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Abstract

This thesis consists of research articles on the asymptotic behavior of modular forms
and various related objects.

First we determine the bivariate asymptotic behavior of Fourier coefficients for a wide
class of eta-theta quotients with simple poles in the upper half plane by employing a
variant of Wright’s Circle Method. These kind of quotients show up in many different
areas not only in mathematics. For example they show up in investigations into Vafa–
Witten invariants or the counting of so-called BPS-states via wall-crossing, but also in
Watson’s quintuple product formula which has many applications in number theory and
combinatorics.

Further, we offer a general framework to prove asymptotic equidistribution, convexity,
and log-concavity of coefficients of generating functions in arithmetic progressions. We
do this by using a variant of Wright’s Circle Method and give a selection of different
examples of such results for various (modular typed) objects.

We end the thesis by employing the Circle Method to prove exact formulae for Fourier
coefficients of an infinite family of weight zero mixed false modular forms showing up as
characters of modules of rational vertex operator algebras.
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Chapter I

Introduction and statement of
objectives

This thesis mainly consists of the three research articles [Ces23,CCM21,CM21] that
study the asymptotic behavior of various objects. In this chapter we restate parts of
their introductions and collect their main theorems to recall their scientific context.

I.1 Definitions and previous results

This preliminary section is intended to classify the following chapters in the technical
context and at the same time create a solid basis for understanding them. Therefore we
summerize some basic definitions and previous results on modular forms and a few of
their generalisations as well as on partition theory and the Circle Method.

I.1.1 Modular forms

Modular forms and their generalisations play a very important role in many fields of
number theory and other areas. Particularly interesting, especially for this thesis, are their
Fourier coefficients, which often encode valuable arithmetic, geometric or combinatorial
information.

To start, we would like to collect some background on this theory by explaining the
basic notations. More details can for example be found in [DS00,KK07,Miy06].

As usual we denote the complex upper half plane by H := {τ = u+ iv ∈ C : v > 0}.
Throughout we always use z =: x+ iy ∈ C and τ =: u+ iv ∈ H, unless we say otherwise.

A standard group in the theory of modular forms is the special linear group

SL2(Z) :=
{
M =

(
a b
c d

)
: a, b, c, d ∈ Z, det(M) = 1

}
,

which acts on H via Möbius transformations,

Mτ :=
aτ + b

cτ + d
, for M =

(
a b
c d

)
∈ SL2(Z),

1



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

since we have that

Im(Mτ) =
v(ad− bc)
|cτ + d|2

=
v

|cτ + d|2
> 0.

Another one is the Hecke congruence subgroup of level N ,

Γ0(N) := {M ∈ SL2(Z) : c ≡ 0 (modN)}.

Of course there are a lot more congruence subgroups, but we stick to this one to keep
the introduction here as simple as possible.

Definition I.1.1.

(a) Let k ∈ Z. We call a function f : H→ C modular form of weight k and level N , with
multiplier χ : Γ0(N)→ {z ∈ C : |z| = 1}, if the following conditions hold
(1) the function is modular of weight k, i.e.,

f

(
aτ + b

cτ + d

)
= χ(M)(cτ + d)kf(τ) (I.1.1)

for all τ ∈ H and M =
(
a b
c d

)
∈ Γ0(N),

(2) the function f is holomorphic,
(3) the function f has at most polynomial growth at all cusps Γ0(N)\(Q ∪ {i∞}) of

Γ0(N).
(b) We call f a cusp form if it vanishes at all cusps.
(c) Functions that instead of satisfying (2) are allowed to have isolated poles in H∪{i∞}

are called meromorphic modular forms, and those that satisfy (I.1.1) but are allowed
to have poles at cusps are called weakly holomorphic modular forms.

Note that for 4 | N we can extend this definition to k ∈ 1
2 + Z to obtain modular

forms of half-integral weight, by replacing (I.1.1) with

f

(
aτ + b

cτ + d

)
= ε−2k

d

( c
d

)
χ(M)(cτ + d)kf(τ),

where

εd :=

{
1 if d ≡ 1 (mod 4) ,

i if d ≡ 3 (mod 4) ,

and where ( ··) is the Kronecker symbol. This goes back to Shimura [Shi73], who introduced
half-integral weight modularity in the context of powers of the theta function, which we
will discuss in the next subsection.

2



I.1. DEFINITIONS AND PREVIOUS RESULTS

I.1.2 Jacobi forms

Jacobi forms are ubiquitous throughout number theory and beyond. For example,
they appear in string theory, the theory of black holes, and the combinatorics of partition
statistics (see e.g., [BD16,DMZ12,Mal20, RT96]). Note that the original motivation
for looking at Jacobi forms comes from their important role in the proof of the Saito–
Kurokawa Conjecture proven by Eichler and Zagier [EZ85,Zag79]. We follow [EZ85].

Definition I.1.2. Let k,m ∈ N. We call a (holomorphic) function ϕ : C × H → C
(holomorphic) Jacobi form of weight k and index m on Γ0(N), if it satisfies the two
transformation equations, for

(
a b
c d

)
∈ Γ0(N) and λ, µ ∈ Z,

ϕ

(
z

cτ + d
;
aτ + b

cτ + d

)
=(cτ + d)ke

2πimcz2

cτ+d ϕ(z; τ),

ϕ(z + λτ + µ; τ) =e−2πim(λ2τ+2λz)ϕ(z; τ),

(i.e., ϕ transforms modular in τ and elliptic in z) and has a Fourier expansion of the form

ϕ(z; τ) =
∑
n≥0

∑
r∈Z

r2≤4nm

c(n, r)qnζr,

where q := e2πiτ and ζ := e2πiz. Additionally, we call ϕ a Jacobi cusp form if we have
that c(n, r) = 0, whenever 4nm = r2.

Remarks.
(1) One can extend this definition to Jacobi forms of negative index (see e.g., [BFOR17,

Section 11.3]).
(2) As for modular forms we are additionally able to extend the definition to Jacobi

forms of half-integal weight and index whenever 4 | N by replacing the modular
transformation in τ by

ϕ

(
z

cτ + d
;
aτ + b

cτ + d

)
= ε−2k

d

( c
d

)
(cτ + d)ke

2πimcz2

cτ+d ϕ(z; τ).

We immediately note that ϕ(0; τ) is a modular form of weight k, which easily
demonstrates that Jacobi forms are two-variable genaralisations of the aforementioned
modular forms.

Further we have the theta decomposition (see [EZ85, pages 57–58])

ϕ(z; τ) =
∑

µ (mod 2m)

hµ(τ)ϑm,µ(z; τ), (I.1.2)

3



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

with

hµ(τ) :=
∑
N≥0

c

(
N + r2

4m
, r

)
q
N
4m , ϑm,µ(z; τ) :=

∑
r∈Z

r≡µ (mod 2m)

q
r2

4m ζr.

By definition we have that ϕ is a Jacobi form of weight k and index m. Since the theta
functions ϑm,µ(z; τ) have weight 1

2 and index m, (I.1.2) provides that hµ(τ) has to be
a modular form of weight k − 1

2 , which gives another connection between Jacobi forms
and modular forms of half-integral weight. To be more precise, this theta decomposition
gives an isomorphism between the Jacobi forms of weight k and index m and the space of
vector-valued modular forms (hµ)µ (mod 2m) on SL2(Z) satisfying certain transformation
laws and that are bounded as Im(τ)→∞ (see [EZ85, Theorem 5.1]).

In this thesis, we are particularly interested in the Jacobi theta function defined by1

ϑ(z; τ) := iq
1
8 ζ

1
2

∑
n∈Z

(−1)nq
n2+n

2 ζn. (I.1.3)

I.1.3 False theta functions as characters of vertex operator algebras

Characters of modules of rational vertex operator algebras are often of the form

f(τ)

η(τ)k
,

where η is the Dedekind η-function, which is a weight 1
2 modular form for SL2(Z) defined

by

η(τ) := q
1
24

∏
n≥1

(1− qn) .

In [CM14] the authors observed that some numerators of atypical characters of the so-
called (1, p)-singlet algebra are false theta functions of Rogers (see [AB09]). In particular,
the numerators of characters of the atypical irreducible modules of the (1, p)-singlet
vertex operator algebra M1,s, for 1 ≤ s ≤ p− 1 and p ∈ N≥2, that have been studied in
[BM15,CM14,CMW17], are essentially the false theta functions, for j ∈ Z and N ∈ N>1,

Fj,N (τ) :=
∑
n∈Z

sgn

(
n+

j

2N

)
qN(n+

j
2N )

2

, (I.1.4)

1Note that we have the connection

ϑm,µ(z; τ) = −q
µ2

4m
+m

4
−µ

2 ζµ−mϑ

(
(µ−m)τ + 2mz +

1

2
; 2mτ

)
.

4



I.1. DEFINITIONS AND PREVIOUS RESULTS

with sgn(n) := n
|n| for n ̸= 0, sgn(0) := 0. Note that this sgn-factor prevents modularity,

which is why we call these functions “false”. Removing the sgn-factor would give classical
theta functions, which are modular forms of weight 1

2 . Recently Bringmann and Nazaroglu

[BN19] constructed a certain modular completion F̂j,N , resolving this obstuction.

We call a function a mixed false modular form if it is a linear combination of false
theta functions multiplied by modular forms. One could make this definition precise by
adapting [BFOR17, Definition 13.1].

I.1.4 Partitions, their generalizations, and some statistics

An (integer) partition λ of a non-negative integer n is a list of non-increasing positive
integrers, say λ = (λ1, λ2, . . . , λm), that satisfies |λ| := λ1 + · · ·+ λm = n. We denote the
number of partitions of n by p(n) and set p(0) = 1, as usual. For example the partitions
of 4 are given by

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

We refer the readers to [And98] for an excellent survey on partitions.

One of the most famous results in partition theory is due to Ramanujan, who proved
in [Ram21] that for n ≥ 0 the following congruences hold

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n+ 6) ≡ 0 (mod 11) .

This inspired further research in the field of partition congruences see for example
Atkin–O’Brian [AO67] and Ono [Ono00].

Euler proved that one may write the generating function of integer partitions as the
following infinite product

P (q) :=
∑
n≥0

p(n)qn =
∏
n≥1

1

1− qn
=

q
1
24

η(τ)
,

which provides an archetypal example of the close connection between partitions and
modular forms.

One of the most popular statistics of integer partitions is the so-called rank of λ,
which is given by the largest part minus the number of parts, and was introduced by
Dyson [Dys44] to motivate the Ramanujan congruences combinatorially. As conjectured
by Dyson [Dys44] and later proved by Atkin and Swinnerton-Dyer [ASD54] the rank
in fact gives a combinatorial explanation for the first and second congruence. Dyson
additionally conjectured the existence of another statistic, which he called the crank and

5



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

which should explain all Ramanujan congruences. It was later found by Andrews and
Garvan [AG88,Gar88] and is given by

crank(λ) :=

{
λ1 if λ contains no ones,

µ(λ)− ω(λ) if λ contains ones,

where ω(λ) denotes the number of ones in λ, and µ(λ) denotes the number of parts
greater than ω(λ).

Since that time, a large area of research has developed around this topic. For example
it turns out that the two-parameter generating functions of the rank and crank function
are closely related to (mock) modular forms [AG88,ASD54]. Essentially they turn out to
be a mock Jacobi form and a Jacobi form of weight and index −1

2 . For a nice overview
on more properties of these functions we refer the reader to [BFOR17, Subsection 14.3]
or the introductions of the Chapters II and III for some further results.

As we will see in Chapter III, not only are integer partitions a very popular area of
research in a wide variety of fields, but their generalizations are also receiving increasing
attention. Here, we want to briefly mention two examples that will be studied later on.

An overpartition is a partition where the first occurrence of each distinct number
may be overlined. For example there are fourteen overpartitions of 4, given by

(4),
(
4
)
, (3, 1) ,

(
3, 1
)
,
(
3, 1
)
,
(
3, 1
)
, (2, 2) ,

(
2, 2
)
,

(2, 1, 1),
(
2, 1, 1

)
,
(
2, 1, 1

)
,
(
2, 1, 1

)
, (1, 1, 1, 1) ,

(
1, 1, 1, 1

)
.

The generating function for overpartitions is given by [CL04]∏
n≥1

1 + qn

1− qn
,

since the non-overlined parts form an integer partition, while the overlined parts form a
partition into distinct parts (their generating function is given by

∏
n≥1(1 + qn)). The

first residual crank of an overpartition, which was introduced by Bringmann, Lovejoy,
and Osburn in [BLO09], is given by the crank of the subpartition consisting of the
non-overlined parts.

A plane partition of n (see e.g., [And98]) is a two-dimensional array πj,k of non-
negative integers j, k ≥ 1, that is non-increasing in both variables, i.e., πj,k ≥ πj+1,k,
πj,k ≥ πj,k+1 for all j and k, and fulfills |Λ| :=

∑
j,k πj,k = n. For example there are

six plane partitions of 3, given in Figure III.2. We let pp(n) denote the number of
plane partitions of n. One of the more famous statistics associated to plane partitions
Λ = {πj,k}j,k≥1 is its trace t(Λ), which is defined by

t(Λ) =
∑
j≥1

πj,j .

6



I.1. DEFINITIONS AND PREVIOUS RESULTS

Certain asymptotic properties of the trace have been studied by Kamenov and Mutafchiev
[KM07] and Mutafchiev [Mut18], where the limiting distribution and expected value of
t(Λ) were considered. In Chapter III we study the distribution of the trace in residue
classes.

I.1.5 The Circle Method

Investigating the asymptotic behavior of Fourier coefficients of modular forms is not
only interesting within number theory, but has applications in various mathematical
fields. One of the most famous asymptotic formulae in partition theory was found in
1918 by Hardy and Ramanujan [HR18] who proved that

p(n) ∼ 1

4
√
3n
· eπ

√
2n
3

as n → ∞. Their work marked the birth of the so-called (Hardy–Ramanujan) Circle
Method. Our exposition follows [BFOR17, Sketch of Proof of Theorem 14.3]. Suppose that
one is interested in the asymptotic behavior of a sequence {a(n)} of “moderate growth”
as n → ∞. One builds a generating function for that sequence A(q) :=

∑
n≥0 a(n)q

n,
suppose that it has radius of convergence equal to 1. Using Cauchy’s Theorem one is
thus able to extract the coefficients

a(n) =
1

2πi

∫
C

A(q)

qn+1
dq,

where C is an arbitrary path inside the unit disk, that loops around zero in the counter-
clockwise direction exacly once. For many interesting sequences, e.g., {a(n)} = {p(n)},
the singularities of the generating function A show up as roots of unity on the unit
disk. When the generating function is modular, the behavior near the singularities is
well-approximable. This further means that one can often find nice approximations for A
near these singularities, which provide the main terms of the approximation. The leftover
terms then contribute to a much smaller error term.

Half a century after Hardy and Ramanujan proved their famous asymptotic result,
Wright [Wri68,Wri71] developed a modified version of the Circle Method, referred to
as Wright’s Circle Method, which provides a general method for studying the Fourier
coefficients of functions with known asymptotic behavior near cusps. The essence of
Wright’s method is to use Cauchy’s theorem to recover the coefficients as seen before.
One then splits the integral into two arcs, the “major arc” and “minor arc”, where the
generating function has large growth (towards the dominant pole(s)2) and small relative

2The poles, where the most growth appears.

7



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

growth (away from these pole(s)), respectively (see Figure I.1). Even though this version
of the Circle Method gives weaker bounds than the original techniques of Hardy and
Ramanujan, it is more flexible when working with non-modular generating functions. It
has been used extensively in the literature, see e.g., [BM14,KKS15,Mal20,Mal21a,Mao18]
for several examples closely related to Chapters II and III.

q = 1
x

minor arc

major arc

Figure I.1: Idea behind Wright’s Circle Method

I.1.6 I-Bessel functions and Kloosterman sums

For x > 0 the I-Bessel function of order ℓ may be defined as (see e.g., [Arf85,BD16])

Iℓ(x) :=
1

2πi

∫
Γ
t−ℓ−1e

x
2 (t+

1
t )dt,

where Γ is a contour which starts in the lower half plane at −∞, surrounds the origin
counterclockwise and returns to −∞ in the upper half plane. We are particularly
interested in the asymptotic behavior of Iℓ as x → ∞, given for fixed ℓ by (see e.g.,
[AAR99, equation (4.12.7)])

Iℓ(x) =
ex√
2πx

+O

(
ex

x
3
2

)
.

In Chapters II and IV we will see that these I-Bessel functions play an important
part in the calculation of the main term arising from the Circle Method. For example
they show up in the Fourier expansion of the weakly holomorphic Poincaré series of
exponential type as e.g., stated in [BFOR17, Theorem 6.9].

8



I.2. STATEMENT OF OBJECTIVES

Moreover Kloosterman sums play a very important role in the calculations of the exact
formulae in Chapter IV, since they show up in the Fourier expansion of modular-type
objects. Here we give some general background. We follow [Est29,Sal32].

Let k ≥ 1 be a positive integer and h an integer such that 0 ≤ h < k. Further let
gcd(h, k) = 1. Then there exists an unique integer h′ such that hh′ ≡ 1 (mod k) with
0 ≤ h′ < k. For n,m ∈ Z we thus define a (standard) Kloosterman sum by

S(n,m; k) :=
∑

0≤h<k
gcd(h,k)=1

exp

(
2πi

nh+mh′

k

)
.

A famous estimate on these sums goes back to Weil and states that

|S(n,m; k)| ≤ τ(k) gcd (n,m, k)
1
2 k

1
2 ,

where τ(k) :=
∑

d≥1,d|k 1.

I.2 Statement of objectives

I.2.1 Bivariate asymptotics for eta-theta quotients with simple poles

In the first project of this thesis, see Chapter II, we give an example of how the theory
of modular forms can be used in areas outside of number theory, namely string theory,
by determining the asymptotic profile of a family of eta-theta quotients with multiple
simple poles.

We consider the weight
∑N

j=1
αj
2 and index c− b2 meromorphic Jacobi form

f(z; τ) :=
ϑ(z; τ)

ϑ(bz; cτ)

N∏
j=1

η(ajτ)
αj ,

where aj , b, c ∈ N, N ∈ N>1, and αj ∈ Z. Such eta-theta quotients appear in numerous
places, for example theta quotients [GSZ19] and investigations into the counting of
so-called BPS-states [Wot13], to just name a few.

Defining

f(z; τ) =:
∑
n≥0
m∈Z

c(m,n)ζmqn,

for z in a small neighborhood of 0 that is pole-free as a function in z, we show how
to obtain a bivariant asymptotic behavior for those coefficients c(m,n). We prove the
following theorem.

9



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

Theorem I.2.1 (Theorem II.1.2). Define β = β(n) := π
√

2
n and w := 1

2

∑N
j=1 αj ∈

1
2Z,

which is the weight of the eta quotient part of our function f , along with

Λ1 := (−1)2w+1 (2π)w
c
3
2

4π2 (2b2 − b− c)

N∏
j=1

a
−
αj
2

j ,

and

Λ2 :=
b2

c
− b

c
+

1

4c
− 1

4
−

N∑
j=1

αj
12aj

.

Assume that 0 < 1 −
∑N

j=1
αj
12aj

<
√
Λ2,

∑N
j=1

αj
aj
< 0, b even with b ̸= c, b2 > c, and

m = m(n) with |m| ≤ 1
6βn

−δ log(n) for some 0 < δ < 1
2 such that m → ∞ as n → ∞.

Then

c(m,n) =
1

2πi
Λ1β

2−w
√
Λ2

−w e2π
√
2Λ2n

2π (2Λ2n)
1
4

+O

(
β3−w

e2π
√
2Λ2n

2π (2Λ2n)
1
4

)
as n→∞.

To prove this theorem we follow the work of Males [Mal20,Mal21a], who proved the
bivariant asymptotic behavior of the certain eta-theta quotient

ϑ(z; τ)4

η(τ)9ϑ(2z; τ)
.

As in his work we use an extension of Wright’s Circle Method that was pioneered by
Bringmann and Dousse [BD16], respectively Dousse and Mertens [DM15], to study
the bivariant asymptotic behavior of the Fourier coefficients of the partition crank,
respectively partition rank, function. However we need to modify their arguments a little,
since our family of functions has multiple simple poles.

I.2.2 Asymptotic equidistribution for partition statistics and topological
invariants

In the second project of this thesis, see Chapter III, we provide a general framework
for proving asymptotic equidistribution, convexity, and log-concavity of coefficients of
generating functions on arithmetic progressions.

Throughout many areas in pure mathematics, the equidistribution properties of
certain objects are a central theme studied by many authors, including areas of algebraic
and arithmetic geometry [CM15,GT12,Kat15] and number theory [OS18,Xi20].

10



I.2. STATEMENT OF OBJECTIVES

The primary aim of this project is for proving large families of so-called Dirichlet-type
equidistribution theorems. Suppose c(n) is an arithmetic function which counts something
of interest. Let q = e−z, where z = x+ iy ∈ C with x > 0 and |y| < π. Furthermore let

ζ = ζab := e
2πia
b be a b-th root of unity for some natural number b ≥ 2 and 0 ≤ a < b.

Assume that we have a generating function on arithmetic progressions a (mod b) given
by

H(a, b; q) =
∑
n≥0

c(a, b;n)qn,

for some coefficients c(a, b;n) such that

H(a, b; q) =
1

b

b−1∑
j=0

ζ−ajb H
(
ζjb ; q

)
,

for some generating functions H(ζ; q), with H(q) := H(1; q) =
∑

n≥0 c(n)q
n. To say

that equidistribution of c(a, b;n) holds is to say that c(a, b;n) ∼ 1
b c(n) as n→∞. Our

framework may be summarized as follows.

Result (see Theorem III.3.1 for a precise statement). Assume that on both the major and
minor arcs H(q) dominates H(ζ; q), and H(q) is dominant on the major arc as q → 1.
Then c(a, b;n) are equidistributed as n→∞.

We use this framework to offer a selection of different examples of such results, proving
asymptotic equidistribution for various partition statistics and topological invariants (see
Theorems III.1.1 to III.1.6). For example, let M(a, b;n) be the number of partitions of n
with crank congruent to a (mod b). We prove the following theorem.

Theorem I.2.2 (see Theorem III.1.2). Let 0 ≤ a < b and b ≥ 2. Then as n → ∞ we
have that

M(a, b;n) =
1

b
p(n)

(
1 +O

(
n−

1
2

))
.

Additionally we use our framework to immediately conclude asymptotic convexity
and log-concavity for a large class of functions (see Corollaries III.3.2 and III.3.3).

A central ingredient employed in the proof of our framework is a variant of Wright’s
Circle Method, which was recently developed by Bringmann, Craig, Males, and Ono
[BCMO22, Proposition 4.4], following work of Ngo and Rhoades [NR17].

11



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

I.2.3 Fourier coefficients of weight zero mixed false modular forms

In the third and last project of this thesis, see Chapter IV, we give, to the best of
the author’s knowledge, a first example of exact formulae for Fourier coefficients of an
infinite family of weight zero mixed false modular forms.

In 1937 Rademacher [Rad37] proved the following exact formula for the partition
function

p(n) =
2π

(24n− 1)
3
4

∑
k≥1

Ak(n)

k
I 3

2

(
π
√
24n− 1

6k

)
,

with a Kloosterman sum Ak(n) and an I-Bessel function of half-integral order (defined
in (IV.1.2) and (IV.1.3)), from which one can deduce the famous asymptotic behavior of
the partition function, mentioned above.

We find Rademacher-type exact formulae for Fourier coefficients of an infinite family
of weight zero mixed false modular forms

Aj,N (τ) :=
Fj,N (τ)

η(τ)
,

where, for τ ∈ H, j ∈ Z and N ∈ N>1, Fj,N (τ) defined in (I.1.4) is a false theta function
at rank one. Defining their coefficients by

Aj,N (τ) =: q
j2

4N
− 1

24

aj,N (0) +∑
n≥1

aj,N (n)q
n


we prove the following theorem.

Theorem I.2.3 (Theorem IV.1.1). For all n ≥ 1 and
√

N
6 /∈ Z we have

aj,N (n) =−
2πi√

n+ j2

4N
− 1

24

∑
k≥1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k2

× P.V.

∫ √
1

24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+
κ

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx,

where Iα denotes the I-Bessel function of order α and Kk,j,N (n, r, κ) is a Kloosterman
sum defined as

Kk,j,N (n, r, κ) :=
∑

0≤h<k
gcd(h,k)=1

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24

(
n+ j2

4N
− 1

24

)
h

24k ,

12
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with h′ a solution of hh′ ≡ −1 (mod k), Mh,k =
(
h′ −hh′+1

k
k −h

)
, χj,r(N,M) the multiplier

defined in (IV.2.6), and ζℓ := e
2πi
ℓ with ℓ ∈ N an ℓ-th root of unity.

Additionally we show that our Kloosterman sum satisfies the following bound by
rewriting it into a sort of Salié sum and using a bound of Malishev (see Lemma IV.1.3).

Theorem I.2.4 (Theorem IV.1.2). For ε > 0 we have that

Kk,j,N (n, r, κ) = ON

(
nk

1
2
+ε
)

as k →∞.

The proof of these results requires considerably more effort in comparison to negative
weight functions, or weight zero modular forms (see e.g., [BN19,Rad38]). Compared to
negative weight functions, for example, we have to take special care of the bound of the
Kloosterman sum occuring to ensure that the error term in the Circle Method vanishes.
Additionally our transformation behavior is not as simple as the one of a modular form,
which results in more difficulties. To prove our exact formulae we investigate the “false”
modular transformation behavior of our family of functions, following [BN19], and use
the Circle Method along with ideas of Rademacher and Zuckerman [Rad38,Rad37,RZ38].
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Chapter II

Bivariate asymptotics for eta-theta
quotients with simple poles

This chapter is based on a preprint of the same title recommended for publication in
The Ramanujan Journal and is joint work with Dr. Joshua Males [CM21].

II.1 Introduction and statement of results

Jacobi forms (see e.g., [EZ85]) are ubiquitous throughout number theory and beyond.
For example, they appear in string theory [Mal20, RT96], the theory of black holes
[DMZ12], and the combinatorics of partition statistics [BD16]. The Fourier coefficients
of Jacobi forms often encode valuable arithmetic information. To describe a motivating
example, let λ be a partition of a positive integer n, i.e., a list of non-increasing positive
integers λj with 1 ≤ j ≤ s that sum to n. We denote the number of partitions of n by
p(n), as usual. One of the most famous results in partition theory is due to Ramanujan,
who proved in [Ram21] that for n ≥ 0 the following congruences hold

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n+ 6) ≡ 0 (mod 11) .

The rank [Dys44] of λ is given by the largest part minus the number of parts. It offers a
combinatorial explanation for the first and second congruence as conjectured by Dyson
[Dys44] and later proved by Atkin and Swinnerton-Dyer [ASD54], since the partitions
of 5n+ 4 (respectively 7n+ 5) form 5 (respectively 7) equal-sized groups when sorted
by their ranks modulo 5 (respectively 7). Dyson additionally conjectured the existence
of another statistic, which he called the crank and which should explain all Ramanujan
congruences. The crank of λ was later found by Andrews and Garvan [AG88,Gar88] and
is given by {

λ1 if λ contains no ones,

µ(λ)− ω(λ) if λ contains ones.

Here, ω(λ) denotes the number of ones in λ, and µ(λ) denotes the number of parts greater
than ω(λ). We denote by M(m,n), respectively N(m,n), the number of partitions of n
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CHAPTER II. BIVARIATE ASYMPTOTICS

with crank m, respectively rank m. Throughout the rest of this chapter we let ζ := e2πiz

for z ∈ C, and q := e2πiτ with τ ∈ H, the upper half plane. It is well-known that the
generating function of M is given by (see [BD16, equation (2.1)])

∑
n≥0
m∈Z

M(m,n)ζmqn =
i
(
ζ

1
2 − ζ−

1
2

)
q

1
24 η2(τ)

ϑ(z; τ)
,

which is a weak Jacobi form (up to rational powers of ζ and q). Here, the Dedekind
η-function is given by

η(τ) := q
1
24

∏
n≥1

(1− qn) ,

and the Jacobi theta function is defined by

ϑ(z; τ) := iq
1
8 ζ

1
2

∑
n∈Z

(−1)nq
n2+n

2 ζn. (II.1.1)

Note that a similar formula can be found for the generating function of N as a mock
Jacobi form involving an eta-theta quotient. In general Jacobi forms have a Fourier
expansion of the form ∑

n≥0
m∈Z

a(m,n)ζmqn.

Many interesting examples of Jacobi forms arise as quotients of η- and ϑ-functions. As
an illuminating example, for ak, bj ∈ N and n ∈ Z, consider the study of theta quotients
[GSZ19, equation (13)],

ϑ(a1z; τ)ϑ(a2z; τ) · · ·ϑ(akz; τ)
ϑ(b1z; τ)ϑ(b2z; τ) · · ·ϑ(bjz; τ)

η(τ)n,

which provide new constructions of (not necessarily holomorphic) Jacobi and Siegel
modular forms. As highlighted by Gritsenko, Skoruppa, and Zagier, theta quotients
also have deep applications to areas such as Fourier analysis over infinite-dimensional
Lie algebras and the moduli spaces in algebraic geometry. In this chapter, we obtain
the bivariate asymptotic behavior of the coefficients of a prototypical family of such
theta quotients, while the steps presented here also offer a pathway to obtain similar
results for more general families. Our framework covers theta quotients for k = j = 1,
a1 = 1, b1 ∈ N, and n ∈ Z.
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In [BD16] Bringmann and Dousse pioneered the use of new techniques in the study
of the bivariate asymptotic behavior of the Fourier coefficients and applied them to the
partition crank function. In [DM15] Dousse and Mertens used these techniques to study
the rank function. In particular, each of these papers used an extension of Wright’s Circle
Method [Wri34,Wri71] to obtain bivariate asymptotics of N(m,n) and M(m,n), with m
in a certain range depending on n.

Recently, Males extended these techniques to an example appearing in the partition
function for entanglement entropy in string theory. In particular, [Mal20, Mal21a]
considered the eta-theta quotient

ϑ(z; τ)4

η(τ)9ϑ(2z; τ)
=:
∑
m∈Z
n≥0

b(m,n)ζmqm

with a simple pole at z = 1
2 . The bivariate asymptotic behavior of the coefficients b(m,n)

is given by [Mal21a, Theorem 1.1].

Theorem II.1.1. For β := π
√

2
n and |m| ≤ 1

6β log(n) we have that

b(m,n) = (−1)m+δ+1 iβ6m

8π5(2n)
1
4

e2π
√
2n +O

(
mn−

15
4 e2π

√
2n
)

as n→∞. Here, δ := 1 if m < 0 and δ = 0 otherwise.

This chapter serves to extend these results to a large family of eta-theta quotients
with multiple simple poles1. Such eta-theta quotients appear in numerous places. For
example, investigations into Vafa–Witten invariants [Ale21, equation (2.5)] involve the
functions

i

η(τ)N−1ϑ(2z; τ)
,

which also appear in investigations into the counting of so-called BPS-states via wall-
crossing [Wot13, equation (5.114)]. The asymptotics of this family of functions were
studied in [BM13]. Other examples of similar shapes also arise as natural pieces of
functions in investigations into BPS-states, see e.g., [Wot13, Section 5.6.2 ]. Similar
functions also appear prominently in Watson’s well-known quintuple product formula

ϑ∗(z; τ) :=
∑
r∈Z

(
12

r

)
q
r2

24 ζ
r
2 =

η(τ)ϑ(2z; τ)

ϑ(z; τ)
,

1A similar framework exists for those without poles by simply extending the results of [BD16,DM15].
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which has a plethora of applications in number theory and combinatorics, and our main
theorem gives a bivariate asymptotic for the coefficients of ϑ∗(z; τ)−1. Such asymptotics
for inverse theta functions are a topic currently in vogue in the literature, see e.g.,
[BM13,LZ22] and the references contained therein.

Throughout, we consider an eta-theta quotient of the form

f(z; τ) :=
ϑ(z; τ)

ϑ(bz; cτ)

N∏
j=1

η(ajτ)
αj ,

where aj , b, c ∈ N, N ∈ N>1, and αj ∈ Z. Since we require asymptotic growth, we assume

that
∑N

j=1
αj
aj
< 0. We omit the dependency on these parameters for notational ease. We

assume that b is even, b ̸= c, and b2 > c, and indicate the differences that would occur if
b were odd. In the language of [GSZ19], this is a family of theta quotients.

Remarks.
(1) Note that by the conditions from above we assume that we have exponential growth

towards the cusp 0 and therefore ensure that the Circle Method works by choosing
the major arc around q = 1.

(2) The exposition presented here may be easily generalized to include products of theta
functions in both the numerator and denominator of f , although this becomes lengthy
to write out for the general case.

(3) We include a theta function in the numerator to allow us to assume that there are
no poles of f at the lattice points 0 or 1. However, using the techniques presented
here and shifting integrals to not have endpoints at 0 or 1, a similar method holds for
functions without a theta function in the numerator.

We define the coefficients c(m,n) by

f(z; τ) =:
∑
n≥0
m∈Z

c(m,n)ζmqn,

for some z in a small neighborhood of 0 that is pole-free, and investigate their bivariate
asymptotic behavior. To this end, we employ and extend the techniques of [BD16], which
also appear in [DM15,Mal20,Mal21a], using Wright’s Circle Method to arrive at the
following theorem.

Theorem II.1.2. Define β = β(n) := π
√

2
n and w := 1

2

∑N
j=1 αj ∈

1
2Z, which is the

weight of the eta quotient part of our function f , along with

Λ1 := (−1)2w+1 (2π)w
c
3
2

4π2 (2b2 − b− c)

N∏
j=1

a
−
αj
2

j ,
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and

Λ2 :=
b2

c
− b

c
+

1

4c
− 1

4
−

N∑
j=1

αj
12aj

.

Assume that 0 < 1 −
∑N

j=1
αj
12aj

<
√
Λ2,

∑N
j=1

αj
aj
< 0, b even with b ̸= c, b2 > c, and

m = m(n) with |m| ≤ 1
6βn

−δ log(n) for some 0 < δ < 1
2 such that m → ∞ as n → ∞.

Then

c(m,n) =
1

2πi
Λ1β

2−w
√

Λ2
−w e2π

√
2Λ2n

2π (2Λ2n)
1
4

+O

(
β3−w

e2π
√
2Λ2n

2π (2Λ2n)
1
4

)
as n→∞.

Remark. Note that the restriction on Λ2 still leaves infinitely many choices.

Since we assumed that b2 > c we only have functions of negative index. Therefore
one might be able to use [BRZ16] to obtain our results.

This chapter is structured as follows. We begin in Section II.2 by recalling results
that are relevant to the rest of this chapter. Section II.3 deals with defining the Fourier
coefficients of ζm of f . In Section II.4 we investigate the behavior of f toward the
dominant pole q = 1. We follow this in Section II.5 by bounding the contribution away
from the pole at q = 1. In Section II.6 we obtain the asymptotic behavior of c(m,n) and
hence prove Theorem II.1.2.

II.2 Preliminaries

Here we recall relevant definitions and results which will be used throughout the rest
of this chapter.

II.2.1 Properties of ϑ and η

When determining the asymptotic behavior of f we require the modular properties of
both ϑ and η. We from now on define the square root using the principal branch, which
means that we exclude the negative reals and impose positive square roots for positive
real numbers.

It is well-known that ϑ is a Jacobi form (see e.g., [Mum07]).

Lemma II.2.1. The function ϑ satisfies

ϑ(z; τ) = −ϑ(−z; τ), ϑ(z; τ) = −ϑ(z + 1; τ), ϑ(z; τ) =
i√
−iτ

e
−πiz2
τ ϑ

(
z

τ
;−1

τ

)
.
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We also have the well-known triple product formula (see e.g., [Zwe02, Proposition
1.3] for this explicit formulation), that yields

ϑ(z; τ) = iζ
1
2 q

1
8

∏
n≥1

(1− qn) (1− ζqn)
(
1− ζ−1qn−1

)
. (II.2.1)

Furthermore, we have the following modular transformation formula of η (see e.g.,
[KK07]).

Lemma II.2.2. We have that

η(τ) =

√
i

τ
η

(
−1

τ

)
.

II.2.2 Integrals over segments of circles

Let Ur(z0) := {z : |z − z0| < r} be the open disk around z0 ∈ C with radius r > 0.
Then we have the following result [Cur78, page 263].

Lemma II.2.3. Let g : Ur(z0)\{z0} → C be analytic and have a simple pole at z0. Let
γ(δ) be a circular arc with parametric equation z = z0 + δeiθ, for −π < θ1 ≤ θ ≤ θ2 ≤ π
and 0 < δ < r. Then

lim
δ→0

∫
γ(δ)

g(z)dz = i(θ2 − θ1)Resz0(g),

where Resz0(g) denotes the residuum of g at z0.

See Figure II.1 for a pictorial explanation of this result.

Re(z)

Im(z)

z0

θ2 − θ1
δ

γ(δ)

Figure II.1: Segment of a circle with radius δ around a simple pole z0.
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II.2.3 A particular bound

We require a bound on the size of

P (q) :=
q

1
24

η(τ)
,

away from the pole at q = 1. For this we use [BD16, Lemma 3.5].

Lemma II.2.4. Let M > 0 be a fixed constant. Let τ = u+ iv ∈ H with Mv ≤ u ≤ 1
2

for u > 0 and v → 0. Then

|P (q)| ≪
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))]
.

In particular, with v = β
2π , u = βm− 1

3 x
2π and M = m− 1

3 this gives for 1 ≤ x ≤ πm
1
3

β
the bound

|P (q)| ≪ n−
1
4 exp

2π
β

 π

12
− 1

2π

1− 1√
1 +m− 2

3

 . (II.2.2)

II.2.4 I-Bessel functions

Here we recall relevant results on the I-Bessel function which for x > 0 may be
written as (see e.g., [Arf85,BD16])

Iℓ(x) :=
1

2πi

∫
Γ
t−ℓ−1e

x
2 (t+

1
t )dt,

where Γ is a contour which starts in the lower half plane at −∞, surrounds the origin
counterclockwise and returns to −∞ in the upper half plane. We are particularly
interested in the asymptotic behavior of Iℓ, given in the following lemma (see e.g.,
[AAR99, equation (4.12.7)]).

Lemma II.2.5. For fixed ℓ we have

Iℓ(x) =
ex√
2πx

+O

(
ex

x
3
2

)
as x→∞.
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II.3 Fourier Coefficients of f

Note that f(−z; τ) = f(z; τ) by Lemma II.2.1, and so c(−m,n) = c(m,n). For the
case m = 0 one can use classical results (see e.g., [BFOR17, Theorem 15.10]) to calculate
the Fourier coefficients. We therefore restrict our attention to the case m > 0.

We first define the Fourier coefficients of ζm of f . Since shifts under z 7→ z + 1 of
ϑ are understood we focus only on the case z ∈ [0, 1], we let h1, ..., hs ∈ Q denote the
poles of f in this range, each of the form d

b , with 1 ≤ d ≤ b− 1 and d ∈ N. Note that the
distribution of the poles is symmetric on the interval in question.

Define the path of integration Γℓ,r by

Γℓ,r :=


0 to h1 − r if ℓ = 0,

hℓ + r to hℓ+1 − r if 1 ≤ ℓ ≤ s− 1,

hs + r to 1 if ℓ = s,

for some r > 0 sufficiently small. Note that in our setting we have s = b− 1. Following
the framework of [DMZ12,Mal20,Mal21a], we define

f±m(τ) :=
s∑
ℓ=0

∫
Γℓ,r

f(z; τ)e−2πimzdz +
s∑
ℓ=1

G±
ℓ,r, where G±

ℓ,r :=

∫
γ±ℓ,r

f(z; τ)e−2πimzdz

for a fixed pole hℓ (1 ≤ ℓ ≤ s). Here, γ+ℓ,r is the semi-circular path of radius r passing

above the pole hℓ and γ
−
ℓ,r is the semi-circular path passing below the pole hℓ, see Figures

II.2 and II.3.

0
h1 h2 h3 hs−2 hs−1 hs

1

Figure II.2: The path of integration taking γ+ℓ,r at each pole.

Following [DMZ12] the Fourier coefficient of ζm of f , for fixed m, is given by

fm(τ) := lim
r→0+

f+m(τ) + f−m(τ)

2

= lim
r→0+

1

2

2

s∑
ℓ=0

∫
Γℓ,r

f(z; τ)e−2πimzdz +

s∑
ℓ=1

G+
ℓ,r +G−

ℓ,r

 . (II.3.1)
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γ+ℓ,r

hℓ

r

Figure II.3: The contour γ+ℓ,r for a fixed ℓ.

For fixed ℓ we use Lemma II.2.3 to see that

lim
r→0+

(
G+
ℓ,r +G−

ℓ,r

)
= 0,

since we only have simple poles.

The substitution z 7→ 1− z gives us

s∑
ℓ=0

∫
Γℓ,r

f(z; τ)e−2πimzdz =−
s∑
ℓ=0

∫
Γℓ,r

f(z; τ)e2πimzdz,

since b is even and using that f(1−z; τ) = (−1)b+1f(z; τ) by Lemma II.2.1. Thus, (II.3.1)
simplifies to

fm(τ) =− i lim
r→0+

s∑
ℓ=0

∫
Γℓ,r

f(z; τ) sin(2πmz)dz. (II.3.2)

Remark. For odd b one would obtain a similar formula with the integrand replaced by
f(z; τ) cos(2πmz).

In the following two sections we determine the asymptotic behavior of f towards
and away from the dominant pole at q = 1, ectively. From now on we let τ = iε

2π ,

ε := β(1 + ixm− 1
3 ), β = π

√
2
n , and |m| ≤

1
6βn

−δ log(n) for some 0 < δ < 1
2 such that

m→∞ as n→∞.

II.4 Bounds toward the dominant pole

In this section we consider the behavior of fm toward the dominant pole at q = 1.
Remember that we have w ∈ 1

2Z by definition (see Theorem II.1.2).
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Lemma II.4.1. Let τ = iε
2π , with 0 < Re(ε)≪ 1, let z be away from the poles, letM(z)

be the function defined in (II.4.2) which is positive for all z ∈ (0, 1), and let

C (z; τ) := (−1)2w
(
2π

ε

)w
c
1
2

 N∏
j=1

a
−
αj
2

j

 sinh
(
2π2z
ε

)
sinh

(
2π2bz
cε

)e 2π2

ε

(
4b2z2+1

4c
− 4z2+1

4
−
N∑
j=1

αj
12aj

)
.

Then we have that

f

(
z;
iε

2π

)
= C

(
z;
iε

2π

)(
1 +O

(
e−

4π2

ε
M(z)

))
as n→∞.

Proof. Using Lemmata II.2.1 and II.2.2 we see that f = f1f2f3, where

f1(z; τ) := i−3wτ−wc
1
2

N∏
j=1

a
−
αj
2

j ,

f2(z; τ) := e
πiz2

τ

(
b2

c
−1
)
,

f3(z; τ) :=

ϑ
(
z
τ ;−

1
τ

) N∏
j=1

η
(
− 1
ajτ

)αj
ϑ
(
bz
cτ ;−

1
cτ

) .

Using the definition of η, (II.2.1), and setting qt := e−
2πi
tτ = e−

4π2

tε for t ∈ N one may
easily show that f3(z; τ) becomes

iζ
1
2τ q

1
8
1

∏
κ≥1

(1− qκ1 )
(
1− ζ 1

τ qκ1

)(
1− ζ− 1

τ qκ−1
1

) N∏
j=1

q
αj
24
aj

∏
κ≥1

(
1− qκaj

)αj

iζ
b

2cτ q
1
8
c
∏
κ≥1

(1− qκc )
(
1− ζ b

cτ qκc

)(
1− ζ− b

cτ qκ−1
c

)

=e
−

N∑
j=1

πiαj
12ajτ

− πi
4τ + πi

4cτ sinh
(
πiz
τ

)
sinh

(
πibz
cτ

) ∏
κ≥1

(
N∏
j=1

(
1− qκaj

)αj

)
(1− qκ1 )

(
1− ζ 1

τ qκ1

)(
1− ζ− 1

τ qκ1

)
(1− qκc )

(
1− ζ b

cτ qκc

)(
1− ζ− b

cτ qκc

) ,

by using the trick∏
κ≥1

(
1− ζ−xqκ−1

)
=
(
1− ζ−x

)∏
κ≥2

(
1− ζ−xqκ−1

)
=
(
1− ζ−x

)∏
κ≥1

(
1− ζ−xqκ

)
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and the fact that ζ
x
2 (1−ζ−x) = (ζ

x
2 −ζ−

x
2 ) = 2 sinh(πixz). Putting those results together

and setting τ = iε
2π yields

f

(
z;
iε

2π

)
=C
(
z;
iε

2π

)

×
∏
κ≥1

(
1− e− 4π2κ

ε

)(
1− e 4π2

ε (z−κ)
)(

1− e 4π2

ε (−z−κ)
) N∏

j=1

(
1− e−

4π2κ
ajε

)αj

(
1− e− 4π2κ

cε

)(
1− e 4π2

cε (bz−κ)
)(

1− e 4π2

cε (−bz−κ)
) .

In order to find a bound we inspect the asymptotic behavior of the product over κ.
Splitting αj into positive and negative powers, labeled by γj , δj ∈ N, and aj , into xj and
yj , respectively, we first rewrite this as

∏
κ≥1

(
1− e− 4π2κ

ε

)(
1− e− 4π2

ε (κ−z)
)(

1− e− 4π2

ε (κ+z)
) N1∏

j=1

(
1− e−

4π2κ
xjε

)γj N2∏
k=1

(∑
µ≥0

e
− 4π2µκ

ykε

)δk

(
1− e− 4π2κ

cε

)(
1− e− 4π2

cε (κ−bz)
)(

1− e− 4π2

cε (κ+bz)
) ,

(II.4.1)

since |e−
4π2κ
ykε | < 1 for all κ ≥ 1. We also have that |e−

4π2κ
cε | < 1 and |e−

4π2

cε
(κ+bz)| < 1 for

all κ ≥ 1 since b, c ∈ N. Therefore, we have that

1(
1− e−

4π2κ
cε

)(
1− e−

4π2

cε
(κ+bz)

) =
∑
λ≥0

e−
4π2λκ
cε

∑
ξ≥0

e−
4π2ξ
cε

(κ+bz).

Up to this point our calculations are independent of the size of z. The remaining
term is

1

1− e−
4π2

cε
(κ−bz)

.

Let κ0 be the smallest κ ≥ 1 such that (κ− bz) ≥ 0. We may rewrite

∏
κ≥1

1(
1− e−

4π2

cε
(κ−bz)

) =

κ0−1∏
κ=1

1(
1− e−

4π2

cε
(κ−bz)

) ∏
κ≥κ0

∑
µ≥0

e−
4π2µ
cε

(κ−bz).

The first product is

κ0−1∏
κ=1

1(
1− e−

4π2

cε
(κ−bz)

) =

κ0−1∏
κ=1

(
−e

4π2

cε
(κ−bz)

)∑
ν≥0

e
4π2ν
cε

(κ−bz).
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Additionally we have e−
4π2

ε
(1+z) < e−

4π2

ε < e−
4π2

ε
(1−z).

Let

M(z) :=


min

(
1− z, 1

xj
, 1
yk
, 1c ,

κ0−bz
c , bz+1−κ0

c

)
if κ0 ̸= 1,

min
(
1− z, 1

xj
, 1
yk
, 1c ,

κ0−bz
c

)
if κ0 = 1,

(II.4.2)

running over all 1 ≤ j ≤ N1 and 1 ≤ k ≤ N2. Note that for 0 < Re(ε)≪ 1, and z ∈ (0, 1)
we haveM(z) > 0, so the product in (II.4.1) is of order

1 +O

(
e−

4π2

ε
M(z)

)
,

which finishes the proof.

Remark. By separating into cases, one is able to obtain more precise asymptotics. However,
this is not required for what follows and we leave the details for the interested reader.

Theorem II.4.2. Let Λ1 and Λ2 be defined as in Theorem II.1.2. For |x| ≤ 1 we have
that

fm

(
iε

2π

)
=Λ1 ε

1−we
2π2

ε
Λ2 +O

(
β2−we

2π2

ε
Λ2

)
as n→∞.

Proof. Plugging Lemma II.4.1 into (II.3.2) yields

fm

(
iε

2π

)
= −i

s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

C
(
z;
iε

2π

)(
1 +O

(
e−

4π2

ε
M(z)

))
sin(2πmz)dz. (II.4.3)

We have that

sinh
(
2π2z
ε

)
sinh

(
2π2bz
cε

) =

e
2π2z
ε

(
1− e−

4π2z
ε

)
e

2π2bz
cε

(
1− e−

4π2bz
cε

) = e
2π2

ε
z(1− b

c)
(
1− e−

4π2z
ε

)∑
λ≥0

e−
4π2λbz
cε

=e
2π2

ε
z(1− b

c)
(
1 +O

(
e−

4π2z
ε

))
,

using |e−
4π2bz
cε | < 1. Additionally we see that

e

2π2

ε

(
4b2z2+1

4c
− 4z2+1

4
−
N∑
j=1

αj
12aj

)
=e

2π2

ε

(
b2

c
−1
)
z2
e

2π2

ε

(
1
4c

− 1
4
−
N∑
j=1

αj
12aj

)
.
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Defining

Ω(m,n) := (−1)2w
(
2π

ε

)w
c
1
2

 N∏
j=1

a
−
αj
2

j

 e

2π2

ε

(
1
4c

− 1
4
−
N∑
j=1

αj
12aj

)

and N (z) := min(z,M(z)), we can rewrite (II.4.3) as

−iΩ(m,n)
s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

e
2π2

ε

(
b2

c
−1
)
z2
e

2π2

ε (1− b
c)z
(
1 +O

(
e−

4π2

ε
N (z)

))
sin(2πmz)dz.

We immediately see that this splits up into two integrals

s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

e
2π2

ε

(
b2

c
−1
)
z2
e

2π2

ε (1− b
c)z sin(2πmz)dz (II.4.4)

and

s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

e
2π2

ε

(
b2

c
−1
)
z2
e

2π2

ε (1− b
c)zO

(
e−

4π2

ε
N (z)

)
sin(2πmz)dz. (II.4.5)

Let erf(z) := 2√
π

∫ z
0 e

−t2dt denote the error function and note that d
dz erf(z) =

2e−z
2

√
π

.

For arbitrary H1,H2 ∈ C, with H2 ̸= 0 a straightforward calculation, using the identity
1
2i(e

2πimz − e−2πimz) = sin(2πmz), gives us that

d

dz

[ √
π

4
√
H2

(
e
− 1

4
(H1+2πim)2

H2 erf

(
1

2

H1 + 2πim+ 2H2z√
−H2

)
+e

− 1
4

(−H1+2πim)2

H2 erf

(
1

2

−H1 + 2πim− 2H2z√
−H2

))]
= eH1zeH2z2 sin(2πmz).

Therefore the following formula holds∫ u

t
eH1zeH2z2 sin(2πmz)dz =

√
π

4
√
H2

(
e
− 1

4
(H1+2πim)2

H2 erf

(
1

2

2H2t+H1 + 2πim√
−H2

)
+e

− 1
4

(−H1+2πim)2

H2 erf

(
1

2

−2H2t−H1 + 2πim√
−H2

)
−e−

1
4

(H1+2πim)2

H2 erf

(
1

2

2H2u+H1 + 2πim√
−H2

)
−e−

1
4

(−H1+2πim)2

H2 erf

(
1

2

−2H2u−H1 + 2πim√
−H2

))
.
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For arbitrary H1,H2 ∈ C, with H2 ̸= 0 we thus obtain

s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

eH2z
2

eH1z sin(2πmz)dz (II.4.6)

=

√
π

4
√
H2

(
e−

1
4

(H1+2πim)2

H2 erf

(
1

2

H1 + 2πim√
−H2

)
+ e−

1
4

(−H1+2πim)2

H2 erf

(
1

2

−H1 + 2πim√
−H2

)
−e−

1
4

(H1+2πim)2

H2 erf

(
1

2

2H2 +H1 + 2πim√
−H2

)
− e−

1
4

(−H1+2πim)2

H2 erf

(
1

2

−2H2 −H1 + 2πim√
−H2

))
,

since all the other terms cancel. If |Arg(±z)| < π
4 , we have that (see e.g., [BN19, page

10])

erf (iz) =
iez

2

√
πz

(
1 +O

(
|z|−2

))
=

iez
2

√
πz

+O
(
ez

2 |z|−3
)
, (II.4.7)

as |z| → ∞. Note that taking the limit |z| → ∞ is equivalent to taking the limit n→∞
in our setting.

Consider the integral (II.4.4), so set H1 =
2π2

ε (1− b
c) and H2 =

2π2

ε ( b
2

c − 1). In this

case, since b2

c > 1, we obtain

1

2

±H1 + 2πim√
−H2

=
±
(
π
ε

(
1− b

c

))
+ im

i

√
2
ε

(
b2

c − 1
) =: iz1,

respectively

1

2

±2H2 ±H1 + 2πim√
−H2

=
±2
(
π
ε

(
b2

c − 1
))
±
(
π
ε

(
1− b

c

))
+ im

i

√
2
ε

(
b2

c − 1
) =: iz2.

Using ε = β(1 + ixm− 1
3 ) and

√
z =

√
|z| cos(12 Arg(z)) + i

√
|z| sin(12 Arg(z)) a straight-

forward calculation shows that

z1 =2

(
b2

c
− 1

)√√√√√ 2
(
b2

c
− 1
)

β

√
1 + x2m− 2

3

×
[(

∓π
(
1− b

c

)
+ βxm

2
3

)
cos

(
1

2
Arg

(
1− ixm− 1

3

))
+ βm sin

(
1

2
Arg

(
1− ixm− 1

3

))
+i

(
−βm cos

(
1

2
Arg

(
1− ixm− 1

3

))
+

(
∓π
(
1− b

c

)
+ βxm

2
3

)
sin

(
1

2
Arg

(
1− ixm− 1

3

)))]
,
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respectively

z2 =2

(
b2

c
− 1

)√√√√√√ 2
(

b2

c
− 1

)
β

√
1 + x2m

− 2
3

×
[(

∓
(
π

(
1 −

b

c

)
+ 2π

(
b2

c
− 1

))
+ βxm

2
3

)
cos

(
1

2
Arg

(
1 − ixm

− 1
3

))
+ βm sin

(
1

2
Arg

(
1 − ixm

− 1
3

))

+i

(
−βm cos

(
1

2
Arg

(
1 − ixm

− 1
3

))
+

(
∓
(
π

(
1 −

b

c

)
+ 2π

(
b2

c
− 1

))
+ βxm

2
3

)
sin

(
1

2
Arg

(
1 − ixm

− 1
3

)))]
.

Since |x| < 1 we see that |Arg(1− ixm− 1
3 )| < π

4 and thus we have∣∣∣∣cos(1

2
Arg

(
1− ixm− 1

3

))∣∣∣∣ > ∣∣∣∣sin(1

2
Arg

(
1− ixm− 1

3

))∣∣∣∣ . (II.4.8)

From the assumption |m| ≤ 1
6βn

−δ log(n) for some 0 < δ < 1
2 we not only ensure that

m → ∞ as n → ∞ but additionally that βm → 0 and βm
2
3 → 0 as n → ∞. Thus,

together with (II.4.8), we see that |Re(z1)| > | Im(z1)|, respectively |Re(z2)| > | Im(z2)|,
for n sufficiently large.

Therefore the arguments of the error functions in (II.4.6) satisfy the condition of
(II.4.7). Plugging in yields

s∑
ℓ=0

lim
r→0+

∫
Γℓ,r

eH2z
2

eH1z sin(2πmz)dz

=

√
π

4
√
H2

 i
√
π
(
−i 12

H1+2πim√
−H2

) +O

(∣∣∣∣(−i12H1 + 2πim√
−H2

)∣∣∣∣−3
)

+
i

√
π
(
−i 12

−H1+2πim√
−H2

) +O

(∣∣∣∣(−i12 −H1 + 2πim√
−H2

)∣∣∣∣−3
)

− ie
1
4

4H2
2+4H2(H1+2πim)

H2

√
π
(
−i 12

2H2+H1+2πim√
−H2

) +O

(
e

1
4

4H2
2+4H2(H1+2πim)

H2

∣∣∣∣(−i12 2H2 +H1 + 2πim√
−H2

)∣∣∣∣−3
)

− ie
1
4

4H2
2−4H2(−H1+2πim)

H2

√
π
(
−i 12

−2H2−H1+2πim√
−H2

) +O

(
e

1
4

4H2
2−4H2(−H1+2πim)

H2

∣∣∣∣(−i12 −2H2 −H1 + 2πim√
−H2

)∣∣∣∣−3
)

=

√
π

4
√
H2

 i
√
π
(
−i 12

H1+2πim√
−H2

) +O

(∣∣∣∣(−i12H1 + 2πim√
−H2

)∣∣∣∣−3
)

+
i

√
π
(
−i 12

−H1+2πim√
−H2

) +O

(∣∣∣∣(−i12 −H1 + 2πim√
−H2

)∣∣∣∣−3
)
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− ieH2+H1

√
π
(
−i 12

2H2+H1+2πim√
−H2

) +O

(
eH2+H1

∣∣∣∣(−i12 2H2 +H1 + 2πim√
−H2

)∣∣∣∣−3
)

− ieH2+H1

√
π
(
−i 12

−2H2−H1+2πim√
−H2

) +O

(
eH2+H1

∣∣∣∣(−i12 −2H2 −H1 + 2πim√
−H2

)∣∣∣∣−3
)

=

√
π

4
√
H2

− ieH2+H1

√
π
(
−i 12

2H2+H1+2πim√
−H2

) +O

(
eH2+H1

∣∣∣∣i12 2H2 +H1 + 2πim√
−H2

∣∣∣∣−3
)

=
eH2+H1

4i
(
1
2 (2H2 +H1 + 2πim)

) +O

( √
π

4
√
H2

eH2+H1

∣∣∣∣i12 2H2 +H1 + 2πim√
−H2

∣∣∣∣−3
)

=
eH2+H1

4iH2 + 2iH1 − 4πm
+O

(√
πeH2+H1

4
√
H2

∣∣∣∣12 2H2 +H1 + 2πim√
−H2

∣∣∣∣−3
)
.

We thus obtain that (II.4.4) equals

e
2π2

ε

(
b2

c
− b
c

)
4iπ2

ε

(
2b2

c − 1− b
c

)
− 4πm

+O


√
π

4

e
2π2

ε

(
b2

c
− b
c

)
√

2π2

ε

(
b2

c − 1
)
∣∣∣∣∣∣∣∣
π2

ε

(
2b2

c − 1− b
c

)
+ πim√

2π2

ε

(
b2

c − 1
)

∣∣∣∣∣∣∣∣
−3
 .

Combining this along with the fact that N (z) > 0 and recycling the same arguments for
(II.4.5), yields

fm

(
iε

2π

)
=− iΩ(m,n)

 e
2π2

ε

(
b2

c − b
c

)
4iπ2

ε

(
2b2

c − 1− b
c

)
− 4πm

+O

√π4 e
2π2

ε

(
b2

c − b
c

)
√

2π2

ε

(
b2

c − 1
)
∣∣∣∣∣∣
π2

ε

(
2b2

c − 1− b
c

)
+ πim√

2π2

ε

(
b2

c − 1
)

∣∣∣∣∣∣
−3

 .

Plugging in Ω(m,n) yields the claim. The main term here simplifies to

Λ1ε
1−we

2π2

ε
Λ2

since 4πmε→ 0 as n→∞, which holds since we have

|mε| ≤ |mβ|+
∣∣∣βixm 2

3

∣∣∣ ≤ 1

6
n−δ log(n) + β

1
3x

(
1

6
n−δ log(n)

) 2
3

→ 0,

as n→∞, and for 0 < δ < 1
2 .
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II.5 Bounds away from the dominant pole

In this section we investigate the contribution of fm away from the dominant pole at
q = 1, and show that it forms part of the error term. Recall that from (II.3.2) we have

fm(τ) = −i lim
r→0+

(
s∑
ℓ=0

∫
Γℓ,r

f(z; τ) sin(2πmz)dz

)
.

One immediately sees that∣∣∣∣∣
s∑
ℓ=0

∫
Γℓ,r

f(z; τ) sin(2πmz)dz

∣∣∣∣∣≪
s∑
ℓ=0

∫
Γℓ,r

|f(z; τ) sin(2πmz)| dz.

Consider

|f(z; τ) sin(2πmz)| =

∣∣∣∣∣∣
N∏
j=1

η(ajτ)
αj

ϑ(z; τ)

ϑ(bz; cτ)

∣∣∣∣∣∣ |sin(2πmz)| ≪
∣∣∣∣∣∣
N∏
j=1

η(ajτ)
αj

∣∣∣∣∣∣
∣∣∣∣ ϑ(z; τ)ϑ(bz; cτ)

∣∣∣∣
away from the dominant pole. We begin with the term

∏N
j=1 η(ajτ)

αj . As in [Mal20] we
write

N∏
j=1

η(ajτ)
αj =

N1∏
j=1

η(xjτ)
γj

N2∏
k=1

q−
ykδk
24 P (qyk)δk .

Using Lemma II.2.2 we see that

η

(
ixjε

2π

)γj
≪
(

2π

xjβ

) γj
2

e
−
π2γj
6xjβ .

By (II.2.2) we also obtain that

|P (qyk)| ≪ n−
1
4 exp

 2π

ykβ

 π

12
− 1

2π

1− 1√
1 +m− 2

3

 .
Therefore we find
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N∏
j=1

η

(
iajε

2π

)αj
≪

N1∏
j=1

2π

xjβ


γj
2

e
−
N1∑
j=1

π2γj
6xjβ

×
N2∏
k=1

n−
δk
4 exp

2πδk
ykβ

 π

12
− 1

2π

1− 1√
1 +m− 2

3

 ,
and thus we obtain∣∣∣∣∣∣

N∏
j=1

η(ajτ)
αj

∣∣∣∣∣∣
∣∣∣∣ ϑ(z; τ)ϑ(bz; cτ)

∣∣∣∣≪
∣∣∣∣∣
N1∏

j=1

2π

xjβ


γj
2

e
−

N1∑
j=1

π2γj
6xjβ

N2∏
k=1

n−
δk
4 (II.5.1)

× exp

[
2πδk
ykβ

(
π

12
− 1

2π

(
1−

(
1 +m− 2

3

)− 1
2

))] ∣∣∣∣∣
∣∣∣∣ ϑ(z; τ)ϑ(bz; cτ)

∣∣∣∣ .
Plugging in (II.1.1), using Lemma II.2.1, and rearranging leads to∣∣∣∣ ϑ(z; τ)ϑ(bz; cτ)

∣∣∣∣ = ∣∣∣q− c
8

∣∣∣ |ϑ(z; τ)|∣∣∣∣∑
κ∈Z

(−1)κqc
κ2+κ

2 ζbκ
∣∣∣∣

≪
√

2π

β
e
− 2π2

β
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z∈Γℓ,r

|z− 1
2 |

2
∣∣∣∣∣∑
κ∈Z

(−1)κe−
2π2

ε (κ2+(1−2z)κ)

∣∣∣∣∣
≪β−

1
2 e

− 2π2

β
min
z∈Γℓ,r

|z− 1
2 |

2

≪ n
1
4 e

− 2π2

β
min
z∈Γℓ,r

|z− 1
2 |

2

≪ n
1
4 . (II.5.2)

Define

B(m,n) := n
1
4
−
N2∑
k=1

δk
4

N1∏
j=1

(
2π

xjβ

) γj
2

.

Then equations (II.5.1) and (II.5.2) imply that for r → 0+∣∣∣∣∣
s∑
ℓ=0

∫
Γℓ,r

f(z; τ) sin(2πmz)dz

∣∣∣∣∣
≪

s∑
ℓ=0

B(m,n) exp

 N2∑
k=1

2πδk
ykβ

 π

12
− 1

2π

1− 1√
1 +m− 2

3

− N1∑
j=1

π2γj
6xjβ

 .
Hence, away from the dominant pole at q = 1 we have shown the following proposition.
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Proposition II.5.1. For 1 ≤ x ≤ πm
1
3

β we have that∣∣∣∣∣fm
(
iε

2π

) ∣∣∣∣∣≪(s+ 1)B(m,n)

× exp

 N2∑
k=1

2πδk
ykβ

 π

12
− 1

2π

1− 1√
1 +m− 2

3

− N1∑
j=1

π2γj
6xjβ


as n→∞.

II.6 The Circle Method

In this section we use Wright’s variant of the Circle Method to complete the proof of
Theorem II.1.2. Cauchy’s Theorem implies that

c(m,n) =
1

2πi

∫
C

fm(τ)

qn+1
dq,

where C := {q ∈ C : |q| = e−β} is a circle centered at the origin of radius less than 1
with the path taken in the counter-clockwise direction, traversing the circle exactly once.
Making a change of variables, reversing the direction of the path of integration, and
recalling that ε = β(1 + ixm− 1

3 ) we have

c(m,n) =
β

2πm
1
3

∫
|x|≤πm

1
3

β

fm

(
iε

2π

)
eεndx.

Splitting this integral into two pieces, we have c(m,n) =M + E, where

M :=
β

2πm
1
3

∫
|x|≤1

fm

(
iε

2π

)
eεndx,

and

E :=
β

2πm
1
3

∫
1≤|x|≤πm

1
3

β

fm

(
iε

2π

)
eεndx.

Next we determine the contributions of each of the integrals M and E, and see that
M contributes to the main asymptotic term, while E is part of the error term.
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II.6.1 The major arc

Considering the contribution of M , we obtain the following proposition.

Proposition II.6.1. We have that

M =
1

2πi
Λ1β

2−w
√

Λ2
−w e2π

√
2Λ2n

2π (2Λ2n)
1
4

+O

(
β3−w

e2π
√
2Λ2n

2π (2Λ2n)
1
4

)
as n→∞.

Proof. By definition we have that

M =
β

2πm
1
3

Λ1

∫
|x|≤1

ε1−we
2π2

ε
Λ2eεndx+

β

2πm
1
3

∫
|x|≤1

O

(
β2−we

2π2

ε
Λ2

)
eεndx. (II.6.1)

Making the change of variables v = 1 + ixm− 1
3 and then v 7→

√
Λ2v we obtain that the

first term equals

1

2πi
Λ1β

2−wΛ
−w

2
2 P1−w,12Λ2 , (II.6.2)

where

Ps,k :=

1+im
− 1

3√
Λ2∫

1−im− 1
3√

Λ2

vse
π
√
kn
6 (v+

1
v )dv.

One may relate Ps,k to I-Bessel functions in exactly the same way as in [BD16, Lemma
4.2], making the adjustment for

√
Λ2 where necessary, to obtain that

Ps,k = I−s−1

(
π

√
2kn

3

)
+O

(
exp

(
π

√
kn

6

(
1 +

1

1 +m− 2
3

)))
.

Using the asymptotic behavior of the I-Bessel function given in Lemma II.2.5 we obtain

P1−w,12Λ2 =
e2π

√
2Λ2n

2π (2Λ2n)
1
4

+O

(
e2π

√
2Λ2n

(8π2Λ2n)
3
4

)
+O

eπ√2Λ2n

(
1+ 1

1+m
− 2

3

) ,

and therefore (II.6.2) becomes
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1

2πi
Λ1β
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√
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−w e2π
√
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2π (2Λ2n)
1
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β2−w e2π

√
2Λ2n
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√
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) .

Analogously the second term of (II.6.1) is

1

2πi
β3−w

√
Λ2

−1
P0,12Λ2 = O

(
β3−w

e2π
√
2Λ2n

2π (2Λ2n)
1
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.

This yields

M =
1

2πi
Λ1β
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√

Λ2
−w e2π

√
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and finishes the proof.

II.6.2 The error arc

Finally, we bound E as follows.

Proposition II.6.2. We have E ≪M as n→∞.

Proof. By Proposition II.5.1 we have

E ≪ β

2πm
1
3

(s+ 1)B(m,n) exp

 N2∑
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2πδk
ykβ

 π
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− 1

2π

1− 1√
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3

− N1∑
j=1

π2γj
6xjβ


× eβn

∫
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1
3

β

eβnixm
− 1

3 dx

≪s+ 1

π
B(m,n) exp

π√2n
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N∑
j=1

αj
12aj

− N2∑
k=1

δk
ykβ

1− 1√
1 +m− 2
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 ,
where we trivially estimate the final integral. Using 1 −

∑N
j=1

αj
12aj

< 2
√
Λ2 the result

follows immediately by comparing to M and therefore also finishes the proof of Theorem
II.1.2.

35



CHAPTER II. BIVARIATE ASYMPTOTICS

II.7 Further questions

We end by briefly commenting on some related questions that could be the subject of
further research.
(1) Here we only discussed the case of eta-theta quotients with simple poles. A natural

question to ask is: Does a similar story hold for functions with higher order poles? The
situation is of course expected to be more complicated, in particular finding Fourier
coefficients with the method presented here seems to be much more difficult. One
could attempt to build a framework by following the definitions of Fourier coefficients
given in [DMZ12, Section 8].
For example, in [MZR15] Manschot and Zapata Rolón studied a Jacobi form with a
double pole related to χy-genera of Hilbert schemes on K3. They obtain bivariate
asymptotic behavior in a similar flavor to those here. Can one extend this family?

(2) Although the functions considered in this chapter provide a wide family of results, it
should be possible to extend the method to other related families of functions. In
particular, it would be instructive to consider similar approaches for prototypical
examples of mock Jacobi forms.
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Chapter III

Asymptotic equidistribution for
partition statistics and topological
invariants

This chapter is based on a prerpint of the same title submitted for publication and is
joint work with Dr. William Craig and Dr. Joshua Males [CCM21].

III.1 Introduction and statement of results

A partition λ of a non-negative integer n is a list of non-increasing positive integrers,
say λ = (λ1, λ2, . . . , λm), that satisfies |λ| := λ1 + · · ·+ λm = n, and we let p(n) denote
the number of such partitions. In 1918 Hardy and Ramanujan [HR18] proved

p(n) ∼ 1

4
√
3n
· eπ

√
2n
3

as n→∞, one of the most famous asymptotic formulae in partition theory. Their work
marked the birth of the so-called Circle Method.

Half a century later Wright [Wri68,Wri71] developed a modified version of the Circle
Method which provides a general method for studying the Fourier coefficients of functions
with known asymptotic behavior near cusps. The essence of Wright’s method is to use
Cauchy’s theorem to recover the coefficients as the integral over a circle of the generating
function. One then splits the integral into two arcs, the major arc and minor arc, where
the generating function has large growth and small relative growth, respectively. Even
though this version of the Circle Method gives weaker bounds than the original techniques
of Hardy and Ramanujan, it is more flexible when working with non-modular generating
functions. It has been used extensively in the literature, see e.g., [BM14,KKS15,Mao18]
for several examples closely related to this chapter.

Throughout mathematics, the equidistribution properties of certain objects are a
central theme studied by many authors, including in areas of algebraic and arithmetic
geometry [CM15,GT12,Kat15] and number theory [OS18,Xi20]. Recently, there has been
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. . . ← λ1 many nodes
. . . ← λ2 many nodes

...
...

...
. . . ← λm many nodes

Figure III.1: The Ferres-Young diagram of a partition λ = (λ1, λ2, . . . , λm).

a body of work in analogy with Dirichlet’s theorem on the asymptotic equidistribution
(or non-equidistribution) on arithmetic progressions of various objects. For example,
Males showed the asymptotic equidistribution of the partition ranks in [Mal21b], Ciolan
proved asymptotic equidistribution results for the number of partitions of n into k-th
powers in [Cio20], Gillman, Gonzalez, Ono, Rolen, and Schoenbauer proved asymptotic
equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of
surfaces [GGORS20], and Zhou proved asymptotic equidistribution of a wide class of
partition objects in [Zho21].

Another example is one of Craig and Pun [CP21], wherefore we need to define hook
lengths. For each partition λ = (λ1, λ2, . . . , λm) we can draw a Ferres-Young diagram as
shown in Figure III.1. The node in row k and column j has hook length

h(k, j) := (λk − k) + (λ′j − j) + 1,

where λ′j denotes the number of nodes in column j. We let Ht(λ) denote the multiset of
t-hooks, those hook lengths which are multiples of a fixed positive integer t, of a partition
λ. Craig and Pun investigated the t-hook partition functions

pet (n) :=#{λ a partition of n : #Ht(λ) is even},
pot (n) :=#{λ a partition of n : #Ht(λ) is odd},

which divide the partitions of n into two subsets, those with an even (respectively odd)
number of t-hooks. For even t, they proved that the partitions of n are asymptotically
equidistributed between these two subsets, while for odd t they found the surprising
phenomenon that they are not. Following this example, Bringmann, Craig, Males, and
Ono [BCMO22] showed that on arithmetic progressions modulo odd primes t-hooks
are not asymptotically equidistributed, while the Betti numbers of two specific Hilbert
schemes are. Their results centrally used a variant of Wright’s Circle Method (see
Proposition III.2.3).

The primary aim of this chapter is for proving large families of Dirichlet-type equidis-
tribution theorems. We begin by making more precise the meaning of a Dirichlet-type
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theorem. Suppose c(n) is an arithmetic function which counts something of interest. Let

q = e−z, where z = x+ iy ∈ C with x > 0 and |y| < π. Furthermore let ζ = ζab := e
2πia
b

be a b-th root of unity for some natural number1 b ≥ 2 and 0 ≤ a < b. Assume that we
have a generating function on arithmetic progressions a (mod b) given by

H(a, b; q) =
∑
n≥0

c(a, b;n)qn, (III.1.1)

for some coefficients c(a, b;n) such that

H(a, b; q) =
1

b

b−1∑
j=0

ζ−ajb H
(
ζjb ; q

)
, (III.1.2)

for some generating functions H(ζ; q), with H(q) := H(1; q) =
∑

n≥0 c(n)q
n. To say that

equidistribution holds is to say that c(a, b;n) ∼ 1
b c(n) as n → ∞. We are concerned

with relating analytic properties of the functions H(ζ; q) to equidistribution results for
c(a, b;n). We provide a general framework for answering this question for a large class
of generating functions by applying the spirit of Wright’s Circle Method along with
ideas of [BCMO22] (see Theorem III.3.1 for a precise statement). Since our aim is to
unify differing approaches to asymptotic equidistribution, we also collect many known or
partially-known results and prove them using our framework, which may be summarized
as follows.

Result. Assume that on both the major and minor arcs H(q) dominates H(ζ; q), and
H(q) is dominant on the major arc as q → 1. Then c(a, b;n) are eqidistributed as n→∞.

Theorem III.1.1 is already known, Theorem III.1.2 is partially known, while (to the
best of the author’s knowledge) Theorems III.1.3, III.1.4, III.1.5, and III.1.6 are new.

Because this method also naturally produces asymptotic formulae for the coefficients
c(a, b;n), we may also derive other interesting results, namely results about convexity
and log-concavity. Convexity-type results of partition theoretic objects have been studied
in recent years, for example in [BO16] Bessenrodt and Ono showed that if n1, n2 ≥ 1 and
n1 + n2 ≥ 9, then

p(n1)p(n2) > p(n1 + n2).

A similar phenomenon for partition ranks congruent to a (mod b), denoted by N(a, b;n),
was investigated by Hou and Jagadeesan [HJ18], who gave an explicit lower bound on n

1The case b = 1 is clearly trivial for coefficients that are integral.
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for convexity of N(a, 3;n). Confirming a conjecture of [HJ18], Males showed in [Mal21b]
that for large enough n1, n2 we have

N(a, b;n1)N(a, b;n2) > N(a, b;n1 + n2).

A direct corollary to Proposition III.2.3 shows that c(a, b;n) arising from functions that
satisfy the conditions of Proposition III.2.3 also satisfy the convexity result

c(a, b;n1)c(a, b;n2) > c(a, b;n1 + n2) (III.1.3)

for large enough n1, n2. A further corollary yields that the coefficients are asymptotically
log-concave, i.e., for large enough n1, n2,

c(a, b;n)2 ≥ c(a, b;n− 1)c(a, b;n+ 1). (III.1.4)

Such log-concavity results have been obtained for various arithmetic coefficients in the
literature, including [BJSMR19,LDM19,DP15] among many others. In particular, all
of the coefficients discussed in the following sections asymptotically satisfy (III.1.3) and
(III.1.4). To the best of the author’s knowledge, this gives new results for the first residual
crank, traces of plane partitions, Betti numbers of the two- and three-flag Hilbert schemes
we consider, as well as the cells of the scheme Vn,k of Göttsche, each defined in the
following subsections.

III.1.1 Partition statistics

We next consider various statistics on partitions, beginning with the asymptotic
equidistribution properties of two of the most famous partition statistics: the rank and
the crank.

In [Ram21] Ramanujan proved that for n ≥ 0

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n+ 6) ≡ 0 (mod 11) .

The rank [Dys44] of a partition λ is given by the largest part minus the number of parts.
Dyson [Dys44] conjectured, and Atkin and Swinnerton-Dyer [ASD54] later proved, that
the partitions of 5n+ 4 (respectively 7n+ 5) form 5 (respectively 7) groups of equal size
when sorted by their ranks modulo 5 (respectively 7), thereby combinatorially explaining
two of Ramanujan’s congruences. Moreover, Dyson posited the existence of another
statistic which should explain all Ramanujan congruences, which he called the crank.
The crank was later found by Andrews and Garvan [AG88,Gar88], and is given by{

λ1 if λ contains no ones,

µ(λ)− ω(λ) if λ contains ones,
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where ω(λ) denotes the number of ones in λ and µ(λ) denotes the number of parts greater
than ω(λ).

The function N(a, b;n), which is the number of partitions of n with rank congruent
to a (mod b), was shown to be asymptotically equidistributed by Males in [Mal21b],
making use of Ingham’s Tauberian theorem and monotonicity properties2, and may also
be concluded from [Bri08]. We reprove this result.

Theorem III.1.1. Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

N(a, b;n) =
1

b
p(n)

(
1 +O

(
n−

1
2

))
.

In a similar vein, it is natural to consider the asymptotic behavior of the crank
on arithmetic progressions. For odd b, the asymptotic equidistribution is known by
Hamakiotes, Kriegman, and Tsai [HKT21], who used results on the asymptotic of cranks
given by Zapata Rolón in [Zap15]. With our framework we are able to extend this result
to all b. Note that our method is simpler than the full Circle Method, allowing us to
easily extend to include the case of b even. However, the asymptotic formulae obtained
in [HKT21] are far more precise than ours. Let M(a, b;n) be the number of partitions of
n with crank congruent to a (mod b).

Theorem III.1.2. Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

M(a, b;n) =
1

b
p(n)

(
1 +O

(
n−

1
2

))
.

In [BLO09], Bringmann, Lovejoy, and Osburn introduced two so-called residual
cranks on overpartitions. Recall that an overpartition is a partition where the first
occurrence of each distinct number may be overlined. The first residual crank of an
overpartition is given by the crank of the subpartition consisting of the non-overlined
parts. Let M(a, b;n) denote the number of overpartitions of n whose first residual crank
is congruent to a (mod b).

Theorem III.1.3. Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

M(a, b;n) =
1

8bn
eπ

√
n
(
1 +O

(
n−

1
2

))
.

Remark. One could obtain a similar result for the second residual crank of [BLO09],
which we omit here for succinctness.

2Since the proof in [Mal21b] used Ingham’s Tauberian theorem, there was no error term.
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1 1 1 1 1 1 2 1 2 3
1 1 1

1

Figure III.2: The plane partitions of 3.

Our framework applies to a larger realm than just the classical theory of partitions. In
fact, we now demonstrate an example where we can prove equidistribution in congruence
classes for a plane partition statistic. A plane partition of n (see e.g., [And98]) is a
two-dimensional array πj,k of non-negative integers j, k ≥ 1, that is non-increasing in both
variables, i.e., πj,k ≥ πj+1,k, πj,k ≥ πj,k+1 for all j and k, and fulfills |Λ| :=

∑
j,k πj,k = n.

For example there are six plane partitions of 3, which we list in Figure III.2 using the
standard visual representation of plane partitions. We let pp(n) denote the number of
plane partitions of n, so pp(3) = 6. Plane partitions were famously studied by MacMahon
[Mac04], who established the generating function

PP(q) :=
∑
n≥0

pp(n)qn =
∏
n≥1

1

(1− qn)n
= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + · · · .

As with regular partitions, many authors have studied asymptotic properties of families
of plane partitions and their statistics. For instance, in 1931 Wright [Wri31] established
the asymptotic formula

pp(n) ∼ ζ(3)
7
36

√
12π

(n
2

)− 25
36
exp

(
3ζ(3)

1
3

(n
2

) 2
3
+ ζ ′(−1)

)
(III.1.5)

as n→∞, where ζ(s) :=
∑

k≥1
1
ks with Re(s) > 1 is the Riemann zeta function. One of

the more famous statistics associated to plane partitions Λ = {πj,k}j,k≥1 is its trace t(Λ),
which is defined by

t(Λ) =
∑
j≥1

πj,j .

In [Sta73], Stanley generalized MacMahon’s generating function to a two-variable function
which keeps track of the values of t(Λ), proving∑

Λ

ζt(Λ)q|Λ| =
∏
n≥1

1

(1− ζqn)n
.

Certain asymptotic properties of the trace have been studied by Kamenov and Mutafchiev
[KM07] and Mutafchiev [Mut18], where the limiting distribution and expected value of
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t(Λ) were considered. Here, we study the distribution of the trace in residue classes. In
particular, for integers 0 ≤ a < b we define the function pp(a, b;n) as the number of
plane partitions of n whose trace is congruent to a (mod b), that is,

pp(a, b;n) := #{Λ : |Λ| = n, t(Λ) ≡ a (mod b)}.

For example, from the plane partitions of 3 given above we can see that pp(0, 2; 3) = 2
and pp(1, 2; 3) = 4.

Theorem III.1.4. Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

pp(a, b;n) ∼ 1

b
pp(n) ∼ 1

b

ζ(3)
7
36

√
12π

(n
2

)− 25
36
exp

(
3ζ(3)

1
3

(n
2

) 2
3
+ ζ ′(−1)

)
.

There are a plethora of other partition statistics in the literature for which one could
obtain similar theorems using our framework. For example, such results could be proved
for more residual crank-like statistics [Jen15], ranks for overpartition pairs [BL08], or the
full rank of k-marked Durfee symbols [BGM09].

III.1.2 Betti numbers of Hilbert schemes

In topology a fundamental goal is to determine whether two spaces have the same
topological, differential, or complex analytic structure. Topological invariants are impor-
tant tools for determining when spaces have different structure. A prominent example
are Betti numbers, which count the dimension of certain vector spaces of differential
forms of a manifold. Often, the generating function of the Betti numbers are related
to modular forms. Two prominent examples were investigated by Bringmann, Craig,
Males, and Ono in [BCMO22], where it was shown that the Betti numbers of the Hilbert
scheme of n points on C2 as well as its quasihomogenous counterpart are each (essentially)
asymptotically equidistributed3 as n → ∞. Here we provide further examples of this
phenomenon.

For a Hilbert scheme X, let bj(X) := dim(Hj(X,Q)) be the Betti numbers. Here,
Hj(X,Q) denotes the j-th homology group of X with rational coefficients. Then the
generating function in a formal variable T for the Betti numbers is known as the Poincaré
polynomial, defined by4

P (X;T ) :=
∑
j

bj(X)T j =
∑
j

dim(Hj(X,Q))T j .

3Here we mean equidistributed up to a trivial modification which comes from the fact that certain
Betti numbers in this setting are identically zero. See the definition of d(a, b) as below.

4The reader should be aware that often the Poincaré polynomial is written in the formal variable T
1
2 ,

which explains some apparent mismatches between the referenced sources for generating functions in
Section III.4 and those quoted in this chapter.
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We consider the modular sums of Betti numbers on congruence classes a (mod b), and
define

B(a, b;X) :=
∑

j≡a (mod b)

bj(X).

Define the three-step flag Hilbert scheme by

X1 :=Hilbn,n+1,n+2(0)

=
{
C[[x, y]] ⊃ In ⊃ In+1 ⊃ In+2 : Ik ideals with dim

C[[x,y]]
C /Ik = k

}
,

and the two-step flag scheme

X2 := Hilbn,n+2(0) =
{
C[[x, y]] ⊃ In ⊃ In+2 : Ik ideals with dim

C[[x,y]]
C /Ik = k

}
.

Furthermore, let (J, I) be a point in

Hilbn,n+2
(
C2
)
:=
{
In ∈ Hilbn

(
C2
)
, In+2 ∈ Hilbn+2(C2) : In ⊃ In+2

}
,

where Hilbn(C2) denotes the usual Hilbert scheme of n points over C2. Then J, I are
said to be trivially related if J/I ∼= C2 as trivial C[x, y] modules (see [Boc16, Definition
4.2.1]). We also consider

X3 := Hilbn,n+2
(
C2
)
tr
,

which is the subspace of Hilbn,n+2(C2) of trivially related points (see also [NY11a]).
For m ∈ N, we also regard the certain perverse coherent sheaves (defined explicitly in

[NY11b]), called X4 := M̂m(cN ) where cN is some prescribed homological data.
Let

d(a, b) :=


1
b if b is odd,
2
b if a and b are even,

0 if a is odd and b is even.

We prove the following result, which shows that the Betti numbers of these schemes are
(essentially) asymptotically equidistributed.

Theorem III.1.5. Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

1

2
B(a, b;X1) ∼ B(a, b;X2) ∼ B(a, b;X3) =

d(a, b)
√
3

4π2
e
π
√

2n
3

(
1 +O

(
n−

1
2

))
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and

B(a, b;X4) =
d(a, b)n

m−2
2

6
1−m

2 2
√
2cmπm

e
π
√

2n
3

(
1 +O

(
n−

1
2

))
where

∏m
j=1

1
1−e−jz =: 1

cmzm
+O(z−m+1).

Remark. It is possible to obtain further terms in the asymptotic expansion directly from
the application of Theorem III.3.1, which highlights the difference in lower-order terms
of B(a, b;Xj). Moreover, for a odd and b even, one may easily show that B(a, b;Xj)
identically vanish.

Since many generating functions for topological invariants arise as infinite q-products,
one may conclude similar results for many other functions. For example, in [MZR15]
Manschot and Zapata Rolón investigated the asymptotics of the χy-genera of Hilbert
schemes of n points on K3 surfaces, centrally using Wright’s Circle Method. Since their
generating function is a quotient of infinite q-products (see [MZR15, page 2]), it is likely
that one may conclude similar equidistribution properties for these genera.

III.1.3 A particular scheme of Göttsche

Let Hilbn(S) denote the Hilbert scheme which parametrises finite subschemes of length
n on a smooth projective surface S. We follow Fulton [Ful84] and Ellingsrud–Strømme
[ES87], and say that a scheme X has a cellular decomposition if there is a filtration
X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅ by closed subschemes with each Xj − Xj−1

a disjoint union of schemes Uℓj isomorphic to certain affine spaces. Then the Uℓj are
known as the cells of the decomposition.

Let k be an algebraically closed field. Let m be the maximal ideal in k[[x, y]], and
define

Vn,k := Hilbn (spec (k[[x, y]]/m
n)) .

The scheme Vn,k was a central tool of Göttsche in obtaining the famous formula for the
Betti numbers of any Hilbert scheme of points on a smooth projective variety [Goe90],
via the Weil conjectures. Let v(a, b;n) count the number of cells of Vn,k whose dimension
is congruent to a (mod b).

Theorem III.1.6. Let 0 ≤ a < b and b ≥ 2. As n→∞ we have that

v(a, b;n) =
1

b
p(n)

(
1 +O

(
n−

1
2

))
.
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This chapter is structured as follows. In Section III.2 we recall relevant results from
previous works in the literature. In Section III.3 we then state our central theorem on
the asymptotic equidistribution of coefficients of certain generating functions and show
how convexity and log-concavity immediately follow from the asymptotics produced by
Wright’s Circle Method. Finally we prove the remaining theorems in Section III.4.

III.2 Preliminaries

III.2.1 Asymptotics of infinite q-products

Here we recall the asymptotic behavior of various infinite q-products. One helpful
tool is the modularity of the partition generating function

P (q) :=
∑
n≥0

p(n)qn =
1

(q; q)∞
=

q
1
24

η(τ)
,

where we set (a)j = (a; q)j :=
∏j−1
ℓ=0(1−aq

ℓ) for j ∈ N0∪{∞}, q = e2πiτ and the Dedekind
η-function

η(τ) := q
1
24

∏
n≥1

(1− qn),

which is a modular form of weight 1
2 . We also have [BD16, Lemma 3.5].

Lemma III.2.1. Let M > 0 be a fixed constant. Assume that τ = u + iv ∈ H, with
Mv ≤ |u| ≤ 1

2 for u > 0 and v → 0. We have that

|P (q)| ≪
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))]
.

This gives us the asymptotic behavior of P (q) on the so-called minor arc.
Using the transformation property of η we obtain the following classical transformation

behavior (see e.g., [BCMO22, equation (2.7)] with k = 1, h = 0 and shifting z 7→ z
2π )

(
e−z; e−z

)
∞ =

(
2π

z

) 1
2

e
π
12(

z
2π

− 2π
z )
(
e−

4π2

z , e−
4π2

z

)
∞
, (III.2.1)

for z ∈ C with Re(z) > 0.
Keeping the naming convention of [BCMO22], we let

F1(ζ; q) :=
∏
n≥1

(1− ζqn) , F3(ζ; q) :=
∏
n≥1

(
1− ζ−1(ζq)n

)
.
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Recall Lerch’s transcendent

Φ(z, s, a) :=
∑
n≥0

zn

(n+ a)s
,

and for 0 ≤ θ < π
2 define the domain Dθ :=

{
z = reiα : r ≥ 0 and |α| ≤ θ

}
. Throughout,

the Gamma function is defined by Γ(z) :=
∫∞
0 tz−1e−tdt, for Re(z) > 0. Then we

have [BCMO22, Theorem 2.1] (see also [BFG22] for the first case) which enables us to
determine the asymptotics of F1 and F3 on major arcs.

Theorem III.2.2. For b ≥ 2, let ζ be a primitive b-th root of unity. Then the following
are true.

(1)As z → 0 in Dθ, we have

F1

(
ζ; e−z

)
=

1√
1− ζ

e−
ζΦ(ζ,2,1)

z (1 +O (|z|)) .

(2)As z → 0 in Dθ, we have

F3

(
ζ; e−z

)
=

√
2π
(
b2z
) 1

2
− 1
b

Γ
(
1
b

) b−1∏
j=1

1

(1− ζj)
j
b

e−
π2

6b2z (1 +O (|z|)) .

Remark. Note that the proof of (1) does not require ζ to be primitive but only ζ ̸= 1.

III.2.2 Wright’s Circle Method

We require the following variant of Wright’s Circle Method, which was proved by
Bringmann, Craig, Males, and Ono [BCMO22, Proposition 4.4], following work of Wright
[Wri71], see also Ngo and Rhoades [NR17].

Proposition III.2.3. Suppose that F (q) is analytic for q = e−z where z = x+ iy ∈ C
satisfies x > 0 and |y| < π, and suppose that F (q) has an expansion F (q) =

∑
n≥0 c(n)q

n

near 1. Let N,M > 0 be fixed constants. Consider the following hypotheses:

(1)As z → 0 in the bounded cone |y| ≤Mx (major arc), we have

F (e−z) = zBe
A
z

N−1∑
j=0

αjz
j +OM

(
|z|N

) ,

where αj ∈ C, A ∈ R+, and B ∈ R.
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(2)As z → 0 in the bounded cone Mx ≤ |y| < π (minor arc), we have

|F (e−z)| ≪M e
1

Re(z)
(A−κ)

,

for some κ ∈ R+.
If (1) and (2) hold, then as n→∞ we have for any N ∈ R+

c(n) = n
1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−

N
2

))
,

where pr :=
r∑
j=0

αjcj,r−j and cj,r :=
(− 1

4
√
A
)r
√
A
j+B+ 1

2

2
√
π

Γ(j +B + 3
2 + r)

r!Γ(j +B + 3
2 − r)

.

III.3 The central theorem

Recall that we have the functions H(a, b; q), H(q), and H(ζ; q) as in (III.1.1) and
(III.1.2), respectively. We now prove a theorem regarding asymptotic equidistribution of
the coefficients c(a, b;n).

Theorem III.3.1. Let H(a, b; q) and H(ζ; q) be analytic on |q| < 1, |ζ| = 1 such that

H(a, b; q) =
1

b

b−1∑
j=0

ζ−ajb H
(
ζjb ; q

)
.

Suppose c(a, b;n) and c(n) are the Fourier coefficients of H(a, b; q) and H(1; q), respec-
tively. Let C = Cn be a sequence of circles centered at the origin inside the unit disk with
radii rn → 1 as n→∞ that loops around zero exactly once. For 0 < θ, let C̃ := C ∩Dθ

and C\C̃ be arcs such that the following hypotheses hold.
(1)As z → 0 outside of Dθ, we have

b−1∑
j=1

ζ−ajb H
(
ζjb ; e

−z
)
= O

(
H(1; e−z)

)
.

(2)As z → 0 in Dθ, we have for each 1 ≤ j ≤ b− 1 that

H
(
ζjb ; e

−z
)
= o

(
H(1; e−z)

)
.

(3)As n→∞, we have

c(n) ∼ 1

2πi

∫
C̃

H(1; q)

qn+1
dq.
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Then as n→∞, we have

c(a, b;n) ∼ 1

b
c(n).

In particular, if H(1; q) and H(ζ; q) satisfy the conditions of Proposition III.2.3 we have
that

c(a, b;n) ∼ 1

b
c(n) ∼ 1

b
n

1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−

N
2

))
as n→∞.

Proof. By Cauchy’s theorem and the decomposition of H(a, b; q) we have

c(a, b;n) =
1

2πi

∫
C

H(a, b; q)

qn+1
dq =

1

b

[
1

2πi

∫
C

∑b−1
j=0 ζ

−aj
b H(ζjb ; q)

qn+1
dq

]
.

We now break down the integral over C into the components C̃ and C\C̃. Along C\C̃,
we have by (1) that

1

2πi

∫
C\C̃

∑b−1
j=0 ζ

−aj
b H(ζjb ; q)

qn+1
dq = O

(
1

2πi

∫
C\C̃

H(1; q)

qn+1
dq

)
.

From (3) along with Cauchy’s integral formula for c(n) it follows that

1

2πi

∫
C\C̃

H(1; q)

qn+1
dq = o

(
1

2πi

∫
C̃

H(1; q)

qn+1
dq

)
as n→∞, and therefore

1

2πi

∫
C\C̃

∑b−1
j=0 ζ

−aj
b H(ζjb ; q)

qn+1
dq = o

(
1

2πi

∫
C̃

H(1; q)

qn+1
dq

)
.

On C̃ we have by (2) that
∑b−1

j=0 ζ
−aj
b H(ζjb ; q) = H(1; q) + o (H(1; q)), from which it

follows that

1

2πi

∫
C̃

∑b−1
j=0 ζ

−aj
b H(ζjb ; q)

qn+1
dq ∼ 1

2πi

∫
C̃

H(1; q)

qn+1
dq

as n→∞. Therefore, combining the estimates along C̃ and C\C̃ we have by (3) that

c(a, b;n) ∼ 1

b

[
1

2πi

∫
C̃

H(1; q)

qn+1
dq

]
∼ 1

b
c(n)

as n → ∞. This proves the first claim. If we now assume H(1; q) and H(ζjb ; q) satisfy
the hypotheses of Proposition III.2.3, then it is clear that each of (1) – (3) are satisfied
and the result follows by the asymptotic for c(n) in Proposition III.2.3.
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Using this result, we may immediately conclude asymptotic convexity for a large class
of functions.

Corollary III.3.2. Let 0 ≤ a < b and b ≥ 2. Assume that H(1; q) and H(ζ; q) satisfy
the conditions of Proposition III.2.3. Then for large enough n1, n2 we have that

c(a, b;n1)c(a, b;n2) > c(a, b;n1 + n2).

Remark. The proof also works for the plane partition functions pp(a, b;n) by Wright’s
asymptotic formula (III.1.5). Higher order Turán inequalities for plane partitions have
recently been studied by Ono, Pujahari, and Rolen [OPR22].

Proof of Corollary III.3.2. We use the description of the asymptotics of c(a, b;n) from
the proof of Theorem III.3.1 for N = 1. Then

c(a, b;n1)c(a, b;n2)

=
p20
b2

(n1n2)
1
4
(−2B−3)e2

√
An1+2

√
An2

(
1 +O

(
max

(
n
− 1

2
1 , n

− 1
2

2 , (n1n2)
− 1

2

)))
and

c(a, b;n1 + n2) =
p0
b
(n1 + n2)

1
4
(−2B−3)e2

√
A(n1+n2)

(
1 +O

(
(n1 + n2)

− 1
2

))
.

Comparing the exponential growth of the main terms immediately yields the conclusion.

A very similar calculation gives the following log-concavity result.

Corollary III.3.3. Let 0 ≤ a < b and b ≥ 2. Assume that H(1; q) and H(ζ; q) satisfy
the conditions of Proposition III.2.3. For large enough n, we have

c(a, b;n)2 ≥ c(a, b;n− 1)c(a, b;n+ 1).

We consider the case of partition statistics in slightly more detail. Let s(λ) be a
partition statistic, i.e., s is a map from the set of all partitions to Z, and let

Hs(ζ; q) =
∑
λ

ζs(λ)q|λ|.

Note that Hs(1; q) =
∑

λ q
|λ| is the generating function of p(n). Then by orthogonality

of roots of unity we have that (see e.g., [And98])

Hs(a, b; q) :=
1

b

b−1∑
j=0

ζ−ajb Hs

(
ζjb ; q

)
=

∑
λ

s(λ)≡a (mod b)

q|λ|. (III.3.1)

A direct corollary of Theorem III.3.1 is the following.
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Corollary III.3.4. Assume that Hs(1; q) and Hs(ζ; q) satisfy the conditions of Theorem
III.3.1, and let s(a, b;n) count the number of partitions of n with statistic s congruent
to a (mod b). Then as n → ∞ we have that s(a, b;n) ∼ 1

bp(n). If furthermore the
conditions of Proposition III.2.3 are satisfied, we have the error term which yields

s(a, b;n) =
1

b
p(n)

(
1 +O

(
n−

1
2

))
.

III.4 Proofs of Theorems III.1.1 to III.1.6

In this section we prove each of the theorems from the introduction in turn. Each
proof relies on the asymptotic equidistribution result concluded in Theorem III.3.1.

III.4.1 Proof of Theorem III.1.1

In accordance with (III.3.1), we have

∑
n≥0

N(a, b;n)qn =
1

b

∑
n≥0

p(n)qn +
1

b

b−1∑
j=1

ζ−ajb R
(
ζjb ; q

)
,

where

R (ζ; q) :=
∑
n≥0
m∈Z

N(m,n)ζmqn.

To conclude the asymptotic equidistribution in the framework presented here, one needs
only check that the conditions of Theorem III.3.1 apply. Since the asymptotics of (q; q)−1

∞
follow from (III.2.1) and satisfy the required properties on both the major and minor
arcs, one simply needs to show that

R
(
ζjb ; q

)
= o

(
(q; q)−1

∞
)
,

∣∣∣R(ζjb ; q)∣∣∣ < ∣∣(q; q)−1
∞
∣∣ ,

on the major arc and minor arcs respectively. In fact, in [Mal21b] it was shown that
as z → 0 with positive real part we have R(ζjb ; q) → 0. Thus clearly each inequality
is satisfied, the assumptions of Theorem III.3.1 (and Corollary III.3.4) apply, and we
conclude the result.
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III.4.2 Proof of Theorem III.1.2

Let M(m,n) denote the number of partitions of n with crank m. In accordance with
(III.3.1), we have (see e.g., [Mah05, equation (3.2)])

∑
n≥0

M(a, b;n)qn =
1

b

∑
n≥0

p(n)qn +
1

b

b−1∑
j=1

ζ−ajb C
(
ζjb ; q

)
,

where

C (ζ; q) :=
∑
n≥0
m∈Z

M(m,n)ζmqn =
(q; q)∞

F1 (ζ; q)F1 (ζ−1; q)
.

We have from Theorem III.2.2, as z → 0 in Dθ (so on the major arc), for q = e−z and ζ
a b-th root of unity not equal to 1, that

F1

(
ζ; e−z

)
=

1√
1− ζ

e−
ζΦ(ζ,2,1)

z (1 +O (|z|)) .

Equation (III.2.1) implies that on the major arc we have

(
e−z; e−z

)−1

∞ =

√
z

2π
e
π2

6z (1 +O(|z|)),

while Lemma III.2.1 gives us ∣∣∣(e−z; e−z)−1

∞

∣∣∣ ≤ √xeπ26x−C
x ,

for some C > 0 on the minor arc.
Moreover, one may conclude in a similar way to [BCMO22, Proof of Theorem 1.4

(2)] that ∣∣∣C (ζjb ; q)∣∣∣ < ∣∣(q; q)−1
∞
∣∣

on the minor arcs. For the major arcs we obtain that

C
(
ζjb ; q

)
≪j,b e

−π2

6
Re( 1

z )+Re
(
ζΦ(ζ,2,1)

z

)
+Re

(
ζ−1Φ(ζ−1,2,1)

z

)
,

using the asymptotics of F1 and the Pochhammer symbol. This gives us that

C
(
ζjb ; q

)
= o

(
(q; q)−1

∞
)
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holds if and only if (
π2

3
− ε− ϕ1 − ϕ∗1

)
x

|z|2
> (ϕ2 + ϕ∗2)

y

|z|2
,

for ϕ1+ iϕ2 := ζjbΦ(ζ
j
b , 2, 1) and ϕ

∗
1+ iϕ

∗
2 := ζ−jb Φ(ζ−jb , 2, 1). A straightforward calculation

shows that

ζ±jb Φ
(
ζ±jb , 2, 1

)
=
∑
n≥1

cos
(
2πnj
b

)
n2

± i
∑
n≥1

sin
(
2πnj
b

)
n2

.

Using that
∑

n≥1
cos(nθ)
n2 = π2

6 −
θ(2π−θ)

4 for some 0 ≤ θ ≤ 2π (see [Zag88, page 238]) then

gives that ϕ1 = π2

6 −
π2j
b (1− j

b ) = ϕ∗1 and ϕ2 = −ϕ∗2. Therefore, our assumption reduces
to (

2π2j

b

(
1− j

b

)
− ε
)

x

|z|2
> 0,

which holds, since we have b > 0, 1 ≤ j ≤ b − 1 and x = Re(z) > 0. Thus all the
assumptions of Theorem III.3.1 apply, and we conclude the result.

III.4.3 Proof of Theorem III.1.3

In [BLO09, equation (2.1)] it was shown that the generating function of the number
of overpartitions of n with residual crank m, denoted by M(m,n), is

C(ζ; q) :=
∑
n≥0
m∈Z

M(m,n)ζmqn =

(
q2; q2

)
∞

F1(ζ; q)F1(ζ−1; q)
.

We thus have

C(a, b; q) :=
∑
n≥0

M(a, b;n)qn =
1

b

b−1∑
j=0

ζ−ajb C
(
ζjb ; q

)
.

By a similar argument as before, the asymptotic behavior toward z = 0 is dominated by
the j = 0 term on both the major and minor arcs. If j = 0, we have

(q2; q2)∞
(q; q)2∞

.

Using (III.2.1) and standard arguments, this is seen to satisfy

(q2; q2)∞
(q; q)2∞

=

√
z

2
√
π
e
π2

4z (1 +O (|z|))
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on the major arc and, for some C′ > 0,∣∣∣∣(q2; q2)∞(q; q)2∞

∣∣∣∣≪ √xeπ24z −C′
x

on the minor arc. This means that the conditions of Proposition III.2.3 are satisfied here
with B = 1

2 , A = π2

4 , and α0 =
1

2
√
π
. Thus applying Theorem III.3.1 yields the claimed

result.

III.4.4 Proof of Theorem III.1.4

Let pp(m,n) be the number of plane partitions of n with trace m. We have MacMa-
hon’s classical generating function [Mac04]∑

n≥0

pp(n)qn =
∏
n≥1

1

(1− qn)n

and the trace generating function [Sta73]

PP(ζ; q) :=
∑
n,m≥0

pp(m,n)ζmqn =
∏
n≥1

1

(1− ζqn)n
.

Following the strategy of [BCMO22] we have, for q = e−z and ζ a b-th root of unity, that

Log(PP(ζ; q)) =−
∑
n≥1

nLog (1− ζqn) =
∑
n≥1

n
∑
m≥1

ζmqnm

m

=
∑
m≥1

ζm
qm

m(1− qm)2
= z

∑
m≥1

ζm
qm

mz(1− qm)2
.

Recall that the generating function for the Bernoulli numbers Bn is given by (see e.g.,
[BFOR17]) ∑

n≥0

Bn
n!
zn =

z

ez − 1
=

ze−z

1− e−z
.

Defining B(z) := 1
z

∑
n≥0

Bn
n! z

n = e−z

1−e−z , differentiating gives us that B′(z) = − e−z

(1−e−z)2
and yields the identity

−B′(mz)

mz
=

e−mz

mz (1− e−mz)2
.
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Therefore, if we set F (z) := −B′(z)
z , we obtain

Log
(
PP
(
ζ; e−z

))
= z

∑
m≥1

ζmF (mz).

For ζ = ζab := e
2πia
b a b-th root of unity not equal to 1 and by substituting m 7→ bm+ j

for m ∈ N0, 1 ≤ j ≤ b this yields

Log
(
PP
(
ζab ; e

−z)) = z
b∑

j=1

ζajb

∑
m≥0

F

((
m+

j

b

)
bz

)
. (III.4.1)

We turn to evaluating the inner sum. We note that F (z) has the Laurent expansion

F (z) =
−B′(z)

z
= −

∑
n≥−3

(n+ 2)Bn+3

(n+ 3)!
zn.

By Euler–Maclaurin summation we have for cn := −(n+2)Bn+3

(n+3)! the identity (see e.g.,

[BCMO22, Lemma 2.2])∑
m≥0

F

((
m+

j

b

)
bz

)
(III.4.2)

∼
ζ
(
3, jb

)
b3z3

+
I∗F,1
bz

+
1

12bz

[
Log(bz) + ψ

(
j

b

)
+ γ

]
−
∑
n≥0

cn
Bn+1

(
j
b

)
n+ 1

bnzn

as z → 0 in Dθ. Here ζ(s, z) :=
∑

n≥0
1

(n+z)s is the Hurwitz zeta function, ψ(x) := Γ′(x)
Γ(x)

is the digamma function, γ is the Euler–Mascheroni constant, Bn(x) denotes the n-th
Bernoulli polynomial defined via its generating function text

et−1 =
∑

n≥0Bn(x)
tn

n! , and for
some A ∈ R+ we define

I∗F,A :=

∫ ∞

0

(
F (u)−

−2∑
n=n0

cnu
n − c−1e

−Au

u

)
du.

Here and throughout we say that

f(z) ∼
∑
n≥0

anz
n,

if f(z) =
∑N

n=0 anz
n + O(|z|N+1), for any N ∈ N0. Applying (III.4.2) to (III.4.1) and

using that
∑b

j=1 ζ
aj
b = 0, we obtain
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Log
(
PP
(
ζab ; e

−z
))

∼ z
b∑

j=1

ζajb

ζ (3, jb)
b3z3

+
I∗F,1

bz
+

1

12bz

[
Log(bz) + ψ

(
j

b

)
+ γ

]
−
∑
n≥0

cn
Bn+1

(
j
b

)
n+ 1

bnzn


=

1

b3z2

b∑
j=1

ζajb ζ

(
3,
j

b

)
+

1

12b

b∑
j=1

ζajb ψ

(
j

b

)
+O(|z|).

We have the well-known identity (see e.g., [BCMO22, equation (2.6)])

b∑
j=1

ζajb ψ

(
j

b

)
= bLog (1− ζab )

and by elementary manipulations we furthermore obtain

b−1∑
j=1

ζajb ζ

(
3,
j

b

)
=

b−1∑
j=1

ζajb

∑
n≥0

b3

(bn+ j)3
= b3 Li3 (ζ

a
b ) ,

where Li3(z) =
∑

k≥1
zk

k3
is the third polylogarithm function. Therefore on the major arc,

we conclude by exponentiating that, for ζab ̸= 1, we have

PP
(
ζab ; e

−z) = (1− ζab )
1
12 e

Li3(ζ
a
b )

z2 (1 +O(|z|))

and otherwise by [Wri31]

PP
(
1; e−z

)
= z

1
12 e

ζ(3)

z2
−κ (1 +O(|z|)) ,

where κ = ζ ′(−1) < 0. An analogous argument to the one of (III.3.1) yields that
PP(a, b; q) and PP(ζ; q) are analytic such that

PP(a, b; q) =
1

b

b−1∑
j=0

ζ−ajb PP
(
ζjb ; q

)
.

Comparing exponents, we see that PP(ζab ; e
−z) = o(PP(1; e−z)), and therefore the second

hypothesis of Theorem III.3.1 is true for PP(ζ; q).
We now consider PP(ζ; q) on the minor arc. By definition, we have

PP (ζab ; e
−z)

PP (1; e−z)
=
∏
n≥1

(
1− e−nz

1− ζab e−nz

)n
.
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As z → 0 with Re(z) > 0, we see that 1− e−nz → 0 while 1− ζab e−nz ̸→ 0. Thus, for all

z on the minor arc with |z| sufficiently small, we see that |PP(ζ
a
b ;e

−z)
PP(1;e−z) | < 1. This proves

that the first hypothesis of Theorem III.3.1 holds for PP(ζ; q). The third condition of
Theorem III.3.1 follows by noting that the integral of PP(1; q) along the major arc gives
Wright’s asymptotic (III.1.5), and so equidistribution follows by Theorem III.3.1.

III.4.5 Proof of Theorem III.1.5

For X a Hilbert scheme, letting

GX(T ; q) :=
∑
n≥0

P (X;T )qn,

a standard argument with orthogonality of roots of unity yields

∑
n≥0

B(a, b;X)qn =
1

b

b−1∑
r=0

ζ−arb GX (ζrb ; q) . (III.4.3)

The main result of Boccalini’s thesis [Boc16, equation (4.1)] states that

GX1(ζ; q) =
∑
n≥0

P
(
Hilbn,n+1,n+2(0); ζ

)
qn =

1 + ζ2

(1− ζ2q)(1− ζ4q2)
F3

(
ζ2; q

)−1
.

By (III.4.3) we have that

HX1(a, b; q) :=
∑
n≥0

B(a, b;X1)q
n

=
1

b

(
1 + (−1)aδ2|b

)
GX1(1; q) +

1

b

∑
0<r≤b−1
r ̸= b

2

ζ−arb GX1 (ζ
r
b ; q) .

Since

GX1(1; e
−z) =

2

(1− e−z)(1− e−2z)
(e−z; e−z)−1

∞

=(e−z; e−z)−1
∞

(
1

z2
+

3

2z
+

11

12
+O(z)

)
,

the asymptotic behavior is essentially controlled by the Pochhammer symbol. It is then
enough to show that on the major and minor arcs, GX1(ζ

r
b ; q) = o(GX1(1; q)) for ζ

r
b ≠ 1.

This follows directly from the asymptotics of F3 given in Theorem III.2.2 in a similar
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fashion to [BCMO22, Theorem 1.4 (1)] for the major arc5, and a similar calculation to
the arguments of [BCMO22] for the minor arc. Thus toward z = 0 on the major arc we
have

HX1(a, b; e
−z) =

d(a, b)
√
2πz

3
2

e
π2

6z (1 +O(|z|)).

We are left to apply Proposition III.2.3 with A = π2

6 , B = −3
2 , and α0 = d(a,b)√

2π
which

yields that

B(a, b;X1) =

√
3d(a, b)

2π2
e
π
√

2n
3

(
1 +O

(
n−

1
2

))
,

from which one may also conclude asymptotic equidistribution.

Similarly, it was shown in [Boc16, equation (4.2)] that we have

GX2(ζ; q) :=
∑
n≥0

P
(
Hilbn,n+2(0); ζ

)
qn =

1 + ζ2 − ζ2q
(1− ζ2q)(1− ζ4q2)

F3

(
ζ2; q

)−1
.

An analogous argument and application of Proposition III.2.3 to the case of X1 holds.
Using the generating functions [Boc16, equation (4.15)] (which in turn cites [NY11a,
Corollary 5.4]) and [NY11b, Corollary 5.4]

GX3(ζ; q) :=
1

(1− ζ2q)(1− ζ4q2)
F3

(
ζ2; q

)−1
,

GX4(ζ; q) := F3

(
ζ2; q

)−1
m∏
j=1

1

1− ζ2jqj
,

the cases for X3 and X4 follow in the same way.

III.4.6 Proof of Theorem III.1.6

The results [ES87, Proposition 4.2] and [Goe90, Proposition 2.8] show that Vn,k has a
cell decomposition and that, letting v(m,n) := #{m-dimensional cells of Vn,k}, we have

V (ζ; q) :=
∑
m,n≥0

v(m,n)ζmqn =
∏
n≥1

1

1− ζn−1qn
= F3(ζ; q)

−1.

5Note that for gcd(r, b) > 1 we could simply generalize the result of Theorem III.2.2 (2) by replacing
b by b

gcd(b,r)
.
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Then by orthogonality of roots of unity, we have

∑
n≥0

v(a, b;n)qn =
1

b

b−1∑
j=0

ζ−ajb V
(
ζjb ; q

)
.

Note that the j = 0 term corresponds to 1
b (q; q)

−1
∞ . Combining this with Theorem III.2.2

(2), one can show in the same way as [BCMO22, Theorem 1.4 (1)] that on both the
major and minor arcs, the asymptotic behavior of the j = 0 term dominates as z → 0.
An application of Corollary III.3.4 immediately yields the claimed asymptotic.
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Chapter IV

Fourier coefficients of weight zero
mixed false modular forms

This chapter is based on a prerpint of the same title submitted for publication [Ces23].

IV.1 Introduction and statement of results

In [BN19] Bringmann and Nazaroglu embedded false theta functions, functions that
resemble theta functions but do not have modular transformation properties, into a
modular framework. An example is given by

ψ(z; τ) := i
∑
n∈Z

sgn

(
n+

1

2

)
(−1)nq

1
2(n+

1
2)

2

ζn+
1
2 ,

where here and throughout ζ := e2πiz for z ∈ C, q := e2πiτ , with τ ∈ H, and

sgn(n) :=


0 if n = 0,

1 if n > 0,

−1 if n < 0,

as usual. They found the modular completion1 of those false theta functions, with w ∈ H,
given by (see [BN19, equation (1.2)])

ψ̂(z; τ, w) := i
∑
n∈Z

erf

(
−i
√
πi(w − τ)

(
n+

1

2
+

Im(z)

Im(τ)

))
(−1)nq

1
2(n+

1
2)

2

ζn+
1
2 ,

and repaired the modular invariance, where erf(z) := 2√
π

∫ z
0 e

−t2dt denotes the error

function and where ψ̂ satisfies (see [BN19, equation (1.3)])

lim
t→∞

ψ̂(z; τ, τ + it+ ε) = ψ(z; τ) (IV.1.1)

1These are modular objects from which the original function can be easily recovered, here for example
by taking the limit (see (IV.1.1)).
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if −1
2 <

Im(z)
Im(τ) <

1
2 and ε > 0 arbitrary. Note that here and in the following we define

the square root on a cut-plane excluding the negative reals and imposing positive square
roots for positive real numbers.

As an application from this framework they considered the false theta functions at
rank one (see [BN19, equation (1.6)])

Fj,N (τ) :=
∑
n∈Z

n≡j (mod 2N)

sgn(n) q
n2

4N ,

with j ∈ Z and N ∈ N>1 and showed how the quantum modularity2 of these functions
follows from the construction of their completions.

The motiviation for looking at this functions comes from W-algebraic characters, see
for example [BM15,CM14,CMW17,Mil14]. Characters of modules of rational vertex
operator algebras are often of the form

f(τ)

η(τ)k
,

where η(τ) := q
1
24
∏
n≥1 (1− qn) is Dedekind’s eta function. In [CM14] the authors

observed that some numerators of atypical characters of the so-called (1, p)-singlet
algebra are false theta functions of Rogers (see [AB09]). In particular, the functions

Aj,N (τ) :=
Fj,N (τ)

η(τ)

show up as characters of the atypical irreducible modules of the (1, p)-singlet vertex
operator algebra M1,s, for 1 ≤ s ≤ p − 1 and p ∈ N≥2, that have been studied in
[BM15,CM14,CMW17].

In 1937 Rademacher [Rad37] proved the following exact formula for the partition
function

p(n) =
2π

(24n− 1)
3
4

∑
k≥1

Ak(n)

k
I 3

2

(
π
√
24n− 1

6k

)
,

where Ak(n) is a Kloosterman sum given by

Ak(n) :=
∑

h (mod k)
gcd(h,k)=1

eπis(h,k)e−2πinh
k , (IV.1.2)

2For a so-called quantum set Q ⊂ Q we call a function f : Q → C quantum modular form of weight k,
if its obstruction to modularity, namely f(τ)− (cτ + d)−kf(Mτ), for M = ( a bc d ) ∈ Γ ⊂ SL2(Z), behaves
“nice” in some analytical sense. See e.g., [Zag10] for more background on quantum modular forms.
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with s(h, k) the Dedekind sum defined in (IV.2.4) and where Iα denotes the I-Bessel
function of order α, which in the special case of order 3

2 can be written as

I 3
2
(z) =

√
2z

π

d

dz

(
sinh(z)

z

)
. (IV.1.3)

Our goal is to find Rademacher-type exact formulae for the Fourier coefficients of the
infinite family of weight zero mixed false modular forms3 Aj,N (τ). Note that it requires
considerably more work to obtain an exact formula for a weight zero function than for
a function of negative weight. In contrast to negative weight functions, as for example
in the work of Bringmann and Nazaroglu [BN19], we have to take special care of the
bound of the Kloosterman sum occuring to ensure that the error term in the Circle
Method vanishes. In comparison to [Rad38] for example, where Rademacher studied the
coefficients of the modular invariant j(τ) of weight zero, we have the additional problems
that the Kloosterman sum showing up in our work is much more complicated and can
not be immediately bounded by the famous Weil bound and that the transformation
behavior of our family of functions is not as simple as the one of a modular form.

In this chapter we let

Aj,N (τ) =: q
j2

4N
− 1

24

aj,N (0) +∑
n≥1

aj,N (n)q
n

 . (IV.1.4)

Extending the techniques presented in [BN19, Section 3] and [Rad38] we prove the
following theorem, which, to the best of the author’s knowledge, is the first example of
an exact formula of a weight zero mixed false modular form.

Theorem IV.1.1. For all n ≥ 1 and
√

N
6 /∈ Z we have

aj,N (n) =−
2πi√

n+ j2

4N
− 1

24

∑
k≥1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k2
(IV.1.5)

× P.V.

∫ √
1

24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+
κ

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx,

where Kk,j,N (n, r, κ) is a Kloosterman sum defined as

Kk,j,N (n, r, κ) :=
∑

0≤h<k
gcd(h,k)=1

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24

(
n+ j2

4N
− 1

24

)
h

24k , (IV.1.6)

3These are in general linear combinations of false theta functions multiplied by modular forms (see
[Bri21, Section 4]).
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with h′ a solution of hh′ ≡ −1 (mod k), Mh,k =
(
h′ −hh′+1

k
k −h

)
, χj,r(N,M) the multiplier

defined in (IV.2.6), and ζℓ := e
2πi
ℓ with ℓ ∈ N an ℓ-th root of unity.

Remarks.
(1) Although this representation as a convergent series does not hold for n = 0 we obtain

that aj,N (0) = 1, independent of j and N .
(2) Note that we are able to split the principal value integral in (IV.1.5), which gives us

a more explicit but also more complicated version of our main result, as can be seen
in (IV.4.26).

As a second result, which will be extremely helpful in the proof of Theorem IV.1.1,
we are able to give a bound on the Kloosterman sum defined in (IV.1.6). In particular,
we show the following theorem.

Theorem IV.1.2. For ε > 0 we have that

Kk,j,N (n, r, κ) = ON

(
nk

1
2
+ε
)

(IV.1.7)

as k →∞.

As the main tool to prove this theorem we use the following result by Malishev.

Lemma IV.1.3. (see [KS64, page 482]) Let

Kρ(µ∗, ν∗;G) :=
∑

h (modG)
gcd(h,G)=1

(
h

ρ

)
exp

(
2πi

G
(µ∗h+ ν∗h

′)

)
,

where µ∗ and ν∗ are integers, G is a positive integer, and ρ is an odd positive integer all of
whose prime factors devide G. Furthermore h′ is any integral solution of the congruence
hh′ ≡ 1 (modG) and (hρ ) is the Jacobi symbol. Then

|Kρ(µ∗, ν∗;G)| ≤ A(ε)G
1
2
+εmin

(
gcd(µ∗, G)

1
2 , gcd(ν∗, G)

1
2

)
for each ε > 0, where A(ε) > 0 depends only on ε.

The chapter is structured as follows. In Section IV.2 we use the modular completion of
Fj,N and its modular transformation behavior to determine the “false” modular behavior
of Aj,N . With this we rewrite the obstruction to modularity term, respectively the error
of modularity plus the holomorphic part of our function, as a Mordell-type integral. In
Section IV.3 we go on by proving Theorem IV.1.2 and use the Circle Method, to prove
Theorem IV.1.1 in Section IV.4. We end the chapter with some numerical results in
Section IV.5.
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IV.2 Modular Transformations with Mordell-type Integrals

IV.2.1 Modular transformations

We first note that a simple straight-forward calculation shows that

F0,N (τ) = 0

for every τ ∈ H. Thus we from now on assume that j ̸= 0. Furthermore we can restrict
to 1 ≤ j ≤ N − 1, since Fj,N (τ) = −F−j,N (τ) and Fj±2N,N (τ) = Fj,N (τ).

According to [BN19, Section 4] a modular completion of Fj,N can be written as (for
τ, w ∈ H)

F̂j,N (τ, w) :=
∑
n∈Z

n≡j (mod 2N)

erf

(
−i
√
πi(w − τ) n√

2N

)
q
n2

4N .

This modular completion can conveniently be rewritten as (see [BN19, equation (4.2)])

F̂j,N (τ, w) = ±Fj,N (τ)−
√
2N

∫ τ+i∞±ε

w

fj,N (z)√
i(z− τ)

dz, (IV.2.1)

where ε > 0 and fj,N are the vector-valued cusp forms of weight 3
2

fj,N (τ) :=
1

2N

∑
n∈Z

n≡j (mod 2N)

n q
n2

4N =
∑
n∈Z

(
n+

j

2N

)
qN(n+

j
2N )

2

.

Equation (IV.2.1) can also be understood from the writing of Fj,N (τ) as a holomorphic
Eichler integral4.

The modular transformations of Fj,N can be deduced from [BN19, equation (4.5)]

F̂j,N

(
aτ + b

cτ + d
,
aw + b

cw + d

)
= χτ,w(M) (cτ + d)

1
2

N−1∑
r=1

ψj,r(N,M) F̂r,N (τ, w), (IV.2.2)

where M :=
(
a b
c d

)
∈ SL2(Z),

χτ,w(M) :=

√
i(w − τ)

(cτ + d)(cw + d)

√
cτ + d

√
cw + d√

i(w − τ)
,

4For a cusp form f of weight k ∈ 2N, Eichler introduced in [Eic57] the integral∫ τ

τ0

(τ − z)k−2f(z)dz,

which is independent of the path of integration. Integrals of this shape are now called Eichler integrals.

69



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

and, for j, r ∈ {1, . . . , N − 1},

ψj,r(N,M) :=


e2πiab

j2

4N e−
πi
4 (1−sgn(d))δj,r if c = 0,

e−
3πi
4 sgn(c)

√
2

N |c|

|c|−1∑
ℓ=0

e
πi

2Nc (a(2Nℓ+j)2+dr2) sin

(
πr(2Nℓ+ j)

N |c|

)
if c ̸= 0.

For reference let us also note the modular transformation of the eta function given by

η

(
aτ + b

cτ + d

)
= νη(M) (cτ + d)

1
2 η(τ), (IV.2.3)

where, for c > 0, we have

νη(M) := exp

(
πi

(
a+ d

12c
− 1

4
+ s(−d, c)

))
,

with the Dedekind sum given by

s(h, k) :=

k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
. (IV.2.4)

Remark. For M :=
(
a b
c d

)
an alternate representation of the eta-multiplier is given by (see

e.g., [BJSM18, Lemma 2.1])

νη(M) =


(
d
|c|

)
e
πi
12((a+d)c−bd(c

2−1)−3c) if c is odd,(
c
d

)
e
πi
12(ac(1−d

2)+d(b−c+3)−3) if c is even,

where ( ··) is the extended Legendre symbol, also known as Kronecker symbol.

By combining (IV.2.1) and (IV.2.2) we can write the modular transformation of Fj,N
as

Fj,N (τ)− χτ,w(M)(cτ + d)−
1
2

N−1∑
r=1

ψj,r
(
N,M−1

)
Fr,N

(
aτ + b

cτ + d

)
=
√
2N

∫ τ+i∞+ε

w

fj,N (z)√
i(z− τ)

dz

−
√
2Nχτ,w(M)(cτ + d)−

1
2

N−1∑
r=1

ψj,r
(
N,M−1

) ∫ aτ+b
cτ+d

+i∞+ε

aw+b
cw+d

fr,N (z)√
i(z− aτ+b

cτ+d)
dz.
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Assuming c > 0 and taking w → τ + i∞+ ε we get χτ,w → 1 and hence

Fj,N (τ)− (cτ + d)−
1
2

N−1∑
r=1

ψj,r
(
N,M−1

)
Fr,N

(
aτ + b

cτ + d

)

= −
√
2N(cτ + d)−

1
2

N−1∑
r=1

ψj,r
(
N,M−1

) ∫ aτ+b
cτ+d

+i∞+ε

a
c

fr,N (z)√
i(z− aτ+b

cτ+d)
dz. (IV.2.5)

Now define

χj,r(N,M) := νη(M)ψj,r
(
N,M−1

)
. (IV.2.6)

Also for ϱ ∈ Q we define

Ej,N,ϱ(τ) :=
√
2N

∫ τ+i∞+ε

ϱ

fj,N (z)√
i(z− τ)

dz.

Using this together with (IV.2.3) and (IV.2.5) immediately gives the modular transfor-
mation equation for Aj,N .

Lemma IV.2.1. For M :=
(
a b
c d

)
∈ SL2(Z) with c > 0 we have

Aj,N (τ) =

N−1∑
r=1

χj,r(N,M)

(
Ar,N

(
aτ + b

cτ + d

)
− η

(
aτ + b

cτ + d

)−1

Er,N, ac

(
aτ + b

cτ + d

))
. (IV.2.7)

IV.2.2 Mordell-type integrals

Next we want to rewrite the obstruction to modularity term as a Mordell-type integral.
If ϱ ∈ Q and V ∈ C with Re(V ) > 0, then we have,

Ej,N,ϱ (ϱ+ iV ) =
√
2N

∫ ϱ+iV+i∞+ε

ϱ

fj,N (z)√
i (z− (ϱ+ iV ))

dz

= i
√
2N

∫ ∞−iε

−V

fj,N (ϱ+ i (z+ V ))√
−z

dz

= i
√
2N

∫ ∞−iε

−V

∑
n∈Z

(
n+

j

2N

)
e−2πN(n+ j

2N )
2
(z+V )+2πiN(n+ j

2N )
2
ϱ dz√
−z
.

First note that the integral is absolutely convergent, since the integrand is a cusp form
and therefore exponentially decaying as z → −V and as z → ∞. Also note that each
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summand is exponentially decaying as z → ∞ but we lose this condition as z → −V .
Since we want to be able to interchange the sum and the integral, we rewrite

Ej,N,ϱ (ϱ+ iV ) = i
√
2N lim

δ→0+

∫ ∞−iε

−V+δ

∑
n∈Z

(
n+

j

2N

)
e−2πN(n+ j

2N )
2
(z+V )+2πiN(n+ j

2N )
2
ϱ dz√
−z
.

We can exchange the sum and the integral now and get

Ej,N,ϱ (ϱ+ iV )

=i
√
2N lim

δ→0+

∑
n∈Z

(
n+

j

2N

)
e−2πN(n+ j

2N )
2
V+2πiN(n+ j

2N )
2
ϱ

∫ ∞−iε

−V+δ

e−2πN(n+ j
2N )

2
z dz√
−z
.

Using the identity (see Lemma V.1.1)∫ ∞−iε

−V+δ

e−2πN(n+ j
2N

)2z

√
−z

dz

= − i√
2N(n+ j

2N )

(
sgn

(
n+

j

2N

)
+ erf

(
i

(
n+

j

2N

)√
2πN(V − δ)

))
,

yields

Ej,N,ϱ (ϱ+ iV ) = lim
δ→0+

∑
n∈Z

e−2πN(n+ j
2N )

2
V+2πiN(n+ j

2N )
2
ϱ

×
(
sgn

(
n+

j

2N

)
+ erf

(
i

(
n+

j

2N

)√
2πN (V − δ)

))
. (IV.2.8)

To check the convergence as δ → 0+ we start analogously to [BN19, page 10]. First we
notice that the definition of the error function yields the asymptotic behavior

erf (iz) =
iez

2

√
πz

(
1 +O

(
|z|−2

))
,

if |Arg(±z)| < π
4 as |z| → ∞. Because of this we note that (IV.2.8) does not converge

absolutely at δ = 0 and we have to be careful by taking the limit δ → 0+. Seperating
this main term of the error function aserf

(
i

(
n+

j

2N

)√
2πN (V − δ)

)
− ie2πN(n+

j
2N )

2
(V−δ)

π
(
n+ j

2N

)√
2N (V − δ)


+

ie2πN(n+
j

2N )
2
(V−δ)

π
(
n+ j

2N

)√
2N (V − δ)

, (IV.2.9)
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we find that the term in the brackets is absolutely and uniformly convergent on compact
subsets Re(V ) > 0 and 0 ≤ δ ≤ δ0 for sufficently small δ0, so we can plug in δ = 0 for
these terms to take the limit.

We go on by focussing on the last term of (IV.2.9) whose contibution to Ej,N,ϱ(ϱ+ iV )
is given by

lim
δ→0+

i

π
√

2N(V − δ)

∑
n∈Z

e2πiN(n+
j

2N )
2
ϱ

n+ j
2N

e−2πN(n+ j
2N )

2
δ.

Since |e−2πN(n+ j
2N )

2
δ| < 1 for all δ > 0 this series is absolutely convergent for any δ > 0.

If the corresponding series is also convergent for δ = 0 the limit as δ → 0+ is simply the
value at δ = 0, by Abel’s Theorem (viewing it as a power series in e−2πNδ).

To prove convergence at δ = 0, recall that we assume j ≠ 0. Let ϱ = h
k with

gcd(h, k) = 1 and k > 0 and consider for ν ∈ N the following sum

∑
−ν≤n≤ν

e2πiN(n+
j

2N )
2 h
k

n+ j
2N

. (IV.2.10)

We immediately see that

e2πiN(n+k+
j

2N )
2 h
k = e2πiN(n+

j
2N )

2 h
k ,

which means that the phase is periodic in n with period k. Denoting the average as

a :=
1

k

∑
n (mod k)

e2πiN(n+
j

2N )
2 h
k ,

which is convergent by definition, we can rewrite (IV.2.10) as

∑
−ν≤n≤ν

e2πiN(n+
j

2N )
2 h
k − a

n+ j
2N

+
∑

−ν≤n≤ν

a

n+ j
2N

. (IV.2.11)

We first look at the second sum in (IV.2.11). We have that

∑
−ν≤n≤ν

a

n+ j
2N

=
a
j
2N

+ a
∑

1≤n≤ν

(
1

n+ j
2N

+
1

−n+ j
2N

)
=

a
j
2N

+ a
∑

1≤n≤ν

j
N(

j
2N

)2
− n2

,
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where the summand is O(n−2), which gives us that the sum converges absolutely. Looking
at the first sum in (IV.2.11) and writing n = km+ r we obtain

∑
−ν≤n≤ν

e2πiN(n+
j

2N )
2 h
k − a

n+ j
2N

=
∑

− ν
k
≤m≤ ν

k

k−1∑
r=0

e2πiN(km+r+ j
2N )

2 h
k − a

km+ r + j
2N

+O

(
k

ν

)

=
∑

− ν
k
≤m≤ ν

k

k−1∑
r=0

e2πiN(r+
j

2N )
2 h
k − a

km+ r + j
2N

+O

(
k

ν

)
, (IV.2.12)

using the periodicity of the exponential. For simplicity we denote dr := e2πiN(r+
j

2N )
2 h
k −a.

Since we have that
k−1∑
r=0

dr = −ka+
k−1∑
r=0

e2πiN(r+
j

2N )
2 h
k = 0

by definition of a, we can write dk−1 = −d0 − d1 − · · · − dk−2. With this we can rewrite
(IV.2.12) as

∑
− ν

k≤m≤ ν
k

(
d0

(
1

km+ j
2N

− 1

km+ k − 1 + j
2N

)
+ d1

(
1
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2N

− 1
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)

+ · · ·+ dk−2

(
1

km+ k − 2 + j
2N

− 1

km+ k − 1 + j
2N

))
+O

(
k

ν

)
,

where each term in the brackets is O(m−2), which gives us that (IV.2.12) and thus
(IV.2.10) is absolutely convergent, by taking the limit ν →∞.

Therefore the last term of (IV.2.9) is convergent for δ = 0 and with this we see that
(IV.2.8) is convergent. Thus we are allowed to set δ = 0 in (IV.2.8) to obtain

Ej,N,ϱ(ϱ+ iV ) (IV.2.13)

=
∑
n∈Z

(
sgn

(
n+

j

2N

)
+ erf

(
i

(
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j

2N

)√
2πNV

))
e2πiN(n+

j
2N )

2
(ϱ+iV ).

Hence, using (IV.2.7) and the definition of Aj,N , we get

Aj,N (τ) =

N−1∑
r=1

χj,r(N,M)
(
Ar,N (ϱ+ iV )− η (ϱ+ iV )−1 Er,N,ϱ (ϱ+ iV )

)
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χj,r(N,M)

Ar,N (ϱ+ iV )− η (ϱ+ iV )−1
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(
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r

2N

)
e2πiN(n+ r
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(
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=

N−1∑
r=1

χj,r(N,M) η (ϱ+ iV )−1

−
∑
n∈Z

erf
(
i
(
n+

r

2N

)√
2πNV

)
e2πiN(n+ r

2N )2(ϱ+iV )

 . (IV.2.14)

We see that the first term of (IV.2.13) cancels against the contribution of Ar,N (ϱ+ iV ),
so we focus on the second term of (IV.2.13) and define

Ij,N,ϱ(ϱ+ iV ) := −
∑
n∈Z

erf

(
i

(
n+

j

2N

)√
2πNV

)
e2πiN(n+

j
2N )

2
(ϱ+iV ),

which is basically our error of modularity plus the holomorphic part of our function.
Using the identity, for s ∈ R \ {0} and Re(V ) > 0, (see Lemma V.1.2)

e−πs
2V erf

(
is
√
πV
)
=− i

π
P.V.

∫ ∞

−∞

e−πV x
2
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π
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(∫ s−ε

−∞

e−πV x
2
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dx+

∫ ∞

s+ε
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2
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)
,

we obtain

Ij,N,ϱ(ϱ+ iV ) =
i

π

∑
n∈Z

e2πiN(n+
j

2N )
2
ϱ P.V.

∫ ∞

−∞
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x−
(
n+ j

2N

) dx. (IV.2.15)

IV.2.3 Splitting of the Mordell-type integral

Let ϱ = h′

k with h′, k ∈ Z, gcd(h′, k) = 1, and k > 0. For a real number d with

0 ≤ d < N such that 2
√
dN /∈ Z\{0} we split I

j,N,h
′
k

as follows

e2πdV I
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′
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)
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k
+ iV

)
+ Ie
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′
k
,d

(
h′
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)
,

where

I∗
j,N,h

′
k ,d

(
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)
=
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(
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) dx, (IV.2.16)

Ie
j,N,h

′
k ,d

(
h′

k
+ iV

)
=

i

π
e2πdV

∑
n∈Z

e2πiN(n+
j

2N )
2 h′

k P.V.

∫
|x|≥
√

d
N

e−2πNV x2

x−
(
n+ j

2N

) dx. (IV.2.17)

Note that the assumption 2
√
dN /∈ Z\{0} ensures the well-definedness of the principal

value integral, since we avoid having poles on the boundary.

75



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

IV.3 Proof of Theorem IV.1.2

In this section we prove Theorem IV.1.2 by using a bound of Malishev, which we
stated as Lemma IV.1.3.

We note that Kk,j,N (n, r, κ) from (IV.1.6) is well-defined and a Kloosterman sum
of modulus k, which follows from a lengthy but straightforward calculation using the
Chinese Remainder Theorem, quadratic reciprocity, and some formulae on the Kronecker
symbol (see Lemmata V.2.1 and V.2.2). Thus we can rewrite it as

Kk,j,N (n, r, κ)

=
∑

h (mod k)
gcd(h,k)=1

χj,r(N,Mh,k) exp

(
−2πi

k

((
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j2

4N
− 1

24

)
h−

(
N
(
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2N

)2
− 1

24

)
h′
))

.

Note that for even k we have

χj,r(N,Mh,k) =

(
k

−h

)
exp

(
πi

12

(
h′k

(
1− (−h)2

)
+ (−h)

(
−hh

′ + 1

k
− k + 3

)
− 3

))
× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
,

while for odd k we have

χj,r(N,Mh,k) =

(
−h
k

)
exp

(
πi

12

(
(h′ − h)k − hh′ + 1

k
h
(
k2 − 1

)
− 3k

))
× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
.

The strategy of the proof is to rewrite our Kloosterman sum into a sort of Salié sum

Kk,j,N (n, r, κ) = ϵ(k, j,N, r)
∑

h (modGk)
gcd(h,Gk)=1

(
h

ρ

)
exp

(
2πi

Gk

(
µ∗h− ν∗[h]′Gk

))
,

where µ∗, ν∗ ∈ Z, G ∈ N, ρ ∈ N odd such that all his prime divisors divide Gk, [h]′Gk
the negative modular inverse of h modulo Gk, and some ϵ(k, j,N, r) = ON (1). Then we
bound it using [KS64, equation (12)]. Note that we use the [·]· notation from now on to
denote the negative modular inverse of given modulus.

We write

sin

(
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Nk

)
=

1

2i

(
exp

(
πir(2Ns+ j)

Nk

)
− exp

(
−πir(2Ns+ j)

Nk

))
,

which yields that

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
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=
1

2i

k−1∑
s=0

(
exp

(
2πi

k

(
hNs2 + (hj + r) s

))
exp

(
2πi

4Nk

(
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))
− exp

(
2πi
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(
2πi
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(
hj2 − h′r2 − 2rj

)))
.

We additionally see that this equals

1

2i

(
exp

(
2πi

4Nk

(
hj2 − h′r2 + 2rj

))
G (hN, hj + r, k)

− exp

(
2πi

4Nk

(
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))
G (hN, hj − r, k)

)
, (IV.3.1)

where

G (a, b, c) :=

c−1∑
s=0

exp

(
2πi

as2 + bs

c

)
denotes the generalized quadratic Gauss sum5. From this point on we have to look at
odd, respectively even, k seperately.

IV.3.1 Odd k

We have that

χj,r(N,Mh,k) =

(
−h
k

)√
2

Nk
exp

(
2πi

(
1

24

(
(h′ − h)k − hh′ + 1

k
h
(
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)
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+
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(
− πi
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sin

(
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Nk

)
.

Using (IV.3.1) we can thus rewrite this as

χj,r(N,Mh,k)

=− i

(
−h
k

)√
1

2Nk
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(
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(
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k
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+
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(
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)√
1
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exp

(
2πi

(
1

24

(
(h′ − h)k −

hh′ + 1

k
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(
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+

3

8
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1
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)))
×G (hN, hj − r, k) . (IV.3.2)

Note that gcd(Nh, k) = gcd(N, k), since gcd(h, k) = 1. Set

εm :=

{
1 if m ≡ 1 (mod 4) ,

i if m ≡ 3 (mod 4) ,
(IV.3.3)

5Note that this sum is well-defined for any a, c ∈ N and b (mod c).
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for every odd integer m. For odd k we obtain that

G(hN, hj ± r, k) =


0 if gcd(N, k) > 1, and gcd(N, k) ∤ (hj ± r),

gcd(N, k)G
(

Nh
gcd(N,k)
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gcd(N,k)

, k
gcd(N,k)

)
if gcd(N, k) > 1, and gcd(N, k) | (hj ± r),

εk
√
k
(
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k

)
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(
−2πi

ψ(Nh)(hj±r)2
k
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if gcd(N, k) = 1,

=
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√
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)2
k
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)
otherwise,

(IV.3.4)

where ψ(a) and ψ∗(a) are some numbers satisfying6

4ψ(a)a ≡ 1 (mod k) and 4ψ∗(a)a ≡ 1

(
mod

k

gcd(N, k)

)
.

We can thus rewrite (IV.3.2) as

χj,r(N,Mh,k) (IV.3.5)
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k
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+
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 exp

−2πi
ψ∗
(

Nh
gcd(N,k)

)(
hj+r

gcd(N,k)

)2
k

gcd(N,k)
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+
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using

δcondition :=

{
1 if this condition is true,

0 otherwise,

here and throughout the rest of the chapter. By definition we have that

−4aψ∗(a) ≡ −1
(
mod

k

gcd(N, k)

)
,

which gives us that
ψ∗(a) = [−4a]′ k

gcd(N,k)

.

6Note that ψ(a) and ψ∗(a) exist, since we assumed that k, and thus k
gcd(N,k)

, are odd and that

gcd(Nh, k) = 1 by assumption of the first case and gcd(Nh, k
gcd(N,k)

) = 1.
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Using that [ab]′x = −[a]′x[b]′x, for any modulus x ∈ N and arbitrary a, b ∈ N, we obtain
that

ψ∗(a) = [4]′ k
gcd(N,k)

[a]′ k
gcd(N,k)

and thus
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Note that (IV.3.5) is well-defined for [a]′ k
gcd(N,k)

the negative modular inverse of a, i.e., a

solution of a [a]′ k
gcd(N,k)

≡ −1 (mod k
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is invariant under any shifts by k

gcd(N,k) , since
hj±r

gcd(N,k) ∈ Z.
For simplicity we stick to the notation [h]′k = h′. We obtain
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and see that(
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=
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Therefore our Kloosterman sum equals

Kk,j,N (n, r, κ) =iε k
gcd(N,k)
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N
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We already saw that the following is well-defined and now observe that

exp

2πi
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gcd(N,k)

[
N
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]′
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(
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=exp

 2πi
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[
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(
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) .

Choose [h]′ k
gcd(N,k)

= h′ from now on7. Let x ∈ N such that gcd(x, h) = 1 (note that

this condition is necessary to make sure that the negative modular inverse is well-defined)
and [h]′xk the negative modular inverse of h modulo xk, i.e.,

h[h]′xk ≡ −1 (modxk) .

Then we see that we also have h[h]′xk ≡ −1 (mod k), since k | xk. This yields that

h′ ≡ [h]′xk (mod k) .

7Note that hh′ ≡ −1 (mod k) implies that hh′ ≡ −1 (mod k
gcd(N,k)

), since k
gcd(N,k)

| k. Thus h′ is a

possible choice for [h]′ k
gcd(N,k)

.
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Thus we can choose h′ such that hh′ ≡ −1 (modxk) . Taking x = gcd(N, k) we obtain

Kk,j,N (n, r, κ)

=iε k
gcd(N,k)

 −N
gcd(N,k)

k
gcd(N,k)

( −1

gcd(N, k)

)√
gcd(N, k)

2N
exp

(
2πi

24k

(
−3k2 + 9k

)) ∑
h (mod k)
gcd(h,k)=1

(
h

gcd(N, k)

)

× exp

 2πi

24 gcd(N, k)k

(−24n+ 2− 2k2
)
gcd(N, k)− 24j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

h

−

(−24Nκ2 − 24κr + 1− k2
)
gcd(N, k)− 24r2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

 [h]′k gcd(N,k)


×

δgcd(N,k)|(hj−r) exp
 2πi

k gcd(N, k)

[4]′ k
gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

2jr


× exp

(
2πi

24k

(
h2[h]′k gcd(N,k)

(
1− k2

)
−

12rj

N

))

−δgcd(N,k)|(hj+r) exp

 2πi

k gcd(N, k)

−[4]′ k
gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

2jr


× exp

(
2πi

24k

(
h2[h]′k gcd(N,k)

(
1− k2

)
+

12rj

N

)))
.

We now need to split into two cases, 3 ∤ k and 3 | k. In the first case we have
1− k2 ≡ 0 (mod 24). Thus we obtain8

Kk,j,N (n, r, κ) = Kk,j,N,+(n, r, κ) +Kk,j,N,−(n, r, κ),

with

Kk,j,N,±(n, r, κ)

:=∓ iε k
gcd(N,k)

 −N
gcd(N,k)

k
gcd(N,k)

( −1

gcd(N, k)

)√
gcd(N, k)

2N
exp

(
2πi

24k

(
−3k2 + 9k

))

× exp

 2πi

24k gcd(N, k)

∓48jr[4]′ k
gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

±
12rj

N
gcd(N, k)


×

∑
h (mod k)
gcd(h,k)=1

(
h

gcd(N, k)

)
δgcd(N,k)|(hj±r)

× exp

 2πi

24 gcd(N, k)k

(−24n+ 1− k2
)
gcd(N, k)− 24j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

h

−

(−24Nκ2 − 24κr + 1− k2
)
gcd(N, k)− 24r2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

 [h]′k gcd(N,k)

 .

8Using that h[h]′k gcd(N,k) ≡ −1 (mod k) since k | (k gcd(N, k)).

81



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

We set

Kk,j,N,±(n, r, κ)

=:ϵo,±(k, j,N, r)
1

gcd(N, k)

∑
h (mod gcd(N,k)k)
gcd(h,gcd(N,k)k)=1

(
h

gcd(N, k)

)
δgcd(N,k)|(hj±r)

× exp

 2πi

gcd(N, k)k

(−n+
1− k2

24

)
gcd(N, k)− j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

h

−

(−Nκ2 − κr +
1− k2

24

)
gcd(N, k)− r2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

 [h]′k gcd(N,k)


=:ϵo,±(k, j,N, r)

1

gcd(N, k)

∑
h (mod gcd(N,k)k)
gcd(h,gcd(N,k)k)=1

(
h

gcd(N, k)

)
δgcd(N,k)|(hj±r)

× exp

(
2πi

gcd(N, k)k

(
µ1h− ν1[h]

′
k gcd(N,k)

))
and note that, by orthogonality of roots of unity, we have

δgcd(N,k)|(hj±r) =
1

gcd(N, k)

gcd(N,k)−1∑
s=0

exp

(
2πi

(hj ± r)s
gcd(N, k)

)
,

which finally gives us that

Kk,j,N,±(n, r, κ) =ϵo,±(k, j,N, r)
1

gcd(N, k)2

gcd(N,k)−1∑
s=0

exp

(
±2πi

rs

gcd(N, k)

)
(IV.3.6)

×
∑

h (mod gcd(N,k)k)
gcd(h,gcd(N,k)k)=1

(
h

gcd(N, k)

)
exp

(
2πi

gcd(N, k)k

(
(µ1 + jsk)h− ν1[h]

′
k gcd(N,k)

))
.

In the second case, 3 | k, we have 1 − k2 ≡ 0 (mod 8) and 3 ∤ h. Thus, choosing
[h]′k gcd(N,k) such that h[h]′k gcd(N,k) ≡ −1 (mod 3k gcd(N, k)) analogously to above, we

obtain9

Kk,j,N (n, r, κ)

=iε k
gcd(N,k)

 −N
gcd(N,k)

k
gcd(N,k)

( −1

gcd(N, k)

)√
gcd(N, k)

2N
exp

(
2πi

24k

(
−3k2 + 9k

)) ∑
h (mod k)
gcd(h,k)=1

(
h

gcd(N, k)

)

×

δgcd(N,k)|(hj−r) exp
 2πi

24k gcd(N, k)

48jr[4]′ k
gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

−
12rj

N
gcd(N, k)


−δgcd(N,k)|(hj+r) exp

 2πi

24k gcd(N, k)

−48jr[4]′ k
gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

+
12rj

N
gcd(N, k)


9Using that h[h]′3k gcd(N,k) ≡ −1 (mod 3k) since (3k) | (3k gcd(N, k)).
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× exp

 2πi

24 gcd(N, k)k

(−24n+ 1− k2
)
gcd(N, k)− 24j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

h

−

(−24Nκ2 − 24κr + 1− k2
)
gcd(N, k)− 24r2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

 [h]′3k gcd(N,k)


=:K∗

k,j,N,−(n, r, κ) +K∗
k,j,N,+(n, r, κ).

Here we set

K∗
k,j,N,±(n, r, κ)

=ϵo,±(k, j,N, r)
1

3 gcd(N, k)

∑
h (mod 3 gcd(N,k)k)
gcd(h,3 gcd(N,k)k)=1

(
h

gcd(N, k)

)
δgcd(N,k)|(hj+r)

× exp

 2πi

3 gcd(N, k)k

(−3n+
1− k2

8

)
gcd(N, k)− 3j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

h

−

(−3Nκ2 − 3κr +
1− k2

8

)
gcd(N, k)− 3r2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

 [h]′3k gcd(N,k)


=:ϵo,±(k, j,N, r)

1

3 gcd(N, k)

×
∑

h (mod 3 gcd(N,k)k)
gcd(h,3 gcd(N,k)k)=1

(
h

gcd(N, k)

)
δgcd(N,k)|(hj+r) exp

(
2πi

3 gcd(N, k)k

(
µ2h− ν2[h]

′
3k gcd(N,k)

))

and, by orthogonality of roots of unity, we finally have

K∗
k,j,N,±(n, r, κ) =ϵo,±(k, j,N, r)

1

3 gcd(N, k)2

gcd(N,k)−1∑
s=0

exp

(
±2πi

rs

gcd(N, k)

)
(IV.3.7)

×
∑

h (mod 3 gcd(N,k)k)
gcd(h,3 gcd(N,k)k)=1

(
h

gcd(N, k)

)
exp

(
2πi

3 gcd(N, k)k

(
(µ2 + 3jsk)h− ν2[h]

′
3k gcd(N,k)

))
.

Since in (IV.3.6) and (IV.3.7) both sums over h are of the required shape we can
bound them using Malishev’s result (see Lemma IV.1.3) and obtain that they areO

(
(gcd(N, k)k)

1
2
+εmin

(
gcd (µ1 + jsk, gcd(N, k)k)

1
2 , gcd (ν1, gcd(N, k)k)

1
2

))
if 3 ∤ k,

O
(
(3 gcd(N, k)k)

1
2
+εmin

(
gcd (µ2 + 3jsk, 3 gcd(N, k)k)

1
2 , gcd (ν2, 3 gcd(N, k)k)

1
2

))
if 3 | k,

for ε > 0. We see that gcd(N, k) ≤ N = ON (1), and, by Lemma V.2.4,

min
(
gcd (µ1 + jsk, gcd(N, k)k)

1
2 , gcd (ν1, gcd(N, k)k)

1
2

)
= ON

(
n

1
2

)
,

and

min
(
gcd (µ2 + 3jsk, 3 gcd(N, k)k)

1
2 , gcd (ν2, 3 gcd(N, k)k)

1
2

)
= ON

(
n

1
2

)
.
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Thus we showed that

Kk,j,N,±(n, r, κ) =ON

∣∣∣∣ϵo,±(k, j,N, r) 1

gcd(N, k)2

∣∣∣∣ gcd(N,k)−1∑
s=0

∣∣∣∣exp(±2πi rs

gcd(N, k)

)∣∣∣∣n 1
2 k

1
2+ε


=ON

(
n

1
2 k

1
2+ε
)

and analogously K∗
k,j,N,±(n, r, κ) = ON (n

1
2k

1
2
+ε), which yields

Kk,j,N (n, r, κ) =ON

(
n

1
2k

1
2
+ε
)

and finishes the proof for odd k.

IV.3.2 Even k

We go on with the case of even k and have that

χj,r(N,Mh,k)

=− i

(
k

−h

)√
1

2Nk
exp

(
2πi

(
1

24

(
h′k

(
1− (−h)2

)
+ (−h)

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8

))
× exp

(
2πi

4Nk

(
hj2 − h′r2 + 2rj

))
G (hN, hj + r, k)

+ i

(
k

−h

)√
1

2Nk
exp

(
2πi

(
1

24

(
h′k

(
1− (−h)2

)
+ (−h)

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8

))
× exp

(
2πi

4Nk

(
hj2 − h′r2 − 2rj

))
G (hN, hj − r, k) ,

using (IV.3.1). For even k we can write k = 2νµ with ν ≥ 1 and µ odd. Using the
multiplicativity of the generalized quadratic Gauss sum10, we thus have that

G(hN, hj ± r, k) = G(hN, hj ± r, 2νµ) = G(hN2ν , hj ± r, µ)G(hNµ, hj ± r, 2ν).

Defining α := max(x : 2x | (hNµ)) = max(x : 2x | N) we obtain

G(hNµ, hj ± r, 2ν)

=


2ν if ν − α = 1 and hj ± r ̸≡ 0 (mod 2) ,

2
ν+α

2 (i+ 1)

(
−2ν+α

hNµ
2α

)
εhNµ

2α
exp

−2πi

[
hNµ
2α

]′
2ν+α+2

(hj±r)2

4

2ν+α

 if ν − α > 1 and hj ± r ≡ 0
(
mod 2α+1

)
,

0 otherwise.

10For given a, c, d ∈ N, b (mod c) and gcd(c, d) = 1 we have that G(a, b, cd) = G(ac, b, d)G(ad, b, c).
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Noting that gcd(hN2ν , µ) = gcd(hN, µ) = gcd(N,µ), hj ± r ≡ hj + r (mod 2), and
combining this with (IV.3.4) yields

G(hN, hj ± r, 2νµ)

=



2νA± if ν − α = 1, hj + r ̸≡ 0 (mod 2) ,

and gcd(N,µ) | (hj ± r),

2
ν+α

2 A±(i+ 1)

(
−2ν+α

hNµ
2α

)
εhNµ

2α
exp

−2πi

[
hNµ
2α

]′
2ν+α+2

(hj±r)2

4

2ν+α

 if ν − α > 1, hj ± r ≡ 0
(
mod2α+1

)
,

and gcd(N,µ) | (hj ± r),

0 otherwise,

with

A± := gcd(N,µ)ε µ
gcd(N,µ)

√
µ

gcd(N,µ)

(
Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)
exp

−2πi ψ̃
(

Nh2ν

gcd(N,µ)

)(
hj±r

gcd(N,µ)

)2
µ

gcd(N,µ)

 ,

εhNµ
2α

and ε µ
gcd(N,µ)

as in (IV.3.3), and where ψ̃(a) is some number satisfying

4ψ̃(a)a ≡ 1

(
mod

µ

gcd(N,µ)

)
.

Note that in the first case we have that ν = α+1 which gives us that 2ν = 2α+1 ≤ 2N ,
and allows us to say that 2ν = ON (1).

Using that for even k the h we are summing over have to be odd we split our
Kloosterman sum as follows

Kk,j,N (n, r, κ)

=

δ ν−α=1
j ̸≡r (mod 2)


∑

0≤h<k
gcd(h,k)=1

gcd(N,µ)|(hj+r)

+
∑

0≤h<k
gcd(h,k)=1

gcd(N,µ)|(hj−r)

+ δν−α>1


∑

0≤h<k
gcd(h,k)=1

(gcd(N,µ)2α+1)|(hj+r)

+
∑

0≤h<k
gcd(h,k)=1

(gcd(N,µ)2α+1)|(hj−r)




× χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )2−1
)
h′−24

(
n+ j2

4N
− 1

24

)
h

24k

=:Kk,j,N,1,+(n, r, κ) +Kk,j,N,1,−(n, r, κ) +Kk,j,N,2,+(n, r, κ) +Kk,j,N,2,−(n, r, κ)

=:Kk,j,N,1(n, r, κ) +Kk,j,N,2(n, r, κ).

For Kk,j,N,1(n, r, κ) we can run a similar calculation as in the odd k case. By definition

we have that −4aψ̃(a) ≡ −1 (mod µ
gcd(N,µ)), which gives us that

ψ̃(a) = [−4a]′ µ
gcd(N,µ)

= [4]′ µ
gcd(N,µ)

[a]′ µ
gcd(N,µ)
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and thus

ψ̃

(
Nh2ν

gcd(N,µ)

)
= [4]′ µ

gcd(N,µ)

[
Nh2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

= −[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

.

Note that

exp

−2πi
ψ̃
(

Nh2ν

gcd(N,µ)

)(
hj±r

gcd(N,µ)

)2
µ

gcd(N,µ)

 = exp

−2πi

−[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj±r

gcd(N,µ)

)2
µ

gcd(N,µ)


is well-defined for [a]′ µ

gcd(N,µ)
a solution of a [a]′ µ

gcd(N,µ)
≡ −1 (mod µ

gcd(N,µ)), since it is

invariant under any shifts by µ
gcd(N,µ) , because

hj±r
gcd(N,µ) ∈ Z by assumption.

For simplicity we stick to the notation [h]′k = h′. For Kk,j,N,1(n, r, κ) we obtain that

χj,r(N,Mh,k)

=− iε µ
gcd(N,µ)

(
k

−h

)( Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)√
gcd(N,µ)2ν

2N
δgcd(N,µ)|(hj+r)

× exp

−2πi

−[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj+r

gcd(N,µ)

)2
µ

gcd(N,µ)


× exp

(
2πi

(
1

24

(
h′k

(
1− h2)− h

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8
+
hj2 − h′r2 + 2rj

4Nk

))
+ iε µ

gcd(N,µ)

(
k

−h

)( Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)√
gcd(N,µ)2ν

2N
δgcd(N,µ)|(hj−r)

× exp

−2πi

−[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj−r

gcd(N,µ)

)2
µ

gcd(N,µ)


× exp

(
2πi

(
1

24

(
h′k

(
1− h2)− h

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8
+
hj2 − h′r2 − 2rj

4Nk

))
.

Using quadratic reciprocity together with
(

k
−h

)
= sgn(k)

(
k
h

)
=
(
k
h

)
we have

(
k

−h

)( Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)
=

(
2

h

)ν (µ
h

)( h
µ

gcd(N,µ)

)(
N2ν

gcd(N,µ)
µ

gcd(N,µ)

)

=

(
(−1)

h2−1
8

)ν
(−1)

(µ−1)(h−1)
4

(
h

gcd(N,µ)

)( N2ν

gcd(N,µ)
µ

gcd(N,µ)

)
.
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Therefore

Kk,j,N,1(n, r, κ) =iε µ
gcd(N,µ)

 N2ν

gcd(N,µ)
µ

gcd(N,µ)

√gcd(N,µ)2ν

2N
exp

(
2πi

4

)
δ ν−α=1
j ̸≡r (mod 2)

×
∑

h (mod k)
gcd(h,k)=1

(
(−1)

h2−1
8

)ν
(−1)

(µ−1)(h−1)
4

(
h

gcd(N,µ)

)

× exp

(
2πi

24k

((
−24n+ 2 + k2 − 3k

)
h−

(
−24Nκ2 − 24κr + 1− k2

)
h′
))

×

−δgcd(N,µ)|(hj+r) exp

2πi

[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj+r

gcd(N,µ)

)2
µ

gcd(N,µ)


× exp

(
2πi

24k

(
−h2h′k2 + h2h′ +

12rj

N

))

+δgcd(N,µ)|(hj−r) exp

2πi

[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj−r

gcd(N,µ)

)2
µ

gcd(N,µ)



× exp

(
2πi

24k

(
−h2h′k2 + h2h′ −

12rj

N

)) .

We already saw that the following is well-defined and now observe that

exp

2πi

[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj±r

gcd(N,µ)

)2
µ

gcd(N,µ)


=exp

 2πi

k gcd(N,µ)

2ν [4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
h2j2 ± 2hjr + r2

) .

Choose [h]′ µ
gcd(N,µ)

= h′ here11. Analogously to above we can choose h′ such that

hh′ ≡ −1 (modxk) for some x ∈ N such that gcd(x, h) = 1. Taking x = gcd(N,µ) we
obtain

Kk,j,N,1(n, r, κ)

=iε µ
gcd(N,µ)

 N2ν

gcd(N,µ)
µ

gcd(N,µ)

√gcd(N,µ)2ν

2N
exp

(
2πi

4

)
δ ν−α=1
j ̸≡r (mod 2)

11Note that hh′ ≡ −1 (mod k) implies that hh′ ≡ −1 (mod µ
gcd(N,µ)

), since µ
gcd(N,µ)

| k. Thus h′ is a

possible choice for [h]′ µ
gcd(N,µ)

.
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×
∑

h (mod k)
gcd(h,k)=1

(
(−1)

h2−1
8

)ν
(−1)

(µ−1)(h−1)
4

(
h

gcd(N,µ)

)

× exp

 2πi

24k gcd(N,µ)

(−24n+ 2 + k2 − 3k
)
gcd(N,µ)− 24j22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

h

−

(−24Nκ2 − 24κr + 1− k2
)
gcd(N,µ)− 24r22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

 [h]′k gcd(N,µ)


×

−δgcd(N,µ)|(hj+r) exp

 2πi

k gcd(N,µ)

−2ν+1jr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)


× exp

(
2πi

24k

(
h2[h]′k gcd(N,µ)(1− k2) +

12rj

N

))

+δgcd(N,µ)|(hj−r) exp

 2πi

k gcd(N,µ)

2ν+1jr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)


× exp

(
2πi

24k

(
h2[h]′k gcd(N,µ)(1− k2)−

12rj

N

)))
.

We now need to split into two cases, namely 3 ∤ k and 3 | k. In the first case we obtain
that 3 | (k2− 1). Choosing [h]′k gcd(N,µ) such that h[h]′k gcd(N,µ) ≡ −1 (mod 8k gcd(N,µ)),

analogously to above12, yields13

Kk,j,N,1(n, r, κ)

=iε µ
gcd(N,µ)

 N2ν

gcd(N,µ)
µ

gcd(N,µ)

√gcd(N,µ)2ν

2N
exp

(
2πi

4

)
δ ν−α=1
j ̸≡r (mod 2)

×
∑

h (mod k)
gcd(h,k)=1

(
(−1)

h2−1
8

)ν
(−1)

(µ−1)(h−1)
4

(
h

gcd(N,µ)

)

×

−δgcd(N,µ)|(hj+r) exp

 2πi

24k gcd(N,µ)

−48 · 2νjr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

+
12rj

N
gcd(N,µ)


+δgcd(N,µ)|(hj−r) exp

 2πi

24k gcd(N,µ)

48 · 2νjr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

−
12rj

N
gcd(N,µ)


× exp

 2πi

24k gcd(N,µ)

(−24n+ 1 + 2k2 − 3k
)
gcd(N,µ)− 24j22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

h

−

(−24Nκ2 − 24κr + 1− k2
)
gcd(N,µ)− 24r22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

 [h]′8k gcd(N,µ)


=:Kk,j,N,1,+(n, r, κ) +Kk,j,N,1,−(n, r, κ),

12We are allowed to do this since gcd(8, h) = 1, this is because we know that h is odd.
13Using that h[h]′8k gcd(N,µ) ≡ −1 (mod 8k) since (8k) | (8k gcd(N,µ)).
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where

Kk,j,N,1,±(n, r, κ) =ϵ
∗
e,±(k, j,N, r)

1

8 gcd(N,µ)2

gcd(N,µ)−1∑
s=0

exp

(
±2πi rs

gcd(N,µ)

)
×

∑
h (mod 8 gcd(N,µ)k)
gcd(h,8 gcd(N,µ)k)=1

(−1)
h2−1

8 ν+
(µ−1)(h−1)

4

(
h

gcd(N,µ)

)

× exp

(
2πi

8k gcd(N,µ)

(
(µ3 + 8jsk)h− ν3[h]′8k gcd(N,µ)

))
,

with

ϵ∗e,±(k, j,N, r) :=∓ iε µ
gcd(N,µ)

 N2ν

gcd(N,µ)
µ

gcd(N,µ)

√gcd(N,µ)2ν

2N
exp

(
2πi

4

)
δ ν−α=1
j ̸≡r (mod 2)

× exp

 2πi

24k gcd(N,µ)

∓48 · 2νjr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

±
12rj

N
gcd(N,µ)

 ,

µ3 :=

(
−8n+

1 + 2k2

3
− k

)
gcd(N,µ)− 8j22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

,

ν3 :=

(
−8Nκ2 − 8κr +

1− k2

3

)
gcd(N,µ)− 8r22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

.

Note that µ3, ν3 ∈ Z, since k2 − 1 ≡ 0 (mod 3) is equivalent to 2k2 + 1 ≡ 0 (mod 3).
Lastly we use a small trick to rewrite our Kloosterman sum into the shape that we

want. First we note that 16 | (8k gcd(N,µ)) and that (−1)
h2−1

8
ν+

(µ−1)(h−1)
4 only depends

on h modulo 16. Thus we obtain

Kk,j,N,1,±(n, r, κ) (IV.3.8)

=ϵ∗e,±(k, j,N, r)
1

8 gcd(N,µ)2

gcd(N,µ)−1∑
s=0

exp

(
±2πi

rs

gcd(N,µ)

)
1

16

∑
j (mod 16)

(−1)
j2−1

8
ν+

(µ−1)(j−1)
4

∑
ℓ (mod 16)

e
−2πijℓ

16

×
∑

h (mod 8 gcd(N,µ)k)
gcd(h,8 gcd(N,µ)k)=1

(
h

gcd(N,µ)

)
exp

(
2πi

8k gcd(N,µ)

((
µ3 + 8jsk +

8ℓ gcd(N,µ)k

16

)
h− ν3[h]

′
8k gcd(N,µ)

))
,

using the orthogonality of roots of unity

1

16

∑
ℓ (mod 16)

e
2πiaℓ
16 =

{
1 if 16 | a,
0 otherwise.

In the second case, 3 | k, we have that 3 ∤ h and thus gcd(24, h) = 1. Choosing
[h]′k gcd(N,µ) such that h[h]′k gcd(N,µ) ≡ −1 (mod 24k gcd(N,µ)), analogously to above,
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yields14

Kk,j,N,1(n, r, κ) =:K
∗
k,j,N,1,+(n, r, κ) +K∗

k,j,N,1,−(n, r, κ),

where analogously to the first case

K
∗
k,j,N,1,±(n, r, κ) (IV.3.9)

=ϵ
∗
e,±(k, j, N, r)

1

24 gcd(N,µ)2

gcd(N,µ)−1∑
s=0

exp

(
±2πi

rs

gcd(N,µ)

)
1

16

∑
j (mod 16)

(−1)
j2−1

8
ν+

(µ−1)(j−1)
4

∑
ℓ (mod 16)

e
−2πijℓ

16

×
∑

h (mod 24 gcd(N,µ)k)
gcd(h,24 gcd(N,µ)k)=1

(
h

gcd(N,µ)

)
exp

(
2πi

24k gcd(N,µ)

((
µ4 + 24jsk +

24ℓ gcd(N,µ)k

16

)
h− ν4[h]

′
24k gcd(N,µ)

))
,

with

µ4 :=
(
−24n+ 1 + 2k2 − 3k

)
gcd(N,µ)− 24j22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

,

ν4 :=
(
−24Nκ2 − 24κr + 1− k2

)
gcd(N,µ)− 24r22ν [4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

.

We now note that we can bound (IV.3.8), respectively (IV.3.9), by∣∣Kk,j,N,1,±(n, r, κ)
∣∣

≤
∣∣∣∣ϵ∗e,±(k, j,N, r)

1

8 gcd(N,µ)2
1

16

∣∣∣∣ gcd(N,µ)−1∑
s=0

∑
j (mod 16)

∑
ℓ (mod 16)

×

∣∣∣∣∣∣∣∣∣
∑

h (mod 8 gcd(N,µ)k)
gcd(h,8 gcd(N,µ)k)=1

(
h

gcd(N,µ)

)
exp

(
2πi

8k gcd(N,µ)

((
µ3 + 8jsk +

8ℓ gcd(N,µ)k

16

)
h− ν3[h]

′
8k gcd(N,µ)

))∣∣∣∣∣∣∣∣∣ ,
respectively

∣∣∣K∗
k,j,N,1,±(n, r, κ)

∣∣∣
≤

∣∣∣∣∣ϵ∗e,±(k, j, N, r)
1

24 gcd(N,µ)2

1

16

∣∣∣∣∣
gcd(N,µ)−1∑

s=0

∑
j (mod 16)

∑
ℓ (mod 16)

×

∣∣∣∣∣∣∣∣∣
∑

h (mod 24 gcd(N,µ)k)
gcd(h,24 gcd(N,µ)k)=1

(
h

gcd(N,µ)

)
exp

(
2πi

24k gcd(N,µ)

((
µ4 + 24jsk +

24ℓ gcd(N,µ)k

16

)
h− ν4[h]

′
24k gcd(N,µ)

))∣∣∣∣∣∣∣∣∣ .

Both sums over h are of the required shape, so we can bound them using Malishev’s
result (see Lemma IV.1.3) and obtain that they are

O

(
(8 gcd(N,µ)k)

1
2
+εmin

(
gcd

(
µ3 + 8jsk +

8ℓ gcd(N,µ)k

16
, 8 gcd(N,µ)k

) 1
2

, gcd (ν3, 8 gcd(N,µ)k)
1
2

))
,

14Using that h[h]′24k gcd(N,µ) ≡ −1 (mod 24k) since (24k) | (24k gcd(N,µ)).
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respectively

O

(
(24 gcd(N,µ)k)

1
2
+εmin

(
gcd

(
µ4 + 24jsk +

24ℓ gcd(N,µ)k

16
, 24 gcd(N,µ)k

) 1
2

, gcd (ν4, 24 gcd(N,µ)k)
1
2

))
,

for ε > 0.
We see that 8 gcd(N,µ) ≤ 24 gcd(N,µ) ≤ 24N = ON (1) and, analogously to Lemma

V.2.4,

min

(
gcd

(
µ3 + 8jsk +

8ℓ gcd(N,µ)k

16
, 8 gcd(N,µ)k

) 1
2

, gcd (ν3, 8 gcd(N,µ)k)
1
2

)
= ON

(
n

1
2

)
,

and

min

(
gcd

(
µ4 + 24jsk +

24ℓ gcd(N,µ)k

16
, 24 gcd(N,µ)k

) 1
2

, gcd (ν4, 24 gcd(N,µ)k)
1
2

)
= ON

(
n

1
2

)
.

This yields

Kk,j,N,1,±(n, r, κ) =ON

∣∣∣∣ϵ∗e,±(k, j,N, r) 1

8 gcd(N,µ)2
1

16

∣∣∣∣ gcd(N,µ)−1∑
s=0

∑
j (mod 16)

∑
ℓ (mod 16)

k
1
2+εn

1
2


=ON

(∣∣∣∣ϵ∗e,±(k, j,N, r) 1

8 gcd(N,µ)2
1

16

∣∣∣∣ 162 gcd(N,µ)k 1
2+εn

1
2

)
=ON

(
n

1
2 k

1
2+ε
)
,

and analogously K∗
k,j,N,1,±(n, r, κ) = ON (n

1
2k

1
2
+ε), since ϵ∗e,±(k, j,N, r) = ON (1). We

thus showed that

Kk,j,N,1(n, r, κ) =ON

(
n

1
2k

1
2
+ε
)
.

The only thing left to do now is to look at Kk,j,N,2(n, r, κ), where

G(hN, hj ± r, 2νµ) = 2
ν+α
2 A±(i+ 1)

(
−2ν+α
hNµ
2α

)
εhNµ

2α
exp

−2πi
[
hNµ
2α

]′
2ν+α+2

(hj±r)2
4

2ν+α

 .

Analogously to the calculations of Kk,j,N,1 we obtain that

χj,r(N,Mh,k)

=δ(gcd(N,µ)2α+1)|(hj+r)(1− i)εhNµ
2α

ε µ
gcd(N,µ)

(
k

−h

)(
−2ν+α

hNµ
2α

)(
Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)√
2α−1 gcd(N,µ)

N
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× exp

(
2πi

(
1

24

(
h′k
(
1− (−h)2

)
+ (−h)

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8

))

× exp

(
2πi

4Nk

(
hj2 − h′r2 + 2rj

))
exp

−2πi
[
hNµ
2α

]′
2ν+α+2

(hj+r)2

4

2ν+α



× exp

−2πi−[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj+r

gcd(N,µ)

)2
µ

gcd(N,µ)


+ δ(gcd(N,µ)2α+1)|(hj−r)(i− 1)εhNµ

2α
ε µ

gcd(N,µ)

(
k

−h

)(
−2ν+α

hNµ
2α

)(
Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)√
2α−1 gcd(N,µ)

N

× exp

(
2πi

(
1

24

(
h′k
(
1− (−h)2

)
+ (−h)

(
−hh

′ + 1

k
− k + 3

)
− 3

)
+

3

8

))

× exp

(
2πi

4Nk

(
hj2 − h′r2 − 2rj

))
exp

−2πi
[
hNµ
2α

]′
2ν+α+2

(hj−r)2

4

2ν+α



× exp

−2πi−[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj−r

gcd(N,µ)

)2
µ

gcd(N,µ)

 .

Using quadratic reciprocity we have(
k

−h

)(
−2ν+α
hNµ
2α

)(
Nh2ν

gcd(N,µ)
µ

gcd(N,µ)

)

=

(
2

h

)ν (µ
h

)(−1
h

)(
2

h

)ν+α(−2ν+α
Nµ
2α

)(
h
µ

gcd(N,µ)

)(
N2ν

gcd(N,µ)
µ

gcd(N,µ)

)

=

(
(−1)

h2−1
8

)ν
(−1)

(µ−1)(h−1)
4 (−1)

h−1
2

+h2−1
8

(ν+α)

(
h

gcd(N,µ)

)(
−2ν+α
Nµ
2α

)(
N2ν

gcd(N,µ)
µ

gcd(N,µ)

)
.

Therefore our Kloosterman sum equals

Kk,j,N,2(n, r, κ)

=(1− i)ε µ
gcd(N,µ)

√
2α−1 gcd(N,µ)

N

(
−2ν+α

Nµ
2α

)(
N2ν

gcd(N,µ)
µ

gcd(N,µ)

)
exp

(
2πi

4

)
δν−α>1

×
∑

h (mod k)
gcd(h,k)=1

(−1)
h2−1

8
ν+

(µ−1)(h−1)
4

+h−1
2

+h2−1
8

(ν+α)εhNµ
2α

(
h

gcd(N,µ)

)
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× exp

(
2πi

24k

((
−24n+ 2 + k2 − 3k

)
h−

(
−24Nκ2 − 24κr + 1− k2

)
h′))

×

δ(gcd(N,µ)2α+1)|(hj+r) exp

(
2πi

24k

(
−h2h′k2 + h2h′ +

12rj

N

))
exp

−2πi

[
hNµ
2α

]′
2ν+α+2

(hj+r)2

4

2ν+α



× exp

2πi

[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj+r

gcd(N,µ)

)2
µ

gcd(N,µ)


−δ(gcd(N,µ)2α+1)|(hj−r) exp

(
2πi

24k

(
−h2h′k2 + h2h′ − 12rj

N

))
exp

−2πi

[
hNµ
2α

]′
2ν+α+2

(hj−r)2
4

2ν+α



× exp

2πi

[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

[h]′ µ
gcd(N,µ)

(
hj−r

gcd(N,µ)

)2
µ

gcd(N,µ)


 .

We observe that

exp

−2πi

[
hNµ
2α

]′
2ν+α+2

(hj±r)2
4

2ν+α

 =exp

(
2πi

2ν+α+2

([
Nµ

2α

]′
2ν+α+2

(
−hj2 ∓ 2jr + [h]′2ν+α+2 r

2))) .
Choose [h]′ µ

gcd(N,µ)
= h′ from now on15. Analogously to the odd k case or the calcula-

tions of Kk,j,N,1 we are able to choose h′ such that hh′ ≡ −1
(
mod2α+2 gcd(N,µ)k

)
.

Choosing [h]′2ν+α+2 = [h]′2α+2k gcd(N,µ) in addition16, we obtain that

Kk,j,N,2(n, r, κ)

=(1 − i)ε µ
gcd(N,µ)

√
2α−1 gcd(N,µ)

N

(
−2ν+α

Nµ
2α

) N2ν

gcd(N,µ)
µ

gcd(N,µ)

 exp

(
2πi

4

)
δν−α>1

×
∑

h (mod k)
gcd(h,k)=1

(−1)
h2−1

8
ν+

(µ−1)(h−1)
4

+h−1
2

+h2−1
8

(ν+α)
εhNµ

2α

(
h

gcd(N,µ)

)

× exp

 2πi

24 · 2α+2k gcd(N,µ)


(−24n + 2 + k

2 − 3k
)
2
α+2

gcd(N,µ) − 24j
2
2
ν+α+2

[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

−24µj
2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ)

h

−

(−24Nκ
2 − 24κr + 1 − k

2
)
2
α+2

gcd(N,µ) − 24r
2
2
ν+α+2

[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

15Note that hh′ ≡ −1 (mod k) implies that hh′ ≡ −1 (mod µ
gcd(N,µ)

), since µ
gcd(N,µ)

| k. Thus h′ is a

possible choice for [h]′ µ
gcd(N,µ)

.
16Note that the equivalence h[h]′2α+2k gcd(N,µ) ≡ −1

(
mod2α+2k gcd(N,µ)

)
implies that we additionally

have h[h]′2α+2k gcd(N,µ) ≡ −1
(
mod 2ν+α+2

)
, since 2ν+α+2 |

(
2α+2k gcd(N,µ)

)
. Thus [h]′2α+2k gcd(N,µ) is

a possible choice for [h]′2ν+α+2 .
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−24µr
2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ)

 [h]
′
2α+2k gcd(N,µ)




×

δ(gcd(N,µ)2α+1
)
|(hj+r)

exp

(
2πi

24k

(
h
2
[h]

′
2α+2k gcd(N,µ)

(1 − k
2
) +

12rj

N

))

× exp

(
2πi

2ν+α+2

(
−2jr

[
Nµ

2α

]′
2ν+α+2

))
exp

 2πi

k gcd(N,µ)

−2
ν+1

jr[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)




−δ(
gcd(N,µ)2α+1

)
|(hj−r)

exp

(
2πi

24k

(
h
2
[h]

′
2α+2k gcd(N,µ)

(1 − k
2
) −

12rj

N

))

× exp

(
2πi

2ν+α+2

(
2jr

[
Nµ

2α

]′
2ν+α+2

))
exp

 2πi

k gcd(N,µ)

2
ν+1

jr[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)



 .

We now need to split into two cases, 3 ∤ k and 3 | k. In the first case we obtain
3 | (k2 − 1). Choosing [h]′2α+2k gcd(N,µ) such that

h[h]′2α+2k gcd(N,µ) ≡ −1
(
mod2α+5k gcd(N,µ)

)
,

analogously to above17, yields18

Kk,j,N,2(n, r, κ)

=(1 − i)ε µ
gcd(N,µ)

√
2α−1 gcd(N,µ)

N

(
−2ν+α

Nµ
2α

) N2ν

gcd(N,µ)
µ

gcd(N,µ)

 exp

(
2πi

4

)
δν−α>1

×
∑

h (mod k)
gcd(h,k)=1

(−1)
h2−1

8
ν+

(µ−1)(h−1)
4

+h−1
2

+h2−1
8

(ν+α)
εhNµ

2α

(
h

gcd(N,µ)

)

×

δ(gcd(N,µ)2α+1
)
|(hj+r)

exp

(
2πi

8k

(
12rj

3N

))

× exp

(
2πi

2ν+α+2

(
−2jr

[
Nµ

2α

]′
2ν+α+2

))
exp

 2πi

k gcd(N,µ)

−2
ν+1

jr[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)




−δ(
gcd(N,µ)2α+1

)
|(hj−r)

exp

(
2πi

8k

(
−

12rj

3N

))

× exp

(
2πi

2ν+α+2

(
2jr

[
Nµ

2α

]′
2ν+α+2

))
exp

 2πi

k gcd(N,µ)

2
ν+1

jr[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)





× exp

 2πi

24 · 2α+2k gcd(N,µ)


(−24n + 1 + 2k

2 − 3k
)
2
α+2

gcd(N,µ) − 24j
2
2
ν+α+2

[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

−24µj
2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ)

h
17We are allowed to do this since gcd(8, h) = 1, this is because we know that h is odd.
18Using that h[h]′2α+5k gcd(N,µ) ≡ −1 (mod 8k) since (8k) | (2α+5k gcd(N,µ)).

94



IV.3. PROOF OF THEOREM IV.1.2

−

(−24Nκ
2 − 24κr + 1 − k

2
)
2
α+2

gcd(N,µ) − 24r
2
2
ν+α+2

[4]
′

µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

−24µr
2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ)

 [h]
′
2α+5k gcd(N,µ)




=:Kk,j,N,2,+(n, r, κ) +Kk,j,N,2,−(n, r, κ),

where

Kk,j,N,2,±(n, r, κ) =ϵe,±(k, j,N, r)
1

22α+6 gcd(N,µ)2

gcd(N,µ)2α+1−1∑
s=0

exp

(
±2πi

rs

gcd(N,µ)2α+1

)
×

∑
h (mod 2α+5k gcd(N,µ))
gcd(h,2α+5k gcd(N,µ))=1

(−1)
h2−1

8
ν+

(µ−1)(h−1)
4

+h−1
2

+h2−1
8

(ν+α)εhNµ
2α

(
h

gcd(N,µ)

)

× exp

(
2πi

2α+5k gcd(N,µ)

(
(µ5 + 16jks)h− ν5[h]

′
2α+5k gcd(N,µ)

))
,

with

ϵe,±(k, j,N, r) :=± (1− i)ε µ
gcd(N,µ)

√
2α−1 gcd(N,µ)

N

(
−2ν+α

Nµ
2α

)(
N2ν

gcd(N,µ)
µ

gcd(N,µ)

)
δν−α>1

× exp

(
2πi

4

)
exp

(
2πi

8k

(
±12rj

3N

))
exp

(
2πi

2ν+α+2

(
∓2jr

[
Nµ

2α

]′
2ν+α+2

))

× exp

 2πi

k gcd(N,µ)

∓2ν+1jr[4]′ µ
gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

 ,

µ5 :=

(
−8n+

1 + 2k2

3
− k

)
2α+2 gcd(N,µ)− 8j22ν+α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 8µj2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ),

ν5 :=

(
−8Nκ2 − 8κr +

1− k2

3

)
2α+2 gcd(N,µ)− 8r22ν+α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 8µr2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ).

Note that µ5, ν5 ∈ Z, since 3 | (k2 − 1) is equivalent to 3 | (2k2 + 1).

Analogously to above we note that (−1)
h2−1

8
ν+

(µ−1)(h−1)
4

+h−1
2

+h2−1
8

(ν+α) only depends
on h modulo 16, 16 | (2α+5k gcd(N,µ)), and εhNµ

2α
only depends on h modulo 4, means

we can also look at it modulo 16, since 4 | 16. Thus we obtain

Kk,j,N,2,±(n, r, κ) =ϵe,±(k, j,N, r)
1

22α+6 gcd(N,µ)2
1

16

gcd(N,µ)2α+1−1∑
s=0

exp

(
±2πi

rs

gcd(N,µ)2α+1

)
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×
∑

j (mod 16)

(−1)
j2−1

8
ν+

(µ−1)(j−1)
4

+ j−1
2

+ j2−1
8

(ν+α)ε jNµ
2α

∑
ℓ (mod 16)

e
−2πijℓ

16

×
∑

h (mod 2α+5k gcd(N,µ))
gcd(h,2α+5k gcd(N,µ))=1

(
h

gcd(N,µ)

)
(IV.3.10)

× exp

(
2πi

2α+5k gcd(N,µ)

((
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16

)
h− ν5[h]

′
2α+5k gcd(N,µ)

))
.

In the second case, 3 | k, we have that 3 ∤ h and thus gcd(24, h) = 1. Choos-
ing [h]′2α+2k gcd(N,µ) such that h[h]′2α+2k gcd(N,µ) ≡ −1

(
mod24 · 2α+2k gcd(N,µ)

)
, analo-

gously to above, yields19

Kk,j,N,2(n, r, κ) =: K
∗
k,j,N,2,+(n, r, κ) +K∗

k,j,N,2,−(n, r, κ),

where analogously to the first case

Kk,j,N,2,±(n, r, κ)

=ϵe,±(k, j,N, r)
1

3 · 22α+6 gcd(N,µ)2
1

16

gcd(N,µ)2α+1−1∑
s=0

exp

(
±2πi

rs

gcd(N,µ)2α+1

)
×

∑
j (mod 16)

(−1)
j2−1

8
ν+

(µ−1)(j−1)
4

+ j−1
2

+ j2−1
8

(ν+α)ε jNµ
2α

∑
ℓ (mod 16)

e
−2πijℓ

16

×
∑

h (mod 3·2α+5k gcd(N,µ))
gcd(h,3·2α+5k gcd(N,µ))=1

(
h

gcd(N,µ)

)
(IV.3.11)

× exp

(
2πi

3 · 2α+5k gcd(N,µ)

((
µ6 + 48jks+

3 · 2α+5ℓk gcd(N,µ)

16

)
h− ν6[h]

′
3·2α+5k gcd(N,µ)

))
,

with

µ6 :=
(
−24n+ 1 + 2k2 − 3k

)
2α+2 gcd(N,µ)− 24j22ν+α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 24µj2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ),

ν6 :=
(
−24Nκ2 − 24κr + 1− k2

)
2α+2 gcd(N,µ)− 24r22ν+α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 24µr2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ).

We now note that we can bound (IV.3.10) by

19Using that h[h]′24·2α+2k gcd(N,µ) ≡ −1 (mod 24k) since (24k) | (24 · 2α+2k gcd(N,µ)).
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∣∣Kk,j,N,2,±(n, r, κ)
∣∣

≤
∣∣∣∣ϵe,±(k, j,N, r)

1

22α+6 gcd(N,µ)2
1

16

∣∣∣∣ gcd(N,µ)2
α+1−1∑

s=0

∑
j (mod 16)

∑
ℓ (mod 16)

×

∣∣∣∣∣∣∣∣∣∣
∑

h (mod 2α+5k gcd(N,µ))
gcd(h,2α+5k gcd(N,µ))=1

(
h

gcd(N,µ)

)

× exp

(
2πi

2α+5k gcd(N,µ)

((
µ5 + 16jsk +

2α+5ℓk gcd(N,µ)

16

)
h− ν5[h]

′
2α+5k gcd(N,µ)

)) ∣∣∣∣∣∣∣∣∣∣
.

Moreover we obtain that (IV.3.11) is bounded by

|Kk,j,N,2,±(n, r, κ)|

≤
∣∣∣∣ϵe,±(k, j,N, r) 1

3 · 22α+6 gcd(N,µ)2
1

16

∣∣∣∣ gcd(N,µ)2
α+1−1∑

s=0

∑
j (mod 16)

∑
ℓ (mod 16)

×

∣∣∣∣∣∣∣∣∣∣
∑

h (mod 3·2α+5k gcd(N,µ))
gcd(h,3·2α+5k gcd(N,µ))=1

(
h

gcd(N,µ)

)

× exp

(
2πi

3 · 2α+5k gcd(N,µ)

((
µ6 + 48jsk +

3 · 2α+5ℓk gcd(N,µ)

16

)
h− ν6[h]

′
3·2α+5k gcd(N,µ)

)) ∣∣∣∣∣∣∣∣∣ .
Both last sums over h are of the required shape, so we can bound them using

Malishev’s result (see Lemma IV.1.3) and obtain that they are

O

(2
α+5

k gcd(N,µ))
1
2
+ε

min

gcd

(
µ5 + 16jks +

2α+5ℓk gcd(N,µ)

16
, 2

α+5
k gcd(N,µ)

) 1
2
, gcd

(
ν5, 2

α+5
k gcd(N,µ)

) 1
2

 ,
respectively

O
(
(3 · 2α+5k gcd(N,µ))

1
2
+ε

×min

gcd

(
µ6 + 48jks+

3 · 2α+5ℓk gcd(N,µ)

16
, 3 · 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν6, 3 · 2α+5k gcd(N,µ)

) 1
2

 ,

for ε > 0.
We see that 2α+5 gcd(N,µ) ≤ 3 · 2α+5 gcd(N,µ) ≤ 3 · 25N2 = ON (1) and, by Lemma

V.2.5,

min

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν5, 2

α+5k gcd(N,µ)
) 1

2

 = ON (n) ,

97



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

and

min

gcd(µ6 + 48jks+
3 · 2α+5ℓk gcd(N,µ)

16
, 3 · 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν6, 3 · 2α+5k gcd(N,µ)

) 1
2

= ON (n) .

This yields

Kk,j,N,2,±(n, r, κ) =ON

∣∣∣∣ϵe,±(k, j,N, r) 1

22α+6 gcd(N,µ)2
1

16

∣∣∣∣ gcd(N,µ)2
α+1−1∑

s=0

∑
j (mod 16)

∑
ℓ (mod 16)

k
1
2
+εn


=ON

(∣∣∣∣ϵe,±(k, j,N, r) 1

22α+6 gcd(N,µ)2
1

16

∣∣∣∣ 162 gcd(N,µ)2α+1k
1
2
+εn

)
=ON

(
nk

1
2
+ε
)
,

and analogously K∗
k,j,N,2,±(n, r, κ) = ON (nk

1
2
+ε), since ϵe,±(k, j,N, r) = ON (1). We thus

showed that

Kk,j,N,2(n, r, κ) =ON

(
nk

1
2
+ε
)
,

which finally gives

Kk,j,N (n, r, κ) =ON

(
nk

1
2
+ε
)

and finishes the proof for k even and therefore the proof of Theorem IV.1.2.

IV.4 Applying the Circle Method

In this section we use the Circle Method and ideas of Rademacher and Zuckerman
[Rad38,Rad37,RZ38] to finally prove Theorem IV.1.1. As we already mentioned in the
introduction of this chapter, the Kloosterman sum and transformation behavior of our
family of functions is a little more complicated here than it is in [Rad38], for example.
Even though we now have a nice bound for our Kloosterman sum this will cause extra
work in bounding the error parts.

Let 0 ≤ h < k ≤ J with gcd(h, k) = 1 and a parameter J ∈ N that later tends to
infinity. Furthermore let h1

k1
< h

k <
h2
k2

be consecutive fractions in the Farey sequence of

order J (a series of fractions
pj
qj

with pj ≤ qj ≤ J , gcd(pj , qj) = 1 and
pj
qj
< pℓ

qℓ
for all

j < ℓ). We denote the Farey arc ξh,k to be the image of (h1+hk1+k
, h2+hk2+k

) under the map (see
e.g., [Rad37])

ϕ 7→ e−2πJ−2+2πiϕ

and ξ0,1 to be the image of (− 1
J+1 ,

1
J+1) (see e.g., [And98, equation (5.2.9)]).
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Note that for the fraction h
k and its neighbors we have (see [Rad38, page 503])

hk1 − h1k = 1 and h2k − hk2 = 1,

which is equivalent to

hk1 ≡ 1 (mod k) and hk2 ≡ −1 (mod k) ,

or, using that hh′ ≡ −1 (mod k),

k1 ≡ −h′ (mod k) and k2 ≡ h′ (mod k) . (IV.4.1)

Since h1+h
k1+k

and h2+h
k2+k

do not belong to the Farey sequence of order J we have k1 + k > J
and k2 + k > J , which, together with k1, k2 ≤ J , enclose k1 and k2 to the intervals

J − k < k1 ≤ J, J − k < k2 ≤ J. (IV.4.2)

The formulae (IV.4.1) and (IV.4.2) thus determine k1 and k2 uniquely as functions of h
and k.

Using Cauchy’s formula and (IV.1.4) we write (see e.g., [BFOR17, equation (14.4)])

aj,N (n) =
1

2πi

∫
CJ

q
1
24

− j2

4NAj,N (τ)
qn+1

dq, (IV.4.3)

where CJ is an arbitrary path inside the unit disk that loops around zero in the counter-
clockwise direction exactly once. Here we choose CJ to be the circle of radius e−2πJ−2

< 1
and note that we can split this circle into disjoint Farey arcs as done in Rademacher’s
original works [Rad38,Rad37] by ⋃

0≤h<k≤J
gcd(h,k)=1

ξh,k = CJ ,

which will allow us to focus on the most important cusps. Using this we are able to
rewrite (IV.4.3) as

aj,N (n) =
∑

0≤h<k≤J
gcd(h,k)=1

1

2πi

∫
ξh,k

Aj,N (τ)
qgj,N (n)+1

dq,

where we denoted gj,N (n) := n+ j2

4N−
1
24 for simplicity. Defining (see e.g., [Rad38, equation

(3.5)])

ϑ′h,k :=
1

k(k1 + k)
, ϑ′′h,k :=

1

k(k2 + k)
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and substituting τ = h
k + i(J−2 − iϕ) (arc length centered at e2πi

h
k ) thus leads to

aj,N (n) =
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)(J−2−iϕ)Aj,N

(
h

k
+ i
(
J−2 − iϕ

))
dϕ. (IV.4.4)

Let ω := J−2 − iϕ. To better control the integrand’s behavior near rational numbers
we use the modular transformation Mh,k from Theorem IV.1.1. In addition equation
(IV.2.14) gives us

Aj,N
(
h

k
+ iω

)
=

N−1∑
r=1

χj,r(N,Mh,k) η

(
h′

k
+

i

k2ω

)−1

I
r,N,h

′
k

(
h′

k
+

i

k2ω

)
, (IV.4.5)

where we used that

Mh,k

(
h

k
+ iω

)
=
h′
(
h
k + iω

)
− hh′+1

k

k
(
h
k + iω

)
− h

=
ih′ω − 1

k

ikω
=
h′

k
+

i

k2ω
.

Taking a closer look at (IV.4.5) we obtain

Aj,N

(
h

k
+ iω

)
=

N−1∑
r=1

χj,r(N,Mh,k)

((
η

(
h′

k
+

i

k2ω

)−1

− e
−πi

12

(
h′
k

+ i
k2ω

))
I
r,N,h

′
k

(
h′

k
+

i

k2ω

)

+ζ−h
′

24k

(
Ie
r,N,h

′
k
, 1
24

(
h′

k
+

i

k2ω

)
+ I∗

r,N,h
′

k
, 1
24

(
h′

k
+

i

k2ω

)))
.

Note that in this calculation we set d = 1
24 in the splitting of our Mordell-type integral

such that our assumption from above simplifies to
√

N
6 /∈ Z.

Plugging this into (IV.4.4) gives us

aj,N (n) = aI,j,N (n) + aIe,j,N (n) + aI∗,j,N (n), (IV.4.6)

with

aI,j,N (n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)

×
(
η

(
h′

k
+

i

k2ω

)−1

− e
−πi

12

(
h′
k

+ i
k2ω

))
I
r,N,h

′
k

(
h′

k
+

i

k2ω

)
dϕ,

aIe,j,N (n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k Ie
r,N,h

′
k
, 1
24

(
h′

k
+

i

k2ω

)
dϕ,

aI∗,j,N (n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k I∗
r,N,h

′
k
, 1
24

(
h′

k
+

i

k2ω

)
dϕ.
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IV.4.1 Principal part

We now look at each of the terms in aj,N (n) seperately. We start with the part
that contains the principal part, namely aI∗,j,N (n). Analogously to [Rad38] we split our
integral as ∫ ϑ′′h,k

−ϑ′h,k
=

∫ 1
k(J+k)

− 1
k(J+k)

+

∫ − 1
k(J+k)

−ϑ′h,k
+

∫ ϑ′′h,k

1
k(J+k)

,

since we have

−ϑ′h,k = −
1

k(k1 + k)
≤ − 1

k(J + k)
≤ 1

k(J + k)
≤ 1

k(k2 + k)
= ϑ′′h,k.

Defining

aI∗,j,N,0(n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ 1
k(J+k)

− 1
k(J+k)

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k I∗
r,N,h

′
k
, 1
24

(
h′

k
+

i

k2ω

)
dϕ,

aI∗,j,N,1(n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ − 1
k(J+k)

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k I∗
r,N,h

′
k
, 1
24

(
h′

k
+

i

k2ω

)
dϕ,

aI∗,j,N,2(n) :=
∑

0≤h<k≤J
gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

1
k(J+k)

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′
24k I∗

r,N,h
′

k
, 1
24

(
h′

k
+

i

k2ω

)
dϕ,

we thus obtain

aI∗,j,N (n) = aI∗,j,N,0(n) + aI∗,j,N,1(n) + aI∗,j,N,2(n). (IV.4.7)

We go on by estimating aI∗,j,N,0(n). Using (IV.2.16) we see that

aI∗,j,N,0(n) =
i

π

J∑
k=1

∫ 1
k(J+k)

− 1
k(J+k)

e2πgj,N (n)ωe
2π

24k2ω

N−1∑
r=1

∑
κ∈Z

P.V.

∫ √
1

24N

−
√

1
24N

e−2πN 1
k2ω

x2

x−
(
κ+ r

2N

) dx
×

∑
0≤h<k

gcd(h,k)=1

e−
2πih
k
gj,N (n)χj,r(N,Mh,k)ζ

−h′
24k e

2πiN(κ+ r
2N )

2 h′
k dϕ.

Plugging in the definition of Kk,j,N (n, r, κ) from (IV.1.6), which is well-defined and a
Kloosterman sum of modulus k, and taking the finite sum over r out of the integral gives
us

aI∗,j,N,0(n) =
i

π

J∑
k=1

N−1∑
r=1

∫ 1
k(J+k)

− 1
k(J+k)

e
2π
(
gj,N (n)ω+ 1

24k2ω

)∑
κ∈Z

Kk,j,N (n, r, κ) P.V.

∫ √
1

24N

−
√

1
24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ.

101



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

Note that, for arbitrary ℓ ∈ Z, we have

ζ

(
24N((κ+ℓk)+ r

2N )
2−1

)
h′

24k =ζ

(
24N(κ+ r

2N )
2−1

)
h′

24k

and therefore Kk,j,N (n, r, κ+ ℓk) = Kk,j,N (n, r, κ). Shifting κ 7→ κ+ ℓk for ℓ ∈ Z we thus
obtain

aI∗,j,N,0(n) =
i

π

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

×
∫ 1

k(J+k)

− 1
k(J+k)

e2π(gj,N (n)ω+ 1
24k2ω

) lim
L→∞

L∑
ℓ=−L

P.V.

∫ √ 1
24N

−
√

1
24N

e−2πN 1
k2ω

x2

x−
(
κ+ ℓk + r

2N

) dx dϕ.
Note that the convergence is uniform in our finite range so we are allowed to switch the
order of the integral and the sum over ℓ. Using the equality (see [BN19, equation (3.10)])

π cot(πx) = lim
L→∞

L∑
ℓ=−L

1

x+ ℓ
, (IV.4.8)

which holds for all x ∈ C\Z, we thus obtain

aI∗,j,N,0(n) =− i
J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k

∫ 1
k(J+k)

− 1
k(J+k)

e
2π
(
gj,N (n)ω+ 1

24k2ω

)

× P.V.

∫ √
1

24N

−
√

1
24N

e−2πN 1
k2ω

x2 cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
dx dϕ.

Here the possible poles in Z have already been excluded by the principal value integral.
Note that we only have a simple pole in x = κ+ ℓk + r

2N if and only if κ = ℓ = 0 and

r <
√

N
6 . Since one can show that there exists a constant Cε,k (Cε,k → 0 as ε→ 0 and k

fix) such that∣∣∣∣∣∣∣∣∣∣∣∣

 lim
ε→0

∫
|x− r

2N |≥ε
|x|≤

√
1

24N

e
−2πN 1

k2ω
x2

cot
(
π
(
−
x

k
+

r

2Nk

))
dx

−
∫

|x− r
2N |≥ε

|x|≤
√

1
24N

e
−2πN 1

k2ω
x2

cot
(
π
(
−
x

k
+

r

2Nk

))
dx

∣∣∣∣∣∣∣∣∣∣∣∣
≤ Cε,k

uniformly in ϕ, using the Taylor expansion of the exponential together with (IV.4.8), we
see that we only have integrals over compact subsets with continuous integrands and can
additionally switch the integrals over x and ϕ to get
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aI∗,j,N,0(n) =− i
J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
×
∫ 1

k(J+k)

− 1
k(J+k)

e
2π
(
gj,N (n)ω+ 1

24k2ω
−Nx2

k2ω

)
dϕ dx.

To evaluate the integral over ϕ we substitute ω = J−2 − iϕ to obtain∫ 1
k(J+k)

− 1
k(J+k)

e
2π
(
gj,N (n)ω+ 1

24k2ω
−Nx2

k2ω

)
dϕ = −i

∫ J−2+ i
k(J+k)

J−2− i
k(J+k)

e
2π
(
gj,N (n)ω+ 1

k2
( 1
24

−Nx2) 1
ω

)
dω.

Then we view it as an integral over the right vertical of a rectangle in the complex ω-plane
and denote the integrals over the other sides, γ1, γ2, and γ3, by R1(x), R2(x), and R3(x),
respectively, where we dropped the dependence on the other parameters for simplicity
(see Figure IV.1).

−J−2 − i 1
k(J+k) γ3

J−2 − i 1
k(J+k)

J−2 + i 1
k(J+k)

γ1−J−2 + i 1
k(J+k)

γ2

Figure IV.1: Rectangle in the complex ω-plane.

Let Rk,j,J,N (n, x) denote the integral over the whole rectangle and let R denote the
rectangle itself with counterclockwise orientation such that

aI∗,j,N,0(n) =− i
J∑

k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k
P.V.

∫ √ 1
24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
(IV.4.9)

× (−i) (Rk,j,J,N (n, x)−R1(x)−R2(x)−R3(x)) dx.

We now have

1

2πi
Rk,j,J,N (n, x) =

1

2πi

∫
R
e
2π
(
gj,N (n)ω+ 1

k2
( 1
24

−Nx2) 1
ω

)
dω

=
1

2πi

∫
R

∑
µ≥0

(2πgj,N (n)ω)
µ

µ!

∑
ν≥0

(
2π
k2ω

(
1
24 −Nx

2
))ν

ν!
dω,
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using the Taylor expansion of the exponential function. According to the residue theorem
this integral equals zero unless there is a simple pole in ω = 0, which requires ν = µ+ 1.
Thus we obtain

1

2πi
Rk,j,J,N (n, x) =

√
1
24 −Nx2

k
√
gj,N (n)

∑
µ≥0

(
2π
√
gj,N (n)

k

√
1
24 −Nx2

)2µ+1

µ!(µ+ 1)!
.

Using the representation (see e.g., [NIST, equation 10.25.2])

Iα(z) =
∑
m≥0

1

m!Γ(m+ α+ 1)

(z
2

)2m+α

of the I-Bessel function of first kind and order α we furthermore see that

1

2πi
Rk,j,J,N (n, x) =

√
1
24 −Nx2

k
√
gj,N (n)

I1

(
4π
√
gj,N (n)

k

√
1

24
−Nx2

)
.

Plugging this into (IV.4.9) we obtain

aI∗,j,N,0(n)

=−
J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))

×
2πi
√

1
24

−Nx2

k
√
gj,N (n)

I1

(
4π
√
gj,N (n)

k

√
1

24
−Nx2

)
dx

+

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
(R1(x) +R2(x) +R3(x)) dx

=: M + E.

We are now left with estimating E. We can rewrite it as

E1 + E2 + E3

:=

J∑
k=1

⌈√
N
6
−1

⌉∑
r=1

Kk,j,N (n, r, 0)

k
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
(R1(x) +R2(x) +R3(x)) dx

+

J∑
k=1

N−1∑
r=

⌈√
N
6

⌉
Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
(R1(x) +R2(x) +R3(x)) dx

+

J∑
k=1

N−1∑
r=1

k−1∑
κ=1

Kk,j,N (n, r, κ)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
(R1(x) +R2(x) +R3(x)) dx,
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since the integral over x only has a simple pole in x = r
2N for κ = 0 and r <

√
N
6 .

To bound the remaining sides of the rectangle we start with R1(x) and R3(x). On
this paths of integration we have ω = u± i 1

k(J+k) , where −J
−2 ≤ u ≤ J−2, and

Re

(
1

ω

)
=

u

u2 + 1
k2(J+k)2

=
uk2(J + k)2

u2k2(J + k)2 + 1
< J−2k2(J + k)2 ≤ 4k2.

Thus we see that the integrand is less than e2πgj,N (n)J−2+8π( 1
24

−Nx2) and obtain that

|R1(x)| and |R3(x)| < 2J−2e2πgj,N (n)J−2+8π( 1
24

−Nx2). (IV.4.10)

For R2(x) the path of integration is given by ω = −J−2 − iv, where we have
− 1
k(J+k) ≤ v ≤ 1

k(J+k) . Note that gj,N (n),
1
24 − Nx

2 ≥ 0. Since the real part of ω is

always −J−2 < 0 and Re( 1ω ) =
−J−2

J−4+v2
< 0 we conclude that the integrand is O(1) and

therefore

|R2(x)| <
2

k(J + k)
< 2k−1J−1. (IV.4.11)

From (IV.4.10) and (IV.4.11) we conclude that

R1(x) +R2(x) +R3(x) = O
(
k−1J−1e2πgj,N (n)J−2+8π( 1

24
−Nx2)

)
. (IV.4.12)

We start by evaluating E3, which, using the calculations before together with (IV.1.7),
equals

ON

n
J
e2πgj,N (n)J−2

J∑
k=1

N−1∑
r=1

k−1∑
κ=1

k−
3
2
+ε

∫ √
1

24N

−
√

1
24N

∣∣∣cot(π (−x
k
+
κ

k
+

r

2Nk

))∣∣∣ dx
 .

We note that∣∣∣cot(π (−x
k
+
κ

k
+

r

2Nk

))∣∣∣ = ∣∣cos (π (−x
k + κ

k + r
2Nk

))∣∣∣∣sin (π (−x
k + κ

k + r
2Nk

))∣∣ ≤ 1∣∣sin (π (−x
k + κ

k + r
2Nk

))∣∣ .
Similar to [Bri09, page 11] we furthermore have∣∣∣sin(π (−x

k
+
κ

k
+

r

2Nk

))∣∣∣ = ∣∣∣sin(π ∣∣∣−x
k
+
κ

k
+

r

2Nk

∣∣∣)∣∣∣
≫min

({∣∣∣−x
k
+
κ

k
+

r

2Nk

∣∣∣} , 1− {∣∣∣−x
k
+
κ

k
+

r

2Nk

∣∣∣})
=

{{∣∣−x
k + κ

k + r
2Nk

∣∣} if 0 ≤
{∣∣−x

k + κ
k + r

2Nk

∣∣} ≤ 1
2 ,

1−
{∣∣−x

k + κ
k + r

2Nk

∣∣} else,
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where {x} := x− ⌊x⌋ is the fractional part of a real number x.
Taking a closer look at −x

k + κ
k + r

2Nk we observe that

−x
k
+
κ

k
+

r

2Nk
≤1 + 1

k
√
24N

− 1

2k
− 1

2Nk
= 1−

√
6N +

√
6
N − 1

k
√
24N

< 1

and

−x
k
+
κ

k
+

r

2Nk
≥ 1

k

(
1

2N
+ κ− 1√

24N

)
≥ 47

48k
,

since we have κ ≥ 1. In particular this gives us that

min
({∣∣∣−x

k
+
κ

k
+

r

2Nk

∣∣∣} , 1− {∣∣∣−x
k
+
κ

k
+

r

2Nk

∣∣∣})
= min

(
1

k

(
−x+ κ+

r

2N

)
, 1− 1

k

(
−x+ κ+

r

2N

))
=

{
1
k

(
−x+ κ+ r

2N

)
if 0 ≤ 1

k

(
−x+ κ+ r

2N

)
≤ 1

2 ,

1− 1
k

(
−x+ κ+ r

2N

)
if 1

2 <
1
k

(
−x+ κ+ r

2N

)
< 1,

=

{
1
k

(
−x+ κ+ r

2N

)
if x ≥ r

2N + κ− k
2 ,

1− 1
k

(
−x+ κ+ r

2N

)
if x < r

2N + κ− k
2 .

Using this our O-term contributes to

ON

n
J
e
2πgj,N (n)J−2 J∑

k=1

k
− 3

2
+ε

N−1∑
r=1

k−1∑
κ=1

∫ √ 1
24N

−
√

1
24N

1

min
(

1
k

(
−x + κ + r

2N

)
, 1 − 1

k

(
−x + κ + r

2N

)) dx


=ON


n

J
e
2πgj,N (n)J−2 J∑

k=1

k
− 3

2
+ε

N−1∑
r=1

k−1∑
κ=1


∫

|x|≤
√

1
24N

x≥ r
2N

+κ− k
2

k

−x + κ + r
2N

dx +

∫
|x|≤

√
1

24N

x< r
2N

+κ− k
2

1

1 − 1
k

(
−x + κ + r

2N

) dx




=ON

n
J
e
2πgj,N (n)J−2 J∑

k=1

k
− 1

2
+ε

N−1∑
r=1

k−1∑
κ=1

δ
max

(
−
√

1
24N

, r
2N

+κ− k
2

)
<
√

1
24N

∫ √ 1
24N

max

(
−
√

1
24N

, r
2N

+κ− k
2

) 1

−x + κ + r
2N

dx

+δ
min

(√
1

24N
, r
2N

+κ− k
2

)
>−

√
1

24N

∫ min

(√
1

24N
, r
2N

+κ− k
2

)
−
√

1
24N

1

k + x− κ− r
2N

dx




=ON

n
J
e
2πgj,N (n)J−2 J∑

k=1

k
− 1

2
+ε

N−1∑
r=1

k−1∑
κ=1

δ
max

(
−
√

1
24N

, r
2N

+κ− k
2

)
<
√

1
24N

∫ √ 1
24N

max

(
−
√

1
24N

, r
2N

+κ− k
2

) 1

−x + κ + r
2N

dx

+

k−1∑
κ′=1

δ
min

(√
1

24N
, r
2N

+ k
2
−κ′

)
>−

√
1

24N

∫ min

(√
1

24N
, r
2N

+ k
2
−κ′

)
−
√

1
24N

1

κ′ + x− r
2N

dx


 , (IV.4.13)

by substituting κ′ = k − κ.
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We note that in the first integral we have r
2N − x > −

√
1
48 =: C1, while in the second

integral we have x− r
2N > −25

48 =: C2. Thus we obtain that (IV.4.13) equals

ON

(
n

J
e2πgj,N (n)J−2

J∑
k=1

k−
1
2
+ε

N−1∑
r=1

×

k−1∑
κ=1

1

κ+ C1
δ
max

(
−
√

1
24N

, r
2N

+κ− k
2

)
<
√

1
24N

∫ √
1

24N

max
(
−
√

1
24N

, r
2N

+κ− k
2

) dx

+
k−1∑
κ′=1

1

κ′ + C2
δ
min

(√
1

24N
, r
2N

+ k
2
−κ′

)
>−
√

1
24N

∫ min
(√

1
24N

, r
2N

+ k
2
−κ′

)
−
√

1
24N

dx

 .

Using that (combining [NIST, equations 5.7.6 and 5.11.2])

k−1∑
κ=1

1

κ+ C
= O (log(k)) ,

as k →∞ and for a C > −1, this yields20

E3 =ON

(
n

J
e2πgj,N (n)J−2

J∑
k=1

k−
1
2
+ε

N−1∑
r=1

N− 1
2 log(k)

)
=ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε log(J)

)
, (IV.4.14)

which tends to 0 as J →∞.

We go on by evaluating E2. Using the fact that cot(z) = O
(
1
z

)
as z → 0 we see that

cot
(
π
(
−x
k
+

r

2Nk

))
= O

(
k

π
(
−x+ r

2N

)) = ON (k).

Together with (IV.4.12) and (IV.1.7) this gives us that

E2 = ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε
)
. (IV.4.15)

20We used that if we had a function f(x) on [1,∞) with f(x) = O(log(x)) as x→ ∞ we know that we

have f(x) ≤ C1 log(x+ 1) for all x ≥ x0 and that f is bounded by f(x)
log(x+1)

≤ C2 on [1, x0). In total this

would give us f(x)
log(x+1)

≤ C := C1 + C2 everywhere.
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Lastly we evaluate the part with poles, namely E1. Extracting the pole in r
2N yields

E1 =

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−
x

k
+

r

2Nk

))(
R1(x)−R1

( r

2N

))
dx

+

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−
x

k
+

r

2Nk

))(
R2(x)−R2

( r

2N

))
dx

+
J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−
x

k
+

r

2Nk

))(
R3(x)−R3

( r

2N

))
dx

+
J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

(
R1

( r

2N

)
+R2

( r

2N

)
+R3

( r

2N

))
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−
x

k
+

r

2Nk

))
dx.

We first concentrate on the parts

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))(
Rm(x)−Rm

( r

2N

))
dx,

with m ∈ {1, 2, 3}. Defining fm(x) := Rm(x)−Rm( r
2N ) and using the Taylor expansion

we obtain that

fm(x) = fm

( r

2N

)
+ f ′m

( r

2N

)(
x− r

2N

)
+ · · ·+

f
(ℓ)
m

(
r
2N

)
ℓ!

(
x− r

2N

)ℓ
+ R̃ℓ(x),

where R̃ℓ(x) is the remainder term defined as

R̃ℓ(x) :=
f
(ℓ+1)
m (ξx)

(ℓ+ 1)!

(
x− r

2N

)ℓ+1
,

for some real ξx betwen r
2N and x. Choosing ℓ = 0 we obtain

fm(x) = fm

( r

2N

)
+ f ′m (ξx)

(
x− r

2N

)
= f ′m (ξx)

(
x− r

2N

)
.

Next we focus on m ∈ {1, 3} and thus have

J∑
k=1

⌈√
N
6 −1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

∫ √ 1
24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))(
Rm(x)−Rm

( r

2N

))
dx
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=

J∑
k=1

⌈√
N
6 −1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

∫ √ 1
24N

−
√

1
24N

(
x− r

2N

)
cot
(
π
(
−x
k
+

r

2Nk

))
f ′m (ξx) dx. (IV.4.16)

Now we want to bound |(x − r
2N ) cot(π(−x

k + r
2Nk ))| and |f

′
m(ξx)| seperately. For the

first one we use the Taylor series expansion around r
2N and see that

(
x− r

2N

)
cot
(
π
(
−x
k
+

r

2Nk

))
= −k

π
+

1

3

π

k

( r

2N
− x
)2

+O

((
r
2N − x

)4
k3

)
= ON (k)

as k →∞. For the second one we see that∣∣f ′m (ξx)
∣∣ = ∣∣∣∣(Rm(x)−Rm ( r

2N

))′ ∣∣∣
x=ξx

∣∣∣∣ = ∣∣R′
m (ξx)

∣∣ ,
since Rm

(
r
2N

)
is independent of x. We note that

Rm(x) =

∫
γm

e
2π
(
gj,N (n)ω+ 1

k2
( 1
24

−Nx2) 1
ω

)
dω =

∫
γm

e2πgj,N (n)ωe
π

12k2ω e−
2πNx2

k2ω dω,

where we have an integral over a compact set and continuously differentiable integrand
and thus are allowed to switch the integral with a derivative. This yields∣∣R′

m (ξx)
∣∣ = ∣∣∣∣∫

γm

e2πgj,N (n)ωe
π

12k2ω

(
−4πNξx

k2ω

)
e−

2πNξ2x
k2ω dω

∣∣∣∣ .
Remember that we have ω = u ± i 1

k(J+k) with −J−2 ≤ u ≤ J−2 and Re( 1ω ) ≤ 4k2.

Additionally we see that

∣∣∣∣ 1ω
∣∣∣∣ =
u2 +

(
∓ 1
k(J+k)

)2
(
u2 + 1

k2(J+k)2

)2


1
2

=

(
1

u2 + 1
k2(J+k)2

) 1
2

= k(J + k)

(
1

k2(J + k)2u2 + 1

) 1
2

< k(J + k)

and therefore | 1
k2ω
| < J+k

k . Thus our integrand in this cases is less than

4πN |ξx|(J + k)

k
e2πgj,N (n)J−2

e
π
3 e−8πNξ2x ,

which finally yields that

|R′
1(ξx)| and |R′

3(ξx)| <8πN |ξx|
J + k

J2k
e2πgj,N (n)J−2

e
π
3 e−8πNξ2x

≤16πN |ξx|
Jk

e2πgj,N (n)J−2
e
π
3 e−8πNξ2x .
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This gives us that (IV.4.16) equals

O

 J∑
k=1

⌈√
N
6 −1

⌉∑
r=1

nk
1
2+ε

k

∫ √ 1
24N

−
√

1
24N

k
16πN |ξx|

Jk
e2πgj,N (n)J−2

dx

 = ON

(
ne2πgj,N (n)J−2

J− 1
2+ε
)
.

For m = 2 we define δ := min(kJ− 3
4 , |
√

1
24N −

r
2N |) and split our integral over x as

follows

J∑
k=1

⌈√
N
6
−1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))(
R2(x)−R2

( r

2N

))
dx

=

J∑
k=1

⌈√
N
6
−1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

×

((∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

+

∫ r
2N

+δ

r
2N

−δ

)
cot
(
π
(
−x
k
+

r

2Nk

))(
R2(x)−R2

( r

2N

))
dx

)
.

Using (IV.1.7) we see that

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

 cot
(
π
(
−
x

k
+

r

2Nk

))(
R2(x)−R2

( r

2N

))
dx



=ON


J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

k
1
2
+εn

k

∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

∣∣∣cot(π (−x
k
+

r

2Nk

))∣∣∣ ∣∣∣R2(x)−R2

( r

2N

)∣∣∣ dx

 .

Since we are away from x = r
2N we can bound

∣∣∣cot(π (−x
k
+

r

2Nk

))∣∣∣ = O

(
k

π
(
−x+ r

2N

)) = O

(
k

δ

)
and ∣∣∣R2(x)−R2

( r

2N

)∣∣∣ = O (|R2(x)|) = O
(
k−1J−1

)
,

using (IV.4.11). Thus we can simplify our O-term to

ON

 J∑
k=1

⌈√
N
6
−1

⌉∑
r=1

k
1
2
+εn

k

k

δ
k−1J−1

((∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

)
dx

) = ON

(
nJ−1

J∑
k=1

k−
1
2
+εδ−1

)
.
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For δ = kJ− 3
4 this equals

ON

(
nJ− 1

4

J∑
k=1

k−
3
2
+ε

)
= ON

(
nJ− 1

4

)
,

while for δ = |
√

1
24N −

r
2N | it equals

ON

(
nJ−1

J∑
k=1

k−
1
2
+ε

)
= ON

(
nJ− 1

2
+ε
)
.

For the last integral, the one close to r
2N , we use the Taylor expansion as seen in the

cases m ∈ {1, 3} and have

J∑
k=1

⌈√
N
6 −1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

∫ r
2N +δ

r
2N −δ

cot
(
π
(
−x
k
+

r

2Nk

))(
R2(x)−R2

( r

2N

))
dx

=

J∑
k=1

⌈√
N
6 −1

⌉∑
r=1

Kk,j,N (n, r, 0)

k

∫ r
2N +δ

r
2N −δ

cot
(
π
(
−x
k
+

r

2Nk

))(
x− r

2N

)
R′

2(ξx) dx. (IV.4.17)

Since | cot(π(−x
k + r

2Nk ))(x −
r
2N )| = ON (k), as seen before, we only need to look at

|R′
2(ξx)|. Recall that on γ2 we had ω = −J−2 − iv with − 1

k(J+k) ≤ v ≤ 1
k(J+k) and

Re(ω),Re
(
1
ω

)
< 0. Using that

∣∣∣∣ 1ω
∣∣∣∣ = ( J−4 + v2

(J−4 + v2)2

) 1
2

=

(
1

J−4 + v2

) 1
2

=

(
J4

1 + J4v2

) 1
2

,

we obatin

|R′
2(ξx)| =

∣∣∣∣∣−i
∫ 1

k(J+k)

− 1
k(J+k)

e2πgj,N (n)(−J−2−iv)e
2π

k2(−J−2−iv) (
1
24−Nξ2x)

(
− 4πNξx
k2 (−J−2 − iv)

)
dv

∣∣∣∣∣
≤4πN |ξx|

k2

∫ 1
k(J+k)

− 1
k(J+k)

1

|−J−2 − iv|
dv =

4πN |ξx|
k2

∫ 1
k(J+k)

− 1
k(J+k)

(
J4

1 + J4v2

) 1
2

dv

≤4πN |ξx|
k2

∫ 1
k(J+k)

− 1
k(J+k)

J√
2v

dv =
4πN |ξx|J√

2k2

∫ 1
k(J+k)

− 1
k(J+k)

v−
1
2 dv = ON

(
J

k2 (k(J + k))
1
2

)

=ON

(
1

k2
J

1
2

k
1
2

)
= ON

(
J

1
2

k
5
2

)
.
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Thus we can simplify (IV.4.17) to

ON


J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

nk
1
2
+ε

k

∫ r
2N

+δ

r
2N

−δ
k
J

1
2

k
5
2

dx

 =ON

(
nJ

1
2

J∑
k=1

k−2+εδ

)
= ON

(
nJ− 1

4
+ε
)
,

where we used that δ ≤ kJ− 3
4 .

Thus we overall see that

E1 =

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

(
R1

( r

2N

)
+R2

( r

2N

)
+R3

( r

2N

))

× P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx+ON

(
ne2πgj,N (n)J−2

J− 1
4
+ε
)
.

Substituting y = r
2N − x yields that the principal value integral equals

P.V.

∫ √
1

24N

−
√

1
24N

cot
(π
k

(
−x+

r

2N

))
dx = P.V.

∫ r
2N

+
√

1
24N

r
2N

−
√

1
24N

cot
(π
k
y
)
dy

=P.V.

∫ √
1

24N
− r

2N

r
2N

−
√

1
24N

cot
(π
k
y
)
dy +

∫ r
2N

+
√

1
24N√

1
24N

− r
2N

cot
(π
k
y
)
dy.

We obtain that the leftover principal value integral equals zero, since we have an odd
function and a symmetric interval, and by using the Taylor expansion of cot(z) we see
that

∫ √
1

24N
+ r

2N√
1

24N
− r

2N

cot
(π
k
y
)
dy = ON

∫ √
1

24N
+ r

2N√
1

24N
− r

2N

k dy

 = ON (k) .

Additionally we obtain, using (IV.4.12), that

R1

( r

2N

)
+R2

( r

2N

)
+R3

( r

2N

)
=O

(
k−1J−1e

2πgj,N (n)J−2+8π
(

1
24

− r2

4N

))
=ON

(
k−1J−1e2πgj,N (n)J−2

)
,
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which yields

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k

(
R1

( r

2N

)
+R2

( r

2N

)
+R3

( r

2N

))
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−
x

k
+

r

2Nk

))
dx

=ON


J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

nk
1
2
+ε

k
k−1J−1e2πgj,N (n)J−2

k

 = ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε
)

using (IV.1.7). Overall we therefore showed that

E1 = ON

(
ne2πgj,N (n)J−2

J− 1
4
+ε
)
. (IV.4.18)

Combining (IV.4.14), (IV.4.15), and (IV.4.18) finally gives

aI∗,j,N,0(n) =−
2πi√
gj,N (n)

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k2

× P.V.

∫ √
1

24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+
κ

k
+

r

2Nk

))
I1

(
4π
√
gj,N (n)

k

√
1

24
−Nx2

)
dx

+ON

(
ne2πgj,N (n)J−2

max
(
J− 1

2
+ε log(J), J− 1

4
+ε
))

. (IV.4.19)

IV.4.2 Error part

It is left to show that all the other parts of aj,N (n) are relatively small compared to
aI∗,j,N,0(n). Therefore we go on by analyzing aI∗,j,N,1(n) and aI∗,j,N,2(n), where we only
discuss aI∗,j,N,1(n) in detail, since aI∗,j,N,2(n) can be treated accordingly.

Recalling the definitions from above we have that

aI∗,j,N,1(n) =

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ − 1
k(J+k)

− 1
k(k1+k)

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫ √
1

24N

−
√

1
24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ.
Following [Rad38], using (IV.4.2), and splitting the integral over ϕ into integrals running
over segments [− 1

kℓ ,−
1

k(ℓ+1) ], for k1 + k ≤ ℓ ≤ J + k − 1, it follows that

aI∗,j,N,1(n) =

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

J+k−1∑
ℓ=k1+k

∫ − 1
k(ℓ+1)

− 1
kℓ

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫ √
1

24N

−
√

1
24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
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=
i

π

J∑
k=1

J+k−1∑
ℓ=J+1

∫ − 1
k(ℓ+1)

− 1
kℓ

e2πgj,N (n)ωe
2π

24k2ω

N−1∑
r=1

∑
κ∈Z

P.V.

∫ √
1

24N

−
√

1
24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx
×

∑
0≤h<k

gcd(h,k)=1
J<k1+k≤ℓ

e−
2πih

k
gj,N (n)χj,r(N,Mh,k)ζ

−h′

24k e
2πiN(κ+ r

2N )2 h′
k dϕ.

The sum

K∗
k,j,N (n, r, κ, ℓ) :=

∑
0≤h<k

gcd(h,k)=1
J<k1+k≤ℓ

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24gj,N (n)h

24k (IV.4.20)

is again well-defined for hh′ ≡ −1 (mod k) and of modulus k. For µ ∈ Z we observe that
K∗
k,j,N (n, r, κ+ µk, ℓ) = K∗

k,j,N (n, r, κ, ℓ), which, shifting κ→ κ+ µk, gives us

aI∗,j,N,1(n) =
i

π

J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

K∗
k,j,N (n, r, κ, ℓ)

×
∫ − 1

k(ℓ+1)

− 1
kℓ

e2πgj,N (n)ωe
2π

24k2ω lim
L→∞

L∑
µ=−L

P.V.

∫ √ 1
24N

−
√

1
24N

e−2πN 1
k2ω

x2

x−
(
κ+ µk + r

2N

) dx dϕ.
Completely analogously to the calculations of aI∗,j,N,0(n) we obtain

aI∗,j,N,1(n) =− i
J∑

k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

K∗
k,j,N (n, r, κ, ℓ)

k
P.V.

∫ √ 1
24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
×
∫ − 1

k(ℓ+1)

− 1
kℓ

e
2π
(
gj,N (n)ω+ 1

24k2ω
−Nx2

k2ω

)
dϕ dx.

Since ω = J−2 − iϕ we obtain∫ − 1
k(ℓ+1)

− 1
kℓ

e
2π
(
gj,N (n)ω+ 1

24k2ω
−Nx2

k2ω

)
dϕ = −i

∫ J−2+ i
kℓ

J−2+ i
k(ℓ+1)

e
2π
(
gj,N (n)ω+( 1

24
−Nx2) 1

k2ω

)
dω

and note that for v := −ϕ

Re

(
2π

(
gj,N (n)ω +

(
1

24
−Nx2

)
1

k2ω

))
=2π

(
gj,N (n)J−2 +

(
1

24
−Nx2

)
J−2

k2 (J−4 + v2)

)
.

Summing over all ℓ we see that 1
k(J+k) ≤ v ≤

1
k(J+1) and thus

J−2

k2 (J−4 + v2)
≤ J−2

k2
(
J−4 +

(
1

k(J+k)

)2) =
(J + k)2J−2

(J + k)2k2J−4 + 1
≤ (J + k)2J−2 =

(
J + k

J

)2

< 4.
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This gives that

Re

(
2π

(
gj,N (n)ω +

(
1

24
−Nx2

)
1

k2ω

))
≤ 2πgj,N (n)J

−2 + 8π

(
1

24
−Nx2

)
and therefore

Hℓ(x) :=

∫ J−2+ i
kℓ

J−2+ i
k(ℓ+1)

e
2π
(
gj,N (n)ω+( 1

24
−Nx2) 1

k2ω

)
dω

=ON

((
1

kℓ
− 1

k(ℓ+ 1)

)
e2πgj,N (n)J−2

)
. (IV.4.21)

Splitting aI∗,j,N,1(n) analogously to E in the case aI∗,j,N,0(n) gives

aI∗,j,N,1(n) =E
∗
1 + E∗

2 + E∗
3

:=−
J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
Hℓ(x) dx

−
J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=

⌈√
N
6

⌉
K∗
k,j,N (n, r, 0, ℓ)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
Hℓ(x) dx

−
J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=1

K∗
k,j,N (n, r, κ, ℓ)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+
κ

k
+

r

2Nk

))
Hℓ(x) dx.

Following [Est29, page 94] we set h0 := ℓ−J , which gives that 1 ≤ h0 < k. Additionally
we define

g1(m) :=

{
1 if 0 < m ≤ h0,
0 if h0 < m ≤ k,

and

g1(m+ k) = g1(m)

for all integers m. Using this setting together with (IV.4.1) we obtain that

δJ<k1+k≤ℓ = δ0<k1+k−J≤h0 = g1(k1 + k − J) = g1(k1 − J) = g1(−h′ − J) =: δσ1≤h′<σ2 ,

for some 0 ≤ σ1 < σ2 ≤ k. This yields that the extra restriction on k1 in the
sum K∗

k,j,N (n, r, κ, ℓ) constrains the choice of h′ to an interval mod k. Therefore

K∗
k,j,N (n, r, κ, ℓ) is an incomplete Kloosterman sum and can be bounded by (IV.1.7)
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following the techniques by Lehner [Leh41, Section 10] (see Lemma V.3.1). We thus
obtain that

E∗
3 =ON

ne2πgj,N (n)J−2
J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=1

k−
1
2
+ε

(
1

kℓ
−

1

k(ℓ+ 1)

)∫ √
1

24N

−
√

1
24N

∣∣∣cot(π (−x
k
+
κ

k
+

r

2Nk

))∣∣∣ dx


=ON

ne2πgj,N (n)J−2
J∑
k=1

N−1∑
r=1

k−1∑
κ=1

k−
1
2
+ε

(
1

k(J + 1)
−

1

k(J + k)

)∫ √
1

24N

−
√

1
24N

∣∣∣cot(π (−x
k
+
κ

k
+

r

2Nk

))∣∣∣ dx


=ON

n

J
e2πgj,N (n)J−2

J∑
k=1

N−1∑
r=1

k−1∑
κ=1

k−
3
2
+ε
∫ √

1
24N

−
√

1
24N

∣∣∣cot(π (−x
k
+
κ

k
+

r

2Nk

))∣∣∣ dx


=ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε log(J)

)
,

as seen before. Similar to that we redo the calculations for bounding E2 to prove that

E∗
2 = ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε
)
.

Lastly we take care of E∗
1 . We rewrite

E∗
1 =−

J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))(
Hℓ(x)−Hℓ

( r

2N

))
dx

−
J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k
Hℓ

( r

2N

)
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx.

Using δ = min(kJ− 3
4 , |
√

1
24N −

r
2N |) as before and splitting our integral yields

E∗
1 =−

J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6 −1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k

×

(∫ r
2N −δ

−
√

1
24N

+

∫ √ 1
24N

r
2N +δ

+

∫ r
2N +δ

r
2N −δ

)
cot
(
π
(
−x
k
+

r

2Nk

))(
Hℓ(x)−Hℓ

( r

2N

))
dx

−
J∑

k=1

J+k−1∑
ℓ=J+1

⌈√
N
6 −1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k
Hℓ

( r

2N

)
P.V.

∫ √ 1
24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx.

Using (IV.1.7) and (IV.4.21) we see that

−
J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉
∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k

∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

 cot
(
π
(
−
x

k
+

r

2Nk

))(
Hℓ(x)−Hℓ

( r

2N

))
dx
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=ON


J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉
∑
r=1

nk
1
2
+ε

k

∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

 k

δ

(
1

kℓ
−

1

k(ℓ+ 1)

)
e2πgj,N (n)J−2

dx



=ON

n

J
e2πgj,N (n)J−2

J∑
k=1

⌈√
N
6
−1

⌉
∑
r=1

k−
1
2
+εδ−1

∫ r
2N

−δ

−
√

1
24N

+

∫ √
1

24N

r
2N

+δ

 dx

 = ON

(
ne2πgj,N (n)J−2

J− 1
4

)
,

as before.

Defining hℓ(x) := Hℓ(x)−Hℓ(
r
2N ) and using the Taylor expansion we obtain that

hℓ(x) = h′ℓ (ξx)
(
x− r

2N

)
,

for some ξx between r
2N and x and see that |h′ℓ (ξx)| = |H ′

ℓ (ξx)| as before. For the integral
close to r

2N we first note that

J+k−1∑
ℓ=J+1

|H ′
ℓ(ξx)| =ON

(
J

1
2

k
5
2

e2πgj,N (n)J−2

)
,

using the techniques from before. Therefore we obtain

−
J∑

k=1

J+k−1∑
ℓ=J+1

⌈√
N
6 −1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k

∫ r
2N +δ

r
2N −δ

cot
(
π
(
−x
k
+

r

2Nk

))(
Hℓ(x)−Hℓ

( r

2N

))
dx

= ON

 J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6 −1

⌉∑
r=1

nk
1
2+ε

∫ r
2N +δ

r
2N −δ

|H ′
ℓ(ξx)| dx

 = ON

(
ne2πgj,N (n)J−2

J− 1
4+ε
)
,

which yields

E∗
1 =−

J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6 −1

⌉∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k
Hℓ

( r

2N

)
P.V.

∫ √ 1
24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx

+ON

(
ne2πgj,N (n)J−2

J− 1
4+ε
)
.

As seen before we have

P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx = ON (k).
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Additionally we obtain

J+k−1∑
ℓ=J+1

Hℓ

( r

2N

)
=ON

(
k−1J−1e2πgj,N (n)J−2

)
,

using (IV.4.21). Analogously to above this yields

−
J∑
k=1

J+k−1∑
ℓ=J+1

⌈√
N
6
−1

⌉
∑
r=1

K∗
k,j,N (n, r, 0, ℓ)

k
Hℓ

( r

2N

)
P.V.

∫ √
1

24N

−
√

1
24N

cot
(
π
(
−x
k
+

r

2Nk

))
dx

= ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε
)

and therefore overall

E∗
1 = ON

(
ne2πgj,N (n)J−2

J− 1
4
+ε
)
.

This finally gives

aI∗,j,N,1(n) = ON

(
ne2πgj,N (n)J−2

max
(
J− 1

2
+ε log(J), J− 1

4
+ε
))

and the analog result for aI∗,j,N,2(n).
Plugging (IV.4.19) and this results into (IV.4.7) yields that

aI∗,j,N (n) =−
2πi√
gj,N (n)

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k2

× P.V.

∫ √
1

24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+
κ

k
+

r

2Nk

))
I1

(
4π
√
gj,N (n)

k

√
1

24
−Nx2

)
dx

+ON

(
ne2πgj,N (n)J−2

max
(
J− 1

2
+ε log(J), J− 1

4
+ε
))

. (IV.4.22)

Lastly we have to take care of aI,j,N (n) and aIe,j,N (n). From the definition and
(IV.2.17) we have

aIe,j,N (n) =

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )
2 h′

k P.V.

∫
|x|≥
√

1
24N

e−2πN 1
k2ω

x2

x−
(
κ+ r

2N

) dx dϕ.
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By decomposing the Farey segment −ϑ′h,k ≤ ϕ ≤ −ϑ′′h,k as seen before we obtain

aIe,j,N (n) =

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ 1
k(J+k)

− 1
k(J+k)

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫
|x|≥

√
1

24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
+

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

J+k−1∑
ℓ=k1+k

∫ − 1
k(ℓ+1)

− 1
kℓ

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫
|x|≥

√
1

24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
+

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

J+k−1∑
ℓ=k2+k

∫ 1
kℓ

1
k(ℓ+1)

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)ζ
−h′

24k

i

π
e

2π
24k2ω

×
∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫
|x|≥

√
1

24N

e
−2πN 1

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
=:aIe,j,N,1(n) + aIe,j,N,2(n) + aIe,j,N,3(n).

We first note that

aIe,j,N,1(n) =
i

π

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

×
∫ 1

k(J+k)

− 1
k(J+k)

e2πgj,N (n)ω lim
L→∞

L∑
µ=−L

P.V.

∫
|x|≥

√
1

24N

e−2π(Nx2− 1
24)

1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ
completely analogously to the calculations of aI∗,j,N,0(n), while

aIe,j,N,2(n) =
i

π

J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

K∗
k,j,N (n, r, κ, ℓ)

×
∫ − 1

k(ℓ+1)

− 1
kℓ

e2πgj,N (n)ω lim
L→∞

L∑
µ=−L

P.V.

∫
|x|≥

√
1

24N

e−2π(Nx2− 1
24)

1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ,
aIe,j,N,3(n) =

i

π

J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

K̃k,j,N (n, r, κ, ℓ)

×
∫ 1

kℓ

1
k(ℓ+1)

e2πgj,N (n)ω lim
L→∞

L∑
µ=−L

P.V.

∫
|x|≥

√
1

24N

e−2π(Nx2− 1
24)

1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ
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analogously to the calculation of aI∗,j,N,1(n), where

K̃k,j,N (n, r, κ, ℓ) :=
∑

0≤h<k
gcd(h,k)=1
J<k2+k≤ℓ

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24gj,N (n)h

24k .

For aI,j,N (n) we have

aI,j,N (n) =
J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ ϑ′′
h,k

−ϑ′
h,k

e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)

×
(
η

(
h′

k
+

i

k2ω

)−1

− e
−πi

12

(
h′
k

+ i
k2ω

))
i

π

∑
κ∈Z

e2πiN(κ+ r
2N )2 h′

k P.V.

∫ ∞

−∞

e
−2π N

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
from the definition and (IV.2.15). Additionally we observe that

η

(
h′

k
+

i

k2ω

)−1

− e−
πi
12

(
h′
k
+ i
k2ω

)
=
∑
m≥1

p(m)e−
2πm
k2ω ζ

(24m−1)h′

24k e
2π

24k2ω ,

where p(m) is the partition function.
By decomposing the Farey segment −ϑ′h,k ≤ ϕ ≤ −ϑ′′h,k as seen before we obtain

aI,j,N (n) =

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

∫ 1
k(J+k)

− 1
k(J+k)

∑
m≥1

p(m)e
− 2πm

k2ω e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)

× ζ
(24m−1)h′

24k

i

π
e

2π
24k2ω

∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫ ∞

−∞

e
−2π N

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
+

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

J+k−1∑
ℓ=k1+k

∫ − 1
k(ℓ+1)

− 1
kℓ

∑
m≥1

p(m)e
− 2πm

k2ω e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)

× ζ
(24m−1)h′

24k

i

π
e

2π
24k2ω

∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫ ∞

−∞

e
−2π N

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
+

J∑
k=1

∑
0≤h<k

gcd(h,k)=1

e−
2πih

k
gj,N (n)

J+k−1∑
ℓ=k2+k

∫ 1
kℓ

1
k(ℓ+1)

∑
m≥1

p(m)e
− 2πm

k2ω e2πgj,N (n)ω
N−1∑
r=1

χj,r(N,Mh,k)

× ζ
(24m−1)h′

24k

i

π
e

2π
24k2ω

∑
κ∈Z

e2πiN(κ+
r

2N )2 h′
k P.V.

∫ ∞

−∞

e
−2π N

k2ω
x2

x−
(
κ+ r

2N

) dx dϕ
=:aI,j,N,1(n) + aI,j,N,2(n) + aI,j,N,3(n).
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Define

Kk,j,N (n,m, r, κ) :=
∑

0≤h<k
gcd(h,k)=1

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2
+24m−1

)
h′−24gj,N (n)h

24k ,

K∗
k,j,N (n,m, r, κ, ℓ) :=

∑
0≤h<k

gcd(h,k)=1
J<k1+k≤ℓ

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2
+24m−1

)
h′−24gj,N (n)h

24k ,

K̃k,j,N (n,m, r, κ, ℓ) :=
∑

0≤h<k
gcd(h,k)=1
J<k2+k≤ℓ

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2
+24m−1

)
h′−24gj,N (n)h

24k ,

which are all well-defined Kloosterman sums of modulus k. We thus note that

aI,j,N,1(n) =
i

π

J∑
k=1

N−1∑
r=1

k−1∑
κ=0

∫ 1
k(J+k)

− 1
k(J+k)

∑
m≥1

p(m)e−
2π(m− 1

24)
k2ω Kk,j,N (n,m, r, κ)e

2πgj,N (n)ω

× lim
L→∞

L∑
µ=−L

P.V.

∫ ∞

−∞

e−2πNx2 1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ
completely analogously to the calculations of aI∗,j,N,0(n), while

aI,j,N,2(n) =
i

π

J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

∫ − 1
k(ℓ+1)

− 1
kℓ

∑
m≥1

p(m)e−
2π(m− 1

24 )
k2ω K∗

k,j,N (n,m, r, κ, ℓ)e2πgj,N (n)ω

× lim
L→∞

L∑
µ=−L

P.V.

∫ ∞

−∞

e−2πNx2 1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ
and

aI,j,N,3(n) =
i

π

J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

k−1∑
κ=0

∫ 1
kℓ

1
k(ℓ+1)

∑
m≥1

p(m)e−
2π(m− 1

24 )
k2ω K̃k,j,N (n,m, r, κ, ℓ)e2πgj,N (n)ω

× lim
L→∞

L∑
µ=−L

P.V.

∫ ∞

−∞

e−2πNx2 1
k2ω

x−
(
κ+ µk + r

2N

) dx dϕ
analogously to the calculation of aI∗,j,N,1(n).

To be able to bound all parts of aIe,j,N (n), respectively aI,j,N (n), we need the
following lemma.
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Lemma IV.4.1. For 0 ≤ d < N , N, k, ω, κ, and r as above, and 2
√
Nd /∈ Z\{0} we

have

lim
L→∞

L∑
µ=−L

P.V.

∫
|x|≥

√
d
N

e−2π(Nx2−d) 1
k2ω

x−
(
κ+ µk + r

2N

) dx = ON

(
1

min
(
κ+ r

2N , k − κ−
r
2N

)) ,
as k →∞.

Proof. We follow the ideas of [BN19, Proof of Lemma 3.3]. Combining the integral over
negative and positive reals gives us that

Pd,N (k, ω, κ, r) :=P.V.

∫
|x|≥
√

d
N

e−2π(Nx2−d) 1
k2ω

x−
(
κ+ µk + r

2N

) dx
=P.V.

∫ ∞

√
d
N

e−2π(Nx2−d) 1
k2ω

(
1

x−
(
κ+ µk + r

2N

) − 1

x+
(
κ+ µk + r

2N

)) dx

=2
(
κ+ µk +

r

2N

)
P.V.

∫ ∞

√
d
N

e−2πN(x2− d
N ) 1

k2ω

x2 −
(
κ+ µk + r

2N

)2 dx
=
(
κ+ µk +

r

2N

)
P.V.

∫ ∞

0

e−2πNu 1
k2ω√

u+ d
N

(
u+ d

N −
(
κ+ µk + r

2N

)2) du,
where we substituted u = x2 − d

N in the last step. We go on by writing

1

u+ d
N −

(
κ+ µk + r

2N

)2 =

(
1

u+ d
N −

(
κ+ µk + r

2N

)2 +
1(

κ+ µk + r
2N

)2
)
− 1(

κ+ µk + r
2N

)2
=

u+ d
N(

κ+ µk + r
2N

)2 (
u+ d

N −
(
κ+ µk + r

2N

)2) − 1(
κ+ µk + r

2N

)2
and consider the contribution of each term seperately, where we denote them by
Pd,N,1(k, ω, κ, r), respectively Pd,N,2(k, ω, κ, r). We start by looking at

Pd,N,2(k, ω, κ, r) =−
1

κ+ µk + r
2N

∫ ∞

0

e−2πNu 1
k2ω√

u+ d
N

du.

Using that Re( 2N
k2ω

) ≥ N together with u ≥ 0 we see that∣∣∣∣∣∣
∫ ∞

0

e−2πNu 1
k2ω√

u+ d
N

du

∣∣∣∣∣∣ ≤
∫ ∞

0

e−πNu√
u+ d

N

du = ON (1).
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Using (IV.4.8) we additionally see that

− lim
L→∞

L∑
µ=−L

1

κ+ µk + r
2N

= −1

k
lim

L→∞

L∑
µ=−L

1

µ+ κ
k + r

2Nk

= −π
k
cot
(
π
(κ
k
+

r

2Nk

))
.

Since 0 < κ
k + r

2Nk < 1 we obtain that (see [BN19, page 13])∣∣∣cot(π (κ
k
+

r

2Nk

))∣∣∣≪ 1
κ
k + r

2Nk

+
1

1− κ
k −

r
2Nk

,

which yields that

lim
L→∞

L∑
µ=−L

Pd,N,2(k, ω, κ, r) =ON
(
1

k

(
1

κ
k + r

2Nk

+
1

1− κ
k −

r
2Nk

))

=ON

(
1

min
(
κ+ r

2N , k − κ−
r
2N

)) .
Next we look at Pd,N,1(k, ω, κ, r). We start by writing

Pd,N,1(k, ω, κ, r) =
1

κ+ µk + r
2N

P.V.

∫ ∞

0

e−2πNu 1
k2ω

√
u+ d

N

u+ d
N −

(
κ+ µk + r

2N

)2 du.
Our pole thus lies in u = (κ + µk + r

2N )2 − d
N ∈ R. We further investigate that since

d < N we only have a pole in 0 if κ = µ = 0 and r = 2
√
Nd, which cannot happen since

r ≥ 1 and we assumed that 2
√
Nd /∈ Z\{0}.

We rewrite our principal value integral as the average of the paths γε,+ and γε,−,
where γε,+, respectively γε,−, is the path of integration along the positive real axis taking
a semicircular path of radius ε above, respectively below, the pole (see Figure IV.2).

0 ∞ ∞

Figure IV.2: The paths of integration γε,+, respectively γε,−.

We obtain that

Pd,N,1(k, ω, κ, r) =
1

κ+ µk + r
2N

lim
ε→0

1

2

(∫
γε,+

+

∫
γε,−

)
e−2πNu 1

k2ω

√
u+ d

N

u+ d
N −

(
κ+ µk + r

2N

)2 du
 .
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We note that

Re

(
2N

k2ω
e±

πi
4

)
=

Re
(
2N
k2ω

)
√
2

∓
Im
(
2N
k2ω

)
√
2

,

since e±
πi
4 = 1√

2
(1± i). Choosing the ± to be − sgn(Im( 2N

k2ω
)) thus gives us that

Re

(
2N

k2ω
e±

πi
4

)
=

Re
(
2N
k2ω

)
√
2

+

∣∣Im ( 2N
k2ω

)∣∣
√
2

≥
Re
(
2N
k2ω

)
√
2

≥ N√
2
,

since Re( 2N
k2ω

) ≥ N . This means we either have Re( 2N
k2ω

e
πi
4 ) ≥ N√

2
or Re( 2N

k2ω
e−

πi
4 ) ≥ N√

2
.

Using Cauchy’s Theorem we now want to rotate our paths of integration either to e
πi
4 R+

if we have Re( 2N
k2ω

e
πi
4 ) ≥ N√

2
or to e−

πi
4 R+ if Re( 2N

k2ω
e−

πi
4 ) ≥ N√

2
picking up the residues

from the poles that lie on the real line. Since both rotations follow the same argument we

from now on assume that we have Re( 2N
k2ω

e
πi
4 ) ≥ N√

2
. Note that for this rotation we only

pick up poles by performing the rotation on γε,− as can by easily seen in Figure IV.3.

0 ∞

e
πi
4 R+

Figure IV.3: Rotation of the paths of integration.

We compute

Res
u=(κ+µk+ r

2N )
2− d

N

e−2πNu 1
k2ω

√
u+ d

N

u+ d
N −

(
κ+ µk + r

2N

)2
= lim

u→(κ+µk+ r
2N )

2− d
N

(
u−

((
κ+ µk +

r

2N

)2
− d

N

)) e−2πNu 1
k2ω

√
u+ d

N

u+ d
N −

(
κ+ µk + r

2N

)2
=e

−2πN
(
(κ+µk+ r

2N )
2− d

N

)
1

k2ω

√(
κ+ µk +

r

2N

)2
= e

−2πN
(
(κ+µk+ r

2N )
2− d

N

)
1

k2ω

∣∣∣κ+ µk +
r

2N

∣∣∣ ,
which gives us that the contribution of this poles on the positive real line and with respect
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to limL→∞
∑L

µ=−L Pd,N,1(k, ω, κ, r) sums up to

πi lim
L→∞

L∑
µ=−L

δ
(κ+µk+ r

2N )
2− d

N
≥0
e
−2πN

(
(κ+µk+ r

2N )
2− d

N

)
1
k2ω sgn

(
κ+ µk +

r

2N

)
.

Next we define the Jacobi theta function21 as

ϑ3(z; τ) :=
∑
n∈Z

eπin
2τ+2πinz.

Noting that it transforms modular by (see e.g., [Mum83, page 32])

ϑ3(z; τ) =
1√
−iτ

e−
πiz2

τ ϑ3

(
z

τ
;−1

τ

)
we can bound the absolute value of this contribution against

πeπd
∑
µ∈Z

e−πNk
2(µ+κ

k
+ r

2Nk )
2

=πeπd
1√
Nk2

ϑ3

(
κ

k
+

r

2Nk
;− 1

iNk2

)
= ON

(
1

k

)
,

where we used [NIST, Figure 20.3.4] in the last step22.
We are left with bounding the integrals on the rotated paths. We see that they sum

up to

Qd,N (k, ω, κ, r) :=
1

κ+ µk + r
2N

∫
e
πi
4 R+

e−2πNu 1
k2ω

√
u+ d

N

u+ d
N −

(
κ+ µk + r

2N

)2 du
=

1

κ+ µk + r
2N

e
πi
4

∫ ∞

0

e
−2πN 1+i√

2
u 1
k2ω

√
1+i√

2
u+ d

N

1+i√
2
u+ d

N −
(
κ+ µk + r

2N

)2 du,
by changing variables u 7→ e

πi
4 u. Since Re( 2N

k2ω
e
πi
4 ) ≥ N√

2
and u ≥ 0 we note that∣∣∣e−2πN 1+i√

2
u 1
k2ω

∣∣∣ = e
−πuRe

(
2N
k2ω

e
πi
4

)
≤ e−

πuN√
2 .

Furthermore we have

1∣∣∣1+i√
2
u+ d

N −
(
κ+ µk + r

2N

)2∣∣∣ ≤
√
2∣∣∣(κ+ µk + r
2N

)2 − d
N

∣∣∣ ,
21Note that ϑ3(z; τ) = −iq−

1
8 e−πi(z−

1
2
− τ

2 )ϑ
(
z − 1

2
− τ

2
; τ
)
, where ϑ(z; τ) is the Jacobi theta function

defined in (I.1.3).
22Note that ϑ3(z; τ) = θ3(πz; e

πiτ ) from [NIST, Figure 20.3.4].
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which, together with the other bound, yields

|Qd,N (k, ω, κ, r)| ≤
√
2∣∣κ+ µk + r

2N

∣∣ ∣∣∣(κ+ µk + r
2N

)2 − d
N

∣∣∣
∫ ∞

0
e
−πuN√

2

∣∣∣∣1 + i√
2
u+

d

N

∣∣∣∣ 12 du.
Noting that e

−πuN√
2 |1+i√

2
u + d

N |
1
2 is integrable and only depending on d and N gives us

that the integral occuring above is ON (1). Therefore we are left with showing

lim
L→∞

L∑
µ=−L

√
2∣∣κ+ µk + r

2N

∣∣ ∣∣∣(κ+ µk + r
2N

)2 − d
N

∣∣∣ = ON

(
1

min
(
κ+ r

2N , k − κ−
r
2N

)) .
Using elementary estimates and the fact that d < N we see that

√
2

k3

∑
µ∈Z

1∣∣µ+ κ
k + r

2Nk

∣∣ ∣∣∣(µ+ κ
k + r

2Nk

)2 − d
Nk2

∣∣∣
<

√
2

k3

 k3(
κ+ r

2N

) ∣∣∣(κ+ r
2N

)2 − d
N

∣∣∣ + k3(
k − κ− r

2N

) ∣∣∣(k − κ− r
2N

)2 − d
N

∣∣∣
+

k3(
k + κ+ r

2N

) ((
k + κ+ r

2N

)2 − 1
) +

k3(
2k − κ− r

2N

) ((
2k − κ− r

2N

)2 − 1
)

+
∑
µ≥2

1

µ (µ2 − 1)
+
∑
µ≥3

1

(µ− 1)
(
(µ− 1)

2 − 1
)


=ON

 1

min
((
κ+ r

2N

) ∣∣∣(κ+ r
2N

)2 − d
N

∣∣∣ , (k − κ− r
2N

) ∣∣∣(k − κ− r
2N

)2 − d
N

∣∣∣)
 . (IV.4.23)

For κ ∈ {0, 1, k − 2, k − 1} the required bound holds, so we can restrict to the case
2 ≤ κ ≤ k − 3. Here we have(

κ+
r

2N

)2
− d

N
> 1 and

(
k − κ− r

2N

)2
− d

N
> 1,

which yields that we can also bound (IV.4.23) against

1

min
(
κ+ r

2N , k − κ−
r
2N

)
and finishes the proof.
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Using Lemma IV.4.1 with d = 1
24 , (IV.1.7) for all the Kloosterman sums, and noting

that
k−1∑
κ=0

1

min
(
κ+ r

2N , k − κ−
r
2N

) = O(log(k))

yields

aIe,j,N,1(n) =ON

(
J∑

k=1

N−1∑
r=1

nk
1
2+ε log(k)

∫ 1
k(J+k)

− 1
k(J+k)

∣∣∣e2πgj,N (n)ω
∣∣∣ dϕ)

=ON

(
ne2πgj,N (n)J−2

J−1
J∑

k=1

k−
1
2+ε log(k)

)
= ON

(
ne2πgj,N (n)J−2

J− 1
2+ε log(J)

)
,

aIe,j,N,2(n) =ON

(
J∑

k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

nk
1
2+ε log(k)

∫ − 1
k(ℓ+1)

− 1
kℓ

∣∣∣e2πgj,N (n)ω
∣∣∣ dϕ)

=ON

(
ne2πgj,N (n)J−2

J−1
J∑

k=1

k−
1
2+ε log(k)

)
= ON

(
ne2πgj,N (n)J−2

J− 1
2+ε log(J)

)
,

and analogously aIe,j,N,3(n) = ON (ne
2πgj,N (n)J−2

J− 1
2
+ε log(J)). Overall we thus obtain

aIe,j,N (n) =ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε log(J)

)
. (IV.4.24)

Using the same bounds as used above for Lemma IV.4.1 with d = 0, Re( 2
k2ω

) ≥ 1,
and noting that ∑

m≥1

p(m)e−π(m− 1
24) = η

(
i

2

)−1

− e
π
24 = O(1)

yields

aI,j,N,1(n) =ON

 J∑
k=1

N−1∑
r=1

∫ 1
k(J+k)

− 1
k(J+k)

∑
m≥1

p(m)

∣∣∣∣∣e− 2π(m− 1
24 )

k2ω

∣∣∣∣∣nk 1
2+ε log(k)

∣∣∣e2πgj,N (n)ω
∣∣∣ dϕ


=ON

(
ne2πgj,N (n)J−2

J∑
k=1

N−1∑
r=1

k
1
2+ε log(k)

∫ 1
k(J+k)

− 1
k(J+k)

dϕ

)
=ON

(
ne2πgj,N (n)J−2

J− 1
2+ε log(J)

)
,

and analogously to above

aI,j,N,2(n) =ON

 J∑
k=1

J+k−1∑
ℓ=J+1

N−1∑
r=1

∫ − 1
k(ℓ+1)

− 1
kℓ

∑
m≥1

p(m)

∣∣∣∣∣e− 2π(m− 1
24 )

k2ω

∣∣∣∣∣nk 1
2
+ε log(k)

∣∣∣e2πgj,N (n)ω
∣∣∣ dϕ
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=ON
(
ne2πgj,N (n)J−2

J− 1
2
+ε log(J)

)
,

and aI,j,N,3(n) = ON (ne
2πgj,N (n)J−2

J− 1
2
+ε log(J)). Overall we thus obtain

aI,j,N (n) =ON

(
ne2πgj,N (n)J−2

J− 1
2
+ε log(J)

)
. (IV.4.25)

IV.4.3 Combining the results

Plugging (IV.4.22), (IV.4.24), and (IV.4.25) into (IV.4.6), using the definition of
gj,N (n), and taking J →∞ gives

aj,N (n) = − 2πi√
n+ j2

4N
− 1

24

∑
k≥1

N−1∑
r=1

k−1∑
κ=0

Kk,j,N (n, r, κ)

k2

× P.V.

∫ √
1

24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−x
k
+
κ

k
+

r

2Nk

))
I1

4π
√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx.

This finishes the proof of Theorem IV.1.1.
Again by noting that the integral over x only has a simple pole in x = r

2N for κ = 0

and r <
√

N
6 we additionally obtain

aj,N (n) =−
2πi√

n+ j2

4N
− 1

24

∑
k≥1

⌈√
N
6
−1

⌉
∑
r=1

Kk,j,N (n, r, 0)

k2
(IV.4.26)

× lim
ε→0

∫ r
2N

−ε

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx

+

∫ √
1

24N

r
2N

+ε

√
1

24
−Nx2 cot

(
π
(
−
x

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx


−

2πi√
n+ j2

4N
− 1

24

∑
k≥1

N−1∑
r=

⌈√
N
6

⌉
Kk,j,N (n, r, 0)

k2

×
∫ √

1
24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx

−
2πi√

n+ j2

4N
− 1

24

∑
k≥1

N−1∑
r=1

k−1∑
κ=1

Kk,j,N (n, r, κ)

k2

×
∫ √

1
24N

−
√

1
24N

√
1

24
−Nx2 cot

(
π
(
−
x

k
+
κ

k
+

r

2Nk

))
I1

4π

√
n+ j2

4N
− 1

24

k

√
1

24
−Nx2

 dx.
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Remark. Note that we had to exclude n = 0 in our calculation. This is not caused by the
fact that we have

√
gj,N (n) in the denominator of (IV.4.19) (which equals 0 if and only

if n = 0 and j =
√

N
6 ), but because the estimates of our Kloosterman sums would break

down for this special case (see [Rad38, Section 8]).

IV.5 Numerical Results

In this section we offer some numerical results and compare the value of aj,N (n) for a
number of cases to the results from Theorem IV.1.1, where we numerically perform the
sum over k from 1 to J . We offer the code to obtain those values in the Appendix.

J=1 J=3 J=20 J=25 J=50

a1,3(3) = 2 2.3181 . . . 2.2886 . . . 2.0990 . . . 2.0875 . . . 2.0527 . . .

a1,3(10) = 30 29.8989 . . . 30.2442 . . . 30.0866 . . . 30.0789 . . . 30.0418 . . .

a1,3(18) = 272 271.3098 . . . 272.2656 . . . 272.0720 . . . 272.0651 . . . 272.0408 . . .

a5,8(3) = 2 2.5197 . . . 2.2200 . . . 1.9993 . . . 1.9830 . . . 1.9892 . . .

a5,8(10) = 27 26.2697 . . . 26.9853 . . . 26.9856 . . . 26.9997 . . . 26.9991 . . .

a5,8(18) = 216 214.4979 . . . 216.0557 . . . 215.9830 . . . 215, 9893 . . . 216.0044 . . .

a3,10(3) = 3 3.1624 . . . 3.0544 . . . 3.0307 . . . 3.0222 . . . 2.9985 . . .

a3,10(10) = 39 38.5337 . . . 38.9965 . . . 39.0080 . . . 39.0001 . . . 38.9982 . . .

a3,10(18) = 336 334.3940 . . . 336.0237 . . . 336.0058 . . . 336.0254 . . . 336.0111 . . .

Table IV.1: Numerical results for Fourier coefficients of q
1
24

− j2

4NAj,N (τ).

IV.6 Further Questions

To end this chapter we want to briefly mention some related questions that could be
the topic for possible follow up projects.
(1) By splitting the Mordell-type integral in Section IV.2.3 we avoided the special case

2
√
Nd ∈ Z\{0} to verify the well-definedness of the principal value integral. Is there

a possibility to get rid of the extra condition? What happens if we have a pole right
at the edge of our integration path?

(2) If one is interested in figuring out what happens if we let N tend to ∞ one could be
more precise about the dependence of N in the error terms while running the Circle
Method as well as in the bound of the Kloosterman sum.
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Chapter V

Additional Details for Chapter IV

In this chapter we give some additional proofs for Chapter IV. Note that we therefore
keep the notation of the sections we add details on.

V.1 Additional proofs for Section IV.2

In this section we prove two identities. The first one is stated in the following lemma.

Lemma V.1.1. We have∫ ∞−iε

−V+δ

e−2πN(n+ j
2N

)2z

√
−z

dz = − i√
2N(n+ j

2N
)

(
sgn

(
n+

j

2N

)
+ erf

(
i

(
n+

j

2N

)√
2πN (V − δ)

))
.

Proof. Similar to [BN19, page 12] we split the integral as∫ ∞−iε

−V+δ

e−2πN(n+ j
2N

)2z

√
−z

dz =

∫ ∞−iε

0

e−2πN(n+ j
2N

)2z

√
−z

dz+

∫ 0

−V+δ

e−2πN(n+ j
2N

)2z

√
−z

dz.

To simplify our calculations we look at each integral seperately.
First we change variables as

√
2πN |n+ j

2N |
√
z = x in the first integral and obtain∫ ∞−iε

0

e−2πN(n+ j
2N

)2z

√
−z

dz =

∫ ∞−iε

0

2e−x
2

i
√
2πN

∣∣∣n+ j
2N

∣∣∣dx
=

−i
√
2N
(
n+ j

2N

) sgn

(
n+

j

2N

)
2√
π

∫ ∞−iε

0
e−x

2
dx

=
−i

√
2N
(
n+ j

2N

) sgn

(
n+

j

2N

)
. (V.1.1)

Next we also change variables in the second integral as
√
2πNi|n+ j

2N |
√
−z = x and get∫ 0

−V+δ

e−2πN(n+ j
2N

)2z

√
−z

dz =−
∫ 0

i
√

2πN(V−δ)|n+ j
2N |

2e−x
2

i
√
2πN

∣∣∣n+ j
2N

∣∣∣dx
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=

∫ i
√

2πN(V−δ)|n+ j
2N |

0

2e−x
2

i
√
2πN

∣∣∣n+ j
2N

∣∣∣dx
=− i√

2N

1∣∣∣n+ j
2N

∣∣∣ 2√
π

∫ i
√

2πN(V−δ)|n+ j
2N |

0
e−x

2
dx

=− i√
2N

1∣∣∣n+ j
2N

∣∣∣ erf
(
i
√
2πN(V − δ)

∣∣∣∣n+
j

2N

∣∣∣∣)

=− i√
2N

erf
(
i
√
2πN(V − δ)

∣∣∣n+ j
2N

∣∣∣)
i
∣∣∣n+ j

2N

∣∣∣√2πN(V − δ)
i
√
2πN(V − δ)

=
−i

√
2N
(
n+ j

2N

) erf

(
i
√

2πN(V − δ)
(
n+

j

2N

))
, (V.1.2)

using that

erf
(
i
√

2πN(V − δ)
∣∣∣n+ j

2N

∣∣∣)
i
∣∣∣n+ j

2N

∣∣∣√2πN(V − δ)
=

erf
(
i
√
2πN(V − δ)

(
n+ j

2N

))
i
(
n+ j

2N

)√
2πN(V − δ)

,

with erf(|x|)
|x| = erf(x)

x and erf(−x) = − erf(x) in the last step. Combining (V.1.1) and

(V.1.2) yields the claim.

We go on by proving the second identity, which is stated in the following lemma.

Lemma V.1.2. For s ∈ R \ {0} and Re(V ) > 0 we have

e−πs
2V erf

(
is
√
πV
)
=− i

π
P.V.

∫ ∞

−∞

e−πV x
2

x− s
dx (V.1.3)

:=− i

π
lim
ε→0+

(∫ s−ε

−∞

e−πV x
2

x− s
dx+

∫ ∞

s+ε

e−πV x
2

x− s
dx

)
.

Proof. Since both sides of (V.1.3) are odd in s we can assume that s > 0. Additionally
we first assume V > 0 and get that the left hand side of (V.1.3) equals

e−(s
√
πV )

2 (
1 + erf

(
is
√
πV
))
− e−(s

√
πV )

2

= ω
(
s
√
πV
)
− e−(s

√
πV )

2

,

where ω is the Faddeeva function defined as (see [NIST, equations 7.2.2 and 7.2.3])

ω(z) := e−z
2
(1 + erf (iz)) .
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Using the identity (see [NIST, equation 7.7.2])

ω(τ) = − i
π

∫ ∞

−∞

e−t
2

t− τ
dt, for Im(τ) > 0

we obtain, for V > 0 and some δ > 0,

ω
(
s
√
πV (1 + iδ)

)
= − i

π

∫ ∞

−∞

e−t
2

t−
√
πV s (1 + iδ)

dt.

Since both sides are holomorphic for Re(V ) > 0, the identity holds for such complex

values as well by analytic continuation. Using this and substituting t =
√
πV x we see

that the left hand side of (V.1.3) becomes

lim
δ→0+

(
− i

π

∫ ∞

−∞

e−t
2
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√
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dt

)
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πV )2
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)
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(V.1.4)

for every ε > 0.
By shifting the path of integration to the lower half plane we are allowed to also take

the limit in δ in the last integral and get

− i
π

∫
γs,ε

e−πV x
2

x− s
dx,

where γs,ε is the semi-circular path of radius ε passing below s (see Figure V.1).
Plugging in the Taylor series expansion of the exponential arround s gives us

− i

π

∫
γs,ε

e−πV x
2

x− s
dx = − i

π

∫
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1
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e−πV s2 +
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γs,ε

s

ε

Figure V.1: The contour γs,ε.

= − i

π
e−πV s

2
∫
γs,ε

1

x− s
dx− i

π

∫
γs,ε

∑
n≥1

(x− s)n−1
(
∂n

∂xn
e−πV x

2
) ∣∣∣∣

x=s

n!
dx.

Now we see that the second integral does not have any poles on the path of integration
and therefore it vanishes by taking ε→ 0+ since the path of integration vanishes. For
the first integral we notice, that we have a simple pole and therefore

lim
ε→0+

∫
γs,ε

1

x− s
=

1

2
(2πi)Resx=s

(
1

x− s

)
= πi lim

x→s
(x− s) 1

x− s
= πi.

Taking the limit ε→ 0+ in (V.1.4) gives the claim.

V.2 Additional proofs for Section IV.3

In this section we first prove the well-definedness of the Kloosterman sum defined in
(IV.1.6).

Lemma V.2.1. We have that Kk,j,N (n, r, κ), from (IV.1.6), is well-defined.

Proof. For Mh,k =
(
h′ −hh′+1

k
k −h

)
and hh′ ≡ −1 (mod k) we define

Kk,j,N (n, r, κ) =
∑

0≤h<k
gcd(h,k)=1

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24gj,N (n)h

24k =:
∑

0≤h<k
gcd(h,k)=1

a(h′).

To make sure that the sum is well-defined, we need to prove that a(h′ + αk) = a(h′) for
every choice of α ∈ Z, which ensures that the summand is independet of the choice of h′.

For odd k we first note that we have
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χj,r(N,Mh,k)

:=νη(M) · ψj,r
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We therefore obtain
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Let α be an arbitrary integer, then we see that
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We have

exp
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since α ∈ Z, N ∈ N>1, κ ∈ Z, r ∈ N and thus get that

exp

(
πi

12
α
(
k2 − h2(k2 − 1)

))
exp

(
−πiαr

2

2N

)
exp

(
2πi

24k

((
24N

(
κ2 +

κr

N
+

r2

4N2

)
− 1

)
αk

))
=exp

(
πi

12
α
(
k2 − h2(k2 − 1)− 1

))
= exp

(
2πiα

k2 − h2(k2 − 1)− 1

24
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If we have that k2 − h2(k2 − 1) ≡ 1 (mod 24) this exponential is simply 1 and we
proved that a(h′) = a(h′ + αk) for every choice of α ∈ Z. To see this remember that we
have k > 0 and odd. The Chinese Remainder Theorem says that for some m,n ∈ Z with
gcd(m,n) = 1 we have f(x) ≡ 1 (modmn) if and only if

f(x) ≡ 1 (modm) and f(x) ≡ 1 (modn) .

We want to have k2−h2(k2− 1) ≡ 1 (mod 24), so we prove k2−h2(k2− 1) ≡ 1 (mod 8)
and k2−h2(k2−1) ≡ 1 (mod 3). Since k is odd we know that k2 ≡ 1 (mod 8). Therefore
we obtain

k2 − h2
(
k2 − 1

)
≡ 1− h2(1− 1) (mod 8) ≡ 1 (mod 8) .

To prove k2− h2(k2− 1) ≡ 1 (mod 3) we seperate the two cases 3 ∤ k and 3 | k. For 3 ∤ k
we either have k ≡ 1 (mod 3) or k ≡ 2 (mod 3) but in both cases we have k2 ≡ 1 (mod 3)
so we again obtain

k2 − h2
(
k2 − 1

)
≡ 1− h2(1− 1) ≡ 1 (mod 3) .

For 3 | k we obatin that 3 ∤ h, since we have gcd(h, k) = 1 so we, analogously to the first
case, obtain h2 ≡ 1 (mod 3) and thus

k2 − h2
(
k2 − 1

)
≡ k2 − 1

(
k2 − 1

)
≡ k2 − k2 + 1 ≡ 1 (mod 3) .
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So we conclude, for odd k, a(h′ + αk) = a(h′) for every choice of α ∈ Z.
Next we do the same calculations for even k. We have that

χj,r(N,Mh,k) :=νη(Mh,k) · ψj,r
(
N,M−1

h,k

)
=

(
k

−h

)
e

πi
12

(
h′k(1−(−h)2)+(−h)

(
−hh′+1

k
−k+3

)
−3

)

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
.

Therefore we obtain

a(h′) =

(
k

−h

)
e

πi
12

(
h′k(1−(−h)2)+(−h)

(
−hh′+1

k
−k+3

)
−3

)

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
.

Similar to above we get

a(h′ + αk) =

(
k

−h

)
e

πi
12

(
(h′+αk)k(1−h2)+h

(
h(h′+αk)+1

k
+k−3

)
−3

)
exp

(
−πiα

12

)
× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
=exp

(
−πiα

12

)
exp

(
πi

12

(
αk2

(
1− h2)+ αh2)) a(h′)

= exp

(
2πiα

k2
(
1− h2

)
+ h2 − 1

24

)
a(h′).

If we have k2
(
1− h2

)
+ h2 ≡ 1 (mod 24) the additional exponential is simply 1 and we

proved that a(h′ + αk) = a(h′) for even k and every choice of α ∈ Z. Since k is even, we
know that h has to be odd, because gcd(h, k) = 1. Analogously to above (changing the
roles of h and k) we have

k2
(
1− h2

)
+ h2 = k2 − k2h2 + h2 = h2 − k2

(
h2 − 1

)
≡ 1 (mod 24) .

So we conclude, for even k, a(h′ + αk) = a(h′) for every choice of α ∈ Z.

Next we determine the modulus of the Kloosterman sum defined in (IV.1.6).

Lemma V.2.2. We have that Kk,j,N (n, r, κ), from (IV.1.6), is a Kloosterman sum of
modulus k.
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Proof. For Mh,k =
(
h′ −hh′+1

k
k −h

)
and

Kk,j,N (n, r, κ) =
∑

0≤h<k
gcd(h,k)=1

χj,r(N,Mh,k)ζ

(
24N(κ+ r

2N )
2−1

)
h′−24gj,N (n)h

24k =:
∑

0≤h<k
gcd(h,k)=1

a(h)

we, analogously to above and for odd k, obtain that

a(h) :=

(
−h
k

)
exp

(
πi

12

(
(h′ − h)k − hh′ + 1

k
h
(
k2 − 1

)
− 3k

))
× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
.

Therefore

a(h+ αk)

=

(
−(h+ αk)

k

)
exp

(
πi

12

(
(h′ − (h+ αk))k −

(h+ αk)h′ + 1

k
(h+ αk)

(
k2 − 1

)
− 3k

))

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−(h+ αk)(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)

× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)(h+ αk)

))
=

(
−h
k

)
exp

(
πi

12

(
(h′ − h)k −

(h+ αk)h′ + 1

k
(h+ αk)

(
k2 − 1

)
− 3k

))
exp

(
πi

12

(
−αk2

))

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−h(2Ns+ j)2 − αk(2Ns+ j)2 + h′r2

))

× sin

(
πr(2Ns+ j)

Nk

)
exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h− 24gj,N (n)αk

))
=

(
−h
k

)
exp

(
πi

12

(
(h′ − h)k −

hh′ + 1

k
h
(
k2 − 1

)
− 3k

))
× exp

(
πi

12

(
−αk2 −

((
hh′ + 1

)
α+ αhh′ + α2h′k

) (
k2 − 1

)))

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
exp

(
απi

2N
(4N2s2 + 4Nsj + j2)

)

× sin

(
πr(2Ns+ j)

Nk

)
exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
exp

(
−2πigj,N (n)α

)
=

(
−h
k

)
exp

(
πi

12

(
(h′ − h)k −

hh′ + 1

k
h
(
k2 − 1

)
− 3k

))
× exp

(
πi

12
α
(
−k2 −

(
hh′ + 1 + hh′ + αh′k

) (
k2 − 1

)))
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× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
exp

(
2απiNs2 + 2απisj +

απij2

2N

)

× sin

(
πr(2Ns+ j)

Nk

)
exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
exp

(
−2πigj,N (n)α

)
=exp

(
απij2

2N

)
exp

(
πi

12
α
(
−k2 −

(
2hh′ + 1 + αh′k

) (
k2 − 1

)))
×
(
−h
k

)
exp

(
πi

12

(
(h′ − h)k −

hh′ + 1

k
h
(
k2 − 1

)
− 3k

))

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))

× sin

(
πr(2Ns+ j)

Nk

)
exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
exp

(
−2πigj,N (n)α

)
=exp

(
πi

12
α

(
12j2

2N

))
exp

(
πi

12
α
(
−k2 −

(
2hh′ + 1 + αh′k

) (
k2 − 1

)))
exp

(
−2πigj,N (n)α

)
a(h)

= exp

(
πi

12
α

(
12j2

2N
− k2 −

(
2hh′ + 1 + αh′k

) (
k2 − 1

))
− 2πigj,N (n)α

)
a(h)

= exp

(
πi

12
α

(
6j2

N
− k2 −

(
2hh′k2 + k2 + αh′k3 − 2hh′ − 1− αh′k

))
− 2πigj,N (n)α

)
a(h)

= exp

(
πi

12
α

(
6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 1 + αh′k

)
− 2πigj,N (n)α

)
a(h)

= exp

2πiα

6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 1 + αh′k − 24gj,N (n)

24

 a(h).

If we have that 6j2

N − 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24gj,N (n) ≡ 1 (mod 24)
this additional exponential is simply 1 and we proved that a(h) = a(h+ αk) for every
choice of α ∈ Z and odd k.

We go on as before and want to prove that it is 1 modulo 3 and 8. Remember that
since k is odd we know that k2 ≡ 1 (mod 8). We see that, by definition of gj,N (n),

6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24gj,N (n)

=
6j2

N
+ (1− k2)(2hh′ + 2 + αh′k)− 24n− 6j2

N
+ 1 ≡ 1 (mod 8) .

To prove 6j2

N − 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24gj,N (n) ≡ 1 (mod 3) we
seperate the two cases 3 ∤ k and 3 | k. For 3 ∤ k we have k2 ≡ 1 (mod 3) analogously to
above and obtain

6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24gj,N (n)

=
6j2

N
+ (1− k2)(2hh′ + 2 + αh′k)− 24n− 6j2

N
+ 1 ≡ 1 (mod 3) .
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For 3 | k we have that hh′ ≡ −1 (mod k) is equivalent to k | (hh′ + 1), which implies
3 | (hh′ + 1) and therefore gives hh′ ≡ −1 (mod 3). We thus obtain that

6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24gj,N (n)

=
6j2

N
− 2hh′k2 − 2k2 − αh′k3 + 2hh′ + 2 + αh′k − 24n− 6j2

N
+ 1

= −2hh′k2 − 2k2 − αh′k3 + 2hh′ + 3 + αh′k − 24n

≡ 2hh′ ≡ 2 · (−1) ≡ −2 ≡ 1 (mod 3) .

Next we do the same calculations for even k. From now on we write k = 2νµ for
some ν ≥ 1 and some odd µ ∈ N and x = 2x̃+ 1 with x̃ ∈ N for every odd element x.
Analogously to above we have

a(h) =

(
k

−h

)
e

πi
12

(
h′k(1−h2)+h

(
hh′+1

k +k−3
)
−3
)

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
− πi

2Nk

(
−h(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)
× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)h

))
.

We look at the cases ν ≥ 2 and ν = 1 seperately.
For ν ≥ 2 and using Lemma V.2.3 we obtain

a(h+ αk)

=

(
k

−(h+ αk)

)
e

πi
12

(
h′k(1−(h+αk)2)+(h+αk)

(
(h+αk)h′+1

k
+k−3

)
−3

)

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−(h+ αk)(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)

× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)(h+ αk)

))
=exp

(
πiαj2

2N

)
exp

(
πi

12

(
h′k(−2hαk − α2k2) + αk

(
hh′ + 1

k
+ k − 3

)
+ (h+ αk)αh′

))
× exp

(
−2πigj,N (n)α

)
a(h)

= exp

(
πi

12
α

(
12j2

2N
+ h′k(−2hk − αk2) + k

(
hh′ + 1

k
+ k − 3

)
+ (h+ αk)h′

)
− 2πigj,N (n)α

)
a(h)

= exp

(
πi

12
α

(
6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 1 + k2 − 3k + αkh′

)
− 2πigj,N (n)α

)
a(h)

= exp

2πiα

 6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 1 + k2 − 3k + αkh′ − 24gj,N (n)

24

 a(h).
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If we have that

α

(
6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 1 + k2 − 3k + αkh′ − 24gj,N (n)

)
≡ 0 (mod 24)

this additional exponential is simply 1 and we proved that a(h) = a(h+ αk) for every
choice of α ∈ Z, even k, and ν ≥ 2.

To show this we seperate the following cases. For even α we need to show that

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) ≡ 1 (mod 12) ,

i.e., that this expression is congruent to 1 modulo 4 and 3, by the Chinese Remainder
Theorem.
For odd α we need to show that

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) ≡ 1 (mod 24) ,

i.e., that this expression is congruent to 1 modulo 8 and 3.
To prove the congruences modulo 4 and 8 we additionally seperate the cases ν ≥ 3

and ν = 2.
For ν ≥ 3 we know that k ≡ 0 (mod 8) and thus hh′ ≡ −1 (mod 8) analogously to

above. We see that

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n)

=
6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24n− 6j2

N
+ 1

= −2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n

≡ −2 + 3 ≡ 1 (mod 8) .

Since k ≡ 0 (mod 8) implies k ≡ 0 (mod 4) the same calculation holds modulo 4
(independent of α).

For ν = 2, so k = 4µ = 4(2µ̃ + 1), we have hh′ ≡ −1 (mod 4) and therefore
2hh′ ≡ −2 (mod 8). For odd α and noting that h′ has to be odd1 we thus obtain

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n)

= −2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n

1Note that h is odd since k is even. Assume that h′ would be even, then hh′ would be even and
hh′ + 1 would be odd, which would be a contradiction to hh′ ≡ −1 (mod 4).
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≡ −2 + 3− 3k + αkh′

≡ 1− 3(4(2µ̃+ 1)) + 4(2α̃+ 1)(2µ̃+ 1)(2h̃′ + 1)

≡ 1− 4 + 4 ≡ 1 (mod 8) .

For even α we get

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n)

= −2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n

≡ 2hh′ + 3 ≡ −2 + 3 ≡ 1 (mod 4) .

To prove 6j2

N − 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) ≡ 1 (mod 3)
we seperate the two cases 3 ∤ k and 3 | k, but are independent of the choice of α and ν.
For 3 ∤ k we have k2 ≡ 1 (mod 3) analogously to above and obtain

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n)

= −2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n

≡ (1− k2)(2hh′ + h′αk + 2) + 1 ≡ 1 (mod 3) .

For 3 | k we obtain

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n)

= −2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n

≡ 2hh′ ≡ 1 (mod 3) ,

analogously to above.
Lastly we look at what happens for ν = 1. Using Lemma V.2.3 we obtain that

a(h+ αk)

=

(
k

−(h+ αk)

)
e

πi
12

(
h′k(1−(h+αk)2)+(h+αk)(

(h+αk)h′+1
k

+k−3)−3

)

× exp

(
3πi

4

)√
2

Nk

k−1∑
s=0

exp

(
−

πi

2Nk

(
−(h+ αk)(2Ns+ j)2 + h′r2

))
sin

(
πr(2Ns+ j)

Nk

)

× exp

(
2πi

24k

((
24N

(
κ+

r

2N

)2
− 1

)
h′ − 24gj,N (n)(h+ αk)

))
=exp

(
2πiα

(
3hk + 3

2
αk2 − 3(µ− 1)k

24

))

× exp

2πiα

 6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 1 + k2 − 3k + αkh′ − 24gj,N (n)

24

 a(h)
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=exp

2πiα

 6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 1 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk + 3

2
αk2 − 3(µ− 1)k

24


× a(h).

Again, if we have that

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k ≡ 1 (mod 24)

this additional exponential is simply 1 and we proved that a(h) = a(h+ αk) for every
choice of α ∈ Z and even k.

We go on as before and want to prove that it is 1 modulo 3 and 1 modulo 8, respectively
4, for odd, respectively even, α.

We start with the congruences modulo 8 and 4. We know that

k2 = 4µ2 = 4 (2µ̃+ 1)2 = 4
(
4µ̃2 + 4µ̃+ 1

)
≡ 4 (mod 8)

and k3 = 8µ3 ≡ 0 (mod 8). Since h is odd we have h2 ≡ 1 (mod 8) therefore we have
h(−h) = −h2 ≡ −1 (mod 8), so we can choose h′ ≡ −h (mod 8). For odd α we see that

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k

=− 2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3(1 + (µ− 1))k + αkh′ − 24n+ 3hk +
3

2
αk2

≡2hh′ + 3 + 4− 3µk + αkh′ + 3hk + 6α ≡ −2 + 7 + 3(h− µ)k + αkh′ + 6α

≡5 + 3(h− µ)k − αkh+ 6α ≡ 5 + 4(h̃− µ̃)µ− 2(2α̃+ 1)µ(2h̃+ 1) + 6(2α̃+ 1)

≡5 + 4h̃µ− 4µ̃µ− (4α̃µ+ 2µ)(2h̃+ 1) + 4α̃+ 6

≡3 + 4h̃µ− 4µ̃µ− (4α̃µ+ 4µh̃+ 2µ) + 4α̃ ≡ 3− 4µ̃µ− 4α̃µ− 2µ+ 4α̃

≡3− 4µ̃− 4α̃− 4µ̃− 2 + 4α̃ ≡ 1 (mod 8) .

Note that since 2 | k we have 2hh′ ≡ −2 (mod 4). For even α we thus get

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k

=− 2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3µk + αkh′ − 24n+ 3hk +
3

2
αk2

≡− 2 + 3− 3µk + 3hk ≡ 1 + 3(h− µ)k ≡ 1 (mod 4) ,

since h− µ is even.
Lastly we show the congruence modulo 3, namely

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k ≡ 1 (mod 3) .
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To do so we seperate the two cases 3 ∤ k and 3 | k, but are independent of the choices of
α. For 3 ∤ k we have k2 ≡ 1 (mod 3), so we obtain

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k

=− 2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n+ 3hk + 6αµ2 − 3(µ− 1)k

≡(1− k2)(2hh′ + h′αk + 2) + 1 ≡ 1 (mod 3) .

For 3 | k we obatin

6j2

N
− 2hh′k2 − h′αk3 + 2hh′ + 2 + k2 − 3k + αkh′ − 24gj,N (n) + 3hk +

3

2
αk2 − 3(µ− 1)k

=− 2hh′k2 − h′αk3 + 2hh′ + 3 + k2 − 3k + αkh′ − 24n+ 3hk + 6αµ2 − 3(µ− 1)k

≡2hh′ ≡ 1 (mod 3) ,

analogously to above.

In the previous proof we used a result on the Kronecker symbol, which we want to
summarize in the following lemma.

Lemma V.2.3. For k = 2νµ with ν ≥ 1 and some odd µ ∈ N we have

(
k

−(h+ αk)

)
=


(

k
−h

)
if ν ≥ 2,

exp
(
πi
(
2αhk+α2k2−2(µ−1)αk

8

))(
k
−h

)
if ν = 1.

Proof. We have α ∈ Z and split the Kronecker symbol as follows(
k

−(h+ αk)

)
=

(
2

−(h+ αk)

)ν ( µ

−(h+ αk)

)
.

By quadratic reciprocity we see that(
µ

−(h+ αk)

)
=(−1)

µ−1
2

−(h+αk)−1
2

(
−(h+ αk)

µ

)
= (−1)−

(µ−1)αk
4 (−1)

µ−1
2

−h−1
2

(
−h
µ

)
=(−1)−

(µ−1)αk
4

(
µ

−h

)
.

Note that µ− 1 is even, since we have that µ is odd, and that gcd(−(h+ αk), 2) = 1. If
ν is even we obtain that(

2

−(h+ αk)

)ν
= 1 =

(
2

−h

)ν
,

(
µ

−(h+ αk)

)
= (−1)−

(µ−1)αk
4

(
µ

−h

)
=

(
µ

−h

)
,
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and thus (
k

−(h+ αk)

)
=

(
2

−(h+ αk)

)ν ( µ

−(h+ αk)

)
=

(
k

−h

)
,

using that − (µ−1)αk
4 ≡ 0 (mod 2) since 4 | k and the fact that ( a

−b) = sgn(a)
(
a
b

)
.

Lets assume ν is odd. We obtain, by quadratic reciprocity that(
2

−(h+ αk)

)(
2

−h

)
=

(
2

−1

)(
2

h+ αk

)(
2

−1

)(
2

h

)
=(−1)

(h+αk)2−1
8

−h2−1
8 = (−1)

2hαk+α2k2

8 .

Overall we therefore have(
k

−(h+ αk)

)
=

(
2

−(h+ αk)

)ν (
µ

−(h+ αk)

)
= (−1)

2hαkν+α2k2ν
8

− (µ−1)αk
4

(
2

−h

)ν (
µ

−h

)
=(−1)

2αhkν+α2k2ν−2(µ−1)αk
8

(
k

−h

)
.

For ν ≥ 3 we have 8 | k and thus

2αhkν + α2k2ν − 2(µ− 1)αk ≡ 0 (mod 16) ,

such that we again obtain
(

k
−(h+αk)

)
=
(

k
−h

)
.

For ν = 1 we have(
k

−(h+ αk)

)
=(−1)

2αhk+α2k2−2(µ−1)αk
8

(
k

−h

)
= exp

(
πi

(
2αhk + α2k2 − 2(µ− 1)αk

8

))(
k

−h

)
.

This finishes the proof.

The next lemma gives a bound on the minumum coming from Malishev’s result in
the odd k case.

Lemma V.2.4. We have

min
(
gcd (µ1 + jsk, gcd(N, k)k)

1
2 , gcd (ν1, gcd(N, k)k)

1
2

)
= ON

(
n

1
2

)
and

min
(
gcd (µ2 + 3jsk, 3 gcd(N, k)k)

1
2 , gcd (ν2, 3 gcd(N, k)k)

1
2

)
= ON

(
n

1
2

)
.

Proof. First we note that

min
(
gcd (µ1 + jsk, gcd(N, k)k)

1
2 , gcd (ν1, gcd(N, k)k)

1
2

)
≤ gcd (µ1 + jsk, gcd(N, k)k)

1
2 .
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Since gcd(a, bc) ≤ gcd(a, b) gcd(a, c), for a, b, c ∈ Z, we see that

gcd (µ1 + jsk, gcd(N, k)k) = gcd

(
µ1 + jsk,

k

gcd(N, k)
gcd(N, k)2

)
≤ gcd

(
µ1 + jsk,

k

gcd(N, k)

)
gcd

(
µ1 + jsk, gcd(N, k)2

)
,

where we have that gcd
(
µ1 + jsk, gcd(N, k)2

)
≤ gcd(N, k)2 ≤ N2 = ON (1). We note

that gcd(a, b) ≤ gcd(xa, b) for any x ∈ Z\{0}, which implies

gcd

(
µ1 + jsk,

k

gcd(N, k)

)
≤ gcd

(
24(µ1 + jsk),

k

gcd(N, k)

)
.

Since we further have that gcd(a, b) = gcd(a (mod b) , b) for b ̸= 0 we can reduce
24(µ1 + jsk) modulo k

gcd(N,k) and see that

24(µ1 + jsk)

=
(
−24n+ 1− k2

)
gcd(N, k)− 24j2[4]′ k

gcd(N,k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

+ 24jsk

≡ (−24n+ 1) gcd(N, k) + 6j2
[

N

gcd(N, k)

]′
k

gcd(N,k)

≡
[

N

gcd(N, k)

]′
k

gcd(N,k)

(
N (24n− 1) + 6j2

) (
mod

k

gcd(N, k)

)
.

We now notice that by definition we have gcd( N
gcd(N,k) ,

k
gcd(N,k)) = 1. By the definition of

the negative inverse we thus notice that we additionally have

1 = gcd

 N

gcd(N, k)

[
N

gcd(N, k)

]′
k

gcd(N,k)

,
k

gcd(N, k)

 = gcd

[ N

gcd(N, k)

]′
k

gcd(N,k)

,
k

gcd(N, k)

 ,

using that gcd(ab, c) = gcd(a, c) if gcd(b, c) = 1. This gives us that

gcd

(
24(µ1 + jsk),

k

gcd(N, k)

)
=gcd

(
N (24n− 1) + 6j2,

k

gcd(N, k)

)
.

Therefore we obtain

gcd (µ1 + jsk, gcd(N, k)k)
1
2 =ON

(
gcd

(
N (24n− 1) + 6j2,

k

gcd(N, k)

) 1
2

)
=ON

((
N (24n− 1) + 6j2

) 1
2

)
= ON

(
n

1
2

)
.

The second result follows analogously, with 8 instead of 24.

148



V.2. ADDITIONAL PROOFS FOR SECTION IV.3

A similar result holds in the even k case.

Lemma V.2.5. We have

min

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν5, 2

α+5k gcd(N,µ)
) 1

2

 = ON (n) ,

and

min

gcd(µ6 + 48jks+
3 · 2α+5ℓk gcd(N,µ)

16
, 3 · 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν6, 3 · 2α+5k gcd(N,µ)

) 1
2

= ON (n) .

Proof. First we note that

min

(
gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

) 1
2

, gcd
(
ν5, 2

α+5k gcd(N,µ)
) 1

2

)

≤ gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

) 1
2

.

Since gcd(a, bc) ≤ gcd(a, b) gcd(a, c) we see that

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

)
≤ gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
,

µ

gcd(N,µ)

)
gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2ν+α+2

)
× gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 23 gcd(N,µ)2

)
,

where gcd(µ5 + 16jks+ 2α+5ℓk gcd(N,µ)
16 , 23 gcd(N,µ)2) ≤ 23 gcd(N,µ)2 ≤ 8N2 = ON (1).

Thus we are left with bounding the first and second gcd.
We note that gcd(a, b) ≤ gcd(xa, b) for any x ∈ Z\{0}, which implies

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
,

µ

gcd(N,µ)

)
≤ gcd

(
3
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
,

µ

gcd(N,µ)

)

and

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2ν+α+2

)
≤ gcd

(
2α6

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16

)
, 2ν+α+2

)
.

Since we have that gcd(a, b) = gcd(a (mod b) , b) for b ̸= 0 we can reduce the value
3
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
modulo µ

gcd(N,µ) and see that
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3
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
=
(
−24n+ 1 + 2k2 − 3k

)
2α+2 gcd(N,µ)− 24j22ν+α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 24µj2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ) + 3 · 2α+1ℓk gcd(N,µ) + 48jks

≡ (−24n+ 1) 2α+2 gcd(N,µ) + 6j22α+2

[
N

gcd(N,µ)

]′
µ

gcd(N,µ)

≡
[

N

gcd(N,µ)

]′
µ

gcd(N,µ)

2α+2
(
N (24n− 1) + 6j2

) (
mod

µ

gcd(N,µ)

)
.

Analogously we can reduce 2α6
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
modulo 2ν+α+2 and see

that

2α6
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
=
(
−48n+ 2 + 4k2 − 6k

)
22α+2 gcd(N,µ)− 48j22ν+2α+2[4]′ µ

gcd(N,µ)

[
N2ν

gcd(N,µ)

]′
µ

gcd(N,µ)

− 2α48µj2
[
Nµ

2α

]′
2ν+α+2

gcd(N,µ) + 3 · 22α+2ℓk gcd(N,µ) + 2α+224jks

≡ (−48n+ 2) 22α+2 gcd(N,µ) + 2α48µ [µ]
′
2ν+α+2 j

2

[
N

2α

]′
2ν+α+2

gcd(N,µ)

≡
[
N

2α

]′
2ν+α+2

gcd(N,µ)
(
2α+2N (48n− 2)− 2α48j2

) (
mod2ν+α+2

)
.

We now notice that by definition we have gcd( N
gcd(N,µ) ,

µ
gcd(N,µ)) = 1 as well as

gcd( N2α , 2
ν+α+2) = 1. By the definition of the negative modular inverse we thus notice

that we also have

1 = gcd

 N

gcd(N,µ)

[
N

gcd(N,µ)

]′
µ

gcd(N,µ)

,
µ

gcd(N,µ)

 = gcd

[ N

gcd(N,µ)

]′
µ

gcd(N,µ)

,
µ

gcd(N,µ)

 ,

and

1 = gcd

(
N

2α

[
N

2α

]′
2ν+α+2

, 2ν+α+2

)
= gcd

([
N

2α

]′
2ν+α+2

, 2ν+α+2

)
,

using that gcd(ab, c) = gcd(a, c) if gcd(b, c) = 1. This gives us that

gcd

(
3
(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
,

µ

gcd(N,µ)

)
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= gcd

(
2α+2

(
N (24n− 1) + 6j2

)
,

µ

gcd(N,µ)

)
and

gcd
(
2α6

(
µ5 + 16jks+ 2α+1ℓk gcd(N,µ)

)
, 2ν+α+2

)
= gcd

(
gcd(N,µ)2α

(
4N (48n− 2)− 48j2

)
, 2ν+α+2

)
.

Overall we therefore obtain

gcd

(
µ5 + 16jks+

2α+5ℓk gcd(N,µ)

16
, 2α+5k gcd(N,µ)

) 1
2

=ON

(
gcd

(
2α+2

(
N (24n− 1) + 6j2

)
,

µ

gcd(N,µ)

) 1
2

gcd
(
gcd(N,µ)2α

(
4N (48n− 2)− 48j2

)
, 2ν+α+2

) 1
2

)

=ON

((
2α+2

(
N (24n− 1) + 6j2

)) 1
2
(

gcd(N,µ)2α
(
4N (48n− 2)− 48j2

)) 1
2
)

= ON

(
n

1
2 n

1
2

)
= ON (n) .

The second result follows analogously.

V.3 Additional proofs for Section IV.4

We prove the following lemma, giving a bound on the sum defined in (IV.4.20).

Lemma V.3.1. The sum K∗
k,j,N (n, r, κ, ℓ) defined in (IV.4.20) is an incomplete Klooster-

man sum and can be bounded by (IV.1.7) following the techniques by Lehner [Leh41, Sec-
tion 10].

Proof. In the proof of Theorem IV.1.2 we saw that we can rewrite

Kk,j,N (n, r, κ) = ϵ(k, j,N, r)
∑

h (modGk)
gcd(h,Gk)=1

(
h

ρ

)
exp

(
2πi

Gk

(
µ∗h− ν∗[h]′Gk

))
,

where µ∗, ν∗ ∈ Z, G ∈ N, ρ ∈ N odd such that all his prime divisors divide Gk, [h]′Gk the
negative modular inverse of h modulo Gk, and some ϵ(k, j,N, r) = ON (1). Analogously
to [Leh41, equation (3.3)] we denote by {a, b} the unique real number defined by

{a, b} ≡ a (mod b) , 0 < {a, b} ≤ b.
Since we noted that the extra restriction on k1 in the sum K∗

k,j,N (n, r, κ, ℓ) constrains the
choice of h′ to an interval mod k, this gives us that we can rewrite K∗

k,j,N (n, r, κ, ℓ) as

K∗
k,j,N (n, r, κ, ℓ) = ϵ(k, j,N, r)

∑
h (modGk)
gcd(h,Gk)=1

0≤[h]′Gk<Gk
σ1≤{[h]′Gk,k}<σ2

(
h

ρ

)
exp

(
2πi

Gk

(
µ∗h− ν∗[h]′Gk

))
,
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where the last two conditions in the sum mean that [h]′Gk is restricted to G (or possibly
G+1) intervals whose endpoints are congruent to σ1, σ2 modulo k, with 0 ≤ σ1 < σ2 ≤ k.

Analouge to [Leh41, page 650] we define m(s) in the interval (0, k) by

m(s) :=

{
1 for σ1 ≤ s < σ2,

0 elsewhere in the interval 0 ≤ s < k,

and outside of the interval by periodicity. We have

m(s) =
k−1∑
ℓ=0

αℓ exp

(
2πi

sℓ

k

)
,

where

αj =
1

k

k−1∑
s=0

m(s) exp

(
−2πisj

k

)
=

1

k

σ2−1∑
s=σ1

exp

(
−2πisj

k

)
, α0 =

σ2 − σ1
k

.

We see that |α0| ≤ 1, while for j ̸= 0

|αj | ≤
2

k

∣∣∣∣1− exp

(
−2πij

k

)∣∣∣∣−1

=
1

k
csc

(
πj

k

)
.

Therefore we obtain

k−1∑
j=0

|αj | ≪ 1 +

k
2∑
j=1

1

j
= O (log(k)) . (V.3.1)

This gives us

K∗
k,j,N (n, r, κ, ℓ) =O

 ∑
h (modGk)
gcd(h,Gk)=1

m([h]′Gk)

(
h

ρ

)
exp

(
2πi

Gk

(
µ∗h− ν∗[h]′Gk

))

=O

k−1∑
ℓ=0

αℓ
∑

h (modGk)
gcd(h,Gk)=1

(
h

ρ

)
exp

(
2πi

Gk

(
µ∗h− (ν∗ − ℓ)[h]′Gk

)) .

In Section IV.3 we saw that the inner sum is bounded by (IV.1.7), which, using (V.3.1),
yields

K∗
k,j,N (n, r, κ, ℓ) =O

(
nk

1
2
+ε log(k)

)
= O

(
nk

1
2
+ε̃
)

for ε, ε̃ > 0.
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Appendix

Here, we offer some numerical data related to Table IV.1.

In Chapter IV we defined the coefficients of Aj,N by

Aj,N (τ) = q
j2

4N
− 1

24

aj,N (0) +∑
n≥1

aj,N (n)q
n

 ,

which together with

Aj,N (τ) =q
j2

4N
− 1

24

∑
n≥0

p(n)qn

∑
m≥0

q(Nm+j)m −
∑
m≥1

q(Nm−j)m


=q

j2

4N
− 1

24

 ∑
n,m≥0

p(n)qn+(Nm+j)m −
∑
n≥0

∑
m≥1

p(n)qn+(Nm−j)m


=:q

j2

4N
− 1

24Bj,N (τ)

gives that

Bj,N (τ) = aj,N (0) +
∑
n≥1

aj,N (n)q
n.

We compute B1,3(τ), B5,8(τ) and B3,10(τ) up to q20 to obtain the values of the first
column of Table IV.1 by the following code implemented in Mathematica [Wol17]. Note
that throughout the code we use the letter M instead of N . We could not use N , since
this letter is reserved in Mathematica.

In [ 1 ] := B[ q , j , M ] := Sum[Sum[PartitionsP [ n ]
*qˆ(n + (M*m + j )*m) ,
{m, 0 , 1000} ] , {n , 0 , 1000} ] = Sum[Sum[PartitionsP [ n ]*
qˆ(n + (M*m = j )*m) , {m, 1 , 1000} ] , {n , 0 , 1000} ]
In [ 2 ] := Series [B[ q , 1 , 3 ] , {q , 0 , 20} ]
Out[2 ]= 1 + q + qˆ2 + 2 qˆ3 + 4 qˆ4 + 5 qˆ5 + 8 qˆ6 + 11 qˆ7
+ 16 qˆ8 + 22 qˆ9 + 30 qˆ10 + 40 qˆ11 + 55 qˆ12 + 72 qˆ13
+96 qˆ14 + 125 qˆ15 + 164 qˆ16 + 210 qˆ17 + 272 qˆ18 + 346 qˆ19
+ 442 qˆ20 + O[ q ]ˆ21
In [ 3 ] := Series [B[ q , 5 , 8 ] , {q , 0 , 20} ]
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Out[3 ]= 1 + q + 2 qˆ2 + 2 qˆ3 + 4 qˆ4 + 5 qˆ5 + 8 qˆ6 + 10 qˆ7
+ 15 qˆ8 + 19 qˆ9 + 27 qˆ10 + 34 qˆ11 + 47 qˆ12 + 60 qˆ13
+ 80 qˆ14 + 101 qˆ15 + 133 qˆ16 + 167 qˆ17 + 216 qˆ18
+ 270 qˆ19 + 345 qˆ20 + O[ q ]ˆ21
In [ 4 ] := Series [B[ q , 3 , 1 0 ] , {q , 0 , 20} ]
Out[4 ]= 1 + q + 2 qˆ2 + 3 qˆ3 + 5 qˆ4 + 7 qˆ5 + 11 qˆ6 + 14 qˆ7
+ 21 qˆ8 + 28 qˆ9 + 39 qˆ10 + 51 qˆ11 + 70 qˆ12 + 91 qˆ13
+121 qˆ14 + 156 qˆ15 + 204 qˆ16 + 260 qˆ17 + 336 qˆ18
+ 424 qˆ19 + 541 qˆ20 + + O[ q ]ˆ21

Next we implement the coefficients in the way presented in (IV.4.26), where the sum
over k runs up to J . Therefore we first implement the multiplier defined in (IV.2.6), a
function u(n) that constructs a list of coprime elements to a given integer n, a function
H(k, j) that gives the j-th coprime element to k (from the list u(k)), and the Kloosterman
sum as defined in (IV.1.6). Note that here we use the letter t instead of κ.

In [ 5 ] := X[ j , r , M , h , k ] := X[ j , r , M, h , k ] =
I f [Mod[ k , 2 ] == 1 , KroneckerSymbol [=h , k ]*
Exp [ ( (Pi* I )/(12))*((=ModularInverse [ h , k ] = h)*
k = ( ( h*(=ModularInverse [ h , k ] ) + 1)/k )*h*( kˆ2 = 1) = 3*k ) ] ,
KroneckerSymbol [ k , =h ]*
Exp [ ( (Pi* I )/(12))*(=ModularInverse [ h , k ]* k*(1 = hˆ2) =

h*(=((h*(=ModularInverse [ h , k ] ) + 1)/k ) = k + 3) = 3 ) ] ] *
Exp [ ( 3*Pi* I ) /4 ]*Sqrt [ 2 / (M*k ) ] *Sum[Exp [ ( (Pi* I )/(2*
M*(=k)))*(=h*(2*M* l + j )ˆ2 + (=ModularInverse [ h , k ] ) * r ˆ2 ) ]*
Sin [ (Pi* r *(2*M* l + j ) ) / (M*k ) ] , { l , 0 , k = 1} ]
In [ 6 ] := u [ n In t eg e r ] := u [ n ] = With [{ l = Range [ n ]} ,
Pick [ l , CoprimeQ [ l , n ] ] ]
In [ 7 ] := H[ k , j ] := H[ k , j ] = Extract [ u [ k ] , j ]
In [ 8 ] := K[ k , j , M , n , r , t ] := K[ k , j , M, n , r , t ] =
I f [ k == 1 , X[ j , r , M, 0 , 1 ]*Exp [ ( 1 / ( 2 4 ) )* ( 2*Pi*
I * ( (24*M*( t + ( r /(2*M)) )ˆ2 = 1)*(=ModularInverse [ 0 , 1 ] ) =

24*(n + ( j ˆ2/(4*M)) = 1 / ( 2 4 ) ) * 0 ) ) ] , Sum[X[ j , r , M, H[ k , b ] , k ]*
Exp [ ( 1 / ( 24* k ) )* ( 2*Pi* I * ( (24*M*( t + ( r /(2*M)) )ˆ2 =

1)*(=ModularInverse [H[ k , b ] , k ] ) =

24*(n + ( j ˆ2/(4*M)) = 1/(24) )*H[ k , b ] ) ) ] , {b , 1 , EulerPhi [ k ] } ] ]
In [ 9 ] := a [ n , j , M , J ] := a [ n , j , M, J ]
= =((2*Pi* I )/ (Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) )
*Sum[Sum[ (K[ k , j , M, n , r , 0 ] / ( k ˆ2))
*NIntegrate [ Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ2 ]
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*Cot [Pi*(=(x/k ) + ( r /(2*M*k ) ) ) ]
*BesselI [ 1 , ( (4*Pi*Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) / k )*
Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ 2 ] ] , {x , =Sqrt [ 1/ (24*M) ] , r /(2*M) ,
Sqrt [ 1/ (24*M) ] } , Method => ”Pr inc ipa lVa lue ” ,
WorkingPrecision => 120 ] , { r , 1 , Ceiling [ Sqrt [M/6 ] = 1 ] } ] , {k ,
1 , J } ] = ( (2*Pi* I )/ (Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) ) *
Sum[Sum[ (K[ k , j , M, n , r , 0 ] / ( k ˆ2))*NIntegrate [
Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ2 ]*Cot [Pi*(=(x/k ) + ( r /(2*M*k ) ) ) ] *
BesselI [ 1 , ( (4*Pi*Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) / k )*
Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ 2 ] ] , {x , =Sqrt [ 1/ (24*M) ] ,
Sqrt [ 1/ (24*M) ] } , WorkingPrecision => 120 ] , { r ,
Ceiling [ Sqrt [M/ 6 ] ] , M = 1} ] , {k , 1 ,
J } ] = ( (2*Pi* I )/ (Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) ) *
Sum[Sum[Sum[ (K[ k , j , M, n , r , t ] / ( k ˆ2))
*NIntegrate [ Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ2 ]*
Cot [Pi*(=(x/k ) + ( t /k ) + ( r /(2*M*k ) ) ) ] *
BesselI [ 1 , ( (4*Pi*Sqrt [ n + ( j ˆ2/(4*M)) = ( 1 / ( 2 4 ) ) ] ) / k )*
Sqrt [ ( 1 / ( 2 4 ) ) = M*x ˆ 2 ] ] , {x , =Sqrt [ 1/ (24*M) ] ,
Sqrt [ 1/ (24*M) ] } , WorkingPrecision => 120 ] , { t , 1 ,
k = 1} ] , { r , 1 , M = 1} ] , {k , 1 , J } ]

We obtain the following results for the coefficients a1,3(n), a5,8(n), and a3,10(n) for
n ∈ {3, 10, 18} and J ∈ {1, 3, 20, 25, 50}, which fill the rest of Table IV.1.

In [ 1 0 ] := N[ a [ 3 , 1 , 3 , 1 ] , 20 ]
Out[10 ]= 2.3181245751167808453
In [ 1 1 ] := N[ a [ 3 , 1 , 3 , 3 ] , 10 ]
Out[11 ]= 2.288642013 + 0.*10ˆ=10 I
In [ 1 2 ] := N[ a [ 3 , 1 , 3 , 2 0 ] , 10 ]
Out[12 ]= 2.099000692 + 0.*10ˆ=10 I
In [ 1 3 ] := N[ a [ 3 , 1 , 3 , 2 5 ] , 10 ]
Out[13 ]= 2.087549722 + 0.*10ˆ=10 I
In [ 1 4 ] := N[ a [ 3 , 1 , 3 , 5 0 ] , 10 ]
Out[14 ]= 2.052693607 + 0.*10ˆ=10 I
In [ 1 5 ] := N[ a [ 1 0 , 1 , 3 , 1 ] , 10 ]
Out[15 ]= 29.89888333
In [ 1 6 ] := N[ a [ 1 0 , 1 , 3 , 3 ] , 10 ]
Out[16 ]= 30.24415241 + 0.*10ˆ=9 I
In [ 1 7 ] := N[ a [ 1 0 , 1 , 3 , 2 0 ] , 10 ]
Out[17 ]= 30.08657561 + 0.*10ˆ=9 I
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In [ 1 8 ] := N[ a [ 1 0 , 1 , 3 , 2 5 ] , 10 ]
Out[18 ]= 30.07892325 + 0.*10ˆ=9 I
In [ 1 9 ] := N[ a [ 1 0 , 1 , 3 , 5 0 ] , 10 ]
Out[19 ]= 30.04183108 + 0.*10ˆ=9 I
In [ 2 0 ] := N[ a [ 1 8 , 1 , 3 , 1 ] , 10 ]
Out[20 ]= 271.3098369
In [ 2 1 ] := N[ a [ 1 8 , 1 , 3 , 3 ] , 10 ]
Out[21 ]= 272.2656084 + 0.*10ˆ=8 I
In [ 2 2 ] := N[ a [ 1 8 , 1 , 3 , 2 0 ] , 10 ]
Out[22 ]= 272.0719934 + 0.*10ˆ=8 I
In [ 2 3 ] := N[ a [ 1 8 , 1 , 3 , 2 5 ] , 10 ]
Out[23 ]= 272.0650969 + 0.*10ˆ=8 I
In [ 2 4 ] := N[ a [ 1 8 , 1 , 3 , 5 0 ] , 10 ]
Out[24 ]= 272.0407998 + 0.*10ˆ=8 I

In [ 2 5 ] := N[ a [ 3 , 5 , 8 , 1 ] , 10 ]
Out[25 ]= 2.519680370
In [ 2 6 ] := N[ a [ 3 , 5 , 8 , 3 ] , 10 ]
Out[26 ]= 2.220002095 + 0.*10ˆ=10 I
In [ 2 7 ] := N[ a [ 3 , 5 , 8 , 2 0 ] , 10 ]
Out[27 ]= 1.999336893 + 0.*10ˆ=10 I
In [ 2 8 ] := N[ a [ 3 , 5 , 8 , 2 5 ] , 10 ]
Out[28 ]= 1.982974730 + 0.*10ˆ=10 I
In [ 2 9 ] := N[ a [ 3 , 5 , 8 , 5 0 ] , 10 ]
Out[29 ]= 1.989195022 + 0.*10ˆ=10 I
In [ 3 0 ] := N[ a [ 1 0 , 5 , 8 , 1 ] , 10 ]
Out[30 ]= 26.26967573
In [ 3 1 ] := N[ a [ 1 0 , 5 , 8 , 3 ] , 10 ]
Out[31 ]= 26.98533328 + 0.*10ˆ=9 I
In [ 3 2 ] := N[ a [ 1 0 , 5 , 8 , 2 0 ] , 10 ]
Out[32 ]= 26.98561400 + 0.*10ˆ=9 I
In [ 3 3 ] := N[ a [ 1 0 , 5 , 8 , 2 5 ] , 10 ]
Out[33 ]= 26.99967174 + 0.*10ˆ=9 I
In [ 3 4 ] := N[ a [ 1 0 , 5 , 8 , 5 0 ] , 10 ]
Out[34 ]= 26.99908412 + 0.*10ˆ=9 I
In [ 3 5 ] := N[ a [ 1 8 , 5 , 8 , 1 ] , 10 ]
Out[35 ]= 214.4979032
In [ 3 6 ] := N[ a [ 1 8 , 5 , 8 , 3 ] , 10 ]
Out[36 ]= 216.0556573 + 0.*10ˆ=8 I
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In [ 3 7 ] := N[ a [ 1 8 , 5 , 8 , 2 0 ] , 10 ]
Out[37 ]= 215.9830229 + 0.*10ˆ=8 I
In [ 3 8 ] := N[ a [ 1 8 , 5 , 8 , 2 5 ] , 10 ]
Out[38 ]= 215.9893492 + 0.*10ˆ=8 I
In [ 3 9 ] := N[ a [ 1 8 , 5 , 8 , 5 0 ] , 10 ]
Out[39 ]= 216.0044062 + 0.*10ˆ=8 I

In [ 4 0 ] := N[ a [ 3 , 3 , 10 , 1 ] , 10 ]
Out[40 ]= 3.162360090
In [ 4 1 ] := N[ a [ 3 , 3 , 10 , 3 ] , 10 ]
Out[41 ]= 3.054430238 + 0.*10ˆ=10 I
In [ 4 2 ] := N[ a [ 3 , 3 , 10 , 20 ] , 10 ]
Out[42 ]= 3.030683577 + 0.*10ˆ=10 I
In [ 4 3 ] := N[ a [ 3 , 3 , 10 , 25 ] , 10 ]
Out[43 ]= 3.022204192 + 0.*10ˆ=10 I
In [ 4 4 ] := N[ a [ 3 , 3 , 10 , 50 ] , 10 ]
Out[44 ]= 2.998494259 + 0.*10ˆ=10 I
In [ 4 5 ] := N[ a [ 1 0 , 3 , 10 , 1 ] , 10 ]
Out[45 ]= 38.53373501
In [ 4 6 ] := N[ a [ 1 0 , 3 , 10 , 3 ] , 10 ]
Out[46 ]= 38.99653266 + 0.*10ˆ=9 I
In [ 4 7 ] := N[ a [ 1 0 , 3 , 10 , 20 ] , 10 ]
Out[47 ]= 39.00798893 + 0.*10ˆ=9 I
In [ 4 8 ] := N[ a [ 1 0 , 3 , 10 , 25 ] , 10 ]
Out[48 ]= 39.00013349 + 0.*10ˆ=9 I
In [ 4 9 ] := N[ a [ 1 0 , 3 , 10 , 50 ] , 10 ]
Out[49 ]= 38.99815238 + 0.*10ˆ=9 I
In [ 5 0 ] := N[ a [ 1 8 , 3 , 10 , 1 ] , 10 ]
Out[50 ]= 334.3940087
In [ 5 1 ] := N[ a [ 1 8 , 3 , 10 , 3 ] , 10 ]
Out[51 ]= 336.0237112 + 0.*10ˆ=8 I
In [ 5 2 ] := N[ a [ 1 8 , 3 , 10 , 20 ] , 10 ]
Out[52 ]= 336.0058347 + 0.*10ˆ=8 I
In [ 5 3 ] := N[ a [ 1 8 , 3 , 10 , 25 ] , 10 ]
Out[53 ]= 336.0254115 + 0.*10ˆ=8 I
In [ 5 4 ] := N[ a [ 1 8 , 3 , 10 , 50 ] , 10 ]
Out[54 ]= 336.0111158 + 0.*10ˆ=8 I

Note that the small imaginary parts occuring in these results are some errors caused
by Mathematica [Wol17], since the coefficients aj,N (n) are real for any j, N , and n.
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erkläre ich hiermit, dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis
und zum Umgang mit wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen
und sie bei der Durchführung der Dissertation zugrundeliegenden Arbeiten und der
schriftlich verfassten Dissertation beachtet habe und verpflichte mich hiermit, die dort
genannten Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen.
Ich versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfassung
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