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Abstract

This thesis consists of research articles on the asymptotic behavior of modular forms
and various related objects.

First we determine the bivariate asymptotic behavior of Fourier coefficients for a wide
class of eta-theta quotients with simple poles in the upper half plane by employing a
variant of Wright’s Circle Method. These kind of quotients show up in many different
areas not only in mathematics. For example they show up in investigations into Vafa—
Witten invariants or the counting of so-called BPS-states via wall-crossing, but also in
Watson’s quintuple product formula which has many applications in number theory and
combinatorics.

Further, we offer a general framework to prove asymptotic equidistribution, convexity,
and log-concavity of coefficients of generating functions in arithmetic progressions. We
do this by using a variant of Wright’s Circle Method and give a selection of different
examples of such results for various (modular typed) objects.

We end the thesis by employing the Circle Method to prove exact formulae for Fourier
coefficients of an infinite family of weight zero mixed false modular forms showing up as
characters of modules of rational vertex operator algebras.
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Chapter I

Introduction and statement of
objectives

This thesis mainly consists of the three research articles [Ces23, CCM21, CM21] that
study the asymptotic behavior of various objects. In this chapter we restate parts of
their introductions and collect their main theorems to recall their scientific context.

I.1 Definitions and previous results

This preliminary section is intended to classify the following chapters in the technical
context and at the same time create a solid basis for understanding them. Therefore we
summerize some basic definitions and previous results on modular forms and a few of
their generalisations as well as on partition theory and the Circle Method.

I.1.1 Modular forms

Modular forms and their generalisations play a very important role in many fields of
number theory and other areas. Particularly interesting, especially for this thesis, are their
Fourier coefficients, which often encode valuable arithmetic, geometric or combinatorial
information.

To start, we would like to collect some background on this theory by explaining the
basic notations. More details can for example be found in [DS00, KK07, Miy06].

As usual we denote the complex upper half plane by H = {r = u+iv € C: v > 0}.
Throughout we always use z =t x + iy € C and 7 =: u + iv € H, unless we say otherwise.

A standard group in the theory of modular forms is the special linear group

SLo(Z) == {M = (Z Z) s a,bye,d €7, det(M) = 1},

which acts on H via Mébius transformations,

at +b a b
M= e or M= ( d) =Sl
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since we have that (ad — be)
v(ad — be v
Im(MT) = = > 0.
m(Mr) leT + d|? ler + d|?

Another one is the Hecke congruence subgroup of level N,
Lo(N) ={M € SLa(Z): ¢ =0 (modN)}.

Of course there are a lot more congruence subgroups, but we stick to this one to keep
the introduction here as simple as possible.

Definition I.1.1.

(a) Let k € Z. We call a function f : H — C modular form of weight k and level N, with
multiplier x : Io(N) — {z € C: |2| = 1}, if the following conditions hold
(1) the function is modular of weight &, i.e.,

f (Z:i;) = x(M)(c + d)F f(7) (L1.1)
for all 7 € Hand M = (24) € To(N),
(2) the function f is holomorphic,
(3) the function f has at most polynomial growth at all cusps I'g(/V)\(Q U {ico}) of
To(N).
(b) We call f a cusp form if it vanishes at all cusps.
(c) Functions that instead of satisfying (2) are allowed to have isolated poles in HU {ico}
are called meromorphic modular forms, and those that satisfy (I.1.1) but are allowed
to have poles at cusps are called weakly holomorphic modular forms.

Note that for 4 | N we can extend this definition to k € % + Z to obtain modular
forms of half-integral weight, by replacing (I.1.1) with

F(E7) =< (5) xonter + atso)

where

1 ifd=1 (mod4),
Eq =
)i ifd=3 (mod4),

and where (-) is the Kronecker symbol. This goes back to Shimura [Shi73], who introduced
half-integral weight modularity in the context of powers of the theta function, which we
will discuss in the next subsection.



[.1. DEFINITIONS AND PREVIOUS RESULTS

1.1.2 Jacobi forms

Jacobi forms are ubiquitous throughout number theory and beyond. For example,
they appear in string theory, the theory of black holes, and the combinatorics of partition
statistics (see e.g., [BD16, DMZ12, Mal20, RT96]). Note that the original motivation
for looking at Jacobi forms comes from their important role in the proof of the Saito—
Kurokawa Conjecture proven by Eichler and Zagier [EZ85,Zag79]. We follow [EZ85].

Definition I.1.2. Let k,m € N. We call a (holomorphic) function ¢ : C x H — C
(holomorphic) Jacobi form of weight k and index m on T'o(N), if it satisfies the two
transformation equations, for (‘é fl) €o(N) and A\, € Z,

et +d er+d
Bz + A7+ i) =e >R g ),

b 7rim022
0 (g ) =ler + S o),

(i.e., ¢ transforms modular in 7 and elliptic in z) and has a Fourier expansion of the form

SzT)=> > cnr)g¢,

n>0 rez
r2<4mnm

where ¢ := ¢?™7 and ¢ := ¢*™*. Additionally, we call ¢ a Jacobi cusp form if we have

that c(n,r) = 0, whenever 4nm = r2.

Remarks.

(1) One can extend this definition to Jacobi forms of negative index (see e.g., [BFOR17,
Section 11.3]).

(2) As for modular forms we are additionally able to extend the definition to Jacobi
forms of half-integal weight and index whenever 4 | N by replacing the modular
transformation in 7 by

2mimez?

z ‘CLT—|—b ok (C & .
¢<c¢+d’c¢+d>_5d (§) ter + )™ 6z,

We immediately note that ¢(0;7) is a modular form of weight k, which easily
demonstrates that Jacobi forms are two-variable genaralisations of the aforementioned
modular forms.

Further we have the theta decomposition (see [EZ85, pages 57-58])

)= Y. hu(M)mu(z7), (1.1.2)

@ (mod 2m)
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with

2 2
hM(T) = Z c <N4—:nr 7T> q%, ﬁm,u(zn—) = Z qu*m(:T.
N>0 r€Z
r=p (mod2m)

By definition we have that ¢ is a Jacobi form of weight k and index m. Since the theta
functions ¥,, ,(2; 7) have weight 3 and index m, (1.1.2) provides that h,(7) has to be
a modular form of weight k& — %, which gives another connection between Jacobi forms
and modular forms of half-integral weight. To be more precise, this theta decomposition
gives an isomorphism between the Jacobi forms of weight & and index m and the space of
vector-valued modular forms (), (mod2m) on SL2(Z) satisfying certain transformation

laws and that are bounded as Im(7) — oo (see [EZ85, Theorem 5.1]).
In this thesis, we are particularly interested in the Jacobi theta function defined by!

2

I(zi7) = igiCa Y (~1)g 2 (1.1.3)

nel

I1.1.3 False theta functions as characters of vertex operator algebras

Characters of modules of rational vertex operator algebras are often of the form

f(7)

n(T)*’
where 7 is the Dedekind n-function, which is a weight % modular form for SLo(Z) defined
by

In [CM14] the authors observed that some numerators of atypical characters of the so-
called (1, p)-singlet algebra are false theta functions of Rogers (see [AB09]). In particular,
the numerators of characters of the atypical irreducible modules of the (1, p)-singlet
vertex operator algebra M g, for 1 < s <p —1 and p € N>, that have been studied in
[BM15,CM14, CMW17], are essentially the false theta functions, for j € Z and N € N5,

Fyn(r) =Y sen (n n 2§V) N ) (11.4)
nez

!Note that we have the connection

2

Omu(z;7) = 7qﬁ+%*%§“*mq9 ((H —m)T + 2mz + %; 2m7‘) .
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n

with sgn(n) := ] for n # 0, sgn(0) := 0. Note that this sgn-factor prevents modularity,
which is why we call these functions “false”. Removing the sgn-factor would give classical
theta functions, which are modular forms of weight % Recently Bringmann and Nazaroglu
[BN19] constructed a certain modular completion 1*:]7\/, resolving this obstuction.

We call a function a mized false modular form if it is a linear combination of false

theta functions multiplied by modular forms. One could make this definition precise by
adapting [BFOR17, Definition 13.1].

1.1.4 Partitions, their generalizations, and some statistics

An (integer) partition X of a non-negative integer n is a list of non-increasing positive
integrers, say A = (A1, A2, ..., Ap,), that satisfies |\| := A\ + -+ + A\, = n. We denote the
number of partitions of n by p(n) and set p(0) = 1, as usual. For example the partitions
of 4 are given by

4), (3,1, (2,2), (2,1,1), (1,1,1,1).

We refer the readers to [And98] for an excellent survey on partitions.
One of the most famous results in partition theory is due to Ramanujan, who proved
in [Ram21] that for n > 0 the following congruences hold

p(bn+4) =0 (mod5), p(Tn +5) =0 (mod7), p(1ln+6) =0 (mod11).

This inspired further research in the field of partition congruences see for example
Atkin—O’Brian [AO67] and Ono [Ono00].

Euler proved that one may write the generating function of integer partitions as the
following infinite product

P(g)=> pn)¢" =]] Lo

= asL—at ()

which provides an archetypal example of the close connection between partitions and
modular forms.

One of the most popular statistics of integer partitions is the so-called rank of A,
which is given by the largest part minus the number of parts, and was introduced by
Dyson [Dys44] to motivate the Ramanujan congruences combinatorially. As conjectured
by Dyson [Dys44] and later proved by Atkin and Swinnerton-Dyer [ASD54] the rank
in fact gives a combinatorial explanation for the first and second congruence. Dyson
additionally conjectured the existence of another statistic, which he called the crank and

)
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which should explain all Ramanujan congruences. It was later found by Andrews and
Garvan [AG88,Gar88] and is given by

A if A contains no ones,

w(A) —w(A) if A contains ones,

crank(\) = {

where w(A) denotes the number of ones in A\, and p(A) denotes the number of parts
greater than w(\).

Since that time, a large area of research has developed around this topic. For example
it turns out that the two-parameter generating functions of the rank and crank function
are closely related to (mock) modular forms [AG88, ASD54]. Essentially they turn out to
be a mock Jacobi form and a Jacobi form of weight and index —%. For a nice overview
on more properties of these functions we refer the reader to [BFOR17, Subsection 14.3]
or the introductions of the Chapters II and III for some further results.

As we will see in Chapter III, not only are integer partitions a very popular area of
research in a wide variety of fields, but their generalizations are also receiving increasing
attention. Here, we want to briefly mention two examples that will be studied later on.

An overpartition is a partition where the first occurrence of each distinct number
may be overlined. For example there are fourteen overpartitions of 4, given by

4), (4), 3,1), (3,1), (3,1), (3,1), (2,2), (2,2),
(2,1,1), (2,1,1), (2,1,1), (2,1,1), (1,1,1,1), (1,1,1,1).

The generating function for overpartitions is given by [CLO4]

1+q"
i

n’
n>1 q

since the non-overlined parts form an integer partition, while the overlined parts form a
partition into distinct parts (their generating function is given by [[,~;(1+¢")). The
first residual crank of an overpartition, which was introduced by Bringmann, Lovejoy,
and Osburn in [BLOO09], is given by the crank of the subpartition consisting of the
non-overlined parts.

A plane partition of n (see e.g., [And98]) is a two-dimensional array 7;j of non-
negative integers j,k > 1, that is non-increasing in both variables, i.e., m;x > ;41 k,
Tk > Tkl for all j and k, and fulfills |A] == ijk 7jk = n. For example there are
six plane partitions of 3, given in Figure II[.2. We let pp(n) denote the number of
plane partitions of n. One of the more famous statistics associated to plane partitions
A = {mjr}jr>1 is its trace t(A), which is defined by

t(A) = Z T5.5-

j>1
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Certain asymptotic properties of the trace have been studied by Kamenov and Mutafchiev
[KMO07] and Mutafchiev [Mut18], where the limiting distribution and expected value of
t(A) were considered. In Chapter III we study the distribution of the trace in residue
classes.

1.1.5 The Circle Method

Investigating the asymptotic behavior of Fourier coefficients of modular forms is not
only interesting within number theory, but has applications in various mathematical
fields. One of the most famous asymptotic formulae in partition theory was found in
1918 by Hardy and Ramanujan [HR18] who proved that

1 x./2n
p(n) ~ eV
44/3n

as n — oo. Their work marked the birth of the so-called (Hardy—Ramanujan) Circle
Method. Our exposition follows [BFOR17, Sketch of Proof of Theorem 14.3]. Suppose that
one is interested in the asymptotic behavior of a sequence {a(n)} of “moderate growth”
as n — 0o. One builds a generating function for that sequence A(q) == )", ~,a(n)q",
suppose that it has radius of convergence equal to 1. Using Cauchy’s Theorem one is
thus able to extract the coefficients

_ 1 [ A
a(n)—Q—m, o q,

where C' is an arbitrary path inside the unit disk, that loops around zero in the counter-
clockwise direction exacly once. For many interesting sequences, e.g., {a(n)} = {p(n)},
the singularities of the generating function A show up as roots of unity on the unit
disk. When the generating function is modular, the behavior near the singularities is
well-approximable. This further means that one can often find nice approximations for A
near these singularities, which provide the main terms of the approximation. The leftover
terms then contribute to a much smaller error term.

Half a century after Hardy and Ramanujan proved their famous asymptotic result,
Wright [Wri68, Wri71] developed a modified version of the Circle Method, referred to
as Wright’s Circle Method, which provides a general method for studying the Fourier
coefficients of functions with known asymptotic behavior near cusps. The essence of
Wright’s method is to use Cauchy’s theorem to recover the coefficients as seen before.
One then splits the integral into two arcs, the “major arc” and “minor arc”, where the
generating function has large growth (towards the dominant pole(s)?) and small relative

2The poles, where the most growth appears.
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growth (away from these pole(s)), respectively (see Figure I.1). Even though this version
of the Circle Method gives weaker bounds than the original techniques of Hardy and
Ramanujan, it is more flexible when working with non-modular generating functions. It
has been used extensively in the literature, see e.g., [BM14,KKS15, Mal20,Mal21a, Mao18]
for several examples closely related to Chapters II and IIL.

minor arc
/,, \\‘

7 N

7 \

7 AY
’ \
1 Ve

------ =1

A OOetTS Ko \‘1
] R 2 .
L TR | major arc
\ 1

\ 7

\ ’

A 7

Figure 1.1: Idea behind Wright’s Circle Method

I.1.6 I-Bessel functions and Kloosterman sums
For = > 0 the I-Bessel function of order ¢ may be defined as (see e.g., [Arf85, BD16])

1 .
I(z) = M/Ft—f—lez(“i)dt,

where I' is a contour which starts in the lower half plane at —oo, surrounds the origin
counterclockwise and returns to —oo in the upper half plane. We are particularly
interested in the asymptotic behavior of Iy as  — oo, given for fixed ¢ by (see e.g.,
[AAR99, equation (4.12.7)])

x e$

( ) VvV 2rx x%
In Chapters II and IV we will see that these I-Bessel functions play an important
part in the calculation of the main term arising from the Circle Method. For example

they show up in the Fourier expansion of the weakly holomorphic Poincaré series of
exponential type as e.g., stated in [BFOR17, Theorem 6.9].

8
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Moreover Kloosterman sums play a very important role in the calculations of the exact
formulae in Chapter IV, since they show up in the Fourier expansion of modular-type
objects. Here we give some general background. We follow [Est29, Sal32].

Let £ > 1 be a positive integer and h an integer such that 0 < h < k. Further let
ged(h, k) = 1. Then there exists an unique integer h’ such that hh’ =1 (mod k) with
0 <R < k. For n,m € Z we thus define a (standard) Kloosterman sum by

/
S(n,m; k) = Z exp <2m,nh+mh> .

k
0<h<k
ged(h,k)=1

A famous estimate on these sums goes back to Weil and states that

N
N

|S(n,m; k)| < 7(k)ged (n, m, k)

where 7(k) = Zd21,d|k L.

k2,

1.2 Statement of objectives

1.2.1 Bivariate asymptotics for eta-theta quotients with simple poles

In the first project of this thesis, see Chapter 11, we give an example of how the theory
of modular forms can be used in areas outside of number theory, namely string theory,
by determining the asymptotic profile of a family of eta-theta quotients with multiple
simple poles.

We consider the weight Zjvzl % and index ¢ — b*> meromorphic Jacobi form

where a;,b,c € N, N € N5 1, and a; € Z. Such eta-theta quotients appear in numerous
places, for example theta quotients [GSZ19] and investigations into the counting of
so-called BPS-states [Wot13], to just name a few.

Defining

flzm) = elm,n)C"g",
n>0
meZ
for z in a small neighborhood of 0 that is pole-free as a function in z, we show how
to obtain a bivariant asymptotic behavior for those coefficients ¢(m,n). We prove the
following theorem.
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Theorem 1.2.1 (Theorem I1.1.2). Define 8 = B(n) = 77\/% and w = %Zjvzl o € 3Z,
which is the weight of the eta quotient part of our function f, along with

Ay = (=12 (2n)v

and

Assume that 0 < 1 — Zjvzl lg—é] < VA, ZN 2 <0, b even with b # ¢, b*> > ¢, and

j=1a;
m = m(n) with lm| < %n_é log(n) for some 0 < § < & such that m — 0o as n — oco.
Then

1 3 —w 627r\/2A2n 3 627r\/2A2n
c(m.n) = MBIV ———— O T
[ 27 (2A9n)* 27 (2A9n)4

as n — 0.

To prove this theorem we follow the work of Males [Mal20,Mal21a], who proved the
bivariant asymptotic behavior of the certain eta-theta quotient

0(z;7)"
n(7)?0(227)"

As in his work we use an extension of Wright’s Circle Method that was pioneered by
Bringmann and Dousse [BD16], respectively Dousse and Mertens [DM15], to study
the bivariant asymptotic behavior of the Fourier coefficients of the partition crank,
respectively partition rank, function. However we need to modify their arguments a little,
since our family of functions has multiple simple poles.

1.2.2 Asymptotic equidistribution for partition statistics and topological
invariants

In the second project of this thesis, see Chapter III, we provide a general framework
for proving asymptotic equidistribution, convexity, and log-concavity of coefficients of
generating functions on arithmetic progressions.

Throughout many areas in pure mathematics, the equidistribution properties of
certain objects are a central theme studied by many authors, including areas of algebraic
and arithmetic geometry [CM15, GT12,Kat15] and number theory [OS18, Xi20].

10



[.2. STATEMENT OF OBJECTIVES

The primary aim of this project is for proving large families of so-called Dirichlet-type
equidistribution theorems. Suppose ¢(n) is an arithmetic function which counts something
of interest. Let ¢ = e™*, where 2 =z + iy € C with > 0 and |y| < 7. Furthermore let
C=(o=e

e be a b-th root of unity for some natural number b > 2 and 0 < a < b.
Assume that we have a generating function on arithmetic progressions a (modb) given
by

H(a,b;q) = Y c(a,b;n)q",

n>0
for some coefficients c(a, b;n) such that
=
H(a,biq) = ; ]ZO G H (ia)

n

for some generating functions H((;q), with H(q) == H(1;q9) = >_,>¢c(n)g".
that equidistribution of ¢(a, b;n) holds is to say that c(a,b;n) ~ 3c(n) as n — co. Our
framework may be summarized as follows.

To say

Result (see Theorem II1.3.1 for a precise statement). Assume that on both the major and
minor arcs H(q) dominates H((;q), and H(q) is dominant on the major arc as ¢ — 1.
Then c(a,b;n) are equidistributed as n — oo.

We use this framework to offer a selection of different examples of such results, proving
asymptotic equidistribution for various partition statistics and topological invariants (see
Theorems II1.1.1 to II1.1.6). For example, let M (a, b;n) be the number of partitions of n
with crank congruent to a (modb). We prove the following theorem.

Theorem 1.2.2 (see Theorem I11.1.2). Let 0 < a < b and b > 2. Then as n — oo we
have that

M(a,b;n) = %p(n) (1 +0 (n_%)> .

Additionally we use our framework to immediately conclude asymptotic convexity
and log-concavity for a large class of functions (see Corollaries I11.3.2 and II1.3.3).

A central ingredient employed in the proof of our framework is a variant of Wright’s
Circle Method, which was recently developed by Bringmann, Craig, Males, and Ono
[BCMO22, Proposition 4.4], following work of Ngo and Rhoades [NR17].

11



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

1.2.3 Fourier coefficients of weight zero mixed false modular forms

In the third and last project of this thesis, see Chapter IV, we give, to the best of
the author’s knowledge, a first example of exact formulae for Fourier coefficients of an
infinite family of weight zero mixed false modular forms.

In 1937 Rademacher [Rad37] proved the following exact formula for the partition
function

2 Ag(n) mV24n — 1
p(n) = 3 e 13 k: )
(24n — 1)4 E>1 2 6

with a Kloosterman sum Ag(n) and an I-Bessel function of half-integral order (defined
n (IV.1.2) and (IV.1.3)), from which one can deduce the famous asymptotic behavior of
the partition function, mentioned above.

We find Rademacher-type exact formulae for Fourier coefficients of an infinite family
of weight zero mixed false modular forms
.~ (7)
Ajn(T) = 5N ,

! n(7)

where, for 7 € H, j € Z and N € N5, Fj y(7) defined in (I.1.4) is a false theta function
at rank one. Defining their coefficients by

-2

n>1

we prove the following theorem.

Theorem 1.2.3 (Theorem IV.1.1). For alln >1 and /& ¢ Z we have

N-1k— 1KkJNnrn)
== S S5
"+4N 57 k>1 r=1 k=0
4%?
e (SR )

where 1, denotes the I-Bessel function of order a and Ky j n(n,r, k) is a Kloosterman
sum defined as

(24N(H+ﬁ)271)h’724(n+%7i)h

Kijn(n,ms k) = Z Xgir (N5 M k) Gy ;
0<h<k
ged(h,k)=1

12



[.2. STATEMENT OF OBJECTIVES

with b/ a solution of hh/ = —1 (mod k), My, = (Z *% ), Xjr (N, M) the multiplier

defined in (IV.2.6), and y := T with £ € N an ¢-th root of unity.

Additionally we show that our Kloosterman sum satisfies the following bound by
rewriting it into a sort of Salié sum and using a bound of Malishev (see Lemma IV.1.3).

Theorem 1.2.4 (Theorem IV.1.2). For e > 0 we have that
1
Ky jn(n,r k) = Opn (nk§+5>

as k — oo.

The proof of these results requires considerably more effort in comparison to negative
weight functions, or weight zero modular forms (see e.g., [BN19,Rad38]). Compared to
negative weight functions, for example, we have to take special care of the bound of the
Kloosterman sum occuring to ensure that the error term in the Circle Method vanishes.
Additionally our transformation behavior is not as simple as the one of a modular form,
which results in more difficulties. To prove our exact formulae we investigate the “false”
modular transformation behavior of our family of functions, following [BN19], and use
the Circle Method along with ideas of Rademacher and Zuckerman [Rad38, Rad37, RZ38].

13






Chapter 11

Bivariate asymptotics for eta-theta
quotients with simple poles

This chapter is based on a preprint of the same title recommended for publication in
The Ramanugjan Journal and is joint work with Dr. Joshua Males [CM21].

II.1 Introduction and statement of results

Jacobi forms (see e.g., [EZ85]) are ubiquitous throughout number theory and beyond.
For example, they appear in string theory [Mal20, RT96], the theory of black holes
[DMZ12], and the combinatorics of partition statistics [BD16]. The Fourier coefficients
of Jacobi forms often encode valuable arithmetic information. To describe a motivating
example, let A be a partition of a positive integer n, i.e., a list of non-increasing positive
integers A\; with 1 < j < s that sum to n. We denote the number of partitions of n by
p(n), as usual. One of the most famous results in partition theory is due to Ramanujan,
who proved in [Ram21] that for n > 0 the following congruences hold

p(bn+4) =0 (mod5), p(Tn +5) =0 (mod7), p(1ln+6) =0 (mod1l).

The rank [Dys44] of X is given by the largest part minus the number of parts. It offers a
combinatorial explanation for the first and second congruence as conjectured by Dyson
[Dys44] and later proved by Atkin and Swinnerton-Dyer [ASD54], since the partitions
of 5n + 4 (respectively 7n + 5) form 5 (respectively 7) equal-sized groups when sorted
by their ranks modulo 5 (respectively 7). Dyson additionally conjectured the existence
of another statistic, which he called the crank and which should explain all Ramanujan
congruences. The crank of A was later found by Andrews and Garvan [AG88, Gar88] and
is given by

{)\1 if A contains no ones,

w(A) —w(A) if A contains ones.

Here, w(\) denotes the number of ones in A, and u(A) denotes the number of parts greater
than w(A). We denote by M (m,n), respectively N(m,n), the number of partitions of n

15



CHAPTER II. BIVARIATE ASYMPTOTICS

with crank m, respectively rank m. Throughout the rest of this chapter we let ¢ := e?™*

for z € C, and q := €?™7 with 7 € H, the upper half plane. It is well-known that the
generating function of M is given by (see [BD16, equation (2.1)])

i(¢h - ¢ %) afinP(r)
HZZOM(mvn)C q = 19(2;7') ’
meEZ

which is a weak Jacobi form (up to rational powers of ¢ and ¢). Here, the Dedekind
n-function is given by

and the Jacobi theta function is defined by

9(zr) = gt 3 (1) T (IL1.1)

neL

Note that a similar formula can be found for the generating function of N as a mock
Jacobi form involving an eta-theta quotient. In general Jacobi forms have a Fourier
expansion of the form

> alm,n)¢"q".
n>0
meZ
Many interesting examples of Jacobi forms arise as quotients of 7- and J-functions. As
an illuminating example, for a;,b; € N and n € Z, consider the study of theta quotients
[GSZ19, equation (13)],

Farz; )0 agz; 7) - - I agz; T) .
V(b12;7)0(baz; 7) - - I (bjz; T) n(r)",

which provide new constructions of (not necessarily holomorphic) Jacobi and Siegel
modular forms. As highlighted by Gritsenko, Skoruppa, and Zagier, theta quotients
also have deep applications to areas such as Fourier analysis over infinite-dimensional
Lie algebras and the moduli spaces in algebraic geometry. In this chapter, we obtain
the bivariate asymptotic behavior of the coefficients of a prototypical family of such
theta quotients, while the steps presented here also offer a pathway to obtain similar
results for more general families. Our framework covers theta quotients for k = j =1,
a1 =1,bp e N, and n € Z.

16



I1.1. INTRODUCTION AND STATEMENT OF RESULTS

In [BD16] Bringmann and Dousse pioneered the use of new techniques in the study
of the bivariate asymptotic behavior of the Fourier coefficients and applied them to the
partition crank function. In [DM15] Dousse and Mertens used these techniques to study
the rank function. In particular, each of these papers used an extension of Wright’s Circle
Method [Wri34, Wri71] to obtain bivariate asymptotics of N(m,n) and M (m,n), with m
in a certain range depending on n.

Recently, Males extended these techniques to an example appearing in the partition
function for entanglement entropy in string theory. In particular, [Mal20, Mal21a]
considered the eta-theta quotient

Izt m
TERTE=ap DR

n>0

with a simple pole at z = % The bivariate asymptotic behavior of the coefficients b(m, n)
is given by [Mal21a, Theorem 1.1].

Theorem II.1.1. For = w\/% and |m| < % log(n) we have that

b(m,n e

) — (_1)m+5+1 iﬁGm 27v/2n +0 (mnf%e%r\/%>
875 (2n)1

asn — oo. Here, § . =1 if m <0 and 6 = 0 otherwise.

This chapter serves to extend these results to a large family of eta-theta quotients
with multiple simple poles!. Such eta-theta quotients appear in numerous places. For
example, investigations into Vafa-Witten invariants [Ale21, equation (2.5)] involve the
functions

i
n(T)N=19(2z;7)’

which also appear in investigations into the counting of so-called BPS-states via wall-
crossing [Wot13, equation (5.114)]. The asymptotics of this family of functions were
studied in [BM13]. Other examples of similar shapes also arise as natural pieces of
functions in investigations into BPS-states, see e.g., [Wot13, Section 5.6.2 ]. Similar
functions also appear prominently in Watson’s well-known quintuple product formula

) = 12 2 _ n(1)9(227)
19(2’7)'_2<7“>q =T

reZ

n| 3
N

'A similar framework exists for those without poles by simply extending the results of [BD16, DM15].

17



CHAPTER II. BIVARIATE ASYMPTOTICS

which has a plethora of applications in number theory and combinatorics, and our main
theorem gives a bivariate asymptotic for the coefficients of ¥*(z;7)~!. Such asymptotics
for inverse theta functions are a topic currently in vogue in the literature, see e.g.,
[BM13,LZ22] and the references contained therein.

Throughout, we consider an eta-theta quotient of the form

where aJ, b c E N, N € N1, and o € Z. Since we require asymptotic growth, we assume
that Z = 1 a . < (0. We omit the dependency on these parameters for notational ease. We

assume that b is even, b # ¢, and b? > ¢, and indicate the differences that would occur if
b were odd. In the language of [GSZ19], this is a family of theta quotients.

Remarks.

(1) Note that by the conditions from above we assume that we have exponential growth
towards the cusp 0 and therefore ensure that the Circle Method works by choosing
the major arc around ¢ = 1.

(2) The exposition presented here may be easily generalized to include products of theta
functions in both the numerator and denominator of f, although this becomes lengthy
to write out for the general case.

(3) We include a theta function in the numerator to allow us to assume that there are
no poles of f at the lattice points 0 or 1. However, using the techniques presented
here and shifting integrals to not have endpoints at 0 or 1, a similar method holds for
functions without a theta function in the numerator.

We define the coefficients ¢(m,n) by

flzm) =Y c(m,n)("q",
n>0
meZ

for some z in a small neighborhood of 0 that is pole-free, and investigate their bivariate
asymptotic behavior. To this end, we employ and extend the techniques of [BD16], which
also appear in [DM15, Mal20, Mal21a], using Wright’s Circle Method to arrive at the
following theorem.

Theorem I1.1.2. Define f = f(n) = 71'\/% and w = %Z;VZI o; € 3Z, which is the
weight of the eta quotient part of our function f, along with

m\w
Q
?

Ay = (=1)2H (2m)" 2b2 —b—c)

N
J=

1
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I1.2. PRELIMINARIES

and

Assume that 0 < 1 — Zjvzl S—ZLJ < VA, Eévzl Z‘—j < 0, b even with b # ¢, b*> > ¢, and

m = m(n) with |m| < én*‘;log(n) for some 0 < § < & such that m — oo as n — oo.
Then

1 —w 2w/ 2A9n 2m\/2Aomn
c(myn) = —MBXY/Ay OB
2mi om (2Agn) 1 2 (2Agn) 4

as n — o0.

Remark. Note that the restriction on As still leaves infinitely many choices.

Since we assumed that b?> > ¢ we only have functions of negative index. Therefore
one might be able to use [BRZ16] to obtain our results.

This chapter is structured as follows. We begin in Section I1.2 by recalling results
that are relevant to the rest of this chapter. Section I1.3 deals with defining the Fourier
coefficients of (" of f. In Section I1.4 we investigate the behavior of f toward the
dominant pole ¢ = 1. We follow this in Section II.5 by bounding the contribution away
from the pole at ¢ = 1. In Section II.6 we obtain the asymptotic behavior of ¢(m,n) and
hence prove Theorem II1.1.2.

I1.2 Preliminaries

Here we recall relevant definitions and results which will be used throughout the rest
of this chapter.

I1.2.1 Properties of ¥ and n

When determining the asymptotic behavior of f we require the modular properties of
both ¥ and 1. We from now on define the square root using the principal branch, which
means that we exclude the negative reals and impose positive square roots for positive
real numbers.

It is well-known that ¥ is a Jacobi form (see e.g., [Mum07]).

Lemma I1.2.1. The function ¥ satisfies

07) = =0(-5i7), Oair) = =0+ L), Wair) = A=e P 0 (£i-2).
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CHAPTER II. BIVARIATE ASYMPTOTICS

We also have the well-known triple product formula (see e.g., [Zwe02, Proposition
1.3] for this explicit formulation), that yields

1 1

I(zi7) =iC2gs [J(1—¢) (1 =¢g™) (1-¢"g" ). (T1.2.1)
Furthermore, we have the following modular transformation formula of 7 (see e.g.,
[KKO0T7]).

Lemma I1.2.2. We have that

I1.2.2 Integrals over segments of circles

Let Uy(20) == {z : |# — 20| < r} be the open disk around zy € C with radius r > 0.
Then we have the following result [Cur78, page 263].

Lemma I1.2.3. Let g : U,(20)\{z0} — C be analytic and have a simple pole at zy. Let
~v(0) be a circular arc with parametric equation z = zg + 5, for —m <0, <0 <6y <m
and 0 < § <r. Then

lim/ g(z)dz = i(02 — 01) Res,, (9),
6—0 7(8)

where Res,,(g) denotes the residuum of g at zp.

See Figure I1.1 for a pictorial explanation of this result.

Figure II.1: Segment of a circle with radius § around a simple pole 2.

20



I1.2. PRELIMINARIES

I1.2.3 A particular bound

We require a bound on the size of

away from the pole at ¢ = 1. For this we use [BD16, Lemma 3.5].

Lemma I1.2.4. Let M > 0 be a fized constant. Let T = u +iv € H with Mv < u <
foru>0 and v — 0. Then

v (- (- b))

1

1
2

_ 1
In particular, with v = %, u = ’Bm%gx and M = m~3 this gives for 1 < z < 7”23
the bound
_1 2 |« 1 1
|P(q)] < n™ %exp Tl wl|llT T (I1.2.2)
1+m™ 3

I1.2.4 I-Bessel functions

Here we recall relevant results on the I-Bessel function which for z > 0 may be
written as (see e.g., [Arf85, BD16])

1 P
Ij(x) = /t£162<t+1)dt,
r

21

where I' is a contour which starts in the lower half plane at —oo, surrounds the origin
counterclockwise and returns to —oo in the upper half plane. We are particularly
interested in the asymptotic behavior of Iy, given in the following lemma (see e.g.,
[AAR99, equation (4.12.7)]).

Lemma I1.2.5. For fized £ we have

I(z) = & +0<ez>

as r — OoQ.
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I1.3 Fourier Coefficients of f

Note that f(—z;7) = f(z;7) by Lemma I1.2.1, and so ¢(—m,n) = ¢(m,n). For the
case m = 0 one can use classical results (see e.g., [BFOR17, Theorem 15.10]) to calculate
the Fourier coefficients. We therefore restrict our attention to the case m > 0.

We first define the Fourier coefficients of ("™ of f. Since shifts under z — z + 1 of
¥ are understood we focus only on the case z € [0, 1], we let hq,...,hs € Q denote the
poles of f in this range, each of the form %, with 1 <d <b—1 and d € N. Note that the
distribution of the poles is symmetric on the interval in question.

Define the path of integration I'y,. by

Otohlfr lf£:07
Lpp=<qhi+rtohp—r if1<0<s5—1,
hs+rtol if £ = s,

for some r > 0 sufficiently small. Note that in our setting we have s = b — 1. Following
the framework of [DMZ12, Mal20, Mal21a], we define

S S
fi(r) = Z/ f(z;T)e_%imzdz—i—ZGfT, where GZT = /f(z;T)e_Qmmzdz
=0 Lo /=1 'yi
l,r

for a fixed pole hy (1 < ¢ < s). Here, fy; is the semi-circular path of radius r passing

above the pole hy and «, is the semi-circular path passing below the pole hy, see Figures
I1.2 and II.3.

I W/ Wl W 4 WA WVan W

Figure I1.2: The path of integration taking ’yfr at each pole.

Following [DMZ12] the Fourier coefficient of ("™ of f, for fixed m, is given by

i Jm () + fn (7)

fm(T) = r—0+ 2
1 S S
1 - . —2mimz + —
= lim |2 ; - fz7)e dz + ; Gl +Gp, |- (IL.3.1)
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Figure I1.3: The contour 7£+r for a fixed /.

For fixed ¢ we use Lemma I1.2.3 to see that

lim (G, +G,) =0,
r—0+ ’ '
since we only have simple poles.

The substitution z — 1 — z gives us

Z f 2 7_ 27rimzdz Z f z; 7_ 271'2'mzdz7

Fér F@r

since b is even and using that f(1—z;7) = (—1)**! f(z;7) by Lemma I1.2.1. Thus, (I1.3.1)
simplifies to

fm(T) =—14 lim Z f(z;7)sin(2rmz)dz. (I1.3.2)

r—0t Ty,

Remark. For odd b one would obtain a similar formula with the integrand replaced by
f(z;7) cos(2mrmz).
In the following two sections we determine the asymptotic behavior of f towards
i€

and away from the dominant pole at ¢ = 1, ectively. From now on we let 7 = =,

e = p(1 +i:1:m_%), B = 71'\/;, and |m| < 6,3 n~°log(n) for some 0 < § < 3 such that
m — 00 as n — 0o.

II.4 Bounds toward the dominant pole

In this section we consider the behavior of f,, toward the dominant pole at ¢ = 1.
Remember that we have w € 3Z by definition (see Theorem I1.1.2).
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CHAPTER II. BIVARIATE ASYMPTOTICS
, with 0 < Re(e) < 1, let z be away from the poles, let M(z)

i€

Lemma I1.4.1. Let 7 =
be the function defined in (I1.4.2) which is positive for all z € (0,1), and let
2 <4b222+1_4z +1_ aj >
4c =~ 12aj

w N o 3 h 271'22 21
2 oy Sin A
C (Z; 7_) — (_1)211) <7T> C% H a 5 (E)e
I3 2m2bz
j=1 sin h( )
Then we have that
) . 2
flz )= C| z 1L 14+0 e*%M(Z)
2 2

asn — oo.
Proof. Using Lemmata I1.2.1 and I1.2.2 we see that f = f1 fafs, where

) 7r2
Using the definition of 7, (II.2.1), and setting ¢; = e % =e e fort €N one may
easily show that f3(z;7) becomes
o1 L 1 1 N
¢ qf H(l—q?)( —C?qf) (1—< g ) [T g
j=1 k>1
zrge JI(1—qf
k>1

kK>1
) (1-¢Far) (1-
N @ 1 1
Z 121,, L — i+ sinh (%) H (jl:[1 (1 a qgj) ) (1=ai) (1 _C?q?> (1 B Ci?qlﬁ)
o (1—qp) (176%615) (1*C_£11'§) ’

—e i1
smh( T)nzl

[Ta-¢cre ) =0-¢)[[0-¢c ) =0-¢") [[-¢"e)

k>1

by using the trick
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and the fact that C% (1—¢™%) = (¢2 —(¢~2) = 2sinh(wizz). Putting those results together
and setting 7 = 5 yields

i€ i€
f (Z; 27r> =C (z; 27_‘_)
(1 — e~ 4"52,;) (1 T n)) (1 _ i (72;—;{)) 11_\7[ (1 - 4sz;>%
j=1
X;El (1—6_4755)(1—@@“’2 "‘))<1—ere(bz r;)) ’
In order to find a bound we inspect the asymptotic behavior of the product over k.

Splitting «; into positive and negative powers, labeled by ~;,d; € N, and a;, into ; and
y;, respectively, we first rewrite this as

a2 a2 N1 a2\ Ny an2un S
(1—67 < ) (1—677(’i Z)) (1—6*T(“+2)> H (1—6 x5 ) H Z e ure
H = k=1 \ >0
k>1 (1 — 6_472?) (1 —e” 422 (k—b2) ) (1 — e e ’H‘bz)) ’

(I1.4.1)

4w2n

since [e ¥ | < 1 for all k > 1. We also have that |e Tee | < 1and \e 2 (n02) )| < 1 for
all kK > 1 since b, ¢ € N. Therefore, we have that

1 4‘rr2)\n 47\'5
(nerz
e e ee
(T RO N>

ce A>0 £>0

Up to this point our calculations are independent of the size of z. The remaining
term is
1

7?2 :
1_ 6—465 (k—bz)

Let ko be the smallest x > 1 such that (k — bz) > 0. We may rewrite

[Ty e

ce (r—bz )> K>ko >0

11 (1 _6—4"2<~—bz>) ! (1-e

Kk>1 ce

The first product is

rko—1 1 ko—1 9
H = H (—6 ee ("= bz)) et (rb2)
472
v>0

k=1 (1 —e e (“_bz)) k=1
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7T2 7r2 71'2
Additionally we have e~ 2 < M < o (1R,
Let
min (1 -z, x%_? yikv %, chz, LH ”0) if ko # 1,
M(z) = (I1.4.2)
min (1—2,%,11%,%,—“0;“) if ro =1,

running over all 1 < j < Nj and 1 < k < N,. Note that for 0 < Re(¢) < 1, and z € (0,1)
we have M(z) > 0, so the product in (I1.4.1) is of order

1410 (e—‘*’ffwz)) ,

which finishes the proof. O

Remark. By separating into cases, one is able to obtain more precise asymptotics. However,
this is not required for what follows and we leave the details for the interested reader.

Theorem I1.4.2. Let Ay and Ay be defined as in Theorem II.1.2. For |z| <1 we have
that
Im (;) =M\ sl_we%&" + 0 <ﬁ2_w627;2/\2>
T

Proof. Plugging Lemma I1.4.1 into (I1.3.2) yields

fm <> = —ZZ hr(1)1+/ C (z; ;€> <1 +0 <€4§2M(Z))> sin(2rmz)dz. (11.4.3)
r— Loy ™

We have that

as n — o0.

ce

9 2 2722 1 _47r2z

s Tz e ¢ — e €

sinh ( € ) ﬁz(lfg) ( _4r z) 42 X\bz.
_ e (1) S

A>0

using ]e | < 1. Additionally we see that

N )
o2 [ 4b22241 422 +1 272 (1 1 aj
2n” | 40727+1 42741 2 2 1 1 _J
€ dc 12a 2 (b7 1) ,2 € 4c 4 . 12a;
e =e ® \¢ e =1 .
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Defining

and N (z) := min(z, M(z)), we can rewrite (I1.4.3) as

2n2 (b 72 72
—iQ(m,n Z lim / e 1)Z2 e (1-0)z <1 +0 (e_{sN(Z)>> sin(2mmz)dz.
FZ,T

r—0+
We immediately see that this splits up into two integrals

S

272 (b2 _1\.2 o2
lim / e s (C l)z e’ (1_%)ZSin(27TmZ)dz (I1.4.4)
KZOT—>O+ .
and
u 272 (b2 1),2 22 2
lim / e <C 1)Z T (1-2)70 <e4a N(z)> sin(2rmz)dz. (I1.4.5)
:07"—>0+ Ty,
Let erf(z f Z e~ dt denote the error function and note that = d orf(z) = 2¢ -

NG
For arbltrary 7—[1, 7—[2 € C, with Hs # 0 a straightforward calculation, using the identity

L (e2mimz _ g=2mimz) — gin(27mz), gives us that

2
7rim2 y
d[ VT (6_411(71112{2 ) ot <1‘H1+2mm—|—2H22>

dz 4\/7'[2 2 vV —HQ
1 (=Hp+2mim)? 1 2 2
e T erf ( —Hh + 2mim - H22>>] — M12¢M2? gin(27mz).
2 T,

Therefore the following formula holds

w 1 (H +27‘rim)2 .
/ €H1Z€H2z2 Sin(27rmz)dz _ ﬁ (641 7y orf <1 2H2t + 7‘[1 + 27rzm>
t

4v/Ho 2 v —Hsa
_ 1 (Hyromim)? 1 —2Hot — Hi + 2mim
+e 4 Ha erf
(2 V—Hs >
_ 1 (M +2mim)® 12Hou + Hy + 2mim
—e 4 Ho erf —
2 v/ —Hso
L (=M +2mim)® 1 -2Hou — H1 + 2mim
—e 4 Ha erf | = .
2 vV —Ho
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For arbitrary Hi, Ho € C, with Hs # 0 we thus obtain

S

lim / eM2?" M7 gin(2mmz)dz (I1.4.6)
r—0t Jp,
=0 er
mim)? 1 7y 2mim)2 . .
_ N (e}lmltjz)erf (1H1+2mm> _'_e,%%erf (1 H1+2mm)
4/ Ho 2 /—Ho 2 -H
_1 (g t2mim)? 12Hs + H1 + 2mim _ 1 (=Hyt2mim)? 1 —-2Hy — Hq + 2mim
—e 1 erf | = —e 1 2 erf | = ,
2 V—Hs 2 V—=H2

since all the other terms cancel. If | Arg(£z)| < 7, we have that (see e.g., [BN19, page
10])

.52 .52
ie? ie?

N NL

as |z| — oo. Note that taking the limit |z| — oo is equivalent to taking the limit n — oo
in our setting.

2

Consider the integral (I1.4.4), so set H; = 2%

: 2 .
case, since b? > 1, we obtain

erf (iz) = (1+O(|Z‘_2)) =

4o (ez212|—3) , (IL.4.7)

2

(1—2) and Ho = 222 (2 —1). In this

14H, +2mim £ (2 (1-2)) +im .
= = == 121,

S A Can

respectively

1 £2Hs + Hy + 21im i2(§(§— ))i(g(l—g))Hm o
- _ i

Using € = B(1 + ixmfé) and /z = \/[z] cos(5 Arg(2)) + i+/|z[sin(3 Arg(z)) a straight-
forward calculation shows that

2 2(% -1
L) 2y
¢ 5\/1+x2m*%

X [(:Fﬂ <1 — g) +ﬁmm%) cos <% Arg (1 — i:cm_%>> + Bm sin (% Arg (1 — ixm_%)>
+1 <—6mcos (% Arg (1 — imm_%>> + (:Fﬂ’ (1 — g) +6mm§) sin (% Arg (1 — ixm_%)))} ,
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respectively

x{<$< (17— +2n(—71>> %) Arg(lfizm7%)>+5msin(%Arg(17iIm—%)>
e o) (o (2 ) e )]

Since |z| < 1 we see that | Arg(1 — mm_%)\ < 7 and thus we have

1
cos (2 Arg (1 — w:m_i)) ‘ >

From the assumption |m| < %n“s log(n) for some 0 < § < 3 we not only ensure that

sin (; Arg (1 - ixm_ils)> ' . (IL4.8)

m — oo as n — oo but additionally that fm — 0 and ﬂm% — 0 as n — oo. Thus,
together with (I1.4.8), we see that | Re(z1)| > | Im(z1)|, respectively | Re(z2)| > |Im(22)],

for n sufficiently large.
Therefore the arguments of the error functions in (I1.4.6) satisfy the condition of

(I1.4.7). Plugging in yields

S

2 .
lim / et Mz gin(2rmz)dz
Ter

— 07‘—)0Jr
_ LS i Lo ‘ (—ilHl + 27mm)
A4 /’}.[2 ﬁ (_ % H1+2H7rim> 2 RV —HQ
—T7i2
. i +0(‘( ,1—7—[1+27rim>’3>
Y S S
c1 —Hi+2mim 2 A —
VT (*15%&) He
1 4HZ+H4Hy (Hy +2mim) , _3
ie” 2 1 4H5F4H (Hy f2mim) 1 2Ho +Hy + 2mim
B 12Ho+H1+2 O e e _25 vV —H
ﬁ ( 715 2 T, ﬂlm) — 72
1 AHZ —aH o (—Hy +2mim) ] _3
B ic® o + o % _4H2( H1+27rzM) (—il —2Ho — H1 + 27Tlm> ‘
ﬁ <—Z% —2Ho— 7-1?1_[+27rzm 2 \/ 77-[2
T Lo ‘ 17—[1+2mm> -3
7’].[2

)

7 4O ’(—il —Hy + 2mm)
(—i% —H1+2m‘m> 2 /H,
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_ e Th +0 <6H2+H1 <_i1 2Ha + M+ Qmm) ‘_3>
-1 2Ho+H1+2wim 2 —
\/% (—25#) V—H>
- ie?rh +0 <@H2+H1 (_il —2Hy — Hi + 2m'm> ’_3>>
1 —2Ho—H, 427i 2 —
Vi (—z§ = ””) V—H2
_ Nz B Tachaast Lo [ et 11 My + Hy + 2mim|”°
4/ Ho \/77_ (_i%27-[2+7'[17:£i-27rim) 2 v —Ho>
vV 2
_ Mot o[ VT ain, |1 2Ha + Ha + 2mim -
4V Ho 2 v—Ha

49 (%(27‘[2 +Hi + 27rim))
6H2+H1 <ﬁeH2+H1

4/ Ho

We thus obtain that (I1.4.4) equals

12Hs + Hq + 2mim _3>

2 v —Ho

T 4iHy + 2iH, — dnm
-3

() |2 (ﬁ 1 g) + mim

272 ﬁ_g 272
e ¢ c ¢ 0 ﬁ e < c ¢ c
;2 2
4Z—7r<&—1—é>—471'm 4 27r2<£_1) 27r2<g_ )
£ C (&
g (& g (&

Combining this along with the fact that N'(z) > 0 and recycling the same arguments for

(I1.4.5), yields

ol

e )

(22 —1-Y —4mm

C

2n2 (b2 _
€ c

£

i€ ,
f’m <27T> = ZQ(ma 'fl) Lin2
-3
x (E—lf%> + mim

c

2n2 (ﬁ,g)
€

\/77- e ¢ c c

A EE

€ c

=T

+0

Plugging in Q(m,n) yields the claim. The main term here simplifies to

2
_ 2%
Al we s A2

[MIN]

since 4mme — 0 as n — 0o, which holds since we have

1 1
< én_‘s log(n) + ﬁ%x <6n_5 log(n)) — 0,

mel < |m§| + | Biam’

asn—>oo,andfor0<5<%.
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II.5 Bounds away from the dominant pole

In this section we investigate the contribution of f,, away from the dominant pole at
g = 1, and show that it forms part of the error term. Recall that from (II.3.2) we have

r—0t

fm(T) = —i lim (Z

flz7 sm(27rmz)dz> .

FZ'[

One immediately sees that

< Z/ (z;7)sin(2rmz)| dz.

Consider

N N

|f(z;7)sin(2mrmz)| = Hn(aﬂ)o‘jm |sin(2mmz)| < H n(a;T)%

I(z7)
I(bz;er)

j=1 j=1

away from the dominant pole. We begin with the term H;VZI n(a;7)%. As in [Mal20] we
write

N N1 No b
[ ntar)® =T n(m)s [Ta 2 Pg%)™
j=1 j=1 k=1

Using Lemma I1.2.2 we see that

. , 2o g2

izje\" < 2m \? &
— — e .
K 2w .I‘jﬁ

By (II.2.2) we also obtain that

[P(@")] <n Texp | [ 15—~ 1
Yk

Therefore we find
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v
N

a; N 2 % ﬁ
<ZCL] ) H 2m o /=10
i—1 =1 .’E]/B
Jj= J=
N2
B 216 1 1
< T[] n % exp “MO%k %727 1— ;
i) yk’ﬁ n 1+ m_%
and thus we obtain
N N ‘YTJ NioR2, N
9(z7) por )\ CEEATE s
o 0 j=1 7 P 11.5.1
En(aﬂ') 9oz or) <<| (]1:[1 xjﬁ) e kl;[ln (IL.5.1)

‘ Iz |
9(bz; er)

Plugging in (II.1.1), using Lemma I1.2.1, and rearranging leads to
‘ I(z; 1) _ ‘qu

I(bz; cT)
27T 7% min |Z

<< e zEFe

[9(z;7)|
Z (_1)chﬂ2%<bn

KEZL

| 2

Z(—l)){e—#(ﬁz—‘r(l_QZ)n)

< ni. (11.5.2)
Define
Then equations (I1.5.1) and (I1.5.2) imply that for » — 0

f(z;7)sin(2rmz)dz
Flr

: & omby, [ 1 1 L 2y
B(m, — === |1 — — J
<D _Bm.njexp | > ws 12 2n _ Z 62,3
=0 k=1 14+ m j=1
Hence, away from the dominant pole at ¢ = 1 we have shown the following proposition
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1
Proposition I1.5.1. For1 <z < ™3 e have that

B
1€

< (s+1)B(m,n)

N
X exp i@ T _ 1 1_; _ ™
P B \ 12 27

as n — oQ.

I1.6 The Circle Method

In this section we use Wright’s variant of the Circle Method to complete the proof of
Theorem I1.1.2. Cauchy’s Theorem implies that

1 fm(T)
c(m,n) = i ) gl d

Y

where C = {q € C: |¢| = e P} is a circle centered at the origin of radius less than 1
with the path taken in the counter-clockwise direction, traversing the circle exactly once.
Making a change of variables, reversing the direction of the path of integration, and
recalling that ¢ = (1 + zxmfé) we have

c(m,n) = 8 1 fm (;) edx.

1 3
2mms |x\§%

Splitting this integral into two pieces, we have ¢(m,n) = M + E, where

M = b bi <i€ ) e*dx,

27rm% lz|<1 "\ 2r
and
€
E = B - 1 fm <z> e "dx.
2rm3s J1<|z|<mmS 2

Next we determine the contributions of each of the integrals M and F, and see that
M contributes to the main asymptotic term, while FE is part of the error term.
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11.6.1 The major arc

Considering the contribution of M, we obtain the following proposition.
Proposition 11.6.1. We have that
1 . 2my/2Aon 2m\/2Aon
M=—MAB>"\/A,y weil +0 53—w671
2mi 27 (2A9n)* 27 (2A9n)*
as n — oo.

Proof. By definition we have that

g

1
2mms3

g

M = -
2mms

A1/ elmwe thretngy @) (BQ_wegsM) edx. (11.6.1)
|lz|<1 lz|<1

Making the change of variables v =1 + izm~3 and then v — v Aov we obtain that the
first term equals

1 _ _w
27”./\152 YAy ? Pr_y,120,, (I11.6.2)

where

One may relate Ps ) to I-Bessel functions in exactly the same way as in [BD16, Lemma
4.2], making the adjustment for y/As where necessary, to obtain that

2k k 1
Pop=1,4 1|7 o +O|exp|m n<1—|—2> .
3 6 14+m™5

Using the asymptotic behavior of the I-Bessel function given in Lemma I1.2.5 we obtain

P00, = 3

8m2Agn)4

)

e2mv/2A2m e2mV/2Ran m™/2Aan (1+ 1 >
+0|—5|+0]e
i (

T 1+m_%
2 (QAQTL)

and therefore (I1.6.2) becomes
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_w e2mV2A2n 2mv/2Rsn Tr\/m<1+ 172>
7/\162 w\/> € - 40 ﬂ2_w € -]+ Io) ﬁZ—we 1+m™ 3 .
27 (2A2n) (8m2Agn) 4

Analogously the second term of (I1.6.1) is

1 B 1 B 627r\/2A2n
Tﬂg YAy  Pyian, =0 (53 Y
i 9

T (2A2n)i
This yields

1 o 2m\/2Aon 2m\/2Aon
M:%A162_w /A2 weil_‘_O 2—w
2mi 27 (2A9m) (872Agn)
TV 2Aomn <1+ 1 > 627r\/2A2n
+ o) 52—106 1+m 3 + O 3—w -
2T (2/\271)Z
and finishes the proof. O
11.6.2 The error arc
Finally, we bound E as follows.
Proposition 11.6.2. We have E < M as n — oo.
Proof. By Proposition 11.5.1 we have
No Ny 2
I6; 2wy, | w 1 1 T,
E < (s + 1)B(m,n) exp Z— ——— |1l — —Z
2Tm3 1 ykﬁ 12 2 1 + mf% = 6%‘]'5
> eﬁn/ . eﬁnixm_%dm
1<|z|< 2
N Ny
1 ) 1
<<S+ B(m,n)exp |mV2n Z LI .
T 12a] YrB 2
j=1 =1 1+m™3
where we trivially estimate the final integral. Using 1 — Z;V 1 12a < 24/As the result
follows immediately by comparing to M and therefore also finishes the proof of Theorem
I1.1.2. O
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I1.7

Further questions

We end by briefly commenting on some related questions that could be the subject of
further research.

(1) Here we only discussed the case of eta-theta quotients with simple poles. A natural
question to ask is: Does a similar story hold for functions with higher order poles? The
situation is of course expected to be more complicated, in particular finding Fourier
coefficients with the method presented here seems to be much more difficult. One
could attempt to build a framework by following the definitions of Fourier coefficients
given in [DMZ12, Section 8].

For example, in [MZR15] Manschot and Zapata Rolén studied a Jacobi form with a
double pole related to x,-genera of Hilbert schemes on K3. They obtain bivariate
asymptotic behavior in a similar flavor to those here. Can one extend this family?

(2) Although the functions considered in this chapter provide a wide family of results, it
should be possible to extend the method to other related families of functions. In
particular, it would be instructive to consider similar approaches for prototypical
examples of mock Jacobi forms.
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Chapter 111

Asymptotic equidistribution for
partition statistics and topological
invariants

This chapter is based on a prerpint of the same title submitted for publication and is
joint work with Dr. William Craig and Dr. Joshua Males [CCM21].

II1.1 Introduction and statement of results

A partition A of a non-negative integer n is a list of non-increasing positive integrers,
say A = (A1, A, ..., \p), that satisfies |A| == A1 + -+ 4+ A\, = n, and we let p(n) denote
the number of such partitions. In 1918 Hardy and Ramanujan [HR18] proved

1 . /2n
n) ~ e V3
p(n) 3

as n — 0o, one of the most famous asymptotic formulae in partition theory. Their work
marked the birth of the so-called Circle Method.

Half a century later Wright [Wri68, Wri71] developed a modified version of the Circle
Method which provides a general method for studying the Fourier coefficients of functions
with known asymptotic behavior near cusps. The essence of Wright’s method is to use
Cauchy’s theorem to recover the coefficients as the integral over a circle of the generating
function. One then splits the integral into two arcs, the major arc and minor arc, where
the generating function has large growth and small relative growth, respectively. Even
though this version of the Circle Method gives weaker bounds than the original techniques
of Hardy and Ramanujan, it is more flexible when working with non-modular generating
functions. It has been used extensively in the literature, see e.g., [BM14, KKS15, Mao18|
for several examples closely related to this chapter.

Throughout mathematics, the equidistribution properties of certain objects are a
central theme studied by many authors, including in areas of algebraic and arithmetic
geometry [CM15,GT12,Kat15] and number theory [OS18,Xi20]. Recently, there has been
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CHAPTER III. ASYMPTOTIC EQUIDISTRIBUTION

e ... e < ) many nodes
° < A2 many nodes
o ... o +— A, many nodes

Figure III.1: The Ferres-Young diagram of a partition A = (A1, A, ..., Am).

a body of work in analogy with Dirichlet’s theorem on the asymptotic equidistribution
(or non-equidistribution) on arithmetic progressions of various objects. For example,
Males showed the asymptotic equidistribution of the partition ranks in [Mal21b], Ciolan
proved asymptotic equidistribution results for the number of partitions of n into k-th
powers in [Cio20], Gillman, Gonzalez, Ono, Rolen, and Schoenbauer proved asymptotic
equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of
surfaces [GGORS20], and Zhou proved asymptotic equidistribution of a wide class of
partition objects in [Zho21].

Another example is one of Craig and Pun [CP21], wherefore we need to define hook
lengths. For each partition A = (A1, Ag,..., Ap,) we can draw a Ferres-Young diagram as
shown in Figure III.1. The node in row k£ and column j has hook length

h(k,j) = (A — k) + (\j —4) + 1,

where A’ denotes the number of nodes in column j. We let H;()\) denote the multiset of
t-hooks, those hook lengths which are multiples of a fixed positive integer ¢, of a partition
A. Craig and Pun investigated the t-hook partition functions

pi(n) =#{\ a partition of n : #H;(\) is even},
pf(n) ==#{\ a partition of n : #H;(\) is odd},

which divide the partitions of n into two subsets, those with an even (respectively odd)
number of t-hooks. For even ¢, they proved that the partitions of n are asymptotically
equidistributed between these two subsets, while for odd ¢ they found the surprising
phenomenon that they are not. Following this example, Bringmann, Craig, Males, and
Ono [BCMO22] showed that on arithmetic progressions modulo odd primes ¢-hooks
are not asymptotically equidistributed, while the Betti numbers of two specific Hilbert
schemes are. Their results centrally used a variant of Wright’s Circle Method (see
Proposition I11.2.3).

The primary aim of this chapter is for proving large families of Dirichlet-type equidis-
tribution theorems. We begin by making more precise the meaning of a Dirichlet-type
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theorem. Suppose ¢(n) is an arithmetic function which counts something of interest. Let
q = e *, where z = x + iy € C with > 0 and |y| < 7. Furthermore let ( = ¢§ == e %"
be a b-th root of unity for some natural number! b > 2 and 0 < a < b. Assume that we

have a generating function on arithmetic progressions a (modb) given by

H(a,b;q) = Zc(a,b; n)q", (T11.1.1)
n>0

for some coefficients c(a, b;n) such that
1 , .
o) — } : —aj J.
H((I, b, q) - 8 Cb H (Cb 5 Q) s (11112)

for some generating functions H((;q), with H(q) = H(1;q) =), c(n)q". To say that
equidistribution holds is to say that c(a,b;n) ~ fc(n) as n — co. We are concerned
with relating analytic properties of the functions H((;q) to equidistribution results for
c(a,b;n). We provide a general framework for answering this question for a large class
of generating functions by applying the spirit of Wright’s Circle Method along with
ideas of [BCMO22] (see Theorem IIL.3.1 for a precise statement). Since our aim is to
unify differing approaches to asymptotic equidistribution, we also collect many known or
partially-known results and prove them using our framework, which may be summarized
as follows.

Result. Assume that on both the major and minor arcs H(q) dominates H((;q), and
H(q) is dominant on the magjor arc as ¢ — 1. Then c(a,b;n) are eqidistributed as n — co.

Theorem II1.1.1 is already known, Theorem II1.1.2 is partially known, while (to the
best of the author’s knowledge) Theorems II1.1.3, I1I.1.4, II1.1.5, and III.1.6 are new.

Because this method also naturally produces asymptotic formulae for the coefficients
c(a,b;n), we may also derive other interesting results, namely results about convexity
and log-concavity. Convexity-type results of partition theoretic objects have been studied
in recent years, for example in [BO16] Bessenrodt and Ono showed that if n;,ne > 1 and
n1 +ng > 9, then

p(n1)p(n2) > p(ni + na).

A similar phenomenon for partition ranks congruent to @ (modb), denoted by N (a,b;n),
was investigated by Hou and Jagadeesan [HJ18], who gave an explicit lower bound on n

!The case b = 1 is clearly trivial for coefficients that are integral.
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for convexity of N(a,3;n). Confirming a conjecture of [HJ18], Males showed in [Mal21b]
that for large enough n1,no we have

N(a,b;n1)N(a, b;nz) > N(a,b;ni + no).

A direct corollary to Proposition II1.2.3 shows that c(a, b;n) arising from functions that
satisfy the conditions of Proposition I11.2.3 also satisfy the convexity result

c(a,byny)c(a,b;ng) > c(a, b;ny + n2) (II1.1.3)

for large enough n1,no. A further corollary yields that the coefficients are asymptotically
log-concave, i.e., for large enough nq, no,

c(a,b;n)? > c(a,b;n — Ve(a,byn +1). (I11.1.4)

Such log-concavity results have been obtained for various arithmetic coefficients in the
literature, including [BJSMR19,LDM19, DP15] among many others. In particular, all
of the coefficients discussed in the following sections asymptotically satisfy (III.1.3) and
(IT1.1.4). To the best of the author’s knowledge, this gives new results for the first residual
crank, traces of plane partitions, Betti numbers of the two- and three-flag Hilbert schemes
we consider, as well as the cells of the scheme V), ; of Gottsche, each defined in the
following subsections.

IT1.1.1 Partition statistics

We next consider various statistics on partitions, beginning with the asymptotic
equidistribution properties of two of the most famous partition statistics: the rank and
the crank.

In [Ram21] Ramanujan proved that for n > 0

p(bn+4) =0 (modb), p(Tn+5)=0 (mod7), p(1ln+6) =0 (mod11).

The rank [Dys44] of a partition A is given by the largest part minus the number of parts.
Dyson [Dys44] conjectured, and Atkin and Swinnerton-Dyer [ASD54] later proved, that
the partitions of 5n + 4 (respectively 7n + 5) form 5 (respectively 7) groups of equal size
when sorted by their ranks modulo 5 (respectively 7), thereby combinatorially explaining
two of Ramanujan’s congruences. Moreover, Dyson posited the existence of another
statistic which should explain all Ramanujan congruences, which he called the crank.
The crank was later found by Andrews and Garvan [AG88, Gar88], and is given by

{)\1 if A contains no ones,

() —w(A) if A contains ones,
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where w(\) denotes the number of ones in A and p(\) denotes the number of parts greater
than w(A).

The function N(a,b;n), which is the number of partitions of n with rank congruent
to a (modb), was shown to be asymptotically equidistributed by Males in [Mal21b],
making use of Ingham’s Tauberian theorem and monotonicity properties?, and may also
be concluded from [Bri08]. We reprove this result.

Theorem III.1.1. Let 0 <a <b and b > 2. Then as n — oo we have that

N(a,b;n) = %p(n) (1 +0 <n7%)> :

In a similar vein, it is natural to consider the asymptotic behavior of the crank
on arithmetic progressions. For odd b, the asymptotic equidistribution is known by
Hamakiotes, Kriegman, and Tsai [HKT21], who used results on the asymptotic of cranks
given by Zapata Rolén in [Zapl5]. With our framework we are able to extend this result
to all b. Note that our method is simpler than the full Circle Method, allowing us to
easily extend to include the case of b even. However, the asymptotic formulae obtained
in [HKT21] are far more precise than ours. Let M(a,b;n) be the number of partitions of
n with crank congruent to a (modb).

Theorem III.1.2. Let 0 <a <b and b > 2. Then as n — oo we have that

M(a,b;n) = %p(n) (1 +0 (717%)) .

In [BLOO09], Bringmann, Lovejoy, and Osburn introduced two so-called residual
cranks on overpartitions. Recall that an overpartition is a partition where the first
occurrence of each distinct number may be overlined. The first residual crank of an
overpartition is given by the crank of the subpartition consisting of the non-overlined
parts. Let M (a,b;n) denote the number of overpartitions of n whose first residual crank
is congruent to a (modb).

Theorem II1.1.3. Let 0 < a < b and b > 2. Then as n — oo we have that

M (a,b;n) = SbLneW\/ﬁ <1 + 0 <n_%>> .

Remark. One could obtain a similar result for the second residual crank of [BLO09],
which we omit here for succinctness.

2Since the proof in [Mal21b] used Ingham’s Tauberian theorem, there was no error term.
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1 11 11 1 21 2 3
1 1 1
1

Figure II1.2: The plane partitions of 3.

Our framework applies to a larger realm than just the classical theory of partitions. In
fact, we now demonstrate an example where we can prove equidistribution in congruence
classes for a plane partition statistic. A plane partition of n (see e.g., [And98]) is a
two-dimensional array m; ; of non-negative integers j, k > 1, that is non-increasing in both
variables, i.e., mj > i1k, Tk > T4 for all j and k, and fulfills [A| :== Zj,k Tjk = M.
For example there are six plane partitions of 3, which we list in Figure II1.2 using the
standard visual representation of plane partitions. We let pp(n) denote the number of
plane partitions of n, so pp(3) = 6. Plane partitions were famously studied by MacMahon
[Mac04], who established the generating function

PP(q) =Y pp(n)¢" =[] (1_1qn)n =14q+3¢°+6¢> +13¢* +24¢° +--- .

n>0 n>1

As with regular partitions, many authors have studied asymptotic properties of families
of plane partitions and their statistics. For instance, in 1931 Wright [Wri31] established
the asymptotic formula

8~

% (Z)g’g exp (3((3}% (Z)g + (’(—1)) (ITL.1.5)

as n — oo, where ((s) = Y_,~; 7= with Re(s) > 1 is the Riemann zeta function. One of
the more famous statistics associated to plane partitions A = {m; 1}, x>1 is its trace t(A),

which is defined by
t(A) = Z T5.5-

Jj=1

pp(n) ~

In [Sta73], Stanley generalized MacMahon’s generating function to a two-variable function
which keeps track of the values of ¢(A), proving

1
th(/\)q\/\l - H -
n nop (L= <)
Certain asymptotic properties of the trace have been studied by Kamenov and Mutafchiev

[KMO07] and Mutafchiev [Mut18], where the limiting distribution and expected value of
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t(A) were considered. Here, we study the distribution of the trace in residue classes. In
particular, for integers 0 < a < b we define the function pp(a,b;n) as the number of
plane partitions of n whose trace is congruent to a (modb), that is,

pp(a,b;n) == #{A : |A| =n,t(A) =a (modb)}.
For example, from the plane partitions of 3 given above we can see that pp(0,2;3) = 2
and pp(1,2;3) = 4.
Theorem II1.1.4. Let 0 <a <b and b > 2. Then as n — 0o we have that

oot i) ~ o)~ 2O (1) F o (st (1)} ).

There are a plethora of other partition statistics in the literature for which one could
obtain similar theorems using our framework. For example, such results could be proved
for more residual crank-like statistics [Jen15], ranks for overpartition pairs [BLO8], or the
full rank of k-marked Durfee symbols [BGMO09].

I11.1.2 Betti numbers of Hilbert schemes

In topology a fundamental goal is to determine whether two spaces have the same
topological, differential, or complex analytic structure. Topological invariants are impor-
tant tools for determining when spaces have different structure. A prominent example
are Betti numbers, which count the dimension of certain vector spaces of differential
forms of a manifold. Often, the generating function of the Betti numbers are related
to modular forms. Two prominent examples were investigated by Bringmann, Craig,
Males, and Ono in [BCMO22], where it was shown that the Betti numbers of the Hilbert
scheme of n points on C? as well as its quasihomogenous counterpart are each (essentially)
asymptotically equidistributed® as n — co. Here we provide further examples of this
phenomenon.

For a Hilbert scheme X, let b;(X) := dim(H;(X,Q)) be the Betti numbers. Here,
H;(X,Q) denotes the j-th homology group of X with rational coefficients. Then the
generating function in a formal variable T" for the Betti numbers is known as the Poincaré
polynomial, defined by*

P(X;T) =Y by(X)T7 =) dim(H;(X,Q))T7.

3Here we mean equidistributed up to a trivial modification which comes from the fact that certain
Betti numbers in this setting are identically zero. See the definition of d(a,b) as below.

4The reader should be aware that often the Poincaré polynomial is written in the formal variable T%7
which explains some apparent mismatches between the referenced sources for generating functions in
Section II1.4 and those quoted in this chapter.
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We consider the modular sums of Betti numbers on congruence classes a (modb), and
define

B(a,b; X) = Z bi(X).

j=a (modb)
Define the three-step flag Hilbert scheme by
X1 =Hilb™"1m2(0)
= {C[[x, Y|l D I, D Iny1 D Lyyo: I ideals with dimg[m’y” /I = k} ,

and the two-step flag scheme
X, = Hilb""2(0) = {C[[m, yl] D In D Tnya: I ideals with dimE ™ /1, = k:} :

Furthermore, let (J,I) be a point in
Hilb™" 2 (C?) := {I, € Hilb" (C?) , In42 € HID"T?(C?): I, D Lya} .

where Hilb™(C2) denotes the usual Hilbert scheme of n points over C2. Then J, I are
said to be trivially related if J/I = C? as trivial C[z,y] modules (see [Boc16, Definition
4.2.1]). We also consider

X3 = Hilb™"** (C?),_,

which is the subspace of Hilb™""2(C?) of trivially related points (see also [NY1la]).
For m € N, we also regard the certain perverse coherent sheaves (defined explicitly in
[NY11b]), called X := M™(cn) where cy is some prescribed homological data.

Let

if b is odd,

if @ and b are even,

d(a,b) =

O oo oI

if a is odd and b is even.

We prove the following result, which shows that the Betti numbers of these schemes are
(essentially) asymptotically equidistributed.

Theorem III.1.5. Let 0 <a <b and b > 2. Then as n — oo we have that

1 dla,b)v3 7, /2n 1
QB(a,b;Xl)NB(a,b;Xg)NB(a,b;Xg):(614732\[6 ﬁ(l—l—O(n %))
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and
m—2
B(a,b; X4) = —ﬂf’b)n - em/g (1 +0 (n_%)>
62 2v2¢,mm
where [[7%, = = lezm +O(z=mHh).

Remark. 1t is possible to obtain further terms in the asymptotic expansion directly from
the application of Theorem III.3.1, which highlights the difference in lower-order terms
of B(a,b; X;). Moreover, for a odd and b even, one may easily show that B(a,b; X;)
identically vanish.

Since many generating functions for topological invariants arise as infinite g-products,
one may conclude similar results for many other functions. For example, in [MZR15]
Manschot and Zapata Rolén investigated the asymptotics of the x,-genera of Hilbert
schemes of n points on K3 surfaces, centrally using Wright’s Circle Method. Since their
generating function is a quotient of infinite g-products (see [MZR15, page 2]), it is likely
that one may conclude similar equidistribution properties for these genera.

II1.1.3 A particular scheme of Gottsche

Let Hilby,(.S) denote the Hilbert scheme which parametrises finite subschemes of length
n on a smooth projective surface S. We follow Fulton [Ful84] and Ellingsrud-Strgmme
[ES87], and say that a scheme X has a cellular decomposition if there is a filtration
X=X,DX,.1D--DXgpD X_1 = by closed subschemes with each X; — X;_4
a disjoint union of schemes Uy; isomorphic to certain affine spaces. Then the Uy; are
known as the cells of the decomposition.

Let k be an algebraically closed field. Let m be the maximal ideal in k[[x, y]], and
define

Vi = Hilby, (spec (k[[z, y]]/m™)) .
The scheme V;, j, was a central tool of Gottsche in obtaining the famous formula for the
Betti numbers of any Hilbert scheme of points on a smooth projective variety [Goe90],

via the Weil conjectures. Let v(a, b;n) count the number of cells of V,, ;, whose dimension
is congruent to a (modb).

Theorem III.1.6. Let 0 <a < b and b> 2. As n — oo we have that

v(a,b;n) = %p(n) (1 +0 (n*%>> :
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This chapter is structured as follows. In Section II1.2 we recall relevant results from
previous works in the literature. In Section II1.3 we then state our central theorem on
the asymptotic equidistribution of coefficients of certain generating functions and show
how convexity and log-concavity immediately follow from the asymptotics produced by
Wright’s Circle Method. Finally we prove the remaining theorems in Section III1.4.

I11.2 Preliminaries

I11.2.1 Asymptotics of infinite ¢g-products

Here we recall the asymptotic behavior of various infinite g-products. One helpful
tool is the modularity of the partition generating function

1 24
Plo)= ;)p(n)qn T @D T;](T)’

where we set (a); = (a;q); = Hz;é(l —aq") for j € NgU{oo}, ¢ = €™ and the Dedekind
n-function

n(r) =g [J(1—q"),

n>1

which is a modular form of weight 1. We also have [BD16, Lemma 3.5].

Lemma II1.2.1. Let M > 0 be a fized constant. Assume that T = u + iv € H, with
Mv < |u| <1 foru>0 and v — 0. We have that

P(g)] < Voexp Ll] <17; - % (1 - @))] .

This gives us the asymptotic behavior of P(q) on the so-called minor arc.
Using the transformation property of 17 we obtain the following classical transformation
behavior (see e.g., [BCMO22, equation (2.7)] with & = 1, = 0 and shifting z — )

1
2 5 s Z s Tr2 7"2
(%e?) = < 7T> et2(z %) <e—4z e ) , (II1.2.1)
o

z

for z € C with Re(z) > 0.
Keeping the naming convention of [BCMO22], we let

F(Go)=[]0-¢m, FBGo=]]0-¢"Com).

n>1 n>1
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Recall Lerch’s transcendent

n

O(z,s,a) = Z (nj—ia)s’

n>0

and for 0 < 6 < § define the domain D(; = {z =re®: r >0 and |a| < 6}. Throughout,
the Gamma functwn is defined by T’ = [, t*"te~'dt, for Re(z) > 0. Then we
have [BCMO22, Theorem 2.1] (see also [BFGQZ] for the first case) which enables us to
determine the asymptotics of F} and F3 on major arcs.

Theorem II1.2.2. For b > 2, let ( be a primitive b-th root of unity. Then the following
are true.
(1) As z — 0 in Dy, we have

1 <<1><< 2,1)
) e

P (Ge ™) = (1+0(z]))-

(2) As z — 0 in Dy, we have

H e~ a% (14 0(|2]).
Remark. Note that the proof of (1) does not require ¢ to be primitive but only ¢ # 1.

I11.2.2 Wright’s Circle Method

We require the following variant of Wright’s Circle Method, which was proved by
Bringmann, Craig, Males, and Ono [BCMO22, Proposition 4.4], following work of Wright
[Wri71], see also Ngo and Rhoades [NR17].

z

Proposition IT1.2.3. Suppose that F(q) is analytic for ¢ = e™* where z =z + iy € C
satisfies x > 0 and |y| < 7, and suppose that F(q) has an expansion F(q) =, <qc(n)q"
near 1. Let N, M > 0 be fized constants. Consider the following hypotheses:

(1) As z — 0 in the bounded cone |y| < Mz (major arc), we have

N-1
Fe™?) = Be Z ;2 + Oy (|z|N) )
5=0

where a; € C, A € RY, and B € R.
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(2) As z — 0 in the bounded cone Mz < |y| < m (minor arc), we have

1
‘F(eiz)‘ <M eRe(z)'(A—f-c)’

for some k € RT.
If (1) and (2) hold, then as n — oo we have for any N € RT

N-1
c(n) = ni(=2B=3) 2VAn (Z pn"2+0 (n_g>> )
r=0
j+B+3
h > d () VAT TG+ B3+ )
where p, = Y aici,.—; and c;, = )
pr =0 JEprd »r 2/m r'iT'(j + B+ % —r)

I11.3 The central theorem

Recall that we have the functions H(a,b;q), H(q), and H((;q) as in (III.1.1) and
(ITI.1.2), respectively. We now prove a theorem regarding asymptotic equidistribution of
the coefficients c(a, b;n).

Theorem II1.3.1. Let H(a,b;q) and H((;q) be analytic on |q| <1, || =1 such that
1 i :
H(a,b;q) = EZQ, 'H (Cj;q> :
0

Suppose c(a,b;n) and c(n) are the Fourier coefficients of H(a,b;q) and H(1;q), respec-
tively. Let C = C), be a sequence of circles centered at the origin inside the unit disk with
radit 7, — 1 as n — oo that loops around zero exactly once. For 0 < 0, let C=0n Dy
and C’\é be arcs such that the following hypotheses hold.

(1) As z — 0 outside of Dy, we have

b—1
>GH (Gre) =0 (H(15e79))
j=1
(2) As z — 0 in Dy, we have for each 1 < j < b—1 that
H (Cg;e_z> =0 (H(l;e_z)) .
(3) As n — oo, we have
1 [ H(Lg)

)~ 50 [ g
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Then as n — 0o, we have

cla,b;n) ~ %c(n)

In particular, if H(1;q) and H((;q) satisfy the conditions of Proposition II1.2.3 we have
that

N-1

1 1 )

(a,bin) ~ eln) ~ Eni(—zB_g)ezm (Z ph 4+ 0 <n—§)>
r=0

as n — o0.

Proof. By Cauchy’s theorem and the decomposition of H(a,b;q) we have

H(a,b; S0 G YH(Cq)
c(a,byn) = / Cfl-i—lq = lgm/ bn+1 Y —dg

We now break down the integral over C into the components C and C\é’ . Along C’\é,
we have by (1) that

1 TG HG O( 1 [ H(Lg) dq)

2mi Joné gntl 2mi Jone "t

From (3) along with Cauchy’s integral formula for ¢(n) it follows that

1 H(lsq)quO(l H(l;q)dq>

210 JonG gt 2mi Ja gntl

as n — 0o, and therefore

1 “H(G; 1 [ H(1;
L EJ OCb 1(<b Q)dq:o / (’q)dq _
21 JonG gt 2ri J& gttt

On C we have by (2) that Z?;é Cb_ajH(Cg;q) = H(1;q) + 0o(H(1;q)), from which it
follows that

~ —

n+1 271 & qn+1

Z Cb aJH Cb? q) 1 H(1;q)
27m/ d dq

as n — co. Therefore, combining the estimates along C' and C\C we have by (3) that

c(a,b;n) [27”/ Hn+1 ] ~ %C(n)

as n — oo. This proves the first claim. If we now assume H(1;q) and H (Cg; q) satisfy
the hypotheses of Proposition III1.2.3, then it is clear that each of (1) — (3) are satisfied
and the result follows by the asymptotic for ¢(n) in Proposition I11.2.3. O
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Using this result, we may immediately conclude asymptotic convexity for a large class
of functions.

Corollary I11.3.2. Let 0 < a <b and b > 2. Assume that H(1;q) and H((;q) satisfy
the conditions of Proposition I11.2.3. Then for large enough ny,no we have that

c(a, b;ni)c(a, b;nz) > ca, b;ny + ng).

Remark. The proof also works for the plane partition functions pp(a,b;n) by Wright’s
asymptotic formula (I11.1.5). Higher order Turdn inequalities for plane partitions have
recently been studied by Ono, Pujahari, and Rolen [OPR22].

Proof of Corollary III.3.2. We use the description of the asymptotics of ¢(a,b;n) from
the proof of Theorem III.3.1 for N = 1. Then

c(a, b;n1)c(a, b;na)

2 _1 _1
Py (nan)i(—2B—3)e2\/An1+2\/Ang (1 +0 (max <n1 2 n, 2 (nln2)—§> >>

T2
and
c(a,byny +ng) = ]%O(nl + ng)%(_2B_3)62 Alnitnz) <1 +0 <(n1 + n2)_%)> .
Comparing the exponential growth of the main terms immediately yields the conclusion.

O]

A very similar calculation gives the following log-concavity result.

Corollary I11.3.3. Let 0 < a < b and b > 2. Assume that H(1;q) and H((;q) satisfy
the conditions of Proposition I11.2.3. For large enough n, we have

c(a,b;n)? > c(a,b;n — 1)c(a, byn + 1).

We consider the case of partition statistics in slightly more detail. Let s(\) be a
partition statistic, i.e., s is a map from the set of all partitions to Z, and let

Hy(Gq) =Y ¢*Wgl.
A

Note that Hy(1;q) = >, ¢ is the generating function of p(n). Then by orthogonality
of roots of unity we have that (see e.g., [And98])

(=

-1
¢, H, (CZ; q) = > M (I1.3.1)

A
s(A)=a (modb)

Hy(a,b;q) =

S =
I
o

J
A direct corollary of Theorem I11.3.1 is the following.
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Corollary I11.3.4. Assume that Hy(1;q) and H((; q) satisfy the conditions of Theorem
I11.3.1, and let s(a,b;n) count the number of partitions of n with statistic s congruent
to a (modb). Then as n — oo we have that s(a,b;n) ~ $p(n). If furthermore the
conditions of Proposition I111.2.3 are satisfied, we have the error term which yields

s(a,byn) = %p(n) (1 +0 (n7%>> .

I11.4 Proofs of Theorems II1.1.1 to II1.1.6

In this section we prove each of the theorems from the introduction in turn. Each
proof relies on the asymptotic equidistribution result concluded in Theorem III.3.1.

I11.4.1 Proof of Theorem III.1.1

In accordance with (II1.3.1), we have

b—1

SN b =5 S pma" + 5 56 R ().

n>0 n>0 7j=1

where

R(¢q) =Y N(m,n)("q".
n>0
meEZ

To conclude the asymptotic equidistribution in the framework presented here, one needs
only check that the conditions of Theorem III.3.1 apply. Since the asymptotics of (¢; q)
follow from (II1.2.1) and satisfy the required properties on both the major and minor
arcs, one simply needs to show that

R (Ci;q> =o((¢:9)x), ‘R (Cg;q)) < @9,
on the major arc and minor arcs respectively. In fact, in [Mal21b] it was shown that
as z — 0 with positive real part we have R((};q) — 0. Thus clearly each inequality
is satisfied, the assumptions of Theorem I11.3.1 (and Corollary II1.3.4) apply, and we
conclude the result.
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I11.4.2 Proof of Theorem III1.1.2

Let M(m,n) denote the number of partitions of n with crank m. In accordance with
(II1.3.1), we have (see e.g., [Mah05, equation (3.2)])

b—1
S M(a by =3 S pm)a" + 3 3060 (¢ia)
j=1

n>0 n>0
where
mon (4 9)o
CGa) =) M = '
(Ga) 7;) (m,n)¢™q F1(¢q) F1(¢CYq)
meZ

We have from Theorem II1.2.2, as z — 0 in Dy (so on the major arc), for ¢ = e™* and ¢
a b-th root of unity not equal to 1, that

— 10,

Equation (II1.2.1) implies that on the major arc we have

(5702 = | 5B (14 00aD),

while Lemma II1.2.1 gives us

Fi(Ge™?) =

2
s < v,

for some C > 0 on the minor arc.

Moreover, one may conclude in a similar way to [BCMO22, Proof of Theorem 1.4
(2)] that

‘C (Cﬁ;q)‘ < (@9
on the minor arcs. For the major arcs we obtain that

z

—lg(—1
) —”62Re(i)-i—Re(@(i’Q‘l))—&—Re(C @(g ,2,1))
C (Cb;q) <jp e :

using the asymptotics of F; and the Pochhammer symbol. This gives us that
C <C£;q) =0 (¢ 9)%)
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holds if and only if

m o Y
<3—5—¢1 ¢>1> T2[2 (¢2+¢2)W7
for ¢1 +igo = CZCI)(CZ, 2,1) and ¢ +i¢5 = gb‘j@(gb‘j, 2,1). A straightforward calculation
shows that ‘ '
» L cos (@) . sin (@)
o (gr2) =y ey T
n>1 n>1

cos(nf) 2 0(27—0)
4

Using that >° o) =7~ =& for some 0 < 0 < 27 (see [Zag88, page 238]) then
2

gives that ¢ = % — Tj(l — %) = ¢] and ¢2 = —¢35. Therefore, our assumption reduces

212 j x
1—2) — -
<b ( b) > i

which holds, since we have b > 0, 1 < j < b—1 and x = Re(z) > 0. Thus all the
assumptions of Theorem II1.3.1 apply, and we conclude the result.

I11.4.3 Proof of Theorem III1.1.3

In [BLOO09, equation (2.1)] it was shown that the generating function of the number
of overpartitions of n with residual crank m, denoted by M (m,n), is

(7% ¢°)
Fi(¢Ga)Fi(¢hq)

C(Gq) =Y M(m,n)("q" =
n>0
mEeZ

We thus have

C(a,b;q) ::Z (a,b;n)q" 2b2 Jc(g,ﬁ )
§=0

n>0

By a similar argument as before, the asymptotic behavior toward z = 0 is dominated by
the 7 = 0 term on both the major and minor arcs. If j = 0, we have

(4% 4)o
(¢ 9)%
Using (II1.2.1) and standard arguments, this is seen to satisfy

(%% V7

o aya CHOED
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on the major arc and, for some C’ > 0,

'(?q,gﬁo ’<<fe“ :

on the minor arc. ThlS means that the conditions of Proposition I11.2.3 are satisfied here
with B=5, A= and ap = f Thus applying Theorem II1.3.1 yields the claimed
result.

I11.4.4 Proof of Theorem II1.1.4

Let pp(m,n) be the number of plane partitions of n with trace m. We have MacMa-
hon’s classical generating function [Mac04]

1
pr(n)qn = H m

n>0 n>1

and the trace generating function [Sta73]

PP(Ciq) == > pp(m,n)¢("¢" =[] ( 1

_ n\n "
n,m>0 n>1 1 Cq )

Following the strategy of [BCMO22] we have, for ¢ = e”# and ¢ a b-th root of unity, that

Log(PP(C;q)) =— > nLog(1—-¢q")=> n Y Cm -
n>1 n>1 m>1
= Z Cm — Z Cm me(l — gm)2’
m>1 m>1

Recall that the generating function for the Bernoulli numbers B,, is given by (see e.g.,
[BFOR17])

—Zz

Z Bn n z ze
— "= = .
n! e2—1 1—¢e*
n>0

Defining B(z) := 1 Zn>0 A 12;, differentiating gives us that B’(z) = — T2
and yields the 1dent1ty
—B'(mz) e m*

mz mz (1 —e—m#)%
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Therefore, if we set F(z) :=

_BZ/(Z) , we obtain

Log (PP (¢;e™%)) =2 > ("F(ma).

m>1

For ( = ¢ = eZ5* a b-th root of unity not equal to 1 and by substituting m — bm + j
for m € Ny, 1 < j < b this yields

Log (PP (¢ e” _ng“ Y F (( Z) bz>. (II1.4.1)

m>0

We turn to evaluating the inner sum. We note that F'(z) has the Laurent expansion

—B'(z n+2)Bnis
R == X M

—(n+2)B

By Euler-Maclaurin summation we have for ¢, = @ +3)"+3 the identity (see e.g.,

[BCMO22, Lemma 2.2])

,;OF << ) bz) (I11.4.2)

- ¢ (3’ %) I;;l

Bii1
EFC IR 121b [Log(bz)—l—z/)( ) } ch . <)b”z"

as z — 0 in Dy. Here ((s,2) =), W is the Hurwitz zeta function, 1(x) = l;l((j))

is the digamma function, ~y is the Fuler—Mascheroni constant, By (x) denotes the n-th

xt n
Bernoulli polynomial defined via its generating function te — = ano Bn(x)%!, and for
some A € Rt we define

00 —2 c efAu
Ifp = /0 (F(u) - Z cpu” — _1u> du.

Here and throughout we say that

z) ~ Z anz",

n>0

if f(z) =N anz" + O(|z|NtY), for any N € Ny. Applying (IT1.4.2) to (I11.4.1) and
using that 22:1 ¢;? =0, we obtain
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Log (PP (¢fe77%))
b : ‘ j
1B T, 1 j B (1)
~ aj b ) - J o b)in_n
g 2Z< ¢(31)+ 1%24 v (3)+ 00D
We have the well-known identity (see e.g., [BCMO22, equation (2.6)])
i (]
> G (b> = bLog (1 — (')
j=1

and by elementary manipulations we furthermore obtain

Zc;”c( ) Zc > bH ) = b° Liz (¢f)

n>0

where Liz(z) = 2@1 Z—}; is the third polylogarithm function. Therefore on the major arc,
we conclude by exponentiating that, for ;' # 1, we have

Lig (¢f

1 b)
PP (Gie ™) =(1—¢)e = (1+0(]z))

and otherwise by [Wri31]

PP (1;e %) = 2B 2 ™ (14 0(|2])) |

where kK = (/(—1) < 0. An analogous argument to the one of (IIL.3.1) yields that
PP(a,b;q) and PP((; q) are analytic such that

Comparing exponents, we see that PP(({!;e™%) = o(PP(1;e77)), and therefore the second
hypothesis of Theorem II1.3.1 is true for PP((;q).
We now consider PP((; ¢) on the minor arc. By definition, we have

PP (Gfie™®) _ I 1—e ™ \"
PP (1;e72) et 1— (e )

o8
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As z — 0 with Re(z) > 0, we see that 1 —e™"* — 0 while 1 — (fe™"* 4 0. Thus, for all

z on the minor arc with |z| sufficiently small, we see that \%| < 1. This proves

that the first hypothesis of Theorem II1.3.1 holds for PP((; ). The third condition of
Theorem II1.3.1 follows by noting that the integral of PP(1;¢q) along the major arc gives
Wright’s asymptotic (II1.1.5), and so equidistribution follows by Theorem III.3.1.

I11.4.5 Proof of Theorem III.1.5
For X a Hilbert scheme, letting

Gx(T;q) =) P(X;T)q"
n>0

a standard argument with orthogonality of roots of unity yields

bl

> B(a,b; X)q Zgb "Gx (¢ q). (I11.4.3)

n>0

The main result of Boccalini’s thesis [Bocl6, equation (4.1)] states that

14 ¢?

-1
Gx,(Ciq) =Y P (Hib™™1+2(0); ¢) ¢ = 5 P (Cra)
= (1-¢q)(1—-C*¢?)
By (III.4.3) we have that
Hyx, (a,b;q) = > _ B(a,b; X1)q"
n>0
1 a 1 —ar T
=3 (14 (=1)%62p) Gx, (1;9) + 3 Z G “"Gx, (Gh3a) -
0<r<b—1
r#%
Since
. 2 _
Gx,(L;e77) ; !

_ —z., —z
e e ¢
1 3 11
(7. g2y~
=(e % e %) <22+2 —i-ﬁ—i-O( )>
the asymptotic behavior is essentially controlled by the Pochhammer symbol. It is then
enough to show that on the major and minor arcs, Gx, ((};q) = o(Gx, (1;q)) for ¢ # 1.

This follows directly from the asymptotics of F3 given in Theorem III.2.2 in a similar
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fashion to [BCMO22, Theorem 1.4 (1)] for the major arc®, and a similar calculation to
the arguments of [BCMO22] for the minor arc. Thus toward z = 0 on the major arc we
have
_ d a, b L
Hy, (a,5:7) = N0 8 (14 0a)).

2mz2

We are left to apply Proposition 111.2.3 with A = =2 ,B=—-3 and ag = dad) which

6 2 oL
yields that
d(a,b
Blab X)) = LD VE (110 (w)),
from which one may also conclude asymptotic equidistribution.
Similarly, it was shown in [Bocl6, equation (4.2)] that we have
1+¢* - (% 2. \—1
Gx,(¢5q) =) P (HID"™*2(0):¢) ¢" = Fs(¢ta)
G0 i= 2 P (HIHOR ) 4" = (5 gy ()

An analogous argument and application of Proposition I11.2.3 to the case of X; holds.
Using the generating functions [Bocl6, equation (4.15)] (which in turn cites [NY1la,
Corollary 5.4]) and [NY11b, Corollary 5.4]

SN 1 (2. L
GXS(C) q) — (1 — Czq)(l — C4q2)FS (C aq) ;
1 1
Gx,(Cq) = F3 (CZ;Q) 1Hm7
j=1

the cases for X3 and X4 follow in the same way.

I11.4.6 Proof of Theorem II1.1.6

The results [ES87, Proposition 4.2] and [Goe90, Proposition 2.8 show that V}, j, has a
cell decomposition and that, letting v(m, n) := #{m-dimensional cells of V,, .}, we have

V(Ga) = > vmn)¢™" =] 1_% = (G

n—1
m,n>0 n>1 C q

5Note that for ged(r,b) > 1 we could simply generalize the result of Theorem 111.2.2 (2) by replacing

b by gcd(b )"
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Then by orthogonality of roots of unity, we have

Zv(a, b;n)q" = %ZCZ:Q]'V (Cj;(J) )

n>0 §=0

Note that the 7 = 0 term corresponds to %(q; q)=. Combining this with Theorem II1.2.2
(2), one can show in the same way as [BCMO22, Theorem 1.4 (1)] that on both the
major and minor arcs, the asymptotic behavior of the j = 0 term dominates as z — 0.
An application of Corollary II1.3.4 immediately yields the claimed asymptotic.
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Chapter 1V

Fourier coefficients of weight zero
mixed false modular forms

This chapter is based on a prerpint of the same title submitted for publication [Ces23].

IV.1 Introduction and statement of results

In [BN19] Bringmann and Nazaroglu embedded false theta functions, functions that
resemble theta functions but do not have modular transformation properties, into a
modular framework. An example is given by

VlzT) =) sen ( " i) (—1)ngd(n+3) enti
nez

where here and throughout ¢ := €™ for 2z € C, q := €?™7, with 7 € H, and

0 ifn=0,
sgn(n) =< 1 if n > 0,
-1 ifn<0,

as usual. They found the modular completion! of those false theta functions, with w € H,
given by (see [BN19, equation (1.2)])

Besraw) =i Yt (—iv/mitw =) (n+ 3+ 1) ) (-1ghd)ens,

neEL

and repaired the modular invariance, where erf(z) = % Iy e~ dt denotes the error

function and where 1) satisfies (see [BN19, equation (1.3)])

gmuﬂzn7+u+f)=¢um) (IV.1.1)
—00

!These are modular objects from which the original function can be easily recovered, here for example
by taking the limit (see (IV.1.1)).
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CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

if —% < %Egjg < % and € > 0 arbitrary. Note that here and in the following we define

the square root on a cut-plane excluding the negative reals and imposing positive square
roots for positive real numbers.

As an application from this framework they considered the false theta functions at
rank one (see [BN19, equation (1.6)])

2

Fjn(r):= ) sgu(n)qiv,
nez
n=j (mod2N)

with j € Z and N € Ny and showed how the quantum modularity? of these functions
follows from the construction of their completions.

The motiviation for looking at this functions comes from W-algebraic characters, see
for example [BM15, CM14, CMW17, Mil14]. Characters of modules of rational vertex
operator algebras are often of the form

f(7)
n(T)*’

where n(1) = qﬁ [[>1 (1 —¢") is Dedekind’s eta function. In [CM14] the authors
observed that some numerators of atypical characters of the so-called (1,p)-singlet
algebra are false theta functions of Rogers (see [AB09]). In particular, the functions

Ejn(r)

n(7)
show up as characters of the atypical irreducible modules of the (1, p)-singlet vertex
operator algebra M, for 1 < s < p —1 and p € N>g, that have been studied in
[BM15,CM14, CMW17].

In 1937 Rademacher [Rad37] proved the following exact formula for the partition
function

Ajn(T) =

p(n) =

27 Ak(n)l <7r\/24n — 1>
24n -3z k2 ’

> 6k

where Ag(n) is a Kloosterman sum given by

h

Ap(n) = Y emshhem2ming, (IV.1.2)

h (mod k)
ged(h,k)=1

2For a so-called quantum set @ C Q we call a function f : @ — C quantum modular form of weight k,
if its obstruction to modularity, namely f(7) — (cr +d)~* f(MT), for M = (2 %) € T C SLa(Z), behaves
“nice” in some analytical sense. See e.g., [Zagl0] for more background on quantum modular forms.
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with s(h, k) the Dedekind sum defined in (IV.2.4) and where I, denotes the I-Bessel
function of order «, which in the special case of order % can be written as

I5(2) = \/%jz <Sm2(z)> . (IV.1.3)

Our goal is to find Rademacher-type exact formulae for the Fourier coefficients of the
infinite family of weight zero mized false modular forms3 A; (7). Note that it requires
considerably more work to obtain an exact formula for a weight zero function than for
a function of negative weight. In contrast to negative weight functions, as for example
in the work of Bringmann and Nazaroglu [BN19], we have to take special care of the
bound of the Kloosterman sum occuring to ensure that the error term in the Circle
Method vanishes. In comparison to [Rad38] for example, where Rademacher studied the
coefficients of the modular invariant j(7) of weight zero, we have the additional problems
that the Kloosterman sum showing up in our work is much more complicated and can
not be immediately bounded by the famous Weil bound and that the transformation
behavior of our family of functions is not as simple as the one of a modular form.

In this chapter we let

2 _

Ajn(T) = qiv 721 [ ajn(0) + Y ajn(n)g" | . (IV.1.4)

n>1

Extending the techniques presented in [BN19, Section 3] and [Rad38] we prove the
following theorem, which, to the best of the author’s knowledge, is the first example of
an exact formula of a weight zero mixed false modular form.

Theorem IV.1.1. For alln > 1 and /% ¢ Z we have

N—-1k—1

27 Ky j s Ty
() == 2 37 37 3 BNt (IV.1.5)
n+m—ﬂk>1 r=1 k=0
\/% 1 T K T 4”\/”+%_i /1
XP.V./_ — ﬁ—N:czcot (7r <_E+E+2Nk)>h — ﬂ—NxQ dz,
V7w

where Ky, j n(n,7, k) s a Kloosterman sum defined as

.2
<24N(n+ﬁ)2—1>h’—24(n+i—]\,—i h
Kkyij(?’L, T K‘) = Z Xj,T(Na Mh,k)C24k ) s (IV16)
0<h<k
ged(h,k)=1

3These are in general linear combinations of false theta functions multiplied by modular forms (see
[Bri21, Section 4]).

67



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

B _hh/41

with K a solution of hh/ = —1 (mod k), My = ( Lk ), Xjr (N, M) the multiplier
defined in (IV.2.6), and (p := T with £ € N an ¢-th root of unity.

Remarks.

(1) Although this representation as a convergent series does not hold for n = 0 we obtain
that a; n(0) = 1, independent of j and N.

(2) Note that we are able to split the principal value integral in (IV.1.5), which gives us
a more explicit but also more complicated version of our main result, as can be seen

in (IV.4.26).

As a second result, which will be extremely helpful in the proof of Theorem IV.1.1,
we are able to give a bound on the Kloosterman sum defined in (IV.1.6). In particular,
we show the following theorem.

Theorem IV.1.2. For e > 0 we have that

Kk,ij(nv r, H) =On <nk%+a> (IV17)

as k — oo.
As the main tool to prove this theorem we use the following result by Malishev.

Lemma IV.1.3. (see [KS64, page 482]) Let

h 271
KP(N*7 ve; G) = Z <p) eXp <G(N*h + V*h/)> )

h (modG)
ged(h,G)=1
where p, and v, are integers, G is a positive integer, and p is an odd positive integer all of

whose prime factors devide G. Furthermore h' is any integral solution of the congruence
hh' =1 (modG) and (%) is the Jacobi symbol. Then

K (10,5 @) < A(£)GH min (ged(p,, G2, ged (v, G) )

for each € > 0, where A(e) > 0 depends only on €.

The chapter is structured as follows. In Section IV.2 we use the modular completion of
F}; n and its modular transformation behavior to determine the “false” modular behavior
of A; n. With this we rewrite the obstruction to modularity term, respectively the error
of modularity plus the holomorphic part of our function, as a Mordell-type integral. In
Section IV.3 we go on by proving Theorem IV.1.2 and use the Circle Method, to prove
Theorem IV.1.1 in Section IV.4. We end the chapter with some numerical results in
Section IV.5.
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IV.2 Modular Transformations with Mordell-type Integrals

IV.2.1 Modular transformations
We first note that a simple straight-forward calculation shows that
F()J\[(T) =0

for every 7 € H. Thus we from now on assume that j # 0. Furthermore we can restrict
tol <5< N —1, since Fj}N(T) = —F,j,N(T) and FinNjN(T) = ijN(T).

According to [BN19, Section 4] a modular completion of Fj y can be written as (for
T,w € H)

~ n n2
Fin(m,w) = erf [ —iv/mi(w — 7 iN .
= % (-ivate =)

n=j (mod2N)
This modular completion can conveniently be rewritten as (see [BN19, equation (4.2)])

= T+icote )
Fjn(r,w) = £Fjn(1) — V2N _inG)

ds, IV.2.1
; G 3 ( )

where € > 0 and f; y are the vector-valued cusp forms of weight %

fin(r) = % S g =% <”+2?v) M)

nez nez
n=j (mod2N)

Equation (IV.2.1) can also be understood from the writing of Fj y(7) as a holomorphic
Eichler integral?.
The modular transformations of F; x can be deduced from [BN19, equation (4.5)]

N—-1
= Xrw(M) (cr + d)? > (N, M) Fyn(r,w),  (IV.2.2)

r=1

= ar+b aw+b
&N cr+d cw+d
where M = (%) € SLy(Z),

o i(w—1T) Ver +dvew+d
Xraw(M) = \/(CT + d)(cw + d) i(w—7)

)

“For a cusp form f of weight k € 2N, Eichler introduced in [Eic57] the integral

/T(T —3)" 2 f(3)ds,

which is independent of the path of integration. Integrals of this shape are now called Eichler integrals.
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and, for j,r € {1,...,N — 1},
5 (1-sn(d) g, | if ¢ =0,

- - (Wﬂ)) oz

wjﬂ'(N’ M) = 51rz hgn(c)\ﬁ Z €2Nc 2N€+]) +dr )
Nlc|

For reference let us also note the modular transformation of the eta function given by

e27rzab IN e

at +b ;
where, for ¢ > 0, we have

_ fa+d 1

vp(M) = exp <m < 5o T 1 + s(—d, c))) ,
with the Dedekind sum given by
k—1
r [ hr hr 1
s(h, k) = Z_; - (k — {kJ - 2) . (IV.2.4)

Remark. For M = (¢ g an alternate representation of the eta-multiplier is given by (see
e.g., [BJSM18, Lemma 2.1])

) 3 ((atd)e—bd(c?=1)=3¢)  if ¢ is odd,
el

e12
T3 (ac(1-d*)+d(b-c+3)=3) it . ig even,

T
TN TN
&lo Sl

where (-) is the extended Legendre symbol, also known as Kronecker symbol

By combining (IV.2.1) and (IV.2.2) we can write the modular transformation of F} x

as

at +0b
FjJ\f(T) —XT’w<M)(CT+d Z 77/1]7" N M~ ) F,,’N <0T+d>

T+i00+¢€ f N3
2N / P4 ) dz,

Vis =)
ST £ ()
— V2N Xrw(M)(cr + d)~ § %T (N, M) N g5
aw+b <, aT+b
cw—+d /L(j CT+d)
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Assuming ¢ > 0 and taking w — 7 + i00 + ¢ we get xr. — 1 and hence

_1 -1 at + b
Fin(T) = (et +d) 2 ;qﬁj,,« (N,M ) F.n <c¢—|—d>
N-1 ATt 4 ioote
= —V2N(cr +d)2 > e (N, M) / - Jrv(3) d3. (IV.2.5)
r=1 % ’L(j — Z%j:s)
Now define
Xjr (N, M) = vy (M), (N, M) (IV.2.6)

Also for g € Q we define

T+ic0o+¢€ X
EjNo(T) = \/ﬁ/g ];.J(’;V(_Z’)T)dz-

Using this together with (IV.2.3) and (IV.2.5) immediately gives the modular transfor-
mation equation for A; v.

Lemma IV.2.1. For M := (%Y%) € SLy(Z) with ¢ > 0 we have
N-1 -1
ar +b at +b ar +b
Ajn () = Z::l Xjr (N, M) (AT,N (de) —7 (07+d) Erne (c¢+d>) . IV

IV.2.2 Mordell-type integrals

Next we want to rewrite the obstruction to modularity term as a Mordell-type integral.
If o€ Qand V € C with Re(V') > 0, then we have,

o+iV+ioco+e )

g [T et iG V)
- m/_v N

_ian [T (g ) e ) v emin G ) e 5
-V ne”Z 2N \/jﬁ

First note that the integral is absolutely convergent, since the integrand is a cusp form
and therefore exponentially decaying as 3 — —V and as 3 — oo. Also note that each

71



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

summand is exponentially decaying as 3 — oo but we lose this condition as 3 — —V.
Since we want to be able to interchange the sum and the integral, we rewrite

oco—1ie . .
Eino(o+iV)=14Vv2N lim / <” + ]> 72ﬁN(n+ﬁ)2QJFV)HMN(M%)QQ&.
0=0+ J_vis £ 2N

We can exchange the sum and the integral now and get

Ejne(0+1iV)
. _ 3 )2 ; 3 )? coie _ 3 )? d3
—iv/2N lim (n+ ) 27rN(n+2N) V+2mN(n+2N) ,Q/ e 27rN(n+2N) 39
5—>0+T% 2N V46 /_5

Using the identity (see Lemma V.1.1)

oco—te e—27rN(n+ﬁ)23
fow s
—V+6 —3

_ _m (sgn (n + 2N> +erf (z (n + 21\7) 2N (V — 5))) ,

efQWN(nJrﬁ )2V+27riN(n+ﬁ )2,9

x (Sgn (n + 2‘5\]) + erf <z (n + 2‘5\7) 27N (V — 5))) . (IV.2.8)

To check the convergence as § — 07 we start analogously to [BN19, page 10]. First we
notice that the definition of the error function yields the asymptotic behavior

. 52

ie
Tz
if | Arg(£2)| < § as |z| = oo. Because of this we note that (IV.2.8) does not converge

absolutely at § = 0 and we have to be careful by taking the limit § — 0%. Seperating
this main term of the error function as

erf (iz) =

(1+0(1217)),

' 527N (55 ) (V=0)
erf (z (n + > 27N (V — 5)) - A
2N 7 (n+ ) VAN (V= 0)
2N (n455 ) (V=9)

7r<n+ﬁ) IN(V —0)

" (IV.2.9)
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we find that the term in the brackets is absolutely and uniformly convergent on compact
subsets Re(V) > 0 and 0 < 6 < ¢y for sufficently small dy, so we can plug in § = 0 for
these terms to take the limit.

We go on by focussing on the last term of (IV.2.9) whose contibution to &; n,,(0+ V)
is given by

2m’N(n+i)29 9
€ N efQﬂN(nJrﬁ) 6.

. )
lim

§=0t /2N (V —§) T;Z n + ﬁ

; 2
Since |e 2™V (n+3%) 9| < 1 for all § > 0 this series is absolutely convergent for any & > 0.

If the corresponding series is also convergent for § = 0 the limit as § — 0T is simply the

value at § = 0, by Abel’s Theorem (viewing it as a power series in e~27V9),

To prove convergence at 6 = 0, recall that we assume j # 0. Let o = % with

ged(h, k) =1 and k > 0 and consider for v € N the following sum
e2m’N(n+ﬁ)2%
_ (IV.2.10)
We immediately see that
PriN (bt o) _ @min(nt )
which means that the phase is periodic in n with period k. Denoting the average as

1 , i \2h
ai= - § : eQmN(nJrﬁ) E,
n (modk)

which is convergent by definition, we can rewrite (IV.2.10) as

—a a
; + > —. (IV.2.11)
—v<n<v n+ 2N —v<n<lv n+ 2N

We first look at the second sum in (IV.2.11). We have that

a a 1 1 a %
— = — +a — — | = —+a _—
Z _J_ 5 Z <n+3 _n+]> J :

2
—v<n<y VT 3N 1<n<v 2N 2N 1<n<v (i) —n?

_J_
2
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where the summand is O(n~2), which gives us that the sum converges absolutely. Looking
at the first sum in (IV.2.11) and writing n = km + r we obtain

Z 2N (n+ LN)Q% a Z k-1 e27riN(km+r+%)2% —a o (k:)
—v<n<v n+ ﬁ —Y<m< ¥ r=0 km+ 71+ 5 v
k=1 omiN(r45% )% 2 a k
_ ¢ —+0 <> . (IV.2.12)
—%Smﬁ%’rio km—i—r—i—w v

. i \2h
using the periodicity of the exponential. For simplicity we denote d, = 2™V (r+3x) % —q.

Since we have that

B
—

k—1
h
d :—k‘a—i—Ze2TmN7’+2N)E:O
r=0 r=0

by definition of a, we can write dp_1 = —do — d1 — - - - — dp_o. With this we can rewrite
(IV.2.12) as

1 1 1 1
> <d0< I j>+d1< i j)
_rCms km+sy  km+k—-1+55 Em+1+5% km+k—1+5%

1 1 k
4+ dis - +0(-),
km +/€—2-‘r km+k—1+ﬁ v

where each term in the brackets is O(m_z)7 which gives us that (IV.2.12) and thus
(IV.2.10) is absolutely convergent, by taking the limit v — oc.

Therefore the last term of (IV.2.9) is convergent for § = 0 and with this we see that
(IV.2.8) is convergent. Thus we are allowed to set 6 = 0 in (IV.2.8) to obtain

Ejnplo+iV) (IV.2.13)
_ J 4 J 2miN (n+ 54 ) (e+iV)
%(sgn<n+2N>+erf<z<n+2N> 27TNV>)6 2N .

Hence, using (IV.2.7) and the definition of A; n, we get
N-1

AN () = 30 x5 (N M) (Apn (0 +iV) =10 +3V) ™ Enng (0 +iV))
r=1

nez

N-1
= ; XJl,r(N, M) (Ar,N (g+ iV) —n (Q+ iV)_l Z sgn (n+ %) QZWiN(n+ﬁ)2(g+iv)
N (Q + ”L'V)il Z erf( (n + 7) 27I'NV) BQTiN(n+2’;\,)2(g+¢V))

nez 2N
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N—
Xir (N, M) m(o+iV)~" | — erf (i (n+ — ) V2rNV 2miN (n+557)  (e+iV) | | 1v.2.14
S ( 2o (i 5) V) (Iv.2.14)

We see that the first term of (IV.2.13) cancels against the contribution of A, y(0 + V),
so we focus on the second term of (IV.2.13) and define

. SN2 .
I],Ng o+ ZV Z erf < (n + > 27TNV> eQmN(n-kﬁ) (Q-HV),

which is basically our error of modularity plus the holomorphic part of our function.
Using the identity, for s € R\ {0} and Re(V) > 0, (see Lemma V.1.2)

2y i &) e—wV:c2 i s—e e—w\/a:2 oo e—7rVQc2
e ™V erf (iS\MTV) =—_—P.V. dr = —— lim dr + dzr |,
T o T—S T es0+ T—5 spe T—S

—0o0

we obtain

—27rNVac
ZiNo(o+iV) = Z 2miN (nt) e py. / —,dm. (IV.2.15)
nEZ T — n + ﬁ)
IV.2.3 Splitting of the Mordell-type integral
Let o = —/ with b/ k € Z, ged(h',k) = 1, and k > 0. For a real number d with
0<d<N such that 2/ dN ¢ Z\{0} we split Z. JuN, i 38 follows

2dV h/ h/ h/
INh/(k—FzV) N,ﬁj,d(k;+ZV>+I,N,k,d<k;+ZV>’

where
n ; . o VE  _—2aNVa?
T, ( + iV> _ L 2mav Z 2N (nt5% ) i P.V./ eij dz, (IV.2.16)
e \E ) TR A VFa- ()
h j , )P —27NV 5>
T8y ( + iV) = L2V 3 2miN(nt ) p Ly, e de. (IV.217)
PR K (=" jol2y/F = = (0 + 777)

Note that the assumption 2v/dN ¢ Z\{0} ensures the well-definedness of the principal
value integral, since we avoid having poles on the boundary.
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IV.3 Proof of Theorem IV.1.2

In this section we prove Theorem IV.1.2 by using a bound of Malishev, which we
stated as Lemma IV.1.3.

We note that K j y(n,r, ) from (IV.1.6) is well-defined and a Kloosterman sum
of modulus k, which follows from a lengthy but straightforward calculation using the
Chinese Remainder Theorem, quadratic reciprocity, and some formulae on the Kronecker
symbol (see Lemmata V.2.1 and V.2.2). Thus we can rewrite it as

Ky jn(n,r, k)
B 2 201 21,
h (mod k)
ged(h,k)=1

Note that for even k we have

Xjr (N, Mp 1) = (%) exp ( (h k(1= (=h)%) + (=h) (_ hh’k—i- L 3) B 3))

X exp (3m) \/7 ( e (~h(2Ns + ) + h’r2)> sin (%Zﬂ)) ’

while for odd k we have

X exp (37”) \/7 ( g (Th(@Ns+)° + h’r2)) sin (7”"(#24”)) :

The strategy of the proof is to rewrite our Kloosterman sum into a sort of Salié sum

: h 271
Kaannr) = i Nor) 32 (%) o (5 (nah el ).

h (mod Gk)
ged(h,GEk)=1

where i, v € Z, G € N, p € N odd such that all his prime divisors divide Gk, [h]y,
the negative modular inverse of h modulo Gk, and some €(k,j, N,7) = On(1). Then we
bound it using [KS64, equation (12)]. Note that we use the [-]. notation from now on to
denote the negative modular inverse of given modulus.

We write

<in mr(2Ns+j)\ _ 1 ox wir(2Ns + j) Cex _ mir(2Ns + j)
Nk ~2i \ 7P Nk P Nk ’

which yields that

o o) o [(TT(2Ns + )
Zexp( 2Nk —h(2Ns + j) —|—h7‘)>sm< NE
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-1 .
1 27TZ 27TZ .9 2 .
=5 2 (exp < th + (hj +r) )) exp <4Nk (h] —hr? s 27“]))

—exp <2k (hN52 +(hj —7) s)) exp <42]7\;Zk (hj2 — h'r? - 2rj))> )

We additionally see that this equals

1 211
— (exp < i (h] —hWr?+ 27“])) G (hRN,hj + r, k)

21 4Nk
“oxp (2 (hg? — We® — 2r5) ) G (AN, Bj — 1, k) (IV.3.1)
4Nk: b j ) ) .
where
el as® + bs
b,c) = omi > T 2%
CL C Sgoexp ( T c )

denotes the generalized quadratic Gauss sum®. From this point on we have to look at
odd, respectively even, k seperately.

IV.3.1 0Odd k
We have that

o= 3 -] )

, 9 . (7mr(2Ns + j)
Xp< 2NI<: h(2Ns 4+ j)? + h'r )) sin <Nk; .

Using (IV.3.1) we can thus rewrite this as

Xj,'r(Ny Mh,k)

=—1 (%h) ﬁ exp (27ri (i ((h’ — h)k — hhl’:' 1h (k2 -1) - 3k) + 2 + ﬁ (hj2 — W4 2rj)))
x G (RN, hj + 1, k)
+i (%) ﬁ exp (27ri (i ((h’ —h)k — hh/}j L (k? —1) — 3k) +-+ m (hj?* —h'r? — 2rj)))
x G (hN,hj —r,k). (Iv.3.2)
Note that gcd(Nh, k) = ged(N, k), since ged(h, k) = 1. Set

1 ifm=1 (mod4),
Em =
i ifm=3 (mod4),

(1V.3.3)

®Note that this sum is well-defined for any a,c € N and b (modc).
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for every odd integer m. For odd k£ we obtain that

0 if ged(N,k) > 1, and ged(N, k)t (hj £ 1),
G(AN, hj £, k) = { 8ed(N, )G (oo, ihs e ) if ged(N,k) > 1, and ged(N, k) | (hj £7),
exvk (%) exp ( 2W1M) if gcd(N,k) =1,
0 if ged(N, k)t (hj £7),
Nh w*( Nh )( hjtr )2
cd N,k‘ e . k (gcd(N,k) ) e - gcd(N, k) / gcd(N,K) othe 'Se,
8N RS o V500 ooy ) 7P\ 72 e o
(IV.3.4)
where 1)(a) and 1*(a) are some numbers satisfying®
f@a=1 (modk)  and  45°(aJo=1 (mod—"
a)a = mo an a)a = mod ———— | .
ged (N, k)
We can thus rewrite (IV.3.2) as
Xj,r (N, Mp, i) (IV.3.5)
—h 1 1 hh' +1 1
=—il— o2mi [ — ( (W — h)k — h(k?—-1 7316) — (hj% = h'r? 2))
Z(k) 2Nkexp(7rz(24(( ) . ( ) + = +4Nk(J r? +2rj)
2
Nh * Nh hj+r
k d(N,k '1/1 cd(N,k cd(N .k
xged(N, ke, AN = (k L exp | —2mi <g ( )2 (g ( )> Ogcd (N, k)| (hj+r)
ged (N, k) gc s gcd(N, k) ged(N,k)

—h 1 1 hh 41 3
i — — omi [ — ( (W = h)k — h(k®—1) -3k — (hj2 = h'r? —2rj
J”(k) szeXp(m(m(( ) P ) )+8+4Nk(] vt = 2rj)

k dN]}\lfk *< de))( }clij(Nrk)>
x gcd(N,k)e & £ (k k) exp | —2mi £ = £ Sacd(N, k)| (hj—r)>

ged(N.B) \| ged(NV, k) Zd(NE) (N

using

1  if this condition is true,
5cond1t10n =

0 otherwise,

here and throughout the rest of the chapter. By definition we have that
10" (@) = -1 (mod —*
—4ay)*(a) = — mod ————~
ged(N, k) )7
which gives us that

Y*(a) = [~4a]_,

ged(N,k)

®Note that v(a) and 1*(a) exist, since we assumed that k and thus
gcd(Nh, k) = 1 by assumption of the first case and ged(Nh 1.

m, are odd and that

’ gcd(N k) )
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Using that [ab], = —[a],[b],, for any modulus = € N and arbitrary a,b € N, we obtain
that
Vi(a) =[] a4

ged(N,k) ged(N,k)

and thus
Nh Nh 7 N 7
(Y et ] ]
ged (N, k) geavm | ged(N, k) - geavm | ged(N, k) ks EATR)
Note that (IV.3.5) is well-defined for [a)’ ,  the negative modular inverse of a, i.e., a
ged(N,k)
solution of a[a) x» = —1 (mod m), since we have that
gcd(N,k) ’
* hj+r
gcd N k) ged(N,k)
exp —2m A
gcd(N,k)
/ . 2
/ N / hj+r
i o ged(N, k) SCd(N.R) gcd(N,k)
= exp i -
ged (N, k)
is invariant under any shifts by m, since e d( N k) € 7.

For simplicity we stick to the notation [h]) = h'. We obtain

Xj,r (N, Mp 1)

()’

SN ==, o s ()
(& ziin \/m exp | —2mi R E Y iy et Y
ng(N BNk FEARTRY 2N B

) ged(N, k)
hh' 41 1 ) )
X exp ( ( <(h/ - h(k®-1) - 3k> St e (hs® = n'r® + 27"1))) Sged(N, k)| (hj+r)

2| -

’ 2
G AN EY S L P feaot
(l (gcd(w k) [ ged(N, k) exp | _2mi gcd(N,F) {g d(N’k)]gcd@v,k) gcd (N, k) (g ao k))
gcd(N k) k gcd(N,k) 2N gcd(ﬁ\hk)
i [
X ex: T —
P 2

and see that
Nh N N
<_h> (M]\,k)>_<—h) ( —h ) (gcd(N,k)>_< —h ) (gcd(Nk))
k - k k - k :
B\ satvm B \gavm ) \ wavm ged(N. k) )\ geatv
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Therefore our Kloosterman sum equals

N
. Ny ed(N ) ged(N, k) 27 o2 _—h
K (nym, ) =te s () v P o O M) D ()

k
ged(N,k) h (mod k)
ged(h,k)=1

X exp (;TW; ((—24n +2 — 2k*) h — (—24Nk* — 24kr + 1 — &7) h/))

’

] . |: N ]/ [h]l . ( hj—r )
2cd(N, k) ged(N,k) gcd(’j\fk) 2cd(N, k) ged(N,k)

X | dgea(w,k)|(hj—r) €XD | 271

omi , . 121
X exp (% (—th K+ h2h — A’;J))

_k_
ged(N, k)

0[] W ()

A gcd(N,k) m FeatN Ry gcd (N, k)
—0gcd(N, k)| (hj+r) €XP | 27 st
Ecd(NF)

X exp (@ (—h2h’kz2 + 12+ —1?\’,7 ))

We already saw that the following is well-defined and now observe that

!/ .
4] [ N ] h/ ( hjtr )
Mty 0] Mt il
exp | 27t z
ged(N,k)
2mi N T
- — = —_— hY’ h2j? & 2hjr +
P\ Ggeam i) | Wt [gcd(N, k)} Iy (P07 2R +07)
ged(N,k)
Choose [h)) , = A from now on”. Let 2 € N such that ged(x, h) = 1 (note that

gcd(N,k)
this condition is necessary to make sure that the negative modular inverse is well-defined)
and [h]’, the negative modular inverse of h modulo zk, i.e.,

hlh]l, = -1 (modzk).
Then we see that we also have h[h]’, = —1 (modk), since k | k. This yields that

h' = [h)l, (modk).

"Note that hh' = —1 (mod k) implies that hh' = —1 (mod m), since m | k. Thus A’ is a

possible choice for [h]" . .
Zed(N,R)
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Thus we can choose b’ such that hh' = —1 (mod xk) . Taking x = ged(N, k) we obtain

Kk,j, (TL, T, K’)

-N
S d(NF) 1 N, 2
—ie & g d(li\’,lc) ( ) ged(N, k) exp( g (—3k? +9k)) Z (L)
EANE \ N ged(V, k) 2N 24k ged(N, k)

h (modk)
ged(h,k)=1

2mi N !
- = 24n + 2 — 2k?) ged(N, k) — 24;52[4 - h
X (24gcd<N7k)k (<( e e i )
gcd(N, k)
N !
— | (—24Nk? — 24 1 — k%) ged(N, k) — 24r2[4)/ {7} n
(( K Kr + )gc ( ) T HW ged(N, k) . [ }kgcd(N,k)
gcd(N,k)
X 5 27T’i [4}/ N ’ 2'
; i) X —_— ) _ r
ged(N,k)|(hj—r) €XP kng(N,k) gcd(’;\ﬂk,) ng(N,k) . J
ged(N,k)
27 12rj
X exp (m (h2[h];cgcd(N,k:) (1= == ))

5 27 y’ [ N }/ 9
— iiyexp | ————— | — 3 _— r
ged (NI (hg+r) P | o (N, ) watvw lecd N k)] 7

gcd(N, k)

271 12rj
<o (335 (1 Wscaony 1=+ 72)) ) |

We now need to split into two cases, 3 t k and 3 | k. In the first case we have
1—k%>=0 (mod24). Thus we obtain®

Kk’j’N(n7 r’ K:) - Kk7j7N7+(n7 T’ FL) + Kkaj’Nai(/nﬂ r7 KZ)’
with

Ky j N+, k)

-N
. . gcd(N,k) / gcd 271 9 )
= —3k 9k
:Flgrcd(l?\l,k) (’“) (gcd N, k) ) (24k +9k)

god(N.F)
2mi 12rj
X exp _am F48jr[4] [ } + 21 ged(N, k)
24k gcd(N, k) seatn® Lged(N N
gcd(N %)
X (7h ) 6,
ged (N, k)| (hjEr)
b (moak) \8cd(V:k)
ged(h,k)=1
2mi N !
X — —24n + 1 — k?) ged(N, k) — 2452[4] _ h
P (24gcd(N, k)k (<( nt ) ged( ) a ]4gcd(k1\/,k) {ng(N,k)}k>
gcd(N, k)
2 2 2 N '
I I
N (R R S S EL RS AN P Av) by ) e ] )
ge 5

®Using that h[h]} gea(nv,x) = —1 (mod k) since k | (k ged(N, k)).
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We set
K j,N,+(n, 7, K)

1 h
=t€o,+(k,J, N, 1) ——— (7) Ogcd (N, k)| (hjtr)
ng(N7 k) h (mod gecd(N,k)k) ng(N7 k)

ged(h,ged(N,k)k)=1

X exp (gcd(Q;\:k:)k <(<n+ 1;4k2>gcd(N k) — 524 ]m |:gcd(];7\7,k‘)]/k) h

gcd (N, k)

1— k2
— ((_NHQ — KT + o1 ) ng(N k) — 7'2[4} VAV ) [h];cgcd(N,IC)))
’ Zod (N, K)

N !
Sed(NF) {gcd(N k)} k

::eo,ﬂ:(k7 j? N7 T)

L h
— — " s L
ged(N, k) (gcd(N, k)) ged (N k)| (hjtr)

h (mod gcd(N,k)k)
ged(h,ged(N,k)k)=1

271

_ /
<o (ceatme (9 = o))

and note that, by orthogonality of roots of unity, we have

5 1 gaj(%fc)_l - (hj £1)s
. = exX Tl— =
ged(N,k)|(hj+r) ged(N, k) o p ged(N, k)
which finally gives us that
1 ged(N,k)—1 rs
Kk’j’N’j:(’rL, r, H) :ﬁgﬂj:(k,j, ]\]‘7 T’)W ; exp (iQﬂ"Lm) (IV.3.6)

271 .
y o (#3500 = W) )

w) oo
Z —— |exp| ————F—"—
h (mod gcd(N,k)k) (ng(N’ k) ged(IV, k)

ged(h,ged(N,k)k)=1

In the second case, 3 | k, we have 1 — k? = 0 (mod8) and 3 { h. Thus, choosing
[h]ﬁcgcd(N ) such that h[h]kgcd(N p = —1 (mod3kged(N, k)) analogously to above, we

obtain?

Kk,j,N(”: ) H:)

-N
c -1 d(N, k 2 h
e . gcd(N,F) ( ) ged( )exp( 2mi 3k2+9k)) ) (7)
ged(N k) |\ —FE ged(N, k) 2N 24k ged(N, k)

ged(N,k) h (mod k)
gcd(h,k)=1
omi N ! 12rj
x| - ———— | 48jr[4 _ - d(N, k
(ng(N”“)'“” r) &XP (24kgcd(N,k) ( il }W(w % {gcd(N,k)} s N ged( )>)
o 12rj
) - — | —48j A(N, k
oAty 5P (24kgcd(N,k) ( I e {gcd(N k)] v )>))

Using that h[h]4y, gean k) = —1 (mod 3k) since (3k) | (3k ged(N, k)).
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27i N !
Xexp | ———— —24n + 1 — k?) ged(N, k) — 2452[4)’ [7} h
P (24gcd(N,k)k <<( ) ged(N k) — 24571 ged(N B
gc B

N !/

2 2 2147/ /

- ((24N/£ — 24kr 4+ 1 — k%) ged(N, k) — 24r [4}m |:7gcd(N, k):| . ) [R]3), gcd(N,k))>
god(N,k

=Kp i n,—(n, 1 8) + K § (7, K).
Here we set

K;,j,N,:t(”vr’ K)

: )
5 )
ged(N,k)|(hj+r)
h (mod 3 ged(N,k)k) (ng(N’ k)
ged(h,3 ged(N,k)k)=1

2mi 1— k2 N !
X exp | — % (—3n+ i )gcd(N, k) —352[4] . [7] h
3ged(N, k)k 8 gea(NR) Lged(NV, k) T
gc: ,

1— k2
- ((—31\7,{2 —3kr 4+ — ) gcd(N, k) — 3r2[4] — ) (Al gcd(N,k)))
gcd(N, k)

1
—epa(k,j, N, 7)—
€o,+ (K, J, T)Bgcd(N,k)

N !
gcdﬁv,k) [gcd(N, k)} 3

. 1
:Z€o,ﬂ:(k7]7Na7‘)m

h 27
x > — s ; — = (p2h — walhl}
h (mod 3 ged(N.k)k) (gcd(N, k)) sed (N (her) S5 (3gcd<N, e G ]3’“g°d<””“)))
ged(h,3 ged(N,k)k)=1

and, by orthogonality of roots of unity, we finally have

1 ged(N,k)—1 rs IV
K5 . =eo+(k,j,N,7)———— +omi—— 3.7
k,],N,;t(n”"?H) € ,i( 5 Js ’T)3ng(N7k)2 g EXp( ngCd(N,kf)) ( )
h 271 . ,
) 2 (m ) P (m (G2 + 3gsk) = Vﬂhlskgcdw,w)) -

h (mod 3 gcd(N,k)k)
ged(h,3 ged(N,k)k)=1

Since in (IV.3.6) and (IV.3.7) both sums over h are of the required shape we can
bound them using Malishev’s result (see Lemma IV.1.3) and obtain that they are

O ((ged(N, k)k) 3+ min (gcd (41 + jsk, ged(N, k)E) %, ged (11, ged(NV, k)k)%)) if 31k,
O ((3ged(N, k)k)3+ min (gcd(ug+3jsk,3gcd(N,/<;)l<;)%7gcd(z/2,3gcd(N7k)k)%)> it 3k,

for e > 0. We see that ged(N, k) < N = Opn(1), and, by Lemma V.2.4,
1 1 1
min (gcd (11 + jsk, ged(N, k)k)? , ged (v1, ged(N, k)kP) =On (nﬁ) :

and

ol
ol

min (gcd (o + 3jsk, 3 ged(N, /{:)k)% ,ged (vg, 3ged (N, k)k)

) =On (n?).
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Thus we showed that

ged(N,k)—1

Ky jnx(n, k) =On ( €o,+(k,j,N,r)

exp (:I:Qﬂ'i

nék%'s)

. rs
o )
ged (N, k) pors ged (N, k)

D=

:ON (n k%+5)
and analogously K ; v . (n, 7, k) = ON(n%k%JFE)’ which yields
Kk7j7N(n7 T, H) =0n <n%k%+£)

and finishes the proof for odd k.

IV.3.2 Even k

We go on with the case of even k and have that

Xgr (N, M)
A 1 (1, ) hh + 1 3
_—z<_h) o <P (27Tz <24 <hk‘(1—(—h) )+ (=h) (— A —k+3>—3)+8)>
x exp | 25 (hj® — W'r® 4 2rj) ) G (AN, hj + 1 k)
P ( oy (W J Jhi+
ok 1 (1 ) hh +1 3
+’L<_h> 2Nkexp<2m<24 (hk(l—(—h) )+ (=h) (— 3 —k+3>—3)+8>>
xexp | 2 (ng® — Wr® —2rj) ) G (RN, hj — 7, k)
P ( oy (W j i =1k,

using (IV.3.1). For even k we can write k = 2”p with v > 1 and p odd. Using the
multiplicativity of the generalized quadratic Gauss sum'?, we thus have that

G(hN,hj £ r k) = G(hN,hj £7,2"u) = G(hN2" hj £ r,u)G(hNu, hj £ r,2").

Defining « := max(x : 2% | (hNp)) = max(z : 2% | N) we obtain

G(hNp,hj £ 1,2%)
2v ifr—a=1land hjtr#0 (mod2),

’ : 2
vta (hjtr)

hNpu
={ 22 (i+1) (%) €hNpu €Xp (—27”'{ 2 L“;ﬁf : ) ifv—a>landhjtr=0 (mod2otl),
e 2>

0 otherwise.

OFor given a,¢,d € N, b (modc) and ged(c, d) = 1 we have that G(a, b, cd) = G(ac, b, d)G(ad, b, c).
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Noting that ged(hN2Y,u) = ged(hN,pu) = ged(N, ), hj £r = hj +r (mod2), and
combining this with (IV.3.4) yields

G(hN,hj £ r,2"p)
YAy ifvr—a=1, hj+r#0 (mod2),
and ged(N, p) | (hj £7),
via v [pe] (gn)?
=S 22 AL(i+ 1) (j?w ) Ennp exp | —2mi————2vtat? 2 ifv—a>1, hj£r=0 (mod2°t!),
o and ged(N, 1) | (hj 1),

0 otherwise,

with

Ay = ged(N, ple_n ged(N, ) 6 : |

Nhav J( N2 )( hir )2
N, N,
I (gcd(N,,u) > exp | —2ri ged(N,p) ) \ ged(N,p)
ged(N, 1) ged(IV,p)

envy and e__u__ as in (IV.3.3), and where ¢(a) is some number satisfying
2a ged(N,p

4(a)a=1 (mod M) .

Note that in the first case we have that v = o+ 1 which gives us that 2* = 2971 < 2N,

and allows us to say that 2" = On(1).
Using that for even k the h we are summing over have to be odd we split our
Kloosterman sum as follows

Kk, j,n(n, 7, k)

=10 v—a=1 Z + Z +6u—a>l Z + Z

j#r (mod2) 0<h<k 0<h<k 0<h<k 0<h<k
ged(h,k)=1 ged(h,k)=1 ged(h,k)=1 ged(h,k)=1
ged(N,p)[(hj+r) ged(N,u)|(hj—T) (gcd(N,p)2°T 1) [(hj+r) (ged(N,pu)2oF1)|(hj—r)

(24N(n+ﬁ)271)h'724(n+%fﬁ)h

X XJFT(N: Mh,k)<24k
=K j N1+ (01 k) + Ki g na,— (07 k) + Kk j N2+ (0,1 k) + K j N2, — (n, 7, K)
=Ky jn1(n,r k) + K jn2(n,m k).

For K}, j n1(n,r, k) we can run a similar calculation as in the odd & case. By definition
we have that —4at(a) = —1 (mod ——A——), which gives us that

ged(N,u)
b(a) = [—4a)’ = [4] al’
Qb( ) [ ]gcd(‘;\’,u) [ ]gcd(l;\f,u)[ ]gcd(FILVyu)
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and thus

~( Nh2¥ Nh2v 7’ N2v )

F (gtv) = Wt (gt gy) = Woton i) Pt

’ =0 TS gty
Note that
~( Nhav nidr \2 —[4) . CN72” [h)! Chﬂi
oxp _27ri1/1 (gcd(N,p,) )u(gcd](N,u)) —exp | —2ni gcd (N, 1) [g d(N,u)] Wg“) T;d(N m) (g d(N,u))
ged(N,n) ged(N,n)

: / . _ I . o .
is well-defined for [a] S solution of a[a }ggdﬁ 5 = —1 (mod x5 v u))’ since it is

. . . " h
invariant under any shifts by AN ) because 7g aN € 7Z by assumption.
For simplicity we stick to the notation [h]}, = h’. For K, ; n1(n,r, k) we obtain that

Xj,r (N, M k)
Nh2V
— e kN  sdvmy ged(N, n)2” ¢ _
- wdNm \ —h m IN ged(N,pu)|(hj+r)
— ! _ N2¥ / hj+r
4} gcd(’?\] ) [ng(NW‘)] I [h] m (gcd(N,p,) )
% 2 ' ged(N, 1) '
exp | —2mi n
ged (N, p)

oo

/ 2 11,2 .
xexp(2m( (hk(l—hQ) h<7hhk+17k+3>73)+§+%rk+2”))

- k ged(N,p) ng(N, M)QV
e et (j) (u SN Osed (N (hi=r)

ged (N, p)
/ N2V ! / _hj—r
-4 Zed(N ) [m] I [h] FedlN, ) ng(N"
i ged (N, 1) !
X exp | —2mi m
ged (N, p)
1/, 5 hh +1 3 hj® = h'r® —2rj
2 — (hE(1—=h")—h(-— —k+3 = .
Xexp(m(24( ( ) < % + 8+ AN

Using quadratic reciprocity together with (_ﬁh) = sgn(k) (%) = (%) we have
Nh2¥ y N2v
<k> (ged(Mu)) _ <2> (g) ( h ) (gcd(Mu))
_ [ [ [k
h ged(N,p) h h ged(N,p) ged(N,p)
n2-1\" (p=1)(h=1) h %
ged(N, p) ged (V)
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Therefore
N2V
AN d(N, p)2v 2mi
Ky jnai(n,rK)=ie__pn___ ng(é\lM ged(N, 1) eXP( m>5 v—a=1
ged(N, ) ZedtN Ty 2N 4 j#r (mod?2)
2_1\V (u—1)(h—1) h
X Z ((*Uhs 1) (-1) _— ( AN )
n G ged(V, p)

ged(h,k)=1

X exp (% ((—24n + 2+ k* — 3k) h — (—24Nk? — 24kr + 1 — k?) h/)>

4] [ N2V ] (h) ( hj+r )
© y " [
geain gy Lecd(NVw) gcd(/N,u) zeatn gy \ecd(Np)

X | =Oged (W, )| (hj+r) €XP | 2

B
ged(N, )

271 12rg
X exp (EW; (—th’k2 +R2K + %))

[4]/ . [ N2Y :|l [h}/ . ( hj—r )2
g‘gcdw,m ged(N,p) m AN ged(N,p)

FOged (I, p0)| (hj—r) OXP | 27

PR T
ged (N, p)
27 os0 ) poy 1275
Xexp(24k( h“h'k” 4+ h"h N))
We already saw that the following is well-defined and now observe that

/
! _N2v ! _hjtr
wm [gcd(N,u)} _m [h]m (gcd(N,;Q)

exp | 2mi ngWlf)
ged (N, )
27 N2y
=exp | ———— | 2"[4] —_— h) h%5% 4+ 2hjr + 1
P kged(N, p) [ ]gcdﬁv,u) {gcd(N, u)] u [ ]gcd(l;\',u) (W J )
ged(N,p)
Choose [h]’ . = A’ here!'. Analogously to above we can choose h’ such that
ged (N, p)
hh' = —1 (modzk) for some = € N such that ged(z, h) = 1. Taking = = ged(N, ) we
obtain
Kk, j,n1(n, 7, k)
Nov
=1e 7] ng(?\]»H) ng(N’ M)ZV exp (@) 6 v—a=1
ged(N,u) m 2N 4 jZr (m;dQ)
"Note that hh' = —1 (mod k) implies that hh' = —1 (mod zeatn ) since o5 | k. Thus B is a
possible choice for [A]_ . .
ged(N,u)
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> ((_l)h%l)y(_1)(“7%%1) (gcd(flLV,u))

h (mod k)
ged(h,k)=1

2mi Nov 1/
X L — —24n + 2 + k2 — 3k) ged — 244224 —_ h
P (24kgcd(N,u) <<( S ) ged(N, ) = 24572 W {gcd(N,u)]d{;V )>
gc "

N2v !

2 20U /

(( 24Nk? — 24kr +1—k ) ged(N, p) — 24r*2 [4]ggd(N - [7gcd(N ,u):| " )) [h]k:gcd(N,u))>
cd(N,

2mi N2vo 7’
-5 . _oerr 72u+1 4/ s
X ( ged(N,u)|(hj+r) XP (kgcd(N,u) ( Jrl }7gc‘d(Nu) |:ng(N,,U,):| - )))
Zod( N
27 oy, 2 1277
X exp (724/% (h [Alk gea(n, (L — K7) + ))

2mi Nov 1’
5 . — | ovtlra) [7}
F0ged(N, )| (hj—r) €XP (kgcd(N,u) ( Jgr| }m gcd(N, 1) .

ged(N,p)
21 12ry

We now need to split into two cases, namely 3 1 k and 3 | k. In the first case we obtain

that 3 | (k? —1). Choosing [h];cgcd(N,p,) such that h[h]kg AN = —1 (mod 8k ged (N, 1)),

analogously to above!?, yields'3

Ky jni(n,r k)

) gcd(N 1) /gcd(N )2 (2m)
= €__p eXp v—a=1
ged(N, 1) 4 j#r (mod2)
h (mod k)

gcd(N u)
(u=1)(h=1)
) e )
ged(N
ged(h,k)=1

D SN (E G
Nov 7’ 12rj
- - 48 - 2% jr[4 ——c d(N.
x ( ged(N, )| (hj+r) €XP (24k'gcd(N 0 ( Jr| ]m {gcd(N,u)] .ty ( ,u)>>

ged (N, 1)
N2v ) 12rj
g j—r — [ 48 -2Yjr[4 - — =2 ged(N,
Oged (N (ns—r) XP (24k:gcd( N, ) ( arf ]gduv ) {gcd(Nw)} e N ged( u))))
gc i

2mi N2v 7’
X . — —24n + 1 + 2k% — 3k) ged(N, p) — 245227 [4]" {7} h
P <z4kgcd(N, ) <<( nhE ) eed(Now) = A1572 W | SN S
gc K

Nov 1/
— | (-24NkK? — 24kr + 1 — k?) ged — 24r22¥[4 {7] hl’
(( )g (N, ) [ ]g T ged(N, 1) e [ ]8kgcd(N,u)
(el N

=K j N1+ (n7K) + K jni1,-(nr k),

12We are allowed to do this since gcd(8, h) = 1, this is because we know that h is odd.
13USing that h[h]ékgcd(N,u) =-1 (mOd Sk) since (Sk) | (Sk ng(N7 :LL))

88



IV.3. PROOF OF THEOREM IV.1.2

where
1 ged(NV,p)—1 rs
Kijnax(n,r k) =€ 4 (K, j,N, 1) ——5 exp (ﬂm')
I o E 8 ged (N, p)? s;) ged(N, )
h2-1 . (u-1)(h=1) h
N
h (mod 8 gcd(N,n)k) ng(N’ 'u)
ged(h,8 ged(N,u)k)=1
211 .
X exp (Skng(N,,u) ((M3 + 8jsk) h — V3[h]ékgcd(N,u))) )
with
N2V o .
* (kg N,y =T . ged(N,p) ged(IV, p)2 (@)6 e
bR st <gcdz;v,m VU e e

27 o Nov ) 12rj
Xexp | ——————— | F48-2Yjr[4]" 4 _ + ged(N, p) s
24k ged(N, ) ged(N.) [ ged(N, ) w N

ged(N,u)

1+ 2k2

N2v !
— k) ged(N, p) — 8522 [4] 4 {7} ,
ged(N,p) p

M3 = (—871 +
cd(N,
& ( N) ged(N, p)

1— k2 Nov )
v3 = —8Nk?2 — 8kr + ) cd(N, p) — 8r227[4] [7}
3 ( 3 g ( 2 [ }gcd(l?\’,u) ged(N, H) W

ged(N,u)

Note that pug,vs3 € Z, since k> —1 =0 (mod 3) is equivalent to 2k?> +1 =0 (mod 3).
Lastly we use a small trick to rewrite our Kloosterman sum into the shape that we
(u—1)(h—1)

2_
want. First we note that 16 | (8k gcd(N, 1)) and that (—1)%’&# only depends
on h modulo 16. Thus we obtain

Kkj,n1,£ (0,7, ) (IV.3.8)

ged(N,p)—1 ) ) B
rs 1 2=t (u=1G=1) —2mijt
=e; (k,j,N,r) E exp (:I:Qm‘i) — (-1)& vt 1 e 16

e, 8 gcd(N, )2 ot ged(N, )/ 16 i (mod 16) ¢ (o 16)
h 27 . 8¢gcd(N, ,u)k) ,

x S jsk + LD RN b o ,

<gcd(N7 ,u)) P (Skgcd(N, ) ((“3 T 88k + 16 v3| ]Skgcd(zv,u)

h (mod 8 gcd(N,un)k)
ged(h,8 ged(N,p)k)=1

using the orthogonality of roots of unity

1 2mial 1 if 16| a,
- 16 =
TP { 0

¢ (mod 16) otherwise.

In the second case, 3 | k, we have that 3 { h and thus ged(24,h) = 1. Choosing
[h];cgcd(N,u) such that h[h];cgcd(N,u) = —1 (mod 24k gcd(N, u)), analogously to above,
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yields'
Kijni(nr k) =K ng o (n,76) + Ki v (7, 5),

where analogously to the first case

Kj g1, () (IV.3.9)
cd(N,u)—1 2 Y Comid
c kAN Y e (ﬂm’L) L e e .
24 ged(N, p) =0 ged(N,u) ) 16 . (1% 16y ¢ (mod 16)
h 2mi . 24£ gcd (N, p)k ,
) h (mod 24chd<N,u,)k> <gcd(N,u)> o (24k ged (N, p) <<“4 Rk 16 ) h— valhlaek ng(N’“)D ’
ged(h,24 ged(N,pu)k)=1
with
5 5 N2y )
. - /
B 2]
’ ged (N, p)
N2y
vy = (—24N/€2 —24kr +1— k2) ng(N, lLL) — 247”22”[4];(:(1&@\7 my |:gcd(]\fu):|
7 ’ gcd(lj\f’u)

We now note that we can bound (IV.3.8), respectively (IV.3.9), by

| Kk j,n,1,+(n, 7, 5)|

1 1 ged(N,pu)—1

8gcd(N, )2 16

> X

s=0 j (mod16) £ (mod 16)

h ) ( 2w (( . 8¢ gcd(N, u)k) ,
X ——— Jexp | —————— (| u3 +8jsk + ———"—— | h — v3[h]gs o0 )
n (mdgdw@ (gcd(N, ) 8k ged (N, p) 16 Shged()

ged(h,8 ged(N,p)k)=1

< Ez,i(kzjy N, T)

respectively

K55 v 0,2 ()|

ged(N,p)—1

1 1
<l|ef L(kyjyN,7) s — s
S |€e,+ (R0, IV, 2
24 ged(N, p)® 16 s=0 j (mod16) £ (mod 16)
( h ) ( 27i (( ek 4 240 gcd(N, ,u)k) N (h!
* exp Ha Jsk+ ——————— | h = valhlogp gea(n,p) .
h (mod 24 ged(N, k) \8CAN; 1) 24k ged(N, ) 16

ged(h,24 gcd(N,pu)k)=1

Both sums over h are of the required shape, so we can bound them using Malishev’s
result (see Lemma IV.1.3) and obtain that they are

1
8¢ ged(N, u)k 2
o <(8 ged(N, p)k) 2+ min (gcd (us + sk + % 8gcd(N,u)k) * god (v3, 8ged(N, u)kﬁ)) :

1 Using that hlhloay gea(n ) = —1 (mod 24k) since (24k) | (24k ged(N, ).
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respectively

1
240 ged (N, p)k 3
o) ((24 ged(N, 1)k)2 ¢ min (gcd (u4 +2ajsk 4 228AN W o), ,u)k:) ,ged (v4, 24 ged(N, M)kﬁ)) ,

16
for € > 0.
We see that 8 ged(NV, u) < 24 ged(N, p) < 24N = Op(1) and, analogously to Lemma
V.24,
N k % 1 1
Inﬁ1<gai(M3‘F8j5k+'8EQKT6’LO78ngUVMUk> ,gcd<wh8gcduvdnk)2> — 0x (n?).
and

=

N
ol

AN O o4 gea(n, u)k> ged (v1, 24 ged (N, )k)

).

min (gcd (,u4 + 24j5sk +

)—ON(n

This yields

1
8 ged(N, )2 16

Ezyi(kvjv Nv T)

K jna,+(n,m k) =Opn (

O (

=Opn (n%k%+8) ,

ged(N,u)—1
¥ x )
s=0

j (mod16) ¢ (mod 16)

)

and analogously Kj . n, (n,7,K) = ON(n%k%“), since €; 4 (k,j, N,r) = On(1). We
thus showed that

[N

1 1 1
* (ki N pr)——— 162 gcd(N, u)kz1e
6e,:l:( » D 7r)8gcd(N,,u)2 16 6 gc ( ,/,L) 2''n

K jni(n,r k) =On (n%k%+€) .

The only thing left to do now is to look at Kj, ; n2(n,r, k), where

ANp ]’ (hjtr)?
. v vta . —ovta L 2% Jouta+2 4
G(hN,hj £7r,2"u) =272 Ay(i+1) RNu | Ehiu exp —2mi Sta
2(!
Analogously to the calculations of K j 1 we obtain that
Xj.r (N, My 1)
Nh2"
_5 1 s i _21/+a ng(Nyﬂ) 20‘71 ng(N7 ﬂ)
=0(ged(N,u)20+1)| (hj+r) ( Z)E”;XMEW —h RN T N
2a ged(N,u)
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X exp <2m' <214 <h’k (1= (=h)®) + (—h) (_ hh’k+ LI 3> - 3) + Z))

[th}/ (hj+r)?
2% Jovtat2 4

o
X exp <4N7T; (hj2 —Wr? s 2rj)> exp | —2mi vta

_[4]/ |: N2V ] [h]/ ( hj+r )
gcd(A‘N,“) ged(N, ) gcd(};\f,u) gcdi(;;\l,p) ng(N,;,L)

X exp | —2mi m
ged(N,p)

Nh2¥
k —ovta < 20—1 ged (N,
+ 8(god (N )20+ (hj—r) (6 — 1)EmNuE ( ) < ) (g d(Mu)) ged(N, )
) 00 ged(N,pm) \ —h hNp R - N
2a ged (N, )

X exp (27ri <214 (h’k (1= (=h)*) + (=h) (_ hh’k+ L + 3) - 3) + Z))

. S
25 | opia 1
X exp <4]7\sz]§ (hj* — h'r? — 27"j)> exp | —2mi 22+u++j

W ] W ()
et LeedNw) | ety \eed( )

X exp | —2mi

_
ged(NV,p)

Using quadratic reciprocity we have
Nh2¥
<k> <—2”+”‘> (gcd(Mu))
_ hN 2]
h 2&“ ged (V)
14 Vo V+o N2Y
<2> () (-1) <2> * (-2 + ) < h ) (MUW)
—\p n)\ n N [ f
h h h h = ged (N, p) ged(N,pu)
N2¥

2o\ (u=1)(h=1) A1, h2-1 h —orte ged(N,10)
=((-1)"= ) (1) (=) TS (v+a>( >< >< =
< ng(Nv H) % gcd('L;V,u)

Therefore our Kloosterman sum equals

Kk’,j,Nﬂ(n? T H)

N2¥
) 201 ged(N —ovte A(N, 2mi
=(1=i)e_u__ gN( ,u)< . ) <gc W) | oxp ) 60

2o ged(N,p)
h2-1 (p—1)(h—1) , h—1 | h2—1 h
X Z (_1)T'j+f+T+T(”+Q)EhN“< )
. 2o\ ged(NV, p)
ged(h,k)=1
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X exp (% ((—24n +2 +k* — 3k) h — (—24NK" — 24rkr + 1 — k7) h’))

omi 12rj [ANu)] (hg+r)*
241772 277 .| 2 Jovta+2 4
X Oaca(v w2t (hjoer) XP (m <_h WE + 10+ =5 )) exp | —2mi vta

’
/ N2VY / hj+r
qu [ng(N,H)] _pm [h}m (ng(NM))

X exp | 2wt ng(]\L’“)
ged(N,p)
. . hANp1’ (hj—r)?
2mi 2,172 2, 12rj . [27]2u+u+2 4
,6(gcd(N‘#)2u+1)‘<h].7T> exp (m (fh h'k”+h“h" — N exp | —27i ovta
I [ N2V ]' [h)’ ( hj—r )
zeatn gy Lecd(Now) n seatny \eed(V.u)
x exp | 2mi , ged(N. ) ,
123
ged(N,p)
We observe that
hN,u]’ (hjtr)? o ’
. [ 2a vtoa+2 4 U N,u .2 . ’ 2
exp | —27i 2 ovta =exp <2y+a+2 ({27} prota (—hj F2jr + [hlgtata T ))) .
Choose [h)’ . = k' from now on'®. Analogously to the odd k case or the calcula-

ged (N, p)

tions of Ky j N1 we are able to choose h' such that hh' = —1 (mod 20+2 ged(NV, ,u)k:) .
Choosing [h]y+a+e = [h]IZ‘H?kgcd(N 4 addition'®, we obtain that

Ky j N,2(n, 7 K)

v
—(1— e 2001 ged(N, p) [ —2¥Fe #ﬁr,u) 2mi
- AN N Nu | P\ ) dvmet

m
2« ged (N, i)
h2-1, . (u=1)(h=1)  h—1, h?_1 h
X S (-1 s v+ 1 +tTg g ("+a)EhNM
h (mod k) SO ged(N, )
ged(h,k)=1
27 N2vY /
2 a+2 2 vtat2
Xexp| —-—F— —24n 4 24+ k% — 3k) 2%72 ged(N, p) — 245°2 4’ u s
g | | ) FeatN Lecd(Now) | p
ged (N, p)
N ’
—24p5° {J} ged(N, ;1.)) h
20 |putat2

N2v !
- (-241%2 —24kr+1— kz) 29F2 gcd(N, ) — 24r22vTot21g)) e
gcd(N, ) | ged(N, p) p

ged(N, 1)

5Note that hh' = —1 (mod k) implies that hh' = —1 (mod zeatn ) since o5 | k. Thus A" is a

possible choice for [A]_ . .
ged (N, 1)

Note that the equivalence hlh]yartz,, ged(Ny = 1 (mod 2072k gcd(N, u)) implies that we additionally
have h[h];aﬁkgcdwyu) =-1 (mod 2"*"‘*2), since 2" 12 | (2a+2k ged(N, u)) Thus [h];aﬁkgcdwm is
a possible choice for [h];,,+a+2.
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/

oy [N cd(N, p) | [h)]
1% oo 2u+a+2g s 2042 ged (N, )

5 27 R21R 1_ g2 12ryj
X 2 (seacv my2at 1) (hyitr) P (m( lzatay geaqnn  ~ KD+ g ))

27 Nul’ 270 N2v !
X exp (L (72]'7' [—H] )) exp T 72y+1j7'[4]/ m _
2vtat2 2% Jovta+t2 k ged(N, 1) ged(N, ) | ged(N, p) I

ged(N, p)
2mg

5 h2[n)! (1 - x2) = 27
(scd(N,wyze+1) | (hj—r) TP\ 25 2042 ged (N, ) N
27  [Nu7’ 27i 1. N2v ]
X exp (7 (2]r [—] )> exp| ——— | 2 jrl4] n _
2vtat2 2% |ovtadt2 kged(N, ) gcd(N, @) | ged(NV, p) p
ged(N,u)

We now need to split into two cases, 3 1 k and 3 | k. In the first case we obtain
3| (k? —1). Choosing [h]’Q,HngCd( ) such that

N,p
h[h]IQO‘+2kgcd(N,u) =-1 (mOd 209k ng(Na /j’)) )

analogously to abovel”, yields'®

Kg,j,N,2(n,r k)

N2V .

P 20—1 ged(N, p) [ —2vFe 2ed(N.5) 2ms
=(1—1)e p N exp ( — ) dy—a>1

ged (N, w) N & seatN 4

ged(N,p)

h2-1 —1)(h—1) , h—1 , h2—1
o (71)T”+w+T+T('ﬂr“)sh ( h )

h (mod k) "ot \ ged(IV, p)

ged(h,k)=1

s 2w (12rj
(sed(N, w241 ) | (rj+r) P (87 ( 3N ))

27 Nul’ 27i N2v 7
X exp <7 (—er [—‘u‘] )) exp | —————— —2V+1jr[4]/ w —
vtat2 2% |ovtadt2 kged(N, p) ged(N,p) | ged(N, p) I
ged(N, 1)

5 27 12rj
(sea(v,m2a+1)|(nj—r) P ( 8k ( 3N ))
27i Nul’ 27i o~ , N2v ]’
X ex: — | 2§ | — ex —_— | 2 jr(4 L _
P <2”+°‘+2 ( ’ [20‘ ]QV+a+2>> P (kgcd(N, w) ( arl ]gcd(j\f,p.) ged (N, u) w
gcd(N, 1)

2mi N2v !
X exp (m (((2471 142k - 3k) 20F2 g d(N, ) — 245227 T2 ) {7]

P
24 . 2042k ged(N, p) ged(N,p) [ ged(N, 1) T(%)
gc: T

24p5> [N“]/ d(N h
_ -# cd(N,
M7 o | putata © (N, )

"We are allowed to do this since gcd(8, k) = 1, this is because we know that A is odd.
18Using that h[h]ga+5kgcd(N,,u) = —1 (mod8k) since (8k) | (2T k gcd(N, p)).
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N2v ]
- (—24Nn2 o4k 41— k2) 29F2 g d(N, p) — 24r2 27 Tt2)y) [ ]
ged(N, ) | ged(NV, p)

o
ged(N, 1)
Nu’ ,
2y [T:]zu+a+2 ged(N, “)) [h]2"+5kgcd(N,u)) )
=Ky j N2+ rK)+ Ky j N2 —(n7K),
where
1 ged(N,p)29t —1 s
K j b) b = € k .7 N7 :l:2 ) 4
2 _ _ _ _ 2 _
x > (1) e R S R (T(}JLT ))
20 C
h (mod2"‘+5kgcd(N,p)) 8 o
ged(h,29F5k ged(N,p))=1
2m .
X exp (m ((,U/5 + 16Jk$) h — V5[h],2'1+5kgcd(]\]”u))) ;
with
N2¥
: : 201 ged(N, p) [ =2"**\ [ zdvm
€e,x(k,j,N,r) =t (1 —i)e__u : Ov—a>1
’ BT N v (v
2mi o2 [, 12rj 27 [Np]’
X — — | £ — 2 —_—
o (57 e (5 (£55) ) oo (375 (v [ 38,
211 vl - / N2 '
X —_ 2 4 _—
P kged(N, p) + it ]gcd(l?V-,w [gcd(N, ,u)} 4 ’
ged (N, p)
1 + ka a+2 2avta+2 / NQV !
=[-8 —k)2 d(NV — 8772 4 _—
M5 ( n + gcC ( 7/1') J [ ]gcd(‘;\,yw ng(N, u) .
ged(N,p)
o [Nu]
— 8pj” |:#:| ged(N, p),
2 ovta+2

N2v
ged(N,u) ng(N,pL)

m
ged(N, 1)

_ 12
Us = (—8N/$2 — 8kr + ! 3k ) 22 ged(N, p) — 8r72° T2 4)
N /
— 8ur? [2—5] ged (N, ).
ovta+2

Note that ps,vs € Z, since 3 | (k% — 1) is equivalent to 3 | (2k? + 1).
)h28_1y+ (u—1)4(h—1)+%+h28_1(y+a) only depends

Analogously to above we note that (—1
on h modulo 16, 16 | (2*75k gcd(N, 1)), and €ny, only depends on h modulo 4, means
2a

we can also look at it modulo 16, since 4 | 16. Thus we obtain

1 1 ged(N,p)2% 1 —1

. . TS
K j,N,2,£(n, 1, k) =€e,+(k, j, N’T)WE sgo exp (iZWW)
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N D e e e L S
7 (mod 16) 2 ¢ (mod 16)
erean))
5 IV.3.10
2 (gcd(N, D) ( )

h (mod 20 +5 gcd(N,u))
ged(h, 2910k ged(N,p))=1

2mi ) 20150k gcd (N, u) ,
X exp (m ((us + 165ks + #> h— V5[h]2a+5kgcd(N,;L))) .

In the second case, 3 | k, we have that 3 { h and thus gcd(24,h) = 1. Choos-
ing [h]’2Q+2kng(N o Such that h[h]IQO‘+2kng(N o =-1 (mod 24 - 2*2k gcd(N, 1)), analo-
gously to above, yields'®

Kijna(nr k) = Kijno(nor k) + Kpjno (0,1, k),
where analogously to the first case

Kk jN2,+(n,7K)
ged(N, )2+t —1

1 1 rs
—€e ka '7 N7 1a 2 A NgatT
cect (k3 Nom) 3 55070 ged(N, 11)? 16 2 P ( ™ ged(I, u)2““>

s5=0

2 . . 2 .
7=l (w=DE=1) 4 j—1, j -1 —2mije
X E (_]_) g vt 1 +t5t+t s (VJ“")E].N“ E e 16

2¢
j (mod16) ¢ (mod 16)

x > (ﬁ) (IV.3.11)

h (mod3-2%FTPk ged(N,p))
gcd(h,3-2%T%k ged(N,p))=1

27i ) 3. 29Tk gcd(N, p) ,
X exp <3 275k ged(N, 1) ((MG + 485ks + h — V6[h]3»2<¥+5kgcd(N,,u) )

16
with
. 2 a+2 2ov+a+27141/ N2¥ '
He = (724’11 + 1+ 2k* — 3k) 2 ged (N, p) — 245°2 [ ]gcd(lgv,u) m
T gty
o [Nu]'
— 24p5° [2(1} ged(N, p),
uta+2
. 2 2 a+2 20v+a+2 / N2V '
Vg = (724NK/ — 24/‘67’ =+ 1 — k ) 2 ng(.ZV7 /,L) — 247' 2 [4} ng(;;VY#) m
W gt
Nul'
— 24pr? [25} ged (N, ).
outat2

We now note that we can bound (IV.3.10) by

19Using that h[h]/24~2a+2kgcd(N“u) = —1 (mod 24k) since (24k) | (24 - 22k gcd(N, 11)).
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!Kk,j,N,Q,i(nv T f'i)|

1 1 god(N,p)2% Tt —1
< Ee’i(k’j’N7T)WTﬁ

> X

s=0 j (mod16) £ (mod 16)

R )

h (mod 2%k ged(N,u))
ged(h, 2910k ged(N,p))=1

2w . 2015k gcd (N, ) ,
<o (e gy (o + 1009+ S ) = alt o))

Moreover we obtain that (IV.3.11) is bounded by
|Kk1]',N727i(n7 T H)'

ged(N, )2+ —1

2 > X

s=0 j (mod16) ¢ (mod 16)

1 1
322046 ged(N, p)? 16

<

66,:‘: (k7 j, N7 T)

RN )

h (mod 3.201F5 gcd(N,,u))
gcd(h,3-2% Tk ged (N, pu))=1

2mi . 32950k gcd(N, 1) ,
X exp (3-2a+5kgcd(N,u) <<,u6+48jsk+ 16 h — vs[hl3 0045k gea(, )

Both last sums over h are of the required shape, so we can bound them using
Malishev’s result (see Lemma IV.1.3) and obtain that they are

1
1 29t5 ¢k ged(N 2 1
o ((204+5k ged(N, 1)) 2 T° min (gcd (% + 16jks + %, 2945 ged(N, M)> L ged (u5, 29F5 K ged(N, #)) 2 )) ,

respectively

o) ((3 205 ged(N, p)) 2 F°

1
2

3. 2015k ged(N
ged( ’“),3~2a+5kgcd(N,u)) ged (v, 3 255k ged (N, 1)

16

Nl=

X min (gcd (ug + 48j5ks +

for e > 0.

We see that 297° ged(N, p) < 3295 ged(N, ) < 3-25N?% = On(1) and, by Lemma
V.2.5,

1

20450k ged(N 2
min (gcd (us +16jks + 2 KB atsy g, u)) ,ged (vs, 2° TPk ged (N, 1)) ) = Ox (n),

[NE

16
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and

I3

3-29%5¢k gcd(N, 1)

N[=

2
min (gcd (ug + 487ks + ,3.2015 ged(N, u)) ,ged (1/6, 3.20%5g gcd(N,,u))

):ON(n).

16
This yields
1 1 ged(N,p)2% Tt -1 .
) — ; il 3 te
Kk,j,N,Q,i(n7T7 K‘) _ON Ee,i(k7J7N7T)22a+6 ng(N7l,L)2 16 Z , Z Z k2 n
s=0 j (mod16) ¢ (mod16)
. 1 1 a 1
:ON ( ee’i(k’J’N’T)WE‘162ng(N”u)2 +1k2+sn)

=0On (nk%+5) ,

and analogously Kj ; vy o (n,7,K) = ON(nk%*'E), since €+ (k, j, N,r) = On(1). We thus
showed that

K jna(n,r k) =Oy (nk%+f> 7
which finally gives
Ky jn(n,r, k) =On (nk%ﬁ)

and finishes the proof for k even and therefore the proof of Theorem IV.1.2.

IV.4 Applying the Circle Method

In this section we use the Circle Method and ideas of Rademacher and Zuckerman
[Rad38, Rad37,RZ38] to finally prove Theorem IV.1.1. As we already mentioned in the
introduction of this chapter, the Kloosterman sum and transformation behavior of our
family of functions is a little more complicated here than it is in [Rad38], for example.
Even though we now have a nice bound for our Kloosterman sum this will cause extra
work in bounding the error parts.

Let 0 < h < k < J with ged(h, k) = 1 and a parameter J € N that later tends to
infinity. Furthermore let Z—i < % < Z—; be consecutive fractions in the Farey sequence of

order J (a series of fractions 2 with p; < ¢; < J, ged(pj,¢;) = 1 and Z—j < Z—ﬁ for all

qj
J < {). We denote the Farey arc &, 1 to be the image of (Ziiz, Z;iz

e.g., [Rad37])

) under the map (see

b e—27rJ*2+2m‘¢

and &1 to be the image of (——= see e.g., [And98, equation (5.2.9)]).

1
71 7)) (
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Note that for the fraction £ and its neighbors we have (see [Rad38, page 503])
hky —hik =1 and hok —hky =1,
which is equivalent to
hk1 =1 (modk) and hke=-1 (modk),
or, using that hh/ = —1 (mod k),
ki =—h' (modk) and ko =h (modk). (IV.4.1)

Since Ziiz and ZEIZ do not belong to the Farey sequence of order J we have k1 +k > J

and ko + k > J, which, together with ki, ko < J, enclose k1 and ks to the intervals

J—k<k <J  J—k<k <. (IV.4.2)

The formulae (IV.4.1) and (IV.4.2) thus determine k; and kg uniquely as functions of h
and k.
Using Cauchy’s formula and (IV.1.4) we write (see e.g., [BFOR17, equation (14.4)])

142
1 g2 AN A; N (7)
%‘,N(H)ZM/C qn—ﬁdq, (IV.4.3)

where C'y is an arbitrary path inside the unit disk that loops around zero in the counter-
clockwise direction exactly once. Here we choose C to be the circle of radius e 2™/ 7
and note that we can split this circle into disjoint Farey arcs as done in Rademacher’s
original works [Rad38,Rad37] by

U S =Cl,

0<h<k<J
ged(h,k)=1

which will allow us to focus on the most important cusps. Using this we are able to
rewrite (IV.4.3) as

= ¥ oo [ S

0<h<k<J
ged(h,k)=

where we denoted g; ny(n) = n+% — i for simplicity. Defining (see e.g., [Rad38, equation
(3.5)])

"o 1 - 1

PR (ke + k) PR Kok + k)
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and substituting 7 = % +i(J72 —i¢) (arc length centered at eQWi%) thus leads to

—2zih g (n) W g (n) (72 ~ig) ho o2
ajn(n) = Z ek 9N / e~ "IN Aj N T +i(J72—ig) ) do. (IV.4.4)
0<h<k<J ~h k
ged(h,k)=1
Let w := J~2 — i¢. To better control the integrand’s behavior near rational numbers

we use the modular transformation M}, from Theorem IV.1.1. In addition equation
(IV.2.14) gives us

h N-1 h/ 2 —1 h/ Z
Aj N <k: + zw) = X (N, My i) n <l<: + k:%u) T, n < + ) , (IV.4.5)

2
- k k2w
where we used that

th(h+iw>:h’(z+iw)—hh;+l_ih’w—}C Wi
*\k

k(E+iw) — h kR
Taking a closer look at (IV.4.5) we obtain

N—-1 . -1 .
h . n i _mi(hl i I i
A (k““’):ij’T(N’Mh’k)<<"(k+k2w) e Bl )z ()

r=1
Y K i I i
h e *
aar (IN—— (Z + n) v (z * m)) > :

Note that in this calculation we set d = i in the splitting of our Mordell-type integral

such that our assumption from above simplifies to w/% ¢ 7.
Plugging this into (IV.4.4) gives us

ajn(n) = azjn(n) +azejn(n) + az jn(n), (IV.4.6)
with
2mih Ly N-l
azjN(n)= > e % gf’N(")/W 295N (MW Ny (N, My, 1)
0<h<k<J “Vh,k =1
ged(h,k)=1 "
h i \7! —r (B ) n i
X — —_ — 12\ k k2w 7 )/ —_ — | d ,
("(k +k2w> c N, B (k +k2w) ¢
2rih Ik 9 Nl B h i
aze jn(n) = Y e*TgilN(")/ e 95N ()@ Xg,r (Ns Muk)oue T, o e 1 (f + 5 )dq&,
0<h<k<.J ~Oh K =1 R 2
ged(h,k)=1
ot (TR gy (e - Wi
az-gN(n)i= 3 e TR / , ey Xgr (N M k)oa I w2 30+ 52 ) 49
0<h<k<J ~Ohk r=1 R 24
ged(h,k)=1
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IV.4.1 Principal part

We now look at each of the terms in a;n(n) seperately. We start with the part
that contains the principal part, namely az+ ; nv(n). Analogously to [Rad38] we split our

integral as
O}k T6E0] Raesmo) LI
+ 5
1
_19;17 1

k(J+k) L E(T+k)

since we have

N SR < 1 < L =
T k(e + k) T k(T4 k) T k(T4 k) T k(ko+ k) MR
Defining
1 —
_2mih g () [FOFE ang. o (n)w —h! h' i
azx jno0(n) = Z e k95N ( >/ ) e2793,.N (1) Z Xj,r(N7J\/Ih,k)CM’;C ITN n L(; + kT) do,
0<h<k<J T R(JTFER) r=1 TR 024 w
ged(h,k)=1
2mih 7k(11+k) Ry h' 7
az= jn1(n) = Z e "k !Jj,N(n)/ . 2795, N (n)w Z Xjr(N, My, k)<24k I* N ;(? + kT) do,
0<h<k<J =%k =1 k24 w
ged(h,k)=1
— 2 h k s n)w — * hl i
az= j,N,2(n) = Z € (n)/ &?m 95N () Z Xj,r (N, My, k)C24kI bl ;(? + kT) d,
0<h<k<J BT r=1 k24 w
ged(h,k)=1
we thus obtain
aI*,j,N(n) = apyj’]\@o(n) + CLI*J"NJ(TI) + az*,j,NQ(n). (IV.4.7)

We go on by estimating az« j no(n). Using (IV.2.16) we see that

- N
k(]+k) iN e 2T
az+j,No(n E / 29N (M 3 E PV/

k(]+k) r=1 keZ 24N = H + QN)

X Z € ’ ()X]T(N th)CQh ZMN(’H_ )?dqﬁ.

0<h<k
ged(h,k)=1

dzx

Plugging in the definition of Ky ; n(n,r, k) from (IV.1.6), which is well-defined and a

Kloosterman sum of modulus k, and taking the finite sum over r out of the integral gives
us

i I N=l s, . [Fx —2mN G—a?
aze j.nof k2 Z / 1 e W(gg,N(n)w+24k2w) Z Ky j,n(n,m,r)P.V. / ——————dx d¢.
T k=1 r=1"' %718 KEZ Vaiw T (r+ 2N)
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Note that, for arbitrary £ € Z, we have

(24N ((tti) 55 ) =)0 (24N (w5 ) *=1) W
24k — 524k

and therefore Ky, ; y(n,7, K+ k) = K}, j n(n, 7, k). Shifting k — r + £k for £ € Z we thus
obtain

i J N—-1k-1
az«j,No(n ;g E Ky jn(n,r k)
k=1 r=1 k=0
2
k(]l-Hc) . L v 5w 6727rNﬁ:c
x (o etanas) im 3T PV dz do.
1 L—o0 T x—(n—i—f/{{—i)
TRITR) {=—L 24N 2N

Note that the convergence is uniform in our finite range so we are allowed to switch the
order of the integral and the sum over ¢. Using the equality (see [BN19, equation (3.10)])

L
) 1
meot(mx) = ngr;o Z ooy (IV.4.8)
{=—L
which holds for all z € C\Z, we thus obtain
—1k—1 1
K E | g; w
azx JvNO = ZZ Z Z k7j7 n T K) /k(ljk) 62 <g]7N( ) +24k2 )
k=1 r=1 k=0 “ROTR

ey [ FNt (r (<2454 1Y) doas

Here the possible poles in Z have already been excluded by the principal value integral.
Note that we only have a simple pole in z = k + £k + 55 if and only if K = ¢ = 0 and

r < \/%. Since one can show that there exists a constant C. (Ccp, — 0ase — 0 and k
fix) such that

_ 1 2 _ 1 2
lim / NS cot (71' (—E + 4 ))dw — e NS cot (7‘(’ (—g—i- L))dm <Cek
e—0 k 2Nk k 2Nk ’
|zf—|>s ‘zf—|>5
‘ ‘< 24]\] I"‘L‘S\/ 24N

uniformly in ¢, using the Taylor expansion of the exponential together with (IV.4.8), we
see that we only have integrals over compact subsets with continuous integrands and can
additionally switch the integrals over x and ¢ to get
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| JNflkflKk,]Nnr’{ F T K r
oesal) =S Kijn(n,r k) cot _E+%+2Nk
L L Lo 24N
y /k(.]+k) 62 (g] N(n)w+tsras 24k2 —, “’) d¢ dx.
~ R

To evaluate the integral over ¢ we substitute w = J~2 — i¢ to obtain

k(JlJrk) 271.(_ (n)w—+—L 7Nm2) J*2+4k(Ji+k) 2,r<. (n)eri(ifoz)
e 9j,N 24k2w k2w d¢ — _Z e 94,N k2 \24

€=

) dw.

1 i
T k(JTFK) T k(J¥EK)

Then we view it as an integral over the right vertical of a rectangle in the complex w-plane
and denote the integrals over the other sides, v1,72, and 73, by Ry (z), Ra(z), and R3(z),
respectively, where we dropped the dependence on the other parameters for simplicity
(see Figure IV.1).

-2, . 1 1 -2, . 1
—J 7 i < S+ iR
’YQ" I~
_92 .1 N -2 _ ;s 1
—J 7 — i ™ J VE(TTR)

Figure IV.1: Rectangle in the complex w-plane.

Let Ry jjn(n,z) denote the integral over the whole rectangle and let R denote the
rectangle itself with counterclockwise orientation such that

J N—1k—1 o
K
az+ j,no(n zz ]”NnTKPV/ - cot( ( %4—%—&—2;\“%)) (IV.4.9)
k=1 r=1 k=0

x (=) (Rk,j,J,N(n, ) — Ri(z) = Ro(z) — Ry()) da

‘We now have

1 1 27T(g-N(7L)OJ+ L (——Nx ) )
Ry - i w2 d
o ki N (1 T) =5 /Re «

2m/z 27TQJN Jw)* Z(/fgr ( — Nz )) dw,

v!
R >0 v>0
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using the Taylor expansion of the exponential function. According to the residue theorem
this integral equals zero unless there is a simple pole in w = 0, which requires v = u + 1.
Thus we obtain

2p+1
/L — N2 (2”“(” e Nx2>
1 n (n,z) = 24 Z
oL 5 JN\T - .
o I k /gj,N(n) = wl(p + 1)!

Using the representation (see e.g., [NIST, equation 10.25.2])

fa() = mZZ:O m![(m }F a+1) <§>2m+a

of the I-Bessel function of first kind and order o@ we furthermore see that

1 1/— — N2 (471'\/gj7N(n) \/1 —N$2> ‘

%Rk,j,J,N(nax) i /7911\/ A 24

Plugging this into (IV.4.9) we obtain

az+ j,n,0(n)

JlelKkJNnrH VN T K r
-2 py. /7C0t( ( E+E+2Nk))
k=1 r=1 k=0
2miy/ 51 = N2> (anfgin(m) [1 )
X I — — Nz dx
k/ g5, (n) k 24
J N—-1k-1 /1 _
Ky j,n (0,7, k) nN TR T
+3 . PV [T ot (Tr( Tt 2Nk)) (Ri(z) + Ro(z) + Ra(x)) dz
k=1 r=1 k=0 V 24N
= M+ FE.
We are now left with estimating E. We can rewrite it as
Ey+ Es + E3
N
J W;ﬂ Vol
— Ky jn(n,7,0) 7N xo o ,
=3 . PV [T cot (w( -+ 2Nk)) (Ry(z) + Ra(z) + Rs(x)) dz
k=1 r=1 V 24N
J N—-1 1
Ky jn(n,r,0) [V 2N T r
+ ; %:ﬁw — ] — cot (7T ( A + 2Nk)) (Ri(z) + R2(x) + R3(x)) dx
- N
r= 5
J N—-1k—1 Y
Ky jn (0,7, k) / uN TR, T
+ ; 2.2 . e cot (71' ( A + T + 2Nk)) (R1(z) + R2(x) + Rs(x)) dz,
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IV.4. APPLYING THE CIRCLE METHOD

since the integral over x only has a simple pole in z = 55 for k =0 and 7 < %.
(

x). On

To bound the remaining sides of the rectangle we start with R;(z) and Rs

this paths of integration we have w = u £ im, where —J2 < 4 < J~2, and
! Y uk?(J + k)? 22 2 2
k2(J+k)?

Thus we see that the integrand is less than e?™%¥ (m)J=2+87(53-N2*) 4nd obtain that

|Ry(z)] and |Ry(z)| < 2. 2e295n (m) 72487 (55 —Na?), (IV.4.10)
For Ry(z) the path of integration is given by w = —J 2 — v, where we have
_k(Jl—I—k) <wv < (J+k) Note that gj ~N(n), 5 51 — Nz2 > 0. Since the real part of w is
always —J 2 < 0 and Re(i) T +U2 < 0 we conclude that the integrand is O(1) and
therefore
|Ra(7)] < B (IV.4.11)
k(J + k) ' o

From (IV.4.10) and (IV.4.11) we conclude that
Ri(x) + Ra(z) + Rs(x) = O (k—l,f—le?’fgf«MW ’2+8”(i—m2)) . (IV.4.12)

We start by evaluating E'3, which, using the calculations before together with (IV.1.7),
equals

1
) J N—-1k-1 3 /24N
19 27ng N(n)J~ Z -3t ‘COt ( <—
N e i
k=1 r=1 k=1 24N

r K r
E+%+2Nk)>‘ du
We note that

eot (v (<2 + 74 1 )>‘_>COS(W(—i+Z+2&k)>}< 1

+ N T K r = .. T K T '
ko k 2Nk |sin (7 (= + %+ ox5)) |~ [sin (7 (=% + % + 25%))|

Similar to [BriOQ7 page 11] we furthermore have

Sin( ( k k 2Nk>)‘zsm( ‘ Z Z szD\
. r K
>>mm({ PR 2Nk}’17{‘7k: 2NI~: })
:{{—:+:+2Nn|} ifos{\—f+ + o} <4
L—{|—§ + %+ axgl} else,
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where {z} =z — |z is the fractional part of a real number x.
Taking a closer look at —% +  + 537 We observe that

TiEy <1+ L L L—1 Ny _1
kK 2Nk_ k24N 2k 2Nk /@\/24

and

JI(L L, Ly
k k: 2Nk_l<: 2N V24N ) — 48k’

since we have x > 1. In particular this gives us that

min ({

k 2]7;7k} _{‘_% % 2Nk‘}
1
1

k
1 r : 1 T 1
:{k(_x+K+QZV) if0<g(-z+r+3y) <3
1 r e 1 1 r
l-g(-z+r+qy) ifg<g(-z+r+gy) <L
1 r r k
_Ja (Rt gy) itz 2>y +r-73,
1 T T k
—n(etrtay) Hr<gy+r—3
Using this our O-term contributes to
g
N—-1k—1
N oong. n(n)J 2 —34c V7N 1
o) — 3, k2 d
N(J Z TZINZ/\/Q‘LN mm(%(—$+n+ﬁ),1—%(—x+n+ﬁ)) ‘
_ n 2mgy N (n) T2 <A N k 1
=on J " Zk ’ rzlgl / *$+N+ﬁdz+ / 17%( z+n+2?\]>d1
|z|< #k |z|§\/24Nk
m227—+n—7 m<27—]‘v+n—7
N—-1k—1 1
_ n 2rg; N(n)J T2 —_ Vzin 1
ON(JE ’ Zk ’ 7‘2:1»;: (’mx(_ AN TN "‘%)<\/ 24N ‘/ma"(— PEscs %*’”‘%) —r+r+ 3y ’

+r
45 / v Tv*”*%) 1 4
x
N O e e Fre o aw
N-1 [k—1
. _1 v 1
=On fe2ﬂg1,N(n)J Z k 2+€ Z Z s 1 T k / 24N k 7rdz
7 r=1 \r=1 “"(* mvw*“*i <Vzin max - 4 75) —z+ K+ 5
k=1 -1nin( 1 L+E_K/)
24N 32 2 1
+ Z S 1 r 4 k_ . >,\/T/7 1 mdw s (IV413)
k=1 ™M V2aN 2 27" 24N 24N 2N

by substituting ' = k — k.
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We note that in the first integral we have 57 —x > —/ i =: (1, while in the second
integral we have x — 5% > — 72 = Cs. Thus we obtain that (IV 4.13) equals

X Z ! ) / dx
K= k+ Gl maX< \/g’zNJrﬁii \/J 24N72N+“_E)

24N’2N+2 >

k—1 1 mln
—4
+R/ZI K+ Cy min(\/g’2N+7_H \/g/ "

Using that (combining [NIST, equations 5.7.6 and 5.11.2])

L
= O (log(k)),
;n—l—(}' 8

as k — oo and for a C' > —1, this yields?"

J N-1
E3 =Op (38@”(”)” Skt ST N log(k) )
k=1 r=1

—On (ne%%w” ? J=3%% log( J)) (IV.4.14)

which tends to 0 as J — oc.
We go on by evaluating Es. Using the fact that cot(z) = O (%) as z — 0 we see that

o (x (5 515)) =0 (7 ) - v

Together with (IV.4.12) and (IV.1.7) this gives us that

By = Oy (neQ’T%N( >J’2J—§+E). (IV.4.15)

20We used that if we had a function f(z) on [1,00) with f(z) = O(log(z)) as x — oo we know that we
have f(z) < Cylog(x + 1) for all # > o and that f is bounded by 2 < C; on [1,20). In total this

would give us % < C = C} + O3 everywhere.
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Lastly we evaluate the part with poles, namely Ej. Extracting the pole in 55 yields

VE

moy y Heaslend) [V () (e - ()

k=1 r=1 Vew
Vi
J
(n,r, \/E x r r
+kZ::1 Tzzzl Kng 0/ s (_E+2Nk)>(R2(x)_R2(ﬁ))dx

, WV

+Z Z Kk]N( 0/\/:\] (7E+2Nk)>(R3(x)*Rs(ﬁ))d‘”
WE]

3 B () e [ o (n (2 )

We first concentrate on the parts

[\/» ] Ky i n(n,r,0) Srvy x r r
Z Z T / COt % + 2Nk)) (Rm(z) — fim (ﬁ)) dz,

24N

with m € {1,2,3}. Defining f,(z) = Rn(z) — Ry(5y) and using the Taylor expansion
we obtain that

\ © (2 _
@) = o () £ () (= o) oot P (o Y ),

where Ry(z) is the remainder term defined as

f“l (&) (x— r )e+1,

Ri() = (+1)! 2N

for some real §; betwen 55 and z. Choosing £ = 0 we obtain

r

F@) = Fn (557 ) + Fn (&) (2= 55 ) = I 60 (2 = 577 -

Next we focus on m € {1,3} and thus have
J [\/g_l]

k=1

(n,r, Vin x r r
Besn 0 VIV o (1 (2 ) (Bt = B ()

24N
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[VE-1] Vol
-y M/ (g )eot (7 (=1 + 5x7)) f () . (IV.4.16)
k=1 r=1 ~—V 2aN

Now we want to bound |(z — 3% ) cot(m(—% + 55%))| and |f,(&2)] seperately. For the
first one we use the Taylor series expansion around 53 and see that

(=)o o) =5 455 Gy =) w0 (B ) =omtn

as k — oo. For the second one we see that

[ (60)] = ‘(Rmm) R ()

since R, (ﬁ) is independent of x. We note that

Rm(l’) _ / eQw(gg,N(n)w-I—k ( Na? ) ) dw — / 627793'71‘](")“)@7121@2“: e_2k]2vw dw,
Ym Ym

where we have an integral over a compact set and continuously differentiable integrand
and thus are allowed to switch the integral with a derivative. This yields

/ 627ng’N(n)w612I:2w _471'fo 277N§I ol
m k2w

Remember that we have w = u =+ zk(J+k) with —J 2 < u < J 2 and Re(%) < 4k2.
Additionally we see that

2 V2 2 1 .
1 u +(3Fk(J+k>) 1 : 1 2
1 _ Il = (— ) kR () <k +E

2
(“2 + k2<J+k)2)

and therefore \ﬁ\ < JTH“ Thus our integrand in this cases is less than

47TN’£CE]L(J + k) 627rgj‘N(n)J72€%€_8ﬂ—N§£,

which finally yields that

k x
|R|(&)] and |R5(&)| <8mN|&,| +l<: 2mg; N (n)J 2 5 ,—8TNEL
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This gives us that (IV.4.16) equals

s [VE] Vi
O Z nkz+6 / 2N 167“5\;}5‘%‘ 27g; N (n)J 2 dz | = Oy (neQng,N(n)J72J—%+E) )
k=1 r=1 Y 241N

For m = 2 we define § := mm(kJ 1 .|\ 72w — 75|) and split our integral over z as
follows
J [ %74 Kijn(n,7,0) =
k,j,N(T, T, 24N x T T
S Hastent) [V () (i ()
k=1 r=1 24N

k=

-
5
Il
—

= VEn et z v r
; ((/_@% g >cot (r (-2 4 22)) (Rato) - e () dx).

2N

2N

Using (IV.1.7) we see that

J Ng_q K 5N
Sy W”ﬂmwdﬁm o) (e e ) )

k=1 r=1

J [\/? L+e,
o (kzl TZ : <</\/E /:{:) ot ( 2Nk))HR2(I)_R2 (2]\/))‘“) :

Since we are away from x = 55 we can bound

o (= (-5 4 o)l =0 (s ) 0 (3)

Bo(w) = Rz (55 ) | = O(IRe(@)) = O (k7107),

using (IV.4.11). Thus we can simplify our O-term to

—1
J 1. s Vo J
On Z Z kzk n§k71J71 ((/21\7 +/ 24N> dm) — On <njlzk§+s(51> _
k=1 r=1 VN aN 9 k=1

and




IV.4. APPLYING THE CIRCLE METHOD

For 6 = kJ ™4 this equals

J

On <nJ<11 ZngrE) =Opn <nJ7%) ;
k=1

while for § = |/ 517 — 5| it equals

J
Ox <nJ—1 3 k—é+f> — On (nJ—%+€) .

k=1

For the last integral, the one close to 55, we use the Taylor expansion as seen in the
cases m € {1,3} and have

J n(n, T, i to z r &
33 Bepnd [T e o (i) (o 5))

k=1 r= 2N
[VE-1] N
2y ) [ o (i) (- i) i (VA1)

Since | cot(m(—% + 5x7%))( — 3%)| = On(k), as seen before, we only need to look at
|R,(&z)|- Recall that on v2 we had w = —J2 —jv with — <o < ) and

1
R(T+k
Re(w),Re (1) < 0. Using that

1 J4 2 2 1 3 J4 3
() - () - ()

_ 1
E(J+Ek)

we obatin
/ _ MJJHC) QﬂgyvyN(n)(—sz—iv) m(i*N@i) _ 471'wa
I : )
AEET))
47TN|§I| RIFE) 1 do 47TN|§$‘ /k(J+k) J4 3 p
/ |—J =2 —iv| 1+ J52 v

k(J+k) k(J+k)

<A o v = MN'&Z'J/W% v—édv:0N< : )
k(]+k) \/ik - k(J1+k) kQ (k(J + k')) 2

=

)
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Thus we can simplify (IV.4.17) to

1.0 _r_ 1 J
o Z Z nk;Jr /2N+fS ki; dr | =on (TLJ; Z k2+55> = Oy (nJ7%+5) ,
= ook

k=1

where we used that § < k:J_%.
Thus we overall see that

- J [\/g—lw Ky, n(n,7,0) . , .
E4q —Z Z - <R1 <ﬁ) + Ry (ﬁ) + Rs <ﬁ>>

k=1 r=1

o [V ot (1 (<4 2T )) et Oy (o).

/5 k 2Nk

Substituting y = 5% — x yields that the principal value integral equals

P.V./\/EcotC;( x—i——)) d:c:PV/rJV—F 241Ncot<7ry) dy

_\/I 2N L_\/I k

24N
=P.V. / cot dy +

24N 24N

We obtain that the leftover principal value integral equals zero, since we have an odd
function and a symmetric interval, and by using the Taylor expansion of cot(z) we see
that

24N+2N uN TN
/ cot k =On kdy =On (k).

24N \/ 24N

Additionally we obtain, using (IV.4.12), that

) )+ o) o (e )

—On (k—lj—le%wfv("””) ,
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which yields

using (IV.1.7). Overall we therefore showed that
B = Oy (ne%ga‘w(")ﬂj—iﬁ) . (IV.4.18)

Combining (IV.4.14), (IV.4.15), and (IV.4.18) finally gives
J N—-1k-1

1 K, n,r, K
aI*,j,N,O(n) \/QJT(H Z Z Z L)

k=1 r=1 k=0

- ;
XP.V./ 2y i—N:z:zcot< ( )) I <47r\/g]'N(n)\/1—Nx2> dx
Y 24 k k: 2Nk k 24

+OnN <ne2”gij(”)J72 max <J*%+E log(J), J71+5)) . (IV419)

IV.4.2 Error part

It is left to show that all the other parts of a; n(n) are relatively small compared to
az+ jn,0(n). Therefore we go on by analyzing az- j n.1(n) and az« j n2(n), where we only

discuss az« ; n,1(n) in detail, since az- j n2(n) can be treated accordingly.
Recalling the definitions from above we have that

J 1 N—-1 .
_ 27ih . k(J+k) . _p' 1 2w
p n 27 n)w h
az~ ;n1(n) = E § e~ k9N )/ 2795, (1) E :Xj,r(N7 My 1) Con ;62%%
1

k=1 0<h<k T k(kytk) r=1
ged(h,k)=1
1 _ 12
2mN ot QL’ V3N e 2N o
<Y e FP.V. < dzd¢.
KEZ v © ('%Jr ZW)

Following [Rad38], using (IV 4.2), and splitting the integral over ¢ into integrals running
over segments [— 7, — k(£+1)] for k1 + k < ¢ <J+k—1, it follows that

J J4+k—1 k(2+1>
21r n)w
az+,j,N1(n) :E e E / 95,8 (™) § Xj.r (N, M, )<24k *‘324’“2
k=1 0<h<k t=ky+k r=1
ged(h,k)=1
—27N z?
24N k2

x Y e 2miN ( v/ 7d:rd¢

KEZL v ¥ K’ + W)
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i J J+k-—1 k(z+1) 24N 57277Nﬁ12
3D I ZZPV/ R,
k=1 ¢=J+1 r=1 k€L Vaix ©— (4 5)
. - \2 R
Y I (Gl N
0<h<k
ged(h,k)=1
J<ki+k<t
The sum
(24N (et 55 ) 1) W' =249, n ()R
0<h<k
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is again well-defined for hh' = —1 (mod k) and of modulus k. For u € Z we observe that
K,:ij(n,r, K+ uk,l) = K, ~(n,7, K, £), which, shifting x — x4 uk, gives us
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Completely analogously to the calculations of az« j no(n) we obtain
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Since w = J~2 — i¢ we obtain
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and note that for v = —¢
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Summing over all £ we see that m <v< 0 +1) and thus
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IV.4. APPLYING THE CIRCLE METHOD

This gives that

1 1 1
7| g + [ = — Na? < 27g; 2y8n (= —Nz?
Re <2 (g],N(n)w (24 x ) 2 )) 2mg; n(n)J 8 (24 x )

and therefore

+ 5D
—on (L L ) e2rainmi (IV.4.21)
kO k(+1) ‘ o

Splitting az« j v,1(n) analogously to E in the case az- ; no(n) gives
az+jna(n) =E7 + B3 + B3
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Following [Est29, page 94] we set hy := £—.J, which gives that 1 < hg < k. Additionally
we define

1 if0<m < hg,
g1(m) =

0 ifhg<m<k,
and

gi(m+ k) = gi(m)
for all integers m. Using this setting together with (IV.4.1) we obtain that

8 J<tnth<t = O0<kyth—d<hy = G1(k1 +k—J)=gi(k1 = J) = g1(=h' = J) = s, <h'<os>

for some 0 < 01 < o9 < k. This yields that the extra restriction on k; in the
sum K,;“J n(n,7, K, £) constrains the choice of ' to an interval mod k. Therefore

Ky jn(n,r,k,¢) is an incomplete Kloosterman sum and can be bounded by (IV.1.7)
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CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

following the techniques by Lehner [Leh41, Section 10] (see Lemma V.3.1). We thus
obtain that
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as seen before. Similar to that we redo the calculations for bounding Fs to prove that
E; =0y <n627rgj,N(n)J*2J7%+s) ]

Lastly we take care of E. We rewrite
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Using 0 = mln(k:J 1 .|\ 32w — 55|) as before and splitting our integral yields
\/W
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Using (IV.1.7) and (IV.4.21) we see that
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IV.4. APPLYING THE CIRCLE METHOD

nk2+5 / /\/ 7y ( 1 eQng,N(n)‘]72 da
[ i o +8 Kkt k(£+1)
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as before.
Defining hy(z) :== H,(x) — H/(5%) and using the Taylor expansion we obtain that

helw) = By (&) (v = 5 )

for some &, between 5% and x and see that |hj, (§,)| = |H, (£2)| as before. For the integral
close to 55 we first note that

J+k—-1

1
Jz2

Z |H£(£m)| _ON < 27"9] ~N(n)J 2) ’
k;2

{=J+1

using the techniques from before. Therefore we obtain
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which yields

7 ko1 | VE WK* 0,0) e
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As seen before we have
P.V. / i cot —E—FL)) dx = On (k).
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CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

Additionally we obtain

J+k-1

ezJ;rl e (2§V) =On (kiljileQWQj,N(”)J_Q) ’

using (IV.4.21). Analogously to above this yields

J J+k— 1W> W (n,r, i
S Sy (e [T (e (£ )

k=1/{=J+1 r=1

and therefore overall

This finally gives
az+ ;N1 (n) = On <n627rgj*N(")J_2 max (J—%JFE log(J), J—i+s)>

and the analog result for az« ; n2(n).
Plugging (IV.4.19) and this results into (IV.4.7) yields that
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aI*,j,N(n) =

Lastly we have to take care of az jn(n) and aze j n(n). From the definition and
(IV.2.17) we have
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IV.4. APPLYING THE CIRCLE METHOD

By decomposing the Farey segment —; , < ¢ < — k as seen before we obtain
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We first note that
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completely analogously to the calculations of az« j no(n), while
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CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

analogously to the calculation of az« j v,1(n), where

~ 24N (k+ 55 ) —1)h' —24g; n(n)h
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from the definition and (IV.2.15). Additionally we observe that

h' Ny 2mm (24m—1)h/ 27
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where p(m) is the partition function.
By decomposing the Farey segment —;, , < ¢ < —9j , as seen before we obtain
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IV.4. APPLYING THE CIRCLE METHOD

Define
24N (k+ 5 ) *+24m—1) W —24g; n (n)h
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which are all well-defined Kloosterman sums of modulus k. We thus note that

or(m )
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completely analogously to the calculations of az« j no(n), while
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k=1 (=J+1 r=1 ~=0" — 72 m>1
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X lim E P.V. — drdo
L—>oo“:_L oo T — (K + /,ék‘ + W)

azj,N,3(n) :%Z > ZZ/ N pm)e s Ky (nym,rw, )20 (04
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L oo B—QﬂNmzﬁ
X lim P.V./ — dr do
LHmH;L 7ool'7(ﬁ+p’k+ﬁ)

analogously to the calculation of az« j n,1(n).
To be able to bound all parts of aze jn(n), respectively az jn(n), we need the
following lemma.

121



CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

Lemma IV.4.1. For 0<d < N, N, k, w, K, and r as above, and 2v/Nd ¢ Z\{0} we
have

—27r(Nx —d)k% 1
lim PV/ de =0 - ,
L—>oou . |x‘>\/793— /<;—|—,uk:—|—2LN) N(mln(lﬁ—f—z?]ﬂv,k—lﬁ—;]ﬂv))
as k — 0.

Proof. We follow the ideas of [BN19, Proof of Lemma 3.3]. Combining the integral over
negative and positive reals gives us that

6—2W(N$2—d)ﬁ

Pan(k,w,k,T) ::P.V./ —dx
jal>y/E T — (K + ik + 55)

—pv. [ ) ! _ ! ds
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N
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727rNu
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PV/ ;
2N ./u+N u+ & — n+uk+ﬁ)2)

2

(n+uk+

where we substituted u = z* — % in the last step. We go on by writing

1 1 1 1
= + —
wt L — (k4 pk+ &)’ <u+ff,—(/£+uk+2§v)2 (f<:+,uk+2’]"\,)2> (k + pk + 5)°
u+ £ 1

(/ﬁ—i—uk—&-ﬁ)Q(uﬁ-%—(n—i—uk—i—ﬁ)Q) (ﬁ—&—uk’-ﬁ-ﬁ)Q

and consider the contribution of each term seperately, where we denote them by
Pani(k,w, k, 1), respectively Pg n2(k,w, k,7). We start by looking at

1
o0 6—27’I'N7J, 2o

1
m+uk+r/ / d du
2N 70 ’U,+N

Using that Re(k—N) > N together with u > 0 we see that

0 6—27FNUﬁ e—m™Nu
/ —du| < / du =Opn(1
0 d

Jur g

Pd,N,Q(ka W, K, T) =
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IV.4. APPLYING THE CIRCLE METHOD

Using (IV.4.8) we additionally see that

L L

1 T K r

— lim ———— = —7 lim ————— = — 7. cot (71' (f—l— ))
L%ooH;Lli"‘/ik"‘W kL*)OO#;LlL+E+ﬁ k k 2Nk

Since 0 < % + 557 < 1 we obtain that (see [BN19, page 13])

ot (r (5 + 52)) | < s +
Ok T oNk T e

which yields that

L
1 1 1
lim Pd,N,2<k7 w, K, T’) =0pn ( < + ))
LHOONZZL kA%t an 1— %~ onk

1
N N(min(/@—i—;j\,,k—ﬁ—ﬁv)

Next we look at Py n1(k,w, k,7). We start by writing

1 oo e_ZﬂNuﬁ /'LL+ %
P.V./ y du.
0 u+y§x— (

Pd,N,l(k7w7/€7T) = r 2
Our pole thus lies in u = (k + pk + 55)* — % € R. We further investigate that since
d < N we only have a pole in 0 if K = p = 0 and r = 2v/ Nd, which cannot happen since

r > 1 and we assumed that 2v/Nd ¢ Z\{0}.

We rewrite our principal value integral as the average of the paths v, + and . _,
where 7. 4, respectively 7. _, is the path of integration along the positive real axis taking
a semicircular path of radius € above, respectively below, the pole (see Figure IV.2).

0 m > 00 —\;/—>oo

Figure IV.2: The paths of integration 7. 1, respectively ~. _.

We obtain that

1 1
Pana(k,w, k1) =———lim | = / —i—/ du
H"—/,Lk'—'—ﬁé‘—ﬂ) 2 Ve, + Ve, — U+%_(/€+Mk}+ﬁ)2
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CHAPTER IV. WEIGHT ZERO MIXED FALSE MODULAR FORMS

We note that

Re (Q;Neifgj> _ Re () - Im (%)7
k2w V2

since e 7(1 +4). Choosing the £ to be — sgn(Im(k—N)) thus gives us that

2N s _Re() | [ ()] o Re(E)

since Re( ) > N. This means we either have Re(,€2 e ) > % or Re(%e_%) > 75

Using Cauchy’s Theorem we now Want to rotate our paths of integration either to eTRT
if we have Re(éN et) > % or to e” TRY if Re(k,2 eTT) > % picking up the residues
from the poles that lie on the real line. Slnce both rotations follow the same argument we
from now on assume that we have Re(2X 72, 7 ) > % Note that for this rotation we only

pick up poles by performing the rotation on «. _ as can by easily seen in Figure IV.3.

0 e >oo

Figure IV.3: Rotation of the paths of integration.

We compute

7277Nu
e 1/u+ N

u:(fi-‘ruk"’rﬁ) -5 U"‘% o (’f"*'/ik/“i‘ﬁ)?

)

N u-i—%—(n—i—,uk—i—ﬁ)

Res

- I - k4 ——
. “nr)z_%(“ ((’H” +2N N

(n-&-uk—km

:e—QTrN((n-i-uk-i-ﬁ)Q %) 3 \/(F&-I-/Lk—i- ﬁ)2 _ e_QTFN((KJ’_HkJ’_ﬁ)Q_%)k%

K+ puk+ —

2N

which gives us that the contribution of this poles on the positive real line and with respect
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IV.4. APPLYING THE CIRCLE METHOD

to limy, oo Zﬁsz Pani(k,w, k,7) sums up to
_27rN((H+,uk+ﬁ)2—%)k% ( k 7)
e sgn | K + uk + N

w1 lim E 1) 2
Lvoo £ (ktpk+55) — >0

Next we define the Jacobi theta function®' as

793 Z 7_ i § :eﬂ'zn T+2mnz
neL

Noting that it transforms modular by (see e.g., [Mum83, page 32])

1 miz? z 1
U3(2;7) = —e 7 U3 (T; —7_)

—iT
we can bound the absolute value of this contribution against
d —ANE (i) _omd_ 1 g (F rooo 1 1
2 T e 2 \E Tave Tk ) T Ok )

MEZL

where we used [NIST, Figure 20.3.4] in the last step
We are left with bounding the integrals on the rotated paths. We see that they sum

up to
1
(k ) 1 / e—27rNu /u N .
Qd,]\/ y Wy R, T) = i u
R Mk 27],\[ 84R+U+i—(/€+uk‘+ﬁ)2

_27|_N1+7, 1 1+i
Ve sut ¥
5 du,

]. s} o0 €
_7"64/ d
0 u+ﬁ—(/@+uk+ﬁ)

K+ Mk + 5N %
by changing variables u — e u. Since Re(,?—N ) % and u > 0 we note that
‘6—27TN1\</%1‘Uﬁ —Tu Re( ) 7’\’%\[ '
Furthermore we have
1 2
2 < \[ 2 ’
1 d
\Fu—i— (/i—i—,u,k—i-ﬁ)‘ ‘(/ﬁ—i—,uk—l-ﬁ) -~
2INote that ¥3(z;7) = —iqiéeﬂ”'(zf%fg)ﬁ (z— % — Z;7), where ¥(z; 7) is the Jacobi theta function

defined in (I.1.3).
) = 03(mz;€™7) from [NIST, Figure 20.3.4].

22Note that I3(z; 7
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which, together with the other bound, yields
1
141 2
V2

du.

L d
ut &
N

2 S _ mulN
|Qd7N(k,w,/€,T)| S f 2 / e V2
s+ g | (b + 557)” = ] o

wulN .
Noting that 677|%u + %\% is integrable and only depending on d and N gives us
that the integral occuring above is On(1). Therefore we are left with showing
L
2 1
hmz \[ 2 d:ON<' LA r)'
L—>°°u:_L]/<;+uk+ﬁ\’(n+uk+ﬁ) —W‘ min (£ + 2y, k = % = 3)

Using elementary estimates and the fact that d < N we see that

QZ L
3 K r K r \2
g u€Z|“+E+m|‘(“+E+m) - ¥
V2 K K
<F T r )2 d T r \2 d
(“JFW)‘(“JFW) _N‘ (’f—’f—ﬁ)‘(’f—’f—ﬁ) _N’
k3 k3

+<k‘+l€+ﬁ) ((k‘—l-lﬁ-i-ﬁ)Q—l) " (2k -k — 5%) ((2k—m—ﬁ)2—1>

1 1 ]
+y ———+ .
2 i) §<M—1>(<u—1> -1)

=0Un . (IvV.4.23
’ (min((”+2§v)‘(“+z?v)2f@’v(kngv) (k,iQ;V)Q;\l,)) ( )

For k € {0,1,k — 2,k — 1} the required bound holds, so we can restrict to the case
2 <k <k — 3. Here we have

(n+$)2—%>1 and (kﬁ—li—%)Q—%>l,
which yields that we can also bound (IV.4.23) against
1
min(fiJrﬁ,kf/{f ﬁ)
and finishes the proof. O
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Using Lemma IV.4.1 with d = 5 4, (IV.1.7) for all the Kloosterman sums, and noting
that

k—1 1
- = O(log(k))
yields
= FCIFEY
aze jn1(n) =On Z nkzte 1og(k)/ ’eQWﬁN(")‘“’ do
=1r=1 RRIeE)
Oy <n627rgj ~N(n)J 2 J ! Zk I+e log(k)> = Oy <n627rgj,N(n)J*2J_%+s log(J)> 7
k=1
J J+k—-1N-1 e k(1+1) 2mgs N (n)w
aze jn2(n) =ONn Z Z an? log(k / €295, N ‘dqb
k=1¢=J+1 r=1 e

J
—On <n€27rgj,N(n)J2J_l Z p-3te log(k)> =0y <n62ﬂ'9j,N(n)J*2J—%+s 10g(J)) 7

k=1

and analogously aze j n3(n) = ON(ne%t"va(”)‘]72J*%+€ log(J)). Overall we thus obtain

aze jn(n) =On (ne2 93 (0772 =342 10g(1) ). (IV.4.24)

Using the same bounds as used above for Lemma IV.4.1 with d = 0, Re(%) >1,
and noting that

m>1
yields
J N-1 Ry 27r(m7—4) .
az,jn1(n) =On Z / Zp(m) e ke nk5+510g(k)’ 2mg; N (n ’CM)
k=1 r=1 7k(11+k) m>1
-2 J ! 1 m
=0 (oS0 ST o) [ o
k=1 r=1 gizeeso)

and analogously to above

J JrRC1N-1 k([+1) 2”(’“_%) 1
az,j,n2(n) =On Z Z Z/ m)le  #e nkz*e log(k) ’€2WJ’N(TL>M’ d¢
k=14=J+1 r=1 ﬁ m>1
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=On (neg"gj’N(")‘]%J_%“ log(J)) ,
and az jn3(n) = ON(nez’rgfvf\’(")‘]_ZJ_%*'5 log(J)). Overall we thus obtain

a:z"ij(n) :ON (nGQﬂ'gjaN(’Vl)J*2J—%+E 10g(J)> ) (IV425)

IV.4.3 Combining the results

Plugging (IV.4.22), (IV.4.24), and (IV.4.25) into (IV.4.6), using the definition of
gj,n(n), and taking J — oo gives

N—-1k—-1

vtn) =~ 2L ST 5 3 )
J» -
n—l—m——kmrlno
\/E 1 €T K r 47T\/n+%_i 1
><P.V./ \/| = — Nz2cot (7 - L | ———————/=— — Nz? | dz.
Vo 24 ((k k 2Nk)) k 24

This finishes the proof of Theorem IV.1.1.
Again by noting that the integral over z only has a simple pole in z = 55 for k =0

and r < \/% we additionally obtain

[\/7_ -‘ Ky j n(n,r,0)
>y Heanmin0) (IV 4.26)

aj,N(n):_i 2
\/’I’L+4N7fk>1 r=1
N € x r 477\/n+ﬁfi /1
i ~ _ Nz2cot _z | VAN 24 [ Na2 ]| g
X sl% / Nz2 co ( ( A + 2Nk)) 1 & Y] T T
\/ 47n/n+£7i 1
24N,/ —Nz2cot )| 2 - Ne? | de
2Nk k 24

N-1

211 Kk,j,N(narvo)
S sy Kl
n+mfﬂk21?4:" ﬂ-‘

_1_ 4 g2 _ 1
X/VMN L,Nxzcot<,r(,£+ ")) n myntin T [1 v b
_ /ﬁ 24 k 2Nk k 24

1 j2 1
V zaw 1 r K r dm\n+ 45 — 351 [1
2 N2 _r kK VT AN 24 1 e )
X/, oV Na COE(”( k+k+2Nk))Il( % Vg ~NeT ) de
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IV.5. NUMERICAL RESULTS

Remark. Note that we had to exclude n = 0 in our calculation. This is not caused by the
fact that we have y/g; n(n) in the denominator of (IV.4.19) (which equals 0 if and only

ifn=0and j = \/%), but because the estimates of our Kloosterman sums would break
down for this special case (see [Rad38, Section 8]).

IV.5 Numerical Results

In this section we offer some numerical results and compare the value of a; n(n) for a
number of cases to the results from Theorem IV.1.1, where we numerically perform the
sum over k from 1 to J. We offer the code to obtain those values in the Appendix.

J=1 J=3 J=20 J=25 J=50
a1,3(3) =2 2.3181 ... 2.2886.. .. 2.0990.. .. 2.0875. .. 2.0527 . ..
a13(10) =30 | 29.8989... | 30.2442... | 30.0866... | 30.0789... | 30.0418...
a13(18) =272 | 271.3098... | 272.2656... | 272.0720... | 272.0651... | 272.0408...
ass(3) =2 2.5197 . .. 2.2200. .. 1.9993. .. 1.9830. .. 1.9892. ..
a55(10) =27 | 26.2697... | 26.9853... | 26.9856... | 26.9997... | 26.9991...
a55(18) = 216 | 214.4979... | 216.0557... | 215.9830... | 215,9893... | 216.0044...
asz10(3) =3 3.1624. .. 3.0544 . .. 3.0307... 3.0222... 2.9985 . ..
a310(10) =39 | 38.5337... | 38.9965... | 39.0080... | 39.0001... | 38.9982...
a3.10(18) = 336 | 334.3940... | 336.0237... | 336.0058... | 336.0254... | 336.0111...

2
Table IV.1: Numerical results for Fourier coefficients of qi_ﬁAj, N (7).

IV.6 Further Questions

To end this chapter we want to briefly mention some related questions that could be

the topic for possible follow up projects.

(1) By splitting the Mordell-type integral in Section IV.2.3 we avoided the special case
2v/Nd € Z\{0} to verify the well-definedness of the principal value integral. Ts there
a possibility to get rid of the extra condition? What happens if we have a pole right
at the edge of our integration path?

(2) If one is interested in figuring out what happens if we let N tend to oo one could be
more precise about the dependence of N in the error terms while running the Circle
Method as well as in the bound of the Kloosterman sum.
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Chapter V

Additional Details for Chapter IV

In this chapter we give some additional proofs for Chapter IV. Note that we therefore
keep the notation of the sections we add details on.

V.1 Additional proofs for Section IV.2

In this section we prove two identities. The first one is stated in the following lemma.

Lemma V.1.1. We have

/oo_ig EQWN(T#%P&C[ i ( ( J £ J )\ /3 N(V —94)
< fy=———— (sgn(n+ )+er (Z(nJr ) T B ))
s N V2N(n+ 54) 2N 2N

Proof. Similar to [BN19, page 12] we split the integral as

/oois 6727rN(n+ﬁ)23d /oois 67271'N(n+ﬁ)23d 0 efQﬂN(n+ﬁ)25d
———d; = ———d;+ / ———ds.
—V+é V3 0 V3 ~V+§ V3

To simplify our calculations we look at each integral seperately.
First we change variables as v27N|n + 5%|,/3 = « in the first integral and obtain

2

co—ie 6727rN(n+ﬁ)25 co—ie e~
/ R = / _dx
0 V3 0 i\/2wN‘n+ﬁ‘

—1

( ] 2 co—1i€ 9
= —sgn | n+ ) / e “dr
V2N (n+ ) 2N )V Jo

—1

Next we also change variables in the second integral as V2w Ni|n + %]\/—5 =z and get

2

0 e—2wN(n+ﬁ)23 0 2¢ %
[ | @
—V+6 —3 in/2eN(V=06)|n+5%| iv2r N ‘n + ﬁ‘
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/i,/27rN(V—5)\n+2§'V] 9p—2

=/ im‘n—l-ﬁvdx
i i/2rN(V=8)|n+ 5k 2
F’n—i—‘f/ -
_ \/L’ 1 erf< 27N(V —9) n+2§\7>
n+ 55
; erf<\/m)n+w‘> 27N (V — 6)

VIN i+ | V2rN(V =)
1

sy T ) s

using that

erf (z\/m‘n—k ﬁ‘) B erf (z 2rN(V =) <n+ ﬁ))

i|n+ | VTNV =3) i(n+ 5k) V2RN(V =)

with @izl — of@) 4 erf(—x) = —erf(z) in the last step. Combining (V.1.1) and

el z

(V.1.2) yields the claim. O

We go on by proving the second identity, which is stated in the following lemma.

Lemma V.1.2. For s € R\ {0} and Re(V) > 0 we have

—71'V302
e ™V erf (zsv ) =—— P V. / dx (V.1.3)

r— S

i ) s—¢ 6—7er2 oo e—7rV:c2
= — — lim dr + dz | .
T e—0F o T — S8 s4e T—S

Proof. Since both sides of (V.1.3) are odd in s we can assume that s > 0. Additionally
we first assume V' > 0 and get that the left hand side of (V.1.3) equals

6—(3\/W)2 (1 + erf (zsﬁ)) - e_(sm)z =w (sm) - e_(sm)Q,

where w is the Faddeeva function defined as (see [NIST, equations 7.2.2 and 7.2.3))

w(z) = e (14 erf (iz)).
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Using the identity (see [NIST, equation 7.7.2])

™ t—T1

oo —t2
w(T) = —/ ¢ dt, for Im(7) >0

—0o0

we obtain, for V' > 0 and some § > 0,

. 00 e_tQ
<SF(1+16)> /mt—rs(1+z5) at

Since both sides are holomorphic for Re(V) > 0, the identity holds for such complex

values as well by analytic continuation. Using this and substituting ¢ = V7V we see
that the left hand side of (V.1.3) becomes

t2

i [ -
lim 77/ dt
5—>0+< o t— VT s(1+26)
77rVac 2
lim / VaVdz | —e ™V
T oot Ve —VaVs (1l +1id)
—rVa?
= —1 lim / 67_ de | — 6_7"‘/32
T 50+ \ J_oo & — s(1 +149)
- s—e — Va2 s+e — Va2 [e%s) — Va2
T e e e V2
-1 _° 4 ¢ 4 ) -
7r5—1>r(r)l+</_oo x — s(1 +149) er/S_E z — s(1 +19) x+/s+6x—5(1+i5) :v) ¢

- s—e —wVa? o _—wVa? . ste —nVaz?
- / € d:r+/ ¢ dr | — lim 1/ ei‘dm 7"‘/5 (V 1. 4)
T\ XT—S sqe T—8 s—ot m Jo_ o x—s(1+149)
for every € > 0.

By shifting the path of integration to the lower half plane we are allowed to also take
the limit in ¢ in the last integral and get

i 6—7I'V£D2
—— / dzx,
T )y, TS
where 75 ¢ is the semi-circular path of radius e passing below s (see Figure V.1).
Plugging in the Taylor series expansion of the exponential arround s gives us

n " —xva?
i e~V i 1 2 (@ =) (m € ) ‘
—nV -
- de = —— e”s—l—g =5 | dx
s Tr—s T T —s n!
Ys,e Vs,e

) B ef(smf

_ e
T 1 i 1 _
=——e "V dr — — E =5 gy
s r—s T r— S n!

Vs,e Vs,e
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—
€
_________ o S
S
Vs,e

Figure V.1: The contour 7.

n—1 " _—nVa?
x— ) (aw e

. : (
v _nVs? 1 ? =

= —— dr — — =2 d.
ﬂ'e [ysaa:—s v 71'/ Z n! v

Vs,e n>1

Now we see that the second integral does not have any poles on the path of integration
and therefore it vanishes by taking ¢ — 0T since the path of integration vanishes. For
the first integral we notice, that we have a simple pole and therefore

. 1
lim
e—0t Nee L — S

s,

r— S r—rs r— S

= %(277@') Resg=s < ) =7 lim(z — s) 1 = 7.

Taking the limit ¢ — 07 in (V.1.4) gives the claim. O

V.2 Additional proofs for Section IV.3

In this section we first prove the well-definedness of the Kloosterman sum defined in
(IV.1.6).

Lemma V.2.1. We have that K, j n(n,7, k), from (IV.1.6), is well-defined.

Proof. For My}, = (’;’ _%> and hh' = —1 (mod k) we define
(24N (4 5 )= 1) W' =24g; n ()R ,
Ky jn(n,rk) = Z X (N, M) Cou = Z a(h').
0<h<k 0<h<k
ged(h,k)=1 ged(h,k)=1

To make sure that the sum is well-defined, we need to prove that a(h’ + ak) = a(h’) for

every choice of o € Z, which ensures that the summand is independet of the choice of A/.
For odd k we first note that we have
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X, (N, Mp 1)
=vy(M) - j,r (N, M)

.: (%) exp (% ((h’ — h)k — hh/]:r L (k% —1) — 3k))
| k|1

3mi
Xexp(—ng( k) N| A Z

We therefore obtain
a(h')z(%)exp(ﬂ—i ((h’—h)k— _1)- 3k)>
Xexp(f%g(k) NI— k‘f:l (QNk(
o (22 (oo (o 2) )h sn)
A )
x xp(gm)\/ikz1 ( 2@ h(2Ns + j) + h'r )) n( (zxk“))
exp(szk ((24N (n+ﬁ) 71>h 24gj71\1(n)h)>.

Let a be an arbitrary integer, then we see that

( s (Fh(@Ns+5)? + h’r2)) sin (mg\?f\[j;ﬁj)) :

h(2N's + 5)2 )) in(ﬂrﬁ‘Nj]—:‘j)>

a(h' + ak)
:(_Th)e (12 ((h
Xexp(%) \/716221 ( ng (CheNs+5)? +(h’+ak)r2))sin(”T(2x2+j))
Xexp(;zk ((24N (n—i-ﬁ) )(h + k) —24g]-,N(n)h>)
:<kh p( ( hh+1h(kz2 1) - 3k)) exp (%( kh%h(/ﬁz—l)))
(NS (52 )
X sin ( (Zx’; ))exp(jzk ((24N<n+ﬁ> 71) h'724gj,N(n)h))
24N ( n+—
Ehp)( (w( hw +2 ))
=(= exp(l ((h Mk — === h (K~ 1) - 3k>)
X e p( )\/7kz1 (sz; h(2Ns + 5)? +h’r2))

k

cak—hk— M EOR L, gy 3k>>
2
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. [ 7r(2Ns +j) 2 ro\2 ,
X sin (T exp 5o 24N (/{ + ﬁ) —1)h"—24g; n(n)h
e wior? 21 KT r?
x —a (k- Rr¥(k? -1 ) (7 ) (—((24N(2 — )71> k))
P (12a( ( ) e (=8 ) o oap N TNz @

We have

. 2 .
exp (2772'N0u{2) exp (2miakr) exp <7T;O¢T' ) exp (_moz)

miar? T
—OP N )P T )

since a« € Z, N € Ny1, kK € Z, r € N and thus get that

T miar? 27 KT 2
exp (ﬁa (k2 - h2(k2 — 1))> exp (f N ) exp (m ((24N (/ﬁ2 + N + 4N2) — 1> ak))

_ L 2 272 _ K -h(k?-1) -1
=exp <12a (k* = h*(k* = 1) 1)) = exp (2ma 51 .

If we have that k? — h?(k*> — 1) =1 (mod 24) this exponential is simply 1 and we
proved that a(h’) = a(h’ 4+ ak) for every choice of a € Z. To see this remember that we
have k > 0 and odd. The Chinese Remainder Theorem says that for some m,n € Z with
ged(m,n) =1 we have f(z) =1 (modmn) if and only if

f(z)=1 (modm) and f(x)=1 (modn).

We want to have k? — h?(k? —1) =1 (mod 24), so we prove k? — h?(k? —1) =1 (mod 8)
and k> —h2(k*—~1) =1 (mod 3). Since k is odd we know that k> =1 (mod 8). Therefore
we obtain

—h*(k*—1)=1-h*(1-1) (mod8)=1 (mod8).

To prove k? — h?(k? —1) =1 (mod 3) we seperate the two cases 31k and 3 | k. For 31k
we either have k = 1 (mod3) or k =2 (mod 3) but in both cases we have k> = 1 (mod 3)
so we again obtain

K —n*(k*—1)=1-h*(1-1)=1 (mod3).

For 3 | k we obatin that 3 1 h, since we have ged(h, k) = 1 so we, analogously to the first
case, obtain k2 =1 (mod3) and thus

BP-nk-1)=k -1, -1)=k>-k*+1=1 (mod3).
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So we conclude, for odd k, a(h’ + ak) = a(h’) for every choice of a € Z.
Next we do the same calculations for even k. We have that

X (N, M i) =vn (M k) - e (N, My )

_ <i> it <h'k(1f(*h)2)+(fh)<7%7k+3)—3)

xexp(gm) \/72e p( SNE h(2Ns+j)2+h’r2))sin(mq(#Z+j)).

Therefore we obtain

a(h) = (i) 671%<h/k(1—(—h)2)+(—h)(—W%_]H_g) _3>

—h

X exp (37”> \/>Z exp ( sy (~h(2Ns +5)2 + h'r2)) sin <%)
X exp (24k ((2 N (m + ﬁ) - 1) B - 24gj,N(n)h)) .

Similar to above we get

i 2o 32 h(h' +ak)+1 | o) _ .
a(h'+oe/€) _ (ih) e 12 ((h +ak)k(1—h )+h( % +k 3) 3) exp (_%)

X exp (3’”) \r ( - (<h(2Ns + )+ h’r2)> sin (7”‘(#2'*3))
X exp (;m ((24]\7 (n + ﬁ) - 1) - 24gj,N(n)h))

—exp (-%) exp (% (ak? (1 - %) + ahQ)) a()

K (1-h*)+h*—1 ,
5 )a(h).

=exp <2m'a

If we have k2 (1 - h2) +h?=1 (mod24) the additional exponential is simply 1 and we
proved that a(h’ + ak) = a(h’) for even k and every choice of o € Z. Since k is even, we
know that h has to be odd, because ged(h, k) = 1. Analogously to above (changing the
roles of h and k) we have

B (1=h%)+h* =k -k +h*=0"—k*(h*—1) =1 (mod24).
So we conclude, for even k, a(h’ + ak) = a(h’) for every choice of a € Z. O

Next we determine the modulus of the Kloosterman sum defined in (IV.1.6).

Lemma V.2.2. We have that Ky, j n(n,r, k), from (IV.1.6), is a Kloosterman sum of
modulus k.
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PTOOf. For Mh,k = (lz 7%) and
24N (ko )2 1) b —24g; n (n)h
Epjn(nre) = > xir(N, M k)C2<4k ) ’ = > a(h
0<h<k 0<h<k
ged(h,k)=1 ged(hk)=1

we, analogously to above and for odd k, obtain that

a(h) = (—:) exp <71T; <(h’ ~ Rk — hh/]: L -1y - 3k>>
X exp (37”) \/7 < INE h(2Ns+j)2+h'7’2)> sin <7”"(2]]$Z+‘7))
X exp (;Zk ((24N (n + ﬁ)z) - 1) B - 24gj’N(n)h>> .

Therefore
a(h + ak)
= (FE Y e (22 (= (h o+ e - %(m k) (K~ 1) - 3t) )

o (52) o) (2520
X exp (% ((241\/ (n + Tv) - 1) b — 24g; n(n)(h + ak))) |
= <;)<e;i§%/&/§h)k (W(h +ak) (K2 —1) - 3k)) exp (% (—ak2))
X exp
X sin (7"(#‘;”)) exp (;TW; ((24N (n+ &)2 - 1) b — 24g; n(n)h — 24gj,N(n)Oék>)
N (_kh) P (12 ((h Rk~ hh/lj =) _3k))
X exp (l (—ak? — (k' +1) a+ ahh’ + a®h'k) (K — 1)))
()
X sin (%) exp (% (( AN (s + %)2 - 1) B — 24gj,N(n)h)) exp (—2mig; v (n)a)

- (%h) exp (; ((h’ h)k — hhl’j Lh (k2 - 1) - Sk))

X exp T (—k? — hh' +1+hh! +abh’k) (K2 -1
12

h(2Ns + j)? — ak(2Ns + j)? + h'rQ))

h(2Ns + ) + h/rQ)) exp (%(4N252 1 4Nsj +j2))
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3mi 2 i i
e (7) \/%S;QXP (_ ok
X sin (%) exp (% ((24N (K + %) — 1) B - 24g]-,N(n)h)) exp (—2mig;, N (n)a)
—exp (a;éz) exp (%a (=K% — (2hh + 1+ al'k) (K> — 1)))
x (%h) exp (7;2 ((h’ — h)k — hh/}: Lk —1) - 3k)>
X sin (W) exp (% ((24N <m + %)2 - 1) W 24gj’N(n)h>) exp (—2rig; n (n)a)

ga (122]5)) exp (%a (=K — (2hW + 1+ ab'k) (K> — 1))) exp (~2rigy n (n)a) a(h)

h(2Ns +5)? + h'r 2)) exp (2a7ers + 2amisj + @ ;\i )

h(2Ns + )% + h’ﬂ))

2
( — k% — (2hh/ + 1+ ak'k) (K — 1)) - 27rigj,N(n)a> a(h)
? 652 2 1.2 2 /1.3 ’ ’ .
@ —k? — (2hW'K* + k* 4+ ah/k* — 20K — 1 — ah'k) | — 2mig; v () ) a(h)

— 2hh K% — 2k% — ah/k3 + 2hR' +1+ ah’k) - 27rigj71v(n)a) a(h)

=exp | 2mic

8% _ ohh'k? — 22 — ah/k® + 2hh' + 1+ ah'k — 24gj,N(n)> )
24 '

If we have that %2 — 2hh'k? — 2k? — ah'k3 + 2hK 4+ 2 + ah'k — 24gjn(n) =1 (mod 24)
this additional exponential is simply 1 and we proved that a(h) = a(h + ak) for every
choice of @ € Z and odd k.

We go on as before and want to prove that it is 1 modulo 3 and 8. Remember that
since k is odd we know that k? =1 (mod8). We see that, by definition of g; y(n),

2
% — 2hh'K? — 2k* — ab'K? + 2hh + 2 + ab'k — 24g; n(n)
6]{] + (1 — k*)(2hh + 2+ ah'k) — 24n — % +1=1 (mod8).

To prove N — 2hh'k? — 2k? — al'k3 + 2hR + 2 + ah'k — 24g; N(n) =1 (mod 3) we
seperate the two cases 31k and 3 | k. For 31k we have k2 =1 (mod 3) analogously to
above and obtain

GXT 2hh'k* — 2k* — ah'k® + 20D + 2 + ah'k — 24g; N (n)
6}@ + (1 — k) (2hh + 2+ ah'k) — 24n — % +1=1 (mod3).
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For 3 | k we have that hh' = —1 (mod k) is equivalent to k | (hh' 4+ 1), which implies
3| (hh' + 1) and therefore gives hh/ = —1 (mod 3). We thus obtain that
2
% — 2hh' K — 2k* — ab'K® + 2hh + 2 + ab'k — 24g; n(n)

67 6‘2
]{, —onh'k? — k:—ah’k3+2hh’—|—2—|—ah’k—24n—%Jrl

= —2hh k% —2k* — ah'k® + 2Rk + 3+ ah'k — 24n
=2hh'=2-(-1)=-2=1 (mod3).

Next we do the same calculations for even k. From now on we write k = 2" for
some v > 1 and some odd p € N and x = 22 + 1 with € N for every odd element z.
Analogously to above we have

) = () O )

xexp(3m> \/»Ze p( SN h(2Ns+j)2+h’7~2)) sin (W)
X exp <§Zk ((241\7 (Iﬁ: + ﬁ) - 1) B 24gj,N(n)h>) .

We look at the cases v > 2 and v = 1 seperately.
For v > 2 and using Lemma V.2.3 we obtain

a(h + ak)
B k %(h’k(lf(h+ak)2)+(h+ak)(7(}L+“]Z)hl+l+k73) 73>
T\ —(h+ak)
2N j
X exp (Sm) £\ — ( (h+al<:)(2Ns+j)2+h/7"2)) sin (mﬂ(NiZ—’—]))

X exp (% ((24 (K + ﬁ) ) h' —24g; n(n)(h + ak)))

e . 'y
—exp (ma] ) exp (% (h’k(—2hak — a2k?) + ak (hh k+ tk— 3) +(h+ ak)ah’))

2N
x exp (—2mig; n(n)a) a(h)

] 12 hh' +1
—exp(ir; (7]+hk( 2hk—ak2)+k( k+

- +k— 3) + (h+ ak)h/) - 27rigj,zv(n)a) a(h)

— exp (ma (65\7 — 2hW'K? — W ak® + 2hh' + 1+ k2 — 3k + akh’) - 27rigj’N(n)a) a(h)

[ S8 — 2Rk — W ak?® + 2hR + 1+ k? — 3k + akh! — 24g; N (n)
=exp | 2mic a(h).

24
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If we have that
-2

this additional exponential is simply 1 and we proved that a(h) = a(h + ak) for every
choice of o € Z, even k, and v > 2.
To show this we seperate the following cases. For even o we need to show that
652
% — 2hW'K2 — W ak® + 2hH + 2 + k* — 3k + akh — 24g; y(n) =1 (mod12),
i.e., that this expression is congruent to 1 modulo 4 and 3, by the Chinese Remainder
Theorem.
For odd o we need to show that
65>
% — 2hW'K2 — W ak® + 2h +2 + k% — 3k + akh’ — 24g; y(n) = 1 (mod 24) ,
i.e., that this expression is congruent to 1 modulo 8 and 3.
To prove the congruences modulo 4 and 8 we additionally seperate the cases v > 3
and v = 2.
For v > 3 we know that k =0 (mod8) and thus hh' = —1 (mod 8) analogously to
above. We see that

-2
897 _ ohik? — Wak® + 20 +2 + k* — 3k + akl' — 24g;.n(n)

N
-2 -2
— % —ORWE? — W ak® 4+ 2hB + 2+ k2 — 3k + akh! — 24n — %H
= —2hh'K? — W ak® + 2hh + 3+ k% — 3k + akh' — 24n
=-2+3=1 (mod8).

Since £ = 0 (mod8) implies £k = 0 (mod4) the same calculation holds modulo 4
(independent of «).
For v = 2, s0 k = 4pu = 4(2p + 1), we have hh/ = —1 (mod4) and therefore
2hh! = —2 (mod8). For odd a and noting that A’ has to be odd! we thus obtain
2
% — 2hh'K* — B ak® 4+ 2hh + 2 + k* — 3k + akh’ — 24g; n(n)
= —2hW'k? — h'ak® + 2hh' 4+ 3+ k? — 3k + akh' — 24n

!Note that h is odd since k is even. Assume that A’ would be even, then hh' would be even and
hh' 4+ 1 would be odd, which would be a contradiction to hh' = —1 (mod 4).
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=-2+3—3k+ okl
=1-3(4(20+ 1)) + 428 + 1)(2f + 1) (2K + 1)
=1-4+4=1 (mod8y).

For even a we get

6]{7 2hh'k* — W ak® 4+ 2k + 2 4+ k* — 3k + akh' — 24g; n(n)
= —2hhE* — B'ak® + 2hh 4 3 + k? — 3k + akh/ — 24n
=2hh +3=-2+3=1 (mod4).
To prove %= — 2hh/k? — Wak® + 2hK + 2 + k2 — 3k + akh — 24g; v(n) =1 (mod3)

we seperate the two cases 31k and 3 | k, but are independent of the choice of « and v.
For 31k we have k¥ =1 (mod 3) analogously to above and obtain

6]

> — 2hh'k? — Wak® 4+ 2hR + 2+ k* — 3k + akh' — 24g; n(n)

= —2hh'k* — h'ak® + 2hh' + 3 + k* — 3k + akh' — 24n
=(1-KkH2hN +hak+2)+1=1 (mod3).
For 3 | k we obtain

6% — 2hh'K* — B ak® 4+ 2hh + 2 + k* — 3k + akh’ — 24g; n(n)

= —2hh'k* — W ak® 4+ 2hh + 3 + k% — 3k + akh' — 24n
=2hh =1 (mod3),

analogously to above.
Lastly we look at what happens for v = 1. Using Lemma V.2.3 we obtain that

a(h + ak)
( k ) %(h k(1—(h+ak) )+(h+ak)(%+k_3)_3>
—(h+ ak)

e (Sm) \/7 ( o (~(h+ak)2Ns + ) + h’ﬁ)) sin (%)
X exp (241’: ((241\/ (n + ﬁ> - 1) B — 24g; n(n)(h + ak)))

_(3hk+ 3ak? —3(u— 1)k
=exp | 2mia 7

[ S~ 2hW K2 — W ak?® + 2hR + 1+ k2 — 3k + akh' — 24g; n(n)
x exp | 2mix a(h)

24
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_ ) % — 2hh'k? — h'ak® + 2hh 4+ 1+ k? — 3k + akh’ — 24g; N (n) + 3hk + Sak? — 3(p — 1)k
=exp | 2mia 21

x a(h).
Again, if we have that

652 3
% — 2hW'K? — W ok + 20 + 2+ K — 3k + akh’ — 249, (n) + 3k + Sok® —3(u— k=1 (mod24)

this additional exponential is simply 1 and we proved that a(h) = a(h + ak) for every
choice of @ € Z and even k.

We go on as before and want to prove that it is 1 modulo 3 and 1 modulo 8, respectively
4, for odd, respectively even, a.

We start with the congruences modulo 8 and 4. We know that

=42 =420+1)° =4 (42 + 4+ 1) =4 (mod8)

and k% = 83 =0 (mod8). Since h is odd we have h? =1 (mod8) therefore we have
h(—h) = —h?> = —1 (mod8), so we can choose /' = —h (mod8). For odd a we see that

.2
% —2hWK? — W ak® + 2hh' + 2 + k? — 3k + akh' — 24g; n(n) + 3hk + gakQ —3(p— 1)k

= — 20 k* — W ak® + 20k + 3+ k* —3(1 + (u — 1))k + akh’ — 24n + 3hk + gakz
=2hh' + 3+ 4 — 3uk + akh’ + 3hk 4+ 6a = =2+ 7+ 3(h — p)k + akh' + 6«
=5+ 3(h — p)k — akh + 6a =5+ 4(h — i) — 2(2a + 1)pu(2h + 1) + 6(2a + 1)
=5+ dhy — A — (40 + 2p0) (2h + 1) + 48 + 6
=3 + dhy — A — (48 + Aph + 2p) + 48 = 3 — Afip — dap — 2 + 4a
=3—4p—4a—4p—2+4a=1 (mod8).

Note that since 2 | k we have 2hh/ = —2 (mod4). For even o we thus get

6 -2 3
% —2hW'K* — W ak® + 2hh + 2 + k* — 3k + akh’ — 24g; n(n) + 3hk + 5och —3(u— 1k

= — 2hh' K% — W ak® + 2hh' + 3 + k? — 3uk + akh’ — 24n + 3hk + gakQ
=—-24+3-3uk+3hk=1+3(h— k=1 (mod4),
since h — u is even.
Lastly we show the congruence modulo 3, namely

652 3
% — 2hW'K* — Wok® + 2hh' + 24 K — 3k + akh’ — 24g; v (n) + 3hk + Jok® —3(n— Dk =1 (mod3).
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To do so we seperate the two cases 31k and 3 | k, but are independent of the choices of
a. For 31k we have k2 =1 (mod3), so we obtain

-2
57 _ohhk? — ok +2hh' + 2 + k* — 3k + akh’ — 24g; n(n) + 3hk + gaka —3(p—1)k

N
= —2hh'k? — W ak® + 2hh' + 3+ k* — 3k + akh' — 24n + 3hk + 6ap® — 3(u — 1)k
=(1 - k?)(2hh' +Wak+2)+1=1 (mod3).
For 3 | k we obatin
6j2 /1.2 ! 3 / 2 / 3 2
" = 2hK? — Wak® 4+ 2hK 42+ k? — 3k + akh' — 24g; x(n) + 3hk + Sak® = 3(u — Dk

= —2hh'k* — W ak® + 2hh' + 3+ k* — 3k + akh' — 24n + 3hk + 6ap® — 3(u — 1)k
=2hh' =1 (mod3),

analogously to above. O

In the previous proof we used a result on the Kronecker symbol, which we want to
summarize in the following lemma.

Lemma V.2.3. For k =2"u with v > 1 and some odd p € N we have

( k > = ifv>2,
_ - - (2ahk+a2k2—2(u—1)ak ‘
(h+ ak) exp (m ( + 3 (u=1) >> <7ih) ifv=1.
Proof. We have a € Z and split the Kronecker symbol as follows
k B 2 Y 7
—(h+ak))  \—(h+ak) —(h+ak) /)’
By quadratic reciprocity we see that
H :(_1)%% —(h+ak)\ _ (—1)_W(—1)‘%1% —h
—(h+ ak) p I

—(—1) = <Mh> .

Note that p — 1 is even, since we have that u is odd, and that ged(—(h + ak),2) = 1. If
v is even we obtain that

() == (%) (atm) =0 () = (%),
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(M) - (—(hiam)y (—(hiam) B (—kh)

using that —W =0 (mod2) since 4 | k and the fact that (%) = sgn(a) (%).
Lets assume v is odd. We obtain, by quadratic reciprocity that

(otam) (5) = (5) () (%) ()

(htak)?—1 n2_1 2hak+a?k?
8

e

and thus

Overall we therefore have

(=vam) = (Corram) (ram) = 0™ 59 (5) (&%)

2ahky+a2k21/72( —1ak k
()

For v > 3 we have 8 | k and thus

2ahky + o?k?v — 2(u — 1)ak =0 (mod 16),

such that we again obtain (W) = (_ih)
For v =1 we have

k B 2ankta?k®—2u-vak [k \ [ 2ahk + o?k® — 2(u — 1)ak k
(<m0 () oo ( (S )

This finishes the proof. O

The next lemma gives a bound on the minumum coming from Malishev’s result in
the odd k case.

Lemma V.2.4. We have

N[

min (gcd (u1 + jsk, ged(N, k)k:)% ,ged (v, ged(N, k)k)

)=ox (o)
) =On (n

and

SIS
SIS

min (gcd (2 + 3jsk, 3 ged(N, k)k)% ,ged (v, 3ged(N, k)k)

).

Proof. First we note that

[N

min (ged (1 + jsk, ged (N, k), god (v1, ged (N, K)k)* ) < ged (s + sk, ged (N, k)k)
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Since ged(a, be) < ged(a, b) ged(a, ¢), for a, b, c € Z, we see that

ged (p1 + jsk, ged(N, k)k) = ged <u1 + jsk, ged(N, k)2>

ke
ged(N, k)

3 .
<god (” O T

) ng (/’Ll + ]Ska ng(N7 k)Q) s
where we have that ged (,u1 + jsk, ged(N, k:)Q) < ged(N, k)2 < N2 = On(1). We note
that ged(a, b) < ged(za,b) for any = € Z\{0}, which implies

k k

—— | < gcd | 24 jsk), ——— | .

et ay) < (240 45500 )

Since we further have that ged(a,b) = ged(a (modbd),b) for b # 0 we can reduce

24(p1 + jsk) modulo m and see that

ng <,u1 + j8k7

24(p1 + jsk)

N !
=(—24 1 — k%) ged(N, k) — 2452[4) oed( N 1Y 24jsk
( n+ )gc (N, k) al ]m [gcd(N,k)] k M

ged(N,k)

= (=244 1) ged(V,R) 40 |

_k__
ged(N, k)

N /
=|— N (24n — 1 652 d— ).
], e+ (med i)
ged(N,k)
We now notice that by definition we have ged(—2 k_~) = 1. By the definition of

ged(N k) ged(N,k)
the negative inverse we thus notice that we additionally have

1 —ged | { N } k) g [L} ok
ged(N, k) | ged(N, k) - ged(N, k) ged(NV, k) S ged (N, k)

gc

using that ged(ab, ¢) = ged(a, ¢) if ged(b, ¢) = 1. This gives us that

k
d(24 isk), —— ) —gcd [ N(24n — 1)+ 642, ——— .
gc < (1 +js ),gcd(N’k)> gc ( (24n —1) + J’gcd(N,k:))

Therefore we obtain

N

1
k. 2
. _ —_— .2 T 27 ar N
ged (11 + jsk, ged(N, k)k)? =Oy (gcd (N (24n = 1) +65% 9w, k:)> )
(n

—On ((N (24n — 1) + 6j2)%> — On %) .

The second result follows analogously, with 8 instead of 24. 0
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A similar result holds in the even k case.

Lemma V.2.5. We have

1
2

20F50k gecd(N 5 .
M,zawgww,u)) ged (vs, 225k ged (N, )

16

=

) =On (n),

1
329150k ged(N. 5 2 5
min (gcd (,ug + 48jks + god(N, 1) ,3-29 5k ged(N, M)) ,ged (v6,3 - 2° TPk ged(N, 1)) ) =Opn (n).

)

min (gcd (u5 + 16jks +

and

N[=

Proof. First we note that

N

2050 ged (N
min (gcd (Ms + 165ks + fg . ) , 20k ged(N, u)) ,ged (v5, 2% Pk ged (N, )

Nl=

1
2

2950k ged(N, )
16

< ged (ug, +16jks + , 2%k ged(N, u))

Since ged(a, be) < ged(a, b) ged(a, ¢) we see that

20750k ged(N, p)

6 ;2% k ged(N, u)>

ged <u5 + 16jks +

29150k gcd(N, p) i 2950k ged(N, 1) psats
< —|— 1 j + 2 1 y ) 2u «
<ged (M5 Ojks 16 " ged(N, u)) ged <M5 Ojks 16 ’ )
2050k ged(N, )

x ged (,u5 + 165ks + ,2% ged(N, ,u)2> ,

16
where ged(us + 16jks + %(W, 23 ged(N, 1)?) < 23 ged(N, u)? < 8N? = Opn(1).
Thus we are left with bounding the first and second gcd.

We note that ged(a,b) < ged(za,b) for any « € Z\{0}, which implies

29F50k ged (N, ) 2
16 " ged(N,

)) < ged (3 (15 + 16jks + 22k ged(N, ) , ——= )

d 5 + 167k
& (“ 5107k ¥ gcd(N, 1)

and

2a+5£k‘ ng(Nz ,u') 2u+a+2

& 20+50k ged(N, u)) ’ 2U+a+2) .

) < ged (20‘6 (,u5+16jks+ 16

ged (,us + 16j5ks +

Since we have that ged(a,b) = ged(a (modbd),b) for b # 0 we can reduce the value
3 (s + 16jks + 2210k ged(N, 1)) modulo m and see that
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3 (us + 165ks + 2T 0k ged(N, 1))

N2y )
= (—24n + 1 + 2k* — 3k) 2°"2 ged (N, p) — 245727 2[4, | ———
ged(N,p) ng(N, ,u) op
ged (N, p)
o [NVp / a+1 .
—24p5° | —— ged(N, p) + 3 - 297k ged(N, p) + 485ks

20é 2V+a+2

N !
=(—24n + 1) 2°T2 gcd(N 620t |
(—24n +1) ged(N, p) + 65 AN |

ged(N,p)

N )]/ 20%2 (N (24n — 1) + 65?) (mod

ged(N,p)

Analogously we can reduce 296 (p5 + 16jks + 2*t10k ged(N, p)) modulo 292 and see
that

296 (us + 16ks + 2% 0k ged(N, 1))

No2v )
= (—48n + 2 4 4k — 6k) 229F2 gcd(N, pu) — 48522 T22F2[4) {]
( ) ( ) [ ]gcd(N,u) ng(N, /’L) ng&V’H)
N /
— 2948152 [25} ged(N, p) + 3 - 224 20k ged(N, p) 4 2224 ks
v+a+2
2 N )
= (—48n + 2) 222 ged(N, ) + 27481 [y 1 a2 52 {2&} ged(N, )
vta+2
N ' a+2 @ -2 v+a+2
=|— ged(N, p) (242N (48n — 2) — 2°485%) (mod 2 ).
2(1 21/+a+2
N )

We now notice that by definition we have ged( ) = 1 as well as

ged(NV,p) 7 ged(N,u)

gcd(%, 2v+a+2) — 1. By the definition of the negative modular inverse we thus notice

that we also have

e N N 7 1 e N 7 1
1 =ged (gcd(N, ) [gcd(N, u)} ety 8CdY, u)) ged ([ged(N, u)} ety 8CAY, u)) ’

W “
ged(N,u) ged(N, 1)

N [NY N
1 = ged (a [} ,2”+0‘+2> = ged <[} ,2”+0‘+2> ,
2 204 2u+a+2 20& 2u+a+2

using that ged(ab, ¢) = ged(a, ¢) if ged(b, ¢) = 1. This gives us that

and

d(3 16jks + 20+ 0k ged(N B
gc ( (15 + 16ks + ged( "u))’gcd(N,u))
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— ged (2972 (N (24n — 1) + 652 ,“)
& ( (v ) +67°) ged(N, )

and
ged (26 (ps + 165ks + 29Tk ged(N, p)) , 277 12)
= ged (ged(V, p)2% (4N (48n — 2) — 48;5%) 2V T F2)
Overall we therefore obtain

20150k gcd (N, p)

ged (,u5 + 16jks + 16

2
;2% 5k ged(N, u))

1
e . M 2 @ -2 v+a+2 1
=Op | ged (2 +2 (N (24n — 1) + 652) , ) ged (ged (N, 1)2% (4N (48n — 2) — 4852) ,2 2
( (N( ) ) ged(N, ) (ged( )2% (4N ( ) ) )

2 2

=Op <<2‘1+2 (N (24n — 1) + 652) )

The second result follows analogously. O

(gcd(N7 ©)2% (4N (48n — 2) — 48j2) > > =OnN (n%n%> =On (n).

V.3 Additional proofs for Section IV.4

We prove the following lemma, giving a bound on the sum defined in (IV.4.20).

Lemma V.3.1. The sum Kj, ; y(n,r, k,€) defined in (IV.4.20) is an incomplete Klooster-
man sum and can be bounded by (IV.1.7) following the techniques by Lehner [Leh4l, Sec-
tion 10].

Proof. In the proof of Theorem 1V.1.2 we saw that we can rewrite

) h 27i
Ky jn(n,r k) =e(k,j,N,r) Z — |exp | = (u*h — I/*[h]/Gk) ,
p Gk
h (mod Gk)
ged(h,Gk)=1
where ., v, € Z, G € N, p € N odd such that all his prime divisors divide Gk, [hly;, the
negative modular inverse of h modulo Gk, and some €(k, j, N,r) = On(1). Analogously
to [Leh4l, equation (3.3)] we denote by {a, b} the unique real number defined by

{a,b} =a (modb), 0 <{a,b} <b.

Since we noted that the extra restriction on k; in the sum Kj j ~(n, 7, K, 0) constrains the
choice of A/ to an interval mod k, this gives us that we can rewrite K;;j N, K, 0) as

; ; h 271
K jn(n, 1k, 0) = e(k, j, N,r) Z () exp <Gk (p1h — V*[h],Gk)> ’

h (mod Gk)
ged(h,Gk)=1

Og[h}’Gk<Gk
Jlg{[h]/ck,k‘}<02
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where the last two conditions in the sum mean that [h]j,, is restricted to G (or possibly
G + 1) intervals whose endpoints are congruent to o1, 02 modulo k, with 0 < 01 < 09 < k.
Analouge to [Leh41, page 650] we define m(s) in the interval (0, k) by

m(s) =

1 for oy <s <oy,
0 elsewhere in the interval 0 < s < k,

and outside of the interval by periodicity. We have

k-1 o0
pu— 2 )
m(s) ;:0 o exp ( i : ) ,

where
1 k—1 si 1 oa—1 si 0o — o
Q; =% SE:o m(s) exp (—2m’]j> =% SEUI exp <—2m’k]> ) ap = 2 3 L

We see that |ag| < 1, while for j # 0
2 2mij \| "1 '
\aj\gk)l—exp<— 7};”)‘ :kcsc<7;j>.

k

dlajl <14y

-0 j=1

Therefore we obtain

—
IMIE

; — O (log(k)) . (V.3.1)

<

This gives us

* h 27

Kijn@rm ) =0 3 (k) () exP (Gk (12ch — u*[h]e;&)
h (mod Gk) p

ged(h,Gk)=1

— h 270

0| Tar X (B)ew (G - - 0 )
=0 h (mod Gk)
ged(h,Gk)=1

In Section IV.3 we saw that the inner sum is bounded by (IV.1.7), which, using (V.3.1),
yields

)0 ) =0 (1)
for e, > 0. ]
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Appendix

Here, we offer some numerical data related to Table IV.1.
In Chapter IV we defined the coefficients of A; y by

2 1
Aj,N(T) = qu_ﬂ aj,N(O) + ZCL%N(TZ)qn ,

n>1

which together with

-2

A (1) =gt =2 [N pn)g | [ S gmrim N7 gNm=gm

n>0 m>0 m>1
2 1
:qiNfﬂ E : p( ) n+(Nm+j)m _ § :E : n+ (Nm—j)m
n,m>0 n>0m>1
2
J- _ 1
:q4N 24Bj7N(T)

gives that
Bjn(T) =a;n(0) + Z aj,n(n

n>1

We compute By 3(7), Bsg(7) and Bs 19(7) up to ¢?° to obtain the values of the first
column of Table IV.1 by the following code implemented in Mathematica [Woll7]. Note
that throughout the code we use the letter M instead of N. We could not use N, since
this letter is reserved in Mathematica.

In[1]:= B[q-, j-, M.] := Sum|[Sum[PartitionsP [n]

rq"(n + (Men + ])#m),

{m, 0, 1000}], {n, 0, 1000}] — Sum[Sum[PartitionsP [n]x

q"(n + Msm — j)*m), {m, 1, 1000}], {n, 0, 1000}]

In[2]:= Series[B[q, 1, 3], {q, 0, 20}]
Out[2]=1+qg+q9q2+2qg3+4q4+5qg5+8q6+ 11 q"°7

F 16 q°8 4+ 22 q°9 + 30 q°10 + 40 q°11 + 55 q°12 + 72 ¢°13

196 q°14 + 125 q°15 + 164 q°16 + 210 q°17 + 272 q 18 + 346 q"19
+ 442 q°20 + O[q] 21

In[3]:=Series[B[q, 5, 8], {q, 0, 20}]

)
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Out(3]=1+q+2qg2+2q3+4qg4+5q9g5+8q6+ 10 q"7
-|-15q8+19q9+27qA0+34q11+47q12+60q13
+ 80 q°14 + 101 qA15—|—133q16—|—167q17—|—216q18
+ 270 q°19 + 345 q°20 + O[q]"2
In[4]:= Series[B[q, 3, 10], {q, 0, 20}]
Out[4]= 1 + q+2q°2+3a3+5q4+7q5+11q6+14q'7
+ 21 q°8 + 28 q°9 + 39 quo £ 51 q°11 + 70 q°12 + 91 q°13
6

+121 14 + 156 q°15 + 204 q"1 + 260 q°17 + 336 q"18
+ 424 q°19 + 541 q°20 + +0[ ]°2

Next we implement the coefficients in the way presented in (IV.4.26), where the sum
over k runs up to J. Therefore we first implement the multiplier defined in (IV.2.6), a
function u(n) that constructs a list of coprime elements to a given integer n, a function
H(k, j) that gives the j-th coprime element to k (from the list u(k)), and the Kloosterman
sum as defined in (IV.1.6). Note that here we use the letter ¢ instead of .

n[5]:: X[j_, r., M_, ho, k] := X[j, r, M, h, k] =

[ [k, 2] = 1, KroneckerSymbol[—h, k]x

[((PI*I)/( 2))*((—ModularInverse [h, k] — h)x

((h*(—ModularInverse[h, k]) + 1)/k)xhx(k"2 — 1) — 3xk)],

KroneckerSymbol[ , —h]x
Exp[((PixI)/(12))*(—ModularInverse [h, k]xkx«(1 — h"2) —
h*(—((h*(—ModularInverse[h, k]) + 1)/k) — k + 3) — 3)]]*
Exp[(3+PixI)/4]«Sqrt[2/(Mxk)]|*«Sum[Exp[((PixI) /(2%
Mx(—k)))*(—h*(2«Mx1 4+ j) 2 + (—ModularInverse [h, k])*r"2)]x
Sin [(Pisxr*(2+M«1 + j))/(M«k)], {1, 0, k — 1}]

In[6]:= u[n_Integer]| := u[n] = With[{] = Range[n]},

Pick |1, CoprimeQ[l, n]]]

In[7]:= H[k_, j-] = H[k, j] = Extract[ k], j]

In[8]:= K[k_, j_, M,, n_, r_, t_] := K[k, j, M n, r, t] =

If[fk =1, X[j, r, M, 0, 1]*Exp[(1/(24)) (2% Pix

I ((24% M*(t + (r/(2«M))) "2 — 1)*(—ModularInverse[0, 1]) —
24x(n + (72/(44MD)) — 1/(24))%0))], Sum[X[j, r, M, H[k, b], k]«
Exp[(1/(24xk))*(2+«PixI*((24«Mx(t + (r/(2«M)))" "2 —
1)x(—ModularInverse [H[k, b], k]) —

24%(n + (jA2/(4*M)) — 1/(24))*H[k, b]))], {b, 1, EulerPhi[k]}]]
In[9]:= a[n_, j-, M, J_] := a[n, j, M, J]
= ((2+PixT) /(Sart [0 + (§°2/(4M0) — (1/(24))]))
«*Sum|[Sum | (K[k, j, M, n, r, 0]/(k"2))
«NIntegrate[Sqrt[(1/(24)) — Mx«x " 2]
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+*Cot [Pix(—(x/k) + (r/(2+«Mxk)))]

*Bessell [1, ((4+«PixSqrt[n + (j"2/(4«M)) — (1/(24))])/k)=
Sqrt[(1/(24)) — Mxx"2]], {x, —Sqrt[1/(24«M)], r/(2+M),
Sqrt[1/(24«M)]}, Method —> ”PrincipalValue”,
WorkingPrecision — 120], {r, 1, Ceiling[Sqrt[M/6] — 1]}], {k,
1, J} = ((2¢PisD)/(Sart[n + (j°2/(4) — (1/(24))]))+
Sum[Sum[(K[k, j, M, n, r, 0]/(k"2))xNIntegrate|

Sqrt[(1/(24)) — Mxx"2]*Cot [Pix(—(x/k) + (r/(2«Mxk)))]*
Bessell [1, ((4*PixSqrt[n + (j"2/(4xM)) — (1/(24))])/k)=
Sqrt[(1/(24)) — Mxx"2]], {x, —Sqrt[1/(24xM)],

Sqrt[1/(24xM)]}, WorkingPrecision —> 120], {r,
Ceiling [Sqrt [M/6]], M — 1}], {k, 1,

Y — ((25PisT)/(Sart[n + (j2/(4D) — (1/(24))]))

Sum [Sum[Sum[(K[k, j, M, n, r, t]/(k"2))

xNIntegrate [Sqrt[(1/(24)) — Mxx"2]x

Cot [Pix(—(x/k) + (t/k) + (r/(2+Mxk)))]=

Bessell [1, ((4*PixSqrt[n + (j"2/(4xM)) — (1/(24))])/k)=
Sqrt[(1/(24)) — Mxx"2]], {x, —Sqrt[1/(24xM)],

Sqrt[1/(24«M)]}, WorkingPrecision — 120], {t, 1,

k — 1}], {r, 1, M— 1}], {k, 1, J}]

We obtain the following results for the coefficients a; 3(n), asg(n), and a3 10(n) for
n € {3,10,18} and J € {1, 3,20, 25,50}, which fill the rest of Table IV.1.

In[10]:= N[a[3, 1, 3, 1], 20]
Out[10]= 2.3181245751167808453
In[11]:= N[a[3, 1, 3, 3], 10]
Out[11]= 2.288642013 + 0.#10"—10 I
In[12]:= N[a[3, 1, 3, 20], 10]
Out[12]= 2.099000692 + 0.x10°—10 I
In[13]:= N[a[3, 1, 3, 25], 10]
Out[13]= 2.087549722 + 0.x10°—10 I
In[14]:= N[a[3, 1, 3, 50], 10]
Out[14]= 2.052693607 + 0.x10°—10 I
In[15]:= N[a[10, 1, 3, 1], 10]
Out[15]= 29.89888333

In[16]:= N[a[10, 1, 3, 3], 10]
Out[16]= 30.24415241 + 0.x10°—9 I

In[17]:= N[a[10, 1, 3, 20], 10]
Out[17]= 30.08657561 + 0.x10°—9 I
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In[18]:= N[a[10, 1, 3, 25], 10]
Out[18]= 30.07892325 + 0.¥10° -9 I
In[19]:= N[a[10, 1, 3, 50], 10]
Out[19]= 30.04183108 + 0.¥10" 9 I
In[20]:= N[a[18, 1, 3, 1], 10]
Out[20]= 271.3098369

In[21]:= N[a[18, 1, 3, 3], 10]
Out[21]= 272.2656084 + 0.x10"—8 I
In[22]:= Nla[18, 1, 3, 20], 10]
Out[22]= 272.0719934 + 0.%10" 8 I
In[23]:= Nla[18, 1, 3, 25], 10]
Out[23]= 272.0650969 + 0.%10" 8 I
In[24]:= N[a[18, 1, 3, 50], 10]
Out[24]= 272.0407998 + 0.x+10" 8 I

In[25]:= N[a[3, 5, 8, 1], 10]
Out[25]= 2.519680370

In[26]:= N[a[3, 5, 8, 3], 10]
Out[26]= 2.220002095 + 0.x10" 10 I
In[27]:= N[a[3, 5, 8, 20], 10]
Out[27]= 1.999336893 + 0.x10"—10 I
In[28]:= Nla[3, 5, 8, 25], 10]
Out[28]= 1.982974730 + 0.x10"—10 I
In[29]:= Nla[3, 5, 8, 50], 10]
Out[29]= 1.989195022 4+ 0.x10"—10 I
In[30]:= N[a[l0, 5, 8, 1], 10]
Out[30]= 26.26967573

In[31]:= N[a[l0, 5, 8, 3], 10]
Out[31]= 26.98533328 + 0.x10"—9 I
In[32]:= N[a[10, 5, 8, 20], 10]
Out[32]= 26.98561400 + 0.+10" 9 I
In[33]:= N[a[10, 5, 8, 25], 10]
Out[33]= 26.99967174 + 0.%10" 9 I
In[34]:= N[a[10, 5, 8, 50], 10]
Out[34]= 26.99908412 + 0.x10" 9 I
In[35]:= N[a[18, 5, 8, 1], 10]
Out[35]= 214.4979032

In[36]:= N[a[18, 5, 8, 3], 10]
Out[36]= 216.0556573 + 0.x10" 8 I
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In[37]:=
Out[37] =
In[38]:=
Out[38] =
In[39]:=
Out[39] =

In[40]: =
Out[40]=
In[41]:=
Out[41]=
In[42]:=
Out[42]=
In[43]:=
Out[43]=
In[44]:=
Out[44]=
In[45]:=
Out[45]=
In[46]:=
Out[46]=
In[47]:=
Out[47]=
In[48]:=
Out[48]=
In[49]:=
Out[49]=
In[50]:=
Out[50]=
In[51]:=
Out[51]=
In[52]:=
Out[52]=
In[53]:=
Out[53]=
In[54]:=

Out[54]= 336.0111158 + 0.x10"—8 I

N[a[18, 5, 8,
215.9830229 +
N[a[18, 5, 8,
215.9893492 +
N[a[18, 5, 8,
216.0044062 +

N[a[3, 3, 10,
3.162360090

N[a[3, 3, 10,
3.054430238 +
N[a[3, 3, 10,
3.030683577 +
N[a[3, 3, 10,
3.022204192 +
N[a[3, 3, 10,
2.998494259 +
N[a[10, 3, 10,
38.53373501

N[a[10, 3, 10,

38.99653266 + 0.x10" -9 I

N[a[10, 3, 10,

39.00798893 + 0.x10" -9 I

N[a[10, 3, 10,

39.00013349 + 0.x10" -9 I

N[a[10, 3, 10,

38.99815238 + 0.x10" -9 I

N[a[18, 3, 10,
334.3940087
N[a[18, 3, 10,

336.0237112 + 0.%10" -8 I

N[a[18, 3, 10,

336.0058347 + 0.x10" -8 I

N[a[18, 3, 10,

336.0254115 + 0.x10" -8 I

N[a[18, 3, 10,

20], 10]
0.410" —8
25], 10]
0.410" —8
50], 10]
0.410" —8

1], 10]

3], 10]

0.x10"—10 I

20], 10]

0.x10"—10 I

25], 10]

0.x10"—10 I

50], 10]

0.x10"—10 I

1], 10]
3], 10]
20], 10]
25], 10]
50], 10]
1], 10]
3], 10]
20], 10]
25], 10]

50], 10]

Note that the small imaginary parts occuring in these results are some errors caused
by Mathematica [Woll7], since the coeflicients a; y(n) are real for any j, N, and n.
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