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1.Abstract:  
Molecular oxygen sustains intracellular bioenergetics and is consumed by more than 400 

biochemical reactions, making it essential for most species on Earth. Reduced oxygen 

concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and 

is a prominent feature of pathological states encountered in inflammation, bacterial infection, 

cardiovascular defects, wounds, and cancer. Despite the fundamental importance of oxygen in 

human physiology and disease, we currently lack a complete understanding of how the 

mitochondrial proteome adapts fluctuations in oxygen tensions. We recently identify a 

mTORC1-LIPIN1-lipid signaling cascade that activates the i-AAA protease YME1L in 

hypoxia to ensure pyrimidine synthesis. Here, we determined protein turnover rates of 

mitochondrial proteins in hypoxia. The mitochondrial m-AAA protease AFG3L2 was found to 

reshape the mitochondrial matrix and inner mitochondrial membrane (IMM) proteome in 

hypoxia. This proteolytic rewiring affects various biological pathways, such as lipid 

metabolism, protein import, OXPHOS and metabolism. Hypoxia is one of the main stressors 

of the mTORC1, we investigated the role of mTORC1 in AFG3L2 dependent proteolytic 

rewiring. In nutrient starvation mTORC1 is inhibited and activates AFG3L2-dependent 

proteolytic rewiring, whereas active mTORC1 inhibits AFG3L2 activity. NCLX is a Na+/Ca2+ 

exchanger, which effluxes Ca2+ from the matrix in exchange for Na+ from the intermembrane 

space and loss of NCLX activates AFG3L2 -dependent proteolysis. We show that in hypoxia 

changes  protein turnover, the mitochondrial m-AAA protease AFG3L2 reshapes the 

mitochondrial proteome to adapt to hypoxia. 

 

 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
2. Introduction  

Molecular oxygen (O2) is essential for sustaining life on the earth and is the one of the most 

abundant elements in the universe. The homeostasis of oxygen is very important for the 

survival of most prokaryotic and eukaryotic species. Molecular oxygen is key for mitochondrial 

ATP generation, the cellular energy currency. A normal adult male consumes approximately 

380 liters of oxygen every day and around 90% oxygen is used in the electron transport chain 

(ETC) for the synthesis of ATP (1). The analysis of various metabolites' effect on the total 

number of reactions in the metabolic network revealed oxygen is among the most utilized 

compounds, even superseding adenosine triphosphate (ATP) and nicotinamide adenine 

dinucleotide (NAD+) (2). Many biochemical reactions use oxygen as a substrate. Although 

Oxygen is kinetically stable, it readily interacts with metals and cofactors (2, 206).   

 

Humans are constantly exposed to different levels of oxygen tension, ranging from sea level 

(21%- 11%) to Mount Everest (5%). Humans can adapt to fluctuations in oxygen tension, 

however, if the fluctuations exceed the body’s adaptive capacity leads to organ damage and 

disease. Excessive oxygen, hyperoxia increases hyperoxic risks by inducing oxygen toxicity, 

various oxygen toxicities associated with the lungs, central nervous system and ocular toxicity. 

These symptoms can be relieved as long as the hyperoxic inhalation is terminated and returned 

to normal. Low oxygen, hypoxia causes several pathological conditions such as cerebral stroke, 

myocardial infraction, tumor development, delayed wound healing, and pulmonary arterial 

hypertension. No oxygen, prolonged anoxia causes death (58, 35, 205, 206) 

  

2.1.1 Mechanism of oxygen sensing 

The deficiency of oxygen is called hypoxia. How cells sense changes in oxygen tension was a 

central question in biology. The major breakthrough in the understanding of oxygen sensing 

mechanism was the discovery of hypoxia-inducible factors (HIFs), prolyl hydroxylases (PHD1, 

PHD2 &PHD3), and von Hippel Lindau (VHL). These findings provided a detailed 

understanding of how cells sense oxygen and mount a robust transcriptional response. The 

HIF- VHL- PHD axis is well studied in hypoxia research (3).  

 



 

HIF1 and HIF2 are major transcription factors involved in the hypoxia-mediated transcriptional 

response, they bind to hypoxia response elements (HRE) in the promoters of a large number of 

targets, including glycolysis, angiogenesis, and metastasis (Fig1). The initial discovery of HIF1 

was studying the erythropoietin (EPO) gene (4, 5). In hypoxia, HIF1 binds HIF2 translocate to 

the nucleus and initiates a transcriptional program (6, 7).  In normoxia, HIF1 is rapidly 

degraded by E3 ubiquitin-proteome pathways. Availability of oxygen is sensed by dioxygenase 

enzymes prolyl hydroxylase domain proteins (PHD) which hydroxylate HIF1α subunit at two 

proline residues (8,9). This reaction requires iron (Fe2+), oxygen and coupled with oxidative 

decarboxylation of α - ketoglutarate to succinate (10,11). This hydroxylated HIFα undergoes 

polyubiquitylation by VHL E3 ubiquitin ligase (VHL complex) and becomes a target for the 

proteasome. Hypoxia prevents the hydroxylation of HIF1α and oxygen-dependent degradation 

(ODD) by the proteasome (12). The stable HIF1α dimerizes with HIF1ß and translocate to the 

nucleus and initiates a transcriptional program by interacting with other transcription co-

activators p300 and CBP (Fig1) (13). 

 

The interaction between the transcriptional co-activators and HIF is regulated by another 

member of the α–ketoglutarate and Fe2+ dependent dioxygenase family protein FIH1 (Factor 

Inhibiting HIF). In low oxygen, FIH1 hydroxylates at asparagine (Asn803 in human HIF1α; 

Asn851 in human HIF2α) of HIF1α’s C-TAD domain and this can be abrogated by the addition 

of iron chelators or competitive inhibitors of 2-oxoglutarate (14). This asparaginyl 

hydroxylation of HIF1α enzyme FIH1 is also a member of the dioxygenase family but differs 

in sequence with PHDs (15,16). Hydroxylation of HIF1α and HIF2α by FIH1 creates a steric 

clash that prevents the recruitment of the coactivators p300 and CBP and ultimately inhibits 

the hypoxia transcriptional program. FIH1 is more active in low levels of oxygen than PHDs, 

this helps to suppress the activity of HIFα proteins that escape degradation in moderate hypoxia 

(17,18). Therefore, FIH1-mediated asparaginyl hydroxylation of HIF1α provides a second 

level of oxygen-regulated mechanism (fig1). 



 

 
Figure 1. HIFa stabilization in hypoxia 

HIF α hydroxylated under normoxia and targeted to ubiquitin- proteosome mediated 

degradation. In hypoxia PHD are inhibited, stabilizes HIF1 α and translocated to nucleus, 

initiates hypoxic transcriptional program. 

 

There are nearly 60 dioxygenases in the cell, one of these dioxygenases is the important 

chromatin-modifying Jumonji C domain histone lysine demethylases (KDMs). It has been 

observed for a long-time that hypoxia induces histone lysine hypermethylation (19), but how 

oxygen sensors modify chromatin was largely unknown until recent discovery of two 

dioxygenases KDM5A and KDM6A (20, 21). These lysine-specific demethylases (KDMs) are 

sensitive to oxygen levels and have low oxygen affinities (KM values) compared to PHDs. 

KDM6A is a direct sensor of oxygen and modifies chromatin independent of HIF, 

hypermethylation of lysine 27 of histone H3 (H3K27) leads to gene repression (20). While 

KDM5A is responsible for hypermethylation of H3K4 leads to activating gene expression. This 

KDMs-mediated chromatin modification plays an important role in modulating genes 

responsible for embryogenesis, stem cell homeostasis, cancer and cardiovascular diseases (fig 

2) (20, 21). 



 

 
Figure 2: Hypoxia mediated chromatin modification  

KDM6A and KDM5A are dioxygenases senses oxygen levels and modifies chromatin  

 

2.1.2 Role of hypoxia on mitochondrial functions 

Mitochondria are the essential organelle and is a hub for various metabolic reactions. 

Mitochondria regulate hypoxia response by maintaining the availability of TCA metabolites 

α–ketoglutarate and succinate. As we know oxygen is the ultimate electron acceptor of 

mitochondrial respiration. The high-energy electrons derived from the catabolism of food are 

passed through electron transport chain, generating a proton gradient across the mitochondrial 

inner membrane (1). Complex IV, cytochrome oxidase transfers electrons to oxygen. 

Cytochrome oxidase is located in the inner mitochondrial membrane and consists of 13 

subunits, the ten regulatory subunits are nuclear-encoded and the 3 catalytic subunits are 

mitochondrial-encoded (22). In hypoxia, HIF1α enhances the gene expression of complex IV 

subunit COX4I-2 and mitochondrial protease LONP1. The nuclear-encoded COX4I-2 has a 

higher affinity for oxygen and higher efficiency to transfer electrons to oxygen during hypoxia. 

This enhanced expression of the mitochondrial protease LONP1 degrades less efficient electron 

transfer complex IV subunit COX4I-1, this proteolysis helps to swap highly efficient COX4I-

2 in hypoxia. This enables COXIV to allow for a more efficient transfer of electrons to oxygen 



 

in hypoxia (23). Another hypoxia-mediated complex IV regulation is through the hypoxia 

inducible domain family, member 1A (Higd1a), it is reported as a positive regulator of complex 

IV but the molecular mechanism is not yet understood (24). By contrast, hypoxia inhibits the 

activity of other electron transport chain complexes (Complex I, II, III). In hypoxia, HIF1α 

induces the expression of the mitochondrial NDUFA4L2 (NADH dehydrogenase [ubiquinone] 

1 alpha subcomplex, 4-like 2). Silencing of NDUFA4L2 increase oxygen consumption rate in 

hypoxia and affects mitochondrial complex I activity in an unknown manner (fig3) (25). The 

mechanism of NDUFA4L2 mediated complex I function is yet to be investigated. Hypoxia 

induces several microRNAs, including mir-210, which repress iron-sulfur cluster assembly 

proteins ISCU1 & ISCU2 (26). These ISCU1/2 facilitate the assembly of [4Fe-4S] and [2Fe-

2S] iron-sulfur clusters, prosthetic groups that promote oxidation-reduction reactions and 

electron transport, integral to numerous cellular processes, including heme biosynthesis, 

ribosome biogenesis, DNA repair, purine catabolism, and iron metabolism, among others (27). 

Importantly iron-sulfur clusters are incorporated into enzymes involved in mitochondrial 

respiration complexes (complex I, II, III) and energy production. In hypoxia HIF1α induced 

expression of mir-210 represses the expression of ISCU1/2, which distrupts the correct 

assembly of iron-sulfur clusters within ETC complexes I, II and III. mir-210 also represses the 

expression of complex I subunit NDUFA4, complex IV assembly protein COX 10, and 

complex II subunit succinate dehydrogenase subunit D (SDHD) (fig3) (28, 29). 

 



 

 
Figure 3: Role of hypoxia on mitochondrial function 

Hypoxia regulates mitochondrial functions: OXPHOS, TCA cycle, ion homeostasis 

 

In a genome-wide CRISPR screen in mitochondrial complex III inhibition, one of the most 

enriched sgRNA was VHL (Von Hippel-Lindau) (30). VHL is an E3 ubiquitin ligase, that plays 

an important role in hypoxia signaling by targeting HIF1α for proteasomal degradation (12). 

Since oxygen is a key substrate for the electron transport chain (ETC), inhibition or 

dysfunctional ETC may activate a hypoxic response as an adaptive mechanism. This test was 

carried out in a Leigh syndrome mouse model, an early-onset fatal neurodegenerative disease. 

To date, over 75 different genes are known to be involved in this syndrome. Complex I 

deficiency is the most frequent biochemical cause of the disease. Inactivation of complex I 

subunit NDUFS4 (NADH: ubiquinone oxidoreductase subunit S4) mouse model able to 

recapitulate many features of Leigh syndrome (32). NDUFS4 KO exposed to 21% oxygen 

(ambient/ breathing oxygen) displayed retard growth rates, impaired visual acuity, locomotor 

deficits and a delayed startle response. When NDUFS4 KO mice were exposed to high altitude 

atmospheric oxygen levels 11% prevented many disease symptoms and extended lifespan. This 

hypoxia-mediated reversal of disease symptoms and extension of lifespan is independent of the 

HIFα activation program (33). Hypoxia not only prevented the disease but also reversed brain 



 

lesions in mice with advanced neuropathology. While hyperoxia 55% oxygen reduced lifespan 

and increased disease severity (34). The genome-wide CRISPR growth screen for essential 

genes in low oxygen concentration (21%, 5%, 1%), showed genes related to mitochondrial 

complex I, iron-sulfur cluster biogenesis, and lipid metabolism essential in hypoxia (35). These 

findings indicate the importance of mitochondrial genes in adaption to low oxygen 

concentration. 

 

Reshaping intracellular metabolism is a common feature of hypoxia. Beyond electron transport 

chain (ETC) modulation, hypoxia controls the entry of pyruvate into TCA cycle by induction 

of pyruvate dehydrogenase kinase 1(PDK1) and lactate dehydrogenase (LDHA). Pyruvate 

dehydrogenase kinases phosphorylate the pyruvate dehydrogenase complex (PDH) and 

inactivate the catalytic activity of PDH. The pyruvate dehydrogenase complex consists of three 

enzymes that converts pyruvate to acetyl-CoA. HIFα dependent expression of PDK1 inhibits 

the activity of PDH, limits the entry of acetyl-CoA into the TCA cycle, and reduces oxygen 

consumption (36, 37). Similar to PDK1, lactate dehydrogenase also regulates acetyl-CoA entry 

into the TCA cycle by catalyzing pyruvate to lactate (38). Lactate is exported from the cell 

through monocarboxylic transporter 4 (MCT4). Extracellular lactate can be taken up by other 

cancer cells and used as a carbon source for the TCA cycle. Non-small-cell lung cancers 

incorporate more lactate-derived carbons into TCA cycle intermediates than those from glucose 

(51). This reduced entry of acetyl-CoA into the TCA cycle limits the generation of 

mitochondrial-reducing equivalents NADH and FADH2 and leads to a reduction in electron 

flux through the electron transport chain (ETC). Another important consequence of reduced 

TCA cycle flux in hypoxia diminishes the production of oxaloacetate (OAA), which is required 

for the synthesis of aspartate. Aspartate is required for the biosynthesis of nucleotides and 

proliferation (39, 40). Hypoxia reduces aspartate levels; this leads to impair cell proliferation 

and tumor growth and acts as a key limiting metabolite in hypoxia. Aspartate levels negatively 

correlate with the markers of hypoxia in primary human tumors (41, 42).  

 

In hypoxia glucose-derived citrate reduces and glutamine becomes a major source of citrate. 

Mitochondrial isocitrate dehydrogenase (IDH2) reductively carboxylates glutamine-derived α-

ketoglutarate to citrate. This reductive TCA cycle-generated citrate provides both the acetyl-

coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the 

remaining TCA cycle metabolites and related macromolecular precursors. Hypoxia and ETC 



 

dysfunction operate a reductive TCA cycle, glutamine anaplerosis can therefore maintain lipid 

homeostasis (43, 44, 45). It has long been known that succinate accumulated in ischemia and 

anoxia in vivo (46, 47). Either complex I or complex II, each of which deposits electrons into 

the ETC, can reverse the directionality of the SDH activity and accept electrons from ubiquinol 

during conditions of low oxygen, and ETC inhibition (48, 50). In hypoxia DHODH can still 

deposit electrons into the ETC, which leads to the accumulation of ubiquinol, driving the 

succinate dehydrogenase complex in reverse to enable denovo pyrimidine biosynthesis and 

NADH reoxidation. Mitochondria use fumarate as a terminal electron acceptor (TEA) in 

oxygen limitation (fig 4) (48, 49).  

 
Figure 4: Fumarate act as terminal electron acceptor in hypoxia 

 

Beyond its effects on ETC function and metabolism, hypoxia also controls mitochondrial 

morphology. In normoxia, mitochondria form a tubular network but undergo fragmentation in 

hypoxia (52, 53, 54). Hypoxia induces E3 ubiquitin ligase SIAH2 activity and promotes 

AKAP121 (scaffolding protein A-kinase anchoring protein 121) protein degradation. In 

hypoxia AKAP121 undergoes ubiquitin-mediated degradation and is no longer able to 

phosphorylate DRP1, this allows the interaction of DRP1 and FIS1 at the mitochondrial outer 

membrane, resulting in mitochondrial fission (55). Hypoxia may promote mitochondrial fission 



 

to induce mitophagy, keep ROS production at a physiological low level, and maintain the 

integrity by a decrease in respiratory activity. Hypoxia can also activate mitophagy by 

expressing BNIP3L and dephosphorylating FUNC1. These proteins are localized to the 

mitochondrial outer membrane and serve as a receptor for the mitophagy machinery (56, 57). 

Currently, the mechanism of how hypoxia is sensed to trigger mitochondrial fission and 

mitophagy is not well understood. 

 

2.2 mTORC1 signaling & nutrient stress 

Oxygen availability is one of the main stressors of mTORC1 (mechanistic Target of Rapamycin 

complex 1) signaling (58). mTOR is a serine/threonine protein kinase in the PI3K-related 

protein kinases (PIKK) family (59). In mammals, it constitutes the catalytic subunit of two 

distinct complexes, mTORC1 and mTORC2, these are distinguished by their accessory 

proteins and sensitivity to rapamycin. The mTORC1 acts as a master nutrient sensor of the cell.  

mTORC1 coordinates eukaryotic cell growth and metabolism by integrating diverse 

environmental and nutritional cues. When nutrients are abundant, active mTORC1 promotes 

anabolism such as protein, lipid, nucleotide biosynthesis and inhibits catabolism like protein 

and organelle turnover, autophagy and lysosomal biogenesis (60). mTORC1 readily inactivates 

upon nutrient stress, growth factors withdrawal and oxygen. Given its central role in 

maintaining cellular and physiological homeostasis, dysregulation of mTORC1 signaling has 

been implicated in various metabolic disorders, cancer, neurodegeneration and ageing (60). 

 

 2.2.1Architecture of mTORC1 

mTORC1 is nucleated by three core components: mTOR, mammalian lethal with SEC13 

protein 8 (mLST8, also known as GβL) and its unique defining subunit, the scaffold protein 

RAPTOR (regulatory-associated protein of mTOR) (61,62,63). RAPTOR acts as a scaffold 

that is necessary for the integrity of the complex, and facilitates substrate recognition. mTOR 

binds mLST8 (mammalian lethal with SEC13 protein 8), a core component of the complex, 

structural data suggests that mLST8 stabilizes the kinase domain of mTORC1 (64), but ablation 

of mLST8 does not have any effect on mTORC1 known substrates phosphorylation in vivo 

(65). Raptor forms a scaffold platform for mTORC1 accessory factor PRAS40 (proline-rich 

AKT substrate 40 kDa; also known as AKT1S1), which acts as an endogenous inhibitor of 

mTORC1 activity (66,67). Another endogenous negative regulator of the mTORC1 component 



 

is DEPTOR (DEP-domain-containing mTOR-interacting protein) which interacts with the 

FAT domain of mTOR (68). Most cancers express low levels of DEPTOR (fig 5). 

 
Figure 5: mTORC1 signaling pathway 

Oxygen, growth factors and nutrients regulate mTOR function. There are two mTOR 

complexes mTORC1 and mTORC2, regulates cell growth and proliferation. 

 

1.2.2 Role of mTORC1 in protein synthesis 

One of the best characterized mTORC1 downstream processes is protein synthesis, it is the 

most energy-intensive and resource-intensive cellular process (69). When cells have sufficient 

building blocks mTORC1 promotes protein synthesis in many different ways. mTORC1 



 

phosphorylates 4E-BP (eukaryotic initiation factor 4E binding proteins), in its 

unphosphorylated states binds to eukaryotic translation initiation factor 4E (eIF4E), an 

essential component of the eIF4F cap-binding complex (fig6). mTORC1 mediated 

phosphorylation of 4E-BP dissociates from eIF4E and enhances 5′ cap-dependent translation 

of mRNAs (70, 71, 72). The recent finding showed that mTORC1 directly phosphorylates and 

inactivates LARP1, it’s another important repressor of TOP (terminal oligopyrimidine tract) 

mRNA translation (76). mTORC1 also regulates protein translation by phosphorylating S6K1 

on its hydrophobic motif (T389) to stimulate kinase activity. S6K1 phosphorylates ribosomal 

protein S6, a component of the 40S subunit (73, 74). However, the function of S6 

phosphorylation remains debatable: ablation of all five phosphorylation-serine residues on S6 

does not affect organismal viability or translation efficiency (75). S6K also activates 

transcription of rRNA by directly phosphorylating the regulatory factors UBF (upstream 

binding factor), transcription initiation factor 1A (TIF-1A), and MAF1 ((repressor of RNA 

polymerase III transcription MAF1 homolog) (77, 78, 79). S6K1 also enhances protein 

synthesis by directly phosphorylating eIF4B (eukaryotic translation initiation factor 4B), a 

positive regulator of the 5′-cap-binding eIF4F (eukaryotic translation initiation factor 4F) 

complex, thus promoting the translation of mRNAs with complex 5′ untranslated regions (80). 

In addition, S6K1 is recruited to the newly synthesized mRNA by SKAR, which is deposited 

at the EJC (exon junction complex) during splicing, and SKAR and S6K1 boost the rate of the 

translation efficiency of spliced mRNA (81). Although 4E-BP1 and S6K1 both regulate global 

translation, recent evidence indicates that 4E-BP1 has a prominent role. Mice lacking S6K1 in 

mouse liver showed no reduced global translation (82, 83). 

 

2.2.3 Role of mTORC1 in nucleotide biosynthesis & lipid biosynthesis 

Proliferating cells require a constant supply of nucleotides for DNA replication, transcription 

and rRNA synthesis. mTORC1 regulates both pyrimidine and purine biosynthesis. mTORC1 

increases the transcription factor ATF4 (cyclic AMP-dependent transcription factor ATF-4) 

dependent expression of the mitochondrial tetrahydrofolate cycle enzyme 

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a key component of the 

mitochondrial tetrahydrofolate cycle needed for purines (84). S6K1 directly phosphorylates 

pyrimidine biosynthesis rate-limiting enzyme CAD (carbamoyl-phosphate synthetase 2, 

aspartate transcarbamoylase, dihydroorotase) (85). Finally, mTORC1 upregulates the oxidative 



 

arm of the pentose phosphate pathway via SERBP, which provides a key components of 

nucleotide biosynthesis (86) (Fig 6).  

 
Figure 6: mTORC1 regulates various metabolic functions  

mTORC1 promotes anabolism and inhibits catabolism. mTORC1 promotes growth and 

proliferation by synthesis of various macromolecules. 

 

 Cell growth requires sufficient lipids for new membrane formation and expansion. mTORC1 

promotes de novo lipid biosynthesis through two axes centered on the transcription factors 

sterol regulatory element binding protein 1 & 2 (SREBP1/2) and peroxisome proliferator-

activated receptor-γ (PPARγ). In low sterol levels, SREBP directly translocate from 

endoplasmic reticulum (ER) to the nucleus and upregulates genes for de novo lipid and 

cholesterol synthesis (87). The mTORC1 promotes SREBP transcriptional program by 

phosphorylating the SREBP inhibitor lipin1 to exclude it from the nucleus (88). mTORC1 also 

regulates the splicing of lipogenic-related transcripts by phosphorylating SRPK2 (SRSF 

protein kinase 2) but the mechanism is not yet understood (86).  Additionally, the activity of 

PPARγ (peroxisome proliferator-activated receptor-γ), which promotes adipogenesis, is also 

tightly regulated by mTORC1 (89). Finally, a new additional level of regulation of lipid 

biosynthesis, mTORC1 phosphorylates UPS20 (deubiquitylase ubiquitin-specific peptidase 
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20) at S132 and S134, Phosphorylated USP20 is recruited to the cholesterol biosynthesis rate-

limiting enzyme HMGCR complex (3-hydroxy-3-methylglutaryl-coenzyme A reductase) and 

antagonizes its degradation (90). 

 

2.2.4 Role of mTORC1 in mitochondria and energy homeostasis 

Proliferating cells demand a vast amount of energetic currency (ATP), and mTORC1 promotes 

mitochondrial biogenesis via PGC1α (PPARγ coactivator 1α) and 4E-BP.  mTORC1 enhances 

the expression of mitochondrial genes by yin–yang 1 (YY1) −PPARγ coactivator 1α (PGC1α) 

transcriptional complex (91). mTORC1 selectively translates nucleus-encoded mitochondria-

related mRNAs in a 4E-BP dependent manner (92). mTORC1 also regulates mitochondria 

post-translationally, inhibiting mitochondrial proteolytic rewiring by i-AAA protease YME1L 

through lipid signaling cascade (93). Collectively, mTORC1 promotes mitochondrial 

biogenesis (fig 6). 

In parallel to promoting an increased mitochondrial energy production, mTORC1 also acts on 

metabolic pathways that support cell growth, either by providing energy in the form of ATP or 

by supplying precursors required for macromolecule biosynthesis. One of the best-studied 

mTORC1 -mediated metabolic regulations is the fate of glucose. mTORC1 upregulates 

transcription factor hypoxia-inducible factor 1α (HIF1α) both transcriptional (86, 93) and 

translationally (94, 95), Increased HIF1α in turn promotes several metabolic functions, 

including glycolysis, a main energy-producing metabolic pathway. 

 

 2.2.5 Role of mTORC1 in catabolism and autophagy 

In addition to the various anabolic processes outlined above, mTORC1 also represses catabolic 

cellular functions, thus preventing the degradation of cellular components and macromolecules 

that are necessary for cell growth. One such process is autophagy, via which damaged proteins, 

cytoplasmic parts and organelles are directed to lysosomes for degradation, facilitating the 

recycling of cellular components. mTORC1 controls autophagy at several stages via the 

phosphorylation of key components of the autophagic machinery. mTORC1 inhibits autophagy 

at the stage of initiation by phosphorylating ULK1 and ATG13 (97, 98). Another target of 

mTORC1 involved in autophagy biogenesis is AMBRA1 (activating molecule in BECN1-

regulated autophagy protein 1), which is crucial for ULK1 protein stability (99). mTORC1 

inhibits the PtdIns 3-kinase activity of ATG14-containing PIK3C3 by phosphorylating ATG14, 

which is involved in the early steps of autophagy (100). In starvation, mTORC1 also 



 

phosphorylates UVRAG (UV radiation resistance-associated gene product), which normally 

associates with the HOPS complex to assist in trafficking and fusion, as well as Rab7(Ras-

related protein 7) activation. By disrupting this interaction, mTORC1 inhibits autophagosome 

maturation and the conversion of endosomes into lysosomes. (Fig 6) (101). 

 

mTORC1 also regulates autophagy in part by phosphorylating and inhibiting the nuclear 

translocation of the transcription factor TFEB, which drives the expression of genes for 

lysosomal biogenesis and the autophagy machinery, as well as the related factors MITF 

(microphthalmia-associated transcription factor) and TFE3 (transcription factor E3) 

(102,103,104). Newly formed lysosomes then break down proteins and macromolecules and 

release constituent monomers back to the cytoplasm to regenerate the pool of cellular amino 

acids, enabling reactivation of the mTORC1 pathway after prolonged starvation (105). In 

starvation, mTORC1 targets ribosomes to autophagic degradation by recruiting nuclear fragile 

X mental retardation-interacting protein 1 (NUFIP1) (106). 

 

2.2.6 Regulation of mTORC1 function 

To mediate between cellular behavior and the cellular environment, mTORC1 integrates 

upstream signals, including oxygen, growth factors, nutrient levels, energy and stress. 

mTORC1 activity oscillates depending on the nutrient availability and other environmental 

changes stimulated by feeding or fasting. Because mTORC1 initiates a resource-intensive 

anabolic program, it should only turn ‘on’ when energy, growth factors, and macromolecular 

building blocks are all plentiful. 

 

2.2.6.1 Growth factors 

mTORC1 acts as a downstream effector for growth factors and other mitogens, largely 

mediated by the tuberous sclerosis complex (TSC complex) (107). It is a heterotrimeric 

complex consisting of TSC1, TSC2 and TBC1D7, which acts upstream of Rheb (108). 

Functions as a GTPase activating protein (GAP) for Rheb, catalyzing the conversion from the 

active Rheb-GTP state to the inactive GDP-bound state (109, 110). This step is a key brake for 

mTORC1 activation. TSC activity is regulated at various levels, insulin, insulin/insulin-like 

growth factor 1 (IGF-1) activates Akt, which phosphorylates TSC2 at multiple sites to 

dissociate TSC from the lysosomal surface and releases inhibition of Rheb and mTORC1(111, 

112, 113, 114). To sustain mTORC1 activity and restore TSC at lysosomes, the mTORC1 



 

substrate S6K1 then directly phosphorylates insulin receptor substrate 1 (IRS-1) as part of a 

negative feedback loop, blocking further insulin-mediated activation of the PI3K–Akt pathway 

(115, 116). mTORC2 also phosphorylates Akt at multiple residues, thus establishing crosstalk 

between the two mTOR complexes (117). Growth factors also modulate mTORC1 activity 

independent of TSC and Rheb, by Akt phosphorylates PRAS40, leading to its sequestration by 

a cellular 14–3–3 scaffold protein and restoring mTORC1 activity (67).  The additional branch 

of growth factor signaling pathway receptor tyrosine kinase-dependent Ras signaling pathway 

activates mTORC1 via the MAP Kinase Erk and its effector p90RSK, both of which also 

phosphorylate and inhibit TSC2 (118). Wnt signaling pathway component GSK3β (glycogen 

synthase kinase-3 beta) directly phosphorylates TSC2 and regulates the activity of 

mTORC1(119). Unlike most phosphorylation events that take place on TSC2, the 

inflammatory cytokine TNFα stimulation downstream target IKKβ (inhibitor of nuclear factor 

kappa-B kinase subunit beta) directly phosphorylates the TSC1 component (120). Precisely 

how the TSC complex integrates these various signals and their relative impact on mTORC1 

activity in various contexts remains an active area of study.  

 

2.2.6.2 Nucleotides and Lipids 

mTORC1 stimulates nucleotide biosynthesis, in turn, purine levels regulate mTORC1 activity 

by either influencing RHEB farnesylation and membrane association (121) or by inhibiting 

TSC activity (122). The availability of lipids also regulates mTORC1 activity, and 

Phosphatidic acid (PA) regulates the localization and stability of mTORC1 (123). Additionally, 

in recent years, an increasing body of evidence showed that cholesterol signals directly activate 

mTORC1 at the lysosomal surface, via a mechanism that involves SLC38A9 (sodium-coupled 

neutral amino acid transporter 9) and the NPC1 (Niemann-Pick disease, type C1) cholesterol 

transporter (124, 125, 126). 

 

2.2.6.3 Oxygen, energy and glucose 

mTORC1 also responds to extracellular and intracellular stresses that are incompatible with 

growth such as hypoxia, low levels of ATP and DNA damage. Reduced intracellular ATP or 

glucose and oxygen activate master metabolic stress regulator AMPK (5′-AMP-activated 

protein kinase; also known as PRKAA1), Active AMPK directly phosphorylates TSC2 and 

RAPTOR within mTORC1 complex to reduce its activity (127,128). A recent study showed 

that glycolysis intermediate DHAP (dihydroxyacetone phosphate) as a metabolite that activates 



 

mTORC1 independently from AMPK, through an unknown mechanism (129). Hypoxia 

regulates mTORC1 activity by upregulating REDD1 (regulated in development and DNA 

damage responses 1) levels. In normoxic conditions, TSC2 is inactivated by binding to 14-3-3 

proteins. REDD1 binding to 14-3-3 proteins releases TSC2, which in turn inhibits mTORC1 

activity (130,131). 

 

2.2.6.4 Amino acids 

Amino acids are essential building blocks of protein synthesis but also sources of energy and 

carbon for many other metabolic pathways. The availability of amino acids plays a dominant 

role in regulating mTORC1 activity. A breakthrough in the understanding of amino acid 

sensing by mTORC1 came with the discovery of the Rag-GTPases, key players in amino acid 

sensing and mTORC1 regulation (132, 133). The Rags are heterodimers, consisting of RagA 

or RagB is bound to RagC or RagD, they can be found in one of two stable conformations: an 

‘on’ state, in which RagA/B is bound to GTP and RagC/D to GDP; and an ‘off’ state, Rag 

GTPases adopt the opposite nucleotide loading state (134). In amino acid sufficiency converts 

the Rags to their active nucleotide-bound state, allowing them to bind Raptor and recruit 

mTORC1 to the lysosomal surface, where Rheb is also located. The availability of amino acids 

and nutrients modulates its GTP states by upstream GEF proteins. The first identified GEF 

pentameric LAMTOR complex (comprising p18, p14, MP1, C7orf59 and HBXIP) for RagA/B 

and their interaction dependent on amino acids and the v-ATPase activity. Later another GEF 

was identified for Rag A, SLC38A9 (sodium-coupled neutral amino acid transporter 9), an AA 

transporter that resides on the lysosomal surface (139). In similar to GEFs they are two GAPs 

have been discovered GATOR1 and FLCN-FNIP2 (Folliculin, FLCN-interacting proteins 1 

and 2) (137, 138). GATOR1 has three stably interacting subunits: DEPDC5, NPRL2 and 

NPRL3, with GAP activity residing in the NPRL2 subunit. When cytosolic amino acid levels 

are reduced GATOR1 hydrolyses the GTP bound to RagA/B and inhibits the mTORC1 

pathway, but the mechanism is poorly understood (135). GATOR1 interacts with the 

pentameric complex GATOR2 (WDR59, WDR24, MIOS, SEH1L and SEC13), through an 

unknown molecular mechanism GATOR2 inhibits GATOR1 activity. The relationship 

between GATOR1 and GATOR2 activity remains one of the most intriguing challenges in the 

field of mTOR biology (136) (fig 7).  

 



 

Under acute leucine starvation, SESTRIN2 is a direct leucine sensor upstream of mTORC1 

that directly binds to GATOR2 and inactivates. Leucine binding SESTRIN2 relieves GATOR2 

inhibition and activates mTORC1 via Rags in the presence of abundant leucine levels (141, 

142). Additionally, leucine can also be sensed by LARS (leucyl-tRNA Synthetase 1) can 

activate in a Rag GTPase-dependent manner (143). Another leucine sensing mechanism 

described recently, a downstream leucine catabolic product acetyl-CoA, which acetylates 

RAPTOR and activates mTORC1 (144). Recently, SAR1B found as a leucine sensor, in leucine 

deprivation SAR1B directly binds to GATOR2 and inhibits mTORC1 activity. In leucine 

abundance, SAR1B binds to leucine, undergoes a conformational change and dissociate from 

GATOR2, which leads to mTORC1 activation. (169) (fig 7). 

 
Figure 7: The mechanism of amino acids sensing  

mTORC1 is master regulator of nutrient sensing. mTORC1 senses different amino acids 

availability. 

   

Similar to leucine, the amino acid Arginine is also regulating mTORC1 activity through 

arginine sensor CASTOR1/2 (cytosolic arginine sensor for mTORC1) binds and inactivates 

GATOR2 when arginine levels dropped, thus inactivating mTORC1 activity. When abundant 

arginine availability, arginine binds to CASTOR1 and dissociates from GATOR2 to activates 
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mTORC1 signaling (145, 146). Additionally, there is another arginine sensor on lysosomes, 

SLC38A9 is a neutral amino acid transporter that acts as a lysosomal arginine sensor. Upon 

binding to arginine, SLC38A9 activates mTORC1 in a v-ATPase- and LAMTOR-dependent 

manner (147, 148).  

Similar to leucine catabolic product, methionine downstream metabolite S-adenosylmethionine 

(SAM) also regulates mTORC1 activity through SAM sensor SAMTOR. Unlike Sestrin2 and 

CASTOR1, SAM does not signal via GATOR2, instead, SAMTOR negatively regulates 

mTORC1 by binding GATOR1 and KICSTOR under methionine or SAM deprivation (149). 

Threonine also activates mTORC1 by TARS2 (mitochondrial threonyl-tRNA synthetase 2), 

which directly binds GTP-bound RagC. TARS2 does not have a GEF domain, so the 

mechanism of GEF activity via TARS2 on Rags is unknown, there could be additional protein 

may involve (fig 7) (150).  

At present, we do not know how other amino acids impact mTORC1 activation, more research 

is required to fully understand the differential activation of mTORC1 by distinct amino acids, 

and additional direct amino acid sensors are likely to emerge soon. 

 

1.2.7 mTORC1 in physiology and pathophysiology 

The fluctuations in the availability of nutrient sources following feeding or fasting require 

alterations in whole-body metabolism to maintain homeostasis. Under starvation, levels of 

nutrients and growth factors are reduced, inducing catabolism in which energy stores are 

mobilized to maintain essential functions. Alternatively, the fed-state trigger a switch towards 

anabolic growth and energy storage. Since mTORC1 plays an important role in energy 

homeostasis, physiological studies in mice have revealed that mTOR signaling is essential for 

proper metabolic regulation at the organismal level. Modulation of proper mTORC1 signaling 

is crucial in response to nutrient status, therefore, discrepancies in mTORC1 signaling lead to 

various metabolic diseases, cancer and aging-associated diseases (151).  

 

mTORC1 plays an important role in glucose homeostasis and type 2 diabetes. Liver from 24 

hours fasted mice showed decreased 25% body weight, which was explained by changes in cell 

size but not from changes in cell number (152). Strikingly, this fasting-induced reduced cell 

size was abolished in mice with liver-specific knockouts of TSC1, Raptor, or the autophagy 

gene Atg7, suggesting that the switch from anabolism to catabolism is primarily regulated by 

mTORC1 (152,153). β-cell-specific TSC2 knock out (β-TSC2KO) mice have a biphasic effect 



 

on β-cell function, with young β-TSC2KO mice showing increased β-cell mass, higher insulin 

levels, and improved glucose tolerance. This effect was reversed when mice grow older. Thus, 

active mTORC1 in the pancreas is beneficial initially for glucose tolerance, but later it leads 

rapid decline in β-cell function over time (154,155). Ablation of S6K1 can protect against diet-

induced obesity and enhances insulin sensitivity (156) but long-term treatment of mTORC1 

inhibitors in ageing studies showed mice developed insulin resistance and immunosuppression. 

This is partly due to disruption in mTORC2- Akt-dependent insulin response. (157) 

 

WAT (white adipose tissue) is the largest reservoir of energy in the body. Active mTORC1 

increases the synthesis and deposition of triglycerides in white adipose tissue. Given the 

importance of mTORC1 role in lipogenesis and differentiation of pre-adipocytes, adipocyte-

specific Raptor knockout reduces WAT tissue mass and enhances lipolysis in mouse models, 

resistant diet-induced obesity. These defects in adipocyte expansion can drive fat deposits to 

accumulate in the liver instead, leading ultimately to hepatic steatosis and insulin resistance 

(158, 159).  

 

Surprisingly, mTORC1 kinase is rarely mutated in cancers but its upstream oncogenic nodes 

are highly mutated especially the PI3K–Akt pathway and the Ras-driven MAPK pathway. As 

a result, mTOR signaling is hyperactive in a majority of human cancers to sustain cancer cell 

growth and survival (160). The tumor microenvironment is often poorly vascularized, hence 

loss of nutrient sensing mechanism by mTORC1 may help cancer cells evade metabolic checks 

on anabolism and proliferation. However, mTORC1 inhibitors have not met success in cancer 

treatment so far, which may be largely due to the cytostatic nature of the inhibitors (161).  

 

Ageing is characterized by a progressive decline in multiple cellular and organismal functions, 

collectively described as “the hallmarks of ageing. Nutrient sensing is one of the hallmarks of 

ageing (162). Genetic inhibition of the mTORC1 signaling pathway through deletion of mTOR 

or Raptor has been shown to extend lifespan in organisms from single cellular organism yeast 

to mammals (163,164,165). In a similar line, chemical inhibition of mTORC1 with rapamycin 

also promotes longevity.  In middle-aged mice, transient rapamycin treatment not only 

increased lifespan but also promoted an improvement of healthy span (reversing age-associated 

phenotypes) (166). One of the longevity interventions is a dietary restriction or caloric 

restriction (CR), shown to extend lifespan in a wide range of organisms (162).  Given the 



 

critical role of mTORC1 in sensing nutrients and insulin, this has led many to speculate that 

the extension of lifespan in CR is due to reduced mTORC1 signaling. Indeed, CR on top of 

genetic or chemical inhibition of mTORC1 fails to confer any additional longevity benefit in 

flies, worms and yeast. This indicates an overlapping mechanism (163,165,168). 

 

In conclusion, mTORC1 is a master sensor for nutrient availability and regulates cell growth 

and homeostasis. Dysregulation of mTORC1 signaling or nutrient sensing is associated with 

various metabolic diseases and cancer.  

 

2.3 Cellular Proteolytic quality control  

In cells, proteins are continuously synthesized and degraded, a process referred to as protein 

turnover. This process is tightly regulated and helps to maintain protein homeostasis, also 

known as proteostasis. Proteostatic mechanisms are one of the cell’s most essential processes, 

as they ensure that functional proteins are maintained at their proper concentrations and in the 

right locations needed for different cellular activities (170). The continuous protein turnover is 

necessary for cells to adapt their proteomes to internal and external perturbations and eliminates 

damaged, aged and misfolded proteins. This is important for preserving cellular function 

relevant to health and disease. Disruption of proteostasis leads to various diseases such as 

neurodegeneration, inflammation, infection, cancer and ageing (172). There are two major 

intracellular quality control and recycling mechanisms that are responsible for cellular 

homeostasis, the ubiquitin-proteasome system (UPS; ubiquitin-proteasome pathway, UPP) and 

autophagy (lysosomal proteolysis pathway). They regulate various cellular functions, including 

cell signaling, cell cycle, stress response, apoptosis and protein expression. Ubiquitin- 

proteasome pathway efficiently degrades short-lived proteins and soluble unfolded/misfolded 

proteins and polypeptides. Whereas autophagy eliminates large and potentially dangerous 

cellular components such as protein aggregates and dysfunctional or superfluous organelles. 

Although autophagy and proteasome pathways operate independently, recent growing 

literature showed UPS and autophagy are also interconnected (173). 

 

2.3.1 Ubiquitin-proteosome pathway  

The proteasome (26S) is a multicatalytic, ATP-dependent protease, composed of two 

subcomplexes- a catalytic core particle (CP or 20S) and a 19S regulatory particle (RP) (Fig 8). 

The catalytic CP composed of four heptameric rings (α7β7β7α7) from seven structurally 



 

similar α and β subunits, forms a cylindrical structure with an entrance pore. The multicatalytic 

protease activity of the catalytic core particle (CP) is achieved by three distinct β - subunits, 

β1 (caspase-like), β2 (trypsin-like), and β5 (chymotrypsin-like), which cleaves peptides at their 

respective specificity and generates peptides of 2–24 amino acids, ensuring that no protein will 

remain intact after entry into the CP and providing an essential source for amino acids (174, 

175, 176). The catalytic activity of these β subunits is dependent on threonine residues at their 

N termini, which classifies the proteasome as a threonine protease, it separates from other well-

studied proteases (Cysteine, Serine and Carboxyl). The α- subunits of CP regulate the 

selectivity and entry of peptides and prevent non-selective degradation (177). The 19S 

regulatory particle (RP) associates with one or both ends of the 20S Core particle, serves to 

recognize ubiquitinated substrate proteins and prepares them for degradation in the CP. The 

regulatory particle (RP) is composed of base and lid sub-assemblies situated on both ends or 

one end of the 20S. The lid subcomplex is composed of nine subunits (Rpns 3, 5, 6, 7, 8, 9, 11, 

12, 15) and regulates several crucial functions that unfold the substrates and deubiquitylation 

(175). The base subcomplex is composed of 10 subunits, six AAA+ (ATPases associated with 

various cellular activities) ATPases (Rpt1–6) and four non-ATPase regulatory subunits (Rpns 

1, 2, 10, 13), plays an important role in ubiquitin recognition, substrate unfolding and 

translocation of the unfolded polypeptide into the catalytic chamber (175, 178, 179,180).  

 



 

Figure 8: Ubiquitin proteasome pathway 

Aged and misfolded proteins undergo ubiquitination and target to the proteasome mediated 

degradation. 

 

The targeted protein degradation by proteosome is highly regulated and well-studied. UPS 

system selectively targets for degradation of proteins tagged with ubiquitin (Ub). The 

ubiquitylation of proteins is carried out by a hierarchically acting enzymatic cascade (E1, E2, 

E3), E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating) and E3 (ubiquitin ligase) 

(181,182). In the first step, E1 creates a thiol-ester linkage between the enzyme and the 

ubiquitin polypeptide in an ATP-dependent manner. Then transferred to E2 for conjugation, 

finally, the ubiquitin is transferred to a lysine residue of a target protein by ubiquitin ligase 

enzyme (E3). This ubiquitination is the signal for proteasome-mediated degradation (183).  In 

humans, they are two known E1 enzymes, E2s are n > 50 and nearly 500 E3s, these latter 

enzymes are endowed with substrate specificity (184, 186). Specific ubiquitin linkage, length 

and structure determine the fate of the protein, K48-linked ubiquitin chain formation was 

introduced as the degradation signal for proteasomal degradation (185). Some mono-

ubiquitination alters protein localization and some are targeted for degradation by the 

proteasome. ubiquitin conjugation is readily reversible owing to the existence of numerous 

deubiquitinating enzymes. Ubiquitination not only targets proteins to proteosome-mediated 

degradation but also regulates several regulatory functions (fig 8) (172). 

 

2.3.2 Autophagy 

Autophagy is a fundamental cellular catabolic process, that eliminates subcellular elements 

(nucleic acids, proteins, lipids) and organelles, via lysosome-mediated degradation. There are 

three types of major autophagic pathways, macroautophagy, microautophagy, and chaperon-

mediated autophagy. Macroautophagy (hereafter autophagy), is a complex cellular process that 

promotes both bulk and selective degradation of damaged proteins and organelles or spare 

molecules to generate macromolecular building blocks and fuel metabolic pathways (Fig 9). 

There are 20 core autophagy proteins encoded by ATG genes, recruited to the site of 

phagophore assembly site (PAS). Nucleation and followed by expansion of the phagophore 

forms a cup-shaped structure, called a phagophore. Further expansion of phagophore by a series 

of ATG proteins engulfs cytosolic materials. The isolation membrane eventually seals into a 

double membraned vesicle, termed the autophagosome, then targeted to the lysosome, fuse 



 

with the lysosome forms an autolysosome, which is followed by the degradation of the 

autophagic body together with its cargo by the autolysosomal hydrolytic enzymes (fig 9) 

(187,188,189). 

 
Figure 9: Autophagy 

Initiation of autophagy and formation of Phagophore 2. Formation of autophagosome 3. Fusion 

of autophagosome and lysosome 4. Formation of autolysome 5.  lysosomes mediated  

degradation of  intracellular content and recycle macromolecule components. 

 

Autophagy recycles the organelles and macromolecules, replenishes amino acids, nutrients, 

produce energy and promote protein synthesis. Autophagy regulates intracellular lipid levels, 

by lipophagy. The autophagy-mediated lipolysis selectively targets lipid droplets, and 

intracellular lipid stores that serve as an energy source through the hydrolysis of triglycerides 

(TG) into free fatty acids (FFA) (190). Chaperone-mediated autophagy also regulates 

intracellular lipid homeostasis by targeting LD to lysosomes. The blockage of either 

macrolipophagy or CMA-mediated lipophagy develops hepatic steatosis (191).  Ribosomes 

also undergo autophagic degradation under nutrient starvation using NUFIP1 (Nuclear FMR1 

Interacting Protein 1) as a receptor (106). Other sub-cellular organelles also undergo 



 

autophagic degradation, such as mitochondria (mitophagy), the nucleus (nucleophagy), the ER 

(reticulophagy or ER-phagy) and lysosomes (lysophagy) (192). 

 

Mitophagy is the selective autophagic elimination of dysfunctional or surplus mitochondria, 

which is induced by an array of cellular events hypoxia, differentiation and mitochondrial 

damage. Cells possess several mitophagy mechanisms, they are classified into ubiquitin-

dependent and ubiquitin-independent (193). In functional mitochondria, PINK1 is transported 

into the inner mitochondrial membrane (IMM), and it gets cleaved by PARL protease. In 

depolarized mitochondria, membrane insertion of PINK1 is inhibited and stabilizes on the outer 

mitochondrial membrane (OMM) (194). PINK1 is activated by auto-phosphorylation leading 

to Parkin translocation to the mitochondrial surface and promoting ubiquitination at the 

mitochondrial outer membrane.  This poly-ubiquitination signals and targets mitophagy (195). 

In addition to Parkin, they are several other ubiquitin E3 ligases, such as SMURF1, Gp78, 

MUL1 SIAH1, and ARIH1 play a role in mitophagy. In addition to ubiquitin-dependent 

mitophagy, there are mitochondrial proteins that serve as mitophagy receptors, targeting 

dysfunctional mitochondria directly to autophagosomes for degradation (196, 197, 198,199).  

In yeast, ATG32 act as a receptor for mitophagy (200). In humans, The OMM proteins and 

FUNDC1 (FUN14 domain-containing protein 1), NIX (NIP3-like protein X) and BNIP3 

(BCL2 interacting protein 3) are mitophagy receptors that fine-tune mitochondrial populations 

in response to various stimuli (56, 57, 201). NIX has a critical role in programmed mitophagy 

during the maturation of erythroid cells (201). Recently, PHB2 (prohibitin) has been identified 

as a mitophagy receptor mediating parkin-dependent mitochondrial removal during energetic 

stress (202). Similar to PHB2, mitochondrial inner membrane phospholipid cardiolipin 

externalizes during mitochondrial damage and interacts with LC3 initiating a signaling cascade 

for the elimination of damaged mitochondria by autophagosomes (203). Impairment of 

mitophagy leads to various diseases, such as neurodegenerative diseases, metabolic disorders, 

myopathies, inflammation and cancer (204).  

 

2.3.3 Mitochondrial proteolytic quality control 

Mitochondria harbor an independent proteolytic system that allows for the complete 

degradation of proteins to amino acids in different mitochondrial compartments. Initially, many 

proteases were considered to be mainly quality control enzymes that remove damaged proteins 

and prevent their possible deleterious accumulation as the first line of defense against 



 

mitochondrial damage, before mitophagy could act upon them.  However, recent evidence 

indicates, mitoproteases regulate numerous mitochondrial functions by the proteolytic process 

of regulating proteins. Mitochondrial proteases were found to broadly affect mitochondrial 

functions, such as lipid homeostasis, protein import, mitochondrial gene expression, calcium 

signaling, and oxidative phosphorylation (OXPHOS) complex assembly to mitochondrial 

dynamics, mitophagy, and cell death. There are 23 peptidases exclusively localized within 

mitochondria, and others were found to shuttle between the cytosol and mitochondria. Among 

these proteases, 6 are pseudoproteases and the remaining 18 intrinsic proteases are dived into 

four functional categories processing peptidases, ATP-dependent peptidases, oligopeptidase, 

and other mitochondrial peptidases. The detailed functions of all intrinsic proteases are listed 

in table (207). Here onwards we are focusing on mainly AAA-proteases. 

Table1: List of mitochondrial proteases and its functions  

 



 

ATP-dependent proteases localized in different compartments of mitochondria and represents 

core components of the mitochondrial proteolytic system and exhibit both quality control and 

regulatory functions. These are matrix-localized LONP1, CLPP and membrane-bound YME1L 

and AFG3L2 (Fig10). LONP1 maintains matrix protein control and regulates mitochondrial 

genome maintenance. Lonp1 degrades unbound TFAM (mitochondrial transcription factor A) 

to mtDNA, TFAM is a central player in mtDNA replication, transcription and inheritance 

(208). LONP1 is upregulated in hypoxia by HIF1 and regulates mitochondrial complex IV 

activity (23). Another, matrix AAA protease CLPP targets the N- module of complex I (209), 

and a LONP1–CLPP proteolytic axis degrades the peripheral arm of respiratory complex I to 

limit ROS production in depolarized mitochondria (210). CLPP also regulates mitochondrial 

ribosomal assembly and translation by degrading ERAL1 (figure 10) (211). 

 
Figure 10: Mitochondrial AAA-proteases 

Mitochondrial AAA- protease maintains mitochondrial protein quality control in different 

compartments. 

 

The i-AAA protease YME1L faces towards the inner membrane space (IMS), composed of six 

subunits and forms a homo-oligomeric structure. YME1L interacts with scaffold protein in 

inner mitochondrial membrane SLP2 and protease PARL, forming SPY complex (SLP2–
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PARL–YME1L), which modulates membrane protein turnover (212). YME1L toghether with 

another inner mitochondrial protease OMA1 regulates mitochondrial dynamics by processing 

OPA1 (213). YME1L is essential for embryonic development and Cardiac-specific ablation of 

Yme1l in mice leads to dilated cardiomyopathy and heart failure and stabilization of OPA1 by 

deleting OMA1 restored cardiac function, suggesting the deleterious effect of mitochondrial 

fragmentation in the heart (214). Loss of YME1L in the mammalian nervous system impairs 

eye development and causes axonal degeneration. In contrast to the heart, deletion of OMA1 

in the nervous system aggravated the disease phenotypes, this may indicate the tissue-specific 

role of YME1L (or OMA1) that may be related to the different metabolic demands of neurons 

and cardiomyocytes (215). In hypoxia and nutrient deprivation conditions, YME1L is activated 

by lipid cascade and rewires the inner mitochondrial membrane (IMM) and inner mitochondrial 

space (IMS) proteome.  Upon nutrient starvation, mTORC1 is inactivated, and it no longer 

phosphorylates LIPIN1, this activated LIPIN1 decreases PS (phosphatidylserine) levels, which 

is required for the synthesis of mitochondrial PE (phosphatidylethanolamine). Reduced PE in 

the inner mitochondrial membrane activates YME1L activity and initiates proteolytic rewiring. 

This proteolytic rewiring limits mitochondrial biogenesis by modulating mitochondrial import, 

phospholipid biogenesis and metabolic homeostasis in hypoxia and nutrient starvation. 

YME1L-mediated proteolytic rewiring plays an important role in pancreatic ductal 

adenocarcinoma (PDAC) tumorigenesis. In addition, YME1L-mediated proteolytic rewiring 

mitochondria is critical for cellular adaptation to oxygen and nutrient starvation (93). YME1L 

influences pyrimidine biosynthesis and regulates innate immune response in a cGAS-STING 

dependent manner (216).  

 

Another AAA protease AFG3L2 (m-AAA) localized in the inner mitochondrial membrane and 

its catalytic domain faces towards the matrix. AFG3L2 is composed of six subunits, either from 

homo-oligomeric structures or hetero-oligomeric structures with SPG7 (paraplegin) (217). 

Mutations in genes encoding m-AAA protease subunits have been associated with 

neurodegeneration and neuronal loss in humans. Recessive mutations in SPG7 (paraplegin) 

cause hereditary spastic paraplegia (HSP7), it’s an autosomal recessive disorder that causes 

progressive bilateral lower limb weakness and urinary urgency due to degeneration of motor 

axons of the cortico-spinal tracts (218). Mutation in genes encoding the AFG3L2 protease 

subunit causes spinocerebellar ataxia type 28 (SCA28), which is accompanied by the loss of 

Purkinje cells. spinocerebellar ataxia type 28 is an autosomal dominant disorder, rare ataxia 



 

with early onset, which is characterized by progressive gait and limb ataxia with eye movement 

abnormalities due to cerebellar abnormalities (219). Given the pleiotropic functions of m-AAA 

proteases in mitochondria, the pathogenic cascade in these diseases remains unclear. 

 

AFG3L2 maintains protein quality control in the inner mitochondrial membrane and matrix, 

one of the best characterized substrates is MRPL32. Mitochondria lacking AFG3L2 affects 

mitochondrial assembly and mitochondrial protein synthesis (220). Loss of AFG3L2 activates 

OMA1 and promotes mitochondrial fragmentations, however, OMA1-mediated mitochondrial 

fragmentation apparently does not play a prominent role in axonal degeneration in AFG3L2-

deficient neurons (221). AFG3L2 regulates mitochondrial calcium homeostasis by regulating 

the function of the mitochondrial Ca2+ uniporter (MCU) complex. m-AAA degrades non-

assembled EMRE subunits and thereby ensures MCU assembly and mitochondrial Ca2+ 

homeostasis. In the absence of AFG3L2, accumulated EMRE assembles with MCU and forms 

a constitutively active MCU complex, leading to mitochondrial Ca2+ overload, the opening of 

the mitochondrial membrane permeability transition pore (mPTP), and inducing cell death 

(222, 223). Therefore, it is very important to have tight regulation of mitochondrial calcium 

homeostasis in neurons, Given the evidence, it has been proposed that neuronal cell death 

observed in the SCA28 mouse model may come from calcium-induced (overload). However, 

the deletion of MCU a Purkinje cell specific Afg3l2 mouse model did not rescue neuronal death 

(224). MitoTagmice cell type specific profiling of brain mitochondria revealed Purkinje cells 

express very lower levels of MCU, may be lower expression levels of MCU could be the reason 

not able to rescue neuronal death in AFG3L2 knockout (227). Recent findings suggests that 

Ca2+ /H+ exchanger TMBIM5 binds and inhibits the AFG3L2 activity (230) However, it is also 

very important to understand AFG3L2-mediated proteolytic rewiring and find novel substrates. 

 

 
 
 

 

 

 

 

 

 



 

 

 
3. Aim of the thesis 
 
Molecular oxygen sustains intracellular bioenergetics and is consumed by more than 400 

biochemical reactions, making it essential for most species on Earth. Reduced oxygen 

concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and 

is a prominent feature of pathological states encountered in inflammation, bacterial infection, 

cardiovascular defects, wounds, and cancer. Despite the fundamental importance of oxygen in 

human physiology and disease, we currently lack a complete understanding of how the 

mitochondrial proteome adapts fluctuations in oxygen tensions. 

 

1. In this study, first aim is to study protein turnover changes in hypoxia.  

2. Mitochondrial protein quality control is mainly governed by mitochondrial proteases. 

Here we aimed to identify mitochondrial proteases responsible for reshaping the 

mitochondrial proteome in hypoxia.  
3. How this proteolytic rewiring helps cells to adapt to hypoxia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4. Materials and Methods 

All the original data including metabolomics and proteomics are duly stored in the Maxplanck 

institute for biology of ageing servers and accessible to all lab members. 

 

If not mentioned otherwise, all the chemicals were purchased from Sigma, Merck and Roth. 

 

4.1 Cell biology 

4.1.1 Cell culture 

All cell lines were cultured in a humidified incubator at 37oC with 5% CO2. Cells were grown 

with DMEM -GlutaMAX (4.5grams/Liter glucose) supplemented with 10% fetal bovine 

(Sigma; F7524) serum and 1mM sodium pyruvate.  All reagents were purchased from Gibco 

otherwise mentioned. 

Performing hypoxia experiments, cells were cultured in a hypoxia chamber (Don Whitley 

Scientific) at 37oC with 5% CO2 and oxygen 0.5%.  Culture media and supplements are similar 

to the above culture conditions.   

Normoxia experiments, cells were grown at 37oC with 5% CO2 and oxygen 21%.  

All cells were cultured without antibiotics and routinely checked for mycoplasma 
contamination. The cell number was counted with trypan blue using Themo Countess 
automated cell counter. 
 
 
Cell line Source 

Hela wildtype ATCC 

MEF wildtype ATCC 

HeLa AFG3L2-/- Yvonne Lasarzewski 

MEF CLPP wildtype & Knockout Trifunovic Lab 

MEF 4E-BP wildtype & Knockout  K. Winklhofer Lab 

MEF TSC2 wildtype & Knockout  Demetriades Lab 

MEF ATG5 wildtype & Knockout  McBride Lab 



 

  
 
 
4.1.2 Transfection of siRNA and esiRNA 

Cells were transfected with Lipofectamine RNAiMAX (Thermo) and incubated for 72 hours 

(media change at 24 hours). All the esiRNA were purchased from Sigma, for negative control 

esiRNA targeted to GFP was used. Human Lonp1 esiRNA (EHU072201) and NCLX or 

SLC8B1(EHU154091).  

 

4.2 Biochemistry 

4.2.1 Isolation of crude mitochondria 

Crude mitochondria were isolated from TSC2 wildtype and TSC2 -/-, cells were harvested at 

80% confluency and incubated with isotonic homogenization buffer (220 mM Mannitol, 70mM 

Sucrose, 20 mM HEPES-KOH (pH 7.4), 1x complete protease inhibitor (ROCHE) for 15 

minutes at 4oC. Cells were homogenized twice using homgen (Schuett Biotech), at 1000 RPM, 

2 seconds pulse for 10 times. After first rounds of homogenization After the first rounds of 

homogenization intact cells and cell debris were isolated by centrifugation at 1,000 g for 10 

min at 4°C.  The pellet was resuspended with isotonic homogenization buffer and repeat 

homogenization. The pooled supernatants were centrifuged at 8,000 g for 10 min at 4 °C to 

obtain the crude mitochondrial fraction. Isolated crude mitochondria can be stored at -80°C. 

 

4.2.2 SDS-PAGE and immunoblotting 

Cells were suspended with RIPA buffer (50 mM Tris-HCl pH 7.4, 1% TX-100, 0.1% SDS, 

0.5% Sodium Deoxycholate, 1 mM EDTA, 150 mM Sodium Chloride, 1x Complete protease 

inhibitor (Roche), 1x phosphatase inhibitor (PhosSTOP, Roche)) and incubated for 30 minutes 

on ice. After lysis cell were centrifuged at 15000 RPM for 10 min. Then, Collected supernatant 

and quantified protein concentration with Bradford assay. 50-100µg of total protein mixed with 

LDS Sample Buffer (Invitrogen) were separated using SDS-PAGE (Schägger & von Jagow, 

1987). Depending on the desired protein of interest 8-12% Tris/ Tricine gels were used. 

SeeBlue Plus2 Pre-Stained Protein Standard (Thermo) was used as a size reference. After 

separation of proteins were transferred to nitrocellulose membrane (GE Amesham). 

Immunoblotting was performed using antibodies as listed in Table. All antibodies were diluted 

in 5% milk in TBS/T (TBS, 0.05% Tween-20, 0.02% NaAz). For chemiluminescent detection 

Western Bright ECL (Roth) or Super Signal West Femto Maximum Sensitivity substrate 



 

(Thermo) was used and the signal was obtained using Chemostar Touch ECL & Fluorescene 

Imager (Intas).  

 

Antibody Supplier dilution 

SDHA Abcam (ab14715) 1:20000 

CLPP Sigma (SAB4100123) 1:2000 

ALDH4A1 Abcam (ab181256) 1:2000 

ALDH18a1 Abcam (ab127829) 1:5000 

NADK2 Abcam (181028) 1:2000 

TIMMDC1 Abcam (ab171978) 1:5000 

GAPDH Santa Cruz (sc-32233) 1:10000 

HIF1-a Cayman Chemical 

(10006421) 

1:2000 

Vinculin Cell signaling (#13901) 1:10000 

S6 Cell signaling (mAb#2217) 1:5000 

pS6 (Ser235/236) Cell signaling (#2211) 1:5000 

TIMM17A Gene Tex (16468) 1:2000 

DNAJC15 Proteintech (16063-1-AP) 1:1000 

PRELID1 Fisher scientific (16867553) 1:2000 

AFG3L2 Biogene  1:1000 

LONP1 Sigma (HPA002192) 1:2000 

TUBULIN Santa Cruz (sc-5286) 1:10000 

 

 

4.2.3 Measurement of oxygen consumption rate (OCR) 

Mitochondrial respiration was measured by Seahorse analyser XFe96 with mito stress test kit 

(Agilent; 103015) according to the manufacturer’s protocol. 40000 MEF cells were seeded per 

well on XFe96 plate, next day (24 hours) media was exchanged with fresh media containing 

torin (200nM) and glutamine starvation media. After 3 hours cells were washed with assay 

medium and add 180µl media with the above mentioned compounds and incubated for 1 hour 

at 37c in the non-CO2 chamber. OCR was measured with subsequent injections of the 

following compounds (Oligomycin 2 μM, FCCP or CCCP 0.5 μM, Rotenone+Antimycin A 



 

0.5 μM each). After the assay, Diverse parameters of mitochondrial functions were calculated 

by the Seahorse XF report generator (Agilent WAVE). 

 

4.3 Proteomics 

SILAC measurement 

 MEF cells were grown for 5-7 doubling times in the presence of heavy amino acids (N15 

Arginine and Lysine). Later switched to media containing light amino acids (N14 Arginine & 

Lysine), collected cells at different time points (0, 4, 8 &12 hours). Washed with PBS and snap 

freeze with liquid nitrogen. 

Reagents used in SILAC labeling  

 DMEM without Arginine, Lysine & Glutamine (Silantes, # 280001300) 

- 100x PSG (Penicillin-Streptomycin-Glutamine) (Gibco, # 10378016) 

- dialyzed FBS (Gibco, # 26400044) 

- Arginine (0, 6, 10) (labeled amino acids from Silantes) 

- Lysine (0, 4, 8) (labeled amino acids from Silantes) 

 

Protein digestion for proteomics 

Cell pellet were lysed in 1% sodium laurate by sonication and heating to 70 °C for 20 min. 

Centrifuge at 12500 RPM/10 minutes and transfer samples to new low binding protein tube. 

40µl sample is used for digestion, proteins were reduced with and alkylated using 10 mMTCEP 

(tris-(2-carboxethyl)-phosphine) and 55 mM CAA (2-chloroacetamide) (45 min, room 

temperature in the dark), respectively. Then add Lys C (Wako) (1µg/µL) as Pre-Digestion (not 

more than 1µl, Lys C:100 protein) shake for 2hours at 37°C. Add Trypsin (1µg/µL) (Sigma) 

(not more than 1µl, 1 trypsin:100 protein) shake overnight at 37°C 550rpm. stoped digestion 

with 10% TFA by adding 5 x digestion volume, SDC will precipitate. centrifuge (10min,12600 

rpm, RT) and transfer supernatant (contains peptides) to new LoBind Protein Tube.  

After digestion, estimated protein concentration with BCA method and desalted peptides with 

SDBRPS Stage Tip technique. 

• SDBRPS resin 

• Methanol 

• Buffer A (80% Acetonitril, 0,1% Formaldehyd 

• Buffer B (0,1% Formaldehyd) 

• Buffer E (prepare fresh, 60% Acetonitrile, 1% Ammoniumhydroxid) 



 

• Buffer R 

Materials used in Stage Tip technique.  

Peptides were desalted on a magnet using 2 x 200 µL acetonitrile. Peptides were eluted in 10 

µL 5% DMSO in LC-MS water (Sigma Aldrich) in an ultrasonic bath for 10 min. Formic acid 

and acetonitrile were added to a final concentration of 2.5% and 2%, respectively. Samples 

were stored at -20°C before subjection to LC-MS/MS analysis. 

 

Liquid Chromatography and Mass Spectrometry 

 

LC-MS/MS instrumentation consisted of an Easy-LC 1200 (Thermo Fisher Scientific) coupled 

via a nano-electrospray ionization source to an Exploris 480 or QExactive HF-x mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany). An in-house packed column 

(inner diameter: 75 µm, length: 40 cm) was used for peptide separation. A binary buffer system 

(A: 0.1 % formic acid and B: 0.1 % formic acid in 80% acetonitrile) was applied as follows for 

a total gradient time of 90 minutes: Linear increase of buffer B from 4% to 27% within 70 min, 

followed by a linear increase to 45% within 5 min. The buffer B content was further ramped to 

65 % within 5 minutes and then to 95 % within 5 minutes. 95 % buffer B was kept for a further 

5 min to wash the column.  Prior to each sample, the column was washed using 5 µL buffer A 

and the sample was loaded using 8 µL buffer A. The RF Lens amplitude was set to 55%, the 

capillary temperature was 275°C and the polarity was set to positive. MS1 profile spectra were 

acquired using a resolution of 120,000 (at 200 m/z) at a mass range of 320-1150 m/z and an 

AGC target of 1 × 106.  For MS/MS independent spectra acquisition, 48 equally spaced 

windows were acquired at an isolation m/z range of 15 Th, and the isolation windows 

overlapped by 1 Th. The fixed first mass was 200 m/z. The isolation center range covered a 

mass range of 357–1060 m/z. Fragmentation spectra were acquired at a resolution of 15,000 at 

200 m/z using a maximal injection time of 22 ms and stepped normalized collision energies 

(NCE) of 26, 28, and 30. The default charge state was set to 3. The AGC target was set to 3e6 

(900% - Exploris 480, 1e6 for QExactive HF-x). MS2 spectra were acquired in centroid mode. 

 

Analyze SILAC data: 

To analyze pulse SILAC DIA data, a library was first created using the Spectronaut’s Pulsar 

search engine using the direct DIA approach applying default settings. The reference Mus 

Musculus (21984 entries, downloaded September 2019). Data were exported on the precursor 



 

level and the H/L ratios were calculated. Precursor information were aggregated to the protein 

level using the median of uniquely identified modified peptide sequences. 

To calculate the incorporation rates, the remaining heavy fraction was determined by 

calculating the natural logarithm of H/L / (H/L + 1).  Calculated model fit and determined 

protein turnover rate constant K. The filter applied on r (regression coefficient) values less than 

0.85.  

To determine cell doubling time, 5000 cells were seeded in 6 well plates and collected cells 

every 24 hours for five days. Then calculated cell doubling time with  

 

µ = ( (log10 N - log10 N0) 2.303) / (t - t0) 

 

µ= Growth rate constant 

Cell doubling time for normoxia was 21.6 hours and hypoxia 27.6 hours. 

 

Then we subtracted cell doubling time with protein turnover rate constant  

K-LN (2)/ doubling time 

After correcting protein turnover with cell doubling time, calculated protein half-lives. 

 

T1/2 =ln(2)/K 

The filtered applied to protein half- lives above 300 hours and calculated the difference in the 

protein half-lives percentage. 

 

 

For TSC2 knockout SILAC proteomics experiment was similar to the above-mentioned 

protocol except for determining the protein turnover rate constant and cell doubling time. In 

the Tsc2 knockout SILAC experiment there was no difference in the incorporation of light 

amino acids and also no difference in the light-to-heavy ratios between wildtype and knock 

out. Hence protein degradation rates were determined by calculation of heavy intensities.  First, 

we calculated Area Under Curve (AUC) for heavy intensities and performed a t-test. 

 

 

 

 



 

4.4 Metabolomics 

Extraction:  

4x105 cells were seeded, after 24 hours cells were treated with a 1:1 ratio labeled glutamine and 

unlabeled glutamine for 10 hours. Washed cells with the wash buffer (75 mM ammonium 

carbonate, pH 7.4) and the plates were snap frozen in the liquid nitrogen. 400µl of extraction 

buffer (acetonitrile:methanol:H2O=4:4:2, -20°C) was added to the wells, scraped and repeated 

three time extraction and centrifuged at 21000g for 10 minutes at 4oC. The supernatants were 

dried by vacuum centrifugation (Labogene) for 6 hours at 20°C while the pellets were used for 

protein quantification after lysed in the buffer (50 mM Tris- KOH pH 8.0, 150 mM NaCl, 1% 

SDS) by BCA assay (Thermo; 23225). No internal standard was added for the isotopologue 

tracing experiments. Isotopologues used in the experiments are as follows: 13C5 L- glutamine 

(Sigma; 605166). 

 

Semi-targeted liquid chromatography-high-resolution mass spectrometry-based (LC-HRS-

MS) analysis of amine-containing metabolites: 

The LC-HRMS analysis of amine-containing compounds was performed as described 

previously (225)  

In brief: 50 µL of the available 150 µL of the above mentioned (AEX-MS) polar phase was 

mixed with 25 µl of 100 mM sodium carbonate (Sigma), followed by the addition of 25 µl 2% 

[v/v] benzoylchloride (Sigma) in acetonitrile (UPC/MS-grade, Biosove, Valkenswaard, 

Netherlands). Derivatized samples were thoroughly mixed and kept at 20°C until analysis.  

For the LC-HRMS analysis, 1 µl of the derivatized sample was injected onto a 100 x 2.1 mm 

HSS T3 UPLC column (Waters). The flow rate was set to 400 µl/min using a binary buffer 

system consisting of buffer A (10 mM ammonium formate (Sigma), 0.15% [v/v] formic acid 

(Sigma) in UPC-MS-grade water (Biosove, Valkenswaard, Netherlands). Buffer B consisted 

of acetonitrile (IPC-MS grade, Biosove, Valkenswaard, Netherlands). The column temperature 

was set to 40°C, while the LC gradient was: 0% B at 0 min, 0-15% B 0- 4.1min; 15-17% B 4.1 

– 4.5 min; 17-55% B 4.5-11 min; 55-70% B 11 – 11.5 min, 70-100% B 11.5 - 13 min; B 100% 

13 - 14 min; 100-0% B 14 -14.1 min; 0% B 14.1-19 min; 0% B. The mass spectrometer (Q-

Exactive Plus, Thermo Fisher Scientific) was operating in positive ionization mode recording 

the mass range m/z 100-1000. The heated ESI source settings of the mass spectrometer were: 

Spray voltage 3.5 kV, capillary temperature 300°C, sheath gas flow 60 AU, aux gas flow 20 

AU at 330°C and the sweep gas was set to 2 AU. The RF-lens was set to a value of 60.  



 

Semi-targeted data analysis for the samples was performed using the TraceFinder software 

(Version 4.1, Thermo Fisher Scientific). The identity of each compound was validated by 

authentic reference compounds, which were run before and after every sequence. Peak areas 

of [M + nBz + H]+ ions were extracted using a mass accuracy (<5 ppm) and a retention time 

tolerance of <0.05 min. Areas of the cellular pool sizes and the isotopologue enrichment values 

were calculated as described in the AEX-MS method. 

 

Anion-Exchange Chromatography Mass Spectrometry (AEX-MS) for the analysis of 

anionic metabolites  

Extracted metabolites were re-suspended in 150 µl of UPLC/MS grade water (Biosolve), of 

which 100 µl were transferred to polypropylene autosampler vials (Chromatography 

Accessories Trott, Germany) before AEX-MS analysis.  

The samples were analysed using a Dionex ionchromatography system (Integrion Thermo 

Fisher Scientific) as described previously (226). In brief, 5 µL of polar metabolite extract were 

injected in push partial mode, using an overfill factor of 1, onto a Dionex IonPac AS11-HC 

column (2 mm × 250 mm, 4 μm particle size, Thermo Fisher Scientific) equipped with a Dionex 

IonPac AG11-HC guard column (2 mm × 50 mm, 4 μm, Thermo Fisher Scientific). The column 

temperature was held at 30°C, while the auto sampler was set to 6°C. A potassium hydroxide 

gradient was generated using a potassium hydroxide cartridge (Eluent Generator, Thermo 

Scientific), which was supplied with deionized water (Millipore). The metabolite separation 

was carried at a flow rate of 380 µL/min, applying the following gradient conditions: 0-3 min, 

10 mM KOH; 3-12 min, 10−50 mM KOH; 12-19 min, 50-100 mM KOH; 19-22 min, 100 mM 

KOH, 22-23 min, 100-10 mM KOH. The column was re-equilibrated at 10 mM for 3 min.   

For the analysis of metabolic pool sizes the eluting compounds were detected in negative ion 

mode using full scan measurements in the mass range m/z 77 – 770 on a Q-Exactive HF high 

resolution MS (Thermo Fisher Scientific). The heated electrospray ionization (ESI) source 

settings of the mass spectrometer were: Spray voltage 3.2 kV, capillary temperature was set to 

300°C, sheath gas flow 50 AU, aux gas flow 20 AU at a temperature of 330°C and a sweep gas 

glow of 2 AU. The S-lens was set to a value of 60.  

The semi-targeted LC-MS data analysis was performed using the TraceFinder software 

(Version 4.1, Thermo Fisher Scientific). The identity of each compound was validated by 

authentic reference compounds, which were measured at the beginning and the end of the 

sequence. For data analysis the area of the deprotonated [M-H+]-1 or doubly deprotonated [M-



 

2H]-2 isotopologues mass peaks of every required compound were extracted and integrated 

using a mass accuracy <5 ppm and a retention time (RT) tolerance of <0.05 min as compared 

to the independently measured reference compounds. For the pool size determination, the areas 

of the cellular pool sizes were derived from the sum of all isotopologues. These areas were then 

normalized to the internal standards, which were added to the extraction buffer, followed by a 

normalization to the protein content of the analyzed sample. The relative monoisotope 

distribution was calculated from the proportion of the peak area of each isotopologue towards 

the sum of all isotopologues, while the 13C enrichment, namely the summed area of 13C 

molecules traced in the sum of all isotopologues was calculated by multiplying the peak area 

of each isotopologue with the proportion of the 13C and the 12C carbon number in its 

corresponding isotopologue. The obtained 13C areas of each isotopologue are subsequently 

summed up, providing the absolute 13C enrichment. Dividing this absolute 13C area by the 

summed area of all isotopologues provides the relative 13C enrichment factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

5.Results  

5.1 Hypoxia regulates protein turnover:  

Hypoxia stimulates the transcriptional program by stabilizing HIF-a and helps to transcribe 

various genes involved in metabolism, angiogenesis, erythropoiesis and stem cell fate, etc. 

Though hypoxia-mediated transcriptional programs are well studied but post-translational 

program are less understood. To comprehensively analyze the post-translational regulation of 

hypoxia, we have employed a methodology that combines metabolic isotopic labeling i.e. 

dynamic pulse SILAC (Stable Isotope Labelling with Amino Acids in Cell Culture) approach. 

This enabled us to measure global endogenous protein turnover. Cells were cultured in heavy 

amino acids labeled with (Arginine & Lysine N15) for 5-7 doubling times and later shifted to 

light amino acids (Arginine & Lysine N14) and collected at different time intervals (0,4,8,12 

hours) in both normoxia and hypoxia (Fig 5.1A). Later measured heavy and light intensities in 

Mass spectrometry.  Using these measurements, we calculated model fit and protein turnover 

rate constant(K). The critical protein turnover parameter (K), corresponds to the time it takes 

for a cell’s pre-existing pool of proteins to be reduced to half, this is certainly true for non-

proliferating cells (non-dividing cells), but in proliferating cells, the pre-existing protein pool 

will be reduced to half with every cell division even without any active protein degradation. In 

proliferating cells, the cell division rate must be taken into account and should be included 

(171,229). We have determined the cell division rate of the cells in both normoxia and hypoxia 

and calculated protein turnover rates. From the protein turnover rate, we calculated protein 

half-lives (calculations and formulas are described well in materials & methods).  

 

We have observed >10% of total proteome having faster protein turnover in hypoxia. The 

median protein half-lives of the cellular proteome are around 25 hours (Fig 5.1B) and HIF-a 

target genes have faster protein turnover e.g., glycolysis metabolic proteins, when we perform 

Reactome analysis for faster turnover proteins to understand the biological pathways affected, 

it shows metabolism, membrane trafficking, SUMOylation, Notch signaling & P53 mediated 

transcription being the top most affected pathway. Recently it has been shown that 

mitochondrial i- AAA protease YME1L rewires mitochondrial proteome under hypoxia (94). 

Here we could successfully identify YME1L substrates, indicates that robustness of the data. 
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5.1. Hypoxia dependent protein turnover.
A.Schematic depiction of experiment flow for dynamic SILAC in hypoxia. B. Volcano plot representation 
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As we know mitochondria are a hub for metabolism, we further investigated mitochondrial 

protein turnover in detail. When comparing total mitochondrial proteome >10% mitochondrial 

proteins have faster turnover in hypoxia. Mitochondrial faster turnover proteins are distributed 

to different sub-compartments of mitochondria. The majority of the faster turnover proteins are 

located in the matrix, inner mitochondrial membrane, and inner mitochondrial space (IMM 

&IMS). This is similar to mitochondrial protein distribution (Fig 5.2A). To identify biological 

pathways affected under hypoxia, we have used Reactome pathway analysis and found TCA 

cycle, ETC and metabolism are the most affected pathway under hypoxia( Fig 5.2B).  When 

we carefully assessed the metabolism affected faster turnover proteins, we found proline 

metabolic proteins have faster turnover in hypoxia (Fig 5.2C). Indeed, we further confirmed 

with immunoblot, NADK2 levels were increased and ALDH4a1 levels were reduced in 

hypoxia. ALDH18a1 levels were not changed under hypoxia. (5.3A).  

These results indicate hypoxia regulates protein turnover of proline metabolism. Hypoxia 

regulates mitochondrial protein turnover at different subcompartments of mitochondria. The 

only subset of mitochondrial proteins (>10%) has faster turnover, indicating it may not be a 

general protein turnover like autophagy or mitophagy. Mitochondria proteolytic quality control 

largely governed by mitochondrial proteases and plays an important role in hypoxia. Then we 

further investigated the role of mitochondrial proteases in faster protein turnover under 

hypoxia. 
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5.2 Hypoxia activates AFG3L2 dependent proteolysis: 

Since ALDH4a1 is a matrix protein we screened for matrix proteases responsible for its 

degradation. Three proteases regulate mitochondrial matrix protein quality control (207), 

CLPP, LONP1 and AFG3L2. To find protease active upon hypoxia and degrades ALDH4a1, 

we screened all three proteases under hypoxia.  Wild type and CLPP KO were cultured in both 

normoxia and hypoxia and Aldh4a1 levels didn’t affect in loss of CLPP (Fig 5.3C). We further 

explored to find possible protease, knockdown of lonp1 using small interfering RNA (esiRNA) 

didn’t affect the levels of ALDH4a1 levels in hypoxia (Fig 5.3E). Since, previously showed 

that i-AAA protease YME1L activates upon hypoxia and rewires mitochondrial proteome (94), 

we tested the role of AFG3L2 is an m-AAA protease in ALDH4a1 degradation. The loss of 

AFG3L2 stabilizes ALDH4a1 levels in hypoxia but not in wildtype (Fig 5.3B). This result 

indicates that AFG3L2 is active under hypoxia. To confirm further confirm AFG3L2-mediated 

proteolysis upon hypoxia, cells were cultured in hypoxia in the presence of cycloheximide 

(CHX) and collected at different time intervals. In wild-type cells, AFG3L2 possible substrates 

were degraded with time but not in AFG3L2 KO cells (Fig 5.3D). This further confirmed that 

reduced levels of possible substrates of AFG3L2 due to proteolysis. These results suggest that 

AFG3L2 is activated in hypoxia and regulates the mitochondria proteolysis. 
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5.3 AFG3L2 rewires mitochondrial proteome in hypoxia:  

To better understand the proteolytic rewiring of AFG3L2, cells were cultured in normoxia and 

hypoxia and quantitative proteomics was performed (Fig 5.4A). We performed a two-way 

ANOVA (ANOVA) analysis on the data to understand the genotypic and treatment interaction. 

Principal component analysis (PCA) of the combined data from wildtype and AFG3L2 

knockout suggested marked differences in their response to hypoxia ( component1) and there 

were also marked difference in genotype-dependent changes (component 2) (Fig 5.4B). There 

are 1780 proteins significantly changed in two-way ANOVA analysis and mapped into 11 

clusters. Clusters from 1- 6 show proteins that were reduced upon hypoxia whereas clusters 

from 7-11 show proteins accumulated upon hypoxia (Fig 5.4 C, D). Cluster 1 proteins showed 

reduced levels in hypoxia in wild-type cells but were stable or unchanged in cells lacking 

AFG3L2. Among cluster 1 proteins there are 72 proteins were mitocarta 3.0 positive (Fig 5.4E). 

Proteins reduced in cluster 1 mitochondrial proteins could be AFG3L2 substrates. Then we 

mapped these 72 cluster 1 proteins to their sub-localization within the mitochondria. The 

majority of the proteins were localized either to the matrix or to the inner mitochondrial 

membrane (IMM) (Fig 5.4E). Since AFG3l2 is an m-AAA protease localized at the inner 

mitochondrial membrane (IMM) and faces towards matrix, sub-localization of cluster 1 

mitochondrial proteins high likely AFG3L2 substrates. We also observed some of the YME1L 

substrates were stable in cells lacking AFG3L2 in hypoxia, this indicate that there is across-

talk between AFG3L2 and YME1L activity. The  number of total mitochondrial proteins 

decreased in hypoxia are 328, out of which 23% proteins are AFG3L2 dependent (Fig 5.4F). 

These putative substrates of AFG3L2 play several important roles in various cellular functions 

such as ETC, mitochondrial protein imports, ß- oxidation, glutathione metabolism, etc.  

These results indicate that AFG3L2 rewires mitochondrial proteome in hypoxia and maintains 

homeostasis in normoxia. Mitochondrial proteases YME1L and AFG3L2 reshape the 

mitochondrial proteome in hypoxia, helping cells to adapt to low oxygen tension. 
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5.4 mTORC1 regulates the mitochondrial function  

 

It has been known that oxygen availability regulates mTORC1 activity (58). Here we 

monitored mTROC1 role in mitochondrial function using various OXPHOS modulators. To 

test mitochondrial bioenergetics under mTORC1 inhibition, cells were treated with either torin 

or glutamine starvation (Fig 5.5 B). Under the inhibition of mTORC1, basal respiration and 

ATP production are reduced (Fig 5.5 C,D). In addition to this, spare respiratory capacity is 

decreased, caused by either a loss of ETC integrity or decreased substrate availability (Fig 

5.5E).  These results suggest that mTORC1 regulates mitochondrial biogenetics. 
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5.5. mTORC1 regulates mitochondrial function
A.Illustration of XF cell mito stress test profile, showing the key parameters of mitochondrial function.
B. Representive seahorse analysis of OCR in MEF cells in the pressence of torin (200nM) and 
glutamine starvation for 4 hours. C, D, E. Calculation of ATP production, basal respiration and 
maximal respiration based on seahorse OCR analysis (n=3, mean /SD).  



 

 

 

 

 

 

 

5.5 Inhibition of mTORC1 promotes AFG3L2-dependent proteolysis:  

Hypoxia is the one of the main regulators of mTORC1 signaling (58) and mTORC1 regulates 

mitochondrial function, we tested whether hypoxia induced AFG3L2 dependent proteolysis is 

dependent on mTORC1. We tested mTORC1 role in AFG3L2 activation, cells were treated 

with mTORC1 inhibitors Rapamycin and Torin (active site inhibitor of mTORC1). Upon 

inhibition of mTORC1, AFG3L2 substrates levels were reduced in wildtype cells but not in 

cells lacking AFG3L2 (Fig 5.6A).  Amino acid availability regulates mTORC1 activity (60), 

so to check the role of nutrient availability in AFG3L2 mediated proteolysis, the cells were 

starved with either glutamine or amino acids are showed enhanced AFG3L2 dependent 

proteolysis (Fig 5.6B, C).  When the addition of amino acids to the starved cells showed 

inhibition of AFG3L2-dependent proteolysis (Fig 5.6C). These results collectively suggest that 

inhibition of mTORC1 promotes AFG3L2-dependent proteolysis.  
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5.6 mTORC1 inhibits AFG3L2-dependent proteolysis:  

To further investigate the role of  mTORC1 in the AFG3L2-dependent proteolysis, we have 

used TSC2 (Tuberous Sclerosis Complex 2) knock-out cells, which are constitutively active 

for mTORC1 (Fig 5.7A) (107). Lack of TSC2 showed an accumulation of AFG3L2 substrates 

and this can be reversed by the addition of torin(Fig5.7B). We further confirmed active 

mTORC1 inhibition of AFG3L2 dependent proteolysis using quantitative proteomics. We 

isolated crude mitochondria from wild-type and knock-out cells and performed label-free 

quantitative proteomics (Fig 5.7C). The TSC2 KO cells showed accumulation of AFG3L2 

substrates when compared to the wild type and ALDH4a1 is one of the highly accumulated 

proteins in the cells lacking TSC2 (Fig 5.7D). These results indicate that mTORC1 activation 

inhibits AFG3L2-dependent proteolysis.  

Since mTORC1 regulates mitochondrial proteome at various levels of transcription, 

translation, and post-translation (91, 92), to confirm that accumulated proteins of AFG3L2 

substrates are not due to general regulation of mTORC1. We employed a dynamic pulse SILAC 

(Stable Isotope Labelling with Amino Acids in Cell Culture) approach to monitor protein 

degradation kinetics. Cells were cultured in heavy amino acids (Arginine N15 & Lysine N15) 

for 5-7 doubling times and later shifted to light amino acids (Arginine N14 & Lysine N14) and 

collected at different time intervals after which measured heavy and light intensities were 

measured by Mass spectrometry (Fig 5.8A). We calculated the incorporation rate and light-to-

heavy ratio (L/H) and didn’t see any difference in wild type and TSC2 knockout. This indicates 

that there is no dilution effect or proliferation difference influenced protein turnover between 

wild type and TSC2 KO (Fig 5.8 B, C). Then we calculated the area under the curve (AUC) 

for heavy intensities and monitored proteins stability. In total proteome among significantly 

changed proteins, its stability and degradation are equipoised but mitochondrial proteins are 

more stable in TSC2 KO compared to wildtype (Fig 5.8 D, E). This could be due to either 

inhibition of mitophagy and inhibition of mitochondrial proteases YME1L. We further 

investigated the stability of AFG3L2 substrates stability and found the majority of the AFG3L2 
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substrates were significantly stable in TSC2 KO compared to the wild type (Fig 5.8F).These 

results further confirmed that mTORC1 inhibits AFG3L2-dependent proteolysis.  

 

 

 

 

5.7 Regulatory mechanism of AFG3L2 dependent proteolysis: 

 

AFG3L2 dependent proteolysis is independent of mTORC1 mediated translation:  

mTORC1 promotes protein synthesis by phosphorylating a plethora of substrates. The two 

well-established substrates of mTORC1 signaling on protein synthesis are the eukaryotic 

translation initiation factor 4E (eIF4E) -binding protein and ribosomal protein S6 kinases (S6K) 

(60). Recent reports showed that mTROC1 promotes the translation of several nuclear-encoded 

mitochondrial transcripts in 4E-BP dependent manner (92). We reasoned whether mTORC1-

mediated translation regulation plays any role in the reduced protein levels of AFG3L2 

substrates. We have 4E-BP deficient cells cultured in hypoxia and normoxia for 16 hours. Both 

wild-type and 4E-BP deficient cells showed reduced levels of AFG3L2 substrates (Fig 5.9 A). 

Similar to hypoxia, cells were treated with torin, showed reduced levels of AFG3L2 substrates 

in both wildtype and 4E-BP KO cells (Fig 5.9B). These results indicate reduced levels of 

AFG3L2 substrates in hypoxia and mTORC1 inhibition is independent of4E-BP-dependent 

translation.  

 

mTORC1 promotes anabolism and inhibits catabolism. One such catabolic process is 

autophagy, it is a central process in the clearance of damaged cellular components (60). 

mTORC1 regulates autophagy at several levels by phosphorylating key components of 

autophagic machinery (97,98) We investigated whether the reduced level of AFG3L2 substates 

in mTORC1 inhibition is dependent on autophagy. ATG (autophagy-related proteins) proteins 

play a key role in the autophagy process. So, we used autophagy-deficient cells, ATG5 knock 

out. Upon inhibition of mTORC1 with torin, AFG3L2 substrates were reduced in both wildtype 

and autophagy-deficient (ATG5 knockout) cells. This result indicates reduced levels of 

AFG3L2 substrates in mTORC1 inhibition is independent of autophagy but rather  dependent 

in proteolysis (Fig 5.9C). These results again support our finding, that only a subset of 

mitochondrial proteome undergoes a faster turnover in hypoxia and nutrient stress.  
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5.8 NCLX regulates AFG3L2 dependent proteolysis 

mTORC1 regulates lipid metabolism to support membrane biogenesis. Recently it has been 

shown that mTORC1- LIPIN1 axis regulates mitochondrial lipid composition, especially 

mitochondrial phosphatidylethanolamine (PE) levels. Reduced PE levels in the mitochondria 

under hypoxia and mTORC1 inhibition, stimulate i-AAA protease YME1L-dependent 

proteolysis (94). Since AFG3L2 is an m-AAA protease stationed in the inner mitochondrial 

membrane (IMM), there could be a potential possibility that alerted PE levels may regulate 

AFG3L2-dependent proteolysis. To check the role of mitochondrial PE in AFG3L2-dependent 

proteolysis, we have used PRELID3B (also known as SLOM2) deficient cells, PRELID3B is 

a lipid transfer protein shuttles phosphatidylserine (PS) to the inner membrane (IMM) for its 

conversion to PE by PISD. PRELID3B deficient cells showed no change in the levels of 

AFG3L2 substrates but YME1L substrates were reduced (Fig 5.10A). To confirm further our 

findings cells were treated with lyso-phosphatidyl ethanolamine (Lyso -PE) in the presence of 

mTORC1 inhibition. AFG3L2 substrates were reduced in both ethanol as well as Lyso -PE 

treatment and we could observe accumulation of YME1L substate in Lyso-PE treatment. These 

results indicate that altered mitochondrial PE doesn’t affect AFG3L2-dependent proteolysis. 

 

NCLX is a Na+/Ca2+ exchanger that maintains ion homeostasis in the mitochondria by 

importing Na+ and exporting Ca2+. A recent report suggested hypoxia activates NCLX and 

stimulates Na+ entry to the mitochondrial matrix, regulating mitochondrial inner membrane 

fluidity (REF). Since it has greater importance in ischemia-reperfusion injury and also now in 

hypoxia signaling, we investigated its role in AFG3L2-dependent proteolysis. We depleted 

NCLX with small interfering RNA (esiRNA), and observed reduced levels of AFG3L2 

substrates in normoxia (Fig 5.10C). These results indicate loss of NCLX or altering the ion 

homeostasis in the mitochondria regulates AFG3L2 activity. 
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5.9 Glutamine utilization in hypoxia:  

In hypoxia, most of the glucose is converted to lactate, which leads to the overuse of glutamine. 

This enhanced usage of glutamine in hypoxia preferentially provides carbon for fatty acid 

biosynthesis through reductive carboxylation (43,44,45). Glutamine derived a- ketoglutarate 

is reduced to citric acid by IDH2 (isocitrate dehydrogenase 2) with NADPH oxidation (45). To 

monitor glutamine utilization in hypoxia, cells were supplemented with 13C5 glutamine: 12C5 

glutamine (1:1 ratio) for 10 hours (Fig 5.11A). In principal component analysis (PCA), there 

is a marked difference in hypoxia and normoxia glutamine utilization. When comes to cells 

lacking AFG3L2, PCA clustered more towards wildtype hypoxia (Fig 5.11B). The uptake of 

labeled glutamine in AFG3L2 knockout is lower compared to wildtype but there is no 

difference in the levels of a- ketoglutarate (Fig 5.11C).  In normoxia labeled glutamine (M5) 

entered into the TCA cycle through a- ketoglutarate (M5) and it is further converted mainly to 

succinic acid (M4). This is succinic acid further converted to malic acid (M4), Fumaric acid 

(M4), and citric acid (M4). One of the essential metabolites derived from the TCA cycle is 

aspartate is also M4.  Observing a large portion of labeled glutamine-formed M4 TCA cycle 

metabolites indicates that in normoxia cells utilizing glutamine through oxidative TCA cycle.  

 Whereas in hypoxia TCA cycle metabolites such as malic acid, fumaric acid, aspartic acid and 

asparagine generated M5 citric acid. a- ketoglutarate (M5) converted citric acid (M5) by IDH2 

and it undergoes lysis by citrate lyase generating oxaloacetate (M3) and acetyl-CoA. This 

oxaloacetate (M3) being used to generate aspartate (M3), asparagine (M3), Malic acid (M3) 

and fumaric acid (M3). This large fraction of TCA metabolites generated from M3, indicates 

wildtype cells following the reductive TCA cycle in hypoxia (Fig 5.11C). 

The cells lacking AFG3L2 either in normoxia or hypoxia produced M5 citric acid and the 

remaining metabolites are M3 (malic acid, fumaric acid, aspartate and asparagine). This 

indicates that cells lacking AFG3L2 followed the reductive TCA cycle irrespective of oxygen 

availability (Fig 5.11C). It has been known that dysfunctional mitochondria or defective ETC 

follow the reductive TCA cycle to support fatty acid biosynthesis(43, 44,45) Since the 

pleiotropic nature of AFG3L2, a wide variety of substrates and OXPHOS defect in cells lacking 

AFG3L2 explains very well glutamine utilization in a reductive manner. 
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6. Discussion:  

Oxygen is an essential element in the metabolic functioning of a cell. Reduced oxygen 

concentration (hypoxia) is a major stressor induced during various pathological states such as 

bacterial infections, wounds, inflammation, cancer, and cardiovascular defects resulting in a 

dysregulated cellular homeostasis (205). Molecular oxygen is essential for mitochondrial ATP 

generation, the cellular energy currency. A healthy adult consumes approximately 380 liters of 

oxygen every day and around 90% of this oxygen is utilized in the electron transport chain 

(ETC) and subsequent synthesis of ATP (58). Mitochondria is a hub for many metabolic 

reactions and metabolites and hence it is pivotal to understand how oxygen levels influence 

mitochondrial functioning and how mitochondria and the cells in turn adapt to the changes in 

oxygen tension. 

 

6.1 Hypoxia activates AFG3L2-dependent proteolysis: 

Despite the fundamental importance of oxygen in human physiology and disease, we currently 

lack a complete understanding of how the mitochondrial proteome adapts fluctuations in 

oxygen tensions (58). Mitochondria harbors 20 resident proteases, that broadly affect 

mitochondrial functions, such as lipid homeostasis, protein import, mitochondrial gene 

expression, calcium signaling, and oxidative phosphorylation (OXPHOS) complex assembly 

to mitochondrial dynamics, mitophagy, and cell death (207). It is known that hypoxia alters 

mitochondrial proteome but the involved mechanisms are unknown.  In this study, we adapted 

the dynamic SILAC (Stable Isotope Labeling with Amino acids in Cell culture) approach 

to monitor protein turnover rates in hypoxia and determined the protein half-lives during varied 

oxygen tensions. As previously described, we could observe a faster turnover of HIF1a target 

proteins in hypoxia compared to normoxia (Fig 5.1). Following a Reactome analysis for faster 

turnover proteins, we observed an increase in the turnover rate of genes involved in glucose 

homeostasis pathways are one of the highly affected pathways (Fig 5.1C). In hypoxia, cells 

consume more glucose and prefer glycolysis over oxidative phosphorylation. This switch 

which is governed by pyruvate dehydrogenase kinases (PDK) has a faster turnover in hypoxia 

(36,37). This study documented protein turnover rates in hypoxia (Fig 5.1B). A major 

limitation in protein turnover studies is that the dynamic changes in protein turnover rate 

constants are calculated using linear rate assumptions, which does not accurately represent the 

true physiological behavior of dynamically adjusting proteomes. Achieving an accurate model 

of dynamic turnover rate changes is still an open question in the field of proteome turnover. (6) 



 

 

A recent finding suggests that hypoxia proteolytically rewires mitochondrial inner membrane 

space (IMS) and Inner membrane (IMM) proteome by i-AAA protease YME1L (93). In this 

study, we could successfully recapitulate the previous finding of YME1L-dependent 

proteolysis. The identified YME1L substrates have faster turnover in hypoxia. Hypoxia 

promotes mitophagy by expressing BNIP3L and dephosphorylating FUNC1(57). These 

proteins are localized to the mitochondrial outer membrane and serve as a receptor for 

mitophagy machinery. Mitophagy is a catabolic process involving lysosomal degradation of 

dysfunctional and superfluous mitochondria. In hypoxia, only 10% of mitochondrial proteome 

has a faster turnover and which suggests that the faster turnover of mitochondrial proteins is 

not due to the mitophagy. To check whether hypoxia induced mitophagy plays a role in 

AFG3L2-dependent proteolysis, we have used ATG5 deficient cells. Upon hypoxia, both 

wildtype and ATG5 knockout shows an AFG3L2 dependent proteolysis which confirms that 

AFG3L2 dependent proteolysis independent of lysosomal degradation. 

 

The human brain is constantly exposed to a lower oxygen tension compared to other organs 

such as the heart and kidney (35). AFG3L2 is activated in brain hypoxia suggesting a critical 

role in the normal functioning of brain.  Mutation in genes encoding the AFG3L2 protease 

subunit causes spinocerebellar ataxia type 28 (SCA28), an autosomal dominant disorder and 

rare ataxia with an early onset, wherein cerebellar dysfunction occurs due to a deterioration of 

Purkinje cells resulting in progressive gait and limb ataxia with eye movement abnormalities 

(219). The mechanisms describing SCA28 progression and the substrates responsible for it are 

yet unknown.  In this study, we could conclusively show that the AFG3L2 is activated in 

hypoxia, and enhances the turnover of nearly 72 mitochondrial proteins (Fig 5.4 D, E, F). These 

proteins could be putative substrates of AFG3L2 and verified that these proteins with 

immunoblot (Fig 5.3D). We could also recapitulate previously identified substrates of 

AFG3L2and generated a comprehensive list of the AFG3L2 substrates, which are involved in 

ETC maintenance, gene expression, protein import, ferroptosis, and metabolism.  which will 

help in further understanding the disease mechanisms causing spinocerebellar ataxia type 28 

(SCA28). 

 

 

 



 

6.2 mTORC1 inhibits AFG3L2 – dependent proteolysis:  

Hypoxia is one of the major stressors for mTORC1 signaling. mTORC1 is a master regulator 

of nutrient sensing and mitochondria are the hub for metabolizing nutrients. Hence, mTORC1 

regulates mitochondria at different levels (91, 92). Active mTORC1 promotes mitochondrial 

biogenesis via PGC1α (PPARγ coactivator 1α) and 4E-BP.  mTORC1 enhances the expression 

of mitochondrial genes by yin–yang 1 (YY1) −PPARγ coactivator 1α (PGC1α) transcriptional 

complex (91). mTORC1 selectively translates nucleus-encoded mitochondria-related mRNAs 

in 4E-BP dependent manner (92). Collectively, mTORC1 promotes mitochondrial biogenesis. 

Upon nutrient starvation, mTORC1 is inactive and activates mitochondrial i-AAA protease 

YME1L and reshapes mitochondrial proteome, especially in IMS and IMM (93). In this study, 

we could observe an enhanced AFG3L2-dependent proteolysis upon mTORC1 inhibition (Fig 

5.6A). Nutrient starvation (Amino acid & Glutamine) also increased AFG3L2-dependent 

proteolysis (Fig 5.6 B, C). mTORC1 regulates some of the nuclear-encoded mitochondrial 

genes translation in 4E-BP dependent manner, so we tested whether reduced levels of AFG3L2 

substrates in mTORC1 inhibition are due to reduced translation (92). To verify this, we used 

4E-BP deficient cells and treated them with Torin.  Upon mTORC1 inhibition, we could see 

proteolysis in both wildtype and 4E-BP knockout (Fig 5.9B). This indicates that AFG3L2-

dependent proteolysis is independent of mTORC1-mediated mitochondrial translational 

regulation.  

 

mTORC1 controls autophagy at several stages via the phosphorylation of key components of 

the autophagic machinery. mTORC1 inhibits autophagy at the stage of initiation by 

phosphorylating ULK1 and ATG13 (96, 97, 98). mTORC1 also inhibits autophagosome 

maturation and the conversion of endosomes into lysosomes. In starvation, autophagy 

breakdown proteins and macromolecules in the lysosome. To test autophagy's role in AFG3L2-

dependent proteolysis, we have used autophagy-deficient cells (ATG5 Knockout). The cells 

lacking ATG5 didn’t affect the AFG3L2-dependent proteolysis upon mTORC1 inhibition (Fig 

5.9C). This suggests that AFG3L2-mediated proteolysis in nutrient starvation and mTORC1 

inhibition is independent of autophagy.  

 

Abundant nutrient availability activates mTORC1. Active mTORC1 promotes mitochondrial 

biogenesis by enhancing the transcription and translation of nuclear-encoded mitochondrial 

genes (91, 92).  Cells that lack TSC2 are constitutively active for mTORC1 signaling (114). 



 

TSC2 knockout cells showed inhibition of AFG3L2 dependent proteolysis when cells treated 

with Torin promote AFG3L2 mediated proteolysis (Fig 5.7B). These results were further 

confirmed with quantitative proteomics from isolated mitochondria from Wildtype and TSC2 

knockout (Fig 5.7D). To confirm further it is proteolysis not any other means of regulation, we 

have employed a dynamic SILAC approach for wildtype and TSC2 knockout. Monitoring 

protein degradation with heavy intensities revealed active mTORC1 inhibits AFG3L2-

dependent proteolysis (Fig 5.10F). These findings suggest that nutrients and oxygen regulate 

AFG3L2-dependent proteolysis.  

 

6.3 Regulation of AFG3L2 dependent proteolysis:  

 The inner mitochondrial membrane (IM) harbors m-AAA and the i-AAA, two ATP- dependent 

proteases, which serve as quality control enzymes in the inner mitochondria and regulates 

membrane-associated processes (207). The i-AAA protease is composed of YME1L subunits 

and rewires mitochondrial proteome in IMM and IMS upon nutrient starvation and hypoxia. 

The PA phosphatase LIPIN1 converts phosphatidic acid (PA) to diacylglycerol (DAG) and 

thereby regulates the synthesis of glycerophospholipids and triacylglycerides (TAG). The 

LIPIN1 is a direct target of the mTORC1 kinase complex and upon inhibition of mTORC1 

activates LIPIN1 and modulates lipid metabolism. The LIPIN1 activation reduces the 

conversion of phosphatidylcholine (PC) to phosphatidylserine (PS), which is required for the 

generation of Phosphatidylethanolamine (PE) in the mitochondria. Inhibition of mTORC1 in 

hypoxia or upon nutrient starvation reduces mitochondrial PE levels and activates YME1L 

(93). Since AFG3L2 is an ATP-dependent m-AAA protease, we sought mitochondrial PE 

level’s role in the activation of AFG3L2. PRELID3B transfers mitochondrial PS, and ablation 

of PRELID3B reduces mitochondrial PE levels in the mitochondria. The cells lacking 

PRELIDB showed no role in AFG3L2 - dependent proteolysis (Fig 5.10A). Cells supplemented 

with Lyso PE in the presence of mTORC1 inhibition reduced YME1L-mediated proteolysis 

but does not affect AFG3L2-mediated proteolysis Fig 5.10B). These findings suggest that 

though AFG3L2 is an ATP-dependent m-AAA protease differs in its regulation from i-AAA 

protease YME1L.  

 

Mitochondria are a major hub for calcium signaling. Mitochondrial calcium homeostasis is 

mediated by mainly three proteins MCU (Mitochondrial Calcium Uniporter), NCLX (Na+/Ca2+ 

exchanger) and TMBIM5 (224). The MCU is involved in the uptake of calcium into the 



 

mitochondria whereas NCLX and TMBIM5 efflux calcium. Disruption of calcium homeostasis 

leads to various pathological conditions such as senescence and neurodegeneration (15, 16).  

NCLX is a Na+/Ca2+ exchanger, which effluxes Ca2+ from the matrix in exchange for Na+ from 

the intermembrane space. In acute hypoxia, mitochondrial complex I undergo conformational 

changes that drives acidification of the matrix and release calcium from calcium precipitates 

(CaP) in exchange with Na+. The NCLX imported Na+ affects membrane fluidity of 

mitochondria intermembrane and superoxide production at complex III (229).  We tested the 

role of NCLX in the AFG3L2-dependent proteolysis. Genetic ablation NCLX using esiRNA 

enhanced AFG3L2 dependent proteolysis in normoxia (Fig 5.10C). The mechanism behind 

AFG3L2 activation upon loss of NCLX is not yet known. A recent report suggests that 

TMBIM5 (Ca2+/H+ antiporter) regulates AFG3L2 activity (230). Future studies should address 

how ion homeostasis (Na+/Ca2+) regulates AFG3L2 activity. 

 

Glutamine utilization in hypoxia:  

Glutamine is the one of most abundant amino acids in the body. In hypoxia, glucose-derived 

citrate is reduced and glutamine becomes a major source of citrate. Mitochondrial isocitrate 

dehydrogenase (IDH2) reductively carboxylates glutamine-derived α-ketoglutarate to citrate. 

This reductive TCA cycle-generated citrate provides both the acetyl-coenzyme A for lipid 

synthesis and the four-carbon intermediates needed to produce the remaining TCA cycle 

metabolites and related macromolecular precursors. Hypoxia and ETC dysfunction operate a 

reductive TCA cycle and glutamine anaplerosis can therefore maintain lipid homeostasis (43, 

44, 45). To determine the glutamine utilization in hypoxia we have used 13C5 glutamine tracing. 

In normoxia, glutamine is used in an oxidative manner, whereas in hypoxia it is used reductive 

manner. The cells lacking AFG3L2 utilize glutamine in a reductive manner and operate a 

reductive TCA cycle irrespective of the availability of oxygen (Fig 5.11C). This is mainly due 

to defective OXPHOS or mitochondrial dysfunction in AFG3L2 knockout.  

 

In this study, we have monitored protein turnover rates in hypoxia and found a new target for 

hypoxia signaling. AFG3L2 is activated in hypoxia and rewires mitochondrial proteomes. Here 

we could provide a comprehensive list of AFG3L2 putative substrates, which are involved in 

mitochondrial protein import, ferroptosis, ETC maintenance, lipid metabolism and 

metabolism. This study added a new arm to the mTORC1-mediated regulation of mitochondria.  

Our results will help in further understanding in mechanism of spinocerebellar ataxia (SCA28). 
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7. Summary 

In this study we documented protein turnover rates in hypoxia and found a new target for hypoxia 
signaling. AFG3L2 is activated in hypoxia and rewires mitochondrial proteome. Upon nutrient 
starvation and low oxygen mTORC1 inhibited and activates AFG3L2 dependent 
proteolysis in the mitochondria. The two mitochondrial AAA-proteases, YME1L and AFG3L2 
togethers rewires mitochondrial proteome in low nutrients and oxygen.  
This proteolytic rewiring enables cells to adapt to hypoxia and nutrient stress.
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