	and	other	subsequent	URLs	are	accessed	on	22	July	15.	
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highly	specific	(contain	few	false	positive	variants	(FPs))	and	highly	sensitive	i.e.	should	

not	miss	 any	 causative	 or	 true	 variant	 (no	 false	 negatives	 (FNs)).	 However,	 there	 is	 a	

trade-off	 between	 these	 two	 factors	 causing	 highly	 specific	 variant	 lists	 to	miss	 some	

variants	while	highly	sensitive	variant	lists	can	contain	lots	of	FPs.	Thus,	a	well-balanced	

adjustment	 of	 specificity	 and	 sensitivity	 is	 very	 important	 and	 still	 a	 challenge	 for	 the	

bioinformatics	 community.	 As	 far	 as	 I	 know,	 there	 is	 no	 analysis	workflow,	which	 can	

achieve	 100%	 specificity	 and	 sensitivity.	 In	 chapter	 2,	 I	 addressed	 these	 issues	 with	

detailed	information	about	the	individual	analysis	steps	and	the	factors	that	can	damage	

results	in	terms	of	both	specificity	and	sensitivity.	Raw	sequencing	data	require	a	series	

of	data	analysis	steps	for	quality	control,	sequence	alignment,	variant	calling	and	variant	

filtering/validation.	All	steps	are	interconnected	and	each	can	have	a	bad	or	good	effect	

on	the	consecutive	step.	For	example,	wrong	base	trimming	(both	bad	quality	bases	and	

adapter	 bases),	 can	discard	 a	 significant	 amount	of	 the	 sequenced	bases	which	might	

lead	 to	misalignments	or	uncovered	 regions	of	 the	 reference	 sequence	and	can	 cause	

false	 negatives.	On	 the	 contrary,	 avoiding	 the	 quality	 control	 steps	 (especially	 on	 low	

quality	 data)	 can	 lead	 to	 FPs	 due	 to	 wrong	 alignments	 or	 alignments	 with	 many	

mismatches	of	bad	quality	bases	or	reads.			

	

The	alignment	of	 the	 reads	 to	 the	 reference	 sequence	has	a	 significant	 impact	on	 the	

specificity	and	sensitivity	of	the	variant	list.	A	specific	alignment	(zero	or	few	mismatches	

allowed	during	alignment)	 can	 reduce	FPs	but	 can	 increase	FNs.	On	 the	other	hand,	a	

sensitive	alignment	(allowing	many	mismatches	during	alignment)	can	increase	FPs	but	

lowers	the	risk	of	FNs.	BWA-MEM,	as	one	of	the	current	alignment	algorithms,	performs	

read	mapping	with	 a	 good	balance	between	both	 sensitivity	 and	 specificity.	 It	 tries	 to	

find	an	optimal	alignment	(maximum	exact	match	extended	by	some	mismatches)	of	a	

read	sequence	on	the	reference	DNA	sequence.	However,	 it	 is	not	possible	to	align	all	

reads	 accurately	 on	 the	 reference	 genome,	 especially	 reads	 having	 the	 typical	 read	

lengths	between	100	to	200	bp	generated	from	short	read	sequencing	technologies	(like	

Illumina).	There	are	several	reasons	behind	this,	 like	sequencing	errors,	low	complexity	

regions	(LCRs)	or	highly	divergent	regions	(HDRs)	(less	than	99.5%	identity	in	the	human	

genome)	 (cf.	 Chapter	 2),	 paralogous	 genes	 and	 the	 incompleteness	 or	 errors	 in	 the	
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human	reference	genome	 (Fuentes	Fajardo	et	al.,	2012;	Sims	et	al.,	2014;	Treangen	&	

Salzberg,	 2012).	 Every	 cause	mentioned	 above	 leads	 to	 alignment	 errors	 followed	 by	

variant	calling	errors	that	result	either	in	FPs	or	FNs.		

	

In	 addition,	 other	 sources	 that	 lead	 to	 FPs	 or	 FNs	 include	 sequencing	 errors	 like	 PCR	

errors,	base-calling	errors	towards	ends	of	reads	(esp.	3’	end),	substitution	errors	near	

Indels	etc.	Some	of	these	errors	can	be	corrected	by	post	alignment	improvements	like	

Duplicates	 removal,	 BQSR,	 Indel	 Realignment.	 I	 implemented	 these	 corrections	 in	 our	

data	 analysis	 workflow	 (cf.	 Chapter	 3)	 and	 they	 are	 described	 in	 detail	 in	 Chapter	 2.	

Moreover,	a	certain	sets	of	FPs	can	also	result	 from	the	 limitations	of	a	variant	calling	

algorithm,	either	the	implemented	approach	or	the	default	parameter	settings.	Thus,	to	

overcome	the	 limitations	of	a	single	variant	caller,	 I	used	four	different	variant	callers:	

Samtools’mpileup,	 Platypus,	 GATK’s	 Unified	 Genotyper	 and	 Haplotype	 Caller.	 These	

callers	belong	to	two	different	categories	of	variant	calling	algorithms:	nucleotide	based	

and	haplotype	based	variant	detection.	The	nucleotide	based	algorithms	use	a	Bayesian	

approach	 (H.	 Li,	 2011)	 to	 call	 SNPs	 and	 Indels	 and	 treat	 each	 position	 independently	

(used	 by	 Samtools	 and	 Unified	 Genotyper).	 This	 approach	 relies	 on	 the	 alignment	

accuracy	 and	 can	 produce	 many	 FPs	 but	 provides	 sensitive	 variant	 calling.	 On	 the	

contrary,	 the	 Platypus	 and	 Haplotype	 Caller	 are	 the	 most	 recent	 and	 sophisticated	

haplotype-based	 callers,	 which	 can	 avoid	 some	 alignment	 artefacts	 (e.g.	 due	 to	

paralogous	alignment).	They	do	not	rely	only	on	the	alignment	but	perform	local	denovo	

assembly	 (by	 building	 a	 De	 Bruijn-like	 graph)	 in	 order	 to	 find	 the	 correct	 haplotype,	

which	 is	used	 for	SNP/Indel	 identification.	However,	 they	are	also	not	able	 to	 find	 the	

optimal	 alignment	 in	 LCRs	 (H.	 Li,	 2014;	 Rimmer	 et	 al.,	 2014).	 Moreover,	 due	 to	 the	

different	algorithms	and	parameter	settings,	the	overlap	between	the	variant	calls	from	

these	 tools	 is	not	very	high.	Overall,	 I	 found	 that	 the	 integration	of	 the	variant	 callers	

using	 different	 algorithms	 is	 better	 than	 using	 a	 single	 variant	 calling	 algorithm	 to	

achieve	 highly	 accurate	 and	 sensitive	 variant	 calls.	 This	 fact	 is	 also	 reported	 by	many	

data	analysis	and	tool	comparison	studies	(Bao	et	al.,	2014;	H.	Li,	2014;	Trubetskoy	et	al.,	

2014).	
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After	 performing	 quality	 control	 on	 raw	 data,	 alignment	 and	 post	 alignment	

improvements	followed	by	sophisticated	variant	calling,	the	final	variant	list	still	contains	

lots	of	FPs.	Thus,	FPs	filtering	and	variant	evaluation	also	plays	an	important	role	in	the	

analysis	 and	 can	drastically	 change	 the	 variant	 list.	 The	principle	of	 trade-off	between	

sensitivity	and	specificity	also	applies	here.	Stringent	filtering	can	reduce	the	number	of	

FPs	 but	 can	 also	 increase	 the	 number	 of	 FNs.	 Therefore,	 I	 apply	 standard	 filters	 like	

VQSR	and	GATK	best	practice	filters	(like	MQ,	Qual,	DP,	Fisher	strand)	(cf.	Chapter	2)	for	

every	exome	sequencing	data	set	by	default.	I	also	apply	specialized	filters	for	different	

data	 types.	 For	 example,	 sequencing	 data	 from	 Ion	 torrent	 sequencers	 contain	more	

Indel	 errors	 (due	 to	 homopolymer	 errors	 during	 sequencing)	 compared	 to	 Illumina	

sequencing	 data.	 Thus,	 I	 filter	 Indels	 called	 in	 homopolymer	 regions	 to	 avoid	 Indel	

errors.	Recent	variant	 callers,	 like	Haplotype	Caller	and	Platypus,	provide	 lots	of	other	

useful	annotation	like	%GC	content,	variant	called	in	homopolymer	or	LCRs,	string	of	the	

bases	 surrounding	 the	 variant,	 allelic	 frequency	 (heterozygous	 or	 homozygous),	

genotype	quality	score,	etc.	It	is	known	that	some	systematic	errors	are	surrounded	by	

certain	 sequence	 motifs	 like	 inverted	 repeats,	 GGC	 or	 GGT	 (Meacham	 et	 al.,	 2011;	

Nakamura	et	al.,	2011).	Moreover,	coverage	bias	has	been	observed	mainly	 in	GC	rich	

regions	 and	 Indels	 error	 mainly	 in	 LCR	 regions	 (Sims	 et	 al.,	 2014).	 Thus,	 all	 of	 these	

annotations	 can	also	be	used,	either	as	a	 combination	of	 two	or	more	annotations	or	

individually,	to	filter	out	some	specific	artefacts.	Many	studies	have	shown	the	effects	of	

other	filters	than	the	standard	best	practice	filters	 in	false	positive	reductions	(Fang	et	

al.,	2014;	Hwang	et	al.,	2014;	H.	Li,	2014;	Reumers	et	al.,	2011).	At	last,	variants	can	be	

filtered	or	prioritized	based	on	the	prior	knowledge	about	the	disease	or	design	of	the	

study	(e.g.	based	on	pedigree,	trios	etc.)	or	based	on	the	predicted	functional	effects	of	

the	 called	variant	on	 the	phenotype	and	 the	variant	 frequency	 from	publicly	 available	

data	like	1000	Genome	project,	DBSNP,	ExAC	etc.	(cf.	Chapter	3).	We	have	implemented	

most	 of	 these	 filters	 in	 our	 exome	 analysis	 pipeline	 Varbank	 (https://varbank.ccg.uni-

koeln.de/)	 and	 are	 continuously	 exploring	 effects	 of	 other	 filters.	 Varbank	 provides	

access	 to	 the	 variant	 list	 with	 different	 filtering	 options,	 which	 facilitates	 variant	

prioritization	or	candidate	variants	list	creation.		

	



	 	

	 	 Discussion	and	conclusion	

	 141	

The	variant	 filtering	 is	a	very	critical	step	as	 it	can	 filter	FPs	but	can	also	produce	FNs.	

Sometimes	a	standard	filter	can	have	a	devastating	effect	on	certain	types	of	data.	For	

example,	I	filtered	out	a	true	variant	by	using	the	QD	<	2	filter	(filters	variants	below	the	

mentioned	 score)	 in	 one	 of	 our	 highly	 covered	 old	 gene	 panel	 sequencing	 data	

(sequenced	in	2010	on	an	Illumina	sequencer).	 I	 found	that	at	the	down-sampled	read	

coverage	of	250	reads	this	variant	is	not	filtered	by	the	QD	filter,	but	at	high	coverage	(>	

500	 reads)	 this	 variant	 disappeared	 from	 the	 final	 variant	 list.	 I	 assume	 that	 this	 is	

because	 of	 many	 low	 quality	 reads	 in	 the	 called	 region	 whose	 accumulation	 is	

decreasing	 the	 QD	 score	 as	 it	 is	 a	 normalized	 value	 of	 the	 variant	 quality	 score	 with	

respect	 to	 read	 depth.	 Thus,	 the	 evaluation	 of	 filtering	 effects	 is	 very	 important.	

Recently,	 the	Genome	 in	a	Bottle	Consortium	(GAIB)98	(hosted	by	NIST99)	has	provided	

highly	confident	SNP,	Indel	and	homozygous	reference	genotype	calls	for	the	genome	of	

the	public	NA12878	sample100	(one	of	the	samples	of	the	1000	Genome	project)	(Zook	et	

al.,	2014).	They	have	used	different	 sequencing	 technologies	 like	 Illumina,	 Ion	 torrent,	

454,	complete	genomics	to	sequence	the	genome	of	this	sample	and	used	different	data	

analysis	 pipelines	 to	 call	 the	 genotypes.	 This	 integration	 avoids	 the	 systematic	 errors	

from	a	 single	platform,	 alignment	or	 pipeline	 artefacts	 and	provides	 a	highly	 accurate	

variant	list.	These	data	has	been	used	in	many	studies	for	validation	of	their	variant	calls	

(Hwang	 et	 al.,	 2014;	 Kelly	 et	 al.,	 2015;	 Linderman	 et	 al.,	 2014).	 We	 also	 performed	

exome	sequencing	of	this	individual	and	used	this	variant	list	to	benchmark	our	pipeline	

and	the	generated	variant	list	in	terms	of	specificity	and	sensitivity.	The	transition	versus	

transversion	ratio	(Ti/Tv)	is	another	criterion	to	evaluate	a	variant	list	or	the	effect	of	a	

filter.	As	the	transitions	are	more	frequent	than	the	transversions	(due	to	methylation	of	

C	 in	 CpG	 islands),	 this	 ratio	 can	 indicate	 how	 much	 your	 variant	 list	 deviates	 from	

general	expectations.	The	Ti/TV	ratio	should	be	0.5	for	FPs	and	a	good	quality	variant	list	

for	 an	 exome	 should	have	 a	 Ti/Tv	 ratio	 around	2.8	 (DePristo	 et	 al.,	 2011).	 Thus,	 after	

filtering	of	FPs,	this	ratio	should	increase	and	tend	to	reach	the	expected	value,	but	if	it	

is	decreasing	then	the	filter	might	not	be	good	for	this	type	of	data	and	should	not	be	

																																																								
98	https://sites.stanford.edu/abms/giab		
99	http://www.nist.gov		
100	https://catalog.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=NA12878&Product=DNA		
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applied.	 Overall,	 the	 selection	 of	 data	 analysis	 tools,	 their	 parameter	 settings	 and	

filtering	 strategies	 have	 significant	 impact	 on	 the	 final	 results	 and	 require	 extensive	

testing	and	evaluation.	Moreover,	a	data	analysis	pipeline	should	be	configured	based	

on	data	characteristics	like	read	length,	coverage,	sequencing	platform,	aim	of	study	etc.	

	

As	 mentioned	 above,	 the	 recent	 data	 analysis	 tools	 or	 pipelines	 (including	 our	 data	

analysis	 workflow)	 are	 capable	 of	 detecting	 and	 filtering	 most	 of	 the	 known	 errors.	

However,	certain	systematic	errors	due	to	sequencing	bias	or	alignment	artefacts	 (like	

paralogous	 alignment)	 are	 hard	 to	 detect	 by	 existing	 tools.	 These	 errors	 appear	

systematically	throughout	multiple	sequencing	experiments	from	the	same	sequencing	

platform	 and	 analysed	 by	 the	 same	 analysis	 pipeline.	 We	 coined	 these	 errors	 as	

“Recurrent	 Systematic	 Errors”	 (RSEs).	 In	 Chapter	 4,	 I	 presented	 a	 new	 approach	 to	

detect	 these	 errors.	 I	 screened	 9mers	 (sequence	 motifs	 of	 9	 consecutive	 nucleotide	

bases)	in	11	exome	sequencing	samples	sequenced	in-house	and	counted	their	observed	

and	expected	occurrences.	 Furthermore,	 I	 computed	OEratios	 for	 the	 screened	9mers	

(i.e.	 Expected	 9mer	 counts/Observed	 9mer	 counts).	 In	 order	 to	 focus	 on	 systematic	

errors	 only,	 I	 restricted	 the	 9mer	 list	 to	 those	 occurring	 at	 RSE	 sites.	 These	 RSE	 sites	

were	derived	from	shared	(but	not	common	variants	in	the	population)	variants	in	511	

exome	 sequencing	 samples	 of	 our	 in-house	 dataset.	 I	 also	 validated	 this	 list	 with	 the	

confident	variant	calls	for	sample	NA12878	provided	by	NIST	and	the	variant	calls	for	the	

same	 sample	but	 called	by	a	different	analysis	pipeline.	 I	 compared	 the	 shared	9mers	

throughout	the	11	samples	at	RSE	locations	with	those	from	3	other	datasets	to	validate	

the	 reproducibility	 of	 these	 systematic	 errors.	 From	 this	 list,	 I	 formed	 two	 different	

classes	 of	 systematic	 errors:	 Platform	 dependent	 errors	 (shared	 by	 all	 datasets	

sequenced	 irrespective	 of	 target	 enrichment	 kit)	 and	 target	 enrichment	 dependent	

errors	(shared	by	only	those	datasets	sequenced	using	the	same	target	enrichment	kit).	I	

prepared	 the	 lists	of	 systematic	errors	 for	 these	 two	classes.	 These	 lists	 are	having	all	

important	annotations	(like	location,	strand,	MAF,	called	by	NIST	or	other	pipeline	etc.)	

(cf.	 Chapter	 4)	 and	 can	 be	 used	 to	 filter	 or	 mark	 the	 systematic	 errors	 in	 any	 other	

variant	list.	For	this	purpose,	I	developed	a	tool	“FilterRSEs”,	which	can	just	mark	or	filter	
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out	RSEs	 from	any	 variant	 list.	 It	 is	 a	 very	 flexible	 tool	 and	provides	 different	 filtering	

options	to	customize	the	filtering.		

	

I	further	analysed	the	platform	dependent	errors	to	explore	the	characteristics	of	RSEs.	I	

found	that	a	wrong	read	alignment	in	LCRs	and	regions	belonging	to	paralogous	genes	is	

the	 major	 cause	 of	 RSEs.	 I	 observed	 a	 high	 error	 load	 in	 some	 chromosomes	

(1,2,6,7,11,17)	compared	to	others.	These	chromosomes	contain	some	genes	containing	

the	majority	 of	 errors,	 for	 example,	 approximately	 42%	 and	 44%	of	 the	 total	 variants	

(mainly	 SNPs)	were	 found	 in	 the	MUC6	 gene	 on	 chromosome	 11	 and	 in	 the	MAP2K3	

gene	on	chromosome	17.	I	found	that	all	of	these	genes	having	high	RSEs	either	belong	

to	 one	 gene	 family,	 are	 paralogous	 to	 each	 other,	 or	 have	 a	 high	 sequence	 similarity	

(based	on	the	protein	sequence	alignment)	with	other	genes.	Moreover,	 in	the	vicinity	

of	error	 sites,	presence	of	 LCRs	or	highly	polymorphic	 repeats	 in	 certain	genes	 (like	 in	

the	MUC6	or	MUC16	genes)	is	observed.	

	

LCRs,	 like	 short	 tandem	 repeats	 (microsatellites)	 are	 present	 throughout	 the	 human	

genome	 (approximately	 50%	of	 the	 human	 genome	 is	 filled	with	 repetitive	 sequence)	

(Treangen	&	Salzberg,	2012).	Thus,	a	read	from	a	repetitive	region	can	map	at	multiple	

positions	 with	 many	 optimal	 alignments	 to	 the	 reference	 genome	 with	 or	 without	

mismatches.	In	this	case,	the	aligner	picks	the	mapping	with	the	highest	alignment	score	

or,	in	case	of	equal	scores,	picks	one	randomly	which	can	lead	to	either	a	FP	or	a	FN.	If	

two	reads	map	at	the	same	location,	for	example,	one	with	a	mismatch	of	one	base	and	

another	with	a	deletion	of	a	few	bases,	then	the	first	read	gets	a	higher	alignment	score	

(by	standard	scoring	functions)	and	a	FP	SNP	can	be	reported	 if	 the	true	variant	 is	 the	

deletion	present	in	the	second	read	(Treangen	&	Salzberg,	2012).	Similar	situations	can	

arise	in	regions	that	belong	to	one	of	the	genes	from	a	family	of	paralogous	genes	where	

a	read	can	have	multiple	mappings	due	to	the	sequence	homology	of	the	genes.		

	

Nevertheless,	 many	 false	 positives	 in	 these	 regions	 can	 be	 avoided	 by	 filtering	 of	

variants	belonging	to	LCR	regions	which	has	been	successfully	used	in	many	studies	(H.	

Li,	2014;	Lucas	Lledó	&	Cáceres,	2013;	Reumers	et	al.,	2011).	Similarly,	lists	of	the	most	
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notorious	paralogous	genes	and	significantly	mutated	genes	(SMGs)	(containing	variants	

most	 of	 the	 time	 irrelevant	 to	 sequencing	 experiments)	 can	 be	 used	 to	 filter	 out	 the	

variants	 belonging	 to	 these	 genes	 (Dees	 et	 al.,	 2012;	 Fuentes	 Fajardo	 et	 al.,	 2012;	

Watson,	Takahashi,	Futreal,	&	Chin,	2013).	I	also	compiled	a	list	of	genes	having	a	high	

number	of	RSEs	(in	Chapter	4),	which	can	also	be	used	to	filter-out	or	mark	the	variants	

belonging	to	these	genes.	However,	these	filtering	strategies	should	be	opted	based	on	

the	aim	of	study/experiment,	as	they	can	lead	to	the	loss	of	true	variants	(FNs).	The	FNs	

might	be	more	devastating	than	the	FPs	(esp.	 in	diagnostics	settings)	as	these	variants	

can	be	the	main	contributor	to	a	genetic	disease.			

	

I	 expanded	our	analysis	 further	 to	 focus	only	on	a	particular	 type	of	 systematic	error:	

Sequence-specific	errors	(SSEs).	I	filtered	platform-dependent	errors	for	OEratio	<	1	and	

performed	screening	 for	common	motifs	 (of	different	 lengths:	2	 to	8mers)	among	RSE	

associated	9mers.	 I	 found	that	 the	significant	portion	of	errors	 is	surrounded	by	a	 few	

motifs	(3mers)	either	in	upstream	or	downstream	direction.	This	detected	motif	is	so	far	

not	 reported	 in	 association	 with	 systematic	 errors	 like	 known	 the	 “GGC”	 and	 “GGT”	

motifs	(Meacham	et	al.,	2011;	Nakamura	et	al.,	2011).	However,	I	have	not	analysed	its	

effect	on	systematic	errors	or	the	probable	reasons	behind	its	presence	near	error	sites.	

I	combined	the	9mers	both	upstream	and	downstream	direction	of	the	error	position	to	

construct	 17mers	 (the	 9th	 base	 is	 error	 position)	 and	 performed	 secondary	 structure	

analyses	on	these	17mers.	I	found	that	25	SSE-associated	17mers	could	form	some	sort	

of	secondary	structure.	So	far	the	role	of	these	17mers	in	the	origination	of	the	SSEs	is	

not	 clear.	 However,	 it	 has	 already	 been	 hypothesized	 that	 the	 inverted	 repeats	 could	

cause	dephasing	(cf.	Chapter	4),	which	is	one	of	the	causes	of	systematic	errors.	These	

inverted	 repeats	 could	 form	 loops	during	 the	 sequencing	process	and	 inhibit	 the	base	

elongation	process	 for	some	time,	which	results	 in	dephasing	 (Nakamura	et	al.,	2011).	

Similarly,	 the	 constructed	 17mers	 can	 be	 a	 part	 of	 the	 DNA	 template	 used	 during	

sequencing.	 If	 these	motifs	 form	 a	 loop	 during	 sequencing,	 then	 the	 base	 elongation	

process	 (cf.	 Section	 1.1.1)	 will	 be	 hampered	 for	 certain	 time,	 which	 might	 cause	

dephasing.		
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In	addition	to	the	accuracy,	efficiency	of	the	data	analysis	workflow	is	also	an	important	

aspect.	Analysis	of	sequencing	data	requires	a	series	of	actions	until	the	identification	of	

a	relevant	mutation	is	possible	(e.g.	data	cleaning,	sequence	alignment,	variant	calling,	

etc.).	 This	 requires	 a	 significant	 amount	 of	 time	 and	 lots	 of	 manual	 work.	 Thus,	 to	

manage	 and	 process	 huge	 amounts	 of	 sequencing	 data	 generated	 by	 the	 NGS	

sequencers	at	the	CCG	with	little	manual	efforts	(and	manual	errors),	an	automated	data	

analysis	 pipeline	 is	 required.	 Furthermore,	 the	 workflow	 should	 be	 fast	 and	 should	

provide	an	easy	access	 to	 the	analysis	 results.	 So	 that,	 it	 can	allow	 the	 researchers	or	

clinician	 to	 analyse	 data	 and	 assess	 the	 results	 in	 a	 short	 time,	 which	 can	 speed-up	

research	or	diagnostics	around	diseases. 		

	

We	 have	 developed	 a	 fast	 and	 fully	 automated	 workflow	 for	 NGS	 data	 analysis	 (cf.	

Chapter	3).	 It	 is	 implemented	and	optimized	on	HPC	 systems	and	able	 to	process	290	

exomes	 per	 week	 on	 the	 current	 IT-infrastructure.	 This	 throughput	 is	 achieved	 by	

different	parallelization	strategies	that	enable	proper	exploitation	of	HPC	resources.	We	

used	the	MapReduce101	approach	in	which	large	data	is	split	into	chunks	and	processed	

in	parallel.	In	this	approach,	the	number	of	chunks	needs	to	be	selected	carefully	when	

splitting	the	data,	as	it	is	directly	proportional	to	the	number	of	the	parallel	processes.	In	

case	of	many	chunks,	too	many	processes	run	in	parallel,	which	leads	to	longer	waiting	

time	in	the	queue	when	resources	are	not	available.	On	the	contrary,	if	chunks	are	big	in	

size,	then	completion	of	a	single	task	takes	a	long	time	and	less	gain	in	speed	is	achieved	

by	parallelization.	Similarly,	 the	number	of	 threads	 should	be	 selected	carefully.	 Some	

tools	 do	 not	 show	 significant	 improvement	 in	 speed	 beyond	 a	 certain	 number	 of	

threads.	 In	 that	 case	 using	more	 threads	 blocks	 some	 resources,	which	 can	 be	 better	

used	 for	 another	 parallel	 task.	 Besides	 threads	 or	 number	 of	 processes,	 appropriate	

memory	 required	 by	 the	 tools	 should	 be	 used	 for	 optimum	 exploitation	 of	 the	

computational	 resources.	The	HPC	systems	are	complex	and	can	be	destabilized	easily	

by	a	wrong	action	of	any	user	when	 they	are	multi-users	or	 shared	clusters.	Thus,	we	

have	 used	 some	 design	 principles	 and	 special	 measures	 to	make	 our	 workflow	more	

																																																								
101	https://www.usenix.org/legacy/event/osdi04/tech/dean.html		
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stable,	 robust,	and	easy	 to	maintain	so	 it	can	run	smoothly	on	 the	HPC	 infrastructure.	

The	workflow	 is	 organized	 as	 a	 collection	 of	modules	 depending	 on	 the	 analysis	 task.	

These	modules	can	run	individually	or	in	combination,	thus,	the	workflow	can	be	used	to	

analyse	various	types	of	NGS	(DNA)	sequencing	(both	single-read	and	paired-end)	data	

like	whole	 exome	or	 genome	 as	well	 as	 any	 target	 enriched	 data.	We	mainly	 analyse	

human	 sequence	 data	 but	 the	 workflow	 can	 handle	 any	 organism	 with	 a	 known	

reference	genome.	The	 results	 from	the	workflow	can	be	downloaded	or	analysed	via	

the	 varbank	 web	 interface.	 The	 user	 can	 browse	 through	 the	 variant	 lists,	 can	 apply	

different	filtering	strategies	(to	make	candidate	gene	lists)	and	can	also	crosscheck	the	

variant	by	viewing	the	alignments.	Since	 its	 launch	 in	October	2012,	we	have	analysed	

around	6000	exomes	and	uncovered	the	genetic	background	of	various	diseases	(Ehmke	

et	al.,	2014;	Lal	et	al.,	2014;	Schubert	et	al.,	2014).		

	

5.2 Outlook	
A	decade	after	 their	emergence,	NGS	technologies	are	still	evolving	at	 rapid	pace.	The	

introduction	 of	 HiSeq	 X	 Ten	 also	 broke	 the	 1000	 dollar	 genome	 barrier	 for	 whole	

genome	 sequencing.	 This	 increased	 the	 accessibility	 of	 whole	 genome	 sequencing,	

which	produces	approximately	8-10	times	more	data	than	exome	sequencing.	 I	expect	

that	it	will	pose	new	data	processing	and	storage	challenges	in	future.	We	will	adapt	our	

data	analysis	workflow	accordingly.	 In	 this	context,	we	will	examine	the	advantages	of	

Big	Data	solutions	for	NGS	data	analysis.	Nowadays,	a	lot	of	developments	is	going	on	to	

build	some	dedicated	hardware	for	fast	and	efficient	execution	of	some	typical	tasks	in	

NGS	data	analysis.	Moreover,	cloud-computing	strategies	are	also	becoming	popular	for	

NGS	 data	 analysis.	We	will	 continuously	 investigate	 these	 developments	 to	make	 our	

workflow	 fit	 for	 future	 requirements.	 With	 the	 performance	 growth	 of	 NGS	

technologies,	 bioinformatics	 development	 efforts	 for	 better	 data	 analysis	 are	 also	

growing.	 Recently,	 many	 new	 sophisticated	 algorithms	 have	 been	 released	 for	 either	

alignment	of	reads	or	for	variant	calling.	I	expect	many	more	new	tools	and	algorithms	in	

the	 future	 and	 will	 constantly	 evaluate	 these	 tools	 for	 inclusion	 in	 our	 data	 analysis	

workflow.		
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As	NGS	technologies	are	now	moving	into	clinical	research	or	diagnostics,	the	accuracy	

of	data	 analysis	 is	 a	 very	 critical	 aspect.	Recently,	 gene	panel	 sequencing	has	become	

more	popular	in	these	settings,	as	it	is	highly	specific	(with	high	coverage)	and	provides	

better	accuracy	than	whole	exome	and	genome	sequencing	at	lower	cost.	However,	this	

is	a	very	specific	approach	and	not	suitable	for	all	research	and	diagnostic	applications.	

Exome	and	genome	sequencing	offer	a	broad	range	of	applications,	but	they	are	more	

prone	 to	 sequencing	 errors	 like	 systematic	 errors.	 I	 will	 expand	 my	 systematic	 error	

detection	 approach	 and	 try	 machine-learning	 algorithms	 for	 better	 classification	 or	

detection	of	sequencing	errors.	I	will	expand	analysis	on	our	newly	detected	3mers	and	

other	 17mers	 (forming	 secondary	 structure),	 to	 find	 out	 its	 role	 in	 the	 generation	 of	

systematic	 errors.	 Moreover,	 I	 will	 perform	 statistical	 tests	 like	 Fisher’s	 exact	 test	 to	

validate	that	their	occurrence	is	not	by	chance.	Furthermore,	I	will	investigate	existing	or	

new	 strategies	 to	 filter	 or	 avoid	 FPs	 and	will	 also	 develop	 some	new	ones	 to	 provide	

more	accurate	results.			

	

I	 believe	 that	 the	 new	 developments	 in	 the	 sequencing	 field	 can	 address	 existing	

problems	and	can	improve	the	accuracy	of	data	analysis.	For	example,	third	generation	

technologies	 (or	 single	 molecule	 sequencing),	 like	 PacBio	 RS	 and	 Oxford	 Nanopore	

MinION,	 provide	 much	 longer	 reads	 without	 errors	 due	 to	 dephasing	 or	 PCR	

amplification.	These	techniques	allow	for	more	accurate	sequencing	in	repetitive	or	low	

complexity	regions.	This	can	solve	the	problem	of	misalignments	in	these	regions,	which	

is	the	major	cause	of	SNP	or	Indel	errors.	Moreover,	they	can	improve	structural	variant	

detection,	 which	 is	 currently	 having	 certain	 limitations	 like	 coverage	 bias,	 poor	 break	

point	 detection	 etc.,	 due	 to	 the	 short	 read	 technologies.	 Recently,	many	 studies	 have	

used	 these	 technologies	 to	 explore	 repetitive	 regions	 or	 to	 detect	 structural	 variants	

(McFarland	et	al.,	2015;	Pendleton	et	al.,	2015;	Ritz	et	al.,	2014).	These	long	reads	can	

also	be	used	for	de	novo	assembly	to	build	better	consensus	sequences	which	can	avoid	

FPs	due	to	errors	or	incompleteness	of	the	human	reference	genome.	However,	to	date	

these	technologies	are	not	as	matured	as	second	generation	(e.g.	Illumina)	technologies.	

They	have	high	raw	read	error	rates	and	achieve	only	low	throughput.	Moreover,	there	

is	a	need	to	develop	new	sophisticated	data	analysis	algorithms,	as	these	technologies	
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are	having	different	 error	profiles	 and	different	 kinds	of	 information	 in	 the	 generated	

sequencing	 data	 (Schadt	 et	 al.,	 2010).	 Further,	 the	 genome	 reference	 consortium	

continuously	 improves	 the	 reference	 genome	 sequence.	 The	most	 recent	 build	 of	 the	

human	 reference	 genome	 (GRCh38)	 has	 less	 gaps	 and	 errors	 than	 the	 previous	 one	

(GRCh37),	which	also	will	 increase	the	accuracy	of	variant	detection.	To	give	a	résumé,	

lots	 of	 improvements	 in	 different	 directions	 are	 going	 on	 to	 make	 sequencing	

technologies	and	data	analysis	more	reliable	and	manageable.		
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Appendix		 	
	

Quality	control	(QC)	checks	

I	 performed	 the	 following	 quality	 checks	 on	 our	 in-house	 sequenced	 test	 data	 using	

FastQC	tool	(cf.	Section	2.1):			

1. Per	base	quality	score:	reports	the	distribution	of	base	quality	scores	of	all	bases	

at	each	position	in	the	read	(cf.	Figure	A.1	a).	

2. Per	sequence	quality	score:	reports	the	distribution	of	mean	quality	score	for	a	

subset	of	the	reads	(cf.	Figure	A.3	a).	

3. Per	base	sequence	content:	shows	the	percentage	of	A,	T,	G,	C	at	each	position	in	

the	sequence	reads	(cf.	Figure	A.2	b).	

4. Per	base	N	content:	shows	the	percentage	of	N	at	each	position	in	the	sequence	

reads	(cf.	Figure	A.2	a).	

5. Adapter	content:	reports	the	presence	of	an	adapter	sequence	in	the	reads	(can	

also	be	judged	by	percentage	of	overrepresented	sequences)	(cf.	Figure	A.1	b).		

6. GC	distribution:	gives	an	idea	of	the	GC	bias	in	a	sample	(i.e.	GC-poor	or	GC-	rich	

sequences)	(cf.	Figure	A.3	b).	

	

a)	

	

b)	

	

Figure	A.1	a)	Per	base	quality	score	distribution	b)	Adapter	content	distribution.	
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Figure	A.2	a)	Per	sequence	N	content	distribution	b)	Per	base	sequence	content	distribution.			

a)	

	

b)	

	

Figure	A.3	a)	Per	sequence	quality	score	distribution	b)	GC	content	distribution.	

	

The	QC	reports	containing	the	above	mentioned	quality	checks	were	generated	for	one	

of	 the	 in-house	 sequenced	 test	 samples.	 All	 of	 these	 quality	 parameters	 have	 certain	

thresholds	to	distinguish	between	a	bad	and	a	good	quality	sample102.	For	a	good	quality	

																																																								
102	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/	(This	and	subsequent	URLs	are	accessed	

on	28	June	2015).	

a)	

	

B						b)	
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sample,	 the	majority	of	both	quality	scores	 (bullet	points	1&2)	should	be	greater	 than	

20.	All	four	nucleotides	(A,T,G,C)	should	have	a	uniform	distribution	throughout	the	read	

and	the	N	content	should	be	small.	Sometimes	the	first	or	 last	5-10	bases	from	a	read	

can	show	a	non-uniform	distribution	of	nucleotides	(noise),	which	could	be	due	to	the	

presence	of	some	random	primers.	As	these	can	cause	ambiguous	calls	or	wrong	calls,	it	

is	 better	 to	 trim	 these	 bases103.	 There	 should	 not	 be	 a	 high	 GC	 bias	 in	 the	 sample	

because	 it	can	 lead	to	non-uniform	sample	coverage	or	even	genomic	regions	with	no	

coverage	(Chen	et	al.,	2013;	Dohm	et	al.,	2008).	An	adapter	contamination	can	lead	to	

misalignments	 of	 reads,	 thus	 adapter	 trimming	 is	 also	 required	 in	 such	 situations	 (cf.	

Section	2.1.1).	Based	on	these	parameters,	the	sample	quality	can	be	judged.	If	a	sample	

fails	 to	 pass	 all	 of	 these	 quality	 checks,	 then	 it	 should	 be	 either	 discarded	 or	 should	

undergo	certain	processing	steps	to	improve	the	quality.	

	

BWA	algorithms	and	parameters	testing	

I	also	tested	the	effect	of	the	following	parameters:	

1. -l	seed	length	(default	value:	Infinite).	

2. -k	maximum	edit	distance	in	the	seed	(default	value:	2).	

	

Figure	A.4	Differences	in	alignment	at	default	BWA	parameters	and	at	K=30	and	L=50.	

																																																								
103	Bad	quality	sample:	

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html		
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The	upper	part	of	figure	A.4,	shows	the	alignment	at	k=30	and	l=50,	whereas	the	lower	

part	shows	alignment	at	default	parameters104.	Both	of	 the	alignments	at	 this	position	

are	almost	identical.	I	also	compared	alignments	at	other	positions,	but	did	not	find	any	

significant	differences.	Moreover,	the	alignment	statistics	at	k=30	and	l=50	are	identical	

to	the	default	values	(cf.	Table	A.1).	

	

BWA-aln	 Total	

Reads	

%	Aligned	

Reads	

%	Reads	

aligned	in	pair	

%	HQ	Aligned	

Reads	

Noise	

Reads	

%	HQ	Aligned	

Bases	(Q>20)	

default	 175704592	 0.988	 0.993	 0.923	 292	 0.881	

k=30	&	l=50	 175704592	 0.988	 0.993	 0.923	 292	 0.881	

Table	A.1	Alignment	statistics	for	BWA-aln	at	default	and	at	k=30,l=50.			

	

Indel	realignment	

The	 Indel	 realignment	 method	 is	 a	 part	 of	 the	 Genome	 Analysis	 Tool	 Kit105	(GATK)	

(DePristo	et	al.,	2011;	McKenna	et	al.,	2010).	It	is	a	two-step	process:		

1. Check	for	suspicious	intervals	(esp.	near	Indels)	in	the	alignment	by	using	GATK’s	

RealignerTargetCreator.	 It	 considers	 all	 Indel	 sites	 as	 suspicious	 which	 are	 not	

present	 in	 the	 known	 Indels	 list	 from	 Mills	 Divine	 (Mills	 et	 al.,	 2006),	 1000	

Genome	(Abecasis	et	al.,	2012)	and	the	dbSNP	dataset	(Sherry	et	al.,	2001).	

2. Perform	 local	 realignment	 (MSA)	 over	 those	 intervals	 by	 using	 GATK’s	

IndelRealigner.	This	procedure	needs	sufficient	coverage	(>	10x)	to	realign	reads	

correctly.	 For	 low	 coverage	 data,	 multi-sample	 realignment	 should	 be	

performed.	In	this	case,	aligned	reads	from	badly	covered	samples	from	a	single	

study	 (or	 similar	 studies)	 are	 merged	 resulting	 in	 sufficient	 coverage	 for	

realignment	of	the	reads.						

	

	

	

																																																								
104	http://bio-bwa.sourceforge.net/bwa.shtml		
105	https://www.broadinstitute.org/gatk/guide/topic?name=methods		
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Base	quality	score	recalibration	(BQSR)	

BQSR	corrects	the	bases	quality	scores	based	on	the	analysis	of	the	following	covariates:		

1. Read	 Group:	 Different	 lanes	may	 have	 different	 error	 profiles.	 Thus	 the	 reads	

originating	from	different	lanes	are	assigned	to	different	read	groups.	

2. Quality	 Score:	 This	 is	 the	 base	 quality	 score	 assigned	 by	 the	 sequencer’s	 base	

calling	algorithm.	

3. Machine	Cycle:	 It	reports	the	machine	cycle	(which	corresponds	to	the	position	

of	 the	base	 in	the	read)	that	produced	the	analysed	base.	This	 information	can	

be	 used	 to	 calibrate	 base	 qualities	 according	 to	 systematic	 errors	 due	 to	 their	

position	in	the	read.	

4. Di-nucleotide:	This	 is	 the	set	of	2bp	strings	where	 the	 two	bases	 represent	 the	

previous	 base	 and	 current	 base.	 It	 is	 used	 to	 identify	 sequencing	 errors	

dependent	on	a	two-nucleotides	context.	

	

GATK’s	BaseRecalibrator106	method	performs	BQSR	by	walking	 through	all	 the	 reads	 in	

BAM	file	and	constructing	bins	based	on	the	above-mentioned	covariates.	For	example,	

a	bin	contains	all	bases	belonging	 to	a	certain	 read	group,	having	 the	assigned	quality	

score	X	produced	by	Y	machine	cycle	and	having	Z	nucleotide	as	the	pervious	nucleotide	

in	dinucleotide	context	 (cf.	Figure	A.5)	 (first	4	columns	of	 row	6	 in	 the	 table	show	the	

parameters	defining	different	bins).	Then,	 for	each	bin,	 it	 counts	 the	number	of	bases	

within	 the	 bin	 and	 how	 frequent	 these	 bases	 mismatch	 the	 reference	 base	 in	 the	

alignment	(excluding	loci	present	in	dbSNP).	These	calculations	are	stored	in	a	table	(cf.	

Figure	A1.2),	and	used	to	calculate	the	empirical	probability	of	error	(i.e.	p(error)	=	num	

mismatches/num	observations)	 as	well	 as	new	 (empirical)	quality	 scores106.	 Figure	A.6	

shows	the	improvements	in	base	quality	scores	of	our	test	sample.	The	figure	at	the	left	

side	 shows	 the	 deviation	 of	 the	 reported	 quality	 scores	 (x-axis)	 from	 the	 empirical	

(observed)	 quality	 scores	 (y-axis)	with	 high	 root-mean	 square	 error	 (RMSE).	However,	

after	 BQSR	 corrections,	 base	 quality	 scores	 are	 almost	 identical	 to	 the	 empirical	 ones	

and	the	RMSE	value	dropped	significantly	(cf.	right	part	of	figure).		

																																																								
106	http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr			
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Figure	A.5	An	example	of	 the	BQSR	computed	 table	of	covariates	calculations.	First	half	of	 the	machine	

cycles	are	denoted	by	positive	(+)	sign,	whereas,	last	cycles	are	denoted	by	negative	(-)	sign.		

	

Figure	A.6	Improvement	in	the	base	quality	scores	(of	in-house	sample)	after	the	BQSR.		

	

Variant	quality	score	recalibration	(VQSR)	

As	described	in	section	2.3.1,	the	performance	of	VQSR	can	be	judged	by	clustering	plots	

of	 any	 combination	of	 the	 two	annotations	used	during	VQSR	 training.	Moreover,	 the	

tranche	plots	provide	a	means	for	evaluation	of	the	recalibrated	variant	list	in	context	to	

both	 sensitivity	 and	 specificity.	 I	 tested	 the	 performance	 of	 VQSR	 with	 the	 following	

different	combination	of	parameters:	

• At	default	parameters:	VQSR	does	not	even	run	and	throws	the	error:	“Clustering	

with	this	few	variants	and	these	annotations	is	unsafe”.	

• At	different	values	of	–mG	(maxGaussians)	parameters.	

• With	a	reference	variant	set	 (cf.	Section	2.3.1)	as	additional	 training	data	along	

with	a	smaller	value	of	mG	than	the	default	value	(default=8).		

After	testing	these	combinations,	I	found	that	VQSR	with	a	reference	variant	set	and	at	–

mG=6	works	well	for	most	of	the	data	(cf.	Figure	2.8).		
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Figure	A.7	VQSR	clustering	based	on	2	annotations:	ReadPosRankSum	and	MQRanksum.	The	 left	part	of	

the	 figure	 shows	 clustering	 without	 usage	 of	 the	 reference	 variant	 set	 during	 VQSR	 but	 with	 mG	 6	

parameter.	Whereas,	 the	 right	 part	 shows	 clustering	with	 usage	 of	 the	 reference	 variants	 set	 but	with	

default	value	of	mG	(mG=8).	

	

	

Figure	A.8	VQSR’s	four-default	tranches	and	their	correlation	with	sensitivity	and	Ti/Tv	ratio.	The	left	part	

of	 figure	 shows	 tranches	 plots	 generated	 by	 VQSR	with	mG	 6	 parameter	 only.	Whereas,	 the	 right	 part	

shows	tranches	plots	generated	by	VQSR	with	usage	of	reference	variant	but	with	default	value	of	mG.	
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Figure	 A.7	 shows	 VQSR	 clustering	 for	 the	 control	 sample	 NA12878	 based	 on	

ReadPosRankSum	and	MQRanksum	annotations.	These	clusters	do	not	show	significant	

differences	between	VQSR	at	only	mG	6	and	VQSR	with	only	 the	reference	variant	set	

(default	mG),	except	the	plot	at	the	right	is	a	bit	denser	than	the	first	one	as	it	is	having	

more	number	of	variants	due	to	reference	variant	set.	However,	 the	tranche	plots	 (cf.	

Figure	A.8)	clearly	shows	that	the	usage	of	a	reference	variant	set	is	necessary	to	get	a	

more	 specific	 and	 sensitive	 variant	 list.	 The	 recalibrated	 variant	 list	 generated	 from	

VQSR	using	the	reference	set	is	having	a	Ti/Tv	ratio	close	to	the	standard	value	of	2.8	for	

the	exome	sequencing	data.	On	the	contrary,	the	other	list	generated	without	using	the	

reference	 set	 has	 lots	 of	 FPs,	 thus	 a	 lower	 value	 of	 the	 Ti/Tv	 ratio.	 Overall,	 VQSR	

performance	 is	 dependent	 on	 the	 training	 data,	 thus	 the	 additional	 training	 data	 as	

provided	by	the	reference	variant	set	is	required	to	perform	a	reliable	variant	clustering.			

	

Annotations	and	filters	used	by	FilterRSE	

List	of	Annotations	

The	following	annotations	will	be	appended	(by	the	FilterRSE	tool	in	Annotation	mode)	

to	the	info	field	of	given	VCF	file.	A	description	of	each	of	these	annotations	is	added	to	

the	VCF	header	as	follows:	

1. ##INFO=<ID=NotPA	(P),	Number=.,	Type="String",	Description="Position	 is	not	a	

pipeline	 Artefact.	 "Value:	 Yes,	 if	 variant	 is	 called	 by	 other	 pipeline,	 otherwise	

Value:	NO)">.	

2. ###INFO=<ID=NIST	 (N),	 Number=.,	 Type="String",	 Description="Present	 in	 the	

NIST	list.	Value:	Yes,	if	the	RSE	location	is	shared	by	the	control	sample	NA12878	

and	present	 in	highly	 confident	 variants	 list	 (for	 this	 sample)	provided	by	GAIB	

(NIST),	otherwise	Value:	NO">.	

3. ##INFO=<ID=BROAD,	 Number=.,	 Type="String",	 Description="Present	 in	 the	

Broad	 list.	 Value:	 Yes,	 if	 the	 RSE	 location	 is	 shared	 by	 the	 control	 sample	

NA12878	and	present	in	the	validated	variants	list	(for	this	sample)	provided	by	

Broad	institute,	otherwise	Value:	NO">.	
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4. ##INFO=<ID=17MER,	 Number=.,	 Type="String",	 Description="String	 of	

17consecutive	bases	around	the	RSE	positions	(8	bases	upstream,	reference	base	

at	RSE	location,	8	bases	downstream">.	

5. ##INFO=<ID=CV,	 Number=.,	 Type="String",	 Description="Presence	 of	 the	 RSE	

location	 in	 the	 integrated	 variant	 list	 of	 common	 variants	 (CV)	 constructed	 by	

using	 1000	 genomes	 and	 EXAC	 VCF	 files.	 Value:	 NO	 or	 Yes	 followed	 by	 rsid	

(DBSNP	id)	and	minor	allele	frequency	(MAF)	computed	by	EXAC	if	the	variant	is	

present	 in	 both	 datasets	 (1000	 genomes	 and	 EXAC),	 otherwise	 MAF	 from	 an	

individual	dataset">.	

	

List	of	Filters	

The	 following	 filters	 can	 be	 applied	 by	 the	 FilterRSE	 tool	 (in	 “Filter”	 mode)	 either	

individually	or	in	combination.	A	description	of	each	of	these	filters	is	added	to	the	VCF	

header	as	follows:		

1. ##INFO=<ID=N,	 Number=.,	 Type="String",	 Description="Filter	 out	 those	 RSE	

locations	which	are	not	present	in	the	NIST	list">	

2. ##INFO=<ID=P,	 Number=.,	 Type="String",	 Description="Filter	 out	 those	 RSE	

locations	which	are	pipeline	artefact	(PA)	(not	called	by	other	pipeline)">	

3. ##INFO=<ID=C,	 Number=.,	 Type="String",	 Description="Filter	 out	 those	 RSE	

locations	which	are	not	in	the	common	variant	list	(100G+EXAC)">	

4. ##INFO=<ID=C_MAF,	Number=.,	Type="String",	Description="Filter	out	those	RSE	

locations	which	are	not	in	the	common	variant	list	(100G+EXAC)	only	if	they	have	

less	MAF	then	the	given	threshold".	
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Pseudocode	for	quality	trimming	script	

The	 following	 pseudocode	 provides	 the	 description	 of	 the	 implementation	 of	 quality	

trimming	 algorithm	 in	 Perl	 programming	 language.	 The	 theoretical	 description	 about	

this	algorithm	is	provided	in	the	section	2.1.1	of	Chapter	2.	

	

	 TrimBases (F,  Q,  L ,  B,  S) 

Input: 

 F=Fastq file 

 Q=Base quality score threshold for trimming (default = 10) 

 L=minimum length of a read to retain after trimming (default = 30) 

 B=maximum percentage of bad quality bases in read in order to keep it (default = 20) 

 S=file for statistics output (trimmed reads and trimmed bases counts) 

 O= Output: Fastq file after trimming action  

### 

While read each line in the file F 

 Store read sequence and corresponding quality score string in r and q respectively 

 Screen first 5 bases from 3‘ end of read and select base having quality score < Q as  start 

base (at position SB) for trimming action 

 Diff = 0  ### Initialize Diff (i.e. difference between quality score of certain base and Q)  

 Pos = SB  & MaxPos = Pos  

 MinPos =0 #### Starting base of read 

 while (Pos>0 and Diff>=0)  ###  screen each base from 3’ end  

   Diffcurr = QPos– Q   ### QPos denotes the quality score of base at position  

      Pos 

   if (Diff >0) 

    Diff = Diff + Diffcurr 

    MaxPos = Pos  ## Position of current base   

   end  

   Pos-- ## move to next base 

 done 

 MaxPos = MaxPos -1  ## last base of trimmed read 

 Screen first 5 bases from 5‘ end of read and select base having quality score < Q as start base 

 (at position SB) for trimming action 

 Pos=SB & MinPos=Pos   ## starting base of read 

 while (Pos< MaxPos and Diff>=0)  ###  screen each base from 5’ end  

   Diffcurr = Quality score of current base – Q 

   if (Diff >0)  
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    Diff = Diff + Diffcurr 

    MinPos = Pos   ## Position of current base 

   end   

   Pos++    ### move to next base 

 done 

 MinPos = MinPos+1   ## first base of trimmed read 

 if (MaxPos-MinPos < L)  

  Discard entire read 

 else 

  Trim bases from MinPos til MaxPos  

  Count LQbases (bases having less quality score than Q)   

  if (LQbases >B/100*length(q)) 

   Discard entire read 

  end 

 end 

 Count trimmed and discarded bases and reads 

 print trimmed read and respective quality score in file O 

done 

 print trimmed and discarded read and bases counts statistics in file S	
 

	

	

Pseudocode	for	expected	&	observed	kmer	generation	script	

The	 following	pseudocode	provides	 the	description	of	 the	 implementation	of	both	 the	

expected	 and	 observed	 kmer	 generation	 scripts	 written	 in	 Perl.	 The	 theoretical	

description	 of	 the	 observed	 and	 expected	 kmer	 generation	 is	 provided	 in	 the	 section	

4.1.3	of	Chapter	4.	Few	terminologies	 like	OCmid,	OCstart,	OCend	used	 in	pseudocode	

and	formula	using	these	values	for	coverage	correction	are	also	described	in	the	section	

4.1.3	of	Chapter	4.	
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ExpectedKmerGen(A, S ,  k ,  O) 

Input: 

 A=Base coverage file from one strand (generated by mpileup)  

 S=strand of aligned reads 

 k=desired length of kmer 

 O=Output directory to store outfile containing expected kmer and their counts 

### 

 

While read each line in the file A 

 Cov=0    ##will be the sum of coverage values of each base in kmer  

 Store the reference base in array @bases (as starting base of the kmer) 

 Get coverage value of this base and subtract Overcounts (OCstart)  

 Add the corrected coverage value to Cov 

 

 for (i from 1 to k-2)   ### Get middle bases of kmer  

  Get reference base from ith line and append in array @bases 

  Get coverage value of this base and subtract Overcounts (OCmid) 

  Add the corrected coverage value to Cov 

 Done 

 

 Get the last reference base of kmer (k-1)th line after the starting base and append to array 

 @bases 

 Get coverage value of this base and subtract Overcounts (OCend) 

 Store genomic location of last base as kmer position (Pos)   

 Concatenate bases in array @bases and store in kmer 

 kmer coverage (kmerCov)=Cov/k  

 print kmer, kmerCov, and Pos to kmer-file    ### generated kmer is stored in a tab separated 

 file 

done 

 

## Add coverage value of from multiple occurrences of each generated kmer in kmer-file 

for each generated kmer 

 if read strand S is ”reverse” 

  kmer = Reverse complement of generated kmer 

  count = Sum of the coverage value from multiple occurrences of kmer 

  print kmer and its count to output file in directory O 

done	
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ObserevedKmerGen(A, S ,  k ,  O) 

Input: 

 A=SAM file having aligned reads from one strand 

 S=strand of aligned reads 

 k=desired length of kmer 

 O=Output directory to store outfile containing observed kmer and their counts 

### 

 

While read each line in the file A 

 

 Extract read sequence from line 

 Split read sequence by each base and store each base in array @bases 

 

 for each base i in @bases (i from 1 to length(@bases)-(k+1)) 

  kmer = i   ### Initialize kmer with base i 

 

   for each base j in @bases (j from i to i+k-1) 

    kmer = kmer.j   ### Concatenate base j to kmer 

   done 

  print kmer to kmer-file    ### generated kmer is stored in a file 

 done 

done 

count number of occurrences of each generated kmer in kmer-file 

for each generated kmer 

 if read strand S is ”reverse” 

  kmer = Reverse complement of generated kmer 

  print kmer and its count to output file in directory O 

done 

	

Pseudocode	for	FilterRSEs	tool	

The	 following	 pseudocode	 provides	 the	 description	 of	 the	 implementation	 of	 the	

FilterRSEs	tool	written	in	Perl.	This	tool	uses	the	above	mentioned	filters	or	annotations	

(cf.	 Section	 “Annotations	 and	 filters	 used	by	 FilterRSE”)	 to	 filter	 out	 the	RSE	 locations	

from	 a	 given	 VCF	 file	 or	 to	 append	 RSE-associated	 annotation	 respectively.	 The	

theoretical	 description	 of	 the	 filter	 and	 annotation	 mode	 of	 this	 tool	 is	 provided	 in	

section	4.2	of	Chapter	4.	
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FilterRSEs (V,  M, O,  F ,  A) 

Input: 

 V=Given VCF file for RSEs filtering 

 M=Mode of script („Filter“ or „Annotation“) 

 O=Output directory to store output files (RSEfiltered, onlyRSElocs or RSEannotated) 

 F=Single filter name or comma separated list of filters (if Filter mode is selected). 

 A=MAF value (if DBALL_MAF filter is used)  

### 

R=List of RSEs 

print all annotations or information about the filters (depending on mode) into the Info field of VCF 

header 

While read each line in the file V 

 Store all variant locations (VarLoc) in a Hash %VCF 

done 

While read each line in the file R 

 Store all RSE locations (RSELoc) in a Hash %RSE 

done 

for each VarLoc in %VCF 

 if (VarLoc exists in %RSE & Mode eq "Annotate") 

  Append the info field of VarLoc with RSE annoataions  

  print this appended line into VCF.RSEannotated file in directory O 

 end 

 if (VarLoc exists in %RSE & Mode is "Filter") 

  Checks for the list of given filters and store in an array @Filter  

                                 for Filter i in @ Filter 

   if (FilterValue eq “NO”) ### the checked value of filter can change     

                                                                         according to filter depending of RSE annotations value  

    FilterOut VarLocs according to given filters  

    print Filtered VarLocs and used filter in additional column in  

   VCF.RSElocs_withFilter file in directory O 

   else 

   print unfiltered VarLocs in VCF. RSEfiltered file in directory O 

   end 

  done 

 else print unfiltered VarLocs in VCF. RSEfiltered file in directory O 

 end 
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List	of	RSEs	belonging	to	error	class	1	

The	 following	 table	 contains	 list	 of	 RSEs	 (class	 1)	 that	 resulted	 from	 systematic	 error	

detection	 approach	 presented	 in	 Chapter	 4.	 It	 consists	 information	 on	 chromosomal	

location	 (column:	 “Chr”	 and	 “Location”)	 of	 RSEs	 and	 surrounding	 9mer	 or	 17mer	

(column:	“Kmer”)	along	with	their	orientation	(column:	“Strand”).	
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The	 remaining	 columns	 contain	 some	 additional	 annotation	 for	 the	 reported	 RSE:	

present	 in	 the	 NIST	 list	 (“InNIST”),	 in	 the	 Broad	 list	 (“InBroad”),	 and	 in	 the	 DBall	

(“InDBall(rsid_MAF)”)	 along	with	 rsid	 and	MAF.	Moreover,	 column	 “InHC”	 shows	 that	

this	 RSE	 is	 called	 by	 another	 pipeline	 where	 HaplotypeCaller	 (HC)	 is	 used	 for	 variant	

calling	 (cf.	 Chapter	 4).	 The	 last	 column	 (“MotifLoc”)	 shows	 three	 different	 positional	
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forms	of	17mer	(or	9mer):		UbD=Upstream	motif	+	Error	base	+	Downstream	motif,	Ub=	

Upstream	motif	 +	 Error	 base,	 and	 bD=	 Error	 base	 +	 Downstream	motif.	 Furthermore,	

this	table	has	two	different	parts,	the	left	part	with	above-mentioned	columns	contain	

information	about	a	RSE	that	belong	to	one	chromosomal	location,	whereas,	right	part	

contains	the	information	about	another	RSE	on	different	chromosomal	location.		

	

Supplementary	material	

Supporting	information	files	(S1	to	S6)		

These	 files	 (mentioned	 in	 Chapter	 3)	 are	 available	 along	 with	 online	 version	 of	 the	

published	paper	(Kawalia	et	al.,	2015).		

URL:	 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126321#sec036	

(Accessed	on:	21	October	2015)		
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