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Chapter 1

Introduction

In the recent two decades, the quick development of computational and visualizing in-
struments led to creating new important scientific directions in multivariate statistical
data analysis. In particular, many novel non-parametric methods, which are usually

computationally demanding, have appeared during this period.

The central theme (leitmotif) of this thesis is also a product of this development. We con-
sider an alternative way of representing a probability distribution which leads, shortly,
on the one hand, to rather intuitive instruments and, on the other hand, is freed from
any undue parametric modeling. Specifically, we are referring to the data depth, which is
a function measuring how deep a data point is inside a data distribution. It roots in the
seminal ideas of John TukeyE] from the late 1970s. Of course, there are plenty of ways
to determine such a function, however, the key fact is that in most cases we need not be
bounded by distributional assumptions. This obvious advantage had been impeded for
a long time by the usually large complexity of computations. But, beginning from the

1990s, plausible methods and algorithms started to appear in the literature.

Stepping into higher dimensions needed significantly new methods of analysis, which,
fortunately, can be found in the sphere of computational geometry. The latter developed
in parallel starting from rather simple algorithms for convex hulls in dimensions 2 and 3,
up to big bundles of modern algorithms such as CGAIﬂ In fact, a possibility of applying
geometrical methods with their strong interpretability based on the user’s intuition was
one of the motivations for the opening project of this thesis, especially since many authors
started to utilize the connection (cf. Mosler| (2004)). This project tackles two problems,
(I) and (II), from the list below, where we have collected the aggregate problems that

! John Wilder Tukey (1915-2000) was a famous American statistician and author of some novel ap-
proaches in statistics and numerical analysis. His paper, [Tukey| (1975)), is widely considered to be the
starting point of data depth research.

2CGAL, Computational Geometry Algorithms Library, http://www.cgal.org
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Chapter m Introduction 2

are considered in the thesis. We will touch on each of them in this Introduction in

connection with the thesis’ projects incorporated into its chapters.

The list of the aggregate problems:

(I)  representing an asymmetric probability distribution in a non-parametric,
computationally efficient, and unique way;
\
(IT)  constructing algorithms for so-called central regions (see below) in higher

dimensions (> 2);

(ITII) measuring multivariate risk comprehensively;

(IV)  comprehensive consideration of risk in portfolio optimization;

(V)  employing the set-valued risk measures in non-financial areas.

According to the depth function, the data can be ordered and in such a manner be
represented very intuitively. A further instrument enabling us to visualize the represen-
tations is given by the data trimmed (or central) regions, which are the sets collecting
all points possessing the depth of at least, say, some «. Here « (usually lying in the
interval [0;1]) is the parameter of the central region defining its rank inside a family of
central regions, thereafter ordered by « in the sense of the inclusion. The most deep

region, with o = 1, is a median and, correspondingly, included by all other regions.

Such families of trimmed regions also provide a way of representing a probability distri-
bution. Of course, there is a question of whether it is always a one-to-one representation.
In a particular simple case of the so-called Mahalanobis depth, the Mahalanobis trimmed
regions are just ellipsoids around the expectation of the probability distribution with
a shape coined by the covariance matrix of the distribution. Clearly, in this case the
regions can be easily determined in any dimension, but they are defined by just a few
parameters (namely, the mean and the covariance matrix). This, obviously, does not

allow them to contain the whole information about the distribution.

In this thesis, we are primarily considering such regions whose families describe the
corresponding distribution uniquely. For example, the so-called zonoid trimmed regions
or halfspace regions do. That is why it makes sense to be able to compute them. However,
it is clear that this problem is much more complex than even the computation of the
data depth.
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Here we face the aggregate problem (II). It consists in a non-triviality of generaliz-
ing computational algorithms from dimension 2 to higher dimensions. The solution of
this problem gives us a tool for tackling the further problems (III)-(V), which will be

discussed later.

Our first, and simultaneously key contribution is an algorithm that was the first to com-
pute such a, uniquely defining, region in any dimension (Mosler, Lange, and Bazovkin,
2009). Actually, in the next chapter, we propose a solution for the zonoid regions.
There, we are also explaining the interpretation of these regions and why they are of
high importance. It should be mentioned that the task of computing trimmed regions
came into the focus of research in the last decade. However, almost all solutions were
limited to data of dimension 2 which, as will be shown in Chapter [2| usually are only
qualitatively degenerate cases of the higher dimensions, and, therefore, corresponding
algorithms cannot be generalized straightforwardly. The main problem here usually lies
in constructing a plausible identification of facets of central regions in dimensions > 2.
We solve the problem by proposing the special spanning tree order as a general solution
of such problems that enables an efficient traversal of all the facets. It replaces the trivial
order of facets in dimension 2, which was widely used in the literature. Moreover, our
algorithm provides an explicit control of the way how the facets, i.e. the surface of the
region, are constructed. It is important when we are interested in building only a part

of the region (e.g. its lower boundary), or parallelizing the algorithm.

The next step of developing and generalizing the zonoid regions was undertaken by
considering the very recently designed notion of the so-called weighted-mean regions
(Dyckerhoff and Mosler, 2011). For calculating these regions, we have also developed
a further algorithm (Bazovkin and Mosler, |2012a), which is a generalization of the
algorithm for zonoid regions. The identification of facets is more complex in this general

case, however, we are able to employ the similar sequencing principle.

The visuality and the clear interpretation of trimmed regions, as well as the developed
mature analytical machinery concerning them, led to the emergence of numerous ap-
plications. Basing on some special notions of trimmed regions, recently |Cascos and
Molchanov]| (2007) have shown their direct connections with multivariate risk measures,
especially set-valued risk measures, which is of a great importance for us. We are con-
tributing to this trend by developing a large class of multivariate set-valued risk mea-
sures, the so-called distortion risk measures, which possess a list of desirable properties.

This fact, in turn, motivates their use in a broad variety of applications.

These applications, firstly, cover some classical problems from areas of finance and risk
management. In particular, we are developing some variants of solving portfolio choice

problems with the help of these instruments. Here we are facing problem (IV) because
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in the classical model the risk of a portfolio is usually represented by the variance of its
random returns. In contrast, we replace the variance by a vector-valued multivariate risk
measure based on weighted-mean regions, and show how various performance measures,
namely objectives, can be applied for the optimization in our approach. Specifically, we
propose algorithms for the minimal risk portfolio, a generalized Sharpe ratio and the
certainty equivalent. To solve these problems, we have developed a general geometrical

framework that is flexible to embedding different performance measures.

Proceeding to problem (V), we should point up that the financial risk management
sphere does not limit the applicability of the measures, and we can employ their well-
interpretable notions, at a first glance, in a completely different area - the robust linear

optimization.

We pursue problem (V) from the perspective of modeling uncertainty by means of set-
valued risk measures. The uncertainty in the coefficients is modeled by means of special
sets, the uncertainty sets, which are proved to be special trimmed regions or their simple
combinations in the sense of (maybe infinite) disjunction. Each such set is fully defined
by a specified risk measure, however, such a visual representation allows us to modify

the uncertainty according to additional heuristics, thus flexibilizing the control.

Our contribution in this direction lies in algorithms solving different forms of such opti-
mization problems, ranging from single-constaint random linear programs up to rather

general forms of robust convex optimization (including robust cone optimization).

Solving these stochastic linear programs (SLPs), from the other side, opens a possibility
to apply our algorithms in other important areas, just after finding a way to represent
the corresponding problems in the form of SLPs. For instance, we show how a robust

data classification problem can be solved using our algorithms.
In more detail, the chapters contribute to the literature in the following way.

The next Chapter [2|introduces the algorithm for calculating the zonoid trimmed re-
gions. Here, again, we demonstrate that any probability distribution on Euclidean d-
space can be described by its zonoid trimmed regions or, in brief, zonoid regions. These
regions form a nested family of convex sets — central regions — around the expectation,
each being closed and bounded. The family is indexed by numbers that vary in the
unit interval. Each zonoid region can be seen as a set-valued parameter that reflects the

location, scale, and shape of the distribution.

The motivation for considering such a representation is that the multivariate data are
often asymmetrically distributed so that they cannot be modeled by normal or elliptical

distributions. Zonoid regions offer a non-parametric and particularly visual approach
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to analyzing such data. A distribution - empirical as well as theoretical - is uniquely
represented by a geometrical object; its family of zonoid regions. This object is visual
and has attractive analytical properties. Moreover, the zonoid regions of an i.i.d. sam-
ple satisfy a law of large numbers, converging to the zonoid regions of the underlying

probability distribution.
The novelty here consists in:

1. an analysis of the representation of a distribution by means of zonoid regions based

on their structure and properties;

2. the spanning tree order for sequencing facets of a zonoid region;

3. an exact efficient algorithm for constructing zonoid regions.
The subsequent Chapter [3| considers weighted-mean trimmed regions. Starting from
theoretical aspects of the regions, we proceed to the main, algorithmic, part where we
obtain a generalization of the algorithm for zonoid regions. In doing this, a characteri-
zation of a region’s facets is used, and information about the adjacency of the facets is
extracted from the data. A key problem consists in ordering the facets. It is solved by
the introduction of a tree-based order, by which the whole surface can be traversed effi-

ciently with the minimal number of computations. The algorithm has been programmed

and is available as an R package, which is also described in detail.

The novelty in this chapter splits into:

1. a special characterization of facets of a weighted-mean trimmed region;

2. a tree-based order for traversing the whole surface of the region;

3. the generalization of the algorithm from Chapter [2| a proof of its consistency;

4. an R package realizing the algorithm.
In Chapter [, we introduce a vector-valued multivariate risk measure that is based on
the set-valued distortion risk measure. Then, the risk measure is used as a replacement of
the variance in the classical portfolio choice problenﬁ We build a common geometrical

framework, where the portfolio can be optimized according to either the minimal risk,

or the Sharpe ratio, or the certainty equivalent.

The novelty of the approach consists in:

3Cf., for instance, [Markowitz (1952).
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1. a comprehensive assessment of risk in a portfolio selection problem:;
2. taking no distributional assumptions concerning ellipticity;

3. the flexibility of the framework that enables utilizing various performance mea-

sures.

Such an application to the portfolio selection is solely one side of the potential incorpo-
rated into the set-valued distortion risk measures. In the further two chapters, we point

up a bundle of applications of these risk measures in non-finance environments.

In Chapter [5] we apply coherent distortion risk measures to capture the possible vio-
lation of a restriction in linear optimization problems whose parameters are uncertain.
Each risk constraint induces an uncertainty set of coefficients, which is proved to be a
weighted-mean trimmed region. Thus, given a sample of the coefficients, an uncertainty
set is a convex polytope that can be exactly calculated. We construct an efficient geo-
metrical algorithm to solve stochastic linear programs that have a single distortion risk
constraint. The algorithm’s asymptotic behavior is also investigated, when the sample
is i.i.d. from a general probability distribution. Finally, we present some computational

experience.

The novelty in this chapter splits into three major parts:

1. the uncertainty set of an SLP under a general coherent distortion risk constraint is
shown to be a weighted-mean trimmed region, which provides a useful visual and

computable characterization of the set;

2. an algorithm is constructed that solves the minimax problem over the uncertainty
set, hence the SLP;

3. proof of the fact that if the data is i.i.d. from a general probability distribution, the
uncertainty set and the solution of the SLP are shown to be consistent estimators

of the uncertainty set and the SLP solution.

In Chapter [6] we also investigate linear optimization problems that have random pa-
rameters, however, the general case with m > 1 constraints. In constructing a robust
solution x € R? we control the risk arising from violations of the constraints. This
risk is measured by set-valued risk measures, which extend the usual univariate coher-
ent distortion (or, spectral) risk measures to the multivariate case. To obtain a robust
solution in d variables, the linear goal function is optimized under the restrictions hold-
ing uniformly for all parameters in a d-variate uncertainty set. This set is built from

uncertainty sets of the single constraints, each of which is a weighted-mean trimmed



Chapter m Introduction 7

region in R? and can be efficiently calculated. Furthermore, a possible substitution of
violations between different constraints is investigated by means of the admissable set of
the multivariate risk measure. In the case of no substitution, we give an exact geometric

algorithm, which possesses a worst-case polynomial complexity.

We extend the algorithm to the general substitutability case, that is, to robust polyhedral
optimization. Similarly to the single-constraint algorithm from the previous chapter,
the consistency of the approach is proved for generally distributed parameters. Finally,
applications of the model, especially applications to supervised machine learning, are

discussed.

The novelty of this chapter is contained in:

1. a generalization of the analysis of the single-constraint SLP to multiple risk con-

straints (m > 2);

2. a construction of a geometric algorithm to solve the multi-constraint problem (if
constraints cannot be compensated by each other, i.e. in the unsubstitutability
case, the algorithm operates in the same dimension d as the single-constraint pro-

cedure does);

3. an extension of the robust multi-constraint linear optimization to robust polyhedral

optimization (which covers the substitutability case);

4. the estimation (consistent) of the uncertainty set and the robust solution.

Last but not least, in comparison with many recent approaches to determining the
uncertainty in coefficients, we are able to work explicitly with uncertainty sets, modifying

them if needed.

To summarize, as the reader can see, the chapters are chained in such a manner that the
solutions of the above aggregate problems emerge sequentially, in a ‘chronological’ order.
Again, to highlight the unity of the projects as the message of the thesis, we recall the
following. Firstly, we describe an alternative representation of a probability distribution
using central regions, and we construct an exact algorithm for calculating zonoid regions.
Secondly, keeping in mind the connection of zonoid regions with the set-valued multi-
variate expected shortfall, we extend our analysis to the broader class of weighted-mean
trimmed regions, which, in turn, will correspond to coherent distortion risk measures.
We build an exact algorithm for calculating any type of weighted-mean trimmed regions
in any dimension. Thirdly, based on these regions, we build a set-valued distortion risk

measure and, subsequently, a multivariate vector-valued risk measure, which is further
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applied in the portfolio optimization. Fourthly, we apply the set-valued risk measure in

robust convex optimization, obtaining efficient novel optimization algorithms.

The chapters of this thesis are mostly based on the following published papers:

» “Computing zonoid trimmed regions in dimension d > 27, with Karl Mosler and
Tatjana Lange. Computational Statistics and Data Analysis, 53:2500-2510, 2009. Its
final version is available at Elsevier via http://dx.doi.org/10.1016 /j.csda.2009.01.017.

» “An exact algorithm for weighted-mean trimmed regions in any dimension”, with
Karl Mosler. Journal of Statistical Software, 47(13):1-29, 2012.

» “A geometrical framework for portfolio optimization”. Discussion Papers in FEcono-
metrics and Statistics, Institute of Econometrics and Statistics, University of Cologne,
01/14, 2014.

» “Stochastic linear programming with a distortion risk constraint”, with Karl Mosler.
OR Spectrum, 36(4):949-969, 2014. The final publication is available at Springer via
http://dx.doi.org/10.1007/s00291-014-0372-9.

» “A general solution for robust linear programs with distortion risk constraints”, with
Karl Mosler. Annals of Operations Research, 229(1):103-120, 2015. The final publi-
cation is available at Springer via http://dx.doi.org/10.1007/s10479-015-1786-8.



Chapter 2

Multivariate Expected Shortfall:
Computing Zonoid Trimmed

Regions of Dimension d > 2

A probability distribution on Euclidean d-space can be described by its zonoid regions.
These regions form a nested family of convex sets around the expectation, each being
closed and bounded. The zonoid regions of an empirical distribution introduce an or-
dering of the data that has many applications in multivariate statistical analysis, e.g.
cluster analysis, tests for multivariate location and scale. In risk analysis, they can
be used as a basis for defining a multivariate expected shortfall risk measure. In this
chapter we develop an exact algorithm to constructing the zonoid regions of a d-variate
empirical distribution by their facets when d > 3. We propose a way of characterizing
the vertices of the region and their adjacency, and suggest a procedure by which all
vertices and facets can be determined. The resulting algorithm has been developed into

an R package.

2.1 Motivation

Zonoid trimmed regions or, in brief, zonoid regions, are an alternative way of describing
a probability distribution on Euclidean d-space. These regions form a nested family of
convex sets — so-called central regions — around the expectation, each being closed and
bounded. The family is indexed by numbers that vary in the unit interval. Each zonoid
region can be seen as a set-valued parameter that reflects the location, scale, and shape

of the distribution.
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Multivariate data are often asymmetrically distributed so that they cannot be modeled
by normal or elliptical distributions. Zonoid regions offer a non-parametric and par-
ticularly visual approach to analyzing such data. A distribution - empirical as well as
theoretical - is uniquely represented by a geometrical object; its family of zonoid regions.
This object is visual and has attractive analytical properties. Moreover, the zonoid re-
gions of an i.i.d. sample satisfy a law of large numbers, converging to the zonoid regions

of the underlying probability distribution.

Zonoid regions were introduced by |[Koshevoy and Mosler| (1997)) and, since then, have
found many applications in multivariate statistical analysis. They have been employed,
e.g., in cluster analysis (Mosler and Hoberg, |2006)), in the measurement of inequality
(Koshevoy and Mosler, 2007)) and polarization (Gigliarano and Mosler, [2009), and in
tests for multivariate location and scale (Dyckerhoff] 2002)); see also the monograph by
Mosler| (2002)) and a comprehensive introduction to depth statistics by Mosler| (2013).
Cascos and Molchanov| (2007) propose a general geometric framework for measuring
multivariate risks; in their approach zonoid regions serve as set-valued risk measures
that generalize the usual univariate expected shortfall. We will consider this connection
in Chapter 4| and employ in the subsequent chapters. In turn, the current chapter

prepares necessary tools for computing the measure via computing zonoid regions.

The boundary of a zonoid region forms a depth contour with respect to zonoid depth
and can be regarded as a multivariate quantile. Therefore, given a d-variate empirical
distribution, zonoid regions are used as trimmed regions that exclude “outlying” data
and include “inlying”, that is to say, central and relevant ones. Similar methodology has
been based on alternative notions of data depth and trimmed regions, such as halfspace
(= location) depth, simplicial depth, expected convex hull depth, among others. |Zuo and
Serfling| (2000)) provide some general theory of depth trimmed contour regions, while |Liu
et al.| (1999) and Serfling| (2006) broadly survey the theory and applications of various
notions of depths in multivariate data. |[Lépez-Pintado and Romo| (2007)) investigate

depth notions in functional data.

When applying such methods to given multivariate data, the crucial point is the avail-
ability of efficient numerical procedures to compute the data depths employed and the
trimmed regions of an empirical distribution. To calculate the depth of a single point of
an arbitrary dimension, algorithms have been provided by |Rousseeuw and Ruts) (1996])
and [Rousseeuw and Struyf (1998)) for the halfspace depth, and by Dyckerhoft et al.
(1996) for the zonoid depth. |Aloupis (2006) gives a survey of algorithms for calculating
different notions of medians and depths. But, calculating a depth trimmed region ap-
pears to be a much more demanding task. So far, algorithms have been constructed for

the halfspace trimmed regions by Ruts and Rousseeuw| (1996) and Miller et al.| (2003) in
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dimension 2, by Fukuda and Rosta (2004) and |Liu et al|(2014) in arbitrary dimension.
For bivariate zonoid trimmed regions, Dyckerhoff (2000) provides an algorithm that em-
ploys a circular sequence; |Cascos| (2007) uses the same approach for bivariate regions

that are trimmed by the expected convex hull depth.

In this chapter we present an exact algorithm that efficiently calculates zonoid regions
of any dimension. In contrast to most classical statistical tools, zonoid regions are
genuine geometric notions. Consequently, our algorithm makes ample use of tools from

computational geometry.

Consider an empirical distribution that gives probability % to each of the observations
X1,...,X, € R% and let n > d. The zonoid regions of the empirical distribution are
defined by

:in--:n': <A< } .
Dqy(x1,...,%Xp) {na;)\lxl ;)\1 na,0 < A<1 Vip, (2.1)
0 < o < 1. Immediately it can be seen from the definition that D1 (xy,...,x,) is the
convex hull of the data xi,...,%,, while Dj(x1,...,X,) is the se‘z that contains the
mean %E?:l x; as a single point. At 0 < a < 1, Dy(x1,...,Xy) is a convex polytope
that lies between the convex hull and the expectation point and decreases strictly with
a. The border of such polytope consists of a finite number of facets. Each facet is part
of a hyperplane in R? and can be described by the direction of its normal vector and
its distance from the origin, that is to say, by some element p of the unit sphere S¢1
and some A € R,. The main task is to identify, from all directions p € S%!, those

directions that determine the facets and calculate them in an efficient way.

The algorithm constructs the zonoid regions of an empirical distribution by their facets.
Thus, for any data x1, . ..,x, and any « € [0, 1], the facets and vertices of D (x1,...,Xy)
are calculated and their coordinates are given. Our algorithm is efficient in that it

computes the facets one after the other, proceeding from one facet to its neighbors.

In the dimension d = 2, Dyckerhoff (2000) has developed an algorithm for constructing
zonoid regions. His procedure is based on the idea of a circular sequence (cf. Edels-
brunner| (1987)): A ray starting at the center is turned like a clock’s hand and the data
points are projected onto this ray. However, the method of circular sequence works only
with bivariate data. There is no obvious generalization of such a sequence to higher

dimensions.

Our first task is to characterize the vertices and facets of a given zonoid region, given
data points X1, . . ., X, and a. For this, we introduce a global structure that partitions R%

into direction cones that correspond one-to-one to the vertices of the zonoid region. In
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this cone structure, the adjacency of vertices is investigated and characterized. A linear
program is constructed to decide whether two vertices are neighbors. The resulting
adjacency graph consists of elementary cycles that have either three or six nodes. Then
we show that each facet of the zonoid region corresponds to exactly d data points and

characterize the facet by a linear restriction on d data points.

Our second task is to put the facets of the zonoid region into an order according to which
they can be efficiently calculated. For a given facet, a “jump-to-neighbor” procedure
is introduced to transfer the calculation to the neighboring facets. Finally, a facet
transversal graph is constructed, and a spanning tree order is realized to transverse this

graph in an efficient way. This completes the algorithm.

Overview of this chapter: Section presents zonoid regions of general probability
distributions and surveys their principal statistical properties. In Section the set
of supporting vectors that belong to a given vertex of the zonoid is investigated. In
Section a global structure of direction cones is set up, and the adjacency of vertices
is described through conditions on these direction cones. Section [2.5| provides a linear
program by which the adjacency of vertices can be checked. Section [2.6| presents the
adjacency graph and a characterization of facets of the zonoid region. In Section the
“jump-to-neighbor” procedure and the spanning tree order are introduced, according to
which all facets are transversed. Section [2.8|concludes with a discussion of the complexity
of our algorithm and its use in calculating zonoid regions for different .. This section also
provides numerical experience and remarks on possible modifications of the algorithm.

In the last Section [2.9 a formal algorithm is given.

2.2 Zonoid regions

Given a d-variate probability distribution function F', a family {D,(F')} of sets in d-
space, called zonoid regions, is defined as follows: Dy(F) = R? and for a €]0, 1]

Du(F) = {/Rdxg(x)dF(x):Ogggi, /Rdg(x)dF(x)zl}. (2.2)

For « €]0, 1], these regions exist if and only if F' has a finite expectation vector up =
Jga XdF(x). It is obvious from the definition that the zonoid regions are nested;
the smallest region being the singleton set D;(F) = {up}. Furthermore, each D, (F) is
bounded, closed, and convex. For an empirical distribution F', with equal mass on (not

necessarily different) points xy, ..., Xy, the definition specializes to the above definition

&1).
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In this section, we list a few principal properties of zonoid regions, which make them
useful for statistical description and inference. For details and many other theoreti-
cal results, the reader is referred to Mosler| (2002), as well as for applications to the

multivariate analysis of location, dispersion and dependency.

Firstly, for every a € [0,1], D, is affine equivariant, i.e.,
Do (Fxa+c) = Do(Fx)A + ¢ for any d x d matrix A having full rank, (2.3)

c € R? and F having finite first moment. Hence, any statistical procedure based on

zonoid regions is an affine equivariant procedure.

Secondly, the zonoid regions contain full information about the underlying distribution:
For any two d-variate distribution functions F' and G that have finite first moments, it
holds

F=G if and only if ~ Do(F) = Do(G) for all « €]0,1]. (2.4)

The uniqueness property (2.4) implies that any claim about a distribution F' can be
equivalently formulated as a claim about the zonoid regions of F' and, thus, can be

analyzed by geometric means.

Thirdly, zonoid regions lend themselves easily to projection methods: By projecting the
zonoid regions of a distribution F' onto some lower-dimensional subspace of R?, the
zonoid regions of the projected distribution are obtained. In particular, any marginal
of F' has zonoid regions that are obtained by projection onto the respective coordinate

space. See also Dyckerhof (2004).

The fourth property is continuity: The zonoid region D, (F) is continuous on « as well
as on F'. More precisely (see Th. 3.10 in Mosler| (2002)), given a distribution F' and a

sequence (ay,) in ]0, 1] that converges to a > 0, it holds

D, (F) L Du(F), (2.5)

Also, given a €]0,1] and a sequence F () of distributions that is uniformly integrable

and weakly convergent to F', it holds
Do(F™M) =5 Dy (F). (2.6)

In 1} and 1) M, means convergence with respect to Hausdorff distance. (The
Hausdorff distance of two compacts C and D is the smallest ¢ for which C plus an e-ball

includes D and D plus an e-ball includes C' as well.)



Chapter |§l Computing Zonoid Regions of Dimension d > 2 14

Fifthly, zonoid regions satisfy a Law of Large Numbers, which serves as the basis of

statistical inference: Let X1, ..., X,, denote an i.i.d. sample, with X; ~ F. For every a,
it holds

Da(X1,...X,) 5 Do(F) almost surely. (2.7)
Thus, given an i.i.d. sample Xy,...,X,, the zonoid region D,(Xj,...X,,) serves as

a set-valued statistic that estimates D, (F'). So far, the practical application of the
zonoid region statistic was confined to the dimension d = 2, since no algorithm existed
to calculate it for higher dimensions. In the rest of this chapter we develop an exact

algorithm that works for any dimension d > 3.

2.3 Vertices and direction domains of a zonoid region

Let us first recall some standard notions and facts about convex sets and polytopes in
R?. A convex polytope is the convex hull of a finite number of points or, equivalently,
a bounded nonempty intersection of a finite number of closed halfspaces. A nonempty
intersection of its boundary with a hyperplane is called a facet if it has an affine dimen-
sion d — 1, and a ridge if it has an affine dimension d — 2. It is called an edge if it is a
line segment, and a vertex if it is a single point. The boundary of a convex polytope is
the union of its facets. A convex polytope has a finite number of facets, ridges, edges,
and vertices. An edge is the intersection of (at least) two facets, and a vertex is the
intersection of (at least) two edges, d — 1 ridges and d facets. A hyperline is an affine

subspace of R? that has a dimension 1.

A compact convex set is mentioned as a conver body. In particular, as a zonoid region
is a bounded convex polytope, it forms a convex body in R?. The support function
he - 8771 — R of a convex body C' C R? is defined by

he (p) =max {p'x:x € C}.

The support function of a convex body is closely related to its extreme points: A point

xp is extreme in C' if and only if some p € S%! exists so that
p'x = he(p) implies x =xq.
Now, for the given data x1,...,X,, denote

H=H(x1,...,x,) = {p€ S :px; =p'x; forsome i#j}.
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Given a direction p € S~ 1\ H, the inner product p’x projects the data points x, ..., X, €
R? onto numbers p'xy,...,p'x, € R. While the data as points in R? have no natural
total order, their projection does have. Thus, each p € %! \ H induces a total ordering

of the data, i.e., a permutation 7 of the index set 1,...,n given by
p’xﬂp(l) < p’xﬂp(g) << p’xﬂp(n) . (2.8)
In the sequel we notate the p-ordered data by
XP = (xP,...,xP) with xP = Xro(i), 1=1,...,m.

Proposition 2.1. (Dyckerhoff, 2000) Let x, ..., x, € R? be pairwise distinct, d € N,
For any p € ST 1\ H define

— 1 - | S
Xpa = ; A X s (2.9)
where
1 if mp(i) >n—[nal,
AP =4 na—[na] if mp(i) =n—[nal,
0 if mp(i) <n—[nal .

Then the set of vertices of the zonoid region Dy is given by

V(Dy) = {xpo €R:pe S91\ H}.

The set of all directions that yield vertices (= extreme points) of D, is S9!\ H. Let
S(v) € S\ H denote the subset of those directions that belong to a given vertex v €
S4=1\ H. S(v) is named a direction domain. According to Proposition all directions
that provide the same permutation of the data belong to the same direction domain, i.e.
to some common vertex v. The family of direction domains S(v),v € V(D,,), forms a

finite partition of S4~1\ H.

Thus, the proposition yields a discretization of the continuum of possible directions of
the vector p, where the cardinality of the set of direction domains equals the number of
vertices of the zonoid region. Thus, a one-to-one relation between domains of directions

and vertices has been established.

In the sequel we assume that the data are in general position, i.e., every subset of k + 1
data points generates an affine space of the dimension k, k = 1,...,d — 1. (If the data
are not in general position, the subsequent discussion and the algorithm need to be
modified, e.g., by slightly perturbing the data.) Also, without loss of generality, we shall

. .. 1
assume that the mean of the data is at the origin, - Yo% =0.
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2.4 Adjacent vertices

In this section we investigate the transition of one vertex to another, that is to say, of
one direction domain to another. In our procedure we let a support vector p — that
represents direction — continuously rotate on the unit sphere S%~!. We start with an
arbitrary p € S%!, which provides an initial permutation of the data points. As was
mentioned, all p that produce the same permutation of points form a direction domain
that belongs to a common vertex. When searching for all vertices, it obviously suffices
to traverse each direction domain once. To do this, we shall characterize and identify the
possible transitions of one domain to a neighboring one. Our identification procedure is

based on the following observations:

The vector p hits the boundary of a direction domain only if, for somei # j, p'x; = p'x;

holds, i.e., p is orthogonal to x; — x;.

Note that the pair (p'x;, p'x;) is not unique. However, at most d — 1 such pairs can
arise, as the space of all vectors that are orthogonal to p has an affine dimension d — 1,

and the data are in general position.

The vector p crosses the boundary of a direction domain only if, for some i # j, p'x;
and p'x; change their order. That is to say, any transition from one permutation to

another is done by swapping one of the pairs of data points.
With Proposition follows:

Theorem 2.2. (Identification of vertices) The vector p passes from one direction
domain (and one vertex) to a neighboring one if and only if i and j exist, i # j, so that

p is orthogonal to x; — x;j, mp(i) =n — [n-a], and |7p(i) — mp(j)| = 1.

Theorem [2.2) provides the basis for an algorithm that calculates all vertices of the zonoid

region.

So far, we have considered parts of the unit sphere; the direction domains. They corre-
spond to the vertices of the zonoid region. In the following discussion we will use the

corresponding closed cones: For v € V(D,,) define the direction cone C(v),
Cv)=c{dy: AeRy,ye SV},

where cl(U) means closure of a set U € R%. Then each C(v) is a closed convex cone in
R with an apex at the origin. It is finitely generated (i.e. it consists of all non-negative
linear combinations of a finite number of vectors), and has a maximum of n — 1 facets.

The normals of its facets are described in Theorem [2.2]
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The family of direction cones provides a global structure that divides the space R into

sets corresponding to the vertices of Dy,.

Now, consider three data points x;,x;,x; and the hyperplanes through the origin that
are orthogonal to x; —x;, X; — X}, and x; — X, respectively. These hyperplanes intersect
at a common hyperline that possibly contains a ridge of a direction cone. On the other
hand, every ridge of a direction cone is contained in such a hyperline for some i, j, and
k.

We can conclude: In the global structure a ridge of a direction cone belongs to another

direction cone only if it is a ridge of the latter, too.

In the sequel we shall say that two direction cones are adjacent cones if they have a full
facet in common. Turning the vector p through a boundary facet implies a transition
from a direction cone to an adjacent one. It means that, to leave a current cone and
enter an adjacent one, we have to move the vector p in an arbitrary way beyond one of

the hyperplanes that carry the facets of the current cone.

2.5 A linear program for constructing adjacent vertices

Our next task is to find an explicit way of constructing all vertices that are neighbors
of a given vertex v. In other words, we will explicitly determine all direction cones that
are adjacent to a given direction cone C(v). These neighbors correspond to the facets of
C(v). Every facet of the cone is defined by a hyperplane. The set of hyperplanes that
determine the cone’s boundary is a subset of the hyperplanes described in Section
Each of these n — 1 hyperplanes is represented by its “inner” normal z;, i.e., the normal

pointing inside the cone:

xzf[na]—x? if j=1,...,n—[na]—1,
zj=q el o (2.10)
Xj = X[l if j=n—[nal+1,...,n.

The n — 1 normals are codirected with all directions p in the cone, i.e., they have non-
negative inner products. In fact, C(v) is the intersection of all corresponding halfspaces.
In other words, C(v) is the set of all vectors p that are codirected with the normals

(2.10),

C’(V):{pERd:z;pZO forall j=1,...,n—1}.

Our task is to identify those hyperplanes (or, equivalently, their normals) that belong

to the boundary of the cone C(v). To determine whether z; is a boundary normal, we
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shall solve the following minimization problem:

z;p — min, (2.11)

st. peC(v),
d
> Ipil=1.
i=1

If has a positive minimal value, no support vector, p € C(v), exists that is
orthogonal to z;. Hence, z; is not a boundary normal of C(v). If is minimized
with value z;p* = 0, we can conclude that p* is a support vector that belongs to the
boundary of C'(v) and is an element of the hyperplane that has normal z;. Consequently,
p* also belongs to the boundary of the direction cone C(v) of some vertex v that borders

on the current vertex v.

(2.11)) can be rewritten as a linear program (LP;),

z;-(pJr —p ) — min, (2.12)
st. zi(pT—p)>0 j=1,...,n—1,

d

> f +p7) =1,

=1

pi >0, p; >0, i=1,...,d.

Here we have inserted p = p™ — p~, where p* = (p{,...,p}) and p~ = (py,...,p; )’
are the positive and negative parts of p, respectively. The linear program (2.12)) is solved
by the simplex method.

To find all vertices bordering on v, we may solve the linear programs for j =
1,...,n — 1. As all programs have the same set of feasible solutions, the calculations
can be shortened by solving them simultaneously. In fact, the number of neighbors
is small compared to n — 1. Therefore, the number of basic feasible solutions in the
simplex method will be relatively small, too, which leads to a high average efficiency of
the simplex method. If n is large, the dual simplex method may outperform the primal

approach.

Fach ridge of a direction cone is an intersection of three hyperplanes. On the ridge
either three or six direction cones touch each other. Let us consider these two cases in

more detail:

Remember that, given a vertex v, for all p € C(v) the point Xgi[m} does not depend

on p. We call this point the main point of C(v).
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Two possible cases:
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FI1GURE 2.1: Neighboring cones near the common ridge.

Consider three direction cones C(v),C(w), and C(u) that have a common ridge and
denote their main points by a, b, c, respectively. For all p € C(v) these three main
points are p-ordered in the same way, either with a in the middle or not. If a is in the
middle, b and ¢ cannot switch their positions. Hence, C'(w) and C'(u) have no boundary
hyperplane in common, and w and u are not adjacent vertices. In this case, a total of
six direction cones meet at the common ridge. If, on the other hand, b and c are on
the same p-side of a, their positions can switch and w and u are neighboring vertices.
In this case, only three direction cones unite at the common ridge. The two cases are
illustrated in Figure

2.6 Edges and facets

Having obtained an efficient procedure for finding extreme points we now must create
an efficient one for constructing all facets of the zonoid region. Next we characterize the

edges of the zonoid region.
Lemma 2.3 (Vertices and edges). Let C(v) and C(w) be direction cones. The line

connecting v and w is an edge if and only if C(v) and C(w) are adjacent cones.

Proof. Recall that the zonoid region D, is a convex polytope, and its extreme points
form the vertices of this polytope. As C(v) and C(w) are direction cones of vertices v

and w, for all x € D,, it holds that:

px<p'v if peC(v), and p'x<p'w if peC(w). (2.13)
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Now assume that C'(v) and C'(w) are adjacent cones. Then for each p in their common

boundary C(v) N C(w) it holds that p'v = p’w. Hence, for all x € D,,
px<p AW+ (1-XNw) if Ae]0,1]. (2.14)

It follows that the line connecting v and w is an edge of the polytope. On the other
hand, assume that this line vw is an edge. Then some p exists that, for all x € D,,
satisfies (2.14). For this p, it must hold that p'v = p’'w. In view of (2.13), we can
conclude that is true for all x € D,, if and only if

p(v—w)=0, pv>0, and p'w>0,

that means, p is in a d — 1-dimensional cone which is a subset of C(v) and of C'(w).
Consequently, C(v) and C(w) have a full facet in common, and are, thus, adjacent

cones. 0

Lemma, provides a unique correspondence between the adjacency of direction cones

in the global cone structure and the existence of edges of the zonoid region.

Recall that adjacent direction cones are cones that have a common facet. The adjacency
information of the zonoid region, which is a polytope, is represented by its adjacency
graph, which consists of the polytope’s vertices and edges. Above, we have demonstrated
that either three or six direction cones touch each other on a ridge. Hence the adjacency
graph is a concatenation of elementary cycles, each connecting either three or six vertices.
This is illustrated in Figure

For every dimension only
such elementary cycles:

and <:>

FIGURE 2.2: The structure of the adjacency graph.

Now, consider a facet of the zonoid region. Let the vector p be directed orthogonally to
the facet. Then, if points from the data cloud are in general position, exactly d points

Koo (k)s X (k1) - - - » Xrp (k4-d—1) €Xist so that:

P'Xr (k) = P Xry (k1) = * = P X (hrd—1)
(2.15)

with some k, k<n—[na]<k+d-1.
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Obviously, the indices k, . .., k+d—1in (2.15) are not unique. However, any permutation

of these d points yields the same facet. We may conclude the following theorem.

Theorem 2.4. (Identification of facets) Fach facet can be identified by a set of
exactly d points from the data cloud and one of its vertices. Moreover, if there is a
support vector that defines a permutation satisfying , then this permutation and

these d data points define a facet of the zonoid region.

It can easily be seen from Theorem that, if k < n — [na] < k+ d — 1, the facet can
have more than d vertices . A facet will be mentioned as redundant if it has more than
d vertices, and as non-redundant if it has exactly d vertices. In any case, there are only

d different main points that belong to a facet. Let £ = n — [na] — k. We obtain:
Corollary 2.5. The number of vertices of the facet equals d - (dzl).

Proof. As stated above, the total number of possible relative positions of d points is

d!. But, according to (2.9)), the relative position of points in
[k (n — [na])[ and |(n — [nal),k+d — 1]

is not significant, i.e. (dzl) different cases remain. This number is multiplied by d, which

is the number of possible main points. O

Corollary 2.6. Fach set of d points from the data cloud defines, at most, one facet of

a zonoid region unless:
E<n—|na]<k+d—-1 and k<n—[n—na]<k+d—-1. (2.16)

Otherwise it defines exactly two parallel facets.

Proof. The first statement is clear from Theorem [2.41 The second is based on the

fact that, if the condition (2.16|) is met, then the inverted support vector also defines a
permutation satisfying (2.15]). O

Corollary 2.7. For each set of d data points some « exists, so that the set defines a

facet of the zonoid a-region.

Proof. In fact, for a set of exactly d data points it is always possible to find « so that
the condition (2.15)) is met. Then the statement follows from Theorem [2.4] O

In the case of a non-redundant facet we have £ = 0. Then, according to Corollary [2.5|the

facet is a (d — 1)-dimensional simplex having d vertices. The vertices identify the facet;
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they are pairwise adjacent and correspond to the pairwise adjacent direction cones. In
turn, every set of d vertices that correspond to pairwise neighboring cones defines either
a facet or a cut of the zonoid region. Thus, also in this case, the identification of the facet
is based on the adjacency graph. Based on Corollary we can generate an arbitrary

facet as follows:

1. Choose an arbitrary set of d points.
2. Check whether this set defines a facet. If not, go back.

3. Create the corresponding facet.

We will also use this procedure to initialize our algorithm by creating a first facet.
Thus, Theorem and its corollaries provide a procedure for identifying each facet of

the zonoid region.

2.7 Sequencing the facets

To complete the algorithm, we have to create a procedure that generates all facets in
a sequential way. For this, we specify a total ordering of the set of facets. In the case
d = 2 such an order is easily created by a circular sequence; see Dyckerhoff (2000)). In the
dimension d > 3 we can solve this problem by introducing a spanning tree order (STO).
Consider a given facet. Each ridge of it corresponds to exactly one neighboring facet
and all neighboring facets can be found by passing through the ridges. The following
theorem and its proof tell us the number of adjacent faces, that is the number of ridges,

and how the ridges are obtained.

Theorem 2.8. (Neighboring facets)

(i) A facet has either 2d or d neighboring facets.

(ii) It has d neighbors if and only if it is non-redundant.

Proof. Let the support vector p be orthogonal to the facet and condition be
met. A minimal violation of orthogonality is achieved by an infinitesimal move of p in
a direction that is perpendicular to a ridge of the facet and non-perpendicular to its
other ridges. This corresponds to the following change in the first equation of (2.15)):
Either p'xr, (k) < PXmp(kt1) = -+ = P Xy (kra—1) OF PXry) = -+ = P Xy (k4d—2) <
p Xnp(k+d—1) - Lhat is, a ridge is obtained by removing one of the points that define the
facet according to Theorem
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3d-case: 2d-case:

Circular
sequence

FI1GURE 2.3: Examples of the facet traversal graph.

By removing one point to the higher and one to the lower part of the permutation, we
obtain two ridges. Note that in the non-redundant case we can generate only one ridge
in order not to violate the second equation of . The number of ridges is 2d (d in
a non-redundant case), as there are d points which have to be removed. Obviously, the

number of facets that neighbor the current one equals the number of its ridges. O

Thus, by removing one of the points that characterize the current facet according to the
Theorem we are directed to either one or two neighboring facets. If the current facet
is redundant, removing a point yields two parallel ridges. Thus, we get two neighbors

for a redundant, and one for a non-redundant facet.

Next, we search for a new adjacent facet that shares a given ridge. For this, rotate
the support vector p in the plane orthogonal to the ridge defined by the d — 1 points.
Obviously, if x; has been removed from the higher (resp. lower) part of the permutation,
p has to be rotated in the direction of increasing (resp. decreasing) p’x;. The rotation
stops when the first equation is met, that means, p has reached a normal of a

new facet.

As this procedure produces a “jump” from the current facet to one of its neighbors,
we shall mention it as the “ump-to-neighbor” procedure. According to this procedure,
sequentially generated facets are identified in a similar way, which allows for an efficient
implementation. Moreover, as the traversal through all neighbors guarantees the absence

of “gaps”, no facet will be lost.

Based on Theorem we shall construct a special graph; the facet traversal graph
(FTG). The vertices of the FTG correspond to the set of all facets of the zonoid region,
and the edges of the FTG indicate the neighborhood of facets. Each vertex of this graph
joins either d or 2d edges.
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A sequential procedure for determining the zonoid region consists in transversing all
vertices of the corresponding FTG. Note, that in the dimension d = 2, the FTG is an
elementary cycle and its traversal is trivial and unique. In fact d = 2 is a degenerated
case. For d > 3 we construct a spanning tree order (STO) of the FTG, which orders the

set of facets. By “jumps-to-neighbor” the STO is created in a dynamic way:

1. Organize a queue.

2. In each step, pop from the queue a current facet, which corresponds to a vertex of
the FTG. Add to the queue all adjacent vertices of the current vertex that have

not been processed so far. Mark the current vertex as processed.

3. Marking of the vertices is done through a hash table, where hash codes of all the

processed vertices (i.e. facets of the zonoid region) are stored.

According to Corollary the record for each facet in the hash table is fully described
by d integer numbers. These numbers are the labels of main elements of d points that
define the facet. If these points define two parallel facets, these facets can easily be
generated in one step, thus making it possible to have one record for them in the hash

table.

The linear order of the vertices (facets) is provided by its final positioning in the queue.
The realization of the STO is illustrated by Figure

The current facet
Hash table ;\ .
Spanning tree
2
Hash codes of q%,
the processed % -
facets = N
o S \
Y : 3 :
b \
<} s \
&
Marking/checking o
facets -
> 2
Y ? = ?
Stored facets » j
s | - e
FIGURE 2.4: Realization of the STO.
So far, we have constructed an algorithm to compute Da(x1,...,x,) for a single given

a €]0,1[. Finally, this procedure is modified to efficiently calculate D}, (x1,...,x,) for

all ® in an interval around .
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Given pg, consider the intervall Ay of those o whose main element has the same index
k, that is n — [na] = mp, (k) or, equivalently,

n_ﬂ-po(k;) <a< TL—T['pO(k)—l—]_ ) (217)

n n

For all a € Ag, the global cone structure is the same. When we calculate the zonoid
region for some a € Ai, we can simultaneously determine the zonoid regions for all
a € Ay by using the same global cone structure and only recalculating the distances of

facets from the origin.

Note that that there are only n possible different global cone structures. Hence the
global cone structure is fully determined by the initial position pg of the support vector
and the corresponding main point, which can be any of the n data points. Consequently,
for determining the whole family of zonoid regions, Dy(X1,...,%,) for all «, it suffices

to run the modified algorithm n times only.

2.8 Discussion

An exact algorithm has been constructed to compute the zonoid regions of an empirical
distribution in d-space. It calculates all of the vertices, edges, and facets of a zonoid
region at any given depth o €]0,1[. (Recall that & = 0 and a = 1 are trivial cases.)
This approach requires that the dimension d — 2 of ridges is not lower than 1, which is
the dimension of edges. It works for any dimension d > 3 and any number n of data

points.

A hash table plays a significant role, as it stores the vertices, once generated, in a special
structure and facilitates a fast check of whether the vertex has already been processed.
Each facet is generated only once. Thus the algorithm has as many loops as the zonoid
region has facets. Obviously, this is the minimum number of facet generating loops in

this sort of algorithm.

In a single facet generating loop, the most costly operations are as follows: Calculate
the hyperplane equation of the current facet, calculate its distance from the origin and
obtain the neighboring facets. This is done by solving linear equations and finding inner
products only. The complexity of the first operation is O(d®). Up to d such operations
are performed in each loop. The complexity of getting n — 1 inner products is assessed

O(nd). Hence, the complexity of one facet generating loop is described by O(d?(d?+n)).
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The number of computational loops of the algorithm is equal to the number of facets
of the zonoid region. If the average number of facets is denoted N(n,d), the average

computational complexity of the algorithm amounts to O(d?(d? + n) - N(n,d)).

Note that the complexity increases only moderately with d. For example, consider two
data clouds of dimensions d; and ds (d; < dg2) that contain the same number of points
n. Then the second data cloud will form a polytope that has a more trivial structure
in R% than the first has in R%. It is also easy to see that there is no operation in
the algorithm whose complexity grows exponentially with the growth of the dimension.
Altogether the complexity is polynomial in n and d. This confirms the efficiency of our

algorithm.

General memory resources are used, in the first place, for storing a hash table and
created facets. Each facet occupies O(d) storage size, while a hash table in almost any
case has a constant size C, not depending on n and d. Therefore, the use of general
memory is of the order O(N(n,d) - d+ C). Facets, once they have been created, are put

into a secondary store, thus considerably reducing the storage cost.

Figure illustrates its application by exhibiting zonoid regions for a small data set
of five points of the dimension three and for several values of a. Each zonoid region
is depicted in three directions (by revolving it on a vertical axis). The data points are

shown as little pyramids. (Note that these 3d-pictures employ a perspective view.)

The algorithm can be downloaded as an R package. It has been implemented on a
standard PC. Table exhibits, for different choices of d and n, average values of total
time (in seconds), number of facets, and time per facet. Note that for all calculations
the same o = 0.317 was taken. As the number of facets depends on the data, the
efficiency of the algorithm may be judged by its computation time per facet. Table
gives an idea of how the time for computing one facet grows with d and n. It appears
that the “time per facet” increases polynomially with d; moreover, the increase is close
to being linear. Concerning n, a tendency towards saturation at some constant value is
indicated. The given results also suggest that the growth in the “number of facets” is
polynomial as well. Hence we can suspect that the aggregate complexity is polynomial.
These considerations are also confirmed by the genelized algorithm (cf. Section .

Much computational load can be spared when we simultaneously calculate zonoid regions
for several « that are sufficiently close to each other. If [n-aq] = ... = [n - ag holds,
complete facets have to be computed for aq only, while for as,...,ap all facets are

parallel to them; so, only their distances from the origin have to be calculated.

The algorithm as it stands generates the facets one after the other in a deterministic way.

It may be modified in order to gradually cover certain specified parts of the zonoid region
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o=0,05:

o=0,30:

o=0,50:

o=0,70:

a=0,90:

FIGURE 2.5: Zonoid regions of five points of the dimension three.
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d n time per facet number of facets total time [sec]
3 10 0.002437 106 0.259
3 15 0.003022 241 0.722
3 20 0.003474 476 1.653
4 10 0.003142 257 0.809
4 15 0.004444 948 4.216
4 20 0.005163 2840 14.667
5 10 0.003714 377 1.403
5 15 0.006250 2556 15.980
5 20 0.007257 13082 95.133
6 10 0.004083 377 1.542
6 15 0.008112 5005 40.600
6 20 0.009385 38177 356.648

TABLE 2.1: First computational results of the zonoid regions algorithm.

that are of special interest. For instance, all facets belonging to the lower boundary may

be constructed without generating the remaining facets of the zonoid region.

Moreover, the structure of the algorithm lends itself well to being parallelized on a

high-performance cluster system.

To speed up the procedure, our exact algorithm can also be modified by imposing heuris-
tic rules on the choice of adjacent facets. For instance, as a heuristic rule we may prefer
redundant facets to non-redundant ones, since a redundant facet borders on more other
facets and, thus, can be regarded as a facet that determines the zonoid region “more
strictly” than others do. In any case, the exact algorithm serves as a benchmark proce-

dure to be compared with any heuristic procedure, regarding precision as well as speed.

2.9 The algorithm

Input

d  (dimension of the data space, d > 3)
n  (number of data points, n > d)
cloud (data x1,...,x, € RY)

«  (depth parameter)

Output

zonoid_region  (all facets of zonoid region, with coordinates of their vertices)
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Steps of the Algorithm

A. Initialization:

a. Read the input.
b. Calculate X = 13" | x;.

c. Substitute x; — X for x;,i=1,...,n.
B. Determining a first facet:

a. Choose from cloud a subset d_set that contains d data points.
b. Calculate, to the hyperplane through these d points, a normal vector r.
c. Substitute r for p and consider the permutation mp.

d. If dset = {Tr(k)s---» Tr(ktd—1)) satisfies (2.15)), d_set defines the first facet
ffacet. Otherwise, go to B.a.

e. Calculate a vertex of ffacet from (2.9) and the constant of the hyperplane

equation.
f. Place ffacet — queue.

g. If condition (2.16) is met, generate dualffacet, which is parallel to ffacet and

based on p;n, = —p. Place dualffacet — queue.

h. Calculate the hash code of ffacet and place it < hash_table.
C. Determining all facets:

a. Take curr_facet <= front of the queue.

b. Create neighboring facets based on each of the points curr_point that define
curr_facet.
I. Create ridges by removing curr_point.

i. If k <n—[na] in (2.15), obtain lower_ridge by removing curr_point

from the lower part of mp.
ii. f k+d—1>n—[na] in (2.15), obtain higher_ridge by removing
curr_point from the higher part of mp.

II. Choose a vector z that is orthogonal to the found ridge and linearly

independent of p.

A. Given a normal vector r to curr_facet, z is calculated by exchanging

one equation in the linear system used for calculating r.
B. p and z define the basis By of a plane.

III. If lower_ridge has been created:
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I1r.

IV.

V.

V.

A.

Rotate p in the plane that is generated by basis Bs. In doing this,
start from r in such direction that the index of the point being re-

moved decreases.

. Stop if the first equation of (2.15]) is met. Then, new_point has been

found.

. Substitute current_facet by lower_new_facet, and exchange new_point

with curr_point the set of points defining the facet.

If higher_ridge has been created:

i.

ii.

iii.

Rotate p in the plane generated by basis Bs. In doing this, start
from r in such direction that the index of the point being removed
increases.

Stop if the first equation of is met. Then, new_point has been
found.

Substitute current_facet by higher_new_facet, and exchange new_point

with curr_point.

Calculate the hash codes of lower_new_facet and higher_new_facet. Check

in hash_table whether these facets are new. If not, go to C.a.

For each of the created facets, calculate the vertices and the facet’s equa-
tion by (2.9)). Place the created facets — queue.

If condition ([2.16]) is met, generate a parallel facet based on pj,, = —p.

Place the facet — queue, too.

VI. Place hash codes < hash_table.

c. Shift curr_facet by X and transfer it from queue to zonoid_region.

d. If queue is not empty, go to C.a. Otherwise, stop: Then, zonoid_region con-

tains all facets of the zonoid region.

Some details of the algorithm:

1. Given a hyperplane through d points, a normal vector r is obtained as follows: Let

A be the matrix that contains the given d vectors minus the first vector as rows

and solve the linear system A -r = b.

2. The hash code is calculated by creating a bit row from d sorted integer numbers

that correspond to the labels of main elements of the d points defining the facet.

3. The neighbors of the current vertex are found as follows:

(a) Create a bundle of vectors that connect the current main point and all other

points from cloud.
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(b) Reverse all vectors in the bundle that correspond to points having lower rank

than n — [na] in the permutation.

(¢) For each vector in the bundle,

i.
ii.

iii.

v.

Specify a linear program LP; for the current vector,

Solve the specified linear program by the dual simplex method.

If the objective is minimized with value 0, go to the next step. Otherwise,
go to Bo)]

The point from cloud that corresponds to this vector is the main point

of adjacent direction cone.

Exchange the new main point with the current main point in the current

permutation. This yields a new neighboring vertex.






Chapter 3

Weighted-Mean Trimmed

Regions and Distortion Risks

Trimmed regions are a powerful tool of multivariate data analysis. They describe a
probability distribution in Euclidean d-space regarding location, dispersion, and shape,
and they order multivariate data with respect to their centrality. |Dyckerhoff and Mosler
(2011) have introduced the class of weighted-mean trimmed regions, which possess at-

tractive properties regarding continuity, subadditivity, and monotonicity.

In this chapter we present an exact algorithm to compute the weighted-mean trimmed
regions of a given data cloud in arbitrary dimension d. These trimmed regions are
convex polytopes in R?. To calculate them, the algorithm builds on methods from
computational geometry. We employ a special characterization of a region’s facets, and
extract information about the adjacency of the facets from the data. A key problem
consists in ordering the facets. It is solved by the introduction of a tree-based order,
by which the whole surface can be traversed efficiently with the minimal number of
computations. We decribe the algorithm and its implementation in C++ and R package
WNMTregions.

3.1 Motivation

Given d-variate data x1,Xa, ..., Xy, an a-trimmed region Dy (X1, X2, ...,X,) is a convex
compact set in R? that depends on the data in an affine equivariant way, i.e., for every

matrix A € R™*? and every b € R™ it holds

Dy(Axy +0b,...,Ax, +b) = ADy(x1,...,%X,) +b.

33
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The parameter « varies in an interval such that the family (D, (x1,X2,...,Xp))q iS
nested decreasing in «, ie., a < f implies Dg(x1,...,%,) C Dqo(x1,...,%X,). The

smallest region is regarded as a particular median of the data.

Several special notions of trimmed regions have been introduced in the literature, among
them the Mahalanobis regions, the halfspace regions, and the zonoid regions; for re-
cent surveys, see Serfling| (2006)), Cascos (2009). Applications include multivariate data
analysis (Liu et al.l 1999), classification (Mosler and Hoberg, 2006), tests for multivari-
ate location and scale (Dyckerhoff, [2002), risk measurement (Cascos and Molchanov,
2007)), and many others. The various notions of trimmed regions differ in properties
like continuity, robustness, and sensitivity regarding the data. Depending on the type
of application different properties are relevant. E.g., Mahalanobis regions are ellipses
around the mean of the data and based on their covariance matrix; by this they can
neither reflect a possible asymmetry of the distribution nor characterize it in a unique
way. Both halfspace regions and zonoid regions reflect asymmetries and characterize the
distribution. Halfspace regions are more robust against outliers than zonoid regions; if

robustness is an issue, the latter need some preprocessing of the data.

Dyckerhoff and Mosler| (2011)) have introduced the class of weighted-mean trimmed re-
gions, which possess additional attractive properties and include the zonoid regions as
a special case. Weighted-mean trimmed regions are continuous in the data as well as in
the parameter, which means that both the function (xi,...,%,) — Da(x1,...,%,) and
the function o — Dy (x1,...,X,) are continuous in terms of Hausdorff convergence of
sets. Moreover, weighted-mean trimmed regions are subadditive and monotone, which
properties have a substantial interpretation in terms of d-variate risk and allow the con-

struction of set-valued risk measures that are coherent (Cascos and Molchanov, 2007)).

To be useful in data applications, a notion of trimmed regions must be computable.
Bivariate trimmed regions of any type can be calculated by constructing a circular
sequence, like in Dyckerhoff (2000]) and |Cascos (2007)), but only a few procedures are
known in dimension d > 2. Mahalanobis regions are easily determined in any dimension
d, as they only employ the mean and the dispersion matrix of the data. [Mosler et al.
(2009)) develop an efficient geometric algorithm for zonoid regions in any dimension, and

Hallin et al.| (2010) provide a parametric linear program for calculating halfspace regions.

In this chapter we present an exact algorithm to compute the weighted-mean trimmed
regions of a given data cloud in arbitrary dimension d. These trimmed regions are convex
polytopes in R?. To calculate them, the algorithm builds on methods from combinatorial
and computational geometry. A region’s facet is characterized by d — 1 pairs of data

points. Based on them the normal (support vector) of the facet is determined and by
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properly rotating the support vector an adjacent facet is found. A key problem consists

in ordering the facets. It is solved by the introduction of a tree-based order.

Overview of the chapter: Section provides a brief introduction into the notion of
weighted-mean (WM) trimmed regions. The main results of the chapter are contained
in Section which presents the basic geometrical ideas of the algorithm, in particular
the construction of a facet on the basis of d — 1 data point differences and the tran-
sition to a neighboring facet by rotating the support vector and exchanging the basis.
Section provides a formal description of the algorithm with the analysis of its com-
plexity. Section delineates the R package and the program realization in C++, while
Section provides conclusions and a discussion of perspectives. The last Section

proposes heuristics for speeding up the algorithm.

3.2 Weighted-mean trimming

This section reviews the general notion of weighted-mean trimmed regions and two of
its special cases, the zonoid regions and a modified version of the expected convex hull
(ECH) regions - the ECH* regions.

3.2.1 Definition and principal properties

Weighted-mean trimmed regions are convex bodies in R?. Recall that a convex body

K C R%is uniquely determined by its support function hx (see, e.g., Rockafellar (1997)),
hg(p) =max{p'x|xe K}, pec Sd=1

where %=1 denotes the unit sphere in R¢.

To define the weighted-mean a-trimmed region of a given data cloud xi,Xo,..., X,
we construct its support function as follows: For p € S9!, consider the subspace

{A\p|\ € R}. By projecting the data on this subspace a linear ordering is obtained,

p,XTI'p(l) < p/Xﬂ'p(Q) <0 < p/Xﬂ'p(n) ) (31)

and, by this, a permutation m, of the indices 1,2,...,n. Note that, if no equalities
arise in , the permutation 7, is unique, otherwise a class II, of several permuta-
tions is generated. The set of directions p at which 7, is not unique will be denoted
H(x1,...,%Xp),

H(xy,...,xp) = {p € 5471 | there are i # j such that p'x; = p'x; } .
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Consider weights w;o for j € {1,2,...,n} and a € [0,1] that satisfy the following
restrictions (7) to (7i7):

(1) > wja =1, wja >0 forall j and «,

(#1) wj o increases in j for all «,
(73i) if o < B then

k k
Y wia <Y wis, k=1,....n. (3.2)
j=1 j=1

Then, as it has been shown in Dyckerhoff and Mosler (2011), the function hp,_ (x;....x.)s
RD (1) (P) = D W1 Xy (), P € ST (3.3)
j=1

is the support function of a convex body D, = Dq(x1,...,%y,), and D, C Dg holds

whenever a > f.

Now we are ready to give the general definition of a family of weighted-mean trimmed

regions.

Definition 3.1. (Dyckerhoff and Mosler) Given weights w; q, ... wn, o that satisfy the
restrictions (i) to (i4i), the convex body D, = Dy (X1, ...,X,) having support function

(3.3]) is named the weighted-mean a-trimmed region of x1,...,X,, a € [0,1].

The next proposition explains the name by stating that a weighted-mean trimmed region
is the convex hull of weighted means of the data. Further it describes the region’s extreme

points.

Proposition 3.2. It holds
n
Dy (X1, ...,X,) = conv ij7ax7r(j) ‘ m permutation of {1,...,n} 7 , (3.4)
j=1
and the set of extreme points of Dy, is given by

Ext(Da(x1,...,%y)) = ij,axﬂ'p(j) ’p e ST\ H(xy,...,%p) p . (3.5)
=

Due to their attractive analytical properties, WM regions are useful statistical tools.

Besides being continuous in the data and in «, they are subadditive, that is,

Da(xl +YI;---7Xn+Yn) C Da(xla"'7xn)@Da(yla"'vyn>7



Chapter |§l WM Regions and Distortion Risks 37

and monotone: If x; < y; holds for all i (in the componentwise ordering of RY), then

Do(yi1,---3¥n) C Da(x1,...,%Xp) ®RL, and
Do(X1, .-, %n) C Daly1, ..., ¥n) @RL,

where @ signifies the Minkowski sum of sets. For proofs and more results, like projection

properties, the reader is again referred to Dyckerhoft and Mosler| (2011)).

3.2.2 Special notions of weighted-mean trimming

The general notion of WM regions provides a flexible approach to the trimming of
multivariate data. Depending on the choice of the weights w;, different families of
trimmed regions are obtained. They include the zonoid regions (Koshevoy and Mosler,
1997), the ECH and ECH* regions (Cascos|, [2007), the geometrically trimmed regions,
and many others. For an illustration in dimension d = 3 see Figure Here the left
panel shows zonoid regions for different parameters «, while the right one consists of
ECH* regions for the same data and a. Note from Figure that the surface of a

zonoid region appears to have less facets than an ECH* region.

Historically, the first type of WM regions was zonoid trimmed regions Z Dy (X1, ... ,Xy)
for 0 < a < 1 proposed by Koshevoy and Mosler| (1997)),

n 1 n
=1 i=1

The corresponding support function is
n
hzDa(P) = Y wjaP %m,(j) »
j=1

with weights

0 if j <n—|nal,
wja = 2 =0 — |nal, (3.6)
L if j >n—|naj.

Many properties of the zonoid regions are developed in Mosler| (2002); particularly im-

portant is that they contain full information about the data.
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Another important notion of WM regions is that of ECH* regions (Cascos, 2007)). Their

support function
n
hecus:(p) = Z Wy,ex P/pr(j)
j=1
employs the weights

jl/a _ (j . 1)1/a
nl/a ’

(3.7)

w-y’a =

For a detailed discussion of these and other special weighted-mean trimmed regions,
like EC'H and geometrically trimmed regions, the reader is referred to [Dyckerhoff and
Mosler| (2011)).

3.3 Geometry of the algorithm

In this section we present the basic ideas of the algorithm. Specifically, it relies on

notions from convex geometry.

3.3.1 Trimmed region as a convex polytope

Consider a data cloud, which is a finite set of data points, {x1,xX2,...,%,} C R? and
assume that the points are all different and in general position (i.e., no more than d of

them lie on the same hyperplane).

For given «, the a-trimmed region D, = Dy (X1,X2,...,X,) is a convex polytope in R?
that is bounded and closed. Such a polytope is the nonempty and bounded intersection
of finitely many closed halfspaces. Thus the polytope can be completely described by
its bounding hyperplanes. The intersection of a bounding hyperplane with the polytope
is named a facet if it has the affine dimension d — 1. Similarly, it is named a ridge if it

has the dimension d — 2. In dimension d = 3 a facet is a face, and a ridge is an edge.
In the sequel, we calculate the weighted-mean trimmed regions by their facets. Two
computational tasks will have to be repeatedly performed:

1. Calculate a facet,

2. find an adjacent facet.
A ridge is the intersection of two facets. Therefore, investigating the ridges is a way to

extract information about the adjacency of facets. Each ridge of a given facet provides

an indicator whether another facet is adjacent or not. A bounding hyperplane is fully
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FIGURE 3.1: Examples of WM regions in R®. Representation of the zonoid (left) and
ECH* (right) regions for the same data and depths.

described by its (outwards pointing) normal and one additional point, in particular one
of its vertices. Hence, for every facet we determine its normal and a vertex as well as
the adjacency indicator of each of its ridges. By doing this successively for all facets, a

complete representation of the trimmed region is obtained.

Mosler, Lange, and Bazovkin| (2009) develop an exact algorithm for calculating zonoid
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FIGURE 3.2: Characterizing the normal p of a facet (zonoid region, d = 3,n = 10, =
0.25): Data points and their projections; p-ordered indices; weights; active pairs of
indices.

trimmed regions. They demonstrate that, in the case of zonoid regions, the normal of a

facet is characterized by d points of the data cloud.

Regarding a general WM region, we will firstly characterize its facets. Let F' be a given
facet of Dy (x1,...,%X,) and p denote its normal. Then F' has at least d vertices, which
all are supported by p. Due to (3.3]) and (3.4) each vertex v has the form

n
v = ij,axwp(j) with some 7, € 1I,,. (3.8)
j=1

Consequently, not all p'x; can be different: It holds p € H(xy,...,Xy), and II, has at

least d elements. Now let us consider the p-ordered series of indices

(1), mp(2), ..., mp(n).

In the sequel we will mention those pairs of indices (m,(j), mp(k)) as active that satisfy
the equation p’ X, (k) = p X, (j) Plus a restriction on their weights w; and wy,, which will

be specified below. The equation means that the difference x, (x) — Xy, (j) is orthogonal

to p,
Xy (k) ~ Xmy(j) L P - (3.9)

At a given p, all indices that belong to an active pair will be mentioned as active indices,

all others as passive indices.
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From now on, we will distinguish data points and data vectors. By a data vector we
mean the difference of two data points. To determine p, d — 1 data vectors are needed.
Each of them is based on an active pair of indices and thus satisfies the orthogonality
relation . As, by assumption, the data are in general position, any such d — 1 data
vectors are linearly independent. They will be mentioned as a basis of ' and denoted by
Vr. Note that the basis of a facet is not unique: To form a basis, out of all active pairs
of indices any d — 1 pairs that yield linearly independent data vectors may be chosen.

To summarize:

Theorem 3.3. (Basis of a facet) The normal of a facet F' is orthogonal to exactly d—1
linearly independent data vectors, which form a basis of F. The facet is characterized

by a basis and one of its vertices.

Next we develop the two essential steps of calculating a facet and finding an adjacent

facet in detail.

Task 1: Calculating a facet In our algorithm we have to construct a basis for each
facet of the polytope. Let p be the normal of a given facet F', choose some 7, € II,,
and consider the series of p-ordered indices m,(1),m,(2), ..., mp(n). This series contains

d — 1 active pairs of indices, 7,(j), mp(k), that define a basis Vp.

The special case of zonoid regions (having weights (3.6))) appears to be particularly
simple: A facet is identified by exactly d data points (carrying serially p-ordered indices),
which yield d—1 linearly independent difference vectors that are orthogonal to p (Mosler
et al.l 2009). As an example, Figure exhibits ten points in R3 and their projections
to the line generated by p. The lower panel contains the p-ordered series of indices and
the weights for @« = 0.25. Here, three indices (9,8, and 4) are active, as well as
three index pairs ((9,8), (9,4), and (8,4)). A basis of the facet is given, e.g., by the data
vectors Xg —xg and x4 — Xg. Note that for these weights (at a = 0.25) and any direction

p the indices m,(7), 7,(8), and 7,(9) become the active ones.

Other types of weighted-mean trimmed regions employ less simple weights. With them
the number of active indices involved in the identification of a facet F' may be larger
than d. E.g., Figure illustrates the characterization of a facet of an ECH* region,
with weights and a = 0.25. It shows another example of ten points in R? and their
projections, given some p. In this example, four indices (7,6,4, and 2), and two index
pairs ((7,6) and (4,2)) are active, and a basis consists of x¢ — X9 and x2 — x4, being

unique up to sign.
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FIGURE 3.3: Characterizing the normal p of a facet (ECH* region, d = 3,n = 10,a =
0.25): Data points and their projections; p-ordered indices; weights; active pairs of
indices.

In general, we consider the following disjoint blocks A; of indices, [ = 1,..., L,
Ar=A{mp(i) i € {ap,ar +1,... ;a0 +my — 1}, p'xp (im1) = P X3 for i > ar},

where ;1 < a; holds (ap = 0), and define: A pair of indices is called active if a block
A; exists that contains both of them. In particular, each block contains at least two

elements, n; > 2, and it holds wy, o < Wg;4n;—1,o, Which is the restriction on weights
announced above. Moreover, A; N A, = 0 if [ # m, and

L
Vi = {Xnp ) = Xy 41) | 7p(0), mp(i + 1) € A}
=1

Note that in the case of zonoid regions only one block of active indices arises; it holds
L=1.

The remaining indices, which are not in Ule A;, are the passive ones. Among them we

distinguish disjoint blocks that have equal weights,
By = {mp(i)|i € {bg,br + 1,...,bp +mp — 1}, wi—1 4 = w;qo fori > by},

k=1,2,..., K, while mj, > 1, by_1 < by with bg =0, and wy, | o < Wy, -

Thus 7,(1), 7,(2), ..., mp(n) divides into a series Sg of blocks A; and By, of active and

passive indices, respectively. Observe that these blocks may occur in any order, which
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FIGURE 3.4: Series of blocks of active and passive indices; weights as indicated.

is illustrated in Figure

Task 2: Finding an adjacent facet To identify adjacent facets we start from a given
facet F', which has support vector p and which from now on will be called the current
facet. Each ridge of F offers a way of ”jumping” to a neighboring facet. Therefore we
investigate the ridges of the current facet F' and, consequently, its adjacent facets. Each
element of the basis Vr may be regarded as a reduction of one degree of freedom of
the support vector p. To determine p as the normal of the current facet F', we have to
reduce d — 1 degrees of freedom and calculate the uniquely determined support vector
p that is orthogonal to d — 1 linearly independent data vectors (differences of vectors
from the original data cloud). A ridge of the current facet is supported by vectors that
result from adding one degree of freedom to the given support vector p. The degree of
freedom is added by leaving out one of the d — 1 data vectors from the basis Vg, or, more
generally, by replacing some k data vectors in Vg with some k — 1 ones, while keeping

linear independence within the basis.

Removing one element from the basis Vg corresponds to splitting one of the active blocks
in Sg, say A;, into .All and .Al2. By this, a modified series of blocks, Spy, is obtained.

Observe that, if A} (or A?) is a singleton, its element becomes a passive index in Sp..

Now, the removed element of the basis has to be substituted by another data vector.
For this, any pair (i*, j*) of indices that belong to two neighboring blocks of Sp, can be

chosen and the corresponding data vector x;+ —x;+ be added to the basis. (However, no
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FIGURE 3.5: Rotating p in a plane of dimension two in R?.

pair from A} x A? must be selected.) Then the new basis defines a facet that is adjacent

to the current facet F.

This step may be visualized as follows (see Figure for d = 3): Starting at p, the
support vector is rotated in a plane (of dimension two in R?) until another data vector
enters the basis Vp, i.e., until another data vector becomes orthogonal to p. Let &,
denote the set of vertices of the polytope corresponding to the support vector p. We
turn p until it stops at the position p where p'x;+ = p'x;+ for some i* and j*, ie.,
(xi« — xj) Lp. Then, if & D &,, this means that p is a normal to some facet F which
is a neighbor to the current facet. Otherwise, p is turned further until the condition is
met. Obviously, to meet the condition, the indices ¢* and j* must be in different blocks
of Spi. On the other hand, indices can continuously interchange places only with their

neighbors, that is, x;+ and x;+ must be in blocks that neighbor each other.

So far we have exchanged a single basis vector against another one. However, the
elements within each active block at p can be arbitrarily rearranged, and each active
index used in the exchange step just represents a class of equivalent active indices.
Therefore more than one, say k, active pairs living on All X AIQ may be exchanged

simultaneously.

As a result of the basis exchange we have found a single adjacent facet. Our next task is
to identify all facets that are adjacent to the current facet. For this, it is not necessary to
enumerate all pairs of indices from neighboring blocks of Sg.. Note that the elements of
each active block A; are equivalent in the p-order, i.e., p'’x;+ = p'x;« for all i*, j* € A;.

Hence, we may permute indices within the active blocks in an arbitrary way, which
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FIGURE 3.6: The series Sp, of blocks; with possible critical pairs.

means employing some other permutation from II, in place of the given permutation
mp. Therefore, in generating all possible basis exchanges, we need not consider all active
indices for pairing, but may restrict to a representative index of each active block, say
rp € A, 1 =1,...,L. However, in the passive blocks, all indices have to be taken into

account.

A pair (i, 5*) from two neighboring blocks in Sp, is called a critical pair if it consists of
indices that are either passive or representative active indices. More formally, we may

write the series Sp, of active and passive blocks as

SF* = (617027"'7CL+K)

and define

0 {r} if C; = A; for some [,
B, if C,, = B, for some k.

Then the set of critical pairs (that have to be checked for finding all adjacent facets) is
given by

L+M-1 ~ ~
U G x Gt (3.10)
m=1

The two computational tasks, calculating a facet and finding a neighboring facet, are
performed until all facets of the polytope have been visited and computed. As a result
of the algorithm, the WM region is completely described by its facets. Alternatively
and in addition, we may be interested in calculating vertices of the polytope. These are

easily determined by the following procedure.
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Proposition 3.4. (Calculating vertices) Consider a facet F' having normal p. Each
vertex of F exactly corresponds to a permutation of (mp(1),...m,(n)) that is restricted

to permutations within the A;.

Corollary 3.5. The minimum possible number of vertices of a facet is d (e.g., for zonoid

regions). The mazimum possible number of vertices of a facet is d! .

E.g., in the case of ECH*-regions, the number of vertices of a facet varies from d to d!.

3.3.2 Spanning tree order

Based on the adjacency information obtained by the above approach we are able to
calculate the facets in a sequential order. For this sequence, we use the spanning tree
order (STO) discussed in Mosler, Lange, and Bazovkin (2009). The STO provides a
complete ordering of all facets according to which they are generated in the algorithm.

The general idea is:

1. Represent all facets adjacency information by a tree,

2. organize an efficient procedure to traverse the tree.

In the algorithm we apply a breadth-first search like that described in Knuth! (1997).

Using the STO we generate each facet only once, which is an efficient procedure.

Moreover, as the STO is based on the neighboring relation among facets, we can restrict
the calculation of facets to some connected part of the trimmed region’s surface, e.g.
the part having support vector p > 0. This proves to be useful in certain applications

like multivariate risk measurement.

Note that we calculate the trimmed region by sequentially generating its facets, but not
its vertices. In dimension d = 2 it is also possible to determine the region by enumerating

its vertices; this is done by means of a so called circular sequence (Edelsbrunner, 1987)).

It is easy to see that the proposed procedure applies to any choice of a weighting function
satisfying the above WM restrictions (i) to (iii). Thus the algorithm is able to calculate

any weighted-mean trimmed region.

Finally, we would like to turn the reader’s attention again to the the adjacency of the
sequentially generated vertices. That is a practical advantage because we can restrict the
calculation to some specified part of the WM region which we might only be interested

in. In this respect our procedure reminds of the so-called ”gift-wrapping” approach,
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FIGURE 3.7: The sample scheme of the procedure.

which is used to solve common tasks of constructing convex polytopes, in particular
calculating the convex hull of a given set, where algorithms for higher dimensions have

been proposed by Swart| (1985) and others.

However, the structure of a WM region is much more complex, since it aggregates not
only local information, as it is the case in the construction of a convex hull, but depends
on information on the whole data cloud, including all inner points. If 0 < a < % the
WM region turns into a convex hull of data points, which is the trivial case in our task.
For this reason our algorithm differs fundamentally from a classical ”gift-wrapping”
procedure. Other than Swart’s and similar approaches we find a facet of the WM region
only once (in contrast to a repeated finding of facets and removing the new one after
discovering the duplication), that is, we make no redundant calculations and form a
unique chain of facets according to the STO. Furthermore, convex hull algorithms work
with a given set of points, while in our problem there is no such set in an explicit form,
and facets are constructed without having information on their vertices. Besides this, it
was shown above that a facet of a WM region is, in most cases, no (d — 1)-dimensional
simplex. Actually, the number of vertices can blow up to d!, which represents a difficult

case for a convex hull algorithm.
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3.4 The algorithm

3.4.1 Interface and steps

In this subsection we give a formal scheme of the algorithm and an interface to it.

Input

d  (dimension of the data space, d > 2);
n  (number of data points, n > d);
cloud (data x1,...,x, € R%);

«  (depth parameter);

wq, (weight vector; alternatively: name of special type of WM regions).
Output

e trimmed region (all facets of the trimmed region, with coordinates of their

vertices);

o Visualization.
Steps of the Algorithm

A. Initialization: Read the input.
B. Determine a first facet:
a. From cloud, form a set vec_defining set of d —1 linearly independent data
vectors (= basis).
b. Calculate, to the hyperplane through vec_defining set, a normal vector r.

c. Substitute r for p and choose a permutation 7, € II,. Determine the series

of active blocks {A4;},_; ; in this permutation.
d. {Ai},_, | defines vec_defining set and, hence, the first facet ffacet.

e. Place ffacet — the head of queue.
Having the initial facet, we can start a sequential calculation of all others.

C. Determine all facets:
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a. Take curr_facet < front of the queue.
b. Create neighboring facets of curr_facet.

I. Create all ridges by adding a degree of freedom to p (reducing cardinality
of the basis vec_defining set by one).

i. Take the next A; and create all possible splittings of it into two sub-
sets: (A}, A?). Replace {A;} by A} and A7. If cither A} or A7 is a
singleton, remowve it from the active blocks. A set partial _facets(1)
is obtained.

ii. Drop off all elements of partial _facets(1l) that are no active blocks.
A set ridges (1) is obtained.

iii. Add partial facets(1) to the set ridges. If an unprocessed A; is
left, go to [C(BJLE

Now we have found all ridges and are ready to do ”jumps” to neighboring facets. Note
that the procedure jumps only to new facets. In doing this, we process each facet twice:
first, we only preprocess it by marking its ridges; second, we do a normal calculation

of the ”jumps”.

II. For the next ridge in ridges do the following:
i. If curr_facet is not preprocessed, calculate a hash code of the
ridge and mark it — hash_table. Then go to
ii. Check in hash_table, whether the ridge is blocked. If yes, go to

iii. Buwild the maximum number of linearly independent data vectors that
are based on active pairs. Put the vectors as rows into a matrix A.
There will be d — 2 rows.

iv. Given a normal vector r to curr_facet, put it as an additional row
into A. Put any non-zero vector that is linearly independent of the
d — 1 previously chosen rows as a last row into A. Let b be a vector
that consists of d — 1 zeros and a last non-zero entry.

v. Solve the linear equation A z = b. Its solution z and r span a plane
B that is orthogonal to the ridge.

vi. Calculate critical pairs according to .

vii. Rotate p in the plane By. In doing so, start at p = r and move p in a
way that the new ordering of points in the permutation corresponds
to the previous splitting of an active block.

viii. Stop if p becomes orthogonal to some vector built on a critical pair
of indices. Take this vector as new_vector.

The neighboring facet is discovered. Now we have to reconstruct its combinatorial

stucture.
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ix. Add new_vector to vec_defining set. new_facet is obtained. The
current position of p is a normal r to new_facet.
If new_vector is built on indices from an active block A; and a
neighboring passive block, then augment A; with the passive index.
If new_vector is built on indices from two active blocks, A; and
Aji1, then merge these two blocks.
If new_vector is built on two passive indices, then a new block A;

is created having them as its two elements.
X. Place new_facet — the head of queue.
We have to mark the ridges of the facet immediately, thus preventing another ”jump”

to the facet. The immediate processing is enabled by putting the new facet to the head

of the queue.

III. If curr_facet is not preprocessed, label it as preprocessed and place

— queue. Then, go to

IV. For curr_facet, calculate the vertices and its absolute distance from the

origin by (13.8)).

V. Shift curr_facet by X and transfer it to trimmed _region.

c. If queue is not empty, go to Otherwise, stop: Then, trimmed_region

contains all facets of the trimmed region.

We would also direct a reader’s attention to three special features of the algorithm:

1. Using a ”double-hash”: The ridges are hashed using a “double-hash” table. That

is, a ridge is blocked if it has been marked twice.

2. Calculating the hash code: The hash code is calculated by creating a bit row from
integer numbers describing {A;},_; ; and one number describing the absolute position

of a ridge (to distinguish parallel ridges).

3. Determining all adjacent facets: For optimizing the complexity at this stage the
mutual information concerning all ridges can be used. The details of such a heuristic

are described in Section B.8

3.4.2 Complexity of the algorithm

Due to the mechanism of the ”double-hash” the algorithm has as many loops as the WM
region has facets. Obviously, this is the minimum number of facet generating loops in

this sort of algorithms.
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At each facet ' we have to calculate the normal of the facet and its distance from the
origin. Further we have to determine all neighboring facets. This is done by solving
linear equations and calculating inner products only. We have shown above that the
complexity of this algorithmic loop amounts to O(d?- R(F')), where R(F) is the number
of ridges of the facet. R(F) can vary between d and 297!, depending on the type of the

WM region and on a.

To obtain a rough conservative estimate of R(F’), we may proceed as follows: First, note
that R(F) is bounded by R = HlL:1 27~1 Then suppose that the active blocks A; have
about equal size and that their number L, as a first approximation, is proportional to
the dimension d, say L ~ d/c. Under these assumptions R ~ L - 24/L=1 d/c-2¢71,
that is, R(F') is approximately bounded by the dimension d multiplied with a constant

K = 2¢7!/c that does not depend on the dimension.

Searching for all neighbors of a facet, we have to calculate n inner products, which
gives complexity O(nd). Hence, the complexity of one facet generating loop is described
by O((d?> + nd) - R) = O(d*n - K), since n > d. If the average number of facets is
denoted by N(n,d), the average computational complexity of the algorithm amounts to
O((d?> +nd) - R- N(n,d)) = O(d*n - K - N(n,d)).

For a better understanding of N (n, d) we like to discuss the number of vertices V' (n, d) of
the WM region. It is maximal when all weights in the weight vector are distinct. Let us
consider hyperplanes that are orthogonal to all data vectors and intersect at the origin.
Then the R? is split by the hyperplanes into convex cones, and there will be a bijection
between the vertices of the WM region and these convex cone&ﬂ Winder| (1966) has

shown that the number of such cones equals 2 ?:_01 (mi_l) for m hyperplanes, which is
O(m%). We have at most @ hyperplanes (for zonoid regions this bound reduces to

O(n)) and, therefore, obtain an (’)("2—?) upper bound for V' (n,d). It means that V(n,d)
lies between O(n?) and (9(’;—?) depending on the weight vector. In turn, we have already

seen, that each facet contains up to d! vertices, which leads to N(n,d) < V(n,d).

Regarding the hash table of created facets, each facet occupies O(d-log, n) storage size,
while the hash table, in almost any case, has a constant size C, not depending on n
and d. Therefore, the use of general memory is of the order O(N(n,d) - d - logy n + C).
Facets, once they have been created, are put into a secondary store, thus considerably

lowering the storage cost.

Table exhibits the results of a first small simulation study. It gives an idea how the
time for computing a single facet depends on d and n and how it varies with several

types of WM regions: zonoid, ECH*, ECH, and geometrically trimmed regions (for the

LCf. direction domains in Mosler, Lange, and Bazovkin| (2009).
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WMTD type d n Time per facet Total time [sec]
Zonoid 3 10 0.009700 0.445
Zonoid 3 15 0.013840 1.531
Zonoid 4 10 0.012474 1.609
Zonoid 4 15 0.015862 14.140
Zonoid 5 10 0.017370 2.398
Zonoid 5 15 0.022335 40.953
ECH 3 10 0.009111 0.843
ECH 3 15 0.012212 2.375
ECH 4 10 0.015255 21.891
ECH 4 15 0.019632 97.765
ECH 5 10 0.023519 117.625
ECH 5 15 0.029733 1032.75
ECH* 3 10 0.009610 0.750
ECH* 3 15 0.012218 1.617
ECH* 4 10 0.015286 22.922
ECH* 4 15 0.020011 94.070
ECH* 5 10 0.022970 139.070
ECH* 5 15 0.029660 890.68
Geometrical 3 10 0.009355 0.930
Geometrical 3 15 0.013056 1.101
Geometrical 4 10 0.015356 23.805
Geometrical 4 15 0.020157 93.406
Geometrical 5 10 0.023036 137.312
Geometrical 5 15 0.029794 1028.51

TABLE 3.1: Sample computational results of the WM regions algorithm.

latter two, see Dyckerhoftf and Mosler| (2011)). The data is distributed uniformly on a
d-dimensional cube. We focus on the time per facet (TpF) because it characterizes the
efficiency of the algorithm in a most obvious way. The total computational time amounts
to the latter multiplied by the number of facets, which is a parameter depending only on
the data. We observe that the TpF shows the following growth behavior: Approximately
linear on n and slightly convex on d, which may be seen as some low order polynomial

dependency on dimension.

3.5 The R package WMTregions

The algorithm has been programmed as an R package and named WMTregions (Bazovkin
and Mosler, [2011)). It is available for downloading from Comprehensive R Archive Net-
work at http://CRAN.R-project.org/package=WMTregions. Properly, the main func-
tionality has been realized in C++ and the R part is used as (i) a thin client for the

pre-compiled routine, (ii) the user interface and (iii) for the visualization. In the next
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subsection we consider it in detail. The formal description of the functions and archi-
tecture will be followed by two examples of applying the package to simulated and to

real data.

3.5.1 Technical overview

Dependencies An autonomously compiled C'++ program provides a 3d-visualization
as it is shown, for instance, in Figure The visualization is designed by means of a
cross-platform graphical specification OpenGL. In turn, in the R package we access the

OpenGL functionality by means of the rgl package (Adler and Murdoch, [2011)).

The less powerful but applicable for the data of any dimension, vertices based visualizing
is realized with the help of the rggobi package (Lang et al) |2010). The latter also
uses graphical toolkit GTK+ through its R proxy package RGtk2 (Lawrence and Lang,
2010). To be able to use it you must first install GTK+ library (http://www.gtk.
org/download) on your machine. On the most systems this installation is proposed
automatically while getting RGtk2. If not, you must do it manually before using the
package. Moreover, the old versions of GTK+ and ggobi can cause problems in installing

and using RGtk2 and rggobi: If the packages fail, you must reinstall GTK+ and ggob:.

R functions The package contains functions for calculating and representing WM

regions:

e Function WMTR(fname = "Cloud.dat", fdir = getwd(), bound = 0).
Goal: Calculates the WM region.
Arguments:
— fname: the name of the data input file (see Subsection [3.5.1)) in the directory
fdir.

— fdir: a path to the directory where the input and output files will be located.
The default value is the R working directory.

— bound: an option of additional outputting the lower or the upper bound-
ary of the WM region (i.e., 8 (Da(X1,...,%Xn) ® RL) N Dy(x1,...,%,) or
0 (Da(x1,...,%p) ®RY) N Dy(x1, . ..,%,), respectively). -1 corresponds to
the lower one; 1 - to the upper one; 0, the default value, makes no additional

output.

Output:


http://www.gtk.org/download
http://www.gtk.org/download
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— A file "TRegion.dat" in the directory fdir. The calculated WM region with
facets represented by their normals and intercepts.

— A file "TRegion vertices.dat" in the directory fdir. The calculated WM
region with facets represented by the coordinates of their vertices.

— Auxiliary files "TRegion bound.dat" and "TRegion vertices_bound.dat"

with a bound of the calculated WM region.

Description: This function is the main function, which reads input data from an
input file fname and writes the result into an output file ”TRegion.dat”, both files
being located in £dir. The format of the files is described below in Subsection[3.5.1]

e Function visualWMTR(fdir = getwd()).
Goal: Visualizes the calculated WM region for the data in R3.

Arguments:

— fdir: a path to the directory where the output files of WMTR() are located.
The default value is the R working directory.

Output: Void value. The visualization of the calculated WM region and the data

cloud points in a separate window under R environment.

Description: This function realizes the 3d-visualization of the data based on the
computational results of the WITR() function. The parameter fdir must be the

same as was used in WMTR().

e Function showWMTR(fdir = getwd()).

Goal: Exhibits the calculated WM region of any dimension by making multiple

projections of its vertices into R3.

Arguments:

— fdir: a path to the directory where the output files of WITR() are located.
The default value is the R working directory. Must be the same fdir as in

WMTRQ).

Output: Void value. The rggobi visualization of the calculated WM region (repre-

sented only by its vertices) in separate windows under R environment.

Description: The function visualizes a calculated WM region as a convex polytope
by representing its vertices in rggobi (Lang et al.,|2010)) interactive graphics frame-
work. The visualization is a series of projections into R3. The whole interaction
toolset of the rggobi package, such as ”2d tour” or the projection pursuit, can be
used here. In comparison with visualWMTR(), showWMTR() visualizes only vertices

but, however, does it for the data of any dimension.
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e Function loadWMTR(fname = "TRegion.dat", fdir = getwd()).
Goal: Loads the calculated WM region of d = dim into a matrix object.
Arguments:
— fname: the name of the file that contains the calculated WM region (the

normal-intercept representation output file of WITR()) in the directory fdir.
The default name is ” TRegion.dat”.

— fdir: a path to the directory where the file fname is located. The default
value is the R working directory.

Output:

— A matrix object containing the normal-intercept coordinates of the WM re-

gion facets as its rows.

Description: This function loads the calculated WM region of d = dim into a
matrix object in order to work with it as with a variable in R, for example, in
using the function pointinTR().

e Function pointinTR(dpoint, tregion).
Goal: Checks whether a point is in a specified trimmed region.

Arguments:

— dpoint: a vector containing the coordinates of the point to be checked.
— tregion: a matrix object containing the WM region in the normal-intercept
representation.
Output:

— Boolean value, whether dpoint is contained by tregion.

Details: tregion is normally produced by the 1oadWMTR() function basing on a
calculated WM region.
e Function generTRsample(fname, fdir, dim, num, alpha, trtype).

Goal: Generates sample data cloud file in a format appropriate for applying

WMTRQ).

Arguments:

— fname: the name of the output file.
— fdir: a path to the directory where the file fname should be located.

— dim: the dimension d of the data cloud.
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— num: the number of points in the data cloud.
— alpha: the depth parameter.

— trtype: the notion of the WM region to be calculated.
Output:

— A file fname in the directory fdir with a data cloud of the specified param-

eters.

Description: This function is an auxiliary one. It generates a random uniformly
distributed data cloud of any size num and any dimension dim with a format of an
input file described in Subsection [3.5.1] With the default values of its arguments it
looks as follows: generTRsample (fname = "Cloud.dat", fdir = getwd(), dim
= 3, num = 20, alpha = 0.05, trtype = "zonoid").

Input and output In this subsection we describe the format of the input and output

information, which is represented by input and output files.

1. The input file. A data cloud is read from a text file of the following format (the

sequence is fixed):

e Type of the trimmed region (zonoid, ECH, ECH*, geometrically trimmed;

given weight vector)
Format: A text value from the following set: "zonoid", "ECH", "ECHx",
"geometrical", "general". "general" is used for the case when the weights
are given manually instead of being automatically generated basing on the
WM region type and the depth parameter.

e Depth parameter
Format: A floating point number from the interval [0,...,1).

e Dimension
Format: An integer number d > 2.

e Number of points of the data cloud
Format: An integer number n > d.

o (If the type "general" is selected) The weight vector
Format: n non-decreasing floating point numbers matching the requirements
for the weight vector.

e Coordinates of each point

Format: n groups of d floating point numbers, each group representing the

coordinates of a point from the data cloud.
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The points must be in the general position.

For example, to calculate trimmed regions of a data cloud made of 7 points we
have to input the following, where the left column refers to a zonoid region with
depth parameter 0.05, and the right column to general WM region defined by the
weight vector (0.02 0.02 0.03 0.15 0.15 0.26 0.37):

zonoid general

0.05 0.00

3 3

7 7

3.433465 3.67261 2.985222 0.02 0.02 0.03 0.15 0.15 0.26 0.37
0.6119484 7.996853 6.70113 3.433465 3.67261 2.985222
6.429673 9.318805 5.684797 0.6119484 7.996853 6.70113
4.094673 3.255387 0.7768149 6.429673 9.318805 5.684797
4.764675 7.401488 1.766797 4.094673 3.255387 0.7768149
3.571828 4.102897 2.325751 4.764675 7.401488 1.766797
1.063743 0.7078045 8.968969 3.571828 4.102897 2.325751

1.063743 0.7078045 8.968969
A sample input file with any given parameters and random by generated coordi-

nates is provided by the function generTRsample ().

2. Output files.

The whole calculated WM region is represented twofold:

e "TRegion.dat".
An output file "TRegion.dat" consists of lines, each representing a facet of
the trimmed region in the normal-intercept format, namely by d + 1 numbers
giving the equation of the hyperplane containing the facet. The first d of these
numbers are coordinates of a normal to the facet, which is directed outward

the WM region. The last number defines the intercept. For example,
0.54301 0.43048 0.72100 -13.488

corresponds to the hyperplane {z € R? : (0.54301 0.43048 0.72100) -  —
13.488 = 0}.

e "TRegion_vertices.dat".
An output file "TRegion vertices.dat" consists of lines, each representing a
facet of the trimmed region by the coordinates of its vertices. The coordinates
of vertices are given in parentheses, while the vertices of a facet are again

collected in parentheses. For example, a single facet (d = 3) is given by:
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ECH

Geometrical

FI1GURE 3.8: 3d-visualization of various types of WM regions.

( (1.290;9.249;2.059;) (0.995;9.108;1.729;) (1.099;9.129;1.662;)
(1.978;9.391;1.613;) (2.030;9.416;1.671;) (1.445;9.296;2.050;) ).

For some applications it makes sense to consider only the lower or upper boundary of

the WM region. This information is contained in two auxiliary files:

e "TRegion_bound.dat". The same as "TRegion.dat" but containing facets only

from the lower or upper boundary of the WM region.

e "TRegion vertices_bound.dat". The same as "TRegion vertices.dat" but

containing facets only from the lower or upper boundary of the WM region.

3.6 Examples

As an illustration how the algorithm works we present a comparative example of four
different types of weighted-mean trimmed regions for the same data and depth parameter
(v = 0.221). Their visualization was done by a separately compiled C++ program and

is exhibited in Figure |3.8

In this subsection we give two examples of how to get such results by means of the

installed package WMTregions.
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3.6.1 Illustration with simulated data

As a first example, we show how to use the package on a randomly generated sample
input file. Suppose we want to calculate a zonoid region of 100 data points in R? with

depth 0.117. First, we load the package:

R> library("WMTregions")

Loading required package: rggobi
Loading required package: RGtk2
Loading required package: rgl

Then we provide an input file with the data. The simplest way here is to use an embedded
function generTRsample (). Having generated the file, we start the main procedure of

calculating the WM region:

R> generTRsample("Cloud.dat", dim = 3, num = 100, alpha = 0.117, trtype =
R> WMTR("Cloud.dat")

[1] "The trimmed region was successfully calculated!"

Now we have two possibilities of visualizing the results: showWMTR () or visualWMTR().

As the data has dimension d = 3, the most appropriate choice is visualWMTR():

R> visualWMTR()

You can see the 3d-picture on the left side of Figure On a color screen, the demon-
strated facets are blue, while the ridges of the trimmed region are drawn in light green.
Small red spheres represent the data cloud points. You can rotate or zoom the picture

easily with the mouse.

Having obtained the result, we might want to check whether some point, say the origin

0’, lies inside the WM region. The corresponding check is conducted as follows:

R> tregion <- loadWMTR( "TRegion.dat" )
R> point2check = ¢(0,0,0)
R> pointinTR( point2check, tregion )

"zonoid")
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I ReadyTR: Scatterplot (current)

File Edges Options

FIGURE 3.9: Visualization of the results in R.

[1] FALSE

Thus, the origin is outside the calculated WM region. The right side of Figure [3.9] gives

rggobi based visualization of the results for the data in dimension 4:

R> generTRsample("Cloud4.dat", dim = 4, num = 25)
R> WMTR("Cloud4.dat")

[1] "The trimmed region was successfully calculated!"
R> showWMTR ()

Concerning available tools for manipulating the visualization in the window, we refer

the reader to rggobi documentation.

3.6.2 Calculating multivariate set-valued risk measures

The second example represents an application of the WM regions to the risk manage-
ment. Our aim is to calculate the multivariate expected shortfall (Cascos and Molchanov,
2007)) set-valued risk measure. We have chosen this measure because it is the most impor-
tant coherent risk measure. A zonoid region ZD,(x1,...,X,) determines the expected
shortfall at the level a as ESy(x1,...,%,) = R\ (ZDy(x1,...,%x,) & RL). In other

words, it is determined by the lower boundary of the zonoid region.

R> library("WMTregions")
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Loading required package: rggobi
Loading required package: RGtk2
Loading required package: rgl

We have a file "Indices_0809.dat" with the real life data representing the relative
losses in percent on DAX (z variable), Dow Jones (y variable) and Hang Seng (z vari-
able) stock market indices in the years 2008 and 2009. The file can be downloaded
from the Web page http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/
WMT_Regions! Besides this, the data cloud points coordinates are also stored in the data
set "Indices_0809" attached to the package. Using it as a historical information, we
have to calculate the expected shortfall at the level 1% of the portfolio on these three
indices. The data is represented by losses, therefore we are seeking for the reverse, that

is, the upper boundary:

R> WMTR("Indices_0809.dat", bound = 1)

[1] "The trimmed region was successfully calculated!"

R> visualWMTR()

FIGURE 3.10: Visualization of the results in R.

On Figure |3.10] we see the most critical part of the surface in blue. It is shown from two

sides.

3.7 Conclusions

An exact algorithm has been constructed to compute the WM regions of an empirical

distribution in d-space for an arbitrarily given weight vector. It calculates all facets,


http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/WMT_Regions
http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/WMT_Regions
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edges, and vertices of a region at any given depth a €]0,1[. (Recall that « = 0 and
a = 1 are trivial cases.) In fact, the case a = 0 can be also calculated, but then the

WM region degenerates into the convex hull of the data set.

The ”double-hash” mechanism plays the prominent role by marking in a special way
the ridges in the hash table, thus guaranteeing that each facet of the WM region is
generated only once and only these facets are calculated. It induces the unique order
on the set of the facets, making the algorithm efficient. Really, the latter has as many
loops as the WM region has facets, which, obviously, is the minimum number of facet
generating loops in this sort of algorithms. Moreover, in some significant applications
of the WM regions, such as the multivariate risk measurement, we can take advantage
of the connectivity of the generated facets and calculate only, for instance, the lower

boundary of the WM region, which covers about 2% of its surface.

To sum up, we would like to point out some perspectives of the future work on the
algorithm and the R package. While the precise algorithm is efficient and has the optimal
number of computational steps, its most important use is to employ it as a benchmark
for computationally cheaper approximate procedures. As we have seen above, WM
regions have very large numbers of facets. Next possible steps of research should target
at developing procedures of filtering them and replacing the ”jumps” by ”long jumps”

across parallel ridges.

3.8 Heuristics for determining all adjacent facets

Given a basis Vg of a facet F, let A be a nonsingular d x d matrix that contains the
basis vectors as its first d — 1 rows and an arbitrary last row that is linearly independent

from the other rows. Consider the linear equation

Ar=e;:=| " |. (3.11)

The unique solution r to this equation is a scalar multiple of the normal vector pg of F'.

In search for a neighboring facet, the support vector has to be rotated in a plane of
dimension two in RY (step [C.(b.)IL.v.). To reduce the algorithmic complexity of this

step we compute the rotation plane in the following efficient way.
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The transition from F' to a neighboring facet, say via a ridge m, is done by a basis
exchange. This means replacing some k rows of the matrix A (having indices i € 7)
by k — 1 other data vectors and, as its last row, some vector that is linear independent
from all previous rows and non-orthogonal to p, for example p itself. Let S,, denote the
d x d matrix obtained from A by this exchange, and V,, the d x k matrix built from

the k£ new vectors as columns. Thus, the solution z = z,, of the linear equation
Sz =-ey, (3.12)

spans, together with pr, a plane in which the support vector p may be rotated.

Note that (3.12) can be solved directly by calculating S;.!, which is the straightforward
computation and has complexity O(d?). Instead, in our algorithm we decompose S,, in

order to reduce the complexity of this step. It is easy to see that

where K, is an identity matrix with substituted rows of indices ¢ € Z. Let these rows
form a matrix C,, whose i-th row corresponds to the j;-th row of K,,. Then it holds

A’'C,, = V,, and, consequently,

Note that A~! has to be computed only once at each facet. Given A~!, calculating C,,

has complexity O(d?).

Henceforth we denote the elements of A and C by a;; and ¢;; respectively. Consider

rewriting (3.12)) as

KmAZ =€y,
1 0 0 0
0 1 0
e _ Gid
where K, = and K, leg = “it | . Then it
Cjil G2 G Cjd :
0
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holds

Cjid

Zm = ATK leg = A1 it

For a single facet we have to compute (in O(d?))

A_lz(al | oo | o | oo | ad)-

Thus, besides computing C,,, only the following computation is done to find a basis for

the m-th ”jump”:

Z =t~ > ijdal O(d). (3.13)
icx Jit

Recall that a basis for an m-th jump is given by {Z,,,p = r}. Let us denote the number
of ridges for a facet F' by R(F'). The complexity of finding bases for all jumps from the
facet is

O(d® + (d* + d) - R(F)) =2 O(d* - R(F)).

It can be easily checked that, if we do not exploit the common information on A=, the

complexity amounts to O(d® - R(F)).



Chapter 4

Multivariate Best-Decision Risk
Measures: An Application to

Portfolio Optimization

In this chapter, we consider a vector-valued multivariate risk measure that depends on
the user’s profile given by the user’s utility. It is constructed on the basis of weighted-
mean trimmed regions and represents the solution of an optimization problem. The key
feature of this measure is convexity. We apply the measure to the portfolio selection

problem, employing different measures of performance as objective functions.

4.1 Motivation

Quantifying risk is one of the most important problems in modern economics. Classical
tools of mathematical finance include risk measures. These functions, as their name
states, assess the risk of some financial positions, which are traditionally modeled by
some random vector X. The basic idea of a risk measure is to indicate a critical value
of a (monetary) deposit, or reserve, that, being added to an uncertain position, does
cancel its risk in some sense. The latter means that the location of the distribution of
the corresponding random vector satisfies certain formal requirements that are provided

by, say, a regulator.

For example, if X is univariate, he or she may require that some a-quantile of the
distribution be non-negative. If we add a constant —Q x («), which can be interpreted
as an insurance deposit, to the distribution, where () x denotes the quantile function of

X, we make the condition hold. In other words, only the worst « - 100% of outcomes

65
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of the insured position are expected to be negative. In such a manner we get a famous
and widely used (cf. |Jorion, 2006) risk measure called value-at-risk (V@QR). Actually,
there is a plentiful assortment of different notions of risk measures, each controlling
particular aspects of the outcome distribution. There is also a list of desired properties
of such functions: we will refer to some of them below. As further examples of univariate
risk measures, one can recall the expected shortfalﬂ7 expected minimum, entropic risk

measure and others.

A univariate risk measure concerns an investment into one asset. However, in practice
a user is usually operating with several different assets. In this case, measuring the risk
becomes a much more complicated problem than just undertaking measurements for
each asset individually. The issue lies in a dependence between the assets, which can be

rather complex and lead to an asymmetric joint distribution of the assets’ returns.

The higher dimension is, namely the number of assets, the more importance has to
be given to the dependency information. This is similar to modeling returns by a d-

dimensional random vector X instead of d separate univariate random variables.

At this point, we immediately get an issue: again, the risk of X could not be comprehen-
sively described only by risks of its marginals. To tackle this problem, a rather natural
idea has been proposed. If a univariate monetary risk measure describes the minimal
deterministic amount of money that, being added to the investment, compensates its
risk, one could do the same in the multivariate case. In other words, we seek to find such
‘minimal’ deterministic vectors in R? that compensate the risk of X. To get rid of the
ambiguous ‘minimal’ qualifier, we can just take all deterministic vectors compensating
the risk. It is easy to see that these vectors form a set in R?, of an affine dimension d
in general. Obviously, ‘minimal’ vectors are lying on the surface of this d-dimensional
body. In general, if there are transaction costs, there are many incomparable ‘minimal’

vectors.

The above gives way to set-valued risk measures, which are nowadays rather common

in considering multivariate risks.

Working with such measures is a rather complex task, however, it becomes simpler if all
such sets, that is to say, values of a set-valued risk measure, are convex. Further on, we

consider this property as an advantage.

The development of coherent risk measures (Artzner et al., (1999, |Delbaenl, 2002) and of
the pertaining machinery (see e.g. Follmer and Schied| (2004)) as well as tightening of

economic standards have led to considering multivariate risks and extending the notion of

1t is also called the average value-at-risk or the tail value-at-risk in the literature.
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the risk measure as a real-valued function to a class of set-valued functions (Jouini et al.,
2004)). Recently, the corresponding theory has been deeply developed both generally (see
e.g. Hamel and Heyde, (2010]), Hamel et al. (2011)), Ruschendortf (2013))) and concerning
specific exemplars of risk measures (e.g. |Cousin and Di Bernardino (2013), Hamel et al.
(2013))).

Such literature proposes several ways of defining set-valued risk measures. In this chap-
ter, we pursue the approach of Cascos and Molchanov| (2007), who explore a direct
connection of such measures to data central regions. This gives us an advantage of
applying geometrical algorithms from previous chapters to calculating set-valued risk
measures. In fact, computability of set-valued risk measures is usually a hard issue (cf.
Hamel et al. (2014} 2013)).

The investigation of multivariate risk measures develops in several major tasks. The first
one, the representation, is connected with a discussion of a set of desirable properties for
a risk measure, which the reader can find, e.g., in |Rachev et al.| (2008). A specialized
analysis of comonotonic risk measures is given by Ekeland et al.| (2012). A widely-used
dual representation of risk measures via acceptance sets is comprehensively described,
for example, in Hamel and Heyde (2010). The second task, again, computability, is a
very recent one and concerns mostly applying methods from vector optimization, such
as Benson’s algorithm (cf. |Schrage and Lohne (2013), Hamel et al. (2014])). In this
research, the key point is the computability via efficient geometrical representations.
Besides this, the measures are intended to be applied not only in the sphere of finance
but also in completely different spheres, which will be the main topic of the further

chapters of this thesis.

4.2 Vector-valued multivariate risk measure based on data

trimmed regions

In this section, we define a measure combining the objective evaluation of the risk by
means of a set-valued risk measure, and the subjective preferences of the user, which

are modeled by the user’s admissable set.
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4.2.1 The measure

According to (Cascos| (2009)), using the ideas from Cascos and Molchanov| (2007), a risk

measure u? based on some data trimmed region D7 can be defined as follows:
d _ * d
ui(x) = = (D0 @ RY),

meaning a reflection of the set D% (X) @ RZ. In simple words, it states that for all
z € p the trimmed region D¥(X +z) does not lie in the positive orthant. For example,
if D7 is a halfspace region, we obtain a multivariate quantile, which enables us to get
a set-valued generalization of the walue-at-risk. The subadditivity property and the
analytical simplicity of zonoid regions enable us to use them for generalization of the
expected shortfall, which is a coherent risk measure. In turn, the expected minimum, also

a coherent measure, is generalized by means of expected convexr hull regions.

In the same manner, we define a special class of multivariate risk measures based on

weighted-mean trimmed regions Dy, given by a weight vector wy,.

Definition 4.1. The multivariate set-valued distortion risk measure is defined as follows:

pd(X) = —(Dwa (X) @ Ri) c R4 (4.1)

In the next chapter, we will show, why the measure is called a distortion risk measure
and how it is connected to its univariate counterpart. In the current chapter, we are
only interested in a measure with desirable properties, such as the subadditivity, which

encourages diversification and is crucial in risk management.

We should mention that this is not a unique way of defining a multivariate distortion risk
measure. For comparison, Riischendorf] (2013)) gives a different notion of such a measure,
which is scalar-valued: For a d-variate distribution having p.d.f. F', he considers the level
set Q(t) of F at level t and defines some scalar measure of Q(¢) as the t-quantile. Then,
based on these scalar-valued quantiles, he introduces multivariate risk measures in the
same way as univariate ones. Obviously, much information is lost in this case and the

choice of the scalar measure is not straightforward.

To flexibilize our definition by incorporating the information about the user’s prefer-
ences, described by his or her strictly increasing utility function U(-), we introduce the
admissable set F. This set collects all such returns that are perceived positively by the
user. To relate it to the utility function, we assume F = {y € R?: U(y) > ug}. Thus,

the surface of F is the up-level set of the utility function.
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We take the natural assumption of the user’s risk aversion, which is equivalent to pos-
sessing a convex admissable set F (see, e.g., [Follmer and Schied (2004)). As an approx-

imation, we suppose F to have the following form:
F={yeRl:ply>d, k=1...K} (4.2)

with some p1,...,px € Ri and d1,...,0x € R, that is, F is an upper convez polytope.

E.g., a market with proportional transaction costs F is a cone with the apex at 0. Each

level set of U(-) is the same (but translated) cone.

Our idea lies in a comparison of the position of the set-valued measure p¢ with that of

the admissable set F.

Definition 4.2. v(X), a real-valued risk measure of a risky position X given the user’s

utility U(+), is defined as follows:

V(X) = argmin| 2]l - {~p(X) + 7} C F. (43)
zcR4

where ||-||7 denotes a proper norm.

In other words, v(X) is (in the sense of the norm |[|-||¢7) the shortest vector z that brings
the set-valued measure p(X) into the admissable set F. The conventional Euclidean
norm || - ||2 is a natural choice for ||-||¢7, however, a weighting of dimensions is possible
due to their different importance in the user’s subjective perception. If this mutual
weighting is described by some nonnegative matrix I'y, then for any z € R? it holds

Izllv = Tvzl2.

v(-) enjoys a clear interpretation as a monetary measure: The minimal reserve to be
added to the position to make it acceptable. While the measure is determined by the

optimal decision for the user, we will call v(-) a best-decision risk measure.

The transition from the set-valued measure u?(+) to the vector-valued v(-) is realized by
solving an optimization problem. In fact, what we are doing is a specific scalarization
of a set-valued risk measure (cf. Hamel and Heyde (2010), or Schrage (2015))). Our
approach consists in the most broad employment of the user profile information (given

by the utility function U(-)) for the scalarization.

It is easy to see that (4.3) in Definition is equivalent to the following:

v(X) =argmin ||z|y : {Dw,(X)+2z} C F. (4.4)
zE€R?
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Finally, we like to mention that using the measure v(-), we can define an order on a set

of appropriate risky positions X.

Definition 4.3 (Ordering risks). The preference relation =, on X is given as follows:

VW, ZeX Y=, Z = lv(2)||lo > ||[v(Y)]lu.

4.3 Portfolio choice as a special case

A portfolio choice problem can be stated using risk measures. Unlike standard port-
folio theory, where variances are used as proxies for risk, the risk measures machinery
allows to treat risk more comprehensively. It is worth to mention that the disadvan-
tage of representing risk by the variance has become a vital issue in the literature of
the last decade. Besides this, two-stage mean-variance procedures, where on the first
stage parameters of a model should be estimated, such as covariance matrix of random
returns, are subject to estimation risk (cf. [Meucci, 2009). Authors from various math-
ematical fields propose approaches for solving the problem. For instance, [Fabozzi et al.
(2010)) give a detailed review of robust methods emerged in portfolio optimization and
the corresponding literature. These methods are usually based on modeling uncertainty
either in parameters (e.g., |Costa and Paival (2002)), El Ghaoui et al. (2003), Tuttunci
and Koenig| (2004)) or in the whole distribution (e.g., |Calafiore, 2007) and appropri-
ate modifications of the variance. A part of recent approaches consider risk measures
(e.g., Bion-Nadal and Kervarec| (2012), |Drapeau and Kupper| (2013), Rockafellar et al.
(2006))). A qualitatively new algorithm, which efficiently combines robust optimization
with coherent risk measures, contributing to this trend, has been proposed by Mosler
and Bazovkin (2014). This approach will be considered in Section of the next chap-
ter. In this chapter, we solve the portfolio choice problem using optimization of either
the multivariate risk measure v(-) or some performance measure. In our approach, we

get rid of usual distributional assumptions on returns, namely their ellipticity.

Let 71,...,7¢ be random return rates on d assets. We will notate ¥ = (r1,...,7q)".
A convex combination of the assets’ returns is sought, F'w = Z;lzl 7jw;, that maxi-
mizes some performance measure. Let us have a portfolio of d assets and the historical
information about its returns {r!,...,r"} C R% Now we can consider a task of find-
ing a portfolio with the lowest risk possible or a portfolio optimized by means of some

generalized performance measure, for example, a Sharpe ratio.

To solve the task, we use the multivariate measure v(-) given by Definition in the
previous section. The considered problem has a certain form of the admissable set: a

halfspace, that is, a special case of (4.2). The border of the halfspace, a hyperplane,
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is determined by a portfolio vector, or simply a portfolio, w € A% = {§ € R : § > 0,
1’8 = 1}, with no short selling permitted. This fact enables us to control the admissable
set by means of varying w and find one that produces the minimal risk in such a way.
Thus we obtain a parametric optimization problem in the sense of optimizing the risk
measure v(-) or some function dependent on it. In the following subsection we propose

an efficient geometric procedure of finding the optimal w°P! in the space R?.

4.3.1 Minimal risk portfolio

Let d x d matrix 2 = diag(w). We are minimizing the risk of a portfolio, that is, are

employing the following criterion g(w):

g(w) = |lv(Qr)||y — min . (4.5)
weAd
Note that later the restriction to w € A% will be relaxed concerning the non-negativity

of components.

For a specified distortion risk measure, namely a given weight vector w,, and an empir-

ical sample r!, ... r", we construct a trimmed region Dy, (r!,... r").

Taking the Euclidean norm as |||, the value of the objective g(w) for some w is the
Euclidean length of the minimal shift s,, € R? of the admissable set F = {x : 1'x > 0}
such that for the data weighted by w it holds:

Dy (Qr!, ... Q") C F —s,. (4.6)

1

Obviously, s,, = v(Q2F), where T is empirically distributed on r, ..., r"™. For convenience,

we will denote F — s, by ]?w.

Let us now do an inverse transform of the space, that is, a linear transform by 2~*. Then,
we get Q71 F instead of F and, respectively, the condition becomes equivalent to
the following:

Dy, (r',....t") Cc Q' F,. (4.7)

Because of the budget constraint 1’w = 1, it is easy to show that the harmonic mean of
axes intersections with the hyperplane dF., does not change after getting to 8{9_1]?‘,,}.
It equals g(w)\/g, where 0{-} denotes the border of a set. Now, let some w!, w? produce
the same objective values g(w!) = g(w?) = g and form the borders 8{9;1]?“,1} and
{5 1]?“,2}, respectively. It can be shown that these borders intersect at the point
—S,1 = —Sg2 = (—%,...,—%)’. This point delimits the interval (0;—s,1) on the
bisector, which has length g.
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FIGURE 4.1: Searching the minimal risk portfolio.

Thus, we see that there is a bijection between all plausible w-s and Q_l]?w. Moreover,
g(w) is the length of the interval cut off by the surface 9{Q2 ' F,,} on the bisector. Hence
we have to find a hyperplane 8{9_1]?wopt} that ‘covers’ Dy, and cuts the shortest
interval on the bisector. It is easy to show that it is a hyperplane £,,;;, containing the
facet intersected by the bisector (see Figure . Hence the solution is the following:
the sought-for w°P? is the normalized (to the component sum of 1) normal to the facet

intersected by the bisector.

4.3.2 Portfolio selection with a generalized Sharpe ratio

Now we solve the problem of maximizing the ratio of expected returns to the risk taken.
It stands on the same principle as the well-known Sharpe ratio (Sharpe, 1966) and will
be denoted by SRj:

(o) = W a(E)
SRew) = @y “8)

where p(r), or simply p, is the expected return E(r) of the investment.
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FIGURE 4.2: Searching the Sharpe ratio optimized portfolio.
4.3.2.1 Finding the optimum

Under the standard restriction on w, w € A%, we have to solve the following optimization
task:
g(w) = SRi#(w) — max . (4.9)

weAd

In the inverse transformed space, a hyperplane parallel to 8{9_1.7?w} is a set of same-
return outputs x. The value of this return equals the length of the origin-started segment
of the bisector cut off by the hyperplane, because this segment is not effected by the
transformation. Hence, the expected return of a portfolio w is equal to the length
of a segment cut off by such a hyperplane containing . Consider Figure for a
case of minimal risk (see Subsection , this segment corresponds to OE' (u € ¢/, |
Vi

! |min, where ‘||” means that ¢/

tin and fyin are parallel). Let us now draw a line
through the points p and 0 and find its intersection with the hyperplane (i, (the

solution hyperplane for the minimal risk problem, a green dashed line on the Figure

/
min

- the point A. £, cuts off the segment OE with length equal to the risk estimate. ¢
cuts off the segment OE’ with length equal to the expected return. Thus, we obtain

SRe(w) = 9P|

2Further in this chapter the name of a segment in a formula implies the length of the segment.
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Let us now rotate {ni, in RY arbitrarily around the point A to some position £. Of

/!

course, £ must not intersect Dy, . ¢ . is rotated parallelly around the point p to some

hyperplane ¢'||¢. The rotation corresponds to browsing through different portfolios w.

Thus, the points E and E' move: E — B, E' — B’. We immediately get AOEA ~ AOE'p
and AOBA ~ AOB’u, where under ‘~’ we understand the similarity relationship. Hence
SRz (w') = %—% = g—x = %—]133/ = const. For each rotation w there is a hyperplane £q||¢
which touches Dy, , and intersects the bisector at D, that is, gives the actual estimation

|IOD ||y of risk of the portfolio w.

To maximize SRz(w) = SRz(w’) - %, we should maximize % by a rotation. Let C be an

intersection of the line (0, p) with the hyperplane £5. Then it holds AODC ~ AOBA,
leading to g—g = %. At the same time, 0A remains constant, which means that we
should just minimize 0C. It is easy to see that the shortest possible OC is the interval
with the point C lying on the border of Dy, . In turn, it means that the sought-for

optimal hyperplane /0* is that containing the facet intersected by the line (0, ).

Hence, the sought-for solution w°P* is a normalized (to the component sum of 1) normal

to the facet of the lower boundary of Dy, intersected by the line (0, w).

It is easy to check, that the above considerations hold for all d > 2, although being

illustrated in R2.

The reader may make the following observations, which are quite important:

1. If all assets yield similar expected returns, the procedure calculates the minimal
risk portfolio (because p lies on the bisector), which is intuitively natural. In this

case, the procedure degenerates to one from Subsection [4.3.1

2. The procedure can be enlarged to the case of data following a general probability
distribution. The solution will be the similarly normalized vector tangent to the

lower surface of Dy, at the point of its intersection with the line (0, w).

3. p can be replaced, for example, by a median or a shrinkage location estimator (cf.
Meucci (2009))).

If we have some risk-free asset with the risk-free rate 7y, we put a point ug on the
bisector so that the length of the interval [0, ug] equals r¢. Then, it is easy to show that
one should apply the same procedure as above, just replacing the line (0, ) by (uo, p),

likewise changing the focus of the intersecting ray.

At this step, it is interesting to observe how the procedure works in the special case of

elliptically distributed returns with some covariance matrix 3. While in this case WM
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regions asymptotically converge (see Dyckerhoft and Mosler| (2012)), [Mosler| (2002)) to
ellipsoids with the shape matrix 3 for any choice of o and type of the region, it can be

easily shown that the solution will, in turn, converge to the tangential portfolio:

2—1
wOpt = /7_{11 (410)
'Y

Really, the normal to the tangent hyperplane at the ellipsoid’s point intersected by

the line of direction p is 3~ 'p. Having normalized the vector, we get the above for-

mula (4.10).

It is immediately seen that replacing p with 1 above gives the portolio 31

st
turn, is the minimal variance portfolio. It means that the latter is defined in a standard

which, in

way by the intersection of a line parallel to the bisector and passing through g with the

trimmed region.

These facts demonstrate that our approach is a generalization of a typical mean-variance
procedure, where standard distributional assumptions are avoided and a comprehensive

non-parametric risk measure is employed.

4.3.2.2 The algorithm

Input

{rl,...,r"} C R? - the given empirical data about returns.

Risk parameter a.

The type of distortion risk measure u to be used.

Optionally: The risk-free rate 7.
Output

e The optimal portfolio w°P*.

e Value of the criterion.
Steps (SR-algorithm)

SR1. Define the weight vector w,. Construct a focus point ug = (TTf ey %)’ or take,

d’’
by default, the origin 0. Construct a line ¢ = (ug, ) or ¢ = (0, ) respectively.
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SR2. Calculate (Bazovkin and Mosler, [2012a)) a part of Dy, (r!,...,r") in the place of a
probable intersection with ¢ (cf. the efficient set in|Mosler and Bazovkin| (2014)).

The type of Dy, corresponds to the selected distortion risk measure.

SR3. Find the facet of Dy, intersected by ¢. Get the normal i,y to the hyperplane

opt _ _Mopt

containing it. The sought-for w Vit

A special consideration is needed for a case when there is some negative component in
WP namely i : w;® © < 0. If it occurs, one sets wfpt = 0 and solves the task without
the i-th asset (namely projecting onto R?~1). However, this situation can be managed
more flexibly, which is the topic of Subsection below.

The intersected facet from Step of the algorithm can be realized as follows:
A. Construct the first facet of Dy, (r!,...,r™) with the normal close to the direction
of ¢.

B. Find the neighboring facet with the best criterion (Mosler and Bazovkinl 2014)

describing its distance from .

C. Jump to the facet found and go to step

It can be seen that on each step of this subalgorithm we get a better solution. Further-
more, the tactics of the “long jump” can be used, where a jump over some neighbors in

a criterion-enhancing direction is made at one step.

The main complexity-contributing issues are the following;:

1. Calculating some facets of the trimmed region Dy, : much simpler than calculating

the whole region (since knowing ¢).

2. Finding an intersection of a line with a convex surface in R

4.3.3 Optimization with a generalized certainty equivalent

In this subsection we pursue the same optimization problem but with a performance
measure given by the certainty equivalent, which is commonly used in modern portfolio
theory (cf. Markowitz| (1952)). Again, the difference is that we replace the variance by

the risk measure v(-). Then the criterion is the following;:
CEx(w) = ' — A+ (@) (4.11)

where A is a given positive constant describing the risk aversion of the user.
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4.3.3.1 Finding the optimum

We will maximize %CE;, namely:

1
g(w) = XCE;(w) — ‘iréaA}g . (4.12)
First, we create a point pu, = —%p,. Now consider Figure If we have a portfolio

w! given by the hyperplane /1, the corresponding risk ||v(2X)||y equals the length of
the segment A10. Analogously to the previous subsection, %wl’ p equals B10, where
Bi = ¢} N {bisector} and ¢} is a hyperplane parallel to ¢; and containing py. Now, it is
directly seen that %CE; equals A;B; = B10 — A10. The same principle is applied to a

portfolio w?, yielding the criterion value AsBs for the latter.

We see that A1B; < AsBs, because ¢ rotates to the position fo with a smaller shoulder
relatively to (i.e. distance to) the bisector as ¢] to ¢5. That is to say, A;B; increases
while rotating ¢; if ¢, has a larger shoulder relatively to the bisector and vice versa.
Thus, starting from the minimal risk position, we first increase CEz until ¢ gets a pivot
more distant from the bisector as . It can happen when leaving a position containing
a facet that, in turn, contains points equidistant with g, from the bisector. Hence the
optimal hyperplane is one containing a facet intersected by a hypercylinder with the

bisector as its axis and p, lying on its surface.

To construct an algorithm, we first find a facet intersected by a line parallel to the
bisector and containing py. It is the first candidate. Then we move along the ring
(intersection with the hypercylinder) and check the values of CE; for each of the facets.

A facet £;+ with the maximum CE; defines the optimal portfolio.

Finally, consider a special case when A\ — co. Maximizing the criterion becomes
equivalent to optimizing v(Qf). Thus, we obtain the minimal risk problem. While
py — 0, the hypercylinder degenerates into a line. Hence the sought-for facet is the facet
intersected by the bisector. Obviously, we get the same solution as in Subsection |4.3.1
Another extreme case occurs when A is small enough, so that the hypercylinder contains
Dy,. In this case, we can rotate ¢ until it becomes parallel to the bisector (177 = 0).
Clearly, that from all such hyperplanes the optimum is given by the one that is most
remote from D, . This optimum is a vector that has a single positive component for

the maximal expected return and others are negative. It means purchasing only the

asset j with p; = max{p,..., na}, where (p1, ..., puq) equivp.
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FIGURE 4.3: Searching the certainty equivalent optimized portfolio.
4.3.3.2 The algorithm
Input

e {rl ..., 1"} C R? - the given empirical data about returns.
e Risk parameter a.
e The type of distortion risk measure p¢ to be used.

e The risk aversion constant .
Output

e The optimal portfolio w°P*.
Steps (CE-algorithm)

CE1l. Calculate the relevant part of the trimmed region Dy (r!, ..., r").
CE2. Construct the point g, = —%p.

CE3. Build a line parallel to the bisector and containing p,. Find its intersection with
Dy, similarly to the step of the SR-algorithm.

CE4. Calculate the criterion %CE; for the current facet with the index j. It equals the
length of the segment A;B;. If it is the best currently, store the facet.
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CE5. Find appropriate neighboring facets for the newly stored facet. For each of them,
go to the step [CE4] If there is no new neighbors, stop.

a. A neighbor is appropriate if it contains points equidistant with p, to the
bisector, which means being intersected by the hypercylinder. In doing this,

calculate the min and max distances of the facet’s points to the bisector.

CE6. Get a normal fiop; to the current best facet. The sought-for wP' = 177%2’;

A case of negative weights can be solved as proposed in Subsection If negative
weights are not allowed, we pursue them analogously to Subsection [£.3.2.2]

4.3.4 Negative weights and short sellings

It is well-known that an estimated negative value of w; for the i-th asset actually proposes
to do a short selling of that asset. We can use such a strategy as an alternative to just
fixing corresponding weights to 0 and solving the similarly stated subproblem for the
remaining assets. The approach given in this subsection is common for both the SR-

algorithm and the CE-algorithm.

4.3.4.1 Optimum with shorting permitted

First, we modify the derivation of w°P* from a found Tlopt due to the relaxation of the

restriction w € A% Namely only the sum of component absolute values ||w]|; is set to

1, resulting in w°Pt = IIFZ(;TIIJ Let the user possess stores of the d assets available for
allocating at the rates of Si,..., 54 units. The idea is to solve the task recursively.

We start from all d assets and on each stage allocate a finite number of units Z; and
eliminate those assets whose store is fully exhausted on the current stage. This filtering
implies setting weights to 0 for the ‘bottleneck’ assets on next stages. We solve the
filtered task recursively until we get some stage T with an optimal solution without
negative components, or there is nothing more to allocate. Now consider a stage k: let
Ji. be a set of indices corresponding to negative components of the optimal portfolio on
this stage, w°P'%. We determine the volume of units to be allocated on this step:

4 5
k= min —J—,
J€Jk |w;)pt’“|

where SJ’-C denotes an available store of the asset j at the beginning of the stage k.
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FIGURE 4.4: The recursive procedure for negative weights.

The structure of the problem is typical for dynamic programming, and each stage is
pursued optimally. It means that the recursive procedure yields the overall optimal

solution.

As a result, we obtain a ‘ladder’ of allocated units (see Figure Z1, ..., 271, which
yields the optimal allocation after an aggregation. If we want to invest some V units,
we find such K that Zfi}l Z; <V < Zfil Z;. Then inves Z; into w°P' for all
k=1,...,K — 1. The rest of V we invest into w°P'x. For example, on Figure for
V =V; we have K = 2, while for V = V5, K equals T.

This simple example shows that the optimal aggregate portfolio depends on V' (without
shorting permitted, it is independent).

4.3.4.2 The algorithmic supplement
Input

e An aggregate number of units V' to be allocated.
e Available stores S1,...,S4 of the assets.

e Standard inputs for either SR- or CE-algorithm.

3Investing into a negatively weighted asset means shorting it.
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Output
e The optimal allocation {V1,...,Vy}.
Steps (NW-supplement)

NW1. The first step (d assets, nothing invested): k:=1, V =0, Vi=0Vj=1...d.

NW2. Find the optimal portfolio w°P* by the SR- or CE-algorithm, while fixing weights

of eliminated assets at zero.

NW3. woPls 1= 0k ], = {5 : P < 0},

T [lwoPtk ]y
NW4. If V5 holds w;pt’“ >0, then Z, =V — V; else Zj, = minje j, ‘w;ﬁ
NW5. Z; := min{Z;,V — V}.
NWG. Vj := Vj + ZywP™, V5.
NW7. S; = 8; + Zpw(™*,Vj.
NWS. V:=V 4 Z,. If V=V, go to Step
NW9. Eliminate assets with indices in Ji. k :=k + 1. Go to Step

NW10. Vj is the final investment into the j-th asset. V. =3, V;.

4.4 Discussion

In this chapter we have shown a connection between set-valued distortion risk measures
and weighted-mean trimmed regions. The former can be calculated using the algorithms
from previous chapters. We have considered the multivariate vector-valued risk measure
v(-) that, firstly, aggregates the information from a set-valued coherent distortion risk

measure and, at the same time, employs the user’s risk posture information.

In a special case of substitutable components, we have applied the measure v(-) to solving
a portfolio choice problem with different performance measures as objective functions.
As a result, the efficient algorithms for the minimal risk, the generalized Sharpe ratio

and the generalized certainty equivalent were proposed.

As a possible extension to be regarded, the shape of a trimmed region can be modified

explicitly or via visual tools. The minimal risk and the SR-algorithm are realized in
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an R package PortfolioTR (Bazovkin, 2013|). Besides this, the framework is flexible for

incorporating further possible performance measures.

One more potential way of development of the framework lies in extending it to markets
with transaction costs with admissable sets in form of convex cones or convex upper
polytopes . An application of the risk measure v(-) for such situations is considered
in Chapter [6]



Chapter 5

Stochastic Linear Programming

and Distortion Risk Measures

In this chapter, we apply coherent distortion risk measures to capture the possible vio-
lation of a restriction in linear optimization problems whose parameters are uncertain.
Each risk constraint induces an uncertainty set of coefficients, which is proved to be a
weighted-mean trimmed region. Thus, given a sample of the coefficients, an uncertainty
set is a convex polytope that can be exactly calculated. We construct an efficient geo-
metrical algorithm to solve stochastic linear programs that have a single distortion risk
constraint. The algorithm’s asymptotic behavior is also investigated, when the sample
is i.i.d. from a general probability distribution. Finally, we present some computational

experience.

5.1 Motivation

Uncertainty in the coefficients of a linear program is often handled by probability con-
straints or, more generally, bounds on a risk measure. The random restrictions are then

captured by imposing risk constraints on their violation. Consider the linear program
c’x — min st Ax>b, (5.1)

and assume that A is a stochastic m x d matrix and b € R™, ¢ € R%, x € R%. This is
a stochastic linear optimization problem. To handle the stochastic restrictions a joint

risk constraint,
p"(Ax —b) <0, (5.2)

83
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may be introduced, where p™ is an m-variate risk measure. For instance, with p"(Y') =

Prob[Y < 0] — a the restriction (5.2]) becomes
Prob[Ax >b]>1-a, (5.3)

and a usual chance-constrained linear program is obtained. Alternatively, the restrictions

may be subjected to separate risk constraints,
Pr(Ajx—b;) <0, j=1...m, (5.4)

with Aj denoting the j-th row of A. In 1} each restriction is subject to the same
bound that limits the risk of violating the condition. A linear program that minimizes
¢x subject to one of the restrictions, (5.2)) or (5.4)), is called a risk-constrained stochastic

linear program.

For stochastic linear programs (SLPs) in general and risk-constrained SLPs in particu-
lar, the reader is referred to, e.g., Kall and Mayer| (2010). What we call a risk measure
here is mentioned in that book as a quality measure, and useful representations of the
corresponding constraints are given. As most of the literature, Kall and Mayer| (2010))
focus on classes of SLPs with chance constraints that lead to convex programming prob-
lems, since these have obvious computational advantages; see also [Prékopa/ (1995). Our
choice of the quality measure, besides its generality, enjoys a meaningful interpretation

and, as it will be seen, enables the use of convex structures in the problem.

In the case of a single constraint (m = 1) notate

p(@’x —b) <0. (5.5)

A practically important example of an SLP with a single risk constraint (5.5) is the

portfolio selection problem. Let 71,...,7y be the return rates on d assets and notate
r = (71,...,7q). A convex combination of the assets’ returns is sought, ¥'x = Z?Zl Tixj,

that has maximum expectation under a risk constraint and an additional deterministic
constraint,

max Ef]'x, s.t. p(¥'x) <po, xe€C, (5.6)
PE

where p is a risk measure, pp € R is a given upper bound of risk (a nonnegative monetary
value), and C € R? is a deterministic set that restricts the coefficients zj in some way.
For example, if short sales are excluded, C is the positive orthant in R?. The solution x*
is the optimal investment under the given model. We will see that a solution, if it exists,
is, as a rule, finite and unique. In our geometric approach such a solution corresponds

to the intersection of some line and some convex body that both contain the point E[r].
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Regarding the choice of p, two special cases are well known. First, let p(¥'x) = Prob[f'x <
—vp] and pg = . Then the optimization problem ([5.6)) says: Maximize the mean return

E['x] under the restrictions x € C and
V@R, (F'x) < vp.

That is, the value at risk V@R, of the portfolio return must not exceed the bound vyg.
Second, let

o) = [ " Qultt (5.7)

where Q7 signifies the quantile function of a random variable Z. This means that the

expected shortfall of the portfolio return is employed in the risk restriction.

In practice, a has to be obtained from data. If the solution of the SLP is based on n
observed coefficient vectors al, ..., a"” € R?, the SLP is mentioned as an empirical risk-
constrained SLP. In other words, we assume that a follows an empirical distribution that
gives equal mass % to some observed points al,...,a” € R |Rockafellar and Uryasev
(2000) investigate an empirical stochastic program that arises in portfolio choice when
the expected shortfall of a portfolio is minimized. They convert the objective into a
function that is convex in the decision vector x and optimize it by standard methods.
This approach is commonly used in more recent works of these and other authors on

portfolio optimization.

A more complex situation is investigated by Bertsimas and Brown| (2009), who discuss
the risk-constrained SLP with arbitrary coherent distortion risk measures, which also
include expected shortfall. These allow for a sound interpretation in terms of expected
utility with distorted probabilities. For the linear restriction an, as it is called, uncer-
tainty set is constructed which consists of all coefficients satisfying the risk constraint.
Bertsimas and Brown, (2009) discuss the uncertainty set that turns the SLP into a min-
imax problem, called robust linear program; however, they provide no optimal solution
of this program there. The uncertainty set is a convex body and, as will be made
precise below in this chapter, comes out to equal a so-called weighted-mean trimmed re-
gion. [Natarajan et al.|(2009), on the reverse, construct similar risk measures from given
polyhedral and conic uncertainty sets. As an extension, Ben-Tal et al.| (2010) propose
the so-called “soft robustness” model, which, as they show, can be regarded as an LP
with the feasible set defined by some conver risk measure. Such approaches are also
applicable (Bertsimas and Goyal, 2013)) to approximately solving a multi-stage robust
convex optimization problem, where the information about the realization of uncertain

parameters is adjusted on each stage.



Chapter El Stochastic Linear Programming and Distortion Risk Measures 86

Pflug| (2006) has proposed an iterative algorithm for optimizing a portfolio using distor-
tion functionals, on each step adding a constraint to the problem and solving it by the
simplex method. Meanwhile, many other authors have recently contributed to the de-
velopment of robust linear programs related to risk-constrained optimization problems:
see, e.g., Nemirovski and Shapiro| (2006), Ben-Tal et al.| (2009) and |Chen et al.| (2010).
For a review of robust linear programs in portfolio optimization the reader is referred to
Fabozzi et al. (2010). There are also attempts to solve this problem by means of robust
non-linear models (see, for instance, [Kawas and Thiele (2011])), which, however, are
substantially less investigated in the literature, than the linear ones. Other applications

are surveyed in detail in |Gabrel et al.| (2014).

In this chapter we contribute to this discussion in three respects:

1. The uncertainty set of an SLP under a general coherent distortion risk constraint
is shown to be a weighted-mean trimmed region, which provides a useful visual and

computable characterization of the set.

2. An algorithm is constructed that solves the minimax problem over the uncertainty
set, hence the SLP.

3. If the data is i.i.d. from a general probability distribution, the uncertainty set and
the solution of the SLP are shown to be consistent estimators of the uncertainty

set and the SLP solution.

The chapter is organized as follows: In Section[5.2|constraints on distortion risk measures
are discussed. They are characterized by uncertainty sets in parameter, which, in turn,
are shown to be weighted-mean trimmed regions (Theorem . Based on Theorem 5.2
which is a core result, we formulate a robust linear program, which is investigated in
Section [5.3] and by which the SLP with a distortion risk constraint is solved. Section[5.4]
introduces an algorithm for this program and discusses sensitivity issues of its solution.
In Section [5.5] we address the SLP and its solution for generally distributed coefficients
and investigate the limit behavior of our algorithm if based on an independent sample
of coefficients. Section [5.6| contains the first computational results and concludes. The
technical appendix (Section gathers properties of distortion risk measures, a proof
of Theorem and a demonstration (Proposition that the weighted-mean trimmed

regions have the important coherency property.
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5.2 Distortion risk constraints and weighted-mean regions

5.2.1 Distortion risk measures

A large and versatile subclass of risk measures is the class of distortion risk measures,
which have appeared first from ideas in insurance research (Wang et al., |[1997). Again,

let Qy denote the quantile function of a random variable Y.

Definition 5.1 (Distortion risk measure). Let r be an increasing function [0, 1] — [0, 1].

The function p given by
1
o) == [ Qv i) (5.8)

is a distortion risk measure with weight generating function r.

Distortion risk measures are essentially the same as spectral risk measures (Acerbi,
2002)H Their properties are considered in detail in Appendix Here, we want
to concentrate on their coherency, because of its crucial role in assessing the diversified

risks.

A distortion risk measure is coherent if and only if r is concave. For example, with
r(t) = 0if t < a and r(t) = 1 if ¢ > «, the value at risk VAR,(Y) = —Qy () is
obtained, which is a non-coherent distortion risk measure. A prominent example of a
coherent distortion risk measure is the expected shortfall, which is yielded by r(t) =t/«
if t < a and r(t) = 1 otherwise. This measure is defined as (the negative of) the
conditional expectation of Y under the condition that Y does not exceed its a-quantile,
that is Qy («), with the opposite sign. In simple words, it is the mean of the « - 100%
biggest possible losses. Clearly, this measure is more conservative than the value at risk,
because its value cannot be smaller than the corresponding value at risk. Also, given «,

observe that, if r(t) = ¢, the risk measure becomes the expectation of —Y.

A general distortion risk measure p(Y') can thus be interpreted as the expectation of
—Y with respect to a probability distribution that has been distorted by the function
r. In particular, a concave function r distorts the probabilities of lower outcomes of Y
in the positive direction (the lower the more) and conversely for higher outcomes (the
higher the less). In empirical applications, coherent distortion risk measures other than
expected shortfall have been recently used by many authors; see, e.g.,|/Adam et al.| (2008)

for a comparison of various such measures in portfolio choice.

1Spectral risk measures coincide with coherent distortion risk measures.
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An equivalent characterization of a distortion risk measure is that it is a law-invariant

and comonotonic risk measure; see [Kusuoka, (2001). p is comonotonic if
p(Y +2Z)=p(Y)+ p(Z) for all Y and Z that are comonotonic,

i.e., that satisfy (YV(w)—Y(w'))(Z(w) — Z(w')) > 0 for every w,w’ € Q. If Y has an
empirical distribution on y1,...,y, € R, the definition (5.8)) of a distortion risk measure

specializes to

p(Y) == ayy, (5.9)
i—1

where yj;) are the values ordered from above and ¢; are nonnegative weights adding up
to 1. (Observe that ¢; = r(y[%]) — r(y[nT_i}).) Then, the distortion risk measure
is coherent if and only if the weights are ordered, i.e., q € AZ :={q€ A" : 0 < ¢ <

5.2.2 Weighted-mean regions as uncertainty sets

If p is a coherent distortion risk measure, the uncertainty set U/, has a special geometric
structure, which will be explored now in order to visualize the optimization problem and
to provide the basis for an algorithm. We will demonstrate that ¢/, equals a so-called

weighted-mean trimmed region (or, equivalently, WM region) of the distribution of a.

Given the probability distribution Fy of a random vector Y in R?, WM regions form
a nested family of convex compact sets, {Da(Fy)}aejo,], that are affine equivariant
(that is Do (Fayys) = A Do(Fy) + b for any regular matrix A and b € R?). By this,
the regions describe the distribution with respect to its location, dispersion and shape.
Weighted-mean trimmed regions have been introduced in |Dyckerhoff and Mosler| (2011))

for empirical distributions, and in |Dyckerhoff and Mosler| (2012) for general ones.

1

For an empirical distribution on a!,...,a" € R, a weighted-mean trimmed region is a

polytope in R? and defined as

n
Dy, (a',...,a") = conv Zwavja”(j) : m permutation of {1,...,n} » .  (5.10)
j=1
Here w, = [wa1,-..,Wan]" is a vector of ordered weights, i.e., w, € ATSL, indexed by

0 < a <1 that for a < 3 satisfies

k k
Zwa,jSwag,j, Vk=1,...,n. (5.11)
j=1 j=1
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Any such family of weight vectors {wq }o<a<1 specifies a particular notion of weighted-
mean trimmed regions. There are many types of weighted-mean trimmed regions. They
contain well known trimmed regions like the zonoid regions, the expected convex hull

regions and several others. For example,

L if j >n—|nal,

no

no—|na
no

Wa,j = lfj =n- LnaJ7

0 if j <n— |na,

0 < a <1, defines the zonoid regions. However, some popular types of trimmed regions,

such as Mahalanobis or halfspace regions, are not weighted-mean trimmed regions.

Now, we are ready to formulate the key theoretical result of this Section, which formalizes
the relation between coherent distortion risk measures and their uncertainty sets on
one side, and weighted-mean trimmed regions on the other side. This is stated in the
following Theorem [5.2] which is proved in Appendix Also in the appendix, the

geometrical properties of WM regions leading to such a relation are considered.

1 n

Theorem 5.2. If a has an empirical distribution on a*,...,a" and p is a coherent

distortion risk measure, then it holds:

{xeR?: pax—b) <0} ={xeR?:a'x>bVac D, (a},...,a")}. (5.12)

The reader can see, that, loosely speaking, Theorem provides a transition from a
well-interpreted but hardly manageable risk constraint to an equivalent well-manageable
constraint employing the geometrical construction of trimmed regions. In fact, recall
that Dy, (al,... a") is a d-dimensional conver polytope, and thus the convex hull of a
finite number of points (its vertices) or, equivalently, a bounded nonempty intersection
of a finite number of closed halfspaces (that contain its facets). By this the calculation
and representation of such a polytope can be done in two ways: either by its vertices
or by its facets. Recall that a nonempty intersection of the polytope’s boundary with
a hyperplane is a facet if it has an affine dimension d — 1, and a ridge if it has an
affine dimension d — 2. It is called an edge if it is a line segment, and a vertez if it is a
single point. In general, each facet of a polytope in R? is itself a polytope of dimension
d — 1 and has at least d vertices. With WM regions the number of a facet’s vertices can
vary considerably; it ranges between d and d! (Bazovkin and Mosler, [2012a). That is
why in calculating WM regions a representation by facets is preferable. In the following

Section [5.3] we consider the topic in detail.
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FIGURE 5.1: Visualization of WM regions by the R package WMTregions. Left panel:
Facets of a three-dimensional region in R3. Right panel: Vertices of a four-dimensional
region projected on a subspace of R3.

5.3 Solving the SLP with distortion risk constraint

5.3.1 Calculating the uncertainty set

In the previous section we have shown that the uncertainty set U, equals the weighted-

mean trimmed region Dy, for a properly chosen weight vector w,,. Bazovkin and Mosler|
(2012a)) provide an algorithm by which this WM region can be exactly calculated in any

dimension d.

The results can be visualized in dimensions two and three; for examples, see Figure [5.1

It has been already mentioned in Chapter [3|that the number of vertices of a facet can be
as much as d! . Therefore the representation of a WM region by its vertices appears to
be less efficient than that by its facets. In the sequel, we will use the facet representation

for solving the SLP.

5.3.2 The robust linear program

Using the result of Theorem [5.2 we can write down the robust linear program (j5.1f) with

a distortion risk constraint in such a form:
cx — min st.a'x>b forallacl, (5.13)

where the subscript p has been dropped for convenience. In simple words, we get a

deterministic linear program with a set of constraints whose coefficients are contained
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in a set U that is, according to Theorem [5.2] a weighted-mean trimmed region. The
restriction in (5.13) is then rewritten as

XGX:ﬂXa, Xa={x:a'x>b}. (5.14)

acl
Note that X', as an intersection of a finite number of halfspaces, is a convex polyhedron.
Therefore, a linear goal function is to be minimized on a convex polyhedron. Obviously,

any optimal solution will lie on the boundary of X.

5.3.3 Finding the optimum on the uncertainty set

In constructing an algorithm for the robust linear program, we explore the set X of
feasible solutions and relate it to the uncertainty set &/ in the parameter space. It is
shown that the space of solutions x and the space of coefficients a are, in some sense,
dual to each other. The following two lemmas provide the connection between X and
U. First, we demonstrate that X’ is the intersection of those halfspaces whose normals

are extreme points of U.

Lemma 5.3. It holds that

X:m{x:aIXZb}: m {x :a'x >b}.

aclU acextU

Proof. We show that (¢ oy Xa C Xu for all u € U; then (N, o0 Xa C Nacy Xa-

The opposite inclusion is obvious. Assume u € U. Then, as U is convex and compact,

u is a convex combination of some points a',...,a’ € extU, i.e.,, u = Zle M\;a’ with
Ai > 0 and Zle Ai = 1, and for any X € ()¢ oxtzy Xa holds x € X,; and al’x > b for
all 7, hence u'x = Zle Nai'x > b, that is, x € Xu. O

Lemma [5.3|says that each facet of the set X of feasible solutions corresponds to a vertex
of the uncertainty set /. Hence it is sufficient to consider the extreme points of the

uncertainty set.

As a generalization of Lemma 5.3, we may prove by recursion on k: Each k-dimensional
face of the feasible set corresponds to a (d — k)-dimensional face of the uncertainty set
in the solution space. This resembles the dual correspondence between convex sets and
their polars (cf. Rockafellar| (1997)). However, in contrast to polars, this correspondence

of facets is not reflexive.

From Lemma [5.3|it is immediately seen, how the robust optimization problem contrasts

with a deterministic problem, where the empirical distribution of a concentrates at some
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FIGURE 5.2: Deterministic and robust cases: feasible set (left panel), uncertainty set
(right panel).

a’ € U. Observe that the deterministic feasible set X is just a halfspace, X0 = {x :
x'a’ > b}. In the general robust case a halfspace is obtained for each a € extl{, and the
robust feasible set X is their intersection. The halfspaces are bounded by hyperplanes
with normals equal to a € extU, and their intercepts are all the same and equal to b.
Consequently, the robust feasible set X" is always included in the deterministic feasible
set Xy0,

X C Xp forany a%eld.

Moreover, the two feasible sets cannot be equal unless each element of U is a scalar
multiple of a® with a factor greater than one, U C {a : a = Xa’, A > 1}. Consequently,
the minimum value of the robust stochastic LP cannot be smaller than the value of an
LP with any deterministic parameter a’ chosen from the uncertainty set. Figure
(left panel) illustrates how a deterministic feasible set in dimension two compares to a
general robust one: The line that bounds the halfspace X0 ‘folds’ into a piecewise linear
curve delimiting X. In turn, Figure (right panel) demonstrates the same relation
between the uncertainty sets in the parameter space: the deterministic uncertainty set,

¢

which is a singleton a°, ‘enlarges’ into a non-degenerate uncertainty set containing a’.

Let
Uc={acR:ax>b}, xeRe.

Lemma 5.4. It holds that

Uc (c () Uk

xeX x€ext X

Moreover, each vertex x € ext X corresponds to a facet of U.
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Proof. By Lemma[5.3|we havex € X & a'x >bfor all a € Y. Now let a € U; then
for any x € X it holds that a’x > b, hence a € Uy. Conclude U C [,y Ux. Further, it
is clear that an extreme point x € ext X yields a facet of U. O O

Remark. While U is always compact, X is in general not. Therefore neither inclusion

holds with equality.

According to Lemma we could now reformulate the robust LP (5.13]), basing it on

the constraints generated by the vertices of U:
c/’x — min st . ax>0b forallac extld,

and then apply the ordinary simplex method to it. However, usually WM regions have
a very large number of vertices, because even a single facet can have up to d! ones.
Bazovkin and Mosler (2012a)) have shown this number to lie between O(n?) and (9(%)
depending on the type of the WM region for the data cloud of n points, thus, obviously,
making the basic straightforward approach almost inapplicable here. From the other
side, calculated WM regions are efficiently represented by their facets. In our algorithm,
we pursue another way to find the optimal solution, namely searching it even without

explicit construction of X and taking advantage of the facets representation of U.

To manage this task let us consider the goal function ¢’x. In the solution space the
optimization vector ¢ defines a direction, which can be also determined by a set of
hyperplanes orthogonal to this direction. Clearly, all these hyperplanes are parallel and
their normals are some multiples of ¢. For example, in dimension two for ¢ = (2.1,1.4)’
and b = 5 the hyperplanes {x : (2.1,1.4)" - x =5} and {x : (4.2,2.8) - x = 5} belong to
such set. Recall that we have fixed the intercept at the value of b for all the hyperplanes
in the solution space, and can differentiate them only by their normals. In the parameter
space, each of these hyperplanes corresponds to the point ¢ multiplied with the relevant
scaling factor. Hence the image of all the hyperplanes in the parameter space is obtained
by moving a point along a straight ray ¢ that starts at the origin and contains c, as it

is shown on Figure |5.3

One of the hyperplanes touches X at the optimum. All others are either intersecting
the interior of X or not intersecting it at all. This means that the touching hyperplane
corresponds to a point lying on the surface of . Therefore, we should search the
intersection of U with the ray ¢, and, because of Lemma the intersected facet of U

corresponds to the optimal vertex of X.

Note that finding the intersection of a line and a polyhedron in R3 is an important

problem in computer graphics (cf. Kay and Kajiya (1986)). The same principle is
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Solution space Parameter space

FIGURE 5.3: Duality between spaces.

employed for a general dimension d. The uncertainty set i is the finite intersection
of halfspaces H,;, j = 1...J, each being defined by a hyperplane H; with normal n;

pointing into H; and an intercept d;.

dj
! .
u nj

Consider some point u on the ray ¢ that is not in &/. Compute for all halfspaces H;
that do not include u, i.e., where (u'n; — d;) < 0 holds. (In other words, H; is visible
from u.) Find j, at which this value is the largest. Recall that moving a point u along
© is equivalent to multiplying u by some constant. The furthest move is given by the

biggest constant. The optimal solution x* of the robust SLP has to satisfy a’x* > b,

a’ (dg*x*> > dj, .

Hence, to obtain x*, the normal n;, has to be scaled with the constant %,
J

which is equivalent to

(5.15)

Besides the regular situation described above, two special cases can arise:

1. There is no facet visible from the origin. This means that no solution is obtained.

2. ¢ does not intersect . Then the whole procedure is repeated with the opposite

ray —¢. If this still gives no intersection, an infinite solution exists.

Finally, we should point out that not the whole polytope U needs to be calculated but
only that part of it that intersects the ray ¢. In searching for the optimum not all F'

facets need to be checked, but only a subset of the surface where the intersection will
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happen. Such a filtration makes the procedure more efficient. Next, we show how to

select this subset.
Let x* be an optimal solution of the robust SLP. A subset U.g of U will be mentioned
as an efficient parameter set if

e x* remains the solution for (o, {x:a’x>b}>X and

eadecly ax>b=dx>0b, Vx implies a=d.
That is to say, Ueg is the minimal subset of U containing all facets that can be optimal
for some c.
Proposition 5.5. U is the union of all facets of U for which d;j > 0 holds.
In other words, an efficient parameter set U.g consists of that part of the surface of U
that is visible from the origin 0. The proof is obvious.

To visualize the efficient parameter set we use the augmented uncertainty set, which is
defined as

{ara=Xa", A >1,a" € Ues}.

It includes all parameters that are dominated by U.g; see the shaded area in the right
panel of Figure

So far we have assumed that b > 0. It is easy to show, that with b < 0 we have to
construct the intersection of ¢ with the part of the surface of U that is invisible from

the origin 0, which is Uog in this case. In the sense of Proposition U.¢ contains

all facets of U with d; < 0. Obviously, Ueg is always non-empty in this case, which, in
turn, means that the existence of a solution is guaranteed. However, the solution can

be infinite if ¢ does not intersect Z;{eg.

The situation of b < 0 is common in the maximizing SLPs. In fact, if we have the model
c/’x — max st.a'x<b forallacl, (5.16)
it is possible to rewrite it as follows:

(—¢)’x — min  s.t. (—a)’x > —b forallael. (5.17)

Clearly, (5.17) is equivalent to ((5.13|) except for the negativity of the coefficient b.
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5.4 The algorithm

In this part an accurate procedure for obtaining the optimal solution is given.

Input

e a vector ¢ € R? of coefficients of the goal function,

n observations {al,...,a"} C R? of coefficient vectors of the restriction,

a right-hand side b € R of the restriction,

a distortion risk measure p (defined either by name or by a weight vector).
Output

e the uncertainty set U of parameters given by

— facets (i.e., normals and intercepts),

— vertices,

e the optimal solution x* of the robust LP and its value ¢/x*.
Steps of the Algorithm

A. Calculate the subset Ueg C U consisting of facets {(n;,d;)};c.
B. Create a line ¢ passing through the origin 0 and c.
C. Search for a facet H;, of Ueg that is intersected by ¢:

a. Select a subset Use; C U of facets: This may be either Uyg itself or its part
where the intersection is expected; Use; = {(n;,d;) : j € Jse }. For example,
we can search for the best solution on a pre-given subset of parameters. The
other possible filtration is iterative transition to a facet with better criterion

value.

b. Take a point u = Ac, A > 0, outside the augmented uncertainty set. Find the

Jx = argmax{\; = i Aj > 0}jeg,.,cg. For the case b < 0 just replace
J

! .
u'n;

arg max with arg min.

I. If ¢ does not intersect Ueg, then the solution is infinite. If b > 0, then
repeat [C.b/] for the opposite ray —¢; else stop.
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FIGURE 5.4: Finding the optimal solution on the uncertainty set.

II. If in the case b > 0 the inner part of U contains the origin, then no

solution exists; stop.

c. X"= %nj* is the optimal solution of the robust LP.

In fact, the line ¢ consists of points that correspond to hyperplanes whose normal is
the vector ¢ in the dual space. One part of ¢ is dominated by points from Ueg, while
the other is not (which results from Proposition . The crossing point a* defines the
hyperplane that touches the feasible set at the optimum as its dual.

Moreover, a typical nonnegativity side constraint x > 0 can easily be accounted for in
the algorithm. In considering this, the search for facets has just to be restricted to those

having nonnegative normals.

To solve the portfolio selection problem with the algorithm, we treat the realizations
of the vector —F of losses rates as {a',...,a"}, and minimize ¢/x with ¢ = 1 3" | a’.
This corresponds to transforming the maximizing SLP by and running the proce-
dure outlined above. Note that both ¢ and U contain the point % S a’, that is, they
always intersect, which, in turn, guarantees the existence of a finite solution. To meet
a unit budget constraint, the solution x* is finally scaled down by Z?Zl z; = 1. Recall
that the risk measure is, by definition, scale equivariant.

5.4.1 Sensitivity and complexity issues

Next, we discuss how the robust SLP and its optimal solution behave when the data
{a!,...,a"} on the coefficients are slightly changed. From ({5.18) it is immediately seen

that the support function hy of the uncertainty set is continuous in the data a’ as
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well as in the weight vector w,. (Note that the support function hy is even uniformly

1 ...,a" and w,, which is tantamount saying that the uncertainty set

continuous in a
U is Hausdorff continuous in the data and the risk weights.) Consequently, a slight
perturbation of the data will only slightly change the value of the support function of
U, which is a practically useful result regarding the sensitivity of the uncertainty set
with respect to the data. The same is true for a small change in the weights of the risk

measure.

We conclude that the point a’* where the line through the origin and ¢ cuts ¢ depends
continuously on the data and the weights. However this is not true for the optimal
solution x*, which may ‘jump’ when the cutting point moves from one facet of U to a

neighboring one.

The theoretical complexity in time of finding the solution is compounded from the
complexity of one transition to the next facet and by the whole number of such transitions
until the sought-for facet is achieved. Bazovkin and Mosler| (2012a) have shown that
the transition has a complexity of O(d?n). In turn, in the same paper the number of
facets N(n,d) of an WM region is shown to lie between O(n¢) and O(n??) depending
on the type of the WM region. Thus, it is easily seen, that an average number of
facets in a facets chain of a fixed length is defined by the density of facets on the region’s
surface, {/N(n,d), and is estimated by a function between O(n) and O(n?). The overall
complexity is then O(d?n?) up to O(d?*n?). Notice, that the lower complexity is achieved

for zonoid regions, namely when the expected shortfall is used for the risk measure.

5.4.2 Ordered sensitivity analysis

Alternative uncertainty sets that are ordered by inclusion can be also compared. From
Lemma [5.3]it is clear that the respective sets of feasible solutions are then ordered in the
reverse direction; see, e.g., Figure[5.5] In particular we can consider the robust LP for two
alternative distortion risk measures based on weight vectors w, and wg, respectively,
that satisfy the monotonicity restriction (5.11). Then the resulting uncertainty sets
are nested, Ug C U, and so are, conversely, the feasible sets, X D X,. This is a
useful approach for visualizing the sensitivity of the robust LP against changes in risk

evaluation.

5.5 Robust SLP for generally distributed coefficients

So far an SLP (5.1]) has been considered where the coefficient vector a follows an empirical

distribution. It has been solved on the basis of n observations {al,...,a"}. In this
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FI1GURE 5.5: Example of the ‘reversed’ central regions in the dimension 2.

section the SLP is addressed with a general probability distribution P of a. We formulate
the robust SLP in the general case and demonstrate that the solution of this SLP can

be consistently estimated by random sampling from P.

Consider a distortion risk measure p (5.8) that measures the risk of a general random
variable Y and has weight generating function r, p(Y) = — fol Qy (t)dr(t). As in Section
a convex compact I in R? is constructed through its support function hyy,

1
hui(p) = /0 Qualt)dr(t).

Now, let a sequence (2"),cn of independent random vectors be given that are identically
distributed with P, and consider the sequence of random uncertainty sets U,, based on
al,...,a". Dyckerhoff and Mosler (2011) have shown:

Proposition 5.6 (Dyckerhoff and Mosler| (2011)). U,, converges to U almost surely in
the Hausdorff sense.

The proposition implies that by drawing an independent sample of a and solving the
robust LP based on the observed empirical distribution a consistent estimate of the
uncertainty set U is obtained. Moreover, the cutting point a’*, where the line through
the origin and c hits the uncertainty set, is consistently estimated by our algorithm. If an
ambiguous solution is possible, in particular for a discretely distributed a, the algorithm

calculates one of the available solutions consistently. In fact, the optimal solution x*
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may perform a jump when a’* moves from one facet of I to a neighboring one, however

the algorithm for determining x* selects always a unique facet containing a’*.

5.6 Concluding remarks

A stochastic linear program (SLP) has been investigated, where the coefficients of the
linear restrictions are random. Distortion risk constraints are imposed on the ran-
dom restrictions and an equivalent robust SLP is modeled, whose worst-case solution
is searched over an uncertainty set of coefficients. If the risk is measured by a general
coherent distortion risk measure, the uncertainty set of a restriction has been shown to
be a weighted-mean trimmed region. This provides a comprehensive visual and com-
putable characterization of the uncertainty set. An algorithm has been developed that
solves the robust SLP under a single stochastic constraint, given a set of observations.
It is available as an R package StochaTR (Bazovkin and Mosler, 2012b). Moreover, if
the data is generated by an infinite i.i.d. sample, the limit behavior of the solution has
been investigated. The algorithm allows the introduction of additional deterministic

constraints, in particular, those regarding nonnegativity.

TABLE 5.1: Running times of StochaTR for different n and d (in seconds).

1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 15000 | 20000 | 25000
03 | 1.14 | 1.76 | 2.92 | 3.41 | 6.18 | 12.61 | 15.06 | 47.54
0.66 | 2.21 | 3.47 | 448 | 427 | 7.68 | 16.97 | 20.04
1.85 | 3.09 | 5.68 | 9.28 | 11.03 | 13.52 | 27.34 | 54.86
2.08 | 4.41 | 5.62 | 14.99 | 18.73 | 25.07 | 46.88
2.16 | 6.22 | 13.3 | 25.44 | 28.56 | 52.33
4.18 | 9.78 | 20.18 | 31.82 | 34.23
5.18 | 14.75 | 24.11 | 35.94 | 61.14
6.17 | 16.97 | 33.82 | 42.11 | 67.06

—_ SH
5 oo o ots wl
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Table reports simulated running times (in seconds) of the R package for the 5%-level
expected shortfall and different d and n. The data are simulated by mixing the uniform
distribution on a d-dimensional parallelogram with a multivariate Gaussian distribution.

In light of the table the complexity seems to grow with d and n slower than O(d?*n?).

Besides this, we contrast our new procedure with the seminal approach of Rockafel-
lar and Uryasev| (2000), who solve the portfolio problem by optimizing the expected
shortfall with a simplex-based method. In illustrating their method, they simulate
three-dimensional normal returns having specified expectations and covariance matri-
ces. We have applied our package to likewise simulated data on a 1.73GHz single-core
CPU with at most 1.5 gigabytes of memory available. The computational times are

exhibited in Table For a comparison, some cells also contain a second value that
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corresponds to the Rockafellar and Uryasev| (2000) procedure and is taken from Table 5
there. Our algorithm usually needs some dozens of iterations only, which is substantially
fewer than the algorithm of Rockafellar and Uryasev| (2000). Also, in contrast to the
latter, where the resulting portfolio can vary between (0.42,0.13,0.45) for n = 1000 and
(0.64,0.04,0.32) for n = 5000, we get a stable optimal portfolio. Our solution averages
at (0.36,0.15,0.49), which has approximately the same VQR and expected shortfall as
that in the compared study but yields a better value of the expected return. Note that
the computational times reported in Rockafellar and Uryasev| (2000) do not differ much

from ours.

TABLE 5.2: Running times of StochaTR for different n and « (in seconds); in paren-
theses running times of [Rockafellar and Uryasev| (2000)).

a\n [ 1000 5000 10000 | 15000 | 20000 | 25000
0.10 || 1.1 (<5) | 7.2 (6) | 23.7 (20) | 46 |56.3 (45) | 74.4
0.05 | 0.5 (<5) | 4.7 (6) | 14.0 (12) | 20.0 | 39.8 (40) | 53.2
0.01 || 0.3 (<5)| 2.3 (6) | 3.8 (6) | 7.9 |22.1 (50) | 385

Finally, our approach turns out to be very flexible. In particular, non-sample information
can be introduced into the procedure in an interactive way by explicitly changing and
modifying the uncertainty set. A possibility of extending the algorithm to solve SLPs
with multiple constraints will be shown in Chapter @ Also procedures that allow
for a stochastic right-hand side in the constraints and random coefficients in the goal

function will be explored in Chapter [6]

5.7 Appendix: Technical details

In this supplement, we first discuss the principal properties of distortion risk measures
and the characterization of a risk bound by an uncertainty set. Then we describe WM
regions fully by their projections on lines. Based on these notions and facets, next,

Theorem is proved. Finally, the coherency property of WM regions is demonstrated.

5.7.1 Properties of distortion risk measures

Let us consider a probability space (2, F, P) and a set R of random variables (e.g.,
returns of portfolios). A function p: R — R is a monetary risk measure if for Y, Z € R
it holds:

1. Monotonicity: If Y is pointwise larger than Z, Y > Z, then it has less risk,
p(Y) < p(Z).
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2. Translation invariance: p(Y +v) = p(Y) — v for all v € R.

A risk measure is law-invariant if it holds additionally:

3. Law-invariance: If Y and Z have the same distribution, Py = Py, then p(Y) =
p(Z).

A law-invariant risk measure p is coherent if it is, in addition, positive homogeneous and

subadditive,

4. Positive homogeneity: p(AY) = Ap(Y) for all A >0,

5. Subadditivity: p(Y +2) < p(Y)+p(Z) forall Y,ZeR.

The last two restrictions imply that diversification is encouraged by the risk measure - a
crucial property in risk management. For the theory of risk measures, see, e.g., [Follmer
and Schied| (2004). Loosely speaking, diversification is a natural mechanism of reducing

risk by ‘not putting all the eggs into one basket’.

Note that a distortion risk measure (5.8 satisfies the above properties 1 to 3, hence is

a law-invariant risk measure.

A function p : R — R is said to satisfy the Fatou property if for any bounded sequence
converging pointwise to Y, liminf, ,,p(Yy) > p(Y) holds. With the notion of coherent

risk measures, we reformulate a fundamental representation result of Huber| (1981):

Proposition 5.7. p is a coherent risk measure satisfying the Fatou property if and
only if there exists a family Q of probability measures that are dominated by P (i.e.,
P(S)=0=Q(S)=0 for any S € F and Q € Q) such that for allY € R

p(Y) = sup Eg(-Y).
QeQ

We say that the family Q generates p. In particular, let (2, A) = (R? B%) and P be the
probability distribution of a random vector a. Huber’s Theorem implies that for any
coherent risk measure p there exists a family G of P-dominated probabilities on B% so

that

p(@x—b) <0 & p@@x)<-b

inf Fg(a'x) >b
© A Pe)2

&  Eg(@x)>0b forall GeG.
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Let us denote the unit simplex in R™ by A",

A" ={qeR": quzl,quO Vk}.
k=1

Then, if & has an empirical distribution on n given points in R%, any subset Q of A™
corresponds to a family of P-dominated probabilities, and thus defines a coherent risk

measure p. As an immediate consequence of Huber’s theorem an equivalent characteri-

zation of the risk constraint is obtained (see also |Bertsimas and Brown, (2009))):

Proposition 5.8. Let p: R — R be a coherent risk measure and let a have an empirical

distribution on al,... a" € R Then there exists some Q, C A" such that

p(@x —b) <0 <ax>b forall

n
acl,:= conv{aeRd ra= Zqiai,(ql,...,qn) €9,}.
i=1

Here, conv(W) denotes the convex closure of a set W. Proposition says that a
deterministic restriction a’x > b holding uniformly for all a in the uncertainty set U, is

equivalent to the risk constraint (5.5 on the stochastic restriction.

5.7.2 Characterization of WM regions

A WM region ([5.10)) is characterized by its projections on lines. Note that each p € S971,
where S 1 is a (d — 1)-variate unit sphere, yields a projection of the data al,... a" on

the line generated by p and thus induces a permutation mp of the data,
p/aﬂp(l) S p/aﬂP(Z) S . S p/aﬂp(n) .

The permutation is not necessarily unique - and let H(al,...,a") denote the set of
all directions p € S9! that induce a non-unique permutation mp. Recall that the
support function of a closed convex set K is defined as h(p) = sup{p’x : x € K},
p € 891, Given a convex polytope K, an extreme point of K is the unique solution of
max{p'x : x € K} for some p € S%"!. Dyckerhoff and Mosler| (2011) have shown that

the support function hy of Dy, = Dy, (al,... a") amounts to

ha(p) = Zwmjp’a’rp(j) , pesit. (5.18)
j=1
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It follows that, whenever 7, is unique, the polytope Dy, has an extreme point in

direction p, which is given by

n n
S wga™) = w, ial, pestI\Hl...a"). (5.19)
j=1 i=1

5.7.3 Proof of Theorem [5.2|

Now we are moving to the proof of Theorem[5.2] From (5.9) and (5.19) we can see that,
with ¢; = w,, w3l (d) and yj;) = —p’al, the extreme point of the projection of Dy, on the
p-line is obtained by applying a g-distortion risk measure to the projected data points.

Now, setting

Qp = {q e A" : q= (waﬂT;l(l)’ .. 'waﬂl';l(n))’p c gd—1 \ 1'_[(2117 - .’an)}

and having U, = conv{a : a = > I, ga’,q € Q,} according to Proposition we
get that all extreme points of Dy, are in U,, hence Dy, C U,. On the other hand, for
every q € Q, it holds that > ;" ; ¢;a’ € Dy, , which implies U, € Dy,. We conclude
that U, = Dy, .

Thus, using the result from Proposition we have proven the equality between the
distortion risk constraint feasible set and a properly chosen WM region, which parallels
Theorem 4.3 in Bertsimas and Brown| (2009)) and proves Theorem

Finally, we would like to emphasize some facts that are used for constructing the trimmed

regions as convex polytopes. The vertices of a polytope are its extreme points. From the

above we know that the directions p € Sd_l\H(al, ...,a") belong to vertices, while the
directions p € H(al,...,a") belong to parts of the boundary that have affine dimension
> 1.

5.7.4 Risk-relevant properties of WM regions

In the context of risk measurement it is crucial that the WM regions possess two prop-
erties that enable them to generate coherent risk measures: monotonicity and subaddi-

tivity.

Proposition 5.9. (Coherency properties of WM regions)
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FIGURE 5.6: An illustration of the subadditivity property.

1. Monotonicity: If z;, < yy holds for all k (in the componentwise ordering of R%),
then

wo (Y15, ¥n) C Dwa(zl,...,zn)@Rd , and

D
Dy (21,...,2,) C Dy, (y1,...,yn) ®R%.

2. Subadditivity:

Dy, (y1+2Z1,...,Yn+2n) C Dw,(¥1,---,¥n) ® Dw,(21,...,2y).

In this Proposition the symbol & is the Minkowski addition, A® B ={a+b:a € Abe
B} for A and B C RY. For a proof, see |[Dyckerhoff and Mosler| (2011).

The subadditivity property of WM regions is an immediate extension of the subaddi-
tivity restriction usually imposed on univariate risk measures. In dimensions two and
more it has an interpretation as a dilation of one trimmed region by the other. To
understand this better let us consider the simple example of the Minkowski addition
given in Figure 5.6, The figure exhibits a solid triangle with one vertex at the origin
and a dotted-border quadrangle. Now move the triangle in such a way that its lower
left corner passes all points of the quadrangle. At each point of the quadrangle we get
a copy of the initial triangle (with a dashed border) shifted by the coordinate of the
point. The union of all these triangles gives us the Minkowski sum of the initial two
sets, which is the big heptagon in Figure Observe that, if the rectangle is moved
around the triangle, the same sum is obtained. The subadditivity states that if, e.g.,
these two figures are WM regions Dy, (y1,--.,¥n) and Dy, (21, ..., zy,) respectively, the
Dy (y1+21,...,¥n + 2y) is contained by the heptagon.






Chapter 6

A General Solution for
Robust Linear Programs with

Distortion Risk Constraints

In this chapter, we are also investigating linear optimization problems that have random
parameters, however, in a general case, where they include m > 1 constraints. In
constructing a robust solution x € R, we control the risk arising from violations of the
constraints. This risk is measured by set-valued risk measures, which extend the usual
univariate coherent distortion (= spectral) risk measures to the multivariate case. To
obtain a robust solution in d variables, the linear goal function is optimized under the
restrictions holding uniformly for all parameters in a d-variate uncertainty set. This
set is built from uncertainty sets of the single constraints, each of which is a weighted-
mean trimmed region in R? and can be efficiently calculated. Furthermore, a possible
substitution of violations between different constraints is investigated by means of the
admissable set of the multivariate risk measure. In the case of no substitution, we give
an exact geometric algorithm, which possesses a worst-case polynomial complexity. We
extend the algorithm to the general substitutability case, that is, to robust polyhedral
optimization. Similarly to the single-constraint algorithm from the previous chapter,
the consistency of the approach is shown for generally distributed parameters. Finally,
an application of the model to supervised machine learning is discussed. The chapter is

mostly based on Bazovkin and Mosler| (2015]).

107
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6.1 Motivation

6.1.1 The robust model

In the last decade, much progress has been made in the field of robust linear optimization,
that is, in finding worst-case solutions under uncertain side conditions. A wide spectrum
of models and methods has been proposed. Recent developments in theory and practice
are reviewed by |Gabrel et al.| (2014). For a systematized collection of most significant
ones, see Bertsimas et al. (2011)). An important part of the literature uses risk measures
to quantify the uncertainty of violations of side conditions; see, e.g.,|Mosler and Bazovkin
(2014)), Bertsimas and Brown| (2009), and Natarajan et al. (2009). Such risk measures
are flexible and allow an immediate interpretation. They can be properly selected and
tuned to control the relevant sources of uncertainty. Then, essentially, the goal function
is optimized under the restriction that the risk of violation stays within acceptable

bounds.

The present chapter contributes to this strand. We generalize the approach of Mosler and
Bazovkin| (2014)), which is described in Chapter [5, where a single-constraint optimization
was solved, to much more general restrictions. In doing this, for each linear restriction
of a given linear program a so-called uncertainty set of parameters is constructed, which
consists of all possible values of the unknown coefficients that are acceptable for the
specified risk level of constraint violation. We employ multivariate coherent distortion
risk measures, which are extensions of the usual coherent distortion risk measures or,
equivalently, coherent spectral risk measures. The uncertainty sets regarding these mea-
sures are convex bodies and come out to coincide with weighted-mean (WM) trimmed
regions. WM regions, as recently developed by Dyckerhoft and Mosler| (2011)), describe
a multivariate distribution by regions of different depth (= centrality). They can be

exactly calculated in any dimension (Bazovkin and Mosler (2012a)).

Various other notions of uncertainty sets have been proposed in the recent literature; a
review in the context of portfolio optimization is given in|Fabozzi et al. (2010). These ap-
proaches define the uncertainty set similar to a confidence set, describing the uncertainty
by special functionals (e.g. ¢-divergences in |Ben-Tal et al.| (2013])) or the uncertainty in
parameters of some parametric distributional assumptions (e.g. |Delage and Ye (2010)).
In our approach we avoid such assumptions and represent the uncertainty of constraint
violations in a purely nonparametric way, viz. by depth-based central regions. To ob-
tain a numerical solution of a given optimization problem we employ the well developed

geometric machinery of central regions calculation.
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Originally, we are given the following stochastic linear program:
¢’x — min st Ax>b, (6.1)

assuming that A is an m x d matrix having stochastic entries and that b € R™ may
be stochastic, too. As earlier, random variables are marked with a tilde: For example,
b will denote the stochastic right-hand side vector, while b is used for a deterministic

value of it.

To simplify the readability of this chapter, we recall some notions from the chapter
To obtain a risk-constrained stochastic linear program, we use one of the following forms

of constraints:

P (Ax —b) <0, resp. (6.2)
pHAx—b)<0, j=1...m, (6.3)

where Aj denotes the j-th row of A, and p™ is a risk measure taking values in R™,
m > 1. An SLP that minimizes ¢’x subject to the restrictions (6.2)) or (6.3)) is called a

risk-constrained stochastic linear program.

A crucial point is the choice of the risk measure. As an alternative to it, we may control

the probability of satisfying all restrictions by a joint chance constraint,

Prob[Ax —b>0]>1-a. (6.4)

Limiting the violation probability by some fixed o we obtain the chance-constrained
linear program. The latter program allows in general no easy solution, as the possible
stochastic dependency between coefficients of different linear constraints (i.e., between
the rows of A) complicates the problem. To boost the tractability, we may neglect such

dependencies and split (6.4) into separate chance constraints,

Prob[A;jx —b; >0 >1—a;, j=1...m. (6.5)

Here, we could say that each chance constraint limits the risk regarding a single side
condition by imposing a maximum probability «; on its violation. However, it is known
that even in this situation the problem turns out to be computationally tractable only
for special distributions of parameters. That is why we leave such models aside from

consideration, staying with well-suitable risk measures.
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In the current chapter, we consider no single risk measure but a whole class of such
measures, the coherent distortion risk measures (see Definition |5.8). Given a random
variable Y that has an empirical distribution on the ordered values y(1), Y@y, - Ym)

this definition of a distortion risk measure p becomes
n
p(Y) == wiyu, (6.6)
i=1

with weights w; = r(y(;)) — r(y(—1)). Coherent distortion risk measures possess certain
desired properties: monotonicity, translation invariance, law invariance, positive homo-
geneity and subadditivity. The last two properties imply a most prominent postulate
of risk measurement: coherence, that is, the risk measure decreases with diversification.
In a more general context, the risk measure used here can be seen as a quality measure
(cf. [Kall and Mayer]| (2010))). Our choice of the quality measure, besides its generality,
possesses a clear interpretation and always generates a convex program. Later we will
demonstrate that our approach in fact suites an even more general robust program that
not only copes with linear stochastic restrictions, but also those of a robust polyhedral

type, which include robust conic restrictions as a special case.

In applications A and b usually have to be estimated from data. Here we assume that a
sample of coefficient matrices A!,..., A" € R™*? has been observed and the solution of
the SLP is based on this data. The data is mentioned as an empirical distribution giving
equal mass % to A, ..., A", and with this data the SLP is named an empirical risk-
constrained SLP. Similarly, when also the right hand side is stochastic, a joint sample
of (A,b) is considered.

Theoremstates that the class of univariate restrictions (6.3)) involving coherent distor-
tion risk measures corresponds to weighted-mean trimmed regions in R% as uncertainty
sets. Calculating U turns out to be computationally feasible due to the direct connection

between the uncertainty set and a trimmed region, which can be efficiently determined
by the algorithm of Bazovkin and Mosler| (2012a)), which is described in the chapter

The risk measure p defines the vector w, uniquely and, by this, the trimmed region
Dy,,,. The further steps of the algorithm of Mosler and Bazovkin (2014) are essentially
standing on the search for an intersection of a ray with the uncertainty set & = Dy,,,.
The solution is characterized by the normal to the facet of U that is intersected by the

line in direction of the vector c.

The goal of this chapter is to develop a similar approach to the general SLP (/6.2).
Specifically, we
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1. generalize the analysis of the single-constraint SLP to multiple risk constraints
(m > 2);

2. construct a geometric algorithm to solve the multi-constraint problem (if con-
straints cannot be compensated by each other, i.e. in the unsubstitutability case,
the algorithm operates in the same dimension d as the single-constraint procedure
does);

3. extend the robust multi-constraint linear optimization to robust polyhedral opti-

mization (which covers the substitutability case);

4. estimate the uncertainty set and the robust solution consistently.

The further material is organized as follows. The construction of the solution for the
multi-constraint SLP is described in Section [6.2] The formal algorithm is given in the
subsequent Section [6.3] The same section reviews the extension of the algorithm to a
program with stochastic right-hand side. Its consistency with the generally distributed
data is proven in Subsection Finally, Section is devoted to a discussion of the

algorithm and an application to supervised learning.

6.2 Multiple constraints

6.2.1 A general model

Consider the SLP (6.1)) with m > 2 constraints and deterministic right-hand side b. We
aim at generalizing Theorem and eliminating uncertainty by a robust linear program

as follows:

cx — min st. Ax>b forall A:5(A) €U, (6.7)
where 6(A) = (Ayq,...,A,,) € R™ is the vectorized matrix A.

Again, a proper uncertainty set I has to be constructed. In doing this, we first specify the
m-variate risk measure, which is set-valued. |Cascos and Molchanov| (2007) have shown
that certain multivariate risk measures correspond to trimmed regions of the considered
distribution. In particular, the m-variate set-valued analogue p of a coherent spectral
risk measure is defined through a weighted-mean (WM) region Dy, in the following

manner:

J"(Ax —b) = — (Dwa (Ax —b) @ ]RT) c R™. (6.8)
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It can be interpreted as the set of deterministic vectors in R™ which, being added to
the random variable Ax — b, cannot shift its a-region out of the negative orthant R%.
In other words, which cannot, to the given precision level, guarantee to avoid a strictly
negative outcome of the shifted random variable. It is easy to see, that in dimension one
pl(a’x —b) is the half-line bounded above by p!(a’x —b), where p! is a coherent spectral
measure of a univariate risk. Thus, can be regarded as a set-valued extension of
a univariate distortion risk measure to multiple dimensionsﬂ This measure has been
considered in detail in Chapter [l In this chapter, we use u for denoting set-valued, and

p for denoting vector-valued or real-valued measures.

If a linear program has more than one stochastic constraints, we must consider
not only that some or all of them may be violated, but also that the degree of violation
of a restriction may be offset against that of another restriction. That is, the decision
maker, in evaluating a possible solution, may compensate the missing strictness of one
constraint by the fact that another constraint or a group of constraints is more strictly
satisfied. In this, the values of single constraint satisfaction are regarded as substitutable
by the decision maker, and his or her task in selecting a solution includes some kind
of diversification regarding the constraints. Note that this possible value compensation
between the constraints has nothing to do with a potential stochastic dependency among

the parameters of different constraints.

To include the possibility of value substitution in our model, we introduce a multivariate
utility (= negative loss) function u : R™ — R that evaluates the violations vy, ..., vy,
of the m constraints. Consider F = {v : u(v) > 0} as the set of admissable violations.
If u is a quasiconcave function, F is convex. Later we will specialize F to be a convex
polyhedron, see . The marginals may or may not substitute each other. This fact
actually affects the form of F.

Using F, we rewrite the joint risk constraint (6.2 as followsﬂ

—u™(Ax—b) C F. (6.9)

'Riischendorfl (2013) proposes a different notion of a multivariate distortion risk measure, which is
scalar-valued: Given a d-variate distribution having p.d.f. F, he considers the level set Q(¢) of F at
level ¢ and defines some scalar measure of Q(¢) as the t-quantile. Then, based on these scalar-valued
quantiles, he introduces multivariate risk measures in the same way as univariate ones.

2Here, F coincides with the admissable set of the vector-valued multivariate risk measure v introduced
in Bazovkin| (2014) (see also Chapter. This measure consists in the smallest vector which, when being
added to the random returns vector Y, puts —u™ (Y + v(Y)) into the admissable set. The latter is
the set of returns which appear to be acceptable to the risk taker (or the regulator). In this model, we
obtain with only ™ and F being involved:

vV(Ax -b) <0 — —yu"(Ax—-b)CF.
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In fact, the set "(Ax — b) is contained in the set of all violation vectors v € R™ that
are admitted. If substitution between constraints is possible, the level of substitutability
may vary from full substitutability to unsubstitutability. It is easy to show, that the first

extremal case leads to an equivalent single-constraint SLP.

Full substitutability means that u is additive, u(v) = >, u;(v;), and marginal utilities

u; are linear. In this case we obtain

Fan ={viu(v)=> uj(v;) =Y kj-v; =k'v>0}
j i

with some k > 0. This reduces to a problem with a single constraint (k’A)x > k’b. Here
the admissable set Fyyp is a halfspace bordered by the hyperplane passing the origin and
having normal k. In the second extreme case (unsubstitutability) the admissable set is
the positive orthant, Fynsup, = R'". Solving the SLP in this case will be the subject of
Section In the intermediate case of the partial substitutability F is a set lying in

Fsub and containing Fyngub-

To sum up, for obtaining a general solution of the multi-constraint SLP we have to con-
sider different levels of substitutability among the violation of constraints. It turns out
that the general substitutability case can be reduced to unsubstitutability via a special
transformation of the model. In the next subsection we will define the transformation
and demonstrate this fact. After that, to manage the complete task, we solve the SLP

with unsubstitutability.

6.2.2 The general substitutability case

Now we consider the case that violations of constraints can be balanced against each
other. Let us assume that the set F of feasible violations is a convex polyhedron,

characterized by linear inequalities,

F={yeR":pyy>dy, k=1...K} (6.10)
with some p1,...,px € R and di,...,dg € R, that is, F is an upper convex polytope.

Proposition 6.1. Let p'(Z) denote the upper border of the halfline u'(Z) C R. Then
it holds: —p™(Ax —b) C F if and only if

p(ppAx — pib) < —dy, forall k=1...K. (6.11)
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Proof. Let h' denote the support function of a set S in R™. For any y € — 1" (Ax — b)
and kK =1... K we obtain:
Py >  min  {p; -z}
z€E—pu™(Ax—b)
N
—pl _ —pl _
= My (B () = Pt gy (1)

= —p1 (pﬁCAx — pﬁcb) .

Consequently, we have y € F if —p! (p;CAx — p;b) > di. Hence the “if” part of the
proposition is proved. On the other hand, there exists some y € —u™(Ax — b) so that
the first-line inequality is met with equality. Hence the “only if” part holds, too. ]

Proposition [6.1] leads to the following theorem, which provides for every general model

an equivalent unsubstitutability model:

Theorem 6.2. The SLP with risk constraint (6.9), where F is defined by , is

equivalent to an SLP with unsubstitutable constraints

PhA>pib for k=1...K. (6.12)

Proof. According to Proposition the SLP with joint risk constraint is equiv-
alent to the SLP with constraints (6.11)). On the other hand, an SLP with constraints
(6.12) produces the same risk constraints. O

Theorem [6.2]enables us to determine a generalized uncertainty set in the multi-constraint

case.

Corollary 6.3. The uncertainty set U of the matrix A in an SLP with risk constraint
and violations admissable set F (6.10) equals

U= {A : (5([p;€A]k:1K) S ijl..KDwaj (p;cA)} . (6.13)

Proof. Here X denotes the K-fold Cartesian product of WM regions. Due to Theo-
rem|6.2] we can transform the general model into a model with unsubstitutability. In this
case single uncertainty sets will not affect each other. In turn, each single uncertainty

set is calculated as for the single-constraint SLP. O
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6.2.3 The equivalent unsubstitutability case

We see that U splits up into K parts, which can be calculated individually. It leads to

the following key representation theorem:

Theorem 6.4. (Bazovkin and Mosler, 2015) The SLP (6.1) with violations admiss-
able set F and joint risk constraint 18 equivalent to the following problem.:

cx — min st. Ax>b forall Acl, (6.14)

where U is defined as in Corollary[6.3

Proof. Follows from Theorem Corollary [6.3 and Theorem [5.2 O

Note that if all di equal zero, we get the general risk-constrained robust conic program.
Besides this, unsubstitutability, obviously, does not imply stochastic independence of

the constraints.

At this point it is reasonable to compare the present framework with that of chance-
constrained problems. Such SLPs with individual constraints are extremely critical
to distributional assumptions: in most cases the program turns out to be non-convex
(see, e.g., Kall and Mayer| (2010))) and computationally intractable. Plausible results
are recently obtained only for the elliptically distributed random coefficients. If we have
a joint chance-constraint, the difficulty increases. A straight-forward approach, which
distributes the common violation probability equally among the individual constraints,
tends to give poor results, especially if the constraints are stochastically dependent. This
example of approximative solution based on the Bonferroni inequality has been improved
by |Chen and Sim| (2009)) and Chen et al. (2010), who propose more efficient bounds
for the individual probabilities of violation of constraints using results from the order
statistics. But altogether these approximative methods still lack strong interpretation
and universality. In contrast, our approach leads to a natural decomposition of ,
while remaining jointly constrained. Any stochastic dependency among parameters (and,

thus, constraints) is completely feasible.

A powerful flexibilization of our model consists in varying the a’s in (6.13)). This is
practical, since some constraints can be more tolerant to violations while others, on the

contrary, are rather strict or even exact (e.g., a non-negativity requirement).
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6.3 Unsubstitutable violations risks: The optimal solution

6.3.1 Generalizing the single-constraint approach

By Theorem the general risk-constrained SLP is reduced to an SLP with unsub-
stitutable constraints. Therefore, it suffices to construct an algorithm for solving the
latter SLP. Moreover, Theorem reformulates the stochastic constraints in terms of

an uncertainty set.

In this subsection we pursue the following idea: We want to reformulate our problem in
a way that makes it similar to the single-constraint case. In doing so, we first define a
convolution set that will play the same role as the uncertainty set in the single-constraint
SLP algorithm. Then, we show how to construct an equivalent to the optimization line.
Having proved the equivalence of the elements, we are able to formulate the generaliza-

tion of the algorithm to the multiconstraint case.

Let us write AX; for the feasible set generated by the constraint ¢, i = 1... K, and X for

the common feasible set,

K
X =[x (6.15)

We aim at solving the SLP by a geometric procedure in the parameter space. For each
constraint, the parameter space has dimension d, while the uncertainty set U lives in

RYE . We will construct a set G € R? such that X can be rewritten as follows:
X ={xcR?: Ax > b whenever §(A) cU} = {xcR?:a'x >1Vac G} (6.16)

G is obtained by convolving the general uncertainty set I into R% we will call G the
parameter convolution set. U is then decomposed into the sets U;,i = 1,..., K, that
can be separately calculated. This dimension reducing construction is possible as the

constraints are not substitutable.

The proper way here is to represent G as an image of X in the parameter space. Accord-
ing to , all &X; are combined in one space. Combining ; in the parameter space
becomes possible if any parameter a contained by other uncertainty sets corresponds
to the same X, = {x : a’x > b} in each case. This condition holds if the right-hand
sides b; are the same for all constraints. If b > 0, we multiply all sets U; with b%_ and
obtain b = 1, without changing the set of feasible solutions. If b % 0 we apply the
transform , which is described in the next subsection.



Chapter |§l A General Solution for Robust LP with Distortion Risk Constraints 117

G contains the union of b%_l/{i,i =1...K. Thus, according to (6.15) and similar to
Lemma 1 in |Mosler and Bazovkin| (2014):

X=()Xa= () Xa
acg acextg

where ext G denotes the set of extreme points of G, which for a convex body corresponds

to its set of vertices.

This proves that G has similar properties as the uncertainty set of the single-constraint

SLP. In particular, any convex combination of two points in G belongs to G. We obtain:

K
gzconv{U;-Z/{z}. (6.17)
i=1 "

This transformation of X is familiar to polar duality (see, e.g., (Grunbaum (2003))). In
our robust problem we need no explicit representation of X and profit from the ready
machinery of WM regions that allows the direct construction of G in the parameter

space.

The next step is constructing the optimization line, which is equivalent to the single-
constraint case and is the line passing through the origin in direction ¢. Actually, ¢ is the
locus of points that are dual to hyperplanes with the normal c. However, combining the
U; in one parameter space requires individual transforms of each constraint’s parameter

spaces, thus resulting in different ¢;. Observe that

e ;=5 ; for any s # 0,

o o, = for all 7.

Hence all lines ¢ coincide. Further, they are invariant to the affine transform in (6.17]).
Therefore, the search of the optimum on G equals the search on I/ in the single-constraint
SLP.

In concluding this subsection, we turn to the deterministic case, where each U; degener-
ates to a one-point-set {ai}ﬂ The steps of our procedure stay the same but allow some
simplifications. For example, calculating G according to reduces to the simple
quickhull routine[]

In many practical tasks one has to consider some additional deterministic constraints, in

particular, those of nonnegativity type. In such a setting, a group of trivial constraints

3Consequently we do not need to calculate WM regions (see Figure .
4Thus, the above approach can be also employed as an alternative to the regular simplex method.
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FIGURE 6.1: Alternative to the simplex algorithm.

zr > 0,k € J, is mapped to a finite cloud of points in the parameter space without
calculating the WM region. The latter implies that such constraints do not significantly

influence the algorithm’s computational complexity.

6.3.2 Relaxing the right-hand side

In this section we show that the model (6.1]) of the SLP also covers the case of a random

coefficient vector b, denoted by B, as the restriction Ax > b is equivalent to
- - X
A 1—b}[1]21. (6.18)

By this we obtain an SLP with deterministic right-hand side equal to 1. Now the
solution vector has d + 1 components, the last of which is fixed to 1. Geometrically
the solution corresponds to the intersection of the feasible set with the d-dimensional
hyperplane {x : 441 = 1}, that is, the task is actually solved on a convex polytope of

affine dimension d.
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Formally speaking, we have to solve an SLP of the form (6.1]) with an additional equality
constraint. For this we propose a concise geometrical approach for solving such a prob-
lem. The idea is to modify the vector c so that it gives us the solution of the conditional

task.

First, we replace ¢ with a vector ¢ equal to the normal of the facet that lies on the
hyperplane {(x’,1)" € R*1}. By this, we get a non-unique solution, which also contains
the sought-for optimum x*. Looking simultaneously to the parameter space, we see an
intersection of ¢ with G (will be defined in the next section) at the point (0,...0,1)". To
get rid of this non-uniqueness, we perform a small rotation of ¢ towards x*. The latter
amounts to rotating ¢ towards (c’, 0)’, that is, to some new vector ¢, = (1—€)c+e-(c’,0)’

with some 0 < € < 1.

Proposition 6.5. Let b be a stochastic vector of dimension K. Then 18 equivalent
to the following model: There exists € > 0 such that

/ X .
Ce — min (619&)
Td41
A 1-b X
s.t. >1, (6.19b)
o’ 1 Td+1

where ce=(1 —€)(0,...0,1) +€-(c/,0), 0 < e <&

Proof. The constraints of are equivalent to (6.18]). Obviously, if 4.1 = 1 holds,
(6.19b) is also equivalent to (6.18]). To show that there exists such a small € > 0 that
the last inequality in necessarily turns into an equality and, as a consequence,
transforms into , we first set € to zero. The corresponding program has a
trivial non-unique solution, because the vector c. equals ¢, which was shown above to

pick a whole facet of the feasible set for a solution.

Some small rotation of ¢, shifts the solution to the border of this facet, however remaining
on it. This rotation is given by setting € > 0, i.e. combining the initial vector with the
augmented vector ¢, namely (c’,0)’. The both facts together guarantee fixing 4.1 to 1

while optimizing (6.19) with c.. In this situation, (6.19b|) reduces to (6.18]). Moreover,

the objective function turns into ec’x + 1 — €, which is, up to a constant, equivalent to

the objective of (6.1)). This proves the equivalence of (6.19) and (6.1]). O

Let us now imagine the procedure shown above in the parameter space (see Figure|[6.2]).
The additional Uk is just a point (0,...0,1)". The virtual optimization vector c.

generates a line ¢ = €- @+ (1 —¢€) - {x: 2; = 0,5 = 1...d}, that is, an equivalent
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FIGURE 6.2: Adding a dimension.

affine combination of ¢ and an axis passing through the point (0,...0,1)". @, intersects
necessarily the cone (part of the surface of G) having (0,...0,1)" as its apex. The
respective facet of G determines the optimum x* similar to step of the algorithm
in Subsection [6.3.3] below.

6.3.3 The algorithm

Prerequisites:

In solving the general robust polyhedral optimization problem with an arbitrary F, we
first modify our set of constraints and the vector b according to Theorem thus

obtaining the K x d matrix A and the K-dimensional vector b.

Without loss of generality, the algorithm is applied to a minimization problem with all
constraints of the same type “>”. If either b ¢ Rf or b is stochastic, the pretrans-
formation of Proposition [6.5| should be applied first. In the sequel both modifications
(including that for stochastic right-hand side B) are assumed to be done if necessary.
Hence, we have to solve an SLP of form ,

/ X .
(o — min
| Ld+1 |
A 1-b [ X |
s.t. >1,
0’ L] za4r |

with c.=(1 —€)(0,...0,1) +¢-(c’,0)', 0 < € < € where € is a small positive constant.

Input

e a vector ¢ € R? of coefficients of the goal function,
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ail

e a combined sample from A and b : [l_bi‘ 1,...,n,
J

]j:l...K’ 0=

e a distortion risk measure X, given by a name or an explicit weight vector.
Output

e A part of the convolution set G that includes the optimal solution,

e the optimal solution x*.

Steps of the Algorithm

A. Construct the individual uncertainty sets:

a. Determine, by the algorithm of Bazovkin and Mosler| (2012a)), {U;};=1. K,
i.e. the WM regions {Dwaj }j=1..Kk of each random vector [lij} having an
empirical distribution on [ff;} - ﬁj;?], j=1...K.

b. Add the uncertainty set for the (K +1)-th deterministic constraint in (6.19D)):
U1 ={(0',1)}.

c. For each nonnegativity restriction z; > 0, add d point-sets N; = {(e};, 1)’} to

the uncertainty sets, where e; is the j-th unit vector in R,
B. Calculate the convolution set G represented by its facets {(n;;d;)};cq:

a. Take the representation of {U;};—1. x by their vertices and put them into the

same space after having rescaled them according to (6.17)).

b. Calculate the convex hull of the set using the standard quickhull (Barber

et al., [1996) or some divide-and-conquer algorithm (Grunbaum, [2003).

C. Impose the optimization ordering on the space of parameters, creating the dual
representation of the optimization vector c. It is a line ¢ connecting the origin

(0,0)" and the point (e - ¢/, 1 — €)', with a small € > 0.

D. Search for a facet H;, of G that is intersected by ¢ (see Figure. Its dual defines

the sought-for optimal solution x*:

a. Define a set of facets Gs¢; to be analysed: This may be either G itself or its
part where the intersection is expected; Gset = {(nj,d;) : j € Jser }-

b. Take some u = Ac, A > 0, outside the augmented G.
. . d;
Find the j, = arg mjax{u,—zlj}jejsel.

c. X" = % -n,, is the optimal solution.

J*
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FIGURE 6.3: Obtaining the solution using the convex hull computation routine.

d. If there is no intersection, the solution is at infinity.

e. If (0',1) € G, there is no solution.

For efficient calculation of the intersection of ¢ with G we can apply an approximative
procedure which converges to the precise solution. The procedure finds a facet of some
scaled U; that is closest from outside to the sought-for facet of G. Obviously, if the facet

is part of some uncertainty set, the obtained solution is optimal.

6.3.4 Complexity

The complexity of the algorithm is firstly determined by the routine for the convex hull.
Before analyzing the general algorithm, we take a look at its deterministic counterpart.
In solving a deterministic LP we have to calculate the convex hull of K 41 points, which
has a worst-case complexity of O(K log K + K [g]), see |Chazelle (1993). The naive linear
search on the set of n facets has a complexity of O(nd). Consequently, the worst-case
complexity of our algorithm amounts to O(d - K [%]), which is polynomial. It is well
known (e.g. [Borgwardt (2001)) that no variant of the simplex method exists that solves
an LP with polynomial complexity. Only ellipsoid and interior-point methods (using

randomizations) can achieve polynomial complexity.

For the general algorithm is is very natural to use ”divide and conquer” algorithms,

which construct the convex hull of the whole data out of convex hulls of subsets of
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data. Such procedures have best complexities in dimensions 2 and 3, namely O(nlogn).
For example, the standard quickhull algorithm has complexity between O(nlogn) and
O(n?), depending on the input. However, to our knowledge, such ”divide and conquer”
algorithms are available in the literature only for dimensions up to 5 (see, e.g., Buckley
(1988))).

In fact, we need not calculate the whole convex hull, because we are interested only in
the normal to the hyperplane at the intersection (even the actual facet is not interesting
for us). This is why we can substantially reduce the complexity by cutting off the region
of the intersection by an ellipsoid or a cylinder having axis . The worst-case complexity
of the general algorithm is also polynomial, however of a high power, which can cause

difficulties for large-scale problems.

6.3.5 Robust SLP for generally distributed coefficients

In the previous sections we assumed the random parameters A and b to follow an
empirical distribution based on observations {A!,... A"} and {b!,...,b"}. Now we
want to consider an SLP (6.1]), where (A, b) follows a general probability distribution

P and realizations are randomly sampled from this distribution.

Actually, Mosler and Bazovkin| (2014)) have shown that the individual uncertainty set
U; is a consistent estimator of its population counterpart. Convergence is almost surely
in the Hausdorff sense, which is based on the law of large numbers for weighted-mean
regions (Dyckerhoff and Mosler| (2012)). Here, our general algorithm constructs G, as
the convex union of individual uncertainty sets, which, obviously, also converges almost

surely in the Hausdorff sense to G:

Proposition 6.6. G,, converges to G almost surely in the Hausdorff sense.

Also the cutting point, where the line ¢ hits the convolution set G, is consistently
estimated by our algorithm. A potential complication lies in the fact that the surface of
G is, in general, not smooth. That is why the optimal solution x*, which, obviously, is
defined by the tangent hyperplane at the cutting point can be ambiguous. However, even
in such situations, the algorithm automatically selects a unique facet of G determining

x*.

6.4 Conclusion and application

A new geometric algorithm is proposed for robust linear optimization under distortion

risk constraints. The algorithm constructs an uncertainty set in the parameter space,



Chapter |§l A General Solution for Robust LP with Distortion Risk Constraints 124

which measures the risk arising from non-deterministic parameters in the original linear
constraints. The randomness may affect the coefficient matrix A as well as the right
hand side b. In our setting a multivariate coherent distortion risk measure is applied to
the joint distribution of the parameters. This results in uncertainty sets for each single
constraint, which are so called weighted-mean trimmed regions. The multi-constraint un-
certainty set then comes out as the convex hull of the union of rescaled single-constraint
uncertainty sets. It is determined by calculating the relevant parts of weighted-mean
trimmed regions, which is done by the algorithm of Bazovkin and Mosler| (2012a). (Note
that the uncertainty set needs not be determined from an external sample; alternatively
it can be introduced explicitly by the optimizer. In this case the algorithm starts with

step C.)

The algorithm can be applied to multi-constraint as well as single-constraint problems.
Also, as a special case, deterministic linear optimization problems are solved by the al-
gorithm. To cope with substitution in evaluating the violation of different constraints, a

variant of the model is introduced, which is mentioned as robust polyhedral optimization.

We conclude the investigation with an efficient application of our optimization model
and algorithm to classification problems. Our procedure can be applied to supervised
machine learning as a robust alternative to the support vector machine (SVM). The basic
problem is: Two classes of points are given in the Euclidean d-space Q1 = {x1,...,2n, }
and Q2 = {y1,...,Yn,}. A rule has to be constructed by which any new point = is
classified to one of those classes Q1 and Q2. The classical SVM of [Vapnik| (1998)) deter-
mines a hyperplane that discriminates the two classes linearly in a higher-dimensional
space and serves as a separator for classifying new points. Technically, this approach
results in a convex quadratic program. To tackle the problem in a robust way, mostly
methods of replacing each point by its neighbourhood are proposed in the literature;
see e.g. Ben-Tal et al. (2009). In contrast, we consider no single points of the training
classes as uncertain, but the whole classes, and observe the points as a sample of the
random variables defining the classes. Besides having a better interpretation, we obvi-
ously can expect getting less constraints. In fact, it turns out that the robust SVM can
be represented as a robust linear program with two risk constraints. To achieve these

representation, we start with the following linear program:

C' — max
w,C
w'x; +b>C, x; € Qn,
s.t. (SVM1)
Wyj+b<—C, y;€Qa.
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Generally, the solution of does not coincide with the solution of the usual
quadratic program. Like Vapnik’s SVM, produces a central separating hy-
perplane that lies between the classes. However, it does not necessarily minimize the
Euclidean distances between support vectors, as the Euclidean distance is not the only
possible criterion here. Note that the Euclidean distance is not easily interpreted when
the data have been transformed into a higher-dimensional feature space, as it is done by
SVM.

To control the quality of our proposed solution, we rewrite the model (SVMI|) as a
stochastic linear program:
0-y—1-z— min
y7z
aj-y—-1-z> -1,

s.t. (SVM2)
(_éQ)I'y_l'ZZ 1a

where a3 ~ Qq, as ~ Q5.

a ~ () means that a has an empirical distribution on the finite set ). Following our
approach, we next remove the negative values in b = (—1 1). After applying the

transformation of Proposition [6.5 we get:

0 € 1-€(y/ 2z wygp1) — min

Yoz Yd+1
a -1 2 y

s.t. | —al -1 ol-| =z |=>1, (SVM3)
0 0 1 Yd+1

where 5.1 ~ Ql, 5.2 ~ QQ.

The origin 0 must not be situated between the classes, otherwise we may obtain an
infinite solution. We extend this application as follows: To control the width of the
margin we make b stochastic (instead of fixing it at (—1 1)’). The more uncertain b,

the wider is the margin of the separating hyperplane.

A soft margin is introduced as usual; see Vapnik| (1998). However, in contrast to the

classical approach, the additional margin variable £ appears to be particularly natural
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in our stochastic linear program:

0-y—1-2+M-£&— min
¥:2:8

ajry—-1-z+&> -1,
s.t. ! ¢ (SVM-soft)
(-a) y-1-z4+&6> 1,

where a3 ~ Qq, as ~ Q5.

Our soft-margin model has the advantage that, if we are unsure about the proper class
labels of the training points, we can introduce a random coefficient for £ that describes
the level of certainty in labeling. It is also clear that we can use the kernel trick here,
because the inner product and the induced norm are sufficient for all calculations in the

algorithm.

Further, our robust optimization model and the new algorithm can be applied in many
other fields of operations research. In particular, it is well suited to formalize problems
in supply chain management, like the management of an inventory. This will be the

topic of future work.
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