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Abstract 

 
Molecular biology provides a unique insight into the workings of the evolutionary forces present in nature. 

As opposed to comparative anatomy, which relies on the structural makeup of species, molecular biology 

relies on the information contained within the biochemical makeup of the species. One of the salient features 

of a molecular evolution-based approach is that it relies on observations drawn from the changes occurring 

within the biomolecules for making inferences on the evolutionary forces in action. The overall makeup of 

such biomolecules is consistent across species, thus allowing for robust and comparable inferences across 

distantly related species. In many aspects, these biomolecules could be thought to carry the imprints of 

evolutionary forces. At the centre of these biomolecules is the DNA molecule, through which the necessary 

information on the species-specific traits is passed down from the parent generation to the offspring 

generation. DNA, in the form of genes, also codes for a specialized class of biomolecules, proteins, which 

are responsible for many functions within the cell, ranging from regulating pathways, aiding in response to 

pathogens, and controlling the expression of other genes. This transition of genes to proteins is tightly 

controlled by regulatory machinery that ensures the context-dependent activation of the genes and, 

consequently, the production of proteins. Hence, natural variants occurring within these regulatory elements 

could result in differential gene expression patterns and, potentially, alter the transition of genotype to 

phenotype. Given the central role of this regulatory machinery, it would be expected to be under a stronger 

influence of the evolutionary forces as compared to the genomic background.  

This study focused on understanding the impact of a specific evolutionary force, natural selection, on the 

gene regulatory elements through the perspective of the genetic variants occurring within them. Natural 

selection could be perceived as a force that confers fitness advantages to individuals based on their 

genotypic and phenotypic makeup. This study was specifically aimed at understanding the action of natural 

selection on the regulatory transcription factor (TF)- DNA interactions. These regulatory interactions have 

two motifs: DNA-binding domains (DNABDs), occurring on the TFs, and the Transcription Factor binding 

sites (TFBSs), occurring on the DNA molecules. The central aim of the study was to elucidate the action 

of negative/purifying and positive selection acting on these domains through a comparative framework. 

This study combined population and comparative genomics approaches to quantify the intensity of natural 

selection acting across two different evolutionary time scales.  

In the case of the DNABDs, we identified a signal of high constraint consistent across the evolutionary time 

scales and irrespective of the genomic control regions included in this study. This observation indicated 
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that DNABDs are under an increased intensity of purifying selection, which could be explained by the 

pleiotropic nature of the TFs. However, we do not observe similar trends when investigating the action of 

positive selection. Specifically, the intensity of positive selection was observed to be comparatively high 

for the DNABD regions only in certain populations of species with larger effective population sizes (Ne). 

In the case of the TFBSs, given that they are primarily a part of the noncoding genome, we developed a 

summary statistic to quantify the intensity of natural selection that would also be comparable to the 

summary statistic from the coding regions. On comparing the summary statistics from the coding and 

noncoding regions, we identify the signal of a comparatively relaxed constraint acting on the TFBS regions 

compared to the DNABD and other control regions. In addition, we also highlight that, overall, the TFBS 

are under a reduced influence of positive selection. The signal of reduced constraint and a decreased 

intensity of positive selection was consistent across the two evolutionary time scales.  

Overall, by exploring the intensities of selection on the DNABDs and the TFBSs, this study contributes to 

our understanding of the impact of natural selection acting on the regulatory elements across coding and 

noncoding regions. 
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Zusammenfassung 
 

Die Molekularbiologie bietet einen einzigartigen Einblick in die Funktionsweise der in der Natur 

vorhandenen evolutionären Kräfte. Im Gegensatz zur vergleichenden Anatomie, die sich auf den 

strukturellen Aufbau der Arten stützt, stützt sich die Molekularbiologie auf die im biochemischen Aufbau 

der Arten enthaltenen Informationen. Eines der hervorstechenden Merkmale eines auf der molekularen 

Evolution basierenden Ansatzes ist, dass er sich auf Beobachtungen stützt, die aus den Veränderungen 

innerhalb der Biomoleküle gezogen werden, um Rückschlüsse auf die wirkenden evolutionären Kräfte zu 

ziehen. Der Gesamtaufbau (allgemeine Aufbau, grundlegende Aufbau) solcher Biomoleküle ist bei allen 

Arten gleich, so dass robuste und vergleichbare Schlussfolgerungen auch bei weit voneinander entfernten 

Arten möglich sind. In vielerlei Hinsicht könnte man annehmen, dass diese Biomoleküle Abdrücke 

evolutionärer Kräfte tragen. Im Zentrum dieser Biomoleküle steht das DNA-Molekül, durch das die 

notwendigen Informationen über die artspezifischen Merkmale von der Elterngeneration an die 

Nachkommengeneration weitergegeben werden. DNA kodiert in Form von Genen auch für eine spezielle 

Klasse von Biomolekülen, Proteine, die für zahlreiche Funktionen innerhalb der Zelle verantwortlich sind, 

von der Regulierung von Stoffwechselwegen über die Reaktion auf Krankheitserreger bis hin zur 

Expressionskontrolle anderer Gene. Die Umwandlung von Genen in Proteine wird streng von einem 

Regelungsapparat kontrolliert, der die kontextabhängige Aktivierung der Gene und folglich die Produktion 

von Proteinen gewährleistet. Natürliche Varianten innerhalb dieser regulatorischen Elemente könnten daher 

zu unterschiedlichen Genexpressionsmustern führen und möglicherweise den Übergang vom Genotyp zum 

Phänotyp verändern. In Anbetracht der zentralen Rolle dieses Regelungsapparats ist zu erwarten, dass er 

im Vergleich zum genomischen Hintergrund einem stärkeren Einfluss der evolutionären Kräfte ausgesetzt 

ist.   

Diese Studie konzentrierte sich darauf, die Auswirkungen einer bestimmten evolutionären Kraft, der 

natürlichen Selektion, auf die genregulatorischen Elemente aus der Perspektive der in ihnen vorkommenden 

genetischen Varianten zu verstehen. Die natürliche Selektion kann als eine Kraft angesehen werden, die 

Individuen aufgrund ihrer genotypischen und phänotypischen Ausstattung Fitnessvorteile verschafft. Diese 

Studie zielte speziell darauf ab, die Wirkung der natürlichen Selektion auf die regulatorischen Interaktionen 

zwischen Transkriptionsfaktoren (TF) und DNA zu verstehen. Diese regulatorischen Interaktionen haben 

zwei Motive: DNABDs (DNA-binding domains), die auf den TFs vorkommen, und die TFBSs 

(Transcription Factor binding sites), die auf den DNA-Molekülen vorkommen. Das Hauptziel der Studie 

war es, die Wirkung negativer/reinigender und positiver Selektion, die auf diese Domänen einwirken, durch 
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einen vergleichendens Framework zu erhellen. In dieser Studie wurden Ansaetze der Populationsgenomik 

und der komparativen Genomik kombiniert, um die Intensität der natürlichen Selektion zu quantifizieren, 

die über zwei verschiedene evolutionäre Zeitskalen hinweg wirkt.   

Im Fall der DNABDs konnten wir ein Signal für eine starke Einschränkung feststellen, welches über die 

evolutionären Zeitskalen hinweg und unabhängig von den in dieser Studie einbezogenen genomischen 

Kontrollregionen konsistent ist. Diese Beobachtung deutet darauf hin, dass DNABDs einer verstärkten 

reinigenden Selektion ausgesetzt sind, was durch die pleiotrope Natur der TFs erklärt werden könnte. Bei 

der Untersuchung der Wirkung positiver Selektion konnten wir jedoch keine ähnlichen Trends beobachten. 

Insbesondere wurde beobachtet, dass die Intensität der positiven Selektion für die DNABD-Regionen nur 

bei Arten mit größeren effektiven Populationsgrößen (Ne) verhältnismäßig hoch ist.  

Da die TFBS in erster Linie Teil des nicht kodierenden Genoms sind, entwickelten wir eine 

zusammenfassende Statistik zur Quantifizierung der Intensität der natürlichen Selektion, die auch mit der 

zusammenfassenden Statistik der kodierenden Regionen vergleichbar sein sollte. Beim Vergleich der 

zusammenfassenden Statistiken der kodierenden und nicht-kodierenden Regionen stellen wir fest, dass in 

den TFBS-Regionen im Vergleich zu den DNABD- und anderen Kontrollregionen eine vergleichsweise 

geringere Einschränkung herrscht. Darüber hinaus stellen wir fest, dass die TFBS insgesamt einem 

geringeren Einfluss positiver Selektion ausgesetzt sind. Das Signal einer geringeren Einschränkung und 

einer geringeren Intensität der positiven Selektion war über die beiden evolutionären Zeitskalen hinweg 

konsistent.   

 

Durch die Untersuchung der Intensität der Selektion auf die DNABDs und die TFBSs lieferte diese Studie 

ein tiefes Verständnis der Auswirkungen der natürlichen Selektion auf die regulatorischen Elemente in 

kodierenden und nicht-kodierenden Regionen.  
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General Introduction 

 

Natural selection and Molecular evolution 

One of the many staggering observations made in biology is the wide variety of phenotypic differences in 

the species inhabiting this planet. In some cases, subtle phenotypic differences could also be observed in 

individuals belonging to the same species but originating from different populations. Evolutionary biology 

sets out to answer two critical questions regarding these phenotypic differences: Why do these differences 

occur? How do these differences occur? The former question could be answered through the perspective 

of causality. Specifically, changes occurring within the species are somehow warranted by the changes 

occurring within the species’ surroundings. These changes are mainly driven by the fitness cost attached to 

them. One of the predominant drivers of such phenotypic changes would be natural selection. This 

evolutionary force rewards beneficial phenotypes and penalizes detrimental phenotypes, i.e., individuals 

having beneficial phenotypes would have a reproductive advantage. To address the question of ‘How do 

these differences occur?’, one needs to look closely at the background genotype and the transition from 

genotype to phenotype. In this aspect, molecular biology provides an interesting perspective in 

understanding the evolutionary forces that shape phenotypic differences. Biomolecules could be perceived 

as elements constructed from building blocks that are, overall, consistent across different species. Subtle 

differences introduced in these building blocks could affect the resulting phenotype. Hence, differences in 

the genotypes could help in understanding the observed phenotypic differences between species. 

Based on the magnitude of information contained within them, DNA molecules could be perceived as an 

important class of biomolecules within the biochemical machinery of a cell. Primarily, these act as a 

blueprint containing information on the species-specific traits. Hence, these molecules are considered a key 

hereditary material responsible for transferring these species-specific attributes from a given generation to 

the next generation. The DNA molecules contain stretches of sequences, referred to as genes, that encode 

for a specialized class of biomolecules, proteins. These protein molecules play varying roles within the cell, 

ranging from assisting in biochemical pathways, aiding in host immune response, supporting the cell 

structure, etc.(Alberts et al. 2002). In addition, a specialized class of proteins, transcription factors (TFs), 

are also responsible for controlling the expression of other genes. The conversion of genes to proteins 
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encapsulates the flow of information, which impacts multiple downstream biological processes. Hence, the 

expression of genes is kept under the control of regulatory machinery responsible for the context-dependent 

switching-on and -off of the expression of genes. The seminal work by Jacob and Monod (Jacob and Monod 

1978) was one of the first to highlight the role of these gene regulatory elements (GREs) in controlling gene 

expression. King and Wilson (King and Wilson 1975) further highlighted that the variants occurring within 

such GREs could result in differential gene expression patterns and alter the transition of genotype to 

phenotype.  

 

Impact of natural selection on the GREs 

Given the critical role of GREs, they would be expected to be under the stringent control of natural selection. 

Several studies have investigated the impact of natural selection acting on the GREs through the perspective 

of genetic variants occurring within them. Many studies have investigated the impact of negative/purifying 

selection on the GREs. To exemplify, (Mu et al. 2011) highlighted that, in the case of Homo sapiens, the 

Transcription Factor binding sites (TFBS) are under a stronger influence of negative selection than the 

control regions, which did not exhibit TF binding activity. This study highlighted that TFBS showed a 

reduced diversity within populations and reduced “fixed” differences with a genetically neighbouring 

species, Pan troglodytes. A signal of reduced genetic diversity within the TFBS regions was also reported 

by (Vernot et al. 2012). Similar results of a reduced genetic diversity within the TFBS regions were also 

reported for Saccharomyces cerevisiae by (Connelly et al. 2013).  

These studies suggest that the GREs host limited genetic variation. However, multiple studies have 

highlighted instances of selective sweeps wherein naturally occurring beneficial variants within GREs 

rapidly increased in frequency within a population of species and were ultimately fixed (Schlenke and 

Begun 2004; Chan et al. 2010; Enattah et al. 2002). In general, elucidating the action of positive selection 

on individual genomic elements is challenging because the proportion of naturally occurring beneficial 

mutations is mostly lower than that of deleterious mutations (Barghi, Hermisson, and Schlötterer 2020). 

Hence, most studies focus on aggregating the signal of positive selection from multiple loci. To exemplify, 

(Vernot et al. 2012) highlighted that the genes participating in the pigmentation pathway within the 

European population of H. sapiens display a signature of positive selection. Perdomo-Sabogal and Nowick 

(Perdomo-Sabogal, Nowick, and Enard 2019) highlighted that the KRAB-ZNF group of genes are under an 

increased intensity of positive selection within multiple H. sapiens populations. Studies have also shown 

that the GREs are under the shared influence of both positive and negative selection. Here, negative 

selection is responsible for maintaining the existing regulatory elements, and positive selection is 
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responsible for the species-specific gain or loss of these regulatory elements (Haddrill, Bachtrog, and 

Andolfatto 2008; He et al. 2011).  

 

Comparative and population genomics-based framework 

Naturally occurring genomic variants originate from random genetic mutations. The overall evolutionary 

trajectory of species is decided by the fitness effect of such genomic variants in the context of the 

surrounding environment. Most of these variants do not directly influence the fitness of species, and these 

are referred to as neutral variants. The change in frequency of neutral variants is usually governed by 

random genetic drift, with exceptions occurring in scenarios when they are “linked” to non-neutral variants. 

However, a small proportion of the naturally occurring variants directly influence the fitness of species, 

referred to as non-neutral variants, and are subjected to selection. Variants detrimental to fitness are kept at 

lower frequencies within a population and are eventually “lost”, whereas variants beneficial for fitness are 

maintained at higher frequencies within a population and eventually get “fixed”. Hence, beneficial variants 

contribute less to within-species differences and more towards between-species differences. Comparative 

genomics studies use these between-species differences to highlight the action of selection on homologous 

regions between two or more species. This approach has been used extensively in the recent past to highlight 

genomic sequences potentially under the influence of selection across phylogeny. A possible caveat in such 

studies is that in terms of evolutionary time scale, the multi-species comparison highlights the signal of 

selection over comparatively longer time scales compared to within-species individual comparisons. Hence, 

the multi-species comparison approach will not be able to detect elements that have undergone selection in 

recent times. In the recent past, due to advances in sequencing technologies, performing ultra-deep sampling 

of populations within species has become feasible. Such an ultra-deep sampling approach enables the 

identification of the elements that have recently undergone selection and also helps identify population-

specific genomic elements that could be under selection and potentially contribute to local adaptation. 

Hence, as has been pointed out by Lawrie and Petrov (Lawrie and Petrov 2014), complementing between-

species variation data with the within-species population-specific variation data could prove to be a more 

potent approach in identifying functional elements that are under the action of selection. 

 

Impact of the effective population size (Ne) on the intensity of selection 

The action of selection strongly governs the rate of adaptation of species to environmental changes, wherein 

selection is expected to remove detrimental mutations and promote the beneficial mutations that would aid 
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in adaptation. However, mutations that are not under the action of selection are expected to fluctuate in 

frequency randomly under the action of genetic drift. Hence, the forces of selection and genetic drift act in 

tandem in the natural populations. One of the factors hypothesized to influence the intensities of these two 

forces in the species-specific effective population size (Ne) (Eyre-Walker and Keightley 2007.; Galtier 

2016; James, Castellano, and Eyre-Walker 2016). Specifically, an increase in Ne would result in an increase 

in the intensity of selection and a reduced intensity of random genetic drift. Several findings have 

corroborated this hypothesis. To exemplify, studies have shown that the proportion of naturally occurring 

beneficial mutations is lower in low Ne species (James, Castellano, and Eyre-Walker 2016; Eyre-Walker 

and Keightley 2007) and higher in large Ne species (Eyre-Walker and Keightley 2007; Andolfatto 2005). 

As stated in (Galtier 2016a), there are two main reasons for large Ne species exhibiting an increased intensity 

of adaptive evolution: the probability of beneficial mutations is directly proportional to the number of 

individuals within the population, and the chances of the fixation of a beneficial mutation are greater in 

high Ne species as compared to low Ne species where genetic drift is the predominant force. Consequently, 

the probability of purging deleterious variants would be higher in large Ne species. 

 

Scope of this study 

One of the central aims of this study was to identify the impact of natural selection on the GREs across 

different species. At the centre of this study were the regulatory TF-DNA interactions. We specifically 

focused on the interacting motifs in the TF-DNA interactions: DNA-binding domains (DNABDs), 

occurring on the TFs, and TFBS, occurring on the non-coding DNA. We use summary statistics to contrast 

the intensities of positive and negative/purifying selection acting on these GREs against different genomic 

control regions. Additionally, this study employed a comparative- and population-genomics approach to 

understand the impact of natural selection across different evolutionary time scales. This study spanned 

three species, namely – Homo sapiens, Arabidopsis thaliana and Drosophila melanogaster, and eight 

populations belonging to these species.  
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Abstract 

 
Transcription Factors (TFs) are an essential element within the biochemical machinery of a cell. They are 

usually responsible for controlling expression patterns of multiple downstream effector gene(s). This 

pleiotropic characteristic makes them an essential element in the gene regulatory network of species. The 

function of gene regulation is primarily performed via a set of regulatory domains integrated within the 

protein structure of TFs. Given their direct involvement in gene regulation, this study is focused on 

understanding the action of natural selection acting on these domains through a comparative framework. 

Specifically, this study integrated data from multiple species and their respective populations to analyze the 

action of selection acting on these regulatory elements on two evolutionary timescales. To better quantify 

the action of selection acting on these regulatory domains, we compare this signal against the selective 

pressures acting on multiple genomic control regions. We note a consistent signal of high constraint acting 

on these regulatory sequences across all species and populations, as compared to and irrespective of the 

control regions. This observation suggests that these regions are predominantly under the action of selection 

which weeds out non-beneficial and potentially deleterious alleles. In addition to the action of purifying 

selection, we also note an excess of beneficial alleles in these regulatory regions in high Ne species as 

compared to the control regions. These observations combined suggest that the regulatory regions in TFs 

are under strict action of selection and are under the influence of both positive and negative selection. 

 

Introduction 

 
Gene regulation is an important process that contributes to the overall molecular evolution of species. This 

process mainly encapsulates the context-dependent switching-on and switching-off of the expression of 

genes that are relevant in terms of the effective phenotype. Gene regulatory factors (GRFs) are a class of 

genomic elements responsible for this vital process. These GRFs could be broadly classified into two 

categories based on their mode of action: cis–acting elements (CREs) and trans-acting elements (TREs). 
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CREs are mainly non-coding regions of the genome that regulate the gene expression of neighbouring (and, 

at times, distal) genes. On the other hand, TREs are usually factors derived from coding regions of the 

genome that participate in the regulatory action by binding directly to the CREs. These cis and trans 

elements are usually acting in conjunction with each other. Given the functional importance of these 

domains, these are expected to be under a comparatively stronger influence of natural selection.  

This chapter will solely focus on elucidating and quantifying the effects of natural selection on the TREs, 

specifically focusing on an essential subset of TREs – Transcription Factors (TFs). TFs often serve various 

functions ranging from aiding cell differentiation and development (Ihn Lee and Young 2013) to controlling 

various biological pathways (Desvergne, Michalik, and Wahli 2006). TFs perform these functions by 

binding to the effector genes in a sequence-specific manner. Individual TFs have been documented to be 

regulating multiple target genes. Consequently, it is hypothesized that, given their pleiotropic nature, TFs 

could be experiencing stronger levels of purifying selection (Chesmore et al. 2016). On the other hand, 

mutations occurring within TFs could potentially promote or disrupt multiple regulatory interactions, which 

could aid in local adaptation. TFs undertake their regulatory function by binding to the effector gene(s) in 

a sequence-specific manner through specific functional domains within the TFs. Hence the TF-effector 

gene interactions have two interacting motifs: functional domains on TFs – DNA-binding domains 

(DNABD), and the stretch of sequence located in the proximity (in some instances also distally) of the 

effector genes – Transcription Factor Binding Sites (TFBS). In the context of their modes of action, TFBSs 

could be categorized as CREs. On the other hand, DNABDs are an essential element within TFs that 

facilitate the interaction of CREs and TREs. Given their direct involvement in gene regulation, functional 

genomics studies have attempted to characterize the action of selection acting specifically on these two 

motifs. 

We perform a selection-based analysis of these domains from a comparative genomics perspective to gain 

insights into the action of selection acting on the regulatory DNABDs. Here, we infer the action of selection 

acting on the genomic regions using basic summary statistics widely used in evolutionary biology, namely 

– πn/πs, πnonsense/πs, Kn/Ks, Knonsense/Ks (here referred to as constraint ratios) and α (proportion of adaptive 

substitutions). In order to compare and contrast the action of selection acting on DNABDs, we select two 

genomic control classes, namely – non-DNABDs and WGS. The former is a class of functionally 

unannotated sequences within the coding sequences of TFs, while the latter is the entire set of protein-

coding genes per species. The proximity of DNABD and non-DNABD, in terms of their genomic location, 

counters for differential recombination rates influencing the comparison of these two classes. On the other 

hand, comparing DNABD with WGS enables to perceive the signal of selection acting on the DNABDs in 

the context of the entire protein coding gene set per species. We employ a multi-species approach, which 
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enables understanding if the perceived signal of natural selection is consistent across multiple species, 

irrespective of their differing evolutionary trajectories. For this purpose, the choice of species included in 

this study was made on two parameters – genetic dissimilarity amongst each other and data availability. 

Consequently, the species included in this study were - Homo sapiens, Arabidopsis thaliana and Drosophila 

melanogaster. In addition to a multi-species approach, we further investigated the intensity of the action of 

selection on different evolutionary timescales per species. Specifically, we employed an intra- and inter-

species approach to ascertain if the observed action of selection is consistent across different species and 

on shorter and longer evolutionary timescales. Hence, we included a total of eight populations spanning the 

three species included in this study. To further validate if the action of selection differs based on differing 

local conditions, when possible, we chose populations located in differing geographical locations per 

species. We highlight an overall strong signal of purifying selection acting on DNABDs compared to the 

control regions across all species and evolutionary timescales. Given the functional importance of the 

DNABDs, this observation is consistent with the expectation. We further supplement this high constraint 

by highlighting the proportions of annotated deleterious variants within the DNABDs compared to the non-

DNABDs for H. sapiens. On the scale of positive selection, we observe an overall high α for the DNABDs 

compared to both control regions for high Ne species (A. thaliana and D. melanogaster), with some 

exceptions. By observing the signals of purifying and positive selection in conjunction, we also highlight 

that the overall efficiency of selection acting on the genomic regions increases with an increase in the 

species-specific effective population size (Ne), which is often used as a proxy for the actual population size 

of species. This result is in agreement with observations from previously reported studies (Galtier 2016a; 

James, Castellano, and Eyre-Walker 2016). The correlation between the efficiency of selection and Ne was 

the poorest in the non-DNABD regions, which are the functionally unannotated class of the genomic region. 
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Materials and Methods 

 

Dataset of Transcription Factors 

The species-specific lists of Transcription Factors (TFs) were constructed based on two important criteria. 

First, every species-specific gene included in the dataset had to have a corresponding manually annotated 

UniProt (UniProt Consortium 2022) identifier (UniProtKB/SwissProt), hence genes having a 

computationally annotated identifier (UniProtKB/TrEMBL proteins) were automatically filtered out of the 

list of genes. For every gene, a transcript that had a corresponding UniProtKB/SwissProt identifier was 

chosen as the representative transcript. Next, we filtered for genes that have at least one regulatory domain. 

Specifically, for every UniProtKB/SwissProt gene, we extract information on all the annotated functional 

domains as per the ProRule (Sigrist et al. 2002) annotation schema. Following this, all the genes that had 

at least one functional domain, which was annotated with either of the following Gene Ontology (GO) terms 

– “DNA binding”, “Transcriptional regulatory”, or “Transcriptional activity”, were retained. The species-

specific lists of TFs used in this study are thus comprised of these retained genes. The regulatory genomic 

regions annotated with the above-mentioned GO terms were of interest in this study and constituted the 

“test regions” in the analyses. For this study, these regions were termed DNA-binding domains (DNABDs). 

Besides the domains identified with the above-mentioned GO terms, we also identified domains within the 

coding region of TFs that were annotated with other (non-DNA binding) GO terms. Hence, as “control 

regions”, we used the coding region of TFs that were not functionally annotated with a binding domain of 

any type. For this study, these regions were termed non-DNA-binding domains (non-DNABDs). Using 

“control” and “test” regions within the same coding region also controls for heterogeneous recombination 

rates, influencing the signature of selection along chromosomes. The number of TFs per species and 

corresponding DNABDs included in this study are highlighted in Table 1.1.  
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Species No. of TFs included in this 

study 
No. of DNABDs identified 

H. sapiens 886 1198 

    A. thaliana 861 1030 

D. melanogaster 217 325 

Table 1.1 - Summary of the number of species-specific TFs and the corresponding DNA-binding domains included in this study   

 

 

Polymorphism and Divergence information 

This study employed an intra- and inter-species approach (Figure 1.1). Specifically, to study the intra-

species variation, the study comprised eight different populations for the three species included in this study. 

The information on the population-specific variants was obtained from the population-specific variant call 

format (.vcf) files. This information was used to capture the action of selection on a relatively shorter 

evolutionary timescale. On the other hand, we performed a per-gene transcript-specific orthology search to 

study inter-species variation using a reciprocal blast search approach. Specifically, we identified the 

orthologous gene in the outgroup species’ genome for every transcript sequence using blastn (Altschul et 

al. 1990) based on a 60% identity filter (Uricchio, Petrov, and Enard 2019). The obtained transcripts of the 

ingroup and outgroup species were further aligned with MUSCLE (Edgar 2004), and this alignment was 

used to estimate divergence. 

 

 

 

 

 

 

 



19 
 

 

Figure 1.1 – Graphical representation of the construction of this study. First, we extract the coordinates of the annotated 

functional domains within the TFs. DNA-binding domains are the “test” set of regions. Functionally unannotated regions within 

the coding sequences, non-DNA-binding domains, are “control” set of regions. Next, we identify the genetic variants occurring 

within these two genomic regions on the divergence and polymorphism scales. Finally, we segregate variants on the basis of 

their impact on the encoded amino acids (non-synonymous variants: change the encoded amino acid; synonymous variants: do 

not change the encoded amino acid) 

 

 

In the case of Arabidopsis thaliana, on the scale of shorter evolutionary time scales, this project focused on 

three populations, namely – Iberia (IB, n=45), North Sweden (NS, n=45) and Central Asia (CA, n=45). 

Information on the population-specific variations was obtained from the 1001 Genomes Project (Alonso-

Blanco et al. 2016b). For divergence information, we performed transcript-specific reciprocal blast with 

the transcript sequences from the outgroup species Arabidopsis lyrata (Hu et al. 2011). In the case of Homo 

sapiens, on the scale of shorter evolutionary time scales, this project focused on three different populations, 

namely – Yoruba (YRI, n=105), Utah residents with European ancestry (CEU, n=96) and Southern Han 

Chinese (CHS, n=105). Information on the population-specific variations was obtained from Byrska-

Bishop et al. (Byrska-Bishop et al. 2022) that was made available through the data repository of the 1000 

Genomes project (Auton et al. 2015b). For divergence information, we performed transcript-specific 

reciprocal blast with the transcript sequences of the outgroup species, Pan troglodytes (Mikkelsen et al. 

2005). Finally, in the case of Drosophila melanogaster, on the scale of shorter evolutionary timescales, this 

project focused on two populations – Zambia (ZAM, n=108) and Sweden (SWE, n=14). Information on the 

population-specific variations was obtained from (Kapopoulou et al. 2020) and DPGP3 (Lack et al. 2015). 

Similar to the previous two species, the divergence information was obtained by performing a reciprocal 

blast with the transcript sequences from the outgroup species, Drosophila simulans (Clark et al. 2007). 
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Constraint ratios 

In coding regions of the genome, the majority of the nonsynonymous mutations (mutations changing the 

encoded amino acid) could be considered potentially deleterious due to their impact on the encoded amino 

acid; selection would be expected to work against such variants, and hence such variants would be 

maintained in lower frequencies within species. A small portion of the nonsynonymous variants could also 

be beneficial, selection would be expected to work in their favour, and these would increase in frequency 

and eventually get fixed within species. However, in natural populations, frequencies of nonsynonymous 

variants are not only explained by drift and selection but also by other external factors such as bottlenecks, 

changes in demography, etc. Functional genomics studies use synonymous variants (mutations not 

changing the encoded amino acid) as putative neutral sites to control for these external factors. This ratio 

of nonsynonymous to synonymous variants, here termed as constraint ratio, has been used extensively in 

functional genomics studies to highlight the action of selection on various coding region elements (Guéguen 

and Duret n.d.; Yang and Nielsen 2000; Choudhuri 2014). This study uses constraint ratios over two 

evolutionary time scales: intra-specific constraint ratio (πn/πs) and inter-specific constraint ratio (Kn/Ks). 

Comparing these constraint ratios across different genes/genomic regions could give an understanding of 

the underlying selective forces. A central factor influencing these ratios is the number of gene-specific sites 

where nonsynonymous and synonymous variants could occur. Different genes would have differing 

nonsynonymous and synonymous sites, primarily due to differences in gene lengths. This could be a 

potential caveat in comparing constraint ratios across different genes and genomic regions. To counter this 

caveat, we factor in the differing gene-specific number of nonsynonymous and synonymous sites during 

the construction of the constraint ratios. Specifically, we normalise the raw variant counts by the number 

of sites to obtain gene-specific πn, πs, Kn and Ks metrics.  

 

An overall excess of the πn/πs constraint ratios as compared to Kn/Ks constraint ratios could be explained 

by purifying/negative selection. Here, selection maintains a high proportion of nonsynonymous variants at 

a lower frequency within the population, contributing more to within-species differences. At the same time, 

an excess of Kn/Ks as compared to πn/πs could be explained by positive selection. Here, beneficial alleles 

within species get “fixed” and contribute more towards between-species differences than within-species 

differences.  

 

 

Accessing the clinically annotated variants for H. sapiens 

Information on the clinically annotated variants within the H. sapiens genome was obtained from the 

ClinVar database (Landrum et al. 2018). Specifically, the clinical annotations were obtained through the 
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data repository of ClinVar in a tab-delimited format (date of accession - 2021-10-16). This file was first 

filtered to contain annotations only for single nucleotide variants. Next, we subset the file to exclusively 

contain variants annotated within the coding region of the TFs included in our dataset. The variants were 

then segregated based on their consequences, i.e., benign and pathogenic variants, and their location, i.e., 

DNABD and non-DNABD. Fischer’s exact test compared the proportions of pathogenic variants for the 

two genomic regions. 

 

 

Correlating the efficiency of selection with the species-specific effective population size (Ne) 

A drift-dependent variable could be used as a control to quantify the effect of change in species-specific Ne 

on the intensity of selection. Genetic diversity (π) (Nei and Li 1979) is a quantity directly dependent on the 

number of individuals within a population (π ∝ Ne*µ), where Ne is the effective population size and µ the 

mutation rate. However, according to Lewontin’s paradox (Lewontin 1974), the magnitude of change in 

the neutral genetic diversity may not translate to a similar magnitude of change in Ne. This is mainly due to 

two reasons, firstly, neutral genetic diversity could also be affected by changes in mutation rates (µ), and 

secondly, neutral genetic diversity is correlated to a “mean” Ne and does not factor in recent changes in 

population due to bottlenecks (Galtier 2016a). The proportion of deleterious mutations segregating within 

species is another drift-dependent quantity, where a decrease in drift would limit this proportion. In coding 

regions, amino acid-changing nonsynonymous variants could be perceived as deleterious mutations due to 

their impact on the coding sequences and are used to quantify the change in drift caused due to a change in 

Ne. However, factors like changes in the demography, mutation rate (when studying distantly related 

species), bottlenecks etc., could influence the rate of occurrence of such deleterious variants (πn). To control 

for such influences, synonymous sites have been used as neutral sites, the presumption being that external 

factors would influence both nonsynonymous and synonymous sites. Additionally, the rate of occurrence 

of these neutral variants (πs) increases with an increase in the number of individuals within the populations. 

Concatenating the drift-dependent variable, which elucidates the action of drift and selection, along with a 

neutral variable, to control for factors obstructing the signal of selection, the ratio of nonsynonymous 

mutations to synonymous mutations (πn/πs) has been used to infer the effects of change in Ne on the genetic 

drift and efficiency of selection. In this study, we use the πn/πs ratio as a proxy for the efficiency of purifying 

selection. An increase in the efficiency of purifying selection would translate to an increase in the efficiency 

of “weeding out” non-beneficial and potentially deleterious, nonsynonymous variants, consequently 

lowering πn/πs. The rate of occurrence of the neutral variants, πs, is taken as a proxy for Ne. 
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The measure of beneficial mutations under the influence of positive selection is given by α. This measure 

could be obtained by contrasting the proportions of “test” mutations segregating within species to the 

proportion of “test” mutations contributing to the between-species differences (explained in detail in the 

consecutive sections). Hence, α is used as a proxy for the efficiency of positive selection. Here too, the rate 

of occurrence of the neutral variants, πs, is taken as a proxy for Ne.  

 

Performing polymorphism- and divergence-based analysis over the whole gene set (WGS) per 

species 

Species-specific whole gene sets (WGS) were used as an additional control to contrast the action of 

selection acting on the DNABDs. For H. sapiens, WGS consisted of all “protein-coding” genes within 

chromosomes 1 to 22. For every gene, the MANE Select transcript was chosen as the representative 

transcript. MANE transcripts are a product of the MANE project, a joint initiative from NCBI and EMBL-

EBI, that aims at defining genome-wide representative transcripts for protein-coding genes in H. sapiens 

(Morales et al. 2022). Consequently, every gene that did not have an annotated MANE Select transcript 

was filtered out from the analysis. For A. thaliana, WGS consisted of all the “protein-coding” genes within 

chromosomes 1 to 5. For every gene, an Ensembl canonical transcript was chosen as the representative 

transcript. Consequently, every gene that did not have a corresponding Ensembl canonical transcript was 

filtered out from the analysis. Finally, in the case of D. melanogaster, WGS consisted of all the “protein-

coding” genes within chromosomes X, 2L, 2R, 3L, 3R and 4. Similar to A. thaliana, an Ensembl canonical 

transcript was chosen as the representative transcript, and consequently, every gene that did not have a 

corresponding Ensembl canonical transcript was filtered out from the analysis. The species-specific 

outgroup species chosen for analysis over LGS analysis were similar to the ones noted in the TF analysis. 

The number of species-specific genes included in this study has been highlighted in Table 1.2. 

 

 

Species No. of genes included 

within WGS 

H. sapiens  17751 

A. thaliana  27419 

D. melanogaster  17679 

Table 1.2 - Summary of the number of species-specific genes included within the WGS region 
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Signal of positive selection - predicting the proportion of adaptive substitutions with 

asymptoticMK  

The McDonald-Kreitmann test (McDonald and Kreitman 1991) is a widely used approach to detect the action of 

positive selection by inferring the proportion of potentially adaptive substitutions (α). In a nutshell, the test 

elucidates the signal of selection by comparing the πn/πs and Kn/Ks ratios exclusively. Rand and Kann (Rand and 

Kann 1996) introduced a similar metric to detect the direction of selection solely on πn/πs and Kn/Ks ratios, which 

they termed the Neutrality Index (NI). However, these approaches have been highlighted to have limitations due 

to some of their assumptions. Specifically, the assumptions of deleterious mutations being exclusively “lost” within 

species and beneficial mutations being exclusively “fixed” between species, where the latter is expected to not 

contribute to the within-species differences. However, slightly deleterious mutations segregating at low 

frequencies, and beneficial mutations about to reach fixation, would contribute to the within-species differences. 

Consequently, these assumptions could result in an underestimation of α (Haller and Messer 2017; Moutinho, 

Bataillon, and Dutheil 2019). 

 

To counter these shortcomings, recently introduced methods, like asymptoticMK (Haller and Messer 2017), utilise 

information from the whole site frequency spectrum (SFS) and the divergence information. Similar to the 

traditional MK-test-like approaches, this tool requires input information for two types of sites, namely “test” and 

“control” sites, to counter external factors influencing the detection of selection. By utilising the SFS information, 

this tool estimates the strength of the positive signal by considering the presence of slightly deleterious alleles 

(occurring at lower frequencies in the SFS). 

 

Alag – a tool for analysing the genetic variants occurring in the coding regions from a comparative and 

population genomics-based framework 

To perform a selection-based study on the genomic regions of interest, we developed Alag. This tool utilises 

information on genomic variations on the level of polymorphism and divergence. Internally, Alag consists of six 

processing steps and a final output step where the summary statistics are calculated per gene. Primarily, Alag was 

developed for calculating the summary statistics for functional domains of interest. Here, the tool relies heavily on 

the annotation information on proteins, which in this case was obtained from UniProt (UniProt Consortium 2022). 

However, these summary statistics can also be calculated and compared for the entire coding regions of genes. 

Alag also has the functionality for requesting the required genomic data from constantly maintained datasets like 

Ensembl, UniProt (Cunningham et al. 2022; Bateman et al. 2017) etc. This tool has been described in more detail 

in Chapter 3. 
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Results and Discussions 

 

Signal of high constraint acting on the DNA-binding domains as compared to the control regions across 

all populations from three species 

The nonsynonymous polymorphism constraint ratio (πn/πs) depicts the proportion of nonsynonymous to 

synonymous variants occurring within specific genomic regions across a given population. A reduction in the 

proportion of nonsynonymous variants compared to synonymous ones is interpreted as a signal of high constraint 

(Materials and Methods). We calculated the mean of πn/πs ratio for the DNA-binding domain (DNABD) and 

non-DNA-binding domain regions (non-DNABD) across the eight populations (distributed across the three 

species) involved in this study. Here, non-DNABD regions, functionally unannotated regions within the coding 

region of (TFs), were used as a set of putative control regions. In addition to the non-DNABD control regions, we 

used the whole gene sets (WGS) per species as an additional control region. Using the WGS as a control enables 

comparing the constraint acting on the DNABD regions to the overall constraint acting on genes per species. On 

comparing the mean πn/πs ratios for DNABD, non-DNABD and WGS regions (Table 1.3) and their respective 

distributions (Figure 1.2), we report a consistent signal of high constraint acting on the DNABD regions across 

all the population. Compared to the other two species, in the case of A. thaliana, we also observed comparatively 

less constraint acting on the non-DNABD regions than the WGS and DNABD regions. In the case of the other two 

species, the constraint acting on the non-DNABD regions is comparable to that of the WGS regions. 
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Figure 1.2 - Comparing the nonsynonymous polymorphism constraint ratios (πn/πs) across the three regions for the three species 

and eight populations. (Population codes are: YRI – Yoruba in Ibadan, CEU - Utah residents with European ancestry, CHS – 

Southern Han Chinese, CA – Central Asia, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia) 
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Species 

 

 

Population 

 

DNABD region 

  

 

non-DNABD region 

  

 

WGS 

 

πn/πs 

  

 

πnonsense/πs  

 

πn/πs 

 

πnonsense/πs 

 

πn/πs 

 

 

 

πnonsense/πs 

 

 

 

 

 

Homo sapiens 

YRI   

0.08241 

 

0 

 

0.25276 

 

0.00023 

 

0.28845 

 

0.00161 

CEU   

0.10841 

 

0 

 

0.23009 

 

0.00048 

 

0.28664 

 

0.00394 

CHS   

0.09582 

 

0 

 

0.30672 

 

0.00043 

 

0.27074 

 

0.00395 

 

 

 

Arabidopsis thaliana 

IB  

0.06893 

 

0.00081 

 

0.28187 

 

0.00096 

 

0.20408 

 

0.00195 

NS   

0.06261 

 

0.00042 

 

0.27161 

 

0.00173 

 

0.20823 

 

0.00225 

CA   

0.06970 

 

0.00040 

 

0.28941 

 

0.00131 

 

0.20679 

 

0.00217 

 

 

Drosophila 

melanogaster  

ZAM   

0.00605 

 

0 

 

0.09075 

 

0.00006 

 

0.09101 

 

0.00045 

SWE   

0.01236 

 

0 

 

0.09519 

 

0 

 

0.10007 

 

0.00055 
 

Table 1.3 - Comparing the mean estimates of the nonsynonymous and nonsense polymorphism constraint ratios of the three regions for the three species and eight populations. 

(Population codes are: YRI – Yoruba in Ibadan, CEU - Utah residents with European ancestry, CHS – Southern Han Chinese, CA – Central Asia, IB – Iberia, NS – North Sweden, SWE 

– Sweden, ZAM – Zambia) 
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In addition to the nonsynonymous mutations, we also collected information on nonsense mutations, a sub-category 

of nonsynonymous mutations that introduce a premature stop codon within the coding regions. We calculated the 

nonsense polymorphism constraint ratio (πnonsense/πs), which depicts the proportion of nonsense variants to 

synonymous variants occurring within specific genomic regions across a given population. On comparing the mean 

values of πnonsense/πs ratios for the three genomic regions, we observe a similar signal of high constraint acting on 

the DNABD regions compared to the control regions (Table 1.3). Interestingly, in the case of H. sapiens and D. 

melanogaster, we did not record any nonsense mutations within the DNABD regions across their respective 

populations. 

 

Signal of high constraint acting on the DNA-binding domains as compared to the control regions with 

the outgroup species 

Similar to the polymorphism constraint ratios, we calculated the nonsynonymous divergence constraint ratios 

(Kn/Ks) from the variants collected between the ingroup and outgroup species. Here, Kn/Ks depicts the ratio of 

nonsynonymous to synonymous variants fixed between the two species. On comparing the mean values (Table 

1.4) and their respective distributions (Figure 1.3) of the Kn/Ks ratios across the three genomic regions, we note a 

consistent signal of high constraint acting on the DNABD regions compared to the other two control regions. In 

addition to the nonsynonymous variants, we also calculated the proportions of nonsense variants for the divergent 

timescale (Knonsense/Ks). On comparing the mean Knonsense/Ks constraint ratios, we note a similar signal of high 

constraint acting on the DNABD regions (Table 1.4) 
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Figure 1.3 – Comparing the nonsynonymous divergence constraint ratios (Kn/Ks) across the three regions for the three species
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Species 

 
 

 

DNABD region  

 

non-DNABD region  

 

WGS region 

 

 

Kn/Ks 

 

Knonsense/Ks 

 

Kn/Ks 

 

Knonsense/Ks 

 

Kn/Ks 

 

Knonsense/Ks 

 

 

H. sapiens  

 

 

0.05488 

 

 

0 

 

 

0.19400 

 

 

0.00005 

 

 

0.2171 

 

 

0.00166 

 

 

A. thaliana  

 

 

0.07011 

 

 

0.00017 

 

 

0.22281 

 

 

0.00144 

 

 

0.20176 

 

 

0.00481 

 

 

D. 

melanogaster  

 

 

0.02543  

 

 

0.00021 

 

 

0.09485 

 

 

0.00091 

 

 

0.1495 

 

 

0.00181 

 

Table 1.4 - Comparing the mean estimates of the nonsynonymous and nonsense divergence constraint ratios of the three 

regions for the three species  

 

 

To summarize, we note a consistent signal of high constraint acting on the DNABD regions compared to the other 

two control regions. The signal of high constraint was observed across both evolutionary timescales. These 

observations suggest that the DNABD regions are under a comparatively higher intensity of purifying selection 

than the genomic background. This constraint could be attributed to their functional importance, specifically, their 

role in gene regulation. 

 

DNA-binding domains host a comparatively higher proportion of deleterious variants in the case of H. 

sapiens 

Given their central role in gene regulation, studies have highlighted the pleiotropic nature of TFs (Chesmore et al. 

2016). TFs undertake this critical role of gene regulation mainly through regulatory DNA binding domain regions 

(defined as DNABD regions in this study). Hence, introducing a variant within these regulatory DNABD regions 

could disrupt multiple downstream gene regulatory interactions. To further validate this hypothesis, we compared 

the proportions of deleterious variants to the total number of annotated variants in the DNABD and non-DNABD 

regions. Specifically, we compared the proportions of pathogenic variants annotated by ClinVar (Landrum et al. 

2018) to the total number of clinically annotated variants within H sapiens' DNABD and non-DNABD regions. 

ClinVar database catalogues clinically relevant variants within the human genome and annotates them based on 

their impact on fitness (pathogenic or benign variants). In addition to comparing the proportions of pathogenic 
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variants, we further tested if the proportions for the two genomic regions were significantly different using the 

Fischer exact test. On comparing these proportions, we observe that the proportion of potentially pathogenic 

variants occurring within the DNABD regions is significantly higher than those occurring within the non-DNABD 

regions (p-value < 0.05, Figure 1.4). This observation concurs with the expectation that, given the pleiotropic 

nature of TFs, variants occurring within the regulatory DNABD regions are more likely to be deleterious for fitness 

than those falling within the control regions. These variants could disrupt multiple regulatory interactions within 

the species-specific gene regulatory networks. 

 

 

 

 

Figure 1.4 – Comparing the proportions of annotated pathogenic variants to the total number of annotated variants for the 
DNABD and non-DNABD regions in H. sapiens 

 

 

Primary inferences on the action of positive selection by comparing πn/πs and Kn/Ks constraint 

ratios 

Previous sections were focused on elucidating the action of negative selection (purifying selection) acting on the 

DNABD regions through a comparative framework. Subsequent sections will now focus on inferring the action of 

positive selection acting on the DNABD regions through a similar comparative framework. We first performed 

the standard McDonald-Kreitman test (McDonald and Kreitman 1991)(MK test) to obtain preliminary inferences 
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on the action of positive selection on different genomic regions. The MK test makes inferences on positive 

selection by comparing the proportions of alleles segregating within a given population to the proportions of alleles 

fixed with the outgroup species. 

Table 1.5 shows the estimated proportions of beneficial alleles (α) per genomic region for all three species and 

eight populations. We make an overall observation that the estimates of α increase across all genomic regions with 

an increase in the species-specific Ne (Ne H. sapiens < Ne A. thaliana < Ne D. melanogaster). For high Ne species 

(A. thaliana and D. melanogaster), we report an overall high estimate of α for the DNABD regions compared to 

both control regions. However, this was not observed to be the case for H. sapiens. Hence, for high Ne species, as 

compared to the control regions, selection works more efficiently within the DNABD regions in weeding-out non-

beneficial alleles (potentially deleterious) and in fixing beneficial alleles (potentially adaptive). 

 

 

Species 

 

Population 

 

α estimates per region 

  
DNABD 

  

non-DNABD  WGS 

H. sapiens YRI 

  

-0.5 -0.30 -0.33  

CEU 

  

-0.62 -0.13 -0.32  

CHS 

  

-0.6 -0.51 -0.24  

A. thaliana IB 

  

0.02 -0.26 -0.01  

NS 

  

0.12 -0.21 -0.03  

CA 

  

-0.01 -0.3 -0.01 

D. melanogaster ZAM 

  

0.76 0.04 0.39  

SWE 

  

0.95 -0.01 0.32  

 

Table 1.5 – Estimates of the genomic region-specific α for the three species and eight populations using the traditional MK test. 

(Population codes are: YRI – Yoruba in Ibadan, CEU - Utah residents with European ancestry, CHS – Southern Han Chinese, CA – 

Central Asia, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia) 
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Estimating the proportions of adaptive substitutions (α) with a hybrid of traditional MK test and 

asymptoticMK 

The traditional MK-test offers an intuitive method of understanding the action of positive selection by directly 

comparing the πn/πs and Kn/Ks constraint ratios. However, many studies (Haller and Messer 2017; Moutinho, 

Bataillon, and Dutheil 2019) have highlighted potential shortcomings of the traditional MK test and similar 

approaches. Specifically, the traditional approach underestimates the α estimate due to slightly deleterious alleles 

segregating at comparatively lower frequencies within populations. To obtain a more accurate estimate of α, we 

also used asymptoticMK (Haller and Messer 2017). asymptoticMK, a proposed extension of the MK test, controls 

for the presence of slightly deleterious alleles segregating within populations by calculating SFS class-specific α 

(see Materials and Methods). The α estimates and the corresponding confidence intervals obtained from 

asymptoticMK for the different genomic regions across all the populations and species included within this study 

have been summarized in Figure 1.5.  

 

 

Figure 1.5 – Comparing the α estimates derived from asymptoticMK for the three genomic regions across the three species and 
eight populations. The bars indicate the 95% Confidence Interval deduced through bootstrapping. (Population codes are: YRI – 

Yoruba in Ibadan, CEU – Utah residents with European ancestry, CHS – Southern Han Chinese, CA – Central Asia, IB – Iberia, NS – 
North Sweden, SWE – Sweden, ZAM – Zambia) 
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On comparing the α for WGS regions per species, we observe an overall trend of an increase in the α estimates 

with an increase in the species-specific Ne. This observation seems to suggest an excess in the proportions of alleles 

under the influence of positive selection for species with large Ne. In contrast to the observations from Table 1.5, 

the mean estimates of α for DNABD regions were not found to be consistently higher than the other two control 

regions across all populations. However, the CIs around the estimates for DNABD and non-DNABD regions were 

relatively high compared to the WGS estimates. One of the main reasons for the high variance in these estimates 

could be the comparatively smaller number of variants within the DNABD and non-DNABD regions compared to 

the WGS regions. Consequently, this could result in highly varying α estimates.  

Due to the fewer variants per frequency class for DNABD and non-DNABD regions across all populations, we 

pooled the variants and re-employed the traditional MK test approach but with a frequency cutoff to remove the 

influence of slightly deleterious variants. Figure 1.6 depicts the SFS-class specific α estimate for the WGS region 

for species-specific ancestral populations. The convergence points of the asymptote curves in Figure 1.6 are 

considered to be the predictor of mean α. On convergence, the influence of slightly deleterious alleles impacting 

the estimates of α would be negligible. Hence, we used these convergence points per species as a threshold 

frequency. Additionally, variants occurring in high frequencies could be mis-polarized. To avoid the disruption of 

the signal of adaptive substitution due to mis-polarization, we artificially remove alleles using a threshold 

frequency of 0.9. We removed all the alleles below the threshold frequency before re-calculating α for the DNABD 

and non-DNABD regions. 

 

 

Figure 1.6 – asymptoticMK-based α estimates for the WGS regions of the ancestral populations within the three species. The 
asymptote is indicated with the red curve, the convergence points symbolize the α estimates, which are indicated with a 

horizontal red dotted line. The bootstraps are given with a horizontal grey patch around the α estimate. For DNABD and non-
DNABD regions, the minimum and maximum frequency cutoffs are indicated with the two vertical grey lines 

 



34 
 

Table 1.6 depicts the α estimates from re-calculations for DNABD and non-DNABD regions and the mean α for 

the WGS regions from the asymptoticMK analysis. Concurring with results obtained from the traditional MK test 

approach (Table 1.5), here we observed consistently high α estimates for DNABD regions compared to the other 

two control regions for high Ne species (A. thaliana and D. melanogaster). However, a similar observation was 

not observed for the low Ne species (H. sapiens). This observation further suggests that for high Ne species, 

DNABD regions tend to collect a comparatively higher proportion of adaptive substitutions than the other two 

control regions. 

 

 

Species 

 

Population 

 

Frequency 

cutoffs 

 

α estimate per genomic region 

  
 

DNABD 

  

 

non-DNABD 

 

WGS 

 

 

 

 

H. sapiens 

YRI 

  

0.35-0.90 -0.07 0.23 -0.04 

CEU 

  

0.35-0.90 -1.27 0.13 -0.11 

CHS 

  

0.35-0.90 -0.45 0.09 -0.12 

 

 

 

 

A. thaliana 

IB 

  

0.50-0.90 0.25 0.01 0.09 

NS 

  

0.50-0.90 0.51 -0.07 0.01 

CA 

  

0.50-0.90 0.01 -0.07 0.04 

 

 

D. melanogaster 

ZAM 

  

0.20-0.90 0.85 0.38 0.53 

SWE 

  

0.20-0.90 0.19 0.07 0.43 

Table 1.6 – α estimates for DNABD and non-DNABD regions with the traditional MK-test using frequency cutoffs. The used 

frequency cutoffs per species are highlighted in the third column. The mean α estimates for the WGS region from asymptoticMK 

are highlighted in the last column. (Population codes are: YRI – Yoruba in Ibadan, CEU – Utah residents with European ancestry, 

CHS – Southern Han Chinese, CA – Central Asia, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia) 

 

Scaling of πn/πs and α with the species-specific effective population sizes (Ne) 

In the previous sections, we observed correlation patterns between Ne and the action of selection, which could be 

perceived through summary statistics. These observations concur with the extensively studied effective population 

size hypothesis (Galtier 2016b; James, Castellano, and Eyre-Walker 2016). As described in the Materials and 

Methods section, the species-specific effective population size (Ne) is often used as a proxy to indicate the actual 

number of individuals within the population, whereas πs is used as a predictor of Ne. Here, we investigate in detail 
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whether an increase in the population size increases the efficiency of both positive and negative (purifying) 

selection.  

The action of negative selection could be perceived through πn/πs. Natural selection would actively work in 

weeding-out non-beneficial and potentially deleterious nonsynonymous variants segregating within a population, 

thereby decreasing the πn/πs ratio. On plotting the genomic region-specific πn/πs against their respective πs (Figure 

1.7), we observe an overall inverse correlation between πn/πs and πs for all the genomic regions. This inverse 

correlation concurs with the Ne hypothesis, suggesting that the efficiency of purifying selection increases with 

species-specific Ne.  
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Figure 1.7 – Correlating the efficiency of purifying selection and the species-specific (Ne). Here, πn/πs is used as a proxy to 
quantify the efficiency of purifying selection, and πs is used as a proxy for Ne. The correlation coefficients per region are noted in 

their respective panels. (Population codes are: YRI – Yoruba in Ibadan, CEU – Utah residents with European ancestry, CHS – 
Southern Han Chinese, CA – Central Asia, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia; Species codes are: A. 

tha – A. thaliana, D. mel – D. melanogaster, H. sap – H. sapiens) 

 

The action of positive selection could be perceived through α. In addition to suppressing non-beneficial and 

deleterious alleles, natural selection would be expected to drive the fixation of alleles bearing adaptive 

advantages. On plotting the genomic region-specific α against their respective πs (Figure 1.8), we observe 

an overall direct correlation between πn/πs and πs for all the genomic regions. This direct correlation also 

concurs with the Ne hypothesis, suggesting that the efficiency of positive selection increases with an 

increase in the species-specific Ne. 
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Figure 1.8 – Correlating the efficiency of positive selection and the species-specific (Ne). Here, α is used as a proxy to quantify the 
efficiency of positive selection, and πs is used as a proxy for Ne. The correlation coefficients per region are noted in the respective 

panels. (Population codes are: YRI – Yoruba in Ibadan, CEU – Utah residents with European Ancestry, CHS – Southern Han 
Chinese, CA – Central Asia, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia; Species codes are: A. tha – A. 

thaliana, D. mel – D. melanogaster, H. sap – H. sapiens) 

 

Hence, we observe an overall increase in the efficiency of positive and negative selection with an increase in Ne. 

Additionally, we note that the correlation coefficients for non-DNABD regions were consistently the lowest of the 

three regions in both cases. This observation further suggests that the scaling of selection efficiency with an 

increase in Ne differs for different subsets of genomic regions. 
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Chapter 2 – Elucidating the action of natural 

selection on the Transcription Factor Binding 

Sites (TFBS) 

 

The Abstract and Introduction sections of this chapter are mainly taken from 
the following review: 

 
 

Joshi, M., Kapopoulou, A., & Laurent, S. (2021). Impact of Genetic Variation in 

Gene Regulatory Sequences: A Population Genomics Perspective. Frontiers in 

Genetics, 12(July), 1–10 
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Abstract 

 

The unprecedented rise of high-throughput sequencing and assay technologies has provided a detailed 

insight into the non-coding sequences and their potential role as gene expression regulators. These 

regulatory non-coding sequences are often termed cis-regulatory elements (CREs). Genetic variants within 

CREs could potentially be associated with altered gene expression and phenotypic changes. Such variants 

are known to occur spontaneously and ultimately get fixed, due to selection and genetic drift, in natural 

populations and, in some cases, pave the way for speciation. Aiming to understand the impact of natural 

selection on these CREs, we aggregate information on Transcription Factor Binding Sites (TFBS) and 

variants occurring within these sequences on intra- and inter-species levels. By employing a Position 

Weight Matrix (PWM)-based scoring metric, we could obtain a class of non-neutral variants and construct 

summary statistics. On comparing the summary statistics for the DNABDs, non-DNABDs, WGSs (from 

Chapter 1) and CREs, we note a consistent signal of relaxed constraint acting on the CREs compared to the 

other three regions across both evolutionary timescales. This signal suggests that non-coding functional 

elements are under a comparatively relaxed constraint compared to the coding regions. We also highlight 

that CREs were under a comparatively relaxed constraint in the derived populations compared to the older 

populations across both evolutionary timescales. In addition to a comparatively relaxed constraint, we 

highlight a comparatively sparse action of positive selection acting on these CREs. Besides the Iberian 

population of A. thaliana and the Zambian population of D. melanogaster, we report overall negative 

estimates of α across CREs for all the other species and populations. On comparing the genomic region-

specific summary statistics across different evolutionary timescales, we could highlight that the non-coding 

regions are under a poor intensity of selection as compared to the coding regions. 

 

Introduction 

 
The initial human genome sequencing project revealed that the proportion of the total genome translated 

into proteins is ~1.5% (I. H. G. S. Consortium 2001), while the remaining portion (~98.5%) consists of 

non-coding DNA. This significant proportion of non-coding DNA is a hallmark of the genomes of higher 
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organisms (Li and Liu 2019). Evaluating the impact of genetic variation at the coding level is facilitated by 

a large number of annotated gene models and the simplicity of the genetic code for protein-coding DNA 

sequences. However, similar studies at the functional non-coding level have suffered from the 

comparatively sparse annotation and the complex and multifarious nature of the regulatory code. In this 

context, a vigorous debate unfolded as to the amount of functional information carried by the non-coding 

genome and eventually led to the broad acceptance that while essential, non-coding functional elements 

amount to a modest proportion of the total non-coding DNA (Doolittle 2013; Graur et al. 2013; Rands et 

al. 2014; Huang, Gulko, and Siepel 2017). In the last decade, advances in sequencing and assay technologies 

have contributed to the annotation of a large number of functional non-coding elements. For example, the 

ENCODE and modENCODE consortia (The modEncode Consortium 2011; The ENCODE Project 

Consortium 2012) used chromatin immunoprecipitation using sequencing (ChIP-seq) and ChIP-on-chip 

assays to gather a comprehensive catalogue of binding sites for a large number of Transcription Factors 

(TFs) in H. sapiens, D. melanogaster, and C. elegans based on genome-wide binding affinity profiles. The 

availability of such annotation data, along with genomic variation data, has enabled the exploration of non-

coding regions for diversity-based signatures of functional constraint. On the other hand, variants occurring 

in these regions have also contributed to adaptive evolution (Zhen and Andolfatto 2012). Hence, analyzing 

the patterns of constraint and variation in CREs contributes to our understanding of between-species 

phenotypic differences and the process of adaptation.  

Previous studies focused on elucidating the action of natural selection on the non-coding elements have 

mainly adopted two approaches in identifying and annotating the potentially functional non-coding 

elements: biochemical signature-based and conservation-based approaches. Annotating such elements is 

essential to quantify their exposure to natural selection. Here, biochemical signature-based approaches aim 

to annotate functional elements through a specific biochemical signature enabled by high-throughput 

sequencing techniques. These approaches use a biochemical signature as a proxy for functionality. One of 

the methods to identify potential regulatory elements is DNase-seq. It allows the identification of regions 

in the genome at which the chromosome has lost its condensed structure and is therefore susceptible to 

interactions with available TFs and cleavage by the DNase I nuclease. Such loci are DNase I hypersensitive 

sites (DHSs). They are localized by sequencing the DNA fragments cleaved by the nuclease and mapping 

them to the reference genome (Sullivan et al. 2015). Another method to assess genome-wide chromatin 

accessibility is the assay of transposase-accessible chromatin using sequencing (ATAC-seq), which is 

considered faster and more sensitive than DNase-seq (Buenrostro et al. 2016). Although loci identified by 

DNase-seq and ATAC-seq have been shown to be enriched in TF binding sites (TFBS) (Karabacak 

Calviello et al. 2019), these methods do not provide information about the nature of interacting TFs. On the 

other hand, ChIP-seq can be used to identify binding sites for a specific TF. This method allows the TF of 
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interest to bind to its putative binding sites before the DNA is sheared by sonication. TF-DNA bound 

complexes are then extracted using a TF-specific antibody. DNA is dissociated from the TF, sequenced, 

and aligned to the reference genome to identify enriched regions (ChIP-seq peaks) (Park 2009). The 

approach of equating a biochemical signature to functionality has been extensively highlighted to result in 

false-positive annotations (Graur et al. 2013; Doolittle 2013). However, functional genomics studies often 

use these elements displaying biochemical signatures as starting points. 

On the other hand, conservation-based approaches identify elements that are conserved across populations 

of single species or multiple species in a phylogeny. These approaches use phylogenetic or population-

specific conservation as a proxy for functionality. The availability of whole-genome sequence data from 

multiple species has enabled the detection of non-coding genomic regions with extreme sequence 

conservation at various phylogenetic levels. Conservation in these regions is generally thought to be caused 

by the presence of functional non-coding elements exposed to similar levels of negative selection across a 

set of species (Sandelin et al. 2004; De La Calle-Mustienes et al. 2005; Pennacchio et al. 2006). Therefore, 

comparative genomic analysis of conserved elements is an efficient approach to detecting non-coding 

elements involved in regulating developmental pathways common to many higher organisms. With the 

advent of sequencing technologies, it has also become possible to perform deep sampling across populations 

for species. Several projects (Auton et al. 2015a; Alonso-Blanco et al. 2016a) have embarked on performing 

such species-specific deep-sampling and sequencing of a large number of individuals across various 

populations. Through access to these individual-specific sequences, conserved non-coding regions specific 

to populations could be identified. However, using conservation as a proxy for functional elements could 

also potentially dilute the signal of selection (Arbiza et al. 2013).  

Here, we combine the biochemical- and conservation-based approaches to highlight the intensities of 

selection acting on the non-coding regions. Specifically, in this chapter, we leverage the available 

information from biochemical assays and TF binding models to deduce the signal of selection acting on the 

Transcription Factor Binding Sites (TFBS) through a comparative and population genomics-based 

approach on three species: H. sapiens, A. thaliana and D. melanogaster. Further, given the summary 

statistics for coding regions from the previous chapter, we compare the intensities of selection acting on 

these three species' non-coding and coding regions. First, we obtain a catalogue of non-coding regions 

within the genomes of these three species that showcase biochemical signatures through ReMap2022 

(Hammal et al. 2021). Specifically, we use the species-specific cis-regulatory modules (CRMs) highlighted 

in ReMap2022, which are stretches of sequences that are binding hotspots for multiple TFs. Next, we obtain 

binding models of TFs, which have been annotated to bind within the CRMs, through JASPAR (Castro-

Mondragon et al. 2022a) and PlantTFDB (Jin et al. 2017). We merge these two data sources to identify TF-
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specific binding site coordinates within CRM regions using TEMPLE (Litovchenko and Laurent 2016), a 

tool which aids in performing the analysis of genetic diversity within TFBS regions. On identifying the 

coordinates of TFBS regions, we further identify genetic variants occurring within them on two 

evolutionary timescales and obtain a class of affinity-disrupting variants. These are identified on the basis 

of a metric that we introduced, ratio score, which scores variants on the basis of their potential impact on 

the TFBS through the PWM models. These affinity-disrupting variants could be perceived as the equivalent 

of non-synonymous mutations within the coding regions. Finally, using synonymous variants within the 

coding regions as a putative neutral class, we construct constraint ratios for TFBS regions. Comparing the 

constraint ratios from coding regions and TFBS, we highlight an overall signal of less constraint acting on 

the TFBS. However, we also observe that in the case of D. melanogaster, the levels of constraint acting on 

the TFBS regions are comparable to those acting on some coding regions. Additionally, on comparing the 

TFBS-specific constraint ratios, we see a consistent signal of comparatively high constraints acting on the 

TFBS regions in the ancestral populations as compared to the derived populations. In addition to purifying 

selection, we also report a comparatively lower intensity of positive selection acting on the derived 

populations than the ancestral populations. We were able to highlight that the DNABD regions are 

consistently under a comparatively stronger influence of purifying and positive selection than the TFBS 

regions.  
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Materials and Methods 

 
Access to species-specific candidate cis-regulatory elements through ReMap 2022 

We retrieved information on the non-coding elements exhibiting biochemical signatures through ReMap 

2022 (Hammal et al. 2021). ReMap 2022 is a database that catalogues information on genomic regions 

within the three species that exhibit biochemical signatures through DNA-binding sequencing experiments 

(ChIP-seq experiments). This database catalogues stretches of regions annotated to be the binding hotspots 

for multiple Transcriptional Regulators (TRs) and identifies them as cis-regulatory modules (CRMs). For 

our study, we use these species-specific CRMs as starting sets of coordinates which are further filtered. 

First, we filter out CRMs that overlap with the annotated coding regions of the species. With this filter, we 

ensure to include only non-coding regions within the analysis. Next, we retain CRMs within a 2kb area of 

the coding regions and have a specific-specific overlap with this area (Table 2.1). With this filter, we aimed 

to retain potential cis-acting regulatory elements in the vicinity of genes (for example – TFBS and 

neighbouring enhancers). Additionally, we filter to keep CRMs with a minimum threshold of overlap with 

the 2kb region in the vicinity of the coding region. Finally, we filter these regions further to contain CRMs 

that have been assigned a score of 30 or more by ReMap 2022. The score assignment for every CRM 

correlates with the number of TRs annotated to be binding within the CRM. Table 2.1 highlights the starting 

and filtered number of CRMs per species. 

 

Species Total CRMs reported 

in ReMap 2022 

CRMs in the 

vicinity of coding 

regions (2kb) 

The threshold for 

minimum overlap 

within the 2kb 

vicinity region 

 

H. sapiens 3,329,428 22,208 500 bp 

A. thaliana 228,624 9,736 500 bp 

D. melanogaster 591,693 12,217 250 bp 

Table 2.1 - Summary of the number of CRMs retrieved and filtered in this study. From all the species-specific CRMs retrieved 

from ReMap2022, only those within a 2kb vicinity of a coding region and a minimum overlap were retained. The species-specific 

retained numbers of CRMs are highlighted in the third column, and the threshold for overlaps is highlighted in the last column  
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Access to Position Weight Matrix (PWM) information 

On obtaining the filtered list of CRMs, we also obtained information on the annotated TRs to have a binding 

activity within the specific CRM coordinates. The total number of TRs annotated to be binding in the 

filtered set of CRM coordinates is highlighted in Table 2.2. To precisely identify the binding coordinates 

of every TRs in the CRMs, we retrieve PWM data for these TRs. We access information on PWMs for A. 

thaliana through PlantTFDB (Jin et al. 2017) and for H. sapiens and D. melanogaster through JASPAR 

(Castro-Mondragon et al. 2022b). PWM gives information on a consensus binding profile for DNA-binding 

proteins. We first retrieved all the available species-specific PWMs from the data sources. Further, we 

retain PWMs whose corresponding TRs have been annotated to bind in the filtered CRM coordinates. The 

retained number of TRs annotated to have a binding activity within the filtered CRM coordinates and that 

also have corresponding PWM information are highlighted in Table 2.2. 

 

Species Total number of TRs 

reported to bind in 

the CRMs 

No. of TRs that 

exhibit binding 

activity in the 2kb 

vicinity region 

No. of TRs with 

available PWM 

information 

 

H. sapiens 1210 1207 421 

A. thaliana 423 422 250 

D. melanogaster 550 550 101 

Table 2.2 - Summary of the number of TRs annotated to be binding within the CRMs and a subset of those TRs on which PWM 

information could be retrieved via JASPAR (for H. sapiens and D. melanogaster) and PlantTFDB (for A. thaliana) 

 

Polymorphism and Divergence information 

Intending to capture the signal of selection acting on different evolutionary time scales, we construct this 

study in an intra- and inter-species framework. In the case of H. sapiens, this study consisted of two 

populations, Yoruba (YRI) and Utah residents with European ancestry (CEU), with a sample size of 45 

individuals per population. Population-specific polymorphism data were retrieved from Byrska-Bishop et 

al. (Byrska-Bishop et al. 2022), which was made available through the data repository of the 1000 Genomes 

project (Auton et al. 2015a). We used genome-wide alignments for divergence data from H. sapiens to the 

outgroup species, Pan troglodytes. Specifically, using the REST-API feature from Ensembl (Yates et al. 

2014), we retrieved CRM region-specific alignment with the outgroup species. Consequently, the analysis 

filtered and excluded CRM regions that were not aligned with the outgroup in the context of genome-wide 
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alignment. In the case of A. thaliana, this study consisted of two populations – Iberia (IB) and North Sweden 

(NS), with a sample size of 45 individuals per population. The population-specific polymorphism data were 

retrieved from the 1001 Genomes project (Alonso-Blanco et al. 2016b). Similar to humans, the divergence 

data for A. thaliana were also retrieved through the genome-wide alignment with the outgroup species, A. 

lyrata. We retrieved CRM region-specific alignments with the outgroup species through the REST-API 

feature of Ensembl (Yates et al. 2014). The non-aligned regions with the outgroup species were 

consequently filtered out. In the case of D. melanogaster, this study consisted of two populations, Zambia 

(ZAM) and Sweden (SWE), with a sample size of 30 and 14, respectively. The population-specific 

polymorphism data were retrieved from (Kapopoulou et al. 2020) and DPGP3 (Lack et al. 2015). 

Concerning the divergence information, the CRM regions were first aligned to the genome of the outgroup 

species, D. simulans. The resulting sequences were then re-aligned using MUSCLE (Edgar 2004).  

 

Identifying TFBS regions within CRMs using TEMPLE 

In order to precisely highlight the binding site of the TRs within a given stretch of the CRM region and to 

perform an overall analysis of the genetic diversity within the predicted TFBS region, we employ TEMPLE 

(Litovchenko and Laurent 2016). TEMPLE is a bioinformatics tool that predicts TFBS regions and 

performs genetic diversity analysis of these regions across different populations through a population 

genetics framework. This tool takes in three important input files: 

• Sequence alignment file (across the population(s) and with the outgroup species) – To capture the 

genetic variants within TFBSs occurring across different populations, TEMPLE uses individual-

specific sequence information. TEMPLE also facilitates the analysis of two populations in a single 

instance. Hence, we constructed a file containing sequence information per strain per population. 

In order to polarize the identified genetic variants, we also integrate the sequence information of 

the outgroup species, which was obtained using alignments (described in the previous section). 

• Region file – This file acts as an annotation source that aids in identifying the CRM region that 

TEMPLE processes. Specifically, this file contains meta-information on the genomic location of 

the CRM region and identifies PWMs that are scanned in this CRM region. 

• PWM file – TEMPLE uses PWM information to identify TFBS regions within the CRMs. This 

information is provided in the form of a count matrix. Specifically, the count matrices were 

constructed such that the sum of the counts of all four alleles for a single position would be 1000.  

 

One of the relevant aspects of the results from TEMPLE is the reported TFBS regions and the population-

specific variants occurring within these regions. TEMPLE generates a joint output file for the two 
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populations involved in the analysis. We separate the output files per population to contain only the reported 

segregating variants occurring within the TFBS regions and filter out fixed variants.  

 

 

Identifying the coding region nonsynonymous equivalent variants within TFBS 

 

As highlighted before, a potential challenge in performing functional analysis of the non-coding regions is 

the poor availability of annotations. Given the information on the triplets of nucleotides and their 

corresponding amino acids, variants occurring within the coding regions could be segregated based on their 

impact on the encoded amino acid. In the case of TFBS, we employ a similar approach to identify variants 

that would potentially impact the TFBS region's affinity. Specifically, using the count matrix information 

(PWM) and variants within the TFBS identified by TEMPLE, we investigate the change in the position-

specific count introduced due to the variant compared to the ancestral allele. To quantify this change in the 

position-specific counts, we devise a metric that we term the ratio score. This metric could be summarized 

as follows: 

 

 

ratio score = absolute (count of the ancestral allele – count of the variant allele) / max (count of the ancestral 

allele, count of the variant allele) 

 

 

This metric handles affinity-increasing and decreasing alleles similarly by measuring solely the magnitude 

of the potential change in the position-specific affinity introduced by the variant. We set two filters to 

identify nonsynonymous equivalent variants within the TFBS regions. First, the resulting variant had to 

have a ratio score of 0.6 or above. The PWM files used in this study are count-based. Specifically, the sum 

of the position-specific counts for all alleles is 1000. In some cases, both the reference and the alternate 

alleles could occur in small counts and result in a high ratio score. This would potentially be a false signal. 

To further ensure that alleles whose reference and alternate alleles occur in small counts in the PWM are 

not identified as nonsynonymous variants, we set a second filter of a minimum count for either of the 

ancestral or variant allele to be 400 or more. 

 

Consequently, with the rigid thresholds and filters, the retained variants could potentially impact the affinity 

of TFBS. However, the filtered-out variants might not always be neutral to the binding affinity; hence, 

categorizing them into synonymous-like variants could be inaccurate (especially variants with a ratio-metric 

score of just under 0.6 and a maximum count of alleles just under 400). To avoid using a potentially non-

neutral class as a control, we used the synonymous sites within the coding regions as control regions. The 
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approach of employing synonymous sites from coding regions to identify the signal of signature in the non-

coding regions has been used extensively (Kosakovsky Pond, Frost, and Muse 2005). This study uses the 

synonymous sites from the WGS (from Chapter 1) as control regions. 

 

 

The overall construction of the study 

The general workflow of this study is highlighted in Figure 2.1. We first access information on the species-

specific CRM regions and the TRs that have an annotated binding activity within these regions through 

ReMap 2022 (Hammal et al. 2021). Next, we access information on the PWM models per TRs through 

JASPAR (Castro-Mondragon et al. 2022a) and PlantTFDB (Jin et al. 2017). These two sources of 

information are fed to TEMPLE (Litovchenko and Laurent 2016) for identifying the specific coordinates 

of TFBS regions. In addition to identifying the TFBS regions, TEMPLE also highlights the population-

specific variants occurring within these regions. We identify the potential binding affinity disrupting 

variants using the ratio score metric. These variants are considered nonsynonymous equivalents for this 

study. 

 

 

Figure 2.1 – Graphical representation of the construction of this study. We obtain information on the CRM region through 

ReMap2022. Next, we scan for TFBS regions within the CRM regions using the PWM models of the TFs annotated to have a 

binding affinity within these regions. Using TEMPLE, we identify the potential TFBS regions and the population-specific variants 

occurring within them. Finally, using the ratio score metric, we identify the nonsynonymous equivalent variants within the TFBS 

regions 
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templeRun – a wrapper around TEMPLE 

 

This study spans multiple species and populations and aims to analyse a large number of CRM regions 

using a species-specific set of PWMs. Given the expansive nature of this study, and to aid in downstream 

analysis, we write a tool, templeRun, that acts as a wrapper around TEMPLE and enables customizing 

analysis as per our needs. Specifically, templeRun first constructs a sequence file per CRM region by 

building sequence information for every strain within the included two populations per species through a 

vcf (variant call format) file and retrieves information with the outgroup species by internally performing 

or requesting for alignments. Additionally, this wrapper also constructs the region file used by TEMPLE. 

Finally, templeRun internally executes TEMPLE per CRM region by importing the user-defined PWM file.  

 

The outputs obtained from TEMPLE are then processed. Finally, templeRun also constructs the construct 

ratios, which could be used in inferring signatures of selection acting on the TFBS regions. The technical 

details of this wrapper are explained in more detail in Chapter 3.  
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Results and Discussions 

 
Measuring levels of constraint on TFBS across the six populations 

Using the ratio-score metric, we identified a class of affinity-changing variants occurring within the TFBSs. 

In order to compare the levels of constraints acting on the TFBS to those acting on the coding regions 

(introduced in Chapter 1), the affinity-changing variants in TFBS could be considered a nonsynonymous 

equivalent of the coding regions. We constructed a TFBS-specific nonsynonymous polymorphism 

constraint ratio (πn/πs), which could be considered comparable to the nonsynonymous constraint ratios of 

the coding regions. This study's coding and TFBS region-specific polymorphism constraint ratios are 

denoted by πn/πs. The observed mean πn/πs constraint ratios for coding and TFBS regions are highlighted in 

Table 2.3.  

 

 

Species 

 

 

Population 

 

πn/πs  
 

DNABD 

  

 

non-DNABD  

 

WGS 

 

TFBS 

 

 

 

 

Homo sapiens 

 

YRI 

  

 

0.08241 

 

0.25276 

 

0.28845 

 

0.6502 

 

CEU 

  

 

0.10841 

 

0.23009 

 

0.28864 

 

1.3130 

 

 

 

Arabidopsis 

thaliana 

 

IB 

  

 

0.06893  

 

0.28187 

 

0.20408 

 

0.3275 

 

NS 

  

 

0.06261 

 

0.27161 

 

0.20823 

 

0.8066 

 

 

Drosophila 

melanogaster  

 

ZAM 

  

 

0.00605 

 

0.09075 

 

0.09101 

 

0.0889 

 

SWE 

  

 

0.01236 

 

0.09519 

 

0.10007 

 

0.2800 

Table 2.3 - Comparing the mean estimates of the nonsynonymous polymorphism constraint ratios of the coding (DNABD, non-

DNABD and WGS) and the non-coding (TFBS) regions for the three species and six populations. (Population codes are: YRI – 

Yoruba in Ibadan, CEU - Utah residents with European ancestry, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia) 
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In the case of species with low drift, D. melanogaster, we capture an interesting signal of a comparable 

constraint acting on the TFBS regions compared to the non-DNABD and WGS regions for the Zambian 

population. Some of the previous studies focused on elucidating the action of purifying selection on the 

non-coding regions have highlighted that the constraint acting on the non-coding region is comparatively 

less than the coding regions (Naidoo et al. 2018; Haddrill, Bachtrog, and Andolfatto 2008; Torgerson et al. 

2009). Here we show that in the ancestral populations of species experiencing low drift, the level of 

constraint acting on the TFBS regions could be comparable to the level of coding regions. However, this 

signal fades in the ancestral populations of species with a comparatively higher drift (H. sapiens – YRI & 

A. thaliana – IB). Specifically, the magnitude of the difference between the mean πn/πs ratios for WGS and 

TFBS increases with an increase in drift.  

The levels of constraint acting on the TFBS regions for the derived populations per species (D. 

melanogaster – SWE, A. thaliana – NS & H. sapiens – CEU) were noted to be consistently less than the 

coding regions. This observation agrees with previous studies suggesting that the non-coding regions are 

under comparatively less constraint than the coding regions (Naidoo et al. 2018; Haddrill, Bachtrog, and 

Andolfatto 2008; Torgerson et al. 2009). Additionally, the TFBS regions within the derived populations 

seem to be consistently under less constraint as compared to the TFBS regions within the ancestral 

populations. One of the possible reasons for less constraint could be explained by a comparatively higher 

influence of drift acting on the derived populations compared to the ancestral populations. This signal is 

further highlighted by comparing the overall distribution of the πn/πs constraint ratios for the derived and 

ancestral populations (Figure 2.2). 
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Figure 2.2 - Comparing the distribution of the nonsynonymous polymorphism constraint ratio (πn/πs) for the TFBS regions 

across the six populations. Here, the derived populations per species are highlighted in yellow, and the ancestral populations 

are highlighted in green. (Population codes are: YRI – Yoruba from Ibadan, CEU - Utah residents with European ancestry, IB – 

Iberia, NS – North Sweden, SWE – Sweden, ZAM – Zambia) 

 

On comparing the means of the πn/πs ratios for the DNABD and TFBS regions (Table 2.3), we highlight a 

consistent signal of high constraint acting on the DNABD regions as compared to the TFBS regions. This 

observation suggests that, on the level of polymorphism, the regulatory domains occurring on the TFs are 

under a higher intensity of purifying selection than the regulatory domains occurring on the non-coding 

DNA. 

 

Measuring levels of constraint on TFBS regions with the outgroup species 

Similar to the πn/πs constraint ratios, we also constructed nonsynonymous divergence constraint ratios 

(Kn/Ks) for the TFBS regions using the variants collected between the ingroup and the outgroup species. 

The comparison of the mean of Kn/Ks constraint ratios for the coding (from Chapter 1) and TFBS regions 
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is summarized in Table 2.4. In this study, the coding and TFBS region-specific divergence constraint ratios 

are denoted by Kn/Ks. 

 

 

Species 

 

Kn/Ks  
 

DNABD  

 

non-DNABD  

 

WGS 

 

TFBS 

 

Homo sapiens 

  

 

0.05488 

 

0.19400 

 

0.21710 

 

0.6032 

 

Arabidopsis 

thaliana  

 

0.07011  

 

0.22281 

 

0.20176 

 

0.2430 

 

Drosophila 

melanogaster 

  

 

0.02543 

 

0.09485 

 

0.14950 

 

0.0687 

Table 2.4 - Comparing the mean estimates of the nonsynonymous divergence constraint ratios of the coding (DNABD, non-

DNABD and WGS) and the non-coding (TFBS) regions for the three species. 

 

Along the similar lines of the observations from the πn/πs ratios comparison, for species with comparatively 

lower drift (D. melanogaster), here we note a signal of high constraint acting on the TFBS regions as 

compared to non-DNABD and WGS regions. The signal of a comparatively higher constraint acting on the 

TFBS regions is more pronounced on the divergence scale than on the polymorphism scale (Table 2.3). 

This signal of high constraint disappears for species with larger drift (H. sapiens & A. thaliana).  

Overall, the level of constraint acting on the DNABD regions seemed to be larger than the TFBS regions. 

This signal was also observed on the scale of polymorphism data. Hence, this suggests that the regulatory 

domains occurring on the level of TFs are under a high constraint compared to the regulatory domains 

occurring on the level of non-coding DNA across both evolutionary time scales.  

 

Estimating the proportion of adaptive substitutions (α) with a hybrid of traditional MK test and 

asymptoticMK 

Previous sections focused mainly on elucidating the action of purifying selection acting on the TFBS 

regions. We were able to highlight a signal of a comparatively lower constraint acting on the TFBS regions 

across both evolutionary timescales compared to the coding regions. We highlight exceptions occurring in 

the case of species experiencing comparatively lower levels of drifts. To quantify the intensity of positive 

selection, we estimated TFBS-specific proportions of adaptive substitutions (α). Similar to the DNABD 
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and non-DNABD regions, we employ a hybrid approach of employing the traditional MK test along with 

asymptoticMK (Haller and Messer 2017), an extension of the traditional MK test that incorporates intra-

species allele frequency information to estimate α. We adopt this hybrid approach to counter the limited 

number of variants occurring within populations for TFBS regions (compared to the WGS regions). Similar 

to the population-specific DNABD and non-DNABD regions (see Materials and Methods, Chapter 1), 

we set minimum and maximum frequency cutoffs and pool the filtered variants to infer TFBS-specific α. 

The comparison of α for TFBS and all coding regions from Chapter 1 is highlighted in Table 2.5.  

 

 

Species 

 

 

Population 

 

α estimates 

 

DNABD 

  

 

non-DNABD  

 

WGS 

 

TFBS 

 

 

 

 

Homo sapiens 

 

YRI 

  

 

-0.07 

 

0.23 

 

-0.04 

 

-0.66 

 

CEU 

  

 

-1.27 

 

0.13 

 

-0.11 

 

-1.63 

 

 

 

Arabidopsis 

thaliana 

 

IB 

  

 

0.25  

 

0.01 

 

0.09 

 

0.39 

 

NS 

  

 

0.51 

 

-0.07 

 

0.01 

 

-0.96 

 

 

Drosophila 

melanogaster  

 

ZAM 

  

 

0.85 

 

0.38 

 

0.53 

 

0.51 

 

SWE 

  

 

0.19 

 

0.07 

 

0.43 

 

-0.88 

Table 2.5 - α estimates the coding (DNABD and non-DNABD) and non-coding (TFBS) regions with the traditional MK-test using 

frequency cutoffs. The mean α estimates for the WGS region from asymptoticMK are also highlighted. (Population codes are: YRI 

– Yoruba in Ibadan, CEU - Utah residents with European ancestry, IB – Iberia, NS – North Sweden, SWE – Sweden, ZAM – 

Zambia) 

 

In the case of the ancestral population of D. melanogaster (ZAM), we obtain an α estimate that is higher 

than the non-DNABD region and slightly lower than the WGS region. Interestingly, for the ancestral 

population of A. thaliana (IB), we highlight an α estimate than all the coding regions included in this study 

suggesting the TFBS regions could harbour a comparatively higher proportion of beneficial mutations. The 

signal of comparable levels of α for the TFBS and coding region fades in the case of the ancestral population 

of H. sapiens (YRI). The α estimates for all the derived populations of the three species were consistently 
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lower than those from the ancestral populations and their respective coding regions. This observation, in 

conjunction with the observations from the πn/πs (Table 2.3) and Kn/Ks (Table 2.4), suggests that the TFBS 

regions in the derived populations are under a stronger influence of drift. 

The α estimates for the DNABD regions were consistently higher than those of the TFBS regions, 

suggesting that the regulatory domains on the TFs are under a comparatively stronger influence of both 

positive and negative selection than the regulatory domains occurring on the non-coding DNA. 

 

Scaling of πn/πs and α with the species-specific effective population sizes (Ne) 

This chapter contrasts the signatures of selection acting on the coding and TFBS regions through a 

comparative framework. We note that the differences in the intensities of selection acting on TFBS and 

coding regions reduce with an increase in the species-specific Ne.  

Figure 2.3 depicts the correlation between population-specific πn/πs and πs for coding and TFBS regions. 

Here, πn/πs is used as a proxy for the efficiency of selection to weed out non-beneficial and potentially 

deleterious nonsynonymous variants. Whereas πs, a measure of the proportion of neutral mutations 

segregating within species, is used as a proxy for Ne for every genomic region. We observe a consistent 

negative correlation between πn/πs and πs for all four genomic regions indicating that the intensity of 

purifying selection increases with an increase in Ne. The correlation between these two metrics seems to be 

lowest for non-DNABD regions, which are stretches of sequences within TFs that have not been 

functionally annotated. At the same time, the correlation is the strongest for the DNABD regions, which 

could be explained by their functional importance. These observations concur with the Ne hypothesis, 

suggesting that an increase in Ne enables purifying selection to act with better precision for weeding-out 

non-beneficial and deleterious alleles. 
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Figure 2.3 - Correlating the efficiency of purifying selection and the species-specific (Ne). Here, πn/πs is used as a proxy to 

quantify the efficiency of purifying selection, and πs is used as a proxy for Ne. The correlation coefficients per region are noted in 
their respective panels. (Population codes are: YRI – Yoruba in Ibadan, CEU – Utah residents with European ancestry, IB – Iberia, 
NS – North Sweden, SWE – Sweden, ZAM – Zambia; Species codes are: A. tha – A. thaliana, D. mel – D. melanogaster, H. sap – H. 

sapiens) 

 

 

Figure 2.4 depicts the correlation between α and πs for all the genomic regions. Here, α estimates the 

proportion of variants driven to fixation by positive selection. Hence, this quantity is a proxy for measuring 

the intensity of positive selection. 
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Figure 2.4 - Correlating the efficiency of positive selection and the species-specific (Ne). Here, α is used as a proxy to quantify the 
efficiency of purifying selection, and πs is used as a proxy for Ne. The correlation coefficients per region are noted in their 

respective panels. (Population codes are: YRI – Yoruba in Ibadan, CEU - Utah residents with European ancestry, IB – Iberia, NS – 
North Sweden, SWE – Sweden, ZAM – Zambia; Species codes are: A. tha – A. thaliana, D. mel – D. melanogaster, H. sap – H. 

sapiens) 

 

In addition to an increased action of purifying selection, there is an overall trend of an increased action of 

positive selection with an increase in Ne for all four genomic regions. Interestingly, the correlation between 

α and πs is the strongest for WGA. This observation suggests that the precision of selection to drive alleles 

to fixation scales strongly with Ne for the overall gene sets per species as compared to the functional 

domains (DNABD and TFBS). Consistent with the signal from purifying selection, the correlation between 

an increase in the intensity of positive selection and Ne is the lowest for non-DNABD regions. Hence, the 

correlation of an increase in the intensities of purifying and positive selection with Ne is the poorest for the 

functionally non-annotated regions, non-DNABD. 
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Chapter 3 – Tools developed for performing 

analysis of genetic variants occurring within the 

regulatory coding and noncoding regions 

(Tools described in this section are made available here –  

gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/) 

 

 

 

 

 

 

https://gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/
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Alag – a tool for performing comparative and 
population genomics-based analysis of genetic 
variants within coding regions and functional 
domains 
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Introduction 

Molecular biology provides a perspective in understanding the evolutionary processes acting on the level 

of a single organism or phylogeny. Tracking the natural changes occurring within the biomolecules could 

be used to interpret the action of natural selection. Due to the sparse availability of sequencing data, 

traditional studies mainly focused on understanding the action of natural selection on the level of species. 

However, recent advents in sequencing technologies have enabled population-specific deep sampling. 

Hence the availability of a large number of individual-specific sequencing data per species has helped 

in understanding the influence of natural selection on the level of populations. The combination of species- 

and population-centred studies could provide a unique insight into understanding the impact of natural 

selection on specific genomic elements over two evolutionary time scales (Lawrie and Petrov 2014).  

Performing a functional genomics-based study on coding regions is relatively straightforward, given the 

interpretable genetic code. Specifically, coding regions could be perceived as triplets of nucleotides 

(codons) that independently code for one amino acid. Hence, variants falling within these regions could be 

categorized based on their impact on the encoded amino acid (nonsynonymous and synonymous variants). 

Contrasting the proportions of these amino acid changing (nonsynonymous) to the neutral (synonymous) 

variants could be used to infer the intensities of selection acting on these genomic elements. Ratios of the 

“test” to “neutral” variants could be compared across various coding regions to contrast the proportions of 

constraints on these elements. Additionally, the signal of selection could also be deduced by comparing the 

proportions of “test” and “neutral” variants on the polymorphism and divergence levels. 

Here, we propose Alag, a tool for performing functional genomics-based analysis of coding region 

elements. Alag is compatible with working across the longer (between-species) and shorter (within-species) 

timescales. Initially, Alag aimed to elucidate the impact of natural selection on specific classes of genomic 

regions, namely the DNA-binding domains (DNABD) occurring within the Transcription Factors (TFs). 

However, we further extend Alag to be compatible with performing analysis of the overall coding region 

sequences within species. Briefly, Alag takes in the following information: 1) Population-level variant 

annotation file of the ingroup species (in .vcf file), 2) Transcript sequences of both the ingroup and outgroup 

species (in .fasta format) and 3) Coordinates of the functional domains of interest (optional, in a tabular 

format). On processing the inputs through a plethora of functions, Alag estimates summary statistics that 

are commonly used in inferring the levels of natural selection acting on specific genes or functional 

domains. Alag also integrates the asymptoticMK-based approach (Haller and Messer 2017) to infer the 

action of positive selection. The following sections are focused on capturing the overall structure of Alag. 

For reproducibility, the code and example input files discussed in this chapter are available on the following 

GitLab page – (gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/). 

https://gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/


60 
 

 

Requirements and input files 

Alag is majorly written in R (R Core Team 2022) and is compatible with versions 3.6.3 and above. It also 

integrates other tools and generates automatic system calls from within the scripts when needed. Following 

are the R packages and external tools used in Alag that are used in this example (R version 4.2.0): 

• ape (version 5.6-2) – R package 

• stringr (version 1.4.0) – R package 

• Biostrings (version 2.64.0) – R package 

• plyr (version 1.8.7) – R package 

• dplyr (version 1.0.9) – R package 

• seqinr (version 4.2-16) – R package 

• parallel (base package) – R package 

• biomaRt (version 2.52.0) – R package 

• ggplot2 (version 3.3.6) – R package 

• vcftools (version 0.1.14) 

• bcftools (version 1.9) 

• blastn (version 2.8.1) 

• MUSCLE (version 3.8.1551) 

 

In addition to the dependencies, Alag uses the following input files: 

• List of gene identifiers to be used in the analysis – optional if the annotation file is already provided 

• Annotation files for the ingroup and outgroup species (in .gff format) 

• Transcript coding sequences (containing only CDS features) for the ingroup and outgroup species 

(in .fa format) 

• A population-level variant annotation file of the ingroup species (in .vcf format) – optionally 

accession to individuals within specific populations 

• Coordinates of the functional domains of interest per gene identifier (in a tabular format, optional 

and not included in this example) 

 

Pre-processing 
 

During the processing of genes through Alag, identifying the representative transcript per gene is an 

important task. Here, the choice of the representative transcript is context-dependent. For the analyses of 
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the DNABD regions, the choice of transcript is based on the availability of the DNA-binding domain 

annotations per transcript. As stated in the Materials and Methods section of Chapter 1, annotations on 

DNA-binding domains are accessed through UniProt (UniProt Consortium 2022). Hence, the choice of the 

transcript was based on two filters – 1) The representative transcript should have an annotated SwissProt 

ID & 2) The corresponding SwissProt ID has an annotated DNA-binding domain. For the DNABD-based 

analyses, these criteria were constant across the three species included in our study. In the case of the 

complete gene analysis, the choice of the representative transcript was species-dependent. In the case of A. 

thaliana and D. melanogaster, the Ensembl canonical transcript was chosen as the representative transcript. 

On the other hand, for H. sapiens, MANE (Morales et al. 2022) transcript was chosen to be the 

representative transcript. The resulting conversion table between gene, transcript and peptide identifiers is 

stored in the input_files/ folder. The conversion tables are used on multiple instances during the processing. 

 

The flow of information within Alag 

Two central functions are involved in processing information through Alag: key.R and main.R. Here, key.R 

is a central point of importing required libraries, and functions, setting paths to the required input files and 

declaring constants. Alag is built for handling a large set of genes per analysis. Hence, the query gene sets 

are split into short batches by default. The total number of batches and the number of genes per batch is 

controlled with a combination of a counter and a for-loop combination, which could be changed when 

required. key.R internally executes main.R by supplying the list of gene identifiers to be processed. main.R 

is a hub of all the functions included in Alag. These functions are stored in the includes/ folder. main.R 

consists of seven interlinked steps that are executed sequentially. The output resulting from each step is 

stored in a batch-specific backup folder. In the scenarios of termination, this enables resuming the execution 

of the code from the point of halt. The following are the steps involved:  

 

 

• Step 1 – Extracting the coding region coordinates for genes 

This step executes the get_largest_transcript_cds_info function. This function uses the identifier 

conversion table to extract the coordinates of genes included in a single batch from the ingroup 

annotation file. 

 

 

• Step 2 – Identifying the potential ortholog with the outgroup species using a combination of a 

reciprocal blast heuristic and realignment – (Polymorphism scale information) 
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This step executes the get_transcript_reciprocal_alignments function. Using the information on 

the transcript sequences from the outgroup species, this function identifies the potential ortholog 

gene pairs with the outgroup species using a Reciprocal Best Hit Blast (RBGB) technique. 

Specifically, first, the transcript sequence from the gene in the ingroup is aligned against all the 

transcript sequences in the outgroup species (forward blast). From the resulting outputs, the 

transcript with the highest identity score is selected. Secondly, this output transcript from the 

outgroup species is aligned against all the transcript sequences from the ingroup species (reverse 

blast). Similar to the previous alignment, the choice of the top transcript is based on the identity 

score. An orthologous gene is identified on the following two conditions: 1) The gene identifier for 

the ingroup species from the forward and reverse blast is the same & 2) Both forward and reverse 

blasts have a minimum identity score of 60%. Genes that do not pass through these two were 

omitted from the further analyses. Following the outputs from the reciprocal blast, the resulting 

ingroup and outgroup transcripts are re-aligned using MUSCLE. Since the estimates made 

throughout this analysis rely on codons, and alignments through MUSCLE are not sensitive to the 

open reading frames (ORFs), this function further purifies the alignments by trimming the ends if 

necessary to retain the ORF. 

 

 

• Step 3 – Extracting information on the divergent sites and calculating lengths to normalize the 

variants – (Polymorphism scale information) 

 

This step executes the get_divergent_sites_2 function. Using the ORF-sensitive alignments per 

gene generated from the previous step, this function first identifies the positions of divergent sites 

between the ingroup and outgroup species. These variant sites are first filtered to remove gaps. 

Next, this function estimates the background lengths on the potential nonsynonymous and 

synonymous sites within the alignments obtained from the previous step. Specifically, this function 

iterates over every codon, predicts the impact of mutations occurring in each position, and 

calculates the total number of nonsynonymous and synonymous sites per codon by dividing these 

lengths by 3. These per codon lengths are summed over for the aligned regions to obtain a single 

estimate of the background nonsynonymous and synonymous lengths. 
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• Step 4 – Calculating divergence statistics – (Polymorphism scale information) 

 

This step executes the get_divergence_stats function. This function combines information on the 

divergent sites (with the outgroup species obtained from the previous step) and the transcript 

sequence to categorize variants based on their impact on the encoded amino acid. Specifically, this 

function observes every variant in the context of the transcript sequence, identifies the codon 

affected by the variant and predicts the effect of the variant on the respective codon. This function 

uses the background length information (obtained from the previous step) to normalize the raw 

counts on obtaining the total number of nonsynonymous and synonymous variants. Consequently, 

this function calculates gene-specific ratios of nonsynonymous and synonymous variants (Kn and 

Ks, respectively). 

 

 

• Step 5 – Extracting information on the observed variants within populations – (Divergence scale 

information) 

 

This step executes the get_frequencies_cds_for_aratha function. First, from the population-

specific variation data (supplied to Alag in .vcf file), this function extracts variants occurring within 

the coding sequence of the genes. The extracted variants are further filtered to retain only single 

nucleotide variants (SNVs). Using the transcript sequence, this function first identifies the codons 

that would be affected due to these variants and categorize them as either synonymous or 

nonsynonymous based on their impact on the corresponding codon. Next, the function polarises 

these variants to identify the ancestral allele state using the outgroup species. The information on 

the position-specific alleles of the outgroup species is obtained using the transcript alignments 

(generated in Step 2). Variant positions in a tri-allelic state (differing reference, alternate and 

outgroup alleles) are filtered out, and only variants in a bi-allelic state were retained. Finally, 

information on the frequency, polarization (derived or ancestral), effect on the codon 

(nonsynonymous or synonymous) and meta-information on the genomic position of the alleles are 

aggregated in a tabulated format.  

 

 

• Step 6 – Calculating the polymorphism statistics – (Divergence scale information) 
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This step executes the get_polymorphism_stats_per_gene2 function. Using the tabulated 

information on the variants occurring within a given population from the previous step, this 

function constructs the proportion of nonsynonymous and synonymous variants per gene. 

Specifically, using the frequency information of variants, this function first calculates the sum of 

diversity (π), separately for nonsynonymous and synonymous variants, per gene. Next, similar to 

the divergence statistics (calculated in Step 4), this function normalizes the proportion (diversity) 

of the two types of variants based on their background lengths. Consequently, this function 

calculates gene-specific ratios of nonsynonymous and synonymous variants (πn and πs, 

respectively). 

 

 

 

 

• Step 7 – Converging information from the two evolutionary timescales 

 

This final step is executed within main.R. This step collects the divergence and polymorphism 

statistics (calculated in Step 4 and Step 6, respectively). It merges them to create a single output 

table. Each row represents a single gene, and the columns represent relevant summary statistics and 

corresponding meta-information on the gene identifiers. 

 

 

Example outputs 

The batch-specific outputs produced from Alag are stored in a backup folder. Additionally, on calculating 

summary statistics per gene, Alag creates a table summarizing this information for every batch. Some 

example outputs are stored in the example_outputs/ folder. The script for performing primary analysis of 

the outputs from Alag and the resulting outputs are stored in analysis/alag_analysis. In this example, we ran 

Alag over the whole gene set of A. thaliana. Here, we will discuss some of the outputs briefly: 

 

 

• Constraint ratios 

 

One of the central outputs from Alag is the estimation of the constraint ratios, which are the 

proportions of nonsynonymous (or similar) variants to synonymous variants. As mentioned before, 
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these proportions are normalized using the background lengths. The resulting polymorphism and 

divergence constraint ratios for this example are highlighted in Table 3.1(a) and (b), respectively: 

 

 

 

πn 

 

πs 

 

πnonsense 

 

πn/πs 

 

πnonsense/πs 

 

 

0.0047 

 

 

0.0009 

 

9.13E-06 

 

0.2041 

 

0.0019 

Table 3.1 (a) – Polymorphism constraint ratios 

 

 

 

Kn 

 

Ks 

 

Knonsense 

 

Kn/Ks 

 

Knonsense/Ks 

 

 

0.0277 

 

 

0.1373 

 

0.0006 

 

0.2018 

 

0.0048 

Table 3.1 (b) – Divergence constraint ratios 

 

 

 

 

On comparing the nonsynonymous polymorphism constraint rations (πn/πs) and the 

nonsynonymous divergence constraint ratios (Kn/Ks), it could be seen that πn/πs is slightly larger as 

compared to Kn/Ks. In addition to nonsynonymous mutations, Alag also reports the proportion of 

nonsense mutations. Nonsense mutations are nonsynonymous mutations that introduce a premature 

stop codon. 

 

 

• Site frequency spectrum (SFS) plot 

 

In order to understand the distribution of the allele frequencies across the population for the three 

types of variants, Alag constructs SFS. The SFS plot for the example is shown in Figure 3.1. 

 

 



66 
 

 
 

Figure 3.1 – Site frequency spectrum plot for comparing the class-specific frequencies of the three variants 

 

 

Interestingly, it could be seen that the nonsense mutations harbour a comparatively higher 

proportion of variants in both low and high-class frequencies as compared to both nonsynonymous 

and synonymous variants. 

 

 

• SFS class-specific α estimate 

 

Inspired by the approach implemented in the asymptoticMK (Haller and Messer 2017) tool, Alag 

calculates α per frequency class within the SFS. These α estimates for the example are shown in 

Fig 3.2. 
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Figure 3.2 – SFS class-specific estimates of α. Here every point indicates an α estimate for the specific frequency class 

 

Low-frequency classes are expected mainly to consist of slightly deleterious or deleterious 

mutations; hence their contribution towards α is negative. A negative α likely indicates an excess 

of variants segregating within a population (in this case for a specific SFS class) as compared to 

the fixed differences between two species. With an increase in frequency, the α estimates seem to 

increase. However, for higher frequencies, α estimates seem to be again lower, which could be 

caused due to mis-polarization. 
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templeRun – a wrapper around TEMPLE for 

automating the processing and analysis of 

genetic variants in the TFBS regions 
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Introduction 

Given the central role of the gene regulatory elements within the overall biochemical machinery of a cell, 

variants occurring within these could be potentially responsible for differential expression patterns of the 

effector genes. Selection-based studies use the information on these genetic variants to infer the influence 

of evolutionary forces in action. Performing such studies on the coding region sequences is relatively 

straightforward due to a known genetic code. However, due to the absence of a similar genetic code for the 

noncoding elements, performing selection-based studies and inferring functional noncoding elements is 

challenging. Overall, previous studies have relied on two approaches for inferring the proportion of 

functional noncoding elements: biochemical signature- and conservation-based. The former relies on 

biochemical signatures resulting from biochemical assays (for example, ChIP-seq, ATAC-seq). It uses these 

as a proxy for inferring functionality. Recent advances in sequencing and assay technologies have resulted 

in an exponential increase in the availability of such data. However, deducing functionality from such 

signatures could result in false positives and inflate the proportions of the inferred functional noncoding 

elements (Graur et al. 2013; Doolittle 2013). The conservation-based approach identifies noncoding 

elements that are conserved across a population or on the level of a phylogeny. Hence, conservation is used 

as a proxy for functionality. However, this approach would potentially be unable to detect elements under 

positive selection (Ludwig et al. 2000; Dermitzakis and Clark 2002).  

TEMPLE (Litovchenko and Laurent 2016) is a bioinformatics tool that uses the information from 

biochemical assay experiments and protein binding models to study the diversity within the Transcription 

Factor binding sites (TFBSs). This tool primarily predicts the exact intervals of the TFBS within a given 

stretch of sequence. This tool further highlights the population-specific variants using the individual-

specific sequence information from multiple populations. Here we introduce templeRun, a wrapper around 

TEMPLE. On the level of data processing, this package mainly prepares the required input files and 

executes TEMPLE internally. On the level of output processing, this package collects the resulting 

information, processes them and finally calculates summary statistics (constraint ratios) which are used in 

making relevant inferences. The following sections are focused on capturing the overall structure of 

templeRun. For reproducibility, the code and example input files discussed in this chapter are available on 

the following GitLab page – (gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/) 

 

 

 

https://gitlab.mpcdf.mpg.de/mjoshi/forthesis_tools/
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Requirements and input files 

templeRun is majorly written in R (R Core Team 2002) and is compatible with version 4.2.0 and above. 

This package internally generates system calls to external tools and incorporates those outputs. Following 

are the R packages and external tools used by templeRun that are used in this example (R version 4.2.0): 

• httr (version 1.4.3) – R package 

• jsonlite (version 1.8.0) – R package 

• xml2 (version 1.3.3) – R package 

• Biostrings (version 2.64.0) – R package 

• stringr (version 1.4.0) – R package 

• rlist (version 0.4.6.2) – R package 

• ggplot2 (version – 3.3.6) 

• VCF-kit (version 0.2.9) 

• samtools (version 1.6) 

• vcftools (version 0.1.14) 

• TEMPLE (version 1.0) 

 

 

In addition to the dependencies, templeRun uses the following input files: 

 

• A population-level variant annotation file (in .vcf format) 

• Whole genome sequence file of the ingroup (in .fa format) 

• Count matrices for the TFs of interest in a single file (compatible with TEMPLE) 

• Coordinates of noncoding regions (in a tabular format) 

• Population-specific accessions (in a tabular format, one file per population) 

 

The flow of information within templeRun 

This package is centred around a single function – temple_run.R. This function serves two critical roles. 

First, this function is the central point for importing relevant libraries and functions, setting paths to the 

accessions, noncoding coordinates and binding motif files, and declaring constants. Secondly, this function 

compartmentalises the essential functions into a set of steps, processes individual noncoding coordinates 

through these steps sequentially and internally generates system calls for TEMPLE. Following are the steps 

in data processing through templeRun: 



71 
 

 

• Step 1 – Extracting the population-specific subset of variants for the given coordinates 

 

This step executes the get_popspecific_vcf_subset function. TEMPLE enables analysis of genetic 

diversity occurring on the TFBS on two populations in a single analysis. This function accesses the 

population-level variant annotation file (.vcf file), the population-specific accession information 

and the noncoding coordinates to generate a subset vcf file per population for the given coordinates. 

The population-specific subset of the .vcf is stored in backup_files/vcf_files/. 

 

 

• Step 2 – Constructing the sequence input file for TEMPLE 

 

This step executes the make_sequences_for_temple function. This function utilises the population-

specific vcf file generated in the previous step to identify the varying sites within the noncoding 

region of interest. It extracts the entire region's wild-type sequence from the ingroup species' 

reference genome. Next, it generates a sequence per individual accession using the wild-type 

sequence information and substituting the reported variant sites for the specific accession. Hence, 

this function constructs sequence per accessions for both populations. Finally, using the coordinates 

of the noncoding region, this function retrieves the sequence of the outgroup species from the whole 

genome alignments. The whole genome alignment is retrieved through the REST-API functionality 

of Ensembl (cite Ensembl). The outgroup sequence is merged with the sequence from the 

populations. This list of sequences is saved in the folder backup_files/sequence_files/ using a 

unique identifier that combines the coordinates of the noncoding sequence. 

 

• Step 3 – Constructing the region input file for TEMPLE 

 

This step executes the make_regionfile_for_temple function. This function uses the coordinates for 

the noncoding regions to construct the required region file for TEMPLE. The region file is saved 

in the folder backup_files/region_files/ using a unique identifier that combines the coordinates of 

the noncoding sequence.  
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• Step 4 – Executing TEMPLE 

 

This final step is executed within temple_run.R. The required input files are first imported from 

their respective destination folder. Then a system call is generated to execute TEMPLE by 

supplying these files.  

 

 

Example outputs 

 

The output files from TEMPLE are first aggregated using this function 

analysis/outputs_aggregate/aggregate_mutationfile_outputs.R. Following aggregation, first, the 

population-specific variants are first split. A ratio score (see Materials and Methods section for chapter 

2) is calculated per reported variant. Additionally, background lengths are calculated for all the positions 

within the reported PWMs using the ancestral allele information to normalise the proportion of reported 

variants. Finally, noncoding nonsynonymous variants are identified based on their ratio score metric and 

the counts of the reference and alternate alleles from the PWM. The functions executing these three steps 

are stored in the analysis/ folder. Some of the outputs from the example are discussed here: 

 

• Constraint ratios 

 

On identifying the class nonsynonymous equivalent variants, and using the synonymous variants 

from the coding regions, templeRun constructs the constraint ratios and other summary statistics. 

In the case of this example, the polymorphism and divergence constraint ratios are highlighted in 

the Table 3.2 (a and b) 
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πn (noncoding) 

 

πs (coding) 

 

πn/πs 

 

0.0011 

 

 

0.0046 

 

0.3275 

Table 3.2 (a) – Polymorphism constraint ratios 

 

 

 

Kn (noncoding) 

 

Ks (coding) 

 

Kn/Ks 

 

0.0295 

 

 

0.1373 

 

0.2430 

Table 3.2 (b) – Divergence constraint ratios 

 

On comparing the πn/πs ratios for the two populations, it could be observed that the derived 

population NS (North Sweden) is under a comparatively relaxed constraint as compared to the older 

population IB (Iberia). The relaxed constraint could be explained due to a comparatively elevated 

πn and comparatively lower πs for the NS population. 

 

• Site frequency spectrum (SFS) plot 

 

In addition to the constraint ratios, templeRun also produces a plot depicting the distribution of 

nonsynonymous allele frequencies for the two populations. In the case of this example, the SFS 

plot is shown in Figure 3.3 
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Figure 3.3 – Site frequency spectrum plot for comparing the population-specific proportions of nonsynonymous 

mutations in the TFBS regions 

 

From the SFS plot, it could be observed that the IB population harbours a larger proportion of low-

frequency nonsynonymous alleles than the NS population. This observation could explain the 

comparatively lower πn/πs estimates for the IB population as compared to the NS population. In 

addition, IB also harbours a slightly higher proportion of nonsynonymous alleles segregating in 

high frequency. 

 

• Estimating α values for the TFBS regions 

 

The raw number of variants collected from the TFBS regions is relatively less than the entire gene 

set (described in chapter 3.1). Hence, calculating a frequency class-specific α would not be 

feasible. To overcome this challenge of fewer variants, templeRun performs pooled α estimate for 

the TFBS regions using frequency cutoffs that are derived from the species-specific WGS analysis 

from Chapter 1. The population-specific α estimates for this example are shown in Table 3.3  

 



75 
 

 

 

 

 

 

α estimates 

 

IB population 

 

NS population 

 

0.39 

 

-0.96 

 
Table 3.3 – TFBS-specific α estimates per population 

 

The estimates indicate a comparatively higher α estimate for the IB population than the NS 

population. Hence, the ancestral population (IB) is highlighted to be under higher constraints and 

a comparatively higher intensity of positive selection than the derived population (NS). 
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General Discussion 

 

Given their central role in the transition of genotype to phenotype, GREs would be expected to be under a 

stronger selection influence than the overall genomic background. This study highlighted the intensity of 

natural selection acting on the domains participating in the regulatory TF-DNA interactions, explicitly 

focusing on the motifs participating in these interactions. Employing a population- and comparative 

genomics-based approach enabled us to test the signal of selection across the two evolutionary timescales.  

 

Insights from the analysis of the DNA-binding domains 

On the level of the TFs, we focused on the DNABDs, which are stretches of sequences that directly interact 

with the DNA molecules for gene regulation. We were able to highlight a consistent signal of high constraint 

acting on these motifs, suggesting an increased intensity of purifying selection. This signal was consistent 

across the non-DNABD and WGS control regions included in the study. Here, the non-DNABD control 

regions were used to counter differential recombination rates influencing the signature of selection. On the 

other hand, WGS control regions were used to contrast the signature of selection against the overall coding 

region average. The pleiotropic nature of the TFs could explain the high constraint. In the context of a gene 

regulatory network (GRN), TFs are often observed to control the expression of multiple target genes 

(Chesmore et al. 2016). This activity of controlling the gene expression patterns of multiple target genes is 

carried out via the DNABDs. Hence, introducing a variant within these regions could consequently impact 

multiple downstream regulatory interactions and be potentially detrimental to fitness. We supplement this 

hypothesis by employing available deleterious variants annotation data for H. sapiens, ClinVar (Landrum 

et al. 2018). Using the annotation data, we were able to show that the DNABD regions harbour a 

significantly higher proportion of “pathogenic” variants as compared to the non-DNABD regions. This 

finding further cemented the signal of high constraint.  

Next, we investigated the action of positive selection using asymptoticMK (Haller and Messer 2017). In the 

case of WGS regions, the estimates for the proportion of adaptive substitutions (α) obtained per species 

were in agreement with some of the previously reported studies (Andolfatto 2005; Eyre-Walker and 

Keightley 2007; Moutinho, Bataillon, and Dutheil 2019). Interestingly, in the case of H. sapiens, the 

estimates of α for the WGS regions were consistently negative. This observation suggests that the 

nonsynonymous mutations occurring within populations are, overall, contributing more towards the within-
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species differences. The DNABD and non-DNABD regions are shorter in terms of their genomic lengths 

than the WGS regions. Hence the count of variants obtained in these regions is also relatively smaller. This 

consequently resulted in high variances in the α estimates obtained from the asymptoticMK-based approach. 

To counter this, we employed a hybrid approach of the traditional MK-test (McDonald and Kreitman 1991) 

along with asymptoticMK. For species with larger Ne, namely A. thaliana and D. melanogaster, we report 

a comparatively higher α for the DNABD regions than the control regions in certain populations. 

Interestingly, the α estimates for all the H. sapiens populations were consistently negative. This suggests 

that, in the case of H. sapiens, variants occurring within the DNABD regions actively contribute towards 

the differences within-species differences compared to the between-species differences.  

 

Insights from the analysis of the Transcription Factor Binding Sites 

On the level of the noncoding DNA, we focused on the TFBS regions, which are stretches of sequences to 

which the TFs are annotated to bind to initiate the transcription process. One central aim of this study was 

to compare the intensities of selection acting on DNABD and TFBS regions. Given that the TFBS regions 

are usually a part of the noncoding genome, we developed a metric (ratio score) which enabled us to 

compare the intensity of selection acting on the regulatory elements in the noncoding regions to the elements 

occurring in the coding regions. We proposed a method of identifying a “nonsynonymous” equivalent class 

of variants within the TFBS regions, which are identified depending on their potential impact on the binding 

affinity. He et al. (2011) (He et al. 2011) have also used a similar approach. In this study, we extend this 

approach across multiple species and populations. To control for demographic factors influencing the 

detected signals, we used the synonymous sites occurring within the coding regions as the putative neutral 

sites. Previous studies have highlighted that the overall levels of constraint acting on the noncoding regions 

are lower than those acting on the coding regions (Naidoo et al. 2018; Haddrill, Bachtrog, and Andolfatto 

2008; Torgerson et al. 2009). However, on the polymorphism scale, we observe comparable levels of 

constraint acting on the TFBS compared to the non-DNABD and WGS regions for the ancestral population 

(ZAM) of species with comparatively low drift, D. melanogaster. This signal is further accentuated on the 

divergence scale, where we identify higher levels of constraint acting on the TFBS regions compared to the 

non-DNABD and WGS regions. The signal of comparable levels of constraint on the TFBS regions seems 

to fade for species with comparatively higher levels of drift (A. thaliana and H. sapiens). We also capture 

a consistent signal of a comparatively lower constraint acting on the TFBS in the species-specific derived 

populations compared to the ancestral populations.  

Next, we calculated the TFBS region-specific α estimates per population. We highlight that, overall, the 

TFBS are under a lower intensity of positive selection compared to the coding regions, with an exception 
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occurring in the case of the Iberian population of A. thaliana. We also highlight lower α estimates for the 

species-specific derived populations than their ancestral populations.  

We identified a consistent signal of high constraint acting on the DNABD regions compared to the TFBS 

regions. We also report that the DNABD regions are under a comparatively stronger influence of positive 

selection than the TFBS regions. To summarize, we identified that the regulatory regions occurring on TFs 

are under a comparatively higher intensity of purifying and positive selection than the regulatory TFBS 

regions.  

 

Insights from correlating the efficiency of selection with Ne   

We also investigated the correlation between the species-specific Ne and the efficiency of selection. We 

used the species-specific proportion of neutral variants, πs, as a proxy for Ne (Galtier 2016b; James, 

Castellano, and Eyre-Walker 2016). Additionally, we used the polymorphism constraint ratio (πn/πs) and α 

as the proxies for testing the efficiencies of purifying and positive selection, respectively. In the case of 

purifying selection, we observed an overall negative correlation between πn/πs and πs, suggesting an 

increased efficiency of purifying selection with an increased Ne. Here, we observed the strongest correlation 

for the DNABD regions. In the case of positive selection, we observed an overall positive correlation 

between α and πs, suggesting an increased efficiency of positive selection with an increased Ne. Here, we 

observed the strongest correlation for the WGS regions. We observed the poorest correlation for 

functionally unannotated non-DNABD regions in both cases. 
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Abbreviations and summary statistics 

 
TF – Transcription Factors 

DNABD – DNA binding domains 

TFBS – Transcription Factor binding sites 

GREs – Gene regulatory elements 

CREs – cis-regulatory elements 

TREs – trans-regulatory elements 

CRM – cis-regulatory modules, hotspot for the binding activity of multiple TFs 

non-DNABD – functionally unannotated regions within the Transcription Factors 

WGS – Whole gene sets 

YRI – Yoruba in Ibadan, Nigeria 

CEU – Utah residents (CEPH) with Northern and Western European ancestry 

CHS – Southern Han Chinese 

IB – Iberia 

NS – North Sweden 

CA – Central Asia 

ZAM – Zambia 

SWE – Sweden 

π – measure of diversity 

πn – proportion of nonsynonymous variants within species 

πs – proportions of synonymous variants within species 

πnonsense – proportions of nonsense variants within species 
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πn/πs – nonsynonymous polymorphism constraint ratio 

πnonsense/πs – nonsense polymorphism constraint ratio 

Kn – proportion of nonsynonymous variants with the outgroup 

Ks – proportions of synonymous variants with the outgroup 

Knonsense – proportions of nonsense variants with the outgroup 

Kn/Ks – nonsynonymous divergence constraint ratio 

Knonsense/Ks – nonsense divergence constraint ratio 

MK test – McDonald-Kretimann test 

α – proportion of adaptive substitutions 

Ne – species-specific effective population size 

µ – mutation rate  
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