
Geometrical Methods
in Multivariate Risk Management: Algorithms and

Applications

Inauguraldissertation

zur

Erlangung des Doktorgrades

der

Wirtschafts- und Sozialwissenschaftlichen Fakultät

der

Universität zu Köln

2014

vorgelegt

von

Pavel Bazovkin

aus

Simferopol

Referent: Prof. Dr. Karl Mosler

Korreferent: Prof. Dr. Jörg Breitung

Tag der Promotion: 17.11.2014

“ . . . I thank Thee, O Father, Lord of Heaven and earth, because Thou hast hid these

things from the wise and prudent, and hast revealed them unto babes.”

Matt. 11:25

Preface

Starting with the doctoral thesis project, I was impressed by the possibilities that are

revealed by geometrical methods in data analysis. First of all, they enable connecting

complex methods with a nice interpretation. This, as well as their visuality, was my main

motivation for designing this thesis. I have taken an interesting way beginning from

generalizing special geometrical algorithms to higher dimensions, then connecting them

with concepts from multivariate risk analysis and, finally, ending up with applications

to robust optimization. But, of course, I am still on the way.

Acknowledgements

I am deeply grateful to my supervisor, prof. Karl Mosler, who has become for me a real

teacher not only in the sphere of his scientific expertise but also in the way of scientific

thinking, finding the best ways and in what is called a scientific style. He always found

a smart way to support me when I needed, and to come into resonance with me when I

was inspired. His immense patience and fresh-mindness were important for me.

I am also very thankful to prof. Friedrich Schmid for his support and the thorough con-

sideration of my research. In fact, I was introduced into the sphere of risk management

firstly due to his courses and papers. I acknowledge much prof. Jörg Breitung and prof.

Roman Liesenfeld for their considering my thesis, support and the cooperation at the

Institute and on our research seminars.

I am grateful to my colleagues from Chair of Statistics and Econometrics: prof. Gabriel

Frahm, prof. Hans Manner, Daniel Nowak, Walter Orth, Julia Polyakova, Christoph

Scheicher and others. A pleasant cooperative atmosphere at the Chair always motivated

for a more qualitative research.

I cannot forget my colleagues from the graduate school, many of whom also became my

friends: Julius Schnieders, Tobias Wickern, Oliver Grothe, Martin Ruppert, Dominik

Liebl and all others. I have learned from them many things, and especially the way of

efficient working. If you fill yourself a part of a strong team having a common goal,

you get ‘wings’. And these ‘wings’ could hold me only because they were leaning on

the fresh air of support and funding provided by the Risk Management section of the

Cologne Graduate School (CGS), led by prof. Alexander Kempf. For this, I am grateful

to him and other affiliated professors.

Many thanks are coming to the colleagues who were working on similar topics with

me - prof. Rainer Dyckerhoff, Pavlo Mozharovskiy and others - for a plenty of fruitful

v

discussions. Especially to prof. Tatjana Lange, whose vital personality and energy

always inspired me to search unconventional solutions for nontrivial problems.

Four of five papers forming this thesis have passed through reviewing process, and the

work and critics of almost a dozen of scholars who have thoroughly refereed them was

important for improving quality of this thesis. Although not knowing their names, I

would like to acknowledge them as well.

Last but not least, I am thankful to my parents, Elena and Evgeny, who were always

with me.

Pavel Bazovkin

Cologne, September 2014

Contents

Preface v

Contents vii

1 Introduction 1

2 Multivariate Expected Shortfall: Computing Zonoid Trimmed Regions
of Dimension d > 2 9

2.1 Motivation . 9

2.2 Zonoid regions . 12

2.3 Vertices and direction domains of a zonoid region 14

2.4 Adjacent vertices . 16

2.5 A linear program for constructing adjacent vertices 17

2.6 Edges and facets . 19

2.7 Sequencing the facets . 22

2.8 Discussion . 25

2.9 The algorithm . 28

3 Weighted-Mean Trimmed Regions and Distortion Risks 33

3.1 Motivation . 33

3.2 Weighted-mean trimming . 35

3.2.1 Definition and principal properties 35

3.2.2 Special notions of weighted-mean trimming 37

3.3 Geometry of the algorithm . 38

3.3.1 Trimmed region as a convex polytope 38

Task 1: Calculating a facet 41

Task 2: Finding an adjacent facet 43

3.3.2 Spanning tree order . 46

3.4 The algorithm . 48

3.4.1 Interface and steps . 48

3.4.2 Complexity of the algorithm . 50

3.5 The R package WMTregions . 52

3.5.1 Technical overview . 53

Dependencies . 53

R functions . 53

Input and output . 56

3.6 Examples . 58

vii

Contents viii

3.6.1 Illustration with simulated data . 59

3.6.2 Calculating multivariate set-valued risk measures 60

3.7 Conclusions . 61

3.8 Heuristics for determining all adjacent facets 62

4 Multivariate Best-Decision Risk Measures: An Application to Portfo-
lio Optimization 65

4.1 Motivation . 65

4.2 Vector-valued multivariate risk measure based on data trimmed regions . 67

4.2.1 The measure . 68

4.3 Portfolio choice as a special case . 70

4.3.1 Minimal risk portfolio . 71

4.3.2 Portfolio selection with a generalized Sharpe ratio 72

4.3.2.1 Finding the optimum . 73

4.3.2.2 The algorithm . 75

4.3.3 Optimization with a generalized certainty equivalent 76

4.3.3.1 Finding the optimum . 77

4.3.3.2 The algorithm . 78

4.3.4 Negative weights and short sellings 79

4.3.4.1 Optimum with shorting permitted 79

4.3.4.2 The algorithmic supplement 80

4.4 Discussion . 81

5 Stochastic Linear Programming and Distortion Risk Measures 83

5.1 Motivation . 83

5.2 Distortion risk constraints and weighted-mean regions 87

5.2.1 Distortion risk measures . 87

5.2.2 Weighted-mean regions as uncertainty sets 88

5.3 Solving the SLP with distortion risk constraint 90

5.3.1 Calculating the uncertainty set . 90

5.3.2 The robust linear program . 90

5.3.3 Finding the optimum on the uncertainty set 91

5.4 The algorithm . 96

5.4.1 Sensitivity and complexity issues 97

5.4.2 Ordered sensitivity analysis . 98

5.5 Robust SLP for generally distributed coefficients 98

5.6 Concluding remarks . 100

5.7 Appendix: Technical details . 101

5.7.1 Properties of distortion risk measures 101

5.7.2 Characterization of WM regions 103

5.7.3 Proof of Theorem 5.2 . 104

5.7.4 Risk-relevant properties of WM regions 104

6 A General Solution for Robust Linear Programs with Distortion Risk
Constraints 107

6.1 Motivation . 108

6.1.1 The robust model . 108

6.2 Multiple constraints . 111

Contents ix

6.2.1 A general model . 111

6.2.2 The general substitutability case 113

6.2.3 The equivalent unsubstitutability case 115

6.3 Unsubstitutable violations risks: The optimal solution 116

6.3.1 Generalizing the single-constraint approach 116

6.3.2 Relaxing the right-hand side . 118

6.3.3 The algorithm . 120

6.3.4 Complexity . 122

6.3.5 Robust SLP for generally distributed coefficients 123

6.4 Conclusion and application . 123

Bibliography 127

List of Figures 136

Symbols 139

Chapter 1

Introduction

In the recent two decades, the quick development of computational and visualizing in-

struments led to creating new important scientific directions in multivariate statistical

data analysis. In particular, many novel non-parametric methods, which are usually

computationally demanding, have appeared during this period.

The central theme (leitmotif) of this thesis is also a product of this development. We con-

sider an alternative way of representing a probability distribution which leads, shortly,

on the one hand, to rather intuitive instruments and, on the other hand, is freed from

any undue parametric modeling. Specifically, we are referring to the data depth, which is

a function measuring how deep a data point is inside a data distribution. It roots in the

seminal ideas of John Tukey1 from the late 1970s. Of course, there are plenty of ways

to determine such a function, however, the key fact is that in most cases we need not be

bounded by distributional assumptions. This obvious advantage had been impeded for

a long time by the usually large complexity of computations. But, beginning from the

1990s, plausible methods and algorithms started to appear in the literature.

Stepping into higher dimensions needed significantly new methods of analysis, which,

fortunately, can be found in the sphere of computational geometry. The latter developed

in parallel starting from rather simple algorithms for convex hulls in dimensions 2 and 3,

up to big bundles of modern algorithms such as CGAL2. In fact, a possibility of applying

geometrical methods with their strong interpretability based on the user’s intuition was

one of the motivations for the opening project of this thesis, especially since many authors

started to utilize the connection (cf. Mosler (2004)). This project tackles two problems,

(I) and (II), from the list below, where we have collected the aggregate problems that

1John Wilder Tukey (1915-2000) was a famous American statistician and author of some novel ap-
proaches in statistics and numerical analysis. His paper, Tukey (1975), is widely considered to be the
starting point of data depth research.

2CGAL, Computational Geometry Algorithms Library, http://www.cgal.org

1

Chapter 1. Introduction 2

are considered in the thesis. We will touch on each of them in this Introduction in

connection with the thesis’ projects incorporated into its chapters.

The list of the aggregate problems:

(I) representing an asymmetric probability distribution in a non-parametric,

computationally efficient, and unique way;

⇓
(II) constructing algorithms for so-called central regions (see below) in higher

dimensions (> 2);

⇓
(III) measuring multivariate risk comprehensively;

⇓
(IV) comprehensive consideration of risk in portfolio optimization;

⇓
(V) employing the set-valued risk measures in non-financial areas.

According to the depth function, the data can be ordered and in such a manner be

represented very intuitively. A further instrument enabling us to visualize the represen-

tations is given by the data trimmed (or central) regions, which are the sets collecting

all points possessing the depth of at least, say, some α. Here α (usually lying in the

interval [0; 1]) is the parameter of the central region defining its rank inside a family of

central regions, thereafter ordered by α in the sense of the inclusion. The most deep

region, with α = 1, is a median and, correspondingly, included by all other regions.

Such families of trimmed regions also provide a way of representing a probability distri-

bution. Of course, there is a question of whether it is always a one-to-one representation.

In a particular simple case of the so-called Mahalanobis depth, the Mahalanobis trimmed

regions are just ellipsoids around the expectation of the probability distribution with

a shape coined by the covariance matrix of the distribution. Clearly, in this case the

regions can be easily determined in any dimension, but they are defined by just a few

parameters (namely, the mean and the covariance matrix). This, obviously, does not

allow them to contain the whole information about the distribution.

In this thesis, we are primarily considering such regions whose families describe the

corresponding distribution uniquely. For example, the so-called zonoid trimmed regions

or halfspace regions do. That is why it makes sense to be able to compute them. However,

it is clear that this problem is much more complex than even the computation of the

data depth.

Chapter 1. Introduction 3

Here we face the aggregate problem (II). It consists in a non-triviality of generaliz-

ing computational algorithms from dimension 2 to higher dimensions. The solution of

this problem gives us a tool for tackling the further problems (III)-(V), which will be

discussed later.

Our first, and simultaneously key contribution is an algorithm that was the first to com-

pute such a, uniquely defining, region in any dimension (Mosler, Lange, and Bazovkin,

2009). Actually, in the next chapter, we propose a solution for the zonoid regions.

There, we are also explaining the interpretation of these regions and why they are of

high importance. It should be mentioned that the task of computing trimmed regions

came into the focus of research in the last decade. However, almost all solutions were

limited to data of dimension 2 which, as will be shown in Chapter 2, usually are only

qualitatively degenerate cases of the higher dimensions, and, therefore, corresponding

algorithms cannot be generalized straightforwardly. The main problem here usually lies

in constructing a plausible identification of facets of central regions in dimensions > 2.

We solve the problem by proposing the special spanning tree order as a general solution

of such problems that enables an efficient traversal of all the facets. It replaces the trivial

order of facets in dimension 2, which was widely used in the literature. Moreover, our

algorithm provides an explicit control of the way how the facets, i.e. the surface of the

region, are constructed. It is important when we are interested in building only a part

of the region (e.g. its lower boundary), or parallelizing the algorithm.

The next step of developing and generalizing the zonoid regions was undertaken by

considering the very recently designed notion of the so-called weighted-mean regions

(Dyckerhoff and Mosler, 2011). For calculating these regions, we have also developed

a further algorithm (Bazovkin and Mosler, 2012a), which is a generalization of the

algorithm for zonoid regions. The identification of facets is more complex in this general

case, however, we are able to employ the similar sequencing principle.

The visuality and the clear interpretation of trimmed regions, as well as the developed

mature analytical machinery concerning them, led to the emergence of numerous ap-

plications. Basing on some special notions of trimmed regions, recently Cascos and

Molchanov (2007) have shown their direct connections with multivariate risk measures,

especially set-valued risk measures, which is of a great importance for us. We are con-

tributing to this trend by developing a large class of multivariate set-valued risk mea-

sures, the so-called distortion risk measures, which possess a list of desirable properties.

This fact, in turn, motivates their use in a broad variety of applications.

These applications, firstly, cover some classical problems from areas of finance and risk

management. In particular, we are developing some variants of solving portfolio choice

problems with the help of these instruments. Here we are facing problem (IV) because

Chapter 1. Introduction 4

in the classical model the risk of a portfolio is usually represented by the variance of its

random returns. In contrast, we replace the variance by a vector-valued multivariate risk

measure based on weighted-mean regions, and show how various performance measures,

namely objectives, can be applied for the optimization in our approach. Specifically, we

propose algorithms for the minimal risk portfolio, a generalized Sharpe ratio and the

certainty equivalent. To solve these problems, we have developed a general geometrical

framework that is flexible to embedding different performance measures.

Proceeding to problem (V), we should point up that the financial risk management

sphere does not limit the applicability of the measures, and we can employ their well-

interpretable notions, at a first glance, in a completely different area - the robust linear

optimization.

We pursue problem (V) from the perspective of modeling uncertainty by means of set-

valued risk measures. The uncertainty in the coefficients is modeled by means of special

sets, the uncertainty sets, which are proved to be special trimmed regions or their simple

combinations in the sense of (maybe infinite) disjunction. Each such set is fully defined

by a specified risk measure, however, such a visual representation allows us to modify

the uncertainty according to additional heuristics, thus flexibilizing the control.

Our contribution in this direction lies in algorithms solving different forms of such opti-

mization problems, ranging from single-constaint random linear programs up to rather

general forms of robust convex optimization (including robust cone optimization).

Solving these stochastic linear programs (SLPs), from the other side, opens a possibility

to apply our algorithms in other important areas, just after finding a way to represent

the corresponding problems in the form of SLPs. For instance, we show how a robust

data classification problem can be solved using our algorithms.

In more detail, the chapters contribute to the literature in the following way.

The next Chapter 2 introduces the algorithm for calculating the zonoid trimmed re-

gions. Here, again, we demonstrate that any probability distribution on Euclidean d-

space can be described by its zonoid trimmed regions or, in brief, zonoid regions. These

regions form a nested family of convex sets – central regions – around the expectation,

each being closed and bounded. The family is indexed by numbers that vary in the

unit interval. Each zonoid region can be seen as a set-valued parameter that reflects the

location, scale, and shape of the distribution.

The motivation for considering such a representation is that the multivariate data are

often asymmetrically distributed so that they cannot be modeled by normal or elliptical

distributions. Zonoid regions offer a non-parametric and particularly visual approach

Chapter 1. Introduction 5

to analyzing such data. A distribution - empirical as well as theoretical - is uniquely

represented by a geometrical object; its family of zonoid regions. This object is visual

and has attractive analytical properties. Moreover, the zonoid regions of an i.i.d. sam-

ple satisfy a law of large numbers, converging to the zonoid regions of the underlying

probability distribution.

The novelty here consists in:

1. an analysis of the representation of a distribution by means of zonoid regions based

on their structure and properties;

2. the spanning tree order for sequencing facets of a zonoid region;

3. an exact efficient algorithm for constructing zonoid regions.

The subsequent Chapter 3 considers weighted-mean trimmed regions. Starting from

theoretical aspects of the regions, we proceed to the main, algorithmic, part where we

obtain a generalization of the algorithm for zonoid regions. In doing this, a characteri-

zation of a region’s facets is used, and information about the adjacency of the facets is

extracted from the data. A key problem consists in ordering the facets. It is solved by

the introduction of a tree-based order, by which the whole surface can be traversed effi-

ciently with the minimal number of computations. The algorithm has been programmed

and is available as an R package, which is also described in detail.

The novelty in this chapter splits into:

1. a special characterization of facets of a weighted-mean trimmed region;

2. a tree-based order for traversing the whole surface of the region;

3. the generalization of the algorithm from Chapter 2, a proof of its consistency;

4. an R package realizing the algorithm.

In Chapter 4, we introduce a vector-valued multivariate risk measure that is based on

the set-valued distortion risk measure. Then, the risk measure is used as a replacement of

the variance in the classical portfolio choice problem3. We build a common geometrical

framework, where the portfolio can be optimized according to either the minimal risk,

or the Sharpe ratio, or the certainty equivalent.

The novelty of the approach consists in:

3Cf., for instance, Markowitz (1952).

Chapter 1. Introduction 6

1. a comprehensive assessment of risk in a portfolio selection problem;

2. taking no distributional assumptions concerning ellipticity;

3. the flexibility of the framework that enables utilizing various performance mea-

sures.

Such an application to the portfolio selection is solely one side of the potential incorpo-

rated into the set-valued distortion risk measures. In the further two chapters, we point

up a bundle of applications of these risk measures in non-finance environments.

In Chapter 5, we apply coherent distortion risk measures to capture the possible vio-

lation of a restriction in linear optimization problems whose parameters are uncertain.

Each risk constraint induces an uncertainty set of coefficients, which is proved to be a

weighted-mean trimmed region. Thus, given a sample of the coefficients, an uncertainty

set is a convex polytope that can be exactly calculated. We construct an efficient geo-

metrical algorithm to solve stochastic linear programs that have a single distortion risk

constraint. The algorithm’s asymptotic behavior is also investigated, when the sample

is i.i.d. from a general probability distribution. Finally, we present some computational

experience.

The novelty in this chapter splits into three major parts:

1. the uncertainty set of an SLP under a general coherent distortion risk constraint is

shown to be a weighted-mean trimmed region, which provides a useful visual and

computable characterization of the set;

2. an algorithm is constructed that solves the minimax problem over the uncertainty

set, hence the SLP;

3. proof of the fact that if the data is i.i.d. from a general probability distribution, the

uncertainty set and the solution of the SLP are shown to be consistent estimators

of the uncertainty set and the SLP solution.

In Chapter 6, we also investigate linear optimization problems that have random pa-

rameters, however, the general case with m ≥ 1 constraints. In constructing a robust

solution x ∈ Rd, we control the risk arising from violations of the constraints. This

risk is measured by set-valued risk measures, which extend the usual univariate coher-

ent distortion (or, spectral) risk measures to the multivariate case. To obtain a robust

solution in d variables, the linear goal function is optimized under the restrictions hold-

ing uniformly for all parameters in a d-variate uncertainty set. This set is built from

uncertainty sets of the single constraints, each of which is a weighted-mean trimmed

Chapter 1. Introduction 7

region in Rd and can be efficiently calculated. Furthermore, a possible substitution of

violations between different constraints is investigated by means of the admissable set of

the multivariate risk measure. In the case of no substitution, we give an exact geometric

algorithm, which possesses a worst-case polynomial complexity.

We extend the algorithm to the general substitutability case, that is, to robust polyhedral

optimization. Similarly to the single-constraint algorithm from the previous chapter,

the consistency of the approach is proved for generally distributed parameters. Finally,

applications of the model, especially applications to supervised machine learning, are

discussed.

The novelty of this chapter is contained in:

1. a generalization of the analysis of the single-constraint SLP to multiple risk con-

straints (m ≥ 2);

2. a construction of a geometric algorithm to solve the multi-constraint problem (if

constraints cannot be compensated by each other, i.e. in the unsubstitutability

case, the algorithm operates in the same dimension d as the single-constraint pro-

cedure does);

3. an extension of the robust multi-constraint linear optimization to robust polyhedral

optimization (which covers the substitutability case);

4. the estimation (consistent) of the uncertainty set and the robust solution.

Last but not least, in comparison with many recent approaches to determining the

uncertainty in coefficients, we are able to work explicitly with uncertainty sets, modifying

them if needed.

To summarize, as the reader can see, the chapters are chained in such a manner that the

solutions of the above aggregate problems emerge sequentially, in a ‘chronological’ order.

Again, to highlight the unity of the projects as the message of the thesis, we recall the

following. Firstly, we describe an alternative representation of a probability distribution

using central regions, and we construct an exact algorithm for calculating zonoid regions.

Secondly, keeping in mind the connection of zonoid regions with the set-valued multi-

variate expected shortfall, we extend our analysis to the broader class of weighted-mean

trimmed regions, which, in turn, will correspond to coherent distortion risk measures.

We build an exact algorithm for calculating any type of weighted-mean trimmed regions

in any dimension. Thirdly, based on these regions, we build a set-valued distortion risk

measure and, subsequently, a multivariate vector-valued risk measure, which is further

Chapter 1. Introduction 8

applied in the portfolio optimization. Fourthly, we apply the set-valued risk measure in

robust convex optimization, obtaining efficient novel optimization algorithms.

The chapters of this thesis are mostly based on the following published papers:

I “Computing zonoid trimmed regions in dimension d > 2”, with Karl Mosler and

Tatjana Lange. Computational Statistics and Data Analysis, 53:2500–2510, 2009. Its

final version is available at Elsevier via http://dx.doi.org/10.1016/j.csda.2009.01.017.

I “An exact algorithm for weighted-mean trimmed regions in any dimension”, with

Karl Mosler. Journal of Statistical Software, 47(13):1–29, 2012.

I “A geometrical framework for portfolio optimization”. Discussion Papers in Econo-

metrics and Statistics, Institute of Econometrics and Statistics, University of Cologne,

01/14, 2014.

I “Stochastic linear programming with a distortion risk constraint”, with Karl Mosler.

OR Spectrum, 36(4):949–969, 2014. The final publication is available at Springer via

http://dx.doi.org/10.1007/s00291-014-0372-9.

I “A general solution for robust linear programs with distortion risk constraints”, with

Karl Mosler. Annals of Operations Research, 229(1):103–120, 2015. The final publi-

cation is available at Springer via http://dx.doi.org/10.1007/s10479-015-1786-8.

Chapter 2

Multivariate Expected Shortfall:

Computing Zonoid Trimmed

Regions of Dimension d > 2

A probability distribution on Euclidean d-space can be described by its zonoid regions.

These regions form a nested family of convex sets around the expectation, each being

closed and bounded. The zonoid regions of an empirical distribution introduce an or-

dering of the data that has many applications in multivariate statistical analysis, e.g.

cluster analysis, tests for multivariate location and scale. In risk analysis, they can

be used as a basis for defining a multivariate expected shortfall risk measure. In this

chapter we develop an exact algorithm to constructing the zonoid regions of a d-variate

empirical distribution by their facets when d ≥ 3. We propose a way of characterizing

the vertices of the region and their adjacency, and suggest a procedure by which all

vertices and facets can be determined. The resulting algorithm has been developed into

an R package.

2.1 Motivation

Zonoid trimmed regions or, in brief, zonoid regions, are an alternative way of describing

a probability distribution on Euclidean d-space. These regions form a nested family of

convex sets – so-called central regions – around the expectation, each being closed and

bounded. The family is indexed by numbers that vary in the unit interval. Each zonoid

region can be seen as a set-valued parameter that reflects the location, scale, and shape

of the distribution.

9

Chapter 2. Computing Zonoid Regions of Dimension d > 2 10

Multivariate data are often asymmetrically distributed so that they cannot be modeled

by normal or elliptical distributions. Zonoid regions offer a non-parametric and par-

ticularly visual approach to analyzing such data. A distribution - empirical as well as

theoretical - is uniquely represented by a geometrical object; its family of zonoid regions.

This object is visual and has attractive analytical properties. Moreover, the zonoid re-

gions of an i.i.d. sample satisfy a law of large numbers, converging to the zonoid regions

of the underlying probability distribution.

Zonoid regions were introduced by Koshevoy and Mosler (1997) and, since then, have

found many applications in multivariate statistical analysis. They have been employed,

e.g., in cluster analysis (Mosler and Hoberg, 2006), in the measurement of inequality

(Koshevoy and Mosler, 2007) and polarization (Gigliarano and Mosler, 2009), and in

tests for multivariate location and scale (Dyckerhoff, 2002); see also the monograph by

Mosler (2002) and a comprehensive introduction to depth statistics by Mosler (2013).

Cascos and Molchanov (2007) propose a general geometric framework for measuring

multivariate risks; in their approach zonoid regions serve as set-valued risk measures

that generalize the usual univariate expected shortfall. We will consider this connection

in Chapter 4 and employ in the subsequent chapters. In turn, the current chapter

prepares necessary tools for computing the measure via computing zonoid regions.

The boundary of a zonoid region forms a depth contour with respect to zonoid depth

and can be regarded as a multivariate quantile. Therefore, given a d-variate empirical

distribution, zonoid regions are used as trimmed regions that exclude “outlying” data

and include “inlying”, that is to say, central and relevant ones. Similar methodology has

been based on alternative notions of data depth and trimmed regions, such as halfspace

(= location) depth, simplicial depth, expected convex hull depth, among others. Zuo and

Serfling (2000) provide some general theory of depth trimmed contour regions, while Liu

et al. (1999) and Serfling (2006) broadly survey the theory and applications of various

notions of depths in multivariate data. López-Pintado and Romo (2007) investigate

depth notions in functional data.

When applying such methods to given multivariate data, the crucial point is the avail-

ability of efficient numerical procedures to compute the data depths employed and the

trimmed regions of an empirical distribution. To calculate the depth of a single point of

an arbitrary dimension, algorithms have been provided by Rousseeuw and Ruts (1996)

and Rousseeuw and Struyf (1998) for the halfspace depth, and by Dyckerhoff et al.

(1996) for the zonoid depth. Aloupis (2006) gives a survey of algorithms for calculating

different notions of medians and depths. But, calculating a depth trimmed region ap-

pears to be a much more demanding task. So far, algorithms have been constructed for

the halfspace trimmed regions by Ruts and Rousseeuw (1996) and Miller et al. (2003) in

Chapter 2. Computing Zonoid Regions of Dimension d > 2 11

dimension 2, by Fukuda and Rosta (2004) and Liu et al. (2014) in arbitrary dimension.

For bivariate zonoid trimmed regions, Dyckerhoff (2000) provides an algorithm that em-

ploys a circular sequence; Cascos (2007) uses the same approach for bivariate regions

that are trimmed by the expected convex hull depth.

In this chapter we present an exact algorithm that efficiently calculates zonoid regions

of any dimension. In contrast to most classical statistical tools, zonoid regions are

genuine geometric notions. Consequently, our algorithm makes ample use of tools from

computational geometry.

Consider an empirical distribution that gives probability 1
n to each of the observations

x1, . . . ,xn ∈ Rd and let n ≥ d. The zonoid regions of the empirical distribution are

defined by

Dα(x1, . . . ,xn) =

{
1

nα

n∑
i=1

λixi :
n∑
i=1

λi = nα, 0 ≤ λ ≤ 1 ∀i

}
, (2.1)

0 < α < 1. Immediately it can be seen from the definition that D 1
n

(x1, . . . ,xn) is the

convex hull of the data x1, . . . ,xn, while D1(x1, . . . ,xn) is the set that contains the

mean 1
n

∑n
i=1 xi as a single point. At 0 < α < 1, Dα(x1, . . . ,xn) is a convex polytope

that lies between the convex hull and the expectation point and decreases strictly with

α. The border of such polytope consists of a finite number of facets. Each facet is part

of a hyperplane in Rd and can be described by the direction of its normal vector and

its distance from the origin, that is to say, by some element p of the unit sphere Sd−1

and some λ ∈ R+. The main task is to identify, from all directions p ∈ Sd−1, those

directions that determine the facets and calculate them in an efficient way.

The algorithm constructs the zonoid regions of an empirical distribution by their facets.

Thus, for any data x1, . . . ,xn and any α ∈ [0, 1[, the facets and vertices of Dα(x1, . . . ,xn)

are calculated and their coordinates are given. Our algorithm is efficient in that it

computes the facets one after the other, proceeding from one facet to its neighbors.

In the dimension d = 2, Dyckerhoff (2000) has developed an algorithm for constructing

zonoid regions. His procedure is based on the idea of a circular sequence (cf. Edels-

brunner (1987)): A ray starting at the center is turned like a clock’s hand and the data

points are projected onto this ray. However, the method of circular sequence works only

with bivariate data. There is no obvious generalization of such a sequence to higher

dimensions.

Our first task is to characterize the vertices and facets of a given zonoid region, given

data points x1, . . . ,xn and α. For this, we introduce a global structure that partitions Rd

into direction cones that correspond one-to-one to the vertices of the zonoid region. In

Chapter 2. Computing Zonoid Regions of Dimension d > 2 12

this cone structure, the adjacency of vertices is investigated and characterized. A linear

program is constructed to decide whether two vertices are neighbors. The resulting

adjacency graph consists of elementary cycles that have either three or six nodes. Then

we show that each facet of the zonoid region corresponds to exactly d data points and

characterize the facet by a linear restriction on d data points.

Our second task is to put the facets of the zonoid region into an order according to which

they can be efficiently calculated. For a given facet, a “jump-to-neighbor” procedure

is introduced to transfer the calculation to the neighboring facets. Finally, a facet

transversal graph is constructed, and a spanning tree order is realized to transverse this

graph in an efficient way. This completes the algorithm.

Overview of this chapter: Section 2.2 presents zonoid regions of general probability

distributions and surveys their principal statistical properties. In Section 2.3 the set

of supporting vectors that belong to a given vertex of the zonoid is investigated. In

Section 2.4 a global structure of direction cones is set up, and the adjacency of vertices

is described through conditions on these direction cones. Section 2.5 provides a linear

program by which the adjacency of vertices can be checked. Section 2.6 presents the

adjacency graph and a characterization of facets of the zonoid region. In Section 2.7 the

“jump-to-neighbor” procedure and the spanning tree order are introduced, according to

which all facets are transversed. Section 2.8 concludes with a discussion of the complexity

of our algorithm and its use in calculating zonoid regions for different α. This section also

provides numerical experience and remarks on possible modifications of the algorithm.

In the last Section 2.9 a formal algorithm is given.

2.2 Zonoid regions

Given a d-variate probability distribution function F , a family {Dα(F)} of sets in d-

space, called zonoid regions, is defined as follows: D0(F) = Rd and for α ∈]0, 1]

Dα(F) =

{∫
Rd

x g(x) dF (x) : 0 ≤ g ≤ 1

α
,

∫
Rd
g(x) dF (x) = 1

}
. (2.2)

For α ∈]0, 1], these regions exist if and only if F has a finite expectation vector µF =∫
Rd xdF (x). It is obvious from the definition (2.2) that the zonoid regions are nested;

the smallest region being the singleton set D1(F) = {µF }. Furthermore, each Dα(F) is

bounded, closed, and convex. For an empirical distribution F , with equal mass on (not

necessarily different) points x1, . . . ,xn, the definition specializes to the above definition

(2.1).

Chapter 2. Computing Zonoid Regions of Dimension d > 2 13

In this section, we list a few principal properties of zonoid regions, which make them

useful for statistical description and inference. For details and many other theoreti-

cal results, the reader is referred to Mosler (2002), as well as for applications to the

multivariate analysis of location, dispersion and dependency.

Firstly, for every α ∈ [0, 1], Dα is affine equivariant, i.e.,

Dα(FXA+c) = Dα(FX)A + c for any d× d matrix A having full rank, (2.3)

c ∈ Rd, and F having finite first moment. Hence, any statistical procedure based on

zonoid regions is an affine equivariant procedure.

Secondly, the zonoid regions contain full information about the underlying distribution:

For any two d-variate distribution functions F and G that have finite first moments, it

holds

F = G if and only if Dα(F) = Dα(G) for all α ∈]0, 1] . (2.4)

The uniqueness property (2.4) implies that any claim about a distribution F can be

equivalently formulated as a claim about the zonoid regions of F and, thus, can be

analyzed by geometric means.

Thirdly, zonoid regions lend themselves easily to projection methods: By projecting the

zonoid regions of a distribution F onto some lower-dimensional subspace of Rd, the

zonoid regions of the projected distribution are obtained. In particular, any marginal

of F has zonoid regions that are obtained by projection onto the respective coordinate

space. See also Dyckerhoff (2004).

The fourth property is continuity: The zonoid region Dα(F) is continuous on α as well

as on F . More precisely (see Th. 3.10 in Mosler (2002)), given a distribution F and a

sequence (αn) in]0, 1] that converges to α > 0, it holds

Dαn(F)
H−→ Dα(F) , (2.5)

Also, given α ∈]0, 1] and a sequence F (n) of distributions that is uniformly integrable

and weakly convergent to F , it holds

Dα(F (n))
H−→ Dα(F) . (2.6)

In (2.5) and (2.6),
H−→ means convergence with respect to Hausdorff distance. (The

Hausdorff distance of two compacts C and D is the smallest ε for which C plus an ε-ball

includes D and D plus an ε-ball includes C as well.)

Chapter 2. Computing Zonoid Regions of Dimension d > 2 14

Fifthly, zonoid regions satisfy a Law of Large Numbers, which serves as the basis of

statistical inference: Let X1, . . . ,Xn denote an i.i.d. sample, with Xi ∼ F . For every α,

it holds

Dα(X1, . . .Xn)
H−→ Dα(F) almost surely . (2.7)

Thus, given an i.i.d. sample X1, . . . ,Xn, the zonoid region Dα(X1, . . .Xn) serves as

a set-valued statistic that estimates Dα(F). So far, the practical application of the

zonoid region statistic was confined to the dimension d = 2, since no algorithm existed

to calculate it for higher dimensions. In the rest of this chapter we develop an exact

algorithm that works for any dimension d ≥ 3.

2.3 Vertices and direction domains of a zonoid region

Let us first recall some standard notions and facts about convex sets and polytopes in

Rd. A convex polytope is the convex hull of a finite number of points or, equivalently,

a bounded nonempty intersection of a finite number of closed halfspaces. A nonempty

intersection of its boundary with a hyperplane is called a facet if it has an affine dimen-

sion d − 1, and a ridge if it has an affine dimension d − 2. It is called an edge if it is a

line segment, and a vertex if it is a single point. The boundary of a convex polytope is

the union of its facets. A convex polytope has a finite number of facets, ridges, edges,

and vertices. An edge is the intersection of (at least) two facets, and a vertex is the

intersection of (at least) two edges, d − 1 ridges and d facets. A hyperline is an affine

subspace of Rd that has a dimension 1.

A compact convex set is mentioned as a convex body. In particular, as a zonoid region

is a bounded convex polytope, it forms a convex body in Rd. The support function

hC : Sd−1 → R of a convex body C ⊂ Rd is defined by

hC (p) = max
{
p′x : x ∈ C

}
.

The support function of a convex body is closely related to its extreme points: A point

x0 is extreme in C if and only if some p ∈ Sd−1 exists so that

p′x = hC(p) implies x = x0 .

Now, for the given data x1, . . . ,xn, denote

H = H(x1, . . . ,xn) = {p ∈ Sd−1 : p′xi = p′xj for some i 6= j} .

Chapter 2. Computing Zonoid Regions of Dimension d > 2 15

Given a direction p ∈ Sd−1\H, the inner product p′x projects the data points x1, . . . ,xn ∈
Rd onto numbers p′x1, . . . ,p

′xn ∈ R. While the data as points in Rd have no natural

total order, their projection does have. Thus, each p ∈ Sd−1 \H induces a total ordering

of the data, i.e., a permutation πp of the index set 1, . . . , n given by

p′xπp(1) < p′xπp(2) < · · · < p′xπp(n) . (2.8)

In the sequel we notate the p-ordered data by

Xp = (xp
1 , . . . ,x

p
n) with xp

i = xπp(i) , i = 1, . . . , n .

Proposition 2.1. (Dyckerhoff, 2000) Let x1, . . . ,xn ∈ Rd be pairwise distinct, d ∈ N.

For any p ∈ Sd−1 \H define

xp,α =
1

nα

n∑
i=1

λp
i xi , (2.9)

where

λp
i =

1 if πp(i) > n− [nα] ,

nα− [nα] if πp(i) = n− [nα] ,

0 if πp(i) < n− [nα] .

Then the set of vertices of the zonoid region Dα is given by

V(Dα) = {xp,α ∈ Rd : p ∈ Sd−1 \H} .

The set of all directions that yield vertices (= extreme points) of Dα is Sd−1 \H. Let

S(v) ⊂ Sd−1 \H denote the subset of those directions that belong to a given vertex v ∈
Sd−1\H. S(v) is named a direction domain. According to Proposition 2.1, all directions

that provide the same permutation of the data belong to the same direction domain, i.e.

to some common vertex v. The family of direction domains S(v),v ∈ V(Dα), forms a

finite partition of Sd−1 \H.

Thus, the proposition yields a discretization of the continuum of possible directions of

the vector p, where the cardinality of the set of direction domains equals the number of

vertices of the zonoid region. Thus, a one-to-one relation between domains of directions

and vertices has been established.

In the sequel we assume that the data are in general position, i.e., every subset of k+ 1

data points generates an affine space of the dimension k, k = 1, . . . , d − 1. (If the data

are not in general position, the subsequent discussion and the algorithm need to be

modified, e.g., by slightly perturbing the data.) Also, without loss of generality, we shall

assume that the mean of the data is at the origin, 1
n

∑n
i=1 xi = 0.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 16

2.4 Adjacent vertices

In this section we investigate the transition of one vertex to another, that is to say, of

one direction domain to another. In our procedure we let a support vector p – that

represents direction – continuously rotate on the unit sphere Sd−1. We start with an

arbitrary p ∈ Sd−1, which provides an initial permutation of the data points. As was

mentioned, all p that produce the same permutation of points form a direction domain

that belongs to a common vertex. When searching for all vertices, it obviously suffices

to traverse each direction domain once. To do this, we shall characterize and identify the

possible transitions of one domain to a neighboring one. Our identification procedure is

based on the following observations:

The vector p hits the boundary of a direction domain only if, for some i 6= j, p′xi = p′xj

holds, i.e., p is orthogonal to xi − xj.

Note that the pair (p′xi,p
′xj) is not unique. However, at most d − 1 such pairs can

arise, as the space of all vectors that are orthogonal to p has an affine dimension d− 1,

and the data are in general position.

The vector p crosses the boundary of a direction domain only if, for some i 6= j, p′xi

and p′xj change their order. That is to say, any transition from one permutation to

another is done by swapping one of the pairs of data points.

With Proposition 2.1 follows:

Theorem 2.2. (Identification of vertices) The vector p passes from one direction

domain (and one vertex) to a neighboring one if and only if i and j exist, i 6= j, so that

p is orthogonal to xi − xj, πp(i) = n− [n · α], and |πp(i)− πp(j)| = 1.

Theorem 2.2 provides the basis for an algorithm that calculates all vertices of the zonoid

region.

So far, we have considered parts of the unit sphere; the direction domains. They corre-

spond to the vertices of the zonoid region. In the following discussion we will use the

corresponding closed cones: For v ∈ V(Dα) define the direction cone C(v),

C(v) = cl{λy : λ ∈ R+,y ∈ S(v)} ,

where cl(U) means closure of a set U ∈ Rd. Then each C(v) is a closed convex cone in

Rd with an apex at the origin. It is finitely generated (i.e. it consists of all non-negative

linear combinations of a finite number of vectors), and has a maximum of n− 1 facets.

The normals of its facets are described in Theorem 2.2.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 17

The family of direction cones provides a global structure that divides the space Rd into

sets corresponding to the vertices of Dα.

Now, consider three data points xi,xj ,xk and the hyperplanes through the origin that

are orthogonal to xi−xj ,xi−xk, and xj−xk, respectively. These hyperplanes intersect

at a common hyperline that possibly contains a ridge of a direction cone. On the other

hand, every ridge of a direction cone is contained in such a hyperline for some i, j, and

k.

We can conclude: In the global structure a ridge of a direction cone belongs to another

direction cone only if it is a ridge of the latter, too.

In the sequel we shall say that two direction cones are adjacent cones if they have a full

facet in common. Turning the vector p through a boundary facet implies a transition

from a direction cone to an adjacent one. It means that, to leave a current cone and

enter an adjacent one, we have to move the vector p in an arbitrary way beyond one of

the hyperplanes that carry the facets of the current cone.

2.5 A linear program for constructing adjacent vertices

Our next task is to find an explicit way of constructing all vertices that are neighbors

of a given vertex v. In other words, we will explicitly determine all direction cones that

are adjacent to a given direction cone C(v). These neighbors correspond to the facets of

C(v). Every facet of the cone is defined by a hyperplane. The set of hyperplanes that

determine the cone’s boundary is a subset of the hyperplanes described in Section 2.3.

Each of these n− 1 hyperplanes is represented by its “inner” normal zj , i.e., the normal

pointing inside the cone:

zj =

 xp
n−[nα] − xp

j if j = 1, . . . , n− [nα]− 1 ,

xp
j − xp

n−[nα] if j = n− [nα] + 1, . . . , n .
(2.10)

The n− 1 normals are codirected with all directions p in the cone, i.e., they have non-

negative inner products. In fact, C(v) is the intersection of all corresponding halfspaces.

In other words, C(v) is the set of all vectors p that are codirected with the normals

(2.10),

C(v) = {p ∈ Rd : z′jp ≥ 0 for all j = 1, . . . , n− 1} .

Our task is to identify those hyperplanes (or, equivalently, their normals) that belong

to the boundary of the cone C(v). To determine whether zj is a boundary normal, we

Chapter 2. Computing Zonoid Regions of Dimension d > 2 18

shall solve the following minimization problem:

z′jp→ min , (2.11)

s.t. p ∈ C(v) ,
d∑
i=1

|pi| = 1 .

If (2.11) has a positive minimal value, no support vector, p ∈ C(v), exists that is

orthogonal to zj . Hence, zj is not a boundary normal of C(v). If (2.11) is minimized

with value z′jp
∗ = 0, we can conclude that p∗ is a support vector that belongs to the

boundary of C(v) and is an element of the hyperplane that has normal zj . Consequently,

p∗ also belongs to the boundary of the direction cone C(ṽ) of some vertex ṽ that borders

on the current vertex v.

(2.11) can be rewritten as a linear program (LPj),

z′j(p
+ − p−)→ min , (2.12)

s.t. z′j(p
+ − p−) ≥ 0 j = 1, . . . , n− 1 ,

d∑
i=1

(p+
i + p−i) = 1 ,

p+
i ≥ 0 , p−i ≥ 0 , i = 1, . . . , d .

Here we have inserted p = p+ − p−, where p+ = (p+
1 , . . . , p

+
d)′ and p− = (p−1 , . . . , p

−
d)′

are the positive and negative parts of p, respectively. The linear program (2.12) is solved

by the simplex method.

To find all vertices bordering on v, we may solve the linear programs (2.12) for j =

1, . . . , n − 1. As all programs have the same set of feasible solutions, the calculations

can be shortened by solving them simultaneously. In fact, the number of neighbors

is small compared to n − 1. Therefore, the number of basic feasible solutions in the

simplex method will be relatively small, too, which leads to a high average efficiency of

the simplex method. If n is large, the dual simplex method may outperform the primal

approach.

Each ridge of a direction cone is an intersection of three hyperplanes. On the ridge

either three or six direction cones touch each other. Let us consider these two cases in

more detail:

Remember that, given a vertex v, for all p ∈ C(v) the point xp
n−[nα] does not depend

on p. We call this point the main point of C(v).

Chapter 2. Computing Zonoid Regions of Dimension d > 2 19

Figure 2.1: Neighboring cones near the common ridge.

Consider three direction cones C(v), C(w), and C(u) that have a common ridge and

denote their main points by a,b, c, respectively. For all p ∈ C(v) these three main

points are p-ordered in the same way, either with a in the middle or not. If a is in the

middle, b and c cannot switch their positions. Hence, C(w) and C(u) have no boundary

hyperplane in common, and w and u are not adjacent vertices. In this case, a total of

six direction cones meet at the common ridge. If, on the other hand, b and c are on

the same p-side of a, their positions can switch and w and u are neighboring vertices.

In this case, only three direction cones unite at the common ridge. The two cases are

illustrated in Figure 2.1.

2.6 Edges and facets

Having obtained an efficient procedure for finding extreme points we now must create

an efficient one for constructing all facets of the zonoid region. Next we characterize the

edges of the zonoid region.

Lemma 2.3 (Vertices and edges). Let C(v) and C(w) be direction cones. The line

connecting v and w is an edge if and only if C(v) and C(w) are adjacent cones.

Proof. Recall that the zonoid region Dα is a convex polytope, and its extreme points

form the vertices of this polytope. As C(v) and C(w) are direction cones of vertices v

and w, for all x ∈ Dα it holds that:

p′x ≤ p′v if p ∈ C(v) , and p′x ≤ p′w if p ∈ C(w) . (2.13)

Chapter 2. Computing Zonoid Regions of Dimension d > 2 20

Now assume that C(v) and C(w) are adjacent cones. Then for each p in their common

boundary C(v) ∩ C(w) it holds that p′v = p′w. Hence, for all x ∈ Dα

p′x ≤ p′(λv + (1− λ)w) if λ ∈ [0, 1] . (2.14)

It follows that the line connecting v and w is an edge of the polytope. On the other

hand, assume that this line vw is an edge. Then some p exists that, for all x ∈ Dα,

satisfies (2.14). For this p, it must hold that p′v = p′w. In view of (2.13), we can

conclude that (2.14) is true for all x ∈ Dα if and only if

p′(v −w) = 0 , p′v ≥ 0 , and p′w ≥ 0 ,

that means, p is in a d − 1-dimensional cone which is a subset of C(v) and of C(w).

Consequently, C(v) and C(w) have a full facet in common, and are, thus, adjacent

cones.

Lemma 2.3 provides a unique correspondence between the adjacency of direction cones

in the global cone structure and the existence of edges of the zonoid region.

Recall that adjacent direction cones are cones that have a common facet. The adjacency

information of the zonoid region, which is a polytope, is represented by its adjacency

graph, which consists of the polytope’s vertices and edges. Above, we have demonstrated

that either three or six direction cones touch each other on a ridge. Hence the adjacency

graph is a concatenation of elementary cycles, each connecting either three or six vertices.

This is illustrated in Figure 2.2:

Figure 2.2: The structure of the adjacency graph.

Now, consider a facet of the zonoid region. Let the vector p be directed orthogonally to

the facet. Then, if points from the data cloud are in general position, exactly d points

xπp(k),xπp(k+1), . . . ,xπp(k+d−1) exist so that:

p′xπp(k) = p′xπp(k+1) = · · · = p′xπp(k+d−1)

with some k , k ≤ n− [nα] ≤ k + d− 1 .

 (2.15)

Chapter 2. Computing Zonoid Regions of Dimension d > 2 21

Obviously, the indices k, . . . , k+d−1 in (2.15) are not unique. However, any permutation

of these d points yields the same facet. We may conclude the following theorem.

Theorem 2.4. (Identification of facets) Each facet can be identified by a set of

exactly d points from the data cloud and one of its vertices. Moreover, if there is a

support vector that defines a permutation satisfying (2.15), then this permutation and

these d data points define a facet of the zonoid region.

It can easily be seen from Theorem 2.4 that, if k < n− [nα] < k + d− 1, the facet can

have more than d vertices . A facet will be mentioned as redundant if it has more than

d vertices, and as non-redundant if it has exactly d vertices. In any case, there are only

d different main points that belong to a facet. Let ` = n− [nα]− k. We obtain:

Corollary 2.5. The number of vertices of the facet equals d ·
(
d−1
`

)
.

Proof. As stated above, the total number of possible relative positions of d points is

d !. But, according to (2.9), the relative position of points in

[k, (n− [nα])[and](n− [nα]), k + d− 1]

is not significant, i.e.
(
d−1
`

)
different cases remain. This number is multiplied by d, which

is the number of possible main points.

Corollary 2.6. Each set of d points from the data cloud defines, at most, one facet of

a zonoid region unless:

k ≤ n− [nα] ≤ k + d− 1 and k ≤ n− [n− nα] ≤ k + d− 1 . (2.16)

Otherwise it defines exactly two parallel facets.

Proof. The first statement is clear from Theorem 2.4. The second is based on the

fact that, if the condition (2.16) is met, then the inverted support vector also defines a

permutation satisfying (2.15).

Corollary 2.7. For each set of d data points some α exists, so that the set defines a

facet of the zonoid α-region.

Proof. In fact, for a set of exactly d data points it is always possible to find α so that

the condition (2.15) is met. Then the statement follows from Theorem 2.4.

In the case of a non-redundant facet we have ` = 0. Then, according to Corollary 2.5 the

facet is a (d− 1)-dimensional simplex having d vertices. The vertices identify the facet;

Chapter 2. Computing Zonoid Regions of Dimension d > 2 22

they are pairwise adjacent and correspond to the pairwise adjacent direction cones. In

turn, every set of d vertices that correspond to pairwise neighboring cones defines either

a facet or a cut of the zonoid region. Thus, also in this case, the identification of the facet

is based on the adjacency graph. Based on Corollary 2.6 we can generate an arbitrary

facet as follows:

1. Choose an arbitrary set of d points.

2. Check whether this set defines a facet. If not, go back.

3. Create the corresponding facet.

We will also use this procedure to initialize our algorithm by creating a first facet.

Thus, Theorem 2.4 and its corollaries provide a procedure for identifying each facet of

the zonoid region.

2.7 Sequencing the facets

To complete the algorithm, we have to create a procedure that generates all facets in

a sequential way. For this, we specify a total ordering of the set of facets. In the case

d = 2 such an order is easily created by a circular sequence; see Dyckerhoff (2000). In the

dimension d ≥ 3 we can solve this problem by introducing a spanning tree order (STO).

Consider a given facet. Each ridge of it corresponds to exactly one neighboring facet

and all neighboring facets can be found by passing through the ridges. The following

theorem and its proof tell us the number of adjacent faces, that is the number of ridges,

and how the ridges are obtained.

Theorem 2.8. (Neighboring facets)

(i) A facet has either 2d or d neighboring facets.

(ii) It has d neighbors if and only if it is non-redundant.

Proof. Let the support vector p be orthogonal to the facet and condition (2.15) be

met. A minimal violation of orthogonality is achieved by an infinitesimal move of p in

a direction that is perpendicular to a ridge of the facet and non-perpendicular to its

other ridges. This corresponds to the following change in the first equation of (2.15):

Either p′xπp(k) < p′xπp(k+1) = · · · = p′xπp(k+d−1) or p′xπp(k) = · · · = p′xπp(k+d−2) <

p′xπp(k+d−1) . That is, a ridge is obtained by removing one of the points that define the

facet according to Theorem 2.4.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 23

Figure 2.3: Examples of the facet traversal graph.

By removing one point to the higher and one to the lower part of the permutation, we

obtain two ridges. Note that in the non-redundant case we can generate only one ridge

in order not to violate the second equation of (2.15). The number of ridges is 2d (d in

a non-redundant case), as there are d points which have to be removed. Obviously, the

number of facets that neighbor the current one equals the number of its ridges.

Thus, by removing one of the points that characterize the current facet according to the

Theorem 2.4, we are directed to either one or two neighboring facets. If the current facet

is redundant, removing a point yields two parallel ridges. Thus, we get two neighbors

for a redundant, and one for a non-redundant facet.

Next, we search for a new adjacent facet that shares a given ridge. For this, rotate

the support vector p in the plane orthogonal to the ridge defined by the d − 1 points.

Obviously, if xi has been removed from the higher (resp. lower) part of the permutation,

p has to be rotated in the direction of increasing (resp. decreasing) p′xi. The rotation

stops when the (2.15) first equation is met, that means, p has reached a normal of a

new facet.

As this procedure produces a “jump” from the current facet to one of its neighbors,

we shall mention it as the “jump-to-neighbor” procedure. According to this procedure,

sequentially generated facets are identified in a similar way, which allows for an efficient

implementation. Moreover, as the traversal through all neighbors guarantees the absence

of “gaps”, no facet will be lost.

Based on Theorem 2.8 we shall construct a special graph; the facet traversal graph

(FTG). The vertices of the FTG correspond to the set of all facets of the zonoid region,

and the edges of the FTG indicate the neighborhood of facets. Each vertex of this graph

joins either d or 2d edges.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 24

A sequential procedure for determining the zonoid region consists in transversing all

vertices of the corresponding FTG. Note, that in the dimension d = 2, the FTG is an

elementary cycle and its traversal is trivial and unique. In fact d = 2 is a degenerated

case. For d ≥ 3 we construct a spanning tree order (STO) of the FTG, which orders the

set of facets. By “jumps-to-neighbor” the STO is created in a dynamic way:

1. Organize a queue.

2. In each step, pop from the queue a current facet, which corresponds to a vertex of

the FTG. Add to the queue all adjacent vertices of the current vertex that have

not been processed so far. Mark the current vertex as processed.

3. Marking of the vertices is done through a hash table, where hash codes of all the

processed vertices (i.e. facets of the zonoid region) are stored.

According to Corollary 2.6 the record for each facet in the hash table is fully described

by d integer numbers. These numbers are the labels of main elements of d points that

define the facet. If these points define two parallel facets, these facets can easily be

generated in one step, thus making it possible to have one record for them in the hash

table.

The linear order of the vertices (facets) is provided by its final positioning in the queue.

The realization of the STO is illustrated by Figure 2.4.

Figure 2.4: Realization of the STO.

So far, we have constructed an algorithm to compute Dα(x1, . . . ,xn) for a single given

α ∈]0, 1[. Finally, this procedure is modified to efficiently calculate D∗α(x1, . . . ,xn) for

all α∗ in an interval around α.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 25

Given p0, consider the intervall Ak of those α whose main element has the same index

k, that is n− [nα] = πp0(k) or, equivalently,

n− πp0(k)

n
≤ α < n− πp0(k) + 1

n
. (2.17)

For all α ∈ Ak, the global cone structure is the same. When we calculate the zonoid

region for some α ∈ Ak, we can simultaneously determine the zonoid regions for all

α ∈ Ak by using the same global cone structure and only recalculating the distances of

facets from the origin.

Note that that there are only n possible different global cone structures. Hence the

global cone structure is fully determined by the initial position p0 of the support vector

and the corresponding main point, which can be any of the n data points. Consequently,

for determining the whole family of zonoid regions, Dα(x1, . . . ,xn) for all α, it suffices

to run the modified algorithm n times only.

2.8 Discussion

An exact algorithm has been constructed to compute the zonoid regions of an empirical

distribution in d-space. It calculates all of the vertices, edges, and facets of a zonoid

region at any given depth α ∈]0, 1[. (Recall that α = 0 and α = 1 are trivial cases.)

This approach requires that the dimension d− 2 of ridges is not lower than 1, which is

the dimension of edges. It works for any dimension d ≥ 3 and any number n of data

points.

A hash table plays a significant role, as it stores the vertices, once generated, in a special

structure and facilitates a fast check of whether the vertex has already been processed.

Each facet is generated only once. Thus the algorithm has as many loops as the zonoid

region has facets. Obviously, this is the minimum number of facet generating loops in

this sort of algorithm.

In a single facet generating loop, the most costly operations are as follows: Calculate

the hyperplane equation of the current facet, calculate its distance from the origin and

obtain the neighboring facets. This is done by solving linear equations and finding inner

products only. The complexity of the first operation is O(d3). Up to d such operations

are performed in each loop. The complexity of getting n− 1 inner products is assessed

O(nd). Hence, the complexity of one facet generating loop is described by O(d2(d2 +n)).

Chapter 2. Computing Zonoid Regions of Dimension d > 2 26

The number of computational loops of the algorithm is equal to the number of facets

of the zonoid region. If the average number of facets is denoted N(n, d), the average

computational complexity of the algorithm amounts to O(d2(d2 + n) ·N(n, d)).

Note that the complexity increases only moderately with d. For example, consider two

data clouds of dimensions d1 and d2 (d1 < d2) that contain the same number of points

n. Then the second data cloud will form a polytope that has a more trivial structure

in Rd2 than the first has in Rd1 . It is also easy to see that there is no operation in

the algorithm whose complexity grows exponentially with the growth of the dimension.

Altogether the complexity is polynomial in n and d. This confirms the efficiency of our

algorithm.

General memory resources are used, in the first place, for storing a hash table and

created facets. Each facet occupies O(d) storage size, while a hash table in almost any

case has a constant size C, not depending on n and d. Therefore, the use of general

memory is of the order O(N(n, d) · d+C). Facets, once they have been created, are put

into a secondary store, thus considerably reducing the storage cost.

Figure 2.5 illustrates its application by exhibiting zonoid regions for a small data set

of five points of the dimension three and for several values of α. Each zonoid region

is depicted in three directions (by revolving it on a vertical axis). The data points are

shown as little pyramids. (Note that these 3d-pictures employ a perspective view.)

The algorithm can be downloaded as an R package. It has been implemented on a

standard PC. Table 2.1 exhibits, for different choices of d and n, average values of total

time (in seconds), number of facets, and time per facet. Note that for all calculations

the same α = 0.317 was taken. As the number of facets depends on the data, the

efficiency of the algorithm may be judged by its computation time per facet. Table 2.1

gives an idea of how the time for computing one facet grows with d and n. It appears

that the “time per facet” increases polynomially with d; moreover, the increase is close

to being linear. Concerning n, a tendency towards saturation at some constant value is

indicated. The given results also suggest that the growth in the “number of facets” is

polynomial as well. Hence we can suspect that the aggregate complexity is polynomial.

These considerations are also confirmed by the genelized algorithm (cf. Section 3.4.2).

Much computational load can be spared when we simultaneously calculate zonoid regions

for several α that are sufficiently close to each other. If [n · α1] = . . . = [n · αk] holds,

complete facets have to be computed for α1 only, while for α2, . . . , αk all facets are

parallel to them; so, only their distances from the origin have to be calculated.

The algorithm as it stands generates the facets one after the other in a deterministic way.

It may be modified in order to gradually cover certain specified parts of the zonoid region

Chapter 2. Computing Zonoid Regions of Dimension d > 2 27

Figure 2.5: Zonoid regions of five points of the dimension three.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 28

d n time per facet number of facets total time [sec]

3 10 0.002437 106 0.259
3 15 0.003022 241 0.722
3 20 0.003474 476 1.653
4 10 0.003142 257 0.809
4 15 0.004444 948 4.216
4 20 0.005163 2840 14.667
5 10 0.003714 377 1.403
5 15 0.006250 2556 15.980
5 20 0.007257 13082 95.133
6 10 0.004083 377 1.542
6 15 0.008112 5005 40.600
6 20 0.009385 38177 356.648

Table 2.1: First computational results of the zonoid regions algorithm.

that are of special interest. For instance, all facets belonging to the lower boundary may

be constructed without generating the remaining facets of the zonoid region.

Moreover, the structure of the algorithm lends itself well to being parallelized on a

high-performance cluster system.

To speed up the procedure, our exact algorithm can also be modified by imposing heuris-

tic rules on the choice of adjacent facets. For instance, as a heuristic rule we may prefer

redundant facets to non-redundant ones, since a redundant facet borders on more other

facets and, thus, can be regarded as a facet that determines the zonoid region “more

strictly” than others do. In any case, the exact algorithm serves as a benchmark proce-

dure to be compared with any heuristic procedure, regarding precision as well as speed.

2.9 The algorithm

Input

d (dimension of the data space, d ≥ 3)

n (number of data points, n > d)

cloud (data x1, . . . ,xn ∈ Rd)

α (depth parameter)

Output

zonoid region (all facets of zonoid region, with coordinates of their vertices)

Chapter 2. Computing Zonoid Regions of Dimension d > 2 29

Steps of the Algorithm

A. Initialization:

a. Read the input.

b. Calculate x = 1
n

∑n
i=1 xi .

c. Substitute xi − x for xi , i = 1, . . . , n .

B. Determining a first facet:

a. Choose from cloud a subset d set that contains d data points.

b. Calculate, to the hyperplane through these d points, a normal vector r.

c. Substitute r for p and consider the permutation πp.

d. If d set = {xπ(k), . . . , xπ(k+d−1)} satisfies (2.15), d set defines the first facet

ffacet. Otherwise, go to B.a.

e. Calculate a vertex of ffacet from (2.9) and the constant of the hyperplane

equation.

f. Place ffacet ↪→ queue.

g. If condition (2.16) is met, generate dualffacet, which is parallel to ffacet and

based on pinv = −p. Place dualffacet ↪→ queue.

h. Calculate the hash code of ffacet and place it ↪→ hash table.

C. Determining all facets:

a. Take curr facet ←↩ front of the queue.

b. Create neighboring facets based on each of the points curr point that define

curr facet.

I. Create ridges by removing curr point.

i. If k < n − [nα] in (2.15), obtain lower ridge by removing curr point

from the lower part of πp.

ii. If k + d − 1 > n − [nα] in (2.15), obtain higher ridge by removing

curr point from the higher part of πp.

II. Choose a vector z that is orthogonal to the found ridge and linearly

independent of p.

A. Given a normal vector r to curr facet, z is calculated by exchanging

one equation in the linear system used for calculating r.

B. p and z define the basis B2 of a plane.

III. If lower ridge has been created:

Chapter 2. Computing Zonoid Regions of Dimension d > 2 30

A. Rotate p in the plane that is generated by basis B2. In doing this,

start from r in such direction that the index of the point being re-

moved decreases.

B. Stop if the first equation of (2.15) is met. Then, new point has been

found.

C. Substitute current facet by lower new facet, and exchange new point

with curr point the set of points defining the facet.

III’. If higher ridge has been created:

i. Rotate p in the plane generated by basis B2. In doing this, start

from r in such direction that the index of the point being removed

increases.

ii. Stop if the first equation of (2.15) is met. Then, new point has been

found.

iii. Substitute current facet by higher new facet, and exchange new point

with curr point.

IV. Calculate the hash codes of lower new facet and higher new facet. Check

in hash table whether these facets are new. If not, go to C.a.

V. For each of the created facets, calculate the vertices and the facet’s equa-

tion by (2.9). Place the created facets ↪→ queue.

V’. If condition (2.16) is met, generate a parallel facet based on pinv = −p.

Place the facet ↪→ queue, too.

VI. Place hash codes ↪→ hash table.

c. Shift curr facet by x and transfer it from queue to zonoid region.

d. If queue is not empty, go to C.a. Otherwise, stop: Then, zonoid region con-

tains all facets of the zonoid region.

Some details of the algorithm:

1. Given a hyperplane through d points, a normal vector r is obtained as follows: Let

A be the matrix that contains the given d vectors minus the first vector as rows

and solve the linear system A · r = b.

2. The hash code is calculated by creating a bit row from d sorted integer numbers

that correspond to the labels of main elements of the d points defining the facet.

3. The neighbors of the current vertex are found as follows:

(a) Create a bundle of vectors that connect the current main point and all other

points from cloud.

Chapter 2. Computing Zonoid Regions of Dimension d > 2 31

(b) Reverse all vectors in the bundle that correspond to points having lower rank

than n− [nα] in the permutation.

(c) For each vector in the bundle,

i. Specify a linear program LPj (2.12) for the current vector,

ii. Solve the specified linear program by the dual simplex method.

iii. If the objective is minimized with value 0, go to the next step. Otherwise,

go to 3(c)i.

iv. The point from cloud that corresponds to this vector is the main point

of adjacent direction cone.

v. Exchange the new main point with the current main point in the current

permutation. This yields a new neighboring vertex.

Chapter 3

Weighted-Mean Trimmed

Regions and Distortion Risks

Trimmed regions are a powerful tool of multivariate data analysis. They describe a

probability distribution in Euclidean d-space regarding location, dispersion, and shape,

and they order multivariate data with respect to their centrality. Dyckerhoff and Mosler

(2011) have introduced the class of weighted-mean trimmed regions, which possess at-

tractive properties regarding continuity, subadditivity, and monotonicity.

In this chapter we present an exact algorithm to compute the weighted-mean trimmed

regions of a given data cloud in arbitrary dimension d. These trimmed regions are

convex polytopes in Rd. To calculate them, the algorithm builds on methods from

computational geometry. We employ a special characterization of a region’s facets, and

extract information about the adjacency of the facets from the data. A key problem

consists in ordering the facets. It is solved by the introduction of a tree-based order,

by which the whole surface can be traversed efficiently with the minimal number of

computations. We decribe the algorithm and its implementation in C++ and R package

WMTregions.

3.1 Motivation

Given d-variate data x1,x2, . . . ,xn, an α-trimmed region Dα(x1,x2, . . . ,xn) is a convex

compact set in Rd that depends on the data in an affine equivariant way, i.e., for every

matrix A ∈ Rm×d and every b ∈ Rm it holds

Dα(Ax1 + b, . . . ,Axn + b) = ADα(x1, . . . ,xn) + b .

33

Chapter 3. WM Regions and Distortion Risks 34

The parameter α varies in an interval such that the family (Dα(x1,x2, . . . ,xn))α is

nested decreasing in α, i.e., α < β implies Dβ(x1, . . . ,xn) ⊂ Dα(x1, . . . ,xn). The

smallest region is regarded as a particular median of the data.

Several special notions of trimmed regions have been introduced in the literature, among

them the Mahalanobis regions, the halfspace regions, and the zonoid regions; for re-

cent surveys, see Serfling (2006), Cascos (2009). Applications include multivariate data

analysis (Liu et al., 1999), classification (Mosler and Hoberg, 2006), tests for multivari-

ate location and scale (Dyckerhoff, 2002), risk measurement (Cascos and Molchanov,

2007), and many others. The various notions of trimmed regions differ in properties

like continuity, robustness, and sensitivity regarding the data. Depending on the type

of application different properties are relevant. E.g., Mahalanobis regions are ellipses

around the mean of the data and based on their covariance matrix; by this they can

neither reflect a possible asymmetry of the distribution nor characterize it in a unique

way. Both halfspace regions and zonoid regions reflect asymmetries and characterize the

distribution. Halfspace regions are more robust against outliers than zonoid regions; if

robustness is an issue, the latter need some preprocessing of the data.

Dyckerhoff and Mosler (2011) have introduced the class of weighted-mean trimmed re-

gions, which possess additional attractive properties and include the zonoid regions as

a special case. Weighted-mean trimmed regions are continuous in the data as well as in

the parameter, which means that both the function (x1, . . . ,xn) 7→ Dα(x1, . . . ,xn) and

the function α 7→ Dα(x1, . . . ,xn) are continuous in terms of Hausdorff convergence of

sets. Moreover, weighted-mean trimmed regions are subadditive and monotone, which

properties have a substantial interpretation in terms of d-variate risk and allow the con-

struction of set-valued risk measures that are coherent (Cascos and Molchanov, 2007).

To be useful in data applications, a notion of trimmed regions must be computable.

Bivariate trimmed regions of any type can be calculated by constructing a circular

sequence, like in Dyckerhoff (2000) and Cascos (2007), but only a few procedures are

known in dimension d > 2. Mahalanobis regions are easily determined in any dimension

d, as they only employ the mean and the dispersion matrix of the data. Mosler et al.

(2009) develop an efficient geometric algorithm for zonoid regions in any dimension, and

Hallin et al. (2010) provide a parametric linear program for calculating halfspace regions.

In this chapter we present an exact algorithm to compute the weighted-mean trimmed

regions of a given data cloud in arbitrary dimension d. These trimmed regions are convex

polytopes in Rd. To calculate them, the algorithm builds on methods from combinatorial

and computational geometry. A region’s facet is characterized by d − 1 pairs of data

points. Based on them the normal (support vector) of the facet is determined and by

Chapter 3. WM Regions and Distortion Risks 35

properly rotating the support vector an adjacent facet is found. A key problem consists

in ordering the facets. It is solved by the introduction of a tree-based order.

Overview of the chapter: Section 3.2 provides a brief introduction into the notion of

weighted-mean (WM) trimmed regions. The main results of the chapter are contained

in Section 3.3, which presents the basic geometrical ideas of the algorithm, in particular

the construction of a facet on the basis of d − 1 data point differences and the tran-

sition to a neighboring facet by rotating the support vector and exchanging the basis.

Section 3.4 provides a formal description of the algorithm with the analysis of its com-

plexity. Section 3.5 delineates the R package and the program realization in C++, while

Section 3.7 provides conclusions and a discussion of perspectives. The last Section 3.8

proposes heuristics for speeding up the algorithm.

3.2 Weighted-mean trimming

This section reviews the general notion of weighted-mean trimmed regions and two of

its special cases, the zonoid regions and a modified version of the expected convex hull

(ECH) regions - the ECH∗ regions.

3.2.1 Definition and principal properties

Weighted-mean trimmed regions are convex bodies in Rd. Recall that a convex body

K ⊂ Rd is uniquely determined by its support function hK (see, e.g., Rockafellar (1997)),

hK(p) = max
{
p′x |x ∈ K

}
, p ∈ Sd−1,

where Sd−1 denotes the unit sphere in Rd.

To define the weighted-mean α-trimmed region of a given data cloud x1,x2, . . . , xn,

we construct its support function as follows: For p ∈ Sd−1, consider the subspace

{λp|λ ∈ R}. By projecting the data on this subspace a linear ordering is obtained,

p′xπp(1) ≤ p′xπp(2) ≤ · · · ≤ p′xπp(n) , (3.1)

and, by this, a permutation πp of the indices 1, 2, . . . , n. Note that, if no equalities

arise in (3.1), the permutation πp is unique, otherwise a class Πp of several permuta-

tions is generated. The set of directions p at which πp is not unique will be denoted

H(x1, . . . ,xn),

H(x1, . . . ,xn) =
{

p ∈ Sd−1 | there are i 6= j such that p′xi = p′xj

}
.

Chapter 3. WM Regions and Distortion Risks 36

Consider weights wj,α for j ∈ {1, 2, . . . , n} and α ∈ [0, 1] that satisfy the following

restrictions (i) to (iii):

(i)
∑n

j=1wj,α = 1, wj,α ≥ 0 for all j and α ,

(ii) wj,α increases in j for all α ,

(iii) if α < β then
k∑
j=1

wj,α ≤
k∑
j=1

wj,β , k = 1, . . . , n . (3.2)

Then, as it has been shown in Dyckerhoff and Mosler (2011), the function hDα(x1,...,xn),

hDα(x1,...,xn)(p) =
n∑
j=1

wj,αp′xπp(j) , p ∈ Sd−1 (3.3)

is the support function of a convex body Dα = Dα(x1, . . . ,xn), and Dα ⊂ Dβ holds

whenever α > β.

Now we are ready to give the general definition of a family of weighted-mean trimmed

regions.

Definition 3.1. (Dyckerhoff and Mosler) Given weights w1,α, . . . wn,α that satisfy the

restrictions (i) to (iii), the convex body Dα = Dα(x1, . . . ,xn) having support function

(3.3) is named the weighted-mean α-trimmed region of x1, . . . ,xn , α ∈ [0, 1].

The next proposition explains the name by stating that a weighted-mean trimmed region

is the convex hull of weighted means of the data. Further it describes the region’s extreme

points.

Proposition 3.2. It holds

Dα(x1, . . . ,xn) = conv

n∑
j=1

wj,αxπ(j)

∣∣∣π permutation of {1, . . . , n}

 , (3.4)

and the set of extreme points of Dα is given by

Ext
(
Dα(x1, . . . ,xn)

)
=

n∑
j=1

wj,αxπp(j)

∣∣∣p ∈ Sd−1 \H(x1, . . . ,xn)

 . (3.5)

Due to their attractive analytical properties, WM regions are useful statistical tools.

Besides being continuous in the data and in α, they are subadditive, that is,

Dα(x1 + y1, . . . ,xn + yn) ⊂ Dα(x1, . . . ,xn)⊕Dα(y1, . . . ,yn) ,

Chapter 3. WM Regions and Distortion Risks 37

and monotone: If xi ≤ yi holds for all i (in the componentwise ordering of Rd), then

Dα(y1, . . . ,yn) ⊂ Dα(x1, . . . ,xn)⊕ Rd+ , and

Dα(x1, . . . ,xn) ⊂ Dα(y1, . . . ,yn)⊕ Rd− ,

where ⊕ signifies the Minkowski sum of sets. For proofs and more results, like projection

properties, the reader is again referred to Dyckerhoff and Mosler (2011).

3.2.2 Special notions of weighted-mean trimming

The general notion of WM regions provides a flexible approach to the trimming of

multivariate data. Depending on the choice of the weights wj,α different families of

trimmed regions are obtained. They include the zonoid regions (Koshevoy and Mosler,

1997), the ECH and ECH∗ regions (Cascos, 2007), the geometrically trimmed regions,

and many others. For an illustration in dimension d = 3 see Figure 3.1. Here the left

panel shows zonoid regions for different parameters α, while the right one consists of

ECH* regions for the same data and α. Note from Figure 3.1 that the surface of a

zonoid region appears to have less facets than an ECH∗ region.

Historically, the first type of WM regions was zonoid trimmed regions ZDα(x1, . . . ,xn)

for 0 < α ≤ 1 proposed by Koshevoy and Mosler (1997),

ZDα(x1, . . . ,xn) =

{
n∑
i=1

λixi | 0 ≤ λi ≤
1

nα
,

n∑
i=1

λi = 1

}
.

The corresponding support function is

hZDα(p) =
n∑
j=1

wj,αp′xπp(j) ,

with weights

wj,α =

0 if j < n− bnαc ,

nα−bnαc
nα if j = n− bnαc ,
1
nα if j > n− bnαc .

(3.6)

Many properties of the zonoid regions are developed in Mosler (2002); particularly im-

portant is that they contain full information about the data.

Chapter 3. WM Regions and Distortion Risks 38

Another important notion of WM regions is that of ECH* regions (Cascos, 2007). Their

support function

hECH∗α(p) =

n∑
j=1

wj,α p′xπp(j)

employs the weights

wj,α =
j1/α − (j − 1)1/α

n1/α
. (3.7)

For a detailed discussion of these and other special weighted-mean trimmed regions,

like ECH and geometrically trimmed regions, the reader is referred to Dyckerhoff and

Mosler (2011).

3.3 Geometry of the algorithm

In this section we present the basic ideas of the algorithm. Specifically, it relies on

notions from convex geometry.

3.3.1 Trimmed region as a convex polytope

Consider a data cloud, which is a finite set of data points, {x1,x2, . . . ,xn} ⊂ Rd, and

assume that the points are all different and in general position (i.e., no more than d of

them lie on the same hyperplane).

For given α, the α-trimmed region Dα = Dα(x1,x2, . . . ,xn) is a convex polytope in Rd

that is bounded and closed. Such a polytope is the nonempty and bounded intersection

of finitely many closed halfspaces. Thus the polytope can be completely described by

its bounding hyperplanes. The intersection of a bounding hyperplane with the polytope

is named a facet if it has the affine dimension d− 1. Similarly, it is named a ridge if it

has the dimension d− 2. In dimension d = 3 a facet is a face, and a ridge is an edge.

In the sequel, we calculate the weighted-mean trimmed regions by their facets. Two

computational tasks will have to be repeatedly performed:

1. Calculate a facet,

2. find an adjacent facet.

A ridge is the intersection of two facets. Therefore, investigating the ridges is a way to

extract information about the adjacency of facets. Each ridge of a given facet provides

an indicator whether another facet is adjacent or not. A bounding hyperplane is fully

Chapter 3. WM Regions and Distortion Risks 39

Figure 3.1: Examples of WM regions in R3. Representation of the zonoid (left) and
ECH* (right) regions for the same data and depths.

described by its (outwards pointing) normal and one additional point, in particular one

of its vertices. Hence, for every facet we determine its normal and a vertex as well as

the adjacency indicator of each of its ridges. By doing this successively for all facets, a

complete representation of the trimmed region is obtained.

Mosler, Lange, and Bazovkin (2009) develop an exact algorithm for calculating zonoid

Chapter 3. WM Regions and Distortion Risks 40

Figure 3.2: Characterizing the normal p of a facet (zonoid region, d = 3, n = 10, α =
0.25): Data points and their projections; p-ordered indices; weights; active pairs of

indices.

trimmed regions. They demonstrate that, in the case of zonoid regions, the normal of a

facet is characterized by d points of the data cloud.

Regarding a general WM region, we will firstly characterize its facets. Let F be a given

facet of Dα(x1, . . . ,xn) and p denote its normal. Then F has at least d vertices, which

all are supported by p. Due to (3.3) and (3.4) each vertex v has the form

v =
n∑
j=1

wj,αxπp(j) with some πp ∈ Πp . (3.8)

Consequently, not all p′xi can be different: It holds p ∈ H(x1, . . . ,xn), and Πp has at

least d elements. Now let us consider the p-ordered series of indices

πp(1), πp(2), . . . , πp(n) .

In the sequel we will mention those pairs of indices (πp(j), πp(k)) as active that satisfy

the equation p′xπp(k) = p′xπp(j) plus a restriction on their weights wj and wk, which will

be specified below. The equation means that the difference xπp(k)− xπp(j) is orthogonal

to p,

xπp(k) − xπp(j)⊥p . (3.9)

At a given p, all indices that belong to an active pair will be mentioned as active indices,

all others as passive indices.

Chapter 3. WM Regions and Distortion Risks 41

From now on, we will distinguish data points and data vectors. By a data vector we

mean the difference of two data points. To determine p, d− 1 data vectors are needed.

Each of them is based on an active pair of indices and thus satisfies the orthogonality

relation (3.9). As, by assumption, the data are in general position, any such d− 1 data

vectors are linearly independent. They will be mentioned as a basis of F and denoted by

VF . Note that the basis of a facet is not unique: To form a basis, out of all active pairs

of indices any d − 1 pairs that yield linearly independent data vectors may be chosen.

To summarize:

Theorem 3.3. (Basis of a facet) The normal of a facet F is orthogonal to exactly d−1

linearly independent data vectors, which form a basis of F . The facet is characterized

by a basis and one of its vertices.

Next we develop the two essential steps of calculating a facet and finding an adjacent

facet in detail.

Task 1: Calculating a facet In our algorithm we have to construct a basis for each

facet of the polytope. Let p be the normal of a given facet F , choose some πp ∈ Πp,

and consider the series of p-ordered indices πp(1), πp(2), . . . , πp(n) . This series contains

d− 1 active pairs of indices, πp(j), πp(k), that define a basis VF .

The special case of zonoid regions (having weights (3.6)) appears to be particularly

simple: A facet is identified by exactly d data points (carrying serially p-ordered indices),

which yield d−1 linearly independent difference vectors that are orthogonal to p (Mosler

et al., 2009). As an example, Figure 3.2 exhibits ten points in R3 and their projections

to the line generated by p. The lower panel contains the p-ordered series of indices and

the weights (3.6) for α = 0.25. Here, three indices (9, 8, and 4) are active, as well as

three index pairs ((9, 8), (9, 4), and (8, 4)). A basis of the facet is given, e.g., by the data

vectors x8−x9 and x4−x8. Note that for these weights (at α = 0.25) and any direction

p the indices πp(7), πp(8), and πp(9) become the active ones.

Other types of weighted-mean trimmed regions employ less simple weights. With them

the number of active indices involved in the identification of a facet F may be larger

than d. E.g., Figure 3.3 illustrates the characterization of a facet of an ECH∗ region,

with weights (3.7) and α = 0.25. It shows another example of ten points in R3 and their

projections, given some p. In this example, four indices (7, 6, 4, and 2), and two index

pairs ((7, 6) and (4, 2)) are active, and a basis consists of x6 − x9 and x2 − x4, being

unique up to sign.

Chapter 3. WM Regions and Distortion Risks 42

Figure 3.3: Characterizing the normal p of a facet (ECH∗ region, d = 3, n = 10, α =
0.25): Data points and their projections; p-ordered indices; weights; active pairs of

indices.

In general, we consider the following disjoint blocks Al of indices, l = 1, . . . , L,

Al = {πp(i) | i ∈ {al, al + 1, . . . , al + nl − 1}, p′xπp(i−1) = p′xπp(i) for i > al} ,

where al−1 < al holds (a0 = 0), and define: A pair of indices is called active if a block

Al exists that contains both of them. In particular, each block contains at least two

elements, nl ≥ 2, and it holds wal,α < wal+nl−1,α, which is the restriction on weights

announced above. Moreover, Al ∩ Am = ∅ if l 6= m, and

VF =
L⋃
l=1

{xπp(i) − xπp(i+1) |πp(i), πp(i+ 1) ∈ Al} .

Note that in the case of zonoid regions only one block of active indices arises; it holds

L = 1.

The remaining indices, which are not in
⋃L
`=1Al, are the passive ones. Among them we

distinguish disjoint blocks that have equal weights,

Bk = {πp(i) | i ∈ {bk, bk + 1, . . . , bk +mk − 1}, wi−1,α = wi,α for i > bk} ,

k = 1, 2, . . . ,K, while mk ≥ 1, bk−1 < bk with b0 = 0, and wbk−1,α < wbk,α.

Thus πp(1), πp(2), . . . , πp(n) divides into a series SF of blocks Al and Bk of active and

passive indices, respectively. Observe that these blocks may occur in any order, which

Chapter 3. WM Regions and Distortion Risks 43

Figure 3.4: Series of blocks of active and passive indices; weights as indicated.

is illustrated in Figure 3.4.

Task 2: Finding an adjacent facet To identify adjacent facets we start from a given

facet F , which has support vector p and which from now on will be called the current

facet. Each ridge of F offers a way of ”jumping” to a neighboring facet. Therefore we

investigate the ridges of the current facet F and, consequently, its adjacent facets. Each

element of the basis VF may be regarded as a reduction of one degree of freedom of

the support vector p. To determine p as the normal of the current facet F , we have to

reduce d − 1 degrees of freedom and calculate the uniquely determined support vector

p that is orthogonal to d − 1 linearly independent data vectors (differences of vectors

from the original data cloud). A ridge of the current facet is supported by vectors that

result from adding one degree of freedom to the given support vector p. The degree of

freedom is added by leaving out one of the d−1 data vectors from the basis VF , or, more

generally, by replacing some k data vectors in VF with some k − 1 ones, while keeping

linear independence within the basis.

Removing one element from the basis VF corresponds to splitting one of the active blocks

in SF , say Al, into A1
l and A2

l . By this, a modified series of blocks, SF∗, is obtained.

Observe that, if A1
l (or A2

l) is a singleton, its element becomes a passive index in SF∗.

Now, the removed element of the basis has to be substituted by another data vector.

For this, any pair (i∗, j∗) of indices that belong to two neighboring blocks of SF∗ can be

chosen and the corresponding data vector xi∗ −xj∗ be added to the basis. (However, no

Chapter 3. WM Regions and Distortion Risks 44

Figure 3.5: Rotating p in a plane of dimension two in Rd.

pair from A1
l ×A2

l must be selected.) Then the new basis defines a facet that is adjacent

to the current facet F .

This step may be visualized as follows (see Figure 3.5 for d = 3): Starting at p, the

support vector is rotated in a plane (of dimension two in Rd) until another data vector

enters the basis VF , i.e., until another data vector becomes orthogonal to p. Let Ep
denote the set of vertices of the polytope corresponding to the support vector p. We

turn p until it stops at the position p̃ where p̃′xi∗ = p̃′xj∗ for some i∗ and j∗, i.e.,

(xi∗ − xj∗)⊥p̃. Then, if Ep̃ ⊃ Ep, this means that p̃ is a normal to some facet F̃ which

is a neighbor to the current facet. Otherwise, p is turned further until the condition is

met. Obviously, to meet the condition, the indices i∗ and j∗ must be in different blocks

of SF∗. On the other hand, indices can continuously interchange places only with their

neighbors, that is, xi∗ and xj∗ must be in blocks that neighbor each other.

So far we have exchanged a single basis vector against another one. However, the

elements within each active block at p can be arbitrarily rearranged, and each active

index used in the exchange step just represents a class of equivalent active indices.

Therefore more than one, say k, active pairs living on A1
l × A2

l may be exchanged

simultaneously.

As a result of the basis exchange we have found a single adjacent facet. Our next task is

to identify all facets that are adjacent to the current facet. For this, it is not necessary to

enumerate all pairs of indices from neighboring blocks of SF∗. Note that the elements of

each active block Al are equivalent in the p-order, i.e., p′xi∗ = p′xj∗ for all i∗, j∗ ∈ Al.
Hence, we may permute indices within the active blocks in an arbitrary way, which

Chapter 3. WM Regions and Distortion Risks 45

Figure 3.6: The series SF∗ of blocks; with possible critical pairs.

means employing some other permutation from Πp in place of the given permutation

πp. Therefore, in generating all possible basis exchanges, we need not consider all active

indices for pairing, but may restrict to a representative index of each active block, say

rl ∈ Al, l = 1, . . . , L. However, in the passive blocks, all indices have to be taken into

account.

A pair (i∗, j∗) from two neighboring blocks in SF∗ is called a critical pair if it consists of

indices that are either passive or representative active indices. More formally, we may

write the series SF∗ of active and passive blocks as

SF∗ = (C1, C2, . . . , CL+K)

and define

C̃m =

{
{rl} if Cm = Al for some l,

Bk if Cm = Bk for some k.

Then the set of critical pairs (that have to be checked for finding all adjacent facets) is

given by
L+M−1⋃
m=1

C̃m × C̃m+1 . (3.10)

The two computational tasks, calculating a facet and finding a neighboring facet, are

performed until all facets of the polytope have been visited and computed. As a result

of the algorithm, the WM region is completely described by its facets. Alternatively

and in addition, we may be interested in calculating vertices of the polytope. These are

easily determined by the following procedure.

Chapter 3. WM Regions and Distortion Risks 46

Proposition 3.4. (Calculating vertices) Consider a facet F having normal p. Each

vertex of F exactly corresponds to a permutation of (πp(1), . . . πp(n)) that is restricted

to permutations within the Al.

Corollary 3.5. The minimum possible number of vertices of a facet is d (e.g., for zonoid

regions). The maximum possible number of vertices of a facet is d! .

E.g., in the case of ECH∗-regions, the number of vertices of a facet varies from d to d! .

3.3.2 Spanning tree order

Based on the adjacency information obtained by the above approach we are able to

calculate the facets in a sequential order. For this sequence, we use the spanning tree

order (STO) discussed in Mosler, Lange, and Bazovkin (2009). The STO provides a

complete ordering of all facets according to which they are generated in the algorithm.

The general idea is:

1. Represent all facets adjacency information by a tree,

2. organize an efficient procedure to traverse the tree.

In the algorithm we apply a breadth-first search like that described in Knuth (1997).

Using the STO we generate each facet only once, which is an efficient procedure.

Moreover, as the STO is based on the neighboring relation among facets, we can restrict

the calculation of facets to some connected part of the trimmed region’s surface, e.g.

the part having support vector p ≥ 0. This proves to be useful in certain applications

like multivariate risk measurement.

Note that we calculate the trimmed region by sequentially generating its facets, but not

its vertices. In dimension d = 2 it is also possible to determine the region by enumerating

its vertices; this is done by means of a so called circular sequence (Edelsbrunner, 1987).

It is easy to see that the proposed procedure applies to any choice of a weighting function

satisfying the above WM restrictions (i) to (iii). Thus the algorithm is able to calculate

any weighted-mean trimmed region.

Finally, we would like to turn the reader’s attention again to the the adjacency of the

sequentially generated vertices. That is a practical advantage because we can restrict the

calculation to some specified part of the WM region which we might only be interested

in. In this respect our procedure reminds of the so-called ”gift-wrapping” approach,

Chapter 3. WM Regions and Distortion Risks 47

Figure 3.7: The sample scheme of the procedure.

which is used to solve common tasks of constructing convex polytopes, in particular

calculating the convex hull of a given set, where algorithms for higher dimensions have

been proposed by Swart (1985) and others.

However, the structure of a WM region is much more complex, since it aggregates not

only local information, as it is the case in the construction of a convex hull, but depends

on information on the whole data cloud, including all inner points. If 0 ≤ α ≤ 1
n the

WM region turns into a convex hull of data points, which is the trivial case in our task.

For this reason our algorithm differs fundamentally from a classical ”gift-wrapping”

procedure. Other than Swart’s and similar approaches we find a facet of the WM region

only once (in contrast to a repeated finding of facets and removing the new one after

discovering the duplication), that is, we make no redundant calculations and form a

unique chain of facets according to the STO. Furthermore, convex hull algorithms work

with a given set of points, while in our problem there is no such set in an explicit form,

and facets are constructed without having information on their vertices. Besides this, it

was shown above that a facet of a WM region is, in most cases, no (d− 1)-dimensional

simplex. Actually, the number of vertices can blow up to d!, which represents a difficult

case for a convex hull algorithm.

Chapter 3. WM Regions and Distortion Risks 48

3.4 The algorithm

3.4.1 Interface and steps

In this subsection we give a formal scheme of the algorithm and an interface to it.

Input

d (dimension of the data space, d ≥ 2);

n (number of data points, n > d);

cloud (data x1, . . . ,xn ∈ Rd);

α (depth parameter);

wα (weight vector; alternatively: name of special type of WM regions).

Output

• trimmed region (all facets of the trimmed region, with coordinates of their

vertices);

• Visualization.

Steps of the Algorithm

A. Initialization: Read the input.

B. Determine a first facet:

a. From cloud, form a set vec defining set of d−1 linearly independent data

vectors (= basis).

b. Calculate, to the hyperplane through vec defining set, a normal vector r.

c. Substitute r for p and choose a permutation πp ∈ Πp. Determine the series

of active blocks {Al}l=1...L in this permutation.

d. {Al}l=1...L defines vec defining set and, hence, the first facet ffacet.

e. Place ffacet ↪→ the head of queue.

Having the initial facet, we can start a sequential calculation of all others.

C. Determine all facets:

Chapter 3. WM Regions and Distortion Risks 49

a. Take curr facet ←↩ front of the queue.

b. Create neighboring facets of curr facet.

I. Create all ridges by adding a degree of freedom to p (reducing cardinality

of the basis vec defining set by one).

i. Take the next Al and create all possible splittings of it into two sub-

sets:
〈
A1
l ,A2

l

〉
. Replace {Al} by A1

l and A2
l . If either A1

l or A2
l is a

singleton, remove it from the active blocks. A set partial facets(l)

is obtained.

ii. Drop off all elements of partial facets(l) that are no active blocks.

A set ridges(l) is obtained.

iii. Add partial facets(l) to the set ridges. If an unprocessed Al is

left, go to C.(b.)I.i.

Now we have found all ridges and are ready to do ”jumps” to neighboring facets. Note

that the procedure jumps only to new facets. In doing this, we process each facet twice:

first, we only preprocess it by marking its ridges; second, we do a normal calculation

of the ”jumps”.

II. For the next ridge in ridges do the following:

i. If curr facet is not preprocessed, calculate a hash code of the

ridge and mark it ↪→ hash table. Then go to C.(b.)II.

ii. Check in hash table, whether the ridge is blocked. If yes, go to C.(b.)II.

iii. Build the maximum number of linearly independent data vectors that

are based on active pairs. Put the vectors as rows into a matrix A.

There will be d− 2 rows.

iv. Given a normal vector r to curr facet, put it as an additional row

into A. Put any non-zero vector that is linearly independent of the

d− 1 previously chosen rows as a last row into A. Let b be a vector

that consists of d− 1 zeros and a last non-zero entry.

v. Solve the linear equation Az = b. Its solution z and r span a plane

B2 that is orthogonal to the ridge.

vi. Calculate critical pairs according to (3.10).

vii. Rotate p in the plane B2. In doing so, start at p = r and move p in a

way that the new ordering of points in the permutation corresponds

to the previous splitting of an active block.

viii. Stop if p becomes orthogonal to some vector built on a critical pair

of indices. Take this vector as new vector.

The neighboring facet is discovered. Now we have to reconstruct its combinatorial

stucture.

Chapter 3. WM Regions and Distortion Risks 50

ix. Add new vector to vec defining set. new facet is obtained. The

current position of p is a normal r to new facet.

If new vector is built on indices from an active block Aj and a

neighboring passive block, then augment Aj with the passive index.

If new vector is built on indices from two active blocks, Aj and

Aj+1, then merge these two blocks.

If new vector is built on two passive indices, then a new block A′j
is created having them as its two elements.

x. Place new facet ↪→ the head of queue.

We have to mark the ridges of the facet immediately, thus preventing another ”jump”

to the facet. The immediate processing is enabled by putting the new facet to the head

of the queue.

III. If curr facet is not preprocessed, label it as preprocessed and place

↪→ queue. Then, go to C.a.

IV. For curr facet, calculate the vertices and its absolute distance from the

origin by (3.8).

V. Shift curr facet by x and transfer it to trimmed region.

c. If queue is not empty, go to C.a. Otherwise, stop: Then, trimmed region

contains all facets of the trimmed region.

We would also direct a reader’s attention to three special features of the algorithm:

1. Using a ”double-hash”: The ridges are hashed using a ”double-hash” table. That

is, a ridge is blocked if it has been marked twice.

2. Calculating the hash code: The hash code is calculated by creating a bit row from

integer numbers describing {Al}l=1...L and one number describing the absolute position

of a ridge (to distinguish parallel ridges).

3. Determining all adjacent facets: For optimizing the complexity at this stage the

mutual information concerning all ridges can be used. The details of such a heuristic

are described in Section 3.8.

3.4.2 Complexity of the algorithm

Due to the mechanism of the ”double-hash” the algorithm has as many loops as the WM

region has facets. Obviously, this is the minimum number of facet generating loops in

this sort of algorithms.

Chapter 3. WM Regions and Distortion Risks 51

At each facet F we have to calculate the normal of the facet and its distance from the

origin. Further we have to determine all neighboring facets. This is done by solving

linear equations and calculating inner products only. We have shown above that the

complexity of this algorithmic loop amounts to O(d2 ·R(F)), where R(F) is the number

of ridges of the facet. R(F) can vary between d and 2d−1, depending on the type of the

WM region and on α.

To obtain a rough conservative estimate of R(F), we may proceed as follows: First, note

that R(F) is bounded by R̄ =
∏L
l=1 2nl−1. Then suppose that the active blocks Al have

about equal size and that their number L, as a first approximation, is proportional to

the dimension d, say L ≈ d/c. Under these assumptions R̄ ≈ L · 2d/L−1 ≈ d/c · 2c−1,

that is, R(F) is approximately bounded by the dimension d multiplied with a constant

K = 2c−1/c that does not depend on the dimension.

Searching for all neighbors of a facet, we have to calculate n inner products, which

gives complexity O(nd). Hence, the complexity of one facet generating loop is described

by O((d2 + nd) · R̄) ∼= O(d2n · K), since n > d. If the average number of facets is

denoted by N(n, d), the average computational complexity of the algorithm amounts to

O((d2 + nd) · R̄ ·N(n, d)) ∼= O(d2n ·K ·N(n, d)).

For a better understanding of N(n, d) we like to discuss the number of vertices V (n, d) of

the WM region. It is maximal when all weights in the weight vector are distinct. Let us

consider hyperplanes that are orthogonal to all data vectors and intersect at the origin.

Then the Rd is split by the hyperplanes into convex cones, and there will be a bijection

between the vertices of the WM region and these convex cones1. Winder (1966) has

shown that the number of such cones equals 2
∑ d−1

i=0

(
m−1
i

)
for m hyperplanes, which is

O(md). We have at most n(n−1)
2 hyperplanes (for zonoid regions this bound reduces to

O(n)) and, therefore, obtain an O(n
2d

2d
) upper bound for V (n, d). It means that V (n, d)

lies between O(nd) and O(n
2d

2d
) depending on the weight vector. In turn, we have already

seen, that each facet contains up to d! vertices, which leads to N(n, d)� V (n, d).

Regarding the hash table of created facets, each facet occupies O(d · log2 n) storage size,

while the hash table, in almost any case, has a constant size C, not depending on n

and d. Therefore, the use of general memory is of the order O(N(n, d) · d · log2 n+ C).

Facets, once they have been created, are put into a secondary store, thus considerably

lowering the storage cost.

Table 3.1 exhibits the results of a first small simulation study. It gives an idea how the

time for computing a single facet depends on d and n and how it varies with several

types of WM regions: zonoid, ECH*, ECH, and geometrically trimmed regions (for the

1Cf. direction domains in Mosler, Lange, and Bazovkin (2009).

Chapter 3. WM Regions and Distortion Risks 52

WMTD type d n Time per facet Total time [sec]

Zonoid 3 10 0.009700 0.445
Zonoid 3 15 0.013840 1.531
Zonoid 4 10 0.012474 1.609
Zonoid 4 15 0.015862 14.140
Zonoid 5 10 0.017370 2.398
Zonoid 5 15 0.022335 40.953
ECH 3 10 0.009111 0.843
ECH 3 15 0.012212 2.375
ECH 4 10 0.015255 21.891
ECH 4 15 0.019632 97.765
ECH 5 10 0.023519 117.625
ECH 5 15 0.029733 1032.75
ECH* 3 10 0.009610 0.750
ECH* 3 15 0.012218 1.617
ECH* 4 10 0.015286 22.922
ECH* 4 15 0.020011 94.070
ECH* 5 10 0.022970 139.070
ECH* 5 15 0.029660 890.68
Geometrical 3 10 0.009355 0.930
Geometrical 3 15 0.013056 1.101
Geometrical 4 10 0.015356 23.805
Geometrical 4 15 0.020157 93.406
Geometrical 5 10 0.023036 137.312
Geometrical 5 15 0.029794 1028.51

Table 3.1: Sample computational results of the WM regions algorithm.

latter two, see Dyckerhoff and Mosler (2011)). The data is distributed uniformly on a

d-dimensional cube. We focus on the time per facet (TpF) because it characterizes the

efficiency of the algorithm in a most obvious way. The total computational time amounts

to the latter multiplied by the number of facets, which is a parameter depending only on

the data. We observe that the TpF shows the following growth behavior: Approximately

linear on n and slightly convex on d, which may be seen as some low order polynomial

dependency on dimension.

3.5 The R package WMTregions

The algorithm has been programmed as an R package and named WMTregions (Bazovkin

and Mosler, 2011). It is available for downloading from Comprehensive R Archive Net-

work at http://CRAN.R-project.org/package=WMTregions. Properly, the main func-

tionality has been realized in C++ and the R part is used as (i) a thin client for the

pre-compiled routine, (ii) the user interface and (iii) for the visualization. In the next

http://CRAN.R-project.org/package=WMTregions

Chapter 3. WM Regions and Distortion Risks 53

subsection we consider it in detail. The formal description of the functions and archi-

tecture will be followed by two examples of applying the package to simulated and to

real data.

3.5.1 Technical overview

Dependencies An autonomously compiled C++ program provides a 3d-visualization

as it is shown, for instance, in Figure 3.8. The visualization is designed by means of a

cross-platform graphical specification OpenGL. In turn, in the R package we access the

OpenGL functionality by means of the rgl package (Adler and Murdoch, 2011).

The less powerful but applicable for the data of any dimension, vertices based visualizing

is realized with the help of the rggobi package (Lang et al., 2010). The latter also

uses graphical toolkit GTK+ through its R proxy package RGtk2 (Lawrence and Lang,

2010). To be able to use it you must first install GTK+ library (http://www.gtk.

org/download) on your machine. On the most systems this installation is proposed

automatically while getting RGtk2. If not, you must do it manually before using the

package. Moreover, the old versions of GTK+ and ggobi can cause problems in installing

and using RGtk2 and rggobi: If the packages fail, you must reinstall GTK+ and ggobi.

R functions The package contains functions for calculating and representing WM

regions:

• Function WMTR(fname = "Cloud.dat", fdir = getwd(), bound = 0).

Goal: Calculates the WM region.

Arguments:

– fname: the name of the data input file (see Subsection 3.5.1) in the directory

fdir.

– fdir: a path to the directory where the input and output files will be located.

The default value is the R working directory.

– bound: an option of additional outputting the lower or the upper bound-

ary of the WM region (i.e., ∂ (Dα(x1, . . . ,xn) ⊕ Rd+) ∩ Dα(x1, . . . ,xn) or

∂ (Dα(x1, . . . ,xn) ⊕ Rd−) ∩ Dα(x1, . . . ,xn), respectively). -1 corresponds to

the lower one; 1 - to the upper one; 0, the default value, makes no additional

output.

Output:

http://www.gtk.org/download
http://www.gtk.org/download

Chapter 3. WM Regions and Distortion Risks 54

– A file "TRegion.dat" in the directory fdir. The calculated WM region with

facets represented by their normals and intercepts.

– A file "TRegion vertices.dat" in the directory fdir. The calculated WM

region with facets represented by the coordinates of their vertices.

– Auxiliary files "TRegion bound.dat" and "TRegion vertices bound.dat"

with a bound of the calculated WM region.

Description: This function is the main function, which reads input data from an

input file fname and writes the result into an output file ”TRegion.dat”, both files

being located in fdir. The format of the files is described below in Subsection 3.5.1.

• Function visualWMTR(fdir = getwd()).

Goal: Visualizes the calculated WM region for the data in R3.

Arguments:

– fdir: a path to the directory where the output files of WMTR() are located.

The default value is the R working directory.

Output: Void value. The visualization of the calculated WM region and the data

cloud points in a separate window under R environment.

Description: This function realizes the 3d-visualization of the data based on the

computational results of the WMTR() function. The parameter fdir must be the

same as was used in WMTR().

• Function showWMTR(fdir = getwd()).

Goal: Exhibits the calculated WM region of any dimension by making multiple

projections of its vertices into R3.

Arguments:

– fdir: a path to the directory where the output files of WMTR() are located.

The default value is the R working directory. Must be the same fdir as in

WMTR().

Output: Void value. The rggobi visualization of the calculated WM region (repre-

sented only by its vertices) in separate windows under R environment.

Description: The function visualizes a calculated WM region as a convex polytope

by representing its vertices in rggobi (Lang et al., 2010) interactive graphics frame-

work. The visualization is a series of projections into R3. The whole interaction

toolset of the rggobi package, such as ”2d tour” or the projection pursuit, can be

used here. In comparison with visualWMTR(), showWMTR() visualizes only vertices

but, however, does it for the data of any dimension.

Chapter 3. WM Regions and Distortion Risks 55

• Function loadWMTR(fname = "TRegion.dat", fdir = getwd()).

Goal: Loads the calculated WM region of d = dim into a matrix object.

Arguments:

– fname: the name of the file that contains the calculated WM region (the

normal-intercept representation output file of WMTR()) in the directory fdir.

The default name is ”TRegion.dat”.

– fdir: a path to the directory where the file fname is located. The default

value is the R working directory.

Output:

– A matrix object containing the normal-intercept coordinates of the WM re-

gion facets as its rows.

Description: This function loads the calculated WM region of d = dim into a

matrix object in order to work with it as with a variable in R, for example, in

using the function pointinTR().

• Function pointinTR(dpoint, tregion).

Goal: Checks whether a point is in a specified trimmed region.

Arguments:

– dpoint: a vector containing the coordinates of the point to be checked.

– tregion: a matrix object containing the WM region in the normal-intercept

representation.

Output:

– Boolean value, whether dpoint is contained by tregion.

Details: tregion is normally produced by the loadWMTR() function basing on a

calculated WM region.

• Function generTRsample(fname, fdir, dim, num, alpha, trtype).

Goal: Generates sample data cloud file in a format appropriate for applying

WMTR().

Arguments:

– fname: the name of the output file.

– fdir: a path to the directory where the file fname should be located.

– dim: the dimension d of the data cloud.

Chapter 3. WM Regions and Distortion Risks 56

– num: the number of points in the data cloud.

– alpha: the depth parameter.

– trtype: the notion of the WM region to be calculated.

Output:

– A file fname in the directory fdir with a data cloud of the specified param-

eters.

Description: This function is an auxiliary one. It generates a random uniformly

distributed data cloud of any size num and any dimension dim with a format of an

input file described in Subsection 3.5.1. With the default values of its arguments it

looks as follows: generTRsample(fname = "Cloud.dat", fdir = getwd(), dim

= 3, num = 20, alpha = 0.05, trtype = "zonoid").

Input and output In this subsection we describe the format of the input and output

information, which is represented by input and output files.

1. The input file. A data cloud is read from a text file of the following format (the

sequence is fixed):

• Type of the trimmed region (zonoid, ECH, ECH*, geometrically trimmed;

given weight vector)

Format: A text value from the following set: "zonoid", "ECH", "ECH*",

"geometrical", "general". "general" is used for the case when the weights

are given manually instead of being automatically generated basing on the

WM region type and the depth parameter.

• Depth parameter

Format: A floating point number from the interval [0, . . . , 1).

• Dimension

Format: An integer number d ≥ 2.

• Number of points of the data cloud

Format: An integer number n > d.

• (If the type "general" is selected) The weight vector

Format: n non-decreasing floating point numbers matching the requirements

for the weight vector.

• Coordinates of each point

Format: n groups of d floating point numbers, each group representing the

coordinates of a point from the data cloud.

Chapter 3. WM Regions and Distortion Risks 57

The points must be in the general position.

For example, to calculate trimmed regions of a data cloud made of 7 points we

have to input the following, where the left column refers to a zonoid region with

depth parameter 0.05, and the right column to general WM region defined by the

weight vector (0.02 0.02 0.03 0.15 0.15 0.26 0.37):

zonoid

0.05

3

7

3.433465 3.67261 2.985222

0.6119484 7.996853 6.70113

6.429673 9.318805 5.684797

4.094673 3.255387 0.7768149

4.764675 7.401488 1.766797

3.571828 4.102897 2.325751

1.063743 0.7078045 8.968969

general

0.00

3

7

0.02 0.02 0.03 0.15 0.15 0.26 0.37

3.433465 3.67261 2.985222

0.6119484 7.996853 6.70113

6.429673 9.318805 5.684797

4.094673 3.255387 0.7768149

4.764675 7.401488 1.766797

3.571828 4.102897 2.325751

1.063743 0.7078045 8.968969

A sample input file with any given parameters and random by generated coordi-

nates is provided by the function generTRsample().

2. Output files.

The whole calculated WM region is represented twofold:

• "TRegion.dat".

An output file "TRegion.dat" consists of lines, each representing a facet of

the trimmed region in the normal-intercept format, namely by d+ 1 numbers

giving the equation of the hyperplane containing the facet. The first d of these

numbers are coordinates of a normal to the facet, which is directed outward

the WM region. The last number defines the intercept. For example,

0.54301 0.43048 0.72100 -13.488

corresponds to the hyperplane {x ∈ R3 : (0.54301 0.43048 0.72100) · x −
13.488 = 0}.

• "TRegion vertices.dat".

An output file "TRegion vertices.dat" consists of lines, each representing a

facet of the trimmed region by the coordinates of its vertices. The coordinates

of vertices are given in parentheses, while the vertices of a facet are again

collected in parentheses. For example, a single facet (d = 3) is given by:

Chapter 3. WM Regions and Distortion Risks 58

Figure 3.8: 3d-visualization of various types of WM regions.

((1.290;9.249;2.059;) (0.995;9.108;1.729;) (1.099;9.129;1.662;)

(1.978;9.391;1.613;) (2.030;9.416;1.671;) (1.445;9.296;2.050;)).

For some applications it makes sense to consider only the lower or upper boundary of

the WM region. This information is contained in two auxiliary files:

• "TRegion_bound.dat". The same as "TRegion.dat" but containing facets only

from the lower or upper boundary of the WM region.

• "TRegion vertices bound.dat". The same as "TRegion vertices.dat" but

containing facets only from the lower or upper boundary of the WM region.

3.6 Examples

As an illustration how the algorithm works we present a comparative example of four

different types of weighted-mean trimmed regions for the same data and depth parameter

(α = 0.221). Their visualization was done by a separately compiled C++ program and

is exhibited in Figure 3.8.

In this subsection we give two examples of how to get such results by means of the

installed package WMTregions.

Chapter 3. WM Regions and Distortion Risks 59

3.6.1 Illustration with simulated data

As a first example, we show how to use the package on a randomly generated sample

input file. Suppose we want to calculate a zonoid region of 100 data points in R3 with

depth 0.117. First, we load the package:

R> library("WMTregions")

Loading required package: rggobi

Loading required package: RGtk2

Loading required package: rgl

Then we provide an input file with the data. The simplest way here is to use an embedded

function generTRsample(). Having generated the file, we start the main procedure of

calculating the WM region:

R> generTRsample("Cloud.dat", dim = 3, num = 100, alpha = 0.117, trtype = "zonoid")

R> WMTR("Cloud.dat")

[1] "The trimmed region was successfully calculated!"

Now we have two possibilities of visualizing the results: showWMTR() or visualWMTR().

As the data has dimension d = 3, the most appropriate choice is visualWMTR():

R> visualWMTR()

You can see the 3d-picture on the left side of Figure 3.9. On a color screen, the demon-

strated facets are blue, while the ridges of the trimmed region are drawn in light green.

Small red spheres represent the data cloud points. You can rotate or zoom the picture

easily with the mouse.

Having obtained the result, we might want to check whether some point, say the origin

0′, lies inside the WM region. The corresponding check is conducted as follows:

R> tregion <- loadWMTR("TRegion.dat")

R> point2check = c(0,0,0)

R> pointinTR(point2check, tregion)

Chapter 3. WM Regions and Distortion Risks 60

Figure 3.9: Visualization of the results in R.

[1] FALSE

Thus, the origin is outside the calculated WM region. The right side of Figure 3.9 gives

rggobi based visualization of the results for the data in dimension 4:

R> generTRsample("Cloud4.dat", dim = 4, num = 25)

R> WMTR("Cloud4.dat")

[1] "The trimmed region was successfully calculated!"

R> showWMTR()

Concerning available tools for manipulating the visualization in the window, we refer

the reader to rggobi documentation.

3.6.2 Calculating multivariate set-valued risk measures

The second example represents an application of the WM regions to the risk manage-

ment. Our aim is to calculate the multivariate expected shortfall (Cascos and Molchanov,

2007) set-valued risk measure. We have chosen this measure because it is the most impor-

tant coherent risk measure. A zonoid region ZDα(x1, . . . ,xn) determines the expected

shortfall at the level α as ESα(x1, . . . ,xn) = Rd \ (ZDα(x1, . . . ,xn) ⊕ Rd+). In other

words, it is determined by the lower boundary of the zonoid region.

R> library("WMTregions")

Chapter 3. WM Regions and Distortion Risks 61

Loading required package: rggobi

Loading required package: RGtk2

Loading required package: rgl

We have a file "Indices 0809.dat" with the real life data representing the relative

losses in percent on DAX (x variable), Dow Jones (y variable) and Hang Seng (z vari-

able) stock market indices in the years 2008 and 2009. The file can be downloaded

from the Web page http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/

WMT_Regions. Besides this, the data cloud points coordinates are also stored in the data

set "Indices 0809" attached to the package. Using it as a historical information, we

have to calculate the expected shortfall at the level 1% of the portfolio on these three

indices. The data is represented by losses, therefore we are seeking for the reverse, that

is, the upper boundary:

R> WMTR("Indices_0809.dat", bound = 1)

[1] "The trimmed region was successfully calculated!"

R> visualWMTR()

Figure 3.10: Visualization of the results in R.

On Figure 3.10 we see the most critical part of the surface in blue. It is shown from two

sides.

3.7 Conclusions

An exact algorithm has been constructed to compute the WM regions of an empirical

distribution in d-space for an arbitrarily given weight vector. It calculates all facets,

http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/WMT_Regions
http://www.uni-koeln.de/wiso-fak/wisostatsem/Forschung/WMT_Regions

Chapter 3. WM Regions and Distortion Risks 62

edges, and vertices of a region at any given depth α ∈]0, 1[. (Recall that α = 0 and

α = 1 are trivial cases.) In fact, the case α = 0 can be also calculated, but then the

WM region degenerates into the convex hull of the data set.

The ”double-hash” mechanism plays the prominent role by marking in a special way

the ridges in the hash table, thus guaranteeing that each facet of the WM region is

generated only once and only these facets are calculated. It induces the unique order

on the set of the facets, making the algorithm efficient. Really, the latter has as many

loops as the WM region has facets, which, obviously, is the minimum number of facet

generating loops in this sort of algorithms. Moreover, in some significant applications

of the WM regions, such as the multivariate risk measurement, we can take advantage

of the connectivity of the generated facets and calculate only, for instance, the lower

boundary of the WM region, which covers about 1
2d

of its surface.

To sum up, we would like to point out some perspectives of the future work on the

algorithm and the R package. While the precise algorithm is efficient and has the optimal

number of computational steps, its most important use is to employ it as a benchmark

for computationally cheaper approximate procedures. As we have seen above, WM

regions have very large numbers of facets. Next possible steps of research should target

at developing procedures of filtering them and replacing the ”jumps” by ”long jumps”

across parallel ridges.

3.8 Heuristics for determining all adjacent facets

Given a basis VF of a facet F , let A be a nonsingular d × d matrix that contains the

basis vectors as its first d−1 rows and an arbitrary last row that is linearly independent

from the other rows. Consider the linear equation

Ar = ed :=

0
...

0

1

 . (3.11)

The unique solution r to this equation is a scalar multiple of the normal vector pF of F .

In search for a neighboring facet, the support vector has to be rotated in a plane of

dimension two in Rd (step C.(b.)II.v.). To reduce the algorithmic complexity of this

step we compute the rotation plane in the following efficient way.

Chapter 3. WM Regions and Distortion Risks 63

The transition from F to a neighboring facet, say via a ridge m, is done by a basis

exchange. This means replacing some k rows of the matrix A (having indices i ∈ I)

by k − 1 other data vectors and, as its last row, some vector that is linear independent

from all previous rows and non-orthogonal to p, for example p itself. Let Sm denote the

d × d matrix obtained from A by this exchange, and Vm the d × k matrix built from

the k new vectors as columns. Thus, the solution z = zm of the linear equation

Smz = ed , (3.12)

spans, together with pF , a plane in which the support vector p may be rotated.

Note that (3.12) can be solved directly by calculating S−1
m , which is the straightforward

computation and has complexity O(d3). Instead, in our algorithm we decompose Sm in

order to reduce the complexity of this step. It is easy to see that

Sm = Km ·A ,

where Km is an identity matrix with substituted rows of indices i ∈ I. Let these rows

form a matrix Cm whose i-th row corresponds to the ji-th row of Km. Then it holds

A′Cm = Vm and, consequently,

Cm =
(
A−1

)′
Vm .

Note that A−1 has to be computed only once at each facet. Given A−1, calculating Cm

has complexity O(d2).

Henceforth we denote the elements of A and C by aij and cij respectively. Consider

rewriting (3.12) as

KmAz = ed ,

where Km =

1 0 0

0 1
. . . 0

· · ·
cji1 cji2 cjii cjid

· · · . . .

0 0 1

and K−1

m ed =

0
...

− cjid
cjii
...

0

1

. Then it

Chapter 3. WM Regions and Distortion Risks 64

holds

zm = A−1K−1
m ed = A−1

0
...

− cjid
cjii
...

0

1

.

For a single facet we have to compute (in O(d3))

A−1 =
(
α1 | . . . | αi | . . . | αd

)
.

Thus, besides computing Cm, only the following computation is done to find a basis for

the m-th ”jump”:

zm = αd −
∑
i∈I

cjid
cjii

αi, O(d). (3.13)

Recall that a basis for an m-th jump is given by {z̄m, p̄ = r̄}. Let us denote the number

of ridges for a facet F by R(F). The complexity of finding bases for all jumps from the

facet is

O(d3 + (d2 + d) ·R(F)) ∼= O(d2 ·R(F)).

It can be easily checked that, if we do not exploit the common information on A−1, the

complexity amounts to O(d3 ·R(F)).

Chapter 4

Multivariate Best-Decision Risk

Measures: An Application to

Portfolio Optimization

In this chapter, we consider a vector-valued multivariate risk measure that depends on

the user’s profile given by the user’s utility. It is constructed on the basis of weighted-

mean trimmed regions and represents the solution of an optimization problem. The key

feature of this measure is convexity. We apply the measure to the portfolio selection

problem, employing different measures of performance as objective functions.

4.1 Motivation

Quantifying risk is one of the most important problems in modern economics. Classical

tools of mathematical finance include risk measures. These functions, as their name

states, assess the risk of some financial positions, which are traditionally modeled by

some random vector X. The basic idea of a risk measure is to indicate a critical value

of a (monetary) deposit, or reserve, that, being added to an uncertain position, does

cancel its risk in some sense. The latter means that the location of the distribution of

the corresponding random vector satisfies certain formal requirements that are provided

by, say, a regulator.

For example, if X is univariate, he or she may require that some α-quantile of the

distribution be non-negative. If we add a constant −QX(α), which can be interpreted

as an insurance deposit, to the distribution, where QX denotes the quantile function of

X, we make the condition hold. In other words, only the worst α · 100% of outcomes

65

Chapter 4. Multivariate Best-Decision Risk Measures 66

of the insured position are expected to be negative. In such a manner we get a famous

and widely used (cf. Jorion, 2006) risk measure called value-at-risk (V@R). Actually,

there is a plentiful assortment of different notions of risk measures, each controlling

particular aspects of the outcome distribution. There is also a list of desired properties

of such functions: we will refer to some of them below. As further examples of univariate

risk measures, one can recall the expected shortfall1, expected minimum, entropic risk

measure and others.

A univariate risk measure concerns an investment into one asset. However, in practice

a user is usually operating with several different assets. In this case, measuring the risk

becomes a much more complicated problem than just undertaking measurements for

each asset individually. The issue lies in a dependence between the assets, which can be

rather complex and lead to an asymmetric joint distribution of the assets’ returns.

The higher dimension is, namely the number of assets, the more importance has to

be given to the dependency information. This is similar to modeling returns by a d-

dimensional random vector X instead of d separate univariate random variables.

At this point, we immediately get an issue: again, the risk of X could not be comprehen-

sively described only by risks of its marginals. To tackle this problem, a rather natural

idea has been proposed. If a univariate monetary risk measure describes the minimal

deterministic amount of money that, being added to the investment, compensates its

risk, one could do the same in the multivariate case. In other words, we seek to find such

‘minimal’ deterministic vectors in Rd that compensate the risk of X. To get rid of the

ambiguous ‘minimal’ qualifier, we can just take all deterministic vectors compensating

the risk. It is easy to see that these vectors form a set in Rd, of an affine dimension d

in general. Obviously, ‘minimal’ vectors are lying on the surface of this d-dimensional

body. In general, if there are transaction costs, there are many incomparable ‘minimal’

vectors.

The above gives way to set-valued risk measures, which are nowadays rather common

in considering multivariate risks.

Working with such measures is a rather complex task, however, it becomes simpler if all

such sets, that is to say, values of a set-valued risk measure, are convex. Further on, we

consider this property as an advantage.

The development of coherent risk measures (Artzner et al., 1999, Delbaen, 2002) and of

the pertaining machinery (see e.g. Föllmer and Schied (2004)) as well as tightening of

economic standards have led to considering multivariate risks and extending the notion of

1It is also called the average value-at-risk or the tail value-at-risk in the literature.

Chapter 4. Multivariate Best-Decision Risk Measures 67

the risk measure as a real-valued function to a class of set-valued functions (Jouini et al.,

2004). Recently, the corresponding theory has been deeply developed both generally (see

e.g. Hamel and Heyde (2010), Hamel et al. (2011), Rüschendorf (2013)) and concerning

specific exemplars of risk measures (e.g. Cousin and Di Bernardino (2013), Hamel et al.

(2013)).

Such literature proposes several ways of defining set-valued risk measures. In this chap-

ter, we pursue the approach of Cascos and Molchanov (2007), who explore a direct

connection of such measures to data central regions. This gives us an advantage of

applying geometrical algorithms from previous chapters to calculating set-valued risk

measures. In fact, computability of set-valued risk measures is usually a hard issue (cf.

Hamel et al. (2014, 2013)).

The investigation of multivariate risk measures develops in several major tasks. The first

one, the representation, is connected with a discussion of a set of desirable properties for

a risk measure, which the reader can find, e.g., in Rachev et al. (2008). A specialized

analysis of comonotonic risk measures is given by Ekeland et al. (2012). A widely-used

dual representation of risk measures via acceptance sets is comprehensively described,

for example, in Hamel and Heyde (2010). The second task, again, computability, is a

very recent one and concerns mostly applying methods from vector optimization, such

as Benson’s algorithm (cf. Schrage and Löhne (2013), Hamel et al. (2014)). In this

research, the key point is the computability via efficient geometrical representations.

Besides this, the measures are intended to be applied not only in the sphere of finance

but also in completely different spheres, which will be the main topic of the further

chapters of this thesis.

4.2 Vector-valued multivariate risk measure based on data

trimmed regions

In this section, we define a measure combining the objective evaluation of the risk by

means of a set-valued risk measure, and the subjective preferences of the user, which

are modeled by the user’s admissable set.

Chapter 4. Multivariate Best-Decision Risk Measures 68

4.2.1 The measure

According to Cascos (2009), using the ideas from Cascos and Molchanov (2007), a risk

measure µd based on some data trimmed region D∗α can be defined as follows:

µd(X) = −
(
D∗α(X)⊕ Rd+

)
,

meaning a reflection of the set D∗α(X) ⊕ Rd+. In simple words, it states that for all

z ∈ µd the trimmed region D∗α(X + z) does not lie in the positive orthant. For example,

if D∗α is a halfspace region, we obtain a multivariate quantile, which enables us to get

a set-valued generalization of the value-at-risk. The subadditivity property and the

analytical simplicity of zonoid regions enable us to use them for generalization of the

expected shortfall, which is a coherent risk measure. In turn, the expected minimum, also

a coherent measure, is generalized by means of expected convex hull regions.

In the same manner, we define a special class of multivariate risk measures based on

weighted-mean trimmed regions Dwα given by a weight vector wα.

Definition 4.1. The multivariate set-valued distortion risk measure is defined as follows:

µd(X) = −
(
Dwα(X)⊕ Rd+

)
⊂ Rd. (4.1)

In the next chapter, we will show, why the measure is called a distortion risk measure

and how it is connected to its univariate counterpart. In the current chapter, we are

only interested in a measure with desirable properties, such as the subadditivity, which

encourages diversification and is crucial in risk management.

We should mention that this is not a unique way of defining a multivariate distortion risk

measure. For comparison, Rüschendorf (2013) gives a different notion of such a measure,

which is scalar-valued: For a d-variate distribution having p.d.f. F , he considers the level

set Q(t) of F at level t and defines some scalar measure of Q(t) as the t-quantile. Then,

based on these scalar-valued quantiles, he introduces multivariate risk measures in the

same way as univariate ones. Obviously, much information is lost in this case and the

choice of the scalar measure is not straightforward.

To flexibilize our definition by incorporating the information about the user’s prefer-

ences, described by his or her strictly increasing utility function U(·), we introduce the

admissable set F . This set collects all such returns that are perceived positively by the

user. To relate it to the utility function, we assume F = {y ∈ Rd : U(y) ≥ u0}. Thus,

the surface of F is the u0-level set of the utility function.

Chapter 4. Multivariate Best-Decision Risk Measures 69

We take the natural assumption of the user’s risk aversion, which is equivalent to pos-

sessing a convex admissable set F (see, e.g., Föllmer and Schied (2004)). As an approx-

imation, we suppose F to have the following form:

F = {y ∈ Rd : p′ky ≥ δk, k = 1 . . .K } (4.2)

with some p1, . . . ,pK ∈ Rd+ and δ1, . . . , δK ∈ R, that is, F is an upper convex polytope.

E.g., a market with proportional transaction costs F is a cone with the apex at 0. Each

level set of U(·) is the same (but translated) cone.

Our idea lies in a comparison of the position of the set-valued measure µd with that of

the admissable set F .

Definition 4.2. ν(X), a real-valued risk measure of a risky position X given the user’s

utility U(·), is defined as follows:

ν(X) = arg min
z∈Rd

‖z‖U : {−µd(X) + z} ⊂ F , (4.3)

where ‖·‖U denotes a proper norm.

In other words, ν(X) is (in the sense of the norm ‖·‖U) the shortest vector z that brings

the set-valued measure ρ(X) into the admissable set F . The conventional Euclidean

norm ‖ · ‖2 is a natural choice for ‖·‖U , however, a weighting of dimensions is possible

due to their different importance in the user’s subjective perception. If this mutual

weighting is described by some nonnegative matrix ΓU , then for any z ∈ Rd it holds

‖z‖U = ‖ΓUz‖2.

ν(·) enjoys a clear interpretation as a monetary measure: The minimal reserve to be

added to the position to make it acceptable. While the measure is determined by the

optimal decision for the user, we will call ν(·) a best-decision risk measure.

The transition from the set-valued measure µd(·) to the vector-valued ν(·) is realized by

solving an optimization problem. In fact, what we are doing is a specific scalarization

of a set-valued risk measure (cf. Hamel and Heyde (2010), or Schrage (2015)). Our

approach consists in the most broad employment of the user profile information (given

by the utility function U(·)) for the scalarization.

It is easy to see that (4.3) in Definition 4.2 is equivalent to the following:

ν(X) = arg min
z∈Rd

‖z‖U : {Dwα(X) + z} ⊂ F . (4.4)

Chapter 4. Multivariate Best-Decision Risk Measures 70

Finally, we like to mention that using the measure ν(·), we can define an order on a set

of appropriate risky positions X .

Definition 4.3 (Ordering risks). The preference relation <ν on X is given as follows:

∀Y, Z ∈ X Y <ν Z ⇐⇒ ‖ν(Z)‖U ≥ ‖ν(Y)‖U .

4.3 Portfolio choice as a special case

A portfolio choice problem can be stated using risk measures. Unlike standard port-

folio theory, where variances are used as proxies for risk, the risk measures machinery

allows to treat risk more comprehensively. It is worth to mention that the disadvan-

tage of representing risk by the variance has become a vital issue in the literature of

the last decade. Besides this, two-stage mean-variance procedures, where on the first

stage parameters of a model should be estimated, such as covariance matrix of random

returns, are subject to estimation risk (cf. Meucci, 2009). Authors from various math-

ematical fields propose approaches for solving the problem. For instance, Fabozzi et al.

(2010) give a detailed review of robust methods emerged in portfolio optimization and

the corresponding literature. These methods are usually based on modeling uncertainty

either in parameters (e.g., Costa and Paiva (2002), El Ghaoui et al. (2003), Tütüncü

and Koenig (2004)) or in the whole distribution (e.g., Calafiore, 2007) and appropri-

ate modifications of the variance. A part of recent approaches consider risk measures

(e.g., Bion-Nadal and Kervarec (2012), Drapeau and Kupper (2013), Rockafellar et al.

(2006)). A qualitatively new algorithm, which efficiently combines robust optimization

with coherent risk measures, contributing to this trend, has been proposed by Mosler

and Bazovkin (2014). This approach will be considered in Section 5.1 of the next chap-

ter. In this chapter, we solve the portfolio choice problem using optimization of either

the multivariate risk measure ν(·) or some performance measure. In our approach, we

get rid of usual distributional assumptions on returns, namely their ellipticity.

Let r̃1, . . . , r̃d be random return rates on d assets. We will notate r̃ = (r̃1, . . . , r̃d)
′.

A convex combination of the assets’ returns is sought, r̃′ω =
∑d

j=1 r̃jωj , that maxi-

mizes some performance measure. Let us have a portfolio of d assets and the historical

information about its returns {r1, . . . , rn} ⊂ Rd. Now we can consider a task of find-

ing a portfolio with the lowest risk possible or a portfolio optimized by means of some

generalized performance measure, for example, a Sharpe ratio.

To solve the task, we use the multivariate measure ν(·) given by Definition 4.2 in the

previous section. The considered problem has a certain form of the admissable set: a

halfspace, that is, a special case of (4.2). The border of the halfspace, a hyperplane,

Chapter 4. Multivariate Best-Decision Risk Measures 71

is determined by a portfolio vector, or simply a portfolio, ω ∈ ∆d = {δ ∈ Rd : δ ≥ 0,

1′δ = 1}, with no short selling permitted. This fact enables us to control the admissable

set by means of varying ω and find one that produces the minimal risk in such a way.

Thus we obtain a parametric optimization problem in the sense of optimizing the risk

measure ν(·) or some function dependent on it. In the following subsection we propose

an efficient geometric procedure of finding the optimal ωopt in the space Rd.

4.3.1 Minimal risk portfolio

Let d× d matrix Ω = diag(ω). We are minimizing the risk of a portfolio, that is, are

employing the following criterion g(ω):

g(ω) = ‖ν(Ωr̃)‖U → min
ω∈∆d

. (4.5)

Note that later the restriction to ω ∈ ∆d will be relaxed concerning the non-negativity

of components.

For a specified distortion risk measure, namely a given weight vector wα, and an empir-

ical sample r1, . . . , rn, we construct a trimmed region Dwα(r1, . . . , rn).

Taking the Euclidean norm as ‖·‖U , the value of the objective g(ω) for some ω is the

Euclidean length of the minimal shift sω ∈ Rd of the admissable set F = {x : 1′x ≥ 0}
such that for the data weighted by ω it holds:

Dwα(Ωr1, . . . ,Ωrn) ⊂ F − sω. (4.6)

Obviously, sω = ν(Ωr̃), where r̃ is empirically distributed on r1, . . . , rn. For convenience,

we will denote F − sω by F̂ω.

Let us now do an inverse transform of the space, that is, a linear transform by Ω−1. Then,

we get Ω−1F instead of F and, respectively, the condition (4.6) becomes equivalent to

the following:

Dwα(r1, . . . , rn) ⊂ Ω−1F̂ω. (4.7)

Because of the budget constraint 1′ω = 1, it is easy to show that the harmonic mean of

axes intersections with the hyperplane ∂F̂ω does not change after getting to ∂{Ω−1F̂ω}.
It equals g(ω)

√
d, where ∂{·} denotes the border of a set. Now, let some ω1,ω2 produce

the same objective values g(ω1) = g(ω2) = g and form the borders ∂{Ω−1
1 F̂ω1} and

∂{Ω−1
2 F̂ω2}, respectively. It can be shown that these borders intersect at the point

−sω1 = −sω2 = (− g√
d
, . . . ,− g√

d
)′. This point delimits the interval (0;−sω1) on the

bisector, which has length g.

Chapter 4. Multivariate Best-Decision Risk Measures 72

Figure 4.1: Searching the minimal risk portfolio.

Thus, we see that there is a bijection between all plausible ω-s and Ω−1F̂ω. Moreover,

g(ω) is the length of the interval cut off by the surface ∂{Ω−1F̂ω} on the bisector. Hence

we have to find a hyperplane ∂{Ω−1F̂ωopt} that ‘covers’ Dwα and cuts the shortest

interval on the bisector. It is easy to show that it is a hyperplane `min containing the

facet intersected by the bisector (see Figure 4.1). Hence the solution is the following:

the sought-for ωopt is the normalized (to the component sum of 1) normal to the facet

intersected by the bisector.

4.3.2 Portfolio selection with a generalized Sharpe ratio

Now we solve the problem of maximizing the ratio of expected returns to the risk taken.

It stands on the same principle as the well-known Sharpe ratio (Sharpe, 1966) and will

be denoted by SRr̃:

SRr̃(ω) =
ω′ · µ(r̃)

‖ν(Ωr̃)‖U
, (4.8)

where µ(r̃), or simply µ, is the expected return E(r̃) of the investment.

Chapter 4. Multivariate Best-Decision Risk Measures 73

Figure 4.2: Searching the Sharpe ratio optimized portfolio.

4.3.2.1 Finding the optimum

Under the standard restriction on ω, ω ∈ ∆d, we have to solve the following optimization

task:

g(ω) = SRr̃(ω)→ max
ω∈∆d

. (4.9)

In the inverse transformed space, a hyperplane parallel to ∂{Ω−1F̂ω} is a set of same-

return outputs x. The value of this return equals the length of the origin-started segment

of the bisector cut off by the hyperplane, because this segment is not effected by the

transformation. Hence, the expected return of a portfolio ω is equal to the length

of a segment cut off by such a hyperplane containing µ. Consider Figure 4.2: for a

case of minimal risk (see Subsection 4.3.1), this segment corresponds to 0E′ (µ ∈ `′min,

`′min‖`min, where ‘‖’ means that `′min and `min are parallel). Let us now draw a line

through the points µ and 0 and find its intersection with the hyperplane `min (the

solution hyperplane for the minimal risk problem, a green dashed line on the Figure 4.2)

- the point A. `min cuts off the segment 0E with length equal to the risk estimate. `′min

cuts off the segment 0E′ with length equal to the expected return. Thus, we obtain

SRr̃(ω) = 0E′

0E .2

2Further in this chapter the name of a segment in a formula implies the length of the segment.

Chapter 4. Multivariate Best-Decision Risk Measures 74

Let us now rotate `min in Rd arbitrarily around the point A to some position `. Of

course, ` must not intersect Dwα . `′min is rotated parallelly around the point µ to some

hyperplane `′‖`. The rotation corresponds to browsing through different portfolios ω.

Thus, the points E and E′ move: E 7→ B, E′ 7→ B′. We immediately get40EA ∼ 40E′µ

and 40BA ∼ 40B′µ, where under ‘∼’ we understand the similarity relationship. Hence

SRr̃(ω′) = 0E′

0E = 0µ
0A = 0B′

0B = const. For each rotation ω there is a hyperplane `0‖`
which touches Dwα and intersects the bisector at D, that is, gives the actual estimation

‖0D‖U of risk of the portfolio ω.

To maximize SRr̃(ω) = SRr̃(ω′) · 0B
0D , we should maximize 0B

0D by a rotation. Let C be an

intersection of the line (0,µ) with the hyperplane `0. Then it holds 40DC ∼ 40BA,

leading to 0B
0D = 0A

0C . At the same time, 0A remains constant, which means that we

should just minimize 0C. It is easy to see that the shortest possible 0C is the interval

with the point C lying on the border of Dwα . In turn, it means that the sought-for

optimal hyperplane `opt
0 is that containing the facet intersected by the line (0,µ).

Hence, the sought-for solution ωopt is a normalized (to the component sum of 1) normal

to the facet of the lower boundary of Dwα intersected by the line (0,µ).

It is easy to check, that the above considerations hold for all d ≥ 2, although being

illustrated in R2.

The reader may make the following observations, which are quite important:

1. If all assets yield similar expected returns, the procedure calculates the minimal

risk portfolio (because µ lies on the bisector), which is intuitively natural. In this

case, the procedure degenerates to one from Subsection 4.3.1.

2. The procedure can be enlarged to the case of data following a general probability

distribution. The solution will be the similarly normalized vector tangent to the

lower surface of Dwα at the point of its intersection with the line (0,µ).

3. µ can be replaced, for example, by a median or a shrinkage location estimator (cf.

Meucci (2009)).

If we have some risk-free asset with the risk-free rate rf , we put a point u0 on the

bisector so that the length of the interval [0,u0] equals rf . Then, it is easy to show that

one should apply the same procedure as above, just replacing the line (0,µ) by (u0,µ),

likewise changing the focus of the intersecting ray.

At this step, it is interesting to observe how the procedure works in the special case of

elliptically distributed returns with some covariance matrix Σ. While in this case WM

Chapter 4. Multivariate Best-Decision Risk Measures 75

regions asymptotically converge (see Dyckerhoff and Mosler (2012), Mosler (2002)) to

ellipsoids with the shape matrix Σ for any choice of α and type of the region, it can be

easily shown that the solution will, in turn, converge to the tangential portfolio:

ωopt =
Σ−1µ

1′Σ−1µ
. (4.10)

Really, the normal to the tangent hyperplane at the ellipsoid’s point intersected by

the line of direction µ is Σ−1µ. Having normalized the vector, we get the above for-

mula (4.10).

It is immediately seen that replacing µ with 1 above gives the portolio Σ−11
1′Σ−11

, which, in

turn, is the minimal variance portfolio. It means that the latter is defined in a standard

way by the intersection of a line parallel to the bisector and passing through µ with the

trimmed region.

These facts demonstrate that our approach is a generalization of a typical mean-variance

procedure, where standard distributional assumptions are avoided and a comprehensive

non-parametric risk measure is employed.

4.3.2.2 The algorithm

Input

• {r1, . . . , rn} ⊂ Rd - the given empirical data about returns.

• Risk parameter α.

• The type of distortion risk measure µd to be used.

• Optionally: The risk-free rate rf .

Output

• The optimal portfolio ωopt.

• Value of the criterion.

Steps (SR-algorithm)

SR1. Define the weight vector wα. Construct a focus point u0 = (
rf√
d
, . . . ,

rf√
d
)′ or take,

by default, the origin 0. Construct a line ϕ = (u0,µ) or ϕ = (0,µ) respectively.

Chapter 4. Multivariate Best-Decision Risk Measures 76

SR2. Calculate (Bazovkin and Mosler, 2012a) a part of Dwα(r1, . . . , rn) in the place of a

probable intersection with ϕ (cf. the efficient set in Mosler and Bazovkin (2014)).

The type of Dwα corresponds to the selected distortion risk measure.

SR3. Find the facet of Dwα intersected by ϕ. Get the normal ~nopt to the hyperplane

containing it. The sought-for ωopt =
~nopt

1′~nopt
.

A special consideration is needed for a case when there is some negative component in

ωopt, namely ∃i : ωopt
i < 0. If it occurs, one sets ωopt

i = 0 and solves the task without

the i-th asset (namely projecting onto Rd−1). However, this situation can be managed

more flexibly, which is the topic of Subsection 4.3.4 below.

The intersected facet from Step SR3. of the algorithm can be realized as follows:

A. Construct the first facet of Dwα(r1, . . . , rn) with the normal close to the direction

of ϕ.

B. Find the neighboring facet with the best criterion (Mosler and Bazovkin, 2014)

describing its distance from ϕ.

C. Jump to the facet found and go to step B..

It can be seen that on each step of this subalgorithm we get a better solution. Further-

more, the tactics of the ”long jump” can be used, where a jump over some neighbors in

a criterion-enhancing direction is made at one step.

The main complexity-contributing issues are the following:

1. Calculating some facets of the trimmed region Dwα : much simpler than calculating

the whole region (since knowing ϕ).

2. Finding an intersection of a line with a convex surface in Rd.

4.3.3 Optimization with a generalized certainty equivalent

In this subsection we pursue the same optimization problem but with a performance

measure given by the certainty equivalent, which is commonly used in modern portfolio

theory (cf. Markowitz (1952)). Again, the difference is that we replace the variance by

the risk measure ν(·). Then the criterion is the following:

CEr̃(ω) = ω′µ− λ · ‖ν(Ωr̃)‖U , (4.11)

where λ is a given positive constant describing the risk aversion of the user.

Chapter 4. Multivariate Best-Decision Risk Measures 77

4.3.3.1 Finding the optimum

We will maximize 1
λCEr̃, namely:

g(ω) =
1

λ
CEr̃(ω)→ max

ω∈∆d
. (4.12)

First, we create a point µλ = − 1
λµ. Now consider Figure 4.3. If we have a portfolio

ω1 given by the hyperplane `1, the corresponding risk ‖ν(ΩX)‖U equals the length of

the segment A10. Analogously to the previous subsection, 1
λω

1′µ equals B10, where

B1 = `′1 ∩ {bisector} and `′1 is a hyperplane parallel to `1 and containing µλ. Now, it is

directly seen that 1
λCEr̃ equals A1B1 = B10 − A10. The same principle is applied to a

portfolio ω2, yielding the criterion value A2B2 for the latter.

We see that A1B1 < A2B2, because `1 rotates to the position `2 with a smaller shoulder

relatively to (i.e. distance to) the bisector as `′1 to `′2. That is to say, AiBi increases

while rotating `i if `′i has a larger shoulder relatively to the bisector and vice versa.

Thus, starting from the minimal risk position, we first increase CEr̃ until ` gets a pivot

more distant from the bisector as µλ. It can happen when leaving a position containing

a facet that, in turn, contains points equidistant with µλ from the bisector. Hence the

optimal hyperplane is one containing a facet intersected by a hypercylinder with the

bisector as its axis and µλ lying on its surface.

To construct an algorithm, we first find a facet intersected by a line parallel to the

bisector and containing µλ. It is the first candidate. Then we move along the ring

(intersection with the hypercylinder) and check the values of CEr̃ for each of the facets.

A facet `j∗ with the maximum CEr̃ defines the optimal portfolio.

Finally, consider a special case when λ → ∞. Maximizing the criterion (4.11) becomes

equivalent to optimizing ν(Ωr̃). Thus, we obtain the minimal risk problem. While

µλ → 0, the hypercylinder degenerates into a line. Hence the sought-for facet is the facet

intersected by the bisector. Obviously, we get the same solution as in Subsection 4.3.1.

Another extreme case occurs when λ is small enough, so that the hypercylinder contains

Dwα . In this case, we can rotate ` until it becomes parallel to the bisector (1′~n = 0).

Clearly, that from all such hyperplanes the optimum is given by the one that is most

remote from Dwα . This optimum is a vector that has a single positive component for

the maximal expected return and others are negative. It means purchasing only the

asset j with µj = max{µ1, . . . , µd}, where (µ1, . . . , µd) equivµ.

Chapter 4. Multivariate Best-Decision Risk Measures 78

Figure 4.3: Searching the certainty equivalent optimized portfolio.

4.3.3.2 The algorithm

Input

• {r1, . . . , rn} ⊂ Rd - the given empirical data about returns.

• Risk parameter α.

• The type of distortion risk measure µd to be used.

• The risk aversion constant λ.

Output

• The optimal portfolio ωopt.

Steps (CE-algorithm)

CE1. Calculate the relevant part of the trimmed region Dwα(r1, . . . , rn).

CE2. Construct the point µλ = − 1
λµ.

CE3. Build a line parallel to the bisector and containing µλ. Find its intersection with

Dwα similarly to the step SR3. of the SR-algorithm.

CE4. Calculate the criterion 1
λCEr̃ for the current facet with the index j. It equals the

length of the segment AjBj . If it is the best currently, store the facet.

Chapter 4. Multivariate Best-Decision Risk Measures 79

CE5. Find appropriate neighboring facets for the newly stored facet. For each of them,

go to the step CE4. If there is no new neighbors, stop.

a. A neighbor is appropriate if it contains points equidistant with µλ to the

bisector, which means being intersected by the hypercylinder. In doing this,

calculate the min and max distances of the facet’s points to the bisector.

CE6. Get a normal ~nopt to the current best facet. The sought-for ωopt =
~nopt

1′~nopt
.

A case of negative weights can be solved as proposed in Subsection 4.3.4. If negative

weights are not allowed, we pursue them analogously to Subsection 4.3.2.2.

4.3.4 Negative weights and short sellings

It is well-known that an estimated negative value of ωi for the i-th asset actually proposes

to do a short selling of that asset. We can use such a strategy as an alternative to just

fixing corresponding weights to 0 and solving the similarly stated subproblem for the

remaining assets. The approach given in this subsection is common for both the SR-

algorithm and the CE-algorithm.

4.3.4.1 Optimum with shorting permitted

First, we modify the derivation of ωopt from a found ~nopt due to the relaxation of the

restriction ω ∈ ∆d. Namely only the sum of component absolute values ‖ω‖1 is set to

1, resulting in ωopt =
~nopt

‖~nopt‖1 . Let the user possess stores of the d assets available for

allocating at the rates of S1, . . . , Sd units. The idea is to solve the task recursively.

We start from all d assets and on each stage allocate a finite number of units Zk and

eliminate those assets whose store is fully exhausted on the current stage. This filtering

implies setting weights to 0 for the ‘bottleneck’ assets on next stages. We solve the

filtered task recursively until we get some stage T with an optimal solution without

negative components, or there is nothing more to allocate. Now consider a stage k: let

Jk be a set of indices corresponding to negative components of the optimal portfolio on

this stage, ωoptk . We determine the volume of units to be allocated on this step:

Zk = min
j∈Jk

Skj

|ωoptk
j |

,

where Skj denotes an available store of the asset j at the beginning of the stage k.

Chapter 4. Multivariate Best-Decision Risk Measures 80

Figure 4.4: The recursive procedure for negative weights.

The structure of the problem is typical for dynamic programming, and each stage is

pursued optimally. It means that the recursive procedure yields the overall optimal

solution.

As a result, we obtain a ‘ladder’ of allocated units (see Figure 4.4) Z1, . . . , ZT , which

yields the optimal allocation after an aggregation. If we want to invest some V units,

we find such K that
∑K−1

i=1 Zi ≤ V ≤
∑K

i=1 Zi. Then invest3 Zi into ωoptk for all

k = 1, . . . ,K − 1. The rest of V we invest into ωoptK . For example, on Figure 4.4, for

V = V1 we have K = 2, while for V = V2, K equals T .

This simple example shows that the optimal aggregate portfolio depends on V (without

shorting permitted, it is independent).

4.3.4.2 The algorithmic supplement

Input

• An aggregate number of units V to be allocated.

• Available stores S1, . . . , Sd of the assets.

• Standard inputs for either SR- or CE-algorithm.

3Investing into a negatively weighted asset means shorting it.

Chapter 4. Multivariate Best-Decision Risk Measures 81

Output

• The optimal allocation {V1, . . . , Vd}.

Steps (NW-supplement)

NW1. The first step (d assets, nothing invested): k := 1, V̂ = 0, Vj = 0 ∀j = 1 . . . d.

NW2. Find the optimal portfolio ωoptk by the SR- or CE-algorithm, while fixing weights

of eliminated assets at zero.

NW3. ωoptk := ωoptk

‖ωoptk‖1
; Jk = {j : ω

optk
j < 0}.

NW4. If ∀j holds ω
optk
j ≥ 0, then Zk = V − V̂ ; else Zk = minj∈Jk

Si
|ωoptk
j |

.

NW5. Zk := min{Zk, V − V̂ }.

NW6. Vj := Vj + Zkω
optk
j ,∀j.

NW7. Sj := Sj + Zkω
optk
j , ∀j.

NW8. V̂ := V̂ + Zk. If V̂ = V , go to Step NW10.

NW9. Eliminate assets with indices in Jk. k := k + 1. Go to Step NW2.

NW10. Vj is the final investment into the j-th asset. V =
∑

j Vj .

4.4 Discussion

In this chapter we have shown a connection between set-valued distortion risk measures

and weighted-mean trimmed regions. The former can be calculated using the algorithms

from previous chapters. We have considered the multivariate vector-valued risk measure

ν(·) that, firstly, aggregates the information from a set-valued coherent distortion risk

measure and, at the same time, employs the user’s risk posture information.

In a special case of substitutable components, we have applied the measure ν(·) to solving

a portfolio choice problem with different performance measures as objective functions.

As a result, the efficient algorithms for the minimal risk, the generalized Sharpe ratio

and the generalized certainty equivalent were proposed.

As a possible extension to be regarded, the shape of a trimmed region can be modified

explicitly or via visual tools. The minimal risk and the SR-algorithm are realized in

Chapter 4. Multivariate Best-Decision Risk Measures 82

an R package PortfolioTR (Bazovkin, 2013). Besides this, the framework is flexible for

incorporating further possible performance measures.

One more potential way of development of the framework lies in extending it to markets

with transaction costs with admissable sets in form of convex cones or convex upper

polytopes (4.2). An application of the risk measure ν(·) for such situations is considered

in Chapter 6.

Chapter 5

Stochastic Linear Programming

and Distortion Risk Measures

In this chapter, we apply coherent distortion risk measures to capture the possible vio-

lation of a restriction in linear optimization problems whose parameters are uncertain.

Each risk constraint induces an uncertainty set of coefficients, which is proved to be a

weighted-mean trimmed region. Thus, given a sample of the coefficients, an uncertainty

set is a convex polytope that can be exactly calculated. We construct an efficient geo-

metrical algorithm to solve stochastic linear programs that have a single distortion risk

constraint. The algorithm’s asymptotic behavior is also investigated, when the sample

is i.i.d. from a general probability distribution. Finally, we present some computational

experience.

5.1 Motivation

Uncertainty in the coefficients of a linear program is often handled by probability con-

straints or, more generally, bounds on a risk measure. The random restrictions are then

captured by imposing risk constraints on their violation. Consider the linear program

c′x −→ min s.t. Ãx ≥ b , (5.1)

and assume that Ã is a stochastic m × d matrix and b ∈ Rm, c ∈ Rd, x ∈ Rd. This is

a stochastic linear optimization problem. To handle the stochastic restrictions a joint

risk constraint,

ρm(Ãx− b) ≤ 0 , (5.2)

83

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 84

may be introduced, where ρm is an m-variate risk measure. For instance, with ρm(Y) =

Prob[Y < 0]− α the restriction (5.2) becomes

Prob[Ãx ≥ b] ≥ 1− α , (5.3)

and a usual chance-constrained linear program is obtained. Alternatively, the restrictions

may be subjected to separate risk constraints,

ρ1(Ãjx− bj) ≤ 0 , j = 1 . . .m , (5.4)

with Ãj denoting the j-th row of Ã. In (5.4) each restriction is subject to the same

bound that limits the risk of violating the condition. A linear program that minimizes

c′x subject to one of the restrictions, (5.2) or (5.4), is called a risk-constrained stochastic

linear program.

For stochastic linear programs (SLPs) in general and risk-constrained SLPs in particu-

lar, the reader is referred to, e.g., Kall and Mayer (2010). What we call a risk measure

here is mentioned in that book as a quality measure, and useful representations of the

corresponding constraints are given. As most of the literature, Kall and Mayer (2010)

focus on classes of SLPs with chance constraints that lead to convex programming prob-

lems, since these have obvious computational advantages; see also Prékopa (1995). Our

choice of the quality measure, besides its generality, enjoys a meaningful interpretation

and, as it will be seen, enables the use of convex structures in the problem.

In the case of a single constraint (m = 1) notate

ρ(ã′x− b) ≤ 0 . (5.5)

A practically important example of an SLP with a single risk constraint (5.5) is the

portfolio selection problem. Let r̃1, . . . , r̃d be the return rates on d assets and notate

r̃ = (r̃1, . . . , r̃d)
′. A convex combination of the assets’ returns is sought, r̃′x =

∑d
j=1 r̃jxj ,

that has maximum expectation under a risk constraint and an additional deterministic

constraint,

max
x∈C

E[r̃]′x, s.t. ρ(r̃′x) ≤ ρ0, x ∈ C , (5.6)

where ρ is a risk measure, ρ0 ∈ R is a given upper bound of risk (a nonnegative monetary

value), and C ∈ Rd is a deterministic set that restricts the coefficients xk in some way.

For example, if short sales are excluded, C is the positive orthant in Rd. The solution x∗

is the optimal investment under the given model. We will see that a solution, if it exists,

is, as a rule, finite and unique. In our geometric approach such a solution corresponds

to the intersection of some line and some convex body that both contain the point E[r̃].

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 85

Regarding the choice of ρ, two special cases are well known. First, let ρ(r̃′x) = Prob[r̃′x ≤
−v0] and ρ0 = α. Then the optimization problem (5.6) says: Maximize the mean return

E[r̃′x] under the restrictions x ∈ C and

V@Rα(r̃′x) ≤ v0 .

That is, the value at risk V@Rα of the portfolio return must not exceed the bound v0.

Second, let

ρ(r̃′x) = − 1

α

∫ α

0
Qr̃′x(t)dt , (5.7)

where QZ signifies the quantile function of a random variable Z. This means that the

expected shortfall of the portfolio return is employed in the risk restriction.

In practice, ã has to be obtained from data. If the solution of the SLP is based on n

observed coefficient vectors a1, . . . ,an ∈ Rd, the SLP is mentioned as an empirical risk-

constrained SLP. In other words, we assume that ã follows an empirical distribution that

gives equal mass 1
n to some observed points a1, . . . ,an ∈ Rd. Rockafellar and Uryasev

(2000) investigate an empirical stochastic program that arises in portfolio choice when

the expected shortfall of a portfolio is minimized. They convert the objective into a

function that is convex in the decision vector x and optimize it by standard methods.

This approach is commonly used in more recent works of these and other authors on

portfolio optimization.

A more complex situation is investigated by Bertsimas and Brown (2009), who discuss

the risk-constrained SLP with arbitrary coherent distortion risk measures, which also

include expected shortfall. These allow for a sound interpretation in terms of expected

utility with distorted probabilities. For the linear restriction an, as it is called, uncer-

tainty set is constructed which consists of all coefficients satisfying the risk constraint.

Bertsimas and Brown (2009) discuss the uncertainty set that turns the SLP into a min-

imax problem, called robust linear program; however, they provide no optimal solution

of this program there. The uncertainty set is a convex body and, as will be made

precise below in this chapter, comes out to equal a so-called weighted-mean trimmed re-

gion. Natarajan et al. (2009), on the reverse, construct similar risk measures from given

polyhedral and conic uncertainty sets. As an extension, Ben-Tal et al. (2010) propose

the so-called “soft robustness” model, which, as they show, can be regarded as an LP

with the feasible set defined by some convex risk measure. Such approaches are also

applicable (Bertsimas and Goyal, 2013) to approximately solving a multi-stage robust

convex optimization problem, where the information about the realization of uncertain

parameters is adjusted on each stage.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 86

Pflug (2006) has proposed an iterative algorithm for optimizing a portfolio using distor-

tion functionals, on each step adding a constraint to the problem and solving it by the

simplex method. Meanwhile, many other authors have recently contributed to the de-

velopment of robust linear programs related to risk-constrained optimization problems:

see, e.g., Nemirovski and Shapiro (2006), Ben-Tal et al. (2009) and Chen et al. (2010).

For a review of robust linear programs in portfolio optimization the reader is referred to

Fabozzi et al. (2010). There are also attempts to solve this problem by means of robust

non-linear models (see, for instance, Kawas and Thiele (2011)), which, however, are

substantially less investigated in the literature, than the linear ones. Other applications

are surveyed in detail in Gabrel et al. (2014).

In this chapter we contribute to this discussion in three respects:

1. The uncertainty set of an SLP under a general coherent distortion risk constraint

is shown to be a weighted-mean trimmed region, which provides a useful visual and

computable characterization of the set.

2. An algorithm is constructed that solves the minimax problem over the uncertainty

set, hence the SLP.

3. If the data is i.i.d. from a general probability distribution, the uncertainty set and

the solution of the SLP are shown to be consistent estimators of the uncertainty

set and the SLP solution.

The chapter is organized as follows: In Section 5.2 constraints on distortion risk measures

are discussed. They are characterized by uncertainty sets in parameter, which, in turn,

are shown to be weighted-mean trimmed regions (Theorem 5.2). Based on Theorem 5.2,

which is a core result, we formulate a robust linear program, which is investigated in

Section 5.3 and by which the SLP with a distortion risk constraint is solved. Section 5.4

introduces an algorithm for this program and discusses sensitivity issues of its solution.

In Section 5.5 we address the SLP and its solution for generally distributed coefficients

and investigate the limit behavior of our algorithm if based on an independent sample

of coefficients. Section 5.6 contains the first computational results and concludes. The

technical appendix (Section 5.7) gathers properties of distortion risk measures, a proof

of Theorem 5.2 and a demonstration (Proposition 5.9) that the weighted-mean trimmed

regions have the important coherency property.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 87

5.2 Distortion risk constraints and weighted-mean regions

5.2.1 Distortion risk measures

A large and versatile subclass of risk measures is the class of distortion risk measures,

which have appeared first from ideas in insurance research (Wang et al., 1997). Again,

let QY denote the quantile function of a random variable Y .

Definition 5.1 (Distortion risk measure). Let r be an increasing function [0, 1]→ [0, 1].

The function ρ given by

ρ(Y) = −
∫ 1

0
QY (t)dr(t) (5.8)

is a distortion risk measure with weight generating function r.

Distortion risk measures are essentially the same as spectral risk measures (Acerbi,

2002)1. Their properties are considered in detail in Appendix 5.7. Here, we want

to concentrate on their coherency, because of its crucial role in assessing the diversified

risks.

A distortion risk measure is coherent if and only if r is concave. For example, with

r(t) = 0 if t < α and r(t) = 1 if t ≥ α, the value at risk V@Rα(Y) = −QY (α) is

obtained, which is a non-coherent distortion risk measure. A prominent example of a

coherent distortion risk measure is the expected shortfall, which is yielded by r(t) = t/α

if t < α and r(t) = 1 otherwise. This measure is defined as (the negative of) the

conditional expectation of Y under the condition that Y does not exceed its α-quantile,

that is QY (α), with the opposite sign. In simple words, it is the mean of the α · 100%

biggest possible losses. Clearly, this measure is more conservative than the value at risk,

because its value cannot be smaller than the corresponding value at risk. Also, given α,

observe that, if r(t) = t, the risk measure becomes the expectation of −Y .

A general distortion risk measure ρ(Y) can thus be interpreted as the expectation of

−Y with respect to a probability distribution that has been distorted by the function

r. In particular, a concave function r distorts the probabilities of lower outcomes of Y

in the positive direction (the lower the more) and conversely for higher outcomes (the

higher the less). In empirical applications, coherent distortion risk measures other than

expected shortfall have been recently used by many authors; see, e.g., Adam et al. (2008)

for a comparison of various such measures in portfolio choice.

1Spectral risk measures coincide with coherent distortion risk measures.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 88

An equivalent characterization of a distortion risk measure is that it is a law-invariant

and comonotonic risk measure; see Kusuoka (2001). ρ is comonotonic if

ρ(Y + Z) = ρ(Y) + ρ(Z) for all Y and Z that are comonotonic,

i.e., that satisfy
(
Y (ω) − Y (ω′)

)(
Z(ω) − Z(ω′)

)
≥ 0 for every ω, ω′ ∈ Ω. If Y has an

empirical distribution on y1, . . . , yn ∈ R, the definition (5.8) of a distortion risk measure

specializes to

ρ(Y) = −
n∑
i=1

qiy[i], (5.9)

where y[i] are the values ordered from above and qi are nonnegative weights adding up

to 1. (Observe that qi = r(y[n+1−i
n

])− r(y[n−i
n

]).) Then, the distortion risk measure (5.9)

is coherent if and only if the weights are ordered, i.e., q ∈ ∆n
≤ := {q ∈ ∆n : 0 ≤ q1 ≤

· · · ≤ qn}.

5.2.2 Weighted-mean regions as uncertainty sets

If ρ is a coherent distortion risk measure, the uncertainty set Uρ has a special geometric

structure, which will be explored now in order to visualize the optimization problem and

to provide the basis for an algorithm. We will demonstrate that Uρ equals a so-called

weighted-mean trimmed region (or, equivalently, WM region) of the distribution of ã.

Given the probability distribution FY of a random vector Y in Rd, WM regions form

a nested family of convex compact sets, {Dα(FY)}α∈[0,1], that are affine equivariant

(that is Dα(FAY+b) = ADα(FY) + b for any regular matrix A and b ∈ Rd). By this,

the regions describe the distribution with respect to its location, dispersion and shape.

Weighted-mean trimmed regions have been introduced in Dyckerhoff and Mosler (2011)

for empirical distributions, and in Dyckerhoff and Mosler (2012) for general ones.

For an empirical distribution on a1, . . . ,an ∈ Rd, a weighted-mean trimmed region is a

polytope in Rd and defined as

Dwα(a1, . . . ,an) = conv

n∑
j=1

wα,ja
π(j) : π permutation of {1, . . . , n}

 . (5.10)

Here wα = [wα,1, . . . , wα,n]′ is a vector of ordered weights, i.e., wα ∈ ∆n
≤, indexed by

0 ≤ α ≤ 1 that for α < β satisfies

k∑
j=1

wα,j ≤
k∑
j=1

wβ,j , ∀k = 1, . . . , n . (5.11)

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 89

Any such family of weight vectors {wα}0≤α≤1 specifies a particular notion of weighted-

mean trimmed regions. There are many types of weighted-mean trimmed regions. They

contain well known trimmed regions like the zonoid regions, the expected convex hull

regions and several others. For example,

wα,j =

1
nα if j > n− bnαc,

nα−bnαc
nα if j = n− bnαc,

0 if j < n− bnαc,

0 ≤ α ≤ 1, defines the zonoid regions. However, some popular types of trimmed regions,

such as Mahalanobis or halfspace regions, are not weighted-mean trimmed regions.

Now, we are ready to formulate the key theoretical result of this Section, which formalizes

the relation between coherent distortion risk measures and their uncertainty sets on

one side, and weighted-mean trimmed regions on the other side. This is stated in the

following Theorem 5.2, which is proved in Appendix 5.7. Also in the appendix, the

geometrical properties of WM regions leading to such a relation are considered.

Theorem 5.2. If ã has an empirical distribution on a1, . . . ,an and ρ is a coherent

distortion risk measure, then it holds:

{x ∈ Rd : ρ(ã′x− b) ≤ 0} = {x ∈ Rd : a′x ≥ b ∀a ∈ Dwα(a1, . . . ,an)}. (5.12)

The reader can see, that, loosely speaking, Theorem 5.2 provides a transition from a

well-interpreted but hardly manageable risk constraint to an equivalent well-manageable

constraint employing the geometrical construction of trimmed regions. In fact, recall

that Dwα(a1, . . . ,an) is a d-dimensional convex polytope, and thus the convex hull of a

finite number of points (its vertices) or, equivalently, a bounded nonempty intersection

of a finite number of closed halfspaces (that contain its facets). By this the calculation

and representation of such a polytope can be done in two ways: either by its vertices

or by its facets. Recall that a nonempty intersection of the polytope’s boundary with

a hyperplane is a facet if it has an affine dimension d − 1, and a ridge if it has an

affine dimension d− 2. It is called an edge if it is a line segment, and a vertex if it is a

single point. In general, each facet of a polytope in Rd is itself a polytope of dimension

d− 1 and has at least d vertices. With WM regions the number of a facet’s vertices can

vary considerably; it ranges between d and d! (Bazovkin and Mosler, 2012a). That is

why in calculating WM regions a representation by facets is preferable. In the following

Section 5.3, we consider the topic in detail.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 90

Figure 5.1: Visualization of WM regions by the R package WMTregions. Left panel:
Facets of a three-dimensional region in R3. Right panel: Vertices of a four-dimensional

region projected on a subspace of R3.

5.3 Solving the SLP with distortion risk constraint

5.3.1 Calculating the uncertainty set

In the previous section we have shown that the uncertainty set Uρ equals the weighted-

mean trimmed region Dwα for a properly chosen weight vector wα. Bazovkin and Mosler

(2012a) provide an algorithm by which this WM region can be exactly calculated in any

dimension d.

The results can be visualized in dimensions two and three; for examples, see Figure 5.1.

It has been already mentioned in Chapter 3 that the number of vertices of a facet can be

as much as d! . Therefore the representation of a WM region by its vertices appears to

be less efficient than that by its facets. In the sequel, we will use the facet representation

for solving the SLP.

5.3.2 The robust linear program

Using the result of Theorem 5.2, we can write down the robust linear program (5.1) with

a distortion risk constraint in such a form:

c′x −→ min s.t. a′x ≥ b for all a ∈ U , (5.13)

where the subscript ρ has been dropped for convenience. In simple words, we get a

deterministic linear program with a set of constraints whose coefficients are contained

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 91

in a set U that is, according to Theorem 5.2, a weighted-mean trimmed region. The

restriction in (5.13) is then rewritten as

x ∈ X =
⋂
a∈U

Xa , Xa = {x : a′x ≥ b} . (5.14)

Note that X , as an intersection of a finite number of halfspaces, is a convex polyhedron.

Therefore, a linear goal function is to be minimized on a convex polyhedron. Obviously,

any optimal solution will lie on the boundary of X .

5.3.3 Finding the optimum on the uncertainty set

In constructing an algorithm for the robust linear program, we explore the set X of

feasible solutions and relate it to the uncertainty set U in the parameter space. It is

shown that the space of solutions x and the space of coefficients a are, in some sense,

dual to each other. The following two lemmas provide the connection between X and

U . First, we demonstrate that X is the intersection of those halfspaces whose normals

are extreme points of U .

Lemma 5.3. It holds that

X =
⋂
a∈U
{x : a′x ≥ b} =

⋂
a∈ extU

{x : a′x ≥ b} .

Proof. We show that
⋂

a∈ extU Xa ⊂ Xu for all u ∈ U ; then
⋂

a∈ extU Xa ⊂
⋂

a∈U Xa .

The opposite inclusion is obvious. Assume u ∈ U . Then, as U is convex and compact,

u is a convex combination of some points a1, . . . ,a` ∈ extU , i.e., u =
∑`

i=1 λia
i with

λi ≥ 0 and
∑`

i=1 λi = 1, and for any x ∈
⋂

a∈ extU Xa holds x ∈ Xaj and aj
′
x ≥ b for

all j, hence u′x =
∑`

i=1 λia
i′x ≥ b, that is, x ∈ Xu.

Lemma 5.3 says that each facet of the set X of feasible solutions corresponds to a vertex

of the uncertainty set U . Hence it is sufficient to consider the extreme points of the

uncertainty set.

As a generalization of Lemma 5.3, we may prove by recursion on k: Each k-dimensional

face of the feasible set corresponds to a (d − k)-dimensional face of the uncertainty set

in the solution space. This resembles the dual correspondence between convex sets and

their polars (cf. Rockafellar (1997)). However, in contrast to polars, this correspondence

of facets is not reflexive.

From Lemma 5.3 it is immediately seen, how the robust optimization problem contrasts

with a deterministic problem, where the empirical distribution of ã concentrates at some

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 92

Figure 5.2: Deterministic and robust cases: feasible set (left panel), uncertainty set
(right panel).

a0 ∈ U . Observe that the deterministic feasible set X is just a halfspace, Xa0 = {x :

x′a0 ≥ b}. In the general robust case a halfspace is obtained for each a ∈ extU , and the

robust feasible set X is their intersection. The halfspaces are bounded by hyperplanes

with normals equal to a ∈ extU , and their intercepts are all the same and equal to b.

Consequently, the robust feasible set X is always included in the deterministic feasible

set Xa0 ,

X ⊆ Xa0 for any a0 ∈ U .

Moreover, the two feasible sets cannot be equal unless each element of U is a scalar

multiple of a0 with a factor greater than one, U ⊆ {a : a = λa0, λ > 1}. Consequently,

the minimum value of the robust stochastic LP cannot be smaller than the value of an

LP with any deterministic parameter a0 chosen from the uncertainty set. Figure 5.2

(left panel) illustrates how a deterministic feasible set in dimension two compares to a

general robust one: The line that bounds the halfspace Xa0 ‘folds’ into a piecewise linear

curve delimiting X . In turn, Figure 5.2 (right panel) demonstrates the same relation

between the uncertainty sets in the parameter space: the deterministic uncertainty set,

which is a singleton a0, ‘enlarges’ into a non-degenerate uncertainty set containing a0.

Let

Ux = {a ∈ Rd : a′x ≥ b} , x ∈ Rd .

Lemma 5.4. It holds that

U ⊂
⋂

x∈X
Ux ⊂

⋂
x∈ extX

Ux .

Moreover, each vertex x ∈ extX corresponds to a facet of U .

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 93

Proof. By Lemma 5.3 we have x ∈ X ⇔ a′x ≥ b for all a ∈ U . Now let a ∈ U ; then

for any x ∈ X it holds that a′x ≥ b, hence a ∈ Ux. Conclude U ⊂
⋂

x∈X Ux. Further, it

is clear that an extreme point x ∈ extX yields a facet of U .

Remark. While U is always compact, X is in general not. Therefore neither inclusion

holds with equality.

According to Lemma 5.3, we could now reformulate the robust LP (5.13), basing it on

the constraints generated by the vertices of U :

c′x −→ min s.t. a′x ≥ b for all a ∈ extU ,

and then apply the ordinary simplex method to it. However, usually WM regions have

a very large number of vertices, because even a single facet can have up to d! ones.

Bazovkin and Mosler (2012a) have shown this number to lie between O(nd) and O(n
2d

2d
)

depending on the type of the WM region for the data cloud of n points, thus, obviously,

making the basic straightforward approach almost inapplicable here. From the other

side, calculated WM regions are efficiently represented by their facets. In our algorithm,

we pursue another way to find the optimal solution, namely searching it even without

explicit construction of X and taking advantage of the facets representation of U .

To manage this task let us consider the goal function c′x. In the solution space the

optimization vector c defines a direction, which can be also determined by a set of

hyperplanes orthogonal to this direction. Clearly, all these hyperplanes are parallel and

their normals are some multiples of c. For example, in dimension two for c = (2.1, 1.4)′

and b = 5 the hyperplanes {x : (2.1, 1.4)′ · x = 5} and {x : (4.2, 2.8)′ · x = 5} belong to

such set. Recall that we have fixed the intercept at the value of b for all the hyperplanes

in the solution space, and can differentiate them only by their normals. In the parameter

space, each of these hyperplanes corresponds to the point c multiplied with the relevant

scaling factor. Hence the image of all the hyperplanes in the parameter space is obtained

by moving a point along a straight ray ϕ that starts at the origin and contains c, as it

is shown on Figure 5.3.

One of the hyperplanes touches X at the optimum. All others are either intersecting

the interior of X or not intersecting it at all. This means that the touching hyperplane

corresponds to a point lying on the surface of U . Therefore, we should search the

intersection of U with the ray ϕ, and, because of Lemma 5.4, the intersected facet of U
corresponds to the optimal vertex of X .

Note that finding the intersection of a line and a polyhedron in R3 is an important

problem in computer graphics (cf. Kay and Kajiya (1986)). The same principle is

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 94

Figure 5.3: Duality between spaces.

employed for a general dimension d. The uncertainty set U is the finite intersection

of halfspaces Hj , j = 1 . . . J , each being defined by a hyperplane Hj with normal nj

pointing into Hj and an intercept dj .

Consider some point u on the ray ϕ that is not in U . Compute
dj

u′nj
for all halfspaces Hj

that do not include u, i.e., where (u′nj − dj) < 0 holds. (In other words, Hj is visible

from u.) Find j∗ at which this value is the largest. Recall that moving a point u along

ϕ is equivalent to multiplying u by some constant. The furthest move is given by the

biggest constant. The optimal solution x∗ of the robust SLP has to satisfy a′x∗ ≥ b,

which is equivalent to

a′
(
dj∗
b

x∗
)
≥ dj∗ .

Hence, to obtain x∗, the normal nj∗ has to be scaled with the constant b
dj

,

x∗ =
b

dj∗
nj∗ . (5.15)

Besides the regular situation described above, two special cases can arise:

1. There is no facet visible from the origin. This means that no solution is obtained.

2. ϕ does not intersect U . Then the whole procedure is repeated with the opposite

ray −ϕ. If this still gives no intersection, an infinite solution exists.

Finally, we should point out that not the whole polytope U needs to be calculated but

only that part of it that intersects the ray ϕ. In searching for the optimum not all F

facets need to be checked, but only a subset of the surface where the intersection will

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 95

happen. Such a filtration makes the procedure more efficient. Next, we show how to

select this subset.

Let x∗ be an optimal solution of the robust SLP. A subset Ueff of U will be mentioned

as an efficient parameter set if

• x∗ remains the solution for
⋂

a∈Ueff
{x : a′x ≥ b } ⊃ X and

• a,d ∈ Ueff, a′x ≥ b⇒ d′x ≥ b, ∀x implies a = d .

That is to say, Ueff is the minimal subset of U containing all facets that can be optimal

for some c.

Proposition 5.5. Ueff is the union of all facets of U for which dj ≥ 0 holds.

In other words, an efficient parameter set Ueff consists of that part of the surface of U
that is visible from the origin 0. The proof is obvious.

To visualize the efficient parameter set we use the augmented uncertainty set, which is

defined as

{a : a = λa∗, λ > 1,a∗ ∈ Ueff} .

It includes all parameters that are dominated by Ueff; see the shaded area in the right

panel of Figure 5.4.

So far we have assumed that b > 0. It is easy to show, that with b < 0 we have to

construct the intersection of ϕ with the part of the surface of U that is invisible from

the origin 0, which is Ũeff in this case. In the sense of Proposition 5.5, Ũeff contains

all facets of U with dj ≤ 0. Obviously, Ũeff is always non-empty in this case, which, in

turn, means that the existence of a solution is guaranteed. However, the solution can

be infinite if ϕ does not intersect Ũeff.

The situation of b < 0 is common in the maximizing SLPs. In fact, if we have the model

c′x −→ max s.t. a′x ≤ b for all a ∈ U , (5.16)

it is possible to rewrite it as follows:

(−c)′x −→ min s.t. (−a)′x ≥ −b for all a ∈ U . (5.17)

Clearly, (5.17) is equivalent to (5.13) except for the negativity of the coefficient b.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 96

5.4 The algorithm

In this part an accurate procedure for obtaining the optimal solution is given.

Input

• a vector c ∈ Rd of coefficients of the goal function,

• n observations {a1, . . . ,an} ⊂ Rd of coefficient vectors of the restriction,

• a right-hand side b ∈ R of the restriction,

• a distortion risk measure ρ (defined either by name or by a weight vector).

Output

• the uncertainty set U of parameters given by

– facets (i.e., normals and intercepts),

– vertices,

• the optimal solution x∗ of the robust LP and its value c′x∗.

Steps of the Algorithm

A. Calculate the subset Ueff ⊂ U consisting of facets {(nj , dj)}j∈J .

B. Create a line ϕ passing through the origin 0 and c.

C. Search for a facet Hj∗ of Ueff that is intersected by ϕ:

a. Select a subset Usel ⊆ Ueff of facets: This may be either Ueff itself or its part

where the intersection is expected; Usel = {(nj , dj) : j ∈ Jsel}. For example,

we can search for the best solution on a pre-given subset of parameters. The

other possible filtration is iterative transition to a facet with better criterion

value.

b. Take a point u = λc, λ ≥ 0, outside the augmented uncertainty set. Find the

j∗ = arg max
j
{λj =

dj
u′nj

: λj > 0}j∈Jsel⊆J . For the case b < 0 just replace

arg max with arg min.

I. If ϕ does not intersect Ueff, then the solution is infinite. If b > 0, then

repeat C.b. for the opposite ray −ϕ; else stop.

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 97

Figure 5.4: Finding the optimal solution on the uncertainty set.

II. If in the case b > 0 the inner part of U contains the origin, then no

solution exists; stop.

c. x∗ = b
dj∗

nj∗ is the optimal solution of the robust LP.

In fact, the line ϕ consists of points that correspond to hyperplanes whose normal is

the vector c in the dual space. One part of ϕ is dominated by points from Ueff, while

the other is not (which results from Proposition 5.5). The crossing point a∗ defines the

hyperplane that touches the feasible set at the optimum as its dual.

Moreover, a typical nonnegativity side constraint x ≥ 0 can easily be accounted for in

the algorithm. In considering this, the search for facets has just to be restricted to those

having nonnegative normals.

To solve the portfolio selection problem (5.6) with the algorithm, we treat the realizations

of the vector −r̃ of losses rates as {a1, . . . ,an}, and minimize c′x with c = 1
n

∑n
i=1 ai.

This corresponds to transforming the maximizing SLP by (5.17) and running the proce-

dure outlined above. Note that both ϕ and U contain the point 1
n

∑n
i=1 ai, that is, they

always intersect, which, in turn, guarantees the existence of a finite solution. To meet

a unit budget constraint, the solution x∗ is finally scaled down by
∑d

j=1 x
∗
j = 1. Recall

that the risk measure is, by definition, scale equivariant.

5.4.1 Sensitivity and complexity issues

Next, we discuss how the robust SLP and its optimal solution behave when the data

{a1, . . . ,an} on the coefficients are slightly changed. From (5.18) it is immediately seen

that the support function hU of the uncertainty set is continuous in the data aj as

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 98

well as in the weight vector wα. (Note that the support function hU is even uniformly

continuous in a1, . . . ,an and wα, which is tantamount saying that the uncertainty set

U is Hausdorff continuous in the data and the risk weights.) Consequently, a slight

perturbation of the data will only slightly change the value of the support function of

U , which is a practically useful result regarding the sensitivity of the uncertainty set

with respect to the data. The same is true for a small change in the weights of the risk

measure.

We conclude that the point aj∗ where the line through the origin and c cuts U depends

continuously on the data and the weights. However this is not true for the optimal

solution x∗, which may ‘jump’ when the cutting point moves from one facet of U to a

neighboring one.

The theoretical complexity in time of finding the solution is compounded from the

complexity of one transition to the next facet and by the whole number of such transitions

until the sought-for facet is achieved. Bazovkin and Mosler (2012a) have shown that

the transition has a complexity of O(d2n). In turn, in the same paper the number of

facets N(n, d) of an WM region is shown to lie between O(nd) and O(n2d) depending

on the type of the WM region. Thus, it is easily seen, that an average number of

facets in a facets chain of a fixed length is defined by the density of facets on the region’s

surface, d
√
N(n, d), and is estimated by a function between O(n) and O(n2). The overall

complexity is then O(d2n2) up to O(d2n3). Notice, that the lower complexity is achieved

for zonoid regions, namely when the expected shortfall is used for the risk measure.

5.4.2 Ordered sensitivity analysis

Alternative uncertainty sets that are ordered by inclusion can be also compared. From

Lemma 5.3 it is clear that the respective sets of feasible solutions are then ordered in the

reverse direction; see, e.g., Figure 5.5. In particular we can consider the robust LP for two

alternative distortion risk measures based on weight vectors wα and wβ, respectively,

that satisfy the monotonicity restriction (5.11). Then the resulting uncertainty sets

are nested, Uβ ⊂ Uα and so are, conversely, the feasible sets, Xβ ⊃ Xα. This is a

useful approach for visualizing the sensitivity of the robust LP against changes in risk

evaluation.

5.5 Robust SLP for generally distributed coefficients

So far an SLP (5.1) has been considered where the coefficient vector ã follows an empirical

distribution. It has been solved on the basis of n observations {a1, . . . ,an}. In this

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 99

Figure 5.5: Example of the ‘reversed’ central regions in the dimension 2.

section the SLP is addressed with a general probability distribution P of ã. We formulate

the robust SLP in the general case and demonstrate that the solution of this SLP can

be consistently estimated by random sampling from P .

Consider a distortion risk measure ρ (5.8) that measures the risk of a general random

variable Y and has weight generating function r, ρ(Y) = −
∫ 1

0 QY (t)dr(t). As in Section

5.2.2 a convex compact U in Rd is constructed through its support function hU ,

hU (p) =

∫ 1

0
Qp′ã(t)dr(t) .

Now, let a sequence (ãn)n∈N of independent random vectors be given that are identically

distributed with P , and consider the sequence of random uncertainty sets Un based on

ã1, . . . , ãn. Dyckerhoff and Mosler (2011) have shown:

Proposition 5.6 (Dyckerhoff and Mosler (2011)). Un converges to U almost surely in

the Hausdorff sense.

The proposition implies that by drawing an independent sample of ã and solving the

robust LP based on the observed empirical distribution a consistent estimate of the

uncertainty set U is obtained. Moreover, the cutting point aj∗ , where the line through

the origin and c hits the uncertainty set, is consistently estimated by our algorithm. If an

ambiguous solution is possible, in particular for a discretely distributed ã, the algorithm

calculates one of the available solutions consistently. In fact, the optimal solution x∗

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 100

may perform a jump when aj∗ moves from one facet of U to a neighboring one, however

the algorithm for determining x∗ selects always a unique facet containing aj∗ .

5.6 Concluding remarks

A stochastic linear program (SLP) has been investigated, where the coefficients of the

linear restrictions are random. Distortion risk constraints are imposed on the ran-

dom restrictions and an equivalent robust SLP is modeled, whose worst-case solution

is searched over an uncertainty set of coefficients. If the risk is measured by a general

coherent distortion risk measure, the uncertainty set of a restriction has been shown to

be a weighted-mean trimmed region. This provides a comprehensive visual and com-

putable characterization of the uncertainty set. An algorithm has been developed that

solves the robust SLP under a single stochastic constraint, given a set of observations.

It is available as an R package StochaTR (Bazovkin and Mosler, 2012b). Moreover, if

the data is generated by an infinite i.i.d. sample, the limit behavior of the solution has

been investigated. The algorithm allows the introduction of additional deterministic

constraints, in particular, those regarding nonnegativity.

Table 5.1: Running times of StochaTR for different n and d (in seconds).

d\n 1000 2000 3000 4000 5000 10000 15000 20000 25000

3 0.3 1.14 1.76 2.92 3.41 6.18 12.61 15.06 47.54
4 0.66 2.21 3.47 4.48 4.27 7.68 16.97 20.04
5 1.85 3.09 5.68 9.28 11.03 13.52 27.34 54.86
6 2.08 4.41 5.62 14.99 18.73 25.07 46.88
7 2.16 6.22 13.3 25.44 28.56 52.33
8 4.18 9.78 20.18 31.82 34.23
9 5.18 14.75 24.11 35.94 61.14
10 6.17 16.97 33.82 42.11 67.06

Table 5.1 reports simulated running times (in seconds) of the R package for the 5%-level

expected shortfall and different d and n. The data are simulated by mixing the uniform

distribution on a d-dimensional parallelogram with a multivariate Gaussian distribution.

In light of the table the complexity seems to grow with d and n slower than O(d2n2).

Besides this, we contrast our new procedure with the seminal approach of Rockafel-

lar and Uryasev (2000), who solve the portfolio problem by optimizing the expected

shortfall with a simplex-based method. In illustrating their method, they simulate

three-dimensional normal returns having specified expectations and covariance matri-

ces. We have applied our package to likewise simulated data on a 1.73GHz single-core

CPU with at most 1.5 gigabytes of memory available. The computational times are

exhibited in Table 5.2. For a comparison, some cells also contain a second value that

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 101

corresponds to the Rockafellar and Uryasev (2000) procedure and is taken from Table 5

there. Our algorithm usually needs some dozens of iterations only, which is substantially

fewer than the algorithm of Rockafellar and Uryasev (2000). Also, in contrast to the

latter, where the resulting portfolio can vary between (0.42, 0.13, 0.45) for n = 1000 and

(0.64, 0.04, 0.32) for n = 5000, we get a stable optimal portfolio. Our solution averages

at (0.36, 0.15, 0.49), which has approximately the same V@R and expected shortfall as

that in the compared study but yields a better value of the expected return. Note that

the computational times reported in Rockafellar and Uryasev (2000) do not differ much

from ours.

Table 5.2: Running times of StochaTR for different n and α (in seconds); in paren-
theses running times of Rockafellar and Uryasev (2000).

α\n 1000 5000 10000 15000 20000 25000

0.10 1.1 (<5) 7.2 (6) 23.7 (20) 46 56.3 (45) 74.4
0.05 0.5 (<5) 4.7 (6) 14.0 (12) 20.0 39.8 (40) 53.2
0.01 0.3 (<5) 2.3 (6) 3.8 (6) 7.9 22.1 (50) 38.5

Finally, our approach turns out to be very flexible. In particular, non-sample information

can be introduced into the procedure in an interactive way by explicitly changing and

modifying the uncertainty set. A possibility of extending the algorithm to solve SLPs

with multiple constraints (5.2) will be shown in Chapter 6. Also procedures that allow

for a stochastic right-hand side in the constraints and random coefficients in the goal

function will be explored in Chapter 6.

5.7 Appendix: Technical details

In this supplement, we first discuss the principal properties of distortion risk measures

and the characterization of a risk bound by an uncertainty set. Then we describe WM

regions fully by their projections on lines. Based on these notions and facets, next,

Theorem 5.2 is proved. Finally, the coherency property of WM regions is demonstrated.

5.7.1 Properties of distortion risk measures

Let us consider a probability space 〈Ω,F , P 〉 and a set R of random variables (e.g.,

returns of portfolios). A function ρ : R → R is a monetary risk measure if for Y, Z ∈ R
it holds:

1. Monotonicity : If Y is pointwise larger than Z, Y ≥ Z, then it has less risk,

ρ(Y) ≤ ρ(Z) .

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 102

2. Translation invariance: ρ(Y + γ) = ρ(Y)− γ for all γ ∈ R .

A risk measure is law-invariant if it holds additionally:

3. Law-invariance: If Y and Z have the same distribution, PY = PZ , then ρ(Y) =

ρ(Z) .

A law-invariant risk measure ρ is coherent if it is, in addition, positive homogeneous and

subadditive,

4. Positive homogeneity : ρ(λY) = λρ(Y) for all λ ≥ 0 ,

5. Subadditivity : ρ(Y + Z) ≤ ρ(Y) + ρ(Z) for all Y,Z ∈ R .

The last two restrictions imply that diversification is encouraged by the risk measure - a

crucial property in risk management. For the theory of risk measures, see, e.g., Föllmer

and Schied (2004). Loosely speaking, diversification is a natural mechanism of reducing

risk by ‘not putting all the eggs into one basket’.

Note that a distortion risk measure (5.8) satisfies the above properties 1 to 3, hence is

a law-invariant risk measure.

A function ρ : R → R is said to satisfy the Fatou property if for any bounded sequence

converging pointwise to Y , lim infn→∞ρ(Yn) ≥ ρ(Y) holds. With the notion of coherent

risk measures, we reformulate a fundamental representation result of Huber (1981):

Proposition 5.7. ρ is a coherent risk measure satisfying the Fatou property if and

only if there exists a family Q of probability measures that are dominated by P (i.e.,

P (S) = 0⇒ Q(S) = 0 for any S ∈ F and Q ∈ Q) such that for all Y ∈ R

ρ(Y) = sup
Q∈Q

EQ(−Y) .

We say that the family Q generates ρ. In particular, let (Ω,A) = (Rd,Bd) and P be the

probability distribution of a random vector ã. Huber’s Theorem implies that for any

coherent risk measure ρ there exists a family G of P -dominated probabilities on Bd so

that

ρ(ã′x− b) ≤ 0 ⇔ ρ(ã′x) ≤ −b

⇔ inf
G∈G

EG(ã′x) ≥ b

⇔ EG(ã′x) ≥ b for all G ∈ G .

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 103

Let us denote the unit simplex in Rn by ∆n,

∆n = {q ∈ Rn :
n∑
k=1

qk = 1, qk ≥ 0 ∀k} .

Then, if ã has an empirical distribution on n given points in Rd, any subset Q of ∆n

corresponds to a family of P -dominated probabilities, and thus defines a coherent risk

measure ρ. As an immediate consequence of Huber’s theorem an equivalent characteri-

zation of the risk constraint is obtained (see also Bertsimas and Brown (2009)):

Proposition 5.8. Let ρ : R → R be a coherent risk measure and let ã have an empirical

distribution on a1, . . . ,an ∈ Rd. Then there exists some Qρ ⊂ ∆n such that

ρ(ã′x− b) ≤ 0 ⇔a′x ≥ b for all

a ∈ Uρ := conv{a ∈ Rd : a =

n∑
i=1

qia
i, (q1, . . . , qn) ∈ Qρ} .

Here, conv(W) denotes the convex closure of a set W . Proposition 5.8 says that a

deterministic restriction a′x ≥ b holding uniformly for all a in the uncertainty set Uρ is

equivalent to the risk constraint (5.5) on the stochastic restriction.

5.7.2 Characterization of WM regions

A WM region (5.10) is characterized by its projections on lines. Note that each p ∈ Sd−1,

where Sd−1 is a (d− 1)-variate unit sphere, yields a projection of the data a1, . . . ,an on

the line generated by p and thus induces a permutation πp of the data,

p′aπp(1) ≤ p′aπp(2) ≤ · · · ≤ p′aπp(n) .

The permutation is not necessarily unique - and let H(a1, . . . ,an) denote the set of

all directions p ∈ Sd−1 that induce a non-unique permutation πp. Recall that the

support function of a closed convex set K is defined as h(p) = sup{p′x : x ∈ K},
p ∈ Sd−1. Given a convex polytope K, an extreme point of K is the unique solution of

max{p′x : x ∈ K} for some p ∈ Sd−1. Dyckerhoff and Mosler (2011) have shown that

the support function hα of Dwα = Dwα(a1, . . . ,an) amounts to

hα(p) =
n∑
j=1

wα,jp
′aπp(j) , p ∈ Sd−1 . (5.18)

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 104

It follows that, whenever πp is unique, the polytope Dwα has an extreme point in

direction p, which is given by

n∑
j=1

wα,ja
πp(j) =

n∑
i=1

wα,π−1
p (i)a

i , p ∈ Sd−1 \H(a1, . . . ,an) . (5.19)

5.7.3 Proof of Theorem 5.2

Now we are moving to the proof of Theorem 5.2. From (5.9) and (5.19) we can see that,

with qi = wα,π−1
p (i) and y[i] = −p′ai, the extreme point of the projection of Dwα on the

p-line is obtained by applying a q-distortion risk measure to the projected data points.

Now, setting

Qρ = {q ∈ ∆n : q = (wα,π−1
p (1), . . . wα,π−1

p (n)),p ∈ S
d−1 \H(a1, . . . ,an)}

and having Uρ = conv{a : a =
∑n

i=1 qia
i,q ∈ Qρ} according to Proposition 5.8, we

get that all extreme points of Dwα are in Uρ, hence Dwα ⊆ Uρ. On the other hand, for

every q ∈ Qρ it holds that
∑n

i=1 qia
i ∈ Dwα , which implies Uρ ⊆ Dwα . We conclude

that Uρ = Dwα .

Thus, using the result from Proposition 5.8, we have proven the equality between the

distortion risk constraint feasible set and a properly chosen WM region, which parallels

Theorem 4.3 in Bertsimas and Brown (2009) and proves Theorem 5.2.

Finally, we would like to emphasize some facts that are used for constructing the trimmed

regions as convex polytopes. The vertices of a polytope are its extreme points. From the

above we know that the directions p ∈ Sd−1 \H(a1, . . . ,an) belong to vertices, while the

directions p ∈ H(a1, . . . ,an) belong to parts of the boundary that have affine dimension

≥ 1.

5.7.4 Risk-relevant properties of WM regions

In the context of risk measurement it is crucial that the WM regions possess two prop-

erties that enable them to generate coherent risk measures: monotonicity and subaddi-

tivity.

Proposition 5.9. (Coherency properties of WM regions)

Chapter 5. Stochastic Linear Programming and Distortion Risk Measures 105

Figure 5.6: An illustration of the subadditivity property.

1. Monotonicity: If zk ≤ yk holds for all k (in the componentwise ordering of Rd),

then

Dwα(y1, . . . ,yn) ⊂ Dwα(z1, . . . , zn)⊕ Rd+ , and

Dwα(z1, . . . , zn) ⊂ Dwα(y1, . . . ,yn)⊕ Rd− .

2. Subadditivity:

Dwα(y1 + z1, . . . ,yn + zn) ⊂ Dwα(y1, . . . ,yn)⊕Dwα(z1, . . . , zn) .

In this Proposition the symbol ⊕ is the Minkowski addition, A⊕B = {a+ b : a ∈ A, b ∈
B} for A and B ⊂ Rd. For a proof, see Dyckerhoff and Mosler (2011).

The subadditivity property of WM regions is an immediate extension of the subaddi-

tivity restriction usually imposed on univariate risk measures. In dimensions two and

more it has an interpretation as a dilation of one trimmed region by the other. To

understand this better let us consider the simple example of the Minkowski addition

given in Figure 5.6. The figure exhibits a solid triangle with one vertex at the origin

and a dotted-border quadrangle. Now move the triangle in such a way that its lower

left corner passes all points of the quadrangle. At each point of the quadrangle we get

a copy of the initial triangle (with a dashed border) shifted by the coordinate of the

point. The union of all these triangles gives us the Minkowski sum of the initial two

sets, which is the big heptagon in Figure 5.6. Observe that, if the rectangle is moved

around the triangle, the same sum is obtained. The subadditivity states that if, e.g.,

these two figures are WM regions Dwα(y1, . . . ,yn) and Dwα(z1, . . . , zn) respectively, the

Dwα(y1 + z1, . . . ,yn + zn) is contained by the heptagon.

Chapter 6

A General Solution for

Robust Linear Programs with

Distortion Risk Constraints

In this chapter, we are also investigating linear optimization problems that have random

parameters, however, in a general case, where they include m ≥ 1 constraints. In

constructing a robust solution x ∈ Rd, we control the risk arising from violations of the

constraints. This risk is measured by set-valued risk measures, which extend the usual

univariate coherent distortion (= spectral) risk measures to the multivariate case. To

obtain a robust solution in d variables, the linear goal function is optimized under the

restrictions holding uniformly for all parameters in a d-variate uncertainty set. This

set is built from uncertainty sets of the single constraints, each of which is a weighted-

mean trimmed region in Rd and can be efficiently calculated. Furthermore, a possible

substitution of violations between different constraints is investigated by means of the

admissable set of the multivariate risk measure. In the case of no substitution, we give

an exact geometric algorithm, which possesses a worst-case polynomial complexity. We

extend the algorithm to the general substitutability case, that is, to robust polyhedral

optimization. Similarly to the single-constraint algorithm from the previous chapter,

the consistency of the approach is shown for generally distributed parameters. Finally,

an application of the model to supervised machine learning is discussed. The chapter is

mostly based on Bazovkin and Mosler (2015).

107

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 108

6.1 Motivation

6.1.1 The robust model

In the last decade, much progress has been made in the field of robust linear optimization,

that is, in finding worst-case solutions under uncertain side conditions. A wide spectrum

of models and methods has been proposed. Recent developments in theory and practice

are reviewed by Gabrel et al. (2014). For a systematized collection of most significant

ones, see Bertsimas et al. (2011). An important part of the literature uses risk measures

to quantify the uncertainty of violations of side conditions; see, e.g., Mosler and Bazovkin

(2014), Bertsimas and Brown (2009), and Natarajan et al. (2009). Such risk measures

are flexible and allow an immediate interpretation. They can be properly selected and

tuned to control the relevant sources of uncertainty. Then, essentially, the goal function

is optimized under the restriction that the risk of violation stays within acceptable

bounds.

The present chapter contributes to this strand. We generalize the approach of Mosler and

Bazovkin (2014), which is described in Chapter 5, where a single-constraint optimization

was solved, to much more general restrictions. In doing this, for each linear restriction

of a given linear program a so-called uncertainty set of parameters is constructed, which

consists of all possible values of the unknown coefficients that are acceptable for the

specified risk level of constraint violation. We employ multivariate coherent distortion

risk measures, which are extensions of the usual coherent distortion risk measures or,

equivalently, coherent spectral risk measures. The uncertainty sets regarding these mea-

sures are convex bodies and come out to coincide with weighted-mean (WM) trimmed

regions. WM regions, as recently developed by Dyckerhoff and Mosler (2011), describe

a multivariate distribution by regions of different depth (= centrality). They can be

exactly calculated in any dimension (Bazovkin and Mosler (2012a)).

Various other notions of uncertainty sets have been proposed in the recent literature; a

review in the context of portfolio optimization is given in Fabozzi et al. (2010). These ap-

proaches define the uncertainty set similar to a confidence set, describing the uncertainty

by special functionals (e.g. ϕ-divergences in Ben-Tal et al. (2013)) or the uncertainty in

parameters of some parametric distributional assumptions (e.g. Delage and Ye (2010)).

In our approach we avoid such assumptions and represent the uncertainty of constraint

violations in a purely nonparametric way, viz. by depth-based central regions. To ob-

tain a numerical solution of a given optimization problem we employ the well developed

geometric machinery of central regions calculation.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 109

Originally, we are given the following stochastic linear program:

c′x −→ min s.t. Ãx ≥ b̃ , (6.1)

assuming that Ã is an m × d matrix having stochastic entries and that b̃ ∈ Rm may

be stochastic, too. As earlier, random variables are marked with a tilde: For example,

b̃ will denote the stochastic right-hand side vector, while b is used for a deterministic

value of it.

To simplify the readability of this chapter, we recall some notions from the chapter 5.

To obtain a risk-constrained stochastic linear program, we use one of the following forms

of constraints:

ρm(Ãx− b) ≤ 0 , resp. (6.2)

ρ1(Ãjx− bj) ≤ 0 , j = 1 . . .m , (6.3)

where Ãj denotes the j-th row of Ã, and ρm is a risk measure taking values in Rm,

m ≥ 1. An SLP that minimizes c′x subject to the restrictions (6.2) or (6.3) is called a

risk-constrained stochastic linear program.

A crucial point is the choice of the risk measure. As an alternative to it, we may control

the probability of satisfying all restrictions by a joint chance constraint,

Prob[Ãx− b ≥ 0] ≥ 1− α . (6.4)

Limiting the violation probability by some fixed α we obtain the chance-constrained

linear program. The latter program allows in general no easy solution, as the possible

stochastic dependency between coefficients of different linear constraints (i.e., between

the rows of Ã) complicates the problem. To boost the tractability, we may neglect such

dependencies and split (6.4) into separate chance constraints,

Prob[Ãjx− bj ≥ 0] ≥ 1− αj , j = 1 . . .m . (6.5)

Here, we could say that each chance constraint limits the risk regarding a single side

condition by imposing a maximum probability αj on its violation. However, it is known

that even in this situation the problem turns out to be computationally tractable only

for special distributions of parameters. That is why we leave such models aside from

consideration, staying with well-suitable risk measures.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 110

In the current chapter, we consider no single risk measure but a whole class of such

measures, the coherent distortion risk measures (see Definition 5.8). Given a random

variable Y that has an empirical distribution on the ordered values y(1), y(2), . . . , y(n),

this definition of a distortion risk measure ρ becomes

ρ(Y) = −
n∑
i=1

wi y(i) , (6.6)

with weights wi = r(y(i))− r(y(i−1)). Coherent distortion risk measures possess certain

desired properties: monotonicity, translation invariance, law invariance, positive homo-

geneity and subadditivity. The last two properties imply a most prominent postulate

of risk measurement: coherence, that is, the risk measure decreases with diversification.

In a more general context, the risk measure used here can be seen as a quality measure

(cf. Kall and Mayer (2010)). Our choice of the quality measure, besides its generality,

possesses a clear interpretation and always generates a convex program. Later we will

demonstrate that our approach in fact suites an even more general robust program that

not only copes with linear stochastic restrictions, but also those of a robust polyhedral

type, which include robust conic restrictions as a special case.

In applications Ã and b̃ usually have to be estimated from data. Here we assume that a

sample of coefficient matrices A1, . . . ,An ∈ Rm×d has been observed and the solution of

the SLP is based on this data. The data is mentioned as an empirical distribution giving

equal mass 1
n to A1, . . . ,An, and with this data the SLP is named an empirical risk-

constrained SLP. Similarly, when also the right hand side is stochastic, a joint sample

of (Ã, b̃) is considered.

Theorem 5.2 states that the class of univariate restrictions (6.3) involving coherent distor-

tion risk measures corresponds to weighted-mean trimmed regions in Rd as uncertainty

sets. Calculating U turns out to be computationally feasible due to the direct connection

between the uncertainty set and a trimmed region, which can be efficiently determined

by the algorithm of Bazovkin and Mosler (2012a), which is described in the chapter 2.

The risk measure ρ defines the vector wα uniquely and, by this, the trimmed region

Dwα . The further steps of the algorithm of Mosler and Bazovkin (2014) are essentially

standing on the search for an intersection of a ray with the uncertainty set U = Dwα .

The solution is characterized by the normal to the facet of U that is intersected by the

line in direction of the vector c.

The goal of this chapter is to develop a similar approach to the general SLP (6.2).

Specifically, we

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 111

1. generalize the analysis of the single-constraint SLP to multiple risk constraints

(m ≥ 2);

2. construct a geometric algorithm to solve the multi-constraint problem (if con-

straints cannot be compensated by each other, i.e. in the unsubstitutability case,

the algorithm operates in the same dimension d as the single-constraint procedure

does);

3. extend the robust multi-constraint linear optimization to robust polyhedral opti-

mization (which covers the substitutability case);

4. estimate the uncertainty set and the robust solution consistently.

The further material is organized as follows. The construction of the solution for the

multi-constraint SLP is described in Section 6.2. The formal algorithm is given in the

subsequent Section 6.3. The same section reviews the extension of the algorithm to a

program with stochastic right-hand side. Its consistency with the generally distributed

data is proven in Subsection 6.3.5. Finally, Section 6.4 is devoted to a discussion of the

algorithm and an application to supervised learning.

6.2 Multiple constraints

6.2.1 A general model

Consider the SLP (6.1) with m ≥ 2 constraints and deterministic right-hand side b. We

aim at generalizing Theorem 5.2 and eliminating uncertainty by a robust linear program

as follows:

c′x −→ min s.t. Ax ≥ b for all A : δ(A) ∈ U , (6.7)

where δ(A) = (A1, ...,Am)′ ∈ Rm·d is the vectorized matrix A.

Again, a proper uncertainty set U has to be constructed. In doing this, we first specify the

m-variate risk measure, which is set-valued. Cascos and Molchanov (2007) have shown

that certain multivariate risk measures correspond to trimmed regions of the considered

distribution. In particular, the m-variate set-valued analogue µm of a coherent spectral

risk measure is defined through a weighted-mean (WM) region Dwα in the following

manner:

µm(Ãx− b) = −
(
Dwα(Ãx− b)⊕ Rm+

)
⊂ Rm. (6.8)

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 112

It can be interpreted as the set of deterministic vectors in Rm which, being added to

the random variable Ãx − b, cannot shift its α-region out of the negative orthant Rd−.

In other words, which cannot, to the given precision level, guarantee to avoid a strictly

negative outcome of the shifted random variable. It is easy to see, that in dimension one

µ1(ã′x− b) is the half-line bounded above by ρ1(ã′x− b), where ρ1 is a coherent spectral

measure of a univariate risk. Thus, (6.8) can be regarded as a set-valued extension of

a univariate distortion risk measure to multiple dimensions1. This measure has been

considered in detail in Chapter 4. In this chapter, we use µ for denoting set-valued, and

ρ for denoting vector-valued or real-valued measures.

If a linear program (6.1) has more than one stochastic constraints, we must consider

not only that some or all of them may be violated, but also that the degree of violation

of a restriction may be offset against that of another restriction. That is, the decision

maker, in evaluating a possible solution, may compensate the missing strictness of one

constraint by the fact that another constraint or a group of constraints is more strictly

satisfied. In this, the values of single constraint satisfaction are regarded as substitutable

by the decision maker, and his or her task in selecting a solution includes some kind

of diversification regarding the constraints. Note that this possible value compensation

between the constraints has nothing to do with a potential stochastic dependency among

the parameters of different constraints.

To include the possibility of value substitution in our model, we introduce a multivariate

utility (= negative loss) function u : Rm → R that evaluates the violations v1, . . . , vm

of the m constraints. Consider F = {v : u(v) ≥ 0} as the set of admissable violations.

If u is a quasiconcave function, F is convex. Later we will specialize F to be a convex

polyhedron, see (6.10). The marginals may or may not substitute each other. This fact

actually affects the form of F .

Using F , we rewrite the joint risk constraint (6.2) as follows2:

− µm(Ãx− b) ⊂ F . (6.9)

1Rüschendorf (2013) proposes a different notion of a multivariate distortion risk measure, which is
scalar-valued: Given a d-variate distribution having p.d.f. F , he considers the level set Q(t) of F at
level t and defines some scalar measure of Q(t) as the t-quantile. Then, based on these scalar-valued
quantiles, he introduces multivariate risk measures in the same way as univariate ones.

2Here, F coincides with the admissable set of the vector-valued multivariate risk measure ν introduced
in Bazovkin (2014) (see also Chapter 4). This measure consists in the smallest vector which, when being
added to the random returns vector Y, puts −µm (Y + ν(Y)) into the admissable set. The latter is
the set of returns which appear to be acceptable to the risk taker (or the regulator). In this model, we
obtain (6.9) with only µm and F being involved:

ν(Ãx− b) ≤ 0 ⇐⇒ −µm(Ãx− b) ⊂ F .

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 113

In fact, the set µm(Ãx− b) is contained in the set of all violation vectors v ∈ Rm that

are admitted. If substitution between constraints is possible, the level of substitutability

may vary from full substitutability to unsubstitutability. It is easy to show, that the first

extremal case leads to an equivalent single-constraint SLP.

Full substitutability means that u is additive, u(v) =
∑

j uj(vj), and marginal utilities

uj are linear. In this case we obtain

Fsub = {v : u(v) =
∑
j

uj(vj) =
∑
j

kj · vj = k′v ≥ 0}

with some k ≥ 0. This reduces to a problem with a single constraint (k′Ã)x ≥ k′b. Here

the admissable set Fsub is a halfspace bordered by the hyperplane passing the origin and

having normal k. In the second extreme case (unsubstitutability) the admissable set is

the positive orthant, Funsub = Rm+ . Solving the SLP in this case will be the subject of

Section 6.3. In the intermediate case of the partial substitutability F is a set lying in

Fsub and containing Funsub.

To sum up, for obtaining a general solution of the multi-constraint SLP we have to con-

sider different levels of substitutability among the violation of constraints. It turns out

that the general substitutability case can be reduced to unsubstitutability via a special

transformation of the model. In the next subsection we will define the transformation

and demonstrate this fact. After that, to manage the complete task, we solve the SLP

with unsubstitutability.

6.2.2 The general substitutability case

Now we consider the case that violations of constraints can be balanced against each

other. Let us assume that the set F of feasible violations is a convex polyhedron,

characterized by linear inequalities,

F = {y ∈ Rm : p′ky ≥ dk, k = 1 . . .K } (6.10)

with some p1, . . . ,pK ∈ Rm+ and d1, . . . , dK ∈ R, that is, F is an upper convex polytope.

Proposition 6.1. Let ρ1(Z) denote the upper border of the halfline µ1(Z) ⊂ R. Then

it holds: −µm(Ãx− b) ⊂ F if and only if

ρ1(p′kÃx− p′kb) ≤ −dk , for all k = 1 . . .K . (6.11)

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 114

Proof. Let hmS denote the support function of a set S in Rm. For any y ∈ −µm(Ãx− b)

and k = 1 . . .K we obtain:

p′ky ≥ min
z∈−µm(Ãx−b)

{p′k · z}

= hm−µm(Ãx−b)
(−pk)

= h1
p′k·µm(Ãx−b)

(1) = h1
µ1(p′kÃx−p′kb)

(1)

= −ρ1(p′kÃx− p′kb) .

Consequently, we have y ∈ F if −ρ1(p′kÃx − p′kb) ≥ dk . Hence the “if” part of the

proposition is proved. On the other hand, there exists some y ∈ −µm(Ãx− b) so that

the first-line inequality is met with equality. Hence the “only if” part holds, too.

Proposition 6.1 leads to the following theorem, which provides for every general model

an equivalent unsubstitutability model:

Theorem 6.2. The SLP with risk constraint (6.9), where F is defined by (6.10), is

equivalent to an SLP with unsubstitutable constraints

p′kÃ ≥ p′kb for k = 1 . . .K . (6.12)

Proof. According to Proposition 6.1, the SLP with joint risk constraint (6.9) is equiv-

alent to the SLP with constraints (6.11). On the other hand, an SLP with constraints

(6.12) produces the same risk constraints.

Theorem 6.2 enables us to determine a generalized uncertainty set in the multi-constraint

case.

Corollary 6.3. The uncertainty set U of the matrix Ã in an SLP with risk constraint

(6.9) and violations admissable set F (6.10) equals

U =
{

A : δ([p′kÃ]k=1...K) ∈ Xj=1..KDwαj
(p′kÃ)

}
. (6.13)

Proof. Here X denotes the K-fold Cartesian product of WM regions. Due to Theo-

rem 6.2, we can transform the general model into a model with unsubstitutability. In this

case single uncertainty sets will not affect each other. In turn, each single uncertainty

set is calculated as for the single-constraint SLP.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 115

6.2.3 The equivalent unsubstitutability case

We see that U splits up into K parts, which can be calculated individually. It leads to

the following key representation theorem:

Theorem 6.4. (Bazovkin and Mosler, 2015) The SLP (6.1) with violations admiss-

able set F and joint risk constraint (6.9) is equivalent to the following problem:

c′x −→ min s.t. Ax ≥ b for all A ∈ U , (6.14)

where U is defined as in Corollary 6.3.

Proof. Follows from Theorem 6.2, Corollary 6.3 and Theorem 5.2.

Note that if all dk equal zero, we get the general risk-constrained robust conic program.

Besides this, unsubstitutability, obviously, does not imply stochastic independence of

the constraints.

At this point it is reasonable to compare the present framework with that of chance-

constrained problems. Such SLPs (6.5) with individual constraints are extremely critical

to distributional assumptions: in most cases the program turns out to be non-convex

(see, e.g., Kall and Mayer (2010)) and computationally intractable. Plausible results

are recently obtained only for the elliptically distributed random coefficients. If we have

a joint chance-constraint, the difficulty increases. A straight-forward approach, which

distributes the common violation probability equally among the individual constraints,

tends to give poor results, especially if the constraints are stochastically dependent. This

example of approximative solution based on the Bonferroni inequality has been improved

by Chen and Sim (2009) and Chen et al. (2010), who propose more efficient bounds

for the individual probabilities of violation of constraints using results from the order

statistics. But altogether these approximative methods still lack strong interpretation

and universality. In contrast, our approach leads to a natural decomposition of (6.8),

while remaining jointly constrained. Any stochastic dependency among parameters (and,

thus, constraints) is completely feasible.

A powerful flexibilization of our model consists in varying the α’s in (6.13). This is

practical, since some constraints can be more tolerant to violations while others, on the

contrary, are rather strict or even exact (e.g., a non-negativity requirement).

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 116

6.3 Unsubstitutable violations risks: The optimal solution

6.3.1 Generalizing the single-constraint approach

By Theorem 6.2 the general risk-constrained SLP is reduced to an SLP with unsub-

stitutable constraints. Therefore, it suffices to construct an algorithm for solving the

latter SLP. Moreover, Theorem 6.4 reformulates the stochastic constraints in terms of

an uncertainty set.

In this subsection we pursue the following idea: We want to reformulate our problem in

a way that makes it similar to the single-constraint case. In doing so, we first define a

convolution set that will play the same role as the uncertainty set in the single-constraint

SLP algorithm. Then, we show how to construct an equivalent to the optimization line.

Having proved the equivalence of the elements, we are able to formulate the generaliza-

tion of the algorithm to the multiconstraint case.

Let us write Xi for the feasible set generated by the constraint i, i = 1 . . .K, and X for

the common feasible set,

X =

K⋂
i=1

Xi. (6.15)

We aim at solving the SLP by a geometric procedure in the parameter space. For each

constraint, the parameter space has dimension d, while the uncertainty set U lives in

Rd·K . We will construct a set G ⊂ Rd such that X can be rewritten as follows:

X = {x ∈ Rd : Ax ≥ b whenever δ(A) ∈ U} = {x ∈ Rd : a′x ≥ 1 ∀a ∈ G}. (6.16)

G is obtained by convolving the general uncertainty set U into Rd; we will call G the

parameter convolution set. U is then decomposed into the sets Ui, i = 1, . . . ,K, that

can be separately calculated. This dimension reducing construction is possible as the

constraints are not substitutable.

The proper way here is to represent G as an image of X in the parameter space. Accord-

ing to (6.15), all Xi are combined in one space. Combining Ui in the parameter space

becomes possible if any parameter a contained by other uncertainty sets corresponds

to the same Xa = {x : a′x ≥ b} in each case. This condition holds if the right-hand

sides bi are the same for all constraints. If b > 0, we multiply all sets Ui with 1
bi

and

obtain b = 1, without changing the set of feasible solutions. If b ≯ 0 we apply the

transform (6.19), which is described in the next subsection.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 117

G contains the union of 1
bi
Ui, i = 1 . . .K. Thus, according to (6.15) and similar to

Lemma 1 in Mosler and Bazovkin (2014):

X =
⋂
a∈G

Xa =
⋂

a∈ extG
Xa,

where extG denotes the set of extreme points of G, which for a convex body corresponds

to its set of vertices.

This proves that G has similar properties as the uncertainty set of the single-constraint

SLP. In particular, any convex combination of two points in G belongs to G. We obtain:

G = conv

{
K⋃
i=1

1

bi
· Ui

}
. (6.17)

This transformation of X is familiar to polar duality (see, e.g., Grünbaum (2003)). In

our robust problem we need no explicit representation of X and profit from the ready

machinery of WM regions that allows the direct construction of G in the parameter

space.

The next step is constructing the optimization line, which is equivalent to the single-

constraint case and is the line passing through the origin in direction c. Actually, ϕ is the

locus of points that are dual to hyperplanes with the normal c. However, combining the

Ui in one parameter space requires individual transforms of each constraint’s parameter

spaces, thus resulting in different ϕi. Observe that

• ϕi ≡ s · ϕi for any s 6= 0,

• ϕi ≡ ϕ for all i.

Hence all lines ϕ coincide. Further, they are invariant to the affine transform in (6.17).

Therefore, the search of the optimum on G equals the search on U in the single-constraint

SLP.

In concluding this subsection, we turn to the deterministic case, where each Ui degener-

ates to a one-point-set {ai}.3 The steps of our procedure stay the same but allow some

simplifications. For example, calculating G according to (6.17) reduces to the simple

quickhull routine.4

In many practical tasks one has to consider some additional deterministic constraints, in

particular, those of nonnegativity type. In such a setting, a group of trivial constraints

3Consequently we do not need to calculate WM regions (see Figure 6.1).
4Thus, the above approach can be also employed as an alternative to the regular simplex method.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 118

Figure 6.1: Alternative to the simplex algorithm.

xk ≥ 0, k ∈ J , is mapped to a finite cloud of points in the parameter space without

calculating the WM region. The latter implies that such constraints do not significantly

influence the algorithm’s computational complexity.

6.3.2 Relaxing the right-hand side

In this section we show that the model (6.1) of the SLP also covers the case of a random

coefficient vector b, denoted by b̃, as the restriction Ãx ≥ b̃ is equivalent to

[
Ã 1− b̃

] [x

1

]
≥ 1 . (6.18)

By this we obtain an SLP with deterministic right-hand side equal to 1. Now the

solution vector has d + 1 components, the last of which is fixed to 1. Geometrically

the solution corresponds to the intersection of the feasible set with the d-dimensional

hyperplane {x : xd+1 = 1}, that is, the task is actually solved on a convex polytope of

affine dimension d.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 119

Formally speaking, we have to solve an SLP of the form (6.1) with an additional equality

constraint. For this we propose a concise geometrical approach for solving such a prob-

lem. The idea is to modify the vector c so that it gives us the solution of the conditional

task.

First, we replace c with a vector c̄ equal to the normal of the facet that lies on the

hyperplane {(x′, 1)′ ∈ Rd+1}. By this, we get a non-unique solution, which also contains

the sought-for optimum x∗. Looking simultaneously to the parameter space, we see an

intersection of ϕ with G (will be defined in the next section) at the point (0, . . . 0, 1)′. To

get rid of this non-uniqueness, we perform a small rotation of c̄ towards x∗. The latter

amounts to rotating c̄ towards (c′, 0)′, that is, to some new vector cε = (1−ε)c̄+ε·(c′, 0)′

with some 0 < ε < 1.

Proposition 6.5. Let b̃ be a stochastic vector of dimension K. Then (6.1) is equivalent

to the following model: There exists ε̄ > 0 such that

c′ε

[
x

xd+1

]
−→ min (6.19a)

s.t.

[
Ã 1− b̃

0′ 1

][
x

xd+1

]
≥ 1 , (6.19b)

where cε=(1− ε)(0, . . . 0, 1)′ + ε · (c′, 0)′, 0 < ε < ε̄.

Proof. The constraints of (6.1) are equivalent to (6.18). Obviously, if xd+1 = 1 holds,

(6.19b) is also equivalent to (6.18). To show that there exists such a small ε > 0 that

the last inequality in (6.19b) necessarily turns into an equality and, as a consequence,

(6.19b) transforms into (6.18), we first set ε to zero. The corresponding program has a

trivial non-unique solution, because the vector cε equals c̄, which was shown above to

pick a whole facet of the feasible set for a solution.

Some small rotation of cε shifts the solution to the border of this facet, however remaining

on it. This rotation is given by setting ε > 0, i.e. combining the initial vector with the

augmented vector c, namely (c′, 0)′. The both facts together guarantee fixing xd+1 to 1

while optimizing (6.19) with cε. In this situation, (6.19b) reduces to (6.18). Moreover,

the objective function turns into εc′x + 1− ε, which is, up to a constant, equivalent to

the objective of (6.1). This proves the equivalence of (6.19) and (6.1).

Let us now imagine the procedure shown above in the parameter space (see Figure 6.2).

The additional UK+1 is just a point (0, . . . 0, 1)′. The virtual optimization vector cε

generates a line ϕε = ε · ϕ + (1 − ε) · {x : xj = 0, j = 1 . . . d}, that is, an equivalent

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 120

Figure 6.2: Adding a dimension.

affine combination of ϕ and an axis passing through the point (0, . . . 0, 1)′. ϕε intersects

necessarily the cone (part of the surface of G) having (0, . . . 0, 1)′ as its apex. The

respective facet of G determines the optimum x∗ similar to step D.c. of the algorithm

in Subsection 6.3.3 below.

6.3.3 The algorithm

Prerequisites:

In solving the general robust polyhedral optimization problem with an arbitrary F , we

first modify our set of constraints and the vector b according to Theorem 6.2, thus

obtaining the K × d matrix Ã and the K-dimensional vector b.

Without loss of generality, the algorithm is applied to a minimization problem with all

constraints of the same type “≥”. If either b /∈ RK+ or b is stochastic, the pretrans-

formation of Proposition 6.5 should be applied first. In the sequel both modifications

(including that for stochastic right-hand side b̃) are assumed to be done if necessary.

Hence, we have to solve an SLP of form (6.19),

c′ε

[
x

xd+1

]
−→ min

s.t.

[
Ã 1− b̃

0′ 1

][
x

xd+1

]
≥ 1 ,

with cε=(1− ε)(0, . . . 0, 1)′ + ε · (c′, 0)′, 0 < ε < ε̄, where ε̄ is a small positive constant.

Input

• a vector c ∈ Rd of coefficients of the goal function,

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 121

• a combined sample from Ã and b̃ :
[aji

1−bij

]
j=1...K

, i = 1, . . . , n,

• a distortion risk measure µK , given by a name or an explicit weight vector.

Output

• A part of the convolution set G that includes the optimal solution,

• the optimal solution x∗.

Steps of the Algorithm

A. Construct the individual uncertainty sets:

a. Determine, by the algorithm of Bazovkin and Mosler (2012a), {Uj}j=1...K ,

i.e. the WM regions {Dwαj
}j=1...K of each random vector

[ãj

1−b̃j

]
having an

empirical distribution on
[aj1 ... ajn

1−b1j ... 1−bnj

]
, j = 1 . . .K.

b. Add the uncertainty set for the (K+1)-th deterministic constraint in (6.19b):

UK+1 = {(0′, 1)′}.

c. For each nonnegativity restriction xj ≥ 0, add d point-sets Nj = {(e′j , 1)′} to

the uncertainty sets, where ej is the j-th unit vector in Rd.

B. Calculate the convolution set G represented by its facets {(nj ; dj)}j∈G:

a. Take the representation of {Ui}i=1...K by their vertices and put them into the

same space after having rescaled them according to (6.17).

b. Calculate the convex hull of the set using the standard quickhull (Barber

et al., 1996) or some divide-and-conquer algorithm (Grünbaum, 2003).

C. Impose the optimization ordering on the space of parameters, creating the dual

representation of the optimization vector c. It is a line ϕ connecting the origin

(0′, 0)′ and the point (ε · c′, 1− ε)′, with a small ε > 0.

D. Search for a facet Hj∗ of G that is intersected by ϕ (see Figure 6.3). Its dual defines

the sought-for optimal solution x∗:

a. Define a set of facets Gsel to be analysed: This may be either G itself or its

part where the intersection is expected; Gsel = {(nj , dj) : j ∈ Jsel}.

b. Take some u = λc, λ ≥ 0, outside the augmented G.

Find the j∗ = arg max
j
{ dj

u′nj
}j∈Jsel .

c. x∗ = 1
dj∗
· nj∗ is the optimal solution.

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 122

Figure 6.3: Obtaining the solution using the convex hull computation routine.

d. If there is no intersection, the solution is at infinity.

e. If (0′, 1)′ ∈ G, there is no solution.

For efficient calculation of the intersection of ϕ with G we can apply an approximative

procedure which converges to the precise solution. The procedure finds a facet of some

scaled Ui that is closest from outside to the sought-for facet of G. Obviously, if the facet

is part of some uncertainty set, the obtained solution is optimal.

6.3.4 Complexity

The complexity of the algorithm is firstly determined by the routine for the convex hull.

Before analyzing the general algorithm, we take a look at its deterministic counterpart.

In solving a deterministic LP we have to calculate the convex hull of K+1 points, which

has a worst-case complexity of O(K logK+K[d2]); see Chazelle (1993). The naive linear

search on the set of n facets has a complexity of O(nd). Consequently, the worst-case

complexity of our algorithm amounts to O(d · K[d2]), which is polynomial. It is well

known (e.g. Borgwardt (2001)) that no variant of the simplex method exists that solves

an LP with polynomial complexity. Only ellipsoid and interior-point methods (using

randomizations) can achieve polynomial complexity.

For the general algorithm is is very natural to use ”divide and conquer” algorithms,

which construct the convex hull of the whole data out of convex hulls of subsets of

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 123

data. Such procedures have best complexities in dimensions 2 and 3, namely O(n log n).

For example, the standard quickhull algorithm has complexity between O(n log n) and

O(n2), depending on the input. However, to our knowledge, such ”divide and conquer”

algorithms are available in the literature only for dimensions up to 5 (see, e.g., Buckley

(1988)).

In fact, we need not calculate the whole convex hull, because we are interested only in

the normal to the hyperplane at the intersection (even the actual facet is not interesting

for us). This is why we can substantially reduce the complexity by cutting off the region

of the intersection by an ellipsoid or a cylinder having axis ϕ. The worst-case complexity

of the general algorithm is also polynomial, however of a high power, which can cause

difficulties for large-scale problems.

6.3.5 Robust SLP for generally distributed coefficients

In the previous sections we assumed the random parameters Ã and b̃ to follow an

empirical distribution based on observations {A1, . . . ,An} and {b1, . . . ,bn}. Now we

want to consider an SLP (6.1), where (Ã, b̃) follows a general probability distribution

P and realizations are randomly sampled from this distribution.

Actually, Mosler and Bazovkin (2014) have shown that the individual uncertainty set

Uj is a consistent estimator of its population counterpart. Convergence is almost surely

in the Hausdorff sense, which is based on the law of large numbers for weighted-mean

regions (Dyckerhoff and Mosler (2012)). Here, our general algorithm constructs Gn as

the convex union of individual uncertainty sets, which, obviously, also converges almost

surely in the Hausdorff sense to G:

Proposition 6.6. Gn converges to G almost surely in the Hausdorff sense.

Also the cutting point, where the line ϕ hits the convolution set G, is consistently

estimated by our algorithm. A potential complication lies in the fact that the surface of

G is, in general, not smooth. That is why the optimal solution x∗, which, obviously, is

defined by the tangent hyperplane at the cutting point can be ambiguous. However, even

in such situations, the algorithm automatically selects a unique facet of G determining

x∗.

6.4 Conclusion and application

A new geometric algorithm is proposed for robust linear optimization under distortion

risk constraints. The algorithm constructs an uncertainty set in the parameter space,

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 124

which measures the risk arising from non-deterministic parameters in the original linear

constraints. The randomness may affect the coefficient matrix A as well as the right

hand side b. In our setting a multivariate coherent distortion risk measure is applied to

the joint distribution of the parameters. This results in uncertainty sets for each single

constraint, which are so called weighted-mean trimmed regions. The multi-constraint un-

certainty set then comes out as the convex hull of the union of rescaled single-constraint

uncertainty sets. It is determined by calculating the relevant parts of weighted-mean

trimmed regions, which is done by the algorithm of Bazovkin and Mosler (2012a). (Note

that the uncertainty set needs not be determined from an external sample; alternatively

it can be introduced explicitly by the optimizer. In this case the algorithm starts with

step C.)

The algorithm can be applied to multi-constraint as well as single-constraint problems.

Also, as a special case, deterministic linear optimization problems are solved by the al-

gorithm. To cope with substitution in evaluating the violation of different constraints, a

variant of the model is introduced, which is mentioned as robust polyhedral optimization.

We conclude the investigation with an efficient application of our optimization model

and algorithm to classification problems. Our procedure can be applied to supervised

machine learning as a robust alternative to the support vector machine (SVM). The basic

problem is: Two classes of points are given in the Euclidean d-space Q1 = {x1, . . . , xn1}
and Q2 = {y1, . . . , yn2}. A rule has to be constructed by which any new point x is

classified to one of those classes Q1 and Q2. The classical SVM of Vapnik (1998) deter-

mines a hyperplane that discriminates the two classes linearly in a higher-dimensional

space and serves as a separator for classifying new points. Technically, this approach

results in a convex quadratic program. To tackle the problem in a robust way, mostly

methods of replacing each point by its neighbourhood are proposed in the literature;

see e.g. Ben-Tal et al. (2009). In contrast, we consider no single points of the training

classes as uncertain, but the whole classes, and observe the points as a sample of the

random variables defining the classes. Besides having a better interpretation, we obvi-

ously can expect getting less constraints. In fact, it turns out that the robust SVM can

be represented as a robust linear program with two risk constraints. To achieve these

representation, we start with the following linear program:

C → max
ω,C

s.t.

 ω′xi + b ≥ C, xi ∈ Q1,

ω′yj + b ≤ −C, yj ∈ Q2.
(SVM1)

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 125

Generally, the solution of (SVM1) does not coincide with the solution of the usual

quadratic program. Like Vapnik’s SVM, (SVM1) produces a central separating hy-

perplane that lies between the classes. However, it does not necessarily minimize the

Euclidean distances between support vectors, as the Euclidean distance is not the only

possible criterion here. Note that the Euclidean distance is not easily interpreted when

the data have been transformed into a higher-dimensional feature space, as it is done by

SVM.

To control the quality of our proposed solution, we rewrite the model (SVM1) as a

stochastic linear program:

0′ · y − 1 · z → min
y,z

s.t.

 ã′1 · y − 1 · z ≥ −1,

(−ã2)′ · y − 1 · z ≥ 1 ,
(SVM2)

where ã1 ∼ Q1, ã2 ∼ Q2.

ã ∼ Q means that ã has an empirical distribution on the finite set Q. Following our

approach, we next remove the negative values in b = (−1 1)′. After applying the

transformation of Proposition 6.5, we get:

[0′ ε 1− ε] (y′ z yd+1)′ → min
y,z,yd+1

s.t.

ã′1 −1 2

−ã′2 −1 0

0′ 0 1

 ·

y

z

yd+1

 ≥ 1 , (SVM3)

where ã1 ∼ Q1, ã2 ∼ Q2.

The origin 0 must not be situated between the classes, otherwise we may obtain an

infinite solution. We extend this application as follows: To control the width of the

margin we make b stochastic (instead of fixing it at (−1 1)′). The more uncertain b,

the wider is the margin of the separating hyperplane.

A soft margin is introduced as usual; see Vapnik (1998). However, in contrast to the

classical approach, the additional margin variable ξ appears to be particularly natural

Chapter 6. A General Solution for Robust LP with Distortion Risk Constraints 126

in our stochastic linear program:

0′ · y − 1 · z +M · ξ → min
y,z,ξ

s.t.

 ã′1 · y − 1 · z + ξ ≥ −1,

(−ã2)′ · y − 1 · z + ξ ≥ 1 ,
(SVM-soft)

where ã1 ∼ Q1, ã2 ∼ Q2.

Our soft-margin model has the advantage that, if we are unsure about the proper class

labels of the training points, we can introduce a random coefficient for ξ that describes

the level of certainty in labeling. It is also clear that we can use the kernel trick here,

because the inner product and the induced norm are sufficient for all calculations in the

algorithm.

Further, our robust optimization model and the new algorithm can be applied in many

other fields of operations research. In particular, it is well suited to formalize problems

in supply chain management, like the management of an inventory. This will be the

topic of future work.

Bibliography

Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective

risk aversion. Journal of Banking and Finance, 26:1505–1581.

Adam, A., Houkari, M., and Laurent, J.-P. (2008). Spectral risk measures and portfolio

selection. Journal of Banking and Finance, 32:1870–1882.

Adler, D. and Murdoch, D. (2011). rgl: 3D visualization device system (OpenGL). R

package version 0.92.798, URL http://CRAN.R-project.org/package=rgl.

Aloupis, G. (2006). Geometric measures of data depth. In Data depth: robust multivari-

ate analysis, computational geometry, and applications, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, volume 72, pages 147–158. American

Mathematical Society.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.

Mathematical Finance, 9(3):203–228.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for

convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483.

Bazovkin, P. (2013). PortfolioTR: Portfolio Selection with Multivariate Distortion Risk

Measures. R package version 2.0, URL http://CRAN.R-project.org/package=

PortfolioTR.

Bazovkin, P. (2014). Geometrical framework for robust portfolio optimization. Discus-

sion Papers in Econometrics and Statistics, (01/14). Institute of Econometrics and

Statistics, University of Cologne.

Bazovkin, P. and Mosler, K. (2011). WMTregions: Exact calculation of weighted-

mean trimmed regions. R package version 3.2, URL http://CRAN.R-project.org/

package=WMTregions.

Bazovkin, P. and Mosler, K. (2012a). An exact algorithm for weighted-mean trimmed

regions in any dimension. Journal of Statistical Software, 47(13):1–29.

127

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=PortfolioTR
http://CRAN.R-project.org/package=PortfolioTR
http://CRAN.R-project.org/package=WMTregions
http://CRAN.R-project.org/package=WMTregions

Bibliography 128

Bazovkin, P. and Mosler, K. (2012b). StochaTR: Solving stochastic linear programs with

a single risk constraint. R package version 1.0.4, URL http://CRAN.R-project.org/

package=StochaTR.

Bazovkin, P. and Mosler, K. (2015). A general solution for robust linear programs with

distortion risk constraints. Annals of Operations Research, 229(1):103–120.

Ben-Tal, A., Bertsimas, D., and Brown, D. B. (2010). A soft robust model for optimiza-

tion under ambiguity. Operations Research, 58(4):1220–1234.

Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013).

Robust solutions of optimization problems affected by uncertain probabilities. Man-

agement Science, 59(2):341–357.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization. Princeton

University Press, Princeton, New Jersey.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear programming prob-

lems contaminated with uncertain data. Mathematical programming, 88(3):411–424.

Bertsimas, D. and Brown, D. B. (2009). Constructing uncertainty sets for robust linear

optimization. Operations Research, 57(6):1483–1495.

Bertsimas, D., Brown, D. B., and Caramanis, C. (2011). Theory and applications of

robust optimization. SIAM Review, 53(3):464–501.

Bertsimas, D. and Goyal, V. (2013). On the approximability of adjustable robust con-

vex optimization under uncertainty. Mathematical Methods of Operations Research,

77(3):323–343.

Bion-Nadal, J. and Kervarec, M. (2012). Risk measuring under model uncertainty. The

Annals of Applied Probability, 22(1):213–238.

Borgwardt, K. (2001). Optimierung, Operations Research, Spieltheorie: Mathematische

Grundlagen. Birkhäuser Verlag, Basel.

Buckley, C. E. (1988). A divide-and-conquer algorithm for computing 4-dimensional

convex hulls. In Proceedings on International Workshop on Computational Geometry

and its Applications, pages 113–135, New York. Springer-Verlag.

Calafiore, G. C. (2007). Ambiguous risk measures and optimal robust portfolios. Siam

Journal on Optimization, 18(3):853–877.

Cascos, I. (2007). The expected convex hull trimmed regions of a sample. Computational

Statistics, 22:557–569.

http://CRAN.R-project.org/package=StochaTR
http://CRAN.R-project.org/package=StochaTR

Bibliography 129

Cascos, I. (2009). Data depth: Multivariate statistics and geometry. In Kendall, W. and

Molchanov, I., editors, New Perspectives in Stochastic Geometry. Clarendon Press,

Oxford University Press, Oxford.

Cascos, I. and Molchanov, I. (2007). Multivariate risks and depth-trimmed regions.

Finance and Stochastics, 11:373–397.

Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension. Discrete

& Computational Geometry, 10(1):377–409.

Chen, W. and Sim, M. (2009). Goal-driven optimization. Operations Research,

57(2):342–357.

Chen, W., Sim, M., Sun, J., and Teo, C.-P. (2010). From cvar to uncertainty set:

Implications in joint chance-constrained optimization. Operations Research, 58:470–

485.

Costa, O. L. V. and Paiva, A. C. (2002). Robust portfolio selection using linear-matrix

inequalities. Journal of Economic Dynamics and Control, 26(6):889–909.

Cousin, A. and Di Bernardino, E. (2013). On multivariate extensions of value-at-risk.

Journal of Multivariate Analysis, 119:32–46.

Delage, E. and Ye, Y. (2010). Distributionally robust optimization under moment uncer-

tainty with application to data-driven problems. Operations Research, 58(3):595–612.

Delbaen, F. (2002). Coherent risk measures on general probability spaces. In Advances

in Finance and Stochastics, pages 1–37. Springer-Verlag, Berlin.

Drapeau, S. and Kupper, M. (2013). Risk preferences and their robust representation.

Mathematics of Operations Research, 38(1):28–62.

Dyckerhoff, R. (2000). Computing zonoid trimmed regions of bivariate data sets. In

Bethlehem, J. and van der Heijden, P., editors, COMPSTAT 2000. Proceedings in

Computational Statistics, pages 295–300. Physica-Verlag, Heidelberg.

Dyckerhoff, R. (2002). Inference based on data depth. Chapter 5, in K Mosler, Multi-

variate Dispersion, Central Regions and Depth: The Lift Zonoid Approach, Springer-

Verlag, New York.

Dyckerhoff, R. (2004). Data depths satisfying the projection property. Allgemeines

Statistisches Archiv, 88:163–190.

Dyckerhoff, R., Koshevoy, G., and Mosler, K. (1996). Zonoid data depth: Theory and

computation. In Pratt, A., editor, COMPSTAT 1996. Proceedings in Computational

Statistics, pages 235–240, Heidelberg. Physica-Verlag.

Bibliography 130

Dyckerhoff, R. and Mosler, K. (2011). Weighted-mean trimming of multivariate data.

Journal of Multivariate Analysis, 102:405–421.

Dyckerhoff, R. and Mosler, K. (2012). Weighted-mean trimming of a probability distri-

bution. Statistics and Probability Letters, 82:318–325.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry. Springer-Verlag, Hei-

delberg.

Ekeland, I., Galichon, A., and Henry, M. (2012). Comonotonic measures of multivariate

risks. Mathematical Finance, 22(1):109–132.

El Ghaoui, L., Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust port-

folio optimization: A conic programming approach. Operations Research, 51(4):543–

556.

Fabozzi, F. J., Huang, D., and Zhou, G. (2010). Robust portfolios: contributions from

operations research and finance. Annals of Operations Research, 176:191–220.

Föllmer, H. and Schied, A. (2004). Stochastic Finance: An Introduction in Discrete

Time. Walter de Gruyter, Berlin.

Frittelli, M. and Gianin, E. R. (2002). Putting order in risk measures. Journal of

Banking & Finance, 26(7):1473–1486.

Fukuda, K. and Rosta, V. (2004). Exact parallel algorithms for the location depth and

the maximum feasible subsystem problems. In Frontiers in global optimization, pages

123–133. Springer US.

Gabrel, V., Murat, C., and Thiele, A. (2014). Recent advances in robust optimization:

An overview. European Journal of Operational Research, 235(3):471–483.

Garlappi, L., Uppal, R., and Wang, T. (2007). Portfolio selection with parameter and

model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1):41–81.

Gigliarano, C. and Mosler, K. (2009). Constructing indices of multivariate polarization.

The Journal of Economic Inequality, 7(4):435–460.

Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988). A fast procedure for computing

the distance between complex objects in three-dimensional space. IEEE J. Robotics

Automation, RA-4:193–203.

Goldfarb, D. and Iyengar, G. (2003). Robust portfolio selection problems. Mathematics

of Operations Research, 28(1):1–38.

Grünbaum, B. (2003). Convex Polytopes. Springer-Verlag, New York, 2nd edition.

Bibliography 131

Hallin, M., Paindaveine, D., and Šiman, M. (2010). Multivariate quantiles and multiple-

output regression quantiles: From l1 optimization to halfspace depth. Annals of

Statistics, 2:635–669. With discussion.

Hamel, A. and Heyde, F. (2010). Duality for set-valued measures of risk. SIAM Journal

on Financial Mathematics, 1(1):66–95.

Hamel, A. H., Heyde, F., and Rudloff, B. (2011). Set-valued risk measures for conical

market models. Mathematics and Financial Economics, 5(1):1–28.

Hamel, A. H., Löhne, A., and Rudloff, B. (2014). Benson type algorithms for linear

vector optimization and applications. Journal of Global Optimization, 59(4):811–836.

Hamel, A. H., Rudloff, B., and Yankova, M. (2013). Set-valued average value at risk

and its computation. Mathematics and Financial Economics, 7(2):229–246.

Holz, H. and Mosler, K. (1994). An interactive decision procedure with multiple at-

tributes under risk. Annals of Operations Research, 52:151–170.

Huang, D., Zhu, S. S., Fabozzi, F. J., and Fukushima, M. (2008). Portfolio selection

with uncertain exit time: A robust cvar approach. Journal of Economic Dynamics &

Control, 32(2):594–623.

Huber, P. J. (1981). Robust statistics. Wiley, New York.

Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk.

McGraw-Hill, New York, 3rd edition.

Jouini, E., Meddeb, M., and Touzi, N. (2004). Vector-valued coherent risk measures.

Finance and Stochastics, 8(4):531–522.

Kall, P. and Mayer, J. (2010). Stochastic Linear Programming. Models, Theory, and

Computation. Springer-Verlag, New York, 2nd edition.

Kan, R. and Zhou, G. F. (2007). Optimal portfolio choice with parameter uncertainty.

Journal of Financial and Quantitative Analysis, 42(3):621–656.

Kawas, B. and Thiele, A. (2011). A log-robust optimization approach to portfolio man-

agement. OR Spectrum, 33(1):207–233.

Kay, T. L. and Kajiya, J. T. (1986). Ray tracing complex scenes. SIGGRAPH Comput.

Graph., 20:269–278.

Kirilyuk, V. S. (2008). Polyhedral coherent risk measures and investment portfolio

optimization. Cybernetics and Systems Analysis, 44(2):250–260.

Bibliography 132

Knuth, D. (1997). The Art Of Computer Programming, volume 1. Addison-Wesley,

Boston, 3rd edition.

Konno, H. and Koshizuka, T. (2005). Mean-absolute deviation model. Iie Transactions,

37(10):893–900.

Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions.

Annals of Statistics, 25(5):1998–2017.

Koshevoy, G. and Mosler, K. (2007). Multivariate lorenz dominance based on zonoids.

AStA - Advances in Statistical Analysis, 91:57–76.

Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical

Economics, 3:83–95.

Lang, D. T., Swayne, D., Wickham, H., and Lawrence, M. (2010). rggobi: Interface

between R and GGobi. R package version 2.1.16, URL http://CRAN.R-project.

org/package=rggobi.

Lawrence, M. and Lang, D. T. (2010). RGtk2: R bindings for Gtk 2.8.0 and above. R

package version 2.12.18, URL http://CRAN.R-project.org/package=RGtk2.

Liu, R. Y., Parelius, J. M., and Singh, K. (1999). Multivariate analysis by data depth:

Descriptive statistics, graphics and inference. Annals of Statistics, 27(3):783–858.

With discussion.

Liu, X., Mosler, K., and Mozharovskyi, P. (2014). Fast computation of Tukey trimmed

regions in dimension p > 2. ArXiv e-prints, ArXiv:1412.5122.

López-Pintado, S. and Romo, J. (2007). Depth-based inference for functional data.

Computational Statistics & Data Analysis, 51(10):4957–4968.

Maccheroni, F., Marinacci, M., and Rustichini, A. (2006). Ambiguity aversion, robust-

ness, and the variational representation of preferences. Econometrica, 74(6):1447–

1498.

Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1):77–91.

Meucci, A. (2009). Risk and asset allocation. Springer-Verlag, Berlin Heidelbergs.

Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès, J. A., Souvaine, D., Streinu, I., and

Struyf, A. (2003). Efficient computation of location depth contours by methods of

computational geometry. Statistics and Computing, 13(2):153–162.

Mosler, K. (2002). Multivariate Dispersion, Central Regions and Depth: The Lift Zonoid

Approach. Springer-Verlag, New York.

http://CRAN.R-project.org/package=rggobi
http://CRAN.R-project.org/package=rggobi
http://CRAN.R-project.org/package=RGtk2

Bibliography 133

Mosler, K. (2004). Introduction: The geometry of data. Allgemeines Statistisches Archiv,

88(2):133–135.

Mosler, K. (2013). Depth statistics. In Becker, C., Fried, R., and Kuhnt, S., editors,

Robustness and Complex Data Structures, pages 17–34. Springer-Verlag, Berlin Hei-

delberg.

Mosler, K. and Bazovkin, P. (2014). Stochastic linear programming with a distortion

risk constraint. OR Spectrum, 36(4):949–969.

Mosler, K. and Hoberg, R. (2006). Data analysis and classification with the zonoid

depth. In Liu, R. Y., Serfling, R., and Souvaine, D., editors, Data Depth: Robust Mul-

tivariate Analysis, Computational Geometry and Applications, pages 49–59. American

Mathematical Society.

Mosler, K., Lange, T., and Bazovkin, P. (2009). Computing zonoid trimmed regions in

dimension d > 2. Computational Statistics & Data Analysis, 53:2500–2510.

Natarajan, K., Pachamanova, D., and Sim, M. (2008). Incorporating asymmetric dis-

tributional information in robust value-at-risk optimization. Management Science,

54(3):573–585.

Natarajan, K., Pachamanova, D., and Sim, M. (2009). Constructing risk measures from

uncertainty sets. Operations Research, 57(5):1129–1141.

Nemirovski, A. and Shapiro, A. (2006). Convex approximations of chance contrained

programs. SIAM Journal on Optimization, 17:969–996.

Pflug, G. C. (2006). On distortion functionals. Statistics & Decisions, 24(1):45–60.

Pinar, M. C. (2007). Robust scenario optimization based on downside-risk measure for

multi-period portfolio selection. OR Spectrum, 29(2):295–309.

Prékopa, A. (1995). Stochastic Programming. Kluwer Academic Publishers, Dordrecht,

Boston.

Rachev, S., Ortobelli Lozza, S., Stoyanov, S., and Fabozzi, F. J. (2008). Desirable prop-

erties of an ideal risk measure in portfolio theory. International Journal of Theoretical

and Applied Finance, 11(1):19–54.

Rockafellar, R. T. (1997). Convex analysis. Princeton University Press, Princeton, New

Jersey.

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk.

Journal of Risk, 2:21–41.

Bibliography 134

Rockafellar, R. T., Uryasev, S., and Zabarankin, M. (2006). Optimality conditions

in portfolio analysis with general deviation measures. Mathematical Programming,

108(2-3):515–540.

Rousseeuw, P. J. and Ruts, I. (1996). Algorithm as 307. bivariate location depth. Applied

Statistics, 45:516–526.

Rousseeuw, P. J. and Struyf, A. (1998). Computing location depth and regression depth

in higher dimensions. Statistics and Computing, 8:193–203.

Rüschendorf, L. (2006). Law invariant convex risk measures for portfolio vectors. Statis-

tics and Decisions, 24(1):97–108.

Rüschendorf, L. (2010). Risk measures for portfolio vectors and allocation of risks. In

Bol, G., Rachev, S., and Würth, R., editors, Risk Assessment. Decisions in Banking

and Insurance, pages 133–164. Physica-Verlag, Heidelberg.

Rüschendorf, L. (2013). Mathematical Risk Analysis. Springer-Verlag, Berlin Heidelberg.

Ruts, I. and Rousseeuw, P. J. (1996). Computing depth contours of bivariate point

clouds. Computational Statistics and Data Analysis, 23:153–168.

Schrage, C. (2015). Scalar representation and conjugation of set-valued functions. Op-

timization, 64(2):197–223.

Schrage, C. and Löhne, A. (2013). An algorithm to solve polyhedral convex set opti-

mization problems. Optimization, 62(1):131–141.

Serfling, R. (2006). Depth functions in nonparametric multivariate inference. In Liu,

R., Serfling, R., and Souvaine, D., editors, Data Depth: Robust Multivariate Analy-

sis, Computational Geometry and Applications, pages 1–16. American Mathematical

Society.

Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39:119–138.

Shen, R. J. and Zhang, S. Z. (2008). Robust portfolio selection based on a multi-stage

scenario tree. European Journal of Operational Research, 191(3):864–887.

Swart, G. (1985). Finding the convex hull facet by facet. Journal of Algorithms, 6(1):17–

48.

Tukey, J. W. (1975). Mathematics and picturing data. In James, R., editor, Proceedings

of the 1974 International Congress of Mathematicians, Vancouver, volume 2, pages

523–531.

Bibliography 135

Tütüncü, R. H. and Koenig, M. (2004). Robust asset allocation. Annals of Operations

Research, 132(1-4):157–187.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.

Wang, S. S., Young, V. R., and Panjer, H. H. (1997). Axiomatic characterization of

insurance prices. Insurance: Mathematics and Economics, 21(2):173–183.

Winder, R. (1966). Partitions of n-space by hyperplanes. SIAM Journal on Applied

Mathematics, 14(4):811–818.

Zhu, X., Ding, H., and Xiong, Y. (2001). Pseudo minimum translation distance between

convex polyhedra (i). Science in China, 44(2):217–224.

Zuo, Y. and Serfling, R. (2000). Structural properties and convergence results for con-

tours of sample statistical depth functions. Annals of Statistics, 28:483–499.

List of Figures

2.1 Neighboring cones near the common ridge. 19

2.2 The structure of the adjacency graph. 20

2.3 Examples of the facet traversal graph. 23

2.4 Realization of the STO. 24

2.5 Zonoid regions of five points of the dimension three. 27

3.1 Examples of WM regions in R3. Representation of the zonoid (left) and
ECH* (right) regions for the same data and depths. 39

3.2 Characterizing the normal p of a facet (zonoid region, d = 3, n = 10, α =
0.25): Data points and their projections; p-ordered indices; weights; ac-
tive pairs of indices. 40

3.3 Characterizing the normal p of a facet (ECH∗ region, d = 3, n = 10, α =
0.25): Data points and their projections; p-ordered indices; weights; ac-
tive pairs of indices. 42

3.4 Series of blocks of active and passive indices; weights as indicated. 43

3.5 Rotating p in a plane of dimension two in Rd. 44

3.6 The series SF∗ of blocks; with possible critical pairs. 45

3.7 The sample scheme of the procedure. 47

3.8 3d-visualization of various types of WM regions. 58

3.9 Visualization of the results in R. 60

3.10 Visualization of the results in R. 61

4.1 Searching the minimal risk portfolio. 72

4.2 Searching the Sharpe ratio optimized portfolio. 73

4.3 Searching the certainty equivalent optimized portfolio. 78

4.4 The recursive procedure for negative weights. 80

5.1 Visualization of WM regions by the R package WMTregions. Left panel:
Facets of a three-dimensional region in R3. Right panel: Vertices of a
four-dimensional region projected on a subspace of R3. 90

5.2 Deterministic and robust cases: feasible set (left panel), uncertainty set
(right panel). 92

5.3 Duality between spaces. 94

5.4 Finding the optimal solution on the uncertainty set. 97

5.5 Example of the ‘reversed’ central regions in the dimension 2. 99

5.6 An illustration of the subadditivity property. 105

6.1 Alternative to the simplex algorithm. 118

6.2 Adding a dimension. 120

137

List of Figures 138

6.3 Obtaining the solution using the convex hull computation routine. 122

Symbols

x, y, z . . . real vectors All chapters

(x1, . . . , xd)
′ components of a real vector x ∈ Rd All chapters

0 vector of zeros All chapters

1 vector of ones All chapters

A,C . . . real matrices All chapters

C(v) direction cone for a vertex v Chapter 2

Dα trimmed region of depth α All chapters

ZDα zonoid region of depth α Chapters 2 and 3

Dwα WM region with a weight vector wα Chapters 4, 5, 6

ã, b̃ . . . random vectors Chapters 5 and 6

Ã, B̃ . . . random matrices Chapters 5 and 6

∆d unit simplex in Rd Chapters 4 and 5

ω portfolio vector Chapter 4

µm set-valued risk measure in Rm Chapters 4, 5, 6

ρd vector- or scalar-valued risk measure in Rd Chapters 4, 5, 6

F admissable set Chapters 4 and 6

X feasible set Chapters 5 and 6

U uncertainty set Chapters 5 and 6

G convolution set Chapter 6

139

	Preface
	Contents
	1 Introduction
	2 Multivariate Expected Shortfall: Computing Zonoid Trimmed Regions of Dimension d>2
	2.1 Motivation
	2.2 Zonoid regions
	2.3 Vertices and direction domains of a zonoid region
	2.4 Adjacent vertices
	2.5 A linear program for constructing adjacent vertices
	2.6 Edges and facets
	2.7 Sequencing the facets
	2.8 Discussion
	2.9 The algorithm

	3 Weighted-Mean Trimmed Regions and Distortion Risks
	3.1 Motivation
	3.2 Weighted-mean trimming
	3.2.1 Definition and principal properties
	3.2.2 Special notions of weighted-mean trimming

	3.3 Geometry of the algorithm
	3.3.1 Trimmed region as a convex polytope
	Task 1: Calculating a facet
	Task 2: Finding an adjacent facet

	3.3.2 Spanning tree order

	3.4 The algorithm
	3.4.1 Interface and steps
	3.4.2 Complexity of the algorithm

	3.5 The R package WMTregions
	3.5.1 Technical overview
	Dependencies
	R functions
	Input and output

	3.6 Examples
	3.6.1 Illustration with simulated data
	3.6.2 Calculating multivariate set-valued risk measures

	3.7 Conclusions
	3.8 Heuristics for determining all adjacent facets

	4 Multivariate Best-Decision Risk Measures: An Application to Portfolio Optimization
	4.1 Motivation
	4.2 Vector-valued multivariate risk measure based on data trimmed regions
	4.2.1 The measure

	4.3 Portfolio choice as a special case
	4.3.1 Minimal risk portfolio
	4.3.2 Portfolio selection with a generalized Sharpe ratio
	4.3.2.1 Finding the optimum
	4.3.2.2 The algorithm

	4.3.3 Optimization with a generalized certainty equivalent
	4.3.3.1 Finding the optimum
	4.3.3.2 The algorithm

	4.3.4 Negative weights and short sellings
	4.3.4.1 Optimum with shorting permitted
	4.3.4.2 The algorithmic supplement

	4.4 Discussion

	5 Stochastic Linear Programming and Distortion Risk Measures
	5.1 Motivation
	5.2 Distortion risk constraints and weighted-mean regions
	5.2.1 Distortion risk measures
	5.2.2 Weighted-mean regions as uncertainty sets

	5.3 Solving the SLP with distortion risk constraint
	5.3.1 Calculating the uncertainty set
	5.3.2 The robust linear program
	5.3.3 Finding the optimum on the uncertainty set

	5.4 The algorithm
	5.4.1 Sensitivity and complexity issues
	5.4.2 Ordered sensitivity analysis

	5.5 Robust SLP for generally distributed coefficients
	5.6 Concluding remarks
	5.7 Appendix: Technical details
	5.7.1 Properties of distortion risk measures
	5.7.2 Characterization of WM regions
	5.7.3 Proof of Theorem 5.2
	5.7.4 Risk-relevant properties of WM regions

	6 A General Solution for Robust Linear Programs with Distortion Risk Constraints
	6.1 Motivation
	6.1.1 The robust model

	6.2 Multiple constraints
	6.2.1 A general model
	6.2.2 The general substitutability case
	6.2.3 The equivalent unsubstitutability case

	6.3 Unsubstitutable violations risks: The optimal solution
	6.3.1 Generalizing the single-constraint approach
	6.3.2 Relaxing the right-hand side
	6.3.3 The algorithm
	6.3.4 Complexity
	6.3.5 Robust SLP for generally distributed coefficients

	6.4 Conclusion and application

	Bibliography
	List of Figures
	Symbols

